code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
from preprocessing.vectorizers import Doc2VecVectorizer from nnframework.data_builder import DataBuilder import pandas as pd import constants as const import numpy as np def generate_d2v_vectors(source_file): df = pd.read_csv(source_file) messages = df["Message"].values vectorizer = Doc2VecVectorizer() vectors = vectorizer.vectorize(messages) return np.c_[df.iloc[:,0].values, vectors] if __name__ == '__main__': # Generate vectors (with index) output = generate_d2v_vectors(const.FILE_UNIQUE_UNLABELLED) # Save vectors as npy file np.save(const.FILE_DOC2VEC_INPUTS_UNLABELLED, output)
[ "pandas.read_csv", "numpy.save", "preprocessing.vectorizers.Doc2VecVectorizer" ]
[((219, 243), 'pandas.read_csv', 'pd.read_csv', (['source_file'], {}), '(source_file)\n', (230, 243), True, 'import pandas as pd\n'), ((298, 317), 'preprocessing.vectorizers.Doc2VecVectorizer', 'Doc2VecVectorizer', ([], {}), '()\n', (315, 317), False, 'from preprocessing.vectorizers import Doc2VecVectorizer\n'), ((579, 632), 'numpy.save', 'np.save', (['const.FILE_DOC2VEC_INPUTS_UNLABELLED', 'output'], {}), '(const.FILE_DOC2VEC_INPUTS_UNLABELLED, output)\n', (586, 632), True, 'import numpy as np\n')]
"""Microphone module.""" import alsaaudio # pylint: disable=R0903, E1101 class Micro(): """Class to use micro in a `with` bloc.""" def __init__(self, alsaaudio_capture=alsaaudio.PCM_CAPTURE, alsaaudio_nonblock=alsaaudio.PCM_NONBLOCK): """Open the device in nonblocking capture mode. The last argument could just as well have been zero for blocking mode. Then we could have left out the sleep call in the bottom of the loop """ self.capture = alsaaudio_capture self.nonblock = alsaaudio_nonblock self.inp = None def __enter__(self): """Set the acquisition and return it.""" self.inp = alsaaudio.PCM(self.capture, self.nonblock) return self.inp def __exit__(self, capture, nonblock, inpt): """Close the acquisition.""" self.inp.close()
[ "alsaaudio.PCM" ]
[((690, 732), 'alsaaudio.PCM', 'alsaaudio.PCM', (['self.capture', 'self.nonblock'], {}), '(self.capture, self.nonblock)\n', (703, 732), False, 'import alsaaudio\n')]
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.3 # kernelspec: # display_name: Python 3 # name: python3 # --- # + [markdown] id="M_qo7DmLJKLP" # #Class-Conditional Bernoulli Mixture Model for EMNIST # + [markdown] id="TU1pCzcIJHTm" # ## Setup # # + id="400WanLyGA2C" # !git clone --depth 1 https://github.com/probml/pyprobml /pyprobml &> /dev/null # %cd -q /pyprobml/scripts # + id="k1rLl6dHH7Wh" # !pip install -q superimport # !pip install -q distrax # + id="cLpBn5KQeB46" from conditional_bernoulli_mix_lib import ClassConditionalBMM from conditional_bernoulli_mix_utils import fake_test_data, encode, decode, get_decoded_samples, get_emnist_images_per_class from noisy_spelling_hmm import Word from jax import vmap import jax.numpy as jnp import jax from jax.random import PRNGKey, split import numpy as np from matplotlib import pyplot as plt # + colab={"base_uri": "https://localhost:8080/"} id="ey9k06RweuKc" outputId="38131e5a-82fb-49db-c4d3-f4364a643152" select_n = 25 dataset, targets = get_emnist_images_per_class(select_n) dataset, targets = jnp.array(dataset), jnp.array(targets) # + [markdown] id="KwNq7HYYLPO9" # ## Initialization of Class Conditional BMMs # + colab={"base_uri": "https://localhost:8080/"} id="UABtUDPjffFt" outputId="d873a708-542c-44e6-8c72-2c5908c7bbad" n_mix = 30 n_char = 52 mixing_coeffs = jnp.array(np.full((n_char, n_mix), 1./n_mix)) p_min, p_max = 0.4, 0.6 n_pixels = 28 * 28 probs = jnp.array(np.random.uniform(p_min, p_max, (n_char, n_mix, n_pixels))) class_priors = jnp.array(np.full((n_char,), 1./n_char)) cbm_gd = ClassConditionalBMM(mixing_coeffs=mixing_coeffs, probs=probs, class_priors=class_priors, n_char=n_char) cbm_em = ClassConditionalBMM(mixing_coeffs=mixing_coeffs, probs=probs, class_priors=class_priors, n_char=n_char) # + [markdown] id="Qa95Fua5Kc3i" # ## Full Batch Gradient Descentt # + colab={"base_uri": "https://localhost:8080/", "height": 336} id="PDzuEjs9Kewi" outputId="c81916c0-c6b7-45bd-d308-eab878afe281" num_epochs, batch_size = 100, len(dataset) losses = cbm_gd.fit_sgd(dataset.reshape((-1, n_pixels)), targets, batch_size, num_epochs = num_epochs) plt.plot(losses, color="k", linewidth=3) plt.xlabel("Iteration") plt.ylabel("Negative Log Likelihood") plt.show() # + [markdown] id="37mNMNrpInfh" # ## EM Algorithm # + colab={"base_uri": "https://localhost:8080/", "height": 336} id="FJeBzIKYfsUk" outputId="9d8db485-a251-4b1a-a6e5-93833c83dce6" losses = cbm_em.fit_em(dataset, targets, 8) plt.plot(losses, color="k", linewidth=3) plt.xlabel("Iteration") plt.ylabel("Negative Log Likelihood") plt.show() # + [markdown] id="NjCQpoH1Iuuf" # ## Plot of the Probabilities of Components Distribution # + id="KkyAHDW4JgyM" def plot_components_dist(cbm, n_mix): fig = plt.figure(figsize=(45, 20)) for k in range(n_mix): for cls in range(cbm.num_of_classes): plt.subplot(n_mix ,cbm.num_of_classes, cbm.num_of_classes*k + cls +1) plt.imshow(1 - cbm.model.components_distribution.distribution.probs[cls][k,:].reshape((28,28)), cmap = "gray") plt.axis('off') plt.tight_layout() plt.show() # + [markdown] id="J8KLkCWpNAeF" # ### GD # + colab={"base_uri": "https://localhost:8080/", "height": 666} id="DSOiuNeAM8gl" outputId="dce9416a-b646-423d-b4bf-c78728db1cab" plot_components_dist(cbm_gd, n_mix) # + [markdown] id="FO31plUVNDSO" # ### EM # + id="ZM43qs6FfvlP" colab={"base_uri": "https://localhost:8080/", "height": 666} outputId="81a095f1-1099-4809-90a8-272dbed11662" plot_components_dist(cbm_em, n_mix) # + [markdown] id="IqRdcklzOeAY" # ## Sampling # + id="wgI6sFWKN4ax" p1, p2, p3 = 0.4, 0.1, 2e-3 n_misspelled = 1 # number of misspelled words created for each class vocab = ['book', 'bird', 'bond', 'bone', 'bank', 'byte', 'pond', 'mind', 'song', 'band'] rng_key = PRNGKey(0) keys = [dev_array for dev_array in split(rng_key, len(vocab))] # + id="x3GpZ8jbf11N" colab={"base_uri": "https://localhost:8080/"} outputId="5a348b69-bdf4-4f80-f059-1062ba2fbb88" hmms = {word: Word(word, p1, p2, p3, n_char, "all", mixing_coeffs=cbm_em.model.mixture_distribution.probs, initial_probs=cbm_em.model.components_distribution.distribution.probs, n_mix=n_mix) for word in vocab} samples = jax.tree_multimap(lambda word, key: hmms[word].n_sample(n_misspelled, key), vocab, keys) # + id="7VXVsobcg_KO" colab={"base_uri": "https://localhost:8080/"} outputId="3e915a79-7f5c-4131-d6ee-97f11c83d86f" decoded_words = vmap(decode, in_axes = (0, None, None))(jnp.array(samples)[:, :, :, -1].reshape((n_misspelled * len(vocab), -1)), n_char + 1, "all") get_decoded_samples(decoded_words) # + [markdown] id="xrRy8MG0afR8" # ### Figure # + id="O0-HaN5rQAvP" def plot_samples(samples): samples = np.array(samples)[:, :, :, :-1].reshape((-1, 28, 28)) fig, axes = plt.subplots(ncols=4, nrows=10, figsize=(4, 10)) fig.subplots_adjust(hspace = .2, wspace=.001) for i, ax in enumerate(axes.flatten()): ax.imshow(samples[i], cmap="gray") ax.set_axis_off() fig.tight_layout() plt.show() # + id="EbZn9vrfhei4" colab={"base_uri": "https://localhost:8080/", "height": 728} outputId="114217bf-cadb-4331-82ef-b4844c038342" plot_samples(samples) # + [markdown] id="eNDmwV7EPyrR" # ## Calculation of Log Likelihoods for Test Data # + id="525MUl5HPe1K" # noisy words test_words = ['bo--', '-On-', 'b-N-', 'B---', '-OnD', 'b--D', '---D', '--Nd', 'B-nD', '-O--', 'b--d', '--n-'] test_images = fake_test_data(test_words, dataset, targets, n_char + 1, "all") # + id="1dFCdVNgPYtJ" def plot_log_likelihood(hmms, test_words, test_images, vocab): fig, axes = plt.subplots(4, 3, figsize=(20, 10)) for i, (ax, img, word) in enumerate(zip(axes.flat, test_images, test_words)): flattened_img = img.reshape((len(img), -1)) loglikelihoods = jax.tree_map(lambda w: jnp.sum(hmms[w].loglikelihood(word, flattened_img)), vocab) loglikelihoods = jnp.array(loglikelihoods) ax.bar(vocab, jnp.exp(jax.nn.log_softmax(loglikelihoods)), color="black") ax.set_title(f'{word}') plt.tight_layout() plt.show() # + id="qv-Df8GEhfC4" colab={"base_uri": "https://localhost:8080/", "height": 784} outputId="9be6abf3-0ecc-4ef5-e301-380c5eac38ff" plot_log_likelihood(hmms, test_words, test_images, vocab)
[ "jax.nn.log_softmax", "conditional_bernoulli_mix_utils.fake_test_data", "jax.random.PRNGKey", "matplotlib.pyplot.figure", "matplotlib.pyplot.tight_layout", "numpy.full", "conditional_bernoulli_mix_utils.get_decoded_samples", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show", "jax.vmap", "matplotlib.pyplot.ylabel", "noisy_spelling_hmm.Word", "conditional_bernoulli_mix_utils.get_emnist_images_per_class", "jax.numpy.array", "numpy.random.uniform", "conditional_bernoulli_mix_lib.ClassConditionalBMM", "matplotlib.pyplot.subplot", "matplotlib.pyplot.plot", "matplotlib.pyplot.axis", "numpy.array", "matplotlib.pyplot.xlabel" ]
[((1137, 1174), 'conditional_bernoulli_mix_utils.get_emnist_images_per_class', 'get_emnist_images_per_class', (['select_n'], {}), '(select_n)\n', (1164, 1174), False, 'from conditional_bernoulli_mix_utils import fake_test_data, encode, decode, get_decoded_samples, get_emnist_images_per_class\n'), ((1705, 1813), 'conditional_bernoulli_mix_lib.ClassConditionalBMM', 'ClassConditionalBMM', ([], {'mixing_coeffs': 'mixing_coeffs', 'probs': 'probs', 'class_priors': 'class_priors', 'n_char': 'n_char'}), '(mixing_coeffs=mixing_coeffs, probs=probs, class_priors=\n class_priors, n_char=n_char)\n', (1724, 1813), False, 'from conditional_bernoulli_mix_lib import ClassConditionalBMM\n'), ((1818, 1926), 'conditional_bernoulli_mix_lib.ClassConditionalBMM', 'ClassConditionalBMM', ([], {'mixing_coeffs': 'mixing_coeffs', 'probs': 'probs', 'class_priors': 'class_priors', 'n_char': 'n_char'}), '(mixing_coeffs=mixing_coeffs, probs=probs, class_priors=\n class_priors, n_char=n_char)\n', (1837, 1926), False, 'from conditional_bernoulli_mix_lib import ClassConditionalBMM\n'), ((2270, 2310), 'matplotlib.pyplot.plot', 'plt.plot', (['losses'], {'color': '"""k"""', 'linewidth': '(3)'}), "(losses, color='k', linewidth=3)\n", (2278, 2310), True, 'from matplotlib import pyplot as plt\n'), ((2311, 2334), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Iteration"""'], {}), "('Iteration')\n", (2321, 2334), True, 'from matplotlib import pyplot as plt\n'), ((2335, 2372), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Negative Log Likelihood"""'], {}), "('Negative Log Likelihood')\n", (2345, 2372), True, 'from matplotlib import pyplot as plt\n'), ((2373, 2383), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2381, 2383), True, 'from matplotlib import pyplot as plt\n'), ((2613, 2653), 'matplotlib.pyplot.plot', 'plt.plot', (['losses'], {'color': '"""k"""', 'linewidth': '(3)'}), "(losses, color='k', linewidth=3)\n", (2621, 2653), True, 'from matplotlib import pyplot as plt\n'), ((2654, 2677), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Iteration"""'], {}), "('Iteration')\n", (2664, 2677), True, 'from matplotlib import pyplot as plt\n'), ((2678, 2715), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Negative Log Likelihood"""'], {}), "('Negative Log Likelihood')\n", (2688, 2715), True, 'from matplotlib import pyplot as plt\n'), ((2716, 2726), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2724, 2726), True, 'from matplotlib import pyplot as plt\n'), ((3944, 3954), 'jax.random.PRNGKey', 'PRNGKey', (['(0)'], {}), '(0)\n', (3951, 3954), False, 'from jax.random import PRNGKey, split\n'), ((4733, 4767), 'conditional_bernoulli_mix_utils.get_decoded_samples', 'get_decoded_samples', (['decoded_words'], {}), '(decoded_words)\n', (4752, 4767), False, 'from conditional_bernoulli_mix_utils import fake_test_data, encode, decode, get_decoded_samples, get_emnist_images_per_class\n'), ((5598, 5661), 'conditional_bernoulli_mix_utils.fake_test_data', 'fake_test_data', (['test_words', 'dataset', 'targets', '(n_char + 1)', '"""all"""'], {}), "(test_words, dataset, targets, n_char + 1, 'all')\n", (5612, 5661), False, 'from conditional_bernoulli_mix_utils import fake_test_data, encode, decode, get_decoded_samples, get_emnist_images_per_class\n'), ((1194, 1212), 'jax.numpy.array', 'jnp.array', (['dataset'], {}), '(dataset)\n', (1203, 1212), True, 'import jax.numpy as jnp\n'), ((1214, 1232), 'jax.numpy.array', 'jnp.array', (['targets'], {}), '(targets)\n', (1223, 1232), True, 'import jax.numpy as jnp\n'), ((1480, 1517), 'numpy.full', 'np.full', (['(n_char, n_mix)', '(1.0 / n_mix)'], {}), '((n_char, n_mix), 1.0 / n_mix)\n', (1487, 1517), True, 'import numpy as np\n'), ((1578, 1636), 'numpy.random.uniform', 'np.random.uniform', (['p_min', 'p_max', '(n_char, n_mix, n_pixels)'], {}), '(p_min, p_max, (n_char, n_mix, n_pixels))\n', (1595, 1636), True, 'import numpy as np\n'), ((1664, 1696), 'numpy.full', 'np.full', (['(n_char,)', '(1.0 / n_char)'], {}), '((n_char,), 1.0 / n_char)\n', (1671, 1696), True, 'import numpy as np\n'), ((2889, 2917), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(45, 20)'}), '(figsize=(45, 20))\n', (2899, 2917), True, 'from matplotlib import pyplot as plt\n'), ((3218, 3236), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (3234, 3236), True, 'from matplotlib import pyplot as plt\n'), ((3239, 3249), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3247, 3249), True, 'from matplotlib import pyplot as plt\n'), ((4149, 4335), 'noisy_spelling_hmm.Word', 'Word', (['word', 'p1', 'p2', 'p3', 'n_char', '"""all"""'], {'mixing_coeffs': 'cbm_em.model.mixture_distribution.probs', 'initial_probs': 'cbm_em.model.components_distribution.distribution.probs', 'n_mix': 'n_mix'}), "(word, p1, p2, p3, n_char, 'all', mixing_coeffs=cbm_em.model.\n mixture_distribution.probs, initial_probs=cbm_em.model.\n components_distribution.distribution.probs, n_mix=n_mix)\n", (4153, 4335), False, 'from noisy_spelling_hmm import Word\n'), ((4600, 4637), 'jax.vmap', 'vmap', (['decode'], {'in_axes': '(0, None, None)'}), '(decode, in_axes=(0, None, None))\n', (4604, 4637), False, 'from jax import vmap\n'), ((4950, 4998), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'ncols': '(4)', 'nrows': '(10)', 'figsize': '(4, 10)'}), '(ncols=4, nrows=10, figsize=(4, 10))\n', (4962, 4998), True, 'from matplotlib import pyplot as plt\n'), ((5187, 5197), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5195, 5197), True, 'from matplotlib import pyplot as plt\n'), ((5765, 5801), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(4)', '(3)'], {'figsize': '(20, 10)'}), '(4, 3, figsize=(20, 10))\n', (5777, 5801), True, 'from matplotlib import pyplot as plt\n'), ((6223, 6241), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (6239, 6241), True, 'from matplotlib import pyplot as plt\n'), ((6246, 6256), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6254, 6256), True, 'from matplotlib import pyplot as plt\n'), ((6071, 6096), 'jax.numpy.array', 'jnp.array', (['loglikelihoods'], {}), '(loglikelihoods)\n', (6080, 6096), True, 'import jax.numpy as jnp\n'), ((2997, 3069), 'matplotlib.pyplot.subplot', 'plt.subplot', (['n_mix', 'cbm.num_of_classes', '(cbm.num_of_classes * k + cls + 1)'], {}), '(n_mix, cbm.num_of_classes, cbm.num_of_classes * k + cls + 1)\n', (3008, 3069), True, 'from matplotlib import pyplot as plt\n'), ((3199, 3214), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (3207, 3214), True, 'from matplotlib import pyplot as plt\n'), ((4640, 4658), 'jax.numpy.array', 'jnp.array', (['samples'], {}), '(samples)\n', (4649, 4658), True, 'import jax.numpy as jnp\n'), ((4880, 4897), 'numpy.array', 'np.array', (['samples'], {}), '(samples)\n', (4888, 4897), True, 'import numpy as np\n'), ((6134, 6168), 'jax.nn.log_softmax', 'jax.nn.log_softmax', (['loglikelihoods'], {}), '(loglikelihoods)\n', (6152, 6168), False, 'import jax\n')]
from __future__ import unicode_literals import unittest from ddf import DDFManager, DDF_HOME class BaseTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.dm_spark = DDFManager('spark') cls.airlines = cls.loadAirlines(cls.dm_spark) cls.mtcars = cls.loadMtCars(cls.dm_spark) @classmethod def tearDownClass(cls): cls.dm_spark.shutdown() @classmethod def loadAirlines(cls, dm): table_name = 'airlines_na_pyddf_unittest' if table_name not in [x.split('\t')[0] for x in dm.sql('show tables')]: dm.sql('set hive.metastore.warehouse.dir=/tmp', False) dm.sql('drop table if exists {}'.format(table_name), False) dm.sql("""create table {} (Year int,Month int,DayofMonth int, DayOfWeek int,DepTime int,CRSDepTime int,ArrTime int, CRSArrTime int,UniqueCarrier string, FlightNum int, TailNum string, ActualElapsedTime int, CRSElapsedTime int, AirTime int, ArrDelay int, DepDelay int, Origin string, Dest string, Distance int, TaxiIn int, TaxiOut int, Cancelled int, CancellationCode string, Diverted string, CarrierDelay int, WeatherDelay int, NASDelay int, SecurityDelay int, LateAircraftDelay int ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' """.format(table_name), False) dm.sql("load data local inpath '{}/resources/test/airlineWithNA.csv' " "into table {}".format(DDF_HOME, table_name), False) return dm.sql2ddf('select * from {}'.format(table_name), False) @classmethod def loadMtCars(cls, dm): table_name = 'mtcars_pyddf_unittest' if table_name not in [x.split('\t')[0] for x in dm.sql('show tables')]: dm.sql('set shark.test.data.path=resources', False) # session.sql('set hive.metastore.warehouse.dir=/tmp') dm.sql('drop table if exists {}'.format(table_name), False) dm.sql("CREATE TABLE {} (mpg double, cyl int, disp double, " "hp int, drat double, wt double, " "qesc double, vs int, am int, gear int, carb int)" " ROW FORMAT DELIMITED FIELDS TERMINATED BY ' '".format(table_name), False) dm.sql("LOAD DATA LOCAL INPATH '{}/resources/test/mtcars' " "INTO TABLE {}".format(DDF_HOME, table_name), False) return dm.sql2ddf('select * from {}'.format(table_name), False)
[ "ddf.DDFManager" ]
[((196, 215), 'ddf.DDFManager', 'DDFManager', (['"""spark"""'], {}), "('spark')\n", (206, 215), False, 'from ddf import DDFManager, DDF_HOME\n')]
import difflib import pathlib import argparse from .utils import fail_with_message, progress_with_message, success_with_message try: import PyPDF2 except ImportError: fail_with_message( 'Please install required dependencies before using this package.\n\t> pip3 install -r requirements.txt --user') def parse_file(path: str): if not pathlib.Path(path).exists(): raise argparse.ArgumentTypeError('invalid file path') return path def parse_ratio(x): try: x = float(x) except ValueError: raise argparse.ArgumentTypeError( "%r not a floating-point literal" % (x,)) if x < 0.0 or x > 1.0: raise argparse.ArgumentTypeError("%r not in range [0.0, 1.0]" % (x,)) return x def diff(content1: str, content2: str): return difflib.SequenceMatcher(None, content1, content2) def has_deleted_item(diff): for operation, *_ in diff.get_opcodes(): if operation == 'delete' or operation == 'replace': return True return False def get_title(content): return content.split('\n')[0] def get_content(content): return content.replace(get_title(content), '').strip() def has_content(content): return len(get_content(content)) != 0 def sanitize(pad_input: PyPDF2.PdfFileReader, pdf_output: PyPDF2.PdfFileWriter, title_ratio: float, content_ratio: float): prev_page = pad_input.getPage(0) nb_pages = pad_input.getNumPages() for i in range(1, nb_pages): progress_with_message('Sanitizing pdf ...', i / nb_pages) current_page = pad_input.getPage(i) current_content = current_page.extractText() prev_content = prev_page.extractText() diff_title = diff(get_title(prev_content), get_title(current_content)) diff_content = diff(get_content(prev_content), get_content(current_content)) title_has_changed = diff_title.ratio() < title_ratio content_has_changed = (diff_content.ratio() < content_ratio and (has_deleted_item(diff_content) or len(prev_content) > len(current_content))) if has_content(prev_content) and (title_has_changed or content_has_changed): pdf_output.addPage(prev_page) prev_page = current_page pdf_output.addPage(prev_page) parser = argparse.ArgumentParser( description="Quickly remove useless page from a huge pdf to get a readable pdf") parser.add_argument('input_file', type=parse_file, help='pdf file to be sanitized') parser.add_argument('output_file', type=str, help='output sanitized pdf file name') parser.add_argument('--title-ratio', type=parse_ratio, help='float between [0, 1] which is responsible of detecting similar pages from title. The higher the ratio, the more sensitive the sanitizer will be to any changes. (default: 0.5)', default=.5, dest='title_ratio') parser.add_argument('--content-ratio', type=parse_ratio, help='float between [0, 1] which is responsible of detecting similar pages from content. The higher the ratio, the more sensitive the sanitizer will be to any changes. (default: 0.8)', default=.8, dest='content_ratio') def main(): args = parser.parse_args() pdf_input = PyPDF2.PdfFileReader(args.input_file) pdf_output = PyPDF2.PdfFileWriter() sanitize(pdf_input, pdf_output, args.title_ratio, args.content_ratio) with open(args.output_file, 'wb') as f: pdf_output.write(f) success_with_message(f'Your file has been sanitized at {args.output_file}') if __name__ == '__main__': main()
[ "argparse.ArgumentParser", "difflib.SequenceMatcher", "PyPDF2.PdfFileReader", "pathlib.Path", "PyPDF2.PdfFileWriter", "argparse.ArgumentTypeError" ]
[((2334, 2443), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Quickly remove useless page from a huge pdf to get a readable pdf"""'}), "(description=\n 'Quickly remove useless page from a huge pdf to get a readable pdf')\n", (2357, 2443), False, 'import argparse\n'), ((805, 854), 'difflib.SequenceMatcher', 'difflib.SequenceMatcher', (['None', 'content1', 'content2'], {}), '(None, content1, content2)\n', (828, 854), False, 'import difflib\n'), ((3319, 3356), 'PyPDF2.PdfFileReader', 'PyPDF2.PdfFileReader', (['args.input_file'], {}), '(args.input_file)\n', (3339, 3356), False, 'import PyPDF2\n'), ((3374, 3396), 'PyPDF2.PdfFileWriter', 'PyPDF2.PdfFileWriter', ([], {}), '()\n', (3394, 3396), False, 'import PyPDF2\n'), ((399, 446), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (['"""invalid file path"""'], {}), "('invalid file path')\n", (425, 446), False, 'import argparse\n'), ((675, 738), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (["('%r not in range [0.0, 1.0]' % (x,))"], {}), "('%r not in range [0.0, 1.0]' % (x,))\n", (701, 738), False, 'import argparse\n'), ((552, 620), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (["('%r not a floating-point literal' % (x,))"], {}), "('%r not a floating-point literal' % (x,))\n", (578, 620), False, 'import argparse\n'), ((356, 374), 'pathlib.Path', 'pathlib.Path', (['path'], {}), '(path)\n', (368, 374), False, 'import pathlib\n')]
__author__ = 'palmer' # every method in smoothing should accept (im,**args) def median(im, **kwargs): from scipy import ndimage im = ndimage.filters.median_filter(im,**kwargs) return im def hot_spot_removal(xic, q=99.): import numpy as np xic_q = np.percentile(xic, q) xic[xic > xic_q] = xic_q return xic
[ "numpy.percentile", "scipy.ndimage.filters.median_filter" ]
[((141, 184), 'scipy.ndimage.filters.median_filter', 'ndimage.filters.median_filter', (['im'], {}), '(im, **kwargs)\n', (170, 184), False, 'from scipy import ndimage\n'), ((268, 289), 'numpy.percentile', 'np.percentile', (['xic', 'q'], {}), '(xic, q)\n', (281, 289), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from aldryn_apphooks_config.utils import get_app_instance def apphooks_config(request): namespace, config = get_app_instance(request) return { 'namespace': namespace, 'config': config, }
[ "aldryn_apphooks_config.utils.get_app_instance" ]
[((179, 204), 'aldryn_apphooks_config.utils.get_app_instance', 'get_app_instance', (['request'], {}), '(request)\n', (195, 204), False, 'from aldryn_apphooks_config.utils import get_app_instance\n')]
# coding: utf-8 # MultiPerceptron # queueを使った学習 # 学習step数を記録 # 学習データはCSVの代わりにジェネレータを搭載 # 3x11x4のNNモデルに変更 # scoreを追加 import os _FILE_DIR=os.path.abspath(os.path.dirname(__file__)) import time import tensorflow as tf import threading from sklearn.utils import shuffle import sys sys.path.append(_FILE_DIR+'/..') from generator import SensorGenerator import numpy as np tf.reset_default_graph() MODEL_DIR=_FILE_DIR+"/model" SUMMARY_LOG_DIR=_FILE_DIR+"/log" if not os.path.exists(MODEL_DIR): os.makedirs(MODEL_DIR) n_nodes_hl1 = 11 data_cols = 3 # センサーの数。left45,front,right45 n_classes = 4 # 予測結果の数。stop,left,forward,right batch_size = 100 # バッチサイズは10〜100前後に chunk_size = 100 # FIFOQueueのcapacity target_step = 10000000 # ステップ数 TEST_NUM = 10000 # テストデータ件数 generator = SensorGenerator() def generate_random_train_data(batch_size): CSVDATA=[] # 10m以内の判定を学習させる #sensors = np.random.randint(0,1000,[batch_size,3]) # 前方20cm以内の判定を学習させる #LEFT45 = np.random.randint(0,1000,batch_size) #FRONT = np.random.randint(0,20,batch_size) #RIGHT45 = np.random.randint(0,1000,batch_size) # 前方20cm-100cm、左右100cm以内のの判定を学習させる #LEFT45 = np.random.randint(0,100,batch_size) #FRONT = np.random.randint(20,200,batch_size) #RIGHT45 = np.random.randint(0,100,batch_size) # 2m以内の判定を学習させる #LEFT45 = np.random.randint(0,200,batch_size) #FRONT = np.random.randint(0,200,batch_size) #RIGHT45 = np.random.randint(0,200,batch_size) # 1m以内の判定を学習させる #LEFT45 = np.random.randint(0,100,batch_size) #FRONT = np.random.randint(0,100,batch_size) #RIGHT45 = np.random.randint(0,100,batch_size) # 2m以内の判定を学習させる sensors = np.random.randint(0,200,[batch_size,3]) #sensors = np.c_[LEFT45,FRONT,RIGHT45] for i in range(batch_size): GENERATOR_RESULT = generator.driving_instruction(sensors[i]) CSVROW = np.hstack((sensors[i],GENERATOR_RESULT[0:4])) CSVDATA.append(CSVROW) CSVDATA = np.array(CSVDATA) batch_data = CSVDATA[0:batch_size,0:data_cols] batch_target = CSVDATA[0:batch_size,data_cols:] return batch_data, batch_target def load_and_enqueue(sess): while True: try: batch_data, batch_target = generate_random_train_data(batch_size) sess.run(enqueue_op, feed_dict={placeholder_input_data:batch_data, placeholder_input_target:batch_target}) except tf.errors.CancelledError as e: break print("finished enqueueing") def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) with tf.variable_scope("input"): placeholder_input_data = tf.placeholder('float', [None, data_cols], name='input_data') # for load_and_enqueue. use dequeue_data_op for prediction placeholder_input_target = tf.placeholder('float', name='input_target') # for load_and_enqueue. use dequeue_target_op for prediction placeholder_batch_size = tf.placeholder(tf.int32, name='batch_size') # need feed_dict in training sess.run(). don't need for prediction. with tf.variable_scope("step"): placeholder_step = tf.placeholder(tf.int32, name='input_step') # step値入力用 variable_step = tf.Variable(initial_value=0, name="step") # step記録用 step_op = variable_step.assign(placeholder_step) with tf.variable_scope("queue"): queue = tf.FIFOQueue( capacity=chunk_size, # enqueue size dtypes=['float', 'float'], shapes=[[data_cols], [n_classes]], name='FIFOQueue' ) # Enqueue and dequeue operations enqueue_op = queue.enqueue_many([placeholder_input_data, placeholder_input_target], name='enqueue_op') dequeue_data_op, dequeue_target_op = queue.dequeue_many(placeholder_batch_size, name='dequeue_op') # instead of data/target placeholder with tf.variable_scope('neural_network_model'): hidden_1_layer = {'weights':tf.Variable(weight_variable([data_cols, n_nodes_hl1])), 'biases':tf.Variable(bias_variable([n_nodes_hl1]))} output_layer = {'weights':tf.Variable(weight_variable([n_nodes_hl1, n_classes])), 'biases':tf.Variable(bias_variable([n_classes])),} l1 = tf.add(tf.matmul(dequeue_data_op,hidden_1_layer['weights']), hidden_1_layer['biases']) l1 = tf.nn.relu(l1) # 予測結果 prediction = tf.add(tf.matmul(l1,output_layer['weights']), output_layer['biases'], name='output_y') # スコア score = tf.nn.softmax(prediction, name='score') with tf.variable_scope('loss'): losses = tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=dequeue_target_op) loss_op = tf.reduce_mean(losses, name='cost') tf.summary.scalar('loss', loss_op) with tf.variable_scope('accuracy'): correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(dequeue_target_op, 1)) accuracy = tf.reduce_mean(tf.cast(correct, 'float'), name='accuracy') tf.summary.scalar('accuracy', accuracy) summary_op = tf.summary.merge_all() train_op = tf.train.AdamOptimizer(0.0001).minimize(loss_op, name='train_op') saver = tf.train.Saver(max_to_keep=1000) test_data, test_target =generate_random_train_data(TEST_NUM) with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(MODEL_DIR) if ckpt: # checkpointファイルから最後に保存したモデルへのパスを取得する last_model = ckpt.model_checkpoint_path print("load {0}".format(last_model)) # 学習済みモデルを読み込む saver.restore(sess, last_model) LOAD_MODEL = True else: print("initialization") # 初期化処理 init_op = tf.global_variables_initializer() sess.run(init_op) writer = tf.summary.FileWriter(SUMMARY_LOG_DIR, sess.graph) start_time, start_clock = time.time(), time.clock() # Start a thread to enqueue data asynchronously, and hide I/O latency. coord = tf.train.Coordinator() enqueue_thread = threading.Thread(target=load_and_enqueue, args=[sess]) enqueue_thread.isDaemon() enqueue_thread.start() threads = tf.train.start_queue_runners(coord=coord, sess=sess) step = 0 # 最後にstep数をモデルに記録するために変数を用意しておく try: # check the accuracy before training (without feed_dict!) print(sess.run(accuracy, feed_dict={placeholder_batch_size:chunk_size})) # check batch_size's data # step取得 _step = sess.run(variable_step) print("learned step:{}".format(_step)) for step in range(_step+1, target_step+1): batch_loss=0 w_summary=None _, batch_loss, w_summary = sess.run([train_op, loss_op, summary_op], feed_dict={placeholder_batch_size:batch_size}) if step % 1000 == 0: if not w_summary is None: writer.add_summary(w_summary, step) ac = sess.run(accuracy, feed_dict={placeholder_batch_size:chunk_size}) # check batch_size's data # テストデータでの精度を確認する test_accuracy = accuracy.eval({'queue/dequeue_op:0':test_data, 'queue/dequeue_op:1':test_target}) if step % 10000 == 0: print("Step:%d accuracy:%.8f test_accuracy:%.8f loss:%.8f time:%.8f clock:%.14f" % (step,ac,test_accuracy,batch_loss,time.time()-start_time,time.clock()-start_clock)) # 1000000 step毎にsaveする if step % 1000000 == 0: _step = sess.run(step_op,feed_dict={placeholder_step:step}) # variable_stepにstepを記録する saver.save(sess, MODEL_DIR + '/model-'+str(step)+'.ckpt') sess.run(queue.close(cancel_pending_enqueues=True)) except Exception as e: # Report exceptions to the coodinator. print(e) coord.request_stop(e) finally: coord.request_stop() coord.join(threads) # ステップ学習時、保存する if step > _step: _step = sess.run(step_op,feed_dict={placeholder_step:step}) # variable_stepにstepを記録する saver.save(sess, MODEL_DIR + '/model-'+str(step)+'.ckpt') # テストデータを新たに生成し、精度を確認する test_data, test_target =generate_random_train_data(TEST_NUM) print('Accuracy:',accuracy.eval({dequeue_data_op:test_data, dequeue_target_op:test_target})) # 総step数を表示する print('step:{}'.format(sess.run(variable_step))) print("end")
[ "tensorflow.train.Coordinator", "tensorflow.reset_default_graph", "tensorflow.matmul", "numpy.random.randint", "tensorflow.Variable", "tensorflow.truncated_normal", "sys.path.append", "tensorflow.nn.softmax", "tensorflow.nn.relu", "tensorflow.nn.softmax_cross_entropy_with_logits", "os.path.dirname", "os.path.exists", "tensorflow.variable_scope", "time.clock", "tensorflow.train.start_queue_runners", "generator.SensorGenerator", "tensorflow.placeholder", "tensorflow.summary.FileWriter", "tensorflow.cast", "tensorflow.FIFOQueue", "tensorflow.summary.merge_all", "tensorflow.train.get_checkpoint_state", "threading.Thread", "tensorflow.train.Saver", "tensorflow.summary.scalar", "tensorflow.global_variables_initializer", "tensorflow.reduce_mean", "tensorflow.Session", "tensorflow.constant", "numpy.hstack", "os.makedirs", "tensorflow.argmax", "time.time", "numpy.array", "tensorflow.train.AdamOptimizer" ]
[((278, 312), 'sys.path.append', 'sys.path.append', (["(_FILE_DIR + '/..')"], {}), "(_FILE_DIR + '/..')\n", (293, 312), False, 'import sys\n'), ((369, 393), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (391, 393), True, 'import tensorflow as tf\n'), ((776, 793), 'generator.SensorGenerator', 'SensorGenerator', ([], {}), '()\n', (791, 793), False, 'from generator import SensorGenerator\n'), ((5030, 5052), 'tensorflow.summary.merge_all', 'tf.summary.merge_all', ([], {}), '()\n', (5050, 5052), True, 'import tensorflow as tf\n'), ((5140, 5172), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {'max_to_keep': '(1000)'}), '(max_to_keep=1000)\n', (5154, 5172), True, 'import tensorflow as tf\n'), ((153, 178), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (168, 178), False, 'import os\n'), ((464, 489), 'os.path.exists', 'os.path.exists', (['MODEL_DIR'], {}), '(MODEL_DIR)\n', (478, 489), False, 'import os\n'), ((495, 517), 'os.makedirs', 'os.makedirs', (['MODEL_DIR'], {}), '(MODEL_DIR)\n', (506, 517), False, 'import os\n'), ((1670, 1712), 'numpy.random.randint', 'np.random.randint', (['(0)', '(200)', '[batch_size, 3]'], {}), '(0, 200, [batch_size, 3])\n', (1687, 1712), True, 'import numpy as np\n'), ((1964, 1981), 'numpy.array', 'np.array', (['CSVDATA'], {}), '(CSVDATA)\n', (1972, 1981), True, 'import numpy as np\n'), ((2518, 2556), 'tensorflow.truncated_normal', 'tf.truncated_normal', (['shape'], {'stddev': '(0.1)'}), '(shape, stddev=0.1)\n', (2537, 2556), True, 'import tensorflow as tf\n'), ((2568, 2588), 'tensorflow.Variable', 'tf.Variable', (['initial'], {}), '(initial)\n', (2579, 2588), True, 'import tensorflow as tf\n'), ((2630, 2659), 'tensorflow.constant', 'tf.constant', (['(0.1)'], {'shape': 'shape'}), '(0.1, shape=shape)\n', (2641, 2659), True, 'import tensorflow as tf\n'), ((2671, 2691), 'tensorflow.Variable', 'tf.Variable', (['initial'], {}), '(initial)\n', (2682, 2691), True, 'import tensorflow as tf\n'), ((2698, 2724), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""input"""'], {}), "('input')\n", (2715, 2724), True, 'import tensorflow as tf\n'), ((2755, 2816), 'tensorflow.placeholder', 'tf.placeholder', (['"""float"""', '[None, data_cols]'], {'name': '"""input_data"""'}), "('float', [None, data_cols], name='input_data')\n", (2769, 2816), True, 'import tensorflow as tf\n'), ((2907, 2951), 'tensorflow.placeholder', 'tf.placeholder', (['"""float"""'], {'name': '"""input_target"""'}), "('float', name='input_target')\n", (2921, 2951), True, 'import tensorflow as tf\n'), ((3042, 3085), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'name': '"""batch_size"""'}), "(tf.int32, name='batch_size')\n", (3056, 3085), True, 'import tensorflow as tf\n'), ((3161, 3186), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""step"""'], {}), "('step')\n", (3178, 3186), True, 'import tensorflow as tf\n'), ((3211, 3254), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {'name': '"""input_step"""'}), "(tf.int32, name='input_step')\n", (3225, 3254), True, 'import tensorflow as tf\n'), ((3286, 3327), 'tensorflow.Variable', 'tf.Variable', ([], {'initial_value': '(0)', 'name': '"""step"""'}), "(initial_value=0, name='step')\n", (3297, 3327), True, 'import tensorflow as tf\n'), ((3397, 3423), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""queue"""'], {}), "('queue')\n", (3414, 3423), True, 'import tensorflow as tf\n'), ((3437, 3555), 'tensorflow.FIFOQueue', 'tf.FIFOQueue', ([], {'capacity': 'chunk_size', 'dtypes': "['float', 'float']", 'shapes': '[[data_cols], [n_classes]]', 'name': '"""FIFOQueue"""'}), "(capacity=chunk_size, dtypes=['float', 'float'], shapes=[[\n data_cols], [n_classes]], name='FIFOQueue')\n", (3449, 3555), True, 'import tensorflow as tf\n'), ((3896, 3937), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""neural_network_model"""'], {}), "('neural_network_model')\n", (3913, 3937), True, 'import tensorflow as tf\n'), ((4366, 4380), 'tensorflow.nn.relu', 'tf.nn.relu', (['l1'], {}), '(l1)\n', (4376, 4380), True, 'import tensorflow as tf\n'), ((4519, 4558), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['prediction'], {'name': '"""score"""'}), "(prediction, name='score')\n", (4532, 4558), True, 'import tensorflow as tf\n'), ((4565, 4590), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""loss"""'], {}), "('loss')\n", (4582, 4590), True, 'import tensorflow as tf\n'), ((4605, 4694), 'tensorflow.nn.softmax_cross_entropy_with_logits', 'tf.nn.softmax_cross_entropy_with_logits', ([], {'logits': 'prediction', 'labels': 'dequeue_target_op'}), '(logits=prediction, labels=\n dequeue_target_op)\n', (4644, 4694), True, 'import tensorflow as tf\n'), ((4704, 4739), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['losses'], {'name': '"""cost"""'}), "(losses, name='cost')\n", (4718, 4739), True, 'import tensorflow as tf\n'), ((4744, 4778), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""loss"""', 'loss_op'], {}), "('loss', loss_op)\n", (4761, 4778), True, 'import tensorflow as tf\n'), ((4785, 4814), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""accuracy"""'], {}), "('accuracy')\n", (4802, 4814), True, 'import tensorflow as tf\n'), ((4976, 5015), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""accuracy"""', 'accuracy'], {}), "('accuracy', accuracy)\n", (4993, 5015), True, 'import tensorflow as tf\n'), ((5239, 5251), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (5249, 5251), True, 'import tensorflow as tf\n'), ((5272, 5312), 'tensorflow.train.get_checkpoint_state', 'tf.train.get_checkpoint_state', (['MODEL_DIR'], {}), '(MODEL_DIR)\n', (5301, 5312), True, 'import tensorflow as tf\n'), ((5704, 5754), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (['SUMMARY_LOG_DIR', 'sess.graph'], {}), '(SUMMARY_LOG_DIR, sess.graph)\n', (5725, 5754), True, 'import tensorflow as tf\n'), ((5899, 5921), 'tensorflow.train.Coordinator', 'tf.train.Coordinator', ([], {}), '()\n', (5919, 5921), True, 'import tensorflow as tf\n'), ((5943, 5997), 'threading.Thread', 'threading.Thread', ([], {'target': 'load_and_enqueue', 'args': '[sess]'}), '(target=load_and_enqueue, args=[sess])\n', (5959, 5997), False, 'import threading\n'), ((6069, 6121), 'tensorflow.train.start_queue_runners', 'tf.train.start_queue_runners', ([], {'coord': 'coord', 'sess': 'sess'}), '(coord=coord, sess=sess)\n', (6097, 6121), True, 'import tensorflow as tf\n'), ((1873, 1919), 'numpy.hstack', 'np.hstack', (['(sensors[i], GENERATOR_RESULT[0:4])'], {}), '((sensors[i], GENERATOR_RESULT[0:4]))\n', (1882, 1919), True, 'import numpy as np\n'), ((4277, 4330), 'tensorflow.matmul', 'tf.matmul', (['dequeue_data_op', "hidden_1_layer['weights']"], {}), "(dequeue_data_op, hidden_1_layer['weights'])\n", (4286, 4330), True, 'import tensorflow as tf\n'), ((4417, 4455), 'tensorflow.matmul', 'tf.matmul', (['l1', "output_layer['weights']"], {}), "(l1, output_layer['weights'])\n", (4426, 4455), True, 'import tensorflow as tf\n'), ((4839, 4863), 'tensorflow.argmax', 'tf.argmax', (['prediction', '(1)'], {}), '(prediction, 1)\n', (4848, 4863), True, 'import tensorflow as tf\n'), ((4865, 4896), 'tensorflow.argmax', 'tf.argmax', (['dequeue_target_op', '(1)'], {}), '(dequeue_target_op, 1)\n', (4874, 4896), True, 'import tensorflow as tf\n'), ((4928, 4953), 'tensorflow.cast', 'tf.cast', (['correct', '"""float"""'], {}), "(correct, 'float')\n", (4935, 4953), True, 'import tensorflow as tf\n'), ((5065, 5095), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['(0.0001)'], {}), '(0.0001)\n', (5087, 5095), True, 'import tensorflow as tf\n'), ((5630, 5663), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (5661, 5663), True, 'import tensorflow as tf\n'), ((5785, 5796), 'time.time', 'time.time', ([], {}), '()\n', (5794, 5796), False, 'import time\n'), ((5798, 5810), 'time.clock', 'time.clock', ([], {}), '()\n', (5808, 5810), False, 'import time\n'), ((7344, 7355), 'time.time', 'time.time', ([], {}), '()\n', (7353, 7355), False, 'import time\n'), ((7367, 7379), 'time.clock', 'time.clock', ([], {}), '()\n', (7377, 7379), False, 'import time\n')]
# Generated by Django 2.2.9 on 2020-02-14 10:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('questions', '0050_data_migration'), ] operations = [ migrations.AlterField( model_name='catalog', name='sites', field=models.ManyToManyField(blank=True, help_text='The sites this catalog belongs to (in a multi site setup).', to='sites.Site', verbose_name='Sites'), ), ]
[ "django.db.models.ManyToManyField" ]
[((334, 489), 'django.db.models.ManyToManyField', 'models.ManyToManyField', ([], {'blank': '(True)', 'help_text': '"""The sites this catalog belongs to (in a multi site setup)."""', 'to': '"""sites.Site"""', 'verbose_name': '"""Sites"""'}), "(blank=True, help_text=\n 'The sites this catalog belongs to (in a multi site setup).', to=\n 'sites.Site', verbose_name='Sites')\n", (356, 489), False, 'from django.db import migrations, models\n')]
import pytest from copper_sdk import COPPER_API_TOKEN, COPPER_API_EMAIL from copper_sdk.copper import Copper @pytest.fixture(scope='session') def copper(): return Copper(COPPER_API_TOKEN, COPPER_API_EMAIL)
[ "copper_sdk.copper.Copper", "pytest.fixture" ]
[((111, 142), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (125, 142), False, 'import pytest\n'), ((168, 210), 'copper_sdk.copper.Copper', 'Copper', (['COPPER_API_TOKEN', 'COPPER_API_EMAIL'], {}), '(COPPER_API_TOKEN, COPPER_API_EMAIL)\n', (174, 210), False, 'from copper_sdk.copper import Copper\n')]
# Copyright 2021 PaddleFSL Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddlefsl.backbones import RCInitVector vector_initializer = RCInitVector(corpus='glove-wiki', embedding_dim=50) def get_idx_list_from_words_test(): idx_list = vector_initializer.get_idx_list_from_words('[PAD]') print(idx_list) idx_list = vector_initializer.get_idx_list_from_words(['i', 'love', 'you']) print(idx_list) def search_tokens_test(): vector = vector_initializer.search_tokens(['i', 'love', 'robin', '[PAD]']) print(vector) print(vector.shape) def rc_init_vector_test(): vector = vector_initializer( tokens=['yes', 'it', 'is', '*9*', '6$'], head_position=[0], tail_position=[2], max_len=6 ) print(len(vector_initializer)) print(vector) print(vector.shape) if __name__ == '__main__': get_idx_list_from_words_test() search_tokens_test() rc_init_vector_test()
[ "paddlefsl.backbones.RCInitVector" ]
[((649, 700), 'paddlefsl.backbones.RCInitVector', 'RCInitVector', ([], {'corpus': '"""glove-wiki"""', 'embedding_dim': '(50)'}), "(corpus='glove-wiki', embedding_dim=50)\n", (661, 700), False, 'from paddlefsl.backbones import RCInitVector\n')]
from var_plots import plot_forecast plot_forecast()
[ "var_plots.plot_forecast" ]
[((37, 52), 'var_plots.plot_forecast', 'plot_forecast', ([], {}), '()\n', (50, 52), False, 'from var_plots import plot_forecast\n')]
#!/usr/bin/python3 import argparse import sys def readHashFile(hashfile): f = open(hashfile) hashes = f.read().split('\n')[:-1] ntlm ={"cracked":{}, "safe":{}} f.close() for i in hashes: try: h = i.split(':') ntlm["safe"][h[3].upper()] = h[0].lower() except Exception as e: pass return hashes, ntlm def searchLeaked(leakfile, ntlm, verbose): leak = open(leakfile,"r") cpt = 0 print("[*] Checking leaked database against hashes (long) ...", file=sys.stderr) for line in leak: if line[:-1] in ntlm["safe"]: ntlm["cracked"][line[:-1]] = ntlm["safe"][line[:-1]] cpt += 1 del(ntlm["safe"][line[:-1]]) if verbose: print(line[:-1], ntlm["cracked"][line[:-1]]) print(f"{cpt} compromised", file=sys.stderr) leak.close() def export(ntlm, john_result_file='', output=''): john = '' if john_result_file: f = open(john_result_file) john = f.read().lower() f.close() if output: f = open(output, "a+") cpt = 0 for c in ntlm["cracked"]: line = f"{ntlm['cracked'][c]}:<LeakTheWeak>:LEAK:NOLM:{c}:::" if ntlm["cracked"][c] not in john: if output : f.write(line+'\n') else: print(line) cpt += 1 if john_result_file: print(f"New {cpt} compromised") if output: f.close() def main(): parser = argparse.ArgumentParser(description='List accounts compromised in public leaked NTLMs', add_help=True) parser.add_argument('-w', '--write', action="store", dest="path", default='', help='A path to store the results. Default is stdout') parser.add_argument('HASH_FILE', action="store", help="The result file of impacket-secretsdump") parser.add_argument('-j', '--john', action="store", dest="john_file", default='', help="If used, only the accounts not cracked by john are displayed") parser.add_argument('-v', '--verbose', action="store_true", dest="verbose", default=False, help="display the cracked accounts in real time") parser.add_argument('LEAK_FILE', action="store", help="The wordlist containing the NTLM leaked") args = parser.parse_args() hashes, ntlm = readHashFile(args.HASH_FILE) searchLeaked(args.LEAK_FILE, ntlm, args.verbose) export(ntlm, args.john_file, args.path) if __name__ == '__main__': main()
[ "argparse.ArgumentParser" ]
[((1512, 1619), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""List accounts compromised in public leaked NTLMs"""', 'add_help': '(True)'}), "(description=\n 'List accounts compromised in public leaked NTLMs', add_help=True)\n", (1535, 1619), False, 'import argparse\n')]
import os import bpy import sys # Names of folder and files args = sys.argv source_file = args[-2] convert_file = args[-1] save_type = convert_file.split(".")[-1] # Deleting all objects for scene in bpy.data.scenes: for obj in scene.objects: scene.objects.unlink(obj) for bpy_data_iter in ( bpy.data.objects, bpy.data.meshes, bpy.data.lamps, bpy.data.cameras, ): for id_data in bpy_data_iter: bpy_data_iter.remove(id_data) bpy.ops.object.select_by_type(type = "MESH") bpy.ops.object.delete(use_global=False) for item in bpy.data.meshes: for scene in bpy.data.scenes: for obj in scene.objects: scene.objects.unlink(obj) item.user_clear() bpy.data.meshes.remove(item) print("Scene cleared") # Open model and save try: try: print("Try to use plugin...") bpy.ops.import_scene.deusexmd(filepath=source_file) print("Success") except: try: print("Fail") print("Try to use outer script...") try: import import_DeusExMD except: print("Fail to import") exit(2) print("Successful module import; try to open model...") import_DeusExMD.import_DeusExMD(source_file, #filepath bpy.context, #context False, #randomize_colors True, #import_vertcolors False, #skip_blank False, #use_layers 1.0) #mesh_scale print("Success") except: print("Fail") exit(1) print("\nModel opened\n") if save_type == "obj": bpy.ops.export_scene.obj(filepath=convert_file) elif save_type == "fbx": bpy.ops.export_scene.fbx(filepath=convert_file) elif save_type == "3ds": bpy.ops.export_scene.autodesk_3ds(filepath=convert_file) elif save_type == "stl": bpy.ops.export_mesh.stl(filepath=convert_file, check_existing=False, ascii=False) else: print("Incorrect save format") print("\nConvertions done!") exit(0) # In case of error except Exception: print("\nSome errors here") exit(1)
[ "bpy.ops.import_scene.deusexmd", "bpy.data.meshes.remove", "import_DeusExMD.import_DeusExMD", "bpy.ops.object.delete", "bpy.ops.export_mesh.stl", "bpy.ops.export_scene.fbx", "bpy.ops.object.select_by_type", "bpy.ops.export_scene.obj", "bpy.ops.export_scene.autodesk_3ds" ]
[((513, 555), 'bpy.ops.object.select_by_type', 'bpy.ops.object.select_by_type', ([], {'type': '"""MESH"""'}), "(type='MESH')\n", (542, 555), False, 'import bpy\n'), ((559, 598), 'bpy.ops.object.delete', 'bpy.ops.object.delete', ([], {'use_global': '(False)'}), '(use_global=False)\n', (580, 598), False, 'import bpy\n'), ((770, 798), 'bpy.data.meshes.remove', 'bpy.data.meshes.remove', (['item'], {}), '(item)\n', (792, 798), False, 'import bpy\n'), ((912, 963), 'bpy.ops.import_scene.deusexmd', 'bpy.ops.import_scene.deusexmd', ([], {'filepath': 'source_file'}), '(filepath=source_file)\n', (941, 963), False, 'import bpy\n'), ((1913, 1960), 'bpy.ops.export_scene.obj', 'bpy.ops.export_scene.obj', ([], {'filepath': 'convert_file'}), '(filepath=convert_file)\n', (1937, 1960), False, 'import bpy\n'), ((2000, 2047), 'bpy.ops.export_scene.fbx', 'bpy.ops.export_scene.fbx', ([], {'filepath': 'convert_file'}), '(filepath=convert_file)\n', (2024, 2047), False, 'import bpy\n'), ((1320, 1414), 'import_DeusExMD.import_DeusExMD', 'import_DeusExMD.import_DeusExMD', (['source_file', 'bpy.context', '(False)', '(True)', '(False)', '(False)', '(1.0)'], {}), '(source_file, bpy.context, False, True, \n False, False, 1.0)\n', (1351, 1414), False, 'import import_DeusExMD\n'), ((2087, 2143), 'bpy.ops.export_scene.autodesk_3ds', 'bpy.ops.export_scene.autodesk_3ds', ([], {'filepath': 'convert_file'}), '(filepath=convert_file)\n', (2120, 2143), False, 'import bpy\n'), ((2183, 2269), 'bpy.ops.export_mesh.stl', 'bpy.ops.export_mesh.stl', ([], {'filepath': 'convert_file', 'check_existing': '(False)', 'ascii': '(False)'}), '(filepath=convert_file, check_existing=False, ascii=\n False)\n', (2206, 2269), False, 'import bpy\n')]
# # Copyright (c) 2022 salesforce.com, inc. # All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause # from abc import ABC import logging import os from os.path import abspath, dirname, join import sys import unittest import torch import random import numpy as np import pandas as pd from merlion.models.defaults import DefaultDetector, DefaultDetectorConfig from merlion.plot import plot_anoms_plotly from merlion.post_process.threshold import AggregateAlarms from merlion.utils import TimeSeries from ts_datasets.anomaly import * rootdir = dirname(dirname(dirname(abspath(__file__)))) logger = logging.getLogger(__name__) def set_random_seeds(): torch.manual_seed(12345) random.seed(12345) np.random.seed(12345) def get_train_test_splits(df: pd.DataFrame, metadata: pd.DataFrame, n: int) -> (pd.DataFrame, pd.DataFrame, np.ndarray): train_df = df[metadata.trainval] test_df = df[~metadata.trainval] test_labels = pd.DataFrame(metadata[~metadata.trainval].anomaly) return train_df.tail(n), test_df.head(n), test_labels[:n] class Mixin(ABC): def test_score(self): print("-" * 80) logger.info("test_score\n" + "-" * 80 + "\n") self.run_init() logger.info("Training model...\n") train_ts = TimeSeries.from_pd(self.train_df) self.model.train(train_ts) test_ts = TimeSeries.from_pd(self.test_df) score_ts = self.model.get_anomaly_score(test_ts) scores = score_ts.to_pd().values.flatten() min_score, max_score, sum_score = min(scores), max(scores), sum(scores) logger.info(f"scores look like: {scores[:10]}") logger.info(f"min score = {min_score}") logger.info(f"max score = {max_score}") logger.info(f"sum score = {sum_score}") def test_save_load(self): print("-" * 80) logger.info("test_save_load\n" + "-" * 80 + "\n") self.run_init() logger.info("Training model...\n") train_ts = TimeSeries.from_pd(self.train_df) self.model.train(train_ts) multi = train_ts.dim > 1 path = join(rootdir, "tmp", "default", "anom", "multi" if multi else "uni") self.model.save(dirname=path) loaded_model = DefaultDetector.load(dirname=path) test_ts = TimeSeries.from_pd(self.test_df) scores = self.model.get_anomaly_score(test_ts) scores_np = scores.to_pd().values.flatten() loaded_model_scores = loaded_model.get_anomaly_score(test_ts) loaded_model_scores = loaded_model_scores.to_pd().values.flatten() self.assertEqual(len(scores_np), len(loaded_model_scores)) alarms = self.model.post_rule(scores) loaded_model_alarms = loaded_model.post_rule(scores) self.assertSequenceEqual(list(alarms), list(loaded_model_alarms)) def test_plot(self): try: import plotly print("-" * 80) logger.info("test_plot\n" + "-" * 80 + "\n") self.run_init() logger.info("Training model...\n") train_ts = TimeSeries.from_pd(self.train_df) self.model.train(train_ts) multi = train_ts.dim > 1 savedir = join(rootdir, "tmp", "default", "anom") os.makedirs(savedir, exist_ok=True) path = join(savedir, ("multi" if multi else "uni") + ".png") test_ts = TimeSeries.from_pd(self.test_df) fig = self.model.plot_anomaly_plotly( time_series=test_ts, time_series_prev=train_ts, plot_time_series_prev=True ) plot_anoms_plotly(fig, TimeSeries.from_pd(self.test_labels)) try: import kaleido fig.write_image(path, engine="kaleido") except ImportError: logger.info("kaleido not installed, not trying to save image") except ImportError: logger.info("plotly not installed, skipping test case") class TestUnivariate(unittest.TestCase, Mixin): def run_init(self): set_random_seeds() self.model = DefaultDetector( DefaultDetectorConfig(granularity="1h", threshold=AggregateAlarms(alm_threshold=1.5)) ) # Time series with anomalies in both train split and test split df = pd.read_csv(join(rootdir, "data", "synthetic_anomaly", "horizontal_spike_anomaly.csv")) df.timestamp = pd.to_datetime(df.timestamp, unit="s") df = df.set_index("timestamp") # Get training & testing splits self.train_df = df.iloc[: -len(df) // 2, :1] self.test_df = df.iloc[-len(df) // 2 :, :1] self.test_labels = df.iloc[-len(df) // 2 :, -1:] class TestMultivariate(unittest.TestCase, Mixin): def run_init(self): set_random_seeds() self.model = DefaultDetector(DefaultDetectorConfig(threshold=AggregateAlarms(alm_threshold=2))) self.dataset = MSL(rootdir=join(rootdir, "data", "smap")) df, metadata = self.dataset[0] self.train_df, self.test_df, self.test_labels = get_train_test_splits(df, metadata, 2000) if __name__ == "__main__": logging.basicConfig( format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", stream=sys.stdout, level=logging.INFO ) unittest.main()
[ "pandas.DataFrame", "unittest.main", "os.path.abspath", "numpy.random.seed", "os.makedirs", "logging.basicConfig", "torch.manual_seed", "merlion.utils.TimeSeries.from_pd", "merlion.models.defaults.DefaultDetector.load", "merlion.post_process.threshold.AggregateAlarms", "random.seed", "pandas.to_datetime", "os.path.join", "logging.getLogger" ]
[((716, 743), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (733, 743), False, 'import logging\n'), ((774, 798), 'torch.manual_seed', 'torch.manual_seed', (['(12345)'], {}), '(12345)\n', (791, 798), False, 'import torch\n'), ((803, 821), 'random.seed', 'random.seed', (['(12345)'], {}), '(12345)\n', (814, 821), False, 'import random\n'), ((826, 847), 'numpy.random.seed', 'np.random.seed', (['(12345)'], {}), '(12345)\n', (840, 847), True, 'import numpy as np\n'), ((1063, 1113), 'pandas.DataFrame', 'pd.DataFrame', (['metadata[~metadata.trainval].anomaly'], {}), '(metadata[~metadata.trainval].anomaly)\n', (1075, 1113), True, 'import pandas as pd\n'), ((5241, 5381), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s"""', 'stream': 'sys.stdout', 'level': 'logging.INFO'}), "(format=\n '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s',\n stream=sys.stdout, level=logging.INFO)\n", (5260, 5381), False, 'import logging\n'), ((5391, 5406), 'unittest.main', 'unittest.main', ([], {}), '()\n', (5404, 5406), False, 'import unittest\n'), ((1387, 1420), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['self.train_df'], {}), '(self.train_df)\n', (1405, 1420), False, 'from merlion.utils import TimeSeries\n'), ((1475, 1507), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['self.test_df'], {}), '(self.test_df)\n', (1493, 1507), False, 'from merlion.utils import TimeSeries\n'), ((2097, 2130), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['self.train_df'], {}), '(self.train_df)\n', (2115, 2130), False, 'from merlion.utils import TimeSeries\n'), ((2215, 2283), 'os.path.join', 'join', (['rootdir', '"""tmp"""', '"""default"""', '"""anom"""', "('multi' if multi else 'uni')"], {}), "(rootdir, 'tmp', 'default', 'anom', 'multi' if multi else 'uni')\n", (2219, 2283), False, 'from os.path import abspath, dirname, join\n'), ((2345, 2379), 'merlion.models.defaults.DefaultDetector.load', 'DefaultDetector.load', ([], {'dirname': 'path'}), '(dirname=path)\n', (2365, 2379), False, 'from merlion.models.defaults import DefaultDetector, DefaultDetectorConfig\n'), ((2399, 2431), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['self.test_df'], {}), '(self.test_df)\n', (2417, 2431), False, 'from merlion.utils import TimeSeries\n'), ((4517, 4555), 'pandas.to_datetime', 'pd.to_datetime', (['df.timestamp'], {'unit': '"""s"""'}), "(df.timestamp, unit='s')\n", (4531, 4555), True, 'import pandas as pd\n'), ((686, 703), 'os.path.abspath', 'abspath', (['__file__'], {}), '(__file__)\n', (693, 703), False, 'from os.path import abspath, dirname, join\n'), ((3182, 3215), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['self.train_df'], {}), '(self.train_df)\n', (3200, 3215), False, 'from merlion.utils import TimeSeries\n'), ((3315, 3354), 'os.path.join', 'join', (['rootdir', '"""tmp"""', '"""default"""', '"""anom"""'], {}), "(rootdir, 'tmp', 'default', 'anom')\n", (3319, 3354), False, 'from os.path import abspath, dirname, join\n'), ((3367, 3402), 'os.makedirs', 'os.makedirs', (['savedir'], {'exist_ok': '(True)'}), '(savedir, exist_ok=True)\n', (3378, 3402), False, 'import os\n'), ((3422, 3475), 'os.path.join', 'join', (['savedir', "(('multi' if multi else 'uni') + '.png')"], {}), "(savedir, ('multi' if multi else 'uni') + '.png')\n", (3426, 3475), False, 'from os.path import abspath, dirname, join\n'), ((3499, 3531), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['self.test_df'], {}), '(self.test_df)\n', (3517, 3531), False, 'from merlion.utils import TimeSeries\n'), ((4418, 4492), 'os.path.join', 'join', (['rootdir', '"""data"""', '"""synthetic_anomaly"""', '"""horizontal_spike_anomaly.csv"""'], {}), "(rootdir, 'data', 'synthetic_anomaly', 'horizontal_spike_anomaly.csv')\n", (4422, 4492), False, 'from os.path import abspath, dirname, join\n'), ((3722, 3758), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['self.test_labels'], {}), '(self.test_labels)\n', (3740, 3758), False, 'from merlion.utils import TimeSeries\n'), ((5040, 5069), 'os.path.join', 'join', (['rootdir', '"""data"""', '"""smap"""'], {}), "(rootdir, 'data', 'smap')\n", (5044, 5069), False, 'from os.path import abspath, dirname, join\n'), ((4274, 4308), 'merlion.post_process.threshold.AggregateAlarms', 'AggregateAlarms', ([], {'alm_threshold': '(1.5)'}), '(alm_threshold=1.5)\n', (4289, 4308), False, 'from merlion.post_process.threshold import AggregateAlarms\n'), ((4970, 5002), 'merlion.post_process.threshold.AggregateAlarms', 'AggregateAlarms', ([], {'alm_threshold': '(2)'}), '(alm_threshold=2)\n', (4985, 5002), False, 'from merlion.post_process.threshold import AggregateAlarms\n')]
## TODO: define the convolutional neural network architecture import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F # can use the below import should you choose to initialize the weights of your Net import torch.nn.init as I class Net(nn.Module): def __init__(self): super(Net, self).__init__() ## TODO: Define all the layers of this CNN, the only requirements are: ## 1. This network takes in a square (same width and height), grayscale image as input ## 2. It ends with a linear layer that represents the keypoints ## it's suggested that you make this last layer output 136 values, 2 for each of the 68 keypoint (x, y) pairs # As an example, you've been given a convolutional layer, which you may (but don't have to) change: # 1 input image channel (grayscale), 32 output channels/feature maps, 5x5 square convolution kernel # Image size = 224*224 -> self.conv1 = nn.Conv2d(1, 32, 5) # (224 - 5)/1 + 1 = 220 -> (32, 220, 220) self.act = nn.ReLU() self.pool = nn.MaxPool2d(2, 2) # 46 -> (32, 110, 110) self.drop1 = nn.Dropout(p=0.2) self.conv2 = nn.Conv2d(32, 64, 4) # (110 - 4)/1 + 1 = 43 -> (64, 107, 107) self.drop2 = nn.Dropout(p=0.2) # after pooling -> (64, 53, 53) self.conv3 = nn.Conv2d(64, 128, 3) # (53 - 3)/1 + 1 = 19 -> (128, 51, 51) self.drop3 = nn.Dropout(p=0.2) # after pooling -> (128, 25, 25) self.dense1 = nn.Linear(80000,1000) # 128*25*25 = 80000 self.drop4 = nn.Dropout(p=0.2) self.dense2 = nn.Linear(1000,500) self.drop5 = nn.Dropout(p=0.2) self.dense3 = nn.Linear(500,136) def forward(self, x): ## TODO: Define the feedforward behavior of this model ## x is the input image and, as an example, here you may choose to include a pool/conv step: x = self.drop1(self.pool(self.act(self.conv1(x)))) x = self.drop2(self.pool(self.act(self.conv2(x)))) x = self.drop3(self.pool(self.act(self.conv3(x)))) x = x.view(x.size(0), -1) x = self.drop4(self.act(self.dense1(x))) x = self.drop5(self.act(self.dense2(x))) out = self.dense3(x) return out
[ "torch.nn.Dropout", "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.Linear", "torch.nn.MaxPool2d" ]
[((1013, 1032), 'torch.nn.Conv2d', 'nn.Conv2d', (['(1)', '(32)', '(5)'], {}), '(1, 32, 5)\n', (1022, 1032), True, 'import torch.nn as nn\n'), ((1094, 1103), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1101, 1103), True, 'import torch.nn as nn\n'), ((1124, 1142), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', (['(2)', '(2)'], {}), '(2, 2)\n', (1136, 1142), True, 'import torch.nn as nn\n'), ((1187, 1204), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': '(0.2)'}), '(p=0.2)\n', (1197, 1204), True, 'import torch.nn as nn\n'), ((1235, 1255), 'torch.nn.Conv2d', 'nn.Conv2d', (['(32)', '(64)', '(4)'], {}), '(32, 64, 4)\n', (1244, 1255), True, 'import torch.nn as nn\n'), ((1318, 1335), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': '(0.2)'}), '(p=0.2)\n', (1328, 1335), True, 'import torch.nn as nn\n'), ((1398, 1419), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64)', '(128)', '(3)'], {}), '(64, 128, 3)\n', (1407, 1419), True, 'import torch.nn as nn\n'), ((1480, 1497), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': '(0.2)'}), '(p=0.2)\n', (1490, 1497), True, 'import torch.nn as nn\n'), ((1562, 1584), 'torch.nn.Linear', 'nn.Linear', (['(80000)', '(1000)'], {}), '(80000, 1000)\n', (1571, 1584), True, 'import torch.nn as nn\n'), ((1625, 1642), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': '(0.2)'}), '(p=0.2)\n', (1635, 1642), True, 'import torch.nn as nn\n'), ((1674, 1694), 'torch.nn.Linear', 'nn.Linear', (['(1000)', '(500)'], {}), '(1000, 500)\n', (1683, 1694), True, 'import torch.nn as nn\n'), ((1715, 1732), 'torch.nn.Dropout', 'nn.Dropout', ([], {'p': '(0.2)'}), '(p=0.2)\n', (1725, 1732), True, 'import torch.nn as nn\n'), ((1764, 1783), 'torch.nn.Linear', 'nn.Linear', (['(500)', '(136)'], {}), '(500, 136)\n', (1773, 1783), True, 'import torch.nn as nn\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Support for resource tree traversal. """ from __future__ import division from __future__ import print_function from __future__ import absolute_import from pyramid import traversal from pyramid.compat import is_nonstr_iter from pyramid.compat import decode_path_info from pyramid.exceptions import URLDecodeError from pyramid.httpexceptions import HTTPNotFound from pyramid.interfaces import VH_ROOT_KEY from pyramid.interfaces import ITraverser from zope import interface from zope.component import queryMultiAdapter from zope.event import notify from zope.location.interfaces import LocationError from zope.traversing import api as ztraversing from zope.traversing.interfaces import ITraversable from zope.traversing.interfaces import BeforeTraverseEvent from zope.publisher.interfaces.browser import IBrowserRequest from zope.publisher.interfaces.browser import IDefaultBrowserLayer from zope.traversing.namespace import resource as _zresource lineage = traversal.lineage find_interface = traversal.find_interface empty = traversal.empty split_path_info = traversal.split_path_info logger = __import__('logging').getLogger(__name__) __all__ = [ 'ZopeResourceTreeTraverser', 'resource', ] def _notify_before_traverse_event(ob, request): """ Notifies a BeforeTraverseEvent, but safely: if the handlers themselves raise a location error, turn that into a HTTP 404 exception. Because handlers are deliberately doing this, we stop traversal and abort rather than try to return an information dictionary and find a view and context, etc. This is limiting, but safe. """ try: notify(BeforeTraverseEvent(ob, request)) except LocationError: # this is often a setup or programmer error logger.debug("LocationError from traverse subscribers", exc_info=True) raise HTTPNotFound("Traversal failed") @interface.implementer(ITraverser) class ZopeResourceTreeTraverser(traversal.ResourceTreeTraverser): """ A :class:`pyramid.interfaces.ITraverser` based on pyramid's default traverser, but modified to use the :mod:`zope.traversing.api` machinery instead of (only) dictionary lookups. This provides is with the flexibility of the :obj:`zope.traversing.interfaces.ITraversable` adapter pattern, plus the support of namespace lookups (:func:`zope.traversing.namespace.nsParse` and :func:`zope.traversing.namespace.namespaceLookup`). As this object traverses, it fires :obj:`~.IBeforeTraverseEvent` events. If you either load the configuration from :mod:`zope.app.publication` or manually enable the :obj:`zope.site.site.threadSiteSubscriber <zope.site.site>` to subscribe to this event, then any Zope site managers found along the way will be made the current site. """ def __init__(self, root): traversal.ResourceTreeTraverser.__init__(self, root) def __call__(self, request): # pylint:disable=too-many-locals,too-many-branches,too-many-statements """ See :meth:`pyramid.interfaces.ITraversar.__call__`. """ # JAM: Unfortunately, the superclass implementation is entirely monolithic # and we so we cannot reuse any part of it. Instead, # we copy-and-paste it. Unless otherwise noted, comments below are # original. # JAM: Note the abundance of no covers. These are for features we are # not currently using and the code is lifted directly from pyramid. environ = request.environ if request.matchdict is not None: matchdict = request.matchdict path = matchdict.get('traverse', '/') or '/' if is_nonstr_iter(path): # this is a *traverse stararg (not a {traverse}) # routing has already decoded these elements, so we just # need to join them path = '/'.join(path) or '/' subpath = matchdict.get('subpath', ()) if not is_nonstr_iter(subpath): # pragma: no cover # this is not a *subpath stararg (just a {subpath}) # routing has already decoded this string, so we just need # to split it subpath = split_path_info(subpath) else: # pragma: no cover # this request did not match a route subpath = () try: # empty if mounted under a path in mod_wsgi, for example path = decode_path_info(environ['PATH_INFO'] or '/') except KeyError: path = '/' except UnicodeDecodeError as e: raise URLDecodeError(e.encoding, e.object, e.start, e.end, e.reason) if VH_ROOT_KEY in environ: # pragma: no cover # HTTP_X_VHM_ROOT vroot_path = decode_path_info(environ[VH_ROOT_KEY]) vroot_tuple = split_path_info(vroot_path) # both will (must) be unicode or asciistr vpath = vroot_path + path vroot_idx = len(vroot_tuple) - 1 else: vroot_tuple = () vpath = path vroot_idx = -1 root = self.root ob = vroot = root if vpath == '/': # invariant: vpath must not be empty # prevent a call to traversal_path if we know it's going # to return the empty tuple vpath_tuple = () else: i = 0 view_selector = self.VIEW_SELECTOR # A list so that remaining_path can be modified vpath_tuple = list(split_path_info(vpath)) for segment in vpath_tuple: # JAM: Fire traversal events, mainly so sites get installed. See # zope.publisher.base. _notify_before_traverse_event(ob, request) # JAM: Notice that checking for '@@' is special cased, and # doesn't go through the normal namespace lookup as it would in # plain zope traversal. (XXX: Why not?) if segment.startswith(view_selector): # pragma: no cover return {'context': ob, 'view_name': segment[2:], 'subpath': vpath_tuple[i + 1:], 'traversed': vpath_tuple[:vroot_idx + i + 1], 'virtual_root': vroot, 'virtual_root_path': vroot_tuple, 'root': root} try: # JAM: This is where we differ. instead of using __getitem__, # we use the traversing machinery. # The zope app would use IPublishTraverser, which # would install security proxies along the way. We probably don't need to # do that? TODO: # NOTE: By passing the request here, we require all traversers # (including the namespace traversers) to be registered as multi-adapters. # None of the default namespaces are. See our # configure.zcml for what is. # JAM: Damn stupid implementation of traversePathElement ignores # the request argument to find a traversable /except/ when a namespace is found. # therefore, we explicitly query for the multi adapter ourself in the non-namespace case # (In the namespace case, we let traversing handle it, because it needs a named adapter # after parsing) traversable = None if segment and segment[0] not in '+@' \ and not ITraversable.providedBy(ob): try: # Use the installed component registry # instead of the request registry (which # is the global component registry if # pyramid was configured that way, or a # standalone registry) in case the act of # traversing has changed the site manager; # zope.site.site.threadSiteSubscriber will # do this for each BeforeTraverseEvent # that's fired (though that's not # registered by default). traversable = queryMultiAdapter((ob, request), ITraversable) except TypeError: # Some things are registered for "*" (DefaultTraversable) # which means they get called here. If they can't take # two arguments, then we bail. Sucks. pass remaining_path = vpath_tuple[i + 1:] next_ob = ztraversing.traversePathElement(ob, segment, remaining_path, traversable=traversable, request=request) if remaining_path != vpath_tuple[i + 1:]: # Is this if check necessary? It would be faster to # always assign vpath_tuple[i + 1:] = remaining_path except LocationError: # LocationError is a type of KeyError. The DefaultTraversable turns # plain KeyError and TypeErrors into LocationError. return {'context': ob, 'view_name': segment, 'subpath': vpath_tuple[i + 1:], 'traversed': vpath_tuple[:vroot_idx + i + 1], 'virtual_root': vroot, 'virtual_root_path': vroot_tuple, 'root': root} if i == vroot_idx: # pragma: no cover vroot = next_ob ob = next_ob i += 1 # JAM: Also fire before traversal for the actual context item, since we # won't actually traverse into it. Be sure not to fire multiple times # for this (E.g., the root). This logic is complicated by the # multi-returns above. _notify_before_traverse_event(ob, request) return {'context': ob, 'view_name': empty, 'subpath': subpath, 'traversed': vpath_tuple, 'virtual_root': vroot, 'virtual_root_path': vroot_tuple, 'root': root} class resource(_zresource): """ Handles resource lookup in a way compatible with :mod:`zope.browserresource`. This package registers resources as named adapters from :class:`.IDefaultBrowserLayer` to Interface. We connect the two by making the pyramid request implement the right thing. """ def __init__(self, context, request): request = IBrowserRequest(request) if not IDefaultBrowserLayer.providedBy(request): interface.alsoProvides(request, IDefaultBrowserLayer) # We lie super(resource, self).__init__(context, request)
[ "pyramid.traversal.ResourceTreeTraverser.__init__", "zope.traversing.interfaces.ITraversable.providedBy", "zope.traversing.interfaces.BeforeTraverseEvent", "zope.publisher.interfaces.browser.IBrowserRequest", "pyramid.compat.decode_path_info", "zope.publisher.interfaces.browser.IDefaultBrowserLayer.providedBy", "zope.component.queryMultiAdapter", "zope.interface.implementer", "pyramid.compat.is_nonstr_iter", "pyramid.exceptions.URLDecodeError", "zope.traversing.api.traversePathElement", "pyramid.httpexceptions.HTTPNotFound", "zope.interface.alsoProvides" ]
[((1946, 1979), 'zope.interface.implementer', 'interface.implementer', (['ITraverser'], {}), '(ITraverser)\n', (1967, 1979), False, 'from zope import interface\n'), ((2915, 2967), 'pyramid.traversal.ResourceTreeTraverser.__init__', 'traversal.ResourceTreeTraverser.__init__', (['self', 'root'], {}), '(self, root)\n', (2955, 2967), False, 'from pyramid import traversal\n'), ((11356, 11380), 'zope.publisher.interfaces.browser.IBrowserRequest', 'IBrowserRequest', (['request'], {}), '(request)\n', (11371, 11380), False, 'from zope.publisher.interfaces.browser import IBrowserRequest\n'), ((1705, 1737), 'zope.traversing.interfaces.BeforeTraverseEvent', 'BeforeTraverseEvent', (['ob', 'request'], {}), '(ob, request)\n', (1724, 1737), False, 'from zope.traversing.interfaces import BeforeTraverseEvent\n'), ((1910, 1942), 'pyramid.httpexceptions.HTTPNotFound', 'HTTPNotFound', (['"""Traversal failed"""'], {}), "('Traversal failed')\n", (1922, 1942), False, 'from pyramid.httpexceptions import HTTPNotFound\n'), ((3743, 3763), 'pyramid.compat.is_nonstr_iter', 'is_nonstr_iter', (['path'], {}), '(path)\n', (3757, 3763), False, 'from pyramid.compat import is_nonstr_iter\n'), ((4925, 4963), 'pyramid.compat.decode_path_info', 'decode_path_info', (['environ[VH_ROOT_KEY]'], {}), '(environ[VH_ROOT_KEY])\n', (4941, 4963), False, 'from pyramid.compat import decode_path_info\n'), ((11396, 11436), 'zope.publisher.interfaces.browser.IDefaultBrowserLayer.providedBy', 'IDefaultBrowserLayer.providedBy', (['request'], {}), '(request)\n', (11427, 11436), False, 'from zope.publisher.interfaces.browser import IDefaultBrowserLayer\n'), ((11450, 11503), 'zope.interface.alsoProvides', 'interface.alsoProvides', (['request', 'IDefaultBrowserLayer'], {}), '(request, IDefaultBrowserLayer)\n', (11472, 11503), False, 'from zope import interface\n'), ((4055, 4078), 'pyramid.compat.is_nonstr_iter', 'is_nonstr_iter', (['subpath'], {}), '(subpath)\n', (4069, 4078), False, 'from pyramid.compat import is_nonstr_iter\n'), ((4546, 4591), 'pyramid.compat.decode_path_info', 'decode_path_info', (["(environ['PATH_INFO'] or '/')"], {}), "(environ['PATH_INFO'] or '/')\n", (4562, 4591), False, 'from pyramid.compat import decode_path_info\n'), ((4714, 4776), 'pyramid.exceptions.URLDecodeError', 'URLDecodeError', (['e.encoding', 'e.object', 'e.start', 'e.end', 'e.reason'], {}), '(e.encoding, e.object, e.start, e.end, e.reason)\n', (4728, 4776), False, 'from pyramid.exceptions import URLDecodeError\n'), ((9088, 9195), 'zope.traversing.api.traversePathElement', 'ztraversing.traversePathElement', (['ob', 'segment', 'remaining_path'], {'traversable': 'traversable', 'request': 'request'}), '(ob, segment, remaining_path, traversable=\n traversable, request=request)\n', (9119, 9195), True, 'from zope.traversing import api as ztraversing\n'), ((7818, 7845), 'zope.traversing.interfaces.ITraversable.providedBy', 'ITraversable.providedBy', (['ob'], {}), '(ob)\n', (7841, 7845), False, 'from zope.traversing.interfaces import ITraversable\n'), ((8583, 8629), 'zope.component.queryMultiAdapter', 'queryMultiAdapter', (['(ob, request)', 'ITraversable'], {}), '((ob, request), ITraversable)\n', (8600, 8629), False, 'from zope.component import queryMultiAdapter\n')]
import json import os from os import environ as env from distutils.util import strtobool if os.path.isfile("setting.json"): with open("setting.json", "r", encoding="UTF-8_sig") as s: setting = json.load(s) else: setting = { "token": { "discord": env["discord_token"], "chunirec": env["chunirec_token"] }, "logging": { "logging": strtobool(env["logging"]), "loglevel_stdio": env["loglevel_stdio"], "loglevel_file": env["loglevel_file"], "log_filename": env["log_filename"] }, "misc": { "channel_id": int(env["channel_id"]), "timezone": env["timezone"], "api_lifetime": int(env["api_lifetime"]), "max_musics": int(env["max_musics"]), "command_prefix": env["command_prefix"] } } # URL URL_chunirec = "https://reiwa.f5.si/chunirec_all.json" URL_ONGEKI = "https://ongeki.sega.jp/assets/json/music/music.json" URL_MAIMAI = "https://maimai.sega.jp/data/DXsongs.json" URL_WACCA = "https://reiwa.f5.si/wacca_all.json" URL_ARCAEA = "https://reiwa.f5.si/arcaea_all.json" URL_PHIGROS = "https://reiwa.f5.si/phigros_all.json" # トークン CHUNIREC_TOKEN = setting["token"]["chunirec"] DISCORD_TOKEN = setting["token"]["discord"] # API関係 API_LIFETIME = int(setting["misc"]["api_lifetime"]) # logger関係 tz = setting["misc"]["timezone"] is_logging = setting["logging"]["logging"] loglevel_stdio = setting["logging"]["loglevel_stdio"] loglevel_file = setting["logging"]["loglevel_file"] log_filename = setting["logging"]["log_filename"] # その他 MAX_MUSICS = setting["misc"]["max_musics"] CMDPREF = setting["misc"]["command_prefix"] APP_VERSION = "3.0" CHANNEL_NAME = "選曲bot" # ヘルプメッセージ DECLARATION_NAME = f"**CHUNITHM Random Selector bot v{APP_VERSION}**" HIGHLOW = f"""※`(:high/low)`がついているパラメータは、後ろに『:high』もしくは『:low』を付け足すことで『以上』『以下』を表すことができます。 `:up/:down`や`:big/:small`でも可能です。""" HELPMES_CHUNITHM = f""" {DECLARATION_NAME} 【コマンド文字列】 `{CMDPREF}random [曲数] [レベル(:high/low)] [ジャンル] [アーティスト] [ノーツ数(:high/low)] [BPM(:high/low)] [難易度]` `{CMDPREF}search [レベル(:high/low)] [ジャンル] [アーティスト] [ノーツ数(:high/low)] [BPM(:high/low)] [難易度]` {HIGHLOW} 【パラメータ】 指定しないパラメータは、`-`もしくは`none`と入力してください。 **曲数** > 表示する曲数を指定します。最大{MAX_MUSICS}曲まで表示できます。 > それ以上の数字を入力した場合、ランダム選曲コマンドにおいては{MAX_MUSICS}曲として扱われ、検索コマンドではエラー扱いになります。 > 指定されなかった場合、3曲として扱われます。 > 半角数字で入力してください。 **レベル** > 楽曲のレベルを指定します。 > 『10』『13+』のようなレベル表記形式、もしくは『12.6』『13.7』のような譜面定数形式で入力してください。 **ジャンル** > 楽曲が属するジャンルを指定します。 > 『ORIGINAL』『POPS&ANIME』『niconico』『東方Project』『VARIETY』『イロドリミドリ』『ゲキマイ』から1つ選んで入力してください。 **アーティスト** > 楽曲のアーティスト名を指定します。 > アーティスト名を入力してください。 > 大文字・小文字および全角・半角を考慮しない部分一致で検索されます。 **ノーツ数** > 楽曲のノーツ数を指定します。 > 半角数字で入力してください。 **BPM** > 楽曲のBPMを指定します。 > 半角数字で入力してください。 **難易度** > 楽曲の難易度を指定します。EXPERTのみもしくはMASTERのみの検索をする場合に使用します。 > 指定する場合、『exp』もしくは『mas』と指定してください。 > 指定されないか、不正な値を指定した場合は自動的にEXPERTとMASTERの両方から検索します。 > レベルもしくはノーツ数が指定されたときのみ機能します。 【コマンド例】 `{CMDPREF}random`: 全楽曲の中からランダムに3曲選びます。 `{CMDPREF}random 5 13+:up`: レベル13+以上の楽曲の中からランダムに5曲選びます。 `{CMDPREF}random - 13 - - - - exp`: レベル13のEXPERTの楽曲をランダムに3曲選びます。 `{CMDPREF}search none 東方Project none 1000:low`: 東方Projectの楽曲の中からノーツ数が1000以下の楽曲を検索します。 `{CMDPREF}search - - - - 300:high`: 全楽曲の中からBPM300以上の楽曲を検索します。 【注意点】 - ジャンルは1つのみ指定可能です。 - WORLD'S ENDには対応していません。 - 一部の値が未登録になっている場合があります。 他、以下の楽曲の検索機能があります。 - オンゲキ: `{CMDPREF}help_ongeki` - WACCA: `{CMDPREF}help_wacca` """ HELPMES_ONGEKI = f""" {DECLARATION_NAME} **オンゲキ選曲機能** 【コマンド文字列】 `{CMDPREF}random_ongeki [曲数] [レベル(:high/low)] [ジャンル] [アーティスト] [難易度]` (`{CMDPREF}rgeki`でも可) `{CMDPREF}search_ongeki [レベル(:high/low)] [ジャンル] [アーティスト] [難易度]` (`{CMDPREF}sgeki`でも可) {HIGHLOW} 【パラメータ】 指定しないパラメータは、`-`もしくは`none`と入力してください。 **曲数** > 表示する曲数を指定します。最大{MAX_MUSICS}曲まで表示できます。 > それ以上の数字を入力した場合、ランダム選曲コマンドにおいては{MAX_MUSICS}曲として扱われ、検索コマンドではエラー扱いになります。 > 指定されなかった場合、3曲として扱われます。 > 半角数字で入力してください。 **レベル** > 楽曲のレベルを指定します。 > 『10』『13+』のようなレベル表記形式で入力してください。 > 譜面定数は使えません。 **ジャンル** > 楽曲が属するジャンルを指定します。 > 『オンゲキ』『POPS&ANIME』『niconico』『東方Project』『VARIETY』『チュウマイ』から1つ選んで入力してください。 **アーティスト** > 楽曲のアーティスト名を指定します。 > アーティスト名を入力してください。 > 大文字・小文字および全角・半角を考慮しない部分一致で検索されます。 **難易度** > 楽曲の難易度を指定します。EXPERTのみもしくはMASTERのみの検索をする場合に使用します。 > 指定する場合、『exp』もしくは『mas』と指定してください。 > 指定されないか、不正な値を指定した場合は自動的にEXPERTとMASTERの両方から検索します。 > レベルが指定されたときのみ機能します。 【コマンド例】 `{CMDPREF}random_ongeki`: 全楽曲の中からランダムに3曲選びます。 `{CMDPREF}random_ongeki 5 13+:up`: レベル13+以上の楽曲の中からランダムに5曲選びます。 `{CMDPREF}random_ongeki - 13 - - - - exp`: レベル13のEXPERTの楽曲をランダムに3曲選びます。 `{CMDPREF}search_ongeki 14 東方Project`: 東方Projectの楽曲の中からレベル14の曲を検索します。 【注意点】 - ジャンルは1つのみ指定可能です。 - LUNATICおよびボーナストラックには対応していません。 """ # 書きかけ HELPMES_MAIMAI = f""" {DECLARATION_NAME} **maimaiでらっくす選曲機能** 【コマンド文字列】 `{CMDPREF}random_maimai [曲数] [レベル(:high/low)] [ジャンル] [アーティスト] [難易度]` (`{CMDPREF}rmai`でも可) `{CMDPREF}search_maimai [レベル(:high/low)] [ジャンル] [アーティスト] [難易度]` (`{CMDPREF}smai`でも可) {HIGHLOW} 【パラメータ】 指定しないパラメータは、`-`もしくは`none`と入力してください。 **曲数** > 表示する曲数を指定します。最大{MAX_MUSICS}曲まで表示できます。 > それ以上の数字を入力した場合、ランダム選曲コマンドにおいては{MAX_MUSICS}曲として扱われ、検索コマンドではエラー扱いになります。 > 指定されなかった場合、3曲として扱われます。 > 半角数字で入力してください。 **レベル** > 楽曲のレベルを指定します。 > 『10』『13+』のようなレベル表記形式で入力してください。 > 譜面定数は使えません。 **ジャンル** > 楽曲が属するジャンルを指定します。 """ HELPMES_WACCA = f""" {DECLARATION_NAME} **WACCA選曲機能** 【コマンド文字列】 `{CMDPREF}random_wacca [曲数] [レベル(:high/low)] [ジャンル] [アーティスト] [難易度]` (`{CMDPREF}rwacca`でも可) `{CMDPREF}search_wacca [レベル(:high/low)] [ジャンル] [アーティスト] [難易度]` (`{CMDPREF}swacca`でも可) {HIGHLOW} 【パラメータ】 指定しないパラメータは、`-`もしくは`none`と入力してください。 **曲数** > 表示する曲数を指定します。最大{MAX_MUSICS}曲まで表示できます。 > それ以上の数字を入力した場合、ランダム選曲コマンドにおいては{MAX_MUSICS}曲として扱われ、検索コマンドではエラー扱いになります。 > 指定されなかった場合、3曲として扱われます。 > 半角数字で入力してください。 **レベル** > 楽曲のレベルを指定します。 > 『10』『13+』のようなレベル表記形式で入力してください。 > 譜面定数は使えません。 **ジャンル** > 楽曲が属するジャンルを指定します。 > 『アニメ/POP』『ボカロ』『東方アレンジ』『2.5次元』『バラエティ』『オリジナル』『TANO\\*C』『TANO\\*C(オリジナル)』から1つ選んで入力してください。 **アーティスト** > 楽曲のアーティスト名を指定します。 > アーティスト名を入力してください。 > 大文字・小文字および全角・半角を考慮しない部分一致で検索されます。 **難易度** > 楽曲の難易度を指定します。EXPERTのみもしくはINFERNOのみの検索をする場合に使用します。 > 指定する場合、『exp』もしくは『inf』と指定してください。 > 指定されないか、不正な値を指定した場合は自動的にEXPERTとINFERNOの両方から検索します。 > レベルが指定されたときのみ機能します。 【注意点】 - ジャンルは1つのみ指定可能です。 【不具合】 - 『オリジナル』を指定すると『TANO\\*C(オリジナル)』も同時に検索されてしまいます。 """
[ "os.path.isfile", "json.load", "distutils.util.strtobool" ]
[((93, 123), 'os.path.isfile', 'os.path.isfile', (['"""setting.json"""'], {}), "('setting.json')\n", (107, 123), False, 'import os\n'), ((206, 218), 'json.load', 'json.load', (['s'], {}), '(s)\n', (215, 218), False, 'import json\n'), ((406, 431), 'distutils.util.strtobool', 'strtobool', (["env['logging']"], {}), "(env['logging'])\n", (415, 431), False, 'from distutils.util import strtobool\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 22 18:29:44 2019 @author: tgadfort """ from debug import debugclass from playTypes import noplay from playYards import playyards #from copy import deepcopy, copy # create logger import logging module_logger = logging.getLogger('log.{0}'.format(__name__)) ############################################################################################################ ## Drive Class ############################################################################################################ class analyzepenalties: def __init__(self): self.logger = logging.getLogger('log.{0}.{1}'.format(__name__, self.__class__)) self.ind = 2*" " self.sep = "======================================================" self.dc = debugclass() self.py = playyards() def isPenaltyAdditive(self, gameData): self.logger.debug("\n{0}".format(2*self.sep)) self.logger.debug("{0}Analyzing Penalty Additiveness".format(self.ind)) for idr,driveData in enumerate(gameData): drivePlays = driveData.plays for ipl,drivePlay in enumerate(drivePlays): play = drivePlay.play if play.penalty.isPenalty is False: continue penaltyyards = play.penalty.yards playyards = play.yds.yards nextYards = drivePlay.nextDiffYards if all([penaltyyards, playyards, nextYards]): if penaltyyards + playyards == nextYards: continue elif penaltyyards == playyards and penaltyyards == nextYards: play.yds.yards = 0 continue else: self.logger.debug("{0}Penalty Analysis: Penalty Yards=={1}\tPlay Yards=={2}\tNext Yards=={3}\tText=={4}".format(self.ind, penaltyyards, playyards, nextYards, play.text)) else: self.logger.debug("{0}Penalty Analysis: Penalty Yards=={1}\tPlay Yards=={2}\tNext Yards=={3}\tText=={4}".format(self.ind, penaltyyards, playyards, nextYards, play.text)) self.logger.debug("{0}Analyzing Penalty Additiveness -> Done".format(self.ind)) def penalties(self, gameData): self.logger.debug("\n{0}".format(2*self.sep)) self.logger.debug("{0}Analyzing Penalties".format(self.ind)) for idr,driveData in enumerate(gameData): drivePlays = driveData.plays for ipl,drivePlay in enumerate(drivePlays): play = drivePlay.play if play.penalty.isPenalty is False: continue penaltyyards = self.py.findPenaltyYards(play.text) nextYards = drivePlay.nextDiffYards if isinstance(play, noplay): if play.yds.yards == 0 and penaltyyards is not None: play.yds.yards = penaltyyards elif play.yds.yards == 0 and penaltyyards is None: play.yds.yards = nextYards else: if play.yds.yards is None: play.yds.yards = nextYards else: print("Not sure...") if nextYards == 0 and play.yds.yards == 0: penaltyyards = 0 if sum([x in play.text for x in ["Personal Foul", "Unsportsmanlike Conduct", "Face Mask"]]) > 0: if nextYards == 15: penaltyyards = 15 play.yds.yards = 0 elif nextYards == 15: penaltyyards = -15 play.yds.yards = 0 if nextYards == penaltyyards: if play.yds.yards == 0: play.yds.yards = nextYards play.penalty.yards = penaltyyards if nextYards == play.yds.yards and nextYards == penaltyyards: continue self.logger.debug("{0}Penalty Analysis: Penalty=={1}\tPlay=={2}\tNext=={3}\tYards=={4}\tPYards=={5}\tText=={6}".format(self.ind, play.penalty.isPenalty, play.name, nextYards, play.yds.yards, penaltyyards, play.text)) self.logger.debug("{0}Analyzing Penalties -> Done".format(self.ind)) return gameData
[ "debug.debugclass", "playYards.playyards" ]
[((834, 846), 'debug.debugclass', 'debugclass', ([], {}), '()\n', (844, 846), False, 'from debug import debugclass\n'), ((874, 885), 'playYards.playyards', 'playyards', ([], {}), '()\n', (883, 885), False, 'from playYards import playyards\n')]
import random import time from Character import * from Item import create_item def battle(fighters, max_turn=10): """ Battle process start->loot :param max_turn: int turns for 1 battle, default 10 :param fighters: list of fighter :return: None """ # Enter battle_process print('Enter battle_process') # Begin battle_process # Init skills (for n) for fighter in fighters: fighter.init_battle() fighter.report_status() # Turns begin turn = 1 # Init turns # fighters_this_turn = list(fighters) fighters_remain = len(fighters) while turn <= max_turn and fighters_remain >= 2: # Enter Turn #turn print('\n#{t}'.format(t=turn)) # Begin Turn #turn # Init turn # Construct fighters participate in this turn # & Init fighter turn paras fighters_this_turn = [] for fighter in fighters: fighter.init_turn() if fighter.is_alive(): fighters_this_turn.append(fighter) # toimpr magical nb, in right place ? # if turn != 1: # fighter.gain_score(1) # Choose skill for fighter in fighters_this_turn: # NPC choose skill if fighter.is_npc: npc = fighter target = '' target_list = list(set(fighters_this_turn) - {npc}) key = random.choice(npc.get_available_skills()) skill = npc.BATTLESKILLBOOK[key] # If it's an A skill, choose its target if skill.phase_type == 'A': target = random.choice(target_list) # Player input skill else: player = fighter target_list = list(set(fighters_this_turn) - {player}) target = '' # dummy? target_name = '' # dummy? key = '' # dummy? while True: input_raw = input('BoLoBoLo...{s}:' .format(s=str(player.get_available_skills()))) input_args = input_raw.strip().split() key = input_args[0].upper() target_name = input_args[1] if len(input_args) > 1 else '' if key in player.get_available_skills(): break skill = player.BATTLESKILLBOOK[key] # If it's an A skill, choose its target if skill.phase_type == 'A': # Auto choose target when only 1 enemy if len(target_list) == 1: target = target_list[0] else: while True: for target_fighter in target_list: if target_fighter.name == target_name: target = target_fighter if target: break target_name = input('target...') # Cast skill = record move, create proj, deliver proj skill.cast(target) # Billing for fighter in fighters: # Start billing by order for category in ['potion', 'arrow']: for tag in ['fill', 'drain', 'heal', 'damage']: prjs = fighter.incoming_projectiles[category][tag] if prjs: for prj in prjs: prj.billing() # All billed # Check new death if fighter.is_alive() and fighter.HP <= 0: # fighter will die # fighter did die # go_die = set alive false, record turn, leave death message fighter.go_die(turn) fighters_remain -= 1 # killer gain score for killing for prj in fighter.lethal_projectiles: # toImpr move magical nb to global setting prj.caster.killed_someone() # Output turn info # Moves for fighter in fighters: print('{hp}hp {mp}mp\t[{f}]|\t{m}' .format(hp=fighter.HP, mp=fighter.MP, f=fighter.name, m=str(fighter.last_move))) time.sleep(0.2) # Deaths for fighter in fighters_this_turn: if not fighter.is_alive(): print('{f} 卒'.format(f=fighter.name)) turn += 1 continue # Exit turns print('\nExit turns') # Exit battle_process # Battle result score_board = sorted(fighters, key=lambda f: (f.score, f.died_turn), reverse=True) for index, fighter in enumerate(score_board): if fighter.is_alive(): status = '存活({hp}HP)'.format(hp=fighter.HP) else: killers = [] for pj in fighter.lethal_projectiles: killer = '{owner}的{skill}'. \ format(owner=pj.caster.name, skill=pj.skill.alias) killers.append(killer) killers_msg = '&'.join(killers) status = '卒(Turn{t}, {hp}HP, 被{killer}所杀)' \ .format(t=fighter.died_turn, hp=fighter.HP, killer=killers_msg) print('#{i}\t{f}\t\t*{score}*\t\t{status}'.format(i=index+1, f=fighter.name, score=fighter.score, status=status)) # distribute_loot(player, enemy, battle_result) # toAdd loot system # def distribute_loot(player, enemy, battle_result): # """ # Distribute enemy loot to player according to battle result # :param player: obj # :param enemy: obj # :param battle_result: string 'WIN'/'LOSE'/'TIE' # :return: None # """ # if battle_result == 'WIN': # c_money = 1 # c_exp = 1 # loot_item_dict = enemy.loot['item_dict'] # elif battle_result == 'TIE': # c_money = 0 # c_exp = 0.5 # loot_item_dict = {} # elif battle_result == 'LOSE': # c_money = 0 # c_exp = 0 # loot_item_dict = {} # # else: # return # # player.add_money(enemy.loot['money'] * c_money) # player.add_exp(enemy.loot['EXP'] * c_exp) # for loot_item in loot_item_dict.keys(): # player.get_item(loot_item, loot_item_dict[loot_item]) # toImpr separated gameplay if __name__ == "__main__": glove1 = create_item('A2') glove2 = create_item('A2') # toAdd item database # game_items = [glove1, glove2] zcx = Fighter('zcx') zcx.put_in_item(glove1) zcx.equip_item(glove1) iii = Fighter('i', is_npc=True) iii.put_in_item(glove2) iii.equip_item(glove2) j = Fighter('j', is_npc=True) k = Fighter('k', is_npc=True) allFighters = [zcx, iii, j, k] battle(allFighters) # player1.report_wealth() # print(player1.level)
[ "Item.create_item", "random.choice", "time.sleep" ]
[((6694, 6711), 'Item.create_item', 'create_item', (['"""A2"""'], {}), "('A2')\n", (6705, 6711), False, 'from Item import create_item\n'), ((6726, 6743), 'Item.create_item', 'create_item', (['"""A2"""'], {}), "('A2')\n", (6737, 6743), False, 'from Item import create_item\n'), ((4538, 4553), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (4548, 4553), False, 'import time\n'), ((1737, 1763), 'random.choice', 'random.choice', (['target_list'], {}), '(target_list)\n', (1750, 1763), False, 'import random\n')]
# Generated by Django 2.1.7 on 2019-08-06 16:38 import ckeditor_uploader.fields from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import sorl.thumbnail.fields class Migration(migrations.Migration): dependencies = [ ('galerias', '0002_auto_20190805_1410'), ] operations = [ migrations.AddField( model_name='galeriaimagenes', name='aprobado', field=models.BooleanField(default=True), preserve_default=False, ), migrations.AddField( model_name='galeriavideos', name='aprobado', field=models.BooleanField(default=True), preserve_default=False, ), migrations.AddField( model_name='galeriavideos', name='descripcion', field=ckeditor_uploader.fields.RichTextUploadingField(default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='galeriavideos', name='portada', field=sorl.thumbnail.fields.ImageField(blank=True, null=True, upload_to='galerias/', verbose_name='Imagen'), ), migrations.AlterField( model_name='galeriaimagenes', name='usuario', field=models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to=settings.AUTH_USER_MODEL, verbose_name='Autor'), ), migrations.AlterField( model_name='galeriavideos', name='usuario', field=models.ForeignKey(on_delete=django.db.models.deletion.DO_NOTHING, to=settings.AUTH_USER_MODEL, verbose_name='Autor'), ), ]
[ "django.db.models.ForeignKey", "django.db.models.BooleanField" ]
[((522, 555), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(True)'}), '(default=True)\n', (541, 555), False, 'from django.db import migrations, models\n'), ((726, 759), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(True)'}), '(default=True)\n', (745, 759), False, 'from django.db import migrations, models\n'), ((1423, 1544), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.DO_NOTHING', 'to': 'settings.AUTH_USER_MODEL', 'verbose_name': '"""Autor"""'}), "(on_delete=django.db.models.deletion.DO_NOTHING, to=\n settings.AUTH_USER_MODEL, verbose_name='Autor')\n", (1440, 1544), False, 'from django.db import migrations, models\n'), ((1674, 1795), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.DO_NOTHING', 'to': 'settings.AUTH_USER_MODEL', 'verbose_name': '"""Autor"""'}), "(on_delete=django.db.models.deletion.DO_NOTHING, to=\n settings.AUTH_USER_MODEL, verbose_name='Autor')\n", (1691, 1795), False, 'from django.db import migrations, models\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Module that contains frame widget implementation """ from __future__ import print_function, division, absolute_import from Qt.QtCore import Qt from Qt.QtWidgets import QSizePolicy, QFrame from Qt.QtGui import QPainter, QPainterPath class WelcomeFrame(QFrame, object): def __init__(self, pixmap, parent=None): super(WelcomeFrame, self).__init__(parent) self.setAttribute(Qt.WA_TranslucentBackground) self.setFrameShape(QFrame.NoFrame) self.setFrameShadow(QFrame.Plain) self._pixmap = pixmap self.setStyleSheet('QFrame { border-radius: 10px; }') self.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) def paintEvent(self, event): """ Override base QFrame paintEvent function :param event: QPaintEvent """ painter = QPainter(self) painter.setRenderHint(QPainter.Antialiasing) path = QPainterPath() path.addRoundedRect(0, 0, self.width(), self.height(), 10, 10) painter.setClipPath(path) painter.drawPixmap(0, 0, self.width(), self.height(), self._pixmap)
[ "Qt.QtGui.QPainterPath", "Qt.QtGui.QPainter" ]
[((885, 899), 'Qt.QtGui.QPainter', 'QPainter', (['self'], {}), '(self)\n', (893, 899), False, 'from Qt.QtGui import QPainter, QPainterPath\n'), ((968, 982), 'Qt.QtGui.QPainterPath', 'QPainterPath', ([], {}), '()\n', (980, 982), False, 'from Qt.QtGui import QPainter, QPainterPath\n')]
# treemodels.py from __future__ import division import gtk from debug import * import numpy as np import matplotlib.pyplot as plt class CountingActivitiesModel (gtk.GenericTreeModel): """Gtk TreeModel for CountingActivity's in a Log.""" def __init__ (self, log): gtk.GenericTreeModel.__init__ (self) self.log = log @property def n_rows (self): return len (self.log.counting_activities) # Implementation of gtk.GenericTreeModel def on_get_flags (self): return gtk.TREE_MODEL_LIST_ONLY def on_get_n_columns (self): return 2 def on_get_column_type (self, index): return str def on_get_iter (self, path): if len (self.log.counting_activities): return path[0] def on_get_path (self, rowref): return (rowref,) def on_get_value (self, row, col): if len (self.log.counting_activities) == 0: return None activity = sorted (self.log.counting_activities)[row] if col == 0: return activity.name elif col == 1: return activity.unit else: return None def on_iter_next (self, rowref): if rowref == self.n_rows - 1 or self.n_rows == 0: return None else: return rowref + 1 def on_iter_children (self, parent): return 0 # TODO: is this right? def on_iter_has_child (self, rowref): return False def on_iter_n_children (self, rowref): if rowref: return 0 else: return self.n_rows def on_iter_nth_child (self, parent, n): if parent: return None elif n < self.n_rows: return n else: return None def on_iter_parent (self, child): return None class TimingActivitiesModel (gtk.GenericTreeModel): """Gtk TreeModel for TimingActivity's in a Log.""" def __init__ (self, log): gtk.GenericTreeModel.__init__ (self) self.log = log @property def n_rows (self): return len (self.log.timing_activities) # Implementation of gtk.GenericTreeModel def on_get_flags (self): return gtk.TREE_MODEL_LIST_ONLY def on_get_n_columns (self): return 1 def on_get_column_type (self, index): return str def on_get_iter (self, path): if len (self.log.timing_activities): return path[0] def on_get_path (self, rowref): return (rowref,) def on_get_value (self, row, col): if len (self.log.timing_activities) == 0: return None activity = sorted (self.log.timing_activities)[row] if col == 0: return activity.name else: return None def on_iter_next (self, rowref): if rowref == self.n_rows - 1 or self.n_rows == 0: return None else: return rowref + 1 def on_iter_children (self, parent): return 0 # TODO: is this right? def on_iter_has_child (self, rowref): return False def on_iter_n_children (self, rowref): if rowref: return 0 else: return self.n_rows def on_iter_nth_child (self, parent, n): if parent: return None elif n < self.n_rows: return n else: return None def on_iter_parent (self, child): return None class CountingEntriesModel (gtk.GenericTreeModel): """Gtk TreeModel for CountingEntry's in a Log.""" def __init__ (self, log, activity_name): gtk.GenericTreeModel.__init__ (self) self.log = log self.activity_name = activity_name @property def entries (self): return self.log.get_entries (self.activity_name) @property def n_rows (self): return len (self.entries) # Implementation of gtk.GenericTreeModel def on_get_flags (self): return gtk.TREE_MODEL_LIST_ONLY def on_get_n_columns (self): return 3 def on_get_column_type (self, index): return str def on_get_iter (self, path): if len (self.entries): return path[0] def on_get_path (self, rowref): return (rowref,) def on_get_value (self, row, col): if self.n_rows == 0: return None entry = self.entries[row] if col == 0: return str (entry.date) elif col == 1: return str (entry.n) elif col == 2: return str (entry.error) elif col == 3: return str (entry.note) else: return None def on_iter_next (self, rowref): if rowref == self.n_rows - 1 or self.n_rows == 0: return None else: return rowref + 1 def on_iter_children (self, parent): return 0 # TODO: is this right? def on_iter_has_child (self, rowref): return False def on_iter_n_children (self, rowref): if rowref: return 0 else: return self.n_rows def on_iter_nth_child (self, parent, n): if parent: return None elif n < self.n_rows: return n else: return None def on_iter_parent (self, child): return None class TimingEntriesModel (gtk.GenericTreeModel): """Gtk TreeModel for TimingEntry's in a Log.""" def __init__ (self, log, activity_name): gtk.GenericTreeModel.__init__ (self) self.log = log self.activity_name = activity_name @property def entries (self): return self.log.get_entries (self.activity_name) @property def n_rows (self): return len (self.entries) # Implementation of gtk.GenericTreeModel def on_get_flags (self): return gtk.TREE_MODEL_LIST_ONLY def on_get_n_columns (self): return 2 def on_get_column_type (self, index): return str def on_get_iter (self, path): if len (self.entries): return path[0] def on_get_path (self, rowref): return (rowref,) def on_get_value (self, row, col): def fmt (t): return '{0:04d}-{1:02d}-{2:02d} {3:02d}:{4:02d}'.format ( t.year, t.month, t.day, t.hour, t.minute) if self.n_rows == 0: return None entry = self.entries[row] if col == 0: return fmt (entry.start_time) elif col == 1: return fmt (entry.end_time) elif col == 2: return str (entry.note) else: return None def on_iter_next (self, rowref): if rowref == self.n_rows - 1 or self.n_rows == 0: return None else: return rowref + 1 def on_iter_children (self, parent): return 0 # TODO: is this right? def on_iter_has_child (self, rowref): return False def on_iter_n_children (self, rowref): if rowref: return 0 else: return self.n_rows def on_iter_nth_child (self, parent, n): if parent: return None elif n < self.n_rows: return n else: return None def on_iter_parent (self, child): return None class ActivityDrawModel (gtk.GenericTreeModel): """Gtk TreeModel for drawing Activity's in a Log.""" def __init__ (self, activities): gtk.GenericTreeModel.__init__ (self) self.activities = sorted (activities) self.checks = [ False for activity in self.activities] n = len (self.activities) ##mpl_colors = [ ## (0.0, 0.0, 1.0), ## (0.0, 0.5, 0.0), ## (1.0, 0.0, 0.0), ## (0.0, 0.75, 0.75), ## (0.75, 0.0, 0.75), ## (0.75, 0.75, 0.0), ## (0.0, 0.0, 0.0), ## (0.0, 0.0, 1.0) ] ##n_color = len (mpl_colors) ##self.colors = [ ## gtk.gdk.Color (*mpl_colors[i % n_color]) for i in xrange (n)] cm = plt.get_cmap ('rainbow') self.colors = [ gtk.gdk.Color (*cm (i / n)[:3]) for i in xrange (n)] self.color_tuples = [ cm (i / n)[:3] for i in xrange (n)] self.alphas = [ int (.8 * 65535) for activity in self.activities] @property def n_rows (self): return len (self.activities) # toggle def toggle (self, path): row = int (path) self.checks[row] = not self.checks[row] def toggle_all (self): if np.sum (self.checks) == len (self.checks): value = False else: value = True for row in xrange (len (self.checks)): self.checks[row] = value # Implementation of gtk.GenericTreeModel def on_get_flags (self): return gtk.TREE_MODEL_LIST_ONLY def on_get_n_columns (self): return 3 def on_get_column_type (self, index): if index == 0: return bool elif index == 1: return str elif index == 2: return gtk.gdk.Pixbuf def on_get_iter (self, path): if self.n_rows: return path[0] def on_get_path (self, rowref): return (rowref,) def on_get_value (self, row, col): if self.n_rows == 0: return None activity = sorted (self.activities)[row] if col == 0: return self.checks[row] elif col == 1: return activity.name else: pb = gtk.gdk.Pixbuf ( gtk.gdk.COLORSPACE_RGB, True, 8, 16, 16) color = self.colors[row] color_str = '{0:02x}{1:02x}{2:02x}{3:02x}'.format ( *map (int, (color.red / 256, color.green / 256, color.blue / 256, self.alphas[row] / 256))) pb.fill (int (color_str, 16)) return pb def on_iter_next (self, rowref): if rowref == self.n_rows - 1 or self.n_rows == 0: return None else: return rowref + 1 def on_iter_children (self, parent): return 0 # TODO: is this right? def on_iter_has_child (self, rowref): return False def on_iter_n_children (self, rowref): if rowref: return 0 else: return self.n_rows def on_iter_nth_child (self, parent, n): if parent: return None elif n < self.n_rows: return n else: return None def on_iter_parent (self, child): return None
[ "gtk.GenericTreeModel.__init__", "gtk.gdk.Pixbuf", "numpy.sum", "matplotlib.pyplot.get_cmap" ]
[((286, 321), 'gtk.GenericTreeModel.__init__', 'gtk.GenericTreeModel.__init__', (['self'], {}), '(self)\n', (315, 321), False, 'import gtk\n'), ((1999, 2034), 'gtk.GenericTreeModel.__init__', 'gtk.GenericTreeModel.__init__', (['self'], {}), '(self)\n', (2028, 2034), False, 'import gtk\n'), ((3661, 3696), 'gtk.GenericTreeModel.__init__', 'gtk.GenericTreeModel.__init__', (['self'], {}), '(self)\n', (3690, 3696), False, 'import gtk\n'), ((5561, 5596), 'gtk.GenericTreeModel.__init__', 'gtk.GenericTreeModel.__init__', (['self'], {}), '(self)\n', (5590, 5596), False, 'import gtk\n'), ((7563, 7598), 'gtk.GenericTreeModel.__init__', 'gtk.GenericTreeModel.__init__', (['self'], {}), '(self)\n', (7592, 7598), False, 'import gtk\n'), ((8227, 8250), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""rainbow"""'], {}), "('rainbow')\n", (8239, 8250), True, 'import matplotlib.pyplot as plt\n'), ((8763, 8782), 'numpy.sum', 'np.sum', (['self.checks'], {}), '(self.checks)\n', (8769, 8782), True, 'import numpy as np\n'), ((9753, 9808), 'gtk.gdk.Pixbuf', 'gtk.gdk.Pixbuf', (['gtk.gdk.COLORSPACE_RGB', '(True)', '(8)', '(16)', '(16)'], {}), '(gtk.gdk.COLORSPACE_RGB, True, 8, 16, 16)\n', (9767, 9808), False, 'import gtk\n')]
import sys import torch from torch.autograd import Variable import numpy as np import os from os import path import argparse import random import copy from tqdm import tqdm import pickle from scorer.data_helper.json_reader import read_sorted_scores, read_pair_anno_scores, read_articles, \ read_processed_scores, read_scores from scipy.stats import spearmanr, pearsonr, kendalltau import math from torchvision import models from resources import MODEL_WEIGHT_DIR from resources import OUTPUTS_DIR from matplotlib import pyplot as plt import csv def parse_split_data(sorted_scores, train_percent, dev_percent, prompt='structure'): train = {} dev = {} test = {} all = {} topic_count = 0 for article_id, scores_list in tqdm(sorted_scores.items()): entry = {} summ_ids = [s['summ_id'] for s in scores_list] for sid in summ_ids: entry['sys_summ' + repr(sid)] = [s['scores'][prompt] for s in scores_list if s['summ_id'] == sid][ 0] # that can be done more efficiently, but who cares... rand = random.random() all[article_id] = entry if rand < train_percent: train[article_id] = entry elif rand < train_percent + dev_percent: dev[article_id] = entry else: test[article_id] = entry topic_count += 1 print("topics in parse_split_data", topic_count) return train, dev, test, all def parse_split_data_balanced(sorted_scores, train_percent, dev_percent, prompt='structure'): train = {} dev = {} test = {} all = {} topic_count = 0 article_ids = list(sorted_scores.keys()) random.shuffle(article_ids) num_articles = len(article_ids) train_ids = article_ids[0:int(train_percent * num_articles)] dev_ids = article_ids[int(train_percent * num_articles):int((train_percent + dev_percent) * num_articles)] # test_ids=article_ids[int((train_percent+dev_percent)*num_articles):] for article_id, scores_list in tqdm(sorted_scores.items()): entry = {} summ_ids = [s['summ_id'] for s in scores_list] for sid in summ_ids: entry['sys_summ' + repr(sid)] = [s['scores'][prompt] for s in scores_list if s['summ_id'] == sid][ 0] # that can be done more efficiently, but who cares... # rand = random.random() all[article_id] = entry if article_id in train_ids: train[article_id] = entry elif article_id in dev_ids: dev[article_id] = entry else: test[article_id] = entry topic_count += 1 print("topics in parse_split_data", topic_count) return train, dev, test, all def build_model(model_type, vec_length, learn_rate=None): if 'linear' in model_type: deep_model = torch.nn.Sequential( torch.nn.Linear(vec_length, 1), ) else: deep_model = torch.nn.Sequential( torch.nn.Linear(vec_length, int(vec_length / 2)), torch.nn.ReLU(), torch.nn.Linear(int(vec_length / 2), 1), ) if learn_rate is not None: optimiser = torch.optim.Adam(deep_model.parameters(), lr=learn_rate) return deep_model, optimiser else: return deep_model def deep_pair_train(vec_list, target, deep_model, optimiser, device): # print(np.array(vec_list).shape) input = Variable(torch.from_numpy(np.array(vec_list)).float()) # print(input) if 'gpu' in device: input = input.to('cuda') value_variables = deep_model(input) # print(value_variables) softmax_layer = torch.nn.Softmax(dim=1) pred = softmax_layer(value_variables) # print(pred) # print(np.array(target).shape, np.array(target).reshape(-1, 2, 1).shape) target_variables = Variable(torch.from_numpy(np.array(target)).float()).view(-1, 2, 1) # print(target_variables) if 'gpu' in device: target_variables = target_variables.to('cuda') loss_fn = torch.nn.BCELoss() loss = loss_fn(pred, target_variables) # print(loss) optimiser.zero_grad() loss.backward() optimiser.step() return loss.cpu().item() def deep_pair_train_loss_only(vec_list, target, deep_model, optimiser, device): # print(np.array(vec_list).shape) input = Variable(torch.from_numpy(np.array(vec_list)).float()) # print(input) if 'gpu' in device: input = input.to('cuda') value_variables = deep_model(input) # print(value_variables) softmax_layer = torch.nn.Softmax(dim=1) pred = softmax_layer(value_variables) # print(pred) # print(np.array(target).shape, np.array(target).reshape(-1, 2, 1).shape) target_variables = Variable(torch.from_numpy(np.array(target)).float()).view(-1, 2, 1) # print(target_variables) if 'gpu' in device: target_variables = target_variables.to('cuda') loss_fn = torch.nn.BCELoss() loss = loss_fn(pred, target_variables) # print(loss) return loss.cpu().item() def build_pairs(entries): pair_list = [] topic_count = 0 summ_count = 0 for article_id in entries: entry = entries[article_id] summ_ids = list(entry.keys()) # really iterate over all pairs. there was an error here before since j started from 1, to prevent i,j=0,0. but this also lead to i,j=x,0 never be chosen the situation i=j is solved otherwise for i in range(len(summ_ids)): for j in range(len(summ_ids)): if i == j: continue if entry[summ_ids[i]] > entry[summ_ids[j]]: pref = [1, 0] elif entry[summ_ids[i]] < entry[summ_ids[j]]: pref = [0, 1] else: pref = [0.5, 0.5] pair_list.append((article_id, summ_ids[i], summ_ids[j], pref)) # print(pair_list) topic_count += 1 summ_count = summ_count + len(summ_ids) print("topics", topic_count) print("summ", summ_count) return pair_list def build_anno_pairs(entries, pair_anno_scores): pair_list = [] topic_count = 0 summ_count = 0 for article_id in entries: entry = entries[article_id] summ_ids = list(entry.keys()) # really iterate over all pairs. there was an error here before since j started from 1, to prevent i,j=0,0. but this also lead to i,j=x,0 never be chosen the situation i=j is solved otherwise for i in range(len(summ_ids)): for j in range(len(summ_ids)): if i == j: continue # get keys from dictionary entry_keys = list(entry.keys()) # get pair preference from pair_anno_scores for pair in pair_anno_scores[article_id]: if pair['summ_id_i'] == int(entry_keys[i][8]) and pair['summ_id_j'] == int(entry_keys[j][8]): if pair['pref'] == 1: pref = [1, 0] pair_list.append((article_id, summ_ids[i], summ_ids[j], pref)) continue else: pref = [0, 1] pair_list.append((article_id, summ_ids[i], summ_ids[j], pref)) continue elif pair['summ_id_j'] == int(entry_keys[i][8]) and pair['summ_id_i'] == int(entry_keys[j][8]): if pair['pref'] == 1: pref = [0, 1] pair_list.append((article_id, summ_ids[i], summ_ids[j], pref)) continue else: pref = [1, 0] pair_list.append((article_id, summ_ids[i], summ_ids[j], pref)) continue topic_count += 1 summ_count = summ_count + len(summ_ids) print("topics", topic_count) print("summ", summ_count) # print(pair_list) return pair_list def build_human_pair_scores(pair_list): human_pair_scores = {} for entry in pair_list: article_id = str(entry[0]) sum_id_i = str(entry[1]) sum_id_j = str(entry[2]) pref = entry[3] summ_entry = {} if article_id in human_pair_scores: if pref == [1, 0]: if sum_id_i in human_pair_scores[article_id]: human_pair_scores[article_id][sum_id_i] + 1 else: human_pair_scores[article_id][sum_id_i] = 1 else: if sum_id_j in human_pair_scores[article_id]: human_pair_scores[article_id][sum_id_j] + 1 else: human_pair_scores[article_id][sum_id_j] = 1 else: if pref == [1, 0]: summ_entry[sum_id_i] = 1 summ_entry[sum_id_j] = 0 else: summ_entry[sum_id_i] = 0 summ_entry[sum_id_j] = 1 human_pair_scores[article_id] = summ_entry return human_pair_scores # randomize_pref_order and double_prefs are only relevant if the learning function learns f(s0,s1)=pref. in our case, we learn f(s0)=pref[0] and f(s1)=pref[1], so this should be set to False def build_pairs_majority_preferences(entries, sorted_scores, target_type='graded', ignore_ties=False, randomize_pref_order=False, double_prefs=False): pair_list = [] topic_count = 0 anno_count = 0 summ_count = 0 entries_text = {} # get summary text and matching id for article_id, scores_list in tqdm(sorted_scores.items()): temp_entry = {} summ_ids = [s['summ_id'] for s in scores_list] for sid in summ_ids: # get summary text s_text = [s['sys_summ'] for s in scores_list if s['summ_id'] == sid][0] temp_entry['sys_summ' + repr(sid)] = s_text # save in dictionary entries_text[article_id] = temp_entry for article_id in entries: entry = entries[article_id] summ_ids = list(entry.keys()) # mapping from summary text to last summary id with that text. that's the one we will use summ2id = {entries_text[article_id][summ_id]: summ_id for summ_id in summ_ids} # put here the prefs for this article article_prefs = {} # still run through all pairs # really iterate over all pairs. there was an error here before since j started from 1, to prevent i,j=0,0. but this also lead to i,j=x,0 never be chosen the situation i=j is solved otherwise for i in range(len(summ_ids)): for j in range(len(summ_ids)): # run through dictionary containing summ_ids and matching text # for key, value in entries_text[article_id].items(): # get text for current summaries i and j # if key == summ_ids[i]: # text_i = value # elif key == summ_ids[j]: # text_j = value text_i = entries_text[article_id][summ_ids[i]] text_j = entries_text[article_id][summ_ids[j]] # check if text is identical, if yes skip if i == j or text_i == text_j: # print("DUPLICATE FOUND: TEXT i", text_i, "TEXT j", text_i) continue # get the unique summ ids unique_summ_id_pair = [summ2id[text_i], summ2id[text_j]] # some debug output # noinspection PyUnreachableCode if False: print("%s vs. %s (IDs %s vs. %s)" % ( summ_ids[i], summ_ids[j], unique_summ_id_pair[0], unique_summ_id_pair[1])) full_entry = sorted_scores[article_id] print(" system %s with score %s (%s) vs." % ( full_entry[i]['sys_name'], full_entry[i]['scores']['redundancy'], entry[summ_ids[i]])) print(" system %s with score %s (%s)" % ( full_entry[j]['sys_name'], full_entry[j]['scores']['redundancy'], entry[summ_ids[j]])) print( " \"%s...\" vs. \"%s...\"" % (full_entry[i]['sys_summ'][:20], full_entry[j]['sys_summ'][:20])) # unique_summ_id_pair.sort() if entry[summ_ids[i]] > entry[summ_ids[j]]: pref = [1, 0] elif entry[summ_ids[i]] < entry[summ_ids[j]]: pref = [0, 1] else: pref = [0.5, 0.5] # if entry[unique_summ_id_pair[0]] > entry[unique_summ_id_pair[1]]: # pref = [1, 0] # elif entry[unique_summ_id_pair[0]] > entry[unique_summ_id_pair[1]]: # pref = [0, 1] # else: # # todo we could completely ignore ties. doesnt change much. low prio # pref = [0.5, 0.5] # sort the ids so that we get a unique key, so that (sys_summ0,sys_summ1) and (sys_summ1,sys_summ0) are the same if unique_summ_id_pair[1] < unique_summ_id_pair[0]: unique_summ_id_pair = unique_summ_id_pair[::-1] pref = pref[::-1] # convert to tuple, otherwise its not hashable for the dict unique_summ_id_pair = tuple(unique_summ_id_pair) # add up the pref to the total pref vector of the specific summary pair. create a new entry if not existing article_prefs[unique_summ_id_pair] = article_prefs.get(unique_summ_id_pair, np.array([0, 0])) + np.array(pref) # transform to target for unique_summ_id_pair, pref in article_prefs.items(): # depending on the mode, use binary target, or graded one pref = (pref / (pref[0] + pref[1])).tolist() if target_type == 'binary': if pref[0] > pref[1]: pref = [1, 0] elif pref[0] < pref[1]: pref = [1, 0] else: pref = [0.5, 0.5] # skip if it is a tie and you want to ignore ties if pref[0] != 0.5 or not ignore_ties: # include the pref two times, once in one direction and once in the other direction if double_prefs: pair_list.append((article_id, unique_summ_id_pair[1], unique_summ_id_pair[0], pref[::-1])) pair_list.append((article_id, unique_summ_id_pair[0], unique_summ_id_pair[1], pref)) else: # include the pref in the reverse order by chance. this might be necessary if there is a bias in the distribution of the score, e.g. if they are ordered if randomize_pref_order and bool(random.getrandbits(1)): pair_list.append((article_id, unique_summ_id_pair[1], unique_summ_id_pair[0], pref[::-1])) else: pair_list.append((article_id, unique_summ_id_pair[0], unique_summ_id_pair[1], pref)) topic_count += 1 anno_count += len(summ_ids) summ_count += len(summ2id) print("topics", topic_count) print("annotations", anno_count) print("summ", summ_count) print("summ pairs", len(pair_list)) return pair_list def build_pair_vecs(vecs, pairs): pair_vec_list = [] for aid, sid1, sid2, _ in pairs: article_vec = list(vecs[aid]['article']) s1_vec = list(vecs[aid][sid1]) s2_vec = list(vecs[aid][sid2]) pair_vec_list.append([article_vec + s1_vec, article_vec + s2_vec]) return pair_vec_list def pair_train_rewarder(vec_dic, pairs, deep_model, optimiser, loss_only, batch_size=32, device='cpu'): loss_list = [] shuffled_pairs = pairs[:] np.random.shuffle(shuffled_pairs) vec_pairs = build_pair_vecs(vec_dic, shuffled_pairs) # print('total number of pairs built: {}'.format(len(vec_pairs))) for pointer in range(int((len( pairs) - 1) / batch_size) + 1): # there was a bug here. when len(pairs) was a vielfaches of 32, then there was a last batch with [] causing an exception vec_batch = vec_pairs[pointer * batch_size:(pointer + 1) * batch_size] target_batch = shuffled_pairs[pointer * batch_size:(pointer + 1) * batch_size] target_batch = [ee[-1] for ee in target_batch] if loss_only: loss = deep_pair_train_loss_only(vec_batch, target_batch, deep_model, optimiser, device) else: loss = deep_pair_train(vec_batch, target_batch, deep_model, optimiser, device) loss_list.append(loss) return np.mean(loss_list) def test_rewarder(vec_list, human_scores, model, device, plot_file=None): results = {'rho': [], 'rho_p': [], 'pcc': [], 'pcc_p': [], 'tau': [], 'tau_p': [], 'rho_global': [], 'pcc_global': [], 'tau_global': []} true_scores_all = [] pred_scores_all = np.array([]) # print(human_scores) # pred_scores_all = [] for article_id in human_scores: entry = human_scores[article_id] summ_ids = list(entry.keys()) if len(summ_ids) < 2: continue concat_vecs = [] true_scores = [] for i in range(len(summ_ids)): article_vec = list(vec_list[article_id]['article']) summ_vec = list(vec_list[article_id][summ_ids[i]]) # print(np.array(concat_vecs).shape, np.array(article_vec).shape, np.array(summ_vec).shape) concat_vecs.append(article_vec + summ_vec) # print(np.array(concat_vecs).shape) # print(entry[summ_ids[i]]) true_scores.append(entry[summ_ids[i]]) true_scores_all += true_scores # add scores for topic to list of all scores input = Variable(torch.from_numpy(np.array(concat_vecs)).float()) if 'gpu' in device: input = input.to('cuda') model.eval() with torch.no_grad(): # print(true_scores) # print(np.array(true_scores).shape) # print(input) # print(input.shape) # print(model(input).data.cpu().numpy()) # print(model(input).data.cpu().numpy().shape) pred_scores = model(input).data.cpu().numpy().reshape(1, -1)[0] pred_scores_all = np.concatenate((pred_scores_all, pred_scores), axis=0) # pred_scores_all += pred_scores.tolist() rho, rho_p = spearmanr(true_scores, pred_scores) pcc, pcc_p = pearsonr(true_scores, pred_scores) tau, tau_p = kendalltau(true_scores, pred_scores) if not (math.isnan(rho) or math.isnan(pcc) or math.isnan(tau)): results['rho'].append(rho) results['rho_p'].append(rho_p) results['pcc'].append(pcc) results['pcc_p'].append(pcc_p) results['tau'].append(tau) results['tau_p'].append(tau_p) rho = spearmanr(true_scores_all, pred_scores_all)[0] pcc = pearsonr(true_scores_all, pred_scores_all)[0] tau = kendalltau(true_scores_all, pred_scores_all)[0] if not (math.isnan(rho) or math.isnan(pcc) or math.isnan(tau)): results['rho_global'].append(rho) results['pcc_global'].append(pcc) results['tau_global'].append(tau) if plot_file is not None: fig, ax = plt.subplots() # true_scores_all=np.array(true_scores_all) # pred_scores_all=np.array(pred_scores_all) unique = np.sort(np.unique(true_scores_all)) data_to_plot = [pred_scores_all[true_score == true_scores_all] for true_score in unique] # bw_methods determines how soft the distribution curve will be. lower values are more sharp ax.violinplot(data_to_plot, showmeans=True, showmedians=True, bw_method=0.2) ax.scatter(true_scores_all + np.random.normal(0, 0.1, pred_scores_all.shape[0]), pred_scores_all, marker=".", s=3, alpha=0.5) ax.set_title('Comparison and distributions of true values to predicted score') ax.set_xlabel('true scores') ax.set_ylabel('predicted scores') xticklabels = true_scores_all ax.set_xticks(true_scores_all) print("violin plot written to: %s" % plot_file) plt.savefig(plot_file) return results def parse_args(argv): ap = argparse.ArgumentParser("arguments for summary sampler") ap.add_argument('-e', '--epoch_num', type=int, default=50) ap.add_argument('-b', '--batch_size', type=int, default=32) ap.add_argument('-tt', '--train_type', type=str, help='pairwise or regression', default='pairwise') ap.add_argument('-tp', '--train_percent', type=float, help='how many data used for training', default=.64) ap.add_argument('-dp', '--dev_percent', type=float, help='how many data used for dev', default=.16) ap.add_argument('-lr', '--learn_rate', type=float, help='learning rate', default=3e-4) ap.add_argument('-mt', '--model_type', type=str, help='deep/linear', default='linear') ap.add_argument('-dv', '--device', type=str, help='cpu/gpu', default='gpu') ap.add_argument('-se', '--seed', type=int, help='random seed number', default='1') ap.add_argument('-fn', '--file_name', type=str, help='file name for csv output', default='BetterRewardsStatistics_test.csv') args = ap.parse_args(argv) return args.epoch_num, args.batch_size, args.train_type, args.train_percent, args.dev_percent, args.learn_rate, args.model_type, args.device, args.seed, args.file_name def main(argv): epoch_num, batch_size, train_type, train_percent, dev_percent, learn_rate, model_type, device, seed, file_name = parse_args( argv[1:]) print('\n=====Arguments====') print('epoch num {}'.format(epoch_num)) print('batch size {}'.format(batch_size)) print('train type {}'.format(train_type)) print('train percent {}'.format(train_percent)) print('dev percent {}'.format(dev_percent)) print('learn rate {}'.format(learn_rate)) print('model type {}'.format(model_type)) print('device {}'.format(device)) print('seed {}'.format(seed)) print('file name {}'.format(file_name)) print('=====Arguments====\n') csv_column_names = ['seed', 'learn_rate', 'model_type', 'train_pairs', 'dev_pairs', 'test_pairs', 'epoch_num', 'loss_train', 'loss_dev', 'loss_test', 'rho_train', 'rho_p_train', 'pcc_train', 'pcc_p_train', 'tau_train', 'tau_p_train', 'rho_train_global', 'pcc_train_global', 'tau_train_global', 'rho_dev', 'rho_p_dev', 'pcc_dev', 'pcc_p_dev', 'tau_dev', 'tau_p_dev', 'rho_dev_global', 'pcc_dev_global', 'tau_dev_global', 'rho_test', 'rho_p_test', 'pcc_test', 'pcc_p_test', 'tau_test', 'tau_p_test', 'rho_test_global', 'pcc_test_global', 'tau_test_global'] # check if csv_file exists if path.exists(file_name): csv_exists = True else: csv_exists = False with open(file_name, 'a', newline='') as csv_file: writer = csv.writer(csv_file) # if a new csv_file is generated, write column names if csv_exists is False: writer.writerow(csv_column_names) np.random.seed(seed=seed) random.seed(seed) torch.random.manual_seed(seed) torch.manual_seed(seed) if train_percent + dev_percent >= 1.: print('ERROR! Train data percentage plus dev data percentage is {}! Make sure the sum is below 1.0!'.format( train_percent + dev_percent)) exit(1) BERT_VEC_LENGTH = 1024 # change this to 768 if you use bert-base deep_model, optimiser = build_model(model_type, BERT_VEC_LENGTH * 2, learn_rate) if 'gpu' in device: deep_model.to('cuda') torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # read human scores and vectors for summaries/docs, and split the train/dev/test set sorted_scores = read_sorted_scores() # read pair anno scores pair_anno_scores = read_pair_anno_scores() # train, dev, test, all = parse_split_data(sorted_scores, train_percent, dev_percent) train, dev, test, all = parse_split_data_balanced(sorted_scores, train_percent, dev_percent) # without majority preferences # train_pairs = build_pairs(train) # dev_pairs = build_pairs(dev) # test_pairs = build_pairs(test) # without majority preferences but with pair anno train_pairs = build_anno_pairs(train, pair_anno_scores) dev_pairs = build_anno_pairs(dev, pair_anno_scores) test_pairs = build_anno_pairs(test, pair_anno_scores) # with majority preferences # train_pairs = build_pairs_majority_preferences(train, sorted_scores) # dev_pairs = build_pairs_majority_preferences(dev, sorted_scores) # test_pairs = build_pairs_majority_preferences(test, sorted_scores) # with majority preferences and pair anno # train_pairs = build_anno_pairs_majority_preferences(train, sorted_scores, pair_anno_scores) # dev_pairs = build_anno_pairs_majority_preferences(dev, sorted_scores, pair_anno_scores) # test_pairs = build_anno_pairs_majority_preferences(test, sorted_scores, pair_anno_scores) # build human pair scores for pairs train_anno = build_human_pair_scores(train_pairs) dev_anno = build_human_pair_scores(dev_pairs) test_anno = build_human_pair_scores(test_pairs) print(len(train_pairs), len(dev_pairs), len(test_pairs)) # read bert vectors with open('data/doc_summ_bert_vectors.pkl', 'rb') as ff: all_vec_dic = pickle.load(ff) pcc_list = [] weights_list = [] for ii in range(epoch_num + 1): print('\n=====EPOCH {}====='.format(ii)) if ii == 0: # do not train in epoch 0, just evaluate the performance of the randomly initialized model (sanity check and baseline) loss_train = pair_train_rewarder(all_vec_dic, train_pairs, deep_model, optimiser, True, batch_size, device) else: # from epoch 1 on, receive the data and learn from it. the loss is still the loss before fed with the training examples loss_train = pair_train_rewarder(all_vec_dic, train_pairs, deep_model, optimiser, False, batch_size, device) loss_dev = pair_train_rewarder(all_vec_dic, dev_pairs, deep_model, optimiser, True, batch_size, device) loss_test = pair_train_rewarder(all_vec_dic, test_pairs, deep_model, optimiser, True, batch_size, device) csv_row = [seed, learn_rate, model_type, len(train_pairs), len(dev_pairs), len(test_pairs), ii, loss_train, loss_dev, loss_test] print('--> losses (train,dev,test)', loss_train, loss_dev, loss_test) # Train-Data only print("==Train==") # results_train = test_rewarder(all_vec_dic, train, deep_model, device) results_train = test_rewarder(all_vec_dic, train_anno, deep_model, device) for metric in results_train: print('{}\t{}'.format(metric, np.mean(results_train[metric]))) csv_row.append(np.mean(results_train[metric])) print("==Dev==") # results = test_rewarder(all_vec_dic, dev, deep_model, device) results = test_rewarder(all_vec_dic, dev_anno, deep_model, device) for metric in results: print('{}\t{}'.format(metric, np.mean(results[metric]))) csv_row.append(np.mean(results[metric])) # Test-Data only print("==Test==") # results_test = test_rewarder(all_vec_dic, test, deep_model, device) results_test = test_rewarder(all_vec_dic, test_anno, deep_model, device) for metric in results_test: print('{}\t{}'.format(metric, np.mean(results_test[metric]))) csv_row.append(np.mean(results_test[metric])) writer.writerow(csv_row) pcc_list.append(np.mean(results['pcc'])) weights_list.append(copy.deepcopy(deep_model.state_dict())) idx = np.argmax(pcc_list) best_result = pcc_list[idx] print('\n======Best results come from epoch no. {}====='.format(idx)) deep_model.load_state_dict(weights_list[idx]) output_pattern = 'batch{}_{}_trainPercent{}_seed{}_lrate{}_{}_epoch{}'.format( batch_size, train_type, train_percent, seed, learn_rate, model_type, epoch_num ) test_results = test_rewarder(all_vec_dic, test, deep_model, device, os.path.join(OUTPUTS_DIR, output_pattern + '_onTest.pdf')) test_rewarder(all_vec_dic, train, deep_model, device, os.path.join(OUTPUTS_DIR, output_pattern + '_onTrain.pdf')) test_rewarder(all_vec_dic, dev, deep_model, device, os.path.join(OUTPUTS_DIR, output_pattern + '_onDev.pdf')) print('Its performance on the test set is:') for metric in test_results: print('{}\t{}'.format(metric, np.mean(test_results[metric]))) model_weight_name = 'pcc{0:.4f}_'.format(np.mean(test_results['pcc'])) model_weight_name += 'seed{}_epoch{}_batch{}_{}_trainPercent{}_lrate{}_{}.model'.format( seed, epoch_num, batch_size, train_type, train_percent, learn_rate, model_type ) torch.save(weights_list[idx], os.path.join(MODEL_WEIGHT_DIR, model_weight_name)) print('\nbest model weight saved to: {}'.format(os.path.join(MODEL_WEIGHT_DIR, model_weight_name))) if __name__ == '__main__': main(sys.argv)
[ "numpy.random.seed", "argparse.ArgumentParser", "numpy.argmax", "random.shuffle", "numpy.mean", "torch.nn.Softmax", "pickle.load", "numpy.random.normal", "scipy.stats.kendalltau", "torch.no_grad", "os.path.join", "numpy.unique", "torch.nn.BCELoss", "os.path.exists", "random.seed", "torch.nn.Linear", "matplotlib.pyplot.subplots", "numpy.random.shuffle", "math.isnan", "scorer.data_helper.json_reader.read_pair_anno_scores", "csv.writer", "torch.random.manual_seed", "torch.manual_seed", "scipy.stats.pearsonr", "random.random", "numpy.concatenate", "torch.nn.ReLU", "scipy.stats.spearmanr", "scorer.data_helper.json_reader.read_sorted_scores", "numpy.array", "random.getrandbits", "matplotlib.pyplot.savefig" ]
[((1669, 1696), 'random.shuffle', 'random.shuffle', (['article_ids'], {}), '(article_ids)\n', (1683, 1696), False, 'import random\n'), ((3637, 3660), 'torch.nn.Softmax', 'torch.nn.Softmax', ([], {'dim': '(1)'}), '(dim=1)\n', (3653, 3660), False, 'import torch\n'), ((4015, 4033), 'torch.nn.BCELoss', 'torch.nn.BCELoss', ([], {}), '()\n', (4031, 4033), False, 'import torch\n'), ((4545, 4568), 'torch.nn.Softmax', 'torch.nn.Softmax', ([], {'dim': '(1)'}), '(dim=1)\n', (4561, 4568), False, 'import torch\n'), ((4923, 4941), 'torch.nn.BCELoss', 'torch.nn.BCELoss', ([], {}), '()\n', (4939, 4941), False, 'import torch\n'), ((16061, 16094), 'numpy.random.shuffle', 'np.random.shuffle', (['shuffled_pairs'], {}), '(shuffled_pairs)\n', (16078, 16094), True, 'import numpy as np\n'), ((16916, 16934), 'numpy.mean', 'np.mean', (['loss_list'], {}), '(loss_list)\n', (16923, 16934), True, 'import numpy as np\n'), ((17214, 17226), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (17222, 17226), True, 'import numpy as np\n'), ((20592, 20648), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""arguments for summary sampler"""'], {}), "('arguments for summary sampler')\n", (20615, 20648), False, 'import argparse\n'), ((23194, 23216), 'os.path.exists', 'path.exists', (['file_name'], {}), '(file_name)\n', (23205, 23216), False, 'from os import path\n'), ((1080, 1095), 'random.random', 'random.random', ([], {}), '()\n', (1093, 1095), False, 'import random\n'), ((18715, 18750), 'scipy.stats.spearmanr', 'spearmanr', (['true_scores', 'pred_scores'], {}), '(true_scores, pred_scores)\n', (18724, 18750), False, 'from scipy.stats import spearmanr, pearsonr, kendalltau\n'), ((18772, 18806), 'scipy.stats.pearsonr', 'pearsonr', (['true_scores', 'pred_scores'], {}), '(true_scores, pred_scores)\n', (18780, 18806), False, 'from scipy.stats import spearmanr, pearsonr, kendalltau\n'), ((18828, 18864), 'scipy.stats.kendalltau', 'kendalltau', (['true_scores', 'pred_scores'], {}), '(true_scores, pred_scores)\n', (18838, 18864), False, 'from scipy.stats import spearmanr, pearsonr, kendalltau\n'), ((19193, 19236), 'scipy.stats.spearmanr', 'spearmanr', (['true_scores_all', 'pred_scores_all'], {}), '(true_scores_all, pred_scores_all)\n', (19202, 19236), False, 'from scipy.stats import spearmanr, pearsonr, kendalltau\n'), ((19250, 19292), 'scipy.stats.pearsonr', 'pearsonr', (['true_scores_all', 'pred_scores_all'], {}), '(true_scores_all, pred_scores_all)\n', (19258, 19292), False, 'from scipy.stats import spearmanr, pearsonr, kendalltau\n'), ((19306, 19350), 'scipy.stats.kendalltau', 'kendalltau', (['true_scores_all', 'pred_scores_all'], {}), '(true_scores_all, pred_scores_all)\n', (19316, 19350), False, 'from scipy.stats import spearmanr, pearsonr, kendalltau\n'), ((19597, 19611), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (19609, 19611), True, 'from matplotlib import pyplot as plt\n'), ((20516, 20538), 'matplotlib.pyplot.savefig', 'plt.savefig', (['plot_file'], {}), '(plot_file)\n', (20527, 20538), True, 'from matplotlib import pyplot as plt\n'), ((23354, 23374), 'csv.writer', 'csv.writer', (['csv_file'], {}), '(csv_file)\n', (23364, 23374), False, 'import csv\n'), ((23523, 23548), 'numpy.random.seed', 'np.random.seed', ([], {'seed': 'seed'}), '(seed=seed)\n', (23537, 23548), True, 'import numpy as np\n'), ((23557, 23574), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (23568, 23574), False, 'import random\n'), ((23583, 23613), 'torch.random.manual_seed', 'torch.random.manual_seed', (['seed'], {}), '(seed)\n', (23607, 23613), False, 'import torch\n'), ((23622, 23645), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (23639, 23645), False, 'import torch\n'), ((24329, 24349), 'scorer.data_helper.json_reader.read_sorted_scores', 'read_sorted_scores', ([], {}), '()\n', (24347, 24349), False, 'from scorer.data_helper.json_reader import read_sorted_scores, read_pair_anno_scores, read_articles, read_processed_scores, read_scores\n'), ((24411, 24434), 'scorer.data_helper.json_reader.read_pair_anno_scores', 'read_pair_anno_scores', ([], {}), '()\n', (24432, 24434), False, 'from scorer.data_helper.json_reader import read_sorted_scores, read_pair_anno_scores, read_articles, read_processed_scores, read_scores\n'), ((28711, 28730), 'numpy.argmax', 'np.argmax', (['pcc_list'], {}), '(pcc_list)\n', (28720, 28730), True, 'import numpy as np\n'), ((2866, 2896), 'torch.nn.Linear', 'torch.nn.Linear', (['vec_length', '(1)'], {}), '(vec_length, 1)\n', (2881, 2896), False, 'import torch\n'), ((3034, 3049), 'torch.nn.ReLU', 'torch.nn.ReLU', ([], {}), '()\n', (3047, 3049), False, 'import torch\n'), ((18207, 18222), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (18220, 18222), False, 'import torch\n'), ((18584, 18638), 'numpy.concatenate', 'np.concatenate', (['(pred_scores_all, pred_scores)'], {'axis': '(0)'}), '((pred_scores_all, pred_scores), axis=0)\n', (18598, 18638), True, 'import numpy as np\n'), ((19366, 19381), 'math.isnan', 'math.isnan', (['rho'], {}), '(rho)\n', (19376, 19381), False, 'import math\n'), ((19385, 19400), 'math.isnan', 'math.isnan', (['pcc'], {}), '(pcc)\n', (19395, 19400), False, 'import math\n'), ((19404, 19419), 'math.isnan', 'math.isnan', (['tau'], {}), '(tau)\n', (19414, 19419), False, 'import math\n'), ((19743, 19769), 'numpy.unique', 'np.unique', (['true_scores_all'], {}), '(true_scores_all)\n', (19752, 19769), True, 'import numpy as np\n'), ((26057, 26072), 'pickle.load', 'pickle.load', (['ff'], {}), '(ff)\n', (26068, 26072), False, 'import pickle\n'), ((29201, 29258), 'os.path.join', 'os.path.join', (['OUTPUTS_DIR', "(output_pattern + '_onTest.pdf')"], {}), "(OUTPUTS_DIR, output_pattern + '_onTest.pdf')\n", (29213, 29258), False, 'import os\n'), ((29344, 29402), 'os.path.join', 'os.path.join', (['OUTPUTS_DIR', "(output_pattern + '_onTrain.pdf')"], {}), "(OUTPUTS_DIR, output_pattern + '_onTrain.pdf')\n", (29356, 29402), False, 'import os\n'), ((29464, 29520), 'os.path.join', 'os.path.join', (['OUTPUTS_DIR', "(output_pattern + '_onDev.pdf')"], {}), "(OUTPUTS_DIR, output_pattern + '_onDev.pdf')\n", (29476, 29520), False, 'import os\n'), ((29734, 29762), 'numpy.mean', 'np.mean', (["test_results['pcc']"], {}), "(test_results['pcc'])\n", (29741, 29762), True, 'import numpy as np\n'), ((30001, 30050), 'os.path.join', 'os.path.join', (['MODEL_WEIGHT_DIR', 'model_weight_name'], {}), '(MODEL_WEIGHT_DIR, model_weight_name)\n', (30013, 30050), False, 'import os\n'), ((18881, 18896), 'math.isnan', 'math.isnan', (['rho'], {}), '(rho)\n', (18891, 18896), False, 'import math\n'), ((18900, 18915), 'math.isnan', 'math.isnan', (['pcc'], {}), '(pcc)\n', (18910, 18915), False, 'import math\n'), ((18919, 18934), 'math.isnan', 'math.isnan', (['tau'], {}), '(tau)\n', (18929, 18934), False, 'import math\n'), ((20092, 20142), 'numpy.random.normal', 'np.random.normal', (['(0)', '(0.1)', 'pred_scores_all.shape[0]'], {}), '(0, 0.1, pred_scores_all.shape[0])\n', (20108, 20142), True, 'import numpy as np\n'), ((28599, 28622), 'numpy.mean', 'np.mean', (["results['pcc']"], {}), "(results['pcc'])\n", (28606, 28622), True, 'import numpy as np\n'), ((30108, 30157), 'os.path.join', 'os.path.join', (['MODEL_WEIGHT_DIR', 'model_weight_name'], {}), '(MODEL_WEIGHT_DIR, model_weight_name)\n', (30120, 30157), False, 'import os\n'), ((3443, 3461), 'numpy.array', 'np.array', (['vec_list'], {}), '(vec_list)\n', (3451, 3461), True, 'import numpy as np\n'), ((4351, 4369), 'numpy.array', 'np.array', (['vec_list'], {}), '(vec_list)\n', (4359, 4369), True, 'import numpy as np\n'), ((13857, 13871), 'numpy.array', 'np.array', (['pref'], {}), '(pref)\n', (13865, 13871), True, 'import numpy as np\n'), ((27744, 27774), 'numpy.mean', 'np.mean', (['results_train[metric]'], {}), '(results_train[metric])\n', (27751, 27774), True, 'import numpy as np\n'), ((28100, 28124), 'numpy.mean', 'np.mean', (['results[metric]'], {}), '(results[metric])\n', (28107, 28124), True, 'import numpy as np\n'), ((28502, 28531), 'numpy.mean', 'np.mean', (['results_test[metric]'], {}), '(results_test[metric])\n', (28509, 28531), True, 'import numpy as np\n'), ((29653, 29682), 'numpy.mean', 'np.mean', (['test_results[metric]'], {}), '(test_results[metric])\n', (29660, 29682), True, 'import numpy as np\n'), ((13837, 13853), 'numpy.array', 'np.array', (['[0, 0]'], {}), '([0, 0])\n', (13845, 13853), True, 'import numpy as np\n'), ((18076, 18097), 'numpy.array', 'np.array', (['concat_vecs'], {}), '(concat_vecs)\n', (18084, 18097), True, 'import numpy as np\n'), ((27680, 27710), 'numpy.mean', 'np.mean', (['results_train[metric]'], {}), '(results_train[metric])\n', (27687, 27710), True, 'import numpy as np\n'), ((28042, 28066), 'numpy.mean', 'np.mean', (['results[metric]'], {}), '(results[metric])\n', (28049, 28066), True, 'import numpy as np\n'), ((28439, 28468), 'numpy.mean', 'np.mean', (['results_test[metric]'], {}), '(results_test[metric])\n', (28446, 28468), True, 'import numpy as np\n'), ((3848, 3864), 'numpy.array', 'np.array', (['target'], {}), '(target)\n', (3856, 3864), True, 'import numpy as np\n'), ((4756, 4772), 'numpy.array', 'np.array', (['target'], {}), '(target)\n', (4764, 4772), True, 'import numpy as np\n'), ((15048, 15069), 'random.getrandbits', 'random.getrandbits', (['(1)'], {}), '(1)\n', (15066, 15069), False, 'import random\n')]
import argparse parser = argparse.ArgumentParser(prog="connvis",description='Web-based conntrack that tries to simplify the data for privacy research') parser.add_argument('--nodnsseed', help='do not seed domains from dnsmasq history',action='store_true') parser.add_argument('--shell', help='Enable interactive shell',action='store_true') args = parser.parse_args() import ipaddress homenetwork = ipaddress.ip_network('192.168.0.0/24') homenetwork_router = ipaddress.ip_address('192.168.0.1') aggregate_google=True # That is a lot of domains ignored_domains=["osoite.local"]
[ "ipaddress.ip_address", "ipaddress.ip_network", "argparse.ArgumentParser" ]
[((25, 157), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': '"""connvis"""', 'description': '"""Web-based conntrack that tries to simplify the data for privacy research"""'}), "(prog='connvis', description=\n 'Web-based conntrack that tries to simplify the data for privacy research')\n", (48, 157), False, 'import argparse\n'), ((401, 439), 'ipaddress.ip_network', 'ipaddress.ip_network', (['"""192.168.0.0/24"""'], {}), "('192.168.0.0/24')\n", (421, 439), False, 'import ipaddress\n'), ((461, 496), 'ipaddress.ip_address', 'ipaddress.ip_address', (['"""192.168.0.1"""'], {}), "('192.168.0.1')\n", (481, 496), False, 'import ipaddress\n')]
import collections import cPickle as pickle import glob import itertools import json import operator import os import re import sys from program_synthesis.karel.dataset import dataset from program_synthesis.karel.dataset import executor from program_synthesis.karel.dataset.karel_runtime import KarelRuntime from program_synthesis.karel.models import karel_model from program_synthesis.common.tools.saver import restore_args BASE_DIR = "" with open(BASE_DIR + "text2code-models/karel-sgd-cl1-lr1-lds100k-ldr0.5/report-dev-00100100.jsonl") as f: baseline_report = [] print(f.readline()) for line in f: baseline_report.append(json.loads(line)) class Args(object): model_dir = BASE_DIR + 'program_synthesis-models/karel-lgrl-ref-m123-sgd-cl1-lr0.1-lds100k-ldr0.5' step = 250100 args = Args() restore_args(args) args.word_vocab = ',,/data/karel/word.vocab' m = karel_model.KarelLGRLRefineModel(args) batch_processor = m.batch_processor(for_eval=True) m.args.max_beam_trees = 64 m.args.max_eval_trials = 64 i = 0 result = [] while i < len(baseline_report): batch = [] while len(batch) < 32 and i < len(baseline_report): if baseline_report[i]['code']['info']['trees_checked'] == 1: i += 1 continue e = dataset.KarelExample.from_dict(baseline_report[i]['example']) ref_code_sequence = baseline_report[i]['code']['info']['candidates'][0] e.ref_example = dataset.KarelExample(idx=None, guid=None, code_sequence=ref_code_sequence, input_tests=e.input_tests, tests=e.tests) batch.append(e) i += 1 print("Starting batch (%d)..." % i) res = m.inference(batch_processor(batch)) for example, infer in zip(batch, res): result.append((example, infer)) # if i > 100: # break print(len(result), len(baseline_report)) the_executor = executor.KarelExecutor() stats = {'total': len(result), 'fixed': 0} refinement_results = [] for example, infer in result: if not infer.code_sequence: continue correct = True for test in example.input_tests + example.tests: try: log = the_executor.execute(infer.code_sequence, None, test['input']) if log.result != test['output']: correct = False break except (executor.ExecutorRuntimeException, executor.ExecutorSyntaxException) as e: correct = False break refinement_results.append(correct) if correct: stats['fixed'] += 1 print(float(stats['fixed']) / stats['total'], stats['fixed'], stats['total'])
[ "program_synthesis.karel.dataset.dataset.KarelExample.from_dict", "program_synthesis.karel.dataset.dataset.KarelExample", "json.loads", "program_synthesis.common.tools.saver.restore_args", "program_synthesis.karel.models.karel_model.KarelLGRLRefineModel", "program_synthesis.karel.dataset.executor.KarelExecutor" ]
[((822, 840), 'program_synthesis.common.tools.saver.restore_args', 'restore_args', (['args'], {}), '(args)\n', (834, 840), False, 'from program_synthesis.common.tools.saver import restore_args\n'), ((890, 928), 'program_synthesis.karel.models.karel_model.KarelLGRLRefineModel', 'karel_model.KarelLGRLRefineModel', (['args'], {}), '(args)\n', (922, 928), False, 'from program_synthesis.karel.models import karel_model\n'), ((1860, 1884), 'program_synthesis.karel.dataset.executor.KarelExecutor', 'executor.KarelExecutor', ([], {}), '()\n', (1882, 1884), False, 'from program_synthesis.karel.dataset import executor\n'), ((1280, 1341), 'program_synthesis.karel.dataset.dataset.KarelExample.from_dict', 'dataset.KarelExample.from_dict', (["baseline_report[i]['example']"], {}), "(baseline_report[i]['example'])\n", (1310, 1341), False, 'from program_synthesis.karel.dataset import dataset\n'), ((1446, 1566), 'program_synthesis.karel.dataset.dataset.KarelExample', 'dataset.KarelExample', ([], {'idx': 'None', 'guid': 'None', 'code_sequence': 'ref_code_sequence', 'input_tests': 'e.input_tests', 'tests': 'e.tests'}), '(idx=None, guid=None, code_sequence=ref_code_sequence,\n input_tests=e.input_tests, tests=e.tests)\n', (1466, 1566), False, 'from program_synthesis.karel.dataset import dataset\n'), ((647, 663), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (657, 663), False, 'import json\n')]
import pyximport; pyximport.install(setup_args = {"script_args" : ["--force"]}, language_level=3) import unittest import uttemplate import cymapinterfacetester as cyt from cykhash import Int64to64Map, Int32to32Map, Float64to64Map, Float32to32Map, PyObjectMap AS_LIST = {'int64' : cyt.as_py_list_int64, 'int32' : cyt.as_py_list_int32, 'float64' : cyt.as_py_list_int64_float64, 'float32' : cyt.as_py_list_int32_float32, 'object' : cyt.as_py_list_pyobject, } USE_INT = {'int64' : cyt.use_int64, 'int32' : cyt.use_int32, 'float64' : cyt.use_int64_float64, 'float32' : cyt.use_int32_float32, 'object' : cyt.use_pyobject, } USE_FLOAT = {'int64' : cyt.use_float64, 'int32' : cyt.use_float32, 'float64' : cyt.use_float64_float64, 'float32' : cyt.use_float32_float32, 'object' : cyt.use_pyobject, } MAP = {'int64' : Int64to64Map, 'int32' : Int32to32Map, 'float64' : Float64to64Map, 'float32' : Float32to32Map, 'object' : PyObjectMap, } #just making sure the interface can be accessed: @uttemplate.from_templates(['int64', 'int32', 'float64', 'float32', ]) class CyMypInterfaceTester(unittest.TestCase): def template_cimport_use_int(self, map_type): received=USE_INT[map_type]([1,2,3,4], [5,6,7,8], [2,3]) expected=[6,7] self.assertEqual(received, expected) def template_cimport_use_float(self, map_type): received=USE_FLOAT[map_type]([1,2,3,4], [5.5,6.5,7.5,8.5], [2,3]) expected=[6.5,7.5] self.assertEqual(received, expected) def template_as_py_list(self, map_type): cy_map = MAP[map_type]() cy_map[3] = 20 lst = AS_LIST[map_type](cy_map) self.assertEqual(lst, [3,20]) def template_as_py_list_2(self, map_type): cy_map = MAP[map_type]() cy_map[3] = 5 cy_map[4] = 6 lst = AS_LIST[map_type](cy_map) self.assertEqual(set(lst), set([3,4,5,6]))
[ "pyximport.install", "uttemplate.from_templates" ]
[((19, 95), 'pyximport.install', 'pyximport.install', ([], {'setup_args': "{'script_args': ['--force']}", 'language_level': '(3)'}), "(setup_args={'script_args': ['--force']}, language_level=3)\n", (36, 95), False, 'import pyximport\n'), ((1290, 1357), 'uttemplate.from_templates', 'uttemplate.from_templates', (["['int64', 'int32', 'float64', 'float32']"], {}), "(['int64', 'int32', 'float64', 'float32'])\n", (1315, 1357), False, 'import uttemplate\n')]
import pytest from tests.util import createNode node = createNode() @pytest.mark.query def test_getzmqnotifications(): # 01 zmq = node.zmq.getzmqnotifications() assert zmq or zmq == []
[ "tests.util.createNode" ]
[((56, 68), 'tests.util.createNode', 'createNode', ([], {}), '()\n', (66, 68), False, 'from tests.util import createNode\n')]
from pandas._config.config import reset_option from preprocess.load_data.data_loader import load_hotel_reserve import pandas as pd from datetime import date, datetime from dateutil.relativedelta import relativedelta def main(): """全結合処理 顧客ごとに2017年1月〜2017年3月の月間合計利用金額を計算 利用がない日は0とする 日付はチェックイン日付を利用する """ customer_tb, hotel_tb, reserve_tb = load_hotel_reserve() print(reserve_tb) print(customer_tb) # 日付マスタを生成 month_mst = pd.DataFrame({'year_month': [(date(2017, 1, 1) + relativedelta(months=x)).strftime("%Y%m") for x in range(0, 3)]}) # month_mst['year_month'] = pd.to_datetime(month_mst['year_month']) # cross_joinのためにすべて同じ値の結合キーを準備 customer_tb['join_key'] = 0 month_mst['join_key'] = 0 # 顧客テーブルと月テーブルを全結合する customer_mst = pd.merge(customer_tb[['customer_id', 'join_key']], month_mst, on='join_key') customer_mst.info() # 年月の結合キーを予約テーブルで準備 reserve_tb['year_month'] = reserve_tb['checkin_date'] \ .apply(lambda x: pd.to_datetime(x).strftime("%Y%m")) reserve_tb.info() # 予約レコードと結合し、合計予約金額を計算 # TODO: yearで結合できていない(月単位で結合されてしまっている) summary_result = pd.merge( customer_mst, reserve_tb[['customer_id', 'year_month', 'total_price']], on=['customer_id', 'year_month'], how='left' ).groupby(['customer_id', 'year_month'])['total_price'].sum().reset_index() # 予約レコードがなかった場合の合計金額を値なしから0に変換 summary_result.fillna(0, inplace=True) print(summary_result.query('customer_id == "c_1"')) print(reserve_tb.query('customer_id == "c_1"')) if __name__ == '__main__': main()
[ "pandas.merge", "preprocess.load_data.data_loader.load_hotel_reserve", "dateutil.relativedelta.relativedelta", "datetime.date", "pandas.to_datetime" ]
[((364, 384), 'preprocess.load_data.data_loader.load_hotel_reserve', 'load_hotel_reserve', ([], {}), '()\n', (382, 384), False, 'from preprocess.load_data.data_loader import load_hotel_reserve\n'), ((792, 868), 'pandas.merge', 'pd.merge', (["customer_tb[['customer_id', 'join_key']]", 'month_mst'], {'on': '"""join_key"""'}), "(customer_tb[['customer_id', 'join_key']], month_mst, on='join_key')\n", (800, 868), True, 'import pandas as pd\n'), ((1005, 1022), 'pandas.to_datetime', 'pd.to_datetime', (['x'], {}), '(x)\n', (1019, 1022), True, 'import pandas as pd\n'), ((492, 508), 'datetime.date', 'date', (['(2017)', '(1)', '(1)'], {}), '(2017, 1, 1)\n', (496, 508), False, 'from datetime import date, datetime\n'), ((511, 534), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'months': 'x'}), '(months=x)\n', (524, 534), False, 'from dateutil.relativedelta import relativedelta\n'), ((1155, 1285), 'pandas.merge', 'pd.merge', (['customer_mst', "reserve_tb[['customer_id', 'year_month', 'total_price']]"], {'on': "['customer_id', 'year_month']", 'how': '"""left"""'}), "(customer_mst, reserve_tb[['customer_id', 'year_month',\n 'total_price']], on=['customer_id', 'year_month'], how='left')\n", (1163, 1285), True, 'import pandas as pd\n')]
# # Copyright 2021 Splunk Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import os.path as op from .rest_conf import RestmapConf, WebConf __all__ = ["RestBuilderError", "RestBuilder"] class RestBuilderError(Exception): pass class _RestBuilderOutput: readme = "README" default = "default" bin = "bin" def __init__(self, path, product): self._path = path self._product = product self._root_path = op.abspath(self._path) if not op.isdir(self._root_path): os.makedirs(self._root_path) self._content = {} def put(self, subpath, file_name, content): path = op.join(self._root_path, subpath) if not op.isdir(path): os.makedirs(path) full_name = op.join(path, file_name) if full_name not in self._content: self._content[full_name] = [] self._content[full_name].append(content) def save(self): for full_name, contents in list(self._content.items()): full_content = "\n\n".join(contents) with open(full_name, "w") as f: f.writelines(full_content) class RestBuilder: def __init__(self, schema, handler, output_path, *args, **kwargs): """ :param schema: :param schema: RestSchema :param handler: :param output_path: :param args: :param kwargs: """ self._schema = schema self._handler = handler self._output_path = output_path self._args = args self._kwargs = kwargs self.output = _RestBuilderOutput( self._output_path, self._schema.product, ) @property def restmap_admin(self): return self._schema.namespace @property def restmap_admin_externals(self): return RestmapConf.admin_externals(self._schema.endpoints) def build(self): for endpoint in self._schema.endpoints: # If the endpoint is oauth, which is for getting accesstoken. Conf file entries should not get created. if endpoint._name != "oauth": if endpoint._name == "settings": self.output.put( self.output.default, endpoint.conf_name + ".conf", endpoint.generate_default_conf(), ) self.output.put( self.output.readme, endpoint.conf_name + ".conf.spec", endpoint.generate_spec(), ) # Add data input of self defined conf to inputs.conf.spec if endpoint._entities[0] and endpoint._entities[0]._conf_name: lines = [ "[" + endpoint._name + "://<name>]", "placeholder = placeholder", ] self.output.put( self.output.readme, "inputs.conf.spec", "\n".join(lines) ) self.output.put( self.output.bin, endpoint.rh_name + ".py", endpoint.generate_rh(self._handler), ) self.output.put( self.output.default, "restmap.conf", RestmapConf.build( self._schema.endpoints, self._schema.namespace, self._schema.admin_match, ), ) self.output.put( self.output.default, "web.conf", WebConf.build(self._schema.endpoints), ) self.output.save()
[ "os.path.isdir", "os.path.abspath", "os.path.join", "os.makedirs" ]
[((961, 983), 'os.path.abspath', 'op.abspath', (['self._path'], {}), '(self._path)\n', (971, 983), True, 'import os.path as op\n'), ((1158, 1191), 'os.path.join', 'op.join', (['self._root_path', 'subpath'], {}), '(self._root_path, subpath)\n', (1165, 1191), True, 'import os.path as op\n'), ((1273, 1297), 'os.path.join', 'op.join', (['path', 'file_name'], {}), '(path, file_name)\n', (1280, 1297), True, 'import os.path as op\n'), ((999, 1024), 'os.path.isdir', 'op.isdir', (['self._root_path'], {}), '(self._root_path)\n', (1007, 1024), True, 'import os.path as op\n'), ((1038, 1066), 'os.makedirs', 'os.makedirs', (['self._root_path'], {}), '(self._root_path)\n', (1049, 1066), False, 'import os\n'), ((1207, 1221), 'os.path.isdir', 'op.isdir', (['path'], {}), '(path)\n', (1215, 1221), True, 'import os.path as op\n'), ((1235, 1252), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (1246, 1252), False, 'import os\n')]
"""Estimate human performance for the scruples resource.""" import json import logging import click from ....baselines.metrics import METRICS logger = logging.getLogger(__name__) # main function @click.command() @click.argument( 'split_path', type=click.Path(exists=True, file_okay=True, dir_okay=False)) @click.argument( 'output_path', type=click.Path(exists=False, file_okay=True, dir_okay=False)) def human_performance( split_path: str, output_path: str ) -> None: """Estimate human performance on the scruples resource. Read in the split from SPLIT_PATH, then estimate human performance metrics and write them to OUTPUT_PATH. Human performance is computed by comparing the majority vote label of the human performance annotators to the majority vote label of the gold annotators. """ logger.info('Computing human performance.') human_preds = [] gold_labels = [] with click.open_file(split_path, 'r') as split_file: for ln in split_file: row = json.loads(ln) human_preds.append(row['human_perf_label']) gold_labels.append(row['gold_label']) with open(output_path, 'w') as metrics_file: json.dump({ key: metric( y_true=gold_labels, y_pred=human_preds) for key, (_, metric, scorer_kwargs) in METRICS.items() if not scorer_kwargs['needs_proba'] }, metrics_file)
[ "json.loads", "click.open_file", "click.command", "click.Path", "logging.getLogger" ]
[((156, 183), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (173, 183), False, 'import logging\n'), ((204, 219), 'click.command', 'click.command', ([], {}), '()\n', (217, 219), False, 'import click\n'), ((958, 990), 'click.open_file', 'click.open_file', (['split_path', '"""r"""'], {}), "(split_path, 'r')\n", (973, 990), False, 'import click\n'), ((264, 319), 'click.Path', 'click.Path', ([], {'exists': '(True)', 'file_okay': '(True)', 'dir_okay': '(False)'}), '(exists=True, file_okay=True, dir_okay=False)\n', (274, 319), False, 'import click\n'), ((366, 422), 'click.Path', 'click.Path', ([], {'exists': '(False)', 'file_okay': '(True)', 'dir_okay': '(False)'}), '(exists=False, file_okay=True, dir_okay=False)\n', (376, 422), False, 'import click\n'), ((1054, 1068), 'json.loads', 'json.loads', (['ln'], {}), '(ln)\n', (1064, 1068), False, 'import json\n')]
import unittest from datetime import datetime from target_bigquery import stream_utils class TestStreamUtils(unittest.TestCase): """ Unit Tests """ def test_add_metadata_values_to_record(self): """Test adding metadata""" dt = "2017-11-20T16:45:33.000Z" record = { "type": "RECORD", "stream": "foo", "time_extracted": dt, "record": {"id": "2"} } result = stream_utils.add_metadata_values_to_record(record) self.assertEqual(result.get("id"), "2") self.assertEqual(result.get("_sdc_extracted_at"), datetime.strptime(dt, '%Y-%m-%dT%H:%M:%S.%fZ')) extra_attrs = ['_sdc_batched_at', '_sdc_deleted_at'] for attr in extra_attrs: self.assertTrue(attr in result) def test_add_metadata_values_to_record_when_no_time_extracted(self): """Test adding metadata when there's no time extracted in the record message """ record = { "type": "RECORD", "stream": "foo", "record": {"id": "2"} } dt = datetime.now() result = stream_utils.add_metadata_values_to_record(record) self.assertEqual(result.get("id"), "2") self.assertGreaterEqual(result.get("_sdc_extracted_at"), dt) extra_attrs = ['_sdc_extracted_at', '_sdc_batched_at', '_sdc_deleted_at'] for attr in extra_attrs: self.assertTrue(attr in result)
[ "datetime.datetime.strptime", "datetime.datetime.now", "target_bigquery.stream_utils.add_metadata_values_to_record" ]
[((406, 456), 'target_bigquery.stream_utils.add_metadata_values_to_record', 'stream_utils.add_metadata_values_to_record', (['record'], {}), '(record)\n', (448, 456), False, 'from target_bigquery import stream_utils\n'), ((1007, 1021), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1019, 1021), False, 'from datetime import datetime\n'), ((1039, 1089), 'target_bigquery.stream_utils.add_metadata_values_to_record', 'stream_utils.add_metadata_values_to_record', (['record'], {}), '(record)\n', (1081, 1089), False, 'from target_bigquery import stream_utils\n'), ((564, 610), 'datetime.datetime.strptime', 'datetime.strptime', (['dt', '"""%Y-%m-%dT%H:%M:%S.%fZ"""'], {}), "(dt, '%Y-%m-%dT%H:%M:%S.%fZ')\n", (581, 610), False, 'from datetime import datetime\n')]
# -*- coding: utf-8 -*- # StreamOnDemand Community Edition - Kodi Addon # ------------------------------------------------------------ # streamondemand.- XBMC Plugin # Canale per I <NAME> # http://www.mimediacenter.info/foro/viewforum.php?f=36 # ------------------------------------------------------------ import re from core import httptools from platformcode import logger from core import scrapertools from core import servertools from core.item import Item __channel__ = "hokutonoken" def mainlist(item): logger.info("[hokutonoken.py] mainlist") itemlist = [Item(channel=__channel__, title="[COLOR azure]Hokuto no Ken - Prima Serie[/COLOR]", action="episodi", url="http://pastebin.com/BUqD13hb", thumbnail="http://i.imgur.com/MGkqu7c.jpg", fanart="http://fullhdwp.com/images/wallpapers/Group-fist-of-the-north-star-wallpaper-.jpg"), Item(channel=__channel__, title="[COLOR azure]Hokuto no Ken - Seconda Serie[/COLOR]", action="episodi", url="http://pastebin.com/mHXQRBxZ", thumbnail="http://i159.photobucket.com/albums/t123/Janthem/hnk2.jpg", fanart="http://fullhdwp.com/images/wallpapers/Group-fist-of-the-north-star-wallpaper-.jpg")] return itemlist def episodi(item): logger.info("hokutonoken.py episodi") itemlist = [] # Downloads page data = httptools.downloadpage(item.url).data # Extracts the entries patron = '>&lt;br&gt;(.*?)&lt;a href=&quot;(.*?)&quot; target=&quot;_blank&quot;&gt;' matches = re.compile(patron, re.DOTALL).findall(data) for scrapedtitle, scrapedurl in matches: scrapedtitle = scrapertools.decodeHtmlentities(scrapedtitle) itemlist.append( Item(channel=__channel__, action="findvid", title=scrapedtitle, thumbnail=item.thumbnail, url=scrapedurl)) return itemlist def findvid(item): logger.info("[pastebin.py] findvideos") # Downloads page data = item.url itemlist = servertools.find_video_items(data=data) for videoitem in itemlist: videoitem.title = item.title + videoitem.title videoitem.fulltitle = item.fulltitle videoitem.thumbnail = item.thumbnail videoitem.channel = __channel__ return itemlist
[ "core.item.Item", "core.httptools.downloadpage", "platformcode.logger.info", "core.scrapertools.decodeHtmlentities", "core.servertools.find_video_items", "re.compile" ]
[((519, 559), 'platformcode.logger.info', 'logger.info', (['"""[hokutonoken.py] mainlist"""'], {}), "('[hokutonoken.py] mainlist')\n", (530, 559), False, 'from platformcode import logger\n'), ((1427, 1464), 'platformcode.logger.info', 'logger.info', (['"""hokutonoken.py episodi"""'], {}), "('hokutonoken.py episodi')\n", (1438, 1464), False, 'from platformcode import logger\n'), ((2103, 2142), 'platformcode.logger.info', 'logger.info', (['"""[pastebin.py] findvideos"""'], {}), "('[pastebin.py] findvideos')\n", (2114, 2142), False, 'from platformcode import logger\n'), ((2201, 2240), 'core.servertools.find_video_items', 'servertools.find_video_items', ([], {'data': 'data'}), '(data=data)\n', (2229, 2240), False, 'from core import servertools\n'), ((577, 874), 'core.item.Item', 'Item', ([], {'channel': '__channel__', 'title': '"""[COLOR azure]Hokuto no Ken - Prima Serie[/COLOR]"""', 'action': '"""episodi"""', 'url': '"""http://pastebin.com/BUqD13hb"""', 'thumbnail': '"""http://i.imgur.com/MGkqu7c.jpg"""', 'fanart': '"""http://fullhdwp.com/images/wallpapers/Group-fist-of-the-north-star-wallpaper-.jpg"""'}), "(channel=__channel__, title=\n '[COLOR azure]Hokuto no Ken - Prima Serie[/COLOR]', action='episodi',\n url='http://pastebin.com/BUqD13hb', thumbnail=\n 'http://i.imgur.com/MGkqu7c.jpg', fanart=\n 'http://fullhdwp.com/images/wallpapers/Group-fist-of-the-north-star-wallpaper-.jpg'\n )\n", (581, 874), False, 'from core.item import Item\n'), ((973, 1298), 'core.item.Item', 'Item', ([], {'channel': '__channel__', 'title': '"""[COLOR azure]Hokuto no Ken - Seconda Serie[/COLOR]"""', 'action': '"""episodi"""', 'url': '"""http://pastebin.com/mHXQRBxZ"""', 'thumbnail': '"""http://i159.photobucket.com/albums/t123/Janthem/hnk2.jpg"""', 'fanart': '"""http://fullhdwp.com/images/wallpapers/Group-fist-of-the-north-star-wallpaper-.jpg"""'}), "(channel=__channel__, title=\n '[COLOR azure]Hokuto no Ken - Seconda Serie[/COLOR]', action='episodi',\n url='http://pastebin.com/mHXQRBxZ', thumbnail=\n 'http://i159.photobucket.com/albums/t123/Janthem/hnk2.jpg', fanart=\n 'http://fullhdwp.com/images/wallpapers/Group-fist-of-the-north-star-wallpaper-.jpg'\n )\n", (977, 1298), False, 'from core.item import Item\n'), ((1517, 1549), 'core.httptools.downloadpage', 'httptools.downloadpage', (['item.url'], {}), '(item.url)\n', (1539, 1549), False, 'from core import httptools\n'), ((1799, 1844), 'core.scrapertools.decodeHtmlentities', 'scrapertools.decodeHtmlentities', (['scrapedtitle'], {}), '(scrapedtitle)\n', (1830, 1844), False, 'from core import scrapertools\n'), ((1686, 1715), 're.compile', 're.compile', (['patron', 're.DOTALL'], {}), '(patron, re.DOTALL)\n', (1696, 1715), False, 'import re\n'), ((1882, 1992), 'core.item.Item', 'Item', ([], {'channel': '__channel__', 'action': '"""findvid"""', 'title': 'scrapedtitle', 'thumbnail': 'item.thumbnail', 'url': 'scrapedurl'}), "(channel=__channel__, action='findvid', title=scrapedtitle, thumbnail=\n item.thumbnail, url=scrapedurl)\n", (1886, 1992), False, 'from core.item import Item\n')]
import os import json, boto3 def lambda_handler(event, context): print("Trigger Event: ") print(event) region = os.environ['REGION'] elbv2_client = boto3.client('elbv2', region_name=region) available_target_groups = os.environ['AVAILABLE_TARGET_GROUPS'] arr_available_target_groups = available_target_groups.split(',') # Get HTTP Target Group. http_listener_arn = os.environ['HTTP_LISTENER_ARN'] http_listener = elbv2_client.describe_rules( ListenerArn=http_listener_arn) http_target_group_arn = get_current_http_target_group(http_listener['Rules'], arr_available_target_groups) if http_target_group_arn==False: print("Could not identify the target arn") return False print("Current HTTP target group: ") print(http_target_group_arn) # Get HTTPS listener rules. https_listener_arn = os.environ['SSL_LISTENER_ARN'] https_listener = elbv2_client.describe_rules(ListenerArn=https_listener_arn) https_listener_rules = https_listener['Rules'] print("Current HTTPS target group: ") https_target_group_arn = get_current_http_target_group(https_listener['Rules'], arr_available_target_groups) print(https_target_group_arn) results = {} i = 0 while i < len(https_listener_rules): # Skip default rule if https_listener_rules[i]['IsDefault']==True: i +=1 continue actions = https_listener_rules[i]['Actions'] actions, modify = process_actions(actions, http_target_group_arn, arr_available_target_groups) if modify==1: print("Updating SSL listener rules..") rule_arn = https_listener_rules[i]['RuleArn'] results[rule_arn] = modify_rules(elbv2_client, rule_arn, actions) i +=1 # For ECS After Allow Test Traffic hook print(results) send_codedeploy_validation_status(event, results) return results # Returns the current B/G target group from a list of lister rules. def get_current_http_target_group(http_listener_rules, arr_available_target_groups): i=0 while i < len(http_listener_rules): # Continue if default listener rule. if http_listener_rules[i]['IsDefault']==True: i +=1 continue actions = http_listener_rules[i]['Actions'] n=0 while n<len(actions): try: for tg in actions[n]['ForwardConfig']['TargetGroups']: if tg['TargetGroupArn'] in arr_available_target_groups and (tg['Weight'] is 100 or tg['Weight'] is 1) : return tg['TargetGroupArn'] except Exception as e: print(e) n +=1 i +=1 return False def process_actions(actions, http_target_group_arn, arr_available_target_groups): modify = 0 for ak, action in enumerate(actions): try: if action['Type'] == "forward" and check_target_update(action['TargetGroupArn'], arr_available_target_groups): actions[ak]['TargetGroupArn']=http_target_group_arn for tgk, target_group in enumerate(action['ForwardConfig']['TargetGroups']): if check_target_update(target_group['TargetGroupArn'], arr_available_target_groups): actions[ak]['ForwardConfig']['TargetGroups'][tgk]['TargetGroupArn']=http_target_group_arn modify=1 except Exception as e: print(e) return (actions), modify # Check old target group is associated w/out available target and different. # Be wary I found its possible the Listener rule is updated at the initial Ready Stage. # DO NOT TRY COMPARING OLD AN NEW, SIMPLY ALWAYS UPDATE TO MATCH HTTP IF ONE OF THE AVAILABLE TARGETS def check_target_update(old_target_group, arr_available_target_groups): return old_target_group in arr_available_target_groups # Sends notification to CodeDeploy on hook status... def send_codedeploy_validation_status(event, results): region = os.environ['REGION'] codedeploy_client = boto3.client('codedeploy', region_name=region) status = ('Failed', 'Succeeded')[len(results) > 0] print(status) try: return codedeploy_client.put_lifecycle_event_hook_execution_status( deploymentId=event['DeploymentId'], lifecycleEventHookExecutionId=event['LifecycleEventHookExecutionId'], status=status ) except Exception as e: print("Recoverable Exception: ") print(e) return False def modify_rules(elbv2_client, arn, actions): try: return elbv2_client.modify_rule( RuleArn=arn, Actions=actions ) except Exception as e: print(e)
[ "boto3.client" ]
[((165, 206), 'boto3.client', 'boto3.client', (['"""elbv2"""'], {'region_name': 'region'}), "('elbv2', region_name=region)\n", (177, 206), False, 'import json, boto3\n'), ((4075, 4121), 'boto3.client', 'boto3.client', (['"""codedeploy"""'], {'region_name': 'region'}), "('codedeploy', region_name=region)\n", (4087, 4121), False, 'import json, boto3\n')]
# worldtime module by CantSayIHave # Created 2018/01/12 # # Fetch time and date from a location # Uses Google Geocoding API and Google Time Zone API import aiohttp import time from datetime import datetime API_GEOCODE = 'https://maps.googleapis.com/maps/api/geocode/json?' API_TIMEZONE = 'https://maps.googleapis.com/maps/api/timezone/json?' allowed_chars = [',', '%', '+', '-'] class Location: def __init__(self, address: str, lat: int = None, long: int = None): self.address = address self.latitude = lat self.longitude = long class Time: def __init__(self, time: datetime, timezone_id: str, timezone_name: str): self.time = time self.timezone_id = timezone_id self.timezone_name = timezone_name class WorldTime: def __init__(self, key: str): self.key = key async def get_location(self, query: str) -> Location: args = {'address': self.query_encode(query), 'key': self.key} url = API_GEOCODE + self.param_encode(args) search = await self.api_get(url) if search: try: result = search['results'][0] location = Location(address=result['formatted_address'], lat=result['geometry']['location']['lat'], long=result['geometry']['location']['lng']) return location except KeyError: print('WorldTime Location Key Error') raise else: return search async def get_time(self, location: Location) -> Time: unix_now = int(time.time()) args = {'location': '{},{}'.format(location.latitude, location.longitude), 'timestamp': unix_now, 'key': self.key} url = API_TIMEZONE + self.param_encode(args) search = await self.api_get(url) if search: try: location_time = unix_now + search['rawOffset'] + search['dstOffset'] return Time(time=datetime.fromtimestamp(location_time), timezone_id=search['timeZoneId'], timezone_name=search['timeZoneName']) except KeyError: print('WorldTime Time Key Error') raise else: return search @staticmethod async def api_get(url: str) -> dict: with aiohttp.ClientSession() as session: async with session.get(url) as resp: if resp.status == 200: j = await resp.json() if j['status'] == 'OK': return j elif j['status'] == 'ZERO_RESULTS': return None return False @staticmethod def query_encode(text: str) -> str: text = ' '.join(text.split()) text = text.replace(' ', '+') for c in text: if c not in allowed_chars and not c.isalnum(): text = text.replace(c, '%' + hex(ord(c))[2:]) return text @staticmethod def param_encode(options: dict) -> str: out = '' for k, v in options.items(): out += '{}={}&'.format(k, v) out = out[:-1] return out
[ "aiohttp.ClientSession", "datetime.datetime.fromtimestamp", "time.time" ]
[((1652, 1663), 'time.time', 'time.time', ([], {}), '()\n', (1661, 1663), False, 'import time\n'), ((2454, 2477), 'aiohttp.ClientSession', 'aiohttp.ClientSession', ([], {}), '()\n', (2475, 2477), False, 'import aiohttp\n'), ((2072, 2109), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', (['location_time'], {}), '(location_time)\n', (2094, 2109), False, 'from datetime import datetime\n')]
import numpy as np from matplotlib import pyplot as plt n = 100 x = range(0,n) y = range(0,n) for k in range(0, n): y[k] = y[k] + 3*np.random.randn() + 100 plt.figure(figsize=(20,10)) plt.scatter(x, y) plt.savefig("./images/rawData.png") X = np.zeros([n,1]) target = np.zeros([n,1]) X[:,0] = x target[:,0] = y np.savetxt("X.txt", X, delimiter=",", fmt='%f') np.savetxt("y.txt", target, delimiter=",", fmt='%f')
[ "numpy.random.randn", "matplotlib.pyplot.scatter", "numpy.savetxt", "numpy.zeros", "matplotlib.pyplot.figure", "matplotlib.pyplot.savefig" ]
[((162, 190), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 10)'}), '(figsize=(20, 10))\n', (172, 190), True, 'from matplotlib import pyplot as plt\n'), ((190, 207), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y'], {}), '(x, y)\n', (201, 207), True, 'from matplotlib import pyplot as plt\n'), ((208, 243), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""./images/rawData.png"""'], {}), "('./images/rawData.png')\n", (219, 243), True, 'from matplotlib import pyplot as plt\n'), ((249, 265), 'numpy.zeros', 'np.zeros', (['[n, 1]'], {}), '([n, 1])\n', (257, 265), True, 'import numpy as np\n'), ((274, 290), 'numpy.zeros', 'np.zeros', (['[n, 1]'], {}), '([n, 1])\n', (282, 290), True, 'import numpy as np\n'), ((317, 364), 'numpy.savetxt', 'np.savetxt', (['"""X.txt"""', 'X'], {'delimiter': '""","""', 'fmt': '"""%f"""'}), "('X.txt', X, delimiter=',', fmt='%f')\n", (327, 364), True, 'import numpy as np\n'), ((365, 417), 'numpy.savetxt', 'np.savetxt', (['"""y.txt"""', 'target'], {'delimiter': '""","""', 'fmt': '"""%f"""'}), "('y.txt', target, delimiter=',', fmt='%f')\n", (375, 417), True, 'import numpy as np\n'), ((137, 154), 'numpy.random.randn', 'np.random.randn', ([], {}), '()\n', (152, 154), True, 'import numpy as np\n')]
from time import timezone import pandas as pd from datetime import datetime # print(datetime.fromtimestamp(1603209600)) # print(datetime.fromtimestamp(1612868324294/1000)) # print(datetime.fromtimestamp(1613283396746//1000)) print(datetime.fromtimestamp(1640851200)) print(datetime.fromtimestamp(1640649600)) print(datetime.fromtimestamp(1640617020000//1000)) a = datetime.now() b = pd.Timestamp(ts_input=a, tzinfo=a.tzinfo) c = b.floor(freq='T') d = b.ceil(freq='T') e = d.timestamp() f = int(e) g = datetime.fromtimestamp(f) print(a, c, d, g) delta = datetime.now() - datetime.utcnow() print(delta.seconds / 3600)
[ "datetime.datetime.utcnow", "pandas.Timestamp", "datetime.datetime.now", "datetime.datetime.fromtimestamp" ]
[((365, 379), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (377, 379), False, 'from datetime import datetime\n'), ((384, 425), 'pandas.Timestamp', 'pd.Timestamp', ([], {'ts_input': 'a', 'tzinfo': 'a.tzinfo'}), '(ts_input=a, tzinfo=a.tzinfo)\n', (396, 425), True, 'import pandas as pd\n'), ((502, 527), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', (['f'], {}), '(f)\n', (524, 527), False, 'from datetime import datetime\n'), ((232, 266), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', (['(1640851200)'], {}), '(1640851200)\n', (254, 266), False, 'from datetime import datetime\n'), ((274, 308), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', (['(1640649600)'], {}), '(1640649600)\n', (296, 308), False, 'from datetime import datetime\n'), ((316, 361), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', (['(1640617020000 // 1000)'], {}), '(1640617020000 // 1000)\n', (338, 361), False, 'from datetime import datetime\n'), ((555, 569), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (567, 569), False, 'from datetime import datetime\n'), ((572, 589), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (587, 589), False, 'from datetime import datetime\n')]
import pytest from now_lms import init_app, lms_app lms_app.app_context().push() @pytest.fixture(scope="package", autouse=True) def setup_database(): init_app()
[ "now_lms.init_app", "pytest.fixture", "now_lms.lms_app.app_context" ]
[((85, 130), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""package"""', 'autouse': '(True)'}), "(scope='package', autouse=True)\n", (99, 130), False, 'import pytest\n'), ((157, 167), 'now_lms.init_app', 'init_app', ([], {}), '()\n', (165, 167), False, 'from now_lms import init_app, lms_app\n'), ((54, 75), 'now_lms.lms_app.app_context', 'lms_app.app_context', ([], {}), '()\n', (73, 75), False, 'from now_lms import init_app, lms_app\n')]
"""Sync local directories with neocities.org sites.""" import os import sys from . import cmdline from . import local from .config import load_config_file from .ignore_files import IgnoreFiles from .log import (debug, decrease_verbosity, error, fatal, increase_verbosity, info) from .neocities import Neocities from .sync_actions import DeleteRemote, DoNothing, UpdateRemote, sync_actions from .utils import Pushd def main(): """Program entry-point.""" cmdline_opts = cmdline.parse(sys.argv[1:]) if cmdline_opts.quietness > 0: for _ in range(cmdline_opts.quietness): decrease_verbosity() elif cmdline_opts.quietness < 0: for _ in range(-cmdline_opts.quietness): increase_verbosity() try: conf = load_config_file(cmdline_opts.config_file) except FileNotFoundError: fatal(f'Config file "{cmdline_opts.config_file}" not found. Run again with "--help" for more info.') exit(1) for site, site_conf in conf.items(): client = Neocities(site_conf.api_key) with Pushd(os.path.expanduser(site_conf.root_dir)): info(f'Starting sync for site "{site}".') info("Listing local file tree...") local_filetree = local.filetree(".") local_filetree = IgnoreFiles(site_conf).filter(local_filetree) info( f"Local file tree has {local_filetree.number_of_files()} file(s)" f" and {local_filetree.number_of_directories()} dir(s)." ) info("Fetching remote file tree...") remote_filetree = client.list() info( f"Remote file tree has {remote_filetree.number_of_files()}" f" file(s) and {remote_filetree.number_of_directories()} dir(s)." ) info("Comparing file trees...") applied_actions = 0 for action in sync_actions(local_filetree, remote_filetree): try: if isinstance(action, UpdateRemote): info(f'Updating remote file "{action.path}": {action.reason}.') if not cmdline_opts.dry_run: client.upload(action.path) applied_actions += 1 elif isinstance(action, DeleteRemote): info(f'Deleting remote file "{action.path}": {action.reason}.') if not cmdline_opts.dry_run: client.delete(action.path) applied_actions += 1 elif isinstance(action, DoNothing): debug(f'Skipping "{action.path}": {action.reason}.') else: raise RuntimeError(f"Unknown action {action.__class__.__name__}.") except Exception as e: # noqa: B902 error(f"Error while syncing: {e}") exit(1) if not cmdline_opts.dry_run: info(f"Applied {applied_actions} action(s).") else: info(f"Would apply {applied_actions} action(s).") if site_conf.remove_empty_dirs: info("Searching for empty directories...") remote_filetree = client.list() empty_directories = remote_filetree.list_empty_directories() info(f"Found {len(empty_directories)} empty dir(s).") for empty_dir in sorted(empty_directories, reverse=True): info(f'Deleting remote empty directory "{empty_dir}"') if not cmdline_opts.dry_run: client.delete(empty_dir) info(f'Finished sync for site "{site}".') if __name__ == "__main__": main()
[ "os.path.expanduser" ]
[((1074, 1112), 'os.path.expanduser', 'os.path.expanduser', (['site_conf.root_dir'], {}), '(site_conf.root_dir)\n', (1092, 1112), False, 'import os\n')]
import warnings from typing import Type, Union def will_be_removed( deprecated_name: str, use_instead: Union[str, Type], removing_in_version: str, stacklevel=2, ): new_class_name = ( use_instead.__name__ # type: ignore if isinstance(use_instead, Type) # type: ignore else use_instead ) warnings.warn( f"Please use {new_class_name} instead, " f"{deprecated_name} will be removed in happyly v{removing_in_version}.", DeprecationWarning, stacklevel=stacklevel, )
[ "warnings.warn" ]
[((342, 518), 'warnings.warn', 'warnings.warn', (['f"""Please use {new_class_name} instead, {deprecated_name} will be removed in happyly v{removing_in_version}."""', 'DeprecationWarning'], {'stacklevel': 'stacklevel'}), "(\n f'Please use {new_class_name} instead, {deprecated_name} will be removed in happyly v{removing_in_version}.'\n , DeprecationWarning, stacklevel=stacklevel)\n", (355, 518), False, 'import warnings\n')]
import re string = input() template = r'never gonna let you down...' match = re.match(template, string, flags=re.IGNORECASE)
[ "re.match" ]
[((79, 126), 're.match', 're.match', (['template', 'string'], {'flags': 're.IGNORECASE'}), '(template, string, flags=re.IGNORECASE)\n', (87, 126), False, 'import re\n')]
from __future__ import print_function import time import os import sys import logging import json import tensorflow as tf import numpy as np import cv2 import data.data_loader as loader from models.cgan_model import cgan from models.ops import * os.system('http_proxy_on') def linear_decay(initial=0.0001, step=0, start_step=150, end_step=300): ''' return decayed learning rate It becomes 0 at end_step ''' decay_period = end_step - start_step step_decay = (initial-0.0)/decay_period update_step = max(0, step-start_step) current_value = max(0, initial - (update_step)*step_decay) return current_value def train(args): #assume there is a batch data pair: dataset = loader.read_data_path(args.data_path_train, name=args.data_name) num_dataset = len(dataset) num_batch = num_dataset/args.batch_num sess = tf.Session() model = cgan(sess, args) model.build_model() model.sess.run(tf.global_variables_initializer()) model.load_weights(args.checkpoint_dir) for iter in range(args.epoch): learning_rate = linear_decay(0.0001, iter) for i, data in enumerate(dataset): blur_img, real_img = loader.read_image_pair(data, resize_or_crop = args.resize_or_crop, image_size=(args.img_h, args.img_w)) feed_dict = {model.input['blur_img']: blur_img,\ model.input['real_img']: real_img,\ model.learning_rate: learning_rate} loss_G, adv_loss, perceptual_loss = model.run_optim_G(feed_dict=feed_dict) logging.info('%d epoch, %d batch, Generator Loss: %f, add loss: %f, perceptual_loss: %f',\ iter, i, loss_G, adv_loss, perceptual_loss) #Ready for Training Discriminator for _ in range(args.iter_disc): loss_D, loss_disc, loss_gp = model.run_optim_D(feed_dict=feed_dict, with_image=args.tf_image_monitor) logging.info('%d epoch, %d batch, Discriminator Loss: %f, loss_disc: %f, gp_loss: %f', iter, i, loss_D, loss_disc, loss_gp) if (iter+1) % 50 == 0 or iter == (args.epoch-1): model.save_weights(args.checkpoint_dir, model.global_step) logging.info("[!] test started") dataset = loader.read_data_path(args.data_path_test, name=args.data_name) for i, data in enumerate(dataset): if not os.path.exists('./test_result'): os.mkdir('./test_result') blur_img, real_img = loader.read_image_pair(data, resize_or_crop = args.resize_or_crop, image_size=(args.img_h, args.img_w)) feed_dict_G = {model.input['blur_img']: blur_img} G_out = model.G_output(feed_dict=feed_dict_G) cv2.imwrite('./test_result/'+str(i)+'_blur.png', (blur_img[0]+1.0)/2.0 *255.) cv2.imwrite('./test_result/'+str(i)+'_real.png', (real_img[0]+1.0)/2.0 *255.) cv2.imwrite('./test_result/'+str(i)+'_gen.png', (G_out[0]+1.0)/2.0*255.) logging.info("Deblur Image is saved (%d/%d) ", i, len(dataset)) logging.info("[*] test done") if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='') parser.add_argument('--iter_gen', type=int, default=1) parser.add_argument('--iter_disc', type=int, default=5) parser.add_argument('--batch_num', type=int, default=1) parser.add_argument('--epoch', type=int, default=300) parser.add_argument('--data_path_train', type=str, default='/data/private/data/GOPRO_Large/train/') parser.add_argument('--data_path_test', type=str, default='/data/private/data/GOPRO_Large/test/') parser.add_argument('--checkpoint_dir', type=str, default='./checkpoints/') parser.add_argument('--model_name', type=str, default='DeblurGAN.model') parser.add_argument('--summary_dir', type=str, default='./summaries/') parser.add_argument('--data_name', type=str, default='GOPRO') parser.add_argument('--tf_image_monitor', type=bool, default=False) parser.add_argument('--resize_or_crop', type=str, default='resize') parser.add_argument('--img_h', type=int, default=256) parser.add_argument('--img_w', type=int, default=256) parser.add_argument('--img_c', type=int, default=3) parser.add_argument('--debug', action='store_true') args = parser.parse_args() log_format = '[%(asctime)s %(levelname)s] %(message)s' level = logging.DEBUG if args.debug else logging.INFO logging.basicConfig(level=level, format=log_format, stream=sys.stderr) logging.getLogger("DeblurGAN_TRAIN.*").setLevel(level) train(args)
[ "data.data_loader.read_data_path", "os.mkdir", "argparse.ArgumentParser", "logging.basicConfig", "tensorflow.global_variables_initializer", "tensorflow.Session", "os.system", "os.path.exists", "logging.info", "data.data_loader.read_image_pair", "models.cgan_model.cgan", "logging.getLogger" ]
[((251, 277), 'os.system', 'os.system', (['"""http_proxy_on"""'], {}), "('http_proxy_on')\n", (260, 277), False, 'import os\n'), ((717, 781), 'data.data_loader.read_data_path', 'loader.read_data_path', (['args.data_path_train'], {'name': 'args.data_name'}), '(args.data_path_train, name=args.data_name)\n', (738, 781), True, 'import data.data_loader as loader\n'), ((867, 879), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (877, 879), True, 'import tensorflow as tf\n'), ((892, 908), 'models.cgan_model.cgan', 'cgan', (['sess', 'args'], {}), '(sess, args)\n', (896, 908), False, 'from models.cgan_model import cgan\n'), ((2380, 2412), 'logging.info', 'logging.info', (['"""[!] test started"""'], {}), "('[!] test started')\n", (2392, 2412), False, 'import logging\n'), ((2428, 2491), 'data.data_loader.read_data_path', 'loader.read_data_path', (['args.data_path_test'], {'name': 'args.data_name'}), '(args.data_path_test, name=args.data_name)\n', (2449, 2491), True, 'import data.data_loader as loader\n'), ((3216, 3245), 'logging.info', 'logging.info', (['"""[*] test done"""'], {}), "('[*] test done')\n", (3228, 3245), False, 'import logging\n'), ((3307, 3346), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '""""""'}), "(description='')\n", (3330, 3346), False, 'import argparse\n'), ((4627, 4697), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'level', 'format': 'log_format', 'stream': 'sys.stderr'}), '(level=level, format=log_format, stream=sys.stderr)\n', (4646, 4697), False, 'import logging\n'), ((952, 985), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (983, 985), True, 'import tensorflow as tf\n'), ((2651, 2757), 'data.data_loader.read_image_pair', 'loader.read_image_pair', (['data'], {'resize_or_crop': 'args.resize_or_crop', 'image_size': '(args.img_h, args.img_w)'}), '(data, resize_or_crop=args.resize_or_crop, image_size\n =(args.img_h, args.img_w))\n', (2673, 2757), True, 'import data.data_loader as loader\n'), ((1199, 1305), 'data.data_loader.read_image_pair', 'loader.read_image_pair', (['data'], {'resize_or_crop': 'args.resize_or_crop', 'image_size': '(args.img_h, args.img_w)'}), '(data, resize_or_crop=args.resize_or_crop, image_size\n =(args.img_h, args.img_w))\n', (1221, 1305), True, 'import data.data_loader as loader\n'), ((1688, 1833), 'logging.info', 'logging.info', (['"""%d epoch, %d batch, Generator Loss: %f, add loss: %f, perceptual_loss: %f"""', 'iter', 'i', 'loss_G', 'adv_loss', 'perceptual_loss'], {}), "(\n '%d epoch, %d batch, Generator Loss: %f, add loss: %f, perceptual_loss: %f'\n , iter, i, loss_G, adv_loss, perceptual_loss)\n", (1700, 1833), False, 'import logging\n'), ((2093, 2231), 'logging.info', 'logging.info', (['"""%d epoch, %d batch, Discriminator Loss: %f, loss_disc: %f, gp_loss: %f"""', 'iter', 'i', 'loss_D', 'loss_disc', 'loss_gp'], {}), "(\n '%d epoch, %d batch, Discriminator Loss: %f, loss_disc: %f, gp_loss: %f'\n , iter, i, loss_D, loss_disc, loss_gp)\n", (2105, 2231), False, 'import logging\n'), ((2551, 2582), 'os.path.exists', 'os.path.exists', (['"""./test_result"""'], {}), "('./test_result')\n", (2565, 2582), False, 'import os\n'), ((2596, 2621), 'os.mkdir', 'os.mkdir', (['"""./test_result"""'], {}), "('./test_result')\n", (2604, 2621), False, 'import os\n'), ((4702, 4740), 'logging.getLogger', 'logging.getLogger', (['"""DeblurGAN_TRAIN.*"""'], {}), "('DeblurGAN_TRAIN.*')\n", (4719, 4740), False, 'import logging\n')]
import os import sys import json import click import datetime from distutils.version import StrictVersion from jinja2 import Template ROOTDIR = os.getcwd() INITIAL_VERSION = '0.0.0' DEFAULT_TEMPLATE = """# Changelog Note: version releases in the 0.x.y range may introduce breaking changes. {% for release in releases %} ## {{ release.id }} {% for data in release.data %} - {{ data.type }}: {{ data.description }} {% endfor %} {% endfor %} """ class Semversioner: def __init__(self, path=ROOTDIR): semversioner_path_legacy = os.path.join(path, '.changes') semversioner_path_new = os.path.join(path, '.semversioner') semversioner_path = semversioner_path_new deprecated = False if os.path.isdir(semversioner_path_legacy) and not os.path.isdir(semversioner_path_new): deprecated = True semversioner_path = semversioner_path_legacy if not os.path.isdir(semversioner_path): os.makedirs(semversioner_path) next_release_path = os.path.join(semversioner_path, 'next-release') if not os.path.isdir(next_release_path): os.makedirs(next_release_path) self.path = path self.semversioner_path = semversioner_path self.next_release_path = next_release_path self.deprecated = deprecated def is_deprecated(self): return self.deprecated def add_change(self, change_type, description): """ Create a new changeset file. The method creates a new json file in the ``.semversioner/next-release/`` directory with the type and description provided. Parameters ------- change_type (str): Change type. Allowed values: major, minor, patch. description (str): Change description. Returns ------- path : str Absolute path of the file generated. """ parsed_values = { 'type': change_type, 'description': description, } filename = None while (filename is None or os.path.isfile(os.path.join(self.next_release_path, filename))): filename = '{type_name}-{datetime}.json'.format( type_name=parsed_values['type'], datetime="{:%Y%m%d%H%M%S}".format(datetime.datetime.utcnow())) with open(os.path.join(self.next_release_path, filename), 'w') as f: f.write(json.dumps(parsed_values, indent=2) + "\n") return { 'path': os.path.join(self.next_release_path, filename) } def generate_changelog(self): """ Generates the changelog. The method generates the changelog based on the template file defined in ``DEFAULT_TEMPLATE``. Returns ------- str Changelog string. """ releases = [] for release_identifier in self._sorted_releases(): with open(os.path.join(self.semversioner_path, release_identifier + '.json')) as f: data = json.load(f) data = sorted(data, key=lambda k: k['type'] + k['description']) releases.append({'id': release_identifier, 'data': data}) return Template(DEFAULT_TEMPLATE, trim_blocks=True).render(releases=releases) def release(self): """ Performs the release. The method performs the release by taking everything in ``next-release`` folder and aggregating all together in a single JSON file for that release (e.g ``1.12.0.json``). The JSON file generated is a list of all the individual JSON files from ``next-release``. After aggregating the files, it removes the ``next-release`` directory. Returns ------- previous_version : str Previous version. new_version : str New version. """ changes = [] next_release_dir = self.next_release_path for filename in os.listdir(next_release_dir): full_path = os.path.join(next_release_dir, filename) with open(full_path) as f: changes.append(json.load(f)) if len(changes) == 0: click.secho("Error: No changes to release. Skipping release process.", fg='red') sys.exit(-1) current_version_number = self.get_version() next_version_number = self._get_next_version_number(changes, current_version_number) click.echo("Releasing version: %s -> %s" % (current_version_number, next_version_number)) release_json_filename = os.path.join(self.semversioner_path, '%s.json' % next_version_number) click.echo("Generated '" + release_json_filename + "' file.") with open(release_json_filename, 'w') as f: f.write(json.dumps(changes, indent=2, sort_keys=True)) click.echo("Removing '" + next_release_dir + "' directory.") for filename in os.listdir(next_release_dir): full_path = os.path.join(next_release_dir, filename) os.remove(full_path) os.rmdir(next_release_dir) return { 'previous_version': current_version_number, 'new_version': next_version_number } def get_version(self): """ Gets the current version. """ releases = self._sorted_releases() if len(releases) > 0: return releases[0] return INITIAL_VERSION def _sorted_releases(self): files = [f for f in os.listdir(self.semversioner_path) if os.path.isfile(os.path.join(self.semversioner_path, f))] releases = list(map(lambda x: x[:-len('.json')], files)) releases = sorted(releases, key=StrictVersion, reverse=True) return releases def _get_next_version_number(self, changes, current_version_number): release_type = sorted(list(map(lambda x: x['type'], changes)))[0] return self._increase_version(current_version_number, release_type) def _increase_version(self, current_version, release_type): """ Returns a string like '1.0.0'. """ # Convert to a list of ints: [1, 0, 0]. version_parts = list(int(i) for i in current_version.split('.')) if release_type == 'patch': version_parts[2] += 1 elif release_type == 'minor': version_parts[1] += 1 version_parts[2] = 0 elif release_type == 'major': version_parts[0] += 1 version_parts[1] = 0 version_parts[2] = 0 return '.'.join(str(i) for i in version_parts)
[ "jinja2.Template", "os.remove", "json.load", "os.makedirs", "os.getcwd", "os.path.isdir", "click.echo", "json.dumps", "datetime.datetime.utcnow", "os.rmdir", "click.secho", "os.path.join", "os.listdir", "sys.exit" ]
[((145, 156), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (154, 156), False, 'import os\n'), ((542, 572), 'os.path.join', 'os.path.join', (['path', '""".changes"""'], {}), "(path, '.changes')\n", (554, 572), False, 'import os\n'), ((605, 640), 'os.path.join', 'os.path.join', (['path', '""".semversioner"""'], {}), "(path, '.semversioner')\n", (617, 640), False, 'import os\n'), ((1024, 1071), 'os.path.join', 'os.path.join', (['semversioner_path', '"""next-release"""'], {}), "(semversioner_path, 'next-release')\n", (1036, 1071), False, 'import os\n'), ((3983, 4011), 'os.listdir', 'os.listdir', (['next_release_dir'], {}), '(next_release_dir)\n', (3993, 4011), False, 'import os\n'), ((4465, 4558), 'click.echo', 'click.echo', (["('Releasing version: %s -> %s' % (current_version_number, next_version_number))"], {}), "('Releasing version: %s -> %s' % (current_version_number,\n next_version_number))\n", (4475, 4558), False, 'import click\n'), ((4588, 4657), 'os.path.join', 'os.path.join', (['self.semversioner_path', "('%s.json' % next_version_number)"], {}), "(self.semversioner_path, '%s.json' % next_version_number)\n", (4600, 4657), False, 'import os\n'), ((4667, 4728), 'click.echo', 'click.echo', (['("Generated \'" + release_json_filename + "\' file.")'], {}), '("Generated \'" + release_json_filename + "\' file.")\n', (4677, 4728), False, 'import click\n'), ((4857, 4917), 'click.echo', 'click.echo', (['("Removing \'" + next_release_dir + "\' directory.")'], {}), '("Removing \'" + next_release_dir + "\' directory.")\n', (4867, 4917), False, 'import click\n'), ((4942, 4970), 'os.listdir', 'os.listdir', (['next_release_dir'], {}), '(next_release_dir)\n', (4952, 4970), False, 'import os\n'), ((5078, 5104), 'os.rmdir', 'os.rmdir', (['next_release_dir'], {}), '(next_release_dir)\n', (5086, 5104), False, 'import os\n'), ((730, 769), 'os.path.isdir', 'os.path.isdir', (['semversioner_path_legacy'], {}), '(semversioner_path_legacy)\n', (743, 769), False, 'import os\n'), ((918, 950), 'os.path.isdir', 'os.path.isdir', (['semversioner_path'], {}), '(semversioner_path)\n', (931, 950), False, 'import os\n'), ((964, 994), 'os.makedirs', 'os.makedirs', (['semversioner_path'], {}), '(semversioner_path)\n', (975, 994), False, 'import os\n'), ((1087, 1119), 'os.path.isdir', 'os.path.isdir', (['next_release_path'], {}), '(next_release_path)\n', (1100, 1119), False, 'import os\n'), ((1133, 1163), 'os.makedirs', 'os.makedirs', (['next_release_path'], {}), '(next_release_path)\n', (1144, 1163), False, 'import os\n'), ((2513, 2559), 'os.path.join', 'os.path.join', (['self.next_release_path', 'filename'], {}), '(self.next_release_path, filename)\n', (2525, 2559), False, 'import os\n'), ((4037, 4077), 'os.path.join', 'os.path.join', (['next_release_dir', 'filename'], {}), '(next_release_dir, filename)\n', (4049, 4077), False, 'import os\n'), ((4205, 4290), 'click.secho', 'click.secho', (['"""Error: No changes to release. Skipping release process."""'], {'fg': '"""red"""'}), "('Error: No changes to release. Skipping release process.', fg='red'\n )\n", (4216, 4290), False, 'import click\n'), ((4298, 4310), 'sys.exit', 'sys.exit', (['(-1)'], {}), '(-1)\n', (4306, 4310), False, 'import sys\n'), ((4996, 5036), 'os.path.join', 'os.path.join', (['next_release_dir', 'filename'], {}), '(next_release_dir, filename)\n', (5008, 5036), False, 'import os\n'), ((5049, 5069), 'os.remove', 'os.remove', (['full_path'], {}), '(full_path)\n', (5058, 5069), False, 'import os\n'), ((778, 814), 'os.path.isdir', 'os.path.isdir', (['semversioner_path_new'], {}), '(semversioner_path_new)\n', (791, 814), False, 'import os\n'), ((2093, 2139), 'os.path.join', 'os.path.join', (['self.next_release_path', 'filename'], {}), '(self.next_release_path, filename)\n', (2105, 2139), False, 'import os\n'), ((2351, 2397), 'os.path.join', 'os.path.join', (['self.next_release_path', 'filename'], {}), '(self.next_release_path, filename)\n', (2363, 2397), False, 'import os\n'), ((3051, 3063), 'json.load', 'json.load', (['f'], {}), '(f)\n', (3060, 3063), False, 'import json\n'), ((3225, 3269), 'jinja2.Template', 'Template', (['DEFAULT_TEMPLATE'], {'trim_blocks': '(True)'}), '(DEFAULT_TEMPLATE, trim_blocks=True)\n', (3233, 3269), False, 'from jinja2 import Template\n'), ((4801, 4846), 'json.dumps', 'json.dumps', (['changes'], {'indent': '(2)', 'sort_keys': '(True)'}), '(changes, indent=2, sort_keys=True)\n', (4811, 4846), False, 'import json\n'), ((5520, 5554), 'os.listdir', 'os.listdir', (['self.semversioner_path'], {}), '(self.semversioner_path)\n', (5530, 5554), False, 'import os\n'), ((2430, 2465), 'json.dumps', 'json.dumps', (['parsed_values'], {'indent': '(2)'}), '(parsed_values, indent=2)\n', (2440, 2465), False, 'import json\n'), ((2954, 3020), 'os.path.join', 'os.path.join', (['self.semversioner_path', "(release_identifier + '.json')"], {}), "(self.semversioner_path, release_identifier + '.json')\n", (2966, 3020), False, 'import os\n'), ((4148, 4160), 'json.load', 'json.load', (['f'], {}), '(f)\n', (4157, 4160), False, 'import json\n'), ((5573, 5612), 'os.path.join', 'os.path.join', (['self.semversioner_path', 'f'], {}), '(self.semversioner_path, f)\n', (5585, 5612), False, 'import os\n'), ((2303, 2329), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (2327, 2329), False, 'import datetime\n')]
import requests as rq from sys import stdout from pathlib import Path import re import os class Downloader: """ class to manage downloading url links """ def __init__(self, *args, session=None): # creates a session self.cwd = Path.cwd() self.src_path = Path(__file__) if not session: self.session = rq.Session() else: self.session = session def _print_progress(self, current_bytes, size): bar = self._get_bar(current_bytes / size) output = f'\r{bar} {current_bytes/1000000:0.2f} / {size/1000000:0.2f} MB' stdout.write(output) # stdout.flush() def _get_bar(self, progress): """ progress must be between 0 and 1\n Returns the bar with current progress as a string """ FULL_BLOCKLENGTH = 32 fillblock = '█' if progress > 1: progress = 1 blocks = int(progress / (1/FULL_BLOCKLENGTH)) bar_start = fillblock*blocks bar_end = (33 - len(bar_start))*'_'+'|' bar_percent = f' {progress*100:0.2f} % ' text = bar_start+bar_end+bar_percent return text def _make_name(self, url_path: Path, name_in: str): """ Parses the name and returns a writebale name """ # in case its a number and not None if name_in and name_in != type(str): name_in = str(name_in) try: name_in[0] # if its empty it raises exception # clean_name = re.search(r'\w+',name_in).group() # parsing name, only alphanumeric, no whitespace # name = re.split(r'[.].+$',name_in)[0] # name without extension name_parts = name_in.split('.') # name without extension if len(name_parts) > 1: name_noext = '.'.join(name_parts[:-1]) # joining together without extension else: name_noext = name_parts[0] clean_name = ' '.join(re.findall(r'\w+.+',name_noext)) # parsing name, only alphanumeric, no whitespace clean_name[0] # empty testing except : print('invalid name, taking name from url') name = re.split(r'[?]',url_path.name)[0] # if '?' in url, get rid of it return name try: extension = re.search(r'(?<=[.])\w+$', name_in).group() # matching only extension after last "." # extension = name.split('.')[-1] # matching only extension after last "." except: extension = None if extension: name_path = Path(f'{clean_name}.{extension}') # custom extension specified and not in the name else: name = re.split(r'[?]',url_path.name)[0] # if '?' in url, get rid of it extension = re.search(r'(?<=[.])\w+$', name).group() # matching only extension after last "." name_path = Path(f'{clean_name}.{extension}') # extension from url return name_path.name def download(self, url, d_path=None, name_out=None, printprogess=False): """ Downloads from url `d_path`: Default download path is current working directory. `name_out`: Default name is the tail of the url address, can take in a name with or without extension, takes extension from url if not specified. `printprogress`: Prints current download progress in terminal. """ url_path = Path(url) #download_path = self.cwd / url_path.name if not d_path else Path(d_path) name_out = self._make_name(url_path, name_out) if not d_path: # download_path = self.src_path.parent download_path = self.cwd else: download_path = Path(d_path) # os.chdir(download_path) # making file path save_file = download_path / name_out # checking if file already is there if save_file.exists(): print('skipping', save_file.name) return r = self.session.get(url) # size = float(r.headers['content-length']) contentlength = r.headers.get('content-length') if contentlength is not None: size = float(contentlength) else: size = 1 with open(save_file, 'wb') as fd: tmp = 0 print(f'Downloding: {save_file.name}') print(f'to {save_file.absolute()}') for chunk in r.iter_content(chunk_size=1024): if chunk: fd.write(chunk) tmp += 1024 if printprogess: self._print_progress(tmp, size) print('') print('Done') def input_loop(): while True: inp = input('Download path:\n') if _test_write(inp): return inp #try: # d_path = Path(inp) #except Exception as e: # print('invalid path, try again\n') # continue #if d_path.exists(): return d_path def name_loop(): while True: inp = input('Name:\n') return inp def _test_write(path): ''' writes a file to the path and returns True if it succeded ''' writable = False try: p = Path(path) test_file = p / 'testfile.testfile' with open(test_file, 'wb') as f: f.write(bytes(0)) writable = True except Exception as e: print('write test failed: ',e) return finally: try: os.remove(test_file) except Exception as e: #print('deleting test write failed: ',e) pass return writable if __name__ == "__main__": # d_path = input_loop() #let user decide where to download d_path = Path('/home/bruno/Desktop') name = name_loop() # let user decide what name it will have d = Downloader() test_image_url = 'https://images.pexels.com/photos/459793/pexels-photo-459793.jpeg?auto=compress&cs=tinysrgb&dpr=2&h=750&w=1260' d.download(test_image_url, d_path, name, printprogess=False)
[ "sys.stdout.write", "os.remove", "re.split", "requests.Session", "pathlib.Path", "re.findall", "pathlib.Path.cwd", "re.search" ]
[((5953, 5980), 'pathlib.Path', 'Path', (['"""/home/bruno/Desktop"""'], {}), "('/home/bruno/Desktop')\n", (5957, 5980), False, 'from pathlib import Path\n'), ((262, 272), 'pathlib.Path.cwd', 'Path.cwd', ([], {}), '()\n', (270, 272), False, 'from pathlib import Path\n'), ((298, 312), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (302, 312), False, 'from pathlib import Path\n'), ((632, 652), 'sys.stdout.write', 'stdout.write', (['output'], {}), '(output)\n', (644, 652), False, 'from sys import stdout\n'), ((3557, 3566), 'pathlib.Path', 'Path', (['url'], {}), '(url)\n', (3561, 3566), False, 'from pathlib import Path\n'), ((5411, 5421), 'pathlib.Path', 'Path', (['path'], {}), '(path)\n', (5415, 5421), False, 'from pathlib import Path\n'), ((366, 378), 'requests.Session', 'rq.Session', ([], {}), '()\n', (376, 378), True, 'import requests as rq\n'), ((2665, 2698), 'pathlib.Path', 'Path', (['f"""{clean_name}.{extension}"""'], {}), "(f'{clean_name}.{extension}')\n", (2669, 2698), False, 'from pathlib import Path\n'), ((2980, 3013), 'pathlib.Path', 'Path', (['f"""{clean_name}.{extension}"""'], {}), "(f'{clean_name}.{extension}')\n", (2984, 3013), False, 'from pathlib import Path\n'), ((3866, 3878), 'pathlib.Path', 'Path', (['d_path'], {}), '(d_path)\n', (3870, 3878), False, 'from pathlib import Path\n'), ((5694, 5714), 'os.remove', 'os.remove', (['test_file'], {}), '(test_file)\n', (5703, 5714), False, 'import os\n'), ((2048, 2080), 're.findall', 're.findall', (['"""\\\\w+.+"""', 'name_noext'], {}), "('\\\\w+.+', name_noext)\n", (2058, 2080), False, 'import re\n'), ((2783, 2813), 're.split', 're.split', (['"""[?]"""', 'url_path.name'], {}), "('[?]', url_path.name)\n", (2791, 2813), False, 'import re\n'), ((2268, 2298), 're.split', 're.split', (['"""[?]"""', 'url_path.name'], {}), "('[?]', url_path.name)\n", (2276, 2298), False, 'import re\n'), ((2397, 2432), 're.search', 're.search', (['"""(?<=[.])\\\\w+$"""', 'name_in'], {}), "('(?<=[.])\\\\w+$', name_in)\n", (2406, 2432), False, 'import re\n'), ((2873, 2905), 're.search', 're.search', (['"""(?<=[.])\\\\w+$"""', 'name'], {}), "('(?<=[.])\\\\w+$', name)\n", (2882, 2905), False, 'import re\n')]
import random import chess import chess.engine class RandomPlayer: def __init__(self): self.id = { 'name': 'RandomPlayer' } def play(self, board: chess.Board, limit=None) -> chess.engine.PlayResult: legal_moves = list(board.legal_moves) move = random.choice(legal_moves) return chess.engine.PlayResult(move=move, ponder=None) def quit(self): pass
[ "chess.engine.PlayResult", "random.choice" ]
[((300, 326), 'random.choice', 'random.choice', (['legal_moves'], {}), '(legal_moves)\n', (313, 326), False, 'import random\n'), ((343, 390), 'chess.engine.PlayResult', 'chess.engine.PlayResult', ([], {'move': 'move', 'ponder': 'None'}), '(move=move, ponder=None)\n', (366, 390), False, 'import chess\n')]
# dwmDistances # Being written September 2019 by <NAME> # Intended for use with DWM 1001 module through UART TLV interface # This script calls the dwm_loc_get API call as specified in the # DWM1001 Firmware API Guide 5.3.10. # It parses the information received to send over # the ROS network. # In the future, this script will be expanded to allow # position updates to be written to anchor nodes # Currently limited to Python 3.6+. Use command line arguments # to specify the name of the port (See myParser() function) import serial # use "pip install pyserial" if you have not already done so import time import sys import argparse defaultPortName = '/dev/ttyACM0' # On linux, you should use /dev/ttyACM0 # ON Windows, the port name may be 'COM9' or similar def myParser(): # This function handles command lets the user specify the # name of the port to use with a command line argument. # --port=[name or number] parser = argparse.ArgumentParser(description = 'get position info') # Script descript. parser.add_argument( '--port', default=defaultPortName, help='specify the name of the port to use (default: ' + defaultPortName + ' )' ) args = parser.parse_args() print("Using port:", args.port) return args.port ser = None # This will be the name of the handle to the serial port EXIT_SUCCESS = 0 EXIT_FAILURE = 1 # API Error codes ERR_CODE_OK = bytes.fromhex("00") # 1: unknown command or broken TLV frame # 2: internal error # 3: invalid parameter # 4: busy # 5: operation not permitted # API Commands [Type, length] DWM_POS_SET = bytes.fromhex("01 0d") # Used to set position. Follow with position as 13 bytes DWM_POS_GET = bytes.fromhex("02 00") # Used to ask for position. DWM_LOC_GET = bytes.fromhex("0c 00") # Request for position + distances to anchors/tags # Response codes TLV_TYPE_DUMMY = bytes.fromhex("00") # Reserved for SPI dummy byte TLV_TYPE_POS_XYZ = bytes.fromhex("41") # Response position coordinates x,y,z with q TLV_TYPE_RNG_AN_DIST = bytes.fromhex("48") # Response: Ranging anchor distances TLV_TYPE_RNG_AN_POS_DIST = bytes.fromhex("49") # Response: Ranging anchor distances and positions def main(): global ser print("dwmPosGet started.") myPort = myParser() # Establish serial port connection try: ser = serial.Serial(myPort, baudrate=115200, timeout=None) print(ser) print("Connection established.") except: print("Error in trying to connect to serial port {}".format(myPort)) stopLoop = False # Loop plan: # 1. Ask Decawave for position # 2. Receive response, parsing as I go # --First response is confirmation / error code # --Second response is position # 2.5 Error handling # 3. Output message # ---------- while stopLoop is False: getLocations() def sendTLV(request): global ser txBuffer = request try: ser.reset_input_buffer() # Get rid of anything in the buffer that could confuse this script. ser.write(txBuffer) except: print(f"Error during transmission of request {txBuffer.hex()}") stopLoop = True return EXIT_FAILURE return EXIT_SUCCESS def receiveTLV(): # Listen for TLV response from Decawave DWM1001 module # Returns a list of [Type, Length, Value] # If it receives TLV_TYPE_DUMMY, it keeps listening for next message global ser # The handle for the serial port connection typeTLV = TLV_TYPE_DUMMY while (typeTLV == TLV_TYPE_DUMMY): typeTLV = ser.read(1) # Read the "type" byte of the response lengthTLV = ser.read(1) # Read the "length" byte of the response lengthTLV = int.from_bytes(lengthTLV, byteorder='little') valueTLV = ser.read(lengthTLV) # Read the value [error code]. return [typeTLV, lengthTLV, valueTLV] def parsePOSvalue(value): # This helper function takes a 13-byte position code and returns the # x, y, z, and q values x = int.from_bytes(value[0:4], byteorder='little') y = int.from_bytes(value[4:8], byteorder='little') z = int.from_bytes(value[8:12], byteorder='little') q = int.from_bytes(value[12:13], byteorder='little') return [x, y, z, q] def parseTLV(typeTLV, length, value): # TLV_TYPE_DUMMY = bytes.fromhex("00") # Reserved for SPI dummy byte # TLV_TYPE_POS_XYZ = bytes.fromhex("41") # Response position coordinates x,y,z with q # TLV_TYPE_RNG_AN_DIST = bytes.fromhex("48") # Response: Ranging anchor distances # TLV_TYPE_RNG_AN_POS_DIST = bytes.fromhex("49") # Response: Ranging anchor distances and positions if typeTLV == TLV_TYPE_POS_XYZ: [x, y, z, q] = parsePOSvalue(value) return [x, y, z, q] if typeTLV == TLV_TYPE_RNG_AN_DIST: # This code may be received from an anchor node num_distances = int.from_bytes(value[0:1]) distances = [] for i in range (num_distances): offset = i*13+1 addr = value[offset:offset+8].hex() # Note: Address size is 8 bytes here, not 2 bytes d = int.from_bytes(value[offset+8:offset+12], byteorder = 'little') dq = int.from_bytes(value[offset+12:offset+13], byteorder = 'little') distances.append([addr, d, dq]) return [num_distances, distances] if typeTLV == TLV_TYPE_RNG_AN_POS_DIST: num_distances = int.from_bytes(value[0:1], byteorder = 'little') distances = [] for i in range(num_distances): offset = i*13+1 addr = value[offset:offset+2].hex() # UWB address d = int.from_bytes(value[offset+2:offset+6], byteorder = 'little') # distance dq = int.from_bytes(value[offset+6:offset+7], byteorder = 'little') # distance quality [x,y,z,q] = parsePOSvalue(value[offset+7:offset+20]) distances.append([addr, d, dq, x, y, z, q]) return [num_distances, distances] # Default case: print("Error: attempted to parse TLV of type not yet supported.") return EXIT_FAILURE def printTLV(typeTLV, length, value): if typeTLV == TLV_TYPE_POS_XYZ: print( "{:_<15} {:_<15} {:_<15} {:_<5}".format('x','y','z','q')) [x,y,z,q] = parseTLV(typeTLV, length, value) print("{:<15} {:<15} {:<15} {:<5}".format(x,y,z,q)) if typeTLV == TLV_TYPE_RNG_AN_POS_DIST: print("{:=<5} {:=<15} {:=<5} {:=<15} {:=<15} {:=<15} {:=<5}".format('addr', 'd', 'dq', 'x', 'y', 'z', 'q')) [num_distances, distances] = parseTLV(typeTLV, length, value) for i in range(num_distances): [addr, d, dq, x, y, z, q] = distances[i] print("{:<5} {:<15} {:<5} {:<15} {:<15} {:<15} {:<5}".format(addr, d, dq, x, y, z, q)) if typeTLV == TLV_TYPE_RNG_AN_DIST: print("{:=<5} {:=<15} {:=<5}".format('addr','d','dq')) [num_distances, distances] = parseTLV(typeTLV, length, value) for i in range(num_distances): [addr, d, dq] = distances[i] print("{:<5} {:<15} {:<5}".format(addr, d, dq)) def getLocations(): # 1. Ask Decawave for Position and distances temp = sendTLV(DWM_LOC_GET) if temp == EXIT_FAILURE: return EXIT_FAILURE # ------------- # 2. Receive response. May get dummy bytes before real response. [typeTLV, length, value]= receiveTLV() if value != ERR_CODE_OK: print("Received an error message. Flushing input buffer.") print(value) ser.reset_input_buffer() return EXIT_FAILURE # ---------Now, I read until I get the position [typeTLV, length, value] = receiveTLV() # Expect Position if length < 13: print("No position received. Flushing buffer.") ser.reset_input_buffer() return EXIT_FAILURE else: printTLV(typeTLV, length, value) [typeTLV, length, value] = receiveTLV() # Expect Distances if length < 13: print("No distances received") else: printTLV(typeTLV, length, value) # The following lines allow this script to run as a program if called directly. if __name__ == "__main__": main()
[ "serial.Serial", "argparse.ArgumentParser" ]
[((933, 989), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""get position info"""'}), "(description='get position info')\n", (956, 989), False, 'import argparse\n'), ((2274, 2326), 'serial.Serial', 'serial.Serial', (['myPort'], {'baudrate': '(115200)', 'timeout': 'None'}), '(myPort, baudrate=115200, timeout=None)\n', (2287, 2326), False, 'import serial\n')]
import logging from abc import ABC class LoggingBase(ABC): def __init__(self, log_level: int) -> None: self.logger = logging.getLogger(self.__class__.__name__) self.logger.setLevel(log_level) @property def log_level(self) -> int: self.logger.level
[ "logging.getLogger" ]
[((137, 179), 'logging.getLogger', 'logging.getLogger', (['self.__class__.__name__'], {}), '(self.__class__.__name__)\n', (154, 179), False, 'import logging\n')]
from tracking import generate_new_tracking_key, register_event from django.core.urlresolvers import reverse from django.conf import settings USER_TRACKING_LOG_HTML_FRAGMENT_RESPONSE = getattr(settings, "USER_TRACKING_LOG_HTML_FRAGMENT_RESPONSE", False) class UserTrackingMiddleware(object): def process_request(self, request): #request.session["test"] = "good" return None def process_response(self, request, response): """ Only record when we return HTML pages. Set a cookie if not set """ if 'text/html' in response.get('Content-Type', ''): content = getattr(response, 'content', '') if USER_TRACKING_LOG_HTML_FRAGMENT_RESPONSE or content.find("<body") >= 0: url_request = request.path urls = [reverse('user_tracking_register_event'), reverse('user_tracking_verify')] found = False for url in urls: if url_request.find(url) >= 0: found = True break if not found: tracking_id = None event_data = {'url': request.path_info, 'method': request.method} if 'user_tracking_id' not in request.COOKIES: tracking_id = generate_new_tracking_key() response.set_cookie('user_tracking_id', tracking_id) register_event(tracking_id=tracking_id, event_name='server_middleware_set_cookie', request=request) #set javascript callback behavior to check if the user has disabled cookies response.set_cookie('user_tracking_verify', tracking_id) else: tracking_id = request.COOKIES['user_tracking_id'] register_event(tracking_id=tracking_id, event_name='server_middleware_page_view',event_data=event_data, request=request) return response
[ "tracking.register_event", "django.core.urlresolvers.reverse", "tracking.generate_new_tracking_key" ]
[((813, 852), 'django.core.urlresolvers.reverse', 'reverse', (['"""user_tracking_register_event"""'], {}), "('user_tracking_register_event')\n", (820, 852), False, 'from django.core.urlresolvers import reverse\n'), ((854, 885), 'django.core.urlresolvers.reverse', 'reverse', (['"""user_tracking_verify"""'], {}), "('user_tracking_verify')\n", (861, 885), False, 'from django.core.urlresolvers import reverse\n'), ((1867, 1993), 'tracking.register_event', 'register_event', ([], {'tracking_id': 'tracking_id', 'event_name': '"""server_middleware_page_view"""', 'event_data': 'event_data', 'request': 'request'}), "(tracking_id=tracking_id, event_name=\n 'server_middleware_page_view', event_data=event_data, request=request)\n", (1881, 1993), False, 'from tracking import generate_new_tracking_key, register_event\n'), ((1332, 1359), 'tracking.generate_new_tracking_key', 'generate_new_tracking_key', ([], {}), '()\n', (1357, 1359), False, 'from tracking import generate_new_tracking_key, register_event\n'), ((1463, 1567), 'tracking.register_event', 'register_event', ([], {'tracking_id': 'tracking_id', 'event_name': '"""server_middleware_set_cookie"""', 'request': 'request'}), "(tracking_id=tracking_id, event_name=\n 'server_middleware_set_cookie', request=request)\n", (1477, 1567), False, 'from tracking import generate_new_tracking_key, register_event\n')]
#!/usr/bin/python import re import subprocess class workspaces(): @staticmethod def _cmd(*args): return subprocess.Popen(args, stdout=subprocess.PIPE).stdout.read().decode("utf-8") @staticmethod def get_display_size(): size = (re.split(' *', workspaces._cmd('wmctrl', '-d').replace("\n", "")))[8].split('x') return {"x": int(size[0]), "y": int(size[1])} @staticmethod def get_workspace_count(): total_size = (re.split(' *', workspaces._cmd('wmctrl', '-d').replace("\n", "")))[3].split('x') total_size = [int(x) for x in total_size] display = workspaces.get_display_size() return {"x": int(total_size[0]/display['x']), "y": int(total_size[1]/display['y'])} @staticmethod def _workspace_coords_to_screen_coords(x, y): disp_size = workspaces.get_display_size() workspace_size = workspaces.get_workspace_count() x_coord = -1 * disp_size['x'] * (workspace_size['x'] - 1 - x) y_coord = -1 * disp_size['y'] * (workspace_size['y'] - 1- y) return {"x": x_coord, "y": y_coord} @staticmethod def move_window(id, desk_x, desk_y): coords = workspaces._workspace_coords_to_screen_coords(desk_x, desk_y) subprocess.call(['wmctrl', '-i', '-r', id, '-e', '0,' + str(coords['x']) + ',' + str(coords['y']) + ',-1,-1']) @staticmethod def get_windows(): windows = workspaces._cmd('wmctrl', '-l').split("\n") lines = [re.split(' *', desc, 3) for desc in windows] return [dict(zip(['id', 'desktop', 'machine', 'title'], line)) for line in lines]
[ "subprocess.Popen", "re.split" ]
[((1480, 1503), 're.split', 're.split', (['""" *"""', 'desc', '(3)'], {}), "(' *', desc, 3)\n", (1488, 1503), False, 'import re\n'), ((121, 167), 'subprocess.Popen', 'subprocess.Popen', (['args'], {'stdout': 'subprocess.PIPE'}), '(args, stdout=subprocess.PIPE)\n', (137, 167), False, 'import subprocess\n')]
import configargparse def parse_args() -> dict: parser = configargparse.ArgParser(default_config_files=['config.ini']) parser.add_argument('--madmin_url', required=True, type=str) parser.add_argument('--madmin_user', required=False, default='', type=str) parser.add_argument('--madmin_password', required=False, default='', type=str) args, unknown = parser.parse_known_args() return {'madmin_url': args.madmin_url.rstrip('/'), 'madmin_user': args.madmin_user.strip(), 'madmin_password': args.madmin_password.strip()}
[ "configargparse.ArgParser" ]
[((63, 124), 'configargparse.ArgParser', 'configargparse.ArgParser', ([], {'default_config_files': "['config.ini']"}), "(default_config_files=['config.ini'])\n", (87, 124), False, 'import configargparse\n')]
# -*- coding: utf-8 -*- ## --------------------------------------------------------------------------- ## Copyright 2019 Dynatrace LLC ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. ## --------------------------------------------------------------------------- """Unit tests for the DAG class.""" from collections import defaultdict import os import pathlib import pytest from alyeska.compose import Task, DAG from alyeska.compose.exceptions import CyclicGraphError from test_compose_globals import ( COMPOSE_SMALL, COMPOSE_BIG, COMPOSE_CYCLE, COMPOSE_TRICKY, ) # ---------------------------------------------------------------------------- # Helper Functions # ---------------------------------------------------------------------------- def get_two_tasks(): return (Task("A.py", env="test-env"), Task("B.py", env="test-env")) # ---------------------------------------------------------------------------- # DAG magic methods # ---------------------------------------------------------------------------- def test__validate_dependency(): make_tea = Task("make_tea.py", "test-env") drink_tea = Task("drink_tea.py", "test-env") with pytest.raises(TypeError): DAG.validate_dependency([1, 2, 3]) with pytest.raises(ValueError): DAG.validate_dependency(defaultdict(set, {make_tea: [drink_tea]})) with pytest.raises(ValueError): DAG.validate_dependency({Task: {1, 2, 3}}) DAG.validate_dependency({make_tea: drink_tea}) DAG.validate_dependency({make_tea: {drink_tea, drink_tea}}) def test__DAG_init(): DAG() # init with dependencies make_tea = Task("make_tea.py", "test-env") drink_tea = Task("drink_tea.py", "test-env") dag = DAG(tasks=make_tea) assert len(dag.tasks) == 1 dag = DAG(tasks={drink_tea, make_tea}) assert len(dag.tasks) == 2 dag = DAG(upstream_dependencies={drink_tea: make_tea}) assert len(dag.tasks) == 2 dag = DAG(downstream_dependencies={make_tea: drink_tea}) assert len(dag.tasks) == 2 def test__DAG_repr(): p = pathlib.Path("make_tea.py") make_tea = Task(p, "test-env") dag = DAG() dag.add_task(make_tea) assert repr(dag) == "".join(["DAG({Task(", p.resolve().as_posix(), ")})"]) # ---------------------------------------------------------------------------- # DAG.tasks # ---------------------------------------------------------------------------- def test__DAG_add_task(): A, B = get_two_tasks() dag = DAG() dag.add_task(A) assert dag.tasks == {A}, "Test Task was not added to the DAG" def test__DAG_add_tasks(): A, B = get_two_tasks() C = Task("C.py") dag = DAG() dag.add_tasks({A, B}) assert dag.tasks == {A, B}, "Test Tasks were not added to the DAG" dag.add_tasks(C) assert dag.tasks == {A, B, C} def test__DAG_remove_task(): A, B = get_two_tasks() dag = DAG() dag.add_tasks({A, B}) dag.remove_task(A) assert dag.tasks == {B} def test__DAG_remove_tasks(): A, B = get_two_tasks() C = Task("C.py") dag = DAG() dag.add_tasks({A, B, C}) dag.remove_tasks({A, B}) assert dag.tasks == {C} dag.remove_tasks(C) assert dag.tasks == set() # ---------------------------------------------------------------------------- # add dependencies # ---------------------------------------------------------------------------- def test__DAG_add_dependency(): A, B = get_two_tasks() dag = DAG() dag.add_dependency(B, A) assert dag._edges[A] == set([B]) def test__DAG_add_dependency_detect_cycle(): A, B = get_two_tasks() dag = DAG() dag.add_dependency(B, A) with pytest.raises(CyclicGraphError): dag.add_dependency(A, B) def test__DAG_add_dependencies(): A, B = get_two_tasks() C = Task("C.py", env="test-env") dag = DAG() dag.add_dependencies({B: A}) assert dag._edges[A] == set([B]) dag = DAG() dag.add_dependencies({C: {A, B}}) assert dag._edges[A] == set([C]) assert dag._edges[B] == set([C]) def test__DAG_add_dependency_detect_cycle2(): A, B = get_two_tasks() C = Task("C.py", env="test-env") dag = DAG() with pytest.raises(CyclicGraphError): dag.add_dependencies({A: C, B: A, C: B}) # ---------------------------------------------------------------------------- # methods # ---------------------------------------------------------------------------- def test__DAG_get_downstream(): A, B = get_two_tasks() dag = DAG() dag.add_dependency(B, depends_on=A) assert dag.get_downstream() is not None assert dag.get_downstream()[A] == {B} assert dag.get_downstream() == {A: {B}}, "Task B is not downstream" def test__DAG_get_upstream(): A, B = get_two_tasks() dag = DAG() dag.add_dependency(B, depends_on=A) assert dag.get_upstream() is not None assert dag.get_upstream()[B] == {A} assert dag.get_upstream() == {B: {A}}, "Task A is not upstream" def test__DAG_get_sources(): A, B = get_two_tasks() dag = DAG() dag.add_dependency(B, depends_on=A) assert dag.get_sources() is not None assert dag.get_sources() == {A} def test__DAG_get_sinks(): A, B = get_two_tasks() dag = DAG() dag.add_dependency(B, depends_on=A) assert dag.get_sinks() is not None assert dag.get_sinks() == {B} def test__DAG_is_cyclic(): A, B = get_two_tasks() dag = DAG() dag.add_dependency(B, depends_on=A) assert not dag.is_cyclic(), "acyclic graph idenfied as cyclic" with pytest.raises(CyclicGraphError): dag.add_dependency(A, depends_on=B) def test__DAG_from_yaml(): DAG.from_yaml(COMPOSE_SMALL) with pytest.raises(CyclicGraphError): DAG.from_yaml(COMPOSE_CYCLE) dag = DAG.from_yaml(COMPOSE_TRICKY) assert len(dag.tasks) > 0
[ "alyeska.compose.DAG", "alyeska.compose.DAG.validate_dependency", "alyeska.compose.Task", "collections.defaultdict", "pathlib.Path", "pytest.raises", "alyeska.compose.DAG.from_yaml" ]
[((1596, 1627), 'alyeska.compose.Task', 'Task', (['"""make_tea.py"""', '"""test-env"""'], {}), "('make_tea.py', 'test-env')\n", (1600, 1627), False, 'from alyeska.compose import Task, DAG\n'), ((1644, 1676), 'alyeska.compose.Task', 'Task', (['"""drink_tea.py"""', '"""test-env"""'], {}), "('drink_tea.py', 'test-env')\n", (1648, 1676), False, 'from alyeska.compose import Task, DAG\n'), ((1961, 2007), 'alyeska.compose.DAG.validate_dependency', 'DAG.validate_dependency', (['{make_tea: drink_tea}'], {}), '({make_tea: drink_tea})\n', (1984, 2007), False, 'from alyeska.compose import Task, DAG\n'), ((2012, 2071), 'alyeska.compose.DAG.validate_dependency', 'DAG.validate_dependency', (['{make_tea: {drink_tea, drink_tea}}'], {}), '({make_tea: {drink_tea, drink_tea}})\n', (2035, 2071), False, 'from alyeska.compose import Task, DAG\n'), ((2100, 2105), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (2103, 2105), False, 'from alyeska.compose import Task, DAG\n'), ((2151, 2182), 'alyeska.compose.Task', 'Task', (['"""make_tea.py"""', '"""test-env"""'], {}), "('make_tea.py', 'test-env')\n", (2155, 2182), False, 'from alyeska.compose import Task, DAG\n'), ((2199, 2231), 'alyeska.compose.Task', 'Task', (['"""drink_tea.py"""', '"""test-env"""'], {}), "('drink_tea.py', 'test-env')\n", (2203, 2231), False, 'from alyeska.compose import Task, DAG\n'), ((2243, 2262), 'alyeska.compose.DAG', 'DAG', ([], {'tasks': 'make_tea'}), '(tasks=make_tea)\n', (2246, 2262), False, 'from alyeska.compose import Task, DAG\n'), ((2305, 2337), 'alyeska.compose.DAG', 'DAG', ([], {'tasks': '{drink_tea, make_tea}'}), '(tasks={drink_tea, make_tea})\n', (2308, 2337), False, 'from alyeska.compose import Task, DAG\n'), ((2380, 2428), 'alyeska.compose.DAG', 'DAG', ([], {'upstream_dependencies': '{drink_tea: make_tea}'}), '(upstream_dependencies={drink_tea: make_tea})\n', (2383, 2428), False, 'from alyeska.compose import Task, DAG\n'), ((2471, 2521), 'alyeska.compose.DAG', 'DAG', ([], {'downstream_dependencies': '{make_tea: drink_tea}'}), '(downstream_dependencies={make_tea: drink_tea})\n', (2474, 2521), False, 'from alyeska.compose import Task, DAG\n'), ((2585, 2612), 'pathlib.Path', 'pathlib.Path', (['"""make_tea.py"""'], {}), "('make_tea.py')\n", (2597, 2612), False, 'import pathlib\n'), ((2628, 2647), 'alyeska.compose.Task', 'Task', (['p', '"""test-env"""'], {}), "(p, 'test-env')\n", (2632, 2647), False, 'from alyeska.compose import Task, DAG\n'), ((2658, 2663), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (2661, 2663), False, 'from alyeska.compose import Task, DAG\n'), ((3006, 3011), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (3009, 3011), False, 'from alyeska.compose import Task, DAG\n'), ((3163, 3175), 'alyeska.compose.Task', 'Task', (['"""C.py"""'], {}), "('C.py')\n", (3167, 3175), False, 'from alyeska.compose import Task, DAG\n'), ((3186, 3191), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (3189, 3191), False, 'from alyeska.compose import Task, DAG\n'), ((3416, 3421), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (3419, 3421), False, 'from alyeska.compose import Task, DAG\n'), ((3567, 3579), 'alyeska.compose.Task', 'Task', (['"""C.py"""'], {}), "('C.py')\n", (3571, 3579), False, 'from alyeska.compose import Task, DAG\n'), ((3590, 3595), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (3593, 3595), False, 'from alyeska.compose import Task, DAG\n'), ((3985, 3990), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (3988, 3990), False, 'from alyeska.compose import Task, DAG\n'), ((4141, 4146), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (4144, 4146), False, 'from alyeska.compose import Task, DAG\n'), ((4322, 4350), 'alyeska.compose.Task', 'Task', (['"""C.py"""'], {'env': '"""test-env"""'}), "('C.py', env='test-env')\n", (4326, 4350), False, 'from alyeska.compose import Task, DAG\n'), ((4361, 4366), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (4364, 4366), False, 'from alyeska.compose import Task, DAG\n'), ((4448, 4453), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (4451, 4453), False, 'from alyeska.compose import Task, DAG\n'), ((4649, 4677), 'alyeska.compose.Task', 'Task', (['"""C.py"""'], {'env': '"""test-env"""'}), "('C.py', env='test-env')\n", (4653, 4677), False, 'from alyeska.compose import Task, DAG\n'), ((4689, 4694), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (4692, 4694), False, 'from alyeska.compose import Task, DAG\n'), ((5025, 5030), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (5028, 5030), False, 'from alyeska.compose import Task, DAG\n'), ((5298, 5303), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (5301, 5303), False, 'from alyeska.compose import Task, DAG\n'), ((5562, 5567), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (5565, 5567), False, 'from alyeska.compose import Task, DAG\n'), ((5751, 5756), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (5754, 5756), False, 'from alyeska.compose import Task, DAG\n'), ((5936, 5941), 'alyeska.compose.DAG', 'DAG', ([], {}), '()\n', (5939, 5941), False, 'from alyeska.compose import Task, DAG\n'), ((6170, 6198), 'alyeska.compose.DAG.from_yaml', 'DAG.from_yaml', (['COMPOSE_SMALL'], {}), '(COMPOSE_SMALL)\n', (6183, 6198), False, 'from alyeska.compose import Task, DAG\n'), ((6290, 6319), 'alyeska.compose.DAG.from_yaml', 'DAG.from_yaml', (['COMPOSE_TRICKY'], {}), '(COMPOSE_TRICKY)\n', (6303, 6319), False, 'from alyeska.compose import Task, DAG\n'), ((1306, 1334), 'alyeska.compose.Task', 'Task', (['"""A.py"""'], {'env': '"""test-env"""'}), "('A.py', env='test-env')\n", (1310, 1334), False, 'from alyeska.compose import Task, DAG\n'), ((1336, 1364), 'alyeska.compose.Task', 'Task', (['"""B.py"""'], {'env': '"""test-env"""'}), "('B.py', env='test-env')\n", (1340, 1364), False, 'from alyeska.compose import Task, DAG\n'), ((1687, 1711), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (1700, 1711), False, 'import pytest\n'), ((1721, 1755), 'alyeska.compose.DAG.validate_dependency', 'DAG.validate_dependency', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (1744, 1755), False, 'from alyeska.compose import Task, DAG\n'), ((1766, 1791), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1779, 1791), False, 'import pytest\n'), ((1878, 1903), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1891, 1903), False, 'import pytest\n'), ((1913, 1955), 'alyeska.compose.DAG.validate_dependency', 'DAG.validate_dependency', (['{Task: {1, 2, 3}}'], {}), '({Task: {1, 2, 3}})\n', (1936, 1955), False, 'from alyeska.compose import Task, DAG\n'), ((4185, 4216), 'pytest.raises', 'pytest.raises', (['CyclicGraphError'], {}), '(CyclicGraphError)\n', (4198, 4216), False, 'import pytest\n'), ((4704, 4735), 'pytest.raises', 'pytest.raises', (['CyclicGraphError'], {}), '(CyclicGraphError)\n', (4717, 4735), False, 'import pytest\n'), ((6060, 6091), 'pytest.raises', 'pytest.raises', (['CyclicGraphError'], {}), '(CyclicGraphError)\n', (6073, 6091), False, 'import pytest\n'), ((6209, 6240), 'pytest.raises', 'pytest.raises', (['CyclicGraphError'], {}), '(CyclicGraphError)\n', (6222, 6240), False, 'import pytest\n'), ((6250, 6278), 'alyeska.compose.DAG.from_yaml', 'DAG.from_yaml', (['COMPOSE_CYCLE'], {}), '(COMPOSE_CYCLE)\n', (6263, 6278), False, 'from alyeska.compose import Task, DAG\n'), ((1825, 1866), 'collections.defaultdict', 'defaultdict', (['set', '{make_tea: [drink_tea]}'], {}), '(set, {make_tea: [drink_tea]})\n', (1836, 1866), False, 'from collections import defaultdict\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # basic import import os import os.path as op import sys import time sys.path.insert(0, op.join(op.dirname(__file__),'..','..')) # python libs import numpy as np import xarray as xr # custom libs from teslakit.project_site import PathControl from teslakit.extremes import FitGEV_KMA_Frechet # -------------------------------------- # Test data storage pc = PathControl() p_tests = pc.p_test_data p_test = op.join(p_tests, 'ClimateEmulator', 'gev_fit_kma_fretchet') # input p_npz = op.join(p_test, 'swell_1_Hs.npz') # -------------------------------------- # Load data npzf = np.load(p_npz) bmus = npzf['arr_0'] n_clusters = npzf['arr_1'] var_wvs = npzf['arr_2'] print(bmus) print(n_clusters) print(var_wvs) print() # TODO: small differences with ML at nlogl_1-nlogl_2 = 1.92 gp_pars = FitGEV_KMA_Frechet( bmus, n_clusters, var_wvs) print(gp_pars)
[ "numpy.load", "os.path.dirname", "teslakit.extremes.FitGEV_KMA_Frechet", "teslakit.project_site.PathControl", "os.path.join" ]
[((408, 421), 'teslakit.project_site.PathControl', 'PathControl', ([], {}), '()\n', (419, 421), False, 'from teslakit.project_site import PathControl\n'), ((456, 515), 'os.path.join', 'op.join', (['p_tests', '"""ClimateEmulator"""', '"""gev_fit_kma_fretchet"""'], {}), "(p_tests, 'ClimateEmulator', 'gev_fit_kma_fretchet')\n", (463, 515), True, 'import os.path as op\n'), ((533, 566), 'os.path.join', 'op.join', (['p_test', '"""swell_1_Hs.npz"""'], {}), "(p_test, 'swell_1_Hs.npz')\n", (540, 566), True, 'import os.path as op\n'), ((629, 643), 'numpy.load', 'np.load', (['p_npz'], {}), '(p_npz)\n', (636, 643), True, 'import numpy as np\n'), ((842, 887), 'teslakit.extremes.FitGEV_KMA_Frechet', 'FitGEV_KMA_Frechet', (['bmus', 'n_clusters', 'var_wvs'], {}), '(bmus, n_clusters, var_wvs)\n', (860, 887), False, 'from teslakit.extremes import FitGEV_KMA_Frechet\n'), ((143, 163), 'os.path.dirname', 'op.dirname', (['__file__'], {}), '(__file__)\n', (153, 163), True, 'import os.path as op\n')]
''' Authentication urls for ToDos Users Author: <NAME> ''' from django.conf.urls import url from . import views # Authentiction urls urlpatterns = [ url(r'^login/', views._login), url(r'^signup/', views._register), url(r'^change_password/', views._changePassword), url(r'^logout/', views._logout), url(r'^upload/', views._upload), url(r'^profile/', views._profile), # url(r'^activate/(?P<id>[0-9]+)/(?P<token>[-\w]+)', views._activate), # url(r'^resend_activation_email/(?P<id>[0-9]+)', views.resend_activation_email), ]
[ "django.conf.urls.url" ]
[((163, 191), 'django.conf.urls.url', 'url', (['"""^login/"""', 'views._login'], {}), "('^login/', views._login)\n", (166, 191), False, 'from django.conf.urls import url\n'), ((198, 230), 'django.conf.urls.url', 'url', (['"""^signup/"""', 'views._register'], {}), "('^signup/', views._register)\n", (201, 230), False, 'from django.conf.urls import url\n'), ((237, 284), 'django.conf.urls.url', 'url', (['"""^change_password/"""', 'views._changePassword'], {}), "('^change_password/', views._changePassword)\n", (240, 284), False, 'from django.conf.urls import url\n'), ((291, 321), 'django.conf.urls.url', 'url', (['"""^logout/"""', 'views._logout'], {}), "('^logout/', views._logout)\n", (294, 321), False, 'from django.conf.urls import url\n'), ((328, 358), 'django.conf.urls.url', 'url', (['"""^upload/"""', 'views._upload'], {}), "('^upload/', views._upload)\n", (331, 358), False, 'from django.conf.urls import url\n'), ((365, 397), 'django.conf.urls.url', 'url', (['"""^profile/"""', 'views._profile'], {}), "('^profile/', views._profile)\n", (368, 397), False, 'from django.conf.urls import url\n')]
from typing import List from geneeval.fetcher.fetchers import Fetcher, LocalizationFetcher, SequenceFetcher, UniprotFetcher class AutoFetcher: """A factory function which returns the correct data fetcher for the given `tasks`. A `Fetcher` is returned which requests all the data relevant to `tasks` in a single call to its `fetch` method. This ensures the API endpoints are only queried once, rather than for every task individually. NOTE: It is assumed that a `benchmark.json` file already exists, with at least the gene IDs present. This file can be created by running the `get_protein_ids.py` file in `scripts`. """ def __new__(cls, tasks: List[str]) -> Fetcher: fetcher = Fetcher() uniprot_fetcher = UniprotFetcher() for task in tasks: if task.startswith("sequence"): uniprot_fetcher.register(SequenceFetcher) if task.startswith("subcellular_localization"): uniprot_fetcher.register(LocalizationFetcher) fetcher.register(uniprot_fetcher) return fetcher
[ "geneeval.fetcher.fetchers.UniprotFetcher", "geneeval.fetcher.fetchers.Fetcher" ]
[((723, 732), 'geneeval.fetcher.fetchers.Fetcher', 'Fetcher', ([], {}), '()\n', (730, 732), False, 'from geneeval.fetcher.fetchers import Fetcher, LocalizationFetcher, SequenceFetcher, UniprotFetcher\n'), ((760, 776), 'geneeval.fetcher.fetchers.UniprotFetcher', 'UniprotFetcher', ([], {}), '()\n', (774, 776), False, 'from geneeval.fetcher.fetchers import Fetcher, LocalizationFetcher, SequenceFetcher, UniprotFetcher\n')]
import os, json from typing import Dict, Iterable from azure.cosmos import (CosmosClient, PartitionKey, ContainerProxy, DatabaseProxy) SETTINGS = dict( HOST = os.getenv('COSMOSDB_HOST'), MASTER_KEY = os.getenv('COSMOSDB_MASTER_KEY'), DATABASE_ID = os.getenv('COSMOSDB_DATABASE_ID') ) class DataBaseClient(): def __init__(self, container_id, partition_key) -> None: super().__init__() self.container_id = container_id self.partition_key = partition_key def get_cosmosdb_client(self) -> CosmosClient: client = CosmosClient( endpoint_url=SETTINGS['HOST'], auth={'masterKey': SETTINGS['MASTER_KEY']} ) return client def get_cosmosdb_database(self) -> DatabaseProxy: client = self.get_cosmosdb_client() database = client.create_database_if_not_exists(SETTINGS['DATABASE_ID']) return database def get_cosmosdb_container(self) -> ContainerProxy: database = self.get_cosmosdb_database() container = database.create_container_if_not_exists( id=self.container_id, partition_key=PartitionKey(path=self.partition_key) ) return container def create_item_cosmosdb(self, item: Dict) -> Dict: container = self.get_cosmosdb_container() item = container.create_item(item) return item def upsert_item_cosmosdb(self, item: Dict) -> Dict: container = self.get_cosmosdb_container() item = container.upsert_item(item) return item def delete_item_cosmosdb(self, item: Dict) -> Dict: container = self.get_cosmosdb_container() item = container.delete_item(item) return item def get_item_cosmosdb(self, item: Dict) -> Dict: container = self.get_cosmosdb_container() item = container.read_item(item) return item def query_items_cosmosdb(self, query: str) -> Iterable: container = self.get_cosmosdb_container() items = container.query_items(query, enable_cross_partition_query=True) return items
[ "azure.cosmos.CosmosClient", "azure.cosmos.PartitionKey", "os.getenv" ]
[((242, 268), 'os.getenv', 'os.getenv', (['"""COSMOSDB_HOST"""'], {}), "('COSMOSDB_HOST')\n", (251, 268), False, 'import os, json\n'), ((287, 319), 'os.getenv', 'os.getenv', (['"""COSMOSDB_MASTER_KEY"""'], {}), "('COSMOSDB_MASTER_KEY')\n", (296, 319), False, 'import os, json\n'), ((339, 372), 'os.getenv', 'os.getenv', (['"""COSMOSDB_DATABASE_ID"""'], {}), "('COSMOSDB_DATABASE_ID')\n", (348, 372), False, 'import os, json\n'), ((663, 755), 'azure.cosmos.CosmosClient', 'CosmosClient', ([], {'endpoint_url': "SETTINGS['HOST']", 'auth': "{'masterKey': SETTINGS['MASTER_KEY']}"}), "(endpoint_url=SETTINGS['HOST'], auth={'masterKey': SETTINGS[\n 'MASTER_KEY']})\n", (675, 755), False, 'from azure.cosmos import CosmosClient, PartitionKey, ContainerProxy, DatabaseProxy\n'), ((1245, 1282), 'azure.cosmos.PartitionKey', 'PartitionKey', ([], {'path': 'self.partition_key'}), '(path=self.partition_key)\n', (1257, 1282), False, 'from azure.cosmos import CosmosClient, PartitionKey, ContainerProxy, DatabaseProxy\n')]
import os import sys import cv2 import time import caffe import numpy as np import config sys.path.append('../') from fast_mtcnn import fast_mtcnn from gen_landmark import expand_mtcnn_box, is_valid_facebox, extract_baidu_lm72 from baidu import call_baidu_api def create_net(model_dir, iter_num): model_path = os.path.join(model_dir, 'landmark_iter_%d.caffemodel' % iter_num) proto_path = 'landmark.prototxt' return caffe.Net(proto_path, model_path, caffe.TEST) if __name__ == '__main__': iter_num = int(sys.argv[1]) img_path = sys.argv[2] model_dir = config.MODEL_DIR if len(sys.argv) > 3: model_dir = sys.argv[3] img = cv2.imread(img_path) net = create_net(model_dir, iter_num) mtcnn = fast_mtcnn() boxes = mtcnn(img_path) for box in boxes: if not is_valid_facebox(box): continue exp_box = expand_mtcnn_box(img, box) cropped = img[exp_box[1]:exp_box[3], exp_box[0]:exp_box[2]] baidu_result = call_baidu_api(cropped, '') baidu_lm = extract_baidu_lm72(baidu_result[0][-1]) for x, y in baidu_lm: x = int(x + exp_box[0]) y = int(y + exp_box[1]) cv2.circle(img, (int(x), int(y)), 1, (255, 0, 0), 1) h, w, _ = cropped.shape cropped = cv2.resize(cropped, (config.IMG_SIZE, config.IMG_SIZE)) cropped = np.swapaxes(cropped, 0, 2) cropped = (cropped - 127.5) / 127.5 net.blobs['data'].data[0] = cropped out = net.forward() landmark = out['Dense2'][0] for pt in landmark.reshape((config.LANDMARK_SIZE, 2)): x, y = pt x = x * w + exp_box[0] y = y * h + exp_box[1] cv2.circle(img, (int(x), int(y)), 1, (255, 255, 0), 1) time.sleep(0.5) cv2.imwrite('result.jpg', img)
[ "sys.path.append", "gen_landmark.extract_baidu_lm72", "fast_mtcnn.fast_mtcnn", "baidu.call_baidu_api", "gen_landmark.is_valid_facebox", "cv2.imwrite", "gen_landmark.expand_mtcnn_box", "time.sleep", "cv2.imread", "numpy.swapaxes", "caffe.Net", "os.path.join", "cv2.resize" ]
[((90, 112), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (105, 112), False, 'import sys\n'), ((315, 380), 'os.path.join', 'os.path.join', (['model_dir', "('landmark_iter_%d.caffemodel' % iter_num)"], {}), "(model_dir, 'landmark_iter_%d.caffemodel' % iter_num)\n", (327, 380), False, 'import os\n'), ((429, 474), 'caffe.Net', 'caffe.Net', (['proto_path', 'model_path', 'caffe.TEST'], {}), '(proto_path, model_path, caffe.TEST)\n', (438, 474), False, 'import caffe\n'), ((664, 684), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (674, 684), False, 'import cv2\n'), ((740, 752), 'fast_mtcnn.fast_mtcnn', 'fast_mtcnn', ([], {}), '()\n', (750, 752), False, 'from fast_mtcnn import fast_mtcnn\n'), ((1807, 1837), 'cv2.imwrite', 'cv2.imwrite', (['"""result.jpg"""', 'img'], {}), "('result.jpg', img)\n", (1818, 1837), False, 'import cv2\n'), ((880, 906), 'gen_landmark.expand_mtcnn_box', 'expand_mtcnn_box', (['img', 'box'], {}), '(img, box)\n', (896, 906), False, 'from gen_landmark import expand_mtcnn_box, is_valid_facebox, extract_baidu_lm72\n'), ((998, 1025), 'baidu.call_baidu_api', 'call_baidu_api', (['cropped', '""""""'], {}), "(cropped, '')\n", (1012, 1025), False, 'from baidu import call_baidu_api\n'), ((1045, 1084), 'gen_landmark.extract_baidu_lm72', 'extract_baidu_lm72', (['baidu_result[0][-1]'], {}), '(baidu_result[0][-1])\n', (1063, 1084), False, 'from gen_landmark import expand_mtcnn_box, is_valid_facebox, extract_baidu_lm72\n'), ((1303, 1358), 'cv2.resize', 'cv2.resize', (['cropped', '(config.IMG_SIZE, config.IMG_SIZE)'], {}), '(cropped, (config.IMG_SIZE, config.IMG_SIZE))\n', (1313, 1358), False, 'import cv2\n'), ((1377, 1403), 'numpy.swapaxes', 'np.swapaxes', (['cropped', '(0)', '(2)'], {}), '(cropped, 0, 2)\n', (1388, 1403), True, 'import numpy as np\n'), ((1786, 1801), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (1796, 1801), False, 'import time\n'), ((818, 839), 'gen_landmark.is_valid_facebox', 'is_valid_facebox', (['box'], {}), '(box)\n', (834, 839), False, 'from gen_landmark import expand_mtcnn_box, is_valid_facebox, extract_baidu_lm72\n')]
import uuid import mongoengine as db from flask import current_app as app from flask_mongoengine import MongoEngine class Properties: name = "example" nic = "example-nic" disk = "example-disk" vmId = str(uuid.uuid4()) subId = str(uuid.uuid4()) rgroup = "example-resource-group" availabilitySet = "example-availability-set" ppg = "example-proximity-placement-group" props = Properties() store = MongoEngine(app._get_current_object()) class VirtualMachine(db.Document): tags = db.DictField() name = db.StringField(required=True) location = db.StringField(required=True) subscription = db.StringField(required=True) resourceGroup = db.StringField(required=True) rid = db.StringField(required=True, unique=True) provisioningState = db.StringField(default='Succeeded') type = db.StringField(default='Microsoft.Compute/virtualMachines') properties = db.DictField(default={ "vmId": props.vmId, "availabilitySet": { "id": f"/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Compute/availabilitySets/my-AvailabilitySet" }, "proximityPlacementGroup": { "id": f"/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Compute/proximityPlacementGroups/{props.ppg}" }, "hardwareProfile": { "vmSize": "Standard_DS3_v2" }, "storageProfile": { "imageReference": { "publisher": "MicrosoftWindowsServer", "offer": "WindowsServer", "sku": "2016-Datacenter", "version": "latest" }, "osDisk": { "osType": "Windows", "name": "myOsDisk", "createOption": "FromImage", "caching": "ReadWrite", "managedDisk": { "storageAccountType": "Premium_LRS", "id": f"/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Compute/disks/{props.disk}" }, "diskSizeGB": 30 }, "dataDisks": [ { "lun": 0, "name": "myDataDisk0", "createOption": "Empty", "caching": "ReadWrite", "managedDisk": { "storageAccountType": "Premium_LRS", "id": f"/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Compute/disks/{props.disk}" }, "diskSizeGB": 30 }, { "lun": 1, "name": "myDataDisk1", "createOption": "Attach", "caching": "ReadWrite", "managedDisk": { "storageAccountType": "Premium_LRS", "id": f"/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Compute/disks/{props.disk}" }, "diskSizeGB": 100 } ] }, "userData": "RXhhbXBsZSBVc2VyRGF0YQ==", "osProfile": { "computerName": "myVM", "adminUsername": "admin", "windowsConfiguration": { "provisionVMAgent": True, "enableAutomaticUpdates": False }, "secrets": [] }, "networkProfile": { "networkInterfaces": [ { "id": f"/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Network/networkInterfaces/{props.nic}" } ] }, "diagnosticsProfile": { "bootDiagnostics": { "enabled": True, "storageUri": f"http://{props.name}.blob.core.windows.net" } }, "extensionsTimeBudget": "PT50M", "provisioningState": "Succeeded" }) meta = {'collection': 'virtualmachines'} def __repr__(self): return "VirtualMachine(%s)" % self.rid def save(self, *args, **kwargs): self.rid = '/subscriptions/%s/resourceGroups/%s/providers/%s/%s' % ( self.subscription, self.resourceGroup, self.type, self.name) super().save(args, kwargs)
[ "flask.current_app._get_current_object", "mongoengine.StringField", "uuid.uuid4", "mongoengine.DictField" ]
[((444, 469), 'flask.current_app._get_current_object', 'app._get_current_object', ([], {}), '()\n', (467, 469), True, 'from flask import current_app as app\n'), ((519, 533), 'mongoengine.DictField', 'db.DictField', ([], {}), '()\n', (531, 533), True, 'import mongoengine as db\n'), ((545, 574), 'mongoengine.StringField', 'db.StringField', ([], {'required': '(True)'}), '(required=True)\n', (559, 574), True, 'import mongoengine as db\n'), ((590, 619), 'mongoengine.StringField', 'db.StringField', ([], {'required': '(True)'}), '(required=True)\n', (604, 619), True, 'import mongoengine as db\n'), ((639, 668), 'mongoengine.StringField', 'db.StringField', ([], {'required': '(True)'}), '(required=True)\n', (653, 668), True, 'import mongoengine as db\n'), ((689, 718), 'mongoengine.StringField', 'db.StringField', ([], {'required': '(True)'}), '(required=True)\n', (703, 718), True, 'import mongoengine as db\n'), ((729, 771), 'mongoengine.StringField', 'db.StringField', ([], {'required': '(True)', 'unique': '(True)'}), '(required=True, unique=True)\n', (743, 771), True, 'import mongoengine as db\n'), ((796, 831), 'mongoengine.StringField', 'db.StringField', ([], {'default': '"""Succeeded"""'}), "(default='Succeeded')\n", (810, 831), True, 'import mongoengine as db\n'), ((843, 902), 'mongoengine.StringField', 'db.StringField', ([], {'default': '"""Microsoft.Compute/virtualMachines"""'}), "(default='Microsoft.Compute/virtualMachines')\n", (857, 902), True, 'import mongoengine as db\n'), ((920, 3019), 'mongoengine.DictField', 'db.DictField', ([], {'default': "{'vmId': props.vmId, 'availabilitySet': {'id':\n f'/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Compute/availabilitySets/my-AvailabilitySet'\n }, 'proximityPlacementGroup': {'id':\n f'/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Compute/proximityPlacementGroups/{props.ppg}'\n }, 'hardwareProfile': {'vmSize': 'Standard_DS3_v2'}, 'storageProfile':\n {'imageReference': {'publisher': 'MicrosoftWindowsServer', 'offer':\n 'WindowsServer', 'sku': '2016-Datacenter', 'version': 'latest'},\n 'osDisk': {'osType': 'Windows', 'name': 'myOsDisk', 'createOption':\n 'FromImage', 'caching': 'ReadWrite', 'managedDisk': {\n 'storageAccountType': 'Premium_LRS', 'id':\n f'/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Compute/disks/{props.disk}'\n }, 'diskSizeGB': 30}, 'dataDisks': [{'lun': 0, 'name': 'myDataDisk0',\n 'createOption': 'Empty', 'caching': 'ReadWrite', 'managedDisk': {\n 'storageAccountType': 'Premium_LRS', 'id':\n f'/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Compute/disks/{props.disk}'\n }, 'diskSizeGB': 30}, {'lun': 1, 'name': 'myDataDisk1', 'createOption':\n 'Attach', 'caching': 'ReadWrite', 'managedDisk': {'storageAccountType':\n 'Premium_LRS', 'id':\n f'/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Compute/disks/{props.disk}'\n }, 'diskSizeGB': 100}]}, 'userData': 'RXhhbXBsZSBVc2VyRGF0YQ==',\n 'osProfile': {'computerName': 'myVM', 'adminUsername': 'admin',\n 'windowsConfiguration': {'provisionVMAgent': True,\n 'enableAutomaticUpdates': False}, 'secrets': []}, 'networkProfile': {\n 'networkInterfaces': [{'id':\n f'/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Network/networkInterfaces/{props.nic}'\n }]}, 'diagnosticsProfile': {'bootDiagnostics': {'enabled': True,\n 'storageUri': f'http://{props.name}.blob.core.windows.net'}},\n 'extensionsTimeBudget': 'PT50M', 'provisioningState': 'Succeeded'}"}), "(default={'vmId': props.vmId, 'availabilitySet': {'id':\n f'/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Compute/availabilitySets/my-AvailabilitySet'\n }, 'proximityPlacementGroup': {'id':\n f'/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Compute/proximityPlacementGroups/{props.ppg}'\n }, 'hardwareProfile': {'vmSize': 'Standard_DS3_v2'}, 'storageProfile':\n {'imageReference': {'publisher': 'MicrosoftWindowsServer', 'offer':\n 'WindowsServer', 'sku': '2016-Datacenter', 'version': 'latest'},\n 'osDisk': {'osType': 'Windows', 'name': 'myOsDisk', 'createOption':\n 'FromImage', 'caching': 'ReadWrite', 'managedDisk': {\n 'storageAccountType': 'Premium_LRS', 'id':\n f'/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Compute/disks/{props.disk}'\n }, 'diskSizeGB': 30}, 'dataDisks': [{'lun': 0, 'name': 'myDataDisk0',\n 'createOption': 'Empty', 'caching': 'ReadWrite', 'managedDisk': {\n 'storageAccountType': 'Premium_LRS', 'id':\n f'/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Compute/disks/{props.disk}'\n }, 'diskSizeGB': 30}, {'lun': 1, 'name': 'myDataDisk1', 'createOption':\n 'Attach', 'caching': 'ReadWrite', 'managedDisk': {'storageAccountType':\n 'Premium_LRS', 'id':\n f'/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Compute/disks/{props.disk}'\n }, 'diskSizeGB': 100}]}, 'userData': 'RXhhbXBsZSBVc2VyRGF0YQ==',\n 'osProfile': {'computerName': 'myVM', 'adminUsername': 'admin',\n 'windowsConfiguration': {'provisionVMAgent': True,\n 'enableAutomaticUpdates': False}, 'secrets': []}, 'networkProfile': {\n 'networkInterfaces': [{'id':\n f'/subscriptions/{props.subId}/resourceGroups/{props.rgroup}/providers/Microsoft.Network/networkInterfaces/{props.nic}'\n }]}, 'diagnosticsProfile': {'bootDiagnostics': {'enabled': True,\n 'storageUri': f'http://{props.name}.blob.core.windows.net'}},\n 'extensionsTimeBudget': 'PT50M', 'provisioningState': 'Succeeded'})\n", (932, 3019), True, 'import mongoengine as db\n'), ((224, 236), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (234, 236), False, 'import uuid\n'), ((254, 266), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (264, 266), False, 'import uuid\n')]
from sendgrid.helpers.mail import Mail from CommonCode.strings import Strings class SendGridEmailHelper: def builderToMail(self,emailBuilder): fromId = Strings.getFormattedEmail(builder=emailBuilder.fromId); toids = list() for ids in emailBuilder.toId: toids.append(Strings.getFormattedEmail(builder=ids)) subject = emailBuilder.subject content = emailBuilder.content return Mail(from_email=fromId, to_emails=toids, subject=subject, html_content=content)
[ "sendgrid.helpers.mail.Mail", "CommonCode.strings.Strings.getFormattedEmail" ]
[((167, 221), 'CommonCode.strings.Strings.getFormattedEmail', 'Strings.getFormattedEmail', ([], {'builder': 'emailBuilder.fromId'}), '(builder=emailBuilder.fromId)\n', (192, 221), False, 'from CommonCode.strings import Strings\n'), ((442, 521), 'sendgrid.helpers.mail.Mail', 'Mail', ([], {'from_email': 'fromId', 'to_emails': 'toids', 'subject': 'subject', 'html_content': 'content'}), '(from_email=fromId, to_emails=toids, subject=subject, html_content=content)\n', (446, 521), False, 'from sendgrid.helpers.mail import Mail\n'), ((309, 347), 'CommonCode.strings.Strings.getFormattedEmail', 'Strings.getFormattedEmail', ([], {'builder': 'ids'}), '(builder=ids)\n', (334, 347), False, 'from CommonCode.strings import Strings\n')]
import json import os from typing import TextIO, Hashable, Iterator from dateutil.parser import isoparse from utils.sorts import Sort, Group def parse_board(f: TextIO, card_mapping: dict[str, Hashable]) -> Sort: """ Extracts the information from a trello board json file. A card_mapping maps the card prompts to an ID which is usually more useful for analysis. Card prompts will be mapped to the given ID when parsing and used in place of the card prompt. :param f: a TextIO Stream of the trello board json file :param card_mapping: a mapping of card names to card ids :return: a Sort object """ data = json.load(f) trello_lists = data['lists'] trello_lists.sort(key=lambda x: x['pos']) # Cards are linked to their lists by list ID. So, a temporary mapping # from list IDs to groups is needed. groups_by_id = {} for trello_list in trello_lists: group_name = trello_list['name'] list_id = trello_list['id'] group = Group(group_name) groups_by_id[list_id] = group cards = data['cards'] # Participants may accidentally add cards which are then deleted, "closed". cards = [card for card in cards if not card['closed']] for card in cards: group_id = card['idList'] group = groups_by_id[group_id] # It may be more useful to map card prompts to an ID for analysis if card_mapping is not None: card_data = card_mapping[card['name']] else: card_data = card['name'] group.cards.add(card_data) actions = data['actions'] actions.sort(key=lambda x: isoparse(x['date'])) # Only card moves, list creation, and list renaming are considered. valid_actions = [] for action in actions: action_data = action['data'] action_type = action['type'] # Card is moved if action_type == 'updateCard' and 'listBefore' in action_data: valid_actions.append(action) # List is created elif action_type == 'createList': valid_actions.append(action) # List is renamed elif action_type == 'updateList' and 'name' in action_data['old']: valid_actions.append(action) # For the purposes of this study, sorts were considered to start when the # first trello list was created. Sorts were considered to end when the # last card move or list rename action was performed. first_list = next(action for action in valid_actions if action['type'] == 'createList') start_time = isoparse(first_list['date']) end_time = isoparse(actions[-1]['date']) total_sort_time = end_time - start_time # Empty groups are discarded. groups = [group for group in groups_by_id.values() if group.cards] sort_name = data['name'] cards = set(card_mapping.values()) sort = Sort(sort_name, groups, cards, total_sort_time) return sort def get_paths_to_jsons_in_dir(path: str) -> Iterator[str]: """ Returns a list of paths to json files in the given directory. Nested directories are not traversed. :param path: a path to a directory :return: the list of paths to json files in the given directory """ files = os.listdir(path) for file in files: file_path = os.path.join(path, file) if os.path.isfile(file_path) and file.endswith('.json'): yield file_path def parse_sorts_in_dir(path: str, card_mapping: dict[str, Hashable] = None) -> list[Sort]: """ Parses all sorts in the given directory. Nested directories are not traversed. This is equivalent to calling parse_sort on each json file in the given directory. :param path: a path to a directory :param card_mapping: an optional mapping of card names to card ids :return: a list of Sort objects """ sorts = [] trello_json_paths = get_paths_to_jsons_in_dir(path) for path in trello_json_paths: with open(path, 'r') as f: sort = parse_board(f, card_mapping) sorts.append(sort) return sorts
[ "utils.sorts.Group", "json.load", "utils.sorts.Sort", "dateutil.parser.isoparse", "os.path.isfile", "os.path.join", "os.listdir" ]
[((649, 661), 'json.load', 'json.load', (['f'], {}), '(f)\n', (658, 661), False, 'import json\n'), ((2588, 2616), 'dateutil.parser.isoparse', 'isoparse', (["first_list['date']"], {}), "(first_list['date'])\n", (2596, 2616), False, 'from dateutil.parser import isoparse\n'), ((2632, 2661), 'dateutil.parser.isoparse', 'isoparse', (["actions[-1]['date']"], {}), "(actions[-1]['date'])\n", (2640, 2661), False, 'from dateutil.parser import isoparse\n'), ((2892, 2939), 'utils.sorts.Sort', 'Sort', (['sort_name', 'groups', 'cards', 'total_sort_time'], {}), '(sort_name, groups, cards, total_sort_time)\n', (2896, 2939), False, 'from utils.sorts import Sort, Group\n'), ((3261, 3277), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (3271, 3277), False, 'import os\n'), ((1010, 1027), 'utils.sorts.Group', 'Group', (['group_name'], {}), '(group_name)\n', (1015, 1027), False, 'from utils.sorts import Sort, Group\n'), ((3321, 3345), 'os.path.join', 'os.path.join', (['path', 'file'], {}), '(path, file)\n', (3333, 3345), False, 'import os\n'), ((3357, 3382), 'os.path.isfile', 'os.path.isfile', (['file_path'], {}), '(file_path)\n', (3371, 3382), False, 'import os\n'), ((1639, 1658), 'dateutil.parser.isoparse', 'isoparse', (["x['date']"], {}), "(x['date'])\n", (1647, 1658), False, 'from dateutil.parser import isoparse\n')]
import abc import logging import math import random from orca.grid import BANG_GLYPH, COMMENT_GLYPH, DOT_GLYPH, MidiNoteOnEvent from orca.ports import InputPort, OutputPort logger = logging.getLogger(__name__) OUTPUT_PORT_NAME = "output" class IOperator(abc.ABC): def __init__( self, grid, x, y, name, description, *, glyph=DOT_GLYPH, is_passive=False ): self.x = x self.y = y self.name = name self.description = description self.ports = {} self._grid = grid self.is_passive = is_passive self.do_draw = is_passive self.glyph = glyph.upper() if is_passive else glyph @abc.abstractmethod def operation(self, frame, force=False): """Run the operator for the given frame and return the payload. This may modify the grid. Note: the frame is assumed to match the state of the grid given at construction time.""" def __str__(self): return self.name def run(self, frame, force=False): payload = self.operation(frame, force) for port in self.ports.values(): if isinstance(port, OutputPort) and port.is_bang: continue logger.debug( "Ops %s (%d, %d): locking port @ %d, %d", self.name, self.x, self.y, port.x, port.y, ) self._grid.lock(port.x, port.y) output_port = self._output_port if output_port: if output_port.is_bang: self._bang(payload) else: self._output(payload) def erase(self): self._grid.poke(self.x, self.y, DOT_GLYPH) def explode(self): self._grid.poke(self.x, self.y, BANG_GLYPH) def has_neighbor(self, glyph): for x, y in ((-1, 0), (1, 0), (0, -1), (0, 1)): if self._grid.peek(self.x + x, self.y + y) == glyph: return True return False def move(self, offset_x, offset_y): new_x = self.x + offset_x new_y = self.y + offset_y if not self._grid.is_inside(new_x, new_y): self.explode() return collider = self._grid.peek(new_x, new_y) if collider not in (BANG_GLYPH, DOT_GLYPH): self.explode() return self.erase() self.x += offset_x self.y += offset_y self._grid.poke(self.x, self.y, self.glyph) if self._grid.is_inside(self.x, self.y): self._grid.lock(self.x, self.y) @property def _output_port(self): return self.ports.get(OUTPUT_PORT_NAME) def _has_output_port(self): return OUTPUT_PORT_NAME in self.ports def _should_upper_case(self): output_port = self._output_port if output_port is None or not output_port.is_sensitive: return False else: right_port = InputPort(self.x + 1, self.y) value = self._grid.listen(right_port) if value.lower() == value.upper() or value.upper() != value: return False else: return True def _bang(self, payload): output_port = self._output_port if output_port is None: logger.warn("Trying to bang, but no output port.") return else: glyph = BANG_GLYPH if payload else DOT_GLYPH self._grid.poke(output_port.x, output_port.y, glyph) def _output(self, glyph, port=None): if port is None: output_port = self._output_port else: output_port = port if output_port is None: logging.warn( "No output port for operator %s @ (%d, %d)", self.name, self.x, self.y ) elif glyph is None: return else: if self._should_upper_case(): value = glyph.upper() else: value = glyph self._grid.poke(output_port.x, output_port.y, value) class Add(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "add", "Output sum of inputs", glyph="a", is_passive=is_passive ) self.ports.update( { "a": InputPort(x - 1, y), "b": InputPort(x + 1, y), OUTPUT_PORT_NAME: OutputPort(x, y + 1, is_sensitive=True), } ) def operation(self, frame, force=False): index = self._grid.listen_as_value( self.ports["a"] ) + self._grid.listen_as_value(self.ports["b"]) return self._grid.key_of(index) class Substract(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "substract", "Output difference of inputs", glyph="b", is_passive=is_passive, ) self.ports.update( { "a": InputPort(x - 1, y), "b": InputPort(x + 1, y), OUTPUT_PORT_NAME: OutputPort(x, y + 1, is_sensitive=True), } ) def operation(self, frame, force=False): a = self._grid.listen_as_value(self.ports["a"]) b = self._grid.listen_as_value(self.ports["b"]) return self._grid.key_of(abs(b - a)) class Clock(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "clock", "Outputs modulo of frame", glyph="c", is_passive=is_passive, ) self.ports.update( { "rate": InputPort(x - 1, y, clamp=lambda x: max(1, x)), "mod": InputPort(x + 1, y, default="8"), OUTPUT_PORT_NAME: OutputPort(x, y + 1, is_sensitive=True), } ) def operation(self, frame, force=False): rate = self._grid.listen_as_value(self.ports["rate"]) mod = self._grid.listen_as_value(self.ports["mod"]) value = math.floor(frame / rate) % mod return self._grid.key_of(value) class Delay(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "delay", "Bangs on module of frame", glyph="d", is_passive=is_passive, ) self.ports.update( { "rate": InputPort(x - 1, y, clamp=lambda x: max(1, x)), "mod": InputPort(x + 1, y, default="8"), OUTPUT_PORT_NAME: OutputPort(x, y + 1, is_bang=True), } ) def operation(self, frame, force=False): rate = self._grid.listen_as_value(self.ports["rate"]) mod = self._grid.listen_as_value(self.ports["mod"]) value = frame % (mod * rate) return value == 0 or mod == 1 class East(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "east", "Move eastwards or bang", glyph="e", is_passive=is_passive, ) self.do_draw = False def operation(self, frame, force=False): self.move(1, 0) self.is_passive = False class Generator(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "generator", "Write operands with offset", glyph="g", is_passive=is_passive, ) self.ports.update( { "x": InputPort(x - 3, y), "y": InputPort(x - 2, y), "len": InputPort(x - 1, y, clamp=lambda x: max(x, 1)), } ) def operation(self, frame, force=False): length = self._grid.listen_as_value(self.ports["len"]) x = self._grid.listen_as_value(self.ports["x"]) y = self._grid.listen_as_value(self.ports["y"]) + 1 for offset in range(length): input_port = InputPort(self.x + offset + 1, self.y) output_port = OutputPort(self.x + x + offset, self.y + y) self.ports.update( { f"input{offset}": input_port, f"output{offset}": output_port, } ) res = self._grid.listen(input_port) self._output(res, output_port) class Halt(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "half", "Halts southward operator", glyph="h", is_passive=is_passive, ) def operation(self, frame, force=False): self._grid.lock(self.x, self.y + 1) # self._output_port.x, self._output_port.y) class If(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "if", "Bang if inputs are equal", glyph="f", is_passive=is_passive, ) self.ports.update( { "a": InputPort(x - 1, y), "b": InputPort(x + 1, y), OUTPUT_PORT_NAME: OutputPort(x, y + 1, is_bang=True), } ) def operation(self, frame, force=False): a = self._grid.listen(self.ports["a"]) b = self._grid.listen(self.ports["b"]) return a == b class Increment(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "increment", "Increment operator southward", glyph="i", is_passive=is_passive, ) self.ports.update( { "step": InputPort(x - 1, y, default="1"), "mod": InputPort(x + 1, y), OUTPUT_PORT_NAME: OutputPort(x, y + 1, is_sensitive=True), } ) def operation(self, frame, force=False): step = self._grid.listen_as_value(self.ports["step"]) mod = self._grid.listen_as_value(self.ports["mod"]) out = self._grid.listen_as_value(self.ports[OUTPUT_PORT_NAME]) return self._grid.key_of((out + step) % (mod if mod > 0 else 36)) class Jumper(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "j", "Outputs northward operator", glyph="f", is_passive=is_passive, ) self.ports.update( { "val": InputPort(x, y - 1), OUTPUT_PORT_NAME: OutputPort(x, y + 1), } ) def operation(self, frame, force=False): self._grid.lock(self._output_port.x, self._output_port.y) return self._grid.listen(self.ports["val"]) class Multiply(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "multiply", "Output multiplication of inputs", glyph="m", is_passive=is_passive, ) self.ports.update( { "a": InputPort(x - 1, y), "b": InputPort(x + 1, y), OUTPUT_PORT_NAME: OutputPort(x, y + 1, is_sensitive=True), } ) def operation(self, frame, force=False): a = self._grid.listen_as_value(self.ports["a"]) b = self._grid.listen_as_value(self.ports["b"]) return self._grid.key_of(a * b) class North(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "north", "Move northward or bang", glyph="n", is_passive=is_passive, ) self.do_draw = False def operation(self, frame, force=False): self.move(0, -1) self.is_passive = False class Random(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "random", "Outputs random value", glyph="r", is_passive=is_passive, ) self.ports.update( { "min": InputPort(x - 1, y), "max": InputPort(x + 1, y), OUTPUT_PORT_NAME: OutputPort(x, y + 1, is_sensitive=True), } ) def operation(self, frame, force=False): low = self._grid.listen_as_value(self.ports["min"]) high = self._grid.listen_as_value(self.ports["max"]) value = random.randint(low, high) return self._grid.key_of(value) class South(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "south", "Move southward or bang", glyph="s", is_passive=is_passive, ) self.do_draw = False def operation(self, frame, force=False): self.move(0, 1) self.is_passive = False class Track(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "track", "Reads eastward operand", glyph="t", is_passive=is_passive, ) self.ports.update( { "key": InputPort(x - 2, y), "len": InputPort(x - 1, y, clamp=lambda x: max(1, x)), OUTPUT_PORT_NAME: OutputPort(x, y + 1), } ) def operation(self, frame, force=False): key = self._grid.listen_as_value(self.ports["key"]) length = self._grid.listen_as_value(self.ports["len"]) for offset in range(length): self._grid.lock(self.x + offset + 1, self.y) port = InputPort(self.x + 1 + key % length, self.y) return self._grid.listen(port) class West(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "west", "Move westward or bang", glyph="w", is_passive=is_passive, ) self.do_draw = False def operation(self, frame, force=False): self.move(-1, 0) self.is_passive = False class Jymper(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "y", "Outputs westward operator", glyph="y", is_passive=is_passive, ) self.ports.update( { "val": InputPort(x - 1, y), OUTPUT_PORT_NAME: OutputPort(x + 1, y), } ) def operation(self, frame, force=False): self._grid.lock(self._output_port.x, self._output_port.y) return self._grid.listen(self.ports["val"]) class Bang(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "bang", "Bangs neighboring operands", glyph=BANG_GLYPH, is_passive=is_passive, ) self.do_draw = False def operation(self, frame, force=False): self.do_draw = False self.erase() class Comment(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "comment", "Halts line", glyph=COMMENT_GLYPH, is_passive=is_passive, ) self.do_draw = False def operation(self, frame, force=False): self._grid.lock(self.x, self.y) for x in range(self.x + 1, self._grid.cols): self._grid.lock(x, self.y) if self._grid.peek(x, self.y) == self.glyph: break _NOTES_VALUES = ("C", "c", "D", "d", "E", "F", "f", "G", "g", "A", "a", "B") NOTE_TO_INDEX = {k: i for i, k in enumerate(_NOTES_VALUES)} class Midi(IOperator): def __init__(self, grid, x, y, *, is_passive=False): super().__init__( grid, x, y, "midi", "Send MIDI note", glyph=":", is_passive=True, ) self.ports.update( { "channel": InputPort(self.x + 1, self.y), "octave": InputPort( self.x + 2, self.y, clamp=lambda x: min(max(0, x), 8) ), "note": InputPort(self.x + 3, self.y), "velocity": InputPort( self.x + 4, self.y, default="f", clamp=lambda x: min(max(0, x), 16) ), "length": InputPort( self.x + 5, self.y, clamp=lambda x: min(max(0, x), 32) ), } ) def operation(self, frame, force=False): if not self.has_neighbor(BANG_GLYPH) and not force: return for port_name in "channel", "octave", "note": if self._grid.listen(self.ports[port_name]) == DOT_GLYPH: return note = self._grid.listen(self.ports["note"]) if not NOTE_TO_INDEX: return channel = self._grid.listen_as_value(self.ports["channel"]) if channel > 15: return octave = self._grid.listen_as_value(self.ports["octave"]) velocity = self._grid.listen_as_value(self.ports["velocity"]) length = self._grid.listen_as_value(self.ports["length"]) self._grid.push_midi(MidiNoteOnEvent(channel, octave, note, velocity, length))
[ "orca.grid.MidiNoteOnEvent", "random.randint", "logging.warn", "math.floor", "orca.ports.InputPort", "orca.ports.OutputPort", "logging.getLogger" ]
[((185, 212), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (202, 212), False, 'import logging\n'), ((13052, 13077), 'random.randint', 'random.randint', (['low', 'high'], {}), '(low, high)\n', (13066, 13077), False, 'import random\n'), ((14333, 14377), 'orca.ports.InputPort', 'InputPort', (['(self.x + 1 + key % length)', 'self.y'], {}), '(self.x + 1 + key % length, self.y)\n', (14342, 14377), False, 'from orca.ports import InputPort, OutputPort\n'), ((2974, 3003), 'orca.ports.InputPort', 'InputPort', (['(self.x + 1)', 'self.y'], {}), '(self.x + 1, self.y)\n', (2983, 3003), False, 'from orca.ports import InputPort, OutputPort\n'), ((3724, 3812), 'logging.warn', 'logging.warn', (['"""No output port for operator %s @ (%d, %d)"""', 'self.name', 'self.x', 'self.y'], {}), "('No output port for operator %s @ (%d, %d)', self.name, self.x,\n self.y)\n", (3736, 3812), False, 'import logging\n'), ((6202, 6226), 'math.floor', 'math.floor', (['(frame / rate)'], {}), '(frame / rate)\n', (6212, 6226), False, 'import math\n'), ((8285, 8323), 'orca.ports.InputPort', 'InputPort', (['(self.x + offset + 1)', 'self.y'], {}), '(self.x + offset + 1, self.y)\n', (8294, 8323), False, 'from orca.ports import InputPort, OutputPort\n'), ((8350, 8393), 'orca.ports.OutputPort', 'OutputPort', (['(self.x + x + offset)', '(self.y + y)'], {}), '(self.x + x + offset, self.y + y)\n', (8360, 8393), False, 'from orca.ports import InputPort, OutputPort\n'), ((18148, 18204), 'orca.grid.MidiNoteOnEvent', 'MidiNoteOnEvent', (['channel', 'octave', 'note', 'velocity', 'length'], {}), '(channel, octave, note, velocity, length)\n', (18163, 18204), False, 'from orca.grid import BANG_GLYPH, COMMENT_GLYPH, DOT_GLYPH, MidiNoteOnEvent\n'), ((4361, 4380), 'orca.ports.InputPort', 'InputPort', (['(x - 1)', 'y'], {}), '(x - 1, y)\n', (4370, 4380), False, 'from orca.ports import InputPort, OutputPort\n'), ((4403, 4422), 'orca.ports.InputPort', 'InputPort', (['(x + 1)', 'y'], {}), '(x + 1, y)\n', (4412, 4422), False, 'from orca.ports import InputPort, OutputPort\n'), ((4458, 4497), 'orca.ports.OutputPort', 'OutputPort', (['x', '(y + 1)'], {'is_sensitive': '(True)'}), '(x, y + 1, is_sensitive=True)\n', (4468, 4497), False, 'from orca.ports import InputPort, OutputPort\n'), ((5097, 5116), 'orca.ports.InputPort', 'InputPort', (['(x - 1)', 'y'], {}), '(x - 1, y)\n', (5106, 5116), False, 'from orca.ports import InputPort, OutputPort\n'), ((5139, 5158), 'orca.ports.InputPort', 'InputPort', (['(x + 1)', 'y'], {}), '(x + 1, y)\n', (5148, 5158), False, 'from orca.ports import InputPort, OutputPort\n'), ((5194, 5233), 'orca.ports.OutputPort', 'OutputPort', (['x', '(y + 1)'], {'is_sensitive': '(True)'}), '(x, y + 1, is_sensitive=True)\n', (5204, 5233), False, 'from orca.ports import InputPort, OutputPort\n'), ((5884, 5916), 'orca.ports.InputPort', 'InputPort', (['(x + 1)', 'y'], {'default': '"""8"""'}), "(x + 1, y, default='8')\n", (5893, 5916), False, 'from orca.ports import InputPort, OutputPort\n'), ((5952, 5991), 'orca.ports.OutputPort', 'OutputPort', (['x', '(y + 1)'], {'is_sensitive': '(True)'}), '(x, y + 1, is_sensitive=True)\n', (5962, 5991), False, 'from orca.ports import InputPort, OutputPort\n'), ((6696, 6728), 'orca.ports.InputPort', 'InputPort', (['(x + 1)', 'y'], {'default': '"""8"""'}), "(x + 1, y, default='8')\n", (6705, 6728), False, 'from orca.ports import InputPort, OutputPort\n'), ((6764, 6798), 'orca.ports.OutputPort', 'OutputPort', (['x', '(y + 1)'], {'is_bang': '(True)'}), '(x, y + 1, is_bang=True)\n', (6774, 6798), False, 'from orca.ports import InputPort, OutputPort\n'), ((7839, 7858), 'orca.ports.InputPort', 'InputPort', (['(x - 3)', 'y'], {}), '(x - 3, y)\n', (7848, 7858), False, 'from orca.ports import InputPort, OutputPort\n'), ((7881, 7900), 'orca.ports.InputPort', 'InputPort', (['(x - 2)', 'y'], {}), '(x - 2, y)\n', (7890, 7900), False, 'from orca.ports import InputPort, OutputPort\n'), ((9430, 9449), 'orca.ports.InputPort', 'InputPort', (['(x - 1)', 'y'], {}), '(x - 1, y)\n', (9439, 9449), False, 'from orca.ports import InputPort, OutputPort\n'), ((9472, 9491), 'orca.ports.InputPort', 'InputPort', (['(x + 1)', 'y'], {}), '(x + 1, y)\n', (9481, 9491), False, 'from orca.ports import InputPort, OutputPort\n'), ((9527, 9561), 'orca.ports.OutputPort', 'OutputPort', (['x', '(y + 1)'], {'is_bang': '(True)'}), '(x, y + 1, is_bang=True)\n', (9537, 9561), False, 'from orca.ports import InputPort, OutputPort\n'), ((10112, 10144), 'orca.ports.InputPort', 'InputPort', (['(x - 1)', 'y'], {'default': '"""1"""'}), "(x - 1, y, default='1')\n", (10121, 10144), False, 'from orca.ports import InputPort, OutputPort\n'), ((10169, 10188), 'orca.ports.InputPort', 'InputPort', (['(x + 1)', 'y'], {}), '(x + 1, y)\n', (10178, 10188), False, 'from orca.ports import InputPort, OutputPort\n'), ((10224, 10263), 'orca.ports.OutputPort', 'OutputPort', (['x', '(y + 1)'], {'is_sensitive': '(True)'}), '(x, y + 1, is_sensitive=True)\n', (10234, 10263), False, 'from orca.ports import InputPort, OutputPort\n'), ((10952, 10971), 'orca.ports.InputPort', 'InputPort', (['x', '(y - 1)'], {}), '(x, y - 1)\n', (10961, 10971), False, 'from orca.ports import InputPort, OutputPort\n'), ((11007, 11027), 'orca.ports.OutputPort', 'OutputPort', (['x', '(y + 1)'], {}), '(x, y + 1)\n', (11017, 11027), False, 'from orca.ports import InputPort, OutputPort\n'), ((11579, 11598), 'orca.ports.InputPort', 'InputPort', (['(x - 1)', 'y'], {}), '(x - 1, y)\n', (11588, 11598), False, 'from orca.ports import InputPort, OutputPort\n'), ((11621, 11640), 'orca.ports.InputPort', 'InputPort', (['(x + 1)', 'y'], {}), '(x + 1, y)\n', (11630, 11640), False, 'from orca.ports import InputPort, OutputPort\n'), ((11676, 11715), 'orca.ports.OutputPort', 'OutputPort', (['x', '(y + 1)'], {'is_sensitive': '(True)'}), '(x, y + 1, is_sensitive=True)\n', (11686, 11715), False, 'from orca.ports import InputPort, OutputPort\n'), ((12704, 12723), 'orca.ports.InputPort', 'InputPort', (['(x - 1)', 'y'], {}), '(x - 1, y)\n', (12713, 12723), False, 'from orca.ports import InputPort, OutputPort\n'), ((12748, 12767), 'orca.ports.InputPort', 'InputPort', (['(x + 1)', 'y'], {}), '(x + 1, y)\n', (12757, 12767), False, 'from orca.ports import InputPort, OutputPort\n'), ((12803, 12842), 'orca.ports.OutputPort', 'OutputPort', (['x', '(y + 1)'], {'is_sensitive': '(True)'}), '(x, y + 1, is_sensitive=True)\n', (12813, 12842), False, 'from orca.ports import InputPort, OutputPort\n'), ((13881, 13900), 'orca.ports.InputPort', 'InputPort', (['(x - 2)', 'y'], {}), '(x - 2, y)\n', (13890, 13900), False, 'from orca.ports import InputPort, OutputPort\n'), ((14007, 14027), 'orca.ports.OutputPort', 'OutputPort', (['x', '(y + 1)'], {}), '(x, y + 1)\n', (14017, 14027), False, 'from orca.ports import InputPort, OutputPort\n'), ((15179, 15198), 'orca.ports.InputPort', 'InputPort', (['(x - 1)', 'y'], {}), '(x - 1, y)\n', (15188, 15198), False, 'from orca.ports import InputPort, OutputPort\n'), ((15234, 15254), 'orca.ports.OutputPort', 'OutputPort', (['(x + 1)', 'y'], {}), '(x + 1, y)\n', (15244, 15254), False, 'from orca.ports import InputPort, OutputPort\n'), ((16910, 16939), 'orca.ports.InputPort', 'InputPort', (['(self.x + 1)', 'self.y'], {}), '(self.x + 1, self.y)\n', (16919, 16939), False, 'from orca.ports import InputPort, OutputPort\n'), ((17095, 17124), 'orca.ports.InputPort', 'InputPort', (['(self.x + 3)', 'self.y'], {}), '(self.x + 3, self.y)\n', (17104, 17124), False, 'from orca.ports import InputPort, OutputPort\n')]
""" example plugin to extend a /test route """ from fastapi import APIRouter router = APIRouter() @router.get("/test") async def tester(): """ test route """ return [{"result": "test"}]
[ "fastapi.APIRouter" ]
[((87, 98), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (96, 98), False, 'from fastapi import APIRouter\n')]
import os import sys from setuptools import setup, find_packages from fnmatch import fnmatchcase from distutils.util import convert_path standard_exclude = ('*.pyc', '*~', '.*', '*.bak', '*.swp*') standard_exclude_directories = ('.*', 'CVS', '_darcs', './build', './dist', 'EGG-INFO', '*.egg-info') def find_package_data(where='.', package='', exclude=standard_exclude, exclude_directories=standard_exclude_directories): out = {} stack = [(convert_path(where), '', package)] while stack: where, prefix, package = stack.pop(0) for name in os.listdir(where): fn = os.path.join(where, name) if os.path.isdir(fn): bad_name = False for pattern in exclude_directories: if (fnmatchcase(name, pattern) or fn.lower() == pattern.lower()): bad_name = True break if bad_name: continue if os.path.isfile(os.path.join(fn, '__init__.py')): if not package: new_package = name else: new_package = package + '.' + name stack.append((fn, '', new_package)) else: stack.append((fn, prefix + name + '/', package)) else: bad_name = False for pattern in exclude: if (fnmatchcase(name, pattern) or fn.lower() == pattern.lower()): bad_name = True break if bad_name: continue out.setdefault(package, []).append(prefix+name) return out setup(name='docassemble.ALRecipes', version='0.1.0', description=('A docassemble extension.'), long_description='# docassemble.ALRecipes\r\n\r\n## Content\r\nThis repository includes both short examples you can insert directly into\r\nyour own playground, and longer examples that you can discover from its landing page: Quinten please add the link here.\r\n\r\n - Some Playground examples for the Document Assembly Line project.\r\n - Generic docassemble recipe interviews to address a particular need.\r\n \r\nTo learn more, visit the [ALDocumentation website - ALRecipes](https://suffolklitlab.org/docassemble-AssemblyLine-documentation/docs/framework/alrecipes) page.\r\n\r\n## Add examples to your own playground\r\n\r\nEdit the /config, and add the following: \r\n\r\n```yaml\r\nplayground examples:\r\n - docassemble.ALRecipes:data/questions/examples.yml\r\n - docassemble.base:data/questions/example-list.yml \r\n```\r\n\r\n', long_description_content_type='text/markdown', author='AssemblyLine', author_email='<EMAIL>', license='The MIT License (MIT)', url='https://docassemble.org', packages=find_packages(), namespace_packages=['docassemble'], install_requires=['mechanize>=0.4.7'], zip_safe=False, package_data=find_package_data(where='docassemble/ALRecipes/', package='docassemble.ALRecipes'), )
[ "os.path.isdir", "distutils.util.convert_path", "fnmatch.fnmatchcase", "os.path.join", "os.listdir", "setuptools.find_packages" ]
[((567, 584), 'os.listdir', 'os.listdir', (['where'], {}), '(where)\n', (577, 584), False, 'import os\n'), ((2940, 2955), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (2953, 2955), False, 'from setuptools import setup, find_packages\n'), ((449, 468), 'distutils.util.convert_path', 'convert_path', (['where'], {}), '(where)\n', (461, 468), False, 'from distutils.util import convert_path\n'), ((603, 628), 'os.path.join', 'os.path.join', (['where', 'name'], {}), '(where, name)\n', (615, 628), False, 'import os\n'), ((644, 661), 'os.path.isdir', 'os.path.isdir', (['fn'], {}), '(fn)\n', (657, 661), False, 'import os\n'), ((1020, 1051), 'os.path.join', 'os.path.join', (['fn', '"""__init__.py"""'], {}), "(fn, '__init__.py')\n", (1032, 1051), False, 'import os\n'), ((772, 798), 'fnmatch.fnmatchcase', 'fnmatchcase', (['name', 'pattern'], {}), '(name, pattern)\n', (783, 798), False, 'from fnmatch import fnmatchcase\n'), ((1484, 1510), 'fnmatch.fnmatchcase', 'fnmatchcase', (['name', 'pattern'], {}), '(name, pattern)\n', (1495, 1510), False, 'from fnmatch import fnmatchcase\n')]
import math import zlib from time import sleep import struct from timeout_decorator import timeout from timeout_decorator.timeout_decorator import TimeoutError from pycrc.algorithms import Crc from .ISPChip import ISPChip NXPReturnCodes = { "CMD_SUCCESS" : 0x0, "INVALID_COMMAND" : 0x1, "SRC_ADDR_ERROR" : 0x2, "DST_ADDR_ERROR" : 0x3, "SRC_ADDR_NOT_MAPPED" : 0x4, "DST_ADDR_NOT_MAPPED" : 0x5, "COUNT_ERROR" : 0x6, "INVALID_SECTOR/INVALID_PAGE" : 0x7, "SECTOR_NOT_BLANK" : 0x8, "SECTOR_NOT_PREPARED_FOR_WRITE_OPERATION" : 0x9, "COMPARE_ERROR" : 0xa, "BUSY" : 0xb, "PARAM_ERROR" : 0xc, "ADDR_ERROR" : 0xd, "ADDR_NOT_MAPPED" : 0xe, "CMD_LOCKED" : 0xf, "INVALID_CODE" : 0x10, "INVALID_BAUD_RATE" : 0x11, "INVALID_STOP_BIT" : 0x12, "CODE_READ_PROTECTION_ENABLED" : 0x13, "Unused 1" : 0x14, "USER_CODE_CHECKSUM" : 0x15, "Unused 2" : 0x16, "EFRO_NO_POWER" : 0x17, "FLASH_NO_POWER" : 0x18, "Unused 3" : 0x19, "Unused 4" : 0x1a, "FLASH_NO_CLOCK" : 0x1b, "REINVOKE_ISP_CONFIG" : 0x1c, "NO_VALID_IMAGE" : 0x1d, "FAIM_NO_POWER" : 0x1e, "FAIM_NO_CLOCK" : 0x1f, "NoStatusResponse" : 0xff, } def GetErrorCodeName(code: int) -> str: code = int(code) for item in NXPReturnCodes.items(): if code == item[1]: return item[0] return "Not Found" def RaiseReturnCodeError(code: int, call_name: str) -> None: if int(code) != NXPReturnCodes["CMD_SUCCESS"]: raise UserWarning( "Return Code Failure in {} {} {}".format(call_name, GetErrorCodeName(code), code)) def RemoveBootableCheckSum(vector_table_loc: int, image: bytes): kuint32_t_size = 4 MakeBootable(vector_table_loc, image) image_list = list(image) for byte in range(kuint32_t_size): image_list[vector_table_loc * kuint32_t_size + byte] = 0 return bytes(image_list) # 2s compliment of checksum def CalculateCheckSum(frame) -> int: csum = 0 for entry in frame: csum += entry return (1<<32) - (csum % (1<<32)) def Crc32(frame) -> int: #CRC32 polynomial = 0x104c11db6 crc = Crc(width=32, poly=polynomial, reflect_in=True, xor_in=(1<<32)-1, reflect_out=True, xor_out=0x00) crc_calc = crc.bit_by_bit(frame) return crc_calc def GetCheckSumedVectorTable(vector_table_loc: int, orig_image: bytes) -> bytes: # make this a valid image by inserting a checksum in the correct place vector_table_size = 8 kuint32_t_size = 4 # Make byte array into list of little endian 32 bit words intvecs = struct.unpack("<%dI"%vector_table_size, orig_image[:vector_table_size * kuint32_t_size]) # calculate the checksum over the interrupt vectors intvecs_list = list(intvecs[:vector_table_size]) intvecs_list[vector_table_loc] = 0 # clear csum value csum = CalculateCheckSum(intvecs_list) intvecs_list[vector_table_loc] = csum vector_table_bytes = b'' for vecval in intvecs_list: vector_table_bytes += struct.pack("<I", vecval) return vector_table_bytes def MakeBootable(vector_table_loc: int, orig_image: bytes) -> bytes: vector_table_bytes = GetCheckSumedVectorTable(vector_table_loc, orig_image) image = vector_table_bytes + orig_image[len(vector_table_bytes):] return image def FillDataToFitSector(data: bytes, size: int) -> bytes: if len(data) != size: data += bytes([0xff] *(size - len(data))) return data class NXPChip(ISPChip): kWordSize = 4 kPageSizeBytes = 64 SectorSizePages = 16 MaxByteTransfer = 1024 StatusRespLength = len(ISPChip.kNewLine) + 1 #Parity = None #DataBits = 8 #StopBits = 1 SyncString = "Synchronized"+ISPChip.kNewLine SyncStringBytes = bytes(SyncString, encoding="utf-8") SyncVerified = bytes("OK"+ISPChip.kNewLine, encoding="utf-8") ReturnCodes = NXPReturnCodes CRCLocation = 0x000002fc CRCValues = { "NO_ISP": 0x4e697370, "CRP1" : 0x12345678, "CRP2" : 0x87654321, "CRP3" : 0x43218765, } kSleepTime = 1 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.CrystalFrequency = 12000#khz == 30MHz self.SectorCount = 0 self.RAMSize = 0 self.RAMRange = [0, 0] self.FlashRange = [0, 0] self.RAMStartWrite = 0 self.kCheckSumLocation = 7 #0x0000001c def FlashAddressLegal(self, address): return address >= self.FlashRange[0] and address <= self.FlashRange[1]; def FlashRangeLegal(self, address, length): print(self.FlashRange, address, length) return self.FlashAddressLegal(address) and self.FlashAddressLegal(address + length - 1) and length <= self.FlashRange[1] - self.FlashRange[0] and address%self.kPageSizeBytes == 0 def RamAddressLegal(self, address): return address >= self.RAMRange[0] and address <= self.RAMRange[1] def RamRangeLegal(self, address, length): return self.RamAddressLegal(address) and self.RamAddressLegal(address + length) and length <= self.RAMRange[1] - self.RAMRange[0] and address%self.kWordSize == 0 def GetReturnCode(self) -> int: for _ in range(10): #sleep(.1) try: resp = self.ReadLine().strip() return int(resp) except ValueError: pass return self.ReturnCodes["NoStatusResponse"] def AssertReturnCode(self, call_name: str) -> None: ''' Get a return code with no response ''' code = self.GetReturnCode() RaiseReturnCodeError(code, call_name) def Write(self, string : bytes) -> None: #print(out) assert(type(string) is bytes) self.WriteSerial(string) #self.WriteSerial(bytes(self.kNewLine, encoding = "utf-8")) ''' Takes the command string, return the response code ''' def WriteCommand(self, command_string: str) -> int: self.Write(bytes(command_string + self.kNewLine, encoding="utf-8")) return self.GetReturnCode() def Unlock(self): ''' Enables Flash Write, Erase, & Go ''' self.ClearBuffer() response_code = self.WriteCommand("U 23130") RaiseReturnCodeError(response_code, "Unlock") def SetBaudRate(self, baud_rate: int, stop_bits: int = 1): ''' Baud Depends of FAIM config, stopbit is 1 or 2 ''' response_code = self.WriteCommand("B {} {}".format(baud_rate, stop_bits)) RaiseReturnCodeError(response_code, "Set Baudrate") def Echo(self, on: bool = True): ''' ISP echos host when enabled ''' if on: command = "A 1" else: command = "A 0" response_code = self.WriteCommand(command) RaiseReturnCodeError(response_code, "Set Echo") def WriteToRam(self, start: int, data: bytes): assert len(data)%self.kWordSize == 0 assert self.RamRangeLegal(start, len(data)) print("Write to RAM %d bytes"%len(data)) #while i < len(data): # self.Write("W %d %d"%(start + i, kWordSize)) # self.AssertReturnCode("Write to RAM")#get confirmation # self.Write(data[i:i+kWordSize])#Stream data after confirmation # i+=kWordSize #when transfer is complete the handler sends OK<CR><LF> response_code = self.WriteCommand("W %d %d"%(start, len(data))) RaiseReturnCodeError(response_code, "Write to RAM") self.Write(data)#Stream data after confirmation #self.Write("OK"+self.kNewLine) try: print(self.ReadLine()) except TimeoutError: return @timeout(4) def ReadMemory(self, start: int, num_bytes: int): assert num_bytes%self.kWordSize == 0 assert self.RamRangeLegal(start, num_bytes) print("ReadMemory") #self.Flush() #self.Read() #self.ClearBuffer() #self.Flush() print("R %d %d"%(start, num_bytes)) response_code = self.WriteCommand("R %d %d"%(start, num_bytes)) RaiseReturnCodeError(response_code, "Read Memory") while len(self.data_buffer_in) < (num_bytes): self.Read() # Command success is sent at the end of the transferr data = [] while self.data_buffer_in: ch = self.data_buffer_in.popleft() data.append(ch) if len(data) != num_bytes: print(data, len(data), num_bytes) assert len(data) == num_bytes return bytes(data) def PrepSectorsForWrite(self, start: int, end: int): try: response_code = self.WriteCommand("P %d %d"%(start, end)) except Exception: response_code = self.WriteCommand("P %d %d"%(start, end)) RaiseReturnCodeError(response_code, "Prep Sectors") def CopyRAMToFlash(self, flash_address: int, ram_address: int, num_bytes: int): assert self.RamRangeLegal(ram_address, num_bytes) assert self.FlashRangeLegal(flash_address, num_bytes) response_code = self.WriteCommand("C %d %d %d"%(flash_address, ram_address, num_bytes)) RaiseReturnCodeError(response_code, "Copy RAM To Flash") #sleep(.2) def Go(self, address: int, thumb_mode: bool = False): ''' Start executing code at the specified spot ''' mode = "" if thumb_mode: mode = 'T' response_code = self.WriteCommand("G %d %s"%(address, mode)) RaiseReturnCodeError(response_code, "Go") def EraseSector(self, start: int, end: int): response_code = self.WriteCommand("E %d %d"%(start, end)) RaiseReturnCodeError(response_code, "Erase Sectors") def ErasePages(self, start: int, end: int): response_code = self.WriteCommand("X %d %d"%(start, end)) RaiseReturnCodeError(response_code, "Erase Pages") def CheckSectorsBlank(self, start: int, end: int) -> bool: assert start <= end response_code = self.WriteCommand("I %d %d"%(start, end)) try: self.ReadLine() response = self.ReadLine().strip() print("Check Sectors Blank response", response) except TimeoutError: pass if response_code not in (NXPReturnCodes["CMD_SUCCESS"], NXPReturnCodes["SECTOR_NOT_BLANK"]): RaiseReturnCodeError(response_code, "Blank Check Sectors") return response_code == NXPReturnCodes["CMD_SUCCESS"] def ReadPartID(self): response_code = self.WriteCommand("J") RaiseReturnCodeError(response_code, "Read Part ID") resp = self.ReadLine() return int(resp) def ReadBootCodeVersion(self): ''' LPC84x sends a 0x1a first for some reason. Also the boot version seems to be Minor then Major not like the docs say ''' response_code = self.WriteCommand("K") RaiseReturnCodeError(response_code, "Read Bootcode Version") minor = self.ReadLine().strip() major = self.ReadLine().strip() return "%d.%d"%(int(major), int(minor)) ''' Checks to see if two sections in the memory map are equal ''' def MemoryLocationsEqual(self, address1: int, address2: int, num_bytes: int): self.Write(bytes(("M %d %d %d"%(address1, address2, num_bytes) + self.kNewLine), encoding="utf-8")) response = self.ReadLine() response_code = int(response[0]) if response_code not in (NXPReturnCodes["CMD_SUCCESS"], NXPReturnCodes["COMPARE_ERROR"]): RaiseReturnCodeError(response_code, "Compare") return response_code == NXPReturnCodes["CMD_SUCCESS"] def ReadUID(self): response_code = self.WriteCommand("N") RaiseReturnCodeError(response_code, "Read UID") uuids = [ self.ReadLine().strip(), self.ReadLine().strip(), self.ReadLine().strip(), self.ReadLine().strip()] return " ".join(["0x%08x"%int(uid) for uid in uuids]) def ReadCRC(self, address: int, num_bytes: int) -> int: try: response_code = self.WriteCommand("S %d %d"%(address, num_bytes)) except TimeoutError: response_code = self.WriteCommand("S %d %d"%(address, num_bytes)) RaiseReturnCodeError(response_code, "Read CRC") return int(self.ReadLine().strip()) def ReadFlashSig(self, start: int, end: int, wait_states: int = 2, mode: int = 0) -> str: assert start < end assert(self.FlashAddressLegal(start) and self.FlashAddressLegal(end)) response_code = self.WriteCommand("Z %d %d %d %d"%(start, end, wait_states, mode)) RaiseReturnCodeError(response_code, "Read Flash Signature") sig = [] for i in range(4): sig.append(self.ReadLine().strip()) return sig def ReadWriteFAIM(self): response_code = self.WriteCommand("O") RaiseReturnCodeError(response_code, "Read Write FAIM") def ResetSerialConnection(self): self.Flush() self.Write(bytes(self.kNewLine, encoding="utf-8")) try: self.ReadLine() except TimeoutError: pass def InitConnection(self): self.ResetSerialConnection() try: try: self.SyncConnection() self.SetCrystalFrequency(self.CrystalFrequency) except (UserWarning, TimeoutError) as w: print("Sync Failed", w) print("Connect to running ISP") self.ClearSerialConnection() self.Echo(False) try: self.ReadLine() self.Flush() self.ClearBuffer() except TimeoutError: pass uid = self.ReadUID() print("Part UID: %s"%uid) boot_code_version = self.ReadBootCodeVersion() print("Boot Code Version: %s"%boot_code_version) self.SetBaudRate(self.baud_rate) print("Baudrate set to %d"%self.baud_rate) except Exception as e: print(e, type(e)) raise def SyncConnection(self): synced = False self.ClearSerialConnection() self.Flush() for i in range(5): self.Write(bytes('?'*15, encoding="utf-8")) #self.Write('?' + self.kNewLine) try: frame_in = self.ReadLine() if self.SyncString.strip() in frame_in.strip(): synced = True break except TimeoutError: pass if not synced: #Check for SyncString raise UserWarning("Syncronization Failure") #self.Flush() self.Write(self.SyncStringBytes)#echo SyncString try: frame_in = self.ReadLine()#discard echo except TimeoutError: pass verified = False for i in range(3): try: frame_in = self.ReadLine()#Should be OK\r\n if self.SyncVerified.strip() in frame_in: verified = True break except TimeoutError: pass if not verified: raise UserWarning("Verification Failure") print("Syncronization Successful") def ClearSerialConnection(self): self.Write(bytes(self.kNewLine, encoding="utf-8")) self.ClearBuffer() self.Flush() self.Read() self.ClearBuffer() self.Flush() for _ in range(2): try: self.ReadLine() except TimeoutError: pass def SetCrystalFrequency(self, frequency_khz: int): self.Write((bytes("%d"%frequency_khz + self.kNewLine, encoding="utf-8"))) verified = False for i in range(3): try: frame_in = self.ReadLine()#Should be OK\r\n if self.SyncVerified.strip() in frame_in: verified = True break except TimeoutError: pass if not verified: raise UserWarning("Verification Failure") def CheckFlashWrite(self, data, flash_address: int) -> bool: ''' Read Memory and compare it to what was written ''' data_read = self.ReadMemory(flash_address, len(data)) if len(data) != len(data_read): raise ValueError("Read Memory received incorrect amount of data") if isinstance(type(data), data_read): raise TypeError("data written and data read are of different types") return data == data_read def WriteFlashSector(self, sector: int, data: bytes): ram_address = self.RAMStartWrite sector_size_bytes = self.kPageSizeBytes*self.SectorSizePages flash_address = self.FlashRange[0] + sector*sector_size_bytes print("\nWriting Sector: %d\nFlash Address: %x\nRAM Address: %x\n"%(sector, flash_address, ram_address)) assert len(data) == sector_size_bytes #data += bytes(sector_size_bytes - len(data)) data_crc = zlib.crc32(data, 0) try: ram_crc = self.ReadCRC(ram_address, num_bytes=len(data)) except Exception: ram_crc = self.ReadCRC(ram_address, num_bytes=len(data)) while ram_crc != data_crc: sleep(self.kSleepTime) self.WriteToRam(ram_address, data) sleep(self.kSleepTime) ram_crc = self.ReadCRC(ram_address, num_bytes=len(data)) if data_crc != ram_crc: print("CRC Check failed", data_crc, ram_crc) else: break # Check to see if sector is already equal to RAM, if so skip try: self.MemoryLocationsEqual(flash_address, ram_address, sector_size_bytes) print("Flash already equal to RAM, skipping write") return except: pass print("Prep Sector") self.PrepSectorsForWrite(sector, sector) sleep(self.kSleepTime) print("Erase Sector") self.EraseSector(sector, sector) sleep(self.kSleepTime) assert self.CheckSectorsBlank(sector, sector) sleep(self.kSleepTime) print("Prep Sector") sector_blank = self.CheckSectorsBlank(sector, sector) assert sector_blank sleep(self.kSleepTime) self.PrepSectorsForWrite(sector, sector) sleep(self.kSleepTime) print("Write to Flash") self.CopyRAMToFlash(flash_address, ram_address, sector_size_bytes) sleep(self.kSleepTime) flash_crc = self.ReadCRC(flash_address, num_bytes=len(data)) assert flash_crc == data_crc assert self.MemoryLocationsEqual(flash_address, ram_address, sector_size_bytes) def WriteSector(self, sector: int, data: bytes): #assert data sector_bytes = self.SectorSizePages*self.kPageSizeBytes assert(len(data) > 0) filled_data = FillDataToFitSector(data, sector_bytes) self.WriteFlashSector(sector, filled_data) sleep(self.kSleepTime) #assert self.ReadSector(sector) == data_chunk def WriteBinaryToFlash(self, image_file: str, start_sector: int): sector_bytes = self.SectorSizePages*self.kPageSizeBytes assert sector_bytes%self.kWordSize == 0 with open(image_file, 'rb') as f: prog = f.read() image = prog print("Program Length:", len(prog)) sector_count = int(math.ceil(len(prog)/sector_bytes)) assert start_sector + sector_count <= self.SectorCount self.Unlock() for sector in reversed(range(start_sector, start_sector + sector_count)): print("\nWriting Sector %d"%sector) data_chunk = image[(sector-start_sector) * sector_bytes : (sector - start_sector + 1) * sector_bytes] self.WriteSector(sector, data_chunk) sleep(1) chip_flash_sig = self.ReadFlashSig(self.FlashRange[0], self.FlashRange[1]) print("Flash Signature: %s"%chip_flash_sig) print("Programming Complete.") def WriteImage(self, image_file: str): sector_bytes = self.SectorSizePages*self.kPageSizeBytes assert sector_bytes%self.kWordSize == 0 #make not bootable self.Unlock() self.WriteSector(0, bytes([0xde]*sector_bytes)) with open(image_file, 'rb') as f: prog = f.read() #image = RemoveBootableCheckSum(self.kCheckSumLocation, prog) image = MakeBootable(self.kCheckSumLocation, prog) print("Program Length:", len(prog)) sector_count = int(math.ceil(len(prog)/sector_bytes)) assert sector_count <= self.SectorCount for sector in reversed(range(sector_count)): print("\nWriting Sector %d"%sector) data_chunk = image[sector * sector_bytes : (sector + 1) * sector_bytes] self.WriteSector(sector, data_chunk) chip_flash_sig = self.ReadFlashSig(self.FlashRange[0], self.FlashRange[1]) print("Flash Signature: %s"%chip_flash_sig) print("Programming Complete.") def FindFirstBlankSector(self) -> int: for sector in range(self.SectorCount): if self.CheckSectorsBlank(sector, self.SectorCount - 1): return sector return self.SectorCount - 1 def ReadSector(self, sector: int) -> bytes: sector_bytes = self.SectorSizePages*self.kPageSizeBytes assert sector_bytes%self.kWordSize == 0 return self.ReadMemory(sector*sector_bytes, sector_bytes) def ReadImage(self, image_file: str): blank_sector = self.FindFirstBlankSector() with open(image_file, 'wb') as f: for sector in range(blank_sector): print("Sector ", sector) f.write(self.ReadSector(sector)) def MassErase(self): last_sector = self.SectorCount - 1 sleep(1) self.ClearBuffer() self.Unlock() self.PrepSectorsForWrite(0, last_sector) self.EraseSector(0, last_sector) print("Checking Sectors are blank") assert self.CheckSectorsBlank(0, last_sector)
[ "struct.unpack", "pycrc.algorithms.Crc", "struct.pack", "time.sleep", "timeout_decorator.timeout", "zlib.crc32" ]
[((3023, 3125), 'pycrc.algorithms.Crc', 'Crc', ([], {'width': '(32)', 'poly': 'polynomial', 'reflect_in': '(True)', 'xor_in': '((1 << 32) - 1)', 'reflect_out': '(True)', 'xor_out': '(0)'}), '(width=32, poly=polynomial, reflect_in=True, xor_in=(1 << 32) - 1,\n reflect_out=True, xor_out=0)\n', (3026, 3125), False, 'from pycrc.algorithms import Crc\n'), ((3475, 3569), 'struct.unpack', 'struct.unpack', (["('<%dI' % vector_table_size)", 'orig_image[:vector_table_size * kuint32_t_size]'], {}), "('<%dI' % vector_table_size, orig_image[:vector_table_size *\n kuint32_t_size])\n", (3488, 3569), False, 'import struct\n'), ((8659, 8669), 'timeout_decorator.timeout', 'timeout', (['(4)'], {}), '(4)\n', (8666, 8669), False, 'from timeout_decorator import timeout\n'), ((3936, 3961), 'struct.pack', 'struct.pack', (['"""<I"""', 'vecval'], {}), "('<I', vecval)\n", (3947, 3961), False, 'import struct\n'), ((18180, 18199), 'zlib.crc32', 'zlib.crc32', (['data', '(0)'], {}), '(data, 0)\n', (18190, 18199), False, 'import zlib\n'), ((19108, 19130), 'time.sleep', 'sleep', (['self.kSleepTime'], {}), '(self.kSleepTime)\n', (19113, 19130), False, 'from time import sleep\n'), ((19210, 19232), 'time.sleep', 'sleep', (['self.kSleepTime'], {}), '(self.kSleepTime)\n', (19215, 19232), False, 'from time import sleep\n'), ((19295, 19317), 'time.sleep', 'sleep', (['self.kSleepTime'], {}), '(self.kSleepTime)\n', (19300, 19317), False, 'from time import sleep\n'), ((19446, 19468), 'time.sleep', 'sleep', (['self.kSleepTime'], {}), '(self.kSleepTime)\n', (19451, 19468), False, 'from time import sleep\n'), ((19526, 19548), 'time.sleep', 'sleep', (['self.kSleepTime'], {}), '(self.kSleepTime)\n', (19531, 19548), False, 'from time import sleep\n'), ((19664, 19686), 'time.sleep', 'sleep', (['self.kSleepTime'], {}), '(self.kSleepTime)\n', (19669, 19686), False, 'from time import sleep\n'), ((20173, 20195), 'time.sleep', 'sleep', (['self.kSleepTime'], {}), '(self.kSleepTime)\n', (20178, 20195), False, 'from time import sleep\n'), ((21055, 21063), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (21060, 21063), False, 'from time import sleep\n'), ((23103, 23111), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (23108, 23111), False, 'from time import sleep\n'), ((18425, 18447), 'time.sleep', 'sleep', (['self.kSleepTime'], {}), '(self.kSleepTime)\n', (18430, 18447), False, 'from time import sleep\n'), ((18507, 18529), 'time.sleep', 'sleep', (['self.kSleepTime'], {}), '(self.kSleepTime)\n', (18512, 18529), False, 'from time import sleep\n')]
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'MozSpace' db.create_table('mozspaces_mozspace', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=100)), ('address', self.gf('django.db.models.fields.CharField')(max_length=300)), ('region', self.gf('django.db.models.fields.CharField')(default='', max_length=100, blank=True)), ('city', self.gf('django.db.models.fields.CharField')(max_length=100)), ('country', self.gf('django.db.models.fields.CharField')(max_length=5)), ('timezone', self.gf('django.db.models.fields.CharField')(max_length=100)), ('lon', self.gf('django.db.models.fields.FloatField')()), ('lat', self.gf('django.db.models.fields.FloatField')()), ('phone', self.gf('django.db.models.fields.CharField')(default='', max_length=100, blank=True)), ('email', self.gf('django.db.models.fields.EmailField')(default='', max_length=75, blank=True)), ('coordinator', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'])), ('extra_text', self.gf('django.db.models.fields.TextField')(default='', blank=True)), ('cover_photo', self.gf('django.db.models.fields.related.ForeignKey')(blank=True, related_name='featured_mozspace', null=True, to=orm['mozspaces.Photo'])), )) db.send_create_signal('mozspaces', ['MozSpace']) # Adding model 'Keyword' db.create_table('mozspaces_keyword', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('keyword', self.gf('django.db.models.fields.CharField')(unique=True, max_length=50)), ('mozspace', self.gf('django.db.models.fields.related.ForeignKey')(related_name='keywords', to=orm['mozspaces.MozSpace'])), )) db.send_create_signal('mozspaces', ['Keyword']) # Adding model 'Photo' db.create_table('mozspaces_photo', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('photofile', self.gf('django.db.models.fields.files.ImageField')(max_length=100)), ('mozspace', self.gf('django.db.models.fields.related.ForeignKey')(related_name='photos', to=orm['mozspaces.MozSpace'])), )) db.send_create_signal('mozspaces', ['Photo']) def backwards(self, orm): # Deleting model 'MozSpace' db.delete_table('mozspaces_mozspace') # Deleting model 'Keyword' db.delete_table('mozspaces_keyword') # Deleting model 'Photo' db.delete_table('mozspaces_photo') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 2, 11, 5, 41, 51, 842704)'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2013, 2, 11, 5, 41, 51, 842643)'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('<PASSWORD>.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'mozspaces.keyword': { 'Meta': {'object_name': 'Keyword'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'keyword': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '50'}), 'mozspace': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'keywords'", 'to': "orm['mozspaces.MozSpace']"}) }, 'mozspaces.mozspace': { 'Meta': {'object_name': 'MozSpace'}, 'address': ('django.db.models.fields.CharField', [], {'max_length': '300'}), 'city': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'coordinator': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'country': ('django.db.models.fields.CharField', [], {'max_length': '5'}), 'cover_photo': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'featured_mozspace'", 'null': 'True', 'to': "orm['mozspaces.Photo']"}), 'email': ('django.db.models.fields.EmailField', [], {'default': "''", 'max_length': '75', 'blank': 'True'}), 'extra_text': ('django.db.models.fields.TextField', [], {'default': "''", 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'lat': ('django.db.models.fields.FloatField', [], {}), 'lon': ('django.db.models.fields.FloatField', [], {}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'phone': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '100', 'blank': 'True'}), 'region': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '100', 'blank': 'True'}), 'timezone': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'mozspaces.photo': { 'Meta': {'object_name': 'Photo'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'mozspace': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'photos'", 'to': "orm['mozspaces.MozSpace']"}), 'photofile': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}) } } complete_apps = ['mozspaces']
[ "south.db.db.delete_table", "south.db.db.send_create_signal" ]
[((1650, 1698), 'south.db.db.send_create_signal', 'db.send_create_signal', (['"""mozspaces"""', "['MozSpace']"], {}), "('mozspaces', ['MozSpace'])\n", (1671, 1698), False, 'from south.db import db\n'), ((2118, 2165), 'south.db.db.send_create_signal', 'db.send_create_signal', (['"""mozspaces"""', "['Keyword']"], {}), "('mozspaces', ['Keyword'])\n", (2139, 2165), False, 'from south.db import db\n'), ((2576, 2621), 'south.db.db.send_create_signal', 'db.send_create_signal', (['"""mozspaces"""', "['Photo']"], {}), "('mozspaces', ['Photo'])\n", (2597, 2621), False, 'from south.db import db\n'), ((2707, 2744), 'south.db.db.delete_table', 'db.delete_table', (['"""mozspaces_mozspace"""'], {}), "('mozspaces_mozspace')\n", (2722, 2744), False, 'from south.db import db\n'), ((2789, 2825), 'south.db.db.delete_table', 'db.delete_table', (['"""mozspaces_keyword"""'], {}), "('mozspaces_keyword')\n", (2804, 2825), False, 'from south.db import db\n'), ((2868, 2902), 'south.db.db.delete_table', 'db.delete_table', (['"""mozspaces_photo"""'], {}), "('mozspaces_photo')\n", (2883, 2902), False, 'from south.db import db\n')]
"""One-off functions""" import urllib.parse, random, string def load_yaml(path): import yaml try: with open(path, 'r') as yaml_file: data = yaml.load(yaml_file, Loader=yaml.FullLoader) return data except FileNotFoundError: raise FileNotFoundError('could not load yaml at path: {path}') except Exception as e: raise e def parse_body(body): body = urllib.parse.parse_qs(body) for k, v in body.items(): if len(v) == 1: body.update({k: v[0]}) return body def unquote_plus(text): return urllib.parse.unquote_plus(text) def parse_url_path(url_path): reformat = url_path.replace('%2F', '/') reformat = reformat.replace('+', ' ') return reformat def random_string(stringLength=8): """https://pynative.com/python-generate-random-string/ Args: stringLength (int, optional): length of string. Defaults to 8. Returns: str: random string """ letters = string.ascii_lowercase return ''.join(random.choice(letters) for i in range(stringLength))
[ "yaml.load", "random.choice" ]
[((170, 214), 'yaml.load', 'yaml.load', (['yaml_file'], {'Loader': 'yaml.FullLoader'}), '(yaml_file, Loader=yaml.FullLoader)\n', (179, 214), False, 'import yaml\n'), ((1046, 1068), 'random.choice', 'random.choice', (['letters'], {}), '(letters)\n', (1059, 1068), False, 'import urllib.parse, random, string\n')]
# This file is depreciated. Controls had to be hard coded into app.py in the translate_static function. Babel could not translate from this file. from flask_babel import Babel, _ # Controls for webapp station_name_options = [ {'label': _('Resolute Bay, No. W. Territories'), 'value': 'Resolute Bay, No. W. Territories'}, {'label': _('Blossom Point, Maryland'), 'value': 'Blossom Point, Maryland'}, {'label': _('South Atlantic, Falkland Islands'), 'value': 'South Atlantic, Falkland Islands'}, {'label': _("St. John's, Newfoundland"), 'value': "St. John's, Newfoundland"}, {'label': _('Orroral Valley, Australia'), 'value': 'Orroral Valley, Australia'}, {'label': _('Prince Albert, Canada'), 'value': 'Prince Albert, Canada'}, {'label': _('Ottawa, Canada'), 'value': 'Ottawa, Canada'}, {'label': _('Byrd Station, Antartica'), 'value': 'Byrd Station, Antartica'}, {'label': _('Las Palmas, Canary Island'), 'value': 'Las Palmas, Canary Island'}, {'label': _('Winkfield, England'), 'value': 'Winkfield, England'}, {'label': _('Fort Myers, Florida'), 'value': 'Fort Myers, Florida'}, {'label': _('Antofagasta, Chile'), 'value': 'Antofagasta, Chile'}, {'label': _('East Grand Forks, Minnesota'), 'value': 'East Grand Forks, Minnesota'}, {'label': _('Rosman, No. Carolina'), 'value': 'Rosman, No. Carolina'}, {'label': _('College, Fairbanks, Alaska'), 'value': 'College, Fairbanks, Alaska'}, {'label': _('Woomera, Australia'), 'value': 'Woomera, Australia'}, {'label': _('Gilmore Creek, Fairbanks, Alaska'), 'value': 'Gilmore Creek, Fairbanks, Alaska'}, {'label': _('Tromso, Norway'), 'value': 'Tromso, Norway'}, {'label': _('University of Alaska, Fairbanks, Alaska'), 'value': 'University of Alaska, Fairbanks, Alaska'}, {'label': _('Darwin, Australia'), 'value': 'Darwin, Australia'}, {'label': _('Quito, Ecuador'), 'value': 'Quito, Ecuador'}, {'label': _('South Point, Hawaiian Islands'), 'value': 'South Point, Hawaiian Islands'}, {'label': _('Lima, Peru'), 'value': 'Lima, Peru'}, {'label': _('Johannesburg, South Africa'), 'value': 'Johannesburg, South Africa'}, {'label': _('Kano, Nigeria'), 'value': 'Kano, Nigeria'}, {'label': _('Tananarive, Madagascar'), 'value': 'Tananarive, Madagascar'}, {'label': _('Bretigny, France'), 'value': 'Bretigny, France'}, {'label': _('Singapore, Malaysia'), 'value': 'Singapore, Malaysia'}, {'label': _('Boulder, Colorado'), 'value': 'Boulder, Colorado'}, {'label': _('Mojave, California'), 'value': 'Mojave, California'}, {'label': _('Kauai, Hawaii'), 'value': 'Kauai, Hawaii'}, {'label': _('Kashima, Japan'), 'value': 'Kashima, Japan'}] # Getting only the values of the station names station_values = [] for station in station_name_options: station_values.append(station['value']) x_axis_options = [ {'label': _('Date'), 'value': ('timestamp')}, {'label': _('Latitude'), 'value': ('lat')}, {'label': _('Longitude'), 'value': ('lon')}] y_axis_options = [ {'label': _('Minimum Frequency'), 'value': ('fmin')}, {'label': _('Maximum Depth'), 'value': ('max_depth')}] year_dict = {} for year in range(1962,1974): year_dict[year] = str(year) lat_dict = {} for lat in range(-90, 90+1, 15): lat_dict[lat] = str(lat) lon_dict = {} for lon in range(-180, 180+1, 30): lon_dict[lon] = str(lon)
[ "flask_babel._" ]
[((242, 279), 'flask_babel._', '_', (['"""Resolute Bay, No. W. Territories"""'], {}), "('Resolute Bay, No. W. Territories')\n", (243, 279), False, 'from flask_babel import Babel, _\n'), ((341, 369), 'flask_babel._', '_', (['"""Blossom Point, Maryland"""'], {}), "('Blossom Point, Maryland')\n", (342, 369), False, 'from flask_babel import Babel, _\n'), ((422, 459), 'flask_babel._', '_', (['"""South Atlantic, Falkland Islands"""'], {}), "('South Atlantic, Falkland Islands')\n", (423, 459), False, 'from flask_babel import Babel, _\n'), ((521, 550), 'flask_babel._', '_', (['"""St. John\'s, Newfoundland"""'], {}), '("St. John\'s, Newfoundland")\n', (522, 550), False, 'from flask_babel import Babel, _\n'), ((604, 634), 'flask_babel._', '_', (['"""Orroral Valley, Australia"""'], {}), "('Orroral Valley, Australia')\n", (605, 634), False, 'from flask_babel import Babel, _\n'), ((689, 715), 'flask_babel._', '_', (['"""Prince Albert, Canada"""'], {}), "('Prince Albert, Canada')\n", (690, 715), False, 'from flask_babel import Babel, _\n'), ((766, 785), 'flask_babel._', '_', (['"""Ottawa, Canada"""'], {}), "('Ottawa, Canada')\n", (767, 785), False, 'from flask_babel import Babel, _\n'), ((829, 857), 'flask_babel._', '_', (['"""Byrd Station, Antartica"""'], {}), "('Byrd Station, Antartica')\n", (830, 857), False, 'from flask_babel import Babel, _\n'), ((910, 940), 'flask_babel._', '_', (['"""Las Palmas, Canary Island"""'], {}), "('Las Palmas, Canary Island')\n", (911, 940), False, 'from flask_babel import Babel, _\n'), ((995, 1018), 'flask_babel._', '_', (['"""Winkfield, England"""'], {}), "('Winkfield, England')\n", (996, 1018), False, 'from flask_babel import Babel, _\n'), ((1066, 1090), 'flask_babel._', '_', (['"""Fort Myers, Florida"""'], {}), "('Fort Myers, Florida')\n", (1067, 1090), False, 'from flask_babel import Babel, _\n'), ((1139, 1162), 'flask_babel._', '_', (['"""Antofagasta, Chile"""'], {}), "('Antofagasta, Chile')\n", (1140, 1162), False, 'from flask_babel import Babel, _\n'), ((1210, 1242), 'flask_babel._', '_', (['"""East Grand Forks, Minnesota"""'], {}), "('East Grand Forks, Minnesota')\n", (1211, 1242), False, 'from flask_babel import Babel, _\n'), ((1299, 1324), 'flask_babel._', '_', (['"""Rosman, No. Carolina"""'], {}), "('Rosman, No. Carolina')\n", (1300, 1324), False, 'from flask_babel import Babel, _\n'), ((1374, 1405), 'flask_babel._', '_', (['"""College, Fairbanks, Alaska"""'], {}), "('College, Fairbanks, Alaska')\n", (1375, 1405), False, 'from flask_babel import Babel, _\n'), ((1461, 1484), 'flask_babel._', '_', (['"""Woomera, Australia"""'], {}), "('Woomera, Australia')\n", (1462, 1484), False, 'from flask_babel import Babel, _\n'), ((1532, 1569), 'flask_babel._', '_', (['"""Gilmore Creek, Fairbanks, Alaska"""'], {}), "('Gilmore Creek, Fairbanks, Alaska')\n", (1533, 1569), False, 'from flask_babel import Babel, _\n'), ((1631, 1650), 'flask_babel._', '_', (['"""Tromso, Norway"""'], {}), "('Tromso, Norway')\n", (1632, 1650), False, 'from flask_babel import Babel, _\n'), ((1694, 1738), 'flask_babel._', '_', (['"""University of Alaska, Fairbanks, Alaska"""'], {}), "('University of Alaska, Fairbanks, Alaska')\n", (1695, 1738), False, 'from flask_babel import Babel, _\n'), ((1807, 1829), 'flask_babel._', '_', (['"""Darwin, Australia"""'], {}), "('Darwin, Australia')\n", (1808, 1829), False, 'from flask_babel import Babel, _\n'), ((1876, 1895), 'flask_babel._', '_', (['"""Quito, Ecuador"""'], {}), "('Quito, Ecuador')\n", (1877, 1895), False, 'from flask_babel import Babel, _\n'), ((1939, 1973), 'flask_babel._', '_', (['"""South Point, Hawaiian Islands"""'], {}), "('South Point, Hawaiian Islands')\n", (1940, 1973), False, 'from flask_babel import Babel, _\n'), ((2032, 2047), 'flask_babel._', '_', (['"""Lima, Peru"""'], {}), "('Lima, Peru')\n", (2033, 2047), False, 'from flask_babel import Babel, _\n'), ((2087, 2118), 'flask_babel._', '_', (['"""Johannesburg, South Africa"""'], {}), "('Johannesburg, South Africa')\n", (2088, 2118), False, 'from flask_babel import Babel, _\n'), ((2174, 2192), 'flask_babel._', '_', (['"""Kano, Nigeria"""'], {}), "('Kano, Nigeria')\n", (2175, 2192), False, 'from flask_babel import Babel, _\n'), ((2235, 2262), 'flask_babel._', '_', (['"""Tananarive, Madagascar"""'], {}), "('Tananarive, Madagascar')\n", (2236, 2262), False, 'from flask_babel import Babel, _\n'), ((2314, 2335), 'flask_babel._', '_', (['"""Bretigny, France"""'], {}), "('Bretigny, France')\n", (2315, 2335), False, 'from flask_babel import Babel, _\n'), ((2381, 2405), 'flask_babel._', '_', (['"""Singapore, Malaysia"""'], {}), "('Singapore, Malaysia')\n", (2382, 2405), False, 'from flask_babel import Babel, _\n'), ((2454, 2476), 'flask_babel._', '_', (['"""Boulder, Colorado"""'], {}), "('Boulder, Colorado')\n", (2455, 2476), False, 'from flask_babel import Babel, _\n'), ((2523, 2546), 'flask_babel._', '_', (['"""Mojave, California"""'], {}), "('Mojave, California')\n", (2524, 2546), False, 'from flask_babel import Babel, _\n'), ((2594, 2612), 'flask_babel._', '_', (['"""Kauai, Hawaii"""'], {}), "('Kauai, Hawaii')\n", (2595, 2612), False, 'from flask_babel import Babel, _\n'), ((2655, 2674), 'flask_babel._', '_', (['"""Kashima, Japan"""'], {}), "('Kashima, Japan')\n", (2656, 2674), False, 'from flask_babel import Babel, _\n'), ((2887, 2896), 'flask_babel._', '_', (['"""Date"""'], {}), "('Date')\n", (2888, 2896), False, 'from flask_babel import Babel, _\n'), ((2937, 2950), 'flask_babel._', '_', (['"""Latitude"""'], {}), "('Latitude')\n", (2938, 2950), False, 'from flask_babel import Babel, _\n'), ((2985, 2999), 'flask_babel._', '_', (['"""Longitude"""'], {}), "('Longitude')\n", (2986, 2999), False, 'from flask_babel import Babel, _\n'), ((3054, 3076), 'flask_babel._', '_', (['"""Minimum Frequency"""'], {}), "('Minimum Frequency')\n", (3055, 3076), False, 'from flask_babel import Babel, _\n'), ((3112, 3130), 'flask_babel._', '_', (['"""Maximum Depth"""'], {}), "('Maximum Depth')\n", (3113, 3130), False, 'from flask_babel import Babel, _\n')]
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: command.proto """Generated protocol buffer code.""" from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\rcommand.proto\x12\tcommander\"U\n\x03\x43md\x12\x1f\n\x03\x63md\x18\x01 \x01(\x0e\x32\x12.commander.CmdType\x12\x0c\n\x04ints\x18\x02 \x03(\x05\x12\x0e\n\x06\x66loats\x18\x03 \x03(\x02\x12\x0f\n\x07strings\x18\x04 \x03(\t*\xe3\x01\n\x07\x43mdType\x12\x0e\n\nRAWKEYDOWN\x10\x00\x12\x0c\n\x08RAWKEYUP\x10\x01\x12\x0c\n\x08\x43OMMAND2\x10\x02\x12\x0c\n\x08\x43OMMAND3\x10\x03\x12\x0c\n\x08\x43OMMAND4\x10\x04\x12\x0c\n\x08\x43OMMAND5\x10\x05\x12\x0c\n\x08\x43OMMAND6\x10\x06\x12\x0c\n\x08\x43OMMAND7\x10\x07\x12\x0c\n\x08\x43OMMAND8\x10\x08\x12\x0c\n\x08\x43OMMAND9\x10\t\x12\x0f\n\x0bMAPORIGINAL\x10\n\x12\x07\n\x03MAP\x10\x0b\x12\x07\n\x03\x41\x43K\x10\x0c\x12\x08\n\x04\x41\x43K2\x10\r\x12\x08\n\x04HERO\x10\x0e\x12\t\n\x05READY\x10\x0f\x12\x08\n\x04INIT\x10\x10\x62\x06proto3') _CMDTYPE = DESCRIPTOR.enum_types_by_name['CmdType'] CmdType = enum_type_wrapper.EnumTypeWrapper(_CMDTYPE) RAWKEYDOWN = 0 RAWKEYUP = 1 COMMAND2 = 2 COMMAND3 = 3 COMMAND4 = 4 COMMAND5 = 5 COMMAND6 = 6 COMMAND7 = 7 COMMAND8 = 8 COMMAND9 = 9 MAPORIGINAL = 10 MAP = 11 ACK = 12 ACK2 = 13 HERO = 14 READY = 15 INIT = 16 _CMD = DESCRIPTOR.message_types_by_name['Cmd'] Cmd = _reflection.GeneratedProtocolMessageType('Cmd', (_message.Message,), { 'DESCRIPTOR' : _CMD, '__module__' : 'command_pb2' # @@protoc_insertion_point(class_scope:commander.Cmd) }) _sym_db.RegisterMessage(Cmd) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None _CMDTYPE._serialized_start=116 _CMDTYPE._serialized_end=343 _CMD._serialized_start=28 _CMD._serialized_end=113 # @@protoc_insertion_point(module_scope)
[ "google.protobuf.symbol_database.Default", "google.protobuf.internal.enum_type_wrapper.EnumTypeWrapper", "google.protobuf.descriptor_pool.Default", "google.protobuf.reflection.GeneratedProtocolMessageType" ]
[((531, 557), 'google.protobuf.symbol_database.Default', '_symbol_database.Default', ([], {}), '()\n', (555, 557), True, 'from google.protobuf import symbol_database as _symbol_database\n'), ((1468, 1511), 'google.protobuf.internal.enum_type_wrapper.EnumTypeWrapper', 'enum_type_wrapper.EnumTypeWrapper', (['_CMDTYPE'], {}), '(_CMDTYPE)\n', (1501, 1511), False, 'from google.protobuf.internal import enum_type_wrapper\n'), ((1775, 1899), 'google.protobuf.reflection.GeneratedProtocolMessageType', '_reflection.GeneratedProtocolMessageType', (['"""Cmd"""', '(_message.Message,)', "{'DESCRIPTOR': _CMD, '__module__': 'command_pb2'}"], {}), "('Cmd', (_message.Message,), {\n 'DESCRIPTOR': _CMD, '__module__': 'command_pb2'})\n", (1815, 1899), True, 'from google.protobuf import reflection as _reflection\n'), ((575, 601), 'google.protobuf.descriptor_pool.Default', '_descriptor_pool.Default', ([], {}), '()\n', (599, 601), True, 'from google.protobuf import descriptor_pool as _descriptor_pool\n')]
import argparse import sys from frankapy import FrankaArm from frankapy import FrankaConstants as FC def wait_for_enter(): if sys.version_info[0] < 3: raw_input('Press Enter to continue:') else: input('Press Enter to continue:') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--time', '-t', type=float, default=10) parser.add_argument('--open_gripper', '-o', action='store_true') args = parser.parse_args() print('Starting robot') fa = FrankaArm() if args.open_gripper: fa.open_gripper() print('Be very careful!! Make sure the robot can safely move to HOME JOINTS Position.') wait_for_enter() fa.reset_joints() print('Using default joint impedances to move back and forth.') wait_for_enter() fa.goto_joints(FC.READY_JOINTS, joint_impedances=FC.DEFAULT_JOINT_IMPEDANCES) fa.goto_joints(FC.HOME_JOINTS) print('Now using different joint impedances to move back and forth.') wait_for_enter() fa.goto_joints(FC.READY_JOINTS, joint_impedances=[1500, 1500, 1500, 1250, 1250, 1000, 1000]) fa.goto_joints(FC.HOME_JOINTS) print('Remember to reset the joint_impedances to defaults.') fa.goto_joints(FC.HOME_JOINTS, joint_impedances=FC.DEFAULT_JOINT_IMPEDANCES)
[ "argparse.ArgumentParser", "frankapy.FrankaArm" ]
[((295, 320), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (318, 320), False, 'import argparse\n'), ((523, 534), 'frankapy.FrankaArm', 'FrankaArm', ([], {}), '()\n', (532, 534), False, 'from frankapy import FrankaArm\n')]
import hashlib import json import logging from collections.abc import Mapping, Sequence from typing import Any, List, Tuple from nested_lookup import nested_lookup from ordered_set import OrderedSet from .pointer import fragment_decode, fragment_encode LOG = logging.getLogger(__name__) NON_MERGABLE_KEYS = ("uniqueItems", "insertionOrder") TYPE = "type" REF = "$ref" UNPACK_SEQUENCE_IDENTIFIER = "*" class FlatteningError(Exception): pass def item_hash( item, ): # assumption -> input is only json comparable type (dict/list/scalar) """MD5 hash for an item (Dictionary/Iterable/Scalar)""" dhash = hashlib.md5() # nosec if isinstance(item, dict): item = {k: item_hash(v) for k, v in item.items()} if isinstance(item, list): item = [item_hash(i) for i in item].sort() encoded = json.dumps(item, sort_keys=True).encode() dhash.update(encoded) return dhash.hexdigest() def to_set(value: Any) -> OrderedSet: return ( OrderedSet(value) if isinstance(value, (list, OrderedSet)) else OrderedSet([value]) ) class ConstraintError(FlatteningError, ValueError): def __init__(self, message, path, *args): self.path = fragment_encode(path) message = message.format(*args, path=self.path) super().__init__(message) class BaseRefPlaceholder: """A sentinel object representing a reference inside the base document.""" def __repr__(self): """Readable representation for debugging. >>> repr(BaseRefPlaceholder()) '<BASE>' """ return "<BASE>" #: The sentinel instance representing a reference inside the base document. BASE = BaseRefPlaceholder() def rewrite_ref(ref): """Rewrite a reference to be inside of the base document. A relative JSON pointer is returned (in URI fragment identifier representation). If the reference is already inside the base document (:const:`BASE`), the parts are simply encoded into a pointer. If the reference is outside of the base document, a unique pointer inside the base document is made by namespacing the reference under the remote base name inside the remote section. >>> rewrite_ref((BASE, "foo", "bar")) '#/foo/bar' >>> rewrite_ref((BASE,)) '#' >>> rewrite_ref(("remote", "foo", "bar")) '#/remote/remote/foo/bar' >>> rewrite_ref(("remote",)) '#/remote/remote' """ base, *parts = ref if base is not BASE: parts = ["remote", base] + parts return fragment_encode(parts) def traverse(document, path_parts): """Traverse the document according to the reference. Since the document is presumed to be the reference's base, the base is discarded. There is no validation that the reference is valid. :raises ValueError, LookupError: the reference is invalid for this document >>> traverse({"foo": {"bar": [42]}}, tuple()) ({'foo': {'bar': [42]}}, (), None) >>> traverse({"foo": {"bar": [42]}}, ["foo"]) ({'bar': [42]}, ('foo',), {'foo': {'bar': [42]}}) >>> traverse({"foo": {"bar": [42]}}, ("foo", "bar")) ([42], ('foo', 'bar'), {'bar': [42]}) >>> traverse({"foo": {"bar": [42]}}, ("foo", "bar", "0")) (42, ('foo', 'bar', 0), [42]) >>> traverse({}, ["foo"]) Traceback (most recent call last): ... KeyError: 'foo' >>> traverse([], ["foo"]) Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'foo' >>> traverse([], [0]) Traceback (most recent call last): ... IndexError: list index out of range """ parent = None path = [] for part in path_parts: if isinstance(document, Sequence): part = int(part) parent = document document = document[part] path.append(part) return document, tuple(path), parent def _resolve_ref(sub_schema: dict, definitions: dict, last_step: bool = False): # resolve $ref ref = nested_lookup(REF, sub_schema) # should be safe (always single value) # bc sub_schema is always per paranet property # (taken from definitions) if last_step and REF not in sub_schema: # dont traverse deeper than requested # check if $ref is used directly -> # means that we need to check definition # otherwise it's an array and return subschema return sub_schema if ref: # [0] should be a single $ref in subschema on the top level # [-1] $ref must follow #/definitions/object sub_schema = definitions[fragment_decode(ref[0])[-1]] # resolve properties properties = nested_lookup("properties", sub_schema) if properties: sub_schema = properties[0] return sub_schema # pylint: disable=C0301 def traverse_raw_schema(schema: dict, path: tuple): """Traverse the raw json schema resolving $ref :raises TypeError: either schema is not of type dict :raises ConstraintError: the schema tries to override "type" or "$ref" >>> traverse_raw_schema({"properties": {"bar": [42]}}, tuple()) {'bar': [42]} >>> traverse_raw_schema({"properties": {"bar": [42]}}, ("bar",)) [42] >>> traverse_raw_schema({"definitions": {"bar": {"type": "boolean"}},"properties": {"bar": {"$ref": "#/definitions/bar"}}}, ("bar",)) {'type': 'boolean'} >>> traverse_raw_schema({"definitions":{"b":[1],"f":{"properties":{"b":{"$ref":"#/definitions/b"}}}},"properties":{"f":{"$ref":"#/definitions/f"}}},("f", "b")) # noqa: B950 [1] >>> traverse_raw_schema({}, ("foo")) {} >>> traverse_raw_schema([], ["foo"]) Traceback (most recent call last): ... TypeError: Schema must be a dictionary """ if not isinstance(schema, Mapping): raise TypeError("Schema must be a dictionary") try: properties = schema["properties"] definitions = schema.get("definitions", {}) sub_properties = properties last_step = ( len(path) - 1 ) # get amount of steps to prevent deeper traversal than requested for step in path: sub_properties = _resolve_ref( sub_properties[step], definitions, last_step=path.index(step) == last_step, ) return sub_properties except KeyError as e: LOG.debug("Malformed Schema or incorrect path provided\n%s\n%s", path, e) return {} def traverse_path_for_sequence_members( document: dict, path_parts: Sequence, path: list = None ) -> Tuple[List[object], List[tuple]]: """Traverse the paths for all sequence members in the document according to the reference. Since the document is presumed to be the reference's base, the base is discarded. There is no validation that the reference is valid. Differing from traverse, this returns a list of documents and a list of resolved paths. :parameter document: document to traverse (dict or list) :parameter path_parts: document paths to traverse :parameter path: traversed path so far :raises ValueError, LookupError: the reference is invalid for this document >>> traverse_path_for_sequence_members({"foo": {"bar": [42, 43, 44]}}, tuple()) ([{'foo': {'bar': [42, 43, 44]}}], [()]) >>> traverse_path_for_sequence_members({"foo": {"bar": [42, 43, 44]}}, ["foo"]) ([{'bar': [42, 43, 44]}], [('foo',)]) >>> traverse_path_for_sequence_members({"foo": {"bar": [42, 43, 44]}}, ("foo", "bar")) ([[42, 43, 44]], [('foo', 'bar')]) >>> traverse_path_for_sequence_members({"foo": {"bar": [42, 43, 44]}}, ("foo", "bar", "*")) ([42, 43, 44], [('foo', 'bar', 0), ('foo', 'bar', 1), ('foo', 'bar', 2)]) >>> traverse_path_for_sequence_members({"foo": {"bar": [{"baz": 1, "bin": 1}, {"baz": 2, "bin": 2}]}}, ("foo", "bar", "*")) ([{'baz': 1, 'bin': 1}, {'baz': 2, 'bin': 2}], [('foo', 'bar', 0), ('foo', 'bar', 1)]) >>> traverse_path_for_sequence_members({"foo": {"bar": [{"baz": 1, "bin": 1}, {"baz": 2, "bin": 2}]}}, ("foo", "bar", "*", "baz")) ([1, 2], [('foo', 'bar', 0, 'baz'), ('foo', 'bar', 1, 'baz')]) >>> traverse_path_for_sequence_members({}, ["foo"]) Traceback (most recent call last): ... KeyError: 'foo' >>> traverse_path_for_sequence_members([], ["foo"]) Traceback (most recent call last): ... ValueError: invalid literal for int() with base 10: 'foo' >>> traverse_path_for_sequence_members([], [0]) Traceback (most recent call last): ... IndexError: list index out of range """ if path is None: path = [] if not path_parts: return [document], [tuple(path)] path_parts = list(path_parts) if not isinstance(document, Sequence): return _handle_non_sequence_for_traverse(document, path_parts, path) return _handle_sequence_for_traverse(document, path_parts, path) def _handle_non_sequence_for_traverse( current_document: dict, current_path_parts: list, current_path: list ) -> Tuple[List[object], List[tuple]]: """ Handling a non-sequence member for `traverse_path_for_sequence_members` is like the loop block in `traverse`: The next path part is the first part in the list of path parts. The new document is obtained from the current document using the new path part as the key. The next path part is added to the traversed path. The traversal continues by recursively calling `traverse_path_for_sequence_members` """ part_to_handle = current_path_parts.pop(0) current_document = current_document[part_to_handle] current_path.append(part_to_handle) return traverse_path_for_sequence_members( current_document, current_path_parts, current_path ) def _handle_sequence_for_traverse( current_document: Sequence, current_path_parts: list, current_path: list ) -> Tuple[List[object], List[tuple]]: """ Check the new path part for the unpack sequence identifier (e.g. '*'), otherwise traverse index and continue: The new document is obtained from the current document (a sequence) using the new path part as the index. The next path part is added to the traversed path """ sequence_part = current_path_parts.pop(0) if sequence_part == UNPACK_SEQUENCE_IDENTIFIER: return _handle_unpack_sequence_for_traverse( current_document, current_path_parts, current_path ) # otherwise, sequence part should be a valid index current_sequence_part = int(sequence_part) current_document = current_document[current_sequence_part] current_path.append(current_sequence_part) return [current_document], [tuple(current_path)] def _handle_unpack_sequence_for_traverse( current_document: Sequence, current_path_parts: list, current_path: list ) -> Tuple[List[object], List[tuple]]: """ When unpacking a sequence, we need to include multiple paths and multiple documents, one for each sequence member. For each sequence member: Append the traversed paths w/ the sequence index, and get the new document. The new document is obtained by traversing the current document using the sequence index. The new document is appended to the list of new documents. For each new document: The remaining document is traversed using the remaining path parts. The list of traversed documents and traversed paths are returned. """ documents = [] resolved_paths = [] new_documents = [] new_paths = [] for sequence_index in range(len(current_document)): new_paths.append(current_path.copy() + [sequence_index]) new_document = traverse_path_for_sequence_members( current_document, [sequence_index] + current_path_parts, current_path.copy() )[0] new_documents.extend(new_document) for i in range(len(new_documents)): # pylint: disable=consider-using-enumerate new_document = new_documents[i] newer_documents, newer_paths = traverse_path_for_sequence_members( new_document, current_path_parts, new_paths[i] ) documents.extend(newer_documents) resolved_paths.extend(newer_paths) return documents, resolved_paths def schema_merge(target, src, path): # noqa: C901 # pylint: disable=R0912 """Merges the src schema into the target schema in place. If there are duplicate keys, src will overwrite target. :raises TypeError: either schema is not of type dict :raises ConstraintError: the schema tries to override "type" or "$ref" >>> schema_merge({}, {}, ()) {} >>> schema_merge({'foo': 'a'}, {}, ()) {'foo': 'a'} >>> schema_merge({}, {'foo': 'a'}, ()) {'foo': 'a'} >>> schema_merge({'foo': 'a'}, {'foo': 'b'}, ()) {'foo': 'b'} >>> schema_merge({'required': 'a'}, {'required': 'b'}, ()) {'required': ['a', 'b']} >>> a, b = {'$ref': 'a'}, {'foo': 'b'} >>> schema_merge(a, b, ('foo',)) {'$ref': 'a', 'foo': 'b'} >>> a, b = {'$ref': 'a'}, {'type': 'b'} >>> schema_merge(a, b, ('foo',)) {'type': OrderedSet(['a', 'b'])} >>> a, b = {'$ref': 'a'}, {'$ref': 'b'} >>> schema_merge(a, b, ('foo',)) {'type': OrderedSet(['a', 'b'])} >>> a, b = {'$ref': 'a'}, {'type': ['b', 'c']} >>> schema_merge(a, b, ('foo',)) {'type': OrderedSet(['a', 'b', 'c'])} >>> a, b = {'$ref': 'a'}, {'type': OrderedSet(['b', 'c'])} >>> schema_merge(a, b, ('foo',)) {'type': OrderedSet(['a', 'b', 'c'])} >>> a, b = {'type': ['a', 'b']}, {'$ref': 'c'} >>> schema_merge(a, b, ('foo',)) {'type': OrderedSet(['a', 'b', 'c'])} >>> a, b = {'type': OrderedSet(['a', 'b'])}, {'$ref': 'c'} >>> schema_merge(a, b, ('foo',)) {'type': OrderedSet(['a', 'b', 'c'])} >>> a, b = {'Foo': {'$ref': 'a'}}, {'Foo': {'type': 'b'}} >>> schema_merge(a, b, ('foo',)) {'Foo': {'type': OrderedSet(['a', 'b'])}} >>> schema_merge({'type': 'a'}, {'type': 'b'}, ()) # doctest: +NORMALIZE_WHITESPACE {'type': OrderedSet(['a', 'b'])} >>> schema_merge({'type': 'string'}, {'type': 'integer'}, ()) {'type': OrderedSet(['string', 'integer'])} """ if not (isinstance(target, Mapping) and isinstance(src, Mapping)): raise TypeError("Both schemas must be dictionaries") for key, src_schema in src.items(): try: if key in ( REF, TYPE, ): # $ref and type are treated similarly and unified target_schema = target.get(key) or target.get(TYPE) or target[REF] else: target_schema = target[key] # carry over existing properties except KeyError: target[key] = src_schema else: next_path = path + (key,) try: target[key] = schema_merge(target_schema, src_schema, next_path) except TypeError: if key in (TYPE, REF): # combining multiple $ref and types src_set = to_set(src_schema) try: target[TYPE] = to_set( target[TYPE] ) # casting to ordered set as lib # implicitly converts strings to sets target[TYPE] |= src_set except (TypeError, KeyError): target_set = to_set(target_schema) target[TYPE] = target_set | src_set try: # check if there are conflicting $ref and type # at the same sub schema. Conflicting $ref could only # happen on combiners because method merges two json # objects without losing any previous info: # e.g. "oneOf": [{"$ref": "..#1.."},{"$ref": "..#2.."}] -> # { "ref": "..#1..", "type": [{},{}] } target.pop(REF) except KeyError: pass elif key == "required": target[key] = sorted(set(target_schema) | set(src_schema)) else: if key in NON_MERGABLE_KEYS and target_schema != src_schema: msg = ( "Object at path '{path}' declared multiple values " "for '{}': found '{}' and '{}'" ) # pylint: disable=W0707 raise ConstraintError(msg, path, key, target_schema, src_schema) target[key] = src_schema return target
[ "hashlib.md5", "nested_lookup.nested_lookup", "json.dumps", "ordered_set.OrderedSet", "logging.getLogger" ]
[((262, 289), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (279, 289), False, 'import logging\n'), ((623, 636), 'hashlib.md5', 'hashlib.md5', ([], {}), '()\n', (634, 636), False, 'import hashlib\n'), ((3992, 4022), 'nested_lookup.nested_lookup', 'nested_lookup', (['REF', 'sub_schema'], {}), '(REF, sub_schema)\n', (4005, 4022), False, 'from nested_lookup import nested_lookup\n'), ((4641, 4680), 'nested_lookup.nested_lookup', 'nested_lookup', (['"""properties"""', 'sub_schema'], {}), "('properties', sub_schema)\n", (4654, 4680), False, 'from nested_lookup import nested_lookup\n'), ((989, 1006), 'ordered_set.OrderedSet', 'OrderedSet', (['value'], {}), '(value)\n', (999, 1006), False, 'from ordered_set import OrderedSet\n'), ((1069, 1088), 'ordered_set.OrderedSet', 'OrderedSet', (['[value]'], {}), '([value])\n', (1079, 1088), False, 'from ordered_set import OrderedSet\n'), ((831, 863), 'json.dumps', 'json.dumps', (['item'], {'sort_keys': '(True)'}), '(item, sort_keys=True)\n', (841, 863), False, 'import json\n')]
# pylint: disable=redefined-outer-name,unused-variable,expression-not-assigned import pytest from click.testing import CliRunner from expecter import expect from slackoff.cli import main @pytest.fixture def runner(): return CliRunner() def describe_cli(): def describe_signout(): def it_can_force_signin(runner): result = runner.invoke(main, ["Foobar", "--signout"]) expect(result.exit_code) == 0 expect(result.output) == "Currently signed out of Foobar\n"
[ "expecter.expect", "click.testing.CliRunner" ]
[((232, 243), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (241, 243), False, 'from click.testing import CliRunner\n'), ((414, 438), 'expecter.expect', 'expect', (['result.exit_code'], {}), '(result.exit_code)\n', (420, 438), False, 'from expecter import expect\n'), ((456, 477), 'expecter.expect', 'expect', (['result.output'], {}), '(result.output)\n', (462, 477), False, 'from expecter import expect\n')]
# coding: utf-8 import re from inner_reuse import chunks class Ptr(object): """ Contain operation data """ def __init__(self, pos, type_key): self.position = pos self.type_response = type_key self.name_test = None self.out = "" def __repr__(self): return str(dict((k, v) for k, v in self.__dict__.items() if k != 'position')) def get_data(self): """ Returns: key, value """ return self.type_response, (self.name_test, self.out) def split_test_response(self, content_value): """ Returns: (name, out) """ end_name_pos = content_value.find('\n') if end_name_pos != -1: self.name_test = content_value[:end_name_pos] # Почему-то если в строке выше, то влияет на все строку, а не только на срезанную self.name_test = self.name_test.replace('\r', '') self.out = content_value[end_name_pos:].strip() else: self.name_test = content_value def parser_out(out): """ Returns: [(name, ok/fail/deadlock, out_one), ..., ] """ OK = "\[ OK \]" RUN = "\[ RUN \]" FAILED = "\[ FAILED \]" template = [] template.extend([Ptr(a.start(), 'ok') for a in list(re.finditer(OK, out))]) template.extend([Ptr(a.start(), 'fail') for a in list(re.finditer(FAILED, out))]) template.extend([Ptr(a.end(), 'run') for a in list(re.finditer(RUN, out))]) how_split = 2 # По парам response_pairs = chunks(sorted(template, key=lambda record: record.position), how_split) result = [] for pair in response_pairs: head = pair[0] # с ключем run идет вервой if head.type_response == 'run': if len(pair) == 1: pair.append(Ptr(out.__len__(), 'deadlock')) bottom = pair[1] content = out[head.position:bottom.position].strip() bottom.split_test_response(content) yield bottom.get_data() def parse_out_not_gen(out): gen = parser_out(out) report = [] for i in gen: report.append(i) return report
[ "re.finditer" ]
[((1327, 1347), 're.finditer', 're.finditer', (['OK', 'out'], {}), '(OK, out)\n', (1338, 1347), False, 'import re\n'), ((1409, 1433), 're.finditer', 're.finditer', (['FAILED', 'out'], {}), '(FAILED, out)\n', (1420, 1433), False, 'import re\n'), ((1492, 1513), 're.finditer', 're.finditer', (['RUN', 'out'], {}), '(RUN, out)\n', (1503, 1513), False, 'import re\n')]
import numpy import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import r2_score x = [1,2,3,4] x=numpy.array(x) print(x.shape) x=x.reshape(2,-1) print(x.shape) print(x) x=x.reshape(-1) print(x.shape) print(x) y = [2,4,6,8] #x*2=[2,4,6,8] #x*x=[1,4,9,16] #sum(x) = 10 pf=numpy.polyfit(x,y,3) print(pf) print(type(pf)) model = numpy.poly1d(pf) drv=model.deriv() print(model([1,2,3,4])) print(type(drv)) print(model) print(drv) coeff=r2_score(y, model(x)) print(coeff)
[ "numpy.poly1d", "numpy.array", "numpy.polyfit" ]
[((119, 133), 'numpy.array', 'numpy.array', (['x'], {}), '(x)\n', (130, 133), False, 'import numpy\n'), ((294, 316), 'numpy.polyfit', 'numpy.polyfit', (['x', 'y', '(3)'], {}), '(x, y, 3)\n', (307, 316), False, 'import numpy\n'), ((349, 365), 'numpy.poly1d', 'numpy.poly1d', (['pf'], {}), '(pf)\n', (361, 365), False, 'import numpy\n')]
#!/usr/bin/python from ConfigParser import SafeConfigParser import os import string class baseObj: def __init__(self, multiProcess, userAgent, outputFolderName, outputFolder, deleteOutput, dateFormat, useTor, torIP, torPort, redirectLimit, hashCountLimit, urlCharLimit, osintDays, malShareApiKey, disableMalShare, disableOsint, otxKey, shodanKey, vtKey, vtUser, vtReqPerMin, disableVT, viperUrlAdd, viperApiToken): self.multiProcess = multiProcess self.userAgent = userAgent self.outputFolderName = outputFolderName self.outputFolder = outputFolder self.deleteOutput = deleteOutput self.dateFormat = dateFormat self.useTor = useTor self.torIP = torIP self.torPort = torPort self.redirectLimit = redirectLimit self.hashCountLimit = hashCountLimit self.urlCharLimit = urlCharLimit self.osintDays = osintDays self.malShareApiKey = malShareApiKey self.disableMalShare = disableMalShare self.disableOsint = disableOsint self.otxKey = otxKey self.shodanKey = shodanKey self.vtKey = vtKey self.vtUser = vtUser self.vtReqPerMin = vtReqPerMin self.disableVT = disableVT self.viperUrlAdd = viperUrlAdd self.viperApiToken = 'Token {0}'.format(viperApiToken) def getBaseConfig(rootDir): parser = SafeConfigParser() parser.read(os.path.join(rootDir, 'config', 'settings.conf')) multiProcess = parser.get('Core', 'multiprocess') userAgent = parser.get('Core', 'useragent') outputFolderName = parser.get('Core', 'outputfolder') outputFolder = os.path.join(rootDir, outputFolderName) deleteOutput = parser.get('Core', 'deleteoutput') dateFormat = parser.get('Core', 'dateformat') useTor = parser.get('Core', 'usetor') torIP = parser.get('Core', 'torip') torPort = parser.get('Core', 'torport') redirectLimit = parser.get('Core', 'redirectlimit') hashCountLimit = parser.get('Core', 'hashcountlimit') urlCharLimit = parser.get('Core', 'urlcharlimit') osintDays = parser.get('Core', 'osintdays') malShareApiKey = parser.get('MalShare', 'apikey') disableMalShare = parser.get('MalShare', 'disable') disableOsint = parser.get('OSINT', 'disable') otxKey = parser.get('OTX', 'apikey') shodanKey = parser.get('Shodan', 'apikey') vtKey = parser.get('VirusTotal', 'apikey') vtUser = parser.get('VirusTotal', 'username') vtReqPerMin = parser.get('VirusTotal', 'requestsperminute') disableVT = parser.get('VirusTotal', 'disable') viperUrlAdd = parser.get('Viper', 'addurl') viperApiToken = parser.get('Viper', 'apitoken') return baseObj(multiProcess, userAgent, outputFolderName, outputFolder, deleteOutput, dateFormat, useTor, torIP, torPort, redirectLimit, hashCountLimit, urlCharLimit, osintDays, malShareApiKey, disableMalShare, disableOsint, otxKey, shodanKey, vtKey, vtUser, vtReqPerMin, disableVT, viperUrlAdd, viperApiToken)
[ "ConfigParser.SafeConfigParser", "os.path.join" ]
[((1391, 1409), 'ConfigParser.SafeConfigParser', 'SafeConfigParser', ([], {}), '()\n', (1407, 1409), False, 'from ConfigParser import SafeConfigParser\n'), ((1656, 1695), 'os.path.join', 'os.path.join', (['rootDir', 'outputFolderName'], {}), '(rootDir, outputFolderName)\n', (1668, 1695), False, 'import os\n'), ((1426, 1474), 'os.path.join', 'os.path.join', (['rootDir', '"""config"""', '"""settings.conf"""'], {}), "(rootDir, 'config', 'settings.conf')\n", (1438, 1474), False, 'import os\n')]
# -*- coding: utf-8 -*- from pathlib import Path import pytest import manimpango from . import CASES_DIR from ._manim import MarkupText from .svg_tester import SVGStyleTester ipsum_text = ( "<b>Lorem ipsum dolor</b> sit amet, <i>consectetur</i> adipiscing elit," "sed do eiusmod tempor incididunt ut labore et dolore" "magna aliqua. Ut enim <b>ad</b> minim veniam, quis nostrud" "exercitation ullamco laboris nisi ut aliquip" "ex ea commodo consequat. Duis aute irure dolor" "in reprehenderit in voluptate velit esse cillum" "dolore eu fugiat nulla pariatur. Excepteur sint" "occaecat cupidatat non proident, sunt in culpa qui" "officia deserunt mollit anim id est laborum." ) @pytest.mark.parametrize("text", ["foo", "<b>bar</b>", "வணக்கம்"]) def test_good_markup(text): assert not manimpango.MarkupUtils.validate( text, ), f"{text} should not fail validation" @pytest.mark.parametrize("text", ["<b>foo", "<xyz>foo</xyz>"]) def test_bad_markup(text): assert manimpango.MarkupUtils.validate( text ), f"{text} should fail validation (unbalanced tags)" @pytest.mark.parametrize( "text,error", [ ( "<b>foo", "Error on line 1 char 23: Element “markup” was closed, " "but the currently open element is “b”", ), ( "<xyz>foo</xyz>", "Unknown tag 'xyz' on line 1 char 14", ), ], ) def test_bad_markup_error_message(text, error): assert manimpango.MarkupUtils.validate(text) == error def test_markup_text(tmpdir): loc = Path(tmpdir, "test.svg") assert not loc.exists() MarkupText( '<span underline="error"><b><i>Hello Manim</i></b></span>', filename=str(loc) ) assert loc.exists() def test_markup_justify(tmpdir): # don't know how to verify this correctly # it varies upon diffent system so, we are # just check whether it runs loc = Path(tmpdir, "test.svg") assert not loc.exists() MarkupText(ipsum_text, justify=True, filename=str(loc)) assert loc.exists() def test_markup_indent(tmpdir): # don't know how to verify this correctly # it varies upon diffent system so, we are # just check whether it runs loc = Path(tmpdir, "test.svg") assert not loc.exists() MarkupText(ipsum_text, indent=10, filename=str(loc)) assert loc.exists() def test_markup_alignment(tmpdir): # don't know how to verify this correctly # it varies upon diffent system so, we are # just check whether it runs loc = Path(tmpdir, "test.svg") assert not loc.exists() MarkupText( ipsum_text, alignment=manimpango.Alignment.CENTER, filename=str(loc), ) assert loc.exists() def test_markup_style(tmpdir): test_case = CASES_DIR / "hello_blue_world_green.svg" expected = tmpdir / "expected.svg" text = "<span foreground='BLUE'>Hello</span>\n<span foreground='GREEN'>World</span>" MarkupText( text, filename=str(expected), ) s = SVGStyleTester(gotSVG=expected, expectedSVG=test_case) assert len(s.got_svg_style) == len(s.expected_svg_style) assert s.got_svg_style == s.expected_svg_style def test_wrap_text(tmpdir): tmpdir = Path(tmpdir) wrapped = tmpdir / "wrap.svg" nowrap = tmpdir / "nowarap.svg" MarkupText(ipsum_text, wrap_text=False, filename=str(nowrap)) MarkupText(ipsum_text, filename=str(wrapped)) assert wrapped.read_text() != nowrap.read_text()
[ "pytest.mark.parametrize", "pathlib.Path", "manimpango.MarkupUtils.validate" ]
[((720, 785), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""text"""', "['foo', '<b>bar</b>', 'வணக்கம்']"], {}), "('text', ['foo', '<b>bar</b>', 'வணக்கம்'])\n", (743, 785), False, 'import pytest\n'), ((924, 985), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""text"""', "['<b>foo', '<xyz>foo</xyz>']"], {}), "('text', ['<b>foo', '<xyz>foo</xyz>'])\n", (947, 985), False, 'import pytest\n'), ((1131, 1345), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""text,error"""', '[(\'<b>foo\',\n \'Error on line 1 char 23: Element “markup” was closed, but the currently open element is “b”\'\n ), (\'<xyz>foo</xyz>\', "Unknown tag \'xyz\' on line 1 char 14")]'], {}), '(\'text,error\', [(\'<b>foo\',\n \'Error on line 1 char 23: Element “markup” was closed, but the currently open element is “b”\'\n ), (\'<xyz>foo</xyz>\', "Unknown tag \'xyz\' on line 1 char 14")])\n', (1154, 1345), False, 'import pytest\n'), ((1024, 1061), 'manimpango.MarkupUtils.validate', 'manimpango.MarkupUtils.validate', (['text'], {}), '(text)\n', (1055, 1061), False, 'import manimpango\n'), ((1604, 1628), 'pathlib.Path', 'Path', (['tmpdir', '"""test.svg"""'], {}), "(tmpdir, 'test.svg')\n", (1608, 1628), False, 'from pathlib import Path\n'), ((1960, 1984), 'pathlib.Path', 'Path', (['tmpdir', '"""test.svg"""'], {}), "(tmpdir, 'test.svg')\n", (1964, 1984), False, 'from pathlib import Path\n'), ((2267, 2291), 'pathlib.Path', 'Path', (['tmpdir', '"""test.svg"""'], {}), "(tmpdir, 'test.svg')\n", (2271, 2291), False, 'from pathlib import Path\n'), ((2574, 2598), 'pathlib.Path', 'Path', (['tmpdir', '"""test.svg"""'], {}), "(tmpdir, 'test.svg')\n", (2578, 2598), False, 'from pathlib import Path\n'), ((3271, 3283), 'pathlib.Path', 'Path', (['tmpdir'], {}), '(tmpdir)\n', (3275, 3283), False, 'from pathlib import Path\n'), ((830, 867), 'manimpango.MarkupUtils.validate', 'manimpango.MarkupUtils.validate', (['text'], {}), '(text)\n', (861, 867), False, 'import manimpango\n'), ((1515, 1552), 'manimpango.MarkupUtils.validate', 'manimpango.MarkupUtils.validate', (['text'], {}), '(text)\n', (1546, 1552), False, 'import manimpango\n')]
""" API do Gerenciador de Casas de Aluguel ====================================== """ # https://www.pythoncentral.io/introduction-to-sqlite-in-python/ import sqlite3 import config def make_connection(): return sqlite3.connect(config.DATABASE_URL) class InquilinoException(Exception): ... class CasaException(Exception): ... class DAO(): def __init__(self, conn): self.conn = conn class Casa_DAO(DAO): def adiciona_casa(self, nome=None, valor_aluguel=None, agua=None, instalacao_eletrica=None, commit=False, rollback=False): if nome is None: raise Exception("Necessário prover nome.") if valor_aluguel is None: raise Exception("Necessário prover um valor para o aluguel.") try: cursor = self.conn.cursor() cursor.execute(""" INSERT INTO casa(nome_casa, valor_aluguel_casa, agua_casa, num_instalacao) VALUES (?,?,?,?) """, (nome, valor_aluguel, agua, instalacao_eletrica)) if commit: self.conn.commit() return { 'id_casa': cursor.lastrowid, 'nome_casa': nome, 'valor_aluguel': valor_aluguel, 'agua_casa': agua, 'num_instalacao_eletrica': instalacao_eletrica } except sqlite3.Error as e: if rollback: self.conn.rollback() return None def todas_casas(self, vazias=False): cursor = self.conn.cursor() if vazias: cursor.execute(""" SELECT c.id_casa, nome_casa, valor_aluguel_casa, agua_casa, i.num_instalacao, cpf_titular FROM casa c LEFT JOIN instalacao_eletrica i ON c.num_instalacao = i.num_instalacao WHERE c.id_casa NOT IN ( SELECT casa.id_casa from casa JOIN contrato ON contrato.id_casa= casa.id_casa WHERE ativo ) GROUP BY c.id_casa; """) else: cursor.execute(""" SELECT c.id_casa, nome_casa, valor_aluguel_casa, agua_casa, i.num_instalacao, cpf_titular FROM casa c LEFT JOIN instalacao_eletrica i ON c.num_instalacao = i.num_instalacao; """) casas = cursor.fetchall() return [{ 'id_casa': x[0], 'nome_casa': x[1], 'valor_aluguel': x[2], 'agua_casa': x[3], 'num_instalacao_eletrica': x[4], 'cpf': x[5] } for x in casas] def altera_casa(self, id=None, commit=False, rollback=False, **kwargs): if id is None: raise Exception("Necessário prover um ID") if not len(kwargs): raise Exception("Necessário prover novas informações para o Inquilino") query = f'''UPDATE casa SET {', '.join([f"{key}{'_casa' if key != 'num_instalacao' else '' } = ?" for key in kwargs.keys()])} WHERE id_casa = ?''' # return None try: cursor = self.conn.cursor() cursor.execute(query, tuple((kwargs[k] for k in kwargs.keys())) + tuple([id])) if commit: self.conn.commit() except sqlite3.Error as e: if rollback: self.conn.rollback() class Instalacao_Eletrica_DAO(DAO): def adiciona_instalacao_eletrica(self, num_instalacao=None, cpf=None, commit=False, rollback=False): if num_instalacao is None: raise Exception("Necessário prover um número de instalação") if cpf is None: raise Exception("Necessário prover um número de CPF") try: cursor = self.conn.cursor() cursor.execute(""" INSERT INTO instalacao_eletrica VALUES (?, ?) """, (num_instalacao, cpf)) if commit: self.conn.commit() return { 'num_instalacao': num_instalacao, 'cpf_titular': cpf } except sqlite3.Error as e: # e if rollback: self.conn.rollback() return None def altera_instalacao(self, num_instalacao, cpf, commit=False, rollback=False): query = f'''UPDATE instalacao_eletrica SET cpf_titular = ? WHERE num_instalacao = ? ''' # return None try: cursor = self.conn.cursor() cursor.execute(query, (cpf, num_instalacao)) if commit: self.conn.commit() except sqlite3.Error as e: if rollback: self.conn.rollback() def todas_instalacoes(self): cursor = self.conn.cursor() cursor.execute(""" SELECT * FROM instalacao_eletrica; """) instalcoes = cursor.fetchall() return [{ 'num_instalacao': x[0], 'cpf_titular': x[1] } for x in instalacoes] class Inquilino_DAO(DAO): def adiciona_inquilino(self, cpf=None, nome=None, rg=None, commit=False, rollback=False): if cpf is None: raise Exception("Necessário prover um número de CPF") if nome is None: raise Exception("Necessário prover um Nome") if rg is None: raise Exception("Necessário prover um RG") try: cursor = self.conn.cursor() cursor.execute(""" INSERT INTO inquilino(cpf_inq, nome_inq, rg_inq) VALUES (?, ?, ?) """, (cpf, nome, rg)) if commit: self.conn.commit() return { 'id_inq': cursor.lastrowid, 'cpf_inq': cpf, 'nome_inq': nome, 'rg_inq': rg } except sqlite3.Error as e: if rollback: self.conn.rollback() return None def todos_inquilinos(self, ativos=False, inativos=False): cursor = self.conn.cursor() if ativos and inativos: raise Exception("Conflito") elif ativos: cursor.execute(""" select * from inquilino where id_inq in (select DISTINCT id_inq from contrato where ativo); """) elif inativos: cursor.execute(""" select * from inquilino where id_inq not in (select DISTINCT id_inq from contrato where ativo); """) else: cursor.execute(""" SELECT * from inquilino; """) inquilinos = cursor.fetchall() return [{ 'id_inq': x[0], 'cpf_inq': x[1], 'nome_inq': x[2], 'rg_inq': x[3] } for x in inquilinos] def altera_inquilino(self, id=None, commit=False, rollback=False, **kwargs): if id is None: raise Exception("Necessário prover um ID") if not len(kwargs): raise Exception("Necessário prover novas informações para o Inquilino") query = f'''UPDATE inquilino SET {', '.join([f'{key}_inq = ?' for key in kwargs.keys()])} WHERE id_inq = ?''' try: cursor = self.conn.cursor() cursor.execute(query, tuple((kwargs[k] for k in kwargs.keys())) + tuple([id])) if commit: self.conn.commit() except sqlite3.Error as e: if rollback: self.conn.rollback() class Contrato_DAO(DAO): def adiciona_contrato(self, valor=None, ativo=True, dia_vencimento=None, fim_contrato=None, casa=None, inq=None, commit=False, rollback=False): if valor is None: raise Exception("Necessário prover um valor de aluguel para o contrato") if dia_vencimento is None: raise Exception("Necessário prover uma data de vencimento") if casa is None: raise Exception("Necessário escolher uma casa") if inq is None: raise Exception("Necessário escolher um inquilino") try: cursor = self.conn.cursor() self._valida(inq, casa) cursor.execute(""" INSERT INTO contrato(valor, ativo, dt_fim_contrato, dia_venc_aluguel, id_casa, id_inq) VALUES (?,?,?,?,?,?) """, (valor, ativo,fim_contrato, dia_vencimento, casa, inq)) if commit: self.conn.commit() return { 'id_contrato': cursor.lastrowid, 'valor': valor, 'ativo': ativo, 'dt_fim_contrato': fim_contrato, 'dia_venc_aluguel': dia_vencimento, 'id_casa': casa, 'id_inq': inq } except sqlite3.Error as e: if rollback: self.conn.rollback() return None def _valida(self, id_inq=None, id_casa=None): c = Contrato_DAO(make_connection()) if id_inq and id_inq in [x['id_inq'] for x in c.todos_contratos() if x['ativo']]: raise InquilinoException() if id_casa and id_casa in [x['id_casa'] for x in c.todos_contratos() if x['ativo']]: raise CasaException() def todos_contratos(self): cursor = self.conn.cursor() cursor.execute(""" SELECT * FROM contrato; """) contratos = cursor.fetchall() return [{ 'id_contrato': x[0], 'valor': x[1], 'ativo': x[2], 'dt_fim_contrato': x[3], 'dia_venc_aluguel': x[4], 'id_casa': x[5], 'id_inq': x[6] } for x in contratos] def altera_valor_contrato(self, id=None, valor=None, commit=False, rollback=False): if id is None: raise Exception("Necessário prover um ID") if valor is None: raise Exception("Necessário prover um valor") query = f'''UPDATE contrato SET valor = ? WHERE id_contrato = ?''' print(query) try: cursor = self.conn.cursor() cursor.execute(query, (valor, id)) if commit: self.conn.commit() except sqlite3.Error as e: if rollback: self.conn.rollback() def inativa_contrato(self, id=None, commit=False, rollback=False): if id is None: raise Exception("Necessário prover um ID") query = '''UPDATE contrato SET ativo = 0 WHERE id_contrato = ?''' try: cursor = self.conn.cursor() cursor.execute(query, (id, )) if commit: self.conn.commit() except sqlite3.Error as e: if rollback: self.conn.rollback() def ativa_contrato(self, id=None, commit=False, rollback=False): if id is None: raise Exception("Necessário prover um ID") C = self.get_contrato(id) self._valida(C['id_inq'], C['id_casa'] ) query = '''UPDATE contrato SET ativo = 1 WHERE id_contrato = ?''' try: cursor = self.conn.cursor() cursor.execute(query, (id,)) if commit: self.conn.commit() except sqlite3.Error as e: if rollback: self.conn.rollback() def get_contrato(self, id): cursor = self.conn.cursor() cursor.execute(""" SELECT * FROM contrato WHERE id_contrato = ?; """, tuple([id])) contratos = cursor.fetchall() return [{ 'id_contrato': x[0], 'valor': x[1], 'ativo': x[2], 'dt_fim_contrato': x[3], 'dia_venc_aluguel': x[4], 'id_casa': x[5], 'id_inq': x[6] } for x in contratos][0] class PagamentoDAO(DAO): def realiza_pagamento(self, id_contrato=None, dt_pag=None, dt_venc=None, deposito=False, commit=False, rollback=False): if id_contrato is None: raise Exception("Necessário prover um contrato") if dt_venc is None: raise Exception("Necessário prover uma data de vencimento") if dt_pag is None: raise Exception("Necessário prover uma data de pagamento") try: cursor = self.conn.cursor() cursor.execute(""" INSERT INTO pagamento(dt_venc, dt_pag, deposito, id_contrato) VALUES (?, ?, ?, ?) """, (dt_venc, dt_pag, deposito, id_contrato)) if commit: self.conn.commit() return { 'id_pag': cursor.lastrowid , 'dt_venc': dt_venc , 'dt_pag': dt_pag , 'deposito': deposito , 'id_contrato': id_contrato } except sqlite3.Error as e: if rollback: self.conn.rollback() return None def todos_pagamentos(self): cursor = self.conn.cursor() cursor.execute(""" SELECT * FROM pagamento; """) pagamentos = cursor.fetchall() return [{ 'id_pag': x[0] , 'dt_venc': x[1] , 'dt_pag': x[2] , 'deposito': x[3] , 'id_contrato': x[4] } for x in pagamentos] def todos_pagamentos_contrato(self, id_contrato): cursor = self.conn.cursor() cursor.execute(""" SELECT * FROM pagamento WHERE pagamento.id_contrato = ?; """, (id_contrato)) pagamentos = cursor.fetchall() return [{ 'id_pag': x[0] , 'dt_venc': x[1] , 'dt_pag': x[2] , 'deposito': x[3] , 'id_contrato': x[4] } for x in pagamentos] def start_db(conn): cursor = conn.cursor() cursor.executescript(""" CREATE TABLE IF NOT EXISTS instalacao_eletrica ( num_instalacao VARCHAR(20) NOT NULL PRIMARY KEY, cpf_titular VARCHAR(11) NOT NULL UNIQUE ); CREATE TABLE IF NOT EXISTS casa( id_casa INTEGER NOT NULL PRIMARY KEY, nome_casa INTEGER NOT NULL, valor_aluguel_casa INTEGER NOT NULL, agua_casa VARCHAR(10), num_instalacao VARCHAR(11) UNIQUE, FOREIGN KEY (num_instalacao) REFERENCES instalacao_eletrica(num_instalacao) ); CREATE TABLE IF NOT EXISTS inquilino( id_inq INTEGER NOT NULL PRIMARY KEY, cpf_inq VARCHAR(11) NOT NULL UNIQUE, nome_inq VARCHAR(40) NOT NULL, rg_inq VARCHAR(10) NOT NULL ); CREATE TABLE IF NOT EXISTS contrato( id_contrato INTEGER NOT NULL PRIMARY KEY, valor REAL NOT NULL, ativo INTEGER NOT NULL, dt_fim_contrato DATE NOT NULL, dia_venc_aluguel INTEGER NOT NULL, id_casa INTEGER NOT NULL, id_inq INTEGER NOT NULL ); CREATE TABLE IF NOT EXISTS pagamento( id_pag INTEGER NOT NULL PRIMARY KEY, dt_venc VARCHAR(23) NOT NULL, dt_pag VARCHAR(23), deposito INTEGER NOT NULL, id_contrato INTEGER , FOREIGN KEY (id_contrato) REFERENCES contrato(id_contrato) ); """)
[ "sqlite3.connect" ]
[((220, 256), 'sqlite3.connect', 'sqlite3.connect', (['config.DATABASE_URL'], {}), '(config.DATABASE_URL)\n', (235, 256), False, 'import sqlite3\n')]
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: list_tool.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from tool_sdk.model.tool import tool_pb2 as tool__sdk_dot_model_dot_tool_dot_tool__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='list_tool.proto', package='basic', syntax='proto3', serialized_options=None, serialized_pb=_b('\n\x0flist_tool.proto\x12\x05\x62\x61sic\x1a\x1etool_sdk/model/tool/tool.proto\"\x95\x01\n\x0fListToolRequest\x12\x0e\n\x06\x64\x65tail\x18\x01 \x01(\x08\x12\x0e\n\x06plugin\x18\x02 \x01(\x08\x12\x10\n\x08\x63\x61tegory\x18\x03 \x01(\t\x12\x13\n\x0bpermissions\x18\x04 \x01(\t\x12\x16\n\x0eonlyProduction\x18\x05 \x01(\x08\x12\x15\n\rshowInvisible\x18\x06 \x01(\x08\x12\x0c\n\x04tags\x18\x07 \x01(\t\"\\\n\x10ListToolResponse\x12\x0c\n\x04page\x18\x01 \x01(\x05\x12\x11\n\tpage_size\x18\x02 \x01(\x05\x12\r\n\x05total\x18\x03 \x01(\x05\x12\x18\n\x04list\x18\x04 \x03(\x0b\x32\n.tool.Tool\"r\n\x17ListToolResponseWrapper\x12\x0c\n\x04\x63ode\x18\x01 \x01(\x05\x12\x13\n\x0b\x63odeExplain\x18\x02 \x01(\t\x12\r\n\x05\x65rror\x18\x03 \x01(\t\x12%\n\x04\x64\x61ta\x18\x04 \x01(\x0b\x32\x17.basic.ListToolResponseb\x06proto3') , dependencies=[tool__sdk_dot_model_dot_tool_dot_tool__pb2.DESCRIPTOR,]) _LISTTOOLREQUEST = _descriptor.Descriptor( name='ListToolRequest', full_name='basic.ListToolRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='detail', full_name='basic.ListToolRequest.detail', index=0, number=1, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='plugin', full_name='basic.ListToolRequest.plugin', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='category', full_name='basic.ListToolRequest.category', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='permissions', full_name='basic.ListToolRequest.permissions', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='onlyProduction', full_name='basic.ListToolRequest.onlyProduction', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='showInvisible', full_name='basic.ListToolRequest.showInvisible', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='tags', full_name='basic.ListToolRequest.tags', index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=59, serialized_end=208, ) _LISTTOOLRESPONSE = _descriptor.Descriptor( name='ListToolResponse', full_name='basic.ListToolResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='page', full_name='basic.ListToolResponse.page', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='page_size', full_name='basic.ListToolResponse.page_size', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='total', full_name='basic.ListToolResponse.total', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='list', full_name='basic.ListToolResponse.list', index=3, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=210, serialized_end=302, ) _LISTTOOLRESPONSEWRAPPER = _descriptor.Descriptor( name='ListToolResponseWrapper', full_name='basic.ListToolResponseWrapper', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='code', full_name='basic.ListToolResponseWrapper.code', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='codeExplain', full_name='basic.ListToolResponseWrapper.codeExplain', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='error', full_name='basic.ListToolResponseWrapper.error', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='data', full_name='basic.ListToolResponseWrapper.data', index=3, number=4, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=304, serialized_end=418, ) _LISTTOOLRESPONSE.fields_by_name['list'].message_type = tool__sdk_dot_model_dot_tool_dot_tool__pb2._TOOL _LISTTOOLRESPONSEWRAPPER.fields_by_name['data'].message_type = _LISTTOOLRESPONSE DESCRIPTOR.message_types_by_name['ListToolRequest'] = _LISTTOOLREQUEST DESCRIPTOR.message_types_by_name['ListToolResponse'] = _LISTTOOLRESPONSE DESCRIPTOR.message_types_by_name['ListToolResponseWrapper'] = _LISTTOOLRESPONSEWRAPPER _sym_db.RegisterFileDescriptor(DESCRIPTOR) ListToolRequest = _reflection.GeneratedProtocolMessageType('ListToolRequest', (_message.Message,), { 'DESCRIPTOR' : _LISTTOOLREQUEST, '__module__' : 'list_tool_pb2' # @@protoc_insertion_point(class_scope:basic.ListToolRequest) }) _sym_db.RegisterMessage(ListToolRequest) ListToolResponse = _reflection.GeneratedProtocolMessageType('ListToolResponse', (_message.Message,), { 'DESCRIPTOR' : _LISTTOOLRESPONSE, '__module__' : 'list_tool_pb2' # @@protoc_insertion_point(class_scope:basic.ListToolResponse) }) _sym_db.RegisterMessage(ListToolResponse) ListToolResponseWrapper = _reflection.GeneratedProtocolMessageType('ListToolResponseWrapper', (_message.Message,), { 'DESCRIPTOR' : _LISTTOOLRESPONSEWRAPPER, '__module__' : 'list_tool_pb2' # @@protoc_insertion_point(class_scope:basic.ListToolResponseWrapper) }) _sym_db.RegisterMessage(ListToolResponseWrapper) # @@protoc_insertion_point(module_scope)
[ "google.protobuf.symbol_database.Default", "google.protobuf.descriptor.FieldDescriptor", "google.protobuf.reflection.GeneratedProtocolMessageType" ]
[((463, 489), 'google.protobuf.symbol_database.Default', '_symbol_database.Default', ([], {}), '()\n', (487, 489), True, 'from google.protobuf import symbol_database as _symbol_database\n'), ((8908, 9058), 'google.protobuf.reflection.GeneratedProtocolMessageType', '_reflection.GeneratedProtocolMessageType', (['"""ListToolRequest"""', '(_message.Message,)', "{'DESCRIPTOR': _LISTTOOLREQUEST, '__module__': 'list_tool_pb2'}"], {}), "('ListToolRequest', (_message.\n Message,), {'DESCRIPTOR': _LISTTOOLREQUEST, '__module__': 'list_tool_pb2'})\n", (8948, 9058), True, 'from google.protobuf import reflection as _reflection\n'), ((9189, 9346), 'google.protobuf.reflection.GeneratedProtocolMessageType', '_reflection.GeneratedProtocolMessageType', (['"""ListToolResponse"""', '(_message.Message,)', "{'DESCRIPTOR': _LISTTOOLRESPONSE, '__module__': 'list_tool_pb2'}"], {}), "('ListToolResponse', (_message.\n Message,), {'DESCRIPTOR': _LISTTOOLRESPONSE, '__module__': 'list_tool_pb2'}\n )\n", (9229, 9346), True, 'from google.protobuf import reflection as _reflection\n'), ((9481, 9651), 'google.protobuf.reflection.GeneratedProtocolMessageType', '_reflection.GeneratedProtocolMessageType', (['"""ListToolResponseWrapper"""', '(_message.Message,)', "{'DESCRIPTOR': _LISTTOOLRESPONSEWRAPPER, '__module__': 'list_tool_pb2'}"], {}), "('ListToolResponseWrapper', (\n _message.Message,), {'DESCRIPTOR': _LISTTOOLRESPONSEWRAPPER,\n '__module__': 'list_tool_pb2'})\n", (9521, 9651), True, 'from google.protobuf import reflection as _reflection\n'), ((1817, 2154), 'google.protobuf.descriptor.FieldDescriptor', '_descriptor.FieldDescriptor', ([], {'name': '"""detail"""', 'full_name': '"""basic.ListToolRequest.detail"""', 'index': '(0)', 'number': '(1)', 'type': '(8)', 'cpp_type': '(7)', 'label': '(1)', 'has_default_value': '(False)', 'default_value': '(False)', 'message_type': 'None', 'enum_type': 'None', 'containing_type': 'None', 'is_extension': '(False)', 'extension_scope': 'None', 'serialized_options': 'None', 'file': 'DESCRIPTOR'}), "(name='detail', full_name=\n 'basic.ListToolRequest.detail', index=0, number=1, type=8, cpp_type=7,\n label=1, has_default_value=False, default_value=False, message_type=\n None, enum_type=None, containing_type=None, is_extension=False,\n extension_scope=None, serialized_options=None, file=DESCRIPTOR)\n", (1844, 2154), True, 'from google.protobuf import descriptor as _descriptor\n'), ((2179, 2516), 'google.protobuf.descriptor.FieldDescriptor', '_descriptor.FieldDescriptor', ([], {'name': '"""plugin"""', 'full_name': '"""basic.ListToolRequest.plugin"""', 'index': '(1)', 'number': '(2)', 'type': '(8)', 'cpp_type': '(7)', 'label': '(1)', 'has_default_value': '(False)', 'default_value': '(False)', 'message_type': 'None', 'enum_type': 'None', 'containing_type': 'None', 'is_extension': '(False)', 'extension_scope': 'None', 'serialized_options': 'None', 'file': 'DESCRIPTOR'}), "(name='plugin', full_name=\n 'basic.ListToolRequest.plugin', index=1, number=2, type=8, cpp_type=7,\n label=1, has_default_value=False, default_value=False, message_type=\n None, enum_type=None, containing_type=None, is_extension=False,\n extension_scope=None, serialized_options=None, file=DESCRIPTOR)\n", (2206, 2516), True, 'from google.protobuf import descriptor as _descriptor\n'), ((3313, 3666), 'google.protobuf.descriptor.FieldDescriptor', '_descriptor.FieldDescriptor', ([], {'name': '"""onlyProduction"""', 'full_name': '"""basic.ListToolRequest.onlyProduction"""', 'index': '(4)', 'number': '(5)', 'type': '(8)', 'cpp_type': '(7)', 'label': '(1)', 'has_default_value': '(False)', 'default_value': '(False)', 'message_type': 'None', 'enum_type': 'None', 'containing_type': 'None', 'is_extension': '(False)', 'extension_scope': 'None', 'serialized_options': 'None', 'file': 'DESCRIPTOR'}), "(name='onlyProduction', full_name=\n 'basic.ListToolRequest.onlyProduction', index=4, number=5, type=8,\n cpp_type=7, label=1, has_default_value=False, default_value=False,\n message_type=None, enum_type=None, containing_type=None, is_extension=\n False, extension_scope=None, serialized_options=None, file=DESCRIPTOR)\n", (3340, 3666), True, 'from google.protobuf import descriptor as _descriptor\n'), ((3691, 4042), 'google.protobuf.descriptor.FieldDescriptor', '_descriptor.FieldDescriptor', ([], {'name': '"""showInvisible"""', 'full_name': '"""basic.ListToolRequest.showInvisible"""', 'index': '(5)', 'number': '(6)', 'type': '(8)', 'cpp_type': '(7)', 'label': '(1)', 'has_default_value': '(False)', 'default_value': '(False)', 'message_type': 'None', 'enum_type': 'None', 'containing_type': 'None', 'is_extension': '(False)', 'extension_scope': 'None', 'serialized_options': 'None', 'file': 'DESCRIPTOR'}), "(name='showInvisible', full_name=\n 'basic.ListToolRequest.showInvisible', index=5, number=6, type=8,\n cpp_type=7, label=1, has_default_value=False, default_value=False,\n message_type=None, enum_type=None, containing_type=None, is_extension=\n False, extension_scope=None, serialized_options=None, file=DESCRIPTOR)\n", (3718, 4042), True, 'from google.protobuf import descriptor as _descriptor\n'), ((4843, 5172), 'google.protobuf.descriptor.FieldDescriptor', '_descriptor.FieldDescriptor', ([], {'name': '"""page"""', 'full_name': '"""basic.ListToolResponse.page"""', 'index': '(0)', 'number': '(1)', 'type': '(5)', 'cpp_type': '(1)', 'label': '(1)', 'has_default_value': '(False)', 'default_value': '(0)', 'message_type': 'None', 'enum_type': 'None', 'containing_type': 'None', 'is_extension': '(False)', 'extension_scope': 'None', 'serialized_options': 'None', 'file': 'DESCRIPTOR'}), "(name='page', full_name=\n 'basic.ListToolResponse.page', index=0, number=1, type=5, cpp_type=1,\n label=1, has_default_value=False, default_value=0, message_type=None,\n enum_type=None, containing_type=None, is_extension=False,\n extension_scope=None, serialized_options=None, file=DESCRIPTOR)\n", (4870, 5172), True, 'from google.protobuf import descriptor as _descriptor\n'), ((5198, 5539), 'google.protobuf.descriptor.FieldDescriptor', '_descriptor.FieldDescriptor', ([], {'name': '"""page_size"""', 'full_name': '"""basic.ListToolResponse.page_size"""', 'index': '(1)', 'number': '(2)', 'type': '(5)', 'cpp_type': '(1)', 'label': '(1)', 'has_default_value': '(False)', 'default_value': '(0)', 'message_type': 'None', 'enum_type': 'None', 'containing_type': 'None', 'is_extension': '(False)', 'extension_scope': 'None', 'serialized_options': 'None', 'file': 'DESCRIPTOR'}), "(name='page_size', full_name=\n 'basic.ListToolResponse.page_size', index=1, number=2, type=5, cpp_type\n =1, label=1, has_default_value=False, default_value=0, message_type=\n None, enum_type=None, containing_type=None, is_extension=False,\n extension_scope=None, serialized_options=None, file=DESCRIPTOR)\n", (5225, 5539), True, 'from google.protobuf import descriptor as _descriptor\n'), ((5563, 5894), 'google.protobuf.descriptor.FieldDescriptor', '_descriptor.FieldDescriptor', ([], {'name': '"""total"""', 'full_name': '"""basic.ListToolResponse.total"""', 'index': '(2)', 'number': '(3)', 'type': '(5)', 'cpp_type': '(1)', 'label': '(1)', 'has_default_value': '(False)', 'default_value': '(0)', 'message_type': 'None', 'enum_type': 'None', 'containing_type': 'None', 'is_extension': '(False)', 'extension_scope': 'None', 'serialized_options': 'None', 'file': 'DESCRIPTOR'}), "(name='total', full_name=\n 'basic.ListToolResponse.total', index=2, number=3, type=5, cpp_type=1,\n label=1, has_default_value=False, default_value=0, message_type=None,\n enum_type=None, containing_type=None, is_extension=False,\n extension_scope=None, serialized_options=None, file=DESCRIPTOR)\n", (5590, 5894), True, 'from google.protobuf import descriptor as _descriptor\n'), ((5920, 6252), 'google.protobuf.descriptor.FieldDescriptor', '_descriptor.FieldDescriptor', ([], {'name': '"""list"""', 'full_name': '"""basic.ListToolResponse.list"""', 'index': '(3)', 'number': '(4)', 'type': '(11)', 'cpp_type': '(10)', 'label': '(3)', 'has_default_value': '(False)', 'default_value': '[]', 'message_type': 'None', 'enum_type': 'None', 'containing_type': 'None', 'is_extension': '(False)', 'extension_scope': 'None', 'serialized_options': 'None', 'file': 'DESCRIPTOR'}), "(name='list', full_name=\n 'basic.ListToolResponse.list', index=3, number=4, type=11, cpp_type=10,\n label=3, has_default_value=False, default_value=[], message_type=None,\n enum_type=None, containing_type=None, is_extension=False,\n extension_scope=None, serialized_options=None, file=DESCRIPTOR)\n", (5947, 6252), True, 'from google.protobuf import descriptor as _descriptor\n'), ((6701, 7038), 'google.protobuf.descriptor.FieldDescriptor', '_descriptor.FieldDescriptor', ([], {'name': '"""code"""', 'full_name': '"""basic.ListToolResponseWrapper.code"""', 'index': '(0)', 'number': '(1)', 'type': '(5)', 'cpp_type': '(1)', 'label': '(1)', 'has_default_value': '(False)', 'default_value': '(0)', 'message_type': 'None', 'enum_type': 'None', 'containing_type': 'None', 'is_extension': '(False)', 'extension_scope': 'None', 'serialized_options': 'None', 'file': 'DESCRIPTOR'}), "(name='code', full_name=\n 'basic.ListToolResponseWrapper.code', index=0, number=1, type=5,\n cpp_type=1, label=1, has_default_value=False, default_value=0,\n message_type=None, enum_type=None, containing_type=None, is_extension=\n False, extension_scope=None, serialized_options=None, file=DESCRIPTOR)\n", (6728, 7038), True, 'from google.protobuf import descriptor as _descriptor\n'), ((7845, 8187), 'google.protobuf.descriptor.FieldDescriptor', '_descriptor.FieldDescriptor', ([], {'name': '"""data"""', 'full_name': '"""basic.ListToolResponseWrapper.data"""', 'index': '(3)', 'number': '(4)', 'type': '(11)', 'cpp_type': '(10)', 'label': '(1)', 'has_default_value': '(False)', 'default_value': 'None', 'message_type': 'None', 'enum_type': 'None', 'containing_type': 'None', 'is_extension': '(False)', 'extension_scope': 'None', 'serialized_options': 'None', 'file': 'DESCRIPTOR'}), "(name='data', full_name=\n 'basic.ListToolResponseWrapper.data', index=3, number=4, type=11,\n cpp_type=10, label=1, has_default_value=False, default_value=None,\n message_type=None, enum_type=None, containing_type=None, is_extension=\n False, extension_scope=None, serialized_options=None, file=DESCRIPTOR)\n", (7872, 8187), True, 'from google.protobuf import descriptor as _descriptor\n')]
import argparse import os import re import sys from inc.HRDF.Stops_Reporter.stops_reporter import HRDF_Stops_Reporter from inc.HRDF.HRDF_Parser.hrdf_helpers import compute_formatted_date_from_hrdf_db_path from inc.HRDF.db_helpers import compute_db_tables_report parser = argparse.ArgumentParser(description = 'Generate stops report from HRDF DB') parser.add_argument('-p', '--path', help='Path to HRDF DB') args = parser.parse_args() db_path = args.path if db_path is None: print("ERROR, use with --path") sys.exit(1) compute_db_tables_report(db_path=db_path)
[ "inc.HRDF.db_helpers.compute_db_tables_report", "argparse.ArgumentParser", "sys.exit" ]
[((273, 346), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Generate stops report from HRDF DB"""'}), "(description='Generate stops report from HRDF DB')\n", (296, 346), False, 'import argparse\n'), ((531, 572), 'inc.HRDF.db_helpers.compute_db_tables_report', 'compute_db_tables_report', ([], {'db_path': 'db_path'}), '(db_path=db_path)\n', (555, 572), False, 'from inc.HRDF.db_helpers import compute_db_tables_report\n'), ((518, 529), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (526, 529), False, 'import sys\n')]
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'mainwindow.ui' # # Created by: PyQt5 UI code generator 5.13.0 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(800, 600) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.gridLayout_2 = QtWidgets.QGridLayout(self.centralwidget) self.gridLayout_2.setObjectName("gridLayout_2") self.gridLayout = QtWidgets.QGridLayout() self.gridLayout.setObjectName("gridLayout") self.buttonLayout = QtWidgets.QGridLayout() self.gridLayout.addLayout(self.buttonLayout, 0, 0) self.openfileButton = QtWidgets.QPushButton(self.centralwidget) self.openfileButton.setObjectName("openfileButton") self.buttonLayout.addWidget(self.openfileButton, 0, 0, 1, 1) self.saveButton = QtWidgets.QPushButton(self.centralwidget) self.saveButton.setObjectName('saveButton') self.buttonLayout.addWidget(self.saveButton, 1, 0, 1, 1) self.nextButton = QtWidgets.QPushButton(self.centralwidget) self.nextButton.setObjectName('nextButton') self.buttonLayout.addWidget(self.nextButton, 2, 0, 1, 1) self.clearButton = QtWidgets.QPushButton(self.centralwidget) self.clearButton.setObjectName('clearButton') self.buttonLayout.addWidget(self.clearButton, 4, 0, 1, 1) self.lastButton = QtWidgets.QPushButton(self.centralwidget) self.lastButton.setObjectName('lastButton') self.buttonLayout.addWidget(self.lastButton, 3, 0, 1, 1) self.gridLayout_2.addLayout(self.gridLayout, 0, 0, 1, 1) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 800, 18)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.label_pos = QtWidgets.QLabel() self.buttonLayout.addWidget(self.label_pos, 0, 1) self.label_state = QtWidgets.QLabel() self.buttonLayout.addWidget(self.label_state, 1, 1) self.label_file_name = QtWidgets.QLabel() self.buttonLayout.addWidget(self.label_file_name, 2, 1) self.label_annotation_points = QtWidgets.QLabel() self.buttonLayout.addWidget(self.label_annotation_points, 4, 1) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.openfileButton.setText(_translate("MainWindow", "open")) self.saveButton.setText('save') self.nextButton.setText('next') self.clearButton.setText('clear') self.lastButton.setText('previous')
[ "PyQt5.QtWidgets.QLabel", "PyQt5.QtWidgets.QWidget", "PyQt5.QtCore.QRect", "PyQt5.QtWidgets.QGridLayout", "PyQt5.QtWidgets.QStatusBar", "PyQt5.QtWidgets.QPushButton", "PyQt5.QtCore.QMetaObject.connectSlotsByName", "PyQt5.QtWidgets.QMenuBar" ]
[((437, 466), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', (['MainWindow'], {}), '(MainWindow)\n', (454, 466), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((555, 596), 'PyQt5.QtWidgets.QGridLayout', 'QtWidgets.QGridLayout', (['self.centralwidget'], {}), '(self.centralwidget)\n', (576, 596), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((681, 704), 'PyQt5.QtWidgets.QGridLayout', 'QtWidgets.QGridLayout', ([], {}), '()\n', (702, 704), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((789, 812), 'PyQt5.QtWidgets.QGridLayout', 'QtWidgets.QGridLayout', ([], {}), '()\n', (810, 812), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((906, 947), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (927, 947), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1108, 1149), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1129, 1149), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1298, 1339), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1319, 1339), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1489, 1530), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1510, 1530), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1682, 1723), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1703, 1723), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1994, 2024), 'PyQt5.QtWidgets.QMenuBar', 'QtWidgets.QMenuBar', (['MainWindow'], {}), '(MainWindow)\n', (2012, 2024), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2206, 2238), 'PyQt5.QtWidgets.QStatusBar', 'QtWidgets.QStatusBar', (['MainWindow'], {}), '(MainWindow)\n', (2226, 2238), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2367, 2385), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', ([], {}), '()\n', (2383, 2385), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2475, 2493), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', ([], {}), '()\n', (2491, 2493), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2589, 2607), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', ([], {}), '()\n', (2605, 2607), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2715, 2733), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', ([], {}), '()\n', (2731, 2733), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2858, 2907), 'PyQt5.QtCore.QMetaObject.connectSlotsByName', 'QtCore.QMetaObject.connectSlotsByName', (['MainWindow'], {}), '(MainWindow)\n', (2895, 2907), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2059, 2086), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(0)', '(0)', '(800)', '(18)'], {}), '(0, 0, 800, 18)\n', (2071, 2086), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.contrib import admin from .models import Post, Category, Tag from typeidea.custom_site import custom_site from django.utils.html import format_html from django.core.urlresolvers import reverse from .adminforms import PostAdminForm from typeidea.custom_admin import BaseOwnerAdmin # Register your models here. @admin.register(Post, site=custom_site) class PostAdmin(BaseOwnerAdmin): form = PostAdminForm list_display = ['title', 'category', 'status', 'owner', 'created_time', 'operator'] list_display_links = ['category', 'status'] search_fields = ['title', 'category__name', 'owner__first_name'] save_on_top = False show_full_result_count = False # 优化显示结果 list_filter = ['title'] actions_on_top = True date_hierarchy = 'created_time' list_editable = ['title', ] # 编辑页面 fieldsets = ( # 跟fields互斥 ('基础配置', { 'fields': (('category', 'title'), 'desc', 'status', 'content') }), ('高级配置', { 'classes': ('collapse', 'addon'), 'fields': ('tag',), }), ) # 布局作用 filter_horizontal = ('tag',) def operator(self, obj): return format_html( '<a href="{}">编辑</a>', reverse('cus_site:blog_post_change', args=(obj.id,)) ) operator.show_description = '操作' operator.empty_value_display = '???' class PostInlineAdmin(admin.TabularInline): fields = ('title', 'status') extra = 1 model = Post @admin.register(Category, site=custom_site) class CategoryAdmin(BaseOwnerAdmin): list_display = ['name', 'status','is_nav', 'created_time'] inlines = [PostInlineAdmin,] fields = ('name', 'status', 'is_nav',) @admin.register(Tag, site=custom_site) class TagAdmin(BaseOwnerAdmin): list_display = ['name', 'status', 'owner', 'created_time']
[ "django.contrib.admin.register", "django.core.urlresolvers.reverse" ]
[((389, 427), 'django.contrib.admin.register', 'admin.register', (['Post'], {'site': 'custom_site'}), '(Post, site=custom_site)\n', (403, 427), False, 'from django.contrib import admin\n'), ((1616, 1658), 'django.contrib.admin.register', 'admin.register', (['Category'], {'site': 'custom_site'}), '(Category, site=custom_site)\n', (1630, 1658), False, 'from django.contrib import admin\n'), ((1838, 1875), 'django.contrib.admin.register', 'admin.register', (['Tag'], {'site': 'custom_site'}), '(Tag, site=custom_site)\n', (1852, 1875), False, 'from django.contrib import admin\n'), ((1362, 1414), 'django.core.urlresolvers.reverse', 'reverse', (['"""cus_site:blog_post_change"""'], {'args': '(obj.id,)'}), "('cus_site:blog_post_change', args=(obj.id,))\n", (1369, 1414), False, 'from django.core.urlresolvers import reverse\n')]
from adabelief_pytorch import AdaBelief import torch_optimizer from torch import optim from src.sam import SAM __OPTIMIZERS__ = { "AdaBelief": AdaBelief, "RAdam": torch_optimizer.RAdam, "SAM": SAM } def get_optimizer(cfg, model): optimizer_name = cfg.optimizer.name if optimizer_name == "SAM": base_optimizer_name = cfg.optimizer.base if __OPTIMIZERS__.get(base_optimizer_name) is not None: base_optimizer = __OPTIMIZERS__[base_optimizer_name] else: base_optimizer = optim.__getattribute__(base_optimizer_name) return SAM(model.parameters(), base_optimizer, **cfg.optimizer.param) if __OPTIMIZERS__.get(optimizer_name) is not None: return __OPTIMIZERS__[optimizer_name](model.parameters(), **cfg.optimizer.param) else: return optim.__getattribute__(optimizer_name)(model.parameters(), **cfg.optimizer.param)
[ "torch.optim.__getattribute__" ]
[((539, 582), 'torch.optim.__getattribute__', 'optim.__getattribute__', (['base_optimizer_name'], {}), '(base_optimizer_name)\n', (561, 582), False, 'from torch import optim\n'), ((835, 873), 'torch.optim.__getattribute__', 'optim.__getattribute__', (['optimizer_name'], {}), '(optimizer_name)\n', (857, 873), False, 'from torch import optim\n')]
import numpy as np import tensorflow as tf import random import _pickle as pkl import matplotlib.pyplot as plt from pylab import rcParams import scipy import scipy.stats as stats from tensorflow.python.ops import gen_nn_ops config_gpu = tf.ConfigProto() config_gpu.gpu_options.allow_growth = True MEAN_IMAGE = np.zeros((1, 227, 227, 3)).astype(np.float32) MEAN_IMAGE[:, :, :, 0] = 103.939 MEAN_IMAGE[:, :, :, 1] = 116.779 MEAN_IMAGE[:, :, :, 2] = 123.68 EPSILON = 1e-12 MIN_INPUT = -MEAN_IMAGE MAX_INPUT = 255 * np.ones_like(MEAN_IMAGE).astype(np.float32) - MEAN_IMAGE def dataReader(): X = np.zeros((100, 227, 227, 3)) y = np.zeros(100) for num in range(4): with open( "./ImagenetValidationSamples/imagenet_sample_{}.pkl".format( num), "rb") as inputs: dic_temp = pkl.load(inputs) X[num * 20:num * 20 + 20] = dic_temp["X"] y[num * 20:num * 20 + 20] = dic_temp["y"] labels = dic_temp["labels"] return X, y.astype(int), labels class SimpleGradientAttack(object): def __init__(self, mean_image, sess, test_image, original_label, NET, NET2=None, k_top=1000, target_map=None, pixel_max=255.): """ Args: mean_image: The mean image of the data set(The assumption is that the images are mean subtracted) sess: Session containing model(and surrogate model's) graphs test_image: Mean subtracted test image original_label: True label of the image NET: Original neural network. It's assumed that NET.saliency is the saliency map tensor and NET.saliency_flatten is its flatten version. NET2: Surrogate neural network with the same structure and weights of the orignal network but with activations replaced by softplus function (necessary only when the activation function of the original function does not have second order gradients, ex: ReLU). It's assumed that NET.saliency is the saliency map tensor and NET2.saliency_flatten is its flatten version. k_top: the topK parameter of the attack (refer to the original paper) pixel_max: the maximum pixel value in the image. """ self.pixel_max = pixel_max if len(test_image.shape) != 3: raise ValueError("Invalid Test Image Dimensions") if NET.input.get_shape()[-3]!=test_image.shape[-3] or NET.input.get_shape()[-2]!=test_image.shape[-2] or\ NET.input.get_shape()[-1]!=test_image.shape[-1]: raise ValueError( "Model's input dimensions is not Compatible with the provided test image!" ) if self.check_prediction(sess, original_label, test_image, NET): return self.sess = sess self.target_map = target_map self.create_extra_ops(NET, test_image.shape[-3], test_image.shape[-2], k_top) if NET2 is None: NET2 = NET else: self.create_extra_ops(NET2, test_image.shape[-3], test_image.shape[-2], k_top) if NET2.input.get_shape()[-3]!=test_image.shape[-3] or NET2.input.get_shape()[-2]!=test_image.shape[-2] or\ NET2.input.get_shape()[-1]!=test_image.shape[-1]: raise ValueError( "Surrogate model's input dimensions is not Compatible with the provided test image!" ) self.NET = NET self.NET2 = NET2 self.test_image = test_image self.original_label = original_label self.mean_image = mean_image self.k_top = k_top w, h, c = self.mean_image.shape self.topk_ph = tf.placeholder(tf.float32, shape=[w * h], name='topk_ph') self.mass_center_ph = tf.placeholder(tf.float32, shape=[2], name='mass_center_ph') self.target_map_ph = tf.placeholder(tf.float32, shape=[w, h], name='target_map_ph') self.original_output = self.NET.predict(test_image[None, :]) _, num_class = self.original_output.shape self.original_output_ph = tf.placeholder( tf.float32, shape=[None, num_class], name='original_output_ph') # only for the manipulation attack self.beta_0_ph = tf.placeholder(tf.float32, name='beta_0') self.beta_1_ph = tf.placeholder(tf.float32, name='beta_1') self.create_attack_ops(NET2, test_image.shape[-3], test_image.shape[-2]) self.update_new_image(test_image, original_label) def update_new_image(self, test_image, original_label, target_map=None): w, h, c = test_image.shape self.test_image = test_image self.original_label = original_label assert self.check_prediction(self.sess, original_label, test_image, self.NET) == False if target_map is not None: self.target_map = target_map self.original_output = self.NET2.predict(test_image[None, :]) self.saliency1, self.topK = self.run_model( self.sess, [self.NET.saliency, self.NET.top_idx], self.test_image, self.NET) self.saliency1_flatten = np.reshape( self.saliency1, [test_image.shape[-3] * test_image.shape[-2]]) elem1 = np.argsort(np.reshape(self.saliency1, [w * h]))[-self.k_top:] self.elements1 = np.zeros(w * h) self.elements1[elem1] = 1 self.original_topk = self.elements1 self.mass_center1 = self.run_model(self.sess, self.NET.mass_center, self.test_image, self.NET).astype(int) self.original_mass_center = self.mass_center1 def check_prediction(self, sess, original_label, image, NET): """ If the network's prediction is incorrect in the first place, attacking has no meaning.""" predicted_scores = sess.run( NET.output, feed_dict={NET.input: image if len(image.shape) == 4 else [image]}) if np.argmax(predicted_scores, 1) != original_label: print("Network's Prediction is Already Incorrect!") return True else: self.original_confidence = np.max(predicted_scores) return False def create_extra_ops(self, NET, w, h, k_top): top_val, NET.top_idx = tf.nn.top_k(NET.saliency_flatten, k_top) y_mesh, x_mesh = np.meshgrid(np.arange(h), np.arange(w)) NET.mass_center = tf.stack([ tf.reduce_sum(NET.saliency * x_mesh) / (w * h), tf.reduce_sum(NET.saliency * y_mesh) / (w * h) ]) def create_attack_ops(self, NET, w, h): topK_loss = tf.reduce_sum((NET.saliency_flatten * self.topk_ph)) self.topK_direction = -tf.gradients(topK_loss, NET.input)[0] mass_center_loss = -tf.reduce_sum( (NET.mass_center - self.mass_center_ph)**2) self.mass_center_direction = -tf.gradients(mass_center_loss, NET.input)[0] if self.target_map is not None: target_dis = tf.keras.losses.MSE(self.target_map_ph, NET.saliency) output_dis = tf.keras.losses.MSE(self.original_output_ph, NET.output) target_loss = tf.reduce_mean( target_dis) * self.beta_0_ph + self.beta_1_ph * tf.reduce_mean( output_dis) self.debug = target_loss self.target_direction = -tf.gradients(target_loss, NET.input)[0] def run_model(self, sess, operation, feed, NET): if len(feed.shape) == 3: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, }) elif len(feed.shape) == 4: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, }) else: raise RuntimeError("Input image shape invalid!") def give_simple_perturbation(self, attack_method, in_image): w, h, c = self.test_image.shape if attack_method == "random": perturbation = np.random.normal(size=(w, h, c)) elif attack_method == "topK": perturbation = self.run_model(self.sess, self.topK_direction, in_image, self.NET2) perturbation = np.reshape(perturbation, [w, h, c]) elif attack_method == "mass_center": perturbation = self.run_model(self.sess, self.mass_center_direction, in_image, self.NET2) perturbation = np.reshape(perturbation, [w, h, c]) elif attack_method == "target": self.use_target = True if self.target_map is None: raise ValueError("No target region determined!") else: perturbation = self.run_model(self.sess, self.target_direction, in_image, self.NET2) debug = self.run_model(self.sess, self.debug, in_image, self.NET2) print("MSE: ", debug) perturbation = np.reshape(perturbation, [w, h, c]) return np.sign(perturbation) def apply_perturb(self, in_image, pert, alpha, bound=8 / 255, ord=np.inf): if self.mean_image is None: self.mean_image = np.zeros_like(in_image) # out_image = self.test_image + np.clip( # in_image + alpha * np.sign(pert) - self.test_image, -bound, bound) d = in_image + alpha * np.sign(pert) - self.test_image d_norm = np.linalg.norm(d.flatten(), ord=ord) if d_norm > bound: proj_ratio = bound / np.linalg.norm(d.flatten(), ord=ord) else: proj_ratio = 1 out_image = self.test_image + d * proj_ratio out_image = np.clip(out_image, -self.mean_image, self.pixel_max - self.mean_image) return out_image def check_measure(self, test_image_pert, measure): prob = self.run_model(self.sess, self.NET.output, test_image_pert, self.NET) if np.argmax(prob, 1) == self.original_label: if measure == "intersection": top2 = self.run_model(self.sess, self.NET.top_idx, test_image_pert, self.NET) criterion = float(len(np.intersect1d(self.topK, top2))) / self.k_top elif measure == "correlation": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, test_image_pert, self.NET) criterion = scipy.stats.spearmanr(self.saliency1_flatten, saliency2_flatten)[0] elif measure == "mass_center": center2 = self.run_model(self.sess, self.NET.mass_center, test_image_pert, self.NET).astype(int) criterion = -np.linalg.norm(self.mass_center1 - center2) elif measure == "cosine": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, test_image_pert, self.NET) criterion = scipy.spatial.distance.cosine( self.saliency1_flatten, saliency2_flatten) else: raise ValueError("Invalid measure!") return criterion else: return 1. def iterative_attack(self, attack_method, epsilon, iters=100, alpha=1, beta_0=1e11, beta_1=1e6, measure="intersection", target=None): """ Args: attack_method: One of "mass_center", "topK" or "random" epsilon: Allowed maximum $ell_infty$ of perturbations, eg:8 iters: number of maximum allowed attack iterations alpha: perturbation size in each iteration of the attack measure: measure for success of the attack (one of "correlation", "mass_center" or "intersection") beta_0: parameter for manipulate (target) attack beta_1: parameter for manipulate (target) attack Returns: intersection: The portion of the top K salient pixels in the original picture that are in the top K salient pixels of the perturbed image devided correlation: The rank correlation between saliency maps of original and perturbed image center_dislocation: The L2 distance between saliency map mass centers in original and perturbed images confidence: The prediction confidence of the perturbed image """ self.beta_0 = beta_0 self.beta_1 = beta_1 w, h, c = self.test_image.shape test_image_pert = self.test_image.copy() min_criterion = 1. perturb_size = 0. last_image = None for counter in range(iters): pert = self.give_simple_perturbation(attack_method, test_image_pert) test_image_pert = self.apply_perturb(test_image_pert, pert, alpha, epsilon) criterion = self.check_measure(test_image_pert, measure) if criterion < min_criterion: min_criterion = criterion self.perturbed_image = test_image_pert.copy() perturb_size = np.max( np.abs(self.test_image - self.perturbed_image)) else: pass if criterion == 1.: return None predicted_scores = self.run_model(self.sess, self.NET.output, self.perturbed_image, self.NET) confidence = np.max(predicted_scores) self.saliency2, self.top2, self.mass_center2= self.run_model\ (self.sess, [self.NET.saliency, self.NET.top_idx, self.NET.mass_center], self.perturbed_image, self.NET) correlation = scipy.stats.spearmanr( self.saliency1_flatten, np.reshape(self.saliency2, [w * h]))[0] intersection = float(len(np.intersect1d(self.topK, self.top2))) / self.k_top center_dislocation = np.linalg.norm(self.mass_center1 - self.mass_center2.astype(int)) cos_distance = scipy.spatial.distance.cosine( self.saliency1_flatten, np.reshape(self.saliency2, [w * h])) return intersection, correlation, center_dislocation, confidence, perturb_size, cos_distance class IntegratedGradientsAttack(object): def __init__(self, sess, mean_image, test_image, original_label, NET, NET2=None, k_top=1000, num_steps=100, reference_image=None, target_map=None, pixel_max=255.): """ Args: mean_image: The mean image of the data set(The assumption is that the images are mean subtracted) sess: Session containing model(and surrogate model's) graphs test_image: Mean subtracted test image original_label: True label of the image NET: Original neural network. It's assumed that NET.saliency is the saliency map tensor and NET.saliency_flatten is its flatten version. NET2: Surrogate neural network with the same structure and weights of the orignal network but with activations replaced by softplus function (necessary only when the activation function of the original function does not have second order gradients, ex: ReLU). It's assumed that NET.saliency is the saliency map tensor and NET2.saliency_flatten is its flatten version. k_top: the topK parameter of the attack (refer to the original paper) num_steps: Number of steps in Integrated Gradients Algorithm reference_image: Mean subtracted reference image of Integrated Gradients Algorithm pixel_max: the maximum pixel value in the image. """ self.pixel_max = pixel_max if len(test_image.shape) != 3: raise ValueError("Invalid Test Image Dimensions") if sum([ NET.input.get_shape()[-i] != test_image.shape[-i] for i in [1, 2, 3] ]): raise ValueError( "Model's input dimensions is not Compatible with the provided test image!" ) if self.check_prediction(sess, original_label, test_image, NET): return self.sess = sess self.target_map = target_map self.create_extra_ops(NET, test_image.shape[-3], test_image.shape[-2], k_top) if NET2 is None: NET2 = NET else: self.create_extra_ops(NET2, test_image.shape[-3], test_image.shape[-2], k_top) if sum([ NET2.input.get_shape()[-i] != test_image.shape[-i] for i in [1, 2, 3] ]): raise ValueError( "Surrogate model's input dimensions is not Compatible with the provided test image!" ) self.NET = NET self.NET2 = NET2 self.test_image = test_image self.original_label = original_label self.mean_image = mean_image self.k_top = k_top self.num_steps = num_steps self.reference_image = np.zeros_like( test_image) if reference_image is None else reference_image w, h, c = self.mean_image.shape self.topk_ph = tf.placeholder(tf.float32, shape=[w * h], name='topk_ph') self.mass_center_ph = tf.placeholder(tf.float32, shape=[2], name='mass_center_ph') self.target_map_ph = tf.placeholder(tf.float32, shape=[w, h], name='target_map_ph') self.beta_0_ph = tf.placeholder(tf.float32, name='beta_0') self.beta_1_ph = tf.placeholder(tf.float32, name='beta_1') self.original_output = self.NET.predict(test_image[None, :]) _, num_class = self.original_output.shape self.original_output_ph = tf.placeholder( tf.float32, shape=[None, num_class], name='original_output_ph') # only for the manipulation attack self.create_attack_ops(self.NET2, test_image.shape[-3], test_image.shape[-2]) def check_prediction(self, sess, original_label, image, NET): """ If the network's prediction is incorrect in the first place, attacking has no meaning.""" predicted_scores = sess.run( NET.output, feed_dict={NET.input: image if len(image.shape) == 4 else [image]}) if np.argmax(predicted_scores, 1) != original_label: print("Network's Prediction is Already Incorrect!") return True else: self.original_confidence = np.max(predicted_scores) return False def update_new_image(self, test_image, original_label, target_map=None): w, h, c = test_image.shape self.test_image = test_image self.original_label = original_label assert self.check_prediction(self.sess, original_label, test_image, self.NET) == False if target_map is not None: self.target_map = target_map self.original_output = self.NET2.predict(test_image[None, :]) counterfactuals = self.create_counterfactuals(test_image) self.saliency1, self.topK = self.run_model( self.sess, [self.NET.saliency, self.NET.top_idx], counterfactuals, self.NET) self.saliency1_flatten = np.reshape( self.saliency1, [test_image.shape[-3] * test_image.shape[-2]]) elem1 = np.argsort(np.reshape(self.saliency1, [w * h]))[-self.k_top:] self.elements1 = np.zeros(w * h) self.elements1[elem1] = 1 self.original_topk = self.elements1 self.mass_center1 = self.run_model(self.sess, self.NET.mass_center, counterfactuals, self.NET).astype(int) self.original_mass_center = self.mass_center1 def create_extra_ops(self, NET, w, h, k_top): top_val, NET.top_idx = tf.nn.top_k(NET.saliency_flatten, k_top) y_mesh, x_mesh = np.meshgrid(np.arange(h), np.arange(w)) NET.mass_center = tf.stack([ tf.reduce_sum(NET.saliency * x_mesh) / (w * h), tf.reduce_sum(NET.saliency * y_mesh) / (w * h) ]) def create_attack_ops(self, NET, w, h): topK_loss = tf.reduce_sum((NET.saliency_flatten * self.topk_ph)) self.debug = topK_loss NET.topK_direction = -tf.gradients(topK_loss, NET.input)[0] mass_center_loss = -tf.reduce_sum( (NET.mass_center - self.mass_center_ph)**2) NET.mass_center_direction = -tf.gradients(mass_center_loss, NET.input)[0] if self.target_map is not None: target_dis = tf.keras.losses.MSE(self.target_map_ph, NET.saliency) output_dis = tf.keras.losses.MSE(self.original_output_ph, NET.output) target_loss = tf.reduce_mean( target_dis) * self.beta_0_ph + self.beta_1_ph * tf.reduce_mean( output_dis) self.debug = target_loss self.target_direction = -tf.gradients(target_loss, NET.input)[0] def create_counterfactuals(self, in_image): ref_subtracted = in_image - self.reference_image counterfactuals = np.array([(float(i+1)/self.num_steps) * ref_subtracted + self.reference_image\ for i in range(self.num_steps)]) return np.array(counterfactuals) def run_model(self, sess, operation, feed, NET): if len(feed.shape) == 3: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.topk_ph: self.original_topk, NET.reference_image: self.reference_image, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, NET.reference_image: self.reference_image, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.reference_image: self.reference_image, NET.label_ph: self.original_label, self.target_map_ph: self.target_map }) elif len(feed.shape) == 4: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, NET.reference_image: self.reference_image, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, NET.reference_image: self.reference_image, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.reference_image: self.reference_image, NET.label_ph: self.original_label, }) else: raise RuntimeError("Input image shape invalid!") def give_simple_perturbation(self, attack_method, in_image): counterfactuals = self.create_counterfactuals(in_image) w, h, c = self.test_image.shape if attack_method == "random": perturbation = np.random.normal(size=(self.num_steps, w, h, c)) elif attack_method == "topK": perturbation = self.run_model(self.sess, self.NET2.topK_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) elif attack_method == "mass_center": perturbation = self.run_model(self.sess, self.NET2.mass_center_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) elif attack_method == "target": self.use_target = True if self.target_map is None: raise ValueError("No target region determined!") else: perturbation = self.run_model(self.sess, self.target_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) perturbation_summed = np.sum(np.array([float(i+1)/self.num_steps*perturbation[i]\ for i in range(self.num_steps)]),0) return np.sign(perturbation_summed) def apply_perturb(self, in_image, pert, alpha, bound=8 / 255, ord=np.inf): if self.mean_image is None: self.mean_image = np.zeros_like(in_image) # out_image = self.test_image + np.clip( # in_image + alpha * np.sign(pert) - self.test_image, -bound, bound) d = in_image + alpha * np.sign(pert) - self.test_image d_norm = np.linalg.norm(d.flatten(), ord=ord) if d_norm > bound: proj_ratio = bound / np.linalg.norm(d.flatten(), ord=ord) else: proj_ratio = 1 out_image = self.test_image + d * proj_ratio out_image = np.clip(out_image, -self.mean_image, self.pixel_max - self.mean_image) return out_image def check_measure(self, test_image_pert, measure): prob = self.run_model(self.sess, self.NET.output, test_image_pert, self.NET) if np.argmax(prob, 1) == self.original_label: counterfactuals = self.create_counterfactuals(test_image_pert) if measure == "intersection": top2 = self.run_model(self.sess, self.NET.top_idx, counterfactuals, self.NET) criterion = float(len(np.intersect1d(self.topK, top2))) / self.k_top elif measure == "correlation": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, counterfactuals, self.NET) criterion = scipy.stats.spearmanr(self.saliency1_flatten, saliency2_flatten)[0] elif measure == "mass_center": center2 = self.run_model(self.sess, self.NET.mass_center, counterfactuals, self.NET).astype(int) criterion = -np.linalg.norm(self.mass_center1 - center2) elif measure == "cosine": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, test_image_pert, self.NET) criterion = scipy.spatial.distance.cosine( self.saliency1_flatten, saliency2_flatten) else: raise ValueError("Invalid measure!") return criterion else: return 1 def iterative_attack(self, attack_method, epsilon, iters=100, alpha=1, beta_0=1e11, beta_1=1e6, measure="intersection"): """ Args: attack_method: One of "mass_center", "topK" or "random" epsilon: set of allowed maximum $ell_infty$ of perturbations, eg:[2,4] iters: number of maximum allowed attack iterations alpha: perturbation size in each iteration of the attack measure: measure for success of the attack (one of "correlation", "mass_center" or "intersection") Returns: intersection: The portion of the top K salient pixels in the original picture that are in the top K salient pixels of the perturbed image devided correlation: The rank correlation between saliency maps of original and perturbed image center_dislocation: The L2 distance between saliency map mass centers in original and perturbed images confidence: The prediction confidence of the perturbed image """ self.beta_0 = beta_0 self.beta_1 = beta_1 w, h, c = self.test_image.shape test_image_pert = self.test_image.copy() min_criterion = 1. for counter in range(iters): # if counter % int(iters / 5) == 0: # print("Iteration : {}".format(counter)) pert = self.give_simple_perturbation(attack_method, test_image_pert) # print(pert.sum()) test_image_pert = self.apply_perturb(test_image_pert, pert, alpha, epsilon) criterion = self.check_measure(test_image_pert, measure) if criterion < min_criterion: # print("attack") min_criterion = criterion self.perturbed_image = test_image_pert.copy() perturb_size = np.max( np.abs(self.test_image - self.perturbed_image)) else: # print("labels is changed") pass if min_criterion == 1.: # print( # "The attack was not successfull for maximum allowed perturbation size equal to {}" # .format(epsilon)) # return 1., 1., self.original_confidence, 0. return None # print( # '''For maximum allowed perturbation size equal to {}, the resulting perturbation size was equal to {} # '''.format(epsilon, # np.max(np.abs(self.test_image - self.perturbed_image)))) predicted_scores = self.run_model(self.sess, self.NET.output, self.perturbed_image, self.NET) confidence = np.max(predicted_scores) counterfactuals = self.create_counterfactuals(self.perturbed_image) self.saliency2, self.top2, self.mass_center2= self.run_model\ (self.sess, [self.NET.saliency, self.NET.top_idx, self.NET.mass_center], counterfactuals, self.NET) correlation = scipy.stats.spearmanr( self.saliency1_flatten, np.reshape(self.saliency2, [w * h]))[0] intersection = float(len(np.intersect1d(self.topK, self.top2))) / self.k_top center_dislocation = np.linalg.norm(self.mass_center1 - self.mass_center2.astype(int)) cos_distance = scipy.spatial.distance.cosine( self.saliency1_flatten, np.reshape(self.saliency2, [w * h])) return intersection, correlation, center_dislocation, confidence, perturb_size, cos_distance class SmoothGradientsAttack(object): def __init__(self, sess, mean_image, test_image, original_label, NET, NET2=None, k_top=1000, num_steps=100, reference_image=None, target_map=None, pixel_max=255.): """ Args: mean_image: The mean image of the data set(The assumption is that the images are mean subtracted) sess: Session containing model(and surrogate model's) graphs test_image: Mean subtracted test image original_label: True label of the image NET: Original neural network. It's assumed that NET.saliency is the saliency map tensor and NET.saliency_flatten is its flatten version. NET2: Surrogate neural network with the same structure and weights of the orignal network but with activations replaced by softplus function (necessary only when the activation function of the original function does not have second order gradients, ex: ReLU). It's assumed that NET.saliency is the saliency map tensor and NET2.saliency_flatten is its flatten version. k_top: the topK parameter of the attack (refer to the original paper) num_steps: Number of steps in Integrated Gradients Algorithm reference_image: not used pixel_max: maximum pixel value in the input image """ self.pixel_max = pixel_max if len(test_image.shape) != 3: raise ValueError("Invalid Test Image Dimensions") if sum([ NET.input.get_shape()[-i] != test_image.shape[-i] for i in [1, 2, 3] ]): raise ValueError( "Model's input dimensions is not Compatible with the provided test image!" ) if self.check_prediction(sess, original_label, test_image, NET): return self.sess = sess self.target_map = target_map self.create_extra_ops(NET, test_image.shape[-3], test_image.shape[-2], k_top) if NET2 is None: NET2 = NET else: self.create_extra_ops(NET2, test_image.shape[-3], test_image.shape[-2], k_top) if sum([ NET2.input.get_shape()[-i] != test_image.shape[-i] for i in [1, 2, 3] ]): raise ValueError( "Surrogate model's input dimensions is not Compatible with the provided test image!" ) self.NET = NET self.NET2 = NET2 self.test_image = test_image self.original_label = original_label self.mean_image = mean_image self.k_top = k_top self.num_steps = num_steps self.reference_image = np.zeros_like( test_image) if reference_image is None else reference_image w, h, c = self.mean_image.shape self.topk_ph = tf.placeholder(tf.float32, shape=[w * h], name='topk_ph') self.mass_center_ph = tf.placeholder(tf.float32, shape=[2], name='mass_center_ph') self.target_map_ph = tf.placeholder(tf.float32, shape=[w, h], name='target_map_ph') self.beta_0_ph = tf.placeholder(tf.float32, name='beta_0') self.beta_1_ph = tf.placeholder(tf.float32, name='beta_1') self.original_output = self.NET.predict(test_image[None, :]) _, num_class = self.original_output.shape self.original_output_ph = tf.placeholder( tf.float32, shape=[None, num_class], name='original_output_ph') # only for the manipulation attack self.create_attack_ops(self.NET2, test_image.shape[-3], test_image.shape[-2]) self.update_new_image(test_image, original_label) def update_new_image(self, test_image, original_label, target_map=None): w, h, c = test_image.shape self.test_image = test_image self.original_label = original_label assert self.check_prediction(self.sess, original_label, test_image, self.NET) == False if target_map is not None: self.target_map = target_map self.original_output = self.NET2.predict(test_image[None, :]) counterfactuals = self.create_counterfactuals(test_image) self.saliency1, self.topK = self.run_model( self.sess, [self.NET.saliency, self.NET.top_idx], counterfactuals, self.NET) self.saliency1_flatten = np.reshape( self.saliency1, [test_image.shape[-3] * test_image.shape[-2]]) elem1 = np.argsort(np.reshape(self.saliency1, [w * h]))[-self.k_top:] self.elements1 = np.zeros(w * h) self.elements1[elem1] = 1 self.original_topk = self.elements1 self.mass_center1 = self.run_model(self.sess, self.NET.mass_center, counterfactuals, self.NET).astype(int) self.original_mass_center = self.mass_center1 def check_prediction(self, sess, original_label, image, NET): """ If the network's prediction is incorrect in the first place, attacking has no meaning.""" predicted_scores = sess.run( NET.output, feed_dict={NET.input: image if len(image.shape) == 4 else [image]}) if np.argmax(predicted_scores, 1) != original_label: print("Network's Prediction is Already Incorrect!") print("Pred: ", np.argmax(predicted_scores, 1)) print("Label: ", original_label) return True else: self.original_confidence = np.max(predicted_scores) return False def create_extra_ops(self, NET, w, h, k_top): top_val, NET.top_idx = tf.nn.top_k(NET.saliency_flatten, k_top) y_mesh, x_mesh = np.meshgrid(np.arange(h), np.arange(w)) NET.mass_center = tf.stack([ tf.reduce_sum(NET.saliency * x_mesh) / (w * h), tf.reduce_sum(NET.saliency * y_mesh) / (w * h) ]) def create_attack_ops(self, NET, w, h): topK_loss = tf.reduce_sum((NET.saliency_flatten * self.topk_ph)) self.debug = topK_loss NET.topK_direction = -tf.gradients(topK_loss, NET.input)[0] mass_center_loss = -tf.reduce_sum( (NET.mass_center - self.mass_center_ph)**2) NET.mass_center_direction = -tf.gradients(mass_center_loss, NET.input)[0] if self.target_map is not None: target_dis = tf.keras.losses.MSE(self.target_map_ph, NET.saliency) output_dis = tf.keras.losses.MSE(self.original_output_ph, NET.output) target_loss = tf.reduce_mean( target_dis) * self.beta_0_ph + self.beta_1_ph * tf.reduce_mean( output_dis) self.debug = target_loss self.target_direction = -tf.gradients(target_loss, NET.input)[0] def create_counterfactuals(self, in_image, noise_ratio=0.1): counterfactuals = np.array([ in_image + np.random.normal(scale=0.1 * (in_image.max() - in_image.min()), size=in_image.shape) for _ in range(self.num_steps) ]) return np.array(counterfactuals) def run_model(self, sess, operation, feed, NET): if len(feed.shape) == 3: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: [feed], NET.label_ph: self.original_label, self.target_map_ph: self.target_map }) elif len(feed.shape) == 4: if hasattr(self, "original_topk") and hasattr( self, "original_mass_center"): if hasattr(self, "use_target") and self.use_target: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.beta_0_ph: self.beta_0, self.beta_1_ph: self.beta_1, self.original_output_ph: self.original_output, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, self.topk_ph: self.original_topk, self.mass_center_ph: self.original_mass_center, self.target_map_ph: self.target_map }) else: return sess.run(operation, feed_dict={ NET.input: feed, NET.label_ph: self.original_label, }) else: raise RuntimeError("Input image shape invalid!") def give_simple_perturbation(self, attack_method, in_image): counterfactuals = self.create_counterfactuals(in_image) w, h, c = self.test_image.shape if attack_method == "random": perturbation = np.random.normal(size=(self.num_steps, w, h, c)) elif attack_method == "topK": perturbation = self.run_model(self.sess, self.NET2.topK_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) elif attack_method == "mass_center": perturbation = self.run_model(self.sess, self.NET2.mass_center_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) elif attack_method == "target": if self.target_map is None: raise ValueError("No target region determined!") else: perturbation = self.run_model(self.sess, self.target_direction, counterfactuals, self.NET2) perturbation = np.reshape(perturbation, [self.num_steps, w, h, c]) perturbation_summed = np.mean(perturbation, 0) return np.sign(perturbation_summed) def apply_perturb(self, in_image, pert, alpha, bound=8 / 255, ord=np.inf): if self.mean_image is None: self.mean_image = np.zeros_like(in_image) # out_image = self.test_image + np.clip( # in_image + alpha * np.sign(pert) - self.test_image, -bound, bound) d = in_image + alpha * pert - self.test_image d_norm = np.linalg.norm(d.flatten(), ord=ord) if d_norm > bound: proj_ratio = bound / np.linalg.norm(d.flatten(), ord=ord) else: proj_ratio = 1 out_image = self.test_image + d * proj_ratio out_image = np.clip(out_image, -self.mean_image, self.pixel_max - self.mean_image) return out_image def check_measure(self, test_image_pert, measure): prob = self.run_model(self.sess, self.NET.output, test_image_pert, self.NET) if np.argmax(prob, 1) == self.original_label: counterfactuals = self.create_counterfactuals(test_image_pert) if measure == "intersection": top2 = self.run_model(self.sess, self.NET.top_idx, counterfactuals, self.NET) criterion = float(len(np.intersect1d(self.topK, top2))) / self.k_top elif measure == "correlation": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, counterfactuals, self.NET) criterion = scipy.stats.spearmanr(self.saliency1_flatten, saliency2_flatten)[0] elif measure == "mass_center": center2 = self.run_model(self.sess, self.NET.mass_center, counterfactuals, self.NET).astype(int) criterion = -np.linalg.norm(self.mass_center1 - center2) elif measure == "cosine": saliency2_flatten = self.run_model(self.sess, self.NET.saliency_flatten, test_image_pert, self.NET) criterion = scipy.spatial.distance.cosine( self.saliency1_flatten, saliency2_flatten) else: raise ValueError("Invalid measure!") return criterion else: return 1. def iterative_attack(self, attack_method, epsilon, iters=100, alpha=1, beta_0=1e11, beta_1=1e6, measure="intersection"): """ Args: attack_method: One of "mass_center", "topK" or "random" epsilon: set of allowed maximum $ell_infty$ of perturbations, eg:[2,4] iters: number of maximum allowed attack iterations alpha: perturbation size in each iteration of the attack measure: measure for success of the attack (one of "correlation", "mass_center" or "intersection") Returns: intersection: The portion of the top K salient pixels in the original picture that are in the top K salient pixels of the perturbed image devided correlation: The rank correlation between saliency maps of original and perturbed image center_dislocation: The L2 distance between saliency map mass centers in original and perturbed images confidence: The prediction confidence of the perturbed image """ w, h, c = self.test_image.shape test_image_pert = self.test_image.copy() self.original = self.test_image.copy() if attack_method == 'target': self.use_target = True else: self.use_target = False self.beta_0 = beta_0 self.beta_1 = beta_1 min_criterion = 1. last_image = None for counter in range(iters): pert = self.give_simple_perturbation(attack_method, test_image_pert) test_image_pert = self.apply_perturb(test_image_pert, pert, alpha, epsilon) criterion = self.check_measure(test_image_pert, measure) if criterion < min_criterion: min_criterion = criterion self.perturbed_image = test_image_pert.copy() perturb_size = np.max( np.abs(self.test_image - self.perturbed_image)) else: pass if criterion == 1.: return None predicted_scores = self.run_model(self.sess, self.NET.output, self.perturbed_image, self.NET) confidence = np.max(predicted_scores) counterfactuals = self.create_counterfactuals(self.perturbed_image) self.saliency2, self.top2, self.mass_center2= self.run_model\ (self.sess, [self.NET.saliency, self.NET.top_idx, self.NET.mass_center], counterfactuals, self.NET) correlation = scipy.stats.spearmanr( self.saliency1_flatten, np.reshape(self.saliency2, [w * h]))[0] intersection = float(len(np.intersect1d(self.topK, self.top2))) / self.k_top center_dislocation = np.linalg.norm(self.mass_center1 - self.mass_center2.astype(int)) cos_distance = scipy.spatial.distance.cosine( self.saliency1_flatten, np.reshape(self.saliency2, [w * h])) return intersection, correlation, center_dislocation, confidence, perturb_size, cos_distance class UniGradientsAttack(SmoothGradientsAttack): def __init__(self, sess, mean_image, test_image, original_label, NET, NET2=None, k_top=1000, num_steps=100, radii=4, reference_image=None, target_map=None, pixel_max=255.): self.radii = radii / (255. / pixel_max) super(UniGradientsAttack, self).__init__(sess, mean_image, test_image, original_label, NET, NET2=NET2, k_top=1000, num_steps=num_steps, reference_image=reference_image, target_map=target_map, pixel_max=255.) def create_counterfactuals(self, in_image): counterfactuals = np.array([ in_image + np.random.uniform(-1, 1, size=in_image.shape) * self.radii for _ in range(self.num_steps) ]) return np.array(counterfactuals)
[ "tensorflow.reduce_sum", "numpy.abs", "tensorflow.keras.losses.MSE", "numpy.argmax", "numpy.clip", "tensorflow.ConfigProto", "numpy.mean", "numpy.arange", "numpy.linalg.norm", "numpy.random.normal", "_pickle.load", "numpy.zeros_like", "tensorflow.nn.top_k", "tensorflow.placeholder", "numpy.max", "numpy.reshape", "tensorflow.gradients", "numpy.intersect1d", "numpy.ones_like", "tensorflow.reduce_mean", "numpy.random.uniform", "scipy.spatial.distance.cosine", "scipy.stats.spearmanr", "numpy.zeros", "numpy.array", "numpy.sign" ]
[((237, 253), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (251, 253), True, 'import tensorflow as tf\n'), ((598, 626), 'numpy.zeros', 'np.zeros', (['(100, 227, 227, 3)'], {}), '((100, 227, 227, 3))\n', (606, 626), True, 'import numpy as np\n'), ((635, 648), 'numpy.zeros', 'np.zeros', (['(100)'], {}), '(100)\n', (643, 648), True, 'import numpy as np\n'), ((311, 337), 'numpy.zeros', 'np.zeros', (['(1, 227, 227, 3)'], {}), '((1, 227, 227, 3))\n', (319, 337), True, 'import numpy as np\n'), ((3924, 3981), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[w * h]', 'name': '"""topk_ph"""'}), "(tf.float32, shape=[w * h], name='topk_ph')\n", (3938, 3981), True, 'import tensorflow as tf\n'), ((4088, 4148), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[2]', 'name': '"""mass_center_ph"""'}), "(tf.float32, shape=[2], name='mass_center_ph')\n", (4102, 4148), True, 'import tensorflow as tf\n'), ((4268, 4330), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[w, h]', 'name': '"""target_map_ph"""'}), "(tf.float32, shape=[w, h], name='target_map_ph')\n", (4282, 4330), True, 'import tensorflow as tf\n'), ((4574, 4652), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, num_class]', 'name': '"""original_output_ph"""'}), "(tf.float32, shape=[None, num_class], name='original_output_ph')\n", (4588, 4652), True, 'import tensorflow as tf\n'), ((4740, 4781), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""beta_0"""'}), "(tf.float32, name='beta_0')\n", (4754, 4781), True, 'import tensorflow as tf\n'), ((4807, 4848), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""beta_1"""'}), "(tf.float32, name='beta_1')\n", (4821, 4848), True, 'import tensorflow as tf\n'), ((5682, 5755), 'numpy.reshape', 'np.reshape', (['self.saliency1', '[test_image.shape[-3] * test_image.shape[-2]]'], {}), '(self.saliency1, [test_image.shape[-3] * test_image.shape[-2]])\n', (5692, 5755), True, 'import numpy as np\n'), ((5872, 5887), 'numpy.zeros', 'np.zeros', (['(w * h)'], {}), '(w * h)\n', (5880, 5887), True, 'import numpy as np\n'), ((6866, 6906), 'tensorflow.nn.top_k', 'tf.nn.top_k', (['NET.saliency_flatten', 'k_top'], {}), '(NET.saliency_flatten, k_top)\n', (6877, 6906), True, 'import tensorflow as tf\n'), ((7204, 7254), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency_flatten * self.topk_ph)'], {}), '(NET.saliency_flatten * self.topk_ph)\n', (7217, 7254), True, 'import tensorflow as tf\n'), ((13282, 13303), 'numpy.sign', 'np.sign', (['perturbation'], {}), '(perturbation)\n', (13289, 13303), True, 'import numpy as np\n'), ((13932, 14002), 'numpy.clip', 'np.clip', (['out_image', '(-self.mean_image)', '(self.pixel_max - self.mean_image)'], {}), '(out_image, -self.mean_image, self.pixel_max - self.mean_image)\n', (13939, 14002), True, 'import numpy as np\n'), ((18257, 18281), 'numpy.max', 'np.max', (['predicted_scores'], {}), '(predicted_scores)\n', (18263, 18281), True, 'import numpy as np\n'), ((22283, 22340), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[w * h]', 'name': '"""topk_ph"""'}), "(tf.float32, shape=[w * h], name='topk_ph')\n", (22297, 22340), True, 'import tensorflow as tf\n'), ((22447, 22507), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[2]', 'name': '"""mass_center_ph"""'}), "(tf.float32, shape=[2], name='mass_center_ph')\n", (22461, 22507), True, 'import tensorflow as tf\n'), ((22627, 22689), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[w, h]', 'name': '"""target_map_ph"""'}), "(tf.float32, shape=[w, h], name='target_map_ph')\n", (22641, 22689), True, 'import tensorflow as tf\n'), ((22803, 22844), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""beta_0"""'}), "(tf.float32, name='beta_0')\n", (22817, 22844), True, 'import tensorflow as tf\n'), ((22870, 22911), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""beta_1"""'}), "(tf.float32, name='beta_1')\n", (22884, 22911), True, 'import tensorflow as tf\n'), ((23066, 23144), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, num_class]', 'name': '"""original_output_ph"""'}), "(tf.float32, shape=[None, num_class], name='original_output_ph')\n", (23080, 23144), True, 'import tensorflow as tf\n'), ((24615, 24688), 'numpy.reshape', 'np.reshape', (['self.saliency1', '[test_image.shape[-3] * test_image.shape[-2]]'], {}), '(self.saliency1, [test_image.shape[-3] * test_image.shape[-2]])\n', (24625, 24688), True, 'import numpy as np\n'), ((24805, 24820), 'numpy.zeros', 'np.zeros', (['(w * h)'], {}), '(w * h)\n', (24813, 24820), True, 'import numpy as np\n'), ((25238, 25278), 'tensorflow.nn.top_k', 'tf.nn.top_k', (['NET.saliency_flatten', 'k_top'], {}), '(NET.saliency_flatten, k_top)\n', (25249, 25278), True, 'import tensorflow as tf\n'), ((25576, 25626), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency_flatten * self.topk_ph)'], {}), '(NET.saliency_flatten * self.topk_ph)\n', (25589, 25626), True, 'import tensorflow as tf\n'), ((26771, 26796), 'numpy.array', 'np.array', (['counterfactuals'], {}), '(counterfactuals)\n', (26779, 26796), True, 'import numpy as np\n'), ((32895, 32923), 'numpy.sign', 'np.sign', (['perturbation_summed'], {}), '(perturbation_summed)\n', (32902, 32923), True, 'import numpy as np\n'), ((33552, 33622), 'numpy.clip', 'np.clip', (['out_image', '(-self.mean_image)', '(self.pixel_max - self.mean_image)'], {}), '(out_image, -self.mean_image, self.pixel_max - self.mean_image)\n', (33559, 33622), True, 'import numpy as np\n'), ((38426, 38450), 'numpy.max', 'np.max', (['predicted_scores'], {}), '(predicted_scores)\n', (38432, 38450), True, 'import numpy as np\n'), ((42463, 42520), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[w * h]', 'name': '"""topk_ph"""'}), "(tf.float32, shape=[w * h], name='topk_ph')\n", (42477, 42520), True, 'import tensorflow as tf\n'), ((42627, 42687), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[2]', 'name': '"""mass_center_ph"""'}), "(tf.float32, shape=[2], name='mass_center_ph')\n", (42641, 42687), True, 'import tensorflow as tf\n'), ((42807, 42869), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[w, h]', 'name': '"""target_map_ph"""'}), "(tf.float32, shape=[w, h], name='target_map_ph')\n", (42821, 42869), True, 'import tensorflow as tf\n'), ((42983, 43024), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""beta_0"""'}), "(tf.float32, name='beta_0')\n", (42997, 43024), True, 'import tensorflow as tf\n'), ((43050, 43091), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""beta_1"""'}), "(tf.float32, name='beta_1')\n", (43064, 43091), True, 'import tensorflow as tf\n'), ((43246, 43324), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, num_class]', 'name': '"""original_output_ph"""'}), "(tf.float32, shape=[None, num_class], name='original_output_ph')\n", (43260, 43324), True, 'import tensorflow as tf\n'), ((44291, 44364), 'numpy.reshape', 'np.reshape', (['self.saliency1', '[test_image.shape[-3] * test_image.shape[-2]]'], {}), '(self.saliency1, [test_image.shape[-3] * test_image.shape[-2]])\n', (44301, 44364), True, 'import numpy as np\n'), ((44481, 44496), 'numpy.zeros', 'np.zeros', (['(w * h)'], {}), '(w * h)\n', (44489, 44496), True, 'import numpy as np\n'), ((45581, 45621), 'tensorflow.nn.top_k', 'tf.nn.top_k', (['NET.saliency_flatten', 'k_top'], {}), '(NET.saliency_flatten, k_top)\n', (45592, 45621), True, 'import tensorflow as tf\n'), ((45919, 45969), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency_flatten * self.topk_ph)'], {}), '(NET.saliency_flatten * self.topk_ph)\n', (45932, 45969), True, 'import tensorflow as tf\n'), ((47179, 47204), 'numpy.array', 'np.array', (['counterfactuals'], {}), '(counterfactuals)\n', (47187, 47204), True, 'import numpy as np\n'), ((52460, 52484), 'numpy.mean', 'np.mean', (['perturbation', '(0)'], {}), '(perturbation, 0)\n', (52467, 52484), True, 'import numpy as np\n'), ((52500, 52528), 'numpy.sign', 'np.sign', (['perturbation_summed'], {}), '(perturbation_summed)\n', (52507, 52528), True, 'import numpy as np\n'), ((53148, 53218), 'numpy.clip', 'np.clip', (['out_image', '(-self.mean_image)', '(self.pixel_max - self.mean_image)'], {}), '(out_image, -self.mean_image, self.pixel_max - self.mean_image)\n', (53155, 53218), True, 'import numpy as np\n'), ((57542, 57566), 'numpy.max', 'np.max', (['predicted_scores'], {}), '(predicted_scores)\n', (57548, 57566), True, 'import numpy as np\n'), ((59693, 59718), 'numpy.array', 'np.array', (['counterfactuals'], {}), '(counterfactuals)\n', (59701, 59718), True, 'import numpy as np\n'), ((836, 852), '_pickle.load', 'pkl.load', (['inputs'], {}), '(inputs)\n', (844, 852), True, 'import _pickle as pkl\n'), ((6542, 6572), 'numpy.argmax', 'np.argmax', (['predicted_scores', '(1)'], {}), '(predicted_scores, 1)\n', (6551, 6572), True, 'import numpy as np\n'), ((6733, 6757), 'numpy.max', 'np.max', (['predicted_scores'], {}), '(predicted_scores)\n', (6739, 6757), True, 'import numpy as np\n'), ((6944, 6956), 'numpy.arange', 'np.arange', (['h'], {}), '(h)\n', (6953, 6956), True, 'import numpy as np\n'), ((6958, 6970), 'numpy.arange', 'np.arange', (['w'], {}), '(w)\n', (6967, 6970), True, 'import numpy as np\n'), ((7355, 7414), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['((NET.mass_center - self.mass_center_ph) ** 2)'], {}), '((NET.mass_center - self.mass_center_ph) ** 2)\n', (7368, 7414), True, 'import tensorflow as tf\n'), ((7625, 7678), 'tensorflow.keras.losses.MSE', 'tf.keras.losses.MSE', (['self.target_map_ph', 'NET.saliency'], {}), '(self.target_map_ph, NET.saliency)\n', (7644, 7678), True, 'import tensorflow as tf\n'), ((7704, 7760), 'tensorflow.keras.losses.MSE', 'tf.keras.losses.MSE', (['self.original_output_ph', 'NET.output'], {}), '(self.original_output_ph, NET.output)\n', (7723, 7760), True, 'import tensorflow as tf\n'), ((12130, 12162), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(w, h, c)'}), '(size=(w, h, c))\n', (12146, 12162), True, 'import numpy as np\n'), ((13450, 13473), 'numpy.zeros_like', 'np.zeros_like', (['in_image'], {}), '(in_image)\n', (13463, 13473), True, 'import numpy as np\n'), ((14239, 14257), 'numpy.argmax', 'np.argmax', (['prob', '(1)'], {}), '(prob, 1)\n', (14248, 14257), True, 'import numpy as np\n'), ((18948, 18983), 'numpy.reshape', 'np.reshape', (['self.saliency2', '[w * h]'], {}), '(self.saliency2, [w * h])\n', (18958, 18983), True, 'import numpy as np\n'), ((22132, 22157), 'numpy.zeros_like', 'np.zeros_like', (['test_image'], {}), '(test_image)\n', (22145, 22157), True, 'import numpy as np\n'), ((23645, 23675), 'numpy.argmax', 'np.argmax', (['predicted_scores', '(1)'], {}), '(predicted_scores, 1)\n', (23654, 23675), True, 'import numpy as np\n'), ((23836, 23860), 'numpy.max', 'np.max', (['predicted_scores'], {}), '(predicted_scores)\n', (23842, 23860), True, 'import numpy as np\n'), ((25316, 25328), 'numpy.arange', 'np.arange', (['h'], {}), '(h)\n', (25325, 25328), True, 'import numpy as np\n'), ((25330, 25342), 'numpy.arange', 'np.arange', (['w'], {}), '(w)\n', (25339, 25342), True, 'import numpy as np\n'), ((25757, 25816), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['((NET.mass_center - self.mass_center_ph) ** 2)'], {}), '((NET.mass_center - self.mass_center_ph) ** 2)\n', (25770, 25816), True, 'import tensorflow as tf\n'), ((26025, 26078), 'tensorflow.keras.losses.MSE', 'tf.keras.losses.MSE', (['self.target_map_ph', 'NET.saliency'], {}), '(self.target_map_ph, NET.saliency)\n', (26044, 26078), True, 'import tensorflow as tf\n'), ((26104, 26160), 'tensorflow.keras.losses.MSE', 'tf.keras.losses.MSE', (['self.original_output_ph', 'NET.output'], {}), '(self.original_output_ph, NET.output)\n', (26123, 26160), True, 'import tensorflow as tf\n'), ((31593, 31641), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(self.num_steps, w, h, c)'}), '(size=(self.num_steps, w, h, c))\n', (31609, 31641), True, 'import numpy as np\n'), ((33070, 33093), 'numpy.zeros_like', 'np.zeros_like', (['in_image'], {}), '(in_image)\n', (33083, 33093), True, 'import numpy as np\n'), ((33859, 33877), 'numpy.argmax', 'np.argmax', (['prob', '(1)'], {}), '(prob, 1)\n', (33868, 33877), True, 'import numpy as np\n'), ((39188, 39223), 'numpy.reshape', 'np.reshape', (['self.saliency2', '[w * h]'], {}), '(self.saliency2, [w * h])\n', (39198, 39223), True, 'import numpy as np\n'), ((42312, 42337), 'numpy.zeros_like', 'np.zeros_like', (['test_image'], {}), '(test_image)\n', (42325, 42337), True, 'import numpy as np\n'), ((45152, 45182), 'numpy.argmax', 'np.argmax', (['predicted_scores', '(1)'], {}), '(predicted_scores, 1)\n', (45161, 45182), True, 'import numpy as np\n'), ((45448, 45472), 'numpy.max', 'np.max', (['predicted_scores'], {}), '(predicted_scores)\n', (45454, 45472), True, 'import numpy as np\n'), ((45659, 45671), 'numpy.arange', 'np.arange', (['h'], {}), '(h)\n', (45668, 45671), True, 'import numpy as np\n'), ((45673, 45685), 'numpy.arange', 'np.arange', (['w'], {}), '(w)\n', (45682, 45685), True, 'import numpy as np\n'), ((46100, 46159), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['((NET.mass_center - self.mass_center_ph) ** 2)'], {}), '((NET.mass_center - self.mass_center_ph) ** 2)\n', (46113, 46159), True, 'import tensorflow as tf\n'), ((46368, 46421), 'tensorflow.keras.losses.MSE', 'tf.keras.losses.MSE', (['self.target_map_ph', 'NET.saliency'], {}), '(self.target_map_ph, NET.saliency)\n', (46387, 46421), True, 'import tensorflow as tf\n'), ((46447, 46503), 'tensorflow.keras.losses.MSE', 'tf.keras.losses.MSE', (['self.original_output_ph', 'NET.output'], {}), '(self.original_output_ph, NET.output)\n', (46466, 46503), True, 'import tensorflow as tf\n'), ((51351, 51399), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(self.num_steps, w, h, c)'}), '(size=(self.num_steps, w, h, c))\n', (51367, 51399), True, 'import numpy as np\n'), ((52675, 52698), 'numpy.zeros_like', 'np.zeros_like', (['in_image'], {}), '(in_image)\n', (52688, 52698), True, 'import numpy as np\n'), ((53455, 53473), 'numpy.argmax', 'np.argmax', (['prob', '(1)'], {}), '(prob, 1)\n', (53464, 53473), True, 'import numpy as np\n'), ((58304, 58339), 'numpy.reshape', 'np.reshape', (['self.saliency2', '[w * h]'], {}), '(self.saliency2, [w * h])\n', (58314, 58339), True, 'import numpy as np\n'), ((513, 537), 'numpy.ones_like', 'np.ones_like', (['MEAN_IMAGE'], {}), '(MEAN_IMAGE)\n', (525, 537), True, 'import numpy as np\n'), ((5796, 5831), 'numpy.reshape', 'np.reshape', (['self.saliency1', '[w * h]'], {}), '(self.saliency1, [w * h])\n', (5806, 5831), True, 'import numpy as np\n'), ((7288, 7322), 'tensorflow.gradients', 'tf.gradients', (['topK_loss', 'NET.input'], {}), '(topK_loss, NET.input)\n', (7300, 7322), True, 'import tensorflow as tf\n'), ((7464, 7505), 'tensorflow.gradients', 'tf.gradients', (['mass_center_loss', 'NET.input'], {}), '(mass_center_loss, NET.input)\n', (7476, 7505), True, 'import tensorflow as tf\n'), ((12365, 12400), 'numpy.reshape', 'np.reshape', (['perturbation', '[w, h, c]'], {}), '(perturbation, [w, h, c])\n', (12375, 12400), True, 'import numpy as np\n'), ((18546, 18581), 'numpy.reshape', 'np.reshape', (['self.saliency2', '[w * h]'], {}), '(self.saliency2, [w * h])\n', (18556, 18581), True, 'import numpy as np\n'), ((24729, 24764), 'numpy.reshape', 'np.reshape', (['self.saliency1', '[w * h]'], {}), '(self.saliency1, [w * h])\n', (24739, 24764), True, 'import numpy as np\n'), ((25690, 25724), 'tensorflow.gradients', 'tf.gradients', (['topK_loss', 'NET.input'], {}), '(topK_loss, NET.input)\n', (25702, 25724), True, 'import tensorflow as tf\n'), ((25865, 25906), 'tensorflow.gradients', 'tf.gradients', (['mass_center_loss', 'NET.input'], {}), '(mass_center_loss, NET.input)\n', (25877, 25906), True, 'import tensorflow as tf\n'), ((31856, 31907), 'numpy.reshape', 'np.reshape', (['perturbation', '[self.num_steps, w, h, c]'], {}), '(perturbation, [self.num_steps, w, h, c])\n', (31866, 31907), True, 'import numpy as np\n'), ((38786, 38821), 'numpy.reshape', 'np.reshape', (['self.saliency2', '[w * h]'], {}), '(self.saliency2, [w * h])\n', (38796, 38821), True, 'import numpy as np\n'), ((44405, 44440), 'numpy.reshape', 'np.reshape', (['self.saliency1', '[w * h]'], {}), '(self.saliency1, [w * h])\n', (44415, 44440), True, 'import numpy as np\n'), ((45294, 45324), 'numpy.argmax', 'np.argmax', (['predicted_scores', '(1)'], {}), '(predicted_scores, 1)\n', (45303, 45324), True, 'import numpy as np\n'), ((46033, 46067), 'tensorflow.gradients', 'tf.gradients', (['topK_loss', 'NET.input'], {}), '(topK_loss, NET.input)\n', (46045, 46067), True, 'import tensorflow as tf\n'), ((46208, 46249), 'tensorflow.gradients', 'tf.gradients', (['mass_center_loss', 'NET.input'], {}), '(mass_center_loss, NET.input)\n', (46220, 46249), True, 'import tensorflow as tf\n'), ((51614, 51665), 'numpy.reshape', 'np.reshape', (['perturbation', '[self.num_steps, w, h, c]'], {}), '(perturbation, [self.num_steps, w, h, c])\n', (51624, 51665), True, 'import numpy as np\n'), ((57902, 57937), 'numpy.reshape', 'np.reshape', (['self.saliency2', '[w * h]'], {}), '(self.saliency2, [w * h])\n', (57912, 57937), True, 'import numpy as np\n'), ((7021, 7057), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency * x_mesh)'], {}), '(NET.saliency * x_mesh)\n', (7034, 7057), True, 'import tensorflow as tf\n'), ((7081, 7117), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency * y_mesh)'], {}), '(NET.saliency * y_mesh)\n', (7094, 7117), True, 'import tensorflow as tf\n'), ((7832, 7858), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['target_dis'], {}), '(target_dis)\n', (7846, 7858), True, 'import tensorflow as tf\n'), ((7912, 7938), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['output_dis'], {}), '(output_dis)\n', (7926, 7938), True, 'import tensorflow as tf\n'), ((8035, 8071), 'tensorflow.gradients', 'tf.gradients', (['target_loss', 'NET.input'], {}), '(target_loss, NET.input)\n', (8047, 8071), True, 'import tensorflow as tf\n'), ((12659, 12694), 'numpy.reshape', 'np.reshape', (['perturbation', '[w, h, c]'], {}), '(perturbation, [w, h, c])\n', (12669, 12694), True, 'import numpy as np\n'), ((13635, 13648), 'numpy.sign', 'np.sign', (['pert'], {}), '(pert)\n', (13642, 13648), True, 'import numpy as np\n'), ((17952, 17998), 'numpy.abs', 'np.abs', (['(self.test_image - self.perturbed_image)'], {}), '(self.test_image - self.perturbed_image)\n', (17958, 17998), True, 'import numpy as np\n'), ((18619, 18655), 'numpy.intersect1d', 'np.intersect1d', (['self.topK', 'self.top2'], {}), '(self.topK, self.top2)\n', (18633, 18655), True, 'import numpy as np\n'), ((25393, 25429), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency * x_mesh)'], {}), '(NET.saliency * x_mesh)\n', (25406, 25429), True, 'import tensorflow as tf\n'), ((25453, 25489), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency * y_mesh)'], {}), '(NET.saliency * y_mesh)\n', (25466, 25489), True, 'import tensorflow as tf\n'), ((26232, 26258), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['target_dis'], {}), '(target_dis)\n', (26246, 26258), True, 'import tensorflow as tf\n'), ((26312, 26338), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['output_dis'], {}), '(output_dis)\n', (26326, 26338), True, 'import tensorflow as tf\n'), ((26435, 26471), 'tensorflow.gradients', 'tf.gradients', (['target_loss', 'NET.input'], {}), '(target_loss, NET.input)\n', (26447, 26471), True, 'import tensorflow as tf\n'), ((32178, 32229), 'numpy.reshape', 'np.reshape', (['perturbation', '[self.num_steps, w, h, c]'], {}), '(perturbation, [self.num_steps, w, h, c])\n', (32188, 32229), True, 'import numpy as np\n'), ((33255, 33268), 'numpy.sign', 'np.sign', (['pert'], {}), '(pert)\n', (33262, 33268), True, 'import numpy as np\n'), ((37615, 37661), 'numpy.abs', 'np.abs', (['(self.test_image - self.perturbed_image)'], {}), '(self.test_image - self.perturbed_image)\n', (37621, 37661), True, 'import numpy as np\n'), ((38859, 38895), 'numpy.intersect1d', 'np.intersect1d', (['self.topK', 'self.top2'], {}), '(self.topK, self.top2)\n', (38873, 38895), True, 'import numpy as np\n'), ((45736, 45772), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency * x_mesh)'], {}), '(NET.saliency * x_mesh)\n', (45749, 45772), True, 'import tensorflow as tf\n'), ((45796, 45832), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(NET.saliency * y_mesh)'], {}), '(NET.saliency * y_mesh)\n', (45809, 45832), True, 'import tensorflow as tf\n'), ((46575, 46601), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['target_dis'], {}), '(target_dis)\n', (46589, 46601), True, 'import tensorflow as tf\n'), ((46655, 46681), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['output_dis'], {}), '(output_dis)\n', (46669, 46681), True, 'import tensorflow as tf\n'), ((46778, 46814), 'tensorflow.gradients', 'tf.gradients', (['target_loss', 'NET.input'], {}), '(target_loss, NET.input)\n', (46790, 46814), True, 'import tensorflow as tf\n'), ((51936, 51987), 'numpy.reshape', 'np.reshape', (['perturbation', '[self.num_steps, w, h, c]'], {}), '(perturbation, [self.num_steps, w, h, c])\n', (51946, 51987), True, 'import numpy as np\n'), ((57236, 57282), 'numpy.abs', 'np.abs', (['(self.test_image - self.perturbed_image)'], {}), '(self.test_image - self.perturbed_image)\n', (57242, 57282), True, 'import numpy as np\n'), ((57975, 58011), 'numpy.intersect1d', 'np.intersect1d', (['self.topK', 'self.top2'], {}), '(self.topK, self.top2)\n', (57989, 58011), True, 'import numpy as np\n'), ((14883, 14947), 'scipy.stats.spearmanr', 'scipy.stats.spearmanr', (['self.saliency1_flatten', 'saliency2_flatten'], {}), '(self.saliency1_flatten, saliency2_flatten)\n', (14904, 14947), False, 'import scipy\n'), ((34578, 34642), 'scipy.stats.spearmanr', 'scipy.stats.spearmanr', (['self.saliency1_flatten', 'saliency2_flatten'], {}), '(self.saliency1_flatten, saliency2_flatten)\n', (34599, 34642), False, 'import scipy\n'), ((54174, 54238), 'scipy.stats.spearmanr', 'scipy.stats.spearmanr', (['self.saliency1_flatten', 'saliency2_flatten'], {}), '(self.saliency1_flatten, saliency2_flatten)\n', (54195, 54238), False, 'import scipy\n'), ((59564, 59609), 'numpy.random.uniform', 'np.random.uniform', (['(-1)', '(1)'], {'size': 'in_image.shape'}), '(-1, 1, size=in_image.shape)\n', (59581, 59609), True, 'import numpy as np\n'), ((13231, 13266), 'numpy.reshape', 'np.reshape', (['perturbation', '[w, h, c]'], {}), '(perturbation, [w, h, c])\n', (13241, 13266), True, 'import numpy as np\n'), ((14494, 14525), 'numpy.intersect1d', 'np.intersect1d', (['self.topK', 'top2'], {}), '(self.topK, top2)\n', (14508, 14525), True, 'import numpy as np\n'), ((15227, 15270), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.mass_center1 - center2)'], {}), '(self.mass_center1 - center2)\n', (15241, 15270), True, 'import numpy as np\n'), ((15556, 15628), 'scipy.spatial.distance.cosine', 'scipy.spatial.distance.cosine', (['self.saliency1_flatten', 'saliency2_flatten'], {}), '(self.saliency1_flatten, saliency2_flatten)\n', (15585, 15628), False, 'import scipy\n'), ((32613, 32664), 'numpy.reshape', 'np.reshape', (['perturbation', '[self.num_steps, w, h, c]'], {}), '(perturbation, [self.num_steps, w, h, c])\n', (32623, 32664), True, 'import numpy as np\n'), ((34189, 34220), 'numpy.intersect1d', 'np.intersect1d', (['self.topK', 'top2'], {}), '(self.topK, top2)\n', (34203, 34220), True, 'import numpy as np\n'), ((34922, 34965), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.mass_center1 - center2)'], {}), '(self.mass_center1 - center2)\n', (34936, 34965), True, 'import numpy as np\n'), ((35251, 35323), 'scipy.spatial.distance.cosine', 'scipy.spatial.distance.cosine', (['self.saliency1_flatten', 'saliency2_flatten'], {}), '(self.saliency1_flatten, saliency2_flatten)\n', (35280, 35323), False, 'import scipy\n'), ((52336, 52387), 'numpy.reshape', 'np.reshape', (['perturbation', '[self.num_steps, w, h, c]'], {}), '(perturbation, [self.num_steps, w, h, c])\n', (52346, 52387), True, 'import numpy as np\n'), ((53785, 53816), 'numpy.intersect1d', 'np.intersect1d', (['self.topK', 'top2'], {}), '(self.topK, top2)\n', (53799, 53816), True, 'import numpy as np\n'), ((54518, 54561), 'numpy.linalg.norm', 'np.linalg.norm', (['(self.mass_center1 - center2)'], {}), '(self.mass_center1 - center2)\n', (54532, 54561), True, 'import numpy as np\n'), ((54847, 54919), 'scipy.spatial.distance.cosine', 'scipy.spatial.distance.cosine', (['self.saliency1_flatten', 'saliency2_flatten'], {}), '(self.saliency1_flatten, saliency2_flatten)\n', (54876, 54919), False, 'import scipy\n')]
"""Implementation of the setuptools command 'pyecore'.""" import collections import contextlib import distutils.log as logger import logging import pathlib import shlex import pyecore.resources import pyecoregen.ecore import setuptools class PyEcoreCommand(setuptools.Command): """A setuptools command for generating Python code from Ecore models. An extra command for setuptools to generate static Python classes from Ecore models. The pyecore command wraps pyecoregen - the real Python code generator for Ecore models. It searches for Ecore models starting from the base directory and generates a Python package for each found Ecore model. :cvar _ECORE_FILE_EXT: File extension of Ecore XMI file :cvar description: Description of ecore command :cvar user_options: Options which can be passed by the user :cvar boolean_options: Subset of user options which are binary """ _ECORE_FILE_EXT = 'ecore' description = 'generate Python code from Ecore models' user_options = [ ('ecore-models=', 'e', 'specify Ecore models to generate code for'), ('output=', 'o', 'specify directories where output is generated'), ('user-modules=', None, 'dotted names of modules with user-provided mixins to import from ' 'generated classes'), ('auto-register-package', None, 'Generate package auto-registration for the PyEcore ' '\'global_registry\''), ] boolean_options = ['auto-register-package'] def initialize_options(self): """Set default values for all the options that this command supports. Note that these defaults may be overridden by other commands, by the setup script, by config files, or by the command-line. """ self.ecore_models = None self.output = '' self.user_modules = '' self.auto_register_package = 0 def finalize_options(self): """Set final values for all the options that this command supports. This is always called as late as possible, ie. after any option assignments from the command-line or from other commands have been done. """ # parse ecore-models option if self.ecore_models: self.ecore_models = shlex.split(self.ecore_models, comments=True) # parse output option tokens = shlex.split(self.output, comments=True) self.output = collections.defaultdict(lambda: None) for token in tokens: model, output = token.split('=', 1) # check if model and output are specified if model and output: # add relative output path to dictionary output_path = pathlib.Path(output).relative_to('.') if model == 'default': self.output.default_factory = lambda: output_path else: self.output[model] = output_path else: logger.warn('Ignoring invalid output specifier {!r}.', token) # parse user-modules option tokens = shlex.split(self.user_modules, comments=True) self.user_modules = {} for token in tokens: model, user_module = token.split('=', 1) # check if model and user module are specified if model and user_module: self.user_modules[model] = user_module else: logger.warn('Ignoring invalid user module specifier {!r}.', token) def _configure_logging(self): """Configure logging using global verbosity level of distutils.""" loglevel_map = collections.defaultdict(lambda: logging.WARNING) loglevel_map.update({ 0: logging.WARNING, 1: logging.INFO, 2: logging.DEBUG }) logging.basicConfig( format='%(asctime)s %(levelname)s [%(name)s] %(message)s', level=loglevel_map[self.distribution.verbose] ) def _find_ecore_xmi_files(self, base_path=pathlib.Path('.')): """Search for all Ecore XMI files starting from base directory and returns a list of them. :param base_path: base path to search for Ecore XMI files :return: a list of all found Ecore XMI files """ pattern = '*.{}'.format(self._ECORE_FILE_EXT) logger.debug('searching for Ecore XMI files in \'{!s}\''.format(str(base_path))) return sorted(base_path.rglob(pattern)) @staticmethod @contextlib.contextmanager def _load_ecore_model(ecore_model_path): """Load a single Ecore model from a Ecore XMI file and return the root package. :param ecore_model_path: path to Ecore XMI file :return: root package of the Ecore model """ rset = pyecore.resources.ResourceSet() try: logger.debug('loading \'{!s}\''.format(str(ecore_model_path))) resource = rset.get_resource(ecore_model_path.as_posix()) yield resource.contents[0] except Exception: raise else: rset.remove_resource(resource) def run(self): """Perform all tasks necessary to generate Python packages representing the classes from Ecore models. This process is controlled by the user options passed on the command line or set internally to default values. """ self._configure_logging() # find Ecore XMI files ecore_xmi_files = self._find_ecore_xmi_files() # load each Ecore model for ecore_xmi_file in ecore_xmi_files: with self._load_ecore_model(ecore_xmi_file) as resource: if self.ecore_models is None or resource.name in self.ecore_models: # configure EcoreGenerator kwargs = {} if self.auto_register_package: kwargs['auto_register_package'] = True if resource.name in self.user_modules: kwargs['user_module'] = self.user_modules[resource.name] if self.output[resource.name]: output_dir = self.output[resource.name] else: output_dir = ecore_xmi_file.parent # generate Python classes logger.info( 'running pyecoregen to generate code for {!r} metamodel'.format(resource.name) ) pyecoregen.ecore.EcoreGenerator(**kwargs).generate( resource, output_dir.as_posix() ) else: logger.debug('skipping {!r} metamodel'.format(resource.name))
[ "distutils.log.warn", "logging.basicConfig", "shlex.split", "collections.defaultdict", "pathlib.Path" ]
[((2409, 2448), 'shlex.split', 'shlex.split', (['self.output'], {'comments': '(True)'}), '(self.output, comments=True)\n', (2420, 2448), False, 'import shlex\n'), ((2471, 2509), 'collections.defaultdict', 'collections.defaultdict', (['(lambda : None)'], {}), '(lambda : None)\n', (2494, 2509), False, 'import collections\n'), ((3133, 3178), 'shlex.split', 'shlex.split', (['self.user_modules'], {'comments': '(True)'}), '(self.user_modules, comments=True)\n', (3144, 3178), False, 'import shlex\n'), ((3679, 3728), 'collections.defaultdict', 'collections.defaultdict', (['(lambda : logging.WARNING)'], {}), '(lambda : logging.WARNING)\n', (3702, 3728), False, 'import collections\n'), ((3867, 4002), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s %(levelname)s [%(name)s] %(message)s"""', 'level': 'loglevel_map[self.distribution.verbose]'}), "(format=\n '%(asctime)s %(levelname)s [%(name)s] %(message)s', level=loglevel_map[\n self.distribution.verbose])\n", (3886, 4002), False, 'import logging\n'), ((4074, 4091), 'pathlib.Path', 'pathlib.Path', (['"""."""'], {}), "('.')\n", (4086, 4091), False, 'import pathlib\n'), ((2315, 2360), 'shlex.split', 'shlex.split', (['self.ecore_models'], {'comments': '(True)'}), '(self.ecore_models, comments=True)\n', (2326, 2360), False, 'import shlex\n'), ((3017, 3078), 'distutils.log.warn', 'logger.warn', (['"""Ignoring invalid output specifier {!r}."""', 'token'], {}), "('Ignoring invalid output specifier {!r}.', token)\n", (3028, 3078), True, 'import distutils.log as logger\n'), ((3479, 3545), 'distutils.log.warn', 'logger.warn', (['"""Ignoring invalid user module specifier {!r}."""', 'token'], {}), "('Ignoring invalid user module specifier {!r}.', token)\n", (3490, 3545), True, 'import distutils.log as logger\n'), ((2761, 2781), 'pathlib.Path', 'pathlib.Path', (['output'], {}), '(output)\n', (2773, 2781), False, 'import pathlib\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jan 21 15:05:24 2018 @author: Hendry """ from read_data import * from TokenizeSentences import * import numpy as np def onehot(data,nClass): data2 = np.zeros([len(data),nClass]) for i in range(nClass): data2[np.where(data==i),i]= 1 return data2 def get_text_idx(text,vocab,max_document_length): text_array = np.zeros([len(text), max_document_length],dtype=np.int32) for i,x in enumerate(text): words = x for j, w in enumerate(words): if w in vocab: text_array[i, j] = vocab[w] else : text_array[i, j] = vocab['the'] return text_array def loaddata(w2v_model,typeOfClassify = 0,useTextsum= 1): train_bodies = readRawData('train_bodies.csv') if useTextsum == 0: trainDocs = TokenizeSentences(splitData(train_bodies,1)) else: f = open('./fnc_data/train_1.txt','r') data = f.readlines() f.close() trainDocs = TokenizeSentences(data) trainDocsIdx = np.array(splitData(train_bodies,0)).astype('int') train_stances = readRawData('train_stances.csv') trainTitle = TokenizeSentences(splitData(train_stances,0)) trainTitleIdx = np.array(splitData(train_stances,1)).astype('int') trainRes = np.array(splitData(train_stances,2)) trainRes[np.where(trainRes=='unrelated')]='0' trainRes[np.where(trainRes=='agree')]='1' trainRes[np.where(trainRes=='disagree')]='2' trainRes[np.where(trainRes=='discuss')]='3' trainRes =trainRes.astype('int') maxDocLength = 0 for i in range(len(trainDocs)): maxDocLength = max(maxDocLength,len(trainDocs[i])) maxTitleLength = 0 for i in range(len(trainTitle)): maxTitleLength = max(maxTitleLength,len(trainTitle[i])) trainDocs = get_text_idx(trainDocs,w2v_model.vocab_hash,maxDocLength) trainTitle = get_text_idx(trainTitle,w2v_model.vocab_hash,maxTitleLength) trainTitleDocs = [[] for i in range(len(trainTitle))] for i in range(len(trainTitle)): idx = np.where(trainDocsIdx==trainTitleIdx[i]) trainTitleDocs[i]=trainDocs[int(idx[0])] trainTitleDocs = np.array(trainTitleDocs) trainDocs = np.array(trainDocs) trainTitle = np.array(trainTitle) uniIdx = np.unique(trainTitleIdx) uniIdxTest = uniIdx[round(0.95*len(uniIdx)):] validIdx = np.argwhere(trainTitleIdx == uniIdxTest[0]) for i in range(len(uniIdxTest)-1): validIdx = np.append(validIdx,np.argwhere(trainTitleIdx == uniIdxTest[i+1])) validIdx = sorted(validIdx) fullIdx = list(range(len(trainTitleIdx))) trainIdx = list(set(fullIdx).difference(set(validIdx))) x1Train = trainTitleDocs[trainIdx] x2Train = trainTitle[trainIdx] trainRes = np.array(trainRes) y0Train = trainRes[trainIdx] x1Valid = trainTitleDocs[validIdx] x2Valid = trainTitle[validIdx] y0Valid = trainRes[validIdx] if typeOfClassify==0: yValid = onehot(y0Valid,4) yTrain = onehot(y0Train,4) elif typeOfClassify==1: y0Train[y0Train>0]=1 y0Valid[y0Valid>0]=1 yValid = onehot(y0Valid,2) yTrain = onehot(y0Train,2) elif typeOfClassify==2: x1Train = x1Train[y0Train>0] x2Train = x2Train[y0Train>0] y0Train = y0Train[y0Train>0]-1 x1Valid = x1Valid[y0Valid>0] x2Valid = x2Valid[y0Valid>0] y0Valid = y0Valid[y0Valid>0]-1 yValid = onehot(y0Valid,3) yTrain = onehot(y0Train,3) vocab_size = len(w2v_model.vocab_hash) return x1Train, x1Valid, x2Train, x2Valid, yTrain, yValid, vocab_size
[ "numpy.argwhere", "numpy.where", "numpy.array", "numpy.unique" ]
[((2079, 2103), 'numpy.array', 'np.array', (['trainTitleDocs'], {}), '(trainTitleDocs)\n', (2087, 2103), True, 'import numpy as np\n'), ((2117, 2136), 'numpy.array', 'np.array', (['trainDocs'], {}), '(trainDocs)\n', (2125, 2136), True, 'import numpy as np\n'), ((2151, 2171), 'numpy.array', 'np.array', (['trainTitle'], {}), '(trainTitle)\n', (2159, 2171), True, 'import numpy as np\n'), ((2182, 2206), 'numpy.unique', 'np.unique', (['trainTitleIdx'], {}), '(trainTitleIdx)\n', (2191, 2206), True, 'import numpy as np\n'), ((2267, 2310), 'numpy.argwhere', 'np.argwhere', (['(trainTitleIdx == uniIdxTest[0])'], {}), '(trainTitleIdx == uniIdxTest[0])\n', (2278, 2310), True, 'import numpy as np\n'), ((2639, 2657), 'numpy.array', 'np.array', (['trainRes'], {}), '(trainRes)\n', (2647, 2657), True, 'import numpy as np\n'), ((1307, 1340), 'numpy.where', 'np.where', (["(trainRes == 'unrelated')"], {}), "(trainRes == 'unrelated')\n", (1315, 1340), True, 'import numpy as np\n'), ((1354, 1383), 'numpy.where', 'np.where', (["(trainRes == 'agree')"], {}), "(trainRes == 'agree')\n", (1362, 1383), True, 'import numpy as np\n'), ((1397, 1429), 'numpy.where', 'np.where', (["(trainRes == 'disagree')"], {}), "(trainRes == 'disagree')\n", (1405, 1429), True, 'import numpy as np\n'), ((1443, 1474), 'numpy.where', 'np.where', (["(trainRes == 'discuss')"], {}), "(trainRes == 'discuss')\n", (1451, 1474), True, 'import numpy as np\n'), ((1974, 2016), 'numpy.where', 'np.where', (['(trainDocsIdx == trainTitleIdx[i])'], {}), '(trainDocsIdx == trainTitleIdx[i])\n', (1982, 2016), True, 'import numpy as np\n'), ((2382, 2429), 'numpy.argwhere', 'np.argwhere', (['(trainTitleIdx == uniIdxTest[i + 1])'], {}), '(trainTitleIdx == uniIdxTest[i + 1])\n', (2393, 2429), True, 'import numpy as np\n'), ((280, 299), 'numpy.where', 'np.where', (['(data == i)'], {}), '(data == i)\n', (288, 299), True, 'import numpy as np\n')]
import os import sys from pathlib import Path sys.path.insert(0, os.path.abspath('..')) import googlemaps_helpers ROOT = Path('.') DATA_DIR = Path('tests/data')
[ "pathlib.Path", "os.path.abspath" ]
[((123, 132), 'pathlib.Path', 'Path', (['"""."""'], {}), "('.')\n", (127, 132), False, 'from pathlib import Path\n'), ((144, 162), 'pathlib.Path', 'Path', (['"""tests/data"""'], {}), "('tests/data')\n", (148, 162), False, 'from pathlib import Path\n'), ((66, 87), 'os.path.abspath', 'os.path.abspath', (['""".."""'], {}), "('..')\n", (81, 87), False, 'import os\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ This module contains the base classes used when defining mutation strategies for pfp """ import glob import os import six get_strategy = None StratGroup = None FieldStrat = None def init(): global get_strategy global StratGroup global FieldStrat import pfp.fuzz.strats get_strategy = pfp.fuzz.strats.get_strategy StratGroup = pfp.fuzz.strats.StratGroup FieldStrat = pfp.fuzz.strats.FieldStrat # load all of the built-in strategies for strat_file in glob.glob(os.path.join(os.path.dirname(__file__), "*.py")): filename = os.path.basename(strat_file) if filename in ["__init__.py", "base.py"]: continue mod_name = filename.replace(".py", "").replace(".pyc", "") __import__("pfp.fuzz." + mod_name) def mutate(field, strat_name_or_cls, num=100, at_once=1, yield_changed=False): """Mutate the provided field (probably a Dom or struct instance) using the strategy specified with ``strat_name_or_class``, yielding ``num`` mutations that affect up to ``at_once`` fields at once. This function will yield back the field after each mutation, optionally also yielding a ``set`` of fields that were mutated in that iteration (if ``yield_changed`` is ``True``). It should also be noted that the yielded set of changed fields *can* be modified and is no longer needed by the mutate() function. :param pfp.fields.Field field: The field to mutate (can be anything, not just Dom/Structs) :param strat_name_or_class: Can be the name of a strategy, or the actual strategy class (not an instance) :param int num: The number of mutations to yield :param int at_once: The number of fields to mutate at once :param bool yield_changed: Yield a list of fields changed along with the mutated dom :returns: generator """ import pfp.fuzz.rand as rand init() strat = get_strategy(strat_name_or_cls) to_mutate = strat.which(field) with_strats = [] for to_mutate_field in to_mutate: field_strat = strat.get_field_strat(to_mutate_field) if field_strat is not None: with_strats.append((to_mutate_field, field_strat)) # we don't need these ones anymore del to_mutate # save the current value of all subfields without # triggering events field._pfp__snapshot(recurse=True) count = 0 for x in six.moves.range(num): chosen_fields = set() idx_pool = set([x for x in six.moves.xrange(len(with_strats))]) # modify `at_once` number of fields OR len(with_strats) number of fields, # whichever is lower for at_onces in six.moves.xrange(min(len(with_strats), at_once)): # we'll never pull the same idx from idx_pool more than once # since we're removing the idx after choosing it rand_idx = rand.sample(idx_pool, 1)[0] idx_pool.remove(rand_idx) rand_field,field_strat = with_strats[rand_idx] chosen_fields.add(rand_field) field_strat.mutate(rand_field) if yield_changed: yield field, chosen_fields else: # yield back the original field yield field # restore the saved value of all subfields without # triggering events field._pfp__restore_snapshot(recurse=True)
[ "os.path.dirname", "pfp.fuzz.rand.sample", "six.moves.range", "os.path.basename" ]
[((2442, 2462), 'six.moves.range', 'six.moves.range', (['num'], {}), '(num)\n', (2457, 2462), False, 'import six\n'), ((623, 651), 'os.path.basename', 'os.path.basename', (['strat_file'], {}), '(strat_file)\n', (639, 651), False, 'import os\n'), ((567, 592), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (582, 592), False, 'import os\n'), ((2910, 2934), 'pfp.fuzz.rand.sample', 'rand.sample', (['idx_pool', '(1)'], {}), '(idx_pool, 1)\n', (2921, 2934), True, 'import pfp.fuzz.rand as rand\n')]
import torch def is_pos_def(x): if torch.equal(x, x.t()): try: torch.linalg.cholesky(x) return True except RuntimeError: return False else: return False
[ "torch.linalg.cholesky" ]
[((88, 112), 'torch.linalg.cholesky', 'torch.linalg.cholesky', (['x'], {}), '(x)\n', (109, 112), False, 'import torch\n')]
from rest_framework import serializers from accounts.serializers import UserSerializer from .models import Story class StorySerializer(serializers.ModelSerializer): user = UserSerializer(read_only=True) class Meta: model = Story fields = [ "id", "title", "slug", "story_url", "story_body_text", "number_of_comments", "number_of_votes", "url_domain_name", "rank", "user", ] read_only_fields = [ "number_of_comments", "number_of_votes", "url_domain_name", "rank", "slug", ] def validate(self, data): story_url = data.get("story_url", None) story_body_text = data.get("story_body_text", None) if story_url is None and story_body_text is None: raise serializers.ValidationError( "One of story_url or story_body_text is required." ) return data def create(self, validated_data): user = self.context.get("user") story = Story.objects.create(user=user, **validated_data) return story
[ "rest_framework.serializers.ValidationError", "accounts.serializers.UserSerializer" ]
[((178, 208), 'accounts.serializers.UserSerializer', 'UserSerializer', ([], {'read_only': '(True)'}), '(read_only=True)\n', (192, 208), False, 'from accounts.serializers import UserSerializer\n'), ((918, 997), 'rest_framework.serializers.ValidationError', 'serializers.ValidationError', (['"""One of story_url or story_body_text is required."""'], {}), "('One of story_url or story_body_text is required.')\n", (945, 997), False, 'from rest_framework import serializers\n')]
#!/usr/bin/env python # # Author: <NAME>. # Created: Dec 11, 2014. """Some utility functions to handle images.""" import math import numpy as np import PIL.Image from PIL.Image import ROTATE_180, ROTATE_90, ROTATE_270, FLIP_TOP_BOTTOM, FLIP_LEFT_RIGHT import skimage.transform def imcast(img, dtype, color_space="default"): """Cast the input image to a given data type. Parameters ---------- img: ndarray The input image. dtype: np.dtype The type that output image to be cast into. color_space: string, optional The color space of the input image, which affects the casting operation. Returns ------- The output image that is cast into `dtype`. Notes ----- * For `color_space=="default"`, we perform a linear scaling with following range conventions: * `np.uint8`: `[0, 255]`; * `np.uint16`: `[0, 65535]`; * `np.float32` and `np.float64`: `[0.0, 1.0]`. For example, if the input `img` is of `np.uint8` type and the expected `dtype` is `np.float32`, then the output will be `np.asarray(img / 255., np.float32)`. * For `color_space=="CIE-L*a*b*"`, the "normal" value ranges are `0 <= L <= 100, -127 <= a, b <= 127`, and we perform the following cast: * `np.uint8`: `L <- L * 255 / 100, a <- a + 128, b <- b + 128`; * `np.uint16`: currently not supported; * `np.float32` and `np.float64`: left as is. """ if img.dtype == dtype: return img if color_space == "default": if dtype == np.uint8: if img.dtype == np.uint16: return np.asarray(img / 257, np.uint8) elif img.dtype == np.float32 or img.dtype == np.float64: return np.asarray(img * 255., np.uint8) elif dtype == np.uint16: if img.dtype == np.uint8: return np.asarray(img, np.uint16) * 257 elif img.dtype == np.float32 or img.dtype == np.float64: return np.asarray(img * 65535., np.uint16) elif dtype == np.float32 or dtype == np.float64: if img.dtype == np.uint8: return np.asarray(img, dtype) / 255. elif img.dtype == np.uint16: return np.asarray(img, dtype) / 65535. elif img.dtype == np.float32 or img.dtype == np.float64: return np.asarray(img, dtype) elif color_space == "CIE-L*a*b*": if dtype == np.uint8: if img.dtype == np.float32 or img.dtype == np.float64: dst = np.empty(img.shape, np.uint8) dst[:,:,0] = img[:,:,0] * 255. / 100. dst[:,:,1] = img[:,:,1] + 128. dst[:,:,2] = img[:,:,2] + 128. return dst elif dtype == np.float32 or dtype == np.float64: if img.dtype == np.uint8: dst = np.empty(img.shape, dtype) dst[:,:,0] = np.asarray(img[:,:,0], dtype) / 255. * 100. dst[:,:,1] = np.asarray(img[:,:,1], dtype) - 128. dst[:,:,2] = np.asarray(img[:,:,2], dtype) - 128. return dst raise Exception( "Unexpected conversion from '%s' to '%s' with '%s' color space" % \ (img.dtype, dtype, color_space)) def imread(filename, dtype=np.uint8, color_space="default"): """Read the image followed by an :py:func:`imcast`.""" img = PIL.Image.open(filename) if img.mode != "RGB": img = img.convert("RGB") if hasattr(img, "_getexif"): try: exif = img._getexif() or {} except IOError: exif = {} orientation = exif.get(0x0112) if orientation: # see http://park2.wakwak.com/~tsuruzoh/Computer/Digicams/exif-e.html # for explanation of the magical constants # or see http://jpegclub.org/exif_orientation.html for a nice visual explanation # also, rotations are counter-clockwise in PIL orientation = int(orientation) rotation = [None, None, ROTATE_180, None, ROTATE_270, ROTATE_270, ROTATE_90, ROTATE_90] flip = [None, FLIP_LEFT_RIGHT, None, FLIP_TOP_BOTTOM, FLIP_LEFT_RIGHT, None, FLIP_LEFT_RIGHT, None] orientation0 = orientation - 1 # it's 1-indexed per the EXIF spec if 0 <= orientation0 < len(rotation): if rotation[orientation0] is not None: img = img.transpose(rotation[orientation0]) if flip[orientation0] is not None: img = img.transpose(flip[orientation0]) return imcast(np.array(img), dtype, color_space) def imwrite(filename, img, dtype=np.uint8, color_space="default"): """Perform an :py:func:`imcast` before writing to the output file.""" import scipy.misc return scipy.misc.imsave(filename, imcast(img, dtype, color_space)) def imresize(img, size): """Resize the input image. Parameters ---------- img: ndarray The input image to be resized. size: a scalar for `scale` or a 2-tuple for `(num_rows, num_cols)` One of the `num_rows` or `num_cols` can be -1, which will be inferred such that the output image has the same aspect ratio as the input. Returns ------- The resized image. """ if hasattr(size, "__len__"): num_rows, num_cols = size assert (num_rows > 0) or (num_cols > 0) if num_rows < 0: num_rows = num_cols * img.shape[0] / img.shape[1] if num_cols < 0: num_cols = num_rows * img.shape[1] / img.shape[0] else: num_rows = int(round(img.shape[0] * size)) num_cols = int(round(img.shape[1] * size)) return skimage.transform.resize(img, (num_rows, num_cols)) def create_icon_mosaic(icons, icon_shape=None, border_size=1, border_color=None, empty_color=None, mosaic_shape=None, mosaic_dtype=np.float): """Create a mosaic of image icons. Parameters ---------- icons: a list of `ndarray`s A list of icons to be put together for mosaic. Currently we require all icons to be multi-channel images of the same size. icon_shape: 3-tuple, optional The shape of icons in the output mosaic as `(num_rows, num_cols, num_channels)`. If not specified, use the shape of first image in `icons`. border_size: int, optional The size of border. border_color: 3-tuple, optional The color of border, black if not specified. empty_color: 3-tuple, optional The color for empty cells, black if not specified. mosaic_shape: 2-tuple, optional The shape of output mosaic as `(num_icons_per_row, num_icons_per_col)`. If not specified, try to make a square mosaic according to number of icons. mosaic_dtype: dtype The data type of output mosaic. Returns ------- The created mosaic image. """ # Set default parameters. num_icons = len(icons) assert num_icons > 0 if icon_shape is None: icon_shape = icons[0].shape assert len(icon_shape) == 3 num_channels = icon_shape[2] if border_color is None: border_color = np.zeros(num_channels) if empty_color is None: empty_color = np.zeros(num_channels) if mosaic_shape is None: num_cols = int(math.ceil(math.sqrt(num_icons))) num_rows = int(math.ceil(float(num_icons) / num_cols)) mosaic_shape = (num_rows, num_cols) mosaic_image_shape = ( mosaic_shape[0] * icon_shape[0] + (mosaic_shape[0]-1) * border_size, mosaic_shape[1] * icon_shape[1] + (mosaic_shape[1]-1) * border_size, icon_shape[2]) # Create mosaic image and fill with border color. mosaic_image = np.empty(mosaic_image_shape, dtype=mosaic_dtype) for c in xrange(mosaic_image.shape[2]): mosaic_image[:,:,c] = border_color[c] # Fill in the input icons. for idx in xrange(num_icons): i = idx / mosaic_shape[1] j = idx % mosaic_shape[1] iStart = i * (icon_shape[0] + border_size) jStart = j * (icon_shape[1] + border_size) mosaic_image[iStart:iStart+icon_shape[0], jStart:jStart+icon_shape[1],:] = icons[idx] # Fill the empty icons with empty colors. for idx in xrange(num_icons, mosaic_shape[0]*mosaic_shape[1]): i = idx / mosaic_shape[1] j = idx % mosaic_shape[1] iStart = i * (icon_shape[0] + border_size) jStart = j * (icon_shape[1] + border_size) for c in xrange(mosaic_image.shape[2]): mosaic_image[iStart:iStart+icon_shape[0], jStart:jStart+icon_shape[1],c] = empty_color[c] return mosaic_image def image_size_from_file(filename): """Read the image size from a file. This function only loads but the image header (rather than the whole rasterized data) in order to determine its dimension. Parameters ---------- filename: string The input image file. Returns ------- The 2-tuple for image size `(num_rows, num_cols)`. """ with PIL.Image.open(filename) as img: width, height = img.size return height, width
[ "math.sqrt", "numpy.empty", "numpy.asarray", "numpy.zeros", "numpy.array" ]
[((7824, 7872), 'numpy.empty', 'np.empty', (['mosaic_image_shape'], {'dtype': 'mosaic_dtype'}), '(mosaic_image_shape, dtype=mosaic_dtype)\n', (7832, 7872), True, 'import numpy as np\n'), ((4631, 4644), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (4639, 4644), True, 'import numpy as np\n'), ((7259, 7281), 'numpy.zeros', 'np.zeros', (['num_channels'], {}), '(num_channels)\n', (7267, 7281), True, 'import numpy as np\n'), ((7332, 7354), 'numpy.zeros', 'np.zeros', (['num_channels'], {}), '(num_channels)\n', (7340, 7354), True, 'import numpy as np\n'), ((1634, 1665), 'numpy.asarray', 'np.asarray', (['(img / 257)', 'np.uint8'], {}), '(img / 257, np.uint8)\n', (1644, 1665), True, 'import numpy as np\n'), ((7417, 7437), 'math.sqrt', 'math.sqrt', (['num_icons'], {}), '(num_icons)\n', (7426, 7437), False, 'import math\n'), ((1758, 1791), 'numpy.asarray', 'np.asarray', (['(img * 255.0)', 'np.uint8'], {}), '(img * 255.0, np.uint8)\n', (1768, 1791), True, 'import numpy as np\n'), ((2562, 2591), 'numpy.empty', 'np.empty', (['img.shape', 'np.uint8'], {}), '(img.shape, np.uint8)\n', (2570, 2591), True, 'import numpy as np\n'), ((1885, 1911), 'numpy.asarray', 'np.asarray', (['img', 'np.uint16'], {}), '(img, np.uint16)\n', (1895, 1911), True, 'import numpy as np\n'), ((2010, 2046), 'numpy.asarray', 'np.asarray', (['(img * 65535.0)', 'np.uint16'], {}), '(img * 65535.0, np.uint16)\n', (2020, 2046), True, 'import numpy as np\n'), ((2884, 2910), 'numpy.empty', 'np.empty', (['img.shape', 'dtype'], {}), '(img.shape, dtype)\n', (2892, 2910), True, 'import numpy as np\n'), ((2164, 2186), 'numpy.asarray', 'np.asarray', (['img', 'dtype'], {}), '(img, dtype)\n', (2174, 2186), True, 'import numpy as np\n'), ((3013, 3044), 'numpy.asarray', 'np.asarray', (['img[:, :, 1]', 'dtype'], {}), '(img[:, :, 1], dtype)\n', (3023, 3044), True, 'import numpy as np\n'), ((3079, 3110), 'numpy.asarray', 'np.asarray', (['img[:, :, 2]', 'dtype'], {}), '(img[:, :, 2], dtype)\n', (3089, 3110), True, 'import numpy as np\n'), ((2258, 2280), 'numpy.asarray', 'np.asarray', (['img', 'dtype'], {}), '(img, dtype)\n', (2268, 2280), True, 'import numpy as np\n'), ((2382, 2404), 'numpy.asarray', 'np.asarray', (['img', 'dtype'], {}), '(img, dtype)\n', (2392, 2404), True, 'import numpy as np\n'), ((2940, 2971), 'numpy.asarray', 'np.asarray', (['img[:, :, 0]', 'dtype'], {}), '(img[:, :, 0], dtype)\n', (2950, 2971), True, 'import numpy as np\n')]
# -*- coding:utf-8 -*- import os import sys import numpy as np from simulater import Simulater from play_back import PlayBack, PlayBacks COMMAND = ['UP', 'DOWN', 'LEFT', 'RIGHT'] def get_max_command(target_dict): return max([(v,k) for k,v in target_dict.items()])[1] def simplify(command): return command[0] def print_Q(Q, x, y): ret = [] for i in range(y): ret.append(['0' for _ in range(x)]) for k in Q: ret[k[1]][k[0]] = simplify(get_max_command(Q[k])) for this_line in ret: print(''.join(this_line)) if __name__ == '__main__': # parameters file_name = 'default.txt' epoch_num = 1000 max_trial = 5000 gamma = 0.1 alpha = 0.1 epsilon = 0.5 # make simulater sim = Simulater(file_name) # initialize Q value x, y = sim.map_size() Q = {} for i in range(x): for j in range(y): Q[(i, j)] = {_:np.random.normal() for _ in COMMAND} #Q[(i, j)] = {_:0.0 for _ in COMMAND} # main minimum_pbs = None for epoch in range(epoch_num): sim.reset() this_pbs = PlayBacks() for i in range(max_trial): # get current current_x, current_y = sim.get_current() # select_command tmp_Q = Q[(current_x, current_y)] command = get_max_command(tmp_Q) if np.random.uniform() > epsilon else np.random.choice(COMMAND) current_value = tmp_Q[command] # reward reward = sim(command) # update next_x, next_y = sim.get_current() next_max_command = get_max_command(Q[(next_x, next_y)]) next_value = Q[(next_x, next_y)][next_max_command] tmp_Q[command] += alpha * (reward + gamma * next_value - current_value) # play back this_pbs.append(PlayBack((current_x, current_y), command, (next_x, next_y), reward)) # end check if sim.end_episode(): print('find goal') epsilon *= 0.95 if epsilon < 0.05: epsilon = 0.05 if minimum_pbs is None: minimum_pbs = this_pbs elif len(minimum_pbs) > len(this_pbs): minimum_pbs = this_pbs print(epsilon) break # update with minimum_pbs if minimum_pbs is not None: for pb in minimum_pbs: tmp_Q = Q[pb.state] current_value = tmp_Q[pb.action] next_Q = Q[pb.next_state] next_max_command = get_max_command(next_Q) next_value = next_Q[next_max_command] tmp_Q[pb.action] += alpha * (pb.reward + gamma * next_value - current_value) sim.printing() print('---') print_Q(Q, x, y) print('---')
[ "numpy.random.uniform", "simulater.Simulater", "play_back.PlayBacks", "numpy.random.normal", "numpy.random.choice", "play_back.PlayBack" ]
[((768, 788), 'simulater.Simulater', 'Simulater', (['file_name'], {}), '(file_name)\n', (777, 788), False, 'from simulater import Simulater\n'), ((1127, 1138), 'play_back.PlayBacks', 'PlayBacks', ([], {}), '()\n', (1136, 1138), False, 'from play_back import PlayBack, PlayBacks\n'), ((929, 947), 'numpy.random.normal', 'np.random.normal', ([], {}), '()\n', (945, 947), True, 'import numpy as np\n'), ((1412, 1437), 'numpy.random.choice', 'np.random.choice', (['COMMAND'], {}), '(COMMAND)\n', (1428, 1437), True, 'import numpy as np\n'), ((1898, 1965), 'play_back.PlayBack', 'PlayBack', (['(current_x, current_y)', 'command', '(next_x, next_y)', 'reward'], {}), '((current_x, current_y), command, (next_x, next_y), reward)\n', (1906, 1965), False, 'from play_back import PlayBack, PlayBacks\n'), ((1377, 1396), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (1394, 1396), True, 'import numpy as np\n')]
from numpy.linalg import cholesky import numpy as np def senti2cate(x): if x<=-0.6: return 0 elif x>-0.6 and x<=-0.2: return 1 elif x>-0.2 and x<0.2: return 2 elif x>=0.2 and x<0.6: return 3 elif x>=0.6: return 4 def dcg_score(y_true, y_score, k=10): order = np.argsort(y_score)[::-1] y_true = np.take(y_true, order[:k]) gains = 2 ** y_true - 1 discounts = np.log2(np.arange(len(y_true)) + 2) return np.sum(gains / discounts) def ndcg_score(y_true, y_score, k=10): best = dcg_score(y_true, y_true, k) actual = dcg_score(y_true, y_score, k) return actual / best def mrr_score(y_true, y_score): order = np.argsort(y_score)[::-1] y_true = np.take(y_true, order) rr_score = y_true / (np.arange(len(y_true)) + 1) return np.sum(rr_score) / np.sum(y_true) def auc(label,score): label=np.array(label) score=np.array(score) false_score = score[label==0] positive_score = score[label==1] num_positive = (label==1).sum() num_negative = (label==0).sum() positive_score = positive_score.reshape((num_positive,1)) positive_score = np.repeat(positive_score,num_negative,axis=1) false_score = false_score.reshape((1,num_negative)) false_score = np.repeat(false_score,num_positive,axis=0) return 1-((positive_score<false_score).mean()+0.5*(positive_score==false_score).mean()) def embedding(embfile,word_dict): emb_dict = {} with open(embfile,'rb')as f: while True: line = f.readline() if len(line) == 0: break data = line.split() word = data[0].decode() if len(word) != 0: vec = [float(x) for x in data[1:]] if word in word_dict: emb_dict[word] = vec emb_table = [0]*len(word_dict) dummy = np.zeros(300,dtype='float32') all_emb = [] for i in emb_dict: emb_table[word_dict[i][0]] = np.array(emb_dict[i],dtype='float32') all_emb.append(emb_table[word_dict[i][0]]) all_emb = np.array(all_emb,dtype='float32') mu = np.mean(all_emb, axis=0) Sigma = np.cov(all_emb.T) norm = np.random.multivariate_normal(mu, Sigma, 1) for i in range(len(emb_table)): if type(emb_table[i]) == int: emb_table[i] = np.reshape(norm, 300) emb_table[0] = np.random.uniform(-0.03,0.03,size=(300,)) emb_table = np.array(emb_table,dtype='float32') return emb_table
[ "numpy.random.uniform", "numpy.sum", "numpy.zeros", "numpy.argsort", "numpy.mean", "numpy.array", "numpy.take", "numpy.random.multivariate_normal", "numpy.reshape", "numpy.cov", "numpy.repeat" ]
[((379, 405), 'numpy.take', 'np.take', (['y_true', 'order[:k]'], {}), '(y_true, order[:k])\n', (386, 405), True, 'import numpy as np\n'), ((497, 522), 'numpy.sum', 'np.sum', (['(gains / discounts)'], {}), '(gains / discounts)\n', (503, 522), True, 'import numpy as np\n'), ((757, 779), 'numpy.take', 'np.take', (['y_true', 'order'], {}), '(y_true, order)\n', (764, 779), True, 'import numpy as np\n'), ((911, 926), 'numpy.array', 'np.array', (['label'], {}), '(label)\n', (919, 926), True, 'import numpy as np\n'), ((937, 952), 'numpy.array', 'np.array', (['score'], {}), '(score)\n', (945, 952), True, 'import numpy as np\n'), ((1179, 1226), 'numpy.repeat', 'np.repeat', (['positive_score', 'num_negative'], {'axis': '(1)'}), '(positive_score, num_negative, axis=1)\n', (1188, 1226), True, 'import numpy as np\n'), ((1299, 1343), 'numpy.repeat', 'np.repeat', (['false_score', 'num_positive'], {'axis': '(0)'}), '(false_score, num_positive, axis=0)\n', (1308, 1343), True, 'import numpy as np\n'), ((1916, 1946), 'numpy.zeros', 'np.zeros', (['(300)'], {'dtype': '"""float32"""'}), "(300, dtype='float32')\n", (1924, 1946), True, 'import numpy as np\n'), ((2131, 2165), 'numpy.array', 'np.array', (['all_emb'], {'dtype': '"""float32"""'}), "(all_emb, dtype='float32')\n", (2139, 2165), True, 'import numpy as np\n'), ((2174, 2198), 'numpy.mean', 'np.mean', (['all_emb'], {'axis': '(0)'}), '(all_emb, axis=0)\n', (2181, 2198), True, 'import numpy as np\n'), ((2211, 2228), 'numpy.cov', 'np.cov', (['all_emb.T'], {}), '(all_emb.T)\n', (2217, 2228), True, 'import numpy as np\n'), ((2242, 2285), 'numpy.random.multivariate_normal', 'np.random.multivariate_normal', (['mu', 'Sigma', '(1)'], {}), '(mu, Sigma, 1)\n', (2271, 2285), True, 'import numpy as np\n'), ((2428, 2471), 'numpy.random.uniform', 'np.random.uniform', (['(-0.03)', '(0.03)'], {'size': '(300,)'}), '(-0.03, 0.03, size=(300,))\n', (2445, 2471), True, 'import numpy as np\n'), ((2486, 2522), 'numpy.array', 'np.array', (['emb_table'], {'dtype': '"""float32"""'}), "(emb_table, dtype='float32')\n", (2494, 2522), True, 'import numpy as np\n'), ((340, 359), 'numpy.argsort', 'np.argsort', (['y_score'], {}), '(y_score)\n', (350, 359), True, 'import numpy as np\n'), ((718, 737), 'numpy.argsort', 'np.argsort', (['y_score'], {}), '(y_score)\n', (728, 737), True, 'import numpy as np\n'), ((844, 860), 'numpy.sum', 'np.sum', (['rr_score'], {}), '(rr_score)\n', (850, 860), True, 'import numpy as np\n'), ((863, 877), 'numpy.sum', 'np.sum', (['y_true'], {}), '(y_true)\n', (869, 877), True, 'import numpy as np\n'), ((2028, 2066), 'numpy.array', 'np.array', (['emb_dict[i]'], {'dtype': '"""float32"""'}), "(emb_dict[i], dtype='float32')\n", (2036, 2066), True, 'import numpy as np\n'), ((2387, 2408), 'numpy.reshape', 'np.reshape', (['norm', '(300)'], {}), '(norm, 300)\n', (2397, 2408), True, 'import numpy as np\n')]
# Databricks notebook source # MAGIC %md # MAGIC ### Ingest qualifying json files # COMMAND ---------- dbutils.widgets.text("p_data_source", "") v_data_source = dbutils.widgets.get("p_data_source") # COMMAND ---------- dbutils.widgets.text("p_file_date", "2021-03-21") v_file_date = dbutils.widgets.get("p_file_date") # COMMAND ---------- # MAGIC %run "../includes/configuration" # COMMAND ---------- # MAGIC %run "../includes/common_functions" # COMMAND ---------- # MAGIC %md # MAGIC ##### Step 1 - Read the JSON file using the spark dataframe reader API # COMMAND ---------- from pyspark.sql.types import StructType, StructField, IntegerType, StringType # COMMAND ---------- qualifying_schema = StructType(fields=[StructField("qualifyId", IntegerType(), False), StructField("raceId", IntegerType(), True), StructField("driverId", IntegerType(), True), StructField("constructorId", IntegerType(), True), StructField("number", IntegerType(), True), StructField("position", IntegerType(), True), StructField("q1", StringType(), True), StructField("q2", StringType(), True), StructField("q3", StringType(), True), ]) # COMMAND ---------- qualifying_df = spark.read \ .schema(qualifying_schema) \ .option("multiLine", True) \ .json(f"{raw_folder_path}/{v_file_date}/qualifying") # COMMAND ---------- # MAGIC %md # MAGIC ##### Step 2 - Rename columns and add new columns # MAGIC 1. Rename qualifyingId, driverId, constructorId and raceId # MAGIC 1. Add ingestion_date with current timestamp # COMMAND ---------- qualifying_with_ingestion_date_df = add_ingestion_date(qualifying_df) # COMMAND ---------- from pyspark.sql.functions import lit # COMMAND ---------- final_df = qualifying_with_ingestion_date_df.withColumnRenamed("qualifyId", "qualify_id") \ .withColumnRenamed("driverId", "driver_id") \ .withColumnRenamed("raceId", "race_id") \ .withColumnRenamed("constructorId", "constructor_id") \ .withColumn("ingestion_date", current_timestamp()) \ .withColumn("data_source", lit(v_data_source)) \ .withColumn("file_date", lit(v_file_date)) # COMMAND ---------- # MAGIC %md # MAGIC ##### Step 3 - Write to output to processed container in parquet format # COMMAND ---------- #overwrite_partition(final_df, 'f1_processed', 'qualifying', 'race_id') # COMMAND ---------- merge_condition = "tgt.qualify_id = src.qualify_id AND tgt.race_id = src.race_id" merge_delta_data(final_df, 'f1_processed', 'qualifying', processed_folder_path, merge_condition, 'race_id') # COMMAND ---------- dbutils.notebook.exit("Success") # COMMAND ----------
[ "pyspark.sql.functions.lit", "pyspark.sql.types.IntegerType", "pyspark.sql.types.StringType" ]
[((2387, 2403), 'pyspark.sql.functions.lit', 'lit', (['v_file_date'], {}), '(v_file_date)\n', (2390, 2403), False, 'from pyspark.sql.functions import lit\n'), ((2340, 2358), 'pyspark.sql.functions.lit', 'lit', (['v_data_source'], {}), '(v_data_source)\n', (2343, 2358), False, 'from pyspark.sql.functions import lit\n'), ((756, 769), 'pyspark.sql.types.IntegerType', 'IntegerType', ([], {}), '()\n', (767, 769), False, 'from pyspark.sql.types import StructType, StructField, IntegerType, StringType\n'), ((839, 852), 'pyspark.sql.types.IntegerType', 'IntegerType', ([], {}), '()\n', (850, 852), False, 'from pyspark.sql.types import StructType, StructField, IntegerType, StringType\n'), ((923, 936), 'pyspark.sql.types.IntegerType', 'IntegerType', ([], {}), '()\n', (934, 936), False, 'from pyspark.sql.types import StructType, StructField, IntegerType, StringType\n'), ((1012, 1025), 'pyspark.sql.types.IntegerType', 'IntegerType', ([], {}), '()\n', (1023, 1025), False, 'from pyspark.sql.types import StructType, StructField, IntegerType, StringType\n'), ((1094, 1107), 'pyspark.sql.types.IntegerType', 'IntegerType', ([], {}), '()\n', (1105, 1107), False, 'from pyspark.sql.types import StructType, StructField, IntegerType, StringType\n'), ((1178, 1191), 'pyspark.sql.types.IntegerType', 'IntegerType', ([], {}), '()\n', (1189, 1191), False, 'from pyspark.sql.types import StructType, StructField, IntegerType, StringType\n'), ((1256, 1268), 'pyspark.sql.types.StringType', 'StringType', ([], {}), '()\n', (1266, 1268), False, 'from pyspark.sql.types import StructType, StructField, IntegerType, StringType\n'), ((1333, 1345), 'pyspark.sql.types.StringType', 'StringType', ([], {}), '()\n', (1343, 1345), False, 'from pyspark.sql.types import StructType, StructField, IntegerType, StringType\n'), ((1410, 1422), 'pyspark.sql.types.StringType', 'StringType', ([], {}), '()\n', (1420, 1422), False, 'from pyspark.sql.types import StructType, StructField, IntegerType, StringType\n')]
from __future__ import annotations import typing from typing_extensions import TypedDict from ctc import evm from ctc import rpc from ctc import spec old_pool_factory = '0x0959158b6040d32d04c301a72cbfd6b39e21c9ae' pool_factory = '0xb9fc157394af804a3578134a6585c0dc9cc990d4' eth_address = '0xeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee' creation_blocks = { '0x0959158b6040d32d04c301a72cbfd6b39e21c9ae': 11942404, '0xb9fc157394af804a3578134a6585c0dc9cc990d4': 12903979, } # # # call based # async def async_get_factory_pool_data( factory: spec.Address, include_balances: bool = False, ) -> list[CurvePoolData]: import asyncio n_pools = await rpc.async_eth_call( to_address=factory, function_name='pool_count', ) coroutines = [ _async_get_pool_data(p, factory, include_balances=include_balances) for p in range(n_pools) ] return await asyncio.gather(*coroutines) class CurvePoolData(TypedDict): address: spec.Address tokens: typing.Sequence[spec.Address] symbols: typing.Sequence[str] balances: typing.Sequence[int | float | None] async def _async_get_pool_data( p: int, factory: spec.Address, include_balances: bool = False, ) -> CurvePoolData: pool = await rpc.async_eth_call( to_address=factory, function_name='pool_list', function_parameters=[p], ) coins = await rpc.async_eth_call( to_address=factory, function_name='get_coins', function_parameters=[pool], ) coins = [coin for coin in coins if coin not in [eth_address]] valid_coins = [ coin for coin in coins if coin not in ['0x0000000000000000000000000000000000000000', eth_address] ] symbols = await evm.async_get_erc20s_symbols( valid_coins, ) if eth_address in coins: index = coins.index(eth_address) symbols.insert(index, 'ETH') if include_balances: balances: typing.MutableSequence[int | float | None] = ( await evm.async_get_erc20s_balance_of( # type: ignore tokens=valid_coins, address=pool, ) ) if eth_address in coins: eth_balance = await evm.async_get_eth_balance(pool) balances.insert(index, eth_balance) else: balances = [None for coin in coins] return { 'address': pool, 'tokens': coins, 'symbols': symbols, 'balances': balances, } # # # event based # async def async_get_base_pools( start_block: typing.Optional[spec.BlockNumberReference] = None, end_block: typing.Optional[spec.BlockNumberReference] = None, provider: spec.ProviderSpec = None, verbose: bool = False, ) -> spec.DataFrame: import asyncio import pandas as pd if start_block is None: start_block = 12903979 # gather data coroutines = [] for factory in [old_pool_factory, pool_factory]: if start_block is None: factory_start_block = creation_blocks[factory] else: factory_start_block = start_block coroutine = evm.async_get_events( contract_address=factory, event_name='BasePoolAdded', start_block=factory_start_block, end_block=end_block, provider=provider, verbose=verbose, ) coroutines.append(coroutine) dfs = await asyncio.gather(*coroutines) events = pd.concat(dfs) # format data events = events.sort_index() events = events[['contract_address', 'transaction_hash', 'arg__base_pool']] events = events.rename( columns={ 'contract_address': 'factory', 'arg__base_pool': 'pool', } ) return events async def async_get_plain_pools( start_block: typing.Optional[spec.BlockNumberReference] = None, end_block: typing.Optional[spec.BlockNumberReference] = None, provider: spec.ProviderSpec = None, verbose: bool = False, ) -> spec.DataFrame: if start_block is None: start_block = 12903979 events = await evm.async_get_events( contract_address=pool_factory, event_name='PlainPoolDeployed', start_block=start_block, end_block=end_block, provider=provider, verbose=verbose, ) events = events[ [ 'transaction_hash', 'contract_address', 'arg__coins', 'arg__A', 'arg__fee', 'arg__deployer', ] ] events = events.rename( columns={ 'contract_address': 'factory', 'arg__coins': 'coins', 'arg__A': 'A', 'arg__fee': 'fee', 'arg__deployer': 'deployer', } ) return events async def async_get_meta_pools( start_block: typing.Optional[spec.BlockNumberReference] = None, end_block: typing.Optional[spec.BlockNumberReference] = None, provider: spec.ProviderSpec = None, verbose: bool = False, ) -> spec.DataFrame: import asyncio import pandas as pd # gather data coroutines = [] for factory in [old_pool_factory, pool_factory]: if start_block is None: factory_start_block: spec.BlockNumberReference = creation_blocks[ factory ] else: factory_start_block = start_block coroutine = evm.async_get_events( contract_address=factory, event_name='MetaPoolDeployed', start_block=factory_start_block, end_block=end_block, provider=provider, verbose=verbose, ) coroutines.append(coroutine) dfs = await asyncio.gather(*coroutines) events = pd.concat(dfs) # format data events = events.sort_index() events = events[ [ 'transaction_hash', 'contract_address', 'arg__coin', 'arg__base_pool', 'arg__A', 'arg__fee', 'arg__deployer', ] ] events = events.rename( columns={ 'contract_address': 'factory', 'arg__coin': 'coin', 'arg__base_pool': 'base_pool', 'arg__A': 'A', 'arg__fee': 'fee', 'arg__deployer': 'deployer', } ) return events
[ "asyncio.gather", "ctc.evm.async_get_erc20s_balance_of", "ctc.evm.async_get_eth_balance", "ctc.evm.async_get_events", "pandas.concat", "ctc.evm.async_get_erc20s_symbols", "ctc.rpc.async_eth_call" ]
[((3506, 3520), 'pandas.concat', 'pd.concat', (['dfs'], {}), '(dfs)\n', (3515, 3520), True, 'import pandas as pd\n'), ((5805, 5819), 'pandas.concat', 'pd.concat', (['dfs'], {}), '(dfs)\n', (5814, 5819), True, 'import pandas as pd\n'), ((669, 735), 'ctc.rpc.async_eth_call', 'rpc.async_eth_call', ([], {'to_address': 'factory', 'function_name': '"""pool_count"""'}), "(to_address=factory, function_name='pool_count')\n", (687, 735), False, 'from ctc import rpc\n'), ((911, 938), 'asyncio.gather', 'asyncio.gather', (['*coroutines'], {}), '(*coroutines)\n', (925, 938), False, 'import asyncio\n'), ((1271, 1365), 'ctc.rpc.async_eth_call', 'rpc.async_eth_call', ([], {'to_address': 'factory', 'function_name': '"""pool_list"""', 'function_parameters': '[p]'}), "(to_address=factory, function_name='pool_list',\n function_parameters=[p])\n", (1289, 1365), False, 'from ctc import rpc\n'), ((1412, 1509), 'ctc.rpc.async_eth_call', 'rpc.async_eth_call', ([], {'to_address': 'factory', 'function_name': '"""get_coins"""', 'function_parameters': '[pool]'}), "(to_address=factory, function_name='get_coins',\n function_parameters=[pool])\n", (1430, 1509), False, 'from ctc import rpc\n'), ((1780, 1821), 'ctc.evm.async_get_erc20s_symbols', 'evm.async_get_erc20s_symbols', (['valid_coins'], {}), '(valid_coins)\n', (1808, 1821), False, 'from ctc import evm\n'), ((3164, 3336), 'ctc.evm.async_get_events', 'evm.async_get_events', ([], {'contract_address': 'factory', 'event_name': '"""BasePoolAdded"""', 'start_block': 'factory_start_block', 'end_block': 'end_block', 'provider': 'provider', 'verbose': 'verbose'}), "(contract_address=factory, event_name='BasePoolAdded',\n start_block=factory_start_block, end_block=end_block, provider=provider,\n verbose=verbose)\n", (3184, 3336), False, 'from ctc import evm\n'), ((3465, 3492), 'asyncio.gather', 'asyncio.gather', (['*coroutines'], {}), '(*coroutines)\n', (3479, 3492), False, 'import asyncio\n'), ((4151, 4325), 'ctc.evm.async_get_events', 'evm.async_get_events', ([], {'contract_address': 'pool_factory', 'event_name': '"""PlainPoolDeployed"""', 'start_block': 'start_block', 'end_block': 'end_block', 'provider': 'provider', 'verbose': 'verbose'}), "(contract_address=pool_factory, event_name=\n 'PlainPoolDeployed', start_block=start_block, end_block=end_block,\n provider=provider, verbose=verbose)\n", (4171, 4325), False, 'from ctc import evm\n'), ((5460, 5637), 'ctc.evm.async_get_events', 'evm.async_get_events', ([], {'contract_address': 'factory', 'event_name': '"""MetaPoolDeployed"""', 'start_block': 'factory_start_block', 'end_block': 'end_block', 'provider': 'provider', 'verbose': 'verbose'}), "(contract_address=factory, event_name=\n 'MetaPoolDeployed', start_block=factory_start_block, end_block=\n end_block, provider=provider, verbose=verbose)\n", (5480, 5637), False, 'from ctc import evm\n'), ((5764, 5791), 'asyncio.gather', 'asyncio.gather', (['*coroutines'], {}), '(*coroutines)\n', (5778, 5791), False, 'import asyncio\n'), ((2054, 2119), 'ctc.evm.async_get_erc20s_balance_of', 'evm.async_get_erc20s_balance_of', ([], {'tokens': 'valid_coins', 'address': 'pool'}), '(tokens=valid_coins, address=pool)\n', (2085, 2119), False, 'from ctc import evm\n'), ((2258, 2289), 'ctc.evm.async_get_eth_balance', 'evm.async_get_eth_balance', (['pool'], {}), '(pool)\n', (2283, 2289), False, 'from ctc import evm\n')]
import numpy as np import re lineRegex = re.compile(r"(turn on|turn off|toggle) (\d+),(\d+) through (\d+),(\d+)") def day6(fileName): lights = np.zeros((1000, 1000), dtype=bool) with open(fileName) as infile: for line in infile: match = lineRegex.match(line) if match: for x in range(int(match[2]), int(match[4]) + 1): for y in range(int(match[3]), int(match[5]) + 1): if match[1] == "turn on": lights[y, x] = True elif match[1] == "turn off": lights[y, x] = False elif match[1] == "toggle": lights[y, x] = not lights[y, x] else: raise ValueError(f"Unknown directive: {match[1]}") print(f"There are {lights.sum()} lights!") def day6b(fileName): lights = np.zeros((1000, 1000), dtype=int) with open(fileName) as infile: for line in infile: match = lineRegex.match(line) if match: x1 = int(match[2]) x2 = int(match[4]) y1 = int(match[3]) y2 = int(match[5]) if match[1] == "turn on": lights[y1:y2 + 1, x1:x2 + 1] += 1 elif match[1] == "turn off": for x in range(x1, x2 + 1): for y in range(y1, y2 + 1): lights[y, x] = max(lights[y, x] - 1, 0) elif match[1] == "toggle": lights[y1:y2 + 1, x1:x2 + 1] += 2 else: raise ValueError(f"Unknown directive: {match[1]}") print(f"Brightness: {lights.sum()}") #day6("6test.txt") #day6("6.txt") day6b("6btest.txt") day6b("6.txt") #15343601
[ "numpy.zeros", "re.compile" ]
[((42, 117), 're.compile', 're.compile', (['"""(turn on|turn off|toggle) (\\\\d+),(\\\\d+) through (\\\\d+),(\\\\d+)"""'], {}), "('(turn on|turn off|toggle) (\\\\d+),(\\\\d+) through (\\\\d+),(\\\\d+)')\n", (52, 117), False, 'import re\n'), ((146, 180), 'numpy.zeros', 'np.zeros', (['(1000, 1000)'], {'dtype': 'bool'}), '((1000, 1000), dtype=bool)\n', (154, 180), True, 'import numpy as np\n'), ((734, 767), 'numpy.zeros', 'np.zeros', (['(1000, 1000)'], {'dtype': 'int'}), '((1000, 1000), dtype=int)\n', (742, 767), True, 'import numpy as np\n')]
import requests,time,gevent,gevent.monkey,re,os from threading import Thread import schedule from pyquery import PyQuery as pq gevent.monkey.patch_socket() url="http://tieba.baidu.com/mo/q---F55A5B1F58548A7A5403ABA7602FEBAE%3AFG%3D1--1-1-0--2--wapp_1510665393192_464/sign?tbs=af62312bf49309c61510669752&fid=152744&kw=" ba_cookie='把cookie放到这' headers={ 'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8', 'Accept-Encoding':'gzip, deflate', 'Accept-Language':'zh-CN,zh;q=0.8', 'Cookie':ba_cookie, 'Host':'tieba.baidu.com', 'Proxy-Connection':'keep-alive', 'Upgrade-Insecure-Requests':'1', 'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36' } s=requests.Session() def run(ba_url,ba_name): qian_url=ba_url+ba_name s.get(qian_url,headers=headers) def go(): taske=[gevent.spawn(run,url,i) for i in ba_name_tuple] gevent.joinall(taske) rebuild=re.compile(r"已签到") def check(ba_name): content=s.get(url+ba_name,headers=headers).text return_list=rebuild.findall(content) if str(return_list)=="['已签到']": pass else: print (ba_name+"-->Error") def checkth(): for g in ba_name_tuple: m=Thread(target=check,args=(g,)) m.start() def writeconfig(): temp=pq(requests.get("http://wapp.baidu.com/",headers={'Cookie':ba_cookie}).content) ba_all_url="http://"+str([i.attr("href") for i in temp(".my_love_bar").children().items()][-1])[2:] retemp=re.compile(r">\w*</a>") ba_name_list=[] for i in retemp.findall(requests.get(ba_all_url,headers={'Cookie':ba_cookie}).text)[1:-2]: ba_name_list.append(i[1:-4]) with open("qd_config.ini","w+",encoding="utf-8") as fob: fob.write(str(tuple(ba_name_list))) def checkconfig(): if "qd_config.ini" in os.listdir(os.getcwd()): pass else: writeconfig() def readconfig(): global ba_name_tuple with open("qd_config.ini","r",encoding="utf-8") as fob: ba_name_tuple=eval(fob.read()) def serun(): checkconfig() readconfig() go() if __name__=="__main__": schedule.every().day.at("00:10").do(serun) #每天的签到时间 while 1: schedule.run_pending() time.sleep(1)
[ "schedule.run_pending", "threading.Thread", "re.compile", "os.getcwd", "requests.Session", "time.sleep", "gevent.monkey.patch_socket", "requests.get", "schedule.every", "gevent.spawn", "gevent.joinall" ]
[((127, 155), 'gevent.monkey.patch_socket', 'gevent.monkey.patch_socket', ([], {}), '()\n', (153, 155), False, 'import requests, time, gevent, gevent.monkey, re, os\n'), ((770, 788), 'requests.Session', 'requests.Session', ([], {}), '()\n', (786, 788), False, 'import requests, time, gevent, gevent.monkey, re, os\n'), ((969, 986), 're.compile', 're.compile', (['"""已签到"""'], {}), "('已签到')\n", (979, 986), False, 'import requests, time, gevent, gevent.monkey, re, os\n'), ((939, 960), 'gevent.joinall', 'gevent.joinall', (['taske'], {}), '(taske)\n', (953, 960), False, 'import requests, time, gevent, gevent.monkey, re, os\n'), ((1472, 1495), 're.compile', 're.compile', (['""">\\\\w*</a>"""'], {}), "('>\\\\w*</a>')\n", (1482, 1495), False, 'import requests, time, gevent, gevent.monkey, re, os\n'), ((890, 915), 'gevent.spawn', 'gevent.spawn', (['run', 'url', 'i'], {}), '(run, url, i)\n', (902, 915), False, 'import requests, time, gevent, gevent.monkey, re, os\n'), ((1215, 1246), 'threading.Thread', 'Thread', ([], {'target': 'check', 'args': '(g,)'}), '(target=check, args=(g,))\n', (1221, 1246), False, 'from threading import Thread\n'), ((2097, 2119), 'schedule.run_pending', 'schedule.run_pending', ([], {}), '()\n', (2117, 2119), False, 'import schedule\n'), ((2122, 2135), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (2132, 2135), False, 'import requests, time, gevent, gevent.monkey, re, os\n'), ((1286, 1355), 'requests.get', 'requests.get', (['"""http://wapp.baidu.com/"""'], {'headers': "{'Cookie': ba_cookie}"}), "('http://wapp.baidu.com/', headers={'Cookie': ba_cookie})\n", (1298, 1355), False, 'import requests, time, gevent, gevent.monkey, re, os\n'), ((1785, 1796), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1794, 1796), False, 'import requests, time, gevent, gevent.monkey, re, os\n'), ((1538, 1593), 'requests.get', 'requests.get', (['ba_all_url'], {'headers': "{'Cookie': ba_cookie}"}), "(ba_all_url, headers={'Cookie': ba_cookie})\n", (1550, 1593), False, 'import requests, time, gevent, gevent.monkey, re, os\n'), ((2033, 2049), 'schedule.every', 'schedule.every', ([], {}), '()\n', (2047, 2049), False, 'import schedule\n')]
# Copyright 2013-2019 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from __future__ import print_function import codecs import errno import re import os import os.path import shutil import ssl import sys import traceback from itertools import product import six from six.moves.urllib.request import urlopen, Request from six.moves.urllib.error import URLError import multiprocessing.pool try: # Python 2 had these in the HTMLParser package. from HTMLParser import HTMLParser, HTMLParseError except ImportError: # In Python 3, things moved to html.parser from html.parser import HTMLParser # Also, HTMLParseError is deprecated and never raised. class HTMLParseError(Exception): pass from llnl.util.filesystem import mkdirp import llnl.util.tty as tty import spack.cmd import spack.config import spack.error import spack.url import spack.util.crypto import spack.util.s3 as s3_util import spack.util.url as url_util from spack.util.compression import ALLOWED_ARCHIVE_TYPES # Timeout in seconds for web requests _timeout = 10 # See docstring for standardize_header_names() _separators = ('', ' ', '_', '-') HTTP_HEADER_NAME_ALIASES = { "Accept-ranges": set( ''.join((A, 'ccept', sep, R, 'anges')) for A, sep, R in product('Aa', _separators, 'Rr')), "Content-length": set( ''.join((C, 'ontent', sep, L, 'ength')) for C, sep, L in product('Cc', _separators, 'Ll')), "Content-type": set( ''.join((C, 'ontent', sep, T, 'ype')) for C, sep, T in product('Cc', _separators, 'Tt')), "Date": set(('Date', 'date')), "Last-modified": set( ''.join((L, 'ast', sep, M, 'odified')) for L, sep, M in product('Ll', _separators, 'Mm')), "Server": set(('Server', 'server')) } class LinkParser(HTMLParser): """This parser just takes an HTML page and strips out the hrefs on the links. Good enough for a really simple spider. """ def __init__(self): HTMLParser.__init__(self) self.links = [] def handle_starttag(self, tag, attrs): if tag == 'a': for attr, val in attrs: if attr == 'href': self.links.append(val) class NonDaemonProcess(multiprocessing.Process): """Process that allows sub-processes, so pools can have sub-pools.""" @property def daemon(self): return False @daemon.setter def daemon(self, value): pass if sys.version_info[0] < 3: class NonDaemonPool(multiprocessing.pool.Pool): """Pool that uses non-daemon processes""" Process = NonDaemonProcess else: class NonDaemonContext(type(multiprocessing.get_context())): Process = NonDaemonProcess class NonDaemonPool(multiprocessing.pool.Pool): """Pool that uses non-daemon processes""" def __init__(self, *args, **kwargs): kwargs['context'] = NonDaemonContext() super(NonDaemonPool, self).__init__(*args, **kwargs) def uses_ssl(parsed_url): if parsed_url.scheme == 'https': return True if parsed_url.scheme == 's3': endpoint_url = os.environ.get('S3_ENDPOINT_URL') if not endpoint_url: return True if url_util.parse(endpoint_url, scheme='https').scheme == 'https': return True return False __UNABLE_TO_VERIFY_SSL = ( lambda pyver: ( (pyver < (2, 7, 9)) or ((3,) < pyver < (3, 4, 3)) ))(sys.version_info) def read_from_url(url, accept_content_type=None): url = url_util.parse(url) context = None verify_ssl = spack.config.get('config:verify_ssl') # Don't even bother with a context unless the URL scheme is one that uses # SSL certs. if uses_ssl(url): if verify_ssl: if __UNABLE_TO_VERIFY_SSL: # User wants SSL verification, but it cannot be provided. warn_no_ssl_cert_checking() else: # User wants SSL verification, and it *can* be provided. context = ssl.create_default_context() else: # User has explicitly indicated that they do not want SSL # verification. context = ssl._create_unverified_context() req = Request(url_util.format(url)) content_type = None is_web_url = url.scheme in ('http', 'https') if accept_content_type and is_web_url: # Make a HEAD request first to check the content type. This lets # us ignore tarballs and gigantic files. # It would be nice to do this with the HTTP Accept header to avoid # one round-trip. However, most servers seem to ignore the header # if you ask for a tarball with Accept: text/html. req.get_method = lambda: "HEAD" resp = _urlopen(req, timeout=_timeout, context=context) content_type = resp.headers.get('Content-type') # Do the real GET request when we know it's just HTML. req.get_method = lambda: "GET" response = _urlopen(req, timeout=_timeout, context=context) if accept_content_type and not is_web_url: content_type = response.headers.get('Content-type') reject_content_type = ( accept_content_type and ( content_type is None or not content_type.startswith(accept_content_type))) if reject_content_type: tty.debug("ignoring page {0}{1}{2}".format( url_util.format(url), " with content type " if content_type is not None else "", content_type or "")) return None, None, None return response.geturl(), response.headers, response def warn_no_ssl_cert_checking(): tty.warn("Spack will not check SSL certificates. You need to update " "your Python to enable certificate verification.") def push_to_url(local_file_path, remote_path, **kwargs): keep_original = kwargs.get('keep_original', True) remote_url = url_util.parse(remote_path) verify_ssl = spack.config.get('config:verify_ssl') if __UNABLE_TO_VERIFY_SSL and verify_ssl and uses_ssl(remote_url): warn_no_ssl_cert_checking() remote_file_path = url_util.local_file_path(remote_url) if remote_file_path is not None: mkdirp(os.path.dirname(remote_file_path)) if keep_original: shutil.copy(local_file_path, remote_file_path) else: try: os.rename(local_file_path, remote_file_path) except OSError as e: if e.errno == errno.EXDEV: # NOTE(opadron): The above move failed because it crosses # filesystem boundaries. Copy the file (plus original # metadata), and then delete the original. This operation # needs to be done in separate steps. shutil.copy2(local_file_path, remote_file_path) os.remove(local_file_path) elif remote_url.scheme == 's3': extra_args = kwargs.get('extra_args', {}) remote_path = remote_url.path while remote_path.startswith('/'): remote_path = remote_path[1:] s3 = s3_util.create_s3_session(remote_url) s3.upload_file(local_file_path, remote_url.netloc, remote_path, ExtraArgs=extra_args) if not keep_original: os.remove(local_file_path) else: raise NotImplementedError( 'Unrecognized URL scheme: {SCHEME}'.format( SCHEME=remote_url.scheme)) def url_exists(url): url = url_util.parse(url) local_path = url_util.local_file_path(url) if local_path: return os.path.exists(local_path) if url.scheme == 's3': s3 = s3_util.create_s3_session(url) from botocore.exceptions import ClientError try: s3.get_object(Bucket=url.netloc, Key=url.path) return True except ClientError as err: if err.response['Error']['Code'] == 'NoSuchKey': return False raise err # otherwise, just try to "read" from the URL, and assume that *any* # non-throwing response contains the resource represented by the URL try: read_from_url(url) return True except URLError: return False def remove_url(url): url = url_util.parse(url) local_path = url_util.local_file_path(url) if local_path: os.remove(local_path) return if url.scheme == 's3': s3 = s3_util.create_s3_session(url) s3.delete_object(Bucket=url.s3_bucket, Key=url.path) return # Don't even try for other URL schemes. def _list_s3_objects(client, url, num_entries, start_after=None): list_args = dict( Bucket=url.netloc, Prefix=url.path, MaxKeys=num_entries) if start_after is not None: list_args['StartAfter'] = start_after result = client.list_objects_v2(**list_args) last_key = None if result['IsTruncated']: last_key = result['Contents'][-1]['Key'] iter = (key for key in ( os.path.relpath(entry['Key'], url.path) for entry in result['Contents'] ) if key != '.') return iter, last_key def _iter_s3_prefix(client, url, num_entries=1024): key = None while True: contents, key = _list_s3_objects( client, url, num_entries, start_after=key) for x in contents: yield x if not key: break def list_url(url): url = url_util.parse(url) local_path = url_util.local_file_path(url) if local_path: return os.listdir(local_path) if url.scheme == 's3': s3 = s3_util.create_s3_session(url) return list(set( key.split('/', 1)[0] for key in _iter_s3_prefix(s3, url))) def _spider(url, visited, root, depth, max_depth, raise_on_error): """Fetches URL and any pages it links to up to max_depth. depth should initially be zero, and max_depth is the max depth of links to follow from the root. Prints out a warning only if the root can't be fetched; it ignores errors with pages that the root links to. Returns a tuple of: - pages: dict of pages visited (URL) mapped to their full text. - links: set of links encountered while visiting the pages. """ pages = {} # dict from page URL -> text content. links = set() # set of all links seen on visited pages. try: response_url, _, response = read_from_url(url, 'text/html') if not response_url or not response: return pages, links page = codecs.getreader('utf-8')(response).read() pages[response_url] = page # Parse out the links in the page link_parser = LinkParser() subcalls = [] link_parser.feed(page) while link_parser.links: raw_link = link_parser.links.pop() abs_link = url_util.join( response_url, raw_link.strip(), resolve_href=True) links.add(abs_link) # Skip stuff that looks like an archive if any(raw_link.endswith(suf) for suf in ALLOWED_ARCHIVE_TYPES): continue # Skip things outside the root directory if not abs_link.startswith(root): continue # Skip already-visited links if abs_link in visited: continue # If we're not at max depth, follow links. if depth < max_depth: subcalls.append((abs_link, visited, root, depth + 1, max_depth, raise_on_error)) visited.add(abs_link) if subcalls: pool = NonDaemonPool(processes=len(subcalls)) try: results = pool.map(_spider_wrapper, subcalls) for sub_pages, sub_links in results: pages.update(sub_pages) links.update(sub_links) finally: pool.terminate() pool.join() except URLError as e: tty.debug(e) if hasattr(e, 'reason') and isinstance(e.reason, ssl.SSLError): tty.warn("Spack was unable to fetch url list due to a certificate " "verification problem. You can try running spack -k, " "which will not check SSL certificates. Use this at your " "own risk.") if raise_on_error: raise NoNetworkConnectionError(str(e), url) except HTMLParseError as e: # This error indicates that Python's HTML parser sucks. msg = "Got an error parsing HTML." # Pre-2.7.3 Pythons in particular have rather prickly HTML parsing. if sys.version_info[:3] < (2, 7, 3): msg += " Use Python 2.7.3 or newer for better HTML parsing." tty.warn(msg, url, "HTMLParseError: " + str(e)) except Exception as e: # Other types of errors are completely ignored, except in debug mode. tty.debug("Error in _spider: %s:%s" % (type(e), e), traceback.format_exc()) return pages, links def _spider_wrapper(args): """Wrapper for using spider with multiprocessing.""" return _spider(*args) def _urlopen(req, *args, **kwargs): """Wrapper for compatibility with old versions of Python.""" url = req try: url = url.get_full_url() except AttributeError: pass # We don't pass 'context' parameter because it was only introduced starting # with versions 2.7.9 and 3.4.3 of Python. if 'context' in kwargs: del kwargs['context'] opener = urlopen if url_util.parse(url).scheme == 's3': import spack.s3_handler opener = spack.s3_handler.open return opener(req, *args, **kwargs) def spider(root, depth=0): """Gets web pages from a root URL. If depth is specified (e.g., depth=2), then this will also follow up to <depth> levels of links from the root. This will spawn processes to fetch the children, for much improved performance over a sequential fetch. """ root = url_util.parse(root) pages, links = _spider(root, set(), root, 0, depth, False) return pages, links def find_versions_of_archive(archive_urls, list_url=None, list_depth=0): """Scrape web pages for new versions of a tarball. Arguments: archive_urls (str or list or tuple): URL or sequence of URLs for different versions of a package. Typically these are just the tarballs from the package file itself. By default, this searches the parent directories of archives. Keyword Arguments: list_url (str or None): URL for a listing of archives. Spack will scrape these pages for download links that look like the archive URL. list_depth (int): Max depth to follow links on list_url pages. Defaults to 0. """ if not isinstance(archive_urls, (list, tuple)): archive_urls = [archive_urls] # Generate a list of list_urls based on archive urls and any # explicitly listed list_url in the package list_urls = set() if list_url is not None: list_urls.add(list_url) for aurl in archive_urls: list_urls |= spack.url.find_list_urls(aurl) # Add '/' to the end of the URL. Some web servers require this. additional_list_urls = set() for lurl in list_urls: if not lurl.endswith('/'): additional_list_urls.add(lurl + '/') list_urls |= additional_list_urls # Grab some web pages to scrape. pages = {} links = set() for lurl in list_urls: pg, lnk = spider(lurl, depth=list_depth) pages.update(pg) links.update(lnk) # Scrape them for archive URLs regexes = [] for aurl in archive_urls: # This creates a regex from the URL with a capture group for # the version part of the URL. The capture group is converted # to a generic wildcard, so we can use this to extract things # on a page that look like archive URLs. url_regex = spack.url.wildcard_version(aurl) # We'll be a bit more liberal and just look for the archive # part, not the full path. url_regex = os.path.basename(url_regex) # We need to add a / to the beginning of the regex to prevent # Spack from picking up similarly named packages like: # https://cran.r-project.org/src/contrib/pls_2.6-0.tar.gz # https://cran.r-project.org/src/contrib/enpls_5.7.tar.gz # https://cran.r-project.org/src/contrib/autopls_1.3.tar.gz # https://cran.r-project.org/src/contrib/matrixpls_1.0.4.tar.gz url_regex = '/' + url_regex # We need to add a $ anchor to the end of the regex to prevent # Spack from picking up signature files like: # .asc # .md5 # .sha256 # .sig # However, SourceForge downloads still need to end in '/download'. url_regex += r'(\/download)?$' regexes.append(url_regex) # Build a dict version -> URL from any links that match the wildcards. # Walk through archive_url links first. # Any conflicting versions will be overwritten by the list_url links. versions = {} for url in archive_urls + sorted(links): if any(re.search(r, url) for r in regexes): try: ver = spack.url.parse_version(url) versions[ver] = url except spack.url.UndetectableVersionError: continue return versions def standardize_header_names(headers): """Replace certain header names with standardized spellings. Standardizes the spellings of the following header names: - Accept-ranges - Content-length - Content-type - Date - Last-modified - Server Every name considered is translated to one of the above names if the only difference between the two is how the first letters of each word are capitalized; whether words are separated; or, if separated, whether they are so by a dash (-), underscore (_), or space ( ). Header names that cannot be mapped as described above are returned unaltered. For example: The standard spelling of "Content-length" would be substituted for any of the following names: - Content-length - content_length - contentlength - content_Length - contentLength - content Length ... and any other header name, such as "Content-encoding", would not be altered, regardless of spelling. If headers is a string, then it (or an appropriate substitute) is returned. If headers is a non-empty tuple, headers[0] is a string, and there exists a standardized spelling for header[0] that differs from it, then a new tuple is returned. This tuple has the same elements as headers, except the first element is the standardized spelling for headers[0]. If headers is a sequence, then a new list is considered, where each element is its corresponding element in headers, but mapped as above if a string or tuple. This new list is returned if at least one of its elements differ from their corrsponding element in headers. If headers is a mapping, then a new dict is considered, where the key in each item is the key of its corresponding item in headers, mapped as above if a string or tuple. The value is taken from the corresponding item. If the keys of multiple items in headers map to the same key after being standardized, then the value for the resulting item is undefined. The new dict is returned if at least one of its items has a key that differs from that of their corresponding item in headers, or if the keys of multiple items in headers map to the same key after being standardized. In all other cases headers is returned unaltered. """ if isinstance(headers, six.string_types): for standardized_spelling, other_spellings in ( HTTP_HEADER_NAME_ALIASES.items()): if headers in other_spellings: if headers == standardized_spelling: return headers return standardized_spelling return headers if isinstance(headers, tuple): if not headers: return headers old = headers[0] if isinstance(old, six.string_types): new = standardize_header_names(old) if old is not new: return (new,) + headers[1:] return headers try: changed = False new_dict = {} for key, value in headers.items(): if isinstance(key, (tuple, six.string_types)): old_key, key = key, standardize_header_names(key) changed = changed or key is not old_key new_dict[key] = value return new_dict if changed else headers except (AttributeError, TypeError, ValueError): pass try: changed = False new_list = [] for item in headers: if isinstance(item, (tuple, six.string_types)): old_item, item = item, standardize_header_names(item) changed = changed or item is not old_item new_list.append(item) return new_list if changed else headers except TypeError: pass return headers class SpackWebError(spack.error.SpackError): """Superclass for Spack web spidering errors.""" class NoNetworkConnectionError(SpackWebError): """Raised when an operation can't get an internet connection.""" def __init__(self, message, url): super(NoNetworkConnectionError, self).__init__( "No network connection: " + str(message), "URL was: " + str(url)) self.url = url
[ "os.remove", "llnl.util.tty.warn", "spack.util.url.local_file_path", "shutil.copy", "os.path.dirname", "os.path.exists", "traceback.format_exc", "itertools.product", "ssl._create_unverified_context", "html.parser.HTMLParser.__init__", "re.search", "os.path.basename", "os.rename", "shutil.copy2", "spack.util.url.format", "os.listdir", "codecs.getreader", "ssl.create_default_context", "llnl.util.tty.debug", "spack.util.s3.create_s3_session", "os.environ.get", "os.path.relpath", "spack.util.url.parse" ]
[((3683, 3702), 'spack.util.url.parse', 'url_util.parse', (['url'], {}), '(url)\n', (3697, 3702), True, 'import spack.util.url as url_util\n'), ((5817, 5944), 'llnl.util.tty.warn', 'tty.warn', (['"""Spack will not check SSL certificates. You need to update your Python to enable certificate verification."""'], {}), "(\n 'Spack will not check SSL certificates. You need to update your Python to enable certificate verification.'\n )\n", (5825, 5944), True, 'import llnl.util.tty as tty\n'), ((6082, 6109), 'spack.util.url.parse', 'url_util.parse', (['remote_path'], {}), '(remote_path)\n', (6096, 6109), True, 'import spack.util.url as url_util\n'), ((6297, 6333), 'spack.util.url.local_file_path', 'url_util.local_file_path', (['remote_url'], {}), '(remote_url)\n', (6321, 6333), True, 'import spack.util.url as url_util\n'), ((7707, 7726), 'spack.util.url.parse', 'url_util.parse', (['url'], {}), '(url)\n', (7721, 7726), True, 'import spack.util.url as url_util\n'), ((7744, 7773), 'spack.util.url.local_file_path', 'url_util.local_file_path', (['url'], {}), '(url)\n', (7768, 7773), True, 'import spack.util.url as url_util\n'), ((8479, 8498), 'spack.util.url.parse', 'url_util.parse', (['url'], {}), '(url)\n', (8493, 8498), True, 'import spack.util.url as url_util\n'), ((8517, 8546), 'spack.util.url.local_file_path', 'url_util.local_file_path', (['url'], {}), '(url)\n', (8541, 8546), True, 'import spack.util.url as url_util\n'), ((9718, 9737), 'spack.util.url.parse', 'url_util.parse', (['url'], {}), '(url)\n', (9732, 9737), True, 'import spack.util.url as url_util\n'), ((9756, 9785), 'spack.util.url.local_file_path', 'url_util.local_file_path', (['url'], {}), '(url)\n', (9780, 9785), True, 'import spack.util.url as url_util\n'), ((14445, 14465), 'spack.util.url.parse', 'url_util.parse', (['root'], {}), '(root)\n', (14459, 14465), True, 'import spack.util.url as url_util\n'), ((2119, 2144), 'html.parser.HTMLParser.__init__', 'HTMLParser.__init__', (['self'], {}), '(self)\n', (2138, 2144), False, 'from html.parser import HTMLParser\n'), ((3276, 3309), 'os.environ.get', 'os.environ.get', (['"""S3_ENDPOINT_URL"""'], {}), "('S3_ENDPOINT_URL')\n", (3290, 3309), False, 'import os\n'), ((4408, 4428), 'spack.util.url.format', 'url_util.format', (['url'], {}), '(url)\n', (4423, 4428), True, 'import spack.util.url as url_util\n'), ((7808, 7834), 'os.path.exists', 'os.path.exists', (['local_path'], {}), '(local_path)\n', (7822, 7834), False, 'import os\n'), ((7876, 7906), 'spack.util.s3.create_s3_session', 's3_util.create_s3_session', (['url'], {}), '(url)\n', (7901, 7906), True, 'import spack.util.s3 as s3_util\n'), ((8574, 8595), 'os.remove', 'os.remove', (['local_path'], {}), '(local_path)\n', (8583, 8595), False, 'import os\n'), ((8652, 8682), 'spack.util.s3.create_s3_session', 's3_util.create_s3_session', (['url'], {}), '(url)\n', (8677, 8682), True, 'import spack.util.s3 as s3_util\n'), ((9820, 9842), 'os.listdir', 'os.listdir', (['local_path'], {}), '(local_path)\n', (9830, 9842), False, 'import os\n'), ((9884, 9914), 'spack.util.s3.create_s3_session', 's3_util.create_s3_session', (['url'], {}), '(url)\n', (9909, 9914), True, 'import spack.util.s3 as s3_util\n'), ((16607, 16634), 'os.path.basename', 'os.path.basename', (['url_regex'], {}), '(url_regex)\n', (16623, 16634), False, 'import os\n'), ((4356, 4388), 'ssl._create_unverified_context', 'ssl._create_unverified_context', ([], {}), '()\n', (4386, 4388), False, 'import ssl\n'), ((6386, 6419), 'os.path.dirname', 'os.path.dirname', (['remote_file_path'], {}), '(remote_file_path)\n', (6401, 6419), False, 'import os\n'), ((6459, 6505), 'shutil.copy', 'shutil.copy', (['local_file_path', 'remote_file_path'], {}), '(local_file_path, remote_file_path)\n', (6470, 6505), False, 'import shutil\n'), ((7304, 7341), 'spack.util.s3.create_s3_session', 's3_util.create_s3_session', (['remote_url'], {}), '(remote_url)\n', (7329, 7341), True, 'import spack.util.s3 as s3_util\n'), ((12372, 12384), 'llnl.util.tty.debug', 'tty.debug', (['e'], {}), '(e)\n', (12381, 12384), True, 'import llnl.util.tty as tty\n'), ((13963, 13982), 'spack.util.url.parse', 'url_util.parse', (['url'], {}), '(url)\n', (13977, 13982), True, 'import spack.util.url as url_util\n'), ((1404, 1436), 'itertools.product', 'product', (['"""Aa"""', '_separators', '"""Rr"""'], {}), "('Aa', _separators, 'Rr')\n", (1411, 1436), False, 'from itertools import product\n'), ((1540, 1572), 'itertools.product', 'product', (['"""Cc"""', '_separators', '"""Ll"""'], {}), "('Cc', _separators, 'Ll')\n", (1547, 1572), False, 'from itertools import product\n'), ((1672, 1704), 'itertools.product', 'product', (['"""Cc"""', '_separators', '"""Tt"""'], {}), "('Cc', _separators, 'Tt')\n", (1679, 1704), False, 'from itertools import product\n'), ((1842, 1874), 'itertools.product', 'product', (['"""Ll"""', '_separators', '"""Mm"""'], {}), "('Ll', _separators, 'Mm')\n", (1849, 1874), False, 'from itertools import product\n'), ((3375, 3419), 'spack.util.url.parse', 'url_util.parse', (['endpoint_url'], {'scheme': '"""https"""'}), "(endpoint_url, scheme='https')\n", (3389, 3419), True, 'import spack.util.url as url_util\n'), ((4193, 4221), 'ssl.create_default_context', 'ssl.create_default_context', ([], {}), '()\n', (4219, 4221), False, 'import ssl\n'), ((5561, 5581), 'spack.util.url.format', 'url_util.format', (['url'], {}), '(url)\n', (5576, 5581), True, 'import spack.util.url as url_util\n'), ((6553, 6597), 'os.rename', 'os.rename', (['local_file_path', 'remote_file_path'], {}), '(local_file_path, remote_file_path)\n', (6562, 6597), False, 'import os\n'), ((7502, 7528), 'os.remove', 'os.remove', (['local_file_path'], {}), '(local_file_path)\n', (7511, 7528), False, 'import os\n'), ((9262, 9301), 'os.path.relpath', 'os.path.relpath', (["entry['Key']", 'url.path'], {}), "(entry['Key'], url.path)\n", (9277, 9301), False, 'import os\n'), ((12470, 12665), 'llnl.util.tty.warn', 'tty.warn', (['"""Spack was unable to fetch url list due to a certificate verification problem. You can try running spack -k, which will not check SSL certificates. Use this at your own risk."""'], {}), "(\n 'Spack was unable to fetch url list due to a certificate verification problem. You can try running spack -k, which will not check SSL certificates. Use this at your own risk.'\n )\n", (12478, 12665), True, 'import llnl.util.tty as tty\n'), ((13388, 13410), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (13408, 13410), False, 'import traceback\n'), ((17703, 17720), 're.search', 're.search', (['r', 'url'], {}), '(r, url)\n', (17712, 17720), False, 'import re\n'), ((10853, 10878), 'codecs.getreader', 'codecs.getreader', (['"""utf-8"""'], {}), "('utf-8')\n", (10869, 10878), False, 'import codecs\n'), ((6984, 7031), 'shutil.copy2', 'shutil.copy2', (['local_file_path', 'remote_file_path'], {}), '(local_file_path, remote_file_path)\n', (6996, 7031), False, 'import shutil\n'), ((7052, 7078), 'os.remove', 'os.remove', (['local_file_path'], {}), '(local_file_path)\n', (7061, 7078), False, 'import os\n')]
from typing import Tuple from Simulation import Simulation from hydrocarbon_problem.api.api_base import BaseAspenDistillationAPI from hydrocarbon_problem.api.types import StreamSpecification, ColumnInputSpecification, \ ColumnOutputSpecification, ProductSpecification, PerCompoundProperty PATH = 'C:/Users/s2199718/Desktop/RL_PD/AspenSimulation/HydrocarbonMixture.bkp' class AspenAPI(BaseAspenDistillationAPI): def __init__(self): self._flowsheet: Simulation = Simulation(PATH=PATH, VISIBILITY=False) self._feed_name: str = "S1" self._tops_name: str = "S2" self._bottoms_name: str = "S3" self._name_to_aspen_name = PerCompoundProperty(ethane="ETHANE", propane="PROPANE", isobutane="I-BUTANE", n_butane="N-BUTANE", isopentane="I-PENTAN", n_pentane="N-PENTAN") def set_input_stream_specification(self, stream_specification: StreamSpecification) -> None: """Sets the input stream to a column to fit the stream specification""" # Defining the Thermodynamic Properties self._flowsheet.STRM_Temperature(self._feed_name, stream_specification.temperature) self._flowsheet.STRM_Pressure(self._feed_name, stream_specification.pressure) # Defining the Stream Composition for the Feed self._flowsheet.STRM_Flowrate(self._feed_name, self._name_to_aspen_name.ethane, stream_specification.molar_flows.ethane) self._flowsheet.STRM_Flowrate(self._feed_name, self._name_to_aspen_name.propane, stream_specification.molar_flows.propane) self._flowsheet.STRM_Flowrate(self._feed_name, self._name_to_aspen_name.isobutane, stream_specification.molar_flows.isobutane) self._flowsheet.STRM_Flowrate(self._feed_name, self._name_to_aspen_name.n_butane, stream_specification.molar_flows.n_butane) self._flowsheet.STRM_Flowrate(self._feed_name, self._name_to_aspen_name.isopentane, stream_specification.molar_flows.isopentane) self._flowsheet.STRM_Flowrate(self._feed_name, self._name_to_aspen_name.n_pentane, stream_specification.molar_flows.n_pentane) def get_output_stream_specifications(self) -> Tuple[StreamSpecification, StreamSpecification]: # Getting the physical values of Top streams tops_temperature = self._flowsheet.STRM_Get_Temperature(self._tops_name) tops_pressure = self._flowsheet.STRM_Get_Pressure(self._tops_name) # Acquiring the outputs out of the Destillate (Top Stream) tops_ethane = self._flowsheet.STRM_Get_Outputs(self._tops_name, self._name_to_aspen_name.ethane) tops_propane = self._flowsheet.STRM_Get_Outputs(self._tops_name, self._name_to_aspen_name.propane) tops_isobutane = self._flowsheet.STRM_Get_Outputs(self._tops_name, self._name_to_aspen_name.isobutane) tops_n_butane = self._flowsheet.STRM_Get_Outputs(self._tops_name, self._name_to_aspen_name.n_butane) tops_isopentane = self._flowsheet.STRM_Get_Outputs(self._tops_name, self._name_to_aspen_name.isopentane) tops_n_pentane = self._flowsheet.STRM_Get_Outputs(self._tops_name, self._name_to_aspen_name.n_pentane) # Passing all the variables to their respective "slot" tops_specifications = StreamSpecification(temperature=tops_temperature, pressure=tops_pressure, molar_flows=PerCompoundProperty(ethane=tops_ethane, propane=tops_propane, isobutane=tops_isobutane, n_butane=tops_n_butane, isopentane=tops_isopentane, n_pentane=tops_n_pentane)) # Getting the physical values of Top streams bots_temperature = self._flowsheet.STRM_Get_Temperature(self._bottoms_name) bots_pressure = self._flowsheet.STRM_Get_Pressure(self._bottoms_name) # Acquiring the outputs out of the Bottom (Bottom Stream) bots_ethane = self._flowsheet.STRM_Get_Outputs(self._bottoms_name, self._name_to_aspen_name.ethane) bots_propane = self._flowsheet.STRM_Get_Outputs(self._bottoms_name, self._name_to_aspen_name.propane) bots_isobutane = self._flowsheet.STRM_Get_Outputs(self._bottoms_name, self._name_to_aspen_name.isobutane) bots_n_butane = self._flowsheet.STRM_Get_Outputs(self._bottoms_name, self._name_to_aspen_name.n_butane) bots_isopentane = self._flowsheet.STRM_Get_Outputs(self._bottoms_name, self._name_to_aspen_name.isopentane) bots_n_pentane = self._flowsheet.STRM_Get_Outputs(self._bottoms_name, self._name_to_aspen_name.n_pentane) # Tubulating the Results of the Bottom Stream bots_specifications = StreamSpecification(temperature=bots_temperature, pressure=bots_pressure, molar_flows=PerCompoundProperty(ethane=bots_ethane, propane=bots_propane, isobutane=bots_isobutane, n_butane=bots_n_butane, isopentane=bots_isopentane, n_pentane=bots_n_pentane)) return tops_specifications, bots_specifications def get_simulated_column_properties(self) -> ColumnOutputSpecification: # D_F_Location = self._flowsheet.BLK_Get_FeedLocation() # D_Pressure = self._flowsheet.BLK_Get_Pressure() # D_Reflux_Ratio = self._flowsheet.BLK_Get_RefluxRatio() # D_Reboiler_Ratio = self._flowsheet.BLK_Get_ReboilerRatio() D_Cond_Duty = self._flowsheet.BLK_Get_Condenser_Duty() D_Reb_Duty = self._flowsheet.BLK_Get_Reboiler_Duty() D_Col_Diameter = self._flowsheet.BLK_Get_Column_Diameter() D_Specifications = ColumnOutputSpecification(condensor_duty=D_Cond_Duty, reboiler_duty=D_Reb_Duty, diameter=D_Col_Diameter) return D_Specifications def set_column_specification(self, column_specification: ColumnInputSpecification) -> None: self._flowsheet.BLK_NumberOfStages(column_specification.n_stages) self._flowsheet.BLK_FeedLocation(column_specification.feed_stage_location) self._flowsheet.BLK_Pressure(column_specification.condensor_pressure) self._flowsheet.BLK_RefluxRatio(column_specification.reflux_ratio) self._flowsheet.BLK_ReboilerRatio(column_specification.reboil_ratio) def solve_flowsheet(self) -> bool: self._flowsheet.Run() def get_column_cost(self, column_specification: ColumnOutputSpecification) -> float: """Calculates the TAC of the column.""" raise NotImplementedError def get_stream_value(self, stream_specification: StreamSpecification) -> float: """Calculates the value (per year) of a stream.""" raise NotImplementedError def stream_is_product(self, stream_specification: StreamSpecification, product_specification: ProductSpecification) -> bool: """Checks whether a stream meets the product specification.""" raise NotImplementedError if __name__ == '__main__': from hydrocarbon_problem.api.api_tests import test_api aspen_api = AspenAPI() test_api(aspen_api)
[ "Simulation.Simulation", "hydrocarbon_problem.api.api_tests.test_api", "hydrocarbon_problem.api.types.PerCompoundProperty", "hydrocarbon_problem.api.types.ColumnOutputSpecification" ]
[((8061, 8080), 'hydrocarbon_problem.api.api_tests.test_api', 'test_api', (['aspen_api'], {}), '(aspen_api)\n', (8069, 8080), False, 'from hydrocarbon_problem.api.api_tests import test_api\n'), ((481, 520), 'Simulation.Simulation', 'Simulation', ([], {'PATH': 'PATH', 'VISIBILITY': '(False)'}), '(PATH=PATH, VISIBILITY=False)\n', (491, 520), False, 'from Simulation import Simulation\n'), ((667, 820), 'hydrocarbon_problem.api.types.PerCompoundProperty', 'PerCompoundProperty', ([], {'ethane': '"""ETHANE"""', 'propane': '"""PROPANE"""', 'isobutane': '"""I-BUTANE"""', 'n_butane': '"""N-BUTANE"""', 'isopentane': '"""I-PENTAN"""', 'n_pentane': '"""N-PENTAN"""'}), "(ethane='ETHANE', propane='PROPANE', isobutane=\n 'I-BUTANE', n_butane='N-BUTANE', isopentane='I-PENTAN', n_pentane=\n 'N-PENTAN')\n", (686, 820), False, 'from hydrocarbon_problem.api.types import StreamSpecification, ColumnInputSpecification, ColumnOutputSpecification, ProductSpecification, PerCompoundProperty\n'), ((6608, 6717), 'hydrocarbon_problem.api.types.ColumnOutputSpecification', 'ColumnOutputSpecification', ([], {'condensor_duty': 'D_Cond_Duty', 'reboiler_duty': 'D_Reb_Duty', 'diameter': 'D_Col_Diameter'}), '(condensor_duty=D_Cond_Duty, reboiler_duty=\n D_Reb_Duty, diameter=D_Col_Diameter)\n', (6633, 6717), False, 'from hydrocarbon_problem.api.types import StreamSpecification, ColumnInputSpecification, ColumnOutputSpecification, ProductSpecification, PerCompoundProperty\n'), ((3669, 3843), 'hydrocarbon_problem.api.types.PerCompoundProperty', 'PerCompoundProperty', ([], {'ethane': 'tops_ethane', 'propane': 'tops_propane', 'isobutane': 'tops_isobutane', 'n_butane': 'tops_n_butane', 'isopentane': 'tops_isopentane', 'n_pentane': 'tops_n_pentane'}), '(ethane=tops_ethane, propane=tops_propane, isobutane=\n tops_isobutane, n_butane=tops_n_butane, isopentane=tops_isopentane,\n n_pentane=tops_n_pentane)\n', (3688, 3843), False, 'from hydrocarbon_problem.api.types import StreamSpecification, ColumnInputSpecification, ColumnOutputSpecification, ProductSpecification, PerCompoundProperty\n'), ((5422, 5596), 'hydrocarbon_problem.api.types.PerCompoundProperty', 'PerCompoundProperty', ([], {'ethane': 'bots_ethane', 'propane': 'bots_propane', 'isobutane': 'bots_isobutane', 'n_butane': 'bots_n_butane', 'isopentane': 'bots_isopentane', 'n_pentane': 'bots_n_pentane'}), '(ethane=bots_ethane, propane=bots_propane, isobutane=\n bots_isobutane, n_butane=bots_n_butane, isopentane=bots_isopentane,\n n_pentane=bots_n_pentane)\n', (5441, 5596), False, 'from hydrocarbon_problem.api.types import StreamSpecification, ColumnInputSpecification, ColumnOutputSpecification, ProductSpecification, PerCompoundProperty\n')]
import random def ReLU(x, derivative=False): """ ReLU function with corresponding derivative """ if derivative: x[x <= 0] = 0 x[x > 0] = 1 return x x[x < 0] = 0 return x def ReLU_uniform_random(): """ Ideal weight starting values for ReLU """ return random.uniform(0.005, 0.2) def uniform_random(): """ Generic uniform random from -n to n given output is multiplied by n """ return random.uniform(-1, 1)
[ "random.uniform" ]
[((301, 327), 'random.uniform', 'random.uniform', (['(0.005)', '(0.2)'], {}), '(0.005, 0.2)\n', (315, 327), False, 'import random\n'), ((442, 463), 'random.uniform', 'random.uniform', (['(-1)', '(1)'], {}), '(-1, 1)\n', (456, 463), False, 'import random\n')]
#!/bin/python import unittest import logging import os import sys from src.message import message class message_test(unittest.TestCase): def test_from_message_record(self): message_record = message( msg_id=185, channel_id=82, source_id=50, source_chat_id='111111', msg='Hello world') row = message_record.str().split(',') row = [e.replace("'", "") if e.find("'") > -1 else int(e) for e in row] message_record_from_row = message.from_message_record(row, False) ## Positive test self.assertEqual(message_record.date, message_record_from_row.date) self.assertEqual(message_record.time, message_record_from_row.time) self.assertEqual(message_record.msg_id, message_record_from_row.msg_id) self.assertEqual(message_record.channel_id, message_record_from_row.channel_id) self.assertEqual(message_record.source_id, message_record_from_row.source_id) self.assertEqual(message_record.source_chat_id, message_record_from_row.source_chat_id) self.assertEqual(message_record.msg, message_record_from_row.msg) ## Negative test message_record_from_row = message.from_message_record(None) self.assertEqual(0, message_record_from_row.msg_id) self.assertEqual(0, message_record_from_row.channel_id) self.assertEqual(0, message_record_from_row.source_id) self.assertEqual('', message_record_from_row.source_chat_id) self.assertEqual('', message_record_from_row.msg) if __name__ == '__main__': unittest.main()
[ "unittest.main", "src.message.message", "src.message.message.from_message_record" ]
[((1720, 1735), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1733, 1735), False, 'import unittest\n'), ((204, 300), 'src.message.message', 'message', ([], {'msg_id': '(185)', 'channel_id': '(82)', 'source_id': '(50)', 'source_chat_id': '"""111111"""', 'msg': '"""Hello world"""'}), "(msg_id=185, channel_id=82, source_id=50, source_chat_id='111111',\n msg='Hello world')\n", (211, 300), False, 'from src.message import message\n'), ((598, 637), 'src.message.message.from_message_record', 'message.from_message_record', (['row', '(False)'], {}), '(row, False)\n', (625, 637), False, 'from src.message import message\n'), ((1316, 1349), 'src.message.message.from_message_record', 'message.from_message_record', (['None'], {}), '(None)\n', (1343, 1349), False, 'from src.message import message\n')]
from sqlalchemy import Column, Integer, String, Date from sqlalchemy.ext.associationproxy import association_proxy from sqlalchemy.orm import relationship from app.db.session import Base from app.models import CharacterEpisode class Episode(Base): __tablename__ = "episode" id = Column(Integer, primary_key=True, index=True) name = Column(String, unique=True) air_date = Column(Date) segment = Column(String, unique=True) characters = relationship("CharacterEpisode", back_populates="episode") comments = relationship("Comment", back_populates="episode") association_ids = association_proxy( "characters", "character_id", creator=lambda cid: CharacterEpisode(character_id=cid), )
[ "sqlalchemy.orm.relationship", "sqlalchemy.Column", "app.models.CharacterEpisode" ]
[((291, 336), 'sqlalchemy.Column', 'Column', (['Integer'], {'primary_key': '(True)', 'index': '(True)'}), '(Integer, primary_key=True, index=True)\n', (297, 336), False, 'from sqlalchemy import Column, Integer, String, Date\n'), ((348, 375), 'sqlalchemy.Column', 'Column', (['String'], {'unique': '(True)'}), '(String, unique=True)\n', (354, 375), False, 'from sqlalchemy import Column, Integer, String, Date\n'), ((391, 403), 'sqlalchemy.Column', 'Column', (['Date'], {}), '(Date)\n', (397, 403), False, 'from sqlalchemy import Column, Integer, String, Date\n'), ((418, 445), 'sqlalchemy.Column', 'Column', (['String'], {'unique': '(True)'}), '(String, unique=True)\n', (424, 445), False, 'from sqlalchemy import Column, Integer, String, Date\n'), ((464, 522), 'sqlalchemy.orm.relationship', 'relationship', (['"""CharacterEpisode"""'], {'back_populates': '"""episode"""'}), "('CharacterEpisode', back_populates='episode')\n", (476, 522), False, 'from sqlalchemy.orm import relationship\n'), ((538, 587), 'sqlalchemy.orm.relationship', 'relationship', (['"""Comment"""'], {'back_populates': '"""episode"""'}), "('Comment', back_populates='episode')\n", (550, 587), False, 'from sqlalchemy.orm import relationship\n'), ((704, 738), 'app.models.CharacterEpisode', 'CharacterEpisode', ([], {'character_id': 'cid'}), '(character_id=cid)\n', (720, 738), False, 'from app.models import CharacterEpisode\n')]
import json #hack for python2 support try: from .blkdiscoveryutil import * except: from blkdiscoveryutil import * class LsBlk(BlkDiscoveryUtil): def disks(self): retval = [] parent = self.details() for path, diskdetails in parent.items(): if not diskdetails.get('type') == "disk": continue retval.append(path) return retval def label_children(self,retval): if not retval.get('children'): return children = {} for child in retval['children']: self.label_children(child) if child.get('name'): name = child['name'] else: name = "UNKNOWN" children[name] = child retval['children'] = children def details(self): retval = {} rawoutput = self.subprocess_check_output(["lsblk", '--json', '-O', '-p']) parent = json.loads(rawoutput) for child in parent.get('blockdevices',[]): #print child['id'] + child['class'] path = child.get('name') retval[path] = child for disk, details in retval.items(): self.label_children(details) return self.stringify(retval) if __name__ == '__main__': import pprint pp = pprint.PrettyPrinter(indent=4) l = LsBlk() devdata = l.details() pp.pprint(devdata) disks = l.disks() pp.pprint(disks)
[ "pprint.PrettyPrinter", "json.loads" ]
[((1317, 1347), 'pprint.PrettyPrinter', 'pprint.PrettyPrinter', ([], {'indent': '(4)'}), '(indent=4)\n', (1337, 1347), False, 'import pprint\n'), ((946, 967), 'json.loads', 'json.loads', (['rawoutput'], {}), '(rawoutput)\n', (956, 967), False, 'import json\n')]