code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import markupfield.fields import django.utils.timezone from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Planet', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('url', models.URLField(unique=True)), ('title', models.CharField(max_length=100)), ('date', models.DateTimeField(default=django.utils.timezone.now, db_index=True)), ], options={ 'ordering': ['-date'], }, ), migrations.CreateModel( name='Post', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('title', models.CharField(max_length=100)), ('slug', models.SlugField(unique_for_date=b'date')), ('date', models.DateTimeField(default=django.utils.timezone.now, db_index=True)), ('body', markupfield.fields.MarkupField(rendered_field=True)), ('body_markup_type', models.CharField(default=b'markdown', max_length=30, choices=[(b'', b'--'), (b'html', 'HTML'), (b'plain', 'Plain'), (b'markdown', 'Markdown'), (b'restructuredtext', 'Restructured Text')])), ('_body_rendered', models.TextField(editable=False)), ('author', models.ForeignKey(editable=False, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['-date'], }, ), ]
[ "django.db.models.URLField", "django.db.models.TextField", "django.db.migrations.swappable_dependency", "django.db.models.CharField", "django.db.models.ForeignKey", "django.db.models.SlugField", "django.db.models.AutoField", "django.db.models.DateTimeField" ]
[((265, 322), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (296, 322), False, 'from django.db import models, migrations\n'), ((453, 546), 'django.db.models.AutoField', 'models.AutoField', ([], {'verbose_name': '"""ID"""', 'serialize': '(False)', 'auto_created': '(True)', 'primary_key': '(True)'}), "(verbose_name='ID', serialize=False, auto_created=True,\n primary_key=True)\n", (469, 546), False, 'from django.db import models, migrations\n'), ((569, 597), 'django.db.models.URLField', 'models.URLField', ([], {'unique': '(True)'}), '(unique=True)\n', (584, 597), False, 'from django.db import models, migrations\n'), ((626, 658), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (642, 658), False, 'from django.db import models, migrations\n'), ((686, 756), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'default': 'django.utils.timezone.now', 'db_index': '(True)'}), '(default=django.utils.timezone.now, db_index=True)\n', (706, 756), False, 'from django.db import models, migrations\n'), ((962, 1055), 'django.db.models.AutoField', 'models.AutoField', ([], {'verbose_name': '"""ID"""', 'serialize': '(False)', 'auto_created': '(True)', 'primary_key': '(True)'}), "(verbose_name='ID', serialize=False, auto_created=True,\n primary_key=True)\n", (978, 1055), False, 'from django.db import models, migrations\n'), ((1080, 1112), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1096, 1112), False, 'from django.db import models, migrations\n'), ((1140, 1181), 'django.db.models.SlugField', 'models.SlugField', ([], {'unique_for_date': "b'date'"}), "(unique_for_date=b'date')\n", (1156, 1181), False, 'from django.db import models, migrations\n'), ((1209, 1279), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'default': 'django.utils.timezone.now', 'db_index': '(True)'}), '(default=django.utils.timezone.now, db_index=True)\n', (1229, 1279), False, 'from django.db import models, migrations\n'), ((1398, 1594), 'django.db.models.CharField', 'models.CharField', ([], {'default': "b'markdown'", 'max_length': '(30)', 'choices': "[(b'', b'--'), (b'html', 'HTML'), (b'plain', 'Plain'), (b'markdown',\n 'Markdown'), (b'restructuredtext', 'Restructured Text')]"}), "(default=b'markdown', max_length=30, choices=[(b'', b'--'),\n (b'html', 'HTML'), (b'plain', 'Plain'), (b'markdown', 'Markdown'), (\n b'restructuredtext', 'Restructured Text')])\n", (1414, 1594), False, 'from django.db import models, migrations\n'), ((1623, 1655), 'django.db.models.TextField', 'models.TextField', ([], {'editable': '(False)'}), '(editable=False)\n', (1639, 1655), False, 'from django.db import models, migrations\n'), ((1685, 1747), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'editable': '(False)', 'to': 'settings.AUTH_USER_MODEL'}), '(editable=False, to=settings.AUTH_USER_MODEL)\n', (1702, 1747), False, 'from django.db import models, migrations\n')]
# -*- coding: utf-8 -*- """ @Time : 2021/8/24 13:00 @Auth : apecode @File :notice.py @IDE :PyCharm @Blog:https://liiuyangxiong.cn """ import json import time from email.mime.text import MIMEText from email.header import Header from smtplib import SMTP_SSL import requests import config class Notice: def __init__(self, admin: dict, account: dict): self.admin = admin, self.account = account def send(self, content): if self.account.get("notice") == "" or self.account.get("notice") == "local": return Notice.saveLocal(content) elif self.account.get("notice") == "mail": if self.admin[0]["mail"]["sendMail"] == "" and self.admin[0]["mail"]["authCode"] == "": print("未设置发送者邮箱信息,转为本地记录") Notice.saveLocal(content) else: self.send_mail(content) else: self.sendPushPlus(content) print(content) def send_mail(self, message: str): try: host_server = self.admin[0]["mail"]["smtpServer"] # 发件人的邮箱 sendMail = self.admin[0]["mail"]["sendMail"] # 邮箱的授权码 authCode = self.admin[0]["mail"]["authCode"] # 收件人邮箱 receiver = self.account.get("mail") # 邮件标题 mail_title = "易班 " + time.strftime("%Y-%m-%d", time.localtime(int(time.time()))) + " 签到情况" # ssl登录 smtp = SMTP_SSL(host_server) smtp.ehlo(host_server) smtp.login(sendMail, authCode) msg = MIMEText(message, "html", 'utf-8') msg["Subject"] = Header(mail_title, 'utf-8') msg["From"] = sendMail msg["To"] = receiver smtp.sendmail(sendMail, receiver, msg.as_string()) smtp.quit() return True except Exception as e: print(e) return False # 发送pushPlus def sendPushPlus(self, content: str): url = 'https://www.pushplus.plus/send' headers = {"Content-Type": "application/json"} data = json.dumps({ "token": self.account.get("pushToken"), "title": "易班签到通知", "content": content, "template": "txt" }) response = requests.post(url=url, data=data, headers=headers).json() if response['code'] == 200: return Notice.log(f"{self.account.get('mobile')}\tPush Plus发送成功!\n") else: print("发送失败,转为本地记录") Notice.saveLocal(content) return Notice.log(f"{self.account.get('mobile')}\tPush Plus发送失败!原因: {response['msg']}\n") @staticmethod def log(message: str): with open(file="data/logs.log", mode="a+", encoding="utf-8") as f: f.write(message) print(message) @staticmethod def saveLocal(message): with open("data/result.log", mode="a+", encoding="utf-8") as w: w.write(message)
[ "email.header.Header", "smtplib.SMTP_SSL", "email.mime.text.MIMEText", "time.time", "requests.post" ]
[((1497, 1518), 'smtplib.SMTP_SSL', 'SMTP_SSL', (['host_server'], {}), '(host_server)\n', (1505, 1518), False, 'from smtplib import SMTP_SSL\n'), ((1620, 1654), 'email.mime.text.MIMEText', 'MIMEText', (['message', '"""html"""', '"""utf-8"""'], {}), "(message, 'html', 'utf-8')\n", (1628, 1654), False, 'from email.mime.text import MIMEText\n'), ((1685, 1712), 'email.header.Header', 'Header', (['mail_title', '"""utf-8"""'], {}), "(mail_title, 'utf-8')\n", (1691, 1712), False, 'from email.header import Header\n'), ((2354, 2404), 'requests.post', 'requests.post', ([], {'url': 'url', 'data': 'data', 'headers': 'headers'}), '(url=url, data=data, headers=headers)\n', (2367, 2404), False, 'import requests\n'), ((1435, 1446), 'time.time', 'time.time', ([], {}), '()\n', (1444, 1446), False, 'import time\n')]
#!/usr/bin/env python """ this calls test_executable_caller as it should be called for the test to work. """ import subprocess if __name__ == '__main__': process = subprocess.Popen( ['python', 'test_executable_caller.py','test_executable_callee.py'], shell = False, universal_newlines = True ) exit_status = process.wait()
[ "subprocess.Popen" ]
[((171, 299), 'subprocess.Popen', 'subprocess.Popen', (["['python', 'test_executable_caller.py', 'test_executable_callee.py']"], {'shell': '(False)', 'universal_newlines': '(True)'}), "(['python', 'test_executable_caller.py',\n 'test_executable_callee.py'], shell=False, universal_newlines=True)\n", (187, 299), False, 'import subprocess\n')]
import datetime from django.contrib.auth.models import User from quiz.models import ( AnswerUser, Category, Grade, Question, QuestionScore, Quiz, Statistic, SubCategory, ThemeScore, ) import pytest ### FIXTURES ### @pytest.fixture def category_m(db): return Category.objects.create(category="m") @pytest.fixture def sub_category_n(db, category_m): return SubCategory.objects.create(category=category_m, sub_category="n") @pytest.fixture def user_A(db): return User.objects.create_user(username="A") @pytest.fixture def quiz_q(db, category_m, sub_category_n, user_A): date = datetime.datetime.now() return Quiz.objects.create( title="title", description="Long description", creator=user_A, category=category_m, category_name="m", sub_category=sub_category_n, created=date, random_order=False, difficulty=1, ) @pytest.fixture def question_q(db, quiz_q): return Question.objects.create( quiz=quiz_q, difficulty=1, order=1, figure=None, content="question", explanation=None, theme1="t1", theme2="t2", theme3="t3", ) @pytest.fixture def answerUser(db, question_q, user_A): a = AnswerUser.objects.create(correct=True) a.save() a.question.add(question_q) a.user.add(user_A) return a @pytest.fixture def stats_s(db, quiz_q): return Statistic.objects.create( quiz=quiz_q, number_participants=10, mean=15, easy=5, medium=5, difficult=5 ) @pytest.fixture def grade_g(db, stats_s): return Grade.objects.create(grade=5, number=10, statistics=stats_s) @pytest.fixture def questionScore_qs(db, stats_s, question_q): return QuestionScore.objects.create( question=question_q, statistics=stats_s, score=5 ) @pytest.fixture def themeScore_ts(db, stats_s, quiz_q): return ThemeScore.objects.create( theme="t1", score=5, statistics=stats_s, quiz=quiz_q ) ### TESTS ### def test_category(category_m): assert isinstance(category_m, Category) assert category_m.category == "m" assert str(category_m) == "m" def test_sub_category(category_m, sub_category_n): assert sub_category_n.sub_category == "n" assert sub_category_n.category == category_m assert isinstance(sub_category_n, SubCategory) assert str(sub_category_n) == "n (m)" def test_quiz(quiz_q, user_A, category_m, sub_category_n): date = datetime.datetime.now() assert quiz_q.title == "title" assert quiz_q.description == "Long description" assert quiz_q.creator == user_A assert quiz_q.category == category_m assert quiz_q.sub_category == sub_category_n assert isinstance(quiz_q.created, datetime.datetime) assert quiz_q.created.year == date.year assert quiz_q.created.month == date.month assert quiz_q.created.day == date.day assert quiz_q.random_order == False assert quiz_q.difficulty == 1 assert str(quiz_q) == "title" def test_question(quiz_q, question_q): assert question_q.quiz == quiz_q assert question_q.difficulty == 1 assert question_q.order == 1 assert question_q.figure == None assert question_q.content == "question" assert question_q.explanation == None assert question_q.theme1 == "t1" assert question_q.theme2 == "t2" assert question_q.theme3 == "t3" assert str(question_q) == "question" def test_answerUser(answerUser, question_q, user_A): assert answerUser.correct == True assert answerUser.question.get(pk=question_q.id) == question_q assert answerUser.user.get(pk=user_A.id) == user_A def test_statisc(stats_s, quiz_q): assert stats_s.quiz == quiz_q assert stats_s.number_participants == 10 assert stats_s.mean == 15 assert stats_s.easy == 5 assert stats_s.medium == 5 assert stats_s.difficult == 5 def test_grade(grade_g, stats_s): assert grade_g.grade == 5 assert grade_g.number == 10 assert grade_g.statistics == stats_s def test_questionScore(stats_s, question_q, questionScore_qs): assert questionScore_qs.question == question_q assert questionScore_qs.statistics == stats_s assert questionScore_qs.score == 5 def test_themeScore(themeScore_ts, stats_s, quiz_q): assert themeScore_ts.theme == "t1" assert themeScore_ts.score == 5 assert themeScore_ts.statistics == stats_s assert themeScore_ts.quiz == quiz_q
[ "quiz.models.Grade.objects.create", "quiz.models.Question.objects.create", "quiz.models.ThemeScore.objects.create", "quiz.models.Category.objects.create", "quiz.models.AnswerUser.objects.create", "quiz.models.QuestionScore.objects.create", "django.contrib.auth.models.User.objects.create_user", "quiz.models.Quiz.objects.create", "quiz.models.Statistic.objects.create", "quiz.models.SubCategory.objects.create", "datetime.datetime.now" ]
[((305, 342), 'quiz.models.Category.objects.create', 'Category.objects.create', ([], {'category': '"""m"""'}), "(category='m')\n", (328, 342), False, 'from quiz.models import AnswerUser, Category, Grade, Question, QuestionScore, Quiz, Statistic, SubCategory, ThemeScore\n'), ((408, 473), 'quiz.models.SubCategory.objects.create', 'SubCategory.objects.create', ([], {'category': 'category_m', 'sub_category': '"""n"""'}), "(category=category_m, sub_category='n')\n", (434, 473), False, 'from quiz.models import AnswerUser, Category, Grade, Question, QuestionScore, Quiz, Statistic, SubCategory, ThemeScore\n'), ((519, 557), 'django.contrib.auth.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""A"""'}), "(username='A')\n", (543, 557), False, 'from django.contrib.auth.models import User\n'), ((639, 662), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (660, 662), False, 'import datetime\n'), ((674, 883), 'quiz.models.Quiz.objects.create', 'Quiz.objects.create', ([], {'title': '"""title"""', 'description': '"""Long description"""', 'creator': 'user_A', 'category': 'category_m', 'category_name': '"""m"""', 'sub_category': 'sub_category_n', 'created': 'date', 'random_order': '(False)', 'difficulty': '(1)'}), "(title='title', description='Long description', creator=\n user_A, category=category_m, category_name='m', sub_category=\n sub_category_n, created=date, random_order=False, difficulty=1)\n", (693, 883), False, 'from quiz.models import AnswerUser, Category, Grade, Question, QuestionScore, Quiz, Statistic, SubCategory, ThemeScore\n'), ((1010, 1168), 'quiz.models.Question.objects.create', 'Question.objects.create', ([], {'quiz': 'quiz_q', 'difficulty': '(1)', 'order': '(1)', 'figure': 'None', 'content': '"""question"""', 'explanation': 'None', 'theme1': '"""t1"""', 'theme2': '"""t2"""', 'theme3': '"""t3"""'}), "(quiz=quiz_q, difficulty=1, order=1, figure=None,\n content='question', explanation=None, theme1='t1', theme2='t2', theme3='t3'\n )\n", (1033, 1168), False, 'from quiz.models import AnswerUser, Category, Grade, Question, QuestionScore, Quiz, Statistic, SubCategory, ThemeScore\n'), ((1305, 1344), 'quiz.models.AnswerUser.objects.create', 'AnswerUser.objects.create', ([], {'correct': '(True)'}), '(correct=True)\n', (1330, 1344), False, 'from quiz.models import AnswerUser, Category, Grade, Question, QuestionScore, Quiz, Statistic, SubCategory, ThemeScore\n'), ((1479, 1585), 'quiz.models.Statistic.objects.create', 'Statistic.objects.create', ([], {'quiz': 'quiz_q', 'number_participants': '(10)', 'mean': '(15)', 'easy': '(5)', 'medium': '(5)', 'difficult': '(5)'}), '(quiz=quiz_q, number_participants=10, mean=15, easy\n =5, medium=5, difficult=5)\n', (1503, 1585), False, 'from quiz.models import AnswerUser, Category, Grade, Question, QuestionScore, Quiz, Statistic, SubCategory, ThemeScore\n'), ((1650, 1710), 'quiz.models.Grade.objects.create', 'Grade.objects.create', ([], {'grade': '(5)', 'number': '(10)', 'statistics': 'stats_s'}), '(grade=5, number=10, statistics=stats_s)\n', (1670, 1710), False, 'from quiz.models import AnswerUser, Category, Grade, Question, QuestionScore, Quiz, Statistic, SubCategory, ThemeScore\n'), ((1787, 1865), 'quiz.models.QuestionScore.objects.create', 'QuestionScore.objects.create', ([], {'question': 'question_q', 'statistics': 'stats_s', 'score': '(5)'}), '(question=question_q, statistics=stats_s, score=5)\n', (1815, 1865), False, 'from quiz.models import AnswerUser, Category, Grade, Question, QuestionScore, Quiz, Statistic, SubCategory, ThemeScore\n'), ((1949, 2028), 'quiz.models.ThemeScore.objects.create', 'ThemeScore.objects.create', ([], {'theme': '"""t1"""', 'score': '(5)', 'statistics': 'stats_s', 'quiz': 'quiz_q'}), "(theme='t1', score=5, statistics=stats_s, quiz=quiz_q)\n", (1974, 2028), False, 'from quiz.models import AnswerUser, Category, Grade, Question, QuestionScore, Quiz, Statistic, SubCategory, ThemeScore\n'), ((2521, 2544), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2542, 2544), False, 'import datetime\n')]
''' #Método 1 de calcular a hipotenusa (sem o módulo math) co = float(input('comprimento do cateto oposto: ')) ca = float(input('comprimento do cateto adjacente: ')) h = (co ** 2) + (ca ** 2) ** (1/2) print(f'a hipotenusa equivale a {h:.2f}') ''' # Método 2 de calcular a hipotenusa (com o módulo math) import math co = float(input('comprimento do cateto oposto: ')) ca = float(input('comprimento do cateto adjacente: ')) h = math.hypot(co, ca) print(f'a hipotenusa equivale a {h:.2f}')
[ "math.hypot" ]
[((430, 448), 'math.hypot', 'math.hypot', (['co', 'ca'], {}), '(co, ca)\n', (440, 448), False, 'import math\n')]
import csv import json from ofxtools.Parser import OFXTree """ statement schema: { "id":int, "ref_no": int, "date": string, "account": int, account code, "isincome": bool, "countinbudget": bool, "payee": string, "notes": { "bank": string, "personal": string }, "categories": [strings], "totalamount": float, "splits":[ { "amount": float, "categories": [], "linked_transaction": int, "countinbudget": bool } ] } """ def fetch_all_transactions(): cc = import_cc_statement() acct = import_acct_statement() return cc + acct def convert_acct_fitid(id): if "-" in id: return id.split("-")[0] else: return id.split(".")[0] def convert_date_to_ISO(datestring): return "{}-{}-{}T{}:{}:{}Z".format( datestring[:4], datestring[4:6], datestring[6:8], datestring[8:10], datestring[10:12], datestring[12:14], ) def import_acct_statement(): print("Importing BOFA Account Statement") parser = OFXTree() parser.parse("./data/stmt.qfx") transactions_root = parser.find(".//BANKTRANLIST")[:] transactions = [] for trans in transactions_root[2:]: transactions.append({ "id": 0, "ref_no": int(convert_acct_fitid(trans[3].text)), "date": convert_date_to_ISO(trans[1].text), "account": "BOFA_CHECKING", "payee": trans[4].text, "notes": { "bank": "", "personal": "" }, "categories": [], "totalamount": float(trans[2].text), "splits": [] }) return transactions def import_cc_statement(): print("Importing BOFA CC Statement") parser = OFXTree() parser.parse("./data/currentTransaction_1626.qfx") transactions_root = parser.find(".//BANKTRANLIST")[:] id = 0 transactions = [] for trans in transactions_root[2:]: transactions.append({ "id": id, "ref_no": int(trans[3].text), "date": convert_date_to_ISO(trans[1].text), "account": "BOFA_CASHREWARDS_CC", "payee": trans[6].text, "notes": { "bank": "", "personal": "" }, "categories": [], "totalamount": float(trans[2].text), "splits": [] }) return transactions def fetch_acct_info(): print("Updating Account Information") accounts = [] parser = OFXTree() parser.parse('./data/currentTransaction_1626.qfx') accounts.append({ "name": "BOFA_CASHREWARDS_CC", "id": 2, "balance": parser.find(".//BALAMT").text, "last_updated": convert_date_to_ISO(parser.find(".//DTASOF").text) }) parser.parse('./data/stmt.qfx') accounts.append({ "name": "BOFA_CHECKING", "id": 0, "balance": parser.find(".//BALAMT").text, "last_updated": convert_date_to_ISO(parser.find(".//DTASOF").text) }) return accounts if __name__ == '__main__': accts = fetch_acct_info() for acct in accts: print(acct)
[ "ofxtools.Parser.OFXTree" ]
[((999, 1008), 'ofxtools.Parser.OFXTree', 'OFXTree', ([], {}), '()\n', (1006, 1008), False, 'from ofxtools.Parser import OFXTree\n'), ((1631, 1640), 'ofxtools.Parser.OFXTree', 'OFXTree', ([], {}), '()\n', (1638, 1640), False, 'from ofxtools.Parser import OFXTree\n'), ((2292, 2301), 'ofxtools.Parser.OFXTree', 'OFXTree', ([], {}), '()\n', (2299, 2301), False, 'from ofxtools.Parser import OFXTree\n')]
import os from setuptools import setup README = open(os.path.join(os.path.dirname(__file__), 'README.rst')).read() # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name="django-trello-webhooks", version="0.3", packages=[ 'trello_webhooks', 'trello_webhooks.management', 'trello_webhooks.management.commands', 'trello_webhooks.migrations', 'trello_webhooks.templatetags', 'trello_webhooks.tests', ], install_requires=['django>=1.7.1'], include_package_data=True, description='Django Trello Webhooks - Trello callback integration for Django.', long_description=README, url='https://github.com/yunojuno/django-trello-webhooks', author='<NAME>', author_email='<EMAIL>', maintainer='<NAME>', maintainer_email='<EMAIL>', classifiers=[ 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ], )
[ "os.path.abspath", "os.path.dirname", "setuptools.setup" ]
[((238, 1204), 'setuptools.setup', 'setup', ([], {'name': '"""django-trello-webhooks"""', 'version': '"""0.3"""', 'packages': "['trello_webhooks', 'trello_webhooks.management',\n 'trello_webhooks.management.commands', 'trello_webhooks.migrations',\n 'trello_webhooks.templatetags', 'trello_webhooks.tests']", 'install_requires': "['django>=1.7.1']", 'include_package_data': '(True)', 'description': '"""Django Trello Webhooks - Trello callback integration for Django."""', 'long_description': 'README', 'url': '"""https://github.com/yunojuno/django-trello-webhooks"""', 'author': '"""<NAME>"""', 'author_email': '"""<EMAIL>"""', 'maintainer': '"""<NAME>"""', 'maintainer_email': '"""<EMAIL>"""', 'classifiers': "['Environment :: Web Environment', 'Framework :: Django',\n 'Intended Audience :: Developers',\n 'License :: OSI Approved :: MIT License',\n 'Operating System :: OS Independent', 'Programming Language :: Python',\n 'Programming Language :: Python :: 2.7',\n 'Topic :: Internet :: WWW/HTTP',\n 'Topic :: Internet :: WWW/HTTP :: Dynamic Content']"}), "(name='django-trello-webhooks', version='0.3', packages=[\n 'trello_webhooks', 'trello_webhooks.management',\n 'trello_webhooks.management.commands', 'trello_webhooks.migrations',\n 'trello_webhooks.templatetags', 'trello_webhooks.tests'],\n install_requires=['django>=1.7.1'], include_package_data=True,\n description=\n 'Django Trello Webhooks - Trello callback integration for Django.',\n long_description=README, url=\n 'https://github.com/yunojuno/django-trello-webhooks', author='<NAME>',\n author_email='<EMAIL>', maintainer='<NAME>', maintainer_email='<EMAIL>',\n classifiers=['Environment :: Web Environment', 'Framework :: Django',\n 'Intended Audience :: Developers',\n 'License :: OSI Approved :: MIT License',\n 'Operating System :: OS Independent', 'Programming Language :: Python',\n 'Programming Language :: Python :: 2.7',\n 'Topic :: Internet :: WWW/HTTP',\n 'Topic :: Internet :: WWW/HTTP :: Dynamic Content'])\n", (243, 1204), False, 'from setuptools import setup\n'), ((197, 222), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (212, 222), False, 'import os\n'), ((67, 92), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (82, 92), False, 'import os\n')]
from lightfm import LightFM from lightfm.datasets import fetch_movielens from pgvector.sqlalchemy import Vector from sqlalchemy import create_engine, text, Column, Float, Integer, String from sqlalchemy.orm import declarative_base, Session engine = create_engine('postgresql+psycopg2://localhost/pgvector_example', future=True) with engine.connect() as conn: conn.execute(text('CREATE EXTENSION IF NOT EXISTS vector')) conn.commit() Base = declarative_base() class User(Base): __tablename__ = 'user' id = Column(Integer, primary_key=True) factors = Column(Vector(20)) class Item(Base): __tablename__ = 'item' id = Column(Integer, primary_key=True) title = Column(String) factors = Column(Vector(20)) bias = Column(Float) Base.metadata.drop_all(engine) Base.metadata.create_all(engine) data = fetch_movielens(min_rating=5.0) model = LightFM(loss='warp', no_components=20) model.fit(data['train'], epochs=30) user_biases, user_factors = model.get_user_representations() item_biases, item_factors = model.get_item_representations() users = [dict(id=i, factors=factors) for i, factors in enumerate(user_factors)] items = [dict(id=i, title=data['item_labels'][i], factors=factors, bias=item_biases[i].item()) for i, factors in enumerate(item_factors)] session = Session(engine) session.bulk_insert_mappings(User, users) session.bulk_insert_mappings(Item, items) session.commit() user = session.query(User).get(1) # subtract item bias for negative inner product items = session.query(Item).order_by(Item.factors.max_inner_product(user.factors) - Item.bias).limit(5).all() print('user-based recs:', [item.title for item in items]) item = session.query(Item).filter(Item.title == 'Star Wars (1977)').first() items = session.query(Item).filter(Item.id != item.id).order_by(Item.factors.cosine_distance(item.factors)).limit(5).all() print('item-based recs:', [item.title for item in items])
[ "pgvector.sqlalchemy.Vector", "sqlalchemy.orm.declarative_base", "lightfm.LightFM", "sqlalchemy.orm.Session", "sqlalchemy.text", "sqlalchemy.Column", "sqlalchemy.create_engine", "lightfm.datasets.fetch_movielens" ]
[((250, 328), 'sqlalchemy.create_engine', 'create_engine', (['"""postgresql+psycopg2://localhost/pgvector_example"""'], {'future': '(True)'}), "('postgresql+psycopg2://localhost/pgvector_example', future=True)\n", (263, 328), False, 'from sqlalchemy import create_engine, text, Column, Float, Integer, String\n'), ((450, 468), 'sqlalchemy.orm.declarative_base', 'declarative_base', ([], {}), '()\n', (466, 468), False, 'from sqlalchemy.orm import declarative_base, Session\n'), ((843, 874), 'lightfm.datasets.fetch_movielens', 'fetch_movielens', ([], {'min_rating': '(5.0)'}), '(min_rating=5.0)\n', (858, 874), False, 'from lightfm.datasets import fetch_movielens\n'), ((883, 921), 'lightfm.LightFM', 'LightFM', ([], {'loss': '"""warp"""', 'no_components': '(20)'}), "(loss='warp', no_components=20)\n", (890, 921), False, 'from lightfm import LightFM\n'), ((1311, 1326), 'sqlalchemy.orm.Session', 'Session', (['engine'], {}), '(engine)\n', (1318, 1326), False, 'from sqlalchemy.orm import declarative_base, Session\n'), ((526, 559), 'sqlalchemy.Column', 'Column', (['Integer'], {'primary_key': '(True)'}), '(Integer, primary_key=True)\n', (532, 559), False, 'from sqlalchemy import create_engine, text, Column, Float, Integer, String\n'), ((650, 683), 'sqlalchemy.Column', 'Column', (['Integer'], {'primary_key': '(True)'}), '(Integer, primary_key=True)\n', (656, 683), False, 'from sqlalchemy import create_engine, text, Column, Float, Integer, String\n'), ((696, 710), 'sqlalchemy.Column', 'Column', (['String'], {}), '(String)\n', (702, 710), False, 'from sqlalchemy import create_engine, text, Column, Float, Integer, String\n'), ((755, 768), 'sqlalchemy.Column', 'Column', (['Float'], {}), '(Float)\n', (761, 768), False, 'from sqlalchemy import create_engine, text, Column, Float, Integer, String\n'), ((377, 422), 'sqlalchemy.text', 'text', (['"""CREATE EXTENSION IF NOT EXISTS vector"""'], {}), "('CREATE EXTENSION IF NOT EXISTS vector')\n", (381, 422), False, 'from sqlalchemy import create_engine, text, Column, Float, Integer, String\n'), ((581, 591), 'pgvector.sqlalchemy.Vector', 'Vector', (['(20)'], {}), '(20)\n', (587, 591), False, 'from pgvector.sqlalchemy import Vector\n'), ((732, 742), 'pgvector.sqlalchemy.Vector', 'Vector', (['(20)'], {}), '(20)\n', (738, 742), False, 'from pgvector.sqlalchemy import Vector\n')]
# coding: utf-8 """ BillForward REST API OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class ProfilesApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def get_all_profiles(self, **kwargs): """ Returns a collection of all profiles. By default 10 values are returned. Records are returned in natural order {\"nickname\":\"Get all profiles\",\"response\":\"getProfileAll.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_all_profiles(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param list[str] organizations: A list of organizations used to restrict the scope of API calls. :param int offset: The offset from the first profile to return. :param int records: The maximum number of profiles to return. :param str order_by: Specify a field used to order the result set. :param str order: Ihe direction of any ordering, either ASC or DESC. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_all_profiles_with_http_info(**kwargs) else: (data) = self.get_all_profiles_with_http_info(**kwargs) return data def get_all_profiles_with_http_info(self, **kwargs): """ Returns a collection of all profiles. By default 10 values are returned. Records are returned in natural order {\"nickname\":\"Get all profiles\",\"response\":\"getProfileAll.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_all_profiles_with_http_info(callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param list[str] organizations: A list of organizations used to restrict the scope of API calls. :param int offset: The offset from the first profile to return. :param int records: The maximum number of profiles to return. :param str order_by: Specify a field used to order the result set. :param str order: Ihe direction of any ordering, either ASC or DESC. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ all_params = ['organizations', 'offset', 'records', 'order_by', 'order'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_all_profiles" % key ) params[key] = val del params['kwargs'] resource_path = '/profiles'.replace('{format}', 'json') path_params = {} query_params = {} if 'organizations' in params: query_params['organizations'] = params['organizations'] if 'offset' in params: query_params['offset'] = params['offset'] if 'records' in params: query_params['records'] = params['records'] if 'order_by' in params: query_params['order_by'] = params['order_by'] if 'order' in params: query_params['order'] = params['order'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type([]) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProfilePagedMetadata', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only')) def get_profile(self, profile_id, **kwargs): """ Returns a single profile, specified by the ID parameter. {\"nickname\":\"Retrieve an existing profile\",\"response\":\"getProfileByID.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_profile(profile_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str profile_id: ID of the Profile. (required) :param list[str] organizations: A list of organization-IDs used to restrict the scope of API calls. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_profile_with_http_info(profile_id, **kwargs) else: (data) = self.get_profile_with_http_info(profile_id, **kwargs) return data def get_profile_with_http_info(self, profile_id, **kwargs): """ Returns a single profile, specified by the ID parameter. {\"nickname\":\"Retrieve an existing profile\",\"response\":\"getProfileByID.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_profile_with_http_info(profile_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str profile_id: ID of the Profile. (required) :param list[str] organizations: A list of organization-IDs used to restrict the scope of API calls. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ all_params = ['profile_id', 'organizations'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_profile" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'profile_id' is set if ('profile_id' not in params) or (params['profile_id'] is None): raise ValueError("Missing the required parameter `profile_id` when calling `get_profile`") resource_path = '/profiles/{profile-ID}'.replace('{format}', 'json') path_params = {} if 'profile_id' in params: path_params['profile-ID'] = params['profile_id'] query_params = {} if 'organizations' in params: query_params['organizations'] = params['organizations'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['text/plain']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProfilePagedMetadata', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only')) def get_profile_by_account_id(self, account_id, **kwargs): """ Returns a collection of profiles, specified by the account-ID parameter. By default 10 values are returned. Records are returned in natural order {\"nickname\":\"Retrieve by account\",\"response\":\"getProfileByAccountID.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_profile_by_account_id(account_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str account_id: The account-ID of the profile. (required) :param list[str] organizations: A list of organizations used to restrict the scope of API calls. :param int offset: The offset from the first profile to return. :param int records: The maximum number of profiles to return. :param str order_by: Specify a field used to order the result set. :param str order: Ihe direction of any ordering, either ASC or DESC. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_profile_by_account_id_with_http_info(account_id, **kwargs) else: (data) = self.get_profile_by_account_id_with_http_info(account_id, **kwargs) return data def get_profile_by_account_id_with_http_info(self, account_id, **kwargs): """ Returns a collection of profiles, specified by the account-ID parameter. By default 10 values are returned. Records are returned in natural order {\"nickname\":\"Retrieve by account\",\"response\":\"getProfileByAccountID.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_profile_by_account_id_with_http_info(account_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str account_id: The account-ID of the profile. (required) :param list[str] organizations: A list of organizations used to restrict the scope of API calls. :param int offset: The offset from the first profile to return. :param int records: The maximum number of profiles to return. :param str order_by: Specify a field used to order the result set. :param str order: Ihe direction of any ordering, either ASC or DESC. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ all_params = ['account_id', 'organizations', 'offset', 'records', 'order_by', 'order'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_profile_by_account_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'account_id' is set if ('account_id' not in params) or (params['account_id'] is None): raise ValueError("Missing the required parameter `account_id` when calling `get_profile_by_account_id`") resource_path = '/profiles/account/{account-ID}'.replace('{format}', 'json') path_params = {} if 'account_id' in params: path_params['account-ID'] = params['account_id'] query_params = {} if 'organizations' in params: query_params['organizations'] = params['organizations'] if 'offset' in params: query_params['offset'] = params['offset'] if 'records' in params: query_params['records'] = params['records'] if 'order_by' in params: query_params['order_by'] = params['order_by'] if 'order' in params: query_params['order'] = params['order'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['text/plain']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProfilePagedMetadata', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only')) def get_profile_by_email_address(self, email, **kwargs): """ Returns a single profile, specified by the email parameter. {\"nickname\":\"Retrieve by e-mail\",\"response\":\"getProfileByEmail.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_profile_by_email_address(email, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str email: The email address of the profile. (required) :param list[str] organizations: A list of organizations used to restrict the scope of API calls. :param int offset: The offset from the first profile to return. :param int records: The maximum number of profiles to return. :param str order_by: Specify a field used to order the result set. :param str order: Ihe direction of any ordering, either ASC or DESC. :param bool include_retired: Whether retired profiles should be returned. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_profile_by_email_address_with_http_info(email, **kwargs) else: (data) = self.get_profile_by_email_address_with_http_info(email, **kwargs) return data def get_profile_by_email_address_with_http_info(self, email, **kwargs): """ Returns a single profile, specified by the email parameter. {\"nickname\":\"Retrieve by e-mail\",\"response\":\"getProfileByEmail.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_profile_by_email_address_with_http_info(email, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str email: The email address of the profile. (required) :param list[str] organizations: A list of organizations used to restrict the scope of API calls. :param int offset: The offset from the first profile to return. :param int records: The maximum number of profiles to return. :param str order_by: Specify a field used to order the result set. :param str order: Ihe direction of any ordering, either ASC or DESC. :param bool include_retired: Whether retired profiles should be returned. :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ all_params = ['email', 'organizations', 'offset', 'records', 'order_by', 'order', 'include_retired'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_profile_by_email_address" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'email' is set if ('email' not in params) or (params['email'] is None): raise ValueError("Missing the required parameter `email` when calling `get_profile_by_email_address`") resource_path = '/profiles/email/{email}'.replace('{format}', 'json') path_params = {} if 'email' in params: path_params['email'] = params['email'] query_params = {} if 'organizations' in params: query_params['organizations'] = params['organizations'] if 'offset' in params: query_params['offset'] = params['offset'] if 'records' in params: query_params['records'] = params['records'] if 'order_by' in params: query_params['order_by'] = params['order_by'] if 'order' in params: query_params['order'] = params['order'] if 'include_retired' in params: query_params['include_retired'] = params['include_retired'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['text/plain']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProfilePagedMetadata', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only')) def update_profile(self, request, **kwargs): """ Update a profile {\"nickname\":\"Update a profile\",\"request\":\"updateProfileRequest.html\",\"response\":\"updateProfileResponse.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.update_profile(request, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param UpdateProfileRequest request: The profile object to be updated. (required) :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.update_profile_with_http_info(request, **kwargs) else: (data) = self.update_profile_with_http_info(request, **kwargs) return data def update_profile_with_http_info(self, request, **kwargs): """ Update a profile {\"nickname\":\"Update a profile\",\"request\":\"updateProfileRequest.html\",\"response\":\"updateProfileResponse.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.update_profile_with_http_info(request, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param UpdateProfileRequest request: The profile object to be updated. (required) :return: ProfilePagedMetadata If the method is called asynchronously, returns the request thread. """ all_params = ['request'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method update_profile" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'request' is set if ('request' not in params) or (params['request'] is None): raise ValueError("Missing the required parameter `request` when calling `update_profile`") resource_path = '/profiles'.replace('{format}', 'json') path_params = {} query_params = {} header_params = {} form_params = [] local_var_files = {} body_params = None if 'request' in params: body_params = params['request'] # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['text/xml', 'application/xml', 'application/json']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['application/json']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProfilePagedMetadata', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'))
[ "six.iteritems" ]
[((4492, 4519), 'six.iteritems', 'iteritems', (["params['kwargs']"], {}), "(params['kwargs'])\n", (4501, 4519), False, 'from six import iteritems\n'), ((9178, 9205), 'six.iteritems', 'iteritems', (["params['kwargs']"], {}), "(params['kwargs'])\n", (9187, 9205), False, 'from six import iteritems\n'), ((14778, 14805), 'six.iteritems', 'iteritems', (["params['kwargs']"], {}), "(params['kwargs'])\n", (14787, 14805), False, 'from six import iteritems\n'), ((20740, 20767), 'six.iteritems', 'iteritems', (["params['kwargs']"], {}), "(params['kwargs'])\n", (20749, 20767), False, 'from six import iteritems\n'), ((25708, 25735), 'six.iteritems', 'iteritems', (["params['kwargs']"], {}), "(params['kwargs'])\n", (25717, 25735), False, 'from six import iteritems\n')]
from django.contrib import admin from . import models @admin.register(models.Reviewer) class ReviewerAdmin(admin.ModelAdmin): autocomplete_fields = ["user"] list_display = ["username", "email"] search_fields = ["username__istartswith"] @admin.register(models.Album) class AlbumAdmin(admin.ModelAdmin): list_display = ["title", "artist_id", "created_at", "created_by"] ordering = ["title"] list_per_page = 30 prepopulated_fields = { "slug": ["title"] } list_select_related = ["artist_id", "created_by"] autocomplete_fields = ["artist_id"] search_fields = ["title"] @admin.register(models.Artist) class ArtistAdmin(admin.ModelAdmin): list_display = ["name", "created_at", "created_by"] ordering = ["name"] list_per_page = 30 prepopulated_fields = { "slug": ["name"] } search_fields = ['name__istartswith'] @admin.register(models.Genre) class GenreAdmin(admin.ModelAdmin): search_fields = ['name__istartswith'] @admin.register(models.AlbumGenre) class AlbumGenreAdmin(admin.ModelAdmin): list_display = ["__str__", "album_id", "genre_id"] autocomplete_fields = ["album_id", "genre_id"] @admin.register(models.AlbumLink) class AlbumLinkAdmin(admin.ModelAdmin): list_display = ["__str__", "album_id"] autocomplete_fields = ["album_id"] @admin.register(models.AlbumOfTheYear) class AlbumOfTheYear(admin.ModelAdmin): list_display = ["__str__", "album_id"] autocomplete_fields = ["album_id"] @admin.register(models.Track) class TrackAdmin(admin.ModelAdmin): list_display = ["__str__", "album_id"] @admin.register(models.Review) class ReviewAdmin(admin.ModelAdmin): autocomplete_fields = ["album_id", "reviewer_id"] list_display = ["__str__", "album_id", "reviewer_id"] @admin.register(models.FavoriteReviewerArtist) class FavoriteReviewerArtistAdmin(admin.ModelAdmin): autocomplete_fields = ["artist_id", "reviewer_id"] list_display = ["artist_id", "reviewer_id"] @admin.register(models.ReviewerLink) class ReviewerLinkAdmin(admin.ModelAdmin): autocomplete_fields = ["reviewer_id"] list_display = ["reviewer_id", "service_name"]
[ "django.contrib.admin.register" ]
[((57, 88), 'django.contrib.admin.register', 'admin.register', (['models.Reviewer'], {}), '(models.Reviewer)\n', (71, 88), False, 'from django.contrib import admin\n'), ((253, 281), 'django.contrib.admin.register', 'admin.register', (['models.Album'], {}), '(models.Album)\n', (267, 281), False, 'from django.contrib import admin\n'), ((623, 652), 'django.contrib.admin.register', 'admin.register', (['models.Artist'], {}), '(models.Artist)\n', (637, 652), False, 'from django.contrib import admin\n'), ((897, 925), 'django.contrib.admin.register', 'admin.register', (['models.Genre'], {}), '(models.Genre)\n', (911, 925), False, 'from django.contrib import admin\n'), ((1007, 1040), 'django.contrib.admin.register', 'admin.register', (['models.AlbumGenre'], {}), '(models.AlbumGenre)\n', (1021, 1040), False, 'from django.contrib import admin\n'), ((1191, 1223), 'django.contrib.admin.register', 'admin.register', (['models.AlbumLink'], {}), '(models.AlbumLink)\n', (1205, 1223), False, 'from django.contrib import admin\n'), ((1349, 1386), 'django.contrib.admin.register', 'admin.register', (['models.AlbumOfTheYear'], {}), '(models.AlbumOfTheYear)\n', (1363, 1386), False, 'from django.contrib import admin\n'), ((1512, 1540), 'django.contrib.admin.register', 'admin.register', (['models.Track'], {}), '(models.Track)\n', (1526, 1540), False, 'from django.contrib import admin\n'), ((1623, 1652), 'django.contrib.admin.register', 'admin.register', (['models.Review'], {}), '(models.Review)\n', (1637, 1652), False, 'from django.contrib import admin\n'), ((1805, 1850), 'django.contrib.admin.register', 'admin.register', (['models.FavoriteReviewerArtist'], {}), '(models.FavoriteReviewerArtist)\n', (1819, 1850), False, 'from django.contrib import admin\n'), ((2010, 2045), 'django.contrib.admin.register', 'admin.register', (['models.ReviewerLink'], {}), '(models.ReviewerLink)\n', (2024, 2045), False, 'from django.contrib import admin\n')]
import mxnet as mx from mxnet import nd, autograd import numpy as np ##################################3 # X, y - training data # n - number of data points in dataset # Py - desired label distribution ################################### def tweak_dist(X, y, num_labels, n, Py): shape = (n, *X.shape[1:]) Xshift = np.zeros(shape) yshift = np.zeros(n, dtype=np.int8) # get indices for each label indices_by_label = [(y==k).nonzero()[0] for k in range(10)] labels = np.argmax( np.random.multinomial(1, Py, n), axis=1) for i in range(n): # sample an example from X with replacement idx = np.random.choice(indices_by_label[labels[i]]) Xshift[i] = X[idx] yshift[i] = y[idx] return Xshift, yshift def tweak_one(X, y, num_labels, n, knockout_label, p): # create Py # call down to tweak_dist Py = np.full(num_labels, (1.-p)/(num_labels-1)) Py[knockout_label] = p print(Py) return tweak_dist(X, y, num_labels, n, Py)
[ "numpy.full", "numpy.random.multinomial", "numpy.zeros", "numpy.random.choice" ]
[((326, 341), 'numpy.zeros', 'np.zeros', (['shape'], {}), '(shape)\n', (334, 341), True, 'import numpy as np\n'), ((355, 381), 'numpy.zeros', 'np.zeros', (['n'], {'dtype': 'np.int8'}), '(n, dtype=np.int8)\n', (363, 381), True, 'import numpy as np\n'), ((899, 948), 'numpy.full', 'np.full', (['num_labels', '((1.0 - p) / (num_labels - 1))'], {}), '(num_labels, (1.0 - p) / (num_labels - 1))\n', (906, 948), True, 'import numpy as np\n'), ((517, 548), 'numpy.random.multinomial', 'np.random.multinomial', (['(1)', 'Py', 'n'], {}), '(1, Py, n)\n', (538, 548), True, 'import numpy as np\n'), ((656, 701), 'numpy.random.choice', 'np.random.choice', (['indices_by_label[labels[i]]'], {}), '(indices_by_label[labels[i]])\n', (672, 701), True, 'import numpy as np\n')]
from selenium_controller.github import Github from selenium_controller.gitlab import Gitlab from utils.shell_executor.executor import execute_now def main(): github = Github() gitlab = Gitlab() new_tags = list() execute_now('git fetch --all') gitlab_versions = gitlab.fetch_gitlab_map_versions() github_tags = github.fetch_github_available_docker_versions() github_tags = [t.replace('v', '').replace('.m1', '') for t in github_tags] # match the gitlab version which not inside GitHub tags, the github tags contains gitlab version for gitlab_version in gitlab_versions: if gitlab_version not in github_tags and int(gitlab_version.split('.')[0]) > 12: new_tags.append(gitlab_version) for tag in new_tags: github.create_new_branch(tag) if __name__ == "__main__": main()
[ "utils.shell_executor.executor.execute_now", "selenium_controller.gitlab.Gitlab", "selenium_controller.github.Github" ]
[((173, 181), 'selenium_controller.github.Github', 'Github', ([], {}), '()\n', (179, 181), False, 'from selenium_controller.github import Github\n'), ((195, 203), 'selenium_controller.gitlab.Gitlab', 'Gitlab', ([], {}), '()\n', (201, 203), False, 'from selenium_controller.gitlab import Gitlab\n'), ((232, 262), 'utils.shell_executor.executor.execute_now', 'execute_now', (['"""git fetch --all"""'], {}), "('git fetch --all')\n", (243, 262), False, 'from utils.shell_executor.executor import execute_now\n')]
# -*-coding:utf-8 -*- from openstack import connection # create connection username = "xxxxxx" password = "<PASSWORD>" projectId = "xxxxxxxxxxxxxxxxxxxxxxxxxxxx" # tenant ID userDomainId = "xxxxxxxxxxxxxxxxxxxxxxxxxxxx" # user account ID auth_url = "xxxxxxxxxxxxxxxxxxxxxxxxxxxx" # endpoint url conn = connection.Connection(auth_url=auth_url, user_domain_id=userDomainId, project_id=projectId, username=username, password=password) def create_server_tags(server_id): data = { "tags": [ { "key": "key1", "value": "value1" }, { "key": "key2", "value": "value3" } ] } conn.ecs.create_server_tags(server_id, **data) def delete_server_tags(server_id): data = { "tags": [ { "key": "key1", "value": "value1" } ] } conn.ecs.delete_server_tags(server_id, **data) def get_server_tags(server_id): tags = conn.ecs.get_server_tags(server_id) for tag in tags: print(tag.key, tag.value) def get_project_tags(): tags = conn.ecs.get_project_tags() for tag in tags: print(tag.key, tag.values) if __name__ == "__main__": server_id = "b0a9d2b4-2cae-4b66-a6ba-6af70f3bd7f8" create_server_tags(server_id) get_server_tags(server_id) delete_server_tags(server_id) get_project_tags()
[ "openstack.connection.Connection" ]
[((312, 445), 'openstack.connection.Connection', 'connection.Connection', ([], {'auth_url': 'auth_url', 'user_domain_id': 'userDomainId', 'project_id': 'projectId', 'username': 'username', 'password': 'password'}), '(auth_url=auth_url, user_domain_id=userDomainId,\n project_id=projectId, username=username, password=password)\n', (333, 445), False, 'from openstack import connection\n')]
#!/usr/bin/env python3 import os from subprocess import CalledProcessError, run from typing import Dict, List, Union import json from pathlib import Path import click __dir__ = Path(__file__).parent.absolute() def github_repo_name() -> str: if repo_full := os.environ.get("GITHUB_REPOSITORY"): return repo_full.split("/")[1] else: return "" def git_list_changes() -> List[str]: return run( ["git", "log", "-1", "--name-only", "--pretty="], check=True, capture_output=True, text=True, ).stdout.splitlines() def git_branch_name() -> str: if fullref := os.environ.get("GITHUB_REF", ""): return fullref[len("refs/heads/") :] else: return "" def target_branch() -> str: if git_branch_name() == "staging": return "release" else: return "staging" def git_commit_title() -> str: return run( ["git", "log", "-1", r"--pretty=format:%s"], check=True, capture_output=True, text=True, ).stdout.splitlines()[0] def git_short_sha() -> str: if fullsha := os.environ.get("GITHUB_SHA", ""): return fullsha[:7] else: return "" def is_dev_branch() -> bool: return git_branch_name() not in ["release", "staging"] def ci_yaml_changed() -> bool: return ".github/workflows/ci.yml" in git_list_changes() def docker_tag() -> str: return f"{git_branch_name()}-{git_short_sha()}" def docker_stack_name() -> str: return f"{github_repo_name()}-{git_branch_name()}-{git_short_sha()}" def should_upload_package() -> bool: return git_branch_name() == "release" def should_upload_image() -> bool: return git_branch_name() in ["release", "staging"] def package_version() -> str: with open("package.json", "rb") as content: package = json.load(content) return package["version"] def pr_body() -> str: if target_branch() == "staging": return 'To merge into the staging branch, please use "Rebase and merge", or "Squash and merge".' elif target_branch == "release": return 'To merge into the release branch, please use "Create a merge commit".' return "" def overwrite_path() -> str: return ":".join( [ str(__dir__), os.environ["PATH"], ] ) def get_env() -> Dict[str, Union[str, bool]]: return { "PROJECT_NAME": github_repo_name(), "DOCKER_TAG": docker_tag(), "CI_YAML_CHANGED": ci_yaml_changed(), "IS_DEV_BRANCH": is_dev_branch(), "BRANCH_NAME": git_branch_name(), "TARGET_BRANCH": target_branch(), "COMMIT_TITLE": git_commit_title(), "SHOULD_UPLOAD_PACKAGE": should_upload_package(), "SHOULD_UPLOAD_IMAGE": should_upload_image(), "PACKAGE_VERSION": package_version(), "PATH": overwrite_path(), "PR_BODY": pr_body(), } @click.command() @click.option("-w", "--write", is_flag=True) def main(write): content = "" for key, val in get_env().items(): if write: content += f"{key}={val}\n" else: content += f"{key}={val.__repr__()}\n" if write: with open(os.environ["GITHUB_ENV"], "a") as env_file: env_file.write(content) else: print(content, end="") if __name__ == "__main__": try: main() except CalledProcessError as err: exit(err.stdout + err.stderr)
[ "subprocess.run", "json.load", "click.option", "click.command", "os.environ.get", "pathlib.Path" ]
[((2916, 2931), 'click.command', 'click.command', ([], {}), '()\n', (2929, 2931), False, 'import click\n'), ((2933, 2976), 'click.option', 'click.option', (['"""-w"""', '"""--write"""'], {'is_flag': '(True)'}), "('-w', '--write', is_flag=True)\n", (2945, 2976), False, 'import click\n'), ((266, 301), 'os.environ.get', 'os.environ.get', (['"""GITHUB_REPOSITORY"""'], {}), "('GITHUB_REPOSITORY')\n", (280, 301), False, 'import os\n'), ((627, 659), 'os.environ.get', 'os.environ.get', (['"""GITHUB_REF"""', '""""""'], {}), "('GITHUB_REF', '')\n", (641, 659), False, 'import os\n'), ((1110, 1142), 'os.environ.get', 'os.environ.get', (['"""GITHUB_SHA"""', '""""""'], {}), "('GITHUB_SHA', '')\n", (1124, 1142), False, 'import os\n'), ((1839, 1857), 'json.load', 'json.load', (['content'], {}), '(content)\n', (1848, 1857), False, 'import json\n'), ((180, 194), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (184, 194), False, 'from pathlib import Path\n'), ((420, 521), 'subprocess.run', 'run', (["['git', 'log', '-1', '--name-only', '--pretty=']"], {'check': '(True)', 'capture_output': '(True)', 'text': '(True)'}), "(['git', 'log', '-1', '--name-only', '--pretty='], check=True,\n capture_output=True, text=True)\n", (423, 521), False, 'from subprocess import CalledProcessError, run\n'), ((907, 1003), 'subprocess.run', 'run', (["['git', 'log', '-1', '--pretty=format:%s']"], {'check': '(True)', 'capture_output': '(True)', 'text': '(True)'}), "(['git', 'log', '-1', '--pretty=format:%s'], check=True, capture_output=\n True, text=True)\n", (910, 1003), False, 'from subprocess import CalledProcessError, run\n')]
from django.db import models from django.db.models.signals import post_save from . import tasks ### Define Querysets class TwitterProfileQuerySet(models.QuerySet): def search(self, query): return self.filter(name__icontains=query) class TaskQuerySet(models.QuerySet): def search(self, query): return self.filter(query__icontains=query) def pending(self): return self.filter(status='PD') def done(self): return self.filter(status='DN') ### Define Models class TwitterProfile(models.Model): class Meta: ordering = ('popularity', 'name') tw_id = models.PositiveIntegerField(unique=True) name = models.CharField(max_length=200) description = models.TextField(blank=True, null=True) image = models.URLField(blank=True, null=True) popularity = models.PositiveIntegerField(blank=True, default=0) objects = models.Manager() custom = TwitterProfileQuerySet.as_manager() __str__ = lambda self: self.name def update_(self, tw_user): update_fields = [] if self.name != tw_user.name: self.name = tw_user.name update_fields.append('name') if self.description != tw_user.description: self.description = tw_user.description update_fields.append('description') if self.image != tw_user.profile_image_url: self.image = tw_user.profile_image_url update_fields.append('image') if self.popularity != tw_user.followers_count: self.popularity = tw_user.followers_count update_fields.append('popularity') if update_fields: self.save(update_fields=update_fields) class Task(models.Model): class Meta: ordering = ('query', ) PENDING = 'PD' DONE = 'DN' STATUS = ( (PENDING, 'Pending'), (DONE, 'Done') ) query = models.CharField(max_length=100) status = models.CharField(max_length=2, choices=STATUS, default=PENDING) objects = models.Manager() custom = TaskQuerySet.as_manager() def __str__(self): return "%s -> Status: %s" % (self.query, self.get_status_display()) def update_to_done(self): if self.status is not self.DONE: self.status = self.DONE self.save() @staticmethod def run(**kwargs): if kwargs.get('created', False) or 'from_view' in kwargs: tasks.twitter_scraper.delay(kwargs['instance'].id) # Signals post_save.connect(Task.run, Task)
[ "django.db.models.URLField", "django.db.models.TextField", "django.db.models.CharField", "django.db.models.PositiveIntegerField", "django.db.models.Manager", "django.db.models.signals.post_save.connect" ]
[((2508, 2541), 'django.db.models.signals.post_save.connect', 'post_save.connect', (['Task.run', 'Task'], {}), '(Task.run, Task)\n', (2525, 2541), False, 'from django.db.models.signals import post_save\n'), ((619, 659), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'unique': '(True)'}), '(unique=True)\n', (646, 659), False, 'from django.db import models\n'), ((671, 703), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (687, 703), False, 'from django.db import models\n'), ((722, 761), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (738, 761), False, 'from django.db import models\n'), ((774, 812), 'django.db.models.URLField', 'models.URLField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (789, 812), False, 'from django.db import models\n'), ((830, 880), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'blank': '(True)', 'default': '(0)'}), '(blank=True, default=0)\n', (857, 880), False, 'from django.db import models\n'), ((896, 912), 'django.db.models.Manager', 'models.Manager', ([], {}), '()\n', (910, 912), False, 'from django.db import models\n'), ((1910, 1942), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1926, 1942), False, 'from django.db import models\n'), ((1956, 2019), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(2)', 'choices': 'STATUS', 'default': 'PENDING'}), '(max_length=2, choices=STATUS, default=PENDING)\n', (1972, 2019), False, 'from django.db import models\n'), ((2035, 2051), 'django.db.models.Manager', 'models.Manager', ([], {}), '()\n', (2049, 2051), False, 'from django.db import models\n')]
from __future__ import print_function import FWCore.ParameterSet.Config as cms from Configuration.AlCa.autoCond import autoCond process = cms.Process("TEST") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(100) ) process.source = cms.Source("EmptyIOVSource", lastValue = cms.uint64(3), timetype = cms.string('runnumber'), firstValue = cms.uint64(1), interval = cms.uint64(1) ) from CondCore.ESSources.GlobalTag import GlobalTag # Prepare the list of globalTags process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") globalTag = GlobalTag(autoCond['run2_data'],"frontier://FrontierProd/CMS_CONDITIONS") process.GlobalTag.connect = cms.string(globalTag.connect()) process.GlobalTag.globaltag = globalTag.gt() print("Final connection string =", process.GlobalTag.connect) print("Final globalTag =", process.GlobalTag.globaltag) process.path = cms.Path()
[ "FWCore.ParameterSet.Config.string", "FWCore.ParameterSet.Config.untracked.int32", "FWCore.ParameterSet.Config.uint64", "CondCore.ESSources.GlobalTag.GlobalTag", "FWCore.ParameterSet.Config.Process", "FWCore.ParameterSet.Config.Path" ]
[((140, 159), 'FWCore.ParameterSet.Config.Process', 'cms.Process', (['"""TEST"""'], {}), "('TEST')\n", (151, 159), True, 'import FWCore.ParameterSet.Config as cms\n'), ((737, 811), 'CondCore.ESSources.GlobalTag.GlobalTag', 'GlobalTag', (["autoCond['run2_data']", '"""frontier://FrontierProd/CMS_CONDITIONS"""'], {}), "(autoCond['run2_data'], 'frontier://FrontierProd/CMS_CONDITIONS')\n", (746, 811), False, 'from CondCore.ESSources.GlobalTag import GlobalTag\n'), ((1052, 1062), 'FWCore.ParameterSet.Config.Path', 'cms.Path', ([], {}), '()\n', (1060, 1062), True, 'import FWCore.ParameterSet.Config as cms\n'), ((209, 233), 'FWCore.ParameterSet.Config.untracked.int32', 'cms.untracked.int32', (['(100)'], {}), '(100)\n', (228, 233), True, 'import FWCore.ParameterSet.Config as cms\n'), ((327, 340), 'FWCore.ParameterSet.Config.uint64', 'cms.uint64', (['(3)'], {}), '(3)\n', (337, 340), True, 'import FWCore.ParameterSet.Config as cms\n'), ((385, 408), 'FWCore.ParameterSet.Config.string', 'cms.string', (['"""runnumber"""'], {}), "('runnumber')\n", (395, 408), True, 'import FWCore.ParameterSet.Config as cms\n'), ((455, 468), 'FWCore.ParameterSet.Config.uint64', 'cms.uint64', (['(1)'], {}), '(1)\n', (465, 468), True, 'import FWCore.ParameterSet.Config as cms\n'), ((513, 526), 'FWCore.ParameterSet.Config.uint64', 'cms.uint64', (['(1)'], {}), '(1)\n', (523, 526), True, 'import FWCore.ParameterSet.Config as cms\n')]
from django.contrib.messages.views import SuccessMessageMixin from django.db.models import Q from django.shortcuts import render from django.views.generic import DetailView, ListView, UpdateView from .forms import StaffUpdateForm from .models import Staff class SearchSearchView(ListView): model = Staff paginate_by = 10 queryset = Staff.objects.all() def get_queryset(self): query = self.request.GET.get("q") if query: return Staff.objects.filter( Q(supplier_name__icontains=query) | Q(tags__icontains=query) | Q(email__icontains=query) | Q(phone__icontains=query) | Q(description__icontains=query) | Q(address__icontains=query) | Q(district__icontains=query) ) else: return Staff.objects.all() class StaffListView(ListView): model = Staff class StaffDetailView(DetailView): model = Staff class StaffUpdateView(UpdateView): model = Staff form_class = StaffUpdateForm template_name_suffix = "_update_form"
[ "django.db.models.Q" ]
[((792, 820), 'django.db.models.Q', 'Q', ([], {'district__icontains': 'query'}), '(district__icontains=query)\n', (793, 820), False, 'from django.db.models import Q\n'), ((746, 773), 'django.db.models.Q', 'Q', ([], {'address__icontains': 'query'}), '(address__icontains=query)\n', (747, 773), False, 'from django.db.models import Q\n'), ((696, 727), 'django.db.models.Q', 'Q', ([], {'description__icontains': 'query'}), '(description__icontains=query)\n', (697, 727), False, 'from django.db.models import Q\n'), ((652, 677), 'django.db.models.Q', 'Q', ([], {'phone__icontains': 'query'}), '(phone__icontains=query)\n', (653, 677), False, 'from django.db.models import Q\n'), ((608, 633), 'django.db.models.Q', 'Q', ([], {'email__icontains': 'query'}), '(email__icontains=query)\n', (609, 633), False, 'from django.db.models import Q\n'), ((513, 546), 'django.db.models.Q', 'Q', ([], {'supplier_name__icontains': 'query'}), '(supplier_name__icontains=query)\n', (514, 546), False, 'from django.db.models import Q\n'), ((565, 589), 'django.db.models.Q', 'Q', ([], {'tags__icontains': 'query'}), '(tags__icontains=query)\n', (566, 589), False, 'from django.db.models import Q\n')]
# # Copyright 2015-2016 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import os import json import subprocess import codecs import traceback import flask from gevent.wsgi import WSGIServer proxy = flask.Flask(__name__) proxy.debug = False @proxy.route("/init", methods=['POST']) def init(): flask.g = None payload = flask.request.get_json(force=True,silent=True) if not payload or not isinstance(payload, dict): flask.abort(403) message = payload.get("value", {}) if "code" in message: # store the code flask.g = message["code"] return ('OK', 200) else: flask.abort(403) @proxy.route("/run", methods=['POST']) def run(): message = flask.request.get_json(force=True,silent=True) if not message or not isinstance(message, dict): flask.abort(403) if not "value" in message: flask.abort(403) value = message["value"] if not isinstance(value, dict): flask.abort(403) # initialize the namespace for the execution namespace = {} result = None try: exec(flask.g, namespace) exec("param = " + json.dumps(value), namespace) exec("fun = main(param)", namespace) result = namespace['fun'] except Exception: traceback.print_exc(file = sys.stderr) sys.stdout.flush() sys.stderr.flush() if result and isinstance(result, dict): response = flask.jsonify(result) response.status_code = 200 return response else: response = flask.jsonify({ "error": "the action did not return a dictionary", "action_output": result }) response.status_code = 502 return response # start server in a forever loop if __name__ == "__main__": PORT = int(os.getenv("FLASK_PROXY_PORT", 8080)) server = WSGIServer(('', PORT), proxy, log=None) server.serve_forever()
[ "traceback.print_exc", "flask.Flask", "flask.abort", "gevent.wsgi.WSGIServer", "json.dumps", "flask.jsonify", "sys.stdout.flush", "sys.stderr.flush", "os.getenv", "flask.request.get_json" ]
[((724, 745), 'flask.Flask', 'flask.Flask', (['__name__'], {}), '(__name__)\n', (735, 745), False, 'import flask\n'), ((852, 899), 'flask.request.get_json', 'flask.request.get_json', ([], {'force': '(True)', 'silent': '(True)'}), '(force=True, silent=True)\n', (874, 899), False, 'import flask\n'), ((1229, 1276), 'flask.request.get_json', 'flask.request.get_json', ([], {'force': '(True)', 'silent': '(True)'}), '(force=True, silent=True)\n', (1251, 1276), False, 'import flask\n'), ((1841, 1859), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (1857, 1859), False, 'import sys\n'), ((1864, 1882), 'sys.stderr.flush', 'sys.stderr.flush', ([], {}), '()\n', (1880, 1882), False, 'import sys\n'), ((2336, 2375), 'gevent.wsgi.WSGIServer', 'WSGIServer', (["('', PORT)", 'proxy'], {'log': 'None'}), "(('', PORT), proxy, log=None)\n", (2346, 2375), False, 'from gevent.wsgi import WSGIServer\n'), ((960, 976), 'flask.abort', 'flask.abort', (['(403)'], {}), '(403)\n', (971, 976), False, 'import flask\n'), ((1147, 1163), 'flask.abort', 'flask.abort', (['(403)'], {}), '(403)\n', (1158, 1163), False, 'import flask\n'), ((1338, 1354), 'flask.abort', 'flask.abort', (['(403)'], {}), '(403)\n', (1349, 1354), False, 'import flask\n'), ((1395, 1411), 'flask.abort', 'flask.abort', (['(403)'], {}), '(403)\n', (1406, 1411), False, 'import flask\n'), ((1487, 1503), 'flask.abort', 'flask.abort', (['(403)'], {}), '(403)\n', (1498, 1503), False, 'import flask\n'), ((1946, 1967), 'flask.jsonify', 'flask.jsonify', (['result'], {}), '(result)\n', (1959, 1967), False, 'import flask\n'), ((2056, 2151), 'flask.jsonify', 'flask.jsonify', (["{'error': 'the action did not return a dictionary', 'action_output': result}"], {}), "({'error': 'the action did not return a dictionary',\n 'action_output': result})\n", (2069, 2151), False, 'import flask\n'), ((2286, 2321), 'os.getenv', 'os.getenv', (['"""FLASK_PROXY_PORT"""', '(8080)'], {}), "('FLASK_PROXY_PORT', 8080)\n", (2295, 2321), False, 'import os\n'), ((1798, 1834), 'traceback.print_exc', 'traceback.print_exc', ([], {'file': 'sys.stderr'}), '(file=sys.stderr)\n', (1817, 1834), False, 'import traceback\n'), ((1659, 1676), 'json.dumps', 'json.dumps', (['value'], {}), '(value)\n', (1669, 1676), False, 'import json\n')]
# + from model import common import torch.nn as nn import torch from torch.autograd import Variable import numpy.random as npr import numpy as np import torch.nn.functional as F import random import math def make_model(args, parent=False): return SRResNet(args) class SRResNet(nn.Module): def __init__(self, args, conv=common.default_conv): super(SRResNet, self).__init__() n_resblocks = 5 n_feats = 64 kernel_size = 3 scale = args.scale[0] act = nn.PReLU() self.sub_mean = common.MeanShift(args.rgb_range) self.add_mean = common.MeanShift(args.rgb_range, sign=1) # define head module m_head = [ nn.Conv2d(3, 64, kernel_size=9, padding=4), act ] # define body module m_body = [ common.ResBlock( conv, n_feats, kernel_size, bn=True, act=act, res_scale=args.res_scale ) for _ in range(n_resblocks) ] m_body.append(conv(n_feats, n_feats, kernel_size)) m_body.append(nn.BatchNorm2d(n_feats)) # define tail module m_tail = [ common.Upsampler(conv, scale, n_feats, act='prelu'), nn.Conv2d(n_feats, 3, kernel_size=9, padding=4) ] self.head = nn.Sequential(*m_head) self.body = nn.Sequential(*m_body) self.tail = nn.Sequential(*m_tail) def forward(self, x, flag=False, hr=None): x = self.sub_mean(x) x = self.head(x) res = self.body(x) res += x x = self.tail[0](res) if flag: self.eval() x_new = x.clone().detach() x_new = Variable(x_new.data, requires_grad=True).cuda() num_batch, num_channel, H, W = x_new.shape HW = H*W sr = self.tail[-1](x_new) criterion = nn.L1Loss() loss = criterion(sr, hr) self.zero_grad() loss.backward() grads_val = x_new.grad.clone().detach() grad_channel_mean = torch.mean(grads_val.view(num_batch, num_channel, -1), dim=2) channel_mean = grad_channel_mean grad_channel_mean = grad_channel_mean.view(num_batch, num_channel, 1, 1) spatial_mean = torch.sum(x_new * grad_channel_mean, 1) spatial_mean = spatial_mean.view(num_batch, HW) self.zero_grad() choose_one = random.randint(0,9) if choose_one <= 4: # ---------------------------- spatial ----------------------- spatial_drop_num = math.ceil(HW * 1 / 3.0) th18_mask_value = torch.sort(spatial_mean, dim=1, descending=True)[0][:, spatial_drop_num] th18_mask_value = th18_mask_value.view(num_batch, 1).expand(num_batch, 36864) mask_all_cuda = torch.where(spatial_mean > th18_mask_value, torch.zeros(spatial_mean.shape).cuda(), torch.ones(spatial_mean.shape).cuda()) mask_all = mask_all_cuda.reshape(num_batch, H, H).view(num_batch, 1, H, H) else: # -------------------------- channel ---------------------------- vector_thresh_percent = math.ceil(num_channel * 1 / 3.2) vector_thresh_value = torch.sort(channel_mean, dim=1, descending=True)[0][:, vector_thresh_percent] vector_thresh_value = vector_thresh_value.view(num_batch, 1).expand(num_batch, num_channel) vector = torch.where(channel_mean > vector_thresh_value, torch.zeros(channel_mean.shape).cuda(), torch.ones(channel_mean.shape).cuda()) mask_all = vector.view(num_batch, num_channel, 1, 1) mask_all[int(num_batch/3):,:,:,:] = 1 self.train() mask_all = Variable(mask_all, requires_grad=True) x = x * mask_all x = self.tail[-1](x) x = self.add_mean(x) return x def load_state_dict(self, state_dict, strict=True): own_state = self.state_dict() for name, param in state_dict.items(): if name in own_state: if isinstance(param, nn.Parameter): param = param.data try: own_state[name].copy_(param) except Exception: if name.find('tail') == -1: raise RuntimeError('While copying the parameter named {}, ' 'whose dimensions in the model are {} and ' 'whose dimensions in the checkpoint are {}.' .format(name, own_state[name].size(), param.size())) elif strict: if name.find('tail') == -1: raise KeyError('unexpected key "{}" in state_dict' .format(name))
[ "torch.nn.PReLU", "torch.ones", "random.randint", "torch.nn.Sequential", "model.common.ResBlock", "torch.nn.L1Loss", "torch.autograd.Variable", "torch.nn.Conv2d", "math.ceil", "torch.nn.BatchNorm2d", "model.common.Upsampler", "torch.zeros", "torch.sum", "torch.sort", "model.common.MeanShift" ]
[((508, 518), 'torch.nn.PReLU', 'nn.PReLU', ([], {}), '()\n', (516, 518), True, 'import torch.nn as nn\n'), ((552, 584), 'model.common.MeanShift', 'common.MeanShift', (['args.rgb_range'], {}), '(args.rgb_range)\n', (568, 584), False, 'from model import common\n'), ((609, 649), 'model.common.MeanShift', 'common.MeanShift', (['args.rgb_range'], {'sign': '(1)'}), '(args.rgb_range, sign=1)\n', (625, 649), False, 'from model import common\n'), ((1309, 1331), 'torch.nn.Sequential', 'nn.Sequential', (['*m_head'], {}), '(*m_head)\n', (1322, 1331), True, 'import torch.nn as nn\n'), ((1352, 1374), 'torch.nn.Sequential', 'nn.Sequential', (['*m_body'], {}), '(*m_body)\n', (1365, 1374), True, 'import torch.nn as nn\n'), ((1395, 1417), 'torch.nn.Sequential', 'nn.Sequential', (['*m_tail'], {}), '(*m_tail)\n', (1408, 1417), True, 'import torch.nn as nn\n'), ((711, 753), 'torch.nn.Conv2d', 'nn.Conv2d', (['(3)', '(64)'], {'kernel_size': '(9)', 'padding': '(4)'}), '(3, 64, kernel_size=9, padding=4)\n', (720, 753), True, 'import torch.nn as nn\n'), ((842, 934), 'model.common.ResBlock', 'common.ResBlock', (['conv', 'n_feats', 'kernel_size'], {'bn': '(True)', 'act': 'act', 'res_scale': 'args.res_scale'}), '(conv, n_feats, kernel_size, bn=True, act=act, res_scale=\n args.res_scale)\n', (857, 934), False, 'from model import common\n'), ((1079, 1102), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['n_feats'], {}), '(n_feats)\n', (1093, 1102), True, 'import torch.nn as nn\n'), ((1165, 1216), 'model.common.Upsampler', 'common.Upsampler', (['conv', 'scale', 'n_feats'], {'act': '"""prelu"""'}), "(conv, scale, n_feats, act='prelu')\n", (1181, 1216), False, 'from model import common\n'), ((1230, 1277), 'torch.nn.Conv2d', 'nn.Conv2d', (['n_feats', '(3)'], {'kernel_size': '(9)', 'padding': '(4)'}), '(n_feats, 3, kernel_size=9, padding=4)\n', (1239, 1277), True, 'import torch.nn as nn\n'), ((1912, 1923), 'torch.nn.L1Loss', 'nn.L1Loss', ([], {}), '()\n', (1921, 1923), True, 'import torch.nn as nn\n'), ((2334, 2373), 'torch.sum', 'torch.sum', (['(x_new * grad_channel_mean)', '(1)'], {}), '(x_new * grad_channel_mean, 1)\n', (2343, 2373), False, 'import torch\n'), ((2501, 2521), 'random.randint', 'random.randint', (['(0)', '(9)'], {}), '(0, 9)\n', (2515, 2521), False, 'import random\n'), ((3972, 4010), 'torch.autograd.Variable', 'Variable', (['mask_all'], {'requires_grad': '(True)'}), '(mask_all, requires_grad=True)\n', (3980, 4010), False, 'from torch.autograd import Variable\n'), ((2667, 2690), 'math.ceil', 'math.ceil', (['(HW * 1 / 3.0)'], {}), '(HW * 1 / 3.0)\n', (2676, 2690), False, 'import math\n'), ((3322, 3354), 'math.ceil', 'math.ceil', (['(num_channel * 1 / 3.2)'], {}), '(num_channel * 1 / 3.2)\n', (3331, 3354), False, 'import math\n'), ((1713, 1753), 'torch.autograd.Variable', 'Variable', (['x_new.data'], {'requires_grad': '(True)'}), '(x_new.data, requires_grad=True)\n', (1721, 1753), False, 'from torch.autograd import Variable\n'), ((2725, 2773), 'torch.sort', 'torch.sort', (['spatial_mean'], {'dim': '(1)', 'descending': '(True)'}), '(spatial_mean, dim=1, descending=True)\n', (2735, 2773), False, 'import torch\n'), ((3393, 3441), 'torch.sort', 'torch.sort', (['channel_mean'], {'dim': '(1)', 'descending': '(True)'}), '(channel_mean, dim=1, descending=True)\n', (3403, 3441), False, 'import torch\n'), ((2968, 2999), 'torch.zeros', 'torch.zeros', (['spatial_mean.shape'], {}), '(spatial_mean.shape)\n', (2979, 2999), False, 'import torch\n'), ((3052, 3082), 'torch.ones', 'torch.ones', (['spatial_mean.shape'], {}), '(spatial_mean.shape)\n', (3062, 3082), False, 'import torch\n'), ((3689, 3720), 'torch.zeros', 'torch.zeros', (['channel_mean.shape'], {}), '(channel_mean.shape)\n', (3700, 3720), False, 'import torch\n'), ((3766, 3796), 'torch.ones', 'torch.ones', (['channel_mean.shape'], {}), '(channel_mean.shape)\n', (3776, 3796), False, 'import torch\n')]
from django.http import HttpRequest from django.test import SimpleTestCase from django.urls import reverse from .. import views class HomePageTests(SimpleTestCase): def test_home_page_status_code(self): response = self.client.get("/") self.assertEqual(response.status_code, 200) def test_view_url_by_name(self): response = self.client.get(reverse("home")) self.assertEqual(response.status_code, 200) def test_view_uses_correct_template(self): response = self.client.get(reverse("home")) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, "home.html") def test_home_page_contains_correct_html(self): response = self.client.get("/") self.assertContains( response, '<h1 class="display-4">Roster Wizard</h1>' ) def test_home_page_does_not_contain_incorrect_html(self): response = self.client.get("/") self.assertNotContains( response, "Hi there! I should not be on the page." )
[ "django.urls.reverse" ]
[((375, 390), 'django.urls.reverse', 'reverse', (['"""home"""'], {}), "('home')\n", (382, 390), False, 'from django.urls import reverse\n'), ((527, 542), 'django.urls.reverse', 'reverse', (['"""home"""'], {}), "('home')\n", (534, 542), False, 'from django.urls import reverse\n')]
""" Test functions for GEE External comparisons are to R. The statmodels GEE implementation should generally agree with the R GEE implementation for the independence and exchangeable correlation structures. For other correlation structures, the details of the correlation estimation differ among implementations and the results will not agree exactly. """ from __future__ import print_function from statsmodels.compat import lrange import numpy as np import os from numpy.testing import assert_almost_equal from statsmodels.genmod.generalized_estimating_equations import (GEE, GEEMargins, Multinomial) from statsmodels.genmod.families import Gaussian, Binomial, Poisson from statsmodels.genmod.dependence_structures import (Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested) import pandas as pd import statsmodels.formula.api as sm def load_data(fname, icept=True): """ Load a data set from the results directory. The data set should be a CSV file with the following format: Column 0: Group indicator Column 1: endog variable Columns 2-end: exog variables If `icept` is True, an intercept is prepended to the exog variables. """ cur_dir = os.path.dirname(os.path.abspath(__file__)) Z = np.genfromtxt(os.path.join(cur_dir, 'results', fname), delimiter=",") group = Z[:,0] endog = Z[:,1] exog = Z[:,2:] if icept: exog = np.concatenate((np.ones((exog.shape[0],1)), exog), axis=1) return endog,exog,group class TestGEE(object): def test_margins(self): n = 300 exog = np.random.normal(size=(n, 4)) exog[:,0] = 1 exog[:,1] = 1*(exog[:,2] < 0) group = np.kron(np.arange(n/4), np.ones(4)) time = np.zeros((n, 1)) beta = np.r_[0, 1, -1, 0.5] lpr = np.dot(exog, beta) prob = 1 / (1 + np.exp(-lpr)) endog = 1*(np.random.uniform(size=n) < prob) fa = Binomial() ex = Exchangeable() md = GEE(endog, exog, group, time, fa, ex) mdf = md.fit() marg = GEEMargins(mdf, ()) marg.summary() # This is in the release announcement for version 0.6. def test_poisson_epil(self): cur_dir = os.path.dirname(os.path.abspath(__file__)) fname = os.path.join(cur_dir, "results", "epil.csv") data = pd.read_csv(fname) fam = Poisson() ind = Independence() md1 = GEE.from_formula("y ~ age + trt + base", data, groups=data["subject"], cov_struct=ind, family=fam) mdf1 = md1.fit() # Coefficients should agree with GLM from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod import families md2 = GLM.from_formula("y ~ age + trt + base", data, family=families.Poisson()) mdf2 = md2.fit(scale="X2") assert_almost_equal(mdf1.params, mdf2.params, decimal=6) assert_almost_equal(mdf1.scale, mdf2.scale, decimal=6) # TODO: why does this test fail? def t_est_missing(self): Y = np.random.normal(size=100) X1 = np.random.normal(size=100) X2 = np.random.normal(size=100) X3 = np.random.normal(size=100) groups = np.kron(lrange(20), np.ones(5)) Y[0] = np.nan Y[5:7] = np.nan X2[10:12] = np.nan D = pd.DataFrame({"Y": Y, "X1": X1, "X2": X2, "X3": X3, "groups": groups}) md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=D["groups"], missing='drop') mdf = md.fit() assert(len(md.endog) == 95) assert(md.exog.shape) == (95,4) def test_default_time(self): """ Check that the time defaults work correctly. """ endog,exog,group = load_data("gee_logistic_1.csv") # Time values for the autoregressive model T = np.zeros(len(endog)) idx = set(group) for ii in idx: jj = np.flatnonzero(group == ii) T[jj] = lrange(len(jj)) family = Binomial() va = Autoregressive() md1 = GEE(endog, exog, group, family=family, cov_struct=va) mdf1 = md1.fit() md2 = GEE(endog, exog, group, time=T, family=family, cov_struct=va) mdf2 = md2.fit() assert_almost_equal(mdf1.params, mdf2.params, decimal=6) assert_almost_equal(mdf1.standard_errors(), mdf2.standard_errors(), decimal=6) def test_logistic(self): """ R code for comparing results: library(gee) Z = read.csv("results/gee_logistic_1.csv", header=FALSE) Y = Z[,2] Id = Z[,1] X1 = Z[,3] X2 = Z[,4] X3 = Z[,5] mi = gee(Y ~ X1 + X2 + X3, id=Id, family=binomial, corstr="independence") smi = summary(mi) u = coefficients(smi) cfi = paste(u[,1], collapse=",") sei = paste(u[,4], collapse=",") me = gee(Y ~ X1 + X2 + X3, id=Id, family=binomial, corstr="exchangeable") sme = summary(me) u = coefficients(sme) cfe = paste(u[,1], collapse=",") see = paste(u[,4], collapse=",") ma = gee(Y ~ X1 + X2 + X3, id=Id, family=binomial, corstr="AR-M") sma = summary(ma) u = coefficients(sma) cfa = paste(u[,1], collapse=",") sea = paste(u[,4], collapse=",") sprintf("cf = [[%s],[%s],[%s]]", cfi, cfe, cfa) sprintf("se = [[%s],[%s],[%s]]", sei, see, sea) """ endog,exog,group = load_data("gee_logistic_1.csv") # Time values for the autoregressive model T = np.zeros(len(endog)) idx = set(group) for ii in idx: jj = np.flatnonzero(group == ii) T[jj] = lrange(len(jj)) family = Binomial() ve = Exchangeable() vi = Independence() va = Autoregressive() # From R gee cf = [[0.0167272965285882,1.13038654425893, -1.86896345082962,1.09397608331333], [0.0178982283915449,1.13118798191788, -1.86133518416017,1.08944256230299], [0.0109621937947958,1.13226505028438, -1.88278757333046,1.09954623769449]] se = [[0.127291720283049,0.166725808326067, 0.192430061340865,0.173141068839597], [0.127045031730155,0.165470678232842, 0.192052750030501,0.173174779369249], [0.127240302296444,0.170554083928117, 0.191045527104503,0.169776150974586]] for j,v in enumerate((vi,ve,va)): md = GEE(endog, exog, group, T, family, v) mdf = md.fit() if id(v) != id(va): assert_almost_equal(mdf.params, cf[j], decimal=6) assert_almost_equal(mdf.standard_errors(), se[j], decimal=6) # Test with formulas D = np.concatenate((endog[:,None], group[:,None], exog[:,1:]), axis=1) D = pd.DataFrame(D) D.columns = ["Y","Id",] + ["X%d" % (k+1) for k in range(exog.shape[1]-1)] for j,v in enumerate((vi,ve)): md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=D.loc[:,"Id"], family=family, cov_struct=v) mdf = md.fit() assert_almost_equal(mdf.params, cf[j], decimal=6) assert_almost_equal(mdf.standard_errors(), se[j], decimal=6) # Check for run-time exceptions in summary # print(mdf.summary()) def test_autoregressive(self): dep_params_true = [0, 0.589208623896, 0.559823804948] params_true = [[1.08043787, 1.12709319, 0.90133927], [0.9613677, 1.05826987, 0.90832055], [1.05370439, 0.96084864, 0.93923374]] np.random.seed(342837482) num_group = 100 ar_param = 0.5 k = 3 ga = Gaussian() for gsize in 1,2,3: ix = np.arange(gsize)[:,None] - np.arange(gsize)[None,:] ix = np.abs(ix) cmat = ar_param ** ix cmat_r = np.linalg.cholesky(cmat) endog = [] exog = [] groups = [] for i in range(num_group): x = np.random.normal(size=(gsize,k)) exog.append(x) expval = x.sum(1) errors = np.dot(cmat_r, np.random.normal(size=gsize)) endog.append(expval + errors) groups.append(i*np.ones(gsize)) endog = np.concatenate(endog) groups = np.concatenate(groups) exog = np.concatenate(exog, axis=0) ar = Autoregressive() md = GEE(endog, exog, groups, family=ga, cov_struct = ar) mdf = md.fit() assert_almost_equal(ar.dep_params, dep_params_true[gsize-1]) assert_almost_equal(mdf.params, params_true[gsize-1]) def test_post_estimation(self): family = Gaussian() endog,exog,group = load_data("gee_linear_1.csv") ve = Exchangeable() md = GEE(endog, exog, group, None, family, ve) mdf = md.fit() assert_almost_equal(np.dot(exog, mdf.params), mdf.fittedvalues) assert_almost_equal(endog - np.dot(exog, mdf.params), mdf.resid) def test_linear(self): """ library(gee) Z = read.csv("results/gee_linear_1.csv", header=FALSE) Y = Z[,2] Id = Z[,1] X1 = Z[,3] X2 = Z[,4] X3 = Z[,5] mi = gee(Y ~ X1 + X2 + X3, id=Id, family=gaussian, corstr="independence", tol=1e-8, maxit=100) smi = summary(mi) u = coefficients(smi) cfi = paste(u[,1], collapse=",") sei = paste(u[,4], collapse=",") me = gee(Y ~ X1 + X2 + X3, id=Id, family=gaussian, corstr="exchangeable", tol=1e-8, maxit=100) sme = summary(me) u = coefficients(sme) cfe = paste(u[,1], collapse=",") see = paste(u[,4], collapse=",") sprintf("cf = [[%s],[%s]]", cfi, cfe) sprintf("se = [[%s],[%s]]", sei, see) """ family = Gaussian() endog,exog,group = load_data("gee_linear_1.csv") vi = Independence() ve = Exchangeable() # From R gee cf = [[-0.01850226507491,0.81436304278962, -1.56167635393184,0.794239361055003], [-0.0182920577154767,0.814898414022467, -1.56194040106201,0.793499517527478]] se = [[0.0440733554189401,0.0479993639119261, 0.0496045952071308,0.0479467597161284], [0.0440369906460754,0.0480069787567662, 0.049519758758187,0.0479760443027526]] for j,v in enumerate((vi, ve)): md = GEE(endog, exog, group, None, family, v) mdf = md.fit() assert_almost_equal(mdf.params, cf[j], decimal=10) assert_almost_equal(mdf.standard_errors(), se[j], decimal=10) # Test with formulas D = np.concatenate((endog[:,None], group[:,None], exog[:,1:]), axis=1) D = pd.DataFrame(D) D.columns = ["Y","Id",] + ["X%d" % (k+1) for k in range(exog.shape[1]-1)] for j,v in enumerate((vi,ve)): md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=D.loc[:,"Id"], family=family, cov_struct=v) mdf = md.fit() assert_almost_equal(mdf.params, cf[j], decimal=10) assert_almost_equal(mdf.standard_errors(), se[j], decimal=10) def test_linear_constrained(self): family = Gaussian() exog = np.random.normal(size=(300,4)) exog[:,0] = 1 endog = np.dot(exog, np.r_[1, 1, 0, 0.2]) +\ np.random.normal(size=300) group = np.kron(np.arange(100), np.r_[1,1,1]) vi = Independence() ve = Exchangeable() L = np.r_[[[0, 0, 0, 1]]] R = np.r_[0,] for j,v in enumerate((vi,ve)): md = GEE(endog, exog, group, None, family, v, constraint=(L,R)) mdf = md.fit() assert_almost_equal(mdf.params[3], 0, decimal=10) def test_nested_linear(self): family = Gaussian() endog,exog,group = load_data("gee_nested_linear_1.csv") group_n = [] for i in range(endog.shape[0]//10): group_n.extend([0,]*5) group_n.extend([1,]*5) group_n = np.array(group_n)[:,None] dp = Independence() md = GEE(endog, exog, group, None, family, dp) mdf1 = md.fit() # From statsmodels.GEE (not an independent test) cf = np.r_[-0.1671073 , 1.00467426, -2.01723004, 0.97297106] se = np.r_[0.08629606, 0.04058653, 0.04067038, 0.03777989] assert_almost_equal(mdf1.params, cf, decimal=6) assert_almost_equal(mdf1.standard_errors(), se, decimal=6) ne = Nested() md = GEE(endog, exog, group, None, family, ne, dep_data=group_n) mdf2 = md.fit(start_params=mdf1.params) # From statsmodels.GEE (not an independent test) cf = np.r_[-0.16655319, 1.02183688, -2.00858719, 1.00101969] se = np.r_[0.08632616, 0.02913582, 0.03114428, 0.02893991] assert_almost_equal(mdf2.params, cf, decimal=6) assert_almost_equal(mdf2.standard_errors(), se, decimal=6) def test_ordinal(self): family = Binomial() endog, exog, groups = load_data("gee_ordinal_1.csv", icept=False) v = GlobalOddsRatio("ordinal") md = GEE(endog, exog, groups, None, family, v) md.setup_ordinal() mdf = md.fit() cf = np.r_[1.09238131, 0.02148193, -0.39879146, -0.01855666, 0.02983409, 1.18123172, 0.01845318, -1.10233886] se = np.r_[0.10878752, 0.10326078, 0.11171241, 0.05488705, 0.05995019, 0.0916574, 0.05951445, 0.08539281] assert_almost_equal(mdf.params, cf, decimal=5) assert_almost_equal(mdf.bse, se, decimal=5) def test_nominal(self): family = Multinomial(3) endog, exog, groups = load_data("gee_nominal_1.csv", icept=False) # Test with independence correlation v = Independence() md = GEE(endog, exog, groups, None, family, v) md.setup_nominal() mdf1 = md.fit() # From statsmodels.GEE (not an independent test) cf1 = np.r_[0.44944752, 0.45569985, -0.92007064, -0.46766728] se1 = np.r_[0.09801821, 0.07718842, 0.13229421, 0.08544553] assert_almost_equal(mdf1.params, cf1, decimal=5) assert_almost_equal(mdf1.standard_errors(), se1, decimal=5) # Test with global odds ratio dependence v = GlobalOddsRatio("nominal") md = GEE(endog, exog, groups, None, family, v) md.setup_nominal() mdf2 = md.fit(start_params=mdf1.params) # From statsmodels.GEE (not an independent test) cf2 = np.r_[0.45397549, 0.42278345, -0.91997131, -0.50115943] se2 = np.r_[0.09646057, 0.07405713, 0.1324629 , 0.09025019] assert_almost_equal(mdf2.params, cf2, decimal=5) assert_almost_equal(mdf2.standard_errors(), se2, decimal=5) def test_poisson(self): """ library(gee) Z = read.csv("results/gee_poisson_1.csv", header=FALSE) Y = Z[,2] Id = Z[,1] X1 = Z[,3] X2 = Z[,4] X3 = Z[,5] X4 = Z[,6] X5 = Z[,7] mi = gee(Y ~ X1 + X2 + X3 + X4 + X5, id=Id, family=poisson, corstr="independence", scale.fix=TRUE) smi = summary(mi) u = coefficients(smi) cfi = paste(u[,1], collapse=",") sei = paste(u[,4], collapse=",") me = gee(Y ~ X1 + X2 + X3 + X4 + X5, id=Id, family=poisson, corstr="exchangeable", scale.fix=TRUE) sme = summary(me) u = coefficients(sme) cfe = paste(u[,1], collapse=",") see = paste(u[,4], collapse=",") sprintf("cf = [[%s],[%s]]", cfi, cfe) sprintf("se = [[%s],[%s]]", sei, see) """ family = Poisson() endog,exog,group_n = load_data("gee_poisson_1.csv") vi = Independence() ve = Exchangeable() # From R gee cf = [[-0.0364450410793481,-0.0543209391301178, 0.0156642711741052,0.57628591338724, -0.00465659951186211,-0.477093153099256], [-0.0315615554826533,-0.0562589480840004, 0.0178419412298561,0.571512795340481, -0.00363255566297332,-0.475971696727736]] se = [[0.0611309237214186,0.0390680524493108, 0.0334234174505518,0.0366860768962715, 0.0304758505008105,0.0316348058881079], [0.0610840153582275,0.0376887268649102, 0.0325168379415177,0.0369786751362213, 0.0296141014225009,0.0306115470200955]] for j,v in enumerate((vi,ve)): md = GEE(endog, exog, group_n, None, family, v) mdf = md.fit() assert_almost_equal(mdf.params, cf[j], decimal=5) assert_almost_equal(mdf.standard_errors(), se[j], decimal=6) # Test with formulas D = np.concatenate((endog[:,None], group_n[:,None], exog[:,1:]), axis=1) D = pd.DataFrame(D) D.columns = ["Y","Id",] + ["X%d" % (k+1) for k in range(exog.shape[1]-1)] for j,v in enumerate((vi,ve)): md = GEE.from_formula("Y ~ X1 + X2 + X3 + X4 + X5", D, None, groups=D.loc[:,"Id"], family=family, cov_struct=v) mdf = md.fit() assert_almost_equal(mdf.params, cf[j], decimal=5) assert_almost_equal(mdf.standard_errors(), se[j], decimal=6) # print(mdf.params) def test_compare_OLS(self): """ Gaussian GEE with independence correlation should agree exactly with OLS for parameter estimates and standard errors derived from the naive covariance estimate. """ vs = Independence() family = Gaussian() Y = np.random.normal(size=100) X1 = np.random.normal(size=100) X2 = np.random.normal(size=100) X3 = np.random.normal(size=100) groups = np.kron(lrange(20), np.ones(5)) D = pd.DataFrame({"Y": Y, "X1": X1, "X2": X2, "X3": X3}) md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=groups, family=family, cov_struct=vs) mdf = md.fit() ols = sm.ols("Y ~ X1 + X2 + X3", data=D).fit() assert_almost_equal(ols.params.values, mdf.params, decimal=10) se = mdf.standard_errors(covariance_type="naive") assert_almost_equal(ols.bse, se, decimal=10) naive_tvalues = mdf.params / \ np.sqrt(np.diag(mdf.naive_covariance)) assert_almost_equal(naive_tvalues, ols.tvalues, decimal=10) def test_compare_logit(self): vs = Independence() family = Binomial() Y = 1*(np.random.normal(size=100) < 0) X1 = np.random.normal(size=100) X2 = np.random.normal(size=100) X3 = np.random.normal(size=100) groups = np.random.randint(0, 4, size=100) D = pd.DataFrame({"Y": Y, "X1": X1, "X2": X2, "X3": X3}) md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=groups, family=family, cov_struct=vs).fit() sml = sm.logit("Y ~ X1 + X2 + X3", data=D).fit(disp=False) assert_almost_equal(sml.params.values, md.params, decimal=10) def test_compare_poisson(self): vs = Independence() family = Poisson() Y = np.ceil(-np.log(np.random.uniform(size=100))) X1 = np.random.normal(size=100) X2 = np.random.normal(size=100) X3 = np.random.normal(size=100) groups = np.random.randint(0, 4, size=100) D = pd.DataFrame({"Y": Y, "X1": X1, "X2": X2, "X3": X3}) md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=groups, family=family, cov_struct=vs).fit() sml = sm.poisson("Y ~ X1 + X2 + X3", data=D).fit(disp=False) assert_almost_equal(sml.params.values, md.params, decimal=10) if __name__=="__main__": import nose nose.runmodule(argv=[__file__,'-vvs','-x','--pdb', '--pdb-failure'], exit=False)
[ "numpy.random.seed", "numpy.abs", "pandas.read_csv", "numpy.ones", "statsmodels.genmod.generalized_estimating_equations.Multinomial", "numpy.random.randint", "numpy.arange", "numpy.exp", "numpy.random.normal", "statsmodels.genmod.families.Gaussian", "numpy.diag", "os.path.join", "pandas.DataFrame", "os.path.abspath", "numpy.testing.assert_almost_equal", "statsmodels.compat.lrange", "statsmodels.genmod.dependence_structures.Autoregressive", "statsmodels.genmod.dependence_structures.GlobalOddsRatio", "statsmodels.formula.api.ols", "statsmodels.genmod.generalized_estimating_equations.GEEMargins", "numpy.linalg.cholesky", "statsmodels.genmod.dependence_structures.Independence", "nose.runmodule", "statsmodels.genmod.generalized_estimating_equations.GEE.from_formula", "numpy.dot", "statsmodels.genmod.generalized_estimating_equations.GEE", "numpy.concatenate", "numpy.random.uniform", "statsmodels.formula.api.poisson", "statsmodels.genmod.dependence_structures.Exchangeable", "numpy.flatnonzero", "numpy.zeros", "statsmodels.genmod.families.Poisson", "numpy.array", "statsmodels.formula.api.logit", "statsmodels.genmod.families.Binomial", "statsmodels.genmod.dependence_structures.Nested" ]
[((21322, 21409), 'nose.runmodule', 'nose.runmodule', ([], {'argv': "[__file__, '-vvs', '-x', '--pdb', '--pdb-failure']", 'exit': '(False)'}), "(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'],\n exit=False)\n", (21336, 21409), False, 'import nose\n'), ((1230, 1255), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (1245, 1255), False, 'import os\n'), ((1279, 1318), 'os.path.join', 'os.path.join', (['cur_dir', '"""results"""', 'fname'], {}), "(cur_dir, 'results', fname)\n", (1291, 1318), False, 'import os\n'), ((1650, 1679), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(n, 4)'}), '(size=(n, 4))\n', (1666, 1679), True, 'import numpy as np\n'), ((1808, 1824), 'numpy.zeros', 'np.zeros', (['(n, 1)'], {}), '((n, 1))\n', (1816, 1824), True, 'import numpy as np\n'), ((1876, 1894), 'numpy.dot', 'np.dot', (['exog', 'beta'], {}), '(exog, beta)\n', (1882, 1894), True, 'import numpy as np\n'), ((2001, 2011), 'statsmodels.genmod.families.Binomial', 'Binomial', ([], {}), '()\n', (2009, 2011), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((2025, 2039), 'statsmodels.genmod.dependence_structures.Exchangeable', 'Exchangeable', ([], {}), '()\n', (2037, 2039), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((2054, 2091), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group', 'time', 'fa', 'ex'], {}), '(endog, exog, group, time, fa, ex)\n', (2057, 2091), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((2131, 2150), 'statsmodels.genmod.generalized_estimating_equations.GEEMargins', 'GEEMargins', (['mdf', '()'], {}), '(mdf, ())\n', (2141, 2150), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((2346, 2390), 'os.path.join', 'os.path.join', (['cur_dir', '"""results"""', '"""epil.csv"""'], {}), "(cur_dir, 'results', 'epil.csv')\n", (2358, 2390), False, 'import os\n'), ((2406, 2424), 'pandas.read_csv', 'pd.read_csv', (['fname'], {}), '(fname)\n', (2417, 2424), True, 'import pandas as pd\n'), ((2440, 2449), 'statsmodels.genmod.families.Poisson', 'Poisson', ([], {}), '()\n', (2447, 2449), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((2464, 2478), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (2476, 2478), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((2493, 2595), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""y ~ age + trt + base"""', 'data'], {'groups': "data['subject']", 'cov_struct': 'ind', 'family': 'fam'}), "('y ~ age + trt + base', data, groups=data['subject'],\n cov_struct=ind, family=fam)\n", (2509, 2595), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((3005, 3061), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf1.params', 'mdf2.params'], {'decimal': '(6)'}), '(mdf1.params, mdf2.params, decimal=6)\n', (3024, 3061), False, 'from numpy.testing import assert_almost_equal\n'), ((3070, 3124), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf1.scale', 'mdf2.scale'], {'decimal': '(6)'}), '(mdf1.scale, mdf2.scale, decimal=6)\n', (3089, 3124), False, 'from numpy.testing import assert_almost_equal\n'), ((3207, 3233), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (3223, 3233), True, 'import numpy as np\n'), ((3247, 3273), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (3263, 3273), True, 'import numpy as np\n'), ((3287, 3313), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (3303, 3313), True, 'import numpy as np\n'), ((3327, 3353), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (3343, 3353), True, 'import numpy as np\n'), ((3490, 3560), 'pandas.DataFrame', 'pd.DataFrame', (["{'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3, 'groups': groups}"], {}), "({'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3, 'groups': groups})\n", (3502, 3560), True, 'import pandas as pd\n'), ((3601, 3687), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""Y ~ X1 + X2 + X3"""', 'D', 'None'], {'groups': "D['groups']", 'missing': '"""drop"""'}), "('Y ~ X1 + X2 + X3', D, None, groups=D['groups'], missing=\n 'drop')\n", (3617, 3687), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((4216, 4226), 'statsmodels.genmod.families.Binomial', 'Binomial', ([], {}), '()\n', (4224, 4226), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((4240, 4256), 'statsmodels.genmod.dependence_structures.Autoregressive', 'Autoregressive', ([], {}), '()\n', (4254, 4256), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((4273, 4326), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group'], {'family': 'family', 'cov_struct': 'va'}), '(endog, exog, group, family=family, cov_struct=va)\n', (4276, 4326), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((4367, 4428), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group'], {'time': 'T', 'family': 'family', 'cov_struct': 'va'}), '(endog, exog, group, time=T, family=family, cov_struct=va)\n', (4370, 4428), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((4481, 4537), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf1.params', 'mdf2.params'], {'decimal': '(6)'}), '(mdf1.params, mdf2.params, decimal=6)\n', (4500, 4537), False, 'from numpy.testing import assert_almost_equal\n'), ((6039, 6049), 'statsmodels.genmod.families.Binomial', 'Binomial', ([], {}), '()\n', (6047, 6049), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((6063, 6077), 'statsmodels.genmod.dependence_structures.Exchangeable', 'Exchangeable', ([], {}), '()\n', (6075, 6077), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((6091, 6105), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (6103, 6105), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((6119, 6135), 'statsmodels.genmod.dependence_structures.Autoregressive', 'Autoregressive', ([], {}), '()\n', (6133, 6135), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((7163, 7232), 'numpy.concatenate', 'np.concatenate', (['(endog[:, None], group[:, None], exog[:, 1:])'], {'axis': '(1)'}), '((endog[:, None], group[:, None], exog[:, 1:]), axis=1)\n', (7177, 7232), True, 'import numpy as np\n'), ((7269, 7284), 'pandas.DataFrame', 'pd.DataFrame', (['D'], {}), '(D)\n', (7281, 7284), True, 'import pandas as pd\n'), ((8198, 8223), 'numpy.random.seed', 'np.random.seed', (['(342837482)'], {}), '(342837482)\n', (8212, 8223), True, 'import numpy as np\n'), ((8300, 8310), 'statsmodels.genmod.families.Gaussian', 'Gaussian', ([], {}), '()\n', (8308, 8310), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((9371, 9381), 'statsmodels.genmod.families.Gaussian', 'Gaussian', ([], {}), '()\n', (9379, 9381), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((9453, 9467), 'statsmodels.genmod.dependence_structures.Exchangeable', 'Exchangeable', ([], {}), '()\n', (9465, 9467), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((9482, 9523), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group', 'None', 'family', 've'], {}), '(endog, exog, group, None, family, ve)\n', (9485, 9523), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((10612, 10622), 'statsmodels.genmod.families.Gaussian', 'Gaussian', ([], {}), '()\n', (10620, 10622), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((10695, 10709), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (10707, 10709), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((10723, 10737), 'statsmodels.genmod.dependence_structures.Exchangeable', 'Exchangeable', ([], {}), '()\n', (10735, 10737), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((11527, 11596), 'numpy.concatenate', 'np.concatenate', (['(endog[:, None], group[:, None], exog[:, 1:])'], {'axis': '(1)'}), '((endog[:, None], group[:, None], exog[:, 1:]), axis=1)\n', (11541, 11596), True, 'import numpy as np\n'), ((11633, 11648), 'pandas.DataFrame', 'pd.DataFrame', (['D'], {}), '(D)\n', (11645, 11648), True, 'import pandas as pd\n'), ((12241, 12251), 'statsmodels.genmod.families.Gaussian', 'Gaussian', ([], {}), '()\n', (12249, 12251), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((12268, 12299), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(300, 4)'}), '(size=(300, 4))\n', (12284, 12299), True, 'import numpy as np\n'), ((12481, 12495), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (12493, 12495), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((12509, 12523), 'statsmodels.genmod.dependence_structures.Exchangeable', 'Exchangeable', ([], {}), '()\n', (12521, 12523), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((12861, 12871), 'statsmodels.genmod.families.Gaussian', 'Gaussian', ([], {}), '()\n', (12869, 12871), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((13131, 13145), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (13143, 13145), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((13159, 13200), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group', 'None', 'family', 'dp'], {}), '(endog, exog, group, None, family, dp)\n', (13162, 13200), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((13432, 13479), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf1.params', 'cf'], {'decimal': '(6)'}), '(mdf1.params, cf, decimal=6)\n', (13451, 13479), False, 'from numpy.testing import assert_almost_equal\n'), ((13589, 13597), 'statsmodels.genmod.dependence_structures.Nested', 'Nested', ([], {}), '()\n', (13595, 13597), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((13611, 13670), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group', 'None', 'family', 'ne'], {'dep_data': 'group_n'}), '(endog, exog, group, None, family, ne, dep_data=group_n)\n', (13614, 13670), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((13943, 13990), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf2.params', 'cf'], {'decimal': '(6)'}), '(mdf2.params, cf, decimal=6)\n', (13962, 13990), False, 'from numpy.testing import assert_almost_equal\n'), ((14134, 14144), 'statsmodels.genmod.families.Binomial', 'Binomial', ([], {}), '()\n', (14142, 14144), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((14273, 14299), 'statsmodels.genmod.dependence_structures.GlobalOddsRatio', 'GlobalOddsRatio', (['"""ordinal"""'], {}), "('ordinal')\n", (14288, 14299), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((14314, 14355), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'groups', 'None', 'family', 'v'], {}), '(endog, exog, groups, None, family, v)\n', (14317, 14355), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((14691, 14737), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'cf'], {'decimal': '(5)'}), '(mdf.params, cf, decimal=5)\n', (14710, 14737), False, 'from numpy.testing import assert_almost_equal\n'), ((14746, 14789), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.bse', 'se'], {'decimal': '(5)'}), '(mdf.bse, se, decimal=5)\n', (14765, 14789), False, 'from numpy.testing import assert_almost_equal\n'), ((14838, 14852), 'statsmodels.genmod.generalized_estimating_equations.Multinomial', 'Multinomial', (['(3)'], {}), '(3)\n', (14849, 14852), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((15026, 15040), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (15038, 15040), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((15054, 15095), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'groups', 'None', 'family', 'v'], {}), '(endog, exog, groups, None, family, v)\n', (15057, 15095), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((15355, 15403), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf1.params', 'cf1'], {'decimal': '(5)'}), '(mdf1.params, cf1, decimal=5)\n', (15374, 15403), False, 'from numpy.testing import assert_almost_equal\n'), ((15534, 15560), 'statsmodels.genmod.dependence_structures.GlobalOddsRatio', 'GlobalOddsRatio', (['"""nominal"""'], {}), "('nominal')\n", (15549, 15560), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((15574, 15615), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'groups', 'None', 'family', 'v'], {}), '(endog, exog, groups, None, family, v)\n', (15577, 15615), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((15899, 15947), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf2.params', 'cf2'], {'decimal': '(5)'}), '(mdf2.params, cf2, decimal=5)\n', (15918, 15947), False, 'from numpy.testing import assert_almost_equal\n'), ((16924, 16933), 'statsmodels.genmod.families.Poisson', 'Poisson', ([], {}), '()\n', (16931, 16933), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((17009, 17023), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (17021, 17023), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((17037, 17051), 'statsmodels.genmod.dependence_structures.Exchangeable', 'Exchangeable', ([], {}), '()\n', (17049, 17051), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((18071, 18142), 'numpy.concatenate', 'np.concatenate', (['(endog[:, None], group_n[:, None], exog[:, 1:])'], {'axis': '(1)'}), '((endog[:, None], group_n[:, None], exog[:, 1:]), axis=1)\n', (18085, 18142), True, 'import numpy as np\n'), ((18180, 18195), 'pandas.DataFrame', 'pd.DataFrame', (['D'], {}), '(D)\n', (18192, 18195), True, 'import pandas as pd\n'), ((19035, 19049), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (19047, 19049), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((19067, 19077), 'statsmodels.genmod.families.Gaussian', 'Gaussian', ([], {}), '()\n', (19075, 19077), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((19091, 19117), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (19107, 19117), True, 'import numpy as np\n'), ((19131, 19157), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (19147, 19157), True, 'import numpy as np\n'), ((19171, 19197), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (19187, 19197), True, 'import numpy as np\n'), ((19211, 19237), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (19227, 19237), True, 'import numpy as np\n'), ((19300, 19352), 'pandas.DataFrame', 'pd.DataFrame', (["{'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3}"], {}), "({'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3})\n", (19312, 19352), True, 'import pandas as pd\n'), ((19367, 19461), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""Y ~ X1 + X2 + X3"""', 'D', 'None'], {'groups': 'groups', 'family': 'family', 'cov_struct': 'vs'}), "('Y ~ X1 + X2 + X3', D, None, groups=groups, family=family,\n cov_struct=vs)\n", (19383, 19461), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((19606, 19668), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['ols.params.values', 'mdf.params'], {'decimal': '(10)'}), '(ols.params.values, mdf.params, decimal=10)\n', (19625, 19668), False, 'from numpy.testing import assert_almost_equal\n'), ((19736, 19780), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['ols.bse', 'se'], {'decimal': '(10)'}), '(ols.bse, se, decimal=10)\n', (19755, 19780), False, 'from numpy.testing import assert_almost_equal\n'), ((19880, 19939), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['naive_tvalues', 'ols.tvalues'], {'decimal': '(10)'}), '(naive_tvalues, ols.tvalues, decimal=10)\n', (19899, 19939), False, 'from numpy.testing import assert_almost_equal\n'), ((19990, 20004), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (20002, 20004), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((20022, 20032), 'statsmodels.genmod.families.Binomial', 'Binomial', ([], {}), '()\n', (20030, 20032), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((20094, 20120), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (20110, 20120), True, 'import numpy as np\n'), ((20134, 20160), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (20150, 20160), True, 'import numpy as np\n'), ((20174, 20200), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (20190, 20200), True, 'import numpy as np\n'), ((20218, 20251), 'numpy.random.randint', 'np.random.randint', (['(0)', '(4)'], {'size': '(100)'}), '(0, 4, size=100)\n', (20235, 20251), True, 'import numpy as np\n'), ((20265, 20317), 'pandas.DataFrame', 'pd.DataFrame', (["{'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3}"], {}), "({'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3})\n", (20277, 20317), True, 'import pandas as pd\n'), ((20537, 20598), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['sml.params.values', 'md.params'], {'decimal': '(10)'}), '(sml.params.values, md.params, decimal=10)\n', (20556, 20598), False, 'from numpy.testing import assert_almost_equal\n'), ((20651, 20665), 'statsmodels.genmod.dependence_structures.Independence', 'Independence', ([], {}), '()\n', (20663, 20665), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((20683, 20692), 'statsmodels.genmod.families.Poisson', 'Poisson', ([], {}), '()\n', (20690, 20692), False, 'from statsmodels.genmod.families import Gaussian, Binomial, Poisson\n'), ((20765, 20791), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (20781, 20791), True, 'import numpy as np\n'), ((20805, 20831), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (20821, 20831), True, 'import numpy as np\n'), ((20845, 20871), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (20861, 20871), True, 'import numpy as np\n'), ((20889, 20922), 'numpy.random.randint', 'np.random.randint', (['(0)', '(4)'], {'size': '(100)'}), '(0, 4, size=100)\n', (20906, 20922), True, 'import numpy as np\n'), ((20936, 20988), 'pandas.DataFrame', 'pd.DataFrame', (["{'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3}"], {}), "({'Y': Y, 'X1': X1, 'X2': X2, 'X3': X3})\n", (20948, 20988), True, 'import pandas as pd\n'), ((21210, 21271), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['sml.params.values', 'md.params'], {'decimal': '(10)'}), '(sml.params.values, md.params, decimal=10)\n', (21229, 21271), False, 'from numpy.testing import assert_almost_equal\n'), ((1765, 1781), 'numpy.arange', 'np.arange', (['(n / 4)'], {}), '(n / 4)\n', (1774, 1781), True, 'import numpy as np\n'), ((1781, 1791), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (1788, 1791), True, 'import numpy as np\n'), ((2303, 2328), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (2318, 2328), False, 'import os\n'), ((3379, 3389), 'statsmodels.compat.lrange', 'lrange', (['(20)'], {}), '(20)\n', (3385, 3389), False, 'from statsmodels.compat import lrange\n'), ((3391, 3401), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (3398, 3401), True, 'import numpy as np\n'), ((4134, 4161), 'numpy.flatnonzero', 'np.flatnonzero', (['(group == ii)'], {}), '(group == ii)\n', (4148, 4161), True, 'import numpy as np\n'), ((5957, 5984), 'numpy.flatnonzero', 'np.flatnonzero', (['(group == ii)'], {}), '(group == ii)\n', (5971, 5984), True, 'import numpy as np\n'), ((6845, 6882), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group', 'T', 'family', 'v'], {}), '(endog, exog, group, T, family, v)\n', (6848, 6882), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((7459, 7561), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""Y ~ X1 + X2 + X3"""', 'D', 'None'], {'groups': "D.loc[:, 'Id']", 'family': 'family', 'cov_struct': 'v'}), "('Y ~ X1 + X2 + X3', D, None, groups=D.loc[:, 'Id'], family\n =family, cov_struct=v)\n", (7475, 7561), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((7667, 7716), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'cf[j]'], {'decimal': '(6)'}), '(mdf.params, cf[j], decimal=6)\n', (7686, 7716), False, 'from numpy.testing import assert_almost_equal\n'), ((8427, 8437), 'numpy.abs', 'np.abs', (['ix'], {}), '(ix)\n', (8433, 8437), True, 'import numpy as np\n'), ((8493, 8517), 'numpy.linalg.cholesky', 'np.linalg.cholesky', (['cmat'], {}), '(cmat)\n', (8511, 8517), True, 'import numpy as np\n'), ((8930, 8951), 'numpy.concatenate', 'np.concatenate', (['endog'], {}), '(endog)\n', (8944, 8951), True, 'import numpy as np\n'), ((8973, 8995), 'numpy.concatenate', 'np.concatenate', (['groups'], {}), '(groups)\n', (8987, 8995), True, 'import numpy as np\n'), ((9015, 9043), 'numpy.concatenate', 'np.concatenate', (['exog'], {'axis': '(0)'}), '(exog, axis=0)\n', (9029, 9043), True, 'import numpy as np\n'), ((9062, 9078), 'statsmodels.genmod.dependence_structures.Autoregressive', 'Autoregressive', ([], {}), '()\n', (9076, 9078), False, 'from statsmodels.genmod.dependence_structures import Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested\n'), ((9096, 9146), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'groups'], {'family': 'ga', 'cov_struct': 'ar'}), '(endog, exog, groups, family=ga, cov_struct=ar)\n', (9099, 9146), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((9189, 9251), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['ar.dep_params', 'dep_params_true[gsize - 1]'], {}), '(ar.dep_params, dep_params_true[gsize - 1])\n', (9208, 9251), False, 'from numpy.testing import assert_almost_equal\n'), ((9262, 9317), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'params_true[gsize - 1]'], {}), '(mdf.params, params_true[gsize - 1])\n', (9281, 9317), False, 'from numpy.testing import assert_almost_equal\n'), ((9576, 9600), 'numpy.dot', 'np.dot', (['exog', 'mdf.params'], {}), '(exog, mdf.params)\n', (9582, 9600), True, 'import numpy as np\n'), ((11248, 11288), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group', 'None', 'family', 'v'], {}), '(endog, exog, group, None, family, v)\n', (11251, 11288), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((11328, 11378), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'cf[j]'], {'decimal': '(10)'}), '(mdf.params, cf[j], decimal=10)\n', (11347, 11378), False, 'from numpy.testing import assert_almost_equal\n'), ((11822, 11924), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""Y ~ X1 + X2 + X3"""', 'D', 'None'], {'groups': "D.loc[:, 'Id']", 'family': 'family', 'cov_struct': 'v'}), "('Y ~ X1 + X2 + X3', D, None, groups=D.loc[:, 'Id'], family\n =family, cov_struct=v)\n", (11838, 11924), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((12026, 12076), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'cf[j]'], {'decimal': '(10)'}), '(mdf.params, cf[j], decimal=10)\n', (12045, 12076), False, 'from numpy.testing import assert_almost_equal\n'), ((12337, 12370), 'numpy.dot', 'np.dot', (['exog', 'np.r_[1, 1, 0, 0.2]'], {}), '(exog, np.r_[1, 1, 0, 0.2])\n', (12343, 12370), True, 'import numpy as np\n'), ((12386, 12412), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(300)'}), '(size=300)\n', (12402, 12412), True, 'import numpy as np\n'), ((12437, 12451), 'numpy.arange', 'np.arange', (['(100)'], {}), '(100)\n', (12446, 12451), True, 'import numpy as np\n'), ((12638, 12697), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group', 'None', 'family', 'v'], {'constraint': '(L, R)'}), '(endog, exog, group, None, family, v, constraint=(L, R))\n', (12641, 12697), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((12757, 12806), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params[3]', '(0)'], {'decimal': '(10)'}), '(mdf.params[3], 0, decimal=10)\n', (12776, 12806), False, 'from numpy.testing import assert_almost_equal\n'), ((13091, 13108), 'numpy.array', 'np.array', (['group_n'], {}), '(group_n)\n', (13099, 13108), True, 'import numpy as np\n'), ((17792, 17834), 'statsmodels.genmod.generalized_estimating_equations.GEE', 'GEE', (['endog', 'exog', 'group_n', 'None', 'family', 'v'], {}), '(endog, exog, group_n, None, family, v)\n', (17795, 17834), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((17874, 17923), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'cf[j]'], {'decimal': '(5)'}), '(mdf.params, cf[j], decimal=5)\n', (17893, 17923), False, 'from numpy.testing import assert_almost_equal\n'), ((18370, 18481), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""Y ~ X1 + X2 + X3 + X4 + X5"""', 'D', 'None'], {'groups': "D.loc[:, 'Id']", 'family': 'family', 'cov_struct': 'v'}), "('Y ~ X1 + X2 + X3 + X4 + X5', D, None, groups=D.loc[:,\n 'Id'], family=family, cov_struct=v)\n", (18386, 18481), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((18588, 18637), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'cf[j]'], {'decimal': '(5)'}), '(mdf.params, cf[j], decimal=5)\n', (18607, 18637), False, 'from numpy.testing import assert_almost_equal\n'), ((19263, 19273), 'statsmodels.compat.lrange', 'lrange', (['(20)'], {}), '(20)\n', (19269, 19273), False, 'from statsmodels.compat import lrange\n'), ((19275, 19285), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (19282, 19285), True, 'import numpy as np\n'), ((1461, 1488), 'numpy.ones', 'np.ones', (['(exog.shape[0], 1)'], {}), '((exog.shape[0], 1))\n', (1468, 1488), True, 'import numpy as np\n'), ((1919, 1931), 'numpy.exp', 'np.exp', (['(-lpr)'], {}), '(-lpr)\n', (1925, 1931), True, 'import numpy as np\n'), ((1953, 1978), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': 'n'}), '(size=n)\n', (1970, 1978), True, 'import numpy as np\n'), ((2941, 2959), 'statsmodels.genmod.families.Poisson', 'families.Poisson', ([], {}), '()\n', (2957, 2959), False, 'from statsmodels.genmod import families\n'), ((6958, 7007), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['mdf.params', 'cf[j]'], {'decimal': '(6)'}), '(mdf.params, cf[j], decimal=6)\n', (6977, 7007), False, 'from numpy.testing import assert_almost_equal\n'), ((8647, 8680), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(gsize, k)'}), '(size=(gsize, k))\n', (8663, 8680), True, 'import numpy as np\n'), ((9684, 9708), 'numpy.dot', 'np.dot', (['exog', 'mdf.params'], {}), '(exog, mdf.params)\n', (9690, 9708), True, 'import numpy as np\n'), ((19556, 19590), 'statsmodels.formula.api.ols', 'sm.ols', (['"""Y ~ X1 + X2 + X3"""'], {'data': 'D'}), "('Y ~ X1 + X2 + X3', data=D)\n", (19562, 19590), True, 'import statsmodels.formula.api as sm\n'), ((19841, 19870), 'numpy.diag', 'np.diag', (['mdf.naive_covariance'], {}), '(mdf.naive_covariance)\n', (19848, 19870), True, 'import numpy as np\n'), ((20049, 20075), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(100)'}), '(size=100)\n', (20065, 20075), True, 'import numpy as np\n'), ((20332, 20426), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""Y ~ X1 + X2 + X3"""', 'D', 'None'], {'groups': 'groups', 'family': 'family', 'cov_struct': 'vs'}), "('Y ~ X1 + X2 + X3', D, None, groups=groups, family=family,\n cov_struct=vs)\n", (20348, 20426), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((20475, 20511), 'statsmodels.formula.api.logit', 'sm.logit', (['"""Y ~ X1 + X2 + X3"""'], {'data': 'D'}), "('Y ~ X1 + X2 + X3', data=D)\n", (20483, 20511), True, 'import statsmodels.formula.api as sm\n'), ((21003, 21097), 'statsmodels.genmod.generalized_estimating_equations.GEE.from_formula', 'GEE.from_formula', (['"""Y ~ X1 + X2 + X3"""', 'D', 'None'], {'groups': 'groups', 'family': 'family', 'cov_struct': 'vs'}), "('Y ~ X1 + X2 + X3', D, None, groups=groups, family=family,\n cov_struct=vs)\n", (21019, 21097), False, 'from statsmodels.genmod.generalized_estimating_equations import GEE, GEEMargins, Multinomial\n'), ((21146, 21184), 'statsmodels.formula.api.poisson', 'sm.poisson', (['"""Y ~ X1 + X2 + X3"""'], {'data': 'D'}), "('Y ~ X1 + X2 + X3', data=D)\n", (21156, 21184), True, 'import statsmodels.formula.api as sm\n'), ((8358, 8374), 'numpy.arange', 'np.arange', (['gsize'], {}), '(gsize)\n', (8367, 8374), True, 'import numpy as np\n'), ((8385, 8401), 'numpy.arange', 'np.arange', (['gsize'], {}), '(gsize)\n', (8394, 8401), True, 'import numpy as np\n'), ((8785, 8813), 'numpy.random.normal', 'np.random.normal', ([], {'size': 'gsize'}), '(size=gsize)\n', (8801, 8813), True, 'import numpy as np\n'), ((20722, 20749), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(100)'}), '(size=100)\n', (20739, 20749), True, 'import numpy as np\n'), ((8893, 8907), 'numpy.ones', 'np.ones', (['gsize'], {}), '(gsize)\n', (8900, 8907), True, 'import numpy as np\n')]
# Generated by Django 2.2.20 on 2021-07-29 15:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('company', '0019_auto_20210512_1114'), ] operations = [ migrations.AlterField( model_name='company', name='address_area_abbrev_name', field=models.CharField(blank=True, max_length=255, verbose_name='State (Abbreviated)'), ), migrations.AlterField( model_name='company', name='registered_address_area_abbrev_name', field=models.CharField(blank=True, max_length=255, verbose_name='State (Abbreviated)'), ), ]
[ "django.db.models.CharField" ]
[((356, 441), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(255)', 'verbose_name': '"""State (Abbreviated)"""'}), "(blank=True, max_length=255, verbose_name='State (Abbreviated)'\n )\n", (372, 441), False, 'from django.db import migrations, models\n'), ((588, 673), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(255)', 'verbose_name': '"""State (Abbreviated)"""'}), "(blank=True, max_length=255, verbose_name='State (Abbreviated)'\n )\n", (604, 673), False, 'from django.db import migrations, models\n')]
from flask import Flask, render_template app = Flask(__name__) @app.route("/") def index(): headline = "Hello World" return render_template("index.html", headline=headline) @app.route("/<string:name>") def say_name(name): return render_template("index.html", name=name) if __name__ == "__main__": app.run(debug=True)
[ "flask.Flask", "flask.render_template" ]
[((48, 63), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (53, 63), False, 'from flask import Flask, render_template\n'), ((135, 183), 'flask.render_template', 'render_template', (['"""index.html"""'], {'headline': 'headline'}), "('index.html', headline=headline)\n", (150, 183), False, 'from flask import Flask, render_template\n'), ((246, 286), 'flask.render_template', 'render_template', (['"""index.html"""'], {'name': 'name'}), "('index.html', name=name)\n", (261, 286), False, 'from flask import Flask, render_template\n')]
#!/usr/bin/env python3 """Reddit Bot Common Routines Contains common Reddit bot functions such as keyword comment retrieval, processed comment caching, and comment posting. Allows bot authors to concentrate on writing their custom bot functions. """ from collections import deque from os import mkdir import re import signal import sys from time import sleep import praw from config import ( CACHE_FILE, CACHE_SIZE, KEYWORD, RETRIEVAL_LIMIT, SITE_NAME, SUBREDDITS, ) class RedditBot: """Superclass for Reddit bots which adds common bot routines. Parameters ---------- site_name : str, optional Initializes praw under site_name within praw.ini. Defaults to config.SITE_NAME. See: https://praw.readthedocs.io/en/latest/getting_started /configuration/prawini.html#choosing-a-site keyword : str, optional Comment trigger word. Defaults to config.KEYWORD. retrieval_limit : int, optional Maximum number of comments to retrieve at a time. Defaults to config.RETRIEVAL_LIMIT. See: https://praw.readthedocs.io/en/latest/code_overview/models /subreddit.html#praw.models.Subreddit.comments subreddits : str, optional Subreddits to retrieve comments from. Defaults to config.SUBREDDITS. See: https://praw.readthedocs.io/en/latest/code_overview/models /subreddit.html#subreddit """ def __init__(self, site_name=SITE_NAME, keyword=KEYWORD, retrieval_limit=RETRIEVAL_LIMIT, subreddits=SUBREDDITS, ): print("Initializing bot...") self.keyword = re.compile(keyword+r' ([ \w]+)', re.I) self.reddit = None self.retrieval_limit = retrieval_limit self.site_name = site_name self.subreddits = subreddits self.username = site_name self.processed_comments = self.read_cache(CACHE_FILE) signal.signal(signal.SIGINT, self.bot_exit) def authenticate(self, max_attempts=-1, seconds_between_attempts=60): """Authenticates SITE_NAME with Reddit. Sets self.reddit and self.username on success. Parameters ---------- max_attempts : int, optional Maximum number of authentication attempts before failure. Defaults to -1 (infinite attempts). seconds_between_attempts : int, optional Seconds to wait between authentication attempts. Defaults to 60. """ attempt = 0 while attempt != max_attempts: try: print("Authenticating as {}...".format(self.site_name)) self.reddit = praw.Reddit(self.site_name) self.username = self.reddit.user.me() print("Successfully authenticated as {}".format(self.username)) return except praw.exceptions.APIException as error: print("Unable to authenticate:", error) print("Retrying in {} " "seconds".format(seconds_between_attempts)) sleep(seconds_between_attempts) attempt += 1 raise RuntimeError('Failed to authenticate after {} ' 'attempts'.format(max_attempts)) def retrieve_comments(self): """Retrieves comments from subreddits, filters for keyword trigger, and excludes processed comments. Returns ------- generator Dict of reddit.Comment and query. """ try: print("Retrieving {} comments...".format(self.retrieval_limit)) comments = self.reddit.subreddit(self.subreddits).comments( limit=self.retrieval_limit ) for comment in comments: if (comment.author != self.username and comment not in self.processed_comments #and not self.has_already_replied(comment) #and not self.is_summon_chain(comment) ): query = self.keyword.search(comment.body.lower()) if query: self.processed_comments.append(comment.id) yield {'comment': comment, 'query' : query.group(1)} except praw.exceptions.APIException as error: print("API Error:", error) raise except AttributeError as error: print(error) print("Unable to retrieve comments.") raise def submit_comment(self, target, comment): """Submit comment to target submission or comment. Parameters ---------- target : reddit.submission object or reddit.comment object Target Reddit submission or comment. comment : str Comment to post. Returns ------- object reddit.comment of newly created comment. """ try: if target.author != self.username: print("Posting reply...") return target.reply(comment) except praw.exceptions.APIException as error: print("API Error:", error) raise @staticmethod def read_cache(file): """Opens and reads file, converting contents to \n separated list. Creates cache file if does not exist. Parameters ---------- file : str Location of cache file. Returns ------- collections.deque Contents of cache file, limited to config.CACHE_SIZE """ try: print("Loading cache file into memory...") with open(file, 'r') as data: cache = data.read() mem_cache = deque(cache.split('\n'), CACHE_SIZE) print("Cache loaded.") except FileNotFoundError: print("Cache file not found.") print("Creating cache directory...") try: path = '' for subdirectory in file.split('/')[:-1]: path += subdirectory + '/' mkdir(path) print("Cache directory created.") except IOError as error: print(error) print("Unable to create cache file") mem_cache = deque([], CACHE_SIZE) return mem_cache @staticmethod def write_cache(file, mem_cache): """Writes list into file, converting list to \n separated contents. Overwrites original cache file. Creates cache file if does not exist. Parameters ---------- file : str Location of cache file. mem_cache : list or deque Items in memory cache """ try: print("Saving memory into cache file...") with open(file, 'w') as cache_file: try: cache_file.write(mem_cache.popleft()) for entry in mem_cache: cache_file.write('\n'+entry) # avoid adding \n to end of file so that we don't get empty # entries in deque when next loaded print("Cache saved") except IndexError: print("No items in cache") except IOError as error: print(error) print("Unable to create cache file") def bot_exit(self, *args, **kwargs): """Saves self.processed_comments into cache file before exiting.""" # pylint: disable=unused-argument print("\nStopping bot...") self.write_cache(CACHE_FILE, self.processed_comments) print("Bot stopped") sys.exit() def is_summon_chain(self, target): """Checks if parent comment of target is from self. Used to prevent infinite reply loop caused by another bot. Parameters ---------- target : reddit.comment object Target Reddit comment. Returns ------- bool True if parent comment of target is from bot. False otherwise. """ return True if ( not target.is_root and target.parent().author == self.username ) else False def has_already_replied(self, target): """Checks if target comment has already been replied by bot. Used to prevent multiple replies to the same request. Parameters ---------- target : reddit.comment object Target Reddit comment. Returns ------- bool True if parent comment of target is from bot. False otherwise. """ try: # implement replace_more()? target.refresh() for reply in target.replies.list(): if reply.author == self.username: print("Comment already processed.") return True print("Processing comment...") return False except praw.exceptions.APIException as error: print("API Error:", error) # Failsafe return True
[ "os.mkdir", "time.sleep", "sys.exit", "signal.signal", "praw.Reddit", "collections.deque", "re.compile" ]
[((1729, 1769), 're.compile', 're.compile', (["(keyword + ' ([ \\\\w]+)')", 're.I'], {}), "(keyword + ' ([ \\\\w]+)', re.I)\n", (1739, 1769), False, 'import re\n'), ((2018, 2061), 'signal.signal', 'signal.signal', (['signal.SIGINT', 'self.bot_exit'], {}), '(signal.SIGINT, self.bot_exit)\n', (2031, 2061), False, 'import signal\n'), ((7863, 7873), 'sys.exit', 'sys.exit', ([], {}), '()\n', (7871, 7873), False, 'import sys\n'), ((2763, 2790), 'praw.Reddit', 'praw.Reddit', (['self.site_name'], {}), '(self.site_name)\n', (2774, 2790), False, 'import praw\n'), ((6471, 6492), 'collections.deque', 'deque', (['[]', 'CACHE_SIZE'], {}), '([], CACHE_SIZE)\n', (6476, 6492), False, 'from collections import deque\n'), ((3184, 3215), 'time.sleep', 'sleep', (['seconds_between_attempts'], {}), '(seconds_between_attempts)\n', (3189, 3215), False, 'from time import sleep\n'), ((6266, 6277), 'os.mkdir', 'mkdir', (['path'], {}), '(path)\n', (6271, 6277), False, 'from os import mkdir\n')]
from __future__ import unicode_literals import logging root_logger = logging.getLogger('autotweet') logging.basicConfig( format='%(asctime)s {%(module)s:%(levelname)s}: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') def set_level(level): root_logger.setLevel(level) get_logger = root_logger.getChild
[ "logging.basicConfig", "logging.getLogger" ]
[((71, 101), 'logging.getLogger', 'logging.getLogger', (['"""autotweet"""'], {}), "('autotweet')\n", (88, 101), False, 'import logging\n'), ((103, 223), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s {%(module)s:%(levelname)s}: %(message)s"""', 'datefmt': '"""%Y-%m-%d %H:%M:%S"""'}), "(format=\n '%(asctime)s {%(module)s:%(levelname)s}: %(message)s', datefmt=\n '%Y-%m-%d %H:%M:%S')\n", (122, 223), False, 'import logging\n')]
############################################## README ################################################# # This calculates threshold for an image depending upon its spiking activity. ######################################################################################################## import numpy as np from snn.neuron import neuron import random from matplotlib import pyplot as plt from snn.recep_field import rf from snn.spike_train import encode from snn.rl import rl from snn.rl import update from snn.reconstruct import reconst_weights from snn.parameters import param as par import os def threshold(train): tu = np.shape(train[0])[0] thresh = 0 for i in range(tu): simul_active = sum(train[:,i]) if simul_active>thresh: thresh = simul_active return (thresh/3)*par.scale if __name__ == '__main__': # img = cv2.imread("mnist1/" + str(1) + ".png", 0) img = np.array(Image.open("mnist1/" + str(1) + ".png", 0)) print(img) # pot = rf(img) # train = np.array(encode(pot)) # print threshold(train)
[ "numpy.shape" ]
[((630, 648), 'numpy.shape', 'np.shape', (['train[0]'], {}), '(train[0])\n', (638, 648), True, 'import numpy as np\n')]
# Generated by Django 3.1 on 2020-11-10 00:11 from __future__ import unicode_literals from django.db import migrations, models import csv from datetime import datetime def load_initial_data(apps, schema_editor): Authority = apps.get_model("accounts", "Authority") with open("assets/authority/authority_names.csv", 'r') as f: reader = csv.reader(f) header = next(reader) authoritys = [] for row in reader: authority = Authority.objects.create(authority_abbrev = row[0], authority_name = row[1]) #print(authority) def reverse_func(apps, schema_editor): Authority = apps.get_model("accounts", Authority) Authority.objects.all().delete() class Migration(migrations.Migration): dependencies = [ ('accounts', '0001_initial'), ] operations = [ migrations.RunPython(load_initial_data, reverse_func), ]
[ "django.db.migrations.RunPython", "csv.reader" ]
[((342, 355), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (352, 355), False, 'import csv\n'), ((790, 843), 'django.db.migrations.RunPython', 'migrations.RunPython', (['load_initial_data', 'reverse_func'], {}), '(load_initial_data, reverse_func)\n', (810, 843), False, 'from django.db import migrations, models\n')]
# all the data from train data set, k-fold validation import numpy as np import onnxruntime import torch from pandas import read_csv from tensorflow.python.keras.utils.np_utils import to_categorical from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score # load a single file as a numpy array def load_file(filepath): dataframe = read_csv(filepath, header=None, delim_whitespace=True) return dataframe.values # load a list of files into a 3D array of [samples, timesteps, features] def load_group(filenames, prefix=''): loaded = list() for name in filenames: data = load_file(prefix + name) loaded.append(data) # stack group so that features are the 3rd dimension loaded = np.dstack(loaded) return loaded # load a dataset group, such as train or test def load_dataset_group(group, prefix=''): filepath = prefix + group + '/Inertial Signals/' # load all 9 files as a single array filenames = list() # total acceleration filenames += ['total_acc_x_' + group + '.txt', 'total_acc_y_' + group + '.txt', 'total_acc_z_' + group + '.txt'] # body acceleration filenames += ['body_acc_x_' + group + '.txt', 'body_acc_y_' + group + '.txt', 'body_acc_z_' + group + '.txt'] # body gyroscope filenames += ['body_gyro_x_' + group + '.txt', 'body_gyro_y_' + group + '.txt', 'body_gyro_z_' + group + '.txt'] # load input data X = load_group(filenames, filepath) # load class output y = load_file(prefix + group + '/y_' + group + '.txt') return X, y # load the dataset, returns train and test X and y elements def load_dataset(prefix=''): # load all train trainX, trainy = load_dataset_group('train', prefix + 'UCI HAR Dataset/') # print(trainX.shape, trainy.shape) # load all test testX, testy = load_dataset_group('test', prefix + 'UCI HAR Dataset/') # print(testX.shape, testy.shape) # zero-offset class values trainy = trainy - 1 testy = testy - 1 # one hot encode y trainy = to_categorical(trainy) testy = to_categorical(testy) print(trainX.shape, trainy.shape, testX.shape, testy.shape) return trainX, trainy, testX, testy # summarize scores def summarize_results(scores): print('scores:', scores) mean, std = np.mean(scores), np.std(scores) return [mean, std] # run an experiment def run_experiment(repeats=10): # load data trainX, trainy, testX, testy = load_dataset() # sess = onnxruntime.InferenceSession('./models/model1.onnx') sess = onnxruntime.InferenceSession('./cnn-pytorch.onnx') for i in sess.get_inputs(): print(i.name) print(i.shape) for i in sess.get_outputs(): print(i.name) print(i.shape) # y_predict = sess.run(None, {sess.get_inputs()[0].name: testX.astype(np.float32)}) testX = np.transpose(testX, (0, 2, 1)) testX = torch.utils.data.DataLoader(testX, batch_size=32, shuffle=True, num_workers=0) testy = torch.utils.data.DataLoader(testy, batch_size=32, shuffle=True, num_workers=0) for features, labels in zip(testX, testy): y_predict = sess.run(None, {sess.get_inputs()[0].name: features.float().numpy()}) print('y_predict', y_predict) # y_predict = np.array(y_predict) # y_predict = np.argmax(y_predict, axis=2) # testy = labels # y_true = np.reshape(testy, [-1]) # y_pred = np.reshape(y_predict, [-1]) # accuracy = accuracy_score(y_true, y_pred) # precision = precision_score(y_true, y_pred, average='macro') # recall = recall_score(y_true, y_pred, average='macro') # f1score = f1_score(y_true, y_pred, average='macro') # print(accuracy, precision, recall, f1score) run_experiment()
[ "numpy.dstack", "torch.utils.data.DataLoader", "pandas.read_csv", "numpy.std", "numpy.transpose", "tensorflow.python.keras.utils.np_utils.to_categorical", "onnxruntime.InferenceSession", "numpy.mean" ]
[((365, 419), 'pandas.read_csv', 'read_csv', (['filepath'], {'header': 'None', 'delim_whitespace': '(True)'}), '(filepath, header=None, delim_whitespace=True)\n', (373, 419), False, 'from pandas import read_csv\n'), ((746, 763), 'numpy.dstack', 'np.dstack', (['loaded'], {}), '(loaded)\n', (755, 763), True, 'import numpy as np\n'), ((2044, 2066), 'tensorflow.python.keras.utils.np_utils.to_categorical', 'to_categorical', (['trainy'], {}), '(trainy)\n', (2058, 2066), False, 'from tensorflow.python.keras.utils.np_utils import to_categorical\n'), ((2079, 2100), 'tensorflow.python.keras.utils.np_utils.to_categorical', 'to_categorical', (['testy'], {}), '(testy)\n', (2093, 2100), False, 'from tensorflow.python.keras.utils.np_utils import to_categorical\n'), ((2554, 2604), 'onnxruntime.InferenceSession', 'onnxruntime.InferenceSession', (['"""./cnn-pytorch.onnx"""'], {}), "('./cnn-pytorch.onnx')\n", (2582, 2604), False, 'import onnxruntime\n'), ((2860, 2890), 'numpy.transpose', 'np.transpose', (['testX', '(0, 2, 1)'], {}), '(testX, (0, 2, 1))\n', (2872, 2890), True, 'import numpy as np\n'), ((2903, 2981), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['testX'], {'batch_size': '(32)', 'shuffle': '(True)', 'num_workers': '(0)'}), '(testX, batch_size=32, shuffle=True, num_workers=0)\n', (2930, 2981), False, 'import torch\n'), ((2994, 3072), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['testy'], {'batch_size': '(32)', 'shuffle': '(True)', 'num_workers': '(0)'}), '(testy, batch_size=32, shuffle=True, num_workers=0)\n', (3021, 3072), False, 'import torch\n'), ((2302, 2317), 'numpy.mean', 'np.mean', (['scores'], {}), '(scores)\n', (2309, 2317), True, 'import numpy as np\n'), ((2319, 2333), 'numpy.std', 'np.std', (['scores'], {}), '(scores)\n', (2325, 2333), True, 'import numpy as np\n')]
from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout, Div from django import forms from django.core.exceptions import ObjectDoesNotExist from django.core.validators import RegexValidator, ValidationError from django.forms import Form from phonenumber_field.formfields import PhoneNumberField from project_core.models import PersonTitle, Gender, PhysicalPerson, PersonPosition, Contact, CareerStage from project_core.utils.orcid import orcid_div, field_set_read_only from .utils import organisations_name_autocomplete, get_field_information from ..utils.utils import create_person_position from ..widgets import XDSoftYearMonthPickerInput HELP_TEXTS_HEAD_OF_YOUR_RESEARCH = {'orcid': 'Enter the ORCID iD (e.g.: 0000-0002-1825-0097).<br>' 'Please ask head of research unit if unknown', 'first_name': 'Populated from ORCID iD', 'surname': 'Populated from ORCID iD', 'academic_title': 'Mandatory if ORCID iD is entered'} class PersonForm(Form): def __init__(self, *args, **kwargs): self.person_position = kwargs.pop('person_position', None) self._only_basic_fields = kwargs.pop('only_basic_fields', False) self._all_fields_are_optional = kwargs.pop('all_fields_are_optional', False) help_texts = kwargs.pop('help_texts', {}) career_stage_queryset = kwargs.pop('career_stages_queryset', None) super().__init__(*args, **kwargs) orcid_initial = first_name_initial = surname_initial = organisations_initial = group_initial = \ academic_title_initial = email_initial = phone_initial = gender_initial = career_stage_initial = phd_date_initial = None if self.person_position: orcid_initial = self.person_position.person.orcid first_name_initial = self.person_position.person.first_name surname_initial = self.person_position.person.surname organisations_initial = self.person_position.organisation_names.all() group_initial = self.person_position.group academic_title_initial = self.person_position.academic_title career_stage_initial = self.person_position.career_stage gender_initial = self.person_position.person.gender email_initial = self.person_position.main_email() phone_initial = self.person_position.main_phone() if self.person_position.person.phd_date: # In the database is always saved as yyyy-mm (validator in the model) but it's visualized as mm-yyyy phd_date_parts = self.person_position.person.phd_date.split('-') phd_date_initial = f'{phd_date_parts[1]}-{phd_date_parts[0]}' self.fields['orcid'] = forms.CharField(initial=orcid_initial, **get_field_information(PhysicalPerson, 'orcid', label='ORCID iD', required=True, help_text='Enter your ORCID iD (e.g.: 0000-0002-1825-0097).<br>' 'Please create an <a href="https://orcid.org">ORCID iD</a> if you do not already have one')) self.fields['academic_title'] = forms.ModelChoiceField(queryset=PersonTitle.objects.all(), initial=academic_title_initial, required=not self._only_basic_fields) self.fields['first_name'] = forms.CharField(initial=first_name_initial, label='First name(s)', help_text='Your name is populated from your ORCID record. If you would like to change it please amend it in <a href="https://orcid.org/login">ORCID</a>') self.fields['surname'] = forms.CharField(initial=surname_initial, label='Surname(s)', help_text='Your surname is populated from your ORCID record. If you would like to change it please amend it in <a href="https://orcid.org/login">ORCID</a>') field_set_read_only([self.fields['first_name'], self.fields['surname']]) if self._only_basic_fields == False: self.fields['gender'] = forms.ModelChoiceField(queryset=Gender.objects.all(), initial=gender_initial) if career_stage_queryset is None: career_stage_queryset = CareerStage.objects.all().order_by('list_order', 'name') self.fields['career_stage'] = forms.ModelChoiceField( queryset=career_stage_queryset, initial=career_stage_initial) self.fields['email'] = forms.EmailField(initial=email_initial, help_text='Please write a valid email address. You will receive a confirmation email when saving and submitting your application form. This email address will also be used for communication purposes') self.fields['phone'] = PhoneNumberField(initial=phone_initial, help_text='Phone number e.g.: +41222222222 . Extension can be added with xNN at the end') self.fields['phd_date'] = forms.CharField(initial=phd_date_initial, label='Date of PhD', help_text='Where applicable, please enter the date on which you were awarded, or expect to be awarded your PhD (use the format mm-yyyy)', required=False, widget=XDSoftYearMonthPickerInput, validators=[RegexValidator(regex='^[0-9]{2}-[0-9]{4}$', message='Format is mm-yyyy', code='Invalid format')]) self.fields['organisation_names'] = organisations_name_autocomplete(initial=organisations_initial, help_text='Please select the organisation(s) to which you are affiliated for the purposes of this proposal.') self.fields['group'] = forms.CharField(initial=group_initial, help_text='Please type the names of the group(s) or laboratories to which you are affiliated for the purposes of this proposal', label='Group / lab', required=False) # If adding fields here: see below to remove them from the self.helper.layout used_help_texts = [] for field_str, field in self.fields.items(): if self._all_fields_are_optional: field.required = False if field_str in help_texts: self.fields[field_str].help_text = help_texts[field_str] used_help_texts.append(field_str) if len(used_help_texts) != len(help_texts): print('Unused help texts:', help_texts.keys() - used_help_texts) self.helper = FormHelper(self) self.helper.form_tag = False self.helper.layout = Layout( orcid_div('orcid'), Div( Div('first_name', css_class='col-4'), Div('surname', css_class='col-4'), Div('academic_title', css_class='col-2'), Div('gender', css_class='col-2'), css_class='row' ), Div( Div('career_stage', css_class='col-8'), Div('phd_date', css_class='col-4'), css_class='row' ), Div( Div('email', css_class='col-6'), Div('phone', css_class='col-6'), css_class='row' ), Div( Div('organisation_names', css_class='col-12'), css_class='row' ), Div( Div('group', css_class='col-12'), css_class='row' ), ) if self._only_basic_fields: # The Layout always includes all the fields. Now it's better to remove the fields that don't exist # to avoid django-crispy-forms warnings (not fatal) PersonForm._delete_field_from_layout(self.helper.layout.fields, 'gender') PersonForm._delete_field_from_layout(self.helper.layout.fields, 'career_stage') PersonForm._delete_field_from_layout(self.helper.layout.fields, 'email') PersonForm._delete_field_from_layout(self.helper.layout.fields, 'phone') PersonForm._delete_field_from_layout(self.helper.layout.fields, 'phd_date') PersonForm._delete_field_from_layout(self.helper.layout.fields, 'organisation_names') PersonForm._delete_field_from_layout(self.helper.layout.fields, 'group') @staticmethod def _delete_field_from_layout(container, field_str): for item in container: if type(item) == Div: PersonForm._delete_field_from_layout(item, field_str) elif type(item) == str and item == field_str: container.remove(field_str) def get_person_positions(self): """ Matches and returns the person_position from the database. """ try: physical_person = PhysicalPerson.objects.get( orcid=self.cleaned_data['orcid'] ) except ObjectDoesNotExist: # Non-existing PHysicalPerson so it doesn't have any PersonPositions associated return [] person_positions = PersonPosition.objects.filter( person=physical_person, academic_title=self.cleaned_data['academic_title'], group=self.cleaned_data['group'], career_stage=self.cleaned_data['career_stage'] ) return person_positions def clean_phd_date(self): if 'phd_date' not in self.cleaned_data: return None if self.cleaned_data['phd_date'] == '': return None # It has the correct format mm-yyyy because the field has a validator # In the DB it's always yyyy-mm because the model has this validator (consistent with general mysql date format) month, year = self.cleaned_data['phd_date'].split('-') month_int = int(month) if month_int < 1 or month_int > 12: raise ValidationError(f'Invalid month: {month}', code='invalid', params={'value': month}) return f'{year}-{month}' def clean(self): cd = super().clean() if self.errors: # If there are errors they might be related to orcid (e.g. using the example # ORCID iD, so cd['orcid'] doesn't exist. At this point we don't do further cleaning: # the user needs to fix the errors in the form before further cleaning is done. return cd # If ORCID iD is filled in: other fields are mandatory if self._all_fields_are_optional and cd['orcid']: for field_str, field in self.fields.items(): if field_str not in cd or not cd[field_str]: # It needs to be in cd and have a value self.add_error(field_str, 'Mandatory field if ORCiD iD is filled in') if self._all_fields_are_optional and not cd['orcid']: for field_str, field in self.fields.items(): if field_str in cd and cd[field_str]: self.add_error(field_str, 'It cannot contain any information if ORCiD ID is empty') return cd def save_person(self): cd = self.cleaned_data person_position = create_person_position(cd['orcid'], cd['first_name'], cd['surname'], gender=cd.get('gender', None), phd_date=cd.get('phd_date', None), academic_title=cd.get('academic_title'), group=cd.get('group'), career_stage=cd.get('career_stage'), organisation_names=cd.get('organisation_names', [])) if cd.get('email', None): # Should this be in the model? # TODO: discuss how to replace emails email_contact = person_position.main_email_model() if email_contact is None: email_contact = Contact() email_contact.method = Contact.EMAIL email_contact.person_position = person_position email_contact.entry = cd.get('email') email_contact.save() if cd.get('phone', None): # Like before, should this be in the model and consolidated? # TODO: discuss how to replace phones and handling of multiple phones phone_contact = person_position.main_phone_model() if phone_contact is None: phone_contact = Contact() phone_contact.method = Contact.PHONE phone_contact.person_position = person_position phone_contact.entry = cd.get('phone').as_international phone_contact.save() return person_position
[ "project_core.models.PhysicalPerson.objects.get", "django.forms.ModelChoiceField", "django.forms.EmailField", "django.core.validators.ValidationError", "crispy_forms.layout.Div", "crispy_forms.helper.FormHelper", "project_core.models.CareerStage.objects.all", "project_core.utils.orcid.field_set_read_only", "project_core.models.PersonPosition.objects.filter", "project_core.utils.orcid.orcid_div", "phonenumber_field.formfields.PhoneNumberField", "project_core.models.Gender.objects.all", "django.core.validators.RegexValidator", "project_core.models.Contact", "project_core.models.PersonTitle.objects.all", "django.forms.CharField" ]
[((3745, 3979), 'django.forms.CharField', 'forms.CharField', ([], {'initial': 'first_name_initial', 'label': '"""First name(s)"""', 'help_text': '"""Your name is populated from your ORCID record. If you would like to change it please amend it in <a href="https://orcid.org/login">ORCID</a>"""'}), '(initial=first_name_initial, label=\'First name(s)\',\n help_text=\n \'Your name is populated from your ORCID record. If you would like to change it please amend it in <a href="https://orcid.org/login">ORCID</a>\'\n )\n', (3760, 3979), False, 'from django import forms\n'), ((4104, 4331), 'django.forms.CharField', 'forms.CharField', ([], {'initial': 'surname_initial', 'label': '"""Surname(s)"""', 'help_text': '"""Your surname is populated from your ORCID record. If you would like to change it please amend it in <a href="https://orcid.org/login">ORCID</a>"""'}), '(initial=surname_initial, label=\'Surname(s)\', help_text=\n \'Your surname is populated from your ORCID record. If you would like to change it please amend it in <a href="https://orcid.org/login">ORCID</a>\'\n )\n', (4119, 4331), False, 'from django import forms\n'), ((4429, 4501), 'project_core.utils.orcid.field_set_read_only', 'field_set_read_only', (["[self.fields['first_name'], self.fields['surname']]"], {}), "([self.fields['first_name'], self.fields['surname']])\n", (4448, 4501), False, 'from project_core.utils.orcid import orcid_div, field_set_read_only\n'), ((7678, 7694), 'crispy_forms.helper.FormHelper', 'FormHelper', (['self'], {}), '(self)\n', (7688, 7694), False, 'from crispy_forms.helper import FormHelper\n'), ((10232, 10428), 'project_core.models.PersonPosition.objects.filter', 'PersonPosition.objects.filter', ([], {'person': 'physical_person', 'academic_title': "self.cleaned_data['academic_title']", 'group': "self.cleaned_data['group']", 'career_stage': "self.cleaned_data['career_stage']"}), "(person=physical_person, academic_title=self.\n cleaned_data['academic_title'], group=self.cleaned_data['group'],\n career_stage=self.cleaned_data['career_stage'])\n", (10261, 10428), False, 'from project_core.models import PersonTitle, Gender, PhysicalPerson, PersonPosition, Contact, CareerStage\n'), ((4908, 4997), 'django.forms.ModelChoiceField', 'forms.ModelChoiceField', ([], {'queryset': 'career_stage_queryset', 'initial': 'career_stage_initial'}), '(queryset=career_stage_queryset, initial=\n career_stage_initial)\n', (4930, 4997), False, 'from django import forms\n'), ((5062, 5312), 'django.forms.EmailField', 'forms.EmailField', ([], {'initial': 'email_initial', 'help_text': '"""Please write a valid email address. You will receive a confirmation email when saving and submitting your application form. This email address will also be used for communication purposes"""'}), "(initial=email_initial, help_text=\n 'Please write a valid email address. You will receive a confirmation email when saving and submitting your application form. This email address will also be used for communication purposes'\n )\n", (5078, 5312), False, 'from django import forms\n'), ((5391, 5530), 'phonenumber_field.formfields.PhoneNumberField', 'PhoneNumberField', ([], {'initial': 'phone_initial', 'help_text': '"""Phone number e.g.: +41222222222 . Extension can be added with xNN at the end"""'}), "(initial=phone_initial, help_text=\n 'Phone number e.g.: +41222222222 . Extension can be added with xNN at the end'\n )\n", (5407, 5530), False, 'from phonenumber_field.formfields import PhoneNumberField\n'), ((6744, 6958), 'django.forms.CharField', 'forms.CharField', ([], {'initial': 'group_initial', 'help_text': '"""Please type the names of the group(s) or laboratories to which you are affiliated for the purposes of this proposal"""', 'label': '"""Group / lab"""', 'required': '(False)'}), "(initial=group_initial, help_text=\n 'Please type the names of the group(s) or laboratories to which you are affiliated for the purposes of this proposal'\n , label='Group / lab', required=False)\n", (6759, 6958), False, 'from django import forms\n'), ((7782, 7800), 'project_core.utils.orcid.orcid_div', 'orcid_div', (['"""orcid"""'], {}), "('orcid')\n", (7791, 7800), False, 'from project_core.utils.orcid import orcid_div, field_set_read_only\n'), ((9964, 10024), 'project_core.models.PhysicalPerson.objects.get', 'PhysicalPerson.objects.get', ([], {'orcid': "self.cleaned_data['orcid']"}), "(orcid=self.cleaned_data['orcid'])\n", (9990, 10024), False, 'from project_core.models import PersonTitle, Gender, PhysicalPerson, PersonPosition, Contact, CareerStage\n'), ((11044, 11131), 'django.core.validators.ValidationError', 'ValidationError', (['f"""Invalid month: {month}"""'], {'code': '"""invalid"""', 'params': "{'value': month}"}), "(f'Invalid month: {month}', code='invalid', params={'value':\n month})\n", (11059, 11131), False, 'from django.core.validators import RegexValidator, ValidationError\n'), ((3485, 3510), 'project_core.models.PersonTitle.objects.all', 'PersonTitle.objects.all', ([], {}), '()\n', (3508, 3510), False, 'from project_core.models import PersonTitle, Gender, PhysicalPerson, PersonPosition, Contact, CareerStage\n'), ((7835, 7871), 'crispy_forms.layout.Div', 'Div', (['"""first_name"""'], {'css_class': '"""col-4"""'}), "('first_name', css_class='col-4')\n", (7838, 7871), False, 'from crispy_forms.layout import Layout, Div\n'), ((7889, 7922), 'crispy_forms.layout.Div', 'Div', (['"""surname"""'], {'css_class': '"""col-4"""'}), "('surname', css_class='col-4')\n", (7892, 7922), False, 'from crispy_forms.layout import Layout, Div\n'), ((7940, 7980), 'crispy_forms.layout.Div', 'Div', (['"""academic_title"""'], {'css_class': '"""col-2"""'}), "('academic_title', css_class='col-2')\n", (7943, 7980), False, 'from crispy_forms.layout import Layout, Div\n'), ((7998, 8030), 'crispy_forms.layout.Div', 'Div', (['"""gender"""'], {'css_class': '"""col-2"""'}), "('gender', css_class='col-2')\n", (8001, 8030), False, 'from crispy_forms.layout import Layout, Div\n'), ((8112, 8150), 'crispy_forms.layout.Div', 'Div', (['"""career_stage"""'], {'css_class': '"""col-8"""'}), "('career_stage', css_class='col-8')\n", (8115, 8150), False, 'from crispy_forms.layout import Layout, Div\n'), ((8168, 8202), 'crispy_forms.layout.Div', 'Div', (['"""phd_date"""'], {'css_class': '"""col-4"""'}), "('phd_date', css_class='col-4')\n", (8171, 8202), False, 'from crispy_forms.layout import Layout, Div\n'), ((8284, 8315), 'crispy_forms.layout.Div', 'Div', (['"""email"""'], {'css_class': '"""col-6"""'}), "('email', css_class='col-6')\n", (8287, 8315), False, 'from crispy_forms.layout import Layout, Div\n'), ((8333, 8364), 'crispy_forms.layout.Div', 'Div', (['"""phone"""'], {'css_class': '"""col-6"""'}), "('phone', css_class='col-6')\n", (8336, 8364), False, 'from crispy_forms.layout import Layout, Div\n'), ((8446, 8491), 'crispy_forms.layout.Div', 'Div', (['"""organisation_names"""'], {'css_class': '"""col-12"""'}), "('organisation_names', css_class='col-12')\n", (8449, 8491), False, 'from crispy_forms.layout import Layout, Div\n'), ((8573, 8605), 'crispy_forms.layout.Div', 'Div', (['"""group"""'], {'css_class': '"""col-12"""'}), "('group', css_class='col-12')\n", (8576, 8605), False, 'from crispy_forms.layout import Layout, Div\n'), ((13040, 13049), 'project_core.models.Contact', 'Contact', ([], {}), '()\n', (13047, 13049), False, 'from project_core.models import PersonTitle, Gender, PhysicalPerson, PersonPosition, Contact, CareerStage\n'), ((13567, 13576), 'project_core.models.Contact', 'Contact', ([], {}), '()\n', (13574, 13576), False, 'from project_core.models import PersonTitle, Gender, PhysicalPerson, PersonPosition, Contact, CareerStage\n'), ((4616, 4636), 'project_core.models.Gender.objects.all', 'Gender.objects.all', ([], {}), '()\n', (4634, 4636), False, 'from project_core.models import PersonTitle, Gender, PhysicalPerson, PersonPosition, Contact, CareerStage\n'), ((4808, 4833), 'project_core.models.CareerStage.objects.all', 'CareerStage.objects.all', ([], {}), '()\n', (4831, 4833), False, 'from project_core.models import PersonTitle, Gender, PhysicalPerson, PersonPosition, Contact, CareerStage\n'), ((6146, 6245), 'django.core.validators.RegexValidator', 'RegexValidator', ([], {'regex': '"""^[0-9]{2}-[0-9]{4}$"""', 'message': '"""Format is mm-yyyy"""', 'code': '"""Invalid format"""'}), "(regex='^[0-9]{2}-[0-9]{4}$', message='Format is mm-yyyy',\n code='Invalid format')\n", (6160, 6245), False, 'from django.core.validators import RegexValidator, ValidationError\n')]
# class derived from a GridLayout with a bunch of widgets from PyQt5.QtWidgets import QLabel, QGridLayout, QLineEdit, \ QVBoxLayout, QHBoxLayout, QComboBox, QPushButton, QCheckBox import numpy as np import pandas as pd class ParamWidget(QGridLayout): ''' Collecting all the input boxes and labels to assign data. ''' def __init__(self, paramTyp, param, projMan = None, parent = None): ''' Build the boxes. Parameters ---------- paramTyp: dictionary Defining types of parameters in the set. param: dictionary The parameters in the set read from paramMan. projMan: Project Project management class, used for access raw data. Attributes ---------- param: dictionary Parameter set managed by this grid widget. err: bool Whether there's an error in the parameters. senderList: ''' super().__init__(parent) self.err = False self.param = param self.paramTyp = paramTyp self.projMan = projMan self.senderList = [] for i, (k, v) in enumerate(paramTyp.items()): self.addWidget(QLabel(k), i, 0) val = self.param[k] if v == "protocol" and projMan != None: cb = QComboBox() cb.currentTextChanged.connect(lambda x, ind = k, typ = v: \ self.updateParam(ind, typ, x)) self.addWidget(cb, i, 1) self.senderList.append(cb) elif v == "int" or v == "float": le = QLineEdit() le.textEdited.connect(lambda x, ind = k, typ = v: self.updateParam(ind, typ, x)) self.addWidget(le, i, 1) self.senderList.append(le) elif v == "intr" or v == "floatr": le0 = QLineEdit() le1 = QLineEdit() le0.textEdited.connect(lambda x, ind = k, typ = v: \ self.updateParam(ind, typ, x, begin = True)) le1.textEdited.connect(lambda x, ind = k, typ = v: self.updateParam(ind, typ, x, begin = False)) twoHB = QHBoxLayout() twoHB.addWidget(le0) twoHB.addWidget(QLabel("to")) twoHB.addWidget(le1) self.addLayout(twoHB, i, 1) self.senderList.append([le0, le1]) elif v == "intl" or v == "floatl" or v == "strl": le = QLineEdit() le.textEdited.connect(lambda x, ind = k, typ = v: \ self.updateParam(ind, typ, x)) btn = QPushButton("...") lstHB = QHBoxLayout() lstHB.addWidget(le) lstHB.addWidget(btn) self.addLayout(lstHB, i, 1) self.senderList.append(le) elif v == "bool": cb = QCheckBox() cb.stateChanged.connect(lambda x, ind = k, typ = v: \ self.updateParam(ind, typ, x)) self.addWidget(cb, i, 1) self.senderList.append(cb) elif "combo" in v: options = v.split(',')[1:] cb = QComboBox() for j in options: cb.addItem(j) cb.currentTextChanged.connect(lambda x, ind = k, typ = v: \ self.updateParam(ind, typ, x)) cb.setCurrentIndex(0) self.addWidget(cb, i, 1) self.senderList.append(cb) else: print("Unknown parameter type.") self.updateDisp() self.updateDisp(param) def updateDisp(self, param = None): ''' After parameter changes due to importing or change of protocols, update display of parameters. Parameters ---------- param: dictionary, optional New parameters. Default is None, only tend to update protocols. ''' if param == None: for i, (k, v) in enumerate(self.paramTyp.items()): if v == "protocol" and self.projMan != None: cb = self.senderList[i] cb.clear() pt = self.projMan.getProtocols() for j in pt: cb.addItem(j) if len(pt): cb.setCurrentIndex(0) else: self.err = True else: self.param = param for i, (k, v) in enumerate(self.paramTyp.items()): val = param[k] if v == "protocol" and self.projMan != None: cb = self.senderList[i] cb.clear() pt = self.projMan.getProtocols() for j in pt: cb.addItem(j) if len(pt): cb.setCurrentIndex(0) else: self.err = True elif v == "int" or v == "float": if v == "int" or (1e-3 < abs(val) and abs(val) < 1e3): ds = str(val) else: ds = "{:.3e}".format(val) le = self.senderList[i] le.setText(ds) elif v == "intr" or v == "floatr": le0, le1 = self.senderList[i] if v == "intr" or (1e-3 < abs(val[0]) and abs(val[0]) < 1e3): ds = str(val[0]) else: ds = "{:.3e}".format(val[0]) le0.setText(ds) if v == "intr" or (1e-3 < abs(val[1]) and abs(val[1]) < 1e3): ds = str(val[1]) else: ds = "{:.3e}".format(val[1]) le1.setText(ds) elif v == "intl" or v == "floatl": if len(val): if v == "intl" or (1e-3 < min(map(abs, val)) and \ max(map(abs, val)) < 1e3): ds = ", ".join(map(str, val)) else: ds = ", ".join(["{:.3e}".format(d) for d in val]) else: ds = '' le = self.senderList[i] le.setText(ds) elif v == "strl": if len(val): ds = ", ".join(val) else: ds = '' le = self.senderList[i] le.setText(ds) elif v == "bool": cb = self.senderList[i] cb.setChecked(val) elif "combo" in v: cb = self.senderList[i] cb.setCurrentText(val) else: print("Unknown parameter type") print(v, val) self.update() def updateParam(self, ind, typ, val, **kargs): ''' Update individual parameters in profile using values get from input widgets. Parameters ---------- ind: string Key of the individual parameter to be set. typ: string Type of the individual parameter. val: string Text out of the input widget with the value. **kargs: Arguments come with some special types of parameters. - begin: bool Whether it's the first one of the two value range parameters. ''' try: self.err = False self.sender().setStyleSheet("background:#FFFFFF;") if typ == "int": self.param[ind] = int(val) elif typ == "float": self.param[ind] = float(val) elif typ == "intr": if kargs["begin"]: self.param[ind][0] = int(val) else: self.param[ind][1] = int(val) elif typ == "floatr": if kargs["begin"]: self.param[ind][0] = float(val) else: self.param[ind][1] = float(val) elif typ == "intl": if len(val): self.param[ind] = list(map(int, val.split(','))) else: self.param[ind] = [] elif typ == "floatl": if len(val): self.param[ind] = list(map(float, val.split(','))) else: self.param[ind] = [] elif typ == "strl": if len(val): self.param[ind] = [d.strip() for d in val.split(',')] else: self.param[ind] = [] elif typ == "protocol": self.param[ind] = val elif typ == "bool": self.param[ind] = bool(val) elif "combo" in typ: self.param[ind] = val else: print("Unknown parameter type") except ValueError: self.sender().setStyleSheet("background:#FF0000;") self.err = True def getParam(self): ''' Get parameters managed in this widget. ''' if not self.err: return self.param else: return None
[ "PyQt5.QtWidgets.QComboBox", "PyQt5.QtWidgets.QLabel", "PyQt5.QtWidgets.QLineEdit", "PyQt5.QtWidgets.QHBoxLayout", "PyQt5.QtWidgets.QPushButton", "PyQt5.QtWidgets.QCheckBox" ]
[((1038, 1047), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['k'], {}), '(k)\n', (1044, 1047), False, 'from PyQt5.QtWidgets import QLabel, QGridLayout, QLineEdit, QVBoxLayout, QHBoxLayout, QComboBox, QPushButton, QCheckBox\n'), ((1130, 1141), 'PyQt5.QtWidgets.QComboBox', 'QComboBox', ([], {}), '()\n', (1139, 1141), False, 'from PyQt5.QtWidgets import QLabel, QGridLayout, QLineEdit, QVBoxLayout, QHBoxLayout, QComboBox, QPushButton, QCheckBox\n'), ((1348, 1359), 'PyQt5.QtWidgets.QLineEdit', 'QLineEdit', ([], {}), '()\n', (1357, 1359), False, 'from PyQt5.QtWidgets import QLabel, QGridLayout, QLineEdit, QVBoxLayout, QHBoxLayout, QComboBox, QPushButton, QCheckBox\n'), ((1560, 1571), 'PyQt5.QtWidgets.QLineEdit', 'QLineEdit', ([], {}), '()\n', (1569, 1571), False, 'from PyQt5.QtWidgets import QLabel, QGridLayout, QLineEdit, QVBoxLayout, QHBoxLayout, QComboBox, QPushButton, QCheckBox\n'), ((1582, 1593), 'PyQt5.QtWidgets.QLineEdit', 'QLineEdit', ([], {}), '()\n', (1591, 1593), False, 'from PyQt5.QtWidgets import QLabel, QGridLayout, QLineEdit, QVBoxLayout, QHBoxLayout, QComboBox, QPushButton, QCheckBox\n'), ((1821, 1834), 'PyQt5.QtWidgets.QHBoxLayout', 'QHBoxLayout', ([], {}), '()\n', (1832, 1834), False, 'from PyQt5.QtWidgets import QLabel, QGridLayout, QLineEdit, QVBoxLayout, QHBoxLayout, QComboBox, QPushButton, QCheckBox\n'), ((1880, 1892), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['"""to"""'], {}), "('to')\n", (1886, 1892), False, 'from PyQt5.QtWidgets import QLabel, QGridLayout, QLineEdit, QVBoxLayout, QHBoxLayout, QComboBox, QPushButton, QCheckBox\n'), ((2052, 2063), 'PyQt5.QtWidgets.QLineEdit', 'QLineEdit', ([], {}), '()\n', (2061, 2063), False, 'from PyQt5.QtWidgets import QLabel, QGridLayout, QLineEdit, QVBoxLayout, QHBoxLayout, QComboBox, QPushButton, QCheckBox\n'), ((2167, 2185), 'PyQt5.QtWidgets.QPushButton', 'QPushButton', (['"""..."""'], {}), "('...')\n", (2178, 2185), False, 'from PyQt5.QtWidgets import QLabel, QGridLayout, QLineEdit, QVBoxLayout, QHBoxLayout, QComboBox, QPushButton, QCheckBox\n'), ((2198, 2211), 'PyQt5.QtWidgets.QHBoxLayout', 'QHBoxLayout', ([], {}), '()\n', (2209, 2211), False, 'from PyQt5.QtWidgets import QLabel, QGridLayout, QLineEdit, QVBoxLayout, QHBoxLayout, QComboBox, QPushButton, QCheckBox\n'), ((2354, 2365), 'PyQt5.QtWidgets.QCheckBox', 'QCheckBox', ([], {}), '()\n', (2363, 2365), False, 'from PyQt5.QtWidgets import QLabel, QGridLayout, QLineEdit, QVBoxLayout, QHBoxLayout, QComboBox, QPushButton, QCheckBox\n'), ((2583, 2594), 'PyQt5.QtWidgets.QComboBox', 'QComboBox', ([], {}), '()\n', (2592, 2594), False, 'from PyQt5.QtWidgets import QLabel, QGridLayout, QLineEdit, QVBoxLayout, QHBoxLayout, QComboBox, QPushButton, QCheckBox\n')]
from django.conf.urls import url, include from django.contrib import admin from rest_framework.documentation import include_docs_urls from auth_api import views urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^docs/', include_docs_urls(title='Todo API', description='RESTful API for Todo')), url(r'^$', views.api_root), url(r'^', include('users.urls', namespace='users')), url(r'^', include('todos.urls', namespace='todos')), ]
[ "rest_framework.documentation.include_docs_urls", "django.conf.urls.include", "django.conf.urls.url" ]
[((183, 214), 'django.conf.urls.url', 'url', (['"""^admin/"""', 'admin.site.urls'], {}), "('^admin/', admin.site.urls)\n", (186, 214), False, 'from django.conf.urls import url, include\n'), ((315, 340), 'django.conf.urls.url', 'url', (['"""^$"""', 'views.api_root'], {}), "('^$', views.api_root)\n", (318, 340), False, 'from django.conf.urls import url, include\n'), ((236, 307), 'rest_framework.documentation.include_docs_urls', 'include_docs_urls', ([], {'title': '"""Todo API"""', 'description': '"""RESTful API for Todo"""'}), "(title='Todo API', description='RESTful API for Todo')\n", (253, 307), False, 'from rest_framework.documentation import include_docs_urls\n'), ((357, 397), 'django.conf.urls.include', 'include', (['"""users.urls"""'], {'namespace': '"""users"""'}), "('users.urls', namespace='users')\n", (364, 397), False, 'from django.conf.urls import url, include\n'), ((414, 454), 'django.conf.urls.include', 'include', (['"""todos.urls"""'], {'namespace': '"""todos"""'}), "('todos.urls', namespace='todos')\n", (421, 454), False, 'from django.conf.urls import url, include\n')]
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.mgmt.core import ARMPipelineClient from azure.profiles import KnownProfiles, ProfileDefinition from azure.profiles.multiapiclient import MultiApiClientMixin from msrest import Deserializer, Serializer from ._configuration import AzureMachineLearningWorkspacesConfiguration if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Optional from azure.core.credentials import TokenCredential class _SDKClient(object): def __init__(self, *args, **kwargs): """This is a fake class to support current implemetation of MultiApiClientMixin." Will be removed in final version of multiapi azure-core based client """ pass class AzureMachineLearningWorkspaces(MultiApiClientMixin, _SDKClient): """These APIs allow end users to operate on Azure Machine Learning Workspace resources. This ready contains multiple API versions, to help you deal with all of the Azure clouds (Azure Stack, Azure Government, Azure China, etc.). By default, it uses the latest API version available on public Azure. For production, you should stick to a particular api-version and/or profile. The profile sets a mapping between an operation group and its API version. The api-version parameter sets the default API version if the operation group is not described in the profile. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: The ID of the target subscription. :type subscription_id: str :param api_version: API version to use if no profile is provided, or if missing in profile. :type api_version: str :param base_url: Service URL :type base_url: str :param profile: A profile definition, from KnownProfiles to dict. :type profile: azure.profiles.KnownProfiles :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. """ DEFAULT_API_VERSION = '2022-05-01' _PROFILE_TAG = "azure.mgmt.machinelearningservices.AzureMachineLearningWorkspaces" LATEST_PROFILE = ProfileDefinition({ _PROFILE_TAG: { None: DEFAULT_API_VERSION, 'assets': '1.0.0', 'async_operations': 'v1.0', 'batch_job_deployment': '2020-09-01-dataplanepreview', 'batch_job_endpoint': '2020-09-01-dataplanepreview', 'data_call': '1.5.0', 'data_container': '1.5.0', 'data_version': '1.5.0', 'dataset_containers': '2021-10-01', 'dataset_controller_v2': '1.5.0', 'dataset_v2': '1.5.0', 'dataset_versions': '2021-10-01', 'datasets_v1': '1.5.0', 'delete': 'v1.0', 'events': 'v1.0', 'experiments': 'v1.0', 'extensive_model': '1.0.0', 'get_operation_status': '1.5.0', 'metric': 'v1.0', 'migration': '1.0.0', 'models': '1.0.0', 'registry_management_non_workspace': 'v1.0', 'run': 'v1.0', 'run_artifacts': 'v1.0', 'runs': 'v1.0', 'spans': 'v1.0', 'temporary_data_references': '2021-10-01-dataplanepreview', }}, _PROFILE_TAG + " latest" ) def __init__( self, credential, # type: "TokenCredential" subscription_id, # type: str api_version=None, # type: Optional[str] base_url="https://management.azure.com", # type: str profile=KnownProfiles.default, # type: KnownProfiles **kwargs # type: Any ): self._config = AzureMachineLearningWorkspacesConfiguration(credential, subscription_id, **kwargs) self._client = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs) super(AzureMachineLearningWorkspaces, self).__init__( api_version=api_version, profile=profile ) @classmethod def _models_dict(cls, api_version): return {k: v for k, v in cls.models(api_version).__dict__.items() if isinstance(v, type)} @classmethod def models(cls, api_version=DEFAULT_API_VERSION): """Module depends on the API version: * 1.5.0: :mod:`dataset_dataplane.models<azure.mgmt.machinelearningservices.dataset_dataplane.models>` * 1.0.0: :mod:`model_dataplane.models<azure.mgmt.machinelearningservices.model_dataplane.models>` * v1.0: :mod:`registry_discovery.models<azure.mgmt.machinelearningservices.registry_discovery.models>` * v1.0: :mod:`runhistory.models<azure.mgmt.machinelearningservices.runhistory.models>` * 2020-09-01-dataplanepreview: :mod:`v2020_09_01_dataplanepreview.models<azure.mgmt.machinelearningservices.v2020_09_01_dataplanepreview.models>` * 2021-10-01: :mod:`v2021_10_01.models<azure.mgmt.machinelearningservices.v2021_10_01.models>` * 2021-10-01-dataplanepreview: :mod:`v2021_10_01_dataplanepreview.models<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.models>` * 2022-01-01-preview: :mod:`v2022_01_01_preview.models<azure.mgmt.machinelearningservices.v2022_01_01_preview.models>` * 2022-02-01-preview: :mod:`v2022_02_01_preview.models<azure.mgmt.machinelearningservices.v2022_02_01_preview.models>` * 2022-05-01: :mod:`v2022_05_01.models<azure.mgmt.machinelearningservices.v2022_05_01.models>` """ if api_version == '1.5.0': from .dataset_dataplane import models return models elif api_version == '1.0.0': from .model_dataplane import models return models elif api_version == 'v1.0': from .registry_discovery import models return models elif api_version == 'v1.0': from .runhistory import models return models elif api_version == '2020-09-01-dataplanepreview': from .v2020_09_01_dataplanepreview import models return models elif api_version == '2021-10-01': from .v2021_10_01 import models return models elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview import models return models elif api_version == '2022-01-01-preview': from .v2022_01_01_preview import models return models elif api_version == '2022-02-01-preview': from .v2022_02_01_preview import models return models elif api_version == '2022-05-01': from .v2022_05_01 import models return models raise ValueError("API version {} is not available".format(api_version)) @property def assets(self): """Instance depends on the API version: * 1.0.0: :class:`AssetsOperations<azure.mgmt.machinelearningservices.model_dataplane.operations.AssetsOperations>` """ api_version = self._get_api_version('assets') if api_version == '1.0.0': from .model_dataplane.operations import AssetsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'assets'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def async_operations(self): """Instance depends on the API version: * v1.0: :class:`AsyncOperationsOperations<azure.mgmt.machinelearningservices.registry_discovery.operations.AsyncOperationsOperations>` """ api_version = self._get_api_version('async_operations') if api_version == 'v1.0': from .registry_discovery.operations import AsyncOperationsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'async_operations'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def batch_deployments(self): """Instance depends on the API version: * 2021-10-01: :class:`BatchDeploymentsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.BatchDeploymentsOperations>` * 2022-02-01-preview: :class:`BatchDeploymentsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.BatchDeploymentsOperations>` * 2022-05-01: :class:`BatchDeploymentsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.BatchDeploymentsOperations>` """ api_version = self._get_api_version('batch_deployments') if api_version == '2021-10-01': from .v2021_10_01.operations import BatchDeploymentsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import BatchDeploymentsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import BatchDeploymentsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'batch_deployments'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def batch_endpoints(self): """Instance depends on the API version: * 2021-10-01: :class:`BatchEndpointsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.BatchEndpointsOperations>` * 2022-02-01-preview: :class:`BatchEndpointsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.BatchEndpointsOperations>` * 2022-05-01: :class:`BatchEndpointsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.BatchEndpointsOperations>` """ api_version = self._get_api_version('batch_endpoints') if api_version == '2021-10-01': from .v2021_10_01.operations import BatchEndpointsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import BatchEndpointsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import BatchEndpointsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'batch_endpoints'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def batch_job_deployment(self): """Instance depends on the API version: * 2020-09-01-dataplanepreview: :class:`BatchJobDeploymentOperations<azure.mgmt.machinelearningservices.v2020_09_01_dataplanepreview.operations.BatchJobDeploymentOperations>` """ api_version = self._get_api_version('batch_job_deployment') if api_version == '2020-09-01-dataplanepreview': from .v2020_09_01_dataplanepreview.operations import BatchJobDeploymentOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'batch_job_deployment'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def batch_job_endpoint(self): """Instance depends on the API version: * 2020-09-01-dataplanepreview: :class:`BatchJobEndpointOperations<azure.mgmt.machinelearningservices.v2020_09_01_dataplanepreview.operations.BatchJobEndpointOperations>` """ api_version = self._get_api_version('batch_job_endpoint') if api_version == '2020-09-01-dataplanepreview': from .v2020_09_01_dataplanepreview.operations import BatchJobEndpointOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'batch_job_endpoint'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def code_containers(self): """Instance depends on the API version: * 2021-10-01: :class:`CodeContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.CodeContainersOperations>` * 2021-10-01-dataplanepreview: :class:`CodeContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.CodeContainersOperations>` * 2022-02-01-preview: :class:`CodeContainersOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.CodeContainersOperations>` * 2022-05-01: :class:`CodeContainersOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.CodeContainersOperations>` """ api_version = self._get_api_version('code_containers') if api_version == '2021-10-01': from .v2021_10_01.operations import CodeContainersOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import CodeContainersOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import CodeContainersOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import CodeContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'code_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def code_versions(self): """Instance depends on the API version: * 2021-10-01: :class:`CodeVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.CodeVersionsOperations>` * 2021-10-01-dataplanepreview: :class:`CodeVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.CodeVersionsOperations>` * 2022-02-01-preview: :class:`CodeVersionsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.CodeVersionsOperations>` * 2022-05-01: :class:`CodeVersionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.CodeVersionsOperations>` """ api_version = self._get_api_version('code_versions') if api_version == '2021-10-01': from .v2021_10_01.operations import CodeVersionsOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import CodeVersionsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import CodeVersionsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import CodeVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'code_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def component_containers(self): """Instance depends on the API version: * 2021-10-01: :class:`ComponentContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.ComponentContainersOperations>` * 2021-10-01-dataplanepreview: :class:`ComponentContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.ComponentContainersOperations>` * 2022-02-01-preview: :class:`ComponentContainersOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.ComponentContainersOperations>` * 2022-05-01: :class:`ComponentContainersOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.ComponentContainersOperations>` """ api_version = self._get_api_version('component_containers') if api_version == '2021-10-01': from .v2021_10_01.operations import ComponentContainersOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import ComponentContainersOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import ComponentContainersOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import ComponentContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'component_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def component_versions(self): """Instance depends on the API version: * 2021-10-01: :class:`ComponentVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.ComponentVersionsOperations>` * 2021-10-01-dataplanepreview: :class:`ComponentVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.ComponentVersionsOperations>` * 2022-02-01-preview: :class:`ComponentVersionsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.ComponentVersionsOperations>` * 2022-05-01: :class:`ComponentVersionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.ComponentVersionsOperations>` """ api_version = self._get_api_version('component_versions') if api_version == '2021-10-01': from .v2021_10_01.operations import ComponentVersionsOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import ComponentVersionsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import ComponentVersionsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import ComponentVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'component_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def compute(self): """Instance depends on the API version: * 2021-10-01: :class:`ComputeOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.ComputeOperations>` * 2022-01-01-preview: :class:`ComputeOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.ComputeOperations>` * 2022-05-01: :class:`ComputeOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.ComputeOperations>` """ api_version = self._get_api_version('compute') if api_version == '2021-10-01': from .v2021_10_01.operations import ComputeOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import ComputeOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import ComputeOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'compute'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def data_call(self): """Instance depends on the API version: * 1.5.0: :class:`DataCallOperations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.DataCallOperations>` """ api_version = self._get_api_version('data_call') if api_version == '1.5.0': from .dataset_dataplane.operations import DataCallOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'data_call'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def data_container(self): """Instance depends on the API version: * 1.5.0: :class:`DataContainerOperations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.DataContainerOperations>` """ api_version = self._get_api_version('data_container') if api_version == '1.5.0': from .dataset_dataplane.operations import DataContainerOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'data_container'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def data_containers(self): """Instance depends on the API version: * 2022-02-01-preview: :class:`DataContainersOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.DataContainersOperations>` * 2022-05-01: :class:`DataContainersOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.DataContainersOperations>` """ api_version = self._get_api_version('data_containers') if api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import DataContainersOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import DataContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'data_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def data_version(self): """Instance depends on the API version: * 1.5.0: :class:`DataVersionOperations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.DataVersionOperations>` """ api_version = self._get_api_version('data_version') if api_version == '1.5.0': from .dataset_dataplane.operations import DataVersionOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'data_version'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def data_versions(self): """Instance depends on the API version: * 2022-02-01-preview: :class:`DataVersionsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.DataVersionsOperations>` * 2022-05-01: :class:`DataVersionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.DataVersionsOperations>` """ api_version = self._get_api_version('data_versions') if api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import DataVersionsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import DataVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'data_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def dataset_containers(self): """Instance depends on the API version: * 2021-10-01: :class:`DatasetContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.DatasetContainersOperations>` """ api_version = self._get_api_version('dataset_containers') if api_version == '2021-10-01': from .v2021_10_01.operations import DatasetContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'dataset_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def dataset_controller_v2(self): """Instance depends on the API version: * 1.5.0: :class:`DatasetControllerV2Operations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.DatasetControllerV2Operations>` """ api_version = self._get_api_version('dataset_controller_v2') if api_version == '1.5.0': from .dataset_dataplane.operations import DatasetControllerV2Operations as OperationClass else: raise ValueError("API version {} does not have operation group 'dataset_controller_v2'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def dataset_v2(self): """Instance depends on the API version: * 1.5.0: :class:`DatasetV2Operations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.DatasetV2Operations>` """ api_version = self._get_api_version('dataset_v2') if api_version == '1.5.0': from .dataset_dataplane.operations import DatasetV2Operations as OperationClass else: raise ValueError("API version {} does not have operation group 'dataset_v2'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def dataset_versions(self): """Instance depends on the API version: * 2021-10-01: :class:`DatasetVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.DatasetVersionsOperations>` """ api_version = self._get_api_version('dataset_versions') if api_version == '2021-10-01': from .v2021_10_01.operations import DatasetVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'dataset_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def datasets_v1(self): """Instance depends on the API version: * 1.5.0: :class:`DatasetsV1Operations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.DatasetsV1Operations>` """ api_version = self._get_api_version('datasets_v1') if api_version == '1.5.0': from .dataset_dataplane.operations import DatasetsV1Operations as OperationClass else: raise ValueError("API version {} does not have operation group 'datasets_v1'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def datastores(self): """Instance depends on the API version: * 2021-10-01: :class:`DatastoresOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.DatastoresOperations>` * 2022-02-01-preview: :class:`DatastoresOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.DatastoresOperations>` * 2022-05-01: :class:`DatastoresOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.DatastoresOperations>` """ api_version = self._get_api_version('datastores') if api_version == '2021-10-01': from .v2021_10_01.operations import DatastoresOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import DatastoresOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import DatastoresOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'datastores'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def delete(self): """Instance depends on the API version: * 1.5.0: :class:`DeleteOperations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.DeleteOperations>` * v1.0: :class:`DeleteOperations<azure.mgmt.machinelearningservices.runhistory.operations.DeleteOperations>` """ api_version = self._get_api_version('delete') if api_version == '1.5.0': from .dataset_dataplane.operations import DeleteOperations as OperationClass elif api_version == 'v1.0': from .runhistory.operations import DeleteOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'delete'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def environment_containers(self): """Instance depends on the API version: * 2021-10-01: :class:`EnvironmentContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.EnvironmentContainersOperations>` * 2021-10-01-dataplanepreview: :class:`EnvironmentContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.EnvironmentContainersOperations>` * 2022-02-01-preview: :class:`EnvironmentContainersOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.EnvironmentContainersOperations>` * 2022-05-01: :class:`EnvironmentContainersOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.EnvironmentContainersOperations>` """ api_version = self._get_api_version('environment_containers') if api_version == '2021-10-01': from .v2021_10_01.operations import EnvironmentContainersOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import EnvironmentContainersOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import EnvironmentContainersOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import EnvironmentContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'environment_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def environment_versions(self): """Instance depends on the API version: * 2021-10-01: :class:`EnvironmentVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.EnvironmentVersionsOperations>` * 2021-10-01-dataplanepreview: :class:`EnvironmentVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.EnvironmentVersionsOperations>` * 2022-02-01-preview: :class:`EnvironmentVersionsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.EnvironmentVersionsOperations>` * 2022-05-01: :class:`EnvironmentVersionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.EnvironmentVersionsOperations>` """ api_version = self._get_api_version('environment_versions') if api_version == '2021-10-01': from .v2021_10_01.operations import EnvironmentVersionsOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import EnvironmentVersionsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import EnvironmentVersionsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import EnvironmentVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'environment_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def events(self): """Instance depends on the API version: * v1.0: :class:`EventsOperations<azure.mgmt.machinelearningservices.runhistory.operations.EventsOperations>` """ api_version = self._get_api_version('events') if api_version == 'v1.0': from .runhistory.operations import EventsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'events'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def experiments(self): """Instance depends on the API version: * v1.0: :class:`ExperimentsOperations<azure.mgmt.machinelearningservices.runhistory.operations.ExperimentsOperations>` """ api_version = self._get_api_version('experiments') if api_version == 'v1.0': from .runhistory.operations import ExperimentsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'experiments'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def extensive_model(self): """Instance depends on the API version: * 1.0.0: :class:`ExtensiveModelOperations<azure.mgmt.machinelearningservices.model_dataplane.operations.ExtensiveModelOperations>` """ api_version = self._get_api_version('extensive_model') if api_version == '1.0.0': from .model_dataplane.operations import ExtensiveModelOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'extensive_model'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def get_operation_status(self): """Instance depends on the API version: * 1.5.0: :class:`GetOperationStatusOperations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.GetOperationStatusOperations>` """ api_version = self._get_api_version('get_operation_status') if api_version == '1.5.0': from .dataset_dataplane.operations import GetOperationStatusOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'get_operation_status'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def jobs(self): """Instance depends on the API version: * 2021-10-01: :class:`JobsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.JobsOperations>` * 2022-02-01-preview: :class:`JobsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.JobsOperations>` * 2022-05-01: :class:`JobsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.JobsOperations>` """ api_version = self._get_api_version('jobs') if api_version == '2021-10-01': from .v2021_10_01.operations import JobsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import JobsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import JobsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'jobs'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def metric(self): """Instance depends on the API version: * v1.0: :class:`MetricOperations<azure.mgmt.machinelearningservices.runhistory.operations.MetricOperations>` """ api_version = self._get_api_version('metric') if api_version == 'v1.0': from .runhistory.operations import MetricOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'metric'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def migration(self): """Instance depends on the API version: * 1.0.0: :class:`MigrationOperations<azure.mgmt.machinelearningservices.model_dataplane.operations.MigrationOperations>` """ api_version = self._get_api_version('migration') if api_version == '1.0.0': from .model_dataplane.operations import MigrationOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'migration'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def model_containers(self): """Instance depends on the API version: * 2021-10-01: :class:`ModelContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.ModelContainersOperations>` * 2021-10-01-dataplanepreview: :class:`ModelContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.ModelContainersOperations>` * 2022-02-01-preview: :class:`ModelContainersOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.ModelContainersOperations>` * 2022-05-01: :class:`ModelContainersOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.ModelContainersOperations>` """ api_version = self._get_api_version('model_containers') if api_version == '2021-10-01': from .v2021_10_01.operations import ModelContainersOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import ModelContainersOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import ModelContainersOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import ModelContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'model_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def model_versions(self): """Instance depends on the API version: * 2021-10-01: :class:`ModelVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.ModelVersionsOperations>` * 2021-10-01-dataplanepreview: :class:`ModelVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.ModelVersionsOperations>` * 2022-02-01-preview: :class:`ModelVersionsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.ModelVersionsOperations>` * 2022-05-01: :class:`ModelVersionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.ModelVersionsOperations>` """ api_version = self._get_api_version('model_versions') if api_version == '2021-10-01': from .v2021_10_01.operations import ModelVersionsOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import ModelVersionsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import ModelVersionsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import ModelVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'model_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def models(self): """Instance depends on the API version: * 1.0.0: :class:`ModelsOperations<azure.mgmt.machinelearningservices.model_dataplane.operations.ModelsOperations>` """ api_version = self._get_api_version('models') if api_version == '1.0.0': from .model_dataplane.operations import ModelsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'models'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def online_deployments(self): """Instance depends on the API version: * 2021-10-01: :class:`OnlineDeploymentsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.OnlineDeploymentsOperations>` * 2022-02-01-preview: :class:`OnlineDeploymentsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.OnlineDeploymentsOperations>` * 2022-05-01: :class:`OnlineDeploymentsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.OnlineDeploymentsOperations>` """ api_version = self._get_api_version('online_deployments') if api_version == '2021-10-01': from .v2021_10_01.operations import OnlineDeploymentsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import OnlineDeploymentsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import OnlineDeploymentsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'online_deployments'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def online_endpoints(self): """Instance depends on the API version: * 2021-10-01: :class:`OnlineEndpointsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.OnlineEndpointsOperations>` * 2022-02-01-preview: :class:`OnlineEndpointsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.OnlineEndpointsOperations>` * 2022-05-01: :class:`OnlineEndpointsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.OnlineEndpointsOperations>` """ api_version = self._get_api_version('online_endpoints') if api_version == '2021-10-01': from .v2021_10_01.operations import OnlineEndpointsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import OnlineEndpointsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import OnlineEndpointsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'online_endpoints'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def operations(self): """Instance depends on the API version: * 2021-10-01: :class:`Operations<azure.mgmt.machinelearningservices.v2021_10_01.operations.Operations>` * 2022-01-01-preview: :class:`Operations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.Operations>` * 2022-05-01: :class:`Operations<azure.mgmt.machinelearningservices.v2022_05_01.operations.Operations>` """ api_version = self._get_api_version('operations') if api_version == '2021-10-01': from .v2021_10_01.operations import Operations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import Operations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import Operations as OperationClass else: raise ValueError("API version {} does not have operation group 'operations'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def private_endpoint_connections(self): """Instance depends on the API version: * 2021-10-01: :class:`PrivateEndpointConnectionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.PrivateEndpointConnectionsOperations>` * 2022-01-01-preview: :class:`PrivateEndpointConnectionsOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.PrivateEndpointConnectionsOperations>` * 2022-05-01: :class:`PrivateEndpointConnectionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.PrivateEndpointConnectionsOperations>` """ api_version = self._get_api_version('private_endpoint_connections') if api_version == '2021-10-01': from .v2021_10_01.operations import PrivateEndpointConnectionsOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import PrivateEndpointConnectionsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import PrivateEndpointConnectionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'private_endpoint_connections'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def private_link_resources(self): """Instance depends on the API version: * 2021-10-01: :class:`PrivateLinkResourcesOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.PrivateLinkResourcesOperations>` * 2022-01-01-preview: :class:`PrivateLinkResourcesOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.PrivateLinkResourcesOperations>` * 2022-05-01: :class:`PrivateLinkResourcesOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.PrivateLinkResourcesOperations>` """ api_version = self._get_api_version('private_link_resources') if api_version == '2021-10-01': from .v2021_10_01.operations import PrivateLinkResourcesOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import PrivateLinkResourcesOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import PrivateLinkResourcesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'private_link_resources'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def quotas(self): """Instance depends on the API version: * 2021-10-01: :class:`QuotasOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.QuotasOperations>` * 2022-01-01-preview: :class:`QuotasOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.QuotasOperations>` * 2022-05-01: :class:`QuotasOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.QuotasOperations>` """ api_version = self._get_api_version('quotas') if api_version == '2021-10-01': from .v2021_10_01.operations import QuotasOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import QuotasOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import QuotasOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'quotas'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def registry_management_non_workspace(self): """Instance depends on the API version: * v1.0: :class:`RegistryManagementNonWorkspaceOperations<azure.mgmt.machinelearningservices.registry_discovery.operations.RegistryManagementNonWorkspaceOperations>` """ api_version = self._get_api_version('registry_management_non_workspace') if api_version == 'v1.0': from .registry_discovery.operations import RegistryManagementNonWorkspaceOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'registry_management_non_workspace'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def run(self): """Instance depends on the API version: * v1.0: :class:`RunOperations<azure.mgmt.machinelearningservices.runhistory.operations.RunOperations>` """ api_version = self._get_api_version('run') if api_version == 'v1.0': from .runhistory.operations import RunOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'run'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def run_artifacts(self): """Instance depends on the API version: * v1.0: :class:`RunArtifactsOperations<azure.mgmt.machinelearningservices.runhistory.operations.RunArtifactsOperations>` """ api_version = self._get_api_version('run_artifacts') if api_version == 'v1.0': from .runhistory.operations import RunArtifactsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'run_artifacts'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def runs(self): """Instance depends on the API version: * v1.0: :class:`RunsOperations<azure.mgmt.machinelearningservices.runhistory.operations.RunsOperations>` """ api_version = self._get_api_version('runs') if api_version == 'v1.0': from .runhistory.operations import RunsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'runs'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def spans(self): """Instance depends on the API version: * v1.0: :class:`SpansOperations<azure.mgmt.machinelearningservices.runhistory.operations.SpansOperations>` """ api_version = self._get_api_version('spans') if api_version == 'v1.0': from .runhistory.operations import SpansOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'spans'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def temporary_data_references(self): """Instance depends on the API version: * 2021-10-01-dataplanepreview: :class:`TemporaryDataReferencesOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.TemporaryDataReferencesOperations>` """ api_version = self._get_api_version('temporary_data_references') if api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import TemporaryDataReferencesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'temporary_data_references'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def usages(self): """Instance depends on the API version: * 2021-10-01: :class:`UsagesOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.UsagesOperations>` * 2022-01-01-preview: :class:`UsagesOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.UsagesOperations>` * 2022-05-01: :class:`UsagesOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.UsagesOperations>` """ api_version = self._get_api_version('usages') if api_version == '2021-10-01': from .v2021_10_01.operations import UsagesOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import UsagesOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import UsagesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'usages'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def virtual_machine_sizes(self): """Instance depends on the API version: * 2021-10-01: :class:`VirtualMachineSizesOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.VirtualMachineSizesOperations>` * 2022-01-01-preview: :class:`VirtualMachineSizesOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.VirtualMachineSizesOperations>` * 2022-05-01: :class:`VirtualMachineSizesOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.VirtualMachineSizesOperations>` """ api_version = self._get_api_version('virtual_machine_sizes') if api_version == '2021-10-01': from .v2021_10_01.operations import VirtualMachineSizesOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import VirtualMachineSizesOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import VirtualMachineSizesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'virtual_machine_sizes'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def workspace_connections(self): """Instance depends on the API version: * 2021-10-01: :class:`WorkspaceConnectionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.WorkspaceConnectionsOperations>` * 2022-01-01-preview: :class:`WorkspaceConnectionsOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.WorkspaceConnectionsOperations>` * 2022-05-01: :class:`WorkspaceConnectionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.WorkspaceConnectionsOperations>` """ api_version = self._get_api_version('workspace_connections') if api_version == '2021-10-01': from .v2021_10_01.operations import WorkspaceConnectionsOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import WorkspaceConnectionsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import WorkspaceConnectionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'workspace_connections'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def workspace_features(self): """Instance depends on the API version: * 2021-10-01: :class:`WorkspaceFeaturesOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.WorkspaceFeaturesOperations>` * 2022-01-01-preview: :class:`WorkspaceFeaturesOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.WorkspaceFeaturesOperations>` * 2022-05-01: :class:`WorkspaceFeaturesOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.WorkspaceFeaturesOperations>` """ api_version = self._get_api_version('workspace_features') if api_version == '2021-10-01': from .v2021_10_01.operations import WorkspaceFeaturesOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import WorkspaceFeaturesOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import WorkspaceFeaturesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'workspace_features'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def workspaces(self): """Instance depends on the API version: * 2021-10-01: :class:`WorkspacesOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.WorkspacesOperations>` * 2022-01-01-preview: :class:`WorkspacesOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.WorkspacesOperations>` * 2022-05-01: :class:`WorkspacesOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.WorkspacesOperations>` """ api_version = self._get_api_version('workspaces') if api_version == '2021-10-01': from .v2021_10_01.operations import WorkspacesOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import WorkspacesOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import WorkspacesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'workspaces'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) def close(self): self._client.close() def __enter__(self): self._client.__enter__() return self def __exit__(self, *exc_details): self._client.__exit__(*exc_details)
[ "azure.profiles.ProfileDefinition", "azure.mgmt.core.ARMPipelineClient" ]
[((2704, 3578), 'azure.profiles.ProfileDefinition', 'ProfileDefinition', (["{_PROFILE_TAG: {None: DEFAULT_API_VERSION, 'assets': '1.0.0',\n 'async_operations': 'v1.0', 'batch_job_deployment':\n '2020-09-01-dataplanepreview', 'batch_job_endpoint':\n '2020-09-01-dataplanepreview', 'data_call': '1.5.0', 'data_container':\n '1.5.0', 'data_version': '1.5.0', 'dataset_containers': '2021-10-01',\n 'dataset_controller_v2': '1.5.0', 'dataset_v2': '1.5.0',\n 'dataset_versions': '2021-10-01', 'datasets_v1': '1.5.0', 'delete':\n 'v1.0', 'events': 'v1.0', 'experiments': 'v1.0', 'extensive_model':\n '1.0.0', 'get_operation_status': '1.5.0', 'metric': 'v1.0', 'migration':\n '1.0.0', 'models': '1.0.0', 'registry_management_non_workspace': 'v1.0',\n 'run': 'v1.0', 'run_artifacts': 'v1.0', 'runs': 'v1.0', 'spans': 'v1.0',\n 'temporary_data_references': '2021-10-01-dataplanepreview'}}", "(_PROFILE_TAG + ' latest')"], {}), "({_PROFILE_TAG: {None: DEFAULT_API_VERSION, 'assets':\n '1.0.0', 'async_operations': 'v1.0', 'batch_job_deployment':\n '2020-09-01-dataplanepreview', 'batch_job_endpoint':\n '2020-09-01-dataplanepreview', 'data_call': '1.5.0', 'data_container':\n '1.5.0', 'data_version': '1.5.0', 'dataset_containers': '2021-10-01',\n 'dataset_controller_v2': '1.5.0', 'dataset_v2': '1.5.0',\n 'dataset_versions': '2021-10-01', 'datasets_v1': '1.5.0', 'delete':\n 'v1.0', 'events': 'v1.0', 'experiments': 'v1.0', 'extensive_model':\n '1.0.0', 'get_operation_status': '1.5.0', 'metric': 'v1.0', 'migration':\n '1.0.0', 'models': '1.0.0', 'registry_management_non_workspace': 'v1.0',\n 'run': 'v1.0', 'run_artifacts': 'v1.0', 'runs': 'v1.0', 'spans': 'v1.0',\n 'temporary_data_references': '2021-10-01-dataplanepreview'}}, \n _PROFILE_TAG + ' latest')\n", (2721, 3578), False, 'from azure.profiles import KnownProfiles, ProfileDefinition\n'), ((4342, 4409), 'azure.mgmt.core.ARMPipelineClient', 'ARMPipelineClient', ([], {'base_url': 'base_url', 'config': 'self._config'}), '(base_url=base_url, config=self._config, **kwargs)\n', (4359, 4409), False, 'from azure.mgmt.core import ARMPipelineClient\n')]
#!/usr/bin/python3 -B # Copyright (c) 2020 <NAME> # See README for details # ================================================================ import sys import os import stat import importlib import pprint from Gen_Bytevec_Mux_BSV import * from Gen_Bytevec_Mux_C import * pp = pprint.PrettyPrinter() # ================================================================ def mkHelp_text (argv): return "Usage: " + argv [0] + " <spec_file.py>" + ''' <spec_file.py> should be a Python source file defining three variables: C_to_BSV_structs BSV_to_C_structs package_name The first two are lists of 'struct specs', each of which has the following form: { 'struct_name': "Foo", 'fields' : [ { 'field_name' : 'fieldfoo', 'width_bits': width }, ... { 'field_name' : 'fieldfoo', 'width_bits': width } ]} Struct names should be globally unique. Field names should be unique within a struct. It is ok for a field-width to be 0 (e.g., unused 'user' field in an AXI channel). Generates three output files: package_name.bsv package_name.h package_name.c The C/BSV code contains: Struct defs for each struct, where each field has type: BSV: Bit #(w) where w is the specified bit-width C: uint8_t, uint16_t, uint32_t or uint64_t, as appropriate, if width <= 64 bits, uint8_t [..] if wider A 'state' struct containing queues and communication 'credits' for each struct type, Functions for C application code to enqueue each type of send-struct into a pending queue Functions for C application code to dequeue each type of receive-struct from a pending queue A function for the C application code to encode an already queued send-struct into a bytevec ready for transmission A function for the C application code to decode a received bytevec into a queued receive-struct ''' # ================================================================ def main (argv = None): if ((len (argv) != 2) or (argv [1] == "-h") or (argv [1] == "--help")): sys.stdout.write (mkHelp_text (argv)) return 0 spec_filename = argv [1] if spec_filename.endswith (".py"): spec_filename = spec_filename [:-3] try: # Warning: # This dynamic import of the spec_filename spec file is fragile (only works if both # this Python executable and spec_filename.py are in the current dir. # Study importlib examples where there is some notion of 'finding' from a path etc. spec = importlib.import_module (spec_filename) # ("type_specs") except: sys.stdout.write ("ERROR: unable to import module '{:s}'\n".format (spec_filename)) sys.exit (1) sys.stdout.write ("Spec file imported: '{:s}'\n".format (spec_filename)) package_name = spec.package_name sys.stdout.write ("Package name: '{:s}'\n".format (package_name)) # Compute all necessary byte-widths for transmission and C structs # Each of the 'field' structs extends with 'width_bytes' and 'dimension' sys.stdout.write ("Computing all necessary byte-widths for packet formats and C structs.\n") C_to_BSV_structs = [compute_width_bytes (s) for s in spec.C_to_BSV_structs] BSV_to_C_structs = [compute_width_bytes (s) for s in spec.BSV_to_C_structs] # Data structure for different parts of a packet: C to BSV max_C_to_BSV_struct_bytes = max ([ s ['size_bytes'] for s in C_to_BSV_structs ]) C_to_BSV_packet_bytes = { 'packet_len' : 1, 'num_credits' : len (BSV_to_C_structs), 'channel_id' : 1, 'payload' : max_C_to_BSV_struct_bytes } # Data structure for different parts of a packet: BSV to C max_BSV_to_C_struct_bytes = max ([ s ['size_bytes'] for s in BSV_to_C_structs ]) BSV_to_C_packet_bytes = { 'packet_len' : 1, 'num_credits' : len (C_to_BSV_structs), 'channel_id' : 1, 'payload' : max_BSV_to_C_struct_bytes } # Generate the .bsv file Gen_BSV (spec_filename, package_name, C_to_BSV_structs, C_to_BSV_packet_bytes, BSV_to_C_structs, BSV_to_C_packet_bytes) # Generate .h and .c files Gen_C (spec_filename, package_name, C_to_BSV_structs, C_to_BSV_packet_bytes, BSV_to_C_structs, BSV_to_C_packet_bytes) return 0 # ================================================================ # This is a struct spec -> struct spec function # In struct_spec_in, each field spec has attributes 'field_name' and 'width_bits' # In struct_spec_out, we add attributes 'width_bytes' and 'dimension' # and we add struct attribute 'size_bytes' for total # of bytes # Fields <= 64b wide, fit in C scalars (uint8_t/uint16_t/uint32_t/uint64_t) # have dimension 1 and width_bytes of 1,2,4 or 8 # Larger fields are represented in C as uint8_t [N] # have dimension N and width_bytes 1 def compute_width_bytes (struct_spec_in): fields_out = [] size_bytes = 0 for f in struct_spec_in ['fields']: field_name = f ['field_name'] width_bits = f ['width_bits'] width_bytes = 0 dimension = 1; if (width_bits == 0): width_bytes = 0 elif (width_bits <= 8): width_bytes = 1 elif (width_bits <= 16): width_bytes = 2 elif (width_bits <= 32): width_bytes = 4 elif (width_bits <= 64): width_bytes = 8 else: width_bytes = 1 dimension = (width_bits + 7) // 8 field_out = {'field_name' : field_name, 'width_bits' : width_bits, 'width_bytes': width_bytes, 'dimension' : dimension} fields_out.append (field_out) size_bytes += width_bytes * dimension struct_spec_out = {'struct_name': struct_spec_in ['struct_name'], 'fields' : fields_out, 'size_bytes' : size_bytes} return struct_spec_out # ================================================================ # For non-interactive invocations, call main() and use its return value # as the exit code. if __name__ == '__main__': sys.exit (main (sys.argv))
[ "sys.stdout.write", "pprint.PrettyPrinter", "sys.exit", "importlib.import_module" ]
[((285, 307), 'pprint.PrettyPrinter', 'pprint.PrettyPrinter', ([], {}), '()\n', (305, 307), False, 'import pprint\n'), ((3243, 3339), 'sys.stdout.write', 'sys.stdout.write', (['"""Computing all necessary byte-widths for packet formats and C structs.\n"""'], {}), "(\n 'Computing all necessary byte-widths for packet formats and C structs.\\n')\n", (3259, 3339), False, 'import sys\n'), ((2715, 2753), 'importlib.import_module', 'importlib.import_module', (['spec_filename'], {}), '(spec_filename)\n', (2738, 2753), False, 'import importlib\n'), ((2887, 2898), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2895, 2898), False, 'import sys\n')]
# Copyright 2017-2020 Lawrence Livermore National Security, LLC and other # CallFlow Project Developers. See the top-level LICENSE file for details. # # SPDX-License-Identifier: MIT import pandas as pd class RankHistogram: def __init__(self, state, name): self.graph = state.new_gf.graph self.df = state.new_gf.df self.entire_df = state.new_entire_gf.df self.name = name self.entry_funcs = {} self.result = self.run() def run(self): ret = [] module = self.name.split("=")[0] func_in_module = self.df[self.df.module == module]["name"].unique().tolist() for idx, func in enumerate(func_in_module): ret.append( { "name": func, "time (inc)": self.df.loc[self.df["name"] == func][ "time (inc)" ].tolist(), "time": self.df.loc[self.df["name"] == func]["time"].tolist(), "rank": self.df.loc[self.df["name"] == func]["rank"].tolist(), "dataset": self.df.loc[self.df["name"] == func]["dataset"].tolist(), } ) ret_df = pd.DataFrame(ret) return ret_df.to_json(orient="columns")
[ "pandas.DataFrame" ]
[((1210, 1227), 'pandas.DataFrame', 'pd.DataFrame', (['ret'], {}), '(ret)\n', (1222, 1227), True, 'import pandas as pd\n')]
import os def read_test_case(file_path): """ reads one test case from file. returns contents of test case Parameters ---------- file_path : str the path of the test case file to read. Returns ------- list a list of contents of the test case. """ file = open(file_path, "r") number = int(file.readline().strip()) case = list() for i in range(number): case.append(file.readline().strip()) file.close() return case def load_test_cases(dir, file_name): """ loads one test case from file. returns a map contents of all test cases. Parameters ---------- dir : str directory of the files to load. file_name : str the name of the file that contains all test case files name to read. Returns ------- dict a dict of contents of all test cases. """ path = os.path.join(dir, file_name) test_cases_files = open(path, "r") test_cases = dict() for file_name in test_cases_files.readlines(): case_name = file_name.strip().split(".")[0] file_path = os.path.join(dir, file_name.strip()) test_cases[case_name] = read_test_case(file_path) test_cases_files.close() return test_cases
[ "os.path.join" ]
[((927, 955), 'os.path.join', 'os.path.join', (['dir', 'file_name'], {}), '(dir, file_name)\n', (939, 955), False, 'import os\n')]
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under Simplified BSD License (see LICENSE) from os.path import isfile def test_ok(aggregator, check, instance_ok): assert isfile(instance_ok['created_at_file']) check.check(instance_ok) aggregator.assert_service_check('system.reboot_required', status=check.OK) def test_not_present_ok(aggregator, check, instance_not_present): assert not isfile(instance_not_present['created_at_file']) check.check(instance_not_present) aggregator.assert_service_check('system.reboot_required', status=check.OK) def test_warning(aggregator, check, instance_warning): check.check(instance_warning) aggregator.assert_service_check('system.reboot_required', status=check.WARNING) def test_critical(aggregator, check, instance_critical): check.check(instance_critical) aggregator.assert_service_check('system.reboot_required', status=check.CRITICAL)
[ "os.path.isfile" ]
[((186, 224), 'os.path.isfile', 'isfile', (["instance_ok['created_at_file']"], {}), "(instance_ok['created_at_file'])\n", (192, 224), False, 'from os.path import isfile\n'), ((418, 465), 'os.path.isfile', 'isfile', (["instance_not_present['created_at_file']"], {}), "(instance_not_present['created_at_file'])\n", (424, 465), False, 'from os.path import isfile\n')]
#! /usr/bin/enc python # -*- coding: utf-8 -*- # author: <NAME> # email: <EMAIL> """ Swin Transformer 1. 类似CNN的层次化构建方法(Hierarchical Feature Maps),特征图尺寸中有对图像下采样4倍、8倍、以及16倍; 这样的Backbone有助于再此基础上构建目标检测、实例分割等任务。 2. 使用Windows Multi-Head Self-Attention (W-MSA)概念。减少计算量。计算复杂度从指数级降到线性级,Multi-head Self-Attention只在每个Windows内部进行。相对于ViT直接对整个Global进行MSA,计算复杂度更低;但是会隔绝不同 窗口之间的信息传递,通过Shifted Windows Multi-head Self-Atten来让信息在相邻窗口进行传递。 A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Code/weights from https://github.com/microsoft/Swin-Transformer """ import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint import numpy as np from typing import Optional from BasicModule import PatchMerging, DropPath, PatchEmbed from BasicModule import Mlp from BasicModule import window_partition, window_reverse """SwinT window_size = 7 img_size = 224 Trained ImageNet-1k depths->2,2,6,2 """ def swin_tiny_patch4_window7_224(num_classes: int = 1000, **kwargs): # trained ImageNet-1K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), num_classes=num_classes, **kwargs) return model """Swin-S depths->2,2,18,2 """ def swin_small_patch4_window7_224(num_classes: int = 1000, **kwargs): # trained ImageNet-1K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24), num_classes=num_classes, **kwargs) return model """Swin-B""" def swin_base_patch4_window7_224(num_classes: int = 1000, **kwargs): # trained ImageNet-1K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=7, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), num_classes=num_classes, **kwargs) return model def swin_base_patch4_window12_384(num_classes: int = 1000, **kwargs): # trained ImageNet-1K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), num_classes=num_classes, **kwargs) return model def swin_base_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs): # trained ImageNet-22K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=7, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), num_classes=num_classes, **kwargs) return model def swin_base_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs): # trained ImageNet-22K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), num_classes=num_classes, **kwargs) return model """Swin-Large""" def swin_large_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs): # trained ImageNet-22K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=7, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), num_classes=num_classes, **kwargs) return model def swin_large_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs): # trained ImageNet-22K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), num_classes=num_classes, **kwargs) return model """Swin Transformer""" class SwinTransformer(nn.Module): """Swin Transformer结构 这里有个不同之处,就是每个Stage Layer中, """ def __init__(self, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), window_size=7, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, patch_norm=True, use_checkpoint=False, **kwargs): super().__init__() self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.patch_norm = patch_norm # 输出特征矩阵的Channels (C) # H/4 x W/4 x 48 -> H/4 x W/4 x C(Stage1) -> H/8 x W/8 x 2C(Stage2) -> H/16 x W/16 x 4C(stage3) ... self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.mlp_ratio = mlp_ratio # 将image切分为不重合的Patches # input: (Bs, 224, 224, 3) # output: (e.g patch_size=4: Bs, 56x56, 4x4x3) self.patch_embed = PatchEmbed( patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth # Drop Path dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # bulid layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): # 注意这里构建的stage和论文图中有些差异 # 这里的stage不包含该stage的patch_merging层,包含的是下个stage的 layers = BasicLayer(dim=int(embed_dim * 2 ** i_layer), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint) self.layers.append(layers) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1d(1) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self,x): # x:[B, L, C] x,H,W = self.patch_embed(x) x = self.pos_drop(x) # 多尺度分层Multi-Stage for layer in self.layers: x,H,W = layer(x,H,W) x = self.norm(x) # [B, L, C] x = self.avgpool(x.transpose(1, 2)) # [B, C, 1] x = torch.flatten(x, 1) x = self.head(x) # 分类头 return x """一个Stage内的基本SwinTransformer模块""" class BasicLayer(nn.Module): """ One Stage SwinTransformer Layer包括: """ def __init__(self, dim, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): """ Args: dim (int): Number of input channels. depth (int): Number of blocks. block数量 num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ super(BasicLayer, self).__init__() self.dim = dim self.depth = depth self.window_size = window_size self.use_checkpoint = use_checkpoint # pre-trained self.shift_size = window_size // 2 # 构建SwinTransformer Block self.blocks = nn.ModuleList([ SwinTransformerBlock( dim=dim, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else self.shift_size, #当i为偶,就是W-MSA,i为奇,就是SW-MSA,与论文一致, 保证窗口之间通信 mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) # Patch Merging Layer 类似于Pooling下采样 if downsample is not None: self.downsample = downsample(dim=dim, norm_layer=norm_layer) else: self.downsample = None def create_mask(self,x,H,W): """ SW-MSA后,对于移位后左上角的窗口(也就是移位前最中间的窗口)来说,里面的元素都是互相紧挨着的, 他们之间可以互相两两做自注意力,但是对于剩下几个窗口来说,它们里面的元素是从别的很远的地方搬过来的, 所以他们之间,按道理来说是不应该去做自注意力,也就是说他们之间不应该有什么太大的联系 以14x14个patch为例进行 H: Feature Map Height W: Feature Map Width x: Feature Map """ # 为SW-MSA计算Attention Mask. # 保证Hp和Wp是window_size的整数倍 Hp = int(np.ceil(H / self.window_size)) * self.window_size Wp = int(np.ceil(W / self.window_size)) * self.window_size # 拥有和feature map一样的通道排列顺序,方便后续window_partition img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # [1, Hp, Wp, 1] # 准备进行区域生成,方便生成Mask h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) # 区域编码 cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 # Shift Window 混合区域的窗口分割 mask_windows = window_partition(img_mask, self.window_size) # [nW, Mh, Mw, 1] mask_windows = mask_windows.view(-1, self.window_size * self.window_size) # [nW, Mh*Mw] # 掩码生成 attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1] # [nW, Mh*Mw, Mh*Mw] attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) return attn_mask def forward(self,x,H,W): # [nW, Mh*Mw, Mh*Mw] nW:窗口数 attn_mask = self.create_mask(x,H,W) for blk in self.blocks: blk.H, blk.W = H, W # self.H = H, self.W = W if not torch.jit.is_scripting() and self.use_checkpoint: x = checkpoint.checkpoint(blk, x, attn_mask) else: x = blk(x, attn_mask) if self.downsample is not None: x = self.downsample(x, H, W) H, W = (H + 1) // 2, (W + 1) // 2 # DownSample之后,H,W应该减半 return x, H, W """一个基本的SwinTransformerBlock的构成Model""" class SwinTransformerBlock(nn.Module): """ Swin Transformer Block包括: Feature Map Input -> LayerNorm -> SW-MSA/W-MSA -> LayerNorm-> MLP --------> |--------------------------------------||----------------------| """ def __init__(self, dim, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): """ Args参数定义: dim (int): Number of input channels. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ super(SwinTransformerBlock, self).__init__() self.dim = dim self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio # shift_size必须小于windows_size assert 0 <= self.shift_size < self.window_size, "shift_size must in 0~window_size" # LN1 self.norm1 = norm_layer(dim) # Windows_Multi-head Self Attention self.attn = WindowsAttention( dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() # LN2 self.norm2 = norm_layer(dim) # MLP Layer mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, attn_mask): # feature map的Height & Width H, W = self.H, self.W # Batch, length, channel B, L, C = x.shape assert L == H * W, "input feature has wrong size" # Skip Connect shortcut = x x = self.norm1(x) # reshape feature map x = x.view(B, H, W, C) # 对feature map进行pad,pad到windows size的整数倍 pad_l = 0 pad_t = 0 pad_r = (self.window_size - W % self.window_size) % self.window_size pad_b = (self.window_size - H % self.window_size) % self.window_size x = F.pad(x,(0,0,pad_l,pad_r,pad_t,pad_b)) # Hp, Wp代表pad后的feature map的Height和Width _, Hp, Wp, _ = x.shape # 是W-MSA 还是 SW-MSA ? # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_x = x attn_mask = None # 窗口划分 # Windows Partition x_windows = window_partition(shifted_x,self.window_size) #[nW*B, Mh, Mw, C] x_windows = x_windows.view(-1, self.window_size*self.window_size,C) # [nW*B, Mh*Mw, C] # W-MSA / SW-MSA attn_windows = self.attn(x_windows, mask=attn_mask) # [nW*B, Mh*Mw, C] # 将分割的Windows进行还原 attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) # [nW*B, Mh, Mw, C] shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # [B, H', W', C] # 如果是SW-MSA,需要逆shift过程 # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x # 移除Pad数据 if pad_r > 0 or pad_b > 0: # 把前面pad的数据移除掉 x = x[:, :H, :W, :].contiguous() x = x.view(B,H*W,C) # FFN # 两个Skip Connect x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class WindowsAttention(nn.Module): """ Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. VIT中注意力是全局的,复杂度随着图片尺寸的增加指数增加,样当去做视觉里的下游任务,尤其是密集 预测型的任务,或者说遇到非常大尺寸的图片时候,这种全局算自注意力的计算复杂度就非常贵了 SwinTransformer中,采用Windows-based Attention来将计算复杂度与图片尺寸的关系变为线性关系。 General Model: W-MSA / SW-MSA Shift 操作但如果加上 shift 的操作,每个 patch 原来只能跟它所在的窗口里的别的 patch 进行 交互,但是 shift 之后,这个 patch就可以跟新的窗口里的别的 patch就进行交互了,而这个新的窗 口里所有的 patch 其实来自于上一层别的窗口里的 patch,这也就是作者说的能起到 cross-window connection,就是窗口和窗口之间可以交互了 上述过程配合之后的Patch Merging,合并到Transformer最后几层的时候,每一个patch本身的感受 野就已经很大了。 """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.): """ Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ # Mh: Windows Size Height # Mw: Windows Size Width # nH: num_heads super(WindowsAttention, self).__init__() self.dim = dim self.window_size = window_size # [Mh, Mw] self.num_heads = num_heads head_dim = dim // num_heads # 每个head的dim self.scale = head_dim ** -0.5 # scale # 定义一个parameter table来存放relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # [2*Mh-1 * 2*Mw-1, nH] # 相对位置索引获得方法 # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing="ij")) # [2, Mh, Mw] coords_flatten = torch.flatten(coords, 1) # [2, Mh*Mw] # [2, Mh*Mw, 1] - [2, 1, Mh*Mw] relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # [2, Mh*Mw, Mh*Mw] relative_coords = relative_coords.permute(1, 2, 0).contiguous() # [Mh*Mw, Mh*Mw, 2] relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # [Mh*Mw, Mh*Mw] # Register_buffer: 应该就是在内存中定一个常量,同时,模型保存和加载的时候可以写入和读出。 # 不需要学习,但是可以灵活读写 self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) nn.init.trunc_normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) def forward(self,x,mask=None): """ Args: x: input features with shape of (num_windows*B, Mh*Mw, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None x的输入维度是(num_windows窗口数*Batch Size) 在窗口内进行Attention Op """ # [batch_size*num_windows, Mh*Mw, total_embed_dim] B_, N, C = x.shape # qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim] # reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head] # permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head] qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head] q,k,v = qkv.unbind(0) # QK^T/sqrt(d) # transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw] # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw] q = q * self.scale attn = (q @ k.transpose(-2, -1)) # QK^T/sqrt(d) + B # B: # relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH] relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # [nH, Mh*Mw, Mh*Mw] # [Bs*nW, nH, Mh*Mw, Mh*Mw] attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] # SW-MSA 需要做attention Mask # mask: [nW, Mh*Mw, Mh*Mw] # attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw] # # mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head] # transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head] # reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim] x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x if __name__ == "__main__": pass
[ "torch.nn.Dropout", "BasicModule.Mlp", "torch.jit.is_scripting", "torch.roll", "torch.nn.init.constant_", "torch.nn.Softmax", "torch.arange", "torch.nn.functional.pad", "torch.flatten", "torch.nn.Linear", "BasicModule.window_reverse", "torch.zeros", "BasicModule.DropPath", "numpy.ceil", "BasicModule.window_partition", "torch.nn.ModuleList", "BasicModule.PatchEmbed", "torch.utils.checkpoint.checkpoint", "torch.nn.Identity", "torch.nn.AdaptiveAvgPool1d", "torch.nn.init.trunc_normal_", "torch.meshgrid" ]
[((6893, 7018), 'BasicModule.PatchEmbed', 'PatchEmbed', ([], {'patch_size': 'patch_size', 'in_c': 'in_chans', 'embed_dim': 'embed_dim', 'norm_layer': '(norm_layer if self.patch_norm else None)'}), '(patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim,\n norm_layer=norm_layer if self.patch_norm else None)\n', (6903, 7018), False, 'from BasicModule import PatchMerging, DropPath, PatchEmbed\n'), ((7064, 7087), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': 'drop_rate'}), '(p=drop_rate)\n', (7074, 7087), True, 'import torch.nn as nn\n'), ((7294, 7309), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (7307, 7309), True, 'import torch.nn as nn\n'), ((8338, 8361), 'torch.nn.AdaptiveAvgPool1d', 'nn.AdaptiveAvgPool1d', (['(1)'], {}), '(1)\n', (8358, 8361), True, 'import torch.nn as nn\n'), ((9178, 9197), 'torch.flatten', 'torch.flatten', (['x', '(1)'], {}), '(x, 1)\n', (9191, 9197), False, 'import torch\n'), ((12159, 12203), 'torch.zeros', 'torch.zeros', (['(1, Hp, Wp, 1)'], {'device': 'x.device'}), '((1, Hp, Wp, 1), device=x.device)\n', (12170, 12203), False, 'import torch\n'), ((12794, 12838), 'BasicModule.window_partition', 'window_partition', (['img_mask', 'self.window_size'], {}), '(img_mask, self.window_size)\n', (12810, 12838), False, 'from BasicModule import window_partition, window_reverse\n'), ((15934, 16022), 'BasicModule.Mlp', 'Mlp', ([], {'in_features': 'dim', 'hidden_features': 'mlp_hidden_dim', 'act_layer': 'act_layer', 'drop': 'drop'}), '(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer,\n drop=drop)\n', (15937, 16022), False, 'from BasicModule import Mlp\n'), ((16625, 16669), 'torch.nn.functional.pad', 'F.pad', (['x', '(0, 0, pad_l, pad_r, pad_t, pad_b)'], {}), '(x, (0, 0, pad_l, pad_r, pad_t, pad_b))\n', (16630, 16669), True, 'import torch.nn.functional as F\n'), ((17057, 17102), 'BasicModule.window_partition', 'window_partition', (['shifted_x', 'self.window_size'], {}), '(shifted_x, self.window_size)\n', (17073, 17102), False, 'from BasicModule import window_partition, window_reverse\n'), ((17474, 17528), 'BasicModule.window_reverse', 'window_reverse', (['attn_windows', 'self.window_size', 'Hp', 'Wp'], {}), '(attn_windows, self.window_size, Hp, Wp)\n', (17488, 17528), False, 'from BasicModule import window_partition, window_reverse\n'), ((20037, 20070), 'torch.arange', 'torch.arange', (['self.window_size[0]'], {}), '(self.window_size[0])\n', (20049, 20070), False, 'import torch\n'), ((20090, 20123), 'torch.arange', 'torch.arange', (['self.window_size[1]'], {}), '(self.window_size[1])\n', (20102, 20123), False, 'import torch\n'), ((20246, 20270), 'torch.flatten', 'torch.flatten', (['coords', '(1)'], {}), '(coords, 1)\n', (20259, 20270), False, 'import torch\n'), ((20996, 21034), 'torch.nn.Linear', 'nn.Linear', (['dim', '(dim * 3)'], {'bias': 'qkv_bias'}), '(dim, dim * 3, bias=qkv_bias)\n', (21005, 21034), True, 'import torch.nn as nn\n'), ((21060, 21081), 'torch.nn.Dropout', 'nn.Dropout', (['attn_drop'], {}), '(attn_drop)\n', (21070, 21081), True, 'import torch.nn as nn\n'), ((21102, 21121), 'torch.nn.Linear', 'nn.Linear', (['dim', 'dim'], {}), '(dim, dim)\n', (21111, 21121), True, 'import torch.nn as nn\n'), ((21147, 21168), 'torch.nn.Dropout', 'nn.Dropout', (['proj_drop'], {}), '(proj_drop)\n', (21157, 21168), True, 'import torch.nn as nn\n'), ((21178, 21244), 'torch.nn.init.trunc_normal_', 'nn.init.trunc_normal_', (['self.relative_position_bias_table'], {'std': '(0.02)'}), '(self.relative_position_bias_table, std=0.02)\n', (21199, 21244), True, 'import torch.nn as nn\n'), ((21267, 21285), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(-1)'}), '(dim=-1)\n', (21277, 21285), True, 'import torch.nn as nn\n'), ((8382, 8423), 'torch.nn.Linear', 'nn.Linear', (['self.num_features', 'num_classes'], {}), '(self.num_features, num_classes)\n', (8391, 8423), True, 'import torch.nn as nn\n'), ((8448, 8461), 'torch.nn.Identity', 'nn.Identity', ([], {}), '()\n', (8459, 8461), True, 'import torch.nn as nn\n'), ((8584, 8625), 'torch.nn.init.trunc_normal_', 'nn.init.trunc_normal_', (['m.weight'], {'std': '(0.02)'}), '(m.weight, std=0.02)\n', (8605, 8625), True, 'import torch.nn as nn\n'), ((15739, 15758), 'BasicModule.DropPath', 'DropPath', (['drop_path'], {}), '(drop_path)\n', (15747, 15758), False, 'from BasicModule import PatchMerging, DropPath, PatchEmbed\n'), ((15782, 15795), 'torch.nn.Identity', 'nn.Identity', ([], {}), '()\n', (15793, 15795), True, 'import torch.nn as nn\n'), ((16852, 16923), 'torch.roll', 'torch.roll', (['x'], {'shifts': '(-self.shift_size, -self.shift_size)', 'dims': '(1, 2)'}), '(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))\n', (16862, 16923), False, 'import torch\n'), ((17658, 17735), 'torch.roll', 'torch.roll', (['shifted_x'], {'shifts': '(self.shift_size, self.shift_size)', 'dims': '(1, 2)'}), '(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))\n', (17668, 17735), False, 'import torch\n'), ((19813, 19888), 'torch.zeros', 'torch.zeros', (['((2 * window_size[0] - 1) * (2 * window_size[1] - 1))', 'num_heads'], {}), '((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)\n', (19824, 19888), False, 'import torch\n'), ((20153, 20204), 'torch.meshgrid', 'torch.meshgrid', (['[coords_h, coords_w]'], {'indexing': '"""ij"""'}), "([coords_h, coords_w], indexing='ij')\n", (20167, 20204), False, 'import torch\n'), ((8705, 8733), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (8722, 8733), True, 'import torch.nn as nn\n'), ((8788, 8816), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (8805, 8816), True, 'import torch.nn as nn\n'), ((8829, 8861), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.weight', '(1.0)'], {}), '(m.weight, 1.0)\n', (8846, 8861), True, 'import torch.nn as nn\n'), ((11967, 11996), 'numpy.ceil', 'np.ceil', (['(H / self.window_size)'], {}), '(H / self.window_size)\n', (11974, 11996), True, 'import numpy as np\n'), ((12034, 12063), 'numpy.ceil', 'np.ceil', (['(W / self.window_size)'], {}), '(W / self.window_size)\n', (12041, 12063), True, 'import numpy as np\n'), ((13536, 13576), 'torch.utils.checkpoint.checkpoint', 'checkpoint.checkpoint', (['blk', 'x', 'attn_mask'], {}), '(blk, x, attn_mask)\n', (13557, 13576), True, 'import torch.utils.checkpoint as checkpoint\n'), ((13466, 13490), 'torch.jit.is_scripting', 'torch.jit.is_scripting', ([], {}), '()\n', (13488, 13490), False, 'import torch\n')]
# -*- coding: utf-8 -*- import pdb, importlib, inspect, time, datetime, json # from PyFin.api import advanceDateByCalendar # from data.polymerize import DBPolymerize from data.storage_engine import StorageEngine import time import pandas as pd import numpy as np from datetime import timedelta, datetime from financial import factor_per_share_indicators from data.model import BalanceMRQ, BalanceTTM, BalanceReport from data.model import CashFlowTTM, CashFlowReport from data.model import IndicatorReport from data.model import IncomeReport, IncomeTTM from vision.table.valuation import Valuation from vision.db.signletion_engine import * from data.sqlengine import sqlEngine # pd.set_option('display.max_columns', None) # pd.set_option('display.max_rows', None) # from ultron.cluster.invoke.cache_data import cache_data class CalcEngine(object): def __init__(self, name, url, methods=[{'packet': 'financial.factor_pre_share_indicators', 'class': 'FactorPerShareIndicators'}, ]): self._name = name self._methods = methods self._url = url def get_trade_date(self, trade_date, n, days=365): """ 获取当前时间前n年的时间点,且为交易日,如果非交易日,则往前提取最近的一天。 :param days: :param trade_date: 当前交易日 :param n: :return: """ syn_util = SyncUtil() trade_date_sets = syn_util.get_all_trades('001002', '19900101', trade_date) trade_date_sets = trade_date_sets['TRADEDATE'].values time_array = datetime.strptime(str(trade_date), "%Y%m%d") time_array = time_array - timedelta(days=days) * n date_time = int(datetime.strftime(time_array, "%Y%m%d")) if str(date_time) < min(trade_date_sets): # print('date_time %s is out of trade_date_sets' % date_time) return str(date_time) else: while str(date_time) not in trade_date_sets: date_time = date_time - 1 # print('trade_date pre %s year %s' % (n, date_time)) return str(date_time) def _func_sets(self, method): # 私有函数和保护函数过滤 return list(filter(lambda x: not x.startswith('_') and callable(getattr(method, x)), dir(method))) def loading_data(self, trade_date): """ 获取基础数据 按天获取当天交易日所有股票的基础数据 :param trade_date: 交易日 :return: """ # 转换时间格式 time_array = datetime.strptime(trade_date, "%Y-%m-%d") trade_date = datetime.strftime(time_array, '%Y%m%d') # 读取目前涉及到的因子 engine = sqlEngine() columns = ['COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id', 'trade_date'] # Report data cash_flow_sets = engine.fetch_fundamentals_pit_extend_company_id(CashFlowReport, [CashFlowReport.FINALCASHBALA, # 期末现金及现金等价物余额 ], dates=[trade_date]) for col in columns: if col in list(cash_flow_sets.keys()): cash_flow_sets = cash_flow_sets.drop(col, axis=1) cash_flow_sets = cash_flow_sets.rename(columns={'FINALCASHBALA': 'cash_and_equivalents_at_end', # 期末现金及现金等价物余额 }) income_sets = engine.fetch_fundamentals_pit_extend_company_id(IncomeReport, [IncomeReport.BIZINCO, # 营业收入 IncomeReport.BIZTOTINCO, # 营业总收入 IncomeReport.PERPROFIT, # 营业利润 IncomeReport.DILUTEDEPS, # 稀释每股收益 ], dates=[trade_date]) for col in columns: if col in list(income_sets.keys()): income_sets = income_sets.drop(col, axis=1) income_sets = income_sets.rename(columns={'BIZINCO': 'operating_revenue', # 营业收入 'BIZTOTINCO': 'total_operating_revenue', # 营业总收入 'PERPROFIT': 'operating_profit', # 营业利润 'DILUTEDEPS': 'diluted_eps', # 稀释每股收益 }) balance_sets = engine.fetch_fundamentals_pit_extend_company_id(BalanceReport, [BalanceReport.PARESHARRIGH, # 归属于母公司的所有者权益 BalanceReport.CAPISURP, BalanceReport.RESE, BalanceReport.UNDIPROF, ], dates=[trade_date]) for col in columns: if col in list(balance_sets.keys()): balance_sets = balance_sets.drop(col, axis=1) balance_sets = balance_sets.rename(columns={'PARESHARRIGH': 'total_owner_equities', # 归属于母公司的所有者权益 'CAPISURP': 'capital_reserve_fund', # 资本公积 'RESE': 'surplus_reserve_fund', # 盈余公积 'UNDIPROF': 'retained_profit', # 未分配利润 }) indicator_sets = engine.fetch_fundamentals_pit_extend_company_id(IndicatorReport, [IndicatorReport.FCFE, # 股东自由现金流量 IndicatorReport.FCFF, # 企业自由现金流量 IndicatorReport.EPSBASIC, # 基本每股收益 IndicatorReport.DPS, # 每股股利(税前) ], dates=[trade_date]) for col in columns: if col in list(indicator_sets.keys()): indicator_sets = indicator_sets.drop(col, axis=1) indicator_sets = indicator_sets.rename(columns={'FCFE': 'shareholder_fcfps', # 股东自由现金流量 'FCFF': 'enterprise_fcfps', # 企业自由现金流量 'EPSBASIC': 'basic_eps', # 基本每股收益 'DPS': 'dividend_receivable', # 每股股利(税前) }) # TTM data cash_flow_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(CashFlowTTM, [CashFlowTTM.CASHNETI, # 现金及现金等价物净增加额 CashFlowTTM.MANANETR, # 经营活动现金流量净额 ], dates=[trade_date]) for col in columns: if col in list(cash_flow_ttm_sets.keys()): cash_flow_ttm_sets = cash_flow_ttm_sets.drop(col, axis=1) cash_flow_ttm_sets = cash_flow_ttm_sets.rename( columns={'CASHNETI': 'cash_equivalent_increase_ttm', # 现金及现金等价物净增加额 'MANANETR': 'net_operate_cash_flow_ttm', # 经营活动现金流量净额 }) income_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(IncomeTTM, [IncomeTTM.PARENETP, # 归属于母公司所有者的净利润 IncomeTTM.PERPROFIT, # 营业利润 IncomeTTM.BIZINCO, # 营业收入 IncomeTTM.BIZTOTINCO, # 营业总收入 ], dates=[trade_date]) for col in columns: if col in list(income_ttm_sets.keys()): income_ttm_sets = income_ttm_sets.drop(col, axis=1) income_ttm_sets = income_ttm_sets.rename(columns={'PARENETP': 'np_parent_company_owners_ttm', # 归属于母公司所有者的净利润 'PERPROFIT': 'operating_profit_ttm', # 营业利润 'BIZINCO': 'operating_revenue_ttm', # 营业收入 'BIZTOTINCO': 'total_operating_revenue_ttm', # 营业总收入 }) column = ['trade_date'] valuation_data = get_fundamentals(query(Valuation.security_code, Valuation.trade_date, Valuation.capitalization, ).filter(Valuation.trade_date.in_([trade_date]))) for col in column: if col in list(valuation_data.keys()): valuation_data = valuation_data.drop(col, axis=1) valuation_sets = pd.merge(cash_flow_sets, income_sets, on='security_code').reindex() valuation_sets = pd.merge(balance_sets, valuation_sets, on='security_code').reindex() valuation_sets = pd.merge(indicator_sets, valuation_sets, on='security_code').reindex() valuation_sets = pd.merge(cash_flow_ttm_sets, valuation_sets, on='security_code').reindex() valuation_sets = pd.merge(income_ttm_sets, valuation_sets, on='security_code').reindex() valuation_sets = pd.merge(valuation_data, valuation_sets, on='security_code').reindex() return valuation_sets def process_calc_factor(self, trade_date, valuation_sets): per_share = factor_per_share_indicators.FactorPerShareIndicators() factor_share_indicators = pd.DataFrame() factor_share_indicators['security_code'] = valuation_sets['security_code'] valuation_sets = valuation_sets.set_index('security_code') factor_share_indicators = factor_share_indicators.set_index('security_code') factor_share_indicators = per_share.EPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.DilutedEPSTTM(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.CashEquPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.DivPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.EPSTTM(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.NetAssetPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.TotalRevPSTTM(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.TotalRevPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.OptRevPSTTM(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.OptRevPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.OptProfitPSTTM(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.OptProfitPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.CapticalSurplusPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.SurplusReservePS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.UndividedProfitPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.RetainedEarningsPS(factor_share_indicators, factor_share_indicators) factor_share_indicators = per_share.OptCFPSTTM(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.CFPSTTM(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.EnterpriseFCFPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.ShareholderFCFPS(valuation_sets, factor_share_indicators) factor_share_indicators = factor_share_indicators.reset_index() factor_share_indicators['trade_date'] = str(trade_date) factor_share_indicators.replace([-np.inf, np.inf, None], np.nan, inplace=True) return factor_share_indicators def local_run(self, trade_date): print('当前交易日: %s' % trade_date) tic = time.time() valuation_sets = self.loading_data(trade_date) print('data load time %s' % (time.time() - tic)) storage_engine = StorageEngine(self._url) result = self.process_calc_factor(trade_date, valuation_sets) print('cal_time %s' % (time.time() - tic)) storage_engine.update_destdb(str(self._methods[-1]['packet'].split('.')[-1]), trade_date, result) # storage_engine.update_destdb('factor_pre_share_indicators', trade_date, result) # def remote_run(self, trade_date): # total_data = self.loading_data(trade_date) # #存储数据 # session = str(int(time.time() * 1000000 + datetime.datetime.now().microsecond)) # cache_data.set_cache(session, 'alphax', total_data.to_json(orient='records')) # distributed_factor.delay(session, json.dumps(self._methods), self._name) # # def distributed_factor(self, total_data): # mkt_df = self.calc_factor_by_date(total_data,trade_date) # result = self.calc_factor('alphax.alpha191','Alpha191',mkt_df,trade_date) # @app.task # def distributed_factor(session, trade_date, packet_sets, name): # calc_engines = CalcEngine(name, packet_sets) # content = cache_data.get_cache(session, factor_name) # total_data = json_normalize(json.loads(content)) # calc_engines.distributed_factor(total_data) # # # @app.task() # def factor_calculate(**kwargs): # print("per_share_kwargs: {}".format(kwargs)) # date_index = kwargs['date_index'] # session = kwargs['session'] # content = cache_data.get_cache(session + str(date_index), date_index) # total_pre_share_data = json_normalize(json.loads(str(content, encoding='utf8'))) # print("len_total_per_share_data {}".format(len(total_pre_share_data))) # calculate(date_index, total_pre_share_data)
[ "datetime.datetime.strftime", "pandas.DataFrame", "data.storage_engine.StorageEngine", "pandas.merge", "data.sqlengine.sqlEngine", "time.time", "datetime.datetime.strptime", "datetime.timedelta", "financial.factor_per_share_indicators.FactorPerShareIndicators", "vision.table.valuation.Valuation.trade_date.in_" ]
[((2402, 2443), 'datetime.datetime.strptime', 'datetime.strptime', (['trade_date', '"""%Y-%m-%d"""'], {}), "(trade_date, '%Y-%m-%d')\n", (2419, 2443), False, 'from datetime import timedelta, datetime\n'), ((2465, 2504), 'datetime.datetime.strftime', 'datetime.strftime', (['time_array', '"""%Y%m%d"""'], {}), "(time_array, '%Y%m%d')\n", (2482, 2504), False, 'from datetime import timedelta, datetime\n'), ((2543, 2554), 'data.sqlengine.sqlEngine', 'sqlEngine', ([], {}), '()\n', (2552, 2554), False, 'from data.sqlengine import sqlEngine\n'), ((10098, 10152), 'financial.factor_per_share_indicators.FactorPerShareIndicators', 'factor_per_share_indicators.FactorPerShareIndicators', ([], {}), '()\n', (10150, 10152), False, 'from financial import factor_per_share_indicators\n'), ((10187, 10201), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (10199, 10201), True, 'import pandas as pd\n'), ((12751, 12762), 'time.time', 'time.time', ([], {}), '()\n', (12760, 12762), False, 'import time\n'), ((12901, 12925), 'data.storage_engine.StorageEngine', 'StorageEngine', (['self._url'], {}), '(self._url)\n', (12914, 12925), False, 'from data.storage_engine import StorageEngine\n'), ((1633, 1672), 'datetime.datetime.strftime', 'datetime.strftime', (['time_array', '"""%Y%m%d"""'], {}), "(time_array, '%Y%m%d')\n", (1650, 1672), False, 'from datetime import timedelta, datetime\n'), ((1584, 1604), 'datetime.timedelta', 'timedelta', ([], {'days': 'days'}), '(days=days)\n', (1593, 1604), False, 'from datetime import timedelta, datetime\n'), ((9221, 9259), 'vision.table.valuation.Valuation.trade_date.in_', 'Valuation.trade_date.in_', (['[trade_date]'], {}), '([trade_date])\n', (9245, 9259), False, 'from vision.table.valuation import Valuation\n'), ((9432, 9489), 'pandas.merge', 'pd.merge', (['cash_flow_sets', 'income_sets'], {'on': '"""security_code"""'}), "(cash_flow_sets, income_sets, on='security_code')\n", (9440, 9489), True, 'import pandas as pd\n'), ((9525, 9583), 'pandas.merge', 'pd.merge', (['balance_sets', 'valuation_sets'], {'on': '"""security_code"""'}), "(balance_sets, valuation_sets, on='security_code')\n", (9533, 9583), True, 'import pandas as pd\n'), ((9619, 9679), 'pandas.merge', 'pd.merge', (['indicator_sets', 'valuation_sets'], {'on': '"""security_code"""'}), "(indicator_sets, valuation_sets, on='security_code')\n", (9627, 9679), True, 'import pandas as pd\n'), ((9715, 9779), 'pandas.merge', 'pd.merge', (['cash_flow_ttm_sets', 'valuation_sets'], {'on': '"""security_code"""'}), "(cash_flow_ttm_sets, valuation_sets, on='security_code')\n", (9723, 9779), True, 'import pandas as pd\n'), ((9815, 9876), 'pandas.merge', 'pd.merge', (['income_ttm_sets', 'valuation_sets'], {'on': '"""security_code"""'}), "(income_ttm_sets, valuation_sets, on='security_code')\n", (9823, 9876), True, 'import pandas as pd\n'), ((9912, 9972), 'pandas.merge', 'pd.merge', (['valuation_data', 'valuation_sets'], {'on': '"""security_code"""'}), "(valuation_data, valuation_sets, on='security_code')\n", (9920, 9972), True, 'import pandas as pd\n'), ((12855, 12866), 'time.time', 'time.time', ([], {}), '()\n', (12864, 12866), False, 'import time\n'), ((13027, 13038), 'time.time', 'time.time', ([], {}), '()\n', (13036, 13038), False, 'import time\n')]
''' Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree. 样例 Example 1: Input: n = 5 edges = [[0, 1], [0, 2], [0, 3], [1, 4]] Output: true. Example 2: Input: n = 5 edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]] Output: false. 注意事项 You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges. ''' from collections import defaultdict,deque class Solution: """ @param n: An integer @param edges: a list of undirected edges @return: true if it's a valid tree, or false """ def validTree(self, n, edges): # write your code here if len(edges) != n - 1: return False if len(edges) == 0: return n == 1 neighbor = defaultdict() for edge in edges: if edge[0] not in neighbor: neighbor[edge[0]] = 1 else: neighbor[edge[0]] += 1 if edge[1] not in neighbor: neighbor[edge[1]] = 1 else: neighbor[edge[1]] += 1 queue = deque() for x in range(n): if x not in neighbor: return False elif neighbor[x] == 1: neighbor[x] -= 1 queue.append(x) count = 0 while queue: node = queue.popleft() count += 1 for edge in edges: if node in edge: neighbor[edge[0]] -= 1 neighbor[edge[1]] -= 1 if len(queue) == 0: for key in neighbor: if neighbor[key] == 1 or neighbor[key] == 0: queue.append(key) if count < n: return False return True
[ "collections.defaultdict", "collections.deque" ]
[((911, 924), 'collections.defaultdict', 'defaultdict', ([], {}), '()\n', (922, 924), False, 'from collections import defaultdict, deque\n'), ((1238, 1245), 'collections.deque', 'deque', ([], {}), '()\n', (1243, 1245), False, 'from collections import defaultdict, deque\n')]
# -*- coding:utf-8 -*- import six import numpy as np from pyproj import Proj import operator from .exceptions import * class NullProj(object): """ Similar to pyproj.Proj, but NullProj does not do actual conversion. """ @property def srs(self): return '' def __call__(self, x, y, **kwargs): return x, y class GridderBase(object): """Gridder is a helper for i, j <-> x, y conversion, etc.""" def i2x(self, *args): """Convert i, j, ... -> x, y, ...""" raise NotImplementedError def x2i(self, *args, **kwargs): """Convert x, y, ... -> i, j, ...""" raise NotImplementedError def copy(self, **kwargs): kws = self.dump() kws.update(kwargs) new_gridder = self.__class__(**kws) return new_gridder def calibrate(self, x0, y0, x1=None, y1=None): return def dump(self): return {} class XYGridderBase(GridderBase): """ Requires self.X & self.Y. """ @property def bbox(self): return (np.min(self.X), np.min(self.Y), np.max(self.X), np.max(self.Y)) def get_bounding_ij(self, x1, y1, x2, y2, **kwargs): bbox = self.bbox if x1 is None: x1 = bbox[0] if y1 is None: y1 = bbox[1] if x2 is None: x2 = bbox[2] if y2 is None: y2 = bbox[3] bad = ~((self.X >= x1) & (self.X <= x2) & (self.Y >= y1) & (self.Y <= y2)) x_bad = np.alltrue(bad, axis=0) y_bad = np.alltrue(bad, axis=1) x_points = np.argwhere(np.diff(np.r_[True, x_bad, True])).reshape(-1, 2) y_points = np.argwhere(np.diff(np.r_[True, y_bad, True])).reshape(-1, 2) i1, i2 = (-1, -1) if x_points.shape[0] == 0 else x_points[0] j1, j2 = (-1, -1) if y_points.shape[0] == 0 else y_points[0] return i1, j1, i2, j2 def check_bound(self, i, j, int_index=True): start = -0.5 subtracted = 1 if int_index: start = 0 if int_index in ('lowerleft', 'll'): subtracted = 2 if np.isscalar(i): if (i >= start and i <= self.nx-subtracted) and (j >= start and j <= self.ny-subtracted): return i, j else: raise OutOfGridBound("i: {}, j: {} is out of bound!".format(i, j)) else: i = np.where((i >= start) & (i <= self.nx - subtracted), i, np.nan) j = np.where((j >= start) & (j <= self.ny - subtracted), j, np.nan) return i, j class XYProjGridder(XYGridderBase): def __init__(self, proj=None, x=None, y=None, nx=None, ny=None, dx=None, dy=None, x_orig=0.0, y_orig=0.0, **kwargs): self.proj = proj self._reset_raw_xy() if x is not None and y is not None: self.set_xy(x, y) else: self._init_with_para(nx, ny, dx, dy, x_orig, y_orig) @property def proj(self): return self._proj @proj.setter def proj(self, p): if p is None: self._proj = NullProj() elif isinstance(p, (Proj, NullProj)): self._proj = p elif isinstance(p, dict): self._proj = Proj(**p) else: # Treat as proj_string self._proj = Proj(str(p)) # TODO: check PY3 compatibility. self._reset_raw_xy() if all([hasattr(self, attr) for attr in ('_nx', '_ny', '_dx', '_dy', '_x_orig', '_y_orig')]): self._updateXY() @property def X(self): return self._X @X.setter def X(self, x): if self._raw_y is None: raise ValueError("Cannot set x alone when no raw y presents.") ndim_x = np.ndim(x) if ndim_x == 1 and np.ndim(self._raw_y) == 1: self.set_xy(x, self._raw_y) elif ndim_x == 2 and np.shape(x) == np.shape(self.Y): self.set_xy(x, self.Y) else: self._raise_invalid_shape(x, self.Y) @property def Y(self): return self._Y @Y.setter def Y(self, y): if self._raw_x is None: raise ValueError("Cannot set y alone when no raw x presents.") ndim_y = np.ndim(y) if ndim_y == 1 and np.ndim(self._raw_x) == 1: self.set_xy(self._raw_x, y) elif ndim_y == 2 and np.shape(y) == np.shape(self.X): self.set_xy(self.X, y) else: self._raise_invalid_shape(self.X, y) @property def CX(self): return self._CX @property def CY(self): return self._CY @property def x(self): return self._raw_x if self._raw_x is not None else self._X @property def y(self): return self._raw_y if self._raw_y is not None else self._Y @property def cx(self): return self._raw_cx if self._raw_cx is not None else self._CX @property def cy(self): return self._raw_cy if self._raw_cy is not None else self._CY @property def nx(self): return self._nx @nx.setter def nx(self, value): self._nx = value self._reset_raw_xy() self._updateXY() @property def ny(self): return self._ny @ny.setter def ny(self, value): self._ny = value self._reset_raw_xy() self._updateXY() @property def dx(self): return self._dx @dx.setter def dx(self, value): self._dx = value self._reset_raw_xy() self._updateXY() @property def dy(self): return self._dy @dy.setter def dy(self, value): self._dy = value self._reset_raw_xy() self._updateXY() @property def x_orig(self): return self._x_orig @x_orig.setter def x_orig(self, value): self._x_orig = value self._reset_raw_xy() self._updateXY() @property def y_orig(self): return self._y_orig @y_orig.setter def y_orig(self, value): self._y_orig = value self._reset_raw_xy() self._updateXY() @property def bbox(self): return self._bbox @property def cbox(self): """corner box""" return self._cbox def _init_with_para(self, nx, ny, dx, dy, x_orig, y_orig): self._nx = nx self._ny = ny self._dx = dx self._dy = dy self._x_orig = x_orig self._y_orig = y_orig self._updateXY() @property def has_null_proj(self): return isinstance(self.proj, NullProj) def set_xy(self, x, y): ndim_x, ndim_y = np.ndim(x), np.ndim(y) if ndim_x == 1 and ndim_y == 1: self._nx, self._ny = len(x), len(y) elif ndim_x == 2 and ndim_y == 2: self._ny, self._nx = np.shape(x) else: self._raise_invalid_shape(x, y) self._raw_x, self._raw_y = np.asarray(x), np.asarray(y) self.calibrate(x, y) def _raise_invalid_shape(self, x, y): raise ValueError("Invalid x, y shape: {}, {}".format(np.shape(x), np.shape(y))) def _reset_raw_xy(self): self._raw_x, self._raw_y = None, None def _updateXY(self): jj, ii = np.mgrid[0:self.ny, 0:self.nx] cjj, cii = np.mgrid[-0.5:self.ny, -0.5:self.nx] xx, yy = self.i2x(ii, jj) cxx, cyy = self.i2x(cii, cjj) self._X, self._Y = xx, yy self._CX, self._CY = cxx, cyy if self._raw_x is not None and self._raw_x.ndim == 1: self._raw_cx = self._CX[0] else: self._raw_cx = None if self._raw_y is not None and self._raw_y.ndim == 1: self._raw_cy = self._CY[:, 0] else: self._raw_cy = None self._bbox = (np.min(self._X), np.min(self._Y), np.max(self._X), np.max(self._Y)) self._cbox = (np.min(self._CX), np.min(self._CY), np.max(self._CX), np.max(self._CY)) return xx, yy def i2x(self, i, j): px = i * self.dx + self.x_orig py = j * self.dy + self.y_orig return self.proj(px, py, inverse=True) def x2i(self, x, y, int_index=True, check_bound=None): px, py = self.proj(x, y) i = (px - self.x_orig) / self.dx j = (py - self.y_orig) / self.dy if int_index: if int_index in ('lowerleft', 'll'): i = np.floor(i) j = np.floor(j) else: i = np.round(i) j = np.round(j) if np.isscalar(i): i = int(i) j = int(j) else: i = i.astype('i') j = j.astype('i') if check_bound: return self.check_bound(i, j, int_index=int_index) else: return i, j def calibrate(self, x, y, x1=None, y1=None): ndim_x, ndim_y = np.ndim(x), np.ndim(y) if ndim_x == 0 and ndim_y == 0: x0, y0 = x, y if ndim_x == 1 and ndim_y == 1: x0, x1 = x[0], x[1] y0, y1 = y[0], y[1] elif ndim_x == 2 and ndim_y == 2: x0, x1 = x[0, 0], x[1, 1] y0, y1 = y[0, 0], y[1, 1] else: self._raise_invalid_shape(x, y) px0, py0 = self.proj(x0, y0) self._x_orig = px0 self._y_orig = py0 if x1 is not None and y1 is not None: px1, py1 = self.proj(x1, y1) self._dx = px1 - px0 self._dy = py1 - py0 self._updateXY() def dump(self): return { "proj": self.proj.srs, "nx": self.nx, "ny": self.ny, "dx": self.dx, "dy": self.dy, "x_orig": self.x_orig, "y_orig": self.y_orig } class LonLatSurroundingGridder(XYGridderBase): def __init__(self, lon0, lat0, rmin, rmax, nr, ntheta, theta0=0.0, r_earth=6371): self.lon0 = lon0 self.lat0 = lat0 self.rmin = rmin self.rmax = rmax self.nr = nr self.ntheta = ntheta self.theta0 = theta0 self.r_earth = r_earth self.dtheta = np.pi * 2 / self.ntheta self.dr = (self.rmax - self.rmin) / (self.nr - 1) self._updateXY() def _updateXY(self): r = np.linspace(self.rmin, self.rmax, self.nr) theta = np.arange(self.ntheta) * self.dtheta + self.theta0 THETA, R = np.meshgrid(theta, r) LON, LAT = self.r_theta_to_lon_lat(R, THETA) self._X = LON self._Y = LAT return self._X, self._Y def r_theta_to_lon_lat(self, r, theta): r_ = r / self.r_earth sin_r = np.sin(r_) cos_r = np.cos(r_) lat0_ = np.deg2rad(self.lat0) lon0_ = np.deg2rad(self.lon0) sin_lat0 = np.sin(lat0_) cos_lat0 = np.cos(lat0_) sin_lat = sin_lat0 * cos_r + cos_lat0 * sin_r * np.cos(theta) lat_ = np.arcsin(sin_lat) lon_ = lon0_ + np.arctan2(np.sin(theta) * sin_r * cos_lat0, cos_r - sin_lat0 * sin_lat) lon = np.rad2deg(lon_) lat = np.rad2deg(lat_) return lon, lat @property def nx(self): return self.ntheta @property def ny(self): return self.nr @property def X(self): return self._X @property def Y(self): return self._Y @property def x(self): return self._X @property def y(self): return self._Y def i2x(self, i, j): theta = self.theta0 + i * self.dtheta r = self.rmin + j * self.dr lon, lat = self.r_theta_to_lon_lat(r, theta) return lon, lat def x2i(self, x, y, int_index=True, check_bound=None): lon2, lat2 = np.deg2rad(x), np.deg2rad(y) lon1, lat1 = np.deg2rad(self.lon0), np.deg2rad(self.lat0) dlon = lon2 - lon1 dlat = lat2 - lat1 sin_dlon = np.sin(dlon) cos_dlon = np.cos(dlon) sin_lat1 = np.sin(lat1) cos_lat1 = np.cos(lat1) sin_lat2 = np.sin(lat2) cos_lat2 = np.cos(lat2) a = cos_lat2 * sin_dlon b = cos_lat1 * sin_lat2 - sin_lat1 * cos_lat2 * cos_dlon theta = np.arctan2(a, b) c = np.sin(dlat / 2) ** 2 + cos_lat1 * cos_lat2 * np.sin(dlon / 2) ** 2 d = 2 * np.arcsin(np.sqrt(c)) r = d * self.r_earth i = (theta - self.theta0) / self.dtheta % self.ntheta j = (r - self.rmin) / self.dr if int_index: i = np.round(i) j = np.round(j) if np.isscalar(i): i = int(i) j = int(j) else: i = i.astype('i') j = j.astype('i') if check_bound: return self.check_bound(i, j, int_index=int_index) else: return i, j class XYIrregularGridder(XYGridderBase): # TODO: use kdtree. def __init__(self, X, Y): X = np.array(X) Y = np.array(Y) if X.ndim == 1: self.X, self.Y = np.meshgrid(X, Y) else: self.X, self.Y = X, Y self.ny, self.nx = X.shape def i2x(self, i, j, *args, **kwargs): return self.X[j, i], self.Y[j, i] def x2i(self, x, y, *args, **kwargs): distances = np.hypot(self.X-x, self.Y-y) flat_i = np.argmin(distances) nx = self.X.shape[1] return flat_i / self.nx, flat_i % self.nx def dump(self): return { "X": self.X, "Y": self.Y, "nx": self.nx, "ny": self.ny, }
[ "numpy.arctan2", "numpy.floor", "numpy.argmin", "numpy.shape", "numpy.sin", "numpy.arange", "numpy.round", "numpy.meshgrid", "numpy.ndim", "numpy.arcsin", "numpy.max", "numpy.linspace", "numpy.asarray", "numpy.hypot", "numpy.min", "numpy.cos", "numpy.alltrue", "numpy.deg2rad", "numpy.isscalar", "numpy.rad2deg", "numpy.where", "numpy.array", "numpy.diff", "pyproj.Proj", "numpy.sqrt" ]
[((1494, 1517), 'numpy.alltrue', 'np.alltrue', (['bad'], {'axis': '(0)'}), '(bad, axis=0)\n', (1504, 1517), True, 'import numpy as np\n'), ((1534, 1557), 'numpy.alltrue', 'np.alltrue', (['bad'], {'axis': '(1)'}), '(bad, axis=1)\n', (1544, 1557), True, 'import numpy as np\n'), ((2117, 2131), 'numpy.isscalar', 'np.isscalar', (['i'], {}), '(i)\n', (2128, 2131), True, 'import numpy as np\n'), ((3714, 3724), 'numpy.ndim', 'np.ndim', (['x'], {}), '(x)\n', (3721, 3724), True, 'import numpy as np\n'), ((4193, 4203), 'numpy.ndim', 'np.ndim', (['y'], {}), '(y)\n', (4200, 4203), True, 'import numpy as np\n'), ((10223, 10265), 'numpy.linspace', 'np.linspace', (['self.rmin', 'self.rmax', 'self.nr'], {}), '(self.rmin, self.rmax, self.nr)\n', (10234, 10265), True, 'import numpy as np\n'), ((10353, 10374), 'numpy.meshgrid', 'np.meshgrid', (['theta', 'r'], {}), '(theta, r)\n', (10364, 10374), True, 'import numpy as np\n'), ((10597, 10607), 'numpy.sin', 'np.sin', (['r_'], {}), '(r_)\n', (10603, 10607), True, 'import numpy as np\n'), ((10624, 10634), 'numpy.cos', 'np.cos', (['r_'], {}), '(r_)\n', (10630, 10634), True, 'import numpy as np\n'), ((10651, 10672), 'numpy.deg2rad', 'np.deg2rad', (['self.lat0'], {}), '(self.lat0)\n', (10661, 10672), True, 'import numpy as np\n'), ((10689, 10710), 'numpy.deg2rad', 'np.deg2rad', (['self.lon0'], {}), '(self.lon0)\n', (10699, 10710), True, 'import numpy as np\n'), ((10730, 10743), 'numpy.sin', 'np.sin', (['lat0_'], {}), '(lat0_)\n', (10736, 10743), True, 'import numpy as np\n'), ((10763, 10776), 'numpy.cos', 'np.cos', (['lat0_'], {}), '(lat0_)\n', (10769, 10776), True, 'import numpy as np\n'), ((10863, 10881), 'numpy.arcsin', 'np.arcsin', (['sin_lat'], {}), '(sin_lat)\n', (10872, 10881), True, 'import numpy as np\n'), ((10993, 11009), 'numpy.rad2deg', 'np.rad2deg', (['lon_'], {}), '(lon_)\n', (11003, 11009), True, 'import numpy as np\n'), ((11024, 11040), 'numpy.rad2deg', 'np.rad2deg', (['lat_'], {}), '(lat_)\n', (11034, 11040), True, 'import numpy as np\n'), ((11836, 11848), 'numpy.sin', 'np.sin', (['dlon'], {}), '(dlon)\n', (11842, 11848), True, 'import numpy as np\n'), ((11868, 11880), 'numpy.cos', 'np.cos', (['dlon'], {}), '(dlon)\n', (11874, 11880), True, 'import numpy as np\n'), ((11900, 11912), 'numpy.sin', 'np.sin', (['lat1'], {}), '(lat1)\n', (11906, 11912), True, 'import numpy as np\n'), ((11932, 11944), 'numpy.cos', 'np.cos', (['lat1'], {}), '(lat1)\n', (11938, 11944), True, 'import numpy as np\n'), ((11964, 11976), 'numpy.sin', 'np.sin', (['lat2'], {}), '(lat2)\n', (11970, 11976), True, 'import numpy as np\n'), ((11996, 12008), 'numpy.cos', 'np.cos', (['lat2'], {}), '(lat2)\n', (12002, 12008), True, 'import numpy as np\n'), ((12124, 12140), 'numpy.arctan2', 'np.arctan2', (['a', 'b'], {}), '(a, b)\n', (12134, 12140), True, 'import numpy as np\n'), ((12877, 12888), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (12885, 12888), True, 'import numpy as np\n'), ((12901, 12912), 'numpy.array', 'np.array', (['Y'], {}), '(Y)\n', (12909, 12912), True, 'import numpy as np\n'), ((13216, 13248), 'numpy.hypot', 'np.hypot', (['(self.X - x)', '(self.Y - y)'], {}), '(self.X - x, self.Y - y)\n', (13224, 13248), True, 'import numpy as np\n'), ((13262, 13282), 'numpy.argmin', 'np.argmin', (['distances'], {}), '(distances)\n', (13271, 13282), True, 'import numpy as np\n'), ((1055, 1069), 'numpy.min', 'np.min', (['self.X'], {}), '(self.X)\n', (1061, 1069), True, 'import numpy as np\n'), ((1071, 1085), 'numpy.min', 'np.min', (['self.Y'], {}), '(self.Y)\n', (1077, 1085), True, 'import numpy as np\n'), ((1087, 1101), 'numpy.max', 'np.max', (['self.X'], {}), '(self.X)\n', (1093, 1101), True, 'import numpy as np\n'), ((1103, 1117), 'numpy.max', 'np.max', (['self.Y'], {}), '(self.Y)\n', (1109, 1117), True, 'import numpy as np\n'), ((2394, 2457), 'numpy.where', 'np.where', (['((i >= start) & (i <= self.nx - subtracted))', 'i', 'np.nan'], {}), '((i >= start) & (i <= self.nx - subtracted), i, np.nan)\n', (2402, 2457), True, 'import numpy as np\n'), ((2474, 2537), 'numpy.where', 'np.where', (['((j >= start) & (j <= self.ny - subtracted))', 'j', 'np.nan'], {}), '((j >= start) & (j <= self.ny - subtracted), j, np.nan)\n', (2482, 2537), True, 'import numpy as np\n'), ((6602, 6612), 'numpy.ndim', 'np.ndim', (['x'], {}), '(x)\n', (6609, 6612), True, 'import numpy as np\n'), ((6614, 6624), 'numpy.ndim', 'np.ndim', (['y'], {}), '(y)\n', (6621, 6624), True, 'import numpy as np\n'), ((6894, 6907), 'numpy.asarray', 'np.asarray', (['x'], {}), '(x)\n', (6904, 6907), True, 'import numpy as np\n'), ((6909, 6922), 'numpy.asarray', 'np.asarray', (['y'], {}), '(y)\n', (6919, 6922), True, 'import numpy as np\n'), ((7756, 7771), 'numpy.min', 'np.min', (['self._X'], {}), '(self._X)\n', (7762, 7771), True, 'import numpy as np\n'), ((7773, 7788), 'numpy.min', 'np.min', (['self._Y'], {}), '(self._Y)\n', (7779, 7788), True, 'import numpy as np\n'), ((7790, 7805), 'numpy.max', 'np.max', (['self._X'], {}), '(self._X)\n', (7796, 7805), True, 'import numpy as np\n'), ((7807, 7822), 'numpy.max', 'np.max', (['self._Y'], {}), '(self._Y)\n', (7813, 7822), True, 'import numpy as np\n'), ((7846, 7862), 'numpy.min', 'np.min', (['self._CX'], {}), '(self._CX)\n', (7852, 7862), True, 'import numpy as np\n'), ((7864, 7880), 'numpy.min', 'np.min', (['self._CY'], {}), '(self._CY)\n', (7870, 7880), True, 'import numpy as np\n'), ((7882, 7898), 'numpy.max', 'np.max', (['self._CX'], {}), '(self._CX)\n', (7888, 7898), True, 'import numpy as np\n'), ((7900, 7916), 'numpy.max', 'np.max', (['self._CY'], {}), '(self._CY)\n', (7906, 7916), True, 'import numpy as np\n'), ((8499, 8513), 'numpy.isscalar', 'np.isscalar', (['i'], {}), '(i)\n', (8510, 8513), True, 'import numpy as np\n'), ((8856, 8866), 'numpy.ndim', 'np.ndim', (['x'], {}), '(x)\n', (8863, 8866), True, 'import numpy as np\n'), ((8868, 8878), 'numpy.ndim', 'np.ndim', (['y'], {}), '(y)\n', (8875, 8878), True, 'import numpy as np\n'), ((11667, 11680), 'numpy.deg2rad', 'np.deg2rad', (['x'], {}), '(x)\n', (11677, 11680), True, 'import numpy as np\n'), ((11682, 11695), 'numpy.deg2rad', 'np.deg2rad', (['y'], {}), '(y)\n', (11692, 11695), True, 'import numpy as np\n'), ((11717, 11738), 'numpy.deg2rad', 'np.deg2rad', (['self.lon0'], {}), '(self.lon0)\n', (11727, 11738), True, 'import numpy as np\n'), ((11740, 11761), 'numpy.deg2rad', 'np.deg2rad', (['self.lat0'], {}), '(self.lat0)\n', (11750, 11761), True, 'import numpy as np\n'), ((12430, 12441), 'numpy.round', 'np.round', (['i'], {}), '(i)\n', (12438, 12441), True, 'import numpy as np\n'), ((12458, 12469), 'numpy.round', 'np.round', (['j'], {}), '(j)\n', (12466, 12469), True, 'import numpy as np\n'), ((12486, 12500), 'numpy.isscalar', 'np.isscalar', (['i'], {}), '(i)\n', (12497, 12500), True, 'import numpy as np\n'), ((12966, 12983), 'numpy.meshgrid', 'np.meshgrid', (['X', 'Y'], {}), '(X, Y)\n', (12977, 12983), True, 'import numpy as np\n'), ((3752, 3772), 'numpy.ndim', 'np.ndim', (['self._raw_y'], {}), '(self._raw_y)\n', (3759, 3772), True, 'import numpy as np\n'), ((4231, 4251), 'numpy.ndim', 'np.ndim', (['self._raw_x'], {}), '(self._raw_x)\n', (4238, 4251), True, 'import numpy as np\n'), ((6788, 6799), 'numpy.shape', 'np.shape', (['x'], {}), '(x)\n', (6796, 6799), True, 'import numpy as np\n'), ((7056, 7067), 'numpy.shape', 'np.shape', (['x'], {}), '(x)\n', (7064, 7067), True, 'import numpy as np\n'), ((7069, 7080), 'numpy.shape', 'np.shape', (['y'], {}), '(y)\n', (7077, 7080), True, 'import numpy as np\n'), ((8358, 8369), 'numpy.floor', 'np.floor', (['i'], {}), '(i)\n', (8366, 8369), True, 'import numpy as np\n'), ((8390, 8401), 'numpy.floor', 'np.floor', (['j'], {}), '(j)\n', (8398, 8401), True, 'import numpy as np\n'), ((8440, 8451), 'numpy.round', 'np.round', (['i'], {}), '(i)\n', (8448, 8451), True, 'import numpy as np\n'), ((8472, 8483), 'numpy.round', 'np.round', (['j'], {}), '(j)\n', (8480, 8483), True, 'import numpy as np\n'), ((10282, 10304), 'numpy.arange', 'np.arange', (['self.ntheta'], {}), '(self.ntheta)\n', (10291, 10304), True, 'import numpy as np\n'), ((10834, 10847), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (10840, 10847), True, 'import numpy as np\n'), ((12154, 12170), 'numpy.sin', 'np.sin', (['(dlat / 2)'], {}), '(dlat / 2)\n', (12160, 12170), True, 'import numpy as np\n'), ((12248, 12258), 'numpy.sqrt', 'np.sqrt', (['c'], {}), '(c)\n', (12255, 12258), True, 'import numpy as np\n'), ((1589, 1622), 'numpy.diff', 'np.diff', (['np.r_[True, x_bad, True]'], {}), '(np.r_[True, x_bad, True])\n', (1596, 1622), True, 'import numpy as np\n'), ((1670, 1703), 'numpy.diff', 'np.diff', (['np.r_[True, y_bad, True]'], {}), '(np.r_[True, y_bad, True])\n', (1677, 1703), True, 'import numpy as np\n'), ((3219, 3228), 'pyproj.Proj', 'Proj', ([], {}), '(**p)\n', (3223, 3228), False, 'from pyproj import Proj\n'), ((3848, 3859), 'numpy.shape', 'np.shape', (['x'], {}), '(x)\n', (3856, 3859), True, 'import numpy as np\n'), ((3863, 3879), 'numpy.shape', 'np.shape', (['self.Y'], {}), '(self.Y)\n', (3871, 3879), True, 'import numpy as np\n'), ((4327, 4338), 'numpy.shape', 'np.shape', (['y'], {}), '(y)\n', (4335, 4338), True, 'import numpy as np\n'), ((4342, 4358), 'numpy.shape', 'np.shape', (['self.X'], {}), '(self.X)\n', (4350, 4358), True, 'import numpy as np\n'), ((12200, 12216), 'numpy.sin', 'np.sin', (['(dlon / 2)'], {}), '(dlon / 2)\n', (12206, 12216), True, 'import numpy as np\n'), ((10916, 10929), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (10922, 10929), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import json import unittest from typing import List from bidict import bidict from scan_service.utils.hardware_config import HardwareConfig class HardwareConfigTests(unittest.TestCase): def setUp(self) -> None: with open("tests/hardware_config.json") as f: hardware_config = json.load(f) HardwareConfig.set_config(hardware_config) def test_class_variables(self) -> None: self.assertDictEqual( HardwareConfig.BEAM_ORDER, { "0": { "-18": [0, 1, 2, 3, 4, 5, 6, 7], "18": [8, 9, 10, 11, 12, 13, 14, 15], }, "1": { "0": [30, 29, 28, 27, 26, 25, 24, 16, 17, 18, 19, 20, 21, 22, 23] }, }, ) self.assertDictEqual( HardwareConfig.TXPOWERIDX_TO_TXPOWER, { "2": { "10": {0: 19, 1: 20, 2: 21, 3: 22, 4: 23, 5: 24, 6: 25, 7: 26}, "6": {0: 10, 1: 11, 2: 12, 3: 13, 4: 14, 5: 15, 6: 16, 7: 17}, }, "3": {"5": {0: 11, 1: 12, 2: 13, 3: 14, 4: 15, 5: 16, 6: 17, 7: 18}}, "default_channel": { "default_mcs": { 0: 16, 1: 17, 2: 18, 3: 19, 4: 20, 5: 21, 6: 22, 7: 23, } }, }, ) self.assertEqual(HardwareConfig.BORESIDE_BW_IDX, 10) self.assertEqual(HardwareConfig.MINIMUM_SNR_DB, -10) self.assertEqual(HardwareConfig.SNR_SATURATE_THRESH_DB, 25) self.assertEqual(HardwareConfig.BEAM_SEPERATE_IDX, 3) self.assertEqual(HardwareConfig.MAX_SIDELOBE_LEVEL_DB, 12) self.assertEqual(HardwareConfig.MAX_POWER, 23) def test_get_adjacent_beam_index(self) -> None: self.assertEqual(HardwareConfig.get_adjacent_beam_index(0, 1), 1) self.assertEqual(HardwareConfig.get_adjacent_beam_index(0, -1), 0) self.assertEqual(HardwareConfig.get_adjacent_beam_index(8, 1), 9) self.assertEqual(HardwareConfig.get_adjacent_beam_index(8, -1), 8) self.assertEqual(HardwareConfig.get_adjacent_beam_index(15, 1), 15) self.assertEqual(HardwareConfig.get_adjacent_beam_index(15, -1), 14) self.assertEqual(HardwareConfig.get_adjacent_beam_index(16, 1), 17) self.assertEqual(HardwareConfig.get_adjacent_beam_index(16, -1), 24) self.assertEqual(HardwareConfig.get_adjacent_beam_index(23, 1), 23) self.assertEqual(HardwareConfig.get_adjacent_beam_index(23, -1), 22) self.assertEqual(HardwareConfig.get_adjacent_beam_index(30, 1), 29) self.assertEqual(HardwareConfig.get_adjacent_beam_index(30, -1), 30) self.assertEqual(HardwareConfig.get_adjacent_beam_index(60, 1), 60) self.assertEqual(HardwareConfig.get_adjacent_beam_index(60, -1), 60) def test_get_pwr_offset(self) -> None: self.assertEqual(HardwareConfig.get_pwr_offset(channel="2", mcs="6"), 0) self.assertEqual( HardwareConfig.get_pwr_offset(target_pwr_idx=4, channel="2", mcs="6"), -9 ) self.assertEqual( HardwareConfig.get_pwr_offset(ref_pwr_idx=4, channel="2", mcs="6"), 9 ) self.assertEqual( HardwareConfig.get_pwr_offset(ref_pwr_idx=5, channel="3", mcs="5"), 7 ) self.assertEqual( HardwareConfig.get_pwr_offset(ref_pwr_idx=7, channel="2", mcs="10"), -3 ) self.assertEqual(HardwareConfig.get_pwr_offset(target_pwr_idx=5), -2)
[ "scan_service.utils.hardware_config.HardwareConfig.set_config", "json.load", "scan_service.utils.hardware_config.HardwareConfig.get_adjacent_beam_index", "scan_service.utils.hardware_config.HardwareConfig.get_pwr_offset" ]
[((382, 394), 'json.load', 'json.load', (['f'], {}), '(f)\n', (391, 394), False, 'import json\n'), ((407, 449), 'scan_service.utils.hardware_config.HardwareConfig.set_config', 'HardwareConfig.set_config', (['hardware_config'], {}), '(hardware_config)\n', (432, 449), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((2113, 2157), 'scan_service.utils.hardware_config.HardwareConfig.get_adjacent_beam_index', 'HardwareConfig.get_adjacent_beam_index', (['(0)', '(1)'], {}), '(0, 1)\n', (2151, 2157), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((2187, 2232), 'scan_service.utils.hardware_config.HardwareConfig.get_adjacent_beam_index', 'HardwareConfig.get_adjacent_beam_index', (['(0)', '(-1)'], {}), '(0, -1)\n', (2225, 2232), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((2263, 2307), 'scan_service.utils.hardware_config.HardwareConfig.get_adjacent_beam_index', 'HardwareConfig.get_adjacent_beam_index', (['(8)', '(1)'], {}), '(8, 1)\n', (2301, 2307), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((2337, 2382), 'scan_service.utils.hardware_config.HardwareConfig.get_adjacent_beam_index', 'HardwareConfig.get_adjacent_beam_index', (['(8)', '(-1)'], {}), '(8, -1)\n', (2375, 2382), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((2413, 2458), 'scan_service.utils.hardware_config.HardwareConfig.get_adjacent_beam_index', 'HardwareConfig.get_adjacent_beam_index', (['(15)', '(1)'], {}), '(15, 1)\n', (2451, 2458), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((2489, 2535), 'scan_service.utils.hardware_config.HardwareConfig.get_adjacent_beam_index', 'HardwareConfig.get_adjacent_beam_index', (['(15)', '(-1)'], {}), '(15, -1)\n', (2527, 2535), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((2567, 2612), 'scan_service.utils.hardware_config.HardwareConfig.get_adjacent_beam_index', 'HardwareConfig.get_adjacent_beam_index', (['(16)', '(1)'], {}), '(16, 1)\n', (2605, 2612), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((2643, 2689), 'scan_service.utils.hardware_config.HardwareConfig.get_adjacent_beam_index', 'HardwareConfig.get_adjacent_beam_index', (['(16)', '(-1)'], {}), '(16, -1)\n', (2681, 2689), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((2721, 2766), 'scan_service.utils.hardware_config.HardwareConfig.get_adjacent_beam_index', 'HardwareConfig.get_adjacent_beam_index', (['(23)', '(1)'], {}), '(23, 1)\n', (2759, 2766), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((2797, 2843), 'scan_service.utils.hardware_config.HardwareConfig.get_adjacent_beam_index', 'HardwareConfig.get_adjacent_beam_index', (['(23)', '(-1)'], {}), '(23, -1)\n', (2835, 2843), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((2875, 2920), 'scan_service.utils.hardware_config.HardwareConfig.get_adjacent_beam_index', 'HardwareConfig.get_adjacent_beam_index', (['(30)', '(1)'], {}), '(30, 1)\n', (2913, 2920), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((2951, 2997), 'scan_service.utils.hardware_config.HardwareConfig.get_adjacent_beam_index', 'HardwareConfig.get_adjacent_beam_index', (['(30)', '(-1)'], {}), '(30, -1)\n', (2989, 2997), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((3029, 3074), 'scan_service.utils.hardware_config.HardwareConfig.get_adjacent_beam_index', 'HardwareConfig.get_adjacent_beam_index', (['(60)', '(1)'], {}), '(60, 1)\n', (3067, 3074), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((3105, 3151), 'scan_service.utils.hardware_config.HardwareConfig.get_adjacent_beam_index', 'HardwareConfig.get_adjacent_beam_index', (['(60)', '(-1)'], {}), '(60, -1)\n', (3143, 3151), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((3226, 3277), 'scan_service.utils.hardware_config.HardwareConfig.get_pwr_offset', 'HardwareConfig.get_pwr_offset', ([], {'channel': '"""2"""', 'mcs': '"""6"""'}), "(channel='2', mcs='6')\n", (3255, 3277), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((3320, 3389), 'scan_service.utils.hardware_config.HardwareConfig.get_pwr_offset', 'HardwareConfig.get_pwr_offset', ([], {'target_pwr_idx': '(4)', 'channel': '"""2"""', 'mcs': '"""6"""'}), "(target_pwr_idx=4, channel='2', mcs='6')\n", (3349, 3389), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((3442, 3508), 'scan_service.utils.hardware_config.HardwareConfig.get_pwr_offset', 'HardwareConfig.get_pwr_offset', ([], {'ref_pwr_idx': '(4)', 'channel': '"""2"""', 'mcs': '"""6"""'}), "(ref_pwr_idx=4, channel='2', mcs='6')\n", (3471, 3508), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((3560, 3626), 'scan_service.utils.hardware_config.HardwareConfig.get_pwr_offset', 'HardwareConfig.get_pwr_offset', ([], {'ref_pwr_idx': '(5)', 'channel': '"""3"""', 'mcs': '"""5"""'}), "(ref_pwr_idx=5, channel='3', mcs='5')\n", (3589, 3626), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((3678, 3745), 'scan_service.utils.hardware_config.HardwareConfig.get_pwr_offset', 'HardwareConfig.get_pwr_offset', ([], {'ref_pwr_idx': '(7)', 'channel': '"""2"""', 'mcs': '"""10"""'}), "(ref_pwr_idx=7, channel='2', mcs='10')\n", (3707, 3745), False, 'from scan_service.utils.hardware_config import HardwareConfig\n'), ((3785, 3832), 'scan_service.utils.hardware_config.HardwareConfig.get_pwr_offset', 'HardwareConfig.get_pwr_offset', ([], {'target_pwr_idx': '(5)'}), '(target_pwr_idx=5)\n', (3814, 3832), False, 'from scan_service.utils.hardware_config import HardwareConfig\n')]
import json import os from unittest.mock import patch, mock_open import pytest from signal_interpreter_server.json_parser import JsonParser from signal_interpreter_server.exceptions import SignalError @pytest.mark.parametrize("identifier, expected_result", [ ("11", "ECU Reset"), ("99", "Not existing"), ]) def test_get_signal_title(identifier, expected_result): jason_parser = JsonParser() jason_parser.data = {"services": [{"title": "ECU Reset", "id": "11"}]} if identifier != '99': assert jason_parser.get_signal_title(identifier) == expected_result else: with pytest.raises(SignalError): jason_parser.get_signal_title(identifier) @pytest.fixture(scope="session") def test_load_file_with_fixure(tmpdir): tmp_db = {"services": [{"title": "ECU Reset", "id": "11"}]} filepath = os.path.join(tmpdir, "tmp_json.json") with open(filepath, 'w') as jfile: json.dump(tmp_db, jfile) jason_parser = JsonParser() jason_parser.load_file(filepath) assert isinstance(jason_parser.data, dict) assert jason_parser.data == tmp_db def test_load_file_simple(): with patch("builtins.open", mock_open(read_data='{"services": [{"title": "ECU Reset", "id": "11"}]}')): json_parser = JsonParser() json_parser.load_file("path/to/json/file") assert json_parser.data == {"services": [{"title": "ECU Reset", "id": "11"}]} def test_load_file_wrong_type(): with patch("builtins.open", mock_open(read_data="This is wrong data!")): with pytest.raises(ValueError): json_parser = JsonParser() json_parser.load_file("path/to/json/file")
[ "json.dump", "signal_interpreter_server.json_parser.JsonParser", "pytest.fixture", "pytest.raises", "unittest.mock.mock_open", "pytest.mark.parametrize", "os.path.join" ]
[((207, 312), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""identifier, expected_result"""', "[('11', 'ECU Reset'), ('99', 'Not existing')]"], {}), "('identifier, expected_result', [('11', 'ECU Reset'),\n ('99', 'Not existing')])\n", (230, 312), False, 'import pytest\n'), ((694, 725), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (708, 725), False, 'import pytest\n'), ((395, 407), 'signal_interpreter_server.json_parser.JsonParser', 'JsonParser', ([], {}), '()\n', (405, 407), False, 'from signal_interpreter_server.json_parser import JsonParser\n'), ((845, 882), 'os.path.join', 'os.path.join', (['tmpdir', '"""tmp_json.json"""'], {}), "(tmpdir, 'tmp_json.json')\n", (857, 882), False, 'import os\n'), ((975, 987), 'signal_interpreter_server.json_parser.JsonParser', 'JsonParser', ([], {}), '()\n', (985, 987), False, 'from signal_interpreter_server.json_parser import JsonParser\n'), ((931, 955), 'json.dump', 'json.dump', (['tmp_db', 'jfile'], {}), '(tmp_db, jfile)\n', (940, 955), False, 'import json\n'), ((1287, 1299), 'signal_interpreter_server.json_parser.JsonParser', 'JsonParser', ([], {}), '()\n', (1297, 1299), False, 'from signal_interpreter_server.json_parser import JsonParser\n'), ((609, 635), 'pytest.raises', 'pytest.raises', (['SignalError'], {}), '(SignalError)\n', (622, 635), False, 'import pytest\n'), ((1189, 1262), 'unittest.mock.mock_open', 'mock_open', ([], {'read_data': '"""{"services": [{"title": "ECU Reset", "id": "11"}]}"""'}), '(read_data=\'{"services": [{"title": "ECU Reset", "id": "11"}]}\')\n', (1198, 1262), False, 'from unittest.mock import patch, mock_open\n'), ((1504, 1546), 'unittest.mock.mock_open', 'mock_open', ([], {'read_data': '"""This is wrong data!"""'}), "(read_data='This is wrong data!')\n", (1513, 1546), False, 'from unittest.mock import patch, mock_open\n'), ((1562, 1587), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1575, 1587), False, 'import pytest\n'), ((1615, 1627), 'signal_interpreter_server.json_parser.JsonParser', 'JsonParser', ([], {}), '()\n', (1625, 1627), False, 'from signal_interpreter_server.json_parser import JsonParser\n')]
# web imports from flask import Flask from blinker import Namespace # or from flask.signals import Namespace from flask_executor import Executor from flask_executor.futures import Future from flask_shell2http import Shell2HTTP # Flask application instance app = Flask(__name__) # application factory executor = Executor(app) shell2http = Shell2HTTP(app, executor, base_url_prefix="/cmd/") ENDPOINT = "echo" CMD = "echo" # Signal Handling signal_handler = Namespace() my_signal = signal_handler.signal(f"on_{CMD}_complete") # ..or any other name of your choice @my_signal.connect def my_callback_fn(extra_callback_context, future: Future): """ Will be invoked on every process completion """ print("Process completed ?:", future.done()) print("Result: ", future.result()) shell2http.register_command( endpoint=ENDPOINT, command_name=CMD, callback_fn=my_signal.send ) # Test Runner if __name__ == "__main__": app.testing = True c = app.test_client() # request new process data = {"args": ["Hello", "Friend!"]} c.post(f"cmd/{ENDPOINT}", json=data) # request new process data = {"args": ["Bye", "Friend!"]} c.post(f"cmd/{ENDPOINT}", json=data)
[ "blinker.Namespace", "flask_executor.Executor", "flask.Flask", "flask_shell2http.Shell2HTTP" ]
[((264, 279), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (269, 279), False, 'from flask import Flask\n'), ((314, 327), 'flask_executor.Executor', 'Executor', (['app'], {}), '(app)\n', (322, 327), False, 'from flask_executor import Executor\n'), ((341, 391), 'flask_shell2http.Shell2HTTP', 'Shell2HTTP', (['app', 'executor'], {'base_url_prefix': '"""/cmd/"""'}), "(app, executor, base_url_prefix='/cmd/')\n", (351, 391), False, 'from flask_shell2http import Shell2HTTP\n'), ((460, 471), 'blinker.Namespace', 'Namespace', ([], {}), '()\n', (469, 471), False, 'from blinker import Namespace\n')]
__author__ = '<NAME>' from threading import RLock from bson.objectid import ObjectId from pymongo import ASCENDING from pymongo.errors import DuplicateKeyError as MongoDuplicateKeyError from synergy.system import time_helper from synergy.system.time_qualifier import * from synergy.system.decorator import thread_safe from synergy.scheduler.scheduler_constants import COLLECTION_UNIT_OF_WORK, TYPE_MANAGED from synergy.conf import context from synergy.db.error import DuplicateKeyError from synergy.db.model import unit_of_work from synergy.db.model.unit_of_work import UnitOfWork from synergy.db.manager import ds_manager QUERY_GET_FREERUN_SINCE = lambda timeperiod, unprocessed_only: { unit_of_work.TIMEPERIOD: {'$gte': timeperiod}, unit_of_work.UNIT_OF_WORK_TYPE: unit_of_work.TYPE_FREERUN, unit_of_work.STATE: {'$ne': unit_of_work.STATE_PROCESSED if unprocessed_only else None} } class UnitOfWorkDao(object): """ Thread-safe Data Access Object from units_of_work table/collection """ def __init__(self, logger): super(UnitOfWorkDao, self).__init__() self.logger = logger self.lock = RLock() self.ds = ds_manager.ds_factory(logger) @thread_safe def get_one(self, key): """ method finds unit_of_work record and returns it to the caller""" if not isinstance(key, ObjectId): # cast key to ObjectId key = ObjectId(key) query = {'_id': key} collection = self.ds.connection(COLLECTION_UNIT_OF_WORK) document = collection.find_one(query) if document is None: msg = 'Unit_of_work with ID=%s was not found' % str(key) self.logger.warn(msg) raise LookupError(msg) return UnitOfWork.from_json(document) @thread_safe def get_reprocessing_candidates(self, since=None): """ method queries Unit Of Work whose <start_timeperiod> is younger than <since> and who could be candidates for re-processing """ collection = self.ds.connection(COLLECTION_UNIT_OF_WORK) query = {unit_of_work.STATE: {'$in': [unit_of_work.STATE_IN_PROGRESS, unit_of_work.STATE_INVALID, unit_of_work.STATE_REQUESTED]}, unit_of_work.UNIT_OF_WORK_TYPE: TYPE_MANAGED} if since is None: cursor = collection.find(query).sort('_id', ASCENDING) candidates = [UnitOfWork.from_json(document) for document in cursor] else: candidates = [] yearly_timeperiod = time_helper.cast_to_time_qualifier(QUALIFIER_YEARLY, since) query[unit_of_work.START_TIMEPERIOD] = {'$gte': yearly_timeperiod} cursor = collection.find(query).sort('_id', ASCENDING) for document in cursor: uow = UnitOfWork.from_json(document) if uow.process_name not in context.process_context: # this is a decommissioned process continue time_qualifier = context.process_context[uow.process_name].time_qualifier if time_qualifier == QUALIFIER_REAL_TIME: time_qualifier = QUALIFIER_HOURLY process_specific_since = time_helper.cast_to_time_qualifier(time_qualifier, since) if process_specific_since <= uow.start_timeperiod: candidates.append(uow) if len(candidates) == 0: raise LookupError('MongoDB has no reprocessing candidates units of work') return candidates @thread_safe def get_by_params(self, process_name, timeperiod, start_obj_id, end_obj_id): """ method finds unit_of_work record and returns it to the caller""" query = {unit_of_work.PROCESS_NAME: process_name, unit_of_work.TIMEPERIOD: timeperiod, unit_of_work.START_OBJ_ID: start_obj_id, unit_of_work.END_OBJ_ID: end_obj_id} collection = self.ds.connection(COLLECTION_UNIT_OF_WORK) document = collection.find_one(query) if document is None: raise LookupError('Unit_of_work satisfying query %r was not found' % query) return UnitOfWork.from_json(document) @thread_safe def update(self, instance): """ method finds unit_of_work record and change its status""" assert isinstance(instance, UnitOfWork) collection = self.ds.connection(COLLECTION_UNIT_OF_WORK) document = instance.document if instance.db_id: document['_id'] = ObjectId(instance.db_id) instance.db_id = collection.save(document, safe=True) return instance.db_id @thread_safe def insert(self, instance): """ inserts a unit of work into MongoDB. :raises DuplicateKeyError: if such record already exist """ assert isinstance(instance, UnitOfWork) collection = self.ds.connection(COLLECTION_UNIT_OF_WORK) try: return collection.insert(instance.document, safe=True) except MongoDuplicateKeyError as e: exc = DuplicateKeyError(instance.process_name, instance.start_timeperiod, instance.start_id, instance.end_id, e) raise exc @thread_safe def remove(self, uow_id): assert isinstance(uow_id, (str, ObjectId)) collection = self.ds.connection(COLLECTION_UNIT_OF_WORK) return collection.remove(uow_id, safe=True) @thread_safe def run_query(self, query): """ method runs the query and returns a list of filtered UnitOfWork records """ cursor = self.ds.filter(COLLECTION_UNIT_OF_WORK, query) return [UnitOfWork.from_json(document) for document in cursor] def recover_from_duplicatekeyerror(self, e): """ method tries to recover from DuplicateKeyError """ if isinstance(e, DuplicateKeyError): try: return self.get_by_params(e.process_name, e.timeperiod, e.start_id, e.end_id) except LookupError as e: self.logger.error('Unable to recover from DuplicateKeyError error due to %s' % e.message, exc_info=True) else: msg = 'Unable to recover from DuplicateKeyError due to unspecified unit_of_work primary key' self.logger.error(msg)
[ "synergy.system.time_helper.cast_to_time_qualifier", "bson.objectid.ObjectId", "threading.RLock", "synergy.db.manager.ds_manager.ds_factory", "synergy.db.error.DuplicateKeyError", "synergy.db.model.unit_of_work.UnitOfWork.from_json" ]
[((1138, 1145), 'threading.RLock', 'RLock', ([], {}), '()\n', (1143, 1145), False, 'from threading import RLock\n'), ((1164, 1193), 'synergy.db.manager.ds_manager.ds_factory', 'ds_manager.ds_factory', (['logger'], {}), '(logger)\n', (1185, 1193), False, 'from synergy.db.manager import ds_manager\n'), ((1750, 1780), 'synergy.db.model.unit_of_work.UnitOfWork.from_json', 'UnitOfWork.from_json', (['document'], {}), '(document)\n', (1770, 1780), False, 'from synergy.db.model.unit_of_work import UnitOfWork\n'), ((4260, 4290), 'synergy.db.model.unit_of_work.UnitOfWork.from_json', 'UnitOfWork.from_json', (['document'], {}), '(document)\n', (4280, 4290), False, 'from synergy.db.model.unit_of_work import UnitOfWork\n'), ((1412, 1425), 'bson.objectid.ObjectId', 'ObjectId', (['key'], {}), '(key)\n', (1420, 1425), False, 'from bson.objectid import ObjectId\n'), ((2609, 2668), 'synergy.system.time_helper.cast_to_time_qualifier', 'time_helper.cast_to_time_qualifier', (['QUALIFIER_YEARLY', 'since'], {}), '(QUALIFIER_YEARLY, since)\n', (2643, 2668), False, 'from synergy.system import time_helper\n'), ((4618, 4642), 'bson.objectid.ObjectId', 'ObjectId', (['instance.db_id'], {}), '(instance.db_id)\n', (4626, 4642), False, 'from bson.objectid import ObjectId\n'), ((5864, 5894), 'synergy.db.model.unit_of_work.UnitOfWork.from_json', 'UnitOfWork.from_json', (['document'], {}), '(document)\n', (5884, 5894), False, 'from synergy.db.model.unit_of_work import UnitOfWork\n'), ((2480, 2510), 'synergy.db.model.unit_of_work.UnitOfWork.from_json', 'UnitOfWork.from_json', (['document'], {}), '(document)\n', (2500, 2510), False, 'from synergy.db.model.unit_of_work import UnitOfWork\n'), ((2874, 2904), 'synergy.db.model.unit_of_work.UnitOfWork.from_json', 'UnitOfWork.from_json', (['document'], {}), '(document)\n', (2894, 2904), False, 'from synergy.db.model.unit_of_work import UnitOfWork\n'), ((3301, 3358), 'synergy.system.time_helper.cast_to_time_qualifier', 'time_helper.cast_to_time_qualifier', (['time_qualifier', 'since'], {}), '(time_qualifier, since)\n', (3335, 3358), False, 'from synergy.system import time_helper\n'), ((5157, 5267), 'synergy.db.error.DuplicateKeyError', 'DuplicateKeyError', (['instance.process_name', 'instance.start_timeperiod', 'instance.start_id', 'instance.end_id', 'e'], {}), '(instance.process_name, instance.start_timeperiod,\n instance.start_id, instance.end_id, e)\n', (5174, 5267), False, 'from synergy.db.error import DuplicateKeyError\n')]
def main(): a=0 b=0 if(1<2): a = 1 else: a = 2 if(1>2): b = 1 else: b = 2 return a + b # Boilerplate if __name__ == "__main__": import sys ret=main() sys.exit(ret)
[ "sys.exit" ]
[((225, 238), 'sys.exit', 'sys.exit', (['ret'], {}), '(ret)\n', (233, 238), False, 'import sys\n')]
import os import time import torch.optim as optim import torch import torch.nn.functional as F import torch.nn as nn from evaluation import evalFcn from utils import myUtils from .RawPSMNet import stackhourglass as rawPSMNet from .RawPSMNet_TieCheng import stackhourglass as rawPSMNet_TieCheng from ..Model import Model from .. import SR import collections import torch.nn.parallel as P from .PSMNet import * class RawPSMNetDown(RawPSMNetScale): def __init__(self, maxdisp, dispScale, multiple): super(RawPSMNetDown, self).__init__(maxdisp, dispScale, multiple) self.pool = nn.AvgPool2d((2, 2)) # input: RGB value range 0~1 # outputs: disparity range 0~self.maxdisp * self.dispScale / 2 def forward(self, left, right): outDispHighs = super(RawPSMNetDown, self).forward(left, right) outDispLows = myUtils.forNestingList(outDispHighs, lambda disp: self.pool(disp) / 2) return outDispHighs, outDispLows class PSMNetDown(PSMNet): # dataset: only used for suffix of saveFolderName def __init__(self, maxdisp=192, dispScale=1, cuda=True, half=False, stage='unnamed', dataset=None, saveFolderSuffix=''): super(PSMNetDown, self).__init__(maxdisp, dispScale, cuda, half, stage, dataset, saveFolderSuffix) self.outputMaxDisp = self.outputMaxDisp // 2 self.getModel = RawPSMNetDown def loss(self, outputs, gts, kitti=False, outputMaxDisp=None): if outputMaxDisp is not None: raise Exception('Error: outputMaxDisp of PSMNetDown has no use!') losses = [] for output, gt, outputMaxDisp in zip(outputs, gts, (self.outputMaxDisp * 2, self.outputMaxDisp)): losses.append(super(PSMNetDown, self).loss( output, gt, kitti=kitti, outputMaxDisp=outputMaxDisp ) if gt is not None else None) return losses def trainOneSide(self, imgL, imgR, gts, returnOutputs=False, kitti=False, weights=(1, 0)): self.optimizer.zero_grad() outDispHighs, outDispLows = self.model.forward(imgL, imgR) losses = self.loss((outDispHighs, outDispLows), gts, kitti=kitti) loss = sum([weight * loss for weight, loss in zip(weights, losses) if loss is not None]) with self.amp_handle.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() self.optimizer.step() dispOuts = [] if returnOutputs: with torch.no_grad(): dispOuts.append(outDispHighs[2].detach() / (self.outputMaxDisp * 2)) dispOuts.append(outDispLows[2].detach() / self.outputMaxDisp) losses = [loss] + losses return [loss.data.item() for loss in losses], dispOuts def train(self, batch, returnOutputs=False, kitti=False, weights=(1, 0), progress=0): myUtils.assertBatchLen(batch, 8) self.trainPrepare() losses = myUtils.NameValues() outputs = collections.OrderedDict() imgL, imgR = batch.highResRGBs() for inputL, inputR, gts, process, side in zip( (imgL, imgR), (imgR, imgL), zip(batch.highResDisps(), batch.lowResDisps()), (lambda im: im, myUtils.flipLR), ('L', 'R') ): if not all([gt is None for gt in gts]): lossesList, outputsList = self.trainOneSide( *process((inputL, inputR, gts)), returnOutputs=returnOutputs, kitti=kitti, weights=weights ) for suffix, loss in zip(('', 'DispHigh', 'Disp'), lossesList): if loss is not None: losses['loss' + suffix + side] = loss if returnOutputs: for suffix, output in zip(('High', 'Low'), outputsList): outputs['outputDisp' + suffix + side] = process(output) return losses, outputs def test(self, batch, evalType='l1', returnOutputs=False, kitti=False): myUtils.assertBatchLen(batch, 8) batch = myUtils.Batch(batch.highResRGBs() + batch.lowestResDisps(), cuda=batch.cuda, half=batch.half) scores, outputs, rawOutputs = super(PSMNetDown, self).test(batch, evalType, returnOutputs, kitti) for rawOutputsSide, side in zip(rawOutputs, ('L', 'R')): if rawOutputsSide is not None: (outDispHigh, outDispLow) = rawOutputsSide if returnOutputs: if outDispHigh is not None: outputs['outputDispHigh' + side] = outDispHigh / (self.outputMaxDisp * 2) return scores, outputs, rawOutputs
[ "utils.myUtils.NameValues", "utils.myUtils.assertBatchLen", "collections.OrderedDict", "torch.nn.AvgPool2d", "torch.no_grad" ]
[((596, 616), 'torch.nn.AvgPool2d', 'nn.AvgPool2d', (['(2, 2)'], {}), '((2, 2))\n', (608, 616), True, 'import torch.nn as nn\n'), ((2835, 2867), 'utils.myUtils.assertBatchLen', 'myUtils.assertBatchLen', (['batch', '(8)'], {}), '(batch, 8)\n', (2857, 2867), False, 'from utils import myUtils\n'), ((2914, 2934), 'utils.myUtils.NameValues', 'myUtils.NameValues', ([], {}), '()\n', (2932, 2934), False, 'from utils import myUtils\n'), ((2953, 2978), 'collections.OrderedDict', 'collections.OrderedDict', ([], {}), '()\n', (2976, 2978), False, 'import collections\n'), ((4063, 4095), 'utils.myUtils.assertBatchLen', 'myUtils.assertBatchLen', (['batch', '(8)'], {}), '(batch, 8)\n', (4085, 4095), False, 'from utils import myUtils\n'), ((2460, 2475), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2473, 2475), False, 'import torch\n')]
# coding=utf-8 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common code for the simple cnn example.""" import functools import os from absl import logging from flax import serialization import haiku as hk import jax import jax.numpy as jnp from learned_optimization import filesystem import numpy as onp import optax import tensorflow_datasets as tfds HKTree = hk.data_structures.to_immutable_dict({}).__class__ # We use flax for serialization but haiku's data struct is not registered. def _ty_to_state_dict(v): return serialization.to_state_dict( {k: v for k, v in hk.data_structures.to_mutable_dict(v).items()}) def _ty_from_state_dict(target, d): return HKTree( ** {k: serialization.from_state_dict(target[k], v) for (k, v) in d.items()}) serialization.register_serialization_state( HKTree, _ty_to_state_dict, _ty_from_state_dict, override=True) def hk_forward_fn(batch): """Forward function for haiku.""" x = batch["image"].astype(jnp.float32) / 255. mlp = hk.Sequential([ hk.Conv2D(64, (3, 3), stride=2), jax.nn.relu, hk.Conv2D(64, (3, 3), stride=1), jax.nn.relu, hk.Conv2D(64, (3, 3), stride=2), jax.nn.relu, hk.Conv2D(64, (3, 3), stride=1), jax.nn.relu, functools.partial(jnp.mean, axis=(1, 2)), hk.Linear(10), ]) return mlp(x) @jax.jit def loss(params, key, batch): net = hk.transform(hk_forward_fn) logits = net.apply(params, key, batch) labels = jax.nn.one_hot(batch["label"], 10) softmax_xent = -jnp.sum(labels * jax.nn.log_softmax(logits)) softmax_xent /= labels.shape[0] return softmax_xent @jax.jit def update(params, key, state, batch, meta_params): opt = optax.adam(meta_params["learning_rate"]) l, grad = jax.value_and_grad(loss)(params, key, batch) updates, new_state = opt.update(grad, state, params) new_params = optax.apply_updates(params, updates) return new_params, new_state, l def save_state(path, state): filesystem.make_dirs(os.path.dirname(path)) with filesystem.file_open(path, "wb") as fp: fp.write(serialization.to_bytes(state)) def load_state(path, state): logging.info("Restoring state %s:", path) with filesystem.file_open(path, "rb") as fp: state_new = serialization.from_bytes(state, fp.read()) tree = jax.tree_structure(state) leaves_new = jax.tree_leaves(state_new) return jax.tree_unflatten(tree, leaves_new) def get_data_iterators(fake_data=False): """Get training and test data iterators.""" batch_size = 128 if not fake_data: remap_label = lambda x: {"image": x["image"], "label": x["label"]} def data(split): dataset = tfds.load("cifar10", split=split) iterator = iter( tfds.as_numpy( dataset.repeat(-1).shuffle( batch_size * 10).batch(batch_size).map(remap_label))) return iterator return data("train"), data("test") else: def data(): while True: yield { "image": onp.zeros([batch_size, 32, 32, 3]), "label": onp.zeros([batch_size], dtype=onp.int32) } return data(), data()
[ "optax.adam", "tensorflow_datasets.load", "jax.nn.log_softmax", "absl.logging.info", "flax.serialization.register_serialization_state", "flax.serialization.from_state_dict", "jax.nn.one_hot", "os.path.dirname", "optax.apply_updates", "haiku.data_structures.to_immutable_dict", "haiku.Conv2D", "haiku.data_structures.to_mutable_dict", "haiku.Linear", "functools.partial", "haiku.transform", "jax.tree_leaves", "jax.tree_unflatten", "jax.tree_structure", "numpy.zeros", "jax.value_and_grad", "flax.serialization.to_bytes", "learned_optimization.filesystem.file_open" ]
[((1307, 1416), 'flax.serialization.register_serialization_state', 'serialization.register_serialization_state', (['HKTree', '_ty_to_state_dict', '_ty_from_state_dict'], {'override': '(True)'}), '(HKTree, _ty_to_state_dict,\n _ty_from_state_dict, override=True)\n', (1349, 1416), False, 'from flax import serialization\n'), ((897, 937), 'haiku.data_structures.to_immutable_dict', 'hk.data_structures.to_immutable_dict', (['{}'], {}), '({})\n', (933, 937), True, 'import haiku as hk\n'), ((1925, 1952), 'haiku.transform', 'hk.transform', (['hk_forward_fn'], {}), '(hk_forward_fn)\n', (1937, 1952), True, 'import haiku as hk\n'), ((2005, 2039), 'jax.nn.one_hot', 'jax.nn.one_hot', (["batch['label']", '(10)'], {}), "(batch['label'], 10)\n", (2019, 2039), False, 'import jax\n'), ((2231, 2271), 'optax.adam', 'optax.adam', (["meta_params['learning_rate']"], {}), "(meta_params['learning_rate'])\n", (2241, 2271), False, 'import optax\n'), ((2399, 2435), 'optax.apply_updates', 'optax.apply_updates', (['params', 'updates'], {}), '(params, updates)\n', (2418, 2435), False, 'import optax\n'), ((2672, 2713), 'absl.logging.info', 'logging.info', (['"""Restoring state %s:"""', 'path'], {}), "('Restoring state %s:', path)\n", (2684, 2713), False, 'from absl import logging\n'), ((2829, 2854), 'jax.tree_structure', 'jax.tree_structure', (['state'], {}), '(state)\n', (2847, 2854), False, 'import jax\n'), ((2870, 2896), 'jax.tree_leaves', 'jax.tree_leaves', (['state_new'], {}), '(state_new)\n', (2885, 2896), False, 'import jax\n'), ((2906, 2942), 'jax.tree_unflatten', 'jax.tree_unflatten', (['tree', 'leaves_new'], {}), '(tree, leaves_new)\n', (2924, 2942), False, 'import jax\n'), ((2284, 2308), 'jax.value_and_grad', 'jax.value_and_grad', (['loss'], {}), '(loss)\n', (2302, 2308), False, 'import jax\n'), ((2525, 2546), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (2540, 2546), False, 'import os\n'), ((2555, 2587), 'learned_optimization.filesystem.file_open', 'filesystem.file_open', (['path', '"""wb"""'], {}), "(path, 'wb')\n", (2575, 2587), False, 'from learned_optimization import filesystem\n'), ((2721, 2753), 'learned_optimization.filesystem.file_open', 'filesystem.file_open', (['path', '"""rb"""'], {}), "(path, 'rb')\n", (2741, 2753), False, 'from learned_optimization import filesystem\n'), ((1560, 1591), 'haiku.Conv2D', 'hk.Conv2D', (['(64)', '(3, 3)'], {'stride': '(2)'}), '(64, (3, 3), stride=2)\n', (1569, 1591), True, 'import haiku as hk\n'), ((1618, 1649), 'haiku.Conv2D', 'hk.Conv2D', (['(64)', '(3, 3)'], {'stride': '(1)'}), '(64, (3, 3), stride=1)\n', (1627, 1649), True, 'import haiku as hk\n'), ((1676, 1707), 'haiku.Conv2D', 'hk.Conv2D', (['(64)', '(3, 3)'], {'stride': '(2)'}), '(64, (3, 3), stride=2)\n', (1685, 1707), True, 'import haiku as hk\n'), ((1734, 1765), 'haiku.Conv2D', 'hk.Conv2D', (['(64)', '(3, 3)'], {'stride': '(1)'}), '(64, (3, 3), stride=1)\n', (1743, 1765), True, 'import haiku as hk\n'), ((1792, 1832), 'functools.partial', 'functools.partial', (['jnp.mean'], {'axis': '(1, 2)'}), '(jnp.mean, axis=(1, 2))\n', (1809, 1832), False, 'import functools\n'), ((1840, 1853), 'haiku.Linear', 'hk.Linear', (['(10)'], {}), '(10)\n', (1849, 1853), True, 'import haiku as hk\n'), ((2608, 2637), 'flax.serialization.to_bytes', 'serialization.to_bytes', (['state'], {}), '(state)\n', (2630, 2637), False, 'from flax import serialization\n'), ((3180, 3213), 'tensorflow_datasets.load', 'tfds.load', (['"""cifar10"""'], {'split': 'split'}), "('cifar10', split=split)\n", (3189, 3213), True, 'import tensorflow_datasets as tfds\n'), ((1235, 1278), 'flax.serialization.from_state_dict', 'serialization.from_state_dict', (['target[k]', 'v'], {}), '(target[k], v)\n', (1264, 1278), False, 'from flax import serialization\n'), ((2076, 2102), 'jax.nn.log_softmax', 'jax.nn.log_softmax', (['logits'], {}), '(logits)\n', (2094, 2102), False, 'import jax\n'), ((1113, 1150), 'haiku.data_structures.to_mutable_dict', 'hk.data_structures.to_mutable_dict', (['v'], {}), '(v)\n', (1147, 1150), True, 'import haiku as hk\n'), ((3518, 3552), 'numpy.zeros', 'onp.zeros', (['[batch_size, 32, 32, 3]'], {}), '([batch_size, 32, 32, 3])\n', (3527, 3552), True, 'import numpy as onp\n'), ((3575, 3615), 'numpy.zeros', 'onp.zeros', (['[batch_size]'], {'dtype': 'onp.int32'}), '([batch_size], dtype=onp.int32)\n', (3584, 3615), True, 'import numpy as onp\n')]
""" This example is for demonstartion purpose only. No agent learns here anything useful, yet. Well, maybe they do but it might take a long time to check. Ain't nobody got time for that. """ from pettingzoo.sisl import waterworld_v3 from ai_traineree.agents.ppo import PPOAgent from ai_traineree.multi_agents.independent import IndependentAgents from ai_traineree.runners.multiagent_env_runner import MultiAgentCycleEnvRunner from ai_traineree.tasks import PettingZooTask env = waterworld_v3.env() task = PettingZooTask(env=env) task.reset() # Needs to be reset to access env.agents() agents = [] for actor_name in task.agents: obs_space = task.observation_spaces[actor_name] action_space = task.action_spaces[actor_name] agents.append(PPOAgent(obs_space, action_space)) multi_agent = IndependentAgents(agents, agent_names=task.agents) runner = MultiAgentCycleEnvRunner(task, multi_agent=multi_agent) runner.run(max_episodes=3)
[ "ai_traineree.tasks.PettingZooTask", "ai_traineree.runners.multiagent_env_runner.MultiAgentCycleEnvRunner", "pettingzoo.sisl.waterworld_v3.env", "ai_traineree.agents.ppo.PPOAgent", "ai_traineree.multi_agents.independent.IndependentAgents" ]
[((481, 500), 'pettingzoo.sisl.waterworld_v3.env', 'waterworld_v3.env', ([], {}), '()\n', (498, 500), False, 'from pettingzoo.sisl import waterworld_v3\n'), ((508, 531), 'ai_traineree.tasks.PettingZooTask', 'PettingZooTask', ([], {'env': 'env'}), '(env=env)\n', (522, 531), False, 'from ai_traineree.tasks import PettingZooTask\n'), ((805, 855), 'ai_traineree.multi_agents.independent.IndependentAgents', 'IndependentAgents', (['agents'], {'agent_names': 'task.agents'}), '(agents, agent_names=task.agents)\n', (822, 855), False, 'from ai_traineree.multi_agents.independent import IndependentAgents\n'), ((865, 920), 'ai_traineree.runners.multiagent_env_runner.MultiAgentCycleEnvRunner', 'MultiAgentCycleEnvRunner', (['task'], {'multi_agent': 'multi_agent'}), '(task, multi_agent=multi_agent)\n', (889, 920), False, 'from ai_traineree.runners.multiagent_env_runner import MultiAgentCycleEnvRunner\n'), ((754, 787), 'ai_traineree.agents.ppo.PPOAgent', 'PPOAgent', (['obs_space', 'action_space'], {}), '(obs_space, action_space)\n', (762, 787), False, 'from ai_traineree.agents.ppo import PPOAgent\n')]
from unittest import TestCase from src.PyWash import SharedDataFrame from src.Exceptions import * import pandas as pd verbose = False class TestDecorators(TestCase): """ TestClass for SharedDataFrame methods """ def test_is_mergeable_column_names(self): if verbose: print("Testing: is_mergeable_columns") df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR']}) df2 = pd.DataFrame({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [2004, 2008, 2012, 2014]}) test1 = SharedDataFrame(df=df1, verbose=verbose) test2 = SharedDataFrame(df=df2, verbose=verbose) self.assertTrue(test1.is_mergeable(test2)) def test_is_mergeable_common_values(self): if verbose: print("Testing: is_mergeable_values") df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR']}) df2 = pd.DataFrame({'names': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [2004, 2008, 2012, 2014]}) test1 = SharedDataFrame(df=df1, verbose=verbose) test2 = SharedDataFrame(df=df2, verbose=verbose) self.assertTrue(test1.is_mergeable(test2)) def test_is_mergeable_false(self): if verbose: print("Testing: is_mergeable_false") df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR']}) df2 = pd.DataFrame({'names': ['Lisa', 'Bob', 'Jake', 'Sue', 'Bobby'], 'hire_date': [2004, 2008, 2012, 2014, 2019]}) test1 = SharedDataFrame(df=df1, verbose=verbose) test2 = SharedDataFrame(df=df2, verbose=verbose) self.assertFalse(test1.is_mergeable(test2)) def test_merge_on_column_names(self): if verbose: print("Testing: merge_on_columns") df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR']}) df2 = pd.DataFrame({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [2004, 2008, 2012, 2014]}) target = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR'], 'hire_date': [2008, 2012, 2004, 2014]}) test1 = SharedDataFrame(df=df1, verbose=verbose) test2 = SharedDataFrame(df=df2, verbose=verbose) test1.merge_into(test2) self.assertTrue(test1.get_dataframe().equals(target), "Successfully merged the 2 DataFrames") def test_merge_on_common_values(self): if verbose: print("Testing: merge_on_values") df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR']}) df2 = pd.DataFrame({'names': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [2004, 2008, 2012, 2014]}) target = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR'], 'names': ['Bob', 'Jake', 'Lisa', 'Sue'], 'hire_date': [2008, 2012, 2004, 2014]}) test1 = SharedDataFrame(df=df1, verbose=verbose) test2 = SharedDataFrame(df=df2, verbose=verbose) test1.merge_into(test2) if verbose: print(test1.get_dataframe()) print(target) self.assertTrue(test1.get_dataframe().equals(target), "Successfully merged the 2 DataFrames") def test_merge_on_false(self): if verbose: print("Testing: merge_false") df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR']}) df2 = pd.DataFrame({'names': ['Lisa', 'Bob', 'Jake', 'Sue', 'Bobby'], 'hire_date': [2004, 2008, 2012, 2014, 2019]}) test1 = SharedDataFrame(df=df1, verbose=verbose) test2 = SharedDataFrame(df=df2, verbose=verbose) if verbose: print(test1.get_dataframe()) with self.assertRaises(NotMergableError): test1.merge_into(test2) if verbose: print(test1.get_dataframe())
[ "pandas.DataFrame", "src.PyWash.SharedDataFrame" ]
[((351, 475), 'pandas.DataFrame', 'pd.DataFrame', (["{'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting',\n 'Engineering', 'Engineering', 'HR']}"], {}), "({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': [\n 'Accounting', 'Engineering', 'Engineering', 'HR']})\n", (363, 475), True, 'import pandas as pd\n'), ((513, 615), 'pandas.DataFrame', 'pd.DataFrame', (["{'employee': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [2004, 2008, 2012,\n 2014]}"], {}), "({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [\n 2004, 2008, 2012, 2014]})\n", (525, 615), True, 'import pandas as pd\n'), ((655, 695), 'src.PyWash.SharedDataFrame', 'SharedDataFrame', ([], {'df': 'df1', 'verbose': 'verbose'}), '(df=df1, verbose=verbose)\n', (670, 695), False, 'from src.PyWash import SharedDataFrame\n'), ((712, 752), 'src.PyWash.SharedDataFrame', 'SharedDataFrame', ([], {'df': 'df2', 'verbose': 'verbose'}), '(df=df2, verbose=verbose)\n', (727, 752), False, 'from src.PyWash import SharedDataFrame\n'), ((936, 1060), 'pandas.DataFrame', 'pd.DataFrame', (["{'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting',\n 'Engineering', 'Engineering', 'HR']}"], {}), "({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': [\n 'Accounting', 'Engineering', 'Engineering', 'HR']})\n", (948, 1060), True, 'import pandas as pd\n'), ((1098, 1197), 'pandas.DataFrame', 'pd.DataFrame', (["{'names': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [2004, 2008, 2012, 2014]\n }"], {}), "({'names': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [2004, \n 2008, 2012, 2014]})\n", (1110, 1197), True, 'import pandas as pd\n'), ((1237, 1277), 'src.PyWash.SharedDataFrame', 'SharedDataFrame', ([], {'df': 'df1', 'verbose': 'verbose'}), '(df=df1, verbose=verbose)\n', (1252, 1277), False, 'from src.PyWash import SharedDataFrame\n'), ((1294, 1334), 'src.PyWash.SharedDataFrame', 'SharedDataFrame', ([], {'df': 'df2', 'verbose': 'verbose'}), '(df=df2, verbose=verbose)\n', (1309, 1334), False, 'from src.PyWash import SharedDataFrame\n'), ((1509, 1633), 'pandas.DataFrame', 'pd.DataFrame', (["{'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting',\n 'Engineering', 'Engineering', 'HR']}"], {}), "({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': [\n 'Accounting', 'Engineering', 'Engineering', 'HR']})\n", (1521, 1633), True, 'import pandas as pd\n'), ((1671, 1784), 'pandas.DataFrame', 'pd.DataFrame', (["{'names': ['Lisa', 'Bob', 'Jake', 'Sue', 'Bobby'], 'hire_date': [2004, 2008,\n 2012, 2014, 2019]}"], {}), "({'names': ['Lisa', 'Bob', 'Jake', 'Sue', 'Bobby'], 'hire_date':\n [2004, 2008, 2012, 2014, 2019]})\n", (1683, 1784), True, 'import pandas as pd\n'), ((1825, 1865), 'src.PyWash.SharedDataFrame', 'SharedDataFrame', ([], {'df': 'df1', 'verbose': 'verbose'}), '(df=df1, verbose=verbose)\n', (1840, 1865), False, 'from src.PyWash import SharedDataFrame\n'), ((1882, 1922), 'src.PyWash.SharedDataFrame', 'SharedDataFrame', ([], {'df': 'df2', 'verbose': 'verbose'}), '(df=df2, verbose=verbose)\n', (1897, 1922), False, 'from src.PyWash import SharedDataFrame\n'), ((2099, 2223), 'pandas.DataFrame', 'pd.DataFrame', (["{'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting',\n 'Engineering', 'Engineering', 'HR']}"], {}), "({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': [\n 'Accounting', 'Engineering', 'Engineering', 'HR']})\n", (2111, 2223), True, 'import pandas as pd\n'), ((2261, 2363), 'pandas.DataFrame', 'pd.DataFrame', (["{'employee': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [2004, 2008, 2012,\n 2014]}"], {}), "({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [\n 2004, 2008, 2012, 2014]})\n", (2273, 2363), True, 'import pandas as pd\n'), ((2404, 2572), 'pandas.DataFrame', 'pd.DataFrame', (["{'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting',\n 'Engineering', 'Engineering', 'HR'], 'hire_date': [2008, 2012, 2004, 2014]}"], {}), "({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': [\n 'Accounting', 'Engineering', 'Engineering', 'HR'], 'hire_date': [2008, \n 2012, 2004, 2014]})\n", (2416, 2572), True, 'import pandas as pd\n'), ((2641, 2681), 'src.PyWash.SharedDataFrame', 'SharedDataFrame', ([], {'df': 'df1', 'verbose': 'verbose'}), '(df=df1, verbose=verbose)\n', (2656, 2681), False, 'from src.PyWash import SharedDataFrame\n'), ((2698, 2738), 'src.PyWash.SharedDataFrame', 'SharedDataFrame', ([], {'df': 'df2', 'verbose': 'verbose'}), '(df=df2, verbose=verbose)\n', (2713, 2738), False, 'from src.PyWash import SharedDataFrame\n'), ((2997, 3121), 'pandas.DataFrame', 'pd.DataFrame', (["{'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting',\n 'Engineering', 'Engineering', 'HR']}"], {}), "({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': [\n 'Accounting', 'Engineering', 'Engineering', 'HR']})\n", (3009, 3121), True, 'import pandas as pd\n'), ((3159, 3258), 'pandas.DataFrame', 'pd.DataFrame', (["{'names': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [2004, 2008, 2012, 2014]\n }"], {}), "({'names': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [2004, \n 2008, 2012, 2014]})\n", (3171, 3258), True, 'import pandas as pd\n'), ((3299, 3507), 'pandas.DataFrame', 'pd.DataFrame', (["{'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting',\n 'Engineering', 'Engineering', 'HR'], 'names': ['Bob', 'Jake', 'Lisa',\n 'Sue'], 'hire_date': [2008, 2012, 2004, 2014]}"], {}), "({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': [\n 'Accounting', 'Engineering', 'Engineering', 'HR'], 'names': ['Bob',\n 'Jake', 'Lisa', 'Sue'], 'hire_date': [2008, 2012, 2004, 2014]})\n", (3311, 3507), True, 'import pandas as pd\n'), ((3608, 3648), 'src.PyWash.SharedDataFrame', 'SharedDataFrame', ([], {'df': 'df1', 'verbose': 'verbose'}), '(df=df1, verbose=verbose)\n', (3623, 3648), False, 'from src.PyWash import SharedDataFrame\n'), ((3665, 3705), 'src.PyWash.SharedDataFrame', 'SharedDataFrame', ([], {'df': 'df2', 'verbose': 'verbose'}), '(df=df2, verbose=verbose)\n', (3680, 3705), False, 'from src.PyWash import SharedDataFrame\n'), ((4039, 4163), 'pandas.DataFrame', 'pd.DataFrame', (["{'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting',\n 'Engineering', 'Engineering', 'HR']}"], {}), "({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': [\n 'Accounting', 'Engineering', 'Engineering', 'HR']})\n", (4051, 4163), True, 'import pandas as pd\n'), ((4201, 4314), 'pandas.DataFrame', 'pd.DataFrame', (["{'names': ['Lisa', 'Bob', 'Jake', 'Sue', 'Bobby'], 'hire_date': [2004, 2008,\n 2012, 2014, 2019]}"], {}), "({'names': ['Lisa', 'Bob', 'Jake', 'Sue', 'Bobby'], 'hire_date':\n [2004, 2008, 2012, 2014, 2019]})\n", (4213, 4314), True, 'import pandas as pd\n'), ((4355, 4395), 'src.PyWash.SharedDataFrame', 'SharedDataFrame', ([], {'df': 'df1', 'verbose': 'verbose'}), '(df=df1, verbose=verbose)\n', (4370, 4395), False, 'from src.PyWash import SharedDataFrame\n'), ((4412, 4452), 'src.PyWash.SharedDataFrame', 'SharedDataFrame', ([], {'df': 'df2', 'verbose': 'verbose'}), '(df=df2, verbose=verbose)\n', (4427, 4452), False, 'from src.PyWash import SharedDataFrame\n')]
import os import logging import environ from pathlib import Path SUPPORTED_NONLOCALES = ['media', 'admin', 'static'] # Build paths inside the project like this: BASE_DIR / 'subdir'. PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__) + "../../../") env = environ.Env() # reading .env file environ.Env.read_env() env = environ.Env( # set casting, default value DEBUG=(bool, True) ) # Build paths inside the project like this: BASE_DIR / 'subdir'. PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__) + "../../../") # Take environment variables from .env file environ.Env.read_env(os.path.join(PROJECT_ROOT, '.env')) # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env("SECRET_KEY", default="unsafe-secret-key") # SECURITY WARNING: don't run with debug turned on in production! # Debugging displays nice error messages, but leaks memory. Set this to False # on all server instances and True only for development. DEBUG = env('DEBUG') ALLOWED_HOSTS = ["localhost", "127.0.0.1"] # Application definition INSTALLED_APPS = [ #Django default apps 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', #Third party apps 'compressor', 'django_nose', 'django_extensions', 'debug_toolbar', #Local apps #Application base 'Application', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', # third party middleware 'whitenoise.middleware.WhiteNoiseMiddleware', 'debug_toolbar.middleware.DebugToolbarMiddleware', ] DEBUG_TOOLBAR_PANELS = [ 'debug_toolbar.panels.history.HistoryPanel', 'debug_toolbar.panels.versions.VersionsPanel', 'debug_toolbar.panels.timer.TimerPanel', 'debug_toolbar.panels.settings.SettingsPanel', 'debug_toolbar.panels.headers.HeadersPanel', 'debug_toolbar.panels.request.RequestPanel', 'debug_toolbar.panels.sql.SQLPanel', 'debug_toolbar.panels.staticfiles.StaticFilesPanel', 'debug_toolbar.panels.templates.TemplatesPanel', 'debug_toolbar.panels.cache.CachePanel', 'debug_toolbar.panels.signals.SignalsPanel', 'debug_toolbar.panels.logging.LoggingPanel', 'debug_toolbar.panels.redirects.RedirectsPanel', 'debug_toolbar.panels.profiling.ProfilingPanel', ] ROOT_URLCONF = 'config.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ # insert your TEMPLATE_DIRS here os.path.join(PROJECT_ROOT, 'templates'), os.path.join(PROJECT_ROOT, 'templates/.base'), os.path.join(PROJECT_ROOT, 'templates/layout'), ], 'APP_DIRS': True, 'OPTIONS': { 'debug': DEBUG, 'context_processors': [ # Default context processors 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', # Custom context processors here #'config.context_processors.custom_context_processor', ], }, }, ] WSGI_APPLICATION = 'config.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # By default, be at least somewhat secure with our session cookies. SESSION_COOKIE_HTTPONLY = True # Set this to true if you are using https SESSION_COOKIE_SECURE = False # Absolute filesystem path to the directory that will hold user-uploaded files. MEDIA_ROOT = os.path.join(PROJECT_ROOT, 'media') # URL that handles the media served from MEDIA_ROOT. Make sure to use a MEDIA_URL = '/media/' # Absolute path to the directory static files should be collected to. STATIC_ROOT = 'static/' # URL prefix for static files. STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = [ # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ] DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' # Memorycached SESSIONS_ENGINE='django.contrib.sessions.backends.cache' CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache', 'LOCATION': '127.0.0.1:11211', } } # Argon2 password hashing PASSWORD_HASHERS = [ 'django.contrib.auth.hashers.Argon2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher', 'django.contrib.auth.hashers.BCryptSHA256PasswordHasher', # Custom hasher 'Application.hashers.PBKDF2WrappedSHA1PasswordHasher', ] # cacheable files and compression support STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' STATICFILES_FINDERS = ( # django contrib default finders 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # third party finders 'compressor.finders.CompressorFinder', ) TEST_RUNNER = 'django_nose.NoseTestSuiteRunner' INTERNAL_IPS = ['127.0.0.1']
[ "os.path.dirname", "os.path.join", "environ.Env.read_env", "environ.Env" ]
[((265, 278), 'environ.Env', 'environ.Env', ([], {}), '()\n', (276, 278), False, 'import environ\n'), ((299, 321), 'environ.Env.read_env', 'environ.Env.read_env', ([], {}), '()\n', (319, 321), False, 'import environ\n'), ((329, 360), 'environ.Env', 'environ.Env', ([], {'DEBUG': '(bool, True)'}), '(DEBUG=(bool, True))\n', (340, 360), False, 'import environ\n'), ((4882, 4917), 'os.path.join', 'os.path.join', (['PROJECT_ROOT', '"""media"""'], {}), "(PROJECT_ROOT, 'media')\n", (4894, 4917), False, 'import os\n'), ((605, 639), 'os.path.join', 'os.path.join', (['PROJECT_ROOT', '""".env"""'], {}), "(PROJECT_ROOT, '.env')\n", (617, 639), False, 'import os\n'), ((216, 241), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (231, 241), False, 'import os\n'), ((497, 522), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (512, 522), False, 'import os\n'), ((2933, 2972), 'os.path.join', 'os.path.join', (['PROJECT_ROOT', '"""templates"""'], {}), "(PROJECT_ROOT, 'templates')\n", (2945, 2972), False, 'import os\n'), ((2986, 3031), 'os.path.join', 'os.path.join', (['PROJECT_ROOT', '"""templates/.base"""'], {}), "(PROJECT_ROOT, 'templates/.base')\n", (2998, 3031), False, 'import os\n'), ((3045, 3091), 'os.path.join', 'os.path.join', (['PROJECT_ROOT', '"""templates/layout"""'], {}), "(PROJECT_ROOT, 'templates/layout')\n", (3057, 3091), False, 'import os\n')]
# Generated by Django 3.1.2 on 2021-01-25 08:11 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='TwitterUser', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('screen_name', models.CharField(max_length=15)), ], options={ 'db_table': 'twitter_users', }, ), migrations.CreateModel( name='Tweet', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('tweet_text', models.CharField(max_length=280)), ('tweet_date', models.DateTimeField()), ('tweet_lang', models.CharField(max_length=3, null=True)), ('tweet_id', models.CharField(db_index=True, max_length=20, null=True)), ('tweet_info', models.JSONField()), ('is_retweet', models.BooleanField(default=True)), ('retweet_count', models.IntegerField(null=True)), ('twitter_user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='db.twitteruser')), ], options={ 'db_table': 'tweets', }, ), ]
[ "django.db.models.CharField", "django.db.models.ForeignKey", "django.db.models.JSONField", "django.db.models.BooleanField", "django.db.models.AutoField", "django.db.models.IntegerField", "django.db.models.DateTimeField" ]
[((340, 433), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (356, 433), False, 'from django.db import migrations, models\n'), ((464, 495), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(15)'}), '(max_length=15)\n', (480, 495), False, 'from django.db import migrations, models\n'), ((708, 801), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (724, 801), False, 'from django.db import migrations, models\n'), ((831, 863), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(280)'}), '(max_length=280)\n', (847, 863), False, 'from django.db import migrations, models\n'), ((897, 919), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {}), '()\n', (917, 919), False, 'from django.db import migrations, models\n'), ((953, 994), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(3)', 'null': '(True)'}), '(max_length=3, null=True)\n', (969, 994), False, 'from django.db import migrations, models\n'), ((1026, 1083), 'django.db.models.CharField', 'models.CharField', ([], {'db_index': '(True)', 'max_length': '(20)', 'null': '(True)'}), '(db_index=True, max_length=20, null=True)\n', (1042, 1083), False, 'from django.db import migrations, models\n'), ((1117, 1135), 'django.db.models.JSONField', 'models.JSONField', ([], {}), '()\n', (1133, 1135), False, 'from django.db import migrations, models\n'), ((1169, 1202), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(True)'}), '(default=True)\n', (1188, 1202), False, 'from django.db import migrations, models\n'), ((1239, 1269), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'null': '(True)'}), '(null=True)\n', (1258, 1269), False, 'from django.db import migrations, models\n'), ((1305, 1393), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""db.twitteruser"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'db.twitteruser')\n", (1322, 1393), False, 'from django.db import migrations, models\n')]
from sanic import Blueprint from sanic.response import json info = Blueprint('info', url_prefix='/info') @info.route("/ping") async def ping(request): """ $ curl localhost:1700/info/ping :param request: :return: """ return json({ "hello": "world" }) @info.route('/env/<tag>') async def env_handler(request, tag): """ $ curl localhost:1700/info/env/PATH :param request: :param tag: :return: """ import os return json({tag: os.environ.get(tag)}) @info.post('/echo/<tag>') async def echo(request, tag): """ $ curl -d '{"key1":"value1", "key2":"value2"}' \ -H "Content-Type: application/json" -X POST \ localhost:1700/info/echo/hi | json :param request: :param tag: :return: """ data=request.json print("..", data) return json({tag:'POST request - {}'.format(request.json), 'keys': list(data.keys()), })
[ "os.environ.get", "sanic.response.json", "sanic.Blueprint" ]
[((68, 105), 'sanic.Blueprint', 'Blueprint', (['"""info"""'], {'url_prefix': '"""/info"""'}), "('info', url_prefix='/info')\n", (77, 105), False, 'from sanic import Blueprint\n'), ((249, 273), 'sanic.response.json', 'json', (["{'hello': 'world'}"], {}), "({'hello': 'world'})\n", (253, 273), False, 'from sanic.response import json\n'), ((481, 500), 'os.environ.get', 'os.environ.get', (['tag'], {}), '(tag)\n', (495, 500), False, 'import os\n')]
from django.shortcuts import render # Create your views here. # -*- coding: utf-8 -*- import json import datetime from DataBase import DBOPs from django.http import HttpResponse from chatbot import aimlKernel def chat(request): """ Function: 对话接口 Args: request: 请求 Returns: 返回Http报文 """ dic = {} if request.method == 'GET': dic['botResponse'] = aimlKernel.k.respond(request.GET.get('ask', '无语'), request.GET.get('sessionid','test')).\ replace(' ', '') DBOPs.InsertDB(request.GET.get('sessionid', 'test'), request.GET.get('ask', '无语'), dic['botResponse']) dic['time'] = datetime.datetime.now().strftime(('%Y-%m-%d %H:%M:%S')) dic['sessionid'] = request.GET.get('sessionid','test') return HttpResponse(json.dumps(dic, ensure_ascii=False)) else: dic['message'] = u'方法错误' return HttpResponse(json.dumps(dic, ensure_ascii=False))
[ "datetime.datetime.now", "json.dumps" ]
[((809, 844), 'json.dumps', 'json.dumps', (['dic'], {'ensure_ascii': '(False)'}), '(dic, ensure_ascii=False)\n', (819, 844), False, 'import json\n'), ((917, 952), 'json.dumps', 'json.dumps', (['dic'], {'ensure_ascii': '(False)'}), '(dic, ensure_ascii=False)\n', (927, 952), False, 'import json\n'), ((662, 685), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (683, 685), False, 'import datetime\n')]
############### XML 1 - Find the Score ################ import sys import xml.etree.ElementTree as etree def get_attr_number(node): # your code goes here count = 0 for i in root.iter(): count += len(i.attrib) return count if __name__ == '__main__': sys.stdin.readline() xml = sys.stdin.read() tree = etree.ElementTree(etree.fromstring(xml)) root = tree.getroot() print(get_attr_number(root)) ############### XML2 - Find the Maximum Depth ################ import xml.etree.ElementTree as etree maxdepth = 0 def depth(elem, level): global maxdepth # your code goes here level += 1 if level >= maxdepth: maxdepth = level for i in elem: depth(i, level) if __name__ == '__main__': n = int(input()) xml = "" for i in range(n): xml = xml + input() + "\n" tree = etree.ElementTree(etree.fromstring(xml)) depth(tree.getroot(), -1) print(maxdepth)
[ "sys.stdin.read", "sys.stdin.readline", "xml.etree.ElementTree.fromstring" ]
[((298, 318), 'sys.stdin.readline', 'sys.stdin.readline', ([], {}), '()\n', (316, 318), False, 'import sys\n'), ((330, 346), 'sys.stdin.read', 'sys.stdin.read', ([], {}), '()\n', (344, 346), False, 'import sys\n'), ((377, 398), 'xml.etree.ElementTree.fromstring', 'etree.fromstring', (['xml'], {}), '(xml)\n', (393, 398), True, 'import xml.etree.ElementTree as etree\n'), ((933, 954), 'xml.etree.ElementTree.fromstring', 'etree.fromstring', (['xml'], {}), '(xml)\n', (949, 954), True, 'import xml.etree.ElementTree as etree\n')]
#! /usr/bin/env python from __future__ import unicode_literals from PIL import Image from subprocess import check_call from concurrent import futures import subprocess import os import io import subprocess import sys from os import listdir from os.path import isfile, join import psutil import time vers_to_run = [ 3, 4, 5, 7, 8, 9,10,11,12,58,59,60,61,62,63,64] in_vers = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 6, 6, 6] num_threads = 14 # The directory to convert datasetpath = '/datasets/voc-2007/' def convert_img(file_name,in_img_dir,out_img_dir): # Make temp directory temp_dir = 'temp_'+str(os.getpid()) subprocess.call('mkdir -p '+temp_dir,shell=True) # Convert to png # im = Image.open(in_img_dir+file_name) im.save(temp_dir+'/'+file_name+'_temp.png') # Run the given pipeline on the png subprocess.call('../common/pipeline_V'+str(version) + '.o ' + temp_dir + '/' + file_name + '_temp.png ' + temp_dir + '/', shell=True) # Convert back to jpeg and save im = Image.open(temp_dir+'/'+'output.png') im.save(out_img_dir+'/'+file_name) # Delete temp directory subprocess.call('rm -rf '+temp_dir,shell=True) for i, version in enumerate(vers_to_run): in_version = in_vers[i] subprocess.call('make --directory ../common/ version='+str(version),shell=True) # Copy all but the JPEG images subprocess.call('rsync -av '+ datasetpath+'/v'+str(in_version)+'/ '+ datasetpath+'/v'+str(version)+' '+ '--exclude VOC2007/JPEGImages', shell=True) in_img_dir = datasetpath+'v'+str(in_version)+'/VOC2007/JPEGImages/' out_img_dir = datasetpath+'v'+str(version)+'/VOC2007/JPEGImages/' # Make the directory for this section subprocess.call('mkdir -p '+out_img_dir,shell=True) # Get list of files in directory file_list = [f for f in listdir(in_img_dir) if isfile(join(in_img_dir, f))] file_list.sort() with futures.ProcessPoolExecutor(max_workers=num_threads) as executor: fs = [executor.submit(convert_img,file_name,in_img_dir,out_img_dir) for file_name in file_list] for i, f in enumerate(futures.as_completed(fs)): # Write progress to error so that it can be seen sys.stderr.write( \ "Converted Image: {} / {} \r".format(i, len(file_list)))
[ "os.getpid", "concurrent.futures.ProcessPoolExecutor", "PIL.Image.open", "subprocess.call", "os.path.join", "os.listdir", "concurrent.futures.as_completed" ]
[((942, 993), 'subprocess.call', 'subprocess.call', (["('mkdir -p ' + temp_dir)"], {'shell': '(True)'}), "('mkdir -p ' + temp_dir, shell=True)\n", (957, 993), False, 'import subprocess\n'), ((1020, 1054), 'PIL.Image.open', 'Image.open', (['(in_img_dir + file_name)'], {}), '(in_img_dir + file_name)\n', (1030, 1054), False, 'from PIL import Image\n'), ((1379, 1420), 'PIL.Image.open', 'Image.open', (["(temp_dir + '/' + 'output.png')"], {}), "(temp_dir + '/' + 'output.png')\n", (1389, 1420), False, 'from PIL import Image\n'), ((1518, 1567), 'subprocess.call', 'subprocess.call', (["('rm -rf ' + temp_dir)"], {'shell': '(True)'}), "('rm -rf ' + temp_dir, shell=True)\n", (1533, 1567), False, 'import subprocess\n'), ((2167, 2221), 'subprocess.call', 'subprocess.call', (["('mkdir -p ' + out_img_dir)"], {'shell': '(True)'}), "('mkdir -p ' + out_img_dir, shell=True)\n", (2182, 2221), False, 'import subprocess\n'), ((2405, 2457), 'concurrent.futures.ProcessPoolExecutor', 'futures.ProcessPoolExecutor', ([], {'max_workers': 'num_threads'}), '(max_workers=num_threads)\n', (2432, 2457), False, 'from concurrent import futures\n'), ((927, 938), 'os.getpid', 'os.getpid', ([], {}), '()\n', (936, 938), False, 'import os\n'), ((2283, 2302), 'os.listdir', 'listdir', (['in_img_dir'], {}), '(in_img_dir)\n', (2290, 2302), False, 'from os import listdir\n'), ((2599, 2623), 'concurrent.futures.as_completed', 'futures.as_completed', (['fs'], {}), '(fs)\n', (2619, 2623), False, 'from concurrent import futures\n'), ((2356, 2375), 'os.path.join', 'join', (['in_img_dir', 'f'], {}), '(in_img_dir, f)\n', (2360, 2375), False, 'from os.path import isfile, join\n')]
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import pymongo from scrapy.conf import settings from scrapy.exceptions import DropItem from scrapy import log class CoinnewsPipeline(object): collection_name = 'coin_articles' def __init__(self, mongo_uri, mongo_db): self.mongo_uri = mongo_uri self.mongo_db = mongo_db @classmethod def from_crawler(cls, crawler): return cls( mongo_uri=crawler.settings.get('MONGO_URI'), mongo_db=crawler.settings.get('MONGO_DATABASE', 'items') ) def open_spider(self, spider): self.client = pymongo.MongoClient(self.mongo_uri) self.db = self.client[self.mongo_db] def close_spider(self, spider): self.client.close() def process_item(self, item, spider): for data in item: if not data: raise DropItem("Missing data!") self.db[self.collection_name].insert_one(dict(item)) log.msg("Question added to MongoDB database!", level=log.DEBUG, spider=spider) return item
[ "pymongo.MongoClient", "scrapy.log.msg", "scrapy.exceptions.DropItem" ]
[((762, 797), 'pymongo.MongoClient', 'pymongo.MongoClient', (['self.mongo_uri'], {}), '(self.mongo_uri)\n', (781, 797), False, 'import pymongo\n'), ((1119, 1197), 'scrapy.log.msg', 'log.msg', (['"""Question added to MongoDB database!"""'], {'level': 'log.DEBUG', 'spider': 'spider'}), "('Question added to MongoDB database!', level=log.DEBUG, spider=spider)\n", (1126, 1197), False, 'from scrapy import log\n'), ((1024, 1049), 'scrapy.exceptions.DropItem', 'DropItem', (['"""Missing data!"""'], {}), "('Missing data!')\n", (1032, 1049), False, 'from scrapy.exceptions import DropItem\n')]
from __future__ import annotations import asyncio import datetime import logging from typing import TYPE_CHECKING from pymongo import UpdateMany, InsertOne from matchengine.internals.typing.matchengine_types import RunLogUpdateTask, UpdateTask, MongoQuery from matchengine.internals.utilities.list_utils import chunk_list from matchengine.internals.utilities.utilities import perform_db_call logging.basicConfig(level=logging.INFO) log = logging.getLogger('matchengine') if TYPE_CHECKING: from matchengine.internals.engine import MatchEngine async def async_update_matches_by_protocol_no(matchengine: MatchEngine, protocol_no: str): """ Update trial matches by diff'ing the newly created trial matches against existing matches in the db. Delete matches by adding {is_disabled: true} and insert all new matches. """ matches_by_sample_id = matchengine.matches.get(protocol_no, dict()) updated_time = datetime.datetime.now() for matches in matches_by_sample_id.values(): for match in matches: match['_updated'] = updated_time if protocol_no not in matchengine.matches or protocol_no not in matchengine._trials_to_match_on: log.info(f"{matchengine.match_criteria_transform.trial_collection} {protocol_no} was not matched on, not updating {matchengine.match_criteria_transform.trial_collection} matches") if not matchengine.skip_run_log_entry: matchengine.task_q.put_nowait(RunLogUpdateTask(protocol_no)) await matchengine.task_q.join() return log.info(f"Updating matches for {protocol_no}") if not matchengine.drop: # If no matches are found, disable all match records by sample id if not matchengine.matches[protocol_no]: for chunk in chunk_list(list(matchengine.clinical_ids_for_protocol_cache[protocol_no]), matchengine.chunk_size): matchengine.task_q.put_nowait( UpdateTask( [UpdateMany(filter={matchengine.match_criteria_transform.match_trial_link_id: protocol_no, 'clinical_id': {'$in': chunk}}, update={'$set': {"is_disabled": True, '_updated': updated_time}})], protocol_no ) ) else: # Get matches to disable and issue queries matches_to_disable = await get_all_except(matchengine, protocol_no, matches_by_sample_id) delete_ops = await get_delete_ops(matches_to_disable, matchengine) matchengine.task_q.put_nowait(UpdateTask(delete_ops, protocol_no)) for sample_id in matches_by_sample_id.keys(): if not matchengine.drop: new_matches_hashes = [match['hash'] for match in matches_by_sample_id[sample_id]] # get existing matches in db with identical hashes to newly found matches existing = await get_existing_matches(matchengine, new_matches_hashes) existing_hashes = {result['hash'] for result in existing} disabled = {result['hash'] for result in existing if result['is_disabled']} # insert new matches if they don't already exist. disable everything else matches_to_insert = get_matches_to_insert(matches_by_sample_id, existing_hashes, sample_id) matches_to_disable = await get_matches_to_disable(matchengine, new_matches_hashes, protocol_no, sample_id) # flip is_disabled flag if a new match generated during run matches hash of an existing matches_to_mark_available = [m for m in matches_by_sample_id[sample_id] if m['hash'] in disabled] ops = get_update_operations(matches_to_disable, matches_to_insert, matches_to_mark_available, matchengine) else: ops = [InsertOne(document=trial_match) for trial_match in matches_by_sample_id[sample_id]] matchengine.task_q.put_nowait(UpdateTask(ops, protocol_no)) if not matchengine.skip_run_log_entry: matchengine.task_q.put_nowait(RunLogUpdateTask(protocol_no)) await matchengine.task_q.join() async def get_all_except(matchengine: MatchEngine, protocol_no: str, trial_matches_by_sample_id: dict) -> list: """Return all matches except ones matching current protocol_no""" # get clinical ids with matches clinical_ids = {matchengine.sample_mapping[sample_id] for sample_id in trial_matches_by_sample_id.keys()} # if protocol has been run previously, subtract clinical ids from current run from # previously run clinical ids for a specific protocol. The remainder are ids # which were run previously, but not in the current run. if protocol_no in matchengine.clinical_run_log_entries: clinical_ids = matchengine.clinical_run_log_entries[protocol_no] - clinical_ids query = { matchengine.match_criteria_transform.match_trial_link_id: protocol_no, "clinical_id": { '$in': [clinical_id for clinical_id in clinical_ids] } } projection = { '_id': 1, 'hash': 1, 'clinical_id': 1 } results = await perform_db_call(matchengine, collection=matchengine.trial_match_collection, query=MongoQuery(query), projection=projection) return [result for result in results] async def get_delete_ops(matches_to_disable: list, matchengine: MatchEngine) -> list: updated_time = datetime.datetime.now() hashes = [result['hash'] for result in matches_to_disable] ops = list() for chunk in chunk_list(hashes, matchengine.chunk_size): ops.append(UpdateMany(filter={'hash': {'$in': chunk}}, update={'$set': {"is_disabled": True, '_updated': updated_time}})) return ops async def get_existing_matches(matchengine: MatchEngine, new_matches_hashes: list) -> list: """ Get matches in db which have the same hashes as newly found matches. :param matchengine: :param new_matches_hashes: :return: """ matches_to_not_change_query = MongoQuery({'hash': {'$in': new_matches_hashes}}) projection = {"hash": 1, "is_disabled": 1} matches = await asyncio.gather( perform_db_call(matchengine, matchengine.trial_match_collection, matches_to_not_change_query, projection) ) return matches[0] async def get_matches_to_disable(matchengine: MatchEngine, new_matches_hashes: list, protocol_no: str, sample_id: str) -> list: """ Get matches to disable by looking for existing, enabled matches whose hashes are not present in newly generated matches during current run. Done for every sample_id :param matchengine: :param new_matches_hashes: :param protocol_no: :param sample_id: :return: """ query = { matchengine.match_criteria_transform.match_trial_link_id: protocol_no, 'sample_id': sample_id, 'is_disabled': False, 'hash': { '$nin': new_matches_hashes } } matches_to_disable_query = MongoQuery(query) projection = {"hash": 1, "is_disabled": 1} matches = await asyncio.gather( perform_db_call(matchengine, matchengine.trial_match_collection, matches_to_disable_query, projection) ) return matches[0] def get_update_operations(matches_to_disable: list, matches_to_insert: list, matches_to_mark_available: list, matchengine: MatchEngine) -> list: ops = list() updated_time = datetime.datetime.now() disable_hashes = [trial_match['hash'] for trial_match in matches_to_disable] for chunk in chunk_list(disable_hashes, matchengine.chunk_size): ops.append(UpdateMany(filter={'hash': {'$in': chunk}}, update={'$set': {'is_disabled': True, '_updated': updated_time}})) for to_insert in matches_to_insert: ops.append(InsertOne(document=to_insert)) available_hashes = [trial_match['hash'] for trial_match in matches_to_mark_available] for chunk in chunk_list(available_hashes, matchengine.chunk_size): ops.append(UpdateMany(filter={'hash': {'$in': chunk}}, update={'$set': {'is_disabled': False, '_updated': updated_time}})) return ops def get_matches_to_insert(matches_by_sample_id: list, existing_hashes: set, sample_id: str) -> list: return [m for m in matches_by_sample_id[sample_id] if m['hash'] not in existing_hashes]
[ "matchengine.internals.typing.matchengine_types.UpdateTask", "logging.basicConfig", "pymongo.UpdateMany", "matchengine.internals.utilities.list_utils.chunk_list", "matchengine.internals.typing.matchengine_types.RunLogUpdateTask", "matchengine.internals.utilities.utilities.perform_db_call", "matchengine.internals.typing.matchengine_types.MongoQuery", "datetime.datetime.now", "logging.getLogger", "pymongo.InsertOne" ]
[((396, 435), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (415, 435), False, 'import logging\n'), ((442, 474), 'logging.getLogger', 'logging.getLogger', (['"""matchengine"""'], {}), "('matchengine')\n", (459, 474), False, 'import logging\n'), ((932, 955), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (953, 955), False, 'import datetime\n'), ((6146, 6169), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (6167, 6169), False, 'import datetime\n'), ((6267, 6309), 'matchengine.internals.utilities.list_utils.chunk_list', 'chunk_list', (['hashes', 'matchengine.chunk_size'], {}), '(hashes, matchengine.chunk_size)\n', (6277, 6309), False, 'from matchengine.internals.utilities.list_utils import chunk_list\n'), ((6771, 6820), 'matchengine.internals.typing.matchengine_types.MongoQuery', 'MongoQuery', (["{'hash': {'$in': new_matches_hashes}}"], {}), "({'hash': {'$in': new_matches_hashes}})\n", (6781, 6820), False, 'from matchengine.internals.typing.matchengine_types import RunLogUpdateTask, UpdateTask, MongoQuery\n'), ((7915, 7932), 'matchengine.internals.typing.matchengine_types.MongoQuery', 'MongoQuery', (['query'], {}), '(query)\n', (7925, 7932), False, 'from matchengine.internals.typing.matchengine_types import RunLogUpdateTask, UpdateTask, MongoQuery\n'), ((8488, 8511), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (8509, 8511), False, 'import datetime\n'), ((8610, 8660), 'matchengine.internals.utilities.list_utils.chunk_list', 'chunk_list', (['disable_hashes', 'matchengine.chunk_size'], {}), '(disable_hashes, matchengine.chunk_size)\n', (8620, 8660), False, 'from matchengine.internals.utilities.list_utils import chunk_list\n'), ((9067, 9119), 'matchengine.internals.utilities.list_utils.chunk_list', 'chunk_list', (['available_hashes', 'matchengine.chunk_size'], {}), '(available_hashes, matchengine.chunk_size)\n', (9077, 9119), False, 'from matchengine.internals.utilities.list_utils import chunk_list\n'), ((4518, 4546), 'matchengine.internals.typing.matchengine_types.UpdateTask', 'UpdateTask', (['ops', 'protocol_no'], {}), '(ops, protocol_no)\n', (4528, 4546), False, 'from matchengine.internals.typing.matchengine_types import RunLogUpdateTask, UpdateTask, MongoQuery\n'), ((4630, 4659), 'matchengine.internals.typing.matchengine_types.RunLogUpdateTask', 'RunLogUpdateTask', (['protocol_no'], {}), '(protocol_no)\n', (4646, 4659), False, 'from matchengine.internals.typing.matchengine_types import RunLogUpdateTask, UpdateTask, MongoQuery\n'), ((6330, 6443), 'pymongo.UpdateMany', 'UpdateMany', ([], {'filter': "{'hash': {'$in': chunk}}", 'update': "{'$set': {'is_disabled': True, '_updated': updated_time}}"}), "(filter={'hash': {'$in': chunk}}, update={'$set': {'is_disabled':\n True, '_updated': updated_time}})\n", (6340, 6443), False, 'from pymongo import UpdateMany, InsertOne\n'), ((6912, 7021), 'matchengine.internals.utilities.utilities.perform_db_call', 'perform_db_call', (['matchengine', 'matchengine.trial_match_collection', 'matches_to_not_change_query', 'projection'], {}), '(matchengine, matchengine.trial_match_collection,\n matches_to_not_change_query, projection)\n', (6927, 7021), False, 'from matchengine.internals.utilities.utilities import perform_db_call\n'), ((8024, 8130), 'matchengine.internals.utilities.utilities.perform_db_call', 'perform_db_call', (['matchengine', 'matchengine.trial_match_collection', 'matches_to_disable_query', 'projection'], {}), '(matchengine, matchengine.trial_match_collection,\n matches_to_disable_query, projection)\n', (8039, 8130), False, 'from matchengine.internals.utilities.utilities import perform_db_call\n'), ((8681, 8794), 'pymongo.UpdateMany', 'UpdateMany', ([], {'filter': "{'hash': {'$in': chunk}}", 'update': "{'$set': {'is_disabled': True, '_updated': updated_time}}"}), "(filter={'hash': {'$in': chunk}}, update={'$set': {'is_disabled':\n True, '_updated': updated_time}})\n", (8691, 8794), False, 'from pymongo import UpdateMany, InsertOne\n'), ((8928, 8957), 'pymongo.InsertOne', 'InsertOne', ([], {'document': 'to_insert'}), '(document=to_insert)\n', (8937, 8957), False, 'from pymongo import UpdateMany, InsertOne\n'), ((9140, 9254), 'pymongo.UpdateMany', 'UpdateMany', ([], {'filter': "{'hash': {'$in': chunk}}", 'update': "{'$set': {'is_disabled': False, '_updated': updated_time}}"}), "(filter={'hash': {'$in': chunk}}, update={'$set': {'is_disabled':\n False, '_updated': updated_time}})\n", (9150, 9254), False, 'from pymongo import UpdateMany, InsertOne\n'), ((1459, 1488), 'matchengine.internals.typing.matchengine_types.RunLogUpdateTask', 'RunLogUpdateTask', (['protocol_no'], {}), '(protocol_no)\n', (1475, 1488), False, 'from matchengine.internals.typing.matchengine_types import RunLogUpdateTask, UpdateTask, MongoQuery\n'), ((2706, 2741), 'matchengine.internals.typing.matchengine_types.UpdateTask', 'UpdateTask', (['delete_ops', 'protocol_no'], {}), '(delete_ops, protocol_no)\n', (2716, 2741), False, 'from matchengine.internals.typing.matchengine_types import RunLogUpdateTask, UpdateTask, MongoQuery\n'), ((4377, 4408), 'pymongo.InsertOne', 'InsertOne', ([], {'document': 'trial_match'}), '(document=trial_match)\n', (4386, 4408), False, 'from pymongo import UpdateMany, InsertOne\n'), ((5918, 5935), 'matchengine.internals.typing.matchengine_types.MongoQuery', 'MongoQuery', (['query'], {}), '(query)\n', (5928, 5935), False, 'from matchengine.internals.typing.matchengine_types import RunLogUpdateTask, UpdateTask, MongoQuery\n'), ((2015, 2211), 'pymongo.UpdateMany', 'UpdateMany', ([], {'filter': "{matchengine.match_criteria_transform.match_trial_link_id: protocol_no,\n 'clinical_id': {'$in': chunk}}", 'update': "{'$set': {'is_disabled': True, '_updated': updated_time}}"}), "(filter={matchengine.match_criteria_transform.match_trial_link_id:\n protocol_no, 'clinical_id': {'$in': chunk}}, update={'$set': {\n 'is_disabled': True, '_updated': updated_time}})\n", (2025, 2211), False, 'from pymongo import UpdateMany, InsertOne\n')]
import aquests CONCURRENT = 50 MAX_REQ = 1000 _ID = 0 def makeload (response): global _ID print (response.meta ['_id'], response.code, response.msg, response.version) if aquests.countreq () < MAX_REQ: aquests.get ("http://127.0.0.1:5000/", meta = {'_id': _ID}) _ID += 1 def test_makeload (): aquests.configure (CONCURRENT, callback = makeload) # cioncurrent for i in range (CONCURRENT): aquests.get ("http://127.0.0.1:5000/", meta = {'_id': _ID}) _ID += 1 aquests.fetchall ()
[ "aquests.fetchall", "aquests.countreq", "aquests.get", "aquests.configure" ]
[((305, 353), 'aquests.configure', 'aquests.configure', (['CONCURRENT'], {'callback': 'makeload'}), '(CONCURRENT, callback=makeload)\n', (322, 353), False, 'import aquests\n'), ((479, 497), 'aquests.fetchall', 'aquests.fetchall', ([], {}), '()\n', (495, 497), False, 'import aquests\n'), ((175, 193), 'aquests.countreq', 'aquests.countreq', ([], {}), '()\n', (191, 193), False, 'import aquests\n'), ((208, 264), 'aquests.get', 'aquests.get', (['"""http://127.0.0.1:5000/"""'], {'meta': "{'_id': _ID}"}), "('http://127.0.0.1:5000/', meta={'_id': _ID})\n", (219, 264), False, 'import aquests\n'), ((404, 460), 'aquests.get', 'aquests.get', (['"""http://127.0.0.1:5000/"""'], {'meta': "{'_id': _ID}"}), "('http://127.0.0.1:5000/', meta={'_id': _ID})\n", (415, 460), False, 'import aquests\n')]
import logging import random from . import formulas from . import temperature from .bond import Bond from .bond import possible_group_bonds from .coderack import coderack from .correspondence import Correspondence from .group import Group from .letter import Letter from .replacement import Replacement from .slipnet import slipnet from .workspace_formulas import choose_bond_facet from .workspace_formulas import choose_directed_neighbor from .workspace_formulas import choose_neighbour from .workspace_formulas import choose_unmodified_object from .workspace_formulas import workspace from .workspace_object import WorkspaceObject # some methods common to the codelets def __show_which_string_object_is_from(structure): if not structure: return "unstructured" if isinstance(structure, WorkspaceObject): return "target" if structure.string == workspace.initial: return "initial" return "other" def __get_scout_source(slipnode, relevance_method, type_name): initial_relevance = relevance_method(workspace.initial, slipnode) target_relevance = relevance_method(workspace.target, slipnode) initial_unhappiness = workspace.initial.intra_string_unhappiness target_unhappiness = workspace.target.intra_string_unhappiness logging.info( f"initial : relevance = {initial_relevance}, " f"unhappiness = {int(initial_unhappiness)}" ) logging.info( f"target : relevance = {target_relevance}, " f"unhappiness = {int(target_unhappiness)}" ) string = workspace.initial relevances = initial_relevance + target_relevance unhappinesses = initial_unhappiness + target_unhappiness randomized = random.random() * (relevances + unhappinesses) initials = initial_relevance + initial_unhappiness if randomized > initials: string = workspace.target logging.info(f"target string selected: {workspace.target} for {type_name}") else: logging.info(f"initial string selected: {workspace.initial} for {type_name}") source = choose_unmodified_object("intra_string_salience", string.objects) return source def __get_bond_facet(source, destination): bond_facet = choose_bond_facet(source, destination) assert bond_facet return bond_facet def __get_descriptors(bond_facet, source, destination): source_descriptor = source.get_descriptor(bond_facet) destination_descriptor = destination.get_descriptor(bond_facet) assert source_descriptor assert destination_descriptor return source_descriptor, destination_descriptor def __all_opposite_mappings(mappings): return len([m for m in mappings if m.label != slipnet.opposite]) == 0 def __structure_versus_structure(structure1, weight1, structure2, weight2): structure1.update_strength() structure2.update_strength() weighted_strength1 = formulas.temperature_adjusted_value( structure1.total_strength * weight1 ) weighted_strength2 = formulas.temperature_adjusted_value( structure2.total_strength * weight2 ) rhs = (weighted_strength1 + weighted_strength2) * random.random() logging.info(f"{weighted_strength1} > {rhs}: {weighted_strength1 > rhs}") return weighted_strength1 > rhs def __fight(structure, structure_weight, incompatibles, incompatible_weight): if not (incompatibles and len(incompatibles)): return True for incompatible in incompatibles: if not __structure_versus_structure( structure, structure_weight, incompatible, incompatible_weight ): logging.info(f"lost fight with {incompatible}") return False logging.info(f"won fight with {incompatible}") return True def __fight_incompatibles( incompatibles, structure, name, structure_weight, incompatible_weight ): if len(incompatibles): if __fight(structure, structure_weight, incompatibles, incompatible_weight): logging.info(f"broke the {name}") return True logging.info(f"failed to break {name}: Fizzle") return False logging.info(f"no incompatible {name}") return True def __slippability(concept_mappings): for mapping in concept_mappings: slippiness = mapping.slippability() / 100.0 probability_of_slippage = formulas.temperature_adjusted_probability(slippiness) if formulas.coin_flip(probability_of_slippage): return True return False # start the actual codelets def breaker(): probability_of_fizzle = (100.0 - formulas.Temperature) / 100.0 assert not formulas.coin_flip(probability_of_fizzle) # choose a structure at random structures = [ s for s in workspace.structures if isinstance(s, (Group, Bond, Correspondence)) ] assert structures structure = random.choice(structures) __show_which_string_object_is_from(structure) break_objects = [structure] if isinstance(structure, Bond): if structure.source.group: if structure.source.group == structure.destination.group: break_objects += [structure.source.group] # try to break all objects for structure in break_objects: break_probability = formulas.temperature_adjusted_probability( structure.total_strength / 100.0 ) if formulas.coin_flip(break_probability): return for structure in break_objects: structure.break_the_structure() def bottom_up_description_scout(codelet): chosen_object = choose_unmodified_object("total_salience", workspace.objects) assert chosen_object __show_which_string_object_is_from(chosen_object) description = formulas.choose_relevant_description_by_activation(chosen_object) assert description sliplinks = formulas.similar_property_links(description.descriptor) assert sliplinks values = [ sliplink.degree_of_association() * sliplink.destination.activation for sliplink in sliplinks ] i = formulas.select_list_position(values) chosen = sliplinks[i] chosen_property = chosen.destination coderack.propose_description( chosen_object, chosen_property.category(), chosen_property, codelet ) def top_down_description_scout(codelet): description_type = codelet.arguments[0] chosen_object = choose_unmodified_object("total_salience", workspace.objects) assert chosen_object __show_which_string_object_is_from(chosen_object) descriptions = chosen_object.get_possible_descriptions(description_type) assert descriptions values = [n.activation for n in descriptions] i = formulas.select_list_position(values) chosen_property = descriptions[i] coderack.propose_description( chosen_object, chosen_property.category(), chosen_property, codelet ) def description_strength_tester(codelet): description = codelet.arguments[0] description.descriptor.buffer = 100.0 description.update_strength() strength = description.total_strength probability = formulas.temperature_adjusted_probability(strength / 100.0) assert formulas.coin_flip(probability) coderack.new_codelet("description-builder", codelet, strength) def description_builder(codelet): description = codelet.arguments[0] assert description.object in workspace.objects if description.object.described(description.descriptor): description.description_type.buffer = 100.0 description.descriptor.buffer = 100.0 else: description.build() def bottom_up_bond_scout(codelet): source = choose_unmodified_object("intra_string_salience", workspace.objects) __show_which_string_object_is_from(source) destination = choose_neighbour(source) assert destination logging.info(f"destination: {destination}") bond_facet = __get_bond_facet(source, destination) logging.info(f"chosen bond facet: {bond_facet.get_name()}") logging.info(f"Source: {source}, destination: {destination}") bond_descriptors = __get_descriptors(bond_facet, source, destination) source_descriptor, destination_descriptor = bond_descriptors logging.info(f"source descriptor: {source_descriptor.name.upper()}") logging.info(f"destination descriptor: {destination_descriptor.name.upper()}") category = source_descriptor.get_bond_category(destination_descriptor) assert category if category == slipnet.identity: category = slipnet.sameness logging.info(f"proposing {category.name} bond ") coderack.propose_bond( source, destination, category, bond_facet, source_descriptor, destination_descriptor, codelet, ) def rule_scout(codelet): assert workspace.number_of_unreplaced_objects() == 0 changed_objects = [o for o in workspace.initial.objects if o.changed] # assert len(changed_objects) < 2 # if there are no changed objects, propose a rule with no changes if not changed_objects: return coderack.propose_rule(None, None, None, None, codelet) changed = changed_objects[-1] # generate a list of distinguishing descriptions for the first object # ie. string-position (left-,right-most,middle or whole) or letter category # if it is the only one of its type in the string object_list = [] position = changed.get_descriptor(slipnet.string_position_category) if position: object_list += [position] letter = changed.get_descriptor(slipnet.letter_category) other_objects_of_same_letter = [ o for o in workspace.initial.objects if not o != changed and o.get_description_type(letter) ] if not len(other_objects_of_same_letter): object_list += [letter] # if this object corresponds to another object in the workspace # object_list = the union of this and the distingushing descriptors if changed.correspondence: target_object = changed.correspondence.object_from_target new_list = [] slippages = workspace.slippages() for node in object_list: node = node.apply_slippages(slippages) if target_object.described(node): if target_object.distinguishing_descriptor(node): new_list += [node] object_list = new_list # should this be += ?? assert object_list # use conceptual depth to choose a description value_list = [] for node in object_list: depth = node.conceptual_depth value = formulas.temperature_adjusted_value(depth) value_list += [value] i = formulas.select_list_position(value_list) descriptor = object_list[i] # choose the relation (change the letmost object to "successor" or "d" object_list = [] if changed.replacement.relation: object_list += [changed.replacement.relation] object_list += [ changed.replacement.object_from_modified.get_descriptor(slipnet.letter_category) ] # use conceptual depth to choose a relation value_list = [] for node in object_list: depth = node.conceptual_depth value = formulas.temperature_adjusted_value(depth) value_list += [value] i = formulas.select_list_position(value_list) relation = object_list[i] coderack.propose_rule( slipnet.letter_category, descriptor, slipnet.letter, relation, codelet ) def rule_strength_tester(codelet): rule = codelet.arguments[0] rule.update_strength() probability = formulas.temperature_adjusted_probability(rule.total_strength / 100.0) assert random.random() <= probability coderack.new_codelet("rule-builder", codelet, rule.total_strength, rule) def replacement_finder(): # choose random letter in initial string letters = [o for o in workspace.initial.objects if isinstance(o, Letter)] letter_of_initial_string = random.choice(letters) logging.info(f"selected letter in initial string = {letter_of_initial_string}") if letter_of_initial_string.replacement: logging.info( f"Replacement already found for {letter_of_initial_string}, so fizzling" ) return position = letter_of_initial_string.left_index more_letters = [ o for o in workspace.modified.objects if isinstance(o, Letter) and o.left_index == position ] letter_of_modified_string = more_letters and more_letters[0] or None assert letter_of_modified_string position -= 1 initial_ascii = ord(workspace.initial_string[position]) modified_ascii = ord(workspace.modified_string[position]) diff = initial_ascii - modified_ascii if abs(diff) < 2: relations = {0: slipnet.sameness, -1: slipnet.successor, 1: slipnet.predecessor} relation = relations[diff] logging.info(f"Relation found: {relation.name}") else: relation = None logging.info("no relation found") letter_of_initial_string.replacement = Replacement( letter_of_initial_string, letter_of_modified_string, relation ) if relation != slipnet.sameness: letter_of_initial_string.changed = True workspace.changed_object = letter_of_initial_string logging.info("building replacement") def top_down_bond_scout__category(codelet): logging.info("top_down_bond_scout__category") category = codelet.arguments[0] source = __get_scout_source( category, formulas.local_bond_category_relevance, "bond" ) destination = choose_neighbour(source) logging.info(f"source: {source}, destination: {destination}") assert destination bond_facet = __get_bond_facet(source, destination) source_descriptor, destination_descriptor = __get_descriptors( bond_facet, source, destination ) forward_bond = source_descriptor.get_bond_category(destination_descriptor) if forward_bond == slipnet.identity: forward_bond = slipnet.sameness backward_bond = slipnet.sameness else: backward_bond = destination_descriptor.get_bond_category(source_descriptor) assert category in [forward_bond, backward_bond] if category == forward_bond: coderack.propose_bond( source, destination, category, bond_facet, source_descriptor, destination_descriptor, codelet, ) else: coderack.propose_bond( destination, source, category, bond_facet, destination_descriptor, source_descriptor, codelet, ) def top_down_bond_scout__direction(codelet): direction = codelet.arguments[0] source = __get_scout_source( direction, formulas.local_direction_category_relevance, "bond" ) destination = choose_directed_neighbor(source, direction) assert destination logging.info(f"to object: {destination}") bond_facet = __get_bond_facet(source, destination) source_descriptor, destination_descriptor = __get_descriptors( bond_facet, source, destination ) category = source_descriptor.get_bond_category(destination_descriptor) assert category if category == slipnet.identity: category = slipnet.sameness coderack.propose_bond( source, destination, category, bond_facet, source_descriptor, destination_descriptor, codelet, ) def bond_strength_tester(codelet): bond = codelet.arguments[0] __show_which_string_object_is_from(bond) bond.update_strength() strength = bond.total_strength probability = formulas.temperature_adjusted_probability(strength / 100.0) logging.info(f"bond strength = {strength} for {bond}") assert formulas.coin_flip(probability) bond.facet.buffer = 100.0 bond.source_descriptor.buffer = 100.0 bond.destination_descriptor.buffer = 100.0 logging.info("succeeded: posting bond-builder") coderack.new_codelet("bond-builder", codelet, strength) def bond_builder(codelet): bond = codelet.arguments[0] __show_which_string_object_is_from(bond) bond.update_strength() assert bond.source in workspace.objects or bond.destination in workspace.objects for string_bond in bond.string.bonds: if bond.same_neighbours(string_bond) and bond.same_categories(string_bond): if bond.direction_category: bond.direction_category.buffer = 100.0 bond.category.buffer = 100.0 logging.info("already exists: activate descriptors & Fizzle") return incompatible_bonds = bond.get_incompatible_bonds() logging.info(f"number of incompatible_bonds: {len(incompatible_bonds)}") if len(incompatible_bonds): logging.info(str(incompatible_bonds[0])) assert __fight_incompatibles(incompatible_bonds, bond, "bonds", 1.0, 1.0) incompatible_groups = bond.source.get_common_groups(bond.destination) assert __fight_incompatibles(incompatible_groups, bond, "groups", 1.0, 1.0) # fight all incompatible correspondences incompatible_correspondences = [] if bond.left_object.leftmost or bond.right_object.rightmost: if bond.direction_category: incompatible_correspondences = bond.get_incompatible_correspondences() if incompatible_correspondences: logging.info("trying to break incompatible correspondences") assert __fight(bond, 2.0, incompatible_correspondences, 3.0) for incompatible in incompatible_bonds: incompatible.break_the_structure() for incompatible in incompatible_groups: incompatible.break_the_structure() for incompatible in incompatible_correspondences: incompatible.break_the_structure() logging.info(f"building bond {bond}") bond.build_bond() # pylint: disable=too-many-branches # pylint: disable=too-many-statements def top_down_group_scout__category(codelet): group_category = codelet.arguments[0] category = group_category.get_related_node(slipnet.bond_category) assert category source = __get_scout_source( category, formulas.local_bond_category_relevance, "group" ) assert source assert not source.spans_string() if source.leftmost: direction = slipnet.right elif source.rightmost: direction = slipnet.left else: activations = [slipnet.left.activation] activations += [slipnet.right.activation] if not formulas.select_list_position(activations): direction = slipnet.left else: direction = slipnet.right if direction == slipnet.left: first_bond = source.left_bond else: first_bond = source.right_bond if not first_bond or first_bond.category != category: # check the other side of object if direction == slipnet.right: first_bond = source.left_bond else: first_bond = source.right_bond if not first_bond or first_bond.category != category: if category == slipnet.sameness and isinstance(source, Letter): group = Group( source.string, slipnet.sameness_group, None, slipnet.letter_category, [source], [], ) probability = group.single_letter_group_probability() assert random.random() >= probability coderack.propose_single_letter_group(source, codelet) return direction = first_bond.direction_category search = True bond_facet = None # find leftmost object in group with these bonds while search: search = False if not source.left_bond: continue if source.left_bond.category != category: continue if source.left_bond.direction_category != direction: if source.left_bond.direction_category: continue if not bond_facet or bond_facet == source.left_bond.facet: bond_facet = source.left_bond.facet direction = source.left_bond.direction_category source = source.left_bond.left_object search = True # find rightmost object in group with these bonds search = True destination = source while search: search = False if not destination.right_bond: continue if destination.right_bond.category != category: continue if destination.right_bond.direction_category != direction: if destination.right_bond.direction_category: continue if not bond_facet or bond_facet == destination.right_bond.facet: bond_facet = destination.right_bond.facet direction = source.right_bond.direction_category destination = destination.right_bond.right_object search = True assert destination != source objects = [source] bonds = [] while source != destination: bonds += [source.right_bond] objects += [source.right_bond.right_object] source = source.right_bond.right_object coderack.propose_group( objects, bonds, group_category, direction, bond_facet, codelet ) def top_down_group_scout__direction(codelet): direction = codelet.arguments[0] source = __get_scout_source( direction, formulas.local_direction_category_relevance, "direction" ) logging.info(f"source chosen = {source}") assert not source.spans_string() if source.leftmost: mydirection = slipnet.right elif source.rightmost: mydirection = slipnet.left else: activations = [slipnet.left.activation] activations += [slipnet.right.activation] if not formulas.select_list_position(activations): mydirection = slipnet.left else: mydirection = slipnet.right if mydirection == slipnet.left: first_bond = source.left_bond else: first_bond = source.right_bond if not first_bond: logging.info("no first_bond") else: logging.info(f"first_bond: {first_bond}") if first_bond and not first_bond.direction_category: direction = None if not first_bond or first_bond.direction_category != direction: if mydirection == slipnet.right: first_bond = source.left_bond else: first_bond = source.right_bond if not first_bond: logging.info("no first_bond2") else: logging.info(f"first_bond2: {first_bond}") if first_bond and not first_bond.direction_category: direction = None assert first_bond assert first_bond.direction_category == direction logging.info(f"possible group: {first_bond}") category = first_bond.category assert category group_category = category.get_related_node(slipnet.group_category) logging.info(f"trying from {source} to {category.name}") bond_facet = None # find leftmost object in group with these bonds search = True while search: search = False if not source.left_bond: continue if source.left_bond.category != category: continue if source.left_bond.direction_category != direction: if source.left_bond.direction_category: continue if not bond_facet or bond_facet == source.left_bond.facet: bond_facet = source.left_bond.facet direction = source.left_bond.direction_category source = source.left_bond.left_object search = True destination = source search = True while search: search = False if not destination.right_bond: continue if destination.right_bond.category != category: continue if destination.right_bond.direction_category != direction: if destination.right_bond.direction_category: continue if not bond_facet or bond_facet == destination.right_bond.facet: bond_facet = destination.right_bond.facet direction = source.right_bond.direction_category destination = destination.right_bond.right_object search = True assert destination != source logging.info(f"proposing group from {source} to {destination}") objects = [source] bonds = [] while source != destination: bonds += [source.right_bond] objects += [source.right_bond.right_object] source = source.right_bond.right_object coderack.propose_group( objects, bonds, group_category, direction, bond_facet, codelet ) # noinspection PyStringFormat def group_scout__whole_string(codelet): string = workspace.initial if random.random() > 0.5: string = workspace.target logging.info(f"target string selected: {workspace.target}") else: logging.info(f"initial string selected: {workspace.initial}") # find leftmost object & the highest group to which it belongs leftmost = None for objekt in string.objects: if objekt.leftmost: leftmost = objekt while leftmost.group and leftmost.group.bond_category == slipnet.sameness: leftmost = leftmost.group if leftmost.spans_string(): # the object already spans the string - propose this object group = leftmost coderack.propose_group( group.object_list, group.bond_list, group.group_category, group.direction_category, group.facet, codelet, ) return bonds = [] objects = [leftmost] while leftmost.right_bond: bonds += [leftmost.right_bond] leftmost = leftmost.right_bond.right_object objects += [leftmost] assert leftmost.rightmost # choose a random bond from list chosen_bond = random.choice(bonds) category = chosen_bond.category direction_category = chosen_bond.direction_category bond_facet = chosen_bond.facet bonds = possible_group_bonds(category, direction_category, bond_facet, bonds) assert bonds group_category = category.get_related_node(slipnet.group_category) coderack.propose_group( objects, bonds, group_category, direction_category, bond_facet, codelet ) def group_strength_tester(codelet): # update strength value of the group group = codelet.arguments[0] __show_which_string_object_is_from(group) group.update_strength() strength = group.total_strength probability = formulas.temperature_adjusted_probability(strength / 100.0) assert random.random() <= probability # it is strong enough - post builder & activate nodes group.group_category.get_related_node(slipnet.bond_category).buffer = 100.0 if group.direction_category: group.direction_category.buffer = 100.0 coderack.new_codelet("group-builder", codelet, strength) def group_builder(codelet): # update strength value of the group group = codelet.arguments[0] __show_which_string_object_is_from(group) equivalent = group.string.equivalent_group(group) if equivalent: logging.info("already exists...activate descriptors & fizzle") group.activate_descriptions() equivalent.add_descriptions(group.descriptions) return # check to see if all objects are still there for o in group.object_list: assert o in workspace.objects # check to see if bonds are there of the same direction incompatible_bonds = [] # incompatible bond list if len(group.object_list) > 1: previous = group.object_list[0] for objekt in group.object_list[1:]: left_bond = objekt.left_bond if left_bond: if left_bond.left_object == previous: continue if left_bond.direction_category == group.direction_category: continue incompatible_bonds += [left_bond] previous = objekt next_object = group.object_list[-1] for objekt in reversed(group.object_list[:-1]): right_bond = objekt.right_bond if right_bond: if right_bond.right_object == next_object: continue if right_bond.direction_category == group.direction_category: continue incompatible_bonds += [right_bond] next_object = objekt # if incompatible bonds exist - fight group.update_strength() assert __fight_incompatibles(incompatible_bonds, group, "bonds", 1.0, 1.0) # fight incompatible groups # fight all groups containing these objects incompatible_groups = group.get_incompatible_groups() assert __fight_incompatibles(incompatible_groups, group, "Groups", 1.0, 1.0) for incompatible in incompatible_bonds: incompatible.break_the_structure() # create new bonds group.bond_list = [] for i in range(1, len(group.object_list)): object1 = group.object_list[i - 1] object2 = group.object_list[i] if not object1.right_bond: if group.direction_category == slipnet.right: source = object1 destination = object2 else: source = object2 destination = object1 category = group.group_category.get_related_node(slipnet.bond_category) facet = group.facet new_bond = Bond( source, destination, category, facet, source.get_descriptor(facet), destination.get_descriptor(facet), ) new_bond.build_bond() group.bond_list += [object1.right_bond] for incompatible in incompatible_groups: incompatible.break_the_structure() group.build_group() group.activate_descriptions() logging.info("building group") def rule_builder(codelet): rule = codelet.arguments[0] if rule.rule_equal(workspace.rule): rule.activate_rule_descriptions() return rule.update_strength() assert rule.total_strength # fight against other rules if workspace.rule: assert __structure_versus_structure(rule, 1.0, workspace.rule, 1.0) workspace.build_rule(rule) def __get_cut_off(density): if density > 0.8: distribution = [5.0, 150.0, 5.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] elif density > 0.6: distribution = [2.0, 5.0, 150.0, 5.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0] elif density > 0.4: distribution = [1.0, 2.0, 5.0, 150.0, 5.0, 2.0, 1.0, 1.0, 1.0, 1.0] elif density > 0.2: distribution = [1.0, 1.0, 2.0, 5.0, 150.0, 5.0, 2.0, 1.0, 1.0, 1.0] else: distribution = [1.0, 1.0, 1.0, 2.0, 5.0, 150.0, 5.0, 2.0, 1.0, 1.0] stop = sum(distribution) * random.random() total = 0.0 for i in range(0, len(distribution)): total += distribution[i] if total >= stop: return i + 1 return len(distribution) def rule_translator(): assert workspace.rule if len(workspace.initial) == 1 and len(workspace.target) == 1: bond_density = 1.0 else: number_of_bonds = len(workspace.initial.bonds) + len(workspace.target.bonds) nearly_total_length = len(workspace.initial) + len(workspace.target) - 2 bond_density = number_of_bonds / nearly_total_length if bond_density > 1.0: bond_density = 1.0 cutoff = __get_cut_off(bond_density) * 10.0 assert cutoff >= formulas.actual_temperature if workspace.rule.build_translated_rule(): workspace.found_answer = True else: temperature.clamp_time = coderack.codelets_run + 100 temperature.clamped = True formulas.Temperature = 100.0 def bottom_up_correspondence_scout(codelet): object_from_initial = choose_unmodified_object( "inter_string_salience", workspace.initial.objects ) object_from_target = choose_unmodified_object( "inter_string_salience", workspace.target.objects ) assert object_from_initial.spans_string() == object_from_target.spans_string() # get the posible concept mappings concept_mappings = formulas.get_mappings( object_from_initial, object_from_target, object_from_initial.relevant_descriptions(), object_from_target.relevant_descriptions(), ) assert concept_mappings assert __slippability(concept_mappings) # find out if any are distinguishing distinguishing_mappings = [m for m in concept_mappings if m.distinguishing()] assert distinguishing_mappings # if both objects span the strings, check to see if the # string description needs to be flipped opposites = [ m for m in distinguishing_mappings if m.initial_description_type == slipnet.string_position_category and m.initial_description_type != slipnet.bond_facet ] initial_description_types = [m.initial_description_type for m in opposites] flip_target_object = False if ( object_from_initial.spans_string() and object_from_target.spans_string() and slipnet.direction_category in initial_description_types and __all_opposite_mappings(formulas.opposite_mappings) and slipnet.opposite.activation != 100.0 ): object_from_target = object_from_target.flipped_version() concept_mappings = formulas.get_mappings( object_from_initial, object_from_target, object_from_initial.relevant_descriptions(), object_from_target.relevant_descriptions(), ) flip_target_object = True coderack.propose_correspondence( object_from_initial, object_from_target, concept_mappings, flip_target_object, codelet, ) def important_object_correspondence_scout(codelet): object_from_initial = choose_unmodified_object( "relative_importance", workspace.initial.objects ) descriptors = object_from_initial.relevant_distinguishing_descriptors() slipnode = formulas.choose_slipnode_by_conceptual_depth(descriptors) assert slipnode initial_descriptor = slipnode for mapping in workspace.slippages(): if mapping.initial_descriptor == slipnode: initial_descriptor = mapping.target_descriptor target_candidates = [] for objekt in workspace.target.objects: for description in objekt.relevant_descriptions(): if description.descriptor == initial_descriptor: target_candidates += [objekt] assert target_candidates object_from_target = choose_unmodified_object( "inter_string_salience", target_candidates ) assert object_from_initial.spans_string() == object_from_target.spans_string() # get the posible concept mappings concept_mappings = formulas.get_mappings( object_from_initial, object_from_target, object_from_initial.relevant_descriptions(), object_from_target.relevant_descriptions(), ) assert concept_mappings assert __slippability(concept_mappings) # find out if any are distinguishing distinguishing_mappings = [m for m in concept_mappings if m.distinguishing()] assert distinguishing_mappings # if both objects span the strings, check to see if the # string description needs to be flipped opposites = [ m for m in distinguishing_mappings if m.initial_description_type == slipnet.string_position_category and m.initial_description_type != slipnet.bond_facet ] initial_description_types = [m.initial_description_type for m in opposites] flip_target_object = False if ( object_from_initial.spans_string() and object_from_target.spans_string() and slipnet.direction_category in initial_description_types and __all_opposite_mappings(formulas.opposite_mappings) and slipnet.opposite.activation != 100.0 ): object_from_target = object_from_target.flipped_version() concept_mappings = formulas.get_mappings( object_from_initial, object_from_target, object_from_initial.relevant_descriptions(), object_from_target.relevant_descriptions(), ) flip_target_object = True coderack.propose_correspondence( object_from_initial, object_from_target, concept_mappings, flip_target_object, codelet, ) def correspondence_strength_tester(codelet): correspondence = codelet.arguments[0] object_from_initial = correspondence.object_from_initial object_from_target = correspondence.object_from_target assert object_from_initial in workspace.objects assert ( object_from_target in workspace.objects or correspondence.flip_target_object and not workspace.target.equivalent_group(object_from_target.flipped_version()) ) correspondence.update_strength() strength = correspondence.total_strength probability = formulas.temperature_adjusted_probability(strength / 100.0) assert random.random() <= probability # activate some concepts for mapping in correspondence.concept_mappings: mapping.initial_description_type.buffer = 100.0 mapping.initial_descriptor.buffer = 100.0 mapping.target_description_type.buffer = 100.0 mapping.target_descriptor.buffer = 100.0 coderack.new_codelet("correspondence-builder", codelet, strength, correspondence) def correspondence_builder(codelet): correspondence = codelet.arguments[0] object_from_initial = correspondence.object_from_initial object_from_target = correspondence.object_from_target want_flip = correspondence.flip_target_object if want_flip: flipper = object_from_target.flipped_version() target_not_flipped = not workspace.target.equivalent_group(flipper) else: target_not_flipped = False initial_in_objects = object_from_initial in workspace.objects target_in_objects = object_from_target in workspace.objects assert initial_in_objects or ( not target_in_objects and (not (want_flip and target_not_flipped)) ) if correspondence.reflexive(): # if the correspondence exists, activate concept mappings # and add new ones to the existing corr. existing = correspondence.object_from_initial.correspondence for mapping in correspondence.concept_mappings: if mapping.label: mapping.label.buffer = 100.0 if not mapping.is_contained_by(existing.concept_mappings): existing.concept_mappings += [mapping] return incompatibles = correspondence.get_incompatible_correspondences() # fight against all correspondences if incompatibles: correspondence_spans = ( correspondence.object_from_initial.letter_span() + correspondence.object_from_target.letter_span() ) for incompatible in incompatibles: incompatible_spans = ( incompatible.object_from_initial.letter_span() + incompatible.object_from_target.letter_span() ) assert __structure_versus_structure( correspondence, correspondence_spans, incompatible, incompatible_spans ) incompatible_bond = None incompatible_group = None # if there is an incompatible bond then fight against it initial = correspondence.object_from_initial target = correspondence.object_from_target if initial.leftmost or initial.rightmost and target.leftmost or target.rightmost: # search for the incompatible bond incompatible_bond = correspondence.get_incompatible_bond() if incompatible_bond: # bond found - fight against it assert __structure_versus_structure( correspondence, 3.0, incompatible_bond, 2.0 ) # won against incompatible bond incompatible_group = target.group if incompatible_group: assert __structure_versus_structure( correspondence, 1.0, incompatible_group, 1.0 ) # if there is an incompatible rule, fight against it incompatible_rule = None if workspace.rule: if workspace.rule.incompatible_rule_correspondence(correspondence): incompatible_rule = workspace.rule assert __structure_versus_structure( correspondence, 1.0, incompatible_rule, 1.0 ) for incompatible in incompatibles: incompatible.break_the_structure() # break incompatible group and bond if they exist if incompatible_bond: incompatible_bond.break_the_structure() if incompatible_group: incompatible_group.break_the_structure() if incompatible_rule: workspace.break_rule() correspondence.build_correspondence()
[ "logging.info", "random.random", "random.choice" ]
[((3144, 3217), 'logging.info', 'logging.info', (['f"""{weighted_strength1} > {rhs}: {weighted_strength1 > rhs}"""'], {}), "(f'{weighted_strength1} > {rhs}: {weighted_strength1 > rhs}')\n", (3156, 3217), False, 'import logging\n'), ((4100, 4139), 'logging.info', 'logging.info', (['f"""no incompatible {name}"""'], {}), "(f'no incompatible {name}')\n", (4112, 4139), False, 'import logging\n'), ((4825, 4850), 'random.choice', 'random.choice', (['structures'], {}), '(structures)\n', (4838, 4850), False, 'import random\n'), ((7781, 7824), 'logging.info', 'logging.info', (['f"""destination: {destination}"""'], {}), "(f'destination: {destination}')\n", (7793, 7824), False, 'import logging\n'), ((7948, 8009), 'logging.info', 'logging.info', (['f"""Source: {source}, destination: {destination}"""'], {}), "(f'Source: {source}, destination: {destination}')\n", (7960, 8009), False, 'import logging\n'), ((8477, 8525), 'logging.info', 'logging.info', (['f"""proposing {category.name} bond """'], {}), "(f'proposing {category.name} bond ')\n", (8489, 8525), False, 'import logging\n'), ((11887, 11909), 'random.choice', 'random.choice', (['letters'], {}), '(letters)\n', (11900, 11909), False, 'import random\n'), ((11914, 11993), 'logging.info', 'logging.info', (['f"""selected letter in initial string = {letter_of_initial_string}"""'], {}), "(f'selected letter in initial string = {letter_of_initial_string}')\n", (11926, 11993), False, 'import logging\n'), ((13217, 13253), 'logging.info', 'logging.info', (['"""building replacement"""'], {}), "('building replacement')\n", (13229, 13253), False, 'import logging\n'), ((13304, 13349), 'logging.info', 'logging.info', (['"""top_down_bond_scout__category"""'], {}), "('top_down_bond_scout__category')\n", (13316, 13349), False, 'import logging\n'), ((13537, 13598), 'logging.info', 'logging.info', (['f"""source: {source}, destination: {destination}"""'], {}), "(f'source: {source}, destination: {destination}')\n", (13549, 13598), False, 'import logging\n'), ((14904, 14945), 'logging.info', 'logging.info', (['f"""to object: {destination}"""'], {}), "(f'to object: {destination}')\n", (14916, 14945), False, 'import logging\n'), ((15724, 15778), 'logging.info', 'logging.info', (['f"""bond strength = {strength} for {bond}"""'], {}), "(f'bond strength = {strength} for {bond}')\n", (15736, 15778), False, 'import logging\n'), ((15945, 15992), 'logging.info', 'logging.info', (['"""succeeded: posting bond-builder"""'], {}), "('succeeded: posting bond-builder')\n", (15957, 15992), False, 'import logging\n'), ((17813, 17850), 'logging.info', 'logging.info', (['f"""building bond {bond}"""'], {}), "(f'building bond {bond}')\n", (17825, 17850), False, 'import logging\n'), ((21563, 21604), 'logging.info', 'logging.info', (['f"""source chosen = {source}"""'], {}), "(f'source chosen = {source}')\n", (21575, 21604), False, 'import logging\n'), ((22876, 22921), 'logging.info', 'logging.info', (['f"""possible group: {first_bond}"""'], {}), "(f'possible group: {first_bond}')\n", (22888, 22921), False, 'import logging\n'), ((23052, 23108), 'logging.info', 'logging.info', (['f"""trying from {source} to {category.name}"""'], {}), "(f'trying from {source} to {category.name}')\n", (23064, 23108), False, 'import logging\n'), ((24441, 24504), 'logging.info', 'logging.info', (['f"""proposing group from {source} to {destination}"""'], {}), "(f'proposing group from {source} to {destination}')\n", (24453, 24504), False, 'import logging\n'), ((26062, 26082), 'random.choice', 'random.choice', (['bonds'], {}), '(bonds)\n', (26075, 26082), False, 'import random\n'), ((30134, 30164), 'logging.info', 'logging.info', (['"""building group"""'], {}), "('building group')\n", (30146, 30164), False, 'import logging\n'), ((1699, 1714), 'random.random', 'random.random', ([], {}), '()\n', (1712, 1714), False, 'import random\n'), ((1873, 1948), 'logging.info', 'logging.info', (['f"""target string selected: {workspace.target} for {type_name}"""'], {}), "(f'target string selected: {workspace.target} for {type_name}')\n", (1885, 1948), False, 'import logging\n'), ((1967, 2044), 'logging.info', 'logging.info', (['f"""initial string selected: {workspace.initial} for {type_name}"""'], {}), "(f'initial string selected: {workspace.initial} for {type_name}')\n", (1979, 2044), False, 'import logging\n'), ((3124, 3139), 'random.random', 'random.random', ([], {}), '()\n', (3137, 3139), False, 'import random\n'), ((3668, 3714), 'logging.info', 'logging.info', (['f"""won fight with {incompatible}"""'], {}), "(f'won fight with {incompatible}')\n", (3680, 3714), False, 'import logging\n'), ((4027, 4074), 'logging.info', 'logging.info', (['f"""failed to break {name}: Fizzle"""'], {}), "(f'failed to break {name}: Fizzle')\n", (4039, 4074), False, 'import logging\n'), ((11597, 11612), 'random.random', 'random.random', ([], {}), '()\n', (11610, 11612), False, 'import random\n'), ((12047, 12138), 'logging.info', 'logging.info', (['f"""Replacement already found for {letter_of_initial_string}, so fizzling"""'], {}), "(\n f'Replacement already found for {letter_of_initial_string}, so fizzling')\n", (12059, 12138), False, 'import logging\n'), ((12811, 12859), 'logging.info', 'logging.info', (['f"""Relation found: {relation.name}"""'], {}), "(f'Relation found: {relation.name}')\n", (12823, 12859), False, 'import logging\n'), ((12902, 12935), 'logging.info', 'logging.info', (['"""no relation found"""'], {}), "('no relation found')\n", (12914, 12935), False, 'import logging\n'), ((22178, 22207), 'logging.info', 'logging.info', (['"""no first_bond"""'], {}), "('no first_bond')\n", (22190, 22207), False, 'import logging\n'), ((22226, 22267), 'logging.info', 'logging.info', (['f"""first_bond: {first_bond}"""'], {}), "(f'first_bond: {first_bond}')\n", (22238, 22267), False, 'import logging\n'), ((24928, 24943), 'random.random', 'random.random', ([], {}), '()\n', (24941, 24943), False, 'import random\n'), ((24993, 25052), 'logging.info', 'logging.info', (['f"""target string selected: {workspace.target}"""'], {}), "(f'target string selected: {workspace.target}')\n", (25005, 25052), False, 'import logging\n'), ((25071, 25132), 'logging.info', 'logging.info', (['f"""initial string selected: {workspace.initial}"""'], {}), "(f'initial string selected: {workspace.initial}')\n", (25083, 25132), False, 'import logging\n'), ((26805, 26820), 'random.random', 'random.random', ([], {}), '()\n', (26818, 26820), False, 'import random\n'), ((27348, 27410), 'logging.info', 'logging.info', (['"""already exists...activate descriptors & fizzle"""'], {}), "('already exists...activate descriptors & fizzle')\n", (27360, 27410), False, 'import logging\n'), ((31088, 31103), 'random.random', 'random.random', ([], {}), '()\n', (31101, 31103), False, 'import random\n'), ((37427, 37442), 'random.random', 'random.random', ([], {}), '()\n', (37440, 37442), False, 'import random\n'), ((3587, 3634), 'logging.info', 'logging.info', (['f"""lost fight with {incompatible}"""'], {}), "(f'lost fight with {incompatible}')\n", (3599, 3634), False, 'import logging\n'), ((3961, 3994), 'logging.info', 'logging.info', (['f"""broke the {name}"""'], {}), "(f'broke the {name}')\n", (3973, 3994), False, 'import logging\n'), ((16545, 16606), 'logging.info', 'logging.info', (['"""already exists: activate descriptors & Fizzle"""'], {}), "('already exists: activate descriptors & Fizzle')\n", (16557, 16606), False, 'import logging\n'), ((22598, 22628), 'logging.info', 'logging.info', (['"""no first_bond2"""'], {}), "('no first_bond2')\n", (22610, 22628), False, 'import logging\n'), ((22655, 22697), 'logging.info', 'logging.info', (['f"""first_bond2: {first_bond}"""'], {}), "(f'first_bond2: {first_bond}')\n", (22667, 22697), False, 'import logging\n'), ((17399, 17459), 'logging.info', 'logging.info', (['"""trying to break incompatible correspondences"""'], {}), "('trying to break incompatible correspondences')\n", (17411, 17459), False, 'import logging\n'), ((19502, 19517), 'random.random', 'random.random', ([], {}), '()\n', (19515, 19517), False, 'import random\n')]
import os import math import time import functools import random from tqdm import tqdm import cv2 import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageDraw from pylab import rcParams rcParams['figure.figsize'] = 20, 20 # noqa from consts import FONT_SIZE from utils import ( make_contours, get_centers, get_labels, vis_pred_bbox, filter_polygons_points_intersection, vis_pred_bbox_polygon, vis_pred_center, font ) from grpc_utils import ( KuzuSegment, KuzuClassify ) if __name__ == '__main__': img_dir = "./images" img_fp = os.path.join(img_dir, random.choice(os.listdir(img_dir))) print(img_fp) filter_polygon = True kuzu_seg = KuzuSegment() kuzu_cls = KuzuClassify() img, origin_image, origin_h, origin_w = kuzu_seg.load_image(img_fp) pred_bbox, pred_center = kuzu_seg.predict(img) # get all polygon area in image polygon_contours = make_contours(pred_bbox) # get all center points by contour method center_coords = get_centers(pred_center.astype(np.uint8)) no_center_points = len(center_coords) final_center = vis_pred_center(center_coords, rad=2) # filter polygon if filter_polygon: filtered_contours = filter_polygons_points_intersection(polygon_contours, center_coords) # noqa pred_bbox = vis_pred_bbox_polygon(pred_bbox, filtered_contours) final_bbox = vis_pred_bbox(pred_bbox, center_coords, width=2) y_ratio = origin_h / 512 x_ratio = origin_w / 512 pil_img = Image.fromarray(origin_image).convert('RGBA') char_canvas = Image.new('RGBA', pil_img.size) char_draw = ImageDraw.Draw(char_canvas) print(">>> {}".format(no_center_points)) if no_center_points > 0: bbox_cluster = get_labels(center_coords, pred_bbox) # ignore background hex color (=0) for cluster_index in tqdm(range(len(center_coords))[1:]): char_pixel = (bbox_cluster == cluster_index).astype(np.float32) try: horizontal_indicies = np.where(np.any(char_pixel, axis=0))[0] vertical_indicies = np.where(np.any(char_pixel, axis=1))[0] x_min, x_max = horizontal_indicies[[0, -1]] y_min, y_max = vertical_indicies[[0, -1]] except IndexError: continue x = x_min y = y_min w = x_max - x_min h = y_max - y_min # convert to original coordinates x = int(x * x_ratio) w = int(w * x_ratio) y = int(y * y_ratio) h = int(h * y_ratio) # set offset to crop character offset = 5 # percentage y_diff = math.ceil(h * offset / 100) x_diff = math.ceil(w * offset / 100) # expand area y_from = y - y_diff y_to = y + h + y_diff x_from = x - x_diff x_to = x + w + x_diff # tune y_from, y_to, x_from, x_to = \ list(map(functools.partial(np.maximum, 0), [y_from, y_to, x_from, x_to])) try: char_img = origin_image[y_from:y_to, x_from:x_to] char_img = kuzu_cls.load_image(char_img) pred_label = kuzu_cls.predict(char_img) # print(pred_label) char_draw.text( (x + w + FONT_SIZE / 4, y + h / 2 - FONT_SIZE), pred_label, fill=(0, 0, 255, 255), font=font ) except Exception as e: print(e) continue char_img = Image.alpha_composite(pil_img, char_canvas) char_img = char_img.convert("RGB") char_img = np.asarray(char_img) final_bbox = cv2.resize(final_bbox, (origin_w, origin_h)) final_center = cv2.resize(final_center, (origin_w, origin_h)) plt.imshow(char_img) plt.imshow(final_bbox, cmap="jet", alpha=0.50) plt.savefig("./assets/{}.jpg".format(time.time()), bbox_inches='tight')
[ "PIL.Image.new", "grpc_utils.KuzuClassify", "utils.make_contours", "matplotlib.pyplot.imshow", "utils.filter_polygons_points_intersection", "utils.vis_pred_center", "utils.vis_pred_bbox_polygon", "PIL.ImageDraw.Draw", "cv2.resize", "functools.partial", "math.ceil", "numpy.asarray", "os.listdir", "time.time", "numpy.any", "PIL.Image.alpha_composite", "utils.get_labels", "PIL.Image.fromarray", "grpc_utils.KuzuSegment", "utils.vis_pred_bbox" ]
[((720, 733), 'grpc_utils.KuzuSegment', 'KuzuSegment', ([], {}), '()\n', (731, 733), False, 'from grpc_utils import KuzuSegment, KuzuClassify\n'), ((749, 763), 'grpc_utils.KuzuClassify', 'KuzuClassify', ([], {}), '()\n', (761, 763), False, 'from grpc_utils import KuzuSegment, KuzuClassify\n'), ((947, 971), 'utils.make_contours', 'make_contours', (['pred_bbox'], {}), '(pred_bbox)\n', (960, 971), False, 'from utils import make_contours, get_centers, get_labels, vis_pred_bbox, filter_polygons_points_intersection, vis_pred_bbox_polygon, vis_pred_center, font\n'), ((1142, 1179), 'utils.vis_pred_center', 'vis_pred_center', (['center_coords'], {'rad': '(2)'}), '(center_coords, rad=2)\n', (1157, 1179), False, 'from utils import make_contours, get_centers, get_labels, vis_pred_bbox, filter_polygons_points_intersection, vis_pred_bbox_polygon, vis_pred_center, font\n'), ((1419, 1467), 'utils.vis_pred_bbox', 'vis_pred_bbox', (['pred_bbox', 'center_coords'], {'width': '(2)'}), '(pred_bbox, center_coords, width=2)\n', (1432, 1467), False, 'from utils import make_contours, get_centers, get_labels, vis_pred_bbox, filter_polygons_points_intersection, vis_pred_bbox_polygon, vis_pred_center, font\n'), ((1606, 1637), 'PIL.Image.new', 'Image.new', (['"""RGBA"""', 'pil_img.size'], {}), "('RGBA', pil_img.size)\n", (1615, 1637), False, 'from PIL import Image, ImageDraw\n'), ((1654, 1681), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['char_canvas'], {}), '(char_canvas)\n', (1668, 1681), False, 'from PIL import Image, ImageDraw\n'), ((3689, 3732), 'PIL.Image.alpha_composite', 'Image.alpha_composite', (['pil_img', 'char_canvas'], {}), '(pil_img, char_canvas)\n', (3710, 3732), False, 'from PIL import Image, ImageDraw\n'), ((3787, 3807), 'numpy.asarray', 'np.asarray', (['char_img'], {}), '(char_img)\n', (3797, 3807), True, 'import numpy as np\n'), ((3826, 3870), 'cv2.resize', 'cv2.resize', (['final_bbox', '(origin_w, origin_h)'], {}), '(final_bbox, (origin_w, origin_h))\n', (3836, 3870), False, 'import cv2\n'), ((3890, 3936), 'cv2.resize', 'cv2.resize', (['final_center', '(origin_w, origin_h)'], {}), '(final_center, (origin_w, origin_h))\n', (3900, 3936), False, 'import cv2\n'), ((3942, 3962), 'matplotlib.pyplot.imshow', 'plt.imshow', (['char_img'], {}), '(char_img)\n', (3952, 3962), True, 'import matplotlib.pyplot as plt\n'), ((3967, 4012), 'matplotlib.pyplot.imshow', 'plt.imshow', (['final_bbox'], {'cmap': '"""jet"""', 'alpha': '(0.5)'}), "(final_bbox, cmap='jet', alpha=0.5)\n", (3977, 4012), True, 'import matplotlib.pyplot as plt\n'), ((1253, 1321), 'utils.filter_polygons_points_intersection', 'filter_polygons_points_intersection', (['polygon_contours', 'center_coords'], {}), '(polygon_contours, center_coords)\n', (1288, 1321), False, 'from utils import make_contours, get_centers, get_labels, vis_pred_bbox, filter_polygons_points_intersection, vis_pred_bbox_polygon, vis_pred_center, font\n'), ((1350, 1401), 'utils.vis_pred_bbox_polygon', 'vis_pred_bbox_polygon', (['pred_bbox', 'filtered_contours'], {}), '(pred_bbox, filtered_contours)\n', (1371, 1401), False, 'from utils import make_contours, get_centers, get_labels, vis_pred_bbox, filter_polygons_points_intersection, vis_pred_bbox_polygon, vis_pred_center, font\n'), ((1780, 1816), 'utils.get_labels', 'get_labels', (['center_coords', 'pred_bbox'], {}), '(center_coords, pred_bbox)\n', (1790, 1816), False, 'from utils import make_contours, get_centers, get_labels, vis_pred_bbox, filter_polygons_points_intersection, vis_pred_bbox_polygon, vis_pred_center, font\n'), ((639, 658), 'os.listdir', 'os.listdir', (['img_dir'], {}), '(img_dir)\n', (649, 658), False, 'import os\n'), ((1542, 1571), 'PIL.Image.fromarray', 'Image.fromarray', (['origin_image'], {}), '(origin_image)\n', (1557, 1571), False, 'from PIL import Image, ImageDraw\n'), ((2736, 2763), 'math.ceil', 'math.ceil', (['(h * offset / 100)'], {}), '(h * offset / 100)\n', (2745, 2763), False, 'import math\n'), ((2785, 2812), 'math.ceil', 'math.ceil', (['(w * offset / 100)'], {}), '(w * offset / 100)\n', (2794, 2812), False, 'import math\n'), ((4055, 4066), 'time.time', 'time.time', ([], {}), '()\n', (4064, 4066), False, 'import time\n'), ((3060, 3092), 'functools.partial', 'functools.partial', (['np.maximum', '(0)'], {}), '(np.maximum, 0)\n', (3077, 3092), False, 'import functools\n'), ((2069, 2095), 'numpy.any', 'np.any', (['char_pixel'], {'axis': '(0)'}), '(char_pixel, axis=0)\n', (2075, 2095), True, 'import numpy as np\n'), ((2145, 2171), 'numpy.any', 'np.any', (['char_pixel'], {'axis': '(1)'}), '(char_pixel, axis=1)\n', (2151, 2171), True, 'import numpy as np\n')]
from inspect import Traceback from signal import getsignal, SIG_IGN, SIGINT, signal as signal_, Signals from types import FrameType from typing import Type class DelayedKeyboardInterrupt: def __init__(self, in_thread: bool = False) -> None: """ :param in_thread: Whether or not we're living in a thread or not """ self.in_thread = in_thread self.signal_received = None def __enter__(self) -> None: # When we're in a thread we can't use signal handling if not self.in_thread: self.signal_received = False self.old_handler = signal_(SIGINT, self.handler) def handler(self, sig: Signals, frame: FrameType) -> None: self.signal_received = (sig, frame) def __exit__(self, exc_type: Type, exc_val: Exception, exc_tb: Traceback) -> None: if not self.in_thread: signal_(SIGINT, self.old_handler) if self.signal_received: self.old_handler(*self.signal_received) class DisableKeyboardInterruptSignal: def __enter__(self) -> None: # Prevent signal from propagating to child process self._handler = getsignal(SIGINT) ignore_keyboard_interrupt() def __exit__(self, exc_type: Type, exc_val: Exception, exc_tb: Traceback) -> None: # Restore signal signal_(SIGINT, self._handler) def ignore_keyboard_interrupt(): signal_(SIGINT, SIG_IGN)
[ "signal.signal", "signal.getsignal" ]
[((1413, 1437), 'signal.signal', 'signal_', (['SIGINT', 'SIG_IGN'], {}), '(SIGINT, SIG_IGN)\n', (1420, 1437), True, 'from signal import getsignal, SIG_IGN, SIGINT, signal as signal_, Signals\n'), ((1168, 1185), 'signal.getsignal', 'getsignal', (['SIGINT'], {}), '(SIGINT)\n', (1177, 1185), False, 'from signal import getsignal, SIG_IGN, SIGINT, signal as signal_, Signals\n'), ((1343, 1373), 'signal.signal', 'signal_', (['SIGINT', 'self._handler'], {}), '(SIGINT, self._handler)\n', (1350, 1373), True, 'from signal import getsignal, SIG_IGN, SIGINT, signal as signal_, Signals\n'), ((615, 644), 'signal.signal', 'signal_', (['SIGINT', 'self.handler'], {}), '(SIGINT, self.handler)\n', (622, 644), True, 'from signal import getsignal, SIG_IGN, SIGINT, signal as signal_, Signals\n'), ((884, 917), 'signal.signal', 'signal_', (['SIGINT', 'self.old_handler'], {}), '(SIGINT, self.old_handler)\n', (891, 917), True, 'from signal import getsignal, SIG_IGN, SIGINT, signal as signal_, Signals\n')]
#!/usr/bin/env python import argparse import os import sys from pathlib import Path from typing import Any, Optional try: import pythoncom from win32com.propsys import propsys from win32com.shell import shell except ImportError: raise ImportError( "pywin32 is required to run create_shell_link.py.To install, execute 'pip install pywin32' in a terminal" ) class IconFileAction(argparse.Action): # pragma: no cover def __call__(self, parser_container, namespace, values: Any, option_string=None): if values.suffix != ".ico": raise ValueError("The supplied icon file is not of type .ico.") setattr(namespace, self.dest, values) # noinspection PyUnresolvedReferences def create_shell_link( appId: str, appName: str, iconPath: Optional[Path] = None, overwrite: bool = False, appDataPath: str = os.getenv("APPDATA"), ): # See https://github.com/mohabouje/WinToast/blob/master/src/wintoastlib.cpp#L594 if appDataPath is None: # pragma: no cover raise RuntimeError("Couldn't find APPDATA path. Please rerun this script with the --appdata argument") programsPath = Path(appDataPath) / "Microsoft" / "Windows" / "Start Menu" / "Programs" shellLinkPath = programsPath / f"{appName}.lnk" linkExists = shellLinkPath.exists() if linkExists: # pragma: no cover if overwrite: print("Script run with --overwrite, overwriting existing link...") else: sys.exit( f"Link '{shellLinkPath}' already exists. To overwrite, rerun this script with the --overwrite argument" ) # Adapted from https://github.com/mhammond/pywin32/blob/main/com/win32comext/shell/demos/create_link.py # noinspection PyTypeChecker shellLink = pythoncom.CoCreateInstance( shell.CLSID_ShellLink, None, pythoncom.CLSCTX_INPROC_SERVER, shell.IID_IShellLink ) # Set shell link arguments shellLink.SetPath("") shellLink.SetArguments("") shellLink.SetWorkingDirectory("") if iconPath is not None: shellLink.SetIconLocation(str(iconPath.resolve()), 0) # Set AUMI to supplied argument propertyStore = shellLink.QueryInterface(propsys.IID_IPropertyStore) propertyKey = propsys.PSGetPropertyKeyFromName("System.AppUserModel.ID") propertyStore.SetValue(propertyKey, propsys.PROPVARIANTType(appId)) propertyStore.Commit() # Save file # noinspection PyUnresolvedReferences propertyStore.QueryInterface(pythoncom.IID_IPersistFile).Save(str(shellLinkPath), True) print(f"Successfully {'modified' if linkExists else 'created'} shell link with the AUMI '{appId}'") if __name__ == "__main__": # pragma: no cover parser = argparse.ArgumentParser(description="Create shell link for use in toast notifications") parser.add_argument("--appdata", "-ad", type=str, required=False, help="AppData path if script fails to find it") parser.add_argument("--app_id", "-a", type=str, required=True, help="Application User Model ID for identification") parser.add_argument("--name", "-n", type=str, required=True, help="Display name on notification") parser.add_argument( "--icon", "-i", type=Path, required=False, action=IconFileAction, help="Path to image file for desired icon" ) if sys.version_info >= (3, 9): parser.add_argument( "--overwrite", "-o", action=argparse.BooleanOptionalAction, help="Overwrite if a link already exists" ) else: parser.add_argument( "--overwrite", "-o", default=False, action="store_true", help="Overwrite if a link already exists" ) args = parser.parse_args() create_shell_link( appId=args.app_id, appName=args.name, iconPath=args.icon, overwrite=args.overwrite, appDataPath=args.appdata )
[ "win32com.propsys.propsys.PSGetPropertyKeyFromName", "argparse.ArgumentParser", "win32com.propsys.propsys.PROPVARIANTType", "pathlib.Path", "pythoncom.CoCreateInstance", "os.getenv", "sys.exit" ]
[((878, 898), 'os.getenv', 'os.getenv', (['"""APPDATA"""'], {}), "('APPDATA')\n", (887, 898), False, 'import os\n'), ((1799, 1913), 'pythoncom.CoCreateInstance', 'pythoncom.CoCreateInstance', (['shell.CLSID_ShellLink', 'None', 'pythoncom.CLSCTX_INPROC_SERVER', 'shell.IID_IShellLink'], {}), '(shell.CLSID_ShellLink, None, pythoncom.\n CLSCTX_INPROC_SERVER, shell.IID_IShellLink)\n', (1825, 1913), False, 'import pythoncom\n'), ((2268, 2326), 'win32com.propsys.propsys.PSGetPropertyKeyFromName', 'propsys.PSGetPropertyKeyFromName', (['"""System.AppUserModel.ID"""'], {}), "('System.AppUserModel.ID')\n", (2300, 2326), False, 'from win32com.propsys import propsys\n'), ((2742, 2834), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Create shell link for use in toast notifications"""'}), "(description=\n 'Create shell link for use in toast notifications')\n", (2765, 2834), False, 'import argparse\n'), ((2367, 2397), 'win32com.propsys.propsys.PROPVARIANTType', 'propsys.PROPVARIANTType', (['appId'], {}), '(appId)\n', (2390, 2397), False, 'from win32com.propsys import propsys\n'), ((1497, 1620), 'sys.exit', 'sys.exit', (['f"""Link \'{shellLinkPath}\' already exists. To overwrite, rerun this script with the --overwrite argument"""'], {}), '(\n f"Link \'{shellLinkPath}\' already exists. To overwrite, rerun this script with the --overwrite argument"\n )\n', (1505, 1620), False, 'import sys\n'), ((1167, 1184), 'pathlib.Path', 'Path', (['appDataPath'], {}), '(appDataPath)\n', (1171, 1184), False, 'from pathlib import Path\n')]
from api.event import Event from que import TT_DUMMY, TG_DC_UNBOUND from que.utils import DEFAULT_DC, task_id_from_string class NodeSystemRestarted(Event): """ Called from node_sysinfo_cb after erigonesd:fast is restarted on a compute node. """ _name_ = 'node_system_restarted' def __init__(self, node, **kwargs): # Create such a task_id that info is send to SuperAdmins and node owner task_id = task_id_from_string(node.owner.id, dummy=True, dc_id=DEFAULT_DC, tt=TT_DUMMY, tg=TG_DC_UNBOUND) kwargs['node_hostname'] = node.hostname super(NodeSystemRestarted, self).__init__(task_id, **kwargs)
[ "que.utils.task_id_from_string" ]
[((435, 535), 'que.utils.task_id_from_string', 'task_id_from_string', (['node.owner.id'], {'dummy': '(True)', 'dc_id': 'DEFAULT_DC', 'tt': 'TT_DUMMY', 'tg': 'TG_DC_UNBOUND'}), '(node.owner.id, dummy=True, dc_id=DEFAULT_DC, tt=\n TT_DUMMY, tg=TG_DC_UNBOUND)\n', (454, 535), False, 'from que.utils import DEFAULT_DC, task_id_from_string\n')]
# TODO: In this module we'll start drawing a simple smiley face # Yellow circle for the head # Two black circle eyes # Red rectangle (rect) mouth # Red circle nose. import pygame import sys pygame.init() screen = pygame.display.set_mode((600, 600)) while True: for event in pygame.event.get(): if event.type == pygame.MOUSEBUTTONDOWN: print(event.pos) if event.type == pygame.QUIT: sys.exit() screen.fill((0, 200, 200)) # Draws the yellow head pygame.draw.circle(screen, (255,255,0), (300,300), 250) pygame.draw.circle(screen, (0, 0, 0), (300, 300), 250, 5) # draws the eyes pygame.draw.circle(screen, (0, 0, 0), (205, 200), 20) pygame.draw.circle(screen, (0, 0, 0), (400, 200), 20) # draws the nose pygame.draw.circle(screen, (255, 0, 0), (300, 300), 35) pygame.draw.circle(screen, (0, 0, 0), (300, 300), 35, 2) # draws the mouth pygame.draw.rect(screen, (127, 0, 0), (200, 400, 200, 25)) # pygame.draw.rect(screen, color, (x, y, width, height), thickness) # pygame.draw.rect(screen, (100, 0, 0), (240, 350, 160, 30)) pygame.display.update()
[ "pygame.draw.circle", "pygame.event.get", "pygame.display.set_mode", "pygame.draw.rect", "pygame.init", "pygame.display.update", "sys.exit" ]
[((197, 210), 'pygame.init', 'pygame.init', ([], {}), '()\n', (208, 210), False, 'import pygame\n'), ((220, 255), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(600, 600)'], {}), '((600, 600))\n', (243, 255), False, 'import pygame\n'), ((285, 303), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (301, 303), False, 'import pygame\n'), ((509, 567), 'pygame.draw.circle', 'pygame.draw.circle', (['screen', '(255, 255, 0)', '(300, 300)', '(250)'], {}), '(screen, (255, 255, 0), (300, 300), 250)\n', (527, 567), False, 'import pygame\n'), ((569, 626), 'pygame.draw.circle', 'pygame.draw.circle', (['screen', '(0, 0, 0)', '(300, 300)', '(250)', '(5)'], {}), '(screen, (0, 0, 0), (300, 300), 250, 5)\n', (587, 626), False, 'import pygame\n'), ((653, 706), 'pygame.draw.circle', 'pygame.draw.circle', (['screen', '(0, 0, 0)', '(205, 200)', '(20)'], {}), '(screen, (0, 0, 0), (205, 200), 20)\n', (671, 706), False, 'import pygame\n'), ((711, 764), 'pygame.draw.circle', 'pygame.draw.circle', (['screen', '(0, 0, 0)', '(400, 200)', '(20)'], {}), '(screen, (0, 0, 0), (400, 200), 20)\n', (729, 764), False, 'import pygame\n'), ((791, 846), 'pygame.draw.circle', 'pygame.draw.circle', (['screen', '(255, 0, 0)', '(300, 300)', '(35)'], {}), '(screen, (255, 0, 0), (300, 300), 35)\n', (809, 846), False, 'import pygame\n'), ((851, 907), 'pygame.draw.circle', 'pygame.draw.circle', (['screen', '(0, 0, 0)', '(300, 300)', '(35)', '(2)'], {}), '(screen, (0, 0, 0), (300, 300), 35, 2)\n', (869, 907), False, 'import pygame\n'), ((935, 993), 'pygame.draw.rect', 'pygame.draw.rect', (['screen', '(127, 0, 0)', '(200, 400, 200, 25)'], {}), '(screen, (127, 0, 0), (200, 400, 200, 25))\n', (951, 993), False, 'import pygame\n'), ((1138, 1161), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (1159, 1161), False, 'import pygame\n'), ((433, 443), 'sys.exit', 'sys.exit', ([], {}), '()\n', (441, 443), False, 'import sys\n')]
import os from .cache import Cache from .models import CacheEntry from .utils import get_file_hash, save_file, load_file import shutil import io from .compiler import ExpressionProcessor from .expressions import stylesheets, scripts, html import subprocess import tempfile class AssetCollection(object): def __init__(self, file_list, settings): self._assets = [] self._settings = settings for path in file_list: res = get_asset_objects(path, settings) if type(res) is list: for asset in res: self._assets.append(asset) self._assets[-1]._collection = self self._assets[-1]._settings = settings else: if res is None: continue self._assets.append(res) self._assets[-1]._collection = self self._assets[-1]._settings = settings def find_asset(self, path, lang): for asset in self._assets: if asset._path == path and asset._lang == lang: return asset return None def pick_dependencies(self): print('Found {count:d} assets'.format(count=len(self._assets))) if self._settings.verbose: print("Picking dependencies...") for asset in self._assets: asset.parse() if self._settings.verbose: print(asset) print('Dependencies {dependencies}\n'.format( dependencies=asset._dependencies)) self._assets = DependencyResolver.topological_sort(self._assets) if self._settings.verbose: print('Build order:\n{collection}\n'.format( collection=self._assets)) def build(self): print('Building assets...') for asset in self._assets: asset.compile(force=self._settings.force) print('Build done.') class DependencyResolver(object): @staticmethod def topological_sort(assets_unsorted): assets_sorted = [] while len(assets_unsorted) > 0: acyclic = False for asset in assets_unsorted: for dependency in asset._dependencies: if dependency in assets_unsorted: break else: acyclic = True assets_unsorted.remove(asset) assets_sorted.append(asset) if not acyclic: raise RuntimeError('A cyclic dependency occurred') return assets_sorted class Asset(object): FILE = 0 STRING = 1 def __init__(self, resource_type, path, lang): self._resource_type = resource_type self._path = path self._lang = lang self._collection = None self._settings = None self._dependencies = [] self._tool_cache = Cache() self._flag_modified = False def is_partial(self, path): return os.path.basename(path).startswith("_") def get_target_path(self, **opts): common_prefix = os.path.commonprefix([ self._path, self._get_source_dir()]) path_part = self._path[len(common_prefix)+1:] if 'hash' in opts: parts = os.path.splitext(path_part) new_filename = '%s-%s' % (parts[0], opts['hash']) path_part = '%s%s' % (new_filename, parts[1]) if 'change_extension' in opts: new_ext = opts['change_extension'] parts = os.path.splitext(path_part) path_part = '%s%s' % (parts[0], new_ext) if 'lang' in opts and not(opts['lang'] is None): lang = opts['lang'] parts = os.path.splitext(path_part) path_part = '%s-%s%s' % (parts[0], lang, parts[1]) if self.is_partial(path_part): target_path = os.path.join(self._get_partials_dir(), path_part) else: target_path = os.path.join(self._get_target_dir(), path_part) return target_path def __repr__(self): if self._lang is None: t = '{path}' else: t = '{path} ({lang})' common_prefix = os.path.commonprefix([ self._path, self._get_source_dir()]) return t.format(path=self._path[len(common_prefix) + 1:], lang=self._lang) def add_dependency(self, path, lang=None): dependency = self._collection.find_asset(path, lang) if dependency: if dependency not in self._dependencies: self._dependencies.append(dependency) else: print("Couldn't find dependency with path %s" % path) def __eq__(self, other): return self._path == other._path and self._lang == other._lang def __ne__(self, other): return self._path != other._path and self._lang != other._lang def parse(self): self._parse() def dependencies_modified(self): for dep_asset in self._dependencies: if dep_asset._flag_modified: return True return False def compile(self, force=False): if self._resource_type == Asset.FILE: cache_entry = self._tool_cache.find_entry(self._path, self._lang) file_modified = True if cache_entry is None\ else cache_entry.file_modified() or self.dependencies_modified() if file_modified or force: if cache_entry: if os.path.exists(cache_entry.target): os.remove(cache_entry.target) target_path = self._get_target_path() self._compile(target_path) if cache_entry: cache_entry.target = target_path self._tool_cache.update(cache_entry) print('Updated {asset}'.format(asset=self)) else: cache_entry = CacheEntry(self._path, target_path, self._lang) self._tool_cache.add(cache_entry) print('Created {asset}'.format(asset=self)) self._flag_modified = True else: if self._settings.verbose: print('Cached {asset}'.format(asset=self)) else: print("String asset") class TextAsset(Asset): def __init__(self, path, lang=None): super(TextAsset, self).__init__(Asset.FILE, path, lang) self._data = None split = os.path.splitext(path) self._basename = split[0] self._extension = split[1] def load(self): with io.open(self._path, 'r', encoding='utf-8') as f: self._data = f.read() def save(self, path): if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path)) save_file(path, self._data) class StylesheetAsset(TextAsset): @staticmethod def supported_extensions(): return ['.css', '.scss'] @staticmethod def get_languages(settings): return settings.stylesheets.languages def _get_partials_dir(self): return os.path.join(self._settings.partials, 'stylesheets') def _get_source_dir(self): return self._settings.stylesheets.source def _get_target_dir(self): return self._settings.stylesheets.target def _get_target_path(self): return self.get_target_path(hash=get_file_hash(self._path, unique=True)) def _parse(self): self.load() self._processor = ExpressionProcessor(self, [ stylesheets.ImageUrlExpression, stylesheets.IncludeExpression, stylesheets.FontUrlExpression ]) self._processor.parse() def minify(self): temp_path = tempfile.mkdtemp() source_file = os.path.join(temp_path, "source.css") save_file(source_file, self._data) target_file = os.path.join(temp_path, "target.css") proc = subprocess.Popen( [ "java", "-Xss100m", "-jar", self._settings.yuicompressor_file, "--type", "css", "-o", target_file, source_file ], stdout=subprocess.PIPE, stdin=subprocess.PIPE, ) out, err = proc.communicate() self._data = load_file(target_file) shutil.rmtree(temp_path) def _compile(self, target_path): self._processor.compile(self._settings, target_path) if self._settings.minify and not self.is_partial(target_path): if self._settings.verbose: print('Minifying {asset}'.format(asset=self)) self.minify() self.save(target_path) class ScriptAsset(TextAsset): @staticmethod def supported_extensions(): return ['.js', '.coffee'] @staticmethod def get_languages(settings): return settings.scripts.languages def _get_partials_dir(self): return os.path.join(self._settings.partials, 'scripts') def _get_source_dir(self): return self._settings.scripts.source def _get_target_dir(self): return self._settings.scripts.target def _get_target_path(self): return self.get_target_path( hash=get_file_hash(self._path, unique=True), change_extension='.js' ) def _parse(self): self.load() self._processor = ExpressionProcessor(self, [ scripts.IncludeExpression, scripts.ScriptUrlExpression, scripts.AppConfExpression, scripts.ResourceUrlExpression ]) self._processor.parse() def minify(self): temp_path = tempfile.mkdtemp() source_file = os.path.join(temp_path, "source.js") save_file(source_file, self._data) target_file = os.path.join(temp_path, "target.js") proc = subprocess.Popen( [ "java", "-jar", self._settings.yuicompressor_file, "--type", "js", "-o", target_file, source_file ], stdout=subprocess.PIPE, stdin=subprocess.PIPE, ) out, err = proc.communicate() self._data = load_file(target_file) shutil.rmtree(temp_path) def compile_coffee(self): temp_path = tempfile.mkdtemp() source_file = os.path.join(temp_path, "source.coffee") save_file(source_file, self._data) target_file = os.path.join(temp_path, "source.js") proc = subprocess.Popen( [ self._settings.coffee_bin, "-c", source_file ], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = proc.communicate() self._data = load_file(target_file) shutil.rmtree(temp_path) def _compile(self, target_path): self._processor.compile(self._settings, target_path) if self._extension == '.coffee': if self._settings.verbose: print('Using CoffeeScript Compiler for {asset}'.format(asset=self)) self.compile_coffee() if self._settings.minify and not self.is_partial(target_path): if self._settings.verbose: print('Minifying {asset}'.format(asset=self)) self.minify() self.save(target_path) class HtmlAsset(TextAsset): @staticmethod def supported_extensions(): return ['.html'] @staticmethod def get_languages(settings): return settings.html.languages def _get_partials_dir(self): return os.path.join(self._settings.partials, 'html') def _get_source_dir(self): return self._settings.html.source def _get_target_dir(self): return self._settings.html.target def _get_target_path(self): return self.get_target_path(lang=self._lang) def _parse(self): self.load() self._processor = ExpressionProcessor(self, [ html.IncludeExpression, html.StylesheetUrlExpression, html.ScriptUrlExpression, html.ImageUrlExpression, html.AppConfExpression, html.I18nExpression, html.I18nTemplateExpression, html.ResourceUrlExpression ]) self._processor.parse() def minify(self): temp_path = tempfile.mkdtemp() source_file = os.path.join(temp_path, "source.html") save_file(source_file, self._data) target_file = os.path.join(temp_path, "target.html") proc = subprocess.Popen( [ "java", "-jar", self._settings.htmlcompressor_file, "--type", "html", "--mask", "*.html", "-o", target_file, source_file, "--remove-intertag-spaces" ], stdout=subprocess.PIPE, stdin=subprocess.PIPE ) out, err = proc.communicate() self._data = load_file(target_file) shutil.rmtree(temp_path) def _compile(self, target_path): self._processor.compile(self._settings, target_path) if self._settings.minify and not self.is_partial(target_path): if self._settings.verbose: print('Minifying {asset}'.format(asset=self)) self.minify() self.save(target_path) class BinaryAsset(Asset): def __init__(self, path, lang=None): super(BinaryAsset, self).__init__(Asset.FILE, path, lang) def _get_target_path(self): return self.get_target_path(hash=get_file_hash(self._path, unique=True)) def _parse(self): pass def _compile(self, target_path): if not os.path.exists(os.path.dirname(target_path)): os.makedirs(os.path.dirname(target_path)) shutil.copy(self._path, target_path) class ImageAsset(BinaryAsset): def __init__(self, path, lang=None): super(ImageAsset, self).__init__(path, lang) @staticmethod def supported_extensions(): return ['.png', '.jpg', '.gif'] @staticmethod def get_languages(settings): return settings.images.languages def _get_partials_dir(self): return os.path.join(self._settings.partials, 'images') def _get_source_dir(self): return self._settings.images.source def _get_target_dir(self): return self._settings.images.target class FontAsset(BinaryAsset): def __init__(self, path, lang=None): super(FontAsset, self).__init__(path, lang) @staticmethod def supported_extensions(): return ['.eot', '.svg', '.ttf', '.woff'] @staticmethod def get_languages(settings): return settings.fonts.languages def _get_partials_dir(self): return os.path.join(self._settings.partials, 'fonts') def _get_source_dir(self): return self._settings.fonts.source def _get_target_dir(self): return self._settings.fonts.target def get_asset_objects(path, settings): asset_classes = [ ImageAsset, FontAsset, StylesheetAsset, HtmlAsset, ScriptAsset ] file_ext = os.path.splitext(path)[1] for asset_class in asset_classes: if file_ext in asset_class.supported_extensions(): langs = asset_class.get_languages(settings) if langs is None: return asset_class(path, None) else: return [asset_class(path, lang) for lang in langs] return None
[ "subprocess.Popen", "os.remove", "os.path.basename", "os.path.dirname", "os.path.exists", "tempfile.mkdtemp", "os.path.splitext", "io.open", "shutil.rmtree", "os.path.join", "shutil.copy" ]
[((6556, 6578), 'os.path.splitext', 'os.path.splitext', (['path'], {}), '(path)\n', (6572, 6578), False, 'import os\n'), ((7195, 7247), 'os.path.join', 'os.path.join', (['self._settings.partials', '"""stylesheets"""'], {}), "(self._settings.partials, 'stylesheets')\n", (7207, 7247), False, 'import os\n'), ((7836, 7854), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (7852, 7854), False, 'import tempfile\n'), ((7878, 7915), 'os.path.join', 'os.path.join', (['temp_path', '"""source.css"""'], {}), "(temp_path, 'source.css')\n", (7890, 7915), False, 'import os\n'), ((7981, 8018), 'os.path.join', 'os.path.join', (['temp_path', '"""target.css"""'], {}), "(temp_path, 'target.css')\n", (7993, 8018), False, 'import os\n'), ((8035, 8221), 'subprocess.Popen', 'subprocess.Popen', (["['java', '-Xss100m', '-jar', self._settings.yuicompressor_file, '--type',\n 'css', '-o', target_file, source_file]"], {'stdout': 'subprocess.PIPE', 'stdin': 'subprocess.PIPE'}), "(['java', '-Xss100m', '-jar', self._settings.\n yuicompressor_file, '--type', 'css', '-o', target_file, source_file],\n stdout=subprocess.PIPE, stdin=subprocess.PIPE)\n", (8051, 8221), False, 'import subprocess\n'), ((8509, 8533), 'shutil.rmtree', 'shutil.rmtree', (['temp_path'], {}), '(temp_path)\n', (8522, 8533), False, 'import shutil\n'), ((9121, 9169), 'os.path.join', 'os.path.join', (['self._settings.partials', '"""scripts"""'], {}), "(self._settings.partials, 'scripts')\n", (9133, 9169), False, 'import os\n'), ((9840, 9858), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (9856, 9858), False, 'import tempfile\n'), ((9882, 9918), 'os.path.join', 'os.path.join', (['temp_path', '"""source.js"""'], {}), "(temp_path, 'source.js')\n", (9894, 9918), False, 'import os\n'), ((9984, 10020), 'os.path.join', 'os.path.join', (['temp_path', '"""target.js"""'], {}), "(temp_path, 'target.js')\n", (9996, 10020), False, 'import os\n'), ((10037, 10209), 'subprocess.Popen', 'subprocess.Popen', (["['java', '-jar', self._settings.yuicompressor_file, '--type', 'js', '-o',\n target_file, source_file]"], {'stdout': 'subprocess.PIPE', 'stdin': 'subprocess.PIPE'}), "(['java', '-jar', self._settings.yuicompressor_file,\n '--type', 'js', '-o', target_file, source_file], stdout=subprocess.PIPE,\n stdin=subprocess.PIPE)\n", (10053, 10209), False, 'import subprocess\n'), ((10482, 10506), 'shutil.rmtree', 'shutil.rmtree', (['temp_path'], {}), '(temp_path)\n', (10495, 10506), False, 'import shutil\n'), ((10558, 10576), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (10574, 10576), False, 'import tempfile\n'), ((10600, 10640), 'os.path.join', 'os.path.join', (['temp_path', '"""source.coffee"""'], {}), "(temp_path, 'source.coffee')\n", (10612, 10640), False, 'import os\n'), ((10706, 10742), 'os.path.join', 'os.path.join', (['temp_path', '"""source.js"""'], {}), "(temp_path, 'source.js')\n", (10718, 10742), False, 'import os\n'), ((10759, 10876), 'subprocess.Popen', 'subprocess.Popen', (["[self._settings.coffee_bin, '-c', source_file]"], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE'}), "([self._settings.coffee_bin, '-c', source_file], stdout=\n subprocess.PIPE, stderr=subprocess.PIPE)\n", (10775, 10876), False, 'import subprocess\n'), ((11062, 11086), 'shutil.rmtree', 'shutil.rmtree', (['temp_path'], {}), '(temp_path)\n', (11075, 11086), False, 'import shutil\n'), ((11858, 11903), 'os.path.join', 'os.path.join', (['self._settings.partials', '"""html"""'], {}), "(self._settings.partials, 'html')\n", (11870, 11903), False, 'import os\n'), ((12623, 12641), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (12639, 12641), False, 'import tempfile\n'), ((12665, 12703), 'os.path.join', 'os.path.join', (['temp_path', '"""source.html"""'], {}), "(temp_path, 'source.html')\n", (12677, 12703), False, 'import os\n'), ((12769, 12807), 'os.path.join', 'os.path.join', (['temp_path', '"""target.html"""'], {}), "(temp_path, 'target.html')\n", (12781, 12807), False, 'import os\n'), ((12824, 13047), 'subprocess.Popen', 'subprocess.Popen', (["['java', '-jar', self._settings.htmlcompressor_file, '--type', 'html',\n '--mask', '*.html', '-o', target_file, source_file,\n '--remove-intertag-spaces']"], {'stdout': 'subprocess.PIPE', 'stdin': 'subprocess.PIPE'}), "(['java', '-jar', self._settings.htmlcompressor_file,\n '--type', 'html', '--mask', '*.html', '-o', target_file, source_file,\n '--remove-intertag-spaces'], stdout=subprocess.PIPE, stdin=subprocess.PIPE)\n", (12840, 13047), False, 'import subprocess\n'), ((13367, 13391), 'shutil.rmtree', 'shutil.rmtree', (['temp_path'], {}), '(temp_path)\n', (13380, 13391), False, 'import shutil\n'), ((14166, 14202), 'shutil.copy', 'shutil.copy', (['self._path', 'target_path'], {}), '(self._path, target_path)\n', (14177, 14202), False, 'import shutil\n'), ((14563, 14610), 'os.path.join', 'os.path.join', (['self._settings.partials', '"""images"""'], {}), "(self._settings.partials, 'images')\n", (14575, 14610), False, 'import os\n'), ((15129, 15175), 'os.path.join', 'os.path.join', (['self._settings.partials', '"""fonts"""'], {}), "(self._settings.partials, 'fonts')\n", (15141, 15175), False, 'import os\n'), ((15514, 15536), 'os.path.splitext', 'os.path.splitext', (['path'], {}), '(path)\n', (15530, 15536), False, 'import os\n'), ((3308, 3335), 'os.path.splitext', 'os.path.splitext', (['path_part'], {}), '(path_part)\n', (3324, 3335), False, 'import os\n'), ((3562, 3589), 'os.path.splitext', 'os.path.splitext', (['path_part'], {}), '(path_part)\n', (3578, 3589), False, 'import os\n'), ((3752, 3779), 'os.path.splitext', 'os.path.splitext', (['path_part'], {}), '(path_part)\n', (3768, 3779), False, 'import os\n'), ((6682, 6724), 'io.open', 'io.open', (['self._path', '"""r"""'], {'encoding': '"""utf-8"""'}), "(self._path, 'r', encoding='utf-8')\n", (6689, 6724), False, 'import io\n'), ((3020, 3042), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (3036, 3042), False, 'import os\n'), ((6822, 6843), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (6837, 6843), False, 'import os\n'), ((6870, 6891), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (6885, 6891), False, 'import os\n'), ((14073, 14101), 'os.path.dirname', 'os.path.dirname', (['target_path'], {}), '(target_path)\n', (14088, 14101), False, 'import os\n'), ((14128, 14156), 'os.path.dirname', 'os.path.dirname', (['target_path'], {}), '(target_path)\n', (14143, 14156), False, 'import os\n'), ((5550, 5584), 'os.path.exists', 'os.path.exists', (['cache_entry.target'], {}), '(cache_entry.target)\n', (5564, 5584), False, 'import os\n'), ((5610, 5639), 'os.remove', 'os.remove', (['cache_entry.target'], {}), '(cache_entry.target)\n', (5619, 5639), False, 'import os\n')]
from itertools import product alpha = ['A', 'T', 'C', 'G'] motifs = [a+b+c+d+e+f+g for a,b,c,d,e,f,g in product(alpha, repeat=7)] with open('motifs7.txt', 'w') as f: for item in motifs: f.write("%s\n" % item)
[ "itertools.product" ]
[((105, 129), 'itertools.product', 'product', (['alpha'], {'repeat': '(7)'}), '(alpha, repeat=7)\n', (112, 129), False, 'from itertools import product\n')]
import networkx as nx graph = nx.DiGraph() nodes = [f"{i}" for i in range(1, 13)] nodes.extend([chr(i) for i in range(1, 13)]) graph.add_nodes_from([]) class Node: def __init__(self, name, direct, sig): self.name = name self.direct = direct self.sig = sig class Edge: def __init__(self, prev, to, tp, direct): self.prev = prev self.to = to self.tp = tp self.direct = direct
[ "networkx.DiGraph" ]
[((31, 43), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (41, 43), True, 'import networkx as nx\n')]
import unittest from datastructure.links.Node import Node def from_second(head): if head is None: raise ValueError("Linked list is empty") return head._next class MyTestCase(unittest.TestCase): def test_something(self): head = Node(0, None) current = head for i in range(1, 6): new_node = Node(i, None) current._next = new_node current = new_node second = from_second(head) result = [] node = second while node is not None: result.append(node._element) node = node._next self.assertEqual([1, 2, 3, 4, 5], result) if __name__ == '__main__': unittest.main()
[ "unittest.main", "datastructure.links.Node.Node" ]
[((697, 712), 'unittest.main', 'unittest.main', ([], {}), '()\n', (710, 712), False, 'import unittest\n'), ((259, 272), 'datastructure.links.Node.Node', 'Node', (['(0)', 'None'], {}), '(0, None)\n', (263, 272), False, 'from datastructure.links.Node import Node\n'), ((349, 362), 'datastructure.links.Node.Node', 'Node', (['i', 'None'], {}), '(i, None)\n', (353, 362), False, 'from datastructure.links.Node import Node\n')]
# Licensed under a 3-clause BSD style license - see LICENSE.rst from numpy.testing import assert_allclose, assert_equal import astropy.units as u from astropy.table import Table from gammapy.astro.population import ( add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere, ) def test_make_catalog_random_positions_cube(): table = make_catalog_random_positions_cube(random_state=0) d = table[0] assert len(table) == 100 assert len(table.colnames) == 3 assert table["x"].unit == "pc" assert_allclose(d["x"], 0.0976270078546495) assert table["y"].unit == "pc" assert_allclose(d["y"], 0.3556330735924602) assert table["z"].unit == "pc" assert_allclose(d["z"], -0.37640823601179485) table = make_catalog_random_positions_cube(dimension=2, random_state=0) assert_equal(table["z"], 0) table = make_catalog_random_positions_cube(dimension=1, random_state=0) assert_equal(table["y"], 0) assert_equal(table["z"], 0) def test_make_catalog_random_positions_sphere(): table = make_catalog_random_positions_sphere(random_state=0) d = table[0] assert len(table) == 100 assert len(table.colnames) == 3 assert table["lon"].unit == "rad" assert_allclose(d["lon"], 3.4482969442579128) assert table["lat"].unit == "rad" assert_allclose(d["lat"], 0.36359133530192267) assert table["distance"].unit == "pc" assert_allclose(d["distance"], 0.6780943487897606) def test_make_base_catalog_galactic(): table = make_base_catalog_galactic(n_sources=10, random_state=0) d = table[0] assert len(table) == 10 assert len(table.colnames) == 13 assert table["age"].unit == "yr" assert_allclose(d["age"], 548813.50392732478) assert table["n_ISM"].unit == "cm-3" assert_allclose(d["n_ISM"], 1.0) assert table["spiralarm"].unit is None assert d["spiralarm"] == "Crux Scutum" assert table["x_birth"].unit == "kpc" assert_allclose(d["x_birth"], -5.856461, atol=1e-5) assert table["y_birth"].unit == "kpc" assert_allclose(d["y_birth"], 3.017292, atol=1e-5) assert table["z_birth"].unit == "kpc" assert_allclose(d["z_birth"], 0.049088, atol=1e-5) assert table["x"].unit == "kpc" assert_allclose(d["x"], -5.941061, atol=1e-5) assert table["y"].unit == "kpc" assert_allclose(d["y"], 3.081642, atol=1e-5) assert table["z"].unit == "kpc" assert_allclose(d["z"], 0.023161, atol=1e-5) assert table["vx"].unit == "km/s" assert_allclose(d["vx"], -150.727104, atol=1e-5) assert table["vy"].unit == "km/s" assert_allclose(d["vy"], 114.648494, atol=1e-5) assert table["vz"].unit == "km/s" assert_allclose(d["vz"], -46.193814, atol=1e-5) assert table["v_abs"].unit == "km/s" assert_allclose(d["v_abs"], 194.927693, atol=1e-5) def test_add_snr_parameters(): table = Table() table["age"] = [100, 1000] * u.yr table["n_ISM"] = u.Quantity(1, "cm-3") table = add_snr_parameters(table) assert len(table) == 2 assert table.colnames == ["age", "n_ISM", "E_SN", "r_out", "r_in", "L_SNR"] assert table["E_SN"].unit == "erg" assert_allclose(table["E_SN"], 1e51) assert table["r_out"].unit == "pc" assert_allclose(table["r_out"], [1, 3.80730787743]) assert table["r_in"].unit == "pc" assert_allclose(table["r_in"], [0.9086, 3.45931993743]) assert table["L_SNR"].unit == "1 / s" assert_allclose(table["L_SNR"], [0, 1.0768e33]) def test_add_pulsar_parameters(): table = Table() table["age"] = [100, 1000] * u.yr table = add_pulsar_parameters(table, random_state=0) assert len(table) == 2 assert len(table.colnames) == 10 assert table["age"].unit == "yr" assert_allclose(table["age"], [100, 1000]) assert table["P0"].unit == "s" assert_allclose(table["P0"], [0.214478, 0.246349], atol=1e-5) assert table["P1"].unit == "" assert_allclose(table["P1"], [6.310423e-13, 4.198294e-16], atol=1e-5) assert table["P0_birth"].unit == "s" assert_allclose(table["P0_birth"], [0.212418, 0.246336], atol=1e-5) assert table["P1_birth"].unit == "" assert_allclose(table["P1_birth"], [6.558773e-13, 4.199198e-16], atol=1e-5) assert table["CharAge"].unit == "yr" assert_allclose(table["CharAge"], [2.207394e-21, 1.638930e-24], atol=1e-5) assert table["Tau0"].unit == "yr" assert_allclose(table["Tau0"], [5.131385e03, 9.294538e06], atol=1e-5) assert table["L_PSR"].unit == "erg / s" assert_allclose(table["L_PSR"], [2.599229e36, 1.108788e33], rtol=1e-5) assert table["L0_PSR"].unit == "erg / s" assert_allclose(table["L0_PSR"], [2.701524e36, 1.109026e33], rtol=1e-5) assert table["B_PSR"].unit == "G" assert_allclose(table["B_PSR"], [1.194420e13, 3.254597e11], rtol=1e-5) def test_add_pwn_parameters(): table = make_base_catalog_galactic(n_sources=10, random_state=0) # To compute PWN parameters we need PSR and SNR parameters first table = add_snr_parameters(table) table = add_pulsar_parameters(table, random_state=0) table = add_pwn_parameters(table) d = table[0] assert len(table) == 10 assert len(table.colnames) == 27 assert table["r_out_PWN"].unit == "pc" assert_allclose(d["r_out_PWN"], 1.378224, atol=1e-4) def test_add_observed_parameters(): table = make_base_catalog_galactic(n_sources=10, random_state=0) table = add_observed_parameters(table) d = table[0] assert len(table) == 10 assert len(table.colnames) == 20 assert table["distance"].unit == "pc" assert_allclose(d["distance"], 13016.572756, atol=1e-5) assert table["GLON"].unit == "deg" assert_allclose(d["GLON"], -27.156565, atol=1e-5) assert table["GLAT"].unit == "deg" assert_allclose(d["GLAT"], 0.101948, atol=1e-5) assert table["VGLON"].unit == "deg / Myr" assert_allclose(d["VGLON"], 0.368166, atol=1e-5) assert table["VGLAT"].unit == "deg / Myr" assert_allclose(d["VGLAT"], -0.209514, atol=1e-5) assert table["RA"].unit == "deg" assert_allclose(d["RA"], 244.347149, atol=1e-5) assert table["DEC"].unit == "deg" assert_allclose(d["DEC"], -50.410142, atol=1e-5) def test_chain_all(): # Test that running the simulation functions in chain works table = make_base_catalog_galactic(n_sources=10, random_state=0) table = add_snr_parameters(table) table = add_pulsar_parameters(table, random_state=0) table = add_pwn_parameters(table) table = add_observed_parameters(table) d = table[0] # Note: the individual functions are tested above. # Here we just run them in a chain and do very basic asserts # on the output so that we make sure we notice changes. assert len(table) == 10 assert len(table.colnames) == 34 assert table["r_out_PWN"].unit == "pc" assert_allclose(d["r_out_PWN"], 1.378224, atol=1e-4) assert table["RA"].unit == "deg" assert_allclose(d["RA"], 244.347149, atol=1e-5)
[ "gammapy.astro.population.make_catalog_random_positions_cube", "astropy.table.Table", "astropy.units.Quantity", "gammapy.astro.population.add_observed_parameters", "gammapy.astro.population.make_base_catalog_galactic", "gammapy.astro.population.add_pulsar_parameters", "gammapy.astro.population.add_pwn_parameters", "gammapy.astro.population.make_catalog_random_positions_sphere", "numpy.testing.assert_equal", "numpy.testing.assert_allclose", "gammapy.astro.population.add_snr_parameters" ]
[((498, 548), 'gammapy.astro.population.make_catalog_random_positions_cube', 'make_catalog_random_positions_cube', ([], {'random_state': '(0)'}), '(random_state=0)\n', (532, 548), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((672, 715), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['x']", '(0.0976270078546495)'], {}), "(d['x'], 0.0976270078546495)\n", (687, 715), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((755, 798), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['y']", '(0.3556330735924602)'], {}), "(d['y'], 0.3556330735924602)\n", (770, 798), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((838, 883), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['z']", '(-0.37640823601179485)'], {}), "(d['z'], -0.37640823601179485)\n", (853, 883), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((897, 960), 'gammapy.astro.population.make_catalog_random_positions_cube', 'make_catalog_random_positions_cube', ([], {'dimension': '(2)', 'random_state': '(0)'}), '(dimension=2, random_state=0)\n', (931, 960), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((965, 992), 'numpy.testing.assert_equal', 'assert_equal', (["table['z']", '(0)'], {}), "(table['z'], 0)\n", (977, 992), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1006, 1069), 'gammapy.astro.population.make_catalog_random_positions_cube', 'make_catalog_random_positions_cube', ([], {'dimension': '(1)', 'random_state': '(0)'}), '(dimension=1, random_state=0)\n', (1040, 1069), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((1074, 1101), 'numpy.testing.assert_equal', 'assert_equal', (["table['y']", '(0)'], {}), "(table['y'], 0)\n", (1086, 1101), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1106, 1133), 'numpy.testing.assert_equal', 'assert_equal', (["table['z']", '(0)'], {}), "(table['z'], 0)\n", (1118, 1133), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1197, 1249), 'gammapy.astro.population.make_catalog_random_positions_sphere', 'make_catalog_random_positions_sphere', ([], {'random_state': '(0)'}), '(random_state=0)\n', (1233, 1249), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((1376, 1421), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['lon']", '(3.4482969442579128)'], {}), "(d['lon'], 3.4482969442579128)\n", (1391, 1421), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1464, 1510), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['lat']", '(0.36359133530192267)'], {}), "(d['lat'], 0.36359133530192267)\n", (1479, 1510), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1557, 1607), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['distance']", '(0.6780943487897606)'], {}), "(d['distance'], 0.6780943487897606)\n", (1572, 1607), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1661, 1717), 'gammapy.astro.population.make_base_catalog_galactic', 'make_base_catalog_galactic', ([], {'n_sources': '(10)', 'random_state': '(0)'}), '(n_sources=10, random_state=0)\n', (1687, 1717), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((1843, 1887), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['age']", '(548813.5039273248)'], {}), "(d['age'], 548813.5039273248)\n", (1858, 1887), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((1934, 1966), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['n_ISM']", '(1.0)'], {}), "(d['n_ISM'], 1.0)\n", (1949, 1966), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2099, 2151), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['x_birth']", '(-5.856461)'], {'atol': '(1e-05)'}), "(d['x_birth'], -5.856461, atol=1e-05)\n", (2114, 2151), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2197, 2248), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['y_birth']", '(3.017292)'], {'atol': '(1e-05)'}), "(d['y_birth'], 3.017292, atol=1e-05)\n", (2212, 2248), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2294, 2345), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['z_birth']", '(0.049088)'], {'atol': '(1e-05)'}), "(d['z_birth'], 0.049088, atol=1e-05)\n", (2309, 2345), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2385, 2431), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['x']", '(-5.941061)'], {'atol': '(1e-05)'}), "(d['x'], -5.941061, atol=1e-05)\n", (2400, 2431), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2471, 2516), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['y']", '(3.081642)'], {'atol': '(1e-05)'}), "(d['y'], 3.081642, atol=1e-05)\n", (2486, 2516), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2556, 2601), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['z']", '(0.023161)'], {'atol': '(1e-05)'}), "(d['z'], 0.023161, atol=1e-05)\n", (2571, 2601), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2643, 2692), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['vx']", '(-150.727104)'], {'atol': '(1e-05)'}), "(d['vx'], -150.727104, atol=1e-05)\n", (2658, 2692), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2734, 2782), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['vy']", '(114.648494)'], {'atol': '(1e-05)'}), "(d['vy'], 114.648494, atol=1e-05)\n", (2749, 2782), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2824, 2872), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['vz']", '(-46.193814)'], {'atol': '(1e-05)'}), "(d['vz'], -46.193814, atol=1e-05)\n", (2839, 2872), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((2917, 2968), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['v_abs']", '(194.927693)'], {'atol': '(1e-05)'}), "(d['v_abs'], 194.927693, atol=1e-05)\n", (2932, 2968), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((3013, 3020), 'astropy.table.Table', 'Table', ([], {}), '()\n', (3018, 3020), False, 'from astropy.table import Table\n'), ((3080, 3101), 'astropy.units.Quantity', 'u.Quantity', (['(1)', '"""cm-3"""'], {}), "(1, 'cm-3')\n", (3090, 3101), True, 'import astropy.units as u\n'), ((3115, 3140), 'gammapy.astro.population.add_snr_parameters', 'add_snr_parameters', (['table'], {}), '(table)\n', (3133, 3140), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((3293, 3330), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['E_SN']", '(1e+51)'], {}), "(table['E_SN'], 1e+51)\n", (3308, 3330), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((3373, 3424), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['r_out']", '[1, 3.80730787743]'], {}), "(table['r_out'], [1, 3.80730787743])\n", (3388, 3424), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((3467, 3522), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['r_in']", '[0.9086, 3.45931993743]'], {}), "(table['r_in'], [0.9086, 3.45931993743])\n", (3482, 3522), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((3569, 3617), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['L_SNR']", '[0, 1.0768e+33]'], {}), "(table['L_SNR'], [0, 1.0768e+33])\n", (3584, 3617), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((3665, 3672), 'astropy.table.Table', 'Table', ([], {}), '()\n', (3670, 3672), False, 'from astropy.table import Table\n'), ((3724, 3768), 'gammapy.astro.population.add_pulsar_parameters', 'add_pulsar_parameters', (['table'], {'random_state': '(0)'}), '(table, random_state=0)\n', (3745, 3768), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((3876, 3918), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['age']", '[100, 1000]'], {}), "(table['age'], [100, 1000])\n", (3891, 3918), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((3958, 4020), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['P0']", '[0.214478, 0.246349]'], {'atol': '(1e-05)'}), "(table['P0'], [0.214478, 0.246349], atol=1e-05)\n", (3973, 4020), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4058, 4128), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['P1']", '[6.310423e-13, 4.198294e-16]'], {'atol': '(1e-05)'}), "(table['P1'], [6.310423e-13, 4.198294e-16], atol=1e-05)\n", (4073, 4128), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4173, 4241), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['P0_birth']", '[0.212418, 0.246336]'], {'atol': '(1e-05)'}), "(table['P0_birth'], [0.212418, 0.246336], atol=1e-05)\n", (4188, 4241), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4285, 4361), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['P1_birth']", '[6.558773e-13, 4.199198e-16]'], {'atol': '(1e-05)'}), "(table['P1_birth'], [6.558773e-13, 4.199198e-16], atol=1e-05)\n", (4300, 4361), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4406, 4480), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['CharAge']", '[2.207394e-21, 1.63893e-24]'], {'atol': '(1e-05)'}), "(table['CharAge'], [2.207394e-21, 1.63893e-24], atol=1e-05)\n", (4421, 4480), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4523, 4588), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['Tau0']", '[5131.385, 9294538.0]'], {'atol': '(1e-05)'}), "(table['Tau0'], [5131.385, 9294538.0], atol=1e-05)\n", (4538, 4588), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4641, 4714), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['L_PSR']", '[2.599229e+36, 1.108788e+33]'], {'rtol': '(1e-05)'}), "(table['L_PSR'], [2.599229e+36, 1.108788e+33], rtol=1e-05)\n", (4656, 4714), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4761, 4835), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['L0_PSR']", '[2.701524e+36, 1.109026e+33]'], {'rtol': '(1e-05)'}), "(table['L0_PSR'], [2.701524e+36, 1.109026e+33], rtol=1e-05)\n", (4776, 4835), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4875, 4954), 'numpy.testing.assert_allclose', 'assert_allclose', (["table['B_PSR']", '[11944200000000.0, 325459700000.0]'], {'rtol': '(1e-05)'}), "(table['B_PSR'], [11944200000000.0, 325459700000.0], rtol=1e-05)\n", (4890, 4954), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((4991, 5047), 'gammapy.astro.population.make_base_catalog_galactic', 'make_base_catalog_galactic', ([], {'n_sources': '(10)', 'random_state': '(0)'}), '(n_sources=10, random_state=0)\n', (5017, 5047), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((5129, 5154), 'gammapy.astro.population.add_snr_parameters', 'add_snr_parameters', (['table'], {}), '(table)\n', (5147, 5154), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((5167, 5211), 'gammapy.astro.population.add_pulsar_parameters', 'add_pulsar_parameters', (['table'], {'random_state': '(0)'}), '(table, random_state=0)\n', (5188, 5211), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((5224, 5249), 'gammapy.astro.population.add_pwn_parameters', 'add_pwn_parameters', (['table'], {}), '(table)\n', (5242, 5249), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((5381, 5435), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['r_out_PWN']", '(1.378224)'], {'atol': '(0.0001)'}), "(d['r_out_PWN'], 1.378224, atol=0.0001)\n", (5396, 5435), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((5484, 5540), 'gammapy.astro.population.make_base_catalog_galactic', 'make_base_catalog_galactic', ([], {'n_sources': '(10)', 'random_state': '(0)'}), '(n_sources=10, random_state=0)\n', (5510, 5540), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((5553, 5583), 'gammapy.astro.population.add_observed_parameters', 'add_observed_parameters', (['table'], {}), '(table)\n', (5576, 5583), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((5714, 5770), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['distance']", '(13016.572756)'], {'atol': '(1e-05)'}), "(d['distance'], 13016.572756, atol=1e-05)\n", (5729, 5770), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((5813, 5863), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['GLON']", '(-27.156565)'], {'atol': '(1e-05)'}), "(d['GLON'], -27.156565, atol=1e-05)\n", (5828, 5863), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((5906, 5954), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['GLAT']", '(0.101948)'], {'atol': '(1e-05)'}), "(d['GLAT'], 0.101948, atol=1e-05)\n", (5921, 5954), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((6004, 6053), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['VGLON']", '(0.368166)'], {'atol': '(1e-05)'}), "(d['VGLON'], 0.368166, atol=1e-05)\n", (6019, 6053), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((6103, 6153), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['VGLAT']", '(-0.209514)'], {'atol': '(1e-05)'}), "(d['VGLAT'], -0.209514, atol=1e-05)\n", (6118, 6153), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((6194, 6242), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['RA']", '(244.347149)'], {'atol': '(1e-05)'}), "(d['RA'], 244.347149, atol=1e-05)\n", (6209, 6242), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((6284, 6333), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['DEC']", '(-50.410142)'], {'atol': '(1e-05)'}), "(d['DEC'], -50.410142, atol=1e-05)\n", (6299, 6333), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((6433, 6489), 'gammapy.astro.population.make_base_catalog_galactic', 'make_base_catalog_galactic', ([], {'n_sources': '(10)', 'random_state': '(0)'}), '(n_sources=10, random_state=0)\n', (6459, 6489), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((6502, 6527), 'gammapy.astro.population.add_snr_parameters', 'add_snr_parameters', (['table'], {}), '(table)\n', (6520, 6527), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((6540, 6584), 'gammapy.astro.population.add_pulsar_parameters', 'add_pulsar_parameters', (['table'], {'random_state': '(0)'}), '(table, random_state=0)\n', (6561, 6584), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((6597, 6622), 'gammapy.astro.population.add_pwn_parameters', 'add_pwn_parameters', (['table'], {}), '(table)\n', (6615, 6622), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((6635, 6665), 'gammapy.astro.population.add_observed_parameters', 'add_observed_parameters', (['table'], {}), '(table)\n', (6658, 6665), False, 'from gammapy.astro.population import add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere\n'), ((6977, 7031), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['r_out_PWN']", '(1.378224)'], {'atol': '(0.0001)'}), "(d['r_out_PWN'], 1.378224, atol=0.0001)\n", (6992, 7031), False, 'from numpy.testing import assert_allclose, assert_equal\n'), ((7071, 7119), 'numpy.testing.assert_allclose', 'assert_allclose', (["d['RA']", '(244.347149)'], {'atol': '(1e-05)'}), "(d['RA'], 244.347149, atol=1e-05)\n", (7086, 7119), False, 'from numpy.testing import assert_allclose, assert_equal\n')]
"""Class definition for the DataSetParser ABC and FeaturizerMixin.""" from abc import ABC, abstractmethod from pathlib import Path from typing import Callable, Generator, List, Tuple, Type import numpy as np import pandas as pd from sklearn.preprocessing import RobustScaler class FeaturizerMixin: """Mixin to provide secondary featurization functionality.""" def featurize_secondary(self): """ Perform secondary featurization. Sequentially trigger each featurizer to extract secondary features. The extracted secondary metafeatures are stored in each featurizer's `sec_metafeatures` and `sec_test_metafeatures` attributes. These extracted metafeatures will then be collected and appended column-wise to the `metafeature` and `test_metafeature` attributes of the DataSetParser subclass instance. """ for featurizer in self.featurizers: if type(featurizer).__name__ == "RawDataSetFeaturizerViaLambda": featurizer.featurize( self._create_raw_generator(), keys=self.metafeatures, test_keys=self.test_metafeatures, multiprocess=self._multiprocess_raw_secondary, ) else: featurizer.featurize( meta_df=self.metafeatures, test_meta_df=self.test_metafeatures, ) self.__add_secondary_metafeatures() def __add_secondary_metafeatures(self): """Add secondary features to the training and test metafeature attributes.""" # Get secondary feature names if self.metafeatures is not None: sec_feature_names = list(self.metafeatures) + [ name for featurizer in self.featurizers for name in featurizer.sec_feature_names ] elif self.test_metafeatures is not None: sec_feature_names = list(self.test_metafeatures) + [ name for featurizer in self.featurizers for name in featurizer.sec_feature_names ] if self.metafeatures is not None: sec_metafeatures = [x.sec_metafeatures for x in self.featurizers] self.metafeatures = pd.concat( [self.metafeatures, *sec_metafeatures], axis=1, ignore_index=True, ) self.metafeatures.columns = sec_feature_names if self.test_metafeatures is not None: sec_test_metafeatures = [ x.sec_test_metafeatures for x in self.featurizers ] self.test_metafeatures = pd.concat( [self.test_metafeatures, *sec_test_metafeatures], axis=1, ignore_index=True, ) self.test_metafeatures.columns = sec_feature_names class DataSetParser(ABC, FeaturizerMixin): """ Abstract base class to load and extract metafeatures from raw data sets. FeaturizerMixin provides the `.featurize` method. Instance attributes: src {Path} -- Path to data set file on disk. metafeatures {pd.DataFrame} -- Metafeatures extracted from the raw data set. Each metafeature row corresponds to a feature column in the raw data set. labels {pd.Series} -- Label corresponding to each metafeature. test_src {Path} -- Optional path to test raw data set file on disk. This attribute applies more to the subclasses of MetaDataSetParser. test_metafeatures {pd.DataFrame} -- Optional metafeatures extracted from the test raw data set. test_labels {pd.Series} -- Optional labels corresponding to each test metafeature row. scaler {RobustScaler} -- A scaler to handle normalize metafeatures before serving them for training. featurizers: {List} -- A list of featurizers that performs secondary metafeaturizations. Class attributes: NUM_BASE_METAFEATURES {int} -- Number of base metafeatures. Used to separate base and secondary metafeatures. Abstract methods: load_data_set -- Load the data set and perform necessarily cleaning and parsing. featurize_base -- Featurize base metafeatures. normalize_features -- Performs normalization on the metafeatures and test metafeatures (if provided). _create_raw_generator -- Returns a generator of raw data sets. This supports the MetaDataSetFeaturizerViaLambda class functionality. """ NUM_BASE_METAFEATURES = ( 7 ) # Includes (total_val, min, max, mean, std, num_nans, num_distincts) def __init__(self): """Init function.""" self.src: Path = None self.labels: pd.Series = None self.metafeatures: pd.DataFrame = None self.test_src: Path = None self.test_labels: pd.Series = None self.test_metafeatures: pd.DataFrame = None self.scaler: Type[RobustScaler] = None self.featurizers: List = [] self._multiprocess_raw_secondary: bool = False # Multiprocessing of raw dataframe(s) @abstractmethod def load_data_set(self): """Load data set from source.""" raise NotImplementedError @abstractmethod def featurize_base(self): """Featurize base metafeatures.""" raise NotImplementedError @abstractmethod def normalize_features(self): """Normalize metafeatures for training.""" raise NotImplementedError @abstractmethod def _create_raw_generator( self ) -> Generator[Tuple[str, Callable[[], pd.DataFrame]], None, None]: raise NotImplementedError def _select_metafeatures( self, df: pd.DataFrame, mark: str = "*" ) -> Tuple[pd.DataFrame, pd.DataFrame]: """ Select metafeatures to normalize and to retain for training. The following criteria is used. Metafeatures to: - normalize: Numerical columns - not normalize but retain for training: Features whose title ends with `mark`. Remainder metafeatures are dropped. Note: Columns are tracked by indices instead of names to avoid problems when there are duplicated columnn names. Arguments: df {pd.DataFrame} -- Metafeatures dataframe. mark {str} -- Character to append to names of columns that should not be normlized but retained for training. Returns: Tuple[pd.DataFrame, pd.DataFrame] -- (metafeatures_to_normalize, metafeatures_to_retain) """ idx_to_normalize: List[int] = [] idx_to_retain: List[int] = [] IGNORE_COLS = ( "attribute_name", # Already represented as ngrams "sample", # Ignore sample columns which may be of type int "total_val", # Intent prediction should not be based on # data points "num_distincts", # Use `normalized_distinct_rate` instead "num_nans", # Captured in `nan_rate` ) for i, col in enumerate(df.columns): if col in IGNORE_COLS: continue # Save columns that are either numeric or that have been marked # into appropriate groups if col[-1] == "*": idx_to_retain.append(i) elif self._is_numeric(df.iloc[:, i]): idx_to_normalize.append(i) features_to_normalize = df.iloc[:, idx_to_normalize] features_to_retain = df.iloc[:, idx_to_retain] return features_to_normalize, features_to_retain def _is_numeric(self, series: pd.Series) -> bool: return pd.api.types.is_numeric_dtype(series) @staticmethod def _split_features_and_labels( mds: pd.DataFrame, label_col: str ) -> Tuple[pd.DataFrame, pd.Series]: """ Split features and labels. Arguments: mds {pd.DataFrame} -- MetaDataSet. label_col {str} -- Column containing labels in the MetaDataSet. Returns: Tuple[pd.DataFrame, pd.Series] -- (features, labels) tuple. """ return mds.drop(label_col, axis=1), mds[label_col]
[ "pandas.concat", "pandas.api.types.is_numeric_dtype" ]
[((8026, 8063), 'pandas.api.types.is_numeric_dtype', 'pd.api.types.is_numeric_dtype', (['series'], {}), '(series)\n', (8055, 8063), True, 'import pandas as pd\n'), ((2326, 2402), 'pandas.concat', 'pd.concat', (['[self.metafeatures, *sec_metafeatures]'], {'axis': '(1)', 'ignore_index': '(True)'}), '([self.metafeatures, *sec_metafeatures], axis=1, ignore_index=True)\n', (2335, 2402), True, 'import pandas as pd\n'), ((2727, 2817), 'pandas.concat', 'pd.concat', (['[self.test_metafeatures, *sec_test_metafeatures]'], {'axis': '(1)', 'ignore_index': '(True)'}), '([self.test_metafeatures, *sec_test_metafeatures], axis=1,\n ignore_index=True)\n', (2736, 2817), True, 'import pandas as pd\n')]
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class MLP(nn.Module): def __init__(self, MLPInfo, activation='PReLU', PReLuInit=0.25, isUseBN=True, dropoutRate=0.0, initStd=0.0001): super(MLP, self).__init__() self.multiLayerPerceptron = nn.ModuleList() # MLP for i in range(len(MLPInfo)-1): self.multiLayerPerceptron.append(nn.Linear(MLPInfo[i], MLPInfo[i + 1])) if isUseBN: self.multiLayerPerceptron.append(nn.BatchNorm1d(MLPInfo[i + 1])) actiFun = nn.PReLU(1, init=PReLuInit) if activation == 'PReLU' else Dice() self.multiLayerPerceptron.append(actiFun) self.multiLayerPerceptron.append(nn.Dropout(dropoutRate)) def forward(self, x): for layer in self.multiLayerPerceptron: x = layer(x) return x class Bottom(nn.Module): def __init__(self, embeddingGroupInfo, MLPInfo, attMLPInfo, activation='PReLU', PReLuInit=0.25, isUseBN=True, l2RegEmbedding=1e-6, dropoutRate=0.0, initStd=0.0001, device=torch.device('cpu')): super(Bottom, self).__init__() self.dev = device self.embeddingGroups = nn.ModuleDict() # embedding group for key, value in embeddingGroupInfo.items(): if key == 'MovieId' or key == 'Genre': self.embeddingGroups[key] = nn.Embedding(value[0], value[1], padding_idx=0) else: self.embeddingGroups[key] = nn.Embedding(value[0], value[1]) self.sequenceMeanPooling = SequencePoolingLayer(mod='mean', device=self.dev) # sequence pooling layer self.attentionActivationUnit = AttentionActivationUnit(attMLPInfo, activation, PReLuInit, initStd) # attention activation unit self.sequenceAttentionPooling = SequencePoolingLayer(mod='attention', device=self.dev) # sequence pooling layer self.to(self.dev) def forward(self, movieIdSequence,ads, movieFeature): movieFeatSequence = movieFeature[movieIdSequence] adsFeat = movieFeature[ads] movieIdFeat = self.embeddingGroups['MovieId'](movieFeatSequence[:, :, 0]) # (B, SeqLen, 16) movieGenreFeat = self.embeddingGroups['Genre'](movieFeatSequence[:, :, 1:]) # (B, SeqLen, 6, 8) movieGenreFeat = self.sequenceMeanPooling(movieGenreFeat, movieFeatSequence[:, :, 1:] > 0) # (B, SeqLen, 8) #print(movieGenreFeat) #input() adsIdFeat = self.embeddingGroups['MovieId'](adsFeat[:, 0]) # (B, 16) adsGenreFeat = self.embeddingGroups['Genre'](adsFeat[:, 1:]) # (B, 6, 8) adsGenreFeat = self.sequenceMeanPooling(adsGenreFeat, adsFeat[:, 1:] > 0) # (B, 8) adsEmbedding = torch.cat((adsIdFeat, adsGenreFeat), dim=-1) # (B, 24) movieEmbedding = torch.cat((movieIdFeat, movieGenreFeat), dim=-1) # (B, SeqLen, 24) attentionWeights = self.attentionActivationUnit(movieEmbedding, adsEmbedding) # (B, SeqLen, 1) movieSequenceEmbedding = self.sequenceAttentionPooling(movieEmbedding, attentionWeights) # (B, 24) return movieSequenceEmbedding,adsEmbedding def forward_FR(self, movieIdSequence,ads, movieFeature): movieSequenceEmbedding,adsEmbedding=self.forward(movieIdSequence,ads, movieFeature) out=torch.cat((movieSequenceEmbedding,adsEmbedding),dim=0) return out class DIN(nn.Module): def __init__(self, embeddingGroupInfo, MLPInfo, attMLPInfo, activation='PReLU', PReLuInit=0.25, isUseBN=True, l2RegEmbedding=1e-6, dropoutRate=0.0, initStd=0.0001, device=torch.device('cpu')): super(DIN, self).__init__() self.l2RegEmbeddding = l2RegEmbedding self.dev = device self.MLP = MLP(MLPInfo, activation, PReLuInit, isUseBN, dropoutRate) # MLP self.output = nn.Linear(MLPInfo[-1], 2) # output layer self.to(self.dev) def forward(self, m1,m2,a1,a2): #interactive movieSequenceEmbedding=m1+m2 adsEmbedding=a1+a2 # MLP inputs x = torch.cat((movieSequenceEmbedding, adsEmbedding), dim=-1) x = self.MLP(x) x = F.softmax(self.output(x), dim=1) return x # (B, 2) def regLoss(self): totalRegLoss = torch.zeros(size=(1,), device=self.dev) for name, param in self.named_parameters(): if 'embedding' in name and 'MovieId' in name and 'weight' in name: totalRegLoss += torch.sum(self.l2RegEmbeddding * param*param) return totalRegLoss def loss(self, m1,m2,a1,a2,label, lossFunc): preds = self.forward(m1,m2,a1,a2) loss = lossFunc(preds[:, 1], label.float(), reduction='mean') + self.regLoss() return loss def predict(self, m1,m2,a1,a2): preds = self.forward(m1,m2,a1,a2)[:, 1] return preds.cpu().detach().numpy() class SequencePoolingLayer(nn.Module): def __init__(self, mod='mean', device=torch.device('cpu')): super(SequencePoolingLayer, self).__init__() self.mod = mod self.dev = device self.eps = torch.FloatTensor([1e-8]).to(self.dev) def forward(self, x, mask): if self.mod == 'mean': length = torch.sum(mask.type(torch.float32), dim=-1, keepdim=True) # (..., dim, 6) -> (...,dim, 1) x = torch.sum(x, dim=-2, keepdim=False) # (..., dim, 6, 8) -> (..., dim, 8) x = torch.div(x, length.type(torch.float32) + self.eps) # (..., dim, 8) elif self.mod == 'attention': attentionWeights = torch.repeat_interleave(mask, x.shape[-1], dim=-1) # (..., dim, 1) -> (.... dim, E) x = torch.mul(x, attentionWeights) # (..., dim, E) x = torch.sum(x, dim=-2, keepdim=False) # (..., dim, E) -> (..., E) else: pass return x class AttentionActivationUnit(nn.Module): def __init__(self, attMLPInfo, activation='PReLu', PReLuInit=0.25, initStd=0.0001): super(AttentionActivationUnit, self).__init__() self.MLP = MLP(attMLPInfo, activation, PReLuInit, isUseBN=False, dropoutRate=0.0, initStd=initStd) self.output = nn.Linear(attMLPInfo[-1], 1) def forward(self, x, target): target = torch.unsqueeze(target, dim=1) # (B, 1, 24) target = torch.repeat_interleave(target, x.shape[-2], dim=1) # (B, SeqLen, 24) product = torch.mul(x, target) # (B, SeqLen, 24) # product = torch.sum(product, dim=-1, keepdim=True) # (B, SeqLen, 1) x = torch.cat((x, target, product), dim=2) # (B, SeqLen, 72) x = self.MLP(x) x = self.output(x) # product = torch.sum(product, dim=-1, keepdim=True) # product = F.softmax(product, dim=1) return x # (B, SeqLen, 1) class Dice(nn.Module): def __init__(self): super(Dice, self).__init__() pass
[ "torch.nn.Dropout", "torch.repeat_interleave", "torch.nn.PReLU", "torch.nn.ModuleList", "torch.nn.Embedding", "torch.unsqueeze", "torch.FloatTensor", "torch.cat", "torch.nn.BatchNorm1d", "torch.mul", "torch.nn.Linear", "torch.nn.ModuleDict", "torch.device", "torch.zeros", "torch.sum" ]
[((324, 339), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (337, 339), True, 'import torch.nn as nn\n'), ((1162, 1181), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (1174, 1181), False, 'import torch\n'), ((1283, 1298), 'torch.nn.ModuleDict', 'nn.ModuleDict', ([], {}), '()\n', (1296, 1298), True, 'import torch.nn as nn\n'), ((2908, 2952), 'torch.cat', 'torch.cat', (['(adsIdFeat, adsGenreFeat)'], {'dim': '(-1)'}), '((adsIdFeat, adsGenreFeat), dim=-1)\n', (2917, 2952), False, 'import torch\n'), ((3000, 3048), 'torch.cat', 'torch.cat', (['(movieIdFeat, movieGenreFeat)'], {'dim': '(-1)'}), '((movieIdFeat, movieGenreFeat), dim=-1)\n', (3009, 3048), False, 'import torch\n'), ((3506, 3562), 'torch.cat', 'torch.cat', (['(movieSequenceEmbedding, adsEmbedding)'], {'dim': '(0)'}), '((movieSequenceEmbedding, adsEmbedding), dim=0)\n', (3515, 3562), False, 'import torch\n'), ((3816, 3835), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (3828, 3835), False, 'import torch\n'), ((4059, 4084), 'torch.nn.Linear', 'nn.Linear', (['MLPInfo[-1]', '(2)'], {}), '(MLPInfo[-1], 2)\n', (4068, 4084), True, 'import torch.nn as nn\n'), ((4290, 4347), 'torch.cat', 'torch.cat', (['(movieSequenceEmbedding, adsEmbedding)'], {'dim': '(-1)'}), '((movieSequenceEmbedding, adsEmbedding), dim=-1)\n', (4299, 4347), False, 'import torch\n'), ((4497, 4536), 'torch.zeros', 'torch.zeros', ([], {'size': '(1,)', 'device': 'self.dev'}), '(size=(1,), device=self.dev)\n', (4508, 4536), False, 'import torch\n'), ((5202, 5221), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (5214, 5221), False, 'import torch\n'), ((6426, 6454), 'torch.nn.Linear', 'nn.Linear', (['attMLPInfo[-1]', '(1)'], {}), '(attMLPInfo[-1], 1)\n', (6435, 6454), True, 'import torch.nn as nn\n'), ((6510, 6540), 'torch.unsqueeze', 'torch.unsqueeze', (['target'], {'dim': '(1)'}), '(target, dim=1)\n', (6525, 6540), False, 'import torch\n'), ((6573, 6624), 'torch.repeat_interleave', 'torch.repeat_interleave', (['target', 'x.shape[-2]'], {'dim': '(1)'}), '(target, x.shape[-2], dim=1)\n', (6596, 6624), False, 'import torch\n'), ((6663, 6683), 'torch.mul', 'torch.mul', (['x', 'target'], {}), '(x, target)\n', (6672, 6683), False, 'import torch\n'), ((6800, 6838), 'torch.cat', 'torch.cat', (['(x, target, product)'], {'dim': '(2)'}), '((x, target, product), dim=2)\n', (6809, 6838), False, 'import torch\n'), ((5585, 5620), 'torch.sum', 'torch.sum', (['x'], {'dim': '(-2)', 'keepdim': '(False)'}), '(x, dim=-2, keepdim=False)\n', (5594, 5620), False, 'import torch\n'), ((434, 471), 'torch.nn.Linear', 'nn.Linear', (['MLPInfo[i]', 'MLPInfo[i + 1]'], {}), '(MLPInfo[i], MLPInfo[i + 1])\n', (443, 471), True, 'import torch.nn as nn\n'), ((607, 634), 'torch.nn.PReLU', 'nn.PReLU', (['(1)'], {'init': 'PReLuInit'}), '(1, init=PReLuInit)\n', (615, 634), True, 'import torch.nn as nn\n'), ((775, 798), 'torch.nn.Dropout', 'nn.Dropout', (['dropoutRate'], {}), '(dropoutRate)\n', (785, 798), True, 'import torch.nn as nn\n'), ((1470, 1517), 'torch.nn.Embedding', 'nn.Embedding', (['value[0]', 'value[1]'], {'padding_idx': '(0)'}), '(value[0], value[1], padding_idx=0)\n', (1482, 1517), True, 'import torch.nn as nn\n'), ((1582, 1614), 'torch.nn.Embedding', 'nn.Embedding', (['value[0]', 'value[1]'], {}), '(value[0], value[1])\n', (1594, 1614), True, 'import torch.nn as nn\n'), ((4703, 4750), 'torch.sum', 'torch.sum', (['(self.l2RegEmbeddding * param * param)'], {}), '(self.l2RegEmbeddding * param * param)\n', (4712, 4750), False, 'import torch\n'), ((5349, 5375), 'torch.FloatTensor', 'torch.FloatTensor', (['[1e-08]'], {}), '([1e-08])\n', (5366, 5375), False, 'import torch\n'), ((5815, 5865), 'torch.repeat_interleave', 'torch.repeat_interleave', (['mask', 'x.shape[-1]'], {'dim': '(-1)'}), '(mask, x.shape[-1], dim=-1)\n', (5838, 5865), False, 'import torch\n'), ((5917, 5947), 'torch.mul', 'torch.mul', (['x', 'attentionWeights'], {}), '(x, attentionWeights)\n', (5926, 5947), False, 'import torch\n'), ((5982, 6017), 'torch.sum', 'torch.sum', (['x'], {'dim': '(-2)', 'keepdim': '(False)'}), '(x, dim=-2, keepdim=False)\n', (5991, 6017), False, 'import torch\n'), ((550, 580), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['MLPInfo[i + 1]'], {}), '(MLPInfo[i + 1])\n', (564, 580), True, 'import torch.nn as nn\n')]
#!/usr/bin/env python3 # Copyright 2020 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import re import unittest from cros.factory.probe.runtime_probe import probe_config_types from cros.factory.utils import json_utils class ProbeStatementDefinitionBuilderTest(unittest.TestCase): def testBuildProbeStatementDefinition(self): builder = probe_config_types.ProbeStatementDefinitionBuilder('category_x') builder.AddProbeFunction('func_1', 'This is func 1.') builder.AddProbeFunction('func2', 'This is func 2.') builder.AddIntOutputField('field1', 'This is field1') builder.AddStrOutputField('field2', 'This is field2') builder.AddHexOutputField('field3', 'This is field3') builder.AddIntOutputField('field_only_func1', 'This is field ?', probe_function_names=['func_1']) d = builder.Build() self.assertEqual(d.category_name, 'category_x') self.assertCountEqual(list(d.expected_fields.keys()), ['field1', 'field2', 'field3', 'field_only_func1']) self.assertCountEqual(list(d.probe_functions.keys()), ['func_1', 'func2']) self.assertCountEqual( [f.name for f in d.probe_functions['func_1'].output_fields], ['field1', 'field2', 'field3', 'field_only_func1']) self.assertCountEqual( [f.name for f in d.probe_functions['func2'].output_fields], ['field1', 'field2', 'field3']) class ConcreteProbeStatementDefinitionTestBase(unittest.TestCase): def setUp(self): builder = probe_config_types.ProbeStatementDefinitionBuilder('category_x') builder.AddProbeFunction('func_1', 'This is func 1.') builder.AddProbeFunction('func2', 'This is func 2.') builder.AddIntOutputField('int_field', '') builder.AddStrOutputField('str_field', '') builder.AddStrOutputField('str_field_started_with_a', '', value_pattern=re.compile('a.*')) builder.AddHexOutputField('hex_field', '') builder.AddHexOutputField('hex_field_three_digits', '', num_value_digits=3) self.probe_statement_definition = builder.Build() class ProbeStatementDefinitionTest(ConcreteProbeStatementDefinitionTestBase): def _GenerateExpectResult(self, comp_name, func_name, expect_field, func_arg=None, information=None): statement = { 'eval': { func_name: func_arg or {} }, 'expect': expect_field } if information is not None: statement['information'] = information return probe_config_types.ComponentProbeStatement('category_x', comp_name, statement) def testGenerateProbeStatementNoField(self): result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {}) self.assertEqual(result, self._GenerateExpectResult('comp_1', 'func_1', {})) def testGenerateProbeStatementIntField(self): result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'int_field': None}) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', {'int_field': [False, 'int']})) result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'int_field': 3}) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', {'int_field': [True, 'int', '!eq 3']})) def testGenerateProbeStatementStrField(self): result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'str_field': None}) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', {'str_field': [False, 'str']})) result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'str_field': 'sss'}) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', {'str_field': [True, 'str', '!eq sss']})) result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'str_field_started_with_a': 'a_value'}) self.assertEqual( result, self._GenerateExpectResult( 'comp_1', 'func_1', {'str_field_started_with_a': [True, 'str', '!eq a_value']})) with self.assertRaises(ValueError): # format error self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'str_field_started_with_a': 'b_value'}) # Ignore the regular expression check if the given expected value is also # an regular expression pattern. result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'str_field_started_with_a': re.compile('x.*')}) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', { 'str_field_started_with_a': [True, 'str', '!re x.*'] })) def testGenerateProbeStatementHexField(self): result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'hex_field': '0AAAA'}) self.assertEqual( result, self._GenerateExpectResult( 'comp_1', 'func_1', {'hex_field': [True, 'hex', '!eq 0x0AAAA']})) with self.assertRaises(ValueError): self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'hex_field': 'xyz'}) result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'hex_field_three_digits': None}) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', {'hex_field_three_digits': [False, 'hex']})) result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'hex_field_three_digits': 'B3F'}) self.assertEqual( result, self._GenerateExpectResult( 'comp_1', 'func_1', {'hex_field_three_digits': [True, 'hex', '!eq 0xB3F']})) with self.assertRaises(ValueError): self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'hex_field_three_digits': 'B3FF'}) def testGenerateProbeStatementList(self): result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', [{ 'hex_field': '0AAAA' }]) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', {'hex_field': [True, 'hex', '!eq 0x0AAAA']})) result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', [{ 'hex_field': '0AAAA' }, { 'str_field': 'sss' }]) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', [{ 'hex_field': [True, 'hex', '!eq 0x0AAAA'] }, { 'str_field': [True, 'str', '!eq sss'] }])) def testGenerateProbeStatementExtraInformation(self): result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', { 'str_field': 'sss', 'int_field': 3, 'hex_field': '0BAD'}, information={'comp_group': 'other_name'}) self.assertEqual( result, self._GenerateExpectResult( 'comp_1', 'func_1', { 'str_field': [True, 'str', '!eq sss'], 'int_field': [True, 'int', '!eq 3'], 'hex_field': [True, 'hex', '!eq 0x0BAD']}, information={ 'comp_group': 'other_name'})) def testGenerateProbeStatementWithArgument(self): result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {}, probe_function_argument={'arg_1': 'aaa'}) self.assertEqual(result, self._GenerateExpectResult('comp_1', 'func_1', {}, func_arg={'arg_1': 'aaa'})) class ProbeConfigPayloadTest(ConcreteProbeStatementDefinitionTestBase): def testAll(self): p = probe_config_types.ProbeConfigPayload() p.AddComponentProbeStatement( self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'int_field': 1})) p.AddComponentProbeStatement( self.probe_statement_definition.GenerateProbeStatement( 'comp_2', 'func_1', {'int_field': 2})) p.AddComponentProbeStatement( self.probe_statement_definition.GenerateProbeStatement( 'comp_3', 'func_2', {'int_field': 3})) with self.assertRaises(ValueError): # component name confliction p.AddComponentProbeStatement( self.probe_statement_definition.GenerateProbeStatement( 'comp_2', 'func_1', {'int_field': 4})) with self.assertRaises(ValueError): # probe statement confliction. p.AddComponentProbeStatement( self.probe_statement_definition.GenerateProbeStatement( 'comp_4', 'func_1', {'int_field': 2})) result = p.DumpToString() self.assertEqual( json_utils.LoadStr(result), { 'category_x': { 'comp_1': { 'eval': {'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']} }, 'comp_2': { 'eval': {'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 2']} }, 'comp_3': { 'eval': {'func_2': {}}, 'expect': {'int_field': [True, 'int', '!eq 3']} }, } }) class ComponentProbeStatementTest(unittest.TestCase): def testIdenticalStatements(self): cps1 = probe_config_types.ComponentProbeStatement('category1', 'comp1', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) cps2 = probe_config_types.ComponentProbeStatement('category1', 'comp1', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) self.assertEqual(cps1.statement_hash, cps2.statement_hash) self.assertEqual(cps1, cps2) def testHashCompNamesDiffer(self): cps1 = probe_config_types.ComponentProbeStatement('category1', 'comp1', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) cps2 = probe_config_types.ComponentProbeStatement('category1', 'comp2', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) self.assertEqual(cps1.statement_hash, cps2.statement_hash) self.assertNotEqual(cps1, cps2) def testHashCategoryNamesDiffer(self): cps1 = probe_config_types.ComponentProbeStatement('category1', 'comp1', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) cps2 = probe_config_types.ComponentProbeStatement('category2', 'comp1', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) self.assertNotEqual(cps1.statement_hash, cps2.statement_hash) self.assertNotEqual(cps1, cps2) def testHashFunctionNamesDiffer(self): cps1 = probe_config_types.ComponentProbeStatement('category1', 'comp1', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) cps2 = probe_config_types.ComponentProbeStatement('category1', 'comp1', { 'eval': { 'func_2': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) self.assertNotEqual(cps1.statement_hash, cps2.statement_hash) self.assertNotEqual(cps1, cps2) def testFromDictSucceed(self): self.assertEqual( probe_config_types.ComponentProbeStatement('category1', 'comp1', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }), probe_config_types.ComponentProbeStatement.FromDict({ 'category1': { 'comp1': { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } } } })) def testFromDictValueHashMultipleCategories(self): self.assertRaises( ValueError, probe_config_types.ComponentProbeStatement.FromDict, { 'category1': { 'comp_name1': { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } } }, 'category2': { 'comp_name1': { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } } }, }) def testFromDictCategoryNotString(self): self.assertRaises( ValueError, probe_config_types.ComponentProbeStatement.FromDict, { 123: { 'comp_name1': { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } } } }) def testFromDictMultipleComponents(self): self.assertRaises( ValueError, probe_config_types.ComponentProbeStatement.FromDict, { 'category1': { 'comp_name1': { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }, 'comp_name2': { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } } } }) def testFromDictComponentNameNotString(self): self.assertRaises( ValueError, probe_config_types.ComponentProbeStatement.FromDict, { 'category1': { 3.1415926: { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } } } }) def testFromDictMiscErrors(self): self.assertRaises(ValueError, probe_config_types.ComponentProbeStatement.FromDict, {'category1': 100}) if __name__ == '__main__': unittest.main()
[ "unittest.main", "cros.factory.probe.runtime_probe.probe_config_types.ProbeStatementDefinitionBuilder", "cros.factory.probe.runtime_probe.probe_config_types.ComponentProbeStatement", "cros.factory.probe.runtime_probe.probe_config_types.ComponentProbeStatement.FromDict", "cros.factory.probe.runtime_probe.probe_config_types.ProbeConfigPayload", "cros.factory.utils.json_utils.LoadStr", "re.compile" ]
[((15538, 15553), 'unittest.main', 'unittest.main', ([], {}), '()\n', (15551, 15553), False, 'import unittest\n'), ((447, 511), 'cros.factory.probe.runtime_probe.probe_config_types.ProbeStatementDefinitionBuilder', 'probe_config_types.ProbeStatementDefinitionBuilder', (['"""category_x"""'], {}), "('category_x')\n", (497, 511), False, 'from cros.factory.probe.runtime_probe import probe_config_types\n'), ((1647, 1711), 'cros.factory.probe.runtime_probe.probe_config_types.ProbeStatementDefinitionBuilder', 'probe_config_types.ProbeStatementDefinitionBuilder', (['"""category_x"""'], {}), "('category_x')\n", (1697, 1711), False, 'from cros.factory.probe.runtime_probe import probe_config_types\n'), ((2679, 2757), 'cros.factory.probe.runtime_probe.probe_config_types.ComponentProbeStatement', 'probe_config_types.ComponentProbeStatement', (['"""category_x"""', 'comp_name', 'statement'], {}), "('category_x', comp_name, statement)\n", (2721, 2757), False, 'from cros.factory.probe.runtime_probe import probe_config_types\n'), ((8386, 8425), 'cros.factory.probe.runtime_probe.probe_config_types.ProbeConfigPayload', 'probe_config_types.ProbeConfigPayload', ([], {}), '()\n', (8423, 8425), False, 'from cros.factory.probe.runtime_probe import probe_config_types\n'), ((10061, 10205), 'cros.factory.probe.runtime_probe.probe_config_types.ComponentProbeStatement', 'probe_config_types.ComponentProbeStatement', (['"""category1"""', '"""comp1"""', "{'eval': {'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}}"], {}), "('category1', 'comp1', {'eval': {\n 'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}})\n", (10103, 10205), False, 'from cros.factory.probe.runtime_probe import probe_config_types\n'), ((10278, 10422), 'cros.factory.probe.runtime_probe.probe_config_types.ComponentProbeStatement', 'probe_config_types.ComponentProbeStatement', (['"""category1"""', '"""comp1"""', "{'eval': {'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}}"], {}), "('category1', 'comp1', {'eval': {\n 'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}})\n", (10320, 10422), False, 'from cros.factory.probe.runtime_probe import probe_config_types\n'), ((10629, 10773), 'cros.factory.probe.runtime_probe.probe_config_types.ComponentProbeStatement', 'probe_config_types.ComponentProbeStatement', (['"""category1"""', '"""comp1"""', "{'eval': {'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}}"], {}), "('category1', 'comp1', {'eval': {\n 'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}})\n", (10671, 10773), False, 'from cros.factory.probe.runtime_probe import probe_config_types\n'), ((10846, 10990), 'cros.factory.probe.runtime_probe.probe_config_types.ComponentProbeStatement', 'probe_config_types.ComponentProbeStatement', (['"""category1"""', '"""comp2"""', "{'eval': {'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}}"], {}), "('category1', 'comp2', {'eval': {\n 'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}})\n", (10888, 10990), False, 'from cros.factory.probe.runtime_probe import probe_config_types\n'), ((11204, 11348), 'cros.factory.probe.runtime_probe.probe_config_types.ComponentProbeStatement', 'probe_config_types.ComponentProbeStatement', (['"""category1"""', '"""comp1"""', "{'eval': {'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}}"], {}), "('category1', 'comp1', {'eval': {\n 'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}})\n", (11246, 11348), False, 'from cros.factory.probe.runtime_probe import probe_config_types\n'), ((11421, 11565), 'cros.factory.probe.runtime_probe.probe_config_types.ComponentProbeStatement', 'probe_config_types.ComponentProbeStatement', (['"""category2"""', '"""comp1"""', "{'eval': {'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}}"], {}), "('category2', 'comp1', {'eval': {\n 'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}})\n", (11463, 11565), False, 'from cros.factory.probe.runtime_probe import probe_config_types\n'), ((11782, 11926), 'cros.factory.probe.runtime_probe.probe_config_types.ComponentProbeStatement', 'probe_config_types.ComponentProbeStatement', (['"""category1"""', '"""comp1"""', "{'eval': {'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}}"], {}), "('category1', 'comp1', {'eval': {\n 'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}})\n", (11824, 11926), False, 'from cros.factory.probe.runtime_probe import probe_config_types\n'), ((11999, 12143), 'cros.factory.probe.runtime_probe.probe_config_types.ComponentProbeStatement', 'probe_config_types.ComponentProbeStatement', (['"""category1"""', '"""comp1"""', "{'eval': {'func_2': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}}"], {}), "('category1', 'comp1', {'eval': {\n 'func_2': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}})\n", (12041, 12143), False, 'from cros.factory.probe.runtime_probe import probe_config_types\n'), ((9388, 9414), 'cros.factory.utils.json_utils.LoadStr', 'json_utils.LoadStr', (['result'], {}), '(result)\n', (9406, 9414), False, 'from cros.factory.utils import json_utils\n'), ((12371, 12515), 'cros.factory.probe.runtime_probe.probe_config_types.ComponentProbeStatement', 'probe_config_types.ComponentProbeStatement', (['"""category1"""', '"""comp1"""', "{'eval': {'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}}"], {}), "('category1', 'comp1', {'eval': {\n 'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}})\n", (12413, 12515), False, 'from cros.factory.probe.runtime_probe import probe_config_types\n'), ((12614, 12775), 'cros.factory.probe.runtime_probe.probe_config_types.ComponentProbeStatement.FromDict', 'probe_config_types.ComponentProbeStatement.FromDict', (["{'category1': {'comp1': {'eval': {'func_1': {}}, 'expect': {'int_field': [\n True, 'int', '!eq 1']}}}}"], {}), "({'category1': {'comp1':\n {'eval': {'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']}}}}\n )\n", (12665, 12775), False, 'from cros.factory.probe.runtime_probe import probe_config_types\n'), ((2057, 2074), 're.compile', 're.compile', (['"""a.*"""'], {}), "('a.*')\n", (2067, 2074), False, 'import re\n'), ((5048, 5065), 're.compile', 're.compile', (['"""x.*"""'], {}), "('x.*')\n", (5058, 5065), False, 'import re\n')]
# Generated by Django 2.2.7 on 2019-11-19 21:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('submissions', '0006_merge_20191113_0542'), ] operations = [ migrations.CreateModel( name='SubmissionTag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100, unique=True)), ], ), migrations.AddField( model_name='submission', name='tags', field=models.ManyToManyField(to='submissions.SubmissionTag', verbose_name='tags'), ), ]
[ "django.db.models.CharField", "django.db.models.ManyToManyField", "django.db.models.AutoField" ]
[((642, 717), 'django.db.models.ManyToManyField', 'models.ManyToManyField', ([], {'to': '"""submissions.SubmissionTag"""', 'verbose_name': '"""tags"""'}), "(to='submissions.SubmissionTag', verbose_name='tags')\n", (664, 717), False, 'from django.db import migrations, models\n'), ((342, 435), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (358, 435), False, 'from django.db import migrations, models\n'), ((459, 504), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'unique': '(True)'}), '(max_length=100, unique=True)\n', (475, 504), False, 'from django.db import migrations, models\n')]
import numpy as np import matplotlib.pyplot as plt PI = np.pi # =========================define sinc # ---------------normalized def sinc1(x): PI = np.pi x = np.array(x) y = np.where(np.abs(PI * x) < 1e-38, 1.0, np.sin(PI * x) / (PI * x)) return y def sinc_interpolation(x, t, T): ns = np.arange(x.size) print(ns, "============") y = [] for tt in t: y.append(np.sum(x * sinc1((tt - ns * T) / T))) return np.array(y) # =========================test sinc definition f0 = 100 Ns = 2000 Tp = 20.0 / Ns t = np.linspace(-10, 10, Ns) t2 = np.linspace(-10, 10, Ns * 2) y1 = sinc1(t / Tp) x = np.sin(2 * PI * f0 * t) print(x.shape) y = sinc_interpolation(x, t2, Tp) print(y.shape, "===") yfft = np.fft.fftshift(np.fft.fft(y)) plt.figure() plt.subplot(131) plt.plot(t, x, '^b') plt.plot(t2, y, '+r') plt.legend(['original', 'sinc interpolated']) plt.title('sinc(t/Tp), ' + "Tp=" + str(Tp)) plt.xlabel('Time/s') plt.ylabel('Amplitude') plt.grid() plt.show()
[ "matplotlib.pyplot.subplot", "matplotlib.pyplot.show", "numpy.abs", "matplotlib.pyplot.plot", "numpy.fft.fft", "matplotlib.pyplot.legend", "matplotlib.pyplot.figure", "numpy.sin", "numpy.array", "numpy.arange", "numpy.linspace", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid" ]
[((556, 580), 'numpy.linspace', 'np.linspace', (['(-10)', '(10)', 'Ns'], {}), '(-10, 10, Ns)\n', (567, 580), True, 'import numpy as np\n'), ((586, 614), 'numpy.linspace', 'np.linspace', (['(-10)', '(10)', '(Ns * 2)'], {}), '(-10, 10, Ns * 2)\n', (597, 614), True, 'import numpy as np\n'), ((640, 663), 'numpy.sin', 'np.sin', (['(2 * PI * f0 * t)'], {}), '(2 * PI * f0 * t)\n', (646, 663), True, 'import numpy as np\n'), ((777, 789), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (787, 789), True, 'import matplotlib.pyplot as plt\n'), ((790, 806), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(131)'], {}), '(131)\n', (801, 806), True, 'import matplotlib.pyplot as plt\n'), ((807, 827), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'x', '"""^b"""'], {}), "(t, x, '^b')\n", (815, 827), True, 'import matplotlib.pyplot as plt\n'), ((828, 849), 'matplotlib.pyplot.plot', 'plt.plot', (['t2', 'y', '"""+r"""'], {}), "(t2, y, '+r')\n", (836, 849), True, 'import matplotlib.pyplot as plt\n'), ((850, 895), 'matplotlib.pyplot.legend', 'plt.legend', (["['original', 'sinc interpolated']"], {}), "(['original', 'sinc interpolated'])\n", (860, 895), True, 'import matplotlib.pyplot as plt\n'), ((940, 960), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time/s"""'], {}), "('Time/s')\n", (950, 960), True, 'import matplotlib.pyplot as plt\n'), ((961, 984), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Amplitude"""'], {}), "('Amplitude')\n", (971, 984), True, 'import matplotlib.pyplot as plt\n'), ((985, 995), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (993, 995), True, 'import matplotlib.pyplot as plt\n'), ((998, 1008), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1006, 1008), True, 'import matplotlib.pyplot as plt\n'), ((169, 180), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (177, 180), True, 'import numpy as np\n'), ((311, 328), 'numpy.arange', 'np.arange', (['x.size'], {}), '(x.size)\n', (320, 328), True, 'import numpy as np\n'), ((455, 466), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (463, 466), True, 'import numpy as np\n'), ((761, 774), 'numpy.fft.fft', 'np.fft.fft', (['y'], {}), '(y)\n', (771, 774), True, 'import numpy as np\n'), ((198, 212), 'numpy.abs', 'np.abs', (['(PI * x)'], {}), '(PI * x)\n', (204, 212), True, 'import numpy as np\n'), ((227, 241), 'numpy.sin', 'np.sin', (['(PI * x)'], {}), '(PI * x)\n', (233, 241), True, 'import numpy as np\n')]
from string import ascii_lowercase import functools from itertools import combinations def generate_binary(n): """ Function returns generator with binary sequences of a set length :param n: length of a binary sequence :return: generator with binary sequence """ if n == 0: yield "" else: for c in generate_binary(n - 1): yield "0" + c yield "1" + c def find_value(zipped_list, x): for a, b in zipped_list: if a == x: return b return -1 def replace_mapping(zipped_list, x): if x == 'T': return 1 elif x == 'F': return 0 elif x in (ascii_lowercase + 'TF'): return find_value(zipped_list, x) else: return x def get_variables(expression): """ Functions filters the expression for variables and returns them As a variable we mean any lower case character :param expression: expression to search in :return: list with variables from expression """ variables = [] for variable in expression: if variable in ascii_lowercase and variable not in variables: variables.append(variable) return variables def calculate_onp(expression, values): """ Function calculates a value of an expression in reverse polish notation :param expression: Expression in RPN given as a string. :param values: binary sequence with values to be put in coresponding positions. Also string :return: Bool value of an expression Warning: function will only work on correct RNP expression and will not return any warnings in case of errors """ zipped_list = list(zip(get_variables(expression), list(values))) expression = list(map(lambda x: replace_mapping(zipped_list, x), expression)) operators = {'^': lambda x, y: bool(x) ^ bool(y), '&': lambda x, y: bool(x) and bool(y), '|': lambda x, y: bool(x) or bool(y), '/': lambda x, y: not (bool(x) and bool(y)), '>': lambda x, y: not bool(x) or bool(y)} stack = [] while len(expression) > 0: if expression[0] in ['0', '1']: stack.append(int(expression[0])) else: if expression[0] == '~': top = not bool(stack.pop()) stack.append(top) else: e1 = int(stack.pop()) e2 = int(stack.pop()) stack.append(operators[expression[0]](e2, e1)) del expression[0] return stack[0] def is_associative(tkn, associativity_type): if tkn == '>' and associativity_type == 'r': # because only in case of > it matters. return False return True def concat(s1, s2): """ Helper function to reduce expressions :param s1: Sthing we can iterate over with binary sequence and '_' :param s2: Sthing we can iterate over with binary sequence and '_' :return: Merged version of input, when certain bits are different this place is being replaced by '_' """ w = "" lz = 0 for z1, z2 in zip(s1, s2): if z1 == z2: w += z1 else: lz += 1 w += "_" if lz == 1: return w return False def reduce_(s): """ Main reduce function :param s: Set with values :return: reduced set """ result = set() b2 = False for e1 in s: b1 = False for e2 in s: v = concat(e1, e2) if v: result.add(v) b1 = b2 = True if not b1: result.add(e1) if b2: return reduce_(result) return result def expression_to_string(s): """ Helper function to change a reduced set to human-readable form :param s: Set with values :return: String made from input in pattern: (expression)|(expression)|(expression) or T (if expression is tautology) """ result2 = "" for e1 in s: result = "" for i in range(0, len(e1)): if e1[i] == '_': continue if e1[i] == '0': result += '~' result += ascii_lowercase[i] + "&" result2 += '(' + result[:-1] + ')|' if result2 == '()|': return 'T' return result2[:-1] def trim_expression(expression): """ Basic expression trimming :param expression: takes an expression which in most cases matches a pattern: (expression) and trims brackets :return: expression with trimmed brackets """ e = Expression('') while len(expression) > 2 and expression[0] == '(' and expression[-1] == ')' and e.check_expression(expression): expression = expression[1:-1] return expression def reduce_tuple(expression): """ Function reduces a tuple of string expressions :param expression: tuple containing expressions. We assume that they do not contain '|' since in this case they are a product of QuineMcCluskey algorithm :return: String containing reduced expression or the input one if further reduction was not successful """ expression_list = list(expression) variables = get_variables(str.join('|', expression_list)) binary_generator = generate_binary(len(variables)) incorrect_binaries = [] some_expression = Expression('') onp_expression = some_expression.convert_to_onp(str.join('|', expression_list)) onp_xor = some_expression.convert_to_onp(functools.reduce(lambda x, y: x + '^' + y, variables)) while True: try: x = binary_generator.__next__() if calculate_onp(onp_expression, x) != calculate_onp(onp_xor, x): incorrect_binaries.append(x) except: break if len(incorrect_binaries) > 0: return str.join('|', expression_list) return '(' + functools.reduce(lambda x, y: x + '^' + y, variables) + ')' def reduce_xor(expression): """ Specific function to reduce xor expressions. It generates combinations of k elements in len(variables) where k is in range from 2 to len(variables). It checks whether it is not the same as var1 xor var2 xor var3 etc :param expression: String expression to be reduced. We assume that it matches a pattern: (expr1)|(expr2)|(expr3) ... :return: reduced expression in string form or input one if further reduction was not possible """ expressions_list = expression.split('|') n = len(expressions_list) for a in range(2, n + 1): for expr in combinations(expressions_list, a): # i feel really bad for this reduced_sub_expression = reduce_tuple(expr) prev_expression = str.join('|', expr) if len(reduced_sub_expression) < len(prev_expression): for var in list(expr): del expressions_list[expressions_list.index(var)] expressions_list.append(reduced_sub_expression) return reduce_xor(functools.reduce(lambda x, y: '|' + x + y + '|', expressions_list)) return expression def reduce_brackets(expression): """ Function that reduces unessesary brackets. It eliminates situations where between two | there is a expression that doesnt need them example: (expr1)|(a)|(expr2) will be evaluated to: (expr1)|a|(expr2) :param expression: string expression in form (expr1)|(expr2)|(expr3) :return: reduced expression """ expression_list = expression.split('|') if len(expression_list) == 1: return trim_expression(expression_list[0]) reduced_expressions = [] for some in expression_list: if len(some) <= 4: # we are sure that there will be 2 brackets + we want 1 variable (or variable + negation) reduced_expressions.append(trim_expression(some)) else: reduced_expressions.append(some) return str.join('|', reduced_expressions) def reduce_logical_expression(expression): """ Main function that is responsible for driving program. It calls functions to check if expression is correct and then reduces expression :param expression: String expression to be reduced :return: reduced expression or ERROR if it is not correct """ expression_object = Expression(expression) if not expression_object.check_expression(): return 'ERROR' expression_in_general_form = expression_object.generate_general_form() expression_with_xor = reduce_brackets(reduce_xor(expression_in_general_form)) if len(expression_with_xor) < len(expression): return expression_with_xor e = reduce_brackets(expression_in_general_form) if len(e) < len(expression): return e return reduce_brackets(expression) class Expression: """ Class designed to handle most of expression operations. It contains map with bindings: <operator> -> (priority,arguments_number) Also string with correct signs and expression itself """ def __init__(self, expression): self.general_form = '' self.correctSigns = '~^&|/>()TF' + ascii_lowercase self.expression = expression.replace(' ', '') self.operators = {'~': (4, 1), '^': (3, 2), '&': (2, 2), '|': (2, 2), '/': (2, 2), '>': (1, 2)} # <operator> -> (priority,arguments_number) def check_if_brackets_are_correct(self, expression=''): """ Helper function to determine whether brackets are placed correctly :param expression: expression in String form :return: Bool result of brackets checking """ if not expression: expression = self.expression brackets = 0 for a in expression: if a == '(': brackets += 1 elif a == ')': brackets -= 1 if brackets < 0: return False if brackets == 0: return True return False def check_if_signs_are_correct(self, expression=''): """ Simple filter function that checks if expression contains correct signs and is semantically correct :param expression: String expression to be checked :return: Bool result """ if not expression: expression = self.expression if not expression: return True if [x for x in expression if x not in self.correctSigns]: return False state = True for single in expression: if state: if single in self.operators and self.operators[single][1] == 1 or single in ['(', ')']: # we want ~ # we ignore brackets since they are already checked continue elif single in (ascii_lowercase + 'TF'): state = False else: return False else: if single in self.operators and self.operators[single][1] == 2: # everything else than ~ state = True elif single in ['(', ')']: continue else: return False return not state def check_expression(self, expression=''): """ Higher level interface for checking expression It calls methods to determine whether expression is correct semantically, in terms of brackets and signs :param expression: String expression to check :return: Bool result """ if not expression: expression = self.expression return self.check_if_signs_are_correct(expression) and self.check_if_brackets_are_correct(expression) def convert_to_onp(self, expression=''): """ Function converts an infix expression to RPN Warning: it doesnt check whether this expression is correct :param expression: Infix expression :return: RPN expression """ if not expression: expression = self.expression stack = [] onp = [] for tkn in expression: if tkn in self.operators: while len(stack) > 0 and stack[-1] in self.operators: if (is_associative(tkn, 'l') and (self.operators[tkn][0] - self.operators[stack[-1]][0]) <= 0) \ or ( is_associative(tkn, 'r') and (self.operators[tkn][0] - self.operators[stack[-1]][0]) < 0): onp.append(stack.pop()) continue break stack.append(tkn) elif tkn == '(': stack.append(tkn) elif tkn == ')': while len(stack) > 0 and stack[-1] != '(': onp.append(stack.pop()) stack.pop() else: onp.append(tkn) while len(stack) > 0: onp.append(stack.pop()) return functools.reduce(lambda x, y: x + y, onp) def generate_general_form(self, expression=''): """ Function generates general form from infix expression It uses QuineMcCluskey algorithm Result matches a pattern: (expression1)|(expression2)|(expression3)... :param expression: Infix expression as a String :return: String infix expression evaluated using QuineMcCluskey """ if not expression: expression = self.expression n = len(get_variables(expression)) correct_binaries = [] generator = generate_binary(n) current_expression = self.convert_to_onp(expression) while True: try: x = generator.__next__() if calculate_onp(current_expression, x): correct_binaries.append(x) except: break set2 = reduce_(correct_binaries) self.general_form = expression_to_string(set2) return self.general_form if __name__ == '__main__': x = None while not x: x = input('') if x: print(reduce_logical_expression(x)) else: break
[ "functools.reduce", "itertools.combinations" ]
[((5435, 5488), 'functools.reduce', 'functools.reduce', (["(lambda x, y: x + '^' + y)", 'variables'], {}), "(lambda x, y: x + '^' + y, variables)\n", (5451, 5488), False, 'import functools\n'), ((6496, 6529), 'itertools.combinations', 'combinations', (['expressions_list', 'a'], {}), '(expressions_list, a)\n', (6508, 6529), False, 'from itertools import combinations\n'), ((12964, 13005), 'functools.reduce', 'functools.reduce', (['(lambda x, y: x + y)', 'onp'], {}), '(lambda x, y: x + y, onp)\n', (12980, 13005), False, 'import functools\n'), ((5822, 5875), 'functools.reduce', 'functools.reduce', (["(lambda x, y: x + '^' + y)", 'variables'], {}), "(lambda x, y: x + '^' + y, variables)\n", (5838, 5875), False, 'import functools\n'), ((6941, 7007), 'functools.reduce', 'functools.reduce', (["(lambda x, y: '|' + x + y + '|')", 'expressions_list'], {}), "(lambda x, y: '|' + x + y + '|', expressions_list)\n", (6957, 7007), False, 'import functools\n')]
# Generated by Django 3.2.6 on 2021-09-08 14:44 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bjorn', '0009_auto_20210908_1427'), ] operations = [ migrations.AlterField( model_name='certificate', name='revocation_reason', field=models.PositiveSmallIntegerField(blank=True, choices=[(1, 'Unspecified'), (2, 'Key compromise'), (3, 'CA compromise'), (4, 'Affiliation changed'), (5, 'Superseded'), (6, 'Cessation of operation'), (7, 'Certificate hold'), (8, 'Remove from CRL'), (9, 'Privilege withdrawn'), (10, 'AA compromise')], null=True), ), ]
[ "django.db.models.PositiveSmallIntegerField" ]
[((350, 675), 'django.db.models.PositiveSmallIntegerField', 'models.PositiveSmallIntegerField', ([], {'blank': '(True)', 'choices': "[(1, 'Unspecified'), (2, 'Key compromise'), (3, 'CA compromise'), (4,\n 'Affiliation changed'), (5, 'Superseded'), (6, 'Cessation of operation'\n ), (7, 'Certificate hold'), (8, 'Remove from CRL'), (9,\n 'Privilege withdrawn'), (10, 'AA compromise')]", 'null': '(True)'}), "(blank=True, choices=[(1, 'Unspecified'), (\n 2, 'Key compromise'), (3, 'CA compromise'), (4, 'Affiliation changed'),\n (5, 'Superseded'), (6, 'Cessation of operation'), (7,\n 'Certificate hold'), (8, 'Remove from CRL'), (9, 'Privilege withdrawn'),\n (10, 'AA compromise')], null=True)\n", (382, 675), False, 'from django.db import migrations, models\n')]
########################## THE TOON LAND PROJECT ########################## # Filename: HackerCrypt.py # Created by: Cody/Fd Green Cat Fd (January 31st, 2013) #### # Description: # # Encryption method written by Team FD in 2011 for their personal releases. # The script has been modified to meet Toon Land's coding standards. #### from base64 import b64encode, b64decode from binascii import hexlify, unhexlify from random import randrange from __main__ import __dict__ as __main__ from bz2 import compress as c_bz2 from bz2 import decompress as d_bz2 from zlib import compress as c_zlib from zlib import decompress as d_zlib from sha import sha as sha1 class HackerCrypt: __version__ = 'v1.2.0.2' def __init__(self): self.MAGIC = sha1('[TL]').digest() self.KEY = sha1('TL-Cookies').digest() def makeIV(self): iv = '' for i in range(4): iv += chr(randrange(256)) return iv def rc4(self, data, key): j = 0 s = range(256) for i in range(256): j = (j + s[i] + ord(key[i % len(key)])) % 256 s[i], s[j] = s[j], s[i] j = i = 0 results = [] for c in data: j = (j + 1) % 256 i = (i + s[j]) % 256 s[j], s[i] = s[i], s[j] results.append(chr(ord(c) ^ s[(s[j] + s[i]) % 256])) return ''.join(results) def encode(self, data): b64 = b64encode(data) hex = hexlify(b64) encoded = list(hexlify(hex)) for x in range(len(encoded)): alpha = int(encoded[x]) + 2 encoded[x] = chr(alpha) return ''.join(encoded) def decode(self, encoded): encoded = list(encoded) for x in range(len(encoded)): alpha = str(encoded[x]) encoded[x] = str(ord(alpha) - 2) encoded = unhexlify(''.join(encoded)) unhexed = unhexlify(encoded) return b64decode(unhexed) def compress(self, data): bz2 = b64encode(c_bz2(data)) return c_zlib(hexlify(bz2)) def decompress(self, compressed): unhexed = unhexlify(d_zlib(compressed)) return d_bz2(b64decode(unhexed)) def encrypt(self, data): compressed = self.compress(data) encoded = self.encode(compressed) data = self.MAGIC + encoded iv = self.makeIV() key = self.KEY + iv return iv + self.rc4(data, key) def decrypt(self, encrypted): if len(encrypted) < 4: return None iv = encrypted[:4] data = encrypted[4:] key = self.KEY + iv data = self.rc4(data, key) if not data.startswith(self.MAGIC): return None decoded = self.decode(data[len(self.MAGIC):]) return self.decompress(decoded)
[ "binascii.hexlify", "base64.b64decode", "bz2.compress", "binascii.unhexlify", "base64.b64encode", "zlib.decompress", "random.randrange", "sha.sha" ]
[((1437, 1452), 'base64.b64encode', 'b64encode', (['data'], {}), '(data)\n', (1446, 1452), False, 'from base64 import b64encode, b64decode\n'), ((1467, 1479), 'binascii.hexlify', 'hexlify', (['b64'], {}), '(b64)\n', (1474, 1479), False, 'from binascii import hexlify, unhexlify\n'), ((1910, 1928), 'binascii.unhexlify', 'unhexlify', (['encoded'], {}), '(encoded)\n', (1919, 1928), False, 'from binascii import hexlify, unhexlify\n'), ((1944, 1962), 'base64.b64decode', 'b64decode', (['unhexed'], {}), '(unhexed)\n', (1953, 1962), False, 'from base64 import b64encode, b64decode\n'), ((1503, 1515), 'binascii.hexlify', 'hexlify', (['hex'], {}), '(hex)\n', (1510, 1515), False, 'from binascii import hexlify, unhexlify\n'), ((2018, 2029), 'bz2.compress', 'c_bz2', (['data'], {}), '(data)\n', (2023, 2029), True, 'from bz2 import compress as c_bz2\n'), ((2053, 2065), 'binascii.hexlify', 'hexlify', (['bz2'], {}), '(bz2)\n', (2060, 2065), False, 'from binascii import hexlify, unhexlify\n'), ((2134, 2152), 'zlib.decompress', 'd_zlib', (['compressed'], {}), '(compressed)\n', (2140, 2152), True, 'from zlib import decompress as d_zlib\n'), ((2175, 2193), 'base64.b64decode', 'b64decode', (['unhexed'], {}), '(unhexed)\n', (2184, 2193), False, 'from base64 import b64encode, b64decode\n'), ((752, 764), 'sha.sha', 'sha1', (['"""[TL]"""'], {}), "('[TL]')\n", (756, 764), True, 'from sha import sha as sha1\n'), ((795, 813), 'sha.sha', 'sha1', (['"""TL-Cookies"""'], {}), "('TL-Cookies')\n", (799, 813), True, 'from sha import sha as sha1\n'), ((911, 925), 'random.randrange', 'randrange', (['(256)'], {}), '(256)\n', (920, 925), False, 'from random import randrange\n')]
"""scrapli_cfg.platform.core.arista_eos.base""" import json import re from datetime import datetime from logging import LoggerAdapter from typing import Iterable, List, Tuple, Union from scrapli.driver import AsyncNetworkDriver, NetworkDriver from scrapli.response import Response from scrapli_cfg.exceptions import ScrapliCfgException from scrapli_cfg.platform.core.arista_eos.patterns import ( BANNER_PATTERN, END_PATTERN, GLOBAL_COMMENT_LINE_PATTERN, VERSION_PATTERN, ) from scrapli_cfg.response import ScrapliCfgResponse CONFIG_SOURCES = [ "running", "startup", ] class ScrapliCfgEOSBase: conn: Union[NetworkDriver, AsyncNetworkDriver] logger: LoggerAdapter config_sources: List[str] config_session_name: str candidate_config: str @staticmethod def _parse_version(device_output: str) -> str: """ Parse version string out of device output Args: device_output: output from show version command Returns: str: device version string Raises: N/A """ version_string_search = re.search(pattern=VERSION_PATTERN, string=device_output) if not version_string_search: return "" version_string = version_string_search.group(0) or "" return version_string @staticmethod def _parse_config_sessions(device_output: str) -> List[str]: """ Parse config session names out of device output Args: device_output: output from show version command Returns: list[str]: config session names Raises: N/A """ try: config_session_dict = json.loads(device_output) except json.JSONDecodeError: return [] sessions = list(config_session_dict.get("sessions", {})) return sessions @staticmethod def _get_config_command(source: str) -> str: """ Return command to use to get config based on the provided source Args: source: name of the config source, generally running|startup Returns: str: command to use to fetch the requested config Raises: N/A """ if source == "running": return "show running-config" return "show startup-config" @staticmethod def _prepare_config_payloads(config: str) -> Tuple[str, str]: """ Prepare a configuration so it can be nicely sent to the device via scrapli Args: config: configuration to prep Returns: tuple: tuple of "normal" config lines and "eager" config lines Raises: N/A """ # remove comment lines config = re.sub(pattern=GLOBAL_COMMENT_LINE_PATTERN, repl="!", string=config) # remove "end" at the end of config if present - if its present it will drop scrapli out # of the config session which we do not want config = re.sub(pattern=END_PATTERN, repl="!", string=config) # find all sections that need to be "eagerly" sent eager_config = re.findall(pattern=BANNER_PATTERN, string=config) for eager_section in eager_config: config = config.replace(eager_section, "!") joined_eager_config = "\n".join(captured_section for captured_section in eager_config) return config, joined_eager_config def _prepare_load_config_session_and_payload(self, config: str) -> Tuple[str, str, bool]: """ Prepare the normal and eager payloads and decide if we need to register a config session Args: config: candidate config to load Returns: tuple: tuple containing "normal" config elements to send to the device and "eager" mode config elements to send to the device (things like banners/macro that require scrapli "eager=True"), and lastly a bool indicating if the config session needs to be registered on the device Raises: N/A """ config, eager_config = self._prepare_config_payloads(config=config) register_config_session = False if not self.config_session_name: self.config_session_name = f"scrapli_cfg_{round(datetime.now().timestamp())}" self.logger.debug(f"configuration session name will be '{self.config_session_name}'") register_config_session = True return config, eager_config, register_config_session def _reset_config_session(self) -> None: """ Reset config session info Resets the candidate config and config session name attributes -- when these are "empty" we know there is no current config session Args: N/A Returns: None Raises: N/A """ self.logger.debug("resetting candidate config and config session name") self.candidate_config = "" self.config_session_name = "" def _normalize_source_candidate_configs(self, source_config: str) -> Tuple[str, str]: """ Normalize candidate config and source config so that we can easily diff them Args: source_config: current config of the source config store Returns: ScrapliCfgDiff: scrapli cfg diff object Raises: N/A """ self.logger.debug("normalizing source and candidate configs for diff object") # Remove all comment lines from both the source and candidate configs -- this is only done # here pre-diff, so we dont modify the user provided candidate config which can totally have # those comment lines - we only remove "global" (top level) comments though... user comments # attached to interfaces and the stuff will remain source_config = re.sub(pattern=GLOBAL_COMMENT_LINE_PATTERN, string=source_config, repl="") source_config = "\n".join(line for line in source_config.splitlines() if line) candidate_config = re.sub( pattern=GLOBAL_COMMENT_LINE_PATTERN, string=self.candidate_config, repl="" ) candidate_config = "\n".join(line for line in candidate_config.splitlines() if line) return source_config, candidate_config def _pre_clear_config_sessions(self) -> ScrapliCfgResponse: """ Handle pre "clear_config_sessions" operations for parity between sync and async Args: N/A Returns: ScrapliCfgResponse: new response object to update w/ get results Raises: N/A """ self.logger.info("clear_config_sessions requested") response = ScrapliCfgResponse( host=self.conn.host, raise_for_status_exception=ScrapliCfgException ) return response def _post_clear_config_sessions( self, response: ScrapliCfgResponse, scrapli_responses: Iterable[Response], ) -> ScrapliCfgResponse: """ Handle post "clear_config_sessions" operations for parity between sync and async Args: response: response object to update scrapli_responses: list of scrapli response objects from fetching the version Returns: ScrapliCfgResponse: response object containing string of the version as the `result` attribute Raises: N/A """ response.record_response(scrapli_responses=scrapli_responses) if response.failed: msg = "failed to clear device configuration session(s)" self.logger.critical(msg) response.result = msg else: response.result = "configuration session(s) cleared" return response
[ "scrapli_cfg.response.ScrapliCfgResponse", "json.loads", "datetime.datetime.now", "re.findall", "re.search", "re.sub" ]
[((1125, 1181), 're.search', 're.search', ([], {'pattern': 'VERSION_PATTERN', 'string': 'device_output'}), '(pattern=VERSION_PATTERN, string=device_output)\n', (1134, 1181), False, 'import re\n'), ((2794, 2862), 're.sub', 're.sub', ([], {'pattern': 'GLOBAL_COMMENT_LINE_PATTERN', 'repl': '"""!"""', 'string': 'config'}), "(pattern=GLOBAL_COMMENT_LINE_PATTERN, repl='!', string=config)\n", (2800, 2862), False, 'import re\n'), ((3031, 3083), 're.sub', 're.sub', ([], {'pattern': 'END_PATTERN', 'repl': '"""!"""', 'string': 'config'}), "(pattern=END_PATTERN, repl='!', string=config)\n", (3037, 3083), False, 'import re\n'), ((3167, 3216), 're.findall', 're.findall', ([], {'pattern': 'BANNER_PATTERN', 'string': 'config'}), '(pattern=BANNER_PATTERN, string=config)\n', (3177, 3216), False, 'import re\n'), ((5937, 6011), 're.sub', 're.sub', ([], {'pattern': 'GLOBAL_COMMENT_LINE_PATTERN', 'string': 'source_config', 'repl': '""""""'}), "(pattern=GLOBAL_COMMENT_LINE_PATTERN, string=source_config, repl='')\n", (5943, 6011), False, 'import re\n'), ((6126, 6212), 're.sub', 're.sub', ([], {'pattern': 'GLOBAL_COMMENT_LINE_PATTERN', 'string': 'self.candidate_config', 'repl': '""""""'}), "(pattern=GLOBAL_COMMENT_LINE_PATTERN, string=self.candidate_config,\n repl='')\n", (6132, 6212), False, 'import re\n'), ((6789, 6881), 'scrapli_cfg.response.ScrapliCfgResponse', 'ScrapliCfgResponse', ([], {'host': 'self.conn.host', 'raise_for_status_exception': 'ScrapliCfgException'}), '(host=self.conn.host, raise_for_status_exception=\n ScrapliCfgException)\n', (6807, 6881), False, 'from scrapli_cfg.response import ScrapliCfgResponse\n'), ((1718, 1743), 'json.loads', 'json.loads', (['device_output'], {}), '(device_output)\n', (1728, 1743), False, 'import json\n'), ((4339, 4353), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4351, 4353), False, 'from datetime import datetime\n')]
# -*- coding: utf-8 -*- import time # !! This is the configuration of Nikola. !! # # !! You should edit it to your liking. !! # # Data about this site BLOG_AUTHOR = "<NAME>" # (translatable) BLOG_TITLE = "My Nikola Site" # (translatable) # This is the main URL for your site. It will be used # in a prominent link. Don't forget the protocol (http/https)! SITE_URL = "https://example.com/" # This is the URL where Nikola's output will be deployed. # If not set, defaults to SITE_URL # BASE_URL = "https://example.com/" BLOG_EMAIL = "<EMAIL>" BLOG_DESCRIPTION = "This is a demo site for Nikola." # (translatable) # What is the default language? DEFAULT_LANG = "en" # What other languages do you have? # The format is {"translationcode" : "path/to/translation" } # the path will be used as a prefix for the generated pages location TRANSLATIONS = { DEFAULT_LANG: "", # Example for another language: # "es": "./es", } # What will translated input files be named like? TRANSLATIONS_PATTERN = '{path}.{lang}.{ext}' # Links for the sidebar / navigation bar. (translatable) # This is a dict. The keys are languages, and values are tuples. NAVIGATION_LINKS = { DEFAULT_LANG: ( ("/archive.html", "Archive"), ("/categories/", "Tags"), ("/rss.xml", "RSS feed"), ), } # Alternative navigation links. Works the same way NAVIGATION_LINKS does, # although themes may not always support them. (translatable) # (Bootstrap 4: right-side of navbar, Bootblog 4: right side of title) NAVIGATION_ALT_LINKS = { DEFAULT_LANG: () } # Name of the theme to use. #THEME = "bootblog4" THEME = "disimplex" # A theme color. In default themes, it might be displayed by some browsers as # the browser UI color (eg. Chrome on Android). Other themes might also use it # as an accent color (the default ones don’t). Must be a HEX value. THEME_COLOR = '#5670d4' # Theme configuration. Fully theme-dependent. (translatable) # Samples for bootblog4 (enabled) and bootstrap4 (commented) follow. # bootblog4 supports: featured_large featured_small featured_on_mobile # featured_large_image_on_mobile featured_strip_html sidebar # bootstrap4 supports: navbar_light (defaults to False) # navbar_custom_bg (defaults to '') # Config for bootblog4: THEME_CONFIG = { DEFAULT_LANG: { # Show the latest featured post in a large box, with the previewimage as its background. 'featured_large': False, # Show the first (remaining) two featured posts in small boxes. 'featured_small': False, # Show featured posts on mobile. 'featured_on_mobile': True, # Show image in `featured_large` on mobile. # `featured_small` displays them only on desktop. 'featured_large_image_on_mobile': True, # Strip HTML from featured post text. 'featured_strip_html': False, # Contents of the sidebar, If empty, the sidebar is not displayed. 'sidebar': '' } } # POSTS and PAGES contains (wildcard, destination, template) tuples. # (translatable) # POSTS = ( ("posts/*.rst", "posts", "post.tmpl"), ("posts/*.md", "posts", "post.tmpl"), ("posts/*.txt", "posts", "post.tmpl"), ("posts/*.html", "posts", "post.tmpl"), ) PAGES = ( ("pages/*.rst", "", "page.tmpl"), ("pages/*.md", "", "page.tmpl"), ("pages/*.txt", "", "page.tmpl"), ("pages/*.html", "", "page.tmpl"), ) # Below this point, everything is optional # Post's dates are considered in UTC by default, if you want to use # another time zone, please set TIMEZONE to match. Check the available # list from Wikipedia: TIMEZONE = "Europe/London" # Date format used to display post dates. (translatable) # Used by babel.dates, CLDR style: http://cldr.unicode.org/translation/date-time-1/date-time # You can also use 'full', 'long', 'medium', or 'short' # DATE_FORMAT = 'yyyy-MM-dd HH:mm' # Date format used to display post dates, if local dates are used. (translatable) # Used by Luxon: https://moment.github.io/luxon/docs/manual/formatting # Example for presets: {'preset': True, 'format': 'DATE_FULL'} # LUXON_DATE_FORMAT = { # DEFAULT_LANG: {'preset': False, 'format': 'yyyy-MM-dd HH:mm'}, # } # Date fanciness. # # 0 = using DATE_FORMAT and TIMEZONE (without JS) # 1 = using LUXON_DATE_FORMAT and local user time (JS, using Luxon) # 2 = using a string like “2 days ago” (JS, using Luxon) # # Your theme must support it, Bootstrap already does. # DATE_FANCINESS = 0 # Customize the locale/region used for a language. # For example, to use British instead of US English: LOCALES = {'en': 'en_GB'} # LOCALES = {} # One or more folders containing files to be copied as-is into the output. # The format is a dictionary of {source: relative destination}. # Default is: # FILES_FOLDERS = {'files': ''} # Which means copy 'files' into 'output' # One or more folders containing code listings to be processed and published on # the site. The format is a dictionary of {source: relative destination}. # Default is: # LISTINGS_FOLDERS = {'listings': 'listings'} # Which means process listings from 'listings' into 'output/listings' # A mapping of languages to file-extensions that represent that language. # Feel free to add or delete extensions to any list, but don't add any new # compilers unless you write the interface for it yourself. # # The default compiler for `new_post` is the first entry in the POSTS tuple. # # 'rest' is reStructuredText # 'markdown' is Markdown # 'html' assumes the file is HTML and just copies it COMPILERS = { "rest": ['.rst', '.txt'], "markdown": ['.md', '.mdown', '.markdown'], "textile": ['.textile'], "txt2tags": ['.t2t'], "bbcode": ['.bb'], "wiki": ['.wiki'], "ipynb": ['.ipynb'], "html": ['.html', '.htm'], # PHP files are rendered the usual way (i.e. with the full templates). # The resulting files have .php extensions, making it possible to run # them without reconfiguring your server to recognize them. "php": ['.php'], # Pandoc detects the input from the source filename # but is disabled by default as it would conflict # with many of the others. # "pandoc": ['.rst', '.md', '.txt'], } # Preferred metadata format for new posts # "YAML": YAML wrapped in "---" METADATA_FORMAT = "YAML" # If you do not want to display a tag publicly, you can mark it as hidden. # The tag will not be displayed on the tag list page and posts. # Tag pages will still be generated. HIDDEN_TAGS = ['mathjax'] # If CATEGORY_ALLOW_HIERARCHIES is set to True, categories can be organized in # hierarchies. For a post, the whole path in the hierarchy must be specified, # using a forward slash ('/') to separate paths. Use a backslash ('\') to escape # a forward slash or a backslash (i.e. '\//\\' is a path specifying the # subcategory called '\' of the top-level category called '/'). CATEGORY_ALLOW_HIERARCHIES = False # If CATEGORY_OUTPUT_FLAT_HIERARCHY is set to True, the output written to output # contains only the name of the leaf category and not the whole path. CATEGORY_OUTPUT_FLAT_HIERARCHY = False # If you do not want to display a category publicly, you can mark it as hidden. # The category will not be displayed on the category list page. # Category pages will still be generated. HIDDEN_CATEGORIES = [] # If ENABLE_AUTHOR_PAGES is set to True and there is more than one # author, author pages are generated. ENABLE_AUTHOR_PAGES = False # If you do not want to display an author publicly, you can mark it as hidden. # The author will not be displayed on the author list page and posts. # Tag pages will still be generated. HIDDEN_AUTHORS = ['Guest'] # Optional HTML that displayed on “main” blog index.html files. # May be used for a greeting. (translatable) FRONT_INDEX_HEADER = { DEFAULT_LANG: '' } # URLs to other posts/pages can take 3 forms: # rel_path: a relative URL to the current page/post (default) # full_path: a URL with the full path from the root # absolute: a complete URL (that includes the SITE_URL) # URL_TYPE = 'rel_path' # # Note that our use of "server side includes" / partials # REQUIRES the use of 'full_path' # URL_TYPE = 'full_path' # Extension for RSS feed files # RSS_EXTENSION = ".xml" # RSS filename base (without extension); used for indexes and galleries. # (translatable) # RSS_FILENAME_BASE = "rss" # Atom filename base (without extension); used for indexes. # (translatable) ATOM_FILENAME_BASE = "feed" # Extension for Atom feed files # ATOM_EXTENSION = ".atom" # A list of redirection tuples, [("foo/from.html", "/bar/to.html")]. # # A HTML file will be created in output/foo/from.html that redirects # to the "/bar/to.html" URL. notice that the "from" side MUST be a # relative URL. # # If you don't need any of these, just set to [] REDIRECTIONS = [] # Presets of commands to execute to deploy. Can be anything, for # example, you may use rsync: # "rsync -rav --delete output/ [email protected]:/srv/www/site" # And then do a backup, or run `nikola ping` from the `ping` # plugin (`nikola plugin -i ping`). Or run `nikola check -l`. # You may also want to use github_deploy (see below). # You can define multiple presets and specify them as arguments # to `nikola deploy`. If no arguments are specified, a preset # named `default` will be executed. You can use as many presets # in a `nikola deploy` command as you like. # DEPLOY_COMMANDS = { # 'default': [ # "rsync -rav --delete output/ [email protected]:/srv/www/site", # ] # } # github_deploy configuration # For more details, read the manual: # https://getnikola.com/handbook.html#deploying-to-github # You will need to configure the deployment branch on GitHub. GITHUB_SOURCE_BRANCH = 'src' GITHUB_DEPLOY_BRANCH = 'master' # The name of the remote where you wish to push to, using github_deploy. GITHUB_REMOTE_NAME = 'origin' # Whether or not github_deploy should commit to the source branch automatically # before deploying. GITHUB_COMMIT_SOURCE = True # Where the output site should be located # If you don't use an absolute path, it will be considered as relative # to the location of conf.py # OUTPUT_FOLDER = 'output' # where the "cache" of partial generated content should be located # default: 'cache' # CACHE_FOLDER = 'cache' # ############################################################################# # Image Gallery Options # ############################################################################# # Use a thumbnail (defined by ".. previewimage:" in the gallery's index) in # list of galleries for each gallery GALLERIES_USE_THUMBNAIL = False # Image to use as thumbnail for those galleries that don't have one # None: show a grey square # '/url/to/file': show the image in that url GALLERIES_DEFAULT_THUMBNAIL = None # Images will be scaled down according to IMAGE_THUMBNAIL_SIZE and MAX_IMAGE_SIZE # options, but will have to be referenced manually to be visible on the site # (the thumbnail has ``.thumbnail`` added before the file extension by default, # but a different naming template can be configured with IMAGE_THUMBNAIL_FORMAT). IMAGE_FOLDERS = {'images': 'images'} # IMAGE_THUMBNAIL_SIZE = 400 # IMAGE_THUMBNAIL_FORMAT = '{name}.thumbnail{ext}' # ############################################################################# # HTML fragments and diverse things that are used by the templates # ############################################################################# # 'Read more...' for the index page, if INDEX_TEASERS is True (translatable) INDEX_READ_MORE_LINK = '<p class="more"><a href="{link}">{read_more}…</a></p>' # 'Read more...' for the feeds, if FEED_TEASERS is True (translatable) FEED_READ_MORE_LINK = '<p><a href="{link}">{read_more}…</a> ({min_remaining_read})</p>' # Append a URL query to the FEED_READ_MORE_LINK in Atom and RSS feeds. Advanced # option used for traffic source tracking. FEED_LINKS_APPEND_QUERY = False # A HTML fragment describing the license, for the sidebar. # (translatable) LICENSE = "" # I recommend using the Creative Commons' wizard: # https://creativecommons.org/choose/ # LICENSE = """ # <a rel="license" href="https://creativecommons.org/licenses/by-nc-sa/4.0/"> # <img alt="Creative Commons License BY-NC-SA" # style="border-width:0; margin-bottom:12px;" # src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png"></a>""" # A small copyright notice for the page footer (in HTML). # (translatable) CONTENT_FOOTER = 'Contents &copy; {date} <a href="mailto:{email}">{author}</a> - Powered by <a href="https://getnikola.com" rel="nofollow">Nikola</a> {license}' # Things that will be passed to CONTENT_FOOTER.format(). This is done CONTENT_FOOTER_FORMATS = { DEFAULT_LANG: ( (), { "email": BLOG_EMAIL, "author": BLOG_AUTHOR, "date": time.gmtime().tm_year, "license": LICENSE } ) } # A simple copyright tag for inclusion in RSS feeds that works just # like CONTENT_FOOTER and CONTENT_FOOTER_FORMATS RSS_COPYRIGHT = 'Contents © {date} <a href="mailto:{email}">{author}</a> {license}' RSS_COPYRIGHT_PLAIN = 'Contents © {date} {author} {license}' RSS_COPYRIGHT_FORMATS = CONTENT_FOOTER_FORMATS # To use comments, you can choose between different third party comment # systems. The following comment systems are supported by Nikola: # disqus, facebook, intensedebate, isso, muut, commento, utterances # You can leave this option blank to disable comments. COMMENT_SYSTEM = "" # And you also need to add your COMMENT_SYSTEM_ID which # depends on what comment system you use. The default is # "nikolademo" which is a test account for Disqus. More information # is in the manual. COMMENT_SYSTEM_ID = "" # Create index.html for page folders? # WARNING: if a page would conflict with the index file (usually # caused by setting slug to `index`), the PAGE_INDEX # will not be generated for that directory. # PAGE_INDEX = False # Enable comments on pages (i.e. not posts)? # COMMENTS_IN_PAGES = False # Enable comments on picture gallery pages? # COMMENTS_IN_GALLERIES = False # What file should be used for directory indexes? # Defaults to index.html # Common other alternatives: default.html for IIS, index.php # INDEX_FILE = "index.html" # If a link ends in /index.html, drop the index.html part. # http://mysite/foo/bar/index.html => http://mysite/foo/bar/ # (Uses the INDEX_FILE setting, so if that is, say, default.html, # it will instead /foo/default.html => /foo) STRIP_INDEXES = False # List of files relative to the server root (!) that will be asked to be excluded # from indexing and other robotic spidering. * is supported. Will only be effective # if SITE_URL points to server root. The list is used to exclude resources from # /robots.txt and /sitemap.xml, and to inform search engines about /sitemapindex.xml. # ROBOTS_EXCLUSIONS = ["/archive.html", "/category/*.html"] # Instead of putting files in <slug>.html, put them in <slug>/index.html. # No web server configuration is required. Also enables STRIP_INDEXES. # This can be disabled on a per-page/post basis by adding # .. pretty_url: False # to the metadata. PRETTY_URLS = False # If True, publish future dated posts right away instead of scheduling them. # Defaults to False. # FUTURE_IS_NOW = False # If True, future dated posts are allowed in deployed output # Only the individual posts are published/deployed; not in indexes/sitemap # Generally, you want FUTURE_IS_NOW and DEPLOY_FUTURE to be the same value. # DEPLOY_FUTURE = False # If False, draft posts will not be deployed # DEPLOY_DRAFTS = True # Allows scheduling of posts using the rule specified here (new_post -s) # Specify an iCal Recurrence Rule: https://www.kanzaki.com/docs/ical/rrule.html # SCHEDULE_RULE = '' # If True, use the scheduling rule to all posts (not pages!) by default # SCHEDULE_ALL = False # Do you want to add a Mathjax config file? # MATHJAX_CONFIG = "" # If you want support for the $.$ syntax (which may conflict with running # text!), just use this config: # MATHJAX_CONFIG = """ # <script type="text/x-mathjax-config"> # MathJax.Hub.Config({ # tex2jax: { # inlineMath: [ ['$','$'], ["\\\(","\\\)"] ], # displayMath: [ ['$$','$$'], ["\\\[","\\\]"] ], # processEscapes: true # }, # displayAlign: 'center', // Change this to 'left' if you want left-aligned equations. # "HTML-CSS": { # styles: {'.MathJax_Display': {"margin": 0}} # } # }); # </script> # """ # Want to use KaTeX instead of MathJax? While KaTeX may not support every # feature yet, it's faster and the output looks better. # USE_KATEX = False # KaTeX auto-render settings. If you want support for the $.$ syntax (which may # conflict with running text!), just use this config: # KATEX_AUTO_RENDER = """ # delimiters: [ # {left: "$$", right: "$$", display: true}, # {left: "\\\\[", right: "\\\\]", display: true}, # {left: "\\\\begin{equation*}", right: "\\\\end{equation*}", display: true}, # {left: "$", right: "$", display: false}, # {left: "\\\\(", right: "\\\\)", display: false} # ] # """ # What Markdown extensions to enable? # You will also get gist, nikola and podcast because those are # done in the code, hope you don't mind ;-) # Note: most Nikola-specific extensions are done via the Nikola plugin system, # with the MarkdownExtension class and should not be added here. # Defaults are markdown.extensions.(fenced_code|codehilite|extra) # markdown.extensions.meta is required for Markdown metadata. MARKDOWN_EXTENSIONS = ['markdown.extensions.fenced_code', 'markdown.extensions.codehilite', 'markdown.extensions.extra', 'markdown.extensions.toc'] # Options to be passed to markdown extensions (See https://python-markdown.github.io/reference/) # Default is {} (no config at all) # MARKDOWN_EXTENSION_CONFIGS = {} # Social buttons. This is sample code for AddThis (which was the default for a # long time). Insert anything you want here, or even make it empty (which is # the default right now) # (translatable) # SOCIAL_BUTTONS_CODE = """ # <!-- Social buttons --> # <div id="addthisbox" class="addthis_toolbox addthis_peekaboo_style addthis_default_style addthis_label_style addthis_32x32_style"> # <a class="addthis_button_more">Share</a> # <ul><li><a class="addthis_button_facebook"></a> # <li><a class="addthis_button_google_plusone_share"></a> # <li><a class="addthis_button_linkedin"></a> # <li><a class="addthis_button_twitter"></a> # </ul> # </div> # <script src="https://s7.addthis.com/js/300/addthis_widget.js#pubid=ra-4f7088a56bb93798"></script> # <!-- End of social buttons --> # """ # Show link to source for the posts? SHOW_SOURCELINK = False # Copy the source files for your pages? # Setting it to False implies SHOW_SOURCELINK = False COPY_SOURCES = False # Modify the number of Post per Index Page # Defaults to 10 # INDEX_DISPLAY_POST_COUNT = 10 # Extra things you want in the pages HEAD tag. This will be added right # before </head> # (translatable) # EXTRA_HEAD_DATA = "" # Google Analytics or whatever else you use. Added to the bottom of <body> # in the default template (base.tmpl). # (translatable) # BODY_END = "" # Bundle JS and CSS into single files to make site loading faster in a HTTP/1.1 # environment but is not recommended for HTTP/2.0 when caching is used. # Defaults to True. # USE_BUNDLES = True USE_BUNDLES = False # Plugins you don't want to use. Be careful :-) # DISABLED_PLUGINS = ["render_galleries"] # Special settings to disable only parts of the indexes plugin. # Use with care. # DISABLE_INDEXES = False # DISABLE_MAIN_ATOM_FEED = False # DISABLE_MAIN_RSS_FEED = False # Add the absolute paths to directories containing plugins to use them. # For example, the `plugins` directory of your clone of the Nikola plugins # repository. # EXTRA_PLUGINS_DIRS = [] # Add the absolute paths to directories containing themes to use them. # For example, the `v7` directory of your clone of the Nikola themes # repository. # EXTRA_THEMES_DIRS = [] # List of regular expressions, links matching them will always be considered # valid by "nikola check -l" # LINK_CHECK_WHITELIST = [] # The <hN> tags in HTML generated by certain compilers (reST/Markdown) # will be demoted by that much (1 → h1 will become h2 and so on) # This was a hidden feature of the Markdown and reST compilers in the # past. Useful especially if your post titles are in <h1> tags too, for # example. # (defaults to 1.) # DEMOTE_HEADERS = 1 # If set to True, the tags 'draft', 'mathjax' and 'private' have special # meaning. If set to False, these tags are handled like regular tags. USE_TAG_METADATA = False # If set to True, a warning is issued if one of the 'draft', 'mathjax' # and 'private' tags are found in a post. Useful for checking that # migration was successful. WARN_ABOUT_TAG_METADATA = False # Templates will use those filters, along with the defaults. # Consult your engine's documentation on filters if you need help defining # those. # TEMPLATE_FILTERS = {} # Put in global_context things you want available on all your templates. # It can be anything, data, functions, modules, etc. GLOBAL_CONTEXT = {} # Add functions here and they will be called with template # GLOBAL_CONTEXT as parameter when the template is about to be # rendered GLOBAL_CONTEXT_FILLER = [] # Settings for the (boot)Reveal theme must be added to the global context. # subtheme selection: beige/serif/simple/sky/night/default # transition selection: cube/page/concave/linear/none/default GLOBAL_CONTEXT.update({ 'subtheme': 'simple', 'transition': 'none' })
[ "time.gmtime" ]
[((12867, 12880), 'time.gmtime', 'time.gmtime', ([], {}), '()\n', (12878, 12880), False, 'import time\n')]
""" Tests for GSPDataSource """ import os from datetime import datetime import pandas as pd import nowcasting_dataset from nowcasting_dataset.data_sources.gsp.gsp_data_source import ( GSPDataSource, drop_gsp_north_of_boundary, ) from nowcasting_dataset.geospatial import osgb_to_lat_lon def test_gsp_pv_data_source_init(): """Test GSP init""" local_path = os.path.dirname(nowcasting_dataset.__file__) + "/.." _ = GSPDataSource( zarr_path=f"{local_path}/tests/data/gsp/test.zarr", start_datetime=datetime(2020, 4, 1), end_datetime=datetime(2020, 4, 2), history_minutes=30, forecast_minutes=60, image_size_pixels=64, meters_per_pixel=2000, ) def test_gsp_pv_data_source_get_locations(): """Test GSP locations""" local_path = os.path.dirname(nowcasting_dataset.__file__) + "/.." gsp = GSPDataSource( zarr_path=f"{local_path}/tests/data/gsp/test.zarr", start_datetime=datetime(2020, 4, 1), end_datetime=datetime(2020, 4, 2), history_minutes=30, forecast_minutes=60, image_size_pixels=64, meters_per_pixel=2000, ) locations_x, locations_y = gsp.get_locations(t0_datetimes_utc=gsp.gsp_power.index[0:10]) assert len(locations_x) == len(locations_y) # This makes sure it is not in lat/lon. # Note that OSGB could be <= than 90, but that would mean a location in the middle of the sea, # which is impossible for GSP data assert locations_x[0] > 90 assert locations_y[0] > 90 lat, lon = osgb_to_lat_lon(locations_x, locations_y) assert 0 < lat[0] < 90 # this makes sure it is in lat/lon assert -90 < lon[0] < 90 # this makes sure it is in lat/lon def test_gsp_pv_data_source_get_all_locations(): """Test GSP example""" local_path = os.path.dirname(nowcasting_dataset.__file__) + "/.." gsp = GSPDataSource( zarr_path=f"{local_path}/tests/data/gsp/test.zarr", start_datetime=datetime(2020, 4, 1), end_datetime=datetime(2020, 4, 2), history_minutes=30, forecast_minutes=60, image_size_pixels=64, meters_per_pixel=2000, ) N_gsps = len(gsp.metadata) t0_datetimes_utc = gsp.gsp_power.index[0:10] x_locations = gsp.metadata.location_x ( t0_datetimes_utc_all_gsps, x_centers_osgb_all_gsps, y_centers_osgb_all_gsps, ) = gsp.get_all_locations(t0_datetimes_utc=t0_datetimes_utc) assert len(t0_datetimes_utc_all_gsps) == len(x_centers_osgb_all_gsps) assert len(t0_datetimes_utc_all_gsps) == len(y_centers_osgb_all_gsps) assert len(t0_datetimes_utc_all_gsps) == len(x_locations) * len(t0_datetimes_utc) # check first few are the same datetime assert (x_centers_osgb_all_gsps[0:N_gsps] == x_locations.values).all() assert (t0_datetimes_utc_all_gsps[0:N_gsps] == t0_datetimes_utc[0]).all() # check second set of datetimes assert (x_centers_osgb_all_gsps[N_gsps : 2 * N_gsps] == x_locations.values).all() assert (t0_datetimes_utc_all_gsps[N_gsps : 2 * N_gsps] == t0_datetimes_utc[1]).all() # check all datetimes t0_datetimes_utc_all_gsps_overlap = t0_datetimes_utc_all_gsps.union(t0_datetimes_utc) assert len(t0_datetimes_utc_all_gsps_overlap) == len(t0_datetimes_utc_all_gsps) def test_gsp_pv_data_source_get_example(): """Test GSP example""" local_path = os.path.dirname(nowcasting_dataset.__file__) + "/.." start_dt = datetime(2020, 4, 1) end_dt = datetime(2020, 4, 1) gsp = GSPDataSource( zarr_path=f"{local_path}/tests/data/gsp/test.zarr", start_datetime=datetime(2020, 4, 1), end_datetime=datetime(2020, 4, 2), history_minutes=30, forecast_minutes=60, image_size_pixels=64, meters_per_pixel=2000, ) x_locations, y_locations = gsp.get_locations(t0_datetimes_utc=gsp.gsp_power.index[0:10]) example = gsp.get_example( t0_datetime_utc=gsp.gsp_power.index[0], x_center_osgb=x_locations[0], y_center_osgb=y_locations[0], ) assert len(example.id) == len(example.power_mw[0]) assert len(example.x_osgb) == len(example.y_osgb) assert len(example.x_osgb) > 0 assert pd.Timestamp(example.time[0].values) <= end_dt assert pd.Timestamp(example.time[0].values) >= start_dt def test_gsp_pv_data_source_get_batch(): """Test GSP batch""" local_path = os.path.dirname(nowcasting_dataset.__file__) + "/.." gsp = GSPDataSource( zarr_path=f"{local_path}/tests/data/gsp/test.zarr", start_datetime=datetime(2020, 4, 1), end_datetime=datetime(2020, 4, 2), history_minutes=30, forecast_minutes=60, image_size_pixels=64, meters_per_pixel=2000, ) batch_size = 10 x_locations, y_locations = gsp.get_locations(t0_datetimes_utc=gsp.gsp_power.index[0:batch_size]) batch = gsp.get_batch( t0_datetimes_utc=gsp.gsp_power.index[batch_size : 2 * batch_size], x_centers_osgb=x_locations[0:batch_size], y_centers_osgb=y_locations[0:batch_size], ) assert len(batch.power_mw[0]) == 4 assert len(batch.id[0]) == len(batch.x_osgb[0]) assert len(batch.x_osgb[1]) == len(batch.y_osgb[1]) assert len(batch.x_osgb[2]) > 0 # assert T0_DT in batch[3].keys() def test_drop_gsp_north_of_boundary(test_data_folder): """Test that dropping GSP north of a boundary works""" gsp = GSPDataSource( zarr_path=f"{test_data_folder}/gsp/test.zarr", start_datetime=datetime(2020, 4, 1), end_datetime=datetime(2020, 4, 2), history_minutes=30, forecast_minutes=60, image_size_pixels=64, meters_per_pixel=2000, northern_boundary_osgb=None, ) # remove all gsp systems gsp_power, metadata = drop_gsp_north_of_boundary( gsp.gsp_power, gsp.metadata, northern_boundary_osgb=0 ) assert len(gsp_power.columns) == 0 assert len(metadata) == 0 # remove half the systems north_osgb_median = int(gsp.metadata.location_y.median()) gsp_power, metadata = drop_gsp_north_of_boundary( gsp.gsp_power, gsp.metadata, northern_boundary_osgb=north_osgb_median ) assert len(gsp_power.columns) == len(gsp.gsp_power.columns) / 2 assert len(metadata) == len(gsp.metadata) / 2
[ "nowcasting_dataset.data_sources.gsp.gsp_data_source.drop_gsp_north_of_boundary", "pandas.Timestamp", "nowcasting_dataset.geospatial.osgb_to_lat_lon", "os.path.dirname", "datetime.datetime" ]
[((1572, 1613), 'nowcasting_dataset.geospatial.osgb_to_lat_lon', 'osgb_to_lat_lon', (['locations_x', 'locations_y'], {}), '(locations_x, locations_y)\n', (1587, 1613), False, 'from nowcasting_dataset.geospatial import osgb_to_lat_lon\n'), ((3490, 3510), 'datetime.datetime', 'datetime', (['(2020)', '(4)', '(1)'], {}), '(2020, 4, 1)\n', (3498, 3510), False, 'from datetime import datetime\n'), ((3524, 3544), 'datetime.datetime', 'datetime', (['(2020)', '(4)', '(1)'], {}), '(2020, 4, 1)\n', (3532, 3544), False, 'from datetime import datetime\n'), ((5853, 5938), 'nowcasting_dataset.data_sources.gsp.gsp_data_source.drop_gsp_north_of_boundary', 'drop_gsp_north_of_boundary', (['gsp.gsp_power', 'gsp.metadata'], {'northern_boundary_osgb': '(0)'}), '(gsp.gsp_power, gsp.metadata,\n northern_boundary_osgb=0)\n', (5879, 5938), False, 'from nowcasting_dataset.data_sources.gsp.gsp_data_source import GSPDataSource, drop_gsp_north_of_boundary\n'), ((6137, 6238), 'nowcasting_dataset.data_sources.gsp.gsp_data_source.drop_gsp_north_of_boundary', 'drop_gsp_north_of_boundary', (['gsp.gsp_power', 'gsp.metadata'], {'northern_boundary_osgb': 'north_osgb_median'}), '(gsp.gsp_power, gsp.metadata,\n northern_boundary_osgb=north_osgb_median)\n', (6163, 6238), False, 'from nowcasting_dataset.data_sources.gsp.gsp_data_source import GSPDataSource, drop_gsp_north_of_boundary\n'), ((376, 420), 'os.path.dirname', 'os.path.dirname', (['nowcasting_dataset.__file__'], {}), '(nowcasting_dataset.__file__)\n', (391, 420), False, 'import os\n'), ((818, 862), 'os.path.dirname', 'os.path.dirname', (['nowcasting_dataset.__file__'], {}), '(nowcasting_dataset.__file__)\n', (833, 862), False, 'import os\n'), ((1838, 1882), 'os.path.dirname', 'os.path.dirname', (['nowcasting_dataset.__file__'], {}), '(nowcasting_dataset.__file__)\n', (1853, 1882), False, 'import os\n'), ((3421, 3465), 'os.path.dirname', 'os.path.dirname', (['nowcasting_dataset.__file__'], {}), '(nowcasting_dataset.__file__)\n', (3436, 3465), False, 'import os\n'), ((4254, 4290), 'pandas.Timestamp', 'pd.Timestamp', (['example.time[0].values'], {}), '(example.time[0].values)\n', (4266, 4290), True, 'import pandas as pd\n'), ((4312, 4348), 'pandas.Timestamp', 'pd.Timestamp', (['example.time[0].values'], {}), '(example.time[0].values)\n', (4324, 4348), True, 'import pandas as pd\n'), ((4446, 4490), 'os.path.dirname', 'os.path.dirname', (['nowcasting_dataset.__file__'], {}), '(nowcasting_dataset.__file__)\n', (4461, 4490), False, 'import os\n'), ((536, 556), 'datetime.datetime', 'datetime', (['(2020)', '(4)', '(1)'], {}), '(2020, 4, 1)\n', (544, 556), False, 'from datetime import datetime\n'), ((579, 599), 'datetime.datetime', 'datetime', (['(2020)', '(4)', '(2)'], {}), '(2020, 4, 2)\n', (587, 599), False, 'from datetime import datetime\n'), ((980, 1000), 'datetime.datetime', 'datetime', (['(2020)', '(4)', '(1)'], {}), '(2020, 4, 1)\n', (988, 1000), False, 'from datetime import datetime\n'), ((1023, 1043), 'datetime.datetime', 'datetime', (['(2020)', '(4)', '(2)'], {}), '(2020, 4, 2)\n', (1031, 1043), False, 'from datetime import datetime\n'), ((2000, 2020), 'datetime.datetime', 'datetime', (['(2020)', '(4)', '(1)'], {}), '(2020, 4, 1)\n', (2008, 2020), False, 'from datetime import datetime\n'), ((2043, 2063), 'datetime.datetime', 'datetime', (['(2020)', '(4)', '(2)'], {}), '(2020, 4, 2)\n', (2051, 2063), False, 'from datetime import datetime\n'), ((3654, 3674), 'datetime.datetime', 'datetime', (['(2020)', '(4)', '(1)'], {}), '(2020, 4, 1)\n', (3662, 3674), False, 'from datetime import datetime\n'), ((3697, 3717), 'datetime.datetime', 'datetime', (['(2020)', '(4)', '(2)'], {}), '(2020, 4, 2)\n', (3705, 3717), False, 'from datetime import datetime\n'), ((4608, 4628), 'datetime.datetime', 'datetime', (['(2020)', '(4)', '(1)'], {}), '(2020, 4, 1)\n', (4616, 4628), False, 'from datetime import datetime\n'), ((4651, 4671), 'datetime.datetime', 'datetime', (['(2020)', '(4)', '(2)'], {}), '(2020, 4, 2)\n', (4659, 4671), False, 'from datetime import datetime\n'), ((5571, 5591), 'datetime.datetime', 'datetime', (['(2020)', '(4)', '(1)'], {}), '(2020, 4, 1)\n', (5579, 5591), False, 'from datetime import datetime\n'), ((5614, 5634), 'datetime.datetime', 'datetime', (['(2020)', '(4)', '(2)'], {}), '(2020, 4, 2)\n', (5622, 5634), False, 'from datetime import datetime\n')]
# coding=utf-8 # Copyright (C) 2019 Alibaba Group Holding Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # add BiLSTM as encoder import torch.nn as nn import torch.nn.functional as f import torch from . import Conv1d class Encoder(nn.Module): def __init__(self, args, input_size): super().__init__() self.dropout = args.dropout self.encoders = nn.ModuleList([Conv1d( in_channels=input_size if i == 0 else args.hidden_size, out_channels=args.hidden_size, kernel_sizes=args.kernel_sizes) for i in range(args.enc_layers)]) def forward(self, x, mask): x = x.transpose(1, 2) # B x C x L mask = mask.transpose(1, 2) for i, encoder in enumerate(self.encoders): x.masked_fill_(~mask, 0.) if i > 0: x = f.dropout(x, self.dropout, self.training) x = encoder(x) x = f.dropout(x, self.dropout, self.training) return x.transpose(1, 2) # B x L x C def sort_by_seq_lens(batch, sequences_lengths, descending=True): sorted_seq_lens, sorting_index =\ sequences_lengths.sort(0, descending=descending) sorted_batch = batch.index_select(0, sorting_index) idx_range = torch.arange(0, len(sequences_lengths)).to(sequences_lengths.device) _, reverse_mapping = sorting_index.sort(0, descending=False) restoration_index = idx_range.index_select(0, reverse_mapping) return sorted_batch, sorted_seq_lens, sorting_index, restoration_index class Seq2SeqEncoder(nn.Module): def __init__(self, rnn_type, input_size, hidden_size, num_layers=1, bias=True, dropout=0.2, bidirectional=False): assert issubclass(rnn_type, nn.RNNBase),\ "rnn_type must be a class inheriting from torch.nn.RNNBase" super(Seq2SeqEncoder, self).__init__() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.bias = bias self.dropout = dropout self.bidirectional = bidirectional self._encoder = rnn_type(input_size, hidden_size, num_layers=num_layers, bias=bias, batch_first=True, dropout=dropout, bidirectional=bidirectional) def forward(self, sequences_batch, sequences_lengths): outputs, _ = self._encoder(sequences_batch, None) return outputs
[ "torch.nn.functional.dropout" ]
[((1432, 1473), 'torch.nn.functional.dropout', 'f.dropout', (['x', 'self.dropout', 'self.training'], {}), '(x, self.dropout, self.training)\n', (1441, 1473), True, 'import torch.nn.functional as f\n'), ((1351, 1392), 'torch.nn.functional.dropout', 'f.dropout', (['x', 'self.dropout', 'self.training'], {}), '(x, self.dropout, self.training)\n', (1360, 1392), True, 'import torch.nn.functional as f\n')]
import argparse import os import draw_his import train import test from get_data import import_data from model_zoo import googLeNet, resnet, load_model import utils import ensembel_model def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') parser = argparse.ArgumentParser() parser.add_argument('--gpu', action='store', type=str, default="0") parser.add_argument('--lr', action='store', type=float, default=0.001) parser.add_argument('--epochs', action='store', type=int, default=10) parser.add_argument('--train_v', action='store', type=str, default="1.0") parser.add_argument('--load_v', action='store', type=str, default="1.0") default_load_data_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "get_data/data") # default_load_data_dir = "/media/Data/datasets/cifar/cifar-10-python/data" parser.add_argument('--load_data_dir', action='store', type=str, default=default_load_data_dir) parser.add_argument('--retrain', type=lambda x: bool(str2bool(x)), default=False) parser.add_argument('--regularize', type=lambda x: bool(str2bool(x)), default=False) parser.add_argument('--batch_size', action='store', type=int, default=32) parser.add_argument('--T', action='store', type=float, default=10) parser.add_argument('--alpha', action='store', type=float, default=0.1) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(args.gpu) print("[info]: use gpu: {}".format(os.environ["CUDA_VISIBLE_DEVICES"])) print("[info]: set learning rate: {}".format(args.lr)) print("[info]: epochs: {}".format(args.epochs)) print("[info]: train_version: {}".format(args.train_v)) print("[info]: load_version: {}".format(args.load_v)) print("[info]: retrain: {}".format(args.retrain)) print("[info]: regularize: {}".format(args.regularize)) print("[info]: batch_size: {}".format(args.batch_size)) print("[info]: T: {}".format(args.T)) print("[info]: alpha: {}".format(args.alpha)) # my_util = utils.GoogLeNetUtils() my_util = utils.ResNetUtils() # my_util = utils.DistillModelUtils( # cumbersome_model=ensembel_model.my_ensembel_model(), # T=args.T, # alpha=args.alpha # ) # new_model = googLeNet.my_googLeNet new_model = resnet.my_resnet model, create_new = load_model.load_model( version=args.load_v, new_model=new_model, just_weights=False, retrain=args.retrain, to_cuda=True ) train_set, valid_set, test_set = import_data.import_dataset( load_dir=args.load_data_dir, train_to_cuda=False, test_to_cuda=True ) train.train( model=model, train_set=train_set, valid_set=valid_set, lr=args.lr, epoch=args.epochs, batch_size=args.batch_size, regularize=args.regularize, train_version=args.train_v, train_loss_function=my_util.loss_for_train, get_true_pred=my_util.get_true_pred, eval_loss_function=my_util.loss_for_eval, detach_pred=my_util.detach_pred, learn_rate_schedule=my_util.learn_rate_schedule ) draw_his.draw_his(version=args.train_v, show=False) model = model.cpu() load_model.save_model(args.train_v, model) test.test( test_version=args.train_v, test_set=test_set, new_model=new_model, batch_size=args.batch_size, get_true_pred=my_util.get_true_pred, eval_loss_function=my_util.loss_for_eval, detach_pred=my_util.detach_pred, just_weights=False )
[ "draw_his.draw_his", "model_zoo.load_model.load_model", "argparse.ArgumentParser", "os.path.realpath", "test.test", "get_data.import_data.import_dataset", "utils.ResNetUtils", "model_zoo.load_model.save_model", "train.train", "argparse.ArgumentTypeError" ]
[((442, 467), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (465, 467), False, 'import argparse\n'), ((2142, 2161), 'utils.ResNetUtils', 'utils.ResNetUtils', ([], {}), '()\n', (2159, 2161), False, 'import utils\n'), ((2391, 2514), 'model_zoo.load_model.load_model', 'load_model.load_model', ([], {'version': 'args.load_v', 'new_model': 'new_model', 'just_weights': '(False)', 'retrain': 'args.retrain', 'to_cuda': '(True)'}), '(version=args.load_v, new_model=new_model,\n just_weights=False, retrain=args.retrain, to_cuda=True)\n', (2412, 2514), False, 'from model_zoo import googLeNet, resnet, load_model\n'), ((2567, 2666), 'get_data.import_data.import_dataset', 'import_data.import_dataset', ([], {'load_dir': 'args.load_data_dir', 'train_to_cuda': '(False)', 'test_to_cuda': '(True)'}), '(load_dir=args.load_data_dir, train_to_cuda=False,\n test_to_cuda=True)\n', (2593, 2666), False, 'from get_data import import_data\n'), ((2678, 3088), 'train.train', 'train.train', ([], {'model': 'model', 'train_set': 'train_set', 'valid_set': 'valid_set', 'lr': 'args.lr', 'epoch': 'args.epochs', 'batch_size': 'args.batch_size', 'regularize': 'args.regularize', 'train_version': 'args.train_v', 'train_loss_function': 'my_util.loss_for_train', 'get_true_pred': 'my_util.get_true_pred', 'eval_loss_function': 'my_util.loss_for_eval', 'detach_pred': 'my_util.detach_pred', 'learn_rate_schedule': 'my_util.learn_rate_schedule'}), '(model=model, train_set=train_set, valid_set=valid_set, lr=args.\n lr, epoch=args.epochs, batch_size=args.batch_size, regularize=args.\n regularize, train_version=args.train_v, train_loss_function=my_util.\n loss_for_train, get_true_pred=my_util.get_true_pred, eval_loss_function\n =my_util.loss_for_eval, detach_pred=my_util.detach_pred,\n learn_rate_schedule=my_util.learn_rate_schedule)\n', (2689, 3088), False, 'import train\n'), ((3120, 3171), 'draw_his.draw_his', 'draw_his.draw_his', ([], {'version': 'args.train_v', 'show': '(False)'}), '(version=args.train_v, show=False)\n', (3137, 3171), False, 'import draw_his\n'), ((3192, 3234), 'model_zoo.load_model.save_model', 'load_model.save_model', (['args.train_v', 'model'], {}), '(args.train_v, model)\n', (3213, 3234), False, 'from model_zoo import googLeNet, resnet, load_model\n'), ((3236, 3485), 'test.test', 'test.test', ([], {'test_version': 'args.train_v', 'test_set': 'test_set', 'new_model': 'new_model', 'batch_size': 'args.batch_size', 'get_true_pred': 'my_util.get_true_pred', 'eval_loss_function': 'my_util.loss_for_eval', 'detach_pred': 'my_util.detach_pred', 'just_weights': '(False)'}), '(test_version=args.train_v, test_set=test_set, new_model=new_model,\n batch_size=args.batch_size, get_true_pred=my_util.get_true_pred,\n eval_loss_function=my_util.loss_for_eval, detach_pred=my_util.\n detach_pred, just_weights=False)\n', (3245, 3485), False, 'import test\n'), ((878, 904), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (894, 904), False, 'import os\n'), ((377, 430), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (['"""Boolean value expected."""'], {}), "('Boolean value expected.')\n", (403, 430), False, 'import argparse\n')]
from subprocess import CalledProcessError, check_call, DEVNULL from typing import Any, List, Sequence import dotbot class Apt(dotbot.Plugin): def can_handle(self, directive: str) -> bool: return directive == "apt" def handle(self, directive: str, packages: List[str]) -> bool: success = self._run(["sudo", "apt", "update"], "Updating APT") \ and self._run(["sudo", "apt", "install", "-y"] + packages, "Installing the APT packages: {}".format(", ".join(packages))) if success: self._log.info("APT packages installed successfully") return success def _run(self, command: Sequence[Any], low_info: str) -> bool: self._log.lowinfo(low_info) try: check_call(command, stdout=DEVNULL, stderr=DEVNULL) return True except CalledProcessError as e: self._log.error(e) return False
[ "subprocess.check_call" ]
[((782, 833), 'subprocess.check_call', 'check_call', (['command'], {'stdout': 'DEVNULL', 'stderr': 'DEVNULL'}), '(command, stdout=DEVNULL, stderr=DEVNULL)\n', (792, 833), False, 'from subprocess import CalledProcessError, check_call, DEVNULL\n')]
import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 2*np.pi, 10) y = np.sin(x) #Función original xvals = np.linspace(0, 2*np.pi, 50) yinterp = np.interp(xvals, x, y) plt.plot(x, y, 'o') plt.plot(xvals, yinterp, '-x') plt.show()
[ "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "numpy.sin", "numpy.linspace", "numpy.interp" ]
[((56, 85), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(10)'], {}), '(0, 2 * np.pi, 10)\n', (67, 85), True, 'import numpy as np\n'), ((88, 97), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (94, 97), True, 'import numpy as np\n'), ((124, 153), 'numpy.linspace', 'np.linspace', (['(0)', '(2 * np.pi)', '(50)'], {}), '(0, 2 * np.pi, 50)\n', (135, 153), True, 'import numpy as np\n'), ((162, 184), 'numpy.interp', 'np.interp', (['xvals', 'x', 'y'], {}), '(xvals, x, y)\n', (171, 184), True, 'import numpy as np\n'), ((185, 204), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '"""o"""'], {}), "(x, y, 'o')\n", (193, 204), True, 'import matplotlib.pyplot as plt\n'), ((205, 235), 'matplotlib.pyplot.plot', 'plt.plot', (['xvals', 'yinterp', '"""-x"""'], {}), "(xvals, yinterp, '-x')\n", (213, 235), True, 'import matplotlib.pyplot as plt\n'), ((236, 246), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (244, 246), True, 'import matplotlib.pyplot as plt\n')]
from django.conf.urls import patterns, include, url from django.views.generic.simple import direct_to_template from .views import SubmissionView, SubmissionListView, SubmissionSuccess urlpatterns = patterns('', url(r'^$', SubmissionView.as_view(), name='submission', ), url(r'^success/$', SubmissionSuccess.as_view(), name='success_submission', ), url(r'^end/$', direct_to_template, {'template': 'submission/end.html'}, name='end', ), url(r'^votar/$', SubmissionListView.as_view(), name='vote', ), url(r'^votar/erro/$', direct_to_template, {'template': 'submission/error.html'}, name='error', ), url(r'^votar/success/$', direct_to_template, {'template': 'submission/success.html'}, name='success', ), )
[ "django.conf.urls.url" ]
[((403, 490), 'django.conf.urls.url', 'url', (['"""^end/$"""', 'direct_to_template', "{'template': 'submission/end.html'}"], {'name': '"""end"""'}), "('^end/$', direct_to_template, {'template': 'submission/end.html'}, name\n ='end')\n", (406, 490), False, 'from django.conf.urls import patterns, include, url\n'), ((602, 699), 'django.conf.urls.url', 'url', (['"""^votar/erro/$"""', 'direct_to_template', "{'template': 'submission/error.html'}"], {'name': '"""error"""'}), "('^votar/erro/$', direct_to_template, {'template':\n 'submission/error.html'}, name='error')\n", (605, 699), False, 'from django.conf.urls import patterns, include, url\n'), ((724, 828), 'django.conf.urls.url', 'url', (['"""^votar/success/$"""', 'direct_to_template', "{'template': 'submission/success.html'}"], {'name': '"""success"""'}), "('^votar/success/$', direct_to_template, {'template':\n 'submission/success.html'}, name='success')\n", (727, 828), False, 'from django.conf.urls import patterns, include, url\n')]
import pytest from fixtures import get_title, get_url from craigslist_meta import Site selector = "area" # use a site key with areas site_key = "sfbay" @pytest.fixture def area(): """Get an instance of Area.""" area = next(iter(Site(site_key))) global area_key area_key = area.key yield area def test_key(area): """Test `key` attribute of area instance.""" expected_key = area._key assert area_key == expected_key def test_title(area, get_title): """Test `title` attribute of area instance.""" area_title = area.title expected_title = get_title(selector, area_key) assert area_title == expected_title def test_url(area, get_url): """Test `url` attribute of area instance.""" area_url = area.url expected_url = get_url(selector, area_key) assert area_url == expected_url def test_all_raises(area): """`all` class method should raise an exception for Area.""" with pytest.raises(AttributeError, match="'Area' object has no attribute 'all'"): area.all() def test_keys_raises(area): """`keys` class method should raise an exception for Area.""" with pytest.raises(AttributeError, match="'Area' object has no attribute 'keys'"): area.keys def test_children_raises(area): """`children` attribute should raise an exception for Area.""" with pytest.raises(AttributeError, match="'Area' object has no attribute 'children'"): area.children
[ "fixtures.get_title", "pytest.raises", "fixtures.get_url", "craigslist_meta.Site" ]
[((586, 615), 'fixtures.get_title', 'get_title', (['selector', 'area_key'], {}), '(selector, area_key)\n', (595, 615), False, 'from fixtures import get_title, get_url\n'), ((779, 806), 'fixtures.get_url', 'get_url', (['selector', 'area_key'], {}), '(selector, area_key)\n', (786, 806), False, 'from fixtures import get_title, get_url\n'), ((946, 1021), 'pytest.raises', 'pytest.raises', (['AttributeError'], {'match': '"""\'Area\' object has no attribute \'all\'"""'}), '(AttributeError, match="\'Area\' object has no attribute \'all\'")\n', (959, 1021), False, 'import pytest\n'), ((1147, 1223), 'pytest.raises', 'pytest.raises', (['AttributeError'], {'match': '"""\'Area\' object has no attribute \'keys\'"""'}), '(AttributeError, match="\'Area\' object has no attribute \'keys\'")\n', (1160, 1223), False, 'import pytest\n'), ((1353, 1438), 'pytest.raises', 'pytest.raises', (['AttributeError'], {'match': '"""\'Area\' object has no attribute \'children\'"""'}), '(AttributeError, match="\'Area\' object has no attribute \'children\'"\n )\n', (1366, 1438), False, 'import pytest\n'), ((239, 253), 'craigslist_meta.Site', 'Site', (['site_key'], {}), '(site_key)\n', (243, 253), False, 'from craigslist_meta import Site\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys import os import argparse import numpy as np import mxnet as mx ctx = mx.cpu(0) image_size = (112, 112) prefix = "../models/resnet-50" epoch = 0 sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch) all_layers = sym.get_internals() sym = all_layers['relu1_output'] dellist = [] for k,v in arg_params.iteritems(): if k.startswith('fc1'): dellist.append(k) for d in dellist: del arg_params[d] mx.model.save_checkpoint(prefix+"s", 0, sym, arg_params, aux_params) digraph = mx.viz.plot_network(sym, shape={'data':(1,3,256,256)}, node_attrs={"fixedsize":"false"}) digraph.view()
[ "mxnet.model.save_checkpoint", "mxnet.model.load_checkpoint", "mxnet.cpu", "mxnet.viz.plot_network" ]
[((193, 202), 'mxnet.cpu', 'mx.cpu', (['(0)'], {}), '(0)\n', (199, 202), True, 'import mxnet as mx\n'), ((298, 337), 'mxnet.model.load_checkpoint', 'mx.model.load_checkpoint', (['prefix', 'epoch'], {}), '(prefix, epoch)\n', (322, 337), True, 'import mxnet as mx\n'), ((594, 664), 'mxnet.model.save_checkpoint', 'mx.model.save_checkpoint', (["(prefix + 's')", '(0)', 'sym', 'arg_params', 'aux_params'], {}), "(prefix + 's', 0, sym, arg_params, aux_params)\n", (618, 664), True, 'import mxnet as mx\n'), ((674, 772), 'mxnet.viz.plot_network', 'mx.viz.plot_network', (['sym'], {'shape': "{'data': (1, 3, 256, 256)}", 'node_attrs': "{'fixedsize': 'false'}"}), "(sym, shape={'data': (1, 3, 256, 256)}, node_attrs={\n 'fixedsize': 'false'})\n", (693, 772), True, 'import mxnet as mx\n')]
from flying_ioc import IocManager, IocFactory class TSingleton1: def __init__(self): pass class TSingleton2: def __init__(self): pass class TSingleton3(TSingleton1): def __init__(self, ts: TSingleton2): super().__init__() self.ts = ts class TSingleton3dot2(TSingleton3): def __init__(self, **kwargs): super().__init__(**kwargs) class TSingleton3dot1(TSingleton3): def __init__(self, **kwargs): super().__init__(**kwargs) class TSingleton3dot3: def __init__(self, ts: TSingleton2): self.ts = ts class MyIocFactory(IocFactory): @staticmethod def get_instance(ioc_manager, name, frame_info): if frame_info.function == 'test_factory_container': return ioc_manager.TSingleton3dot1 if name == 'TSingleton3': return ioc_manager.TSingleton3dot2 return ioc_manager.TSingleton3dot3 def test_factory_container(): ioc = IocManager(stats=True) ioc.set_class(name='TSingleton1', cls=TSingleton1, singleton=True) ioc.set_class(name='TSingleton2', cls=TSingleton2, singleton=False) ioc.set_factory(name='TSingleton3', cls=MyIocFactory) ioc.set_class(name='TSingleton3dot1', cls=TSingleton3dot1, singleton=False) ioc.set_class(name='TSingleton3dot2', cls=TSingleton3dot2, singleton=False) ioc.set_class(name='TSingleton3dot3', cls=TSingleton3dot3, singleton=False) assert ioc.TSingleton1 is ioc.TSingleton1 ts3 = ioc.TSingleton3 assert isinstance(ts3, TSingleton3dot1) ioc.print_stats()
[ "flying_ioc.IocManager" ]
[((966, 988), 'flying_ioc.IocManager', 'IocManager', ([], {'stats': '(True)'}), '(stats=True)\n', (976, 988), False, 'from flying_ioc import IocManager, IocFactory\n')]
from time import time from hashlib import md5 from datetime import datetime ## Hashing functions: # Slower, 64 bytes #sha256 = sha256('content').hexdigest() # Faster, 32 bytes #md5 = md5('content').hexdigest() class Block: timestamp = '' prev_hash = '' content = '' nonce = 0 hash = '' def __init__(self, timestamp, prev_hash, content, nonce, hash): self.timestamp = timestamp self.prev_hash = prev_hash self.content = content self.nonce = nonce self.hash = hash def serialize(self): return self.prev_hash+self.content+str(self.nonce) class Blockchain: MAX_NONCE = 999999 # To prevent infinite mining prefix = '00000' # Mining difficulty blocks = [] # Genesis block: def __init__(self): nonce = 622722 # For 00000 self.blocks.append(Block(datetime.now(), ''.zfill(32), 'Genesis', nonce, md5((''.zfill(32)+'Genesis'+str(nonce)).encode('utf-8')).hexdigest())) def add_block(self, content = ''): nonce = 0 prev_hash = self.blocks[-1].hash hash = md5((prev_hash+content+str(nonce)).encode('utf-8')).hexdigest() # Mining: while hash[0:len(self.prefix)] != self.prefix and nonce < self.MAX_NONCE: nonce += 1 hash = md5((prev_hash+content+str(nonce)).encode('utf-8')).hexdigest() if nonce < self.MAX_NONCE: self.blocks.append(Block(datetime.now(), prev_hash, content, nonce, hash)) else: print('Unable to mine block #'+str(len(self.blocks)+1)) def print_chain(self): i = 1 for block in self.blocks: print('BLOCK #%d =======================' % i); i += 1 print(block.prev_hash) print(block.timestamp) print(block.content) print(block.hash) print('================================\n\t\t|\n\t\tV') def check_block(self, block_num): if block_num > 0: block = self.blocks[block_num-1] if md5((block.serialize()).encode('utf-8')).hexdigest() == block.hash: print('Block #%d is valid' % block_num) else: print('Block #%d is invalid' % block_num) else: print('Invalid block number') def check_chain(self): for i in range(1, len(self.blocks)+1): self.check_block(i) b = Blockchain() t1 = time() b.add_block('Johnny') b.add_block('Noelle') t2 = time() b.print_chain() print('Elapsed time: %.2fs' % (t2-t1)) b.check_chain()
[ "datetime.datetime.now", "time.time" ]
[((2495, 2501), 'time.time', 'time', ([], {}), '()\n', (2499, 2501), False, 'from time import time\n'), ((2551, 2557), 'time.time', 'time', ([], {}), '()\n', (2555, 2557), False, 'from time import time\n'), ((862, 876), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (874, 876), False, 'from datetime import datetime\n'), ((1475, 1489), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1487, 1489), False, 'from datetime import datetime\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf class Distance: def __init__(self): self.graph = tf.Graph() self.sess = tf.Session(graph=self.graph) with self.graph.as_default(): self.b_tf = tf.placeholder(shape=[None, 512], dtype=tf.float32) self.A_tf = tf.placeholder(shape=[None, 512], dtype=tf.float32) self.distance_tf = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.A_tf, tf.expand_dims(self.b_tf, 1))), axis=2)) def __del__(self): self.sess.close() def fit(self, A, b): return self.sess.run(self.distance_tf, feed_dict={self.A_tf: A, self.b_tf: b})
[ "tensorflow.placeholder", "tensorflow.Session", "tensorflow.Graph", "tensorflow.expand_dims" ]
[((197, 207), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (205, 207), True, 'import tensorflow as tf\n'), ((228, 256), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'self.graph'}), '(graph=self.graph)\n', (238, 256), True, 'import tensorflow as tf\n'), ((319, 370), 'tensorflow.placeholder', 'tf.placeholder', ([], {'shape': '[None, 512]', 'dtype': 'tf.float32'}), '(shape=[None, 512], dtype=tf.float32)\n', (333, 370), True, 'import tensorflow as tf\n'), ((395, 446), 'tensorflow.placeholder', 'tf.placeholder', ([], {'shape': '[None, 512]', 'dtype': 'tf.float32'}), '(shape=[None, 512], dtype=tf.float32)\n', (409, 446), True, 'import tensorflow as tf\n'), ((533, 561), 'tensorflow.expand_dims', 'tf.expand_dims', (['self.b_tf', '(1)'], {}), '(self.b_tf, 1)\n', (547, 561), True, 'import tensorflow as tf\n')]
#!/usr/bin/env python # Copyright (c) 2015 - 2017, Intel Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """``test_networkd.py`` `NetworkD Unittests` """ from unittest.mock import MagicMock from testlib.linux.networkd import NetworkD class TestNetworkD(object): def test_single_mgmt_port(self): run_command = MagicMock() n = NetworkD(run_command, ["test"]) n.clear_settings() assert run_command.call_args_list[0][0][ 0] == "find /etc/systemd/network/ -mindepth 1 -not \\( -name 'test.network' -or " \ "-name 'test.netdev' -or -name 'test.link' -or -name 'test.swport' \\) -delete" def test_multiple_mgmt_port(self): run_command = MagicMock() n = NetworkD(run_command, ["test1", "test2"]) n.clear_settings() assert run_command.call_args_list[0][0][ 0] == "find /etc/systemd/network/ -mindepth 1 -not \\( -name 'test1.network' -or " \ "-name 'test1.netdev' -or -name 'test1.link' -or -name 'test1.swport' -or " \ "-name 'test2.network' -or -name 'test2.netdev' -or -name 'test2.link' -or " \ "-name 'test2.swport' \\) -delete" def test_empty_list(self): run_command = MagicMock() n = NetworkD(run_command, []) n.clear_settings() assert run_command.call_args_list[0][0][ 0] == "find /etc/systemd/network/ -mindepth 1 -not \\( \\) -delete" def test_extra_excludes_are_appended(self): run_command = MagicMock() n = NetworkD(run_command, ["test1", "test2"]) n.clear_settings(exclude_ports=["extra1", "extra2"]) assert run_command.call_args_list[0][0][ 0] == "find /etc/systemd/network/ -mindepth 1 -not \\( -name 'test1.network' -or " \ "-name 'test1.netdev' -or -name 'test1.link' -or -name 'test1.swport' -or " \ "-name 'test2.network' -or -name 'test2.netdev' -or -name 'test2.link' -or " \ "-name 'test2.swport' -or -name 'extra1.network' -or -name 'extra1.netdev' -or " \ "-name 'extra1.link' -or -name 'extra1.swport' -or -name 'extra2.network' -or " \ "-name 'extra2.netdev' -or -name 'extra2.link' -or -name 'extra2.swport' \\) -delete" def test_just_extra_excludes(self): run_command = MagicMock() n = NetworkD(run_command, []) n.clear_settings(exclude_ports=["extra1", "extra2"]) assert run_command.call_args_list[0][0][ 0] == "find /etc/systemd/network/ -mindepth 1 -not \\( -name 'extra1.network' -or " \ "-name 'extra1.netdev' -or -name 'extra1.link' -or -name 'extra1.swport' -or " \ "-name 'extra2.network' -or -name 'extra2.netdev' -or -name 'extra2.link' -or " \ "-name 'extra2.swport' \\) -delete"
[ "unittest.mock.MagicMock", "testlib.linux.networkd.NetworkD" ]
[((838, 849), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (847, 849), False, 'from unittest.mock import MagicMock\n'), ((862, 893), 'testlib.linux.networkd.NetworkD', 'NetworkD', (['run_command', "['test']"], {}), "(run_command, ['test'])\n", (870, 893), False, 'from testlib.linux.networkd import NetworkD\n'), ((1226, 1237), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (1235, 1237), False, 'from unittest.mock import MagicMock\n'), ((1250, 1291), 'testlib.linux.networkd.NetworkD', 'NetworkD', (['run_command', "['test1', 'test2']"], {}), "(run_command, ['test1', 'test2'])\n", (1258, 1291), False, 'from testlib.linux.networkd import NetworkD\n'), ((1765, 1776), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (1774, 1776), False, 'from unittest.mock import MagicMock\n'), ((1789, 1814), 'testlib.linux.networkd.NetworkD', 'NetworkD', (['run_command', '[]'], {}), '(run_command, [])\n', (1797, 1814), False, 'from testlib.linux.networkd import NetworkD\n'), ((2043, 2054), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (2052, 2054), False, 'from unittest.mock import MagicMock\n'), ((2067, 2108), 'testlib.linux.networkd.NetworkD', 'NetworkD', (['run_command', "['test1', 'test2']"], {}), "(run_command, ['test1', 'test2'])\n", (2075, 2108), False, 'from testlib.linux.networkd import NetworkD\n'), ((2877, 2888), 'unittest.mock.MagicMock', 'MagicMock', ([], {}), '()\n', (2886, 2888), False, 'from unittest.mock import MagicMock\n'), ((2901, 2926), 'testlib.linux.networkd.NetworkD', 'NetworkD', (['run_command', '[]'], {}), '(run_command, [])\n', (2909, 2926), False, 'from testlib.linux.networkd import NetworkD\n')]
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: batch_get_tool_detail.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from tool_sdk.model.tool import tool_pb2 as tool__sdk_dot_model_dot_tool_dot_tool__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='batch_get_tool_detail.proto', package='basic', syntax='proto3', serialized_options=None, serialized_pb=_b('\n\x1b\x62\x61tch_get_tool_detail.proto\x12\x05\x62\x61sic\x1a\x1etool_sdk/model/tool/tool.proto\",\n\x19\x42\x61tchGetToolDetailRequest\x12\x0f\n\x07toolIds\x18\x01 \x01(\t\"d\n\x1a\x42\x61tchGetToolDetailResponse\x12\x0c\n\x04\x63ode\x18\x01 \x01(\x05\x12\r\n\x05\x65rror\x18\x02 \x01(\t\x12\x0f\n\x07message\x18\x03 \x01(\t\x12\x18\n\x04\x64\x61ta\x18\x04 \x03(\x0b\x32\n.tool.Tool\"\x86\x01\n!BatchGetToolDetailResponseWrapper\x12\x0c\n\x04\x63ode\x18\x01 \x01(\x05\x12\x13\n\x0b\x63odeExplain\x18\x02 \x01(\t\x12\r\n\x05\x65rror\x18\x03 \x01(\t\x12/\n\x04\x64\x61ta\x18\x04 \x01(\x0b\x32!.basic.BatchGetToolDetailResponseb\x06proto3') , dependencies=[tool__sdk_dot_model_dot_tool_dot_tool__pb2.DESCRIPTOR,]) _BATCHGETTOOLDETAILREQUEST = _descriptor.Descriptor( name='BatchGetToolDetailRequest', full_name='basic.BatchGetToolDetailRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='toolIds', full_name='basic.BatchGetToolDetailRequest.toolIds', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=70, serialized_end=114, ) _BATCHGETTOOLDETAILRESPONSE = _descriptor.Descriptor( name='BatchGetToolDetailResponse', full_name='basic.BatchGetToolDetailResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='code', full_name='basic.BatchGetToolDetailResponse.code', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='error', full_name='basic.BatchGetToolDetailResponse.error', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='message', full_name='basic.BatchGetToolDetailResponse.message', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='basic.BatchGetToolDetailResponse.data', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=116, serialized_end=216, ) _BATCHGETTOOLDETAILRESPONSEWRAPPER = _descriptor.Descriptor( name='BatchGetToolDetailResponseWrapper', full_name='basic.BatchGetToolDetailResponseWrapper', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='code', full_name='basic.BatchGetToolDetailResponseWrapper.code', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='codeExplain', full_name='basic.BatchGetToolDetailResponseWrapper.codeExplain', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='error', full_name='basic.BatchGetToolDetailResponseWrapper.error', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='basic.BatchGetToolDetailResponseWrapper.data', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=219, serialized_end=353, ) _BATCHGETTOOLDETAILRESPONSE.fields_by_name['data'].message_type = tool__sdk_dot_model_dot_tool_dot_tool__pb2._TOOL _BATCHGETTOOLDETAILRESPONSEWRAPPER.fields_by_name['data'].message_type = _BATCHGETTOOLDETAILRESPONSE DESCRIPTOR.message_types_by_name['BatchGetToolDetailRequest'] = _BATCHGETTOOLDETAILREQUEST DESCRIPTOR.message_types_by_name['BatchGetToolDetailResponse'] = _BATCHGETTOOLDETAILRESPONSE DESCRIPTOR.message_types_by_name['BatchGetToolDetailResponseWrapper'] = _BATCHGETTOOLDETAILRESPONSEWRAPPER _sym_db.RegisterFileDescriptor(DESCRIPTOR) BatchGetToolDetailRequest = _reflection.GeneratedProtocolMessageType('BatchGetToolDetailRequest', (_message.Message,), { 'DESCRIPTOR' : _BATCHGETTOOLDETAILREQUEST, '__module__' : 'batch_get_tool_detail_pb2' # @@protoc_insertion_point(class_scope:basic.BatchGetToolDetailRequest) }) _sym_db.RegisterMessage(BatchGetToolDetailRequest) BatchGetToolDetailResponse = _reflection.GeneratedProtocolMessageType('BatchGetToolDetailResponse', (_message.Message,), { 'DESCRIPTOR' : _BATCHGETTOOLDETAILRESPONSE, '__module__' : 'batch_get_tool_detail_pb2' # @@protoc_insertion_point(class_scope:basic.BatchGetToolDetailResponse) }) _sym_db.RegisterMessage(BatchGetToolDetailResponse) BatchGetToolDetailResponseWrapper = _reflection.GeneratedProtocolMessageType('BatchGetToolDetailResponseWrapper', (_message.Message,), { 'DESCRIPTOR' : _BATCHGETTOOLDETAILRESPONSEWRAPPER, '__module__' : 'batch_get_tool_detail_pb2' # @@protoc_insertion_point(class_scope:basic.BatchGetToolDetailResponseWrapper) }) _sym_db.RegisterMessage(BatchGetToolDetailResponseWrapper) # @@protoc_insertion_point(module_scope)
[ "google.protobuf.symbol_database.Default", "google.protobuf.descriptor.FieldDescriptor", "google.protobuf.reflection.GeneratedProtocolMessageType" ]
[((475, 501), 'google.protobuf.symbol_database.Default', '_symbol_database.Default', ([], {}), '()\n', (499, 501), True, 'from google.protobuf import symbol_database as _symbol_database\n'), ((6824, 7010), 'google.protobuf.reflection.GeneratedProtocolMessageType', '_reflection.GeneratedProtocolMessageType', (['"""BatchGetToolDetailRequest"""', '(_message.Message,)', "{'DESCRIPTOR': _BATCHGETTOOLDETAILREQUEST, '__module__':\n 'batch_get_tool_detail_pb2'}"], {}), "('BatchGetToolDetailRequest', (\n _message.Message,), {'DESCRIPTOR': _BATCHGETTOOLDETAILREQUEST,\n '__module__': 'batch_get_tool_detail_pb2'})\n", (6864, 7010), True, 'from google.protobuf import reflection as _reflection\n'), ((7167, 7355), 'google.protobuf.reflection.GeneratedProtocolMessageType', '_reflection.GeneratedProtocolMessageType', (['"""BatchGetToolDetailResponse"""', '(_message.Message,)', "{'DESCRIPTOR': _BATCHGETTOOLDETAILRESPONSE, '__module__':\n 'batch_get_tool_detail_pb2'}"], {}), "('BatchGetToolDetailResponse', (\n _message.Message,), {'DESCRIPTOR': _BATCHGETTOOLDETAILRESPONSE,\n '__module__': 'batch_get_tool_detail_pb2'})\n", (7207, 7355), True, 'from google.protobuf import reflection as _reflection\n'), ((7521, 7722), 'google.protobuf.reflection.GeneratedProtocolMessageType', '_reflection.GeneratedProtocolMessageType', (['"""BatchGetToolDetailResponseWrapper"""', '(_message.Message,)', "{'DESCRIPTOR': _BATCHGETTOOLDETAILRESPONSEWRAPPER, '__module__':\n 'batch_get_tool_detail_pb2'}"], {}), "('BatchGetToolDetailResponseWrapper',\n (_message.Message,), {'DESCRIPTOR': _BATCHGETTOOLDETAILRESPONSEWRAPPER,\n '__module__': 'batch_get_tool_detail_pb2'})\n", (7561, 7722), True, 'from google.protobuf import reflection as _reflection\n'), ((2511, 2851), 'google.protobuf.descriptor.FieldDescriptor', '_descriptor.FieldDescriptor', ([], {'name': '"""code"""', 'full_name': '"""basic.BatchGetToolDetailResponse.code"""', 'index': '(0)', 'number': '(1)', 'type': '(5)', 'cpp_type': '(1)', 'label': '(1)', 'has_default_value': '(False)', 'default_value': '(0)', 'message_type': 'None', 'enum_type': 'None', 'containing_type': 'None', 'is_extension': '(False)', 'extension_scope': 'None', 'serialized_options': 'None', 'file': 'DESCRIPTOR'}), "(name='code', full_name=\n 'basic.BatchGetToolDetailResponse.code', index=0, number=1, type=5,\n cpp_type=1, label=1, has_default_value=False, default_value=0,\n message_type=None, enum_type=None, containing_type=None, is_extension=\n False, extension_scope=None, serialized_options=None, file=DESCRIPTOR)\n", (2538, 2851), True, 'from google.protobuf import descriptor as _descriptor\n'), ((3656, 3999), 'google.protobuf.descriptor.FieldDescriptor', '_descriptor.FieldDescriptor', ([], {'name': '"""data"""', 'full_name': '"""basic.BatchGetToolDetailResponse.data"""', 'index': '(3)', 'number': '(4)', 'type': '(11)', 'cpp_type': '(10)', 'label': '(3)', 'has_default_value': '(False)', 'default_value': '[]', 'message_type': 'None', 'enum_type': 'None', 'containing_type': 'None', 'is_extension': '(False)', 'extension_scope': 'None', 'serialized_options': 'None', 'file': 'DESCRIPTOR'}), "(name='data', full_name=\n 'basic.BatchGetToolDetailResponse.data', index=3, number=4, type=11,\n cpp_type=10, label=3, has_default_value=False, default_value=[],\n message_type=None, enum_type=None, containing_type=None, is_extension=\n False, extension_scope=None, serialized_options=None, file=DESCRIPTOR)\n", (3683, 3999), True, 'from google.protobuf import descriptor as _descriptor\n'), ((4477, 4825), 'google.protobuf.descriptor.FieldDescriptor', '_descriptor.FieldDescriptor', ([], {'name': '"""code"""', 'full_name': '"""basic.BatchGetToolDetailResponseWrapper.code"""', 'index': '(0)', 'number': '(1)', 'type': '(5)', 'cpp_type': '(1)', 'label': '(1)', 'has_default_value': '(False)', 'default_value': '(0)', 'message_type': 'None', 'enum_type': 'None', 'containing_type': 'None', 'is_extension': '(False)', 'extension_scope': 'None', 'serialized_options': 'None', 'file': 'DESCRIPTOR'}), "(name='code', full_name=\n 'basic.BatchGetToolDetailResponseWrapper.code', index=0, number=1, type\n =5, cpp_type=1, label=1, has_default_value=False, default_value=0,\n message_type=None, enum_type=None, containing_type=None, is_extension=\n False, extension_scope=None, serialized_options=None, file=DESCRIPTOR)\n", (4504, 4825), True, 'from google.protobuf import descriptor as _descriptor\n'), ((5651, 6004), 'google.protobuf.descriptor.FieldDescriptor', '_descriptor.FieldDescriptor', ([], {'name': '"""data"""', 'full_name': '"""basic.BatchGetToolDetailResponseWrapper.data"""', 'index': '(3)', 'number': '(4)', 'type': '(11)', 'cpp_type': '(10)', 'label': '(1)', 'has_default_value': '(False)', 'default_value': 'None', 'message_type': 'None', 'enum_type': 'None', 'containing_type': 'None', 'is_extension': '(False)', 'extension_scope': 'None', 'serialized_options': 'None', 'file': 'DESCRIPTOR'}), "(name='data', full_name=\n 'basic.BatchGetToolDetailResponseWrapper.data', index=3, number=4, type\n =11, cpp_type=10, label=1, has_default_value=False, default_value=None,\n message_type=None, enum_type=None, containing_type=None, is_extension=\n False, extension_scope=None, serialized_options=None, file=DESCRIPTOR)\n", (5678, 6004), True, 'from google.protobuf import descriptor as _descriptor\n')]
""" TODO """ import io import logging import re import string import sys import textwrap import time from datetime import timedelta from pathlib import Path from typing import List import sublib from deep_translator import GoogleTranslator # https://pypi.org/project/sublib/ # https://pypi.org/project/deep-translator sample_file = Path(__file__).parent.parent.parent.absolute() / Path('input/1_short.srt') sample_str = io.StringIO(textwrap.dedent('''\ 1 00:00:00,123 --> 00:00:03,456 Hi there 2 00:01:04,843 --> 00:01:05,428 This is an example of a subtitle file in SRT format ''')) def translate_array(texts: List[str], source_language='auto', target_language='hu'): """ It takes a list of texts and translates them from source language to target language :param texts: The list of texts to be translated :type texts: List[str] :param source_language: The language you want to translate from, defaults to auto (optional) :param target_language: The language to translate the text into, defaults to hu (optional) :return: A list of translated texts. """ for i, text in enumerate(texts): if not text or not isinstance(text, str) or not text.strip(): texts[i] = " zzz " if text.isdigit() or all(i in string.punctuation for i in text): texts[i] += " zzz " result = GoogleTranslator(source=source_language, target=target_language).translate_batch(texts) return result def split_up(text: str, pieces_count: int = 2) -> List[str]: """ Given a text and a number of pieces, split the text into pieces :param text: The text to split up :type text: str :param pieces_count: The number of pieces to split the text into, defaults to 2 :type pieces_count: int (optional) :return: A list of strings. """ pieces = [] if pieces_count < 1: logging.error("pieces error.") sys.exit(1) elif pieces_count == 1: return [text] def get_optimal_split(where: float, p_split_points: List[int]): """ Get the optimal split point from a list of split points :param where: the point where you want to split the data :type where: float :param p_split_points: The list of split points :type p_split_points: List[int] :return: The optimal split point and the list of split points with the optimal split point removed. """ distance_min = 9999.0 min_point = None for a_split_point in p_split_points: distance = abs(where - a_split_point) if distance < distance_min: distance_min = distance min_point = a_split_point if min_point: p_split_points.remove(min_point) return min_point, p_split_points len_of_a_piece = len(text) / pieces_count optimal_split_positions = [len_of_a_piece * x for x in range(1, pieces_count)] indices_object = re.finditer(pattern=r'\w+', string=text) possible_split_points = [index.start() for index in indices_object] if 0 in possible_split_points: possible_split_points.remove(0) if len(possible_split_points) + 1 < pieces_count: logging.info("[{}]".format(" | ".join(re.split(r'\W+', text).remove('')))) logging.error( f"There are {len(possible_split_points)} split points and we want " f"to split the text '{text}' in {pieces_count} pieces... Giving up.") sys.exit(42) def get_split_points(optimal_split_positions: List[float], p_possible_split_points: List[int] = possible_split_points): """ Given a list of optimal split positions, return a list of the corresponding split points :param optimal_split_positions: The list of optimal split positions :type optimal_split_positions: List[float] :param p_possible_split_points: List[int] = possible_split_points :type p_possible_split_points: List[int] :return: The list of optimal split points. """ split_points = [] for an_optimal_position in optimal_split_positions: a_split_point, p_possible_split_points = get_optimal_split(where=an_optimal_position, p_split_points=p_possible_split_points) split_points.append(a_split_point) return split_points start_ind = 0 for split_point in get_split_points(optimal_split_positions=optimal_split_positions, p_possible_split_points=possible_split_points): pieces.append(text[start_ind:split_point].strip()) start_ind = split_point pieces.append(text[start_ind:].strip()) logging.debug(f"Splitting up '{text}' in {pieces_count} pieces: {pieces}") return pieces def translate_subtitle_file(input_file=sample_file, target_language='hu'): """ It takes a subtitle file, splits it up into sentences, translates them, and then puts them back together :param input_file: The subtitle file to be translated :param target_language: The language you want the text to be translated to, defaults to hu (optional) :return: The lines of the translated file. """ translation_char_limit = 4000 # 4000 subtitle = sublib.SubRip(input_file, "utf-8") # s2 = copy.deepcopy(subtitle) general = subtitle.get_general_format() def is_end_of_sentence(text: str): return text.endswith('.') or text.endswith('?') or text.endswith('!') def starts_with_lowercase(text: str): first_char = text[0] return first_char.isalpha() and first_char.islower() translated_all = [] entries_to_be_translated = [] entry = {'index_start': 0, 'index_end': 0, 'text': ''} logging.info("# Phase 1: Prepare translation: Join entries to sentences.") for i, a_general in enumerate(general): start, end, text = a_general text = text.replace('|', ' ').replace(' ', '') if len(entry['text']) > 0: entry['text'] += ' ' entry['text'] += text if len(general) > i + 1: start_next = general[i + 1][0] else: start_next = end + timedelta(100) silence_to_next = start_next - end if is_end_of_sentence(text) or silence_to_next.seconds > 1: entry['index_end'] = i entries_to_be_translated.append(entry) entry = {'index_start': i + 1, 'index_end': i + 1, 'text': ''} logging.info("# Phase 2: Translate (5000 char limitation)") start = 0 last_i = len(entries_to_be_translated) translated_all = [] for i in range(last_i): an_entry = entries_to_be_translated[start:i + 1] chars_sum = sum([len(t['text']) for t in an_entry]) if chars_sum > translation_char_limit - 10 or i == last_i - 1: texts = [t['text'] for t in entries_to_be_translated[start:i + 1]] time_start = general[entries_to_be_translated[start]['index_end']][1] time_end = general[entries_to_be_translated[i]['index_end']][1] # strfdelta(time_start, "{hours}:{minutes}:{seconds}") logging.info("Translating {} - {}".format(str(time_start)[:-3], str(time_end)[:-3])) start = time.time() translated = translate_array(texts=texts, target_language=target_language) end = time.time() logging.info( "{} requests in {:.2f} seconds,{:.0f} ch/s, " "{:.2f} req/s".format(len(texts), end - start, float(chars_sum) / ( end - start), float(len(texts)) / ( end - start))) for res in zip(texts, translated): logging.debug(f" [{res[0]}] -> [{res[1]}]") translated_all.extend(translated) # print(translated) start = i + 1 logging.info("# Phase 3: Split up sentences (undo #1)") for i, entry in enumerate(entries_to_be_translated): text_long = translated_all[i] split_pieces = entry['index_end'] - entry['index_start'] + 1 texts = split_up(text=text_long, pieces_count=split_pieces) if len(texts) != split_pieces: logging.error("bahh") insert_start = entry['index_start'] insert_end = entry['index_end'] for i2 in range(insert_end - insert_start + 1): iii = insert_start + i2 - 1 if iii < len(general) - 1: general[iii][2] = texts[i2] else: logging.error("Index overrun.") sys.exit(1) logging.info("# Phase 4: Split up lines") for i, entry in enumerate(general): pieces = int(len(entry[2]) / 40) + 1 if pieces > 1: new_text = "\n".join(split_up(entry[2], pieces_count=pieces)) entry[2] = new_text logging.info("# Phase 5: Saving file") empty_subtitle = sublib.SubRip() empty_subtitle.set_from_general_format(general) lines = empty_subtitle.content output_name = str(input_file).replace('.srt', '.out.srt') logging.info(f" Writing output to {output_name}") with open(output_name, 'w', encoding='utf-8') as out: out.writelines(lines) return lines if __name__ == "__main__": logging.basicConfig(level=logging.INFO) # ss = split_up("Ööö, mit csináltál?", 3) # ss = split_up("Ööö, mit sdfg sfhg wert sxghsfhgdfhg dfhg g ghdfhg csináltál?", 15) # result = translate_array(texts=["hallo welt", "guten morgen", # 'Weltfrieden für Manuela'], target_language='hu') translate_subtitle_file(input_file=sample_file)
[ "textwrap.dedent", "logging.error", "logging.debug", "re.split", "logging.basicConfig", "re.finditer", "deep_translator.GoogleTranslator", "time.time", "logging.info", "pathlib.Path", "datetime.timedelta", "sublib.SubRip", "sys.exit" ]
[((384, 409), 'pathlib.Path', 'Path', (['"""input/1_short.srt"""'], {}), "('input/1_short.srt')\n", (388, 409), False, 'from pathlib import Path\n'), ((435, 626), 'textwrap.dedent', 'textwrap.dedent', (['""" 1\n 00:00:00,123 --> 00:00:03,456\n Hi there\n \n 2\n 00:01:04,843 --> 00:01:05,428\n This is an example of a\n subtitle file in SRT format\n"""'], {}), '(\n """ 1\n 00:00:00,123 --> 00:00:03,456\n Hi there\n \n 2\n 00:01:04,843 --> 00:01:05,428\n This is an example of a\n subtitle file in SRT format\n"""\n )\n', (450, 626), False, 'import textwrap\n'), ((2988, 3028), 're.finditer', 're.finditer', ([], {'pattern': '"""\\\\w+"""', 'string': 'text'}), "(pattern='\\\\w+', string=text)\n", (2999, 3028), False, 'import re\n'), ((4800, 4874), 'logging.debug', 'logging.debug', (['f"""Splitting up \'{text}\' in {pieces_count} pieces: {pieces}"""'], {}), '(f"Splitting up \'{text}\' in {pieces_count} pieces: {pieces}")\n', (4813, 4874), False, 'import logging\n'), ((5365, 5399), 'sublib.SubRip', 'sublib.SubRip', (['input_file', '"""utf-8"""'], {}), "(input_file, 'utf-8')\n", (5378, 5399), False, 'import sublib\n'), ((5854, 5928), 'logging.info', 'logging.info', (['"""# Phase 1: Prepare translation: Join entries to sentences."""'], {}), "('# Phase 1: Prepare translation: Join entries to sentences.')\n", (5866, 5928), False, 'import logging\n'), ((6579, 6638), 'logging.info', 'logging.info', (['"""# Phase 2: Translate (5000 char limitation)"""'], {}), "('# Phase 2: Translate (5000 char limitation)')\n", (6591, 6638), False, 'import logging\n'), ((8137, 8192), 'logging.info', 'logging.info', (['"""# Phase 3: Split up sentences (undo #1)"""'], {}), "('# Phase 3: Split up sentences (undo #1)')\n", (8149, 8192), False, 'import logging\n'), ((8841, 8882), 'logging.info', 'logging.info', (['"""# Phase 4: Split up lines"""'], {}), "('# Phase 4: Split up lines')\n", (8853, 8882), False, 'import logging\n'), ((9102, 9140), 'logging.info', 'logging.info', (['"""# Phase 5: Saving file"""'], {}), "('# Phase 5: Saving file')\n", (9114, 9140), False, 'import logging\n'), ((9162, 9177), 'sublib.SubRip', 'sublib.SubRip', ([], {}), '()\n', (9175, 9177), False, 'import sublib\n'), ((9331, 9382), 'logging.info', 'logging.info', (['f""" Writing output to {output_name}"""'], {}), "(f' Writing output to {output_name}')\n", (9343, 9382), False, 'import logging\n'), ((9522, 9561), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (9541, 9561), False, 'import logging\n'), ((1901, 1931), 'logging.error', 'logging.error', (['"""pieces error."""'], {}), "('pieces error.')\n", (1914, 1931), False, 'import logging\n'), ((1940, 1951), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1948, 1951), False, 'import sys\n'), ((3508, 3520), 'sys.exit', 'sys.exit', (['(42)'], {}), '(42)\n', (3516, 3520), False, 'import sys\n'), ((1383, 1447), 'deep_translator.GoogleTranslator', 'GoogleTranslator', ([], {'source': 'source_language', 'target': 'target_language'}), '(source=source_language, target=target_language)\n', (1399, 1447), False, 'from deep_translator import GoogleTranslator\n'), ((7361, 7372), 'time.time', 'time.time', ([], {}), '()\n', (7370, 7372), False, 'import time\n'), ((7478, 7489), 'time.time', 'time.time', ([], {}), '()\n', (7487, 7489), False, 'import time\n'), ((8476, 8497), 'logging.error', 'logging.error', (['"""bahh"""'], {}), "('bahh')\n", (8489, 8497), False, 'import logging\n'), ((8780, 8811), 'logging.error', 'logging.error', (['"""Index overrun."""'], {}), "('Index overrun.')\n", (8793, 8811), False, 'import logging\n'), ((8824, 8835), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (8832, 8835), False, 'import sys\n'), ((6286, 6300), 'datetime.timedelta', 'timedelta', (['(100)'], {}), '(100)\n', (6295, 6300), False, 'from datetime import timedelta\n'), ((7983, 8026), 'logging.debug', 'logging.debug', (['f""" [{res[0]}] -> [{res[1]}]"""'], {}), "(f' [{res[0]}] -> [{res[1]}]')\n", (7996, 8026), False, 'import logging\n'), ((335, 349), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (339, 349), False, 'from pathlib import Path\n'), ((3278, 3300), 're.split', 're.split', (['"""\\\\W+"""', 'text'], {}), "('\\\\W+', text)\n", (3286, 3300), False, 'import re\n')]
import os from src.ezcord import * APP = 874663148374880287 TEST = 877399405056102431 bot = Bot(prefix='-', app_id=APP, guild_id=TEST, intents=Intents.members) @bot.command(name='ping') async def ping(ctx: Context): emd = Embed(description=f'**Pong: {bot.latency}ms**') await ctx.reply(embed=emd) @bot.command(name='foo') async def _foo(ctx: Context): await ctx.send(f'{bot.user()}') @bot.event async def on_ready(): print(f'Logged in as {bot.user} (ID: {bot.user.id})') print(f'------') bot.run(os.getenv('DISCORD_TOKEN'))
[ "os.getenv" ]
[((527, 553), 'os.getenv', 'os.getenv', (['"""DISCORD_TOKEN"""'], {}), "('DISCORD_TOKEN')\n", (536, 553), False, 'import os\n')]
from kaiba.models.kaiba_object import KaibaObject def test_create_jsonschema_from_model(): """Test that we can create jsonschema.""" assert KaibaObject.schema_json(indent=2)
[ "kaiba.models.kaiba_object.KaibaObject.schema_json" ]
[((150, 183), 'kaiba.models.kaiba_object.KaibaObject.schema_json', 'KaibaObject.schema_json', ([], {'indent': '(2)'}), '(indent=2)\n', (173, 183), False, 'from kaiba.models.kaiba_object import KaibaObject\n')]
import csv import statistics from matplotlib import pyplot as plt from scipy.interpolate import interp1d import numpy as np with open('pknorlen_akcje.csv') as csvfile: readCSV = csv.reader(csvfile, delimiter=',') next(readCSV) counter = 0 kursy_lista = [] for row in readCSV: kursy_lista.append({"data": row[0], "kurs_max": float(row[5]), "kurs_min": float(row[6])}) counter += 1 if counter > 5000: break print(counter) print("Srednia: ", statistics.mean([k["kurs_max"] for k in kursy_lista])) print("Odch.Std:", statistics.stdev([k["kurs_max"] for k in kursy_lista])) print("Max: ", max([k["kurs_max"] for k in kursy_lista])) print("Min:", min([k["kurs_max"] for k in kursy_lista])) y_es = [k["kurs_max"] for k in kursy_lista] x_es = range(0,len(y_es)) f_linear = interp1d(x_es, y_es, kind='linear') # xnew = np.arange(1, len(y_es), 0.1) # plt.plot(x_es, y_es, 'o', x_es, f_linear(x_es), '-') plt.plot(x_es, f_linear(x_es), '-') plt.show()
[ "csv.reader", "matplotlib.pyplot.show", "statistics.stdev", "statistics.mean", "scipy.interpolate.interp1d" ]
[((824, 859), 'scipy.interpolate.interp1d', 'interp1d', (['x_es', 'y_es'], {'kind': '"""linear"""'}), "(x_es, y_es, kind='linear')\n", (832, 859), False, 'from scipy.interpolate import interp1d\n'), ((990, 1000), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (998, 1000), True, 'from matplotlib import pyplot as plt\n'), ((183, 217), 'csv.reader', 'csv.reader', (['csvfile'], {'delimiter': '""","""'}), "(csvfile, delimiter=',')\n", (193, 217), False, 'import csv\n'), ((497, 550), 'statistics.mean', 'statistics.mean', (["[k['kurs_max'] for k in kursy_lista]"], {}), "([k['kurs_max'] for k in kursy_lista])\n", (512, 550), False, 'import statistics\n'), ((571, 625), 'statistics.stdev', 'statistics.stdev', (["[k['kurs_max'] for k in kursy_lista]"], {}), "([k['kurs_max'] for k in kursy_lista])\n", (587, 625), False, 'import statistics\n')]
import os import csv from csv import reader def read_data(): data = [] with open ("data.csv", "r") as f: csv_reader = reader(f) header = next(csv_reader) if header != None: for rows in csv_reader: data.append(rows[0].replace(";",",")) print(data) with open ("data1.csv", "w") as f: for eachitem in data: f.write(eachitem + "\n") read_data()
[ "csv.reader" ]
[((135, 144), 'csv.reader', 'reader', (['f'], {}), '(f)\n', (141, 144), False, 'from csv import reader\n')]
from bs4 import BeautifulSoup as bs import re import mysql.connector class Products_Infos(): def __init__(self, products): self.products = products self.productInfos = [] def insertSpaces(self): for i in self.products: self.productInfos.append([]) def get_product_link(self): cont = 0 for link in self.products: product_link = link.find('a', class_='item-link item__js-link').get('href') self.productInfos[cont].append(product_link) cont += 1 def get_product_name(self): cont = 0 for name in self.products: product_name = name.find('span', class_='main-title').string self.productInfos[cont].append(product_name) cont += 1 def get_product_price(self): cont = 0 for price in self.products: try: product_price = price.find('span', class_='price__fraction').string except: try: product_price_label = price.find('div', class_=re.compile('pdp_options__text')) product_price = product_price_label.find('span').string except: print('HOUVE UM ERRO AO LER O PREÇO DO PRODUTO') cont += 1 else: self.productInfos[cont].append(product_price) cont += 1 print(product_price) else: self.productInfos[cont].append(product_price) cont += 1 def get_shipping_info(self): cont = 0 for ship in self.products: try: product_shipping_info = ship.find('span', class_='text-shipping').string except: self.productInfos[cont].append(0) cont += 1 else: self.productInfos[cont].append(1) cont += 1 def get_product_image(self): cont = 0 for image in self.products: try: product_image = image.find('img', src=re.compile('https://http2.mlstatic.com')).get('src') except: print('ERRO AO LER A IMAGEM') self.productInfos[cont].append("") cont += 1 else: self.productInfos[cont].append(product_image) cont += 1
[ "re.compile" ]
[((1082, 1113), 're.compile', 're.compile', (['"""pdp_options__text"""'], {}), "('pdp_options__text')\n", (1092, 1113), False, 'import re\n'), ((2126, 2166), 're.compile', 're.compile', (['"""https://http2.mlstatic.com"""'], {}), "('https://http2.mlstatic.com')\n", (2136, 2166), False, 'import re\n')]
import re from flask_wtf import FlaskForm from flask_wtf.file import FileField, FileAllowed, FileRequired from wtforms import StringField, TextAreaField, SubmitField from wtforms.validators import DataRequired, regexp class ArticleForm(FlaskForm): title = StringField('Название статьи', validators=[DataRequired()]) text = TextAreaField('Текст статьи', validators=[DataRequired()]) picture = FileField('Картинка', validators=[FileRequired(), FileAllowed(['jpg', 'png'], 'Допустимы только изображения форматов jpg и png')]) submit = SubmitField('Подтвердить')
[ "wtforms.SubmitField", "flask_wtf.file.FileAllowed", "wtforms.validators.DataRequired", "flask_wtf.file.FileRequired" ]
[((659, 685), 'wtforms.SubmitField', 'SubmitField', (['"""Подтвердить"""'], {}), "('Подтвердить')\n", (670, 685), False, 'from wtforms import StringField, TextAreaField, SubmitField\n'), ((320, 334), 'wtforms.validators.DataRequired', 'DataRequired', ([], {}), '()\n', (332, 334), False, 'from wtforms.validators import DataRequired, regexp\n'), ((387, 401), 'wtforms.validators.DataRequired', 'DataRequired', ([], {}), '()\n', (399, 401), False, 'from wtforms.validators import DataRequired, regexp\n'), ((449, 463), 'flask_wtf.file.FileRequired', 'FileRequired', ([], {}), '()\n', (461, 463), False, 'from flask_wtf.file import FileField, FileAllowed, FileRequired\n'), ((505, 583), 'flask_wtf.file.FileAllowed', 'FileAllowed', (["['jpg', 'png']", '"""Допустимы только изображения форматов jpg и png"""'], {}), "(['jpg', 'png'], 'Допустимы только изображения форматов jpg и png')\n", (516, 583), False, 'from flask_wtf.file import FileField, FileAllowed, FileRequired\n')]
"""Wrapper around ZMQStream """ import sys import time import zmq from zmq.eventloop import IOLoop from zmq.eventloop.zmqstream import ZMQStream import skytools from cc.message import CCMessage, zmsg_size from cc.util import stat_inc __all__ = ['CCStream', 'CCReqStream'] # # simple wrapper around ZMQStream # class CCStream (ZMQStream): """ Adds CCMessage methods to ZMQStream as well as protection (on by default) against unlimited memory (send queue) growth. """ def __init__ (self, *args, **kwargs): self.qmaxsize = kwargs.pop ('qmaxsize', None) if self.qmaxsize is None: self.qmaxsize = 1000 elif self.qmaxsize <= 0: self.qmaxsize = sys.maxsize super(CCStream, self).__init__(*args, **kwargs) def send_multipart (self, msg, *args, **kwargs): if self._send_queue.qsize() < self.qmaxsize: super(CCStream, self).send_multipart (msg, *args, **kwargs) else: stat_inc ('count.dropped', 1) stat_inc ('bytes.dropped', zmsg_size (msg)) def send_cmsg(self, cmsg): """Send CCMessage to socket""" self.send_multipart(cmsg.zmsg) def on_recv_cmsg(self, cbfunc): """Set callback that receives CCMessage.""" def convert_cmsg(zmsg): cmsg = CCMessage(zmsg) cbfunc(cmsg) self.on_recv(convert_cmsg) # # request multiplexer on single stream # class QueryInfo: """Store callback details for query.""" log = skytools.getLogger('QueryInfo') def __init__(self, qid, cmsg, cbfunc, rqs): self.qid = qid self.orig_cmsg = cmsg self.cbfunc = cbfunc self.timeout_ref = None self.ioloop = rqs.ioloop self.remove_query = rqs.remove_query def on_timeout(self): """Called by ioloop on timeout, needs to handle exceptions""" try: self.timeout_ref = None self.launch_cb(None) except: self.log.exception('timeout callback crashed') def launch_cb(self, arg): """Run callback, re-wire timeout and query if needed.""" keep, timeout = self.cbfunc(arg) self.log.trace('keep=%r', keep) if keep: self.set_timeout(timeout) else: self.remove_query(self.qid) def set_timeout(self, timeout): """Set new timeout for task, None means drop it""" if self.timeout_ref: self.ioloop.remove_timeout(self.timeout_ref) self.timeout_ref = None if timeout: deadline = time.time() + timeout self.timeout_ref = self.ioloop.add_timeout(deadline, self.on_timeout) def send_to(self, cc): self.orig_cmsg.send_to(cc) class CCReqStream: """Request-based API for CC socket. Add request-id into route, later map replies to original request based on that. """ log = skytools.getLogger('CCReqStream') zmq_hwm = 100 zmq_linger = 500 def __init__(self, cc_url, xtx, ioloop=None, zctx=None): """Initialize stream.""" zctx = zctx or zmq.Context.instance() ioloop = ioloop or IOLoop.instance() s = zctx.socket (zmq.XREQ) s.setsockopt (zmq.HWM, self.zmq_hwm) s.setsockopt (zmq.LINGER, self.zmq_linger) s.connect (cc_url) self.ccs = CCStream(s, ioloop, qmaxsize = self.zmq_hwm) self.ioloop = ioloop self.xtx = xtx self.query_id_seq = 1 self.query_cache = {} self.ccs.on_recv(self.handle_recv) def remove_query(self, qid): """Drop query state. Further replies are ignored.""" qi = self.query_cache.get(qid) if qi: del self.query_cache[qid] qi.set_timeout(None) def ccquery_sync(self, msg, timeout=0): """Synchronous query. Returns first reply. """ res = [None] def sync_cb(_rep): res[0] = _rep self.ioloop.stop() return (False, 0) self.ccquery_async(msg, sync_cb, timeout) self.ioloop.start() return res[0] def ccquery_async(self, msg, cbfunc, timeout=0): """Asynchronous query. Maps replies to callback function based on request id. """ # create query id prefix qid = "Q%06d" % self.query_id_seq self.query_id_seq += 1 # create message, add query id cmsg = self.xtx.create_cmsg(msg) cmsg.set_route([qid]) qi = QueryInfo(qid, cmsg, cbfunc, self) self.query_cache[qid] = qi qi.set_timeout(timeout) qi.send_to(self.ccs) return qid def ccpublish(self, msg): """Broadcast API.""" cmsg = self.xtx.create_cmsg(msg) cmsg.send_to(self.ccs) def handle_recv(self, zmsg): """Internal callback on ZMQStream. It must not throw exceptions. """ try: self.handle_recv_real(zmsg) except Exception: self.log.exception('handle_recv_real crashed, dropping msg: %r', zmsg) def handle_recv_real(self, zmsg): """Actual callback that can throw exceptions.""" cmsg = CCMessage(zmsg) route = cmsg.get_route() if len(route) != 1: self.log.error('Invalid reply route: %r', route) return qid = route[0] if qid not in self.query_cache: self.log.error('reply for unknown query: %r', qid) return msg = cmsg.get_payload(self.xtx) qi = self.query_cache[qid] qi.launch_cb(msg) def resend(self, qid, timeout=0): if qid in self.query_cache: qi = self.query_cache[qid] qi.send_to(self.ccs) qi.set_timeout(timeout) else: pass # ?
[ "time.time", "skytools.getLogger", "zmq.Context.instance", "cc.util.stat_inc", "cc.message.CCMessage", "zmq.eventloop.IOLoop.instance", "cc.message.zmsg_size" ]
[((1516, 1547), 'skytools.getLogger', 'skytools.getLogger', (['"""QueryInfo"""'], {}), "('QueryInfo')\n", (1534, 1547), False, 'import skytools\n'), ((2925, 2958), 'skytools.getLogger', 'skytools.getLogger', (['"""CCReqStream"""'], {}), "('CCReqStream')\n", (2943, 2958), False, 'import skytools\n'), ((5219, 5234), 'cc.message.CCMessage', 'CCMessage', (['zmsg'], {}), '(zmsg)\n', (5228, 5234), False, 'from cc.message import CCMessage, zmsg_size\n'), ((987, 1015), 'cc.util.stat_inc', 'stat_inc', (['"""count.dropped"""', '(1)'], {}), "('count.dropped', 1)\n", (995, 1015), False, 'from cc.util import stat_inc\n'), ((1323, 1338), 'cc.message.CCMessage', 'CCMessage', (['zmsg'], {}), '(zmsg)\n', (1332, 1338), False, 'from cc.message import CCMessage, zmsg_size\n'), ((3118, 3140), 'zmq.Context.instance', 'zmq.Context.instance', ([], {}), '()\n', (3138, 3140), False, 'import zmq\n'), ((3168, 3185), 'zmq.eventloop.IOLoop.instance', 'IOLoop.instance', ([], {}), '()\n', (3183, 3185), False, 'from zmq.eventloop import IOLoop\n'), ((1056, 1070), 'cc.message.zmsg_size', 'zmsg_size', (['msg'], {}), '(msg)\n', (1065, 1070), False, 'from cc.message import CCMessage, zmsg_size\n'), ((2590, 2601), 'time.time', 'time.time', ([], {}), '()\n', (2599, 2601), False, 'import time\n')]