id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
/luma.core-2.4.1.tar.gz/luma.core-2.4.1/luma/core/bitmap_font.py
from pathlib import Path from math import ceil from copy import deepcopy from PIL import Image, ImageFont import cbor2 from luma.core.util import from_16_to_8, from_8_to_16 class bitmap_font(): """ An ``PIL.Imagefont`` style font. The structure of this class was modeled after the PIL ``ImageFont`` class and is intended to be interchangable for :py:class:`PIL.ImageFont` objects. It has the following additional capabilities: * Allows fonts larger than 256 characters to be created * Font can be combined with other fonts * Font characters can be mapped to their correct unicode codepoints * Font can be initialized from a basic sprite table (with conditions) .. note: Because this font is implemented completely in Python it will be slower than a native PIL.ImageFont object. .. versionadded:: 1.16.0 """ PUA_SPACE = 0xF8000 def __init__(self): self.mappings = {} self.metrics = [] def load(self, filename): """ Load font from filename :param filename: the filename of the file containing the font data :type filename: str :return: a font object :rtype: :py:class:`luma.core.bitmap_font` """ with open(filename, 'rb') as fp: s = fp.readline() if s != b'LUMA.CORE.BITMAP_FONT\n': raise SyntaxError('Not a luma.core.bitmap_font file') fontdata = cbor2.load(fp) self._load_fontdata(fontdata) return self def loads(self, fontdata): """ Load :py:class:`luma.core.bitmap_font` from a string of serialized data produced by the ``dumps`` method :param fontdata: The serialized font data that will be used to initialize the font. This data is produced by the :py:func:`luma.core.bitmap_font.dumps` method. :type fontdata: bytes :return: a font object :rtype: :py:class:`luma.core.bitmap_font` """ fontdata = cbor2.loads(fontdata) self._load_fontdata(fontdata) return self def load_pillow_font(self, file, mappings=None): """ Create :py:class:`luma.core.bitmap_font` from a PIL ImageFont style font. :param file: The filename of the PIL.ImageFont to load :type file: str :param mappings: a dictionary of unicode to value pairs (optional). Mappings allow the appropriate unicode values to be provided for each character contained within the font :type mappings: dict :return: a font object :rtype: :py:class:`luma.core.bitmap_font` """ with open(file, 'rb') as fp: if fp.readline() != b"PILfont\n": raise SyntaxError("Not a PIL.ImageFont file") while True: s = fp.readline() if not s: raise SyntaxError("PIL.ImageFont file missing metric data") if s == b"DATA\n": break data = fp.read(256 * 20) if len(data) != 256 * 20: raise SyntaxError("PIL.ImageFont file metric data incomplete") sprite_table = self._get_image(file) self._populate_metrics(sprite_table, data, range(256), mappings) sprite_table.close() return self def load_sprite_table(self, sprite_table, index, xwidth, glyph_size, cell_size, mappings=None): """ Load a font from a sprite table :param sprite_table: A PIL.Image representation of every glyph within the font :type sprite_table: PIL.Image :param index: The list of character values contained within sprite_table. This list MUST be in the same order that the glyphs for the characters appear within the sprite_table (in left to right, top to bottom order) :type index: list or other iterable :param xwidth: number of pixels between placements of each character in a line of text :type xwidth: int :param glyph_size: tuple containing the width and height of each character in the font :type glyph_size: tuple(int, int) :param cell_size: tuple containing the width and height of each cell in the sprite table. Defaults to the size of the glyphs. :type cell_size: tuple(int, int) :param mappings: a dictionary of unicode to value pairs (optional) Mappings allow the appropriate unicode values to be provided for each character contained within the font :type mappings: dict :return: a font object :rtype: :py:class:`luma.core.bitmap_font` .. note: Font contained within table must adhere to the following conditions * All glyphs must be the same size * Glyphs are contained within the sprite table in a grid arrangement * The grid is filled with glyphs placed in horizontal order * Each cell in the grid is the same size * The placement of each glyph has no offset from its origin """ table_width = sprite_table.size[0] # Each character uses the same data line = [xwidth, 0, 0, -glyph_size[1], glyph_size[0], 0] data = [] # Generate an entry for each character for c in range(len(index)): offset = c * cell_size[0] left = offset % table_width top = (offset // table_width) * cell_size[1] right = left + glyph_size[0] bottom = top + glyph_size[1] data = data + line + [left, top, right, bottom] self._populate_metrics(sprite_table, from_16_to_8(data), index, mappings) return self def save(self, filename): """ Write :py:class:`luma.core.bitmap_font` data to a file """ with open(filename, 'wb') as fp: fontdata = self._generate_fontdata() fp.write(b'LUMA.CORE.BITMAP_FONT\n') cbor2.dump(fontdata, fp) def dumps(self): """ Serializes the font data for transfer or storage :return: Serialized font data :rtype: bytes """ fontdata = self._generate_fontdata() return cbor2.dumps(fontdata) def _generate_fontdata(self): """ Utility method to create an efficient serializable representation of a :py:class:`luma.core.bitmap_font` """ cell_size = (self.width, self.height) area = self.count * self.width * self.height table_width = ((ceil(area**0.5) + self.width - 1) // self.width) * self.width table_height = ((ceil(area / table_width) + self.height - 1) // self.height) * self.height image = Image.new('1', (table_width, table_height)) metrics = [] for i, v in enumerate(self.metrics): offset = i * cell_size[0] left = offset % table_width top = (offset // table_width) * cell_size[1] image.paste(v['img'], (left, top)) metrics.append((v['xwidth'], v['dst'])) fontdata = {} fontdata['type'] = 'LUMA.CORE.BITMAP_FONT' fontdata['count'] = len(self.metrics) if self.regular: fontdata['xwidth'] = self.regular[0] fontdata['glyph_size'] = (self.width, self.height) fontdata['cell_size'] = cell_size fontdata['mappings'] = self.mappings fontdata['sprite_table_dimensions'] = (table_width, table_height) fontdata['sprite_table'] = image.tobytes() if not self.regular: fontdata['metrics'] = metrics return fontdata def _load_fontdata(self, fontdata): """ Initialize font from deserialized data """ try: count = fontdata['count'] xwidth = fontdata.get('xwidth') glyph_size = fontdata.get('glyph_size') cell_size = fontdata['cell_size'] self.mappings = fontdata['mappings'] table_width, table_height = fontdata['sprite_table_dimensions'] image = Image.frombytes('1', (table_width, table_height), fontdata['sprite_table']) metrics = fontdata.get('metrics') except (KeyError, TypeError, ValueError): raise ValueError('Cannot parse fontdata. It is invalid.') self.metrics = [] for i in range(count): offset = i * cell_size[0] metric = metrics[i] if metrics else (xwidth, [0, -glyph_size[1], glyph_size[0], 0]) left = offset % table_width top = (offset // table_width) * cell_size[1] right = left + (metric[1][2] - metric[1][0]) bottom = top + (metric[1][3] - metric[1][1]) self.metrics.append({ 'xwidth': metric[0], 'dst': metric[1], 'img': image.crop((left, top, right, bottom)) }) self._calculate_font_size() def _get_image(self, filename): """ Load sprite_table associated with font """ ifs = {p.resolve() for p in Path(filename).parent.glob(Path(filename).stem + ".*") if p.suffix in (".png", ".gif", ".pbm")} for f in ifs: try: image = Image.open(f) except: pass else: if image.mode in ['1', 'L']: break image.close() else: raise OSError('cannot find glyph data file') return image def _lookup(self, val): """ Utility method to determine a characters placement within the metrics list """ if val in self.mappings: return self.mappings[val] if val + self.PUA_SPACE in self.mappings: return self.mappings[val + self.PUA_SPACE] return None def _getsize(self, text): """ Utility method to compute the rendered size of a line of text. It also computes the minimum column value for the line of text. This is needed in case the font has a negative horizontal offset which requires that the size be expanded to accomodate the extra pixels. """ min_col = max_col = cp = 0 for c in text: m = self._lookup(ord(c)) if m is None: # Ignore characters that do not exist in font continue char = self.metrics[m] min_col = min(min_col, char['dst'][0] + cp) max_col = max(max_col, char['dst'][2] + cp) cp += char['xwidth'] return (max_col - min_col, self.height, min_col) def getsize(self, text, *args, **kwargs): """ Wrapper for _getsize to match the interface of PIL.ImageFont """ width, height, min = self._getsize(text) return (width, height) def getmask(self, text, mode="1", *args, **kwargs): """ Implements an PIL.ImageFont compatible method to return the rendered image of a line of text """ # TODO: Test for potential character overwrite if horizontal offset is < 0 assert mode in ['1', 'L'] width, height, min = self._getsize(text) image = Image.new(mode, (width, height)) # Adjust start if any glyph is placed before origin cp = -min if min < 0 else 0 for c in text: m = self._lookup(ord(c)) if m is None: # Ignore characters that do not exist in font continue char = self.metrics[m] px = char['dst'][0] + cp py = char['dst'][1] + self.baseline image.paste(char['img'], (px, py)) cp += char['xwidth'] return image.im def _populate_metrics(self, sprite_table, data, index, mappings): """ Populate metrics on initial font load from a sprite table or PIL ImageFont Place characters contained on the sprite_table into Unicode private use area (PUA). Create a reverse lookup from the values that are contained on the sprite_table. .. note: Arbritarily using Supplemental Private Use Area-A starting at PUA_SPACE (0xF8000) to give the raw sprite_table locations a unicode codepoint. """ self.metrics = [] self.glyph_index = {} self.data = data idx = 0 rev_map = {} if mappings is not None: for k, v in mappings.items(): if v in rev_map: rev_map[v].append(k) else: rev_map[v] = [k] self.mappings = {} for i, c in enumerate(index): metric = from_8_to_16(data[i * 20:(i + 1) * 20]) # If character position has no data, skip it if sum(metric) == 0: continue xwidth = metric[0] dst = metric[2:6] src = metric[6:10] img = sprite_table.crop((src[0], src[1], src[2], src[3])) self.metrics.append({ 'xwidth': xwidth, 'dst': dst, 'img': img }) self.mappings[c + self.PUA_SPACE] = idx if c in rev_map: for u in rev_map[c]: self.mappings[u] = idx i2b = img.tobytes() # Only add new glyphs except always add space character if i2b not in self.glyph_index or c == 0x20: self.glyph_index[i2b] = c idx += 1 self._calculate_font_size() def _calculate_font_size(self): # Calculate height and baseline of font ascent = descent = width = 0 m = self.metrics[0] regular = (m['xwidth'], m['dst']) xwidth = regular[0] regular_flag = True for m in self.metrics: if regular != (m['xwidth'], m['dst']): regular_flag = False ascent = max(ascent, -m['dst'][1]) descent = max(descent, m['dst'][3]) width = max(width, m['dst'][2] - m['dst'][0]) xwidth = max(xwidth, m['xwidth']) self.height = ascent + descent self.width = width self.baseline = ascent self.regular = regular if regular_flag else None self.count = len(self.metrics) def combine(self, source_font, characters=None, force=False): """ Combine two :py:class:`luma.core.bitmap_font` instances. :param source_font: a :py:class:`luma.core.bitmap_font` to copy from :type source_font: :py:class:`luma.core.bitmap_font` :param characters: (optional) A list of the characters to transfer from the source_font. If not provided, all of the characters within the source_font will be transferred. :type characters: str :param force: If set, the source_font can overwrite values that already exists within this font. Default is False. :type force: bool """ if characters: for c in characters: if ord(c) in self.mappings and not force: continue m = source_font._lookup(ord(c)) if m is not None: v = source_font.metrics[m] else: raise ValueError(f'{c} is not a valid character within the source font') self.metrics.append(v) self.mappings[ord(c)] = len(self.metrics) - 1 else: # Copy source values into destination but don't overwrite existing characters unless force set for k, v in source_font.mappings.items(): if k in self.mappings and not force: continue self.metrics.append(source_font.metrics[v]) self.mappings[k] = len(self.metrics) - 1 # Recompute font size metrics self._calculate_font_size() def load(filename): """ Load a :py:class:`luma.core.bitmap_font` file. This function creates a :py:class:`luma.core.bitmap_font` object from the given :py:class:`luma.core.bitmap_font` file, and returns the corresponding font object. :param filename: Filename of font file. :type filename: str :return: A :py:class:`luma.core.bitmap_font` object. :exception OSError: If the file could not be read. :exception SyntaxError: If the file does not contain the expected data """ f = bitmap_font() f.load(filename) return f def loads(data): """ Load a :py:class:`luma.core.bitmap_font` from a string of serialized data. This function creates a :py:class:`luma.core.bitmap_font` object from serialized data produced from the ``dumps`` method and returns the corresponding font object. :param data: Serialized :py:class:`luma.core.bitmap_font` data. :type data: str :return: A :py:class:`luma.core.bitmap_font` object. :exception ValueError: If the data does not a valid luma.core.bitmap_font """ f = bitmap_font() f.loads(data) return f def load_pillow_font(filename, mappings=None): """ Load a PIL font file. This function creates a luma.core.bitmap_font object from the given PIL bitmap font file, and returns the corresponding font object. :param filename: Filename of font file. :type filename: str :param mappings: a dictionary of unicode to value pairs (optional) :type mappings: dict :return: A font object. :exception OSError: If the file could not be read. :exception SyntaxError: If the file does not contain the expected data """ f = bitmap_font() f.load_pillow_font(filename, mappings) return f def load_sprite_table(sprite_table, index, xwidth, glyph_size, cell_size=None, mappings=None): """ Create a :py:class:`luma.core.bitmap_font` from a sprite table. :param sprite_table: Filename of a sprite_table file or a PIL.Image containing the sprite_table :type sprite_table: str or PIL.Image :param index: The list of character values contained within sprite_table. This list MUST be in the same order that the glyphs for the characters appear within the sprite_table (in left to right, top to bottom order) :type index: list or other iterable :param xwidth: number of pixels between placements of each character in a line of text :type xwidth: int :param glyph_size: tuple containing the width and height of each character in the font :type glyph_size: tuple(int, int) :param cell_size: tuple containing the width and height of each cell in the sprite table. Defaults to the size of the glyphs. :type cell_size: tuple(int, int) :param mappings: a dictionary of unicode to value pairs (optional) :type mappings: dict :return: A font object. :exception OSError: If the file could not be read. :exception SyntaxError: If the file does not contain the expected data .. note: Requires a font where each character is the same size with no horizontal or vertical offset and has consistant horizontal distance between each character """ f = bitmap_font() need_to_close = False if type(sprite_table) is str: try: sprite_table = Image.open(sprite_table) need_to_close = True # Differentiate between file not found and invalid sprite table except FileNotFoundError: raise except IOError: raise ValueError(f'File {sprite_table} not a valid sprite table') if isinstance(sprite_table, Image.Image): cell_size = cell_size if cell_size is not None else glyph_size f.load_sprite_table(sprite_table, index, xwidth, glyph_size, cell_size, mappings) else: raise ValueError('Provided image is not an instance of PIL.Image') if need_to_close: sprite_table.close() return f class embedded_fonts(ImageFont.ImageFont): """ Utility class to manage the set of fonts that are embedded within a compatible device. :param data: The font data from the device. See note below. :type data: dict :param selected_font: The font that should be loaded as this device's default. Will accept the font's index or its name. :type selected_font: str or int ..note: The class is used by devices which have embedded fonts and is not intended to be used directly. To initialize it requires providing a dictionary of font data including a `PIL.Image.tobytes` representation of a sprite_table which contains the glyphs of the font organized in consistent rows and columns, a metrics dictionary which provides the information on how to retrieve fonts from the sprite_table, and a mappings dictionary that provides unicode to table mappings. .. versionadded:: 1.16.0 """ def __init__(self, data, selected_font=0): self.data = data self.font_by_number = {} self.names_index = {} for i in range(len(data['metrics'])): name = data['metrics'][i]['name'] self.names_index[name] = i self.current = selected_font def load(self, val): """ Load a font by its index value or name and return it :param val: The index or the name of the font to return :type val: int or str """ if type(val) is str: if val in self.names_index: index = self.names_index[val] else: raise ValueError(f'No font with name {val}') elif type(val) is int: if val in range(len(self.names_index)): index = val else: raise ValueError(f'No font with index {val}') else: raise TypeError(f'Expected int or str. Received {type(val)}') if index not in self.font_by_number: i = index index_list = self.data['metrics'][i]['index'] xwidth = self.data['metrics'][i]['xwidth'] cell_size = self.data['metrics'][i]['cell_size'] glyph_size = self.data['metrics'][i]['glyph_size'] table_size = self.data['metrics'][i]['table_size'] mappings = self.data['mappings'][i] if 'mappings' in self.data else None sprite_table = Image.frombytes('1', table_size, self.data['fonts'][i]) font = load_sprite_table(sprite_table, index_list, xwidth, glyph_size, cell_size, mappings) self.font_by_number[i] = font return self.font_by_number[index] @property def current(self): """ Returns the currently selected font """ return self.font @current.setter def current(self, val): """ Sets the current font, loading the font if it has not previously been selected :param val: The name or index number of the selected font. :type val: str or int """ self.font = self.load(val) def combine(self, font, characters=None, force=False): """ Combine the current font with a new one :param font: The font to combine with the current font :type font: :py:class:`luma.core.bitmap_font` :param characters: (Optional) A list of characters to move from the new font to the current font. If not provided all characters from the new font will be transferred. :type characters: list of unicode characters :param force: Determines if conflicting characters should be ignored (default) or overwritten. .. note: This does not permanently change the embedded font. If you set the value of current again even if setting it to the same font, the changes that combine has made will be lost. """ destination = deepcopy(self.font) destination.combine(font, characters, force) self.font = destination
PypiClean
/msgraph_beta_sdk-1.0.0a9-py3-none-any.whl/msgraph/generated/models/device_management_configuration_exchange_online_setting_applicability.py
from __future__ import annotations from kiota_abstractions.serialization import Parsable, ParseNode, SerializationWriter from typing import Any, Callable, Dict, List, Optional, TYPE_CHECKING, Union if TYPE_CHECKING: from . import device_management_configuration_setting_applicability from . import device_management_configuration_setting_applicability class DeviceManagementConfigurationExchangeOnlineSettingApplicability(device_management_configuration_setting_applicability.DeviceManagementConfigurationSettingApplicability): def __init__(self,) -> None: """ Instantiates a new DeviceManagementConfigurationExchangeOnlineSettingApplicability and sets the default values. """ super().__init__() self.odata_type = "#microsoft.graph.deviceManagementConfigurationExchangeOnlineSettingApplicability" @staticmethod def create_from_discriminator_value(parse_node: Optional[ParseNode] = None) -> DeviceManagementConfigurationExchangeOnlineSettingApplicability: """ Creates a new instance of the appropriate class based on discriminator value Args: parseNode: The parse node to use to read the discriminator value and create the object Returns: DeviceManagementConfigurationExchangeOnlineSettingApplicability """ if parse_node is None: raise Exception("parse_node cannot be undefined") return DeviceManagementConfigurationExchangeOnlineSettingApplicability() def get_field_deserializers(self,) -> Dict[str, Callable[[ParseNode], None]]: """ The deserialization information for the current model Returns: Dict[str, Callable[[ParseNode], None]] """ from . import device_management_configuration_setting_applicability fields: Dict[str, Callable[[Any], None]] = { } super_fields = super().get_field_deserializers() fields.update(super_fields) return fields def serialize(self,writer: SerializationWriter) -> None: """ Serializes information the current object Args: writer: Serialization writer to use to serialize this model """ if writer is None: raise Exception("writer cannot be undefined") super().serialize(writer)
PypiClean
/fhi-vibes-1.0.5.tar.gz/fhi-vibes-1.0.5/vibes/cli/scripts/get_relaxation_info.py
# Find the optimizer type def get_optimizer(f): """Find the optimzer type Parameters ---------- f: str file to search through Returns ------- int Optimizer type, 1 for Textbook BFGS, 2 for TRM, -1 for undefined """ try: line = next(l for l in f if "Geometry relaxation:" in l) except StopIteration: exit("Optimizer not found -- is this output from a relaxation?") if "Textbook BFGS" in line: return 1 if "TRM" in line: return 2 return -1 # find energy def get_energy(f): """Find the total energy for the calculation Parameters ---------- f: str file to search through Returns ------- total_energy: float the total energy corrected of the structure free_energy: float the electronic free energy of the structure """ spacegroup = None total_energy = None for line in f: if "Space group" in line: spacegroup = int(line.split()[4]) if "| Total energy corrected :" in line: total_energy = float(line.split()[5]) break if "| Electronic free energy :" in line: free_energy = float(line.split()[5]) if not total_energy: raise StopIteration return total_energy, free_energy, spacegroup # get max_force def get_forces(f): """Find the maximum force component Parameters ---------- f: str file to search through Returns ------- float The maximum force component of the structure """ line = next(l for l in f if "Maximum force component" in l) return float(line.split()[4]) # get current volume def get_volume(f): """Find the volume of the structure Parameters ---------- f: str file to search through Returns ------- float The structures volume """ for line in f: if "| Unit cell volume " in line: return float(line.split()[5]) if "Begin self-consistency loop:" in line: return -1 if "Final output of selected total energy values:" in line: return -1 return -1 # parse info of one step def parser(f, n_init=0, optimizer=2): """Parse info of one step Parameters ---------- f: str file to search through n_init: int The initial step optimizer: int Optimizer type, 1 for Textbook BFGS, 2 for TRM, -1 for undefined Yields ------ n_rel: int Current relaxation step energy: float The total energy corrected of the step free_energy: float The electronic free energy of the step max_force: float The maximum force component of the step volume: float The volume of the step status: int status of the step, 0 is normal, 1 is unproductive step, 2 is optimizer is stuck converged: bool If True the relaxation is converged abort: int If 1 the relaxation is aborting """ n_rel = n_init converged = 0 abort = 0 volume = -1 while not converged and not abort: n_rel += 1 status = 0 try: energy, free_energy, spacegroup = get_energy(f) max_force = get_forces(f) except StopIteration: break for line in f: if "Present geometry is converged." in line: converged = 1 break elif "Advancing" in line: pass elif "Aborting optimization" in line: abort = 1 elif "Counterproductive step -> revert!" in line: status = 1 elif "Optimizer is stuck" in line: status = 2 # elif '**' in line: # status = 3 elif "Finished advancing geometry" in line: volume = get_volume(f) break elif "Updated atomic structure" in line: volume = get_volume(f) break yield ( n_rel, energy, free_energy, max_force, volume, spacegroup, status, converged, abort, ) def print_status( n_rel, energy, de, free_energy, df, max_force, volume, spacegroup, status_string ): """Print the status line, skip volume if not found Parameters ---------- n_rel: int Current relaxation step energy: float The total energy corrected of the step de: float Change in total energy free_energy: float The electronic free energy of the step df: float Change in electronic free energy max_force: float The maximum force component of the step volume: float The volume of the step status_string: str The status of the relaxation """ if volume and volume > 0: vol_str = f"{volume:15.4f}" else: vol_str = "" if spacegroup: sg_str = f"{spacegroup:5d}" else: sg_str = "" print( "{:5d} {:16.8f} {:16.8f} {:14.6f} {:20.6f} {} {} {}".format( n_rel, energy, free_energy, df, max_force * 1000, vol_str, status_string, sg_str, ) ) def get_relaxation_info(files): """print information about relaxation performed with FHIaims Parameters ---------- files: list of str The file paths of the aims.out files to analyze """ init, n_rel, converged, abort = 4 * (None,) status_string = [ "", "rejected.", "rejected: force <-> energy inconsistency?", "stuck.", ] # Run print( "\n# Step Total energy [eV] Free energy [eV] F-F(1)" + " [meV] max. force [meV/AA] Volume [AA^3] Spacegroup\n" ) converged, abort = False, False for infile in files: with open(infile) as f: # Check optimizer optimizer = get_optimizer(f) ps = parser(f, n_init=n_rel or 0, optimizer=optimizer) for (n_rel, ener, free_ener, fmax, vol, sg, status, _conv, _abort) in ps: if not init: first_energy, first_free_energy = ener, free_ener init = 1 print_status( n_rel, ener, 1000 * (ener - first_energy), free_ener, 1000 * (free_ener - first_free_energy), fmax, vol, sg, status_string[status], ) converged, abort = _conv, _abort if converged: print("--> converged.") if abort: print("*--> aborted, too many steps.") def main(): """wrap get_relaxation_info""" from argparse import ArgumentParser as argpars parser = argpars(description="Summarize the relaxation path") parser.add_argument("aimsouts", type=str, nargs="+", help="aims output files") args = parser.parse_args() get_relaxation_info(args.aimsouts) if __name__ == "__main__": main()
PypiClean
/v2/model/create_sub_customer_response.py
import pprint import re import six from huaweicloudsdkcore.sdk_response import SdkResponse class CreateSubCustomerResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'domain_id': 'str', 'domain_name': 'str' } attribute_map = { 'domain_id': 'domain_id', 'domain_name': 'domain_name' } def __init__(self, domain_id=None, domain_name=None): """CreateSubCustomerResponse - a model defined in huaweicloud sdk""" super().__init__() self._domain_id = None self._domain_name = None self.discriminator = None if domain_id is not None: self.domain_id = domain_id if domain_name is not None: self.domain_name = domain_name @property def domain_id(self): """Gets the domain_id of this CreateSubCustomerResponse. |参数名称:客户ID| |参数的约束及描述:只有成功或客户向伙伴授权发生异常(CBC.5025)时才会返回,且只允许最大长度64的字符串| :return: The domain_id of this CreateSubCustomerResponse. :rtype: str """ return self._domain_id @domain_id.setter def domain_id(self, domain_id): """Sets the domain_id of this CreateSubCustomerResponse. |参数名称:客户ID| |参数的约束及描述:只有成功或客户向伙伴授权发生异常(CBC.5025)时才会返回,且只允许最大长度64的字符串| :param domain_id: The domain_id of this CreateSubCustomerResponse. :type: str """ self._domain_id = domain_id @property def domain_name(self): """Gets the domain_name of this CreateSubCustomerResponse. |参数名称:用户登录名| |参数的约束及描述:只有成功的时候才会返回,且只允许最大长度64的字符串| :return: The domain_name of this CreateSubCustomerResponse. :rtype: str """ return self._domain_name @domain_name.setter def domain_name(self, domain_name): """Sets the domain_name of this CreateSubCustomerResponse. |参数名称:用户登录名| |参数的约束及描述:只有成功的时候才会返回,且只允许最大长度64的字符串| :param domain_name: The domain_name of this CreateSubCustomerResponse. :type: str """ self._domain_name = domain_name def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, CreateSubCustomerResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
PypiClean
/yaqc-cmds-2022.3.0.tar.gz/yaqc-cmds-2022.3.0/yaqc_cmds/somatic/modules/motortune.py
import pathlib import numpy as np import matplotlib matplotlib.pyplot.ioff() import WrightTools as wt import yaqc_cmds.project.classes as pc import yaqc_cmds.project.widgets as pw import yaqc_cmds.somatic.acquisition as acquisition import yaqc_cmds.sensors.signals as sensor_signals import yaqc_cmds import yaqc_cmds.hardware.opas as opas import yaqc_cmds.hardware.spectrometers as spectrometers import yaqc_cmds.sensors as sensors from yaqc_cmds.somatic import _wt5 ### define #################################################################### module_name = "MOTORTUNE" ### custom classes ############################################################ class MotorGUI: def __init__(self, name, center, width, number, use_tune_points): self.name = name self.use_tune_points = use_tune_points self.input_table = pw.InputTable() self.input_table.add(name, None) allowed = ["Set", "Scan", "Static"] self.method = pc.Combo(allowed_values=allowed) if self.use_tune_points is not None: self.use_tune_points.updated.connect(self.update_disabled) self.method.updated.connect(self.update_disabled) self.input_table.add("Method", self.method) self.center = pc.Number(initial_value=center) self.input_table.add("Center", self.center) self.width = pc.Number(initial_value=width) self.input_table.add("Width", self.width) self.npts = pc.Number(initial_value=number, decimals=0) self.input_table.add("Number", self.npts) self.update_disabled() def update_disabled(self): self.center.set_disabled(True) self.width.set_disabled(True) self.npts.set_disabled(True) method = self.method.read() if method == "Set": self.center.set_disabled(self.use_tune_points.read()) elif method == "Scan": self.center.set_disabled(self.use_tune_points.read()) self.width.set_disabled(False) self.npts.set_disabled(False) elif method == "Static": self.center.set_disabled(False) class OPA_GUI: def __init__(self, hardware, layout, use_tune_points): self.hardware = hardware motor_names = self.hardware.motor_names self.motors = [] for name in motor_names: motor = MotorGUI(name, 30, 1, 11, use_tune_points) if layout is not None: layout.addWidget(motor.input_table) self.motors.append(motor) self.hide() # initialize hidden def hide(self): for motor in self.motors: motor.input_table.hide() def show(self): for motor in self.motors: motor.input_table.show() ### Worker #################################################################### class Worker(acquisition.Worker): def process(self, scan_folder): with _wt5.data_container as data: # decide which channels to make plots for channel_name = self.aqn.read("processing", "channel") # make figures for each channel data_path = pathlib.Path(_wt5.data_container.data_filepath) data_folder = data_path.parent # make all images channel_path = data_folder / channel_name output_path = data_folder if data.ndim > 2: output_path = channel_path channel_path.mkdir() image_fname = channel_name if data.ndim == 1: outs = wt.artists.quick1D( data, channel=channel_name, autosave=True, save_directory=output_path, fname=image_fname, verbose=False, ) else: outs = wt.artists.quick2D( data, -1, -2, channel=channel_name, autosave=True, save_directory=output_path, fname=image_fname, verbose=False, ) # get output image if len(outs) == 1: output_image_path = outs[0] else: output_image_path = output_path / "animation.gif" wt.artists.stitch_to_animation(images=outs, outpath=output_image_path) # upload self.upload(scan_folder, reference_image=str(output_image_path)) def run(self): # assemble axes axes = [] # get OPA properties opa_name = self.aqn.read("motortune", "opa name") opa_names = [h.name for h in opas.hardwares] opa_index = opa_names.index(opa_name) opa_hardware = opas.hardwares[opa_index] opa_friendly_name = opa_hardware.name curve = opa_hardware.curve arrangement = opa_hardware.curve.arrangements[opa_hardware.arrangement] motor_names = self.aqn.read("motortune", "motor names") scanned_motors = [m for m in motor_names if self.aqn.read(m, "method") == "Scan"] tune_units = "nm" # needs update if/when attune supports other units for independents # tune points if self.aqn.read("motortune", "use tune points"): tune_points = get_tune_points(curve, arrangement, scanned_motors) motors_excepted = [] # list of indicies for motor_name in motor_names: if not self.aqn.read(motor_name, "method") == "Set": motors_excepted.append(motor_name) if self.aqn.read("spectrometer", "method") == "Set": hardware_dict = { opa_friendly_name: [ opa_hardware, "set_position_except", ["destination", motors_excepted, "units"], ], "wm": [spectrometers.hardwares[0], "set_position", None], } axis = acquisition.Axis( tune_points, tune_units, opa_friendly_name, hardware_dict, ) axes.append(axis) else: hardware_dict = { opa_friendly_name: [ opa_hardware, "set_position_except", ["destination", motors_excepted, "units"], ] } axis = acquisition.Axis( tune_points, tune_units, opa_friendly_name, hardware_dict, ) axes.append(axis) # motor for motor_name in motor_names: if self.aqn.read(motor_name, "method") == "Scan": motor_units = None name = "_".join([opa_friendly_name, motor_name]) width = self.aqn.read(motor_name, "width") / 2.0 npts = int(self.aqn.read(motor_name, "number")) if self.aqn.read("motortune", "use tune points"): center = 0.0 kwargs = { "centers": [curve(t, arrangement.name)[motor_name] for t in tune_points] } else: center = self.aqn.read(motor_name, "center") kwargs = {} points = np.linspace(center - width, center + width, npts) hardware_dict = {name: [opa_hardware, "set_motor", [motor_name, "destination"]]} axis = acquisition.Axis(points, motor_units, name, hardware_dict, **kwargs) axes.append(axis) elif self.aqn.read(motor_name, "method") == "Set": pass elif self.aqn.read(motor_name, "method") == "Static": opa_hardware.q.push("set_motor", [motor_name, self.aqn.read(motor_name, "center")]) # mono if self.aqn.read("spectrometer", "method") == "Scan": name = "wm" units = "wn" width = self.aqn.read("spectrometer", "width") / 2.0 npts = int(self.aqn.read("spectrometer", "number")) if self.aqn.read("motortune", "use tune points"): center = 0.0 kwargs = {"centers": wt.units.convert(tune_points, tune_units, units)} else: center = self.aqn.read("spectrometer", "center") center = wt.units.convert( center, self.aqn.read("spectrometer", "center units"), "wn" ) kwargs = {} points = np.linspace(center - width, center + width, npts) axis = acquisition.Axis(points, units, name, **kwargs) axes.append(axis) elif self.aqn.read("spectrometer", "method") == "Set": if self.aqn.read("motortune", "use tune points"): # already handled above pass else: center = self.aqn.read("spectrometer", "center") center = wt.units.convert( center, self.aqn.read("spectrometer", "center units"), "wn" ) spectrometers.hardwares[0].set_position(center, "wn") elif self.aqn.read("spectrometer", "method") == "Static": center = self.aqn.read("spectrometer", "center") center = wt.units.convert(center, self.aqn.read("spectrometer", "center units"), "wn") spectrometers.hardwares[0].set_position(center, "wn") # handle centers for axis_index, axis in enumerate(axes): centers_shape = [a.points.size for i, a in enumerate(axes) if not i == axis_index] ones = np.ones(centers_shape) if hasattr(axis, "centers"): # arrays always follow axis.centers = np.transpose(axis.centers * ones.T) # launch pre_wait_methods = [ lambda: opa_hardware.q.push("wait_until_still"), lambda: opa_hardware.q.push("get_motor_positions"), lambda: opa_hardware.q.push("get_position"), ] # do scan self.scan(axes, constants=[], pre_wait_methods=pre_wait_methods) if not self.stopped.read(): self.finished.write(True) # only if acquisition successfull ### GUI ####################################################################### class GUI(acquisition.GUI): def create_frame(self): # shared settings input_table = pw.InputTable() allowed = [hardware.name for hardware in opas.hardwares] self.opa_combo = pc.Combo(allowed) input_table.add("OPA", self.opa_combo) self.opa_combo.updated.connect(self.on_opa_combo_updated) self.use_tune_points = pc.Bool(initial_value=True) input_table.add("Use Tune Points", self.use_tune_points) self.layout.addWidget(input_table) # motor settings self.opa_guis = [ OPA_GUI(hardware, self.layout, self.use_tune_points) for hardware in opas.hardwares ] self.opa_guis[0].show() # mono settings allowed = ["Set", "Scan", "Static"] self.mono_method_combo = pc.Combo(allowed, disable_under_module_control=True) self.mono_method_combo.updated.connect(self.update_mono_settings) self.mono_center = pc.Number( initial_value=7000, units="wn", disable_under_module_control=True ) self.mono_width = pc.Number( initial_value=500, units="wn", disable_under_module_control=True ) self.mono_width.set_disabled_units(True) self.mono_npts = pc.Number(initial_value=51, decimals=0, disable_under_module_control=True) input_table = pw.InputTable() input_table.add("Spectrometer", None) input_table.add("Method", self.mono_method_combo) input_table.add("Center", self.mono_center) input_table.add("Width", self.mono_width) input_table.add("Number", self.mono_npts) self.layout.addWidget(input_table) self.update_mono_settings() # processing input_table = pw.InputTable() input_table.add("Processing", None) self.do_post_process = pc.Bool(initial_value=True) input_table.add("Process", self.do_post_process) # TODO: allowed values, update channel_names = list(yaqc_cmds.sensors.get_channels_dict().keys()) if ( "main_channel" not in self.state.keys() or self.state["main_channel"] not in channel_names ): self.state["main_channel"] = channel_names[0] self.main_channel = pc.Combo( allowed_values=channel_names, initial_value=self.state["main_channel"], ) input_table.add("Channel", self.main_channel) self.layout.addWidget(input_table) sensor_signals.channels_changed.connect(self.on_device_settings_updated) def load(self, aqn_path): aqn = wt.kit.INI(aqn_path) # shared settings self.opa_combo.write(aqn.read("motortune", "opa name")) self.use_tune_points.write(aqn.read("motortune", "use tune points")) # motor settings opa = self.opa_guis[self.opa_combo.read_index()] for motor, motor_name in zip(opa.motors, aqn.read("motortune", "motor names")): motor.method.write(aqn.read(motor_name, "method")) motor.center.write(aqn.read(motor_name, "center")) motor.width.write(aqn.read(motor_name, "width")) motor.npts.write(aqn.read(motor_name, "number")) # mono settings self.mono_method_combo.write(aqn.read("spectrometer", "method")) self.mono_center.write(aqn.read("spectrometer", "center")) self.mono_width.write(aqn.read("spectrometer", "width")) self.mono_npts.write(aqn.read("spectrometer", "number")) # processing self.do_post_process.write(aqn.read("processing", "do post process")) self.main_channel.write(aqn.read("processing", "channel")) # allow sensors to read from aqn # self.device_widget.load(aqn_path) def on_device_settings_updated(self): channel_names = list(yaqc_cmds.sensors.get_channels_dict().keys()) self.main_channel.set_allowed_values(channel_names) def on_opa_combo_updated(self): self.show_opa_gui(self.opa_combo.read_index()) def save(self, aqn_path): aqn = wt.kit.INI(aqn_path) opa = self.opa_guis[self.opa_combo.read_index()] scanned_motor_names = [] for motor in opa.motors: if motor.method == "Scan": scanned_motor_names.append(motor.name) scanned_motor_names = str(scanned_motor_names).replace("'", "") aqn.write( "info", "description", "MOTORTUNE: {} {}".format(self.opa_combo.read(), scanned_motor_names), ) # shared settings aqn.add_section("motortune") aqn.write("motortune", "opa name", self.opa_combo.read()) aqn.write( "motortune", "motor names", [motor.name for motor in self.opa_guis[self.opa_combo.read_index()].motors], ) aqn.write("motortune", "use tune points", self.use_tune_points.read()) # motor settings for motor in opa.motors: aqn.add_section(motor.name) aqn.write(motor.name, "method", motor.method.read()) aqn.write(motor.name, "center", motor.center.read()) aqn.write(motor.name, "width", motor.width.read()) aqn.write(motor.name, "number", motor.npts.read()) # mono settings aqn.add_section("spectrometer") aqn.write("spectrometer", "method", self.mono_method_combo.read()) aqn.write("spectrometer", "center", self.mono_center.read()) aqn.write("spectrometer", "center units", self.mono_center.units) aqn.write("spectrometer", "width", self.mono_width.read()) aqn.write("spectrometer", "number", self.mono_npts.read()) # processing aqn.add_section("processing") aqn.write("processing", "do post process", self.do_post_process.read()) aqn.write("processing", "channel", self.main_channel.read()) # allow sensors to save to aqn # self.device_widget.save(aqn_path) def show_opa_gui(self, index): for gui in self.opa_guis: gui.hide() self.opa_guis[index].show() def update_mono_settings(self): self.mono_center.set_disabled(True) self.mono_width.set_disabled(True) self.mono_npts.set_disabled(True) method = self.mono_method_combo.read() if method == "Set": self.mono_center.set_disabled(self.use_tune_points.read()) elif method == "Scan": self.mono_center.set_disabled(self.use_tune_points.read()) self.mono_width.set_disabled(False) self.mono_npts.set_disabled(False) elif method == "Static": self.mono_center.set_disabled(False) def save_state(self): self.state["main_channel"] = self.channel_combo.read() super().save_state() def mkGUI(): global gui gui = GUI(module_name) def load(): return True def get_tune_points(instrument, arrangement, scanned_motors): min_ = arrangement.ind_min max_ = arrangement.ind_max if not scanned_motors: scanned_motors = arrangement.keys() inds = [] for scanned in scanned_motors: if scanned in arrangement.keys() and hasattr(arrangement[scanned], "independent"): inds += [arrangement[scanned].independent] continue for name in arrangement.keys(): if ( name in instrument.arrangements and scanned in instrument(instrument[name].ind_min, name).keys() and hasattr(arrangement[scanned], "independent") ): inds += [arrangement[scanned].independent] if len(inds) > 1: inds = np.concatenate(inds) else: inds = inds[0] unique = np.unique(inds) tol = 1e-3 * (max_ - min_) diff = np.append(tol * 2, np.diff(unique)) return unique[diff > tol]
PypiClean
/django-things-0.4.5.tar.gz/django-things-0.4.5/things/renderers.py
from math import ceil from datetime import datetime from django_medusa.renderers import StaticSiteRenderer from django.utils import timezone from django.conf import settings from .models import Thing, StaticBuild from snippets.models import Snippet class ThingRenderer(StaticSiteRenderer): def get_paths(self): # A "set" so we can throw items in blindly and be guaranteed that # we don't end up with dupes. paths = set(['/', '/feed/', '/sitemap.xml']) for subclass in Thing.__subclasses__(): # Special case for built-in pages module if subclass._meta.app_label == "pages": has_urls = True else: try: __import__('.'.join([subclass._meta.app_label, 'urls'])) has_urls = True except ImportError: print "No urls for %s found" % subclass._meta.app_label has_urls = False if has_urls: # Get the latest StaticBuild time to see what we need to rebuild rebuild_list = False latest_static_build = StaticBuild.objects.order_by('-created_at') if latest_static_build: dt = latest_static_build[0].created_at else: dt = timezone.make_aware(datetime(1, 1, 1), timezone.get_current_timezone()) # if a snippet changes, rebuild everything snips = Snippet.objects.filter(updated_at__gte=dt) for item in subclass.objects.filter(**subclass.public_filter_out): # Thing detail view # Only add the path if a snippet has been changed or if # the item had been updated since the last build. if item.updated_at > dt or snips: paths.add(item.get_absolute_url()) if settings.FULL_STATIC_SITE: rebuild_list = True if subclass._meta.app_label != "pages": if rebuild_list: list_view = "/%s/" % subclass._meta.app_label paths.add(list_view) # Add in paginated pages for p in xrange(int(ceil(subclass.objects.count()/float(20)))): paths.add("%s%s/" % (list_view, (p + 1))) # Cast back to a list since that's what we're expecting. return list(paths) renderers = [ThingRenderer, ]
PypiClean
/confluent-kafka-pypy-1.9.2.tar.gz/confluent-kafka-pypy-1.9.2/src/confluent_kafka/kafkatest/verifiable_client.py
import datetime import json import os import re import signal import socket import sys import time class VerifiableClient(object): """ Generic base class for a kafkatest verifiable client. Implements the common kafkatest protocol and semantics. """ def __init__(self, conf): """ """ super(VerifiableClient, self).__init__() self.conf = conf self.conf['client.id'] = 'python@' + socket.gethostname() self.run = True signal.signal(signal.SIGTERM, self.sig_term) self.dbg('Pid is %d' % os.getpid()) def sig_term(self, sig, frame): self.dbg('SIGTERM') self.run = False @staticmethod def _timestamp(): return time.strftime('%H:%M:%S', time.localtime()) def dbg(self, s): """ Debugging printout """ sys.stderr.write('%% %s DEBUG: %s\n' % (self._timestamp(), s)) def err(self, s, term=False): """ Error printout, if term=True the process will terminate immediately. """ sys.stderr.write('%% %s ERROR: %s\n' % (self._timestamp(), s)) if term: sys.stderr.write('%% FATAL ERROR ^\n') sys.exit(1) def send(self, d): """ Send dict as JSON to stdout for consumtion by kafkatest handler """ d['_time'] = str(datetime.datetime.now()) self.dbg('SEND: %s' % json.dumps(d)) sys.stdout.write('%s\n' % json.dumps(d)) sys.stdout.flush() @staticmethod def set_config(conf, args): """ Set client config properties using args dict. """ for n, v in args.iteritems(): if v is None: continue if n.startswith('topicconf_'): conf[n[10:]] = v continue if not n.startswith('conf_'): # App config, skip continue # Remove conf_ prefix n = n[5:] # Handle known Java properties to librdkafka properties. if n == 'partition.assignment.strategy': # Convert Java class name to config value. # "org.apache.kafka.clients.consumer.RangeAssignor" -> "range" v = re.sub(r'org.apache.kafka.clients.consumer.(\w+)Assignor', lambda x: x.group(1).lower(), v) if v == 'sticky': v = 'cooperative-sticky' conf[n] = v @staticmethod def read_config_file(path): """Read (java client) config file and return dict with properties""" conf = {} with open(path, 'r') as f: for line in f: line = line.strip() if line.startswith('#') or len(line) == 0: continue fi = line.find('=') if fi < 1: raise Exception('%s: invalid line, no key=value pair: %s' % (path, line)) k = line[:fi] v = line[fi+1:] conf[k] = v return conf
PypiClean
/pytest_insta-0.2.0.tar.gz/pytest_insta-0.2.0/pytest_insta/review.py
__all__ = ["ReviewTool"] import os from code import InteractiveConsole from dataclasses import dataclass from pathlib import Path from typing import Any, Collection, Dict, Iterator, List, Optional, Tuple from _pytest.terminal import TerminalReporter from .format import Fmt from .utils import node_path_name class ReviewEnvironment(Dict[str, Any]): outcome: Optional[Tuple[str, str]] = None decisions = { "a": "accepting snapshot", "r": "rejecting snapshot", "s": "skipping snapshot", } def __getitem__(self, key: str) -> Any: if value := self.decisions.get(key): self.outcome = key, value return None return super().__getitem__(key) class ReviewConsole(InteractiveConsole): def raw_input(self, prompt: str = "") -> str: if self.locals.outcome: # type: ignore raise EOFError() return super().raw_input(prompt) @dataclass class ReviewTool: tr: TerminalReporter config: Any record_dir: Path tests: Collection[Any] def scan_recorded_snapshots(self) -> Iterator[Tuple[Any, Path, Path]]: for test in self.tests: path, name = node_path_name(test) directory = path.parent.resolve().relative_to(self.config.rootpath) for snapshot in (self.record_dir / directory).glob(f"{name}__*"): original = Path( os.path.relpath( self.config.rootpath / directory / "snapshots" / snapshot.name, Path(".").resolve(), ) ) yield test, snapshot, original def display_assertion(self, old: Any, new: Any): self.tr.write_line("\n> assert old == new") lines, *_ = self.config.hook.pytest_assertrepr_compare( config=self.config, op="==", left=old, right=new ) explanation = "assert " + "\n".join(" " + line for line in lines).strip() for line in explanation.splitlines(): self.tr.write_line(f"E {line}", blue=True, bold=True) def collect(self) -> Iterator[Tuple[Path, Optional[Path]]]: to_review: List[Tuple[Any, Path, Path]] = [] for test, recorded, original in self.scan_recorded_snapshots(): if original.exists(): to_review.append((test, recorded, original)) else: yield recorded, None if to_review: self.tr.write_line("") self.tr.section("SNAPSHOT REVIEWS") for i, (test, recorded, original) in enumerate(to_review): self.tr.ensure_newline() self.tr.section(f"[{i + 1}/{len(to_review)}]", "_", blue=True, bold=True) self.tr.write_line(f"\nold: {original!s}") self.tr.write_line(f"new: {recorded!s}") if not (fmt := Fmt.from_spec(original.name)[1]): self.tr.write_line( f"\ninvalid snapshot format: {original.name!r}", red=True, bold=True ) continue old = fmt.load(original) new = fmt.load(recorded) self.display_assertion(old, new) module, line, name = test.location self.tr.write(f"\n{module}", blue=True, bold=True) self.tr.write_line(f":{line + 1}: {name}") decision, message = self.prompt(old, new) self.tr.write_line(message, bold=True) if decision == "a": yield recorded, original elif decision == "r": yield recorded, None def prompt(self, old: Any, new: Any) -> Tuple[str, str]: review_env = ReviewEnvironment(old=old, new=new) try: import readline import rlcompleter readline.set_completer(rlcompleter.Completer(review_env).complete) readline.parse_and_bind("tab: complete") except ImportError: pass console = ReviewConsole(review_env) console.interact("\na: accept, r: reject, s: skip", "") return review_env.outcome or ("s", "skipping snapshot")
PypiClean
/tensorflow-2.1.1-cp36-cp36m-macosx_10_11_x86_64.whl/tensorflow_core/python/ops/gen_audio_ops.py
import collections from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.deprecation import deprecated_endpoints from tensorflow.python.util import dispatch as _dispatch from tensorflow.python.util.tf_export import tf_export def audio_spectrogram(input, window_size, stride, magnitude_squared=False, name=None): r"""Produces a visualization of audio data over time. Spectrograms are a standard way of representing audio information as a series of slices of frequency information, one slice for each window of time. By joining these together into a sequence, they form a distinctive fingerprint of the sound over time. This op expects to receive audio data as an input, stored as floats in the range -1 to 1, together with a window width in samples, and a stride specifying how far to move the window between slices. From this it generates a three dimensional output. The first dimension is for the channels in the input, so a stereo audio input would have two here for example. The second dimension is time, with successive frequency slices. The third dimension has an amplitude value for each frequency during that time slice. This means the layout when converted and saved as an image is rotated 90 degrees clockwise from a typical spectrogram. Time is descending down the Y axis, and the frequency decreases from left to right. Each value in the result represents the square root of the sum of the real and imaginary parts of an FFT on the current window of samples. In this way, the lowest dimension represents the power of each frequency in the current window, and adjacent windows are concatenated in the next dimension. To get a more intuitive and visual look at what this operation does, you can run tensorflow/examples/wav_to_spectrogram to read in an audio file and save out the resulting spectrogram as a PNG image. Args: input: A `Tensor` of type `float32`. Float representation of audio data. window_size: An `int`. How wide the input window is in samples. For the highest efficiency this should be a power of two, but other values are accepted. stride: An `int`. How widely apart the center of adjacent sample windows should be. magnitude_squared: An optional `bool`. Defaults to `False`. Whether to return the squared magnitude or just the magnitude. Using squared magnitude can avoid extra calculations. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, tld.device_name, "AudioSpectrogram", name, tld.op_callbacks, input, "window_size", window_size, "stride", stride, "magnitude_squared", magnitude_squared) return _result except _core._FallbackException: try: return audio_spectrogram_eager_fallback( input, window_size=window_size, stride=stride, magnitude_squared=magnitude_squared, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) # Add nodes to the TensorFlow graph. window_size = _execute.make_int(window_size, "window_size") stride = _execute.make_int(stride, "stride") if magnitude_squared is None: magnitude_squared = False magnitude_squared = _execute.make_bool(magnitude_squared, "magnitude_squared") _, _, _op, _outputs = _op_def_library._apply_op_helper( "AudioSpectrogram", input=input, window_size=window_size, stride=stride, magnitude_squared=magnitude_squared, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("window_size", _op._get_attr_int("window_size"), "stride", _op._get_attr_int("stride"), "magnitude_squared", _op._get_attr_bool("magnitude_squared")) _inputs_flat = _op.inputs _execute.record_gradient( "AudioSpectrogram", _inputs_flat, _attrs, _result) _result, = _result return _result AudioSpectrogram = tf_export("raw_ops.AudioSpectrogram")(_ops.to_raw_op(audio_spectrogram)) def audio_spectrogram_eager_fallback(input, window_size, stride, magnitude_squared, name, ctx): window_size = _execute.make_int(window_size, "window_size") stride = _execute.make_int(stride, "stride") if magnitude_squared is None: magnitude_squared = False magnitude_squared = _execute.make_bool(magnitude_squared, "magnitude_squared") input = _ops.convert_to_tensor(input, _dtypes.float32) _inputs_flat = [input] _attrs = ("window_size", window_size, "stride", stride, "magnitude_squared", magnitude_squared) _result = _execute.execute(b"AudioSpectrogram", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "AudioSpectrogram", _inputs_flat, _attrs, _result) _result, = _result return _result _DecodeWavOutput = collections.namedtuple( "DecodeWav", ["audio", "sample_rate"]) @_dispatch.add_dispatch_list @tf_export('audio.decode_wav') def decode_wav(contents, desired_channels=-1, desired_samples=-1, name=None): r"""Decode a 16-bit PCM WAV file to a float tensor. The -32768 to 32767 signed 16-bit values will be scaled to -1.0 to 1.0 in float. When desired_channels is set, if the input contains fewer channels than this then the last channel will be duplicated to give the requested number, else if the input has more channels than requested then the additional channels will be ignored. If desired_samples is set, then the audio will be cropped or padded with zeroes to the requested length. The first output contains a Tensor with the content of the audio samples. The lowest dimension will be the number of channels, and the second will be the number of samples. For example, a ten-sample-long stereo WAV file should give an output shape of [10, 2]. Args: contents: A `Tensor` of type `string`. The WAV-encoded audio, usually from a file. desired_channels: An optional `int`. Defaults to `-1`. Number of sample channels wanted. desired_samples: An optional `int`. Defaults to `-1`. Length of audio requested. name: A name for the operation (optional). Returns: A tuple of `Tensor` objects (audio, sample_rate). audio: A `Tensor` of type `float32`. sample_rate: A `Tensor` of type `int32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, tld.device_name, "DecodeWav", name, tld.op_callbacks, contents, "desired_channels", desired_channels, "desired_samples", desired_samples) _result = _DecodeWavOutput._make(_result) return _result except _core._FallbackException: try: return decode_wav_eager_fallback( contents, desired_channels=desired_channels, desired_samples=desired_samples, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): result = _dispatch.dispatch( decode_wav, contents=contents, desired_channels=desired_channels, desired_samples=desired_samples, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) # Add nodes to the TensorFlow graph. if desired_channels is None: desired_channels = -1 desired_channels = _execute.make_int(desired_channels, "desired_channels") if desired_samples is None: desired_samples = -1 desired_samples = _execute.make_int(desired_samples, "desired_samples") try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "DecodeWav", contents=contents, desired_channels=desired_channels, desired_samples=desired_samples, name=name) except (TypeError, ValueError): result = _dispatch.dispatch( decode_wav, contents=contents, desired_channels=desired_channels, desired_samples=desired_samples, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("desired_channels", _op._get_attr_int("desired_channels"), "desired_samples", _op._get_attr_int("desired_samples")) _inputs_flat = _op.inputs _execute.record_gradient( "DecodeWav", _inputs_flat, _attrs, _result) _result = _DecodeWavOutput._make(_result) return _result DecodeWav = tf_export("raw_ops.DecodeWav")(_ops.to_raw_op(decode_wav)) def decode_wav_eager_fallback(contents, desired_channels, desired_samples, name, ctx): if desired_channels is None: desired_channels = -1 desired_channels = _execute.make_int(desired_channels, "desired_channels") if desired_samples is None: desired_samples = -1 desired_samples = _execute.make_int(desired_samples, "desired_samples") contents = _ops.convert_to_tensor(contents, _dtypes.string) _inputs_flat = [contents] _attrs = ("desired_channels", desired_channels, "desired_samples", desired_samples) _result = _execute.execute(b"DecodeWav", 2, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "DecodeWav", _inputs_flat, _attrs, _result) _result = _DecodeWavOutput._make(_result) return _result @_dispatch.add_dispatch_list @tf_export('audio.encode_wav') def encode_wav(audio, sample_rate, name=None): r"""Encode audio data using the WAV file format. This operation will generate a string suitable to be saved out to create a .wav audio file. It will be encoded in the 16-bit PCM format. It takes in float values in the range -1.0f to 1.0f, and any outside that value will be clamped to that range. `audio` is a 2-D float Tensor of shape `[length, channels]`. `sample_rate` is a scalar Tensor holding the rate to use (e.g. 44100). Args: audio: A `Tensor` of type `float32`. 2-D with shape `[length, channels]`. sample_rate: A `Tensor` of type `int32`. Scalar containing the sample frequency. name: A name for the operation (optional). Returns: A `Tensor` of type `string`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, tld.device_name, "EncodeWav", name, tld.op_callbacks, audio, sample_rate) return _result except _core._FallbackException: try: return encode_wav_eager_fallback( audio, sample_rate, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except (TypeError, ValueError): result = _dispatch.dispatch( encode_wav, audio=audio, sample_rate=sample_rate, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) # Add nodes to the TensorFlow graph. try: _, _, _op, _outputs = _op_def_library._apply_op_helper( "EncodeWav", audio=audio, sample_rate=sample_rate, name=name) except (TypeError, ValueError): result = _dispatch.dispatch( encode_wav, audio=audio, sample_rate=sample_rate, name=name) if result is not _dispatch.OpDispatcher.NOT_SUPPORTED: return result raise _result = _outputs[:] if _execute.must_record_gradient(): _attrs = () _inputs_flat = _op.inputs _execute.record_gradient( "EncodeWav", _inputs_flat, _attrs, _result) _result, = _result return _result EncodeWav = tf_export("raw_ops.EncodeWav")(_ops.to_raw_op(encode_wav)) def encode_wav_eager_fallback(audio, sample_rate, name, ctx): audio = _ops.convert_to_tensor(audio, _dtypes.float32) sample_rate = _ops.convert_to_tensor(sample_rate, _dtypes.int32) _inputs_flat = [audio, sample_rate] _attrs = None _result = _execute.execute(b"EncodeWav", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "EncodeWav", _inputs_flat, _attrs, _result) _result, = _result return _result def mfcc(spectrogram, sample_rate, upper_frequency_limit=4000, lower_frequency_limit=20, filterbank_channel_count=40, dct_coefficient_count=13, name=None): r"""Transforms a spectrogram into a form that's useful for speech recognition. Mel Frequency Cepstral Coefficients are a way of representing audio data that's been effective as an input feature for machine learning. They are created by taking the spectrum of a spectrogram (a 'cepstrum'), and discarding some of the higher frequencies that are less significant to the human ear. They have a long history in the speech recognition world, and https://en.wikipedia.org/wiki/Mel-frequency_cepstrum is a good resource to learn more. Args: spectrogram: A `Tensor` of type `float32`. Typically produced by the Spectrogram op, with magnitude_squared set to true. sample_rate: A `Tensor` of type `int32`. How many samples per second the source audio used. upper_frequency_limit: An optional `float`. Defaults to `4000`. The highest frequency to use when calculating the ceptstrum. lower_frequency_limit: An optional `float`. Defaults to `20`. The lowest frequency to use when calculating the ceptstrum. filterbank_channel_count: An optional `int`. Defaults to `40`. Resolution of the Mel bank used internally. dct_coefficient_count: An optional `int`. Defaults to `13`. How many output channels to produce per time slice. name: A name for the operation (optional). Returns: A `Tensor` of type `float32`. """ _ctx = _context._context or _context.context() tld = _ctx._thread_local_data if tld.is_eager: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, tld.device_name, "Mfcc", name, tld.op_callbacks, spectrogram, sample_rate, "upper_frequency_limit", upper_frequency_limit, "lower_frequency_limit", lower_frequency_limit, "filterbank_channel_count", filterbank_channel_count, "dct_coefficient_count", dct_coefficient_count) return _result except _core._FallbackException: try: return mfcc_eager_fallback( spectrogram, sample_rate, upper_frequency_limit=upper_frequency_limit, lower_frequency_limit=lower_frequency_limit, filterbank_channel_count=filterbank_channel_count, dct_coefficient_count=dct_coefficient_count, name=name, ctx=_ctx) except _core._SymbolicException: pass # Add nodes to the TensorFlow graph. except _core._NotOkStatusException as e: _ops.raise_from_not_ok_status(e, name) # Add nodes to the TensorFlow graph. if upper_frequency_limit is None: upper_frequency_limit = 4000 upper_frequency_limit = _execute.make_float(upper_frequency_limit, "upper_frequency_limit") if lower_frequency_limit is None: lower_frequency_limit = 20 lower_frequency_limit = _execute.make_float(lower_frequency_limit, "lower_frequency_limit") if filterbank_channel_count is None: filterbank_channel_count = 40 filterbank_channel_count = _execute.make_int(filterbank_channel_count, "filterbank_channel_count") if dct_coefficient_count is None: dct_coefficient_count = 13 dct_coefficient_count = _execute.make_int(dct_coefficient_count, "dct_coefficient_count") _, _, _op, _outputs = _op_def_library._apply_op_helper( "Mfcc", spectrogram=spectrogram, sample_rate=sample_rate, upper_frequency_limit=upper_frequency_limit, lower_frequency_limit=lower_frequency_limit, filterbank_channel_count=filterbank_channel_count, dct_coefficient_count=dct_coefficient_count, name=name) _result = _outputs[:] if _execute.must_record_gradient(): _attrs = ("upper_frequency_limit", _op.get_attr("upper_frequency_limit"), "lower_frequency_limit", _op.get_attr("lower_frequency_limit"), "filterbank_channel_count", _op._get_attr_int("filterbank_channel_count"), "dct_coefficient_count", _op._get_attr_int("dct_coefficient_count")) _inputs_flat = _op.inputs _execute.record_gradient( "Mfcc", _inputs_flat, _attrs, _result) _result, = _result return _result Mfcc = tf_export("raw_ops.Mfcc")(_ops.to_raw_op(mfcc)) def mfcc_eager_fallback(spectrogram, sample_rate, upper_frequency_limit, lower_frequency_limit, filterbank_channel_count, dct_coefficient_count, name, ctx): if upper_frequency_limit is None: upper_frequency_limit = 4000 upper_frequency_limit = _execute.make_float(upper_frequency_limit, "upper_frequency_limit") if lower_frequency_limit is None: lower_frequency_limit = 20 lower_frequency_limit = _execute.make_float(lower_frequency_limit, "lower_frequency_limit") if filterbank_channel_count is None: filterbank_channel_count = 40 filterbank_channel_count = _execute.make_int(filterbank_channel_count, "filterbank_channel_count") if dct_coefficient_count is None: dct_coefficient_count = 13 dct_coefficient_count = _execute.make_int(dct_coefficient_count, "dct_coefficient_count") spectrogram = _ops.convert_to_tensor(spectrogram, _dtypes.float32) sample_rate = _ops.convert_to_tensor(sample_rate, _dtypes.int32) _inputs_flat = [spectrogram, sample_rate] _attrs = ("upper_frequency_limit", upper_frequency_limit, "lower_frequency_limit", lower_frequency_limit, "filterbank_channel_count", filterbank_channel_count, "dct_coefficient_count", dct_coefficient_count) _result = _execute.execute(b"Mfcc", 1, inputs=_inputs_flat, attrs=_attrs, ctx=ctx, name=name) if _execute.must_record_gradient(): _execute.record_gradient( "Mfcc", _inputs_flat, _attrs, _result) _result, = _result return _result
PypiClean
/space_tracer-4.10.1-py3-none-any.whl/space_tracer/main.py
import argparse from contextlib import contextmanager from functools import wraps from inspect import currentframe, stack import io from io import StringIO from pathlib import Path from itertools import zip_longest as izip_longest import os import os.path import re import sys import traceback import types try: # noinspection PyUnresolvedReferences from js import document, window # type: ignore IS_PYODIDE = True def get_terminal_size(_=None): return 0, 0 except ImportError: IS_PYODIDE = False document = window = None from os import get_terminal_size try: from .mock_turtle import MockTurtle except ImportError: MockTurtle = None # type: ignore from .canvas import Canvas from .code_tracer import CONTEXT_NAME, find_line_numbers from .module_importers import TracedModuleImporter, PatchedModuleFinder, \ SourceLoadError from .report_builder import ReportBuilder from .traced_finder import DEFAULT_MODULE_NAME, LIVE_MODULE_NAME, \ PSEUDO_FILENAME def parse_args(command_args=None): if command_args is None: command_args = sys.argv launcher = command_args[0] if launcher.endswith("__main__.py"): executable = os.path.basename(sys.executable) launcher = executable + " -m " + __package__ terminal_width = 0 try: terminal_width, _ = get_terminal_size() except OSError: pass # noinspection PyTypeChecker parser = argparse.ArgumentParser( launcher, description='Trace Python code.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-c', '--canvas', action='store_true', help='Should canvas commands be printed?') parser.add_argument('-x', '--width', type=int, default=800, help='width of the canvas in pixels') parser.add_argument('-y', '--height', type=int, default=600, help='height of the canvas in pixels') parser.add_argument('-z', '--zoomed', action='store_true', help='matplotlib is zoomed to fit the canvas size') parser.add_argument('--source_width', type=int, help='Width of source code - use 0 to hide or ' 'negative numbers to trim columns from the end, ' 'None to fit source code.') parser.add_argument('-n', '--source_indent', type=int, default=0, help='Number of spaces to indent source code. ' 'Negative to skip first columns of source code.') parser.add_argument('--trace_offset', type=int, default=0, help='Number of columns to skip at start of tracing ' 'display.') parser.add_argument('--trace_width', type=int, default=terminal_width, help='Number of columns to display, including source ' 'code. Negative to trim columns from the end, 0 ' 'for no limit.') parser.add_argument('-b', '--bad_driver', help="message to display if driver doesn't call module") parser.add_argument('-i', '--stdin', default=os.devnull, help="file to read stdin from, or - for normal stdin") parser.add_argument('-o', '--stdout', default=os.devnull, help="file to write stdout to (not tracing), " "or - for normal stdout") parser.add_argument('-e', '--stderr', default=os.devnull, help="file to write stderr to, or ! for normal stderr") parser.add_argument('-r', '--report', default='-', help="file to write tracing to, or - for stdout, " "or ! for stderr.") parser.add_argument('--traced_file', help='file to replace with source code from stdin') parser.add_argument('--traced', help='module, function, or method to display trace ' 'for. Default: %%(default)s to trace %s, %s,' 'or whatever is replaced by --traced_file.' % (DEFAULT_MODULE_NAME, LIVE_MODULE_NAME)) parser.add_argument('--hide', help='variable names to hide', nargs='*') parser.add_argument('--start_line', type=int, help='first line number to trace') parser.add_argument('--end_line', type=int, help='last line number to trace') parser.add_argument('--line_numbers', '-l', action='store_true', help='include line numbers with source code') parser.add_argument('--live', action='store_true', help=f'load main module as {LIVE_MODULE_NAME} instead ' f'of {DEFAULT_MODULE_NAME} and show all source ' f'code lines.') parser.add_argument('-m', dest='is_module', action='store_true', help='driver is an importable module, not a script') parser.add_argument('driver', nargs='*', help='script to call traced code, plus any arguments. ' 'Default: %(default)s to use --traced_file.') args = parser.parse_args(command_args[1:]) if args.driver: if args.driver[0] == '-m': args.is_module = True args.driver = args.driver[1:] else: if args.traced_file: args.driver = [args.traced_file] else: parser.error('one of the following arguments are required: ' 'driver or traced_file') if args.traced is None: if args.traced_file is None or args.traced_file == args.driver[0]: args.traced = LIVE_MODULE_NAME if args.live else DEFAULT_MODULE_NAME else: # Wait until the file is imported to see what module got traced. pass return args def main(): tracer = TraceRunner() code_report = tracer.trace_command() if code_report: print(code_report) if tracer.return_code: try: return_code = int(tracer.return_code) except ValueError: return_code = 1 exit(return_code) def analyze(source_code, canvas_size=None): """ Trace the source code for display in the browser. :param source_code: Source code to trace. :param canvas_size: (width, height), set if the report should include turtle commands. :return: (tracing_report, output) """ tracer = TraceRunner() tracer.standard_files.old_files['stderr'] = StringIO() tracer.max_width = 200000 with replace_input(source_code): tracer_args = ['space_tracer', '--traced_file', PSEUDO_FILENAME, '--source_width', '0', '--live', '--stdout', '!', '--stderr', '!'] if canvas_size is not None: canvas_width, canvas_height = canvas_size tracer_args.append('--canvas') tracer_args.append('-x{}'.format(canvas_width)) tracer_args.append('-y{}'.format(canvas_height)) tracer_args.append('--zoomed') tracer_args.append(PSEUDO_FILENAME) code_report = tracer.trace_command(tracer_args) # noinspection PyUnresolvedReferences stdout = tracer.standard_files.old_files['stderr'].getvalue() return code_report, stdout def web_main(): window.analyze = analyze class StandardFiles(dict): def __init__(self): super().__init__() self.old_files = dict(stdin=sys.stdin, stdout=sys.stdout, stderr=sys.stderr, report=StringIO()) self.new_files = {} # {filename: file} def __setitem__(self, key, filename): if filename == '-': if key == 'stdin': file = self.old_files[key] else: file = self.old_files['stdout'] elif filename == '!': file = self.old_files['stderr'] else: if key == 'stdin': mode = 'r' else: mode = 'w' file_key = (filename, mode) file = self.new_files.get(file_key) if file is None: file = argparse.FileType(mode)(filename) self.new_files[file_key] = file super().__setitem__(key, file) def __missing__(self, key): return self.old_files[key] def close_all(self): for file in self.new_files.values(): file.close() def traced(target=None, hide=None): """ A decorator for a function or with block that should be traced. """ def is_in_traced_module(): """ Check if this was called directly by the traced module. """ call_stack = stack() # expected frames in call stack: # 0. This function. # 1. traced() decorator # 2. Module that's being traced # 3. module_importers.py that executed the traced module. this_filepath = Path(__file__) module_importers_filepath = this_filepath.parent / "module_importers.py" if len(call_stack) < 4: return False expected_frame = call_stack[3] return expected_frame.filename == str(module_importers_filepath) if is_in_traced_module(): ReportBuilder.is_using_traced_blocks = True @contextmanager def traced_options(): ReportBuilder.is_tracing_next_block = True old_hide = ReportBuilder.hide ReportBuilder.hide = hide yield ReportBuilder.hide = old_hide ReportBuilder.is_tracing_next_block = False if target is None: # Not decorating a function, must be a with block. return traced_options() @wraps(target) def wrapped(*args, **kwargs): with traced_options(): return target(*args, **kwargs) return wrapped @contextmanager def swallow_output(standard_files: StandardFiles): old_main_mod = sys.modules.get(DEFAULT_MODULE_NAME, None) # noinspection PyUnresolvedReferences old_string_io = io.StringIO try: sys.stdout = FileSwallower(standard_files['stdout']) # type: ignore sys.stderr = FileSwallower(standard_files['stderr'], # type: ignore target_name='sys.stderr') sys.stdin = standard_files['stdin'] io.StringIO = TracedStringIO # type: ignore yield finally: if old_main_mod is not None: sys.modules[DEFAULT_MODULE_NAME] = old_main_mod else: sys.modules.pop(DEFAULT_MODULE_NAME, None) sys.stdout = standard_files.old_files['stdout'] sys.stderr = standard_files.old_files['stderr'] sys.stdin = standard_files.old_files['stdin'] io.StringIO = old_string_io # type: ignore @contextmanager def replace_input(stdin_text=None): old_stdin = sys.stdin sys.stdin = StringIO(stdin_text) try: yield finally: sys.stdin = old_stdin def display_error_on_canvas(): if MockTurtle is None: return t = MockTurtle() t.display_error() class TraceRunner(object): def __init__(self): self.canvas = None self.message_limit = 10000 self.max_width = 200000 self.keepalive = False self.return_code = None self.standard_files = StandardFiles() def trace_turtle(self, source, width: int = 0, height: int = 0): MockTurtle.monkey_patch() try: with replace_input(source): self.trace_command(['space_tracer', '--traced_file', PSEUDO_FILENAME, '--source_width', '0', '--width', str(width), '--height', str(height), '--live', PSEUDO_FILENAME]) return '\n'.join(MockTurtle.get_all_reports()) finally: MockTurtle.remove_monkey_patch() def trace_code(self, source): """ Trace a module of source code. :param str source: source code to trace and run. """ with replace_input(source): return self.trace_command(['space_tracer', '--traced_file', PSEUDO_FILENAME, '--source_width', '0', '--live', PSEUDO_FILENAME]) def trace_command(self, command_args=None): """ Trace a module, based on arguments from the command line. :param command_args: list of strings, like sys.argv :return: the tracing report, including the canvas report """ args = parse_args(command_args) if self.canvas is None: self.canvas = Canvas(args.width, args.height) was_patched = False if MockTurtle is not None: if MockTurtle.is_patched(): was_patched = True else: MockTurtle.monkey_patch(self.canvas) plt = sys.modules.get('matplotlib.pyplot') if plt is not None: # Clear any plot state from previous runs. plt.close() plt.live_coding_size = (args.width, args.height) if args.zoomed: plt.live_coding_zoom() self.standard_files['stdin'] = args.stdin self.standard_files['stdout'] = args.stdout self.standard_files['stderr'] = args.stderr self.standard_files['report'] = args.report ReportBuilder.hide = args.hide ReportBuilder.is_using_traced_blocks = False builder = ReportBuilder(self.message_limit) builder.max_width = self.max_width if args.start_line or args.end_line: builder.trace_block(args.start_line, args.end_line) traced_importer = TracedModuleImporter( args.traced, args.traced_file, args.driver, args.is_module, args.live, builder) patched_finder = PatchedModuleFinder(args.zoomed) self.return_code = 0 try: # Set sys.argv properly. old_argv = sys.argv sys.argv = args.driver sys.meta_path.insert(0, patched_finder) sys.meta_path.insert(0, traced_importer) # During testing, we import these modules for every test case, # so force a reload. This is only likely to happen during testing. traced_target = traced_importer.traced for name, module in list(sys.modules.items()): if name == DEFAULT_MODULE_NAME: continue module_file = getattr(module, '__file__', '') if (traced_target and traced_target.startswith(name) or name == LIVE_MODULE_NAME or module_file == traced_importer.traced_file): del sys.modules[name] try: self.run_code(args.bad_driver, traced_importer) finally: # Restore the old argv and path sys.argv = old_argv sys.meta_path.remove(traced_importer) sys.meta_path.remove(patched_finder) except SyntaxError as ex: self.return_code = 1 messages = traceback.format_exception_only(type(ex), ex) message = messages[-1].strip() if ex.filename == PSEUDO_FILENAME: line_number = ex.lineno else: line_number = 1 message = '{} line {}: {}'.format(ex.filename, ex.lineno, message) builder.add_message(message, line_number) if args.canvas: display_error_on_canvas() except SourceLoadError as ex: builder.add_message(str(ex), 1) self.return_code = 1 except BaseException as ex: self.return_code = getattr(ex, 'code', 1) etype, value, tb = sys.exc_info() is_reported = False entries = traceback.extract_tb(tb) for traced_file, _, _, _ in entries: if traced_file == PSEUDO_FILENAME: is_reported = True space_tracer_folder = os.path.dirname(__file__) while not is_reported and tb is not None: traced_file = tb.tb_frame.f_code.co_filename traced_folder = os.path.dirname(traced_file) if traced_folder != space_tracer_folder: break tb = tb.tb_next if not is_reported: if tb: messages = traceback.format_exception(etype, value, tb) else: messages = traceback.format_exception_only(etype, value) traced_importer.report_driver_result(messages) if args.canvas: display_error_on_canvas() used_finder = (traced_importer.source_finder or traced_importer.driver_finder) is_traced = (traced_importer.is_traced_module_imported or (used_finder and used_finder.is_tracing)) if not is_traced: source_code = '' elif used_finder and used_finder.source_code: source_code = used_finder.source_code elif traced_importer and traced_importer.source_code: source_code = traced_importer.source_code else: source_code = '' source_lines = source_code.splitlines() if source_lines and traced_importer.is_live: total_lines = len(source_lines) else: total_lines = 0 report = builder.report(total_lines) source_width = args.source_width if source_code is None or source_width == 0 or not source_lines: reported_source_lines = [] indent = 0 else: if args.source_indent >= 0: indent = args.source_indent start_char = 0 else: indent = 0 start_char = -args.source_indent reported_source_lines = [] if args.live: source_blocks = [(1, len(source_lines))] else: source_blocks = builder.reported_blocks last_line = max(last for first, last in source_blocks) number_width = len(str(last_line)) for first_line, last_line in source_blocks: if first_line is None: first_line = 1 if last_line is None: last_line = len(source_lines) for line_number in range(first_line, last_line+1): if line_number > len(source_lines): reported_source_lines.append('') else: line = source_lines[line_number - 1][start_char:] if args.line_numbers: line = '{:{}}) {}'.format(line_number, number_width, line) reported_source_lines.append(line) max_source_width = max(map(len, reported_source_lines)) if source_width is None: source_width = max_source_width + indent elif source_width < 0: source_width += max_source_width + indent trace_width = args.trace_width if trace_width or reported_source_lines: report_lines = report.splitlines() dump_lines = [] if trace_width < 0: max_report_width = max(len(report_line) for report_line in report_lines) if source_width: trace_width += source_width + 3 trace_width += max_report_width for source_line, report_line in izip_longest(reported_source_lines, report_lines, fillvalue=''): padded_source_line = indent * ' ' + source_line padded_source_line += (source_width - len(source_line)) * ' ' line = padded_source_line[:source_width] if line: line += ' |' if report_line: line += ' ' if report_line: line += report_line[args.trace_offset:] if trace_width: line = line[:trace_width] dump_lines.append(line) report = '\n'.join(dump_lines) if MockTurtle is None: turtle_report = None else: turtle_report = MockTurtle.get_all_reports() if not was_patched: MockTurtle.remove_monkey_patch() if turtle_report and args.canvas: report = ('start_canvas\n' + '\n'.join(turtle_report) + '\nend_canvas\n.\n' + report) if args.report != '-': self.standard_files['report'].write(report) report = '' self.standard_files.close_all() return report def run_code(self, bad_driver, traced_importer): """ Run the traced module, plus its driver. :param str bad_driver: a message to display if the driver doesn't call the module :param traced_importer: holds details of what to trace __main__. """ for module_name in ('random', 'numpy.random'): random_module = sys.modules.get(module_name) if random_module is not None: # noinspection PyUnresolvedReferences random_module.seed(0) builder = traced_importer.report_builder output_context = swallow_output(self.standard_files) try: with output_context: try: traced_importer.run_main() # noinspection PyUnresolvedReferences if sys.stdout.saw_failures: traced_importer.report_driver_result( ['Pytest reported failures.']) self.return_code = 1 except SystemExit as ex: if ex.code: self.return_code = ex.code messages = traceback.format_exception_only(type(ex), ex) message = messages[-1].strip() traced_importer.report_driver_result([message]) for value in traced_importer.environment.values(): if isinstance(value, types.GeneratorType): value.close() if not traced_importer.is_traced_module_imported: traced_target = traced_importer.traced driver_name = os.path.basename(traced_importer.driver[0]) if bad_driver: message = bad_driver elif traced_target is None: traced_name = os.path.basename(traced_importer.traced_file) message = ("{} doesn't call {}. Try a different " "driver.").format(driver_name, traced_name) else: message = ("{} doesn't call the {} module. Try a different " "driver.").format(driver_name, traced_target) traced_importer.report_driver_result([message]) finally: is_decorated = any(frame.is_decorated for frame in builder.history) used_finder = traced_importer.source_finder or traced_importer.driver_finder if used_finder and not is_decorated: line_numbers = set() if used_finder.traced_node: find_line_numbers(used_finder.traced_node, line_numbers) is_minimum = False else: find_line_numbers(used_finder.source_tree, line_numbers) is_minimum = True if line_numbers: builder.trace_block(min(line_numbers), max(line_numbers), is_minimum) class FileSwallower(object): def __init__(self, target, check_buffer=True, target_name=None): self.target = target self.target_name = target_name self.saw_failures = False if check_buffer: buffer = getattr(target, 'buffer', None) if buffer is not None: self.buffer = FileSwallower(buffer, check_buffer=False) def write(self, *args, **kwargs): self.target.write(*args, **kwargs) text = args and str(args[0]) or '' if re.search(r'^=+\s*FAILURES\s*=+$', text): self.saw_failures = True frame = currentframe() while frame is not None: report_builder = frame.f_locals.get(CONTEXT_NAME) if report_builder is not None: has_print_function = True report_builder.add_output(text, frame.f_lineno, has_print_function, target_name=self.target_name) break frame = frame.f_back def __getattr__(self, name): return getattr(self.target, name) def find_string_io_targets(frame): for name, value in frame.f_locals.items(): yield name, value if name == 'self': for attr_name, attr_value in value.__dict__.items(): yield 'self.' + attr_name, attr_value class TracedStringIO(io.StringIO): def write(self, text): super(TracedStringIO, self).write(text) frame = currentframe() while frame is not None: report_builder = frame.f_locals.get(CONTEXT_NAME) if report_builder is not None: for name, value in find_string_io_targets(frame): if value is self: report_builder.add_output(text, frame.f_lineno, target_name=name) return frame = frame.f_back if __name__ == '__main__': main()
PypiClean
/xart-0.2.0.tar.gz/xart-0.2.0/README.md
# xart: generate art ascii texts. [![Version][version-badge]][version-link] ![WTFPL License][license-badge] `xart` is a pure Python library that provides an easy way to generate art ascii texts. Life is short, be cool. ``` ██╗ ██╗ █████╗ ██████╗ ████████╗ ╚██╗██╔╝██╔══██╗██╔══██╗╚══██╔══╝ ╚███╔╝ ███████║██████╔╝ ██║ ██╔██╗ ██╔══██║██╔══██╗ ██║ ██╔╝ ██╗██║ ██║██║ ██║ ██║ ╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ``` ### Getting Started --- #### help ``` $ xart -h usage: __init__.py [-h] [-f FONT] [-c COLOR] [-i] [-s] [-l] [-v] xart : generate art ascii texts. optional arguments: -h, --help show this help message and exit -f FONT, --font FONT font to render with, default random -c COLOR, --color COLOR font color, default WHITE, all : BLACK, RED, GREEN, YELLOW, BLUE, PURPLE, CYAN, GRAY, WHITE -i, --info show information of given font -s, --show show random fonts -l, --list list all supported fonts -v, --version version ``` #### generate ascii text via random font ``` $ xart test ███ ▄████████ ▄████████ ███ ▀█████████▄ ███ ███ ███ ███ ▀█████████▄ ▀███▀▀██ ███ █▀ ███ █▀ ▀███▀▀██ ███ ▀ ▄███▄▄▄ ███ ███ ▀ ███ ▀▀███▀▀▀ ▀███████████ ███ ███ ███ █▄ ███ ███ ███ ███ ███ ▄█ ███ ███ ▄████▀ ██████████ ▄████████▀ ▄████▀ ``` #### generate ascii text via given font ``` $ xart test -f 3D_Diagonal ___ ___ ,--.'|_ ,--.'|_ | | :,' | | :,' : : ' : .--.--. : : ' : .;__,' / ,---. / / ' .;__,' / | | | / \ | : /`./ | | | :__,'| : / / | | : ;_ :__,'| : ' : |__ . ' / | \ \ `. ' : |__ | | '.'| ' ; /| `----. \ | | '.'| ; : ; ' | / | / /`--' / ; : ; | , / | : | '--'. / | , / ---`-' \ \ / `--'---' ---`-' `----' ``` #### generate ascii text via given color ![COLOR][color-demo] #### show all supported fonts ``` $ xart -l xart : generate art ascii texts. 0. 1Row 1. 3-D ... 277. Wow All 278 fonts. ``` #### show font infomation ``` $ xart -i -f Weird weird.flf (version 2) by: Bas Meijer [email protected] [email protected] fixed by: Ryan Youck [email protected] some special characters '#%*' etc. are not matching, they are from other fonts. Explanation of first line: flf2 - "magic number" for file identification a - should always be `a', for now $ - the "hardblank" -- prints as a blank, but can't be smushed 6 - height of a character 5 - height of a character, not including descenders 20 - max line length (excluding comment lines) + a fudge factor 15 - default smushmode for this font (like "-m 15" on command line) 13 - number of comment lines ``` #### version ``` $ xart -v xart : generate art ascii fonts, version 0.1.5. ___ ____ ___ / _ \ (___ \ / _ \ | | | | __) ) | | | | | | | | / __/ | | | | | |_| | _ | |___ _ | |_| | \___/ (_)|_____)(_) \___/ ``` ### Installation --- `xart ` is hosted on [PYPI](https://pypi.python.org/pypi/xart) and can be installed as such: ``` $ pip install xart ``` Alternatively, you can also get the latest source code from [GitHub](https://github.com/xlzd/xart) and install it manually: ``` $ git clone [email protected]:xlzd/xart.git $ cd xart $ python setup.py install ``` For update: ``` $ pip install xart --upgrade ``` ### License --- WTFPL ([here](https://github.com/xlzd/xart/blob/master/LICENSE)) [version-badge]: https://img.shields.io/pypi/v/xart.svg?label=version [version-link]: https://pypi.python.org/pypi/xart/ [license-badge]: https://img.shields.io/badge/license-WTFPL-007EC7.svg [color-demo]: https://raw.githubusercontent.com/xlzd/xart/master/printscreen/color.png
PypiClean
/mroylib_min-2.2.5.tar.gz/mroylib_min-2.2.5/qlib/text/parser.py
import re, itertools from string import digits, ascii_letters ,punctuation, whitespace def extract_ip(string): return re.findall(r'\D((?:[1-2]?\d?\d\.){3}[1-2]?\d?\d)', string) def extract_http(string): return re.findall(r'(https?\://[\w\.\%\#\/\&\=\?\-]+)', string) def extract_host(string): return re.findall(r'((?:www\.|mail\.|ftp\.|news\.|blog\.|info\.)?\w[\w\.\-]+(?:\.com|\.net|\.org|\.cn|\.jp|\.uk|\.gov))', string) # \-\.\/\;\#\(\) def extract_dict(string, sep='\n'): dicts = {} for line in string.split(sep): ds = re.findall(r'^\s*([\w\s\-\.\/]+)\s*[\:\=]\s*([\w\S\s]+)\s*$', line ) if ds and ds[0][1].strip() and ds[0][1].strip() not in (':','=',): dicts[ds[0][0].strip()] = ds[0][1].strip() return dicts def extract_fuzzy_regex(string): res = '' res_k = [] last = '' last_k = 0 words_re = r'[\s\w\-\_\.\'\"]' for k, group in itertools.groupby(string): if k in ascii_letters + digits + "-_ '\"\." : l, k = words_re, len(list(group)) if l == last: last_k += k else: # res.append([last, last_k]) res_k.append(last_k) if last == words_re: res += "(%s+)" % last else: res += last + "+?" last_k = k last = l elif k in punctuation: l, k = r'\%s' % k , len(list(group)) if l == last: last_k += k else: # res.append([last, last_k]) res_k.append(last_k) if last == words_re: res += "(%s+)" % last else: res += last + "+?" last_k = k last = l else: l, k = '.', len(list(group)) if l == last: last_k += k else: # res.append([last, last_k]) res_k.append(last_k) if last == words_re: res += "(%s+)" % last else: res += last + "+?" last_k = k last = l # res.append([last, last_k]) if last == words_re: res += "(%s+)" % last else: res += last + "+?" return res[2:], res_k[1:] def extract_regex(string): res =[] last = '' last_k = 0 for k, group in itertools.groupby(string): if k in ascii_letters: l, k = '\w', len(list(group)) if l == last: last_k += k else: res.append([last, last_k]) last_k = k last = l elif k in digits: l, k = '\d', len(list(group)) if l == last: last_k += k else: res.append([last, last_k]) last_k = k last = l elif k in punctuation: l, k = '\%s' % k , len(list(group)) if l == last: last_k += k else: res.append([last, last_k]) last_k = k last = l elif k in whitespace: l, k = '\s', len(list(group)) if l == last: last_k += k else: res.append([last, last_k]) last_k = k last = l else: l, k = '.', len(list(group)) if l == last: last_k += k else: res.append([last, last_k]) last_k = k last = l res.append([last, last_k]) return [i[0] for i in res[1:]], [i[1] for i in res[1:]] def extract_table(string, sep=" |,"): last_len = 0 row = 0 table = [] last_re_str = '' table_dim = [] for line in string.split('\n'): if not line.strip():continue re_str, dim = extract_fuzzy_regex(line) # print(re_str) if re_str == last_re_str: r = re.findall(re_str, line)[0] if isinstance(r, str): table.append(r) else: table.append(list(r)) # print('table', r, re_str) table_dim.append(dim) row += 1 else: last_re_str = re_str if not table: row = 1 table = [] table_dim = [] continue if isinstance(table[0] , str): t = [ [i2 for i2 in re.split(sep, i) if i2 ] for i in table] cols = max([ len(i) for i in t]) t = [ i for i in t if len(i) == cols] if len(t) >1: yield t else: if table[0]: yield table row = 1 table = [] table_dim = [] if isinstance(table[0] , str): t = [ [i2 for i2 in re.split(sep, i) if i2 ] for i in table] cols = max([ len(i) for i in t]) t = [ i for i in t if len(i) == cols] if len(t) >1: yield t else: if table[0]: yield table
PypiClean
/code_ast-0.1.0.tar.gz/code_ast-0.1.0/README.md
# Code AST > Fast structural analysis of any programming language in Python Programming Language Processing (PLP) brings the capabilities of modern NLP systems to the world of programming languages. To achieve high performance PLP systems, existing methods often take advantage of the fully defined nature of programming languages. Especially the syntactical structure can be exploited to gain knowledge about programs. **code.ast** provides easy access to the syntactic structure of a program. By relying on [tree-sitter](https://github.com/tree-sitter) as the back end, the parser supports fast parsing of variety of programming languages. The goal of code.ast is to combine the efficiency and variety of languages supported by tree-sitter with the convenience of more native parsers (like [libcst](https://github.com/Instagram/LibCST)). To achieve this, code.ast adds the features: 1. **Auto-loading:** Compile of source code parsers for any language supported by tree-sitter with a single keyword, 2. **Visitors:** Search the AST quickly, 3. **Transformers:** Transform source code easily by transforming the AST structure ## Installation The package is tested under Python 3. It can be installed via: ```bash pip install code-ast ``` ## Quick start code.ast can parse nearly any program code in a few lines of code: ```python import code_ast # Python code_ast.ast( ''' def my_func(): print("Hello World") ''', lang = "python") # Output: # PythonCodeAST [0, 0] - [4, 4] # module [1, 8] - [3, 4] # function_definition [1, 8] - [2, 32] # identifier [1, 12] - [1, 19] # parameters [1, 19] - [1, 21] # block [2, 12] - [2, 32] # expression_statement [2, 12] - [2, 32] # call [2, 12] - [2, 32] # identifier [2, 12] - [2, 17] # argument_list [2, 17] - [2, 32] # string [2, 18] - [2, 31] # Java code_ast.ast( ''' public class HelloWorld { public static void main(String[] args){ System.out.println("Hello World"); } } ''', lang = "java") # Output: # JavaCodeAST [0, 0] - [7, 4] # program [1, 0] - [6, 4] # class_declaration [1, 0] - [5, 1] # modifiers [1, 0] - [1, 6] # identifier [1, 13] - [1, 23] # class_body [1, 24] - [5, 1] # method_declaration [2, 8] - [4, 9] # ... ``` ## Visitors code.ast implements the visitor pattern to quickly traverse the AST structure: ```python import code_ast from code_ast import ASTVisitor code = ''' def f(x, y): return x + y ''' # Count the number of identifiers class IdentifierCounter(ASTVisitor): def __init__(self): self.count = 0 def visit_identifier(self, node): self.count += 1 # Parse the AST and then visit it with our visitor source_ast = code_ast.ast(code, lang = "python") count_visitor = IdentifierCounter() source_ast.visit(count_visitor) count_visitor.count # Output: 5 ``` ## Transformers Transformers provide an easy way to transform source code. For example, in the following, we want to mirror each binary addition: ```python import code_ast from code_ast import ASTTransformer, FormattedUpdate, TreeUpdate code = ''' def f(x, y): return x + y + 0.5 ''' # Mirror binary operator on leave class MirrorAddTransformer(ASTTransformer): def leave_binary_operator(self, node): if node.children[1].type == "+": return FormattedUpdate( " %s + %s", [ TreeUpdate(node.children[2]), TreeUpdate(node.children[0]) ] ) # Parse the AST and then visit it with our visitor source_ast = code_ast.ast(code, lang = "python") mirror_transformer = MirrorAddTransformer() # Mirror transformer are initialized by running them as visitors source_ast.visit(mirror_transformer) # Transformer provide a minimal AST edit mirror_transformer.edit() # Output: # module [2, 0] - [5, 0] # function_definition [2, 0] - [3, 22] # block [3, 4] - [3, 22] # return_statement [3, 4] - [3, 22] # binary_operator -> FormattedUpdate [3, 11] - [3, 22] # binary_operator -> FormattedUpdate [3, 11] - [3, 16] # And it can be used to directly transform the code mirror_transformer.code() # Output: # def f(x, y): # return 0.5 + y + x ``` ## Project Info The goal of this project is to provide developer in the programming language processing community with easy access to AST parsing. This is currently developed as a helper library for internal research projects. Therefore, it will only be updated as needed. Feel free to open an issue if anything unexpected happens. Distributed under the MIT license. See ``LICENSE`` for more information. We thank the developer of [tree-sitter](https://tree-sitter.github.io/tree-sitter/) library. Without tree-sitter this project would not be possible.
PypiClean
/thoth-ssdeep-3.4.tar.gz/thoth-ssdeep-3.4/docs/source/index.rst
python-ssdeep ============= This is a straightforward Python wrapper for `ssdeep by Jesse Kornblum`_, which is a library for computing context triggered piecewise hashes (CTPH). Also called fuzzy hashes, CTPH can match inputs that have homologies. Such inputs have sequences of identical bytes in the same order, although bytes in between these sequences may be different in both content and length. You can install ``python-ssdeep`` with ``pip``: .. code-block:: console $ pip install ssdeep See :doc:`Installation <installation>` for more information. Contents: .. toctree:: :maxdepth: 2 installation usage api faq contributing changelog History ======= * The initial version was published in 2010 by `Denis Bilenko on bitbucket`_. * Since 2012 the source is maintained by PhiBo (`DinoTools`_) and has been published on `github`_. * In 2014 the wrapper has been rewritten to use cffi. Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search` .. _ssdeep by Jesse Kornblum: https://ssdeep-project.github.io/ssdeep/ .. _Denis Bilenko on bitbucket: https://bitbucket.org/denis/ssdeep .. _github: https://github.com/DinoTools/python-ssdeep .. _Dinotools: https://www.dinotools.org/
PypiClean
/unrest_schema-0.1.1.tar.gz/unrest_schema-0.1.1/unrest_schema/views.py
from django.http import JsonResponse, Http404 from .utils import form_to_schema import json FORMS = {} def FormResponse(form): if not form.errors: return JsonResponse({}) return JsonResponse({'errors': form.errors.get_json_data()}) def register(form, form_name=None): if isinstance(form, str): # register is being used as a decorator and args are curried and reversed return lambda actual_form: register(actual_form, form_name=form) form_name = form_name or form.__name__ old_form = FORMS.get(form_name, form) if form != old_form: e = f"Form with name {form_name} has already been registered.\nOld: {old_form}\nNew:{form}" raise ValueError(e) FORMS[form_name] = form return form def schema_form(request, form_name, object_id=None, method=None, content_type=None): if not form_name in FORMS: raise Http404(f"Form with name {form_name} does not exist") method = method or request.method content_type = content_type or request.headers.get('Content-Type', None) form_class = FORMS[form_name] _meta = getattr(form_class, 'Meta', object()) kwargs = {} if object_id and hasattr(_meta, 'model'): kwargs['instance'] = _meta.model.objects.get(id=object_id) if getattr(_meta, 'login_required', None) and not request.user.is_authenticated: return JsonResponse({'error': 'You must be logged in to do this'}, status=403) if request.method == "POST": if content_type == 'application/json': data = json.loads(request.body.decode('utf-8') or "{}") form = form_class(data, **kwargs) else: form = form_class(request.POST, request.FILES, **kwargs) form.request = request if form.is_valid(): instance = form.save() data = {} if instance: data = {'id': instance.id, 'name': str(instance)} return JsonResponse(data) return FormResponse(form) schema = form_to_schema(FORMS[form_name]()) return JsonResponse({'schema': schema})
PypiClean
/data_harvesting-1.0.0.tar.gz/data_harvesting-1.0.0/data_harvesting/util/json_ld_util.py
"""This module contains utility to process and handle, validate json-ld data """ import copy from copy import deepcopy from datetime import datetime from pathlib import Path from typing import Callable from typing import List from typing import Optional from typing import Union from pyld import jsonld from pyshacl import validate as shacl_validate from rdflib import Graph from rdflib import Literal from rdflib.compare import graph_diff from rdflib.plugins.sparql.results.csvresults import CSVResultSerializer from data_harvesting.util.pid_util import generate_uuid #from itertools import chain # validating jsonlD is not so clear: # there is framing https://www.w3.org/TR/json-ld-framing/ and for example in R this https://codemeta.github.io/codemetar/articles/validation-in-json-ld.html # For rdf data there is shacl. where one can define shapes for validation, which are kind of # schema graphs # these might also be used to do some logic operation stuff like inference of new triples def validate_jsonld_simple(jsonld_data: dict) -> bool: """ Test if the integrety of the json-ld file is right, i.e we do not validate the content of an instance like the schema does Returns True if it validates returns False if not """ context = jsonld_data.get('@context', None) if context is None: print('Missing context, so probably no or broken json-LD data given') return False instance = copy.deepcopy(jsonld_data) # perform some roundturn json-LD operation to see if they work # TODO check if they are proper # Check if URIs are resolvable... instance = jsonld.expand(instance) instance = jsonld.compact(instance, context) # maybe also flatten the jsonLD to get all keys in general # check if we end with the same diffk: set = set(instance.keys()) - set(jsonld_data.keys()) if len(diffk) != 0: print(f'The following keys are not supported: {diffk}') return False return True def valdiate_from_file(filepath: Path, file_format='json-ld', options: Optional[dict] = None): """validate a given file""" data_graph = Graph() data_graph.parse(filepath, format=file_format) return validate(data_graph, options=options) def validate(graph: Graph, validate_against: Optional[Graph] = None, options: Optional[dict] = None): """Validate a given rdf graph with shacl""" if validate_against is None: validate_against = Graph() # default is unhide specific # if not they should be downloaded, also they should be read once somewhere else and used from # there.. # /data_harvesting/external_schemas/* basepath = Path(__file__).parent.parent.resolve() / 'external_schemas' schema_org = basepath / 'schemaorg-current-https.jsonld' codemeta = basepath / 'schema-codemeta.jsonld' if schema_org.exists(): validate_against.parse(schema_org, format='json-ld') if codemeta.exists(): validate_against.parse(codemeta, format='json-ld') # add other unhide specific things, ... or use only certain terms if class is given or so if options is None: options = {} vali = shacl_validate(graph, shacl_graph=validate_against, **options) conforms, results_graph, results_text = vali return conforms, vali def convert( filepath: Path, destfilepath: Optional[Path] = None, informat: str = 'json-ld', outformat: str = 'ttl', overwrite: bool = False ) -> None: """ convert a given graph file to a different format using rdflib """ name = filepath.name.rstrip(filepath.suffix) destfilepath = destfilepath or Path(f'./{name}.{outformat}').resolve() if not overwrite and destfilepath.exists(): return graph = Graph() graph.parse(filepath, format=informat) if outformat == 'csv': convert_to_csv(graph, destination=destfilepath) else: graph.serialize(destination=destfilepath, format=outformat) return def convert_to_csv(graph: Graph, query: str = None, destination: Union[Path, str] = 'converted.csv'): """Convert results of a sparql query of a given graph to to a csv file Default query results: link table. Source | link_type | Target """ default_edge_query = """ PREFIX schema: <http://schema.org/> SELECT DISTINCT ?Source ?Type ?Target WHERE { ?Source ?Type ?Target . } """ # ?sType ?tType # ?source a ?sType . # ?target a ?tType . # FILTER((?sType) IN (schema:Person, schema:Organization, schema:Dataset, schema:SoftwareSourceCode, schema:Document)) # FILTER((?tType) IN (schema:Person, schema:Organization, schema:Dataset, schema:SoftwareSourceCode, schema:Document)) #} #""" query = query or default_edge_query results = graph.query(query) csv_s = CSVResultSerializer(results) with open(destination, 'wb') as fileo: csv_s.serialize(fileo) # Add URIs and types def add_missing_uris(data: dict, path_prefix: str, alternative_ids: Optional[List[str]] = None) -> dict: """ Add for each for each entity an internal id corresponding to the given prefix and the internal jsonpath (since jsonpath is bad for urls we use the xpath syntax) if it has an @id then sameAs is added further rules, if there is a url contentUrl identifier or email present, this becomes the id instead and our custom id is put in sameAs """ # To avoid mutable as default value, through this is not so nice... if alternative_ids is None: alternative_ids = ['identifier', 'contentUrl', 'url'] # For now we do this rekursive, iterative might be safer id_path = path_prefix new_data = data.copy() same_as = new_data.get('sameAs', []) if '@id' in new_data: if id_path not in same_as: same_as.append(id_path) new_data['sameAs'] = same_as else: found = False for term in alternative_ids: if term in new_data: new_data['@id'] = new_data['term'] found = True break # Only use the first one, so there is an order we want to replace these if not found: new_data['@id'] = id_path for key, val in new_data.items(): if key == 'sameAs': continue id_path = path_prefix + f'/{key}' if isinstance(val, dict): new_data[key] = add_missing_uris(val, id_path) # rekursion elif isinstance(val, str): # str is also list new_data[key] = val elif isinstance(val, list): new_entry: list = [] for i, entry in enumerate(val): if isinstance(entry, str): new_entry.append(entry) prefix = id_path + f'_{i}' new_entry.append(add_missing_uris(entry, prefix)) # rekursion new_data[key] = new_entry else: new_data[key] = val return new_data def add_missing_types(data: dict, type_map: Optional[List[dict]] = None) -> dict: """ Add @types to data where it can be known for sure. TODO: There should be a general solution for this on the semantic/reasoner level, i.e schema.org allows for some reasoning, other rules could be stated by us like schema.org author, creator and contributor get type @Person or @organization the affiliation key is only allowed for a Person example type_map = [{'type': 'Person', 'keys': ['author', 'creator', 'contributor'], 'if_present' : 'affiliation'}] """ if type_map is None: type_map = [{'type': 'Person', 'keys': ['author', 'creator', 'contributor'], 'if_present': 'affiliation'}] # If 'affiliation' present, type is a person new_data = data.copy() def add_type(data_d: Union[dict, list, str], mapping: dict) -> Union[dict, list, str]: """Add type""" if not isinstance(data_d, dict): return data_d if not '@type' in data_d.keys(): condition = mapping.get('if_present', '') # empty string is false if condition: if condition in data_d.keys(): data_d['@type'] = mapping.get('type') return data_d for key, val in new_data.items(): # Currently Only first level, maybe we have to do rekursion for mapping in type_map: if key in mapping.get('keys', []): if isinstance(val, list): new_data[key] = [add_type(entry, mapping) for entry in val] elif isinstance(val, dict): new_data[key] = add_type(val, mapping) else: new_data[key] = val return new_data # complete affiliations and organizations # organizations with the same name should become the same id # there should be a list of HGF orgas with ROARs. # Also if a name of an org contains the name of a org with roar, this new org, should be created and # linked to the org with the roar. like (Forschungszentrum Jülich GmbH, PGI-7) def complete_affiliations(data: dict, roar_id_dict: dict, re3data_dict: dict, blank_node_identifier='_:N'): """ Completes the given affiliation and organization where possible. roar_dict={ror_id1:{metadata}, ror_id2:{metadata}} the roar_id_dict is the inverse, of that. i.e: {'name': [roar_ids], 'grid_id': roar_id} for example: "affiliation": "Helmholtz-Zentrum Dresden-Rossendorf", - > "affiliation": {'@id': 'roar', '@type': organization 'name': "Helmholtz-Zentrum Dresden-Rossendorf"} more information about it should be somewhere else in the graph, we just want to link it to the right id example 2: (same for publisher, and includedInDataCatalog) "provider": {"@type": "Organization", "name": "J\u00fclich DATA"}, -> "provider": {"@type": "Organization", "name": "J\u00fclich DATA", '@id': 'http://doi.org/10.17616/R31NJMYC'}, """ raise NotImplementedError def update_key(data: dict, key: Union[str, int], val_dict: dict, overwrite: bool = False): """ Update the metadata of a certain key with a certain dict if the provider is already present, then we might want to complete the metadata, that it is linked correctly example: val = { "@id": " http://doi.org/10.17616/R31NJMYC", "@type": "Organization", "name": "J\u00fclich DATA"} """ orgi = data.get(key, {}) new = orgi if isinstance(orgi, list): for i, entry in enumerate(orgi): if isinstance(entry, dict): # todo pass if isinstance(orgi, dict): new = orgi if overwrite: new.update(val_dict) # shallow merge for now else: for nkey, val in val_dict.items(): if nkey not in orgi.keys(): new[nkey] = val data[key] = new return data def generate_patch(graph_key='graph', patch_format='jena') -> Callable: """ Generate a rdf patch for a given function which inputs a graph and outputs a graph. This function is meant to be used as a decorator generator. In order to find the graphs the input graph has to be the first argument to the function func, or a kwarg with the key provided by graph_key, default 'graph'. Also to find the output graph it requires the return value or the first return value to be a graph returns function raises ValueError """ def generate_patch_dekorator(func, graph_key='graph', patch_format='jena'): """ The actual decorator """ def _generate_patch(*args, **kwargs): """ returns the results of func plus a patch in front """ # deepcopy because graph is parsed per refernce, often this will lead then to # the output graph == input graph after function execution if graph_key in kwargs: graph = deepcopy(kwargs[graph_key]) else: if len(args) > 0: if isinstance(args[0], Graph): graph = deepcopy(args[0]) else: raise ValueError( f'No input graph found! Has to be provided first argument, or a kwargs {graph_key}!' ) results = func(*args, **kwargs) out_graph = None if isinstance(results, Graph): out_graph = results elif isinstance(results, list): if len(results) > 0: if isinstance(results[0], Graph): out_graph = results[0] if out_graph is None: raise ValueError('No output graph found! Has to single return or first return!') in_both, in_first, in_second = graph_diff(graph, out_graph) metadata = { 'function_module': func.__module__, 'function_name': func.__name__, 'creation_time': datetime.now().isoformat() } patch = generate_patch_from_graph(in_first, in_second, patch_format=patch_format, metadata=metadata) return patch, results return _generate_patch return generate_patch_dekorator def generate_patch_from_graph(in_first: Graph, in_second: Graph, patch_format='jena', metadata=None) -> Graph: """ Generate a rdf patch for a given graph difference :param in_first: a graph, set of tiples containing triples only in the first/input graph from a diff, i.e. these were deleted :type in_first: Graph :param in_first: a graph, set of tiples containing triples only in the second/output graph from a diff, i.e. these were added :type in_first: Graph :param patch_format: Format in which the patch shall be returned, default 'jena' see: https://jena.apache.org/documentation/rdf-patch/, or https://github.com/afs/rdf-delta :type patch_format: str """ pat = RDFPatch(metadata=metadata) patch_id = generate_uuid() # maybe hash the changes instead? if patch_format != 'jena': # for now raise ValueError(f'The requested patch format: {patch_format} is not supported.') # Header pat.add(('H', Literal('id'), Literal(patch_id), Literal('.'))) # Start transfer pat.add(('TX', '.')) # The order does not play a role since these are sets for sub, pre, obj in in_first: pat.add(('D', sub, pre, obj, '.')) for sub, pre, obj in in_second: pat.add(('A', sub, pre, obj, '.')) # End transfer pat.add(('TC', '.')) return pat class RDFPatch(object): """ This class represents a RDF patch Created, since one could not parse the Jena Patch format into a simple RDF graph and rdf-delta is in java (https://github.com/afs/rdf-delta). If there is a other common way already out there this should be used instead for example see: https://www.w3.org/TR/ldpatch/ and https://github.com/pchampin/ld-patch-py (LGPL). There are other formats one could serialize a patch to. These do not overlap in power. Problems with the current implementation of this: - Merging of a stack of RDFPatches would not work properly by the current 'several graph' design, since the order of the transactions matters... """ names = ['header', 'addprefix', 'deleteprefix', 'add_triples', 'delete_triples'] abbr = ['h', 'PA', 'PD', 'A', 'D'] header = Graph() addprefix = Graph() deleteprefix = Graph() add_triples = Graph() delete_triples = Graph() metadata: dict = {} def __init__( self, metadata: Optional[dict] = None, header: Optional[Graph] = None, addprefix: Optional[Graph] = None, deleteprefix: Optional[Graph] = None, add_triples: Optional[Graph] = None, delete_triples: Optional[Graph] = None, patch_format: str = 'jena' ): """ Init a RDF patch. :param metadata: :type metadata: Optional[dict] """ if metadata is not None: self.metadata = metadata total_triples = 0 for i, key in enumerate([header, addprefix, deleteprefix, add_triples, delete_triples]): if key is None: setattr(self, self.names[i], Graph()) else: setattr(self, self.names[i], key) total_triples += len(key) ''' # make the whole class iterateable self._current_index = 0 self._class_size = total_triples def __iter__(self): #return chain(iter(self.header), iter(self.addprefix), iter(self.deleteprefix), iter(self.add_triples), # iter(self.delete_triples)) return chain(self.header, self.addprefix, self.deleteprefix, self.add_triples, self.delete_triples) def __iter__(self): return self def __next__(self): if self._current_index < self._class_size: lh = len(self.header) lap = len(self.addprefix) ldp = len(self.deleteprefix) ld = len(self.delete_triples) # graphs cannot be index like this. if self._current_index < lh: triple = ('H', *self.header[self._current_index]) elif self._current_index < (lh+lap): triple = ('PA', *self.addprefix[self._current_index-lh]) elif self._current_index < (lh+lap+ldp): triple = ('PD', *self.deleteprefix[self._current_index-lh-lap]) elif self._current_index < (lh+lap+ldp+ld): triple = ('D', *self.delete_triples[self._current_index-lh-lap-ldp]) else: triple = self.add_triples[self._current_index - lh+lap-ldp-ld] self._current_index += 1 return triple raise StopIteration ''' def to_string(self, patch_format='jena'): """ Serialize Patch to string, to a format required for a certain backend. default Jena, see: https://jena.apache.org/documentation/rdf-patch/, or https://github.com/afs/rdf-delta """ patch_text = '' if self.header is not None: graph = getattr(self, 'header') for (sub, pre, obj) in graph: patch_text += f'H {sub} {pre} {obj}\n' patch_text += 'TX .\n' for i, key in enumerate(self.abbr[1:]): gname = self.names[1 + i] graph = getattr(self, gname) for (sub, pre, obj) in graph: patch_text += f'{key} {sub} {pre} {obj} .\n' patch_text += 'TC .' return patch_text def add(self, nquad, patch_format='jena'): """ Add a given tuple to the corresponding graph """ if nquad[0] == 'H': self.header.add(nquad[1:]) elif nquad[0] == 'PA': self.addprefix.add(nquad[1:-1]) elif nquad[0] == 'PD': self.deleteprefix.add(nquad[1:-1]) elif nquad[0] == 'A': self.add_triples.add(nquad[1:-1]) elif nquad[0] == 'D': self.delete_triples.add(nquad[1:-1]) elif any(nquad[0] == trans for trans in ['TX', 'TA', 'TC']): pass else: # not supported just ignore raise ValueError('Warning: {nquad[0]} of {nquad} not supported') #self._class_size += 1 def from_string(self, patch_text, patch_format='jena'): """ Add a patch from a patch string. important since the patches will be serialized as strings and have to be read again """ lines = patch_text.split('\n') for line in lines: nquad = line.split() self.add(nquad) # What about patch sequences? then the current class is not sufficient. since graph, can not captures # order def apply_patch(graph: Graph, patch: RDFPatch, patch_format='jena') -> Graph: """ Apply a given patch to a graph Since a patch is written a specific backend triple store like jena, this provides a way to apply the patch through python to a given graph outside of the backened """ # todo implement PA o_graph = graph + patch.add_triples - patch.delete_triples #o_graph = #EX = Namesspace('') #o_graph.bind() return o_graph def revert_patch(graph: Graph, patch: RDFPatch, patch_format='jena') -> Graph: """ Apply a given patch to a graph Since a patch is written a specific backend triple store like jena, this provides a way to apply the patch through python to a given graph outside of the backened """ # todo implement PA o_graph = graph - patch.add_triples + patch.delete_triples return o_graph
PypiClean
/yggdrasil_framework-1.10.1.post1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl/docs/source/server_client_io.rst
.. _server_client_io_rst: Server/Client I/O ================= Often you will want to call one model from another like a functions. This would required sending the input variable(s) to the model being called and then sending the output variables(s) back to the calling model. We refer to this as a Remote Procedure Call (RPC). The model being called can be considered a server providing its calculations as a service to the client (the calling model). The |yggdrasil| provides options for treating models as server and clients. One Server, One Client ---------------------- In the example below, the "server" model computes the nth number in the Fibonacci sequence and the "client" model calls the server to get a certain portion of the Fibonacci sequences and then writes it to a log. The server will continue processing requests until all clients connected to it have disconnected. .. include:: examples/rpc_lesson1_src.rst The interface server-side API call (YggRpcServer for Python), requires 3 input variables: the name of the server channel (this will be the name of the server model), a format string for input to the server model, and a format string for output from the server model. The client-side API call (YggRpcClient for Python), also requires 3 input variables: the name of the client channel (this is the name of the server model joined with the name of the client model by an underscore, ``<server>_<client>``, a format string for input to the server model, and a format string for output form the server model. The last two arguments (the format strings) to both the server and client API calls should be the same. In the server model YAML, the key/value pair ``is_server: True`` needs to be added to the model entry to indicate that the model will be called as a server and requires a set of RPC channels. In the client model YAML, the key/value pair ``client_of: <server_model_name>`` is required to indicate that the model will act as a client of the ``<server_model_name>`` model. .. include:: examples/rpc_lesson1_yml.rst In addition to the RPC API call, the example server also has an input ``params``. Models acting as servers can have as many inputs/outputs as desired in addition to the RPC connections. While the example input is not used to modify the output in this example, such a comm could be used to initialize a model with parameters and/or initial conditions. Using Existing Inputs/Outputs ----------------------------- Models that have already been integrated via |yggdrasil| can also be turned into servers without modifying the code. Instead of passing a boolean to the ``is_server`` parameter, such models can provide a mapping with ``input`` and ``output`` parameters that explicitly outline which of a existing model's inputs/outputs should be used for the RPC call. Receive/send calls to named input/output channels will then behave as receive/send calls on a server interface comm. .. todo:: Example source code and YAML of server replacing an existing input/output One Server, Two Clients ----------------------- There is no limit on the number of clients that can connect to a single server. In the example below, the server is the same as above. The client code is also essentially the same except that it has been modified to take a ``client_index`` variable that provides information to differentiates between two clients using the same source code. .. include:: examples/rpc_lesson2_src.rst The server YAML is the same as above. The client YAML now has entries for two models which are both clients of the server model and call the same source code. .. include:: examples/rpc_lesson2_yml.rst During runtime, request messages from both clients will be routed to the server model which will process the requests in the order they are received. Two Servers, Two Clients ------------------------ There is also no limit on the number of copies of a server model that can be used to responsd to RPC requests from the clients. In the example below, the server and clients are the same as above, but 2 copies of the server model are run as specified by the model ``copies`` parameter in the server YAML. .. include:: examples/rpc_lesson2b_yml.rst This allow client requests to be returned twice as fast, but precludes any use of an internal state by the server model as there is no way for a client to be sure that the same server model is responding to its requests and only its requests. Wrapped Function Server ----------------------- Models that are created by letting |yggdrasil| automatically :ref:`wrap a function <autowrap_rst>` can also act as servers and/or clients. In the example below, the model acting as a server is a very simple function that takes a string as an input and returns the same string and the client is a function that takes a string as an input, calls the server models with the input string and returns the response. When a client model is autowrapped from a function, additional care must be taken so that the client RPC comm can be reused during each call to the model. In interpreted models (Python, R, MATLAB), this is done by passing the keyword ``global_scope`` to the RPC client interface initialization function (``YggRpcClient`` in Python). In compiled models (C, C++, Fortran), this is done by framing RPC client interface initialization calls with the ``WITH_GLOBAL_SCOPE`` macro (see the language specific versions of this example for specifics). .. include:: examples/rpc_lesson3_src.rst The RPC connection between the server and the client is controlled by the same ``is_server`` and ``client_of`` YAML parameters as before. .. include:: examples/rpc_lesson3_yml.rst By default, all inputs to a wrapped server function will be used in the RPC call. However if only some of the inputs should be passed in by the RPC calls, they can be specified explicitly by providing the ``is_server`` parameter with a map that contains ``input`` and ``output`` parameters that map to the names of function input/output variables (as in the case of using existing input/output channels above).
PypiClean
/indic_punct-2.1.4-py3-none-any.whl/inverse_text_normalization/mr/taggers/money.py
from inverse_text_normalization.mr.data_loader_utils import get_abs_path from inverse_text_normalization.mr.graph_utils import ( NEMO_DIGIT, NEMO_SIGMA, GraphFst, convert_space, delete_extra_space, delete_space, get_singulars, insert_space, ) try: import pynini from pynini.lib import pynutil PYNINI_AVAILABLE = True except (ModuleNotFoundError, ImportError): PYNINI_AVAILABLE = False # from inverse_text_normalization.lang_params import LANG # lang_data_path = f'inverse_text_normalization/data/{LANG}_data/' lang_data_path = 'data/' class MoneyFst(GraphFst): """ Finite state transducer for classifying money e.g. twelve dollars and five cents -> money { integer_part: "12" fractional_part: 05 currency: "$" } Args: cardinal: Cardinal GraphFST decimal: Decimal GraphFST """ def __init__(self, cardinal: GraphFst, decimal: GraphFst): super().__init__(name="money", kind="classify") # quantity, integer_part, fractional_part, currency, style(depr) cardinal_graph = cardinal.graph_no_exception graph_decimal_final = decimal.final_graph_wo_negative unit = pynini.string_file(get_abs_path(lang_data_path+"currency.tsv")) unit_singular = pynini.invert(unit) unit_plural = get_singulars(unit_singular) graph_unit_singular = pynutil.insert("currency: \"") + convert_space(unit_singular) + pynutil.insert("\"") graph_unit_plural = pynutil.insert("currency: \"") + convert_space(unit_plural) + pynutil.insert("\"") add_leading_zero_to_double_digit = (NEMO_DIGIT + NEMO_DIGIT) | (pynutil.insert("0") + NEMO_DIGIT) # twelve dollars (and) fifty cents, zero cents cents_standalone = ( pynutil.insert("fractional_part: \"") + pynini.union( pynutil.add_weight(((NEMO_SIGMA - "one") @ cardinal_graph), -0.7) @ add_leading_zero_to_double_digit + delete_space + pynutil.delete("cents"), pynini.cross("one", "01") + delete_space + pynutil.delete("cent"), ) + pynutil.insert("\"") ) optional_cents_standalone = pynini.closure( delete_space + pynini.closure(pynutil.delete("and") + delete_space, 0, 1) + insert_space + cents_standalone, 0, 1, ) # twelve dollars fifty, only after integer optional_cents_suffix = pynini.closure( delete_extra_space + pynutil.insert("fractional_part: \"") + pynutil.add_weight(cardinal_graph @ add_leading_zero_to_double_digit, -0.7) + pynutil.insert("\""), 0, 1, ) graph_integer = ( pynutil.insert("integer_part: \"") + ((NEMO_SIGMA - "one") @ cardinal_graph) + pynutil.insert("\"") + delete_extra_space + (graph_unit_plural | graph_unit_singular) + (optional_cents_standalone | optional_cents_suffix) ) graph_integer |= ( pynutil.insert("integer_part: \"") + pynini.cross("one", "1") + pynutil.insert("\"") + delete_extra_space + graph_unit_singular + (optional_cents_standalone | optional_cents_suffix) ) graph_decimal = graph_decimal_final + delete_extra_space + graph_unit_plural graph_decimal |= pynutil.insert("currency: \"$\" integer_part: \"0\" ") + cents_standalone final_graph = graph_integer | graph_decimal final_graph = self.add_tokens(final_graph) self.fst = final_graph.optimize()
PypiClean
/bemserver_api-0.22.0-py3-none-any.whl/bemserver_api/resources/users/routes.py
from flask.views import MethodView from flask_smorest import abort from bemserver_core.model import User from bemserver_api import Blueprint from bemserver_api.database import db from .schemas import UserSchema, UserQueryArgsSchema, BooleanValueSchema blp = Blueprint( "User", __name__, url_prefix="/users", description="Operations on users" ) @blp.route("/") class UserViews(MethodView): @blp.login_required @blp.etag @blp.arguments(UserQueryArgsSchema, location="query") @blp.response(200, UserSchema(many=True)) def get(self, args): """List users""" return User.get(**args) @blp.login_required @blp.etag @blp.arguments(UserSchema) @blp.response(201, UserSchema) @blp.catch_integrity_error def post(self, new_item): """Add a new user""" password = new_item.pop("password") item = User.new(**new_item) item.set_password(password) item.is_admin = False item.is_active = True db.session.commit() return item @blp.route("/<int:item_id>") class UserByIdViews(MethodView): @blp.login_required @blp.etag @blp.response(200, UserSchema) def get(self, item_id): """Get user by ID""" item = User.get_by_id(item_id) if item is None: abort(404) return item @blp.login_required @blp.etag @blp.arguments(UserSchema) @blp.response(200, UserSchema) @blp.catch_integrity_error def put(self, new_item, item_id): """Update an existing user""" item = User.get_by_id(item_id) if item is None: abort(404) blp.check_etag(item, UserSchema) password = new_item.pop("password") item.update(**new_item) item.set_password(password) db.session.commit() return item @blp.login_required @blp.etag @blp.response(204) def delete(self, item_id): """Delete a user""" item = User.get_by_id(item_id) if item is None: abort(404) blp.check_etag(item, UserSchema) item.delete() db.session.commit() @blp.route("/<int:item_id>/set_admin", methods=("PUT",)) @blp.login_required @blp.etag @blp.arguments(BooleanValueSchema) @blp.response(204) def set_admin(args, item_id): """Set / unset admin""" item = User.get_by_id(item_id) if item is None: abort(404) blp.check_etag(item, UserSchema) item.is_admin = args["value"] db.session.commit() blp.set_etag(item, UserSchema) @blp.route("/<int:item_id>/set_active", methods=("PUT",)) @blp.login_required @blp.etag @blp.arguments(BooleanValueSchema) @blp.response(204) def set_active(args, item_id): """Set / unset active""" item = User.get_by_id(item_id) if item is None: abort(404) blp.check_etag(item, UserSchema) item.is_active = args["value"] db.session.commit() blp.set_etag(item, UserSchema)
PypiClean
/websauna.system-1.0a8.tar.gz/websauna.system-1.0a8/websauna/system/static/bootstrap.min.js
if("undefined"==typeof jQuery)throw new Error("Bootstrap's JavaScript requires jQuery");+function(a){"use strict";var b=a.fn.jquery.split(" ")[0].split(".");if(b[0]<2&&b[1]<9||1==b[0]&&9==b[1]&&b[2]<1)throw new Error("Bootstrap's JavaScript requires jQuery version 1.9.1 or higher")}(jQuery),+function(a){"use strict";function b(){var a=document.createElement("bootstrap"),b={WebkitTransition:"webkitTransitionEnd",MozTransition:"transitionend",OTransition:"oTransitionEnd otransitionend",transition:"transitionend"};for(var c in b)if(void 0!==a.style[c])return{end:b[c]};return!1}a.fn.emulateTransitionEnd=function(b){var c=!1,d=this;a(this).one("bsTransitionEnd",function(){c=!0});var e=function(){c||a(d).trigger(a.support.transition.end)};return setTimeout(e,b),this},a(function(){a.support.transition=b(),a.support.transition&&(a.event.special.bsTransitionEnd={bindType:a.support.transition.end,delegateType:a.support.transition.end,handle:function(b){return a(b.target).is(this)?b.handleObj.handler.apply(this,arguments):void 0}})})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var c=a(this),e=c.data("bs.alert");e||c.data("bs.alert",e=new d(this)),"string"==typeof b&&e[b].call(c)})}var c='[data-dismiss="alert"]',d=function(b){a(b).on("click",c,this.close)};d.VERSION="3.3.4",d.TRANSITION_DURATION=150,d.prototype.close=function(b){function c(){g.detach().trigger("closed.bs.alert").remove()}var e=a(this),f=e.attr("data-target");f||(f=e.attr("href"),f=f&&f.replace(/.*(?=#[^\s]*$)/,""));var g=a(f);b&&b.preventDefault(),g.length||(g=e.closest(".alert")),g.trigger(b=a.Event("close.bs.alert")),b.isDefaultPrevented()||(g.removeClass("in"),a.support.transition&&g.hasClass("fade")?g.one("bsTransitionEnd",c).emulateTransitionEnd(d.TRANSITION_DURATION):c())};var e=a.fn.alert;a.fn.alert=b,a.fn.alert.Constructor=d,a.fn.alert.noConflict=function(){return a.fn.alert=e,this},a(document).on("click.bs.alert.data-api",c,d.prototype.close)}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.button"),f="object"==typeof b&&b;e||d.data("bs.button",e=new c(this,f)),"toggle"==b?e.toggle():b&&e.setState(b)})}var c=function(b,d){this.$element=a(b),this.options=a.extend({},c.DEFAULTS,d),this.isLoading=!1};c.VERSION="3.3.4",c.DEFAULTS={loadingText:"loading..."},c.prototype.setState=function(b){var c="disabled",d=this.$element,e=d.is("input")?"val":"html",f=d.data();b+="Text",null==f.resetText&&d.data("resetText",d[e]()),setTimeout(a.proxy(function(){d[e](null==f[b]?this.options[b]:f[b]),"loadingText"==b?(this.isLoading=!0,d.addClass(c).attr(c,c)):this.isLoading&&(this.isLoading=!1,d.removeClass(c).removeAttr(c))},this),0)},c.prototype.toggle=function(){var a=!0,b=this.$element.closest('[data-toggle="buttons"]');if(b.length){var c=this.$element.find("input");"radio"==c.prop("type")&&(c.prop("checked")&&this.$element.hasClass("active")?a=!1:b.find(".active").removeClass("active")),a&&c.prop("checked",!this.$element.hasClass("active")).trigger("change")}else this.$element.attr("aria-pressed",!this.$element.hasClass("active"));a&&this.$element.toggleClass("active")};var d=a.fn.button;a.fn.button=b,a.fn.button.Constructor=c,a.fn.button.noConflict=function(){return a.fn.button=d,this},a(document).on("click.bs.button.data-api",'[data-toggle^="button"]',function(c){var d=a(c.target);d.hasClass("btn")||(d=d.closest(".btn")),b.call(d,"toggle"),c.preventDefault()}).on("focus.bs.button.data-api blur.bs.button.data-api",'[data-toggle^="button"]',function(b){a(b.target).closest(".btn").toggleClass("focus",/^focus(in)?$/.test(b.type))})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.carousel"),f=a.extend({},c.DEFAULTS,d.data(),"object"==typeof b&&b),g="string"==typeof b?b:f.slide;e||d.data("bs.carousel",e=new c(this,f)),"number"==typeof b?e.to(b):g?e[g]():f.interval&&e.pause().cycle()})}var c=function(b,c){this.$element=a(b),this.$indicators=this.$element.find(".carousel-indicators"),this.options=c,this.paused=null,this.sliding=null,this.interval=null,this.$active=null,this.$items=null,this.options.keyboard&&this.$element.on("keydown.bs.carousel",a.proxy(this.keydown,this)),"hover"==this.options.pause&&!("ontouchstart"in document.documentElement)&&this.$element.on("mouseenter.bs.carousel",a.proxy(this.pause,this)).on("mouseleave.bs.carousel",a.proxy(this.cycle,this))};c.VERSION="3.3.4",c.TRANSITION_DURATION=600,c.DEFAULTS={interval:5e3,pause:"hover",wrap:!0,keyboard:!0},c.prototype.keydown=function(a){if(!/input|textarea/i.test(a.target.tagName)){switch(a.which){case 37:this.prev();break;case 39:this.next();break;default:return}a.preventDefault()}},c.prototype.cycle=function(b){return b||(this.paused=!1),this.interval&&clearInterval(this.interval),this.options.interval&&!this.paused&&(this.interval=setInterval(a.proxy(this.next,this),this.options.interval)),this},c.prototype.getItemIndex=function(a){return this.$items=a.parent().children(".item"),this.$items.index(a||this.$active)},c.prototype.getItemForDirection=function(a,b){var c=this.getItemIndex(b),d="prev"==a&&0===c||"next"==a&&c==this.$items.length-1;if(d&&!this.options.wrap)return b;var e="prev"==a?-1:1,f=(c+e)%this.$items.length;return this.$items.eq(f)},c.prototype.to=function(a){var b=this,c=this.getItemIndex(this.$active=this.$element.find(".item.active"));return a>this.$items.length-1||0>a?void 0:this.sliding?this.$element.one("slid.bs.carousel",function(){b.to(a)}):c==a?this.pause().cycle():this.slide(a>c?"next":"prev",this.$items.eq(a))},c.prototype.pause=function(b){return b||(this.paused=!0),this.$element.find(".next, .prev").length&&a.support.transition&&(this.$element.trigger(a.support.transition.end),this.cycle(!0)),this.interval=clearInterval(this.interval),this},c.prototype.next=function(){return this.sliding?void 0:this.slide("next")},c.prototype.prev=function(){return this.sliding?void 0:this.slide("prev")},c.prototype.slide=function(b,d){var e=this.$element.find(".item.active"),f=d||this.getItemForDirection(b,e),g=this.interval,h="next"==b?"left":"right",i=this;if(f.hasClass("active"))return this.sliding=!1;var j=f[0],k=a.Event("slide.bs.carousel",{relatedTarget:j,direction:h});if(this.$element.trigger(k),!k.isDefaultPrevented()){if(this.sliding=!0,g&&this.pause(),this.$indicators.length){this.$indicators.find(".active").removeClass("active");var l=a(this.$indicators.children()[this.getItemIndex(f)]);l&&l.addClass("active")}var m=a.Event("slid.bs.carousel",{relatedTarget:j,direction:h});return a.support.transition&&this.$element.hasClass("slide")?(f.addClass(b),f[0].offsetWidth,e.addClass(h),f.addClass(h),e.one("bsTransitionEnd",function(){f.removeClass([b,h].join(" ")).addClass("active"),e.removeClass(["active",h].join(" ")),i.sliding=!1,setTimeout(function(){i.$element.trigger(m)},0)}).emulateTransitionEnd(c.TRANSITION_DURATION)):(e.removeClass("active"),f.addClass("active"),this.sliding=!1,this.$element.trigger(m)),g&&this.cycle(),this}};var d=a.fn.carousel;a.fn.carousel=b,a.fn.carousel.Constructor=c,a.fn.carousel.noConflict=function(){return a.fn.carousel=d,this};var e=function(c){var d,e=a(this),f=a(e.attr("data-target")||(d=e.attr("href"))&&d.replace(/.*(?=#[^\s]+$)/,""));if(f.hasClass("carousel")){var g=a.extend({},f.data(),e.data()),h=e.attr("data-slide-to");h&&(g.interval=!1),b.call(f,g),h&&f.data("bs.carousel").to(h),c.preventDefault()}};a(document).on("click.bs.carousel.data-api","[data-slide]",e).on("click.bs.carousel.data-api","[data-slide-to]",e),a(window).on("load",function(){a('[data-ride="carousel"]').each(function(){var c=a(this);b.call(c,c.data())})})}(jQuery),+function(a){"use strict";function b(b){var c,d=b.attr("data-target")||(c=b.attr("href"))&&c.replace(/.*(?=#[^\s]+$)/,"");return a(d)}function c(b){return this.each(function(){var c=a(this),e=c.data("bs.collapse"),f=a.extend({},d.DEFAULTS,c.data(),"object"==typeof b&&b);!e&&f.toggle&&/show|hide/.test(b)&&(f.toggle=!1),e||c.data("bs.collapse",e=new d(this,f)),"string"==typeof b&&e[b]()})}var d=function(b,c){this.$element=a(b),this.options=a.extend({},d.DEFAULTS,c),this.$trigger=a('[data-toggle="collapse"][href="#'+b.id+'"],[data-toggle="collapse"][data-target="#'+b.id+'"]'),this.transitioning=null,this.options.parent?this.$parent=this.getParent():this.addAriaAndCollapsedClass(this.$element,this.$trigger),this.options.toggle&&this.toggle()};d.VERSION="3.3.4",d.TRANSITION_DURATION=350,d.DEFAULTS={toggle:!0},d.prototype.dimension=function(){var a=this.$element.hasClass("width");return a?"width":"height"},d.prototype.show=function(){if(!this.transitioning&&!this.$element.hasClass("in")){var b,e=this.$parent&&this.$parent.children(".panel").children(".in, .collapsing");if(!(e&&e.length&&(b=e.data("bs.collapse"),b&&b.transitioning))){var f=a.Event("show.bs.collapse");if(this.$element.trigger(f),!f.isDefaultPrevented()){e&&e.length&&(c.call(e,"hide"),b||e.data("bs.collapse",null));var g=this.dimension();this.$element.removeClass("collapse").addClass("collapsing")[g](0).attr("aria-expanded",!0),this.$trigger.removeClass("collapsed").attr("aria-expanded",!0),this.transitioning=1;var h=function(){this.$element.removeClass("collapsing").addClass("collapse in")[g](""),this.transitioning=0,this.$element.trigger("shown.bs.collapse")};if(!a.support.transition)return h.call(this);var i=a.camelCase(["scroll",g].join("-"));this.$element.one("bsTransitionEnd",a.proxy(h,this)).emulateTransitionEnd(d.TRANSITION_DURATION)[g](this.$element[0][i])}}}},d.prototype.hide=function(){if(!this.transitioning&&this.$element.hasClass("in")){var b=a.Event("hide.bs.collapse");if(this.$element.trigger(b),!b.isDefaultPrevented()){var c=this.dimension();this.$element[c](this.$element[c]())[0].offsetHeight,this.$element.addClass("collapsing").removeClass("collapse in").attr("aria-expanded",!1),this.$trigger.addClass("collapsed").attr("aria-expanded",!1),this.transitioning=1;var e=function(){this.transitioning=0,this.$element.removeClass("collapsing").addClass("collapse").trigger("hidden.bs.collapse")};return a.support.transition?void this.$element[c](0).one("bsTransitionEnd",a.proxy(e,this)).emulateTransitionEnd(d.TRANSITION_DURATION):e.call(this)}}},d.prototype.toggle=function(){this[this.$element.hasClass("in")?"hide":"show"]()},d.prototype.getParent=function(){return a(this.options.parent).find('[data-toggle="collapse"][data-parent="'+this.options.parent+'"]').each(a.proxy(function(c,d){var e=a(d);this.addAriaAndCollapsedClass(b(e),e)},this)).end()},d.prototype.addAriaAndCollapsedClass=function(a,b){var c=a.hasClass("in");a.attr("aria-expanded",c),b.toggleClass("collapsed",!c).attr("aria-expanded",c)};var e=a.fn.collapse;a.fn.collapse=c,a.fn.collapse.Constructor=d,a.fn.collapse.noConflict=function(){return a.fn.collapse=e,this},a(document).on("click.bs.collapse.data-api",'[data-toggle="collapse"]',function(d){var e=a(this);e.attr("data-target")||d.preventDefault();var f=b(e),g=f.data("bs.collapse"),h=g?"toggle":e.data();c.call(f,h)})}(jQuery),+function(a){"use strict";function b(b){b&&3===b.which||(a(e).remove(),a(f).each(function(){var d=a(this),e=c(d),f={relatedTarget:this};e.hasClass("open")&&(e.trigger(b=a.Event("hide.bs.dropdown",f)),b.isDefaultPrevented()||(d.attr("aria-expanded","false"),e.removeClass("open").trigger("hidden.bs.dropdown",f)))}))}function c(b){var c=b.attr("data-target");c||(c=b.attr("href"),c=c&&/#[A-Za-z]/.test(c)&&c.replace(/.*(?=#[^\s]*$)/,""));var d=c&&a(c);return d&&d.length?d:b.parent()}function d(b){return this.each(function(){var c=a(this),d=c.data("bs.dropdown");d||c.data("bs.dropdown",d=new g(this)),"string"==typeof b&&d[b].call(c)})}var e=".dropdown-backdrop",f='[data-toggle="dropdown"]',g=function(b){a(b).on("click.bs.dropdown",this.toggle)};g.VERSION="3.3.4",g.prototype.toggle=function(d){var e=a(this);if(!e.is(".disabled, :disabled")){var f=c(e),g=f.hasClass("open");if(b(),!g){"ontouchstart"in document.documentElement&&!f.closest(".navbar-nav").length&&a('<div class="dropdown-backdrop"/>').insertAfter(a(this)).on("click",b);var h={relatedTarget:this};if(f.trigger(d=a.Event("show.bs.dropdown",h)),d.isDefaultPrevented())return;e.trigger("focus").attr("aria-expanded","true"),f.toggleClass("open").trigger("shown.bs.dropdown",h)}return!1}},g.prototype.keydown=function(b){if(/(38|40|27|32)/.test(b.which)&&!/input|textarea/i.test(b.target.tagName)){var d=a(this);if(b.preventDefault(),b.stopPropagation(),!d.is(".disabled, :disabled")){var e=c(d),g=e.hasClass("open");if(!g&&27!=b.which||g&&27==b.which)return 27==b.which&&e.find(f).trigger("focus"),d.trigger("click");var h=" li:not(.disabled):visible a",i=e.find('[role="menu"]'+h+', [role="listbox"]'+h);if(i.length){var j=i.index(b.target);38==b.which&&j>0&&j--,40==b.which&&j<i.length-1&&j++,~j||(j=0),i.eq(j).trigger("focus")}}}};var h=a.fn.dropdown;a.fn.dropdown=d,a.fn.dropdown.Constructor=g,a.fn.dropdown.noConflict=function(){return a.fn.dropdown=h,this},a(document).on("click.bs.dropdown.data-api",b).on("click.bs.dropdown.data-api",".dropdown form",function(a){a.stopPropagation()}).on("click.bs.dropdown.data-api",f,g.prototype.toggle).on("keydown.bs.dropdown.data-api",f,g.prototype.keydown).on("keydown.bs.dropdown.data-api",'[role="menu"]',g.prototype.keydown).on("keydown.bs.dropdown.data-api",'[role="listbox"]',g.prototype.keydown)}(jQuery),+function(a){"use strict";function b(b,d){return this.each(function(){var e=a(this),f=e.data("bs.modal"),g=a.extend({},c.DEFAULTS,e.data(),"object"==typeof b&&b);f||e.data("bs.modal",f=new c(this,g)),"string"==typeof b?f[b](d):g.show&&f.show(d)})}var c=function(b,c){this.options=c,this.$body=a(document.body),this.$element=a(b),this.$dialog=this.$element.find(".modal-dialog"),this.$backdrop=null,this.isShown=null,this.originalBodyPad=null,this.scrollbarWidth=0,this.ignoreBackdropClick=!1,this.options.remote&&this.$element.find(".modal-content").load(this.options.remote,a.proxy(function(){this.$element.trigger("loaded.bs.modal")},this))};c.VERSION="3.3.4",c.TRANSITION_DURATION=300,c.BACKDROP_TRANSITION_DURATION=150,c.DEFAULTS={backdrop:!0,keyboard:!0,show:!0},c.prototype.toggle=function(a){return this.isShown?this.hide():this.show(a)},c.prototype.show=function(b){var d=this,e=a.Event("show.bs.modal",{relatedTarget:b});this.$element.trigger(e),this.isShown||e.isDefaultPrevented()||(this.isShown=!0,this.checkScrollbar(),this.setScrollbar(),this.$body.addClass("modal-open"),this.escape(),this.resize(),this.$element.on("click.dismiss.bs.modal",'[data-dismiss="modal"]',a.proxy(this.hide,this)),this.$dialog.on("mousedown.dismiss.bs.modal",function(){d.$element.one("mouseup.dismiss.bs.modal",function(b){a(b.target).is(d.$element)&&(d.ignoreBackdropClick=!0)})}),this.backdrop(function(){var e=a.support.transition&&d.$element.hasClass("fade");d.$element.parent().length||d.$element.appendTo(d.$body),d.$element.show().scrollTop(0),d.adjustDialog(),e&&d.$element[0].offsetWidth,d.$element.addClass("in").attr("aria-hidden",!1),d.enforceFocus();var f=a.Event("shown.bs.modal",{relatedTarget:b});e?d.$dialog.one("bsTransitionEnd",function(){d.$element.trigger("focus").trigger(f)}).emulateTransitionEnd(c.TRANSITION_DURATION):d.$element.trigger("focus").trigger(f)}))},c.prototype.hide=function(b){b&&b.preventDefault(),b=a.Event("hide.bs.modal"),this.$element.trigger(b),this.isShown&&!b.isDefaultPrevented()&&(this.isShown=!1,this.escape(),this.resize(),a(document).off("focusin.bs.modal"),this.$element.removeClass("in").attr("aria-hidden",!0).off("click.dismiss.bs.modal").off("mouseup.dismiss.bs.modal"),this.$dialog.off("mousedown.dismiss.bs.modal"),a.support.transition&&this.$element.hasClass("fade")?this.$element.one("bsTransitionEnd",a.proxy(this.hideModal,this)).emulateTransitionEnd(c.TRANSITION_DURATION):this.hideModal())},c.prototype.enforceFocus=function(){a(document).off("focusin.bs.modal").on("focusin.bs.modal",a.proxy(function(a){this.$element[0]===a.target||this.$element.has(a.target).length||this.$element.trigger("focus")},this))},c.prototype.escape=function(){this.isShown&&this.options.keyboard?this.$element.on("keydown.dismiss.bs.modal",a.proxy(function(a){27==a.which&&this.hide()},this)):this.isShown||this.$element.off("keydown.dismiss.bs.modal")},c.prototype.resize=function(){this.isShown?a(window).on("resize.bs.modal",a.proxy(this.handleUpdate,this)):a(window).off("resize.bs.modal")},c.prototype.hideModal=function(){var a=this;this.$element.hide(),this.backdrop(function(){a.$body.removeClass("modal-open"),a.resetAdjustments(),a.resetScrollbar(),a.$element.trigger("hidden.bs.modal")})},c.prototype.removeBackdrop=function(){this.$backdrop&&this.$backdrop.remove(),this.$backdrop=null},c.prototype.backdrop=function(b){var d=this,e=this.$element.hasClass("fade")?"fade":"";if(this.isShown&&this.options.backdrop){var f=a.support.transition&&e;if(this.$backdrop=a('<div class="modal-backdrop '+e+'" />').appendTo(this.$body),this.$element.on("click.dismiss.bs.modal",a.proxy(function(a){return this.ignoreBackdropClick?void(this.ignoreBackdropClick=!1):void(a.target===a.currentTarget&&("static"==this.options.backdrop?this.$element[0].focus():this.hide()))},this)),f&&this.$backdrop[0].offsetWidth,this.$backdrop.addClass("in"),!b)return;f?this.$backdrop.one("bsTransitionEnd",b).emulateTransitionEnd(c.BACKDROP_TRANSITION_DURATION):b()}else if(!this.isShown&&this.$backdrop){this.$backdrop.removeClass("in");var g=function(){d.removeBackdrop(),b&&b()};a.support.transition&&this.$element.hasClass("fade")?this.$backdrop.one("bsTransitionEnd",g).emulateTransitionEnd(c.BACKDROP_TRANSITION_DURATION):g()}else b&&b()},c.prototype.handleUpdate=function(){this.adjustDialog()},c.prototype.adjustDialog=function(){var a=this.$element[0].scrollHeight>document.documentElement.clientHeight;this.$element.css({paddingLeft:!this.bodyIsOverflowing&&a?this.scrollbarWidth:"",paddingRight:this.bodyIsOverflowing&&!a?this.scrollbarWidth:""})},c.prototype.resetAdjustments=function(){this.$element.css({paddingLeft:"",paddingRight:""})},c.prototype.checkScrollbar=function(){var a=window.innerWidth;if(!a){var b=document.documentElement.getBoundingClientRect();a=b.right-Math.abs(b.left)}this.bodyIsOverflowing=document.body.clientWidth<a,this.scrollbarWidth=this.measureScrollbar()},c.prototype.setScrollbar=function(){var a=parseInt(this.$body.css("padding-right")||0,10);this.originalBodyPad=document.body.style.paddingRight||"",this.bodyIsOverflowing&&this.$body.css("padding-right",a+this.scrollbarWidth)},c.prototype.resetScrollbar=function(){this.$body.css("padding-right",this.originalBodyPad)},c.prototype.measureScrollbar=function(){var a=document.createElement("div");a.className="modal-scrollbar-measure",this.$body.append(a);var b=a.offsetWidth-a.clientWidth;return this.$body[0].removeChild(a),b};var d=a.fn.modal;a.fn.modal=b,a.fn.modal.Constructor=c,a.fn.modal.noConflict=function(){return a.fn.modal=d,this},a(document).on("click.bs.modal.data-api",'[data-toggle="modal"]',function(c){var d=a(this),e=d.attr("href"),f=a(d.attr("data-target")||e&&e.replace(/.*(?=#[^\s]+$)/,"")),g=f.data("bs.modal")?"toggle":a.extend({remote:!/#/.test(e)&&e},f.data(),d.data());d.is("a")&&c.preventDefault(),f.one("show.bs.modal",function(a){a.isDefaultPrevented()||f.one("hidden.bs.modal",function(){d.is(":visible")&&d.trigger("focus")})}),b.call(f,g,this)})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.tooltip"),f="object"==typeof b&&b;(e||!/destroy|hide/.test(b))&&(e||d.data("bs.tooltip",e=new c(this,f)),"string"==typeof b&&e[b]())})}var c=function(a,b){this.type=null,this.options=null,this.enabled=null,this.timeout=null,this.hoverState=null,this.$element=null,this.init("tooltip",a,b)};c.VERSION="3.3.4",c.TRANSITION_DURATION=150,c.DEFAULTS={animation:!0,placement:"top",selector:!1,template:'<div class="tooltip" role="tooltip"><div class="tooltip-arrow"></div><div class="tooltip-inner"></div></div>',trigger:"hover focus",title:"",delay:0,html:!1,container:!1,viewport:{selector:"body",padding:0}},c.prototype.init=function(b,c,d){if(this.enabled=!0,this.type=b,this.$element=a(c),this.options=this.getOptions(d),this.$viewport=this.options.viewport&&a(this.options.viewport.selector||this.options.viewport),this.$element[0]instanceof document.constructor&&!this.options.selector)throw new Error("`selector` option must be specified when initializing "+this.type+" on the window.document object!");for(var e=this.options.trigger.split(" "),f=e.length;f--;){var g=e[f];if("click"==g)this.$element.on("click."+this.type,this.options.selector,a.proxy(this.toggle,this));else if("manual"!=g){var h="hover"==g?"mouseenter":"focusin",i="hover"==g?"mouseleave":"focusout";this.$element.on(h+"."+this.type,this.options.selector,a.proxy(this.enter,this)),this.$element.on(i+"."+this.type,this.options.selector,a.proxy(this.leave,this))}}this.options.selector?this._options=a.extend({},this.options,{trigger:"manual",selector:""}):this.fixTitle()},c.prototype.getDefaults=function(){return c.DEFAULTS},c.prototype.getOptions=function(b){return b=a.extend({},this.getDefaults(),this.$element.data(),b),b.delay&&"number"==typeof b.delay&&(b.delay={show:b.delay,hide:b.delay}),b},c.prototype.getDelegateOptions=function(){var b={},c=this.getDefaults();return this._options&&a.each(this._options,function(a,d){c[a]!=d&&(b[a]=d)}),b},c.prototype.enter=function(b){var c=b instanceof this.constructor?b:a(b.currentTarget).data("bs."+this.type);return c&&c.$tip&&c.$tip.is(":visible")?void(c.hoverState="in"):(c||(c=new this.constructor(b.currentTarget,this.getDelegateOptions()),a(b.currentTarget).data("bs."+this.type,c)),clearTimeout(c.timeout),c.hoverState="in",c.options.delay&&c.options.delay.show?void(c.timeout=setTimeout(function(){"in"==c.hoverState&&c.show()},c.options.delay.show)):c.show())},c.prototype.leave=function(b){var c=b instanceof this.constructor?b:a(b.currentTarget).data("bs."+this.type);return c||(c=new this.constructor(b.currentTarget,this.getDelegateOptions()),a(b.currentTarget).data("bs."+this.type,c)),clearTimeout(c.timeout),c.hoverState="out",c.options.delay&&c.options.delay.hide?void(c.timeout=setTimeout(function(){"out"==c.hoverState&&c.hide()},c.options.delay.hide)):c.hide()},c.prototype.show=function(){var b=a.Event("show.bs."+this.type);if(this.hasContent()&&this.enabled){this.$element.trigger(b);var d=a.contains(this.$element[0].ownerDocument.documentElement,this.$element[0]);if(b.isDefaultPrevented()||!d)return;var e=this,f=this.tip(),g=this.getUID(this.type);this.setContent(),f.attr("id",g),this.$element.attr("aria-describedby",g),this.options.animation&&f.addClass("fade");var h="function"==typeof this.options.placement?this.options.placement.call(this,f[0],this.$element[0]):this.options.placement,i=/\s?auto?\s?/i,j=i.test(h);j&&(h=h.replace(i,"")||"top"),f.detach().css({top:0,left:0,display:"block"}).addClass(h).data("bs."+this.type,this),this.options.container?f.appendTo(this.options.container):f.insertAfter(this.$element);var k=this.getPosition(),l=f[0].offsetWidth,m=f[0].offsetHeight;if(j){var n=h,o=this.options.container?a(this.options.container):this.$element.parent(),p=this.getPosition(o);h="bottom"==h&&k.bottom+m>p.bottom?"top":"top"==h&&k.top-m<p.top?"bottom":"right"==h&&k.right+l>p.width?"left":"left"==h&&k.left-l<p.left?"right":h,f.removeClass(n).addClass(h)}var q=this.getCalculatedOffset(h,k,l,m);this.applyPlacement(q,h);var r=function(){var a=e.hoverState;e.$element.trigger("shown.bs."+e.type),e.hoverState=null,"out"==a&&e.leave(e)};a.support.transition&&this.$tip.hasClass("fade")?f.one("bsTransitionEnd",r).emulateTransitionEnd(c.TRANSITION_DURATION):r()}},c.prototype.applyPlacement=function(b,c){var d=this.tip(),e=d[0].offsetWidth,f=d[0].offsetHeight,g=parseInt(d.css("margin-top"),10),h=parseInt(d.css("margin-left"),10);isNaN(g)&&(g=0),isNaN(h)&&(h=0),b.top=b.top+g,b.left=b.left+h,a.offset.setOffset(d[0],a.extend({using:function(a){d.css({top:Math.round(a.top),left:Math.round(a.left)})}},b),0),d.addClass("in");var i=d[0].offsetWidth,j=d[0].offsetHeight;"top"==c&&j!=f&&(b.top=b.top+f-j);var k=this.getViewportAdjustedDelta(c,b,i,j);k.left?b.left+=k.left:b.top+=k.top;var l=/top|bottom/.test(c),m=l?2*k.left-e+i:2*k.top-f+j,n=l?"offsetWidth":"offsetHeight";d.offset(b),this.replaceArrow(m,d[0][n],l)},c.prototype.replaceArrow=function(a,b,c){this.arrow().css(c?"left":"top",50*(1-a/b)+"%").css(c?"top":"left","")},c.prototype.setContent=function(){var a=this.tip(),b=this.getTitle();a.find(".tooltip-inner")[this.options.html?"html":"text"](b),a.removeClass("fade in top bottom left right")},c.prototype.hide=function(b){function d(){"in"!=e.hoverState&&f.detach(),e.$element.removeAttr("aria-describedby").trigger("hidden.bs."+e.type),b&&b()}var e=this,f=a(this.$tip),g=a.Event("hide.bs."+this.type);return this.$element.trigger(g),g.isDefaultPrevented()?void 0:(f.removeClass("in"),a.support.transition&&f.hasClass("fade")?f.one("bsTransitionEnd",d).emulateTransitionEnd(c.TRANSITION_DURATION):d(),this.hoverState=null,this)},c.prototype.fixTitle=function(){var a=this.$element;(a.attr("title")||"string"!=typeof a.attr("data-original-title"))&&a.attr("data-original-title",a.attr("title")||"").attr("title","")},c.prototype.hasContent=function(){return this.getTitle()},c.prototype.getPosition=function(b){b=b||this.$element;var c=b[0],d="BODY"==c.tagName,e=c.getBoundingClientRect();null==e.width&&(e=a.extend({},e,{width:e.right-e.left,height:e.bottom-e.top}));var f=d?{top:0,left:0}:b.offset(),g={scroll:d?document.documentElement.scrollTop||document.body.scrollTop:b.scrollTop()},h=d?{width:a(window).width(),height:a(window).height()}:null;return a.extend({},e,g,h,f)},c.prototype.getCalculatedOffset=function(a,b,c,d){return"bottom"==a?{top:b.top+b.height,left:b.left+b.width/2-c/2}:"top"==a?{top:b.top-d,left:b.left+b.width/2-c/2}:"left"==a?{top:b.top+b.height/2-d/2,left:b.left-c}:{top:b.top+b.height/2-d/2,left:b.left+b.width}},c.prototype.getViewportAdjustedDelta=function(a,b,c,d){var e={top:0,left:0};if(!this.$viewport)return e;var f=this.options.viewport&&this.options.viewport.padding||0,g=this.getPosition(this.$viewport);if(/right|left/.test(a)){var h=b.top-f-g.scroll,i=b.top+f-g.scroll+d;h<g.top?e.top=g.top-h:i>g.top+g.height&&(e.top=g.top+g.height-i)}else{var j=b.left-f,k=b.left+f+c;j<g.left?e.left=g.left-j:k>g.width&&(e.left=g.left+g.width-k)}return e},c.prototype.getTitle=function(){var a,b=this.$element,c=this.options;return a=b.attr("data-original-title")||("function"==typeof c.title?c.title.call(b[0]):c.title)},c.prototype.getUID=function(a){do a+=~~(1e6*Math.random());while(document.getElementById(a));return a},c.prototype.tip=function(){return this.$tip=this.$tip||a(this.options.template)},c.prototype.arrow=function(){return this.$arrow=this.$arrow||this.tip().find(".tooltip-arrow")},c.prototype.enable=function(){this.enabled=!0},c.prototype.disable=function(){this.enabled=!1},c.prototype.toggleEnabled=function(){this.enabled=!this.enabled},c.prototype.toggle=function(b){var c=this;b&&(c=a(b.currentTarget).data("bs."+this.type),c||(c=new this.constructor(b.currentTarget,this.getDelegateOptions()),a(b.currentTarget).data("bs."+this.type,c))),c.tip().hasClass("in")?c.leave(c):c.enter(c)},c.prototype.destroy=function(){var a=this;clearTimeout(this.timeout),this.hide(function(){a.$element.off("."+a.type).removeData("bs."+a.type)})};var d=a.fn.tooltip;a.fn.tooltip=b,a.fn.tooltip.Constructor=c,a.fn.tooltip.noConflict=function(){return a.fn.tooltip=d,this}}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.popover"),f="object"==typeof b&&b;(e||!/destroy|hide/.test(b))&&(e||d.data("bs.popover",e=new c(this,f)),"string"==typeof b&&e[b]())})}var c=function(a,b){this.init("popover",a,b)};if(!a.fn.tooltip)throw new Error("Popover requires tooltip.js");c.VERSION="3.3.4",c.DEFAULTS=a.extend({},a.fn.tooltip.Constructor.DEFAULTS,{placement:"right",trigger:"click",content:"",template:'<div class="popover" role="tooltip"><div class="arrow"></div><h3 class="popover-title"></h3><div class="popover-content"></div></div>'}),c.prototype=a.extend({},a.fn.tooltip.Constructor.prototype),c.prototype.constructor=c,c.prototype.getDefaults=function(){return c.DEFAULTS},c.prototype.setContent=function(){var a=this.tip(),b=this.getTitle(),c=this.getContent();a.find(".popover-title")[this.options.html?"html":"text"](b),a.find(".popover-content").children().detach().end()[this.options.html?"string"==typeof c?"html":"append":"text"](c),a.removeClass("fade top bottom left right in"),a.find(".popover-title").html()||a.find(".popover-title").hide()},c.prototype.hasContent=function(){return this.getTitle()||this.getContent()},c.prototype.getContent=function(){var a=this.$element,b=this.options;return a.attr("data-content")||("function"==typeof b.content?b.content.call(a[0]):b.content)},c.prototype.arrow=function(){return this.$arrow=this.$arrow||this.tip().find(".arrow")};var d=a.fn.popover;a.fn.popover=b,a.fn.popover.Constructor=c,a.fn.popover.noConflict=function(){return a.fn.popover=d,this}}(jQuery),+function(a){"use strict";function b(c,d){this.$body=a(document.body),this.$scrollElement=a(a(c).is(document.body)?window:c),this.options=a.extend({},b.DEFAULTS,d),this.selector=(this.options.target||"")+" .nav li > a",this.offsets=[],this.targets=[],this.activeTarget=null,this.scrollHeight=0,this.$scrollElement.on("scroll.bs.scrollspy",a.proxy(this.process,this)),this.refresh(),this.process()}function c(c){return this.each(function(){var d=a(this),e=d.data("bs.scrollspy"),f="object"==typeof c&&c;e||d.data("bs.scrollspy",e=new b(this,f)),"string"==typeof c&&e[c]()})}b.VERSION="3.3.4",b.DEFAULTS={offset:10},b.prototype.getScrollHeight=function(){return this.$scrollElement[0].scrollHeight||Math.max(this.$body[0].scrollHeight,document.documentElement.scrollHeight)},b.prototype.refresh=function(){var b=this,c="offset",d=0;this.offsets=[],this.targets=[],this.scrollHeight=this.getScrollHeight(),a.isWindow(this.$scrollElement[0])||(c="position",d=this.$scrollElement.scrollTop()),this.$body.find(this.selector).map(function(){var b=a(this),e=b.data("target")||b.attr("href"),f=/^#./.test(e)&&a(e);return f&&f.length&&f.is(":visible")&&[[f[c]().top+d,e]]||null}).sort(function(a,b){return a[0]-b[0]}).each(function(){b.offsets.push(this[0]),b.targets.push(this[1])})},b.prototype.process=function(){var a,b=this.$scrollElement.scrollTop()+this.options.offset,c=this.getScrollHeight(),d=this.options.offset+c-this.$scrollElement.height(),e=this.offsets,f=this.targets,g=this.activeTarget;if(this.scrollHeight!=c&&this.refresh(),b>=d)return g!=(a=f[f.length-1])&&this.activate(a);if(g&&b<e[0])return this.activeTarget=null,this.clear();for(a=e.length;a--;)g!=f[a]&&b>=e[a]&&(void 0===e[a+1]||b<e[a+1])&&this.activate(f[a])},b.prototype.activate=function(b){this.activeTarget=b,this.clear();var c=this.selector+'[data-target="'+b+'"],'+this.selector+'[href="'+b+'"]',d=a(c).parents("li").addClass("active");d.parent(".dropdown-menu").length&&(d=d.closest("li.dropdown").addClass("active")),d.trigger("activate.bs.scrollspy")},b.prototype.clear=function(){a(this.selector).parentsUntil(this.options.target,".active").removeClass("active")};var d=a.fn.scrollspy;a.fn.scrollspy=c,a.fn.scrollspy.Constructor=b,a.fn.scrollspy.noConflict=function(){return a.fn.scrollspy=d,this},a(window).on("load.bs.scrollspy.data-api",function(){a('[data-spy="scroll"]').each(function(){var b=a(this);c.call(b,b.data())})})}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.tab");e||d.data("bs.tab",e=new c(this)),"string"==typeof b&&e[b]()})}var c=function(b){this.element=a(b)};c.VERSION="3.3.4",c.TRANSITION_DURATION=150,c.prototype.show=function(){var b=this.element,c=b.closest("ul:not(.dropdown-menu)"),d=b.data("target");if(d||(d=b.attr("href"),d=d&&d.replace(/.*(?=#[^\s]*$)/,"")),!b.parent("li").hasClass("active")){ var e=c.find(".active:last a"),f=a.Event("hide.bs.tab",{relatedTarget:b[0]}),g=a.Event("show.bs.tab",{relatedTarget:e[0]});if(e.trigger(f),b.trigger(g),!g.isDefaultPrevented()&&!f.isDefaultPrevented()){var h=a(d);this.activate(b.closest("li"),c),this.activate(h,h.parent(),function(){e.trigger({type:"hidden.bs.tab",relatedTarget:b[0]}),b.trigger({type:"shown.bs.tab",relatedTarget:e[0]})})}}},c.prototype.activate=function(b,d,e){function f(){g.removeClass("active").find("> .dropdown-menu > .active").removeClass("active").end().find('[data-toggle="tab"]').attr("aria-expanded",!1),b.addClass("active").find('[data-toggle="tab"]').attr("aria-expanded",!0),h?(b[0].offsetWidth,b.addClass("in")):b.removeClass("fade"),b.parent(".dropdown-menu").length&&b.closest("li.dropdown").addClass("active").end().find('[data-toggle="tab"]').attr("aria-expanded",!0),e&&e()}var g=d.find("> .active"),h=e&&a.support.transition&&(g.length&&g.hasClass("fade")||!!d.find("> .fade").length);g.length&&h?g.one("bsTransitionEnd",f).emulateTransitionEnd(c.TRANSITION_DURATION):f(),g.removeClass("in")};var d=a.fn.tab;a.fn.tab=b,a.fn.tab.Constructor=c,a.fn.tab.noConflict=function(){return a.fn.tab=d,this};var e=function(c){c.preventDefault(),b.call(a(this),"show")};a(document).on("click.bs.tab.data-api",'[data-toggle="tab"]',e).on("click.bs.tab.data-api",'[data-toggle="pill"]',e)}(jQuery),+function(a){"use strict";function b(b){return this.each(function(){var d=a(this),e=d.data("bs.affix"),f="object"==typeof b&&b;e||d.data("bs.affix",e=new c(this,f)),"string"==typeof b&&e[b]()})}var c=function(b,d){this.options=a.extend({},c.DEFAULTS,d),this.$target=a(this.options.target).on("scroll.bs.affix.data-api",a.proxy(this.checkPosition,this)).on("click.bs.affix.data-api",a.proxy(this.checkPositionWithEventLoop,this)),this.$element=a(b),this.affixed=null,this.unpin=null,this.pinnedOffset=null,this.checkPosition()};c.VERSION="3.3.4",c.RESET="affix affix-top affix-bottom",c.DEFAULTS={offset:0,target:window},c.prototype.getState=function(a,b,c,d){var e=this.$target.scrollTop(),f=this.$element.offset(),g=this.$target.height();if(null!=c&&"top"==this.affixed)return c>e?"top":!1;if("bottom"==this.affixed)return null!=c?e+this.unpin<=f.top?!1:"bottom":a-d>=e+g?!1:"bottom";var h=null==this.affixed,i=h?e:f.top,j=h?g:b;return null!=c&&c>=e?"top":null!=d&&i+j>=a-d?"bottom":!1},c.prototype.getPinnedOffset=function(){if(this.pinnedOffset)return this.pinnedOffset;this.$element.removeClass(c.RESET).addClass("affix");var a=this.$target.scrollTop(),b=this.$element.offset();return this.pinnedOffset=b.top-a},c.prototype.checkPositionWithEventLoop=function(){setTimeout(a.proxy(this.checkPosition,this),1)},c.prototype.checkPosition=function(){if(this.$element.is(":visible")){var b=this.$element.height(),d=this.options.offset,e=d.top,f=d.bottom,g=a(document.body).height();"object"!=typeof d&&(f=e=d),"function"==typeof e&&(e=d.top(this.$element)),"function"==typeof f&&(f=d.bottom(this.$element));var h=this.getState(g,b,e,f);if(this.affixed!=h){null!=this.unpin&&this.$element.css("top","");var i="affix"+(h?"-"+h:""),j=a.Event(i+".bs.affix");if(this.$element.trigger(j),j.isDefaultPrevented())return;this.affixed=h,this.unpin="bottom"==h?this.getPinnedOffset():null,this.$element.removeClass(c.RESET).addClass(i).trigger(i.replace("affix","affixed")+".bs.affix")}"bottom"==h&&this.$element.offset({top:g-b-f})}};var d=a.fn.affix;a.fn.affix=b,a.fn.affix.Constructor=c,a.fn.affix.noConflict=function(){return a.fn.affix=d,this},a(window).on("load",function(){a('[data-spy="affix"]').each(function(){var c=a(this),d=c.data();d.offset=d.offset||{},null!=d.offsetBottom&&(d.offset.bottom=d.offsetBottom),null!=d.offsetTop&&(d.offset.top=d.offsetTop),b.call(c,d)})})}(jQuery);
PypiClean
/DeepManufacturing-0.0.7.tar.gz/DeepManufacturing-0.0.7/ManufacturingNet/models/svm.py
from math import sqrt import matplotlib.pyplot as plt from sklearn.metrics import (accuracy_score, confusion_matrix, make_scorer, mean_squared_error, roc_auc_score, roc_curve) from sklearn.model_selection import (GridSearchCV, cross_val_score, train_test_split) from sklearn.svm import SVC, SVR, LinearSVC, LinearSVR, NuSVC, NuSVR class SVM: """Class model for support vector machine (SVM) models.""" def __init__(self, attributes=None, labels=None): """Initializes a SVM object.""" self.attributes = attributes self.labels = labels self.test_size = None self.cv = None self.graph_results = None self.fpr = None self.tpr = None self.bin = False self.gridsearch = False self.gs_params = None self.gs_result = None self.classifier_SVC = None self.accuracy_SVC = None self.roc_auc_SVC = None self.confusion_matrix_SVC = None self.cross_val_scores_SVC = None self.classifier_nu_SVC = None self.accuracy_nu_SVC = None self.roc_auc_nu_SVC = None self.confusion_matrix_nu_SVC = None self.cross_val_scores_nu_SVC = None self.classifier_linear_SVC = None self.accuracy_linear_SVC = None self.cross_val_scores_linear_SVC = None self.regressor_SVR = None self.mean_squared_error_SVR = None self.r2_score_SVR = None self.r_score_SVR = None self.cross_val_scores_SVR = None self.regressor_nu_SVR = None self.mean_squared_error_nu_SVR = None self.r2_score_nu_SVR = None self.r_score_nu_SVR = None self.cross_val_scores_nu_SVR = None self.regressor_linear_SVR = None self.mean_squared_error_linear_SVR = None self.r2_score_linear_SVR = None self.r_score_linear_SVR = None self.cross_val_scores_linear_SVR = None # References to training and testing subsets of dataset # For re-use purposes self.dataset_X_train = None self.dataset_y_train = None self.dataset_X_test = None self.dataset_y_test = None # Accessor Methods def get_attributes(self): """Accessor method for attributes.""" return self.attributes def get_labels(self): """Accessor method for labels.""" return self.labels def get_classifier_SVC(self): """Accessor method for classifier_SVC.""" return self.classifier_SVC def get_accuracy_SVC(self): """Accessor method for accuracy_SVC.""" return self.accuracy_SVC def get_roc_auc_SVC(self): """Accessor method for roc_auc_SVC.""" return self.roc_auc_SVC def get_confusion_matrix_SVC(self): """Accessor method for confusion_matrix_SVC.""" return self.confusion_matrix_SVC def get_cross_val_scores_SVC(self): """Accessor method for cross_val_scores_SVC.""" return self.cross_val_scores_SVC def get_classifier_nu_SVC(self): """Accessor method for classifier_nu_SVC.""" return self.classifier_nu_SVC def get_accuracy_nu_SVC(self): """Accessor method for accuracy_nu_SVC.""" return self.accuracy_nu_SVC def get_roc_auc_nu_SVC(self): """Accessor method for roc_auc_nu_SVC.""" return self.roc_auc_nu_SVC def get_confusion_matrix_nu_SVC(self): """Accessor method for confusion_matrix_nu_SVC.""" return self.confusion_matrix_nu_SVC def get_cross_val_scores_nu_SVC(self): """Accessor method for cross_val_scores_nu_SVC.""" return self.cross_val_scores_nu_SVC def get_classifier_linear_SVC(self): """Accessor method for classifier_linear_SVC.""" return self.classifier_linear_SVC def get_accuracy_linear_SVC(self): """Accessor method for accuracy_linear_SVC.""" return self.accuracy_linear_SVC def get_cross_val_scores_linear_SVC(self): """Accessor method for cross_val_scores_linear_SVC.""" return self.cross_val_scores_linear_SVC def get_regressor_SVR(self): """Accessor method for regressor_SVR.""" return self.regressor_SVR def get_mean_squared_error_SVR(self): """Accessor method for mean_squared_error_SVR.""" return self.mean_squared_error_SVR def get_r2_score_SVR(self): """Accessor method for r2_score_SVR.""" return self.r2_score_SVR def get_r_score_SVR(self): """Accessor method for r_score_SVR.""" return self.r_score_SVR def get_cross_val_scores_SVR(self): """Accessor method for cross_val_scores_SVR.""" return self.cross_val_scores_SVR def get_regressor_nu_SVR(self): """Accessor method for regressor_nu_SVR.""" return self.regressor_nu_SVR def get_mean_squared_error_nu_SVR(self): """Accessor method for mean_squared_error_nu_SVR.""" return self.mean_squared_error_nu_SVR def get_r2_score_nu_SVR(self): """Accessor method for r2_score_nu_SVR.""" return self.r2_score_nu_SVR def get_r_score_nu_SVR(self): """Accessor method for r_score_nu_SVR.""" return self.r_score_nu_SVR def get_cross_val_scores_nu_SVR(self): """Accessor method for cross_val_scores_nu_SVR.""" return self.cross_val_scores_nu_SVR def get_regressor_linear_SVR(self): """Accessor method for regressor_linear_SVR.""" return self.regressor_linear_SVR def get_mean_squared_error_linear_SVR(self): """Accessor method for mean_squared_error_linear_SVR.""" return self.mean_squared_error_linear_SVR def get_r2_score_linear_SVR(self): """Accessor method for r2_score_linear_SVR.""" return self.r2_score_linear_SVR def get_r_score_linear_SVR(self): """Accessor method for r_score_linear_SVR.""" return self.r_score_linear_SVR def get_cross_val_scores_linear_SVR(self): """Accessor method for cross_val_scores_linear_SVR.""" return self.cross_val_scores_linear_SVR # Modifier Methods def set_attributes(self, new_attributes=None): """Modifier method for attributes.""" self.attributes = new_attributes def set_labels(self, new_labels=None): """Modifier method for labels.""" self.labels = new_labels # Wrappers for SVM classification classes def run_SVC(self): """Runs SVC model.""" if self._check_inputs(): # Initialize classifier self.classifier_SVC = self._create_SVC_model(is_nu=False) # Split data, if needed # If testing/training sets are still None, call _split_data() if self.dataset_X_test is None: self._split_data() # Train classifier # Handle exception if arguments are incorrect try: self.classifier_SVC.fit(self.dataset_X_train, self.dataset_y_train) except Exception as e: print("An exception occurred while training the SVC model.", "Check your arguments and try again.") print("Here is the exception message:") print(e) self.classifier_SVC = None return # Metrics self.accuracy_SVC = self.classifier_SVC.score(self.dataset_X_test, self.dataset_y_test) y_prediction = self.classifier_SVC.predict(self.dataset_X_test) probas = self.classifier_SVC.predict_proba(self.dataset_X_test) # If classification is binary, calculate roc_auc if probas.shape[1] == 2: self.bin = True self.roc_auc_SVC = roc_auc_score(y_prediction, probas[::, 1]) self.fpr, self.tpr, _ = roc_curve(self.dataset_y_test, probas[::, 1]) # Else, calculate confusion matrix else: self.confusion_matrix_SVC = confusion_matrix(self.dataset_y_test, y_prediction) self.cross_val_scores_SVC = \ cross_val_score(self.classifier_SVC, self.attributes, self.labels, cv=self.cv) # Output results self._output_classifier_results(model="SVC") def predict_SVC(self, dataset_X=None): """Classifies each datapoint in dataset_X using the SVC model. Returns the predicted classifications. """ # Check that run_SVC() has already been called if self.classifier_SVC is None: print("The SVC model seems to be missing. Have you called", "run_SVC() yet?") return None # Try to make the prediction # Handle exception if dataset_X isn't a valid input try: y_prediction = self.classifier_SVC.predict(dataset_X) except Exception as e: print("The SVC model failed to run.", "Check your inputs and try again.") print("Here is the exception message:") print(e) return None print("\nSVC Predictions:\n", y_prediction, "\n") return y_prediction def run_nu_SVC(self): """Runs NuSVC model.""" if self._check_inputs(): # Initialize classifier self.classifier_nu_SVC = self._create_SVC_model(is_nu=True) # Split data, if needed # If testing/training sets are still None, call _split_data() if self.dataset_X_test is None: self._split_data() # Train classifier # Handle exception if arguments are incorrect try: self.classifier_nu_SVC.fit(self.dataset_X_train, self.dataset_y_train) except Exception as e: print("An exception occurred while training the NuSVC model.", "Check your arguments and try again.") print("Here is the exception message:") print(e) self.classifier_nu_SVC = None return # Metrics self.accuracy_nu_SVC =\ self.classifier_nu_SVC.score(self.dataset_X_test, self.dataset_y_test) y_prediction = self.classifier_nu_SVC.predict(self.dataset_X_test) probas = self.classifier_nu_SVC.predict_proba(self.dataset_X_test) # If classification is binary, calculate roc_auc if probas.shape[1] == 2: self.bin = True self.roc_auc_nu_SVC = roc_auc_score( y_prediction, probas[::, 1]) self.fpr, self.tpr, _ = \ roc_curve(self.dataset_y_test, probas[::, 1]) # Else, calculate confusion matrix else: self.confusion_matrix_nu_SVC = \ confusion_matrix(self.dataset_y_test, y_prediction) self.cross_val_scores_nu_SVC = \ cross_val_score(self.classifier_nu_SVC, self.attributes, self.labels, cv=self.cv) # Output results self._output_classifier_results(model="NuSVC") def predict_nu_SVC(self, dataset_X=None): """Classifies each datapoint in dataset_X using the NuSVC model. Returns the predicted classifications. """ # Check that run_nu_SVC() has already been called if self.classifier_nu_SVC is None: print("The NuSVC model seems to be missing.", "Have you called run_nu_SVC() yet?") return None # Try to make the prediction # Handle exception if dataset_X isn't a valid input try: y_prediction = self.classifier_nu_SVC.predict(dataset_X) except Exception as e: print("The NuSVC model failed to run.", "Check your inputs and try again.") print("Here is the exception message:") print(e) return None print("\nNuSVC Predictions:\n", y_prediction, "\n") return y_prediction def run_linear_SVC(self): """Runs LinearSVC model.""" if self._check_inputs(): # Initialize classifier self.classifier_linear_SVC = self._create_linear_SVC_model() # Split data, if needed # If testing/training sets are still None, call _split_data() if self.dataset_X_test is None: self._split_data() # Train classifier # Handle exception if arguments are incorrect try: self.classifier_linear_SVC.fit(self.dataset_X_train, self.dataset_y_train) except Exception as e: print("An exception occurred while training the LinearSVC", "model. Check your arguments and try again.") print("Here is the exception message:") print(e) self.classifier_linear_SVC = None return # Metrics self.accuracy_linear_SVC = \ self.classifier_linear_SVC.score(self.dataset_X_test, self.dataset_y_test) self.cross_val_scores_linear_SVC =\ cross_val_score(self.classifier_linear_SVC, self.attributes, self.labels, cv=self.cv) # Output results self._output_classifier_results(model="LinearSVC") def predict_linear_SVC(self, dataset_X=None): """Classifies each datapoint in dataset_X using the LinearSVC model. Returns the predicted classifications. """ # Check that run_linear_SVC() has already been called if self.classifier_linear_SVC is None: print("The LinearSVC model seems to be missing.", "Have you called run_linear_SVC() yet?") return None # Try to make the prediction # Handle exception if dataset_X isn't a valid input try: y_prediction = self.classifier_linear_SVC.predict(dataset_X) except Exception as e: print("The LinearSVC model failed to run.", "Check your inputs and try again.") print("Here is the exception message:") print(e) return None print("\nLinearSVC Predictions:\n", y_prediction, "\n") return y_prediction # Wrappers for SVM regression classes def run_SVR(self): """Runs SVR model.""" if self._check_inputs(): # Initialize regression model self.regressor_SVR = self._create_SVR_model(is_nu=False) # Split data, if needed # If testing/training sets are still None, call _split_data() if self.dataset_X_test is None: self._split_data() # Train regression model # Handle exception if arguments are incorrect and/or if labels isn't # quantitative data try: self.regressor_SVR.fit(self.dataset_X_train, self.dataset_y_train) except Exception as e: print("An exception occurred while training the SVR model.", "Check you arguments and try again.") print("Does labels only contain quantitative data?") print("Here is the exception message:") print(e) self.regressor_SVR = None return # Evaluate metrics of model y_prediction = self.regressor_SVR.predict(self.dataset_X_test) self.mean_squared_error_SVR = \ mean_squared_error(self.dataset_y_test, y_prediction) self.r2_score_SVR = self.regressor_SVR.score(self.dataset_X_test, self.dataset_y_test) if self.r2_score_SVR >= 0: self.r_score_SVR = sqrt(self.r2_score_SVR) self.cross_val_scores_SVR = \ cross_val_score(self.regressor_SVR, self.attributes, self.labels, cv=self.cv) # Output results self._output_regressor_results(model="SVR") def predict_SVR(self, dataset_X=None): """Predicts the output of each datapoint in dataset_X using the SVR model. Returns the predictions. """ # Check that run_SVR() has already been called if self.regressor_SVR is None: print("The SVR model seems to be missing.", "Have you called run_SVR() yet?") return None # Try to make the prediction # Handle exception if dataset_X isn't a valid input try: y_prediction = self.regressor_SVR.predict(dataset_X) except Exception as e: print("The SVR model failed to run.", "Check your inputs and try again.") print("Here is the exception message:") print(e) return None print("\nSVR Predictions:\n", y_prediction, "\n") return y_prediction def run_nu_SVR(self): """Runs NuSVR model.""" if self._check_inputs(): # Initialize regression model self.regressor_nu_SVR = self._create_SVR_model(is_nu=True) # Split data, if needed # If testing/training sets are still None, call _split_data() if self.dataset_X_test is None: self._split_data() # Train regression model # Handle exception if arguments are incorrect and/or if labels isn't # quantitative data try: self.regressor_nu_SVR.fit(self.dataset_X_train, self.dataset_y_train) except Exception as e: print("An exception occurred while training the NuSVR model.", "Check you arguments and try again.") print("Does labels only contain quantitative data?") print("Here is the exception message:") print(e) self.regressor_nu_SVR = None return # Metrics y_prediction = self.regressor_nu_SVR.predict(self.dataset_X_test) self.mean_squared_error_nu_SVR = \ mean_squared_error(self.dataset_y_test, y_prediction) self.r2_score_nu_SVR = \ self.regressor_nu_SVR.score(self.dataset_X_test, self.dataset_y_test) if self.r2_score_nu_SVR >= 0: self.r_score_nu_SVR = sqrt(self.r2_score_nu_SVR) self.cross_val_scores_nu_SVR = \ cross_val_score(self.regressor_nu_SVR, self.attributes, self.labels, cv=self.cv) # Output results self._output_regressor_results(model="NuSVR") def predict_nu_SVR(self, dataset_X=None): """Predicts the output of each datapoint in dataset_X using the NuSVR model. Returns the predictions. """ # Check that run_nu_SVR() has already been called if self.regressor_nu_SVR is None: print("The NuSVR model seems to be missing.", "Have you called run_nu_SVR() yet?") return None # Try to make the prediction; handle exception if dataset_X isn't a valid input try: y_prediction = self.regressor_nu_SVR.predict(dataset_X) except Exception as e: print("The NuSVR model failed to run.", "Check your inputs and try again.") print("Here is the exception message:") print(e) return None print("\nNuSVR Predictions:\n", y_prediction, "\n") return y_prediction def run_linear_SVR(self): """Runs LinearSVR model.""" if self._check_inputs(): # Initialize regression model self.regressor_linear_SVR = self._create_linear_SVR_model() # Split data, if needed # If testing/training sets are still None, call _split_data() if self.dataset_X_test is None: self._split_data() # Train regression model # Handle exception if arguments are incorrect and/or labels isn't # quantitative data try: self.regressor_linear_SVR.fit(self.dataset_X_train, self.dataset_y_train) except Exception as e: print("An exception occurred while training the LinearSVR", "model. Check you arguments and try again.") print("Does labels only contain quantitative data?") print("Here is the exception message:") print(e) self.regressor_linear_SVR = None return # Metrics y_prediction = self.regressor_linear_SVR.predict( self.dataset_X_test) self.mean_squared_error_linear_SVR = \ mean_squared_error(self.dataset_y_test, y_prediction) self.r2_score_linear_SVR = \ self.regressor_linear_SVR.score(self.dataset_X_test, self.dataset_y_test) if self.r2_score_linear_SVR >= 0: self.r_score_linear_SVR = sqrt(self.r2_score_linear_SVR) self.cross_val_scores_linear_SVR = \ cross_val_score(self.regressor_linear_SVR, self.attributes, self.labels, cv=self.cv) # Output results self._output_regressor_results(model="LinearSVR") def predict_linear_SVR(self, dataset_X=None): """Predicts the output of each datapoint in dataset_X using the LinearSVR model. Returns the predictions. """ # Check that run_linear_SVR() has already been called if self.regressor_linear_SVR is None: print("The LinearSVR model seems to be missing.", "Have you called run_linear_SVR() yet?") return None # Try to make the prediction # Handle exception if dataset_X isn't a valid input try: y_prediction = self.regressor_linear_SVR.predict(dataset_X) except Exception as e: print("The LinearSVR model failed to run.", "Check your inputs and try again.") print("Here is the exception message:") print(e) return None print("\nLinearSVR Predictions:\n", y_prediction, "\n") return y_prediction # Helper methods def _create_SVC_model(self, is_nu): """Runs UI for getting parameters and creating SVC or NuSVC model. """ if is_nu: print("\n==========================") print("= NuSVC Parameter Inputs =") print("==========================\n") else: print("\n========================") print("= SVC Parameter Inputs =") print("========================\n") print("Default values:", "test_size = 0.25", "cv = 5", "graph_results = False", sep="\n") if is_nu: print("nu = 0.5") else: print("C = 1.0") print("kernel = 'rbf'", "degree = 3", "gamma = 'scale'", "coef0 = 0.0", "shrinking = True", "tol = 0.001", "cache_size = 200", "class_weight = None", "max_iter = -1", "decision_function_shape = 'ovr'", "break_ties = False", "random_state = None", "verbose = False", sep="\n") # Set defaults self.test_size = 0.25 self.cv = None self.graph_results = False while True: user_input = input("\nUse default parameters (Y/n)? ").lower() if user_input in {"y", ""}: print("\n===========================================") print("= End of inputs; press enter to continue. =") input("===========================================\n") if is_nu: return NuSVC(probability=True) return SVC(probability=True) elif user_input == "n": break else: print("Invalid input.") print("\nIf you are unsure about a parameter, press enter to use its", "default value.") print("If you finish entering parameters early, enter 'q' to skip", "ahead.\n") # Set more defaults if is_nu: nu = 0.5 else: C = 1.0 kernel = "rbf" degree = 3 gamma = "scale" coef0 = 0.0 shrinking = True tol = 0.001 cache_size = 200 class_weight = None max_iter = -1 decision_function_shape = "ovr" break_ties = False random_state = None verbose = False # Get user parameter input while True: break_early = False while True: user_input = input("\nWhat fraction of the dataset should be the " + "testing set (0,1)? ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0 or user_input >= 1: raise Exception self.test_size = user_input break except Exception: print("Invalid input.") print("test_size =", self.test_size) if break_early: break while True: user_input = input("\nUse GridSearch to find the best " + "hyperparameters (y/N)? ").lower() if user_input == "q": break_early = True break elif user_input in {"n", "y", ""}: break else: print("Invalid input.") if break_early: break while user_input == "y": print("\n= GridSearch Parameter Inputs =\n") print("Enter 'q' to skip GridSearch.") self.gridsearch = True params = {} while True: print("\nEnter the kernels to try out.") print("Options: 1-'linear', 2-'poly', 3-'rbf', 4-'sigmoid'.", "Enter 'all' for all options.") print("Example input: 1,2,3") user_input = input().lower() if user_input == "q": self.gridsearch = False break_early = True break elif user_input == "all": kern_params = ["linear", "poly", "rbf", "sigmoid"] break else: kern_dict = {1: "linear", 2: "poly", 3: "rbf", 4: "sigmoid"} try: kern_params_int = \ list(map(int, list(user_input.split(",")))) if len(kern_params_int) > len(kern_dict): raise Exception kern_params = [] for each in kern_params_int: if not kern_dict.get(each): raise Exception kern_params.append(kern_dict.get(each)) break except Exception: print("Invalid input.") if break_early: break params["kernel"] = kern_params print("kernels:", kern_params) while True: print("\nEnter the list of kernel coefficients/gamma values", "to try out.") print("Example input: 0.001,0.0001") user_input = input().lower() if user_input == "q": self.gridsearch = False break_early = True break try: gamma_params = \ list(map(float, list(user_input.split(",")))) if len(gamma_params) == 0: raise Exception for num in gamma_params: if num <= 0: raise Exception break except Exception: print("Invalid input.") if break_early: break params["gamma"] = gamma_params print("gammas:", gamma_params) while not is_nu: print("\nEnter the list of regularization parameters to", "try out.") print("Example input: 1,10,100") user_input = input().lower() if user_input == "q": self.gridsearch = False break_early = True break try: gamma_params = \ list(map(int, list(user_input.split(",")))) if len(gamma_params) == 0: raise Exception for num in gamma_params: if num <= 0: raise Exception params["C"] = gamma_params print("C values:", gamma_params) break except Exception: print("Invalid input.") if break_early: break print("\n= End of GridSearch inputs. =") self.gs_params = params best_params = self._run_gridsearch_classifier(is_nu) kernel = best_params["kernel"] gamma = best_params["gamma"] if not is_nu: C = best_params["C"] break break_early = False while True: user_input = input("\nEnter the number of folds for cross " + "validation [2,): ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = int(user_input) if user_input < 2: raise Exception self.cv = user_input break except Exception: print("Invalid input.") print("cv =", self.cv) if break_early: break while True: user_input = \ input("\nGraph the ROC curve? Only binary classification " + "is supported (y/N): ").lower() if user_input == "y": self.graph_results = True break elif user_input in {"n", ""}: break elif user_input == "q": break_early = True break else: print("Invalid input.") print("graph_results =", self.graph_results) if break_early: break while is_nu: user_input = input("\nEnter a decimal for nu (0,1]: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0 or user_input > 1: raise Exception nu = user_input break except Exception: print("Invalid input.") if is_nu: print("nu =", nu) while not is_nu and not self.gridsearch: user_input = \ input("\nEnter a positive regularization parameter C: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0: raise Exception C = user_input break except Exception: print("Invalid input.") if not is_nu and not self.gridsearch: print("C =", C) if break_early: break while not self.gridsearch: print("\nWhich kernel type should be used?") user_input = \ input("Enter 1 for 'linear', 2 for 'poly', 3 for 'rbf', 4 " + "for 'sigmoid', or 5 for 'precomputed': ") if user_input == "1": kernel = "linear" break elif user_input == "2": kernel = "poly" break elif user_input == "4": kernel = "sigmoid" break elif user_input == "5": kernel = "recomputed" break elif user_input in {"3", ""}: break elif user_input.lower() == "q": break_early = True break else: print("Invalid input.") if not self.gridsearch: print("kernel =", kernel) if break_early: break while kernel == "poly": user_input = \ input("\nEnter the degree of the kernel function [0,): ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = int(user_input) if user_input < 0: raise Exception degree = user_input break except Exception: print("Invalid input.") if kernel == "poly": print("degree =", degree) if break_early: break while kernel in {"rbf", "poly", "sigmoid"} and not self.gridsearch: print("\nSet the kernel coefficient.") user_input = input("Enter 1 for 'scale', or 2 for 'auto': ") if user_input == "2": gamma = "auto" break elif user_input in {"1", ""}: break elif user_input.lower() == "q": break_early = True break else: print("Invalid input.") if kernel in {"rbf", "poly", "sigmoid"} and not self.gridsearch: print("gamma =", gamma) if break_early: break while kernel in {"poly", "sigmoid"}: user_input = input("\nEnter coef0, the independent term in the " + "kernel function [0,): ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input < 0: raise Exception coef0 = user_input break except Exception: print("Invalid input.") if kernel in {"poly", "sigmoid"}: print("coef0 =", coef0) if break_early: break while True: user_input = \ input("\nUse the shrinking heuristic (Y/n)? ").lower() if user_input == "n": shrinking = False break elif user_input in {"y", ""}: break elif user_input == "q": break_early = True break else: print("Invalid input.") print("shrinking =", shrinking) if break_early: break while True: user_input = input("\nEnter a positive number for the " + "tolerance for stopping criterion: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0: raise Exception tol = user_input break except Exception: print("Invalid input.") print("tol =", tol) if break_early: break while True: user_input = \ input("\nEnter a positive kernel cache size in MB: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0: raise Exception cache_size = user_input break except Exception: print("Invalid input.") print("cache_size =", cache_size) if break_early: break while True: user_input = \ input("\nAutomatically adjust class weights (y/N)? ").lower() if user_input == "y": class_weight = "balanced" break elif user_input in {"n", ""}: break elif user_input == "q": break_early = True break else: print("Invalid input.") print("class_weight =", class_weight) if break_early: break while True: user_input = \ input("\nEnter a positive maximum number of iterations, or " + "press enter for no limit: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = int(user_input) if user_input <= 0: raise Exception max_iter = user_input break except Exception: print("Invalid input.") print("max_iter =", max_iter) if break_early: break while True: print("\nSet the decision function.") user_input = \ input("Enter 1 for one-vs-rest, or 2 for one-vs-one: ") if user_input == "2": decision_function_shape = "ovo" break elif user_input in {"1", ""}: break elif user_input.lower() == "q": break_early = True break else: print("Invalid input.") print("decision_function_shape =", decision_function_shape) if break_early: break while True: user_input = input("\nEnable tie-breaking (y/N)? ").lower() if user_input == "y": break_ties = True break elif user_input in {"n", ""}: break elif user_input == "q": break_early = True break else: print("Invalid input.") print("break_ties =", break_ties) if break_early: break while True: user_input = \ input("\nEnter a seed for the random number generator: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break random_state = int(user_input) break except Exception: print("Invalid input.") print("random_state =", random_state) if break_early: break while True: user_input = input("\nEnable verbose logging (y/N)? ").lower() if user_input == "y": verbose = True break elif user_input in {"n", "q", ""}: break else: print("Invalid input.") print("verbose =", verbose) break print("\n===========================================") print("= End of inputs; press enter to continue. =") input("===========================================\n") if is_nu: return NuSVC(nu=nu, kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, shrinking=shrinking, probability=True, tol=tol, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, break_ties=break_ties, random_state=random_state) return SVC(C=C, kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, shrinking=shrinking, probability=True, tol=tol, cache_size=cache_size, class_weight=class_weight, verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape, break_ties=break_ties, random_state=random_state) def _run_gridsearch_classifier(self, is_nu): """Runs GridSearch with the parameters given in run_SVC() or run_nu_SVC(). Returns the best parameters.""" if is_nu: clf = NuSVC() else: clf = SVC() acc_scorer = make_scorer(accuracy_score) if self.dataset_X_test is None: self._split_data() # Run GridSearch grid_obj = GridSearchCV(clf, self.gs_params, scoring=acc_scorer) grid_obj = grid_obj.fit(self.dataset_X_train, self.dataset_y_train) # Set the clf to the best combination of parameters clf = grid_obj.best_estimator_ # Fit the best algorithm to the data clf.fit(self.dataset_X_train, self.dataset_y_train) predictions = clf.predict(self.dataset_X_test) self.gs_result = accuracy_score(self.dataset_y_test, predictions) # Return the best parameters print("\nBest GridSearch Parameters:\n", grid_obj.best_params_, "\n") return grid_obj.best_params_ def _create_linear_SVC_model(self): """Runs UI for getting parameters and creating LinearSVC model.""" print("\n==============================") print("= LinearSVC Parameter Inputs =") print("==============================\n") print("Default values:", "test_size = 0.25", "cv = 5", "penalty = 'l2'", "loss = 'squared_hinge'", "dual = True", "tol = 0.0001", "C = 1.0", "multi_class = 'ovr'", "fit_intercept = True", "intercept_scaling = 1", "class_weight = None", "random_state = None", "max_iter = 1000", "verbose = False", sep="\n") # Set defaults self.test_size = 0.25 self.cv = None while True: user_input = input("\nUse default parameters (Y/n)? ").lower() if user_input in {"y", ""}: print("\n===========================================") print("= End of inputs; press enter to continue. =") input("===========================================\n") return LinearSVC() elif user_input == "n": break else: print("Invalid input.") print("\nIf you are unsure about a parameter, press enter to use its", "default value.") print("If you finish entering parameters early, enter 'q' to skip", "ahead.\n") # Set more defaults penalty = "l2" loss = "squared_hinge" dual = True tol = 0.0001 C = 1.0 multi_class = "ovr" fit_intercept = True intercept_scaling = 1 class_weight = None random_state = None max_iter = 1000 verbose = 0 # Get user parameter input while True: break_early = False while True: user_input = input("\nWhat fraction of the dataset should be the " + "testing set (0,1)? ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0 or user_input >= 1: raise Exception self.test_size = user_input break except Exception: print("Invalid input.") print("test_size =", self.test_size) if break_early: break while True: user_input = input("\nEnter the number of folds for cross " + "validation [2,): ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = int(user_input) if user_input < 2: raise Exception self.cv = user_input break except Exception: print("Invalid input.") print("cv =", self.cv) if break_early: break while True: user_input = input("\nCalculate a y-intercept (Y/n)? ").lower() if user_input == "n": fit_intercept = False break elif user_input in {"y", ""}: break elif user_input == "q": break_early = True break else: print("Invalid input.") print("fit_intercept =", fit_intercept) if break_early: break while fit_intercept: user_input = \ input("\nEnter a number for the intercept scaling factor: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break intercept_scaling = float(user_input) except Exception: print("Invalid input.") if fit_intercept: print("intercept_scaling =", intercept_scaling) if break_early: break while True: print("\nSet the norm used in penalization.") user_input = input("Enter 1 for 'l1', or 2 for 'l2': ") if user_input == "1": penalty = "l1" break elif user_input in {"2", ""}: break elif user_input.lower() == "q": break_early = True break else: print("Invalid input.") print("penalty =", penalty) if break_early: break while True: print("\nChoose a loss function.") user_input = \ input("Enter 1 for 'hinge', or 2 for 'squared_hinge': ") if user_input == "1": loss = "hinge" break elif user_input in {"2", ""}: break elif user_input.lower() == "q": break_early = True break else: print("Invalid input.") print("loss =", loss) if break_early: break while True: print("\nShould the algorithm solve the duel or primal", "optimization problem?") user_input = input("Enter 1 for dual, or 2 for primal: ") if user_input == "2": dual = False break elif user_input in {"1", ""}: break elif user_input.lower() == "q": break_early = True break else: print("Invalid input.") print("dual =", dual) if break_early: break while True: user_input = input("\nEnter a positive tolerance for stopping " + "criterion: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0: raise Exception tol = user_input break except Exception: print("Invalid input.") print("tol =", tol) if break_early: break while True: user_input = \ input("\nEnter a positive regularization parameter C: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0: raise Exception C = user_input break except Exception: print("Invalid input.") print("C =", C) if break_early: break while True: print("\nSet the multi-class strategy if there are more than", "two classes.") user_input = input("Enter 1 for 'one-vs-rest', or 2 for " + "'Crammer-Singer': ") if user_input == "2": multi_class = "crammer_singer" break elif user_input in {"1", ""}: break elif user_input.lower() == "q": break_early = True break else: print("Invalid input.") print("multi_class =", multi_class) if break_early: break while True: user_input = input("\nAutomatically adjust class weights " + "(y/N)? ").lower() if user_input == "y": class_weight = "balanced" break elif user_input in {"n", ""}: break elif user_input == "q": break_early = True break else: print("Invalid input.") print("class_weight =", class_weight) if break_early: break while True: user_input = \ input("\nEnter a positive maximum number of iterations: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = int(user_input) if user_input <= 0: raise Exception max_iter = user_input break except Exception: print("Invalid input.") print("max_iter =", max_iter) if break_early: break while True: user_input = \ input("\nEnter a seed for the random number generator: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break random_state = int(user_input) break except Exception: print("Invalid input.") print("random_state =", random_state) if break_early: break while True: user_input = input("\nEnable verbose logging (y/N)? ").lower() if user_input == "y": verbose = True break elif user_input in {"n", "q", ""}: break else: print("Invalid input.") print("verbose =", verbose) break print("\n===========================================") print("= End of inputs; press enter to continue. =") input("===========================================\n") return LinearSVC(penalty=penalty, loss=loss, dual=dual, tol=tol, C=C, multi_class=multi_class, fit_intercept=fit_intercept, intercept_scaling=intercept_scaling, class_weight=class_weight, verbose=verbose, random_state=random_state, max_iter=max_iter) def _create_SVR_model(self, is_nu): """Runs UI for getting parameters and creates SVR or NuSVR model.""" if is_nu: print("\n==========================") print("= NuSVR Parameter Inputs =") print("==========================\n") else: print("\n========================") print("= SVR Parameter Inputs =") print("========================\n") print("Default values:", "test_size = 0.25", "cv = 5", sep="\n") if is_nu: print("nu = 0.5") else: print("epsilon = 0.1") print("kernel = 'rbf'", "degree = 3", "gamma = 'scale'", "coef0 = 0.0", "tol = 0.001", "C = 1.0", "shrinking = True", "cache_size = 200", "verbose = False", "max_iter = -1", sep="\n") # Set defaults self.test_size = 0.25 self.cv = None while True: user_input = input("\nUse default parameters (Y/n)? ").lower() if user_input in {"y", ""}: print("\n===========================================") print("= End of inputs; press enter to continue. =") input("===========================================\n") if is_nu: return NuSVR() return SVR() elif user_input == "n": break else: print("Invalid input.") print("\nIf you are unsure about a parameter, press enter to use its", "default value.") print("If you finish entering parameters early, enter 'q' to skip", "ahead.\n") # Set more defaults if is_nu: nu = 0.5 else: epsilon = 0.1 kernel = "rbf" degree = 3 gamma = "scale" coef0 = 0.0 tol = 0.001 C = 1.0 shrinking = True cache_size = 200 verbose = False max_iter = -1 # Get user parameter input while True: break_early = False while True: user_input = input("\nWhat fraction of the dataset should be the " + "testing set (0,1)? ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0 or user_input >= 1: raise Exception self.test_size = user_input break except Exception: print("Invalid input.") print("test_size =", self.test_size) if break_early: break while True: user_input = input("\nUse GridSearch to find the best " + "hyperparameters (y/N)? ").lower() if user_input == "q": break_early = True break elif user_input in {"n", "y", ""}: break else: print("Invalid input.") if break_early: break while user_input == "y": print("\n= GridSearch Parameter Inputs =\n") print("Enter 'q' to skip GridSearch.") self.gridsearch = True params = {} while True: print("\nEnter the kernels to try out.") print("Options: 1-'linear', 2-'poly', 3-'rbf', 4-'sigmoid'.", "Enter 'all' for all options.") print("Example input: 1,2,3") user_input = input().lower() if user_input == "q": self.gridsearch = False break_early = True break elif user_input == "all": kern_params = ["linear", "poly", "rbf", "sigmoid"] break else: kern_dict = {1: "linear", 2: "poly", 3: "rbf", 4: "sigmoid"} try: kern_params_int = \ list(map(int, list(user_input.split(",")))) if len(kern_params_int) > len(kern_dict): raise Exception kern_params = [] for each in kern_params_int: if not kern_dict.get(each): raise Exception kern_params.append(kern_dict.get(each)) break except Exception: print("Invalid input.") if break_early: break params["kernel"] = kern_params print("kernels:", kern_params) while is_nu: print("\nEnter a list of decimals for nu.") print("Example input: 0.1,0.2,0.3") user_input = input().lower() if user_input == "q": self.gridsearch = False break_early = True break try: nu_params = \ list(map(float, list(user_input.split(",")))) if len(nu_params) == 0: raise Exception for num in nu_params: if num <= 0: raise Exception params["nu"] = nu_params print("nu values:", nu_params) break except Exception: print("Invalid input.") while not is_nu: print("\nEnter epsilons (the ranges from an actual value", "where penalties aren't applied) to try out.") print("Example input: 0.1,0.2,0.3") user_input = input().lower() if user_input == "q": self.gridsearch = False break_early = True break try: eps_params = \ list(map(float, list(user_input.split(",")))) if len(eps_params) == 0: raise Exception for num in eps_params: if num <= 0: raise Exception params["epsilon"] = eps_params print("epsilon values:", eps_params) break except Exception: print("Invalid input.") if break_early: break while not is_nu: print("\nEnter the list of regularization parameters to", "try out.") print("Example input: 1,10,100") user_input = input().lower() if user_input == "q": self.gridsearch = False break_early = True break try: gamma_params = \ list(map(int, list(user_input.split(",")))) if len(gamma_params) == 0: raise Exception for num in gamma_params: if num <= 0: raise Exception params["C"] = gamma_params print("C values:", gamma_params) break except Exception: print("Invalid input.") if break_early: break print("\n= End of GridSearch inputs. =") self.gs_params = params best_params = self._run_gridsearch_regressor(is_nu) kernel = best_params["kernel"] if is_nu: nu = best_params["nu"] else: C = best_params["C"] epsilon = best_params["epsilon"] break break_early = False while True: user_input = input("\nEnter the number of folds for cross " + "validation [2,): ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = int(user_input) if user_input < 2: raise Exception self.cv = user_input break except Exception: print("Invalid input.") print("cv =", self.cv) if break_early: break while is_nu and not self.gridsearch: user_input = input("\nEnter a decimal for nu (0,1]: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0 or user_input > 1: raise Exception nu = user_input break except Exception: print("Invalid input.") if is_nu and not self.gridsearch: print("nu =", nu) while not is_nu and not self.gridsearch: user_input = \ input("\nEnter a positive epsilon, the range from an actual " + "value where penalties aren't applied: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0: raise Exception epsilon = user_input break except Exception: print("Invalid input.") if not is_nu and not self.gridsearch: print("epsilon =", epsilon) if break_early: break while not self.gridsearch: print("\nWhich kernel type should be used?") user_input = \ input("Enter 1 for 'linear', 2 for 'poly', 3 for 'rbf', 4 " + "for 'sigmoid', or 5 for 'precomputed': ") if user_input == "1": kernel = "linear" break elif user_input == "2": kernel = "poly" break elif user_input == "4": kernel = "sigmoid" break elif user_input == "5": kernel = "recomputed" break elif user_input in {"3", ""}: break elif user_input.lower() == "q": break_early = True break else: print("Invalid input.") if not self.gridsearch: print("kernel =", kernel) if break_early: break while kernel == "poly": user_input = \ input("\nEnter the degree of the kernel function [0,): ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = int(user_input) if user_input < 0: raise Exception degree = user_input break except Exception: print("Invalid input.") if kernel == "poly": print("degree =", degree) if break_early: break while kernel in {"rbf", "poly", "sigmoid"}: print("\nSet the kernel coefficient.") user_input = input("Enter 1 for 'scale', or 2 for 'auto': ") if user_input == "2": gamma = "auto" break elif user_input in {"1", ""}: break elif user_input.lower() == "q": break_early = True break else: print("Invalid input.") if kernel in {"rbf", "poly", "sigmoid"}: print("gamma =", gamma) if break_early: break while not self.gridsearch or is_nu: user_input = \ input("\nEnter a positive regularization parameter C: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0: raise Exception C = user_input break except Exception: print("Invalid input.") if not self.gridsearch or is_nu: print("C =", C) if break_early: break while kernel in {"poly", "sigmoid"}: user_input = input("\nEnter coef0, the independent term in the " + "kernel function [0,): ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input < 0: raise Exception coef0 = user_input break except Exception: print("Invalid input.") if kernel in {"poly", "sigmoid"}: print("coef0 =", coef0) if break_early: break while True: user_input = input("\nEnter a positive tolerance for stopping " + "criterion: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0: raise Exception tol = user_input break except Exception: print("Invalid input.") print("tol =", tol) if break_early: break while True: user_input = \ input("\nUse the shrinking heuristic (Y/n)? ").lower() if user_input == "n": shrinking = False break elif user_input in {"y", ""}: break elif user_input == "q": break_early = True break else: print("Invalid input.") print("shrinking =", shrinking) if break_early: break while True: user_input = \ input("\nEnter a positive kernel cache size in MB: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0: raise Exception cache_size = user_input break except Exception: print("Invalid input.") print("cache_size =", cache_size) if break_early: break while True: user_input = \ input("\nEnter a positive maximum number of iterations, or " + "press enter for no limit: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = int(user_input) if user_input <= 0: raise Exception max_iter = user_input break except Exception: print("Invalid input.") print("max_iter =", max_iter) if break_early: break while True: user_input = input("\nEnable verbose logging (y/N)? ").lower() if user_input == "y": verbose = True break elif user_input in {"n", "q", ""}: break else: print("Invalid input.") print("verbose =", verbose) break print("\n===========================================") print("= End of inputs; press enter to continue. =") input("===========================================\n") if is_nu: return NuSVR(nu=nu, C=C, kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, shrinking=shrinking, tol=tol, cache_size=cache_size, verbose=verbose, max_iter=max_iter) return SVR(kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, tol=tol, C=C, epsilon=epsilon, shrinking=shrinking, cache_size=cache_size, verbose=verbose, max_iter=max_iter) def _run_gridsearch_regressor(self, is_nu): """Runs GridSearch with the parameters given in run_SVR() or run_nu_SVR(). Returns the best parameters.""" if is_nu: clf = NuSVR() else: clf = SVR() if self.dataset_X_test is None: self._split_data() # Run GridSearch grid_obj = GridSearchCV(clf, self.gs_params, scoring="r2") grid_obj = grid_obj.fit(self.dataset_X_train, self.dataset_y_train) # Set the clf to the best combination of parameters clf = grid_obj.best_estimator_ # Fit the best algorithm to the data clf.fit(self.dataset_X_train, self.dataset_y_train) self.gs_result = clf.score(self.dataset_X_test, self.dataset_y_test) # Return the best parameters print("\nBest GridSearch Parameters:\n", grid_obj.best_params_, "\n") return grid_obj.best_params_ def _create_linear_SVR_model(self): """Runs UI for getting parameters and creates LinearSVR model.""" print("\n==============================") print("= LinearSVR Parameter Inputs =") print("==============================\n") print("Default values:", "test_size = 0.25", "cv = 5", "epsilon = 0.0", "tol = 0.0001", "C = 1.0", "loss = 'epsilon_insensitive'", "fit_intercept = True", "intercept_scaling = 1.0", "dual = True", "random_state = None", "max_iter = 1000", "verbose = False", sep="\n") # Set defaults self.test_size = 0.25 self.cv = None while True: user_input = input("\nUse default parameters (Y/n)? ").lower() if user_input in {"y", ""}: print("\n===========================================") print("= End of inputs; press enter to continue. =") input("===========================================\n") return LinearSVR() elif user_input == "n": break else: print("Invalid input.") print("\nIf you are unsure about a parameter, press enter to use its", "default value.") print("If you finish entering parameters early, enter 'q' to skip", "ahead.\n") # Set more defaults epsilon = 0.0 tol = 0.0001 C = 1.0 loss = "epsilon_insensitive" fit_intercept = True intercept_scaling = 1.0 dual = True random_state = None max_iter = 1000 verbose = 0 # Get user parameter input while True: break_early = False while True: user_input = input("\nWhat fraction of the dataset should be the " + "testing set (0,1)? ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0 or user_input >= 1: raise Exception self.test_size = user_input break except Exception: print("Invalid input.") print("test_size =", self.test_size) if break_early: break while True: user_input = input("\nEnter the number of folds for cross " + "validation [2,): ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = int(user_input) if user_input < 2: raise Exception self.cv = user_input break except Exception: print("Invalid input.") print("cv =", self.cv) if break_early: break while True: user_input = \ input("\nEnter a positive epsilon, the range from an actual " + "value where penalties aren't applied: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0: raise Exception epsilon = user_input break except Exception: print("Invalid input.") print("epsilon =", epsilon) if break_early: break while True: user_input = input("\nEnter a positive tolerance for stopping " + "criterion: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0: raise Exception tol = user_input break except Exception: print("Invalid input.") print("tol =", tol) if break_early: break while True: user_input = \ input("\nEnter a positive regularization parameter C: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = float(user_input) if user_input <= 0: raise Exception C = user_input break except Exception: print("Invalid input.") print("C =", C) if break_early: break while True: print("\nChoose a loss function.") user_input = \ input("\nEnter 1 for 'epsilon_insensitive', or 2 for " + "'squared_epsilon_insensitive': ") if user_input == "2": loss = "squared_epsilon_insensitive" break elif user_input in {"1", ""}: break elif user_input.lower() == "q": break_early = True break else: print("Invalid input.") print("loss =", loss) if break_early: break while True: user_input = input("\nCalculate a y-intercept (Y/n)? ").lower() if user_input == "n": fit_intercept = False break elif user_input in {"y", ""}: break elif user_input == "q": break_early = True break else: print("Invalid input.") print("fit_intercept =", fit_intercept) if break_early: break while fit_intercept: user_input = \ input("\nEnter a number for the intercept scaling factor: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break intercept_scaling = float(user_input) except Exception: print("Invalid input.") if fit_intercept: print("intercept_scaling =", intercept_scaling) if break_early: break while True: print("\nShould the algorithm solve the duel or primal", "optimization problem?") user_input = input("Enter 1 for dual, or 2 for primal: ") if user_input == "2": dual = False break elif user_input in {"1", ""}: break elif user_input.lower() == "q": break_early = True break else: print("Invalid input.") print("dual =", dual) if break_early: break while True: user_input = \ input("\nEnter a positive maximum number of iterations: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break user_input = int(user_input) if user_input <= 0: raise Exception max_iter = user_input break except Exception: print("Invalid input.") print("max_iter =", max_iter) if break_early: break while True: user_input = \ input("\nEnter a seed for the random number generator: ") try: if user_input == "": break elif user_input.lower() == "q": break_early = True break random_state = int(user_input) break except Exception: print("Invalid input.") print("random_state =", random_state) if break_early: break while True: user_input = input("\nEnable verbose logging (y/N)? ").lower() if user_input == "y": verbose = True break elif user_input in {"n", "q", ""}: break else: print("Invalid input.") print("verbose =", verbose) break print("\n===========================================") print("= End of inputs; press enter to continue. =") input("===========================================\n") return LinearSVR(epsilon=epsilon, tol=tol, C=C, loss=loss, fit_intercept=fit_intercept, intercept_scaling=intercept_scaling, dual=dual, verbose=verbose, random_state=random_state, max_iter=max_iter) def _output_classifier_results(self, model): """Outputs model metrics after a classifier model finishes running.""" if model == "SVC": print("\n===============") print("= SVC Results =") print("===============\n") print("{:<20} {:<20}".format("Accuracy:", self.accuracy_SVC)) if self.bin: print("\n{:<20} {:<20}".format("ROC AUC:", self.roc_auc_SVC)) else: print("\nConfusion Matrix:\n", self.confusion_matrix_SVC) print("\nCross Validation Scores:", self.cross_val_scores_SVC) if self.gridsearch: print("\n{:<20} {:<20}".format("GridSearch Score:", self.gs_result)) if self.bin and self.graph_results: plt.plot(self.fpr, self.tpr, label="data 1") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("ROC Curve") plt.legend(loc=4) plt.show() print("\n\nCall predict_SVC() to make predictions for new data.") elif model == "NuSVC": print("\n=================") print("= NuSVC Results =") print("=================\n") print("{:<20} {:<20}".format("Accuracy:", self.accuracy_nu_SVC)) if self.bin: print("\n{:<20} {:<20}".format( "ROC AUC:", self.roc_auc_nu_SVC)) else: print("\nConfusion Matrix:\n", self.confusion_matrix_nu_SVC) print("\nCross Validation Scores:", self.cross_val_scores_nu_SVC) if self.gridsearch: print("\n{:<20} {:<20}".format("GridSearch Score:", self.gs_result)) if self.bin and self.graph_results: plt.plot(self.fpr, self.tpr, label="data 1") plt.xlabel("False Positive Rate") plt.ylabel("True Positive Rate") plt.title("ROC Curve") plt.legend(loc=4) plt.show() print("\n\nCall predict_nu_SVC() to make predictions for new data.") else: print("\n=====================") print("= LinearSVC Results =") print("=====================\n") print("{:<20} {:<20}".format( "Accuracy:", self.accuracy_linear_SVC)) print("\nCross Validation Scores:", self.cross_val_scores_linear_SVC) print("\n\nCall predict_linear_SVC() to make predictions for", "new data.") print("\n===================") print("= End of results. =") print("===================\n") def _output_regressor_results(self, model): """Outputs model metrics after a regressor model finishes running.""" if model == "SVR": print("\n===============") print("= SVR Results =") print("===============\n") print("{:<20} {:<20}".format("Mean Squared Error:", self.mean_squared_error_SVR)) print("\n{:<20} {:<20}".format("R2 Score:", self.r2_score_SVR)) print("\n{:<20} {:<20}".format("R Score:", str(self.r_score_SVR))) print("\nCross Validation Scores", self.cross_val_scores_SVR) if self.gridsearch: print("\n{:<20} {:<20}".format("GridSearch Score:", self.gs_result)) print("\n\nCall predict_SVR() to make predictions for new data.") elif model == "NuSVR": print("\n=================") print("= NuSVR Results =") print("=================\n") print("{:<20} {:<20}".format("Mean Squared Error:", self.mean_squared_error_nu_SVR)) print("\n{:<20} {:<20}".format("R2 Score:", self.r2_score_nu_SVR)) print("\n{:<20} {:<20}".format( "R Score:", str(self.r_score_nu_SVR))) print("\nCross Validation Scores:", self.cross_val_scores_nu_SVR) if self.gridsearch: print("\n{:<20} {:<20}".format("GridSearch Score:", self.gs_result)) print("\n\nCall predict_nu_SVR() to make predictions for new data.") else: print("\n=====================") print("= LinearSVR Results =") print("=====================\n") print("{:<20} {:<20}".format("Mean Squared Error:", self.mean_squared_error_linear_SVR)) print("\n{:<20} {:<20}".format("R2 Score:", self.r2_score_linear_SVR)) print("\n{:<20} {:<20}".format("R Score:", str(self.r_score_linear_SVR))) print("\nCross Validation Scores:\n", self.cross_val_scores_linear_SVR) print("\n\nCall predict_linear_SVR() to make predictions for new data.") print("\n===================") print("= End of results. =") print("===================\n") def _split_data(self): """Helper method for splitting attributes and labels into training and testing sets. This method runs under the assumption that all relevant instance data has been checked for correctness. """ self.dataset_X_train, self.dataset_X_test, self.dataset_y_train, \ self.dataset_y_test = train_test_split(self.attributes, self.labels, test_size=self.test_size) def _check_inputs(self): """Verifies if instance data is ready for use in SVM model.""" # Check if attributes exists if self.attributes is None: print("attributes is missing; call set_attributes(new_attributes)", "to fix this! new_attributes should be a populated dataset", "of independent variables.") return False # Check if labels exists if self.labels is None: print("labels is missing; call set_labels(new_labels) to fix this!", "new_labels should be a populated dataset of classes.") return False # Check if attributes and labels have same number of rows (samples) if self.attributes.shape[0] != self.labels.shape[0]: print("attributes and labels don't have the same number of rows.", "Make sure the number of samples in each dataset matches!") return False return True
PypiClean
/float_evaluation-0.0.2-py3-none-any.whl/float/change_detection/evaluation/change_detection_evaluator.py
import numpy as np import traceback from typing import Callable, List, Union class ChangeDetectionEvaluator: """Change detection evaluation class. This class is required to compute the performance measures and store the corresponding results in the evaluation of the change detection method. Attributes: measure_funcs (List[Callable]): A list of evaluation measure functions. known_drifts (List[int] | List[tuple]): The positions in the dataset (indices) corresponding to known concept drifts. batch_size (int): The number of observations processed per iteration/time step. n_total (int): The total number of observations. n_delay (int | list): The number of observations after a known concept drift, during which we count the detections made by the model as true positives. If the argument is a list, the evaluator computes results for each delay specified in the list. n_init_tolerance (int): The number of observations reserved for the initial training. We do not consider these observations in the evaluation. comp_times (list): Computation times for updating the change detector per time step. memory_changes (list): Memory changes (in GB RAM) per training iteration of the change detector. result (dict): Results (i.e. calculated measurements, mean, and variance) for each evaluation measure function. """ def __init__(self, measure_funcs: List[Callable], known_drifts: Union[List[int], List[tuple]], batch_size: int, n_total: int, n_delay: Union[int, list] = 100, n_init_tolerance: int = 100): """Initializes the change detection evaluation object. Args: measure_funcs: A list of evaluation measure functions. known_drifts: The positions in the dataset (indices) corresponding to known concept drifts. batch_size: The number of observations processed per iteration/time step. n_total: The total number of observations. n_delay: The number of observations after a known concept drift, during which we count the detections made by the model as true positives. If the argument is a list, the evaluator computes results for each delay specified in the list. n_init_tolerance: The number of observations reserved for the initial training. We do not consider these observations in the evaluation. """ self.measure_funcs = measure_funcs self.known_drifts = known_drifts self.batch_size = batch_size self.n_total = n_total self.n_delay = n_delay self.n_init_tolerance = n_init_tolerance self.comp_times = [] self.memory_changes = [] self.result = dict() for measure_func in measure_funcs: self.result[measure_func.__name__] = dict() def run(self, drifts: List): """Computes the evaluation measures. Other than the PredictionEvaluator and FeatureSelectionEvaluator, the ChangeDetectionEvaluator is only run once at the end of the evaluation. Args: drifts: List of time steps corresponding to detected concept drifts. Raises: TypeError: Error while executing the provided evaluation measure functions. """ for measure_func in self.measure_funcs: try: if isinstance(self.n_delay, int): # Run with a single delay parameter mean = measure_func(evaluator=self, drifts=drifts, n_delay=self.n_delay) mes = [mean] var = 0 else: # Run with multiple delay parameters mes = [] for ndel in self.n_delay: mes.append(measure_func(evaluator=self, drifts=drifts, n_delay=ndel)) mean = np.nanmean(mes) var = np.nanvar(mes) self.result[measure_func.__name__]['measures'] = mes self.result[measure_func.__name__]['mean'] = mean self.result[measure_func.__name__]['var'] = var except TypeError: traceback.print_exc() continue
PypiClean
/binance_dex-0.1.3.tar.gz/binance_dex-0.1.3/binance_dex/sockets.py
import inspect from binance_dex.lib.sockets import BinanceChainSocketConn IS_TEST_NET = False # A varialbe to switch test net / main net, default would be MAIN-NET SOCKET_BASE_ADDR_TEST_NET = 'wss://testnet-dex.binance.org/api/ws/' SOCKET_BASE_ADDR_MAIN_NET = 'wss://dex.binance.org/api/ws/' # Default Call back sample function to alert user to create own customized function def _default_call_back(*args): print('Here is default callback function, ' 'please pass in your own customized callback function to handle received data') print(args[1]) WS_ENTRY_POINTS = { 'fetch_block_height_updates': '$all@blockheight', 'fetch_account_updates': '', 'fetch_trades_updates': '', 'fetch_market_diff_stream': '', 'fetch_market_depth_stream': '', 'fetch_kline_updates': '', 'fetch_ticker_streams': '', } class BinanceChainSocket(object): """ Web Socket Implementation Official Document: https://binance-chain.github.io/api-reference/dex-api/ws-connection.html """ def __init__(self, is_test_net=IS_TEST_NET): self.base_ws_url = SOCKET_BASE_ADDR_TEST_NET if is_test_net else SOCKET_BASE_ADDR_MAIN_NET def fetch_account_updates(self, user_address, one_off=True, callback_function=None): """ This function may receive serveral kinds of data, distinguished by "stream" from returned data :param user_address: Address Sample Return: - Account sample return (notice "stream" == "accounts"): {"stream":"accounts","data":{"e":"outboundAccountInfo","E":7364509,"B":[{"a":"BNB","f":"1371.08750000", "r":"0.00000000","l":"0.00000000"},{"a":"DEX.B-C72","f":"999999791.11200000","r":"0.00000000", "l":"0.00000000"}]}} - Transfer sample return (notice "stream" == "transfers"): {"stream":"transfers","data":{"e":"outboundTransferInfo","E":7364509, "H":"08B71F862CDB820AF499D6E4FB34494CA163EBDADD5DC5D0A61EB1A0725BB4F4", "f":"tbnb1r4gc5ftrkr9ez2khph4h5xxd0mf0hd75jf06gw","t":[{"o":"tbnb1fn9z9vn4f44ekz0a3pf80dcy2wh4d5988phjds", "c":[{"a":"DEX.B-C72","A":"8.88800000"}]}]}} - Orders {"stream":"orders","data":[{"e":"executionReport","E":7366949,"s":"100K-9BC_BNB","S":1,"o":2,"f":1, "q":"0.00001500","p":"66666.00000000","x":"NEW","X":"Ack","i":"1D518A2563B0CB912AD70DEB7A18CD7ED2FBB7D4-10", "l":"0.00000000","L":"0.00000000","z":"0.00001500","n":"","T":1554890366040313451,"t":"", "O":1554890366040313451},{"e":"executionReport","E":7366949,"s":"100K-9BC_BNB","S":1,"o":2,"f":1, "q":"0.00001500","p":"66666.00000000","x":"NEW","X":"FullyFill", "i":"1D518A2563B0CB912AD70DEB7A18CD7ED2FBB7D4-10","l":"0.00001500","L":"66666.00000000","z":"0.00001500", "n":"BNB:0.00039999","T":1554890366040313451,"t":"7366949-0","O":1554890366040313451}]} """ return self._standard_binance_change_socket_handler(one_off=one_off, callback_function=callback_function, parameter=user_address) def fetch_block_height_updates(self, one_off=True, callback_function=None): return self._standard_binance_change_socket_handler(one_off=one_off, callback_function=callback_function) def fetch_trades_updates(self, trading_pairs, one_off=True, callback_function=None): """ Returns individual trade updates by trading pair name :param trading_pairs: Trading Pair Sample Return: {"stream":"trades","data":[{"e":"trade","E":7549438,"s":"100K-9BC_BNB","t":"7549438-0","p":"3333.00000000", "q":"0.02611100","b":"1D518A2563B0CB912AD70DEB7A18CD7ED2FBB7D4-11", "a":"EA1AE716501D1DB0B9F295A30891D9E562828678-12","T":1554964166437515341, "sa":"tbnb1agdww9jsr5wmpw0jjk3s3yweu43g9pnc4p5kg7","ba":"tbnb1r4gc5ftrkr9ez2khph4h5xxd0mf0hd75jf06gw"}]} """ postfix_url = trading_pairs + '@trades' return self._standard_binance_change_socket_handler(one_off=one_off, callback_function=callback_function, parameter=postfix_url) def fetch_market_diff_stream(self, trading_pairs, one_off=True, callback_function=None): """ Order book price and quantity depth updates used to locally keep an order book. :param trading_pairs: Trading Pair Sample Return: {"stream":"marketDiff","data":{"e":"depthUpdate","E":1554964484,"s":"100K-9BC_BNB", "b":[["3333.00000000","0.07398900"]],"a":[]}} """ postfix_url = trading_pairs + '@marketDiff' return self._standard_binance_change_socket_handler(one_off=one_off, callback_function=callback_function, parameter=postfix_url) def fetch_market_depth_stream(self, trading_pairs, one_off=True, callback_function=None): """ Fetch Market Top 20 Levels of Bids and Asks :param trading_pairs: Trading Pair Sample Return: {"stream":"marketDepth","data":{"lastUpdateId":7551469,"symbol":"100K-9BC_BNB", "bids":[["3333.00000000","0.07398900"]],"asks":[["66666.00000000","1.68270010"],["70000.00000000","1.00000000"], ["90000000000.00000000","40.05079290"]]}} """ postfix_url = trading_pairs + '@marketDepth' return self._standard_binance_change_socket_handler(one_off=one_off, callback_function=callback_function, parameter=postfix_url) def fetch_kline_updates(self, trading_pair, interval, one_off=True, callback_function=None): postfix_url = '%s@kline_%s' % (trading_pair, interval) return self._standard_binance_change_socket_handler(one_off=one_off, callback_function=callback_function, parameter=postfix_url) def fetch_ticker_streams(self, trading_pair=None, is_full_data=True, one_off=True, callback_function=None): """ 24hr Ticker statistics for a single symbol are pushed every second :param trading_pair: Trading Pair, if not provide will return all data :param is_full_data: will return full data? Sample Return: {"stream":"ticker","data":{"e":"24hrTicker","E":1554966678,"s":"100K-9BC_BNB","p":"0.00000000", "P":"0.00000000","w":"5023.09923713","x":"3333.00000000","c":"66666.00000000","Q":"0.00010000","b":"0.00000000", "B":"0.00000000","a":"66666.00000000","A":"1.68260010","o":"66666.00000000","h":"66666.00000000", "l":"3333.00000000","v":"0.02784240","q":"139.85513820","O":1554880245974,"C":1554966645974,"F":"7366949-0", "L":"7554709-0","n":23}} """ if trading_pair: if is_full_data: postfix_url = '%s@ticker' % trading_pair else: postfix_url = '%s@miniTicker' % trading_pair else: if is_full_data: postfix_url = '$all@allTickers' else: postfix_url = '$all@allMiniTickers' return self._standard_binance_change_socket_handler(one_off=one_off, callback_function=callback_function, parameter=postfix_url) def _standard_binance_change_socket_handler(self, one_off, callback_function, parameter=None): # Get caller function name caller_func_name = inspect.stack()[1].function # todo: # refer to: https://stackoverflow.com/questions/900392/getting-the-caller-function-name-inside-another-function-in-python/900413 # seems caller_func_name is different from python 3 and python 2, need to test on python 2 # Get ws name from Mapper ws_api_name = WS_ENTRY_POINTS[caller_func_name] # Compose whole ws url ws_url = self.base_ws_url + ws_api_name if parameter: ws_url += parameter print('WebSocket URL:' + ws_url) # Create Socket instance socket_obj = BinanceChainSocketConn(ws_url=ws_url) # Stream data if one_off: # short-live-call, just return return socket_obj.one_off() else: # long-live-call, keep getting data if callback_function: socket_obj.long_conn(callback_function) else: socket_obj.long_conn(_default_call_back)
PypiClean
/collective.emaillogin-1.3.zip/collective.emaillogin-1.3/README.txt
collective.emaillogin Package Readme ==================================== Overview -------- This package allow logins with email address rather than login name. It applies some (somewhat hackish) patches to Plone's membership tool and memberdata class, after which the email address, on save, is saved as the login name for members. This makes that members can log in using their email address rather than some additional id, and when the email address changes the login name is changed along with it. Since version 1.0 we explicitly convert e-mail addresses to lowercase. You should be able to login with any mix of upper and lower case letters. Installation ------------ Add it to the eggs of your Plone 3 buildout. With Plone 3.2.x or earlier also add it to the zcml option of your instance. Install it in the Add-ons (Extra Packages) control panel in your Plone Site. Installing simply adds a new skin layer named 'emaillogin'. It is best to install this on a fresh Plone site. The login names of current users are not changed. There is code in core Plone 4 for this, so you may want to look there if you need it. .. WARNING:: A major part of this package works by patching several core Plone and CMF classes. The patches also apply when you do not have this package installed in your Plone Site. This may give unwanted results, like changing the login name of a user when his or her e-mail address is changed. This also means that when you have multiple Plone Sites in one Zope instance, you should either install this package in all of them or not use it at all and remove it from your buildout. Upgrading --------- When upgrading from version 0.8, an upgrade step is run to change all login names to lower case, for those login names that are already e-mail addresses. Gotchas ------- No, these are not bugs. Or if they are bugs, then they are bugs that are too hard to fix without introducing other bugs. They might be unexpected though, so we call them gotchas. - Since version 1.0, whenever an e-mail address is set, we automatically convert it to lowercase. You cannot set an e-mail address to upper or mixed case. When logging in or resetting a password the case does not need to match: we look for the given login but also for the lowercased login. - As an administrator, when you change the login name of a user in the ZMI, this does not update the email. - When you register with [email protected] and change this to [email protected], you can no longer login with your original address. You can only login with your current e-mail address, though the case (upper, lower, mixed) should not matter anymore. - The initial e-mail address is used as userid. This id never ever changes. In places where the userid is displayed this original userid is shown, which is normally fine until the email address is overwritten -- once this is done the *original* email address will be displayed rather than the new one. (Plone 4 fixes this in the core.) There may be some more spots in Plone that for example search only for users by id so when you use that to search on login name this may fail. Also, there are spots in the Plone or CMF or Zope code that have a userid as input but use it as login name or the other way around so be careful when you start hacking yourself. - If you register with [email protected], then change it to [email protected], then no one can register a new user with [email protected] or change the e-mail address of an existing user to [email protected]. This is because it will forever be used as userid. Note that when you now change your address to [email protected], your intermediate address of [email protected] is free for the taking. - When you change your e-mail address, you do *not* get a confirmation e-mail to check if you did not make any typos and it is a real address. This means you will not be able to login if you do not remember this typo; a password reset will then also not work. This could be considered a problem of Plone in general and not specific for this add-on, though we are hit harder by it. Might be a nice candidate for a PLIP (PLone Improvement Proposal) or first an extra add-on. Future ------ In Plone 4 this package is deprecated, as Plone 4 already supports logging in with your email address as an option: http://dev.plone.org/plone/ticket/9214 So we strongly advise not to use this package on Plone 4. But your instance will still start up (tested on Plone 4.0a4) and you can uninstall the package through the UI. You may need to manually remove ``emaillogin`` from the skin selections in the Properties tab of portal_skins in the ZMI. Since the package does some patches on startup, you should still remove it from the eggs and zcml options of your instance, rerun buildout and start your instance again.
PypiClean
/lfl-admin-0.0.9.tar.gz/lfl-admin-0.0.9/lfl_admin/statistic/models/raiting_of_players.py
import logging from django.db import transaction from django.db.models import DecimalField from isc_common.bit import TurnBitOn from isc_common.common import blinkString from isc_common.common.functions import ExecuteStoredProcRows from isc_common.fields.code_field import CodeField from isc_common.fields.name_field import NameField from isc_common.fields.related import ForeignKeyProtect from isc_common.http.DSRequest import DSRequest from isc_common.models.audit import AuditModel, AuditQuerySet, AuditManager from isc_common.progress import managed_progress, ProgressDroped, progress_deleted from lfl_admin.common.models.posts import Posts from lfl_admin.competitions.models.clubs import Clubs from lfl_admin.competitions.models.players import Players logger = logging.getLogger(__name__) class Raiting_of_playersQuerySet(AuditQuerySet): pass class Raiting_of_playersManager(AuditManager): def calcStaticFromRequest(self, request): from lfl_admin.competitions.models.tournaments import Tournaments from lfl_admin.statistic.models.raiting_of_players_division import Raiting_of_players_division from lfl_admin.statistic.models.raiting_of_players_tournamet import Raiting_of_players_tournamet request = DSRequest(request=request) tournament_ids = None division_ids = None players_ids = None data = request.get_data() d = data.get('d') if d is not None: tournament_ids = d.get('tournaments_ids') division_ids = d.get('division_ids') players_ids = data.get('players_ids') res = [] if isinstance(players_ids, list) and (isinstance(tournament_ids, list) or isinstance(division_ids, list)): if not isinstance(tournament_ids, list): tournament_ids = list(set(map(lambda x: x.get('id'), Tournaments.objects.filter(division_id__in=division_ids, props=Tournaments.props.active).values('id')))) with transaction.atomic(): with managed_progress( id=f'calcStaticFromRequest_{request.user.id}', qty=len(players_ids), user=request.user, message='<h4>Вычисление рейтинга</h4>', title='Выполнено', props=TurnBitOn(0, 0) ) as progress: for players_id in players_ids: user = Players.objects.get(id=players_id).person.user progress.setContentsLabel(content=blinkString(f'Вычисление рейтинга: {user.get_full_name}', blink=False, bold=True)) rows = ExecuteStoredProcRows('raiting_of_players', [tournament_ids, players_id]) for row in rows: FIO, num, KF, kf_bombar, kf_not_wins, kf_opyt, kf_plus_minus, kf_propusch_com, kf_zabito_com, mid_propusch_com, mid_zabito_com, plays, pers_not_wins, pers_wins, plus_minus, propusch_com, raiting, standoff_cnt, kf_wins, zabito_com, zabito_play, amplua_id, club_id, player_id, win_cnt, not_win_cnt = row raiting = Raiting_of_players.objects.create( amplua_id=amplua_id, club_id=club_id, FIO=FIO, num=num, KF=KF, kf_bombar=kf_bombar, kf_not_wins=kf_not_wins, kf_opyt=kf_opyt, kf_plus_minus=kf_plus_minus if kf_plus_minus is not None else 0, kf_propusch_com=kf_propusch_com, kf_wins=kf_wins, kf_zabito_com=kf_zabito_com, mid_propusch_com=mid_propusch_com, mid_zabito_com=mid_zabito_com, not_win_cnt=not_win_cnt, plays=plays, pers_not_wins=pers_not_wins, pers_wins=pers_wins, player_id=player_id, plus_minus=plus_minus if plus_minus is not None else 0, propusch_com=propusch_com, raiting=raiting, standoff_cnt=standoff_cnt, win_cnt=win_cnt, zabito_com=zabito_com, zabito_play=zabito_play, ) res.append(raiting.id) if isinstance(division_ids, list): for division_id in division_ids: Raiting_of_players_division.objects.create(raiting=raiting, division_id=division_id) elif isinstance(tournament_ids, list): for tournament_id in tournament_ids: Raiting_of_players_tournamet.objects.create(raiting=raiting, tournament_id=tournament_id) if progress.step() != 0: raise ProgressDroped(progress_deleted) # sleep(2) progress.sendInfo('Расчет выполнен') return res @classmethod def getRecord(cls, record ) : res = { 'amplua__name': record.amplua.name, 'amplua_id': record.amplua.id, 'club__name': record.club.name, 'club_id': record.club.id, 'deliting': record.deliting, 'editing': record.editing, 'FIO': record.FIO, 'num': record.num, 'id': record.id, 'KF': record.KF, 'kf_bombar': record.kf_bombar, 'kf_not_wins': record.kf_not_wins, 'kf_opyt': record.kf_opyt, 'kf_plus_minus': record.kf_plus_minus, 'kf_propusch_com': record.kf_propusch_com, 'kf_wins': record.kf_wins, 'kf_zabito_com': record.kf_zabito_com, 'mid_propusch_com': record.mid_propusch_com, 'mid_zabito_com': record.mid_zabito_com, 'not_win_cnt': record.not_win_cnt, 'pays': record.pays, 'pers_not_wins': record.pers_not_wins, 'pers_wins': record.pers_wins, 'player': record.player, 'plus_minus': record.plus_minus, 'propusch_com': record.propusch_com, 'raiting': record.raiting, 'standoff_cnt': record.standoff_cnt, 'win_cnt': record.win_cnt, 'zabito_com': record.zabito_com, 'zabito_play': record.zabito_play, } return res def get_queryset(self): return Raiting_of_playersQuerySet(self.model, using=self._db) class Raiting_of_players(AuditModel): amplua = ForeignKeyProtect(Posts) club = ForeignKeyProtect(Clubs) FIO = NameField() num = CodeField() KF = CodeField() kf_bombar = DecimalField(max_digits=5, decimal_places=2, ) kf_not_wins = DecimalField(max_digits=5, decimal_places=2, ) kf_opyt = DecimalField(max_digits=5, decimal_places=2, ) kf_plus_minus = DecimalField(max_digits=5, decimal_places=2, ) kf_propusch_com = DecimalField(max_digits=5, decimal_places=2, ) kf_wins = DecimalField(max_digits=5, decimal_places=2, ) kf_zabito_com = DecimalField(max_digits=5, decimal_places=2, ) mid_propusch_com = DecimalField(max_digits=5, decimal_places=2, ) mid_zabito_com = DecimalField(max_digits=5, decimal_places=2, ) not_win_cnt = DecimalField(max_digits=5, decimal_places=2, ) plays = DecimalField(max_digits=5, decimal_places=2, ) pers_not_wins = DecimalField(max_digits=5, decimal_places=2, ) pers_wins = DecimalField(max_digits=5, decimal_places=2, ) player = ForeignKeyProtect(Players) plus_minus = DecimalField(max_digits=5, decimal_places=2, ) propusch_com = DecimalField(max_digits=5, decimal_places=2, ) raiting = DecimalField(max_digits=5, decimal_places=2, ) standoff_cnt = DecimalField(verbose_name='Ничьих', max_digits=5, decimal_places=2, ) win_cnt = DecimalField(max_digits=5, decimal_places=2, ) zabito_com = DecimalField(max_digits=5, decimal_places=2, ) zabito_play = DecimalField(max_digits=5, decimal_places=2, ) objects = Raiting_of_playersManager() def __str__(self): return f'ID:{self.id}' def __repr__(self): return self.__str__() class Meta: verbose_name = 'Рейтинг футболистов'
PypiClean
/flask-talisman-1.1.0.tar.gz/flask-talisman-1.1.0/README.rst
Talisman: HTTP security headers for Flask ========================================= |PyPI Version| Talisman is a small Flask extension that handles setting HTTP headers that can help protect against a few common web application security issues. The default configuration: - Forces all connects to ``https``, unless running with debug enabled. - Enables `HTTP Strict Transport Security <https://developer.mozilla.org/en-US/docs/Web/Security/HTTP_strict_transport_security>`_. - Sets Flask's session cookie to ``secure``, so it will never be set if your application is somehow accessed via a non-secure connection. - Sets Flask's session cookie to ``httponly``, preventing JavaScript from being able to access its content. CSRF via Ajax uses a separate cookie and should be unaffected. - Sets Flask's session cookie to ``Lax``, preventing the cookie to be leaked in CSRF-prone request methods. - Sets `X-Frame-Options <https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options>`_ to ``SAMEORIGIN`` to avoid `clickjacking <https://en.wikipedia.org/wiki/Clickjacking>`_. - Sets `X-Content-Type-Options <https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options>`_ to prevent content type sniffing. - Sets a strict `Content Security Policy <https://developer.mozilla.org/en-US/docs/Web/Security/CSP/Introducing_Content_Security_Policy>`__ of ``default-src: 'self', 'object-src': 'none'``. This is intended to almost completely prevent Cross Site Scripting (XSS) attacks. This is probably the only setting that you should reasonably change. See the `Content Security Policy`_ section. - Sets a strict `Referrer-Policy <https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy>`_ of ``strict-origin-when-cross-origin`` that governs which referrer information should be included with requests made. - Disables ``browsing-topics`` by default in the `Permissions-Policy <https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Feature-Policy>`_ like `Drupal <https://www.drupal.org/project/drupal/issues/3209628>`_ to enhance privacy protection. In addition to Talisman, you **should always use a cross-site request forgery (CSRF) library**. It's highly recommended to use `Flask-SeaSurf <https://flask-seasurf.readthedocs.org/en/latest/>`_, which is based on Django's excellent library. Installation & Basic Usage -------------------------- Install via `pip <https://pypi.python.org/pypi/pip>`_: :: pip install flask-talisman After installing, wrap your Flask app with a ``Talisman``: .. code:: python from flask import Flask from flask_talisman import Talisman app = Flask(__name__) Talisman(app) There is also a full `Example App <https://github.com/wntrblm/flask-talisman/blob/master/example_app>`_. Options ------- - ``force_https``, default ``True``, forces all non-debug connects to ``https`` (`about HTTPS <https://developer.mozilla.org/en-US/docs/Glossary/https>`_). - ``force_https_permanent``, default ``False``, uses ``301`` instead of ``302`` for ``https`` redirects. - ``frame_options``, default ``SAMEORIGIN``, can be ``SAMEORIGIN``, ``DENY``, or ``ALLOWFROM`` (`about Frame Options <https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options>`_). - ``frame_options_allow_from``, default ``None``, a string indicating the domains that are allowed to embed the site via iframe. - ``strict_transport_security``, default ``True``, whether to send HSTS headers (`about HSTS <https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security>`_). - ``strict_transport_security_preload``, default ``False``, enables HSTS preloading. If you register your application with `Google's HSTS preload list <https://hstspreload.appspot.com/>`_, Firefox and Chrome will never load your site over a non-secure connection. - ``strict_transport_security_max_age``, default ``ONE_YEAR_IN_SECS``, length of time the browser will respect the HSTS header. - ``strict_transport_security_include_subdomains``, default ``True``, whether subdomains should also use HSTS. - ``content_security_policy``, default ``default-src: 'self'`, 'object-src': 'none'``, see the `Content Security Policy`_ section (`about Content Security Policy <https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy>`_). - ``content_security_policy_nonce_in``, default ``[]``. Adds a per-request nonce value to the flask request object and also to the specified CSP header section. I.e. ``['script-src', 'style-src']`` - ``content_security_policy_report_only``, default ``False``, whether to set the CSP header as "report-only" (as `Content-Security-Policy-Report-Only`) to ease deployment by disabling the policy enforcement by the browser, requires passing a value with the ``content_security_policy_report_uri`` parameter - ``content_security_policy_report_uri``, default ``None``, a string indicating the report URI used for `CSP violation reports <https://developer.mozilla.org/en-US/docs/Web/Security/CSP/Using_CSP_violation_reports>`_ - ``referrer_policy``, default ``strict-origin-when-cross-origin``, a string that sets the Referrer Policy header to send a full URL when performing a same-origin request, only send the origin of the document to an equally secure destination (HTTPS->HTTPS), and send no header to a less secure destination (HTTPS->HTTP) (`about Referrer Policy <https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy>`_). - ``feature_policy``, default ``{}``, see the `Feature Policy`_ section (`about Feature Policy <https://developer.mozilla.org/en-US/docs/Web/HTTP/Feature_Policy>`_). - ``permissions_policy``, default ``{'browsing-topics': '()'}``, see the `Permissions Policy`_ section (`about Permissions Policy <https://developer.mozilla.org/en-US/docs/Web/HTTP/Feature_Policy>`_). - ``document_policy``, default ``{}``, see the `Document Policy`_ section (`about Document Policy <https://wicg.github.io/document-policy/>`_). - ``session_cookie_secure``, default ``True``, set the session cookie to ``secure``, preventing it from being sent over plain ``http`` (`about cookies (https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie)_`). - ``session_cookie_http_only``, default ``True``, set the session cookie to ``httponly``, preventing it from being read by JavaScript. - ``session_cookie_samesite``, default ``Lax``, set this to ``Strict`` to prevent the cookie from being sent by the browser to the target site in all cross-site browsing context, even when following a regular link. - ``force_file_save``, default ``False``, whether to set the `X-Download-Options <https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/compatibility/jj542450(v=vs.85)?redirectedfrom=MSDN>`_ header to ``noopen`` to prevent IE >= 8 to from opening file downloads directly and only save them instead. - ``x_content_type_options``, default ``True``, Protects against MIME sniffing vulnerabilities (`about Content Type Options <https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options>`_). - ``x_xss_protection``, default ``False``, Protects against cross-site scripting (XSS) attacks (`about XSS Protection <https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection>`_). This option is disabled by default because no modern browser (`supports this header <https://caniuse.com/mdn-http_headers_x-xss-protection>`_) anymore. For a full list of (security) headers, check out: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers. Per-view options ~~~~~~~~~~~~~~~~ Sometimes you want to change the policy for a specific view. The ``force_https``, ``frame_options``, ``frame_options_allow_from``, `content_security_policy``, ``feature_policy``, ``permissions_policy`` and ``document_policy`` options can be changed on a per-view basis. .. code:: python from flask import Flask from flask_talisman import Talisman, ALLOW_FROM app = Flask(__name__) talisman = Talisman(app) @app.route('/normal') def normal(): return 'Normal' @app.route('/embeddable') @talisman(frame_options=ALLOW_FROM, frame_options_allow_from='*') def embeddable(): return 'Embeddable' Content Security Policy ----------------------- The default content security policy is extremely strict and will prevent loading any resources that are not in the same domain as the application. Most web applications will need to change this policy. If you're not ready to deploy Content Security Policy, you can set `content_security_policy` to `False` to disable sending this header entirely. A slightly more permissive policy is available at ``flask_talisman.GOOGLE_CSP_POLICY``, which allows loading Google-hosted JS libraries, fonts, and embeding media from YouTube and Maps. You can and should create your own policy to suit your site's needs. Here's a few examples adapted from `MDN <https://developer.mozilla.org/en-US/docs/Web/Security/CSP/Using_Content_Security_Policy>`_: Example 1 ~~~~~~~~~ This is the default policy. A web site administrator wants all content to come from the site's own origin (this excludes subdomains) and disallow legacy HTML elements. .. code:: python csp = { 'default-src': '\'self\'', 'object-src': '\'none\'', } talisman = Talisman(app, content_security_policy=csp) Example 2 ~~~~~~~~~ A web site administrator wants to allow content from a trusted domain and all its subdomains (it doesn't have to be the same domain that the CSP is set on.) .. code:: python csp = { 'default-src': [ '\'self\'', '*.trusted.com' ] } Example 3 ~~~~~~~~~ A web site administrator wants to allow users of a web application to include images from any origin in their own content, but to restrict audio or video media to trusted providers, and all scripts only to a specific server that hosts trusted code. .. code:: python csp = { 'default-src': '\'self\'', 'img-src': '*', 'media-src': [ 'media1.com', 'media2.com', ], 'script-src': 'userscripts.example.com' } In this example content is only permitted from the document's origin with the following exceptions: - Images may loaded from anywhere (note the ``*`` wildcard). - Media is only allowed from media1.com and media2.com (and not from subdomains of those sites). - Executable script is only allowed from userscripts.example.com. Example 4 ~~~~~~~~~ A web site administrator for an online banking site wants to ensure that all its content is loaded using SSL, in order to prevent attackers from eavesdropping on requests. .. code:: python csp = { 'default-src': 'https://onlinebanking.jumbobank.com' } The server only permits access to documents being loaded specifically over HTTPS through the single origin onlinebanking.jumbobank.com. Example 5 ~~~~~~~~~ A web site administrator of a web mail site wants to allow HTML in email, as well as images loaded from anywhere, but not JavaScript or other potentially dangerous content. .. code:: python csp = { 'default-src': [ '\'self\'', '*.mailsite.com', ], 'img-src': '*' } Note that this example doesn't specify a ``script-src``; with the example CSP, this site uses the setting specified by the ``default-src`` directive, which means that scripts can be loaded only from the originating server. Example 6 ~~~~~~~~~ A web site administrator wants to allow embedded scripts (which might be generated dynamicially). .. code:: python csp = { 'default-src': '\'self\'', 'script-src': '\'self\'', } talisman = Talisman( app, content_security_policy=csp, content_security_policy_nonce_in=['script-src'] ) The nonce needs to be added to the script tag in the template: .. code:: html <script nonce="{{ csp_nonce() }}"> //... </script> Note that the CSP directive (`script-src` in the example) to which the `nonce-...` source should be added needs to be defined explicitly. Example 7 ~~~~~~~~~ A web site adminstrator wants to override the CSP directives via an environment variable which doesn't support specifying the policy as a Python dictionary, e.g.: .. code:: bash export CSP_DIRECTIVES="default-src 'self'; image-src *" python app.py Then in the app code you can read the CSP directives from the environment: .. code:: python import os from flask_talisman import Talisman, DEFAULT_CSP_POLICY talisman = Talisman( app, content_security_policy=os.environ.get("CSP_DIRECTIVES", DEFAULT_CSP_POLICY), ) As you can see above the policy can be defined simply just like the official specification requires the HTTP header to be set: As a semicolon separated list of individual CSP directives. Feature Policy -------------- **Note:** Feature Policy has largely been `renamed Permissions Policy <https://github.com/w3c/webappsec-feature-policy/issues/359>`_ in the latest draft and some features are likely to move to Document Policy. At this writing, most browsers support the ``Feature-Policy`` HTTP Header name. See the `Permissions Policy`_ and `Document Policy`_ sections below should you wish to set these. Also note that the Feature Policy specification did not progress beyond the `draft https://wicg.github.io/feature-policy/` stage before being renamed, but is `supported in some form in most browsers <https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Feature-Policy#Browser_compatibility>`_. The default feature policy is empty, as this is the default expected behaviour. Geolocation Example ~~~~~~~~~~~~~~~~~~~ Disable access to Geolocation interface. .. code:: python feature_policy = { 'geolocation': '\'none\'' } talisman = Talisman(app, feature_policy=feature_policy) Permissions Policy ------------------ Feature Policy has been split into Permissions Policy and Document Policy but at this writing `browser support of Permissions Policy is very limited <https://caniuse.com/permissions-policy>`_, and it is recommended to still set the ``Feature-Policy`` HTTP Header. Permission Policy support is included in Talisman for when this becomes more widely supported. Note that the `Permission Policy is still an Working Draft <https://www.w3.org/TR/permissions-policy/>`_. When the same feature or permission is set in both Feature Policy and Permission Policy, the Permission Policy setting will take precedence in browsers that support both. It should be noted that the syntax differs between Feature Policy and Permission Policy as can be seen from the ``geolocation`` examples provided. The default Permissions Policy is ``browsing-topics=()``, which opts sites out of `Federated Learning of Cohorts <https://wicg.github.io/floc/>`_ an interest-based advertising initiative called Topics API. Permission Policy can be set either using a dictionary, or using a string. Geolocation and Microphone Example ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Disable access to Geolocation interface and Microphone using dictionary syntax .. code:: python permissions_policy = { 'geolocation': '()', 'microphone': '()' } talisman = Talisman(app, permissions_policy=permissions_policy) Disable access to Geolocation interface and Microphone using string syntax .. code:: python permissions_policy = 'geolocation=(), microphone=()' talisman = Talisman(app, permissions_policy=permissions_policy) Document Policy --------------- Feature Policy has been split into Permissions Policy and Document Policy but at this writing `browser support of Document Policy is very limited <https://caniuse.com/document-policy>`_, and it is recommended to still set the ``Feature-Policy`` HTTP Header. Document Policy support is included in Talisman for when this becomes more widely supported. Note that the `Document Policy is still an Unofficial Draft <https://wicg.github.io/document-policy/>`_. The default Document Policy is empty, as this is the default expected behaviour. Document Policy can be set either using a dictionary, or using a string. Oversized-Images Example ~~~~~~~~~~~~~~~~~~~~~~~~ Forbid oversized-images using dictionary syntax: .. code:: python document_policy = { 'oversized-images': '?0' } talisman = Talisman(app, document_policy=document_policy) Forbid oversized-images using string syntax: .. code:: python document_policy = 'oversized-images=?0' talisman = Talisman(app, document_policy=document_policy) Disclaimer ---------- This code originated at Google, but is not an official Google product, experimental or otherwise. It was forked on June 6th, 2021 from the unmaintained GoogleCloudPlatform/flask-talisman. There is no silver bullet for web application security. Talisman can help, but security is more than just setting a few headers. Any public-facing web application should have a comprehensive approach to security. Contributing changes -------------------- - See `CONTRIBUTING.md`_ Licensing --------- - Apache 2.0 - See `LICENSE`_ .. _LICENSE: https://github.com/wntrblm/flask-talisman/blob/master/LICENSE .. _CONTRIBUTING.md: https://github.com/wntrblm/flask-talisman/blob/master/CONTRIBUTING.md .. |PyPI Version| image:: https://img.shields.io/pypi/v/flask-talisman.svg :target: https://pypi.python.org/pypi/flask-talisman
PypiClean
/tensorflow_macos-2.14.0rc0-cp311-cp311-macosx_12_0_arm64.whl/tensorflow/python/eager/polymorphic_function/function_context.py
"""Context information for a tf.function.""" from typing import NamedTuple, Any from tensorflow.core.function.polymorphism import function_cache from tensorflow.python.eager import context from tensorflow.python.framework import device as pydev from tensorflow.python.framework import func_graph as func_graph_module from tensorflow.python.framework import ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.saved_model import save_context # EagerContext is used by tf.function to identify cases where tracing # needs to occur due to a change in conditions other than the arguments. class EagerContext(NamedTuple): parent_graph: Any device_functions: Any colocation_stack: Any in_cross_replica_context: Any variable_policy: Any xla_context_id: Any def make_function_context(scope_type=None) -> function_cache.FunctionContext: """Generates a FunctionContext based on current contextual info.""" ctx = context.context() # Don't need to open an init_scope if the tf.function call is in eager mode # already. executing_eagerly = ctx.executing_eagerly() parent_graph = None xla_context_id = 0 if not executing_eagerly: # We want to force function retracing for each different # XLAControlFlowContext, so add `xla_context_id` to the context. xla_context = _enclosing_xla_context() if xla_context is not None and xla_context.RequiresUniqueFunctionRetracing( ): xla_context_id = id(xla_context) with ops.init_scope(): # The graph, or whether we're executing eagerly, should be a part of the # cache key so we don't improperly capture tensors such as variables. executing_eagerly = ctx.executing_eagerly() parent_graph = None if executing_eagerly else ops.get_default_graph() # pylint: disable=protected-access default_graph = ops.get_default_graph() # TODO(b/117617952): The current distribution strategy will affect graph # building (e.g. accessing different variables from different devices) and # so requires retracing for each device. strategy_stack = default_graph._distribution_strategy_stack uses_distribution_strategy = ( strategy_stack and strategy_stack[-1].strategy.extended._retrace_functions_for_each_device) if executing_eagerly: colocation_stack = () if uses_distribution_strategy: device_functions = (pydev.merge_device(ctx.device_name),) else: device_functions = () else: colocation_stack = tuple(default_graph._colocation_stack.peek_objs()) if (uses_distribution_strategy or func_graph_module.device_stack_has_callable( default_graph._device_function_stack)): # Putting the device in the cache key ensures that call-site device # annotations are respected. device_functions = tuple(default_graph._device_functions_outer_to_inner) else: device_functions = () in_cross_replica_context = False try: in_cross_replica_context = (strategy_stack[-1].replica_context is None) # pylint: disable=protected-access except (AttributeError, IndexError): pass if save_context.in_save_context(): variable_policy = ( save_context.get_save_options().experimental_variable_policy) else: variable_policy = None return function_cache.FunctionContext( EagerContext( parent_graph, device_functions, colocation_stack, in_cross_replica_context, variable_policy, xla_context_id, ), scope_type, ) def _enclosing_xla_context(): """Returns the XLAControlFlowContext, which exists inside a tpu.rewrite().""" graph = ops.get_default_graph() while graph is not None: # pylint: disable=protected-access context_ = graph._get_control_flow_context() # pylint: enable=protected-access while context_ is not None: if isinstance(context_, control_flow_ops.XLAControlFlowContext): return context_ context_ = context_.outer_context # This may be a FuncGraph due to defuns or v2 control flow. We need to # find the original graph with the XLAControlFlowContext. graph = getattr(graph, "outer_graph", None) return None
PypiClean
/onnx_tf-1.10.0-py3-none-any.whl/onnx_tf/handlers/backend/depth_to_space.py
import copy import tensorflow as tf from onnx_tf.common import get_data_format from onnx_tf.common.tf_helper import tf_shape from onnx_tf.handlers.backend_handler import BackendHandler from onnx_tf.handlers.handler import onnx_op from onnx_tf.handlers.handler import tf_func @onnx_op("DepthToSpace") @tf_func(tf.nn.depth_to_space) class DepthToSpace(BackendHandler): @classmethod def get_attrs_processor_param(cls): return {"rename": {"blocksize": "block_size"}} @classmethod def version_1(cls, node, **kwargs): x = kwargs["tensor_dict"][node.inputs[0]] x_rank = len(x.get_shape()) storage_format, compute_format = get_data_format(x_rank) attrs = copy.deepcopy(node.attrs) attrs["data_format"] = storage_format return [ cls.make_tensor_from_onnx_node(node, attrs=attrs, c_first_cuda_only=True, **kwargs) ] @classmethod def _common(cls, node, **kwargs): x = kwargs["tensor_dict"][node.inputs[0]] x_rank = len(x.get_shape()) storage_format, _ = get_data_format(x_rank) attrs = copy.deepcopy(node.attrs) attrs["data_format"] = storage_format mode = attrs.get("mode", "DCR") if mode == "CRD": # need native computation bsize = attrs.get("blocksize") x_shape = tf_shape(x) batch, channel = x_shape[0], x_shape[1] height, width = x_shape[2], x_shape[3] csize = channel // (bsize**2) reshape_node = tf.reshape(x, [batch, csize, bsize, bsize, height, width]) transpose_node = tf.transpose(reshape_node, perm=[0, 1, 4, 2, 5, 3]) return [ tf.reshape(transpose_node, [batch, csize, height * bsize, width * bsize]) ] return [ cls.make_tensor_from_onnx_node(node, attrs=attrs, c_first_cuda_only=True, **kwargs) ] @classmethod def version_11(cls, node, **kwargs): return cls._common(node, **kwargs) @classmethod def version_13(cls, node, **kwargs): return cls._common(node, **kwargs)
PypiClean
/py_trans/translator.py
import requests from pykillerx.py_trans.language_codes import _get_full_lang_name, _get_lang_code from pykillerx.py_trans.errors import check_internet_connection, UnknownErrorOccurred, DeprecatedMethod class PyTranslator: """ PyTranslator Class Note: Before Trying to Translate Create an instance of this with provider (Default provider is google) Providers: google - Google Translate libre - LibreTranslate Engine translate.com - translate.com Translate my_memory - MyMemory Translate translate_dict - Translate Dict Argument(s): provider - Provider of Translator. (Must be a supported provider) Example(s): pytranslator = PyTranslator(provider="google") """ def __init__(self, provider="google"): # Checking internet connection check_internet_connection() self.providers = ["google", "libre", "translate.com", "my_memory", "translate_dict"] if provider in self.providers: self.provider = provider else: self.provider = "google" self.lheader = {"Origin": "https://libretranslate.com", "Host": "libretranslate.com", "Referer": "https://libretranslate.com/"} def translate(self, text, dest_lang="en"): """ Translator Function Argument(s): text - Source Text (Text that need to be translated) dest_lang - Destination Language Example(s): pytranslator.translate(text="Hi, How are you?", dest_lang="si") """ if self.provider == "google": return self.google_translate(text, dest_lang) elif self.provider == "libre": raise DeprecatedMethod( "Libre is no longer supported as it's translation accuracy is low") # return self.libre_translate(text, dest_lang) elif self.provider == "translate.com": return self.translate_com(text, dest_lang) elif self.provider == "my_memory": return self.my_memory(text, dest_lang) elif self.provider == "translate_dict": return self.translate_dict(text, dest_lang) else: return # Google Translate def google_translate(self, text, dest_lang): r_url = f"https://clients5.google.com/translate_a/t?client=dict-chrome-ex&sl=auto&tl={dest_lang}&q={text}" try: resp = requests.get(r_url).json()[0] translation = resp[0] origin_text = text origin_lang = self.get_lang_name(resp[1]) dest_lang_f = self.get_lang_name(dest_lang) tr_dict = {"status": "success", "engine": "Google Translate", "translation": translation, "dest_lang": dest_lang_f, "orgin_text": origin_text, "origin_lang": origin_lang} return tr_dict except Exception as e: return {"status": "failed", "error": e} # LibreTranslate def _detect_lang(self, text, full_name=False): try: r_url = requests.post("https://libretranslate.com/detect", data={"q": str(text)}, headers=self.lheader).json() language_code = r_url[0]["language"] except: # If can't detect the language let's think it's just english (RIP moment) language_code = "en" if full_name is False: return language_code else: return self.get_lang_name(language_code) def libre_translate(self, text, dest_lang): try: source_lang = self._detect_lang(text=text, full_name=False) r_url = requests.post("https://libretranslate.com/translate", data={"q": str( text), "source": source_lang, "target": dest_lang}, headers=self.lheader).json() translation = r_url["translatedText"] origin_lang = self.get_lang_name(source_lang) dest_lang_f = self.get_lang_name(dest_lang) tr_dict = {"status": "success", "engine": "LibreTranslate", "translation": translation, "dest_lang": dest_lang_f, "orgin_text": str(text), "origin_lang": origin_lang} return tr_dict except Exception as e: return {"status": "failed", "error": e} # Translate.com def translate_com(self, text, dest_lang): try: source_lang = self._detect_lang(text=text, full_name=False) r_url = requests.post(url="https://www.translate.com/translator/ajax_translate", data={"text_to_translate": str( text), "source_lang": source_lang, "translated_lang": dest_lang, "use_cache_only": "false"}).json() translation = r_url["translated_text"] origin_lang = self.get_lang_name(source_lang) dest_lang_f = self.get_lang_name(dest_lang) tr_dict = {"status": "success", "engine": "Translate.com", "translation": translation, "dest_lang": dest_lang_f, "orgin_text": origin_lang, "origin_lang": origin_lang} return tr_dict except Exception as e: return {"status": "failed", "error": e} # My Memory def my_memory(self, text, dest_lang): try: source_lang = self._detect_lang(text=text, full_name=False) r_url = requests.get("https://api.mymemory.translated.net/get", params={ "q": text, "langpair": f"{source_lang}|{dest_lang}"}).json() translation = r_url["matches"][0]["translation"] origin_lang = self.get_lang_name(source_lang) dest_lang_f = self.get_lang_name(dest_lang) tr_dict = {"status": "success", "engine": "MyMemory", "translation": translation, "dest_lang": dest_lang_f, "orgin_text": str(text), "origin_lang": origin_lang} return tr_dict except Exception as e: return {"status": "failed", "error": e} # Translate Dict def translate_dict(self, text, dest_lang): try: r_url = requests.get( f"https://t3.translatedict.com/1.php?p1=auto&p2={dest_lang}&p3={text}").text origin_lang = self._detect_lang(text=text, full_name=True) dest_lang_f = self.get_lang_name(dest_lang) tr_dict = {"status": "success", "engine": "Translate Dict", "translation": r_url, "dest_lang": dest_lang_f, "orgin_text": str(text), "origin_lang": origin_lang} return tr_dict except Exception as e: return {"status": "failed", "error": e} # Get Language Names def get_lang_name(self, text): if len(text) == 2: return _get_full_lang_name(text) else: if len(text) <= 3: return "Not a full language name" else: return _get_lang_code(text)
PypiClean
/nautobot_ssot-2.0.0rc1.tar.gz/nautobot_ssot-2.0.0rc1/nautobot_ssot/jobs/base.py
from collections import namedtuple from datetime import datetime import traceback import tracemalloc from typing import Iterable from django.db.utils import OperationalError from django.templatetags.static import static from django.utils import timezone from django.utils.functional import classproperty # pylint-django doesn't understand classproperty, and complains unnecessarily. We disable this specific warning: # pylint: disable=no-self-argument from diffsync.enum import DiffSyncFlags import structlog from nautobot.extras.jobs import DryRunVar, Job, BooleanVar from nautobot_ssot.choices import SyncLogEntryActionChoices from nautobot_ssot.models import Sync, SyncLogEntry DataMapping = namedtuple("DataMapping", ["source_name", "source_url", "target_name", "target_url"]) """Entry in the list returned by a job's data_mappings() API. The idea here is to provide insight into how various classes of data are mapped between Nautobot and the other system acting as data source/target. * source_name: Name of a data class (device, location, vlan, etc.) provided by the data source. * source_url: URL (if any) to hyperlink for this source_name in the UI. Can be used, for example, to link to the Nautobot list view for this data class. * target_name: Name of a data class on the data target that corresponds to the source data. * target_url: URL (if any) to hyperlink the target_name. """ class DataSyncBaseJob(Job): # pylint: disable=too-many-instance-attributes """Common base class for data synchronization jobs. Works mostly as per the BaseJob API, with the following changes: - Concrete subclasses are responsible for implementing `self.sync_data()` (or related hooks), **not** `self.run()`. - Subclasses may optionally define any Meta field supported by Jobs, as well as the following: - `dryrun_default` - defaults to True if unspecified - `data_source` and `data_target` as labels (by default, will use the `name` and/or "Nautobot" as appropriate) - `data_source_icon` and `data_target_icon` """ dryrun = DryRunVar(description="Perform a dry-run, making no actual changes to Nautobot data.", default=True) memory_profiling = BooleanVar(description="Perform a memory profiling analysis.", default=False) def load_source_adapter(self): """Method to instantiate and load the SOURCE adapter into `self.source_adapter`. Relevant available instance attributes include: - self.job_result (as per Job API) """ raise NotImplementedError def load_target_adapter(self): """Method to instantiate and load the TARGET adapter into `self.target_adapter`. Relevant available instance attributes include: - self.job_result (as per Job API) """ raise NotImplementedError def calculate_diff(self): """Method to calculate the difference from SOURCE to TARGET adapter and store in `self.diff`. This is a generic implementation that you could overwrite completely in your custom logic. """ if self.source_adapter is not None and self.target_adapter is not None: self.diff = self.source_adapter.diff_to(self.target_adapter, flags=self.diffsync_flags) self.sync.diff = {} self.sync.summary = self.diff.summary() self.sync.save() try: self.sync.diff = self.diff.dict() self.sync.save() except OperationalError: self.logger.warning("Unable to save JSON diff to the database; likely the diff is too large.") self.sync.refresh_from_db() self.logger.info(self.diff.summary()) else: self.logger.warning("Not both adapters were properly initialized prior to diff calculation.") def execute_sync(self): """Method to synchronize the difference from `self.diff`, from SOURCE to TARGET adapter. This is a generic implementation that you could overwrite completely in your custom logic. """ if self.source_adapter is not None and self.target_adapter is not None: self.source_adapter.sync_to(self.target_adapter, flags=self.diffsync_flags) else: self.logger.warning("Not both adapters were properly initialized prior to synchronization.") def sync_data(self, memory_profiling): """Method to load data from adapters, calculate diffs and sync (if not dry-run). It is composed by 4 methods: - self.load_source_adapter: instantiates the source adapter (self.source_adapter) and loads its data - self.load_target_adapter: instantiates the target adapter (self.target_adapter) and loads its data - self.calculate_diff: generates the diff from source to target adapter and stores it in self.diff - self.execute_sync: if not dry-run, uses the self.diff to synchronize from source to target This is a generic implementation that you could overwrite completely in you custom logic. Available instance attributes include: - self.sync (Sync instance tracking this job execution) - self.job_result (as per Job API) """ def record_memory_trace(step: str): """Helper function to record memory usage and reset tracemalloc stats.""" memory_final, memory_peak = tracemalloc.get_traced_memory() setattr(self.sync, f"{step}_memory_final", memory_final) setattr(self.sync, f"{step}_memory_peak", memory_peak) self.sync.save() self.logger.info("Traced memory for %s (Final, Peak): %s bytes, %s bytes", step, memory_final, memory_peak) tracemalloc.clear_traces() if not self.sync: return if memory_profiling: tracemalloc.start() start_time = datetime.now() self.logger.info("Loading current data from source adapter...") self.load_source_adapter() load_source_adapter_time = datetime.now() self.sync.source_load_time = load_source_adapter_time - start_time self.sync.save() self.logger.info("Source Load Time from %s: %s", self.source_adapter, self.sync.source_load_time) if memory_profiling: record_memory_trace("source_load") self.logger.info("Loading current data from target adapter...") self.load_target_adapter() load_target_adapter_time = datetime.now() self.sync.target_load_time = load_target_adapter_time - load_source_adapter_time self.sync.save() self.logger.info("Target Load Time from %s: %s", self.target_adapter, self.sync.target_load_time) if memory_profiling: record_memory_trace("target_load") self.logger.info("Calculating diffs...") self.calculate_diff() calculate_diff_time = datetime.now() self.sync.diff_time = calculate_diff_time - load_target_adapter_time self.sync.save() self.logger.info("Diff Calculation Time: %s", self.sync.diff_time) if memory_profiling: record_memory_trace("diff") if self.dryrun: self.logger.info("As `dryrun` is set, skipping the actual data sync.") else: self.logger.info("Syncing from %s to %s...", self.source_adapter, self.target_adapter) self.execute_sync() execute_sync_time = datetime.now() self.sync.sync_time = execute_sync_time - calculate_diff_time self.sync.save() self.logger.info("Sync complete") self.logger.info("Sync Time: %s", self.sync.sync_time) if memory_profiling: record_memory_trace("sync") def lookup_object(self, model_name, unique_id): # pylint: disable=unused-argument """Look up the Nautobot record, if any, identified by the args. Optional helper method used to build more detailed/accurate SyncLogEntry records from DiffSync logs. Args: model_name (str): DiffSyncModel class name or similar class/model label. unique_id (str): DiffSyncModel unique_id or similar unique identifier. Returns: models.Model: Nautobot model instance, or None """ return None @classmethod def data_mappings(cls) -> Iterable[DataMapping]: """List the data mappings involved in this sync job.""" return [] @classmethod def config_information(cls): """Return a dict of user-facing configuration information {property: value}. Note that this will be rendered 'as-is' in the UI, so as a general practice this should NOT include sensitive information such as passwords! """ return {} def sync_log( # pylint: disable=too-many-arguments self, action, status, message="", diff=None, synced_object=None, object_repr="", ): """Log a action message as a SyncLogEntry.""" if synced_object and not object_repr: object_repr = repr(synced_object) SyncLogEntry.objects.create( sync=self.sync, action=action, status=status, message=message, diff=diff, synced_object=synced_object, object_repr=object_repr, ) def _structlog_to_sync_log_entry(self, _logger, _log_method, event_dict): """Capture certain structlog messages from DiffSync into the Nautobot database.""" if all(key in event_dict for key in ("src", "dst", "action", "model", "unique_id", "diffs", "status")): # The DiffSync log gives us a model name (string) and unique_id (string). # Try to look up the actual Nautobot object that this describes. synced_object = self.lookup_object( # pylint: disable=assignment-from-none event_dict["model"], event_dict["unique_id"] ) object_repr = repr(synced_object) if synced_object else f"{event_dict['model']} {event_dict['unique_id']}" self.sync_log( action=event_dict["action"] or SyncLogEntryActionChoices.ACTION_NO_CHANGE, diff=event_dict["diffs"] if event_dict["action"] else None, status=event_dict["status"], message=event_dict["event"], synced_object=synced_object, object_repr=object_repr, ) return event_dict @classmethod def _get_vars(cls): """Extend Job._get_vars to include `dryrun` variable. Workaround for https://github.com/netbox-community/netbox/issues/5529 """ got_vars = super()._get_vars() if hasattr(cls, "dryrun"): got_vars["dryrun"] = cls.dryrun if hasattr(cls, "memory_profiling"): got_vars["memory_profiling"] = cls.memory_profiling return got_vars def __init__(self): """Initialize a Job.""" super().__init__() self.sync = None self.diff = None self.source_adapter = None self.target_adapter = None # Default diffsync flags. You can overwrite them at any time. self.diffsync_flags = DiffSyncFlags.CONTINUE_ON_FAILURE | DiffSyncFlags.LOG_UNCHANGED_RECORDS def as_form(self, data=None, files=None, initial=None, approval_view=False): """Render this instance as a Django form for user inputs, including a "Dry run" field.""" form = super().as_form(data=data, files=files, initial=initial, approval_view=approval_view) # Set the "dryrun" widget's initial value based on our Meta attribute, if any form.fields["dryrun"].initial = getattr(self.Meta, "dryrun_default", True) return form @classproperty def data_source(cls): """The system or data source providing input data for this sync.""" return getattr(cls.Meta, "data_source", cls.name) @classproperty def data_target(cls): """The system or data source being modified by this sync.""" return getattr(cls.Meta, "data_target", cls.name) @classproperty def data_source_icon(cls): """Icon corresponding to the data_source.""" return getattr(cls.Meta, "data_source_icon", None) @classproperty def data_target_icon(cls): """Icon corresponding to the data_target.""" return getattr(cls.Meta, "data_target_icon", None) def run(self, dryrun, memory_profiling, *args, **kwargs): # pylint:disable=arguments-differ """Job entry point from Nautobot - do not override!""" self.sync = Sync.objects.create( source=self.data_source, target=self.data_target, dry_run=dryrun, job_result=self.job_result, start_time=timezone.now(), diff={}, ) # Add _structlog_to_sync_log_entry as a processor for structlog calls from DiffSync structlog.configure( processors=[self._structlog_to_sync_log_entry, structlog.stdlib.render_to_log_kwargs], context_class=dict, logger_factory=structlog.stdlib.LoggerFactory(), wrapper_class=structlog.stdlib.BoundLogger, cache_logger_on_first_use=True, ) # We need to catch exceptions and handle them, because if they aren't caught here, # they'll be caught by the Nautobot core run_job() function, which will trigger a database # rollback, which will delete our above created Sync record! try: self.sync_data(memory_profiling) except Exception as exc: # pylint: disable=broad-except stacktrace = traceback.format_exc() self.logger.error(f"An exception occurred: `{type(exc).__name__}: {exc}`\n```\n{stacktrace}\n```") # pylint: disable=abstract-method class DataSource(DataSyncBaseJob): """Base class for Jobs that sync data **from** another data source **to** Nautobot.""" @classproperty def data_target(cls): """For a DataSource this is always Nautobot.""" return "Nautobot" @classproperty def data_target_icon(cls): """For a DataSource this is always the Nautobot logo.""" return static("img/nautobot_logo.png") class DataTarget(DataSyncBaseJob): """Base class for Jobs that sync data **to** another data target **from** Nautobot.""" @classproperty def data_source(cls): """For a DataTarget this is always Nautobot.""" return "Nautobot" @classproperty def data_source_icon(cls): """For a DataTarget this is always the Nautobot logo.""" return static("img/nautobot_logo.png")
PypiClean
/apache_superset_iteco-2.1.1.4-py3-none-any.whl/superset/datasets/dao.py
import logging from typing import Any, Dict, List, Optional from sqlalchemy.exc import SQLAlchemyError from superset.connectors.sqla.models import SqlaTable, SqlMetric, TableColumn from superset.dao.base import BaseDAO from superset.extensions import db from superset.models.core import Database from superset.models.dashboard import Dashboard from superset.models.slice import Slice from superset.utils.core import DatasourceType from superset.views.base import DatasourceFilter logger = logging.getLogger(__name__) class DatasetDAO(BaseDAO): # pylint: disable=too-many-public-methods model_cls = SqlaTable base_filter = DatasourceFilter @staticmethod def get_database_by_id(database_id: int) -> Optional[Database]: try: return db.session.query(Database).filter_by(id=database_id).one_or_none() except SQLAlchemyError as ex: # pragma: no cover logger.error("Could not get database by id: %s", str(ex), exc_info=True) return None @staticmethod def get_related_objects(database_id: int) -> Dict[str, Any]: charts = ( db.session.query(Slice) .filter( Slice.datasource_id == database_id, Slice.datasource_type == DatasourceType.TABLE, ) .all() ) chart_ids = [chart.id for chart in charts] dashboards = ( ( db.session.query(Dashboard) .join(Dashboard.slices) .filter(Slice.id.in_(chart_ids)) ) .distinct() .all() ) return dict(charts=charts, dashboards=dashboards) @staticmethod def validate_table_exists( database: Database, table_name: str, schema: Optional[str] ) -> bool: try: database.get_table(table_name, schema=schema) return True except SQLAlchemyError as ex: # pragma: no cover logger.warning("Got an error %s validating table: %s", str(ex), table_name) return False @staticmethod def validate_uniqueness( database_id: int, schema: Optional[str], name: str, dataset_id: Optional[int] = None, ) -> bool: dataset_query = db.session.query(SqlaTable).filter( SqlaTable.table_name == name, SqlaTable.schema == schema, SqlaTable.database_id == database_id, ) if dataset_id: # make sure the dataset found is different from the target (if any) dataset_query = dataset_query.filter(SqlaTable.id != dataset_id) return not db.session.query(dataset_query.exists()).scalar() @staticmethod def validate_update_uniqueness( database_id: int, dataset_id: int, name: str ) -> bool: dataset_query = db.session.query(SqlaTable).filter( SqlaTable.table_name == name, SqlaTable.database_id == database_id, SqlaTable.id != dataset_id, ) return not db.session.query(dataset_query.exists()).scalar() @staticmethod def validate_columns_exist(dataset_id: int, columns_ids: List[int]) -> bool: dataset_query = ( db.session.query(TableColumn.id).filter( TableColumn.table_id == dataset_id, TableColumn.id.in_(columns_ids) ) ).all() return len(columns_ids) == len(dataset_query) @staticmethod def validate_columns_uniqueness(dataset_id: int, columns_names: List[str]) -> bool: dataset_query = ( db.session.query(TableColumn.id).filter( TableColumn.table_id == dataset_id, TableColumn.column_name.in_(columns_names), ) ).all() return len(dataset_query) == 0 @staticmethod def validate_metrics_exist(dataset_id: int, metrics_ids: List[int]) -> bool: dataset_query = ( db.session.query(SqlMetric.id).filter( SqlMetric.table_id == dataset_id, SqlMetric.id.in_(metrics_ids) ) ).all() return len(metrics_ids) == len(dataset_query) @staticmethod def validate_metrics_uniqueness(dataset_id: int, metrics_names: List[str]) -> bool: dataset_query = ( db.session.query(SqlMetric.id).filter( SqlMetric.table_id == dataset_id, SqlMetric.metric_name.in_(metrics_names), ) ).all() return len(dataset_query) == 0 @classmethod def update( cls, model: SqlaTable, properties: Dict[str, Any], commit: bool = True, ) -> Optional[SqlaTable]: """ Updates a Dataset model on the metadata DB """ if "columns" in properties: cls.update_columns( model, properties.pop("columns"), commit=commit, override_columns=bool(properties.get("override_columns")), ) if "metrics" in properties: cls.update_metrics(model, properties.pop("metrics"), commit=commit) return super().update(model, properties, commit=commit) @classmethod def update_columns( cls, model: SqlaTable, property_columns: List[Dict[str, Any]], commit: bool = True, override_columns: bool = False, ) -> None: """ Creates/updates and/or deletes a list of columns, based on a list of Dict. - If a column Dict has an `id` property then we update. - If a column Dict does not have an `id` then we create a new metric. - If there are extra columns on the metadata db that are not defined on the List then we delete. """ if override_columns: db.session.query(TableColumn).filter( TableColumn.table_id == model.id ).delete(synchronize_session="fetch") db.session.bulk_insert_mappings( TableColumn, [ {**properties, "table_id": model.id} for properties in property_columns ], ) else: columns_by_id = {column.id: column for column in model.columns} property_columns_by_id = { properties["id"]: properties for properties in property_columns if "id" in properties } db.session.bulk_insert_mappings( TableColumn, [ {**properties, "table_id": model.id} for properties in property_columns if not "id" in properties ], ) db.session.bulk_update_mappings( TableColumn, [ {**columns_by_id[properties["id"]].__dict__, **properties} for properties in property_columns_by_id.values() ], ) db.session.query(TableColumn).filter( TableColumn.id.in_( {column.id for column in model.columns} - property_columns_by_id.keys() ) ).delete(synchronize_session="fetch") if commit: db.session.commit() @classmethod def update_metrics( cls, model: SqlaTable, property_metrics: List[Dict[str, Any]], commit: bool = True, ) -> None: """ Creates/updates and/or deletes a list of metrics, based on a list of Dict. - If a metric Dict has an `id` property then we update. - If a metric Dict does not have an `id` then we create a new metric. - If there are extra metrics on the metadata db that are not defined on the List then we delete. """ metrics_by_id = {metric.id: metric for metric in model.metrics} property_metrics_by_id = { properties["id"]: properties for properties in property_metrics if "id" in properties } db.session.bulk_insert_mappings( SqlMetric, [ {**properties, "table_id": model.id} for properties in property_metrics if not "id" in properties ], ) db.session.bulk_update_mappings( SqlMetric, [ {**metrics_by_id[properties["id"]].__dict__, **properties} for properties in property_metrics_by_id.values() ], ) db.session.query(SqlMetric).filter( SqlMetric.id.in_( {metric.id for metric in model.metrics} - property_metrics_by_id.keys() ) ).delete(synchronize_session="fetch") if commit: db.session.commit() @classmethod def find_dataset_column( cls, dataset_id: int, column_id: int ) -> Optional[TableColumn]: # We want to apply base dataset filters dataset = DatasetDAO.find_by_id(dataset_id) if not dataset: return None return ( db.session.query(TableColumn) .filter(TableColumn.table_id == dataset_id, TableColumn.id == column_id) .one_or_none() ) @classmethod def update_column( cls, model: TableColumn, properties: Dict[str, Any], commit: bool = True, ) -> TableColumn: return DatasetColumnDAO.update(model, properties, commit=commit) @classmethod def create_column( cls, properties: Dict[str, Any], commit: bool = True ) -> TableColumn: """ Creates a Dataset model on the metadata DB """ return DatasetColumnDAO.create(properties, commit=commit) @classmethod def delete_column(cls, model: TableColumn, commit: bool = True) -> TableColumn: """ Deletes a Dataset column """ return cls.delete(model, commit=commit) @classmethod def find_dataset_metric( cls, dataset_id: int, metric_id: int ) -> Optional[SqlMetric]: # We want to apply base dataset filters dataset = DatasetDAO.find_by_id(dataset_id) if not dataset: return None return db.session.query(SqlMetric).get(metric_id) @classmethod def delete_metric(cls, model: SqlMetric, commit: bool = True) -> SqlMetric: """ Deletes a Dataset metric """ return cls.delete(model, commit=commit) @classmethod def update_metric( cls, model: SqlMetric, properties: Dict[str, Any], commit: bool = True, ) -> SqlMetric: return DatasetMetricDAO.update(model, properties, commit=commit) @classmethod def create_metric( cls, properties: Dict[str, Any], commit: bool = True, ) -> SqlMetric: """ Creates a Dataset model on the metadata DB """ return DatasetMetricDAO.create(properties, commit=commit) @staticmethod def bulk_delete(models: Optional[List[SqlaTable]], commit: bool = True) -> None: item_ids = [model.id for model in models] if models else [] # bulk delete, first delete related data if models: for model in models: model.owners = [] db.session.merge(model) db.session.query(SqlMetric).filter(SqlMetric.table_id.in_(item_ids)).delete( synchronize_session="fetch" ) db.session.query(TableColumn).filter( TableColumn.table_id.in_(item_ids) ).delete(synchronize_session="fetch") # bulk delete itself try: db.session.query(SqlaTable).filter(SqlaTable.id.in_(item_ids)).delete( synchronize_session="fetch" ) if commit: db.session.commit() except SQLAlchemyError as ex: if commit: db.session.rollback() raise ex @staticmethod def get_table_by_name(database_id: int, table_name: str) -> Optional[SqlaTable]: return ( db.session.query(SqlaTable) .filter_by(database_id=database_id, table_name=table_name) .one_or_none() ) class DatasetColumnDAO(BaseDAO): model_cls = TableColumn class DatasetMetricDAO(BaseDAO): model_cls = SqlMetric
PypiClean
/ressources/lib/node_modules/highcharts/modules/no-data-to-display.src.js
'use strict'; (function (factory) { if (typeof module === 'object' && module.exports) { module.exports = factory; } else if (typeof define === 'function' && define.amd) { define(function () { return factory; }); } else { factory(Highcharts); } }(function (Highcharts) { (function (H) { /** * Plugin for displaying a message when there is no data visible in chart. * * (c) 2010-2017 Highsoft AS * Author: Oystein Moseng * * License: www.highcharts.com/license */ var seriesTypes = H.seriesTypes, chartPrototype = H.Chart.prototype, defaultOptions = H.getOptions(), extend = H.extend, each = H.each; // Add language option extend(defaultOptions.lang, { /** * The text to display when the chart contains no data. Requires the * no-data module, see [noData](#noData). * * @type {String} * @default No data to display * @since 3.0.8 * @product highcharts highstock * @sample highcharts/no-data-to-display/no-data-line * No-data text * @apioption lang.noData */ noData: 'No data to display' }); // Add default display options for message /** * Options for displaying a message like "No data to display". * This feature requires the file no-data-to-display.js to be loaded in the * page. The actual text to display is set in the lang.noData option. * @type {Object} * * @sample highcharts/no-data-to-display/no-data-line * Line chart with no-data module * @sample highcharts/no-data-to-display/no-data-pie * Pie chart with no-data module * @optionparent noData */ defaultOptions.noData = { /** * An object of additional SVG attributes for the no-data label. * * @type {Object} * @since 3.0.8 * @product highcharts highstock * @apioption noData.attr */ /** * Whether to insert the label as HTML, or as pseudo-HTML rendered with * SVG. * * @type {Boolean} * @default false * @since 4.1.10 * @product highcharts highstock * @apioption noData.useHTML */ /** * The position of the no-data label, relative to the plot area. * * @type {Object} * @default { "x": 0, "y": 0, "align": "center", "verticalAlign": "middle" } * @since 3.0.8 */ position: { /** * Horizontal offset of the label, in pixels. * * @type {Number} * @default 0 * @product highcharts highstock */ x: 0, /** * Vertical offset of the label, in pixels. * * @type {Number} * @default 0 * @product highcharts highstock */ y: 0, /** * Horizontal alignment of the label. * * @validvalue ["left", "center", "right"] * @type {String} * @default center */ align: 'center', /** * Vertical alignment of the label. * * @validvalue ["top", "middle", "bottom"] * @type {String} * @default middle * @product highcharts highstock */ verticalAlign: 'middle' } }; // Presentational /** * CSS styles for the no-data label. * * @sample highcharts/no-data-to-display/no-data-line * Styled no-data text * @optionparent noData.style */ defaultOptions.noData.style = { fontWeight: 'bold', fontSize: '12px', color: '#666666' }; // Define hasData function for non-cartesian seris. Returns true if the series // has points at all. each([ 'bubble', 'gauge', 'heatmap', 'pie', 'sankey', 'treemap', 'waterfall' ], function (type) { if (seriesTypes[type]) { seriesTypes[type].prototype.hasData = function () { return !!this.points.length; // != 0 }; } }); /** * Define hasData functions for series. These return true if there are data * points on this series within the plot area. */ H.Series.prototype.hasData = function () { return ( this.visible && this.dataMax !== undefined && this.dataMin !== undefined // #3703 ); }; /** * Display a no-data message. * * @param {String} str An optional message to show in place of the default one */ chartPrototype.showNoData = function (str) { var chart = this, options = chart.options, text = str || (options && options.lang.noData), noDataOptions = options && options.noData; if (!chart.noDataLabel && chart.renderer) { chart.noDataLabel = chart.renderer .label( text, 0, 0, null, null, null, noDataOptions.useHTML, null, 'no-data' ); chart.noDataLabel .attr(noDataOptions.attr) .css(noDataOptions.style); chart.noDataLabel.add(); chart.noDataLabel.align( extend(chart.noDataLabel.getBBox(), noDataOptions.position), false, 'plotBox' ); } }; /** * Hide no-data message */ chartPrototype.hideNoData = function () { var chart = this; if (chart.noDataLabel) { chart.noDataLabel = chart.noDataLabel.destroy(); } }; /** * Returns true if there are data points within the plot area now */ chartPrototype.hasData = function () { var chart = this, series = chart.series || [], i = series.length; while (i--) { if (series[i].hasData() && !series[i].options.isInternal) { return true; } } return chart.loadingShown; // #4588 }; /** * Add event listener to handle automatic show or hide no-data message */ H.addEvent(H.Chart, 'render', function handleNoData() { if (this.hasData()) { this.hideNoData(); } else { this.showNoData(); } }); }(Highcharts)); return (function () { }()); }));
PypiClean
/pynusmv-1.0rc8-cp35-cp35m-manylinux1_x86_64.whl/pynusmv_lower_interface/nusmv/hrc/dumpers/dumpers.py
from sys import version_info as _swig_python_version_info if _swig_python_version_info >= (2, 7, 0): def swig_import_helper(): import importlib pkg = __name__.rpartition('.')[0] mname = '.'.join((pkg, '_dumpers')).lstrip('.') try: return importlib.import_module(mname) except ImportError: return importlib.import_module('_dumpers') _dumpers = swig_import_helper() del swig_import_helper elif _swig_python_version_info >= (2, 6, 0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_dumpers', [dirname(__file__)]) except ImportError: import _dumpers return _dumpers try: _mod = imp.load_module('_dumpers', fp, pathname, description) finally: if fp is not None: fp.close() return _mod _dumpers = swig_import_helper() del swig_import_helper else: import _dumpers del _swig_python_version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. try: import builtins as __builtin__ except ImportError: import __builtin__ def _swig_setattr_nondynamic(self, class_type, name, value, static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name, None) if method: return method(self, value) if (not static): if _newclass: object.__setattr__(self, name, value) else: self.__dict__[name] = value else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self, class_type, name, value): return _swig_setattr_nondynamic(self, class_type, name, value, 0) def _swig_getattr(self, class_type, name): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name, None) if method: return method(self) raise AttributeError("'%s' object has no attribute '%s'" % (class_type.__name__, name)) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except __builtin__.Exception: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except __builtin__.Exception: class _object: pass _newclass = 0 PRIuPTR = _dumpers.PRIuPTR PRIdPTR = _dumpers.PRIdPTR LLU = _dumpers.LLU LLO = _dumpers.LLO LLX = _dumpers.LLX false = _dumpers.false true = _dumpers.true OUTCOME_GENERIC_ERROR = _dumpers.OUTCOME_GENERIC_ERROR OUTCOME_PARSER_ERROR = _dumpers.OUTCOME_PARSER_ERROR OUTCOME_SYNTAX_ERROR = _dumpers.OUTCOME_SYNTAX_ERROR OUTCOME_FILE_ERROR = _dumpers.OUTCOME_FILE_ERROR OUTCOME_SUCCESS_REQUIRED_HELP = _dumpers.OUTCOME_SUCCESS_REQUIRED_HELP OUTCOME_SUCCESS = _dumpers.OUTCOME_SUCCESS def Object_destroy(arg1: 'Object_ptr', arg: 'void *') -> "void": """Object_destroy(Object_ptr arg1, void * arg)""" return _dumpers.Object_destroy(arg1, arg) def Object_copy(arg1: 'Object_ptr const') -> "Object_ptr": """Object_copy(Object_ptr const arg1) -> Object_ptr""" return _dumpers.Object_copy(arg1) HDS_HRC_TOP = _dumpers.HDS_HRC_TOP HDS_LIST_MODS = _dumpers.HDS_LIST_MODS HDS_MOD = _dumpers.HDS_MOD HDS_MOD_NAME = _dumpers.HDS_MOD_NAME HDS_LIST_MOD_FORMAL_PARAMS = _dumpers.HDS_LIST_MOD_FORMAL_PARAMS HDS_MOD_FORMAL_PARAM = _dumpers.HDS_MOD_FORMAL_PARAM HDS_LIST_MOD_INSTANCES = _dumpers.HDS_LIST_MOD_INSTANCES HDS_MOD_INSTANCE = _dumpers.HDS_MOD_INSTANCE HDS_MOD_INSTANCE_VARNAME = _dumpers.HDS_MOD_INSTANCE_VARNAME HDS_MOD_INSTANCE_MODNAME = _dumpers.HDS_MOD_INSTANCE_MODNAME HDS_LIST_MOD_INSTANCE_ACTUAL_PARAMS = _dumpers.HDS_LIST_MOD_INSTANCE_ACTUAL_PARAMS HDS_MOD_INSTANCE_ACTUAL_PARAM = _dumpers.HDS_MOD_INSTANCE_ACTUAL_PARAM HDS_LIST_SYMBOLS = _dumpers.HDS_LIST_SYMBOLS HDS_SYMBOL = _dumpers.HDS_SYMBOL HDS_LIST_ASSIGNS = _dumpers.HDS_LIST_ASSIGNS HDS_ASSIGN_INIT = _dumpers.HDS_ASSIGN_INIT HDS_ASSIGN_INVAR = _dumpers.HDS_ASSIGN_INVAR HDS_ASSIGN_NEXT = _dumpers.HDS_ASSIGN_NEXT HDS_LIST_CONSTRAINTS = _dumpers.HDS_LIST_CONSTRAINTS HDS_CONSTRAINT_INIT = _dumpers.HDS_CONSTRAINT_INIT HDS_CONSTRAINT_INVAR = _dumpers.HDS_CONSTRAINT_INVAR HDS_CONSTRAINT_TRANS = _dumpers.HDS_CONSTRAINT_TRANS HDS_LIST_FAIRNESS = _dumpers.HDS_LIST_FAIRNESS HDS_JUSTICE = _dumpers.HDS_JUSTICE HDS_COMPASSION = _dumpers.HDS_COMPASSION HDS_LIST_SPECS = _dumpers.HDS_LIST_SPECS HDS_SPEC = _dumpers.HDS_SPEC HDS_LIST_COMPILER_INFO = _dumpers.HDS_LIST_COMPILER_INFO HDS_LIST_SYNTAX_ERRORS = _dumpers.HDS_LIST_SYNTAX_ERRORS HDS_ERROR = _dumpers.HDS_ERROR class HrcDumperInfo(_object): """Proxy of C HrcDumperInfo_TAG struct.""" __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, HrcDumperInfo, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, HrcDumperInfo, name) __repr__ = _swig_repr __swig_setmethods__["stage"] = _dumpers.HrcDumperInfo_stage_set __swig_getmethods__["stage"] = _dumpers.HrcDumperInfo_stage_get if _newclass: stage = _swig_property(_dumpers.HrcDumperInfo_stage_get, _dumpers.HrcDumperInfo_stage_set) __swig_getmethods__["n1"] = _dumpers.HrcDumperInfo_n1_get if _newclass: n1 = _swig_property(_dumpers.HrcDumperInfo_n1_get) __swig_getmethods__["n2"] = _dumpers.HrcDumperInfo_n2_get if _newclass: n2 = _swig_property(_dumpers.HrcDumperInfo_n2_get) __swig_getmethods__["error"] = _dumpers.HrcDumperInfo_error_get if _newclass: error = _swig_property(_dumpers.HrcDumperInfo_error_get) __swig_setmethods__["symb_cat"] = _dumpers.HrcDumperInfo_symb_cat_set __swig_getmethods__["symb_cat"] = _dumpers.HrcDumperInfo_symb_cat_get if _newclass: symb_cat = _swig_property(_dumpers.HrcDumperInfo_symb_cat_get, _dumpers.HrcDumperInfo_symb_cat_set) __swig_setmethods__["spec_type"] = _dumpers.HrcDumperInfo_spec_type_set __swig_getmethods__["spec_type"] = _dumpers.HrcDumperInfo_spec_type_get if _newclass: spec_type = _swig_property(_dumpers.HrcDumperInfo_spec_type_get, _dumpers.HrcDumperInfo_spec_type_set) __swig_setmethods__["last_in_list"] = _dumpers.HrcDumperInfo_last_in_list_set __swig_getmethods__["last_in_list"] = _dumpers.HrcDumperInfo_last_in_list_get if _newclass: last_in_list = _swig_property(_dumpers.HrcDumperInfo_last_in_list_get, _dumpers.HrcDumperInfo_last_in_list_set) __swig_setmethods__["list_is_empty"] = _dumpers.HrcDumperInfo_list_is_empty_set __swig_getmethods__["list_is_empty"] = _dumpers.HrcDumperInfo_list_is_empty_get if _newclass: list_is_empty = _swig_property(_dumpers.HrcDumperInfo_list_is_empty_get, _dumpers.HrcDumperInfo_list_is_empty_set) __swig_setmethods__["hrcNode"] = _dumpers.HrcDumperInfo_hrcNode_set __swig_getmethods__["hrcNode"] = _dumpers.HrcDumperInfo_hrcNode_get if _newclass: hrcNode = _swig_property(_dumpers.HrcDumperInfo_hrcNode_get, _dumpers.HrcDumperInfo_hrcNode_set) __swig_setmethods__["user"] = _dumpers.HrcDumperInfo_user_set __swig_getmethods__["user"] = _dumpers.HrcDumperInfo_user_get if _newclass: user = _swig_property(_dumpers.HrcDumperInfo_user_get, _dumpers.HrcDumperInfo_user_set) def __init__(self): """__init__(HrcDumperInfo_TAG self) -> HrcDumperInfo""" this = _dumpers.new_HrcDumperInfo() try: self.this.append(this) except __builtin__.Exception: self.this = this __swig_destroy__ = _dumpers.delete_HrcDumperInfo __del__ = lambda self: None HrcDumperInfo_swigregister = _dumpers.HrcDumperInfo_swigregister HrcDumperInfo_swigregister(HrcDumperInfo) HRC_STAGE_BEGIN = _dumpers.HRC_STAGE_BEGIN HRC_STAGE_END = _dumpers.HRC_STAGE_END HRC_STAGE_BEGIN_END = _dumpers.HRC_STAGE_BEGIN_END class HrcDumperInfo_TAG_error(_object): """Proxy of C HrcDumperInfo_TAG_error struct.""" __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, HrcDumperInfo_TAG_error, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, HrcDumperInfo_TAG_error, name) __repr__ = _swig_repr __swig_setmethods__["lineno"] = _dumpers.HrcDumperInfo_TAG_error_lineno_set __swig_getmethods__["lineno"] = _dumpers.HrcDumperInfo_TAG_error_lineno_get if _newclass: lineno = _swig_property(_dumpers.HrcDumperInfo_TAG_error_lineno_get, _dumpers.HrcDumperInfo_TAG_error_lineno_set) __swig_setmethods__["filename"] = _dumpers.HrcDumperInfo_TAG_error_filename_set __swig_getmethods__["filename"] = _dumpers.HrcDumperInfo_TAG_error_filename_get if _newclass: filename = _swig_property(_dumpers.HrcDumperInfo_TAG_error_filename_get, _dumpers.HrcDumperInfo_TAG_error_filename_set) __swig_setmethods__["message"] = _dumpers.HrcDumperInfo_TAG_error_message_set __swig_getmethods__["message"] = _dumpers.HrcDumperInfo_TAG_error_message_get if _newclass: message = _swig_property(_dumpers.HrcDumperInfo_TAG_error_message_get, _dumpers.HrcDumperInfo_TAG_error_message_set) __swig_setmethods__["token"] = _dumpers.HrcDumperInfo_TAG_error_token_set __swig_getmethods__["token"] = _dumpers.HrcDumperInfo_TAG_error_token_get if _newclass: token = _swig_property(_dumpers.HrcDumperInfo_TAG_error_token_get, _dumpers.HrcDumperInfo_TAG_error_token_set) def __init__(self): """__init__(HrcDumperInfo_TAG_error self) -> HrcDumperInfo_TAG_error""" this = _dumpers.new_HrcDumperInfo_TAG_error() try: self.this.append(this) except __builtin__.Exception: self.this = this __swig_destroy__ = _dumpers.delete_HrcDumperInfo_TAG_error __del__ = lambda self: None HrcDumperInfo_TAG_error_swigregister = _dumpers.HrcDumperInfo_TAG_error_swigregister HrcDumperInfo_TAG_error_swigregister(HrcDumperInfo_TAG_error) class HrcDumperInfo_TAG_n2(_object): """Proxy of C HrcDumperInfo_TAG_n2 struct.""" __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, HrcDumperInfo_TAG_n2, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, HrcDumperInfo_TAG_n2, name) __repr__ = _swig_repr __swig_setmethods__["type"] = _dumpers.HrcDumperInfo_TAG_n2_type_set __swig_getmethods__["type"] = _dumpers.HrcDumperInfo_TAG_n2_type_get if _newclass: type = _swig_property(_dumpers.HrcDumperInfo_TAG_n2_type_get, _dumpers.HrcDumperInfo_TAG_n2_type_set) __swig_setmethods__["body"] = _dumpers.HrcDumperInfo_TAG_n2_body_set __swig_getmethods__["body"] = _dumpers.HrcDumperInfo_TAG_n2_body_get if _newclass: body = _swig_property(_dumpers.HrcDumperInfo_TAG_n2_body_get, _dumpers.HrcDumperInfo_TAG_n2_body_set) __swig_setmethods__["expr"] = _dumpers.HrcDumperInfo_TAG_n2_expr_set __swig_getmethods__["expr"] = _dumpers.HrcDumperInfo_TAG_n2_expr_get if _newclass: expr = _swig_property(_dumpers.HrcDumperInfo_TAG_n2_expr_get, _dumpers.HrcDumperInfo_TAG_n2_expr_set) __swig_setmethods__["lineno"] = _dumpers.HrcDumperInfo_TAG_n2_lineno_set __swig_getmethods__["lineno"] = _dumpers.HrcDumperInfo_TAG_n2_lineno_get if _newclass: lineno = _swig_property(_dumpers.HrcDumperInfo_TAG_n2_lineno_get, _dumpers.HrcDumperInfo_TAG_n2_lineno_set) def __init__(self): """__init__(HrcDumperInfo_TAG_n2 self) -> HrcDumperInfo_TAG_n2""" this = _dumpers.new_HrcDumperInfo_TAG_n2() try: self.this.append(this) except __builtin__.Exception: self.this = this __swig_destroy__ = _dumpers.delete_HrcDumperInfo_TAG_n2 __del__ = lambda self: None HrcDumperInfo_TAG_n2_swigregister = _dumpers.HrcDumperInfo_TAG_n2_swigregister HrcDumperInfo_TAG_n2_swigregister(HrcDumperInfo_TAG_n2) class HrcDumperInfo_TAG_n1(_object): """Proxy of C HrcDumperInfo_TAG_n1 struct.""" __swig_setmethods__ = {} __setattr__ = lambda self, name, value: _swig_setattr(self, HrcDumperInfo_TAG_n1, name, value) __swig_getmethods__ = {} __getattr__ = lambda self, name: _swig_getattr(self, HrcDumperInfo_TAG_n1, name) __repr__ = _swig_repr __swig_setmethods__["name"] = _dumpers.HrcDumperInfo_TAG_n1_name_set __swig_getmethods__["name"] = _dumpers.HrcDumperInfo_TAG_n1_name_get if _newclass: name = _swig_property(_dumpers.HrcDumperInfo_TAG_n1_name_get, _dumpers.HrcDumperInfo_TAG_n1_name_set) __swig_setmethods__["value"] = _dumpers.HrcDumperInfo_TAG_n1_value_set __swig_getmethods__["value"] = _dumpers.HrcDumperInfo_TAG_n1_value_get if _newclass: value = _swig_property(_dumpers.HrcDumperInfo_TAG_n1_value_get, _dumpers.HrcDumperInfo_TAG_n1_value_set) __swig_setmethods__["expr"] = _dumpers.HrcDumperInfo_TAG_n1_expr_set __swig_getmethods__["expr"] = _dumpers.HrcDumperInfo_TAG_n1_expr_get if _newclass: expr = _swig_property(_dumpers.HrcDumperInfo_TAG_n1_expr_get, _dumpers.HrcDumperInfo_TAG_n1_expr_set) def __init__(self): """__init__(HrcDumperInfo_TAG_n1 self) -> HrcDumperInfo_TAG_n1""" this = _dumpers.new_HrcDumperInfo_TAG_n1() try: self.this.append(this) except __builtin__.Exception: self.this = this __swig_destroy__ = _dumpers.delete_HrcDumperInfo_TAG_n1 __del__ = lambda self: None HrcDumperInfo_TAG_n1_swigregister = _dumpers.HrcDumperInfo_TAG_n1_swigregister HrcDumperInfo_TAG_n1_swigregister(HrcDumperInfo_TAG_n1) def HrcDumper_create(fout: 'FILE *') -> "HrcDumper_ptr": """HrcDumper_create(FILE * fout) -> HrcDumper_ptr""" return _dumpers.HrcDumper_create(fout) def HrcDumper_destroy(arg1: 'HrcDumper_ptr') -> "void": """HrcDumper_destroy(HrcDumper_ptr arg1)""" return _dumpers.HrcDumper_destroy(arg1) def HrcDumper_dump_snippet(arg1: 'HrcDumper_ptr', snippet: 'HrcDumperSnippet', info: 'HrcDumperInfo') -> "void": """HrcDumper_dump_snippet(HrcDumper_ptr arg1, HrcDumperSnippet snippet, HrcDumperInfo info)""" return _dumpers.HrcDumper_dump_snippet(arg1, snippet, info) def HrcDumper_enable_indentation(arg1: 'HrcDumper_ptr', flag: 'boolean') -> "void": """HrcDumper_enable_indentation(HrcDumper_ptr arg1, boolean flag)""" return _dumpers.HrcDumper_enable_indentation(arg1, flag) def HrcDumper_inc_indent(arg1: 'HrcDumper_ptr') -> "void": """HrcDumper_inc_indent(HrcDumper_ptr arg1)""" return _dumpers.HrcDumper_inc_indent(arg1) def HrcDumper_dec_indent(arg1: 'HrcDumper_ptr') -> "void": """HrcDumper_dec_indent(HrcDumper_ptr arg1)""" return _dumpers.HrcDumper_dec_indent(arg1) def HrcDumper_enable_mod_suffix(arg1: 'HrcDumper_ptr', flag: 'boolean') -> "void": """HrcDumper_enable_mod_suffix(HrcDumper_ptr arg1, boolean flag)""" return _dumpers.HrcDumper_enable_mod_suffix(arg1, flag) def HrcDumperDebug_create(fout: 'FILE *') -> "HrcDumperDebug_ptr": """HrcDumperDebug_create(FILE * fout) -> HrcDumperDebug_ptr""" return _dumpers.HrcDumperDebug_create(fout) def HrcDumperSmv_create(fout: 'FILE *') -> "HrcDumperSmv_ptr": """HrcDumperSmv_create(FILE * fout) -> HrcDumperSmv_ptr""" return _dumpers.HrcDumperSmv_create(fout) def HrcDumperXml_create(fout: 'FILE *') -> "HrcDumperXml_ptr": """HrcDumperXml_create(FILE * fout) -> HrcDumperXml_ptr""" return _dumpers.HrcDumperXml_create(fout) # This file is compatible with both classic and new-style classes.
PypiClean
/cdktf-cdktf-provider-google_beta-9.0.1.tar.gz/cdktf-cdktf-provider-google_beta-9.0.1/src/cdktf_cdktf_provider_google_beta/data_google_compute_backend_bucket/__init__.py
import abc import builtins import datetime import enum import typing import jsii import publication import typing_extensions from typeguard import check_type from .._jsii import * import cdktf as _cdktf_9a9027ec import constructs as _constructs_77d1e7e8 class DataGoogleComputeBackendBucket( _cdktf_9a9027ec.TerraformDataSource, metaclass=jsii.JSIIMeta, jsii_type="@cdktf/provider-google-beta.dataGoogleComputeBackendBucket.DataGoogleComputeBackendBucket", ): '''Represents a {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_compute_backend_bucket google_compute_backend_bucket}.''' def __init__( self, scope: _constructs_77d1e7e8.Construct, id_: builtins.str, *, name: builtins.str, id: typing.Optional[builtins.str] = None, project: typing.Optional[builtins.str] = None, connection: typing.Optional[typing.Union[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.WinrmProvisionerConnection, typing.Dict[builtins.str, typing.Any]]]] = None, count: typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]] = None, depends_on: typing.Optional[typing.Sequence[_cdktf_9a9027ec.ITerraformDependable]] = None, for_each: typing.Optional[_cdktf_9a9027ec.ITerraformIterator] = None, lifecycle: typing.Optional[typing.Union[_cdktf_9a9027ec.TerraformResourceLifecycle, typing.Dict[builtins.str, typing.Any]]] = None, provider: typing.Optional[_cdktf_9a9027ec.TerraformProvider] = None, provisioners: typing.Optional[typing.Sequence[typing.Union[typing.Union[_cdktf_9a9027ec.FileProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.LocalExecProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.RemoteExecProvisioner, typing.Dict[builtins.str, typing.Any]]]]] = None, ) -> None: '''Create a new {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_compute_backend_bucket google_compute_backend_bucket} Data Source. :param scope: The scope in which to define this construct. :param id_: The scoped construct ID. Must be unique amongst siblings in the same scope :param name: Name of the resource. Provided by the client when the resource is created. The name must be 1-63 characters long, and comply with RFC1035. Specifically, the name must be 1-63 characters long and match the regular expression '`a-z <%5B-a-z0-9%5D*%5Ba-z0-9%5D>`_?' which means the first character must be a lowercase letter, and all following characters must be a dash, lowercase letter, or digit, except the last character, which cannot be a dash. Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_compute_backend_bucket#name DataGoogleComputeBackendBucket#name} :param id: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_compute_backend_bucket#id DataGoogleComputeBackendBucket#id}. Please be aware that the id field is automatically added to all resources in Terraform providers using a Terraform provider SDK version below 2. If you experience problems setting this value it might not be settable. Please take a look at the provider documentation to ensure it should be settable. :param project: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_compute_backend_bucket#project DataGoogleComputeBackendBucket#project}. :param connection: :param count: :param depends_on: :param for_each: :param lifecycle: :param provider: :param provisioners: ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__7e2d78d18436131ea7e1711059d0d67d8353315190a6e754a1750bf022e5cc20) check_type(argname="argument scope", value=scope, expected_type=type_hints["scope"]) check_type(argname="argument id_", value=id_, expected_type=type_hints["id_"]) config = DataGoogleComputeBackendBucketConfig( name=name, id=id, project=project, connection=connection, count=count, depends_on=depends_on, for_each=for_each, lifecycle=lifecycle, provider=provider, provisioners=provisioners, ) jsii.create(self.__class__, self, [scope, id_, config]) @jsii.member(jsii_name="resetId") def reset_id(self) -> None: return typing.cast(None, jsii.invoke(self, "resetId", [])) @jsii.member(jsii_name="resetProject") def reset_project(self) -> None: return typing.cast(None, jsii.invoke(self, "resetProject", [])) @jsii.member(jsii_name="synthesizeAttributes") def _synthesize_attributes(self) -> typing.Mapping[builtins.str, typing.Any]: return typing.cast(typing.Mapping[builtins.str, typing.Any], jsii.invoke(self, "synthesizeAttributes", [])) @jsii.python.classproperty @jsii.member(jsii_name="tfResourceType") def TF_RESOURCE_TYPE(cls) -> builtins.str: return typing.cast(builtins.str, jsii.sget(cls, "tfResourceType")) @builtins.property @jsii.member(jsii_name="bucketName") def bucket_name(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "bucketName")) @builtins.property @jsii.member(jsii_name="cdnPolicy") def cdn_policy(self) -> "DataGoogleComputeBackendBucketCdnPolicyList": return typing.cast("DataGoogleComputeBackendBucketCdnPolicyList", jsii.get(self, "cdnPolicy")) @builtins.property @jsii.member(jsii_name="compressionMode") def compression_mode(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "compressionMode")) @builtins.property @jsii.member(jsii_name="creationTimestamp") def creation_timestamp(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "creationTimestamp")) @builtins.property @jsii.member(jsii_name="customResponseHeaders") def custom_response_headers(self) -> typing.List[builtins.str]: return typing.cast(typing.List[builtins.str], jsii.get(self, "customResponseHeaders")) @builtins.property @jsii.member(jsii_name="description") def description(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "description")) @builtins.property @jsii.member(jsii_name="edgeSecurityPolicy") def edge_security_policy(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "edgeSecurityPolicy")) @builtins.property @jsii.member(jsii_name="enableCdn") def enable_cdn(self) -> _cdktf_9a9027ec.IResolvable: return typing.cast(_cdktf_9a9027ec.IResolvable, jsii.get(self, "enableCdn")) @builtins.property @jsii.member(jsii_name="selfLink") def self_link(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "selfLink")) @builtins.property @jsii.member(jsii_name="idInput") def id_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "idInput")) @builtins.property @jsii.member(jsii_name="nameInput") def name_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "nameInput")) @builtins.property @jsii.member(jsii_name="projectInput") def project_input(self) -> typing.Optional[builtins.str]: return typing.cast(typing.Optional[builtins.str], jsii.get(self, "projectInput")) @builtins.property @jsii.member(jsii_name="id") def id(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "id")) @id.setter def id(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__b6a22cd18df0dba19e69fe8a379c4e0658349edce581213c23c99cb3b51c8942) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "id", value) @builtins.property @jsii.member(jsii_name="name") def name(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "name")) @name.setter def name(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__d6debde651242a4adf84b623db3628c598aca6db019eaac30a670df305bc2c9b) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "name", value) @builtins.property @jsii.member(jsii_name="project") def project(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "project")) @project.setter def project(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__2dda25237b5fbd74d7855095295247b7270a46087a93f84e4ebb807233646e5b) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "project", value) @jsii.data_type( jsii_type="@cdktf/provider-google-beta.dataGoogleComputeBackendBucket.DataGoogleComputeBackendBucketCdnPolicy", jsii_struct_bases=[], name_mapping={}, ) class DataGoogleComputeBackendBucketCdnPolicy: def __init__(self) -> None: self._values: typing.Dict[builtins.str, typing.Any] = {} def __eq__(self, rhs: typing.Any) -> builtins.bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs: typing.Any) -> builtins.bool: return not (rhs == self) def __repr__(self) -> str: return "DataGoogleComputeBackendBucketCdnPolicy(%s)" % ", ".join( k + "=" + repr(v) for k, v in self._values.items() ) @jsii.data_type( jsii_type="@cdktf/provider-google-beta.dataGoogleComputeBackendBucket.DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeaders", jsii_struct_bases=[], name_mapping={}, ) class DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeaders: def __init__(self) -> None: self._values: typing.Dict[builtins.str, typing.Any] = {} def __eq__(self, rhs: typing.Any) -> builtins.bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs: typing.Any) -> builtins.bool: return not (rhs == self) def __repr__(self) -> str: return "DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeaders(%s)" % ", ".join( k + "=" + repr(v) for k, v in self._values.items() ) class DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeadersList( _cdktf_9a9027ec.ComplexList, metaclass=jsii.JSIIMeta, jsii_type="@cdktf/provider-google-beta.dataGoogleComputeBackendBucket.DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeadersList", ): def __init__( self, terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, wraps_set: builtins.bool, ) -> None: ''' :param terraform_resource: The parent resource. :param terraform_attribute: The attribute on the parent resource this class is referencing. :param wraps_set: whether the list is wrapping a set (will add tolist() to be able to access an item via an index). ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__0f88e1d48bd0ffc24d4e5bed5b920b7e0ab9d467d09807dcd50699bd249dc63d) check_type(argname="argument terraform_resource", value=terraform_resource, expected_type=type_hints["terraform_resource"]) check_type(argname="argument terraform_attribute", value=terraform_attribute, expected_type=type_hints["terraform_attribute"]) check_type(argname="argument wraps_set", value=wraps_set, expected_type=type_hints["wraps_set"]) jsii.create(self.__class__, self, [terraform_resource, terraform_attribute, wraps_set]) @jsii.member(jsii_name="get") def get( self, index: jsii.Number, ) -> "DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeadersOutputReference": ''' :param index: the index of the item to return. ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__32a39f280d472a517269c1da5e3bdda9e2427cd760f2c2d84d868af172699800) check_type(argname="argument index", value=index, expected_type=type_hints["index"]) return typing.cast("DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeadersOutputReference", jsii.invoke(self, "get", [index])) @builtins.property @jsii.member(jsii_name="terraformAttribute") def _terraform_attribute(self) -> builtins.str: '''The attribute on the parent resource this class is referencing.''' return typing.cast(builtins.str, jsii.get(self, "terraformAttribute")) @_terraform_attribute.setter def _terraform_attribute(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__da1058e09fce98c13e32a996b0dfbe7fc9201de948b1f0eee8123c1f69862f70) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "terraformAttribute", value) @builtins.property @jsii.member(jsii_name="terraformResource") def _terraform_resource(self) -> _cdktf_9a9027ec.IInterpolatingParent: '''The parent resource.''' return typing.cast(_cdktf_9a9027ec.IInterpolatingParent, jsii.get(self, "terraformResource")) @_terraform_resource.setter def _terraform_resource(self, value: _cdktf_9a9027ec.IInterpolatingParent) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__eb6638fb56c6f2da087116161005f39333d7e42d84e1d8f0022b3c24aaa53f0e) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "terraformResource", value) @builtins.property @jsii.member(jsii_name="wrapsSet") def _wraps_set(self) -> builtins.bool: '''whether the list is wrapping a set (will add tolist() to be able to access an item via an index).''' return typing.cast(builtins.bool, jsii.get(self, "wrapsSet")) @_wraps_set.setter def _wraps_set(self, value: builtins.bool) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__2527ee1e3a2b121cb84c824e5aa9ea99a73ae6343dbe73f891ff3bde4c5374ef) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "wrapsSet", value) class DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeadersOutputReference( _cdktf_9a9027ec.ComplexObject, metaclass=jsii.JSIIMeta, jsii_type="@cdktf/provider-google-beta.dataGoogleComputeBackendBucket.DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeadersOutputReference", ): def __init__( self, terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, complex_object_index: jsii.Number, complex_object_is_from_set: builtins.bool, ) -> None: ''' :param terraform_resource: The parent resource. :param terraform_attribute: The attribute on the parent resource this class is referencing. :param complex_object_index: the index of this item in the list. :param complex_object_is_from_set: whether the list is wrapping a set (will add tolist() to be able to access an item via an index). ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__3766b6296fc8de8e0a780c1a6e184cf8fc1023f2cb5085ab5e34ddbf36adcb79) check_type(argname="argument terraform_resource", value=terraform_resource, expected_type=type_hints["terraform_resource"]) check_type(argname="argument terraform_attribute", value=terraform_attribute, expected_type=type_hints["terraform_attribute"]) check_type(argname="argument complex_object_index", value=complex_object_index, expected_type=type_hints["complex_object_index"]) check_type(argname="argument complex_object_is_from_set", value=complex_object_is_from_set, expected_type=type_hints["complex_object_is_from_set"]) jsii.create(self.__class__, self, [terraform_resource, terraform_attribute, complex_object_index, complex_object_is_from_set]) @builtins.property @jsii.member(jsii_name="headerName") def header_name(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "headerName")) @builtins.property @jsii.member(jsii_name="internalValue") def internal_value( self, ) -> typing.Optional[DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeaders]: return typing.cast(typing.Optional[DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeaders], jsii.get(self, "internalValue")) @internal_value.setter def internal_value( self, value: typing.Optional[DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeaders], ) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__7270fa3e6098f8abf2a5999d5868f1468ec17488e116d5e9324a15371a9f2038) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "internalValue", value) @jsii.data_type( jsii_type="@cdktf/provider-google-beta.dataGoogleComputeBackendBucket.DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicy", jsii_struct_bases=[], name_mapping={}, ) class DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicy: def __init__(self) -> None: self._values: typing.Dict[builtins.str, typing.Any] = {} def __eq__(self, rhs: typing.Any) -> builtins.bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs: typing.Any) -> builtins.bool: return not (rhs == self) def __repr__(self) -> str: return "DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicy(%s)" % ", ".join( k + "=" + repr(v) for k, v in self._values.items() ) class DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicyList( _cdktf_9a9027ec.ComplexList, metaclass=jsii.JSIIMeta, jsii_type="@cdktf/provider-google-beta.dataGoogleComputeBackendBucket.DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicyList", ): def __init__( self, terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, wraps_set: builtins.bool, ) -> None: ''' :param terraform_resource: The parent resource. :param terraform_attribute: The attribute on the parent resource this class is referencing. :param wraps_set: whether the list is wrapping a set (will add tolist() to be able to access an item via an index). ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__a7f1ec33f91b932a6dd8167e079b48c0e2980ba8b40b18c5eb5496fa8f576a58) check_type(argname="argument terraform_resource", value=terraform_resource, expected_type=type_hints["terraform_resource"]) check_type(argname="argument terraform_attribute", value=terraform_attribute, expected_type=type_hints["terraform_attribute"]) check_type(argname="argument wraps_set", value=wraps_set, expected_type=type_hints["wraps_set"]) jsii.create(self.__class__, self, [terraform_resource, terraform_attribute, wraps_set]) @jsii.member(jsii_name="get") def get( self, index: jsii.Number, ) -> "DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicyOutputReference": ''' :param index: the index of the item to return. ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__2827e0b92ff34b8bb718a6a71a5b4ca3c836af7b2c4f381b0630b395db2fb2d1) check_type(argname="argument index", value=index, expected_type=type_hints["index"]) return typing.cast("DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicyOutputReference", jsii.invoke(self, "get", [index])) @builtins.property @jsii.member(jsii_name="terraformAttribute") def _terraform_attribute(self) -> builtins.str: '''The attribute on the parent resource this class is referencing.''' return typing.cast(builtins.str, jsii.get(self, "terraformAttribute")) @_terraform_attribute.setter def _terraform_attribute(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__ebec2df0bbfe3d8d405acd2fc28af7b63b311056fff366efd12c63d5bfe8a875) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "terraformAttribute", value) @builtins.property @jsii.member(jsii_name="terraformResource") def _terraform_resource(self) -> _cdktf_9a9027ec.IInterpolatingParent: '''The parent resource.''' return typing.cast(_cdktf_9a9027ec.IInterpolatingParent, jsii.get(self, "terraformResource")) @_terraform_resource.setter def _terraform_resource(self, value: _cdktf_9a9027ec.IInterpolatingParent) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__3101edd741c50c0a882e446082ce868f20c568fc2ffbac4cfc4f8269dbc26551) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "terraformResource", value) @builtins.property @jsii.member(jsii_name="wrapsSet") def _wraps_set(self) -> builtins.bool: '''whether the list is wrapping a set (will add tolist() to be able to access an item via an index).''' return typing.cast(builtins.bool, jsii.get(self, "wrapsSet")) @_wraps_set.setter def _wraps_set(self, value: builtins.bool) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__80db7427130ab9a83ba02502d0c9f1c64790ff69827a747d37bf8dfd06d1925b) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "wrapsSet", value) class DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicyOutputReference( _cdktf_9a9027ec.ComplexObject, metaclass=jsii.JSIIMeta, jsii_type="@cdktf/provider-google-beta.dataGoogleComputeBackendBucket.DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicyOutputReference", ): def __init__( self, terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, complex_object_index: jsii.Number, complex_object_is_from_set: builtins.bool, ) -> None: ''' :param terraform_resource: The parent resource. :param terraform_attribute: The attribute on the parent resource this class is referencing. :param complex_object_index: the index of this item in the list. :param complex_object_is_from_set: whether the list is wrapping a set (will add tolist() to be able to access an item via an index). ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__9fbecce0ae31eba21d9ca0f0bfaf547c84da8c2b5f7e0cfe6e2ee2a2a5aaeae8) check_type(argname="argument terraform_resource", value=terraform_resource, expected_type=type_hints["terraform_resource"]) check_type(argname="argument terraform_attribute", value=terraform_attribute, expected_type=type_hints["terraform_attribute"]) check_type(argname="argument complex_object_index", value=complex_object_index, expected_type=type_hints["complex_object_index"]) check_type(argname="argument complex_object_is_from_set", value=complex_object_is_from_set, expected_type=type_hints["complex_object_is_from_set"]) jsii.create(self.__class__, self, [terraform_resource, terraform_attribute, complex_object_index, complex_object_is_from_set]) @builtins.property @jsii.member(jsii_name="includeHttpHeaders") def include_http_headers(self) -> typing.List[builtins.str]: return typing.cast(typing.List[builtins.str], jsii.get(self, "includeHttpHeaders")) @builtins.property @jsii.member(jsii_name="queryStringWhitelist") def query_string_whitelist(self) -> typing.List[builtins.str]: return typing.cast(typing.List[builtins.str], jsii.get(self, "queryStringWhitelist")) @builtins.property @jsii.member(jsii_name="internalValue") def internal_value( self, ) -> typing.Optional[DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicy]: return typing.cast(typing.Optional[DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicy], jsii.get(self, "internalValue")) @internal_value.setter def internal_value( self, value: typing.Optional[DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicy], ) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__6e2d1f6044c81cb79f9f53cb38097aa74488ff998af3f9c9f24df6f0c598dc22) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "internalValue", value) class DataGoogleComputeBackendBucketCdnPolicyList( _cdktf_9a9027ec.ComplexList, metaclass=jsii.JSIIMeta, jsii_type="@cdktf/provider-google-beta.dataGoogleComputeBackendBucket.DataGoogleComputeBackendBucketCdnPolicyList", ): def __init__( self, terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, wraps_set: builtins.bool, ) -> None: ''' :param terraform_resource: The parent resource. :param terraform_attribute: The attribute on the parent resource this class is referencing. :param wraps_set: whether the list is wrapping a set (will add tolist() to be able to access an item via an index). ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__08c40e3c165a72b76716c483d8d8c33ed263cdcca26fd900a7125ecb1b250433) check_type(argname="argument terraform_resource", value=terraform_resource, expected_type=type_hints["terraform_resource"]) check_type(argname="argument terraform_attribute", value=terraform_attribute, expected_type=type_hints["terraform_attribute"]) check_type(argname="argument wraps_set", value=wraps_set, expected_type=type_hints["wraps_set"]) jsii.create(self.__class__, self, [terraform_resource, terraform_attribute, wraps_set]) @jsii.member(jsii_name="get") def get( self, index: jsii.Number, ) -> "DataGoogleComputeBackendBucketCdnPolicyOutputReference": ''' :param index: the index of the item to return. ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__3eb7a7c17abb9f0adc717b7986dac132589496c0b686474b94ee4a80130ab3ec) check_type(argname="argument index", value=index, expected_type=type_hints["index"]) return typing.cast("DataGoogleComputeBackendBucketCdnPolicyOutputReference", jsii.invoke(self, "get", [index])) @builtins.property @jsii.member(jsii_name="terraformAttribute") def _terraform_attribute(self) -> builtins.str: '''The attribute on the parent resource this class is referencing.''' return typing.cast(builtins.str, jsii.get(self, "terraformAttribute")) @_terraform_attribute.setter def _terraform_attribute(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__0c7b1ab6644ad22f1b3bcaf696e1116d4fe1a266ca12147a0daf1dc1d076faad) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "terraformAttribute", value) @builtins.property @jsii.member(jsii_name="terraformResource") def _terraform_resource(self) -> _cdktf_9a9027ec.IInterpolatingParent: '''The parent resource.''' return typing.cast(_cdktf_9a9027ec.IInterpolatingParent, jsii.get(self, "terraformResource")) @_terraform_resource.setter def _terraform_resource(self, value: _cdktf_9a9027ec.IInterpolatingParent) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__51e2a82395744216b6ed4d42f01bcfb925cbdd8a5e760964ab9e7006e781d319) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "terraformResource", value) @builtins.property @jsii.member(jsii_name="wrapsSet") def _wraps_set(self) -> builtins.bool: '''whether the list is wrapping a set (will add tolist() to be able to access an item via an index).''' return typing.cast(builtins.bool, jsii.get(self, "wrapsSet")) @_wraps_set.setter def _wraps_set(self, value: builtins.bool) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__38e075b42167bd974dd39a222b5be9698f5b7932aa97b89a5c381f3bdf72a1cc) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "wrapsSet", value) @jsii.data_type( jsii_type="@cdktf/provider-google-beta.dataGoogleComputeBackendBucket.DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicy", jsii_struct_bases=[], name_mapping={}, ) class DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicy: def __init__(self) -> None: self._values: typing.Dict[builtins.str, typing.Any] = {} def __eq__(self, rhs: typing.Any) -> builtins.bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs: typing.Any) -> builtins.bool: return not (rhs == self) def __repr__(self) -> str: return "DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicy(%s)" % ", ".join( k + "=" + repr(v) for k, v in self._values.items() ) class DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicyList( _cdktf_9a9027ec.ComplexList, metaclass=jsii.JSIIMeta, jsii_type="@cdktf/provider-google-beta.dataGoogleComputeBackendBucket.DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicyList", ): def __init__( self, terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, wraps_set: builtins.bool, ) -> None: ''' :param terraform_resource: The parent resource. :param terraform_attribute: The attribute on the parent resource this class is referencing. :param wraps_set: whether the list is wrapping a set (will add tolist() to be able to access an item via an index). ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__4d65f87cd6884c7fcfd51702991cd87d3ee09f7b3c0298a7ddd35a1acb58a5b0) check_type(argname="argument terraform_resource", value=terraform_resource, expected_type=type_hints["terraform_resource"]) check_type(argname="argument terraform_attribute", value=terraform_attribute, expected_type=type_hints["terraform_attribute"]) check_type(argname="argument wraps_set", value=wraps_set, expected_type=type_hints["wraps_set"]) jsii.create(self.__class__, self, [terraform_resource, terraform_attribute, wraps_set]) @jsii.member(jsii_name="get") def get( self, index: jsii.Number, ) -> "DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicyOutputReference": ''' :param index: the index of the item to return. ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__076eaad8d3ab0411d906772e2a15c98d9af6bafba7179af993b97adca80b31b8) check_type(argname="argument index", value=index, expected_type=type_hints["index"]) return typing.cast("DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicyOutputReference", jsii.invoke(self, "get", [index])) @builtins.property @jsii.member(jsii_name="terraformAttribute") def _terraform_attribute(self) -> builtins.str: '''The attribute on the parent resource this class is referencing.''' return typing.cast(builtins.str, jsii.get(self, "terraformAttribute")) @_terraform_attribute.setter def _terraform_attribute(self, value: builtins.str) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__7a2b88f7b0fa4802bbf142ab63e97c2b2460c68c6a3370b7167e76840e8b0cd0) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "terraformAttribute", value) @builtins.property @jsii.member(jsii_name="terraformResource") def _terraform_resource(self) -> _cdktf_9a9027ec.IInterpolatingParent: '''The parent resource.''' return typing.cast(_cdktf_9a9027ec.IInterpolatingParent, jsii.get(self, "terraformResource")) @_terraform_resource.setter def _terraform_resource(self, value: _cdktf_9a9027ec.IInterpolatingParent) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__9fe2c0e191aaec1220aa2bef11b7a05e40373d6963a1f4eca7a97f6b55da52e2) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "terraformResource", value) @builtins.property @jsii.member(jsii_name="wrapsSet") def _wraps_set(self) -> builtins.bool: '''whether the list is wrapping a set (will add tolist() to be able to access an item via an index).''' return typing.cast(builtins.bool, jsii.get(self, "wrapsSet")) @_wraps_set.setter def _wraps_set(self, value: builtins.bool) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__f0e54f02ce87b92bc77455bf43ff0c0998f65856f7c64a54b35ae93dc9d6d0ad) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "wrapsSet", value) class DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicyOutputReference( _cdktf_9a9027ec.ComplexObject, metaclass=jsii.JSIIMeta, jsii_type="@cdktf/provider-google-beta.dataGoogleComputeBackendBucket.DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicyOutputReference", ): def __init__( self, terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, complex_object_index: jsii.Number, complex_object_is_from_set: builtins.bool, ) -> None: ''' :param terraform_resource: The parent resource. :param terraform_attribute: The attribute on the parent resource this class is referencing. :param complex_object_index: the index of this item in the list. :param complex_object_is_from_set: whether the list is wrapping a set (will add tolist() to be able to access an item via an index). ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__b67bd092e66a01a938b52a11e2183176341aefaf6199bfe04dd1ff0cb569208a) check_type(argname="argument terraform_resource", value=terraform_resource, expected_type=type_hints["terraform_resource"]) check_type(argname="argument terraform_attribute", value=terraform_attribute, expected_type=type_hints["terraform_attribute"]) check_type(argname="argument complex_object_index", value=complex_object_index, expected_type=type_hints["complex_object_index"]) check_type(argname="argument complex_object_is_from_set", value=complex_object_is_from_set, expected_type=type_hints["complex_object_is_from_set"]) jsii.create(self.__class__, self, [terraform_resource, terraform_attribute, complex_object_index, complex_object_is_from_set]) @builtins.property @jsii.member(jsii_name="code") def code(self) -> jsii.Number: return typing.cast(jsii.Number, jsii.get(self, "code")) @builtins.property @jsii.member(jsii_name="ttl") def ttl(self) -> jsii.Number: return typing.cast(jsii.Number, jsii.get(self, "ttl")) @builtins.property @jsii.member(jsii_name="internalValue") def internal_value( self, ) -> typing.Optional[DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicy]: return typing.cast(typing.Optional[DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicy], jsii.get(self, "internalValue")) @internal_value.setter def internal_value( self, value: typing.Optional[DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicy], ) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__c226f19ec2ede6f82f30614444aac9ed64136b2bc2ed97165b5305c638882bfe) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "internalValue", value) class DataGoogleComputeBackendBucketCdnPolicyOutputReference( _cdktf_9a9027ec.ComplexObject, metaclass=jsii.JSIIMeta, jsii_type="@cdktf/provider-google-beta.dataGoogleComputeBackendBucket.DataGoogleComputeBackendBucketCdnPolicyOutputReference", ): def __init__( self, terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, complex_object_index: jsii.Number, complex_object_is_from_set: builtins.bool, ) -> None: ''' :param terraform_resource: The parent resource. :param terraform_attribute: The attribute on the parent resource this class is referencing. :param complex_object_index: the index of this item in the list. :param complex_object_is_from_set: whether the list is wrapping a set (will add tolist() to be able to access an item via an index). ''' if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__762fcd72d0257e36ec7fe0c548e82f809477859e2d051b158d255687f161b0fd) check_type(argname="argument terraform_resource", value=terraform_resource, expected_type=type_hints["terraform_resource"]) check_type(argname="argument terraform_attribute", value=terraform_attribute, expected_type=type_hints["terraform_attribute"]) check_type(argname="argument complex_object_index", value=complex_object_index, expected_type=type_hints["complex_object_index"]) check_type(argname="argument complex_object_is_from_set", value=complex_object_is_from_set, expected_type=type_hints["complex_object_is_from_set"]) jsii.create(self.__class__, self, [terraform_resource, terraform_attribute, complex_object_index, complex_object_is_from_set]) @builtins.property @jsii.member(jsii_name="bypassCacheOnRequestHeaders") def bypass_cache_on_request_headers( self, ) -> DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeadersList: return typing.cast(DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeadersList, jsii.get(self, "bypassCacheOnRequestHeaders")) @builtins.property @jsii.member(jsii_name="cacheKeyPolicy") def cache_key_policy( self, ) -> DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicyList: return typing.cast(DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicyList, jsii.get(self, "cacheKeyPolicy")) @builtins.property @jsii.member(jsii_name="cacheMode") def cache_mode(self) -> builtins.str: return typing.cast(builtins.str, jsii.get(self, "cacheMode")) @builtins.property @jsii.member(jsii_name="clientTtl") def client_ttl(self) -> jsii.Number: return typing.cast(jsii.Number, jsii.get(self, "clientTtl")) @builtins.property @jsii.member(jsii_name="defaultTtl") def default_ttl(self) -> jsii.Number: return typing.cast(jsii.Number, jsii.get(self, "defaultTtl")) @builtins.property @jsii.member(jsii_name="maxTtl") def max_ttl(self) -> jsii.Number: return typing.cast(jsii.Number, jsii.get(self, "maxTtl")) @builtins.property @jsii.member(jsii_name="negativeCaching") def negative_caching(self) -> _cdktf_9a9027ec.IResolvable: return typing.cast(_cdktf_9a9027ec.IResolvable, jsii.get(self, "negativeCaching")) @builtins.property @jsii.member(jsii_name="negativeCachingPolicy") def negative_caching_policy( self, ) -> DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicyList: return typing.cast(DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicyList, jsii.get(self, "negativeCachingPolicy")) @builtins.property @jsii.member(jsii_name="requestCoalescing") def request_coalescing(self) -> _cdktf_9a9027ec.IResolvable: return typing.cast(_cdktf_9a9027ec.IResolvable, jsii.get(self, "requestCoalescing")) @builtins.property @jsii.member(jsii_name="serveWhileStale") def serve_while_stale(self) -> jsii.Number: return typing.cast(jsii.Number, jsii.get(self, "serveWhileStale")) @builtins.property @jsii.member(jsii_name="signedUrlCacheMaxAgeSec") def signed_url_cache_max_age_sec(self) -> jsii.Number: return typing.cast(jsii.Number, jsii.get(self, "signedUrlCacheMaxAgeSec")) @builtins.property @jsii.member(jsii_name="internalValue") def internal_value( self, ) -> typing.Optional[DataGoogleComputeBackendBucketCdnPolicy]: return typing.cast(typing.Optional[DataGoogleComputeBackendBucketCdnPolicy], jsii.get(self, "internalValue")) @internal_value.setter def internal_value( self, value: typing.Optional[DataGoogleComputeBackendBucketCdnPolicy], ) -> None: if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__11c41232513a7f1588e8c6ad37d0547aa179507ffa928b08ac7f3b63e2044e31) check_type(argname="argument value", value=value, expected_type=type_hints["value"]) jsii.set(self, "internalValue", value) @jsii.data_type( jsii_type="@cdktf/provider-google-beta.dataGoogleComputeBackendBucket.DataGoogleComputeBackendBucketConfig", jsii_struct_bases=[_cdktf_9a9027ec.TerraformMetaArguments], name_mapping={ "connection": "connection", "count": "count", "depends_on": "dependsOn", "for_each": "forEach", "lifecycle": "lifecycle", "provider": "provider", "provisioners": "provisioners", "name": "name", "id": "id", "project": "project", }, ) class DataGoogleComputeBackendBucketConfig(_cdktf_9a9027ec.TerraformMetaArguments): def __init__( self, *, connection: typing.Optional[typing.Union[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.WinrmProvisionerConnection, typing.Dict[builtins.str, typing.Any]]]] = None, count: typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]] = None, depends_on: typing.Optional[typing.Sequence[_cdktf_9a9027ec.ITerraformDependable]] = None, for_each: typing.Optional[_cdktf_9a9027ec.ITerraformIterator] = None, lifecycle: typing.Optional[typing.Union[_cdktf_9a9027ec.TerraformResourceLifecycle, typing.Dict[builtins.str, typing.Any]]] = None, provider: typing.Optional[_cdktf_9a9027ec.TerraformProvider] = None, provisioners: typing.Optional[typing.Sequence[typing.Union[typing.Union[_cdktf_9a9027ec.FileProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.LocalExecProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.RemoteExecProvisioner, typing.Dict[builtins.str, typing.Any]]]]] = None, name: builtins.str, id: typing.Optional[builtins.str] = None, project: typing.Optional[builtins.str] = None, ) -> None: ''' :param connection: :param count: :param depends_on: :param for_each: :param lifecycle: :param provider: :param provisioners: :param name: Name of the resource. Provided by the client when the resource is created. The name must be 1-63 characters long, and comply with RFC1035. Specifically, the name must be 1-63 characters long and match the regular expression '`a-z <%5B-a-z0-9%5D*%5Ba-z0-9%5D>`_?' which means the first character must be a lowercase letter, and all following characters must be a dash, lowercase letter, or digit, except the last character, which cannot be a dash. Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_compute_backend_bucket#name DataGoogleComputeBackendBucket#name} :param id: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_compute_backend_bucket#id DataGoogleComputeBackendBucket#id}. Please be aware that the id field is automatically added to all resources in Terraform providers using a Terraform provider SDK version below 2. If you experience problems setting this value it might not be settable. Please take a look at the provider documentation to ensure it should be settable. :param project: Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_compute_backend_bucket#project DataGoogleComputeBackendBucket#project}. ''' if isinstance(lifecycle, dict): lifecycle = _cdktf_9a9027ec.TerraformResourceLifecycle(**lifecycle) if __debug__: type_hints = typing.get_type_hints(_typecheckingstub__a67f81f703400afd0cc78d3b69e0f17c5537e392521f6f55bbfa0babe51193df) check_type(argname="argument connection", value=connection, expected_type=type_hints["connection"]) check_type(argname="argument count", value=count, expected_type=type_hints["count"]) check_type(argname="argument depends_on", value=depends_on, expected_type=type_hints["depends_on"]) check_type(argname="argument for_each", value=for_each, expected_type=type_hints["for_each"]) check_type(argname="argument lifecycle", value=lifecycle, expected_type=type_hints["lifecycle"]) check_type(argname="argument provider", value=provider, expected_type=type_hints["provider"]) check_type(argname="argument provisioners", value=provisioners, expected_type=type_hints["provisioners"]) check_type(argname="argument name", value=name, expected_type=type_hints["name"]) check_type(argname="argument id", value=id, expected_type=type_hints["id"]) check_type(argname="argument project", value=project, expected_type=type_hints["project"]) self._values: typing.Dict[builtins.str, typing.Any] = { "name": name, } if connection is not None: self._values["connection"] = connection if count is not None: self._values["count"] = count if depends_on is not None: self._values["depends_on"] = depends_on if for_each is not None: self._values["for_each"] = for_each if lifecycle is not None: self._values["lifecycle"] = lifecycle if provider is not None: self._values["provider"] = provider if provisioners is not None: self._values["provisioners"] = provisioners if id is not None: self._values["id"] = id if project is not None: self._values["project"] = project @builtins.property def connection( self, ) -> typing.Optional[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, _cdktf_9a9027ec.WinrmProvisionerConnection]]: ''' :stability: experimental ''' result = self._values.get("connection") return typing.cast(typing.Optional[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, _cdktf_9a9027ec.WinrmProvisionerConnection]], result) @builtins.property def count( self, ) -> typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]]: ''' :stability: experimental ''' result = self._values.get("count") return typing.cast(typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]], result) @builtins.property def depends_on( self, ) -> typing.Optional[typing.List[_cdktf_9a9027ec.ITerraformDependable]]: ''' :stability: experimental ''' result = self._values.get("depends_on") return typing.cast(typing.Optional[typing.List[_cdktf_9a9027ec.ITerraformDependable]], result) @builtins.property def for_each(self) -> typing.Optional[_cdktf_9a9027ec.ITerraformIterator]: ''' :stability: experimental ''' result = self._values.get("for_each") return typing.cast(typing.Optional[_cdktf_9a9027ec.ITerraformIterator], result) @builtins.property def lifecycle(self) -> typing.Optional[_cdktf_9a9027ec.TerraformResourceLifecycle]: ''' :stability: experimental ''' result = self._values.get("lifecycle") return typing.cast(typing.Optional[_cdktf_9a9027ec.TerraformResourceLifecycle], result) @builtins.property def provider(self) -> typing.Optional[_cdktf_9a9027ec.TerraformProvider]: ''' :stability: experimental ''' result = self._values.get("provider") return typing.cast(typing.Optional[_cdktf_9a9027ec.TerraformProvider], result) @builtins.property def provisioners( self, ) -> typing.Optional[typing.List[typing.Union[_cdktf_9a9027ec.FileProvisioner, _cdktf_9a9027ec.LocalExecProvisioner, _cdktf_9a9027ec.RemoteExecProvisioner]]]: ''' :stability: experimental ''' result = self._values.get("provisioners") return typing.cast(typing.Optional[typing.List[typing.Union[_cdktf_9a9027ec.FileProvisioner, _cdktf_9a9027ec.LocalExecProvisioner, _cdktf_9a9027ec.RemoteExecProvisioner]]], result) @builtins.property def name(self) -> builtins.str: '''Name of the resource. Provided by the client when the resource is created. The name must be 1-63 characters long, and comply with RFC1035. Specifically, the name must be 1-63 characters long and match the regular expression '`a-z <%5B-a-z0-9%5D*%5Ba-z0-9%5D>`_?' which means the first character must be a lowercase letter, and all following characters must be a dash, lowercase letter, or digit, except the last character, which cannot be a dash. Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_compute_backend_bucket#name DataGoogleComputeBackendBucket#name} ''' result = self._values.get("name") assert result is not None, "Required property 'name' is missing" return typing.cast(builtins.str, result) @builtins.property def id(self) -> typing.Optional[builtins.str]: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_compute_backend_bucket#id DataGoogleComputeBackendBucket#id}. Please be aware that the id field is automatically added to all resources in Terraform providers using a Terraform provider SDK version below 2. If you experience problems setting this value it might not be settable. Please take a look at the provider documentation to ensure it should be settable. ''' result = self._values.get("id") return typing.cast(typing.Optional[builtins.str], result) @builtins.property def project(self) -> typing.Optional[builtins.str]: '''Docs at Terraform Registry: {@link https://registry.terraform.io/providers/hashicorp/google-beta/4.80.0/docs/data-sources/google_compute_backend_bucket#project DataGoogleComputeBackendBucket#project}.''' result = self._values.get("project") return typing.cast(typing.Optional[builtins.str], result) def __eq__(self, rhs: typing.Any) -> builtins.bool: return isinstance(rhs, self.__class__) and rhs._values == self._values def __ne__(self, rhs: typing.Any) -> builtins.bool: return not (rhs == self) def __repr__(self) -> str: return "DataGoogleComputeBackendBucketConfig(%s)" % ", ".join( k + "=" + repr(v) for k, v in self._values.items() ) __all__ = [ "DataGoogleComputeBackendBucket", "DataGoogleComputeBackendBucketCdnPolicy", "DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeaders", "DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeadersList", "DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeadersOutputReference", "DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicy", "DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicyList", "DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicyOutputReference", "DataGoogleComputeBackendBucketCdnPolicyList", "DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicy", "DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicyList", "DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicyOutputReference", "DataGoogleComputeBackendBucketCdnPolicyOutputReference", "DataGoogleComputeBackendBucketConfig", ] publication.publish() def _typecheckingstub__7e2d78d18436131ea7e1711059d0d67d8353315190a6e754a1750bf022e5cc20( scope: _constructs_77d1e7e8.Construct, id_: builtins.str, *, name: builtins.str, id: typing.Optional[builtins.str] = None, project: typing.Optional[builtins.str] = None, connection: typing.Optional[typing.Union[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.WinrmProvisionerConnection, typing.Dict[builtins.str, typing.Any]]]] = None, count: typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]] = None, depends_on: typing.Optional[typing.Sequence[_cdktf_9a9027ec.ITerraformDependable]] = None, for_each: typing.Optional[_cdktf_9a9027ec.ITerraformIterator] = None, lifecycle: typing.Optional[typing.Union[_cdktf_9a9027ec.TerraformResourceLifecycle, typing.Dict[builtins.str, typing.Any]]] = None, provider: typing.Optional[_cdktf_9a9027ec.TerraformProvider] = None, provisioners: typing.Optional[typing.Sequence[typing.Union[typing.Union[_cdktf_9a9027ec.FileProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.LocalExecProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.RemoteExecProvisioner, typing.Dict[builtins.str, typing.Any]]]]] = None, ) -> None: """Type checking stubs""" pass def _typecheckingstub__b6a22cd18df0dba19e69fe8a379c4e0658349edce581213c23c99cb3b51c8942( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__d6debde651242a4adf84b623db3628c598aca6db019eaac30a670df305bc2c9b( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__2dda25237b5fbd74d7855095295247b7270a46087a93f84e4ebb807233646e5b( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__0f88e1d48bd0ffc24d4e5bed5b920b7e0ab9d467d09807dcd50699bd249dc63d( terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, wraps_set: builtins.bool, ) -> None: """Type checking stubs""" pass def _typecheckingstub__32a39f280d472a517269c1da5e3bdda9e2427cd760f2c2d84d868af172699800( index: jsii.Number, ) -> None: """Type checking stubs""" pass def _typecheckingstub__da1058e09fce98c13e32a996b0dfbe7fc9201de948b1f0eee8123c1f69862f70( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__eb6638fb56c6f2da087116161005f39333d7e42d84e1d8f0022b3c24aaa53f0e( value: _cdktf_9a9027ec.IInterpolatingParent, ) -> None: """Type checking stubs""" pass def _typecheckingstub__2527ee1e3a2b121cb84c824e5aa9ea99a73ae6343dbe73f891ff3bde4c5374ef( value: builtins.bool, ) -> None: """Type checking stubs""" pass def _typecheckingstub__3766b6296fc8de8e0a780c1a6e184cf8fc1023f2cb5085ab5e34ddbf36adcb79( terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, complex_object_index: jsii.Number, complex_object_is_from_set: builtins.bool, ) -> None: """Type checking stubs""" pass def _typecheckingstub__7270fa3e6098f8abf2a5999d5868f1468ec17488e116d5e9324a15371a9f2038( value: typing.Optional[DataGoogleComputeBackendBucketCdnPolicyBypassCacheOnRequestHeaders], ) -> None: """Type checking stubs""" pass def _typecheckingstub__a7f1ec33f91b932a6dd8167e079b48c0e2980ba8b40b18c5eb5496fa8f576a58( terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, wraps_set: builtins.bool, ) -> None: """Type checking stubs""" pass def _typecheckingstub__2827e0b92ff34b8bb718a6a71a5b4ca3c836af7b2c4f381b0630b395db2fb2d1( index: jsii.Number, ) -> None: """Type checking stubs""" pass def _typecheckingstub__ebec2df0bbfe3d8d405acd2fc28af7b63b311056fff366efd12c63d5bfe8a875( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__3101edd741c50c0a882e446082ce868f20c568fc2ffbac4cfc4f8269dbc26551( value: _cdktf_9a9027ec.IInterpolatingParent, ) -> None: """Type checking stubs""" pass def _typecheckingstub__80db7427130ab9a83ba02502d0c9f1c64790ff69827a747d37bf8dfd06d1925b( value: builtins.bool, ) -> None: """Type checking stubs""" pass def _typecheckingstub__9fbecce0ae31eba21d9ca0f0bfaf547c84da8c2b5f7e0cfe6e2ee2a2a5aaeae8( terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, complex_object_index: jsii.Number, complex_object_is_from_set: builtins.bool, ) -> None: """Type checking stubs""" pass def _typecheckingstub__6e2d1f6044c81cb79f9f53cb38097aa74488ff998af3f9c9f24df6f0c598dc22( value: typing.Optional[DataGoogleComputeBackendBucketCdnPolicyCacheKeyPolicy], ) -> None: """Type checking stubs""" pass def _typecheckingstub__08c40e3c165a72b76716c483d8d8c33ed263cdcca26fd900a7125ecb1b250433( terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, wraps_set: builtins.bool, ) -> None: """Type checking stubs""" pass def _typecheckingstub__3eb7a7c17abb9f0adc717b7986dac132589496c0b686474b94ee4a80130ab3ec( index: jsii.Number, ) -> None: """Type checking stubs""" pass def _typecheckingstub__0c7b1ab6644ad22f1b3bcaf696e1116d4fe1a266ca12147a0daf1dc1d076faad( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__51e2a82395744216b6ed4d42f01bcfb925cbdd8a5e760964ab9e7006e781d319( value: _cdktf_9a9027ec.IInterpolatingParent, ) -> None: """Type checking stubs""" pass def _typecheckingstub__38e075b42167bd974dd39a222b5be9698f5b7932aa97b89a5c381f3bdf72a1cc( value: builtins.bool, ) -> None: """Type checking stubs""" pass def _typecheckingstub__4d65f87cd6884c7fcfd51702991cd87d3ee09f7b3c0298a7ddd35a1acb58a5b0( terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, wraps_set: builtins.bool, ) -> None: """Type checking stubs""" pass def _typecheckingstub__076eaad8d3ab0411d906772e2a15c98d9af6bafba7179af993b97adca80b31b8( index: jsii.Number, ) -> None: """Type checking stubs""" pass def _typecheckingstub__7a2b88f7b0fa4802bbf142ab63e97c2b2460c68c6a3370b7167e76840e8b0cd0( value: builtins.str, ) -> None: """Type checking stubs""" pass def _typecheckingstub__9fe2c0e191aaec1220aa2bef11b7a05e40373d6963a1f4eca7a97f6b55da52e2( value: _cdktf_9a9027ec.IInterpolatingParent, ) -> None: """Type checking stubs""" pass def _typecheckingstub__f0e54f02ce87b92bc77455bf43ff0c0998f65856f7c64a54b35ae93dc9d6d0ad( value: builtins.bool, ) -> None: """Type checking stubs""" pass def _typecheckingstub__b67bd092e66a01a938b52a11e2183176341aefaf6199bfe04dd1ff0cb569208a( terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, complex_object_index: jsii.Number, complex_object_is_from_set: builtins.bool, ) -> None: """Type checking stubs""" pass def _typecheckingstub__c226f19ec2ede6f82f30614444aac9ed64136b2bc2ed97165b5305c638882bfe( value: typing.Optional[DataGoogleComputeBackendBucketCdnPolicyNegativeCachingPolicy], ) -> None: """Type checking stubs""" pass def _typecheckingstub__762fcd72d0257e36ec7fe0c548e82f809477859e2d051b158d255687f161b0fd( terraform_resource: _cdktf_9a9027ec.IInterpolatingParent, terraform_attribute: builtins.str, complex_object_index: jsii.Number, complex_object_is_from_set: builtins.bool, ) -> None: """Type checking stubs""" pass def _typecheckingstub__11c41232513a7f1588e8c6ad37d0547aa179507ffa928b08ac7f3b63e2044e31( value: typing.Optional[DataGoogleComputeBackendBucketCdnPolicy], ) -> None: """Type checking stubs""" pass def _typecheckingstub__a67f81f703400afd0cc78d3b69e0f17c5537e392521f6f55bbfa0babe51193df( *, connection: typing.Optional[typing.Union[typing.Union[_cdktf_9a9027ec.SSHProvisionerConnection, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.WinrmProvisionerConnection, typing.Dict[builtins.str, typing.Any]]]] = None, count: typing.Optional[typing.Union[jsii.Number, _cdktf_9a9027ec.TerraformCount]] = None, depends_on: typing.Optional[typing.Sequence[_cdktf_9a9027ec.ITerraformDependable]] = None, for_each: typing.Optional[_cdktf_9a9027ec.ITerraformIterator] = None, lifecycle: typing.Optional[typing.Union[_cdktf_9a9027ec.TerraformResourceLifecycle, typing.Dict[builtins.str, typing.Any]]] = None, provider: typing.Optional[_cdktf_9a9027ec.TerraformProvider] = None, provisioners: typing.Optional[typing.Sequence[typing.Union[typing.Union[_cdktf_9a9027ec.FileProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.LocalExecProvisioner, typing.Dict[builtins.str, typing.Any]], typing.Union[_cdktf_9a9027ec.RemoteExecProvisioner, typing.Dict[builtins.str, typing.Any]]]]] = None, name: builtins.str, id: typing.Optional[builtins.str] = None, project: typing.Optional[builtins.str] = None, ) -> None: """Type checking stubs""" pass
PypiClean
/parameter-sherpa-1.0.6.tar.gz/parameter-sherpa-1.0.6/sherpa/app/static/lib/d3.parcoords.js
d3.parcoords = function(config) { var __ = { data: [], highlighted: [], dimensions: {}, dimensionTitleRotation: 0, brushed: false, brushedColor: null, alphaOnBrushed: 0.0, mode: "default", rate: 20, width: 600, height: 300, margin: { top: 24, right: 0, bottom: 12, left: 0 }, nullValueSeparator: "undefined", // set to "top" or "bottom" nullValueSeparatorPadding: { top: 8, right: 0, bottom: 8, left: 0 }, color: "#069", composite: "source-over", alpha: 0.7, bundlingStrength: 0.5, bundleDimension: null, smoothness: 0.0, showControlPoints: false, hideAxis : [], flipAxes: [], animationTime: 1100, // How long it takes to flip the axis when you double click rotateLabels: false }; extend(__, config); if (config && config.dimensionTitles) { console.warn("dimensionTitles passed in config is deprecated. Add title to dimension object."); d3.entries(config.dimensionTitles).forEach(function(d) { if (__.dimensions[d.key]) { __.dimensions[d.key].title = __.dimensions[d.key].title ? __.dimensions[d.key].title : d.value; } else { __.dimensions[d.key] = { title: d.value }; } }); } var pc = function(selection) { selection = pc.selection = d3.select(selection); __.width = selection[0][0].clientWidth; __.height = selection[0][0].clientHeight; // canvas data layers ["marks", "foreground", "brushed", "highlight"].forEach(function(layer) { canvas[layer] = selection .append("canvas") .attr("class", layer)[0][0]; ctx[layer] = canvas[layer].getContext("2d"); }); // svg tick and brush layers pc.svg = selection .append("svg") .attr("width", __.width) .attr("height", __.height) .style("font", "14px sans-serif") .style("position", "absolute") .append("svg:g") .attr("transform", "translate(" + __.margin.left + "," + __.margin.top + ")"); return pc; }; var events = d3.dispatch.apply(this,["render", "resize", "highlight", "brush", "brushend", "brushstart", "axesreorder"].concat(d3.keys(__))), w = function() { return __.width - __.margin.right - __.margin.left; }, h = function() { return __.height - __.margin.top - __.margin.bottom; }, flags = { brushable: false, reorderable: false, axes: false, interactive: false, debug: false }, xscale = d3.scale.ordinal(), dragging = {}, line = d3.svg.line(), axis = d3.svg.axis().orient("left").ticks(5), g, // groups for axes, brushes ctx = {}, canvas = {}, clusterCentroids = []; // side effects for setters var side_effects = d3.dispatch.apply(this,d3.keys(__)) .on("composite", function(d) { ctx.foreground.globalCompositeOperation = d.value; ctx.brushed.globalCompositeOperation = d.value; }) .on("alpha", function(d) { ctx.foreground.globalAlpha = d.value; ctx.brushed.globalAlpha = d.value; }) .on("brushedColor", function (d) { ctx.brushed.strokeStyle = d.value; }) .on("width", function(d) { pc.resize(); }) .on("height", function(d) { pc.resize(); }) .on("margin", function(d) { pc.resize(); }) .on("rate", function(d) { brushedQueue.rate(d.value); foregroundQueue.rate(d.value); }) .on("dimensions", function(d) { __.dimensions = pc.applyDimensionDefaults(d3.keys(d.value)); xscale.domain(pc.getOrderedDimensionKeys()); pc.sortDimensions(); if (flags.interactive){pc.render().updateAxes();} }) .on("bundleDimension", function(d) { if (!d3.keys(__.dimensions).length) pc.detectDimensions(); pc.autoscale(); if (typeof d.value === "number") { if (d.value < d3.keys(__.dimensions).length) { __.bundleDimension = __.dimensions[d.value]; } else if (d.value < __.hideAxis.length) { __.bundleDimension = __.hideAxis[d.value]; } } else { __.bundleDimension = d.value; } __.clusterCentroids = compute_cluster_centroids(__.bundleDimension); if (flags.interactive){pc.render();} }) .on("hideAxis", function(d) { pc.dimensions(pc.applyDimensionDefaults()); pc.dimensions(without(__.dimensions, d.value)); }) .on("flipAxes", function(d) { if (d.value && d.value.length) { d.value.forEach(function(axis) { flipAxisAndUpdatePCP(axis); }); pc.updateAxes(0); } }); // expose the state of the chart pc.state = __; pc.flags = flags; // create getter/setters getset(pc, __, events); // expose events d3.rebind(pc, events, "on"); // getter/setter with event firing function getset(obj,state,events) { d3.keys(state).forEach(function(key) { obj[key] = function(x) { if (!arguments.length) { return state[key]; } if (key === 'dimensions' && Object.prototype.toString.call(x) === '[object Array]') { console.warn("pc.dimensions([]) is deprecated, use pc.dimensions({})"); x = pc.applyDimensionDefaults(x); } var old = state[key]; state[key] = x; side_effects[key].call(pc,{"value": x, "previous": old}); events[key].call(pc,{"value": x, "previous": old}); return obj; }; }); }; function extend(target, source) { for (var key in source) { target[key] = source[key]; } return target; }; function without(arr, items) { items.forEach(function (el) { delete arr[el]; }); return arr; }; /** adjusts an axis' default range [h()+1, 1] if a NullValueSeparator is set */ function getRange() { if (__.nullValueSeparator=="bottom") { return [h()+1-__.nullValueSeparatorPadding.bottom-__.nullValueSeparatorPadding.top, 1]; } else if (__.nullValueSeparator=="top") { return [h()+1, 1+__.nullValueSeparatorPadding.bottom+__.nullValueSeparatorPadding.top]; } return [h()+1, 1]; }; pc.autoscale = function() { // yscale var defaultScales = { "date": function(k) { var extent = d3.extent(__.data, function(d) { return d[k] ? d[k].getTime() : null; }); // special case if single value if (extent[0] === extent[1]) { return d3.scale.ordinal() .domain([extent[0]]) .rangePoints(getRange()); } return d3.time.scale() .domain(extent) .range(getRange()); }, "number": function(k) { var extent = d3.extent(__.data, function(d) { return +d[k]; }); // special case if single value if (extent[0] === extent[1]) { return d3.scale.ordinal() .domain([extent[0]]) .rangePoints(getRange()); } return d3.scale.linear() .domain(extent) .range(getRange()); }, "string": function(k) { var counts = {}, domain = []; // Let's get the count for each value so that we can sort the domain based // on the number of items for each value. __.data.map(function(p) { if (p[k] === undefined && __.nullValueSeparator!== "undefined"){ return; // null values will be drawn beyond the horizontal null value separator! } if (counts[p[k]] === undefined) { counts[p[k]] = 1; } else { counts[p[k]] = counts[p[k]] + 1; } }); domain = Object.getOwnPropertyNames(counts).sort(function(a, b) { return counts[a] - counts[b]; }); return d3.scale.ordinal() .domain(domain) .rangePoints(getRange()); } }; d3.keys(__.dimensions).forEach(function(k) { if (!__.dimensions[k].yscale){ __.dimensions[k].yscale = defaultScales[__.dimensions[k].type](k); } }); // xscale xscale.rangePoints([0, w()], 1); // Retina display, etc. var devicePixelRatio = window.devicePixelRatio || 1; // canvas sizes pc.selection.selectAll("canvas") .style("margin-top", __.margin.top + "px") .style("margin-left", __.margin.left + "px") .style("width", (w()+2) + "px") .style("height", (h()+2) + "px") .attr("width", (w()+2) * devicePixelRatio) .attr("height", (h()+2) * devicePixelRatio); // default styles, needs to be set when canvas width changes ctx.foreground.strokeStyle = __.color; ctx.foreground.lineWidth = 1.4; ctx.foreground.globalCompositeOperation = __.composite; ctx.foreground.globalAlpha = __.alpha; ctx.foreground.scale(devicePixelRatio, devicePixelRatio); ctx.brushed.strokeStyle = __.brushedColor; ctx.brushed.lineWidth = 1.4; ctx.brushed.globalCompositeOperation = __.composite; ctx.brushed.globalAlpha = __.alpha; ctx.brushed.scale(devicePixelRatio, devicePixelRatio); ctx.highlight.lineWidth = 3; ctx.highlight.scale(devicePixelRatio, devicePixelRatio); return this; }; pc.scale = function(d, domain) { __.dimensions[d].yscale.domain(domain); return this; }; pc.flip = function(d) { //__.dimensions[d].yscale.domain().reverse(); // does not work __.dimensions[d].yscale.domain(__.dimensions[d].yscale.domain().reverse()); // works return this; }; pc.commonScale = function(global, type) { var t = type || "number"; if (typeof global === 'undefined') { global = true; } // try to autodetect dimensions and create scales if (!d3.keys(__.dimensions).length) { pc.detectDimensions() } pc.autoscale(); // scales of the same type var scales = d3.keys(__.dimensions).filter(function(p) { return __.dimensions[p].type == t; }); if (global) { var extent = d3.extent(scales.map(function(d,i) { return __.dimensions[d].yscale.domain(); }).reduce(function(a,b) { return a.concat(b); })); scales.forEach(function(d) { __.dimensions[d].yscale.domain(extent); }); } else { scales.forEach(function(d) { __.dimensions[d].yscale.domain(d3.extent(__.data, function(d) { return +d[k]; })); }); } // update centroids if (__.bundleDimension !== null) { pc.bundleDimension(__.bundleDimension); } return this; }; pc.detectDimensions = function() { pc.dimensions(pc.applyDimensionDefaults()); return this; }; pc.applyDimensionDefaults = function(dims) { var types = pc.detectDimensionTypes(__.data); dims = dims ? dims : d3.keys(types); var newDims = {}; var currIndex = 0; dims.forEach(function(k) { newDims[k] = __.dimensions[k] ? __.dimensions[k] : {}; //Set up defaults newDims[k].orient= newDims[k].orient ? newDims[k].orient : 'left'; newDims[k].ticks= newDims[k].ticks != null ? newDims[k].ticks : 5; newDims[k].innerTickSize= newDims[k].innerTickSize != null ? newDims[k].innerTickSize : 6; newDims[k].outerTickSize= newDims[k].outerTickSize != null ? newDims[k].outerTickSize : 0; newDims[k].tickPadding= newDims[k].tickPadding != null ? newDims[k].tickPadding : 3; newDims[k].type= newDims[k].type ? newDims[k].type : types[k]; newDims[k].index = newDims[k].index != null ? newDims[k].index : currIndex; currIndex++; }); return newDims; }; pc.getOrderedDimensionKeys = function(){ return d3.keys(__.dimensions).sort(function(x, y){ return d3.ascending(__.dimensions[x].index, __.dimensions[y].index); }); }; // a better "typeof" from this post: http://stackoverflow.com/questions/7390426/better-way-to-get-type-of-a-javascript-variable pc.toType = function(v) { return ({}).toString.call(v).match(/\s([a-zA-Z]+)/)[1].toLowerCase(); }; // try to coerce to number before returning type pc.toTypeCoerceNumbers = function(v) { if ((parseFloat(v) == v) && (v != null)) { return "number"; } return pc.toType(v); }; // attempt to determine types of each dimension based on first row of data pc.detectDimensionTypes = function(data) { var types = {}; d3.keys(data[0]) .forEach(function(col) { types[isNaN(Number(col)) ? col : parseInt(col)] = pc.toTypeCoerceNumbers(data[0][col]); }); return types; }; pc.render = function() { // try to autodetect dimensions and create scales if (!d3.keys(__.dimensions).length) { pc.detectDimensions() } pc.autoscale(); pc.render[__.mode](); events.render.call(this); return this; }; pc.renderBrushed = function() { if (!d3.keys(__.dimensions).length) pc.detectDimensions(); pc.renderBrushed[__.mode](); events.render.call(this); return this; }; function isBrushed() { if (__.brushed && __.brushed.length !== __.data.length) return true; var object = brush.currentMode().brushState(); for (var key in object) { if (object.hasOwnProperty(key)) { return true; } } return false; }; pc.render.default = function() { pc.clear('foreground'); pc.clear('highlight'); pc.renderBrushed.default(); __.data.forEach(path_foreground); }; var foregroundQueue = d3.renderQueue(path_foreground) .rate(50) .clear(function() { pc.clear('foreground'); pc.clear('highlight'); }); pc.render.queue = function() { pc.renderBrushed.queue(); foregroundQueue(__.data); }; pc.renderBrushed.default = function() { pc.clear('brushed'); if (isBrushed()) { __.brushed.forEach(path_brushed); } }; var brushedQueue = d3.renderQueue(path_brushed) .rate(50) .clear(function() { pc.clear('brushed'); }); pc.renderBrushed.queue = function() { if (isBrushed()) { brushedQueue(__.brushed); } else { brushedQueue([]); // This is needed to clear the currently brushed items } }; function compute_cluster_centroids(d) { var clusterCentroids = d3.map(); var clusterCounts = d3.map(); // determine clusterCounts __.data.forEach(function(row) { var scaled = __.dimensions[d].yscale(row[d]); if (!clusterCounts.has(scaled)) { clusterCounts.set(scaled, 0); } var count = clusterCounts.get(scaled); clusterCounts.set(scaled, count + 1); }); __.data.forEach(function(row) { d3.keys(__.dimensions).map(function(p, i) { var scaled = __.dimensions[d].yscale(row[d]); if (!clusterCentroids.has(scaled)) { var map = d3.map(); clusterCentroids.set(scaled, map); } if (!clusterCentroids.get(scaled).has(p)) { clusterCentroids.get(scaled).set(p, 0); } var value = clusterCentroids.get(scaled).get(p); value += __.dimensions[p].yscale(row[p]) / clusterCounts.get(scaled); clusterCentroids.get(scaled).set(p, value); }); }); return clusterCentroids; } function compute_centroids(row) { var centroids = []; var p = d3.keys(__.dimensions); var cols = p.length; var a = 0.5; // center between axes for (var i = 0; i < cols; ++i) { // centroids on 'real' axes var x = position(p[i]); var y = __.dimensions[p[i]].yscale(row[p[i]]); centroids.push($V([x, y])); // centroids on 'virtual' axes if (i < cols - 1) { var cx = x + a * (position(p[i+1]) - x); var cy = y + a * (__.dimensions[p[i+1]].yscale(row[p[i+1]]) - y); if (__.bundleDimension !== null) { var leftCentroid = __.clusterCentroids.get(__.dimensions[__.bundleDimension].yscale(row[__.bundleDimension])).get(p[i]); var rightCentroid = __.clusterCentroids.get(__.dimensions[__.bundleDimension].yscale(row[__.bundleDimension])).get(p[i+1]); var centroid = 0.5 * (leftCentroid + rightCentroid); cy = centroid + (1 - __.bundlingStrength) * (cy - centroid); } centroids.push($V([cx, cy])); } } return centroids; } pc.compute_real_centroids = function(row) { var realCentroids = []; var p = d3.keys(__.dimensions); var cols = p.length; var a = 0.5; for (var i = 0; i < cols; ++i) { var x = position(p[i]); var y = __.dimensions[p[i]].yscale(row[p[i]]); realCentroids.push([x, y]); } return realCentroids; } function compute_control_points(centroids) { var cols = centroids.length; var a = __.smoothness; var cps = []; cps.push(centroids[0]); cps.push($V([centroids[0].e(1) + a*2*(centroids[1].e(1)-centroids[0].e(1)), centroids[0].e(2)])); for (var col = 1; col < cols - 1; ++col) { var mid = centroids[col]; var left = centroids[col - 1]; var right = centroids[col + 1]; var diff = left.subtract(right); cps.push(mid.add(diff.x(a))); cps.push(mid); cps.push(mid.subtract(diff.x(a))); } cps.push($V([centroids[cols-1].e(1) + a*2*(centroids[cols-2].e(1)-centroids[cols-1].e(1)), centroids[cols-1].e(2)])); cps.push(centroids[cols - 1]); return cps; };pc.shadows = function() { flags.shadows = true; pc.alphaOnBrushed(0.1); pc.render(); return this; }; // draw dots with radius r on the axis line where data intersects pc.axisDots = function(r) { var r = r || 0.1; var ctx = pc.ctx.marks; var startAngle = 0; var endAngle = 2 * Math.PI; ctx.globalAlpha = d3.min([ 1 / Math.pow(__.data.length, 1 / 2), 1 ]); __.data.forEach(function(d) { d3.entries(__.dimensions).forEach(function(p, i) { ctx.beginPath(); ctx.arc(position(p), __.dimensions[p.key].yscale(d[p]), r, startAngle, endAngle); ctx.stroke(); ctx.fill(); }); }); return this; }; // draw single cubic bezier curve function single_curve(d, ctx) { var centroids = compute_centroids(d); var cps = compute_control_points(centroids); ctx.moveTo(cps[0].e(1), cps[0].e(2)); for (var i = 1; i < cps.length; i += 3) { if (__.showControlPoints) { for (var j = 0; j < 3; j++) { ctx.fillRect(cps[i+j].e(1), cps[i+j].e(2), 2, 2); } } ctx.bezierCurveTo(cps[i].e(1), cps[i].e(2), cps[i+1].e(1), cps[i+1].e(2), cps[i+2].e(1), cps[i+2].e(2)); } }; // draw single polyline function color_path(d, ctx) { ctx.beginPath(); if ((__.bundleDimension !== null && __.bundlingStrength > 0) || __.smoothness > 0) { single_curve(d, ctx); } else { single_path(d, ctx); } ctx.stroke(); }; // draw many polylines of the same color function paths(data, ctx) { ctx.clearRect(-1, -1, w() + 2, h() + 2); ctx.beginPath(); data.forEach(function(d) { if ((__.bundleDimension !== null && __.bundlingStrength > 0) || __.smoothness > 0) { single_curve(d, ctx); } else { single_path(d, ctx); } }); ctx.stroke(); }; // returns the y-position just beyond the separating null value line function getNullPosition() { if (__.nullValueSeparator=="bottom") { return h()+1; } else if (__.nullValueSeparator=="top") { return 1; } else { console.log("A value is NULL, but nullValueSeparator is not set; set it to 'bottom' or 'top'."); } return h()+1; }; function single_path(d, ctx) { d3.entries(__.dimensions).forEach(function(p, i) { //p isn't really p if (i == 0) { ctx.moveTo(position(p.key), typeof d[p.key] =='undefined' ? getNullPosition() : __.dimensions[p.key].yscale(d[p.key])); } else { ctx.lineTo(position(p.key), typeof d[p.key] =='undefined' ? getNullPosition() : __.dimensions[p.key].yscale(d[p.key])); } }); }; function path_brushed(d, i) { if (__.brushedColor !== null) { ctx.brushed.strokeStyle = d3.functor(__.brushedColor)(d, i); } else { ctx.brushed.strokeStyle = d3.functor(__.color)(d, i); } return color_path(d, ctx.brushed) }; function path_foreground(d, i) { ctx.foreground.strokeStyle = d3.functor(__.color)(d, i); return color_path(d, ctx.foreground); }; function path_highlight(d, i) { ctx.highlight.strokeStyle = d3.functor(__.color)(d, i); return color_path(d, ctx.highlight); }; pc.clear = function(layer) { ctx[layer].clearRect(0, 0, w() + 2, h() + 2); // This will make sure that the foreground items are transparent // without the need for changing the opacity style of the foreground canvas // as this would stop the css styling from working if(layer === "brushed" && isBrushed()) { ctx.brushed.fillStyle = pc.selection.style("background-color"); ctx.brushed.globalAlpha = 1 - __.alphaOnBrushed; ctx.brushed.fillRect(0, 0, w() + 2, h() + 2); ctx.brushed.globalAlpha = __.alpha; } return this; }; d3.rebind(pc, axis, "ticks", "orient", "tickValues", "tickSubdivide", "tickSize", "tickPadding", "tickFormat"); function flipAxisAndUpdatePCP(dimension) { var g = pc.svg.selectAll(".dimension"); pc.flip(dimension); d3.select(this.parentElement) .transition() .duration(__.animationTime) .call(axis.scale(__.dimensions[dimension].yscale)) .call(axis.orient(__.dimensions[dimension].orient)) .call(axis.ticks(__.dimensions[dimension].ticks)) .call(axis.innerTickSize(__.dimensions[dimension].innerTickSize)) .call(axis.outerTickSize(__.dimensions[dimension].outerTickSize)) .call(axis.tickPadding(__.dimensions[dimension].tickPadding)) .call(axis.tickFormat(__.dimensions[dimension].tickFormat)); pc.render(); } function rotateLabels() { if (!__.rotateLabels) return; var delta = d3.event.deltaY; delta = delta < 0 ? -5 : delta; delta = delta > 0 ? 5 : delta; __.dimensionTitleRotation += delta; pc.svg.selectAll("text.label") .attr("transform", "translate(0,-5) rotate(" + __.dimensionTitleRotation + ")"); d3.event.preventDefault(); } function dimensionLabels(d) { return __.dimensions[d].title ? __.dimensions[d].title : d; // dimension display names } pc.createAxes = function() { if (g) pc.removeAxes(); // Add a group element for each dimension. g = pc.svg.selectAll(".dimension") .data(pc.getOrderedDimensionKeys(), function(d) { return d; }) .enter().append("svg:g") .attr("class", "dimension") .attr("transform", function(d) { return "translate(" + xscale(d) + ")"; }); // Add an axis and title. g.append("svg:g") .attr("class", "axis") .attr("transform", "translate(0,0)") .each(function(d) { var axisElement = d3.select(this).call( pc.applyAxisConfig(axis, __.dimensions[d]) ); axisElement.selectAll("path") .style("fill", "none") .style("stroke", "#222") .style("shape-rendering", "crispEdges"); axisElement.selectAll("line") .style("fill", "none") .style("stroke", "#222") .style("shape-rendering", "crispEdges"); }) .append("svg:text") .attr({ "text-anchor": "middle", "y": 0, "transform": "translate(0,-5) rotate(" + __.dimensionTitleRotation + ")", "x": 0, "class": "label" }) .text(dimensionLabels) .on("dblclick", flipAxisAndUpdatePCP) .on("wheel", rotateLabels); if (__.nullValueSeparator=="top") { pc.svg.append("line") .attr("x1", 0) .attr("y1", 1+__.nullValueSeparatorPadding.top) .attr("x2", w()) .attr("y2", 1+__.nullValueSeparatorPadding.top) .attr("stroke-width", 1) .attr("stroke", "#777") .attr("fill", "none") .attr("shape-rendering", "crispEdges"); } else if (__.nullValueSeparator=="bottom") { pc.svg.append("line") .attr("x1", 0) .attr("y1", h()+1-__.nullValueSeparatorPadding.bottom) .attr("x2", w()) .attr("y2", h()+1-__.nullValueSeparatorPadding.bottom) .attr("stroke-width", 1) .attr("stroke", "#777") .attr("fill", "none") .attr("shape-rendering", "crispEdges"); } flags.axes= true; return this; }; pc.removeAxes = function() { g.remove(); g = undefined; return this; }; pc.updateAxes = function(animationTime) { if (typeof animationTime === 'undefined') { animationTime = __.animationTime; } var g_data = pc.svg.selectAll(".dimension").data(pc.getOrderedDimensionKeys()); // Enter g_data.enter().append("svg:g") .attr("class", "dimension") .attr("transform", function(p) { return "translate(" + position(p) + ")"; }) .style("opacity", 0) .append("svg:g") .attr("class", "axis") .attr("transform", "translate(0,0)") .each(function(d) { var axisElement = d3.select(this).call( pc.applyAxisConfig(axis, __.dimensions[d]) ); axisElement.selectAll("path") .style("fill", "none") .style("stroke", "#222") .style("shape-rendering", "crispEdges"); axisElement.selectAll("line") .style("fill", "none") .style("stroke", "#222") .style("shape-rendering", "crispEdges"); }) .append("svg:text") .attr({ "text-anchor": "middle", "y": 0, "transform": "translate(0,-5) rotate(" + __.dimensionTitleRotation + ")", "x": 0, "class": "label" }) .text(dimensionLabels) .on("dblclick", flipAxisAndUpdatePCP) .on("wheel", rotateLabels); // Update g_data.attr("opacity", 0); g_data.select(".axis") .transition() .duration(animationTime) .each(function(d) { d3.select(this).call( pc.applyAxisConfig(axis, __.dimensions[d]) ) }); g_data.select(".label") .transition() .duration(animationTime) .text(dimensionLabels) .attr("transform", "translate(0,-5) rotate(" + __.dimensionTitleRotation + ")"); // Exit g_data.exit().remove(); g = pc.svg.selectAll(".dimension"); g.transition().duration(animationTime) .attr("transform", function(p) { return "translate(" + position(p) + ")"; }) .style("opacity", 1); pc.svg.selectAll(".axis") .transition() .duration(animationTime) .each(function(d) { d3.select(this).call( pc.applyAxisConfig(axis, __.dimensions[d]) ); }); if (flags.brushable) pc.brushable(); if (flags.reorderable) pc.reorderable(); if (pc.brushMode() !== "None") { var mode = pc.brushMode(); pc.brushMode("None"); pc.brushMode(mode); } return this; }; pc.applyAxisConfig = function(axis, dimension) { return axis.scale(dimension.yscale) .orient(dimension.orient) .ticks(dimension.ticks) .tickValues(dimension.tickValues) .innerTickSize(dimension.innerTickSize) .outerTickSize(dimension.outerTickSize) .tickPadding(dimension.tickPadding) .tickFormat(dimension.tickFormat) }; // Jason Davies, http://bl.ocks.org/1341281 pc.reorderable = function() { if (!g) pc.createAxes(); g.style("cursor", "move") .call(d3.behavior.drag() .on("dragstart", function(d) { dragging[d] = this.__origin__ = xscale(d); }) .on("drag", function(d) { dragging[d] = Math.min(w(), Math.max(0, this.__origin__ += d3.event.dx)); pc.sortDimensions(); xscale.domain(pc.getOrderedDimensionKeys()); pc.render(); g.attr("transform", function(d) { return "translate(" + position(d) + ")"; }); }) .on("dragend", function(d) { // Let's see if the order has changed and send out an event if so. var i = 0, j = __.dimensions[d].index, elem = this, parent = this.parentElement; while((elem = elem.previousElementSibling) != null) ++i; if (i !== j) { events.axesreorder.call(pc, pc.getOrderedDimensionKeys()); // We now also want to reorder the actual dom elements that represent // the axes. That is, the g.dimension elements. If we don't do this, // we get a weird and confusing transition when updateAxes is called. // This is due to the fact that, initially the nth g.dimension element // represents the nth axis. However, after a manual reordering, // without reordering the dom elements, the nth dom elements no longer // necessarily represents the nth axis. // // i is the original index of the dom element // j is the new index of the dom element if (i > j) { // Element moved left parent.insertBefore(this, parent.children[j - 1]); } else { // Element moved right if ((j + 1) < parent.children.length) { parent.insertBefore(this, parent.children[j + 1]); } else { parent.appendChild(this); } } } delete this.__origin__; delete dragging[d]; d3.select(this).transition().attr("transform", "translate(" + xscale(d) + ")"); pc.render(); })); flags.reorderable = true; return this; }; // Reorder dimensions, such that the highest value (visually) is on the left and // the lowest on the right. Visual values are determined by the data values in // the given row. pc.reorder = function(rowdata) { var firstDim = pc.getOrderedDimensionKeys()[0]; pc.sortDimensionsByRowData(rowdata); // NOTE: this is relatively cheap given that: // number of dimensions < number of data items // Thus we check equality of order to prevent rerendering when this is the case. var reordered = false; reordered = firstDim !== pc.getOrderedDimensionKeys()[0]; if (reordered) { xscale.domain(pc.getOrderedDimensionKeys()); var highlighted = __.highlighted.slice(0); pc.unhighlight(); g.transition() .duration(1500) .attr("transform", function(d) { return "translate(" + xscale(d) + ")"; }); pc.render(); // pc.highlight() does not check whether highlighted is length zero, so we do that here. if (highlighted.length !== 0) { pc.highlight(highlighted); } } } pc.sortDimensionsByRowData = function(rowdata) { var copy = __.dimensions; var positionSortedKeys = d3.keys(__.dimensions).sort(function(a, b) { var pixelDifference = __.dimensions[a].yscale(rowdata[a]) - __.dimensions[b].yscale(rowdata[b]); // Array.sort is not necessarily stable, this means that if pixelDifference is zero // the ordering of dimensions might change unexpectedly. This is solved by sorting on // variable name in that case. if (pixelDifference === 0) { return a.localeCompare(b); } // else return pixelDifference; }); __.dimensions = {}; positionSortedKeys.forEach(function(p, i){ __.dimensions[p] = copy[p]; __.dimensions[p].index = i; }); } pc.sortDimensions = function() { var copy = __.dimensions; var positionSortedKeys = d3.keys(__.dimensions).sort(function(a, b) { return position(a) - position(b); }); __.dimensions = {}; positionSortedKeys.forEach(function(p, i){ __.dimensions[p] = copy[p]; __.dimensions[p].index = i; }) }; // pairs of adjacent dimensions pc.adjacent_pairs = function(arr) { var ret = []; for (var i = 0; i < arr.length-1; i++) { ret.push([arr[i],arr[i+1]]); }; return ret; }; var brush = { modes: { "None": { install: function(pc) {}, // Nothing to be done. uninstall: function(pc) {}, // Nothing to be done. selected: function() { return []; }, // Nothing to return brushState: function() { return {}; } } }, mode: "None", predicate: "AND", currentMode: function() { return this.modes[this.mode]; } }; // This function can be used for 'live' updates of brushes. That is, during the // specification of a brush, this method can be called to update the view. // // @param newSelection - The new set of data items that is currently contained // by the brushes function brushUpdated(newSelection) { __.brushed = newSelection; events.brush.call(pc,__.brushed); pc.renderBrushed(); } function brushPredicate(predicate) { if (!arguments.length) { return brush.predicate; } predicate = String(predicate).toUpperCase(); if (predicate !== "AND" && predicate !== "OR") { throw new Error("Invalid predicate " + predicate); } brush.predicate = predicate; __.brushed = brush.currentMode().selected(); pc.renderBrushed(); return pc; } pc.brushModes = function() { return Object.getOwnPropertyNames(brush.modes); }; pc.brushMode = function(mode) { if (arguments.length === 0) { return brush.mode; } if (pc.brushModes().indexOf(mode) === -1) { throw new Error("pc.brushmode: Unsupported brush mode: " + mode); } // Make sure that we don't trigger unnecessary events by checking if the mode // actually changes. if (mode !== brush.mode) { // When changing brush modes, the first thing we need to do is clearing any // brushes from the current mode, if any. if (brush.mode !== "None") { pc.brushReset(); } // Next, we need to 'uninstall' the current brushMode. brush.modes[brush.mode].uninstall(pc); // Finally, we can install the requested one. brush.mode = mode; brush.modes[brush.mode].install(); if (mode === "None") { delete pc.brushPredicate; } else { pc.brushPredicate = brushPredicate; } } return pc; }; // brush mode: 1D-Axes (function() { var brushes = {}; function is_brushed(p) { return !brushes[p].empty(); } // data within extents function selected() { var actives = d3.keys(__.dimensions).filter(is_brushed), extents = actives.map(function(p) { return brushes[p].extent(); }); // We don't want to return the full data set when there are no axes brushed. // Actually, when there are no axes brushed, by definition, no items are // selected. So, let's avoid the filtering and just return false. //if (actives.length === 0) return false; // Resolves broken examples for now. They expect to get the full dataset back from empty brushes if (actives.length === 0) return __.data; // test if within range var within = { "date": function(d,p,dimension) { if (typeof __.dimensions[p].yscale.rangePoints === "function") { // if it is ordinal return extents[dimension][0] <= __.dimensions[p].yscale(d[p]) && __.dimensions[p].yscale(d[p]) <= extents[dimension][1] } else { return extents[dimension][0] <= d[p] && d[p] <= extents[dimension][1] } }, "number": function(d,p,dimension) { if (typeof __.dimensions[p].yscale.rangePoints === "function") { // if it is ordinal return extents[dimension][0] <= __.dimensions[p].yscale(d[p]) && __.dimensions[p].yscale(d[p]) <= extents[dimension][1] } else { return extents[dimension][0] <= d[p] && d[p] <= extents[dimension][1] } }, "string": function(d,p,dimension) { return extents[dimension][0] <= __.dimensions[p].yscale(d[p]) && __.dimensions[p].yscale(d[p]) <= extents[dimension][1] } }; return __.data .filter(function(d) { switch(brush.predicate) { case "AND": return actives.every(function(p, dimension) { return within[__.dimensions[p].type](d,p,dimension); }); case "OR": return actives.some(function(p, dimension) { return within[__.dimensions[p].type](d,p,dimension); }); default: throw new Error("Unknown brush predicate " + __.brushPredicate); } }); }; function brushExtents(extents) { if(typeof(extents) === 'undefined') { var extents = {}; d3.keys(__.dimensions).forEach(function(d) { var brush = brushes[d]; if (brush !== undefined && !brush.empty()) { var extent = brush.extent(); extent.sort(d3.ascending); extents[d] = extent; } }); return extents; } else { //first get all the brush selections var brushSelections = {}; g.selectAll('.brush') .each(function(d) { brushSelections[d] = d3.select(this); }); // loop over each dimension and update appropriately (if it was passed in through extents) d3.keys(__.dimensions).forEach(function(d) { if (extents[d] === undefined){ return; } var brush = brushes[d]; if (brush !== undefined) { //update the extent brush.extent(extents[d]); //redraw the brush brushSelections[d] .transition() .duration(0) .call(brush); //fire some events brush.event(brushSelections[d]); } }); //redraw the chart pc.renderBrushed(); return pc; } } function brushFor(axis) { var brush = d3.svg.brush(); brush .y(__.dimensions[axis].yscale) .on("brushstart", function() { if(d3.event.sourceEvent !== null) { events.brushstart.call(pc, __.brushed); d3.event.sourceEvent.stopPropagation(); } }) .on("brush", function() { brushUpdated(selected()); }) .on("brushend", function() { events.brushend.call(pc, __.brushed); }); brushes[axis] = brush; return brush; }; function brushReset(dimension) { if (dimension===undefined) { __.brushed = false; if (g) { g.selectAll('.brush') .each(function(d) { d3.select(this) .transition() .duration(0) .call(brushes[d].clear()); }); pc.renderBrushed(); } } else { if (g) { g.selectAll('.brush') .each(function(d) { if (d!=dimension) return; d3.select(this) .transition() .duration(0) .call(brushes[d].clear()); brushes[d].event(d3.select(this)); }); pc.renderBrushed(); } } return this; }; function install() { if (!g) pc.createAxes(); // Add and store a brush for each axis. var brush = g.append("svg:g") .attr("class", "brush") .each(function(d) { d3.select(this).call(brushFor(d)); }); brush.selectAll("rect") .style("visibility", null) .attr("x", -15) .attr("width", 30); brush.selectAll("rect.background") .style("fill", "transparent"); brush.selectAll("rect.extent") .style("fill", "rgba(255,255,255,0.25)") .style("stroke", "rgba(0,0,0,0.6)"); brush.selectAll(".resize rect") .style("fill", "rgba(0,0,0,0.1)"); pc.brushExtents = brushExtents; pc.brushReset = brushReset; return pc; }; brush.modes["1D-axes"] = { install: install, uninstall: function() { g.selectAll(".brush").remove(); brushes = {}; delete pc.brushExtents; delete pc.brushReset; }, selected: selected, brushState: brushExtents } })(); // brush mode: 2D-strums // bl.ocks.org/syntagmatic/5441022 (function() { var strums = {}, strumRect; function drawStrum(strum, activePoint) { var svg = pc.selection.select("svg").select("g#strums"), id = strum.dims.i, points = [strum.p1, strum.p2], line = svg.selectAll("line#strum-" + id).data([strum]), circles = svg.selectAll("circle#strum-" + id).data(points), drag = d3.behavior.drag(); line.enter() .append("line") .attr("id", "strum-" + id) .attr("class", "strum"); line .attr("x1", function(d) { return d.p1[0]; }) .attr("y1", function(d) { return d.p1[1]; }) .attr("x2", function(d) { return d.p2[0]; }) .attr("y2", function(d) { return d.p2[1]; }) .attr("stroke", "black") .attr("stroke-width", 2); drag .on("drag", function(d, i) { var ev = d3.event; i = i + 1; strum["p" + i][0] = Math.min(Math.max(strum.minX + 1, ev.x), strum.maxX); strum["p" + i][1] = Math.min(Math.max(strum.minY, ev.y), strum.maxY); drawStrum(strum, i - 1); }) .on("dragend", onDragEnd()); circles.enter() .append("circle") .attr("id", "strum-" + id) .attr("class", "strum"); circles .attr("cx", function(d) { return d[0]; }) .attr("cy", function(d) { return d[1]; }) .attr("r", 5) .style("opacity", function(d, i) { return (activePoint !== undefined && i === activePoint) ? 0.8 : 0; }) .on("mouseover", function() { d3.select(this).style("opacity", 0.8); }) .on("mouseout", function() { d3.select(this).style("opacity", 0); }) .call(drag); } function dimensionsForPoint(p) { var dims = { i: -1, left: undefined, right: undefined }; d3.keys(__.dimensions).some(function(dim, i) { if (xscale(dim) < p[0]) { var next = d3.keys(__.dimensions)[pc.getOrderedDimensionKeys().indexOf(dim)+1]; dims.i = i; dims.left = dim; dims.right = next; return false; } return true; }); if (dims.left === undefined) { // Event on the left side of the first axis. dims.i = 0; dims.left = pc.getOrderedDimensionKeys()[0]; dims.right = pc.getOrderedDimensionKeys()[1]; } else if (dims.right === undefined) { // Event on the right side of the last axis dims.i = d3.keys(__.dimensions).length - 1; dims.right = dims.left; dims.left = pc.getOrderedDimensionKeys()[d3.keys(__.dimensions).length - 2]; } return dims; } function onDragStart() { // First we need to determine between which two axes the sturm was started. // This will determine the freedom of movement, because a strum can // logically only happen between two axes, so no movement outside these axes // should be allowed. return function() { var p = d3.mouse(strumRect[0][0]), dims, strum; p[0] = p[0] - __.margin.left; p[1] = p[1] - __.margin.top; dims = dimensionsForPoint(p), strum = { p1: p, dims: dims, minX: xscale(dims.left), maxX: xscale(dims.right), minY: 0, maxY: h() }; strums[dims.i] = strum; strums.active = dims.i; // Make sure that the point is within the bounds strum.p1[0] = Math.min(Math.max(strum.minX, p[0]), strum.maxX); strum.p2 = strum.p1.slice(); }; } function onDrag() { return function() { var ev = d3.event, strum = strums[strums.active]; // Make sure that the point is within the bounds strum.p2[0] = Math.min(Math.max(strum.minX + 1, ev.x - __.margin.left), strum.maxX); strum.p2[1] = Math.min(Math.max(strum.minY, ev.y - __.margin.top), strum.maxY); drawStrum(strum, 1); }; } function containmentTest(strum, width) { var p1 = [strum.p1[0] - strum.minX, strum.p1[1] - strum.minX], p2 = [strum.p2[0] - strum.minX, strum.p2[1] - strum.minX], m1 = 1 - width / p1[0], b1 = p1[1] * (1 - m1), m2 = 1 - width / p2[0], b2 = p2[1] * (1 - m2); // test if point falls between lines return function(p) { var x = p[0], y = p[1], y1 = m1 * x + b1, y2 = m2 * x + b2; if (y > Math.min(y1, y2) && y < Math.max(y1, y2)) { return true; } return false; }; } function selected() { var ids = Object.getOwnPropertyNames(strums), brushed = __.data; // Get the ids of the currently active strums. ids = ids.filter(function(d) { return !isNaN(d); }); function crossesStrum(d, id) { var strum = strums[id], test = containmentTest(strum, strums.width(id)), d1 = strum.dims.left, d2 = strum.dims.right, y1 = __.dimensions[d1].yscale, y2 = __.dimensions[d2].yscale, point = [y1(d[d1]) - strum.minX, y2(d[d2]) - strum.minX]; return test(point); } if (ids.length === 0) { return brushed; } return brushed.filter(function(d) { switch(brush.predicate) { case "AND": return ids.every(function(id) { return crossesStrum(d, id); }); case "OR": return ids.some(function(id) { return crossesStrum(d, id); }); default: throw new Error("Unknown brush predicate " + __.brushPredicate); } }); } function removeStrum() { var strum = strums[strums.active], svg = pc.selection.select("svg").select("g#strums"); delete strums[strums.active]; strums.active = undefined; svg.selectAll("line#strum-" + strum.dims.i).remove(); svg.selectAll("circle#strum-" + strum.dims.i).remove(); } function onDragEnd() { return function() { var brushed = __.data, strum = strums[strums.active]; // Okay, somewhat unexpected, but not totally unsurprising, a mousclick is // considered a drag without move. So we have to deal with that case if (strum && strum.p1[0] === strum.p2[0] && strum.p1[1] === strum.p2[1]) { removeStrum(strums); } brushed = selected(strums); strums.active = undefined; __.brushed = brushed; pc.renderBrushed(); events.brushend.call(pc, __.brushed); }; } function brushReset(strums) { return function() { var ids = Object.getOwnPropertyNames(strums).filter(function(d) { return !isNaN(d); }); ids.forEach(function(d) { strums.active = d; removeStrum(strums); }); onDragEnd(strums)(); }; } function install() { var drag = d3.behavior.drag(); // Map of current strums. Strums are stored per segment of the PC. A segment, // being the area between two axes. The left most area is indexed at 0. strums.active = undefined; // Returns the width of the PC segment where currently a strum is being // placed. NOTE: even though they are evenly spaced in our current // implementation, we keep for when non-even spaced segments are supported as // well. strums.width = function(id) { var strum = strums[id]; if (strum === undefined) { return undefined; } return strum.maxX - strum.minX; }; pc.on("axesreorder.strums", function() { var ids = Object.getOwnPropertyNames(strums).filter(function(d) { return !isNaN(d); }); // Checks if the first dimension is directly left of the second dimension. function consecutive(first, second) { var length = d3.keys(__.dimensions).length; return d3.keys(__.dimensions).some(function(d, i) { return (d === first) ? i + i < length && __.dimensions[i + 1] === second : false; }); } if (ids.length > 0) { // We have some strums, which might need to be removed. ids.forEach(function(d) { var dims = strums[d].dims; strums.active = d; // If the two dimensions of the current strum are not next to each other // any more, than we'll need to remove the strum. Otherwise we keep it. if (!consecutive(dims.left, dims.right)) { removeStrum(strums); } }); onDragEnd(strums)(); } }); // Add a new svg group in which we draw the strums. pc.selection.select("svg").append("g") .attr("id", "strums") .attr("transform", "translate(" + __.margin.left + "," + __.margin.top + ")"); // Install the required brushReset function pc.brushReset = brushReset(strums); drag .on("dragstart", onDragStart(strums)) .on("drag", onDrag(strums)) .on("dragend", onDragEnd(strums)); // NOTE: The styling needs to be done here and not in the css. This is because // for 1D brushing, the canvas layers should not listen to // pointer-events. strumRect = pc.selection.select("svg").insert("rect", "g#strums") .attr("id", "strum-events") .attr("x", __.margin.left) .attr("y", __.margin.top) .attr("width", w()) .attr("height", h() + 2) .style("opacity", 0) .call(drag); } brush.modes["2D-strums"] = { install: install, uninstall: function() { pc.selection.select("svg").select("g#strums").remove(); pc.selection.select("svg").select("rect#strum-events").remove(); pc.on("axesreorder.strums", undefined); delete pc.brushReset; strumRect = undefined; }, selected: selected, brushState: function () { return strums; } }; }()); // brush mode: 1D-Axes with multiple extents // requires d3.svg.multibrush (function() { if (typeof d3.svg.multibrush !== 'function') { return; } var brushes = {}; function is_brushed(p) { return !brushes[p].empty(); } // data within extents function selected() { var actives = d3.keys(__.dimensions).filter(is_brushed), extents = actives.map(function(p) { return brushes[p].extent(); }); // We don't want to return the full data set when there are no axes brushed. // Actually, when there are no axes brushed, by definition, no items are // selected. So, let's avoid the filtering and just return false. //if (actives.length === 0) return false; // Resolves broken examples for now. They expect to get the full dataset back from empty brushes if (actives.length === 0) return __.data; // test if within range var within = { "date": function(d,p,dimension,b) { if (typeof __.dimensions[p].yscale.rangePoints === "function") { // if it is ordinal return b[0] <= __.dimensions[p].yscale(d[p]) && __.dimensions[p].yscale(d[p]) <= b[1] } else { return b[0] <= d[p] && d[p] <= b[1] } }, "number": function(d,p,dimension,b) { if (typeof __.dimensions[p].yscale.rangePoints === "function") { // if it is ordinal return b[0] <= __.dimensions[p].yscale(d[p]) && __.dimensions[p].yscale(d[p]) <= b[1] } else { return b[0] <= d[p] && d[p] <= b[1] } }, "string": function(d,p,dimension,b) { return b[0] <= __.dimensions[p].yscale(d[p]) && __.dimensions[p].yscale(d[p]) <= b[1] } }; return __.data .filter(function(d) { switch(brush.predicate) { case "AND": return actives.every(function(p, dimension) { return extents[dimension].some(function(b) { return within[__.dimensions[p].type](d,p,dimension,b); }); }); case "OR": return actives.some(function(p, dimension) { return extents[dimension].some(function(b) { return within[__.dimensions[p].type](d,p,dimension,b); }); }); default: throw new Error("Unknown brush predicate " + __.brushPredicate); } }); }; function brushExtents(extents) { if (typeof(extents) === 'undefined') { extents = {}; d3.keys(__.dimensions).forEach(function (d) { var brush = brushes[d]; if (brush !== undefined && !brush.empty()) { var extent = brush.extent(); extents[d] = extent; } }); return extents; } else { //first get all the brush selections var brushSelections = {}; g.selectAll('.brush') .each(function (d) { brushSelections[d] = d3.select(this); }); // loop over each dimension and update appropriately (if it was passed in through extents) d3.keys(__.dimensions).forEach(function (d) { if (extents[d] === undefined) { return; } var brush = brushes[d]; if (brush !== undefined) { //update the extent brush.extent(extents[d]); //redraw the brush brushSelections[d] .transition() .duration(0) .call(brush); //fire some events brush.event(brushSelections[d]); } }); //redraw the chart pc.renderBrushed(); return pc; } } //function brushExtents() { // var extents = {}; // d3.keys(__.dimensions).forEach(function(d) { // var brush = brushes[d]; // if (brush !== undefined && !brush.empty()) { // var extent = brush.extent(); // extents[d] = extent; // } // }); // return extents; //} function brushFor(axis) { var brush = d3.svg.multibrush(); brush .y(__.dimensions[axis].yscale) .on("brushstart", function() { if(d3.event.sourceEvent !== null) { events.brushstart.call(pc, __.brushed); d3.event.sourceEvent.stopPropagation(); } }) .on("brush", function() { brushUpdated(selected()); }) .on("brushend", function() { // d3.svg.multibrush clears extents just before calling 'brushend' // so we have to update here again. // This fixes issue #103 for now, but should be changed in d3.svg.multibrush // to avoid unnecessary computation. brushUpdated(selected()); events.brushend.call(pc, __.brushed); }) .extentAdaption(function(selection) { selection .style("visibility", null) .attr("x", -15) .attr("width", 30) .style("fill", "rgba(255,255,255,0.25)") .style("stroke", "rgba(0,0,0,0.6)"); }) .resizeAdaption(function(selection) { selection .selectAll("rect") .attr("x", -15) .attr("width", 30) .style("visibility", null) .style("fill", "rgba(0,0,0,0.1)"); }); brushes[axis] = brush; return brush; } function brushReset(dimension) { __.brushed = false; if (g) { g.selectAll('.brush') .each(function(d) { d3.select(this).call( brushes[d].clear() ); }); pc.renderBrushed(); } return this; }; function install() { if (!g) pc.createAxes(); // Add and store a brush for each axis. var brush = g.append("svg:g") .attr("class", "brush") .each(function(d) { d3.select(this).call(brushFor(d)); }) brush.selectAll("rect") .style("visibility", null) .attr("x", -15) .attr("width", 30); brush.selectAll("rect.background") .style("fill", "transparent"); brush.selectAll("rect.extent") .style("fill", "rgba(255,255,255,0.25)") .style("stroke", "rgba(0,0,0,0.6)"); brush.selectAll(".resize rect") .style("fill", "rgba(0,0,0,0.1)"); pc.brushExtents = brushExtents; pc.brushReset = brushReset; return pc; } brush.modes["1D-axes-multi"] = { install: install, uninstall: function() { g.selectAll(".brush").remove(); brushes = {}; delete pc.brushExtents; delete pc.brushReset; }, selected: selected, brushState: brushExtents } })(); // brush mode: angular // code based on 2D.strums.js (function() { var arcs = {}, strumRect; function drawStrum(arc, activePoint) { var svg = pc.selection.select("svg").select("g#arcs"), id = arc.dims.i, points = [arc.p2, arc.p3], line = svg.selectAll("line#arc-" + id).data([{p1:arc.p1,p2:arc.p2},{p1:arc.p1,p2:arc.p3}]), circles = svg.selectAll("circle#arc-" + id).data(points), drag = d3.behavior.drag(), path = svg.selectAll("path#arc-" + id).data([arc]); path.enter() .append("path") .attr("id", "arc-" + id) .attr("class", "arc") .style("fill", "orange") .style("opacity", 0.5); path .attr("d", arc.arc) .attr("transform", "translate(" + arc.p1[0] + "," + arc.p1[1] + ")"); line.enter() .append("line") .attr("id", "arc-" + id) .attr("class", "arc"); line .attr("x1", function(d) { return d.p1[0]; }) .attr("y1", function(d) { return d.p1[1]; }) .attr("x2", function(d) { return d.p2[0]; }) .attr("y2", function(d) { return d.p2[1]; }) .attr("stroke", "black") .attr("stroke-width", 2); drag .on("drag", function(d, i) { var ev = d3.event, angle = 0; i = i + 2; arc["p" + i][0] = Math.min(Math.max(arc.minX + 1, ev.x), arc.maxX); arc["p" + i][1] = Math.min(Math.max(arc.minY, ev.y), arc.maxY); angle = i === 3 ? arcs.startAngle(id) : arcs.endAngle(id); if ((arc.startAngle < Math.PI && arc.endAngle < Math.PI && angle < Math.PI) || (arc.startAngle >= Math.PI && arc.endAngle >= Math.PI && angle >= Math.PI)) { if (i === 2) { arc.endAngle = angle; arc.arc.endAngle(angle); } else if (i === 3) { arc.startAngle = angle; arc.arc.startAngle(angle); } } drawStrum(arc, i - 2); }) .on("dragend", onDragEnd()); circles.enter() .append("circle") .attr("id", "arc-" + id) .attr("class", "arc"); circles .attr("cx", function(d) { return d[0]; }) .attr("cy", function(d) { return d[1]; }) .attr("r", 5) .style("opacity", function(d, i) { return (activePoint !== undefined && i === activePoint) ? 0.8 : 0; }) .on("mouseover", function() { d3.select(this).style("opacity", 0.8); }) .on("mouseout", function() { d3.select(this).style("opacity", 0); }) .call(drag); } function dimensionsForPoint(p) { var dims = { i: -1, left: undefined, right: undefined }; d3.keys(__.dimensions).some(function(dim, i) { if (xscale(dim) < p[0]) { var next = d3.keys(__.dimensions)[pc.getOrderedDimensionKeys().indexOf(dim)+1]; dims.i = i; dims.left = dim; dims.right = next; return false; } return true; }); if (dims.left === undefined) { // Event on the left side of the first axis. dims.i = 0; dims.left = pc.getOrderedDimensionKeys()[0]; dims.right = pc.getOrderedDimensionKeys()[1]; } else if (dims.right === undefined) { // Event on the right side of the last axis dims.i = d3.keys(__.dimensions).length - 1; dims.right = dims.left; dims.left = pc.getOrderedDimensionKeys()[d3.keys(__.dimensions).length - 2]; } return dims; } function onDragStart() { // First we need to determine between which two axes the arc was started. // This will determine the freedom of movement, because a arc can // logically only happen between two axes, so no movement outside these axes // should be allowed. return function() { var p = d3.mouse(strumRect[0][0]), dims, arc; p[0] = p[0] - __.margin.left; p[1] = p[1] - __.margin.top; dims = dimensionsForPoint(p), arc = { p1: p, dims: dims, minX: xscale(dims.left), maxX: xscale(dims.right), minY: 0, maxY: h(), startAngle: undefined, endAngle: undefined, arc: d3.svg.arc().innerRadius(0) }; arcs[dims.i] = arc; arcs.active = dims.i; // Make sure that the point is within the bounds arc.p1[0] = Math.min(Math.max(arc.minX, p[0]), arc.maxX); arc.p2 = arc.p1.slice(); arc.p3 = arc.p1.slice(); }; } function onDrag() { return function() { var ev = d3.event, arc = arcs[arcs.active]; // Make sure that the point is within the bounds arc.p2[0] = Math.min(Math.max(arc.minX + 1, ev.x - __.margin.left), arc.maxX); arc.p2[1] = Math.min(Math.max(arc.minY, ev.y - __.margin.top), arc.maxY); arc.p3 = arc.p2.slice(); // console.log(arcs.angle(arcs.active)); // console.log(signedAngle(arcs.unsignedAngle(arcs.active))); drawStrum(arc, 1); }; } // some helper functions function hypothenuse(a, b) { return Math.sqrt(a*a + b*b); } var rad = (function() { var c = Math.PI / 180; return function(angle) { return angle * c; }; })(); var deg = (function() { var c = 180 / Math.PI; return function(angle) { return angle * c; }; })(); // [0, 2*PI] -> [-PI/2, PI/2] var signedAngle = function(angle) { var ret = angle; if (angle > Math.PI) { ret = angle - 1.5 * Math.PI; ret = angle - 1.5 * Math.PI; } else { ret = angle - 0.5 * Math.PI; ret = angle - 0.5 * Math.PI; } return -ret; } /** * angles are stored in radians from in [0, 2*PI], where 0 in 12 o'clock. * However, one can only select lines from 0 to PI, so we compute the * 'signed' angle, where 0 is the horizontal line (3 o'clock), and +/- PI/2 * are 12 and 6 o'clock respectively. */ function containmentTest(arc) { var startAngle = signedAngle(arc.startAngle); var endAngle = signedAngle(arc.endAngle); if (startAngle > endAngle) { var tmp = startAngle; startAngle = endAngle; endAngle = tmp; } // test if segment angle is contained in angle interval return function(a) { if (a >= startAngle && a <= endAngle) { return true; } return false; }; } function selected() { var ids = Object.getOwnPropertyNames(arcs), brushed = __.data; // Get the ids of the currently active arcs. ids = ids.filter(function(d) { return !isNaN(d); }); function crossesStrum(d, id) { var arc = arcs[id], test = containmentTest(arc), d1 = arc.dims.left, d2 = arc.dims.right, y1 = __.dimensions[d1].yscale, y2 = __.dimensions[d2].yscale, a = arcs.width(id), b = y1(d[d1]) - y2(d[d2]), c = hypothenuse(a, b), angle = Math.asin(b/c); // rad in [-PI/2, PI/2] return test(angle); } if (ids.length === 0) { return brushed; } return brushed.filter(function(d) { switch(brush.predicate) { case "AND": return ids.every(function(id) { return crossesStrum(d, id); }); case "OR": return ids.some(function(id) { return crossesStrum(d, id); }); default: throw new Error("Unknown brush predicate " + __.brushPredicate); } }); } function removeStrum() { var arc = arcs[arcs.active], svg = pc.selection.select("svg").select("g#arcs"); delete arcs[arcs.active]; arcs.active = undefined; svg.selectAll("line#arc-" + arc.dims.i).remove(); svg.selectAll("circle#arc-" + arc.dims.i).remove(); svg.selectAll("path#arc-" + arc.dims.i).remove(); } function onDragEnd() { return function() { var brushed = __.data, arc = arcs[arcs.active]; // Okay, somewhat unexpected, but not totally unsurprising, a mousclick is // considered a drag without move. So we have to deal with that case if (arc && arc.p1[0] === arc.p2[0] && arc.p1[1] === arc.p2[1]) { removeStrum(arcs); } if (arc) { var angle = arcs.startAngle(arcs.active); arc.startAngle = angle; arc.endAngle = angle; arc.arc .outerRadius(arcs.length(arcs.active)) .startAngle(angle) .endAngle(angle); } brushed = selected(arcs); arcs.active = undefined; __.brushed = brushed; pc.renderBrushed(); events.brushend.call(pc, __.brushed); }; } function brushReset(arcs) { return function() { var ids = Object.getOwnPropertyNames(arcs).filter(function(d) { return !isNaN(d); }); ids.forEach(function(d) { arcs.active = d; removeStrum(arcs); }); onDragEnd(arcs)(); }; } function install() { var drag = d3.behavior.drag(); // Map of current arcs. arcs are stored per segment of the PC. A segment, // being the area between two axes. The left most area is indexed at 0. arcs.active = undefined; // Returns the width of the PC segment where currently a arc is being // placed. NOTE: even though they are evenly spaced in our current // implementation, we keep for when non-even spaced segments are supported as // well. arcs.width = function(id) { var arc = arcs[id]; if (arc === undefined) { return undefined; } return arc.maxX - arc.minX; }; // returns angles in [-PI/2, PI/2] angle = function(p1, p2) { var a = p1[0] - p2[0], b = p1[1] - p2[1], c = hypothenuse(a, b); return Math.asin(b/c); } // returns angles in [0, 2 * PI] arcs.endAngle = function(id) { var arc = arcs[id]; if (arc === undefined) { return undefined; } var sAngle = angle(arc.p1, arc.p2), uAngle = -sAngle + Math.PI / 2; if (arc.p1[0] > arc.p2[0]) { uAngle = 2 * Math.PI - uAngle; } return uAngle; } arcs.startAngle = function(id) { var arc = arcs[id]; if (arc === undefined) { return undefined; } var sAngle = angle(arc.p1, arc.p3), uAngle = -sAngle + Math.PI / 2; if (arc.p1[0] > arc.p3[0]) { uAngle = 2 * Math.PI - uAngle; } return uAngle; } arcs.length = function(id) { var arc = arcs[id]; if (arc === undefined) { return undefined; } var a = arc.p1[0] - arc.p2[0], b = arc.p1[1] - arc.p2[1], c = hypothenuse(a, b); return(c); } pc.on("axesreorder.arcs", function() { var ids = Object.getOwnPropertyNames(arcs).filter(function(d) { return !isNaN(d); }); // Checks if the first dimension is directly left of the second dimension. function consecutive(first, second) { var length = d3.keys(__.dimensions).length; return d3.keys(__.dimensions).some(function(d, i) { return (d === first) ? i + i < length && __.dimensions[i + 1] === second : false; }); } if (ids.length > 0) { // We have some arcs, which might need to be removed. ids.forEach(function(d) { var dims = arcs[d].dims; arcs.active = d; // If the two dimensions of the current arc are not next to each other // any more, than we'll need to remove the arc. Otherwise we keep it. if (!consecutive(dims.left, dims.right)) { removeStrum(arcs); } }); onDragEnd(arcs)(); } }); // Add a new svg group in which we draw the arcs. pc.selection.select("svg").append("g") .attr("id", "arcs") .attr("transform", "translate(" + __.margin.left + "," + __.margin.top + ")"); // Install the required brushReset function pc.brushReset = brushReset(arcs); drag .on("dragstart", onDragStart(arcs)) .on("drag", onDrag(arcs)) .on("dragend", onDragEnd(arcs)); // NOTE: The styling needs to be done here and not in the css. This is because // for 1D brushing, the canvas layers should not listen to // pointer-events. strumRect = pc.selection.select("svg").insert("rect", "g#arcs") .attr("id", "arc-events") .attr("x", __.margin.left) .attr("y", __.margin.top) .attr("width", w()) .attr("height", h() + 2) .style("opacity", 0) .call(drag); } brush.modes["angular"] = { install: install, uninstall: function() { pc.selection.select("svg").select("g#arcs").remove(); pc.selection.select("svg").select("rect#arc-events").remove(); pc.on("axesreorder.arcs", undefined); delete pc.brushReset; strumRect = undefined; }, selected: selected, brushState: function () { return arcs; } }; }()); pc.interactive = function() { flags.interactive = true; return this; }; // expose a few objects pc.xscale = xscale; pc.ctx = ctx; pc.canvas = canvas; pc.g = function() { return g; }; // rescale for height, width and margins // TODO currently assumes chart is brushable, and destroys old brushes pc.resize = function() { // selection size pc.selection.select("svg") .attr("width", __.width) .attr("height", __.height) pc.svg.attr("transform", "translate(" + __.margin.left + "," + __.margin.top + ")"); // FIXME: the current brush state should pass through if (flags.brushable) pc.brushReset(); // scales pc.autoscale(); // axes, destroys old brushes. if (g) pc.createAxes(); if (flags.brushable) pc.brushable(); if (flags.reorderable) pc.reorderable(); events.resize.call(this, {width: __.width, height: __.height, margin: __.margin}); return this; }; // highlight an array of data pc.highlight = function(data) { if (arguments.length === 0) { return __.highlighted; } __.highlighted = data; pc.clear("highlight"); d3.selectAll([canvas.foreground, canvas.brushed]).classed("faded", true); data.forEach(path_highlight); events.highlight.call(this, data); return this; }; // clear highlighting pc.unhighlight = function() { __.highlighted = []; pc.clear("highlight"); d3.selectAll([canvas.foreground, canvas.brushed]).classed("faded", false); return this; }; // calculate 2d intersection of line a->b with line c->d // points are objects with x and y properties pc.intersection = function(a, b, c, d) { return { x: ((a.x * b.y - a.y * b.x) * (c.x - d.x) - (a.x - b.x) * (c.x * d.y - c.y * d.x)) / ((a.x - b.x) * (c.y - d.y) - (a.y - b.y) * (c.x - d.x)), y: ((a.x * b.y - a.y * b.x) * (c.y - d.y) - (a.y - b.y) * (c.x * d.y - c.y * d.x)) / ((a.x - b.x) * (c.y - d.y) - (a.y - b.y) * (c.x - d.x)) }; }; function position(d) { if (xscale.range().length === 0) { xscale.rangePoints([0, w()], 1); } var v = dragging[d]; return v == null ? xscale(d) : v; } // Merges the canvases and SVG elements into one canvas element which is then passed into the callback // (so you can choose to save it to disk, etc.) pc.mergeParcoords = function(callback) { // Retina display, etc. var devicePixelRatio = window.devicePixelRatio || 1; // Create a canvas element to store the merged canvases var mergedCanvas = document.createElement("canvas"); mergedCanvas.width = pc.canvas.foreground.clientWidth * devicePixelRatio mergedCanvas.height = (pc.canvas.foreground.clientHeight + 30) * devicePixelRatio; mergedCanvas.style.width = mergedCanvas.width / devicePixelRatio + "px"; mergedCanvas.style.height = mergedCanvas.height / devicePixelRatio + "px"; // Give the canvas a white background var context = mergedCanvas.getContext("2d"); context.fillStyle = "#ffffff"; context.fillRect(0, 0, mergedCanvas.width, mergedCanvas.height); // Merge all the canvases for (var key in pc.canvas) { context.drawImage(pc.canvas[key], 0, 24 * devicePixelRatio, mergedCanvas.width, mergedCanvas.height - 30 * devicePixelRatio); } // Add SVG elements to canvas var DOMURL = window.URL || window.webkitURL || window; var serializer = new XMLSerializer(); var svgStr = serializer.serializeToString(pc.selection.select("svg")[0][0]); // Create a Data URI. var src = 'data:image/svg+xml;base64,' + window.btoa(svgStr); var img = new Image(); img.onload = function () { context.drawImage(img, 0, 0, img.width * devicePixelRatio, img.height * devicePixelRatio); if (typeof callback === "function") { callback(mergedCanvas); } }; img.src = src; } pc.version = "0.7.0"; // this descriptive text should live with other introspective methods pc.toString = function() { return "Parallel Coordinates: " + d3.keys(__.dimensions).length + " dimensions (" + d3.keys(__.data[0]).length + " total) , " + __.data.length + " rows"; }; return pc; }; d3.renderQueue = (function(func) { var _queue = [], // data to be rendered _rate = 10, // number of calls per frame _clear = function() {}, // clearing function _i = 0; // current iteration var rq = function(data) { if (data) rq.data(data); rq.invalidate(); _clear(); rq.render(); }; rq.render = function() { _i = 0; var valid = true; rq.invalidate = function() { valid = false; }; function doFrame() { if (!valid) return true; if (_i > _queue.length) return true; // Typical d3 behavior is to pass a data item *and* its index. As the // render queue splits the original data set, we'll have to be slightly // more carefull about passing the correct index with the data item. var end = Math.min(_i + _rate, _queue.length); for (var i = _i; i < end; i++) { func(_queue[i], i); } _i += _rate; } d3.timer(doFrame); }; rq.data = function(data) { rq.invalidate(); _queue = data.slice(0); return rq; }; rq.rate = function(value) { if (!arguments.length) return _rate; _rate = value; return rq; }; rq.remaining = function() { return _queue.length - _i; }; // clear the canvas rq.clear = function(func) { if (!arguments.length) { _clear(); return rq; } _clear = func; return rq; }; rq.invalidate = function() {}; return rq; });
PypiClean
/skytemple_dtef-1.6.0a3-py3-none-any.whl/skytemple_dtef/explorers_dtef.py
from math import floor, ceil from typing import List, Dict from xml.etree import ElementTree from PIL import Image from skytemple_dtef.dungeon_xml import DungeonXml, RestTileMapping, RestTileMappingEntry from skytemple_dtef.rules import get_rule_variations, REMAP_RULES from skytemple_files.graphics.dma.protocol import DmaProtocol, DmaType from skytemple_files.graphics.dpc import DPC_TILING_DIM from skytemple_files.graphics.dpc.protocol import DpcProtocol from skytemple_files.graphics.dpci import DPCI_TILE_DIM from skytemple_files.graphics.dpci.protocol import DpciProtocol from skytemple_files.graphics.dpl.protocol import DplProtocol from skytemple_files.graphics.dpla.protocol import DplaProtocol TILESHEET_WIDTH = 6 TILESHEET_HEIGHT = 8 TW = DPCI_TILE_DIM * DPC_TILING_DIM VAR0_FN = 'tileset_0.png' VAR1_FN = 'tileset_1.png' VAR2_FN = 'tileset_2.png' MORE_FN = 'tileset_more.png' class ExplorersDtef: def __init__(self, dma: DmaProtocol, dpc: DpcProtocol, dpci: DpciProtocol, dpl: DplProtocol, dpla: DplaProtocol): self.dma = dma self.dpc = dpc self.dpci = dpci self.dpl = dpl self.dpla = dpla chunks = self.dpc.chunks_to_pil(self.dpci, self.dpl.palettes, 1) self.var0 = Image.new('P', (TILESHEET_WIDTH * 3 * TW, TILESHEET_HEIGHT * TW)) self.var1 = Image.new('P', (TILESHEET_WIDTH * 3 * TW, TILESHEET_HEIGHT * TW)) self.var2 = Image.new('P', (TILESHEET_WIDTH * 3 * TW, TILESHEET_HEIGHT * TW)) pal = chunks.getpalette() self.var0.putpalette(pal) # type: ignore self.var1.putpalette(pal) # type: ignore self.var2.putpalette(pal) # type: ignore def paste(fimg, chunk_index, x, y): fimg.paste( chunks.crop((0, chunk_index * TW, TW, chunk_index * TW + TW)), (x * TW, y * TW) ) # Process tiles self._variation_map: List[List[int]] = [[], [], []] self._coord_map = {} # Pre-fill variation maps for ti, the_type in enumerate((DmaType.WALL, DmaType.WATER, DmaType.FLOOR)): for i, base_rule in enumerate(get_rule_variations(REMAP_RULES).keys()): if base_rule is None: continue x = i % TILESHEET_WIDTH + (TILESHEET_WIDTH * ti) y = floor(i / TILESHEET_WIDTH) variations = self.dma.get(the_type, base_rule) already_printed = set() for img, iv in zip((self.var0, self.var1, self.var2), range(len(variations))): variation = variations[iv] if variation in already_printed: continue already_printed.add(variation) self._coord_map[variation] = (x, y) self._variation_map[iv].append(variation) # Non standard tiles self.rest_mappings: List[RestTileMapping] = [] self._tiles_to_draw_on_more: List[int] = [] self._rest_mappings_idxes: Dict[int, int] = {} # dpc -> rest_mappings index # Process all normal rule tiles (47-set and check 256-set extended) for ti, the_type in enumerate((DmaType.WALL, DmaType.WATER, DmaType.FLOOR)): for i, (base_rule, derived_rules) in enumerate(get_rule_variations(REMAP_RULES).items()): if base_rule is None: continue x = i % TILESHEET_WIDTH + (TILESHEET_WIDTH * ti) y = floor(i / TILESHEET_WIDTH) variations = self.dma.get(the_type, base_rule) already_printed = set() for img, iv in zip((self.var0, self.var1, self.var2), range(len(variations))): variation = variations[iv] if variation in already_printed: continue already_printed.add(variation) paste(img, variation, x, y) for other_rule in derived_rules: if other_rule == base_rule: continue r_variations = self.dma.get(the_type, other_rule) for index, (r_var, var) in enumerate(zip(r_variations, variations)): if r_var != var: # Process non-standard mappings self._add_extra_mapping(other_rule, r_var, index) # Process all extra tiles for i, m in enumerate(self.dma.chunk_mappings[0x300 * 3:]): self._add_extra_mapping(0x300 * 3 + i, m, None) more_width = TILESHEET_WIDTH * 3 * TW more_height = max(TW, ceil(len(self._tiles_to_draw_on_more) / more_width) * TW) self.rest = Image.new('P', (more_width, more_height)) for i, tile_more in enumerate(self._tiles_to_draw_on_more): x = i % (TILESHEET_WIDTH * 3) y = floor(i / (TILESHEET_WIDTH * 3)) paste(self.rest, tile_more, x, y) self.rest.putpalette(pal) # type: ignore def get_xml(self) -> ElementTree.Element: return DungeonXml.generate(self.dpla, TW, self.rest_mappings) def get_tiles(self) -> List[Image.Image]: return [self.var0, self.var1, self.var2, self.rest] @staticmethod def get_filenames(): return [VAR0_FN, VAR1_FN, VAR2_FN, MORE_FN] def _add_extra_mapping(self, i, m, variation): if m in self._variation_map[0]: fn = VAR0_FN x, y = self._coord_map[m] elif m in self._variation_map[1]: fn = VAR1_FN x, y = self._coord_map[m] elif m in self._variation_map[2]: fn = VAR2_FN x, y = self._coord_map[m] else: fn = MORE_FN oi = len(self._tiles_to_draw_on_more) x = oi % (TILESHEET_WIDTH * 3) y = floor(oi / (TILESHEET_WIDTH * 3)) if m not in self._rest_mappings_idxes: if fn == MORE_FN: self._tiles_to_draw_on_more.append(m) self.rest_mappings.append(RestTileMapping(x, y, [], fn)) self._rest_mappings_idxes[m] = len(self.rest_mappings) - 1 mappings = self.rest_mappings[self._rest_mappings_idxes[m]].mappings if i < 0x300 * 3: # Normal dma_type = DmaType.WALL if i >= 0x200: dma_type = DmaType.FLOOR elif i >= 0x100: dma_type = DmaType.WATER mappings.append(RestTileMappingEntry("normal", dma_type, i, variation)) else: # Special typ = i % 3 i_real = int(i / 3) - 0x300 mappings.append(RestTileMappingEntry("extra", typ, 0, i_real))
PypiClean
/Discode.py-1.1.1.tar.gz/Discode.py-1.1.1/discode/utils.py
import pprint from .message import Message from .member import Member def make_pretty(*args, **kwargs) -> str: return pprint.pformat(*args, **kwargs) async def _check(ws, data: dict): if ws._ready.is_set(): event = data.get('t').upper() d = data.get("d") if event == "MESSAGE_CREATE": msgdata = data["d"] msgdata["http"] = ws.http message = Message(**msgdata) ws.message_cache.append(message) if len(ws.message_cache) == ws.http.client.message_limit: ws.message_cache[1:] await ws.dispatch("message", message) elif event == "MESSAGE_UPDATE": for msg in ws.message_cache: if msg.id == int(d.get("id")): msgdata = msg.data.copy() before = msg after = Message(**msgdata) after.content = data["d"].get("content") msg.data["edited_at"] = data["d"].get("edited_timestamp") await ws.dispatch("message edit", before, after) ws.message_cache.remove(before) ws.message_cache.append(after) break elif event == "MESSAGE_DELETE": for msg in ws.message_cache: pass elif event == "MEMBER_ADD": for g in ws.guilds: if g.id == int(d.get("guild_id")): d.pop("guild_id", None) g.members.append(d) await ws.dispatch("member create") break elif event == "MEMBER_DELETE": g = ws.client.get_guild(int(d.get("guild_id"))) if not g: return elif event == "MEMBER_UPDATE": g = ws.client.get_guild(int(d.get("guild_id"))) if g: d.pop("guild_id", None) m = ws.client.get_member( member_id = int(d.get("id")), guild_id = g.id ) try: g.members.remove(m) except ValueError: pass g.members.append(d)
PypiClean
/open_aea_cosmpy-0.6.5.tar.gz/open_aea_cosmpy-0.6.5/cosmpy/protos/cosmos/evidence/v1beta1/query_pb2_grpc.py
"""Client and server classes corresponding to protobuf-defined services.""" import grpc from cosmos.evidence.v1beta1 import query_pb2 as cosmos_dot_evidence_dot_v1beta1_dot_query__pb2 class QueryStub(object): """Query defines the gRPC querier service. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Evidence = channel.unary_unary( '/cosmos.evidence.v1beta1.Query/Evidence', request_serializer=cosmos_dot_evidence_dot_v1beta1_dot_query__pb2.QueryEvidenceRequest.SerializeToString, response_deserializer=cosmos_dot_evidence_dot_v1beta1_dot_query__pb2.QueryEvidenceResponse.FromString, ) self.AllEvidence = channel.unary_unary( '/cosmos.evidence.v1beta1.Query/AllEvidence', request_serializer=cosmos_dot_evidence_dot_v1beta1_dot_query__pb2.QueryAllEvidenceRequest.SerializeToString, response_deserializer=cosmos_dot_evidence_dot_v1beta1_dot_query__pb2.QueryAllEvidenceResponse.FromString, ) class QueryServicer(object): """Query defines the gRPC querier service. """ def Evidence(self, request, context): """Evidence queries evidence based on evidence hash. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def AllEvidence(self, request, context): """AllEvidence queries all evidence. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_QueryServicer_to_server(servicer, server): rpc_method_handlers = { 'Evidence': grpc.unary_unary_rpc_method_handler( servicer.Evidence, request_deserializer=cosmos_dot_evidence_dot_v1beta1_dot_query__pb2.QueryEvidenceRequest.FromString, response_serializer=cosmos_dot_evidence_dot_v1beta1_dot_query__pb2.QueryEvidenceResponse.SerializeToString, ), 'AllEvidence': grpc.unary_unary_rpc_method_handler( servicer.AllEvidence, request_deserializer=cosmos_dot_evidence_dot_v1beta1_dot_query__pb2.QueryAllEvidenceRequest.FromString, response_serializer=cosmos_dot_evidence_dot_v1beta1_dot_query__pb2.QueryAllEvidenceResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'cosmos.evidence.v1beta1.Query', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class Query(object): """Query defines the gRPC querier service. """ @staticmethod def Evidence(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/cosmos.evidence.v1beta1.Query/Evidence', cosmos_dot_evidence_dot_v1beta1_dot_query__pb2.QueryEvidenceRequest.SerializeToString, cosmos_dot_evidence_dot_v1beta1_dot_query__pb2.QueryEvidenceResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def AllEvidence(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/cosmos.evidence.v1beta1.Query/AllEvidence', cosmos_dot_evidence_dot_v1beta1_dot_query__pb2.QueryAllEvidenceRequest.SerializeToString, cosmos_dot_evidence_dot_v1beta1_dot_query__pb2.QueryAllEvidenceResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
PypiClean
/no_comment-0.1.1-py3-none-any.whl/no_comment/infrastructure/flask/__init__.py
from flask import Flask, get_flashed_messages, url_for from werkzeug.middleware.proxy_fix import ProxyFix import no_comment.interfaces.to_http.as_html as html_presenters from no_comment import __version__ from no_comment.infrastructure.settings import WsgiSettings from . import services from .auth import blueprint as auth from .streams import blueprint as streams def build_app(settings: WsgiSettings) -> Flask: services.define_settings(settings) app = Flask( __name__, static_url_path="/resources", static_folder="./static/", ) configure(app, settings) register_blueprints(app, settings) register_globals(settings) app.teardown_appcontext(services.teardown_connection) return app def configure(app: Flask, settings: WsgiSettings) -> None: if settings.PROXIED: app.wsgi_app = ProxyFix( # type: ignore[assignment] app.wsgi_app, x_for=1, x_proto=1, x_host=1, x_prefix=1 ) app.config.update( SECRET_KEY=settings.SECRET_KEY, SESSION_COOKIE_SECURE=True, SESSION_COOKIE_HTTPONLY=True, SESSION_COOKIE_SAMESITE="Lax", ) def register_blueprints(app: Flask, settings: WsgiSettings) -> None: app.register_blueprint(streams, url_prefix="/") app.auth_links = [] # type: ignore[attr-defined] app.register_blueprint(auth, url_prefix="/auth") if settings.TOTP: from no_comment.infrastructure.flask.totp import blueprint as totp app.register_blueprint(totp, url_prefix="/auth/totp") app.auth_links.append( # type: ignore[attr-defined] {"route": "totp.login", "label": "TOTP"} ) if settings.AUTHORIZED_IP: from no_comment.infrastructure.flask.ip import blueprint as ip app.register_blueprint(ip, url_prefix="/auth/ip") app.auth_links.append( # type: ignore[attr-defined] {"route": "ip.login", "label": "IP"} ) def register_globals(settings: WsgiSettings) -> None: html_presenters.register_jinja_global("version", __version__) html_presenters.register_jinja_global("url_for", url_for) html_presenters.register_jinja_global("get_flashed_messages", get_flashed_messages) html_presenters.register_jinja_global("timezone", settings.TIMEZONE)
PypiClean
/bf-banki-nlu-1.5.tar.gz/bf-banki-nlu-1.5/rasa/core/training/converters/responses_prefix_converter.py
from pathlib import Path from typing import Text from rasa.shared.core.domain import Domain, InvalidDomain from rasa.shared.core.events import ActionExecuted from rasa.shared.core.training_data.story_reader.yaml_story_reader import ( YAMLStoryReader, ) from rasa.shared.core.training_data.story_writer.yaml_story_writer import ( YAMLStoryWriter, ) from rasa.shared.constants import UTTER_PREFIX from rasa.utils.converter import TrainingDataConverter OBSOLETE_RESPOND_PREFIX = "respond_" def normalize_utter_action(action_name: Text) -> Text: """Ensure that response names start with `utter_`. Args: action_name: The name of the response. Returns: The name of the response, starting with `utter_`. """ return ( f"{UTTER_PREFIX}{action_name[len(OBSOLETE_RESPOND_PREFIX):]}" if action_name.startswith(OBSOLETE_RESPOND_PREFIX) else action_name ) class StoryResponsePrefixConverter(TrainingDataConverter): """ Converter responsible for ensuring that retrieval intent actions in stories start with `utter_` instead of `respond_`. """ @classmethod def filter(cls, source_path: Path) -> bool: """Only accept YAML story files. Args: source_path: Path to a training data file. Returns: `True` if the given file is a YAML stories file, `False` otherwise. """ return YAMLStoryReader.is_stories_file(source_path) @classmethod async def convert_and_write(cls, source_path: Path, output_path: Path) -> None: """Migrate retrieval intent responses to the new 2.0 format in stories. Before 2.0, retrieval intent responses needed to start with `respond_`. Now, they need to start with `utter_`. Args: source_path: the source YAML stories file. output_path: Path to the output directory. """ reader = YAMLStoryReader() story_steps = reader.read_from_file(source_path) for story_step in story_steps: for event in story_step.events: if isinstance(event, ActionExecuted): event.action_name = normalize_utter_action(event.action_name) output_file = cls.generate_path_for_converted_training_data_file( source_path, output_path ) YAMLStoryWriter().dump(output_file, story_steps) class DomainResponsePrefixConverter(TrainingDataConverter): """ Converter responsible for ensuring that retrieval intent actions in domain start with `utter_` instead of `respond_`. """ @classmethod def filter(cls, source_path: Path) -> bool: """Only accept domain files. Args: source_path: Path to a domain file. Returns: `True` if the given file can is a valid domain file, `False` otherwise. """ try: Domain.from_path(source_path) except InvalidDomain: return False return True @classmethod async def convert_and_write(cls, source_path: Path, output_path: Path) -> None: """Migrate retrieval intent responses to the new 2.0 format in domains. Before 2.0, retrieval intent responses needed to start with `respond_`. Now, they need to start with `utter_`. Args: source_path: The source domain file. output_path: Path to the output directory. """ domain = Domain.from_path(source_path) domain_dict = domain.as_dict() domain_dict["actions"] = [ normalize_utter_action(action) for action in domain_dict["actions"] ] new_domain = Domain.from_dict(domain_dict) output_file = cls.generate_path_for_converted_training_data_file( source_path, output_path ) new_domain.persist(output_file)
PypiClean
/chemfiles-0.10.4.tar.gz/chemfiles-0.10.4/lib/CHANGELOG.md
# Change Log All notable changes to this project will be documented in this file. This project adheres to [Semantic Versioning](https://semver.org/). ## Next Release (current master) ### Deprecation and removals - Remove support for configuration files (`chemfiles.toml`) and associated functions. ## 0.10.4 (7 May 2023) ### Changes in supported formats - Added read support for the TPR format (#459) - Fix an issue when writing DCD files that made them incompatible with VMD (#465) - Fix a bug when converting cell angles in DCD (#467) ## 0.10.3 (20 Aug 2022) ### Changes in supported formats - Amber NetCDF files are now read/written with a custom netcdf parser (#443) - TRR and XTC files are now read/written with a custom parser (#451) - DCD files are now read/written with a custom parser (#453) ## 0.10.2 (20 Oct 2021) ### New features - properties are now sorted, and iterating over properties will always yield them sorted by the associated key. ### Changes in supported formats - Added read support for PSF files using VMD molfile plugin. ## 0.10.1 (22 Jul 2021) ### New features - added `chemfiles::guess_format` and `chfl_guess_format` to get the format chemfiles would use for a given file based on its filename - Added read support for GROMACS TPR format. ### Changes in supported formats - Added read and write support for Amber Restart (.ncrst) files. - Added native read and write support for LAMMPS trajectory (.lammpstrj) files, replacing the VMD molfile implementation. ### Changes to the C API ## 0.10.0 (14 Feb 2021) ### Changes in supported formats * Added read and write support for CIF format. * Added read and write support for extended XYZ. The XYZ format now default to extended output, and read extended files. Extended XYZ allow storing unit cell and arbitrary atomic properties. ### New features * Added ability to read and write files directly in-memory. See `Trajectory::memory_reader`; `Trajectory::memory_writer`; `Trajectory::memory_buffer`; `chfl_trajectory_memory_reader`; `chfl_trajectory_memory_writer` and `chfl_trajectory_memory_buffer`. * Added support for appending to gzip (.gz) compressed trajectories. * Added support for sub-selection in numerical functions, for example `distance(#1, name O)`. * Changed the UnitCell representation to the full cell matrix instead of a/b/c/alpha/beta/gamma * Added `chemfiles::formats_list` function to get a list of formats and associated metadata. ### Changes to the C API * Added missing `chfl_frame_clear_bonds` and `chfl_topology_clear_bonds`. * Added `chfl_cell_from_matrix` and changed parameters to `chfl_cell`, removed `chfl_cell_triclinic`. * Added `chfl_formats_list` function to get a list of formats and associated metadata. ## 0.9.3 (5 Feb 2020) * Fix a bug in the PDB format where no atomic name/type was read from short ATOM/HETATM records. * Fix a few bugs related to UnitCell Matrix and infinite UnitCell construction ## 0.9.2 (18 Dec 2019) * When compiling chemfiles as a shared library, the dependencies symbols are now hidden. This should prevent clashes between say chemfiles's zlib and the system zlib. * Cache sub-selection (the 'name O' in 'is_bonded(#1, name O)'), reducing selection evaluation time by a huge margin. ### Changes in supported formats * Added read and write support for CML (Chemical Markup Language) files, a XML based format. * Added a native implementation of XTC and TRR formats, replacing the VMD molfile version. The new code supports reading and writing files, should be faster and use less memory. * Remove the ability to read frames from a trajectory that was opened in append mode. This mode is now write only. * Added support for bzip2 (.bz2) compressed files when reading and writing ## 0.9.1 (13 Mar 2019) * Fix a bug with memory allocation in the C API. The allocator did not remove pointers as soon as `chfl_free` was called, which leaded to an error when the system allocator re-used the pointers. ## 0.9.0 (18 Nov 2018) * Direct reading and writing of compressed files. gzip and lzma (.xz) formats are supported. * GROMACS .gro files now supported through custom implementation. * Properties are now supported in the `Residue` class. They are accessed using `Residue::set` and `Residue::get`. * The topology of residues is now automatically set using a lookup table for the PDB format. * `Frame::guess_topology` was renamed to `Frame::guess_bonds`. * The selection engine has been rewritten to add support for more complex selections: * it is now possible to use mathematical expressions in selections such as `x^2 - y ^2 < sqrt(z^2 + 25)`; * it is now possible to access geometrical properties in such mathematical expressions: `distance(#1, #2)`, `angle(#1, #2, #3)`, `dihedral(#1, #2, #3, #4)`, and `out_of_plane(#1, #2, #3, #4)` are supported; * it is now possible to add constrains on the topology of the system: `bonded(#1, #2)`, `is_angle(#1, #2, #3)`, `is_dihedral(#1, #2, #3, #4)`, and `improper(#1, #2, #3, #4)` are supported; * the topology constrains support sub-selections: instead of checking is `#1` and `#2` are bonded, one can check if `#1` is bonded to any atom matching a selection, for example `name O` with `bonded(#1, name O)`. * When using numbers as atomic names/types, they must now be inside double quotes (`name "45"`). This also allows for more exotic atomic names (`name "名"`). * Atomic properties can be checked, using the `[property] == Ow` syntax for string properties, `[property] == 2.3` for numeric properties and `[property]` for boolean properties. * There is only one constructor for the `Frame` class: `Frame(UnitCell cell = UnitCell())`. The constructor taking a topology can be replaced with calls to `Frame::add_atom` and `Frame::add_bond`. * Chemfiles will now read configuration from `.chemfiles.toml` or `chemfiles.toml` instead of `.chemfilesrc` * Added `Trajectory::path` to get the file path used to create a trajectory * Renamed `Property::get_kind` to `Property::kind` * Added `Atom::properties`; `Frame::properties`; and `Residue::properties` to allow iteration over all the properties in an Atom/Frame/Residue. ### Changes in supported formats * Added `MarcoMolecule Transmission Format (MMTF)` support, reading via mmtf-cpp. * Added `Structure-Data File (SDF)` support, reading and writing. * Added `Cambridge Structure Search and Retrieval (CSSR)` support, reading and writing. * `LAMMPS Data` format now support triclinic unit cells. ### Changes to the C API * Added `chfl_residue_get_property` and `chfl_residue_set_property` to provide access to residue properties. * `chfl_frame_guess_topology` was renamed to `chfl_frame_guess_bonds`. * Function accessing atoms/cell/residue/topology inside a frame/topology no longer make a copy. This allows for direct reading and writing inside the containing frame/topology. * Added `chfl_trajectory_path` to get the file path used to create a trajectory * Added `chfl_{atom,frame,residue}_properties_count` and `chfl_{atom,frame,residue}_list_properties` to list all properties in an Atom/Frame/Residue * Replaced `chfl_*_free` by an unique `chfl_free` function ## 0.8 (14 Dec 2017) ### New features * Change the license to the 3-clauses BSD license. * Chemfiles will now read configuration files (by default in `.chemfilesrc`), and use the configuration data to rename atomic types to make sure they match element names. The `chemfiles::add_configuration` function can be used to add additional configuration files. * Reading a `Frame` (with `Trajectory::read` or `Trajectory::read_step`) will now set the frame step. * The `Atom` faillible methods (`atomic_number`, `vdw_radius`, `covalent_radius` and `full_name`) returns `optional<T>` instead of `T`. * Functions taking an atomic index parameter can now throw `OutOfBounds` errors if the index is out of bounds. * `Topology::append` is now called `Topology::add_atom` * `Topology::natoms` and `Frame::natoms` are now called `Topology::size` and `Frame::size` * `Topology::residue` is now called `Topology::residue_for_atom` * Added `Frame::distance`, `Frame::angle`, `Frame::dihedral` and `Frame::out_of_plane` to get geometric information on the system, accounting for periodic boundary conditions. * Added a `Property` class to store arbitrary properties in `Frame` and `Atom`. * Added support for improper dihedral angles in `Topology`. * `chemfiles::add_configuration` and `chemfiles::set_warning_callback` are now thread safe, and will block upon concurrent usage. * `UnitCell::matricial` is renamed to `UnitCell::matrix`. * The `UnitCell::shape` setter is renamed to `UnitCell::set_shape`. * The `Trajectory::close` function can be used to close a trajectory and synchronize any buffered content with the storage. * Some of the topology functions are now accsible directly on the frame: `Frame::add_bond`, `Frame::remove_bond`, `Frame::clear_bonds`, `Frame::add_residue` and `operator[]`. The non const version of `Frame::topology` is removed. ### Changes in supported formats * Amber NetCDF format is now activated by default, by embedding the netcdf library in chemfiles. * Added `LAMMPS Data` format, reading and writing [LAMMPS data files]. * Added `Tinker` format, reading and writing Tinker XYZ file format. * Added `MOL2` format, reading mol2 files using VMD molfiles plugin. * Added `Molden` format, reading molden files using VMD molfiles plugin. [LAMMPS data files]: https://lammps.sandia.gov/doc/read_data.html ### Changes to the C API * Added `chfl_add_configuration` to add more configuration files. * Renamed `chfl_vector_t` to `chfl_vector3d`, `chfl_match_t` to `cfl_match`; and `chfl_cell_shape_t` to `chfl_cellshape`. * `chfl_atom_atomic_number`, `chfl_atom_vdw_radius` and `chfl_atom_covalent_radius` all returns 0 instead of -1 if the atom does not have a known value for this property. This allow `chfl_atom_atomic_number` to take a `uint64_t*` parameter instead of an `int64_t*`, following all the other functions in the C API. * Added `CHFL_OUT_OF_BOUNDS` and `CHFL_PROPERTY_ERROR` variants to `chfl_status` * Added `chfl_frame_distance`, `chfl_frame_angle`, `chfl_frame_dihedral`, `chfl_frame_out_of_plane` and `chfl_cell_wrap` to work with periodic boundary conditions. * `chfl_residue` does not take the optional residue id as parameter, instead you should use `chfl_residue_with_id`. * Added `chfl_residue_atoms` to get the list of atoms in a residue. * Added `chfl_topology_impropers` and `chfl_topology_impropers_count` functions. * Added `CHFL_PROPERTY` and related functions. * `chfl_add_configuration` and `chfl_set_warning_callback` are now thread safe, and will block upon concurrent usage. * Added `chfl_frame_add_bond`, `chfl_frame_remove_bond`, and `chfl_frame_add_residue`. ### Deprecation and removals * `Topology::isbond`, `Topology::isangle`, `Topology::isdihedral`, and the corresponding C functions `chfl_topology_isbond`, `chfl_topology_isangle` `chfl_topology_isdihedral` are removed. ## 0.7 (25 Feb 2017) ### New features * Add a public `Residue` class to C++ and C API to represent residue data. Residues are groups of atoms bonded together, which may or may not correspond to molecules; and are often used for bio-molecules. * Add the `resname` and `resid` selector, to select atoms based on their residue. * Account for the difference between the atom name ("H1") and atom type ("H") in some formats (PDB, TNG, ...). This introduces the `Atom::type` member function and the `chfl_atom_type` C API function. * Add the `type` selector, to select atoms based on their type. * Add "Frame::add_atom" function to add an atom and the corresponding position (and velocity) data to a frame, and the C API `chfl_frame_add_atom` function. * Rename `UnitCell::type` to `UnitCell::shape`. This also affect `chfl_cell_shape_t`, `chfl_cell_shape`, and `chfl_cell_set_shape`. * All the floating point data uses doubles instead of floats. This concerns atomic data, positions and velocities. * Add "Selection::string" function and the corresponding `chfl_selection_string` to get the string used to build a selection. * Selection variables uses the `#3` syntax instead of the `$3` syntax to allow passing selection string as shell arguments. * Add `Frame::remove` and `chfl_frame_remove` to remove an atom in a frame. * Allow to use chemfiles with Cmake `find_package`. ### Changes in supported formats * Add read support for TNG files, an new portable and compressed binary format used by GROMACS. ### Changes to the C API * All the integers at C boundary have a fixed size, most of the time using `uint64_t`. * Add missing `chfl_topology_resize` function to C API. * C API functions taking three lengths/angles now take a `double[3]` parameter instead. * Rename `chfl_topology_are_linked` to `chfl_topology_residues_linked`. * Rename `chfl_topology_append` to `chfl_topology_add_atom`. * Remove `chfl_strerror`, as it is redundant with `chfl_last_error`. * Merge `chfl_trajectory_set_topology_file` and `chfl_trajectory_set_topology_with_format` into `chfl_trajectory_topology_file`. * The `chfl_frame` function no longer take the frame size as argument. It always creates an empty frame, that you can resize using `chfl_frame_resize`. * `chfl_selection_evalutate` was a typo, it is renamed to `chfl_selection_evaluate`. ### Deprecation and removals * Remove the `Atom::type` enum from C and C++ API. * Remove the `Trajectory::sync` and the `chfl_trajectory_sync` functions. To ensure that all content of a file is written to the disk, the user need to close it. * Remove the `Logger` and all the `chfl_log*` functions. Instead, the users can use `chemfiles::set_warning_callback` or `chfl_set_warning_callback` to set a global callback to call on warnings events. ## 0.6 (1 July 2016) * Improve the selection language to allow selecting multiple atoms at once. For example, `"pairs: name($1) H and mass($2) > 5"` will select all pairs of atoms where the first atom name is `'H'` and the second atom mass is bigger than 5. * The implemented modes for selections are `one`, `atoms`, `two`, `pairs`, `three`, `four`, `bonds`, `angles` and `dihedrals`; * The `Selection` class is now directly exposed to the C API, as `CHFL_SELECTION*`. The `chfl_frame_selection` function is replaced by the `chfl_selection`, `chfl_selection_size`, `chfl_selection_evalutate`, `chfl_selection_matches` and `chfl_selection_free` functions, and the `chfl_match_t` helper struct. * Add the `chfl_clear_errors` function, to cleanup the error state of the C API. * Molfiles plugins are now incorporated in the Chemfiles library, and no longer distributed as shared libraries. The `CHEMFILES_PLUGINS` environment variable is a no-op. * The caching of angles and dihedrals is now an implementation detail. That means that `Topology::recalculate` is gone, and that `Frame::guess_topology` and `chfl_frame_guess_topology` do not take a boolean parameter anymore. * The opening mode is now a `char` instead of a string in `Trajectory` constructor, `chfl_trajectory_open`, and `chfl_trajectory_with_format`. * Remove `operator<<` and `operator>>` for `Trajectory`. Users should use `Trajectory::read` and `Trajectory::write` * Users can now specify the format when reading the topology associated with a trajectory from a file. The `chfl_trajectory_set_topology_with_format` function can be used to do so from the C API. * The `chfl_atom_from_{frame,topology}` function now return `NULL` in case of out-of-bound access. ## 0.5 (19 Feb 2016) * The C API now provide a direct view into the `positions` and `velocities` arrays. This remove the need for copy and separated getter (`chfl_frame_{position,velocities}`) and setter (`chfl_frame_{position,velocities}_set`) function. This also force usage of `chfl_frame_add_velocities` to add velocity data to a frame, and `chfl_frame_resize` to change the size of the frame. * Add constants for error codes in C API. The following macro are defined: `CHFL_SUCCESS`, `CHFL_MEMORY_ERROR`, `CHFL_FILE_ERROR`, `CHFL_FORMAT_ERROR`, `CHFL_GENERIC_ERROR`, `CHFL_CXX_ERROR`. * Add the `chfl_version` function in C API. * Add a small selection language *a la* VMD, allowing to select atoms matching a selection string like `"name H and x > 4"`. This is exposed to C++ with the public `Selection` class, and to C with the `chfl_frame_selection` function. * Remove the periodicity handling from `UnitCell`. It was not implemented in boundaries conditions. The corresponding function where removed from the C API. * Rename all setter function from `void xxx(const XXX& value)` to `void set_xxx(const XXX& value)` in C++ API. * It is now possible to provide a callback for logging from the C API. The `chfl_log_stdout`, `chfl_log_silent` and `chfl_log_callback` function where added to the C API. ## 0.4 (30 Oct 2015) * Chemharp can now be compiled as a static library! This should allow for easier embedding in external code, and easier distribution of binaries. * Add a `chemfiles::Trajectory::sync` method to sync any buffered operation with the disk. The `chfl_trajectory_sync` function exposes it to the C API. * Add a Rust binding * Rewrite the Python binding to use ctypes. The same code can be used with Python 2 & 3, and with all numpy versions. * Easier Python and Julia binding installation, using conda binary packaging. * All the bindings now live on their own repository: - [Fortran](https://github.com/Luthaf/Chemharp.f03) - [Python](https://github.com/Luthaf/Chemharp.py) - [Julia](https://github.com/Luthaf/Chemharp.jl) - [Rust](https://github.com/Luthaf/Chemharp.rs) * The library is now continuously tested on Visual Studio * Various bug fixes and code improvements * Renamed the library to Chemfiles. ## 0.3 (3 Aug 2015) * Julia binding * Initial Windows support, with both MSVC and mingw * Add a binary frontend called `chrp`, implementing some analysis algorithms. For more information, see the [specific repository](https://github.com/Luthaf/chrp). ## 0.2 (31 May 2015) * Add basic geometrical operations on vectors and implement basic periodic boundaries condition with the `UnitCell::wrap` function; * Use VMD Molfiles plugins as a format provider to read trajectories. The following formats are added through Molfiles: * PDB; * GROMACS gro; * GROMACS xtc; * GROMACS trj; * GROMACS trr; * CHARMM dcd; ## 0.1 (16 May 2015) Initial release. See the documentation for the full API. Chemharp is usable from four languages: * C++; * C; * Fortran; * Python; The following formats are supported: * XYZ; * AMBER NetCDF;
PypiClean
/hsa-pyelastica-0.0.1.tar.gz/hsa-pyelastica-0.0.1/hsa_elastica/memory_block/memory_block_hsa_rod.py
__doc__ = """Create block-structure class for collection of Cosserat rod systems.""" from elastica.memory_block.memory_block_rod import make_block_memory_metadata from elastica.rod.data_structures import _RodSymplecticStepperMixin from elastica.reset_functions_for_block_structure import _reset_scalar_ghost import numpy as np from typing import Sequence from hsa_elastica.rod import HsaRod class MemoryBlockHsaRod(HsaRod, _RodSymplecticStepperMixin): def __init__(self, systems: Sequence): self.n_elems_in_rods = np.array([x.n_elems for x in systems], dtype=np.int64) self.n_rods = len(systems) ( self.n_elems, self.ghost_nodes_idx, self.ghost_elems_idx, self.ghost_voronoi_idx, ) = make_block_memory_metadata(self.n_elems_in_rods) self.n_nodes = self.n_elems + 1 self.n_voronoi = self.n_elems - 1 # n_nodes_in_rods = self.n_elems_in_rods + 1 # n_voronois_in_rods = self.n_elems_in_rods - 1 self.start_idx_in_rod_nodes = np.hstack( (0, self.ghost_nodes_idx + 1) ) # Start index of subsequent rod self.end_idx_in_rod_nodes = np.hstack( (self.ghost_nodes_idx, self.n_nodes) ) # End index of the rod, Some max size, doesn't really matter self.start_idx_in_rod_elems = np.hstack((0, self.ghost_elems_idx[1::2] + 1)) self.end_idx_in_rod_elems = np.hstack((self.ghost_elems_idx[::2], self.n_elems)) self.start_idx_in_rod_voronoi = np.hstack((0, self.ghost_voronoi_idx[2::3] + 1)) self.end_idx_in_rod_voronoi = np.hstack( (self.ghost_voronoi_idx[::3], self.n_voronoi) ) # Allocate block structure using system collection. self.allocate_block_variables_in_nodes(systems) self.allocate_block_variables_in_elements(systems) self.allocate_blocks_variables_in_voronoi(systems) self.allocate_blocks_variables_for_symplectic_stepper(systems) # Reset ghosts of mass, rest length and rest voronoi length to 1. Otherwise # since ghosts are not modified, this causes a division by zero error. _reset_scalar_ghost(self.mass, self.ghost_nodes_idx, 1.0) _reset_scalar_ghost(self.rest_lengths, self.ghost_elems_idx, 1.0) _reset_scalar_ghost(self.rest_voronoi_lengths, self.ghost_voronoi_idx, 1.0) _reset_scalar_ghost(self.printed_lengths, self.ghost_elems_idx, 1.0) _reset_scalar_ghost(self.printed_voronoi_lengths, self.ghost_voronoi_idx, 1.0) # Initialize the mixin class for symplectic time-stepper. _RodSymplecticStepperMixin.__init__(self) def allocate_block_variables_in_nodes(self, systems: Sequence): """ This function takes system collection and allocates the variables on node for block-structure and references allocated variables back to the systems. Parameters ---------- systems Returns ------- """ # Things in nodes that are scalars # 0 ("mass", float64[:]), map_scalar_dofs_in_rod_nodes = { "mass": 0, "dissipation_constant_for_forces": 1, } self.scalar_dofs_in_rod_nodes = np.zeros( (len(map_scalar_dofs_in_rod_nodes), self.n_nodes) ) for k, v in map_scalar_dofs_in_rod_nodes.items(): self.__dict__[k] = np.lib.stride_tricks.as_strided( self.scalar_dofs_in_rod_nodes[v], (self.n_nodes,) ) for k, v in map_scalar_dofs_in_rod_nodes.items(): for system_idx, system in enumerate(systems): start_idx = self.start_idx_in_rod_nodes[system_idx] end_idx = self.end_idx_in_rod_nodes[system_idx] self.__dict__[k][..., start_idx:end_idx] = system.__dict__[k].copy() system.__dict__[k] = np.ndarray.view( self.__dict__[k][..., start_idx:end_idx] ) # Things in nodes that are vectors # 0 ("position_collection", float64[:, :]), # 1 ("internal_forces", float64[:, :]), # 2 ("external_forces", float64[:, :]), # 3 ("damping_forces", float64[:, :]), # 6 in total map_vector_dofs_in_rod_nodes = { "position_collection": 0, "internal_forces": 1, "external_forces": 2, "damping_forces": 3, } self.vector_dofs_in_rod_nodes = np.zeros( (len(map_vector_dofs_in_rod_nodes), 3 * self.n_nodes) ) for k, v in map_vector_dofs_in_rod_nodes.items(): self.__dict__[k] = np.lib.stride_tricks.as_strided( self.vector_dofs_in_rod_nodes[v], (3, self.n_nodes) ) for k, v in map_vector_dofs_in_rod_nodes.items(): for system_idx, system in enumerate(systems): start_idx = self.start_idx_in_rod_nodes[system_idx] end_idx = self.end_idx_in_rod_nodes[system_idx] self.__dict__[k][..., start_idx:end_idx] = system.__dict__[k].copy() system.__dict__[k] = np.ndarray.view( self.__dict__[k][..., start_idx:end_idx] ) # Things in nodes that are matrices # Null set def allocate_block_variables_in_elements(self, systems: Sequence): """ This function takes system collection and allocates the variables on elements for block-structure and references allocated variables back to the systems. Parameters ---------- systems Returns ------- """ # Things in elements that are scalars # 0 ("radius", float64[:]), # 1 ("volume", float64[:]), # 2 ("density", float64[:]), # 3 ("lengths", float64[:]), # 4 ("rest_lengths", float64[:]), # 5 ("dilatation", float64[:]), # 6 ("dilatation_rate", float64[:]), # 7 ("dissipation_constant_for_forces", float64[:]), # 8 ("dissipation_constant_for_torques", float64[:]) map_scalar_dofs_in_rod_elems = { "radius": 0, "volume": 1, "density": 2, "lengths": 3, "rest_lengths": 4, "rest_lengths_scale_factor": 5, "printed_lengths": 6, "dilatation": 7, "dilatation_rate": 8, "dissipation_constant_for_torques": 9, "cross_sectional_area": 10, "elastic_modulus": 11, "elastic_modulus_scale_factor": 12, "shear_modulus": 13, "shear_modulus_scale_factor": 14, "auxetic": 15, } self.scalar_dofs_in_rod_elems = np.zeros( (len(map_scalar_dofs_in_rod_elems), self.n_elems) ) for k, v in map_scalar_dofs_in_rod_elems.items(): self.__dict__[k] = np.lib.stride_tricks.as_strided( self.scalar_dofs_in_rod_elems[v], (self.n_elems,) ) for k, v in map_scalar_dofs_in_rod_elems.items(): for system_idx, system in enumerate(systems): start_idx = self.start_idx_in_rod_elems[system_idx] end_idx = self.end_idx_in_rod_elems[system_idx] self.__dict__[k][..., start_idx:end_idx] = system.__dict__[k].copy() system.__dict__[k] = np.ndarray.view( self.__dict__[k][..., start_idx:end_idx] ) # Things in elements that are vectors # 0 ("tangents", float64[:, :]), # 1 ("sigma", float64[:, :]), # 2 ("rest_sigma", float64[:, :]), # 3 ("internal_torques", float64[:, :]), # 4 ("external_torques", float64[:, :]), # 5 ("damping_torques", float64[:, :]), # 6 ("internal_stress", float64[:, :]), map_vector_dofs_in_rod_elems = { "tangents": 0, "sigma": 1, "rest_sigma": 2, "internal_torques": 3, "external_torques": 4, "damping_torques": 5, "internal_stress": 6, "second_moment_of_inertia": 7, } self.vector_dofs_in_rod_elems = np.zeros( (len(map_vector_dofs_in_rod_elems), 3 * self.n_elems) ) for k, v in map_vector_dofs_in_rod_elems.items(): self.__dict__[k] = np.lib.stride_tricks.as_strided( self.vector_dofs_in_rod_elems[v], (3, self.n_elems) ) for k, v in map_vector_dofs_in_rod_elems.items(): for system_idx, system in enumerate(systems): start_idx = self.start_idx_in_rod_elems[system_idx] end_idx = self.end_idx_in_rod_elems[system_idx] self.__dict__[k][..., start_idx:end_idx] = system.__dict__[k].copy() system.__dict__[k] = np.ndarray.view( self.__dict__[k][..., start_idx:end_idx] ) # Things in elements that are matrices # 0 ("director_collection", float64[:, :, :]), # 1 ("mass_second_moment_of_inertia", float64[:, :, :]), # 2 ("inv_mass_second_moment_of_inertia", float64[:, :, :]), # 3 ("shear_matrix", float64[:, :, :]), map_matrix_dofs_in_rod_elems = { "director_collection": 0, "mass_second_moment_of_inertia": 1, "inv_mass_second_moment_of_inertia": 2, "shear_matrix": 3, } self.matrix_dofs_in_rod_elems = np.zeros( (len(map_matrix_dofs_in_rod_elems), 9 * self.n_elems) ) for k, v in map_matrix_dofs_in_rod_elems.items(): self.__dict__[k] = np.lib.stride_tricks.as_strided( self.matrix_dofs_in_rod_elems[v], (3, 3, self.n_elems) ) for k, v in map_matrix_dofs_in_rod_elems.items(): for system_idx, system in enumerate(systems): start_idx = self.start_idx_in_rod_elems[system_idx] end_idx = self.end_idx_in_rod_elems[system_idx] self.__dict__[k][..., start_idx:end_idx] = system.__dict__[k].copy() system.__dict__[k] = np.ndarray.view( self.__dict__[k][..., start_idx:end_idx] ) def allocate_blocks_variables_in_voronoi(self, systems: Sequence): """ This function takes system collection and allocates the variables on voronoi for block-structure and references allocated variables back to the systems. Parameters ---------- systems Returns ------- """ # Things in voronoi that are scalars # 0 ("voronoi_dilatation", float64[:]), # 1 ("rest_voronoi_lengths", float64[:]), map_scalar_dofs_in_rod_voronois = { "voronoi_dilatation": 0, "rest_voronoi_lengths": 1, "printed_voronoi_lengths": 2, "bend_rigidity": 3, "bend_rigidity_scale_factor": 4, "twist_rigidity": 5, "handedness": 6, } self.scalar_dofs_in_rod_voronois = np.zeros( (len(map_scalar_dofs_in_rod_voronois), self.n_voronoi) ) for k, v in map_scalar_dofs_in_rod_voronois.items(): self.__dict__[k] = np.lib.stride_tricks.as_strided( self.scalar_dofs_in_rod_voronois[v], (self.n_voronoi,) ) for k, v in map_scalar_dofs_in_rod_voronois.items(): for system_idx, system in enumerate(systems): start_idx = self.start_idx_in_rod_voronoi[system_idx] end_idx = self.end_idx_in_rod_voronoi[system_idx] self.__dict__[k][..., start_idx:end_idx] = system.__dict__[k].copy() system.__dict__[k] = np.ndarray.view( self.__dict__[k][..., start_idx:end_idx] ) # Things in voronoi that are vectors # 0 ("kappa", float64[:, :]), # 1 ("rest_kappa", float64[:, :]), # 2 ("internal_couple", float64[:, :]), map_vector_dofs_in_rod_voronois = { "kappa": 0, "rest_kappa": 1, "internal_couple": 2, } self.vector_dofs_in_rod_voronois = np.zeros( (len(map_vector_dofs_in_rod_voronois), 3 * self.n_voronoi) ) for k, v in map_vector_dofs_in_rod_voronois.items(): self.__dict__[k] = np.lib.stride_tricks.as_strided( self.vector_dofs_in_rod_voronois[v], (3, self.n_voronoi) ) for k, v in map_vector_dofs_in_rod_voronois.items(): for system_idx, system in enumerate(systems): start_idx = self.start_idx_in_rod_voronoi[system_idx] end_idx = self.end_idx_in_rod_voronoi[system_idx] self.__dict__[k][..., start_idx:end_idx] = system.__dict__[k].copy() system.__dict__[k] = np.ndarray.view( self.__dict__[k][..., start_idx:end_idx] ) # Things in voronoi that are matrices # 0 ("bend_matrix", float64[:, :, :]), map_matrix_dofs_in_rod_voronois = {"bend_matrix": 0} self.matrix_dofs_in_rod_voronois = np.zeros( (len(map_matrix_dofs_in_rod_voronois), 9 * self.n_voronoi) ) for k, v in map_matrix_dofs_in_rod_voronois.items(): self.__dict__[k] = np.lib.stride_tricks.as_strided( self.matrix_dofs_in_rod_voronois[v], (3, 3, self.n_voronoi) ) for k, v in map_matrix_dofs_in_rod_voronois.items(): for system_idx, system in enumerate(systems): start_idx = self.start_idx_in_rod_voronoi[system_idx] end_idx = self.end_idx_in_rod_voronoi[system_idx] self.__dict__[k][..., start_idx:end_idx] = system.__dict__[k].copy() system.__dict__[k] = np.ndarray.view( self.__dict__[k][..., start_idx:end_idx] ) def allocate_blocks_variables_for_symplectic_stepper(self, systems: Sequence): """ This function takes system collection and allocates the variables used by symplectic stepper for block-structure and references allocated variables back to the systems. Parameters ---------- systems Returns ------- """ # These vectors are on nodes or on elements, but we stack them together for # better memory access. Because we use them together in time-steppers. # 0 ("velocity_collection", float64[:, :]), # 1 ("omega_collection", float64[:, :]), # 2 ("acceleration_collection", float64[:, :]), # 3 ("alpha_collection", float64[:, :]), # 4 in total map_rate_collection = { "velocity_collection": 0, "omega_collection": 1, "acceleration_collection": 2, "alpha_collection": 3, } self.rate_collection = np.zeros((len(map_rate_collection), 3 * self.n_nodes)) for k, v in map_rate_collection.items(): self.__dict__[k] = np.lib.stride_tricks.as_strided( self.rate_collection[v], (3, self.n_nodes) ) self.__dict__["velocity_collection"] = np.lib.stride_tricks.as_strided( self.rate_collection[0], (3, self.n_nodes) ) self.__dict__["omega_collection"] = np.lib.stride_tricks.as_strided( self.rate_collection[1], (3, self.n_elems), ) self.__dict__["acceleration_collection"] = np.lib.stride_tricks.as_strided( self.rate_collection[2], (3, self.n_nodes), ) self.__dict__["alpha_collection"] = np.lib.stride_tricks.as_strided( self.rate_collection[3], (3, self.n_elems), ) # For Dynamic state update of position Verlet create references self.v_w_collection = np.lib.stride_tricks.as_strided( self.rate_collection[0:2], (2, 3 * self.n_nodes) ) self.dvdt_dwdt_collection = np.lib.stride_tricks.as_strided( self.rate_collection[2:-1], (2, 3 * self.n_nodes) ) # Copy systems variables on nodes to block structure map_rate_collection_dofs_in_rod_nodes = { "velocity_collection": 0, "acceleration_collection": 1, } for k, v in map_rate_collection_dofs_in_rod_nodes.items(): for system_idx, system in enumerate(systems): start_idx = self.start_idx_in_rod_nodes[system_idx] end_idx = self.end_idx_in_rod_nodes[system_idx] self.__dict__[k][..., start_idx:end_idx] = system.__dict__[k].copy() system.__dict__[k] = np.ndarray.view( self.__dict__[k][..., start_idx:end_idx] ) # Copy systems variables on nodes to block structure map_rate_collection_dofs_in_rod_elems = { "omega_collection": 0, "alpha_collection": 1, } for k, v in map_rate_collection_dofs_in_rod_elems.items(): for system_idx, system in enumerate(systems): start_idx = self.start_idx_in_rod_elems[system_idx] end_idx = self.end_idx_in_rod_elems[system_idx] self.__dict__[k][..., start_idx:end_idx] = system.__dict__[k].copy() system.__dict__[k] = np.ndarray.view( self.__dict__[k][..., start_idx:end_idx] )
PypiClean
/rdflib-jsonld-0.6.2.tar.gz/rdflib-jsonld-0.6.2/LICENSE.md
LICENSE AGREEMENT FOR RDFLIB-JSONLD ======================================================================== Copyright (c) 2012-2015, RDFLib Team All rights reserved. See http://github.com/RDFLib/rdflib-jsonld Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
PypiClean
/graphite-web-1.1.10.tar.gz/graphite-web-1.1.10/webapp/graphite/readers/multi.py
import functools from graphite.intervals import IntervalSet from graphite.logger import log from graphite.readers.utils import BaseReader class MultiReader(BaseReader): __slots__ = ('nodes',) def __init__(self, nodes): self.nodes = nodes def get_intervals(self): interval_sets = [] for node in self.nodes: interval_sets.extend(node.intervals.intervals) return IntervalSet(sorted(interval_sets)) def fetch(self, startTime, endTime, now=None, requestContext=None): # Start the fetch on each node fetches = [] for n in self.nodes: try: fetches.append(n.fetch(startTime, endTime, now, requestContext)) except BaseException: log.exception("Failed to initiate subfetch for %s" % str(n)) results = [ r for r in fetches if r is not None ] if not results: raise Exception("All sub-fetches failed") return functools.reduce(self.merge, results) @staticmethod def merge(results1, results2): # Ensure results1 is finer than results2 if results1[0][2] > results2[0][2]: results1, results2 = results2, results1 time_info1, values1 = results1 time_info2, values2 = results2 start1, end1, step1 = time_info1 start2, end2, step2 = time_info2 step = step1 # finest step start = min(start1, start2) # earliest start end = max(end1, end2) # latest end time_info = (start, end, step) values = [] t = start while t < end: # Look for the finer precision value first if available i1 = (t - start1) // step1 if len(values1) > i1: v1 = values1[i1] else: v1 = None if v1 is None: i2 = (t - start2) // step2 if len(values2) > i2: v2 = values2[i2] else: v2 = None values.append(v2) else: values.append(v1) t += step return (time_info, values)
PypiClean
/msgraph-sdk-1.0.0a3.tar.gz/msgraph-sdk-1.0.0a3/msgraph/generated/models/currency_column.py
from __future__ import annotations from kiota_abstractions.serialization import AdditionalDataHolder, Parsable, ParseNode, SerializationWriter from typing import Any, Callable, Dict, List, Optional, Union class CurrencyColumn(AdditionalDataHolder, Parsable): @property def additional_data(self,) -> Dict[str, Any]: """ Gets the additionalData property value. Stores additional data not described in the OpenAPI description found when deserializing. Can be used for serialization as well. Returns: Dict[str, Any] """ return self._additional_data @additional_data.setter def additional_data(self,value: Dict[str, Any]) -> None: """ Sets the additionalData property value. Stores additional data not described in the OpenAPI description found when deserializing. Can be used for serialization as well. Args: value: Value to set for the AdditionalData property. """ self._additional_data = value def __init__(self,) -> None: """ Instantiates a new currencyColumn and sets the default values. """ # Stores additional data not described in the OpenAPI description found when deserializing. Can be used for serialization as well. self._additional_data: Dict[str, Any] = {} # Specifies the locale from which to infer the currency symbol. self._locale: Optional[str] = None # The OdataType property self._odata_type: Optional[str] = None @staticmethod def create_from_discriminator_value(parse_node: Optional[ParseNode] = None) -> CurrencyColumn: """ Creates a new instance of the appropriate class based on discriminator value Args: parseNode: The parse node to use to read the discriminator value and create the object Returns: CurrencyColumn """ if parse_node is None: raise Exception("parse_node cannot be undefined") return CurrencyColumn() def get_field_deserializers(self,) -> Dict[str, Callable[[ParseNode], None]]: """ The deserialization information for the current model Returns: Dict[str, Callable[[ParseNode], None]] """ fields = { "locale": lambda n : setattr(self, 'locale', n.get_str_value()), "@odata.type": lambda n : setattr(self, 'odata_type', n.get_str_value()), } return fields @property def locale(self,) -> Optional[str]: """ Gets the locale property value. Specifies the locale from which to infer the currency symbol. Returns: Optional[str] """ return self._locale @locale.setter def locale(self,value: Optional[str] = None) -> None: """ Sets the locale property value. Specifies the locale from which to infer the currency symbol. Args: value: Value to set for the locale property. """ self._locale = value @property def odata_type(self,) -> Optional[str]: """ Gets the @odata.type property value. The OdataType property Returns: Optional[str] """ return self._odata_type @odata_type.setter def odata_type(self,value: Optional[str] = None) -> None: """ Sets the @odata.type property value. The OdataType property Args: value: Value to set for the OdataType property. """ self._odata_type = value def serialize(self,writer: SerializationWriter) -> None: """ Serializes information the current object Args: writer: Serialization writer to use to serialize this model """ if writer is None: raise Exception("writer cannot be undefined") writer.write_str_value("locale", self.locale) writer.write_str_value("@odata.type", self.odata_type) writer.write_additional_data_value(self.additional_data)
PypiClean
/pgn-parser-1.1.0.tar.gz/pgn-parser-1.1.0/pgn_parser/pgn.py
import pgn_parser.parser as parser import re from collections import OrderedDict, deque class Actions: """Collection of actions for the parser Functions that will return the desired structure of a node in the parse tree """ def make_tag_pair(self, input, start, end, elements): """Creates dictionary {Key:"Value"} from the parsed tag pair [Key "Value"]""" tp = {elements[2].text: elements[5].text} return tp def make_tag_pairs(self, input, start, end, elements): """Creates an ordered dict of collected tag pairs""" tps = TagPairs() for e in elements: k = [k for k in e.keys()][0] tps[k] = e[k] return tps def make_comment(self, input, start, end, elements): """Retrieves the comment str without enclosing braces""" return elements[1].text.strip('{}') def make_movetext(self, input, start, end, elements): """Creates the full movetext portion as a List of Move's The tree should have all the necessary data parsed to create a list of all moves. Args: elements[x] = A single move = e e.move_number = Move number, 1+ e.white = The SAN of white's move e.wcomment = The comment after whites move e.black = The SAN of black's move e.bcomment = The comment after blacks move e.mcomment = The comment that applies to the whole move Returns: A List of Move objects in order: [Move("1.", "e4", "white comment", "e5", "black comment", "move comment"), etc] """ mt = Movetext() for e in elements: if type(e.wcomment) == str: wcomment = e.wcomment else: wcomment = "" mcomment = "" if type(e.bcomment) == str: if e.black.text: bcomment = e.bcomment else: bcomment = "" mcomment = e.bcomment else: bcomment = "" if not mcomment: if type(e.mcomment) == str: mcomment = e.mcomment mt.append(Move(e.move_number.text, e.white.text, e.wnags.elements, wcomment, e.wvars, e.black.text, e.bnags.elements, bcomment, e.bvars, mcomment)) return mt def make_variation(self, input, start, end, elements): """Return just the movetext of a variation""" return elements[2] def make_variations(self, input, start, end, elements): """Convert a TreeNode of variations to a List of them""" out = [] for e in elements: out.append(e) return out def make_game(self, input, start, end, elements): """Construct the representation of an entire game Args: elements = e e[0]: Tag Pairs e[2]: Game Comment e[3]: Movetext e[4]: Score Returns: A Game object, representing a fully parsed pgn file """ e = elements if re.match(r"(1-0|0-1|1/2-1/2|\*)", e[4].text): s = Score(e[4].text) else: s = Score('*') g = Game(e[0], e[2], e[3], s) return g class PGNGameException(Exception): pass class TagPairs(OrderedDict): """TagPairs is a slightly customised OrderedDict It is extended in order to make the __str__ return valid pgn formatted tag pairs """ def __str__(self): """Stringify the OrderedDict to a valid Tag Pairs section of a pgn file Returns: A string with each tag pair represented (in the order it was parsed): [Key "Value"]\n And an extra newline at the end to begin the movetext section """ # Seven tag roster list strl = ["Event","Site","Date","Round","White","Black","Result"] out = "" # We first print in order of STR, then any others for k in strl: if k in self.keys(): out += '[{} "{}"]\n'.format(k, self[k]) for k in self.keys(): if k not in strl: out += '[{} "{}"]\n'.format(k, self[k]) # If there are no tag pairs, the extra newline is not needed if out: out += "\n" return out class Ply: """A Ply is a half a move in a game, either white or blacks side of the move""" def __init__(self, colour, san, nags=[], comment="", variations=[]): """Inits the colour san and any comment of the ply""" self.colour = colour self.san = san self.nags = self.nodes_to_nags(nags) self.comment = comment self.variations = variations def __str__(self): """Stringifies to a single pgn ply Returns: <san> {<coment>} Ncxe4 {white comment} """ out = self.san if self.comment != "": out += " {" + self.comment.replace('\n', ' ') + "}" if len(self.nags) > 0: for n in self.nags: out += " " + n for v in self.variations: out += " (" + str(v).strip(' ') + ")" return out def nodes_to_nags(self, nags): """Convert input TreeNode's into a list of string nags""" out = [] for n in nags: out.append(n.text.strip(' ')) return out class Move: """Representing a move, of 1 or 2 ply along with the move number""" def __init__(self, move_number, white, wnags, wcomment, wvars, black, bnags, bcomment, bvars, mcomment): """Inits the Move x with the white and or black Ply's""" self.move_number = self.move_no_to_i(move_number) white = "" if white == ".." else white self.white = Ply("w", white, wnags, wcomment, wvars) self.black = Ply("b", black, bnags, bcomment, bvars) self.comment = mcomment def __str__(self): """Stringifies the Move to legal pgn move Returns: 1. e4 e5 """ out = "{}.".format(self.move_number) if self.white.san != "": out += " " + str(self.white) else: out += ".." if self.black.san != "": out += " " + str(self.black) if self.comment: out += " {" + self.comment + "}" return out def __repr__(self): return self.__str__() def move_no_to_i(self, move_number): """Turns move number from string to integer""" no = int(re.match(r"([0-9]+)\.", move_number).groups()[0]) return no class Movetext(list): def __str__(self): """Stringifies movetext Turns the list of Move's into a valid movetext section Returns: 1. e4 {wc} e5 {bc} 2. d4 {wc2} d5 {bc2} """ out = "" for i, m in enumerate(self): out += " " + str(m) if i > 0 else str(m) out += " " return out def move(self, find): """Returns the move number `find` Args: find: An integer move number Returns: A Move() object of the requested move number Raises: PGNGameException is raised if the number cannot be found """ first = self[0].move_number last = self[-1].move_number fail = "Move number {} is not in this game. First is {}, last is {}.".format(find, first, last) if first > find: raise PGNGameException(fail) for m in self: if find == m.move_number: return m # We haven't found the move raise PGNGameException(fail) class Score: """Representing the score of a game""" def __init__(self, score): if score == "*": w, b = "*", "*" else: w, b = score.split('-') self.white = w self.black = b self.result = str(self) def __str__(self): """Stringifies the score to one of the leg possiblities Returns: 1-0, 0-1, 1/2-1/2 or * """ if self.white == "*": return "*" else: return "{}-{}".format(self.white, self.black) class Game: """Represents an entire game Attributes: tag_pairs: The tag pairs section as an ordered dictionary movetext: The List of all Move's score: The score of the game """ def __init__(self, tag_pairs, gcomment, movetext, score): """Initialises the Game given the constituent tag_pairs, movetext and score""" self.tag_pairs = tag_pairs if type(gcomment) == str: self.comment = gcomment else: self.comment = '' self.movetext = movetext self.score = score def __str__(self): """Stringifies the Game to a valid pgn file""" out = str(self.tag_pairs) if self.comment: out += "{" + self.comment + "} " out += self.format_body() return out def format_body(self): """Keeps the line length to 80 chars on output""" mt = deque(str(self.movetext).split(' ') + []) out = mt.popleft() ll = len(out) while True: if len(mt) is 0: break n = mt.popleft() # If the current line length + space + character is less than # 80 chars long if ll + len(n) + 1 < 80: to_add = " " + n out += " " + n ll += len(to_add) else: out += "\n" + n ll = len(n) return out + str(self.score) def move(self, find): """Returns the move number `find` An alias for self.movetext.move() """ return self.movetext.move(find)
PypiClean
/entity_selector_jupyter_widget-0.1.6.tar.gz/entity_selector_jupyter_widget-0.1.6/README.md
# entity_selector_jupyter_widget A Jupyter Widget library for selecting entities in text ## Installation To install run: ```bash $ pip install entity_selector_jupyter_widget $ jupyter nbextension enable --py --sys-prefix entity_selector_jupyter_widget ``` <!--To uninstall run: ```bash $ pip uninstall entity_selector_jupyter_widget $ jupyter nbextension disable entity_selector_jupyter_widget $ jupyter nbextension uninstall entity_selector_jupyter_widget ```--> For a development installation (requires npm), ```bash $ git clone https://gitlab.com/randomunrandom/entity_selector_jupyter_widget.git $ cd entity_selector_jupyter_widget $ ./dev.sh ### it a utilitary script which deactivates virtual environment, creates new and launches jupyter notebook ``` [A development version is available via test.pypi](https://test.pypi.org/project/entity-selector-jupyter-widget/) ## Usage See [example.py](https://gitlab.com/randomunrandom/entity_selector_jupyter_widget/blob/master/example.ipynb) for example of hw to use this extension. ## JupyterLab Due to major differences between the Jupyter Notebook and JupyterLab, the extensions will not work in JupyterLab. ## License It's an open source prject under MIT license
PypiClean
/pyHMSA-0.2.0.tar.gz/pyHMSA-0.2.0/pyhmsa/fileformat/xmlhandler/condition/acquisition.py
import xml.etree.ElementTree as etree # Third party modules. import numpy as np # Local modules. from pyhmsa.spec.condition.acquisition import \ (AcquisitionPoint, AcquisitionMultipoint, AcquisitionRasterLinescan, AcquisitionRasterXY, AcquisitionRasterXYZ) from pyhmsa.spec.condition.specimenposition import SpecimenPosition from pyhmsa.fileformat.xmlhandler.condition.condition import _ConditionXMLHandler from pyhmsa.util.parameter import ObjectAttribute # Globals and constants variables. class AcquisitionPointXMLHandler(_ConditionXMLHandler): def __init__(self, version): super().__init__(AcquisitionPoint, version) class AcquisitionMultipointXMLHandler(_ConditionXMLHandler): def __init__(self, version): super().__init__(AcquisitionMultipoint, version) self._attrib_specimen_position = \ ObjectAttribute(SpecimenPosition, xmlname='SpecimenPosition') def parse(self, element): obj = super().parse(element) for subelement in element.findall('./Positions/SpecimenPosition'): position = \ self._parse_object_attribute(subelement, self._attrib_specimen_position) obj.positions.append(position) subelement = element.find('PointCount') count = self._parse_numerical_attribute(subelement) assert len(obj.positions) == count return obj def convert(self, obj): element = super().convert(obj) value = np.uint32(len(obj.positions)) attrib = type('MockAttribute', (object,), {'xmlname': 'PointCount'}) subelements = self._convert_numerical_attribute(value, attrib) element.extend(subelements) subelement = etree.Element('Positions') for position in obj.positions: subsubelements = \ self._convert_object_attribute(position, self._attrib_specimen_position) subelement.extend(subsubelements) element.append(subelement) return element class _AcquisitionRasterXMLHandler(_ConditionXMLHandler): def __init__(self, clasz, version): super().__init__(clasz, version) self._attrib_specimen_position = \ ObjectAttribute(SpecimenPosition, xmlname='SpecimenPosition') def _parse_positions(self, element): positions = {} for subelement in element.findall('SpecimenPosition'): location = subelement.attrib['Name'] position = \ self._parse_object_attribute(subelement, self._attrib_specimen_position) positions[location] = position return positions def parse(self, element): obj = super().parse(element) obj.positions.update(self._parse_positions(element)) return obj def _convert_positions(self, obj): elements = [] for location, position in obj.positions.items(): subelement = \ self._convert_object_attribute(position, self._attrib_specimen_position)[0] subelement.set('Name', location) elements.append(subelement) return elements def convert(self, obj): element = super().convert(obj) element.extend(self._convert_positions(obj)) return element class AcquisitionRasterLinescanXMLHandler(_AcquisitionRasterXMLHandler): def __init__(self, version): super().__init__(AcquisitionRasterLinescan, version) class AcquisitionRasterXYXMLHandler(_AcquisitionRasterXMLHandler): def __init__(self, version): super().__init__(AcquisitionRasterXY, version) class AcquisitionRasterXYZXMLHandler(_AcquisitionRasterXMLHandler): def __init__(self, version): super().__init__(AcquisitionRasterXYZ, version)
PypiClean
/macedon-0.11.0-py3-none-any.whl/pytermor/common.py
from __future__ import annotations import enum import inspect import time import typing as t import logging from functools import update_wrapper logger = logging.getLogger(__package__) logger.addHandler(logging.NullHandler()) ### catching library logs "from the outside": # logger = logging.getLogger('pytermor') # handler = logging.StreamHandler() # fmt = '[%(levelname)5.5s][%(name)s.%(module)s] %(message)s' # handler.setFormatter(logging.Formatter(fmt)) # logger.addHandler(handler) # logger.setLevel(logging.WARNING) ######## CDT = t.TypeVar("CDT", int, str) """ :abbr:`CDT (Color descriptor type)` represents a RGB color value. Primary handler is `resolve_color()`. Valid values include: - *str* with a color name in any form distinguishable by the color resolver; the color lists can be found at: `guide.ansi-presets` and `guide.es7s-colors`; - *str* starting with a "#" and consisting of 6 more hexadecimal characters, case insensitive (RGB regular form), e.g.: "#0B0CCA"; - *str* starting with a "#" and consisting of 3 more hexadecimal characters, case insensitive (RGB short form), e.g.: "#666"; - *int* in a [0; 0xFFFFFF] range. """ FT = t.TypeVar("FT", int, str, "IColor", "Style", None) """ :abbr:`FT (Format type)` is a style descriptor. Used as a shortcut precursor for actual styles. Primary handler is `make_style()`. """ RT = t.TypeVar("RT", str, "IRenderable") """ :abbr:`RT (Renderable type)` includes regular *str*\\ s as well as `IRenderable` implementations. """ F = t.TypeVar("F", bound=t.Callable[..., t.Any]) def measure(msg: str = "Done"): def wrapper(origin: F) -> F: def new_func(*args, **kwargs): before_s = time.time_ns() / 1e9 result = origin(*args, **kwargs) after_s = time.time_ns() / 1e9 from . import PYTERMOR_DEV if PYTERMOR_DEV and not kwargs.get("no_log", False): from . import format_si, dump, logger logger.debug(msg + f" in {format_si((after_s - before_s), 's')}") logger.log(level=5, msg=dump(result, "Dump")) return result return update_wrapper(t.cast(F, new_func), origin) return wrapper class ExtendedEnum(enum.Enum): @classmethod def list(cls): return list(map(lambda c: c.value, cls)) @classmethod def dict(cls): return dict(map(lambda c: (c, c.value), cls)) class Align(str, ExtendedEnum): """ Align type. """ LEFT = "<" """ """ RIGHT = ">" """ """ CENTER = "^" """ """ @classmethod def resolve(cls, input: str | Align | None, fallback: Align = LEFT): if input is None: return fallback if isinstance(input, cls): return input for k, v in cls.dict().items(): if v == input: return k try: return cls[input.upper()] except KeyError: logger.warning(f"Invalid align name: {input}") return fallback class UserCancel(Exception): pass class UserAbort(Exception): pass class LogicError(Exception): pass class ConflictError(Exception): pass class ArgTypeError(Exception): """ """ def __init__(self, actual_type: t.Type, arg_name: str = None, fn: t.Callable = None): arg_name_str = f'"{arg_name}"' if arg_name else "argument" # @todo suggestion # f = inspect.currentframe() # fp = f.f_back # fn = getattr(fp.f_locals['self'].__class__, fp.f_code.co_name) # argspec = inspect.getfullargspec(fn) if fn is None: try: stacks = inspect.stack() method_name = stacks[0].function outer_frame = stacks[1].frame fn = outer_frame.f_locals.get(method_name) except Exception: pass if fn is not None: signature = inspect.signature(fn) param_desc = signature.parameters.get(arg_name, None) expected_type = '?' if param_desc: expected_type = param_desc.annotation actual_type = actual_type.__qualname__ msg = ( f"Expected {arg_name_str} type: <{expected_type}>, got: <{actual_type}>" ) else: msg = f"Unexpected {arg_name_str} type: <{actual_type}>" super().__init__(msg) class ArgCountError(Exception): """ """ def __init__(self, actual: int, *expected: int) -> None: expected_str = ", ".join(str(e) for e in expected) msg = ( f"Invalid arguments amount, expected one of: ({expected_str}), got: {actual}" ) super().__init__(msg)
PypiClean
/clipt-1.0.15.tar.gz/clipt-1.0.15/README.rst
About ----- Clipt (command line interface plotting tool) uses clasp and matplotlib to aid in plotting data files using matplotlib directly from the command line using a extensive set of options. See the clasp documentation for imformation about using config files. https://clipt.readthedocs.io/ Clipt was built using clasp: https://clasp.readthedocs.io/ which in turn depends on click: https://palletsprojects.com/p/click/ Installation ------------ :: pip install clipt Usage ----- see:: cl_plot --help Autocomplete ------------ :: _CL_PLOT_COMPLETE=source cl_plot > clipt_complete.sh In your .bash_profile:: source path/to/bin/clipt_complete.sh Source Code ----------- * clipt: https://bitbucket.org/stephenwasilewski/clipt Licence ------- | Copyright (c) 2018 Stephen Wasilewski | This Source Code Form is subject to the terms of the Mozilla Public | License, v. 2.0. If a copy of the MPL was not distributed with this | file, You can obtain one at http://mozilla.org/MPL/2.0/.
PypiClean
/hyo2.qc-3.5.12-cp38-cp38-win_amd64.whl/hyo2/qc/survey/scan/checks.py
import datetime import logging import os from typing import List, Optional, TYPE_CHECKING from hyo2.qc.common.s57_aux import S57Aux if TYPE_CHECKING: from hyo2.qc.survey.scan.flags import Flags from hyo2.s57.s57 import S57Record10 from hyo2.abc.app.report import Report logger = logging.getLogger(__name__) class Checks: survey_areas = { "Great Lakes": 0, "Pacific Coast": 1, "Atlantic Coast": 2, } def __init__(self, flags: 'Flags', report: 'Report', all_features: List['S57Record10'], survey_area: int, version: str, sorind: Optional[str], sordat: Optional[str], profile: int, use_mhw: bool, mhw_value: float, check_image_names: bool, multimedia_folder: Optional[str]): self.flags = flags self.report = report self.all_fts = all_features # type: List['S57Record10'] self.no_carto_fts = list() # type: List['S57Record10'] self.new_updated_fts = list() # type: List['S57Record10'] self.assigned_fts = list() # type: List['S57Record10'] self.new_deleted_fts = list() # type: List['S57Record10'] self.survey_area = survey_area self.version = version self.sorind = sorind self.sordat = sordat self.profile = profile self.use_mhw = use_mhw self.mhw_value = mhw_value self.check_image_names = check_image_names self.multimedia_folder = multimedia_folder self.character_limit = 255 # shared functions def _check_features_for_attribute(self, objects: List['S57Record10'], attribute: str, possible: bool = False) \ -> List[list]: """Check if the passed features have the passed attribute""" flagged = list() for obj in objects: # do the test has_attribute = False for attr in obj.attributes: if attr.acronym == attribute: has_attribute = True # check passed if has_attribute: continue if possible: # add to the flagged report self.report += 'Warning: Found missing %s at (%.7f, %.7f)' % ( obj.acronym, obj.centroid.x, obj.centroid.y) # add to the flagged feature list self.flags.append(obj.centroid.x, obj.centroid.y, "warning: missing %s" % attribute, self.report.cur_section()) else: # add to the flagged report self.report += 'Found missing %s at (%.7f, %.7f)' % (obj.acronym, obj.centroid.x, obj.centroid.y) # add to the flagged feature list self.flags.append(obj.centroid.x, obj.centroid.y, "missing %s" % attribute, self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) if len(flagged) == 0: self.report += "OK" return flagged def _check_features_without_attribute(self, objects: List['S57Record10'], attribute: str, possible: bool = False) \ -> List[list]: """Check if the passed features have the passed attribute""" flagged = list() for obj in objects: # do the test has_attribute = False for attr in obj.attributes: if attr.acronym == attribute: has_attribute = True # check passed if not has_attribute: continue if possible: # add to the flagged report self.report += 'Warning: Found %s at (%.7f, %.7f)' % (obj.acronym, obj.centroid.x, obj.centroid.y) # add to the flagged feature list self.flags.append(obj.centroid.x, obj.centroid.y, "warning: containing %s (?)" % attribute, self.report.cur_section()) else: # add to the flagged report self.report += 'Found %s at (%.7f, %.7f)' % (obj.acronym, obj.centroid.x, obj.centroid.y) # add to the flagged feature list self.flags.append(obj.centroid.x, obj.centroid.y, "containing %s" % attribute, self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) if len(flagged) == 0: self.report += "OK" return flagged def _flag_features_with_attribute_value(self, objects: List['S57Record10'], attribute: str, values_to_flag: List[str], check_attrib_existence: bool = False, possible: bool = False) -> List[list]: """Flag the passed features if they have the passed values for the passed attribute""" flagged = list() for obj in objects: # do the test has_attribute_with_value = False has_attribute = False for attr in obj.attributes: acronym = attr.acronym.strip() if acronym == attribute: has_attribute = True if attr.value in values_to_flag: has_attribute_with_value = True if check_attrib_existence: if not has_attribute: if possible: # add to the flagged report self.report += 'Warning: Found missing attribute %s at (%.7f, %.7f)' \ % (obj.acronym, obj.centroid.x, obj.centroid.y) # add to the flagged feature list self.flags.append(obj.centroid.x, obj.centroid.y, "warning: missing attribute: %s" % attribute, self.report.cur_section()) else: # add to the flagged report self.report += 'Found missing attribute %s at (%.7f, %.7f)' \ % (obj.acronym, obj.centroid.x, obj.centroid.y) # add to the flagged feature list self.flags.append(obj.centroid.x, obj.centroid.y, "missing attribute: %s" % attribute, self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue # check passed if not has_attribute_with_value: continue # add to the flagged feature list if possible: # add to the flagged report self.report += 'Warning: Found invalid/prohibited attribute value for %s at (%.7f, %.7f)' \ % (obj.acronym, obj.centroid.x, obj.centroid.y) self.flags.append(obj.centroid.x, obj.centroid.y, "warning: invalid/prohibited value for %s" % attribute, self.report.cur_section()) else: # add to the flagged report self.report += 'Found invalid/prohibited attribute value for %s at (%.7f, %.7f)' \ % (obj.acronym, obj.centroid.x, obj.centroid.y) self.flags.append(obj.centroid.x, obj.centroid.y, "invalid/prohibited value for %s" % attribute, self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) if len(flagged) == 0: self.report += "OK" return flagged # ### ALL FEATURES ### def file_consistency(self): self.report += "Checks for feature file consistency [SECTION]" self._check_all_features_for_redundancy_and_geometry() if self.version in ["2021"]: # New Requirement in 2021 HSSD character limit for all fields with free text strings self.report += "Features with text input fields exceeding %d characters [CHECK]" % self.character_limit self.flags.all_fts.chars_limit = self._check_character_limit(objects=self.all_fts, attributes=['images', 'invreq', 'keywrd', 'onotes', 'recomd', 'remrks'], character_limit=self.character_limit) def _check_all_features_for_redundancy_and_geometry(self) -> None: """Function that identifies the presence of duplicated feature looking at their geometries""" logger.debug('Checking for feature redundancy...') self.report += "Redundant features [CHECK]" tmp_features = list() features = list() for ft in self.all_fts: # skip if the feature has not position if (len(ft.geo2s) == 0) and (len(ft.geo3s) == 0): # logger.debug("removing: %s" % ft) continue tmp_features.append(ft) # get the attributes as a long string attrs_str = str() for attr in ft.attributes: attrs_str += "%s=%s;" % (attr.acronym.strip(), attr.value) # get the point positions as sorted list of string geo2x = list() geo2y = list() if len(ft.geo2s) > 0: for geo2 in ft.geo2s: geo2x.append("%.7f" % geo2.x) geo2y.append("%.7f" % geo2.y) elif len(ft.geo3s) > 0: for geo3 in ft.geo3s: geo2x.append("%.7f" % geo3.x) geo2y.append("%.7f" % geo3.y) geo2x.sort() geo2y.sort() # test for redundancy # logger.info("key: %s" % [ft.acronym, attrs_str, geo2x, geo2y]) i = features.count([ft.acronym, attrs_str, geo2x, geo2y]) if i > 0: # we have a redundancy if ft.acronym in ["LIGHTS", ]: # add to the flagged report self.report += 'Warning: Redundant %s at (%.7f, %.7f)' % (ft.acronym, ft.centroid.x, ft.centroid.y) # add to the flagged feature list self.flags.append(ft.centroid.x, ft.centroid.y, "warning: redundant %s" % ft.acronym, self.report.cur_section()) else: # add to the flagged report self.report += 'Redundant %s at (%.7f, %.7f)' % (ft.acronym, ft.centroid.x, ft.centroid.y) # add to the flagged feature list self.flags.append(ft.centroid.x, ft.centroid.y, "redundant %s" % ft.acronym, self.report.cur_section()) self.flags.all_fts.redundancy.append([ft.acronym, geo2x, geo2y]) else: # populated the feature list features.append([ft.acronym, attrs_str, geo2x, geo2y]) if len(self.flags.all_fts.redundancy) == 0: self.report += "OK" self.all_fts = tmp_features # to remove features without geometry # ### ASSIGNED FEATURES ### def assigned_features(self): self.report += "Checks for assigned features [SECTION]" # Isolate only features that are assigned self.assigned_fts = S57Aux.select_by_attribute_value(objects=self.all_fts, attribute='asgnmt', value_filter=['2', ]) # Ensure assigned features have descrp self.report += "Assigned features with empty or missing mandatory attribute description [CHECK]" self.flags.ass_fts.description = self._flag_features_with_attribute_value(objects=self.assigned_fts, attribute='descrp', values_to_flag=['', ], check_attrib_existence=True) # Ensure assigned features have remrks self.report += "Assigned features missing mandatory attribute remarks [CHECK]" self.flags.ass_fts.remarks = self._check_features_for_attribute(objects=self.assigned_fts, attribute='remrks') # ### NEW OR UPDATED FEATURES ### def new_or_updated_features(self): self.report += "Checks for new/updated features [SECTION]" # Remove carto features self.no_carto_fts = S57Aux.filter_by_object(objects=self.all_fts, object_filter=['$AREAS', '$LINES', '$CSYMB', '$COMPS', '$TEXTS']) # Isolate only features with descrp = New or Update self.new_updated_fts = S57Aux.select_by_attribute_value(objects=self.no_carto_fts, attribute='descrp', value_filter=['1', '2', ]) # Ensure new or updated features have SORIND self.report += "New or Updated features (excluding carto notes) missing mandatory attribute SORIND [CHECK]" self.flags.new_updated_fts.sorind = self._check_features_for_attribute( objects=self.new_updated_fts, attribute='SORIND') # Ensure new or updated features have valid SORIND self.report += "New or Updated features (excluding carto notes) with invalid SORIND [CHECK]" if self.sorind is None: self.flags.new_updated_fts.sorind_invalid = self._check_features_for_valid_sorind( objects=self.new_updated_fts, check_space=False) else: self.flags.new_updated_fts.sorind_invalid = self._check_features_for_match_sorind( objects=self.new_updated_fts) # Ensure new or updated features have SORDAT self.report += "New or Updated features (excluding carto notes) missing mandatory attribute SORDAT [CHECK]" self.flags.new_updated_fts.sordat = self._check_features_for_attribute( objects=self.new_updated_fts, attribute='SORDAT') # Ensure new or updated features have valid SORDAT self.report += "New or Updated features (excluding carto notes) with invalid SORDAT [CHECK]" if self.sordat is None: self.flags.new_updated_fts.sordat_invalid = self._check_features_for_valid_sordat(self.new_updated_fts) else: self.flags.new_updated_fts.sordat_invalid = self._check_features_for_match_sordat(self.new_updated_fts) # Select all the new features with VALSOU attribute if self.use_mhw: new_valsous = S57Aux.select_by_attribute( objects=self.new_updated_fts, attribute='VALSOU') self.report += "New or Updated VALSOU features with invalid WATLEV [CHECK]" self.flags.new_updated_fts.valsous_watlev = self._check_features_for_valid_watlev( objects=new_valsous) new_elevats = S57Aux.select_by_attribute( objects=self.new_updated_fts, attribute='ELEVAT') self.report += "Invalid New or Updated ELEVAT features [CHECK]" self.flags.new_updated_fts.elevat = self._check_features_for_valid_elevat( objects=new_elevats) # Select all the new features with valsou attribute and check for valid quasou. new_valsous = S57Aux.select_by_attribute(objects=self.new_updated_fts, attribute='VALSOU') self.report += "New or Updated VALSOU features with invalid QUASOU [CHECK]" self.flags.new_updated_fts.valsous_quasou = self._check_features_for_valid_quasou(new_valsous) @classmethod def check_sorind(cls, value: str, check_space: bool = True) -> bool: tokens = value.split(',') # logger.debug("%s" % tokens) if len(value.splitlines()) > 1: logger.info('too many attribute lines') return False elif len(tokens) != 4: logger.info('invalid number of comma-separated fields') return False elif (tokens[0][0] == " " or tokens[1][0] == " " or tokens[2][0] == " " or tokens[3][0] == " ") \ and check_space: logger.info('invalid space after comma field-separator') return False elif tokens[0] != "US": logger.info('first field should be "US", it is: "%s"' % tokens[0]) return False elif tokens[1] != "US": logger.info('second field should be "US", it is: "%s"' % tokens[1]) return False elif tokens[2] != "graph": logger.info('third field should be "graph", it is: "%s"' % tokens[2]) return False if len(tokens[3]) != 6: logger.info('issue with forth field length: %d (it should be 6)' % len(tokens[3])) return False return True def _check_features_for_valid_sorind(self, objects: List['S57Record10'], check_space: bool = True) -> List[list]: """Check if the passed features have valid SORIND""" flagged = list() for obj in objects: # do the test is_valid = True for attr in obj.attributes: if attr.acronym == "SORIND": is_valid = self.check_sorind(attr.value, check_space) break # check passed if is_valid: continue # add to the flagged report self.report += 'Found %s at (%.7f, %.7f) with invalid SORIND' \ % (obj.acronym, obj.centroid.x, obj.centroid.y) # add to the flagged feature list self.flags.append(obj.centroid.x, obj.centroid.y, "invalid SORIND", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) if len(flagged) == 0: self.report += "OK" return flagged def _check_features_for_match_sorind(self, objects: List['S57Record10']) -> List[list]: """Check if the passed features have valid SORIND""" flagged = list() for obj in objects: # do the test is_valid = True for attr in obj.attributes: if attr.acronym == "SORIND": is_valid = attr.value == self.sorind break # check passed if is_valid: continue # add to the flagged report self.report += 'Found %s at (%.7f, %.7f) with invalid SORIND' % ( obj.acronym, obj.centroid.x, obj.centroid.y) # add to the flagged feature list self.flags.append(obj.centroid.x, obj.centroid.y, "invalid SORIND", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) if len(flagged) == 0: self.report += "OK" return flagged @classmethod def check_sordat(cls, value: str) -> bool: # logger.debug("%s" % attr.value) cast_issue = False timestamp = None now = None # noinspection PyBroadException try: timestamp = datetime.datetime(year=int(value[0:4]), month=int(value[4:6]), day=int(value[6:8])) now = datetime.datetime.now() except Exception: cast_issue = True if cast_issue: logger.info('invalid date format: %s' % value) return False elif len(value) != 8: logger.info('the date format is YYYYMMDD, invalid number of digits: %d' % len(value)) return False elif timestamp > now: if (timestamp.year > now.year) or (timestamp.year == now.year and timestamp.month > now.month): logger.info('the date in use is in the future: %d' % len(value)) return False return True def _check_features_for_valid_sordat(self, objects: List['S57Record10']) -> List[list]: """Check if the passed features have matching SORDAT""" flagged = list() for obj in objects: # do the test is_valid = True for attr in obj.attributes: if attr.acronym == "SORDAT": is_valid = self.check_sordat(attr.value) break # check passed if is_valid: continue # add to the flagged report self.report += 'Found %s at (%.7f, %.7f) with invalid SORDAT' % ( obj.acronym, obj.centroid.x, obj.centroid.y) # add to the flagged feature list self.flags.append(obj.centroid.x, obj.centroid.y, "invalid SORDAT", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) if len(flagged) == 0: self.report += "OK" return flagged def _check_features_for_match_sordat(self, objects: List['S57Record10']) -> List[list]: """Check if the passed features have matching SORDAT""" flagged = list() for obj in objects: # do the test is_valid = True for attr in obj.attributes: if attr.acronym == "SORDAT": is_valid = attr.value == self.sordat break # check passed if is_valid: continue # add to the flagged report self.report += 'Found %s at (%.7f, %.7f) with invalid SORDAT' % ( obj.acronym, obj.centroid.x, obj.centroid.y) # add to the flagged feature list self.flags.append(obj.centroid.x, obj.centroid.y, "invalid SORDAT", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) if len(flagged) == 0: self.report += "OK" return flagged def _check_features_for_valid_watlev(self, objects: List['S57Record10']) -> List[list]: """Check if the passed features have valid WATLEV""" # logger.debug("checking for invalid WATLEV and VALSOU ...") flagged = list() for obj in objects: # do the test is_valid = True is_invalid_for_valsou = False watlev = None valsou = None for attr in obj.attributes: if attr.acronym == "WATLEV": try: watlev = int(attr.value) except ValueError: logger.warning("issue with WATLEV value:'%s' at position: %s, %s" % (attr.value, obj.centroid.x, obj.centroid.y)) elif attr.acronym == "VALSOU": try: valsou = float(attr.value) except ValueError: logger.warning("issue with VALSOU value:'%s' at position: %s, %s" % (attr.value, obj.centroid.x, obj.centroid.y)) if (watlev is not None) and (valsou is not None): break if (watlev is None) or (valsou is None): logger.debug("unable to find WATLEV or VALSOU values at position: %s, %s" % (obj.centroid.x, obj.centroid.y)) continue if self.survey_area == self.survey_areas["Great Lakes"]: if valsou < - 0.1: is_valid = False is_invalid_for_valsou = True else: if valsou <= -0.1: if watlev != 4: # Covers & Uncovers is_valid = False elif valsou <= 0.1: if watlev != 5: # Awash is_valid = False else: if watlev != 3: # Always Underwater is_valid = False else: if valsou < (-self.mhw_value - 0.1): is_valid = False is_invalid_for_valsou = True else: if valsou <= -0.1: if watlev != 4: # Covers & Uncovers is_valid = False elif valsou <= 0.1: if watlev != 5: # Awash is_valid = False else: if watlev != 3: # Always Underwater is_valid = False # check passed if is_valid: continue # add to the flagged feature list and to the flagged report if is_invalid_for_valsou: self.report += 'Found %s at (%.7f, %.7f) with invalid VALSOU (islet ?)' % ( obj.acronym, obj.centroid.x, obj.centroid.y) self.flags.append(obj.centroid.x, obj.centroid.y, "invalid VALSOU (islet ?)", self.report.cur_section()) else: self.report += 'Found %s at (%.7f, %.7f) with invalid WATLEV' % ( obj.acronym, obj.centroid.x, obj.centroid.y) self.flags.append(obj.centroid.x, obj.centroid.y, "invalid WATLEV", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) if len(flagged) == 0: self.report += "OK" # logger.debug("checking for invalid WATLEV and VALSOU -> flagged: %d" % len(flagged)) return flagged def _check_features_for_valid_elevat(self, objects: List['S57Record10']) -> List[list]: """Check if the passed features have valid ELEVAT""" # logger.debug("checking for invalid ELEVAT ...") flagged = list() for obj in objects: elevat = None for attr in obj.attributes: if attr.acronym == "ELEVAT": elevat = float(attr.value) if elevat is not None: break if elevat > +0.1: continue self.report += 'Found %s at (%.7f, %.7f) with invalid ELEVAT' % ( obj.acronym, obj.centroid.x, obj.centroid.y) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "invalid ELEVAT", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) if len(flagged) == 0: self.report += "OK" # logger.debug("checking for invalid ELEVAT -> flagged: %d" % len(flagged)) return flagged def _check_features_for_valid_quasou(self, objects: List['S57Record10']) -> List[list]: """Check if the passed features have valid QUASOU""" # logger.debug("checking for invalid QUASOU ...") # list the allowable combinations of tecsous and quasous allowable = [['3', '6'], ['4', '6'], ['5', '6'], ['12', '6'], ['2', '9']] flagged = list() for obj in objects: tecsou = None quasou = None # check for the TECSOU and QUASOU attributes for attr in obj.attributes: if attr.acronym == "TECSOU": tecsou = attr.value elif attr.acronym == "QUASOU": quasou = attr.value if (tecsou is not None) and (quasou is not None): break # TODO: if TECSOU is not available? if tecsou is None: self.report += 'Could not verify QUASOU found %s at (%.7f, %.7f) because is missing TECSOU' \ % (obj.acronym, obj.centroid.x, obj.centroid.y) # logger.debug("checking for TECSOU...") self.flags.append(obj.centroid.x, obj.centroid.y, 'missing TECSOU', self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue elif tecsou in ['1', '7', '10']: # VBES, Lidar, Structure from Motion if quasou is not None: # add to the flagged report self.report += "Warning: found %s at (%.7f, %.7f) has TECSOU '%s' without blank QUASOU" \ % (obj.acronym, obj.centroid.x, obj.centroid.y, tecsou) # add to the flagged feature list self.flags.append(obj.centroid.x, obj.centroid.y, "warning: TECSOU requires blank QUASOU: %s" % (tecsou,), self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue # if QUASOU is not available? if quasou is None: logger.debug("Checking for QUASOU...") self.report += 'Found %s at (%.7f, %.7f) is missing QUASOU required for TECSOU' \ % (obj.acronym, obj.centroid.x, obj.centroid.y) self.flags.append(obj.centroid.x, obj.centroid.y, 'missing QUASOU required for TECSOU', self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue # splitting using ',' tecsou = tecsou.split(',') quasou = quasou.split(',') # if the list of QUASOU has different length than the list of TECSOU ? if len(tecsou) != len(quasou): self.report += 'Warning: found %s at (%.7f, %.7f) contains mismatch in the number of TECSOU and ' \ 'QUASOU attributes' % (obj.acronym, obj.centroid.x, obj.centroid.y) self.flags.append(obj.centroid.x, obj.centroid.y, 'warning: mismatch in the number of TECSOU and ' 'QUASOU attributes', self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue for i in range(len(tecsou)): check = [tecsou[i], quasou[i]] if check in allowable: continue # add to the flagged report self.report += 'Warning: found %s at (%.7f, %.7f) has prohibited TECSOU/QUASOU combination %s' \ % (obj.acronym, obj.centroid.x, obj.centroid.y, check) # add to the flagged feature list self.flags.append(obj.centroid.x, obj.centroid.y, "warning: TECSOU and QUASOU combination is not allowed %s" % (check,), self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) break if len(flagged) == 0: self.report += "OK" return flagged # ### NEW OR DELETED FEATURES ### def new_or_deleted_features(self): self.report += "Checks for new/deleted features [SECTION]" # Isolate features with descrp = New or Delete self.new_deleted_fts = S57Aux.select_by_attribute_value(objects=self.all_fts, attribute='descrp', value_filter=['1', '3']) # Ensure new or deleted features have remrks self.report += "New/Delete features missing mandatory attribute remarks [CHECK]" self.flags.new_deleted_fts.remarks = self._check_features_for_attribute(objects=self.new_deleted_fts, attribute='remrks') # Ensure new or deleted features have recomd self.report += "New/Delete features missing mandatory attribute recommendation [CHECK]" self.flags.new_deleted_fts.recommend = self._check_features_for_attribute(objects=self.new_deleted_fts, attribute='recomd') # ### IMAGES ### def images(self): self.report += "Checks for features with images [SECTION]" # Ensure all features for valid paths self.flags.images.invalid_paths = self._check_features_for_images_path(objects=self.all_fts) if not self.check_image_names: return # Isolate new or updated seabed areas (points + lines & areas) sbdare = S57Aux.select_by_object(objects=self.new_updated_fts, object_filter=['SBDARE', ]) sbdare_points = S57Aux.select_only_points(sbdare) sbdare_lines_areas = S57Aux.select_lines_and_areas(sbdare) non_sbdare_features = S57Aux.filter_by_object(objects=self.all_fts, object_filter=['SBDARE', ]) if self.version in ["2019", ]: self.report += "Invalid IMAGE name per HTD 2018-4/5 [CHECK]" self.flags.images.invalid_names = \ self._check_sbdare_images_per_htd_2018_4(objects=sbdare_points) + \ self._check_nonsbdare_images_per_htd_2018_5(objects=sbdare_lines_areas + non_sbdare_features) elif self.version in ["2020", ]: self.report += "Invalid IMAGE name per HSSD 2020 [CHECK]" self.flags.images.invalid_names = \ self._check_sbdare_images_per_htd_2018_4(objects=sbdare_points) + \ self._check_nonsbdare_images_per_htd_2018_5(objects=sbdare_lines_areas + non_sbdare_features) elif self.version in ["2021"]: self.report += "Invalid IMAGE name per HSSD 2021 [CHECK]" self.flags.images.invalid_names = \ self._check_sbdare_images_per_hssd_2021(objects=sbdare_points) + \ self._check_nonsbdare_images_per_hssd_2021( objects=sbdare_points + non_sbdare_features + sbdare_lines_areas) if len(self.flags.images.invalid_names) == 0: self.report += "OK" def _check_features_for_images_path(self, objects: List['S57Record10']) -> List[list]: # Checked if passed images have correct separator per HSSD and are found in the multimedia folder # logger.debug("checking for invalid IMAGES ...") self.report += "Images are not present in the Multimedia folder [CHECK]" flagged = list() for obj in objects: images = None for attr in obj.attributes: if attr.acronym == "images": images = attr.value if images is None: continue images_list = [image.upper() for image in images.split(";")] for image_filename in images_list: if "," in image_filename: self.report += 'Found %s at (%.7f, %.7f) with image having invalid separator: %s' % \ (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "invalid separator", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue if self.multimedia_folder is None: self.report += 'Found %s at (%.7f, %.7f) with missing images folder: %s' % \ (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "missing images folder", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue if images_list.count(image_filename) > 1: self.report += 'Found %s at (%.7f, %.7f) with a list of images without unique name: %s' % \ (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "listed image names not unique", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue img_path = os.path.join(self.multimedia_folder, image_filename.strip()) if not os.path.exists(img_path): self.report += 'Found %s at (%.7f, %.7f) with invalid path to image: %s' % \ (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) self.flags.append(obj.centroid.x, obj.centroid.y, "invalid path", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue if len(flagged) == 0: self.report += "OK" # logger.debug("checking for invalid images -> flagged: %d" % len(flagged)) return flagged def _check_nonsbdare_images_per_htd_2018_5(self, objects: List['S57Record10']) -> List[list]: """"Check if the passed features have valid image name per HTD 2018-5""" # logger.debug("checking for invalid IMAGE NAMES per HTD 2018-5...") flagged = list() for obj in objects: images = None for attr in obj.attributes: if attr.acronym == "images": images = attr.value if images is None: continue images_list = [image.upper() for image in images.split(";")] for image_filename in images_list: image_filename = os.path.splitext(image_filename)[0] tokens = image_filename.split("_") if len(tokens) not in [2, 3]: self.report += 'Found %s at (%.7f, %.7f) with image having invalid filenaming (nr. of "_"): %s' % \ (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "invalid filenaming", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue if len(tokens[0]) != 6: self.report += 'Found %s at (%.7f, %.7f) with image having invalid survey in filename: %s' % \ (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "invalid survey in filename", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue if len(tokens[1]) != 15: self.report += 'Found %s at (%.7f, %.7f) with image having invalid FIDN+FIDS in filename: %s' % \ (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "invalid FIDN+FIDS in filename", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue # logger.debug("checking for invalid image names per HTD 2018-5 -> flagged %d" % len(flagged)) return flagged def _check_sbdare_images_per_htd_2018_4(self, objects: List['S57Record10']) -> List[list]: """"Check if the passed features have valid image name per HTD 2018-4""" # logger.debug("checking for invalid IMAGE NAMES per HTD 2018-4...") flagged = list() for obj in objects: images = None for attr in obj.attributes: if attr.acronym == "images": images = attr.value if images is None: continue images_list = [image.upper() for image in images.split(";")] for image_filename in images_list: image_filename = os.path.splitext(image_filename)[0] tokens = image_filename.split("_") if len(tokens) != 3: self.report += 'Found %s at (%.7f, %.7f) with image having invalid filenaming (nr. of "_"): %s ' % \ (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "invalid filenaming", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue if len(tokens[0]) != 6: self.report += 'Found %s at (%.7f, %.7f) with image having invalid survey in filename: %s ' % \ (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "invalid survey in filename", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue if tokens[1] != "SBDARE": self.report += 'Found %s at (%.7f, %.7f) with "_SBDARE_" not present in filename: %s ' % \ (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "'_SBDARE_' not present in filename", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue if self.version in ["2019", ]: if len(tokens[2]) != 15: self.report += 'Found %s at (%.7f, %.7f) with image having invalid timestamp in filename: ' \ '%s ' % (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "invalid timestamp in filename", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue if self.version in ["2020", ]: if len(tokens[2]) not in [14, 15]: self.report += 'Found %s at (%.7f, %.7f) with image having invalid timestamp in filename: ' \ '%s ' % (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "invalid timestamp in filename", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue # logger.debug("checking for invalid image names per HTD 2018-4 -> flagged: %d" % len(flagged)) return flagged def _check_sbdare_images_per_hssd_2021(self, objects: List['S57Record10']) -> List[list]: """"Check if the passed features have valid image name per HSSD""" # logger.debug("checking for invalid IMAGE NAMES per HSSD...") flagged = list() for obj in objects: images = None for attr in obj.attributes: if attr.acronym == "images": images = attr.value if images is None: continue images_list = [image.upper() for image in images.split(";")] for image_filename in images_list: image_filename = os.path.splitext(image_filename)[0] tokens = image_filename.split("_") if len(tokens) != 3: self.report += 'Found %s at (%.7f, %.7f) with image having invalid filenaming (nr. of "_"): ' \ '%s ' % (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "invalid filenaming", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue if len(tokens[0]) != 6: self.report += 'Found %s at (%.7f, %.7f) with image having invalid survey in filename: %s ' % \ (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "invalid survey in filename", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue if tokens[1] != "SBDARE": self.report += 'Found %s at (%.7f, %.7f) with "SBDARE" not stated in filename: %s ' % \ (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "'SBDARE' not stated in filename", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue try: _ = int(tokens[2]) except ValueError: self.report += 'Found %s at (%.7f, %.7f) with image not having numeric identifier in filename: ' \ '%s ' % (obj.acronym, obj.centroid.x, obj.centroid.y, image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "no numeric identifier in filename", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) continue # logger.debug("checking for invalid image names per HSSD -> flagged: %d" % len(flagged)) return flagged def _check_nonsbdare_images_per_hssd_2021(self, objects: List['S57Record10']) -> List[list]: """"Check if the passed features have valid image name per HSSD""" # create check that makes sure that the image naming convention is just a unique name. flagged = list() names = dict() for obj in objects: images = None for attr in obj.attributes: if attr.acronym == "images": images = attr.value if images is None: continue images_list = [image.lower() for image in images.split(";")] for image_filename in images_list: image_filename = os.path.splitext(image_filename)[0] if image_filename in names.keys(): self.report += 'Warning: Found %s at (%.7f, %.7f) with same image filename as %s: %s' % \ (obj.acronym, obj.centroid.x, obj.centroid.y, names[image_filename], image_filename) # add to the flagged feature list and to the flagged report self.flags.append(obj.centroid.x, obj.centroid.y, "warning: duplicated image filename", self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) else: names[image_filename] = "%s at (%.7f, %.7f)" % (obj.acronym, obj.centroid.x, obj.centroid.y) # logger.debug("checking for invalid image names per HSSD 2021 -> flagged: %d" % len(flagged)) return flagged # SOUNDINGS def soundings(self): self.report += "Checks for soundings [SECTION]" # Isolate sounding features sounding_fts = S57Aux.select_by_object(objects=self.all_fts, object_filter=['SOUNDG', ]) # filter out soundings with tecsou vbes, lidar, photogrammetry sounding_filtered_tecsou = S57Aux.filter_by_attribute_value(objects=sounding_fts, attribute='TECSOU', value_filter=['1', '7', '10', ]) # Ensure soundings have tecsou self.report += "SOUNDG with empty/missing mandatory attribute TECSOU [CHECK]" self.flags.soundings.tecsou = self._flag_features_with_attribute_value(objects=sounding_fts, attribute='TECSOU', values_to_flag=['', ], check_attrib_existence=True) # Ensure soundings have quasou, quasou shall be left blank for vbes, lidar, photogrammetry self.report += "SOUNDG with empty/missing mandatory attribute QUASOU [CHECK]" self.flags.soundings.quasou = self._flag_features_with_attribute_value(objects=sounding_filtered_tecsou, attribute='QUASOU', values_to_flag=['', ], check_attrib_existence=True) # DTONS def dtons(self): self.report += "Checks for DTONs [SECTION]" # Isolate features that are no-carto, descrp = New or Updated, and sftype = DTON dtons = S57Aux.select_by_attribute_value(objects=self.new_updated_fts, attribute='sftype', value_filter=['3', ]) # Remove soundings to prevent WRECK and OBSTRN DtoN objects from getting the image flag twice. dtons = S57Aux.filter_by_object(objects=dtons, object_filter=['WRECKS', 'OBSTRN']) # Ensure DTONs have images self.report += "Special feature types (DTONS) missing images [CHECK]" self.flags.dtons.images = self._check_features_for_attribute(objects=dtons, attribute='images') # WRECKS def wrecks(self): self.report += "Checks for wrecks [SECTION]" # Isolate new or updated wrecks wrecks = S57Aux.select_by_object(objects=self.new_updated_fts, object_filter=['WRECKS', ]) # Filter wrecks if they have a known, undefined, and unknown valsou. wrecks_valsou = S57Aux.select_by_attribute(objects=wrecks, attribute='VALSOU') # logger.debug("Total number of wrecks without undefined VALSOU: %d" % (len(wrecks_valsou))) wrecks_undefined_valsou = S57Aux.filter_by_attribute(wrecks, attribute='VALSOU') # logger.debug("Total number of wrecks with undefined VALSOU: %d" % (len(wrecks_undefined_valsou))) # filter out wrecks with tecsou vbes, lidar, photogrammetry wrecks_filtered_tecsou = S57Aux.filter_by_attribute_value(objects=wrecks_valsou, attribute='TECSOU', value_filter=['1', '7', '10', ]) # Ensure new or updated wrecks have images self.report += "New or Updated WRECKS missing images [CHECK]" self.flags.wrecks.images = self._check_features_for_attribute(objects=wrecks, attribute='images') # Ensure new or updated wrecks have catwrk self.report += "New or Updated WRECKS with empty/missing mandatory attribute CATWRK [CHECK]" self.flags.wrecks.catwrk = self._flag_features_with_attribute_value(objects=wrecks, attribute='CATWRK', values_to_flag=['', ], check_attrib_existence=True) self.report += "Warning: New or Updated WRECKS missing mandatory attribute VALSOU [CHECK]" self.flags.wrecks.valsou = self._check_features_for_attribute(objects=wrecks, attribute='VALSOU', possible=True) # If wreck has valsou, must have watlev, quasou, tecsou # Ensure wrecks with valsou contain watlev self.report += "New or Updated WRECKS with VALSOU with empty/missing mandatory attribute WATLEV [CHECK]" self.flags.wrecks.watlev = self._flag_features_with_attribute_value(wrecks_valsou, attribute='WATLEV', values_to_flag=['', ], check_attrib_existence=True) # Ensure new or updated wrecks have quasou unless quasou left blank if tecsou is vbes, photogrammetry, or lidar self.report += "New or Updated WRECKS with VALSOU with missing mandatory attribute QUASOU [CHECK]" self.flags.wrecks.quasou = self._flag_features_with_attribute_value(objects=wrecks_filtered_tecsou, attribute='QUASOU', values_to_flag=['', ], check_attrib_existence=True) # Ensure new or updated wrecks have tecsou self.report += "New or Updated WRECKS with VALSOU with empty/missing mandatory attribute TECSOU [CHECK]" self.flags.wrecks.tecsou = self._flag_features_with_attribute_value(objects=wrecks_valsou, attribute='TECSOU', values_to_flag=['', ], check_attrib_existence=True) # If wreck does not have VALSOU... # Warning: Ensure wrecks with unknown valsou have watlev unknown self.report += "Warning: New or Updated WRECKS with empty VALSOU shall have WATLEV of 'unknown' [CHECK]" self.flags.wrecks.unknown_watlev = self._flag_features_with_attribute_value(wrecks_undefined_valsou, attribute='WATLEV', values_to_flag=["1", "2", "3", "4", "5", "6", "7", ], check_attrib_existence=True, possible=True) # Ensure wrecks with unknown valsou have tecsou "unknown" self.report += "New or Updated WRECKS with empty VALSOU shall have TECSOU of 'unknown' [CHECK]" self.flags.wrecks.unknown_tecsou = self._flag_features_with_attribute_value(wrecks_undefined_valsou, attribute='TECSOU', values_to_flag=["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", ], check_attrib_existence=True) # Ensure wrecks with unknown valsou have quasou "unknown" self.report += "New or Updated WRECKS with empty VALSOU shall have QUASOU of NULL [CHECK]" self.flags.wrecks.unknown_quasou = self._flag_features_with_attribute_value(wrecks_undefined_valsou, attribute='QUASOU', values_to_flag=["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"]) # ROCKS def rocks(self): self.report += "Checks for underwater rocks [SECTION]" # Isolate new or updated rocks rocks = S57Aux.select_by_object(objects=self.new_updated_fts, object_filter=['UWTROC', ]) # Filter rocks if they have a known, undefined, and unknown valsou. rocks_valsou = S57Aux.select_by_attribute(objects=rocks, attribute='VALSOU') rocks_undefined_valsou = S57Aux.filter_by_attribute(rocks, attribute='VALSOU') # filter out rocks with tecsou vbes, lidar, photogrammetry rocks_filtered_tecsou = S57Aux.filter_by_attribute_value(objects=rocks_valsou, attribute='TECSOU', value_filter=['1', '7', '10', ]) # Ensure new or updated rocks have valsou self.report += "Warning: New or Updated UWTROC missing mandatory attribute VALSOU [CHECK]" self.flags.rocks.valsou = self._check_features_for_attribute(objects=rocks, attribute='VALSOU', possible=True) # If new or updated rocks have valsou, must have watlev, quasou, tecsou self.report += "New or Updated UWTROC with VALSOU with empty/missing mandatory attribute WATLEV [CHECK]" self.flags.rocks.watlev = self._flag_features_with_attribute_value(rocks_valsou, attribute='WATLEV', values_to_flag=['', ], check_attrib_existence=True) # Ensure new or updated rocks have quasou, quasou should be left blank if vbes, lidar, or photogrammetry self.report += "New or Updated UWTROC with VALSOU with missing mandatory attribute QUASOU [CHECK]" self.flags.rocks.quasou = self._flag_features_with_attribute_value(objects=rocks_filtered_tecsou, attribute='QUASOU', values_to_flag=['', ], check_attrib_existence=True) # Ensure new or updated rocks have tecsou self.report += "New or Updated UWTROC with VALSOU with empty/missing mandatory attribute TECSOU [CHECK]" self.flags.rocks.tecsou = self._flag_features_with_attribute_value(objects=rocks_valsou, attribute='TECSOU', values_to_flag=['', ], check_attrib_existence=True) # If rock does not have VALSOU... # Warning: Ensure rocks with unknown valsou have watlev unknown self.report += "Warning: New or Updated UWTROC with empty VALSOU shall have WATLEV of 'unknown' [CHECK]" self.flags.rocks.unknown_watlev = self._flag_features_with_attribute_value(rocks_undefined_valsou, attribute='WATLEV', values_to_flag=["1", "2", "3", "4", "5", "6", "7", ], check_attrib_existence=True, possible=True) # Ensure rocks with unknown valsou have tecsou "unknown" self.report += "New or Updated UWTROC with empty VALSOU shall have TECSOU of 'unknown' [CHECK]" self.flags.rocks.unknown_tecsou = self._flag_features_with_attribute_value(rocks_undefined_valsou, attribute='TECSOU', values_to_flag=["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", ], check_attrib_existence=True) # Ensure rocks with unknown valsou have quasou "unknown" self.report += "New or Updated UWTROC with empty VALSOU shall have QUASOU of NULL [CHECK]" self.flags.rocks.unknown_quasou = self._flag_features_with_attribute_value(rocks_undefined_valsou, attribute='QUASOU', values_to_flag=["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"]) # OBSTRUCTIONS def obstructions(self): self.report += "Checks for obstructions [SECTION]" # Isolate new or updated obstructions obstrns = S57Aux.select_by_object(objects=self.new_updated_fts, object_filter=['OBSTRN', ]) obstrn_valsou = S57Aux.select_by_attribute(objects=obstrns, attribute='VALSOU') # Exclude foul area and ground area obstructions obstrns_no_foul_area_ground = S57Aux.filter_by_attribute_value(objects=obstrns, attribute='CATOBS', value_filter=['6', '7', ]) # select all obstructions without valsous excluding foul ground and area obstrn_undefined_valsou = S57Aux.filter_by_attribute(obstrns_no_foul_area_ground, attribute='VALSOU') # filter out obstructions with tecsou vbes, lidar, photogrammetry obstrn_filtered_tecsou = S57Aux.filter_by_attribute_value(objects=obstrn_valsou, attribute='TECSOU', value_filter=['1', '7', '10', ]) # Exclude foul area obstructions obstrns_no_foul = S57Aux.filter_by_attribute_value(objects=obstrns, attribute='CATOBS', value_filter=['6', ]) # Include foul ground area obstructions obstrns_foul_ground = S57Aux.select_by_attribute_value(objects=obstrns, attribute='CATOBS', value_filter=['7', ]) # Include only foul obstructions obstrns_foul = S57Aux.select_by_attribute_value(objects=obstrns, attribute='CATOBS', value_filter=['6', ]) # Ensure new or updated obstructions (not foul area) have images # Ensure new or updated wrecks have images self.report += "New or Updated OBSTRN (excluding foul areas) missing images [CHECK]" self.flags.obstructions.images = self._check_features_for_attribute(objects=obstrns_no_foul, attribute='images') # Ensure new or updated obstructions (excluding foul ground) should have valsou self.report += "Warning: New or Updated OBSTRN (excluding foul ground & areas) missing mandatory attribute " \ "VALSOU [CHECK]" self.flags.obstructions.valsou = self._check_features_for_attribute(objects=obstrns_no_foul_area_ground, attribute='VALSOU', possible=True) # Following checks are for obstructions that are foul. # Ensure foul area does not have valsou self.report += "Foul area OBSTRN shall not have VALSOU [CHECK]" self.flags.obstructions.foul_valsou = self._check_features_without_attribute(objects=obstrns_foul, attribute='VALSOU', possible=False) # If new or updated obstructions have valsou, must have watlev, quasou, tecsou self.report += "New or Updated OBSTRN with VALSOU with empty/missing mandatory attribute WATLEV [CHECK]" self.flags.obstructions.watlev = self._flag_features_with_attribute_value(obstrn_valsou, attribute='WATLEV', values_to_flag=['', ], check_attrib_existence=True) # Ensure new or updated obstructions have quasou except with tecsou of vbes, lidar or photogrammetry, those # shall be left blank self.report += "New or Updated OBSTRN with VALSOU with missing mandatory attribute QUASOU [CHECK]" self.flags.obstructions.quasou = self._flag_features_with_attribute_value(objects=obstrn_filtered_tecsou, attribute='QUASOU', values_to_flag=['', ], check_attrib_existence=True) # Ensure new or updated obstructions have tecsou self.report += "New or Updated OBSTRN with VALSOU with empty/missing mandatory attribute TECSOU [CHECK]" self.flags.obstructions.tecsou = self._flag_features_with_attribute_value(objects=obstrn_valsou, attribute='TECSOU', values_to_flag=['', ], check_attrib_existence=True) # If obstructions does not have VALSOU... # Warning: Ensure obstructions with unknown valsou have watlev unknown self.report += "Warning: New or Updated OBSTRN with empty VALSOU shall have WATLEV of 'unknown' [CHECK]" self.flags.obstructions.unknown_watlev = self._flag_features_with_attribute_value(obstrn_undefined_valsou, attribute='WATLEV', values_to_flag=["1", "2", "3", "4", "5", "6", "7", ], check_attrib_existence=True, possible=True) # Ensure obstructions with unknown valsou have tecsou "unknown" self.report += "New or Updated OBSTRN with empty VALSOU shall have TECSOU of 'unknown' [CHECK]" self.flags.obstructions.unknown_tecsou = self._flag_features_with_attribute_value(obstrn_undefined_valsou, attribute='TECSOU', values_to_flag=["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", ], check_attrib_existence=True) # Ensure obstructions with unknown valsou have quasou "unknown" self.report += "New or Updated OBSTRN with empty VALSOU shall have QUASOU of NULL [CHECK]" self.flags.obstructions.unknown_quasou = self._flag_features_with_attribute_value(obstrn_undefined_valsou, attribute='QUASOU', values_to_flag=["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11"]) # New or updated foul ground obstructions shall have WATLEV self.report += "New or Updated foul ground OBSTRN with empty/missing mandatory attribute WATLEV [CHECK]" self.flags.obstructions.foul_ground_watlev = self._flag_features_with_attribute_value( objects=obstrns_foul_ground, attribute='WATLEV', values_to_flag=['', ], check_attrib_existence=True) # Ensure new or updated foul ground obstructions do not have valsou self.report += "New or Updated foul ground OBSTRN must have VALSOU of NULL [CHECK]" self.flags.obstructions.foul_ground_valsou = self._check_features_without_attribute(objects=obstrns_foul_ground, attribute='VALSOU', possible=False) # Ensure new or updated foul ground obstructions do not have quasou self.report += "New or Updated foul ground OBSTRN must have QUASOU of NULL [CHECK]" self.flags.obstructions.foul_ground_quasou = self._check_features_without_attribute(objects=obstrns_foul_ground, attribute='QUASOU', possible=False) # Ensure new or updated foul ground obstructions do not have tecsou self.report += "New or Updated foul ground OBSTRN must have TECSOU of NULL [CHECK]" self.flags.obstructions.foul_ground_tecsou = self._check_features_without_attribute(objects=obstrns_foul_ground, attribute='TECSOU', possible=False) # Foul area checks.... # Warning: Ensure foul area obstructions have watlev unknown self.report += "Warning: New or Updated foul area OBSTRN shall have WATLEV of 'unknown' [CHECK]" self.flags.obstructions.foul_unknown_watlev = \ self._flag_features_with_attribute_value(obstrns_foul, attribute='WATLEV', values_to_flag=["1", "2", "3", "4", "5", "6", "7"], check_attrib_existence=True, possible=True) # Ensure foul area obstructions have tecsou "unknown" self.report += "New or Updated foul area OBSTRN shall have TECSOU of 'unknown' [CHECK]" self.flags.obstructions.foul_unknown_tecsou = \ self._flag_features_with_attribute_value(obstrns_foul, attribute='TECSOU', values_to_flag=["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14"], check_attrib_existence=True) # Ensure foul area obstructions have quasou "unknown" self.report += "New or Updated foul area OBSTRN shall have QUASOU of 'depth unknown' [CHECK]" self.flags.obstructions.foul_unknown_quasou = \ self._flag_features_with_attribute_value(obstrns_foul, attribute='QUASOU', values_to_flag=["1", "3", "4", "5", "6", "7", "8", "9", "10", "11"], check_attrib_existence=True) # OFFSHORE PLATFORMS def platforms(self): self.report += "Checks for offshore platforms [SECTION]" # Isolate new or updated offshore platforms ofsplf = S57Aux.select_by_object( objects=self.new_updated_fts, object_filter=['OFSPLF', ]) # Ensure new or updated offshore platforms have images self.report += "New or Updated OFSPLF missing images [CHECK]" self.flags.platforms.images = self._check_features_for_attribute(objects=ofsplf, attribute='images') # SEABED AREAS def sbdares(self): self.report += "Checks for seabed areas [SECTION]" # @ Isolate new or updated seabed areas sbdare = S57Aux.select_by_object(objects=self.new_updated_fts, object_filter=['SBDARE', ]) # Isolate sbdare lines and areas sbdare_lines_areas = S57Aux.select_lines_and_areas(objects=sbdare) # Ensure new or updated seabed areas have natsur self.report += "New or Updated SBDARE lines and areas with empty/missing mandatory attribute NATSUR [CHECK]" self.flags.sbdares.natsur = self._flag_features_with_attribute_value(objects=sbdare_lines_areas, attribute='NATSUR', values_to_flag=['', ], check_attrib_existence=True) # Ensure line and area seabed areas have watlev self.report += "New or Updated SBDARE lines or areas missing mandatory attribute WATLEV [CHECK]" self.flags.sbdares.watlev = self._check_features_for_attribute(objects=sbdare_lines_areas, attribute='WATLEV', possible=True) # Isolate new or updated point seabed areas sbdare_points = S57Aux.select_only_points(objects=sbdare) # Ensure not more natqua than natsur self.report += "New or Updated point seabed areas with more NATQUA than NATSUR [CHECK]" self.flags.sbdares.pt_natqua = self._check_sbdare_attribute_counts(sbdare_points=sbdare_points, limiting_attribute='NATSUR', dependent='NATQUA') # Ensure not more colour than natsur self.report += "New or Updated point seabed areas with more COLOUR than NATSUR [CHECK]" self.flags.sbdares.pt_colour = self._check_sbdare_attribute_counts(sbdare_points=sbdare_points, limiting_attribute='NATSUR', dependent='COLOUR') # Ensure no unallowable combinations of natqua and natsur self.report += "No unallowable combinations of NATSUR and NATQUA [CHECK]" self.flags.sbdares.pt_allowable_combo = self._allowable_sbdare(sbdare_points=sbdare_points) def _check_sbdare_attribute_counts(self, sbdare_points: List['S57Record10'], limiting_attribute: str, dependent: str) -> List[list]: """Function to ensure that one attribute (dependent) does not have more values than one that relates to it (limiting attribute)""" flagged = list() for point in sbdare_points: attribute_1 = None attribute_2 = None for attr in point.attributes: if attr.acronym == limiting_attribute: attribute_1 = attr.value elif attr.acronym == dependent: attribute_2 = attr.value if not attribute_2: continue elif not attribute_1: continue elif len(attribute_1.split(',')) >= len(attribute_2.split(',')): continue # add to the flagged feature list if dependent == 'NATQUA': # add to the flagged report self.report += 'Found %s at (%.7f, %.7f) has NATSUR/NATQUA imbalance' \ % (point.acronym, point.centroid.x, point.centroid.y) self.flags.append(point.centroid.x, point.centroid.y, 'NATSUR/NATQUA imbalance', self.report.cur_section()) else: # add to the flagged report self.report += 'Found %s at (%.7f, %.7f) has NATSUR/COLOUR imbalance' \ % (point.acronym, point.centroid.x, point.centroid.y) self.flags.append(point.centroid.x, point.centroid.y, 'NATSUR/COLOUR imbalance', self.report.cur_section()) flagged.append([point.acronym, point.centroid.x, point.centroid.y]) if len(flagged) == 0: self.report += "OK" return flagged def _allowable_sbdare(self, sbdare_points: List['S57Record10']) -> List[list]: # report section # currently unsure whether the pairs with '' first ('UNDEFINED' in CARIS) are allowed by specs # the pairs with '0' first ('-' in CARIS) were added based on NOAA Appendix G.5 allowable = [['1', '4'], ['2', '4'], ['3', '4'], ['4', '14'], ['4', '17'], ['5', '1'], ['5', '2'], ['5', '3'], ['6', '1'], ['6', '2'], ['6', '3'], ['6', '4'], ['7', '1'], ['7', '2'], ['7', '3'], ['8', '1'], ['8', '4'], ['8', '5'], ['8', '6'], ['8', '7'], ['8', '8'], ['8', '9'], ['8', '11'], ['8', '18'], ['9', '1'], ['9', '4'], ['9', '5'], ['9', '6'], ['9', '7'], ['9', '8'], ['9', '9'], ['9', '17'], ['9', '18'], ['10', '1'], ['10', '2'], ['10', '3'], ['10', '4'], ['', '1'], ['', '2'], ['', '3'], ['', '4'], ['', '5'], ['', '6'], ['', '7'], ['', '8'], ['', '9'], ['', '11'], ['', '14'], ['', '17'], ['', '18'], ['0', '1'], ['0', '2'], ['0', '3'], ['0', '4'], ['0', '5'], ['0', '6'], ['0', '7'], ['0', '8'], ['0', '9'], ['0', '11'], ['0', '14'], ['0', '17'], ['0', '18']] flagged = list() for sbdare in sbdare_points: natqua = None natsur = None for attr in sbdare.attributes: if attr.acronym == 'NATQUA': natqua = attr.value elif attr.acronym == 'NATSUR': natsur = attr.value if (natqua is None) or (natsur is None): continue else: natqua = natqua.split(',') natsur = natsur.split(',') for i in range(min(len(natsur), len(natqua))): check = [natqua[i], natsur[i]] if check in allowable: continue # add to the flagged report self.report += 'Found %s at (%.7f, %.7f) has prohibited NATSUR/NATQUA combination ' \ % (sbdare.acronym, sbdare.centroid.x, sbdare.centroid.y) # add to the flagged feature list self.flags.append(sbdare.centroid.x, sbdare.centroid.y, "NATQUA and NATSUR combination is not allowed", self.report.cur_section()) flagged.append([sbdare.acronym, sbdare.centroid.x, sbdare.centroid.y]) break if len(flagged) == 0: self.report += "OK" return flagged # MOORINGS def moorings(self): self.report += "Checks for mooring facilities [SECTION]" # Isolate new or updated mooring facilities morfac = S57Aux.select_by_object( objects=self.new_updated_fts, object_filter=['MORFAC', ]) # Ensure new or updated mooring facilities have catmor self.report += "New or Updated MORFAC with empty/missing mandatory attribute CATMOR [CHECK]" self.flags.moorings.catmor = self._flag_features_with_attribute_value( objects=morfac, attribute='CATMOR', values_to_flag=['', ], check_attrib_existence=True) # COASTLINES def coastlines(self): self.report += "Checks for coastlines and shorelines [SECTION]" # Isolate new or updated coastline coalne = S57Aux.select_by_object(objects=self.new_updated_fts, object_filter=['COALNE', ]) # Ensure new or updated coastline has catcoa self.report += "New or Updated COALNE with empty/missing mandatory attribute CATCOA [CHECK]" self.flags.coastlines.coalne = self._flag_features_with_attribute_value(objects=coalne, attribute='CATCOA', values_to_flag=['', ], check_attrib_existence=True) # Isolate new or updated shoreline construction slcons = S57Aux.select_by_object(objects=self.new_updated_fts, object_filter=['SLCONS', ]) # Ensure new or updated shoreline construction has catslc self.report += "New or Updated SLCONS with empty/missing mandatory attribute CATSLC [CHECK]" self.flags.coastlines.slcons = self._flag_features_with_attribute_value(objects=slcons, attribute='CATSLC', values_to_flag=['', ], check_attrib_existence=True) # LANDS def lands(self): self.report += "Checks for land elevations [SECTION]" # Isolate new or updated land elevation lndelv = S57Aux.select_by_object(objects=self.new_updated_fts, object_filter=['LNDELV', ]) # @ Ensure new or updated land elevation has elevat self.report += "New or Updated LNDELV missing mandatory attribute ELEVAT [CHECK]" self.flags.lands.elevat = self._check_features_for_attribute(objects=lndelv, attribute='ELEVAT') # META COVERAGES def coverages(self): self.report += "Checks for metadata coverages [SECTION]" # Isolate M_COVR object mcovr = S57Aux.select_by_object(objects=self.all_fts, object_filter=['M_COVR', ]) # Ensure M_COVR has catcov self.report += "M_COVR with empty/missing mandatory attribute CATCOV [CHECK]" self.flags.coverages.m_covr_catcov = self._flag_features_with_attribute_value(objects=mcovr, attribute='CATCOV', values_to_flag=['', ], check_attrib_existence=True) # Ensure M_COVR has inform self.report += "M_COVR missing mandatory attribute INFORM [CHECK]" self.flags.coverages.m_covr_inform = self._check_features_for_attribute(objects=mcovr, attribute='INFORM') # Ensure M_COVR has ninfom self.report += "M_COVR missing mandatory attribute NINFOM [CHECK]" self.flags.coverages.m_covr_ninfom = self._check_features_for_attribute(objects=mcovr, attribute='NINFOM') # OFFICE ONLY def office_only(self): if self.profile != 0: # Not office logger.info('Skipping checks only for the office') return self.report += "Checks only for office [SECTION]" # For the office profile, ensure all features have onotes self.report += "Features missing onotes [CHECK]" self.flags.office.without_onotes = self._check_features_for_attribute(objects=self.all_fts, attribute='onotes') # For the office profile, check for empty hsdrec self.report += "Features with empty/unknown attribute hsdrec [CHECK]" self.flags.office.hsdrec_empty = self._flag_features_with_attribute_value(objects=self.all_fts, attribute='hsdrec', values_to_flag=['', ], check_attrib_existence=True) # For the office profile, check for prohibited features by feature type self.report += "Features without 'Prohibited feature' keyword [CHECK]" prohibited = S57Aux.select_by_object(objects=self.all_fts, object_filter=['DRGARE', 'LOGPON', 'PIPARE', 'PIPOHD', 'PIPSOL', 'DMPGRD', 'LIGHTS', 'BOYLAT', 'BOYSAW', 'BOYSPP', 'DAYMAR', 'FOGSIG', 'CBLSUB', 'CBLARE', 'FAIRWY', 'RTPBCN', 'BOYISD', 'BOYINB', 'BOYCAR', 'CBLOHD', 'BCNSPP', 'BCNLAT', 'BRIDGE']) self.flags.office.prohibited_kwds = self._check_for_missing_keywords(objects=prohibited, attr_acronym='onotes', keywords=['Prohibited feature', ]) # For the office profile, check for prohibited fish haven obstrn = S57Aux.select_by_object(objects=self.all_fts, object_filter=['OBSTRN', ]) fish_haven = S57Aux.select_by_attribute_value(objects=obstrn, attribute='CATOBS', value_filter=['5', ]) self.report += "Fish havens without 'Prohibited feature' keyword [CHECK]" self.flags.office.fish_haven_kwds = self._check_for_missing_keywords(objects=fish_haven, attr_acronym='onotes', keywords=['Prohibited feature', ]) # For the office profile, check for prohibited mooring buoys morfac = S57Aux.select_by_object(objects=self.all_fts, object_filter=['MORFAC', ]) mooring_buoy = S57Aux.select_by_attribute_value(objects=morfac, attribute='CATMOR', value_filter=['7', ]) self.report += "Mooring buoy without 'Prohibited feature' keyword [CHECK]" self.flags.office.mooring_buoy_kwds = self._check_for_missing_keywords(objects=mooring_buoy, attr_acronym='onotes', keywords=['Prohibited feature', ]) # For office profile, check for M_QUAL attribution mqual = S57Aux.select_by_object(objects=self.all_fts, object_filter=['M_QUAL', ]) # Ensure M_QUAL has CATZOC self.report += "M_QUAL features with empty/missing mandatory attribute CATZOC [CHECK]" self.flags.office.m_qual_catzoc = self._flag_features_with_attribute_value(objects=mqual, attribute='CATZOC', values_to_flag=['', ], check_attrib_existence=True) # Ensure M_QUAL has SURSTA self.report += "M_QUAL features missing mandatory attribute SURSTA [CHECK]" self.flags.office.m_qual_sursta = self._check_features_for_attribute(objects=mqual, attribute='SURSTA') # Ensure M_QUAL has SUREND self.report += "M_QUAL features missing mandatory attribute SUREND [CHECK]" self.flags.office.m_qual_surend = self._check_features_for_attribute(objects=mqual, attribute='SUREND') # Ensure M_QUAL has TECSOU self.report += "M_QUAL features empty/missing mandatory attribute TECSOU [CHECK]" self.flags.office.m_qual_tecsou = self._flag_features_with_attribute_value(objects=mqual, attribute='TECSOU', values_to_flag=['', ], check_attrib_existence=True) # Ensure all features have descrp (per MCD) self.report += "Features have empty or missing mandatory attribute description [CHECK]" self.flags.office.mcd_description = self._check_features_for_attribute(objects=self.all_fts, attribute='descrp') # Ensure all features have remrks (per MCD) self.report += "Features missing mandatory attribute remarks [CHECK]" self.flags.office.mcd_remarks = self._check_features_for_attribute(objects=self.all_fts, attribute='remrks') if self.version in ["2019", "2020"]: # Requirement only for the office, then also for the field self.report += "Features with text input fields exceeding %d characters [CHECK]" % self.character_limit self.flags.office.chars_limit = self._check_character_limit(objects=self.all_fts, attributes=['images', 'invreq', 'keywrd', 'onotes', 'recomd', 'remrks'], character_limit=self.character_limit) def _check_for_missing_keywords(self, objects: List['S57Record10'], attr_acronym: str, keywords: List[str]) \ -> List[list]: """Check if the passed features do not have the passed keywords in a specific attribute""" flagged = list() kws = list() for keyword in keywords: kws.append(keyword.lower()) for obj in objects: # do the test has_keywords = False for attr in obj.attributes: if attr.acronym == attr_acronym: attr_value = attr.value.lower() for kw in kws: if kw in attr_value: has_keywords = True break break # keywords found if has_keywords: continue else: # add to the flagged report self.report += 'Found %s at (%.7f, %.7f), missing %s' % \ (obj.acronym, obj.centroid.x, obj.centroid.y, keywords) # add to the flagged feature list self.flags.append(obj.centroid.x, obj.centroid.y, "missing %s in %s" % (keywords, attr_acronym), self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) if len(flagged) == 0: self.report += "OK" return flagged def _check_character_limit(self, objects: List['S57Record10'], attributes: List[str], character_limit: int) \ -> List[list]: """Check if the passed attribute of the passed features is not longer than the passed character limit""" flagged = list() for obj in objects: # do the test for attr in obj.attributes: if attr.acronym in attributes: nr_chars = len(attr.value) if len(attr.value) > character_limit: # add to the flagged report self.report += 'Found %s at (%.7f, %.7f) exceeds %d-characters limit [%d in %s]' \ % (obj.acronym, obj.centroid.x, obj.centroid.y, character_limit, nr_chars, attr.acronym) # add to the flagged feature list self.flags.append(obj.centroid.x, obj.centroid.y, '%d-characters limit exceeds [%d in %s]' % (character_limit, nr_chars, attr.acronym), self.report.cur_section()) flagged.append([obj.acronym, obj.centroid.x, obj.centroid.y]) if len(flagged) == 0: self.report += "OK" return flagged # noinspection PyStatementEffect def finalize_summary(self): """Add a summary to the report""" count = ord('A') # Add a summary to the report self.report += 'SUMMARY [SECTION]' self.report += 'Summary by section: [CHECK]' # ### ALL FEATURES ### self.report += 'Section %s - Checks for feature file consistency: %s' \ % (chr(count), self.flags.all_fts.nr_of_flagged()) count += 1 # ### ASSIGNED FEATURES ### self.report += 'Section %s - Checks for assigned features: %s' \ % (chr(count), self.flags.ass_fts.nr_of_flagged()) count += 1 # ### NEW OR UPDATED FEATURES ### self.report += 'Section %s - Checks for new or updated features: %s' \ % (chr(count), self.flags.new_updated_fts.nr_of_flagged()) count += 1 # ### NEW OR DELETED FEATURES ### self.report += 'Section %s - Checks for new or deleted features: %s' \ % (chr(count), self.flags.new_deleted_fts.nr_of_flagged()) count += 1 # ### IMAGES ### self.report += 'Section %s - Checks for images: %s' \ % (chr(count), self.flags.images.nr_of_flagged()) count += 1 # SOUNDINGS self.report += 'Section %s - Checks for soundings: %s' \ % (chr(count), self.flags.soundings.nr_of_flagged()) count += 1 # DTONS self.report += 'Section %s - Checks for DTONs: %s' \ % (chr(count), self.flags.dtons.nr_of_flagged()) count += 1 # WRECKS self.report += 'Section %s - Checks for wrecks: %s' \ % (chr(count), self.flags.wrecks.nr_of_flagged()) count += 1 # ROCKS self.report += 'Section %s - Checks for underwater rocks: %s' \ % (chr(count), self.flags.rocks.nr_of_flagged()) count += 1 # OBSTRUCTIONS self.report += 'Section %s - Checks for obstructions: %s' \ % (chr(count), self.flags.obstructions.nr_of_flagged()) count += 1 # OFFSHORE PLATFORMS self.report += 'Section %s - Checks for offshore platforms: %s' \ % (chr(count), self.flags.platforms.nr_of_flagged()) count += 1 # SEABED AREAS self.report += 'Section %s - Checks for seabed areas: %s' \ % (chr(count), self.flags.sbdares.nr_of_flagged()) count += 1 # MOORINGS self.report += 'Section %s - Checks for mooring facilities: %s' \ % (chr(count), self.flags.moorings.nr_of_flagged()) count += 1 # COASTLINES self.report += 'Section %s - Checks for coastlines and shorelines: %s' \ % (chr(count), self.flags.coastlines.nr_of_flagged()) count += 1 # LANDS self.report += 'Section %s - Checks for land elevations: %s' \ % (chr(count), self.flags.lands.nr_of_flagged()) count += 1 # META COVERAGES self.report += 'Section %s - Checks for meta coverages: %s' \ % (chr(count), self.flags.coverages.nr_of_flagged()) count += 1 # OFFICE ONLY if self.profile == 0: # office profile self.report += 'Section %s - Checks ONLY for office: %s' \ % (chr(count), self.flags.office.nr_of_flagged()) count += 1
PypiClean
/Alarmageddon-1.1.2-py3-none-any.whl/alarmageddon/validations/validation.py
from .exceptions import EnrichmentFailure, ValidationFailure GLOBAL_NAMESPACE = "GLOBAL" class Priority(object): """Priority levels that indicate how severe a validation failure is. Validations have a priority that publishers use to determine whether or not to publish in the case of failure. """ # If a LOW priority Validation fails, the failure be recorded for posterity # but not reported to a human (e.g. logged in continuous integration server # job history but not reported to IRC/HipChat) LOW = 1 # If a NORMAL priority Validation fails, the failure should be reported to # a human but it should not wake up a human (e.g. send a notification to # IRC/HipChat, Graphite). Additionally the failure should be logged for # posterity as in the case of LOW priority failures. NORMAL = 2 # If a CRITICAL priority Validation fails, a human should be woken up # (e.g. create an incident in PagerDuty). Additionally the failure should # be more politely reported to humans (e.g. via IRC/HipChat, Graphite, # etc.) and recorded for posterity as in the case of NORMAL and LOW # priority failures. CRITICAL = 3 @staticmethod def string(priority): """Return the name of the priority (e.g. normal, low, critical)""" if priority == Priority.NORMAL: return "normal" elif priority == Priority.LOW: return "low" elif priority == Priority.CRITICAL: return "critical" else: return "unknown priority: {0}".format(priority) class Validation(object): """The base class for validations. The base class for all classes that represent some form of validation (e.g. some expected system property that can be checked and categorized as either passing or failing). Examples of Validations include: an HTTP service returning an expected result in a specified amount of time, an Upstart process on a Linux server is in the running state, a Message Queue's queue length is lower than a maximum value. :param name: The name of this validation. :param priority: The :py:class:`.Priority` level of this validation. :param timeout: How long this validation can take before being considered a failure. If None, then the validation will never be considered a failure due to timing out. :param group: The group this validation belongs to. """ def __init__(self, name, priority=Priority.NORMAL, timeout=None, group=None): """Creates a Validation object with the supplied name and priority. Arguments: name -- The name of this Validation Keyword Arguments priority -- The priority of this Validation. timeout -- If this validation takes longer than this many seconds, it will be considered a failure. group -- The group this validation belongs to. """ self.name = name self.priority = priority self.timeout = timeout self.group = group #this should never be directly manipulated without very good reason #it is used to store extra data for publishers, and the primary #method of interaction should be the enric and get_enriched #functions in publisher.py self._enriched_data = {GLOBAL_NAMESPACE: {}} #determines the partial ordering of the validations #Alarmageddon guarantees that all Validations with lower order than #this Validation's order will run before this Validation runs. #most validations have no reason to change this self.order = 0 def perform(self, group_failures): """Perform the validation. If the validation fails, call self.fail passing it the reason for the failure. :param kwargs: A dictionary containing information from the whole Alarmageddon run. """ pass def fail(self, reason): """Log the validation as a failure. :param reason: The cause of the failure. :param stack_track: Whether or not to include a stack trace in the result. """ raise ValidationFailure(reason) def get_elapsed_time(self): """Return the amount of time this validation took. The :py:class:`.reporter.Reporter` will check here before using the call time. Overwrite this if you need more precise timing - eg, if you want to know how long an http request took, as opposed to how long that whole test took to execute. This function should return a number, not a timedelta. """ raise NotImplementedError def __str__(self): return "Validation {{ name: '{0}' priority: '{1}' timeout: {2}}}"\ .format(self.name, Priority.string(self.priority), self.timeout) def timer_name(self): """Return the name of the timer that corresponds to this validation. Used to indicate where a publisher should log the time taken. """ return None def enrich(self, publisher, values, force_namespace=False): """Adds publisher-specific information to the validation. Override at your own peril! Publishers are expected to assume the standard behavior from this function. :param publisher: The publisher to add enriched data for. :param values: The enriched data to add to this validation. :param force_namespace: If True, will never add the data to the global namespace. """ namespace = str(type(publisher)) enriched = self._enriched_data if namespace in enriched: raise EnrichmentFailure(publisher, self, values) enriched[namespace] = {} for key, value in list(values.items()): if force_namespace: enriched[namespace][key] = value else: if key not in enriched[GLOBAL_NAMESPACE]: enriched[GLOBAL_NAMESPACE][key] = value else: enriched[namespace][key] = value return self def get_enriched(self, publisher, force_namespace=False): """Retrieve the appropriate publisher-specific data. Will retrieve all global enriched data along with any extra publisher specific data. This means that if you enrich a validation for more than one publisher, this function may return a superset of the enriched data for a given publisher. Override at your own peril! Publishers are expected to assume the standard behavior from this function. :param publisher: The publisher to retrieve enriched data for. :param force_namespace: If True, will not retrieve global enrichments. """ namespace = str(type(publisher)) enriched = self._enriched_data #copy global data = {} if not force_namespace: data.update(enriched[GLOBAL_NAMESPACE]) try: data.update(enriched[namespace]) except KeyError: pass return data class GroupValidation(Validation): """A validation that checks the number of failures in a test group. The priority level will be set dynamically based on the number of failures and the supplied thresholds. :param name: The name of this validation. :param checked_group: The name of the group this validation will check. :param low_threshold: The number of failures at which this validation will itself fail. :param normal_threshold: The number of failures at which this validation will become NORMAL priority. :param critical_threshold: The number of failures at which this validation will become CRITICAL priority. :param order: This validation will run after all validations of lower order have run. Used when order matters - eg, creating a GroupValidation for a group of GroupValidations. :param group: The group this validation belongs to. """ def __init__(self, name, checked_group, low_threshold=float("inf"), normal_threshold=float("inf"), critical_threshold=float("inf"), order=1, group=None): Validation.__init__(self, name, priority=Priority.LOW, timeout=None, group=group) self.low_threshold = low_threshold self.normal_threshold = normal_threshold self.critical_threshold = critical_threshold self._clean_thresholds() self.order = order self.checked_group = checked_group def _clean_thresholds(self): """Ensure that the thresholds are consistent. `low_threshold` must be less than `normal_threshold` which must be less than `critical_threhsold`. If necessary, this function will alter the thresholds to ensure this condition is met. """ if self.normal_threshold > self.critical_threshold: self.normal_threshold = self.critical_threshold if self.low_threshold > self.normal_threshold: self.low_threshold = self.normal_threshold def perform(self, group_failures): """Perform the validation.""" failures = len(group_failures[self.checked_group]) messages = group_failures[self.checked_group] if failures >= self.low_threshold: self._set_priority(failures) self.fail("Group {0} had {1} failures! \n{2}".format( self.checked_group, failures, messages)) def _set_priority(self, failures): """Set priority of this validation based on the number of failures. :param failures: The number of failures in this validation's checked group. """ if failures >= self.critical_threshold: self.priority = Priority.CRITICAL elif failures >= self.normal_threshold: self.priority = Priority.NORMAL else: self.priority = Priority.LOW
PypiClean
/ligo-scald-0.8.4.tar.gz/ligo-scald-0.8.4/ligo/scald/utils.py
__author__ = "Patrick Godwin ([email protected])" __description__ = "a module to store commonly used utility functions" #------------------------------------------------- ### imports import argparse import bisect from collections import namedtuple import functools import json import os import random import re import sys import time import timeit from datetime import datetime from dateutil.tz import tzutc from dateutil.parser import parse as str_to_utc import numpy EPOCH_UNIX_GPS = 315964800 #------------------------------------------------- ### leapseconds utilities leapseconds_table = [ 46828800, # 1981-Jul-01 78364801, # 1982-Jul-01 109900802, # 1983-Jul-01 173059203, # 1985-Jul-01 252028804, # 1988-Jan-01 315187205, # 1990-Jan-01 346723206, # 1991-Jan-01 393984007, # 1992-Jul-01 425520008, # 1993-Jul-01 457056009, # 1994-Jul-01 504489610, # 1996-Jan-01 551750411, # 1997-Jul-01 599184012, # 1999-Jan-01 820108813, # 2006-Jan-01 914803214, # 2009-Jan-01 1025136015, # 2012-Jul-01 1119744016, # 2015-Jul-01 1167264017, # 2017-Jan-01 ] def leapseconds(gpstime): return bisect.bisect_left(leapseconds_table, gpstime) #------------------------------------------------- ### data utilities def stats_on_data(data): return float(numpy.min(data)), float(numpy.percentile(data, 15.9)), float(numpy.percentile(data, 84.1)), float(numpy.max(data)) #------------------------------------------------- ### aggregation utilities def gps_range_to_process(jobtime, dt=1): if jobtime: gpsblocks = set((floor_div(t, dt) for t in jobtime)) if not gpsblocks: return [], [] min_t, max_t = min(gpsblocks), max(gpsblocks) return zip(range(min_t, max_t + dt, dt), range(min_t + dt, max_t + 2*dt, dt)) else: return None def span_to_process(start, end, dt=1): return floor_div(start, dt), floor_div(end, dt) + dt def duration_to_dt(duration): """ Given a time duration, returns back the sampling rate of timeseries such that a maximum of 1000 points are plotted at a given time. This is used as a default if the user doesn't specify a dt explicitly. >>> duration_to_dt(900) 1 >>> duration_to_dt(11000) 100 """ if duration <= 1000: dt = 1 elif duration <= 10000: dt = 10 elif duration <= 100000: dt = 100 elif duration <= 1000000: dt = 1000 elif duration <= 10000000: dt = 10000 else: dt = 100000 return dt #------------------------------------------------- ### time utilities def in_new_epoch(new_gps_time, prev_gps_time, gps_epoch): """ Returns whether new and old gps times are in different epochs. >>> in_new_epoch(1234561200, 1234560000, 1000) True >>> in_new_epoch(1234561200, 1234560000, 10000) False """ return (new_gps_time - floor_div(prev_gps_time, gps_epoch)) >= gps_epoch def floor_div(x, n): """ Floor a number by removing its remainder from division by another number n. >>> floor_div(163, 10) 160 >>> floor_div(158, 10) 150 """ assert n > 0 if isinstance(x, int) or (isinstance(x, numpy.ndarray) and numpy.issubdtype(x.dtype, numpy.integer)): return (x // n) * n elif isinstance(x, numpy.ndarray): return (x.astype(float) // n) * n else: return (float(x) // n) * n def gps_now(): """ Returns the current gps time. """ gpsnow = time.time() - EPOCH_UNIX_GPS return gpsnow + leapseconds(gpsnow) def gps_to_latency(gps_time): """ Given a gps time, measures the latency to ms precision relative to now. """ return numpy.round(gps_now() - gps_time, 3) def rfc3339_to_gps(time_str): """ converts an rfc3339-formatted string (UTC+0 only) to a valid gps time. """ if time_str[-1] != 'Z': raise ValueError('missing Z indicating UTC+0') #utc = str_to_utc(time_str[:-1]) utc = str_to_utc(time_str, tzinfos={'Z': 0}) tdelta = utc - datetime.fromtimestamp(0, tzutc()) gps_time = tdelta.total_seconds() - EPOCH_UNIX_GPS return gps_time + leapseconds(gps_time) def gps_to_unix(gps_time): """ Converts from GPS to UNIX time, allows use of numpy arrays or scalars. """ if isinstance(gps_time, numpy.ndarray): leapsec = leapseconds(int(gps_time[0])) return ((gps_time + EPOCH_UNIX_GPS - leapsec) * 1e9).astype(int) else: leapsec = leapseconds(int(gps_time)) return int((gps_time + EPOCH_UNIX_GPS - leapsec) * 1e9) def unix_to_gps(unix_time): """ Converts from UNIX to GPS time, allows use of numpy arrays or scalars. """ ### FIXME: doesn't handle leapseconds correctly return (unix_time / 1e9) - EPOCH_UNIX_GPS + 18 #------------------------------------------------- ### nagios utilities def status_to_nagios_response(text_status, bad_status): return { "nagios_shib_scraper_ver": 0.1, "status_intervals": [{ "num_status": 2 if bad_status else 0, "txt_status": text_status, }], } def extract_alert_tags(schema): if 'tags' in schema: return schema['tags'] else: tag_type = schema['tag_key'] alert_tag_format = schema['tag_format'] if 'digit' in alert_tag_format: num_digits = int(alert_tag_format[0]) num_tags = int(schema['num_tags']) tag_start = int(schema['tag_start']) if 'tag_start' in schema else 0 return [(tag_type, str(tag_num).zfill(num_digits)) for tag_num in range(tag_start, tag_start+num_tags)] else: raise ValueError('{} tag format not recognized'.format(alert_tag_format)) #------------------------------------------------- ### parsing utilities def append_subparser(subparser, cmd, func): assert func.__doc__, "empty docstring: {}".format(func) help_ = func.__doc__.split('\n')[0].lower().strip('.') desc = func.__doc__.strip() parser = subparser.add_parser( cmd, formatter_class=argparse.RawDescriptionHelpFormatter, help=help_, description=desc ) parser.set_defaults(func=func) return parser #------------------------------------------------- ### multiprocessing utilities def unpack(func): """ Unpacks an argument tuple and calls the target function 'func'. Used as a workaround for python 2 missing multiprocessing.Pool.starmap. Implemented from https://stackoverflow.com/a/52671399. """ @functools.wraps(func) def wrapper(arg_tuple): return func(*arg_tuple) return wrapper
PypiClean
/Flask-CKEditor-0.4.6.tar.gz/Flask-CKEditor-0.4.6/flask_ckeditor/static/basic/plugins/filetools/plugin.js
/** * @license Copyright (c) 2003-2020, CKSource - Frederico Knabben. All rights reserved. * For licensing, see LICENSE.md or https://ckeditor.com/legal/ckeditor-oss-license */ 'use strict'; ( function() { CKEDITOR.plugins.add( 'filetools', { lang: 'az,bg,ca,cs,da,de,de-ch,en,en-au,eo,es,es-mx,et,eu,fa,fr,gl,hr,hu,id,it,ja,km,ko,ku,lv,nb,nl,no,oc,pl,pt,pt-br,ro,ru,sk,sq,sr,sr-latn,sv,tr,ug,uk,zh,zh-cn', // %REMOVE_LINE_CORE% beforeInit: function( editor ) { /** * An instance of the {@link CKEDITOR.fileTools.uploadRepository upload repository}. * It allows you to create and get {@link CKEDITOR.fileTools.fileLoader file loaders}. * * var loader = editor.uploadRepository.create( file ); * loader.loadAndUpload( 'http://foo/bar' ); * * @since 4.5.0 * @readonly * @property {CKEDITOR.fileTools.uploadRepository} uploadRepository * @member CKEDITOR.editor */ editor.uploadRepository = new UploadRepository( editor ); /** * Event fired when the {@link CKEDITOR.fileTools.fileLoader file loader} should send XHR. If the event is not * {@link CKEDITOR.eventInfo#stop stopped} or {@link CKEDITOR.eventInfo#cancel canceled}, the default request * will be sent. Refer to the {@glink guide/dev_file_upload Uploading Dropped or Pasted Files} article for more information. * * @since 4.5.0 * @event fileUploadRequest * @member CKEDITOR.editor * @param data * @param {CKEDITOR.fileTools.fileLoader} data.fileLoader A file loader instance. * @param {Object} data.requestData An object containing all data to be sent to the server. */ editor.on( 'fileUploadRequest', function( evt ) { var fileLoader = evt.data.fileLoader; fileLoader.xhr.open( 'POST', fileLoader.uploadUrl, true ); // Adding file to event's data by default - allows overwriting it by user's event listeners. (https://dev.ckeditor.com/ticket/13518) evt.data.requestData.upload = { file: fileLoader.file, name: fileLoader.fileName }; }, null, null, 5 ); editor.on( 'fileUploadRequest', function( evt ) { var fileLoader = evt.data.fileLoader, $formData = new FormData(), requestData = evt.data.requestData, configXhrHeaders = editor.config.fileTools_requestHeaders, header; for ( var name in requestData ) { var value = requestData[ name ]; // Treating files in special way if ( typeof value === 'object' && value.file ) { $formData.append( name, value.file, value.name ); } else { $formData.append( name, value ); } } // Append token preventing CSRF attacks. $formData.append( 'ckCsrfToken', CKEDITOR.tools.getCsrfToken() ); if ( configXhrHeaders ) { for ( header in configXhrHeaders ) { fileLoader.xhr.setRequestHeader( header, configXhrHeaders[ header ] ); } } fileLoader.xhr.send( $formData ); }, null, null, 999 ); /** * Event fired when the {CKEDITOR.fileTools.fileLoader file upload} response is received and needs to be parsed. * If the event is not {@link CKEDITOR.eventInfo#stop stopped} or {@link CKEDITOR.eventInfo#cancel canceled}, * the default response handler will be used. Refer to the * {@glink guide/dev_file_upload Uploading Dropped or Pasted Files} article for more information. * * @since 4.5.0 * @event fileUploadResponse * @member CKEDITOR.editor * @param data All data will be passed to {@link CKEDITOR.fileTools.fileLoader#responseData}. * @param {CKEDITOR.fileTools.fileLoader} data.fileLoader A file loader instance. * @param {String} data.message The message from the server. Needs to be set in the listener &mdash; see the example above. * @param {String} data.fileName The file name on server. Needs to be set in the listener &mdash; see the example above. * @param {String} data.url The URL to the uploaded file. Needs to be set in the listener &mdash; see the example above. */ editor.on( 'fileUploadResponse', function( evt ) { var fileLoader = evt.data.fileLoader, xhr = fileLoader.xhr, data = evt.data; try { var response = JSON.parse( xhr.responseText ); // Error message does not need to mean that upload finished unsuccessfully. // It could mean that ex. file name was changes during upload due to naming collision. if ( response.error && response.error.message ) { data.message = response.error.message; } // But !uploaded means error. if ( !response.uploaded ) { evt.cancel(); } else { for ( var i in response ) { data[ i ] = response[ i ]; } } } catch ( err ) { // Response parsing error. data.message = fileLoader.lang.filetools.responseError; CKEDITOR.warn( 'filetools-response-error', { responseText: xhr.responseText } ); evt.cancel(); } }, null, null, 999 ); } } ); /** * File loader repository. It allows you to create and get {@link CKEDITOR.fileTools.fileLoader file loaders}. * * An instance of the repository is available as the {@link CKEDITOR.editor#uploadRepository}. * * var loader = editor.uploadRepository.create( file ); * loader.loadAndUpload( 'http://foo/bar' ); * * To find more information about handling files see the {@link CKEDITOR.fileTools.fileLoader} class. * * @since 4.5.0 * @class CKEDITOR.fileTools.uploadRepository * @mixins CKEDITOR.event * @constructor Creates an instance of the repository. * @param {CKEDITOR.editor} editor Editor instance. Used only to get the language data. */ function UploadRepository( editor ) { this.editor = editor; this.loaders = []; } UploadRepository.prototype = { /** * Creates a {@link CKEDITOR.fileTools.fileLoader file loader} instance with a unique ID. * The instance can be later retrieved from the repository using the {@link #loaders} array. * * Fires the {@link CKEDITOR.fileTools.uploadRepository#instanceCreated instanceCreated} event. * * @param {Blob/String} fileOrData See {@link CKEDITOR.fileTools.fileLoader}. * @param {String} fileName See {@link CKEDITOR.fileTools.fileLoader}. * @param {Function} [loaderType] Loader type to be created. If skipped, the default {@link CKEDITOR.fileTools.fileLoader} * type will be used. * @returns {CKEDITOR.fileTools.fileLoader} The created file loader instance. */ create: function( fileOrData, fileName, loaderType ) { loaderType = loaderType || FileLoader; var id = this.loaders.length, loader = new loaderType( this.editor, fileOrData, fileName ); loader.id = id; this.loaders[ id ] = loader; this.fire( 'instanceCreated', loader ); return loader; }, /** * Returns `true` if all loaders finished their jobs. * * @returns {Boolean} `true` if all loaders finished their job, `false` otherwise. */ isFinished: function() { for ( var id = 0; id < this.loaders.length; ++id ) { if ( !this.loaders[ id ].isFinished() ) { return false; } } return true; } /** * Array of loaders created by the {@link #create} method. Loaders' {@link CKEDITOR.fileTools.fileLoader#id IDs} * are indexes. * * @readonly * @property {CKEDITOR.fileTools.fileLoader[]} loaders */ /** * Event fired when the {@link CKEDITOR.fileTools.fileLoader file loader} is created. * * @event instanceCreated * @param {CKEDITOR.fileTools.fileLoader} data Created file loader. */ }; /** * The `FileLoader` class is a wrapper which handles two file operations: loading the content of the file stored on * the user's device into the memory and uploading the file to the server. * * There are two possible ways to crate a `FileLoader` instance: with a [Blob](https://developer.mozilla.org/en/docs/Web/API/Blob) * (e.g. acquired from the {@link CKEDITOR.plugins.clipboard.dataTransfer#getFile} method) or with data as a Base64 string. * Note that if the constructor gets the data as a Base64 string, there is no need to load the data, the data is already loaded. * * The `FileLoader` is created for a single load and upload process so if you abort the process, * you need to create a new `FileLoader`. * * All process parameters are stored in public properties. * * `FileLoader` implements events so you can listen to them to react to changes. There are two types of events: * events to notify the listeners about changes and an event that lets the listeners synchronize with current {@link #status}. * * The first group of events contains {@link #event-loading}, {@link #event-loaded}, {@link #event-uploading}, * {@link #event-uploaded}, {@link #event-error} and {@link #event-abort}. These events are called only once, * when the {@link #status} changes. * * The second type is the {@link #event-update} event. It is fired every time the {@link #status} changes, the progress changes * or the {@link #method-update} method is called. Is is created to synchronize the visual representation of the loader with * its status. For example if the dialog window shows the upload progress, it should be refreshed on * the {@link #event-update} listener. Then when the user closes and reopens this dialog, the {@link #method-update} method should * be called to refresh the progress. * * Default request and response formats will work with CKFinder 2.4.3 and above. If you need a custom request * or response handling you need to overwrite the default behavior using the {@link CKEDITOR.editor#fileUploadRequest} and * {@link CKEDITOR.editor#fileUploadResponse} events. For more information see their documentation. * * To create a `FileLoader` instance, use the {@link CKEDITOR.fileTools.uploadRepository} class. * * Here is a simple `FileLoader` usage example: * * editor.on( 'paste', function( evt ) { * for ( var i = 0; i < evt.data.dataTransfer.getFilesCount(); i++ ) { * var file = evt.data.dataTransfer.getFile( i ); * * if ( CKEDITOR.fileTools.isTypeSupported( file, /image\/png/ ) ) { * var loader = editor.uploadRepository.create( file ); * * loader.on( 'update', function() { * document.getElementById( 'uploadProgress' ).innerHTML = loader.status; * } ); * * loader.on( 'error', function() { * alert( 'Error!' ); * } ); * * loader.loadAndUpload( 'http://upload.url/' ); * * evt.data.dataValue += 'loading...' * } * } * } ); * * Note that `FileLoader` uses the native file API which is supported **since Internet Explorer 10**. * * @since 4.5.0 * @class CKEDITOR.fileTools.fileLoader * @mixins CKEDITOR.event * @constructor Creates an instance of the class and sets initial values for all properties. * @param {CKEDITOR.editor} editor The editor instance. Used only to get language data. * @param {Blob/String} fileOrData A [blob object](https://developer.mozilla.org/en/docs/Web/API/Blob) or a data * string encoded with Base64. * @param {String} [fileName] The file name. If not set and the second parameter is a file, then its name will be used. * If not set and the second parameter is a Base64 data string, then the file name will be created based on * the {@link CKEDITOR.config#fileTools_defaultFileName} option. */ function FileLoader( editor, fileOrData, fileName ) { var mimeParts, defaultFileName = editor.config.fileTools_defaultFileName; this.editor = editor; this.lang = editor.lang; if ( typeof fileOrData === 'string' ) { // Data is already loaded from disc. this.data = fileOrData; this.file = dataToFile( this.data ); this.total = this.file.size; this.loaded = this.total; } else { this.data = null; this.file = fileOrData; this.total = this.file.size; this.loaded = 0; } if ( fileName ) { this.fileName = fileName; } else if ( this.file.name ) { this.fileName = this.file.name; } else { mimeParts = this.file.type.split( '/' ); if ( defaultFileName ) { mimeParts[ 0 ] = defaultFileName; } this.fileName = mimeParts.join( '.' ); } this.uploaded = 0; this.uploadTotal = null; this.responseData = null; this.status = 'created'; this.abort = function() { this.changeStatus( 'abort' ); }; } /** * The loader status. Possible values: * * * `created` &ndash; The loader was created, but neither load nor upload started. * * `loading` &ndash; The file is being loaded from the user's storage. * * `loaded` &ndash; The file was loaded, the process is finished. * * `uploading` &ndash; The file is being uploaded to the server. * * `uploaded` &ndash; The file was uploaded, the process is finished. * * `error` &ndash; The process stops because of an error, more details are available in the {@link #message} property. * * `abort` &ndash; The process was stopped by the user. * * @property {String} status */ /** * String data encoded with Base64. If the `FileLoader` is created with a Base64 string, the `data` is that string. * If a file was passed to the constructor, the data is `null` until loading is completed. * * @readonly * @property {String} data */ /** * File object which represents the handled file. This property is set for both constructor options (file or data). * * @readonly * @property {Blob} file */ /** * The name of the file. If there is no file name, it is created by using the * {@link CKEDITOR.config#fileTools_defaultFileName} option. * * @readonly * @property {String} fileName */ /** * The number of loaded bytes. If the `FileLoader` was created with a data string, * the loaded value equals the {@link #total} value. * * @readonly * @property {Number} loaded */ /** * The number of uploaded bytes. * * @readonly * @property {Number} uploaded */ /** * The total file size in bytes. * * @readonly * @property {Number} total */ /** * All data received in the response from the server. If the server returns additional data, it will be available * in this property. * * It contains all data set in the {@link CKEDITOR.editor#fileUploadResponse} event listener. * * @readonly * @property {Object} responseData */ /** * The total size of upload data in bytes. * If the `xhr.upload` object is present, this value will indicate the total size of the request payload, not only the file * size itself. If the `xhr.upload` object is not available and the real upload size cannot be obtained, this value will * be equal to {@link #total}. It has a `null` value until the upload size is known. * * loader.on( 'update', function() { * // Wait till uploadTotal is present. * if ( loader.uploadTotal ) { * console.log( 'uploadTotal: ' + loader.uploadTotal ); * } * }); * * @readonly * @property {Number} uploadTotal */ /** * The error message or additional information received from the server. * * @readonly * @property {String} message */ /** * The URL to the file when it is uploaded or received from the server. * * @readonly * @property {String} url */ /** * The target of the upload. * * @readonly * @property {String} uploadUrl */ /** * * Native `FileReader` reference used to load the file. * * @readonly * @property {FileReader} reader */ /** * Native `XMLHttpRequest` reference used to upload the file. * * @readonly * @property {XMLHttpRequest} xhr */ /** * If `FileLoader` was created using {@link CKEDITOR.fileTools.uploadRepository}, * it gets an identifier which is stored in this property. * * @readonly * @property {Number} id */ /** * Aborts the process. * * This method has a different behavior depending on the current {@link #status}. * * * If the {@link #status} is `loading` or `uploading`, current operation will be aborted. * * If the {@link #status} is `created`, `loading` or `uploading`, the {@link #status} will be changed to `abort` * and the {@link #event-abort} event will be called. * * If the {@link #status} is `loaded`, `uploaded`, `error` or `abort`, this method will do nothing. * * @method abort */ FileLoader.prototype = { /** * Loads a file from the storage on the user's device to the `data` attribute and uploads it to the server. * * The order of {@link #status statuses} for a successful load and upload is: * * * `created`, * * `loading`, * * `uploading`, * * `uploaded`. * * @param {String} url The upload URL. * @param {Object} [additionalRequestParameters] Additional parameters that would be passed to * the {@link CKEDITOR.editor#fileUploadRequest} event. */ loadAndUpload: function( url, additionalRequestParameters ) { var loader = this; this.once( 'loaded', function( evt ) { // Cancel both 'loaded' and 'update' events, // because 'loaded' is terminated state. evt.cancel(); loader.once( 'update', function( evt ) { evt.cancel(); }, null, null, 0 ); // Start uploading. loader.upload( url, additionalRequestParameters ); }, null, null, 0 ); this.load(); }, /** * Loads a file from the storage on the user's device to the `data` attribute. * * The order of the {@link #status statuses} for a successful load is: * * * `created`, * * `loading`, * * `loaded`. */ load: function() { var loader = this; this.reader = new FileReader(); var reader = this.reader; loader.changeStatus( 'loading' ); this.abort = function() { loader.reader.abort(); }; reader.onabort = function() { loader.changeStatus( 'abort' ); }; reader.onerror = function() { loader.message = loader.lang.filetools.loadError; loader.changeStatus( 'error' ); }; reader.onprogress = function( evt ) { loader.loaded = evt.loaded; loader.update(); }; reader.onload = function() { loader.loaded = loader.total; loader.data = reader.result; loader.changeStatus( 'loaded' ); }; reader.readAsDataURL( this.file ); }, /** * Uploads a file to the server. * * The order of the {@link #status statuses} for a successful upload is: * * * `created`, * * `uploading`, * * `uploaded`. * * @param {String} url The upload URL. * @param {Object} [additionalRequestParameters] Additional data that would be passed to * the {@link CKEDITOR.editor#fileUploadRequest} event. */ upload: function( url, additionalRequestParameters ) { var requestData = additionalRequestParameters || {}; if ( !url ) { this.message = this.lang.filetools.noUrlError; this.changeStatus( 'error' ); } else { this.uploadUrl = url; this.xhr = new XMLHttpRequest(); this.attachRequestListeners(); if ( this.editor.fire( 'fileUploadRequest', { fileLoader: this, requestData: requestData } ) ) { this.changeStatus( 'uploading' ); } } }, /** * Attaches listeners to the XML HTTP request object. * * @private * @param {XMLHttpRequest} xhr XML HTTP request object. */ attachRequestListeners: function() { var loader = this, xhr = this.xhr; loader.abort = function() { xhr.abort(); onAbort(); }; xhr.onerror = onError; xhr.onabort = onAbort; // https://dev.ckeditor.com/ticket/13533 - When xhr.upload is present attach onprogress, onerror and onabort functions to get actual upload // information. if ( xhr.upload ) { xhr.upload.onprogress = function( evt ) { if ( evt.lengthComputable ) { // Set uploadTotal with correct data. if ( !loader.uploadTotal ) { loader.uploadTotal = evt.total; } loader.uploaded = evt.loaded; loader.update(); } }; xhr.upload.onerror = onError; xhr.upload.onabort = onAbort; } else { // https://dev.ckeditor.com/ticket/13533 - If xhr.upload is not supported - fire update event anyway and set uploadTotal to file size. loader.uploadTotal = loader.total; loader.update(); } xhr.onload = function() { // https://dev.ckeditor.com/ticket/13433 - Call update at the end of the upload. When xhr.upload object is not supported there will be // no update events fired during the whole process. loader.update(); // https://dev.ckeditor.com/ticket/13433 - Check if loader was not aborted during last update. if ( loader.status == 'abort' ) { return; } loader.uploaded = loader.uploadTotal; if ( xhr.status < 200 || xhr.status > 299 ) { loader.message = loader.lang.filetools[ 'httpError' + xhr.status ]; if ( !loader.message ) { loader.message = loader.lang.filetools.httpError.replace( '%1', xhr.status ); } loader.changeStatus( 'error' ); } else { var data = { fileLoader: loader }, // Values to copy from event to FileLoader. valuesToCopy = [ 'message', 'fileName', 'url' ], success = loader.editor.fire( 'fileUploadResponse', data ); for ( var i = 0; i < valuesToCopy.length; i++ ) { var key = valuesToCopy[ i ]; if ( typeof data[ key ] === 'string' ) { loader[ key ] = data[ key ]; } } // The whole response is also hold for use by uploadwidgets (https://dev.ckeditor.com/ticket/13519). loader.responseData = data; // But without reference to the loader itself. delete loader.responseData.fileLoader; if ( success === false ) { loader.changeStatus( 'error' ); } else { loader.changeStatus( 'uploaded' ); } } }; function onError() { // Prevent changing status twice, when XHR.error and XHR.upload.onerror could be called together. if ( loader.status == 'error' ) { return; } loader.message = loader.lang.filetools.networkError; loader.changeStatus( 'error' ); } function onAbort() { // Prevent changing status twice, when XHR.onabort and XHR.upload.onabort could be called together. if ( loader.status == 'abort' ) { return; } loader.changeStatus( 'abort' ); } }, /** * Changes {@link #status} to the new status, updates the {@link #method-abort} method if needed and fires two events: * new status and {@link #event-update}. * * @private * @param {String} newStatus New status to be set. */ changeStatus: function( newStatus ) { this.status = newStatus; if ( newStatus == 'error' || newStatus == 'abort' || newStatus == 'loaded' || newStatus == 'uploaded' ) { this.abort = function() {}; } this.fire( newStatus ); this.update(); }, /** * Updates the state of the `FileLoader` listeners. This method should be called if the state of the visual representation * of the upload process is out of synchronization and needs to be refreshed (e.g. because of an undo operation or * because the dialog window with the upload is closed and reopened). Fires the {@link #event-update} event. */ update: function() { this.fire( 'update' ); }, /** * Returns `true` if the loading and uploading finished (successfully or not), so the {@link #status} is * `loaded`, `uploaded`, `error` or `abort`. * * @returns {Boolean} `true` if the loading and uploading finished. */ isFinished: function() { return !!this.status.match( /^(?:loaded|uploaded|error|abort)$/ ); } /** * Event fired when the {@link #status} changes to `loading`. It will be fired once for the `FileLoader`. * * @event loading */ /** * Event fired when the {@link #status} changes to `loaded`. It will be fired once for the `FileLoader`. * * @event loaded */ /** * Event fired when the {@link #status} changes to `uploading`. It will be fired once for the `FileLoader`. * * @event uploading */ /** * Event fired when the {@link #status} changes to `uploaded`. It will be fired once for the `FileLoader`. * * @event uploaded */ /** * Event fired when the {@link #status} changes to `error`. It will be fired once for the `FileLoader`. * * @event error */ /** * Event fired when the {@link #status} changes to `abort`. It will be fired once for the `FileLoader`. * * @event abort */ /** * Event fired every time the `FileLoader` {@link #status} or progress changes or the {@link #method-update} method is called. * This event was designed to allow showing the visualization of the progress and refresh that visualization * every time the status changes. Note that multiple `update` events may be fired with the same status. * * @event update */ }; CKEDITOR.event.implementOn( UploadRepository.prototype ); CKEDITOR.event.implementOn( FileLoader.prototype ); var base64HeaderRegExp = /^data:(\S*?);base64,/; // Transforms Base64 string data into file and creates name for that file based on the mime type. // // @private // @param {String} data Base64 string data. // @returns {Blob} File. function dataToFile( data ) { var contentType = data.match( base64HeaderRegExp )[ 1 ], base64Data = data.replace( base64HeaderRegExp, '' ), byteCharacters = atob( base64Data ), byteArrays = [], sliceSize = 512, offset, slice, byteNumbers, i, byteArray; for ( offset = 0; offset < byteCharacters.length; offset += sliceSize ) { slice = byteCharacters.slice( offset, offset + sliceSize ); byteNumbers = new Array( slice.length ); for ( i = 0; i < slice.length; i++ ) { byteNumbers[ i ] = slice.charCodeAt( i ); } byteArray = new Uint8Array( byteNumbers ); byteArrays.push( byteArray ); } return new Blob( byteArrays, { type: contentType } ); } // // PUBLIC API ------------------------------------------------------------- // // Two plugins extend this object. if ( !CKEDITOR.fileTools ) { /** * Helpers to load and upload a file. * * @since 4.5.0 * @singleton * @class CKEDITOR.fileTools */ CKEDITOR.fileTools = {}; } CKEDITOR.tools.extend( CKEDITOR.fileTools, { uploadRepository: UploadRepository, fileLoader: FileLoader, /** * Gets the upload URL from the {@link CKEDITOR.config configuration}. Because of backward compatibility * the URL can be set using multiple configuration options. * * If the `type` is defined, then four configuration options will be checked in the following order * (examples for `type='image'`): * * * `[type]UploadUrl`, e.g. {@link CKEDITOR.config#imageUploadUrl}, * * {@link CKEDITOR.config#uploadUrl}, * * `filebrowser[uppercased type]uploadUrl`, e.g. {@link CKEDITOR.config#filebrowserImageUploadUrl}, * * {@link CKEDITOR.config#filebrowserUploadUrl}. * * If the `type` is not defined, two configuration options will be checked: * * * {@link CKEDITOR.config#uploadUrl}, * * {@link CKEDITOR.config#filebrowserUploadUrl}. * * `filebrowser[type]uploadUrl` and `filebrowserUploadUrl` are checked for backward compatibility with the * `filebrowser` plugin. * * For both `filebrowser[type]uploadUrl` and `filebrowserUploadUrl` `&responseType=json` is added to the end of the URL. * * @param {Object} config The configuration file. * @param {String} [type] Upload file type. * @returns {String/null} Upload URL or `null` if none of the configuration options were defined. */ getUploadUrl: function( config, type ) { var capitalize = CKEDITOR.tools.capitalize; if ( type && config[ type + 'UploadUrl' ] ) { return config[ type + 'UploadUrl' ]; } else if ( config.uploadUrl ) { return config.uploadUrl; } else if ( type && config[ 'filebrowser' + capitalize( type, 1 ) + 'UploadUrl' ] ) { return config[ 'filebrowser' + capitalize( type, 1 ) + 'UploadUrl' ] + '&responseType=json'; } else if ( config.filebrowserUploadUrl ) { return config.filebrowserUploadUrl + '&responseType=json'; } return null; }, /** * Checks if the MIME type of the given file is supported. * * CKEDITOR.fileTools.isTypeSupported( { type: 'image/png' }, /image\/(png|jpeg)/ ); // true * CKEDITOR.fileTools.isTypeSupported( { type: 'image/png' }, /image\/(gif|jpeg)/ ); // false * * @param {Blob} file The file to check. * @param {RegExp} supportedTypes A regular expression to check the MIME type of the file. * @returns {Boolean} `true` if the file type is supported. */ isTypeSupported: function( file, supportedTypes ) { return !!file.type.match( supportedTypes ); }, /** * Feature detection indicating whether the current browser supports methods essential to send files over an XHR request. * * @since 4.9.0 * @property {Boolean} isFileUploadSupported */ isFileUploadSupported: ( function() { return typeof FileReader === 'function' && typeof ( new FileReader() ).readAsDataURL === 'function' && typeof FormData === 'function' && typeof ( new FormData() ).append === 'function' && typeof XMLHttpRequest === 'function' && typeof Blob === 'function'; } )() } ); } )(); /** * The URL where files should be uploaded. * * An empty string means that the option is disabled. * * @since 4.5.0 * @cfg {String} [uploadUrl=''] * @member CKEDITOR.config */ /** * The default file name (without extension) that will be used for files created from a Base64 data string * (for example for files pasted into the editor). * This name will be combined with the MIME type to create the full file name with the extension. * * If `fileTools_defaultFileName` is set to `default-name` and data's MIME type is `image/png`, * the resulting file name will be `default-name.png`. * * If `fileTools_defaultFileName` is not set, the file name will be created using only its MIME type. * For example for `image/png` the file name will be `image.png`. * * @since 4.5.3 * @cfg {String} [fileTools_defaultFileName=''] * @member CKEDITOR.config */ /** * Allows to add extra headers for every request made using the {@link CKEDITOR.fileTools} API. * * Note that headers can still be customized per a single request, using the * [`fileUploadRequest`](https://ckeditor.com/docs/ckeditor4/latest/api/CKEDITOR_editor.html#event-fileUploadRequest) * event. * * config.fileTools_requestHeaders = { * 'X-Requested-With': 'XMLHttpRequest', * 'Custom-Header': 'header value' * }; * * @since 4.9.0 * @cfg {Object} [fileTools_requestHeaders] * @member CKEDITOR.config */
PypiClean
/large_image_source_bioformats-1.23.6-py3-none-any.whl/large_image_source_bioformats/__init__.py
# This tile sources uses javabridge to communicate between python and java. It # requires some version of java's jvm to be available (see # https://jdk.java.net/archive/). It uses the python-bioformats wheel to get # the bioformats JAR file. A later version may be desirable (see # https://www.openmicroscopy.org/bio-formats/downloads/). See # https://downloads.openmicroscopy.org/bio-formats/5.1.5/api/loci/formats/ # IFormatReader.html for interface details. import atexit import logging import math import os import re import threading import types import weakref import numpy as np import large_image.tilesource.base from large_image import config from large_image.cache_util import LruCacheMetaclass, methodcache from large_image.constants import TILE_FORMAT_NUMPY, SourcePriority from large_image.exceptions import TileSourceError, TileSourceFileNotFoundError from large_image.tilesource import FileTileSource, nearPowerOfTwo try: from importlib.metadata import PackageNotFoundError from importlib.metadata import version as _importlib_version except ImportError: from importlib_metadata import PackageNotFoundError from importlib_metadata import version as _importlib_version try: __version__ = _importlib_version(__name__) except PackageNotFoundError: # package is not installed pass bioformats = None # import javabridge javabridge = None _javabridgeStarted = None _openImages = [] # Default to ignoring files with no extension and some specific extensions. config.ConfigValues['source_bioformats_ignored_names'] = \ r'(^[^.]*|\.(jpg|jpeg|jpe|png|tif|tiff|ndpi|nd2|ome|nc|json|isyntax))$' def _monitor_thread(): main_thread = threading.main_thread() main_thread.join() if len(_openImages): try: javabridge.attach() while len(_openImages): source = _openImages.pop() source = source() try: source._bioimage.close() except Exception: pass source._bioimage = None except AssertionError: pass finally: if javabridge.get_env(): javabridge.detach() _stopJavabridge() def _reduceLogging(): # As of bioformat 4.0.0, org.apache.log4j isn't in the bundled # jar file, so setting log levels just produces needless warnings. # bioformats.log4j.basic_config() # javabridge.JClassWrapper('loci.common.Log4jTools').setRootLevel( # logging.getLevelName(logger.level)) # # This is taken from # https://github.com/pskeshu/microscoper/blob/master/microscoper/io.py try: rootLoggerName = javabridge.get_static_field( 'org/slf4j/Logger', 'ROOT_LOGGER_NAME', 'Ljava/lang/String;') rootLogger = javabridge.static_call( 'org/slf4j/LoggerFactory', 'getLogger', '(Ljava/lang/String;)Lorg/slf4j/Logger;', rootLoggerName) logLevel = javabridge.get_static_field( 'ch/qos/logback/classic/Level', 'WARN', 'Lch/qos/logback/classic/Level;') javabridge.call(rootLogger, 'setLevel', '(Lch/qos/logback/classic/Level;)V', logLevel) except Exception: pass bioformats.formatreader.logger.setLevel(logging.ERROR) def _startJavabridge(logger): global _javabridgeStarted if _javabridgeStarted is None: # Only import these when first asked. They are slow to import. global bioformats global javabridge if bioformats is None: import bioformats if javabridge is None: import javabridge # We need something to wake up at exit and shut things down monitor = threading.Thread(target=_monitor_thread) monitor.daemon = True monitor.start() try: javabridge.start_vm(class_path=bioformats.JARS, run_headless=True) _reduceLogging() atexit.register(_stopJavabridge) logger.info('Started JVM for Bioformats tile source.') _javabridgeStarted = True except RuntimeError as exc: logger.exception('Cannot start JVM for Bioformats tile source.', exc) _javabridgeStarted = False return _javabridgeStarted def _stopJavabridge(*args, **kwargs): global _javabridgeStarted if javabridge is not None: javabridge.kill_vm() _javabridgeStarted = None class BioformatsFileTileSource(FileTileSource, metaclass=LruCacheMetaclass): """ Provides tile access to via Bioformats. """ cacheName = 'tilesource' name = 'bioformats' extensions = { None: SourcePriority.FALLBACK, 'czi': SourcePriority.PREFERRED, 'lif': SourcePriority.MEDIUM, 'vsi': SourcePriority.PREFERRED, } mimeTypes = { None: SourcePriority.FALLBACK, 'image/czi': SourcePriority.PREFERRED, 'image/vsi': SourcePriority.PREFERRED, } # If frames are smaller than this they are served as single tiles, which # can be more efficient than handling multiple tiles. _singleTileThreshold = 2048 _tileSize = 512 _associatedImageMaxSize = 8192 _maxSkippedLevels = 3 def __init__(self, path, **kwargs): # noqa """ Initialize the tile class. See the base class for other available parameters. :param path: the associated file path. """ super().__init__(path, **kwargs) largeImagePath = str(self._getLargeImagePath()) self._ignoreSourceNames('bioformats', largeImagePath, r'\.png$') if not _startJavabridge(self.logger): msg = 'File cannot be opened by bioformats reader because javabridge failed to start' raise TileSourceError(msg) self._tileLock = threading.RLock() try: javabridge.attach() try: self._bioimage = bioformats.ImageReader(largeImagePath) except (AttributeError, OSError) as exc: if not os.path.isfile(largeImagePath): raise TileSourceFileNotFoundError(largeImagePath) from None self.logger.debug('File cannot be opened via Bioformats. (%r)', exc) raise TileSourceError('File cannot be opened via Bioformats (%r)' % exc) _openImages.append(weakref.ref(self)) rdr = self._bioimage.rdr # Bind additional functions not done by bioformats module. # Functions are listed at https://downloads.openmicroscopy.org # /bio-formats/5.1.5/api/loci/formats/IFormatReader.html for (name, params, desc) in [ ('getBitsPerPixel', '()I', 'Get the number of bits per pixel'), ('getDomains', '()[Ljava/lang/String;', 'Get a list of domains'), ('getEffectiveSizeC', '()I', 'effectiveC * Z * T = imageCount'), ('getOptimalTileHeight', '()I', 'the optimal sub-image height ' 'for use with openBytes'), ('getOptimalTileWidth', '()I', 'the optimal sub-image width ' 'for use with openBytes'), ('getResolution', '()I', 'The current resolution level'), ('getResolutionCount', '()I', 'The number of resolutions for ' 'the current series'), ('getZCTCoords', '(I)[I', 'Gets the Z, C and T coordinates ' '(real sizes) corresponding to the given rasterized index value.'), ('hasFlattenedResolutions', '()Z', 'True if resolutions have been flattened'), ('isMetadataComplete', '()Z', 'True if metadata is completely parsed'), ('isNormalized', '()Z', 'Is float data normalized'), ('setFlattenedResolutions', '(Z)V', 'Set if resolution should be flattened'), ('setResolution', '(I)V', 'Set the resolution level'), ]: setattr(rdr, name, types.MethodType( javabridge.jutil.make_method(name, params, desc), rdr)) # rdr.setFlattenedResolutions(False) self._metadataForCurrentSeries(rdr) self._checkSeries(rdr) bmd = bioformats.metadatatools.MetadataRetrieve(self._bioimage.metadata) try: self._metadata['channelNames'] = [ bmd.getChannelName(0, c) or bmd.getChannelID(0, c) for c in range(self._metadata['sizeColorPlanes'])] except Exception: self._metadata['channelNames'] = [] for key in ['sizeXY', 'sizeC', 'sizeZ', 'sizeT']: if not isinstance(self._metadata[key], int) or self._metadata[key] < 1: self._metadata[key] = 1 self.sizeX = self._metadata['sizeX'] self.sizeY = self._metadata['sizeY'] if self.sizeX <= 0 or self.sizeY <= 0: msg = 'File cannot be opened with biofromats.' raise TileSourceError(msg) self._computeTiles() self._computeLevels() self._computeMagnification() except javabridge.JavaException as exc: es = javabridge.to_string(exc.throwable) self.logger.debug('File cannot be opened via Bioformats. (%s)', es) raise TileSourceError('File cannot be opened via Bioformats. (%s)' % es) except (AttributeError, UnicodeDecodeError): self.logger.exception('The bioformats reader threw an unhandled exception.') msg = 'The bioformats reader threw an unhandled exception.' raise TileSourceError(msg) finally: if javabridge.get_env(): javabridge.detach() if self.levels < 1: msg = 'Bioformats image must have at least one level.' raise TileSourceError(msg) if self.sizeX <= 0 or self.sizeY <= 0: msg = 'Bioformats tile size is invalid.' raise TileSourceError(msg) try: self.getTile(0, 0, self.levels - 1) except Exception as exc: raise TileSourceError('Bioformats cannot read a tile: %r' % exc) self._populatedLevels = len([ v for v in self._metadata['frameSeries'][0]['series'] if v is not None]) def __del__(self): if getattr(self, '_bioimage', None) is not None: try: javabridge.attach() self._bioimage.close() del self._bioimage _openImages.remove(weakref.ref(self)) finally: if javabridge.get_env(): javabridge.detach() def _metadataForCurrentSeries(self, rdr): self._metadata = getattr(self, '_metadata', {}) self._metadata.update({ 'dimensionOrder': rdr.getDimensionOrder(), 'metadata': javabridge.jdictionary_to_string_dictionary( rdr.getMetadata()), 'seriesMetadata': javabridge.jdictionary_to_string_dictionary( rdr.getSeriesMetadata()), 'seriesCount': rdr.getSeriesCount(), 'imageCount': rdr.getImageCount(), 'rgbChannelCount': rdr.getRGBChannelCount(), 'sizeColorPlanes': rdr.getSizeC(), 'sizeT': rdr.getSizeT(), 'sizeZ': rdr.getSizeZ(), 'sizeX': rdr.getSizeX(), 'sizeY': rdr.getSizeY(), 'pixelType': rdr.getPixelType(), 'isLittleEndian': rdr.isLittleEndian(), 'isRGB': rdr.isRGB(), 'isInterleaved': rdr.isInterleaved(), 'isIndexed': rdr.isIndexed(), 'bitsPerPixel': rdr.getBitsPerPixel(), 'sizeC': rdr.getEffectiveSizeC(), 'normalized': rdr.isNormalized(), 'metadataComplete': rdr.isMetadataComplete(), # 'domains': rdr.getDomains(), 'optimalTileWidth': rdr.getOptimalTileWidth(), 'optimalTileHeight': rdr.getOptimalTileHeight(), 'resolutionCount': rdr.getResolutionCount(), 'flattenedResolutions': rdr.hasFlattenedResolutions(), }) def _getSeriesStarts(self, rdr): # noqa self._metadata['frameSeries'] = [{ 'series': [0], 'sizeX': self._metadata['sizeX'], 'sizeY': self._metadata['sizeY'], }] if self._metadata['seriesCount'] <= 1: return 1 seriesMetadata = {} for idx in range(self._metadata['seriesCount']): rdr.setSeries(idx) seriesMetadata.update( javabridge.jdictionary_to_string_dictionary(rdr.getSeriesMetadata())) frameList = [] nextSeriesNum = 0 try: for key, value in seriesMetadata.items(): frameNum = int(value) seriesNum = int(key.split('Series ')[1].split('|')[0]) - 1 if seriesNum >= 0 and seriesNum < self._metadata['seriesCount']: while len(frameList) <= frameNum: frameList.append([]) if seriesNum not in frameList[frameNum]: frameList[frameNum].append(seriesNum) frameList[frameNum].sort() nextSeriesNum = max(nextSeriesNum, seriesNum + 1) except Exception as exc: self.logger.debug('Failed to parse series information: %s', exc) rdr.setSeries(0) if any(key for key in seriesMetadata if key.startswith('Series ')): return 1 if not len(seriesMetadata) or not any( key for key in seriesMetadata if key.startswith('Series ')): frameList = [[0]] nextSeriesNum = 1 rdr.setSeries(0) lastX, lastY = rdr.getSizeX(), rdr.getSizeY() for idx in range(1, self._metadata['seriesCount']): rdr.setSeries(idx) if (rdr.getSizeX() == self._metadata['sizeX'] and rdr.getSizeY == self._metadata['sizeY']): frameList.append([idx]) if nextSeriesNum == idx: nextSeriesNum = idx + 1 lastX, lastY = self._metadata['sizeX'], self._metadata['sizeY'] if (rdr.getSizeX() * rdr.getSizeY() > self._metadata['sizeX'] * self._metadata['sizeY']): frameList = [[idx]] nextSeriesNum = idx + 1 self._metadata['sizeX'] = self.sizeX = lastX = rdr.getSizeX() self._metadata['sizeY'] = self.sizeY = lastY = rdr.getSizeY() if (lastX and lastY and nearPowerOfTwo(rdr.getSizeX(), lastX) and rdr.getSizeX() < lastX and nearPowerOfTwo(rdr.getSizeY(), lastY) and rdr.getSizeY() < lastY): steps = int(round(math.log( lastX * lastY / (rdr.getSizeX() * rdr.getSizeY())) / math.log(2) / 2)) frameList[-1] += [None] * (steps - 1) frameList[-1].append(idx) lastX, lastY = rdr.getSizeX(), rdr.getSizeY() if nextSeriesNum == idx: nextSeriesNum = idx + 1 frameList = [fl for fl in frameList if len(fl)] self._metadata['frameSeries'] = [{ 'series': fl, } for fl in frameList] rdr.setSeries(0) return nextSeriesNum def _checkSeries(self, rdr): firstPossibleAssoc = self._getSeriesStarts(rdr) self._metadata['seriesAssociatedImages'] = {} for seriesNum in range(firstPossibleAssoc, self._metadata['seriesCount']): if any((seriesNum in series['series']) for series in self._metadata['frameSeries']): continue rdr.setSeries(seriesNum) info = { 'sizeX': rdr.getSizeX(), 'sizeY': rdr.getSizeY(), } if (info['sizeX'] < self._associatedImageMaxSize and info['sizeY'] < self._associatedImageMaxSize): # TODO: Figure out better names for associated images. Can # we tell if any of them are the macro or label image? info['seriesNum'] = seriesNum self._metadata['seriesAssociatedImages'][ 'image%d' % seriesNum] = info validate = None for frame in self._metadata['frameSeries']: for level in range(len(frame['series'])): if level and frame['series'][level] is None: continue rdr.setSeries(frame['series'][level]) self._metadataForCurrentSeries(rdr) info = { 'sizeX': rdr.getSizeX(), 'sizeY': rdr.getSizeY(), } if not level: frame.update(info) self._metadata['sizeX'] = max(self._metadata['sizeX'], frame['sizeX']) self._metadata['sizeY'] = max(self._metadata['sizeY'], frame['sizeY']) elif validate is not False: if (not nearPowerOfTwo(frame['sizeX'], info['sizeX']) or not nearPowerOfTwo(frame['sizeY'], info['sizeY'])): frame['series'] = frame['series'][:level] validate = True break rdr.setSeries(frame['series'][0]) self._metadataForCurrentSeries(rdr) if validate is None: validate = False rdr.setSeries(0) self._metadata['sizeXY'] = len(self._metadata['frameSeries']) def _computeTiles(self): if (self._metadata['resolutionCount'] <= 1 and self.sizeX <= self._singleTileThreshold and self.sizeY <= self._singleTileThreshold): self.tileWidth = self.sizeX self.tileHeight = self.sizeY elif (128 <= self._metadata['optimalTileWidth'] <= self._singleTileThreshold and 128 <= self._metadata['optimalTileHeight'] <= self._singleTileThreshold): self.tileWidth = self._metadata['optimalTileWidth'] self.tileHeight = self._metadata['optimalTileHeight'] else: self.tileWidth = self.tileHeight = self._tileSize def _computeLevels(self): self.levels = int(math.ceil(max( math.log(float(self.sizeX) / self.tileWidth), math.log(float(self.sizeY) / self.tileHeight)) / math.log(2))) + 1 def _computeMagnification(self): self._magnification = {} metadata = self._metadata['metadata'] valuekeys = { 'x': [('Scaling|Distance|Value #1', 1e3)], 'y': [('Scaling|Distance|Value #2', 1e3)], } tuplekeys = [ ('Physical pixel size', 1e-3), ] magkeys = [ 'Information|Instrument|Objective|NominalMagnification #1', 'Magnification #1', ] for axis in {'x', 'y'}: for key, units in valuekeys[axis]: if metadata.get(key): self._magnification['mm_' + axis] = float(metadata[key]) * units if 'mm_x' not in self._magnification and 'mm_y' not in self._magnification: for key, units in tuplekeys: if metadata.get(key): found = re.match(r'^\D*(\d+(|\.\d+))\D+(\d+(|\.\d+))\D*$', metadata[key]) if found: try: self._magnification['mm_x'], self._magnification['mm_y'] = ( float(found.groups()[0]) * units, float(found.groups()[2]) * units) except Exception: pass for key in magkeys: if metadata.get(key): self._magnification['magnification'] = float(metadata[key]) break def getNativeMagnification(self): """ Get the magnification at a particular level. :return: magnification, width of a pixel in mm, height of a pixel in mm. """ mm_x = self._magnification.get('mm_x') mm_y = self._magnification.get('mm_y', mm_x) # Estimate the magnification if we don't have a direct value mag = self._magnification.get('magnification') or 0.01 / mm_x if mm_x else None return { 'magnification': mag, 'mm_x': mm_x, 'mm_y': mm_y, } def getMetadata(self): """ Return a dictionary of metadata containing levels, sizeX, sizeY, tileWidth, tileHeight, magnification, mm_x, mm_y, and frames. :returns: metadata dictionary. """ result = super().getMetadata() # sizeC, sizeZ, sizeT, sizeXY frames = [] for xy in range(self._metadata['sizeXY']): for t in range(self._metadata['sizeT']): for z in range(self._metadata['sizeZ']): for c in range(self._metadata['sizeC']): frames.append({ 'IndexC': c, 'IndexZ': z, 'IndexT': t, 'IndexXY': xy, }) if len(self._metadata['frameSeries']) == len(frames): for idx, frame in enumerate(frames): frame['sizeX'] = self._metadata['frameSeries'][idx]['sizeX'] frame['sizeY'] = self._metadata['frameSeries'][idx]['sizeY'] frame['levels'] = len(self._metadata['frameSeries'][idx]['series']) if len(frames) > 1: result['frames'] = frames self._addMetadataFrameInformation(result, self._metadata['channelNames']) return result def getInternalMetadata(self, **kwargs): """ Return additional known metadata about the tile source. Data returned from this method is not guaranteed to be in any particular format or have specific values. :returns: a dictionary of data or None. """ return self._metadata def _getTileFromEmptyLevel(self, x, y, z, **kwargs): """ Composite tiles from missing levels from larger levels in pieces to avoid using too much memory. """ fac = int(2 ** self._maxSkippedLevels) z += self._maxSkippedLevels scale = 2 ** (self.levels - 1 - z) result = None for tx in range(fac - 1, -1, -1): if x * fac + tx >= int(math.ceil(self.sizeX / self.tileWidth / scale)): continue for ty in range(fac - 1, -1, -1): if y * fac + ty >= int(math.ceil(self.sizeY / self.tileHeight / scale)): continue tile = self.getTile( x * fac + tx, y * fac + ty, z, pilImageAllowed=False, numpyAllowed=True, **kwargs) if result is None: result = np.zeros(( ty * fac + tile.shape[0], tx * fac + tile.shape[1], tile.shape[2]), dtype=tile.dtype) result[ ty * fac:ty * fac + tile.shape[0], tx * fac:tx * fac + tile.shape[1], ::] = tile return result[::scale, ::scale, ::] @methodcache() def getTile(self, x, y, z, pilImageAllowed=False, numpyAllowed=False, **kwargs): self._xyzInRange(x, y, z) ft = fc = fz = 0 fseries = self._metadata['frameSeries'][0] if kwargs.get('frame') is not None: frame = self._getFrame(**kwargs) fc = frame % self._metadata['sizeC'] fz = (frame // self._metadata['sizeC']) % self._metadata['sizeZ'] ft = (frame // self._metadata['sizeC'] // self._metadata['sizeZ']) % self._metadata['sizeT'] fxy = (frame // self._metadata['sizeC'] // self._metadata['sizeZ'] // self._metadata['sizeT']) if frame < 0 or fxy > self._metadata['sizeXY']: msg = 'Frame does not exist' raise TileSourceError(msg) fseries = self._metadata['frameSeries'][fxy] seriesLevel = self.levels - 1 - z scale = 1 while seriesLevel >= len(fseries['series']) or fseries['series'][seriesLevel] is None: seriesLevel -= 1 scale *= 2 offsetx = x * self.tileWidth * scale offsety = y * self.tileHeight * scale width = min(self.tileWidth * scale, self.sizeX // 2 ** seriesLevel - offsetx) height = min(self.tileHeight * scale, self.sizeY // 2 ** seriesLevel - offsety) sizeXAtScale = fseries['sizeX'] // (2 ** seriesLevel) sizeYAtScale = fseries['sizeY'] // (2 ** seriesLevel) finalWidth = width // scale finalHeight = height // scale width = min(width, sizeXAtScale - offsetx) height = min(height, sizeYAtScale - offsety) if scale >= 2 ** self._maxSkippedLevels: tile = self._getTileFromEmptyLevel(x, y, z, **kwargs) format = TILE_FORMAT_NUMPY else: with self._tileLock: try: javabridge.attach() if width > 0 and height > 0: tile = self._bioimage.read( c=fc, z=fz, t=ft, series=fseries['series'][seriesLevel], rescale=False, # return internal data types XYWH=(offsetx, offsety, width, height)) else: # We need the same dtype, so read 1x1 at 0x0 tile = self._bioimage.read( c=fc, z=fz, t=ft, series=fseries['series'][seriesLevel], rescale=False, # return internal data types XYWH=(0, 0, 1, 1)) tile = np.zeros(tuple([0, 0] + list(tile.shape[2:])), dtype=tile.dtype) format = TILE_FORMAT_NUMPY except javabridge.JavaException as exc: es = javabridge.to_string(exc.throwable) raise TileSourceError('Failed to get Bioformat region (%s, %r).' % (es, ( fc, fz, ft, fseries, self.sizeX, self.sizeY, offsetx, offsety, width, height))) finally: if javabridge.get_env(): javabridge.detach() if scale > 1: tile = tile[::scale, ::scale] if tile.shape[:2] != (finalHeight, finalWidth): fillValue = 0 if tile.dtype == np.uint16: fillValue = 65535 elif tile.dtype == np.uint8: fillValue = 255 elif tile.dtype.kind == 'f': fillValue = 1 retile = np.full( tuple([finalHeight, finalWidth] + list(tile.shape[2:])), fillValue, dtype=tile.dtype) retile[0:min(tile.shape[0], finalHeight), 0:min(tile.shape[1], finalWidth)] = tile[ 0:min(tile.shape[0], finalHeight), 0:min(tile.shape[1], finalWidth)] tile = retile return self._outputTile(tile, format, x, y, z, pilImageAllowed, numpyAllowed, **kwargs) def getAssociatedImagesList(self): """ Return a list of associated images. :return: the list of image keys. """ return sorted(self._metadata['seriesAssociatedImages'].keys()) def _getAssociatedImage(self, imageKey): """ Get an associated image in PIL format. :param imageKey: the key of the associated image. :return: the image in PIL format or None. """ info = self._metadata['seriesAssociatedImages'].get(imageKey) if info is None: return series = info['seriesNum'] with self._tileLock: try: javabridge.attach() image = self._bioimage.read( series=series, rescale=False, # return internal data types XYWH=(0, 0, info['sizeX'], info['sizeY'])) except javabridge.JavaException as exc: es = javabridge.to_string(exc.throwable) raise TileSourceError('Failed to get Bioformat series (%s, %r).' % (es, ( series, info['sizeX'], info['sizeY']))) finally: if javabridge.get_env(): javabridge.detach() return large_image.tilesource.base._imageToPIL(image) def open(*args, **kwargs): """ Create an instance of the module class. """ return BioformatsFileTileSource(*args, **kwargs) def canRead(*args, **kwargs): """ Check if an input can be read by the module class. """ return BioformatsFileTileSource.canRead(*args, **kwargs)
PypiClean
/pixivdownloader-0.1.1.tar.gz/pixivdownloader-0.1.1/pixiv/downloader/downloader.py
from cv2 import VideoWriter from cv2 import VideoWriter_fourcc from cv2 import destroyAllWindows from cv2 import imread from pathlib import Path from pixivpy3 import AppPixivAPI from tempfile import TemporaryDirectory from urllib.parse import urlparse from zipfile import ZipFile import os import re import shutil import logging class PixivDownloaderError(Exception): def __init__(self, msg, data=None): super().__init__(msg, data) self.msg = msg self.data = data class PixivDownloader: def __init__(self, client=None, username=None, password=None, log_level=logging.WARNING): if not client and (bool(username) != bool(password)): raise AttributeError('If no client is given both username and password must be given') if client: self.api = client else: self.api = AppPixivAPI() if not client and username and password: self.api.login(username, password) self.logger = logging.getLogger('PixivDownloader') stdout = logging.StreamHandler() self.logger.addHandler(stdout) self.logger.setLevel(log_level) def login(self, username=None, password=None, refresh_token=None): if refresh_token: self.logger.info('Loging in with refresh_token') elif username: self.logger.info('Loging in with username %s', username) else: self.logger.info('Loging') return self.api.auth(username=username, password=password, refresh_token=refresh_token) def logout(self): self.logger.info('Logout') self.api = AppPixivAPI() def get_id_from_url(self, url): path = urlparse(url).path ids = re.findall('(\\d+)', path) if not ids: raise ValueError('Url does not contain post id') return ids[0] def download_by_id(self, post_id, output_dir): data = self.api.illust_detail(post_id) if data.get('error'): raise PixivDownloaderError('Could not get post info or post doesn\'t exist.', data) return self.download(data.illust, output_dir) def download_by_url(self, url, output_dir): return self.download_by_id(self.get_id_from_url(url), output_dir) def download(self, post, output_dir): output_dir = Path(output_dir).expanduser().absolute() if not os.path.isdir(output_dir): os.makedirs(output_dir) self.logger.debug('Created dir "%s"', output_dir) if post.type == 'illust' and not post.meta_pages: downloader = self.download_illust type = 'Image' elif post.type == 'illust' and post.meta_pages: downloader = self.download_illust_collection type = 'Image Collection' elif post.type == 'ugoira': downloader = self.download_ugoira type = 'Video' elif post.type == 'manga': downloader = self.download_manga type = 'Manga' else: raise PixivDownloaderError(f'Post type "{post.type}" not supported') self.logger.info('Initialize "%s" downloader for post %s', type, post.id) return downloader(post, output_dir) def download_illust(self, post, output_dir): image_url = post.meta_single_page.get('original_image_url', post.image_urls.large) if '_webp' in image_url: extension = 'webp' else: extension = os.path.splitext(image_url)[1].lstrip('.') filename = self.get_filename(post, extension) self.logger.info('Downloading "%s"', image_url) self.api.download(image_url, path=output_dir, name=filename, replace=True) yield (Path(output_dir) / filename).absolute() def download_illust_collection(self, post, output_dir): output_dir = Path(output_dir) yield from self._downloade_meta_pages(post, output_dir) def download_manga(self, post, output_dir): output_dir = Path(output_dir) / f'{post.title}-{post.user.account}' if not output_dir.is_dir(): output_dir.mkdir(parents=True, exist_ok=True) self.logger.debug('Created dir "%s"', output_dir) yield from self._downloade_meta_pages(post, output_dir) def _downloade_meta_pages(self, post, output_dir): for index, image in enumerate(post.meta_pages, 1): image_url = image.image_urls.get('original', image.image_urls.large) if '_webp' in image_url: extension = 'webp' else: extension = os.path.splitext(image_url)[1].lstrip('.') filename = self.get_filename(post, extension, suffix=f'-{index:0>2}') self.logger.info('Downloading "%s"', image_url) self.api.download(image_url, path=str(output_dir), name=filename, replace=True) yield (output_dir / filename).absolute() def download_ugoira(self, post, output_dir): ugoira_data = self.api.ugoira_metadata(post.id).ugoira_metadata zip_url = ugoira_data.zip_urls.get('large', ugoira_data.zip_urls.medium) with TemporaryDirectory() as dir: temp_dir = Path(dir) filename = '{post.id}.zip' self.logger.info('Downloading "%s"', zip_url) self.api.download(zip_url, path=str(temp_dir), name=filename) frames_dir = temp_dir / 'frames' os.mkdir(frames_dir) self._extract_zip(temp_dir / filename, frames_dir) video_name = self.get_filename(post, 'mp4') video_file = temp_dir / video_name self._generate_mp4_from_frames(video_file, frames_dir, ugoira_data.frames[0].delay) final_path = (Path(output_dir) / video_name).absolute() shutil.move(video_file, final_path) yield final_path.absolute() def get_filename(self, post, extension, prefix=None, suffix=None,): suffix = suffix or '' prefix = prefix or '' filename = f'{prefix}{post.id}-{post.title}{suffix}.{extension}'.replace('/', '_').replace(' ', '_') return filename def _extract_zip(self, zip_file, output_dir): self.logger.info('Extract "%s"', zip_file) with ZipFile(zip_file, 'r') as zip_file: zip_file.extractall(output_dir) def _generate_mp4_from_frames(self, output_file, frames_dir, delay): self.logger.info('Generate video to "%s"', output_file) frames = sorted(map(lambda file: os.path.join(str(frames_dir), file), os.listdir(frames_dir))) frames = list(map(imread, frames)) framerate = 1000 / delay height, width, layers = frames[0].shape video = VideoWriter(str(output_file), VideoWriter_fourcc(*'mp4v'), framerate, (width, height)) for frame in frames: video.write(frame) destroyAllWindows() video.release()
PypiClean
/aiobroadlink-0.1.0.tar.gz/aiobroadlink-0.1.0/README.md
# aiobroadlink Library to control various Broadlink devices using asyncio This software is based on the protocol description from Ipsum Domus (?) Details at https://blog.ipsumdomus.com/broadlink-smart-home-devices-complete-protocol-hack-bc0b4b397af1 This software is based on python-broadlink by Matthew Garrett Details at https://github.com/mjg59/python-broadlink Remote Control device seem to be working alright (both IR and RF) RM4C are now supported. A1 device also work. Provisioning works. Other will be tested when I get the relevant hardware. Install with pip3. Be forwarned that aiobroadlink needs the 'cryptography' library. This library will be automatically installed, but for this to succeed, you do need to be able to compile things. To that effect you need a compiler and some header files. On Debian/Ubuntu distributions, this means you need the packages 'libffi-dev' and 'libssl-dev' You can run python3 -m aiobroadlink If your IP address cannot be guessed, do python3 -m aiobroadlink -i xxx.xxx.xxx.xxx with xxx.xxx.xxx.xxx the IP address of the interface you want to use.
PypiClean
/apache_airflow_providers_apache_hive-6.1.5rc1-py3-none-any.whl/airflow/providers/apache/hive/operators/hive_stats.py
from __future__ import annotations import json import warnings from typing import TYPE_CHECKING, Any, Callable, Sequence from airflow.exceptions import AirflowException from airflow.models import BaseOperator from airflow.providers.apache.hive.hooks.hive import HiveMetastoreHook from airflow.providers.mysql.hooks.mysql import MySqlHook from airflow.providers.presto.hooks.presto import PrestoHook if TYPE_CHECKING: from airflow.utils.context import Context class HiveStatsCollectionOperator(BaseOperator): """Gather partition statistics and insert them into MySQL. Statistics are gathered with a dynamically generated Presto query and inserted with this format. Stats overwrite themselves if you rerun the same date/partition. .. code-block:: sql CREATE TABLE hive_stats ( ds VARCHAR(16), table_name VARCHAR(500), metric VARCHAR(200), value BIGINT ); :param metastore_conn_id: Reference to the :ref:`Hive Metastore connection id <howto/connection:hive_metastore>`. :param table: the source table, in the format ``database.table_name``. (templated) :param partition: the source partition. (templated) :param extra_exprs: dict of expression to run against the table where keys are metric names and values are Presto compatible expressions :param excluded_columns: list of columns to exclude, consider excluding blobs, large json columns, ... :param assignment_func: a function that receives a column name and a type, and returns a dict of metric names and an Presto expressions. If None is returned, the global defaults are applied. If an empty dictionary is returned, no stats are computed for that column. """ template_fields: Sequence[str] = ("table", "partition", "ds", "dttm") ui_color = "#aff7a6" def __init__( self, *, table: str, partition: Any, extra_exprs: dict[str, Any] | None = None, excluded_columns: list[str] | None = None, assignment_func: Callable[[str, str], dict[Any, Any] | None] | None = None, metastore_conn_id: str = "metastore_default", presto_conn_id: str = "presto_default", mysql_conn_id: str = "airflow_db", **kwargs: Any, ) -> None: if "col_blacklist" in kwargs: warnings.warn( f"col_blacklist kwarg passed to {self.__class__.__name__} " f"(task_id: {kwargs.get('task_id')}) is deprecated, " f"please rename it to excluded_columns instead", category=FutureWarning, stacklevel=2, ) excluded_columns = kwargs.pop("col_blacklist") super().__init__(**kwargs) self.table = table self.partition = partition self.extra_exprs = extra_exprs or {} self.excluded_columns: list[str] = excluded_columns or [] self.metastore_conn_id = metastore_conn_id self.presto_conn_id = presto_conn_id self.mysql_conn_id = mysql_conn_id self.assignment_func = assignment_func self.ds = "{{ ds }}" self.dttm = "{{ execution_date.isoformat() }}" def get_default_exprs(self, col: str, col_type: str) -> dict[Any, Any]: """Get default expressions.""" if col in self.excluded_columns: return {} exp = {(col, "non_null"): f"COUNT({col})"} if col_type in {"double", "int", "bigint", "float"}: exp[(col, "sum")] = f"SUM({col})" exp[(col, "min")] = f"MIN({col})" exp[(col, "max")] = f"MAX({col})" exp[(col, "avg")] = f"AVG({col})" elif col_type == "boolean": exp[(col, "true")] = f"SUM(CASE WHEN {col} THEN 1 ELSE 0 END)" exp[(col, "false")] = f"SUM(CASE WHEN NOT {col} THEN 1 ELSE 0 END)" elif col_type == "string": exp[(col, "len")] = f"SUM(CAST(LENGTH({col}) AS BIGINT))" exp[(col, "approx_distinct")] = f"APPROX_DISTINCT({col})" return exp def execute(self, context: Context) -> None: metastore = HiveMetastoreHook(metastore_conn_id=self.metastore_conn_id) table = metastore.get_table(table_name=self.table) field_types = {col.name: col.type for col in table.sd.cols} exprs: Any = {("", "count"): "COUNT(*)"} for col, col_type in list(field_types.items()): if self.assignment_func: assign_exprs = self.assignment_func(col, col_type) if assign_exprs is None: assign_exprs = self.get_default_exprs(col, col_type) else: assign_exprs = self.get_default_exprs(col, col_type) exprs.update(assign_exprs) exprs.update(self.extra_exprs) exprs_str = ",\n ".join(f"{v} AS {k[0]}__{k[1]}" for k, v in exprs.items()) where_clause_ = [f"{k} = '{v}'" for k, v in self.partition.items()] where_clause = " AND\n ".join(where_clause_) sql = f"SELECT {exprs_str} FROM {self.table} WHERE {where_clause};" presto = PrestoHook(presto_conn_id=self.presto_conn_id) self.log.info("Executing SQL check: %s", sql) row = presto.get_first(sql) self.log.info("Record: %s", row) if not row: raise AirflowException("The query returned None") part_json = json.dumps(self.partition, sort_keys=True) self.log.info("Deleting rows from previous runs if they exist") mysql = MySqlHook(self.mysql_conn_id) sql = f""" SELECT 1 FROM hive_stats WHERE table_name='{self.table}' AND partition_repr='{part_json}' AND dttm='{self.dttm}' LIMIT 1; """ if mysql.get_records(sql): sql = f""" DELETE FROM hive_stats WHERE table_name='{self.table}' AND partition_repr='{part_json}' AND dttm='{self.dttm}'; """ mysql.run(sql) self.log.info("Pivoting and loading cells into the Airflow db") rows = [ (self.ds, self.dttm, self.table, part_json) + (r[0][0], r[0][1], r[1]) for r in zip(exprs, row) ] mysql.insert_rows( table="hive_stats", rows=rows, target_fields=[ "ds", "dttm", "table_name", "partition_repr", "col", "metric", "value", ], )
PypiClean
/searchlight-9.0.0.0rc1.tar.gz/searchlight-9.0.0.0rc1/doc/source/configuration/authentication.rst
.. Copyright 2010 OpenStack Foundation All Rights Reserved. c) Copyright 2015 Hewlett-Packard Development Company, L.P. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Keystone Authentication ======================= Searchlight should be integrated with keystone. Setting this up is relatively straightforward, as the keystone distribution includes the necessary middleware. Once you have installed keystone and edited your configuration files, users will need to have an authenticated keystone token in all API requests. The keystone integration will allow both active denial of requests from unauthenticated users and will also allow proper search result filtering. .. DANGER:: If the API is not configured with keystone, all data indexed by searchlight is at risk of being accessed by unauthorized users. Configuring the searchlight services to use keystone ---------------------------------------------------- Keystone is integrated with searchlight through the use of middleware. The default configuration files for the Searchlight API use a single piece of middleware called ``unauthenticated-context``, which generates a request context containing blank authentication information. In order to configure Searchlight to use Keystone, the ``authtoken`` and ``context`` middleware must be deployed in place of the ``unauthenticated-context`` middleware. The ``authtoken`` middleware performs the authentication token validation and retrieves actual user authentication information. It can be found in the keystone distribution. For more information, please refer to the Keystone documentation on the ``auth_token`` middleware: https://docs.openstack.org/keystonemiddleware/latest/middlewarearchitecture.html api-paste.ini ````````````` First, ensure that declarations for the middleware exist in the ``api-paste.ini`` file. Here is an example for ``authtoken``:: [pipeline:searchlight-keystone] pipeline = authtoken context rootapp [filter:authtoken] paste.filter_factory = keystonemiddleware.auth_token:filter_factory delay_auth_decision = true searchlight.conf ```````````````` You must then update the main ``searchlight.conf`` configuration file to enable the keystone application pipeline. Set ``flavor`` to ``keystone`` in the ``paste_deploy`` group:: [paste_deploy] flavor = keystone Set ``keystone_authtoken`` options. The following sets the searchlight service user as the user for performing policy API authentication checks. The actual options and values in this section will need to be set according to your environment:: [keystone_authtoken] auth_url = http://127.0.0.1:5000 auth_type = password project_domain_id = default project_name = service user_domain_id = default password = <SERVICE_PASSWORD> username = searchlight .. note:: For development and unit testing, it is recommended to also set ``revocation_cache_timeout = 10`` under the ``keystone_authtoken`` group. Set ``service_credentials`` options. Searchlight plugins may make API calls to other services to index their data. Prior to doing this, it will get a valid token based on the integration account credentials:: [service_credentials] # These are needed to make API calls to other services when indexing auth_type = password username = searchlight password = <SERVICE_PASSWORD> user_domain_id = default project_domain_id = default project_name = service auth_url = http://127.0.0.1:5000 # If resource_plugin.include_region_name is set, this value will be # the default value for the 'region_name' field on all documents # os_region_name = For keystone v2 development:: [service_credentials] auth_type = v2password username = searchlight tenant_name = service password = <SERVICE_PASSWORD> auth_url = http://127.0.0.1:35357/v2.0 # If resource_plugin.include_region_name is set, this value will be # the default value for the 'region_name' field on all documents # os_region_name = Service integration account ^^^^^^^^^^^^^^^^^^^^^^^^^^^ Some of the above configuration implicitly uses a ``searchlight`` service user. If you intend to use this user, it must have been created and registered with keystone. Typically, this is done with the following commands (v3 keystone):: $ openstack project create --or-show service --property domain=default $ openstack user create searchlight --password <SERVICE_PASSWORD> --project service $ openstack role add admin --project service --user searchlight For more information on keystone service accounts, see: https://docs.openstack.org/keystone/latest/admin/manage-services.html#create-service-users Policy restriction ================== Searchlight uses the oslo policy library to allow control over the level of access a user has based on their authenticated roles. Policy rules are defined in a configuration file (by default, `etc/policy.json`). By default, all operations are allowed. https://docs.openstack.org/oslo.policy/latest/reference/index.html rule formatting. During the last few cycles concerns were raised about the scope of the ``admin`` role within OpenStack. Many services consider any token scoped with the ``admin`` role to have access to resources within any project. With the introduction of keystone v3 it is possible to create users with the admin role on a particular project, but not with the intention of them seeing resources in other projects. Keystone added two configuration options called ``admin_project_name`` and ``admin_project_domain_name`` to attempt to address this. If a request is authenticated against a the project whose name is ``admin_project_name`` in the ``admin_project_domain_name`` domain, a flag is set on the authentication response headers indicating that the user is authenticated against the administrative project. This can then be supported by the policy rule (in Searchlight's ``policy.json``):: "is_admin_context": "role:admin and is_admin_project:True" Since devstack configures keystone to support those options, this is the default in Searchlight. To maintain backwards compatibility, if your keystone is *not* configured to set these options, any token with the ``admin`` role will be assumed to have administrative powers (this approach has been taken by other OpenStack services). For more history see https://bugs.launchpad.net/keystone/+bug/968696. Access to operations -------------------- It is possible to restrict access to functionality by setting rules for ``query``, ``facets`` or ``plugins_info``. For instance, to restrict facet listing to administrators and disable plugin information for all users:: "facets": "role:admin", "plugins_info": "!" Where a request is disallowed on this basis, the user will receive a 403 Forbidden response. Note that policy rules are applied on the fly; no server restart is required. Policy rules denying access to operations take precedence over the per-resource access described below. Access to resources ------------------- It is possible to disable access to individual plugins. For instance, the following restricts access to Nova servers to admins, and disables access entirely to Glance images:: "resource:OS::Nova::Server": "role:admin", "resource:OS::Glance::Image": "!", .. note:: At current plugins still apply RBAC separately from policy rules. We aim to bring the two closer together in a later patch. When resources are restricted in this way resources will be excluded from the search (which may result in empty search results). No Forbidden response will be returned. .. _service-policy-controls: Service policy controls ----------------------- If configured, Searchlight can consult service policy files (e.g. that used to configure the nova API). Each resource is configured with a policy target it will check if possible. Policy file paths can either be absolute or relative to `service_policy_path` (which itself can be relative to the current working directory or left blank). The actual filepath used will be determined by oslo.config using the same `logic`_ as for other config files (for logging, searchlight's policy file etc). With the following configuration stanza:: [service_policies] service_policy_files=compute:nova-policy.json service_policy_path=/etc/searchlight/ And with the following contents in nova-policy.json (which might be a symlink to an existing nova policy file, a copy or a separate file):: { "is_admin": "role: admin", "os_compute_api:servers:index": "rule:is_admin" } Only requests with the admin role assigned will be allowed to search or facet Nova servers. Policy files are configured per *service*, not per resource type. If files are in different directories absolute paths should be used, and ``service_policy_path`` left unset. .. note:: Policy rules are always *more* restrictive. If a rule in Searchlight's ``policy.json`` would allow access but a service policy file would disallow it (or vice versa), the more restrictive rule will be used. .. _logic: https://docs.openstack.org/oslo.config/latest/reference/configopts.html
PypiClean
/fmqlreports-1.0.tar.gz/fmqlreports-1.0/user/webReportUser.py
import sys import os import re import json from collections import defaultdict, Counter from datetime import datetime, date from fmqlutils.reporter.reportUtils import MarkdownTable, reportPercent, reportAbsAndPercent, muBVC from fmqlutils.typer.reduceTypeUtils import splitTypeDatas, checkDataPresent, singleValue, combineSubTypes, muBVCOfSTProp from ..webReportUtils import TOP_MD_TEMPL, SITE_DIR_TEMPL, ensureWebReportLocations, keyStats, flattenFrequencyDistribution, roundFloat, reduce200 from .userClassifier import UserClassifier from .USER_CONSTANTS import SSNO_DEFINITIONS """ FIRST TODO: * ANC/Alaska and no POSTMASTER? * HL7 patterns in Classifier? ie/ correlate the two ... 3.081 + the HL7 log entry on SPQ? Basic User Type Summary/Overview Unlike the stopcode centric reports (off locations), these are used and institution centered. Approach is PER USER STs and then Categorize Users (=> STs) as REMOTE etc. Requires: - 3.081 (Type Reduction by User: YR1 - 200 (All/Indexed-reduce200) - ... Will move to require image logs too to round out TODO: classification is work in progress - remotes from non key institution, locals from non subordinate divisions etc. Graph It To Emulate: https://matplotlib.org/gallery/showcase/bachelors_degrees_by_gender.html#sphx-glr-gallery-showcase-bachelors-degrees-by-gender-py - any dimension for users over time ... types of user? """ def webReportUser(stationNo, deidentify=False): print("Preparing to make user report for {}{} - loading data ...".format(stationNo, " [DEIDENTIFY]" if deidentify else "")) allThere, details = checkDataPresent(stationNo, [ # Additional settings/properties: # - duration (in seconds) # - force count on # ipv4_address, remote_station_id, remote_user_ien, duration {"fileType": "3_081", "check": "YR1E"} ]) if not allThere: raise Exception("Some required data is missing - {}".format(details)) mu = TOP_MD_TEMPL.format("{} Users".format(stationNo), "Users") userInfoByUserRef = reduce200(stationNo) """ Consider: if need to break by device (ie/ segment off SSH etc? See sniff) and how to round out DOD USER breakdown ... are there any other 'CAPRI anyone' users that must be broken too ie/ not just one remote user => must break out for remote analysis """ print("Loading subtypes ...") try: type3_081, st3_081URLDs = splitTypeDatas(stationNo, "3_081", reductionLabel="YR1E", expectSubTypeProperties=["user", "level_of_assurance", "remote_app", "remote_200_user_ien", "workstation_label", "workstation_type", "remote_station_id", "device"]) except: print("Can't split type data - exiting") sts3_081ByUserRef = defaultdict(list) for st in st3_081URLDs: userRef = singleValue(st, "user") sts3_081ByUserRef[userRef].append(st) # BACKWARD COMPATIBLE ... TODO: make work with ULRD (and only recombine down below # where needed) print("Recombining subtypes by user (backward compatible) ...") sts3_081Us = combineSubTypes(st3_081URLDs, ["user"], forceCountProps=["ipv4_address", "remote_station_id", "remote_user_ien", "duration"]) print("... done") st3_081ByUserRef = dict((singleValue(st, "user"), st) for st in sts3_081Us if "user" in st) userClassifier = UserClassifier(stationNo, userInfoByUserRef, type3_081, st3_081ByUserRef) print("Classifying Users ...") classification = userClassifier.classify() print("... Classification complete") if "_createDateProp" not in type3_081: raise Exception("YR1 3.081's must have create date prop") createDatePropInfo = type3_081[type3_081["_createDateProp"]] overallFirstSODate = createDatePropInfo["firstCreateDate"].split("T")[0] overallLastSODate = createDatePropInfo["lastCreateDate"].split("T")[0] BLURB_TEMPL = """Of the <span class='yellowIt'>{:,}</span> users known to the system, a minority <span class='yellowIt'>{}</span> ("__Active Users__") signed in between {} and {}, {}. Most Active Users are real people but there are "__Machine Users__" for specialized VA batch applications or applications which manage end users themselves. """ mu += BLURB_TEMPL.format( len(userInfoByUserRef), reportAbsAndPercent(len(classification["activeUserRefs"]), len(userInfoByUserRef)), overallFirstSODate, overallLastSODate, "the most recent year for which data is available" ) if deidentify: mu += "__DE-IDENTIFIED__: the names and national identifiers of real (Non-Machine) end users have been scrubbed from this report. VistA-specific IENs are left to identify such users for those with access to the system.\n\n" tbl = MarkdownTable([":Type", "Users", "SignOns"], includeNo=False) tbl.addRow([ "Total Users (200 entries)", len(userInfoByUserRef), "" ]) tbl.addRow([ "Active Users (3.081s for period)", reportAbsAndPercent(len(classification["activeUserRefs"]), len(userInfoByUserRef)), type3_081["_total"] ]) tbl.addRow([ "DoD User", re.search(r'\[200\-([^\]]+)', classification["dodUserRef"]).group(1), reportAbsAndPercent( st3_081ByUserRef[classification["dodUserRef"]]["_total"], type3_081["_total"] ) ]) tbl.addRow([ "Postmaster", muUserRef(classification["postmasterUserRef"]), reportAbsAndPercent( st3_081ByUserRef[classification["postmasterUserRef"]]["_total"], type3_081["_total"] ) ]) tbl.addRow([ "Active __Proxy Users__", len(classification["activeProxyUserRefs"]), reportAbsAndPercent( sum(st3_081ByUserRef[userRef]["_total"] for userRef in classification["activeProxyUserRefs"]), type3_081["_total"] ) ]) tbl.addRow([ "Active __(Non Proxy) Machine Users__", len(classification["activeNonProxyMachineUserRefs"]), reportAbsAndPercent( sum(st3_081ByUserRef[userRef]["_total"] for userRef in classification["activeNonProxyMachineUserRefs"]), type3_081["_total"] ) ]) for usrCls, label in [ ("activeRemoteUserRefs", "Active __Remote Users__"), ("activeLocalUserRefs", "Active __Local Users__"), ("activeNotCategorizedUserRefs", "Active __Uncategorized__") ]: if len(classification[usrCls]): tbl.addRow([ label, reportAbsAndPercent(len(classification[usrCls]), len(classification["activeUserRefs"])), reportAbsAndPercent( sum(st3_081ByUserRef[userRef]["_total"] for userRef in classification[usrCls]), type3_081["_total"] ) ]) mu += "User type signon summary ...\n\n" mu += tbl.md() + "\n\n" mu += "Signon by week day ...\n\n" mu += tblByWeekDay(type3_081) + "\n\n" mu += webReportPostmaster( classification["postmasterUserRef"], userInfoByUserRef[classification["postmasterUserRef"]], type3_081["_total"], st3_081ByUserRef[classification["postmasterUserRef"]], classification["warningsByUserRef"][classification["postmasterUserRef"]] if classification["postmasterUserRef"] in classification["warningsByUserRef"] else [] ) mu += webReportDoDUser( classification["dodUserRef"], userInfoByUserRef[classification["dodUserRef"]], type3_081["_total"], st3_081ByUserRef[classification["dodUserRef"]], classification["warningsByUserRef"][classification["dodUserRef"]] if classification["dodUserRef"] in classification["warningsByUserRef"] else [], deidentify ) # Beside's the special 2, 4 classes of User mu += webReportProxyUsers( classification["activeProxyUserRefs"], classification["warningsByUserRef"], userInfoByUserRef, st3_081ByUserRef, type3_081["_total"], keyColsOnly=deidentify ) mu += webReportNonProxyMachineUsers( classification["activeNonProxyMachineUserRefs"], classification["warningsByUserRef"], userInfoByUserRef, type3_081["_total"], st3_081ByUserRef, keyColsOnly = deidentify ) mu += webReportRemoteUsers( classification["activeRemoteUserRefs"], classification["warningsByUserRef"], len(classification["activeUserRefs"]), userInfoByUserRef, type3_081["_total"], st3_081ByUserRef, classification["remoteExcludeReasonCount"], deidentify, keyColsOnly = deidentify ) # NOTE: far too crude now - need breaks mu += webReportLocalUsers( classification["activeLocalUserRefs"], classification["warningsByUserRef"], len(classification["activeUserRefs"]), userInfoByUserRef, type3_081["_total"], st3_081ByUserRef, deidentify, keyColsOnly = deidentify ) mu += webReportUnclassifiedUsers( classification["activeNotCategorizedUserRefs"], classification["warningsByUserRef"], len(classification["activeUserRefs"]), userInfoByUserRef, type3_081["_total"], st3_081ByUserRef, deidentify, keyColsOnly = deidentify ) userSiteDir = SITE_DIR_TEMPL.format(stationNo) reportFile = userSiteDir + ("user.md" if not deidentify else "userDeId.md") print("Writing report {}".format(reportFile)) open(reportFile, "w").write(mu) """ Proxy Users Classifier enforces CONNECTOR PROXY, AV presence and LOA 2 TO ADD: - workstation_name pattern (ie/ form of TCP Connect) - forced_close on SO % Refs: <----- TODO: make explicit in report https://github.com/vistadataproject/RPCDefinitionToolkit/issues/44 - EDIS - Emergency Department Integration Software (EDIS) https://www.va.gov/vdl/documents/Clinical/Emergency_Dept_Integration_Software/edp_2_1_1_tm.pdf (SPOK: CONNECTOR,EDIS?) - AVS may be After Visit Summary - The VistALink Connector Proxy User is an entry on your VistA NEW PERSON file that the PATS application and other web-based applications use to connect to your VistA site. For the PATS application, there will be one data center located in Falling Waters, VA and a second fail-over data center in Hines, IL. A VistALink connector proxy user needs to be set up on your VistA server for the Falling Waters data center and also for the Hines data center. (SPOK: VISTALINK,EMC HINES) - RTLS: "application proxy user 'VIAASERVICE,RTLS APPLICATION PROXY' will be created automatically." - VPS: (SPOK: CONNECT,VPS) - Fee Basis Claims System (FBCS) application - CPGATEWAY,USER: The CP Gateway Service is composed of two subsystems ... via the RPC Broker to retrieve the HL7 message ... Vendor CIS for Clinical Procedures and VistA Note: tied up with vistalink and two step of connector (with station number lookup) and then switch to local user <------------ see if two step means two sign ons? """ def webReportProxyUsers(activeProxyUserRefs, warningsByUserRef, userInfoByUserRef, st3_081ByUserRef, totalSignOns, keyColsOnly=False): totalProxySignOnCount = sum(st3_081ByUserRef[userRef]["_total"] for userRef in activeProxyUserRefs) mu = """## Proxy Users There are <span class='yellowIt'>{:,}</span> active __Proxy Machine Users__ (user_class is \"CONNECTOR PROXY\") with <span class='yellowIt'>{}</span> signons. All user records have _access_, _verify_ and lack a social while their signons have _LOA_ 2 and don't have \"remote_...\" properties (ie/ CPRS-like combo). These signons probably happen over __VistALink__ and not the plain RPC Broker ...\n\n""".format(len(activeProxyUserRefs), reportAbsAndPercent(totalProxySignOnCount, totalSignOns)) cols = [":Name [IEN]", "Entered", "SignOns", "Period", "\# IPs"] if keyColsOnly else [":Name [IEN]", "Entered", ":PMO", ":SMOs", ":Keys", "SignOns", "Period", "\# IPs", "Duration", ":Unexpected"] tbl = MarkdownTable(cols) allSTs = [] for userRef in sorted(activeProxyUserRefs, key=lambda x: st3_081ByUserRef[x]["_total"], reverse=True): userInfo = userInfoByUserRef[userRef] st = st3_081ByUserRef[userRef] allSTs.append(st) pmoMU, smosMU, keysMU = muOptionsNKeys(userInfo) if "duration" in st and "byValueCount" in st["duration"]: # TODO: remove and FORCE all to have duration once redo E if st["_total"] > 1: kstatsDur = keyStats( flattenFrequencyDistribution(st["duration"]["byValueCount"]) ) durMU = "{}/{}/{}".format(muSeconds(kstatsDur["median"]), muSeconds(kstatsDur["min"]), muSeconds(kstatsDur["max"])) else: durMU = muSeconds(singleValue(st, "duration")) else: durMU = "" unexpectedMU = "" if userRef not in warningsByUserRef else "/ ".join(warningsByUserRef[userRef]) if keyColsOnly: row = [ muUserRef(userRef), userInfo["date_entered"] if "date_entered" in userInfo else "", reportAbsAndPercent(st["_total"], totalProxySignOnCount), muSignOnPeriod(st), muBVC(st["ipv4_address"]["byValueCount"], countOnlyIfOver=5) if "ipv4_address" in st else "&nbsp;" ] else: row = [ muUserRef(userRef), userInfo["date_entered"] if "date_entered" in userInfo else "", pmoMU, smosMU, keysMU, reportAbsAndPercent(st["_total"], totalProxySignOnCount), muSignOnPeriod(st), muBVC(st["ipv4_address"]["byValueCount"], countOnlyIfOver=5) if "ipv4_address" in st else "&nbsp;", durMU, unexpectedMU ] tbl.addRow(row) mu += tbl.md() + "\n\n" return mu """ Off Key Words BUT Not the DoD User (| Postmaster) Expects: machine SSN, visited_from, NO remote_app, LOA 2 (usually), no PMO or keys Note: - no PMO or Keys as none specified (in VCB) - not enforcing LOA 2 as see 200, 2001 combos where first is 1 and then move to 2 - showing remote_user_ien as apparently fixed - NOT enforcing no remote_app as one CVIX has VISTAWEB login in VCB CVIX remote_user_ien seems to have a fixed IEN CVIX_MHVUSER_SSNIEN = "200:412864" # expect 2001 too and 2006_95's >> sign ons CVIX_USER_SSNIEN = "200:217122" # expect 2001 too; 2006_95 << sign ons ... and fixed IP and LOA 1 usually """ def webReportNonProxyMachineUsers(activeNonProxyMachineUserRefs, warningsByUserRef, userInfoByUserRef, totalSignOns, st3_081ByUserRef, keyColsOnly=False): totalNonProxyMachineSignOnCount = sum(st3_081ByUserRef[userRef]["_total"] for userRef in activeNonProxyMachineUserRefs) mu = """## (Non Proxy) Machine Users Besides the _DoD User_, there are <span class='yellowIt'>{:,}</span> active __Non-Proxy Machine Users__ with <span class='yellowIt'>{}</span> signons. These users appear in most VistAs under fabricated social security numbers ...\n\n""".format( len(activeNonProxyMachineUserRefs), reportAbsAndPercent(totalNonProxyMachineSignOnCount, totalSignOns) ) # To add: workstation_name - take first part? ipv4_address cols = [":Name [IEN]", "Entered", "SSN", "SignOns", "Period", "Remote Station Id(s)", "Remote IEN(s)", ":IPs"] if keyColsOnly else [":Name [IEN]", "Entered", "SSN", ":SMOs", "SignOns", "Period", "Remote Station Id(s)", "Remote IEN(s)", ":IPs", "Duration", ":Unexpected"] tbl = MarkdownTable(cols) for userRef in sorted(activeNonProxyMachineUserRefs, key=lambda x: st3_081ByUserRef[x]["_total"], reverse=True): userInfo = userInfoByUserRef[userRef] st = st3_081ByUserRef[userRef] pmoMU, smosMU, keysMU = muOptionsNKeys(userInfo) unexpectedMU = "" if userRef not in warningsByUserRef else "/ ".join(warningsByUserRef[userRef]) if "remote_user_ien" in st: if len(st["remote_user_ien"]["byValueCount"]) > 5: remoteIENsMU = "_#{:,}_".format(len(st["remote_user_ien"]["byValueCount"])) else: remoteIENsMU = "/".join(st["remote_user_ien"]["byValueCount"]) else: remoteIENsMU = "" if "duration" in st and "byValueCount" in st["duration"]: # TODO: remove if st["_total"] > 1: kstatsDur = keyStats( flattenFrequencyDistribution(st["duration"]["byValueCount"]) ) durMU = "{}/{}/{}".format(muSeconds(kstatsDur["median"]), muSeconds(kstatsDur["min"]), muSeconds(kstatsDur["max"])) else: durMU = muSeconds(singleValue(st, "duration")) else: durMU = "" if keyColsOnly: row = [ muUserRef(userRef), userInfo["date_entered"] if "date_entered" in userInfo else "", "__{}__".format(userInfo["ssn"]) if "ssn" in userInfo else "", reportAbsAndPercent(st["_total"], totalNonProxyMachineSignOnCount), muSignOnPeriod(st), # NO remote app? "/".join(st["remote_station_id"]["byValueCount"].keys()) if "remote_station_id" in st else "", remoteIENsMU, muBVC(st["ipv4_address"]["byValueCount"], countOnlyIfOver=5) ] else: row = [ muUserRef(userRef), userInfo["date_entered"] if "date_entered" in userInfo else "", "__{}__".format(userInfo["ssn"]) if "ssn" in userInfo else "", smosMU, reportAbsAndPercent(st["_total"], totalNonProxyMachineSignOnCount), muSignOnPeriod(st), # NO remote app? "/".join(st["remote_station_id"]["byValueCount"].keys()) if "remote_station_id" in st else "", remoteIENsMU, muBVC(st["ipv4_address"]["byValueCount"], countOnlyIfOver=5), durMU, unexpectedMU ] tbl.addRow(row) mu += tbl.md() + "\n\n" return mu """ FIRST: exceed and nix - https://github.com/vistadataproject/RPCDefinitionToolkit/blob/master/Reporters/Users/reportRemoteUsersE.py - bseEntries = [entry for entry in entries if "remote_app" in entry] etc in https://github.com/vistadataproject/DataExtractNSync/blob/master/RPCSessionTests/reportUsersAndLogins.py TODO: needs more - JLV vs other - see IPs in fmrepo's util ... JLV with DoD Ids ie/ DoD JLV ie/ may show REAL dod ids => de-identify - non station id/ien combo (need from custom run on SO!) ie/ X:1 in particular """ def webReportDoDUser(userRef, userInfo, totalSignons, st, warnings, deidentify): mu = """## \"DoD User\" One special non proxy, machine user, the __\"DoD User\"__ is used for JLV DoD access and for access by a number of other applications ...\n\n""" tbl = MarkdownTable([":Property", ":Value"], includeNo=False) tbl.addRow(["IEN", re.search(r'\[200\-([^\]]+)', userRef).group(1)]) tbl.addRow(["Date Entered", userInfo["date_entered"] if "date_entered" in userInfo else ""]) tbl.addRow(["SSN", "__{}__".format(userInfo["ssn"])]) pmoMU, smosMU, keysMU = muOptionsNKeys(userInfo) tbl.addRow(["SMOs", smosMU]) tbl.addRow(["Sign ons", reportAbsAndPercent(st["_total"], totalSignons)]) tbl.addRow(["Sign on period", muSignOnPeriod(st)]) wdCntr = expandByWeekDay(st) tbl.addRow(["Days", ", ".join(["{} [{}]".format("__{}__".format(day) if i < 5 else day, wdCntr[day]) for i, day in enumerate(wdCntr)])]) noRemoteStationIds = len(st["remote_station_id"]["byValueCount"]) tbl.addRow(["Station Ids", noRemoteStationIds]) def topRemoteStationIds(st): orderedTopCounts = {} for i, rsid in enumerate(sorted(st["remote_station_id"]["byValueCount"], key=lambda x: st["remote_station_id"]["byValueCount"][x], reverse=True), 1): if i > 5: break orderedTopCounts[rsid] = st["remote_station_id"]["byValueCount"][rsid] return orderedTopCounts tbl.addRow(["Top Station Ids", muBVC(topRemoteStationIds(st))]) fiveOrMoreRemoteStationIds = sum(1 for rsid in st["remote_station_id"]["byValueCount"] if re.match(r'\d\d\d\d\d', rsid)) tbl.addRow(["5 digit plus Station Ids (DoD?)", fiveOrMoreRemoteStationIds]) threeAlphaRemoteStationIds = dict((rsid, st["remote_station_id"]["byValueCount"][rsid]) for rsid in st["remote_station_id"]["byValueCount"] if re.match(r'\d\d\d\d?[A-Z]*[A-Z]*$', rsid)) tbl.addRow(["3 digit [2 alpha] Station Ids (VA)", muBVC(threeAlphaRemoteStationIds, countOnlyIfOver=10)]) tbl.addRow(["IPs", len(st["ipv4_address"]["byValueCount"])]) tbl.addRow(["Divisions", muBVC(st["division"]["byValueCount"])]) if len(warnings): tbl.addRow(["Unexpected", "/ ".join(warnings)]) mu += tbl.md() + "\n\n" return mu def webReportPostmaster(userRef, userInfo, totalSignons, st, warnings): mu = """## Postmaster Every VistA has __Postmaster__, (one of) the first user in the system ... """ tbl = MarkdownTable([":Property", ":Value"], includeNo=False) tbl.addRow(["Name \[IEN\]", muUserRef(userRef)]) tbl.addRow(["Date Entered", userInfo["date_entered"] if "date_entered" in userInfo else ""]) pmoMU, smosMU, keysMU = muOptionsNKeys(userInfo) if pmoMU: tbl.addRow(["PMO", pmoMU]) if smosMU: tbl.addRow(["SMOs", smosMU]) if keysMU: tbl.addRow(["Keys", keysMU]) # Division is hardly ever set and then to main site - ignoring tbl.addRow(["Sign ons", reportAbsAndPercent(st["_total"], totalSignons)]) tbl.addRow(["Sign on period", muSignOnPeriod(st)]) if len(warnings): tbl.addRow(["Unexpected", "/ ".join(warnings)]) mu += tbl.md() + "\n\n" return mu """ REM: the dynamic sniffing of a session would yield much of this (user from certain IPs, remote station id, context chosen is VPR or , workstation 10 etc) TODO: (review the issues in TK too) - should add DIVISION restriction (only def div) to REMOTE CHECK - JLV subset (add to classifier) - workstation 10 ie/ the JLV Sub - more on VPR SMO ... split em out ie mu += "{:,} VPR Remote Users; {:,} no remote_app remote users; {:,} both; {:,} VPR only; {:,} no remote_app only "ipv4_addresses": set(JLV_INVA_IPS).union(set(JLV_INVA_EXTRA_IPS)), "level_of_assurance": "1", "workstation_name": "10" and CC JLV (besides DoD JLV) ipt = IPTracker(defn["name"]) for so in sos: ipt.processSignOn(so) globalIPTracker.processSignOn(so) # overalls! <-------- VPR subset and tie to JLV IPs too - REMOTE APP SPEC => BSE subset - by APP ie/ CAPRI et al + ENFORCE [classifier] on loa 1/2 (3 for local?) ie/ break JLV vs others in separate tables (fuller report) - manilla called out; 200 too? fmrepo/user/catag (move over) """ def webReportRemoteUsers(activeRemoteUserRefs, warningsByUserRef, totalActiveUsers, userInfoByUserRef, totalSignOns, st3_081ByUserRef, remoteExcludeReasonCount, deidentify, keyColsOnly=False): if len(activeRemoteUserRefs) == 0: return "" remoteSignOnCountsByUserRef = dict((userRef, st3_081ByUserRef[userRef]["_total"]) for userRef in activeRemoteUserRefs) totalRemoteSignOns = sum(remoteSignOnCountsByUserRef[userRef] for userRef in remoteSignOnCountsByUserRef) kstats = keyStats(list(remoteSignOnCountsByUserRef.values())) print("About to combine lot's of remote sts (takes time) ...") comboST = combineSubTypes([st3_081ByUserRef[userRef] for userRef in activeRemoteUserRefs], forceCountProps=["remote_station_id", "remote_app", "division"])[0] print("... end combo'ing") mu = """## Remote Users Remote users dominate in every VistA - <span class='yellowIt'>{}</span> - but account for less sign ons - <span class='yellowIt'>{}</span> - than their numbers suggest. The median number of sign ons per remote user is <span class='yellowIt'>{:,}</span>. """.format( reportAbsAndPercent(len(activeRemoteUserRefs), totalActiveUsers), reportAbsAndPercent(totalRemoteSignOns, totalSignOns), roundFloat(kstats["median"]) ) remoteStationBVC = comboST["remote_station_id"]["byValueCount"] mu += "Remote sign on comes from <span class='yellowIt'>{:,}</span> Remote Stations or <span class='yellowIt'>{:,}</span> three digit stations. The top 10 are ...\n\n".format( len(remoteStationBVC), len(set(stId[0:3] for stId in remoteStationBVC)) ) tbl = MarkdownTable([":Remote Station Id", ":Count of Remote SignOns"], includeNo=False) for i, stationId in enumerate(sorted(remoteStationBVC, key=lambda x: remoteStationBVC[x], reverse=True), 1): if i > 10: break stationMU = "__{}__".format(stationId) if stationId in SSNO_DEFINITIONS: stationMU = "__{} [{}]__".format(stationId, SSNO_DEFINITIONS[stationId]) tbl.addRow([ stationMU, reportAbsAndPercent(remoteStationBVC[stationId], totalRemoteSignOns) ]) mu += tbl.md() + "\n\n" mu += "Remote signon by week day ...\n\n" mu += tblByWeekDay(comboST) + "\n\n" def muRemoteIds(st): # points to need for custom combine of sno:ien stationIdVC = st["remote_station_id"]["byValueCount"] # Could happen but ? ... TODO: force IEN count if "byValueCount" not in st["remote_user_ien"]: return "" ienVC = st["remote_user_ien"]["byValueCount"] def muTripler(sid): if sid == "459": return "__459__" return sid if len(stationIdVC) == 1: return "{}:{}".format( muTripler(list(stationIdVC)[0]), list(ienVC)[0] ) if len(ienVC) == 1: return "{}:{}".format( "/".join([muTripler(sid) for sid in stationIdVC]), list(ienVC)[0] ) # TODO: match counts in both to assemble id return "" mu += "The following shows the top 50 Remote Users ...\n\n" cols = [":Name [IEN]", "Entry", "Remote Id(s)", "SignOns", "Period", "Days", ":Remote Apps"] if keyColsOnly else [":Name [IEN]", "Entry", "Remote Id(s)", "SignOns", "Period", "Days", ":Remote Apps", ":Options", "Duration", ":Unexpected"] tbl = MarkdownTable(cols) for i, userRef in enumerate(sorted(activeRemoteUserRefs, key=lambda x: st3_081ByUserRef[x]["_total"], reverse=True), 1): if i > 50: break userInfo = userInfoByUserRef[userRef] st = st3_081ByUserRef[userRef] # May put VPR in bold later as JLV indicator pmoMU, smosMU, keysMU = muOptionsNKeys(userInfo) remote_app_count = st["remote_app"]["byValueCount"] if "remote_app" in st else {} no_remote_app_count = st["_total"] if "remote_app" not in st else st["_total"] - st["remote_app"]["count"] if no_remote_app_count: remote_app_count["UNIDENTIFIED"] = no_remote_app_count remoteAppMU = ", ".join(["{} ({})".format(remote_app.split(" [")[0], remote_app_count[remote_app]) for remote_app in sorted(remote_app_count, key=lambda x: remote_app_count[x], reverse=True)]) wdCntr = expandByWeekDay(st) if "duration" in st and "byValueCount" in st["duration"]: if st["_total"] > 1: kstatsDur = keyStats( flattenFrequencyDistribution(st["duration"]["byValueCount"]) ) durMU = "{}/{}/{}".format(muSeconds(kstatsDur["median"]), muSeconds(kstatsDur["min"]), muSeconds(kstatsDur["max"])) else: durMU = muSeconds(singleValue(st, "duration")) else: durMU = "" if keyColsOnly: row = [ muUserRef(userRef, ssn="NO SSN" if "ssn" not in userInfo else userInfo["ssn"], deidentify=deidentify), userInfo["date_entered"] if "date_entered" in userInfo else "", muRemoteIds(st), reportAbsAndPercent(st["_total"], totalRemoteSignOns), muSignOnPeriod(st), ", ".join(["{} [{}]".format("__{}__".format(day) if i < 5 else day, wdCntr[day]) for i, day in enumerate(wdCntr)]), remoteAppMU ] else: row = [ muUserRef(userRef, ssn="NO SSN" if "ssn" not in userInfo else userInfo["ssn"], deidentify=deidentify), userInfo["date_entered"] if "date_entered" in userInfo else "", muRemoteIds(st), reportAbsAndPercent(st["_total"], totalRemoteSignOns), muSignOnPeriod(st), ", ".join(["{} [{}]".format("__{}__".format(day) if i < 5 else day, wdCntr[day]) for i, day in enumerate(wdCntr)]), remoteAppMU, smosMU, durMU, "" if userRef not in warningsByUserRef else "/ ".join(warningsByUserRef[userRef]) ] tbl.addRow(row) mu += tbl.md() + "\n\n" return mu """ TODO: - broad: FAR TOO catch all -- why does PUG have so many more in Pug than ALake? - and device: ssh vs other - exclude from remote on MAND_PROPS and ALLOWED_PROPS as opposed to 0's ie/ 0's in here PLUS station_no in locals """ def webReportLocalUsers(activeLocalUserRefs, warningsByUserRef, totalActiveUsers, userInfoByUserRef, totalSignOns, st3_081ByUserRef, deidentify, keyColsOnly=False): if len(activeLocalUserRefs) == 0: return "" totalLocalSignOns = sum(st3_081ByUserRef[userRef]["_total"] for userRef in activeLocalUserRefs) mu = """## Local Users There are <span class='yellowIt'>{}</span> active Local Users with <span class='yellowIt'>{}</span> signons.\n\n""".format(reportAbsAndPercent(len(activeLocalUserRefs), totalActiveUsers), reportAbsAndPercent(totalLocalSignOns, totalSignOns)) comboST = combineSubTypes([st3_081ByUserRef[userRef] for userRef in activeLocalUserRefs], forceCountProps=["division"])[0] mu += "Local users select <span class='yellowIt'>{:,}</span> divisions (SHOULD RESTRICT THIS SET) ...\n\n".format(len(comboST["division"]["byValueCount"])) tbl = MarkdownTable([":Division", ":Count %"]) for divisionRef in sorted(comboST["division"]["byValueCount"], key=lambda x: comboST["division"]["byValueCount"][x], reverse=True): tbl.addRow([ "__{}__".format(re.sub(r'4\-', '', divisionRef)), reportAbsAndPercent(comboST["division"]["byValueCount"][divisionRef], totalLocalSignOns) ]) mu += tbl.md() + "\n\n" mu += "And don't just sign on through device 0 ...\n\n" tbl = MarkdownTable([":Device", "Count %"], includeNo=False) for device in sorted(comboST["device"]["byValueCount"], key=lambda x: comboST["device"]["byValueCount"][x], reverse=True): tbl.addRow([ "__{}__".format(device), reportAbsAndPercent(comboST["device"]["byValueCount"][device], comboST["_total"]) ]) mu += tbl.md() + "\n\n" # TODO: will break on these mu += "And have multiple levels of assurance ...\n\n" tbl = MarkdownTable([":LOA", "Count %"], includeNo=False) for loa in sorted(comboST["level_of_assurance"]["byValueCount"], key=lambda x: comboST["level_of_assurance"]["byValueCount"][x], reverse=True): tbl.addRow([ "__{}__".format(device), reportAbsAndPercent(comboST["level_of_assurance"]["byValueCount"][device], comboST["_total"]) ]) mu += tbl.md() + "\n\n" SUPERUSER_KEYS = ["XUMGR"] # removing XUPROG superUserRefs = set(userRef for userRef in activeLocalUserRefs if "keys" in userInfoByUserRef[userRef] and len(set(SUPERUSER_KEYS).intersection(set(userInfoByUserRef[userRef]["keys"])))) mu += "<span class='yellowIt'>{:,}</span> Local Users are __Superusers__ (those with key {}) ...\n\n".format(len(superUserRefs), "|".join(SUPERUSER_KEYS)) cols = [":Name [IEN]", "Entry", ":Title", "SignOns", "Period", "Days"] if keyColsOnly else [":Name [IEN]", "Entry", ":Title", "SignOns", "Period", "Days", ":PMO", ":SMOs", ":Keys", ":Unexpected"] tbl = MarkdownTable(cols) for userRef in sorted(superUserRefs, key=lambda x: st3_081ByUserRef[x]["_total"], reverse=True): userInfo = userInfoByUserRef[userRef] st = st3_081ByUserRef[userRef] pmoMU, smosMU, keysMU = muOptionsNKeys(userInfo) wdCntr = expandByWeekDay(st) if keyColsOnly: row = [ muUserRef(userRef, ssn="NO SSN" if "ssn" not in userInfo else userInfo["ssn"], deidentify=deidentify), userInfo["date_entered"] if "date_entered" in userInfo else "", userInfo["title"] if "title" in userInfo else "", reportAbsAndPercent(st["_total"], totalLocalSignOns), muSignOnPeriod(st), ", ".join(["{} [{}]".format("__{}__".format(day) if i < 5 else day, wdCntr[day]) for i, day in enumerate(wdCntr)]) ] else: row = [ muUserRef(userRef, ssn="NO SSN" if "ssn" not in userInfo else userInfo["ssn"], deidentify=deidentify), userInfo["date_entered"] if "date_entered" in userInfo else "", userInfo["title"] if "title" in userInfo else "", reportAbsAndPercent(st["_total"], totalLocalSignOns), muSignOnPeriod(st), ", ".join(["{} [{}]".format("__{}__".format(day) if i < 5 else day, wdCntr[day]) for i, day in enumerate(wdCntr)]), pmoMU, smosMU, keysMU, "" if userRef not in warningsByUserRef else "/ ".join(warningsByUserRef[userRef]) ] tbl.addRow(row) mu += tbl.md() + "\n\n" return mu def webReportUnclassifiedUsers(activeNotCategorizedUserRefs, warningsByUserRef, totalActiveUsers, userInfoByUserRef, totalSignOns, st3_081ByUserRef, deidentify, keyColsOnly=False): if len(activeNotCategorizedUserRefs) == 0: return "" totalUnclassfiedSignOns = sum(st3_081ByUserRef[userRef]["_total"] for userRef in activeNotCategorizedUserRefs) mu = """## Unclassified Users There are <span class='yellowIt'>{}</span> active unclassified Users with <span class='yellowIt'>{}</span> signons.\n\n""".format(reportAbsAndPercent(len(activeNotCategorizedUserRefs), totalActiveUsers), reportAbsAndPercent(totalUnclassfiedSignOns, totalSignOns)) return mu # TODO: change to calc length formally in case of gaps def muSignOnPeriod(st): if len(st["date_time"]["byValueCount"]) == 13: soPeriodMU = "EVERY MONTH" elif st["date_time"]["firstCreateDate"].split("T")[0] == st["date_time"]["lastCreateDate"].split("T")[0]: soPeriodMU = st["date_time"]["lastCreateDate"].split("T")[0] elif re.search(r'\-', list(st["date_time"]["byValueCount"])[0]): # months soPeriodMU = "{} - {} ({})".format(st["date_time"]["firstCreateDate"].split("T")[0], st["date_time"]["lastCreateDate"].split("T")[0], len(st["date_time"]["byValueCount"])) else: soPeriodMU = "{} - {}".format(st["date_time"]["firstCreateDate"].split("T")[0], st["date_time"]["lastCreateDate"].split("T")[0]) return soPeriodMU """ TODO: change -- move to reducing non RPC options """ def muOptionsNKeys(userInfo): # rosByLabel = dict((res["label"], res) for res in rpcOptions(stationNo)) pmoMU = "" if "primary_menu_option" in userInfo: pmoMU = userInfo["primary_menu_option"] # if userInfo["primary_menu_option"] not in rosByLabel: # pmoMU += " [NOT RPC]" smosMU = "" if "secondary_menu_options" in userInfo: # smosMU = ", ".join(sorted([smo if smo in rosByLabel else "{} [NOT RPC]".format(smo) for smo in userInfo["secondary_menu_options"]])) if len(userInfo["secondary_menu_options"]) <= 5: smosMU = ", ".join(sorted(userInfo["secondary_menu_options"])[0:5]) else: smosMU = "_{:,}_".format(len(userInfo["secondary_menu_options"])) keysMU = "" if "keys" in userInfo: if len(userInfo["keys"]) <= 5: keysMU = ", ".join([key for key in sorted(userInfo["keys"])[0:5]]) else: keysMU = "_{:,}_".format(len(userInfo["keys"])) return pmoMU, smosMU, keysMU def muUserRef(userRef, ssn=None, deidentify=False): name = userRef.split(" [200-")[0] if deidentify: name = re.sub(r'[A-Za-z]', "X", name) if ssn: ssn = "XXXXXXXXX" ien = userRef.split("[200-")[1][:-1] return "__{}__ [{}]".format( name, "{}/{}".format(ien, ssn) if ssn != None else ien ) def tblByWeekDay(st): ocntr = expandByWeekDay(st, fullDays=True) tbl = MarkdownTable([":Day", "Total", "Average"], includeNo=False) for i, day in enumerate(ocntr): avg = ocntr[day].split("/")[1] avgMU = "" if avg == "0" else avg tbl.addRow([ "__{}__".format(day) if i < 5 else day, ocntr[day].split("/")[0], avgMU ]) return tbl.md() """ Want average as well as total for period - but note that average may be bad indicator if median is low. Best st can offer. """ def expandByWeekDay(st, fullDays=False): def countDaysInPeriod(s, e): d1 = datetime.strptime(s.split("T")[0], "%Y-%m-%d") d2 = datetime.strptime(e.split("T")[0], "%Y-%m-%d") cnter = Counter() for d_ord in range(d1.toordinal(), d2.toordinal() + 1): d = date.fromordinal(d_ord) cnter[d.weekday()] += 1 return cnter createDatePropInfo = st[st["_createDateProp"]] dayCnter = countDaysInPeriod(createDatePropInfo["firstCreateDate"], createDatePropInfo["lastCreateDate"]) weekdays=["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"] if fullDays else ["Mon", "Tues", "Wed", "Thurs", "Fri", "Sat", "Sun"] cntr = {} byWeekDay = st["date_time"]["byWeekDay"] for wd in sorted(byWeekDay, key=lambda x: int(x)): if wd not in byWeekDay: continue avg = int(round(float(byWeekDay[wd])/ float(dayCnter[int(wd)]))) val = "{:,}/{:,}".format(byWeekDay[wd], avg) cntr[weekdays[int(wd)]] = val return cntr def muSeconds(seconds): seconds = int(seconds) (days, remainder) = divmod(seconds, 86400) (hours, remainder) = divmod(remainder, 3600) (minutes, seconds) = divmod(remainder, 60) if days: return "{} {}:{}:{}".format( int(days), int(hours), int(minutes), int(seconds) ) if hours: return "{}:{}:{}".format( int(hours), int(minutes), int(seconds) ) if minutes: return "{}:{}".format( int(minutes), int(seconds) ) return int(seconds) # ################################# DRIVER ####################### def main(): assert sys.version_info >= (3, 6) try: stationNo = sys.argv[1] except IndexError: raise SystemExit("Usage _EXE_ STATIONNO [DEID]") ensureWebReportLocations(stationNo) if len(sys.argv) == 3: deidentify = True else: deidentify = False webReportUser(stationNo, deidentify) if __name__ == "__main__": main()
PypiClean
/Products.DigestoContentTypes-1.2a1.tar.gz/Products.DigestoContentTypes-1.2a1/Products/DigestoContentTypes/setuphandlers.py
__author__ = """Emanuel Sartor <[email protected]>, Santiago Bruno <unknown>""" __docformat__ = 'plaintext' import logging logger = logging.getLogger('DigestoContentTypes: setuphandlers') from Products.DigestoContentTypes.config import PROJECTNAME from Products.DigestoContentTypes.config import DEPENDENCIES import os from Products.CMFCore.utils import getToolByName import transaction ##code-section HEAD from Products.DigestoContentTypes.config import PLACEFUL_WORKFLOW_POLICY ##/code-section HEAD def isNotDigestoContentTypesProfile(context): return context.readDataFile("DigestoContentTypes_marker.txt") is None def updateRoleMappings(context): """after workflow changed update the roles mapping. this is like pressing the button 'Update Security Setting' and portal_workflow""" if isNotDigestoContentTypesProfile(context): return wft = getToolByName(context.getSite(), 'portal_workflow') wft.updateRoleMappings() def postInstall(context): """Called as at the end of the setup process. """ # the right place for your custom code if isNotDigestoContentTypesProfile(context): return shortContext = context._profile_path.split(os.path.sep)[-3] if shortContext != 'DigestoContentTypes': # avoid infinite recursions return site = context.getSite() ##code-section FOOT def registerAttachmentsFormControllerActions(context, contentType=None, template='manage_attachments'): """Register the form controller actions necessary for the widget to work. This should probably be called from the Install.py script. The parameter 'context' should be the portal root or another place from which the form controller can be acquired. The contentType and template argument allow you to restrict the registration to only one content type and choose a template other than base_edit, if necessary. """ site = context.getSite() pfc = site.portal_form_controller pfc.addFormAction(template, 'success', contentType, 'UploadAttachment', 'traverse_to', 'string:widget_attachmentsmanager_upload') pfc.addFormAction(template, 'success', contentType, 'RenameAttachments', 'traverse_to', 'string:widget_attachmentsmanager_rename') pfc.addFormAction(template, 'success', contentType, 'MoveAttachments', 'traverse_to', 'string:widget_attachmentsmanager_move') pfc.addFormAction(template, 'success', contentType, 'DeleteAttachments', 'traverse_to', 'string:widget_attachmentsmanager_delete') def allowNormativaInLargeFolders(context): """Allow Normativa as an addable type inside Large Plone Folders. """ types = getToolByName(context.getSite(), 'portal_types') fti = getattr(types, 'Large Plone Folder') if 'Normativa' not in fti.allowed_content_types: fti.allowed_content_types = fti.allowed_content_types + ('Normativa',) def addAreaPlacefulWorkflowPolicy(context): """Add the placeful workflow policy used for areas. """ placeful_workflow = getToolByName(context, 'portal_placeful_workflow') if PLACEFUL_WORKFLOW_POLICY not in placeful_workflow.objectIds(): placeful_workflow.manage_addWorkflowPolicy(PLACEFUL_WORKFLOW_POLICY) policy = placeful_workflow.getWorkflowPolicyById(PLACEFUL_WORKFLOW_POLICY) policy.setTitle('[DigestoContentTypes] Area workflows') policy.setDefaultChain(('area_workflow',)) types = ('Folder', 'Large Plone Folder') policy.setChainForPortalTypes(types, ('area_workflow',)) policy.setChainForPortalTypes(('Normativa',), ('normativa_workflow',)) def addCatalogIndexes(context): """Add our indexes to the catalog. Doing it here instead of in profiles/default/catalog.xml means we do not need to reindex those indexes after every reinstall. """ catalog = getToolByName(context.getSite(), 'portal_catalog') indexes = catalog.indexes() wanted = (('getDate', 'DateIndex'), ('getSource', 'FieldIndex'), ('getNumber', 'FieldIndex'), ('getRepeals', 'FieldIndex'), ('getModifies', 'FieldIndex'), ('getRepealedBy', 'FieldIndex'), ('getKind', 'FieldIndex'), ('getAbbreviation', 'FieldIndex'), ('getArea', 'FieldIndex'), ('getCudap', 'FieldIndex'), ) for name, meta_type in wanted: if name not in indexes: catalog.addIndex(name, meta_type) logger.info("Added %s for field %s.", meta_type, name) ##/code-section FOOT
PypiClean
/scs_analysis-2.8.5-py3-none-any.whl/scs_analysis-2.8.5.data/scripts/cognito_user_identity.py
import requests import sys from scs_analysis.cmd.cmd_cognito_user_identity import CmdCognitoUserIdentity from scs_core.aws.security.cognito_client_credentials import CognitoClientCredentials from scs_core.aws.security.cognito_login_manager import CognitoLoginManager from scs_core.aws.security.cognito_user import CognitoUserIdentity from scs_core.aws.security.cognito_user_finder import CognitoUserFinder from scs_core.aws.security.cognito_user_manager import CognitoUserCreator, CognitoUserEditor from scs_core.client.http_exception import HTTPException, HTTPConflictException from scs_core.data.datum import Datum from scs_core.data.json import JSONify from scs_core.sys.logging import Logging from scs_host.comms.stdio import StdIO from scs_host.sys.host import Host # -------------------------------------------------------------------------------------------------------------------- if __name__ == '__main__': logger = None gatekeeper = None credentials = None auth = None finder = None report = None try: # ------------------------------------------------------------------------------------------------------------ # cmd... cmd = CmdCognitoUserIdentity() if not cmd.is_valid(): cmd.print_help(sys.stderr) exit(2) Logging.config('cognito_user_identity', verbose=cmd.verbose) logger = Logging.getLogger() logger.info(cmd) # ------------------------------------------------------------------------------------------------------------ # authentication... if not cmd.create: credentials = CognitoClientCredentials.load_for_user(Host, name=cmd.credentials_name) if not credentials: exit(1) gatekeeper = CognitoLoginManager(requests) auth = gatekeeper.user_login(credentials) if not auth.is_ok(): logger.error("login: %s" % auth.authentication_status.description) exit(1) # ------------------------------------------------------------------------------------------------------------ # resources... if not cmd.create: finder = CognitoUserFinder(requests) # ------------------------------------------------------------------------------------------------------------ # run... if cmd.retrieve: report = finder.get_self(auth.id_token) if cmd.create: # create... given_name = StdIO.prompt("Enter given name") family_name = StdIO.prompt("Enter family name") email = StdIO.prompt("Enter email address") password = StdIO.prompt("Enter password") retrieval_password = StdIO.prompt("Enter retrieval password (RETURN for same)") if not retrieval_password: retrieval_password = password # validate... if not given_name or not given_name: logger.error("Given name and family name are required.") exit(1) if not Datum.is_email_address(email): logger.error("The email address is not valid.") exit(1) if not CognitoUserIdentity.is_valid_password(password): logger.error("The password must include lower and upper case, numeric and punctuation characters.") exit(1) # save identity... identity = CognitoUserIdentity(None, None, None, True, False, email, given_name, family_name, password, False, False, False, None) manager = CognitoUserCreator(requests) report = manager.create(identity) # create credentials... credentials = CognitoClientCredentials(cmd.credentials_name, email, password, retrieval_password) credentials.save(Host, encryption_key=retrieval_password) if cmd.update: # find... identity = finder.get_self(auth.id_token) # update identity... given_name = StdIO.prompt("Enter given name", default=identity.given_name) family_name = StdIO.prompt("Enter family name", default=identity.family_name) email = StdIO.prompt("Enter email address", default=identity.email) password = StdIO.prompt("Enter password (RETURN to keep existing)") if not password: password = credentials.password if credentials.retrieval_password == credentials.password: retrieval_password = StdIO.prompt("Enter retrieval password (RETURN for same)") if not retrieval_password: retrieval_password = password else: retrieval_password = StdIO.prompt("Enter retrieval password (RETURN to keep existing)") if not retrieval_password: retrieval_password = credentials.retrieval_password # validate... if not given_name or not given_name: logger.error("Given name and family name are required.") exit(1) if not Datum.is_email_address(email): logger.error("The email address '%s' is not valid." % email) exit(1) if password and not CognitoUserIdentity.is_valid_password(password): logger.error("The password '%s' is not valid." % password) exit(1) # save identity... identity = CognitoUserIdentity(identity.username, None, None, True, identity.email_verified, email, given_name, family_name, password, identity.is_super, identity.is_tester, identity.is_financial, None) auth = gatekeeper.user_login(credentials) # renew credentials manager = CognitoUserEditor(requests, auth.id_token) report = manager.update(identity) # update credentials... credentials = CognitoClientCredentials(credentials.name, email, password, retrieval_password) credentials.save(Host, encryption_key=retrieval_password) # ---------------------------------------------------------------------------------------------------------------- # end... if report is not None: print(JSONify.dumps(report, indent=cmd.indent)) except KeyboardInterrupt: print(file=sys.stderr) except HTTPConflictException as ex: logger.error("the email address '%s' is already in use." % report.email) exit(1) except HTTPException as ex: logger.error(ex.error_report) exit(1)
PypiClean
/portier-python-0.1.1.tar.gz/portier-python-0.1.1/README.rst
Portier authentication Python helpers ===================================== |travis| |master-coverage| .. |travis| image:: https://travis-ci.org/portier/portier-python.svg?branch=master :target: https://travis-ci.org/portier/portier-python .. |master-coverage| image:: https://coveralls.io/repos/portier/portier-python/badge.png?branch=master :alt: Coverage :target: https://coveralls.io/r/portier/portier-python *portier-python* is a set of helpers that you can use to authenticate your user with `the Portier Identity Provider <https://portier.io/>`_. * `Issue tracker <https://github.com/portier/portier-python/issues>`_ Installation ------------ Install the Python package: :: pip install portier-python Install from the source code: :: source <your-venv>/bin/activate git clone [email protected]:portier/portier-python.git cd portier-python pip install -e .
PypiClean
/theabbie-1.1.0.tar.gz/theabbie-1.1.0/README.md
# TheAbbie <p align='center'><img src="https://theabbie.github.io/files/logo.png" alt="TheAbbie" width="100" height="100"></p> [![Rate on Openbase](https://badges.openbase.io/js/rating/theabbie.svg)](https://openbase.io/js/theabbie?utm_source=embedded&utm_medium=badge&utm_campaign=rate-badge) * [About Me](#about-me) * [My Octocat](#my-octocat) * [My Blog](#my-blog) * [Tasks](#tasks) * [10 Ways to contact me](#10-ways-to-contact-me) * [Donate](#donate) ## about Me Hello World, I am Abhishek Chaudhary A pseudo-introvert, a web developer, and a Maker https://theabbie.github.io [Resume](https://theabbie.github.io/resume.pdf) <div itemscope itemtype="https://schema.org/Person"><a itemprop="sameAs" content="https://orcid.org/0000-0003-1526-9128" href="https://orcid.org/0000-0003-1526-9128" target="orcid.widget" rel="me noopener noreferrer" style="vertical-align:top;"><img src="https://orcid.org/sites/default/files/images/orcid_16x16.png" style="width:1em;margin-right:.5em;" alt="ORCID iD icon">https://orcid.org/0000-0003-1526-9128</a></div> <a href="https://codetrace.com/users/theabbie"><img src="https://codetrace.com/widget/theabbie" width="220" height="50" /></a> <img src="http://www.hackthebox.eu/badge/image/370240" alt="Hack The Box"> <img align="center" src="https://github-readme-stats.vercel.app/api?username=theabbie&show_icons=true&include_all_commits=true&theme=radical" alt="TheAbbie's github stats" /> <img align="center" src="https://github-readme-stats.vercel.app/api/top-langs/?username=theabbie&layout=compact&theme=radical" /> <table> <caption>Abhishek Chaudhary</caption> <thead> <tr> <th colspan="2">Quick Info</th> </tr> </thead> <tbody> <tr><th scope='row'>Name</th><td>Abhishek Chaudhary</td></tr> <tr><th scope='row'>Born</th><td><time datetime="2002-01-11 08:00">11 January, 2002</time></td></tr> <tr><th scope='row'>Education</th><td>B.E.</td></tr> <tr><th scope='row'>Alma mater</th><td>Fr C Rodrigues institute of technology</td></tr> <tr><th scope='row'>Nationality</th><td>Indian</td></tr> <tr><th scope='row'>Occupation</th><td>Web Developer</td></tr> <tr><th scope='row'>Skills</th><td>HTML, CSS, JavaScript, Node.js, SEO</td></tr> <tr><th scope='row'>Other Name</th><td>TheAbbie</td></tr> <tr><th scope='row'>Title</th><td>CEO of TheAbbie</td></tr> <tr><th scope='row'>Known For</th><td>TheAbbie</td></tr> </tbody> </table> ## my octocat <img src="https://theabbie.github.io/files/octocat.png" alt="TheAbbie" width="200" height="200"> ## my blog https://theabbie.github.io/blog ## tasks - [x] Born - [ ] Got a job - [ ] Married - [ ] Have children - [ ] Die ## 10 ways to contact me <ul> <li><a href="mailto:[email protected]" rel="me">Mail</a> <li><a href="https://www.instagram.com/sasta_abbie/" rel="me">Instagram DM</a> <li><a href="https://t.me/theabbie" rel="me">Telegram</a> <li><a href="https://wa.me/918928412138?text=Hi" rel="me">Whatsapp</a> <li><a href="https://linkedin.com/in/theabbie" rel="me">Linkedin</a> <li><a href="https://twitter.com/theabbiee" rel="me">Twitter</a> <li><a href="https://www.snapchat.com/add/abbie_shaikh" rel="me">Snapchat</a> <li><a href="https://icq.im/theabbie" rel="me">ICQ</a> <li><a href="https://www.facebook.com/abhishek.vice.versa" rel="me">Facebook</a> <li>Call</li> </li> </ul> ## donate [![ko-fi](https://www.ko-fi.com/img/githubbutton_sm.svg)](https://ko-fi.com/K3K31DJFA) [![Patreon](https://c5.patreon.com/external/logo/become_a_patron_button.png)](https://patreon.com/theabbie) [![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg)](https://www.paypal.me/theabbie) [![Donor Box](https://d1iczxrky3cnb2.cloudfront.net/button-medium-blue.png)](https://donorbox.org/theabbie) [![Donate on opencollective](https://opencollective.com/webpack/donate/[email protected]?color=blue)](https://opencollective.com/theabbie) [![Donate](https://button.flattr.com/button-compact-static-100x17.png)](https://flattr.com/@theabbie)
PypiClean
/msgraph-sdk-1.0.0a3.tar.gz/msgraph-sdk-1.0.0a3/msgraph/generated/groups/item/transitive_members/item/user/user_request_builder.py
from __future__ import annotations from dataclasses import dataclass from kiota_abstractions.get_path_parameters import get_path_parameters from kiota_abstractions.method import Method from kiota_abstractions.request_adapter import RequestAdapter from kiota_abstractions.request_information import RequestInformation from kiota_abstractions.request_option import RequestOption from kiota_abstractions.response_handler import ResponseHandler from kiota_abstractions.serialization import Parsable, ParsableFactory from typing import Any, Callable, Dict, List, Optional, Union from ......models import user from ......models.o_data_errors import o_data_error class UserRequestBuilder(): """ Casts the previous resource to user. """ def __init__(self,request_adapter: RequestAdapter, path_parameters: Optional[Union[Dict[str, Any], str]] = None) -> None: """ Instantiates a new UserRequestBuilder and sets the default values. Args: pathParameters: The raw url or the Url template parameters for the request. requestAdapter: The request adapter to use to execute the requests. """ if path_parameters is None: raise Exception("path_parameters cannot be undefined") if request_adapter is None: raise Exception("request_adapter cannot be undefined") # Url template to use to build the URL for the current request builder self.url_template: str = "{+baseurl}/groups/{group%2Did}/transitiveMembers/{directoryObject%2Did}/microsoft.graph.user{?%24select,%24expand}" url_tpl_params = get_path_parameters(path_parameters) self.path_parameters = url_tpl_params self.request_adapter = request_adapter def create_get_request_information(self,request_configuration: Optional[UserRequestBuilderGetRequestConfiguration] = None) -> RequestInformation: """ Get the item of type microsoft.graph.directoryObject as microsoft.graph.user Args: requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. Returns: RequestInformation """ request_info = RequestInformation() request_info.url_template = self.url_template request_info.path_parameters = self.path_parameters request_info.http_method = Method.GET request_info.headers["Accept"] = "application/json" if request_configuration: request_info.add_request_headers(request_configuration.headers) request_info.set_query_string_parameters_from_raw_object(request_configuration.query_parameters) request_info.add_request_options(request_configuration.options) return request_info async def get(self,request_configuration: Optional[UserRequestBuilderGetRequestConfiguration] = None, response_handler: Optional[ResponseHandler] = None) -> Optional[user.User]: """ Get the item of type microsoft.graph.directoryObject as microsoft.graph.user Args: requestConfiguration: Configuration for the request such as headers, query parameters, and middleware options. responseHandler: Response handler to use in place of the default response handling provided by the core service Returns: Optional[user.User] """ request_info = self.create_get_request_information( request_configuration ) error_mapping: Dict[str, ParsableFactory] = { "4XX": o_data_error.ODataError, "5XX": o_data_error.ODataError, } if not self.request_adapter: raise Exception("Http core is null") return await self.request_adapter.send_async(request_info, user.User, response_handler, error_mapping) @dataclass class UserRequestBuilderGetQueryParameters(): """ Get the item of type microsoft.graph.directoryObject as microsoft.graph.user """ # Expand related entities expand: Optional[List[str]] = None # Select properties to be returned select: Optional[List[str]] = None def get_query_parameter(self,original_name: Optional[str] = None) -> str: """ Maps the query parameters names to their encoded names for the URI template parsing. Args: originalName: The original query parameter name in the class. Returns: str """ if original_name is None: raise Exception("original_name cannot be undefined") if original_name == "expand": return "%24expand" if original_name == "select": return "%24select" return original_name @dataclass class UserRequestBuilderGetRequestConfiguration(): """ Configuration for the request such as headers, query parameters, and middleware options. """ # Request headers headers: Optional[Dict[str, str]] = None # Request options options: Optional[List[RequestOption]] = None # Request query parameters query_parameters: Optional[UserRequestBuilder.UserRequestBuilderGetQueryParameters] = None
PypiClean
/MultistateEpigeneticPacemaker-0.0.1.tar.gz/MultistateEpigeneticPacemaker-0.0.1/msepm/msepm_cv.py
import random from typing import Dict, Tuple import joblib import numpy as np from tqdm import tqdm from msepm.base import EPMBase from msepm import MultistateEpigeneticPacemaker from msepm.helpers import get_fold_step_size, tqdm_joblib class MultistateEpigeneticPacemakerCV(EPMBase): """ """ def __init__(self, cv_folds: int = 3, randomize_sample_order: bool = False, iter_limit=100, n_jobs=1, error_tolerance=0.001, learning_rate=0.01, scale_X=False, verbose=False): EPMBase.__init__(self) self.cv_folds = cv_folds self.randomize = randomize_sample_order self.iter_limit = iter_limit self.n_jobs = n_jobs self.error_tolerance = error_tolerance self.learning_rate = learning_rate self.scale_X = scale_X self.verbose = verbose def fit(self, X, Y, sample_weights=None, return_out_of_fold_predictions=False): cv_groups = self.get_cv_folds(X.shape[0]) fold_count = 0 # reshape X if one dimensional X_fit = X if len(X.shape) > 1 else X.reshape(-1, 1) coefs, intercepts, errors = np.zeros((Y.shape[0], X_fit.shape[1])), np.zeros(Y.shape[0]), 0.0 training_sample_count = 0 predictions = {} with tqdm_joblib(tqdm(desc="Fitting CV Folds", total=self.cv_folds, disable=True if not self.verbose else False)) as progress_bar: models = joblib.Parallel(n_jobs=self.n_jobs)( joblib.delayed(self.fit_fold)(*[X_fit, Y, test_indices, return_out_of_fold_predictions, sample_weights]) for test_indices in cv_groups) for model, train_len, model_predictions in models: training_sample_count += train_len predictions.update(model_predictions) coefs += model._coefs * train_len intercepts += model._intercepts * train_len errors += model._error * train_len fold_count += 1 self._coefs = coefs / training_sample_count self._intercepts = intercepts / training_sample_count self._error = errors / training_sample_count if return_out_of_fold_predictions: return self.unpack_out_of_fold_predictions(predictions) def fit_fold(self, X, Y, test_indices, return_out_of_fold_predictions=False, sample_weights=None): fold_epm = MultistateEpigeneticPacemaker(iter_limit=self.iter_limit, error_tolerance=self.error_tolerance, learning_rate=self.learning_rate, scale_X=self.scale_X, n_jobs=1) train_indices = [index for index in range(X.shape[0]) if index not in test_indices] train_Y = Y[:, train_indices] train_X = X[train_indices, :] test_Y = Y[:, test_indices] fold_epm.fit(train_X, train_Y, sample_weights=sample_weights) predictions = {} if return_out_of_fold_predictions: test_states = fold_epm.predict(test_Y) for index, state in zip(test_indices, test_states): predictions[index] = state return fold_epm, len(train_indices), predictions def get_cv_folds(self, sample_number): if self.cv_folds < 0: self.cv_folds = sample_number sample_indices = [count for count in range(sample_number)] if self.randomize: random.shuffle(sample_indices) step_size = get_fold_step_size(sample_number, self.cv_folds) test_indices = [] for fold in range(self.cv_folds): if fold + 1 == self.cv_folds: test_indices.append(sample_indices[fold * step_size:]) else: test_indices.append(sample_indices[fold * step_size: fold * step_size + step_size]) return test_indices @staticmethod def unpack_out_of_fold_predictions(predictions): return np.array([predictions[index] for index in range(len(predictions))])
PypiClean
/simple_rl-0.811.tar.gz/simple_rl-0.811/README.md
# simple_rl A simple framework for experimenting with Reinforcement Learning in Python. There are loads of other great libraries out there for RL. The aim of this one is twofold: 1. Simplicity. 2. Reproducibility of results. A brief tutorial for a slightly earlier version is available [here](http://cs.brown.edu/~dabel/blog/posts/simple_rl.html). As of version 0.77, the library should work with both Python 2 and Python 3. Please let me know if you find that is not the case! simple_rl requires [numpy](http://www.numpy.org/) and [matplotlib](http://matplotlib.org/). Some MDPs have visuals, too, which requires [pygame](http://www.pygame.org/news). Also includes support for hooking into any of the [Open AI Gym environments](https://gym.openai.com/envs). The library comes along with basic test script, contained in the _tests_ directory. I suggest running it and making sure all tests pass when you install the library. [Documentation available here](https://david-abel.github.io/simple_rl/docs/index.html) ## Installation The easiest way to install is with [pip](https://pypi.python.org/pypi/pip). Just run: pip install simple_rl Alternatively, you can download simple_rl [here](https://github.com/david-abel/simple_rl/tarball/v0.811). ## New Feature: Easy Reproduction of Results I just added a new feature I'm quite excited about: *easy reproduction of results*. Every experiment run now outputs a file "full_experiment.txt" in the _results/exp_name/_ directory. The new function _reproduce_from_exp_file(file_name)_, when pointed at an experiment directory, will reassemble and rerun an entire experiment based on this file. The goal here is to encourage simple tracking of experiments and enable quick result-reproduction. It only works with MDPs though -- it does not yet work with OOMDPs, POMDPs, or MarkovGames (I'd be delighted if someone wants to make it work, though!). See the second example below for a quick sense of how to use this feature. ## Example Some examples showcasing basic functionality are included in the [examples](https://github.com/david-abel/simple_rl/tree/master/examples) directory. To run a simple experiment, import the _run_agents_on_mdp(agent_list, mdp)_ method from _simple_rl.run_experiments_ and call it with some agents for a given MDP. For example: # Imports from simple_rl.run_experiments import run_agents_on_mdp from simple_rl.tasks import GridWorldMDP from simple_rl.agents import QLearningAgent # Run Experiment mdp = GridWorldMDP() agent = QLearningAgent(mdp.get_actions()) run_agents_on_mdp([agent], mdp) Running the above code will run _Q_-learning on a simple GridWorld. When it finishes it stores the results in _cur_dir/results/*_ and makes and opens the following plot: <img src="https://david-abel.github.io/blog/posts/images/simple_grid.jpg" width="480" align="center"> For a slightly more complicated example, take a look at the code of _simple_example.py_. Here we run two agents on the grid world from the Russell-Norvig AI textbook: from simple_rl.agents import QLearningAgent, RandomAgent, RMaxAgent from simple_rl.tasks import GridWorldMDP from simple_rl.run_experiments import run_agents_on_mdp # Setup MDP. mdp = GridWorldMDP(width=4, height=3, init_loc=(1, 1), goal_locs=[(4, 3)], lava_locs=[(4, 2)], gamma=0.95, walls=[(2, 2)], slip_prob=0.05) # Setup Agents. ql_agent = QLearningAgent(actions=mdp.get_actions()) rmax_agent = RMaxAgent(actions=mdp.get_actions()) rand_agent = RandomAgent(actions=mdp.get_actions()) # Run experiment and make plot. run_agents_on_mdp([ql_agent, rmax_agent, rand_agent], mdp, instances=5, episodes=50, steps=10) The above code will generate the following plot: <img src="https://david-abel.github.io/blog/posts/images/rn_grid.jpg" width="480" align="center"> To showcase the new reproducibility feature, suppose we now wanted to reproduce the above experiment. We just do the following: from simple_rl.run_experiments import reproduce_from_exp_file reproduce_from_exp_file("gridworld_h-3_w-4") Which will rerun the entire experiment, based on a file created and populated behind the scenes. Then, we should get the following plot: <img src="https://david-abel.github.io/blog/posts/images/rn_grid_reproduce.jpg" width="480" align="center"> Easy! This is a new feature, so there may be bugs -- just let me know as things come up. It's only supposed to work for MDPs, not POMDPs/OOMDPs/MarkovGameMDPs (so far). Take a look at [_reproduce_example.py_](https://github.com/david-abel/simple_rl/blob/master/examples/reproduce_example.py) for a bit more detail. ## Overview * (_agents_): Code for some basic agents (a random actor, _Q_-learning, [[R-Max]](http://www.jmlr.org/papers/volume3/brafman02a/brafman02a.pdf), _Q_-learning with a Linear Approximator, and so on). * (_experiments_): Code for an Experiment class to track parameters and reproduce results. * (_mdp_): Code for a basic MDP and MDPState class, and an MDPDistribution class (for lifelong learning). Also contains OO-MDP implementation [[Diuk et al. 2008]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.7056&rep=rep1&type=pdf). * (_planning_): Implementations for planning algorithms, includes ValueIteration and MCTS [[Couloum 2006]](https://hal.archives-ouvertes.fr/file/index/docid/116992/filename/CG2006.pdf), the latter being still in development. * (_tasks_): Implementations for a few standard MDPs (grid world, N-chain, Taxi [[Dietterich 2000]](http://www.scs.cmu.edu/afs/cs/project/jair/pub/volume13/dietterich00a.pdf), and the [OpenAI Gym](https://gym.openai.com/envs)). * (_utils_): Code for charting and other utilities. ## Contributing If you'd like to contribute: that's great! Take a look at some of the needed improvements below: I'd love for folks to work on those items. Please see the [contribution guidelines](https://github.com/david-abel/simple_rl/blob/master/CONTRIBUTING.md). Email me with any questions. ## Making a New MDP Make an MDP subclass, which needs: * A static variable, _ACTIONS_, which is a list of strings denoting each action. * Implement a reward and transition function and pass them to MDP constructor (along with _ACTIONS_). * I also suggest overwriting the "\_\_str\_\_" method of the class, and adding a "\_\_init\_\_.py" file to the directory. * Create a State subclass for your MDP (if necessary). I suggest overwriting the "\_\_hash\_\_", "\_\_eq\_\_", and "\_\_str\_\_" for the class to play along well with the agents. ## Making a New Agent Make an Agent subclass, which requires: * A method, _act(self, state, reward)_, that returns an action. * A method, _reset()_, that puts the agent back to its _tabula rasa_ state. ## In Development I'm hoping to add the following features: * __Planning__: Finish MCTS [[Coloum 2006]](https://hal.inria.fr/file/index/docid/116992/filename/CG2006.pdf), implement RTDP [[Barto et al. 1995]](https://pdfs.semanticscholar.org/2838/e01572bf53805c502ec31e3e00a8e1e0afcf.pdf) * __Deep RL__: Write a DQN [[Mnih et al. 2015]](http://www.davidqiu.com:8888/research/nature14236.pdf) in PyTorch, possibly others (some kind of policy gradient). * __Efficiency__: Convert most defaultdict/dict uses to numpy. * __Reproducibility__: The new reproduce feature is limited in scope -- I'd love for someone to extend it to work with OO-MDPs, Planning, MarkovGames, POMDPs, and beyond. * __Docs__: Tutorial and documentation. * __Visuals__: Unify MDP visualization. * __Misc__: Additional testing. Cheers, -Dave
PypiClean
/nnisgf-0.4-py3-none-manylinux1_x86_64.whl/nnisgf-0.4.data/data/nni/node_modules/wide-align/node_modules/is-fullwidth-code-point/readme.md
# is-fullwidth-code-point [![Build Status](https://travis-ci.org/sindresorhus/is-fullwidth-code-point.svg?branch=master)](https://travis-ci.org/sindresorhus/is-fullwidth-code-point) > Check if the character represented by a given [Unicode code point](https://en.wikipedia.org/wiki/Code_point) is [fullwidth](https://en.wikipedia.org/wiki/Halfwidth_and_fullwidth_forms) ## Install ``` $ npm install --save is-fullwidth-code-point ``` ## Usage ```js const isFullwidthCodePoint = require('is-fullwidth-code-point'); isFullwidthCodePoint('谢'.codePointAt()); //=> true isFullwidthCodePoint('a'.codePointAt()); //=> false ``` ## API ### isFullwidthCodePoint(input) #### input Type: `number` [Code point](https://en.wikipedia.org/wiki/Code_point) of a character. ## License MIT © [Sindre Sorhus](https://sindresorhus.com)
PypiClean
/rflow_tfx-1.1.18-py3-none-any.whl/tfx/tools/cli/handler/base_handler.py
"""Base handler class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import json import os import subprocess import sys import tempfile from typing import Any, Dict, List, Text import click from six import with_metaclass from tfx.dsl.components.base import base_driver from tfx.dsl.io import fileio from tfx.tools.cli import labels from tfx.utils import io_utils class BaseHandler(with_metaclass(abc.ABCMeta, object)): """Base Handler for CLI. Attributes: flags_dict: A dictionary with flags provided in README.ml-pipelines-sdk.md command. """ def __init__(self, flags_dict: Dict[Text, Any]): self.flags_dict = flags_dict self._handler_home_dir = self._get_handler_home() @abc.abstractmethod def create_pipeline(self) -> None: """Creates pipeline for the handler.""" pass @abc.abstractmethod def update_pipeline(self) -> None: """Updates pipeline for the handler.""" pass @abc.abstractmethod def list_pipelines(self) -> None: """List all the pipelines in the environment.""" pass @abc.abstractmethod def delete_pipeline(self) -> None: """Deletes pipeline for the handler.""" pass @abc.abstractmethod def compile_pipeline(self) -> None: """Compiles pipeline for the handler.""" pass @abc.abstractmethod def create_run(self) -> None: """Runs README.ml-pipelines-sdk.md pipeline for the handler.""" pass @abc.abstractmethod def delete_run(self) -> None: """Deletes README.ml-pipelines-sdk.md run.""" pass @abc.abstractmethod def terminate_run(self) -> None: """Stops README.ml-pipelines-sdk.md run.""" pass @abc.abstractmethod def list_runs(self) -> None: """Lists all runs of README.ml-pipelines-sdk.md pipeline.""" pass @abc.abstractmethod def get_run(self) -> None: """Checks run status.""" pass def _check_pipeline_dsl_path(self) -> None: """Check if pipeline dsl path exists.""" pipeline_dsl_path = self.flags_dict[labels.PIPELINE_DSL_PATH] if not fileio.exists(pipeline_dsl_path): sys.exit('Invalid pipeline path: {}'.format(pipeline_dsl_path)) def _check_dsl_runner(self) -> None: """Check if runner in dsl is same as engine flag.""" engine_flag = self.flags_dict[labels.ENGINE_FLAG] with open(self.flags_dict[labels.PIPELINE_DSL_PATH], 'r') as f: dsl_contents = f.read() runner_names = { labels.AIRFLOW_ENGINE: 'AirflowDagRunner', labels.KUBEFLOW_ENGINE: 'KubeflowDagRunner', labels.BEAM_ENGINE: 'BeamDagRunner', labels.LOCAL_ENGINE: 'LocalDagRunner', } if runner_names[engine_flag] not in dsl_contents: sys.exit('{} runner not found in dsl.'.format(engine_flag)) def _extract_pipeline_args(self) -> Dict[Text, Any]: """Get pipeline args from the DSL. Returns: Python dictionary with pipeline details extracted from DSL. """ # TODO(b/157599419): Consider using README.ml-pipelines-sdk.md better way to extract pipeline info: # e.g. pipeline name/root. Currently we relies on consulting README.ml-pipelines-sdk.md env var when # creating Pipeline object, which is brittle. pipeline_dsl_path = self.flags_dict[labels.PIPELINE_DSL_PATH] if os.path.isdir(pipeline_dsl_path): sys.exit('Provide dsl file path.') # Create an environment for subprocess. temp_env = os.environ.copy() # Create temp file to store pipeline_args from pipeline dsl. temp_file = tempfile.mkstemp(prefix='cli_tmp_', suffix='_pipeline_args')[1] # Store temp_file path in temp_env. # LINT.IfChange temp_env[labels.TFX_JSON_EXPORT_PIPELINE_ARGS_PATH] = temp_file # LINT.ThenChange( # ../../../orchestration/beam/beam_dag_runner.py, # ../../../orchestration/local/local_dag_runner.py, # ) # Run dsl with mock environment to store pipeline args in temp_file. self._subprocess_call([sys.executable, pipeline_dsl_path], env=temp_env) if os.stat(temp_file).st_size != 0: # Load pipeline_args from temp_file for TFX pipelines with open(temp_file, 'r') as f: pipeline_args = json.load(f) else: # For non-TFX pipelines, extract pipeline name from the dsl filename. pipeline_args = { labels.PIPELINE_NAME: os.path.basename(pipeline_dsl_path).split('.')[0] } # Delete temp file io_utils.delete_dir(temp_file) return pipeline_args def _get_handler_home(self) -> Text: """Sets handler home. Returns: Path to handler home directory. """ engine_flag = self.flags_dict[labels.ENGINE_FLAG] handler_home_dir = engine_flag.upper() + '_HOME' if handler_home_dir in os.environ: return os.environ[handler_home_dir] return os.path.join(os.environ['HOME'], 'tfx', engine_flag, '') def _get_deprecated_handler_home(self) -> Text: """Sets old handler home for compatibility. Returns: Path to handler home directory. """ engine_flag = self.flags_dict[labels.ENGINE_FLAG] handler_home_dir = engine_flag.upper() + '_HOME' if handler_home_dir in os.environ: return os.environ[handler_home_dir] return os.path.join(os.environ['HOME'], engine_flag, '') def _subprocess_call(self, command: List[Text], env: Dict[Text, Any] = None) -> None: return_code = subprocess.call(command, env=env) if return_code != 0: sys.exit('Error while running "{}" '.format(' '.join(command))) def _check_pipeline_existence(self, pipeline_name: Text, required: bool = True) -> None: """Check if pipeline folder exists and if not, exit system. Args: pipeline_name: Name of the pipeline. required: Set it as True if pipeline needs to exist else set it to False. """ handler_pipeline_path = os.path.join(self._handler_home_dir, pipeline_name) # Check if pipeline folder exists. exists = fileio.exists(handler_pipeline_path) if required and not exists: # Check pipeline directory prior 0.25 and move files to the new location # automatically. old_handler_pipeline_path = os.path.join( self._get_deprecated_handler_home(), pipeline_name) if fileio.exists(old_handler_pipeline_path): fileio.makedirs(os.path.dirname(handler_pipeline_path)) fileio.rename(old_handler_pipeline_path, handler_pipeline_path) engine_flag = self.flags_dict[labels.ENGINE_FLAG] handler_home_variable = engine_flag.upper() + '_HOME' click.echo( ('[WARNING] Pipeline "{pipeline_name}" was found in "{old_path}", ' 'but the location that TFX stores pipeline information was moved ' 'since TFX 0.25.0.\n' '[WARNING] Your files in "{old_path}" was automatically moved to ' 'the new location, "{new_path}".\n' '[WARNING] If you want to keep the files at the old location, set ' '`{handler_home}` environment variable to "{old_handler_home}".' ).format( pipeline_name=pipeline_name, old_path=old_handler_pipeline_path, new_path=handler_pipeline_path, handler_home=handler_home_variable, old_handler_home=self._get_deprecated_handler_home()), err=True) else: sys.exit('Pipeline "{}" does not exist.'.format(pipeline_name)) elif not required and exists: sys.exit('Pipeline "{}" already exists.'.format(pipeline_name)) def get_schema(self): pipeline_name = self.flags_dict[labels.PIPELINE_NAME] # Check if pipeline exists. self._check_pipeline_existence(pipeline_name) # Path to pipeline args. pipeline_args_path = os.path.join(self._handler_home_dir, self.flags_dict[labels.PIPELINE_NAME], 'pipeline_args.json') # Get pipeline_root. with open(pipeline_args_path, 'r') as f: pipeline_args = json.load(f) self._read_schema_from_pipeline_root(pipeline_name, pipeline_args[labels.PIPELINE_ROOT]) def _read_schema_from_pipeline_root(self, pipeline_name, pipeline_root): # Check if pipeline root created. If not, it means that the user has not # created README.ml-pipelines-sdk.md run yet or the pipeline is still running for the first time. if not fileio.exists(pipeline_root): sys.exit( 'Create README.ml-pipelines-sdk.md run before inferring schema. If pipeline is already running, then wait for it to successfully finish.' ) # If pipeline_root exists, then check if SchemaGen output exists. components = fileio.listdir(pipeline_root) if 'SchemaGen' not in components: sys.exit( 'Either SchemaGen component does not exist or pipeline is still running. If pipeline is running, then wait for it to successfully finish.' ) # Get the latest SchemaGen output. component_output_dir = os.path.join(pipeline_root, 'SchemaGen') schema_dir = os.path.join(component_output_dir, 'schema') schemagen_outputs = fileio.listdir(schema_dir) latest_schema_folder = max(schemagen_outputs, key=int) # Copy schema to current dir. latest_schema_uri = base_driver._generate_output_uri( # pylint: disable=protected-access component_output_dir, 'schema', int(latest_schema_folder)) latest_schema_path = os.path.join(latest_schema_uri, 'schema.pbtxt') curr_dir_path = os.path.join(os.getcwd(), 'schema.pbtxt') io_utils.copy_file(latest_schema_path, curr_dir_path, overwrite=True) # Print schema and path to schema click.echo('Path to schema: {}'.format(curr_dir_path)) click.echo('*********SCHEMA FOR {}**********'.format(pipeline_name.upper())) with open(curr_dir_path, 'r') as f: click.echo(f.read())
PypiClean
/Django-4.2.4.tar.gz/Django-4.2.4/django/contrib/admin/static/admin/js/SelectFilter2.js
SelectFilter2 - Turns a multiple-select box into a filter interface. Requires core.js and SelectBox.js. */ 'use strict'; { window.SelectFilter = { init: function(field_id, field_name, is_stacked) { if (field_id.match(/__prefix__/)) { // Don't initialize on empty forms. return; } const from_box = document.getElementById(field_id); from_box.id += '_from'; // change its ID from_box.className = 'filtered'; for (const p of from_box.parentNode.getElementsByTagName('p')) { if (p.classList.contains("info")) { // Remove <p class="info">, because it just gets in the way. from_box.parentNode.removeChild(p); } else if (p.classList.contains("help")) { // Move help text up to the top so it isn't below the select // boxes or wrapped off on the side to the right of the add // button: from_box.parentNode.insertBefore(p, from_box.parentNode.firstChild); } } // <div class="selector"> or <div class="selector stacked"> const selector_div = quickElement('div', from_box.parentNode); selector_div.className = is_stacked ? 'selector stacked' : 'selector'; // <div class="selector-available"> const selector_available = quickElement('div', selector_div); selector_available.className = 'selector-available'; const title_available = quickElement('h2', selector_available, interpolate(gettext('Available %s') + ' ', [field_name])); quickElement( 'span', title_available, '', 'class', 'help help-tooltip help-icon', 'title', interpolate( gettext( 'This is the list of available %s. You may choose some by ' + 'selecting them in the box below and then clicking the ' + '"Choose" arrow between the two boxes.' ), [field_name] ) ); const filter_p = quickElement('p', selector_available, '', 'id', field_id + '_filter'); filter_p.className = 'selector-filter'; const search_filter_label = quickElement('label', filter_p, '', 'for', field_id + '_input'); quickElement( 'span', search_filter_label, '', 'class', 'help-tooltip search-label-icon', 'title', interpolate(gettext("Type into this box to filter down the list of available %s."), [field_name]) ); filter_p.appendChild(document.createTextNode(' ')); const filter_input = quickElement('input', filter_p, '', 'type', 'text', 'placeholder', gettext("Filter")); filter_input.id = field_id + '_input'; selector_available.appendChild(from_box); const choose_all = quickElement('a', selector_available, gettext('Choose all'), 'title', interpolate(gettext('Click to choose all %s at once.'), [field_name]), 'href', '#', 'id', field_id + '_add_all_link'); choose_all.className = 'selector-chooseall'; // <ul class="selector-chooser"> const selector_chooser = quickElement('ul', selector_div); selector_chooser.className = 'selector-chooser'; const add_link = quickElement('a', quickElement('li', selector_chooser), gettext('Choose'), 'title', gettext('Choose'), 'href', '#', 'id', field_id + '_add_link'); add_link.className = 'selector-add'; const remove_link = quickElement('a', quickElement('li', selector_chooser), gettext('Remove'), 'title', gettext('Remove'), 'href', '#', 'id', field_id + '_remove_link'); remove_link.className = 'selector-remove'; // <div class="selector-chosen"> const selector_chosen = quickElement('div', selector_div, '', 'id', field_id + '_selector_chosen'); selector_chosen.className = 'selector-chosen'; const title_chosen = quickElement('h2', selector_chosen, interpolate(gettext('Chosen %s') + ' ', [field_name])); quickElement( 'span', title_chosen, '', 'class', 'help help-tooltip help-icon', 'title', interpolate( gettext( 'This is the list of chosen %s. You may remove some by ' + 'selecting them in the box below and then clicking the ' + '"Remove" arrow between the two boxes.' ), [field_name] ) ); const filter_selected_p = quickElement('p', selector_chosen, '', 'id', field_id + '_filter_selected'); filter_selected_p.className = 'selector-filter'; const search_filter_selected_label = quickElement('label', filter_selected_p, '', 'for', field_id + '_selected_input'); quickElement( 'span', search_filter_selected_label, '', 'class', 'help-tooltip search-label-icon', 'title', interpolate(gettext("Type into this box to filter down the list of selected %s."), [field_name]) ); filter_selected_p.appendChild(document.createTextNode(' ')); const filter_selected_input = quickElement('input', filter_selected_p, '', 'type', 'text', 'placeholder', gettext("Filter")); filter_selected_input.id = field_id + '_selected_input'; const to_box = quickElement('select', selector_chosen, '', 'id', field_id + '_to', 'multiple', '', 'size', from_box.size, 'name', from_box.name); to_box.className = 'filtered'; const warning_footer = quickElement('div', selector_chosen, '', 'class', 'list-footer-display'); quickElement('span', warning_footer, '', 'id', field_id + '_list-footer-display-text'); quickElement('span', warning_footer, ' (click to clear)', 'class', 'list-footer-display__clear'); const clear_all = quickElement('a', selector_chosen, gettext('Remove all'), 'title', interpolate(gettext('Click to remove all chosen %s at once.'), [field_name]), 'href', '#', 'id', field_id + '_remove_all_link'); clear_all.className = 'selector-clearall'; from_box.name = from_box.name + '_old'; // Set up the JavaScript event handlers for the select box filter interface const move_selection = function(e, elem, move_func, from, to) { if (elem.classList.contains('active')) { move_func(from, to); SelectFilter.refresh_icons(field_id); SelectFilter.refresh_filtered_selects(field_id); SelectFilter.refresh_filtered_warning(field_id); } e.preventDefault(); }; choose_all.addEventListener('click', function(e) { move_selection(e, this, SelectBox.move_all, field_id + '_from', field_id + '_to'); }); add_link.addEventListener('click', function(e) { move_selection(e, this, SelectBox.move, field_id + '_from', field_id + '_to'); }); remove_link.addEventListener('click', function(e) { move_selection(e, this, SelectBox.move, field_id + '_to', field_id + '_from'); }); clear_all.addEventListener('click', function(e) { move_selection(e, this, SelectBox.move_all, field_id + '_to', field_id + '_from'); }); warning_footer.addEventListener('click', function(e) { filter_selected_input.value = ''; SelectBox.filter(field_id + '_to', ''); SelectFilter.refresh_filtered_warning(field_id); SelectFilter.refresh_icons(field_id); }); filter_input.addEventListener('keypress', function(e) { SelectFilter.filter_key_press(e, field_id, '_from', '_to'); }); filter_input.addEventListener('keyup', function(e) { SelectFilter.filter_key_up(e, field_id, '_from'); }); filter_input.addEventListener('keydown', function(e) { SelectFilter.filter_key_down(e, field_id, '_from', '_to'); }); filter_selected_input.addEventListener('keypress', function(e) { SelectFilter.filter_key_press(e, field_id, '_to', '_from'); }); filter_selected_input.addEventListener('keyup', function(e) { SelectFilter.filter_key_up(e, field_id, '_to', '_selected_input'); }); filter_selected_input.addEventListener('keydown', function(e) { SelectFilter.filter_key_down(e, field_id, '_to', '_from'); }); selector_div.addEventListener('change', function(e) { if (e.target.tagName === 'SELECT') { SelectFilter.refresh_icons(field_id); } }); selector_div.addEventListener('dblclick', function(e) { if (e.target.tagName === 'OPTION') { if (e.target.closest('select').id === field_id + '_to') { SelectBox.move(field_id + '_to', field_id + '_from'); } else { SelectBox.move(field_id + '_from', field_id + '_to'); } SelectFilter.refresh_icons(field_id); } }); from_box.closest('form').addEventListener('submit', function() { SelectBox.filter(field_id + '_to', ''); SelectBox.select_all(field_id + '_to'); }); SelectBox.init(field_id + '_from'); SelectBox.init(field_id + '_to'); // Move selected from_box options to to_box SelectBox.move(field_id + '_from', field_id + '_to'); // Initial icon refresh SelectFilter.refresh_icons(field_id); }, any_selected: function(field) { // Temporarily add the required attribute and check validity. field.required = true; const any_selected = field.checkValidity(); field.required = false; return any_selected; }, refresh_filtered_warning: function(field_id) { const count = SelectBox.get_hidden_node_count(field_id + '_to'); const selector = document.getElementById(field_id + '_selector_chosen'); const warning = document.getElementById(field_id + '_list-footer-display-text'); selector.className = selector.className.replace('selector-chosen--with-filtered', ''); warning.textContent = interpolate(ngettext( '%s selected option not visible', '%s selected options not visible', count ), [count]); if(count > 0) { selector.className += ' selector-chosen--with-filtered'; } }, refresh_filtered_selects: function(field_id) { SelectBox.filter(field_id + '_from', document.getElementById(field_id + "_input").value); SelectBox.filter(field_id + '_to', document.getElementById(field_id + "_selected_input").value); }, refresh_icons: function(field_id) { const from = document.getElementById(field_id + '_from'); const to = document.getElementById(field_id + '_to'); // Active if at least one item is selected document.getElementById(field_id + '_add_link').classList.toggle('active', SelectFilter.any_selected(from)); document.getElementById(field_id + '_remove_link').classList.toggle('active', SelectFilter.any_selected(to)); // Active if the corresponding box isn't empty document.getElementById(field_id + '_add_all_link').classList.toggle('active', from.querySelector('option')); document.getElementById(field_id + '_remove_all_link').classList.toggle('active', to.querySelector('option')); SelectFilter.refresh_filtered_warning(field_id); }, filter_key_press: function(event, field_id, source, target) { const source_box = document.getElementById(field_id + source); // don't submit form if user pressed Enter if ((event.which && event.which === 13) || (event.keyCode && event.keyCode === 13)) { source_box.selectedIndex = 0; SelectBox.move(field_id + source, field_id + target); source_box.selectedIndex = 0; event.preventDefault(); } }, filter_key_up: function(event, field_id, source, filter_input) { const input = filter_input || '_input'; const source_box = document.getElementById(field_id + source); const temp = source_box.selectedIndex; SelectBox.filter(field_id + source, document.getElementById(field_id + input).value); source_box.selectedIndex = temp; SelectFilter.refresh_filtered_warning(field_id); SelectFilter.refresh_icons(field_id); }, filter_key_down: function(event, field_id, source, target) { const source_box = document.getElementById(field_id + source); // right key (39) or left key (37) const direction = source === '_from' ? 39 : 37; // right arrow -- move across if ((event.which && event.which === direction) || (event.keyCode && event.keyCode === direction)) { const old_index = source_box.selectedIndex; SelectBox.move(field_id + source, field_id + target); SelectFilter.refresh_filtered_selects(field_id); SelectFilter.refresh_filtered_warning(field_id); source_box.selectedIndex = (old_index === source_box.length) ? source_box.length - 1 : old_index; return; } // down arrow -- wrap around if ((event.which && event.which === 40) || (event.keyCode && event.keyCode === 40)) { source_box.selectedIndex = (source_box.length === source_box.selectedIndex + 1) ? 0 : source_box.selectedIndex + 1; } // up arrow -- wrap around if ((event.which && event.which === 38) || (event.keyCode && event.keyCode === 38)) { source_box.selectedIndex = (source_box.selectedIndex === 0) ? source_box.length - 1 : source_box.selectedIndex - 1; } } }; window.addEventListener('load', function(e) { document.querySelectorAll('select.selectfilter, select.selectfilterstacked').forEach(function(el) { const data = el.dataset; SelectFilter.init(el.id, data.fieldName, parseInt(data.isStacked, 10)); }); }); }
PypiClean
/pyvision_toolkit-1.3.4.tar.gz/pyvision_toolkit-1.3.4/samples/pyvision_banner.py
import os.path from Image import composite,LINEAR import pyvision as pv from pyvision.edge.sobel import sobel #from pyvision.edge.canny import canny from pyvision.point.DetectorSURF import DetectorSURF import cv if __name__ == '__main__': ilog = pv.ImageLog() source_name = os.path.join(pv.__path__[0],'data','misc','p5240019.jpg') #Load source image and resize to smaller scale im = pv.Image(source_name) print("Size before affine scale: %s"%str(im.size)) im = pv.AffineScale(0.25,(320,240)).transformImage(im) print("Size after scaling: %s"%str(im.size)) ilog.log(im, 'Input') #im.show(window='Input', pos=(0,0)) #Generate edge image using sobel edge detector edges = sobel(im, 1, 0 , 3, 0) ilog.log(edges, 'Edges') #edges.show(window='Edges', pos=(360,0)) #Generate threshold mask, shows numpy integration mat = im.asMatrix2D() high = mat > 180 low = mat < 50 mask = high#+low ilog.log(pv.Image(1.0*mask), 'Mask') #Composite operation using PIL e = edges.asPIL().convert('RGB') m = pv.Image(1.0*mask).asPIL() i = im.asPIL() logo = pv.Image(composite(i,e,m)) ilog.log(logo, 'Composite') #logo.show(window='Composite', pos=(0,300) ) #Keypoint detection using OpenCV's SURF detector logo_surf = logo.copy() sm = pv.Image(im.asPIL().resize((320,240),LINEAR)) detector = DetectorSURF() points = detector.detect(sm) for score,pt,radius in points: logo_surf.annotateCircle(pt*4,radius*4) ilog.log(logo_surf, 'Annotated') #logo_surf.show(window='Annotated',pos=(360,300)) #Demonstrate use of ImageMontage class to show a few small images in a single window print("Have the image montage focused in UI and hit spacebar to continue...") imontage = pv.ImageMontage([im,edges,logo,logo_surf], layout=(2,2), tileSize=im.size, gutter=3, byrow=True, labels=None) imontage.show(window="Image Montage", delay=0) #Show the images stored to the image log object print("Showing image log. These images are stored in a tmp directory.") ilog.show()
PypiClean
/protocols/http_server.py
import os import sys sys.path.append(os.path.dirname(os.path.abspath(__file__))) sys.path.append(os.path.dirname(os.path.abspath(__file__))+'/../') from pmercury.protocols.protocol import Protocol class HTTP_Server(Protocol): def __init__(self, fp_database=None, config=None): # populate fingerprint databases self.fp_db = {} # configuration HTTP_Server.all_headers = False HTTP_Server.all_headers_and_data = False if config == None or 'http_server' not in config: HTTP_Server.static_names = set([b'appex-activity-id',b'cdnuuid',b'cf-ray',b'content-range',b'content-type', b'date',b'etag',b'expires',b'flow_context',b'ms-cv',b'msregion',b'ms-requestid', b'request-id',b'vary',b'x-amz-cf-pop',b'x-amz-request-id',b'x-azure-ref-originshield', b'x-cache',b'x-cache-hits',b'x-ccc',b'x-diagnostic-s',b'x-feserver',b'x-hw', b'x-msedge-ref',b'x-ocsp-responder-id',b'x-requestid',b'x-served-by',b'x-timer', b'x-trace-context']) HTTP_Server.static_names_and_values = set([b'access-control-allow-credentials',b'access-control-allow-headers', b'access-control-allow-methods',b'access-control-expose-headers', b'cache-control',b'connection',b'content-language',b'content-transfer-encoding', b'p3p',b'pragma',b'server',b'strict-transport-security',b'x-aspnetmvc-version', b'x-aspnet-version',b'x-cid',b'x-ms-version',b'x-xss-protection']) HTTP_Server.headers_data = [0,1,2] HTTP_Server.contextual_data = {b'via':'via'} else: HTTP_Server.static_names = set([]) HTTP_Server.static_names_and_values = set([]) HTTP_Server.headers_data = [] HTTP_Server.contextual_data = {} if 'static_names' in config['http_server']: if config['http_server']['static_names'] == ['*']: HTTP_Server.all_headers = True HTTP_Server.static_names = set(map(lambda x: x.encode(), config['http_server']['static_names'])) if 'static_names_and_values' in config['http_server']: if config['http_server']['static_names_and_values'] == ['*']: HTTP_Server.all_headers_and_data = True HTTP_Server.static_names_and_values = set(map(lambda x: x.encode(), config['http_server']['static_names_and_values'])) if 'preamble' in config['http_server']: if 'version' in config['http_server']['preamble']: HTTP_Server.headers_data.append(0) if 'code' in config['http_server']['preamble']: HTTP_Server.headers_data.append(1) if 'reason' in config['http_server']['preamble']: HTTP_Server.headers_data.append(2) if '*' in config['http_server']['preamble']: HTTP_Server.headers_data = [0,1,2] if 'context' in config['http_server']: for c in config['http_server']['context']: HTTP_Server.contextual_data[c.encode()] = c.lower().replace('-','_') @staticmethod def proto_identify(data, offset, data_len): if data_len-offset < 16: return False if (data[offset] == 72 and data[offset+1] == 84 and data[offset+2] == 84 and data[offset+3] == 80 and data[offset+4] == 47 and data[offset+5] == 49): return True return False @staticmethod def fingerprint(data, offset, data_len): t_ = data[offset:].split(b'\x0d\x0a', 1) response = t_[0].split(b'\x20',2) if len(response) < 2: return None, None c = [] for rh in HTTP_Server.headers_data: try: c.append('(%s)' % response[rh].hex()) except IndexError: c.append('()') if len(t_) == 1: return ''.join(c), None headers = t_[1].split(b'\x0d\x0a') if headers[0] == '': headers = headers[1:] http_ah = HTTP_Server.all_headers http_ahd = HTTP_Server.all_headers_and_data http_sn = HTTP_Server.static_names http_snv = HTTP_Server.static_names_and_values http_ctx = HTTP_Server.contextual_data context = [] for h_ in headers: if h_ == b'': break t0_ = h_.split(b'\x3a\x20',1)[0] t0_lower = t0_.lower() h_c = '' if http_ahd: h_c = h_.hex() elif t0_lower in http_snv: h_c = h_.hex() elif t0_lower in http_sn: h_c = t0_.hex() elif http_ah: h_c = t0_.hex() if h_c != '': c.append('(%s)' % h_c) if t0_lower in http_ctx: if b'\x3a\x20' in h_: try: context.append({'name':http_ctx[t0_lower], 'data':h_.split(b'\x3a\x20',1)[1].decode()}) except UnicodeDecodeError: context.append({'name':http_ctx[t0_lower], 'data':h_.split(b'\x3a\x20',1)[1].hex()}) else: context.append({'name':http_ctx[t0_lower], 'data':''}) return ''.join(c), context def get_human_readable(self, fp_str_): t_ = [bytes.fromhex(x[1:]) for x in fp_str_.split(')')[:-1]] try: fp_h = [{'version':t_[0].decode()},{'code':t_[1].decode()},{'response':t_[2].decode()}] except: fp_h = [{'version':t_[0].hex()},{'code':t_[1].hex()},{'response':t_[2].hex()}] for i in range(3, len(t_)-1): field = t_[i].split(b': ') if len(field) == 2: try: fp_h.append({field[0].decode(): field[1].decode()}) except: fp_h.append({field[0].hex(): field[1].hex()}) else: try: fp_h.append({field[0].decode(): ''}) except: fp_h.append({field[0].hex(): ''}) return fp_h
PypiClean
/collective.geo.polymaps-0.1.tar.gz/collective.geo.polymaps-0.1/collective/geo/polymaps/browser/viewlets.py
from zope.interface import implements from zope.component import getUtility from zope.component import queryAdapter from shapely.geometry import asShape from Products.CMFCore.utils import getToolByName from plone.app.layout.viewlets import ViewletBase from plone.registry.interfaces import IRegistry from collective.geo.geographer.interfaces import IGeoreferenced from collective.geo.settings.interfaces import ( IGeoCustomFeatureStyle, IGeoFeatureStyle, IGeoSettings) from collective.geo.polymaps.interfaces import IJsonPolymapsViewlet from utils import INLINE_STYLES, create_map_js class ContentViewlet(ViewletBase): implements(IJsonPolymapsViewlet) def get_js(self): defaultsetting = getUtility(IRegistry).forInterface(IGeoSettings) zoom = int(defaultsetting.zoom) shape = asShape(self.coordinates.geo) lat = shape.centroid.y lon = shape.centroid.x return create_map_js(self.context, self.layers()) @property def coordinates(self): return IGeoreferenced(self.context) @property def geofeaturestyle(self): self.custom_styles = queryAdapter(self.context, IGeoCustomFeatureStyle) self.defaultstyles = getUtility(IRegistry).forInterface(IGeoFeatureStyle) if self.custom_styles and self.custom_styles.use_custom_styles: return self.custom_styles else: return self.defaultstyles @property def map_inline_css(self): """Return inline CSS for our map according to style settings. """ inline_css = '' for style in INLINE_STYLES: value = getattr(self.geofeaturestyle, INLINE_STYLES[style], None) if value: inline_css += "%s:%s;" % (style, value) return inline_css or None @property def map_viewlet_position(self): return self.geofeaturestyle.map_viewlet_position def render(self): if 'polymaps:' + self.manager.__name__ != self.map_viewlet_position: return u'' coords = self.coordinates if coords.type and coords.coordinates: return super(ContentViewlet, self).render() else: return '' def layers(self): context_url = self.context.absolute_url() if not context_url.endswith('/'): context_url += '/' return [{'name': self.context.Title(), 'url': context_url + '@@geo-json.json', 'id': self.context.getId()}] class JSViewlet(ViewletBase): @property def portal_url(self): return getToolByName(self.context, 'portal_url')()
PypiClean
/XGEE-0.3.0.tar.gz/XGEE-0.3.0/xgee/core/plugins/ecoreSync/mdb/esSyncEvents.js
import UUID from '../util/uuid.js' const _watchEvent =(atoken) => { var resolveAnnouncement=() => {}; var rejectAnnouncement=() => {}; const promise=new Promise(function(resolve,reject){ resolveAnnouncement=(eObject) => { resolve(eObject) }; rejectAnnouncement=() => { reject() }; }) return { promise: promise, token: atoken, check: (token) => {return atoken==token}, resolve: (eObject) => { resolveAnnouncement(eObject) }, reject: () => { rejectAnnouncement(); } } }; export default class EsSyncLock{ constructor(){ this.events=new Map(); this.history=new Set(); } reserve(syncEventId){ let uuid=new UUID.v4 let token=null; if(!this.events.has(syncEventId)){ token=uuid.toString();; this.events.set(syncEventId,_watchEvent(token)); } return token; } fire(syncEventId,token,value,success=true){ var res=false; if(this.canFire(syncEventId,token) && this.events.has(syncEventId)){ if(success){ this.events.get(syncEventId).resolve(value); } else { this.events.get(syncEventId).reject(value); } this.history.add(syncEventId); this.events.delete(syncEventId); res=true; } return res; } isReserved(syncEventId){ var res=false; if(this.events.has(syncEventId)){ res=true; } return res; } canFire(syncEventId,token) { var res=false; if(!this.events.has(syncEventId)){ res=true; } else { if(this.events.get(syncEventId).check(token)) { res=true; } } return res; } async waitFor(syncEventId){ var event=this.events.get(syncEventId); if(event) { var res=await event.promise return res; } else { throw 'no event with id='+syncEventId+' is present' } } }
PypiClean
/swordcloud-0.0.9.tar.gz/swordcloud-0.0.9/README.md
# **swordcloud** `swordcloud`: A semantic word cloud generator that uses t-SNE and k-means clustering to visualize words in high-dimensional semantic space. Based on [A. Mueller's `wordcloud` module](https://github.com/amueller/word_cloud), `swordcloud` can generate semantic word clouds from Thai and English texts based on any word vector models. ## **Content** 1. [Installation](#installation) 2. [Usage](#usage)\ 2.1 [Initialize `SemanticWordCloud` instance](#initialize-semanticwordcloud-instance)\ 2.2 [Generate from Raw Text](#generate-from-raw-text)\ 2.3 [Generate from Word Frequencies](#generate-from-word-frequencies)\ 2.4 [Generate k-means Cluster Clouds](#generate-k-means-cluster-clouds)\ 2.5 [Recolor Words](#recolor-words)\ 2.6 [Export Word Clouds](#export-word-clouds) 3. [Color "Functions"](#color-functions) ## **Installation** `swordcloud` can be installed using `pip`: ``` pip install swordcloud ``` Optionally, if you want to be able to embed fonts directly into [the generated SVGs](#export-word-clouds), an `embedfont` extra can also be specified: ``` pip install swordcloud[embedfont] ``` As of **version 0.0.9**, the exact list of dependencies is as follow: - `python >= 3.8` - `numpy >= 1.21.0` - `pillow` - `matplotlib >= 1.5.3` - `gensim >= 4.0.0` - `pandas` - `pythainlp >= 3.1.0` - `k-means-constrained` - `scikit-learn` - (optional) `fonttools` ## **Usage** All code below can also be found in [the example folder](https://github.com/nlp-chula/swordcloud/tree/main/example). ### **Initialize `SemanticWordCloud` instance** For most use cases, the `SemanticWordCloud` class is the main API the users will be interacting with. ```python from swordcloud import SemanticWordCloud # See the `Color "Functions"` section for detail about these color functions from swordcloud.color_func import SingleColorFunc wordcloud = SemanticWordCloud( language = 'TH', width = 1600, height = 800, max_font_size = 150, prefer_horizontal = 1, color_func = SingleColorFunc('black') ) ``` Please refer to the documentation in [src/swordcloud/wordcloud.py](https://github.com/nlp-chula/swordcloud/blob/main/src/swordcloud/wordcloud.py) or in your IDE for more detail about various options available for customizing the word cloud. ### **Generate from Raw Text** ```python # Can also be one large string instead of a list of strings raw_text = list(map(str.strip, open('raw_text.txt', encoding='utf-8'))) wordcloud.generate_from_text(raw_txt, random_state=42) ``` ![Word cloud generated from raw text](https://raw.githubusercontent.com/nlp-chula/swordcloud/main/example/generate_from_raw_text.png) ### **Generate from Word Frequencies** ```python freq = {} for line in open("word_frequencies.tsv", encoding="utf-8"): word, count = line.strip().split('\t') freq[word] = int(count) wordcloud.generate_from_frequencies(freq, random_state=42) ``` ![Word cloud generated from word frequencies](https://raw.githubusercontent.com/nlp-chula/swordcloud/main/example/generate_from_frequencies.png) ### **Generate k-means Cluster Clouds** ```python wordcloud = SemanticWordCloud( language = 'TH', # make sure the canvas is appropriately large for the number of clusters width = 2400, height = 1200, max_font_size = 150, prefer_horizontal = 1, color_func = SingleColorFunc('black') ) wordcloud.generate_from_text(raw_text, kmeans=6, random_state=42) # Or directly from `generate_kmeans_cloud` if you already have word frequencies wordcloud.generate_kmeans_cloud(freq, n_clusters=6, random_state=42) # Each sub cloud can then be individually interacted with # by accessing individual cloud in `sub_clouds` attribute for cloud in wordcloud.sub_clouds: ... ``` |||| -|-|- ![Word cloud 1 generated from k-means clustering](https://raw.githubusercontent.com/nlp-chula/swordcloud/main/example/generate_kmeans_cloud_1.png)|![Word cloud 2 generated from k-means clustering](https://raw.githubusercontent.com/nlp-chula/swordcloud/main/example/generate_kmeans_cloud_2.png)|![Word cloud 3 generated from k-means clustering](https://raw.githubusercontent.com/nlp-chula/swordcloud/main/example/generate_kmeans_cloud_3.png) ![Word cloud 4 generated from k-means clustering](https://raw.githubusercontent.com/nlp-chula/swordcloud/main/example/generate_kmeans_cloud_4.png)|![Word cloud 5 generated from k-means clustering](https://raw.githubusercontent.com/nlp-chula/swordcloud/main/example/generate_kmeans_cloud_5.png)|![Word cloud 6 generated from k-means clustering](https://raw.githubusercontent.com/nlp-chula/swordcloud/main/example/generate_kmeans_cloud_6.png) ### **Recolor Words** ```python # If the generated colors are not to your liking # We can recolor them instead of re-generating the whole cloud from swordcloud.color_func import RandomColorFunc wordcloud.recolor(RandomColorFunc, random_state=42) ``` ![Recolored word cloud](https://raw.githubusercontent.com/nlp-chula/swordcloud/main/example/recolor.png) ### **Export Word Clouds** - As `pillow`'s `Image` ```python img = wordcloud.to_image() ``` - As image file ```python wordcloud.to_file('wordcloud.png') ``` - As SVG ```python # Without embedded font svg = wordcloud.to_svg() # With embedded font svg = wordcloud.to_svg(embed_font=True) # Note that in order to be able to embed fonts # the `fonttools` package needs to be installed ``` - As `numpy`'s image array ```python array = wordcloud.to_array() ``` ## **Color "Functions"** A number of built-in color "functions" can be accessed from `swordcloud.color_func`: ```python from swordcloud.color_func import <your_color_function_here> ``` The list of available functions is as follow: - `RandomColorFunc` (Default)\ Return a random color. - `ColorMapFunc`\ Return a random color from the user-specified [`matplotlib`'s colormap](https://matplotlib.org/stable/gallery/color/colormap_reference.html). - `ImageColorFunc`\ Use a user-provided colored image array to determine word color at each position on the canvas. - `SingleColorFunc`\ Always return the user-specified color every single time, resulting in every word having the same color. - `ExactColorFunc`\ Use a user-provided color dictionary to determine exactly which word should have which color. All the above functions, **except** `RandomColorFunc` which cannot be customized further, must be initialized before passing them to the `SemanticWordCloud` class. For example: ```python from swordcloud.color_func import ColorMapFunc color_func = ColorMapFunc("magma") wordcloud = SemanticWordCloud( ... color_func = color_func ... ) ``` Users can also implement their own color functions, provided that they are callable with the following signature: **Input**: - `word: str`\ The word we are coloring - `font_size: int`\ Font size of the word - `position: tuple[int, int]`\ Coordinate of the top-left point of the word's bounding box on the canvas - `orientation: int`\ [`pillow`'s orientation](https://pillow.readthedocs.io/en/stable/reference/Image.html#transpose-methods). - `font_path: str`\ Path to the font file (OTF or TFF) - `random_state: random.Random`\ Python's `random.Random` object **Return**:\ Any object that can be interpreted as a color by `pillow`. See [`pillow`'s documentation](https://pillow.readthedocs.io/en/stable/) for more detail. Internally, arguments to color functions are always passed as keyword arguments so they can be in any order. However, if your functions only use some of them, make sure to include `**kwargs` at the end of your function headers so that other arguments do not cause an error.
PypiClean
/kelvin_sdk-7.12.2-py3-none-any.whl/kelvin/sdk/lib/schema/schema_manager.py
import json from json import JSONDecodeError from typing import Any, Dict, Optional, Tuple import jsonschema import requests from jsonschema import RefResolver from yaml.parser import ParserError from kelvin.sdk.lib.configs.general_configs import GeneralConfigs from kelvin.sdk.lib.configs.schema_manager_configs import SchemaManagerConfigs from kelvin.sdk.lib.exceptions import InvalidApplicationConfiguration, InvalidSchemaVersionException from kelvin.sdk.lib.models.apps.ksdk_app_configuration import ApplicationFlavour, ProjectType from kelvin.sdk.lib.models.apps.ksdk_app_setup import ProjectCreationParametersObject from kelvin.sdk.lib.models.generic import KPath from kelvin.sdk.lib.models.ksdk_docker import DockerImageName from kelvin.sdk.lib.models.operation import OperationResponse from kelvin.sdk.lib.models.types import VersionStatus from kelvin.sdk.lib.session.session_manager import session_manager from kelvin.sdk.lib.utils.logger_utils import logger from kelvin.sdk.lib.utils.version_utils import assess_version_status _RESOLVER = RefResolver("https://apps.kelvininc.com/schemas/kelvin/", {}) def generate_base_schema_template(project_creation_parameters_object: ProjectCreationParametersObject) -> dict: """ Generate the base schema template. Attempt to retrieve the latest schema version and generate the default from it. Parameters ---------- project_creation_parameters_object : ProjectCreationParametersObject the app creation parameters object used to generate the default schema. Returns ------- dict A dict containing the default app creation object. """ latest_schema_version, latest_schema_contents, latest_schema_path = get_latest_app_schema_version() app_type_obj: Dict[str, Any] = {"type": project_creation_parameters_object.app_type.value} if project_creation_parameters_object.app_type == ProjectType.kelvin: kelvin_app_dict = build_kelvin_app_block(project_creation_parameters_object) app_type_obj.update(kelvin_app_dict) elif project_creation_parameters_object.app_type == ProjectType.bridge: language_block = {"type": project_creation_parameters_object.kelvin_app_lang.value} language_block.update(project_creation_parameters_object.get_language_block()) app_type_obj.update( { "bridge": { "logging_level": "INFO", "language": language_block, "configuration": {}, "metrics_map": [], } } ) else: app_type_obj.update( { "docker": { "dockerfile": "Dockerfile", "context": ".", "args": [], } } ) creation_object = { "spec_version": latest_schema_version, "info": { "name": project_creation_parameters_object.app_name, "title": project_creation_parameters_object.app_name, "version": "1.0.0", "description": project_creation_parameters_object.app_description or project_creation_parameters_object.app_name, }, "app": app_type_obj, } _validate_schema(content=creation_object, schema=latest_schema_contents) return creation_object def build_kelvin_app_block(project_creation_parameters_object: ProjectCreationParametersObject) -> dict: """Creates the app configuration for the kelvin apps Parameters ---------- project_creation_parameters_object : ProjectCreationParametersObject the app creation parameters object used to generate the default schema. Returns ------- dict The schema app block for kelvin apps """ # 1 - Create the language block language_block = {"type": project_creation_parameters_object.kelvin_app_lang.value} language_block.update(project_creation_parameters_object.get_language_block()) # 2 - Create the interface block kelvin_block = {"language": language_block} # add mqtt config if flavour is pubsub if project_creation_parameters_object.app_flavour is ApplicationFlavour.pubsub: broker_name = session_manager.get_current_session_metadata().sdk.components.kelvin_broker kelvin_broker_container = DockerImageName.parse(name=broker_name) kelvin_block.update( { "outputs": [ # type: ignore {"name": "bar", "data_type": "raw.float32", "targets": [{"asset_names": ["some-asset"]}]} ], "mqtt": { "ip": kelvin_broker_container.container_name, "port": GeneralConfigs.default_mqtt_port, # type: ignore }, } ) return { "kelvin": kelvin_block, } def validate_app_schema_from_app_config_file( app_config: Optional[Dict] = None, app_config_file_path: Optional[KPath] = None ) -> bool: """ When provided with an app configuration file, retrieve the schema for that version and validate it. Parameters ---------- app_config : Optional[Dict] the alternative app configuration to the app_config_file_path. app_config_file_path : Optional[KPath] the path to the app configuration. Returns ------- bool A boolean indicating whether or not the schema complies with the provided spec. """ app_config_content: dict = {} if app_config: app_config_content = app_config if not app_config_content and app_config_file_path: app_config_content = app_config_file_path.read_yaml() if not app_config_content: raise InvalidApplicationConfiguration() # Retrieve the current spec version, the minimum and latest values spec_version: str = "" try: spec_version = app_config_content.get("spec_version", "") current_session_metadata = session_manager.get_current_session_metadata() min_schema_version, latest_schema_version = current_session_metadata.get_min_and_latest_schema_versions() version_status = assess_version_status( current_version=spec_version, minimum_version=min_schema_version, latest_version=latest_schema_version ) if version_status == VersionStatus.UNSUPPORTED: raise InvalidSchemaVersionException( min_version=min_schema_version, current_version=spec_version, latest_version=latest_schema_version ) except InvalidSchemaVersionException: raise except Exception: logger.warning("No spec version defined. Proceeding with the latest schema version") latest_schema_contents, _ = _get_and_persist_app_schema( schema_url=SchemaManagerConfigs.general_app_schema_url, schema_version=spec_version ) return _validate_schema(content=app_config_content, schema=latest_schema_contents) def schema_validate( file_path: str, schema_file_path: Optional[str], full_schema_errors: bool = True ) -> OperationResponse: """ Validate a file against a schema. Parameters ---------- file_path : str The path to the file to validate. schema_file_path : Optional[str] The path to the schema file to validate the file against. full_schema_errors : bool Indicates whether or not it should log the complete stack trace. Returns ------- OperationResponse an OperationResponse object encapsulating the result of the file schema validation. """ try: file_path_object: KPath = KPath(file_path) if not file_path_object.exists(): raise ValueError("The provided file does not exist.") schema_file_path_object: Optional[KPath] = KPath(schema_file_path) if schema_file_path else None if schema_file_path_object and schema_file_path_object.exists(): schema_content = schema_file_path_object.read_yaml() else: _, schema_content, _ = get_latest_app_schema_version() file_content = file_path_object.read_yaml() validation_result = _validate_schema(content=file_content, schema=schema_content) success_message = "The provided file complies with the schema." logger.relevant(success_message) return OperationResponse(success=validation_result, log=success_message) except (jsonschema.exceptions.ValidationError, jsonschema.exceptions.SchemaError) as exc: error_message = exc.message if full_schema_errors: error_message = f"Error validating schema: {str(exc)}" logger.exception(error_message) return OperationResponse(success=False, log=error_message) except ParserError: error_message = "Invalid file format: Cannot parse yaml content" logger.exception(error_message) return OperationResponse(success=False, log=error_message) except Exception as exc: error_message = f"Error validating schema: {exc}" logger.exception(error_message) return OperationResponse(success=False, log=error_message) def schema_get(schema_file_path: Optional[str] = None) -> OperationResponse: """ Yield the the content of a schema. Parameters ---------- schema_file_path : Optional[str] The path to the schema file to yield. Returns ------- OperationResponse an OperationResponse object encapsulating the result of the file schema validation. """ try: schema_contents: dict = {} if schema_file_path: path_schema_file_path: KPath = KPath(schema_file_path.strip('"')).complete_path() if path_schema_file_path.exists(): schema_contents = path_schema_file_path.read_yaml() else: raise InvalidApplicationConfiguration(message="Please provide a valid file") else: _, schema_contents, _ = get_latest_app_schema_version() return OperationResponse(success=True, data=schema_contents) except Exception as exc: error_message = f"Error retrieving the schema: {exc}" logger.exception(error_message) return OperationResponse(success=False, log=error_message) def get_latest_app_schema_version() -> Tuple[str, dict, KPath]: """ Retrieve the latest app schema version and persist it to the configured schema directory. Returns ------- A Tuple containing: 1) latest spec version 2) the corresponding schema 3) the path to the persisted schema. """ logger.info("Retrieving the latest schema version") _, latest_schema_version = session_manager.get_current_session_metadata().get_min_and_latest_schema_versions() latest_schema_contents, latest_schema_file_path = _get_and_persist_app_schema( schema_url=SchemaManagerConfigs.general_app_schema_url, schema_version=latest_schema_version ) return latest_schema_version, latest_schema_contents, latest_schema_file_path def _validate_schema( content: dict, schema: Optional[dict] = None, schema_path: Optional[KPath] = None, resolver: RefResolver = _RESOLVER, ) -> bool: """ Validate a specific content against a schema. Parameters ---------- content : dict the content to validate. schema : Optional[dict] the schema, as a dict, to validate the content against. schema_path : Optional[KPath] the path to the schema to validate the content against. resolver: RefResolver optional resolver to override schema component cache Returns ------- bool A bool indicating whether the provided content is valid. """ schema_content = {} if schema: schema_content = schema if not schema_content and schema_path: logger.debug(f'Loading schema from "{schema_path}"') schema_content = json.loads(schema_path.read_text()) if not schema_content: raise InvalidApplicationConfiguration(message="Please provide a valid schema") jsonschema.validate(instance=content, schema=schema_content, resolver=resolver) logger.debug("Provided content successfully validated against the schema") return True def _get_and_persist_app_schema(schema_url: str, schema_version: str) -> Tuple[dict, KPath]: """ Attempt to retrieve the specified schema/version combination from the platform. Persist said combination in the default directory Parameters ---------- schema_url : str the url to retrieve the schema from. schema_version : str the latest schema version. Returns ------- Tuple[dict, KPath] A Tuple containing both the latest schema contents and the path to its persisted file. """ schema_contents: dict = {} schema_file_path = _get_schema_version_file_path(schema_version=schema_version) # 1 - If there's already a cached version, use it if schema_file_path and schema_file_path.exists(): logger.info(f"Valid schema available locally. Using cached version ({schema_file_path})") try: schema_contents = schema_file_path.read_json() except JSONDecodeError: schema_contents = {} # 2 - If not, fetch it and persist it if not schema_contents: schema_contents = _fetch_app_schema_from_url(schema_url=schema_url, schema_version=schema_version) schema_file_path.write_json(content=schema_contents) # 3 - Yield both the schema contents return schema_contents, schema_file_path def _fetch_app_schema_from_url(schema_url: str, schema_version: str) -> Dict: """ Fetch the targeted schema version from the provided schema url. Parameters ---------- schema_url : str the url to retrieve the schema from. schema_version : str the latest schema version. Returns ------- The latest schema contents of the platform. """ specific_app_schema_response = requests.get( schema_url.format(version=schema_version), timeout=SchemaManagerConfigs.request_timeout ) if specific_app_schema_response.status_code != 200: raise InvalidApplicationConfiguration(message=f'Invalid schema version "{schema_version}"') return specific_app_schema_response.json() def _get_schema_version_file_path(schema_version: str) -> KPath: """ Centralize all calls to get the ksdk schemas directory path. Parameters ---------- schema_version : str The version corresponding to the generated schema file path. Returns ------- KPath The KPath of the specific schema file. """ schema_storage_path: KPath = session_manager.get_global_ksdk_configuration().ksdk_schema_dir_path return KPath(schema_storage_path / f"{schema_version}.json").complete_path()
PypiClean
/tensorflow-gpu-macosx-1.8.1.tar.gz/tensorflow/contrib/framework/python/framework/graph_util.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import six # pylint: disable=unused-import from tensorflow.core.framework import graph_pb2 from tensorflow.core.framework import node_def_pb2 from tensorflow.python.framework import ops from tensorflow.python.framework.graph_util_impl import _assert_nodes_are_present from tensorflow.python.framework.graph_util_impl import _bfs_for_reachable_nodes from tensorflow.python.framework.graph_util_impl import _extract_graph_summary from tensorflow.python.framework.graph_util_impl import _node_name __all__ = ["fuse_op", "get_placeholders"] def fuse_op(graph_def, input_nodes, output_nodes, output_dtypes, output_quantized, op_name, op_type): """Fuse subgraph between input_nodes and output_nodes into a single custom op. Args: graph_def: A graph_pb2.GraphDef proto. input_nodes: input nodes to the subgraph to be fused. output_nodes: output nodes to the subgraph to be fused. output_dtypes: A list of output datatypes for the custom op output_quantized: A boolean flag that indicates if output is quantized op_name: fused op name. op_type: fused op type. Returns: The GraphDef of the new graph. Raises: TypeError: If 'graph_def' is not a graph_pb2.GraphDef proto. """ if not isinstance(graph_def, graph_pb2.GraphDef): raise TypeError("graph_def must be a graph_pb2.GraphDef proto.") if isinstance(input_nodes, six.string_types): raise TypeError("input_nodes must be a list.") if isinstance(output_nodes, six.string_types): raise TypeError("output_nodes must be a list.") name_to_input_name, name_to_node, name_to_seq_num = _extract_graph_summary( graph_def) _assert_nodes_are_present(name_to_node, input_nodes + output_nodes) # Nodes upto and including input_nodes reachable_by_input = _bfs_for_reachable_nodes(input_nodes, name_to_input_name) # Nodes upto and including output_nodes reachable_by_output = _bfs_for_reachable_nodes(output_nodes, name_to_input_name) # Set of nodes in the list input_nodes input_nodes_set = set(input_nodes) # Set of nodes in the list output_nodes output_nodes_set = set(output_nodes) nodes_post_output = [] for node in graph_def.node: n = _node_name(node.name) if n in reachable_by_output: if n not in reachable_by_input and n not in output_nodes_set: # n is between input and output, i.e., part of the fused op next_to_visit = [n] visited = set() while next_to_visit: cur_node = next_to_visit[0] visited.add(cur_node) del next_to_visit[0] if cur_node in reachable_by_input and cur_node not in input_nodes_set: raise TypeError("Node %s uses input %s not in input_nodes." % (n, cur_node)) if cur_node not in input_nodes_set: next_to_visit += [ input_node for input_node in name_to_input_name[cur_node] if input_node not in visited ] elif n not in reachable_by_input: nodes_post_output.append(n) # Add all nodes upto the input nodes out = graph_pb2.GraphDef() reachable_by_input_sorted = sorted( list(reachable_by_input), key=lambda n: name_to_seq_num[n]) for node in reachable_by_input_sorted: out.node.extend([copy.deepcopy(name_to_node[node])]) # Add the custom op new_node = node_def_pb2.NodeDef() for node in input_nodes: new_node.input.append(node) new_node.attr["_output_types"].list.type[:] = output_dtypes new_node.attr["_output_quantized"].b = output_quantized new_node.op = op_type new_node.name = op_name out.node.extend([new_node]) # Add the nodes in the output of the custom op for index, n in enumerate(output_nodes): assert len(name_to_node[n].input) == 1 new_node = copy.deepcopy(name_to_node[n]) del new_node.input[:] new_node.input.append(op_name + (":" + str(index) if index != 0 else "")) out.node.extend([new_node]) # Add the nodes post output_nodes for n in nodes_post_output: out.node.extend([copy.deepcopy(name_to_node[n])]) out.library.CopyFrom(graph_def.library) out.versions.CopyFrom(graph_def.versions) return out def get_placeholders(graph): """Get placeholders of a graph. For example: ```python a = tf.placeholder(dtype=tf.float32, shape=[2, 2], name='a') a = tf.placeholder(dtype=tf.int32, shape=[3, 2], name='b') tf.contrib.framework.get_placeholders(tf.get_default_graph()) # Returns: # [<tf.Tensor 'a:0' shape=(2, 2) dtype=float32>, # <tf.Tensor 'b:0' shape=(3, 2) dtype=int32>] ``` Args: graph: A tf.Graph. Returns: A list contains all placeholders of given graph. Raises: TypeError: If `graph` is not a tensorflow graph. """ if not isinstance(graph, ops.Graph): raise TypeError("Input graph needs to be a Graph: %s" % graph) # For each placeholder() call, there is a corresponding # operation of type 'Placeholder' registered to the graph. # The return value (a Tensor) of placeholder() is the # first output of this operation in fact. operations = graph.get_operations() result = [i.outputs[0] for i in operations if i.type == "Placeholder"] return result
PypiClean
/moralis-0.1.37.tar.gz/moralis-0.1.37/src/openapi_evm_api/paths/nft_address_trades/get.py
from dataclasses import dataclass import typing_extensions import urllib3 from urllib3._collections import HTTPHeaderDict from openapi_evm_api import api_client, exceptions from datetime import date, datetime # noqa: F401 import decimal # noqa: F401 import functools # noqa: F401 import io # noqa: F401 import re # noqa: F401 import typing # noqa: F401 import typing_extensions # noqa: F401 import uuid # noqa: F401 import frozendict # noqa: F401 from openapi_evm_api import schemas # noqa: F401 from openapi_evm_api.model.trade_collection import TradeCollection from openapi_evm_api.model.chain_list import ChainList from . import path # Query params ChainSchema = ChainList class FromBlockSchema( schemas.IntSchema ): class MetaOapg: inclusive_minimum = 0 ToBlockSchema = schemas.StrSchema FromDateSchema = schemas.StrSchema ToDateSchema = schemas.StrSchema class MarketplaceSchema( schemas.EnumBase, schemas.StrSchema ): class MetaOapg: enum_value_to_name = { "opensea": "OPENSEA", } @schemas.classproperty def OPENSEA(cls): return cls("opensea") CursorSchema = schemas.StrSchema class LimitSchema( schemas.IntSchema ): class MetaOapg: inclusive_minimum = 0 DisableTotalSchema = schemas.BoolSchema RequestRequiredQueryParams = typing_extensions.TypedDict( 'RequestRequiredQueryParams', { } ) RequestOptionalQueryParams = typing_extensions.TypedDict( 'RequestOptionalQueryParams', { 'chain': typing.Union[ChainSchema, ], 'from_block': typing.Union[FromBlockSchema, decimal.Decimal, int, ], 'to_block': typing.Union[ToBlockSchema, str, ], 'from_date': typing.Union[FromDateSchema, str, ], 'to_date': typing.Union[ToDateSchema, str, ], 'marketplace': typing.Union[MarketplaceSchema, str, ], 'cursor': typing.Union[CursorSchema, str, ], 'limit': typing.Union[LimitSchema, decimal.Decimal, int, ], 'disable_total': typing.Union[DisableTotalSchema, bool, ], }, total=False ) class RequestQueryParams(RequestRequiredQueryParams, RequestOptionalQueryParams): pass request_query_chain = api_client.QueryParameter( name="chain", style=api_client.ParameterStyle.FORM, schema=ChainSchema, explode=True, ) request_query_from_block = api_client.QueryParameter( name="from_block", style=api_client.ParameterStyle.FORM, schema=FromBlockSchema, explode=True, ) request_query_to_block = api_client.QueryParameter( name="to_block", style=api_client.ParameterStyle.FORM, schema=ToBlockSchema, explode=True, ) request_query_from_date = api_client.QueryParameter( name="from_date", style=api_client.ParameterStyle.FORM, schema=FromDateSchema, explode=True, ) request_query_to_date = api_client.QueryParameter( name="to_date", style=api_client.ParameterStyle.FORM, schema=ToDateSchema, explode=True, ) request_query_marketplace = api_client.QueryParameter( name="marketplace", style=api_client.ParameterStyle.FORM, schema=MarketplaceSchema, explode=True, ) request_query_cursor = api_client.QueryParameter( name="cursor", style=api_client.ParameterStyle.FORM, schema=CursorSchema, explode=True, ) request_query_limit = api_client.QueryParameter( name="limit", style=api_client.ParameterStyle.FORM, schema=LimitSchema, explode=True, ) request_query_disable_total = api_client.QueryParameter( name="disable_total", style=api_client.ParameterStyle.FORM, schema=DisableTotalSchema, explode=True, ) # Path params AddressSchema = schemas.StrSchema RequestRequiredPathParams = typing_extensions.TypedDict( 'RequestRequiredPathParams', { 'address': typing.Union[AddressSchema, str, ], } ) RequestOptionalPathParams = typing_extensions.TypedDict( 'RequestOptionalPathParams', { }, total=False ) class RequestPathParams(RequestRequiredPathParams, RequestOptionalPathParams): pass request_path_address = api_client.PathParameter( name="address", style=api_client.ParameterStyle.SIMPLE, schema=AddressSchema, required=True, ) _auth = [ 'ApiKeyAuth', ] SchemaFor200ResponseBodyApplicationJson = TradeCollection @dataclass class ApiResponseFor200(api_client.ApiResponse): response: urllib3.HTTPResponse body: typing.Union[ SchemaFor200ResponseBodyApplicationJson, ] headers: schemas.Unset = schemas.unset _response_for_200 = api_client.OpenApiResponse( response_cls=ApiResponseFor200, content={ 'application/json': api_client.MediaType( schema=SchemaFor200ResponseBodyApplicationJson), }, ) _status_code_to_response = { '200': _response_for_200, } _all_accept_content_types = ( 'application/json', ) class BaseApi(api_client.Api): @typing.overload def _get_nft_trades_oapg( self, query_params: RequestQueryParams = frozendict.frozendict(), path_params: RequestPathParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: typing_extensions.Literal[False] = ..., ) -> typing.Union[ ApiResponseFor200, ]: ... @typing.overload def _get_nft_trades_oapg( self, skip_deserialization: typing_extensions.Literal[True], query_params: RequestQueryParams = frozendict.frozendict(), path_params: RequestPathParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, ) -> api_client.ApiResponseWithoutDeserialization: ... @typing.overload def _get_nft_trades_oapg( self, query_params: RequestQueryParams = frozendict.frozendict(), path_params: RequestPathParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = ..., ) -> typing.Union[ ApiResponseFor200, api_client.ApiResponseWithoutDeserialization, ]: ... def _get_nft_trades_oapg( self, query_params: RequestQueryParams = frozendict.frozendict(), path_params: RequestPathParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = False, ): """ Get NFT trades by marketplace :param skip_deserialization: If true then api_response.response will be set but api_response.body and api_response.headers will not be deserialized into schema class instances """ self._verify_typed_dict_inputs_oapg(RequestQueryParams, query_params) self._verify_typed_dict_inputs_oapg(RequestPathParams, path_params) used_path = path.value _path_params = {} for parameter in ( request_path_address, ): parameter_data = path_params.get(parameter.name, schemas.unset) if parameter_data is schemas.unset: continue serialized_data = parameter.serialize(parameter_data) _path_params.update(serialized_data) for k, v in _path_params.items(): used_path = used_path.replace('{%s}' % k, v) prefix_separator_iterator = None for parameter in ( request_query_chain, request_query_from_block, request_query_to_block, request_query_from_date, request_query_to_date, request_query_marketplace, request_query_cursor, request_query_limit, request_query_disable_total, ): parameter_data = query_params.get(parameter.name, schemas.unset) if parameter_data is schemas.unset: continue if prefix_separator_iterator is None: prefix_separator_iterator = parameter.get_prefix_separator_iterator() serialized_data = parameter.serialize(parameter_data, prefix_separator_iterator) for serialized_value in serialized_data.values(): used_path += serialized_value _headers = HTTPHeaderDict() # TODO add cookie handling if accept_content_types: for accept_content_type in accept_content_types: _headers.add('Accept', accept_content_type) response = self.api_client.call_api( resource_path=used_path, method='get'.upper(), headers=_headers, auth_settings=_auth, stream=stream, timeout=timeout, ) if skip_deserialization: api_response = api_client.ApiResponseWithoutDeserialization(response=response) else: response_for_status = _status_code_to_response.get(str(response.status)) if response_for_status: api_response = response_for_status.deserialize(response, self.api_client.configuration) else: api_response = api_client.ApiResponseWithoutDeserialization(response=response) if not 200 <= response.status <= 299: raise exceptions.ApiException(api_response=api_response) return api_response class GetNftTrades(BaseApi): # this class is used by api classes that refer to endpoints with operationId fn names @typing.overload def get_nft_trades( self, query_params: RequestQueryParams = frozendict.frozendict(), path_params: RequestPathParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: typing_extensions.Literal[False] = ..., ) -> typing.Union[ ApiResponseFor200, ]: ... @typing.overload def get_nft_trades( self, skip_deserialization: typing_extensions.Literal[True], query_params: RequestQueryParams = frozendict.frozendict(), path_params: RequestPathParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, ) -> api_client.ApiResponseWithoutDeserialization: ... @typing.overload def get_nft_trades( self, query_params: RequestQueryParams = frozendict.frozendict(), path_params: RequestPathParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = ..., ) -> typing.Union[ ApiResponseFor200, api_client.ApiResponseWithoutDeserialization, ]: ... def get_nft_trades( self, query_params: RequestQueryParams = frozendict.frozendict(), path_params: RequestPathParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = False, ): return self._get_nft_trades_oapg( query_params=query_params, path_params=path_params, accept_content_types=accept_content_types, stream=stream, timeout=timeout, skip_deserialization=skip_deserialization ) class ApiForget(BaseApi): # this class is used by api classes that refer to endpoints by path and http method names @typing.overload def get( self, query_params: RequestQueryParams = frozendict.frozendict(), path_params: RequestPathParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: typing_extensions.Literal[False] = ..., ) -> typing.Union[ ApiResponseFor200, ]: ... @typing.overload def get( self, skip_deserialization: typing_extensions.Literal[True], query_params: RequestQueryParams = frozendict.frozendict(), path_params: RequestPathParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, ) -> api_client.ApiResponseWithoutDeserialization: ... @typing.overload def get( self, query_params: RequestQueryParams = frozendict.frozendict(), path_params: RequestPathParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = ..., ) -> typing.Union[ ApiResponseFor200, api_client.ApiResponseWithoutDeserialization, ]: ... def get( self, query_params: RequestQueryParams = frozendict.frozendict(), path_params: RequestPathParams = frozendict.frozendict(), accept_content_types: typing.Tuple[str] = _all_accept_content_types, stream: bool = False, timeout: typing.Optional[typing.Union[int, typing.Tuple]] = None, skip_deserialization: bool = False, ): return self._get_nft_trades_oapg( query_params=query_params, path_params=path_params, accept_content_types=accept_content_types, stream=stream, timeout=timeout, skip_deserialization=skip_deserialization )
PypiClean
/assemblyline_service_server-4.4.0.50-py3-none-any.whl/assemblyline_service_server/config.py
import logging import os import threading from assemblyline.common import forge from assemblyline.common import log as al_log from assemblyline.common.version import BUILD_MINOR, FRAMEWORK_VERSION, SYSTEM_VERSION from assemblyline.remote.datatypes.counters import Counters from assemblyline.remote.datatypes import get_client from assemblyline_core.safelist_client import SafelistClient from assemblyline_core.tasking_client import TaskingClient config = forge.get_config() redis = get_client( host=config.core.redis.nonpersistent.host, port=config.core.redis.nonpersistent.port, private=False, ) redis_persist = get_client( host=config.core.redis.persistent.host, port=config.core.redis.persistent.port, private=False, ) ################################################################# # Configuration CLASSIFICATION = forge.get_classification() DEBUG = config.ui.debug VERSION = os.environ.get('ASSEMBLYLINE_VERSION', f"{FRAMEWORK_VERSION}.{SYSTEM_VERSION}.{BUILD_MINOR}.dev0") AUTH_KEY = os.environ.get('SERVICE_API_KEY', 'ThisIsARandomAuthKey...ChangeMe!') RATE_LIMITER = Counters(prefix="quota", host=redis, track_counters=True) # End of Configuration ################################################################# ################################################################# # Prepare loggers config.logging.log_to_console = config.logging.log_to_console or DEBUG al_log.init_logging('svc', config=config) LOGGER = logging.getLogger('assemblyline.svc') LOGGER.debug('Logger ready!') # End of prepare logger ################################################################# ################################################################# # Global instances STORAGE = forge.get_datastore(config=config) FILESTORE = forge.get_filestore(config=config) LOCK = threading.Lock() TASKING_CLIENT = TaskingClient(datastore=STORAGE, filestore=FILESTORE, redis=redis, redis_persist=redis_persist) SAFELIST_CLIENT = SafelistClient(datastore=STORAGE) # End global #################################################################
PypiClean
/django-sencha-1.3.55555.tar.gz/django-sencha-1.3.55555/sencha/static/sencha/Ux/locale/override/st/picker/Date.js
Ext.define('Ux.locale.override.st.picker.Date', { override : 'Ext.picker.Date', setLocale : function(locale) { var me = this, locales = me.locales || me.getInitialConfig().locales, months = locales.months, day = locales.dayText, month = locales.monthText, year = locales.yearText, slotOrder = locales.slotOrder, manager = me.locale, defaultText = '', defaultDay = 'Day', defaultMonth = 'Month', defaultYear = 'Year', defaultSlotOrder = ['month', 'day', 'year'], slot, store, value; if(months) { if(Ext.isObject(months)) { defaultText = months.defaultText; months = months.key; } months = manager.get(months, defaultText); if(Ext.isObject(months)) { slot = this.down('pickerslot[name=month]'); store = slot && slot.getStore(); if(store) { store.each(function(rec) { value = rec.get('value'); rec.set('text', months[value]); }); } } } if(day) { if(Ext.isObject(day)) { defaultDay = day.defaultDay; day = day.key; } day = manager.get(day, defaultDay); if(Ext.isString(day)) { me.setDayText(day); } } if(month) { if(Ext.isObject(month)) { defaultMonth = month.defaultMonth; month = month.key; } month = manager.get(month, defaultMonth); if(Ext.isString(month)) { me.setMonthText(month); } } if(year) { if(Ext.isObject(year)) { defaultYear = year.defaultYear; year = year.key; } year = manager.get(year, defaultYear); if(Ext.isString(year)) { me.setYearText(year); } } if(slotOrder) { if(Ext.isObject(slotOrder)) { defaultSlotOrder = slotOrder.defaultSlotOrder; slotOrder = slotOrder.key; } slotOrder = Ext.JSON.decode(manager.get(slotOrder, defaultSlotOrder)); if(Ext.isArray(slotOrder)) { me.setSlotOrder(slotOrder); } } me.callParent(arguments); } });
PypiClean
/detectron2_cdo-0.5.tar.gz/detectron2_cdo-0.5/detectron2/model_zoo/configs/Misc/mmdet_mask_rcnn_R_50_FPN_1x.py
from ..common.data.coco import dataloader from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier from ..common.optim import SGD as optimizer from ..common.train import train from detectron2.modeling.mmdet_wrapper import MMDetDetector from detectron2.config import LazyCall as L model = L(MMDetDetector)( detector=dict( type="MaskRCNN", pretrained="torchvision://resnet50", backbone=dict( type="ResNet", depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type="BN", requires_grad=True), norm_eval=True, style="pytorch", ), neck=dict(type="FPN", in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5), rpn_head=dict( type="RPNHead", in_channels=256, feat_channels=256, anchor_generator=dict( type="AnchorGenerator", scales=[8], ratios=[0.5, 1.0, 2.0], strides=[4, 8, 16, 32, 64], ), bbox_coder=dict( type="DeltaXYWHBBoxCoder", target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[1.0, 1.0, 1.0, 1.0], ), loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=True, loss_weight=1.0), loss_bbox=dict(type="L1Loss", loss_weight=1.0), ), roi_head=dict( type="StandardRoIHead", bbox_roi_extractor=dict( type="SingleRoIExtractor", roi_layer=dict(type="RoIAlign", output_size=7, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32], ), bbox_head=dict( type="Shared2FCBBoxHead", in_channels=256, fc_out_channels=1024, roi_feat_size=7, num_classes=80, bbox_coder=dict( type="DeltaXYWHBBoxCoder", target_means=[0.0, 0.0, 0.0, 0.0], target_stds=[0.1, 0.1, 0.2, 0.2], ), reg_class_agnostic=False, loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0), loss_bbox=dict(type="L1Loss", loss_weight=1.0), ), mask_roi_extractor=dict( type="SingleRoIExtractor", roi_layer=dict(type="RoIAlign", output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[4, 8, 16, 32], ), mask_head=dict( type="FCNMaskHead", num_convs=4, in_channels=256, conv_out_channels=256, num_classes=80, loss_mask=dict(type="CrossEntropyLoss", use_mask=True, loss_weight=1.0), ), ), # model training and testing settings train_cfg=dict( rpn=dict( assigner=dict( type="MaxIoUAssigner", pos_iou_thr=0.7, neg_iou_thr=0.3, min_pos_iou=0.3, match_low_quality=True, ignore_iof_thr=-1, ), sampler=dict( type="RandomSampler", num=256, pos_fraction=0.5, neg_pos_ub=-1, add_gt_as_proposals=False, ), allowed_border=-1, pos_weight=-1, debug=False, ), rpn_proposal=dict( nms_pre=2000, max_per_img=1000, nms=dict(type="nms", iou_threshold=0.7), min_bbox_size=0, ), rcnn=dict( assigner=dict( type="MaxIoUAssigner", pos_iou_thr=0.5, neg_iou_thr=0.5, min_pos_iou=0.5, match_low_quality=True, ignore_iof_thr=-1, ), sampler=dict( type="RandomSampler", num=512, pos_fraction=0.25, neg_pos_ub=-1, add_gt_as_proposals=True, ), mask_size=28, pos_weight=-1, debug=False, ), ), test_cfg=dict( rpn=dict( nms_pre=1000, max_per_img=1000, nms=dict(type="nms", iou_threshold=0.7), min_bbox_size=0, ), rcnn=dict( score_thr=0.05, nms=dict(type="nms", iou_threshold=0.5), max_per_img=100, mask_thr_binary=0.5, ), ), ), pixel_mean=[123.675, 116.280, 103.530], pixel_std=[58.395, 57.120, 57.375], ) dataloader.train.mapper.image_format = "RGB" # torchvision pretrained model train.init_checkpoint = None # pretrained model is loaded inside backbone
PypiClean
/WebCore-2.0.4.tar.gz/WebCore-2.0.4/web/ext/annotation.py
# ## Imports from __future__ import unicode_literals from inspect import ismethod, getfullargspec from web.core.compat import items # ## Extension class AnnotationExtension(object): """Utilize Python 3 function annotations as a method to filter arguments coming in from the web. Argument annotations are treated as callbacks to execute, passing in the unicode value coming in from the web and swapping it with the value returned by the callback. This allows for trivial typecasting to most built-in Python types such as `int`, `float`, etc., as well as creative use such as `','.split` to automatically split a comma- separated value. One can of course also write custom callbacks, notably ones that raise `HTTPException` subclasses to not appear as an Internal Server Error. For example: def multiply(a: int, b: int): return str(a * b) This extension also performs a utility wrapping of returned values in the form of a 2-tuple of the return annotation itself and the value returned by the callable endpoint. This integrates well with the view registered by the `web.template` package to define a template at the head of the function, returning data for the template to consume: def hello(name="world"): -> 'mako:hello.html' return dict(name=name) If your editor has difficulty syntax highlighting such annotations, check for a Python 3 compatible update to your editor's syntax definitions. """ __slots__ = tuple() provides = ['annotation', 'cast', 'typecast'] # Export these symbols for other extensions to depend upon. # ### Request-Local Callbacks def mutate(self, context, handler, args, kw): """Inspect and potentially mutate the given handler's arguments. The args list and kw dictionary may be freely modified, though invalid arguments to the handler will fail. """ annotations = getattr(handler.__func__ if hasattr(handler, '__func__') else handler, '__annotations__', None) if not annotations: return argspec = getfullargspec(handler) arglist = list(argspec.args) if ismethod(handler): del arglist[0] for i, value in enumerate(list(args)): key = arglist[i] if key in annotations: args[i] = annotations[key](value) # Convert keyword arguments for key, value in list(items(kw)): if key in annotations: kw[key] = annotations[key](value) def transform(self, context, handler, result): """Transform the value returned by the controller endpoint. This extension transforms returned values if the endpoint has a return type annotation. """ handler = handler.__func__ if hasattr(handler, '__func__') else handler annotation = getattr(handler, '__annotations__', {}).get('return', None) if annotation: return (annotation, result) return result
PypiClean
/faculty_sync-0.4.1.tar.gz/faculty_sync-0.4.1/faculty_sync/controller.py
import logging import threading import time import traceback from concurrent.futures import ThreadPoolExecutor from .file_trees import ( compare_file_trees, get_remote_subdirectories, remote_is_dir, ) from .pubsub import Messages from .screens import ( DifferencesScreen, RemoteDirectoryPromptScreen, SynchronizationScreen, SynchronizationScreenDirection, WalkingFileTreesScreen, WalkingFileTreesStatus, WatchSyncScreen, ) from .ssh import sftp_from_ssh_details from .sync import Synchronizer from .watch_sync import WatcherSynchronizer class Controller(object): def __init__(self, configuration, ssh_details, view, exchange): self._configuration = configuration self._ssh_details = ssh_details self._sftp = sftp_from_ssh_details(self._ssh_details) self._view = view self._exchange = exchange self._stop_event = threading.Event() self._current_screen = None self._current_screen_subscriptions = [] self._thread = None self._executor = ThreadPoolExecutor(max_workers=8) self._synchronizer = None self._watcher_synchronizer = None def start(self): self._exchange.subscribe( Messages.STOP_CALLED, lambda _: self._stop_event.set() ) self._exchange.subscribe( Messages.VERIFY_REMOTE_DIRECTORY, lambda directory: self._submit( lambda: self._resolve_remote_directory(directory) ), ) self._exchange.subscribe( Messages.PROMPT_FOR_REMOTE_DIRECTORY, lambda _: self._submit(self._prompt_for_remote_directory), ) self._exchange.subscribe( Messages.START_INITIAL_FILE_TREE_WALK, lambda _: self._submit(self._show_differences), ) self._exchange.subscribe( Messages.DISPLAY_DIFFERENCES, lambda differences: self._submit( self._display_differences, differences ), ) self._exchange.subscribe( Messages.SYNC_PLATFORM_TO_LOCAL, lambda _: self._submit(self._sync_platform_to_local), ) self._exchange.subscribe( Messages.SYNC_LOCAL_TO_PLATFORM, lambda _: self._submit(self._sync_local_to_platform), ) self._exchange.subscribe( Messages.START_WATCH_SYNC, lambda _: self._submit(self._start_watch_sync), ) self._exchange.subscribe( Messages.ERROR_HANDLING_FS_EVENT, lambda _: self._submit(self._restart_watch_sync), ) self._exchange.subscribe( Messages.STOP_WATCH_SYNC, lambda _: self._submit(self._stop_watch_sync), ) self._exchange.subscribe( Messages.DOWN_IN_WATCH_SYNC, lambda _: self._submit(self._down_in_watch_sync), ) def run(): while not self._stop_event.is_set(): time.sleep(0.1) self._thread = threading.Thread(target=run) self._thread.start() self._exchange.publish( Messages.VERIFY_REMOTE_DIRECTORY, self._configuration.remote_dir ) def _submit(self, fn, *args, **kwargs): future = self._executor.submit(fn, *args, **kwargs) try: future.result() except Exception: traceback.print_exc() def _resolve_remote_directory(self, remote_dir): if remote_dir is not None: if remote_is_dir(remote_dir, self._sftp): logging.info( "Setting {} as remote directory".format(remote_dir) ) self._remote_dir = remote_dir.rstrip("/") + "/" self._synchronizer = Synchronizer( self._configuration.local_dir, self._remote_dir, self._ssh_details, self._configuration.ignore, ) self._exchange.publish( Messages.REMOTE_DIRECTORY_SET, self._remote_dir ) self._exchange.publish(Messages.START_INITIAL_FILE_TREE_WALK) else: self._exchange.publish(Messages.PROMPT_FOR_REMOTE_DIRECTORY) else: self._exchange.publish(Messages.PROMPT_FOR_REMOTE_DIRECTORY) def _prompt_for_remote_directory(self): self._clear_current_subscriptions() self._current_screen = RemoteDirectoryPromptScreen( self._exchange, get_paths_in_directory=lambda directory: list( get_remote_subdirectories(directory, self._sftp) ), ) self._view.mount(self._current_screen) def _sync_platform_to_local(self): self._clear_current_subscriptions() self._current_screen = SynchronizationScreen( direction=SynchronizationScreenDirection.DOWN ) self._view.mount(self._current_screen) self._synchronizer.down(rsync_opts=["--delete"]) self._show_differences() def _sync_local_to_platform(self): self._clear_current_subscriptions() self._current_screen = SynchronizationScreen( direction=SynchronizationScreenDirection.UP ) self._view.mount(self._current_screen) self._synchronizer.up(rsync_opts=["--delete"]) self._show_differences() def _display_differences(self, differences): self._clear_current_subscriptions() self._current_screen = DifferencesScreen(differences, self._exchange) subscription_id = self._exchange.subscribe( Messages.REFRESH_DIFFERENCES, lambda _: self._submit(self._show_differences), ) self._current_screen_subscriptions.append(subscription_id) self._view.mount(self._current_screen) def _clear_current_subscriptions(self): for subscription_id in self._current_screen_subscriptions: self._exchange.unsubscribe(subscription_id) def _show_differences(self): self._clear_current_subscriptions() self._current_screen = WalkingFileTreesScreen( WalkingFileTreesStatus.CONNECTING, self._exchange ) try: self._view.mount(self._current_screen) differences = self._calculate_differences(publish_progress=True) self._exchange.publish(Messages.DISPLAY_DIFFERENCES, differences) finally: self._current_screen.stop() def _calculate_differences(self, publish_progress=True): if publish_progress: self._exchange.publish( Messages.WALK_STATUS_CHANGE, WalkingFileTreesStatus.LOCAL_WALK ) local_files = self._synchronizer.list_local() logging.info( "Found {} files locally at path {}.".format( len(local_files), self._configuration.local_dir ) ) if publish_progress: self._exchange.publish( Messages.WALK_STATUS_CHANGE, WalkingFileTreesStatus.REMOTE_WALK ) remote_files = self._synchronizer.list_remote() logging.info( "Found {} files on Faculty Platform at path {}.".format( len(remote_files), self._configuration.remote_dir ) ) if publish_progress: self._exchange.publish( Messages.WALK_STATUS_CHANGE, WalkingFileTreesStatus.CALCULATING_DIFFERENCES, ) differences = list(compare_file_trees(local_files, remote_files)) return differences def _start_watch_sync(self): self._clear_current_subscriptions() self._current_screen = WatchSyncScreen(self._exchange) self._view.mount(self._current_screen) self._watcher_synchronizer = WatcherSynchronizer( self._sftp, self._synchronizer, self._exchange ) self._watcher_synchronizer.start() def _restart_watch_sync(self): self._clear_current_subscriptions() if self._watcher_synchronizer is not None: self._watcher_synchronizer.stop() self._synchronizer.up(rsync_opts=["--delete"]) self._start_watch_sync() def _stop_watch_sync(self): logging.info("Stopping watch-synchronization loop.") if self._watcher_synchronizer is not None: self._watcher_synchronizer.stop() self._show_differences() def _down_in_watch_sync(self): logging.info("Doing down synchronization as part of watch-sync.") if self._watcher_synchronizer is not None: self._watcher_synchronizer.stop() self._current_screen = SynchronizationScreen( direction=SynchronizationScreenDirection.DOWN ) self._view.mount(self._current_screen) self._synchronizer.down(rsync_opts=["--update"]) self._start_watch_sync() def join(self): self._thread.join()
PypiClean
/satnogs_decoders-1.60.0-py3-none-any.whl/satnogsdecoders/decoder/neudose.py
from pkg_resources import parse_version import kaitaistruct from kaitaistruct import KaitaiStruct, KaitaiStream, BytesIO if parse_version(kaitaistruct.__version__) < parse_version('0.9'): raise Exception("Incompatible Kaitai Struct Python API: 0.9 or later is required, but you have %s" % (kaitaistruct.__version__)) class Neudose(KaitaiStruct): """:field dest_callsign: ax25_header.dest_callsign_raw.callsign_ror.callsign :field src_callsign: ax25_header.src_callsign_raw.callsign_ror.callsign :field src_ssid: ax25_header.src_ssid_raw.ssid :field dest_ssid: ax25_header.dest_ssid_raw.ssid :field ctl: ax25_header.ctl :field pid: ax25_header.pid :field csp_hdr_crc: csp_header.crc :field csp_hdr_rdp: csp_header.rdp :field csp_hdr_xtea: csp_header.xtea :field csp_hdr_hmac: csp_header.hmac :field csp_hdr_src_port: csp_header.source_port :field csp_hdr_dst_port: csp_header.destination_port :field csp_hdr_destination: csp_header.destination :field csp_hdr_source: csp_header.source :field csp_hdr_priority: csp_header.priority :field last_rx_timestamp_raw: beacon.last_rx_timestamp_raw :field packet_version: beacon.packet_version :field unix_timestamp: beacon.unix_timestamp :field cdh_on: beacon.sat_status.cdh_on :field eps_on: beacon.sat_status.eps_on :field comms_on: beacon.sat_status.comms_on :field antenna_on: beacon.sat_status.antenna_on :field payload_on: beacon.sat_status.payload_on :field mech: beacon.sat_status.mech :field thermal: beacon.sat_status.thermal :field antenna_deployed: beacon.sat_status.antenna_deployed :field last_gs_conn_timestamp: beacon.last_gs_conn_timestamp :field eps_bat_state: beacon.eps_status.bat_state :field eps_bat_htr_state: beacon.eps_status.bat_htr_state :field eps_bat_htr_mode: beacon.eps_status.bat_htr_mode :field eps_last_reset_rsn: beacon.eps_status.last_reset_rsn :field eps_gs_wtdg_rst_mark: beacon.eps_status.gs_wtdg_rst_mark :field eps_uptime: beacon.eps_uptime :field eps_vbat: beacon.eps_vbat :field eps_bat_chrge_curr: beacon.eps_bat_chrge_curr :field eps_bat_dischrge_curr: beacon.eps_bat_dischrge_curr :field eps_mppt_conv1_temp: beacon.eps_temp.mppt_conv1 :field eps_mppt_conv2_temp: beacon.eps_temp.mppt_conv2 :field eps_mppt_conv3_temp: beacon.eps_temp.mppt_conv3 :field eps_out_conv_3v3_temp: beacon.eps_temp.out_conv_3v3 :field eps_out_conv_5v0_temp: beacon.eps_temp.out_conv_5v0 :field eps_battery_pack_temp: beacon.eps_temp.battery_pack :field eps_solar_panel_y_n_curr: beacon.eps_solar_panel_curr.y_n :field eps_solar_panel_y_p_curr: beacon.eps_solar_panel_curr.y_p :field eps_solar_panel_x_n_curr: beacon.eps_solar_panel_curr.x_n :field eps_solar_panel_x_p_curr: beacon.eps_solar_panel_curr.x_p :field eps_solar_panel_z_n_curr: beacon.eps_solar_panel_curr.z_n :field eps_solar_panel_z_p_curr: beacon.eps_solar_panel_curr.z_p :field eps_cdh_channel_curr_out: beacon.eps_channel_curr_out.cdh :field eps_comm_3v3_channel_curr_out: beacon.eps_channel_curr_out.comm_3v3 :field eps_comm_5v0_channel_curr_out: beacon.eps_channel_curr_out.comm_5v0 :field eps_ant_channel_curr_out: beacon.eps_channel_curr_out.ant :field eps_pld_channel_curr_out: beacon.eps_channel_curr_out.pld :field cdh_curr_state: beacon.cdh_curr_state :field cdh_prev_state: beacon.cdh_prev_state :field cdh_reset_cause: beacon.cdh_boot_reset_cause.reset_cause :field cdh_boot_cause: beacon.cdh_boot_reset_cause.boot_cause :field cdh_uptime: beacon.cdh_uptime :field cdh_temp_mcu_raw: beacon.cdh_temp_mcu_raw :field cdh_temp_ram_raw: beacon.cdh_temp_ram_raw :field comms_rtsm_state: beacon.comms_status.rtsm_state :field comms_rst_reason: beacon.comms_status.rst_reason :field comms_boot_img_bank: beacon.comms_status.boot_img_bank :field comms_uptime_raw: beacon.comms_uptime_raw :field comms_ina233_pa_curr_raw: beacon.comms_ina233_pa_curr_raw :field comms_ad7294_pa_curr_raw: beacon.comms_ad7294_pa_curr_raw :field comms_ad7294_gate_volt_raw: beacon.comms_ad7294_gate_volt_raw :field comms_cc1125_rssi_raw: beacon.comms_cc1125_rssi_raw :field comms_lna_therm_temp: beacon.comms_temp.lna_therm :field comms_lna_diode_temp: beacon.comms_temp.lna_diode :field comms_stm32_internal_temp: beacon.comms_temp.stm32_internal :field comms_cc1125_uhf_temp: beacon.comms_temp.cc1125_uhf :field comms_cc1125_vhf_temp: beacon.comms_temp.cc1125_vhf :field comms_pa_therm_temp: beacon.comms_temp.pa_therm :field comms_pa_diode_temp: beacon.comms_temp.pa_diode :field comms_pa_therm_strap_temp: beacon.comms_temp.pa_therm_strap :field comms_ad7294_internal_temp: beacon.comms_temp.ad7294_internal :field ant_deployment_status: beacon.ant_deployment_status :field ant_prev_isis_status: beacon.ant_prev_isis_status :field pld_status: beacon.pld_status """ def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.ax25_header = Neudose.Ax25HeaderT(self._io, self, self._root) self.csp_header = Neudose.CspHeaderT(self._io, self, self._root) self.beacon = Neudose.BeaconT(self._io, self, self._root) class EpsSolarPanelCurrT(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.eps_solar_panel_curr = self._io.read_bytes(12) @property def z_p(self): if hasattr(self, '_m_z_p'): return self._m_z_p if hasattr(self, '_m_z_p') else None self._m_z_p = ((KaitaiStream.byte_array_index(self.eps_solar_panel_curr, 10) << 8) + KaitaiStream.byte_array_index(self.eps_solar_panel_curr, 11)) return self._m_z_p if hasattr(self, '_m_z_p') else None @property def x_p(self): if hasattr(self, '_m_x_p'): return self._m_x_p if hasattr(self, '_m_x_p') else None self._m_x_p = ((KaitaiStream.byte_array_index(self.eps_solar_panel_curr, 6) << 8) + KaitaiStream.byte_array_index(self.eps_solar_panel_curr, 7)) return self._m_x_p if hasattr(self, '_m_x_p') else None @property def y_p(self): if hasattr(self, '_m_y_p'): return self._m_y_p if hasattr(self, '_m_y_p') else None self._m_y_p = ((KaitaiStream.byte_array_index(self.eps_solar_panel_curr, 2) << 8) + KaitaiStream.byte_array_index(self.eps_solar_panel_curr, 3)) return self._m_y_p if hasattr(self, '_m_y_p') else None @property def x_n(self): if hasattr(self, '_m_x_n'): return self._m_x_n if hasattr(self, '_m_x_n') else None self._m_x_n = ((KaitaiStream.byte_array_index(self.eps_solar_panel_curr, 4) << 8) + KaitaiStream.byte_array_index(self.eps_solar_panel_curr, 5)) return self._m_x_n if hasattr(self, '_m_x_n') else None @property def y_n(self): if hasattr(self, '_m_y_n'): return self._m_y_n if hasattr(self, '_m_y_n') else None self._m_y_n = ((KaitaiStream.byte_array_index(self.eps_solar_panel_curr, 0) << 8) + KaitaiStream.byte_array_index(self.eps_solar_panel_curr, 1)) return self._m_y_n if hasattr(self, '_m_y_n') else None @property def z_n(self): if hasattr(self, '_m_z_n'): return self._m_z_n if hasattr(self, '_m_z_n') else None self._m_z_n = ((KaitaiStream.byte_array_index(self.eps_solar_panel_curr, 8) << 8) + KaitaiStream.byte_array_index(self.eps_solar_panel_curr, 9)) return self._m_z_n if hasattr(self, '_m_z_n') else None class SatStatusT(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.sat_status = self._io.read_u1() @property def comms_on(self): if hasattr(self, '_m_comms_on'): return self._m_comms_on if hasattr(self, '_m_comms_on') else None self._m_comms_on = ((self.sat_status >> 5) & 1) return self._m_comms_on if hasattr(self, '_m_comms_on') else None @property def antenna_on(self): if hasattr(self, '_m_antenna_on'): return self._m_antenna_on if hasattr(self, '_m_antenna_on') else None self._m_antenna_on = ((self.sat_status >> 4) & 1) return self._m_antenna_on if hasattr(self, '_m_antenna_on') else None @property def cdh_on(self): if hasattr(self, '_m_cdh_on'): return self._m_cdh_on if hasattr(self, '_m_cdh_on') else None self._m_cdh_on = ((self.sat_status >> 7) & 1) return self._m_cdh_on if hasattr(self, '_m_cdh_on') else None @property def mech(self): if hasattr(self, '_m_mech'): return self._m_mech if hasattr(self, '_m_mech') else None self._m_mech = ((self.sat_status >> 2) & 1) return self._m_mech if hasattr(self, '_m_mech') else None @property def antenna_deployed(self): if hasattr(self, '_m_antenna_deployed'): return self._m_antenna_deployed if hasattr(self, '_m_antenna_deployed') else None self._m_antenna_deployed = ((self.sat_status >> 0) & 1) return self._m_antenna_deployed if hasattr(self, '_m_antenna_deployed') else None @property def thermal(self): if hasattr(self, '_m_thermal'): return self._m_thermal if hasattr(self, '_m_thermal') else None self._m_thermal = ((self.sat_status >> 1) & 1) return self._m_thermal if hasattr(self, '_m_thermal') else None @property def eps_on(self): if hasattr(self, '_m_eps_on'): return self._m_eps_on if hasattr(self, '_m_eps_on') else None self._m_eps_on = ((self.sat_status >> 6) & 1) return self._m_eps_on if hasattr(self, '_m_eps_on') else None @property def payload_on(self): if hasattr(self, '_m_payload_on'): return self._m_payload_on if hasattr(self, '_m_payload_on') else None self._m_payload_on = ((self.sat_status >> 3) & 1) return self._m_payload_on if hasattr(self, '_m_payload_on') else None class Callsign(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.callsign = (self._io.read_bytes(6)).decode(u"ASCII") class Ax25HeaderT(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.dest_callsign_raw = Neudose.CallsignRaw(self._io, self, self._root) self.dest_ssid_raw = Neudose.SsidMask(self._io, self, self._root) self.src_callsign_raw = Neudose.CallsignRaw(self._io, self, self._root) self.src_ssid_raw = Neudose.SsidMask(self._io, self, self._root) self.ctl = self._io.read_u1() self.pid = self._io.read_u1() class CommsStatusT(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.comms_status = self._io.read_u1() @property def rtsm_state(self): if hasattr(self, '_m_rtsm_state'): return self._m_rtsm_state if hasattr(self, '_m_rtsm_state') else None self._m_rtsm_state = ((self.comms_status >> 5) & 7) return self._m_rtsm_state if hasattr(self, '_m_rtsm_state') else None @property def rst_reason(self): if hasattr(self, '_m_rst_reason'): return self._m_rst_reason if hasattr(self, '_m_rst_reason') else None self._m_rst_reason = ((self.comms_status >> 2) & 7) return self._m_rst_reason if hasattr(self, '_m_rst_reason') else None @property def boot_img_bank(self): if hasattr(self, '_m_boot_img_bank'): return self._m_boot_img_bank if hasattr(self, '_m_boot_img_bank') else None self._m_boot_img_bank = ((self.comms_status >> 0) & 3) return self._m_boot_img_bank if hasattr(self, '_m_boot_img_bank') else None class EpsChannelCurrOutT(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.eps_channel_curr_out = self._io.read_bytes(10) @property def cdh(self): if hasattr(self, '_m_cdh'): return self._m_cdh if hasattr(self, '_m_cdh') else None self._m_cdh = ((KaitaiStream.byte_array_index(self.eps_channel_curr_out, 0) << 8) + KaitaiStream.byte_array_index(self.eps_channel_curr_out, 1)) return self._m_cdh if hasattr(self, '_m_cdh') else None @property def ant(self): if hasattr(self, '_m_ant'): return self._m_ant if hasattr(self, '_m_ant') else None self._m_ant = ((KaitaiStream.byte_array_index(self.eps_channel_curr_out, 6) << 8) + KaitaiStream.byte_array_index(self.eps_channel_curr_out, 7)) return self._m_ant if hasattr(self, '_m_ant') else None @property def comm_3v3(self): if hasattr(self, '_m_comm_3v3'): return self._m_comm_3v3 if hasattr(self, '_m_comm_3v3') else None self._m_comm_3v3 = ((KaitaiStream.byte_array_index(self.eps_channel_curr_out, 2) << 8) + KaitaiStream.byte_array_index(self.eps_channel_curr_out, 3)) return self._m_comm_3v3 if hasattr(self, '_m_comm_3v3') else None @property def comm_5v0(self): if hasattr(self, '_m_comm_5v0'): return self._m_comm_5v0 if hasattr(self, '_m_comm_5v0') else None self._m_comm_5v0 = ((KaitaiStream.byte_array_index(self.eps_channel_curr_out, 4) << 8) + KaitaiStream.byte_array_index(self.eps_channel_curr_out, 5)) return self._m_comm_5v0 if hasattr(self, '_m_comm_5v0') else None @property def pld(self): if hasattr(self, '_m_pld'): return self._m_pld if hasattr(self, '_m_pld') else None self._m_pld = ((KaitaiStream.byte_array_index(self.eps_channel_curr_out, 8) << 8) + KaitaiStream.byte_array_index(self.eps_channel_curr_out, 9)) return self._m_pld if hasattr(self, '_m_pld') else None class CommsTempT(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.lna_therm = self._io.read_s1() self.lna_diode = self._io.read_s1() self.stm32_internal = self._io.read_s1() self.cc1125_uhf = self._io.read_s1() self.cc1125_vhf = self._io.read_s1() self.pa_therm = self._io.read_s1() self.pa_diode = self._io.read_s1() self.pa_therm_strap = self._io.read_s1() self.ad7294_internal = self._io.read_s1() class BeaconT(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.last_rx_timestamp_raw = self._io.read_u4be() self.packet_version = self._io.read_u1() self.unix_timestamp = self._io.read_u4be() self.sat_status = Neudose.SatStatusT(self._io, self, self._root) self.last_gs_conn_timestamp = self._io.read_u4be() self.eps_status = Neudose.EpsStatusT(self._io, self, self._root) self.eps_uptime = self._io.read_u4be() self.eps_vbat = self._io.read_u2be() self.eps_bat_chrge_curr = self._io.read_u2be() self.eps_bat_dischrge_curr = self._io.read_u2be() self.eps_temp = Neudose.EpsTempT(self._io, self, self._root) self.eps_solar_panel_curr = Neudose.EpsSolarPanelCurrT(self._io, self, self._root) self.eps_channel_curr_out = Neudose.EpsChannelCurrOutT(self._io, self, self._root) self.cdh_curr_state = self._io.read_u1() self.cdh_prev_state = self._io.read_u1() self.cdh_boot_reset_cause = Neudose.CdhBootResetCauseT(self._io, self, self._root) self.cdh_uptime = self._io.read_u4be() self.cdh_temp_mcu_raw = self._io.read_s2be() self.cdh_temp_ram_raw = self._io.read_s2be() self.comms_status = Neudose.CommsStatusT(self._io, self, self._root) self.comms_uptime_raw = self._io.read_u4be() self.comms_ina233_pa_curr_raw = self._io.read_u2be() self.comms_ad7294_pa_curr_raw = self._io.read_u2be() self.comms_ad7294_gate_volt_raw = self._io.read_u2be() self.comms_cc1125_rssi_raw = self._io.read_u2be() self.comms_temp = Neudose.CommsTempT(self._io, self, self._root) self.ant_deployment_status = self._io.read_u1() self.ant_prev_isis_status = self._io.read_u2be() self.pld_status = self._io.read_u1() class SsidMask(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.ssid_mask = self._io.read_u1() @property def ssid(self): if hasattr(self, '_m_ssid'): return self._m_ssid if hasattr(self, '_m_ssid') else None self._m_ssid = ((self.ssid_mask & 15) >> 1) return self._m_ssid if hasattr(self, '_m_ssid') else None class EpsTempT(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.mppt_conv1 = self._io.read_s1() self.mppt_conv2 = self._io.read_s1() self.mppt_conv3 = self._io.read_s1() self.out_conv_3v3 = self._io.read_s1() self.out_conv_5v0 = self._io.read_s1() self.battery_pack = self._io.read_s1() class CspHeaderT(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.csp_length = self._io.read_u2be() self.csp_header_raw = self._io.read_u4be() @property def source(self): if hasattr(self, '_m_source'): return self._m_source if hasattr(self, '_m_source') else None self._m_source = ((self.csp_header_raw >> 25) & 31) return self._m_source if hasattr(self, '_m_source') else None @property def source_port(self): if hasattr(self, '_m_source_port'): return self._m_source_port if hasattr(self, '_m_source_port') else None self._m_source_port = ((self.csp_header_raw >> 8) & 63) return self._m_source_port if hasattr(self, '_m_source_port') else None @property def destination_port(self): if hasattr(self, '_m_destination_port'): return self._m_destination_port if hasattr(self, '_m_destination_port') else None self._m_destination_port = ((self.csp_header_raw >> 14) & 63) return self._m_destination_port if hasattr(self, '_m_destination_port') else None @property def rdp(self): if hasattr(self, '_m_rdp'): return self._m_rdp if hasattr(self, '_m_rdp') else None self._m_rdp = ((self.csp_header_raw & 2) >> 1) return self._m_rdp if hasattr(self, '_m_rdp') else None @property def destination(self): if hasattr(self, '_m_destination'): return self._m_destination if hasattr(self, '_m_destination') else None self._m_destination = ((self.csp_header_raw >> 20) & 31) return self._m_destination if hasattr(self, '_m_destination') else None @property def priority(self): if hasattr(self, '_m_priority'): return self._m_priority if hasattr(self, '_m_priority') else None self._m_priority = (self.csp_header_raw >> 30) return self._m_priority if hasattr(self, '_m_priority') else None @property def reserved(self): if hasattr(self, '_m_reserved'): return self._m_reserved if hasattr(self, '_m_reserved') else None self._m_reserved = ((self.csp_header_raw >> 4) & 15) return self._m_reserved if hasattr(self, '_m_reserved') else None @property def xtea(self): if hasattr(self, '_m_xtea'): return self._m_xtea if hasattr(self, '_m_xtea') else None self._m_xtea = ((self.csp_header_raw & 4) >> 2) return self._m_xtea if hasattr(self, '_m_xtea') else None @property def hmac(self): if hasattr(self, '_m_hmac'): return self._m_hmac if hasattr(self, '_m_hmac') else None self._m_hmac = ((self.csp_header_raw & 8) >> 3) return self._m_hmac if hasattr(self, '_m_hmac') else None @property def crc(self): if hasattr(self, '_m_crc'): return self._m_crc if hasattr(self, '_m_crc') else None self._m_crc = (self.csp_header_raw & 1) return self._m_crc if hasattr(self, '_m_crc') else None class CallsignRaw(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self._raw__raw_callsign_ror = self._io.read_bytes(6) self._raw_callsign_ror = KaitaiStream.process_rotate_left(self._raw__raw_callsign_ror, 8 - (1), 1) _io__raw_callsign_ror = KaitaiStream(BytesIO(self._raw_callsign_ror)) self.callsign_ror = Neudose.Callsign(_io__raw_callsign_ror, self, self._root) class CdhBootResetCauseT(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.cdh_boot_reset_cause = self._io.read_u1() @property def boot_cause(self): if hasattr(self, '_m_boot_cause'): return self._m_boot_cause if hasattr(self, '_m_boot_cause') else None self._m_boot_cause = ((self.cdh_boot_reset_cause >> 4) & 15) return self._m_boot_cause if hasattr(self, '_m_boot_cause') else None @property def reset_cause(self): if hasattr(self, '_m_reset_cause'): return self._m_reset_cause if hasattr(self, '_m_reset_cause') else None self._m_reset_cause = ((self.cdh_boot_reset_cause >> 0) & 15) return self._m_reset_cause if hasattr(self, '_m_reset_cause') else None class EpsStatusT(KaitaiStruct): def __init__(self, _io, _parent=None, _root=None): self._io = _io self._parent = _parent self._root = _root if _root else self self._read() def _read(self): self.eps_status = self._io.read_u1() @property def gs_wtdg_rst_mark(self): if hasattr(self, '_m_gs_wtdg_rst_mark'): return self._m_gs_wtdg_rst_mark if hasattr(self, '_m_gs_wtdg_rst_mark') else None self._m_gs_wtdg_rst_mark = ((self.eps_status >> 0) & 1) return self._m_gs_wtdg_rst_mark if hasattr(self, '_m_gs_wtdg_rst_mark') else None @property def bat_htr_mode(self): if hasattr(self, '_m_bat_htr_mode'): return self._m_bat_htr_mode if hasattr(self, '_m_bat_htr_mode') else None self._m_bat_htr_mode = ((self.eps_status >> 4) & 1) return self._m_bat_htr_mode if hasattr(self, '_m_bat_htr_mode') else None @property def bat_htr_state(self): if hasattr(self, '_m_bat_htr_state'): return self._m_bat_htr_state if hasattr(self, '_m_bat_htr_state') else None self._m_bat_htr_state = ((self.eps_status >> 5) & 1) return self._m_bat_htr_state if hasattr(self, '_m_bat_htr_state') else None @property def bat_state(self): if hasattr(self, '_m_bat_state'): return self._m_bat_state if hasattr(self, '_m_bat_state') else None self._m_bat_state = ((self.eps_status >> 6) & 3) return self._m_bat_state if hasattr(self, '_m_bat_state') else None @property def last_reset_rsn(self): if hasattr(self, '_m_last_reset_rsn'): return self._m_last_reset_rsn if hasattr(self, '_m_last_reset_rsn') else None self._m_last_reset_rsn = ((self.eps_status >> 1) & 7) return self._m_last_reset_rsn if hasattr(self, '_m_last_reset_rsn') else None
PypiClean
/mouse_behavior_analysis_tools-1.0.0-py3-none-any.whl/mouse_behavior_analysis_tools/utils/custom_functions.py
import datetime import ntpath import random import re import sys from itertools import chain, compress import numpy as np import pandas as pd # import glob # import socket import scipy.optimize as opt from sklearn.linear_model import LinearRegression, LogisticRegressionCV from mouse_behavior_analysis_tools.utils.misc_utils import update_progress def first_diff_zero(array): # define a function that returns only those indices of a binary! # vector (0 or 1) # where some values are first different than 0 # create a new vector that is the same but shifted # move everything one space forward newarray = np.concatenate((0, array), axis=None)[0 : len(array)] difarray = array - newarray get_indexes = lambda x, xs: [ i for (y, i) in zip(xs, range(len(xs))) if x == y ] # find which indexes are 1 indexes = get_indexes(1, difarray) return indexes def time_to_zero(input_list): return list(np.array(input_list) - input_list[0]) def ParseForTimes(files): # looks for 8digits followed by underscore and 6digits (bpod style) dates = [] for title in files: try: match = re.search(r"\d{8}_\d{6}", ntpath.basename(title)) dates.append(match.group()) except Exception: dates.append("notFound") return dates def BpodDatesToTime(inputDates): # assumes input style YYYYMMDD_HHMMSS # returns a time object outputDates = [] for date in inputDates: try: x = datetime.datetime( int(date[0:4]), int(date[4:6]), int(date[6:8]), int(date[9:11]), int(date[11:13]), ) outputDates.append(x) except Exception: outputDates.append("notFound") return outputDates def PsychPerformance(trialsDif, sideSelected): # function to calculate psychometric performance and # fit logistic regression to the data # returns a dictionary if trialsDif.any(): # in case an empty thing is passed # masks to remove nans for logistic regression nan_mask = ~(np.isnan(trialsDif) | np.isnan(sideSelected)) # logistic regression if len(np.unique(sideSelected)) > 1: clf = LogisticRegressionCV(cv=3).fit( trialsDif[nan_mask, np.newaxis], sideSelected[nan_mask] ) else: # in case a model cannot be fitted # (e.g. mouse always goes to the left) # fit model on dummy data clf = LogisticRegressionCV(cv=3).fit( np.array([0, 0, 0, 100, 100, 100]).reshape(-1, 1), np.array([1, 0, 1, 0, 1, 0]), ) # Calculate performance # Initialize values difficulty = np.unique(trialsDif[~np.isnan(trialsDif)]) performance = np.full(len(difficulty), np.nan) for i in range(len(difficulty)): if np.nansum(sideSelected[trialsDif == difficulty[i]]) > 0: performance[i] = 100 * ( np.nanmean(sideSelected[trialsDif == difficulty[i]]) - 1 ) else: performance[i] = np.nan DictToReturn = { "Difficulty": difficulty, "Performance": performance, "Logit": clf, } else: DictToReturn = {} return DictToReturn def splitOpto(SessionData): # SessionData comes from bpod: ExperimentData[x]['SessionData'] # Returns two dictionaries Trials_normalMask = SessionData["OptoStim"] == 0 Trials_optoMask = SessionData["OptoStim"] == 1 # selection of normal and opto trials normalTrials_sideSelected = SessionData["FirstPoke"][Trials_normalMask] normalTrials_difficulty = SessionData["TrialHighPerc"][Trials_normalMask] optoTrials_sideSelected = SessionData["FirstPoke"][Trials_optoMask] optolTrials_difficulty = SessionData["TrialHighPerc"][Trials_optoMask] # create dictionaries NormalTrials = { "SideSelected": normalTrials_sideSelected, "Difficulty": normalTrials_difficulty, } OptoTrials = { "SideSelected": optoTrials_sideSelected, "Difficulty": optolTrials_difficulty, } return NormalTrials, OptoTrials def generate_fake_data(trialsDif, sideSel): # Generates data for bootstrapping, sampling and replacing, so each # unique trialsDif maintains the same size fake_side_sel = np.empty_like(sideSel) for curr_diff in np.unique(trialsDif): diff_mask = trialsDif == curr_diff population = sideSel[diff_mask] fake_side_sel[diff_mask] = np.random.choice( population, len(population) ) return fake_side_sel def BootstrapPerformances( trialsDif, sideSelected, ntimes, prediction_difficulties ): # Bootstrap data and return logistic regression # predictions for each sampled model # remove nans nan_mask = ~(np.isnan(sideSelected) | np.isnan(trialsDif)) difficulties = trialsDif[nan_mask] sideselection = sideSelected[nan_mask] predictPerFake = np.empty((len(prediction_difficulties), ntimes)) for i in range(predictPerFake.shape[1]): # create fake data fake_data = generate_fake_data(difficulties, sideselection) try: clf_fake = LogisticRegressionCV(cv=3).fit( difficulties.reshape(-1, 1), fake_data ) predictPerFake[:, i] = ( 100 * clf_fake.predict_proba(prediction_difficulties)[:, 1] ) except Exception: # in case a model cannot be fitted # (e.g. mouse always goes to the left) # fit model on dummy data clf_fake = LogisticRegressionCV(cv=3).fit( np.array([0, 0, 0, 100, 100, 100]).reshape(-1, 1), np.array([1, 0, 1, 0, 1, 0]), ) return predictPerFake def SessionDataToDataFrame( AnimalID, ExperimentalGroup, SessionID, SessionData ): # function to create a dataframe out of the session # each trial is an entry on the dataframe # if the session is empty output a message if "nTrials" not in SessionData: print("Session is empty") return pd.DataFrame() numberOfTrials = SessionData["nTrials"] # protocol information ts = SessionData["TrialSettings"] protocols = [ ts[0]["GUIMeta"]["TrainingLevel"]["String"][x] for x in [y["GUI"]["TrainingLevel"] - 1 for y in ts] ] stimulations = [ ts[0]["GUIMeta"]["OptoStim"]["String"][x] for x in [y["GUI"]["OptoStim"] - 1 for y in ts] ] # muscimol yList = [] for y in ts: try: yList.append(y["GUI"]["Muscimol"] - 1) except Exception: yList.append(0) muscimol = [] for x in yList: try: muscimol.append(ts[0]["GUIMeta"]["Muscimol"]["String"][x]) except Exception: muscimol.append("No") # punish method yList = [] for y in ts: try: yList.append(y["GUI"]["Punish"] - 1) except Exception: yList.append(0) punish = [] for x in yList: try: punish.append(ts[0]["GUIMeta"]["Punish"]["String"][x]) except Exception: punish.append("No") # reward change yList = [] reward_change_block = [] for y in ts: try: yList.append(y["GUI"]["RewardChange"] - 1) reward_change_block.append(y["RewardChangeBlock"]) except Exception: yList.append(0) reward_change_block.append(0) reward_change = [] for x in yList: try: reward_change.append(ts[0]["GUIMeta"]["RewardChange"]["String"][x]) except Exception: reward_change.append("No") if not np.logical_and( len(protocols) == numberOfTrials, len(stimulations) == numberOfTrials ): print( "protocols and/or stimulations length do\ not match with the number of trials" ) return pd.DataFrame() CenterPortDuration = [x["GUI"]["CenterPortDuration"] for x in ts] Contingency = [x["GUI"]["Contingency"] for x in ts] RewardAmount = [x["GUI"]["RewardAmount"] for x in ts] PunishDelay = [x["GUI"]["PunishDelay"] for x in ts] BiasCorrection = [x["GUI"]["BiasCorrection"] for x in ts] FullGUI = [x["GUI"] for x in ts] # trial events trev = [x["Events"] for x in SessionData["RawEvents"]["Trial"]] if not len(trev) == numberOfTrials: print("trial events length do not match with the number of trials") return pd.DataFrame() # trial states trst = [x["States"] for x in SessionData["RawEvents"]["Trial"]] if not len(trst) == numberOfTrials: print("trial states length do not match with the number of trials") return pd.DataFrame() # calculate the cumulative performance firstpokecorrect = SessionData["FirstPokeCorrect"][0:numberOfTrials] correct_cp = np.cumsum(firstpokecorrect == 1) incorrect_cp = np.cumsum(firstpokecorrect == 0) # the following line gives an error sometimes cumper = 100 * correct_cp / (correct_cp + incorrect_cp) # calculate when there is a side-switching event TriSide = np.array(SessionData["TrialSide"][0:numberOfTrials]) SwitchSide = 1 * ((TriSide - np.insert(TriSide[:-1], 0, 0)) != 0) # add information about the choice in the previous trial' FirstPoke = SessionData["FirstPoke"][0:numberOfTrials] PrevTriChoice = np.insert(np.asfarray(FirstPoke[:-1]), 0, np.nan) # create a nice ID for the session (pretty date/time) prettyDate = SessionID.strftime("%b%d %H:%M") DFtoReturn = pd.DataFrame( { "AnimalID": pd.Series(np.repeat(AnimalID, numberOfTrials)).astype( "category" ), "ExperimentalGroup": pd.Series( np.repeat(ExperimentalGroup, numberOfTrials) ).astype("category"), "SessionTime": pd.Series( np.repeat(prettyDate, numberOfTrials) ).astype("category"), "FullSessionTime": np.repeat(SessionID, numberOfTrials), "Protocol": protocols, "Stimulation": stimulations, "Muscimol": muscimol, "RewardChange": reward_change, "RewardChangeBlock": reward_change_block, "CenterPortDuration": CenterPortDuration, "Contingency": Contingency, "RewardAmount": RewardAmount, "PunishDelay": PunishDelay, "Punish": punish, "BiasCorrection": BiasCorrection, "TrialIndex": list(range(numberOfTrials)), "TrialHighPerc": SessionData["TrialHighPerc"][0:numberOfTrials], "Outcomes": SessionData["Outcomes"][0:numberOfTrials], "OptoStim": SessionData["OptoStim"][0:numberOfTrials], "FirstPokeCorrect": firstpokecorrect, "FirstPoke": FirstPoke, "TrialSide": TriSide, "TrialSequence": SessionData["TrialSequence"][0:numberOfTrials], "ResponseTime": SessionData["ResponseTime"][0:numberOfTrials], "TrialStartTimestamp": SessionData["TrialStartTimestamp"], "CumulativePerformance": cumper, "SwitchSide": SwitchSide, "PreviousChoice": PrevTriChoice, "TrialEvents": trev, "TrialStates": trst, "FullGUI": FullGUI, } ) return DFtoReturn def identifyIdx(datatimes, ntrialsList, ntrials_thr): idxlist = [] for i in range(len(datatimes)): if np.logical_or( datatimes[i] == "notFound", ntrialsList[i] < ntrials_thr ): idxlist.append(i) return sorted(idxlist, reverse=True) # Analyze this with the optotrials as well def AnalyzeSwitchTrials(df): # df is a dataframe containing the following columns: # 'SwitchSide' # 'FirstPokeCorrect' # 'SessionTime' # 'OptoStim' # it returns a different dataframe with information grouped for a bar plot # get info for the sessions sessionsID = pd.unique(df["SessionTime"]) # initialize list to hold dataframes sessionsInfo = [] # fill the new dataframe with info for each session for session in sessionsID: # get the dataframe for that session Sdf = df[df["SessionTime"] == session] # split the dataset into opto and normal Ndf = Sdf[Sdf["OptoStim"] == 0] Odf = Sdf[Sdf["OptoStim"] == 1] # percentage of correct trials on stay trials without stimulation StayNoStim = ( 100 * np.sum(Ndf[Ndf["SwitchSide"] == 0]["FirstPokeCorrect"] == 1) / len(Ndf[Ndf["SwitchSide"] == 0]) ) # percentage of correct trials on switch trials without stimulation SwitchNoStim = ( 100 * np.sum(Ndf[Ndf["SwitchSide"] == 1]["FirstPokeCorrect"] == 1) / len(Ndf[Ndf["SwitchSide"] == 1]) ) # percentage of correct trials on stay trials with stimulation StayStim = ( 100 * np.sum(Odf[Odf["SwitchSide"] == 0]["FirstPokeCorrect"] == 1) / len(Odf[Odf["SwitchSide"] == 0]) ) # percentage of correct trials on switch trials with stimulation SwitchStim = ( 100 * np.sum(Odf[Odf["SwitchSide"] == 1]["FirstPokeCorrect"] == 1) / len(Odf[Odf["SwitchSide"] == 1]) ) # fill the dataframe SessionDF = pd.DataFrame( { "SessionTime": np.repeat(session, 4), "Condition": np.array( [ "Normal_Stay", "Normal_Switch", "Opto_Stay", "Opto_Switch", ] ), "PercCorrect": np.array( [StayNoStim, SwitchNoStim, StayStim, SwitchStim] ), } ) # append it to list sessionsInfo.append(SessionDF) # merge into a single df and return return pd.concat(sessionsInfo, ignore_index=True) # Analyze this with the trial side as well def AnalyzeSwitchTrials_for_sides(df): # df is a dataframe containing the following columns: # 'SwitchSide' # 'FirstPokeCorrect' # 'SessionTime' # 'TrialSide' # it returns a different dataframe with information grouped for a bar plot # get info for the sessions sessionsID = pd.unique(df["SessionTime"]) # initialize list to hold dataframes sessionsInfo = [] # fill the new dataframe with info for each session for session in sessionsID: # get the dataframe for that session Sdf = df[df["SessionTime"] == session] # split the dataset into opto and normal Ndf = Sdf[Sdf["TrialSide"] == 1] Odf = Sdf[Sdf["TrialSide"] == 2] # percentage of correct trials on stay trials without stimulation StayNoStim = ( 100 * np.sum(Ndf[Ndf["SwitchSide"] == 0]["FirstPokeCorrect"] == 1) / len(Ndf[Ndf["SwitchSide"] == 0]) ) # percentage of correct trials on switch trials without stimulation SwitchNoStim = ( 100 * np.sum(Ndf[Ndf["SwitchSide"] == 1]["FirstPokeCorrect"] == 1) / len(Ndf[Ndf["SwitchSide"] == 1]) ) # percentage of correct trials on stay trials with stimulation StayStim = ( 100 * np.sum(Odf[Odf["SwitchSide"] == 0]["FirstPokeCorrect"] == 1) / len(Odf[Odf["SwitchSide"] == 0]) ) # percentage of correct trials on switch trials with stimulation SwitchStim = ( 100 * np.sum(Odf[Odf["SwitchSide"] == 1]["FirstPokeCorrect"] == 1) / len(Odf[Odf["SwitchSide"] == 1]) ) # fill the dataframe SessionDF = pd.DataFrame( { "SessionTime": np.repeat(session, 4), "TrialSide": np.array( ["Left_Stay", "Left_Switch", "Right_Stay", "Right_Switch"] ), "PercCorrect": np.array( [StayNoStim, SwitchNoStim, StayStim, SwitchStim] ), } ) # append it to list sessionsInfo.append(SessionDF) # merge into a single df and return return pd.concat(sessionsInfo, ignore_index=True) # function to process the data of an experiment # for psychometric performance plots: def PP_ProcessExperiment(SessionData, bootstrap=None, error_bars=None): # SessionData is a dataframe that needs to have the following column names: # 'TrialHighPerc' # 'FirstPoke' diffs = np.array(SessionData["TrialHighPerc"]) choices = np.array(SessionData["FirstPoke"]) # Calculate psychometric performance parameters PsyPer = PsychPerformance(trialsDif=diffs, sideSelected=choices) # predict data predictDif = np.linspace(1, 100, 2000).reshape(-1, 1) if PsyPer: predictPer = 100 * PsyPer["Logit"].predict_proba(predictDif)[:, 1] # Calculate the error bars if asked to if error_bars is not None: EBdata = SessionData.groupby(by=error_bars).apply(getEBdata) # flatten the lists EB_diffs_flat = list(chain(*[x["Difficulty"] for x in EBdata])) EB_perfs_flat = list(chain(*[x["Performance"] for x in EBdata])) # calculate error bars for each difficulty Std_list = [ np.std(list(compress(EB_perfs_flat, EB_diffs_flat == dif))) for dif in PsyPer["Difficulty"] ] else: Std_list = np.nan else: # needed for the return predictPer = np.nan Std_list = np.nan # Bootstrap on fake data (generated inside the bootstrap function) fakePredictions = np.nan if bootstrap is not None: np.random.seed(12233) # fixed random seed for reproducibility if PsyPer: fakePredictions = BootstrapPerformances( trialsDif=diffs, sideSelected=choices, ntimes=bootstrap, prediction_difficulties=predictDif, ) # return what is needed for the plot return predictDif, PsyPer, fakePredictions, predictPer, Std_list def getEBdata(SessionData): # SessionData is a dataframe that needs to have the following column names: # 'TrialHighPerc' # 'FirstPoke' diffs = np.array(SessionData["TrialHighPerc"]) choices = np.array(SessionData["FirstPoke"]) PsyPer = PsychPerformance(trialsDif=diffs, sideSelected=choices) return PsyPer def timeDifferences(listOfDates): """ Return the absolute time, in days, of elements in a list of dates, related to the first Assumes data is in order (would return negative values otherwise) :param listOfDates: list of size X of dates. Format: YYYYMMDD_HHMMSS :return: array of size X of absolute time """ if len(listOfDates) == 0: return [] abstimeList = [] for date in listOfDates: strList = [ int(date[0:4]), int(date[4:6]), int(date[6:8]), int(date[9:11]), int(date[11:13]), int(date[13:15]), ] intList = list(map(int, strList)) # Calculate absolute time in days multipliers = [365, 30, 1, 1 / 24, 1 / (24 * 60), 1 / (24 * 60 * 60)] mulList = [a * b for a, b in zip(intList, multipliers)] abstime = sum(mulList) abstimeList.append(abstime) diftime = np.array(abstimeList) - abstimeList[0] return diftime def RBias(FirstPokes, FirstPokesCorrect): """ Returns the bias to the right FirstPokes is a vector of 1s and 2s (Left or Right), indicating the poked port FirstPokesCorrect is a 0 and 1 vector (wrong or correct poke) Both could have NaN values Returns from -1 to 1. 0 Being not biased, 1 being Right-biased, and -1 being left-biased. It is a conservative function. E.g, in a 50-50 trial chance, and being totally biased to one side, only half of the trials would be wrong, so the function would output +/-0.5. Correct trials based on proportion of wrong pokes Determine the proportion of wrong pokes to the right side """ WrongSides = FirstPokes[FirstPokesCorrect == 0] if len(WrongSides) < 1: RBias = 0 else: WrongSideProportion = len(WrongSides) / len(FirstPokes) # from 0 to 1 WrongRightsProportion = ( WrongSideProportion * np.nansum(WrongSides == 2) / len(WrongSides) ) WrongLeftsProportion = ( WrongSideProportion * np.nansum(WrongSides == 1) / len(WrongSides) ) RBias = WrongRightsProportion - WrongLeftsProportion return RBias def CalculateRBiasWindow(FirstPokes, FirstPokesCorrect, Window): """Calculates RBias over the lenght of the vectors FirstPokes and FirstPokesCorrect using a Window. Returns vector of same lenght""" # Create empty vector RBiasVector = np.empty(len(FirstPokes)) RBiasVector[:] = np.nan for i in range(Window, len(FirstPokes)): win = range((i - Window), i) RBiasVector[i] = RBias(FirstPokes[win], FirstPokesCorrect[win]) return RBiasVector # calculate the number of times they go to the middle (anxiousness?) def CalculateMidPokes(df): return np.sum( df["TrialEvents"]["Port2In"] <= df["TrialStates"]["WaitForResponse"][0] ) # this might fail if WaitForResponse is empty... # quantify how long they wait in the middle def MidPortWait(df): timeOut = df["TrialStates"]["WaitForResponse"].astype("float32")[0] PortIn = df["TrialEvents"]["Port2In"] # sometimes this is an integer (rarely) if isinstance(PortIn, int): PortIn = float(PortIn) if not isinstance(PortIn, float): PortIn = PortIn.astype("float32") # does not work for int PortInIdx = np.where(PortIn < timeOut)[0][-1] PortInTime = PortIn[PortInIdx] else: PortInTime = PortIn PortTime = timeOut - PortInTime return PortTime def CalculateTrialInitiationTime(df): # quantify the time they take to initiate a trial # (from trialstart to center poke in) # the first time they poke try: return float(df.TrialEvents["Port2In"][0]) except Exception: return float("NaN") def AnalyzePercentageByDay(rdf): # df is a dataframe containing the following columns: # 'FirstPokeCorrect' # 'TrainingDay' # 'AnimalID' # 'Protocol' # 'ExperimentalGroup' # it returns a different dataframe with information grouped for a bar plot AnimalIDs = pd.unique(rdf["AnimalID"]) animalsInfo = [] for animalid in AnimalIDs: df = rdf[rdf["AnimalID"] == animalid] # get info for the sessions TrainingDays = pd.unique(df["TrainingDay"]) # initialize value for cumulative trials CumTrials = 0 # fill the new dataframe with info for each session for session in TrainingDays: # get the dataframe for that session Sdf = df[df["TrainingDay"] == session] # protocol and ExperimentalGroup prot = Sdf.Protocol.iloc[0] inj = Sdf.ExperimentalGroup.iloc[0] # percentage of correct trials PercCorrect = 100 * np.sum(Sdf["FirstPokeCorrect"]) / len(Sdf) # number of trials per session NumOfTrials = len(Sdf) # cumulative trials CumTrials = CumTrials + NumOfTrials # fill the dataframe SessionDF = pd.DataFrame( { "AnimalID": animalid, "SessionTime": session, "PercCorrect": np.array([PercCorrect]), "NumberOfTrials": NumOfTrials, "CumulativeTrials": CumTrials, "Protocol": prot, "ExperimentalGroup": inj, } ) # append it to list animalsInfo.append(SessionDF) # merge into a single df and return return pd.concat(animalsInfo, ignore_index=True) def get_new_files(filelist, existing_dates): """ Compares dates in files to a datetime dataset to check for existing data :param filelist: list of full paths to bpod files :type filelist: list of strings :param existing_dates: time objects in datetime format :returns: subset of filelist """ filenames = [ntpath.basename(x) for x in filelist] dates = BpodDatesToTime(ParseForTimes(filenames)) dates_formatted = [str(i) for i in dates] existing_dates_formatted = [str(i) for i in existing_dates] new_dates = list(set(dates_formatted) - set(existing_dates_formatted)) new_idx = [i for i, n in enumerate(dates_formatted) if n in new_dates] new_files = [filelist[i] for i in new_idx] return new_files def split_files_into_old_and_new(filelist, existing_dates): """ Compares dates in files to a datetime dataset to split them into new files and old files :param filelist: list of full paths to bpod files :type filelist: list of strings :param existing_dates: time objects in datetime format :returns: two subsets of filelist """ # files with a new date dif_files = get_new_files(filelist, existing_dates) # compare dates and split # idx of old_files filenames = [ntpath.basename(x) for x in dif_files] dates = BpodDatesToTime(ParseForTimes(filenames)) old_idx = [ i for i, n in enumerate(dates) if n < existing_dates.max().to_pydatetime() ] # split old_files = [dif_files[i] for i in old_idx] new_files = [ dif_files[i] for i in list(set(range(len(dif_files))) - set(old_idx)) ] return old_files, new_files def perf_window_calculator(df, window): """ Calculate the performance of the last X trials """ firstpokecorrect = df["FirstPokeCorrect"] # 0s and 1s # create empty vector of the same size perf_window = np.full(len(firstpokecorrect), np.nan) for i in range(window - 1, len(perf_window)): perf_window[i] = ( np.nansum(firstpokecorrect[i - window + 1 : i + 1]) / window * 100 ) return perf_window # calculate the trials per minute that animals do by fitting a line def trials_per_minute(trial_index, trial_start_timestamp): """ function to calculate the speed of the mouse in trials per minute param trial_index: pandas.core.series.Series with the trial index param trial_start_timestamp: pandas.core.series.Series with the trial start time in seconds returns a value which is the trials per minute """ lrmodel = LinearRegression().fit( trial_index[:, np.newaxis], trial_start_timestamp ) return 60 * 1 / lrmodel.coef_[0] def speed_window_calculator(df, window): """ Calculate the speed over X trials """ trial_index = df.TrialIndex trial_start_timestamp = df.TrialStartTimestamp # create empty vector of the same size speed_window = np.full(len(trial_index), np.nan) for i in range(int(window / 2) - 1, len(speed_window) - int(window / 2)): win_idx_low = i - int(window / 2) + 1 win_idx_high = i + int(window / 2) speed_window[i] = trials_per_minute( trial_index[win_idx_low:win_idx_high], trial_start_timestamp[win_idx_low:win_idx_high], ) return speed_window def itis_calculator(df): # df is a behavioural dataframe # find inter-trial-intervals itis = np.diff(df.TrialStartTimestamp) # append a 0 at the beginning so it matches the trial indexes # how long did the mouse take to initiate this trial from the previous? itis = np.insert(itis, 0, 0) return itis def find_disengaged_trials(itis): # itis is a vector of inter trial intervals # this function returns indexes disengaged_indexes = np.where(itis > 3 * np.median(itis)) return disengaged_indexes def sigmoid_func(x, slope, bias, upper_lapse, lower_lapse): return (upper_lapse - lower_lapse) / ( 1 + np.exp(-slope * (x - bias)) ) + lower_lapse def linear_func(x, beta, alpha): return beta * x + alpha def fit_custom_sigmoid(difficulty, performance): # scale the data xdatasc = (difficulty - difficulty.mean()) / difficulty.std() ydatasc = performance / 100 cost_func = lambda x: np.mean( np.abs(sigmoid_func(xdatasc, x[0], x[1], x[2], x[3]) - ydatasc) ) res = opt.minimize(cost_func, [-3, 0, 1, 0]) # rescale slope = res.x[0] / difficulty.std() bias = res.x[1] * difficulty.std() + difficulty.mean() upper_lapse = res.x[2] * 100 lower_lapse = res.x[3] * 100 return slope, bias, upper_lapse, lower_lapse def get_random_optolike_choices(df, n_times=100): """ gets a dataframe that has optostimulated trials, and returns, per each difficulty, choices sampled randomly from the non-stimulated trials, n_times """ normal_df, opto_df = splitOpto(df) fake_opto_side_sel_samples = np.zeros( (n_times, len(opto_df["SideSelected"])) ) for i in range(n_times): fake_opto_side_sel = np.empty_like(opto_df["SideSelected"]) for curr_diff in np.unique(opto_df["Difficulty"]): diff_opto_mask = opto_df["Difficulty"] == curr_diff diff_normal_mask = normal_df["Difficulty"] == curr_diff population = normal_df["SideSelected"][diff_normal_mask] fake_opto_side_sel[diff_opto_mask] = np.random.choice( population, sum(diff_opto_mask) ) fake_opto_side_sel_samples[i] = fake_opto_side_sel return fake_opto_side_sel_samples def get_mean_and_std_of_random_optolike_choices(df, n_times=100): # deprecated """ gets a dataframe that has optostimulated trials, and outputs, per difficulty, the mean and the std of choices sampled randomly from the non-stimulated trials, n_times """ normal_df, opto_df = splitOpto(df) available_difficulties = np.unique(opto_df["Difficulty"]) random_means = np.zeros_like(available_difficulties) random_std = np.zeros_like(available_difficulties) for k, curr_diff in enumerate(available_difficulties): diff_opto_mask = opto_df["Difficulty"] == curr_diff diff_normal_mask = normal_df["Difficulty"] == curr_diff population = normal_df["SideSelected"][diff_normal_mask] if len(population) == 0: sys.exit("No normal trials with that difficulty") fake_opto_side_sel_list = np.zeros(n_times) for i in range(n_times): fake_opto_side_sel_list[i] = np.nanmean( np.random.choice(population, sum(diff_opto_mask)) ) random_means[k] = np.nanmean(fake_opto_side_sel_list) random_std[k] = np.nanstd(fake_opto_side_sel_list) df_to_return = pd.DataFrame( { "Difficulty": available_difficulties, "Mean_of_choice": 100 * (random_means - 1), "Std_of_choice": 100 * random_std, } ) return df_to_return def get_choices(sideSelected, trialsDif): """ returns mean of choices per difficulty """ # Calculate performance # Initialize values difficulty = np.unique(trialsDif[~np.isnan(trialsDif)]) choice_mean = np.full(len(difficulty), np.nan) for i in range(len(difficulty)): if np.nansum(sideSelected[trialsDif == difficulty[i]]) > 0: choice_mean[i] = 100 * ( np.nanmean(sideSelected[trialsDif == difficulty[i]]) - 1 ) else: choice_mean[i] = np.nan return difficulty, choice_mean def generate_eg(list_size, prob, labs): # function to generate a list of experimental groups randomly ltr = [] for i in range(list_size): if random.random() < prob: ltr.append(labs[0]) else: ltr.append(labs[1]) return ltr def get_shuffled_means_difference_df(df_colsel, hue_order, nsh): # get the experimental group for each animal exp_gr = [ df_colsel[df_colsel.AnimalID == x].ExperimentalGroup.unique()[0] for x in df_colsel.AnimalID.unique() ] # get the number of mice n_an = len(exp_gr) # get the probability of a mouse to be a control for this dataset cb_prob = sum([x == hue_order[0] for x in exp_gr]) / n_an # set random seed np.random.seed(124321) # calculate the differences of means by resampling shuff_res = [] for i in range(nsh): # shuffle the list of groups by assigning a probability for each mouse # to be in a group based on the real ratio exp_grs = generate_eg(n_an, cb_prob, hue_order) # create a diccionary egs_dict = dict(zip(df_colsel.AnimalID.unique(), exp_grs)) # create a new column with the shuffled group df_colsel["egs"] = [egs_dict[x] for x in df_colsel.AnimalID] # calculate the differences and append shuff_res.append( df_colsel[df_colsel.egs == hue_order[1]] .groupby("TrialIndexBinned") .mean()["Performance"] - df_colsel[df_colsel.egs == hue_order[0]] .groupby("TrialIndexBinned") .mean()["Performance"] ) update_progress(i / nsh) update_progress(1) # return in a data frame format return pd.concat(shuff_res) def get_shuffled_means_difference_global_significance( df_colsel, shrdf, quants_to_test, nsh, hue_order ): # get the experimental group for each animal exp_gr = [ df_colsel[df_colsel.AnimalID == x].ExperimentalGroup.unique()[0] for x in df_colsel.AnimalID.unique() ] # get the number of mice n_an = len(exp_gr) # get the probability of a mouse to be a control for this dataset cb_prob = sum([x == hue_order[0] for x in exp_gr]) / n_an # create an empty array to store results global_sig = np.empty((nsh, len(quants_to_test)), dtype=bool) # loop over shuffle data for i in range(nsh): # shuffle the list of groups by assigning a probability for each mouse # to be in a group based on the real ratio exp_grs = generate_eg(n_an, cb_prob, hue_order) # create a diccionary egs_dict = dict(zip(df_colsel.AnimalID.unique(), exp_grs)) # create a new column with the shuffled group df_colsel["egs"] = [egs_dict[x] for x in df_colsel.AnimalID] # calculate the differences sh_dif = ( df_colsel[df_colsel.egs == hue_order[1]] .groupby("TrialIndexBinned") .mean()["Performance"] - df_colsel[df_colsel.egs == hue_order[0]] .groupby("TrialIndexBinned") .mean()["Performance"] ) # for each quantile band, what percentages of lines cross at any point for k, q in enumerate(quants_to_test): global_sig[i, k] = any( np.logical_or( sh_dif > shrdf.groupby("TrialIndexBinned").quantile(q), sh_dif < shrdf.groupby("TrialIndexBinned").quantile(1 - q), ) ) update_progress(i / nsh) update_progress(1) return global_sig def get_random_choices_for_optostimulation(df, ntimes): data = np.empty([len(pd.unique(df["SessionID"])), 3], dtype=object) for i, session in enumerate(pd.unique(df["SessionID"])): # generate the random dataset, and save it to a general # dataframe for later use session_df = df[df["SessionID"] == session] roc = get_random_optolike_choices(df=session_df, n_times=ntimes) _, odf = splitOpto(session_df) roc_ds = np.apply_along_axis( get_choices, 1, roc, trialsDif=odf["Difficulty"] ) avail_diffs = roc_ds[0, 0, :] rand_choices_ds = roc_ds[:, 1, :] # fill data[i] = [session, avail_diffs, rand_choices_ds] update_progress( i / len(pd.unique(df["SessionID"])), head="Generating dataset" ) random_opto_df = pd.DataFrame( data, columns=["SessionID", "Difficulties", "Random_choices"] ) update_progress(1) return random_opto_df def calculate_differences_with_random_optostimulation( otl_df, random_opto_df, n_times ): # Calculate the differences between the random choices and the # opto ones to measure the bias random_opto_df["bias"] = None random_opto_df["bias_mean"] = None random_opto_df["bias_std"] = None tot_sess = len(pd.unique(random_opto_df["SessionID"])) for sc, session in enumerate(pd.unique(random_opto_df["SessionID"])): session_idx = random_opto_df.index[ random_opto_df.SessionID == session ].item() # get data for opto opto_df = otl_df[ (otl_df["SessionID"] == session) & (otl_df["OptoStim"] == 1) ] trialsDif = np.array(opto_df["TrialHighPerc"]) sideSelected = np.array(opto_df["FirstPoke"]) difficulty, opto_perf = get_choices(sideSelected, trialsDif) # get data for the shuffles updown_list = np.empty(n_times) for i in range(n_times): y_vals = random_opto_df.loc[session_idx].Random_choices[i] # calculate difference and normalize updown_list[i] = np.sum(y_vals - opto_perf) / len(difficulty) random_opto_df.at[session_idx, "bias"] = updown_list random_opto_df.at[session_idx, "bias_mean"] = np.nanmean(updown_list) random_opto_df.at[session_idx, "bias_std"] = np.nanstd(updown_list) update_progress((sc + 1) / tot_sess, head="Getting differences") return random_opto_df def add_info_and_contralateral_bias(oal_df, random_opto_df): # add the side in which stimulation happened, # and translate the bias to contralateral / ipsilateral random_opto_df["stimulated_side"] = None random_opto_df["contralateral_bias"] = None # Get a column with the mouse name random_opto_df["AnimalID"] = None # And the type of mouse random_opto_df["Genotype"] = None tot_sess = len(pd.unique(random_opto_df["SessionID"])) for sc, session in enumerate(pd.unique(random_opto_df["SessionID"])): session_idx = random_opto_df.index[ random_opto_df.SessionID == session ].item() # get information stim_side = ( oal_df[oal_df["SessionID"] == session].Stimulation.unique().item() ) # add info random_opto_df.at[session_idx, "stimulated_side"] = stim_side mouse_name = random_opto_df.loc[session_idx].SessionID.split(" ")[0] random_opto_df.at[session_idx, "AnimalID"] = mouse_name random_opto_df.at[session_idx, "Genotype"] = mouse_name.split("-")[0] # bias is the normal minus the opto. # This means that a positive value is a leftwards bias # of the opto trials # this is good as a contralateral bias for the trials in which # optostimulation occurs in the right side # flip the sign of the ones where stimulation happens on the left if stim_side == "Right": random_opto_df.at[ session_idx, "contralateral_bias" ] = random_opto_df.at[session_idx, "bias_mean"] elif stim_side == "Left": random_opto_df.at[ session_idx, "contralateral_bias" ] = -random_opto_df.at[session_idx, "bias_mean"] elif stim_side == "Both": random_opto_df.at[session_idx, "contralateral_bias"] = np.nan else: print("Something wrong") update_progress((sc + 1) / tot_sess, head="Adding info") return random_opto_df def get_random_dataframe_for_optostimulation(oal_df, n_times): # Generate random optostimulation choices for every session random_opto_df = get_random_choices_for_optostimulation(oal_df, n_times) # Calculate differences with the stimulated trials random_opto_df = calculate_differences_with_random_optostimulation( oal_df, random_opto_df, n_times ) # add the side in which stimulation happened, mouse name and genotype, # and translate the bias to contralateral / ipsilateral random_opto_df = add_info_and_contralateral_bias(oal_df, random_opto_df) print("Done computing the random dataframe") return random_opto_df def difficulty_for_bias(mouse_line, stimulated_side): # function to determine which difficulty to look at # create a logic table in order to find which difficulty # to look at when calculating the bias # this depends on the contingency, on the mouse line, # and on the the fiber placement # expected movements given the sound (difficulty) set_contingency = {"Right": 2.0, "Left": 98.0} # expectation (and observation) of bias bias_expectation = {"D1opto": "ipsi", "D2opto": "contra"} # logical table for what to expect given ipsi/contra # e.g. if you expect an ipsi bias and the fiber is on the right, # you wanna look at the left movements # ----------------------------- # | Right Left # |----------------- # ipsi | Left Right # contra | Right Left # ----------------------------- logic_rows = ["ipsi", "contra"] logic_cols = ["Right", "Left"] logic_table = [["Left", "Right"], ["Right", "Left"]] expected_bias = bias_expectation[mouse_line] table_row = logic_rows.index(expected_bias) table_col = logic_cols.index(stimulated_side) affected_side = logic_table[table_row][table_col] return set_contingency[affected_side] def fiber_unique_id(panda_series): return "_".join([panda_series.AnimalID, panda_series.stimulated_side]) def significance_calculator(panda_series): cbe = panda_series.bias_exp # get contra value if panda_series.stimulated_side == "Left": cbe = [-x for x in cbe] if panda_series.Genotype == "D1opto": n_sig = np.sum([x > 0 for x in cbe]) if panda_series.Genotype == "D2opto": n_sig = np.sum([x < 0 for x in cbe]) return n_sig / len(cbe) def get_simplified_dataframe_for_optostimulation(random_opto_df): # columns: animal_id | genotype # | session_performance | contralateral_bias_exp animal_id_list = [] genotype_list = [] session_performance_list = [] contra_bias_list = [] fibers = pd.unique(random_opto_df.fiber_id) for animal in fibers: animal_rdf = random_opto_df[random_opto_df.fiber_id == animal] for session in pd.unique(animal_rdf.SessionID): session_idx = animal_rdf.index[ animal_rdf.SessionID == session ].item() sp = animal_rdf.loc[session_idx].session_performance cb = animal_rdf.loc[session_idx].contralateral_bias_exp session_performance_list.append(sp) contra_bias_list.append(cb) genotype_list.append(animal_rdf.loc[session_idx].Genotype) animal_id_list.append(animal) simplified_df = pd.DataFrame( { "animal_id": animal_id_list, "genotype": genotype_list, "session_performance": session_performance_list, "contralateral_bias": contra_bias_list, } ) return simplified_df def get_fit_coefs(df): x = df.session_performance y = df.contralateral_bias return np.polyfit(x, y, 1) def get_dicctionary_of_regressions_optostimulation( simplified_df, shuffle_times=100, xs=range(50, 100) ): # calculate slopes and generate shuffles of biases # per mouse to get the significance for each individual # save all in a diccionary reg_dicc = { "animals": [], "genotypes": [], "reg_coefs": [], "fits": [], "predicted_matrices": [], "shuffled_coefficients": [], } for animal in simplified_df.animal_id.unique(): reg_df = simplified_df[simplified_df.animal_id == animal].copy() slope, intercept = get_fit_coefs(reg_df) # get a list of coefficients for suffled dataframes shuffled_slopes = np.zeros(shuffle_times) shuffled_int = np.zeros(shuffle_times) # generate a matrix of predictions predicted_matrix = np.zeros([shuffle_times, len(xs)]) for i in range(shuffle_times): # shuffle dataframe shuffled_df = reg_df.copy() np.random.shuffle(shuffled_df.contralateral_bias.values) # get coefficients shuffled_slopes[i], shuffled_int[i] = get_fit_coefs(shuffled_df) # fill matrix predicted_matrix[i, :] = shuffled_int[i] + shuffled_slopes[i] * xs # fill diccionary reg_dicc["animals"].append(animal) reg_dicc["genotypes"].append( simplified_df[simplified_df.animal_id == animal].genotype.unique()[ 0 ] ) reg_dicc["reg_coefs"].append([slope, intercept]) reg_dicc["fits"].append(intercept + slope * xs) reg_dicc["predicted_matrices"].append(predicted_matrix) reg_dicc["shuffled_coefficients"].append( [shuffled_slopes, shuffled_int] ) return reg_dicc def get_binned_dataframe_for_optostimulation( random_opto_df, significance=0.05 ): # save all in a diccionary binned_dict = { "genotype": [], "performance_window": [], "contra_biases": [], "contra_bias_mean": [], "contra_bias_std": [], "contra_bias_upper_percentile": [], "contra_bias_lower_percentile": [], "n_sessions": [], "n_animals": [], "significance_expected_bias": [], "number_of_significant_sessions": [], } # binned_window = 10 performance_windows = [ [0, 60], [60, 65], [65, 70], [70, 75], [75, 80], [80, 85], [85, 90], [90, 100], ] for genot in ["D1opto", "D2opto"]: # subselect the dataframe genotdf = random_opto_df[random_opto_df.Genotype == genot].copy() for bracket in performance_windows: # find sessions belonging to that bracket bracket_mask = np.logical_and( bracket[0] <= genotdf.session_performance, genotdf.session_performance < bracket[1], ) subdf = genotdf[bracket_mask].copy() # extract the contralateral biases of random choices contralateral_bias_exp_merge = [] n_sess = subdf.shape[0] n_ans = len(np.unique(subdf.AnimalID)) for i in range(n_sess): cbe = subdf.iloc[i].bias_exp # get contra value if subdf.iloc[i].stimulated_side == "Left": cbe = [-x for x in cbe] contralateral_bias_exp_merge.append(cbe) # flatten contralateral_bias_exp_merge = [ item for sublist in contralateral_bias_exp_merge for item in sublist ] # append to dicc binned_dict["genotype"].append(genot) binned_dict["performance_window"].append(bracket[1] - 2.5) binned_dict["contra_biases"].append(contralateral_bias_exp_merge) binned_dict["contra_bias_mean"].append( np.mean(contralateral_bias_exp_merge) ) binned_dict["contra_bias_std"].append( np.std(contralateral_bias_exp_merge) ) if len(contralateral_bias_exp_merge) > 1: binned_dict["contra_bias_upper_percentile"].append( np.percentile(contralateral_bias_exp_merge, 97.5) ) binned_dict["contra_bias_lower_percentile"].append( np.percentile(contralateral_bias_exp_merge, 2.5) ) else: binned_dict["contra_bias_upper_percentile"].append(np.nan) binned_dict["contra_bias_lower_percentile"].append(np.nan) binned_dict["n_sessions"].append(n_sess) binned_dict["n_animals"].append(n_ans) if genot == "D1opto": n_sig = np.sum([x > 0 for x in contralateral_bias_exp_merge]) if genot == "D2opto": n_sig = np.sum([x < 0 for x in contralateral_bias_exp_merge]) sig = n_sig / len(contralateral_bias_exp_merge) binned_dict["significance_expected_bias"].append(sig) # calculate the number of sessions that are significant! significant_sessions_list = [] for i in range(n_sess): cbe = subdf.iloc[i].bias_exp # get contra value if subdf.iloc[i].stimulated_side == "Left": cbe = [-x for x in cbe] if genot == "D1opto": n_sig = np.sum([x > 0 for x in cbe]) if genot == "D2opto": n_sig = np.sum([x < 0 for x in cbe]) sig = n_sig / len(cbe) if sig < significance: significant_sessions_list.append(True) else: significant_sessions_list.append(False) sig = np.sum(significant_sessions_list) binned_dict["number_of_significant_sessions"].append(sig) # create df binned_df = pd.DataFrame(binned_dict) # add lower and upper std binned_df["lower_std"] = ( binned_df.contra_bias_mean - binned_df.contra_bias_std ) binned_df["upper_std"] = ( binned_df.contra_bias_mean + binned_df.contra_bias_std ) return binned_df def get_general_right_bias(df_one, df_two): "returns the general bias to the right, between df_one and df_two" # mean choices for each data frame for each difficulty tdone = np.array(df_one["TrialHighPerc"]) ssone = np.array(df_one["FirstPoke"]) _, perf_one = get_choices(ssone, tdone) tdtwo = np.array(df_two["TrialHighPerc"]) sstwo = np.array(df_two["FirstPoke"]) _, perf_two = get_choices(sstwo, tdtwo) return np.mean(perf_one) - np.mean(perf_two) def get_random_biases(df, n_times, it, aot): # create array rblist = np.zeros(n_times) for i in range(n_times): # shuffle TrialIndexes df.TrialIndex = df.TrialIndex.sample(frac=1).values # calculate bias rblist[i] = get_general_right_bias( df[df.TrialIndex < it], df[df.TrialIndex > aot] ) return rblist def get_dopamine_optostimulation_differences_dataframe( dao_df, ini_trials, ao_trials, n_times ): # Generate another dataset for every session containing information # about the difference between # the optostimulated trials and the normal ones, # as well as random differences, calculated # shuffling the trial indexes BRS = ["tStr", "NAc"] PS = ["Left", "Right"] PI = ["Center", "Side"] CondList = [ (dao_df["TrialIndex"] < ini_trials), (dao_df["TrialIndex"] > ao_trials), ] cols = [ "AnimalID", "SessionID", "Ntrials", "Protocol", "Stim", "FiberSide", "FiberArea", "StimSide", "StimPort", "Contralateral", "InitialBias", "Bias", "BiasToStimPort", "RandomBiases", "RandomBiasMean", "RandomBiasStd", ] data = np.empty( [len(pd.unique(dao_df["SessionID"])), len(cols)], dtype=object ) for i, sessionid in enumerate(pd.unique(dao_df["SessionID"])): # get dataframe of the session session_df = dao_df[dao_df["SessionID"] == sessionid].copy() # get animal name animalid = session_df.AnimalID.unique()[0] # get number of trials ntrials = session_df.shape[0] # protocol protocol = session_df.Protocol.unique()[0] # is it a stimulated session? stim = session_df.Stimulation.unique()[0] != "NoStimulation" # which fiber was plugged in fiberside = session_df.Stimulation.unique()[0] # which brain area is this fiber over fiberarea = BRS[int(session_df.iloc[0].FullGUI["FiberLocation"]) - 1] # which one of the side ports, or trial type, was stimulated stimside = PS[int(session_df.iloc[0].FullGUI["JOPSide"]) - 1] # in which one of the ports did stimulation occurred stimport = PI[int(session_df.iloc[0].FullGUI["OptoState"]) - 1] # is the fiber contralateral to the port contralateral = True if (fiberside == stimside) or fiberside == "Both": contralateral = False # what is the initial bias of the mouse in trials before stimulation ini_sess = session_df[session_df.TrialIndex < ini_trials].copy() initialbias = np.mean( get_choices(ini_sess["FirstPoke"], ini_sess["TrialHighPerc"])[1] ) # what is the total bias of that session after opto bias = get_general_right_bias( session_df[CondList[1]], session_df[CondList[0]] ) # is this bias positive towards the stimulated port? if stimside == "Right": biastostimport = bias if stimside == "Left": biastostimport = -bias # calculate random biases randombiases = get_random_biases( session_df, n_times, ini_trials, ao_trials ) # random mean randombiasmean = np.mean(randombiases) # random std randombiasstd = np.std(randombiases) # fill data[i] = [ animalid, sessionid, ntrials, protocol, stim, fiberside, fiberarea, stimside, stimport, contralateral, initialbias, bias, biastostimport, randombiases, randombiasmean, randombiasstd, ] update_progress(i / len(pd.unique(dao_df["SessionID"]))) # create dataframe opto_df = pd.DataFrame(data, columns=cols) update_progress(1) return opto_df def find_indexes_of_repeated_cases(opto_df_sel, same_columns): # Find indexes of repeated cases equal_indexes = [] for index in opto_df_sel.index: data = opto_df_sel.loc[index][same_columns].values i_list = [] for i in opto_df_sel.index: if np.array_equal(data, opto_df_sel.loc[i][same_columns].values): i_list.append(i) if len(i_list) > 1: if i_list not in equal_indexes: equal_indexes.append(i_list) return equal_indexes def merge_repeated_cases_for_dopamine_optostimulation(opto_df_sel): # Find indexes of repeated cases same_columns = [ "AnimalID", "FiberSide", "FiberArea", "StimSide", "StimPort", ] equal_indexes = find_indexes_of_repeated_cases(opto_df_sel, same_columns) # Combine those cases for case in equal_indexes: sub_df = opto_df_sel.loc[case].copy() # create new instance to add to the dataframe, # initiating it in the first index of the set new_element = sub_df.iloc[0].copy() # change relevant values new_element.SessionID = "merge" new_element.Ntrials = np.mean(sub_df.Ntrials.values) new_element.Protocol = "merge" new_element.InitialBias = np.nan new_element.Bias = np.nan new_element.BiasToStimPort = np.mean(sub_df.BiasToStimPort.values) new_element.RandomBiases = np.concatenate(sub_df.RandomBiases.values) new_element.RandomBiasMean = np.mean(new_element.RandomBiases) new_element.RandomBiasStd = np.std(new_element.RandomBiases) # remove old indexes opto_df_sel.drop(case, inplace=True) # add new row opto_df_sel = opto_df_sel.append(new_element) opto_df_sel.sort_index(inplace=True) return opto_df_sel
PypiClean
/azure_mgmt_containerservice-26.0.0-py3-none-any.whl/azure/mgmt/containerservice/v2020_09_01/models/_models_py3.py
from typing import Any, Dict, List, Optional, TYPE_CHECKING, Union from ... import _serialization if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from .. import models as _models class SubResource(_serialization.Model): """Reference to another subresource. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Resource ID. :vartype id: str :ivar name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :vartype name: str :ivar type: Resource type. :vartype type: str """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, } def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.id = None self.name = None self.type = None class AgentPool(SubResource): # pylint: disable=too-many-instance-attributes """Agent Pool. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Resource ID. :vartype id: str :ivar name: The name of the resource that is unique within a resource group. This name can be used to access the resource. :vartype name: str :ivar type: Resource type. :vartype type: str :ivar count: Number of agents (VMs) to host docker containers. Allowed values must be in the range of 0 to 100 (inclusive) for user pools and in the range of 1 to 100 (inclusive) for system pools. The default value is 1. :vartype count: int :ivar vm_size: Size of agent VMs. Known values are: "Standard_A1", "Standard_A10", "Standard_A11", "Standard_A1_v2", "Standard_A2", "Standard_A2_v2", "Standard_A2m_v2", "Standard_A3", "Standard_A4", "Standard_A4_v2", "Standard_A4m_v2", "Standard_A5", "Standard_A6", "Standard_A7", "Standard_A8", "Standard_A8_v2", "Standard_A8m_v2", "Standard_A9", "Standard_B2ms", "Standard_B2s", "Standard_B4ms", "Standard_B8ms", "Standard_D1", "Standard_D11", "Standard_D11_v2", "Standard_D11_v2_Promo", "Standard_D12", "Standard_D12_v2", "Standard_D12_v2_Promo", "Standard_D13", "Standard_D13_v2", "Standard_D13_v2_Promo", "Standard_D14", "Standard_D14_v2", "Standard_D14_v2_Promo", "Standard_D15_v2", "Standard_D16_v3", "Standard_D16s_v3", "Standard_D1_v2", "Standard_D2", "Standard_D2_v2", "Standard_D2_v2_Promo", "Standard_D2_v3", "Standard_D2s_v3", "Standard_D3", "Standard_D32_v3", "Standard_D32s_v3", "Standard_D3_v2", "Standard_D3_v2_Promo", "Standard_D4", "Standard_D4_v2", "Standard_D4_v2_Promo", "Standard_D4_v3", "Standard_D4s_v3", "Standard_D5_v2", "Standard_D5_v2_Promo", "Standard_D64_v3", "Standard_D64s_v3", "Standard_D8_v3", "Standard_D8s_v3", "Standard_DS1", "Standard_DS11", "Standard_DS11_v2", "Standard_DS11_v2_Promo", "Standard_DS12", "Standard_DS12_v2", "Standard_DS12_v2_Promo", "Standard_DS13", "Standard_DS13-2_v2", "Standard_DS13-4_v2", "Standard_DS13_v2", "Standard_DS13_v2_Promo", "Standard_DS14", "Standard_DS14-4_v2", "Standard_DS14-8_v2", "Standard_DS14_v2", "Standard_DS14_v2_Promo", "Standard_DS15_v2", "Standard_DS1_v2", "Standard_DS2", "Standard_DS2_v2", "Standard_DS2_v2_Promo", "Standard_DS3", "Standard_DS3_v2", "Standard_DS3_v2_Promo", "Standard_DS4", "Standard_DS4_v2", "Standard_DS4_v2_Promo", "Standard_DS5_v2", "Standard_DS5_v2_Promo", "Standard_E16_v3", "Standard_E16s_v3", "Standard_E2_v3", "Standard_E2s_v3", "Standard_E32-16s_v3", "Standard_E32-8s_v3", "Standard_E32_v3", "Standard_E32s_v3", "Standard_E4_v3", "Standard_E4s_v3", "Standard_E64-16s_v3", "Standard_E64-32s_v3", "Standard_E64_v3", "Standard_E64s_v3", "Standard_E8_v3", "Standard_E8s_v3", "Standard_F1", "Standard_F16", "Standard_F16s", "Standard_F16s_v2", "Standard_F1s", "Standard_F2", "Standard_F2s", "Standard_F2s_v2", "Standard_F32s_v2", "Standard_F4", "Standard_F4s", "Standard_F4s_v2", "Standard_F64s_v2", "Standard_F72s_v2", "Standard_F8", "Standard_F8s", "Standard_F8s_v2", "Standard_G1", "Standard_G2", "Standard_G3", "Standard_G4", "Standard_G5", "Standard_GS1", "Standard_GS2", "Standard_GS3", "Standard_GS4", "Standard_GS4-4", "Standard_GS4-8", "Standard_GS5", "Standard_GS5-16", "Standard_GS5-8", "Standard_H16", "Standard_H16m", "Standard_H16mr", "Standard_H16r", "Standard_H8", "Standard_H8m", "Standard_L16s", "Standard_L32s", "Standard_L4s", "Standard_L8s", "Standard_M128-32ms", "Standard_M128-64ms", "Standard_M128ms", "Standard_M128s", "Standard_M64-16ms", "Standard_M64-32ms", "Standard_M64ms", "Standard_M64s", "Standard_NC12", "Standard_NC12s_v2", "Standard_NC12s_v3", "Standard_NC24", "Standard_NC24r", "Standard_NC24rs_v2", "Standard_NC24rs_v3", "Standard_NC24s_v2", "Standard_NC24s_v3", "Standard_NC6", "Standard_NC6s_v2", "Standard_NC6s_v3", "Standard_ND12s", "Standard_ND24rs", "Standard_ND24s", "Standard_ND6s", "Standard_NV12", "Standard_NV24", and "Standard_NV6". :vartype vm_size: str or ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceVMSizeTypes :ivar os_disk_size_gb: OS Disk Size in GB to be used to specify the disk size for every machine in this master/agent pool. If you specify 0, it will apply the default osDisk size according to the vmSize specified. :vartype os_disk_size_gb: int :ivar os_disk_type: OS disk type to be used for machines in a given agent pool. Allowed values are 'Ephemeral' and 'Managed'. Defaults to 'Managed'. May not be changed after creation. Known values are: "Managed" and "Ephemeral". :vartype os_disk_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSDiskType :ivar vnet_subnet_id: VNet SubnetID specifies the VNet's subnet identifier. :vartype vnet_subnet_id: str :ivar max_pods: Maximum number of pods that can run on a node. :vartype max_pods: int :ivar os_type: OsType to be used to specify os type. Choose from Linux and Windows. Default to Linux. Known values are: "Linux" and "Windows". :vartype os_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSType :ivar max_count: Maximum number of nodes for auto-scaling. :vartype max_count: int :ivar min_count: Minimum number of nodes for auto-scaling. :vartype min_count: int :ivar enable_auto_scaling: Whether to enable auto-scaler. :vartype enable_auto_scaling: bool :ivar type_properties_type: AgentPoolType represents types of an agent pool. Known values are: "VirtualMachineScaleSets" and "AvailabilitySet". :vartype type_properties_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolType :ivar mode: AgentPoolMode represents mode of an agent pool. Known values are: "System" and "User". :vartype mode: str or ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolMode :ivar orchestrator_version: Version of orchestrator specified when creating the managed cluster. :vartype orchestrator_version: str :ivar node_image_version: Version of node image. :vartype node_image_version: str :ivar upgrade_settings: Settings for upgrading the agentpool. :vartype upgrade_settings: ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolUpgradeSettings :ivar provisioning_state: The current deployment or provisioning state, which only appears in the response. :vartype provisioning_state: str :ivar power_state: Describes whether the Agent Pool is Running or Stopped. :vartype power_state: ~azure.mgmt.containerservice.v2020_09_01.models.PowerState :ivar availability_zones: Availability zones for nodes. Must use VirtualMachineScaleSets AgentPoolType. :vartype availability_zones: list[str] :ivar enable_node_public_ip: Enable public IP for nodes. :vartype enable_node_public_ip: bool :ivar scale_set_priority: ScaleSetPriority to be used to specify virtual machine scale set priority. Default to regular. Known values are: "Spot" and "Regular". :vartype scale_set_priority: str or ~azure.mgmt.containerservice.v2020_09_01.models.ScaleSetPriority :ivar scale_set_eviction_policy: ScaleSetEvictionPolicy to be used to specify eviction policy for Spot virtual machine scale set. Default to Delete. Known values are: "Delete" and "Deallocate". :vartype scale_set_eviction_policy: str or ~azure.mgmt.containerservice.v2020_09_01.models.ScaleSetEvictionPolicy :ivar spot_max_price: SpotMaxPrice to be used to specify the maximum price you are willing to pay in US Dollars. Possible values are any decimal value greater than zero or -1 which indicates default price to be up-to on-demand. :vartype spot_max_price: float :ivar tags: Agent pool tags to be persisted on the agent pool virtual machine scale set. :vartype tags: dict[str, str] :ivar node_labels: Agent pool node labels to be persisted across all nodes in agent pool. :vartype node_labels: dict[str, str] :ivar node_taints: Taints added to new nodes during node pool create and scale. For example, key=value:NoSchedule. :vartype node_taints: list[str] :ivar proximity_placement_group_id: The ID for Proximity Placement Group. :vartype proximity_placement_group_id: str """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, "os_disk_size_gb": {"maximum": 1023, "minimum": 0}, "node_image_version": {"readonly": True}, "provisioning_state": {"readonly": True}, "power_state": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "count": {"key": "properties.count", "type": "int"}, "vm_size": {"key": "properties.vmSize", "type": "str"}, "os_disk_size_gb": {"key": "properties.osDiskSizeGB", "type": "int"}, "os_disk_type": {"key": "properties.osDiskType", "type": "str"}, "vnet_subnet_id": {"key": "properties.vnetSubnetID", "type": "str"}, "max_pods": {"key": "properties.maxPods", "type": "int"}, "os_type": {"key": "properties.osType", "type": "str"}, "max_count": {"key": "properties.maxCount", "type": "int"}, "min_count": {"key": "properties.minCount", "type": "int"}, "enable_auto_scaling": {"key": "properties.enableAutoScaling", "type": "bool"}, "type_properties_type": {"key": "properties.type", "type": "str"}, "mode": {"key": "properties.mode", "type": "str"}, "orchestrator_version": {"key": "properties.orchestratorVersion", "type": "str"}, "node_image_version": {"key": "properties.nodeImageVersion", "type": "str"}, "upgrade_settings": {"key": "properties.upgradeSettings", "type": "AgentPoolUpgradeSettings"}, "provisioning_state": {"key": "properties.provisioningState", "type": "str"}, "power_state": {"key": "properties.powerState", "type": "PowerState"}, "availability_zones": {"key": "properties.availabilityZones", "type": "[str]"}, "enable_node_public_ip": {"key": "properties.enableNodePublicIP", "type": "bool"}, "scale_set_priority": {"key": "properties.scaleSetPriority", "type": "str"}, "scale_set_eviction_policy": {"key": "properties.scaleSetEvictionPolicy", "type": "str"}, "spot_max_price": {"key": "properties.spotMaxPrice", "type": "float"}, "tags": {"key": "properties.tags", "type": "{str}"}, "node_labels": {"key": "properties.nodeLabels", "type": "{str}"}, "node_taints": {"key": "properties.nodeTaints", "type": "[str]"}, "proximity_placement_group_id": {"key": "properties.proximityPlacementGroupID", "type": "str"}, } def __init__( # pylint: disable=too-many-locals self, *, count: Optional[int] = None, vm_size: Optional[Union[str, "_models.ContainerServiceVMSizeTypes"]] = None, os_disk_size_gb: Optional[int] = None, os_disk_type: Optional[Union[str, "_models.OSDiskType"]] = None, vnet_subnet_id: Optional[str] = None, max_pods: Optional[int] = None, os_type: Union[str, "_models.OSType"] = "Linux", max_count: Optional[int] = None, min_count: Optional[int] = None, enable_auto_scaling: Optional[bool] = None, type_properties_type: Optional[Union[str, "_models.AgentPoolType"]] = None, mode: Optional[Union[str, "_models.AgentPoolMode"]] = None, orchestrator_version: Optional[str] = None, upgrade_settings: Optional["_models.AgentPoolUpgradeSettings"] = None, availability_zones: Optional[List[str]] = None, enable_node_public_ip: Optional[bool] = None, scale_set_priority: Union[str, "_models.ScaleSetPriority"] = "Regular", scale_set_eviction_policy: Union[str, "_models.ScaleSetEvictionPolicy"] = "Delete", spot_max_price: float = -1, tags: Optional[Dict[str, str]] = None, node_labels: Optional[Dict[str, str]] = None, node_taints: Optional[List[str]] = None, proximity_placement_group_id: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword count: Number of agents (VMs) to host docker containers. Allowed values must be in the range of 0 to 100 (inclusive) for user pools and in the range of 1 to 100 (inclusive) for system pools. The default value is 1. :paramtype count: int :keyword vm_size: Size of agent VMs. Known values are: "Standard_A1", "Standard_A10", "Standard_A11", "Standard_A1_v2", "Standard_A2", "Standard_A2_v2", "Standard_A2m_v2", "Standard_A3", "Standard_A4", "Standard_A4_v2", "Standard_A4m_v2", "Standard_A5", "Standard_A6", "Standard_A7", "Standard_A8", "Standard_A8_v2", "Standard_A8m_v2", "Standard_A9", "Standard_B2ms", "Standard_B2s", "Standard_B4ms", "Standard_B8ms", "Standard_D1", "Standard_D11", "Standard_D11_v2", "Standard_D11_v2_Promo", "Standard_D12", "Standard_D12_v2", "Standard_D12_v2_Promo", "Standard_D13", "Standard_D13_v2", "Standard_D13_v2_Promo", "Standard_D14", "Standard_D14_v2", "Standard_D14_v2_Promo", "Standard_D15_v2", "Standard_D16_v3", "Standard_D16s_v3", "Standard_D1_v2", "Standard_D2", "Standard_D2_v2", "Standard_D2_v2_Promo", "Standard_D2_v3", "Standard_D2s_v3", "Standard_D3", "Standard_D32_v3", "Standard_D32s_v3", "Standard_D3_v2", "Standard_D3_v2_Promo", "Standard_D4", "Standard_D4_v2", "Standard_D4_v2_Promo", "Standard_D4_v3", "Standard_D4s_v3", "Standard_D5_v2", "Standard_D5_v2_Promo", "Standard_D64_v3", "Standard_D64s_v3", "Standard_D8_v3", "Standard_D8s_v3", "Standard_DS1", "Standard_DS11", "Standard_DS11_v2", "Standard_DS11_v2_Promo", "Standard_DS12", "Standard_DS12_v2", "Standard_DS12_v2_Promo", "Standard_DS13", "Standard_DS13-2_v2", "Standard_DS13-4_v2", "Standard_DS13_v2", "Standard_DS13_v2_Promo", "Standard_DS14", "Standard_DS14-4_v2", "Standard_DS14-8_v2", "Standard_DS14_v2", "Standard_DS14_v2_Promo", "Standard_DS15_v2", "Standard_DS1_v2", "Standard_DS2", "Standard_DS2_v2", "Standard_DS2_v2_Promo", "Standard_DS3", "Standard_DS3_v2", "Standard_DS3_v2_Promo", "Standard_DS4", "Standard_DS4_v2", "Standard_DS4_v2_Promo", "Standard_DS5_v2", "Standard_DS5_v2_Promo", "Standard_E16_v3", "Standard_E16s_v3", "Standard_E2_v3", "Standard_E2s_v3", "Standard_E32-16s_v3", "Standard_E32-8s_v3", "Standard_E32_v3", "Standard_E32s_v3", "Standard_E4_v3", "Standard_E4s_v3", "Standard_E64-16s_v3", "Standard_E64-32s_v3", "Standard_E64_v3", "Standard_E64s_v3", "Standard_E8_v3", "Standard_E8s_v3", "Standard_F1", "Standard_F16", "Standard_F16s", "Standard_F16s_v2", "Standard_F1s", "Standard_F2", "Standard_F2s", "Standard_F2s_v2", "Standard_F32s_v2", "Standard_F4", "Standard_F4s", "Standard_F4s_v2", "Standard_F64s_v2", "Standard_F72s_v2", "Standard_F8", "Standard_F8s", "Standard_F8s_v2", "Standard_G1", "Standard_G2", "Standard_G3", "Standard_G4", "Standard_G5", "Standard_GS1", "Standard_GS2", "Standard_GS3", "Standard_GS4", "Standard_GS4-4", "Standard_GS4-8", "Standard_GS5", "Standard_GS5-16", "Standard_GS5-8", "Standard_H16", "Standard_H16m", "Standard_H16mr", "Standard_H16r", "Standard_H8", "Standard_H8m", "Standard_L16s", "Standard_L32s", "Standard_L4s", "Standard_L8s", "Standard_M128-32ms", "Standard_M128-64ms", "Standard_M128ms", "Standard_M128s", "Standard_M64-16ms", "Standard_M64-32ms", "Standard_M64ms", "Standard_M64s", "Standard_NC12", "Standard_NC12s_v2", "Standard_NC12s_v3", "Standard_NC24", "Standard_NC24r", "Standard_NC24rs_v2", "Standard_NC24rs_v3", "Standard_NC24s_v2", "Standard_NC24s_v3", "Standard_NC6", "Standard_NC6s_v2", "Standard_NC6s_v3", "Standard_ND12s", "Standard_ND24rs", "Standard_ND24s", "Standard_ND6s", "Standard_NV12", "Standard_NV24", and "Standard_NV6". :paramtype vm_size: str or ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceVMSizeTypes :keyword os_disk_size_gb: OS Disk Size in GB to be used to specify the disk size for every machine in this master/agent pool. If you specify 0, it will apply the default osDisk size according to the vmSize specified. :paramtype os_disk_size_gb: int :keyword os_disk_type: OS disk type to be used for machines in a given agent pool. Allowed values are 'Ephemeral' and 'Managed'. Defaults to 'Managed'. May not be changed after creation. Known values are: "Managed" and "Ephemeral". :paramtype os_disk_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSDiskType :keyword vnet_subnet_id: VNet SubnetID specifies the VNet's subnet identifier. :paramtype vnet_subnet_id: str :keyword max_pods: Maximum number of pods that can run on a node. :paramtype max_pods: int :keyword os_type: OsType to be used to specify os type. Choose from Linux and Windows. Default to Linux. Known values are: "Linux" and "Windows". :paramtype os_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSType :keyword max_count: Maximum number of nodes for auto-scaling. :paramtype max_count: int :keyword min_count: Minimum number of nodes for auto-scaling. :paramtype min_count: int :keyword enable_auto_scaling: Whether to enable auto-scaler. :paramtype enable_auto_scaling: bool :keyword type_properties_type: AgentPoolType represents types of an agent pool. Known values are: "VirtualMachineScaleSets" and "AvailabilitySet". :paramtype type_properties_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolType :keyword mode: AgentPoolMode represents mode of an agent pool. Known values are: "System" and "User". :paramtype mode: str or ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolMode :keyword orchestrator_version: Version of orchestrator specified when creating the managed cluster. :paramtype orchestrator_version: str :keyword upgrade_settings: Settings for upgrading the agentpool. :paramtype upgrade_settings: ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolUpgradeSettings :keyword availability_zones: Availability zones for nodes. Must use VirtualMachineScaleSets AgentPoolType. :paramtype availability_zones: list[str] :keyword enable_node_public_ip: Enable public IP for nodes. :paramtype enable_node_public_ip: bool :keyword scale_set_priority: ScaleSetPriority to be used to specify virtual machine scale set priority. Default to regular. Known values are: "Spot" and "Regular". :paramtype scale_set_priority: str or ~azure.mgmt.containerservice.v2020_09_01.models.ScaleSetPriority :keyword scale_set_eviction_policy: ScaleSetEvictionPolicy to be used to specify eviction policy for Spot virtual machine scale set. Default to Delete. Known values are: "Delete" and "Deallocate". :paramtype scale_set_eviction_policy: str or ~azure.mgmt.containerservice.v2020_09_01.models.ScaleSetEvictionPolicy :keyword spot_max_price: SpotMaxPrice to be used to specify the maximum price you are willing to pay in US Dollars. Possible values are any decimal value greater than zero or -1 which indicates default price to be up-to on-demand. :paramtype spot_max_price: float :keyword tags: Agent pool tags to be persisted on the agent pool virtual machine scale set. :paramtype tags: dict[str, str] :keyword node_labels: Agent pool node labels to be persisted across all nodes in agent pool. :paramtype node_labels: dict[str, str] :keyword node_taints: Taints added to new nodes during node pool create and scale. For example, key=value:NoSchedule. :paramtype node_taints: list[str] :keyword proximity_placement_group_id: The ID for Proximity Placement Group. :paramtype proximity_placement_group_id: str """ super().__init__(**kwargs) self.count = count self.vm_size = vm_size self.os_disk_size_gb = os_disk_size_gb self.os_disk_type = os_disk_type self.vnet_subnet_id = vnet_subnet_id self.max_pods = max_pods self.os_type = os_type self.max_count = max_count self.min_count = min_count self.enable_auto_scaling = enable_auto_scaling self.type_properties_type = type_properties_type self.mode = mode self.orchestrator_version = orchestrator_version self.node_image_version = None self.upgrade_settings = upgrade_settings self.provisioning_state = None self.power_state = None self.availability_zones = availability_zones self.enable_node_public_ip = enable_node_public_ip self.scale_set_priority = scale_set_priority self.scale_set_eviction_policy = scale_set_eviction_policy self.spot_max_price = spot_max_price self.tags = tags self.node_labels = node_labels self.node_taints = node_taints self.proximity_placement_group_id = proximity_placement_group_id class AgentPoolAvailableVersions(_serialization.Model): """The list of available versions for an agent pool. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Id of the agent pool available versions. :vartype id: str :ivar name: Name of the agent pool available versions. :vartype name: str :ivar type: Type of the agent pool available versions. :vartype type: str :ivar agent_pool_versions: List of versions available for agent pool. :vartype agent_pool_versions: list[~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolAvailableVersionsPropertiesAgentPoolVersionsItem] """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "agent_pool_versions": { "key": "properties.agentPoolVersions", "type": "[AgentPoolAvailableVersionsPropertiesAgentPoolVersionsItem]", }, } def __init__( self, *, agent_pool_versions: Optional[List["_models.AgentPoolAvailableVersionsPropertiesAgentPoolVersionsItem"]] = None, **kwargs: Any ) -> None: """ :keyword agent_pool_versions: List of versions available for agent pool. :paramtype agent_pool_versions: list[~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolAvailableVersionsPropertiesAgentPoolVersionsItem] """ super().__init__(**kwargs) self.id = None self.name = None self.type = None self.agent_pool_versions = agent_pool_versions class AgentPoolAvailableVersionsPropertiesAgentPoolVersionsItem(_serialization.Model): """AgentPoolAvailableVersionsPropertiesAgentPoolVersionsItem. :ivar default: Whether this version is the default agent pool version. :vartype default: bool :ivar kubernetes_version: Kubernetes version (major, minor, patch). :vartype kubernetes_version: str :ivar is_preview: Whether Kubernetes version is currently in preview. :vartype is_preview: bool """ _attribute_map = { "default": {"key": "default", "type": "bool"}, "kubernetes_version": {"key": "kubernetesVersion", "type": "str"}, "is_preview": {"key": "isPreview", "type": "bool"}, } def __init__( self, *, default: Optional[bool] = None, kubernetes_version: Optional[str] = None, is_preview: Optional[bool] = None, **kwargs: Any ) -> None: """ :keyword default: Whether this version is the default agent pool version. :paramtype default: bool :keyword kubernetes_version: Kubernetes version (major, minor, patch). :paramtype kubernetes_version: str :keyword is_preview: Whether Kubernetes version is currently in preview. :paramtype is_preview: bool """ super().__init__(**kwargs) self.default = default self.kubernetes_version = kubernetes_version self.is_preview = is_preview class AgentPoolListResult(_serialization.Model): """The response from the List Agent Pools operation. Variables are only populated by the server, and will be ignored when sending a request. :ivar value: The list of agent pools. :vartype value: list[~azure.mgmt.containerservice.v2020_09_01.models.AgentPool] :ivar next_link: The URL to get the next set of agent pool results. :vartype next_link: str """ _validation = { "next_link": {"readonly": True}, } _attribute_map = { "value": {"key": "value", "type": "[AgentPool]"}, "next_link": {"key": "nextLink", "type": "str"}, } def __init__(self, *, value: Optional[List["_models.AgentPool"]] = None, **kwargs: Any) -> None: """ :keyword value: The list of agent pools. :paramtype value: list[~azure.mgmt.containerservice.v2020_09_01.models.AgentPool] """ super().__init__(**kwargs) self.value = value self.next_link = None class AgentPoolUpgradeProfile(_serialization.Model): """The list of available upgrades for an agent pool. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: Id of the agent pool upgrade profile. :vartype id: str :ivar name: Name of the agent pool upgrade profile. :vartype name: str :ivar type: Type of the agent pool upgrade profile. :vartype type: str :ivar kubernetes_version: Kubernetes version (major, minor, patch). Required. :vartype kubernetes_version: str :ivar os_type: OsType to be used to specify os type. Choose from Linux and Windows. Default to Linux. Known values are: "Linux" and "Windows". :vartype os_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSType :ivar upgrades: List of orchestrator types and versions available for upgrade. :vartype upgrades: list[~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolUpgradeProfilePropertiesUpgradesItem] :ivar latest_node_image_version: LatestNodeImageVersion is the latest AKS supported node image version. :vartype latest_node_image_version: str """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, "kubernetes_version": {"required": True}, "os_type": {"required": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "kubernetes_version": {"key": "properties.kubernetesVersion", "type": "str"}, "os_type": {"key": "properties.osType", "type": "str"}, "upgrades": {"key": "properties.upgrades", "type": "[AgentPoolUpgradeProfilePropertiesUpgradesItem]"}, "latest_node_image_version": {"key": "properties.latestNodeImageVersion", "type": "str"}, } def __init__( self, *, kubernetes_version: str, os_type: Union[str, "_models.OSType"] = "Linux", upgrades: Optional[List["_models.AgentPoolUpgradeProfilePropertiesUpgradesItem"]] = None, latest_node_image_version: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword kubernetes_version: Kubernetes version (major, minor, patch). Required. :paramtype kubernetes_version: str :keyword os_type: OsType to be used to specify os type. Choose from Linux and Windows. Default to Linux. Known values are: "Linux" and "Windows". :paramtype os_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSType :keyword upgrades: List of orchestrator types and versions available for upgrade. :paramtype upgrades: list[~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolUpgradeProfilePropertiesUpgradesItem] :keyword latest_node_image_version: LatestNodeImageVersion is the latest AKS supported node image version. :paramtype latest_node_image_version: str """ super().__init__(**kwargs) self.id = None self.name = None self.type = None self.kubernetes_version = kubernetes_version self.os_type = os_type self.upgrades = upgrades self.latest_node_image_version = latest_node_image_version class AgentPoolUpgradeProfilePropertiesUpgradesItem(_serialization.Model): """AgentPoolUpgradeProfilePropertiesUpgradesItem. :ivar kubernetes_version: Kubernetes version (major, minor, patch). :vartype kubernetes_version: str :ivar is_preview: Whether Kubernetes version is currently in preview. :vartype is_preview: bool """ _attribute_map = { "kubernetes_version": {"key": "kubernetesVersion", "type": "str"}, "is_preview": {"key": "isPreview", "type": "bool"}, } def __init__( self, *, kubernetes_version: Optional[str] = None, is_preview: Optional[bool] = None, **kwargs: Any ) -> None: """ :keyword kubernetes_version: Kubernetes version (major, minor, patch). :paramtype kubernetes_version: str :keyword is_preview: Whether Kubernetes version is currently in preview. :paramtype is_preview: bool """ super().__init__(**kwargs) self.kubernetes_version = kubernetes_version self.is_preview = is_preview class AgentPoolUpgradeSettings(_serialization.Model): """Settings for upgrading an agentpool. :ivar max_surge: Count or percentage of additional nodes to be added during upgrade. If empty uses AKS default. :vartype max_surge: str """ _attribute_map = { "max_surge": {"key": "maxSurge", "type": "str"}, } def __init__(self, *, max_surge: Optional[str] = None, **kwargs: Any) -> None: """ :keyword max_surge: Count or percentage of additional nodes to be added during upgrade. If empty uses AKS default. :paramtype max_surge: str """ super().__init__(**kwargs) self.max_surge = max_surge class BaseManagedCluster(_serialization.Model): # pylint: disable=too-many-instance-attributes """BaseManagedCluster. Variables are only populated by the server, and will be ignored when sending a request. :ivar identity: The identity of the managed cluster, if configured. :vartype identity: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterIdentity :ivar provisioning_state: The current deployment or provisioning state, which only appears in the response. :vartype provisioning_state: str :ivar power_state: Represents the Power State of the cluster. :vartype power_state: ~azure.mgmt.containerservice.v2020_09_01.models.PowerState :ivar max_agent_pools: The max number of agent pools for the managed cluster. :vartype max_agent_pools: int :ivar kubernetes_version: Version of Kubernetes specified when creating the managed cluster. :vartype kubernetes_version: str :ivar dns_prefix: DNS prefix specified when creating the managed cluster. :vartype dns_prefix: str :ivar fqdn: FQDN for the master pool. :vartype fqdn: str :ivar private_fqdn: FQDN of private cluster. :vartype private_fqdn: str :ivar agent_pool_profiles: Properties of the agent pool. :vartype agent_pool_profiles: list[~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAgentPoolProfile] :ivar linux_profile: Profile for Linux VMs in the container service cluster. :vartype linux_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceLinuxProfile :ivar windows_profile: Profile for Windows VMs in the container service cluster. :vartype windows_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterWindowsProfile :ivar service_principal_profile: Information about a service principal identity for the cluster to use for manipulating Azure APIs. :vartype service_principal_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterServicePrincipalProfile :ivar addon_profiles: Profile of managed cluster add-on. :vartype addon_profiles: dict[str, ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAddonProfile] :ivar node_resource_group: Name of the resource group containing agent pool nodes. :vartype node_resource_group: str :ivar enable_rbac: Whether to enable Kubernetes Role-Based Access Control. :vartype enable_rbac: bool :ivar enable_pod_security_policy: (DEPRECATING) Whether to enable Kubernetes pod security policy (preview). This feature is set for removal on October 15th, 2020. Learn more at aka.ms/aks/azpodpolicy. :vartype enable_pod_security_policy: bool :ivar network_profile: Profile of network configuration. :vartype network_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceNetworkProfile :ivar aad_profile: Profile of Azure Active Directory configuration. :vartype aad_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAADProfile :ivar auto_scaler_profile: Parameters to be applied to the cluster-autoscaler when enabled. :vartype auto_scaler_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterPropertiesAutoScalerProfile :ivar api_server_access_profile: Access profile for managed cluster API server. :vartype api_server_access_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAPIServerAccessProfile :ivar disk_encryption_set_id: ResourceId of the disk encryption set to use for enabling encryption at rest. :vartype disk_encryption_set_id: str :ivar identity_profile: Identities associated with the cluster. :vartype identity_profile: dict[str, ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterPropertiesIdentityProfileValue] """ _validation = { "provisioning_state": {"readonly": True}, "power_state": {"readonly": True}, "max_agent_pools": {"readonly": True}, "fqdn": {"readonly": True}, "private_fqdn": {"readonly": True}, } _attribute_map = { "identity": {"key": "identity", "type": "ManagedClusterIdentity"}, "provisioning_state": {"key": "properties.provisioningState", "type": "str"}, "power_state": {"key": "properties.powerState", "type": "PowerState"}, "max_agent_pools": {"key": "properties.maxAgentPools", "type": "int"}, "kubernetes_version": {"key": "properties.kubernetesVersion", "type": "str"}, "dns_prefix": {"key": "properties.dnsPrefix", "type": "str"}, "fqdn": {"key": "properties.fqdn", "type": "str"}, "private_fqdn": {"key": "properties.privateFQDN", "type": "str"}, "agent_pool_profiles": {"key": "properties.agentPoolProfiles", "type": "[ManagedClusterAgentPoolProfile]"}, "linux_profile": {"key": "properties.linuxProfile", "type": "ContainerServiceLinuxProfile"}, "windows_profile": {"key": "properties.windowsProfile", "type": "ManagedClusterWindowsProfile"}, "service_principal_profile": { "key": "properties.servicePrincipalProfile", "type": "ManagedClusterServicePrincipalProfile", }, "addon_profiles": {"key": "properties.addonProfiles", "type": "{ManagedClusterAddonProfile}"}, "node_resource_group": {"key": "properties.nodeResourceGroup", "type": "str"}, "enable_rbac": {"key": "properties.enableRBAC", "type": "bool"}, "enable_pod_security_policy": {"key": "properties.enablePodSecurityPolicy", "type": "bool"}, "network_profile": {"key": "properties.networkProfile", "type": "ContainerServiceNetworkProfile"}, "aad_profile": {"key": "properties.aadProfile", "type": "ManagedClusterAADProfile"}, "auto_scaler_profile": { "key": "properties.autoScalerProfile", "type": "ManagedClusterPropertiesAutoScalerProfile", }, "api_server_access_profile": { "key": "properties.apiServerAccessProfile", "type": "ManagedClusterAPIServerAccessProfile", }, "disk_encryption_set_id": {"key": "properties.diskEncryptionSetID", "type": "str"}, "identity_profile": { "key": "properties.identityProfile", "type": "{ManagedClusterPropertiesIdentityProfileValue}", }, } def __init__( self, *, identity: Optional["_models.ManagedClusterIdentity"] = None, kubernetes_version: Optional[str] = None, dns_prefix: Optional[str] = None, agent_pool_profiles: Optional[List["_models.ManagedClusterAgentPoolProfile"]] = None, linux_profile: Optional["_models.ContainerServiceLinuxProfile"] = None, windows_profile: Optional["_models.ManagedClusterWindowsProfile"] = None, service_principal_profile: Optional["_models.ManagedClusterServicePrincipalProfile"] = None, addon_profiles: Optional[Dict[str, "_models.ManagedClusterAddonProfile"]] = None, node_resource_group: Optional[str] = None, enable_rbac: Optional[bool] = None, enable_pod_security_policy: Optional[bool] = None, network_profile: Optional["_models.ContainerServiceNetworkProfile"] = None, aad_profile: Optional["_models.ManagedClusterAADProfile"] = None, auto_scaler_profile: Optional["_models.ManagedClusterPropertiesAutoScalerProfile"] = None, api_server_access_profile: Optional["_models.ManagedClusterAPIServerAccessProfile"] = None, disk_encryption_set_id: Optional[str] = None, identity_profile: Optional[Dict[str, "_models.ManagedClusterPropertiesIdentityProfileValue"]] = None, **kwargs: Any ) -> None: """ :keyword identity: The identity of the managed cluster, if configured. :paramtype identity: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterIdentity :keyword kubernetes_version: Version of Kubernetes specified when creating the managed cluster. :paramtype kubernetes_version: str :keyword dns_prefix: DNS prefix specified when creating the managed cluster. :paramtype dns_prefix: str :keyword agent_pool_profiles: Properties of the agent pool. :paramtype agent_pool_profiles: list[~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAgentPoolProfile] :keyword linux_profile: Profile for Linux VMs in the container service cluster. :paramtype linux_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceLinuxProfile :keyword windows_profile: Profile for Windows VMs in the container service cluster. :paramtype windows_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterWindowsProfile :keyword service_principal_profile: Information about a service principal identity for the cluster to use for manipulating Azure APIs. :paramtype service_principal_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterServicePrincipalProfile :keyword addon_profiles: Profile of managed cluster add-on. :paramtype addon_profiles: dict[str, ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAddonProfile] :keyword node_resource_group: Name of the resource group containing agent pool nodes. :paramtype node_resource_group: str :keyword enable_rbac: Whether to enable Kubernetes Role-Based Access Control. :paramtype enable_rbac: bool :keyword enable_pod_security_policy: (DEPRECATING) Whether to enable Kubernetes pod security policy (preview). This feature is set for removal on October 15th, 2020. Learn more at aka.ms/aks/azpodpolicy. :paramtype enable_pod_security_policy: bool :keyword network_profile: Profile of network configuration. :paramtype network_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceNetworkProfile :keyword aad_profile: Profile of Azure Active Directory configuration. :paramtype aad_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAADProfile :keyword auto_scaler_profile: Parameters to be applied to the cluster-autoscaler when enabled. :paramtype auto_scaler_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterPropertiesAutoScalerProfile :keyword api_server_access_profile: Access profile for managed cluster API server. :paramtype api_server_access_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAPIServerAccessProfile :keyword disk_encryption_set_id: ResourceId of the disk encryption set to use for enabling encryption at rest. :paramtype disk_encryption_set_id: str :keyword identity_profile: Identities associated with the cluster. :paramtype identity_profile: dict[str, ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterPropertiesIdentityProfileValue] """ super().__init__(**kwargs) self.identity = identity self.provisioning_state = None self.power_state = None self.max_agent_pools = None self.kubernetes_version = kubernetes_version self.dns_prefix = dns_prefix self.fqdn = None self.private_fqdn = None self.agent_pool_profiles = agent_pool_profiles self.linux_profile = linux_profile self.windows_profile = windows_profile self.service_principal_profile = service_principal_profile self.addon_profiles = addon_profiles self.node_resource_group = node_resource_group self.enable_rbac = enable_rbac self.enable_pod_security_policy = enable_pod_security_policy self.network_profile = network_profile self.aad_profile = aad_profile self.auto_scaler_profile = auto_scaler_profile self.api_server_access_profile = api_server_access_profile self.disk_encryption_set_id = disk_encryption_set_id self.identity_profile = identity_profile class CloudErrorBody(_serialization.Model): """An error response from the Container service. :ivar code: An identifier for the error. Codes are invariant and are intended to be consumed programmatically. :vartype code: str :ivar message: A message describing the error, intended to be suitable for display in a user interface. :vartype message: str :ivar target: The target of the particular error. For example, the name of the property in error. :vartype target: str :ivar details: A list of additional details about the error. :vartype details: list[~azure.mgmt.containerservice.v2020_09_01.models.CloudErrorBody] """ _attribute_map = { "code": {"key": "code", "type": "str"}, "message": {"key": "message", "type": "str"}, "target": {"key": "target", "type": "str"}, "details": {"key": "details", "type": "[CloudErrorBody]"}, } def __init__( self, *, code: Optional[str] = None, message: Optional[str] = None, target: Optional[str] = None, details: Optional[List["_models.CloudErrorBody"]] = None, **kwargs: Any ) -> None: """ :keyword code: An identifier for the error. Codes are invariant and are intended to be consumed programmatically. :paramtype code: str :keyword message: A message describing the error, intended to be suitable for display in a user interface. :paramtype message: str :keyword target: The target of the particular error. For example, the name of the property in error. :paramtype target: str :keyword details: A list of additional details about the error. :paramtype details: list[~azure.mgmt.containerservice.v2020_09_01.models.CloudErrorBody] """ super().__init__(**kwargs) self.code = code self.message = message self.target = target self.details = details class ContainerServiceDiagnosticsProfile(_serialization.Model): """Profile for diagnostics on the container service cluster. All required parameters must be populated in order to send to Azure. :ivar vm_diagnostics: Profile for diagnostics on the container service VMs. Required. :vartype vm_diagnostics: ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceVMDiagnostics """ _validation = { "vm_diagnostics": {"required": True}, } _attribute_map = { "vm_diagnostics": {"key": "vmDiagnostics", "type": "ContainerServiceVMDiagnostics"}, } def __init__(self, *, vm_diagnostics: "_models.ContainerServiceVMDiagnostics", **kwargs: Any) -> None: """ :keyword vm_diagnostics: Profile for diagnostics on the container service VMs. Required. :paramtype vm_diagnostics: ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceVMDiagnostics """ super().__init__(**kwargs) self.vm_diagnostics = vm_diagnostics class ContainerServiceLinuxProfile(_serialization.Model): """Profile for Linux VMs in the container service cluster. All required parameters must be populated in order to send to Azure. :ivar admin_username: The administrator username to use for Linux VMs. Required. :vartype admin_username: str :ivar ssh: SSH configuration for Linux-based VMs running on Azure. Required. :vartype ssh: ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceSshConfiguration """ _validation = { "admin_username": {"required": True, "pattern": r"^[A-Za-z][-A-Za-z0-9_]*$"}, "ssh": {"required": True}, } _attribute_map = { "admin_username": {"key": "adminUsername", "type": "str"}, "ssh": {"key": "ssh", "type": "ContainerServiceSshConfiguration"}, } def __init__(self, *, admin_username: str, ssh: "_models.ContainerServiceSshConfiguration", **kwargs: Any) -> None: """ :keyword admin_username: The administrator username to use for Linux VMs. Required. :paramtype admin_username: str :keyword ssh: SSH configuration for Linux-based VMs running on Azure. Required. :paramtype ssh: ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceSshConfiguration """ super().__init__(**kwargs) self.admin_username = admin_username self.ssh = ssh class ContainerServiceMasterProfile(_serialization.Model): """Profile for the container service master. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar count: Number of masters (VMs) in the container service cluster. Allowed values are 1, 3, and 5. The default value is 1. Known values are: 1, 3, and 5. :vartype count: int or ~azure.mgmt.containerservice.v2020_09_01.models.Count :ivar dns_prefix: DNS prefix to be used to create the FQDN for the master pool. Required. :vartype dns_prefix: str :ivar vm_size: Size of agent VMs. Required. Known values are: "Standard_A1", "Standard_A10", "Standard_A11", "Standard_A1_v2", "Standard_A2", "Standard_A2_v2", "Standard_A2m_v2", "Standard_A3", "Standard_A4", "Standard_A4_v2", "Standard_A4m_v2", "Standard_A5", "Standard_A6", "Standard_A7", "Standard_A8", "Standard_A8_v2", "Standard_A8m_v2", "Standard_A9", "Standard_B2ms", "Standard_B2s", "Standard_B4ms", "Standard_B8ms", "Standard_D1", "Standard_D11", "Standard_D11_v2", "Standard_D11_v2_Promo", "Standard_D12", "Standard_D12_v2", "Standard_D12_v2_Promo", "Standard_D13", "Standard_D13_v2", "Standard_D13_v2_Promo", "Standard_D14", "Standard_D14_v2", "Standard_D14_v2_Promo", "Standard_D15_v2", "Standard_D16_v3", "Standard_D16s_v3", "Standard_D1_v2", "Standard_D2", "Standard_D2_v2", "Standard_D2_v2_Promo", "Standard_D2_v3", "Standard_D2s_v3", "Standard_D3", "Standard_D32_v3", "Standard_D32s_v3", "Standard_D3_v2", "Standard_D3_v2_Promo", "Standard_D4", "Standard_D4_v2", "Standard_D4_v2_Promo", "Standard_D4_v3", "Standard_D4s_v3", "Standard_D5_v2", "Standard_D5_v2_Promo", "Standard_D64_v3", "Standard_D64s_v3", "Standard_D8_v3", "Standard_D8s_v3", "Standard_DS1", "Standard_DS11", "Standard_DS11_v2", "Standard_DS11_v2_Promo", "Standard_DS12", "Standard_DS12_v2", "Standard_DS12_v2_Promo", "Standard_DS13", "Standard_DS13-2_v2", "Standard_DS13-4_v2", "Standard_DS13_v2", "Standard_DS13_v2_Promo", "Standard_DS14", "Standard_DS14-4_v2", "Standard_DS14-8_v2", "Standard_DS14_v2", "Standard_DS14_v2_Promo", "Standard_DS15_v2", "Standard_DS1_v2", "Standard_DS2", "Standard_DS2_v2", "Standard_DS2_v2_Promo", "Standard_DS3", "Standard_DS3_v2", "Standard_DS3_v2_Promo", "Standard_DS4", "Standard_DS4_v2", "Standard_DS4_v2_Promo", "Standard_DS5_v2", "Standard_DS5_v2_Promo", "Standard_E16_v3", "Standard_E16s_v3", "Standard_E2_v3", "Standard_E2s_v3", "Standard_E32-16s_v3", "Standard_E32-8s_v3", "Standard_E32_v3", "Standard_E32s_v3", "Standard_E4_v3", "Standard_E4s_v3", "Standard_E64-16s_v3", "Standard_E64-32s_v3", "Standard_E64_v3", "Standard_E64s_v3", "Standard_E8_v3", "Standard_E8s_v3", "Standard_F1", "Standard_F16", "Standard_F16s", "Standard_F16s_v2", "Standard_F1s", "Standard_F2", "Standard_F2s", "Standard_F2s_v2", "Standard_F32s_v2", "Standard_F4", "Standard_F4s", "Standard_F4s_v2", "Standard_F64s_v2", "Standard_F72s_v2", "Standard_F8", "Standard_F8s", "Standard_F8s_v2", "Standard_G1", "Standard_G2", "Standard_G3", "Standard_G4", "Standard_G5", "Standard_GS1", "Standard_GS2", "Standard_GS3", "Standard_GS4", "Standard_GS4-4", "Standard_GS4-8", "Standard_GS5", "Standard_GS5-16", "Standard_GS5-8", "Standard_H16", "Standard_H16m", "Standard_H16mr", "Standard_H16r", "Standard_H8", "Standard_H8m", "Standard_L16s", "Standard_L32s", "Standard_L4s", "Standard_L8s", "Standard_M128-32ms", "Standard_M128-64ms", "Standard_M128ms", "Standard_M128s", "Standard_M64-16ms", "Standard_M64-32ms", "Standard_M64ms", "Standard_M64s", "Standard_NC12", "Standard_NC12s_v2", "Standard_NC12s_v3", "Standard_NC24", "Standard_NC24r", "Standard_NC24rs_v2", "Standard_NC24rs_v3", "Standard_NC24s_v2", "Standard_NC24s_v3", "Standard_NC6", "Standard_NC6s_v2", "Standard_NC6s_v3", "Standard_ND12s", "Standard_ND24rs", "Standard_ND24s", "Standard_ND6s", "Standard_NV12", "Standard_NV24", and "Standard_NV6". :vartype vm_size: str or ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceVMSizeTypes :ivar os_disk_size_gb: OS Disk Size in GB to be used to specify the disk size for every machine in this master/agent pool. If you specify 0, it will apply the default osDisk size according to the vmSize specified. :vartype os_disk_size_gb: int :ivar vnet_subnet_id: VNet SubnetID specifies the VNet's subnet identifier. :vartype vnet_subnet_id: str :ivar first_consecutive_static_ip: FirstConsecutiveStaticIP used to specify the first static ip of masters. :vartype first_consecutive_static_ip: str :ivar storage_profile: Storage profile specifies what kind of storage used. Choose from StorageAccount and ManagedDisks. Leave it empty, we will choose for you based on the orchestrator choice. Known values are: "StorageAccount" and "ManagedDisks". :vartype storage_profile: str or ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceStorageProfileTypes :ivar fqdn: FQDN for the master pool. :vartype fqdn: str """ _validation = { "dns_prefix": {"required": True}, "vm_size": {"required": True}, "os_disk_size_gb": {"maximum": 1023, "minimum": 0}, "fqdn": {"readonly": True}, } _attribute_map = { "count": {"key": "count", "type": "int"}, "dns_prefix": {"key": "dnsPrefix", "type": "str"}, "vm_size": {"key": "vmSize", "type": "str"}, "os_disk_size_gb": {"key": "osDiskSizeGB", "type": "int"}, "vnet_subnet_id": {"key": "vnetSubnetID", "type": "str"}, "first_consecutive_static_ip": {"key": "firstConsecutiveStaticIP", "type": "str"}, "storage_profile": {"key": "storageProfile", "type": "str"}, "fqdn": {"key": "fqdn", "type": "str"}, } def __init__( self, *, dns_prefix: str, vm_size: Union[str, "_models.ContainerServiceVMSizeTypes"], count: Union[int, "_models.Count"] = 1, os_disk_size_gb: Optional[int] = None, vnet_subnet_id: Optional[str] = None, first_consecutive_static_ip: str = "10.240.255.5", storage_profile: Optional[Union[str, "_models.ContainerServiceStorageProfileTypes"]] = None, **kwargs: Any ) -> None: """ :keyword count: Number of masters (VMs) in the container service cluster. Allowed values are 1, 3, and 5. The default value is 1. Known values are: 1, 3, and 5. :paramtype count: int or ~azure.mgmt.containerservice.v2020_09_01.models.Count :keyword dns_prefix: DNS prefix to be used to create the FQDN for the master pool. Required. :paramtype dns_prefix: str :keyword vm_size: Size of agent VMs. Required. Known values are: "Standard_A1", "Standard_A10", "Standard_A11", "Standard_A1_v2", "Standard_A2", "Standard_A2_v2", "Standard_A2m_v2", "Standard_A3", "Standard_A4", "Standard_A4_v2", "Standard_A4m_v2", "Standard_A5", "Standard_A6", "Standard_A7", "Standard_A8", "Standard_A8_v2", "Standard_A8m_v2", "Standard_A9", "Standard_B2ms", "Standard_B2s", "Standard_B4ms", "Standard_B8ms", "Standard_D1", "Standard_D11", "Standard_D11_v2", "Standard_D11_v2_Promo", "Standard_D12", "Standard_D12_v2", "Standard_D12_v2_Promo", "Standard_D13", "Standard_D13_v2", "Standard_D13_v2_Promo", "Standard_D14", "Standard_D14_v2", "Standard_D14_v2_Promo", "Standard_D15_v2", "Standard_D16_v3", "Standard_D16s_v3", "Standard_D1_v2", "Standard_D2", "Standard_D2_v2", "Standard_D2_v2_Promo", "Standard_D2_v3", "Standard_D2s_v3", "Standard_D3", "Standard_D32_v3", "Standard_D32s_v3", "Standard_D3_v2", "Standard_D3_v2_Promo", "Standard_D4", "Standard_D4_v2", "Standard_D4_v2_Promo", "Standard_D4_v3", "Standard_D4s_v3", "Standard_D5_v2", "Standard_D5_v2_Promo", "Standard_D64_v3", "Standard_D64s_v3", "Standard_D8_v3", "Standard_D8s_v3", "Standard_DS1", "Standard_DS11", "Standard_DS11_v2", "Standard_DS11_v2_Promo", "Standard_DS12", "Standard_DS12_v2", "Standard_DS12_v2_Promo", "Standard_DS13", "Standard_DS13-2_v2", "Standard_DS13-4_v2", "Standard_DS13_v2", "Standard_DS13_v2_Promo", "Standard_DS14", "Standard_DS14-4_v2", "Standard_DS14-8_v2", "Standard_DS14_v2", "Standard_DS14_v2_Promo", "Standard_DS15_v2", "Standard_DS1_v2", "Standard_DS2", "Standard_DS2_v2", "Standard_DS2_v2_Promo", "Standard_DS3", "Standard_DS3_v2", "Standard_DS3_v2_Promo", "Standard_DS4", "Standard_DS4_v2", "Standard_DS4_v2_Promo", "Standard_DS5_v2", "Standard_DS5_v2_Promo", "Standard_E16_v3", "Standard_E16s_v3", "Standard_E2_v3", "Standard_E2s_v3", "Standard_E32-16s_v3", "Standard_E32-8s_v3", "Standard_E32_v3", "Standard_E32s_v3", "Standard_E4_v3", "Standard_E4s_v3", "Standard_E64-16s_v3", "Standard_E64-32s_v3", "Standard_E64_v3", "Standard_E64s_v3", "Standard_E8_v3", "Standard_E8s_v3", "Standard_F1", "Standard_F16", "Standard_F16s", "Standard_F16s_v2", "Standard_F1s", "Standard_F2", "Standard_F2s", "Standard_F2s_v2", "Standard_F32s_v2", "Standard_F4", "Standard_F4s", "Standard_F4s_v2", "Standard_F64s_v2", "Standard_F72s_v2", "Standard_F8", "Standard_F8s", "Standard_F8s_v2", "Standard_G1", "Standard_G2", "Standard_G3", "Standard_G4", "Standard_G5", "Standard_GS1", "Standard_GS2", "Standard_GS3", "Standard_GS4", "Standard_GS4-4", "Standard_GS4-8", "Standard_GS5", "Standard_GS5-16", "Standard_GS5-8", "Standard_H16", "Standard_H16m", "Standard_H16mr", "Standard_H16r", "Standard_H8", "Standard_H8m", "Standard_L16s", "Standard_L32s", "Standard_L4s", "Standard_L8s", "Standard_M128-32ms", "Standard_M128-64ms", "Standard_M128ms", "Standard_M128s", "Standard_M64-16ms", "Standard_M64-32ms", "Standard_M64ms", "Standard_M64s", "Standard_NC12", "Standard_NC12s_v2", "Standard_NC12s_v3", "Standard_NC24", "Standard_NC24r", "Standard_NC24rs_v2", "Standard_NC24rs_v3", "Standard_NC24s_v2", "Standard_NC24s_v3", "Standard_NC6", "Standard_NC6s_v2", "Standard_NC6s_v3", "Standard_ND12s", "Standard_ND24rs", "Standard_ND24s", "Standard_ND6s", "Standard_NV12", "Standard_NV24", and "Standard_NV6". :paramtype vm_size: str or ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceVMSizeTypes :keyword os_disk_size_gb: OS Disk Size in GB to be used to specify the disk size for every machine in this master/agent pool. If you specify 0, it will apply the default osDisk size according to the vmSize specified. :paramtype os_disk_size_gb: int :keyword vnet_subnet_id: VNet SubnetID specifies the VNet's subnet identifier. :paramtype vnet_subnet_id: str :keyword first_consecutive_static_ip: FirstConsecutiveStaticIP used to specify the first static ip of masters. :paramtype first_consecutive_static_ip: str :keyword storage_profile: Storage profile specifies what kind of storage used. Choose from StorageAccount and ManagedDisks. Leave it empty, we will choose for you based on the orchestrator choice. Known values are: "StorageAccount" and "ManagedDisks". :paramtype storage_profile: str or ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceStorageProfileTypes """ super().__init__(**kwargs) self.count = count self.dns_prefix = dns_prefix self.vm_size = vm_size self.os_disk_size_gb = os_disk_size_gb self.vnet_subnet_id = vnet_subnet_id self.first_consecutive_static_ip = first_consecutive_static_ip self.storage_profile = storage_profile self.fqdn = None class ContainerServiceNetworkProfile(_serialization.Model): """Profile of network configuration. :ivar network_plugin: Network plugin used for building Kubernetes network. Known values are: "azure" and "kubenet". :vartype network_plugin: str or ~azure.mgmt.containerservice.v2020_09_01.models.NetworkPlugin :ivar network_policy: Network policy used for building Kubernetes network. Known values are: "calico" and "azure". :vartype network_policy: str or ~azure.mgmt.containerservice.v2020_09_01.models.NetworkPolicy :ivar network_mode: Network mode used for building Kubernetes network. Known values are: "transparent" and "bridge". :vartype network_mode: str or ~azure.mgmt.containerservice.v2020_09_01.models.NetworkMode :ivar pod_cidr: A CIDR notation IP range from which to assign pod IPs when kubenet is used. :vartype pod_cidr: str :ivar service_cidr: A CIDR notation IP range from which to assign service cluster IPs. It must not overlap with any Subnet IP ranges. :vartype service_cidr: str :ivar dns_service_ip: An IP address assigned to the Kubernetes DNS service. It must be within the Kubernetes service address range specified in serviceCidr. :vartype dns_service_ip: str :ivar docker_bridge_cidr: A CIDR notation IP range assigned to the Docker bridge network. It must not overlap with any Subnet IP ranges or the Kubernetes service address range. :vartype docker_bridge_cidr: str :ivar outbound_type: The outbound (egress) routing method. Known values are: "loadBalancer" and "userDefinedRouting". :vartype outbound_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OutboundType :ivar load_balancer_sku: The load balancer sku for the managed cluster. Known values are: "standard" and "basic". :vartype load_balancer_sku: str or ~azure.mgmt.containerservice.v2020_09_01.models.LoadBalancerSku :ivar load_balancer_profile: Profile of the cluster load balancer. :vartype load_balancer_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterLoadBalancerProfile """ _validation = { "pod_cidr": {"pattern": r"^([0-9]{1,3}\.){3}[0-9]{1,3}(\/([0-9]|[1-2][0-9]|3[0-2]))?$"}, "service_cidr": {"pattern": r"^([0-9]{1,3}\.){3}[0-9]{1,3}(\/([0-9]|[1-2][0-9]|3[0-2]))?$"}, "dns_service_ip": { "pattern": r"^(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$" }, "docker_bridge_cidr": {"pattern": r"^([0-9]{1,3}\.){3}[0-9]{1,3}(\/([0-9]|[1-2][0-9]|3[0-2]))?$"}, } _attribute_map = { "network_plugin": {"key": "networkPlugin", "type": "str"}, "network_policy": {"key": "networkPolicy", "type": "str"}, "network_mode": {"key": "networkMode", "type": "str"}, "pod_cidr": {"key": "podCidr", "type": "str"}, "service_cidr": {"key": "serviceCidr", "type": "str"}, "dns_service_ip": {"key": "dnsServiceIP", "type": "str"}, "docker_bridge_cidr": {"key": "dockerBridgeCidr", "type": "str"}, "outbound_type": {"key": "outboundType", "type": "str"}, "load_balancer_sku": {"key": "loadBalancerSku", "type": "str"}, "load_balancer_profile": {"key": "loadBalancerProfile", "type": "ManagedClusterLoadBalancerProfile"}, } def __init__( self, *, network_plugin: Union[str, "_models.NetworkPlugin"] = "kubenet", network_policy: Optional[Union[str, "_models.NetworkPolicy"]] = None, network_mode: Optional[Union[str, "_models.NetworkMode"]] = None, pod_cidr: str = "10.244.0.0/16", service_cidr: str = "10.0.0.0/16", dns_service_ip: str = "10.0.0.10", docker_bridge_cidr: str = "172.17.0.1/16", outbound_type: Union[str, "_models.OutboundType"] = "loadBalancer", load_balancer_sku: Optional[Union[str, "_models.LoadBalancerSku"]] = None, load_balancer_profile: Optional["_models.ManagedClusterLoadBalancerProfile"] = None, **kwargs: Any ) -> None: """ :keyword network_plugin: Network plugin used for building Kubernetes network. Known values are: "azure" and "kubenet". :paramtype network_plugin: str or ~azure.mgmt.containerservice.v2020_09_01.models.NetworkPlugin :keyword network_policy: Network policy used for building Kubernetes network. Known values are: "calico" and "azure". :paramtype network_policy: str or ~azure.mgmt.containerservice.v2020_09_01.models.NetworkPolicy :keyword network_mode: Network mode used for building Kubernetes network. Known values are: "transparent" and "bridge". :paramtype network_mode: str or ~azure.mgmt.containerservice.v2020_09_01.models.NetworkMode :keyword pod_cidr: A CIDR notation IP range from which to assign pod IPs when kubenet is used. :paramtype pod_cidr: str :keyword service_cidr: A CIDR notation IP range from which to assign service cluster IPs. It must not overlap with any Subnet IP ranges. :paramtype service_cidr: str :keyword dns_service_ip: An IP address assigned to the Kubernetes DNS service. It must be within the Kubernetes service address range specified in serviceCidr. :paramtype dns_service_ip: str :keyword docker_bridge_cidr: A CIDR notation IP range assigned to the Docker bridge network. It must not overlap with any Subnet IP ranges or the Kubernetes service address range. :paramtype docker_bridge_cidr: str :keyword outbound_type: The outbound (egress) routing method. Known values are: "loadBalancer" and "userDefinedRouting". :paramtype outbound_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OutboundType :keyword load_balancer_sku: The load balancer sku for the managed cluster. Known values are: "standard" and "basic". :paramtype load_balancer_sku: str or ~azure.mgmt.containerservice.v2020_09_01.models.LoadBalancerSku :keyword load_balancer_profile: Profile of the cluster load balancer. :paramtype load_balancer_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterLoadBalancerProfile """ super().__init__(**kwargs) self.network_plugin = network_plugin self.network_policy = network_policy self.network_mode = network_mode self.pod_cidr = pod_cidr self.service_cidr = service_cidr self.dns_service_ip = dns_service_ip self.docker_bridge_cidr = docker_bridge_cidr self.outbound_type = outbound_type self.load_balancer_sku = load_balancer_sku self.load_balancer_profile = load_balancer_profile class ContainerServiceSshConfiguration(_serialization.Model): """SSH configuration for Linux-based VMs running on Azure. All required parameters must be populated in order to send to Azure. :ivar public_keys: The list of SSH public keys used to authenticate with Linux-based VMs. Only expect one key specified. Required. :vartype public_keys: list[~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceSshPublicKey] """ _validation = { "public_keys": {"required": True}, } _attribute_map = { "public_keys": {"key": "publicKeys", "type": "[ContainerServiceSshPublicKey]"}, } def __init__(self, *, public_keys: List["_models.ContainerServiceSshPublicKey"], **kwargs: Any) -> None: """ :keyword public_keys: The list of SSH public keys used to authenticate with Linux-based VMs. Only expect one key specified. Required. :paramtype public_keys: list[~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceSshPublicKey] """ super().__init__(**kwargs) self.public_keys = public_keys class ContainerServiceSshPublicKey(_serialization.Model): """Contains information about SSH certificate public key data. All required parameters must be populated in order to send to Azure. :ivar key_data: Certificate public key used to authenticate with VMs through SSH. The certificate must be in PEM format with or without headers. Required. :vartype key_data: str """ _validation = { "key_data": {"required": True}, } _attribute_map = { "key_data": {"key": "keyData", "type": "str"}, } def __init__(self, *, key_data: str, **kwargs: Any) -> None: """ :keyword key_data: Certificate public key used to authenticate with VMs through SSH. The certificate must be in PEM format with or without headers. Required. :paramtype key_data: str """ super().__init__(**kwargs) self.key_data = key_data class ContainerServiceVMDiagnostics(_serialization.Model): """Profile for diagnostics on the container service VMs. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar enabled: Whether the VM diagnostic agent is provisioned on the VM. Required. :vartype enabled: bool :ivar storage_uri: The URI of the storage account where diagnostics are stored. :vartype storage_uri: str """ _validation = { "enabled": {"required": True}, "storage_uri": {"readonly": True}, } _attribute_map = { "enabled": {"key": "enabled", "type": "bool"}, "storage_uri": {"key": "storageUri", "type": "str"}, } def __init__(self, *, enabled: bool, **kwargs: Any) -> None: """ :keyword enabled: Whether the VM diagnostic agent is provisioned on the VM. Required. :paramtype enabled: bool """ super().__init__(**kwargs) self.enabled = enabled self.storage_uri = None class CredentialResult(_serialization.Model): """The credential result response. Variables are only populated by the server, and will be ignored when sending a request. :ivar name: The name of the credential. :vartype name: str :ivar value: Base64-encoded Kubernetes configuration file. :vartype value: bytes """ _validation = { "name": {"readonly": True}, "value": {"readonly": True}, } _attribute_map = { "name": {"key": "name", "type": "str"}, "value": {"key": "value", "type": "bytearray"}, } def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.name = None self.value = None class CredentialResults(_serialization.Model): """The list of credential result response. Variables are only populated by the server, and will be ignored when sending a request. :ivar kubeconfigs: Base64-encoded Kubernetes configuration file. :vartype kubeconfigs: list[~azure.mgmt.containerservice.v2020_09_01.models.CredentialResult] """ _validation = { "kubeconfigs": {"readonly": True}, } _attribute_map = { "kubeconfigs": {"key": "kubeconfigs", "type": "[CredentialResult]"}, } def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.kubeconfigs = None class Resource(_serialization.Model): """The Resource model definition. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :ivar location: Resource location. Required. :vartype location: str :ivar tags: Resource tags. :vartype tags: dict[str, str] """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, "location": {"required": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "location": {"key": "location", "type": "str"}, "tags": {"key": "tags", "type": "{str}"}, } def __init__(self, *, location: str, tags: Optional[Dict[str, str]] = None, **kwargs: Any) -> None: """ :keyword location: Resource location. Required. :paramtype location: str :keyword tags: Resource tags. :paramtype tags: dict[str, str] """ super().__init__(**kwargs) self.id = None self.name = None self.type = None self.location = location self.tags = tags class ManagedCluster(Resource, BaseManagedCluster): # pylint: disable=too-many-instance-attributes """Managed cluster. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar identity: The identity of the managed cluster, if configured. :vartype identity: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterIdentity :ivar provisioning_state: The current deployment or provisioning state, which only appears in the response. :vartype provisioning_state: str :ivar power_state: Represents the Power State of the cluster. :vartype power_state: ~azure.mgmt.containerservice.v2020_09_01.models.PowerState :ivar max_agent_pools: The max number of agent pools for the managed cluster. :vartype max_agent_pools: int :ivar kubernetes_version: Version of Kubernetes specified when creating the managed cluster. :vartype kubernetes_version: str :ivar dns_prefix: DNS prefix specified when creating the managed cluster. :vartype dns_prefix: str :ivar fqdn: FQDN for the master pool. :vartype fqdn: str :ivar private_fqdn: FQDN of private cluster. :vartype private_fqdn: str :ivar agent_pool_profiles: Properties of the agent pool. :vartype agent_pool_profiles: list[~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAgentPoolProfile] :ivar linux_profile: Profile for Linux VMs in the container service cluster. :vartype linux_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceLinuxProfile :ivar windows_profile: Profile for Windows VMs in the container service cluster. :vartype windows_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterWindowsProfile :ivar service_principal_profile: Information about a service principal identity for the cluster to use for manipulating Azure APIs. :vartype service_principal_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterServicePrincipalProfile :ivar addon_profiles: Profile of managed cluster add-on. :vartype addon_profiles: dict[str, ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAddonProfile] :ivar node_resource_group: Name of the resource group containing agent pool nodes. :vartype node_resource_group: str :ivar enable_rbac: Whether to enable Kubernetes Role-Based Access Control. :vartype enable_rbac: bool :ivar enable_pod_security_policy: (DEPRECATING) Whether to enable Kubernetes pod security policy (preview). This feature is set for removal on October 15th, 2020. Learn more at aka.ms/aks/azpodpolicy. :vartype enable_pod_security_policy: bool :ivar network_profile: Profile of network configuration. :vartype network_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceNetworkProfile :ivar aad_profile: Profile of Azure Active Directory configuration. :vartype aad_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAADProfile :ivar auto_scaler_profile: Parameters to be applied to the cluster-autoscaler when enabled. :vartype auto_scaler_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterPropertiesAutoScalerProfile :ivar api_server_access_profile: Access profile for managed cluster API server. :vartype api_server_access_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAPIServerAccessProfile :ivar disk_encryption_set_id: ResourceId of the disk encryption set to use for enabling encryption at rest. :vartype disk_encryption_set_id: str :ivar identity_profile: Identities associated with the cluster. :vartype identity_profile: dict[str, ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterPropertiesIdentityProfileValue] :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :ivar location: Resource location. Required. :vartype location: str :ivar tags: Resource tags. :vartype tags: dict[str, str] :ivar sku: The managed cluster SKU. :vartype sku: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterSKU """ _validation = { "provisioning_state": {"readonly": True}, "power_state": {"readonly": True}, "max_agent_pools": {"readonly": True}, "fqdn": {"readonly": True}, "private_fqdn": {"readonly": True}, "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, "location": {"required": True}, } _attribute_map = { "identity": {"key": "identity", "type": "ManagedClusterIdentity"}, "provisioning_state": {"key": "properties.provisioningState", "type": "str"}, "power_state": {"key": "properties.powerState", "type": "PowerState"}, "max_agent_pools": {"key": "properties.maxAgentPools", "type": "int"}, "kubernetes_version": {"key": "properties.kubernetesVersion", "type": "str"}, "dns_prefix": {"key": "properties.dnsPrefix", "type": "str"}, "fqdn": {"key": "properties.fqdn", "type": "str"}, "private_fqdn": {"key": "properties.privateFQDN", "type": "str"}, "agent_pool_profiles": {"key": "properties.agentPoolProfiles", "type": "[ManagedClusterAgentPoolProfile]"}, "linux_profile": {"key": "properties.linuxProfile", "type": "ContainerServiceLinuxProfile"}, "windows_profile": {"key": "properties.windowsProfile", "type": "ManagedClusterWindowsProfile"}, "service_principal_profile": { "key": "properties.servicePrincipalProfile", "type": "ManagedClusterServicePrincipalProfile", }, "addon_profiles": {"key": "properties.addonProfiles", "type": "{ManagedClusterAddonProfile}"}, "node_resource_group": {"key": "properties.nodeResourceGroup", "type": "str"}, "enable_rbac": {"key": "properties.enableRBAC", "type": "bool"}, "enable_pod_security_policy": {"key": "properties.enablePodSecurityPolicy", "type": "bool"}, "network_profile": {"key": "properties.networkProfile", "type": "ContainerServiceNetworkProfile"}, "aad_profile": {"key": "properties.aadProfile", "type": "ManagedClusterAADProfile"}, "auto_scaler_profile": { "key": "properties.autoScalerProfile", "type": "ManagedClusterPropertiesAutoScalerProfile", }, "api_server_access_profile": { "key": "properties.apiServerAccessProfile", "type": "ManagedClusterAPIServerAccessProfile", }, "disk_encryption_set_id": {"key": "properties.diskEncryptionSetID", "type": "str"}, "identity_profile": { "key": "properties.identityProfile", "type": "{ManagedClusterPropertiesIdentityProfileValue}", }, "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "location": {"key": "location", "type": "str"}, "tags": {"key": "tags", "type": "{str}"}, "sku": {"key": "sku", "type": "ManagedClusterSKU"}, } def __init__( # pylint: disable=too-many-locals self, *, location: str, identity: Optional["_models.ManagedClusterIdentity"] = None, kubernetes_version: Optional[str] = None, dns_prefix: Optional[str] = None, agent_pool_profiles: Optional[List["_models.ManagedClusterAgentPoolProfile"]] = None, linux_profile: Optional["_models.ContainerServiceLinuxProfile"] = None, windows_profile: Optional["_models.ManagedClusterWindowsProfile"] = None, service_principal_profile: Optional["_models.ManagedClusterServicePrincipalProfile"] = None, addon_profiles: Optional[Dict[str, "_models.ManagedClusterAddonProfile"]] = None, node_resource_group: Optional[str] = None, enable_rbac: Optional[bool] = None, enable_pod_security_policy: Optional[bool] = None, network_profile: Optional["_models.ContainerServiceNetworkProfile"] = None, aad_profile: Optional["_models.ManagedClusterAADProfile"] = None, auto_scaler_profile: Optional["_models.ManagedClusterPropertiesAutoScalerProfile"] = None, api_server_access_profile: Optional["_models.ManagedClusterAPIServerAccessProfile"] = None, disk_encryption_set_id: Optional[str] = None, identity_profile: Optional[Dict[str, "_models.ManagedClusterPropertiesIdentityProfileValue"]] = None, tags: Optional[Dict[str, str]] = None, sku: Optional["_models.ManagedClusterSKU"] = None, **kwargs: Any ) -> None: """ :keyword identity: The identity of the managed cluster, if configured. :paramtype identity: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterIdentity :keyword kubernetes_version: Version of Kubernetes specified when creating the managed cluster. :paramtype kubernetes_version: str :keyword dns_prefix: DNS prefix specified when creating the managed cluster. :paramtype dns_prefix: str :keyword agent_pool_profiles: Properties of the agent pool. :paramtype agent_pool_profiles: list[~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAgentPoolProfile] :keyword linux_profile: Profile for Linux VMs in the container service cluster. :paramtype linux_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceLinuxProfile :keyword windows_profile: Profile for Windows VMs in the container service cluster. :paramtype windows_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterWindowsProfile :keyword service_principal_profile: Information about a service principal identity for the cluster to use for manipulating Azure APIs. :paramtype service_principal_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterServicePrincipalProfile :keyword addon_profiles: Profile of managed cluster add-on. :paramtype addon_profiles: dict[str, ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAddonProfile] :keyword node_resource_group: Name of the resource group containing agent pool nodes. :paramtype node_resource_group: str :keyword enable_rbac: Whether to enable Kubernetes Role-Based Access Control. :paramtype enable_rbac: bool :keyword enable_pod_security_policy: (DEPRECATING) Whether to enable Kubernetes pod security policy (preview). This feature is set for removal on October 15th, 2020. Learn more at aka.ms/aks/azpodpolicy. :paramtype enable_pod_security_policy: bool :keyword network_profile: Profile of network configuration. :paramtype network_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceNetworkProfile :keyword aad_profile: Profile of Azure Active Directory configuration. :paramtype aad_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAADProfile :keyword auto_scaler_profile: Parameters to be applied to the cluster-autoscaler when enabled. :paramtype auto_scaler_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterPropertiesAutoScalerProfile :keyword api_server_access_profile: Access profile for managed cluster API server. :paramtype api_server_access_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAPIServerAccessProfile :keyword disk_encryption_set_id: ResourceId of the disk encryption set to use for enabling encryption at rest. :paramtype disk_encryption_set_id: str :keyword identity_profile: Identities associated with the cluster. :paramtype identity_profile: dict[str, ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterPropertiesIdentityProfileValue] :keyword location: Resource location. Required. :paramtype location: str :keyword tags: Resource tags. :paramtype tags: dict[str, str] :keyword sku: The managed cluster SKU. :paramtype sku: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterSKU """ super().__init__( location=location, tags=tags, identity=identity, kubernetes_version=kubernetes_version, dns_prefix=dns_prefix, agent_pool_profiles=agent_pool_profiles, linux_profile=linux_profile, windows_profile=windows_profile, service_principal_profile=service_principal_profile, addon_profiles=addon_profiles, node_resource_group=node_resource_group, enable_rbac=enable_rbac, enable_pod_security_policy=enable_pod_security_policy, network_profile=network_profile, aad_profile=aad_profile, auto_scaler_profile=auto_scaler_profile, api_server_access_profile=api_server_access_profile, disk_encryption_set_id=disk_encryption_set_id, identity_profile=identity_profile, **kwargs ) self.identity = identity self.provisioning_state = None self.power_state = None self.max_agent_pools = None self.kubernetes_version = kubernetes_version self.dns_prefix = dns_prefix self.fqdn = None self.private_fqdn = None self.agent_pool_profiles = agent_pool_profiles self.linux_profile = linux_profile self.windows_profile = windows_profile self.service_principal_profile = service_principal_profile self.addon_profiles = addon_profiles self.node_resource_group = node_resource_group self.enable_rbac = enable_rbac self.enable_pod_security_policy = enable_pod_security_policy self.network_profile = network_profile self.aad_profile = aad_profile self.auto_scaler_profile = auto_scaler_profile self.api_server_access_profile = api_server_access_profile self.disk_encryption_set_id = disk_encryption_set_id self.identity_profile = identity_profile self.sku = sku self.id = None self.name = None self.type = None self.location = location self.tags = tags class ManagedClusterAADProfile(_serialization.Model): """AADProfile specifies attributes for Azure Active Directory integration. :ivar managed: Whether to enable managed AAD. :vartype managed: bool :ivar enable_azure_rbac: Whether to enable Azure RBAC for Kubernetes authorization. :vartype enable_azure_rbac: bool :ivar admin_group_object_i_ds: AAD group object IDs that will have admin role of the cluster. :vartype admin_group_object_i_ds: list[str] :ivar client_app_id: The client AAD application ID. :vartype client_app_id: str :ivar server_app_id: The server AAD application ID. :vartype server_app_id: str :ivar server_app_secret: The server AAD application secret. :vartype server_app_secret: str :ivar tenant_id: The AAD tenant ID to use for authentication. If not specified, will use the tenant of the deployment subscription. :vartype tenant_id: str """ _attribute_map = { "managed": {"key": "managed", "type": "bool"}, "enable_azure_rbac": {"key": "enableAzureRBAC", "type": "bool"}, "admin_group_object_i_ds": {"key": "adminGroupObjectIDs", "type": "[str]"}, "client_app_id": {"key": "clientAppID", "type": "str"}, "server_app_id": {"key": "serverAppID", "type": "str"}, "server_app_secret": {"key": "serverAppSecret", "type": "str"}, "tenant_id": {"key": "tenantID", "type": "str"}, } def __init__( self, *, managed: Optional[bool] = None, enable_azure_rbac: Optional[bool] = None, admin_group_object_i_ds: Optional[List[str]] = None, client_app_id: Optional[str] = None, server_app_id: Optional[str] = None, server_app_secret: Optional[str] = None, tenant_id: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword managed: Whether to enable managed AAD. :paramtype managed: bool :keyword enable_azure_rbac: Whether to enable Azure RBAC for Kubernetes authorization. :paramtype enable_azure_rbac: bool :keyword admin_group_object_i_ds: AAD group object IDs that will have admin role of the cluster. :paramtype admin_group_object_i_ds: list[str] :keyword client_app_id: The client AAD application ID. :paramtype client_app_id: str :keyword server_app_id: The server AAD application ID. :paramtype server_app_id: str :keyword server_app_secret: The server AAD application secret. :paramtype server_app_secret: str :keyword tenant_id: The AAD tenant ID to use for authentication. If not specified, will use the tenant of the deployment subscription. :paramtype tenant_id: str """ super().__init__(**kwargs) self.managed = managed self.enable_azure_rbac = enable_azure_rbac self.admin_group_object_i_ds = admin_group_object_i_ds self.client_app_id = client_app_id self.server_app_id = server_app_id self.server_app_secret = server_app_secret self.tenant_id = tenant_id class ManagedClusterAccessProfile(Resource): """Managed cluster Access Profile. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: Resource Id. :vartype id: str :ivar name: Resource name. :vartype name: str :ivar type: Resource type. :vartype type: str :ivar location: Resource location. Required. :vartype location: str :ivar tags: Resource tags. :vartype tags: dict[str, str] :ivar kube_config: Base64-encoded Kubernetes configuration file. :vartype kube_config: bytes """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, "location": {"required": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "location": {"key": "location", "type": "str"}, "tags": {"key": "tags", "type": "{str}"}, "kube_config": {"key": "properties.kubeConfig", "type": "bytearray"}, } def __init__( self, *, location: str, tags: Optional[Dict[str, str]] = None, kube_config: Optional[bytes] = None, **kwargs: Any ) -> None: """ :keyword location: Resource location. Required. :paramtype location: str :keyword tags: Resource tags. :paramtype tags: dict[str, str] :keyword kube_config: Base64-encoded Kubernetes configuration file. :paramtype kube_config: bytes """ super().__init__(location=location, tags=tags, **kwargs) self.kube_config = kube_config class ManagedClusterAddonProfile(_serialization.Model): """A Kubernetes add-on profile for a managed cluster. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar enabled: Whether the add-on is enabled or not. Required. :vartype enabled: bool :ivar config: Key-value pairs for configuring an add-on. :vartype config: dict[str, str] :ivar identity: Information of user assigned identity used by this add-on. :vartype identity: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterAddonProfileIdentity """ _validation = { "enabled": {"required": True}, "identity": {"readonly": True}, } _attribute_map = { "enabled": {"key": "enabled", "type": "bool"}, "config": {"key": "config", "type": "{str}"}, "identity": {"key": "identity", "type": "ManagedClusterAddonProfileIdentity"}, } def __init__(self, *, enabled: bool, config: Optional[Dict[str, str]] = None, **kwargs: Any) -> None: """ :keyword enabled: Whether the add-on is enabled or not. Required. :paramtype enabled: bool :keyword config: Key-value pairs for configuring an add-on. :paramtype config: dict[str, str] """ super().__init__(**kwargs) self.enabled = enabled self.config = config self.identity = None class UserAssignedIdentity(_serialization.Model): """UserAssignedIdentity. :ivar resource_id: The resource id of the user assigned identity. :vartype resource_id: str :ivar client_id: The client id of the user assigned identity. :vartype client_id: str :ivar object_id: The object id of the user assigned identity. :vartype object_id: str """ _attribute_map = { "resource_id": {"key": "resourceId", "type": "str"}, "client_id": {"key": "clientId", "type": "str"}, "object_id": {"key": "objectId", "type": "str"}, } def __init__( self, *, resource_id: Optional[str] = None, client_id: Optional[str] = None, object_id: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword resource_id: The resource id of the user assigned identity. :paramtype resource_id: str :keyword client_id: The client id of the user assigned identity. :paramtype client_id: str :keyword object_id: The object id of the user assigned identity. :paramtype object_id: str """ super().__init__(**kwargs) self.resource_id = resource_id self.client_id = client_id self.object_id = object_id class ManagedClusterAddonProfileIdentity(UserAssignedIdentity): """Information of user assigned identity used by this add-on. :ivar resource_id: The resource id of the user assigned identity. :vartype resource_id: str :ivar client_id: The client id of the user assigned identity. :vartype client_id: str :ivar object_id: The object id of the user assigned identity. :vartype object_id: str """ _attribute_map = { "resource_id": {"key": "resourceId", "type": "str"}, "client_id": {"key": "clientId", "type": "str"}, "object_id": {"key": "objectId", "type": "str"}, } def __init__( self, *, resource_id: Optional[str] = None, client_id: Optional[str] = None, object_id: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword resource_id: The resource id of the user assigned identity. :paramtype resource_id: str :keyword client_id: The client id of the user assigned identity. :paramtype client_id: str :keyword object_id: The object id of the user assigned identity. :paramtype object_id: str """ super().__init__(resource_id=resource_id, client_id=client_id, object_id=object_id, **kwargs) class ManagedClusterAgentPoolProfileProperties(_serialization.Model): # pylint: disable=too-many-instance-attributes """Properties for the container service agent pool profile. Variables are only populated by the server, and will be ignored when sending a request. :ivar count: Number of agents (VMs) to host docker containers. Allowed values must be in the range of 0 to 100 (inclusive) for user pools and in the range of 1 to 100 (inclusive) for system pools. The default value is 1. :vartype count: int :ivar vm_size: Size of agent VMs. Known values are: "Standard_A1", "Standard_A10", "Standard_A11", "Standard_A1_v2", "Standard_A2", "Standard_A2_v2", "Standard_A2m_v2", "Standard_A3", "Standard_A4", "Standard_A4_v2", "Standard_A4m_v2", "Standard_A5", "Standard_A6", "Standard_A7", "Standard_A8", "Standard_A8_v2", "Standard_A8m_v2", "Standard_A9", "Standard_B2ms", "Standard_B2s", "Standard_B4ms", "Standard_B8ms", "Standard_D1", "Standard_D11", "Standard_D11_v2", "Standard_D11_v2_Promo", "Standard_D12", "Standard_D12_v2", "Standard_D12_v2_Promo", "Standard_D13", "Standard_D13_v2", "Standard_D13_v2_Promo", "Standard_D14", "Standard_D14_v2", "Standard_D14_v2_Promo", "Standard_D15_v2", "Standard_D16_v3", "Standard_D16s_v3", "Standard_D1_v2", "Standard_D2", "Standard_D2_v2", "Standard_D2_v2_Promo", "Standard_D2_v3", "Standard_D2s_v3", "Standard_D3", "Standard_D32_v3", "Standard_D32s_v3", "Standard_D3_v2", "Standard_D3_v2_Promo", "Standard_D4", "Standard_D4_v2", "Standard_D4_v2_Promo", "Standard_D4_v3", "Standard_D4s_v3", "Standard_D5_v2", "Standard_D5_v2_Promo", "Standard_D64_v3", "Standard_D64s_v3", "Standard_D8_v3", "Standard_D8s_v3", "Standard_DS1", "Standard_DS11", "Standard_DS11_v2", "Standard_DS11_v2_Promo", "Standard_DS12", "Standard_DS12_v2", "Standard_DS12_v2_Promo", "Standard_DS13", "Standard_DS13-2_v2", "Standard_DS13-4_v2", "Standard_DS13_v2", "Standard_DS13_v2_Promo", "Standard_DS14", "Standard_DS14-4_v2", "Standard_DS14-8_v2", "Standard_DS14_v2", "Standard_DS14_v2_Promo", "Standard_DS15_v2", "Standard_DS1_v2", "Standard_DS2", "Standard_DS2_v2", "Standard_DS2_v2_Promo", "Standard_DS3", "Standard_DS3_v2", "Standard_DS3_v2_Promo", "Standard_DS4", "Standard_DS4_v2", "Standard_DS4_v2_Promo", "Standard_DS5_v2", "Standard_DS5_v2_Promo", "Standard_E16_v3", "Standard_E16s_v3", "Standard_E2_v3", "Standard_E2s_v3", "Standard_E32-16s_v3", "Standard_E32-8s_v3", "Standard_E32_v3", "Standard_E32s_v3", "Standard_E4_v3", "Standard_E4s_v3", "Standard_E64-16s_v3", "Standard_E64-32s_v3", "Standard_E64_v3", "Standard_E64s_v3", "Standard_E8_v3", "Standard_E8s_v3", "Standard_F1", "Standard_F16", "Standard_F16s", "Standard_F16s_v2", "Standard_F1s", "Standard_F2", "Standard_F2s", "Standard_F2s_v2", "Standard_F32s_v2", "Standard_F4", "Standard_F4s", "Standard_F4s_v2", "Standard_F64s_v2", "Standard_F72s_v2", "Standard_F8", "Standard_F8s", "Standard_F8s_v2", "Standard_G1", "Standard_G2", "Standard_G3", "Standard_G4", "Standard_G5", "Standard_GS1", "Standard_GS2", "Standard_GS3", "Standard_GS4", "Standard_GS4-4", "Standard_GS4-8", "Standard_GS5", "Standard_GS5-16", "Standard_GS5-8", "Standard_H16", "Standard_H16m", "Standard_H16mr", "Standard_H16r", "Standard_H8", "Standard_H8m", "Standard_L16s", "Standard_L32s", "Standard_L4s", "Standard_L8s", "Standard_M128-32ms", "Standard_M128-64ms", "Standard_M128ms", "Standard_M128s", "Standard_M64-16ms", "Standard_M64-32ms", "Standard_M64ms", "Standard_M64s", "Standard_NC12", "Standard_NC12s_v2", "Standard_NC12s_v3", "Standard_NC24", "Standard_NC24r", "Standard_NC24rs_v2", "Standard_NC24rs_v3", "Standard_NC24s_v2", "Standard_NC24s_v3", "Standard_NC6", "Standard_NC6s_v2", "Standard_NC6s_v3", "Standard_ND12s", "Standard_ND24rs", "Standard_ND24s", "Standard_ND6s", "Standard_NV12", "Standard_NV24", and "Standard_NV6". :vartype vm_size: str or ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceVMSizeTypes :ivar os_disk_size_gb: OS Disk Size in GB to be used to specify the disk size for every machine in this master/agent pool. If you specify 0, it will apply the default osDisk size according to the vmSize specified. :vartype os_disk_size_gb: int :ivar os_disk_type: OS disk type to be used for machines in a given agent pool. Allowed values are 'Ephemeral' and 'Managed'. Defaults to 'Managed'. May not be changed after creation. Known values are: "Managed" and "Ephemeral". :vartype os_disk_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSDiskType :ivar vnet_subnet_id: VNet SubnetID specifies the VNet's subnet identifier. :vartype vnet_subnet_id: str :ivar max_pods: Maximum number of pods that can run on a node. :vartype max_pods: int :ivar os_type: OsType to be used to specify os type. Choose from Linux and Windows. Default to Linux. Known values are: "Linux" and "Windows". :vartype os_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSType :ivar max_count: Maximum number of nodes for auto-scaling. :vartype max_count: int :ivar min_count: Minimum number of nodes for auto-scaling. :vartype min_count: int :ivar enable_auto_scaling: Whether to enable auto-scaler. :vartype enable_auto_scaling: bool :ivar type: AgentPoolType represents types of an agent pool. Known values are: "VirtualMachineScaleSets" and "AvailabilitySet". :vartype type: str or ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolType :ivar mode: AgentPoolMode represents mode of an agent pool. Known values are: "System" and "User". :vartype mode: str or ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolMode :ivar orchestrator_version: Version of orchestrator specified when creating the managed cluster. :vartype orchestrator_version: str :ivar node_image_version: Version of node image. :vartype node_image_version: str :ivar upgrade_settings: Settings for upgrading the agentpool. :vartype upgrade_settings: ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolUpgradeSettings :ivar provisioning_state: The current deployment or provisioning state, which only appears in the response. :vartype provisioning_state: str :ivar power_state: Describes whether the Agent Pool is Running or Stopped. :vartype power_state: ~azure.mgmt.containerservice.v2020_09_01.models.PowerState :ivar availability_zones: Availability zones for nodes. Must use VirtualMachineScaleSets AgentPoolType. :vartype availability_zones: list[str] :ivar enable_node_public_ip: Enable public IP for nodes. :vartype enable_node_public_ip: bool :ivar scale_set_priority: ScaleSetPriority to be used to specify virtual machine scale set priority. Default to regular. Known values are: "Spot" and "Regular". :vartype scale_set_priority: str or ~azure.mgmt.containerservice.v2020_09_01.models.ScaleSetPriority :ivar scale_set_eviction_policy: ScaleSetEvictionPolicy to be used to specify eviction policy for Spot virtual machine scale set. Default to Delete. Known values are: "Delete" and "Deallocate". :vartype scale_set_eviction_policy: str or ~azure.mgmt.containerservice.v2020_09_01.models.ScaleSetEvictionPolicy :ivar spot_max_price: SpotMaxPrice to be used to specify the maximum price you are willing to pay in US Dollars. Possible values are any decimal value greater than zero or -1 which indicates default price to be up-to on-demand. :vartype spot_max_price: float :ivar tags: Agent pool tags to be persisted on the agent pool virtual machine scale set. :vartype tags: dict[str, str] :ivar node_labels: Agent pool node labels to be persisted across all nodes in agent pool. :vartype node_labels: dict[str, str] :ivar node_taints: Taints added to new nodes during node pool create and scale. For example, key=value:NoSchedule. :vartype node_taints: list[str] :ivar proximity_placement_group_id: The ID for Proximity Placement Group. :vartype proximity_placement_group_id: str """ _validation = { "os_disk_size_gb": {"maximum": 1023, "minimum": 0}, "node_image_version": {"readonly": True}, "provisioning_state": {"readonly": True}, "power_state": {"readonly": True}, } _attribute_map = { "count": {"key": "count", "type": "int"}, "vm_size": {"key": "vmSize", "type": "str"}, "os_disk_size_gb": {"key": "osDiskSizeGB", "type": "int"}, "os_disk_type": {"key": "osDiskType", "type": "str"}, "vnet_subnet_id": {"key": "vnetSubnetID", "type": "str"}, "max_pods": {"key": "maxPods", "type": "int"}, "os_type": {"key": "osType", "type": "str"}, "max_count": {"key": "maxCount", "type": "int"}, "min_count": {"key": "minCount", "type": "int"}, "enable_auto_scaling": {"key": "enableAutoScaling", "type": "bool"}, "type": {"key": "type", "type": "str"}, "mode": {"key": "mode", "type": "str"}, "orchestrator_version": {"key": "orchestratorVersion", "type": "str"}, "node_image_version": {"key": "nodeImageVersion", "type": "str"}, "upgrade_settings": {"key": "upgradeSettings", "type": "AgentPoolUpgradeSettings"}, "provisioning_state": {"key": "provisioningState", "type": "str"}, "power_state": {"key": "powerState", "type": "PowerState"}, "availability_zones": {"key": "availabilityZones", "type": "[str]"}, "enable_node_public_ip": {"key": "enableNodePublicIP", "type": "bool"}, "scale_set_priority": {"key": "scaleSetPriority", "type": "str"}, "scale_set_eviction_policy": {"key": "scaleSetEvictionPolicy", "type": "str"}, "spot_max_price": {"key": "spotMaxPrice", "type": "float"}, "tags": {"key": "tags", "type": "{str}"}, "node_labels": {"key": "nodeLabels", "type": "{str}"}, "node_taints": {"key": "nodeTaints", "type": "[str]"}, "proximity_placement_group_id": {"key": "proximityPlacementGroupID", "type": "str"}, } def __init__( # pylint: disable=too-many-locals self, *, count: Optional[int] = None, vm_size: Optional[Union[str, "_models.ContainerServiceVMSizeTypes"]] = None, os_disk_size_gb: Optional[int] = None, os_disk_type: Optional[Union[str, "_models.OSDiskType"]] = None, vnet_subnet_id: Optional[str] = None, max_pods: Optional[int] = None, os_type: Union[str, "_models.OSType"] = "Linux", max_count: Optional[int] = None, min_count: Optional[int] = None, enable_auto_scaling: Optional[bool] = None, type: Optional[Union[str, "_models.AgentPoolType"]] = None, mode: Optional[Union[str, "_models.AgentPoolMode"]] = None, orchestrator_version: Optional[str] = None, upgrade_settings: Optional["_models.AgentPoolUpgradeSettings"] = None, availability_zones: Optional[List[str]] = None, enable_node_public_ip: Optional[bool] = None, scale_set_priority: Union[str, "_models.ScaleSetPriority"] = "Regular", scale_set_eviction_policy: Union[str, "_models.ScaleSetEvictionPolicy"] = "Delete", spot_max_price: float = -1, tags: Optional[Dict[str, str]] = None, node_labels: Optional[Dict[str, str]] = None, node_taints: Optional[List[str]] = None, proximity_placement_group_id: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword count: Number of agents (VMs) to host docker containers. Allowed values must be in the range of 0 to 100 (inclusive) for user pools and in the range of 1 to 100 (inclusive) for system pools. The default value is 1. :paramtype count: int :keyword vm_size: Size of agent VMs. Known values are: "Standard_A1", "Standard_A10", "Standard_A11", "Standard_A1_v2", "Standard_A2", "Standard_A2_v2", "Standard_A2m_v2", "Standard_A3", "Standard_A4", "Standard_A4_v2", "Standard_A4m_v2", "Standard_A5", "Standard_A6", "Standard_A7", "Standard_A8", "Standard_A8_v2", "Standard_A8m_v2", "Standard_A9", "Standard_B2ms", "Standard_B2s", "Standard_B4ms", "Standard_B8ms", "Standard_D1", "Standard_D11", "Standard_D11_v2", "Standard_D11_v2_Promo", "Standard_D12", "Standard_D12_v2", "Standard_D12_v2_Promo", "Standard_D13", "Standard_D13_v2", "Standard_D13_v2_Promo", "Standard_D14", "Standard_D14_v2", "Standard_D14_v2_Promo", "Standard_D15_v2", "Standard_D16_v3", "Standard_D16s_v3", "Standard_D1_v2", "Standard_D2", "Standard_D2_v2", "Standard_D2_v2_Promo", "Standard_D2_v3", "Standard_D2s_v3", "Standard_D3", "Standard_D32_v3", "Standard_D32s_v3", "Standard_D3_v2", "Standard_D3_v2_Promo", "Standard_D4", "Standard_D4_v2", "Standard_D4_v2_Promo", "Standard_D4_v3", "Standard_D4s_v3", "Standard_D5_v2", "Standard_D5_v2_Promo", "Standard_D64_v3", "Standard_D64s_v3", "Standard_D8_v3", "Standard_D8s_v3", "Standard_DS1", "Standard_DS11", "Standard_DS11_v2", "Standard_DS11_v2_Promo", "Standard_DS12", "Standard_DS12_v2", "Standard_DS12_v2_Promo", "Standard_DS13", "Standard_DS13-2_v2", "Standard_DS13-4_v2", "Standard_DS13_v2", "Standard_DS13_v2_Promo", "Standard_DS14", "Standard_DS14-4_v2", "Standard_DS14-8_v2", "Standard_DS14_v2", "Standard_DS14_v2_Promo", "Standard_DS15_v2", "Standard_DS1_v2", "Standard_DS2", "Standard_DS2_v2", "Standard_DS2_v2_Promo", "Standard_DS3", "Standard_DS3_v2", "Standard_DS3_v2_Promo", "Standard_DS4", "Standard_DS4_v2", "Standard_DS4_v2_Promo", "Standard_DS5_v2", "Standard_DS5_v2_Promo", "Standard_E16_v3", "Standard_E16s_v3", "Standard_E2_v3", "Standard_E2s_v3", "Standard_E32-16s_v3", "Standard_E32-8s_v3", "Standard_E32_v3", "Standard_E32s_v3", "Standard_E4_v3", "Standard_E4s_v3", "Standard_E64-16s_v3", "Standard_E64-32s_v3", "Standard_E64_v3", "Standard_E64s_v3", "Standard_E8_v3", "Standard_E8s_v3", "Standard_F1", "Standard_F16", "Standard_F16s", "Standard_F16s_v2", "Standard_F1s", "Standard_F2", "Standard_F2s", "Standard_F2s_v2", "Standard_F32s_v2", "Standard_F4", "Standard_F4s", "Standard_F4s_v2", "Standard_F64s_v2", "Standard_F72s_v2", "Standard_F8", "Standard_F8s", "Standard_F8s_v2", "Standard_G1", "Standard_G2", "Standard_G3", "Standard_G4", "Standard_G5", "Standard_GS1", "Standard_GS2", "Standard_GS3", "Standard_GS4", "Standard_GS4-4", "Standard_GS4-8", "Standard_GS5", "Standard_GS5-16", "Standard_GS5-8", "Standard_H16", "Standard_H16m", "Standard_H16mr", "Standard_H16r", "Standard_H8", "Standard_H8m", "Standard_L16s", "Standard_L32s", "Standard_L4s", "Standard_L8s", "Standard_M128-32ms", "Standard_M128-64ms", "Standard_M128ms", "Standard_M128s", "Standard_M64-16ms", "Standard_M64-32ms", "Standard_M64ms", "Standard_M64s", "Standard_NC12", "Standard_NC12s_v2", "Standard_NC12s_v3", "Standard_NC24", "Standard_NC24r", "Standard_NC24rs_v2", "Standard_NC24rs_v3", "Standard_NC24s_v2", "Standard_NC24s_v3", "Standard_NC6", "Standard_NC6s_v2", "Standard_NC6s_v3", "Standard_ND12s", "Standard_ND24rs", "Standard_ND24s", "Standard_ND6s", "Standard_NV12", "Standard_NV24", and "Standard_NV6". :paramtype vm_size: str or ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceVMSizeTypes :keyword os_disk_size_gb: OS Disk Size in GB to be used to specify the disk size for every machine in this master/agent pool. If you specify 0, it will apply the default osDisk size according to the vmSize specified. :paramtype os_disk_size_gb: int :keyword os_disk_type: OS disk type to be used for machines in a given agent pool. Allowed values are 'Ephemeral' and 'Managed'. Defaults to 'Managed'. May not be changed after creation. Known values are: "Managed" and "Ephemeral". :paramtype os_disk_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSDiskType :keyword vnet_subnet_id: VNet SubnetID specifies the VNet's subnet identifier. :paramtype vnet_subnet_id: str :keyword max_pods: Maximum number of pods that can run on a node. :paramtype max_pods: int :keyword os_type: OsType to be used to specify os type. Choose from Linux and Windows. Default to Linux. Known values are: "Linux" and "Windows". :paramtype os_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSType :keyword max_count: Maximum number of nodes for auto-scaling. :paramtype max_count: int :keyword min_count: Minimum number of nodes for auto-scaling. :paramtype min_count: int :keyword enable_auto_scaling: Whether to enable auto-scaler. :paramtype enable_auto_scaling: bool :keyword type: AgentPoolType represents types of an agent pool. Known values are: "VirtualMachineScaleSets" and "AvailabilitySet". :paramtype type: str or ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolType :keyword mode: AgentPoolMode represents mode of an agent pool. Known values are: "System" and "User". :paramtype mode: str or ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolMode :keyword orchestrator_version: Version of orchestrator specified when creating the managed cluster. :paramtype orchestrator_version: str :keyword upgrade_settings: Settings for upgrading the agentpool. :paramtype upgrade_settings: ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolUpgradeSettings :keyword availability_zones: Availability zones for nodes. Must use VirtualMachineScaleSets AgentPoolType. :paramtype availability_zones: list[str] :keyword enable_node_public_ip: Enable public IP for nodes. :paramtype enable_node_public_ip: bool :keyword scale_set_priority: ScaleSetPriority to be used to specify virtual machine scale set priority. Default to regular. Known values are: "Spot" and "Regular". :paramtype scale_set_priority: str or ~azure.mgmt.containerservice.v2020_09_01.models.ScaleSetPriority :keyword scale_set_eviction_policy: ScaleSetEvictionPolicy to be used to specify eviction policy for Spot virtual machine scale set. Default to Delete. Known values are: "Delete" and "Deallocate". :paramtype scale_set_eviction_policy: str or ~azure.mgmt.containerservice.v2020_09_01.models.ScaleSetEvictionPolicy :keyword spot_max_price: SpotMaxPrice to be used to specify the maximum price you are willing to pay in US Dollars. Possible values are any decimal value greater than zero or -1 which indicates default price to be up-to on-demand. :paramtype spot_max_price: float :keyword tags: Agent pool tags to be persisted on the agent pool virtual machine scale set. :paramtype tags: dict[str, str] :keyword node_labels: Agent pool node labels to be persisted across all nodes in agent pool. :paramtype node_labels: dict[str, str] :keyword node_taints: Taints added to new nodes during node pool create and scale. For example, key=value:NoSchedule. :paramtype node_taints: list[str] :keyword proximity_placement_group_id: The ID for Proximity Placement Group. :paramtype proximity_placement_group_id: str """ super().__init__(**kwargs) self.count = count self.vm_size = vm_size self.os_disk_size_gb = os_disk_size_gb self.os_disk_type = os_disk_type self.vnet_subnet_id = vnet_subnet_id self.max_pods = max_pods self.os_type = os_type self.max_count = max_count self.min_count = min_count self.enable_auto_scaling = enable_auto_scaling self.type = type self.mode = mode self.orchestrator_version = orchestrator_version self.node_image_version = None self.upgrade_settings = upgrade_settings self.provisioning_state = None self.power_state = None self.availability_zones = availability_zones self.enable_node_public_ip = enable_node_public_ip self.scale_set_priority = scale_set_priority self.scale_set_eviction_policy = scale_set_eviction_policy self.spot_max_price = spot_max_price self.tags = tags self.node_labels = node_labels self.node_taints = node_taints self.proximity_placement_group_id = proximity_placement_group_id class ManagedClusterAgentPoolProfile( ManagedClusterAgentPoolProfileProperties ): # pylint: disable=too-many-instance-attributes """Profile for the container service agent pool. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar count: Number of agents (VMs) to host docker containers. Allowed values must be in the range of 0 to 100 (inclusive) for user pools and in the range of 1 to 100 (inclusive) for system pools. The default value is 1. :vartype count: int :ivar vm_size: Size of agent VMs. Known values are: "Standard_A1", "Standard_A10", "Standard_A11", "Standard_A1_v2", "Standard_A2", "Standard_A2_v2", "Standard_A2m_v2", "Standard_A3", "Standard_A4", "Standard_A4_v2", "Standard_A4m_v2", "Standard_A5", "Standard_A6", "Standard_A7", "Standard_A8", "Standard_A8_v2", "Standard_A8m_v2", "Standard_A9", "Standard_B2ms", "Standard_B2s", "Standard_B4ms", "Standard_B8ms", "Standard_D1", "Standard_D11", "Standard_D11_v2", "Standard_D11_v2_Promo", "Standard_D12", "Standard_D12_v2", "Standard_D12_v2_Promo", "Standard_D13", "Standard_D13_v2", "Standard_D13_v2_Promo", "Standard_D14", "Standard_D14_v2", "Standard_D14_v2_Promo", "Standard_D15_v2", "Standard_D16_v3", "Standard_D16s_v3", "Standard_D1_v2", "Standard_D2", "Standard_D2_v2", "Standard_D2_v2_Promo", "Standard_D2_v3", "Standard_D2s_v3", "Standard_D3", "Standard_D32_v3", "Standard_D32s_v3", "Standard_D3_v2", "Standard_D3_v2_Promo", "Standard_D4", "Standard_D4_v2", "Standard_D4_v2_Promo", "Standard_D4_v3", "Standard_D4s_v3", "Standard_D5_v2", "Standard_D5_v2_Promo", "Standard_D64_v3", "Standard_D64s_v3", "Standard_D8_v3", "Standard_D8s_v3", "Standard_DS1", "Standard_DS11", "Standard_DS11_v2", "Standard_DS11_v2_Promo", "Standard_DS12", "Standard_DS12_v2", "Standard_DS12_v2_Promo", "Standard_DS13", "Standard_DS13-2_v2", "Standard_DS13-4_v2", "Standard_DS13_v2", "Standard_DS13_v2_Promo", "Standard_DS14", "Standard_DS14-4_v2", "Standard_DS14-8_v2", "Standard_DS14_v2", "Standard_DS14_v2_Promo", "Standard_DS15_v2", "Standard_DS1_v2", "Standard_DS2", "Standard_DS2_v2", "Standard_DS2_v2_Promo", "Standard_DS3", "Standard_DS3_v2", "Standard_DS3_v2_Promo", "Standard_DS4", "Standard_DS4_v2", "Standard_DS4_v2_Promo", "Standard_DS5_v2", "Standard_DS5_v2_Promo", "Standard_E16_v3", "Standard_E16s_v3", "Standard_E2_v3", "Standard_E2s_v3", "Standard_E32-16s_v3", "Standard_E32-8s_v3", "Standard_E32_v3", "Standard_E32s_v3", "Standard_E4_v3", "Standard_E4s_v3", "Standard_E64-16s_v3", "Standard_E64-32s_v3", "Standard_E64_v3", "Standard_E64s_v3", "Standard_E8_v3", "Standard_E8s_v3", "Standard_F1", "Standard_F16", "Standard_F16s", "Standard_F16s_v2", "Standard_F1s", "Standard_F2", "Standard_F2s", "Standard_F2s_v2", "Standard_F32s_v2", "Standard_F4", "Standard_F4s", "Standard_F4s_v2", "Standard_F64s_v2", "Standard_F72s_v2", "Standard_F8", "Standard_F8s", "Standard_F8s_v2", "Standard_G1", "Standard_G2", "Standard_G3", "Standard_G4", "Standard_G5", "Standard_GS1", "Standard_GS2", "Standard_GS3", "Standard_GS4", "Standard_GS4-4", "Standard_GS4-8", "Standard_GS5", "Standard_GS5-16", "Standard_GS5-8", "Standard_H16", "Standard_H16m", "Standard_H16mr", "Standard_H16r", "Standard_H8", "Standard_H8m", "Standard_L16s", "Standard_L32s", "Standard_L4s", "Standard_L8s", "Standard_M128-32ms", "Standard_M128-64ms", "Standard_M128ms", "Standard_M128s", "Standard_M64-16ms", "Standard_M64-32ms", "Standard_M64ms", "Standard_M64s", "Standard_NC12", "Standard_NC12s_v2", "Standard_NC12s_v3", "Standard_NC24", "Standard_NC24r", "Standard_NC24rs_v2", "Standard_NC24rs_v3", "Standard_NC24s_v2", "Standard_NC24s_v3", "Standard_NC6", "Standard_NC6s_v2", "Standard_NC6s_v3", "Standard_ND12s", "Standard_ND24rs", "Standard_ND24s", "Standard_ND6s", "Standard_NV12", "Standard_NV24", and "Standard_NV6". :vartype vm_size: str or ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceVMSizeTypes :ivar os_disk_size_gb: OS Disk Size in GB to be used to specify the disk size for every machine in this master/agent pool. If you specify 0, it will apply the default osDisk size according to the vmSize specified. :vartype os_disk_size_gb: int :ivar os_disk_type: OS disk type to be used for machines in a given agent pool. Allowed values are 'Ephemeral' and 'Managed'. Defaults to 'Managed'. May not be changed after creation. Known values are: "Managed" and "Ephemeral". :vartype os_disk_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSDiskType :ivar vnet_subnet_id: VNet SubnetID specifies the VNet's subnet identifier. :vartype vnet_subnet_id: str :ivar max_pods: Maximum number of pods that can run on a node. :vartype max_pods: int :ivar os_type: OsType to be used to specify os type. Choose from Linux and Windows. Default to Linux. Known values are: "Linux" and "Windows". :vartype os_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSType :ivar max_count: Maximum number of nodes for auto-scaling. :vartype max_count: int :ivar min_count: Minimum number of nodes for auto-scaling. :vartype min_count: int :ivar enable_auto_scaling: Whether to enable auto-scaler. :vartype enable_auto_scaling: bool :ivar type: AgentPoolType represents types of an agent pool. Known values are: "VirtualMachineScaleSets" and "AvailabilitySet". :vartype type: str or ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolType :ivar mode: AgentPoolMode represents mode of an agent pool. Known values are: "System" and "User". :vartype mode: str or ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolMode :ivar orchestrator_version: Version of orchestrator specified when creating the managed cluster. :vartype orchestrator_version: str :ivar node_image_version: Version of node image. :vartype node_image_version: str :ivar upgrade_settings: Settings for upgrading the agentpool. :vartype upgrade_settings: ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolUpgradeSettings :ivar provisioning_state: The current deployment or provisioning state, which only appears in the response. :vartype provisioning_state: str :ivar power_state: Describes whether the Agent Pool is Running or Stopped. :vartype power_state: ~azure.mgmt.containerservice.v2020_09_01.models.PowerState :ivar availability_zones: Availability zones for nodes. Must use VirtualMachineScaleSets AgentPoolType. :vartype availability_zones: list[str] :ivar enable_node_public_ip: Enable public IP for nodes. :vartype enable_node_public_ip: bool :ivar scale_set_priority: ScaleSetPriority to be used to specify virtual machine scale set priority. Default to regular. Known values are: "Spot" and "Regular". :vartype scale_set_priority: str or ~azure.mgmt.containerservice.v2020_09_01.models.ScaleSetPriority :ivar scale_set_eviction_policy: ScaleSetEvictionPolicy to be used to specify eviction policy for Spot virtual machine scale set. Default to Delete. Known values are: "Delete" and "Deallocate". :vartype scale_set_eviction_policy: str or ~azure.mgmt.containerservice.v2020_09_01.models.ScaleSetEvictionPolicy :ivar spot_max_price: SpotMaxPrice to be used to specify the maximum price you are willing to pay in US Dollars. Possible values are any decimal value greater than zero or -1 which indicates default price to be up-to on-demand. :vartype spot_max_price: float :ivar tags: Agent pool tags to be persisted on the agent pool virtual machine scale set. :vartype tags: dict[str, str] :ivar node_labels: Agent pool node labels to be persisted across all nodes in agent pool. :vartype node_labels: dict[str, str] :ivar node_taints: Taints added to new nodes during node pool create and scale. For example, key=value:NoSchedule. :vartype node_taints: list[str] :ivar proximity_placement_group_id: The ID for Proximity Placement Group. :vartype proximity_placement_group_id: str :ivar name: Unique name of the agent pool profile in the context of the subscription and resource group. Required. :vartype name: str """ _validation = { "os_disk_size_gb": {"maximum": 1023, "minimum": 0}, "node_image_version": {"readonly": True}, "provisioning_state": {"readonly": True}, "power_state": {"readonly": True}, "name": {"required": True, "pattern": r"^[a-z][a-z0-9]{0,11}$"}, } _attribute_map = { "count": {"key": "count", "type": "int"}, "vm_size": {"key": "vmSize", "type": "str"}, "os_disk_size_gb": {"key": "osDiskSizeGB", "type": "int"}, "os_disk_type": {"key": "osDiskType", "type": "str"}, "vnet_subnet_id": {"key": "vnetSubnetID", "type": "str"}, "max_pods": {"key": "maxPods", "type": "int"}, "os_type": {"key": "osType", "type": "str"}, "max_count": {"key": "maxCount", "type": "int"}, "min_count": {"key": "minCount", "type": "int"}, "enable_auto_scaling": {"key": "enableAutoScaling", "type": "bool"}, "type": {"key": "type", "type": "str"}, "mode": {"key": "mode", "type": "str"}, "orchestrator_version": {"key": "orchestratorVersion", "type": "str"}, "node_image_version": {"key": "nodeImageVersion", "type": "str"}, "upgrade_settings": {"key": "upgradeSettings", "type": "AgentPoolUpgradeSettings"}, "provisioning_state": {"key": "provisioningState", "type": "str"}, "power_state": {"key": "powerState", "type": "PowerState"}, "availability_zones": {"key": "availabilityZones", "type": "[str]"}, "enable_node_public_ip": {"key": "enableNodePublicIP", "type": "bool"}, "scale_set_priority": {"key": "scaleSetPriority", "type": "str"}, "scale_set_eviction_policy": {"key": "scaleSetEvictionPolicy", "type": "str"}, "spot_max_price": {"key": "spotMaxPrice", "type": "float"}, "tags": {"key": "tags", "type": "{str}"}, "node_labels": {"key": "nodeLabels", "type": "{str}"}, "node_taints": {"key": "nodeTaints", "type": "[str]"}, "proximity_placement_group_id": {"key": "proximityPlacementGroupID", "type": "str"}, "name": {"key": "name", "type": "str"}, } def __init__( # pylint: disable=too-many-locals self, *, name: str, count: Optional[int] = None, vm_size: Optional[Union[str, "_models.ContainerServiceVMSizeTypes"]] = None, os_disk_size_gb: Optional[int] = None, os_disk_type: Optional[Union[str, "_models.OSDiskType"]] = None, vnet_subnet_id: Optional[str] = None, max_pods: Optional[int] = None, os_type: Union[str, "_models.OSType"] = "Linux", max_count: Optional[int] = None, min_count: Optional[int] = None, enable_auto_scaling: Optional[bool] = None, type: Optional[Union[str, "_models.AgentPoolType"]] = None, mode: Optional[Union[str, "_models.AgentPoolMode"]] = None, orchestrator_version: Optional[str] = None, upgrade_settings: Optional["_models.AgentPoolUpgradeSettings"] = None, availability_zones: Optional[List[str]] = None, enable_node_public_ip: Optional[bool] = None, scale_set_priority: Union[str, "_models.ScaleSetPriority"] = "Regular", scale_set_eviction_policy: Union[str, "_models.ScaleSetEvictionPolicy"] = "Delete", spot_max_price: float = -1, tags: Optional[Dict[str, str]] = None, node_labels: Optional[Dict[str, str]] = None, node_taints: Optional[List[str]] = None, proximity_placement_group_id: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword count: Number of agents (VMs) to host docker containers. Allowed values must be in the range of 0 to 100 (inclusive) for user pools and in the range of 1 to 100 (inclusive) for system pools. The default value is 1. :paramtype count: int :keyword vm_size: Size of agent VMs. Known values are: "Standard_A1", "Standard_A10", "Standard_A11", "Standard_A1_v2", "Standard_A2", "Standard_A2_v2", "Standard_A2m_v2", "Standard_A3", "Standard_A4", "Standard_A4_v2", "Standard_A4m_v2", "Standard_A5", "Standard_A6", "Standard_A7", "Standard_A8", "Standard_A8_v2", "Standard_A8m_v2", "Standard_A9", "Standard_B2ms", "Standard_B2s", "Standard_B4ms", "Standard_B8ms", "Standard_D1", "Standard_D11", "Standard_D11_v2", "Standard_D11_v2_Promo", "Standard_D12", "Standard_D12_v2", "Standard_D12_v2_Promo", "Standard_D13", "Standard_D13_v2", "Standard_D13_v2_Promo", "Standard_D14", "Standard_D14_v2", "Standard_D14_v2_Promo", "Standard_D15_v2", "Standard_D16_v3", "Standard_D16s_v3", "Standard_D1_v2", "Standard_D2", "Standard_D2_v2", "Standard_D2_v2_Promo", "Standard_D2_v3", "Standard_D2s_v3", "Standard_D3", "Standard_D32_v3", "Standard_D32s_v3", "Standard_D3_v2", "Standard_D3_v2_Promo", "Standard_D4", "Standard_D4_v2", "Standard_D4_v2_Promo", "Standard_D4_v3", "Standard_D4s_v3", "Standard_D5_v2", "Standard_D5_v2_Promo", "Standard_D64_v3", "Standard_D64s_v3", "Standard_D8_v3", "Standard_D8s_v3", "Standard_DS1", "Standard_DS11", "Standard_DS11_v2", "Standard_DS11_v2_Promo", "Standard_DS12", "Standard_DS12_v2", "Standard_DS12_v2_Promo", "Standard_DS13", "Standard_DS13-2_v2", "Standard_DS13-4_v2", "Standard_DS13_v2", "Standard_DS13_v2_Promo", "Standard_DS14", "Standard_DS14-4_v2", "Standard_DS14-8_v2", "Standard_DS14_v2", "Standard_DS14_v2_Promo", "Standard_DS15_v2", "Standard_DS1_v2", "Standard_DS2", "Standard_DS2_v2", "Standard_DS2_v2_Promo", "Standard_DS3", "Standard_DS3_v2", "Standard_DS3_v2_Promo", "Standard_DS4", "Standard_DS4_v2", "Standard_DS4_v2_Promo", "Standard_DS5_v2", "Standard_DS5_v2_Promo", "Standard_E16_v3", "Standard_E16s_v3", "Standard_E2_v3", "Standard_E2s_v3", "Standard_E32-16s_v3", "Standard_E32-8s_v3", "Standard_E32_v3", "Standard_E32s_v3", "Standard_E4_v3", "Standard_E4s_v3", "Standard_E64-16s_v3", "Standard_E64-32s_v3", "Standard_E64_v3", "Standard_E64s_v3", "Standard_E8_v3", "Standard_E8s_v3", "Standard_F1", "Standard_F16", "Standard_F16s", "Standard_F16s_v2", "Standard_F1s", "Standard_F2", "Standard_F2s", "Standard_F2s_v2", "Standard_F32s_v2", "Standard_F4", "Standard_F4s", "Standard_F4s_v2", "Standard_F64s_v2", "Standard_F72s_v2", "Standard_F8", "Standard_F8s", "Standard_F8s_v2", "Standard_G1", "Standard_G2", "Standard_G3", "Standard_G4", "Standard_G5", "Standard_GS1", "Standard_GS2", "Standard_GS3", "Standard_GS4", "Standard_GS4-4", "Standard_GS4-8", "Standard_GS5", "Standard_GS5-16", "Standard_GS5-8", "Standard_H16", "Standard_H16m", "Standard_H16mr", "Standard_H16r", "Standard_H8", "Standard_H8m", "Standard_L16s", "Standard_L32s", "Standard_L4s", "Standard_L8s", "Standard_M128-32ms", "Standard_M128-64ms", "Standard_M128ms", "Standard_M128s", "Standard_M64-16ms", "Standard_M64-32ms", "Standard_M64ms", "Standard_M64s", "Standard_NC12", "Standard_NC12s_v2", "Standard_NC12s_v3", "Standard_NC24", "Standard_NC24r", "Standard_NC24rs_v2", "Standard_NC24rs_v3", "Standard_NC24s_v2", "Standard_NC24s_v3", "Standard_NC6", "Standard_NC6s_v2", "Standard_NC6s_v3", "Standard_ND12s", "Standard_ND24rs", "Standard_ND24s", "Standard_ND6s", "Standard_NV12", "Standard_NV24", and "Standard_NV6". :paramtype vm_size: str or ~azure.mgmt.containerservice.v2020_09_01.models.ContainerServiceVMSizeTypes :keyword os_disk_size_gb: OS Disk Size in GB to be used to specify the disk size for every machine in this master/agent pool. If you specify 0, it will apply the default osDisk size according to the vmSize specified. :paramtype os_disk_size_gb: int :keyword os_disk_type: OS disk type to be used for machines in a given agent pool. Allowed values are 'Ephemeral' and 'Managed'. Defaults to 'Managed'. May not be changed after creation. Known values are: "Managed" and "Ephemeral". :paramtype os_disk_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSDiskType :keyword vnet_subnet_id: VNet SubnetID specifies the VNet's subnet identifier. :paramtype vnet_subnet_id: str :keyword max_pods: Maximum number of pods that can run on a node. :paramtype max_pods: int :keyword os_type: OsType to be used to specify os type. Choose from Linux and Windows. Default to Linux. Known values are: "Linux" and "Windows". :paramtype os_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSType :keyword max_count: Maximum number of nodes for auto-scaling. :paramtype max_count: int :keyword min_count: Minimum number of nodes for auto-scaling. :paramtype min_count: int :keyword enable_auto_scaling: Whether to enable auto-scaler. :paramtype enable_auto_scaling: bool :keyword type: AgentPoolType represents types of an agent pool. Known values are: "VirtualMachineScaleSets" and "AvailabilitySet". :paramtype type: str or ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolType :keyword mode: AgentPoolMode represents mode of an agent pool. Known values are: "System" and "User". :paramtype mode: str or ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolMode :keyword orchestrator_version: Version of orchestrator specified when creating the managed cluster. :paramtype orchestrator_version: str :keyword upgrade_settings: Settings for upgrading the agentpool. :paramtype upgrade_settings: ~azure.mgmt.containerservice.v2020_09_01.models.AgentPoolUpgradeSettings :keyword availability_zones: Availability zones for nodes. Must use VirtualMachineScaleSets AgentPoolType. :paramtype availability_zones: list[str] :keyword enable_node_public_ip: Enable public IP for nodes. :paramtype enable_node_public_ip: bool :keyword scale_set_priority: ScaleSetPriority to be used to specify virtual machine scale set priority. Default to regular. Known values are: "Spot" and "Regular". :paramtype scale_set_priority: str or ~azure.mgmt.containerservice.v2020_09_01.models.ScaleSetPriority :keyword scale_set_eviction_policy: ScaleSetEvictionPolicy to be used to specify eviction policy for Spot virtual machine scale set. Default to Delete. Known values are: "Delete" and "Deallocate". :paramtype scale_set_eviction_policy: str or ~azure.mgmt.containerservice.v2020_09_01.models.ScaleSetEvictionPolicy :keyword spot_max_price: SpotMaxPrice to be used to specify the maximum price you are willing to pay in US Dollars. Possible values are any decimal value greater than zero or -1 which indicates default price to be up-to on-demand. :paramtype spot_max_price: float :keyword tags: Agent pool tags to be persisted on the agent pool virtual machine scale set. :paramtype tags: dict[str, str] :keyword node_labels: Agent pool node labels to be persisted across all nodes in agent pool. :paramtype node_labels: dict[str, str] :keyword node_taints: Taints added to new nodes during node pool create and scale. For example, key=value:NoSchedule. :paramtype node_taints: list[str] :keyword proximity_placement_group_id: The ID for Proximity Placement Group. :paramtype proximity_placement_group_id: str :keyword name: Unique name of the agent pool profile in the context of the subscription and resource group. Required. :paramtype name: str """ super().__init__( count=count, vm_size=vm_size, os_disk_size_gb=os_disk_size_gb, os_disk_type=os_disk_type, vnet_subnet_id=vnet_subnet_id, max_pods=max_pods, os_type=os_type, max_count=max_count, min_count=min_count, enable_auto_scaling=enable_auto_scaling, type=type, mode=mode, orchestrator_version=orchestrator_version, upgrade_settings=upgrade_settings, availability_zones=availability_zones, enable_node_public_ip=enable_node_public_ip, scale_set_priority=scale_set_priority, scale_set_eviction_policy=scale_set_eviction_policy, spot_max_price=spot_max_price, tags=tags, node_labels=node_labels, node_taints=node_taints, proximity_placement_group_id=proximity_placement_group_id, **kwargs ) self.name = name class ManagedClusterAPIServerAccessProfile(_serialization.Model): """Access profile for managed cluster API server. :ivar authorized_ip_ranges: Authorized IP Ranges to kubernetes API server. :vartype authorized_ip_ranges: list[str] :ivar enable_private_cluster: Whether to create the cluster as a private cluster or not. :vartype enable_private_cluster: bool """ _attribute_map = { "authorized_ip_ranges": {"key": "authorizedIPRanges", "type": "[str]"}, "enable_private_cluster": {"key": "enablePrivateCluster", "type": "bool"}, } def __init__( self, *, authorized_ip_ranges: Optional[List[str]] = None, enable_private_cluster: Optional[bool] = None, **kwargs: Any ) -> None: """ :keyword authorized_ip_ranges: Authorized IP Ranges to kubernetes API server. :paramtype authorized_ip_ranges: list[str] :keyword enable_private_cluster: Whether to create the cluster as a private cluster or not. :paramtype enable_private_cluster: bool """ super().__init__(**kwargs) self.authorized_ip_ranges = authorized_ip_ranges self.enable_private_cluster = enable_private_cluster class ManagedClusterIdentity(_serialization.Model): """Identity for the managed cluster. Variables are only populated by the server, and will be ignored when sending a request. :ivar principal_id: The principal id of the system assigned identity which is used by master components. :vartype principal_id: str :ivar tenant_id: The tenant id of the system assigned identity which is used by master components. :vartype tenant_id: str :ivar type: The type of identity used for the managed cluster. Type 'SystemAssigned' will use an implicitly created identity in master components and an auto-created user assigned identity in MC_ resource group in agent nodes. Type 'None' will not use MSI for the managed cluster, service principal will be used instead. Known values are: "SystemAssigned", "UserAssigned", and "None". :vartype type: str or ~azure.mgmt.containerservice.v2020_09_01.models.ResourceIdentityType :ivar user_assigned_identities: The user identity associated with the managed cluster. This identity will be used in control plane and only one user assigned identity is allowed. The user identity dictionary key references will be ARM resource ids in the form: '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}'. :vartype user_assigned_identities: dict[str, ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterIdentityUserAssignedIdentitiesValue] """ _validation = { "principal_id": {"readonly": True}, "tenant_id": {"readonly": True}, } _attribute_map = { "principal_id": {"key": "principalId", "type": "str"}, "tenant_id": {"key": "tenantId", "type": "str"}, "type": {"key": "type", "type": "str"}, "user_assigned_identities": { "key": "userAssignedIdentities", "type": "{ManagedClusterIdentityUserAssignedIdentitiesValue}", }, } def __init__( self, *, type: Optional[Union[str, "_models.ResourceIdentityType"]] = None, user_assigned_identities: Optional[ Dict[str, "_models.ManagedClusterIdentityUserAssignedIdentitiesValue"] ] = None, **kwargs: Any ) -> None: """ :keyword type: The type of identity used for the managed cluster. Type 'SystemAssigned' will use an implicitly created identity in master components and an auto-created user assigned identity in MC_ resource group in agent nodes. Type 'None' will not use MSI for the managed cluster, service principal will be used instead. Known values are: "SystemAssigned", "UserAssigned", and "None". :paramtype type: str or ~azure.mgmt.containerservice.v2020_09_01.models.ResourceIdentityType :keyword user_assigned_identities: The user identity associated with the managed cluster. This identity will be used in control plane and only one user assigned identity is allowed. The user identity dictionary key references will be ARM resource ids in the form: '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.ManagedIdentity/userAssignedIdentities/{identityName}'. :paramtype user_assigned_identities: dict[str, ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterIdentityUserAssignedIdentitiesValue] """ super().__init__(**kwargs) self.principal_id = None self.tenant_id = None self.type = type self.user_assigned_identities = user_assigned_identities class ManagedClusterIdentityUserAssignedIdentitiesValue(_serialization.Model): """ManagedClusterIdentityUserAssignedIdentitiesValue. Variables are only populated by the server, and will be ignored when sending a request. :ivar principal_id: The principal id of user assigned identity. :vartype principal_id: str :ivar client_id: The client id of user assigned identity. :vartype client_id: str """ _validation = { "principal_id": {"readonly": True}, "client_id": {"readonly": True}, } _attribute_map = { "principal_id": {"key": "principalId", "type": "str"}, "client_id": {"key": "clientId", "type": "str"}, } def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.principal_id = None self.client_id = None class ManagedClusterListResult(_serialization.Model): """The response from the List Managed Clusters operation. Variables are only populated by the server, and will be ignored when sending a request. :ivar value: The list of managed clusters. :vartype value: list[~azure.mgmt.containerservice.v2020_09_01.models.ManagedCluster] :ivar next_link: The URL to get the next set of managed cluster results. :vartype next_link: str """ _validation = { "next_link": {"readonly": True}, } _attribute_map = { "value": {"key": "value", "type": "[ManagedCluster]"}, "next_link": {"key": "nextLink", "type": "str"}, } def __init__(self, *, value: Optional[List["_models.ManagedCluster"]] = None, **kwargs: Any) -> None: """ :keyword value: The list of managed clusters. :paramtype value: list[~azure.mgmt.containerservice.v2020_09_01.models.ManagedCluster] """ super().__init__(**kwargs) self.value = value self.next_link = None class ManagedClusterLoadBalancerProfile(_serialization.Model): """Profile of the managed cluster load balancer. :ivar managed_outbound_i_ps: Desired managed outbound IPs for the cluster load balancer. :vartype managed_outbound_i_ps: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterLoadBalancerProfileManagedOutboundIPs :ivar outbound_ip_prefixes: Desired outbound IP Prefix resources for the cluster load balancer. :vartype outbound_ip_prefixes: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterLoadBalancerProfileOutboundIPPrefixes :ivar outbound_i_ps: Desired outbound IP resources for the cluster load balancer. :vartype outbound_i_ps: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterLoadBalancerProfileOutboundIPs :ivar effective_outbound_i_ps: The effective outbound IP resources of the cluster load balancer. :vartype effective_outbound_i_ps: list[~azure.mgmt.containerservice.v2020_09_01.models.ResourceReference] :ivar allocated_outbound_ports: Desired number of allocated SNAT ports per VM. Allowed values must be in the range of 0 to 64000 (inclusive). The default value is 0 which results in Azure dynamically allocating ports. :vartype allocated_outbound_ports: int :ivar idle_timeout_in_minutes: Desired outbound flow idle timeout in minutes. Allowed values must be in the range of 4 to 120 (inclusive). The default value is 30 minutes. :vartype idle_timeout_in_minutes: int """ _validation = { "allocated_outbound_ports": {"maximum": 64000, "minimum": 0}, "idle_timeout_in_minutes": {"maximum": 120, "minimum": 4}, } _attribute_map = { "managed_outbound_i_ps": { "key": "managedOutboundIPs", "type": "ManagedClusterLoadBalancerProfileManagedOutboundIPs", }, "outbound_ip_prefixes": { "key": "outboundIPPrefixes", "type": "ManagedClusterLoadBalancerProfileOutboundIPPrefixes", }, "outbound_i_ps": {"key": "outboundIPs", "type": "ManagedClusterLoadBalancerProfileOutboundIPs"}, "effective_outbound_i_ps": {"key": "effectiveOutboundIPs", "type": "[ResourceReference]"}, "allocated_outbound_ports": {"key": "allocatedOutboundPorts", "type": "int"}, "idle_timeout_in_minutes": {"key": "idleTimeoutInMinutes", "type": "int"}, } def __init__( self, *, managed_outbound_i_ps: Optional["_models.ManagedClusterLoadBalancerProfileManagedOutboundIPs"] = None, outbound_ip_prefixes: Optional["_models.ManagedClusterLoadBalancerProfileOutboundIPPrefixes"] = None, outbound_i_ps: Optional["_models.ManagedClusterLoadBalancerProfileOutboundIPs"] = None, effective_outbound_i_ps: Optional[List["_models.ResourceReference"]] = None, allocated_outbound_ports: int = 0, idle_timeout_in_minutes: int = 30, **kwargs: Any ) -> None: """ :keyword managed_outbound_i_ps: Desired managed outbound IPs for the cluster load balancer. :paramtype managed_outbound_i_ps: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterLoadBalancerProfileManagedOutboundIPs :keyword outbound_ip_prefixes: Desired outbound IP Prefix resources for the cluster load balancer. :paramtype outbound_ip_prefixes: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterLoadBalancerProfileOutboundIPPrefixes :keyword outbound_i_ps: Desired outbound IP resources for the cluster load balancer. :paramtype outbound_i_ps: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterLoadBalancerProfileOutboundIPs :keyword effective_outbound_i_ps: The effective outbound IP resources of the cluster load balancer. :paramtype effective_outbound_i_ps: list[~azure.mgmt.containerservice.v2020_09_01.models.ResourceReference] :keyword allocated_outbound_ports: Desired number of allocated SNAT ports per VM. Allowed values must be in the range of 0 to 64000 (inclusive). The default value is 0 which results in Azure dynamically allocating ports. :paramtype allocated_outbound_ports: int :keyword idle_timeout_in_minutes: Desired outbound flow idle timeout in minutes. Allowed values must be in the range of 4 to 120 (inclusive). The default value is 30 minutes. :paramtype idle_timeout_in_minutes: int """ super().__init__(**kwargs) self.managed_outbound_i_ps = managed_outbound_i_ps self.outbound_ip_prefixes = outbound_ip_prefixes self.outbound_i_ps = outbound_i_ps self.effective_outbound_i_ps = effective_outbound_i_ps self.allocated_outbound_ports = allocated_outbound_ports self.idle_timeout_in_minutes = idle_timeout_in_minutes class ManagedClusterLoadBalancerProfileManagedOutboundIPs(_serialization.Model): """Desired managed outbound IPs for the cluster load balancer. :ivar count: Desired number of outbound IP created/managed by Azure for the cluster load balancer. Allowed values must be in the range of 1 to 100 (inclusive). The default value is 1. :vartype count: int """ _validation = { "count": {"maximum": 100, "minimum": 1}, } _attribute_map = { "count": {"key": "count", "type": "int"}, } def __init__(self, *, count: int = 1, **kwargs: Any) -> None: """ :keyword count: Desired number of outbound IP created/managed by Azure for the cluster load balancer. Allowed values must be in the range of 1 to 100 (inclusive). The default value is 1. :paramtype count: int """ super().__init__(**kwargs) self.count = count class ManagedClusterLoadBalancerProfileOutboundIPPrefixes(_serialization.Model): """Desired outbound IP Prefix resources for the cluster load balancer. :ivar public_ip_prefixes: A list of public IP prefix resources. :vartype public_ip_prefixes: list[~azure.mgmt.containerservice.v2020_09_01.models.ResourceReference] """ _attribute_map = { "public_ip_prefixes": {"key": "publicIPPrefixes", "type": "[ResourceReference]"}, } def __init__( self, *, public_ip_prefixes: Optional[List["_models.ResourceReference"]] = None, **kwargs: Any ) -> None: """ :keyword public_ip_prefixes: A list of public IP prefix resources. :paramtype public_ip_prefixes: list[~azure.mgmt.containerservice.v2020_09_01.models.ResourceReference] """ super().__init__(**kwargs) self.public_ip_prefixes = public_ip_prefixes class ManagedClusterLoadBalancerProfileOutboundIPs(_serialization.Model): """Desired outbound IP resources for the cluster load balancer. :ivar public_i_ps: A list of public IP resources. :vartype public_i_ps: list[~azure.mgmt.containerservice.v2020_09_01.models.ResourceReference] """ _attribute_map = { "public_i_ps": {"key": "publicIPs", "type": "[ResourceReference]"}, } def __init__(self, *, public_i_ps: Optional[List["_models.ResourceReference"]] = None, **kwargs: Any) -> None: """ :keyword public_i_ps: A list of public IP resources. :paramtype public_i_ps: list[~azure.mgmt.containerservice.v2020_09_01.models.ResourceReference] """ super().__init__(**kwargs) self.public_i_ps = public_i_ps class ManagedClusterPoolUpgradeProfile(_serialization.Model): """The list of available upgrade versions. All required parameters must be populated in order to send to Azure. :ivar kubernetes_version: Kubernetes version (major, minor, patch). Required. :vartype kubernetes_version: str :ivar name: Pool name. :vartype name: str :ivar os_type: OsType to be used to specify os type. Choose from Linux and Windows. Default to Linux. Known values are: "Linux" and "Windows". :vartype os_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSType :ivar upgrades: List of orchestrator types and versions available for upgrade. :vartype upgrades: list[~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterPoolUpgradeProfileUpgradesItem] """ _validation = { "kubernetes_version": {"required": True}, "os_type": {"required": True}, } _attribute_map = { "kubernetes_version": {"key": "kubernetesVersion", "type": "str"}, "name": {"key": "name", "type": "str"}, "os_type": {"key": "osType", "type": "str"}, "upgrades": {"key": "upgrades", "type": "[ManagedClusterPoolUpgradeProfileUpgradesItem]"}, } def __init__( self, *, kubernetes_version: str, os_type: Union[str, "_models.OSType"] = "Linux", name: Optional[str] = None, upgrades: Optional[List["_models.ManagedClusterPoolUpgradeProfileUpgradesItem"]] = None, **kwargs: Any ) -> None: """ :keyword kubernetes_version: Kubernetes version (major, minor, patch). Required. :paramtype kubernetes_version: str :keyword name: Pool name. :paramtype name: str :keyword os_type: OsType to be used to specify os type. Choose from Linux and Windows. Default to Linux. Known values are: "Linux" and "Windows". :paramtype os_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.OSType :keyword upgrades: List of orchestrator types and versions available for upgrade. :paramtype upgrades: list[~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterPoolUpgradeProfileUpgradesItem] """ super().__init__(**kwargs) self.kubernetes_version = kubernetes_version self.name = name self.os_type = os_type self.upgrades = upgrades class ManagedClusterPoolUpgradeProfileUpgradesItem(_serialization.Model): """ManagedClusterPoolUpgradeProfileUpgradesItem. :ivar kubernetes_version: Kubernetes version (major, minor, patch). :vartype kubernetes_version: str :ivar is_preview: Whether Kubernetes version is currently in preview. :vartype is_preview: bool """ _attribute_map = { "kubernetes_version": {"key": "kubernetesVersion", "type": "str"}, "is_preview": {"key": "isPreview", "type": "bool"}, } def __init__( self, *, kubernetes_version: Optional[str] = None, is_preview: Optional[bool] = None, **kwargs: Any ) -> None: """ :keyword kubernetes_version: Kubernetes version (major, minor, patch). :paramtype kubernetes_version: str :keyword is_preview: Whether Kubernetes version is currently in preview. :paramtype is_preview: bool """ super().__init__(**kwargs) self.kubernetes_version = kubernetes_version self.is_preview = is_preview class ManagedClusterPropertiesAutoScalerProfile(_serialization.Model): # pylint: disable=too-many-instance-attributes """Parameters to be applied to the cluster-autoscaler when enabled. :ivar balance_similar_node_groups: :vartype balance_similar_node_groups: str :ivar expander: Known values are: "least-waste", "most-pods", and "random". :vartype expander: str or ~azure.mgmt.containerservice.v2020_09_01.models.Expander :ivar max_empty_bulk_delete: :vartype max_empty_bulk_delete: str :ivar max_graceful_termination_sec: :vartype max_graceful_termination_sec: str :ivar max_total_unready_percentage: :vartype max_total_unready_percentage: str :ivar new_pod_scale_up_delay: :vartype new_pod_scale_up_delay: str :ivar ok_total_unready_count: :vartype ok_total_unready_count: str :ivar scan_interval: :vartype scan_interval: str :ivar scale_down_delay_after_add: :vartype scale_down_delay_after_add: str :ivar scale_down_delay_after_delete: :vartype scale_down_delay_after_delete: str :ivar scale_down_delay_after_failure: :vartype scale_down_delay_after_failure: str :ivar scale_down_unneeded_time: :vartype scale_down_unneeded_time: str :ivar scale_down_unready_time: :vartype scale_down_unready_time: str :ivar scale_down_utilization_threshold: :vartype scale_down_utilization_threshold: str :ivar skip_nodes_with_local_storage: :vartype skip_nodes_with_local_storage: str :ivar skip_nodes_with_system_pods: :vartype skip_nodes_with_system_pods: str """ _attribute_map = { "balance_similar_node_groups": {"key": "balance-similar-node-groups", "type": "str"}, "expander": {"key": "expander", "type": "str"}, "max_empty_bulk_delete": {"key": "max-empty-bulk-delete", "type": "str"}, "max_graceful_termination_sec": {"key": "max-graceful-termination-sec", "type": "str"}, "max_total_unready_percentage": {"key": "max-total-unready-percentage", "type": "str"}, "new_pod_scale_up_delay": {"key": "new-pod-scale-up-delay", "type": "str"}, "ok_total_unready_count": {"key": "ok-total-unready-count", "type": "str"}, "scan_interval": {"key": "scan-interval", "type": "str"}, "scale_down_delay_after_add": {"key": "scale-down-delay-after-add", "type": "str"}, "scale_down_delay_after_delete": {"key": "scale-down-delay-after-delete", "type": "str"}, "scale_down_delay_after_failure": {"key": "scale-down-delay-after-failure", "type": "str"}, "scale_down_unneeded_time": {"key": "scale-down-unneeded-time", "type": "str"}, "scale_down_unready_time": {"key": "scale-down-unready-time", "type": "str"}, "scale_down_utilization_threshold": {"key": "scale-down-utilization-threshold", "type": "str"}, "skip_nodes_with_local_storage": {"key": "skip-nodes-with-local-storage", "type": "str"}, "skip_nodes_with_system_pods": {"key": "skip-nodes-with-system-pods", "type": "str"}, } def __init__( self, *, balance_similar_node_groups: Optional[str] = None, expander: Optional[Union[str, "_models.Expander"]] = None, max_empty_bulk_delete: Optional[str] = None, max_graceful_termination_sec: Optional[str] = None, max_total_unready_percentage: Optional[str] = None, new_pod_scale_up_delay: Optional[str] = None, ok_total_unready_count: Optional[str] = None, scan_interval: Optional[str] = None, scale_down_delay_after_add: Optional[str] = None, scale_down_delay_after_delete: Optional[str] = None, scale_down_delay_after_failure: Optional[str] = None, scale_down_unneeded_time: Optional[str] = None, scale_down_unready_time: Optional[str] = None, scale_down_utilization_threshold: Optional[str] = None, skip_nodes_with_local_storage: Optional[str] = None, skip_nodes_with_system_pods: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword balance_similar_node_groups: :paramtype balance_similar_node_groups: str :keyword expander: Known values are: "least-waste", "most-pods", and "random". :paramtype expander: str or ~azure.mgmt.containerservice.v2020_09_01.models.Expander :keyword max_empty_bulk_delete: :paramtype max_empty_bulk_delete: str :keyword max_graceful_termination_sec: :paramtype max_graceful_termination_sec: str :keyword max_total_unready_percentage: :paramtype max_total_unready_percentage: str :keyword new_pod_scale_up_delay: :paramtype new_pod_scale_up_delay: str :keyword ok_total_unready_count: :paramtype ok_total_unready_count: str :keyword scan_interval: :paramtype scan_interval: str :keyword scale_down_delay_after_add: :paramtype scale_down_delay_after_add: str :keyword scale_down_delay_after_delete: :paramtype scale_down_delay_after_delete: str :keyword scale_down_delay_after_failure: :paramtype scale_down_delay_after_failure: str :keyword scale_down_unneeded_time: :paramtype scale_down_unneeded_time: str :keyword scale_down_unready_time: :paramtype scale_down_unready_time: str :keyword scale_down_utilization_threshold: :paramtype scale_down_utilization_threshold: str :keyword skip_nodes_with_local_storage: :paramtype skip_nodes_with_local_storage: str :keyword skip_nodes_with_system_pods: :paramtype skip_nodes_with_system_pods: str """ super().__init__(**kwargs) self.balance_similar_node_groups = balance_similar_node_groups self.expander = expander self.max_empty_bulk_delete = max_empty_bulk_delete self.max_graceful_termination_sec = max_graceful_termination_sec self.max_total_unready_percentage = max_total_unready_percentage self.new_pod_scale_up_delay = new_pod_scale_up_delay self.ok_total_unready_count = ok_total_unready_count self.scan_interval = scan_interval self.scale_down_delay_after_add = scale_down_delay_after_add self.scale_down_delay_after_delete = scale_down_delay_after_delete self.scale_down_delay_after_failure = scale_down_delay_after_failure self.scale_down_unneeded_time = scale_down_unneeded_time self.scale_down_unready_time = scale_down_unready_time self.scale_down_utilization_threshold = scale_down_utilization_threshold self.skip_nodes_with_local_storage = skip_nodes_with_local_storage self.skip_nodes_with_system_pods = skip_nodes_with_system_pods class ManagedClusterPropertiesIdentityProfileValue(UserAssignedIdentity): """ManagedClusterPropertiesIdentityProfileValue. :ivar resource_id: The resource id of the user assigned identity. :vartype resource_id: str :ivar client_id: The client id of the user assigned identity. :vartype client_id: str :ivar object_id: The object id of the user assigned identity. :vartype object_id: str """ _attribute_map = { "resource_id": {"key": "resourceId", "type": "str"}, "client_id": {"key": "clientId", "type": "str"}, "object_id": {"key": "objectId", "type": "str"}, } def __init__( self, *, resource_id: Optional[str] = None, client_id: Optional[str] = None, object_id: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword resource_id: The resource id of the user assigned identity. :paramtype resource_id: str :keyword client_id: The client id of the user assigned identity. :paramtype client_id: str :keyword object_id: The object id of the user assigned identity. :paramtype object_id: str """ super().__init__(resource_id=resource_id, client_id=client_id, object_id=object_id, **kwargs) class ManagedClusterServicePrincipalProfile(_serialization.Model): """Information about a service principal identity for the cluster to use for manipulating Azure APIs. All required parameters must be populated in order to send to Azure. :ivar client_id: The ID for the service principal. Required. :vartype client_id: str :ivar secret: The secret password associated with the service principal in plain text. :vartype secret: str """ _validation = { "client_id": {"required": True}, } _attribute_map = { "client_id": {"key": "clientId", "type": "str"}, "secret": {"key": "secret", "type": "str"}, } def __init__(self, *, client_id: str, secret: Optional[str] = None, **kwargs: Any) -> None: """ :keyword client_id: The ID for the service principal. Required. :paramtype client_id: str :keyword secret: The secret password associated with the service principal in plain text. :paramtype secret: str """ super().__init__(**kwargs) self.client_id = client_id self.secret = secret class ManagedClusterSKU(_serialization.Model): """ManagedClusterSKU. :ivar name: Name of a managed cluster SKU. "Basic" :vartype name: str or ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterSKUName :ivar tier: Tier of a managed cluster SKU. Known values are: "Paid" and "Free". :vartype tier: str or ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterSKUTier """ _attribute_map = { "name": {"key": "name", "type": "str"}, "tier": {"key": "tier", "type": "str"}, } def __init__( self, *, name: Optional[Union[str, "_models.ManagedClusterSKUName"]] = None, tier: Optional[Union[str, "_models.ManagedClusterSKUTier"]] = None, **kwargs: Any ) -> None: """ :keyword name: Name of a managed cluster SKU. "Basic" :paramtype name: str or ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterSKUName :keyword tier: Tier of a managed cluster SKU. Known values are: "Paid" and "Free". :paramtype tier: str or ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterSKUTier """ super().__init__(**kwargs) self.name = name self.tier = tier class ManagedClusterUpgradeProfile(_serialization.Model): """The list of available upgrades for compute pools. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :ivar id: Id of upgrade profile. :vartype id: str :ivar name: Name of upgrade profile. :vartype name: str :ivar type: Type of upgrade profile. :vartype type: str :ivar control_plane_profile: The list of available upgrade versions for the control plane. Required. :vartype control_plane_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterPoolUpgradeProfile :ivar agent_pool_profiles: The list of available upgrade versions for agent pools. Required. :vartype agent_pool_profiles: list[~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterPoolUpgradeProfile] """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, "control_plane_profile": {"required": True}, "agent_pool_profiles": {"required": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "control_plane_profile": {"key": "properties.controlPlaneProfile", "type": "ManagedClusterPoolUpgradeProfile"}, "agent_pool_profiles": {"key": "properties.agentPoolProfiles", "type": "[ManagedClusterPoolUpgradeProfile]"}, } def __init__( self, *, control_plane_profile: "_models.ManagedClusterPoolUpgradeProfile", agent_pool_profiles: List["_models.ManagedClusterPoolUpgradeProfile"], **kwargs: Any ) -> None: """ :keyword control_plane_profile: The list of available upgrade versions for the control plane. Required. :paramtype control_plane_profile: ~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterPoolUpgradeProfile :keyword agent_pool_profiles: The list of available upgrade versions for agent pools. Required. :paramtype agent_pool_profiles: list[~azure.mgmt.containerservice.v2020_09_01.models.ManagedClusterPoolUpgradeProfile] """ super().__init__(**kwargs) self.id = None self.name = None self.type = None self.control_plane_profile = control_plane_profile self.agent_pool_profiles = agent_pool_profiles class ManagedClusterWindowsProfile(_serialization.Model): """Profile for Windows VMs in the container service cluster. All required parameters must be populated in order to send to Azure. :ivar admin_username: Specifies the name of the administrator account. :code:`<br>`:code:`<br>` **restriction:** Cannot end in "." :code:`<br>`:code:`<br>` **Disallowed values:** "administrator", "admin", "user", "user1", "test", "user2", "test1", "user3", "admin1", "1", "123", "a", "actuser", "adm", "admin2", "aspnet", "backup", "console", "david", "guest", "john", "owner", "root", "server", "sql", "support", "support_388945a0", "sys", "test2", "test3", "user4", "user5". :code:`<br>`:code:`<br>` **Minimum-length:** 1 character :code:`<br>`:code:`<br>` **Max-length:** 20 characters. Required. :vartype admin_username: str :ivar admin_password: Specifies the password of the administrator account. :code:`<br>`:code:`<br>` **Minimum-length:** 8 characters :code:`<br>`:code:`<br>` **Max-length:** 123 characters :code:`<br>`:code:`<br>` **Complexity requirements:** 3 out of 4 conditions below need to be fulfilled :code:`<br>` Has lower characters :code:`<br>`Has upper characters :code:`<br>` Has a digit :code:`<br>` Has a special character (Regex match [\W_]) :code:`<br>`:code:`<br>` **Disallowed values:** "abc@123", "P@$$w0rd", "P@ssw0rd", "P@ssword123", "Pa$$word", "pass@word1", "Password!", "Password1", "Password22", "iloveyou!". :vartype admin_password: str :ivar license_type: The licenseType to use for Windows VMs. Windows_Server is used to enable Azure Hybrid User Benefits for Windows VMs. Known values are: "None" and "Windows_Server". :vartype license_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.LicenseType """ _validation = { "admin_username": {"required": True}, } _attribute_map = { "admin_username": {"key": "adminUsername", "type": "str"}, "admin_password": {"key": "adminPassword", "type": "str"}, "license_type": {"key": "licenseType", "type": "str"}, } def __init__( self, *, admin_username: str, admin_password: Optional[str] = None, license_type: Optional[Union[str, "_models.LicenseType"]] = None, **kwargs: Any ) -> None: """ :keyword admin_username: Specifies the name of the administrator account. :code:`<br>`:code:`<br>` **restriction:** Cannot end in "." :code:`<br>`:code:`<br>` **Disallowed values:** "administrator", "admin", "user", "user1", "test", "user2", "test1", "user3", "admin1", "1", "123", "a", "actuser", "adm", "admin2", "aspnet", "backup", "console", "david", "guest", "john", "owner", "root", "server", "sql", "support", "support_388945a0", "sys", "test2", "test3", "user4", "user5". :code:`<br>`:code:`<br>` **Minimum-length:** 1 character :code:`<br>`:code:`<br>` **Max-length:** 20 characters. Required. :paramtype admin_username: str :keyword admin_password: Specifies the password of the administrator account. :code:`<br>`:code:`<br>` **Minimum-length:** 8 characters :code:`<br>`:code:`<br>` **Max-length:** 123 characters :code:`<br>`:code:`<br>` **Complexity requirements:** 3 out of 4 conditions below need to be fulfilled :code:`<br>` Has lower characters :code:`<br>`Has upper characters :code:`<br>` Has a digit :code:`<br>` Has a special character (Regex match [\W_]) :code:`<br>`:code:`<br>` **Disallowed values:** "abc@123", "P@$$w0rd", "P@ssw0rd", "P@ssword123", "Pa$$word", "pass@word1", "Password!", "Password1", "Password22", "iloveyou!". :paramtype admin_password: str :keyword license_type: The licenseType to use for Windows VMs. Windows_Server is used to enable Azure Hybrid User Benefits for Windows VMs. Known values are: "None" and "Windows_Server". :paramtype license_type: str or ~azure.mgmt.containerservice.v2020_09_01.models.LicenseType """ super().__init__(**kwargs) self.admin_username = admin_username self.admin_password = admin_password self.license_type = license_type class OperationListResult(_serialization.Model): """The List Compute Operation operation response. Variables are only populated by the server, and will be ignored when sending a request. :ivar value: The list of compute operations. :vartype value: list[~azure.mgmt.containerservice.v2020_09_01.models.OperationValue] """ _validation = { "value": {"readonly": True}, } _attribute_map = { "value": {"key": "value", "type": "[OperationValue]"}, } def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.value = None class OperationValue(_serialization.Model): """Describes the properties of a Compute Operation value. Variables are only populated by the server, and will be ignored when sending a request. :ivar origin: The origin of the compute operation. :vartype origin: str :ivar name: The name of the compute operation. :vartype name: str :ivar operation: The display name of the compute operation. :vartype operation: str :ivar resource: The display name of the resource the operation applies to. :vartype resource: str :ivar description: The description of the operation. :vartype description: str :ivar provider: The resource provider for the operation. :vartype provider: str """ _validation = { "origin": {"readonly": True}, "name": {"readonly": True}, "operation": {"readonly": True}, "resource": {"readonly": True}, "description": {"readonly": True}, "provider": {"readonly": True}, } _attribute_map = { "origin": {"key": "origin", "type": "str"}, "name": {"key": "name", "type": "str"}, "operation": {"key": "display.operation", "type": "str"}, "resource": {"key": "display.resource", "type": "str"}, "description": {"key": "display.description", "type": "str"}, "provider": {"key": "display.provider", "type": "str"}, } def __init__(self, **kwargs: Any) -> None: """ """ super().__init__(**kwargs) self.origin = None self.name = None self.operation = None self.resource = None self.description = None self.provider = None class PowerState(_serialization.Model): """Describes the Power State of the cluster. :ivar code: Tells whether the cluster is Running or Stopped. Known values are: "Running" and "Stopped". :vartype code: str or ~azure.mgmt.containerservice.v2020_09_01.models.Code """ _attribute_map = { "code": {"key": "code", "type": "str"}, } def __init__(self, *, code: Optional[Union[str, "_models.Code"]] = None, **kwargs: Any) -> None: """ :keyword code: Tells whether the cluster is Running or Stopped. Known values are: "Running" and "Stopped". :paramtype code: str or ~azure.mgmt.containerservice.v2020_09_01.models.Code """ super().__init__(**kwargs) self.code = code class PrivateEndpoint(_serialization.Model): """Private endpoint which a connection belongs to. :ivar id: The resource Id for private endpoint. :vartype id: str """ _attribute_map = { "id": {"key": "id", "type": "str"}, } def __init__(self, *, id: Optional[str] = None, **kwargs: Any) -> None: # pylint: disable=redefined-builtin """ :keyword id: The resource Id for private endpoint. :paramtype id: str """ super().__init__(**kwargs) self.id = id class PrivateEndpointConnection(_serialization.Model): """A private endpoint connection. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The ID of the private endpoint connection. :vartype id: str :ivar name: The name of the private endpoint connection. :vartype name: str :ivar type: The resource type. :vartype type: str :ivar provisioning_state: The current provisioning state. Known values are: "Succeeded", "Creating", "Deleting", and "Failed". :vartype provisioning_state: str or ~azure.mgmt.containerservice.v2020_09_01.models.PrivateEndpointConnectionProvisioningState :ivar private_endpoint: The resource of private endpoint. :vartype private_endpoint: ~azure.mgmt.containerservice.v2020_09_01.models.PrivateEndpoint :ivar private_link_service_connection_state: A collection of information about the state of the connection between service consumer and provider. :vartype private_link_service_connection_state: ~azure.mgmt.containerservice.v2020_09_01.models.PrivateLinkServiceConnectionState """ _validation = { "id": {"readonly": True}, "name": {"readonly": True}, "type": {"readonly": True}, "provisioning_state": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "provisioning_state": {"key": "properties.provisioningState", "type": "str"}, "private_endpoint": {"key": "properties.privateEndpoint", "type": "PrivateEndpoint"}, "private_link_service_connection_state": { "key": "properties.privateLinkServiceConnectionState", "type": "PrivateLinkServiceConnectionState", }, } def __init__( self, *, private_endpoint: Optional["_models.PrivateEndpoint"] = None, private_link_service_connection_state: Optional["_models.PrivateLinkServiceConnectionState"] = None, **kwargs: Any ) -> None: """ :keyword private_endpoint: The resource of private endpoint. :paramtype private_endpoint: ~azure.mgmt.containerservice.v2020_09_01.models.PrivateEndpoint :keyword private_link_service_connection_state: A collection of information about the state of the connection between service consumer and provider. :paramtype private_link_service_connection_state: ~azure.mgmt.containerservice.v2020_09_01.models.PrivateLinkServiceConnectionState """ super().__init__(**kwargs) self.id = None self.name = None self.type = None self.provisioning_state = None self.private_endpoint = private_endpoint self.private_link_service_connection_state = private_link_service_connection_state class PrivateEndpointConnectionListResult(_serialization.Model): """A list of private endpoint connections. :ivar value: The collection value. :vartype value: list[~azure.mgmt.containerservice.v2020_09_01.models.PrivateEndpointConnection] """ _attribute_map = { "value": {"key": "value", "type": "[PrivateEndpointConnection]"}, } def __init__(self, *, value: Optional[List["_models.PrivateEndpointConnection"]] = None, **kwargs: Any) -> None: """ :keyword value: The collection value. :paramtype value: list[~azure.mgmt.containerservice.v2020_09_01.models.PrivateEndpointConnection] """ super().__init__(**kwargs) self.value = value class PrivateLinkResource(_serialization.Model): """A private link resource. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The ID of the private link resource. :vartype id: str :ivar name: The name of the private link resource. :vartype name: str :ivar type: The resource type. :vartype type: str :ivar group_id: The group ID of the resource. :vartype group_id: str :ivar required_members: RequiredMembers of the resource. :vartype required_members: list[str] :ivar private_link_service_id: The private link service ID of the resource, this field is exposed only to NRP internally. :vartype private_link_service_id: str """ _validation = { "private_link_service_id": {"readonly": True}, } _attribute_map = { "id": {"key": "id", "type": "str"}, "name": {"key": "name", "type": "str"}, "type": {"key": "type", "type": "str"}, "group_id": {"key": "groupId", "type": "str"}, "required_members": {"key": "requiredMembers", "type": "[str]"}, "private_link_service_id": {"key": "privateLinkServiceID", "type": "str"}, } def __init__( self, *, id: Optional[str] = None, # pylint: disable=redefined-builtin name: Optional[str] = None, type: Optional[str] = None, group_id: Optional[str] = None, required_members: Optional[List[str]] = None, **kwargs: Any ) -> None: """ :keyword id: The ID of the private link resource. :paramtype id: str :keyword name: The name of the private link resource. :paramtype name: str :keyword type: The resource type. :paramtype type: str :keyword group_id: The group ID of the resource. :paramtype group_id: str :keyword required_members: RequiredMembers of the resource. :paramtype required_members: list[str] """ super().__init__(**kwargs) self.id = id self.name = name self.type = type self.group_id = group_id self.required_members = required_members self.private_link_service_id = None class PrivateLinkResourcesListResult(_serialization.Model): """A list of private link resources. :ivar value: The collection value. :vartype value: list[~azure.mgmt.containerservice.v2020_09_01.models.PrivateLinkResource] """ _attribute_map = { "value": {"key": "value", "type": "[PrivateLinkResource]"}, } def __init__(self, *, value: Optional[List["_models.PrivateLinkResource"]] = None, **kwargs: Any) -> None: """ :keyword value: The collection value. :paramtype value: list[~azure.mgmt.containerservice.v2020_09_01.models.PrivateLinkResource] """ super().__init__(**kwargs) self.value = value class PrivateLinkServiceConnectionState(_serialization.Model): """The state of a private link service connection. :ivar status: The private link service connection status. Known values are: "Pending", "Approved", "Rejected", and "Disconnected". :vartype status: str or ~azure.mgmt.containerservice.v2020_09_01.models.ConnectionStatus :ivar description: The private link service connection description. :vartype description: str """ _attribute_map = { "status": {"key": "status", "type": "str"}, "description": {"key": "description", "type": "str"}, } def __init__( self, *, status: Optional[Union[str, "_models.ConnectionStatus"]] = None, description: Optional[str] = None, **kwargs: Any ) -> None: """ :keyword status: The private link service connection status. Known values are: "Pending", "Approved", "Rejected", and "Disconnected". :paramtype status: str or ~azure.mgmt.containerservice.v2020_09_01.models.ConnectionStatus :keyword description: The private link service connection description. :paramtype description: str """ super().__init__(**kwargs) self.status = status self.description = description class ResourceReference(_serialization.Model): """A reference to an Azure resource. :ivar id: The fully qualified Azure resource id. :vartype id: str """ _attribute_map = { "id": {"key": "id", "type": "str"}, } def __init__(self, *, id: Optional[str] = None, **kwargs: Any) -> None: # pylint: disable=redefined-builtin """ :keyword id: The fully qualified Azure resource id. :paramtype id: str """ super().__init__(**kwargs) self.id = id class TagsObject(_serialization.Model): """Tags object for patch operations. :ivar tags: Resource tags. :vartype tags: dict[str, str] """ _attribute_map = { "tags": {"key": "tags", "type": "{str}"}, } def __init__(self, *, tags: Optional[Dict[str, str]] = None, **kwargs: Any) -> None: """ :keyword tags: Resource tags. :paramtype tags: dict[str, str] """ super().__init__(**kwargs) self.tags = tags
PypiClean
/ai2thor_colab-0.1.2.tar.gz/ai2thor_colab-0.1.2/ai2thor_colab/__init__.py
from IPython.display import HTML, display import sys from moviepy.editor import ImageSequenceClip from typing import Sequence import numpy as np import os from typing import Optional import ai2thor.server from typing import Union from PIL import Image import matplotlib.pyplot as plt __version__ = "0.1.2" __all__ = ["plot_frames", "show_video", "start_xserver", "overlay", "side_by_side"] def show_objects_table(objects: list) -> None: """Visualizes objects in a way that they are clickable and filterable. Example: event = controller.step("MoveAhead") objects = event.metadata["objects"] show_objects_table(objects) """ import pandas as pd from collections import OrderedDict from google.colab.data_table import DataTable processed_objects = [] for obj in objects: obj = obj.copy() obj["position[x]"] = round(obj["position"]["x"], 4) obj["position[y]"] = round(obj["position"]["y"], 4) obj["position[z]"] = round(obj["position"]["z"], 4) obj["rotation[x]"] = round(obj["rotation"]["x"], 4) obj["rotation[y]"] = round(obj["rotation"]["y"], 4) obj["rotation[z]"] = round(obj["rotation"]["z"], 4) del obj["position"] del obj["rotation"] # these are too long to display del obj["objectOrientedBoundingBox"] del obj["axisAlignedBoundingBox"] del obj["receptacleObjectIds"] obj["mass"] = round(obj["mass"], 4) obj["distance"] = round(obj["distance"], 4) obj = OrderedDict(obj) obj.move_to_end("distance", last=False) obj.move_to_end("rotation[z]", last=False) obj.move_to_end("rotation[y]", last=False) obj.move_to_end("rotation[x]", last=False) obj.move_to_end("position[z]", last=False) obj.move_to_end("position[y]", last=False) obj.move_to_end("position[x]", last=False) obj.move_to_end("name", last=False) obj.move_to_end("objectId", last=False) obj.move_to_end("objectType", last=False) processed_objects.append(obj) df = pd.DataFrame(processed_objects) print( "Object Metadata. Not showing objectOrientedBoundingBox, axisAlignedBoundingBox, and receptacleObjectIds for clarity." ) return DataTable(df, max_columns=150, num_rows_per_page=150) def overlay( frame1: np.ndarray, frame2: np.ndarray, title: Optional[str] = None, frame2_alpha: float = 0.75, ) -> None: """Blend image frame1 and frame2 on top of each other. Example: event1 = controller.last_event event2 = controller.step("RotateRight") overlay(event1.frame, event2.frame) """ fig, ax = plt.subplots(nrows=1, ncols=1, dpi=150, figsize=(4, 5)) if not (0 < frame2_alpha < 1): raise ValueError("frame2_alpha must be in (0:1) not " + frame2_alpha) if frame1.dtype == np.uint8: frame1 = frame1 / 255 if frame2.dtype == np.uint8: frame2 = frame2 / 255 ax.imshow(frame2_alpha * frame2 + (1 - frame2_alpha) * frame1) ax.axis("off") if title: fig.suptitle(title, y=0.87, x=0.5125) def side_by_side( frame1: np.ndarray, frame2: np.ndarray, title: Optional[str] = None ) -> None: """Plot 2 image frames next to each other. Example: event1 = controller.last_event event2 = controller.step("RotateRight") overlay(event1.frame, event2.frame) """ fig, axs = plt.subplots(nrows=1, ncols=2, dpi=150, figsize=(8, 5)) axs[0].imshow(frame1) axs[0].axis("off") axs[1].imshow(frame2) axs[1].axis("off") if title: fig.suptitle(title, y=0.85, x=0.5125) def plot_frames(event: Union[ai2thor.server.Event, np.ndarray]) -> None: """Visualize all the frames on an AI2-THOR Event. Example: plot_frames(controller.last_event) """ if isinstance(event, ai2thor.server.Event): frames = dict() third_person_frames = event.third_party_camera_frames if event.frame is not None: frames["RGB"] = event.frame if event.instance_segmentation_frame is not None: frames["Instance Segmentation"] = event.instance_segmentation_frame if event.semantic_segmentation_frame is not None: frames["Semantic Segmentation"] = event.semantic_segmentation_frame if event.normals_frame is not None: frames["Normals"] = event.normals_frame if event.depth_frame is not None: frames["Depth"] = event.depth_frame if len(frames) == 0: raise Exception("No agent frames rendered on this event!") rows = 2 if len(third_person_frames) else 1 cols = max(len(frames), len(third_person_frames)) fig, axs = plt.subplots( nrows=rows, ncols=cols, dpi=150, figsize=(3 * cols, 3 * rows) ) agent_row = axs[0] if rows > 1 else axs for i, (name, frame) in enumerate(frames.items()): ax = agent_row[i] if cols > 1 else agent_row im = ax.imshow(frame) ax.axis("off") ax.set_title(name) if name == "Depth": fig.colorbar(im, fraction=0.046, pad=0.04, ax=ax) # set unused axes off for i in range(len(frames), cols): agent_row[i].axis("off") # add third party camera frames if rows > 1: for i, frame in enumerate(third_person_frames): ax = axs[1][i] if cols > 1 else axs[1] ax.imshow(frame) ax.axis("off") for i in range(len(third_person_frames), cols): axs[1][i].axis("off") fig.text(x=0.1, y=0.715, s="Agent Frames", rotation="vertical", va="center") fig.text( x=0.1, y=0.3025, s="Third Person Frames", rotation="vertical", va="center", ) elif isinstance(event, np.ndarray): return Image.fromarray(event) else: raise Exception( f"Unknown type: {type(event)}. " "Must be np.ndarray or ai2thor.server.Event." ) def show_video(frames: Sequence[np.ndarray], fps: int = 10): """Show a video composed of a sequence of frames. Example: frames = [ controller.step("RotateRight", degrees=5).frame for _ in range(72) ] show_video(frames, fps=5) """ frames = ImageSequenceClip(frames, fps=fps) return frames.ipython_display() def start_xserver() -> None: """Provide the ability to render AI2-THOR using Google Colab. """ # Thanks to the [Unity ML Agents team](https://github.com/Unity-Technologies/ml-agents) # for most of this setup! :) def progress(value): return HTML( f""" <progress value='{value}' max="100", style='width: 100%'> {value} </progress> """ ) progress_bar = display(progress(0), display_id=True) try: import google.colab using_colab = True except ImportError: using_colab = False if using_colab: with open("frame-buffer", "w") as writefile: writefile.write( """#taken from https://gist.github.com/jterrace/2911875 XVFB=/usr/bin/Xvfb XVFBARGS=":1 -screen 0 1024x768x24 -ac +extension GLX +render -noreset" PIDFILE=./frame-buffer.pid case "$1" in start) /sbin/start-stop-daemon --start --quiet --pidfile $PIDFILE --make-pidfile --background --exec $XVFB -- $XVFBARGS ;; stop) /sbin/start-stop-daemon --stop --quiet --pidfile $PIDFILE rm $PIDFILE ;; restart) $0 stop $0 start ;; *) exit 1 esac exit 0 """ ) progress_bar.update(progress(5)) os.system("apt-get install daemon >/dev/null 2>&1") progress_bar.update(progress(10)) os.system("apt-get install wget >/dev/null 2>&1") progress_bar.update(progress(20)) os.system( "wget http://ai2thor.allenai.org/ai2thor-colab/libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb >/dev/null 2>&1" ) progress_bar.update(progress(30)) os.system( "wget --output-document xvfb.deb http://ai2thor.allenai.org/ai2thor-colab/xvfb_1.18.4-0ubuntu0.12_amd64.deb >/dev/null 2>&1" ) progress_bar.update(progress(40)) os.system("dpkg -i libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb >/dev/null 2>&1") progress_bar.update(progress(50)) os.system("dpkg -i xvfb.deb >/dev/null 2>&1") progress_bar.update(progress(70)) os.system("rm libxfont1_1.5.1-1ubuntu0.16.04.4_amd64.deb") progress_bar.update(progress(80)) os.system("rm xvfb.deb") progress_bar.update(progress(90)) os.system("bash frame-buffer start") os.environ["DISPLAY"] = ":1" progress_bar.update(progress(100))
PypiClean
/M5-0.3.2.tar.gz/M5-0.3.2/lib/scottp-scrollability/scrollability.js
(function() { // Number of pixels finger must move to determine horizontal or vertical motion var kLockThreshold = 10; // Factor which reduces the length of motion by each move of the finger var kTouchMultiplier = 1; // Maximum velocity for motion after user releases finger //var kMaxVelocity = 720 / (window.devicePixelRatio||1); var kMaxVelocity = 250 / (window.devicePixelRatio||1); //scottp // Rate of deceleration after user releases finger //var kDecelRate = 350; var kDecelRate = 650; //scottp // Percentage of the page which content can be overscrolled before it must bounce back var kBounceLimit = 0.5; // Rate of deceleration when content has overscrolled and is slowing down before bouncing back var kBounceDecelRate = 600; // Duration of animation when bouncing back var kBounceTime = 90; // Percentage of viewport which must be scrolled past in order to snap to the next page var kPageLimit = 0.3; // Velocity at which the animation will advance to the next page var kPageEscapeVelocity = 50; // Vertical margin of scrollbar var kScrollbarMargin = 2; // Time to scroll to top var kScrollToTopTime = 200; var isWebkit = "webkitTransform" in document.documentElement.style; var isFirefox = "MozTransform" in document.documentElement.style; var isTouch = "ontouchstart" in window; // =============================================================================================== var startX, startY, touchX, touchY, touchDown, touchMoved, onScrollEvt, useOnScrollEvt, justChangedOrientation; var animationInterval = 0; var touchTargets = []; var scrollers = { 'horizontal': createXTarget, 'vertical': createYTarget }; window.scrollability = { version: 'scottp-0.71', globalScrolling: false, scrollers: scrollers, useOnScrollEvt: false, flashIndicators: function() { var scrollables = document.querySelectorAll('.scrollable.vertical'); for (var i = 0; i < scrollables.length; ++i) { scrollability.scrollTo(scrollables[i], 0, 0, 20, true); } }, scrollToTop: function(animationTime) { if (elt) { scrollability.scrollTo(elt, 0, 0, animationTime); } else { var scrollables = document.getElementsByClassName('scrollable'); if (scrollables.length) { var scrollable = scrollables[0]; if (scrollable.className.indexOf('vertical') != -1) { scrollability.scrollTo(scrollable, 0, 0, animationTime || kScrollToTopTime); } } } }, scrollTo: function(element, x, y, animationTime, muteDelegate) { stopAnimation(); var target = createTargetForElement(element); if (target) { if (muteDelegate) { target.delegate = null; } target = wrapTarget(target); touchTargets = [target]; touchMoved = true; if (animationTime) { var orig = element[target.key]; var dest = target.filter(x, y); var dir = dest - orig; var startTime = new Date().getTime(); animationInterval = setInterval(function() { var d = new Date().getTime() - startTime; var pos = orig + ((dest-orig) * (d/animationTime)); if ((dir < 0 && pos < dest) || (dir > 0 && pos > dest)) { pos = dest; } target.updater(pos); if (pos == dest) { clearInterval(animationInterval); setTimeout(stopAnimation, 200); } }, 20); } else { target.updater(y); stopAnimation(); } } } }; function onLoad() { scrollability.flashIndicators(); } function onScroll(event) { setTimeout(function() { if (justChangedOrientation) { justChangedOrientation = false; } else if (isTouch) { scrollability.scrollToTop(); } }); } function onOrientationChange(event) { justChangedOrientation = true; window.scrollTo(0, 1); // scottp - I added this to force show of nav bar on orientation change } function onTouchStart(event) { stopAnimation(); var touchCandidate = event.target; var touch = event.touches[0]; var touched = null; var startTime = new Date().getTime(); touchX = startX = touch.clientX; touchY = startY = touch.clientY; touchDown = true; touchMoved = false; touchTargets = getTouchTargets(event.target, touchX, touchY, startTime); if (!touchTargets.length && !scrollability.globalScrolling) { return true; } var holdTimeout = setTimeout(function() { holdTimeout = 0; touched = setTouched(touchCandidate); }, 50); var d = document; d.addEventListener('touchmove', onTouchMove, false); d.addEventListener('touchend', onTouchEnd, false); animationInterval = setInterval(touchAnimation, 0); function onTouchMove(event) { event.preventDefault(); touchMoved = true; if (holdTimeout) { clearTimeout(holdTimeout); holdTimeout = 0; } if (touched) { releaseTouched(touched); touched = null; } var touch = event.touches[0]; touchX = touch.clientX; touchY = touch.clientY; // Reduce the candidates down to the one whose axis follows the finger most closely if (touchTargets.length > 1) { for (var i = 0; i < touchTargets.length; ++i) { var target = touchTargets[i]; if (target.disable && target.disable(touchX, touchY, startX, startY)) { target.terminator(); touchTargets.splice(i, 1); break; } } } try { touchTargets[0].pullToRefresh(); } catch(e) {} } function onTouchEnd(event) { if (holdTimeout) { clearTimeout(holdTimeout); holdTimeout = 0; } // Simulate a click event when releasing the finger if (touched) { var evt = document.createEvent('MouseEvents'); evt.initMouseEvent('click', true, true, window, 1); touched[0].dispatchEvent(evt); releaseTouched(touched); } else { try { touchTargets[0].pullToRefreshRelease(); } catch(e) {} } d.removeEventListener('touchmove', onTouchMove, false); d.removeEventListener('touchend', onTouchEnd, false); touchDown = false; } } function wrapTarget(target, startX, startY, startTime) { var delegate = target.delegate; var constrained = target.constrained; var paginated = target.paginated; var viewport = target.viewport || 0; var scrollbar = target.scrollbar; var position = target.node[target.key]; var min = target.min; var max = target.max; var absMin = min; var absMax = Math.round(max/viewport)*viewport; var pageSpacing = 0; var velocity = 0; var decelerating = 0; var decelOrigin, decelDelta; var bounceLimit = target.bounce; var pageLimit = viewport * kPageLimit; var lastTouch = startTouch = target.filter(startX, startY); var lastTime = startTime; var stillTime = 0; var stillThreshold = 20; var snapped = false; var locked = false; var isPullingUp = false; var isPullingDown = false; if (paginated) { var excess = Math.round(Math.abs(absMin) % viewport); var pageCount = ((Math.abs(absMin)-excess) / viewport)+1; var pageSpacing = excess / pageCount; var positionSpacing = Math.round(position) % viewport; var pagePosition = Math.round((position-positionSpacing)/viewport) * viewport; min = max = Math.round(pagePosition + absMax)+positionSpacing; absMin += pageSpacing; } if (delegate && delegate.onStartScroll) { if (!delegate.onStartScroll()) { return null; } } if (scrollbar) { target.node.parentNode.appendChild(scrollbar); } function animator(touch, time) { var deltaTime = 1 / (time - lastTime); lastTime = time; var continues = true; if (touchDown) { var delta = (touch - lastTouch) * kTouchMultiplier; if (!delta) { // Heuristics to prevent out delta=0 changes from making velocity=0 and // stopping all motion in its tracks. We need to distinguish when the finger // has actually stopped moving from when the timer fired too quickly. if (!stillTime) { stillTime = time; } if (time - stillTime < stillThreshold) { return true; } } else { stillTime = 0; } if (!locked && Math.abs(touch - startTouch) > kLockThreshold) { locked = true; if (delegate && delegate.onLockScroll) { delegate.onLockScroll(target.key); } } lastTouch = touch; velocity = delta / deltaTime; // Apply resistance along the edges if (position > max && constrained) { var excess = position - max; velocity *= (1.0 - excess / bounceLimit); } else if (position < min && constrained) { var excess = min - position; velocity *= (1.0 - excess / bounceLimit); } } else { if (paginated && !snapped) { // When finger is released, decide whether to jump to next/previous page // or to snap back to the current page snapped = true; if (Math.abs(position - max) > pageLimit || Math.abs(velocity) > kPageEscapeVelocity) { if (position > max) { if (max != absMax) { max += viewport+pageSpacing; min += viewport+pageSpacing; if (delegate && delegate.onScrollPage) { var totalSpacing = min % viewport; var page = -Math.round((position+viewport-totalSpacing)/viewport); delegate.onScrollPage(page, -1); } } } else { if (min != absMin) { max -= viewport+pageSpacing; min -= viewport+pageSpacing; if (delegate && delegate.onScrollPage) { var totalSpacing = min % viewport; var page = -Math.round((position-viewport-totalSpacing)/viewport); delegate.onScrollPage(page, 1); } } } } } if (position > max && constrained) { if (velocity > 0) { // Slowing down var excess = position - max; var elasticity = (1.0 - excess / bounceLimit); velocity = Math.max(velocity - kBounceDecelRate * deltaTime, 0) * elasticity; decelerating = 0; } else { // Bouncing back if (!decelerating) { decelOrigin = position; decelDelta = max - position; } position = easeOutExpo(decelerating, decelOrigin, decelDelta, kBounceTime); return update(position, ++decelerating <= kBounceTime && Math.floor(position) > max); } } else if (position < min && constrained) { if (velocity < 0) { // Slowing down var excess = min - position; var elasticity = (1.0 - excess / bounceLimit); velocity = Math.min(velocity + kBounceDecelRate * deltaTime, 0) * elasticity; decelerating = 0; } else { // Bouncing back if (!decelerating) { decelOrigin = position; decelDelta = min - position; } position = easeOutExpo(decelerating, decelOrigin, decelDelta, kBounceTime); return update(position, ++decelerating <= kBounceTime && Math.ceil(position) < min); } } else { // Slowing down if (!decelerating) { if (velocity < 0 && velocity < -kMaxVelocity) { velocity = -kMaxVelocity; } else if (velocity > 0 && velocity > kMaxVelocity) { velocity = kMaxVelocity; } decelOrigin = velocity; } velocity = easeOutExpo(decelerating, decelOrigin, -decelOrigin, kDecelRate); if (++decelerating > kDecelRate || Math.floor(velocity) == 0) { continues = false; } } } position += velocity * deltaTime; return update(position, continues); } function update(pos, continues) { position = pos; target.node[target.key] = position; target.update(target.node, position); if (delegate && delegate.onScroll) { delegate.onScroll(position); } // Update the scrollbar var range = -min - max; if (scrollbar && (range + viewport) > viewport) { var viewable = viewport - kScrollbarMargin*2; var height = (viewable/(range+viewport)) * viewable; var scrollPosition = 0; if (position > max) { height = Math.max(height - (position-max), 5); scrollPosition = 0; } else if (position < min) { height = Math.max(height - (min - position), 5); scrollPosition = (viewable-height); } else { scrollPosition = Math.round((Math.abs(position) / range) * (viewable-height)); } scrollPosition += kScrollbarMargin; scrollbar.style.height = Math.round(height) + 'px'; moveElement(scrollbar, 0, Math.round(scrollPosition)); if (touchMoved) { scrollbar.style.webkitTransition = 'none'; scrollbar.style.opacity = '1'; } } return continues; } function terminator() { // Snap to the integer endpoint, since position may be a subpixel value while animating if (paginated) { var pageIndex = Math.round(position/viewport); update(pageIndex * (viewport+pageSpacing)); } else if (position > max && constrained) { update(max); } else if (position < min && constrained) { update(min); } // Hide the scrollbar if (scrollbar) { scrollbar.style.opacity = '0'; scrollbar.style.webkitTransition = 'opacity 0.33s linear'; } if (delegate && delegate.onEndScroll) { delegate.onEndScroll(); } } function pullToRefresh(released) { var pullUpMin = min - target.pullUpToRefresh.offsetHeight / 2; var pullDownMin = max + target.pullDownToRefresh.offsetHeight; var pullState; return function() { if (target.pullUpToRefresh || target.pullDownToRefresh) { if ( !released && ( (isPullingDown && ((pullDownMin < position && pullState) || (pullDownMin > position && !pullState))) || (isPullingUp && ((position < pullUpMin && pullState) || (position > pullUpMin && !pullState))) ) ) { return; } if (released && (position > pullDownMin)) { pullState = 'pulledDown'; isPullingUp = false; isPullingDown = false; } else if (released && (position < pullUpMin)) { pullState = 'pulledUp'; isPullingUp = false; isPullingDown = false; } else if (isPullingDown && (position < pullDownMin)) { pullState = 'pullDownCancel'; isPullingUp = false; isPullingDown = false; } else if (isPullingUp && (position > pullUpMin)) { pullState = 'pullUpCancel'; isPullingUp = false; isPullingDown = false; } else if (position > pullDownMin) { pullState = 'pullingDown'; isPullingUp = false; isPullingDown = true; } else if (position < pullUpMin) { pullState = 'pullingUp'; isPullingUp = true; isPullingDown = false; } var evt = document.createEvent('Event'); evt.initEvent(pullState, true, false); target.node.dispatchEvent(evt); } } } target.updater = update; target.animator = animator; target.terminator = terminator; target.pullToRefresh = pullToRefresh(false); target.pullToRefreshRelease = pullToRefresh(true); return target; } function touchAnimation() { var time = new Date().getTime(); // Animate each of the targets for (var i = 0; i < touchTargets.length; ++i) { var target = touchTargets[i]; // Translate the x/y touch into the value needed by each of the targets var touch = target.filter(touchX, touchY); if (!target.animator(touch, time)) { target.terminator(); touchTargets.splice(i--, 1); } } if (!touchTargets.length) { stopAnimation(); } } // ************************************************************************************************* function getTouchTargets(node, touchX, touchY, startTime) { var targets = []; findTargets(node, targets, touchX, touchY, startTime); var candidates = document.querySelectorAll('.scrollable.global'); for(var j = 0; j < candidates.length; ++j) { findTargets(candidates[j], targets, touchX, touchY, startTime); } return targets; } function findTargets(element, targets, touchX, touchY, startTime) { while (element) { if (element.nodeType == 1) { var target = createTargetForElement(element, touchX, touchY, startTime); if (target) { // Look out for duplicates var exists = false; for (var j = 0; j < targets.length; ++j) { if (targets[j].node == element) { exists = true; break; } } if (!exists) { target = wrapTarget(target, touchX, touchY, startTime); if (target) { targets.push(target); } } } } element = element.parentNode; } } function createTargetForElement(element, touchX, touchY, startTime) { var classes = element.className.split(' '); for (var i = 0; i < classes.length; ++i) { var name = classes[i]; if (scrollers[name]) { var target = scrollers[name](element); target.key = 'scrollable_'+name; target.paginated = classes.indexOf('paginated') != -1; if (!(target.key in element)) { element[target.key] = target.initial ? target.initial(element) : 0; } return target; } } } function setTouched(target) { var touched = []; for (var n = target; n; n = n.parentNode) { if (n.nodeType == 1) { n.className = (n.className ? n.className + ' ' : '') + 'touched'; touched.push(n); } } return touched; } function releaseTouched(touched) { for (var i = 0; i < touched.length; ++i) { var n = touched[i]; n.className = n.className.replace('touched', ''); } } function stopAnimation() { if (animationInterval) { clearInterval(animationInterval); animationInterval = 0; for (var i = 0; i < touchTargets.length; ++i) { var target = touchTargets[i]; target.terminator(); } touchTargets = []; } } function moveElement(element, x, y) { if (isWebkit) { element.style.webkitTransform = 'translate3d(' +(x ? (x+'px') : '0')+',' +(y ? (y+'px') : '0')+',' +'0)'; } else if (isFirefox) { element.style.MozTransform = 'translate3d(' +(x ? (x+'px') : '0')+',' +(y ? (y+'px') : '0')+')'; } if(!onScrollEvt && useOnScrollEvt) { onScrollEvt = setTimeout(function() { var evt = document.createEvent('Event'); // Don't want this to bubble because of scrollToTop evt.initEvent('scroll', false, false); evt.x = -x || 0; evt.y = -y || 0; element.dispatchEvent(evt); onScrollEvt = false; }, 20); } } function initScrollbar(element) { if (!element.scrollableScrollbar) { var scrollbar = element.scrollableScrollbar = document.createElement('div'); scrollbar.className = 'scrollableScrollbar'; // We hardcode this CSS here to avoid having to provide a CSS file scrollbar.style.cssText = [ 'position: absolute', 'top: 0', 'right: 2px', 'width: 5px', 'min-height: 4px', 'background: rgba(40, 40, 40, 0.6)', 'border: 1px solid rgba(235, 235, 235, 0.1)', 'opacity: 0', '-webkit-border-radius: 4px 5px', '-webkit-transform: translate3d(0,0,0)', '-webkit-box-sizing: border-box', 'z-index: 2147483647' ].join(';'); } return element.scrollableScrollbar; } function easeOutExpo(t, b, c, d) { return (t==d) ? b+c : c * (-Math.pow(2, -10 * t/d) + 1) + b; } // ************************************************************************************************* function createXTarget(element) { var parent = element.parentNode; return { node: element, min: -parent.scrollWidth + parent.offsetWidth, max: 0, viewport: parent.offsetWidth, bounce: parent.offsetWidth * kBounceLimit, constrained: true, delegate: element.scrollDelegate, filter: function(x, y) { return x; }, disable: function (x, y, startX, startY) { var dx = Math.abs(x - startX); var dy = Math.abs(y - startY); if (dy > dx && dy > kLockThreshold) { return true; } }, update: function(element, position) { moveElement(element, position, element.scrollable_vertical||0); } }; } function createYTarget(element) { var parent = element.parentNode, pullDownToRefresh = parent.getElementsByClassName('pull-down-to-refresh')[0]; pullUpToRefresh = parent.getElementsByClassName('pull-up-to-refresh')[0]; return { node: element, scrollbar: initScrollbar(element), min: -parent.scrollHeight + parent.offsetHeight + (pullUpToRefresh ? pullUpToRefresh.offsetHeight : 0), max: (pullDownToRefresh ? -pullDownToRefresh.offsetHeight : 0), viewport: parent.offsetHeight, bounce: parent.offsetHeight * kBounceLimit, pullUpToRefresh: pullUpToRefresh ? pullUpToRefresh : false, pullDownToRefresh: pullDownToRefresh ? pullDownToRefresh : false, constrained: true, delegate: element.scrollDelegate, filter: function(x, y) { return y; }, disable: function(x, y, startX, startY) { var dx = Math.abs(x - startX); var dy = Math.abs(y - startY); if (dx > dy && dx > kLockThreshold) { return true; } }, update: function(element, position) { moveElement(element, element.scrollable_horizontal||0, position); } }; } document.addEventListener('touchstart', onTouchStart, false); document.addEventListener('scroll', onScroll, false); document.addEventListener('orientationchange', onOrientationChange, false); window.addEventListener('load', onLoad, false); })(); // convience - scottp scrollability.scrollToTop = function(elt) { if (elt) { scrollability.scrollTo(elt, 0, 0); } else { var scrollables = document.getElementsByClassName('scrollable'); if (scrollables.length) { var scrollable = scrollables[0]; if (scrollable.className.indexOf('vertical') != -1) { scrollability.scrollTo(scrollable, 0, 0, kScrollToTopTime); } } } }
PypiClean
/appinventor-tfjs-0.1.4.tar.gz/appinventor-tfjs-0.1.4/README.md
# MIT App Inventor TFJS Extension Generator The aim of this tool is to make it easier to generate the scaffolding needed to use a Tensorflow.js model in App Inventor. ## Quickstart Install dependencies: * java 8 * ant 1.10 * python 3 * node * npm * git Install the App Inventor TFJS extension generator using pip: ``` pip install appinventor-tfjs ``` Create an extension prototype for Posenet: ``` python -m appinventor.tfjs posenet edu.mit.appinventor.ai.posenet.PosenetExtension ``` The output of this command will be a new directory called PosenetExtension. Within this directory, you will find a fresh git clone of the App Inventor extension template repository. The directory will have the following structure: ``` build.xml lib ├─ android │ ├─ android.jar │ ├─ appcompat-v7-28.0.0.jar │ └─ dx.jar ├─ ant-contrib │ └─ ant-contrib-1.0b3.jar ├─ appinventor │ └─ AndroidRuntime.jar │ └─ AnnotationProcessors.jar └─ deps README.md src └─ edu └─ mit └─ appinventor └─ ai └─ posenet ├─ assets │ ├─ app.js │ ├─ group1-shard1of2.bin │ ├─ group1-shard2of2.bin │ ├─ index.html │ ├─ model-stride16.json │ ├─ posenet.min.js │ ├─ tf-converter.min.js │ ├─ tf-core.min.js │ └─ VERSIONS └─ PosenetExtension.java ``` Of those files, the ones under `src` are most interesting. Briefly: * `PosenetExtension.java` - Boilerplate extension code for a TFJS extneion in App Inventor. You will want to customize it to provide model-specific behavior, such as interpreting the results before passing information back to the blocks layer. * `app.js` - Boilerplate Javascript code to load the model and interact with the Java code in the App Inventor extension. You will need to modify this to interact correctly with the TFJS model, such as calling the correct method to start the model and interpret its output for App Inventor. * `group-*.bin` - These are the weights at each level of the model, pulled from the TFJS model repository. The number of files will vary based on the size of the model. * `index.html` - The index.html file loads all of the prerequisite Javascript files. It generally does not need to be modified. * `*.min.js` - Minified Javascript code for the model and any dependencies, such as tfjs-core and tfjs-converter. * `VERSIONS` - The VERSIONS file contains a key-value mapping the different npm modules to the versions that were retrieved. There should be one entry per min.js file. ## Usage ``` usage: python -m appinventor.tfjs [-h] [--scope SCOPE] model_name class_name Create a TensorFlow.js-based extension for MIT App Inventor. positional arguments: model_name class_name optional arguments: -h, --help show this help message and exit --scope SCOPE ``` The `model_name` argument names the Tensorflow.js model of interest. A list of pretrained models is available on [GitHub](https://github.com/tensorflow/tfjs-models). For example, if you are interested in trying the MobileNet model, you would specify `mobilenet` as the `model_name`. The `class_name` argument specifies a fully qualified Java class name that will be used for the extension. For example, a MobileNet extension for App Inventor might have the fully qualified class name `com.example.tfjs.mobile.MobileNetExtension`. The extension generator will create this class and any intermediate packages for you. The optional `--scope SCOPE` argument allows you to import models from npm packages that are not under the `@tensorflow-models` namespace (effectively, if `--scope` is not specified it is the same as `--scope @tensorflow-models`). ## Development ### Dependencies You will need to create a virtual environment and install the dependencies by running. We provide instructions for macOS below. ### Create a virtualenv #### macOS 1. Install Homebrew 2. Install pyenv ```shell brew install pyenv echo "eval \"\$(pyenv init -)\"" >> ~/.bash_profile echo "eval \"\$(pyenv virtualenv-init -)\"" >> ~/.bash_profile source ~/.bash_profile ``` 3. Create a python environment using pyenv and activate it ```shell pyenv install 3.6 pyenv virtualenv 3.6 appinventor3 pyenv activate appinventor3 ``` ### Install dependencies ```shell pip install -r requirements.txt pip install . ``` ## Contributing This software is made available under the Apache Software License 2.0. You are welcome to contribute pull requests to this project via GitHub. ## License Copyright 2020 Massachusetts Institute of Technology Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
PypiClean
/gds-nagios-plugins-1.5.0.tar.gz/gds-nagios-plugins-1.5.0/plugins/command/check_elasticsearch_aws.py
from nagioscheck import NagiosCheck, UsageError from nagioscheck import PerformanceMetric, Status import urllib2 try: import json except ImportError: import simplejson as json HEALTH = {'red': 0, 'yellow': 1, 'green': 2} HEALTH_MAP = {0: 'critical', 1: 'warning', 2: 'ok'} class ElasticSearchCheck(NagiosCheck): def __init__(self): NagiosCheck.__init__(self) self.health = HEALTH['green'] self.add_option('H', 'host', 'host', "Hostname or network " "address to probe. The ElasticSearch API " "should be listening here.") self.add_option('p', 'port', 'port', "TCP port to probe. " "The ElasticSearch API should be listening " "here.") def check(self, opts, args): if opts.host is None or opts.port is None: raise UsageError("Hostname and port must be specified") host = opts.host port = int(opts.port) es_cluster_health = get_json(r'http://%s:%d/_cluster/health' % (host, port)) msg = "Monitoring cluster '%s'" % es_cluster_health['cluster_name'] detail = [] perfdata = [] ## Cluster Health Status (green, yellow, red) cluster_status = HEALTH[es_cluster_health['status'].lower()] perfdata.append(PerformanceMetric(label='cluster_health', value=es_cluster_health['status'])) if cluster_status < self.health: raise Status('critical', ("Elasticsearch cluster reports degraded health: '%s'" % es_cluster_health['status'],), perfdata) raise Status(HEALTH_MAP[self.health], (msg, None, "%s\n\n%s" % (msg, "\n".join(detail))), perfdata) def get_json(uri): try: f = urllib2.urlopen(uri) except urllib2.HTTPError, e: raise Status('unknown', ("API failure: %s" % uri, None, "API failure:\n\n%s" % str(e))) except urllib2.URLError, e: # The server could be down; make this CRITICAL. raise Status('critical', (e.reason,)) body = f.read() try: j = json.loads(body) except ValueError: raise Status('unknown', ("API returned nonsense",)) return j def main(): ElasticSearchCheck().run() if __name__ == '__main__': main()
PypiClean
/figgy_lib-1.0.0-py3-none-any.whl/figgy/writer.py
import json from collections import OrderedDict from .fig_store import FigStore from .figs import ReplicatedFig, AppFig, SharedFig, MergeFig TWIG = 'twig' APP_FIGS = 'app_figs' REPLICATE_FIGS = 'replicate_figs' SHARED_FIGS = 'shared_figs' MERGED_FIGS = 'merged_figs' class ConfigWriter: """ Writes the figgy.json file into the provided directory. If no directory is provided, writes the figgy.json to the local directory. """ @staticmethod def write(fig_store: FigStore, file_name: str = "figgy.json", destination_dir=""): """ Writes a figgy-compatible declarative configuration file to disk. @param: fig_store - A hydrated FigStore object used by your application to fetch configurations @param: file_name - Default: `figgy.json` (recommended). The name of the file that will be written. @param: destination_dir - Default: Current Directory.. The directory to write the `figgy.json` file to. """ destination_dir = destination_dir.rstrip("/") figgy_config: OrderedDict = OrderedDict() figgy_config[TWIG] = fig_store.TWIG figgy_config[APP_FIGS] = [] figgy_config[REPLICATE_FIGS] = {} figgy_config[SHARED_FIGS] = [] figgy_config[MERGED_FIGS] = {} for fig in fig_store.figs: item = fig_store.__getattribute__(fig) if isinstance(item, AppFig): figgy_config[APP_FIGS].append(item.name) elif isinstance(item, ReplicatedFig): figgy_config[REPLICATE_FIGS][item.source] = item.name elif isinstance(item, SharedFig): figgy_config[SHARED_FIGS].append(item.name) elif isinstance(item, MergeFig): figgy_config[MERGED_FIGS][item.name] = item.pattern destination_dir = f'{destination_dir.rstrip("/")}/' if destination_dir else '' with open(f"{destination_dir}{file_name}", "w") as file: file.write(json.dumps(figgy_config, indent=4))
PypiClean
/pytest-elements-1.0.2.tar.gz/pytest-elements-1.0.2/pytest_elements/elements/dropdown.py
import time import deprecation from random import randint from time import sleep from pytest_elements.elements.form_component import FormComponent from selenium.webdriver.support.ui import Select from selenium.common.exceptions import StaleElementReferenceException class Dropdown(FormComponent): """ Represents a dropdown menu on a web page. """ @deprecation.deprecated( deprecated_in="2.0.7", removed_in="3.0", details="The Dropdown class has been moved/renamed, please use the " "'Select' class from pytest_elements.elements.select", ) def __init__( self, identifier=None, attribute=None, xpath=None, input_type=None, valid_start_index=0, ): """ Construct a new Dropdown instance, located using the specified attribute and attribute-value OR a supplied xpath. :param valid_start_index: Start random selection of index from this value, in case the specific drop down contains and invalid start index at 0. """ super().__init__( element_type="select", identifier=identifier, attribute=attribute, xpath=xpath, input_type=input_type, ) self.valid_start_index = valid_start_index def get(self): """ Returns the element as a Selenium Select element. """ return Select(super().get()) def get_attribute(self, attribute_name): """ Overriding default page element get_attribute so we can interact w/the WebElement, not the Select, which does not have the get_attribute function """ return super().get().get_attribute(attribute_name) def get_len(self, valid=False): """ Returns the number of options :param valid: whether or not to only return the # of valid options """ if valid: return len(self.get().options) - self.valid_start_index else: return len(self.get().options) def get_options(self, valid=False): """ :param valid: whether or not to return only the valid options :return: a list of strings representing the options in the dropdown """ if valid: options = [o.text for o in self.get().options] return options[self.valid_start_index :] else: return [o.text for o in self.get().options] def accept_input(self, value): """ Selects the option with the specified value. """ if isinstance(value, int): if value < 0: return self.pick_random() else: self.get().select_by_index(value) else: self.get().select_by_visible_text(value) return value def pick_random(self, ensure_change=False): """ Selects a random option and returns the text of the option :param ensure_change: attempt to select a value that was not previously selected :return the text value of the newly selected option """ attempts = 0 while attempts < 5: try: if ensure_change: return self._ensure_change() else: index = randint(self.valid_start_index, self.get_len() - 1) self.accept_input(index) return self.get().first_selected_option.text except StaleElementReferenceException: attempts += 1 sleep(1) def _ensure_change(self): """ Attempt to select a value that was not previously selected :return: """ init_selected_option = self.get().first_selected_option.text attempts = self.get_len(valid=True) new_selected_option = "" while init_selected_option == new_selected_option and attempts > 0: index = randint(self.valid_start_index, self.get_len() - 1) self.accept_input(index) new_selected_option = self.get().first_selected_option.text attempts -= 1 assert new_selected_option != init_selected_option, ( "A new value could not be randomly selected from this dropdown. " "Are there enough valid, unique values to ensure a change? (>1 valid values required)\n" f"Options: {self.get_options()}" ) return new_selected_option def get_value(self): """ Returns value of the selected option in dropdown """ return self.get().first_selected_option.text def wait_until_fillable(self, timeout=15, poll_frequency=0.5, err_msg=None): """ Special implementation for the dropdown: We need to make sure there is a valid option to be selected. """ # first, wait for the element to not be disabled start_time = time.time() super().wait_until_fillable(timeout=timeout, poll_frequency=poll_frequency, err_msg=err_msg) # next, wait for there to be at least one valid selectable option while self.get_len(valid=True) == 0: time_elapsed = time.time() - start_time if time_elapsed > timeout: raise TimeoutError(err_msg) time.sleep(poll_frequency) return True
PypiClean
/sftpgo-client-0.3.1.tar.gz/sftpgo-client-0.3.1/sftpgo_client/base/api/user_ap_is/generate_user_totp_secret.py
from typing import Any, Dict, Optional, Union, cast import httpx from ...client import AuthenticatedClient from ...models.generate_user_totp_secret_json_body import GenerateUserTotpSecretJsonBody from ...models.generate_user_totp_secret_response_200 import ( GenerateUserTotpSecretResponse200, ) from ...types import Response def _get_kwargs( *, client: AuthenticatedClient, json_body: GenerateUserTotpSecretJsonBody, ) -> Dict[str, Any]: url = "{}/user/totp/generate".format(client.base_url) headers: Dict[str, str] = client.get_headers() cookies: Dict[str, Any] = client.get_cookies() json_json_body = json_body.to_dict() return { "method": "post", "url": url, "headers": headers, "cookies": cookies, "timeout": client.get_timeout(), "json": json_json_body, } def _parse_response( *, response: httpx.Response ) -> Optional[Union[Any, GenerateUserTotpSecretResponse200]]: if response.status_code == 200: response_200 = GenerateUserTotpSecretResponse200.from_dict(response.json()) return response_200 if response.status_code == 400: response_400 = cast(Any, None) return response_400 if response.status_code == 401: response_401 = cast(Any, None) return response_401 if response.status_code == 403: response_403 = cast(Any, None) return response_403 if response.status_code == 500: response_500 = cast(Any, None) return response_500 return None def _build_response( *, response: httpx.Response ) -> Response[Union[Any, GenerateUserTotpSecretResponse200]]: return Response( status_code=response.status_code, content=response.content, headers=response.headers, parsed=_parse_response(response=response), ) def sync_detailed( *, client: AuthenticatedClient, json_body: GenerateUserTotpSecretJsonBody, ) -> Response[Union[Any, GenerateUserTotpSecretResponse200]]: """Generate a new TOTP secret Generates a new TOTP secret, including the QR code as png, using the specified configuration for the logged in user Args: json_body (GenerateUserTotpSecretJsonBody): Returns: Response[Union[Any, GenerateUserTotpSecretResponse200]] """ kwargs = _get_kwargs( client=client, json_body=json_body, ) response = httpx.request( verify=client.verify_ssl, **kwargs, ) return _build_response(response=response) def sync( *, client: AuthenticatedClient, json_body: GenerateUserTotpSecretJsonBody, ) -> Optional[Union[Any, GenerateUserTotpSecretResponse200]]: """Generate a new TOTP secret Generates a new TOTP secret, including the QR code as png, using the specified configuration for the logged in user Args: json_body (GenerateUserTotpSecretJsonBody): Returns: Response[Union[Any, GenerateUserTotpSecretResponse200]] """ return sync_detailed( client=client, json_body=json_body, ).parsed async def asyncio_detailed( *, client: AuthenticatedClient, json_body: GenerateUserTotpSecretJsonBody, ) -> Response[Union[Any, GenerateUserTotpSecretResponse200]]: """Generate a new TOTP secret Generates a new TOTP secret, including the QR code as png, using the specified configuration for the logged in user Args: json_body (GenerateUserTotpSecretJsonBody): Returns: Response[Union[Any, GenerateUserTotpSecretResponse200]] """ kwargs = _get_kwargs( client=client, json_body=json_body, ) async with httpx.AsyncClient(verify=client.verify_ssl) as _client: response = await _client.request(**kwargs) return _build_response(response=response) async def asyncio( *, client: AuthenticatedClient, json_body: GenerateUserTotpSecretJsonBody, ) -> Optional[Union[Any, GenerateUserTotpSecretResponse200]]: """Generate a new TOTP secret Generates a new TOTP secret, including the QR code as png, using the specified configuration for the logged in user Args: json_body (GenerateUserTotpSecretJsonBody): Returns: Response[Union[Any, GenerateUserTotpSecretResponse200]] """ return ( await asyncio_detailed( client=client, json_body=json_body, ) ).parsed
PypiClean
/azure-cli-2.51.0.tar.gz/azure-cli-2.51.0/azure/cli/command_modules/network/aaz/latest/network/route_table/_create.py
# pylint: skip-file # flake8: noqa from azure.cli.core.aaz import * @register_command( "network route-table create", ) class Create(AAZCommand): """Create a route table. :example: Create a route table. az network route-table create -g MyResourceGroup -n MyRouteTable """ _aaz_info = { "version": "2021-08-01", "resources": [ ["mgmt-plane", "/subscriptions/{}/resourcegroups/{}/providers/microsoft.network/routetables/{}", "2021-08-01"], ] } AZ_SUPPORT_NO_WAIT = True def _handler(self, command_args): super()._handler(command_args) return self.build_lro_poller(self._execute_operations, self._output) _args_schema = None @classmethod def _build_arguments_schema(cls, *args, **kwargs): if cls._args_schema is not None: return cls._args_schema cls._args_schema = super()._build_arguments_schema(*args, **kwargs) # define Arg Group "" _args_schema = cls._args_schema _args_schema.resource_group = AAZResourceGroupNameArg( required=True, ) _args_schema.name = AAZStrArg( options=["-n", "--name"], help="Name of the route table.", required=True, ) _args_schema.location = AAZResourceLocationArg( help="Location. Values from: `az account list-locations`. You can configure the default location using `az configure --defaults location=<location>`.", fmt=AAZResourceLocationArgFormat( resource_group_arg="resource_group", ), ) _args_schema.disable_bgp_route_propagation = AAZBoolArg( options=["--disable-bgp-route-propagation"], help="Disable routes learned by BGP. Allowed values: false, true.", ) _args_schema.tags = AAZDictArg( options=["--tags"], help="Space-separated tags: key[=value] [key[=value] ...].", ) tags = cls._args_schema.tags tags.Element = AAZStrArg() # define Arg Group "Parameters" # define Arg Group "Properties" return cls._args_schema def _execute_operations(self): self.pre_operations() yield self.RouteTablesCreateOrUpdate(ctx=self.ctx)() self.post_operations() @register_callback def pre_operations(self): pass @register_callback def post_operations(self): pass def _output(self, *args, **kwargs): result = self.deserialize_output(self.ctx.vars.instance, client_flatten=True) return result class RouteTablesCreateOrUpdate(AAZHttpOperation): CLIENT_TYPE = "MgmtClient" def __call__(self, *args, **kwargs): request = self.make_request() session = self.client.send_request(request=request, stream=False, **kwargs) if session.http_response.status_code in [202]: return self.client.build_lro_polling( self.ctx.args.no_wait, session, self.on_200_201, self.on_error, lro_options={"final-state-via": "azure-async-operation"}, path_format_arguments=self.url_parameters, ) if session.http_response.status_code in [200, 201]: return self.client.build_lro_polling( self.ctx.args.no_wait, session, self.on_200_201, self.on_error, lro_options={"final-state-via": "azure-async-operation"}, path_format_arguments=self.url_parameters, ) return self.on_error(session.http_response) @property def url(self): return self.client.format_url( "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/routeTables/{routeTableName}", **self.url_parameters ) @property def method(self): return "PUT" @property def error_format(self): return "ODataV4Format" @property def url_parameters(self): parameters = { **self.serialize_url_param( "resourceGroupName", self.ctx.args.resource_group, required=True, ), **self.serialize_url_param( "routeTableName", self.ctx.args.name, required=True, ), **self.serialize_url_param( "subscriptionId", self.ctx.subscription_id, required=True, ), } return parameters @property def query_parameters(self): parameters = { **self.serialize_query_param( "api-version", "2021-08-01", required=True, ), } return parameters @property def header_parameters(self): parameters = { **self.serialize_header_param( "Content-Type", "application/json", ), **self.serialize_header_param( "Accept", "application/json", ), } return parameters @property def content(self): _content_value, _builder = self.new_content_builder( self.ctx.args, typ=AAZObjectType, typ_kwargs={"flags": {"required": True, "client_flatten": True}} ) _builder.set_prop("location", AAZStrType, ".location") _builder.set_prop("properties", AAZObjectType, typ_kwargs={"flags": {"client_flatten": True}}) _builder.set_prop("tags", AAZDictType, ".tags") properties = _builder.get(".properties") if properties is not None: properties.set_prop("disableBgpRoutePropagation", AAZBoolType, ".disable_bgp_route_propagation") tags = _builder.get(".tags") if tags is not None: tags.set_elements(AAZStrType, ".") return self.serialize_content(_content_value) def on_200_201(self, session): data = self.deserialize_http_content(session) self.ctx.set_var( "instance", data, schema_builder=self._build_schema_on_200_201 ) _schema_on_200_201 = None @classmethod def _build_schema_on_200_201(cls): if cls._schema_on_200_201 is not None: return cls._schema_on_200_201 cls._schema_on_200_201 = AAZObjectType() _CreateHelper._build_schema_route_table_read(cls._schema_on_200_201) return cls._schema_on_200_201 class _CreateHelper: """Helper class for Create""" _schema_application_security_group_read = None @classmethod def _build_schema_application_security_group_read(cls, _schema): if cls._schema_application_security_group_read is not None: _schema.etag = cls._schema_application_security_group_read.etag _schema.id = cls._schema_application_security_group_read.id _schema.location = cls._schema_application_security_group_read.location _schema.name = cls._schema_application_security_group_read.name _schema.properties = cls._schema_application_security_group_read.properties _schema.tags = cls._schema_application_security_group_read.tags _schema.type = cls._schema_application_security_group_read.type return cls._schema_application_security_group_read = _schema_application_security_group_read = AAZObjectType() application_security_group_read = _schema_application_security_group_read application_security_group_read.etag = AAZStrType( flags={"read_only": True}, ) application_security_group_read.id = AAZStrType() application_security_group_read.location = AAZStrType() application_security_group_read.name = AAZStrType( flags={"read_only": True}, ) application_security_group_read.properties = AAZObjectType( flags={"client_flatten": True}, ) application_security_group_read.tags = AAZDictType() application_security_group_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_application_security_group_read.properties properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) tags = _schema_application_security_group_read.tags tags.Element = AAZStrType() _schema.etag = cls._schema_application_security_group_read.etag _schema.id = cls._schema_application_security_group_read.id _schema.location = cls._schema_application_security_group_read.location _schema.name = cls._schema_application_security_group_read.name _schema.properties = cls._schema_application_security_group_read.properties _schema.tags = cls._schema_application_security_group_read.tags _schema.type = cls._schema_application_security_group_read.type _schema_extended_location_read = None @classmethod def _build_schema_extended_location_read(cls, _schema): if cls._schema_extended_location_read is not None: _schema.name = cls._schema_extended_location_read.name _schema.type = cls._schema_extended_location_read.type return cls._schema_extended_location_read = _schema_extended_location_read = AAZObjectType() extended_location_read = _schema_extended_location_read extended_location_read.name = AAZStrType() extended_location_read.type = AAZStrType() _schema.name = cls._schema_extended_location_read.name _schema.type = cls._schema_extended_location_read.type _schema_frontend_ip_configuration_read = None @classmethod def _build_schema_frontend_ip_configuration_read(cls, _schema): if cls._schema_frontend_ip_configuration_read is not None: _schema.etag = cls._schema_frontend_ip_configuration_read.etag _schema.id = cls._schema_frontend_ip_configuration_read.id _schema.name = cls._schema_frontend_ip_configuration_read.name _schema.properties = cls._schema_frontend_ip_configuration_read.properties _schema.type = cls._schema_frontend_ip_configuration_read.type _schema.zones = cls._schema_frontend_ip_configuration_read.zones return cls._schema_frontend_ip_configuration_read = _schema_frontend_ip_configuration_read = AAZObjectType() frontend_ip_configuration_read = _schema_frontend_ip_configuration_read frontend_ip_configuration_read.etag = AAZStrType( flags={"read_only": True}, ) frontend_ip_configuration_read.id = AAZStrType() frontend_ip_configuration_read.name = AAZStrType() frontend_ip_configuration_read.properties = AAZObjectType( flags={"client_flatten": True}, ) frontend_ip_configuration_read.type = AAZStrType( flags={"read_only": True}, ) frontend_ip_configuration_read.zones = AAZListType() properties = _schema_frontend_ip_configuration_read.properties properties.gateway_load_balancer = AAZObjectType( serialized_name="gatewayLoadBalancer", ) cls._build_schema_sub_resource_read(properties.gateway_load_balancer) properties.inbound_nat_pools = AAZListType( serialized_name="inboundNatPools", flags={"read_only": True}, ) properties.inbound_nat_rules = AAZListType( serialized_name="inboundNatRules", flags={"read_only": True}, ) properties.load_balancing_rules = AAZListType( serialized_name="loadBalancingRules", flags={"read_only": True}, ) properties.outbound_rules = AAZListType( serialized_name="outboundRules", flags={"read_only": True}, ) properties.private_ip_address = AAZStrType( serialized_name="privateIPAddress", ) properties.private_ip_address_version = AAZStrType( serialized_name="privateIPAddressVersion", ) properties.private_ip_allocation_method = AAZStrType( serialized_name="privateIPAllocationMethod", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.public_ip_address = AAZObjectType( serialized_name="publicIPAddress", ) cls._build_schema_public_ip_address_read(properties.public_ip_address) properties.public_ip_prefix = AAZObjectType( serialized_name="publicIPPrefix", ) cls._build_schema_sub_resource_read(properties.public_ip_prefix) properties.subnet = AAZObjectType() cls._build_schema_subnet_read(properties.subnet) inbound_nat_pools = _schema_frontend_ip_configuration_read.properties.inbound_nat_pools inbound_nat_pools.Element = AAZObjectType() cls._build_schema_sub_resource_read(inbound_nat_pools.Element) inbound_nat_rules = _schema_frontend_ip_configuration_read.properties.inbound_nat_rules inbound_nat_rules.Element = AAZObjectType() cls._build_schema_sub_resource_read(inbound_nat_rules.Element) load_balancing_rules = _schema_frontend_ip_configuration_read.properties.load_balancing_rules load_balancing_rules.Element = AAZObjectType() cls._build_schema_sub_resource_read(load_balancing_rules.Element) outbound_rules = _schema_frontend_ip_configuration_read.properties.outbound_rules outbound_rules.Element = AAZObjectType() cls._build_schema_sub_resource_read(outbound_rules.Element) zones = _schema_frontend_ip_configuration_read.zones zones.Element = AAZStrType() _schema.etag = cls._schema_frontend_ip_configuration_read.etag _schema.id = cls._schema_frontend_ip_configuration_read.id _schema.name = cls._schema_frontend_ip_configuration_read.name _schema.properties = cls._schema_frontend_ip_configuration_read.properties _schema.type = cls._schema_frontend_ip_configuration_read.type _schema.zones = cls._schema_frontend_ip_configuration_read.zones _schema_ip_configuration_read = None @classmethod def _build_schema_ip_configuration_read(cls, _schema): if cls._schema_ip_configuration_read is not None: _schema.etag = cls._schema_ip_configuration_read.etag _schema.id = cls._schema_ip_configuration_read.id _schema.name = cls._schema_ip_configuration_read.name _schema.properties = cls._schema_ip_configuration_read.properties return cls._schema_ip_configuration_read = _schema_ip_configuration_read = AAZObjectType() ip_configuration_read = _schema_ip_configuration_read ip_configuration_read.etag = AAZStrType( flags={"read_only": True}, ) ip_configuration_read.id = AAZStrType() ip_configuration_read.name = AAZStrType() ip_configuration_read.properties = AAZObjectType( flags={"client_flatten": True}, ) properties = _schema_ip_configuration_read.properties properties.private_ip_address = AAZStrType( serialized_name="privateIPAddress", ) properties.private_ip_allocation_method = AAZStrType( serialized_name="privateIPAllocationMethod", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.public_ip_address = AAZObjectType( serialized_name="publicIPAddress", ) cls._build_schema_public_ip_address_read(properties.public_ip_address) properties.subnet = AAZObjectType() cls._build_schema_subnet_read(properties.subnet) _schema.etag = cls._schema_ip_configuration_read.etag _schema.id = cls._schema_ip_configuration_read.id _schema.name = cls._schema_ip_configuration_read.name _schema.properties = cls._schema_ip_configuration_read.properties _schema_network_interface_ip_configuration_read = None @classmethod def _build_schema_network_interface_ip_configuration_read(cls, _schema): if cls._schema_network_interface_ip_configuration_read is not None: _schema.etag = cls._schema_network_interface_ip_configuration_read.etag _schema.id = cls._schema_network_interface_ip_configuration_read.id _schema.name = cls._schema_network_interface_ip_configuration_read.name _schema.properties = cls._schema_network_interface_ip_configuration_read.properties _schema.type = cls._schema_network_interface_ip_configuration_read.type return cls._schema_network_interface_ip_configuration_read = _schema_network_interface_ip_configuration_read = AAZObjectType() network_interface_ip_configuration_read = _schema_network_interface_ip_configuration_read network_interface_ip_configuration_read.etag = AAZStrType( flags={"read_only": True}, ) network_interface_ip_configuration_read.id = AAZStrType() network_interface_ip_configuration_read.name = AAZStrType() network_interface_ip_configuration_read.properties = AAZObjectType( flags={"client_flatten": True}, ) network_interface_ip_configuration_read.type = AAZStrType() properties = _schema_network_interface_ip_configuration_read.properties properties.application_gateway_backend_address_pools = AAZListType( serialized_name="applicationGatewayBackendAddressPools", ) properties.application_security_groups = AAZListType( serialized_name="applicationSecurityGroups", ) properties.gateway_load_balancer = AAZObjectType( serialized_name="gatewayLoadBalancer", ) cls._build_schema_sub_resource_read(properties.gateway_load_balancer) properties.load_balancer_backend_address_pools = AAZListType( serialized_name="loadBalancerBackendAddressPools", ) properties.load_balancer_inbound_nat_rules = AAZListType( serialized_name="loadBalancerInboundNatRules", ) properties.primary = AAZBoolType() properties.private_ip_address = AAZStrType( serialized_name="privateIPAddress", ) properties.private_ip_address_version = AAZStrType( serialized_name="privateIPAddressVersion", ) properties.private_ip_allocation_method = AAZStrType( serialized_name="privateIPAllocationMethod", ) properties.private_link_connection_properties = AAZObjectType( serialized_name="privateLinkConnectionProperties", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.public_ip_address = AAZObjectType( serialized_name="publicIPAddress", ) cls._build_schema_public_ip_address_read(properties.public_ip_address) properties.subnet = AAZObjectType() cls._build_schema_subnet_read(properties.subnet) properties.virtual_network_taps = AAZListType( serialized_name="virtualNetworkTaps", ) application_gateway_backend_address_pools = _schema_network_interface_ip_configuration_read.properties.application_gateway_backend_address_pools application_gateway_backend_address_pools.Element = AAZObjectType() _element = _schema_network_interface_ip_configuration_read.properties.application_gateway_backend_address_pools.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_interface_ip_configuration_read.properties.application_gateway_backend_address_pools.Element.properties properties.backend_addresses = AAZListType( serialized_name="backendAddresses", ) properties.backend_ip_configurations = AAZListType( serialized_name="backendIPConfigurations", flags={"read_only": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) backend_addresses = _schema_network_interface_ip_configuration_read.properties.application_gateway_backend_address_pools.Element.properties.backend_addresses backend_addresses.Element = AAZObjectType() _element = _schema_network_interface_ip_configuration_read.properties.application_gateway_backend_address_pools.Element.properties.backend_addresses.Element _element.fqdn = AAZStrType() _element.ip_address = AAZStrType( serialized_name="ipAddress", ) backend_ip_configurations = _schema_network_interface_ip_configuration_read.properties.application_gateway_backend_address_pools.Element.properties.backend_ip_configurations backend_ip_configurations.Element = AAZObjectType() cls._build_schema_network_interface_ip_configuration_read(backend_ip_configurations.Element) application_security_groups = _schema_network_interface_ip_configuration_read.properties.application_security_groups application_security_groups.Element = AAZObjectType() cls._build_schema_application_security_group_read(application_security_groups.Element) load_balancer_backend_address_pools = _schema_network_interface_ip_configuration_read.properties.load_balancer_backend_address_pools load_balancer_backend_address_pools.Element = AAZObjectType() _element = _schema_network_interface_ip_configuration_read.properties.load_balancer_backend_address_pools.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_interface_ip_configuration_read.properties.load_balancer_backend_address_pools.Element.properties properties.backend_ip_configurations = AAZListType( serialized_name="backendIPConfigurations", flags={"read_only": True}, ) properties.drain_period_in_seconds = AAZIntType( serialized_name="drainPeriodInSeconds", ) properties.inbound_nat_rules = AAZListType( serialized_name="inboundNatRules", flags={"read_only": True}, ) properties.load_balancer_backend_addresses = AAZListType( serialized_name="loadBalancerBackendAddresses", ) properties.load_balancing_rules = AAZListType( serialized_name="loadBalancingRules", flags={"read_only": True}, ) properties.location = AAZStrType() properties.outbound_rule = AAZObjectType( serialized_name="outboundRule", ) cls._build_schema_sub_resource_read(properties.outbound_rule) properties.outbound_rules = AAZListType( serialized_name="outboundRules", flags={"read_only": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.tunnel_interfaces = AAZListType( serialized_name="tunnelInterfaces", ) backend_ip_configurations = _schema_network_interface_ip_configuration_read.properties.load_balancer_backend_address_pools.Element.properties.backend_ip_configurations backend_ip_configurations.Element = AAZObjectType() cls._build_schema_network_interface_ip_configuration_read(backend_ip_configurations.Element) inbound_nat_rules = _schema_network_interface_ip_configuration_read.properties.load_balancer_backend_address_pools.Element.properties.inbound_nat_rules inbound_nat_rules.Element = AAZObjectType() cls._build_schema_sub_resource_read(inbound_nat_rules.Element) load_balancer_backend_addresses = _schema_network_interface_ip_configuration_read.properties.load_balancer_backend_address_pools.Element.properties.load_balancer_backend_addresses load_balancer_backend_addresses.Element = AAZObjectType() _element = _schema_network_interface_ip_configuration_read.properties.load_balancer_backend_address_pools.Element.properties.load_balancer_backend_addresses.Element _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) properties = _schema_network_interface_ip_configuration_read.properties.load_balancer_backend_address_pools.Element.properties.load_balancer_backend_addresses.Element.properties properties.admin_state = AAZStrType( serialized_name="adminState", ) properties.inbound_nat_rules_port_mapping = AAZListType( serialized_name="inboundNatRulesPortMapping", flags={"read_only": True}, ) properties.ip_address = AAZStrType( serialized_name="ipAddress", ) properties.load_balancer_frontend_ip_configuration = AAZObjectType( serialized_name="loadBalancerFrontendIPConfiguration", ) cls._build_schema_sub_resource_read(properties.load_balancer_frontend_ip_configuration) properties.network_interface_ip_configuration = AAZObjectType( serialized_name="networkInterfaceIPConfiguration", ) cls._build_schema_sub_resource_read(properties.network_interface_ip_configuration) properties.subnet = AAZObjectType() cls._build_schema_sub_resource_read(properties.subnet) properties.virtual_network = AAZObjectType( serialized_name="virtualNetwork", ) cls._build_schema_sub_resource_read(properties.virtual_network) inbound_nat_rules_port_mapping = _schema_network_interface_ip_configuration_read.properties.load_balancer_backend_address_pools.Element.properties.load_balancer_backend_addresses.Element.properties.inbound_nat_rules_port_mapping inbound_nat_rules_port_mapping.Element = AAZObjectType() _element = _schema_network_interface_ip_configuration_read.properties.load_balancer_backend_address_pools.Element.properties.load_balancer_backend_addresses.Element.properties.inbound_nat_rules_port_mapping.Element _element.backend_port = AAZIntType( serialized_name="backendPort", ) _element.frontend_port = AAZIntType( serialized_name="frontendPort", ) _element.inbound_nat_rule_name = AAZStrType( serialized_name="inboundNatRuleName", ) load_balancing_rules = _schema_network_interface_ip_configuration_read.properties.load_balancer_backend_address_pools.Element.properties.load_balancing_rules load_balancing_rules.Element = AAZObjectType() cls._build_schema_sub_resource_read(load_balancing_rules.Element) outbound_rules = _schema_network_interface_ip_configuration_read.properties.load_balancer_backend_address_pools.Element.properties.outbound_rules outbound_rules.Element = AAZObjectType() cls._build_schema_sub_resource_read(outbound_rules.Element) tunnel_interfaces = _schema_network_interface_ip_configuration_read.properties.load_balancer_backend_address_pools.Element.properties.tunnel_interfaces tunnel_interfaces.Element = AAZObjectType() _element = _schema_network_interface_ip_configuration_read.properties.load_balancer_backend_address_pools.Element.properties.tunnel_interfaces.Element _element.identifier = AAZIntType() _element.port = AAZIntType() _element.protocol = AAZStrType() _element.type = AAZStrType() load_balancer_inbound_nat_rules = _schema_network_interface_ip_configuration_read.properties.load_balancer_inbound_nat_rules load_balancer_inbound_nat_rules.Element = AAZObjectType() _element = _schema_network_interface_ip_configuration_read.properties.load_balancer_inbound_nat_rules.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_interface_ip_configuration_read.properties.load_balancer_inbound_nat_rules.Element.properties properties.backend_address_pool = AAZObjectType( serialized_name="backendAddressPool", ) cls._build_schema_sub_resource_read(properties.backend_address_pool) properties.backend_ip_configuration = AAZObjectType( serialized_name="backendIPConfiguration", ) cls._build_schema_network_interface_ip_configuration_read(properties.backend_ip_configuration) properties.backend_port = AAZIntType( serialized_name="backendPort", ) properties.enable_floating_ip = AAZBoolType( serialized_name="enableFloatingIP", ) properties.enable_tcp_reset = AAZBoolType( serialized_name="enableTcpReset", ) properties.frontend_ip_configuration = AAZObjectType( serialized_name="frontendIPConfiguration", ) cls._build_schema_sub_resource_read(properties.frontend_ip_configuration) properties.frontend_port = AAZIntType( serialized_name="frontendPort", ) properties.frontend_port_range_end = AAZIntType( serialized_name="frontendPortRangeEnd", ) properties.frontend_port_range_start = AAZIntType( serialized_name="frontendPortRangeStart", ) properties.idle_timeout_in_minutes = AAZIntType( serialized_name="idleTimeoutInMinutes", ) properties.protocol = AAZStrType() properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) private_link_connection_properties = _schema_network_interface_ip_configuration_read.properties.private_link_connection_properties private_link_connection_properties.fqdns = AAZListType( flags={"read_only": True}, ) private_link_connection_properties.group_id = AAZStrType( serialized_name="groupId", flags={"read_only": True}, ) private_link_connection_properties.required_member_name = AAZStrType( serialized_name="requiredMemberName", flags={"read_only": True}, ) fqdns = _schema_network_interface_ip_configuration_read.properties.private_link_connection_properties.fqdns fqdns.Element = AAZStrType() virtual_network_taps = _schema_network_interface_ip_configuration_read.properties.virtual_network_taps virtual_network_taps.Element = AAZObjectType() cls._build_schema_virtual_network_tap_read(virtual_network_taps.Element) _schema.etag = cls._schema_network_interface_ip_configuration_read.etag _schema.id = cls._schema_network_interface_ip_configuration_read.id _schema.name = cls._schema_network_interface_ip_configuration_read.name _schema.properties = cls._schema_network_interface_ip_configuration_read.properties _schema.type = cls._schema_network_interface_ip_configuration_read.type _schema_network_interface_tap_configuration_read = None @classmethod def _build_schema_network_interface_tap_configuration_read(cls, _schema): if cls._schema_network_interface_tap_configuration_read is not None: _schema.etag = cls._schema_network_interface_tap_configuration_read.etag _schema.id = cls._schema_network_interface_tap_configuration_read.id _schema.name = cls._schema_network_interface_tap_configuration_read.name _schema.properties = cls._schema_network_interface_tap_configuration_read.properties _schema.type = cls._schema_network_interface_tap_configuration_read.type return cls._schema_network_interface_tap_configuration_read = _schema_network_interface_tap_configuration_read = AAZObjectType() network_interface_tap_configuration_read = _schema_network_interface_tap_configuration_read network_interface_tap_configuration_read.etag = AAZStrType( flags={"read_only": True}, ) network_interface_tap_configuration_read.id = AAZStrType() network_interface_tap_configuration_read.name = AAZStrType() network_interface_tap_configuration_read.properties = AAZObjectType( flags={"client_flatten": True}, ) network_interface_tap_configuration_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_interface_tap_configuration_read.properties properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.virtual_network_tap = AAZObjectType( serialized_name="virtualNetworkTap", ) cls._build_schema_virtual_network_tap_read(properties.virtual_network_tap) _schema.etag = cls._schema_network_interface_tap_configuration_read.etag _schema.id = cls._schema_network_interface_tap_configuration_read.id _schema.name = cls._schema_network_interface_tap_configuration_read.name _schema.properties = cls._schema_network_interface_tap_configuration_read.properties _schema.type = cls._schema_network_interface_tap_configuration_read.type _schema_network_interface_read = None @classmethod def _build_schema_network_interface_read(cls, _schema): if cls._schema_network_interface_read is not None: _schema.etag = cls._schema_network_interface_read.etag _schema.extended_location = cls._schema_network_interface_read.extended_location _schema.id = cls._schema_network_interface_read.id _schema.location = cls._schema_network_interface_read.location _schema.name = cls._schema_network_interface_read.name _schema.properties = cls._schema_network_interface_read.properties _schema.tags = cls._schema_network_interface_read.tags _schema.type = cls._schema_network_interface_read.type return cls._schema_network_interface_read = _schema_network_interface_read = AAZObjectType() network_interface_read = _schema_network_interface_read network_interface_read.etag = AAZStrType( flags={"read_only": True}, ) network_interface_read.extended_location = AAZObjectType( serialized_name="extendedLocation", ) cls._build_schema_extended_location_read(network_interface_read.extended_location) network_interface_read.id = AAZStrType() network_interface_read.location = AAZStrType() network_interface_read.name = AAZStrType( flags={"read_only": True}, ) network_interface_read.properties = AAZObjectType( flags={"client_flatten": True}, ) network_interface_read.tags = AAZDictType() network_interface_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_interface_read.properties properties.auxiliary_mode = AAZStrType( serialized_name="auxiliaryMode", ) properties.dns_settings = AAZObjectType( serialized_name="dnsSettings", ) properties.dscp_configuration = AAZObjectType( serialized_name="dscpConfiguration", ) cls._build_schema_sub_resource_read(properties.dscp_configuration) properties.enable_accelerated_networking = AAZBoolType( serialized_name="enableAcceleratedNetworking", ) properties.enable_ip_forwarding = AAZBoolType( serialized_name="enableIPForwarding", ) properties.hosted_workloads = AAZListType( serialized_name="hostedWorkloads", flags={"read_only": True}, ) properties.ip_configurations = AAZListType( serialized_name="ipConfigurations", ) properties.mac_address = AAZStrType( serialized_name="macAddress", flags={"read_only": True}, ) properties.migration_phase = AAZStrType( serialized_name="migrationPhase", ) properties.network_security_group = AAZObjectType( serialized_name="networkSecurityGroup", ) cls._build_schema_network_security_group_read(properties.network_security_group) properties.nic_type = AAZStrType( serialized_name="nicType", ) properties.primary = AAZBoolType( flags={"read_only": True}, ) properties.private_endpoint = AAZObjectType( serialized_name="privateEndpoint", ) cls._build_schema_private_endpoint_read(properties.private_endpoint) properties.private_link_service = AAZObjectType( serialized_name="privateLinkService", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) properties.tap_configurations = AAZListType( serialized_name="tapConfigurations", flags={"read_only": True}, ) properties.virtual_machine = AAZObjectType( serialized_name="virtualMachine", ) cls._build_schema_sub_resource_read(properties.virtual_machine) properties.vnet_encryption_supported = AAZBoolType( serialized_name="vnetEncryptionSupported", flags={"read_only": True}, ) properties.workload_type = AAZStrType( serialized_name="workloadType", ) dns_settings = _schema_network_interface_read.properties.dns_settings dns_settings.applied_dns_servers = AAZListType( serialized_name="appliedDnsServers", flags={"read_only": True}, ) dns_settings.dns_servers = AAZListType( serialized_name="dnsServers", ) dns_settings.internal_dns_name_label = AAZStrType( serialized_name="internalDnsNameLabel", ) dns_settings.internal_domain_name_suffix = AAZStrType( serialized_name="internalDomainNameSuffix", flags={"read_only": True}, ) dns_settings.internal_fqdn = AAZStrType( serialized_name="internalFqdn", flags={"read_only": True}, ) applied_dns_servers = _schema_network_interface_read.properties.dns_settings.applied_dns_servers applied_dns_servers.Element = AAZStrType() dns_servers = _schema_network_interface_read.properties.dns_settings.dns_servers dns_servers.Element = AAZStrType() hosted_workloads = _schema_network_interface_read.properties.hosted_workloads hosted_workloads.Element = AAZStrType() ip_configurations = _schema_network_interface_read.properties.ip_configurations ip_configurations.Element = AAZObjectType() cls._build_schema_network_interface_ip_configuration_read(ip_configurations.Element) private_link_service = _schema_network_interface_read.properties.private_link_service private_link_service.etag = AAZStrType( flags={"read_only": True}, ) private_link_service.extended_location = AAZObjectType( serialized_name="extendedLocation", ) cls._build_schema_extended_location_read(private_link_service.extended_location) private_link_service.id = AAZStrType() private_link_service.location = AAZStrType() private_link_service.name = AAZStrType( flags={"read_only": True}, ) private_link_service.properties = AAZObjectType( flags={"client_flatten": True}, ) private_link_service.tags = AAZDictType() private_link_service.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_interface_read.properties.private_link_service.properties properties.alias = AAZStrType( flags={"read_only": True}, ) properties.auto_approval = AAZObjectType( serialized_name="autoApproval", ) properties.enable_proxy_protocol = AAZBoolType( serialized_name="enableProxyProtocol", ) properties.fqdns = AAZListType() properties.ip_configurations = AAZListType( serialized_name="ipConfigurations", ) properties.load_balancer_frontend_ip_configurations = AAZListType( serialized_name="loadBalancerFrontendIpConfigurations", ) properties.network_interfaces = AAZListType( serialized_name="networkInterfaces", flags={"read_only": True}, ) properties.private_endpoint_connections = AAZListType( serialized_name="privateEndpointConnections", flags={"read_only": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.visibility = AAZObjectType() auto_approval = _schema_network_interface_read.properties.private_link_service.properties.auto_approval auto_approval.subscriptions = AAZListType() subscriptions = _schema_network_interface_read.properties.private_link_service.properties.auto_approval.subscriptions subscriptions.Element = AAZStrType() fqdns = _schema_network_interface_read.properties.private_link_service.properties.fqdns fqdns.Element = AAZStrType() ip_configurations = _schema_network_interface_read.properties.private_link_service.properties.ip_configurations ip_configurations.Element = AAZObjectType() _element = _schema_network_interface_read.properties.private_link_service.properties.ip_configurations.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_interface_read.properties.private_link_service.properties.ip_configurations.Element.properties properties.primary = AAZBoolType() properties.private_ip_address = AAZStrType( serialized_name="privateIPAddress", ) properties.private_ip_address_version = AAZStrType( serialized_name="privateIPAddressVersion", ) properties.private_ip_allocation_method = AAZStrType( serialized_name="privateIPAllocationMethod", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.subnet = AAZObjectType() cls._build_schema_subnet_read(properties.subnet) load_balancer_frontend_ip_configurations = _schema_network_interface_read.properties.private_link_service.properties.load_balancer_frontend_ip_configurations load_balancer_frontend_ip_configurations.Element = AAZObjectType() cls._build_schema_frontend_ip_configuration_read(load_balancer_frontend_ip_configurations.Element) network_interfaces = _schema_network_interface_read.properties.private_link_service.properties.network_interfaces network_interfaces.Element = AAZObjectType() cls._build_schema_network_interface_read(network_interfaces.Element) private_endpoint_connections = _schema_network_interface_read.properties.private_link_service.properties.private_endpoint_connections private_endpoint_connections.Element = AAZObjectType() _element = _schema_network_interface_read.properties.private_link_service.properties.private_endpoint_connections.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_interface_read.properties.private_link_service.properties.private_endpoint_connections.Element.properties properties.link_identifier = AAZStrType( serialized_name="linkIdentifier", flags={"read_only": True}, ) properties.private_endpoint = AAZObjectType( serialized_name="privateEndpoint", ) cls._build_schema_private_endpoint_read(properties.private_endpoint) properties.private_link_service_connection_state = AAZObjectType( serialized_name="privateLinkServiceConnectionState", ) cls._build_schema_private_link_service_connection_state_read(properties.private_link_service_connection_state) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) visibility = _schema_network_interface_read.properties.private_link_service.properties.visibility visibility.subscriptions = AAZListType() subscriptions = _schema_network_interface_read.properties.private_link_service.properties.visibility.subscriptions subscriptions.Element = AAZStrType() tags = _schema_network_interface_read.properties.private_link_service.tags tags.Element = AAZStrType() tap_configurations = _schema_network_interface_read.properties.tap_configurations tap_configurations.Element = AAZObjectType() cls._build_schema_network_interface_tap_configuration_read(tap_configurations.Element) tags = _schema_network_interface_read.tags tags.Element = AAZStrType() _schema.etag = cls._schema_network_interface_read.etag _schema.extended_location = cls._schema_network_interface_read.extended_location _schema.id = cls._schema_network_interface_read.id _schema.location = cls._schema_network_interface_read.location _schema.name = cls._schema_network_interface_read.name _schema.properties = cls._schema_network_interface_read.properties _schema.tags = cls._schema_network_interface_read.tags _schema.type = cls._schema_network_interface_read.type _schema_network_security_group_read = None @classmethod def _build_schema_network_security_group_read(cls, _schema): if cls._schema_network_security_group_read is not None: _schema.etag = cls._schema_network_security_group_read.etag _schema.id = cls._schema_network_security_group_read.id _schema.location = cls._schema_network_security_group_read.location _schema.name = cls._schema_network_security_group_read.name _schema.properties = cls._schema_network_security_group_read.properties _schema.tags = cls._schema_network_security_group_read.tags _schema.type = cls._schema_network_security_group_read.type return cls._schema_network_security_group_read = _schema_network_security_group_read = AAZObjectType() network_security_group_read = _schema_network_security_group_read network_security_group_read.etag = AAZStrType( flags={"read_only": True}, ) network_security_group_read.id = AAZStrType() network_security_group_read.location = AAZStrType() network_security_group_read.name = AAZStrType( flags={"read_only": True}, ) network_security_group_read.properties = AAZObjectType( flags={"client_flatten": True}, ) network_security_group_read.tags = AAZDictType() network_security_group_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_security_group_read.properties properties.default_security_rules = AAZListType( serialized_name="defaultSecurityRules", flags={"read_only": True}, ) properties.flow_logs = AAZListType( serialized_name="flowLogs", flags={"read_only": True}, ) properties.network_interfaces = AAZListType( serialized_name="networkInterfaces", flags={"read_only": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) properties.security_rules = AAZListType( serialized_name="securityRules", ) properties.subnets = AAZListType( flags={"read_only": True}, ) default_security_rules = _schema_network_security_group_read.properties.default_security_rules default_security_rules.Element = AAZObjectType() cls._build_schema_security_rule_read(default_security_rules.Element) flow_logs = _schema_network_security_group_read.properties.flow_logs flow_logs.Element = AAZObjectType() _element = _schema_network_security_group_read.properties.flow_logs.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.location = AAZStrType() _element.name = AAZStrType( flags={"read_only": True}, ) _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.tags = AAZDictType() _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_network_security_group_read.properties.flow_logs.Element.properties properties.enabled = AAZBoolType() properties.flow_analytics_configuration = AAZObjectType( serialized_name="flowAnalyticsConfiguration", ) properties.format = AAZObjectType() properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.retention_policy = AAZObjectType( serialized_name="retentionPolicy", ) properties.storage_id = AAZStrType( serialized_name="storageId", flags={"required": True}, ) properties.target_resource_guid = AAZStrType( serialized_name="targetResourceGuid", flags={"read_only": True}, ) properties.target_resource_id = AAZStrType( serialized_name="targetResourceId", flags={"required": True}, ) flow_analytics_configuration = _schema_network_security_group_read.properties.flow_logs.Element.properties.flow_analytics_configuration flow_analytics_configuration.network_watcher_flow_analytics_configuration = AAZObjectType( serialized_name="networkWatcherFlowAnalyticsConfiguration", ) network_watcher_flow_analytics_configuration = _schema_network_security_group_read.properties.flow_logs.Element.properties.flow_analytics_configuration.network_watcher_flow_analytics_configuration network_watcher_flow_analytics_configuration.enabled = AAZBoolType() network_watcher_flow_analytics_configuration.traffic_analytics_interval = AAZIntType( serialized_name="trafficAnalyticsInterval", ) network_watcher_flow_analytics_configuration.workspace_id = AAZStrType( serialized_name="workspaceId", ) network_watcher_flow_analytics_configuration.workspace_region = AAZStrType( serialized_name="workspaceRegion", ) network_watcher_flow_analytics_configuration.workspace_resource_id = AAZStrType( serialized_name="workspaceResourceId", ) format = _schema_network_security_group_read.properties.flow_logs.Element.properties.format format.type = AAZStrType() format.version = AAZIntType() retention_policy = _schema_network_security_group_read.properties.flow_logs.Element.properties.retention_policy retention_policy.days = AAZIntType() retention_policy.enabled = AAZBoolType() tags = _schema_network_security_group_read.properties.flow_logs.Element.tags tags.Element = AAZStrType() network_interfaces = _schema_network_security_group_read.properties.network_interfaces network_interfaces.Element = AAZObjectType() cls._build_schema_network_interface_read(network_interfaces.Element) security_rules = _schema_network_security_group_read.properties.security_rules security_rules.Element = AAZObjectType() cls._build_schema_security_rule_read(security_rules.Element) subnets = _schema_network_security_group_read.properties.subnets subnets.Element = AAZObjectType() cls._build_schema_subnet_read(subnets.Element) tags = _schema_network_security_group_read.tags tags.Element = AAZStrType() _schema.etag = cls._schema_network_security_group_read.etag _schema.id = cls._schema_network_security_group_read.id _schema.location = cls._schema_network_security_group_read.location _schema.name = cls._schema_network_security_group_read.name _schema.properties = cls._schema_network_security_group_read.properties _schema.tags = cls._schema_network_security_group_read.tags _schema.type = cls._schema_network_security_group_read.type _schema_private_endpoint_read = None @classmethod def _build_schema_private_endpoint_read(cls, _schema): if cls._schema_private_endpoint_read is not None: _schema.etag = cls._schema_private_endpoint_read.etag _schema.extended_location = cls._schema_private_endpoint_read.extended_location _schema.id = cls._schema_private_endpoint_read.id _schema.location = cls._schema_private_endpoint_read.location _schema.name = cls._schema_private_endpoint_read.name _schema.properties = cls._schema_private_endpoint_read.properties _schema.tags = cls._schema_private_endpoint_read.tags _schema.type = cls._schema_private_endpoint_read.type return cls._schema_private_endpoint_read = _schema_private_endpoint_read = AAZObjectType() private_endpoint_read = _schema_private_endpoint_read private_endpoint_read.etag = AAZStrType( flags={"read_only": True}, ) private_endpoint_read.extended_location = AAZObjectType( serialized_name="extendedLocation", ) cls._build_schema_extended_location_read(private_endpoint_read.extended_location) private_endpoint_read.id = AAZStrType() private_endpoint_read.location = AAZStrType() private_endpoint_read.name = AAZStrType( flags={"read_only": True}, ) private_endpoint_read.properties = AAZObjectType( flags={"client_flatten": True}, ) private_endpoint_read.tags = AAZDictType() private_endpoint_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_private_endpoint_read.properties properties.application_security_groups = AAZListType( serialized_name="applicationSecurityGroups", ) properties.custom_dns_configs = AAZListType( serialized_name="customDnsConfigs", ) properties.custom_network_interface_name = AAZStrType( serialized_name="customNetworkInterfaceName", ) properties.ip_configurations = AAZListType( serialized_name="ipConfigurations", ) properties.manual_private_link_service_connections = AAZListType( serialized_name="manualPrivateLinkServiceConnections", ) properties.network_interfaces = AAZListType( serialized_name="networkInterfaces", flags={"read_only": True}, ) properties.private_link_service_connections = AAZListType( serialized_name="privateLinkServiceConnections", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.subnet = AAZObjectType() cls._build_schema_subnet_read(properties.subnet) application_security_groups = _schema_private_endpoint_read.properties.application_security_groups application_security_groups.Element = AAZObjectType() cls._build_schema_application_security_group_read(application_security_groups.Element) custom_dns_configs = _schema_private_endpoint_read.properties.custom_dns_configs custom_dns_configs.Element = AAZObjectType() _element = _schema_private_endpoint_read.properties.custom_dns_configs.Element _element.fqdn = AAZStrType() _element.ip_addresses = AAZListType( serialized_name="ipAddresses", ) ip_addresses = _schema_private_endpoint_read.properties.custom_dns_configs.Element.ip_addresses ip_addresses.Element = AAZStrType() ip_configurations = _schema_private_endpoint_read.properties.ip_configurations ip_configurations.Element = AAZObjectType() _element = _schema_private_endpoint_read.properties.ip_configurations.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_private_endpoint_read.properties.ip_configurations.Element.properties properties.group_id = AAZStrType( serialized_name="groupId", ) properties.member_name = AAZStrType( serialized_name="memberName", ) properties.private_ip_address = AAZStrType( serialized_name="privateIPAddress", ) manual_private_link_service_connections = _schema_private_endpoint_read.properties.manual_private_link_service_connections manual_private_link_service_connections.Element = AAZObjectType() cls._build_schema_private_link_service_connection_read(manual_private_link_service_connections.Element) network_interfaces = _schema_private_endpoint_read.properties.network_interfaces network_interfaces.Element = AAZObjectType() cls._build_schema_network_interface_read(network_interfaces.Element) private_link_service_connections = _schema_private_endpoint_read.properties.private_link_service_connections private_link_service_connections.Element = AAZObjectType() cls._build_schema_private_link_service_connection_read(private_link_service_connections.Element) tags = _schema_private_endpoint_read.tags tags.Element = AAZStrType() _schema.etag = cls._schema_private_endpoint_read.etag _schema.extended_location = cls._schema_private_endpoint_read.extended_location _schema.id = cls._schema_private_endpoint_read.id _schema.location = cls._schema_private_endpoint_read.location _schema.name = cls._schema_private_endpoint_read.name _schema.properties = cls._schema_private_endpoint_read.properties _schema.tags = cls._schema_private_endpoint_read.tags _schema.type = cls._schema_private_endpoint_read.type _schema_private_link_service_connection_state_read = None @classmethod def _build_schema_private_link_service_connection_state_read(cls, _schema): if cls._schema_private_link_service_connection_state_read is not None: _schema.actions_required = cls._schema_private_link_service_connection_state_read.actions_required _schema.description = cls._schema_private_link_service_connection_state_read.description _schema.status = cls._schema_private_link_service_connection_state_read.status return cls._schema_private_link_service_connection_state_read = _schema_private_link_service_connection_state_read = AAZObjectType() private_link_service_connection_state_read = _schema_private_link_service_connection_state_read private_link_service_connection_state_read.actions_required = AAZStrType( serialized_name="actionsRequired", ) private_link_service_connection_state_read.description = AAZStrType() private_link_service_connection_state_read.status = AAZStrType() _schema.actions_required = cls._schema_private_link_service_connection_state_read.actions_required _schema.description = cls._schema_private_link_service_connection_state_read.description _schema.status = cls._schema_private_link_service_connection_state_read.status _schema_private_link_service_connection_read = None @classmethod def _build_schema_private_link_service_connection_read(cls, _schema): if cls._schema_private_link_service_connection_read is not None: _schema.etag = cls._schema_private_link_service_connection_read.etag _schema.id = cls._schema_private_link_service_connection_read.id _schema.name = cls._schema_private_link_service_connection_read.name _schema.properties = cls._schema_private_link_service_connection_read.properties _schema.type = cls._schema_private_link_service_connection_read.type return cls._schema_private_link_service_connection_read = _schema_private_link_service_connection_read = AAZObjectType() private_link_service_connection_read = _schema_private_link_service_connection_read private_link_service_connection_read.etag = AAZStrType( flags={"read_only": True}, ) private_link_service_connection_read.id = AAZStrType() private_link_service_connection_read.name = AAZStrType() private_link_service_connection_read.properties = AAZObjectType( flags={"client_flatten": True}, ) private_link_service_connection_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_private_link_service_connection_read.properties properties.group_ids = AAZListType( serialized_name="groupIds", ) properties.private_link_service_connection_state = AAZObjectType( serialized_name="privateLinkServiceConnectionState", ) cls._build_schema_private_link_service_connection_state_read(properties.private_link_service_connection_state) properties.private_link_service_id = AAZStrType( serialized_name="privateLinkServiceId", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.request_message = AAZStrType( serialized_name="requestMessage", ) group_ids = _schema_private_link_service_connection_read.properties.group_ids group_ids.Element = AAZStrType() _schema.etag = cls._schema_private_link_service_connection_read.etag _schema.id = cls._schema_private_link_service_connection_read.id _schema.name = cls._schema_private_link_service_connection_read.name _schema.properties = cls._schema_private_link_service_connection_read.properties _schema.type = cls._schema_private_link_service_connection_read.type _schema_public_ip_address_read = None @classmethod def _build_schema_public_ip_address_read(cls, _schema): if cls._schema_public_ip_address_read is not None: _schema.etag = cls._schema_public_ip_address_read.etag _schema.extended_location = cls._schema_public_ip_address_read.extended_location _schema.id = cls._schema_public_ip_address_read.id _schema.location = cls._schema_public_ip_address_read.location _schema.name = cls._schema_public_ip_address_read.name _schema.properties = cls._schema_public_ip_address_read.properties _schema.sku = cls._schema_public_ip_address_read.sku _schema.tags = cls._schema_public_ip_address_read.tags _schema.type = cls._schema_public_ip_address_read.type _schema.zones = cls._schema_public_ip_address_read.zones return cls._schema_public_ip_address_read = _schema_public_ip_address_read = AAZObjectType() public_ip_address_read = _schema_public_ip_address_read public_ip_address_read.etag = AAZStrType( flags={"read_only": True}, ) public_ip_address_read.extended_location = AAZObjectType( serialized_name="extendedLocation", ) cls._build_schema_extended_location_read(public_ip_address_read.extended_location) public_ip_address_read.id = AAZStrType() public_ip_address_read.location = AAZStrType() public_ip_address_read.name = AAZStrType( flags={"read_only": True}, ) public_ip_address_read.properties = AAZObjectType( flags={"client_flatten": True}, ) public_ip_address_read.sku = AAZObjectType() public_ip_address_read.tags = AAZDictType() public_ip_address_read.type = AAZStrType( flags={"read_only": True}, ) public_ip_address_read.zones = AAZListType() properties = _schema_public_ip_address_read.properties properties.ddos_settings = AAZObjectType( serialized_name="ddosSettings", ) properties.delete_option = AAZStrType( serialized_name="deleteOption", ) properties.dns_settings = AAZObjectType( serialized_name="dnsSettings", ) properties.idle_timeout_in_minutes = AAZIntType( serialized_name="idleTimeoutInMinutes", ) properties.ip_address = AAZStrType( serialized_name="ipAddress", ) properties.ip_configuration = AAZObjectType( serialized_name="ipConfiguration", ) cls._build_schema_ip_configuration_read(properties.ip_configuration) properties.ip_tags = AAZListType( serialized_name="ipTags", ) properties.linked_public_ip_address = AAZObjectType( serialized_name="linkedPublicIPAddress", ) cls._build_schema_public_ip_address_read(properties.linked_public_ip_address) properties.migration_phase = AAZStrType( serialized_name="migrationPhase", ) properties.nat_gateway = AAZObjectType( serialized_name="natGateway", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.public_ip_address_version = AAZStrType( serialized_name="publicIPAddressVersion", ) properties.public_ip_allocation_method = AAZStrType( serialized_name="publicIPAllocationMethod", ) properties.public_ip_prefix = AAZObjectType( serialized_name="publicIPPrefix", ) cls._build_schema_sub_resource_read(properties.public_ip_prefix) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) properties.service_public_ip_address = AAZObjectType( serialized_name="servicePublicIPAddress", ) cls._build_schema_public_ip_address_read(properties.service_public_ip_address) ddos_settings = _schema_public_ip_address_read.properties.ddos_settings ddos_settings.ddos_custom_policy = AAZObjectType( serialized_name="ddosCustomPolicy", ) cls._build_schema_sub_resource_read(ddos_settings.ddos_custom_policy) ddos_settings.protected_ip = AAZBoolType( serialized_name="protectedIP", ) ddos_settings.protection_coverage = AAZStrType( serialized_name="protectionCoverage", ) dns_settings = _schema_public_ip_address_read.properties.dns_settings dns_settings.domain_name_label = AAZStrType( serialized_name="domainNameLabel", ) dns_settings.fqdn = AAZStrType() dns_settings.reverse_fqdn = AAZStrType( serialized_name="reverseFqdn", ) ip_tags = _schema_public_ip_address_read.properties.ip_tags ip_tags.Element = AAZObjectType() _element = _schema_public_ip_address_read.properties.ip_tags.Element _element.ip_tag_type = AAZStrType( serialized_name="ipTagType", ) _element.tag = AAZStrType() nat_gateway = _schema_public_ip_address_read.properties.nat_gateway nat_gateway.etag = AAZStrType( flags={"read_only": True}, ) nat_gateway.id = AAZStrType() nat_gateway.location = AAZStrType() nat_gateway.name = AAZStrType( flags={"read_only": True}, ) nat_gateway.properties = AAZObjectType( flags={"client_flatten": True}, ) nat_gateway.sku = AAZObjectType() nat_gateway.tags = AAZDictType() nat_gateway.type = AAZStrType( flags={"read_only": True}, ) nat_gateway.zones = AAZListType() properties = _schema_public_ip_address_read.properties.nat_gateway.properties properties.idle_timeout_in_minutes = AAZIntType( serialized_name="idleTimeoutInMinutes", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.public_ip_addresses = AAZListType( serialized_name="publicIpAddresses", ) properties.public_ip_prefixes = AAZListType( serialized_name="publicIpPrefixes", ) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) properties.subnets = AAZListType( flags={"read_only": True}, ) public_ip_addresses = _schema_public_ip_address_read.properties.nat_gateway.properties.public_ip_addresses public_ip_addresses.Element = AAZObjectType() cls._build_schema_sub_resource_read(public_ip_addresses.Element) public_ip_prefixes = _schema_public_ip_address_read.properties.nat_gateway.properties.public_ip_prefixes public_ip_prefixes.Element = AAZObjectType() cls._build_schema_sub_resource_read(public_ip_prefixes.Element) subnets = _schema_public_ip_address_read.properties.nat_gateway.properties.subnets subnets.Element = AAZObjectType() cls._build_schema_sub_resource_read(subnets.Element) sku = _schema_public_ip_address_read.properties.nat_gateway.sku sku.name = AAZStrType() tags = _schema_public_ip_address_read.properties.nat_gateway.tags tags.Element = AAZStrType() zones = _schema_public_ip_address_read.properties.nat_gateway.zones zones.Element = AAZStrType() sku = _schema_public_ip_address_read.sku sku.name = AAZStrType() sku.tier = AAZStrType() tags = _schema_public_ip_address_read.tags tags.Element = AAZStrType() zones = _schema_public_ip_address_read.zones zones.Element = AAZStrType() _schema.etag = cls._schema_public_ip_address_read.etag _schema.extended_location = cls._schema_public_ip_address_read.extended_location _schema.id = cls._schema_public_ip_address_read.id _schema.location = cls._schema_public_ip_address_read.location _schema.name = cls._schema_public_ip_address_read.name _schema.properties = cls._schema_public_ip_address_read.properties _schema.sku = cls._schema_public_ip_address_read.sku _schema.tags = cls._schema_public_ip_address_read.tags _schema.type = cls._schema_public_ip_address_read.type _schema.zones = cls._schema_public_ip_address_read.zones _schema_route_table_read = None @classmethod def _build_schema_route_table_read(cls, _schema): if cls._schema_route_table_read is not None: _schema.etag = cls._schema_route_table_read.etag _schema.id = cls._schema_route_table_read.id _schema.location = cls._schema_route_table_read.location _schema.name = cls._schema_route_table_read.name _schema.properties = cls._schema_route_table_read.properties _schema.tags = cls._schema_route_table_read.tags _schema.type = cls._schema_route_table_read.type return cls._schema_route_table_read = _schema_route_table_read = AAZObjectType() route_table_read = _schema_route_table_read route_table_read.etag = AAZStrType( flags={"read_only": True}, ) route_table_read.id = AAZStrType() route_table_read.location = AAZStrType() route_table_read.name = AAZStrType( flags={"read_only": True}, ) route_table_read.properties = AAZObjectType( flags={"client_flatten": True}, ) route_table_read.tags = AAZDictType() route_table_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_route_table_read.properties properties.disable_bgp_route_propagation = AAZBoolType( serialized_name="disableBgpRoutePropagation", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) properties.routes = AAZListType() properties.subnets = AAZListType( flags={"read_only": True}, ) routes = _schema_route_table_read.properties.routes routes.Element = AAZObjectType() _element = _schema_route_table_read.properties.routes.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType() properties = _schema_route_table_read.properties.routes.Element.properties properties.address_prefix = AAZStrType( serialized_name="addressPrefix", ) properties.has_bgp_override = AAZBoolType( serialized_name="hasBgpOverride", ) properties.next_hop_ip_address = AAZStrType( serialized_name="nextHopIpAddress", ) properties.next_hop_type = AAZStrType( serialized_name="nextHopType", flags={"required": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) subnets = _schema_route_table_read.properties.subnets subnets.Element = AAZObjectType() cls._build_schema_subnet_read(subnets.Element) tags = _schema_route_table_read.tags tags.Element = AAZStrType() _schema.etag = cls._schema_route_table_read.etag _schema.id = cls._schema_route_table_read.id _schema.location = cls._schema_route_table_read.location _schema.name = cls._schema_route_table_read.name _schema.properties = cls._schema_route_table_read.properties _schema.tags = cls._schema_route_table_read.tags _schema.type = cls._schema_route_table_read.type _schema_security_rule_read = None @classmethod def _build_schema_security_rule_read(cls, _schema): if cls._schema_security_rule_read is not None: _schema.etag = cls._schema_security_rule_read.etag _schema.id = cls._schema_security_rule_read.id _schema.name = cls._schema_security_rule_read.name _schema.properties = cls._schema_security_rule_read.properties _schema.type = cls._schema_security_rule_read.type return cls._schema_security_rule_read = _schema_security_rule_read = AAZObjectType() security_rule_read = _schema_security_rule_read security_rule_read.etag = AAZStrType( flags={"read_only": True}, ) security_rule_read.id = AAZStrType() security_rule_read.name = AAZStrType() security_rule_read.properties = AAZObjectType( flags={"client_flatten": True}, ) security_rule_read.type = AAZStrType() properties = _schema_security_rule_read.properties properties.access = AAZStrType( flags={"required": True}, ) properties.description = AAZStrType() properties.destination_address_prefix = AAZStrType( serialized_name="destinationAddressPrefix", ) properties.destination_address_prefixes = AAZListType( serialized_name="destinationAddressPrefixes", ) properties.destination_application_security_groups = AAZListType( serialized_name="destinationApplicationSecurityGroups", ) properties.destination_port_range = AAZStrType( serialized_name="destinationPortRange", ) properties.destination_port_ranges = AAZListType( serialized_name="destinationPortRanges", ) properties.direction = AAZStrType( flags={"required": True}, ) properties.priority = AAZIntType() properties.protocol = AAZStrType( flags={"required": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.source_address_prefix = AAZStrType( serialized_name="sourceAddressPrefix", ) properties.source_address_prefixes = AAZListType( serialized_name="sourceAddressPrefixes", ) properties.source_application_security_groups = AAZListType( serialized_name="sourceApplicationSecurityGroups", ) properties.source_port_range = AAZStrType( serialized_name="sourcePortRange", ) properties.source_port_ranges = AAZListType( serialized_name="sourcePortRanges", ) destination_address_prefixes = _schema_security_rule_read.properties.destination_address_prefixes destination_address_prefixes.Element = AAZStrType() destination_application_security_groups = _schema_security_rule_read.properties.destination_application_security_groups destination_application_security_groups.Element = AAZObjectType() cls._build_schema_application_security_group_read(destination_application_security_groups.Element) destination_port_ranges = _schema_security_rule_read.properties.destination_port_ranges destination_port_ranges.Element = AAZStrType() source_address_prefixes = _schema_security_rule_read.properties.source_address_prefixes source_address_prefixes.Element = AAZStrType() source_application_security_groups = _schema_security_rule_read.properties.source_application_security_groups source_application_security_groups.Element = AAZObjectType() cls._build_schema_application_security_group_read(source_application_security_groups.Element) source_port_ranges = _schema_security_rule_read.properties.source_port_ranges source_port_ranges.Element = AAZStrType() _schema.etag = cls._schema_security_rule_read.etag _schema.id = cls._schema_security_rule_read.id _schema.name = cls._schema_security_rule_read.name _schema.properties = cls._schema_security_rule_read.properties _schema.type = cls._schema_security_rule_read.type _schema_sub_resource_read = None @classmethod def _build_schema_sub_resource_read(cls, _schema): if cls._schema_sub_resource_read is not None: _schema.id = cls._schema_sub_resource_read.id return cls._schema_sub_resource_read = _schema_sub_resource_read = AAZObjectType() sub_resource_read = _schema_sub_resource_read sub_resource_read.id = AAZStrType() _schema.id = cls._schema_sub_resource_read.id _schema_subnet_read = None @classmethod def _build_schema_subnet_read(cls, _schema): if cls._schema_subnet_read is not None: _schema.etag = cls._schema_subnet_read.etag _schema.id = cls._schema_subnet_read.id _schema.name = cls._schema_subnet_read.name _schema.properties = cls._schema_subnet_read.properties _schema.type = cls._schema_subnet_read.type return cls._schema_subnet_read = _schema_subnet_read = AAZObjectType() subnet_read = _schema_subnet_read subnet_read.etag = AAZStrType( flags={"read_only": True}, ) subnet_read.id = AAZStrType() subnet_read.name = AAZStrType() subnet_read.properties = AAZObjectType( flags={"client_flatten": True}, ) subnet_read.type = AAZStrType() properties = _schema_subnet_read.properties properties.address_prefix = AAZStrType( serialized_name="addressPrefix", ) properties.address_prefixes = AAZListType( serialized_name="addressPrefixes", ) properties.application_gateway_ip_configurations = AAZListType( serialized_name="applicationGatewayIpConfigurations", ) properties.delegations = AAZListType() properties.ip_allocations = AAZListType( serialized_name="ipAllocations", ) properties.ip_configuration_profiles = AAZListType( serialized_name="ipConfigurationProfiles", flags={"read_only": True}, ) properties.ip_configurations = AAZListType( serialized_name="ipConfigurations", flags={"read_only": True}, ) properties.nat_gateway = AAZObjectType( serialized_name="natGateway", ) cls._build_schema_sub_resource_read(properties.nat_gateway) properties.network_security_group = AAZObjectType( serialized_name="networkSecurityGroup", ) cls._build_schema_network_security_group_read(properties.network_security_group) properties.private_endpoint_network_policies = AAZStrType( serialized_name="privateEndpointNetworkPolicies", ) properties.private_endpoints = AAZListType( serialized_name="privateEndpoints", flags={"read_only": True}, ) properties.private_link_service_network_policies = AAZStrType( serialized_name="privateLinkServiceNetworkPolicies", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.purpose = AAZStrType( flags={"read_only": True}, ) properties.resource_navigation_links = AAZListType( serialized_name="resourceNavigationLinks", flags={"read_only": True}, ) properties.route_table = AAZObjectType( serialized_name="routeTable", ) cls._build_schema_route_table_read(properties.route_table) properties.service_association_links = AAZListType( serialized_name="serviceAssociationLinks", flags={"read_only": True}, ) properties.service_endpoint_policies = AAZListType( serialized_name="serviceEndpointPolicies", ) properties.service_endpoints = AAZListType( serialized_name="serviceEndpoints", ) address_prefixes = _schema_subnet_read.properties.address_prefixes address_prefixes.Element = AAZStrType() application_gateway_ip_configurations = _schema_subnet_read.properties.application_gateway_ip_configurations application_gateway_ip_configurations.Element = AAZObjectType() _element = _schema_subnet_read.properties.application_gateway_ip_configurations.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_subnet_read.properties.application_gateway_ip_configurations.Element.properties properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.subnet = AAZObjectType() cls._build_schema_sub_resource_read(properties.subnet) delegations = _schema_subnet_read.properties.delegations delegations.Element = AAZObjectType() _element = _schema_subnet_read.properties.delegations.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType() properties = _schema_subnet_read.properties.delegations.Element.properties properties.actions = AAZListType( flags={"read_only": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.service_name = AAZStrType( serialized_name="serviceName", ) actions = _schema_subnet_read.properties.delegations.Element.properties.actions actions.Element = AAZStrType() ip_allocations = _schema_subnet_read.properties.ip_allocations ip_allocations.Element = AAZObjectType() cls._build_schema_sub_resource_read(ip_allocations.Element) ip_configuration_profiles = _schema_subnet_read.properties.ip_configuration_profiles ip_configuration_profiles.Element = AAZObjectType() _element = _schema_subnet_read.properties.ip_configuration_profiles.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_subnet_read.properties.ip_configuration_profiles.Element.properties properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.subnet = AAZObjectType() cls._build_schema_subnet_read(properties.subnet) ip_configurations = _schema_subnet_read.properties.ip_configurations ip_configurations.Element = AAZObjectType() cls._build_schema_ip_configuration_read(ip_configurations.Element) private_endpoints = _schema_subnet_read.properties.private_endpoints private_endpoints.Element = AAZObjectType() cls._build_schema_private_endpoint_read(private_endpoints.Element) resource_navigation_links = _schema_subnet_read.properties.resource_navigation_links resource_navigation_links.Element = AAZObjectType() _element = _schema_subnet_read.properties.resource_navigation_links.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType( flags={"read_only": True}, ) _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_subnet_read.properties.resource_navigation_links.Element.properties properties.link = AAZStrType() properties.linked_resource_type = AAZStrType( serialized_name="linkedResourceType", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) service_association_links = _schema_subnet_read.properties.service_association_links service_association_links.Element = AAZObjectType() _element = _schema_subnet_read.properties.service_association_links.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_subnet_read.properties.service_association_links.Element.properties properties.allow_delete = AAZBoolType( serialized_name="allowDelete", ) properties.link = AAZStrType() properties.linked_resource_type = AAZStrType( serialized_name="linkedResourceType", ) properties.locations = AAZListType() properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) locations = _schema_subnet_read.properties.service_association_links.Element.properties.locations locations.Element = AAZStrType() service_endpoint_policies = _schema_subnet_read.properties.service_endpoint_policies service_endpoint_policies.Element = AAZObjectType() _element = _schema_subnet_read.properties.service_endpoint_policies.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.kind = AAZStrType( flags={"read_only": True}, ) _element.location = AAZStrType() _element.name = AAZStrType( flags={"read_only": True}, ) _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.tags = AAZDictType() _element.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_subnet_read.properties.service_endpoint_policies.Element.properties properties.contextual_service_endpoint_policies = AAZListType( serialized_name="contextualServiceEndpointPolicies", ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) properties.service_alias = AAZStrType( serialized_name="serviceAlias", ) properties.service_endpoint_policy_definitions = AAZListType( serialized_name="serviceEndpointPolicyDefinitions", ) properties.subnets = AAZListType( flags={"read_only": True}, ) contextual_service_endpoint_policies = _schema_subnet_read.properties.service_endpoint_policies.Element.properties.contextual_service_endpoint_policies contextual_service_endpoint_policies.Element = AAZStrType() service_endpoint_policy_definitions = _schema_subnet_read.properties.service_endpoint_policies.Element.properties.service_endpoint_policy_definitions service_endpoint_policy_definitions.Element = AAZObjectType() _element = _schema_subnet_read.properties.service_endpoint_policies.Element.properties.service_endpoint_policy_definitions.Element _element.etag = AAZStrType( flags={"read_only": True}, ) _element.id = AAZStrType() _element.name = AAZStrType() _element.properties = AAZObjectType( flags={"client_flatten": True}, ) _element.type = AAZStrType() properties = _schema_subnet_read.properties.service_endpoint_policies.Element.properties.service_endpoint_policy_definitions.Element.properties properties.description = AAZStrType() properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.service = AAZStrType() properties.service_resources = AAZListType( serialized_name="serviceResources", ) service_resources = _schema_subnet_read.properties.service_endpoint_policies.Element.properties.service_endpoint_policy_definitions.Element.properties.service_resources service_resources.Element = AAZStrType() subnets = _schema_subnet_read.properties.service_endpoint_policies.Element.properties.subnets subnets.Element = AAZObjectType() cls._build_schema_subnet_read(subnets.Element) tags = _schema_subnet_read.properties.service_endpoint_policies.Element.tags tags.Element = AAZStrType() service_endpoints = _schema_subnet_read.properties.service_endpoints service_endpoints.Element = AAZObjectType() _element = _schema_subnet_read.properties.service_endpoints.Element _element.locations = AAZListType() _element.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) _element.service = AAZStrType() locations = _schema_subnet_read.properties.service_endpoints.Element.locations locations.Element = AAZStrType() _schema.etag = cls._schema_subnet_read.etag _schema.id = cls._schema_subnet_read.id _schema.name = cls._schema_subnet_read.name _schema.properties = cls._schema_subnet_read.properties _schema.type = cls._schema_subnet_read.type _schema_virtual_network_tap_read = None @classmethod def _build_schema_virtual_network_tap_read(cls, _schema): if cls._schema_virtual_network_tap_read is not None: _schema.etag = cls._schema_virtual_network_tap_read.etag _schema.id = cls._schema_virtual_network_tap_read.id _schema.location = cls._schema_virtual_network_tap_read.location _schema.name = cls._schema_virtual_network_tap_read.name _schema.properties = cls._schema_virtual_network_tap_read.properties _schema.tags = cls._schema_virtual_network_tap_read.tags _schema.type = cls._schema_virtual_network_tap_read.type return cls._schema_virtual_network_tap_read = _schema_virtual_network_tap_read = AAZObjectType() virtual_network_tap_read = _schema_virtual_network_tap_read virtual_network_tap_read.etag = AAZStrType( flags={"read_only": True}, ) virtual_network_tap_read.id = AAZStrType() virtual_network_tap_read.location = AAZStrType() virtual_network_tap_read.name = AAZStrType( flags={"read_only": True}, ) virtual_network_tap_read.properties = AAZObjectType( flags={"client_flatten": True}, ) virtual_network_tap_read.tags = AAZDictType() virtual_network_tap_read.type = AAZStrType( flags={"read_only": True}, ) properties = _schema_virtual_network_tap_read.properties properties.destination_load_balancer_front_end_ip_configuration = AAZObjectType( serialized_name="destinationLoadBalancerFrontEndIPConfiguration", ) cls._build_schema_frontend_ip_configuration_read(properties.destination_load_balancer_front_end_ip_configuration) properties.destination_network_interface_ip_configuration = AAZObjectType( serialized_name="destinationNetworkInterfaceIPConfiguration", ) cls._build_schema_network_interface_ip_configuration_read(properties.destination_network_interface_ip_configuration) properties.destination_port = AAZIntType( serialized_name="destinationPort", ) properties.network_interface_tap_configurations = AAZListType( serialized_name="networkInterfaceTapConfigurations", flags={"read_only": True}, ) properties.provisioning_state = AAZStrType( serialized_name="provisioningState", flags={"read_only": True}, ) properties.resource_guid = AAZStrType( serialized_name="resourceGuid", flags={"read_only": True}, ) network_interface_tap_configurations = _schema_virtual_network_tap_read.properties.network_interface_tap_configurations network_interface_tap_configurations.Element = AAZObjectType() cls._build_schema_network_interface_tap_configuration_read(network_interface_tap_configurations.Element) tags = _schema_virtual_network_tap_read.tags tags.Element = AAZStrType() _schema.etag = cls._schema_virtual_network_tap_read.etag _schema.id = cls._schema_virtual_network_tap_read.id _schema.location = cls._schema_virtual_network_tap_read.location _schema.name = cls._schema_virtual_network_tap_read.name _schema.properties = cls._schema_virtual_network_tap_read.properties _schema.tags = cls._schema_virtual_network_tap_read.tags _schema.type = cls._schema_virtual_network_tap_read.type __all__ = ["Create"]
PypiClean
/testops_api-1.0.2-py3-none-any.whl/testops_api/api/team_api.py
import re # noqa: F401 import sys # noqa: F401 from testops_api.api_client import ApiClient, Endpoint from testops_api.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types ) from testops_api.model.page_team_resource import PageTeamResource from testops_api.model.pageable import Pageable from testops_api.model.team_resource import TeamResource from testops_api.model.user_resource import UserResource from testops_api.model.user_team_resource import UserTeamResource class TeamApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def __assign_user_team( self, team_id, new_user_ids, **kwargs ): """Adds users to a Team. Returns the added User detail. # noqa: E501 The user issuing this request must be the Admin of the team. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.assign_user_team(team_id, new_user_ids, async_req=True) >>> result = thread.get() Args: team_id (int): new_user_ids ([int]): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: [UserResource] If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['team_id'] = \ team_id kwargs['new_user_ids'] = \ new_user_ids return self.call_with_http_info(**kwargs) self.assign_user_team = Endpoint( settings={ 'response_type': ([UserResource],), 'auth': [ 'basicScheme' ], 'endpoint_path': '/api/v1/users/add', 'operation_id': 'assign_user_team', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'team_id', 'new_user_ids', ], 'required': [ 'team_id', 'new_user_ids', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'team_id': (int,), 'new_user_ids': ([int],), }, 'attribute_map': { 'team_id': 'teamId', 'new_user_ids': 'newUserIds', }, 'location_map': { 'team_id': 'query', 'new_user_ids': 'query', }, 'collection_format_map': { 'new_user_ids': 'multi', } }, headers_map={ 'accept': [ '*/*' ], 'content_type': [], }, api_client=api_client, callable=__assign_user_team ) def __create2( self, team_resource, **kwargs ): """Creates a new Team. Returns the created Team detail. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create2(team_resource, async_req=True) >>> result = thread.get() Args: team_resource (TeamResource): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: TeamResource If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['team_resource'] = \ team_resource return self.call_with_http_info(**kwargs) self.create2 = Endpoint( settings={ 'response_type': (TeamResource,), 'auth': [ 'basicScheme' ], 'endpoint_path': '/api/v1/teams', 'operation_id': 'create2', 'http_method': 'POST', 'servers': None, }, params_map={ 'all': [ 'team_resource', ], 'required': [ 'team_resource', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'team_resource': (TeamResource,), }, 'attribute_map': { }, 'location_map': { 'team_resource': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ '*/*' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__create2 ) def __delete2( self, id, **kwargs ): """Delete a Team. Returns the delete Team detail. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete2(id, async_req=True) >>> result = thread.get() Args: id (int): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: TeamResource If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['id'] = \ id return self.call_with_http_info(**kwargs) self.delete2 = Endpoint( settings={ 'response_type': (TeamResource,), 'auth': [ 'basicScheme' ], 'endpoint_path': '/api/v1/teams/{id}', 'operation_id': 'delete2', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'id', ], 'required': [ 'id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'id': (int,), }, 'attribute_map': { 'id': 'id', }, 'location_map': { 'id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ '*/*' ], 'content_type': [], }, api_client=api_client, callable=__delete2 ) def __get8( self, id, **kwargs ): """Returns a Team detail. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get8(id, async_req=True) >>> result = thread.get() Args: id (int): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: TeamResource If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['id'] = \ id return self.call_with_http_info(**kwargs) self.get8 = Endpoint( settings={ 'response_type': (TeamResource,), 'auth': [ 'basicScheme' ], 'endpoint_path': '/api/v1/teams/{id}', 'operation_id': 'get8', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'id', ], 'required': [ 'id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'id': (int,), }, 'attribute_map': { 'id': 'id', }, 'location_map': { 'id': 'path', }, 'collection_format_map': { } }, headers_map={ 'accept': [ '*/*' ], 'content_type': [], }, api_client=api_client, callable=__get8 ) def __list( self, pageable, **kwargs ): """Returns all Teams of the current User. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list(pageable, async_req=True) >>> result = thread.get() Args: pageable (Pageable): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: PageTeamResource If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['pageable'] = \ pageable return self.call_with_http_info(**kwargs) self.list = Endpoint( settings={ 'response_type': (PageTeamResource,), 'auth': [ 'basicScheme' ], 'endpoint_path': '/api/v1/teams', 'operation_id': 'list', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'pageable', ], 'required': [ 'pageable', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'pageable': (Pageable,), }, 'attribute_map': { 'pageable': 'pageable', }, 'location_map': { 'pageable': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ '*/*' ], 'content_type': [], }, api_client=api_client, callable=__list ) def __remove_user( self, team_id, user_id, **kwargs ): """Removes a User from a Team. Returns the removed User detail. # noqa: E501 The user issuing this request must be the Admin of the team. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.remove_user(team_id, user_id, async_req=True) >>> result = thread.get() Args: team_id (int): user_id (int): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: UserResource If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['team_id'] = \ team_id kwargs['user_id'] = \ user_id return self.call_with_http_info(**kwargs) self.remove_user = Endpoint( settings={ 'response_type': (UserResource,), 'auth': [ 'basicScheme' ], 'endpoint_path': '/api/v1/users/remove', 'operation_id': 'remove_user', 'http_method': 'DELETE', 'servers': None, }, params_map={ 'all': [ 'team_id', 'user_id', ], 'required': [ 'team_id', 'user_id', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'team_id': (int,), 'user_id': (int,), }, 'attribute_map': { 'team_id': 'teamId', 'user_id': 'userId', }, 'location_map': { 'team_id': 'query', 'user_id': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ '*/*' ], 'content_type': [], }, api_client=api_client, callable=__remove_user ) def __update2( self, team_resource, **kwargs ): """Updates a Team detail. Returns the updated Team detail. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update2(team_resource, async_req=True) >>> result = thread.get() Args: team_resource (TeamResource): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: TeamResource If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['team_resource'] = \ team_resource return self.call_with_http_info(**kwargs) self.update2 = Endpoint( settings={ 'response_type': (TeamResource,), 'auth': [ 'basicScheme' ], 'endpoint_path': '/api/v1/teams', 'operation_id': 'update2', 'http_method': 'PUT', 'servers': None, }, params_map={ 'all': [ 'team_resource', ], 'required': [ 'team_resource', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'team_resource': (TeamResource,), }, 'attribute_map': { }, 'location_map': { 'team_resource': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ '*/*' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__update2 ) def __update_user_team( self, user_team_resource, **kwargs ): """Updates the role of a User in a Team. Returns the updated detail. # noqa: E501 The user issuing this request must be the Admin of the team. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_user_team(user_team_resource, async_req=True) >>> result = thread.get() Args: user_team_resource (UserTeamResource): Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: UserTeamResource If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_host_index'] = kwargs.get('_host_index') kwargs['user_team_resource'] = \ user_team_resource return self.call_with_http_info(**kwargs) self.update_user_team = Endpoint( settings={ 'response_type': (UserTeamResource,), 'auth': [ 'basicScheme' ], 'endpoint_path': '/api/v1/permission/team/user', 'operation_id': 'update_user_team', 'http_method': 'PUT', 'servers': None, }, params_map={ 'all': [ 'user_team_resource', ], 'required': [ 'user_team_resource', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'user_team_resource': (UserTeamResource,), }, 'attribute_map': { }, 'location_map': { 'user_team_resource': 'body', }, 'collection_format_map': { } }, headers_map={ 'accept': [ '*/*' ], 'content_type': [ 'application/json' ] }, api_client=api_client, callable=__update_user_team )
PypiClean
/pytubedata-1.1.0-py3-none-any.whl/Youtube/channel.py
class channel(): """ The channel class handles the methods to fetch data from the YouTube Data API related to a channel params: required key- YouTube Data API key. Get a YouTube Data API key here: https://console.cloud.google.com/apis/dashboard """ def __init__(self): pass def get_channel(self, **kwargs): ''' Given a channel `id` returns metrics (views, subscribersCount, videoCount) and metadata (description, category) as a dictionary. Read the docs: https://developers.google.com/youtube/v3/docs/channels/list params: required id: The ID of a channel i.e. "UCifqJm4QMYTtrxZb_bN02Pw", this can be found in the source code of homepage of the channel type: str or list of str returns metadata from the inputted channel ``id``s. rtype: dict ''' if not kwargs.get('id'): raise KeyError("id not given") params= { "id": kwargs.get('id'), "part": "snippet, statistics, topicDetails, brandingSettings, contentDetails, contentOwnerDetails" } kwargs.pop('id') return ("/channels", params) def get_all_sections(self, **kwargs): ''' Given a channel `id` returns all sections of the channel. Read the docs: https://developers.google.com/youtube/v3/docs/channelSections/list params: required id: The ID of a channel i.e. "UCifqJm4QMYTtrxZb_bN02Pw", this can be found in the source code of homepage of the channel type: str returns sections of the inputted channel ``id``s. rtype: dict ''' if not kwargs.get('id'): raise KeyError("id not given") params= { "channelId": kwargs.get('id'), "part": "snippet, contentDetails" } kwargs.pop('id') params.update(kwargs) return ("/channelSections", params) def get_section(self, **kwargs): ''' Given a channelSection `id` return metadata for the section. Read the docs: https://developers.google.com/youtube/v3/docs/channelSections/list params: required id: The ID of a channel section i.e. "UCqW8jxh4tH1Z1sWPbkGWL4g.LeAltgu_pbM", this can be get using get_channel_section() method type: str returns metadata of the inputted channelSections ``id``s. rtype: dict ''' if not kwargs.get('id'): raise KeyError("id not given") params= { "id": kwargs.get('id'), "part": "snippet, contentDetails" } kwargs.pop('id') params.update(kwargs) return ("/channelSections", params)
PypiClean
/discord-pda-1.0.1a0.tar.gz/discord-pda-1.0.1a0/pda/invite.py
from __future__ import annotations from typing import List, Optional, Type, TypeVar, Union, TYPE_CHECKING from .asset import Asset from .utils import parse_time, snowflake_time, _get_as_snowflake from .object import Object from .mixins import Hashable from .enums import ChannelType, VerificationLevel, InviteTarget, try_enum from .appinfo import PartialAppInfo __all__ = ( 'PartialInviteChannel', 'PartialInviteGuild', 'Invite', ) if TYPE_CHECKING: from .types.invite import ( Invite as InvitePayload, InviteGuild as InviteGuildPayload, GatewayInvite as GatewayInvitePayload, ) from .types.channel import ( PartialChannel as InviteChannelPayload, ) from .state import ConnectionState from .guild import Guild from .abc import GuildChannel from .user import User InviteGuildType = Union[Guild, 'PartialInviteGuild', Object] InviteChannelType = Union[GuildChannel, 'PartialInviteChannel', Object] import datetime class PartialInviteChannel: """Represents a "partial" invite channel. This model will be given when the user is not part of the guild the :class:`Invite` resolves to. .. container:: operations .. describe:: x == y Checks if two partial channels are the same. .. describe:: x != y Checks if two partial channels are not the same. .. describe:: hash(x) Return the partial channel's hash. .. describe:: str(x) Returns the partial channel's name. Attributes ----------- name: :class:`str` The partial channel's name. id: :class:`int` The partial channel's ID. type: :class:`ChannelType` The partial channel's type. """ __slots__ = ('id', 'name', 'type') def __init__(self, data: InviteChannelPayload): self.id: int = int(data['id']) self.name: str = data['name'] self.type: ChannelType = try_enum(ChannelType, data['type']) def __str__(self) -> str: return self.name def __repr__(self) -> str: return f'<PartialInviteChannel id={self.id} name={self.name} type={self.type!r}>' @property def mention(self) -> str: """:class:`str`: The string that allows you to mention the channel.""" return f'<#{self.id}>' @property def created_at(self) -> datetime.datetime: """:class:`datetime.datetime`: Returns the channel's creation time in UTC.""" return snowflake_time(self.id) class PartialInviteGuild: """Represents a "partial" invite guild. This model will be given when the user is not part of the guild the :class:`Invite` resolves to. .. container:: operations .. describe:: x == y Checks if two partial guilds are the same. .. describe:: x != y Checks if two partial guilds are not the same. .. describe:: hash(x) Return the partial guild's hash. .. describe:: str(x) Returns the partial guild's name. Attributes ----------- name: :class:`str` The partial guild's name. id: :class:`int` The partial guild's ID. verification_level: :class:`VerificationLevel` The partial guild's verification level. features: List[:class:`str`] A list of features the guild has. See :attr:`Guild.features` for more information. description: Optional[:class:`str`] The partial guild's description. """ __slots__ = ('_state', 'features', '_icon', '_banner', 'id', 'name', '_splash', 'verification_level', 'description') def __init__(self, state: ConnectionState, data: InviteGuildPayload, id: int): self._state: ConnectionState = state self.id: int = id self.name: str = data['name'] self.features: List[str] = data.get('features', []) self._icon: Optional[str] = data.get('icon') self._banner: Optional[str] = data.get('banner') self._splash: Optional[str] = data.get('splash') self.verification_level: VerificationLevel = try_enum(VerificationLevel, data.get('verification_level')) self.description: Optional[str] = data.get('description') def __str__(self) -> str: return self.name def __repr__(self) -> str: return ( f'<{self.__class__.__name__} id={self.id} name={self.name!r} features={self.features} ' f'description={self.description!r}>' ) @property def created_at(self) -> datetime.datetime: """:class:`datetime.datetime`: Returns the guild's creation time in UTC.""" return snowflake_time(self.id) @property def icon(self) -> Optional[Asset]: """Optional[:class:`Asset`]: Returns the guild's icon asset, if available.""" if self._icon is None: return None return Asset._from_guild_icon(self._state, self.id, self._icon) @property def banner(self) -> Optional[Asset]: """Optional[:class:`Asset`]: Returns the guild's banner asset, if available.""" if self._banner is None: return None return Asset._from_guild_image(self._state, self.id, self._banner, path='banners') @property def splash(self) -> Optional[Asset]: """Optional[:class:`Asset`]: Returns the guild's invite splash asset, if available.""" if self._splash is None: return None return Asset._from_guild_image(self._state, self.id, self._splash, path='splashes') I = TypeVar('I', bound='Invite') class Invite(Hashable): r"""Represents a Discord :class:`Guild` or :class:`abc.GuildChannel` invite. Depending on the way this object was created, some of the attributes can have a value of ``None``. .. container:: operations .. describe:: x == y Checks if two invites are equal. .. describe:: x != y Checks if two invites are not equal. .. describe:: hash(x) Returns the invite hash. .. describe:: str(x) Returns the invite URL. The following table illustrates what methods will obtain the attributes: +------------------------------------+------------------------------------------------------------+ | Attribute | Method | +====================================+============================================================+ | :attr:`max_age` | :meth:`abc.GuildChannel.invites`\, :meth:`Guild.invites` | +------------------------------------+------------------------------------------------------------+ | :attr:`max_uses` | :meth:`abc.GuildChannel.invites`\, :meth:`Guild.invites` | +------------------------------------+------------------------------------------------------------+ | :attr:`created_at` | :meth:`abc.GuildChannel.invites`\, :meth:`Guild.invites` | +------------------------------------+------------------------------------------------------------+ | :attr:`temporary` | :meth:`abc.GuildChannel.invites`\, :meth:`Guild.invites` | +------------------------------------+------------------------------------------------------------+ | :attr:`uses` | :meth:`abc.GuildChannel.invites`\, :meth:`Guild.invites` | +------------------------------------+------------------------------------------------------------+ | :attr:`approximate_member_count` | :meth:`Client.fetch_invite` with `with_counts` enabled | +------------------------------------+------------------------------------------------------------+ | :attr:`approximate_presence_count` | :meth:`Client.fetch_invite` with `with_counts` enabled | +------------------------------------+------------------------------------------------------------+ | :attr:`expires_at` | :meth:`Client.fetch_invite` with `with_expiration` enabled | +------------------------------------+------------------------------------------------------------+ If it's not in the table above then it is available by all methods. Attributes ----------- max_age: :class:`int` How long before the invite expires in seconds. A value of ``0`` indicates that it doesn't expire. code: :class:`str` The URL fragment used for the invite. guild: Optional[Union[:class:`Guild`, :class:`Object`, :class:`PartialInviteGuild`]] The guild the invite is for. Can be ``None`` if it's from a group direct message. revoked: :class:`bool` Indicates if the invite has been revoked. created_at: :class:`datetime.datetime` An aware UTC datetime object denoting the time the invite was created. temporary: :class:`bool` Indicates that the invite grants temporary membership. If ``True``, members who joined via this invite will be kicked upon disconnect. uses: :class:`int` How many times the invite has been used. max_uses: :class:`int` How many times the invite can be used. A value of ``0`` indicates that it has unlimited uses. inviter: Optional[:class:`User`] The user who created the invite. approximate_member_count: Optional[:class:`int`] The approximate number of members in the guild. approximate_presence_count: Optional[:class:`int`] The approximate number of members currently active in the guild. This includes idle, dnd, online, and invisible members. Offline members are excluded. expires_at: Optional[:class:`datetime.datetime`] The expiration date of the invite. If the value is ``None`` when received through `Client.fetch_invite` with `with_expiration` enabled, the invite will never expire. .. versionadded:: 2.0 channel: Union[:class:`abc.GuildChannel`, :class:`Object`, :class:`PartialInviteChannel`] The channel the invite is for. target_type: :class:`InviteTarget` The type of target for the voice channel invite. .. versionadded:: 2.0 target_user: Optional[:class:`User`] The user whose stream to display for this invite, if any. .. versionadded:: 2.0 target_application: Optional[:class:`PartialAppInfo`] The embedded application the invite targets, if any. .. versionadded:: 2.0 """ __slots__ = ( 'max_age', 'code', 'guild', 'revoked', 'created_at', 'uses', 'temporary', 'max_uses', 'inviter', 'channel', 'target_user', 'target_type', '_state', 'approximate_member_count', 'approximate_presence_count', 'target_application', 'expires_at', ) BASE = 'https://pda.gg' def __init__( self, *, state: ConnectionState, data: InvitePayload, guild: Optional[Union[PartialInviteGuild, Guild]] = None, channel: Optional[Union[PartialInviteChannel, GuildChannel]] = None, ): self._state: ConnectionState = state self.max_age: Optional[int] = data.get('max_age') self.code: str = data['code'] self.guild: Optional[InviteGuildType] = self._resolve_guild(data.get('guild'), guild) self.revoked: Optional[bool] = data.get('revoked') self.created_at: Optional[datetime.datetime] = parse_time(data.get('created_at')) self.temporary: Optional[bool] = data.get('temporary') self.uses: Optional[int] = data.get('uses') self.max_uses: Optional[int] = data.get('max_uses') self.approximate_presence_count: Optional[int] = data.get('approximate_presence_count') self.approximate_member_count: Optional[int] = data.get('approximate_member_count') expires_at = data.get('expires_at', None) self.expires_at: Optional[datetime.datetime] = parse_time(expires_at) if expires_at else None inviter_data = data.get('inviter') self.inviter: Optional[User] = None if inviter_data is None else self._state.create_user(inviter_data) self.channel: Optional[InviteChannelType] = self._resolve_channel(data.get('channel'), channel) target_user_data = data.get('target_user') self.target_user: Optional[User] = None if target_user_data is None else self._state.create_user(target_user_data) self.target_type: InviteTarget = try_enum(InviteTarget, data.get("target_type", 0)) application = data.get('target_application') self.target_application: Optional[PartialAppInfo] = ( PartialAppInfo(data=application, state=state) if application else None ) @classmethod def from_incomplete(cls: Type[I], *, state: ConnectionState, data: InvitePayload) -> I: guild: Optional[Union[Guild, PartialInviteGuild]] try: guild_data = data['guild'] except KeyError: # If we're here, then this is a group DM guild = None else: guild_id = int(guild_data['id']) guild = state._get_guild(guild_id) if guild is None: # If it's not cached, then it has to be a partial guild guild = PartialInviteGuild(state, guild_data, guild_id) # As far as I know, invites always need a channel # So this should never raise. channel: Union[PartialInviteChannel, GuildChannel] = PartialInviteChannel(data['channel']) if guild is not None and not isinstance(guild, PartialInviteGuild): # Upgrade the partial data if applicable channel = guild.get_channel(channel.id) or channel return cls(state=state, data=data, guild=guild, channel=channel) @classmethod def from_gateway(cls: Type[I], *, state: ConnectionState, data: GatewayInvitePayload) -> I: guild_id: Optional[int] = _get_as_snowflake(data, 'guild_id') guild: Optional[Union[Guild, Object]] = state._get_guild(guild_id) channel_id = int(data['channel_id']) if guild is not None: channel = guild.get_channel(channel_id) or Object(id=channel_id) # type: ignore else: guild = Object(id=guild_id) if guild_id is not None else None channel = Object(id=channel_id) return cls(state=state, data=data, guild=guild, channel=channel) # type: ignore def _resolve_guild( self, data: Optional[InviteGuildPayload], guild: Optional[Union[Guild, PartialInviteGuild]] = None, ) -> Optional[InviteGuildType]: if guild is not None: return guild if data is None: return None guild_id = int(data['id']) return PartialInviteGuild(self._state, data, guild_id) def _resolve_channel( self, data: Optional[InviteChannelPayload], channel: Optional[Union[PartialInviteChannel, GuildChannel]] = None, ) -> Optional[InviteChannelType]: if channel is not None: return channel if data is None: return None return PartialInviteChannel(data) def __str__(self) -> str: return self.url def __repr__(self) -> str: return ( f'<Invite code={self.code!r} guild={self.guild!r} ' f'online={self.approximate_presence_count} ' f'members={self.approximate_member_count}>' ) def __hash__(self) -> int: return hash(self.code) @property def id(self) -> str: """:class:`str`: Returns the proper code portion of the invite.""" return self.code @property def url(self) -> str: """:class:`str`: A property that retrieves the invite URL.""" return self.BASE + '/' + self.code async def delete(self, *, reason: Optional[str] = None): """|coro| Revokes the instant invite. You must have the :attr:`~Permissions.manage_channels` permission to do this. Parameters ----------- reason: Optional[:class:`str`] The reason for deleting this invite. Shows up on the audit log. Raises ------- Forbidden You do not have permissions to revoke invites. NotFound The invite is invalid or expired. HTTPException Revoking the invite failed. """ await self._state.http.delete_invite(self.code, reason=reason)
PypiClean
/scraly_ovh-0.32.0.tar.gz/scraly_ovh-0.32.0/scraly_ovh/cloudproject/get_kube_nodes.py
import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs __all__ = [ 'GetKubeNodesResult', 'AwaitableGetKubeNodesResult', 'get_kube_nodes', 'get_kube_nodes_output', ] @pulumi.output_type class GetKubeNodesResult: """ A collection of values returned by getKubeNodes. """ def __init__(__self__, id=None, kube_id=None, nodes=None, service_name=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if kube_id and not isinstance(kube_id, str): raise TypeError("Expected argument 'kube_id' to be a str") pulumi.set(__self__, "kube_id", kube_id) if nodes and not isinstance(nodes, list): raise TypeError("Expected argument 'nodes' to be a list") pulumi.set(__self__, "nodes", nodes) if service_name and not isinstance(service_name, str): raise TypeError("Expected argument 'service_name' to be a str") pulumi.set(__self__, "service_name", service_name) @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter(name="kubeId") def kube_id(self) -> str: """ See Argument Reference above. """ return pulumi.get(self, "kube_id") @property @pulumi.getter def nodes(self) -> Sequence['outputs.GetKubeNodesNodeResult']: """ List of all nodes composing the kubernetes cluster """ return pulumi.get(self, "nodes") @property @pulumi.getter(name="serviceName") def service_name(self) -> str: """ See Argument Reference above. """ return pulumi.get(self, "service_name") class AwaitableGetKubeNodesResult(GetKubeNodesResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetKubeNodesResult( id=self.id, kube_id=self.kube_id, nodes=self.nodes, service_name=self.service_name) def get_kube_nodes(kube_id: Optional[str] = None, service_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetKubeNodesResult: """ Use this data source to get a list of OVHcloud Managed Kubernetes nodes. ## Example Usage :param str kube_id: The ID of the managed kubernetes cluster. :param str service_name: The id of the public cloud project. If omitted, the `OVH_CLOUD_PROJECT_SERVICE` environment variable is used. """ __args__ = dict() __args__['kubeId'] = kube_id __args__['serviceName'] = service_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('ovh:CloudProject/getKubeNodes:getKubeNodes', __args__, opts=opts, typ=GetKubeNodesResult).value return AwaitableGetKubeNodesResult( id=pulumi.get(__ret__, 'id'), kube_id=pulumi.get(__ret__, 'kube_id'), nodes=pulumi.get(__ret__, 'nodes'), service_name=pulumi.get(__ret__, 'service_name')) @_utilities.lift_output_func(get_kube_nodes) def get_kube_nodes_output(kube_id: Optional[pulumi.Input[str]] = None, service_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetKubeNodesResult]: """ Use this data source to get a list of OVHcloud Managed Kubernetes nodes. ## Example Usage :param str kube_id: The ID of the managed kubernetes cluster. :param str service_name: The id of the public cloud project. If omitted, the `OVH_CLOUD_PROJECT_SERVICE` environment variable is used. """ ...
PypiClean
/pelican_manager-0.2.1-py3-none-any.whl/pelican_manager/static/bootstrap-table/dist/bootstrap-table-locale-all.min.js
!function(a){"use strict";a.fn.bootstrapTable.locales["af-ZA"]={formatLoadingMessage:function(){return"Besig om te laai, wag asseblief ..."},formatRecordsPerPage:function(a){return a+" rekords per bladsy"},formatShowingRows:function(a,b,c){return"Resultate "+a+" tot "+b+" van "+c+" rye"},formatSearch:function(){return"Soek"},formatNoMatches:function(){return"Geen rekords gevind nie"},formatPaginationSwitch:function(){return"Wys/verberg bladsy nummering"},formatRefresh:function(){return"Herlaai"},formatToggle:function(){return"Wissel"},formatColumns:function(){return"Kolomme"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["af-ZA"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["ar-SA"]={formatLoadingMessage:function(){return"جاري التحميل, يرجى الإنتظار..."},formatRecordsPerPage:function(a){return a+" سجل لكل صفحة"},formatShowingRows:function(a,b,c){return"الظاهر "+a+" إلى "+b+" من "+c+" سجل"},formatSearch:function(){return"بحث"},formatNoMatches:function(){return"لا توجد نتائج مطابقة للبحث"},formatPaginationSwitch:function(){return"إخفاءإظهار ترقيم الصفحات"},formatRefresh:function(){return"تحديث"},formatToggle:function(){return"تغيير"},formatColumns:function(){return"أعمدة"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["ar-SA"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["ca-ES"]={formatLoadingMessage:function(){return"Espereu, si us plau..."},formatRecordsPerPage:function(a){return a+" resultats per pàgina"},formatShowingRows:function(a,b,c){return"Mostrant de "+a+" fins "+b+" - total "+c+" resultats"},formatSearch:function(){return"Cerca"},formatNoMatches:function(){return"No s'han trobat resultats"},formatPaginationSwitch:function(){return"Amaga/Mostra paginació"},formatRefresh:function(){return"Refresca"},formatToggle:function(){return"Alterna formatació"},formatColumns:function(){return"Columnes"},formatAllRows:function(){return"Tots"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["ca-ES"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["cs-CZ"]={formatLoadingMessage:function(){return"Čekejte, prosím..."},formatRecordsPerPage:function(a){return a+" položek na stránku"},formatShowingRows:function(a,b,c){return"Zobrazena "+a+". - "+b+". položka z celkových "+c},formatSearch:function(){return"Vyhledávání"},formatNoMatches:function(){return"Nenalezena žádná vyhovující položka"},formatPaginationSwitch:function(){return"Skrýt/Zobrazit stránkování"},formatRefresh:function(){return"Aktualizovat"},formatToggle:function(){return"Přepni"},formatColumns:function(){return"Sloupce"},formatAllRows:function(){return"Vše"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["cs-CZ"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["da-DK"]={formatLoadingMessage:function(){return"Indlæser, vent venligst..."},formatRecordsPerPage:function(a){return a+" poster pr side"},formatShowingRows:function(a,b,c){return"Viser "+a+" til "+b+" af "+c+" rækker"},formatSearch:function(){return"Søg"},formatNoMatches:function(){return"Ingen poster fundet"},formatRefresh:function(){return"Opdater"},formatToggle:function(){return"Skift"},formatColumns:function(){return"Kolonner"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["da-DK"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["de-DE"]={formatLoadingMessage:function(){return"Lade, bitte warten..."},formatRecordsPerPage:function(a){return a+" Einträge pro Seite."},formatShowingRows:function(a,b,c){return"Zeige Zeile "+a+" bis "+b+" von "+c+" Zeile"+(c>1?"n":"")+"."},formatDetailPagination:function(a){return"Zeige "+a+" Zeile"+(a>1?"n":"")+"."},formatSearch:function(){return"Suchen ..."},formatNoMatches:function(){return"Keine passenden Ergebnisse gefunden."},formatRefresh:function(){return"Neu laden"},formatToggle:function(){return"Umschalten"},formatColumns:function(){return"Spalten"},formatAllRows:function(){return"Alle"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["de-DE"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["el-GR"]={formatLoadingMessage:function(){return"Φορτώνει, παρακαλώ περιμένετε..."},formatRecordsPerPage:function(a){return a+" αποτελέσματα ανά σελίδα"},formatShowingRows:function(a,b,c){return"Εμφανίζονται από την "+a+" ως την "+b+" από σύνολο "+c+" σειρών"},formatSearch:function(){return"Αναζητήστε"},formatNoMatches:function(){return"Δεν βρέθηκαν αποτελέσματα"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["el-GR"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["en-US"]={formatLoadingMessage:function(){return"Loading, please wait..."},formatRecordsPerPage:function(a){return a+" rows per page"},formatShowingRows:function(a,b,c){return"Showing "+a+" to "+b+" of "+c+" rows"},formatSearch:function(){return"Search"},formatNoMatches:function(){return"No matching records found"},formatPaginationSwitch:function(){return"Hide/Show pagination"},formatRefresh:function(){return"Refresh"},formatToggle:function(){return"Toggle"},formatColumns:function(){return"Columns"},formatAllRows:function(){return"All"},formatExport:function(){return"Export data"},formatClearFilters:function(){return"Clear filters"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["en-US"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["es-AR"]={formatLoadingMessage:function(){return"Cargando, espere por favor..."},formatRecordsPerPage:function(a){return a+" registros por página"},formatShowingRows:function(a,b,c){return"Mostrando "+a+" a "+b+" de "+c+" filas"},formatSearch:function(){return"Buscar"},formatNoMatches:function(){return"No se encontraron registros"},formatAllRows:function(){return"Todo"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["es-AR"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["es-CL"]={formatLoadingMessage:function(){return"Cargando, espere por favor..."},formatRecordsPerPage:function(a){return a+" filas por página"},formatShowingRows:function(a,b,c){return"Mostrando "+a+" a "+b+" de "+c+" filas"},formatSearch:function(){return"Buscar"},formatNoMatches:function(){return"No se encontraron registros"},formatPaginationSwitch:function(){return"Ocultar/Mostrar paginación"},formatRefresh:function(){return"Refrescar"},formatToggle:function(){return"Cambiar"},formatColumns:function(){return"Columnas"},formatAllRows:function(){return"Todo"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["es-CL"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["es-CR"]={formatLoadingMessage:function(){return"Cargando, por favor espere..."},formatRecordsPerPage:function(a){return a+" registros por página"},formatShowingRows:function(a,b,c){return"Mostrando de "+a+" a "+b+" registros de "+c+" registros en total"},formatSearch:function(){return"Buscar"},formatNoMatches:function(){return"No se encontraron registros"},formatRefresh:function(){return"Refrescar"},formatToggle:function(){return"Alternar"},formatColumns:function(){return"Columnas"},formatAllRows:function(){return"Todo"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["es-CR"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["es-ES"]={formatLoadingMessage:function(){return"Por favor espere..."},formatRecordsPerPage:function(a){return a+" resultados por página"},formatShowingRows:function(a,b,c){return"Mostrando desde "+a+" hasta "+b+" - En total "+c+" resultados"},formatSearch:function(){return"Buscar"},formatNoMatches:function(){return"No se encontraron resultados"},formatPaginationSwitch:function(){return"Ocultar/Mostrar paginación"},formatRefresh:function(){return"Refrescar"},formatToggle:function(){return"Ocultar/Mostrar"},formatColumns:function(){return"Columnas"},formatAllRows:function(){return"Todos"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["es-ES"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["es-MX"]={formatLoadingMessage:function(){return"Cargando, espere por favor..."},formatRecordsPerPage:function(a){return a+" registros por página"},formatShowingRows:function(a,b,c){return"Mostrando "+a+" a "+b+" de "+c+" filas"},formatSearch:function(){return"Buscar"},formatNoMatches:function(){return"No se encontraron registros"},formatAllRows:function(){return"Todo"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["es-MX"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["es-NI"]={formatLoadingMessage:function(){return"Cargando, por favor espere..."},formatRecordsPerPage:function(a){return a+" registros por página"},formatShowingRows:function(a,b,c){return"Mostrando de "+a+" a "+b+" registros de "+c+" registros en total"},formatSearch:function(){return"Buscar"},formatNoMatches:function(){return"No se encontraron registros"},formatRefresh:function(){return"Refrescar"},formatToggle:function(){return"Alternar"},formatColumns:function(){return"Columnas"},formatAllRows:function(){return"Todo"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["es-NI"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["es-SP"]={formatLoadingMessage:function(){return"Cargando, por favor espera..."},formatRecordsPerPage:function(a){return a+" registros por p&#225;gina."},formatShowingRows:function(a,b,c){return a+" - "+b+" de "+c+" registros."},formatSearch:function(){return"Buscar"},formatNoMatches:function(){return"No se han encontrado registros."},formatRefresh:function(){return"Actualizar"},formatToggle:function(){return"Alternar"},formatColumns:function(){return"Columnas"},formatAllRows:function(){return"Todo"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["es-SP"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["et-EE"]={formatLoadingMessage:function(){return"Päring käib, palun oota..."},formatRecordsPerPage:function(a){return a+" rida lehe kohta"},formatShowingRows:function(a,b,c){return"Näitan tulemusi "+a+" kuni "+b+" - kokku "+c+" tulemust"},formatSearch:function(){return"Otsi"},formatNoMatches:function(){return"Päringu tingimustele ei vastanud ühtegi tulemust"},formatPaginationSwitch:function(){return"Näita/Peida lehtedeks jagamine"},formatRefresh:function(){return"Värskenda"},formatToggle:function(){return"Lülita"},formatColumns:function(){return"Veerud"},formatAllRows:function(){return"Kõik"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["et-EE"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["fa-IR"]={formatLoadingMessage:function(){return"در حال بارگذاری, لطفا صبر کنید..."},formatRecordsPerPage:function(a){return a+" رکورد در صفحه"},formatShowingRows:function(a,b,c){return"نمایش "+a+" تا "+b+" از "+c+" ردیف"},formatSearch:function(){return"جستجو"},formatNoMatches:function(){return"رکوردی یافت نشد."},formatPaginationSwitch:function(){return"نمایش/مخفی صفحه بندی"},formatRefresh:function(){return"به روز رسانی"},formatToggle:function(){return"تغییر نمایش"},formatColumns:function(){return"سطر ها"},formatAllRows:function(){return"همه"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["fa-IR"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["fr-BE"]={formatLoadingMessage:function(){return"Chargement en cours..."},formatRecordsPerPage:function(a){return a+" entrées par page"},formatShowingRows:function(a,b,c){return"Affiche de"+a+" à "+b+" sur "+c+" lignes"},formatSearch:function(){return"Recherche"},formatNoMatches:function(){return"Pas de fichiers trouvés"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["fr-BE"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["fr-FR"]={formatLoadingMessage:function(){return"Chargement en cours, patientez, s´il vous plaît ..."},formatRecordsPerPage:function(a){return a+" lignes par page"},formatShowingRows:function(a,b,c){return"Affichage des lignes "+a+" à "+b+" sur "+c+" lignes au total"},formatSearch:function(){return"Rechercher"},formatNoMatches:function(){return"Aucun résultat trouvé"},formatRefresh:function(){return"Rafraîchir"},formatToggle:function(){return"Alterner"},formatColumns:function(){return"Colonnes"},formatAllRows:function(){return"Tous"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["fr-FR"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["he-IL"]={formatLoadingMessage:function(){return"טוען, נא להמתין..."},formatRecordsPerPage:function(a){return a+" שורות בעמוד"},formatShowingRows:function(a,b,c){return"מציג "+a+" עד "+b+" מ-"+c+" שורות"},formatSearch:function(){return"חיפוש"},formatNoMatches:function(){return"לא נמצאו רשומות תואמות"},formatPaginationSwitch:function(){return"הסתר/הצג מספור דפים"},formatRefresh:function(){return"רענן"},formatToggle:function(){return"החלף תצוגה"},formatColumns:function(){return"עמודות"},formatAllRows:function(){return"הכל"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["he-IL"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["hr-HR"]={formatLoadingMessage:function(){return"Molimo pričekajte ..."},formatRecordsPerPage:function(a){return a+" broj zapisa po stranici"},formatShowingRows:function(a,b,c){return"Prikazujem "+a+". - "+b+". od ukupnog broja zapisa "+c},formatSearch:function(){return"Pretraži"},formatNoMatches:function(){return"Nije pronađen niti jedan zapis"},formatPaginationSwitch:function(){return"Prikaži/sakrij stranice"},formatRefresh:function(){return"Osvježi"},formatToggle:function(){return"Promijeni prikaz"},formatColumns:function(){return"Kolone"},formatAllRows:function(){return"Sve"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["hr-HR"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["hu-HU"]={formatLoadingMessage:function(){return"Betöltés, kérem várjon..."},formatRecordsPerPage:function(a){return a+" rekord per oldal"},formatShowingRows:function(a,b,c){return"Megjelenítve "+a+" - "+b+" / "+c+" összesen"},formatSearch:function(){return"Keresés"},formatNoMatches:function(){return"Nincs találat"},formatPaginationSwitch:function(){return"Lapozó elrejtése/megjelenítése"},formatRefresh:function(){return"Frissítés"},formatToggle:function(){return"Összecsuk/Kinyit"},formatColumns:function(){return"Oszlopok"},formatAllRows:function(){return"Összes"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["hu-HU"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["id-ID"]={formatLoadingMessage:function(){return"Memuat, mohon tunggu..."},formatRecordsPerPage:function(a){return a+" baris per halaman"},formatShowingRows:function(a,b,c){return"Menampilkan "+a+" sampai "+b+" dari "+c+" baris"},formatSearch:function(){return"Pencarian"},formatNoMatches:function(){return"Tidak ditemukan data yang cocok"},formatPaginationSwitch:function(){return"Sembunyikan/Tampilkan halaman"},formatRefresh:function(){return"Muat ulang"},formatToggle:function(){return"Beralih"},formatColumns:function(){return"kolom"},formatAllRows:function(){return"Semua"},formatExport:function(){return"Ekspor data"},formatClearFilters:function(){return"Bersihkan filter"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["id-ID"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["it-IT"]={formatLoadingMessage:function(){return"Caricamento in corso..."},formatRecordsPerPage:function(a){return a+" elementi per pagina"},formatShowingRows:function(a,b,c){return"Elementi mostrati da "+a+" a "+b+" (Numero totali di elementi "+c+")"},formatSearch:function(){return"Cerca"},formatNoMatches:function(){return"Nessun elemento trovato"},formatPaginationSwitch:function(){return"Nascondi/Mostra paginazione"},formatRefresh:function(){return"Aggiorna"},formatToggle:function(){return"Attiva/Disattiva"},formatColumns:function(){return"Colonne"},formatAllRows:function(){return"Tutto"},formatExport:function(){return"Esporta dati"},formatClearFilters:function(){return"Pulisci filtri"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["it-IT"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["ja-JP"]={formatLoadingMessage:function(){return"読み込み中です。少々お待ちください。"},formatRecordsPerPage:function(a){return"ページ当たり最大"+a+"件"},formatShowingRows:function(a,b,c){return"全"+c+"件から、"+a+"から"+b+"件目まで表示しています"},formatSearch:function(){return"検索"},formatNoMatches:function(){return"該当するレコードが見つかりません"},formatPaginationSwitch:function(){return"ページ数を表示・非表示"},formatRefresh:function(){return"更新"},formatToggle:function(){return"トグル"},formatColumns:function(){return"列"},formatAllRows:function(){return"すべて"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["ja-JP"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["ka-GE"]={formatLoadingMessage:function(){return"იტვირთება, გთხოვთ მოიცადოთ..."},formatRecordsPerPage:function(a){return a+" ჩანაწერი თითო გვერდზე"},formatShowingRows:function(a,b,c){return"ნაჩვენებია "+a+"-დან "+b+"-მდე ჩანაწერი ჯამური "+c+"-დან"},formatSearch:function(){return"ძებნა"},formatNoMatches:function(){return"მონაცემები არ არის"},formatPaginationSwitch:function(){return"გვერდების გადამრთველის დამალვა/გამოჩენა"},formatRefresh:function(){return"განახლება"},formatToggle:function(){return"ჩართვა/გამორთვა"},formatColumns:function(){return"სვეტები"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["ka-GE"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["ko-KR"]={formatLoadingMessage:function(){return"데이터를 불러오는 중입니다..."},formatRecordsPerPage:function(a){return"페이지 당 "+a+"개 데이터 출력"},formatShowingRows:function(a,b,c){return"전체 "+c+"개 중 "+a+"~"+b+"번째 데이터 출력,"},formatSearch:function(){return"검색"},formatNoMatches:function(){return"조회된 데이터가 없습니다."},formatRefresh:function(){return"새로 고침"},formatToggle:function(){return"전환"},formatColumns:function(){return"컬럼 필터링"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["ko-KR"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["ms-MY"]={formatLoadingMessage:function(){return"Permintaan sedang dimuatkan. Sila tunggu sebentar..."},formatRecordsPerPage:function(a){return a+" rekod setiap muka surat"},formatShowingRows:function(a,b,c){return"Sedang memaparkan rekod "+a+" hingga "+b+" daripada jumlah "+c+" rekod"},formatSearch:function(){return"Cari"},formatNoMatches:function(){return"Tiada rekod yang menyamai permintaan"},formatPaginationSwitch:function(){return"Tunjuk/sembunyi muka surat"},formatRefresh:function(){return"Muatsemula"},formatToggle:function(){return"Tukar"},formatColumns:function(){return"Lajur"},formatAllRows:function(){return"Semua"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["ms-MY"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["nb-NO"]={formatLoadingMessage:function(){return"Oppdaterer, vennligst vent..."},formatRecordsPerPage:function(a){return a+" poster pr side"},formatShowingRows:function(a,b,c){return"Viser "+a+" til "+b+" av "+c+" rekker"},formatSearch:function(){return"Søk"},formatNoMatches:function(){return"Ingen poster funnet"},formatRefresh:function(){return"Oppdater"},formatToggle:function(){return"Endre"},formatColumns:function(){return"Kolonner"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["nb-NO"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["nl-NL"]={formatLoadingMessage:function(){return"Laden, even geduld..."},formatRecordsPerPage:function(a){return a+" records per pagina"},formatShowingRows:function(a,b,c){return"Toon "+a+" tot "+b+" van "+c+" record"+(c>1?"s":"")},formatDetailPagination:function(a){return"Toon "+a+" record"+(a>1?"s":"")},formatSearch:function(){return"Zoeken"},formatNoMatches:function(){return"Geen resultaten gevonden"},formatRefresh:function(){return"Vernieuwen"},formatToggle:function(){return"Omschakelen"},formatColumns:function(){return"Kolommen"},formatAllRows:function(){return"Alle"},formatPaginationSwitch:function(){return"Verberg/Toon paginatie"},formatExport:function(){return"Exporteer data"},formatClearFilters:function(){return"Verwijder filters"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["nl-NL"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["pl-PL"]={formatLoadingMessage:function(){return"Ładowanie, proszę czekać..."},formatRecordsPerPage:function(a){return a+" rekordów na stronę"},formatShowingRows:function(a,b,c){return"Wyświetlanie rekordów od "+a+" do "+b+" z "+c},formatSearch:function(){return"Szukaj"},formatNoMatches:function(){return"Niestety, nic nie znaleziono"},formatRefresh:function(){return"Odśwież"},formatToggle:function(){return"Przełącz"},formatColumns:function(){return"Kolumny"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["pl-PL"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["pt-BR"]={formatLoadingMessage:function(){return"Carregando, aguarde..."},formatRecordsPerPage:function(a){return a+" registros por página"},formatShowingRows:function(a,b,c){return"Exibindo "+a+" até "+b+" de "+c+" linhas"},formatSearch:function(){return"Pesquisar"},formatRefresh:function(){return"Recarregar"},formatToggle:function(){return"Alternar"},formatColumns:function(){return"Colunas"},formatPaginationSwitch:function(){return"Ocultar/Exibir paginação"},formatNoMatches:function(){return"Nenhum registro encontrado"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["pt-BR"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["pt-PT"]={formatLoadingMessage:function(){return"A carregar, por favor aguarde..."},formatRecordsPerPage:function(a){return a+" registos por p&aacute;gina"},formatShowingRows:function(a,b,c){return"A mostrar "+a+" at&eacute; "+b+" de "+c+" linhas"},formatSearch:function(){return"Pesquisa"},formatNoMatches:function(){return"Nenhum registo encontrado"},formatPaginationSwitch:function(){return"Esconder/Mostrar pagina&ccedil&atilde;o"},formatRefresh:function(){return"Atualizar"},formatToggle:function(){return"Alternar"},formatColumns:function(){return"Colunas"},formatAllRows:function(){return"Tudo"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["pt-PT"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["ro-RO"]={formatLoadingMessage:function(){return"Se incarca, va rugam asteptati..."},formatRecordsPerPage:function(a){return a+" inregistrari pe pagina"},formatShowingRows:function(a,b,c){return"Arata de la "+a+" pana la "+b+" din "+c+" randuri"},formatSearch:function(){return"Cauta"},formatNoMatches:function(){return"Nu au fost gasite inregistrari"},formatPaginationSwitch:function(){return"Ascunde/Arata paginatia"},formatRefresh:function(){return"Reincarca"},formatToggle:function(){return"Comuta"},formatColumns:function(){return"Coloane"},formatAllRows:function(){return"Toate"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["ro-RO"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["ru-RU"]={formatLoadingMessage:function(){return"Пожалуйста, подождите, идёт загрузка..."},formatRecordsPerPage:function(a){return a+" записей на страницу"},formatShowingRows:function(a,b,c){return"Записи с "+a+" по "+b+" из "+c},formatSearch:function(){return"Поиск"},formatNoMatches:function(){return"Ничего не найдено"},formatRefresh:function(){return"Обновить"},formatToggle:function(){return"Переключить"},formatColumns:function(){return"Колонки"},formatClearFilters:function(){return"Очистить фильтры"},formatMultipleSort:function(){return"Множественная сортировка"},formatAddLevel:function(){return"Добавить уровень"},formatDeleteLevel:function(){return"Удалить уровень"},formatColumn:function(){return"Колонка"},formatOrder:function(){return"Порядок"},formatSortBy:function(){return"Сортировать по"},formatThenBy:function(){return"затем по"},formatSort:function(){return"Сортировать"},formatCancel:function(){return"Отмена"},formatDuplicateAlertTitle:function(){return"Дублирование колонок!"},formatDuplicateAlertDescription:function(){return"Удалите, пожалуйста, дублирующую колонку, или замените ее на другую."}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["ru-RU"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["sk-SK"]={formatLoadingMessage:function(){return"Prosím čakajte ..."},formatRecordsPerPage:function(a){return a+" záznamov na stranu"},formatShowingRows:function(a,b,c){return"Zobrazená "+a+". - "+b+". položka z celkových "+c},formatSearch:function(){return"Vyhľadávanie"},formatNoMatches:function(){return"Nenájdená žiadna vyhovujúca položka"},formatRefresh:function(){return"Obnoviť"},formatToggle:function(){return"Prepni"},formatColumns:function(){return"Stĺpce"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["sk-SK"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["sv-SE"]={formatLoadingMessage:function(){return"Laddar, vänligen vänta..."},formatRecordsPerPage:function(a){return a+" rader per sida"},formatShowingRows:function(a,b,c){return"Visa "+a+" till "+b+" av "+c+" rader"},formatSearch:function(){return"Sök"},formatNoMatches:function(){return"Inga matchande resultat funna."},formatRefresh:function(){return"Uppdatera"},formatToggle:function(){return"Skifta"},formatColumns:function(){return"kolumn"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["sv-SE"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["th-TH"]={formatLoadingMessage:function(){return"กำลังโหลดข้อมูล, กรุณารอสักครู่..."},formatRecordsPerPage:function(a){return a+" รายการต่อหน้า"},formatShowingRows:function(a,b,c){return"รายการที่ "+a+" ถึง "+b+" จากทั้งหมด "+c+" รายการ"},formatSearch:function(){return"ค้นหา"},formatNoMatches:function(){return"ไม่พบรายการที่ค้นหา !"},formatRefresh:function(){return"รีเฟรส"},formatToggle:function(){return"สลับมุมมอง"},formatColumns:function(){return"คอลัมน์"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["th-TH"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["tr-TR"]={formatLoadingMessage:function(){return"Yükleniyor, lütfen bekleyin..."},formatRecordsPerPage:function(a){return"Sayfa başına "+a+" kayıt."},formatShowingRows:function(a,b,c){return c+" kayıttan "+a+"-"+b+" arası gösteriliyor."},formatSearch:function(){return"Ara"},formatNoMatches:function(){return"Eşleşen kayıt bulunamadı."},formatRefresh:function(){return"Yenile"},formatToggle:function(){return"Değiştir"},formatColumns:function(){return"Sütunlar"},formatAllRows:function(){return"Tüm Satırlar"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["tr-TR"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["uk-UA"]={formatLoadingMessage:function(){return"Завантаження, будь ласка, зачекайте..."},formatRecordsPerPage:function(a){return a+" записів на сторінку"},formatShowingRows:function(a,b,c){return"Показано з "+a+" по "+b+". Всього: "+c},formatSearch:function(){return"Пошук"},formatNoMatches:function(){return"Не знайдено жодного запису"},formatRefresh:function(){return"Оновити"},formatToggle:function(){return"Змінити"},formatColumns:function(){return"Стовпці"},formatClearFilters:function(){return"Очистити фільтри"},formatMultipleSort:function(){return"Сортування за кількома стовпцями"},formatAddLevel:function(){return"Додати рівень"},formatDeleteLevel:function(){return"Видалити рівень"},formatColumn:function(){return"Стовпець"},formatOrder:function(){return"Порядок"},formatSortBy:function(){return"Сортувати за"},formatThenBy:function(){return"потім за"},formatSort:function(){return"Сортувати"},formatCancel:function(){return"Скасувати"},formatDuplicateAlertTitle:function(){return"Дублювання стовпців!"},formatDuplicateAlertDescription:function(){return"Видаліть, будь ласка, дублюючий стовпець, або замініть його на інший."}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["uk-UA"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["ur-PK"]={formatLoadingMessage:function(){return"براۓ مہربانی انتظار کیجئے"},formatRecordsPerPage:function(a){return a+" ریکارڈز فی صفہ "},formatShowingRows:function(a,b,c){return"دیکھیں "+a+" سے "+b+" کے "+c+"ریکارڈز"},formatSearch:function(){return"تلاش"},formatNoMatches:function(){return"کوئی ریکارڈ نہیں ملا"},formatRefresh:function(){return"تازہ کریں"},formatToggle:function(){return"تبدیل کریں"},formatColumns:function(){return"کالم"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["ur-PK"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["uz-Latn-UZ"]={formatLoadingMessage:function(){return"Yuklanyapti, iltimos kuting..."},formatRecordsPerPage:function(a){return a+" qator har sahifada"},formatShowingRows:function(a,b,c){return"Ko'rsatypati "+a+" dan "+b+" gacha "+c+" qatorlarni"},formatSearch:function(){return"Qidirish"},formatNoMatches:function(){return"Hech narsa topilmadi"},formatPaginationSwitch:function(){return"Sahifalashni yashirish/ko'rsatish"},formatRefresh:function(){return"Yangilash"},formatToggle:function(){return"Ko'rinish"},formatColumns:function(){return"Ustunlar"},formatAllRows:function(){return"Hammasi"},formatExport:function(){return"Eksport"},formatClearFilters:function(){return"Filtrlarni tozalash"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["uz-Latn-UZ"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["vi-VN"]={formatLoadingMessage:function(){return"Đang tải..."},formatRecordsPerPage:function(a){return a+" bản ghi mỗi trang"},formatShowingRows:function(a,b,c){return"Hiển thị từ trang "+a+" đến "+b+" của "+c+" bảng ghi"},formatSearch:function(){return"Tìm kiếm"},formatNoMatches:function(){return"Không có dữ liệu"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["vi-VN"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["zh-CN"]={formatLoadingMessage:function(){return"正在努力地加载数据中,请稍候……"},formatRecordsPerPage:function(a){return"每页显示 "+a+" 条记录"},formatShowingRows:function(a,b,c){return"显示第 "+a+" 到第 "+b+" 条记录,总共 "+c+" 条记录"},formatSearch:function(){return"搜索"},formatNoMatches:function(){return"没有找到匹配的记录"},formatPaginationSwitch:function(){return"隐藏/显示分页"},formatRefresh:function(){return"刷新"},formatToggle:function(){return"切换"},formatColumns:function(){return"列"},formatExport:function(){return"导出数据"},formatClearFilters:function(){return"清空过滤"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["zh-CN"])}(jQuery),function(a){"use strict";a.fn.bootstrapTable.locales["zh-TW"]={formatLoadingMessage:function(){return"正在努力地載入資料,請稍候……"},formatRecordsPerPage:function(a){return"每頁顯示 "+a+" 項記錄"},formatShowingRows:function(a,b,c){return"顯示第 "+a+" 到第 "+b+" 項記錄,總共 "+c+" 項記錄"},formatSearch:function(){return"搜尋"},formatNoMatches:function(){return"沒有找到符合的結果"},formatPaginationSwitch:function(){return"隱藏/顯示分頁"},formatRefresh:function(){return"重新整理"},formatToggle:function(){return"切換"},formatColumns:function(){return"列"}},a.extend(a.fn.bootstrapTable.defaults,a.fn.bootstrapTable.locales["zh-TW"])}(jQuery);
PypiClean
/zc.lockfile-3.0-py3-none-any.whl/zc/lockfile/__init__.py
import logging import os logger = logging.getLogger("zc.lockfile") class LockError(Exception): """Couldn't get a lock """ try: import fcntl except ImportError: try: import msvcrt except ImportError: def _lock_file(file): raise TypeError('No file-locking support on this platform') def _unlock_file(file): raise TypeError('No file-locking support on this platform') else: # Windows def _lock_file(file): # Lock just the first byte try: msvcrt.locking(file.fileno(), msvcrt.LK_NBLCK, 1) except OSError: raise LockError("Couldn't lock %r" % file.name) def _unlock_file(file): try: file.seek(0) msvcrt.locking(file.fileno(), msvcrt.LK_UNLCK, 1) except OSError: raise LockError("Couldn't unlock %r" % file.name) else: # Unix _flags = fcntl.LOCK_EX | fcntl.LOCK_NB def _lock_file(file): try: fcntl.flock(file.fileno(), _flags) except OSError: raise LockError("Couldn't lock %r" % file.name) def _unlock_file(file): fcntl.flock(file.fileno(), fcntl.LOCK_UN) class LazyHostName: """Avoid importing socket and calling gethostname() unnecessarily""" def __str__(self): import socket return socket.gethostname() class SimpleLockFile: _fp = None def __init__(self, path): self._path = path try: # Try to open for writing without truncation: fp = open(path, 'r+') except OSError: # If the file doesn't exist, we'll get an IO error, try a+ # Note that there may be a race here. Multiple processes # could fail on the r+ open and open the file a+, but only # one will get the the lock and write a pid. fp = open(path, 'a+') try: _lock_file(fp) self._fp = fp except BaseException: fp.close() raise # Lock acquired self._on_lock() fp.flush() def close(self): if self._fp is not None: _unlock_file(self._fp) self._fp.close() self._fp = None def _on_lock(self): """ Allow subclasses to supply behavior to occur following lock acquisition. """ class LockFile(SimpleLockFile): def __init__(self, path, content_template='{pid}'): self._content_template = content_template super().__init__(path) def _on_lock(self): content = self._content_template.format( pid=os.getpid(), hostname=LazyHostName(), ) self._fp.write(" %s\n" % content) self._fp.truncate()
PypiClean