code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' from typing import List from bs4 import BeautifulSoup from base_parser import BaseParser class SquarefactionRu_Parser(BaseParser): def _parse(self) -> List[str]: url = f'http://squarefaction.ru/main/search/games?q={self.game_name}' rs = self.send_get(url) root = BeautifulSoup(rs.content, 'html.parser') # http://squarefaction.ru/main/search/games?q=dead+space if '/main/search/games' in rs.url: self.log_info(f'Parsing of game list') for game_block in root.select('#games > .entry'): title = self.get_norm_text(game_block.select_one('.name')) if not self.is_found_game(title): continue # <div class="infos">TPS,Survival Horror,Action</div> genres = self.get_norm_text(game_block.select_one('.infos')).split(',') # Сойдет первый, совпадающий по имени, вариант return genres # http://squarefaction.ru/game/dead-space else: self.log_info(f'Parsing of game page') game_block = root.select_one('#page-info') if game_block: title = self.get_norm_text(game_block.select_one('#title')) if not self.is_found_game(title): self.log_warn(f'Not match game title {title!r}') # <td class="nowraps-links"> # <a href="/games?genre=tps">TPS</a>, # <a href="/games?genre=survival-horror">Survival Horror</a>, # <a href="/games?genre=action">Action</a> # </td> genres = [ self.get_norm_text(a) for a in game_block.select('a') if '?genre=' in a['href'] ] # Сойдет первый, совпадающий по имени, вариант return genres self.log_info(f'Not found game {self.game_name!r}') return [] def get_game_genres(game_name: str, *args, **kwargs) -> List[str]: return SquarefactionRu_Parser(*args, **kwargs).get_game_genres(game_name) if __name__ == '__main__': from common import _common_test _common_test(get_game_genres) # Search 'Hellgate: London'... # Genres: ['Action RPG'] # # Search 'The Incredible Adventures of Van Helsing'... # Genres: ['Action RPG'] # # Search 'Dark Souls: Prepare to Die Edition'... # Genres: [] # # Search 'Twin Sector'... # Genres: [] # # Search 'Call of Cthulhu: Dark Corners of the Earth'... # Genres: ['Survival Horror']
[ "bs4.BeautifulSoup", "common._common_test" ]
[((2240, 2269), 'common._common_test', '_common_test', (['get_game_genres'], {}), '(get_game_genres)\n', (2252, 2269), False, 'from common import _common_test\n'), ((368, 408), 'bs4.BeautifulSoup', 'BeautifulSoup', (['rs.content', '"""html.parser"""'], {}), "(rs.content, 'html.parser')\n", (381, 408), False, 'from bs4 import BeautifulSoup\n')]
#!/usr/bin/env python """ Unit tests for Regional Intersection Graph -- NetworkX - test_nxgraph_create - test_nxgraph_sweepctor - test_nxgraph_mdsweepctor - test_nxgraph_sweepctor_graph - test_nxgraph_sweepctor_random """ from io import StringIO from typing import List, Tuple from unittest import TestCase from pprint import pprint from networkx import networkx as nx from slig.datastructs.rigraph import RIGraph from slig.datastructs.region import Region class TestRIGraph(TestCase): test_regions: List[Region] def setUp(self): self.test_regions = [] self.test_regions.append(Region([0, 0], [5, 5])) self.test_regions.append(Region([2, 2], [5, 10])) self.test_regions.append(Region([1, 5], [3, 7])) self.test_regions.append(Region([-5, 5], [1, 7])) self.test_regions.append(Region([-5, 5], [2, 7])) def test_nxgraph_create(self): graph = RIGraph(dimension=1) self.assertTrue(graph.G is not None) self.assertTrue(isinstance(graph.G, nx.Graph)) def test_nxgraph_contains(self): dimension = self.test_regions[0].dimension graph = RIGraph(dimension=dimension) for region in self.test_regions[0:3]: graph.put_region(region) self.assertTrue(self.test_regions[0].id in graph) def test_nxgraph_put_region(self): dimension = self.test_regions[0].dimension graph = RIGraph(dimension=dimension) for region in self.test_regions: graph.put_region(region) self.assertEqual(self.test_regions, list(graph.regions)) def test_nxgraph_put_intersect(self): dimension = self.test_regions[0].dimension graph = RIGraph(dimension=dimension) graph.put_region(self.test_regions[0]) graph.put_region(self.test_regions[1]) graph.put_intersection(self.test_regions[0], self.test_regions[1]) intersection = self.test_regions[0].get_intersection(self.test_regions[1]) self.assertEqual(intersection, list(graph.intersections)[0]) def test_nxgraph_to_dict(self): dimension = self.test_regions[0].dimension graph = RIGraph(dimension=dimension) graph.put_region(self.test_regions[0]) graph.put_region(self.test_regions[1]) graph.put_intersection(self.test_regions[0], self.test_regions[1]) intersection = self.test_regions[0].get_intersection(self.test_regions[1]) graphdict = {'id':graph.id,'dimension':dimension,'json_graph':'node_link', 'graph':{ 'directed': False, 'multigraph': False, 'graph':{}, 'nodes':[{'id':r.id, 'region':r} for r in graph.regions], 'links':[{'source': self.test_regions[0].id, 'target': self.test_regions[1].id, 'region': intersection}] }} self.assertEqual(graphdict, graph.to_dict()) def test_nxgraph_from_dict(self): dimension = self.test_regions[0].dimension graph = RIGraph(dimension=dimension) graph.put_region(self.test_regions[0]) graph.put_region(self.test_regions[1]) graph.put_intersection(self.test_regions[0], self.test_regions[1]) self.assertEqual(graph.to_dict(), RIGraph.from_dict(graph.to_dict()).to_dict())
[ "slig.datastructs.rigraph.RIGraph", "slig.datastructs.region.Region" ]
[((888, 908), 'slig.datastructs.rigraph.RIGraph', 'RIGraph', ([], {'dimension': '(1)'}), '(dimension=1)\n', (895, 908), False, 'from slig.datastructs.rigraph import RIGraph\n'), ((1103, 1131), 'slig.datastructs.rigraph.RIGraph', 'RIGraph', ([], {'dimension': 'dimension'}), '(dimension=dimension)\n', (1110, 1131), False, 'from slig.datastructs.rigraph import RIGraph\n'), ((1364, 1392), 'slig.datastructs.rigraph.RIGraph', 'RIGraph', ([], {'dimension': 'dimension'}), '(dimension=dimension)\n', (1371, 1392), False, 'from slig.datastructs.rigraph import RIGraph\n'), ((1636, 1664), 'slig.datastructs.rigraph.RIGraph', 'RIGraph', ([], {'dimension': 'dimension'}), '(dimension=dimension)\n', (1643, 1664), False, 'from slig.datastructs.rigraph import RIGraph\n'), ((2074, 2102), 'slig.datastructs.rigraph.RIGraph', 'RIGraph', ([], {'dimension': 'dimension'}), '(dimension=dimension)\n', (2081, 2102), False, 'from slig.datastructs.rigraph import RIGraph\n'), ((2868, 2896), 'slig.datastructs.rigraph.RIGraph', 'RIGraph', ([], {'dimension': 'dimension'}), '(dimension=dimension)\n', (2875, 2896), False, 'from slig.datastructs.rigraph import RIGraph\n'), ((598, 620), 'slig.datastructs.region.Region', 'Region', (['[0, 0]', '[5, 5]'], {}), '([0, 0], [5, 5])\n', (604, 620), False, 'from slig.datastructs.region import Region\n'), ((651, 674), 'slig.datastructs.region.Region', 'Region', (['[2, 2]', '[5, 10]'], {}), '([2, 2], [5, 10])\n', (657, 674), False, 'from slig.datastructs.region import Region\n'), ((705, 727), 'slig.datastructs.region.Region', 'Region', (['[1, 5]', '[3, 7]'], {}), '([1, 5], [3, 7])\n', (711, 727), False, 'from slig.datastructs.region import Region\n'), ((758, 781), 'slig.datastructs.region.Region', 'Region', (['[-5, 5]', '[1, 7]'], {}), '([-5, 5], [1, 7])\n', (764, 781), False, 'from slig.datastructs.region import Region\n'), ((812, 835), 'slig.datastructs.region.Region', 'Region', (['[-5, 5]', '[2, 7]'], {}), '([-5, 5], [2, 7])\n', (818, 835), False, 'from slig.datastructs.region import Region\n')]
# -*- coding: utf-8 -*- # Written by <NAME> (<EMAIL>) import os import pprint import torch import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms from wbia_orientation.config.default import _C as cfg # NOQA from wbia_orientation.config.default import update_config from wbia_orientation.core.function import validate from wbia_orientation.dataset import custom_transforms from wbia_orientation.dataset.animal import AnimalDataset from wbia_orientation.train import parse_args, _make_model, _model_to_gpu, _make_loss from wbia_orientation.utils.utils import create_logger def _make_test_data(cfg, logger): """Initialise train and validation loaders as per config parameters Input: cfg: config object logger: logging object Returns: test_loader: Data Loader over test dataset test_dataset: test dataset object """ test_transform = transforms.Compose( [ custom_transforms.CropObjectAlignedArea(noise=0.0), custom_transforms.Resize(cfg.MODEL.IMSIZE), custom_transforms.ToTensor(), custom_transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], input_size=cfg.MODEL.IMSIZE[0], ), ] ) test_dataset = AnimalDataset(cfg, cfg.DATASET.TEST_SET, test_transform) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=cfg.TEST.BS * len(cfg.GPUS), shuffle=False, num_workers=cfg.WORKERS, pin_memory=cfg.PIN_MEMORY, ) return test_loader, test_dataset def main(): args = parse_args() update_config(cfg, args) logger, final_output_dir = create_logger(cfg, args.cfg, 'test', False) logger.info(pprint.pformat(args)) logger.info(cfg) # cudnn related setting cudnn.benchmark = cfg.CUDNN.BENCHMARK torch.backends.cudnn.deterministic = cfg.CUDNN.DETERMINISTIC torch.backends.cudnn.enabled = cfg.CUDNN.ENABLED # Initialise models model = _make_model(cfg, is_train=False) # Load model weights if cfg.TEST.MODEL_FILE: model_state_file = cfg.TEST.MODEL_FILE else: model_state_file = os.path.join(final_output_dir, 'best.pth') logger.info('=> loading model from {}'.format(model_state_file)) if cfg.USE_GPU: model.load_state_dict(torch.load(model_state_file)) else: model.load_state_dict( torch.load(model_state_file, map_location=torch.device('cpu')) ) model = _model_to_gpu(model, cfg) # Initialise losses loss_func = _make_loss(cfg) # Initialise data loaders test_loader, test_dataset = _make_test_data(cfg, logger) # Evaluate on validation set perf_indicator = validate( cfg, test_loader, test_dataset, model, loss_func, cfg.DATASET.TEST_SET, final_output_dir, ) logger.info( 'Final results. Accuracy@{} on {} {} is {:.2%}'.format( cfg.TEST.THETA_THR, cfg.DATASET.NAME, cfg.DATASET.TEST_SET, perf_indicator ) ) if __name__ == '__main__': main()
[ "wbia_orientation.train._make_loss", "pprint.pformat", "wbia_orientation.dataset.custom_transforms.ToTensor", "wbia_orientation.config.default.update_config", "torch.load", "wbia_orientation.train.parse_args", "wbia_orientation.train._make_model", "wbia_orientation.dataset.custom_transforms.Resize", "wbia_orientation.dataset.animal.AnimalDataset", "wbia_orientation.train._model_to_gpu", "wbia_orientation.core.function.validate", "torch.device", "wbia_orientation.dataset.custom_transforms.CropObjectAlignedArea", "wbia_orientation.dataset.custom_transforms.Normalize", "os.path.join", "wbia_orientation.utils.utils.create_logger" ]
[((1435, 1491), 'wbia_orientation.dataset.animal.AnimalDataset', 'AnimalDataset', (['cfg', 'cfg.DATASET.TEST_SET', 'test_transform'], {}), '(cfg, cfg.DATASET.TEST_SET, test_transform)\n', (1448, 1491), False, 'from wbia_orientation.dataset.animal import AnimalDataset\n'), ((1770, 1782), 'wbia_orientation.train.parse_args', 'parse_args', ([], {}), '()\n', (1780, 1782), False, 'from wbia_orientation.train import parse_args, _make_model, _model_to_gpu, _make_loss\n'), ((1787, 1811), 'wbia_orientation.config.default.update_config', 'update_config', (['cfg', 'args'], {}), '(cfg, args)\n', (1800, 1811), False, 'from wbia_orientation.config.default import update_config\n'), ((1844, 1887), 'wbia_orientation.utils.utils.create_logger', 'create_logger', (['cfg', 'args.cfg', '"""test"""', '(False)'], {}), "(cfg, args.cfg, 'test', False)\n", (1857, 1887), False, 'from wbia_orientation.utils.utils import create_logger\n'), ((2174, 2206), 'wbia_orientation.train._make_model', '_make_model', (['cfg'], {'is_train': '(False)'}), '(cfg, is_train=False)\n', (2185, 2206), False, 'from wbia_orientation.train import parse_args, _make_model, _model_to_gpu, _make_loss\n'), ((2677, 2702), 'wbia_orientation.train._model_to_gpu', '_model_to_gpu', (['model', 'cfg'], {}), '(model, cfg)\n', (2690, 2702), False, 'from wbia_orientation.train import parse_args, _make_model, _model_to_gpu, _make_loss\n'), ((2743, 2758), 'wbia_orientation.train._make_loss', '_make_loss', (['cfg'], {}), '(cfg)\n', (2753, 2758), False, 'from wbia_orientation.train import parse_args, _make_model, _model_to_gpu, _make_loss\n'), ((2906, 3009), 'wbia_orientation.core.function.validate', 'validate', (['cfg', 'test_loader', 'test_dataset', 'model', 'loss_func', 'cfg.DATASET.TEST_SET', 'final_output_dir'], {}), '(cfg, test_loader, test_dataset, model, loss_func, cfg.DATASET.\n TEST_SET, final_output_dir)\n', (2914, 3009), False, 'from wbia_orientation.core.function import validate\n'), ((1905, 1925), 'pprint.pformat', 'pprint.pformat', (['args'], {}), '(args)\n', (1919, 1925), False, 'import pprint\n'), ((2345, 2387), 'os.path.join', 'os.path.join', (['final_output_dir', '"""best.pth"""'], {}), "(final_output_dir, 'best.pth')\n", (2357, 2387), False, 'import os\n'), ((1058, 1108), 'wbia_orientation.dataset.custom_transforms.CropObjectAlignedArea', 'custom_transforms.CropObjectAlignedArea', ([], {'noise': '(0.0)'}), '(noise=0.0)\n', (1097, 1108), False, 'from wbia_orientation.dataset import custom_transforms\n'), ((1122, 1164), 'wbia_orientation.dataset.custom_transforms.Resize', 'custom_transforms.Resize', (['cfg.MODEL.IMSIZE'], {}), '(cfg.MODEL.IMSIZE)\n', (1146, 1164), False, 'from wbia_orientation.dataset import custom_transforms\n'), ((1178, 1206), 'wbia_orientation.dataset.custom_transforms.ToTensor', 'custom_transforms.ToTensor', ([], {}), '()\n', (1204, 1206), False, 'from wbia_orientation.dataset import custom_transforms\n'), ((1220, 1339), 'wbia_orientation.dataset.custom_transforms.Normalize', 'custom_transforms.Normalize', ([], {'mean': '[0.485, 0.456, 0.406]', 'std': '[0.229, 0.224, 0.225]', 'input_size': 'cfg.MODEL.IMSIZE[0]'}), '(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, \n 0.225], input_size=cfg.MODEL.IMSIZE[0])\n', (1247, 1339), False, 'from wbia_orientation.dataset import custom_transforms\n'), ((2508, 2536), 'torch.load', 'torch.load', (['model_state_file'], {}), '(model_state_file)\n', (2518, 2536), False, 'import torch\n'), ((2633, 2652), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (2645, 2652), False, 'import torch\n')]
# Generated by Django 3.0.9 on 2020-08-04 16:34 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ("resources", "0083_auto_20200804_1634"), ("users", "0059_auto_20200706_1659"), ] operations = [ migrations.AlterField( model_name="authorization", name="partners", field=models.ManyToManyField( blank=True, help_text="The partner(s) for which the editor is authorized.", limit_choices_to=models.Q(status__in=[0, 2]), to="resources.Partner", ), ), migrations.AlterField( model_name="authorization", name="stream", field=models.ForeignKey( blank=True, help_text="The stream for which the editor is authorized.", limit_choices_to=models.Q(partner__status__in=[0, 2]), null=True, on_delete=django.db.models.deletion.SET_NULL, to="resources.Stream", ), ), ]
[ "django.db.models.Q" ]
[((591, 618), 'django.db.models.Q', 'models.Q', ([], {'status__in': '[0, 2]'}), '(status__in=[0, 2])\n', (599, 618), False, 'from django.db import migrations, models\n'), ((958, 994), 'django.db.models.Q', 'models.Q', ([], {'partner__status__in': '[0, 2]'}), '(partner__status__in=[0, 2])\n', (966, 994), False, 'from django.db import migrations, models\n')]
import discord from discord.ext import commands, tasks from discord.ext.commands import has_permissions, CheckFailure from utils.converters import CtxRoleConverter from utils.utils import str2bool from functools import reduce import random import json import utils.embed as embed from utils.colors import * import os #DB from pymongo import MongoClient import logging # ENV from dotenv import dotenv_values ENV = dotenv_values(os.path.dirname(os.path.abspath(__file__)) + "/../.env") class RoleManager(commands.Cog): """ Manager is useful to create and delete roles. You can link a role to a chat or just create a role with a name that you like! """ def __init__(self, client): self.client = client # Some good paramters like timer and other shits with open(os.path.dirname(os.path.abspath(__file__)) + '/../database/utils.json', 'r') as f: info = json.load(f) # Just to log everything :D self.log = logging.getLogger(__name__) # TODO: Loading things :P (I want to put it in a parent class, but i'm not sure at this moment) self.delete_user_message = info['utils']['delete_user_message'] self.delete_system_message = info['utils']['delete_system_message'] self.db_client = MongoClient(ENV['MONGODB']) self.guild_preferences_db = self.db_client[info['mongo']['database']][info['mongo']['collection']] self.channel_permissions = [ "add_reactions", "administrator", "attach_files", "ban_members", "change_nickname", "connect", "create_instant_invite", "deafen_members", "embed_links", "external_emojis", "kick_members", "manage_channels", "manage_emojis", "manage_guild", "manage_messages", "manage_nicknames", "manage_permissions", "manage_roles", "manage_webhooks", "mention_everyone", "move_members", "mute_members", "priority_speaker", "read_message_history", "read_messages", "request_to_speak", "send_messages", "send_tts_messages", "speak", "stream", "use_external_emojis", "use_slash_commands", "use_voice_activation", "value", "view_audit_log", "view_channel", "view_guild_insights" ] @commands.Cog.listener() async def on_guild_channel_update(self, before, after): ''' Function to monitor guild channels and delete a role linked to a channel if the channel was moved to trash ''' # Mudou de categoria if after.category == None: return elif (before.category == None and after.category != None) or (before.category.id != after.category.id): guild = after.guild info = self.guild_preferences_db.find_one({"_id": guild.id}) # Nome criado sempre que um chat é linkado a uma categoria! if before.category != None: role_name = before.category.name + " - " + before.name else: role_name = before.name # Categoria que devo deletar o cargo if after.category.id == info['archives']: for r in guild.roles: if r.name == role_name: await r.delete() embedmsg = embed.createEmbed(title="Cargo associado excluído!", description= f"O cargo '{role_name}' associado ao canal foi excluído devido a movimentação do mesmo para os arquivos.", color=rgb_to_int((random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))), fields=[ ], img="https://cdn.discordapp.com/emojis/753575574546415656.png?v=1") # Send that shit await after.send(embed=embedmsg) self.log.debug(f"Role {role_name} deleted (Channel moved to archives)!") return @commands.Cog.listener() async def on_guild_channel_delete(self, channel): target_type_channels = ["text", "category"] if channel.type.name.lower() not in target_type_channels: return elif channel.type.name.lower() == "text" and channel.category != None: option = channel.category.name + " - " + channel.name # I don't know why i did that shit, but i won't change elif channel.type.name.lower() == "text": option = channel.name else: option = channel.name for r in channel.guild.roles: if r.name == option: role = r await role.delete() self.log.debug(f"Role '{option}' deleted because linked channel was deleted") break return @commands.command(aliases=['criar'], pass_context=True) @has_permissions(manage_roles = True) async def create(self, ctx, *, args: str = "channel"): """Create a new role with the given name """ await ctx.message.delete(delay = self.delete_user_message) linked_keys = ["channel", "category"] role_name = self.linked_role(ctx, args) if args in linked_keys else args # Defining useful variables guild = ctx.guild author = ctx.author msg = ctx.message role_exists, role = await self.role_exists(ctx, role_name) if role_exists: embedmsg = embed.createEmbed(title="CARGO JÁ EXISTE!", description= f"O cargo <@&{role.id}> já está no servidor, não precisa criar de novo!🍻", color=rgb_to_int((random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))), fields=[ ("Como pegar?", f"Apenas digite '.get' e ele será adicionado na sua conta", False) ], img="https://cdn.discordapp.com/emojis/814010519022600192.png?v=1") await msg.channel.send(embed=embedmsg, delete_after= self.delete_system_message) else: # New Role Created! new_role = await guild.create_role(name=role_name, mentionable=True) self.log.info( (f"New role '{new_role.name}' created in guild {guild.name} : {guild.id}").encode('ascii', 'ignore').decode('ascii') ) # TODO: Especificar a mensagem de acordo com o cargo que foi criado! embedmsg = embed.createEmbed(title="Novo Cargo!", description= f"O cargo <@&{new_role.id}> foi criado por <@{author.id}>", color=rgb_to_int((random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))), fields=[ ("Como pegar?", f"Apenas digite .get no chat do cargo ou .get {new_role.name} e ele será adicionado na sua conta", False) ], img="https://cdn.discordapp.com/emojis/859150737509580800.gif?v=1") await msg.channel.send(embed=embedmsg) return @create.error async def create_error(self, ctx, error): await ctx.message.delete(delay = self.delete_user_message) if isinstance(error, CheckFailure): await ctx.send("**Erro:** Você não pode criar um cargo!", delete_after = self.delete_system_message) else: self.log.error(f"{error} - creation of a new role failed") await ctx.send(error, delete_after = self.delete_system_message) # TODO: Parent class too async def role_exists(self, ctx, role_name): """ Method to check if a role exists in the current context, return a status and the role, if it exists. """ conv = commands.RoleConverter() # If found it # The role already exists try: r = await conv.convert(ctx, role_name) return True, r except commands.RoleNotFound: return False, None # TODO: Put it in a parent class def linked_role(self, ctx, type: str): """ This function is used to return a name to a role linked to a channel or category """ guild = ctx.guild author = ctx.author msg = ctx.message if type.lower() == "channel" and msg.channel.category != None: option = msg.channel.category.name + " - " + msg.channel.name elif type.lower() == "channel": option = msg.channel.name elif type.lower() == "category": option = msg.channel.category.name else: raise ValueError("") return option; @commands.command(aliases=['deletar'], pass_context=True) @has_permissions(manage_roles = True) async def delete(self, ctx, *, role: commands.RoleConverter): await ctx.message.delete(delay= self.delete_user_message) await role.delete() await ctx.send(f"**AVISO:** Cargo '{role.name}' apagado do servidor por <@{ctx.author.id}>!") @delete.error async def delete_error(self, ctx, error): await ctx.message.delete(delay = self.delete_user_message) if isinstance(error, CheckFailure): await ctx.send("**Erro:** Você não pode deletar um cargo!", delete_after = self.delete_system_message) else: self.log.error(f"{error} - delete role failed") await ctx.send(error, delete_after = self.delete_system_message) async def _permission(self, ctx, role: CtxRoleConverter, mode: str, perm: str, can: bool): guild = ctx.guild author = ctx.author msg = ctx.message overwrite = discord.PermissionOverwrite() # Fundamental # x.attr_name = s # setattr(x, 'attr_name', s) if perm not in channel_permissions: self.log.debug( f"[.permission] Permission {perm} not found!") return setattr(overwrite, perm, can) if mode == 'category': category = ctx.channel.category await category.set_permissions(role, overwrite = overwrite) elif mode == 'channel': channel = ctx.channel await channel.set_permissions(role, overwrite = overwrite) else: # TODO: N ta funcionando await role.edit(permission = overwrite) self.log.debug( (f'Permission {perm} was changed to {can} in role {role.name} in current category').encode('ascii', 'ignore').decode('ascii') ) fb = 'Permitido' if can else 'Proibido' embedmsg = embed.createEmbed(title="Permissão alterada!", description= f"O cargo <@&{role.id}> foi atualizado por <@{author.id}>", color=rgb_to_int((random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))), fields=[ (f"Permissão '{perm}'", f"Atualizada para {fb}", False) ], img="https://cdn.discordapp.com/emojis/765969524897218594.png?v=1") await msg.channel.send(embed=embedmsg) return @commands.command(pass_context=True) @has_permissions(manage_roles = True, manage_channels = True) async def permission(self, ctx, *, args: str = ""): """ Arg List: ctx -> Discord Context role -> CtxRoleConverter mode -> channel, category or role perm -> permission to change bool -> bool """ await ctx.message.delete(delay = self.delete_user_message) splitted_args = args.split(' ') if len(splitted_args) < 4 or args == "": # Just for now self.log.debug("[.permission] Missing args") await self.permission_tutorial(ctx) return; can = str2bool(splitted_args[-1]) perm = splitted_args[-2] mode = splitted_args[-3] role_name = ' '.join(splitted_args[:-3]) status, role = await self.role_exists(ctx, role_name) await self._permission(ctx, role, mode, perm, can) async def permission_tutorial(self, ctx): embedmsg = embed.createEmbed(title="Configurações de Permissões!", description= f"Verifique a lista de argumentos e permissões", color=rgb_to_int((random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))), fields=[ (f"Argumentos", f"""role -> Role mode -> channel, category or role perm -> permission to change bool -> bool""", False), (f"Permissões", "\n".join([item for item in self.channel_permissions]), False) ], img="https://cdn.discordapp.com/emojis/767241157003837460.png?v=1") await ctx.send(embed=embedmsg) # Setup def setup(client): client.add_cog(RoleManager(client))
[ "pymongo.MongoClient", "os.path.abspath", "utils.utils.str2bool", "discord.ext.commands.command", "json.load", "discord.ext.commands.RoleConverter", "random.randint", "discord.ext.commands.has_permissions", "discord.ext.commands.Cog.listener", "discord.PermissionOverwrite", "logging.getLogger" ]
[((2683, 2706), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (2704, 2706), False, 'from discord.ext import commands, tasks\n'), ((4513, 4536), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (4534, 4536), False, 'from discord.ext import commands, tasks\n'), ((5392, 5446), 'discord.ext.commands.command', 'commands.command', ([], {'aliases': "['criar']", 'pass_context': '(True)'}), "(aliases=['criar'], pass_context=True)\n", (5408, 5446), False, 'from discord.ext import commands, tasks\n'), ((5453, 5487), 'discord.ext.commands.has_permissions', 'has_permissions', ([], {'manage_roles': '(True)'}), '(manage_roles=True)\n', (5468, 5487), False, 'from discord.ext.commands import has_permissions, CheckFailure\n'), ((9298, 9354), 'discord.ext.commands.command', 'commands.command', ([], {'aliases': "['deletar']", 'pass_context': '(True)'}), "(aliases=['deletar'], pass_context=True)\n", (9314, 9354), False, 'from discord.ext import commands, tasks\n'), ((9361, 9395), 'discord.ext.commands.has_permissions', 'has_permissions', ([], {'manage_roles': '(True)'}), '(manage_roles=True)\n', (9376, 9395), False, 'from discord.ext.commands import has_permissions, CheckFailure\n'), ((11839, 11874), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (11855, 11874), False, 'from discord.ext import commands, tasks\n'), ((11881, 11937), 'discord.ext.commands.has_permissions', 'has_permissions', ([], {'manage_roles': '(True)', 'manage_channels': '(True)'}), '(manage_roles=True, manage_channels=True)\n', (11896, 11937), False, 'from discord.ext.commands import has_permissions, CheckFailure\n'), ((1030, 1057), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1047, 1057), False, 'import logging\n'), ((1343, 1370), 'pymongo.MongoClient', 'MongoClient', (["ENV['MONGODB']"], {}), "(ENV['MONGODB'])\n", (1354, 1370), False, 'from pymongo import MongoClient\n'), ((8325, 8349), 'discord.ext.commands.RoleConverter', 'commands.RoleConverter', ([], {}), '()\n', (8347, 8349), False, 'from discord.ext import commands, tasks\n'), ((10359, 10388), 'discord.PermissionOverwrite', 'discord.PermissionOverwrite', ([], {}), '()\n', (10386, 10388), False, 'import discord\n'), ((12560, 12587), 'utils.utils.str2bool', 'str2bool', (['splitted_args[-1]'], {}), '(splitted_args[-1])\n', (12568, 12587), False, 'from utils.utils import str2bool\n'), ((473, 498), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (488, 498), False, 'import os\n'), ((958, 970), 'json.load', 'json.load', (['f'], {}), '(f)\n', (967, 970), False, 'import json\n'), ((871, 896), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (886, 896), False, 'import os\n'), ((11479, 11501), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (11493, 11501), False, 'import random\n'), ((11503, 11525), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (11517, 11525), False, 'import random\n'), ((11527, 11549), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (11541, 11549), False, 'import random\n'), ((13079, 13101), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (13093, 13101), False, 'import random\n'), ((13103, 13125), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (13117, 13125), False, 'import random\n'), ((13127, 13149), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (13141, 13149), False, 'import random\n'), ((6242, 6264), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (6256, 6264), False, 'import random\n'), ((6266, 6288), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (6280, 6288), False, 'import random\n'), ((6290, 6312), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (6304, 6312), False, 'import random\n'), ((7185, 7207), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (7199, 7207), False, 'import random\n'), ((7209, 7231), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (7223, 7231), False, 'import random\n'), ((7233, 7255), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (7247, 7255), False, 'import random\n'), ((4028, 4050), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (4042, 4050), False, 'import random\n'), ((4052, 4074), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (4066, 4074), False, 'import random\n'), ((4076, 4098), 'random.randint', 'random.randint', (['(0)', '(255)'], {}), '(0, 255)\n', (4090, 4098), False, 'import random\n')]
from sqlalchemy import Column, String, Boolean, ForeignKey, Integer, Float from ..db import Base class Attribute(Base): __tablename__ = "attribute" id = Column(Integer, autoincrement=True, primary_key=True, unique=True, nullable=False) type = Column(String(length=256), nullable=False) remote_reference = Column(String(256), nullable=False) key = Column(String(length=256), unique=True) __mapper_args__ = { 'polymorphic_identity': 'attribute', 'polymorphic_on': type } class BooleanAttribute(Attribute): __tablename__ = "boolean_attribute" id = Column(Integer, ForeignKey('attribute.id'), primary_key=True) value = Column(Boolean) __mapper_args__ = { 'polymorphic_identity': bool.__name__ } class IntegerAttribute(Attribute): __tablename__ = "integer_attribute" id = Column(Integer, ForeignKey('attribute.id'), primary_key=True) value = Column(Integer) __mapper_args__ = { 'polymorphic_identity': int.__name__ } class FloatAttribute(Attribute): __tablename__ = "float_attribute" id = Column(Integer, ForeignKey('attribute.id'), primary_key=True) value = Column(Float) __mapper_args__ = { 'polymorphic_identity': float.__name__ } class StringAttribute(Attribute): __tablename__ = "string_attribute" id = Column(Integer, ForeignKey('attribute.id'), primary_key=True) value = Column(String(length=4096)) __mapper_args__ = { 'polymorphic_identity': str.__name__ }
[ "sqlalchemy.String", "sqlalchemy.ForeignKey", "sqlalchemy.Column" ]
[((163, 250), 'sqlalchemy.Column', 'Column', (['Integer'], {'autoincrement': '(True)', 'primary_key': '(True)', 'unique': '(True)', 'nullable': '(False)'}), '(Integer, autoincrement=True, primary_key=True, unique=True, nullable\n =False)\n', (169, 250), False, 'from sqlalchemy import Column, String, Boolean, ForeignKey, Integer, Float\n'), ((676, 691), 'sqlalchemy.Column', 'Column', (['Boolean'], {}), '(Boolean)\n', (682, 691), False, 'from sqlalchemy import Column, String, Boolean, ForeignKey, Integer, Float\n'), ((929, 944), 'sqlalchemy.Column', 'Column', (['Integer'], {}), '(Integer)\n', (935, 944), False, 'from sqlalchemy import Column, String, Boolean, ForeignKey, Integer, Float\n'), ((1177, 1190), 'sqlalchemy.Column', 'Column', (['Float'], {}), '(Float)\n', (1183, 1190), False, 'from sqlalchemy import Column, String, Boolean, ForeignKey, Integer, Float\n'), ((264, 282), 'sqlalchemy.String', 'String', ([], {'length': '(256)'}), '(length=256)\n', (270, 282), False, 'from sqlalchemy import Column, String, Boolean, ForeignKey, Integer, Float\n'), ((330, 341), 'sqlalchemy.String', 'String', (['(256)'], {}), '(256)\n', (336, 341), False, 'from sqlalchemy import Column, String, Boolean, ForeignKey, Integer, Float\n'), ((376, 394), 'sqlalchemy.String', 'String', ([], {'length': '(256)'}), '(length=256)\n', (382, 394), False, 'from sqlalchemy import Column, String, Boolean, ForeignKey, Integer, Float\n'), ((618, 644), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""attribute.id"""'], {}), "('attribute.id')\n", (628, 644), False, 'from sqlalchemy import Column, String, Boolean, ForeignKey, Integer, Float\n'), ((871, 897), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""attribute.id"""'], {}), "('attribute.id')\n", (881, 897), False, 'from sqlalchemy import Column, String, Boolean, ForeignKey, Integer, Float\n'), ((1119, 1145), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""attribute.id"""'], {}), "('attribute.id')\n", (1129, 1145), False, 'from sqlalchemy import Column, String, Boolean, ForeignKey, Integer, Float\n'), ((1369, 1395), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""attribute.id"""'], {}), "('attribute.id')\n", (1379, 1395), False, 'from sqlalchemy import Column, String, Boolean, ForeignKey, Integer, Float\n'), ((1434, 1453), 'sqlalchemy.String', 'String', ([], {'length': '(4096)'}), '(length=4096)\n', (1440, 1453), False, 'from sqlalchemy import Column, String, Boolean, ForeignKey, Integer, Float\n')]
# -*- coding: utf-8 -*- """ SciHub client """ import logging import os import random import urllib import requests from bs4 import BeautifulSoup LOG = logging.getLogger(__name__) LOG.addHandler(logging.NullHandler()) class SciHubClient: """ Client for accessing SciHub """ DEFAULT_HEADERS = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:77.0) Gecko/20100101 Firefox/77.0", } SCIHUB_NOW_URL = "https://sci-hub.now.sh" FALLBACK_BASE_URL = "https://sci-hub.tw" def __init__(self, proxy=None, fallback_base_url=FALLBACK_BASE_URL): self._sess = requests.Session() self._sess.headers.update(self.DEFAULT_HEADERS) self._fallback_base_url = fallback_base_url self._available_base_url_list = self._get_available_scihub_urls() self._set_base_url() if proxy is not None: self._set_proxy(proxy) def _get(self, url, raise_for_status=True, **kwargs): response = self._sess.get(url, **kwargs) if raise_for_status is True: response.raise_for_status() return response def _post(self, url, raise_for_status=True, **kwargs): response = self._sess.post(url, **kwargs) if raise_for_status is True: response.raise_for_status() return response def _get_available_scihub_urls(self): response = self._get(self.SCIHUB_NOW_URL, raise_for_status=False) try: response.raise_for_status() except requests.exceptions.HTTPError: LOG.debug("falling back to %s", self._fallback_base_url) return [self._fallback_base_url] parsed_content = BeautifulSoup(response.content, "html.parser") urls = [] for a_tag in parsed_content.find_all("a", href=True): link = a_tag["href"] if ( "sci-hub" in link # pylint: disable=C0330 and link.startswith("https") # pylint: disable=C0330 and link != self.SCIHUB_NOW_URL # pylint: disable=C0330 ): urls.append(a_tag["href"]) return urls def _set_proxy(self, proxy): self._sess.proxies = { "http": proxy, "https": proxy, } def _set_base_url(self): """ Pick a random url from the available scihub urls set the current base url to the new url """ if not self._available_base_url_list: raise ValueError("Ran out of valid sci-hub urls") (base_url,) = random.sample(self._get_available_scihub_urls(), 1) self._base_url = base_url LOG.debug("url changing to %s", self._base_url) @staticmethod def _get_doi(parsed_response): ((doi,),) = [ [ line.strip().split("'")[1] for line in script.string.split("\n") if "var doi" in line ] for script in parsed_response.find_all("script") if script.string and "var doi" in script.string ] return doi def query(self, query): """ Query for a paper hosted by sci-hub """ response = self._post( self._base_url, data={"request": query}, headers={"Content-Type": "application/x-www-form-urlencoded"}, ) parsed_response = BeautifulSoup(response.content, "html.parser") if parsed_response.find("div").text.endswith("article not found"): raise ValueError(f"Article not found: {query}") cleaned_url = urllib.parse.urlparse( urllib.parse.urldefrag(parsed_response.find("iframe").get("src")).url, scheme="https", ).geturl() return { "doi": self._get_doi(parsed_response), "pdf_url": cleaned_url, } def _download_pdf(self, url): result = self._get(url) if result.headers["Content-Type"] != "application/pdf": raise ValueError("File is not a pdf") return result.content def _get_paper_meta(self, doi): return self._get( urllib.parse.urljoin("https://doi.org", doi), headers={"Accept": "application/vnd.citationstyles.csl+json"}, ).json() def _generate_file_name(self, doi): paper_meta = self._get_paper_meta(doi) # date = "-".join(map(str, paper_meta["indexed"]["date-parts"][0])) ((year, _, _),) = paper_meta["published-print"]["date-parts"] title = paper_meta["title"] # return f"({date}) {title}.pdf" return f"({year}) {title}.pdf" def download(self, query, destination="", filename=None): """ Download paper from sci-hub """ query_result = self.query(query) pdf_string = self._download_pdf(query_result["pdf_url"]) filename = ( self._generate_file_name(query_result["doi"]) if filename is None else filename ) out_path = os.path.join(destination, filename) with open(out_path, "wb") as out_fp: out_fp.write(pdf_string) return {"out_path": out_path, **query_result}
[ "urllib.parse.urljoin", "requests.Session", "logging.NullHandler", "bs4.BeautifulSoup", "os.path.join", "logging.getLogger" ]
[((157, 184), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (174, 184), False, 'import logging\n'), ((200, 221), 'logging.NullHandler', 'logging.NullHandler', ([], {}), '()\n', (219, 221), False, 'import logging\n'), ((604, 622), 'requests.Session', 'requests.Session', ([], {}), '()\n', (620, 622), False, 'import requests\n'), ((1677, 1723), 'bs4.BeautifulSoup', 'BeautifulSoup', (['response.content', '"""html.parser"""'], {}), "(response.content, 'html.parser')\n", (1690, 1723), False, 'from bs4 import BeautifulSoup\n'), ((3389, 3435), 'bs4.BeautifulSoup', 'BeautifulSoup', (['response.content', '"""html.parser"""'], {}), "(response.content, 'html.parser')\n", (3402, 3435), False, 'from bs4 import BeautifulSoup\n'), ((5032, 5067), 'os.path.join', 'os.path.join', (['destination', 'filename'], {}), '(destination, filename)\n', (5044, 5067), False, 'import os\n'), ((4148, 4192), 'urllib.parse.urljoin', 'urllib.parse.urljoin', (['"""https://doi.org"""', 'doi'], {}), "('https://doi.org', doi)\n", (4168, 4192), False, 'import urllib\n')]
from BusArrivalItem import BusArrivalItem from api import call # bus_arrival_item = BusArrivalItem(xml_root.find('msgBody').find('busArrivalItem')) # print(bus_arrival_item) def fetch(station_id: str, route_id: str): response = call( 'busarrivalservice', { 'stationId': station_id, 'routeId': route_id } ) if response is None: return None return ''.join( map( lambda list_element: str(BusArrivalItem(list_element)), response ) ) if __name__ == '__main__': print(fetch('218000952', '241449005'))
[ "BusArrivalItem.BusArrivalItem", "api.call" ]
[((235, 308), 'api.call', 'call', (['"""busarrivalservice"""', "{'stationId': station_id, 'routeId': route_id}"], {}), "('busarrivalservice', {'stationId': station_id, 'routeId': route_id})\n", (239, 308), False, 'from api import call\n'), ((482, 510), 'BusArrivalItem.BusArrivalItem', 'BusArrivalItem', (['list_element'], {}), '(list_element)\n', (496, 510), False, 'from BusArrivalItem import BusArrivalItem\n')]
""" Author: <NAME> GitHub: wafflescore """ from minisom import MiniSom, asymptotic_decay import numpy as np import matplotlib.pyplot as plt import itertools from skimage import measure from skimage.segmentation import random_walker from skimage import filters from scipy.spatial import distance from collections import Counter from timeit import default_timer as timer import random from acse_9_irp_wafflescore import MiscHelpers as mh import logging import sys logging.basicConfig(format='%(asctime)s | %(levelname)s : %(message)s', level=logging.INFO, stream=sys.stdout) def compute_dim(num_sample): """ Compute a default dimension of the SOMs. This function returns the dimension size of the SOMs. The size returned is sqrt(5 * sqrt(num_sample)), with the exception that the minimum dimension size = 10 Parameters ---------- num_sample : int Total number of data points that will populate the SOMs Returns ------- int Ideal dimension. """ dim = 5 * np.sqrt(num_sample) dim = np.int(np.sqrt(dim)) if dim < 10: return 10 else: return dim def som_assemble(in_data, seed, dim, lr=0.5, sigma=2.5): """Initialize the SOMs model for training Parameters ---------- in_data : np.array or list data matrix seed : integer random seed for reproducibility dim : int dimension of the SOMs distance matrix lr : float, optional learning rate, by default 0.5 sigma : float, optional spread of the neighborhood function, by default 2.5 Returns ------- MiniSom an object of Minisom class, see minisom.py for further details """ # Initialization som and weights num_features = np.shape(in_data)[1] som = MiniSom(dim, dim, num_features, sigma=sigma, learning_rate=lr, neighborhood_function='gaussian', random_seed=seed) som.pca_weights_init(in_data) return som def plot_som(som, in_data, label, save=False, save_name='temp'): """plots the distance map / u-matrix of the SOMs along with the label Parameters ---------- som : MiniSom trained Minisom object in_data : np.array or list data matrix label : np.array or list the true label of each data point save : bool, optional flag, by default False save_name : str, optional the name which will be used to save the plot as png file, by default 'temp' """ plt.figure(figsize=(9, 7)) # Plotting the response for each litho-class plt.pcolor(som.distance_map().T, cmap='bone_r') # plotting the distance map as background plt.colorbar() for t, xx in zip(label, in_data): w = som.winner(xx) # getting the winner # palce a marker on the winning position for the sample xx plt.text(w[0]+.5, w[1]+.5, str(t), color=plt.cm.rainbow(t/10.)) plt.axis([0, som.get_weights().shape[0], 0, som.get_weights().shape[1]]) if(save): save_dir = 'SOMs_results/' + save_name + '_plot.png' plt.savefig(save_dir) print('Plot saved at:', save_dir) plt.show() def save_som_report(som, save_name, it, et, report=None): param_vals = str(save_name) + '\n---' + \ '\niterations,' + str(it) + \ '\nelapsed time,' + str(et) + '\n\n' # save report to file fdir = save_name + '_report.csv' print('Report saved at', fdir) mode = 'w' f1 = open(fdir, mode) f1.write(param_vals) if(report): f1.write(str(report)) f1.write('\n\n--------------------\n\n') f1.close() print('Report saved at:', fdir) def histedges_equalN(in_data, nbin=10): """generates a histogram where each bin will contain the same number of data points Parameters ---------- in_data : np.array or list data array nbin : int number of bins to populate, by default 10 Returns ------- np.array numpy array of all the histogram bins """ ttl_dtp = len(in_data) return np.interp(np.linspace(0, ttl_dtp, nbin + 1), np.arange(ttl_dtp), np.sort(in_data)) def plot_u_matrix(som_u_mat): """Plots the distance map / u-matrix of the SOMs Parameters ---------- som : MiniSom trained Minisom object Returns ------- np.array numpy array of all the histogram bins """ f_image = som_u_mat.flatten() fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5)) fig.show() ax1.pcolor(som_u_mat, cmap='bone_r') hist = plt.hist(f_image, histedges_equalN(f_image, 10), density=True) return hist[1] def gen_e_model(n_map, som_label): """generates the Earth model from neuron map""" som_class = [] for i in range(len(n_map)): som_class.append(som_label[n_map[i][0]][n_map[i][1]]) return np.array(som_class) def closest_n(value): """Assign cluster number to the mask's border indexes by using the closest neighbor's value Parameters ---------- value : np.array numpy array of the cluster number, noted that the borders are marked with 0 Returns ------- np.array new label with all the border index populated """ borders = np.array(np.where(value == 0)).T new_label = np.array(value) vals = np.where(value != 0) vals = np.array(vals).T for b in borders: # find index of the closest value c_idx = distance.cdist([b], vals).argmin() new_label[b[0], b[1]] = value[vals[c_idx, 0]][vals[c_idx, 1]] return new_label def KNN(value, k=5, border_val=0): """Assign cluster number to the mask's border indexes by using the K-nearest neighbor method Parameters ---------- value : np.array numpy array of the cluster number, noted that the borders are marked with 0 k : int, optional number of neighbor to consider, by default 5 Returns ------- np.array new label with all the border index populated """ borders = np.array(np.where(value == border_val)).T new_label = np.array(value) vals = np.where(value != 0) if(len(vals[0]) < 5): logging.info("Not enough labeled neighbor to perform KNN.\n\ Will return the original inputted value.") return value vals = np.array(vals).T for b in borders: # find index of the closest k neighbors dist = distance.cdist([b], vals) c_idx = np.argpartition(dist, k) c_idx = c_idx[0, :k] mins_idx = np.array(list(zip(vals[c_idx, 0], vals[c_idx, 1]))) class_counter = Counter() for idx in mins_idx: class_counter[value[idx[0], idx[1]]] += 1 cl = class_counter.most_common(1)[0][0] new_label[b[0], b[1]] = cl return new_label def watershed_level(image, bins, border_width=0.1, plot=False, conn=None): num_bins = len(bins) """Computes and classify the SOM's u-matrix or total gradient using watershed classification method Parameters ---------- image : np.array u-matrix or total gradient of the SOMs bins : np.array numpy array of all the histogram bins plot : bool, optional flag whether to plot the watershed level or not, by default False conn : int, optional connectivity flag for measure.label, by default None Returns ------- np.array numpy array of predicted cluster labels from each watershed level """ ncols = 6 if(plot): fig, axes = plt.subplots(ncols=ncols, nrows=num_bins, figsize=(12, num_bins*3), sharex=True, sharey=True) ax = axes.ravel() ws_labels = np.zeros((num_bins * ncols, image.shape[0], image.shape[1])) for i in range(num_bins): val = filters.threshold_local(image, block_size=3 + 2*i) block_mask = (image < val) markers = measure.label(block_mask, connectivity=conn) ws_labels[i*ncols] = closest_n(markers) - 1 ws_labels[i*ncols + 1] = KNN(markers) - 1 ws_labels[i*ncols + 2] = random_walker(image, markers) if(plot): ax[i*ncols].imshow(ws_labels[i*ncols + 0], origin='lower') ax[i*ncols].title.set_text('b_cn: it={} n_class={}'.format(i, len(np.unique(ws_labels[i*ncols + 0])))) ax[i*ncols + 1].imshow(ws_labels[i*ncols + 1], origin='lower') ax[i*ncols + 1].title.set_text('b_knn: it={} n_class={}'.format(i, len(np.unique(ws_labels[i*ncols + 1])))) ax[i*ncols + 2].imshow(ws_labels[i*ncols + 2], origin='lower') ax[i*ncols + 2].title.set_text('b_rw: it={} n_class={}'.format(i, len(np.unique(ws_labels[i*ncols + 2])))) thres_mask = (image <= bins[i]) markers = measure.label(thres_mask, connectivity=conn) ws_labels[i*ncols + 3] = closest_n(markers) - 1 ws_labels[i*ncols + 4] = KNN(markers) - 1 ws_labels[i*ncols + 5] = random_walker(image, markers) if(plot): ax[i*ncols + 3].imshow(ws_labels[i*ncols + 3], origin='lower') ax[i*ncols + 3].title.set_text('b_cn: it={} n_class={}'.format(i, len(np.unique(ws_labels[i*ncols + 3])))) ax[i*ncols + 4].imshow(ws_labels[i*ncols + 4], origin='lower') ax[i*ncols + 4].title.set_text('b_knn: it={} n_class={}'.format(i, len(np.unique(ws_labels[i*ncols + 4])))) ax[i*ncols + 5].imshow(ws_labels[i*ncols + 5], origin='lower') ax[i*ncols + 5].title.set_text('b_rw: it={} n_class={}'.format(i, len(np.unique(ws_labels[i*ncols + 5])))) return ws_labels def eval_ws(in_data, ws_labels, n_map, label=None, re_all=False): """Evaluate and return the best watershed prediction result Parameters ---------- in_data : np.array or list data matrix ws_labels : np.array predicted cluster labels from watershed segmentation n_map : np.array array of the winner neuron label : np.array or list, optional the true label of each data point Returns ------- np.array list of best watershed labels, may contain more than one set """ len_watershed = ws_labels.shape[0] cluster_labels = np.zeros((len_watershed, len(in_data))) avg_sils = np.full(len_watershed, np.nan) ch_scs = np.full(len_watershed, np.nan) if(label is not None): avg_ents = np.full(len_watershed, np.nan) avg_purs = np.full(len_watershed, np.nan) for i in range(len_watershed): param = {'watershed idx': i} if(len(np.unique(ws_labels[i])) > 1): cluster_labels[i] = gen_e_model(n_map, ws_labels[i]) avg_sils[i] = mh.int_eval_silhouette(in_data, cluster_labels[i], method='som_watershed', param=param) try: ch_scs[i] = mh.cal_har_sc(in_data, cluster_labels[i]) except: ch_scs[i] = -1 if(label is not None): avg_ents[i], avg_purs[i] = mh.ext_eval_entropy(label, cluster_labels[i]) best_idx = [] best_idx.append(np.nanargmax(np.array(avg_sils))) # closest to 1 best_idx.append(np.nanargmax(ch_scs)) # higher = better if(label is not None): best_idx.append(np.nanargmin(np.array(avg_ents))) # closest to 0 best_idx.append(np.nanargmax(np.array(avg_purs))) # closest to 1 best_idx = np.unique(best_idx) if(re_all): return (cluster_labels, avg_sils, ch_scs, best_idx) else: return (cluster_labels[best_idx], avg_sils[best_idx], ch_scs[best_idx]) def run_SOMs(in_data, dim, iter_cnt, lr, sigma, seed=10): """Method to fully run SOMs Parameters ---------- in_data : np.array or list data matrix dim : int dimension of the SOMs distance matrix iter_cnt : integer number of iterations for SOMs to perform lr : float learning rate sigma : float spread of the neighborhood function, by default 2.5dim : int seed : integer, optional random seed for reproducibility, by default 10 Returns ------- minisom minisom object np.array cluster label """ som = som_assemble(in_data, seed, dim, lr, sigma) som.train_random(in_data, iter_cnt, verbose=False) u_matrix = som.distance_map().T watershed_bins = histedges_equalN(u_matrix.flatten()) ws_labels = watershed_level(u_matrix, watershed_bins) n_map = som.neuron_map(in_data) cluster_labels, _, _ = eval_ws(in_data, ws_labels, n_map) return som, cluster_labels def gen_param_grid(init_guess): g_dim, g_it, g_lr, g_sigma = init_guess min_dim = g_dim - 10 if g_dim - 5 > 10 else 10 max_dim = g_dim + 10 if g_dim + 10 > 10 else 20 param_grid = { 'dim': list(range(min_dim, max_dim+1)), 'iter_cnt': list(range(g_it - 500, g_it + 500, 200)), 'learning_rate': list(np.logspace(np.log10(0.25), np.log10(0.75), base=10, num=100)), 'sigma': list(np.linspace(g_sigma-1, g_sigma+1, num=30)), } return param_grid def random_search_som(in_data, init_guess, max_eval=20, label=None, seed=10, re_all=False): """perform random search for SOMs best parameters. Parameters ---------- in_data : np.array or list data matrix init_guess : tuple list of initial guess of the parameters, in order of dimension, number of iterations, learning rate, and sigma max_eval : int, optional number of max iterartion to perform the search, by default 20 label : np.array or list, optional the true label of each data point, by default None seed : integer, optional random seed for reproducibility, by default 10 Returns ------- All cluster label and its counterpart parameters. """ random.seed(seed) param_grid = gen_param_grid(init_guess) dims = np.zeros(max_eval) iters = np.zeros(max_eval) lrs = np.zeros(max_eval) sigmas = np.zeros(max_eval) avg_sils = np.full(max_eval, np.nan) ch_scs = np.full(max_eval, np.nan) cluster_labels = np.zeros((max_eval, len(in_data))) if(label is not None): avg_ents = np.full(max_eval, np.nan) avg_purs = np.full(max_eval, np.nan) i = 0 while i < max_eval: random_params = {k: random.sample(v, 1)[0] for k, v in param_grid.items()} dims[i], iters[i], lrs[i], sigmas[i] = list(random_params.values()) som = som_assemble(in_data, seed, int(dims[i]), lr=lrs[i], sigma=sigmas[i]) som.train_random(in_data, int(iters[i]), verbose=False) u_matrix = som.distance_map().T watershed_bins = histedges_equalN(u_matrix.flatten()) ws_labels = watershed_level(u_matrix, watershed_bins) n_map = som.neuron_map(in_data) _c, _as, _ch = eval_ws(in_data, ws_labels, n_map) cluster_labels[i], avg_sils[i], ch_scs[i] = _c[0], _as[0], _ch[0] n_clusters = len(np.unique(cluster_labels[i])) if(n_clusters < 5 or n_clusters > 30): logging.info("Random search using dim=%d, iter=%d, lr=%.6f, sigma=%.6f\ result to very small / large number of clusters (n_clusters = %d)\ " % (dims[i], iters[i], lrs[i], sigmas[i], n_clusters)) continue logging.info("dim=%d, iter=%d, lr=%.6f, sigma=%.6f, sil=%.6f, ch=%.6f" % (dims[i], iters[i], lrs[i], sigmas[i], avg_sils[i], ch_scs[i])) if(label is not None): avg_ents[i], avg_purs[i] = mh.ext_eval_entropy(label, cluster_labels[i], init_clus=-1) logging.info("ent=%.6f, pur=%.6f" % (avg_ents[i], avg_purs[i])) i += 1 best_idx = [] best_idx.append(np.nanargmax(np.array(avg_sils))) # closest to 1 best_idx.append(np.nanargmax(ch_scs)) # higher = better if(label is not None): best_idx.append(np.nanargmin(np.array(avg_ents))) # closest to 0 best_idx.append(np.nanargmax(np.array(avg_purs))) # closest to 1 best_idx = np.unique(best_idx) if(re_all): return (cluster_labels, avg_sils, ch_scs, dims, iters, lrs, sigmas, best_idx) else: return (cluster_labels[best_idx], avg_sils[best_idx], ch_scs[best_idx], dims[best_idx], iters[best_idx], lrs[best_idx], sigmas[best_idx])
[ "random.sample", "matplotlib.pyplot.cm.rainbow", "acse_9_irp_wafflescore.MiscHelpers.ext_eval_entropy", "numpy.shape", "numpy.argpartition", "matplotlib.pyplot.figure", "skimage.measure.label", "numpy.arange", "numpy.unique", "numpy.full", "matplotlib.pyplot.colorbar", "random.seed", "numpy.linspace", "collections.Counter", "numpy.log10", "matplotlib.pyplot.subplots", "scipy.spatial.distance.cdist", "matplotlib.pyplot.show", "skimage.filters.threshold_local", "numpy.sort", "numpy.nanargmax", "acse_9_irp_wafflescore.MiscHelpers.cal_har_sc", "logging.basicConfig", "skimage.segmentation.random_walker", "numpy.zeros", "acse_9_irp_wafflescore.MiscHelpers.int_eval_silhouette", "logging.info", "numpy.where", "numpy.array", "minisom.MiniSom", "matplotlib.pyplot.savefig", "numpy.sqrt" ]
[((468, 582), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s | %(levelname)s : %(message)s"""', 'level': 'logging.INFO', 'stream': 'sys.stdout'}), "(format='%(asctime)s | %(levelname)s : %(message)s',\n level=logging.INFO, stream=sys.stdout)\n", (487, 582), False, 'import logging\n'), ((1828, 1946), 'minisom.MiniSom', 'MiniSom', (['dim', 'dim', 'num_features'], {'sigma': 'sigma', 'learning_rate': 'lr', 'neighborhood_function': '"""gaussian"""', 'random_seed': 'seed'}), "(dim, dim, num_features, sigma=sigma, learning_rate=lr,\n neighborhood_function='gaussian', random_seed=seed)\n", (1835, 1946), False, 'from minisom import MiniSom, asymptotic_decay\n'), ((2546, 2572), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(9, 7)'}), '(figsize=(9, 7))\n', (2556, 2572), True, 'import matplotlib.pyplot as plt\n'), ((2724, 2738), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (2736, 2738), True, 'import matplotlib.pyplot as plt\n'), ((3212, 3222), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3220, 3222), True, 'import matplotlib.pyplot as plt\n'), ((4583, 4618), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '(12, 5)'}), '(1, 2, figsize=(12, 5))\n', (4595, 4618), True, 'import matplotlib.pyplot as plt\n'), ((4983, 5002), 'numpy.array', 'np.array', (['som_class'], {}), '(som_class)\n', (4991, 5002), True, 'import numpy as np\n'), ((5437, 5452), 'numpy.array', 'np.array', (['value'], {}), '(value)\n', (5445, 5452), True, 'import numpy as np\n'), ((5465, 5485), 'numpy.where', 'np.where', (['(value != 0)'], {}), '(value != 0)\n', (5473, 5485), True, 'import numpy as np\n'), ((6251, 6266), 'numpy.array', 'np.array', (['value'], {}), '(value)\n', (6259, 6266), True, 'import numpy as np\n'), ((6279, 6299), 'numpy.where', 'np.where', (['(value != 0)'], {}), '(value != 0)\n', (6287, 6299), True, 'import numpy as np\n'), ((7918, 7978), 'numpy.zeros', 'np.zeros', (['(num_bins * ncols, image.shape[0], image.shape[1])'], {}), '((num_bins * ncols, image.shape[0], image.shape[1]))\n', (7926, 7978), True, 'import numpy as np\n'), ((10748, 10778), 'numpy.full', 'np.full', (['len_watershed', 'np.nan'], {}), '(len_watershed, np.nan)\n', (10755, 10778), True, 'import numpy as np\n'), ((10792, 10822), 'numpy.full', 'np.full', (['len_watershed', 'np.nan'], {}), '(len_watershed, np.nan)\n', (10799, 10822), True, 'import numpy as np\n'), ((12026, 12045), 'numpy.unique', 'np.unique', (['best_idx'], {}), '(best_idx)\n', (12035, 12045), True, 'import numpy as np\n'), ((14588, 14605), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (14599, 14605), False, 'import random\n'), ((14671, 14689), 'numpy.zeros', 'np.zeros', (['max_eval'], {}), '(max_eval)\n', (14679, 14689), True, 'import numpy as np\n'), ((14702, 14720), 'numpy.zeros', 'np.zeros', (['max_eval'], {}), '(max_eval)\n', (14710, 14720), True, 'import numpy as np\n'), ((14731, 14749), 'numpy.zeros', 'np.zeros', (['max_eval'], {}), '(max_eval)\n', (14739, 14749), True, 'import numpy as np\n'), ((14763, 14781), 'numpy.zeros', 'np.zeros', (['max_eval'], {}), '(max_eval)\n', (14771, 14781), True, 'import numpy as np\n'), ((14798, 14823), 'numpy.full', 'np.full', (['max_eval', 'np.nan'], {}), '(max_eval, np.nan)\n', (14805, 14823), True, 'import numpy as np\n'), ((14837, 14862), 'numpy.full', 'np.full', (['max_eval', 'np.nan'], {}), '(max_eval, np.nan)\n', (14844, 14862), True, 'import numpy as np\n'), ((16878, 16897), 'numpy.unique', 'np.unique', (['best_idx'], {}), '(best_idx)\n', (16887, 16897), True, 'import numpy as np\n'), ((1052, 1071), 'numpy.sqrt', 'np.sqrt', (['num_sample'], {}), '(num_sample)\n', (1059, 1071), True, 'import numpy as np\n'), ((1089, 1101), 'numpy.sqrt', 'np.sqrt', (['dim'], {}), '(dim)\n', (1096, 1101), True, 'import numpy as np\n'), ((1797, 1814), 'numpy.shape', 'np.shape', (['in_data'], {}), '(in_data)\n', (1805, 1814), True, 'import numpy as np\n'), ((3144, 3165), 'matplotlib.pyplot.savefig', 'plt.savefig', (['save_dir'], {}), '(save_dir)\n', (3155, 3165), True, 'import matplotlib.pyplot as plt\n'), ((4154, 4187), 'numpy.linspace', 'np.linspace', (['(0)', 'ttl_dtp', '(nbin + 1)'], {}), '(0, ttl_dtp, nbin + 1)\n', (4165, 4187), True, 'import numpy as np\n'), ((4210, 4228), 'numpy.arange', 'np.arange', (['ttl_dtp'], {}), '(ttl_dtp)\n', (4219, 4228), True, 'import numpy as np\n'), ((4251, 4267), 'numpy.sort', 'np.sort', (['in_data'], {}), '(in_data)\n', (4258, 4267), True, 'import numpy as np\n'), ((5497, 5511), 'numpy.array', 'np.array', (['vals'], {}), '(vals)\n', (5505, 5511), True, 'import numpy as np\n'), ((6334, 6470), 'logging.info', 'logging.info', (['"""Not enough labeled neighbor to perform KNN.\n Will return the original inputted value."""'], {}), '(\n """Not enough labeled neighbor to perform KNN.\n Will return the original inputted value."""\n )\n', (6346, 6470), False, 'import logging\n'), ((6492, 6506), 'numpy.array', 'np.array', (['vals'], {}), '(vals)\n', (6500, 6506), True, 'import numpy as np\n'), ((6595, 6620), 'scipy.spatial.distance.cdist', 'distance.cdist', (['[b]', 'vals'], {}), '([b], vals)\n', (6609, 6620), False, 'from scipy.spatial import distance\n'), ((6637, 6661), 'numpy.argpartition', 'np.argpartition', (['dist', 'k'], {}), '(dist, k)\n', (6652, 6661), True, 'import numpy as np\n'), ((6787, 6796), 'collections.Counter', 'Counter', ([], {}), '()\n', (6794, 6796), False, 'from collections import Counter\n'), ((7715, 7814), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'ncols': 'ncols', 'nrows': 'num_bins', 'figsize': '(12, num_bins * 3)', 'sharex': '(True)', 'sharey': '(True)'}), '(ncols=ncols, nrows=num_bins, figsize=(12, num_bins * 3),\n sharex=True, sharey=True)\n', (7727, 7814), True, 'import matplotlib.pyplot as plt\n'), ((8024, 8076), 'skimage.filters.threshold_local', 'filters.threshold_local', (['image'], {'block_size': '(3 + 2 * i)'}), '(image, block_size=3 + 2 * i)\n', (8047, 8076), False, 'from skimage import filters\n'), ((8128, 8172), 'skimage.measure.label', 'measure.label', (['block_mask'], {'connectivity': 'conn'}), '(block_mask, connectivity=conn)\n', (8141, 8172), False, 'from skimage import measure\n'), ((8308, 8337), 'skimage.segmentation.random_walker', 'random_walker', (['image', 'markers'], {}), '(image, markers)\n', (8321, 8337), False, 'from skimage.segmentation import random_walker\n'), ((9115, 9159), 'skimage.measure.label', 'measure.label', (['thres_mask'], {'connectivity': 'conn'}), '(thres_mask, connectivity=conn)\n', (9128, 9159), False, 'from skimage import measure\n'), ((9299, 9328), 'skimage.segmentation.random_walker', 'random_walker', (['image', 'markers'], {}), '(image, markers)\n', (9312, 9328), False, 'from skimage.segmentation import random_walker\n'), ((10870, 10900), 'numpy.full', 'np.full', (['len_watershed', 'np.nan'], {}), '(len_watershed, np.nan)\n', (10877, 10900), True, 'import numpy as np\n'), ((10920, 10950), 'numpy.full', 'np.full', (['len_watershed', 'np.nan'], {}), '(len_watershed, np.nan)\n', (10927, 10950), True, 'import numpy as np\n'), ((11776, 11796), 'numpy.nanargmax', 'np.nanargmax', (['ch_scs'], {}), '(ch_scs)\n', (11788, 11796), True, 'import numpy as np\n'), ((14966, 14991), 'numpy.full', 'np.full', (['max_eval', 'np.nan'], {}), '(max_eval, np.nan)\n', (14973, 14991), True, 'import numpy as np\n'), ((15011, 15036), 'numpy.full', 'np.full', (['max_eval', 'np.nan'], {}), '(max_eval, np.nan)\n', (15018, 15036), True, 'import numpy as np\n'), ((16129, 16270), 'logging.info', 'logging.info', (["('dim=%d, iter=%d, lr=%.6f, sigma=%.6f, sil=%.6f, ch=%.6f' % (dims[i],\n iters[i], lrs[i], sigmas[i], avg_sils[i], ch_scs[i]))"], {}), "('dim=%d, iter=%d, lr=%.6f, sigma=%.6f, sil=%.6f, ch=%.6f' % (\n dims[i], iters[i], lrs[i], sigmas[i], avg_sils[i], ch_scs[i]))\n", (16141, 16270), False, 'import logging\n'), ((16628, 16648), 'numpy.nanargmax', 'np.nanargmax', (['ch_scs'], {}), '(ch_scs)\n', (16640, 16648), True, 'import numpy as np\n'), ((5397, 5417), 'numpy.where', 'np.where', (['(value == 0)'], {}), '(value == 0)\n', (5405, 5417), True, 'import numpy as np\n'), ((6202, 6231), 'numpy.where', 'np.where', (['(value == border_val)'], {}), '(value == border_val)\n', (6210, 6231), True, 'import numpy as np\n'), ((11161, 11252), 'acse_9_irp_wafflescore.MiscHelpers.int_eval_silhouette', 'mh.int_eval_silhouette', (['in_data', 'cluster_labels[i]'], {'method': '"""som_watershed"""', 'param': 'param'}), "(in_data, cluster_labels[i], method='som_watershed',\n param=param)\n", (11183, 11252), True, 'from acse_9_irp_wafflescore import MiscHelpers as mh\n'), ((11714, 11732), 'numpy.array', 'np.array', (['avg_sils'], {}), '(avg_sils)\n', (11722, 11732), True, 'import numpy as np\n'), ((13733, 13778), 'numpy.linspace', 'np.linspace', (['(g_sigma - 1)', '(g_sigma + 1)'], {'num': '(30)'}), '(g_sigma - 1, g_sigma + 1, num=30)\n', (13744, 13778), True, 'import numpy as np\n'), ((15773, 15801), 'numpy.unique', 'np.unique', (['cluster_labels[i]'], {}), '(cluster_labels[i])\n', (15782, 15801), True, 'import numpy as np\n'), ((15862, 16096), 'logging.info', 'logging.info', (["('Random search using dim=%d, iter=%d, lr=%.6f, sigma=%.6f result to very small / large number of clusters (n_clusters = %d) '\n % (dims[i], iters[i], lrs[i], sigmas[i], n_clusters))"], {}), "(\n 'Random search using dim=%d, iter=%d, lr=%.6f, sigma=%.6f result to very small / large number of clusters (n_clusters = %d) '\n % (dims[i], iters[i], lrs[i], sigmas[i], n_clusters))\n", (15874, 16096), False, 'import logging\n'), ((16345, 16404), 'acse_9_irp_wafflescore.MiscHelpers.ext_eval_entropy', 'mh.ext_eval_entropy', (['label', 'cluster_labels[i]'], {'init_clus': '(-1)'}), '(label, cluster_labels[i], init_clus=-1)\n', (16364, 16404), True, 'from acse_9_irp_wafflescore import MiscHelpers as mh\n'), ((16418, 16481), 'logging.info', 'logging.info', (["('ent=%.6f, pur=%.6f' % (avg_ents[i], avg_purs[i]))"], {}), "('ent=%.6f, pur=%.6f' % (avg_ents[i], avg_purs[i]))\n", (16430, 16481), False, 'import logging\n'), ((16566, 16584), 'numpy.array', 'np.array', (['avg_sils'], {}), '(avg_sils)\n', (16574, 16584), True, 'import numpy as np\n'), ((2960, 2984), 'matplotlib.pyplot.cm.rainbow', 'plt.cm.rainbow', (['(t / 10.0)'], {}), '(t / 10.0)\n', (2974, 2984), True, 'import matplotlib.pyplot as plt\n'), ((5595, 5620), 'scipy.spatial.distance.cdist', 'distance.cdist', (['[b]', 'vals'], {}), '([b], vals)\n', (5609, 5620), False, 'from scipy.spatial import distance\n'), ((11039, 11062), 'numpy.unique', 'np.unique', (['ws_labels[i]'], {}), '(ws_labels[i])\n', (11048, 11062), True, 'import numpy as np\n'), ((11386, 11427), 'acse_9_irp_wafflescore.MiscHelpers.cal_har_sc', 'mh.cal_har_sc', (['in_data', 'cluster_labels[i]'], {}), '(in_data, cluster_labels[i])\n', (11399, 11427), True, 'from acse_9_irp_wafflescore import MiscHelpers as mh\n'), ((11557, 11602), 'acse_9_irp_wafflescore.MiscHelpers.ext_eval_entropy', 'mh.ext_eval_entropy', (['label', 'cluster_labels[i]'], {}), '(label, cluster_labels[i])\n', (11576, 11602), True, 'from acse_9_irp_wafflescore import MiscHelpers as mh\n'), ((11898, 11916), 'numpy.array', 'np.array', (['avg_ents'], {}), '(avg_ents)\n', (11906, 11916), True, 'import numpy as np\n'), ((11973, 11991), 'numpy.array', 'np.array', (['avg_purs'], {}), '(avg_purs)\n', (11981, 11991), True, 'import numpy as np\n'), ((13617, 13631), 'numpy.log10', 'np.log10', (['(0.25)'], {}), '(0.25)\n', (13625, 13631), True, 'import numpy as np\n'), ((13633, 13647), 'numpy.log10', 'np.log10', (['(0.75)'], {}), '(0.75)\n', (13641, 13647), True, 'import numpy as np\n'), ((15104, 15123), 'random.sample', 'random.sample', (['v', '(1)'], {}), '(v, 1)\n', (15117, 15123), False, 'import random\n'), ((16750, 16768), 'numpy.array', 'np.array', (['avg_ents'], {}), '(avg_ents)\n', (16758, 16768), True, 'import numpy as np\n'), ((16825, 16843), 'numpy.array', 'np.array', (['avg_purs'], {}), '(avg_purs)\n', (16833, 16843), True, 'import numpy as np\n'), ((8544, 8579), 'numpy.unique', 'np.unique', (['ws_labels[i * ncols + 0]'], {}), '(ws_labels[i * ncols + 0])\n', (8553, 8579), True, 'import numpy as np\n'), ((8782, 8817), 'numpy.unique', 'np.unique', (['ws_labels[i * ncols + 1]'], {}), '(ws_labels[i * ncols + 1])\n', (8791, 8817), True, 'import numpy as np\n'), ((9019, 9054), 'numpy.unique', 'np.unique', (['ws_labels[i * ncols + 2]'], {}), '(ws_labels[i * ncols + 2])\n', (9028, 9054), True, 'import numpy as np\n'), ((9547, 9582), 'numpy.unique', 'np.unique', (['ws_labels[i * ncols + 3]'], {}), '(ws_labels[i * ncols + 3])\n', (9556, 9582), True, 'import numpy as np\n'), ((9785, 9820), 'numpy.unique', 'np.unique', (['ws_labels[i * ncols + 4]'], {}), '(ws_labels[i * ncols + 4])\n', (9794, 9820), True, 'import numpy as np\n'), ((10022, 10057), 'numpy.unique', 'np.unique', (['ws_labels[i * ncols + 5]'], {}), '(ws_labels[i * ncols + 5])\n', (10031, 10057), True, 'import numpy as np\n')]
import json from urllib.request import urlopen from urllib.error import URLError from urllib.parse import urljoin VERSION_REQUIRED = 3 EXTERNAL_LIST = 'https://pastebin.com/raw/aKjmATab' # Returns repo index dictionary object, or None in case of failure def fetch_index(repo_url): try: with urlopen(urljoin(repo_url, 'index.json')) as index_req: index = json.loads(index_req.read().decode('utf-8')) except URLError: return None if 'repo' not in index or not index['repo'] == 'wapkg': return None if not index['version'] == VERSION_REQUIRED: if index['version'] > VERSION_REQUIRED: print("! Source '" + repo_url + "' requires newer version of wapkg, " + 'consider upgrading your software in order to use this repo.') return None return index def fetch_external_sources(): sources = [] try: with urlopen(EXTERNAL_LIST) as lst_req: for src in lst_req.read().decode('utf-8').split('\n'): src_ = src.strip() if len(src_) and not src_.startswith('#'): sources.append(src_) except URLError: pass return sources # Unwraps the 'switch' content def select_pkg(pkg, vs): if not pkg: return None if 'switch' in pkg: if not vs: return None switch = pkg['switch'] for v in switch: if vs in v.split(','): return switch[v] if '*' in switch: return switch['*'] return None return pkg # Returns True if package and all it's dependencies can be successfully installed def trace_pkg_deps(pkgs_bundle, vs, name): pkg = None for pkgs in pkgs_bundle: if name in pkgs: pkg = pkgs[name] break pkg = select_pkg(pkg, vs) if not pkg: return False if 'requirements' in pkg: for req in pkg['requirements']: if not trace_pkg_deps(pkgs_bundle, vs, req): return False return True
[ "urllib.parse.urljoin", "urllib.request.urlopen" ]
[((920, 942), 'urllib.request.urlopen', 'urlopen', (['EXTERNAL_LIST'], {}), '(EXTERNAL_LIST)\n', (927, 942), False, 'from urllib.request import urlopen\n'), ((315, 346), 'urllib.parse.urljoin', 'urljoin', (['repo_url', '"""index.json"""'], {}), "(repo_url, 'index.json')\n", (322, 346), False, 'from urllib.parse import urljoin\n')]
from flask import Blueprint,request from app import pa_domain,pa_ip from .tasks import scan_ip_task from celery_app.utils.utils import get_current_time,insert_taskid_db ipscan_blueprint = Blueprint("ipscan", __name__, url_prefix='/ipscan') #通过传入一个一级域名,对这个域名下的所有ip进行scan @ipscan_blueprint.route('/scan') def scan_ip(): domain = request.args.get("domain") #在数据库搜索该domain的索引 domain_index=pa_domain.find_one({"domain":domain}) if domain_index: # 声明ip_list ip_list = [] #获取整个domain所对应的ip for item in domain_index['subdomain']: for ip_s in item['ip']: ip_list.append(ip_s) #对ip_list去重 ip_list=list(set(ip_list)) #调用scan_ip 任务 传入主域名和对应的ip列表 r=scan_ip_task.delay(domain,ip_list) # taskid入库 insert_taskid_db({"task_id":r.task_id,"add_time":get_current_time(),"task_type":"ip_scan","ip_list":ip_list,"task_info":"对{0}域名下的{1}等{2}个ip进行端口扫描".format(domain,ip_list[0],len(ip_list))}) return {"code":200,"msg":"添加扫描任务成功"} return {"code":201,"msg":"未找到该域名所对应ip"} #获取ip总数 @ipscan_blueprint.route('/getipnum') def get_ip_num(): return {"ip_num":pa_ip.find({}).count()} #获取ip列表,index为起始索引 offset为数量 @ipscan_blueprint.route('/getiplist') def get_ip_list(): result = [] tmp = {} domain_index = int(request.args.get("index")) domain_offset = int(request.args.get("offset")) cursor = pa_ip.find().sort([('_id', -1)]).skip(domain_index).limit(domain_offset) for document in cursor: tmp['ip'] = document['ip'] tmp['add_time'] = document['add_time'] tmp['port'] = document['port'] result.append(tmp) tmp = {} return {"ip_list": result}
[ "celery_app.utils.utils.get_current_time", "flask.Blueprint", "app.pa_domain.find_one", "flask.request.args.get", "app.pa_ip.find" ]
[((189, 240), 'flask.Blueprint', 'Blueprint', (['"""ipscan"""', '__name__'], {'url_prefix': '"""/ipscan"""'}), "('ipscan', __name__, url_prefix='/ipscan')\n", (198, 240), False, 'from flask import Blueprint, request\n'), ((333, 359), 'flask.request.args.get', 'request.args.get', (['"""domain"""'], {}), "('domain')\n", (349, 359), False, 'from flask import Blueprint, request\n'), ((399, 437), 'app.pa_domain.find_one', 'pa_domain.find_one', (["{'domain': domain}"], {}), "({'domain': domain})\n", (417, 437), False, 'from app import pa_domain, pa_ip\n'), ((1341, 1366), 'flask.request.args.get', 'request.args.get', (['"""index"""'], {}), "('index')\n", (1357, 1366), False, 'from flask import Blueprint, request\n'), ((1392, 1418), 'flask.request.args.get', 'request.args.get', (['"""offset"""'], {}), "('offset')\n", (1408, 1418), False, 'from flask import Blueprint, request\n'), ((860, 878), 'celery_app.utils.utils.get_current_time', 'get_current_time', ([], {}), '()\n', (876, 878), False, 'from celery_app.utils.utils import get_current_time, insert_taskid_db\n'), ((1177, 1191), 'app.pa_ip.find', 'pa_ip.find', (['{}'], {}), '({})\n', (1187, 1191), False, 'from app import pa_domain, pa_ip\n'), ((1433, 1445), 'app.pa_ip.find', 'pa_ip.find', ([], {}), '()\n', (1443, 1445), False, 'from app import pa_domain, pa_ip\n')]
from notebook.utils import url_path_join as ujoin from notebook.base.handlers import IPythonHandler import os, json, git, urllib, requests from git import Repo, GitCommandError from subprocess import check_output import subprocess repo = None htable = [] config = { "GIT_USER": "alpaca", "GIT_PARENT_DIR": os.path.expanduser("~/Desktop/jupyter_versioning"), "GIT_BRANCH_NAME": "main", # "GIT_REMOTE_URL" : "alpaca", # "GIT_REMOTE_UPSTREAM": "alpaca", # "GITHUB_ACCESS_TOKEN": "<PASSWORD>" } # def delete_cell(): # if cell in htable: # del htable[cell] # return True # return False # def register_cell(cell, content): # filename = str(config['GIT_PARENT_DIR'] + "/" + os.environ.get('GIT_REPO_NAME') + str(cell) + filename.replace('ipynb', 'txt')) # subprocess.run(['cat', content, '>', filename]) # print(repo.git.add(filename)) # print(repo.git.commit( a=False, m="\nUpdated {}".format(filename) ))
[ "os.path.expanduser" ]
[((312, 362), 'os.path.expanduser', 'os.path.expanduser', (['"""~/Desktop/jupyter_versioning"""'], {}), "('~/Desktop/jupyter_versioning')\n", (330, 362), False, 'import os, json, git, urllib, requests\n')]
from pymongo import MongoClient from settings import MONGO_URL client = MongoClient(MONGO_URL) db = client.rolz_database
[ "pymongo.MongoClient" ]
[((76, 98), 'pymongo.MongoClient', 'MongoClient', (['MONGO_URL'], {}), '(MONGO_URL)\n', (87, 98), False, 'from pymongo import MongoClient\n')]
""" Samples of the various charts. Run this script to generate the reference samples. """ import os from svg.charts.plot import Plot from svg.charts import bar from svg.charts import time_series from svg.charts import pie from svg.charts import schedule from svg.charts import line def sample_Plot(): g = Plot( { 'min_x_value': 0, 'min_y_value': 0, 'area_fill': True, 'stagger_x_labels': True, 'stagger_y_labels': True, 'show_x_guidelines': True, } ) g.add_data({'data': [[1, 25], [2, 30], [3, 45]], 'title': 'series 1'}) g.add_data({'data': [[1, 30], [2, 31], [3, 40]], 'title': 'series 2'}) g.add_data({'data': [[0.5, 35], [1, 20], [3, 10.5]], 'title': 'series 3'}) return g def sample_PlotTextLabels(): g = Plot( { 'draw_lines_between_points': False, 'min_x_value': 0, 'min_y_value': 0, 'show_x_guidelines': True, } ) # Processed Apple production 2015 # Any object with a .text attribute will do; # we like namedtuple(). from collections import namedtuple Datum = namedtuple("Datum", "x y text") g.add_data( { 'data': [ Datum(8.24, 80.85, 'ES'), Datum(0.17, 6.73, 'IE'), Datum(0, 0, 'IS'), ], 'title': 'Processed Apple', } ) return g def sample_TimeSeries(): g = time_series.Plot({}) g.timescale_divisions = '4 hours' g.stagger_x_labels = True g.x_label_format = '%d-%b %H:%M' # g.max_y_value = 200 g.add_data( { 'data': ['2005-12-21T00:00:00', 20, '2005-12-22T00:00:00', 21], 'title': 'series 1', } ) return g def generate_samples(): yield 'Plot', sample_Plot() yield 'PlotTextLabels', sample_PlotTextLabels() yield 'TimeSeries', sample_TimeSeries() yield 'VerticalBar', SampleBar.vertical() yield 'HorizontalBar', SampleBar.horizontal() yield 'VerticalBarLarge', SampleBar.vertical_large() yield 'VerticalBarStackTop', SampleBar.vertical_top() yield 'Pie', sample_Pie() yield 'Schedule', sample_Schedule() yield 'Line', sample_Line() class SampleBar: fields = ['Internet', 'TV', 'Newspaper', 'Magazine', 'Radio'] @classmethod def vertical(cls): g = bar.VerticalBar(cls.fields) g.stack = 'side' g.scale_integers = True g.width, g.height = 640, 480 g.graph_title = 'Question 7' g.show_graph_title = True g.add_data({'data': [-2, 3, 1, 3, 1], 'title': 'Female'}) g.add_data({'data': [0, 2, 1, 5, 4], 'title': 'Male'}) return g @classmethod def horizontal(cls): g = bar.HorizontalBar(cls.fields) g.stack = 'side' g.scale_integers = True g.width, g.height = 640, 480 g.graph_title = 'Question 7' g.show_graph_title = True g.add_data({'data': [-2, 3, 1, 3, 1], 'title': 'Female'}) g.add_data({'data': [0, 2, 1, 5, 4], 'title': 'Male'}) return g @classmethod def vertical_large(cls): g = bar.VerticalBar(cls.fields) options = dict( scale_integers=True, stack='side', width=640, height=480, graph_title='Question 8', show_graph_title=True, no_css=False, ) g.__dict__.update(options) g.add_data(dict(data=[2, 22, 98, 143, 82], title='intermediate')) g.add_data(dict(data=[2, 26, 106, 193, 105], title='old')) return g @classmethod def vertical_top(cls): g = bar.VerticalBar(cls.fields, dict(stack='top')) assert g.stack == 'top' g.scale_integers = True g.width, g.height = 640, 480 g.graph_title = 'Question 7' g.show_graph_title = True g.add_data({'data': [-2, 3, 1, 3, 1], 'title': 'Female'}) g.add_data({'data': [0, 2, 1, 5, 4], 'title': 'Male'}) return g def sample_Line(): g = line.Line() options = dict( scale_integers=True, area_fill=True, width=640, height=480, fields=SampleBar.fields, graph_title='Question 7', show_graph_title=True, no_css=False, ) g.__dict__.update(options) g.add_data({'data': [-2, 3, 1, 3, 1], 'title': 'Female'}) g.add_data({'data': [0, 2, 1, 5, 4], 'title': 'Male'}) return g def sample_Pie(): g = pie.Pie({}) options = dict( width=640, height=480, fields=SampleBar.fields, graph_title='Question 7', expand_greatest=True, show_data_labels=True, ) g.__dict__.update(options) g.add_data({'data': [-2, 3, 1, 3, 1], 'title': 'Female'}) g.add_data({'data': [0, 2, 1, 5, 4], 'title': 'Male'}) return g def sample_Schedule(): title = "Billy's Schedule" data1 = [ "History 107", "5/19/04", "6/30/04", "Algebra 011", "6/2/04", "8/11/04", "Psychology 101", "6/28/04", "8/9/04", "Acting 105", "7/7/04", "8/16/04", ] g = schedule.Schedule( dict( width=640, height=480, graph_title=title, show_graph_title=True, key=False, scale_x_integers=True, scale_y_integers=True, show_data_labels=True, show_y_guidelines=False, show_x_guidelines=True, # show_x_title=True, # not yet implemented x_title="Time", show_y_title=False, rotate_x_labels=True, rotate_y_labels=False, x_label_format="%m/%d", timescale_divisions="1 week", popup_format="%m/%d/%y", area_fill=True, min_y_value=0, ) ) g.add_data(dict(data=data1, title="Data")) return g def save_samples(): root = os.path.dirname(__file__) for sample_name, sample in generate_samples(): res = sample.burn() with open(os.path.join(root, sample_name + '.py.svg'), 'w') as f: f.write(res) if __name__ == '__main__': save_samples()
[ "svg.charts.plot.Plot", "svg.charts.pie.Pie", "svg.charts.bar.VerticalBar", "svg.charts.bar.HorizontalBar", "os.path.dirname", "collections.namedtuple", "svg.charts.line.Line", "svg.charts.time_series.Plot", "os.path.join" ]
[((313, 461), 'svg.charts.plot.Plot', 'Plot', (["{'min_x_value': 0, 'min_y_value': 0, 'area_fill': True, 'stagger_x_labels':\n True, 'stagger_y_labels': True, 'show_x_guidelines': True}"], {}), "({'min_x_value': 0, 'min_y_value': 0, 'area_fill': True,\n 'stagger_x_labels': True, 'stagger_y_labels': True, 'show_x_guidelines':\n True})\n", (317, 461), False, 'from svg.charts.plot import Plot\n'), ((832, 942), 'svg.charts.plot.Plot', 'Plot', (["{'draw_lines_between_points': False, 'min_x_value': 0, 'min_y_value': 0,\n 'show_x_guidelines': True}"], {}), "({'draw_lines_between_points': False, 'min_x_value': 0, 'min_y_value': \n 0, 'show_x_guidelines': True})\n", (836, 942), False, 'from svg.charts.plot import Plot\n'), ((1179, 1210), 'collections.namedtuple', 'namedtuple', (['"""Datum"""', '"""x y text"""'], {}), "('Datum', 'x y text')\n", (1189, 1210), False, 'from collections import namedtuple\n'), ((1497, 1517), 'svg.charts.time_series.Plot', 'time_series.Plot', (['{}'], {}), '({})\n', (1513, 1517), False, 'from svg.charts import time_series\n'), ((4137, 4148), 'svg.charts.line.Line', 'line.Line', ([], {}), '()\n', (4146, 4148), False, 'from svg.charts import line\n'), ((4580, 4591), 'svg.charts.pie.Pie', 'pie.Pie', (['{}'], {}), '({})\n', (4587, 4591), False, 'from svg.charts import pie\n'), ((6090, 6115), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (6105, 6115), False, 'import os\n'), ((2422, 2449), 'svg.charts.bar.VerticalBar', 'bar.VerticalBar', (['cls.fields'], {}), '(cls.fields)\n', (2437, 2449), False, 'from svg.charts import bar\n'), ((2819, 2848), 'svg.charts.bar.HorizontalBar', 'bar.HorizontalBar', (['cls.fields'], {}), '(cls.fields)\n', (2836, 2848), False, 'from svg.charts import bar\n'), ((3222, 3249), 'svg.charts.bar.VerticalBar', 'bar.VerticalBar', (['cls.fields'], {}), '(cls.fields)\n', (3237, 3249), False, 'from svg.charts import bar\n'), ((6213, 6256), 'os.path.join', 'os.path.join', (['root', "(sample_name + '.py.svg')"], {}), "(root, sample_name + '.py.svg')\n", (6225, 6256), False, 'import os\n')]
import data_reader import time import tensorflow as tf def worker(num): time.sleep(0.5) print(num) return num if __name__=='__main__': data = list(range(100)) bsize = 10 reader = data_reader.data_reader(data, worker, bsize) for i in range(10): a = reader.get_next_batch() print(a)
[ "data_reader.data_reader", "time.sleep" ]
[((75, 90), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (85, 90), False, 'import time\n'), ((190, 234), 'data_reader.data_reader', 'data_reader.data_reader', (['data', 'worker', 'bsize'], {}), '(data, worker, bsize)\n', (213, 234), False, 'import data_reader\n')]
import mimetypes from django.core.files.base import ContentFile from django.core.files.storage import Storage from django.utils.deconstruct import deconstructible from django.conf import settings from azure.storage.blob.models import ContentSettings from azure.storage.blob.baseblobservice import BaseBlobService from azure.storage.blob.blockblobservice import BlockBlobService from azure.common import AzureMissingResourceHttpError @deconstructible class AzureStorage(Storage): def __init__(self, azure_container=settings.AZURE_STATICFILES_CONTAINER, *args, **kwargs): super(AzureStorage, self).__init__(*args, **kwargs) self.account_name = settings.AZURE_STORAGE_ACCOUNT_NAME self.account_key = settings.AZURE_STORAGE_ACCOUNT_KEY self.azure_container = azure_container self.azure_ssl = settings.AZURE_STATICFILES_SSL self._base_blob_service = None self._block_blob_service = None @property def base_blob_service(self): if self._base_blob_service is None: self._base_blob_service = BaseBlobService( self.account_name, self.account_key) return self._base_blob_service @property def block_blob_service(self): if self._block_blob_service is None: self._block_blob_service = BlockBlobService( self.account_name, self.account_key) return self._block_blob_service @property def azure_protocol(self): if self.azure_ssl: return 'https' return 'http' if self.azure_ssl is not None else None def _open(self, name, mode="rb"): blob = self.base_blob_service.get_blob_to_bytes(self.azure_container, name) return ContentFile(blob.content) def exists(self, name): return self.base_blob_service.exists(self.azure_container, name) def delete(self, name): try: self.base_blob_service.delete_blob(self.azure_container, name) except AzureMissingResourceHttpError: # pragma: no cover pass def size(self, name): blob = self.base_blob_service.get_blob_properties(self.azure_container, name) return blob.properties.content_length def _save(self, name, content): if hasattr(content.file, 'content_type'): content_type = content.file.content_type else: content_type = mimetypes.guess_type(name)[0] if hasattr(content, 'chunks'): content_data = b''.join(chunk for chunk in content.chunks()) else: content_data = content.read() self.block_blob_service.create_blob_from_bytes( self.azure_container, name, content_data, content_settings=ContentSettings(content_type=content_type)) return name def url(self, name): return self.base_blob_service.make_blob_url( container_name=self.azure_container, blob_name=name, protocol=self.azure_protocol, ) def get_modified_time(self, name): blob = self.base_blob_service.get_blob_properties( self.azure_container, name ) return blob.properties.last_modified
[ "azure.storage.blob.blockblobservice.BlockBlobService", "azure.storage.blob.models.ContentSettings", "django.core.files.base.ContentFile", "azure.storage.blob.baseblobservice.BaseBlobService", "mimetypes.guess_type" ]
[((1728, 1753), 'django.core.files.base.ContentFile', 'ContentFile', (['blob.content'], {}), '(blob.content)\n', (1739, 1753), False, 'from django.core.files.base import ContentFile\n'), ((1076, 1128), 'azure.storage.blob.baseblobservice.BaseBlobService', 'BaseBlobService', (['self.account_name', 'self.account_key'], {}), '(self.account_name, self.account_key)\n', (1091, 1128), False, 'from azure.storage.blob.baseblobservice import BaseBlobService\n'), ((1318, 1371), 'azure.storage.blob.blockblobservice.BlockBlobService', 'BlockBlobService', (['self.account_name', 'self.account_key'], {}), '(self.account_name, self.account_key)\n', (1334, 1371), False, 'from azure.storage.blob.blockblobservice import BlockBlobService\n'), ((2396, 2422), 'mimetypes.guess_type', 'mimetypes.guess_type', (['name'], {}), '(name)\n', (2416, 2422), False, 'import mimetypes\n'), ((2747, 2789), 'azure.storage.blob.models.ContentSettings', 'ContentSettings', ([], {'content_type': 'content_type'}), '(content_type=content_type)\n', (2762, 2789), False, 'from azure.storage.blob.models import ContentSettings\n')]
#-------------------------------------------------------------- # By <NAME> # Painted Harmony Group, Inc # June 26, 2017 # Please See LICENSE.txt #-------------------------------------------------------------- import unittest import SentimentAnalyzer as analyzer class SentimentAnalyzerTest(unittest.TestCase): def test_analyze_sentiment(self): sa = analyzer.SentimentAnalyzer() self.assertTrue(sa.analyze_sentiment("This is a happy tweet. Have a nice day.")=="pos") self.assertTrue(sa.analyze_sentiment("I am angry. He is very disonest. Sad.")=="neg")
[ "SentimentAnalyzer.SentimentAnalyzer" ]
[((371, 399), 'SentimentAnalyzer.SentimentAnalyzer', 'analyzer.SentimentAnalyzer', ([], {}), '()\n', (397, 399), True, 'import SentimentAnalyzer as analyzer\n')]
import numpy as np class DecisionTreeClassifierTranspiler(object): def __init__(self, model): self.model = model self.build_classes() self.build_feature_idx() self.build_right_nodes() self.build_thresholds() def build_feature_idx(self): self.features_idx = ','.join(self.model.tree_.feature.astype(str)) def build_classes(self): class_aux = list(map(lambda x : x[0], self.model.tree_.value)) self.classes = np.argmax(class_aux, axis = 1) self.classes = ','.join(self.classes.astype(str)) def build_right_nodes(self): self.right_nodes = ','.join(self.model.tree_.children_right.astype(str)).replace('-1', '0') def build_thresholds(self): self.thresholds = ','.join(self.model.tree_.threshold.astype(str)) def generate_code(self): return """ /* The following code was generated using Clara.Transpiler. For more information please visit: https://github.com/asergiobranco/clara */ #define NO_NODES %s unsigned char classes[NO_NODES] = {%s}; int FEATURE_IDX_NODE[NO_NODES] = {%s}; int RIGHT_CHILDS[NO_NODES] = {%s}; float THRESHOLDS[NO_NODES] = {%s}; int predict(double * sample){ unsigned int current_node = 0; int feature_idx = FEATURE_IDX_NODE[0]; while(feature_idx >= 0){ if(sample[feature_idx] <= THRESHOLDS[current_node]){ current_node++; } else{ current_node = RIGHT_CHILDS[current_node]; } feature_idx = FEATURE_IDX_NODE[current_node]; } return classes[current_node]; } """ % (self.model.tree_.node_count, self.classes, self.features_idx, self.right_nodes, self.thresholds)
[ "numpy.argmax" ]
[((488, 516), 'numpy.argmax', 'np.argmax', (['class_aux'], {'axis': '(1)'}), '(class_aux, axis=1)\n', (497, 516), True, 'import numpy as np\n')]
import unittest import requests from helpers.fake_http_server import FakeServer class FakeServerTest(unittest.TestCase): SERVER = None @classmethod def setUpClass(cls): cls.SERVER = FakeServer() cls.SERVER.start_server() cls.SERVER.serve_forever() def setUp(self): self.server = FakeServerTest.SERVER def test_is_server_alive(self): self.assertTrue(self.server.is_alive()) self.assertTrue(self.server.is_ready_to_process()) def test_server_process_forever(self): self.assertTrue(self.server.is_ready_to_process()) send_and_check_request(self.server.get_url(), "request1") self.assertTrue(self.server.is_ready_to_process()) send_and_check_request(self.server.get_url(), "request2") self.assertTrue(self.server.is_ready_to_process()) def test_server_overlapped_listeners(self): self.assertTrue(self.server.is_ready_to_process()) self.assertRaises(FakeServer.ServerStateException, self.server.serve_once) self.assertRaises(FakeServer.ServerStateException, self.server.serve_forever) def test_server_start_overlapped_instances(self): self.assertRaises(FakeServer.ServerStateException, self.server.start_server) def test_timeout_triggers_only_once_per_call(self): timeout = 0.3 self.server.set_timeout_delay(timeout) with self.assertRaises(requests.exceptions.ReadTimeout): requests.get(self.server.get_url(), timeout=timeout) requests.get(self.server.get_url(), timeout=timeout) def test_server_stop_multiple_times(self): self.server.stop_server() self.assertRaises(FakeServer.ServerStateException, self.server.stop_server) self.server.start_server() self.server.serve_forever() def test_set_custom_response(self): expected_response = "Expected Response" expected_response_code = 404 self.server.set_expected_response(expected_response, expected_response_code) response = requests.get(self.server.get_url() + "request") self.assertEquals(expected_response, response.text) self.assertEquals(expected_response_code, response.status_code) @classmethod def tearDownClass(cls): try: cls.SERVER.stop_server() except: pass def send_and_check_request(url, request): url = url + request response = requests.get(url) received_request = open(FakeServer.REQUEST_FILE).read() assert request in received_request[1:] # skip first character which always is '/' assert response.status_code == FakeServer.DEFAULT_RESPONSE_CODE assert response.text == FakeServer.DEFAULT_RESPONSE
[ "helpers.fake_http_server.FakeServer", "requests.get" ]
[((2488, 2505), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (2500, 2505), False, 'import requests\n'), ((206, 218), 'helpers.fake_http_server.FakeServer', 'FakeServer', ([], {}), '()\n', (216, 218), False, 'from helpers.fake_http_server import FakeServer\n')]
#!/usr/bin/env python import textgrid import sys if len(sys.argv) != 2: print("textgrid-to-audacity.py [filename]") quit() tg = textgrid.TextGrid.fromFile(sys.argv[1]) started = False start=0.0 end=0.0 text=list() for i in tg[0]: if i.mark != '': if not started: start = i.minTime started = True else: started = True end = i.maxTime text.append(i.mark) else: if started: print('{}\t{}\t{}'.format(start, end, ' '.join(text))) start = 0.0 end = 0.0 text.clear() started = False
[ "textgrid.TextGrid.fromFile" ]
[((138, 177), 'textgrid.TextGrid.fromFile', 'textgrid.TextGrid.fromFile', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (164, 177), False, 'import textgrid\n')]
import contextlib import os import logging from django.test.runner import DiscoverRunner from django.conf import settings from django.db import connections logger = logging.getLogger(__name__) class LegacyDiscoverRunner(DiscoverRunner): """ See https://docs.djangoproject.com/en/1.7/topics/testing/advanced/#defining-a-test-runner """ def setup_databases(self, **kwargs): """Though our schema is readonly in shared environments we assume DB control in testing""" # Super will create an empty test_<db name> automatically config = super(LegacyDiscoverRunner, self).setup_databases(**kwargs) # Invoke any custom ddl to create the schema after that. script_path = os.path.join(settings.MANAGE_ROOT, 'legacy-schema.sql') logger.info("Initializing DB with script. [Path: {}]".format(script_path)) with open(script_path, 'r') as sql_file: ddl = sql_file.read() cursor = connections['legacy'].cursor() cursor.executescript(ddl) return config
[ "os.path.join", "logging.getLogger" ]
[((167, 194), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (184, 194), False, 'import logging\n'), ((724, 779), 'os.path.join', 'os.path.join', (['settings.MANAGE_ROOT', '"""legacy-schema.sql"""'], {}), "(settings.MANAGE_ROOT, 'legacy-schema.sql')\n", (736, 779), False, 'import os\n')]
# coding: utf8 import datetime import logging import random import re import ssl import subprocess import threading import time from multiprocessing import Process as Thread import telebot from aiohttp import web from telebot import types import api import cherrypy import config import secret_config import text import ujson import utils WEBHOOK_HOST = utils.get_my_ip() WEBHOOK_PORT = 8443 # 443, 80, 88 или 8443 (порт должен быть открыт!) # На некоторых серверах придется указывать такой же IP, что и выше WEBHOOK_LISTEN = '0.0.0.0' WEBHOOK_SSL_CERT = './webhook_cert.pem' # Путь к сертификату WEBHOOK_SSL_PRIV = './webhook_pkey.pem' # Путь к приватному ключу WEBHOOK_URL_BASE = "https://%s:%s" % (WEBHOOK_HOST, WEBHOOK_PORT) WEBHOOK_URL_PATH = "/%s/" % (secret_config.token) start_time = int(time.time()) bot = telebot.TeleBot(token = secret_config.token) my_info = bot.get_me() telebot_logger = logging.getLogger('telebot') sqlite_info = logging.getLogger('sqlite') main_info = logging.getLogger('main_info') report_info = logging.getLogger('reports') if __name__ == '__main__': log_name = 'logs.txt' f = open(log_name,'w') f.close() print('Файл логов создан') telebot_logger = logging.getLogger('telebot') mysql_info = logging.getLogger('mysql') main_info = logging.getLogger('main_info') report_info = logging.getLogger('reports') print('Список логгеров создан') logging.basicConfig( format='%(filename)s [LINE:%(lineno)-3d]# %(levelname)-8s - %(name)-9s [%(asctime)s] - %(message)-50s ', datefmt='%m/%d/%Y %I:%M:%S %p', level = logging.INFO ) app = web.Application() t = Thread(target = utils.check_deleting_queue) t.start() async def handle(request): if request.match_info.get('token') == bot.token: request_body_dict = await request.json() update = telebot.types.Update.de_json(request_body_dict) bot.process_new_updates([update]) return web.Response() else: return web.Response(status=403) app.router.add_post('/{token}/', handle) def create_user_language_keyboard(): lang_keyboard = types.InlineKeyboardMarkup() for i in config.languages: lang_keyboard.add(types.InlineKeyboardButton(text = i['title'], callback_data = 'lang::{lang_code}'.format(lang_code = i['code']))) return lang_keyboard def group_setting(chat_id): keyboard = types.InlineKeyboardMarkup(row_width=1) curr_settings = api.get_group_params(chat_id) btn = types.InlineKeyboardButton(text = 'Принимать рассылки{}'.format(config.settings_statuses[curr_settings['get_notifications']]), callback_data = 'get_notifications::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) btn = types.InlineKeyboardButton(text = 'Удалять ссылки{}'.format(config.settings_statuses[curr_settings['deletions']['url']]), callback_data = 'del_url::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) btn = types.InlineKeyboardButton(text = 'Удалять системные сообщения{}'.format(config.settings_statuses[curr_settings['deletions']['system']]), callback_data = 'del_system::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) btn = types.InlineKeyboardButton(text = 'Исключать ботов{}'.format(config.settings_statuses[curr_settings['kick_bots']]), callback_data='kick_bots::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) btn = types.InlineKeyboardButton(text = 'Фильтры', callback_data='deletions_settings::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) btn = types.InlineKeyboardButton(text = 'Ограничения новых пользователей', callback_data = 'new_users_restrictions::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) btn = types.InlineKeyboardButton(text = 'Настройка предупреждений', callback_data = 'warns_settings::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) btn = types.InlineKeyboardButton(text = 'Настройка приветствий', callback_data = 'welcome_settings::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) btn = types.InlineKeyboardButton(text = 'Получить дамп настроек', callback_data = 'get_settings_json::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) btn = types.InlineKeyboardButton(text = 'Получить топ инвайтеров', callback_data = 'get_chat_refs::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) keyboard.add(types.InlineKeyboardButton(text = 'К списку групп', callback_data = 'to_groups_list')) return keyboard def welcome_settings_kb(chat_id): kb = types.InlineKeyboardMarkup(row_width = 4) curr_settings = api.get_group_params(chat_id) btn = types.InlineKeyboardButton(text = 'Отправлять приветствие в чат: {}'.format(config.settings_statuses[curr_settings['greeting']['is_enabled']]), callback_data = 'welcome_state::{chat_id}'.format(chat_id = chat_id)) kb.add(btn) btn = types.InlineKeyboardButton(text = 'Задержка перед удалением приветствия: {} сек.'.format(curr_settings['greeting']['delete_timer']), callback_data = 'welcome_get::{chat_id}'.format(chat_id = chat_id)) kb.add(btn) btn1 = types.InlineKeyboardButton(text = '➖10', callback_data = 'welcome_timer_-10::{chat_id}'.format(chat_id = chat_id)) btn2 = types.InlineKeyboardButton(text = '➖5', callback_data = 'welcome_timer_-5::{chat_id}'.format(chat_id = chat_id)) btn3 = types.InlineKeyboardButton(text = '➕5', callback_data = 'welcome_timer_+5::{chat_id}'.format(chat_id = chat_id)) btn4 = types.InlineKeyboardButton(text = '➕10', callback_data = 'welcome_timer_+10::{chat_id}'.format(chat_id = chat_id)) kb.add(btn1, btn2, btn3, btn4) btn = types.InlineKeyboardButton(text = 'Показать приветствие', callback_data = 'welcome_get::{chat_id}'.format(chat_id = chat_id)) kb.add(btn) btn = types.InlineKeyboardButton(text = 'Назад', callback_data='to_group_settings_menu::{chat_id}'.format(chat_id = chat_id)) kb.add(btn) return kb def new_users_restrictions_kb(chat_id): keyboard = types.InlineKeyboardMarkup(row_width = 4) curr_settings = api.get_group_params(chat_id) btn = types.InlineKeyboardButton(text = 'Автоматический read-only на {} час - {}'.format(curr_settings['restrictions']['for_time'], config.settings_statuses[curr_settings['restrictions']['read_only']]), callback_data = 'read_only::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) btn1 = types.InlineKeyboardButton(text = '➖2', callback_data = 'time_ro_-2::{chat_id}'.format(chat_id = chat_id)) btn2 = types.InlineKeyboardButton(text = '➖1', callback_data = 'time_ro_-1::{chat_id}'.format(chat_id = chat_id)) btn3 = types.InlineKeyboardButton(text = '➕1', callback_data = 'time_ro_+1::{chat_id}'.format(chat_id = chat_id)) btn4 = types.InlineKeyboardButton(text = '➕2', callback_data = 'time_ro_+2::{chat_id}'.format(chat_id = chat_id)) btn5 = types.InlineKeyboardButton(text = 'Навсегда', callback_data = 'time_ro_+10000::{chat_id}'.format(chat_id = chat_id)) btn6 = types.InlineKeyboardButton(text = 'Сброс', callback_data = 'time_ro_-10000000000::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn1, btn2, btn3, btn4) keyboard.add(btn5, btn6) btn = types.InlineKeyboardButton(text = 'Снятие ограничений разрешено для: {}'.format(config.new_users[curr_settings['restrictions']['admins_only']]), callback_data = 'new_restrictions_admins_only_{state}::{chat_id}'.format(state = config.settings_states[curr_settings['restrictions']['admins_only']], chat_id = chat_id)) keyboard.add(btn) btn = types.InlineKeyboardButton(text = 'Назад', callback_data='to_group_settings_menu::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) return keyboard def warns_settings_kb(chat_id): keyboard = types.InlineKeyboardMarkup(row_width = 4) curr_settings = api.get_group_params(chat_id) btn = types.InlineKeyboardButton(text = 'Максимальное количество исключений: {}'.format(curr_settings['warns']['count']), callback_data = 'empty_callback::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) btn1 = types.InlineKeyboardButton(text = '➖2', callback_data = 'warns_count_-2::{chat_id}'.format(chat_id = chat_id)) btn2 = types.InlineKeyboardButton(text = '➖1', callback_data = 'warns_count_-1::{chat_id}'.format(chat_id = chat_id)) btn3 = types.InlineKeyboardButton(text = '➕1', callback_data = 'warns_count_+1::{chat_id}'.format(chat_id = chat_id)) btn4 = types.InlineKeyboardButton(text = '➕2', callback_data = 'warns_count_+2::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn1, btn2, btn3, btn4) btn = types.InlineKeyboardButton(text = 'Действие при максимальном кол-ве варнов: {}'.format(config.warns_states[curr_settings['warns']['action']]), callback_data='empty_callback::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) btn1 = types.InlineKeyboardButton(text = 'Ничего', callback_data = 'warns_action_0::{chat_id}'.format(chat_id = chat_id)) btn2 = types.InlineKeyboardButton(text = 'Кик', callback_data = 'warns_action_1::{chat_id}'.format(chat_id = chat_id)) btn3 = types.InlineKeyboardButton(text = 'Бан', callback_data = 'warns_action_2::{chat_id}'.format(chat_id = chat_id)) btn4 = types.InlineKeyboardButton(text = 'Read-only на сутки', callback_data = 'warns_action_3::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn1, btn2, btn3, btn4) btn = types.InlineKeyboardButton(text = 'Назад', callback_data='to_group_settings_menu::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) return keyboard def remove_warns_kb(user_id): kb = types.InlineKeyboardMarkup(row_width=1) btn = types.InlineKeyboardButton(text = 'Удалить предупреждения', callback_data = 'delete_warns::{user_id}'.format(user_id = user_id)) kb.add(btn) return kb def unban_new_user_kb(msg): kb = types.InlineKeyboardMarkup(row_width=1) btn = types.InlineKeyboardButton(text = 'Разблокировать', callback_data = 'unban_new_user::{chat_id}::{user_id}'.format(user_id = msg.new_chat_member.id, chat_id = msg.chat.id)) kb.add(btn) return kb def user_settings_main_menu(msg): keyboard = types.InlineKeyboardMarkup(row_width=1) curr_settings = api.get_user_param(msg.chat.id, 'settings') btn = types.InlineKeyboardButton(text = 'Принимать рассылки{}'.format(config.settings_statuses['get_notifications']), callback_data='get_notifications') keyboard.add(btn) btn = types.InlineKeyboardButton(text = 'Выбор языка'.format(config.settings_statuses['get_notifications']), callback_data='open_lang_menu') keyboard.add(btn) return keyboard def delete_settings(chat_id): keyboard = types.InlineKeyboardMarkup(row_width=1) curr_settings = api.get_group_params(chat_id) for cont_type in config.available_attachments: btn = types.InlineKeyboardButton(text=config.available_attachments_str[cont_type].format(config.settings_statuses[curr_settings['deletions']['files'][cont_type]]), callback_data='delete::{content_type}::{chat_id}'.format(content_type = cont_type, chat_id = chat_id)) keyboard.add(btn) btn = types.InlineKeyboardButton(text = 'Переключить все', callback_data = 'change_all::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) btn = types.InlineKeyboardButton(text = 'Назад', callback_data='to_group_settings_menu::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) return keyboard def generate_leave_kb(msg): chat_id = msg.chat.id keyboard = types.InlineKeyboardMarkup(row_width=1) btn = types.InlineKeyboardButton(text = 'Да, выйди из чата', callback_data='leave_cancel::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) btn = types.InlineKeyboardButton(text = 'Нет, останься', callback_data='leave_confirm::{chat_id}'.format(chat_id = chat_id)) keyboard.add(btn) return keyboard def generate_user_menu_kb(user_id): kb = types.InlineKeyboardMarkup(row_width = 1) btn1 = types.InlineKeyboardButton(text = 'Мои чаты', callback_data = 'my_chats') btn2 = types.InlineKeyboardButton(text = 'Изменить язык', callback_data = 'change_lang') kb.add(btn1, btn2) if utils.check_super_user(user_id): kb.add(types.InlineKeyboardButton(text = 'Админка бота', callback_data = 'admin_menu')) return kb def generate_admin_menu_kb(): kb = types.InlineKeyboardMarkup(row_width = 2) btn1 = types.InlineKeyboardButton(text = 'Рассылка', callback_data = 'broadcast_menu') btn2 = types.InlineKeyboardButton(text = 'Статистика', callback_data = 'stats_menu') kb.add(btn1, btn2) kb.add(types.InlineKeyboardButton(text = 'В главное меню', callback_data = 'to_main_menu')) return kb def generate_broadcast_vars_menu_kb(): kb = types.InlineKeyboardMarkup(row_width = 1) btn1 = types.InlineKeyboardButton(text = 'Рассылка-проверка', callback_data = 'check_broadcast') btn2 = types.InlineKeyboardButton(text = 'Рассылка сообщения', callback_data = 'broadcast_settings') kb.add(btn1, btn2) kb.add(types.InlineKeyboardButton(text = 'В главное меню', callback_data = 'to_main_menu')) return kb def generate_broadcast_settings_menu_kb(): kb = types.InlineKeyboardMarkup(row_width = 2) btn1 = types.InlineKeyboardButton(text = 'Ввести сообщение', callback_data = 'broadcast_message::input') btn2 = types.InlineKeyboardButton(text = 'Просмотреть сообщение', callback_data = 'broadcast_message::show') btn3 = types.InlineKeyboardButton(text = 'Начать рассылку', callback_data = 'broadcast_message::start') kb.add(btn1, btn2, btn3) return kb def generate_broadcast_check_menu_kb(): kb = types.InlineKeyboardMarkup(row_width = 3) curr_settings = ujson.loads(api.get_bot_settings(secret_config.token)) s = { 'users': 'пользователи', 'chats': 'диалоги', 'all': 'все' } btn1 = types.InlineKeyboardButton(text = 'Только диалоги', callback_data = 'broadcast_check::users') btn2 = types.InlineKeyboardButton(text = 'Только чаты', callback_data = 'broadcast_check::chats') btn3 = types.InlineKeyboardButton(text = 'Все', callback_data = 'broadcast_check::all') btn4 = types.InlineKeyboardButton(text = 'Сейчас: {}'.format(s[curr_settings['broadcast']['check']['receivers']]), callback_data = 'empty_callback') btn5 = types.InlineKeyboardButton(text = 'Начать рассылку', callback_data = 'broadcast_check::start') kb.add(btn1, btn2, btn3) kb.add(btn4, btn5) return kb def generate_user_groups(user_id): kb = types.InlineKeyboardMarkup(row_width=2) user_settings = ujson.loads(api.get_user_param(user_id, 'settings')) btns = [] for i in user_settings['admined_groups']: btn = types.InlineKeyboardButton(text = i['title'], callback_data = 'settings::{chat_id}'.format(chat_id = i['chat_id'])) btns.append(btn) kb.add(*btns) kb.add(types.InlineKeyboardButton(text = 'В главное меню', callback_data = 'to_main_menu')) return kb @bot.channel_post_handler(content_types=['text'], func = lambda msg: msg.chat.id == secret_config.channel_ID) def bot_broadcast(msg): r = bot.forward_message(secret_config.official_chat, msg.chat.id, msg.message_id) bot.pin_chat_message( r.chat.id, r.message_id ) @bot.message_handler(commands =['setlog'], func = lambda msg: msg.chat.type in ['group', 'supergroup'] and msg.forward_from_chat is not None and utils.check_status(msg.from_user.id, msg.chat.id) and not utils.check_log(msg.chat.id) ) def bot_set_log(msg): user_id = msg.from_user.id try: admins = bot.get_chat_administrators(msg.forward_from_chat.id) status1 = False status2 = False for i in admins: if i.user.id == user_id: if i.status == 'creator': status1 = True if i.user.id == my_info.id: status2 = True if status1 is True and status2 is True: utils.set_log_channel(msg.chat.id, msg.forward_from_chat.id) elif status1 is not True: bot.send_message( msg.chat.id, text = text.group_commands[utils.get_group_lang(chat_id)]['log_channel']['confirmation']['errors']['user_is_not_creator'] ) elif status2 is not True: bot.send_message( msg.chat.id, text = text.group_commands[utils.get_group_lang(chat_id)]['log_channel']['confirmation']['errors']['bot_is_not_admin'] ) except Exception as e: print(e) @bot.message_handler(commands = ['dellog'], func = lambda msg: msg.chat.type in ['group', 'supergroup'] and msg.forward_from_chat is not None and utils.check_status(msg.from_user.id, msg.chat.id) and msg.forward_from_chat.id == utils.get_log_id(msg.chat.id) and utils.check_log(msg.chat.id) ) def bot_del_log(msg): print(1) user_id = msg.from_user.id try: admins = bot.get_chat_administrators(msg.forward_from_chat.id) status1 = False status2 = False for i in admins: if i.user.id == user_id: if i.status == 'creator': status1 = True if i.user.id == my_info.id: status2 = True if status1 is True and status2 is True: utils.remove_log_channel(msg.chat.id) elif status1 is not True: bot.send_message( msg.chat.id, text = text.group_commands[utils.get_group_lang(chat_id)]['log_channel']['confirmation']['errors']['user_is_not_creator'] ) elif status2 is not True: bot.send_message( msg.chat.id, text = text.group_commands[utils.get_group_lang(chat_id)]['log_channel']['confirmation']['errors']['bot_is_not_admin'] ) except Exception as e: print(e) @bot.message_handler(commands = ['infolog'], func = lambda msg: msg.chat.type in ['group', 'supergroup']) def bot_info_log(msg): if utils.check_log(msg.chat.id): m = text.group_commands[utils.get_group_lang(msg.chat.id)]['log_channel']['info']['is_on'].format( chat_id = utils.get_log_id(msg.chat.id), chat_name = bot.get_chat(utils.get_log_id(msg.chat.id)).title ) else: m = text.group_commands[utils.get_group_lang(msg.chat.id)]['log_channel']['info']['is_off'] bot.send_message( msg.chat.id, m, parse_mode = 'HTML' ) @bot.message_handler(commands = ['leave'], func = lambda msg: msg.chat.type != 'private' and utils.check_status(msg.from_user.id, msg.chat.id)) def bot_leave(msg): bot.send_message( msg.chat.id, text.group_commands[utils.get_group_lang(msg.chat.id)]['leave']['question'], reply_markup = generate_leave_kb(msg), parse_mode = 'HTML' ) @bot.message_handler(commands = ['rmkb'], func = lambda msg: msg.chat.type in ['group', 'supergroup']) def bot_remove_kb(msg): kb = types.ReplyKeyboardMarkup(one_time_keyboard=True) kb.add(types.KeyboardButton(text='/rmkb')) r = bot.send_message( msg.chat.id, text = text.group_commands[utils.get_group_lang(msg.chat.id)]['remove_keyboard'], reply_markup = kb ) bot.delete_message( msg.chat.id, r.message_id ) bot.delete_message( msg.chat.id, msg.message_id ) @bot.message_handler(commands = ['settings'], func = lambda msg: msg.chat.type == 'supergroup') def bot_answ(msg): start_time = time.time() message = msg kb = types.InlineKeyboardMarkup() r = bot.reply_to( msg, 'Настройки отправлены вам в личные сообщения', ) kb.add(types.InlineKeyboardButton(text = 'Удалить', callback_data = 'settings_delete {} {}'.format(msg.message_id, r.message_id))) bot.edit_message_reply_markup( chat_id = msg.chat.id, message_id = r.message_id, reply_markup = kb ) bot.send_message( msg.from_user.id, '<b>Настройки группы {}</b>'.format(msg.chat.title), reply_markup=group_setting(msg.chat.id), parse_mode='HTML' ) utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands=['start'], func=lambda msg: msg.chat.type == 'private') def bot_user_start(msg): message = msg start_time = time.time() if utils.is_user_new(msg): if utils.have_args(msg): referrer = utils.parse_arg(msg)[1] bot.send_message( msg.chat.id, text.user_messages['start'], reply_markup=generate_user_menu_kb(msg.from_user.id) ) api.register_new_user(msg.from_user, 'ru') else: bot.send_message( msg.chat.id, text.user_messages[utils.get_user_lang(msg)]['start'], reply_markup=generate_user_menu_kb(msg.from_user.id) ) utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands=['start'], func=lambda msg: msg.chat.type != 'private') def bot_group_start(msg): start_time = time.time() api.register_new_chat(msg.chat) utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands = ['get_logs'], func = lambda msg: msg.chat.id == -1001236256304 and utils.check_super_user(msg.from_user.id)) def bot_logs(msg): bot.send_document(msg.chat.id, open('logs.txt', 'rb')) @bot.message_handler(commands = ['menu']) def bot_user_menu(msg): bot.send_message( msg.from_user.id, 'Ваше меню', reply_markup = generate_user_menu_kb(msg.from_user.id) ) @bot.message_handler(commands=['set_text'], func = lambda msg: msg.chat.type != 'private') def bot_set_text(msg): start_time = time.time() message = msg if len(msg.text) not in [9, 21]: new_greeting = msg.text[len(msg.text):msg.entities[0].length:-1][::-1] if utils.check_text(new_greeting): utils.set_greeting(msg, new_greeting) bot.send_message( msg.chat.id, 'Приветствие изменено' ) else: bot.send_message( msg.chat.id, text = 'Данное приветствие не работает' ) utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands=['kick'], func=lambda msg: msg.chat.type != 'private') def bot_kick(msg): start_time = time.time() utils.kick_user(msg) utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands = ['ban', 'ban_me_please'], func = lambda msg: msg.chat.type == 'supergroup') def bot_ban_me_please(msg): start_time = time.time() if msg.text == '/ban_me_please': t = random.randint(1, 10) ban_time = 60*t try: if not utils.check_status(msg.from_user.id, msg.chat.id): bot.restrict_chat_member( msg.chat.id, msg.from_user.id, until_date=str(time.time() + ban_time)) bot.reply_to( msg, text.group_commands[utils.get_group_lang(msg.chat.id)]['ban_me_please'].format( t = t ), parse_mode = 'HTML' ) else: bot.reply_to( msg, text.group_commands[utils.get_group_lang(msg.chat.id)]['errors']['prefix'].format( reason = text.group_commands[utils.get_group_lang(msg.chat.id)]['errors']['reasons']['user_is_admin'] ), parse_mode='HTML' ) except Exception as e: logging.error(e) else: utils.ban_user(msg) utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands=['ping']) def bot_ping(msg): start_timee = time.time() uptime = datetime.timedelta(seconds = int(time.time()-start_time)) working_time = datetime.timedelta(seconds = int(time.time()-msg.date)) uptime_str = str(uptime).replace('day', 'days').replace('dayss', 'days') working_time_str = str(working_time).replace('day', 'days').replace('dayss', 'days') if uptime.days != 0: uptime_str = uptime_str.replace(uptime_str.split(',')[0], utils.get_text_translation(uptime_str.split(',')[0]), 'ru') if working_time.days != 0: working_time_str = working_time_str.replace(working_time_str.split(',')[0], utils.get_text_translation(working_time_str.split(',')[0], 'ru')) bot.send_message( msg.chat.id, text.user_messages['ru']['commands']['ping'].format( unix_time = datetime.datetime.fromtimestamp(int(time.time())), working_time = working_time_str, uptime_sec = uptime ), reply_to_message_id=msg.message_id, parse_mode='HTML' ) utils.new_update(msg, time.time()-start_timee) @bot.message_handler(content_types=['new_chat_members']) def bot_users_new(msg): start_time = time.time() api.register_new_chat(msg.chat) chat_id = msg.chat.id utils.new_member_logs(msg) if api.get_group_params(msg.chat.id)['deletions']['system']: bot.delete_message( msg.chat.id, msg.message_id ) if msg.chat.type == 'channel': bot.send_message( msg.chat.id, text.promotion_message, parse_mode='HTML' ) bot.leave_chat( msg.chat.id ) if msg.new_chat_member.id == 495038140: api.change_group_params(msg.chat.id, ujson.dumps(config.default_group_settings)) else: if api.get_group_params(msg.chat.id)['restrictions']['read_only']: bot.restrict_chat_member( msg.chat.id, msg.new_chat_member.id, until_date = int(time.time()+api.get_group_params(msg.chat.id)['restrictions']['for_time']*3600) ) r = bot.send_message( msg.chat.id, text.group_commands['ru']['restricted']['new_user']['read_only'].format( user_id = msg.new_chat_member.id, user_name = api.replacer(msg.new_chat_member.first_name), ban_time = api.get_group_params(msg.chat.id)['restrictions']['for_time'] ), reply_markup = unban_new_user_kb(msg), parse_mode = 'HTML' ) utils.add_to_delete_queue(msg.chat.id, r.message_id, api.get_group_params(msg.chat.id)['restrictions']['for_time']*3600) if msg.new_chat_member.is_bot and api.get_group_params(msg.chat.id)['kick_bots']: bot.kick_chat_member( msg.chat.id, msg.new_chat_member.id ) bot.send_message( msg.chat.id, text.group_commands['ru']['restricted']['bot'], parse_mode = 'HTML', reply_markup = types.ReplyKeyboardRemove() ) elif utils.check_global_ban(msg): bot.kick_chat_member( msg.chat.id, msg.new_chat_member.id ) bot.send_message( msg.chat.id, text.group_commands['ru']['restricted']['global_ban'].format( user_id = msg.new_chat_member.id, user_name = msg.new_chat_member.first_name ), parse_mode = 'HTML' ) else: utils.new_user_in_chat(msg) if utils.need_greeting(msg): r = bot.send_message( msg.chat.id, utils.generate_welcome_text(msg), parse_mode='HTML' ) utils.add_to_delete_queue(msg.chat.id, r.message_id, api.get_group_params(msg.chat.id)['greeting']['delete_timer']) utils.new_update(msg, time.time()-start_time) @bot.message_handler(content_types=[ 'new_chat_members', 'left_chat_member', 'new_chat_title', 'new_chat_photo', 'delete_chat_photo', 'group_chat_created', 'supergroup_chat_created', 'channel_chat_created', 'migrate_to_chat_id', 'migrate_from_chat_id', 'pinned_message' ]) def bot_check_system(msg): start_time = time.time() if api.get_group_params(msg.chat.id)['deletions']['system']: bot.delete_message( msg.chat.id, msg.message_id ) utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands=['report']) def bot_report(msg): start_time = time.time() admins = bot.get_chat_administrators(msg.chat.id) chat = bot.get_chat(msg.chat.id) msg_id = '' if chat.username: if msg.reply_to_message: msg_id = msg.reply_to_message.message_id txt = text.reports_messages['report']['to_admin']['have_username']['reply'] else: msg_id = msg.message_id txt = text.reports_messages['report']['to_admin']['have_username']['no_reply'] else: txt = text.reports_messages['report']['to_admin']['no_username'] for i in admins: try: bot.send_message( i.user.id, txt.format( group_name = api.replacer(msg.chat.title), group_username = chat.username, message_id = msg_id, user_id = msg.from_user.id, user_name = api.replacer(msg.from_user.first_name), ), parse_mode='HTML' ) except Exception as e: print(e) bot.reply_to( msg, text.reports_messages['report']['to_user'], parse_mode = 'HTML' ) utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands = ['unban'], func = lambda msg: msg.chat.type == 'supergroup') def bot_user_unban(msg): start_time = time.time() if utils.check_status(msg.from_user.id, msg.chat.id) and utils.have_args(msg): words = utils.parse_arg(msg)[1] user_id = int(words) utils.unban_user(msg, user_id) elif utils.check_status(msg.from_user.id, msg.chat.id) and msg.reply_to_message is not None: user_id = msg.reply_to_message.from_user.id utils.unban_user(msg, user_id) elif utils.check_status(msg.from_user.id, msg.chat.id) and not utils.have_args(msg): utils.send_err_report(msg, 'no_args_provided') else: utils.send_err_report(msg, 'not_enought_rights') utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands = ['reregister'], func = lambda msg: msg.chat.type == 'supergroup') def bot_reregister(msg): start_time = time.time() if utils.check_status(msg.from_user.id, msg.chat.id): api.register_new_chat(msg.chat) api.change_group_params(msg.chat.id, ujson.dumps(config.default_group_settings)) bot.send_message( msg.chat.id, text.group_commands[utils.get_group_lang(msg.chat.id)]['registration'], parse_mode = 'HTML' ) @bot.message_handler(commands=['ro'], func=lambda msg: msg.chat.type == 'supergroup') def bot_users_ro(msg): start_time = time.time() if utils.check_status(msg.from_user.id, msg.chat.id): utils.read_only(msg) else: utils.send_err_report(msg, 'not_enought_rights') utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands=['stickerpack_ban'],func=lambda msg: msg.chat.type == 'supergroup') def bot_stickerpack_ban(msg): start_time = time.time() if utils.check_status(msg.from_user.id, msg.chat.id): utils.ban_stickerpack(msg) else: utils.send_err_report(msg, 'not_enought_rights') utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands=['stickerpack_unban'], func=lambda msg: msg.chat.type != 'private') def bot_stickerpack_unban(msg): start_time = time.time() if utils.check_status(msg.from_user.id, msg.chat.id) and utils.have_args(msg): stickerpack_name = utils.parse_arg(msg)[1] utils.unban_stickerpack(msg, stickerpack_name) utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands=['sticker_ban'], func=lambda msg: msg.chat.type == 'supergroup') def bot_sticker_ban(msg): start_time = time.time() if utils.check_status(msg.from_user.id, msg.chat.id): sticker_id = msg.reply_to_message.sticker.file_id utils.ban_sticker(msg, sticker_id) elif not utils.check_status(msg.from_user.id, msg.chat.id): utils.send_err_report(msg, 'not_enought_rights') utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands=['sticker_unban'], func=lambda msg: msg.chat.type == 'supergroup') def bot_sticker_unban(msg): start_time = time.time() if utils.have_args(msg) and utils.check_status(msg.from_user.id, msg.chat.id): sticker_id = utils.parse_arg(msg)[1] utils.unban_sticker(msg, sticker_id) elif utils.check_status(msg.from_user.id, msg.chat.id) and not utils.have_args(msg): utils.send_err_report(msg, 'not_enought_rights') elif utils.have_args(msg) and not check_status(msg.from_user.id): utils.send_err_report(msg, 'no_args_provided') utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands=['help']) def bot_help(msg): start_time = time.time() bot.send_message( msg.from_user.id, text.user_messages[utils.get_user_lang(msg)]['help'], parse_mode='HTML' ) utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands=['about'], func=lambda msg: msg.chat.type == 'private') def bot_about(msg): start_time = time.time() bot.send_message( msg.chat.id, text.user_messages[utils.get_user_lang(msg)]['about'], parse_mode='HTML' ) utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands=['warn'], func=lambda msg: msg.chat.type != 'private') def bot_new_warn(msg): start_time = time.time() if utils.check_status(msg.from_user.id, msg.chat.id) and msg.reply_to_message is not None and not utils.check_status(msg.reply_to_message.from_user.id, msg.chat.id): utils.new_warn(msg) elif not utils.check_status(msg.from_user.id, msg.chat.id): utils.send_err_report(msg, 'not_enought_rights') elif utils.check_status(msg.reply_to_message.from_user.id, msg.chat.id): utils.send_err_report(msg, 'user_is_admin') utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands=['donate']) def bot_donate(msg): start_time = time.time() bot.send_message( msg.chat.id, text.group_commands['ru']['donate'], parse_mode = 'HTML' ) utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands = ['get_id']) def bot_get_id(msg): bot.send_message( msg.chat.id, msg.chat.id ) # @bot.message_handler(commands = ['voteban']) # def bot_voteban(msg): # utils.new_voteban(msg) # bot.send_message( # msg.chat.id, # text. # ) @bot.message_handler(commands = ['version']) def bot_version(msg): bot.send_message( msg.chat.id, text.user_messages[utils.get_user_lang(msg)]['commands']['version'].format(version = text.VERSION), parse_mode = 'HTML' ) @bot.message_handler(commands = ['set_rules'], func = lambda msg: utils.check_status(msg.from_user.id, msg.chat.id)) def bot_set_rules(msg): start_time = time.time() message = msg if len(msg.text) not in [9, 21]: new_rules = msg.text[len(msg.text):msg.entities[0].length:-1][::-1] if utils.check_text(new_rules): utils.set_rules(msg, new_rules) bot.send_message( msg.chat.id, 'Правила изменены' ) else: bot.send_message( msg.chat.id, text = 'Правила составлены неверно' ) utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands = ['rules'], func = lambda msg: msg.chat.type != 'private') def bot_get_rules(msg): start_time = time.time() try: bot.send_message( msg.from_user.id, utils.generate_rules_text(msg), parse_mode = 'HTML' ) except Exception: bot.reply_to( msg, text = '' ) utils.new_update(msg, time.time()-start_time) @bot.message_handler(commands = ['reset_settings'], func = lambda msg: msg.chat.type != 'private') def bot_reset_settings(msg): start_time = time.time() kb = types.InlineKeyboardMarkup() kb.add(types.InlineKeyboardButton(text = 'Да, выполнить сброс', callback_data = 'reset_settings_confirmation::{chat_id}'.format(chat_id = msg.chat.id))) kb.add(types.InlineKeyboardButton(text = 'Нет, не стоит', callback_data = 'reset_settings_abort::{chat_id}'.format(chat_id = msg.chat.id))) if utils.check_status(msg.from_user.id, msg.chat.id): bot.send_message( msg.chat.id, 'Вы действительно хотите сбросить настройки?', reply_markup = kb ) @bot.message_handler(commands = ['update_time'], func = lambda msg: utils.check_super_user(msg.from_user.id)) def bot_update_time(msg): bot_ping(msg) subprocess.run("timedatectl set-time '{time}'".format(time = datetime.datetime.fromtimestamp(msg.date+1).strftime("%Y-%m-%d %H:%M:%S")), shell=True) bot_ping(msg) @bot.message_handler(content_types=['text'], func = lambda msg: msg.chat.type != 'private') def bot_check_text(msg): start_time = time.time() msg_text = msg.text msg_text_low = msg_text.lower() if utils.is_restricted(msg) and not utils.check_status(msg.from_user.id, msg.chat.id): bot.delete_message( msg.chat.id, msg.message_id ) if msg_text_low.startswith('разбан'): if utils.check_super_user(msg.from_user.id): utils.global_unban(msg) elif msg_text.lower() in ['глобал бан']: if utils.check_super_user(msg.from_user.id): utils.global_ban(msg) elif not utils.check_status(msg.from_user.id, msg.chat.id): # if utils.is_new_in_chat(msg) and api.get_group_params(msg.chat.id)['restrict_new'] == '1': if utils.check_for_urls(msg) and api.get_group_params(msg.chat.id)['deletions']['url']: bot.delete_message( msg.chat.id, msg.message_id ) bot.send_message( msg.chat.id, text.group_commands[utils.get_group_lang(msg.chat.id)]['restricted']['url'].format( user_id = msg.from_user.id, user_name = api.replacer(msg.from_user.first_name) ), parse_mode='HTML' ) # elif utils.check_for_forward(msg) and api.get_group_params(msg.chat.id)['deletions']['forward']: # bot.delete_message( # msg.chat.id, # msg.message_id # ) # bot.send_message( # msg.chat.id, # text.group_commands[utils.get_group_lang(msg.chat.id)]['restricted']['url'].format( # user_id = msg.from_user.id, # user_name = api.replacer(msg.from_user.first_name) # ), # parse_mode='HTML' # ) utils.new_update(msg, time.time()-start_time) @bot.message_handler(content_types=['photo'], func = lambda msg: msg.chat.id == 303986717) def bot_text(msg): start_time = time.time() bot.reply_to(msg, "<code>'{}': '{}',</code>".format(msg.photo[0].file_id, msg.caption), parse_mode ='HTML') utils.new_update(msg, time.time()-start_time) @bot.message_handler(content_types = ['sticker'], func = lambda msg: not utils.check_status(msg.from_user.id, msg.chat.id)) def bot_check_sticker(msg): start_time = time.time() if utils.is_restricted(msg) or utils.is_sticker_restricted(msg): bot.delete_message( msg.chat.id, msg.message_id ) utils.new_update(msg, time.time()-start_time) @bot.message_handler(content_types = ['audio', 'document', 'photo', 'sticker', 'video', 'video_note', 'voice', 'location', 'contact'], func = lambda msg: not utils.check_status(msg.from_user.id, msg.chat.id)) def testt(msg): start_time = time.time() if utils.is_restricted(msg): bot.delete_message( msg.chat.id, msg.message_id ) utils.new_update(msg, time.time()-start_time) # Кнопки @bot.callback_query_handler(func = lambda c: c.data.startswith('get_chat_refs::')) def bot_get_chat_refs(c): chat_id = utils.parse_chat_id(c) user_id = c.from_user.id inviters = utils.get_top_inviters(chat_id) m = text.group_commands[utils.get_group_lang(chat_id)]['refs_stats']['header'] counter = 0 for i in inviters: inviter_info = bot.get_chat_member(chat_id, i['inviter']) counter += 1 m += text.group_commands[utils.get_group_lang(chat_id)]['refs_stats']['body'].format( inviter_pos = counter, inviter_id = inviter_info.user.id, inviter_firstname = inviter_info.user.first_name, invited_count = int(i['COUNT(`inviter`)']) ) bot.send_message( user_id, m, parse_mode = 'HTML' ) bot.answer_callback_query( c.id, text = 'Список отправлен', show_alert = True ) @bot.callback_query_handler(func = lambda c: c.data in ['my_chats', 'to_groups_list']) def my_chats_list(c): user_id = c.from_user.id user_settings = api.get_user_param(user_id, 'settings') bot.edit_message_text( chat_id = c.message.chat.id, message_id = c.message.message_id, text = 'Список ваших групп' ) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = generate_user_groups(user_id) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Переход выполнен' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('get_settings_json')) def bot_get_settings_json(c): chat_id = utils.parse_chat_id(c) bot.send_message( chat_id = c.from_user.id, text = 'Эти настройки можно получить в любое время и отправить @f0rden для восстановления их, в случае сбоя:\n'+ujson.dumps(api.get_group_params(chat_id)) ) bot.answer_callback_query( c.id, text = 'Настройки отправлены', show_alert = True ) @bot.callback_query_handler(func = lambda c: c.data == 'stats_menu') def bot_stats_menu(c): bot.edit_message_text( chat_id = c.message.chat.id, message_id = c.message.message_id, text = text.service_messages['stats'].format( all_users = api.get_users_count(), all_chats = api.get_chats_count(), unblocked_users = api.get_unblocked_users_count(), unblocked_chats = api.get_unblocked_chats_count() ) ) @bot.callback_query_handler(func = lambda c: c.data == 'change_lang') def bot_change_lang(c): user_id = c.from_user.id bot.edit_message_text( chat_id = c.message.chat.id, message_id = c.message.message_id, text = text.user_messages['start'], parse_mode = 'HTML' ) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = create_user_language_keyboard() ) bot.answer_callback_query( callback_query_id = c.id, text = 'Переход выполнен' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('settings::')) def chat_settings(c): chat_id = utils.parse_chat_id(c) bot.edit_message_text( chat_id = c.message.chat.id, message_id = c.message.message_id, text = '<b>Настройки группы {}</b>'.format(bot.get_chat(chat_id).title), parse_mode = 'HTML' ) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = group_setting(chat_id), ) @bot.callback_query_handler(func = lambda c: c.data == 'to_main_menu') def bot_to_main_menu(c): bot.edit_message_text( chat_id = c.message.chat.id, message_id = c.message.message_id, text = 'Ваше меню' ) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = generate_user_menu_kb(c.from_user.id) ) @bot.callback_query_handler(func = lambda c: c.data == 'broadcast_menu') def bot_admin_menu(c): bot.edit_message_text( chat_id = c.message.chat.id, message_id = c.message.message_id, text = 'Выберите тип рассылки' ) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = generate_broadcast_vars_menu_kb() ) @bot.callback_query_handler(func = lambda c: c.data == 'check_broadcast') def bot_admin_menu(c): bot.edit_message_text( chat_id = c.message.chat.id, message_id = c.message.message_id, text = 'Рассылка начата' ) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = generate_broadcast_check_menu_kb() ) @bot.callback_query_handler(func = lambda c: c.data.startswith('broadcast_check')) def bot_broadcast_check(c): arg = c.data.split('::')[1] curr_bot_settings = ujson.loads(api.get_bot_settings(secret_config.token)) if arg in ['users', 'chats', 'all']: curr_bot_settings['broadcast']['check']['recievers'] = arg api.change_bot_settings(secret_config.token, ujson.dumps(curr_bot_settings)) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = generate_broadcast_check_menu_kb() ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены.' ) else: t = Thread(target = utils.make_broadcast, kwargs = { 'is_test': True, 'receivers': curr_bot_settings['broadcast']['check']['recievers'], 'cont_type': 'text', 'msg_text': '', 'file_id': '', 'user_id': c.from_user.id, 'message_id': c.message.message_id } ) kb = types.InlineKeyboardMarkup() kb.add(types.InlineKeyboardButton(text = 'В главное меню', callback_data = 'to_main_menu')) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = kb ) t.start() t.join() @bot.callback_query_handler(func = lambda c: c.data == 'admin_menu') def bot_admin_menu(c): bot.edit_message_text( chat_id = c.message.chat.id, message_id = c.message.message_id, text = 'Админка' ) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = generate_admin_menu_kb() ) @bot.callback_query_handler(func=lambda c: c.data.startswith('lang::')) def change_language(c): words = re.split('::', c.data) lang = words[1] bot.edit_message_text( chat_id = c.message.chat.id, message_id = c.message.message_id, text = text.user_messages[lang]['chosen_language']) api.register_new_user(c.from_user, lang) @bot.callback_query_handler(func = lambda c: c.data.startswith('get_notifications')) def notify_change(c): chat_id = utils.parse_chat_id(c) if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): utils.change_state_main(chat_id, 'get_notifications') bot.edit_message_reply_markup( chat_id=c.message.chat.id, message_id=c.message.message_id, reply_markup=group_setting(utils.parse_chat_id(c)) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены. Текущий статус настройки: {}'.format(config.settings_statuses[api.get_group_params(chat_id)[c.data.split('::')[0]]]) ) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'Вы не являетесь администратором. Текущий статус настройки: {}'.format(config.settings_statuses[api.get_group_params(chat_id)[c.data.split('::')[0]]]) ) @bot.callback_query_handler(func = lambda c: c.data.startswith('del_url')) def del_url(c): chat_id = utils.parse_chat_id(c) if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): utils.change_state_deletions_main(chat_id, 'url') bot.edit_message_reply_markup( chat_id=c.message.chat.id, message_id=c.message.message_id, reply_markup=group_setting(utils.parse_chat_id(c)) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены. Текущий статус настройки: {}'.format(config.settings_statuses[api.get_group_params(chat_id)['deletions']['url']]) ) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'Вы не являетесь администратором. Текущий статус настройки: {}'.format(config.settings_statuses[api.get_group_params(chat_id)['deletions']['url']]) ) @bot.callback_query_handler(func = lambda c: c.data.startswith('del_system')) def del_system(c): chat_id = utils.parse_chat_id(c) if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): utils.change_state_deletions_main(chat_id, 'system') bot.edit_message_reply_markup( chat_id=c.message.chat.id, message_id=c.message.message_id, reply_markup=group_setting(utils.parse_chat_id(c)) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены. Текущий статус настройки: {}'.format(config.settings_statuses[api.get_group_params(chat_id)['deletions']['system']]) ) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'Вы не являетесь администратором. Текущий статус настройки: {}'.format(config.settings_statuses[api.get_group_params(chat_id)['deletions']['system']]) ) @bot.callback_query_handler(func = lambda c: c.data.startswith('kick_bots')) def kick_bots(c): chat_id = utils.parse_chat_id(c) if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): utils.change_state_main(chat_id, 'kick_bots') bot.edit_message_reply_markup( chat_id=c.message.chat.id, message_id=c.message.message_id, reply_markup=group_setting(utils.parse_chat_id(c)) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены. Текущий статус настройки: {}'.format(config.settings_statuses[api.get_group_params(chat_id)[c.data.split('::')[0]]]) ) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'У вас недостаточно прав для выполнения этого действия. Текущий статус настройки: {}'.format(config.settings_statuses[api.get_group_params(chat_id)[c.data.split('::')[0]]]) ) @bot.callback_query_handler(func = lambda c: c.data.startswith('deletions_settings')) def to_deletions(c): chat_id = utils.parse_chat_id(c) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = delete_settings(utils.parse_chat_id(c)) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Переход выполнен.' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('delete::')) def group_settings_deletions(c): chat_id = utils.parse_chat_id(c) cont_type = re.split('::', c.data)[1] if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): utils.change_state_deletions_files(chat_id, cont_type) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = delete_settings(utils.parse_chat_id(c)) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены. Статус настройки: {}'.format(config.settings_statuses[api.get_group_params(chat_id)['deletions']['files'][cont_type]]) ) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'У вас недостаточно прав для выполнения этого действия. Текущий статус настройки: {}'.format(config.settings_statuses[api.get_group_params(chat_id)['deletions']['files'][cont_type]]) ) @bot.callback_query_handler(func = lambda c: c.data.startswith('change_all')) def group_settings_deletions_all(c): chat_id = utils.parse_chat_id(c) if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): for i in config.available_attachments: utils.change_state_deletions_files(chat_id, i) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = delete_settings(chat_id) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены.' ) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'У вас недостаточно прав для выполнения этого действия.' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('to_group_settings_menu')) def group_settings_deletions_photo(c): chat_id = utils.parse_chat_id(c) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup=group_setting(utils.parse_chat_id(c)) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены.' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('warns_del')) def del_warns(c): user_id = utils.parse_user_id(c) chat_id = utils.parse_chat_id(c) if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): api.zeroing_warns(user_id, chat_id) bot.edit_message_text( text = 'Предупреждения обнулены.', chat_id = c.message.chat.id, message_id = c.message.message_id ) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'У вас недостаточно прав для выполнения этого действия.' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('new_users_restrictions')) def new_users_restrictions(c): chat_id = utils.parse_chat_id(c) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = new_users_restrictions_kb(chat_id) ) @bot.callback_query_handler(func = lambda c: c.data.startswith('read_only')) def new_users_ro(c): chat_id = utils.parse_chat_id(c) if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): settings = api.get_group_params(chat_id) settings['restrictions']['read_only'] = config.settings_states[settings['restrictions']['read_only']] api.change_group_params(chat_id, ujson.dumps(settings)) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = new_users_restrictions_kb(chat_id) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены.' ) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'У вас недостаточно прав для выполнения этого действия.' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('time_ro_')) def ro_time_change(c): change_time = int(c.data.split('_')[2].split('::')[0]) chat_id = utils.parse_chat_id(c) if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): settings = api.get_group_params(chat_id) settings['restrictions']['for_time'] = settings['restrictions']['for_time'] + change_time if settings['restrictions']['for_time'] < 1: settings['restrictions']['for_time'] = 1 api.change_group_params(chat_id, ujson.dumps(settings)) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = new_users_restrictions_kb(chat_id) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены.' ) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'У вас недостаточно прав для выполнения этого действия.' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('warns_count_')) def ro_time_change(c): change_count = int(c.data.split('_')[2].split('::')[0]) chat_id = utils.parse_chat_id(c) if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): settings = api.get_group_params(chat_id) settings['warns']['count'] = settings['warns']['count'] + change_count if settings['warns']['count'] < 1: settings['warns']['count'] = 1 api.change_group_params(chat_id, ujson.dumps(settings)) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = warns_settings_kb(chat_id) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены.' ) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'У вас недостаточно прав для выполнения этого действия.' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('warns_settings')) def warns_count_change(c): chat_id = utils.parse_chat_id(c) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = warns_settings_kb(chat_id) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены.' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('warns_action_')) def warns_count_change(c): new_mod = int(c.data.split('_')[2].split('::')[0]) chat_id = utils.parse_chat_id(c) if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): settings = api.get_group_params(chat_id) settings['warns']['action'] = new_mod api.change_group_params(chat_id, ujson.dumps(settings)) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = warns_settings_kb(chat_id) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены.' ) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'У вас недостаточно прав для выполнения этого действия.' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('unban_new_user')) def unban_new_user(c): chat_id = utils.parse_chat_id(c) user_id = utils.parse_user_id(c) if api.get_group_params(chat_id)['restrictions']['admins_only']: if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): utils.unban_user_button(c) user = bot.get_chat_member( chat_id, user_id ) bot.edit_message_text( text = text.group_commands[utils.get_group_lang(c.message.chat.id)]['restricted']['new_user']['button_pressed'].format( user_id = user.user.id, user_name = api.replacer(user.user.first_name) ), parse_mode = 'HTML', chat_id = c.message.chat.id, message_id = c.message.message_id ) utils.add_to_delete_queue(msg.chat.id, r.message_id, api.get_group_params(msg.chat.id)['greeting']['delete_timer']) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'У вас недостаточно прав для выполнения этого действия.' ) else: if c.from_user.id == user_id or utils.check_status(c.from_user.id, utils.parse_chat_id(c)): user = bot.get_chat_member( chat_id, user_id ) if user.status in ['restricted']: bot.restrict_chat_member( chat_id, user_id, can_send_media_messages=True, can_add_web_page_previews=True, can_send_messages=True, can_send_other_messages=True ) bot.edit_message_text( text = text.group_commands[utils.get_group_lang(c.message.chat.id)]['restricted']['new_user']['button_pressed'].format( user_id = user.user.id, user_name = api.replacer(user.user.first_name) ), parse_mode = 'HTML', chat_id = c.message.chat.id, message_id = c.message.message_id ) utils.add_to_delete_queue(chat_id, c.message.message_id, api.get_group_params(chat_id)['greeting']['delete_timer']) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'У вас недостаточно прав для выполнения этого действия.' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('new_restrictions_admins_only_')) def warns_count_change(c): chat_id = utils.parse_chat_id(c) state = c.data.split('_')[4].split('::')[0] if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): settings = api.get_group_params(chat_id) settings['restrictions']['admins_only'] = utils.to_bool(state) api.change_group_params(chat_id, ujson.dumps(settings)) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = new_users_restrictions_kb(chat_id) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены.' ) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'У вас недостаточно прав для выполнения этого действия.' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('welcome_settings')) def welcome_settings(c): chat_id = utils.parse_chat_id(c) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = welcome_settings_kb(chat_id) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены.' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('welcome_state')) def welcome_settings_state(c): chat_id = utils.parse_chat_id(c) if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): settings = api.get_group_params(chat_id) curr_state = settings['greeting']['is_enabled'] new_state = config.settings_states[curr_state] settings['greeting']['is_enabled'] = new_state api.change_group_params(chat_id, ujson.dumps(settings)) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = welcome_settings_kb(chat_id) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены.' ) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'У вас недостаточно прав для выполнения этого действия.' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('welcome_timer')) def welcome_timer_change(c): change_count = int(c.data.split('_')[2].split('::')[0]) chat_id = utils.parse_chat_id(c) if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): settings = api.get_group_params(chat_id) settings['greeting']['delete_timer'] = settings['greeting']['delete_timer'] + change_count if settings['greeting']['delete_timer'] < 0: settings['greeting']['delete_timer'] = 0 api.change_group_params(chat_id, ujson.dumps(settings)) bot.edit_message_reply_markup( chat_id = c.message.chat.id, message_id = c.message.message_id, reply_markup = welcome_settings_kb(chat_id) ) bot.answer_callback_query( callback_query_id = c.id, text = 'Изменения подтверждены.' ) else: bot.answer_callback_query( callback_query_id = c.id, show_alert = True, text = 'У вас недостаточно прав для выполнения этого действия.' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('settings_delete')) def del_settings(c): words = c.data.split() bot.delete_message( c.message.chat.id, words[2] ) bot.delete_message( c.message.chat.id, words[1] ) @bot.callback_query_handler(func = lambda c: c.data.startswith('welcome_get')) def get_welcome_text(c): chat_id = utils.parse_chat_id(c) bot.send_message( c.message.chat.id, utils.get_greeting(chat_id), parse_mode = 'HTML' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('reset_settings')) def reset_settings_button(c): chat_id = utils.parse_chat_id(c) if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): if c.data.startswith('reset_settings_confirmation'): api.register_new_chat(c.message.chat) api.change_group_params(chat_id, ujson.dumps(config.default_group_settings)) bot.send_message( c.message.chat.id, 'Настройки сброшены.' ) bot.delete_message( c.message.chat.id, c.message.message_id ) else: bot.delete_message( c.message.chat.id, c.message.message_id ) bot.send_message( c.message.chat.id, 'Сброс отменен' ) @bot.callback_query_handler(func = lambda c: c.data.startswith('leave_')) def bot_leave_cb(c): if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): if c.data.endswith('confirm'): bot.delete_message( c.message.chat.id, c.message.message_id ) bot.send_message( c.message.chat.id, text.group_commands[utils.get_group_lang(c.message.chat.id)]['leave']['accepted'] ) bot.leave_chat( c.message.chat.id ) else: bot.send_message( c.message.chat.id, text.group_commands[utils.get_group_lang(c.message.chat.id)]['leave']['cancelled'] ) bot.delete_message( c.message.chat.id, c.message.message_id ) # @bot.callback_query_handler(func = lambda c: c.data.startswith('settings_captcha')) # def change_captcha_settings(c): # chat_id = utils.parse_chat_id(c) # if utils.check_status(c.from_user.id, utils.parse_chat_id(c)): # settings = api.get_group_params(chat_id) # settings[''] # api.change_group_params(chat_id, ) # Вебхук bot.remove_webhook() bot.set_webhook( url=WEBHOOK_URL_BASE + WEBHOOK_URL_PATH, certificate=open(WEBHOOK_SSL_CERT, 'r')) context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2) context.load_cert_chain(WEBHOOK_SSL_CERT, WEBHOOK_SSL_PRIV) # Start aiohttp server web.run_app( app, host=WEBHOOK_LISTEN, port=WEBHOOK_PORT, ssl_context=context, ) # bot.remove_webhook() # bot.polling()
[ "utils.check_text", "ssl.SSLContext", "api.get_chats_count", "api.get_user_param", "utils.have_args", "utils.send_err_report", "utils.new_user_in_chat", "utils.ban_stickerpack", "utils.to_bool", "utils.get_my_ip", "utils.unban_stickerpack", "utils.get_greeting", "utils.parse_chat_id", "utils.check_global_ban", "utils.get_user_lang", "telebot.TeleBot", "telebot.types.Update.de_json", "utils.change_state_deletions_main", "utils.remove_log_channel", "telebot.types.ReplyKeyboardRemove", "utils.check_super_user", "logging.error", "aiohttp.web.Response", "api.get_unblocked_chats_count", "random.randint", "telebot.types.ReplyKeyboardMarkup", "utils.change_state_main", "utils.set_log_channel", "utils.ban_user", "utils.check_for_urls", "utils.is_sticker_restricted", "api.zeroing_warns", "utils.change_state_deletions_files", "utils.get_top_inviters", "aiohttp.web.run_app", "telebot.types.InlineKeyboardMarkup", "utils.unban_user", "utils.get_log_id", "utils.is_user_new", "utils.check_status", "utils.read_only", "aiohttp.web.Application", "ujson.dumps", "utils.generate_rules_text", "utils.check_log", "utils.get_group_lang", "utils.new_warn", "re.split", "telebot.types.KeyboardButton", "api.register_new_chat", "api.get_users_count", "api.get_group_params", "utils.is_restricted", "utils.parse_arg", "utils.ban_sticker", "utils.set_rules", "utils.set_greeting", "datetime.datetime.fromtimestamp", "utils.unban_sticker", "utils.global_ban", "api.register_new_user", "utils.unban_user_button", "utils.global_unban", "utils.need_greeting", "logging.basicConfig", "telebot.types.InlineKeyboardButton", "utils.parse_user_id", "utils.kick_user", "api.get_bot_settings", "api.get_unblocked_users_count", "time.time", "utils.new_member_logs", "utils.generate_welcome_text", "multiprocessing.Process", "api.replacer", "logging.getLogger" ]
[((358, 375), 'utils.get_my_ip', 'utils.get_my_ip', ([], {}), '()\n', (373, 375), False, 'import utils\n'), ((826, 868), 'telebot.TeleBot', 'telebot.TeleBot', ([], {'token': 'secret_config.token'}), '(token=secret_config.token)\n', (841, 868), False, 'import telebot\n'), ((911, 939), 'logging.getLogger', 'logging.getLogger', (['"""telebot"""'], {}), "('telebot')\n", (928, 939), False, 'import logging\n'), ((954, 981), 'logging.getLogger', 'logging.getLogger', (['"""sqlite"""'], {}), "('sqlite')\n", (971, 981), False, 'import logging\n'), ((994, 1024), 'logging.getLogger', 'logging.getLogger', (['"""main_info"""'], {}), "('main_info')\n", (1011, 1024), False, 'import logging\n'), ((1039, 1067), 'logging.getLogger', 'logging.getLogger', (['"""reports"""'], {}), "('reports')\n", (1056, 1067), False, 'import logging\n'), ((1212, 1240), 'logging.getLogger', 'logging.getLogger', (['"""telebot"""'], {}), "('telebot')\n", (1229, 1240), False, 'import logging\n'), ((1254, 1280), 'logging.getLogger', 'logging.getLogger', (['"""mysql"""'], {}), "('mysql')\n", (1271, 1280), False, 'import logging\n'), ((1293, 1323), 'logging.getLogger', 'logging.getLogger', (['"""main_info"""'], {}), "('main_info')\n", (1310, 1323), False, 'import logging\n'), ((1338, 1366), 'logging.getLogger', 'logging.getLogger', (['"""reports"""'], {}), "('reports')\n", (1355, 1366), False, 'import logging\n'), ((1400, 1586), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(filename)s [LINE:%(lineno)-3d]# %(levelname)-8s - %(name)-9s [%(asctime)s] - %(message)-50s """', 'datefmt': '"""%m/%d/%Y %I:%M:%S %p"""', 'level': 'logging.INFO'}), "(format=\n '%(filename)s [LINE:%(lineno)-3d]# %(levelname)-8s - %(name)-9s [%(asctime)s] - %(message)-50s '\n , datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.INFO)\n", (1419, 1586), False, 'import logging\n'), ((1668, 1685), 'aiohttp.web.Application', 'web.Application', ([], {}), '()\n', (1683, 1685), False, 'from aiohttp import web\n'), ((1691, 1732), 'multiprocessing.Process', 'Thread', ([], {'target': 'utils.check_deleting_queue'}), '(target=utils.check_deleting_queue)\n', (1697, 1732), True, 'from multiprocessing import Process as Thread\n'), ((69728, 69764), 'ssl.SSLContext', 'ssl.SSLContext', (['ssl.PROTOCOL_TLSv1_2'], {}), '(ssl.PROTOCOL_TLSv1_2)\n', (69742, 69764), False, 'import ssl\n'), ((69849, 69926), 'aiohttp.web.run_app', 'web.run_app', (['app'], {'host': 'WEBHOOK_LISTEN', 'port': 'WEBHOOK_PORT', 'ssl_context': 'context'}), '(app, host=WEBHOOK_LISTEN, port=WEBHOOK_PORT, ssl_context=context)\n', (69860, 69926), False, 'from aiohttp import web\n'), ((806, 817), 'time.time', 'time.time', ([], {}), '()\n', (815, 817), False, 'import time\n'), ((2163, 2191), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {}), '()\n', (2189, 2191), False, 'from telebot import types\n'), ((2432, 2471), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {'row_width': '(1)'}), '(row_width=1)\n', (2458, 2471), False, 'from telebot import types\n'), ((2492, 2521), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (2512, 2521), False, 'import api\n'), ((4579, 4618), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {'row_width': '(4)'}), '(row_width=4)\n', (4605, 4618), False, 'from telebot import types\n'), ((4641, 4670), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (4661, 4670), False, 'import api\n'), ((6042, 6081), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {'row_width': '(4)'}), '(row_width=4)\n', (6068, 6081), False, 'from telebot import types\n'), ((6104, 6133), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (6124, 6133), False, 'import api\n'), ((7798, 7837), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {'row_width': '(4)'}), '(row_width=4)\n', (7824, 7837), False, 'from telebot import types\n'), ((7860, 7889), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (7880, 7889), False, 'import api\n'), ((9650, 9689), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {'row_width': '(1)'}), '(row_width=1)\n', (9676, 9689), False, 'from telebot import types\n'), ((9897, 9936), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {'row_width': '(1)'}), '(row_width=1)\n', (9923, 9936), False, 'from telebot import types\n'), ((10199, 10238), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {'row_width': '(1)'}), '(row_width=1)\n', (10225, 10238), False, 'from telebot import types\n'), ((10259, 10302), 'api.get_user_param', 'api.get_user_param', (['msg.chat.id', '"""settings"""'], {}), "(msg.chat.id, 'settings')\n", (10277, 10302), False, 'import api\n'), ((10715, 10754), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {'row_width': '(1)'}), '(row_width=1)\n', (10741, 10754), False, 'from telebot import types\n'), ((10775, 10804), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (10795, 10804), False, 'import api\n'), ((11551, 11590), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {'row_width': '(1)'}), '(row_width=1)\n', (11577, 11590), False, 'from telebot import types\n'), ((11962, 12001), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {'row_width': '(1)'}), '(row_width=1)\n', (11988, 12001), False, 'from telebot import types\n'), ((12015, 12084), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""Мои чаты"""', 'callback_data': '"""my_chats"""'}), "(text='Мои чаты', callback_data='my_chats')\n", (12041, 12084), False, 'from telebot import types\n'), ((12100, 12177), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""Изменить язык"""', 'callback_data': '"""change_lang"""'}), "(text='Изменить язык', callback_data='change_lang')\n", (12126, 12177), False, 'from telebot import types\n'), ((12212, 12243), 'utils.check_super_user', 'utils.check_super_user', (['user_id'], {}), '(user_id)\n', (12234, 12243), False, 'import utils\n'), ((12399, 12438), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {'row_width': '(2)'}), '(row_width=2)\n', (12425, 12438), False, 'from telebot import types\n'), ((12452, 12527), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""Рассылка"""', 'callback_data': '"""broadcast_menu"""'}), "(text='Рассылка', callback_data='broadcast_menu')\n", (12478, 12527), False, 'from telebot import types\n'), ((12543, 12616), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""Статистика"""', 'callback_data': '"""stats_menu"""'}), "(text='Статистика', callback_data='stats_menu')\n", (12569, 12616), False, 'from telebot import types\n'), ((12807, 12846), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {'row_width': '(1)'}), '(row_width=1)\n', (12833, 12846), False, 'from telebot import types\n'), ((12860, 12950), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""Рассылка-проверка"""', 'callback_data': '"""check_broadcast"""'}), "(text='Рассылка-проверка', callback_data=\n 'check_broadcast')\n", (12886, 12950), False, 'from telebot import types\n'), ((12961, 13055), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""Рассылка сообщения"""', 'callback_data': '"""broadcast_settings"""'}), "(text='Рассылка сообщения', callback_data=\n 'broadcast_settings')\n", (12987, 13055), False, 'from telebot import types\n'), ((13241, 13280), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {'row_width': '(2)'}), '(row_width=2)\n', (13267, 13280), False, 'from telebot import types\n'), ((13294, 13392), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""Ввести сообщение"""', 'callback_data': '"""broadcast_message::input"""'}), "(text='Ввести сообщение', callback_data=\n 'broadcast_message::input')\n", (13320, 13392), False, 'from telebot import types\n'), ((13403, 13505), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""Просмотреть сообщение"""', 'callback_data': '"""broadcast_message::show"""'}), "(text='Просмотреть сообщение', callback_data=\n 'broadcast_message::show')\n", (13429, 13505), False, 'from telebot import types\n'), ((13516, 13613), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""Начать рассылку"""', 'callback_data': '"""broadcast_message::start"""'}), "(text='Начать рассылку', callback_data=\n 'broadcast_message::start')\n", (13542, 13613), False, 'from telebot import types\n'), ((13710, 13749), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {'row_width': '(3)'}), '(row_width=3)\n', (13736, 13749), False, 'from telebot import types\n'), ((13936, 14030), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""Только диалоги"""', 'callback_data': '"""broadcast_check::users"""'}), "(text='Только диалоги', callback_data=\n 'broadcast_check::users')\n", (13962, 14030), False, 'from telebot import types\n'), ((14041, 14132), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""Только чаты"""', 'callback_data': '"""broadcast_check::chats"""'}), "(text='Только чаты', callback_data=\n 'broadcast_check::chats')\n", (14067, 14132), False, 'from telebot import types\n'), ((14143, 14219), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""Все"""', 'callback_data': '"""broadcast_check::all"""'}), "(text='Все', callback_data='broadcast_check::all')\n", (14169, 14219), False, 'from telebot import types\n'), ((14388, 14483), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""Начать рассылку"""', 'callback_data': '"""broadcast_check::start"""'}), "(text='Начать рассылку', callback_data=\n 'broadcast_check::start')\n", (14414, 14483), False, 'from telebot import types\n'), ((14598, 14637), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {'row_width': '(2)'}), '(row_width=2)\n', (14624, 14637), False, 'from telebot import types\n'), ((18132, 18160), 'utils.check_log', 'utils.check_log', (['msg.chat.id'], {}), '(msg.chat.id)\n', (18147, 18160), False, 'import utils\n'), ((19117, 19166), 'telebot.types.ReplyKeyboardMarkup', 'types.ReplyKeyboardMarkup', ([], {'one_time_keyboard': '(True)'}), '(one_time_keyboard=True)\n', (19142, 19166), False, 'from telebot import types\n'), ((19662, 19673), 'time.time', 'time.time', ([], {}), '()\n', (19671, 19673), False, 'import time\n'), ((19701, 19729), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {}), '()\n', (19727, 19729), False, 'from telebot import types\n'), ((20488, 20499), 'time.time', 'time.time', ([], {}), '()\n', (20497, 20499), False, 'import time\n'), ((20507, 20529), 'utils.is_user_new', 'utils.is_user_new', (['msg'], {}), '(msg)\n', (20524, 20529), False, 'import utils\n'), ((21218, 21229), 'time.time', 'time.time', ([], {}), '()\n', (21227, 21229), False, 'import time\n'), ((21234, 21265), 'api.register_new_chat', 'api.register_new_chat', (['msg.chat'], {}), '(msg.chat)\n', (21255, 21265), False, 'import api\n'), ((21873, 21884), 'time.time', 'time.time', ([], {}), '()\n', (21882, 21884), False, 'import time\n'), ((22539, 22550), 'time.time', 'time.time', ([], {}), '()\n', (22548, 22550), False, 'import time\n'), ((22555, 22575), 'utils.kick_user', 'utils.kick_user', (['msg'], {}), '(msg)\n', (22570, 22575), False, 'import utils\n'), ((22780, 22791), 'time.time', 'time.time', ([], {}), '()\n', (22789, 22791), False, 'import time\n'), ((24018, 24029), 'time.time', 'time.time', ([], {}), '()\n', (24027, 24029), False, 'import time\n'), ((25168, 25179), 'time.time', 'time.time', ([], {}), '()\n', (25177, 25179), False, 'import time\n'), ((25184, 25215), 'api.register_new_chat', 'api.register_new_chat', (['msg.chat'], {}), '(msg.chat)\n', (25205, 25215), False, 'import api\n'), ((25246, 25272), 'utils.new_member_logs', 'utils.new_member_logs', (['msg'], {}), '(msg)\n', (25267, 25272), False, 'import utils\n'), ((28499, 28510), 'time.time', 'time.time', ([], {}), '()\n', (28508, 28510), False, 'import time\n'), ((28797, 28808), 'time.time', 'time.time', ([], {}), '()\n', (28806, 28808), False, 'import time\n'), ((30153, 30164), 'time.time', 'time.time', ([], {}), '()\n', (30162, 30164), False, 'import time\n'), ((30946, 30957), 'time.time', 'time.time', ([], {}), '()\n', (30955, 30957), False, 'import time\n'), ((30965, 31014), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (30983, 31014), False, 'import utils\n'), ((31429, 31440), 'time.time', 'time.time', ([], {}), '()\n', (31438, 31440), False, 'import time\n'), ((31448, 31497), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (31466, 31497), False, 'import utils\n'), ((31791, 31802), 'time.time', 'time.time', ([], {}), '()\n', (31800, 31802), False, 'import time\n'), ((31810, 31859), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (31828, 31859), False, 'import utils\n'), ((32161, 32172), 'time.time', 'time.time', ([], {}), '()\n', (32170, 32172), False, 'import time\n'), ((32552, 32563), 'time.time', 'time.time', ([], {}), '()\n', (32561, 32563), False, 'import time\n'), ((32571, 32620), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (32589, 32620), False, 'import utils\n'), ((33037, 33048), 'time.time', 'time.time', ([], {}), '()\n', (33046, 33048), False, 'import time\n'), ((33620, 33631), 'time.time', 'time.time', ([], {}), '()\n', (33629, 33631), False, 'import time\n'), ((33948, 33959), 'time.time', 'time.time', ([], {}), '()\n', (33957, 33959), False, 'import time\n'), ((34274, 34285), 'time.time', 'time.time', ([], {}), '()\n', (34283, 34285), False, 'import time\n'), ((34865, 34876), 'time.time', 'time.time', ([], {}), '()\n', (34874, 34876), False, 'import time\n'), ((35773, 35784), 'time.time', 'time.time', ([], {}), '()\n', (35782, 35784), False, 'import time\n'), ((36429, 36440), 'time.time', 'time.time', ([], {}), '()\n', (36438, 36440), False, 'import time\n'), ((36881, 36892), 'time.time', 'time.time', ([], {}), '()\n', (36890, 36892), False, 'import time\n'), ((36902, 36930), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {}), '()\n', (36928, 36930), False, 'from telebot import types\n'), ((37239, 37288), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (37257, 37288), False, 'import utils\n'), ((37910, 37921), 'time.time', 'time.time', ([], {}), '()\n', (37919, 37921), False, 'import time\n'), ((40142, 40153), 'time.time', 'time.time', ([], {}), '()\n', (40151, 40153), False, 'import time\n'), ((40486, 40497), 'time.time', 'time.time', ([], {}), '()\n', (40495, 40497), False, 'import time\n'), ((40950, 40961), 'time.time', 'time.time', ([], {}), '()\n', (40959, 40961), False, 'import time\n'), ((40969, 40993), 'utils.is_restricted', 'utils.is_restricted', (['msg'], {}), '(msg)\n', (40988, 40993), False, 'import utils\n'), ((41271, 41293), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (41290, 41293), False, 'import utils\n'), ((41338, 41369), 'utils.get_top_inviters', 'utils.get_top_inviters', (['chat_id'], {}), '(chat_id)\n', (41360, 41369), False, 'import utils\n'), ((42237, 42276), 'api.get_user_param', 'api.get_user_param', (['user_id', '"""settings"""'], {}), "(user_id, 'settings')\n", (42255, 42276), False, 'import api\n'), ((42835, 42857), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (42854, 42857), False, 'import utils\n'), ((44414, 44436), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (44433, 44436), False, 'import utils\n'), ((48099, 48121), 're.split', 're.split', (['"""::"""', 'c.data'], {}), "('::', c.data)\n", (48107, 48121), False, 'import re\n'), ((48313, 48353), 'api.register_new_user', 'api.register_new_user', (['c.from_user', 'lang'], {}), '(c.from_user, lang)\n', (48334, 48353), False, 'import api\n'), ((48476, 48498), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (48495, 48498), False, 'import utils\n'), ((49468, 49490), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (49487, 49490), False, 'import utils\n'), ((50456, 50478), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (50475, 50478), False, 'import utils\n'), ((51451, 51473), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (51470, 51473), False, 'import utils\n'), ((52473, 52495), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (52492, 52495), False, 'import utils\n'), ((52910, 52932), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (52929, 52932), False, 'import utils\n'), ((54011, 54033), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (54030, 54033), False, 'import utils\n'), ((54867, 54889), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (54886, 54889), False, 'import utils\n'), ((55292, 55314), 'utils.parse_user_id', 'utils.parse_user_id', (['c'], {}), '(c)\n', (55311, 55314), False, 'import utils\n'), ((55329, 55351), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (55348, 55351), False, 'import utils\n'), ((55974, 55996), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (55993, 55996), False, 'import utils\n'), ((56289, 56311), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (56308, 56311), False, 'import utils\n'), ((57302, 57324), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (57321, 57324), False, 'import utils\n'), ((58414, 58436), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (58433, 58436), False, 'import utils\n'), ((59425, 59447), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (59444, 59447), False, 'import utils\n'), ((59909, 59931), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (59928, 59931), False, 'import utils\n'), ((60797, 60819), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (60816, 60819), False, 'import utils\n'), ((60834, 60856), 'utils.parse_user_id', 'utils.parse_user_id', (['c'], {}), '(c)\n', (60853, 60856), False, 'import utils\n'), ((63489, 63511), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (63508, 63511), False, 'import utils\n'), ((64462, 64484), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (64481, 64484), False, 'import utils\n'), ((64901, 64923), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (64920, 64923), False, 'import utils\n'), ((65980, 66002), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (65999, 66002), False, 'import utils\n'), ((67308, 67330), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (67327, 67330), False, 'import utils\n'), ((67578, 67600), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (67597, 67600), False, 'import utils\n'), ((1892, 1939), 'telebot.types.Update.de_json', 'telebot.types.Update.de_json', (['request_body_dict'], {}), '(request_body_dict)\n', (1920, 1939), False, 'import telebot\n'), ((1997, 2011), 'aiohttp.web.Response', 'web.Response', ([], {}), '()\n', (2009, 2011), False, 'from aiohttp import web\n'), ((2037, 2061), 'aiohttp.web.Response', 'web.Response', ([], {'status': '(403)'}), '(status=403)\n', (2049, 2061), False, 'from aiohttp import web\n'), ((4428, 4514), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""К списку групп"""', 'callback_data': '"""to_groups_list"""'}), "(text='К списку групп', callback_data=\n 'to_groups_list')\n", (4454, 4514), False, 'from telebot import types\n'), ((12655, 12734), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""В главное меню"""', 'callback_data': '"""to_main_menu"""'}), "(text='В главное меню', callback_data='to_main_menu')\n", (12681, 12734), False, 'from telebot import types\n'), ((13089, 13168), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""В главное меню"""', 'callback_data': '"""to_main_menu"""'}), "(text='В главное меню', callback_data='to_main_menu')\n", (13115, 13168), False, 'from telebot import types\n'), ((13784, 13825), 'api.get_bot_settings', 'api.get_bot_settings', (['secret_config.token'], {}), '(secret_config.token)\n', (13804, 13825), False, 'import api\n'), ((14670, 14709), 'api.get_user_param', 'api.get_user_param', (['user_id', '"""settings"""'], {}), "(user_id, 'settings')\n", (14688, 14709), False, 'import api\n'), ((14955, 15034), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""В главное меню"""', 'callback_data': '"""to_main_menu"""'}), "(text='В главное меню', callback_data='to_main_menu')\n", (14981, 15034), False, 'from telebot import types\n'), ((19178, 19212), 'telebot.types.KeyboardButton', 'types.KeyboardButton', ([], {'text': '"""/rmkb"""'}), "(text='/rmkb')\n", (19198, 19212), False, 'from telebot import types\n'), ((20542, 20562), 'utils.have_args', 'utils.have_args', (['msg'], {}), '(msg)\n', (20557, 20562), False, 'import utils\n'), ((20790, 20832), 'api.register_new_user', 'api.register_new_user', (['msg.from_user', '"""ru"""'], {}), "(msg.from_user, 'ru')\n", (20811, 20832), False, 'import api\n'), ((22030, 22060), 'utils.check_text', 'utils.check_text', (['new_greeting'], {}), '(new_greeting)\n', (22046, 22060), False, 'import utils\n'), ((22841, 22862), 'random.randint', 'random.randint', (['(1)', '(10)'], {}), '(1, 10)\n', (22855, 22862), False, 'import random\n'), ((23870, 23889), 'utils.ban_user', 'utils.ban_user', (['msg'], {}), '(msg)\n', (23884, 23889), False, 'import utils\n'), ((30172, 30221), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (30190, 30221), False, 'import utils\n'), ((30226, 30246), 'utils.have_args', 'utils.have_args', (['msg'], {}), '(msg)\n', (30241, 30246), False, 'import utils\n'), ((30325, 30355), 'utils.unban_user', 'utils.unban_user', (['msg', 'user_id'], {}), '(msg, user_id)\n', (30341, 30355), False, 'import utils\n'), ((31024, 31055), 'api.register_new_chat', 'api.register_new_chat', (['msg.chat'], {}), '(msg.chat)\n', (31045, 31055), False, 'import api\n'), ((31507, 31527), 'utils.read_only', 'utils.read_only', (['msg'], {}), '(msg)\n', (31522, 31527), False, 'import utils\n'), ((31546, 31594), 'utils.send_err_report', 'utils.send_err_report', (['msg', '"""not_enought_rights"""'], {}), "(msg, 'not_enought_rights')\n", (31567, 31594), False, 'import utils\n'), ((31869, 31895), 'utils.ban_stickerpack', 'utils.ban_stickerpack', (['msg'], {}), '(msg)\n', (31890, 31895), False, 'import utils\n'), ((31914, 31962), 'utils.send_err_report', 'utils.send_err_report', (['msg', '"""not_enought_rights"""'], {}), "(msg, 'not_enought_rights')\n", (31935, 31962), False, 'import utils\n'), ((32180, 32229), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (32198, 32229), False, 'import utils\n'), ((32234, 32254), 'utils.have_args', 'utils.have_args', (['msg'], {}), '(msg)\n', (32249, 32254), False, 'import utils\n'), ((32315, 32361), 'utils.unban_stickerpack', 'utils.unban_stickerpack', (['msg', 'stickerpack_name'], {}), '(msg, stickerpack_name)\n', (32338, 32361), False, 'import utils\n'), ((32688, 32722), 'utils.ban_sticker', 'utils.ban_sticker', (['msg', 'sticker_id'], {}), '(msg, sticker_id)\n', (32705, 32722), False, 'import utils\n'), ((33056, 33076), 'utils.have_args', 'utils.have_args', (['msg'], {}), '(msg)\n', (33071, 33076), False, 'import utils\n'), ((33081, 33130), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (33099, 33130), False, 'import utils\n'), ((33185, 33221), 'utils.unban_sticker', 'utils.unban_sticker', (['msg', 'sticker_id'], {}), '(msg, sticker_id)\n', (33204, 33221), False, 'import utils\n'), ((34293, 34342), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (34311, 34342), False, 'import utils\n'), ((34464, 34483), 'utils.new_warn', 'utils.new_warn', (['msg'], {}), '(msg)\n', (34478, 34483), False, 'import utils\n'), ((35927, 35954), 'utils.check_text', 'utils.check_text', (['new_rules'], {}), '(new_rules)\n', (35943, 35954), False, 'import utils\n'), ((37989, 38013), 'utils.is_restricted', 'utils.is_restricted', (['msg'], {}), '(msg)\n', (38008, 38013), False, 'import utils\n'), ((40505, 40529), 'utils.is_restricted', 'utils.is_restricted', (['msg'], {}), '(msg)\n', (40524, 40529), False, 'import utils\n'), ((40533, 40565), 'utils.is_sticker_restricted', 'utils.is_sticker_restricted', (['msg'], {}), '(msg)\n', (40560, 40565), False, 'import utils\n'), ((46289, 46330), 'api.get_bot_settings', 'api.get_bot_settings', (['secret_config.token'], {}), '(secret_config.token)\n', (46309, 46330), False, 'import api\n'), ((46874, 47129), 'multiprocessing.Process', 'Thread', ([], {'target': 'utils.make_broadcast', 'kwargs': "{'is_test': True, 'receivers': curr_bot_settings['broadcast']['check'][\n 'recievers'], 'cont_type': 'text', 'msg_text': '', 'file_id': '',\n 'user_id': c.from_user.id, 'message_id': c.message.message_id}"}), "(target=utils.make_broadcast, kwargs={'is_test': True, 'receivers':\n curr_bot_settings['broadcast']['check']['recievers'], 'cont_type':\n 'text', 'msg_text': '', 'file_id': '', 'user_id': c.from_user.id,\n 'message_id': c.message.message_id})\n", (46880, 47129), True, 'from multiprocessing import Process as Thread\n'), ((47244, 47272), 'telebot.types.InlineKeyboardMarkup', 'types.InlineKeyboardMarkup', ([], {}), '()\n', (47270, 47272), False, 'from telebot import types\n'), ((48541, 48563), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (48560, 48563), False, 'import utils\n'), ((48574, 48627), 'utils.change_state_main', 'utils.change_state_main', (['chat_id', '"""get_notifications"""'], {}), "(chat_id, 'get_notifications')\n", (48597, 48627), False, 'import utils\n'), ((49533, 49555), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (49552, 49555), False, 'import utils\n'), ((49566, 49615), 'utils.change_state_deletions_main', 'utils.change_state_deletions_main', (['chat_id', '"""url"""'], {}), "(chat_id, 'url')\n", (49599, 49615), False, 'import utils\n'), ((50521, 50543), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (50540, 50543), False, 'import utils\n'), ((50554, 50606), 'utils.change_state_deletions_main', 'utils.change_state_deletions_main', (['chat_id', '"""system"""'], {}), "(chat_id, 'system')\n", (50587, 50606), False, 'import utils\n'), ((51516, 51538), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (51535, 51538), False, 'import utils\n'), ((51549, 51594), 'utils.change_state_main', 'utils.change_state_main', (['chat_id', '"""kick_bots"""'], {}), "(chat_id, 'kick_bots')\n", (51572, 51594), False, 'import utils\n'), ((52949, 52971), 're.split', 're.split', (['"""::"""', 'c.data'], {}), "('::', c.data)\n", (52957, 52971), False, 'import re\n'), ((53017, 53039), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (53036, 53039), False, 'import utils\n'), ((53050, 53104), 'utils.change_state_deletions_files', 'utils.change_state_deletions_files', (['chat_id', 'cont_type'], {}), '(chat_id, cont_type)\n', (53084, 53104), False, 'import utils\n'), ((54076, 54098), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (54095, 54098), False, 'import utils\n'), ((55394, 55416), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (55413, 55416), False, 'import utils\n'), ((55427, 55462), 'api.zeroing_warns', 'api.zeroing_warns', (['user_id', 'chat_id'], {}), '(user_id, chat_id)\n', (55444, 55462), False, 'import api\n'), ((56354, 56376), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (56373, 56376), False, 'import utils\n'), ((56398, 56427), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (56418, 56427), False, 'import api\n'), ((57367, 57389), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (57386, 57389), False, 'import utils\n'), ((57411, 57440), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (57431, 57440), False, 'import api\n'), ((58479, 58501), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (58498, 58501), False, 'import utils\n'), ((58523, 58552), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (58543, 58552), False, 'import api\n'), ((59974, 59996), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (59993, 59996), False, 'import utils\n'), ((60018, 60047), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (60038, 60047), False, 'import api\n'), ((63602, 63624), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (63621, 63624), False, 'import utils\n'), ((63646, 63675), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (63666, 63675), False, 'import api\n'), ((63726, 63746), 'utils.to_bool', 'utils.to_bool', (['state'], {}), '(state)\n', (63739, 63746), False, 'import utils\n'), ((64970, 64992), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (64989, 64992), False, 'import utils\n'), ((65014, 65043), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (65034, 65043), False, 'import api\n'), ((66045, 66067), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (66064, 66067), False, 'import utils\n'), ((66089, 66118), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (66109, 66118), False, 'import api\n'), ((67388, 67415), 'utils.get_greeting', 'utils.get_greeting', (['chat_id'], {}), '(chat_id)\n', (67406, 67415), False, 'import utils\n'), ((67643, 67665), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (67662, 67665), False, 'import utils\n'), ((68484, 68506), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (68503, 68506), False, 'import utils\n'), ((12260, 12335), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""Админка бота"""', 'callback_data': '"""admin_menu"""'}), "(text='Админка бота', callback_data='admin_menu')\n", (12286, 12335), False, 'from telebot import types\n'), ((16054, 16114), 'utils.set_log_channel', 'utils.set_log_channel', (['msg.chat.id', 'msg.forward_from_chat.id'], {}), '(msg.chat.id, msg.forward_from_chat.id)\n', (16075, 16114), False, 'import utils\n'), ((17426, 17463), 'utils.remove_log_channel', 'utils.remove_log_channel', (['msg.chat.id'], {}), '(msg.chat.id)\n', (17450, 17463), False, 'import utils\n'), ((20317, 20328), 'time.time', 'time.time', ([], {}), '()\n', (20326, 20328), False, 'import time\n'), ((21064, 21075), 'time.time', 'time.time', ([], {}), '()\n', (21073, 21075), False, 'import time\n'), ((21292, 21303), 'time.time', 'time.time', ([], {}), '()\n', (21301, 21303), False, 'import time\n'), ((22074, 22111), 'utils.set_greeting', 'utils.set_greeting', (['msg', 'new_greeting'], {}), '(msg, new_greeting)\n', (22092, 22111), False, 'import utils\n'), ((22393, 22404), 'time.time', 'time.time', ([], {}), '()\n', (22402, 22404), False, 'import time\n'), ((22602, 22613), 'time.time', 'time.time', ([], {}), '()\n', (22611, 22613), False, 'import time\n'), ((23916, 23927), 'time.time', 'time.time', ([], {}), '()\n', (23925, 23927), False, 'import time\n'), ((25043, 25054), 'time.time', 'time.time', ([], {}), '()\n', (25052, 25054), False, 'import time\n'), ((25280, 25313), 'api.get_group_params', 'api.get_group_params', (['msg.chat.id'], {}), '(msg.chat.id)\n', (25300, 25313), False, 'import api\n'), ((25745, 25787), 'ujson.dumps', 'ujson.dumps', (['config.default_group_settings'], {}), '(config.default_group_settings)\n', (25756, 25787), False, 'import ujson\n'), ((27195, 27222), 'utils.check_global_ban', 'utils.check_global_ban', (['msg'], {}), '(msg)\n', (27217, 27222), False, 'import utils\n'), ((28098, 28109), 'time.time', 'time.time', ([], {}), '()\n', (28107, 28109), False, 'import time\n'), ((28518, 28551), 'api.get_group_params', 'api.get_group_params', (['msg.chat.id'], {}), '(msg.chat.id)\n', (28538, 28551), False, 'import api\n'), ((28692, 28703), 'time.time', 'time.time', ([], {}), '()\n', (28701, 28703), False, 'import time\n'), ((29993, 30004), 'time.time', 'time.time', ([], {}), '()\n', (30002, 30004), False, 'import time\n'), ((30264, 30284), 'utils.parse_arg', 'utils.parse_arg', (['msg'], {}), '(msg)\n', (30279, 30284), False, 'import utils\n'), ((30365, 30414), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (30383, 30414), False, 'import utils\n'), ((30513, 30543), 'utils.unban_user', 'utils.unban_user', (['msg', 'user_id'], {}), '(msg, user_id)\n', (30529, 30543), False, 'import utils\n'), ((30781, 30792), 'time.time', 'time.time', ([], {}), '()\n', (30790, 30792), False, 'import time\n'), ((31101, 31143), 'ujson.dumps', 'ujson.dumps', (['config.default_group_settings'], {}), '(config.default_group_settings)\n', (31112, 31143), False, 'import ujson\n'), ((31621, 31632), 'time.time', 'time.time', ([], {}), '()\n', (31630, 31632), False, 'import time\n'), ((31989, 32000), 'time.time', 'time.time', ([], {}), '()\n', (31998, 32000), False, 'import time\n'), ((32283, 32303), 'utils.parse_arg', 'utils.parse_arg', (['msg'], {}), '(msg)\n', (32298, 32303), False, 'import utils\n'), ((32388, 32399), 'time.time', 'time.time', ([], {}), '()\n', (32397, 32399), False, 'import time\n'), ((32736, 32785), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (32754, 32785), False, 'import utils\n'), ((32795, 32843), 'utils.send_err_report', 'utils.send_err_report', (['msg', '"""not_enought_rights"""'], {}), "(msg, 'not_enought_rights')\n", (32816, 32843), False, 'import utils\n'), ((32870, 32881), 'time.time', 'time.time', ([], {}), '()\n', (32879, 32881), False, 'import time\n'), ((33153, 33173), 'utils.parse_arg', 'utils.parse_arg', (['msg'], {}), '(msg)\n', (33168, 33173), False, 'import utils\n'), ((33231, 33280), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (33249, 33280), False, 'import utils\n'), ((33319, 33367), 'utils.send_err_report', 'utils.send_err_report', (['msg', '"""not_enought_rights"""'], {}), "(msg, 'not_enought_rights')\n", (33340, 33367), False, 'import utils\n'), ((33519, 33530), 'time.time', 'time.time', ([], {}), '()\n', (33528, 33530), False, 'import time\n'), ((33800, 33811), 'time.time', 'time.time', ([], {}), '()\n', (33809, 33811), False, 'import time\n'), ((34124, 34135), 'time.time', 'time.time', ([], {}), '()\n', (34133, 34135), False, 'import time\n'), ((34388, 34454), 'utils.check_status', 'utils.check_status', (['msg.reply_to_message.from_user.id', 'msg.chat.id'], {}), '(msg.reply_to_message.from_user.id, msg.chat.id)\n', (34406, 34454), False, 'import utils\n'), ((34497, 34546), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (34515, 34546), False, 'import utils\n'), ((34556, 34604), 'utils.send_err_report', 'utils.send_err_report', (['msg', '"""not_enought_rights"""'], {}), "(msg, 'not_enought_rights')\n", (34577, 34604), False, 'import utils\n'), ((34614, 34680), 'utils.check_status', 'utils.check_status', (['msg.reply_to_message.from_user.id', 'msg.chat.id'], {}), '(msg.reply_to_message.from_user.id, msg.chat.id)\n', (34632, 34680), False, 'import utils\n'), ((34760, 34771), 'time.time', 'time.time', ([], {}), '()\n', (34769, 34771), False, 'import time\n'), ((35025, 35036), 'time.time', 'time.time', ([], {}), '()\n', (35034, 35036), False, 'import time\n'), ((35968, 35999), 'utils.set_rules', 'utils.set_rules', (['msg', 'new_rules'], {}), '(msg, new_rules)\n', (35983, 35999), False, 'import utils\n'), ((36273, 36284), 'time.time', 'time.time', ([], {}), '()\n', (36282, 36284), False, 'import time\n'), ((35681, 35730), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (35699, 35730), False, 'import utils\n'), ((36518, 36548), 'utils.generate_rules_text', 'utils.generate_rules_text', (['msg'], {}), '(msg)\n', (36543, 36548), False, 'import utils\n'), ((36711, 36722), 'time.time', 'time.time', ([], {}), '()\n', (36720, 36722), False, 'import time\n'), ((37518, 37558), 'utils.check_super_user', 'utils.check_super_user', (['msg.from_user.id'], {}), '(msg.from_user.id)\n', (37540, 37558), False, 'import utils\n'), ((38022, 38071), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (38040, 38071), False, 'import utils\n'), ((38224, 38264), 'utils.check_super_user', 'utils.check_super_user', (['msg.from_user.id'], {}), '(msg.from_user.id)\n', (38246, 38264), False, 'import utils\n'), ((39990, 40001), 'time.time', 'time.time', ([], {}), '()\n', (39999, 40001), False, 'import time\n'), ((40292, 40303), 'time.time', 'time.time', ([], {}), '()\n', (40301, 40303), False, 'import time\n'), ((40683, 40694), 'time.time', 'time.time', ([], {}), '()\n', (40692, 40694), False, 'import time\n'), ((41111, 41122), 'time.time', 'time.time', ([], {}), '()\n', (41120, 41122), False, 'import time\n'), ((46493, 46523), 'ujson.dumps', 'ujson.dumps', (['curr_bot_settings'], {}), '(curr_bot_settings)\n', (46504, 46523), False, 'import ujson\n'), ((47288, 47367), 'telebot.types.InlineKeyboardButton', 'types.InlineKeyboardButton', ([], {'text': '"""В главное меню"""', 'callback_data': '"""to_main_menu"""'}), "(text='В главное меню', callback_data='to_main_menu')\n", (47314, 47367), False, 'from telebot import types\n'), ((54160, 54206), 'utils.change_state_deletions_files', 'utils.change_state_deletions_files', (['chat_id', 'i'], {}), '(chat_id, i)\n', (54194, 54206), False, 'import utils\n'), ((56579, 56600), 'ujson.dumps', 'ujson.dumps', (['settings'], {}), '(settings)\n', (56590, 56600), False, 'import ujson\n'), ((57686, 57707), 'ujson.dumps', 'ujson.dumps', (['settings'], {}), '(settings)\n', (57697, 57707), False, 'import ujson\n'), ((58759, 58780), 'ujson.dumps', 'ujson.dumps', (['settings'], {}), '(settings)\n', (58770, 58780), False, 'import ujson\n'), ((60135, 60156), 'ujson.dumps', 'ujson.dumps', (['settings'], {}), '(settings)\n', (60146, 60156), False, 'import ujson\n'), ((60864, 60893), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (60884, 60893), False, 'import api\n'), ((60972, 60994), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (60991, 60994), False, 'import utils\n'), ((61009, 61035), 'utils.unban_user_button', 'utils.unban_user_button', (['c'], {}), '(c)\n', (61032, 61035), False, 'import utils\n'), ((63788, 63809), 'ujson.dumps', 'ujson.dumps', (['settings'], {}), '(settings)\n', (63799, 63809), False, 'import ujson\n'), ((65251, 65272), 'ujson.dumps', 'ujson.dumps', (['settings'], {}), '(settings)\n', (65262, 65272), False, 'import ujson\n'), ((66365, 66386), 'ujson.dumps', 'ujson.dumps', (['settings'], {}), '(settings)\n', (66376, 66386), False, 'import ujson\n'), ((67741, 67778), 'api.register_new_chat', 'api.register_new_chat', (['c.message.chat'], {}), '(c.message.chat)\n', (67762, 67778), False, 'import api\n'), ((15510, 15559), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (15528, 15559), False, 'import utils\n'), ((16807, 16856), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (16825, 16856), False, 'import utils\n'), ((16931, 16959), 'utils.check_log', 'utils.check_log', (['msg.chat.id'], {}), '(msg.chat.id)\n', (16946, 16959), False, 'import utils\n'), ((18291, 18320), 'utils.get_log_id', 'utils.get_log_id', (['msg.chat.id'], {}), '(msg.chat.id)\n', (18307, 18320), False, 'import utils\n'), ((18698, 18747), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (18716, 18747), False, 'import utils\n'), ((20587, 20607), 'utils.parse_arg', 'utils.parse_arg', (['msg'], {}), '(msg)\n', (20602, 20607), False, 'import utils\n'), ((21416, 21456), 'utils.check_super_user', 'utils.check_super_user', (['msg.from_user.id'], {}), '(msg.from_user.id)\n', (21438, 21456), False, 'import utils\n'), ((22919, 22968), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (22937, 22968), False, 'import utils\n'), ((23835, 23851), 'logging.error', 'logging.error', (['e'], {}), '(e)\n', (23848, 23851), False, 'import logging\n'), ((25810, 25843), 'api.get_group_params', 'api.get_group_params', (['msg.chat.id'], {}), '(msg.chat.id)\n', (25830, 25843), False, 'import api\n'), ((26784, 26817), 'api.get_group_params', 'api.get_group_params', (['msg.chat.id'], {}), '(msg.chat.id)\n', (26804, 26817), False, 'import api\n'), ((27689, 27716), 'utils.new_user_in_chat', 'utils.new_user_in_chat', (['msg'], {}), '(msg)\n', (27711, 27716), False, 'import utils\n'), ((27732, 27756), 'utils.need_greeting', 'utils.need_greeting', (['msg'], {}), '(msg)\n', (27751, 27756), False, 'import utils\n'), ((30553, 30602), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (30571, 30602), False, 'import utils\n'), ((30641, 30687), 'utils.send_err_report', 'utils.send_err_report', (['msg', '"""no_args_provided"""'], {}), "(msg, 'no_args_provided')\n", (30662, 30687), False, 'import utils\n'), ((30706, 30754), 'utils.send_err_report', 'utils.send_err_report', (['msg', '"""not_enought_rights"""'], {}), "(msg, 'not_enought_rights')\n", (30727, 30754), False, 'import utils\n'), ((31216, 31249), 'utils.get_group_lang', 'utils.get_group_lang', (['msg.chat.id'], {}), '(msg.chat.id)\n', (31236, 31249), False, 'import utils\n'), ((33289, 33309), 'utils.have_args', 'utils.have_args', (['msg'], {}), '(msg)\n', (33304, 33309), False, 'import utils\n'), ((33377, 33397), 'utils.have_args', 'utils.have_args', (['msg'], {}), '(msg)\n', (33392, 33397), False, 'import utils\n'), ((33446, 33492), 'utils.send_err_report', 'utils.send_err_report', (['msg', '"""no_args_provided"""'], {}), "(msg, 'no_args_provided')\n", (33467, 33492), False, 'import utils\n'), ((33707, 33731), 'utils.get_user_lang', 'utils.get_user_lang', (['msg'], {}), '(msg)\n', (33726, 33731), False, 'import utils\n'), ((34030, 34054), 'utils.get_user_lang', 'utils.get_user_lang', (['msg'], {}), '(msg)\n', (34049, 34054), False, 'import utils\n'), ((34690, 34733), 'utils.send_err_report', 'utils.send_err_report', (['msg', '"""user_is_admin"""'], {}), "(msg, 'user_is_admin')\n", (34711, 34733), False, 'import utils\n'), ((38282, 38305), 'utils.global_unban', 'utils.global_unban', (['msg'], {}), '(msg)\n', (38300, 38305), False, 'import utils\n'), ((38374, 38414), 'utils.check_super_user', 'utils.check_super_user', (['msg.from_user.id'], {}), '(msg.from_user.id)\n', (38396, 38414), False, 'import utils\n'), ((40390, 40439), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (40408, 40439), False, 'import utils\n'), ((40866, 40915), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (40884, 40915), False, 'import utils\n'), ((41398, 41427), 'utils.get_group_lang', 'utils.get_group_lang', (['chat_id'], {}), '(chat_id)\n', (41418, 41427), False, 'import utils\n'), ((52650, 52672), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (52669, 52672), False, 'import utils\n'), ((55040, 55062), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (55059, 55062), False, 'import utils\n'), ((62024, 62046), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (62043, 62046), False, 'import utils\n'), ((67824, 67866), 'ujson.dumps', 'ujson.dumps', (['config.default_group_settings'], {}), '(config.default_group_settings)\n', (67835, 67866), False, 'import ujson\n'), ((15572, 15600), 'utils.check_log', 'utils.check_log', (['msg.chat.id'], {}), '(msg.chat.id)\n', (15587, 15600), False, 'import utils\n'), ((16893, 16922), 'utils.get_log_id', 'utils.get_log_id', (['msg.chat.id'], {}), '(msg.chat.id)\n', (16909, 16922), False, 'import utils\n'), ((18840, 18873), 'utils.get_group_lang', 'utils.get_group_lang', (['msg.chat.id'], {}), '(msg.chat.id)\n', (18860, 18873), False, 'import utils\n'), ((19296, 19329), 'utils.get_group_lang', 'utils.get_group_lang', (['msg.chat.id'], {}), '(msg.chat.id)\n', (19316, 19329), False, 'import utils\n'), ((20926, 20950), 'utils.get_user_lang', 'utils.get_user_lang', (['msg'], {}), '(msg)\n', (20945, 20950), False, 'import utils\n'), ((24076, 24087), 'time.time', 'time.time', ([], {}), '()\n', (24085, 24087), False, 'import time\n'), ((24153, 24164), 'time.time', 'time.time', ([], {}), '()\n', (24162, 24164), False, 'import time\n'), ((27140, 27167), 'telebot.types.ReplyKeyboardRemove', 'types.ReplyKeyboardRemove', ([], {}), '()\n', (27165, 27167), False, 'from telebot import types\n'), ((30611, 30631), 'utils.have_args', 'utils.have_args', (['msg'], {}), '(msg)\n', (30626, 30631), False, 'import utils\n'), ((38436, 38457), 'utils.global_ban', 'utils.global_ban', (['msg'], {}), '(msg)\n', (38452, 38457), False, 'import utils\n'), ((38475, 38524), 'utils.check_status', 'utils.check_status', (['msg.from_user.id', 'msg.chat.id'], {}), '(msg.from_user.id, msg.chat.id)\n', (38493, 38524), False, 'import utils\n'), ((43076, 43105), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (43096, 43105), False, 'import api\n'), ((43481, 43502), 'api.get_users_count', 'api.get_users_count', ([], {}), '()\n', (43500, 43502), False, 'import api\n'), ((43528, 43549), 'api.get_chats_count', 'api.get_chats_count', ([], {}), '()\n', (43547, 43549), False, 'import api\n'), ((43581, 43612), 'api.get_unblocked_users_count', 'api.get_unblocked_users_count', ([], {}), '()\n', (43610, 43612), False, 'import api\n'), ((43644, 43675), 'api.get_unblocked_chats_count', 'api.get_unblocked_chats_count', ([], {}), '()\n', (43673, 43675), False, 'import api\n'), ((48790, 48812), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (48809, 48812), False, 'import utils\n'), ((49778, 49800), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (49797, 49800), False, 'import utils\n'), ((50769, 50791), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (50788, 50791), False, 'import utils\n'), ((51757, 51779), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (51776, 51779), False, 'import utils\n'), ((53275, 53297), 'utils.parse_chat_id', 'utils.parse_chat_id', (['c'], {}), '(c)\n', (53294, 53297), False, 'import utils\n'), ((18359, 18388), 'utils.get_log_id', 'utils.get_log_id', (['msg.chat.id'], {}), '(msg.chat.id)\n', (18375, 18388), False, 'import utils\n'), ((18448, 18481), 'utils.get_group_lang', 'utils.get_group_lang', (['msg.chat.id'], {}), '(msg.chat.id)\n', (18468, 18481), False, 'import utils\n'), ((24838, 24849), 'time.time', 'time.time', ([], {}), '()\n', (24847, 24849), False, 'import time\n'), ((26346, 26390), 'api.replacer', 'api.replacer', (['msg.new_chat_member.first_name'], {}), '(msg.new_chat_member.first_name)\n', (26358, 26390), False, 'import api\n'), ((27849, 27881), 'utils.generate_welcome_text', 'utils.generate_welcome_text', (['msg'], {}), '(msg)\n', (27876, 27881), False, 'import utils\n'), ((29488, 29516), 'api.replacer', 'api.replacer', (['msg.chat.title'], {}), '(msg.chat.title)\n', (29500, 29516), False, 'import api\n'), ((29691, 29729), 'api.replacer', 'api.replacer', (['msg.from_user.first_name'], {}), '(msg.from_user.first_name)\n', (29703, 29729), False, 'import api\n'), ((37669, 37714), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (['(msg.date + 1)'], {}), '(msg.date + 1)\n', (37700, 37714), False, 'import datetime\n'), ((38646, 38671), 'utils.check_for_urls', 'utils.check_for_urls', (['msg'], {}), '(msg)\n', (38666, 38671), False, 'import utils\n'), ((61651, 61684), 'api.get_group_params', 'api.get_group_params', (['msg.chat.id'], {}), '(msg.chat.id)\n', (61671, 61684), False, 'import api\n'), ((26014, 26025), 'time.time', 'time.time', ([], {}), '()\n', (26023, 26025), False, 'import time\n'), ((26674, 26707), 'api.get_group_params', 'api.get_group_params', (['msg.chat.id'], {}), '(msg.chat.id)\n', (26694, 26707), False, 'import api\n'), ((35494, 35518), 'utils.get_user_lang', 'utils.get_user_lang', (['msg'], {}), '(msg)\n', (35513, 35518), False, 'import utils\n'), ((41612, 41641), 'utils.get_group_lang', 'utils.get_group_lang', (['chat_id'], {}), '(chat_id)\n', (41632, 41641), False, 'import utils\n'), ((49046, 49075), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (49066, 49075), False, 'import api\n'), ((49347, 49376), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (49367, 49376), False, 'import api\n'), ((52013, 52042), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (52033, 52042), False, 'import api\n'), ((52340, 52369), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (52360, 52369), False, 'import api\n'), ((61386, 61420), 'api.replacer', 'api.replacer', (['user.user.first_name'], {}), '(user.user.first_name)\n', (61398, 61420), False, 'import api\n'), ((63067, 63096), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (63087, 63096), False, 'import api\n'), ((68767, 68806), 'utils.get_group_lang', 'utils.get_group_lang', (['c.message.chat.id'], {}), '(c.message.chat.id)\n', (68787, 68806), False, 'import utils\n'), ((69034, 69073), 'utils.get_group_lang', 'utils.get_group_lang', (['c.message.chat.id'], {}), '(c.message.chat.id)\n', (69054, 69073), False, 'import utils\n'), ((18194, 18227), 'utils.get_group_lang', 'utils.get_group_lang', (['msg.chat.id'], {}), '(msg.chat.id)\n', (18214, 18227), False, 'import utils\n'), ((23118, 23129), 'time.time', 'time.time', ([], {}), '()\n', (23127, 23129), False, 'import time\n'), ((26423, 26456), 'api.get_group_params', 'api.get_group_params', (['msg.chat.id'], {}), '(msg.chat.id)\n', (26443, 26456), False, 'import api\n'), ((28009, 28042), 'api.get_group_params', 'api.get_group_params', (['msg.chat.id'], {}), '(msg.chat.id)\n', (28029, 28042), False, 'import api\n'), ((38676, 38709), 'api.get_group_params', 'api.get_group_params', (['msg.chat.id'], {}), '(msg.chat.id)\n', (38696, 38709), False, 'import api\n'), ((50034, 50063), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (50054, 50063), False, 'import api\n'), ((50332, 50361), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (50352, 50361), False, 'import api\n'), ((51025, 51054), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (51045, 51054), False, 'import api\n'), ((51326, 51355), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (51346, 51355), False, 'import api\n'), ((62774, 62808), 'api.replacer', 'api.replacer', (['user.user.first_name'], {}), '(user.user.first_name)\n', (62786, 62808), False, 'import api\n'), ((23239, 23272), 'utils.get_group_lang', 'utils.get_group_lang', (['msg.chat.id'], {}), '(msg.chat.id)\n', (23259, 23272), False, 'import utils\n'), ((39148, 39186), 'api.replacer', 'api.replacer', (['msg.from_user.first_name'], {}), '(msg.from_user.first_name)\n', (39160, 39186), False, 'import api\n'), ((53516, 53545), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (53536, 53545), False, 'import api\n'), ((53870, 53899), 'api.get_group_params', 'api.get_group_params', (['chat_id'], {}), '(chat_id)\n', (53890, 53899), False, 'import api\n'), ((23524, 23557), 'utils.get_group_lang', 'utils.get_group_lang', (['msg.chat.id'], {}), '(msg.chat.id)\n', (23544, 23557), False, 'import utils\n'), ((26026, 26059), 'api.get_group_params', 'api.get_group_params', (['msg.chat.id'], {}), '(msg.chat.id)\n', (26046, 26059), False, 'import api\n'), ((16251, 16280), 'utils.get_group_lang', 'utils.get_group_lang', (['chat_id'], {}), '(chat_id)\n', (16271, 16280), False, 'import utils\n'), ((17600, 17629), 'utils.get_group_lang', 'utils.get_group_lang', (['chat_id'], {}), '(chat_id)\n', (17620, 17629), False, 'import utils\n'), ((23640, 23673), 'utils.get_group_lang', 'utils.get_group_lang', (['msg.chat.id'], {}), '(msg.chat.id)\n', (23660, 23673), False, 'import utils\n'), ((61217, 61256), 'utils.get_group_lang', 'utils.get_group_lang', (['c.message.chat.id'], {}), '(c.message.chat.id)\n', (61237, 61256), False, 'import utils\n'), ((16496, 16525), 'utils.get_group_lang', 'utils.get_group_lang', (['chat_id'], {}), '(chat_id)\n', (16516, 16525), False, 'import utils\n'), ((17845, 17874), 'utils.get_group_lang', 'utils.get_group_lang', (['chat_id'], {}), '(chat_id)\n', (17865, 17874), False, 'import utils\n'), ((38988, 39021), 'utils.get_group_lang', 'utils.get_group_lang', (['msg.chat.id'], {}), '(msg.chat.id)\n', (39008, 39021), False, 'import utils\n'), ((62597, 62636), 'utils.get_group_lang', 'utils.get_group_lang', (['c.message.chat.id'], {}), '(c.message.chat.id)\n', (62617, 62636), False, 'import utils\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Mar 20 22:08:31 2019 @author: iaricanli """ import copy T = True F = False D = "_" """ Generate the inputs for the algorithm. A list of dictionarys. Each element of the list represents a different boolean expression input -- say if we are trying to reduce something for a 7 segment display over a period of multiple timesteps. Each dictionary represents a boolean function. The key is the boolean input represented in integer form (aka A^!B^!C^D -> 1001 -> 9) and the value is either True, False, or Don't Care. Reading from a file not yet supported. Do whatever you want in here. Arguments: LEN : integer - The dimensionality of the desired output truth table. AKA, the number of boolean variables. Return: tt (truth table): list (dict (int, Booleanish)) - The only question here really is what is a booleanish? in addition to True and False there is a third concept of Don'tCare which is being represented here as "_". It fails "is True" but passes "== True". this is abused heavily. """ def Get_Truth_Table(LEN): tt = list() e = dict() e = { 0: T, 1: T, 2: D, 3: T, 4: F, 5: F, 6: T, 7: T, } tt.append(e) return tt """ This is a helper function, existant in case I want to expand the code and allow different iteration over the inputs. If this returned randomly, the code would no longer necessarily output predictable results. """ def _Provide_Index(dim): return range(0, dim) """ Performs the expansion of a cube through the Nspace Attempting to expand through ever dimension, one at a time. While it does this, it maps the boolean expressions to minterms and it maps the minterms to the boolean expressions. Thus providing the program a quick view of the rows and columns regarding the results found. Arguments: boolean array: dict (int, truth) - The key maps to the integer representation of the inputs - The value points to whether that is mapped to True, False, or DC idx: int - The space in the boolean array we are beginning at, where the expansion begins from. dim: int - The total number of dimensions we are operating in. # REFERENCED BY VALUE minterms2bln: dict (int, boolean_expression) - Maps the minterms (tracked by integer -- same as in the idx we see above), and keeps track of which minterms are related to what boolean expressions. Return: covered_minterms: set - The defined set of minterms covered by the boolean expression bln_expr: boolean_expression - The boolean expression (defined by a point and then a mask) that covered the aforementioned minterms. """ def Expand_Cube(boolean_array, idx, dim, minterms2bln): bln_expr = boolean_expression(idx, 0) # Define the space of the cube space = [idx] covered_minterms = {idx} if idx in minterms2bln: minterms2bln[idx].add(bln_expr) else: minterms2bln[idx] = {bln_expr} # Iterate over the indices however we decide for i in _Provide_Index(dim): # Control variable to exit a loop _continue = False # Convert the index into the representitive integer dim2int = 2**i # The space being explored new_space = list() for index in space: # MAGIC LINE # We need to turn 1s into 0s and 0s into 1s, depending on the index new_index = index ^ dim2int # We're expanding the cube, verify that we're expanding it into # valid space. If it is valid, add the expanding indices into list if new_index in boolean_array and boolean_array[new_index]: new_space.append(new_index) else: # If the new space doesn't pan out _perfectly_, keep going to # the the next index _continue = True break # We don't want to extend into the space of the selected index # if it didn't pan out. So skip this one and move on to the next # dimension. if not _continue: # We like the new dimension, and are going to cover all the new # elements into it. space.extend(new_space) for ns in new_space: # If the value at the boolean array is specifically # True and not just Don't Care, add it to the Covered Minterms if boolean_array[ns] is T: covered_minterms.add(ns) if ns in minterms2bln: minterms2bln[ns].add(bln_expr) else: minterms2bln[ns] = {bln_expr} # Allow the Mask to contain the information regarding the dimension # that was just covered. bln_expr.mask += dim2int return covered_minterms, bln_expr class boolean_expression(object): def __init__(self, idx, mask): self.idx = idx self.mask = mask def __eq__(self, b): return self.idx == b.idx and self.mask == b.mask def __hash__(self): return hash((self.idx, self.mask)) def __str__(self): return "boolean_expression({0}, {1})".format(self.idx, self.mask) def __repr__(self): return self.__str__() def Expand(truth_table, dim): # # Iterate over every boolean output # expr_per_output = list() for boolean_array in truth_table: bln2minterms= dict() minterms2bln = dict() for idx, bln in boolean_array.items(): if bln is T: covered_minterms, bln_expr = Expand_Cube(boolean_array, idx, dim, minterms2bln) bln2minterms[bln_expr] = covered_minterms # bln2minterms and minterms2bln # are two dictionaries that are dually referent # in order to keep computations fast. expr_per_output.append((bln2minterms, minterms2bln)) return expr_per_output def Intersect( list_of_maps ): # # Finds intersections between boolean statements and # the minterms they cover # lom = list() # Iterate over every solution-set per output itr_list_of_maps = copy.deepcopy(list_of_maps) for bln2minterms, minterms2bln in itr_list_of_maps: # First we're going to look for any case where a minterm # maps to only one boolean expression. required_blns = set() todelete = list() itr_minterms2bln = copy.deepcopy(minterms2bln) for minterm, set_of_blns in itr_minterms2bln.items(): if len(set_of_blns) == 1: # WE found one! # Take it required_bln = set_of_blns.pop() # Now find all the minterms related to the boolean minterms_correlated_to_bln = bln2minterms[required_bln] # Iterate over them for correlated_minterm in minterms_correlated_to_bln: # and remove the boolean from their knowledge minterms2bln[correlated_minterm].remove(required_bln) # Then delete the entire boolean from the booly-books del bln2minterms[required_bln] todelete.append(minterm) # And remember what we've done on this day, this evil day. required_blns.add( required_bln ) for i in todelete: del minterms2bln[i] # Now we get rid of booleans as we determine that they are "the best candidate while len(minterms2bln): # We are looking at only a SINGLE minterm. # Scanning a subspace to decrease overall computation time # and keep everything in linear time. minterm = Select_Minterm(minterms2bln) most = 0 best_candidate = None # We determine the "Best candidate" as the boolean expression # with the greatest number of related minterms for bln in minterms2bln[minterm]: if len(bln2minterms[bln]) > most: best_candidate = bln most = len(bln2minterms[bln]) required_blns.add( best_candidate ) # Now find all the minterms related to the boolean minterms_correlated_to_bln = bln2minterms[best_candidate] # Iterate over them todelete = list() for correlated_minterm in minterms_correlated_to_bln: # Delete all minterms correlated to the highest-scoring boolean for related_bln in minterms2bln[correlated_minterm]: todelete.append((related_bln, correlated_minterm)) # Forreal, delete them del minterms2bln[correlated_minterm] for related_bln, correlated_minterm in todelete: bln2minterms[related_bln].remove(correlated_minterm) # The ndelete the aforementioned best candidate del bln2minterms[best_candidate] lom.append(required_blns) return lom """ This is a helper function, existant in case I want to expand the code and allow different iteration over the inputs. If this returned randomly, the code would no longer necessarily output predictable results. """ def Select_Minterm(minterms2bln): return list(minterms2bln.keys())[0] def main(dim): # # Define truth table # truth_table = Get_Truth_Table(dim) # Perform the Expand operation on every output set list_of_maps = Expand(truth_table, dim) list_of_covering_blns = Intersect(list_of_maps) return list_of_covering_blns
[ "copy.deepcopy" ]
[((6780, 6807), 'copy.deepcopy', 'copy.deepcopy', (['list_of_maps'], {}), '(list_of_maps)\n', (6793, 6807), False, 'import copy\n'), ((7059, 7086), 'copy.deepcopy', 'copy.deepcopy', (['minterms2bln'], {}), '(minterms2bln)\n', (7072, 7086), False, 'import copy\n')]
import yaml from pathlib import Path from os import environ class Config: def __init__(self, file_path="config.yml"): try: with open(file_path, encoding="UTF-8") as file: self.config = yaml.full_load(file.read()) except Exception: self.config = {} self.environ = environ def get(self, param, default=None): globals()[param.upper()] = ( self.environ.get(param.upper()) or self.config.get(param, default)) config = Config() config.get("db_path", default="jdanbot.db") config.get("delay", default=30) config.get("rss_feeds", default=[]) config.get("rss", default=False) config.get("image_path", default="bot/cache/{image}.jpg") config.get("token") config.get("status", default="unknown") config.get("vk", default=False) config.get("vk_channels", default=()) config.get("access_token", default="") config.get("katz_bots", default=False) config.get("youtube", default=False) config.get("youtube_channels", default=()) config.get("youtube_key", default=None) config.get("langs_list", default=[ "ru", "en", "sv", "de", "ce", "tt", "ba", "pl", "uk", "be", "es", "he", "xh", "ab"]) config.get("unique_commands", default={ "ru": ["wikiru2", "w", "wiki"], "en": ["van", "wen", "v"], "uk": ["wikiua", "wua", "pawuk"], "be-tarask": ["wikibe-tarask", "wikibet", "wbet", "xbet"] }) config.get("admin_notes", default=[ "__rules__", "__enable_bot__", "__ban__", "__welcome__", "__enable_response__", "__enable_welcome__", "__enable_greatings__", "__warns_to_ban__" ]) config.get("eggs", default=[ {"commands": ["java1"], "audio": "java.ogg"}, {"commands": ["cool_music"], "audio": "music.ogg"}, {"commands": ["cum"], "audio": "cum.ogg"}, {"commands": ["longcum"], "audio": "longcum.ogg"}, {"commands": ["frog"], "audio": "lyagushka.ogg"}]) config.get("stickers", { "pizda": "<KEY>", "net_pizdy": "<KEY>", "pizda_tebe": "<KEY>", "xui": "<KEY>", "net_xua": "<KEY>" }) BASE_DIR = Path(__file__).parent.parent LOCALES_DIR = BASE_DIR / "i18n"
[ "pathlib.Path" ]
[((2076, 2090), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (2080, 2090), False, 'from pathlib import Path\n')]
#! /usr/bin/env python import pyslet.xml.structures as xml from pyslet.wsgi import SessionApp, session_decorator class MyApp(SessionApp): settings_file = 'samples/wsgi_session/settings.json' def init_dispatcher(self): super(MyApp, self).init_dispatcher() self.set_method("/", self.home) self.set_method("/setname", self.setname) @session_decorator def home(self, context): page = """<html><head><title>Session Page</title></head><body> <h1>Session Page</h1> %s </body></html>""" if context.session.entity['UserName']: noform = """<p>Welcome: %s</p>""" page = page % ( noform % xml.EscapeCharData( context.session.entity['UserName'].value)) else: form = """<form method="POST" action="setname"> <p>Please enter your name: <input type="text" name="name"/> <input type="hidden" name=%s value=%s /> <input type="submit" value="Set"/></p> </form>""" page = page % ( form % (xml.EscapeCharData(self.csrf_token, True), xml.EscapeCharData(context.session.sid(), True))) context.set_status(200) return self.html_response(context, page) @session_decorator def setname(self, context): user_name = context.get_form_string('name') if user_name: context.session.entity['UserName'].set_from_value(user_name) context.session.touch() return self.redirect_page(context, context.get_app_root()) if __name__ == "__main__": MyApp.main()
[ "pyslet.xml.structures.EscapeCharData" ]
[((715, 775), 'pyslet.xml.structures.EscapeCharData', 'xml.EscapeCharData', (["context.session.entity['UserName'].value"], {}), "(context.session.entity['UserName'].value)\n", (733, 775), True, 'import pyslet.xml.structures as xml\n'), ((1147, 1188), 'pyslet.xml.structures.EscapeCharData', 'xml.EscapeCharData', (['self.csrf_token', '(True)'], {}), '(self.csrf_token, True)\n', (1165, 1188), True, 'import pyslet.xml.structures as xml\n')]
import pathlib from typing import ( Iterable ) CONTRACTS_ROOT = "./scripts/benchmark/contract_data/" CONTRACTS = [ "erc20.sol" ] def get_contracts() -> Iterable[pathlib.Path]: for val in CONTRACTS: yield pathlib.Path(CONTRACTS_ROOT) / pathlib.Path(val)
[ "pathlib.Path" ]
[((227, 255), 'pathlib.Path', 'pathlib.Path', (['CONTRACTS_ROOT'], {}), '(CONTRACTS_ROOT)\n', (239, 255), False, 'import pathlib\n'), ((258, 275), 'pathlib.Path', 'pathlib.Path', (['val'], {}), '(val)\n', (270, 275), False, 'import pathlib\n')]
########################################################################## # # pgAdmin 4 - PostgreSQL Tools # # Copyright (C) 2013 - 2020, The pgAdmin Development Team # This software is released under the PostgreSQL Licence # ########################################################################## import json import random from pgadmin.browser.server_groups.servers.databases.tests import utils as \ database_utils from pgadmin.utils.route import BaseTestGenerator from regression import parent_node_dict from regression.python_test_utils import test_utils as utils from pgadmin.tools.sqleditor.tests.execute_query_test_utils \ import execute_query from datetime import date class TestQueryUpdatableResultset(BaseTestGenerator): """ This class will test the detection of whether the query result-set is updatable. """ scenarios = [ ('When selecting all columns of the table', dict( sql='SELECT * FROM {0};', expected_primary_keys={ 'pk_col1': 'int4', 'pk_col2': 'int4' }, expected_has_oids=False, table_has_oids=False, expected_cols_is_editable=[True, True, True, True] )), ('When selecting all primary keys of the table', dict( sql='SELECT pk_col1, pk_col2 FROM {0};', expected_primary_keys={ 'pk_col1': 'int4', 'pk_col2': 'int4' }, expected_has_oids=False, table_has_oids=False, expected_cols_is_editable=[True, True] )), ('When selecting some of the primary keys of the table', dict( sql='SELECT pk_col2 FROM {0};', expected_primary_keys=None, expected_has_oids=False, table_has_oids=False, expected_cols_is_editable=[False] )), ('When selecting none of the primary keys of the table', dict( sql='SELECT normal_col1 FROM {0};', expected_primary_keys=None, expected_has_oids=False, table_has_oids=False, expected_cols_is_editable=[False] )), ('When renaming a primary key', dict( sql='SELECT pk_col1 as some_col, pk_col2 FROM "{0}";', expected_primary_keys=None, expected_has_oids=False, table_has_oids=False, expected_cols_is_editable=[False, False] )), ('When renaming a normal column', dict( sql='SELECT pk_col1, pk_col2, normal_col1 as some_col FROM "{0}";', expected_primary_keys={ 'pk_col1': 'int4', 'pk_col2': 'int4' }, expected_has_oids=False, table_has_oids=False, expected_cols_is_editable=[True, True, False] )), ('When renaming a normal column to a primary key name', dict( sql='SELECT normal_col1 as pk_col1, pk_col1, pk_col2 FROM {0};', expected_primary_keys={ 'pk_col1': 'int4', 'pk_col2': 'int4' }, expected_has_oids=False, table_has_oids=False, expected_cols_is_editable=[False, True, True] )), ('When selecting a normal column twice', dict( sql='SELECT pk_col1, pk_col2, normal_col1, normal_col1 FROM {0};', expected_primary_keys={ 'pk_col1': 'int4', 'pk_col2': 'int4' }, expected_has_oids=False, table_has_oids=False, expected_cols_is_editable=[True, True, True, False] )), ('When selecting a non-table column', dict( sql='SELECT pk_col1, pk_col2, normal_col1 || normal_col2 FROM {0};', expected_primary_keys={'pk_col1': 'int4', 'pk_col2': 'int4' }, expected_has_oids=False, table_has_oids=False, expected_cols_is_editable=[True, True, False] )), ('When selecting primary keys and oids (table with oids)', dict( sql='SELECT *, oid FROM {0};', expected_primary_keys={ 'pk_col1': 'int4', 'pk_col2': 'int4' }, expected_has_oids=True, table_has_oids=True, expected_cols_is_editable=[True, True, True, True, False] )), ('When selecting oids without primary keys (table with oids)', dict( sql='SELECT oid, normal_col1, normal_col2 FROM {0};', expected_primary_keys=None, expected_has_oids=True, table_has_oids=True, expected_cols_is_editable=[False, True, True] )), ('When selecting none of the primary keys or oids (table with oids)', dict( sql='SELECT normal_col1, normal_col2 FROM {0};', expected_primary_keys=None, expected_has_oids=False, table_has_oids=True, expected_cols_is_editable=[False, False] )) ] def setUp(self): self.test_table_name = "test_for_updatable_resultset" + \ str(random.randint(1000, 9999)) self._initialize_database_connection() self._initialize_query_tool() self._initialize_urls() def runTest(self): self._create_test_table(table_has_oids=self.table_has_oids) response_data = self._execute_select_sql() self._check_primary_keys(response_data) self._check_oids(response_data) self._check_editable_columns(response_data) def tearDown(self): # Disconnect the database database_utils.disconnect_database(self, self.server_id, self.db_id) def _execute_select_sql(self): sql = self.sql.format(self.test_table_name) is_success, response_data = \ execute_query(tester=self.tester, query=sql, poll_url=self.poll_url, start_query_tool_url=self.start_query_tool_url) self.assertEquals(is_success, True) return response_data def _check_primary_keys(self, response_data): primary_keys = response_data['data']['primary_keys'] self.assertEquals(primary_keys, self.expected_primary_keys) def _check_oids(self, response_data): has_oids = response_data['data']['has_oids'] self.assertEquals(has_oids, self.expected_has_oids) def _check_editable_columns(self, response_data): columns_info = response_data['data']['colinfo'] for col, expected_is_editable in \ zip(columns_info, self.expected_cols_is_editable): self.assertEquals(col['is_editable'], expected_is_editable) def _initialize_database_connection(self): database_info = parent_node_dict["database"][-1] self.db_name = database_info["db_name"] self.server_id = database_info["server_id"] self.server_version = parent_node_dict["schema"][-1]["server_version"] if self.server_version >= 120000 and self.table_has_oids: self.skipTest('Tables with OIDs are not supported starting ' 'PostgreSQL 12') driver_version = utils.get_driver_version() driver_version = float('.'.join(driver_version.split('.')[:2])) if driver_version < 2.8: self.skipTest('Updatable resultsets require pyscopg 2.8 or later') self.db_id = database_info["db_id"] db_con = database_utils.connect_database(self, utils.SERVER_GROUP, self.server_id, self.db_id) if not db_con["info"] == "Database connected.": raise Exception("Could not connect to the database.") def _initialize_query_tool(self): self.trans_id = str(random.randint(1, 9999999)) url = '/datagrid/initialize/query_tool/{0}/{1}/{2}/{3}'.format( self.trans_id, utils.SERVER_GROUP, self.server_id, self.db_id) response = self.tester.post(url) self.assertEquals(response.status_code, 200) def _initialize_urls(self): self.start_query_tool_url = \ '/sqleditor/query_tool/start/{0}'.format(self.trans_id) self.poll_url = '/sqleditor/poll/{0}'.format(self.trans_id) def _create_test_table(self, table_has_oids=False): create_sql = """ DROP TABLE IF EXISTS {0}; CREATE TABLE {0}( pk_col1 SERIAL, pk_col2 SERIAL, normal_col1 VARCHAR, normal_col2 VARCHAR, PRIMARY KEY(pk_col1, pk_col2) ) """.format(self.test_table_name) if table_has_oids: create_sql += ' WITH OIDS;' else: create_sql += ';' utils.create_table_with_query(self.server, self.db_name, create_sql) class TestTemporaryTable(TestQueryUpdatableResultset): """ This class will test the query result-set for temporary tables """ scenarios = [ ('When selecting all columns of the Temporary table, on commit drop', dict(sql=''' DROP TABLE IF EXISTS {0}; CREATE TEMPORARY TABLE {0} ON COMMIT DROP AS SELECT CURRENT_DATE AS today; SELECT * FROM {0};''', expected_primary_keys=None, expected_results_column_data=[[date.today().strftime( "%Y-%m-%d")]], expected_has_oids=False, expected_results_column_is_editable=False, table_has_oids=False, expected_cols_is_editable=[False] )) ] def runTest(self): response_data = self._execute_select_sql() self._check_primary_keys(response_data) self._check_oids(response_data) # Verifying Temporary table result data on Commit Drop self._check_results_column_data(response_data) self._check_editable_columns(response_data) def _check_results_column_data(self, response_data): results_column_data = response_data['data']['result'] for result_data, expected_is_editable in \ zip(results_column_data, self.expected_results_column_data): self.assertEquals(result_data, expected_is_editable)
[ "random.randint", "regression.python_test_utils.test_utils.get_driver_version", "datetime.date.today", "regression.python_test_utils.test_utils.create_table_with_query", "pgadmin.browser.server_groups.servers.databases.tests.utils.connect_database", "pgadmin.browser.server_groups.servers.databases.tests.utils.disconnect_database", "pgadmin.tools.sqleditor.tests.execute_query_test_utils.execute_query" ]
[((5722, 5790), 'pgadmin.browser.server_groups.servers.databases.tests.utils.disconnect_database', 'database_utils.disconnect_database', (['self', 'self.server_id', 'self.db_id'], {}), '(self, self.server_id, self.db_id)\n', (5756, 5790), True, 'from pgadmin.browser.server_groups.servers.databases.tests import utils as database_utils\n'), ((5929, 6049), 'pgadmin.tools.sqleditor.tests.execute_query_test_utils.execute_query', 'execute_query', ([], {'tester': 'self.tester', 'query': 'sql', 'poll_url': 'self.poll_url', 'start_query_tool_url': 'self.start_query_tool_url'}), '(tester=self.tester, query=sql, poll_url=self.poll_url,\n start_query_tool_url=self.start_query_tool_url)\n', (5942, 6049), False, 'from pgadmin.tools.sqleditor.tests.execute_query_test_utils import execute_query\n'), ((7320, 7346), 'regression.python_test_utils.test_utils.get_driver_version', 'utils.get_driver_version', ([], {}), '()\n', (7344, 7346), True, 'from regression.python_test_utils import test_utils as utils\n'), ((7594, 7683), 'pgadmin.browser.server_groups.servers.databases.tests.utils.connect_database', 'database_utils.connect_database', (['self', 'utils.SERVER_GROUP', 'self.server_id', 'self.db_id'], {}), '(self, utils.SERVER_GROUP, self.server_id,\n self.db_id)\n', (7625, 7683), True, 'from pgadmin.browser.server_groups.servers.databases.tests import utils as database_utils\n'), ((9147, 9215), 'regression.python_test_utils.test_utils.create_table_with_query', 'utils.create_table_with_query', (['self.server', 'self.db_name', 'create_sql'], {}), '(self.server, self.db_name, create_sql)\n', (9176, 9215), True, 'from regression.python_test_utils import test_utils as utils\n'), ((8017, 8043), 'random.randint', 'random.randint', (['(1)', '(9999999)'], {}), '(1, 9999999)\n', (8031, 8043), False, 'import random\n'), ((5227, 5253), 'random.randint', 'random.randint', (['(1000)', '(9999)'], {}), '(1000, 9999)\n', (5241, 5253), False, 'import random\n'), ((9785, 9797), 'datetime.date.today', 'date.today', ([], {}), '()\n', (9795, 9797), False, 'from datetime import date\n')]
import numpy as np import pickle as pkl def function_generator(init_num): seq = np.array([], dtype='int') n = init_num seq = np.append(seq, n) while True: if ((n%2)==0): next_number = n/2 next_number = np.asarray(next_number, dtype='int') seq = np.append(seq, next_number) if next_number==1: break else: next_number = (3*n)+1 next_number = np.asarray(next_number, dtype='int') seq = np.append(seq, next_number) n = next_number return seq output_seq_data = [] output_seq_length = [] x_train = [] y_train = [] num = 0 for n in range(0,10000): sequence = function_generator(n+1) seq_len = len(sequence) x_training = sequence[:(seq_len-1)] x_training = np.array(x_training, dtype='int') y_training = sequence[1:seq_len] y_training = np.array(y_training, dtype='int') output_seq_data.append(sequence) output_seq_length.append(seq_len) x_train.append(x_training) y_train.append(y_training) output_seq_data = np.asarray(output_seq_data) x_train = np.asarray(x_train) y_train = np.asarray(y_train) print(y_train[26]) output_seq_length = np.asarray(output_seq_length) max_length = output_seq_length.max() # print(max_length) # print(x_train[26]) # np.save('generated_data.npy', gen_data) # np.save('x_train.npy', x_train) # np.save('y_train.npy', y_train)
[ "numpy.append", "numpy.asarray", "numpy.array" ]
[((1092, 1119), 'numpy.asarray', 'np.asarray', (['output_seq_data'], {}), '(output_seq_data)\n', (1102, 1119), True, 'import numpy as np\n'), ((1130, 1149), 'numpy.asarray', 'np.asarray', (['x_train'], {}), '(x_train)\n', (1140, 1149), True, 'import numpy as np\n'), ((1160, 1179), 'numpy.asarray', 'np.asarray', (['y_train'], {}), '(y_train)\n', (1170, 1179), True, 'import numpy as np\n'), ((1220, 1249), 'numpy.asarray', 'np.asarray', (['output_seq_length'], {}), '(output_seq_length)\n', (1230, 1249), True, 'import numpy as np\n'), ((86, 111), 'numpy.array', 'np.array', (['[]'], {'dtype': '"""int"""'}), "([], dtype='int')\n", (94, 111), True, 'import numpy as np\n'), ((139, 156), 'numpy.append', 'np.append', (['seq', 'n'], {}), '(seq, n)\n', (148, 156), True, 'import numpy as np\n'), ((813, 846), 'numpy.array', 'np.array', (['x_training'], {'dtype': '"""int"""'}), "(x_training, dtype='int')\n", (821, 846), True, 'import numpy as np\n'), ((901, 934), 'numpy.array', 'np.array', (['y_training'], {'dtype': '"""int"""'}), "(y_training, dtype='int')\n", (909, 934), True, 'import numpy as np\n'), ((252, 288), 'numpy.asarray', 'np.asarray', (['next_number'], {'dtype': '"""int"""'}), "(next_number, dtype='int')\n", (262, 288), True, 'import numpy as np\n'), ((307, 334), 'numpy.append', 'np.append', (['seq', 'next_number'], {}), '(seq, next_number)\n', (316, 334), True, 'import numpy as np\n'), ((462, 498), 'numpy.asarray', 'np.asarray', (['next_number'], {'dtype': '"""int"""'}), "(next_number, dtype='int')\n", (472, 498), True, 'import numpy as np\n'), ((517, 544), 'numpy.append', 'np.append', (['seq', 'next_number'], {}), '(seq, next_number)\n', (526, 544), True, 'import numpy as np\n')]
# ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # Written by <NAME> (<EMAIL>) # ------------------------------------------------------------------------------ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging import time from pathlib import Path import numpy as np import torch import torch.nn as nn logger = logging.getLogger(__name__) class FullModel(nn.Module): """ Distribute the loss on multi-gpu to reduce the memory cost in the main gpu. You can check the following discussion. https://discuss.pytorch.org/t/dataparallel-imbalanced-memory-usage/22551/21 """ def __init__(self, model, loss): super(FullModel, self).__init__() self.model = model self.loss = loss def forward(self, inputs, labels): outputs = self.model(inputs) loss = self.loss(outputs, labels) return loss, outputs def get_world_size(): if not torch.distributed.is_initialized(): return 1 return torch.distributed.get_world_size() def get_rank(): if not torch.distributed.is_initialized(): return 0 return torch.distributed.get_rank() class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.initialized = False self.val = None self.avg = None self.sum = None self.count = None def initialize(self, val, weight): self.val = val self.avg = val self.sum = val * weight self.count = weight self.initialized = True def update(self, val, weight=1): if not self.initialized: self.initialize(val, weight) else: self.add(val, weight) def add(self, val, weight): self.val = val self.sum += val * weight self.count += weight self.avg = self.sum / self.count def value(self): return self.val def average(self): return self.avg def create_logger(cfg, cfg_name, phase='train'): root_output_dir = Path(cfg.OUTPUT_DIR) # set up logger if not root_output_dir.exists(): print('=> creating {}'.format(root_output_dir)) root_output_dir.mkdir() dataset = cfg.DATASET.DATASET model = cfg.MODEL.NAME cfg_name = os.path.basename(cfg_name).split('.')[0] final_output_dir = root_output_dir / dataset / cfg_name print('=> creating {}'.format(final_output_dir)) final_output_dir.mkdir(parents=True, exist_ok=True) time_str = time.strftime('%Y-%m-%d-%H-%M') log_file = '{}_{}_{}.log'.format(cfg_name, time_str, phase) final_log_file = final_output_dir / log_file head = '%(asctime)-15s %(message)s' logging.basicConfig(filename=str(final_log_file), format=head) logger = logging.getLogger() logger.setLevel(logging.INFO) console = logging.StreamHandler() logging.getLogger('').addHandler(console) tensorboard_log_dir = Path(cfg.LOG_DIR) / dataset / model / \ (cfg_name + '_' + time_str) print('=> creating {}'.format(tensorboard_log_dir)) tensorboard_log_dir.mkdir(parents=True, exist_ok=True) return logger, str(final_output_dir), str(tensorboard_log_dir) def get_confusion_matrix(label, pred, size, num_class, ignore=-1): """ Calcute the confusion matrix by given label and pred """ output = pred.cpu().numpy().transpose(0, 2, 3, 1) seg_pred = np.asarray(np.argmax(output, axis=3), dtype=np.uint8) seg_gt = np.asarray( label.cpu().numpy()[:, :size[-2], :size[-1]], dtype=np.int) ignore_index = seg_gt != ignore seg_gt = seg_gt[ignore_index] seg_pred = seg_pred[ignore_index] index = (seg_gt * num_class + seg_pred).astype('int32') label_count = np.bincount(index) confusion_matrix = np.zeros((num_class, num_class)) for i_label in range(num_class): for i_pred in range(num_class): cur_index = i_label * num_class + i_pred if cur_index < len(label_count): confusion_matrix[i_label, i_pred] = label_count[cur_index] return confusion_matrix def get_optimizer(config, model): _nwd_keys = ('bias', 'bn', 'norm', 'prelu', 'nwd') params = [] for key, value in model.named_parameters(): if not value.requires_grad: continue lr = config.TRAIN.LR weight_decay = config.TRAIN.WD if 'head' in key: lr *= 10 if any(key.find(sub) != -1 for sub in _nwd_keys): weight_decay = 0 logger.info(f'Params: {key}, LR: {lr}, Weight_Decay: {weight_decay}') elif 'base' in key: if any(key.find(sub) != -1 for sub in _nwd_keys): weight_decay = 0 logger.info(f'Params: {key}, LR: {lr}, Weight_Decay: {weight_decay}') params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}] if config.TRAIN.OPTIMIZER == 'sgd': optimizer = torch.optim.SGD(params, lr=config.TRAIN.LR, momentum=config.TRAIN.MOMENTUM, weight_decay=config.TRAIN.WD, nesterov=config.TRAIN.NESTEROV, ) elif config.TRAIN.OPTIMIZER == 'adam': optimizer = torch.optim.Adam(params, lr=config.TRAIN.LR, amsgrad=config.TRAIN.AMSGRAD ) else: raise NotImplementedError return optimizer def get_group_gn(dim, dim_per_gp, num_groups): """get number of groups used by GroupNorm, based on number of channels.""" assert dim_per_gp == -1 or num_groups == -1, \ "GroupNorm: can only specify G or C/G." if dim_per_gp > 0: assert dim % dim_per_gp == 0, \ "dim: {}, dim_per_gp: {}".format(dim, dim_per_gp) group_gn = dim // dim_per_gp else: assert dim % num_groups == 0, \ "dim: {}, num_groups: {}".format(dim, num_groups) group_gn = num_groups return group_gn
[ "torch.distributed.is_initialized", "numpy.argmax", "torch.distributed.get_rank", "os.path.basename", "logging.StreamHandler", "numpy.zeros", "time.strftime", "pathlib.Path", "torch.optim.Adam", "torch.distributed.get_world_size", "numpy.bincount", "logging.getLogger", "torch.optim.SGD" ]
[((491, 518), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (508, 518), False, 'import logging\n'), ((1111, 1145), 'torch.distributed.get_world_size', 'torch.distributed.get_world_size', ([], {}), '()\n', (1143, 1145), False, 'import torch\n'), ((1239, 1267), 'torch.distributed.get_rank', 'torch.distributed.get_rank', ([], {}), '()\n', (1265, 1267), False, 'import torch\n'), ((2178, 2198), 'pathlib.Path', 'Path', (['cfg.OUTPUT_DIR'], {}), '(cfg.OUTPUT_DIR)\n', (2182, 2198), False, 'from pathlib import Path\n'), ((2649, 2680), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d-%H-%M"""'], {}), "('%Y-%m-%d-%H-%M')\n", (2662, 2680), False, 'import time\n'), ((2938, 2957), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (2955, 2957), False, 'import logging\n'), ((3006, 3029), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (3027, 3029), False, 'import logging\n'), ((3908, 3926), 'numpy.bincount', 'np.bincount', (['index'], {}), '(index)\n', (3919, 3926), True, 'import numpy as np\n'), ((3950, 3982), 'numpy.zeros', 'np.zeros', (['(num_class, num_class)'], {}), '((num_class, num_class))\n', (3958, 3982), True, 'import numpy as np\n'), ((1047, 1081), 'torch.distributed.is_initialized', 'torch.distributed.is_initialized', ([], {}), '()\n', (1079, 1081), False, 'import torch\n'), ((1175, 1209), 'torch.distributed.is_initialized', 'torch.distributed.is_initialized', ([], {}), '()\n', (1207, 1209), False, 'import torch\n'), ((3588, 3613), 'numpy.argmax', 'np.argmax', (['output'], {'axis': '(3)'}), '(output, axis=3)\n', (3597, 3613), True, 'import numpy as np\n'), ((5150, 5291), 'torch.optim.SGD', 'torch.optim.SGD', (['params'], {'lr': 'config.TRAIN.LR', 'momentum': 'config.TRAIN.MOMENTUM', 'weight_decay': 'config.TRAIN.WD', 'nesterov': 'config.TRAIN.NESTEROV'}), '(params, lr=config.TRAIN.LR, momentum=config.TRAIN.MOMENTUM,\n weight_decay=config.TRAIN.WD, nesterov=config.TRAIN.NESTEROV)\n', (5165, 5291), False, 'import torch\n'), ((3034, 3055), 'logging.getLogger', 'logging.getLogger', (['""""""'], {}), "('')\n", (3051, 3055), False, 'import logging\n'), ((5533, 5607), 'torch.optim.Adam', 'torch.optim.Adam', (['params'], {'lr': 'config.TRAIN.LR', 'amsgrad': 'config.TRAIN.AMSGRAD'}), '(params, lr=config.TRAIN.LR, amsgrad=config.TRAIN.AMSGRAD)\n', (5549, 5607), False, 'import torch\n'), ((2421, 2447), 'os.path.basename', 'os.path.basename', (['cfg_name'], {}), '(cfg_name)\n', (2437, 2447), False, 'import os\n'), ((3103, 3120), 'pathlib.Path', 'Path', (['cfg.LOG_DIR'], {}), '(cfg.LOG_DIR)\n', (3107, 3120), False, 'from pathlib import Path\n')]
import sys from startup_script_utils import load_yaml, pop_custom_fields, set_custom_fields_values from virtualization.models import VirtualMachine, VMInterface interfaces = load_yaml("/opt/netbox/initializers/virtualization_interfaces.yml") if interfaces is None: sys.exit() required_assocs = {"virtual_machine": (VirtualMachine, "name")} for params in interfaces: custom_field_data = pop_custom_fields(params) for assoc, details in required_assocs.items(): model, field = details query = {field: params.pop(assoc)} params[assoc] = model.objects.get(**query) interface, created = VMInterface.objects.get_or_create(**params) if created: set_custom_fields_values(interface, custom_field_data) print("🧷 Created interface", interface.name, interface.virtual_machine.name)
[ "virtualization.models.VMInterface.objects.get_or_create", "startup_script_utils.pop_custom_fields", "startup_script_utils.set_custom_fields_values", "startup_script_utils.load_yaml", "sys.exit" ]
[((176, 243), 'startup_script_utils.load_yaml', 'load_yaml', (['"""/opt/netbox/initializers/virtualization_interfaces.yml"""'], {}), "('/opt/netbox/initializers/virtualization_interfaces.yml')\n", (185, 243), False, 'from startup_script_utils import load_yaml, pop_custom_fields, set_custom_fields_values\n'), ((272, 282), 'sys.exit', 'sys.exit', ([], {}), '()\n', (280, 282), False, 'import sys\n'), ((399, 424), 'startup_script_utils.pop_custom_fields', 'pop_custom_fields', (['params'], {}), '(params)\n', (416, 424), False, 'from startup_script_utils import load_yaml, pop_custom_fields, set_custom_fields_values\n'), ((629, 672), 'virtualization.models.VMInterface.objects.get_or_create', 'VMInterface.objects.get_or_create', ([], {}), '(**params)\n', (662, 672), False, 'from virtualization.models import VirtualMachine, VMInterface\n'), ((698, 752), 'startup_script_utils.set_custom_fields_values', 'set_custom_fields_values', (['interface', 'custom_field_data'], {}), '(interface, custom_field_data)\n', (722, 752), False, 'from startup_script_utils import load_yaml, pop_custom_fields, set_custom_fields_values\n')]
from __future__ import ( annotations, ) from typing import ( Generator, NoReturn ) class StdReader: def __init__( self, ) -> NoReturn: import sys self.buf = sys.stdin.buffer self.lines = ( self.async_readlines() ) self.chunks: Generator def async_readlines( self, ) -> Generator: while True: gen = self.line_chunks() yield gen def line_chunks( self, ) -> Generator: ln = self.buf.readline() for chunk in ln.split(): yield chunk def __call__( self, ) -> bytes: try: chunk = next(self.chunks) except: self.chunks = next( self.lines, ) chunk = self() return chunk def str( self, ) -> str: b = self() return b.decode() def int( self, ) -> int: return int(self.str()) from abc import ( ABC, abstractmethod, ) class Solver(ABC): def __init__(self): self.reader = StdReader() def __call__( self, ): self.prepare() self.solve() @abstractmethod def prepare(self): ... @abstractmethod def solve(self): ... import numpy as np from typing import ( List, ) from dataclasses import ( dataclass, ) @dataclass class Node: id_: int = None @dataclass class Edge: id_: int = None from_ : int = ... to: int = ... weight: int = 1 capacity: int = 0 @dataclass class Graph: nodes: List[Node] edges: List[List[Edge]] def __init__( self, n: int, ): nodes = [ Node(i) for i in range(n) ] edges = [ [] for _ in range(n) ] self.nodes = nodes self.edges = edges def add_edge( self, e: Edge, ): i = e.from_ self.edges[i].append(e) def add_edges( self, edges: List[Edge], ): for e in edges: self.add_edge(e) @property def size(self): return len(self.nodes) from collections import ( deque, ) class GraphBFS: level: List[int] def __init__( self, graph: Graph, ): self.g = graph self.inf = float('inf') def search( self, src: int, ): self.init_level() self.level[src] = 0 self.set_queue() que = self.queue que.append(src) while que: x = que.popleft() self.explore(x) def explore( self, u: int, ): g = self.g lv = self.level que = self.queue for e in g.edges[u]: v = e.to if lv[v] is not None: continue lv[v] = lv[u] + 1 que.append(v) def set_queue(self): que = deque() self.queue = que def init_level(self): lv = [None] * self.g.size self.level = lv class Problem( Solver, ): def prepare(self): reader = self.reader r = reader.int() c = reader.int() sy = reader.int() - 1 sx = reader.int() - 1 gy = reader.int() - 1 gx = reader.int() - 1 maze = [None] * r for i in range(r): maze[i] = reader.str() maze = ''.join(maze) self.r = r self.c = c self.sy = sy self.sx = sx self.gy = gy self.gx = gx self.maze = maze def solve(self): c = self.c self.moves = (-c, -1, 1, c) self.make_graph() print(self.calc_dist()) def calc_dist(self) -> int: g = self.g c = self.c src = self.sy * c + self.sx dst = self.gy * c + self.gx bfs = GraphBFS(graph=g) bfs.search(src) dist = bfs.level[dst] return dist def make_graph( self, ): r, c = self.r, self.c n = r * c g = Graph(n) for i in range(n): edges = self.gen_edges(i) g.add_edges(edges) self.g = g def gen_edges( self, i: int, ): edges = [] maze = self.maze if maze[i] == '#': return edges for d in self.moves: j = i + d if maze[j] == '#': continue e = Edge( from_ = i, to = j, ) edges.append(e) return edges def main(): t = 1 # t = StdReader().int() for _ in range(t): Problem()() if __name__ == '__main__': main()
[ "collections.deque" ]
[((2602, 2609), 'collections.deque', 'deque', ([], {}), '()\n', (2607, 2609), False, 'from collections import deque\n')]
from django.db import models from django.contrib.auth.models import User from django.urls import reverse from django.utils.timezone import now from django.template.defaultfilters import slugify import uuid import os class Article(models.Model): STATUS_CHOICES = ( ('d', '草稿'), ('p', '发表'), ) title = models.CharField('标题', max_length=200, unique=True) slug = models.SlugField('slug', max_length=60) body = models.TextField('正文') pub_date = models.DateTimeField('发布时间', default=now, null=True) create_date = models.DateTimeField('创建时间', auto_now_add=True) mod_date = models.DateTimeField('修改时间', auto_now=True) status = models.CharField('文章状态', max_length=1, choices=STATUS_CHOICES) views = models.PositiveIntegerField('浏览量', default=0) author = models.ForeignKey(User, verbose_name="作者", on_delete=models.CASCADE) tags = models.ManyToManyField('Tag', verbose_name="标签集合", blank=True) def __str__(self): return self.title def get_absolute_url(self): return reverse('blog:article_detail', args=[str(self.id)]) def viewed(self): self.views += 1 self.save(update_fields=['views']) def save(self, force_insert=False, force_update=False, using=None, update_fields=None): if not self.slug or not self.id: self.slug = slugify(self.title) super(Article, self).save() # do something class Meta: ordering = ['-pub_date'] verbose_name = 'article' def user_directory_path(instance, filename): ext = filename.split('.')[-1] filename = '{}.{}'.format(uuid.uuid4().hex[:10], ext) # return the whole path to the file return os.path.join(instance.user.id, 'avatar', filename) class UserProfile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE, related_name='profile') avatar = models.ImageField(upload_to=user_directory_path, verbose_name='头像') class AuthorManager(models.Manager): def get_queryset(self): return super().get_queryset().filter(role='A') class EditorManager(models.Manager): def get_queryset(self): return super().get_queryset().filter(role='E') class Person(models.Model): first_name = models.CharField(max_length=50) last_name = models.CharField(max_length=50) role = models.CharField(max_length=1, choices=(('A', 'Author'), ('E', 'Editor'))) objects = models.Manager() authors = AuthorManager() editors = EditorManager()
[ "django.db.models.TextField", "django.db.models.OneToOneField", "django.db.models.ManyToManyField", "uuid.uuid4", "django.db.models.CharField", "django.db.models.ForeignKey", "django.db.models.PositiveIntegerField", "django.db.models.Manager", "django.db.models.SlugField", "django.db.models.ImageField", "django.template.defaultfilters.slugify", "django.db.models.DateTimeField", "os.path.join" ]
[((331, 382), 'django.db.models.CharField', 'models.CharField', (['"""标题"""'], {'max_length': '(200)', 'unique': '(True)'}), "('标题', max_length=200, unique=True)\n", (347, 382), False, 'from django.db import models\n'), ((394, 433), 'django.db.models.SlugField', 'models.SlugField', (['"""slug"""'], {'max_length': '(60)'}), "('slug', max_length=60)\n", (410, 433), False, 'from django.db import models\n'), ((445, 467), 'django.db.models.TextField', 'models.TextField', (['"""正文"""'], {}), "('正文')\n", (461, 467), False, 'from django.db import models\n'), ((483, 535), 'django.db.models.DateTimeField', 'models.DateTimeField', (['"""发布时间"""'], {'default': 'now', 'null': '(True)'}), "('发布时间', default=now, null=True)\n", (503, 535), False, 'from django.db import models\n'), ((554, 601), 'django.db.models.DateTimeField', 'models.DateTimeField', (['"""创建时间"""'], {'auto_now_add': '(True)'}), "('创建时间', auto_now_add=True)\n", (574, 601), False, 'from django.db import models\n'), ((617, 660), 'django.db.models.DateTimeField', 'models.DateTimeField', (['"""修改时间"""'], {'auto_now': '(True)'}), "('修改时间', auto_now=True)\n", (637, 660), False, 'from django.db import models\n'), ((674, 736), 'django.db.models.CharField', 'models.CharField', (['"""文章状态"""'], {'max_length': '(1)', 'choices': 'STATUS_CHOICES'}), "('文章状态', max_length=1, choices=STATUS_CHOICES)\n", (690, 736), False, 'from django.db import models\n'), ((749, 794), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', (['"""浏览量"""'], {'default': '(0)'}), "('浏览量', default=0)\n", (776, 794), False, 'from django.db import models\n'), ((808, 876), 'django.db.models.ForeignKey', 'models.ForeignKey', (['User'], {'verbose_name': '"""作者"""', 'on_delete': 'models.CASCADE'}), "(User, verbose_name='作者', on_delete=models.CASCADE)\n", (825, 876), False, 'from django.db import models\n'), ((888, 950), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (['"""Tag"""'], {'verbose_name': '"""标签集合"""', 'blank': '(True)'}), "('Tag', verbose_name='标签集合', blank=True)\n", (910, 950), False, 'from django.db import models\n'), ((1714, 1764), 'os.path.join', 'os.path.join', (['instance.user.id', '"""avatar"""', 'filename'], {}), "(instance.user.id, 'avatar', filename)\n", (1726, 1764), False, 'import os\n'), ((1811, 1887), 'django.db.models.OneToOneField', 'models.OneToOneField', (['User'], {'on_delete': 'models.CASCADE', 'related_name': '"""profile"""'}), "(User, on_delete=models.CASCADE, related_name='profile')\n", (1831, 1887), False, 'from django.db import models\n'), ((1901, 1968), 'django.db.models.ImageField', 'models.ImageField', ([], {'upload_to': 'user_directory_path', 'verbose_name': '"""头像"""'}), "(upload_to=user_directory_path, verbose_name='头像')\n", (1918, 1968), False, 'from django.db import models\n'), ((2260, 2291), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)'}), '(max_length=50)\n', (2276, 2291), False, 'from django.db import models\n'), ((2308, 2339), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)'}), '(max_length=50)\n', (2324, 2339), False, 'from django.db import models\n'), ((2351, 2425), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(1)', 'choices': "(('A', 'Author'), ('E', 'Editor'))"}), "(max_length=1, choices=(('A', 'Author'), ('E', 'Editor')))\n", (2367, 2425), False, 'from django.db import models\n'), ((2440, 2456), 'django.db.models.Manager', 'models.Manager', ([], {}), '()\n', (2454, 2456), False, 'from django.db import models\n'), ((1362, 1381), 'django.template.defaultfilters.slugify', 'slugify', (['self.title'], {}), '(self.title)\n', (1369, 1381), False, 'from django.template.defaultfilters import slugify\n'), ((1635, 1647), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1645, 1647), False, 'import uuid\n')]
# Copyright 2017 Quantum Information Science, University of Parma, Italy. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= __author__ = "<NAME>" __copyright__ = "Copyright 2017, Quantum Information Science, University of Parma, Italy" __license__ = "Apache" __version__ = "2.0" __email__ = "<EMAIL>" import os from time import sleep from devices import * import logging import myLogger import operator import sys sys.path.append( # solve the relative dependencies if you clone QISKit from the Git repo and use like a global. "../qiskit-sdk-py") from qiskit import QuantumProgram import Qconfig logger = logging.getLogger('utility') logger.addHandler(myLogger.MyHandler()) logger.setLevel(logging.CRITICAL) logger.propagate = False class Utility(object): def __init__(self, coupling_map): self.__coupling_map = dict() self.__inverse_coupling_map = dict() self.__plain_map = dict() self.__path = dict() self.__n_qubits = 0 self.__ranks = dict() self.__connected = dict() self.__most_connected = [] if coupling_map: self.__coupling_map = coupling_map.copy() logger.log(logging.DEBUG, 'init() - coupling_map:\n%s', str(self.__coupling_map)) self.invert_graph(coupling_map, self.__inverse_coupling_map) logger.log(logging.DEBUG, 'init() - inverse coupling map:\n%s', str(self.__inverse_coupling_map)) for i in coupling_map: self.__plain_map.update({i: self.__inverse_coupling_map[i] + coupling_map[i]}) logger.debug('init() - plain map:\n%s', str(self.__plain_map)) self.start_explore(self.__coupling_map, self.__ranks) self.__most_connected = self.find_max(self.__ranks) self.create_path(self.__most_connected[0], plain_map=self.__plain_map) else: logger.critical('init() - Null argument: coupling_map') exit(1) def close(self): self.__ranks.clear() self.__inverse_coupling_map.clear() self.__coupling_map.clear() self.__path.clear() self.__most_connected.clear() def explore(self, source, visiting, visited, ranks): for next in self.__coupling_map[visiting]: if next not in visited[source]: visited[source].append(next) if next not in ranks: ranks.update({next: 0}) ranks[next] = ranks[next] + 1 self.explore(source, next, visited, ranks) # TODO Try using some sort of centrality algorithm def start_explore(self, graph, ranks): visited = dict() for source in graph: visited.update({source: []}) self.explore(source, source, visited, ranks) # create an inverted coupling-map for further use @staticmethod def invert_graph(graph, inverse_graph=None): if inverse_graph is None: inverse_graph = {} for end in graph: for start in graph[end]: if start not in inverse_graph: inverse_graph.update({start: [end]}) else: inverse_graph[start].append(end) for node in graph: if node not in inverse_graph: inverse_graph.update({node: []}) # find the most connected qubit @staticmethod def find_max(ranks): logger.debug('ranks:\n%s', str(ranks)) most_connected = max(ranks.items(), key=operator.itemgetter(1))[0] found = [most_connected, ranks[most_connected]] logger.debug('max: %s', str(found)) return found # create a valid path that connect qubits used in the circuit def create_path(self, start, plain_map): self.__path.update({start: -1}) to_connect = [start] max = len(self.__coupling_map) logger.debug('create_path() - max:\n%s', str(max)) count = max - 1 changed = True visiting = 0 while count > 0: logger.debug('create_path() - visiting:\n%s - %s', str(visiting), str(to_connect[visiting])) # for visiting in to_connect: if count <= 0: break for node in plain_map[to_connect[visiting]]: if count <= 0: break if node not in self.__path: self.__path.update({node: to_connect[visiting]}) count -= 1 logger.debug('create_path() - path:\n%s', str(self.__path)) if node not in to_connect: to_connect.append(node) visiting += 1 logger.debug('create_path() - path:\n%s', str(self.__path)) def cx(self, circuit, control_qubit, target_qubit, control, target): if target in self.__coupling_map[control]: logger.log(logging.VERBOSE, 'cx() - cnot: (%s, %s)', str(control), str(target)) circuit.cx(control_qubit, target_qubit) elif control in self.__coupling_map[target]: logger.log(logging.VERBOSE, 'cx() - inverse-cnot: (%s, %s)', str(control), str(target)) circuit.h(control_qubit) circuit.h(target_qubit) circuit.cx(target_qubit, control_qubit) circuit.h(control_qubit) circuit.h(target_qubit) else: logger.critical('cx() - Cannot connect qubit %s to qubit %s', str(control), str(target)) exit(3) # place cnot gates based on the path created in create_path method def place_cx(self, circuit, quantum_r, oracle='11'): if not oracle == '00': logger.log(logging.VERBOSE, 'place_cx() - oracle != 00') stop = self.__n_qubits // 2 for qubit in self.__connected: if self.__connected[qubit] != -1: if oracle == '11': logger.log(logging.VERBOSE, 'place_cx() - oracle = 11') self.cx(circuit, quantum_r[qubit], quantum_r[self.__connected[qubit]], qubit, self.__connected[qubit]) elif oracle == '10': logger.log(logging.VERBOSE, 'place_cx() - oracle = 10') if stop > 0: self.cx(circuit, quantum_r[qubit], quantum_r[self.__connected[qubit]], qubit, self.__connected[qubit]) stop -= 1 # place Hadamard gates def place_h(self, circuit, start, quantum_r, initial=True, x=True): for qubit in self.__connected: if qubit != start: circuit.h(quantum_r[qubit]) else: if initial is True: if x is True: circuit.x(quantum_r[qubit]) else: circuit.h(quantum_r[qubit]) # place Pauli-X gates def place_x(self, circuit, quantum_r): sorted_c = sorted(self.__connected.items(), key=operator.itemgetter(0)) logger.log(logging.VERBOSE, 'place_x() - sorted_c:\n%s', str(sorted_c)) s_0 = self.__n_qubits // 2 i = 0 count = self.__n_qubits - 1 for qubit in sorted_c: if count <= 0: break if i >= s_0: circuit.x(quantum_r[qubit[0]]) else: circuit.iden(quantum_r[qubit[0]]) i += 1 i = 0 for qubit in sorted_c: if i >= s_0: circuit.iden(quantum_r[qubit[0]]) else: circuit.x(quantum_r[qubit[0]]) i += 1 # final measure def measure(self, circuit, quantum_r, classical_r): for qubit in self.__connected: circuit.measure(quantum_r[qubit], classical_r[qubit]) # create the circuit def create(self, circuit, quantum_r, classical_r, n_qubits, x=True, oracle='11'): self.__n_qubits = n_qubits max_qubits = len(self.__path) logger.debug('create() - N qubits: %s', str(self.__n_qubits)) logger.debug('create() - Max qubits: %s', str(max_qubits)) if max_qubits < self.__n_qubits: logger.critical('create() - Can use only up to %s qubits', str(max_qubits)) exit(2) count = self.__n_qubits for qubit in self.__path: if count <= 0: break self.__connected.update({qubit: self.__path[qubit]}) count -= 1 logger.debug('create() - connected:\n%s', str(self.__connected)) self.place_h(circuit, self.__most_connected[0], quantum_r, x=x) self.place_cx(circuit, quantum_r, oracle=oracle) self.place_h(circuit, self.__most_connected[0], quantum_r, initial=False) if x is True: self.place_x(circuit, quantum_r) self.measure(circuit, quantum_r, classical_r) def envariance(self, circuit, quantum_r, classical_r, n_qubits): self.create(circuit, quantum_r, classical_r, n_qubits) sorted_c = sorted(self.__connected.items(), key=operator.itemgetter(0)) connected = list(zip(*sorted_c))[0] logger.debug('envariance() - connected:\n%s', str(connected)) self.__n_qubits = 0 self.__connected.clear() return connected def parity(self, circuit, quantum_r, classical_r, n_qubits, oracle='11'): self.create(circuit, quantum_r, classical_r, n_qubits, x=False, oracle=oracle) connected = list(self.__connected.keys()) logger.debug('parity() - connected:\n%s', str(connected)) self.__n_qubits = 0 self.__connected.clear() return connected # launch envariance experiment on the given device def envariance_exec(execution, device, utility, n_qubits, num_shots=1024, directory='Data_Envariance/'): os.makedirs(os.path.dirname(directory), exist_ok=True) size = 0 results = dict() if device == qx2 or device == qx4: if n_qubits <= 5: size = 5 # device = 'ibmqx_qasm_simulator' else: logger.critical('launch_exp() - Too much qubits for %s !', device) exit(1) elif device == qx3 or device == qx5: if n_qubits <= 16: size = 16 # device = 'ibmqx_qasm_simulator' else: logger.critical('launch_exp() - Too much qubits for %s !', device) exit(2) elif device == online_sim: if n_qubits <= 5: size = 5 elif n_qubits <= 16: size = 16 else: logger.critical('launch_exp() - Unknown device.') exit(3) Q_program = QuantumProgram() try: Q_program.set_api(Qconfig.APItoken, Qconfig.config["url"]) # set the APIToken and API url except ConnectionError: sleep(900) logger.critical('API Exception occurred, retrying\nQubits %d - Execution %d - Shots %d', n_qubits, execution, num_shots) envariance_exec(execution, device, utility, n_qubits=n_qubits, num_shots=num_shots, directory=directory) return quantum_r = Q_program.create_quantum_register("qr", size) classical_r = Q_program.create_classical_register("cr", size) circuit = Q_program.create_circuit("envariance", [quantum_r], [classical_r]) connected = utility.envariance(circuit=circuit, quantum_r=quantum_r, classical_r=classical_r, n_qubits=n_qubits) QASM_source = Q_program.get_qasm("envariance") logger.debug('launch_exp() - QASM:\n%s', str(QASM_source)) while True: try: backend_status = Q_program.get_backend_status(device) if ('available' in backend_status and backend_status['available'] is False) \ or ('busy' in backend_status and backend_status['busy'] is True): logger.critical('%s currently offline, waiting...', device) while Q_program.get_backend_status(device)['available'] is False: sleep(1800) logger.critical('%s is back online, resuming execution', device) except ConnectionError: logger.critical('Error getting backend status, retrying...') sleep(900) continue except ValueError: logger.critical('Backend is not available, waiting...') sleep(900) continue break if Q_program.get_api().get_my_credits()['remaining'] < 3: logger.critical('Qubits %d - Execution %d - Shots %d ---- Waiting for credits to replenish...', n_qubits, execution, num_shots) while Q_program.get_api().get_my_credits()['remaining'] < 3: sleep(900) logger.critical('Credits replenished, resuming execution') try: result = Q_program.execute(["envariance"], backend=device, wait=2, timeout=1000, shots=num_shots, max_credits=5) except Exception: sleep(900) logger.critical('Exception occurred, retrying\nQubits %d - Execution %d - Shots %d', n_qubits, execution, num_shots) envariance_exec(execution, device, utility, n_qubits=n_qubits, num_shots=num_shots, directory=directory) return try: counts = result.get_counts("envariance") except Exception: logger.critical('Exception occurred, retrying\nQubits %d - Execution %d - Shots %d', n_qubits, execution, num_shots) envariance_exec(execution, device, utility, n_qubits=n_qubits, num_shots=num_shots, directory=directory) return logger.debug('launch_exp() - counts:\n%s', str(counts)) sorted_c = sorted(counts.items(), key=operator.itemgetter(1), reverse=True) filename = directory + device + '/' + 'execution' + str( execution) + '/' + device + '_' + str(num_shots) + '_' + str( n_qubits) + '_qubits_envariance.txt' os.makedirs(os.path.dirname(filename), exist_ok=True) out_f = open(filename, 'w') # store counts in txt file and xlsx file out_f.write('VALUES\t\tCOUNTS\n\n') stop = n_qubits // 2 for i in sorted_c: reverse = i[0][::-1] sorted_v = [] for n in range(n_qubits - stop): sorted_v.append(reverse[connected[n + stop]]) for n in range(stop): sorted_v.append(reverse[connected[n]]) value = ''.join(str(v) for v in sorted_v) results.update({value: i[1]}) out_f.write(value + '\t' + str(i[1]) + '\n') out_f.close() # launch parity experiment on the given device def parity_exec(execution, device, utility, n_qubits, oracle='11', num_shots=1024, directory='Data_Parity/'): os.makedirs(os.path.dirname(directory), exist_ok=True) size = 0 results = dict() if device == qx2 or device == qx4: if n_qubits <= 5: size = 5 # device = 'ibmqx_qasm_simulator' else: logger.critical('launch_exp() - Too much qubits for %s !', device) exit(1) elif device == qx3 or device == qx5: if n_qubits <= 16: size = 16 # device = 'ibmqx_qasm_simulator' else: logger.critical('launch_exp() - Too much qubits for %s !', device) exit(2) elif device == online_sim: if n_qubits <= 5: size = 5 elif n_qubits <= 16: size = 16 else: logger.critical('launch_exp() - Unknown device.') exit(3) Q_program = QuantumProgram() try: Q_program.set_api(Qconfig.APItoken, Qconfig.config["url"]) # set the APIToken and API url except ConnectionError: sleep(900) logger.critical('API Exception occurred, retrying\nQubits %d - Oracle %s - Execution %d - Queries %d', n_qubits, oracle, execution, num_shots) parity_exec(execution, device, utility, n_qubits=n_qubits, oracle=oracle, num_shots=num_shots, directory=directory) return quantum_r = Q_program.create_quantum_register("qr", size) classical_r = Q_program.create_classical_register("cr", size) circuit = Q_program.create_circuit('parity', [quantum_r], [classical_r]) connected = utility.parity(circuit=circuit, quantum_r=quantum_r, classical_r=classical_r, n_qubits=n_qubits, oracle=oracle) QASM_source = Q_program.get_qasm('parity') logger.debug('launch_exp() - QASM:\n%s', str(QASM_source)) while True: try: backend_status = Q_program.get_backend_status(device) if ('available' in backend_status and backend_status['available'] is False) \ or ('busy' in backend_status and backend_status['busy'] is True): logger.critical('%s currently offline, waiting...', device) while Q_program.get_backend_status(device)['available'] is False: sleep(1800) logger.critical('%s is back online, resuming execution', device) except ConnectionError: logger.critical('Error getting backend status, retrying...') sleep(900) continue except ValueError: logger.critical('Backend is not available, waiting...') sleep(900) continue break if Q_program.get_api().get_my_credits()['remaining'] < 3: logger.critical('Qubits %d - Oracle %s - Execution %d - Queries %d ---- Waiting for credits to replenish...', n_qubits, oracle, execution, num_shots) while Q_program.get_api().get_my_credits()['remaining'] < 3: sleep(900) logger.critical('Credits replenished, resuming execution') try: result = Q_program.execute(['parity'], backend=device, wait=2, timeout=1000, shots=num_shots, max_credits=5) except Exception: sleep(900) logger.critical('Exception occurred, retrying\nQubits %d - Oracle %s - Execution %d - Queries %d', n_qubits, oracle, execution, num_shots) parity_exec(execution, device, utility, n_qubits=n_qubits, oracle=oracle, num_shots=num_shots, directory=directory) return try: counts = result.get_counts('parity') except Exception: logger.critical('Exception occurred, retrying\nQubits %d - Oracle %s - Execution %d - Queries %d', n_qubits, oracle, execution, num_shots) parity_exec(execution, device, utility, n_qubits=n_qubits, oracle=oracle, num_shots=num_shots, directory=directory) return logger.debug('launch_exp() - counts:\n%s', str(counts)) sorted_c = sorted(counts.items(), key=operator.itemgetter(1), reverse=True) filename = directory + device + '/' + oracle + '/' + 'execution' + str( execution) + '/' + device + '_' + str( num_shots) + 'queries_' + oracle + '_' + str( n_qubits) + '_qubits_parity.txt' os.makedirs(os.path.dirname(filename), exist_ok=True) out_f = open(filename, 'w') # store counts in txt file and xlsx file out_f.write('VALUES\t\tCOUNTS\n\n') logger.debug('launch_exp() - oredred_q:\n%s', str(connected)) stop = n_qubits // 2 for i in sorted_c: reverse = i[0][::-1] logger.log(logging.VERBOSE, 'launch_exp() - reverse in for 1st loop: %s', str(reverse)) sorted_v = [reverse[connected[0]]] logger.log(logging.VERBOSE, 'launch_exp() - connected[0] in 1st for loop: %s', str(connected[0])) logger.log(logging.VERBOSE, 'launch_exp() - sorted_v in 1st for loop: %s', str(sorted_v)) for n in range(stop): sorted_v.append(reverse[connected[n + 1]]) logger.log(logging.VERBOSE, 'launch_exp() - connected[n+1], sorted_v[n+1] in 2nd for loop: %s,%s', str(connected[n + 1]), str(sorted_v[n + 1])) if (n + stop + 1) != n_qubits: sorted_v.append(reverse[connected[n + stop + 1]]) logger.log(logging.VERBOSE, 'launch_exp() - connected[n+stop+1], sorted_v[n+2] in 2nd for loop: %s%s', str(connected[n + stop + 1]), str(sorted_v[n + 2])) value = ''.join(str(v) for v in sorted_v) results.update({value: i[1]}) out_f.write(value + '\t' + str(i[1]) + '\n') out_f.close()
[ "sys.path.append", "os.path.dirname", "time.sleep", "myLogger.MyHandler", "qiskit.QuantumProgram", "operator.itemgetter", "logging.getLogger" ]
[((1015, 1050), 'sys.path.append', 'sys.path.append', (['"""../qiskit-sdk-py"""'], {}), "('../qiskit-sdk-py')\n", (1030, 1050), False, 'import sys\n'), ((1212, 1240), 'logging.getLogger', 'logging.getLogger', (['"""utility"""'], {}), "('utility')\n", (1229, 1240), False, 'import logging\n'), ((1259, 1279), 'myLogger.MyHandler', 'myLogger.MyHandler', ([], {}), '()\n', (1277, 1279), False, 'import myLogger\n'), ((11314, 11330), 'qiskit.QuantumProgram', 'QuantumProgram', ([], {}), '()\n', (11328, 11330), False, 'from qiskit import QuantumProgram\n'), ((16162, 16178), 'qiskit.QuantumProgram', 'QuantumProgram', ([], {}), '()\n', (16176, 16178), False, 'from qiskit import QuantumProgram\n'), ((10510, 10536), 'os.path.dirname', 'os.path.dirname', (['directory'], {}), '(directory)\n', (10525, 10536), False, 'import os\n'), ((14583, 14608), 'os.path.dirname', 'os.path.dirname', (['filename'], {}), '(filename)\n', (14598, 14608), False, 'import os\n'), ((15358, 15384), 'os.path.dirname', 'os.path.dirname', (['directory'], {}), '(directory)\n', (15373, 15384), False, 'import os\n'), ((19644, 19669), 'os.path.dirname', 'os.path.dirname', (['filename'], {}), '(filename)\n', (19659, 19669), False, 'import os\n'), ((11476, 11486), 'time.sleep', 'sleep', (['(900)'], {}), '(900)\n', (11481, 11486), False, 'from time import sleep\n'), ((13363, 13373), 'time.sleep', 'sleep', (['(900)'], {}), '(900)\n', (13368, 13373), False, 'from time import sleep\n'), ((13602, 13612), 'time.sleep', 'sleep', (['(900)'], {}), '(900)\n', (13607, 13612), False, 'from time import sleep\n'), ((14352, 14374), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (14371, 14374), False, 'import operator\n'), ((16324, 16334), 'time.sleep', 'sleep', (['(900)'], {}), '(900)\n', (16329, 16334), False, 'from time import sleep\n'), ((18332, 18342), 'time.sleep', 'sleep', (['(900)'], {}), '(900)\n', (18337, 18342), False, 'from time import sleep\n'), ((18567, 18577), 'time.sleep', 'sleep', (['(900)'], {}), '(900)\n', (18572, 18577), False, 'from time import sleep\n'), ((19371, 19393), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (19390, 19393), False, 'import operator\n'), ((7659, 7681), 'operator.itemgetter', 'operator.itemgetter', (['(0)'], {}), '(0)\n', (7678, 7681), False, 'import operator\n'), ((9744, 9766), 'operator.itemgetter', 'operator.itemgetter', (['(0)'], {}), '(0)\n', (9763, 9766), False, 'import operator\n'), ((12874, 12884), 'time.sleep', 'sleep', (['(900)'], {}), '(900)\n', (12879, 12884), False, 'from time import sleep\n'), ((13013, 13023), 'time.sleep', 'sleep', (['(900)'], {}), '(900)\n', (13018, 13023), False, 'from time import sleep\n'), ((17805, 17815), 'time.sleep', 'sleep', (['(900)'], {}), '(900)\n', (17810, 17815), False, 'from time import sleep\n'), ((17944, 17954), 'time.sleep', 'sleep', (['(900)'], {}), '(900)\n', (17949, 17954), False, 'from time import sleep\n'), ((4108, 4130), 'operator.itemgetter', 'operator.itemgetter', (['(1)'], {}), '(1)\n', (4127, 4130), False, 'import operator\n'), ((12664, 12675), 'time.sleep', 'sleep', (['(1800)'], {}), '(1800)\n', (12669, 12675), False, 'from time import sleep\n'), ((17595, 17606), 'time.sleep', 'sleep', (['(1800)'], {}), '(1800)\n', (17600, 17606), False, 'from time import sleep\n')]
import os import time import run_services from Basic_linux_commands.chown_chmod import chown from bigdata_logs.logger import getLoggingInstance log = getLoggingInstance() username = os.getenv("user") groupname = username def copy(src, file_list, dest, user_pass, *args): log.info("\nCopying\n") try: file_not_exists = [] if src.endswith('/'): src = src[:-1] if dest.endswith('/'): dest = dest[:-1] if not os.path.exists(dest): os.makedirs(dest) for file in file_list: file_to_copy = src + '/%s' % file if not os.path.exists(file_to_copy): file_not_exists.append(file_to_copy) else: if os.path.isdir(file_to_copy): unique_id = str(time.time()).split('.')[0] copied_file = dest + '/%s_%s' % (file, unique_id) run_services.run_basic_services("echo %s | sudo -S cp -r %s %s" % (user_pass, file_to_copy, copied_file)) chown(copied_file, username, groupname, user_pass) else: unique_id = str(time.time()).split('.')[0] copied_file = dest + '/%s_%s' % (file, unique_id) run_services.run_basic_services("echo %s | sudo -S cp %s %s" % (user_pass, file_to_copy, copied_file)) chown(copied_file, username, groupname, user_pass) if file_not_exists: return '{"success": 0, "msg": ["%s", file does not exists!!!]}' % file_not_exists return '{"success": 1}' except Exception as e: log.error("Exception in copy_move_delete ==> copy()") log.error(e) return '{"success": 0, "msg": ["%s"]}' % e def move_rename(src, file_list, dest, user_pass): try: file_not_exists = [] existing_file_list = [] if src.endswith('/'): src = src[:-1] if dest.endswith('/'): dest = dest[:-1] for file in file_list: file_to_move = src+ '/%s' % file dest_path = dest + '/%s' % file if os.path.exists(dest_path): existing_file_list.append(dest_path) continue if not os.path.exists(file_to_move): file_not_exists.append(file_to_move) else: run_services.run_basic_services("echo %s | sudo -S mv %s %s" % (user_pass, file_to_move, dest)) if file_not_exists: return '{"success": 0, "msg": ["%s", file does not exists!!!]}' % file_not_exists elif existing_file_list: return '{"success": 0, "msg": ["%s", file already exists!!!]}' % existing_file_list return '{"success": 1}' except Exception as e: log.error("Exception in copy_move_delete ==> move()") log.error(e) return '{"success": 0, "msg": ["%s"]}' % e def delete(src, files, user_pass): try: file_not_exists = [] if src.endswith('/'): src = src[:-1] for file in files: file_path = src + '/%s' % file if not os.path.exists(file_path): file_not_exists.append(file_path) run_services.run_basic_services("echo %s | sudo -S rm -rf %s" % (user_pass, file_path)) if file_not_exists: return '{"success": 0, "msg": ["%s", file does not exists!!!]}' % file_not_exists return '{"success": 1}' except Exception as e: log.error("Exception in copy_move_delete ==> move()") log.error(e) return '{"success": 0, "msg": ["%s"]}' % e
[ "os.makedirs", "os.path.isdir", "os.path.exists", "run_services.run_basic_services", "time.time", "bigdata_logs.logger.getLoggingInstance", "os.getenv", "Basic_linux_commands.chown_chmod.chown" ]
[((152, 172), 'bigdata_logs.logger.getLoggingInstance', 'getLoggingInstance', ([], {}), '()\n', (170, 172), False, 'from bigdata_logs.logger import getLoggingInstance\n'), ((185, 202), 'os.getenv', 'os.getenv', (['"""user"""'], {}), "('user')\n", (194, 202), False, 'import os\n'), ((476, 496), 'os.path.exists', 'os.path.exists', (['dest'], {}), '(dest)\n', (490, 496), False, 'import os\n'), ((510, 527), 'os.makedirs', 'os.makedirs', (['dest'], {}), '(dest)\n', (521, 527), False, 'import os\n'), ((2145, 2170), 'os.path.exists', 'os.path.exists', (['dest_path'], {}), '(dest_path)\n', (2159, 2170), False, 'import os\n'), ((3239, 3330), 'run_services.run_basic_services', 'run_services.run_basic_services', (["('echo %s | sudo -S rm -rf %s' % (user_pass, file_path))"], {}), "('echo %s | sudo -S rm -rf %s' % (user_pass,\n file_path))\n", (3270, 3330), False, 'import run_services\n'), ((626, 654), 'os.path.exists', 'os.path.exists', (['file_to_copy'], {}), '(file_to_copy)\n', (640, 654), False, 'import os\n'), ((746, 773), 'os.path.isdir', 'os.path.isdir', (['file_to_copy'], {}), '(file_to_copy)\n', (759, 773), False, 'import os\n'), ((2269, 2297), 'os.path.exists', 'os.path.exists', (['file_to_move'], {}), '(file_to_move)\n', (2283, 2297), False, 'import os\n'), ((2386, 2485), 'run_services.run_basic_services', 'run_services.run_basic_services', (["('echo %s | sudo -S mv %s %s' % (user_pass, file_to_move, dest))"], {}), "('echo %s | sudo -S mv %s %s' % (user_pass,\n file_to_move, dest))\n", (2417, 2485), False, 'import run_services\n'), ((3149, 3174), 'os.path.exists', 'os.path.exists', (['file_path'], {}), '(file_path)\n', (3163, 3174), False, 'import os\n'), ((928, 1038), 'run_services.run_basic_services', 'run_services.run_basic_services', (["('echo %s | sudo -S cp -r %s %s' % (user_pass, file_to_copy, copied_file))"], {}), "('echo %s | sudo -S cp -r %s %s' % (\n user_pass, file_to_copy, copied_file))\n", (959, 1038), False, 'import run_services\n'), ((1054, 1104), 'Basic_linux_commands.chown_chmod.chown', 'chown', (['copied_file', 'username', 'groupname', 'user_pass'], {}), '(copied_file, username, groupname, user_pass)\n', (1059, 1104), False, 'from Basic_linux_commands.chown_chmod import chown\n'), ((1280, 1386), 'run_services.run_basic_services', 'run_services.run_basic_services', (["('echo %s | sudo -S cp %s %s' % (user_pass, file_to_copy, copied_file))"], {}), "('echo %s | sudo -S cp %s %s' % (user_pass,\n file_to_copy, copied_file))\n", (1311, 1386), False, 'import run_services\n'), ((1403, 1453), 'Basic_linux_commands.chown_chmod.chown', 'chown', (['copied_file', 'username', 'groupname', 'user_pass'], {}), '(copied_file, username, groupname, user_pass)\n', (1408, 1453), False, 'from Basic_linux_commands.chown_chmod import chown\n'), ((811, 822), 'time.time', 'time.time', ([], {}), '()\n', (820, 822), False, 'import time\n'), ((1163, 1174), 'time.time', 'time.time', ([], {}), '()\n', (1172, 1174), False, 'import time\n')]
import os import pytest from dj_database_url import parse from django.conf import settings from testing.postgresql import Postgresql postgres = os.environ.get("POSTGRESQL_PATH") initdb = os.environ.get("INITDB_PATH") _POSTGRESQL = Postgresql(postgres=postgres, initdb=initdb) @pytest.hookimpl(tryfirst=True) def pytest_load_initial_conftests(early_config, parser, args): os.environ["DJANGO_SETTINGS_MODULE"] = early_config.getini("DJANGO_SETTINGS_MODULE") settings.DATABASES["default"] = parse(_POSTGRESQL.url()) settings.DATABASES["dashboard"] = parse(_POSTGRESQL.url()) def pytest_unconfigure(config): _POSTGRESQL.stop()
[ "os.environ.get", "pytest.hookimpl", "testing.postgresql.Postgresql" ]
[((146, 179), 'os.environ.get', 'os.environ.get', (['"""POSTGRESQL_PATH"""'], {}), "('POSTGRESQL_PATH')\n", (160, 179), False, 'import os\n'), ((189, 218), 'os.environ.get', 'os.environ.get', (['"""INITDB_PATH"""'], {}), "('INITDB_PATH')\n", (203, 218), False, 'import os\n'), ((233, 277), 'testing.postgresql.Postgresql', 'Postgresql', ([], {'postgres': 'postgres', 'initdb': 'initdb'}), '(postgres=postgres, initdb=initdb)\n', (243, 277), False, 'from testing.postgresql import Postgresql\n'), ((281, 311), 'pytest.hookimpl', 'pytest.hookimpl', ([], {'tryfirst': '(True)'}), '(tryfirst=True)\n', (296, 311), False, 'import pytest\n')]
""" Script that scrapes Jaimini's box website to retrieve when was the last One Piece chapter released to then ask you if you want to read the chapter in your browser or download it """ from bs4 import BeautifulSoup import requests import webbrowser from os import getcwd url = 'https://jaiminisbox.com/reader/series/one-piece-2/' #website with chapters r = requests.get(url).text soup = BeautifulSoup(r, 'lxml') #the first <div> tag with class 'element' is the latest chapter #there are 3 anchor tags <a> with 'href' attributes within the div #links respectively redirect to:download, reading and the uploader's profile chapter = soup.find('div', class_='element') chapter_title = chapter.find('div', class_='title').text chapter_date = chapter.find('div', class_='meta_r').text print('the latest one piece chapter is...\n') print(chapter_title) print(chapter_date+'(yyyy/mm/dd)\n') links = chapter.find_all('a') #list of len 3 with links inside <a> tags #convert links' content into strings to use split() to get the urls as strings for i in range(len(links)): links[i] = str(links[i]) links[i] = links[i].split('"') #the 3 items in links are now lists where the second element for each are urls #print(links) #visually: [[htmlstuff, url, htmlstuff], [idem], [idem]] #This format has been consistently used, which allows to hardcode this #without the use of regular expressions for 'http*' action = input('would you like to download or read the chapter [d/r]?') if action == 'd': d_url = links[0][1] print('Downloading...') r2 = requests.get(d_url) chapter_zip = open('%s' %chapter_title, 'wb') chapter_zip.write(r2.content) chapter_zip.close() print('Zip file in:', getcwd()) elif action == 'r': r_url = links[1][1] webbrowser.open(r_url) else: print('that was neither d nor r, quitting...')
[ "bs4.BeautifulSoup", "webbrowser.open", "os.getcwd", "requests.get" ]
[((390, 414), 'bs4.BeautifulSoup', 'BeautifulSoup', (['r', '"""lxml"""'], {}), "(r, 'lxml')\n", (403, 414), False, 'from bs4 import BeautifulSoup\n'), ((360, 377), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (372, 377), False, 'import requests\n'), ((1566, 1585), 'requests.get', 'requests.get', (['d_url'], {}), '(d_url)\n', (1578, 1585), False, 'import requests\n'), ((1720, 1728), 'os.getcwd', 'getcwd', ([], {}), '()\n', (1726, 1728), False, 'from os import getcwd\n'), ((1778, 1800), 'webbrowser.open', 'webbrowser.open', (['r_url'], {}), '(r_url)\n', (1793, 1800), False, 'import webbrowser\n')]
import json import xmltodict with open('complexes.json', 'r', encoding='UTF-8') as f: jsonString = f.read() print('JSON input (json_to_xml.json):') print(jsonString) xmlString = xmltodict.unparse(json.loads(jsonString), pretty=True) print('\nXML output(json_to_xml.xml):') print(xmlString) with open('json_to_xml.xml', 'w') as f: f.write(xmlString)
[ "json.loads" ]
[((207, 229), 'json.loads', 'json.loads', (['jsonString'], {}), '(jsonString)\n', (217, 229), False, 'import json\n')]
import numpy as np from openmdao.api import CaseReader from optigurator.utils import recording_filename def get_case_reader(data_dir, problem_constants): return CaseReader(recording_filename(data_dir, problem_constants.id)) def generate_valid_points(problem_constants, crm): for (i, case_id) in enumerate(crm.list_cases()): model_case = crm.get_case(case_id) if ( model_case.outputs["usability.min_max_step_height"][1] <= problem_constants.step_height.upper and model_case.outputs["usability.min_max_step_depth"][0] >= problem_constants.step_depth.lower and model_case.outputs["usability.min_free_height"][0] > problem_constants.free_height_lower ): yield [ model_case.outputs["price_availability.total_price"][0], model_case.outputs["usability.usability_penalty"][0], model_case.outputs["price_availability.total_delivery_time"][0], i, ] def calculate(inputPoints, dominates): paretoPoints = set() candidateRowNr = 0 dominatedPoints = set() normalizedRowNr = 0 # skapar en kopia på matrisen som normaliseras senare normalizedPoints = np.array(inputPoints.copy()) sum1 = 0 sum2 = 0 sum3 = 0 sum4 = 0 for i in range(0, len(normalizedPoints)): # summerar värden kolonnvis till nämnare för normalisering sum1 = sum1 + normalizedPoints[i, 0] ** 2 sum2 = sum2 + normalizedPoints[i, 1] ** 2 sum3 = sum3 + normalizedPoints[i, 2] ** 2 # definerar en vektor med normaliseringsvärden myarray_normalize = [sum1 ** 0.5, sum2 ** 0.5, sum3 ** 0.5, 1] # Normaliserar matrisen normalizedPoints = np.array(inputPoints) / np.array(myarray_normalize) while True: candidateRow = inputPoints[candidateRowNr] normalized = normalizedPoints[normalizedRowNr] normalizedPoints = np.delete(normalizedPoints, normalizedRowNr, 0) inputPoints.remove(candidateRow) rowNr = 0 nonDominated = True while len(normalizedPoints) != 0 and rowNr < len(normalizedPoints): row = normalizedPoints[rowNr] rowIP = inputPoints[rowNr] if dominates( row, normalized ): # Går in om candidateRow är bättre än utmanaren. normalizedPoints = np.delete(normalizedPoints, rowNr, 0) inputPoints.remove(rowIP) dominatedPoints.add(tuple(rowIP)) elif dominates( normalized, row ): # Går in om utmanare är större än kandidaten. nonDominated = False dominatedPoints.add(tuple(candidateRow)) rowNr += 1 else: rowNr += 1 if nonDominated: # Lägg till nondominated punkter till pareto ID = int(normalized[3]) paretoPoints.add(tuple(candidateRow)) if len(normalizedPoints) == 0: # SLutar när man gått igenom alla punkter. break dp = np.array(list(dominatedPoints)) pp = np.array(list(paretoPoints)) return paretoPoints, dominatedPoints, dp, pp def dominates(row, normalized): # Beräknar om utmanare är bättre än candidate. return sum([row[x] >= normalized[x] for x in range(len(row) - 1)]) == len(row) - 1 def WeightPPpoints(pp, my_weights): Pareto_points = pp np.size(Pareto_points) Nrofrows_pareto = np.size(Pareto_points, 0) # skapar en vektor med ID ID_vektor = np.delete(Pareto_points, [0, 1, 2], 1).tolist() # skapar matris med outputvärden utan ID kolonn A = np.delete(Pareto_points, 3, 1) np.size(A) # definerar storleken på matrisen som kommer som paretopoints output Nrofcolumns = np.size(A, 1) Nrofrows = np.size(A, 0) sizeofA = (Nrofrows, Nrofcolumns) # Skapar matris som sedan fylls med bästa lösningarnas ID IDpoints = [] # skapar en kopia på matrisen som normaliseras senare B = A.copy() sum1 = 0 sum2 = 0 sum3 = 0 for i in range(0, Nrofrows): # summerar värden kolonnvis till nämnare för normalisering sum1 = sum1 + A[i, 0] ** 2 sum2 = sum2 + A[i, 1] ** 2 sum3 = sum3 + A[i, 2] ** 2 # definerar en vektor med normaliseringsvärden myarray_normalize = [sum1 ** 0.5, sum2 ** 0.5, sum3 ** 0.5] # Normaliserar matrisen B = A / myarray_normalize # kopierar matrisen och multiplicerar kolonnvis med viktningar C = B.copy() # Loop för 5 olika viktningar -> 5 optimala pareto punkter som output for j in range(0, len(my_weights)): for i in range(0, Nrofrows): C[i, 0] = B[i, 0] * my_weights[j, 0] C[i, 1] = B[i, 1] * my_weights[j, 1] C[i, 2] = B[i, 2] * my_weights[j, 2] # Definera ideala värden A_positive samt icke ideala värden A_negative A_positive = [C[:, 0].min(), C[:, 1].min(), C[:, 2].min()] A_negative = [C[:, 0].max(), C[:, 1].max(), C[:, 2].max()] S_positive = np.zeros((Nrofrows, 1)) S_negative = np.zeros((Nrofrows, 1)) C_value = np.zeros((Nrofrows, 1)) # Vektor_ID_optimala=np.zeros((1,5)) for i in range(0, Nrofrows): S_positive[i] = ( (C[i, 0] - A_positive[0]) ** 2 + (C[i, 1] - A_positive[1]) ** 2 + (C[i, 2] - A_positive[2]) ** 2 ) ** 0.5 S_negative[i] = ( (C[i, 0] - A_negative[0]) ** 2 + (C[i, 1] - A_negative[1]) ** 2 + (C[i, 2] - A_negative[2]) ** 2 ) ** 0.5 C_value[i] = S_negative[i] / (S_negative[i] + S_positive[i]) Best_value = C_value.max() # ta fram vilken rad i C_vektorn som har det största värdet Row_best_option = np.argmax(C_value) # ta fram vilket ingående ID lösningen har Vektor_ID_optimala = np.array(ID_vektor[Row_best_option]).tolist() IDpoints.append(int(max(Vektor_ID_optimala))) return IDpoints def generate_pareto_cases(data_dir, problem_constants): crm = get_case_reader(data_dir, problem_constants) input_points = list(generate_valid_points(problem_constants, crm)) pareto_points, dominated_points, dp, pp = calculate(input_points, dominates) my_weights = np.matrix( [[1, 0, 0], [0, 1, 0], [0, 0, 1]] ) # Weights used to pick points from the ParetoFront pareto_case_ids = WeightPPpoints(pp, my_weights) for i in pareto_case_ids: yield crm.get_case(i)
[ "numpy.matrix", "numpy.size", "numpy.argmax", "numpy.zeros", "numpy.array", "optigurator.utils.recording_filename", "numpy.delete" ]
[((3474, 3496), 'numpy.size', 'np.size', (['Pareto_points'], {}), '(Pareto_points)\n', (3481, 3496), True, 'import numpy as np\n'), ((3519, 3544), 'numpy.size', 'np.size', (['Pareto_points', '(0)'], {}), '(Pareto_points, 0)\n', (3526, 3544), True, 'import numpy as np\n'), ((3701, 3731), 'numpy.delete', 'np.delete', (['Pareto_points', '(3)', '(1)'], {}), '(Pareto_points, 3, 1)\n', (3710, 3731), True, 'import numpy as np\n'), ((3737, 3747), 'numpy.size', 'np.size', (['A'], {}), '(A)\n', (3744, 3747), True, 'import numpy as np\n'), ((3839, 3852), 'numpy.size', 'np.size', (['A', '(1)'], {}), '(A, 1)\n', (3846, 3852), True, 'import numpy as np\n'), ((3868, 3881), 'numpy.size', 'np.size', (['A', '(0)'], {}), '(A, 0)\n', (3875, 3881), True, 'import numpy as np\n'), ((6413, 6457), 'numpy.matrix', 'np.matrix', (['[[1, 0, 0], [0, 1, 0], [0, 0, 1]]'], {}), '([[1, 0, 0], [0, 1, 0], [0, 0, 1]])\n', (6422, 6457), True, 'import numpy as np\n'), ((179, 229), 'optigurator.utils.recording_filename', 'recording_filename', (['data_dir', 'problem_constants.id'], {}), '(data_dir, problem_constants.id)\n', (197, 229), False, 'from optigurator.utils import recording_filename\n'), ((1777, 1798), 'numpy.array', 'np.array', (['inputPoints'], {}), '(inputPoints)\n', (1785, 1798), True, 'import numpy as np\n'), ((1801, 1828), 'numpy.array', 'np.array', (['myarray_normalize'], {}), '(myarray_normalize)\n', (1809, 1828), True, 'import numpy as np\n'), ((1979, 2026), 'numpy.delete', 'np.delete', (['normalizedPoints', 'normalizedRowNr', '(0)'], {}), '(normalizedPoints, normalizedRowNr, 0)\n', (1988, 2026), True, 'import numpy as np\n'), ((5119, 5142), 'numpy.zeros', 'np.zeros', (['(Nrofrows, 1)'], {}), '((Nrofrows, 1))\n', (5127, 5142), True, 'import numpy as np\n'), ((5164, 5187), 'numpy.zeros', 'np.zeros', (['(Nrofrows, 1)'], {}), '((Nrofrows, 1))\n', (5172, 5187), True, 'import numpy as np\n'), ((5206, 5229), 'numpy.zeros', 'np.zeros', (['(Nrofrows, 1)'], {}), '((Nrofrows, 1))\n', (5214, 5229), True, 'import numpy as np\n'), ((5910, 5928), 'numpy.argmax', 'np.argmax', (['C_value'], {}), '(C_value)\n', (5919, 5928), True, 'import numpy as np\n'), ((3592, 3630), 'numpy.delete', 'np.delete', (['Pareto_points', '[0, 1, 2]', '(1)'], {}), '(Pareto_points, [0, 1, 2], 1)\n', (3601, 3630), True, 'import numpy as np\n'), ((2430, 2467), 'numpy.delete', 'np.delete', (['normalizedPoints', 'rowNr', '(0)'], {}), '(normalizedPoints, rowNr, 0)\n', (2439, 2467), True, 'import numpy as np\n'), ((6010, 6046), 'numpy.array', 'np.array', (['ID_vektor[Row_best_option]'], {}), '(ID_vektor[Row_best_option])\n', (6018, 6046), True, 'import numpy as np\n')]
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # ############################################################################### # Module: alter_statement # Purpose: Represents SQL alter statements # # Notes: # ############################################################################### import data_pipeline.sql.utils as sql_utils import data_pipeline.constants.const as const from .ddl_statement import DdlStatement class AlterStatement(DdlStatement): """Contains data necessary to produce a valid SQL ALTER statement""" def __init__(self, table_name): super(AlterStatement, self).__init__(table_name) self.statement_type = const.ALTER def add_entry(self, **kwargs): if const.ALTER_ENTRY in kwargs: self.entries.append(kwargs[const.ALTER_ENTRY]) else: alter_entry = { const.OPERATION: kwargs[const.OPERATION], const.FIELD_NAME: kwargs[const.FIELD_NAME], const.DATA_TYPE: kwargs[const.DATA_TYPE], const.PARAMS: kwargs[const.PARAMS], const.CONSTRAINTS: kwargs[const.CONSTRAINTS] } self.add_entry(alter_entry=alter_entry) def tosql(self, applier): return applier.build_alter_sql(self) def __str__(self): return sql_utils.build_alter_sql(self)
[ "data_pipeline.sql.utils.build_alter_sql" ]
[((2063, 2094), 'data_pipeline.sql.utils.build_alter_sql', 'sql_utils.build_alter_sql', (['self'], {}), '(self)\n', (2088, 2094), True, 'import data_pipeline.sql.utils as sql_utils\n')]
""" Read in the data from csv files """ import pandas as pd import os import glob from save_data import save_object, load_object def load_csv(filename): # load data from pickle file if it exists obj = load_object(filename) if obj != None: return obj # otherwise load from csv else: data = pd.read_csv(filename, encoding="latin_1") save_object(filename, data) return data def load_data(): pickle_fn = "data/loaded_data" data = load_object(pickle_fn) # load data from pickle file if it exists if data != None: return data # otherwise load from csv else: data = {} # load all csv files in data directory for f in glob.glob(os.path.join("data", "*.csv")): # key based on their filename f_key = os.path.basename(f).split('.')[0] print("Loading:", f_key) data[f_key] = load_csv(f) save_object(pickle_fn, data) return data def test_load_csv(): print("Test loading csv") data = load_csv("data/NCAATourneySeeds.csv") print(data) def main(): data = load_data() print("Available DataSet Keys: ") for key in data.keys(): print("\t"+key) if __name__ == "__main__": main()
[ "os.path.join", "os.path.basename", "pandas.read_csv", "save_data.load_object", "save_data.save_object" ]
[((212, 233), 'save_data.load_object', 'load_object', (['filename'], {}), '(filename)\n', (223, 233), False, 'from save_data import save_object, load_object\n'), ((493, 515), 'save_data.load_object', 'load_object', (['pickle_fn'], {}), '(pickle_fn)\n', (504, 515), False, 'from save_data import save_object, load_object\n'), ((329, 370), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'encoding': '"""latin_1"""'}), "(filename, encoding='latin_1')\n", (340, 370), True, 'import pandas as pd\n'), ((379, 406), 'save_data.save_object', 'save_object', (['filename', 'data'], {}), '(filename, data)\n', (390, 406), False, 'from save_data import save_object, load_object\n'), ((950, 978), 'save_data.save_object', 'save_object', (['pickle_fn', 'data'], {}), '(pickle_fn, data)\n', (961, 978), False, 'from save_data import save_object, load_object\n'), ((737, 766), 'os.path.join', 'os.path.join', (['"""data"""', '"""*.csv"""'], {}), "('data', '*.csv')\n", (749, 766), False, 'import os\n'), ((831, 850), 'os.path.basename', 'os.path.basename', (['f'], {}), '(f)\n', (847, 850), False, 'import os\n')]
from urllib.parse import ParseResult from os.path import realpath, dirname, join as _path_join import requests from json import load as json_load script_loc = realpath(__file__) script_dir = dirname(script_loc) del dirname del realpath mime_types: dict with open(_path_join(script_dir, "mimes.json")) as f: mime_types = json_load(f) UA_m = "Mozilla/5.0 (Linux; Android 8.1.0; Pixel Build/OPM2.171019.029; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/68.0.3325.109 Mobile Safari/537.36" UA_d = "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3526.73 Safari/537.36" basic_headers = { "Accept-Encoding": "gzip, deflate", "User-Agent": UA_d, "Upgrade-Insecure-Requests": "1", "Accept-Language": "en-GB,en-US;q=0.9,en;q=0.8", "dnt": "1", "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8", } def _abort_request_after(url: str, byte_len: int = 1024): with requests.get( url, headers=basic_headers, allow_redirects=True, stream=True ) as chunk: for _ in chunk.iter_content(byte_len): headers, url = chunk.headers, chunk.url chunk.close() return (headers, url) def _normalise_url(parsed, remove_frag: bool = True): d: dict = parsed._asdict() d["scheme"] = d["scheme"].lower() d["netloc"] = d["netloc"].lower() d["fragment"] = "" return ParseResult(**d) def remove_quotes(s): if s is None or len(s) < 2: return s for quote in ('"', "'"): if s[0] == quote and s[-1] == quote: return s[1:-1] return s def int_or_none(i: any): if isinstance(i, int): return i try: return int(i) except: return None
[ "json.load", "urllib.parse.ParseResult", "os.path.realpath", "os.path.dirname", "requests.get", "os.path.join" ]
[((160, 178), 'os.path.realpath', 'realpath', (['__file__'], {}), '(__file__)\n', (168, 178), False, 'from os.path import realpath, dirname, join as _path_join\n'), ((192, 211), 'os.path.dirname', 'dirname', (['script_loc'], {}), '(script_loc)\n', (199, 211), False, 'from os.path import realpath, dirname, join as _path_join\n'), ((326, 338), 'json.load', 'json_load', (['f'], {}), '(f)\n', (335, 338), True, 'from json import load as json_load\n'), ((1441, 1457), 'urllib.parse.ParseResult', 'ParseResult', ([], {}), '(**d)\n', (1452, 1457), False, 'from urllib.parse import ParseResult\n'), ((265, 301), 'os.path.join', '_path_join', (['script_dir', '"""mimes.json"""'], {}), "(script_dir, 'mimes.json')\n", (275, 301), True, 'from os.path import realpath, dirname, join as _path_join\n'), ((993, 1068), 'requests.get', 'requests.get', (['url'], {'headers': 'basic_headers', 'allow_redirects': '(True)', 'stream': '(True)'}), '(url, headers=basic_headers, allow_redirects=True, stream=True)\n', (1005, 1068), False, 'import requests\n')]
from disnake.ext import commands from utils.clash import client, pingToChannel, getClan import disnake usafam = client.usafam clans = usafam.clans server = usafam.server class autoB(commands.Cog, name="Board Setup"): def __init__(self, bot: commands.Bot): self.bot = bot @commands.slash_command(name="autoboard") async def autoboard(self, ctx): pass @autoboard.sub_command(name="create", description="Create server autoposting leaderboards") async def setupboard(self, ctx: disnake.ApplicationCommandInteraction, channel: disnake.TextChannel, autoboard_type: str = commands.Param(choices=["Player Leaderboard", "Clan Leaderboard"])): perms = ctx.author.guild_permissions.manage_guild if not perms: embed = disnake.Embed(description="Command requires you to have `Manage Server` permissions.", color=disnake.Color.red()) return await ctx.send(embed=embed) await ctx.response.defer() msg = await ctx.original_message() country = None if autoboard_type == "Clan Leaderboard": rr = [] tracked = clans.find({"server": ctx.guild.id}) limit = await clans.count_documents(filter={"server": ctx.guild.id}) for clan in await tracked.to_list(length=limit): tag = clan.get("tag") c = await getClan(tag) location = str(c.location) if location not in rr: rr.append(str(location)) options = [] for country in rr: options.append(disnake.SelectOption(label=f"{country}", value=f"{country}")) select1 = disnake.ui.Select( options=options, placeholder="Page Navigation", min_values=1, # the minimum number of options a user must select max_values=1 # the maximum number of options a user can select ) action_row = disnake.ui.ActionRow() action_row.append_item(select1) embed = disnake.Embed(title="**For what country would you like the leaderboard autoboard?**", color=disnake.Color.green()) await ctx.edit_original_message(embed=embed, components=[action_row]) def check(res: disnake.MessageInteraction): return res.message.id == msg.id country = False while country == False: try: res: disnake.MessageInteraction = await self.bot.wait_for("message_interaction", check=check, timeout=600) except: await msg.edit(components=[]) break if res.author.id != ctx.author.id: await res.send(content="You must run the command to interact with components.", ephemeral=True) continue country = str(res.values[0]) tex = "" if autoboard_type == "Player Leaderboard": await server.update_one({"server": ctx.guild.id}, {'$set': {"topboardchannel": channel.id}}) await server.update_one({"server": ctx.guild.id}, {'$set': {"tophour": 5}}) else: await server.update_one({"server": ctx.guild.id}, {'$set': {"lbboardChannel": channel.id}}) await server.update_one({"server": ctx.guild.id}, {'$set': {"country": country}}) await server.update_one({"server": ctx.guild.id}, {'$set': {"lbhour": 5}}) tex = f"\nCountry: {country}" time = f"<t:{1643263200}:t>" embed = disnake.Embed(title="**Autoboard Successfully Setup**", description=f"Channel: {channel.mention}\n" f"Time: {time}\n" f"Type: {autoboard_type}{tex}", color=disnake.Color.green()) await msg.edit(embed=embed) @autoboard.sub_command(name="remove", description="Remove a server autoboard") async def removeboard(self, ctx: disnake.ApplicationCommandInteraction, autoboard_type: str = commands.Param(choices=["Player Leaderboard", "Clan Leaderboard"])): perms = ctx.author.guild_permissions.manage_guild if not perms: embed = disnake.Embed(description="Command requires you to have `Manage Server` permissions.", color=disnake.Color.red()) return await ctx.send(embed=embed) if autoboard_type == "Player Leaderboard": await server.update_one({"server": ctx.guild.id}, {'$set': {"topboardchannel": None}}) await server.update_one({"server": ctx.guild.id}, {'$set': {"tophour": None}}) else: await server.update_one({"server": ctx.guild.id}, {'$set': {"lbboardChannel": None}}) await server.update_one({"server": ctx.guild.id}, {'$set': {"country": None}}) await server.update_one({"server": ctx.guild.id}, {'$set': {"lbhour": None}}) embed = disnake.Embed(description=f"{autoboard_type} autoboard has been removed.", color=disnake.Color.green()) await ctx.send(embed=embed, components=[]) @autoboard.sub_command(name="list", description="View server autoboards") async def boardlist(self, ctx): tbc = None th = None lbc = None lbh = None country = None results = await server.find_one({"server": ctx.guild.id}) real_times = [] start_time = 1643263200 for x in range(0, 24): t = start_time + (x * 3600) real_times.append(t) try: tbc = results.get("topboardchannel") tbc = await pingToChannel(ctx, tbc) tbc = tbc.mention except: pass try: th = results.get("tophour") th = real_times[th - 5] th = f"<t:1643263200:t>" except: pass try: lbc = results.get("lbboardChannel") lbc = await pingToChannel(ctx, lbc) lbc = lbc.mention except: pass try: lbh = results.get("lbhour") lbh = real_times[lbh - 5] lbh = f"<t:1643263200:t>" except: pass try: country = results.get("country") except: pass embed = disnake.Embed(title="**Autoboard List**", description=f"Player leaderboard Channel: {tbc}\n" f"Player leaderboard Post Time: {th}\n" f"Clan leaderboard Channel: {lbc}\n" f"Clan leaderboard Post Time: {lbh}\n" f"Clan leaderboard Country: {country}\n", color=disnake.Color.green()) await ctx.send(embed=embed) def setup(bot: commands.Bot): bot.add_cog(autoB(bot))
[ "disnake.ui.ActionRow", "disnake.Color.red", "disnake.ext.commands.Param", "disnake.SelectOption", "utils.clash.getClan", "utils.clash.pingToChannel", "disnake.ui.Select", "disnake.ext.commands.slash_command", "disnake.Color.green" ]
[((292, 332), 'disnake.ext.commands.slash_command', 'commands.slash_command', ([], {'name': '"""autoboard"""'}), "(name='autoboard')\n", (314, 332), False, 'from disnake.ext import commands\n'), ((606, 672), 'disnake.ext.commands.Param', 'commands.Param', ([], {'choices': "['Player Leaderboard', 'Clan Leaderboard']"}), "(choices=['Player Leaderboard', 'Clan Leaderboard'])\n", (620, 672), False, 'from disnake.ext import commands\n'), ((4281, 4347), 'disnake.ext.commands.Param', 'commands.Param', ([], {'choices': "['Player Leaderboard', 'Clan Leaderboard']"}), "(choices=['Player Leaderboard', 'Clan Leaderboard'])\n", (4295, 4347), False, 'from disnake.ext import commands\n'), ((1721, 1818), 'disnake.ui.Select', 'disnake.ui.Select', ([], {'options': 'options', 'placeholder': '"""Page Navigation"""', 'min_values': '(1)', 'max_values': '(1)'}), "(options=options, placeholder='Page Navigation',\n min_values=1, max_values=1)\n", (1738, 1818), False, 'import disnake\n'), ((2021, 2043), 'disnake.ui.ActionRow', 'disnake.ui.ActionRow', ([], {}), '()\n', (2041, 2043), False, 'import disnake\n'), ((4039, 4060), 'disnake.Color.green', 'disnake.Color.green', ([], {}), '()\n', (4058, 4060), False, 'import disnake\n'), ((5308, 5329), 'disnake.Color.green', 'disnake.Color.green', ([], {}), '()\n', (5327, 5329), False, 'import disnake\n'), ((5912, 5935), 'utils.clash.pingToChannel', 'pingToChannel', (['ctx', 'tbc'], {}), '(ctx, tbc)\n', (5925, 5935), False, 'from utils.clash import client, pingToChannel, getClan\n'), ((6246, 6269), 'utils.clash.pingToChannel', 'pingToChannel', (['ctx', 'lbc'], {}), '(ctx, lbc)\n', (6259, 6269), False, 'from utils.clash import client, pingToChannel, getClan\n'), ((7066, 7087), 'disnake.Color.green', 'disnake.Color.green', ([], {}), '()\n', (7085, 7087), False, 'import disnake\n'), ((902, 921), 'disnake.Color.red', 'disnake.Color.red', ([], {}), '()\n', (919, 921), False, 'import disnake\n'), ((1408, 1420), 'utils.clash.getClan', 'getClan', (['tag'], {}), '(tag)\n', (1415, 1420), False, 'from utils.clash import client, pingToChannel, getClan\n'), ((1636, 1696), 'disnake.SelectOption', 'disnake.SelectOption', ([], {'label': 'f"""{country}"""', 'value': 'f"""{country}"""'}), "(label=f'{country}', value=f'{country}')\n", (1656, 1696), False, 'import disnake\n'), ((2235, 2256), 'disnake.Color.green', 'disnake.Color.green', ([], {}), '()\n', (2254, 2256), False, 'import disnake\n'), ((4577, 4596), 'disnake.Color.red', 'disnake.Color.red', ([], {}), '()\n', (4594, 4596), False, 'import disnake\n')]
# coding: utf-8 # Third Party Libraries from sanic_transmute import add_route from transmute_core.compat import string_type from transmute_core.function import TransmuteAttributes def describe_add_route(blueprint, **kwargs): # if we have a single method, make it a list. if isinstance(kwargs.get("paths"), string_type): kwargs["paths"] = [kwargs["paths"]] if isinstance(kwargs.get("methods"), string_type): kwargs["methods"] = [kwargs["methods"]] attrs = TransmuteAttributes(**kwargs) def decorator(fnc): if hasattr(fnc, "transmute"): fnc.transmute = fnc.transmute | attrs else: fnc.transmute = attrs add_route(blueprint, fnc) return fnc return decorator
[ "transmute_core.function.TransmuteAttributes", "sanic_transmute.add_route" ]
[((491, 520), 'transmute_core.function.TransmuteAttributes', 'TransmuteAttributes', ([], {}), '(**kwargs)\n', (510, 520), False, 'from transmute_core.function import TransmuteAttributes\n'), ((690, 715), 'sanic_transmute.add_route', 'add_route', (['blueprint', 'fnc'], {}), '(blueprint, fnc)\n', (699, 715), False, 'from sanic_transmute import add_route\n')]
import os from typing import Dict from abc import ABC from easy_sdm.data import ShapefileRegion import geopandas as gpd import numpy as np import pandas as pd import requests from easy_sdm.configs import configs from easy_sdm.utils import logger from typing import Dict, Optional from pathlib import Path class GBIFOccurencesRequester: """[This class makes request to GBIF] """ def __init__(self, taxon_key: int, species_name: str): self.taxon_key = taxon_key self.species_name = species_name self.base_url = "http://api.gbif.org/v1/occurrence/search" def request(self, offset: int = 0): """[ Request GBIF information about an species] Args: offset (int, optional): [Offsset is a parameter to where starting the request in GBIF databse, since the requests have a limit of 300 row for request]. Defaults to 0. Returns: [type]: [int] """ gbif_configs = configs["gbif"] params = { "taxonKey": str(self.taxon_key), "limit": gbif_configs["one_request_limit"], "hasCoordinate": True, "year": f"{gbif_configs['low_year']},{gbif_configs['up_year']}", "country": gbif_configs["country"], "offset": offset, } r = requests.get(self.base_url, params=params) status_code = r.status_code if r.status_code != 200: logger.logging.info( f"API call failed at offset {offset} with a status code of {r.status_code}." ) end_of_records = True else: r = r.json() end_of_records = r["endOfRecords"] return r, end_of_records, status_code class Species: def __init__(self, taxon_key: int, name: str): self.taxon_key = taxon_key self.name = name def __str__(self) -> str: return "Species {self.name} with taxon key {self.taxon_key}" class SpeciesDFBuilder: """[This class organize data requested to GBIF into pandas dataframes] """ def __init__(self, species: Species): self.gbif_occ_requester = GBIFOccurencesRequester( species.taxon_key, species.name ) self.__df_memory = None def get_specie_df(self): """Get species as DataFrame""" if self.__df_memory: df = self.__df_memory else: df = self.__request_species_df() df = self.__clean_species_df(df) self.__df_memory = df return df def __request_species_df(self): """[Organizes GBIF information in a dataframe considering offsets ]""" end_of_records = False offset = 0 status = 200 df = None while end_of_records == False and status == 200: r, end_of_records, status = self.gbif_occ_requester.request(offset) df = self.__build_species_df(r, df) offset = len(df) + 1 self.__clean_species_df(df) return df def __build_species_df(self, request, df=None): """[Create species dataframe with the request data] Args: df ([type]): [description] request ([type]): [description] Returns: [df]: [description] """ if df is None: df = pd.DataFrame( columns=[ "SCIENTIFIC_NAME", "LONGITUDE", "LATITUDE", "COUNTRY", "STATE_PROVINCE", "IDENTIFICATION_DATE", "DAY", "MONTH", "YEAR", ] ) for result in request["results"]: result = self.__refact_dict(result) df = df.append( { "SCIENTIFIC_NAME": result["scientificName"], "LONGITUDE": result["decimalLongitude"], "LATITUDE": result["decimalLatitude"], "COUNTRY": result["country"], "STATE_PROVINCE": result["stateProvince"], "IDENTIFICATION_DATE": result["eventDate"], "DAY": result["day"], "MONTH": result["month"], "YEAR": result["year"], }, ignore_index=True, ) return df def __refact_dict(self, result: Dict): """Refact dict placing None in empty cells""" columns = result.keys() desired_columns = [ "scientificName", "decimalLongitude", "decimalLatitude", "country", "stateProvince", "eventDate", "day", "month", "year", "occurrenceRemarks", ] for d_col in desired_columns: if d_col not in columns: result[d_col] = None return result def __clean_species_df(self, df: pd.DataFrame): """[Cleaning Gbif Data] Args: df ([pd.DaraFrame]): [description] Returns: [pd.DaraFrame]: [description] """ # Double check to certify there is no empty lat/long data df = df[pd.notnull(df["LATITUDE"])] df = df[pd.notnull(df["LONGITUDE"])] # Removing duplicate data df = ( df.drop_duplicates(ignore_index=True) if configs["gbif"]["drop_duplicates"] else df ) # Sorting Data by STATE_PROVINCE df.sort_values("STATE_PROVINCE", inplace=True, ignore_index=True) return df class SpeciesGDFBuilder(SpeciesDFBuilder): """[This class organize data requested to GBIF into geopandas geodataframes] """ def __init__( self, species: Species, proposed_region: Optional[ShapefileRegion] = None ): super().__init__(species) self.proposed_region = proposed_region self.__gdf_memory = None def save_species_gdf(self, output_path: Path): if not str(output_path).endswith(".shp"): raise TypeError("output_path must ends with shp") output_path.parent.mkdir(parents=True, exist_ok=True) gdf = self.get_species_gdf() gdf.to_file(output_path) def get_species_gdf(self): if not (self.__gdf_memory is None): gdf = self.__gdf_memory else: df = self.get_specie_df() gdf = gpd.GeoDataFrame( df, geometry=gpd.points_from_xy(df.LONGITUDE, df.LATITUDE) ) gdf = gdf.set_crs(f"EPSG:{configs['maps']['default_epsg']}") gdf = ( self.__filter_species_in_region(gdf) if not (self.proposed_region is None) else gdf ) self.__gdf_memory = gdf return gdf def __filter_species_in_region(self, gdf: gpd.GeoDataFrame): return self.proposed_region.get_points_inside(gdf) class SpeciesInfoExtractor: """[A Wrapper to extract relevant information from spescies geodataframes] """ def __init__(self, species_geodataframe: gpd.GeoDataFrame) -> None: self.species_geodataframe = species_geodataframe def get_coordinates(self,): coordinates = np.array( ( np.array(self.species_geodataframe["LATITUDE"]), np.array(self.species_geodataframe["LONGITUDE"]), ) ).T return coordinates def get_longitudes(self,): coordinates = self.get_coordinates() return coordinates[:, 1] def get_latitudes(self,): coordinates = self.get_coordinates() return coordinates[:, 0]
[ "pandas.DataFrame", "pandas.notnull", "easy_sdm.utils.logger.logging.info", "geopandas.points_from_xy", "numpy.array", "requests.get" ]
[((1336, 1378), 'requests.get', 'requests.get', (['self.base_url'], {'params': 'params'}), '(self.base_url, params=params)\n', (1348, 1378), False, 'import requests\n'), ((1460, 1567), 'easy_sdm.utils.logger.logging.info', 'logger.logging.info', (['f"""API call failed at offset {offset} with a status code of {r.status_code}."""'], {}), "(\n f'API call failed at offset {offset} with a status code of {r.status_code}.'\n )\n", (1479, 1567), False, 'from easy_sdm.utils import logger\n'), ((3360, 3506), 'pandas.DataFrame', 'pd.DataFrame', ([], {'columns': "['SCIENTIFIC_NAME', 'LONGITUDE', 'LATITUDE', 'COUNTRY', 'STATE_PROVINCE',\n 'IDENTIFICATION_DATE', 'DAY', 'MONTH', 'YEAR']"}), "(columns=['SCIENTIFIC_NAME', 'LONGITUDE', 'LATITUDE', 'COUNTRY',\n 'STATE_PROVINCE', 'IDENTIFICATION_DATE', 'DAY', 'MONTH', 'YEAR'])\n", (3372, 3506), True, 'import pandas as pd\n'), ((5316, 5342), 'pandas.notnull', 'pd.notnull', (["df['LATITUDE']"], {}), "(df['LATITUDE'])\n", (5326, 5342), True, 'import pandas as pd\n'), ((5360, 5387), 'pandas.notnull', 'pd.notnull', (["df['LONGITUDE']"], {}), "(df['LONGITUDE'])\n", (5370, 5387), True, 'import pandas as pd\n'), ((6584, 6629), 'geopandas.points_from_xy', 'gpd.points_from_xy', (['df.LONGITUDE', 'df.LATITUDE'], {}), '(df.LONGITUDE, df.LATITUDE)\n', (6602, 6629), True, 'import geopandas as gpd\n'), ((7405, 7452), 'numpy.array', 'np.array', (["self.species_geodataframe['LATITUDE']"], {}), "(self.species_geodataframe['LATITUDE'])\n", (7413, 7452), True, 'import numpy as np\n'), ((7470, 7518), 'numpy.array', 'np.array', (["self.species_geodataframe['LONGITUDE']"], {}), "(self.species_geodataframe['LONGITUDE'])\n", (7478, 7518), True, 'import numpy as np\n')]
from __future__ import division import numpy as np import unittest import chainer from chainer import testing from chainer.testing import attr from chainercv.links.model.fpn import Head from chainercv.links.model.fpn import head_loss_post from chainercv.links.model.fpn import head_loss_pre def _random_array(xp, shape): return xp.array( np.random.uniform(-1, 1, size=shape), dtype=np.float32) @testing.parameterize( {'n_class': 1 + 1}, {'n_class': 5 + 1}, {'n_class': 20 + 1}, ) class TestHead(unittest.TestCase): def setUp(self): self.link = Head(n_class=self.n_class, scales=(1 / 2, 1 / 4, 1 / 8)) def _check_call(self): hs = [ chainer.Variable(_random_array(self.link.xp, (2, 64, 32, 32))), chainer.Variable(_random_array(self.link.xp, (2, 64, 16, 16))), chainer.Variable(_random_array(self.link.xp, (2, 64, 8, 8))), ] rois = [ self.link.xp.array(((4, 1, 6, 3),), dtype=np.float32), self.link.xp.array( ((0, 1, 2, 3), (5, 4, 10, 6)), dtype=np.float32), self.link.xp.array(((10, 4, 12, 10),), dtype=np.float32), ] roi_indices = [ self.link.xp.array((0,), dtype=np.int32), self.link.xp.array((1, 0), dtype=np.int32), self.link.xp.array((1,), dtype=np.int32), ] locs, confs = self.link(hs, rois, roi_indices) self.assertIsInstance(locs, chainer.Variable) self.assertIsInstance(locs.array, self.link.xp.ndarray) self.assertEqual(locs.shape, (4, self.n_class, 4)) self.assertIsInstance(confs, chainer.Variable) self.assertIsInstance(confs.array, self.link.xp.ndarray) self.assertEqual(confs.shape, (4, self.n_class)) def test_call_cpu(self): self._check_call() @attr.gpu def test_call_gpu(self): self.link.to_gpu() self._check_call() def _check_distribute(self): rois = self.link.xp.array(( (0, 0, 10, 10), (0, 1000, 0, 1000), (0, 0, 224, 224), (100, 100, 224, 224), ), dtype=np.float32) roi_indices = self.link.xp.array((0, 1, 0, 0), dtype=np.int32) rois, roi_indices = self.link.distribute(rois, roi_indices) self.assertEqual(len(rois), 3) self.assertEqual(len(roi_indices), 3) for l in range(3): self.assertIsInstance(rois[l], self.link.xp.ndarray) self.assertIsInstance(roi_indices[l], self.link.xp.ndarray) self.assertEqual(rois[l].shape[0], roi_indices[l].shape[0]) self.assertEqual(rois[l].shape[1:], (4,)) self.assertEqual(roi_indices[l].shape[1:], ()) self.assertEqual(sum(rois[l].shape[0] for l in range(3)), 4) def test_distribute_cpu(self): self._check_distribute() @attr.gpu def test_distribute_gpu(self): self.link.to_gpu() self._check_distribute() def _check_decode(self): rois = [ self.link.xp.array(((4, 1, 6, 3),), dtype=np.float32), self.link.xp.array( ((0, 1, 2, 3), (5, 4, 10, 6)), dtype=np.float32), self.link.xp.array(((10, 4, 12, 10),), dtype=np.float32), ] roi_indices = [ self.link.xp.array((0,), dtype=np.int32), self.link.xp.array((1, 0), dtype=np.int32), self.link.xp.array((1,), dtype=np.int32), ] locs = chainer.Variable(_random_array( self.link.xp, (4, self.n_class, 4))) confs = chainer.Variable(_random_array( self.link.xp, (4, self.n_class))) bboxes, labels, scores = self.link.decode( rois, roi_indices, locs, confs, (0.4, 0.2), ((100, 100), (200, 200)), 0.5, 0.1) self.assertEqual(len(bboxes), 2) self.assertEqual(len(labels), 2) self.assertEqual(len(scores), 2) for n in range(2): self.assertIsInstance(bboxes[n], self.link.xp.ndarray) self.assertIsInstance(labels[n], self.link.xp.ndarray) self.assertIsInstance(scores[n], self.link.xp.ndarray) self.assertEqual(bboxes[n].shape[0], labels[n].shape[0]) self.assertEqual(bboxes[n].shape[0], scores[n].shape[0]) self.assertEqual(bboxes[n].shape[1:], (4,)) self.assertEqual(labels[n].shape[1:], ()) self.assertEqual(scores[n].shape[1:], ()) def test_decode_cpu(self): self._check_decode() @attr.gpu def test_decode_gpu(self): self.link.to_gpu() self._check_decode() class TestHeadLoss(unittest.TestCase): def _check_head_loss_pre(self, xp): rois = [ xp.array(((4, 1, 6, 3),), dtype=np.float32), xp.array( ((0, 1, 2, 3), (5, 4, 10, 6)), dtype=np.float32), xp.array(((10, 4, 12, 10),), dtype=np.float32), ] roi_indices = [ xp.array((0,), dtype=np.int32), xp.array((1, 0), dtype=np.int32), xp.array((1,), dtype=np.int32), ] bboxes = [ xp.array(((2, 4, 6, 7), (1, 12, 3, 30)), dtype=np.float32), xp.array(((10, 2, 12, 12),), dtype=np.float32), ] labels = [ xp.array((10, 4), dtype=np.float32), xp.array((1,), dtype=np.float32), ] rois, roi_indices, gt_locs, gt_labels = head_loss_pre( rois, roi_indices, (0.1, 0.2), bboxes, labels) self.assertEqual(len(rois), 3) self.assertEqual(len(roi_indices), 3) self.assertEqual(len(gt_locs), 3) self.assertEqual(len(gt_labels), 3) for l in range(3): self.assertIsInstance(rois[l], xp.ndarray) self.assertIsInstance(roi_indices[l], xp.ndarray) self.assertIsInstance(gt_locs[l], xp.ndarray) self.assertIsInstance(gt_labels[l], xp.ndarray) self.assertEqual(rois[l].shape[0], roi_indices[l].shape[0]) self.assertEqual(rois[l].shape[0], gt_locs[l].shape[0]) self.assertEqual(rois[l].shape[0], gt_labels[l].shape[0]) self.assertEqual(rois[l].shape[1:], (4,)) self.assertEqual(roi_indices[l].shape[1:], ()) self.assertEqual(gt_locs[l].shape[1:], (4,)) self.assertEqual(gt_labels[l].shape[1:], ()) def test_head_loss_pre_cpu(self): self._check_head_loss_pre(np) @attr.gpu def test_head_loss_pre_gpu(self): import cupy self._check_head_loss_pre(cupy) def _check_head_loss_post(self, xp): locs = chainer.Variable(_random_array(xp, (20, 81, 4))) confs = chainer.Variable(_random_array(xp, (20, 81))) roi_indices = [ xp.random.randint(0, 2, size=5).astype(np.int32), xp.random.randint(0, 2, size=7).astype(np.int32), xp.random.randint(0, 2, size=8).astype(np.int32), ] gt_locs = [ _random_array(xp, (5, 4)), _random_array(xp, (7, 4)), _random_array(xp, (8, 4)), ] gt_labels = [ xp.random.randint(0, 80, size=5).astype(np.int32), xp.random.randint(0, 80, size=7).astype(np.int32), xp.random.randint(0, 80, size=8).astype(np.int32), ] loc_loss, conf_loss = head_loss_post( locs, confs, roi_indices, gt_locs, gt_labels, 2) self.assertIsInstance(loc_loss, chainer.Variable) self.assertIsInstance(loc_loss.array, xp.ndarray) self.assertEqual(loc_loss.shape, ()) self.assertIsInstance(conf_loss, chainer.Variable) self.assertIsInstance(conf_loss.array, xp.ndarray) self.assertEqual(conf_loss.shape, ()) def test_head_loss_post_cpu(self): self._check_head_loss_post(np) @attr.gpu def test_head_loss_post_gpu(self): import cupy self._check_head_loss_post(cupy) testing.run_module(__name__, __file__)
[ "numpy.random.uniform", "chainercv.links.model.fpn.head_loss_pre", "chainercv.links.model.fpn.Head", "chainer.testing.parameterize", "chainercv.links.model.fpn.head_loss_post", "chainer.testing.run_module" ]
[((414, 499), 'chainer.testing.parameterize', 'testing.parameterize', (["{'n_class': 1 + 1}", "{'n_class': 5 + 1}", "{'n_class': 20 + 1}"], {}), "({'n_class': 1 + 1}, {'n_class': 5 + 1}, {'n_class': 20 +\n 1})\n", (434, 499), False, 'from chainer import testing\n'), ((8017, 8055), 'chainer.testing.run_module', 'testing.run_module', (['__name__', '__file__'], {}), '(__name__, __file__)\n', (8035, 8055), False, 'from chainer import testing\n'), ((355, 391), 'numpy.random.uniform', 'np.random.uniform', (['(-1)', '(1)'], {'size': 'shape'}), '(-1, 1, size=shape)\n', (372, 391), True, 'import numpy as np\n'), ((588, 644), 'chainercv.links.model.fpn.Head', 'Head', ([], {'n_class': 'self.n_class', 'scales': '(1 / 2, 1 / 4, 1 / 8)'}), '(n_class=self.n_class, scales=(1 / 2, 1 / 4, 1 / 8))\n', (592, 644), False, 'from chainercv.links.model.fpn import Head\n'), ((5493, 5553), 'chainercv.links.model.fpn.head_loss_pre', 'head_loss_pre', (['rois', 'roi_indices', '(0.1, 0.2)', 'bboxes', 'labels'], {}), '(rois, roi_indices, (0.1, 0.2), bboxes, labels)\n', (5506, 5553), False, 'from chainercv.links.model.fpn import head_loss_pre\n'), ((7417, 7480), 'chainercv.links.model.fpn.head_loss_post', 'head_loss_post', (['locs', 'confs', 'roi_indices', 'gt_locs', 'gt_labels', '(2)'], {}), '(locs, confs, roi_indices, gt_locs, gt_labels, 2)\n', (7431, 7480), False, 'from chainercv.links.model.fpn import head_loss_post\n')]
#!/usr/bin/env python """ Module for reading STM files Expected file format is derived from http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/infmts.htm#stm_fmt_name_0 This expects a segment from class derived in convert_text """ from asrtoolkit.data_structures.segment import segment def format_segment(seg): """ Formats a segment assuming it's an instance of class segment with elements audiofile, channel, speaker, start and stop times, label, and text """ return " ".join(seg.__dict__[_] for _ in ('audiofile', 'channel', 'speaker', 'start', 'stop', 'label', 'text')) def parse_line(line): " parse a single line of an stm file" data = line.strip().split() seg = None if len(data) > 6: audiofile, channel, speaker, start, stop, label = data[:6] text = " ".join(data[6:]) seg = segment( { 'audiofile': audiofile, 'channel': channel, 'speaker': speaker, 'start': start, 'stop': stop, 'label': label, 'text': text } ) return seg if seg and seg.validate() else None def read_file(file_name): """ Reads an STM file, skipping any gap lines """ segments = [] with open(file_name, encoding="utf-8") as f: for line in f: seg = parse_line(line) if seg is not None: segments.append(seg) return segments
[ "asrtoolkit.data_structures.segment.segment" ]
[((824, 961), 'asrtoolkit.data_structures.segment.segment', 'segment', (["{'audiofile': audiofile, 'channel': channel, 'speaker': speaker, 'start':\n start, 'stop': stop, 'label': label, 'text': text}"], {}), "({'audiofile': audiofile, 'channel': channel, 'speaker': speaker,\n 'start': start, 'stop': stop, 'label': label, 'text': text})\n", (831, 961), False, 'from asrtoolkit.data_structures.segment import segment\n')]
# -*- coding: utf-8 -*- """ Created on Mon Oct 5 14:29:04 2020 @author: ptrda """ import os os.chdir(os.path.dirname(os.path.abspath('../tests'))) import sys sys.path.append(os.path.abspath('../Team-4-Code/src/UserStories')) sys.path.append(os.path.abspath('../Team-4-Code/src')) cwd = os.getcwd() os.chdir(os.path.join(cwd, 'seeds')) from us23 import us23 import Project02 import unittest class us23_test(unittest.TestCase): def test1(self): individuals = Project02.createIndividualsDataFrame('seed.ged') df = individuals[0:3] df = df.append(individuals.iloc[0]).reset_index(drop = True) res = "not unique" self.assertEqual(us23(df), res) def test2(self): individuals = Project02.createIndividualsDataFrame('seed.ged') df = individuals[0:5] res = "unique" self.assertEqual(us23(df), res) def test3(self): individuals = Project02.createIndividualsDataFrame('seed.ged') df = individuals[0:7] df = df.append(individuals.iloc[3]).reset_index(drop = True) res = "not unique" self.assertEqual(us23(df), res) def test4(self): individuals = Project02.createIndividualsDataFrame('seed.ged') df = individuals[0:9] df = df.append(individuals.iloc[11]).reset_index(drop = True) res = "unique" self.assertEqual(us23(df), res) def test5(self): individuals = Project02.createIndividualsDataFrame('seed.ged') df = individuals[0:11] df = df.append(individuals.iloc[4]).reset_index(drop = True) res = "not unique" self.assertEqual(us23(df), res) unittest.main(argv=['first-arg-is-ignored'], exit=False)
[ "unittest.main", "Project02.createIndividualsDataFrame", "os.path.abspath", "us23.us23", "os.getcwd", "os.path.join" ]
[((290, 301), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (299, 301), False, 'import os\n'), ((1683, 1739), 'unittest.main', 'unittest.main', ([], {'argv': "['first-arg-is-ignored']", 'exit': '(False)'}), "(argv=['first-arg-is-ignored'], exit=False)\n", (1696, 1739), False, 'import unittest\n'), ((177, 226), 'os.path.abspath', 'os.path.abspath', (['"""../Team-4-Code/src/UserStories"""'], {}), "('../Team-4-Code/src/UserStories')\n", (192, 226), False, 'import os\n'), ((244, 281), 'os.path.abspath', 'os.path.abspath', (['"""../Team-4-Code/src"""'], {}), "('../Team-4-Code/src')\n", (259, 281), False, 'import os\n'), ((311, 337), 'os.path.join', 'os.path.join', (['cwd', '"""seeds"""'], {}), "(cwd, 'seeds')\n", (323, 337), False, 'import os\n'), ((119, 146), 'os.path.abspath', 'os.path.abspath', (['"""../tests"""'], {}), "('../tests')\n", (134, 146), False, 'import os\n'), ((478, 526), 'Project02.createIndividualsDataFrame', 'Project02.createIndividualsDataFrame', (['"""seed.ged"""'], {}), "('seed.ged')\n", (514, 526), False, 'import Project02\n'), ((745, 793), 'Project02.createIndividualsDataFrame', 'Project02.createIndividualsDataFrame', (['"""seed.ged"""'], {}), "('seed.ged')\n", (781, 793), False, 'import Project02\n'), ((935, 983), 'Project02.createIndividualsDataFrame', 'Project02.createIndividualsDataFrame', (['"""seed.ged"""'], {}), "('seed.ged')\n", (971, 983), False, 'import Project02\n'), ((1202, 1250), 'Project02.createIndividualsDataFrame', 'Project02.createIndividualsDataFrame', (['"""seed.ged"""'], {}), "('seed.ged')\n", (1238, 1250), False, 'import Project02\n'), ((1466, 1514), 'Project02.createIndividualsDataFrame', 'Project02.createIndividualsDataFrame', (['"""seed.ged"""'], {}), "('seed.ged')\n", (1502, 1514), False, 'import Project02\n'), ((678, 686), 'us23.us23', 'us23', (['df'], {}), '(df)\n', (682, 686), False, 'from us23 import us23\n'), ((872, 880), 'us23.us23', 'us23', (['df'], {}), '(df)\n', (876, 880), False, 'from us23 import us23\n'), ((1135, 1143), 'us23.us23', 'us23', (['df'], {}), '(df)\n', (1139, 1143), False, 'from us23 import us23\n'), ((1399, 1407), 'us23.us23', 'us23', (['df'], {}), '(df)\n', (1403, 1407), False, 'from us23 import us23\n'), ((1667, 1675), 'us23.us23', 'us23', (['df'], {}), '(df)\n', (1671, 1675), False, 'from us23 import us23\n')]
from json import loads, dumps from random import randint import stanza import praw import re import os from urllib.parse import quote from stanza import Pipeline def log_into_reddit(): reddit = praw.Reddit('bot1') print(reddit.user.me()) return reddit def get_posts_replied_to(): # Have we run this code before? If not, create an empty list if not os.path.isfile("posts_replied_to.txt"): posts_replied_to = [] # If we have run the code before, load the list of posts we have replied to else: # Read the file into a list and remove any empty values with open("posts_replied_to.txt", "r") as f: posts_replied_to = f.read() posts_replied_to = posts_replied_to.split("\n") posts_replied_to = list(filter(None, posts_replied_to)) return posts_replied_to # variable LOCATIONS = [ " Sales of Hitler's political autobiography \"<NAME>\"sometimes referred to as the bible of the Nazi Party, made him a millionaire. ", "Hitler had dreams of playing a musical instrument. He had short but unsuccessful lessons in piano and violin and also dabbled in the flute and harmonica. In the end, he settled for whistling, which he did frequently.", "Though he shunned meat, Hitler was a voracious ‘sweet tooth’, consuming large amounts of cake, pastries, chocolate and sugar. He sometimes took as many as five teaspoons of sugar in his tea.", "When the regime came into power in 1933, they passed a comprehensive set of laws for animal protection. When all of these were in place, Hitler said something about animal cruelty. With the new Reich, there will be no grounds for any form of animal abuse and cruelty.", "It’s already a known fact that during Hitler’s reign, their main objective was to free the world of Jews. However, Hilter unknowingly had a Jewish chauffeur. <NAME> was also his friend and personal chauffeur. When it got known to many, <NAME> was ready to target Maurice for expulsion. Hitler came to the rescue and made an exception for him and his brothers. He called them “honorary Aryans”.", "In a pre-cursor to modern stances and laws in this area, the Nazi party were the first people to ban smoking. Nazi doctors were the first to establish a link between smoking and lung cancer which meant that a fierce anti-smoking campaign began under Hitler. The Nazi leadership strongly condemned smoking and advised the general population to give it up.", "During the Second World War, German doctors came up with a methamphetamine based experimental drug to increase soldier’s performance. This was very successful in trials when tested and made the troops super tough. It was found that they could march 55 miles without any tiredness which is pretty amazing. The plan was to roll it out to all soldiers serving in the war but the German’s lost before it could be put into place."] ANALYTICS_JSON = "posts_analytics.json" def get_posts_analytics(): if not os.path.isfile(ANALYTICS_JSON): posts_analytics = [] # If we have run the code before, load the list of posts we have replied to else: # Read the file into a list and remove any empty values with open(ANALYTICS_JSON, "r") as f: posts_analytics = loads(f.read()) return posts_analytics def initiate_nlp() -> Pipeline: stanza.download('en') nlp_pipe = stanza.Pipeline('en', processors="tokenize,pos") return nlp_pipe def fetch_reddit_posts(selected_subreddit: str, limit: int) -> list: subreddit = reddit.subreddit(selected_subreddit) return subreddit.hot(limit=limit) def process_post(post, nlp_pipe: Pipeline): doc = nlp_pipe(post.title) keywords = get_keywords_from_post(doc.sentences) # write all keywords in lower case keywords = [keyword.lower() for keyword in keywords] # remove all duplicates and keep original order unique_keywords = list(dict.fromkeys(keywords)) print(" ".join(unique_keywords)) print(f"{post.title}") print(f"https://www.reddit.com/r/fakehistoryporn/comments/{post.id}") URL_keywords = quote(' '.join(unique_keywords)) print(f"https://en.wikipedia.org/w/index.php?search={URL_keywords}") return post.id, post.title, unique_keywords def filter_analytics(posts, posts_analytics): post_ids = [post_id for post_id, _, _ in posts_analytics] filtered_posts = [] for post in posts: if post.id in post_ids: continue filtered_posts.append(post) return filtered_posts def get_keywords_from_post(sentences: list): keywords = [] for sentence in sentences: for word in sentence.words: if word.upos not in ['NOUN', 'VERB', 'NUM', 'PROPN']: continue keywords.append(word.text) return keywords def filter_posts(posts, posts_replied_to): filtered_posts = [] for post in posts: if post.id in posts_replied_to: continue if not re.search("(nazi|hitler|hilter|german)", post.title, re.IGNORECASE): continue filtered_posts.append(post) return filtered_posts def reply_to_post(post): # Reply to the post randomnumber = randint(0, len(LOCATIONS)) post.reply(f"Did you know that: {LOCATIONS[randomnumber]}") print(f"Bot replying to: {post.title} https://www.reddit.com/r/fakehistoryporn/comments/{post.id}") def store_line(f, line): f.write(line + "\n") if __name__ == '__main__': # log into reddit reddit = log_into_reddit() # check posts replied to posts_replied_to = get_posts_replied_to() # initiate nlp nlp_pipe = initiate_nlp() # create posts_analytics posts_analytics = get_posts_analytics() # fetch reddit posts posts = fetch_reddit_posts("fakehistoryporn", 10) analytics_filtered = filter_analytics(posts, posts_analytics) # read submission titles for post in analytics_filtered: nlp_data = process_post(post, nlp_pipe) posts_analytics.append(nlp_data) # store nlp doc in posts_analytics with open(ANALYTICS_JSON, "w") as f: f.write(dumps(posts_analytics)) # filter for keywords filtered_posts = filter_posts(posts, posts_replied_to) # respond to filtered posts with open("posts_replied_to.txt", "a") as f: for post in filtered_posts: reply_to_post(post) # store post_id in posts_replied_to store_line(f, post.id)
[ "json.dumps", "os.path.isfile", "stanza.Pipeline", "praw.Reddit", "re.search", "stanza.download" ]
[((200, 219), 'praw.Reddit', 'praw.Reddit', (['"""bot1"""'], {}), "('bot1')\n", (211, 219), False, 'import praw\n'), ((3354, 3375), 'stanza.download', 'stanza.download', (['"""en"""'], {}), "('en')\n", (3369, 3375), False, 'import stanza\n'), ((3391, 3439), 'stanza.Pipeline', 'stanza.Pipeline', (['"""en"""'], {'processors': '"""tokenize,pos"""'}), "('en', processors='tokenize,pos')\n", (3406, 3439), False, 'import stanza\n'), ((371, 409), 'os.path.isfile', 'os.path.isfile', (['"""posts_replied_to.txt"""'], {}), "('posts_replied_to.txt')\n", (385, 409), False, 'import os\n'), ((2983, 3013), 'os.path.isfile', 'os.path.isfile', (['ANALYTICS_JSON'], {}), '(ANALYTICS_JSON)\n', (2997, 3013), False, 'import os\n'), ((4981, 5048), 're.search', 're.search', (['"""(nazi|hitler|hilter|german)"""', 'post.title', 're.IGNORECASE'], {}), "('(nazi|hitler|hilter|german)', post.title, re.IGNORECASE)\n", (4990, 5048), False, 'import re\n'), ((6121, 6143), 'json.dumps', 'dumps', (['posts_analytics'], {}), '(posts_analytics)\n', (6126, 6143), False, 'from json import loads, dumps\n')]
import pytest from sys import version_info import fstr def test_basic(): template = fstr("{x} + {y} = {x + y}", x=1) assert template.format(y=2) == "1 + 2 = 3" assert template.format(y=3) == "1 + 3 = 4" def test_basic_format_language(): template = fstr("{x!r} + {y!r} = {x + y!r}", x="a") assert template.format(y="b") == "'a' + 'b' = 'ab'" assert template.format(y="c") == "'a' + 'c' = 'ac'" _A_GLOBAL = 1 def test_simple_fstr_evaluate(): a_local = 2 # noqa: F841 assert fstr("{_A_GLOBAL} {a_local}").evaluate() == "1 2" def test_format_language_with_inner_fstr(): template = fstr("{x:{width}}") assert template.format(x=10, width=3) == " 10" assert template.format(x=3, width=4) == " 3" template = fstr("{x:{width}.{precision}}") assert template.format(x=1.2345, width=4, precision=2) == " 1.2" def test_dict(): d = {'"': "double-quote", "'": "single-quote", "foo": "bar"} assert fstr("""{d["'"]}""").format(d=d) == "single-quote" assert fstr("""{d['"']}""").format(d=d) == "double-quote" assert fstr('{d["foo"]}').format(d=d) == "bar" assert fstr("{d['foo']}").format(d=d) == "bar" def test_format_with_function(): def add(x, y): return x + y template = fstr("{add(x, y)}", add=add) assert template.format(x=1, y=2) == "3" def test_even_double_brace_replacement(): template = fstr("{{}}") assert template.format() == "{}" def test_odd_double_brace_replacement(): template = fstr("{{{x}}}") assert template.format(x=1) == "{1}" def test_trailing_and_leading_space(): assert fstr("{ 1 + 2}").format() == "3" assert fstr("{1 + 2 }").format() == "3" assert fstr("{ 1 + 2 }").format() == "3" def dict_inside_braces_with_padding(): template = fstr("{ {x: y} }", x="a") assert template.format(y=1) == "{'a': 1}" def test_hash_in_string(): # These aren't comments, since they're in strings. d = {"#": "hash"} assert fstr("{'#'}").format() == "#" assert fstr("{d['#']}").format(d=d) == "hash" @pytest.mark.parametrize("brace", "])}") def test_unclosed_braces(brace): with pytest.raises(SyntaxError): fstr("{%s}" % brace).format() def test_many_expressions(): context = {"x": "X", "width": 1} def make_template(n, extra=""): return fstr(("{x} " + extra) * n) for n in range(250, 260): make_template(n).format(**context) # Test around 256. for i in range(250, 260): actual = make_template(i).format(**context) expected = (context["x"] + " ") * i assert actual == expected actual = make_template(250, "{x:{width}} ").format(**context) expected = (context["x"] + " ") * 500 assert actual == expected # Test lots of expressions and constants. assert fstr("{1} {'x'} {'y'} " * 1000).format() == "1 x y " * 1000 _format_specifier_width_precision_templates = [ "result: {value:{width}.{precision}}", "result: {value:{width!r}.{precision}}", "result: {value:{width:0}.{precision:1}}", "result: {value:{1}{0:0}.{precision:1}}", "result: {value:{ 1}{ 0:0}.{ precision:1}}", ] _format_specifier_expression_expecteds = [ "result: 12.35", "result: 12.35", "result: 12.35", "result: 12.35", "result: 12.35", " 0xa", " 0xa", " -0xa", " -0xa", " 0xa", ] @pytest.mark.parametrize("template", _format_specifier_width_precision_templates) def test_format_width_precision_specifier_expressions(template): context = {"width": 10, "precision": 4, "value": 12.34567} assert fstr(template).format(**context) == "result: 12.35" _format_hex_specifier_templates = [ (10, "{value:#{1}0x}"), (10, "{value:{'#'}1{0}{'x'}}"), (-10, "{value:-{'#'}1{0}x}"), (-10, "{value:{'-'}#{1}0{'x'}}"), (10, "{value:#{3 != {4:5} and width}x}"), ] @pytest.mark.parametrize("value, template", _format_hex_specifier_templates) def test_format_hex_specifier_expressions(value, template): expected = " -0xa" if value < 0 else " 0xa" assert fstr(template).format(value=value, width=10) == expected _invalid_format_specifier_templates = ["{'s'!r{':10'}}", "{4:{/5}}", "{'s'!{'r'}}"] @pytest.mark.parametrize("template", _invalid_format_specifier_templates) def test_invalid_format_specifier_expressions(template): with pytest.raises(SyntaxError): fstr(template).format() def test_side_effect_order(): class X: def __init__(self): self.i = 0 def __format__(self, spec): self.i += 1 return str(self.i) fstr("{x} {x}").format(x=X()) == "1 2" _bad_missing_expressions = [ "{}", "{ '" " {} ", "{!r}", "{ !r}", "{10:{ }}", " { } ", # The Python parser ignores also the following # whitespace characters in additional to a space. "{\t\f\r\n}", # Catch the empty expression before the # invalid conversion. "{!x}", "{ !xr}", "{!x:}", "{!x:a}", "{ !xr:}", "{ !xr:a}", "{!}", "{:}", # We find the empty expression before the # missing closing brace. "{!", "{!s:", "{:", "{:x", "{\xa0}", ] @pytest.mark.parametrize("template", _bad_missing_expressions) def test_missing_expression(template): with pytest.raises(SyntaxError): fstr(template).format() _bad_parens_in_expressions = ["{,}", "{,}", "{3)+(4}", "{\n}"] @pytest.mark.parametrize("template", _bad_parens_in_expressions) def test_bad_parens_in_expressions(template): with pytest.raises(SyntaxError): fstr(template).format() _backlashes_in_string_part = [ ("\t", "\t"), (r"\t", "\\t"), ("{2}\t", "2\t"), ("{2}\t{3}", "2\t3"), ("\t{3}", "\t3"), ("\u0394", "\u0394"), (r"\u0394", "\\u0394"), (r"\u0394", "\\u0394"), ("{2}\u0394", "2\u0394"), ("{2}\u0394{3}", "2\u03943"), ("\u0394{3}", "\u03943"), ("\x20", " "), (r"\x20", "\\x20"), (r"\x20", "\\x20"), ("{2}\x20", "2 "), ("{2}\x20{3}", "2 3"), ("\x20{3}", " 3"), ("2\x20", "2 "), ("2\x203", "2 3"), ("\x203", " 3"), ("\\{6*7}", "\\42"), (r"\{6*7}", "\\42"), ] if version_info >= (3, 0): _backlashes_in_string_part.extend( [ ("\U00000394", "\u0394"), (r"\U00000394", "\\U00000394"), (r"\U00000394", "\\U00000394"), ("{2}\U00000394", "2\u0394"), ("{2}\U00000394{3}", "2\u03943"), ("\U00000394{3}", "\u03943"), ("\N{GREEK CAPITAL LETTER DELTA}", "\u0394"), ("{2}\N{GREEK CAPITAL LETTER DELTA}", "2\u0394"), ("{2}\N{GREEK CAPITAL LETTER DELTA}{3}", "2\u03943"), ("\N{GREEK CAPITAL LETTER DELTA}{3}", "\u03943"), ("2\N{GREEK CAPITAL LETTER DELTA}", "2\u0394"), ("2\N{GREEK CAPITAL LETTER DELTA}3", "2\u03943"), ("\N{GREEK CAPITAL LETTER DELTA}3", "\u03943"), ] ) @pytest.mark.parametrize("template, expected", _backlashes_in_string_part) def test_backslashes_in_string_part(template, expected): assert fstr(template).format() == expected _backslashes_in_expression = [r"{\}", r"{\'a\'}", r"{\t3}", "{\n}"] @pytest.mark.parametrize("template", _backslashes_in_expression) def test_no_backslashes_in_expression_part(template): with pytest.raises(SyntaxError): fstr(template).format() def test_newlines_in_expressions(): assert fstr("{0}").format() == "0" assert ( fstr( """{3+ 4}""" ).format() == "7" # noqa: W503 ) _empty_format_specifiers = [ ("{x}", "test"), ("{x:}", "test"), ("{x!s:}", "test"), ("{x!r:}", "'test'"), ] @pytest.mark.parametrize("template, expected", _empty_format_specifiers) def test_empty_format_specifier(template, expected): assert fstr(template).format(x="test") == expected _bad_mismatched_braces = [ "{{}", "{{}}}", "}", "x}", "x}x", "{3:}>10}", "{3:}}>10}", "{3:{{>10}", "{3", "{3!", "{3:", "{3!s", "{3!s:", "{3!s:3", "x{", "x{x", "{x", "{3:s", "{{{", "{{}}{", "{", ] @pytest.mark.parametrize("template", _bad_mismatched_braces) def test_bad_mismatched_braces(template): with pytest.raises(SyntaxError): fstr(template).format() _ok_mismatched_braces = [("{'{'}", "{"), ("{'}'}", "}")] @pytest.mark.parametrize("template, expected", _ok_mismatched_braces) def test_ok_mistmatched_braces(template, expected): assert fstr(template).format() == expected _ok_lambdas = [ ("{(lambda y:x*y)('8')!r}", "'88888'"), ("{(lambda y:x*y)('8')!r:10}", "'88888' "), ("{(lambda y:x*y)('8'):10}", "88888 "), ] @pytest.mark.parametrize("template, expected", _ok_lambdas) def test_lambda(template, expected): assert fstr(template, x=5).format() == expected _triple_quoted_strings = [ ("{'''x'''}", "x"), ("{'''eric's'''}", "eric's"), ('{"x" """eric"s""" "y"}', 'xeric"sy'), ('{"x" """eric"s"""}', 'xeric"s'), ('{"""eric"s""" "y"}', 'eric"sy'), ('{"""x""" """eric"s""" "y"}', 'xeric"sy'), ('{"""x""" """eric"s""" """y"""}', 'xeric"sy'), ('{r"""x""" """eric"s""" """y"""}', 'xeric"sy'), ] @pytest.mark.parametrize("template, expected", _triple_quoted_strings) def test_expressions_with_triple_quoted_strings(template, expected): assert fstr(template).format() == expected def test_missing_variable(): with pytest.raises(NameError): fstr("v:{value}").format() def test_missing_format_spec(): class Obj: def __format__(self, spec): if not spec: return "*" return spec assert fstr("{Obj():x}").format(Obj=Obj) == "x" assert fstr("{Obj()}").format(Obj=Obj) == "*" assert fstr("{Obj():}").format(Obj=Obj) == "*" assert fstr("{3:}").format() == "3" assert fstr("{3!s:}").format() == "3" def test_call(): def foo(x): return "x=" + str(x) assert fstr("{foo(10)}").format(foo=foo) == "x=10" def test_leading_trailing_spaces(): assert fstr("{ 3}").format() == "3" assert fstr("{ 3}").format() == "3" assert fstr("{3 }").format() == "3" assert fstr("{3 }").format() == "3" assert fstr("expr={ {x: y for x, y in [(1, 2), ]} }").format() == "expr={1: 2}" assert fstr("expr={ {x: y for x, y in [(1, 2), ]}}").format() == "expr={1: 2}" def test_not_equal(): # There's a special test for this because there's a special # case in the f-string parser to look for != as not ending an # expression. Normally it would, while looking for !s or !r. assert fstr("{3!=4}").format() == "True" assert fstr("{3!=4:}").format() == "True" assert fstr("{3!=4!s}").format() == "True" assert fstr("{3!=4!s:.3}").format() == "Tru" def test_conversions(): assert fstr("{3.14:10.10}").format() == " 3.14" assert fstr("{3.14!s:10.10}").format() == "3.14 " assert fstr("{3.14!r:10.10}").format() == "3.14 " if version_info >= (3, 0): assert fstr("{3.14!a:10.10}").format() == "3.14 " assert fstr('{"a"}').format() == "a" assert fstr('{"a"!r}').format() == "'a'" if version_info >= (3, 0): assert fstr('{"a"!a}').format() == "'a'" # Not a conversion. assert fstr('{"a!r"}').format() == "a!r" # Not a conversion, but show that ! is allowed in a format spec. assert fstr("{3.14:!<10.10}").format() == "3.14!!!!!!" bad_conversions = [ "{3!g}" "{3!A}" "{3!3}" "{3!G}" "{3!!}" "{3!:}" "{3! s}" # no space before conversion char "{x!s{y}}", "{3!ss}", "{3!ss:}", "{3!ss:s}", ] for bad in bad_conversions: with pytest.raises(SyntaxError): fstr(bad).format() _invalid_expressions = ["{a[4)}", "{a(4]}"] @pytest.mark.parametrize("invalid", _invalid_expressions) def test_invalid_expressions(invalid): with pytest.raises(SyntaxError): fstr(invalid).format() if version_info < (3, 0): _causes_errors = [("{1000:j}", SyntaxError)] elif version_info < (3, 6): _causes_errors = [ ("{(lambda: 0):x}", TypeError), ("{(0,):x}", TypeError), ("{1000:j}", SyntaxError), ] else: _causes_errors = [ ("{(lambda: 0):x}", TypeError), ("{(0,):x}", TypeError), ("{1000:j}", ValueError), ] @pytest.mark.parametrize("bad, etype", _causes_errors) def test_errors(bad, etype): with pytest.raises(etype): fstr(bad).format()
[ "pytest.mark.parametrize", "pytest.raises", "fstr" ]
[((2072, 2111), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""brace"""', '"""])}"""'], {}), "('brace', '])}')\n", (2095, 2111), False, 'import pytest\n'), ((3433, 3518), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""template"""', '_format_specifier_width_precision_templates'], {}), "('template', _format_specifier_width_precision_templates\n )\n", (3456, 3518), False, 'import pytest\n'), ((3935, 4010), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""value, template"""', '_format_hex_specifier_templates'], {}), "('value, template', _format_hex_specifier_templates)\n", (3958, 4010), False, 'import pytest\n'), ((4287, 4359), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""template"""', '_invalid_format_specifier_templates'], {}), "('template', _invalid_format_specifier_templates)\n", (4310, 4359), False, 'import pytest\n'), ((5269, 5330), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""template"""', '_bad_missing_expressions'], {}), "('template', _bad_missing_expressions)\n", (5292, 5330), False, 'import pytest\n'), ((5507, 5570), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""template"""', '_bad_parens_in_expressions'], {}), "('template', _bad_parens_in_expressions)\n", (5530, 5570), False, 'import pytest\n'), ((7042, 7115), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""template, expected"""', '_backlashes_in_string_part'], {}), "('template, expected', _backlashes_in_string_part)\n", (7065, 7115), False, 'import pytest\n'), ((7293, 7356), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""template"""', '_backslashes_in_expression'], {}), "('template', _backslashes_in_expression)\n", (7316, 7356), False, 'import pytest\n'), ((7792, 7863), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""template, expected"""', '_empty_format_specifiers'], {}), "('template, expected', _empty_format_specifiers)\n", (7815, 7863), False, 'import pytest\n'), ((8257, 8316), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""template"""', '_bad_mismatched_braces'], {}), "('template', _bad_mismatched_braces)\n", (8280, 8316), False, 'import pytest\n'), ((8490, 8558), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""template, expected"""', '_ok_mismatched_braces'], {}), "('template, expected', _ok_mismatched_braces)\n", (8513, 8558), False, 'import pytest\n'), ((8823, 8881), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""template, expected"""', '_ok_lambdas'], {}), "('template, expected', _ok_lambdas)\n", (8846, 8881), False, 'import pytest\n'), ((9338, 9407), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""template, expected"""', '_triple_quoted_strings'], {}), "('template, expected', _triple_quoted_strings)\n", (9361, 9407), False, 'import pytest\n'), ((11989, 12045), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""invalid"""', '_invalid_expressions'], {}), "('invalid', _invalid_expressions)\n", (12012, 12045), False, 'import pytest\n'), ((12540, 12593), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""bad, etype"""', '_causes_errors'], {}), "('bad, etype', _causes_errors)\n", (12563, 12593), False, 'import pytest\n'), ((91, 123), 'fstr', 'fstr', (['"""{x} + {y} = {x + y}"""'], {'x': '(1)'}), "('{x} + {y} = {x + y}', x=1)\n", (95, 123), False, 'import fstr\n'), ((269, 309), 'fstr', 'fstr', (['"""{x!r} + {y!r} = {x + y!r}"""'], {'x': '"""a"""'}), "('{x!r} + {y!r} = {x + y!r}', x='a')\n", (273, 309), False, 'import fstr\n'), ((625, 644), 'fstr', 'fstr', (['"""{x:{width}}"""'], {}), "('{x:{width}}')\n", (629, 644), False, 'import fstr\n'), ((763, 794), 'fstr', 'fstr', (['"""{x:{width}.{precision}}"""'], {}), "('{x:{width}.{precision}}')\n", (767, 794), False, 'import fstr\n'), ((1265, 1293), 'fstr', 'fstr', (['"""{add(x, y)}"""'], {'add': 'add'}), "('{add(x, y)}', add=add)\n", (1269, 1293), False, 'import fstr\n'), ((1397, 1409), 'fstr', 'fstr', (['"""{{}}"""'], {}), "('{{}}')\n", (1401, 1409), False, 'import fstr\n'), ((1505, 1520), 'fstr', 'fstr', (['"""{{{x}}}"""'], {}), "('{{{x}}}')\n", (1509, 1520), False, 'import fstr\n'), ((1800, 1825), 'fstr', 'fstr', (['"""{ {x: y} }"""'], {'x': '"""a"""'}), "('{ {x: y} }', x='a')\n", (1804, 1825), False, 'import fstr\n'), ((2154, 2180), 'pytest.raises', 'pytest.raises', (['SyntaxError'], {}), '(SyntaxError)\n', (2167, 2180), False, 'import pytest\n'), ((2340, 2366), 'fstr', 'fstr', (["(('{x} ' + extra) * n)"], {}), "(('{x} ' + extra) * n)\n", (2344, 2366), False, 'import fstr\n'), ((4426, 4452), 'pytest.raises', 'pytest.raises', (['SyntaxError'], {}), '(SyntaxError)\n', (4439, 4452), False, 'import pytest\n'), ((5379, 5405), 'pytest.raises', 'pytest.raises', (['SyntaxError'], {}), '(SyntaxError)\n', (5392, 5405), False, 'import pytest\n'), ((5626, 5652), 'pytest.raises', 'pytest.raises', (['SyntaxError'], {}), '(SyntaxError)\n', (5639, 5652), False, 'import pytest\n'), ((7420, 7446), 'pytest.raises', 'pytest.raises', (['SyntaxError'], {}), '(SyntaxError)\n', (7433, 7446), False, 'import pytest\n'), ((8368, 8394), 'pytest.raises', 'pytest.raises', (['SyntaxError'], {}), '(SyntaxError)\n', (8381, 8394), False, 'import pytest\n'), ((9564, 9588), 'pytest.raises', 'pytest.raises', (['NameError'], {}), '(NameError)\n', (9577, 9588), False, 'import pytest\n'), ((12094, 12120), 'pytest.raises', 'pytest.raises', (['SyntaxError'], {}), '(SyntaxError)\n', (12107, 12120), False, 'import pytest\n'), ((12632, 12652), 'pytest.raises', 'pytest.raises', (['etype'], {}), '(etype)\n', (12645, 12652), False, 'import pytest\n'), ((11881, 11907), 'pytest.raises', 'pytest.raises', (['SyntaxError'], {}), '(SyntaxError)\n', (11894, 11907), False, 'import pytest\n'), ((514, 543), 'fstr', 'fstr', (['"""{_A_GLOBAL} {a_local}"""'], {}), "('{_A_GLOBAL} {a_local}')\n", (518, 543), False, 'import fstr\n'), ((959, 976), 'fstr', 'fstr', (['"""{d["\'"]}"""'], {}), '(\'{d["\\\'"]}\')\n', (963, 976), False, 'import fstr\n'), ((1021, 1039), 'fstr', 'fstr', (['"""{d[\'"\']}"""'], {}), '(\'{d[\\\'"\\\']}\')\n', (1025, 1039), False, 'import fstr\n'), ((1083, 1101), 'fstr', 'fstr', (['"""{d["foo"]}"""'], {}), '(\'{d["foo"]}\')\n', (1087, 1101), False, 'import fstr\n'), ((1134, 1152), 'fstr', 'fstr', (['"""{d[\'foo\']}"""'], {}), '("{d[\'foo\']}")\n', (1138, 1152), False, 'import fstr\n'), ((1614, 1632), 'fstr', 'fstr', (['"""{ 1 + 2}"""'], {}), "('{ 1 + 2}')\n", (1618, 1632), False, 'import fstr\n'), ((1660, 1678), 'fstr', 'fstr', (['"""{1 + 2 }"""'], {}), "('{1 + 2 }')\n", (1664, 1678), False, 'import fstr\n'), ((1706, 1727), 'fstr', 'fstr', (['"""{ 1 + 2 }"""'], {}), "('{ 1 + 2 }')\n", (1710, 1727), False, 'import fstr\n'), ((1989, 2002), 'fstr', 'fstr', (['"""{\'#\'}"""'], {}), '("{\'#\'}")\n', (1993, 2002), False, 'import fstr\n'), ((2030, 2046), 'fstr', 'fstr', (['"""{d[\'#\']}"""'], {}), '("{d[\'#\']}")\n', (2034, 2046), False, 'import fstr\n'), ((2190, 2210), 'fstr', 'fstr', (["('{%s}' % brace)"], {}), "('{%s}' % brace)\n", (2194, 2210), False, 'import fstr\n'), ((2822, 2853), 'fstr', 'fstr', (['("{1} {\'x\'} {\'y\'} " * 1000)'], {}), '("{1} {\'x\'} {\'y\'} " * 1000)\n', (2826, 2853), False, 'import fstr\n'), ((3653, 3667), 'fstr', 'fstr', (['template'], {}), '(template)\n', (3657, 3667), False, 'import fstr\n'), ((4141, 4155), 'fstr', 'fstr', (['template'], {}), '(template)\n', (4145, 4155), False, 'import fstr\n'), ((4462, 4476), 'fstr', 'fstr', (['template'], {}), '(template)\n', (4466, 4476), False, 'import fstr\n'), ((4679, 4694), 'fstr', 'fstr', (['"""{x} {x}"""'], {}), "('{x} {x}')\n", (4683, 4694), False, 'import fstr\n'), ((5415, 5429), 'fstr', 'fstr', (['template'], {}), '(template)\n', (5419, 5429), False, 'import fstr\n'), ((5662, 5676), 'fstr', 'fstr', (['template'], {}), '(template)\n', (5666, 5676), False, 'import fstr\n'), ((7184, 7198), 'fstr', 'fstr', (['template'], {}), '(template)\n', (7188, 7198), False, 'import fstr\n'), ((7456, 7470), 'fstr', 'fstr', (['template'], {}), '(template)\n', (7460, 7470), False, 'import fstr\n'), ((7529, 7540), 'fstr', 'fstr', (['"""{0}"""'], {}), "('{0}')\n", (7533, 7540), False, 'import fstr\n'), ((7578, 7593), 'fstr', 'fstr', (['"""{3+\n4}"""'], {}), "('{3+\\n4}')\n", (7582, 7593), False, 'import fstr\n'), ((7928, 7942), 'fstr', 'fstr', (['template'], {}), '(template)\n', (7932, 7942), False, 'import fstr\n'), ((8404, 8418), 'fstr', 'fstr', (['template'], {}), '(template)\n', (8408, 8418), False, 'import fstr\n'), ((8622, 8636), 'fstr', 'fstr', (['template'], {}), '(template)\n', (8626, 8636), False, 'import fstr\n'), ((8930, 8949), 'fstr', 'fstr', (['template'], {'x': '(5)'}), '(template, x=5)\n', (8934, 8949), False, 'import fstr\n'), ((9488, 9502), 'fstr', 'fstr', (['template'], {}), '(template)\n', (9492, 9502), False, 'import fstr\n'), ((9598, 9615), 'fstr', 'fstr', (['"""v:{value}"""'], {}), "('v:{value}')\n", (9602, 9615), False, 'import fstr\n'), ((9798, 9815), 'fstr', 'fstr', (['"""{Obj():x}"""'], {}), "('{Obj():x}')\n", (9802, 9815), False, 'import fstr\n'), ((9850, 9865), 'fstr', 'fstr', (['"""{Obj()}"""'], {}), "('{Obj()}')\n", (9854, 9865), False, 'import fstr\n'), ((9900, 9916), 'fstr', 'fstr', (['"""{Obj():}"""'], {}), "('{Obj():}')\n", (9904, 9916), False, 'import fstr\n'), ((9952, 9964), 'fstr', 'fstr', (['"""{3:}"""'], {}), "('{3:}')\n", (9956, 9964), False, 'import fstr\n'), ((9992, 10006), 'fstr', 'fstr', (['"""{3!s:}"""'], {}), "('{3!s:}')\n", (9996, 10006), False, 'import fstr\n'), ((10099, 10116), 'fstr', 'fstr', (['"""{foo(10)}"""'], {}), "('{foo(10)}')\n", (10103, 10116), False, 'import fstr\n'), ((10192, 10204), 'fstr', 'fstr', (['"""{ 3}"""'], {}), "('{ 3}')\n", (10196, 10204), False, 'import fstr\n'), ((10232, 10245), 'fstr', 'fstr', (['"""{ 3}"""'], {}), "('{ 3}')\n", (10236, 10245), False, 'import fstr\n'), ((10273, 10285), 'fstr', 'fstr', (['"""{3 }"""'], {}), "('{3 }')\n", (10277, 10285), False, 'import fstr\n'), ((10313, 10326), 'fstr', 'fstr', (['"""{3 }"""'], {}), "('{3 }')\n", (10317, 10326), False, 'import fstr\n'), ((10355, 10401), 'fstr', 'fstr', (['"""expr={ {x: y for x, y in [(1, 2), ]} }"""'], {}), "('expr={ {x: y for x, y in [(1, 2), ]} }')\n", (10359, 10401), False, 'import fstr\n'), ((10439, 10484), 'fstr', 'fstr', (['"""expr={ {x: y for x, y in [(1, 2), ]}}"""'], {}), "('expr={ {x: y for x, y in [(1, 2), ]}}')\n", (10443, 10484), False, 'import fstr\n'), ((10742, 10756), 'fstr', 'fstr', (['"""{3!=4}"""'], {}), "('{3!=4}')\n", (10746, 10756), False, 'import fstr\n'), ((10787, 10802), 'fstr', 'fstr', (['"""{3!=4:}"""'], {}), "('{3!=4:}')\n", (10791, 10802), False, 'import fstr\n'), ((10833, 10849), 'fstr', 'fstr', (['"""{3!=4!s}"""'], {}), "('{3!=4!s}')\n", (10837, 10849), False, 'import fstr\n'), ((10880, 10899), 'fstr', 'fstr', (['"""{3!=4!s:.3}"""'], {}), "('{3!=4!s:.3}')\n", (10884, 10899), False, 'import fstr\n'), ((10955, 10975), 'fstr', 'fstr', (['"""{3.14:10.10}"""'], {}), "('{3.14:10.10}')\n", (10959, 10975), False, 'import fstr\n'), ((11012, 11034), 'fstr', 'fstr', (['"""{3.14!s:10.10}"""'], {}), "('{3.14!s:10.10}')\n", (11016, 11034), False, 'import fstr\n'), ((11071, 11093), 'fstr', 'fstr', (['"""{3.14!r:10.10}"""'], {}), "('{3.14!r:10.10}')\n", (11075, 11093), False, 'import fstr\n'), ((11225, 11238), 'fstr', 'fstr', (['"""{"a"}"""'], {}), '(\'{"a"}\')\n', (11229, 11238), False, 'import fstr\n'), ((11266, 11281), 'fstr', 'fstr', (['"""{"a"!r}"""'], {}), '(\'{"a"!r}\')\n', (11270, 11281), False, 'import fstr\n'), ((11416, 11431), 'fstr', 'fstr', (['"""{"a!r"}"""'], {}), '(\'{"a!r"}\')\n', (11420, 11431), False, 'import fstr\n'), ((11531, 11553), 'fstr', 'fstr', (['"""{3.14:!<10.10}"""'], {}), "('{3.14:!<10.10}')\n", (11535, 11553), False, 'import fstr\n'), ((12130, 12143), 'fstr', 'fstr', (['invalid'], {}), '(invalid)\n', (12134, 12143), False, 'import fstr\n'), ((12662, 12671), 'fstr', 'fstr', (['bad'], {}), '(bad)\n', (12666, 12671), False, 'import fstr\n'), ((11165, 11187), 'fstr', 'fstr', (['"""{3.14!a:10.10}"""'], {}), "('{3.14!a:10.10}')\n", (11169, 11187), False, 'import fstr\n'), ((11346, 11361), 'fstr', 'fstr', (['"""{"a"!a}"""'], {}), '(\'{"a"!a}\')\n', (11350, 11361), False, 'import fstr\n'), ((11921, 11930), 'fstr', 'fstr', (['bad'], {}), '(bad)\n', (11925, 11930), False, 'import fstr\n')]
#!/usr/bin/python # -*- coding: utf-8 -*- import os import sys from builders import deb, rpm, amazon from builders.util import shell_call __author__ = "<NAME>" __copyright__ = "Copyright (C) Nginx, Inc. All rights reserved." __license__ = "" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" if __name__ == '__main__': package = 'nginx-amplify-agent' if len(sys.argv) == 1 else sys.argv[1] if os.path.isfile('/etc/debian_version'): deb.build(package=package) elif os.path.isfile('/etc/redhat-release'): rpm.build(package=package) else: os_release = shell_call('cat /etc/os-release', important=False) if 'amazon linux' in os_release.lower(): amazon.build(package=package) else: print("sorry, it will be done later\n")
[ "builders.amazon.build", "builders.deb.build", "builders.util.shell_call", "os.path.isfile", "builders.rpm.build" ]
[((404, 441), 'os.path.isfile', 'os.path.isfile', (['"""/etc/debian_version"""'], {}), "('/etc/debian_version')\n", (418, 441), False, 'import os\n'), ((451, 477), 'builders.deb.build', 'deb.build', ([], {'package': 'package'}), '(package=package)\n', (460, 477), False, 'from builders import deb, rpm, amazon\n'), ((487, 524), 'os.path.isfile', 'os.path.isfile', (['"""/etc/redhat-release"""'], {}), "('/etc/redhat-release')\n", (501, 524), False, 'import os\n'), ((534, 560), 'builders.rpm.build', 'rpm.build', ([], {'package': 'package'}), '(package=package)\n', (543, 560), False, 'from builders import deb, rpm, amazon\n'), ((592, 642), 'builders.util.shell_call', 'shell_call', (['"""cat /etc/os-release"""'], {'important': '(False)'}), "('cat /etc/os-release', important=False)\n", (602, 642), False, 'from builders.util import shell_call\n'), ((705, 734), 'builders.amazon.build', 'amazon.build', ([], {'package': 'package'}), '(package=package)\n', (717, 734), False, 'from builders import deb, rpm, amazon\n')]
# Generated by Django 3.0.8 on 2020-12-19 21:33 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('category', '0001_initial'), ('product', '0001_initial'), ] operations = [ migrations.AddField( model_name='product', name='category', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='category.Category'), ), migrations.AlterField( model_name='product', name='image', field=models.ImageField(blank=True, null=True, upload_to='images/'), ), migrations.AlterField( model_name='product', name='is_active', field=models.BooleanField(blank=True, default=True), ), ]
[ "django.db.models.ForeignKey", "django.db.models.BooleanField", "django.db.models.ImageField" ]
[((397, 512), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.SET_NULL', 'to': '"""category.Category"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.SET_NULL, to='category.Category')\n", (414, 512), False, 'from django.db import migrations, models\n'), ((629, 690), 'django.db.models.ImageField', 'models.ImageField', ([], {'blank': '(True)', 'null': '(True)', 'upload_to': '"""images/"""'}), "(blank=True, null=True, upload_to='images/')\n", (646, 690), False, 'from django.db import migrations, models\n'), ((816, 861), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'blank': '(True)', 'default': '(True)'}), '(blank=True, default=True)\n', (835, 861), False, 'from django.db import migrations, models\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import codecs import os from setuptools import find_packages, setup def read(fname): file_path = os.path.join(os.path.dirname(__file__), fname) return codecs.open(file_path, encoding="utf-8").read() setup( name="pardal", version="0.1.0", author="<NAME>", author_email="<EMAIL>", maintainer="<NAME>", maintainer_email="<EMAIL>", license="MIT", url="https://github.com/anapaulagomes/pardal", description="An accessible and customizable Twitter client", packages=find_packages(exclude=["tests", "docs"]), python_requires=">=3.7", install_requires=[""], # FIXME classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: End Users/Desktop", "Topic :: Adaptive Technologies", "Programming Language :: Python", "Programming Language :: Python :: 3.7", "Operating System :: OS Independent", "License :: OSI Approved :: MIT License", ], entry_points={}, )
[ "os.path.dirname", "codecs.open", "setuptools.find_packages" ]
[((164, 189), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (179, 189), False, 'import os\n'), ((560, 600), 'setuptools.find_packages', 'find_packages', ([], {'exclude': "['tests', 'docs']"}), "(exclude=['tests', 'docs'])\n", (573, 600), False, 'from setuptools import find_packages, setup\n'), ((209, 249), 'codecs.open', 'codecs.open', (['file_path'], {'encoding': '"""utf-8"""'}), "(file_path, encoding='utf-8')\n", (220, 249), False, 'import codecs\n')]
"""Create dataframe and check the quality This script downloads a dataset from Seattle Open Data Portal and imports as a Pandas Dataframe. This tool checks if the dataframe: 1. Has at least 10 rows of data 2. Contains only the columns that specified as the second argument 3. Values in each column have the same python type This script requires that `pandas` be installed within the Python environment you are running this script in. This file can also be imported as a module and contains the following functions: * test_column_names - returns bool if the column name match * test_nan_values - returns bool if the dataframe has nan value * test_least_row_counts - returns bool if the dataframe has at least one row of data * main - the main function of the script """ import pandas as pd DATAFRAMES = pd.read_csv( 'https://data.seattle.gov/api/views/tw7j-df_importaw/rows.csv?accessType=DOWNLOAD') def test_datatype(df_import): """Test if all columns have values of the correct type Parameters ---------- df_import : Pandas Dataframe The dataset imported as Pandas Dataframe Returns ------- bool a bool value: True if the datatype of each column match """ columns = list(df_import) for name in columns: try: tp_name = ( isinstance( df_import[name].iloc[1].item(), df_import[name].map(type))).any().tolist() except AttributeError: tp_name = ( isinstance( df_import[name].iloc[1], df_import[name].map(type))).any().tolist() return tp_name def test_column_names(df_import): """Test if the dataframe has expected columns Parameters ---------- df_import : Pandas Dataframe The dataset imported as Pandas Dataframe Returns ------- bool a bool value: True if the dataframe has expected columns """ df_import_columns = sorted(df_import.columns.tolist()) df_import_checklist = ['trip_id', 'starttime', 'stoptime', 'bikeid', 'tripduration', 'from_station_name', 'to_station_name', 'from_station_id', 'to_station_id', 'usertype', 'gender', 'birthyear'] if df_import_columns == sorted(df_import_checklist): return True def test_nan_values(df_import): """Test if the dataframe has non value Parameters ---------- df_import : Pandas Dataframe The dataset imported as Pandas Dataframe Returns ------- bool a bool value: True if the dataframe has non value """ return df_import.notnull().values.any() def test_least_row_counts(df_import): """Test if the dataframe has at least one row of data Parameters ---------- df_import : Pandas Dataframe The dataset imported as Pandas Dataframe Returns ------- bool a bool value: True if the dataframe has at least one row of data """ return df_import.shape[0] >= 1 if __name__ == '__main__': """Main function Returns ------- bool a bool value if the dataframe pass all the tests """ DATAFRAME = pd.read_csv( 'https://data.seattle.gov/api/views/tw7j-df_importaw/rows.csv?accessType=DOWNLOAD') # only fetch first 10 rows for testing DATAFRAME = DATAFRAME.head(10) print(test_column_names(DATAFRAME) & test_datatype(DATAFRAME) & test_least_row_counts(DATAFRAME) & test_nan_values(DATAFRAME))
[ "pandas.read_csv" ]
[((824, 929), 'pandas.read_csv', 'pd.read_csv', (['"""https://data.seattle.gov/api/views/tw7j-df_importaw/rows.csv?accessType=DOWNLOAD"""'], {}), "(\n 'https://data.seattle.gov/api/views/tw7j-df_importaw/rows.csv?accessType=DOWNLOAD'\n )\n", (835, 929), True, 'import pandas as pd\n'), ((3476, 3581), 'pandas.read_csv', 'pd.read_csv', (['"""https://data.seattle.gov/api/views/tw7j-df_importaw/rows.csv?accessType=DOWNLOAD"""'], {}), "(\n 'https://data.seattle.gov/api/views/tw7j-df_importaw/rows.csv?accessType=DOWNLOAD'\n )\n", (3487, 3581), True, 'import pandas as pd\n')]
import unittest import zserio from testutils import getZserioApi class StructureConstraintsTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.api = getZserioApi(__file__, "constraints.zs").structure_constraints def testReadCorrectColors(self): writer = zserio.BitStreamWriter() self.__class__._write(writer, self.api.BasicColor.BLACK, self.api.BasicColor.WHITE, self.api.ExtendedColor.PURPLE) reader = zserio.BitStreamReader(writer.byte_array, writer.bitposition) structureConstraints = self.api.StructureConstraints() structureConstraints.read(reader) self.assertEqual(self.api.BasicColor.BLACK, structureConstraints.black_color) self.assertEqual(self.api.BasicColor.WHITE, structureConstraints.white_color) self.assertEqual(self.api.ExtendedColor.PURPLE, structureConstraints.purple_color) def testReadWrongBlackConstraint(self): writer = zserio.BitStreamWriter() self.__class__._write(writer, self.api.BasicColor.RED, self.api.BasicColor.WHITE, self.api.ExtendedColor.PURPLE) reader = zserio.BitStreamReader(writer.byte_array, writer.bitposition) structureConstraints = self.api.StructureConstraints() with self.assertRaises(zserio.PythonRuntimeException): structureConstraints.read(reader) def testReadWrongWhiteConstraint(self): writer = zserio.BitStreamWriter() self.__class__._write(writer, self.api.BasicColor.BLACK, self.api.BasicColor.RED, self.api.ExtendedColor.PURPLE) reader = zserio.BitStreamReader(writer.byte_array, writer.bitposition) structureConstraints = self.api.StructureConstraints() with self.assertRaises(zserio.PythonRuntimeException): structureConstraints.read(reader) def testReadWrongPurpleConstraint(self): writer = zserio.BitStreamWriter() self.__class__._write(writer, self.api.BasicColor.BLACK, self.api.BasicColor.WHITE, self.api.ExtendedColor.LIME) reader = zserio.BitStreamReader(writer.byte_array, writer.bitposition) structureConstraints = self.api.StructureConstraints() with self.assertRaises(zserio.PythonRuntimeException): structureConstraints.read(reader) def testWriteCorrectConstraints(self): structureConstraints = self.api.StructureConstraints(self.api.BasicColor.BLACK, self.api.BasicColor.WHITE, True, self.api.ExtendedColor.PURPLE) bitBuffer = zserio.serialize(structureConstraints) readStructureConstraints = zserio.deserialize(self.api.StructureConstraints, bitBuffer) self.assertEqual(self.api.BasicColor.BLACK, readStructureConstraints.black_color) self.assertEqual(self.api.BasicColor.WHITE, readStructureConstraints.white_color) self.assertEqual(self.api.ExtendedColor.PURPLE, readStructureConstraints.purple_color) self.assertEqual(structureConstraints, readStructureConstraints) def testWriteWrongBlackConstraint(self): structureConstraints = self.api.StructureConstraints(self.api.BasicColor.RED, self.api.BasicColor.WHITE, True, self.api.ExtendedColor.PURPLE) writer = zserio.BitStreamWriter() with self.assertRaises(zserio.PythonRuntimeException): structureConstraints.write(writer) def testWriteWrongWhiteConstraint(self): structureConstraints = self.api.StructureConstraints(self.api.BasicColor.BLACK, self.api.BasicColor.RED, True, self.api.ExtendedColor.PURPLE) writer = zserio.BitStreamWriter() with self.assertRaises(zserio.PythonRuntimeException): structureConstraints.write(writer) def testWriteWrongPurpleConstraint(self): structureConstraints = self.api.StructureConstraints(self.api.BasicColor.BLACK, self.api.BasicColor.WHITE, True, self.api.ExtendedColor.LIME) writer = zserio.BitStreamWriter() with self.assertRaises(zserio.PythonRuntimeException): structureConstraints.write(writer) @staticmethod def _write(writer, blackColor, whiteColor, purpleColor): writer.write_bits(blackColor.value, 8) writer.write_bool(True) writer.write_bits(whiteColor.value, 8) writer.write_bool(True) writer.write_bits(purpleColor.value, 16)
[ "zserio.serialize", "zserio.deserialize", "zserio.BitStreamReader", "testutils.getZserioApi", "zserio.BitStreamWriter" ]
[((296, 320), 'zserio.BitStreamWriter', 'zserio.BitStreamWriter', ([], {}), '()\n', (318, 320), False, 'import zserio\n'), ((491, 552), 'zserio.BitStreamReader', 'zserio.BitStreamReader', (['writer.byte_array', 'writer.bitposition'], {}), '(writer.byte_array, writer.bitposition)\n', (513, 552), False, 'import zserio\n'), ((984, 1008), 'zserio.BitStreamWriter', 'zserio.BitStreamWriter', ([], {}), '()\n', (1006, 1008), False, 'import zserio\n'), ((1177, 1238), 'zserio.BitStreamReader', 'zserio.BitStreamReader', (['writer.byte_array', 'writer.bitposition'], {}), '(writer.byte_array, writer.bitposition)\n', (1199, 1238), False, 'import zserio\n'), ((1474, 1498), 'zserio.BitStreamWriter', 'zserio.BitStreamWriter', ([], {}), '()\n', (1496, 1498), False, 'import zserio\n'), ((1667, 1728), 'zserio.BitStreamReader', 'zserio.BitStreamReader', (['writer.byte_array', 'writer.bitposition'], {}), '(writer.byte_array, writer.bitposition)\n', (1689, 1728), False, 'import zserio\n'), ((1965, 1989), 'zserio.BitStreamWriter', 'zserio.BitStreamWriter', ([], {}), '()\n', (1987, 1989), False, 'import zserio\n'), ((2158, 2219), 'zserio.BitStreamReader', 'zserio.BitStreamReader', (['writer.byte_array', 'writer.bitposition'], {}), '(writer.byte_array, writer.bitposition)\n', (2180, 2219), False, 'import zserio\n'), ((2792, 2830), 'zserio.serialize', 'zserio.serialize', (['structureConstraints'], {}), '(structureConstraints)\n', (2808, 2830), False, 'import zserio\n'), ((2866, 2926), 'zserio.deserialize', 'zserio.deserialize', (['self.api.StructureConstraints', 'bitBuffer'], {}), '(self.api.StructureConstraints, bitBuffer)\n', (2884, 2926), False, 'import zserio\n'), ((3671, 3695), 'zserio.BitStreamWriter', 'zserio.BitStreamWriter', ([], {}), '()\n', (3693, 3695), False, 'import zserio\n'), ((4202, 4226), 'zserio.BitStreamWriter', 'zserio.BitStreamWriter', ([], {}), '()\n', (4224, 4226), False, 'import zserio\n'), ((4734, 4758), 'zserio.BitStreamWriter', 'zserio.BitStreamWriter', ([], {}), '()\n', (4756, 4758), False, 'import zserio\n'), ((178, 218), 'testutils.getZserioApi', 'getZserioApi', (['__file__', '"""constraints.zs"""'], {}), "(__file__, 'constraints.zs')\n", (190, 218), False, 'from testutils import getZserioApi\n')]
import yaml import pandas as pd from more_itertools import flatten import os os.chdir('notebook') fbgn2symbol = ( pd.read_feather('../references/gene_annotation_dmel_r6-26.feather', columns=['FBgn', 'gene_symbol']) .set_index('FBgn') .to_dict()['gene_symbol'] ) config = yaml.safe_load(open('../config/common.yaml')) CLUSTER_ANNOT = config['cluster_annot'] CLUSTER_ORDER = config['cluster_order'] lit_genes = yaml.safe_load(open('../config/literature_genes.yaml')) lit_genes_all = list(flatten([ v for k, v in lit_genes.items() ])) bm = ( pd.read_feather('../output/seurat3-cluster-wf/combined_n3_biomarkers.feather', columns=['FBgn', 'gene_symbol', 'cluster', 'p_val_adj', 'pct.1']) .query('p_val_adj <= 0.01') .drop_duplicates(subset='FBgn', keep=False) .reset_index(drop=True) .assign(cluster=lambda df: df.cluster.cat.rename_categories(CLUSTER_ANNOT)) .assign(cluster=lambda df: df.cluster.cat.reorder_categories(CLUSTER_ORDER)) .set_index('FBgn') .groupby('cluster') ) def get_lit(cluster): print(cluster) df = bm.get_group(cluster) return df.reindex(lit_genes_all).dropna() get_lit('SP') get_lit('EPS') get_lit('PS1') get_lit('PS2') get_lit('PS3') get_lit('ECY') get_lit("CY1") get_lit("CY2") get_lit("TE") get_lit("PC")
[ "pandas.read_feather", "os.chdir" ]
[((78, 98), 'os.chdir', 'os.chdir', (['"""notebook"""'], {}), "('notebook')\n", (86, 98), False, 'import os\n'), ((120, 225), 'pandas.read_feather', 'pd.read_feather', (['"""../references/gene_annotation_dmel_r6-26.feather"""'], {'columns': "['FBgn', 'gene_symbol']"}), "('../references/gene_annotation_dmel_r6-26.feather', columns\n =['FBgn', 'gene_symbol'])\n", (135, 225), True, 'import pandas as pd\n'), ((569, 717), 'pandas.read_feather', 'pd.read_feather', (['"""../output/seurat3-cluster-wf/combined_n3_biomarkers.feather"""'], {'columns': "['FBgn', 'gene_symbol', 'cluster', 'p_val_adj', 'pct.1']"}), "('../output/seurat3-cluster-wf/combined_n3_biomarkers.feather',\n columns=['FBgn', 'gene_symbol', 'cluster', 'p_val_adj', 'pct.1'])\n", (584, 717), True, 'import pandas as pd\n')]
""" <NAME> json from yr. Location Remmen, Halden: lat: 59.1304, lon: 11.3546, altitude: ca. 80 https://api.met.no/weatherapi/locationforecast/2.0/#!/data/get_compact_format request api: https://api.met.no/weatherapi/locationforecast/2.0/compact?altitude=80&lat=63.4305&lon=10.3950 curl: curl -X GET --header 'Accept: application/json' 'https://api.met.no/weatherapi/locationforecast/2.0/compact?altitude=80&lat=59.1304&lon=11.3545' """ import requests # api module import json #Save as Json #Remmen location og altitude: lat = "59.1304" lon = "11.3546" alt = "80" # url to yr api url = "https://api.met.no/weatherapi/locationforecast/2.0/complete.json?altitude=" + alt + "&lat=" + lat + "&lon=" + lon # Header to tell yr where the request is coming from. # NB! Find your user-agent and put the feeld headers = { "Content-type": "application/json", "Cache-Control": "no-cache", "user-agent": "Put your user-agent here" } # get the json api response = requests.request("GET", url, headers=headers) if response: print('Success!') else: print('An error has occurred.') data = response.json() def write_json_file(): """ Save data as json file """ with open('yr_data_complete_format.json', 'w') as f: json.dump(data, f) write_json_file() # TODO! If-Modified-Since def updated_time(): """ Time updated at yr """ updated = (data["properties"]["meta"]["updated_at"]) return updated #print(data["properties"]["timeseries"][0]["data"]["instant"]["details"]) def air_temperature(): """ Return the instant air temperature in celsius """ air_temp = (data["properties"]["timeseries"][0]["data"]["instant"]["details"]["air_temperature"]) return air_temp def wind_speed(): """ Wind speed in m/s """ wind_speed = (data["properties"]["timeseries"][0]["data"]["instant"]["details"]["wind_speed"]) return wind_speed # Precentage value of the total cloud cover at all heights cloud_area = (data["properties"]["timeseries"][0]["data"]["instant"]["details"]["cloud_area_fraction"]) rel_humidity = (data["properties"]["timeseries"][0]["data"]["instant"]["details"]["relative_humidity"]) def summary_1_hour(): """ String value giving a summary for +1 hour """ summary_1_hour = (data["properties"]["timeseries"][0]["data"]["next_1_hours"]["summary"]["symbol_code"]) return summary_1_hour def precipitation_1_hour(): """ Precipitation for +1 hour in mm """ precipitation_1_hour = (data["properties"]["timeseries"][0]["data"]["next_1_hours"]["details"]["precipitation_amount"]) return precipitation_1_hour def wind_direction(): """ Return the wind from direction """ wind_from_direction = (data["properties"]["timeseries"][0]["data"]["instant"]["details"]["wind_from_direction"]) if wind_from_direction > 326.25 or wind_from_direction < 11.25: print("Nord") return "North" elif wind_from_direction < 56.25: print("Nordøst") return "Northeast" elif wind_from_direction < 101.25: print("Øst") return "East" elif wind_from_direction < 146.25: print("Sørøst") return "Southeast" elif wind_from_direction < 191.25: print("Sør") return "South" elif wind_from_direction < 236.25: print("Sørvest") return "Southwest" elif wind_from_direction < 281.25: print("Vest") return "West" elif wind_from_direction < 326.25: print("Nordvest") return "Northwest" #print(wind_direction())
[ "json.dump", "requests.request" ]
[((987, 1032), 'requests.request', 'requests.request', (['"""GET"""', 'url'], {'headers': 'headers'}), "('GET', url, headers=headers)\n", (1003, 1032), False, 'import requests\n'), ((1257, 1275), 'json.dump', 'json.dump', (['data', 'f'], {}), '(data, f)\n', (1266, 1275), False, 'import json\n')]
import re from glom import glom import json from jsonschema import validate from jsonschema import ValidationError from jsonpath_ng import parse class HarVerifications: def __init__(self, har): self.har = har def rmatch(self, val, str_rxp): if val is None: return False if isinstance(val, bytes): val = str(val, "utf-8") return re.search(str_rxp, val, flags=re.IGNORECASE) def rmatch_any(self, items, rxp): if items is None or len(items) == 0 or rxp is None: return False for item in items: if isinstance(item, bytes): item = str(item, "utf-8") if self.rmatch(item, rxp): return True return False def rmatch_key_val(self, items, kv): name = True value = True if items is None or len(items) == 0 or kv is None: return False for item in items: if 'name' in kv: name = self.rmatch(item['name'], kv['name']) if 'value'in kv: value = self.rmatch(kv['value'], item['value']) if name and value: return True return False def schema_validate(self, item, schema): try: if type(item) == str: item = json.loads(item) validate(instance=item, schema=schema) except (ValidationError, ValueError) as e: return False return True def valid_json(self, item): if item is None: return False try: json.loads(item) except ValueError as e: return False return True def has_json_path(self, json_str, json_path): if self.valid_json(json_str) == False: return False jsonpath_expr = parse(json_path) matches = jsonpath_expr.find(json.loads(json_str)) return len(matches) > 0 def current_page(self): return self.har['log']['pages'][-1]['id'] # Use glom to dig into the har entries, responses and websockets to get down to an array of something or others # (headers, websocket messages, content then we execute our test against that item # current, *, or filter def entries(self, criteria=False): entry_list = self.har['log']['entries'] har_entry_filters = { 'page': (lambda item, pgref: glom(item, 'pageref', default='') == pgref ), 'status': (lambda item, status: self.rmatch(str(glom(item, 'response.status', default=None)), status)), 'url': (lambda item, url_rxp: self.rmatch(str(glom(item, 'request.url', default=None)), url_rxp)), 'content': (lambda item, content_rxp: self.rmatch(str(glom(item, 'response.content.text', default=None)), content_rxp)), 'content_type': (lambda item, content_type_rxp: self.rmatch(str(glom(item, 'response.content.mimeType', default=None)), content_type_rxp)), 'request_header': (lambda item, match_rgxp: self.rmatch_key_val(glom(item, 'request.headers',default=[]), match_rgxp)), 'response_header': (lambda item, match_rgxp: self.rmatch_key_val(glom(item, 'response.headers', default=[]), match_rgxp)), 'request_cookie': (lambda item, match_rgxp: self.rmatch_key_val(glom(item, 'request.cookies', default=[]), match_rgxp)), 'response_cookie': (lambda item, match_rgxp: self.rmatch_key_val(glom(item, 'response.cookies', default=[]), match_rgxp)), 'websocket_message': (lambda item, ws_rxp: self.rmatch_any(glom(item, ('_webSocketMessages', ['data']), default=[]), ws_rxp)), 'json_valid': (lambda item, _: self.valid_json(str(glom(item, 'response.content.text', default=None)))), 'json_path': (lambda item, path: self.has_json_path(str(glom(item, 'response.content.text', default=None)), path)), 'json_schema': (lambda item, schema: self.schema_validate(str(glom(item, 'response.content.text', default=None)),schema)), } for filter_name, target_value in criteria.items(): filter_lambda = har_entry_filters[filter_name] if filter_name == 'page' and target_value == 'current': target_value = self.current_page() entry_list = [entry for entry in entry_list if filter_lambda(entry, target_value)] return entry_list def gsize(self, item, path): return self.not_neg(glom(item, 'request.headersSize', default=0)) def not_neg(self, val): val = int(val) return 0 if val == -1 or val is None else val def measure(self, items, measurement): measurements = { 'request_headers': (lambda item: self.gsize(item, 'request.headersSize')), 'response_headers': (lambda item: self.gsize(item, 'response.headersSize')), 'request_body': (lambda item: self.gsize(item, 'request.bodySize')), 'response_body': (lambda item: self.gsize(item, 'request.bodySize')), 'request': (lambda item: self.gsize(item, 'request.bodySize') + self.gsize(item, 'request.headerSize')), 'response': (lambda item: self.gsize(item, 'response.bodySize') + self.gsize(item, 'response.headerSize')), 'time': (lambda item: self.gsize(item, 'time')), } method = measurements[measurement] return list(map(method, items)) def present(self, criteria): return len(self.entries(criteria)) > 0 def not_present(self, criteria): return len(self.entries(criteria)) == 0 def max(self, criteria, measurement_name): items = self.entries(criteria) return max(self.measure(items, measurement_name), default=0) def get_sum(self, criteria, measurement_name): items = self.entries(criteria) return sum(self.measure(items, measurement_name))
[ "jsonschema.validate", "glom.glom", "json.loads", "jsonpath_ng.parse", "re.search" ]
[((395, 439), 're.search', 're.search', (['str_rxp', 'val'], {'flags': 're.IGNORECASE'}), '(str_rxp, val, flags=re.IGNORECASE)\n', (404, 439), False, 'import re\n'), ((1853, 1869), 'jsonpath_ng.parse', 'parse', (['json_path'], {}), '(json_path)\n', (1858, 1869), False, 'from jsonpath_ng import parse\n'), ((1369, 1407), 'jsonschema.validate', 'validate', ([], {'instance': 'item', 'schema': 'schema'}), '(instance=item, schema=schema)\n', (1377, 1407), False, 'from jsonschema import validate\n'), ((1612, 1628), 'json.loads', 'json.loads', (['item'], {}), '(item)\n', (1622, 1628), False, 'import json\n'), ((1907, 1927), 'json.loads', 'json.loads', (['json_str'], {}), '(json_str)\n', (1917, 1927), False, 'import json\n'), ((4482, 4526), 'glom.glom', 'glom', (['item', '"""request.headersSize"""'], {'default': '(0)'}), "(item, 'request.headersSize', default=0)\n", (4486, 4526), False, 'from glom import glom\n'), ((1340, 1356), 'json.loads', 'json.loads', (['item'], {}), '(item)\n', (1350, 1356), False, 'import json\n'), ((2431, 2464), 'glom.glom', 'glom', (['item', '"""pageref"""'], {'default': '""""""'}), "(item, 'pageref', default='')\n", (2435, 2464), False, 'from glom import glom\n'), ((3068, 3109), 'glom.glom', 'glom', (['item', '"""request.headers"""'], {'default': '[]'}), "(item, 'request.headers', default=[])\n", (3072, 3109), False, 'from glom import glom\n'), ((3201, 3243), 'glom.glom', 'glom', (['item', '"""response.headers"""'], {'default': '[]'}), "(item, 'response.headers', default=[])\n", (3205, 3243), False, 'from glom import glom\n'), ((3336, 3377), 'glom.glom', 'glom', (['item', '"""request.cookies"""'], {'default': '[]'}), "(item, 'request.cookies', default=[])\n", (3340, 3377), False, 'from glom import glom\n'), ((3470, 3512), 'glom.glom', 'glom', (['item', '"""response.cookies"""'], {'default': '[]'}), "(item, 'response.cookies', default=[])\n", (3474, 3512), False, 'from glom import glom\n'), ((3600, 3656), 'glom.glom', 'glom', (['item', "('_webSocketMessages', ['data'])"], {'default': '[]'}), "(item, ('_webSocketMessages', ['data']), default=[])\n", (3604, 3656), False, 'from glom import glom\n'), ((2539, 2582), 'glom.glom', 'glom', (['item', '"""response.status"""'], {'default': 'None'}), "(item, 'response.status', default=None)\n", (2543, 2582), False, 'from glom import glom\n'), ((2653, 2692), 'glom.glom', 'glom', (['item', '"""request.url"""'], {'default': 'None'}), "(item, 'request.url', default=None)\n", (2657, 2692), False, 'from glom import glom\n'), ((2772, 2821), 'glom.glom', 'glom', (['item', '"""response.content.text"""'], {'default': 'None'}), "(item, 'response.content.text', default=None)\n", (2776, 2821), False, 'from glom import glom\n'), ((2915, 2968), 'glom.glom', 'glom', (['item', '"""response.content.mimeType"""'], {'default': 'None'}), "(item, 'response.content.mimeType', default=None)\n", (2919, 2968), False, 'from glom import glom\n'), ((3733, 3782), 'glom.glom', 'glom', (['item', '"""response.content.text"""'], {'default': 'None'}), "(item, 'response.content.text', default=None)\n", (3737, 3782), False, 'from glom import glom\n'), ((3855, 3904), 'glom.glom', 'glom', (['item', '"""response.content.text"""'], {'default': 'None'}), "(item, 'response.content.text', default=None)\n", (3859, 3904), False, 'from glom import glom\n'), ((3989, 4038), 'glom.glom', 'glom', (['item', '"""response.content.text"""'], {'default': 'None'}), "(item, 'response.content.text', default=None)\n", (3993, 4038), False, 'from glom import glom\n')]
from django.http import JsonResponse, HttpResponseNotFound from django.template import RequestContext, loader, Template, TemplateDoesNotExist import logging logger = logging.getLogger(__name__) def json_html_response(request, template_name, code, message): """ Provide response in json or html format accordingly content-type :param request: HttpRequest :param template_name: String :param code: Integer :param message: String :return: JsonResponse|HttpResponseNotFound :TODO fix format data duplication for v1/utils format for error response """ if request.META.get('CONTENT_TYPE') == 'application/json': response = JsonResponse(status=code, data={'results': {'code': code, 'msg': message}}) else: try: template = loader.get_template(template_name) except TemplateDoesNotExist: template = Template(message) response = HttpResponseNotFound(template.render(RequestContext(request))) return response def e500(request, template_name='500.html'): return json_html_response(request, template_name, 500, 'Internal Server Error') def e404(request, template_name='404.html'): return json_html_response(request, template_name, 404, 'Not Found') def csrf_failure(request, reason=""): logger.error('error 403: ' + str(request)) return json_html_response(request, '403.html', 403, 'Forbidden')
[ "django.http.JsonResponse", "django.template.loader.get_template", "django.template.Template", "logging.getLogger", "django.template.RequestContext" ]
[((167, 194), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (184, 194), False, 'import logging\n'), ((668, 743), 'django.http.JsonResponse', 'JsonResponse', ([], {'status': 'code', 'data': "{'results': {'code': code, 'msg': message}}"}), "(status=code, data={'results': {'code': code, 'msg': message}})\n", (680, 743), False, 'from django.http import JsonResponse, HttpResponseNotFound\n'), ((790, 824), 'django.template.loader.get_template', 'loader.get_template', (['template_name'], {}), '(template_name)\n', (809, 824), False, 'from django.template import RequestContext, loader, Template, TemplateDoesNotExist\n'), ((885, 902), 'django.template.Template', 'Template', (['message'], {}), '(message)\n', (893, 902), False, 'from django.template import RequestContext, loader, Template, TemplateDoesNotExist\n'), ((959, 982), 'django.template.RequestContext', 'RequestContext', (['request'], {}), '(request)\n', (973, 982), False, 'from django.template import RequestContext, loader, Template, TemplateDoesNotExist\n')]
from ..parser import Atomic, Variable, Compound, List from ..parser import isvariable, isatom, isnumber, islist, ispartiallist, iscallable from ..core import BuiltIn ### ### Term unification (ISO 8.2) ### class Unify_2(BuiltIn): """'='(?term, ?term) If X and Y are NSTO (Not Subject To Occur-check) then '='(X, Y) is true iff X and Y are unifiable.""" def execute(self, x, y): # TODO prologlib crashes if you attempt to unify two STO terms by =/2 # instead of using the proper unify_with_occur_check/2 predicate. return self.unify(x, y) class NotUnifiable_2(BuiltIn): """'\\='(@term, @term) If X and Y are NSTO (Not Subject To Occur-check) then '\\='(X, Y) is true iff X and Y are not unifiable.""" def execute(self, x, y): from .. import core return core.unify(x, y) is None ### ### Type testing (ISO 8.3) ### class Var_1(BuiltIn): '''var(@term) var(X) is true iff X is a member of the set V.''' def execute(self, x): return isvariable(x) class Atom_1(BuiltIn): '''atom(@term) atom(X) is true iff X is a member of the set A.''' def execute(self, x): return isatom(x) class Integer_1(BuiltIn): '''integer(@term) integer(X) is true iff X is a member of the set I.''' def execute(self, x): return x.arity == 0 and isinstance(x.value, int) class Float_1(BuiltIn): '''float(@term) float(X) is true iff X is a member of the set F.''' def execute(self, x): return x.arity == 0 and isinstance(x.value, float) class Atomic_1(BuiltIn): '''atomic(@term) atomic(X) is true if X is a member of the set A or I or F and is false if X is a member of the set V or CT.''' def execute(self, x): return isinstance(x, Atomic) class Compound_1(BuiltIn): '''compound(@term) compound(X) is true iff X is a member of the set CT.''' def execute(self, x): return isinstance(x, (Compound, List)) class Nonvar_1(BuiltIn): '''nonvar(@term) nonvar(X) is true iff X is not a member of the set V.''' def execute(self, x): return not isvariable(x) class Number_1(BuiltIn): '''number(@term) number(X) is true if X is a member of the set I or F and is false if X is a member of the set V, A, or CT.''' def execute(self, x): return isnumber(x) ### ### Term comparison (ISO 8.4) ### class TermLessThanOrEqual_2(BuiltIn): """'@=<'(@term, @term) Test the ordering of two terms. '@=<'(X, Y) is true iff X preceeds Y or X and Y are identical terms.""" def execute(self, x, y): # The Python __eq__ method does not hold Prolog # semantics for anonymous variables if (isvariable(x) and isvariable(y) and x.name == '_' and y.name == '_'): return True return x <= y class TermIdentical_2(BuiltIn): """'=='(@term, @term) Test the ordering of two terms. '=='(X, Y) is true iff X and Y are identical terms.""" def execute(self, x, y): # The Python __eq__ method does not hold Prolog # semantics for anonymous variables if (isvariable(x) and isvariable(y) and x.name == '_' and y.name == '_'): return False return x == y class TermNotIdentical_2(BuiltIn): """'\=='(@term, @term) Test the ordering of two terms. '\=='(X, Y) is true iff X and Y are not identical terms.""" def execute(self, x, y): # The Python __ne__ method does not hold Prolog # semantics for anonymous variables if (isvariable(x) and isvariable(y) and x.name == '_' and y.name == '_'): return True return x != y class TermLessThan_2(BuiltIn): """'@<'(@term, @term) Test the ordering of two terms. '@<'(X, Y) is true iff X preceeds Y.""" def execute(self, x, y): return x < y class TermGreaterThan_2(BuiltIn): """'@>(@term, @term) Test the ordering of two terms. '@>'(X, Y) is true iff Y preceeds X.""" def execute(self, x, y): return x > y class TermGreaterThanOrEqual_2(BuiltIn): """'@>=(@term, @term) Test the ordering of two terms. '@>='(X, Y) is true iff Y preceeds X or Y and X are identical terms.""" def execute(self, x, y): # The Python __eq__ method does not hold Prolog # semantics for anonymous variables if (isvariable(x) and isvariable(y) and x.name == '_' and y.name == '_'): return False return x >= y ### ### Term creation and decomposition (ISO 8.5) ### class Functor_3(BuiltIn): '''functor(-nonvar, +atomic, +integer) functor(+nonvar, ?atomic, ?integer) functor(Term, Name, Arity) is true iff: * Term is a compound term with a functor whose identifier is Name and arity Arity, or * Term is an atomic term equal to Name and Arity is 0.''' def execute(self, term, name, arity): if isvariable(term) and isvariable(name): self.throw_instantiation_error() if isvariable(term) and isvariable(arity): self.throw_instantiation_error() if isvariable(term) and not isinstance(arity.value, int): self.throw_type_error('integer', arity) # TODO Missing max_arity related error if isvariable(term) and arity.value < 0: self.throw_domain_error('not_less_than_zero', arity) if isvariable(term) and not isinstance(name, Atomic): self.throw_type_error('atomic', name) if isvariable(term) and not isatom(name) and arity.value > 0: self.throw_type_error('atom', name) if isinstance(term, Atomic): return self.unify(term, name) and self.unify(arity, Atomic(0)) if isinstance(term, (Compound, List)): return (self.unify(Atomic(term.name), name) and self.unify(Atomic(term.arity), arity)) if isinstance(term, Variable): if isinstance(name, Atomic) and arity.value == 0: return self.unify(term, name) if isatom(name) and arity.value > 0: t = (Variable('_') for i in range(arity.value)) c = Compound(name.name, *t) return self.unify(term, c) return False class Arg_3(BuiltIn): '''arg(+integer, +compound_term, ?term) arg(N, Term, Arg) is true iff the Nth argument of Term is Arg.''' def execute(self, n, term, arg): if isvariable(n) or isvariable(term): self.throw_instantiation_error() if not isinstance(n.value, int): self.throw_type_error('integer', n) if not isinstance(term, Compound): self.throw_type_error('compound', term) if n.value < 0: self.throw_domain_error('not_less_than_zero', n) if n.value >= len(term.value): return False return self.unify(arg, term.value[n.value]) class Univ_2(BuiltIn): """'=..'(+nonvar, ?list) '=..'(-nonvar, +list) '=..'(Term, List) is true iff: * Term is an atomic term and List is the list whose only element is Term, or * Term is a compound term and List is the list whose head is the functor name of Term and whose tail is a list of the arguments of Term.""" def execute(self, term, elements): if isvariable(term) and ispartiallist(elements): self.throw_instantiation_error() if not islist(elements) and not ispartiallist(elements): self.throw_type_error('list', elements) if isvariable(term) and islist(elements) and isvariable(elements.head): self.throw_instantiation_error() if islist(elements) and not isatom(elements.head) and len(elements) > 1: self.throw_type_error('atom', elements.head) if islist(elements) and isinstance(elements.head, Compound) and len(elements) > 1: self.throw_type_error('atomic', elements.head) if isvariable(term) and elements == List.EMPTY_LIST: self.throw_domain_error('non_empty_list', elements) # TODO Missing max_arity related error if isinstance(term, Atomic): l = List(term) return self.unify(elements, l) if isinstance(term, Compound): l = List.from_list([Atomic(term.name)] + list(term.value[1:])) return self.unify(elements, l) if isinstance(term, Variable): # elements is a list if elements.name == '.' and elements.arity == 2: if len(elements) == 1: t = elements.head return self.unify(term, t) elif len(elements) > 1: name = elements.head.name t = Compound(name, *elements.as_list()[1:]) return self.unify(term, t) else: return False else: return False class CopyTerm_2(BuiltIn): '''copy_term(?term, ?term) copy_term(Term_1, Term_2) is true iff Term_2 unifies with a term T which is a renamed copy of Term_1.''' def execute(self, t1, t2): from .. import core #t = core.renamed_copy(t1) t = t1._copy_term() # Can't directly use BuiltIn.unify because the bindings # between the renamed copy of t1 and t2 retain validity # only in the context of the copy_term/2 built-in mgu = core.unify(t2, t) if mgu is not None: if mgu: t2.apply(mgu) # Do not propagate renamed term variables bindings # outside the context of the copy_term/2 built-in if t2.name in mgu: # Still preserve the binding for t2 just in # case t2 were a renamed variable (e.g. coming # from a clause renaming) temp = mgu[t2.name] mgu.reduce() mgu.update({t2.name : temp}) else: mgu.reduce() self.substitution.update(mgu) return True return False ### ### Arithmetic evaluation (ISO 8.6) ### Simple arithmetic functors (ISO 9.1) ### Other arithmetic functors (ISO 9.3) ### Bitwise functors (ISO 9.4) ### class Is_2(BuiltIn): """is(?term, @evaluable) 'is'(Result, Expression) is true iff the value of evaluating Expression as an expression is Result.""" def execute(self, result, expression): if isvariable(expression): self.throw_instantiation_error() c = evaluate_expression(expression) return self.unify(result, Atomic(c)) def evaluate_expression(term): # TODO No overflow/underflow errors # TODO No undefined errors if isvariable(term): from ..core import PrologInstantiationError raise PrologInstantiationError() if term.arity == 0 and term._isnumber(): return term.value if isinstance(term, Compound): from ..core import deref args = (evaluate_expression(deref(a)) for a in term.value[1:]) pi = term.predicate_indicator() functor = search_evaluable_functor(pi) if not functor: from ..core import PrologTypeError raise PrologTypeError('evaluable', Atomic(pi)) return functor(*args) from ..core import PrologTypeError raise PrologTypeError('number', term) def search_evaluable_functor(name): import math import operator d = {'+/2' : operator.add, '*/2' : operator.mul, '-/2' : operator.sub, '-/1' : operator.neg, '//2' : divide, '///2' : intdivide, 'mod/2' : module, 'rem/2' : module, 'floor/1' : math.floor, 'round/1' : round, 'ceiling/1' : math.ceil, 'truncate/1' : math.trunc, 'float/1' : float, 'abs/1' : operator.abs, 'sign/1' : sign, 'float_integer_part/1' : float_integer_part, 'float_fractional_part/1' : float_fractional_part, '**/2' : power, 'sin/1' : math.sin, 'cos/1' : math.cos, 'atan/1' : math.atan, 'exp/1' : math.exp, 'log/1' : logarithm, 'sqrt/1' : squareroot, '>>/2' : rightshift, '<</2' : leftshift, '/\\/2' : bitand, '\\//2' : bitor, '\\/1' : bitnot} return d.get(name) def divide(x, y): '''Redefined w.r.t. Python because in ISO Prolog div(x, y) with x and y integers is equivalent to intdiv(x, y). Also, we need to manage ZeroDivisionError errors on our own.''' if not y: from ..core import PrologEvaluationError raise PrologEvaluationError('zero_divisor') if isinstance(x, int) and isinstance(y, int): return x // y return x / y def intdivide(x, y): '''Redefined w.r.t. Python because in ISO Prolog x // y is valid only when x and y are integers. Also, we need to manage ZeroDivisionError errors on our own.''' if not y: from ..core import PrologEvaluationError raise PrologEvaluationError('zero_divisor') if not isinstance(x, int): from ..core import PrologTypeError raise PrologTypeError('integer', Atomic(x)) if not isinstance(y, int): from ..core import PrologTypeError raise PrologTypeError('integer', Atomic(y)) return x // y def module(x, y): '''Redefined w.r.t. Python because in ISO Prolog mod(x, y) is valid only when x and y are integers. Also, we need to manage ZeroDivisionError errors on our own.''' if not y: from ..core import PrologEvaluationError raise PrologEvaluationError('zero_divisor') if not isinstance(x, int): from ..core import PrologTypeError raise PrologTypeError('integer', Atomic(x)) if not isinstance(y, int): from ..core import PrologTypeError raise PrologTypeError('integer', Atomic(y)) return x % y def sign(x): '''Redefined w.r.t. Python because in ISO Prolog sign(x) must return the same type of number as its input.''' if not x: return 0 if isinstance(x, int) else 0.0 from math import copysign s = copysign(1, x) return int(s) if isinstance(x, int) else s def float_integer_part(x): '''Redefined w.r.t. Python because in ISO Prolog float_integer_part(x) is valid only when x is a float.''' if not isinstance(x, float): from ..core import PrologTypeError raise PrologTypeError('float', Atomic(x)) from math import modf f, i = modf(x) return i def float_fractional_part(x): '''Redefined w.r.t. Python because in ISO Prolog float_fractional_part(x) is valid only when x is a float.''' if not isinstance(x, float): from ..core import PrologTypeError raise PrologTypeError('float', Atomic(x)) from math import modf f, i = modf(x) return f def power(x, y): '''Redefined w.r.t. Python because in ISO Prolog x ** y with x < 0 is defined only when y is an integer, and always returns a float. Also, we need to manage ZeroDivisionError errors on our own.''' if x < 0 and isinstance(y, float): from ..core import PrologEvaluationError raise PrologEvaluationError('undefined') if not x and y < 0: from ..core import PrologEvaluationError raise PrologEvaluationError('undefined') return float(x ** y) def logarithm(x): '''Redefined w.r.t. Python because we need to manage ValueError errors (e.g. for log(0)) on our own.''' if not x: from ..core import PrologEvaluationError raise PrologEvaluationError('undefined') from math import log return log(x) def squareroot(x): '''Redefined w.r.t. Python because we need to manage ValueError errors (e.g. for x < 0) on our own.''' if x < 0: from ..core import PrologEvaluationError raise PrologEvaluationError('undefined') from math import sqrt return sqrt(x) def rightshift(n, s): '''Redefined w.r.t. Python because we need to manage TypeError errors (e.g. n as float) on our own.''' if not isinstance(n, int): from ..core import PrologTypeError raise PrologTypeError('integer', Atomic(n)) if not isinstance(s, int): from ..core import PrologTypeError raise PrologTypeError('integer', Atomic(s)) return n >> s def leftshift(n, s): '''Redefined w.r.t. Python because we need to manage TypeError errors (e.g. n as float) on our own.''' if not isinstance(n, int): from ..core import PrologTypeError raise PrologTypeError('integer', Atomic(n)) if not isinstance(s, int): from ..core import PrologTypeError raise PrologTypeError('integer', Atomic(s)) return n << s def bitand(x, y): '''Redefined w.r.t. Python because we need to manage TypeError errors (e.g. x or y as float) on our own.''' if not isinstance(x, int): from ..core import PrologTypeError raise PrologTypeError('integer', Atomic(n)) if not isinstance(y, int): from ..core import PrologTypeError raise PrologTypeError('integer', Atomic(s)) return x & y def bitor(x, y): '''Redefined w.r.t. Python because we need to manage TypeError errors (e.g. x or y as float) on our own.''' if not isinstance(x, int): from ..core import PrologTypeError raise PrologTypeError('integer', Atomic(n)) if not isinstance(y, int): from ..core import PrologTypeError raise PrologTypeError('integer', Atomic(s)) return x | y def bitnot(x): '''Redefined w.r.t. Python because we need to manage TypeError errors (e.g. x or y as float) on our own.''' if not isinstance(x, int): from ..core import PrologTypeError raise PrologTypeError('integer', Atomic(x)) return ~x ### ### Arithmetic comparison (ISO 8.7) ### class ArithmeticEqual_2(BuiltIn): """'=:='(@evaluable, @evaluable) '=:='(E1, E2) is true iff evaluating E1 and E2 as expressions the corresponding arithmetic values are equal.""" def execute(self, e1, e2): if isvariable(e1) or isvariable(e2): self.throw_instantiation_error() v1 = evaluate_expression(e1) v2 = evaluate_expression(e2) return v1 == v2 class ArithmeticNotEqual_2(BuiltIn): """'=\='(@evaluable, @evaluable) '=\='(E1, E2) is true iff evaluating E1 and E2 as expressions the corresponding arithmetic values are not equal.""" def execute(self, e1, e2): if isvariable(e1) or isvariable(e2): self.throw_instantiation_error() v1 = evaluate_expression(e1) v2 = evaluate_expression(e2) return v1 != v2 class ArithmeticLessThan_2(BuiltIn): """'<'(@evaluable, @evaluable) '<'(E1, E2) is true iff evaluating E1 and E2 as expressions the corresponding arithmetic value of E1 is less than the corresponding arithmetic value of E2.""" def execute(self, e1, e2): if isvariable(e1) or isvariable(e2): self.throw_instantiation_error() v1 = evaluate_expression(e1) v2 = evaluate_expression(e2) return v1 < v2 class ArithmeticLessThanOrEqual_2(BuiltIn): """'=<'(@evaluable, @evaluable) '=<'(E1, E2) is true iff evaluating E1 and E2 as expressions the corresponding arithmetic value of E1 is less than or equal to the corresponding arithmetic value of E2.""" def execute(self, e1, e2): if isvariable(e1) or isvariable(e2): self.throw_instantiation_error() v1 = evaluate_expression(e1) v2 = evaluate_expression(e2) return v1 <= v2 class ArithmeticGreaterThan_2(BuiltIn): """'>'(@evaluable, @evaluable) '>'(E1, E2) is true iff evaluating E1 and E2 as expressions the corresponding arithmetic value of E1 is greater than the corresponding arithmetic value of E2.""" def execute(self, e1, e2): if isvariable(e1) or isvariable(e2): self.throw_instantiation_error() v1 = evaluate_expression(e1) v2 = evaluate_expression(e2) return v1 > v2 class ArithmeticGreaterThanOrEqual_2(BuiltIn): """'>='(@evaluable, @evaluable) '>='(E1, E2) is true iff evaluating E1 and E2 as expressions the corresponding arithmetic value of E1 is greater than or equal to the corresponding arithmetic value of E2.""" def execute(self, e1, e2): if isvariable(e1) or isvariable(e2): self.throw_instantiation_error() v1 = evaluate_expression(e1) v2 = evaluate_expression(e2) return v1 >= v2 ### ### Clause retrival and information (ISO 8.8) ### class Clause_2(BuiltIn): '''clause(+head, ?callable_term) clause(Head, Body) is true iff: * the predicate of Head is public, and * there is a clause in the database which corresponds to a term H :- B which unifies with Head :- Body.''' def execute(self, head, body): if isvariable(head): self.throw_instantiation_error() if not iscallable(head): self.throw_type_error('callable', head) if not (isvariable(body) or iscallable(body)): self.throw_type_error('callable', body) self.clauses = [] procedure = self.kb.search(head) if not procedure: return False if not procedure._public: pi = Compound('/', Atomic(head.name), Atomic(head.arity)) self.throw_permission_error('access', 'private_procedure', pi) from .. import core for clause in procedure.clauses(): h, b = convert_clause_to_term(clause.head(), clause.body()) if (core.unify(h, head) is not None and core.unify(b, body) is not None): self.clauses.append(Compound('clause', h, b)) return self.pick_clause(head, body) def reexecute(self, head, body): self.reset_substitution() return self.pick_clause(head, body) def pick_clause(self, head, body): if not self.clauses: return False c = self.clauses.pop(0) return self.unify(Compound('clause', head, body), c) def convert_clause_to_term(head, body): return (convert_to_term(head), convert_to_term(body)) def convert_to_term(head): if head.arity == 0: return Atomic(head.name) from ..core import renamed_copy return renamed_copy(head) class CurrentPredicate_1(BuiltIn): '''current_predicate(?predicate_indicator) current_predicate(PI) is true iff PI is a predicate indicator for one of the user-defined procedures in the database.''' def execute(self, pi): if not isvariable(pi) and not (pi.name == '/' and pi.arity == 2): self.throw_type_error('predicate_indicator', pi) self.indicators = [] for i in self.kb: n, a = i.split('/') indicator = Compound('/', Atomic(n), Atomic(int(a))) from .. import core if core.unify(pi, indicator) is not None: self.indicators.append(indicator) return self.pick_indicator(pi) def reexecute(self, pi): self.reset_substitution() return self.pick_indicator(pi) def pick_indicator(self, pi): if not self.indicators: return False # the order in which predicate indicators are found by # current_predicate/1 is implementation dependent i = self.indicators.pop() return self.unify(pi, i) ### ### Clause creation and destruction (ISO 8.9) ### class Asserta_1(BuiltIn): '''asserta(@clause) asserta(Clause) is true. It is used to add Clause to the database before all existing clauses of the procedure whose predicate is equal to the functor of the head of Clause.''' def execute(self, clause): head = clause.value[1] if clause.predicate_indicator() == ':-/2' else clause if isvariable(head): self.throw_instantiation_error() if isnumber(head): self.throw_type_error('callable', head) # errors on the conversion of the clause body to a # goal and on access permission to a user-defined # procedure are handled directly by the database from ..builtin import search_builtin if search_builtin(head): pi = Compound('/', Atomic(head.name), Atomic(head.arity)) self.throw_permission_error('modify', 'static_procedure', pi) self.kb.assert_clause(clause, append=False) return True class Assertz_1(BuiltIn): '''assertz(@clause) assertz(Clause) is true. It is used to add Clause to the database after all existing clauses of the procedure whose predicate is equal to the functor of the head of Clause.''' def execute(self, clause): head = clause.value[1] if clause.predicate_indicator() == ':-/2' else clause if isvariable(head): self.throw_instantiation_error() if isnumber(head): self.throw_type_error('callable', head) # errors on the conversion of the clause body to a # goal and on access permission to a user-defined # procedure are handled directly by the database from ..builtin import search_builtin if search_builtin(head): pi = Compound('/', Atomic(head.name), Atomic(head.arity)) self.throw_permission_error('modify', 'static_procedure', pi) self.kb.assert_clause(clause, append=True) return True class Retract_1(BuiltIn): '''retract(+clause) retract(Clause) is true iff the database contains at least one dynamic procedure with a clause Clause which unifies with Head :- Body. It is used to remove those unifying clauses from the database.''' def execute(self, clause): if clause.predicate_indicator() == ':-/2': head = clause.value[1] body = clause.value[2] else: head = clause body = Atomic.TRUE if isvariable(head): self.throw_instantiation_error() if isnumber(head): self.throw_type_error('callable', head) # error on access permission to a user-defined # procedure is handled directly by the database from ..builtin import search_builtin if search_builtin(head): pi = Compound('/', Atomic(head.name), Atomic(head.arity)) self.throw_permission_error('modify', 'static_procedure', pi) self.clauses_to_unify = [] self.clauses_to_remove = [] procedure = self.kb.search(head) if not procedure: return False from .. import core for clause in procedure.clauses(): h, b = convert_clause_to_term(clause.head(), clause.body()) if (core.unify(h, head) is not None and core.unify(b, body) is not None): self.clauses_to_unify.append(Compound('clause', h, b)) self.clauses_to_remove.append(clause) return self.pick_clause(head, body) def reexecute(self, clause): self.reset_substitution() if clause.predicate_indicator() == ':-/2': head = clause.value[1] body = clause.value[2] else: head = clause body = Atomic.TRUE return self.pick_clause(head, body) def pick_clause(self, head, body): if not self.clauses_to_remove: return False self.kb.retract(self.clauses_to_remove.pop(0)) c = self.clauses_to_unify.pop(0) return self.unify(Compound('clause', head, body), c) class Abolish_1(BuiltIn): '''abolish(@predicate_indicator) abolish(Pred) is true. It is used to remove from the database the procedure specified by the predicate indicator Pred and all its clauses, leaving the database in the same state as if the procedure identified by Pred had never existed.''' def execute(self, pi): if isvariable(pi): self.throw_instantiation_error() if pi.name == '/' and pi.arity == 2: name, arity = pi.value[1:] if isvariable(name) or isvariable(arity): self.throw_instantiation_error() if not isinstance(arity.value, int): self.throw_type_error('integer', arity) if not isatom(name): self.throw_type_error('atom', name) # TODO Missing max_arity related errors if arity.value < 0: self.throw_domain_error('not_less_than_zero', arity) # error on access permission to a user-defined # procedure is handled directly by the database t = tuple(Variable('_') for i in range(arity.value)) c = Compound(name.name, *t) from ..builtin import search_builtin if search_builtin(c): self.throw_permission_error('modify', 'static_procedure', pi) else: self.throw_type_error('predicate_indicator', pi) self.kb.abolish(pi) return True ### ### All solutions (ISO 8.10) ### class Findall_3(BuiltIn): '''findall(?term, +callable_term, ?list) findall(Template, Goal, Instances) is true iff Instances unifies with the list of values to which a variable X not occurring in Template or Goal would be instantiated by successive re-executions of "call(Goal), X=Template" after systematic replacement of all variables in X by new variables.''' def execute(self, template, goal, instances): if isvariable(goal): self.throw_instantiation_error() if isnumber(goal): self.throw_type_error('callable', goal) if (not isvariable(instances) and (not islist(instances) and not ispartiallist(instances))): self.throw_type_error('list', instances) from .. import core caller = core.Caller() caller._kb = self.kb values = [] result = caller.solve(goal) while result: from copy import deepcopy v = ground(deepcopy(template), caller.currsubst()) #values.append(core.renamed_copy(v)) values.append(v._copy_term()) result = caller.solve_next() values = List.EMPTY_LIST if not values else List.from_list(values) return self.unify(values, instances) def ground(term, mgu): if isinstance(term, Variable): if not term.value: value = mgu.get(term.name) if value: return value else: return ground(term.binding(), mgu) if isinstance(term, Compound): args = [] for arg in term.value[1:]: args.append(ground(arg, mgu)) return Compound(term.name, *args) return term class Bagof_3(BuiltIn): '''bagof(?term, +callable_term, ?list) bagof(Template, Goal, Instances) assembles as a list the solutions of Goal for each different instantiation of the free variables in it. The elements of each list are in order of solution, but the order in which each list is found is undefined.''' def execute(self, template, goal, instances): fvs = free_variable_set(goal, template) self.witness = Compound('witness', *fvs) if fvs else Atomic('witness') g = iterated_goal_term(goal) findall = Findall_3(self.kb) findall.execute(Compound('+', self.witness, template), g, Variable('S')) s = findall.substitution['S'] self.s = self._create_solution_list(s) if not self.s: return False return self.pick_bag(template, goal, instances) def reexecute(self, template, goal, instances): self.reset_substitution() if not self.s: return False return self.pick_bag(template, goal, instances) def pick_bag(self, template, goal, instances): wt = self.s[0] wt_list = [e for e in self.s if isvariant(wt.value[1], e.value[1])] t_list = [e.value[2] for e in wt_list] s_next = [e for e in self.s if e not in wt_list] from .. import core for wwtt, t in zip(wt_list, t_list): ww = wwtt.value[1] #from copy import deepcopy #subst = core.unify(ww, deepcopy(self.witness)) subst = core.unify(ww, self.witness) ww.apply(subst) t.apply(subst) self.substitution.update(subst) t_list = List.from_list(t_list) self.s = s_next return self.unify(t_list, instances) def _create_solution_list(self, s): return [] if s == List.EMPTY_LIST else s.as_list() class Setof_3(Bagof_3): '''setof(?term, +callable_term, ?list) setof/3 assembles as a list the solutions of a goal for each different instantiation of the free variables in that goal. Each list is a sorted list, but the order in which each list is found is undefined.''' def _create_solution_list(self, s): solutions = [] if s == List.EMPTY_LIST else s.as_list() solutions = list(set(solutions)) solutions.sort() return solutions ### ### Logic and control (ISO 8.15) ### class Not_1(BuiltIn): """not(@callable_term) not(Term) is true iff call(Term) is false.""" # """'\\+'(@callable_term) # # '\\+'(Term) is true iff call(Term) is false.""" def execute(self, term): if isvariable(term): self.throw_instantiation_error() if isnumber(term): self.throw_type_error('callable', term) from .. import core caller = core.Caller() caller._kb = self.kb result = caller.solve(term) return not result class Repeat_0(BuiltIn): '''repeat repeat is true. repeat is re-executable. ''' def execute(self): return True def reexecute(self): return True ### ### Atomic term processing (ISO 8.16) ### class AtomLength_2(BuiltIn): '''atom_length(+atom, ?integer) atom_length(Atom, Length) is true iff integer Length equals the number of characters of the name of the atom Atom.''' def execute(self, atom, length): if isvariable(atom): self.throw_instantiation_error() if not isatom(atom): self.throw_type_error('atom', atom) if (not isvariable(length) and not (isnumber(length) and isinstance(length.value, int))): self.throw_type_error('integer', length) if isnumber(length) and length.value < 0: self.throw_domain_error('not_less_than_zero', length) size = Atomic(len(atom.name)) return self.unify(length, size) class AtomConcat_3(BuiltIn): '''atom_concat(?atom, ?atom, +atom)\natom_concat(+atom, +atom, -atom) atom_concat(Atom_1, Atom_2, Atom_12) is true iff characters of the name of the atom Atom_12 are the result of concatenating the characters of the name of the atom Atom_2 to the characters of the name of the atom Atom_1.''' def execute(self, atom1, atom2, atom12): if isvariable(atom1) and isvariable(atom12): self.throw_instantiation_error() if isvariable(atom2) and isvariable(atom12): self.throw_instantiation_error() if not isvariable(atom1) and not isatom(atom1): self.throw_type_error('atom', atom1) if not isvariable(atom2) and not isatom(atom2): self.throw_type_error('atom', atom2) if not isvariable(atom12) and not isatom(atom12): self.throw_type_error('atom', atom12) if isvariable(atom1) and isvariable(atom2): s = atom12.name self.data = [(s[:i], s[i:], s) for i in range(len(s) + 1)] elif isvariable(atom1): s = atom12.name if not s.endswith(atom2.name): return False else: i = s.index(atom2.name) self.data = [(s[:i], s[i:], s)] elif isvariable(atom2): s = atom12.name if not s.startswith(atom1.name): return False else: i = len(atom1.name) self.data = [(s[:i], s[i:], s)] else: n1 = atom1.name n2 = atom2.name self.data = [(n1, n2, n1 + n2)] return self.pick_data(atom1, atom2, atom12) def reexecute(self, atom1, atom2, atom12): self.reset_substitution() if not self.data: return False return self.pick_data(atom1, atom2, atom12) def pick_data(self, atom1, atom2, atom12): c = self.data.pop(0) return (self.unify(atom1, Atomic(c[0])) and self.unify(atom2, Atomic(c[1])) and self.unify(atom12, Atomic(c[2]))) class SubAtom_5(BuiltIn): '''sub_atom(+atom, ?integer, ?integer, ?integer, ?atom) sub_atom(Atom, Before, Length, After, Sub_atom) is true iff atom Atom can be broken into three pieces, AtomL, Sub_atom, and AtomR, such that Before is the number of characters of the name of AtomL, Length is the number of characters of the name of Sub_atom, and After is the number of characters of the name of AtomR.''' def execute(self, atom, before, length, after, subatom): if isvariable(atom): self.throw_instantiation_error() if not isvariable(atom) and not isatom(atom): self.throw_type_error('atom', atom) if not isvariable(subatom) and not isatom(subatom): self.throw_type_error('atom', subatom) if (not isvariable(before) and not (isnumber(before) and isinstance(before.value, int))): self.throw_type_error('integer', before) if (not isvariable(length) and not (isnumber(length) and isinstance(length.value, int))): self.throw_type_error('integer', length) if (not isvariable(after) and not (isnumber(after) and isinstance(after.value, int))): self.throw_type_error('integer', after) if isnumber(before) and before.value < 0: self.throw_domain_error('not_less_than_zero', before) if isnumber(length) and length.value < 0: self.throw_domain_error('not_less_than_zero', length) if isnumber(after) and after.value < 0: self.throw_domain_error('not_less_than_zero', after) n = atom.name start = before.value if isinstance(before, Atomic) else 0 end = len(n) - (after.value if isinstance(after, Atomic) else 0) self.data = [] while start <= end: for i in range(start, end + 1): self.data.append((n[start:i], start)) start += 1 if isinstance(before, Atomic): self.data = [(d, p) for (d, p) in self.data if n.index(d, p) == before.value] if isinstance(length, Atomic): self.data = [(d, p) for (d, p) in self.data if len(d) == length.value] if isinstance(after, Atomic): self.data = [(d, p) for (d, p) in self.data if len(n) - n.index(d, p) - len(d) == after.value] if isinstance(subatom, Atomic): self.data = [(d, p) for (d, p) in self.data if d == subatom.value] if not self.data: return False return self.pick_data(atom, before, length, after, subatom) def reexecute(self, atom, before, length, after, subatom): self.reset_substitution() if not self.data: return False return self.pick_data(atom, before, length, after, subatom) def pick_data(self, atom, before, length, after, subatom): s, p = self.data.pop(0) b = atom.name.index(s, p) l = len(s) a = len(atom.name) - (b + l) return (self.unify(before, Atomic(b)) and self.unify(length, Atomic(l)) and self.unify(after, Atomic(a)) and self.unify(subatom, Atomic(s))) class AtomChars_2(BuiltIn): '''atom_chars(+atom, ?character_list)\natom_chars(-atom, +character_list) atom_chars(Atom, List) is true iff List is a list whose elements are the one-char atoms whose names are the successive characters of the name of atom Atom.''' def execute(self, atom, charlist): if not isvariable(atom) and not isatom(atom): self.throw_type_error('atom', atom) if isvariable(atom): if isvariable(charlist): self.throw_instantiation_error() if not islist(charlist) and not ispartiallist(charlist): self.throw_type_error('list', charlist) for element in charlist.as_list(): if isvariable(element): self.throw_instantiation_error() if isatom(element) and len(element.name) != 1: self.throw_type_error('character', element) if isvariable(atom): from ..core import deref chars = [deref(c).name for c in charlist.as_list()] return self.unify(atom, Atomic(''.join(chars))) elif isvariable(charlist) or islist(charlist) or ispartiallist(charlist): chars = [Atomic(c) for c in atom.name] return self.unify(charlist, List.from_list(chars)) else: chars = [c.name for c in charlist.as_list()] return atom.name == ''.join(chars) class AtomCodes_2(BuiltIn): '''atom_codes(+atom, ?character_code_list)\natom_codes(-atom, +character_code_list) atom_codes(Atom, List) is true iff List is a list whose elements correspond to the successive characters of the name of atom Atom, and the value of each element is the character code for the corresponding character of the name.''' def execute(self, atom, codelist): if not isvariable(atom) and not isatom(atom): self.throw_type_error('atom', atom) if isvariable(atom): if ispartiallist(codelist): self.throw_instantiation_error() if not islist(codelist) and not ispartiallist(codelist): self.throw_type_error('list', codelist) for element in codelist.as_list(): if isvariable(element): self.throw_instantiation_error() if not isvariable(element): try: chr(element.value) except UnicodeDecodeError: self.throw_representation_error(element) if isvariable(atom): chars = [chr(code.value) for code in codelist.as_list()] return self.unify(atom, Atomic(''.join(chars))) elif isvariable(codelist) or ispartiallist(codelist): codes = [Atomic(ord(char)) for char in atom.name] return self.unify(codelist, List.from_list(codes)) else: chars = [chr(code.value) for code in codelist.as_list()] return atom.name == ''.join(chars) class CharCode_2(BuiltIn): '''char_code(+character, ?character_code)\nchar_code(-character, +character_code) char_code(Char, Code) is true iff the character code for the one-char atom Char is Code.''' def execute(self, char, code): if isvariable(char) and isvariable(code): self.throw_instantiation_error() if not isvariable(char) and len(char.name) != 1: self.throw_type_error('character', char) if not isvariable(code) and not isinstance(code.value, int): self.throw_type_error('integer', code) if not isvariable(code): try: chr(code.value) except UnicodeDecodeError: self.throw_representation_error(code) if isvariable(char): c = chr(code.value) return self.unify(char, Atomic(c)) elif isvariable(code): c = ord(char.name) return self.unify(code, Atomic(c)) else: return ord(char.name) == code.value class NumberChars_2(BuiltIn): '''number_chars(+number, ?character_list)\nnumber_chars(-number, +character_list) number_chars(Number, List) is true iff List is a list whose elements are the one-char atoms corresponding to a character sequence of Number which could be output.''' def execute(self, number, charlist): if isvariable(number) and ispartiallist(charlist): self.throw_instantiation_error() if isvariable(number): for element in charlist.as_list(): if isvariable(element): self.throw_instantiation_error() if not isvariable(number) and not isnumber(number): self.throw_type_error('number', number) if isvariable(number) and not islist(charlist) and not ispartiallist(charlist): self.throw_type_error('list', charlist) if islist(charlist): for element in charlist.as_list(): if isatom(element) and len(element.name) != 1: self.throw_type_error('character', element) if isvariable(number) or islist(charlist): from ..parser import PrologParser, InvalidTermException s = ''.join([char.name for char in charlist.as_list()]) try: # the parser needs an End Token n = PrologParser(s + '.').read_term() return self.unify(number, n) except InvalidTermException as e: self.throw_syntax_error(Atomic(s)) else: chars = list(str(number.value)) # FIXME this should use write_canonical/1 lst = [Atomic(c) for c in chars] return self.unify(charlist, List.from_list(lst)) class NumberCodes_2(BuiltIn): '''number_codes(+number, ?character_code_list)\nnumber_codes(-number, ?character_code_list) number_codes(Number, List) is true iff List is a list whose elements are the character codes corresponding to a character sequence of Number which could be output.''' def execute(self, number, codelist): if isvariable(number) and ispartiallist(codelist): self.throw_instantiation_error() if isvariable(number): for element in codelist.as_list(): if isvariable(element): self.throw_instantiation_error() if not isvariable(number) and not isnumber(number): self.throw_type_error('number', number) if isvariable(number) and not islist(codelist) and not ispartiallist(codelist): self.throw_type_error('list', codelist) if islist(codelist): for element in codelist.as_list(): if not isvariable(element): try: chr(element.value) except UnicodeDecodeError: self.throw_representation_error(element) if isvariable(number) or islist(codelist): from ..parser import PrologParser, InvalidTermException s = ''.join([chr(code.value) for code in codelist.as_list()]) try: # the parser needs an End Token n = PrologParser(s + '.').read_term() return self.unify(number, n) except InvalidTermException as e: self.throw_syntax_error(Atomic(s)) else: chars = list(str(number.value)) # FIXME this should use write_canonical/1 lst = [Atomic(ord(c)) for c in chars] return self.unify(codelist, List.from_list(lst)) ### ### Implementation defined hooks (ISO 8.17) ### class SetPrologFlag_2(BuiltIn): '''set_prolog_flag(+flag, @nonvar) A goal set_prolog_flag(Flag, Value) enables the value associated with a Prolog flag to be altered.''' def execute(self, flag, value): if isvariable(flag) or isvariable(value): self.throw_instantiation_error() if not isvariable(flag) and not isatom(flag): self.throw_type_error('atom', flag) from .. import core # for flags if flag.name not in core._FLAGS: self.throw_domain_error('prolog_flag', flag) f = core._FLAGS[flag.name] if len(f.allowed) == 1: self.throw_permission_error('modify', 'flag', flag) if value.name not in f.allowed: culprit = Compound('+', flag, value) self.throw_domain_error('flag_value', culprit) core._FLAGS[flag.name] = f._replace(value=value.name) return True class CurrentPrologFlag_2(BuiltIn): '''current_prolog_flag(?flag, ?term) current_prolog_flag(Flag, Value) is true iff Flag is a flag supported by the processor, and Value is the value currently associated with it.''' def execute(self, flag, value): from .. import core # for flags if not isvariable(flag) and not isatom(flag): self.throw_type_error('atom', flag) if isatom(flag) and not core._FLAGS[flag.name]: self.throw_domain_error('prolog_flag', flag) self.flags = {f for f in core._FLAGS.values() if core.unify(flag, Atomic(f.name)) is not None} if not self.flags: return False return self.pick_flag(flag, value) def reexecute(self, flag, value): self.reset_substitution() if not self.flags: return False return self.pick_flag(flag, value) def pick_flag(self, flag, value): f = self.flags.pop() return self.unify(flag, Atomic(f.name)) and self.unify(value, Atomic(f.value)) class Halt_0(BuiltIn): '''halt halt neither succeeds nor fails. It has the side effect of exiting from the processor and returning to whatever system invoked Prolog.''' def execute(self): exit(0) class Halt_1(BuiltIn): '''halt(+integer) halt(X) neither succeeds nor fails. It has the side effect of exiting from the processor and returning to whatever system invoked Prolog, passing the value of X as a message.''' def execute(self, x): if isvariable(x): self.throw_instantiation_error() if not isvariable(x) and not isnumber(x) and not isinstance(x.value, int): self.throw_type_error('integer', x) exit(x.value) # Utility functions def free_variable_set(t, v): '''The free variable set FV of a term T with respect to a term V is a set of variables defined as the set difference of the variable set of T and BV where BV is a set of variables defined as the union of the variable set of V and the existential variable set of T.''' vst = variable_set(t) vsv = variable_set(v) est = existential_variable_set(t) return vst.difference(vsv.union(est)) # TODO This should be distributed onto the Term hierarchy classes def variable_set(term): '''The variable set Sv of a term T is a set of variables defined recursively as follows: * if T is an atomic term, then Sv is the empty set * else if T is a variable then Sv is {T} * else if T is a compound term then Sv is the union of the variable sets for each of the arguments of T.''' from ..core import deref if isinstance(term, Variable): if term.isfree(): return {term} else: term = deref(term) if isinstance(term, Atomic): return set() s = set() if isinstance(term, Compound): for arg in term.value[1:]: s.update(variable_set(arg)) else: # a list for e in term.as_list(): s.update(variable_set(e)) return s def existential_variable_set(term): '''The existential variables set EV of a term T is a set of variables defined recursively as follows: * if T is a variable or an atomic term, then EV is the empty set * else if T unifies with ^(V, G) then EV is the union of the variable set of V and the existential variables set of the term G * else EV is the empty set.''' s = set() if isinstance(term, Atomic) or isvariable(term): return s if term.name == '^' and term.arity == 2: s.update(variable_set(term.value[1])) s.update(existential_variable_set(term.value[2])) return s return s def iterated_goal_term(term): '''The iterated goal term G of a term T is a term defined recursively as follows: * if T unifies with ^(_, Goal) then G is the iterated goal term of Goal * else G is T.''' if term.name == '^' and term.arity == 2: return iterated_goal_term(term.value[2]) return term def isvariant(t, v): '''Two terms are variants if there is a bijection s of the variables of the former to the variables of the latter such that the latter term results from replacing each variable X in the former by Xs.''' from ..core import deref t = deref(t) v = deref(v) if isinstance(t, Atomic) and isinstance(v, Atomic): return t == v if isvariable(t) and isvariable(v): return True if isinstance(t, Compound) and isinstance(v, Compound): if t.name != v.name or t.arity != v.arity: return False bijection = {} for a1, a2 in zip(t.value[1:], v.value[1:]): if isvariable(a1) and isvariable(a2) and not a1.name.startswith('_'): a = bijection.get(a1) if a is not None and a2 != a: return False else: bijection[a1] = a2 else: if not isvariant(a1, a2): return False return True return False PREDICATES = { # Term unification (ISO 8.2) '=/2' : Unify_2, '\=/2' : NotUnifiable_2, # Type testing (ISO 8.3) 'var/1' : Var_1, 'atom/1' : Atom_1, 'integer/1' : Integer_1, 'float/1' : Float_1, 'atomic/1' : Atomic_1, 'compound/1' : Compound_1, 'nonvar/1' : Nonvar_1, 'number/1' : Number_1, # Term comparison (ISO 8.4) '@=</2' : TermLessThanOrEqual_2, '==/2' : TermIdentical_2, '\==/2' : TermNotIdentical_2, '@</2' : TermLessThan_2, '@>/2' : TermGreaterThan_2, '@>=/2' : TermGreaterThanOrEqual_2, # Term creation and decomposition (ISO 8.5) 'functor/3' : Functor_3, 'arg/3' : Arg_3, '=../2' : Univ_2, 'copy_term/2' : CopyTerm_2, # Arithmetic evaluation (ISO 8.6) 'is/2' : Is_2, # Arithmetic comparison (ISO 8.7) '=:=/2' : ArithmeticEqual_2, '=\=/2' : ArithmeticNotEqual_2, '</2' : ArithmeticLessThan_2, '=</2' : ArithmeticLessThanOrEqual_2, '>/2' : ArithmeticGreaterThan_2, '>=/2' : ArithmeticGreaterThanOrEqual_2, # Clause retrival and information (ISO 8.8) 'clause/2' : Clause_2, 'current_predicate/1' : CurrentPredicate_1, # Clause creation and destruction (ISO 8.9) 'asserta/1' : Asserta_1, 'assertz/1' : Assertz_1, 'retract/1' : Retract_1, 'abolish/1' : Abolish_1, # All solutions (ISO 8.10) 'findall/3' : Findall_3, 'bagof/3' : Bagof_3, 'setof/3' : Setof_3, # Logic and control (ISO 8.15) # FIXME \+ does not work because of what is probably a parser # bug: the operator's "scope" is much wider than the single # goal, even when using parentheses! '\+/1' : Not_1, 'not/1' : Not_1, 'repeat/0' : Repeat_0, # Atomic term processing (ISO 8.16) 'atom_length/2' : AtomLength_2, 'atom_concat/3' : AtomConcat_3, 'sub_atom/5' : SubAtom_5, 'atom_chars/2' : AtomChars_2, 'atom_codes/2' : AtomCodes_2, 'char_code/2' : CharCode_2, 'number_chars/2' : NumberChars_2, 'number_codes/2' : NumberCodes_2, # Implementation defined hooks (ISO 8.17) 'set_prolog_flag/2' : SetPrologFlag_2, 'current_prolog_flag/2' : CurrentPrologFlag_2, 'halt/0' : Halt_0, 'halt/1' : Halt_1 }
[ "copy.deepcopy", "math.sqrt", "math.modf", "math.copysign", "math.log" ]
[((14667, 14681), 'math.copysign', 'copysign', (['(1)', 'x'], {}), '(1, x)\n', (14675, 14681), False, 'from math import copysign\n'), ((15045, 15052), 'math.modf', 'modf', (['x'], {}), '(x)\n', (15049, 15052), False, 'from math import modf\n'), ((15388, 15395), 'math.modf', 'modf', (['x'], {}), '(x)\n', (15392, 15395), False, 'from math import modf\n'), ((16226, 16232), 'math.log', 'log', (['x'], {}), '(x)\n', (16229, 16232), False, 'from math import log\n'), ((16522, 16529), 'math.sqrt', 'sqrt', (['x'], {}), '(x)\n', (16526, 16529), False, 'from math import sqrt\n'), ((31211, 31229), 'copy.deepcopy', 'deepcopy', (['template'], {}), '(template)\n', (31219, 31229), False, 'from copy import deepcopy\n')]
#!/usr/bin/env python from itertools import izip import numpy as np import h5py from progress.bar import Bar import sys import rospy import rosbag from sensor_msgs.msg import Imu, Image def main(): if len(sys.argv) < 2: print("Usage: {} dataset_name".format(sys.argv[0])) exit(1) file_name = sys.argv[1] log_file = h5py.File('../dataset/log/{}.h5'.format(file_name)) camera_file = h5py.File('../dataset/camera/{}.h5'.format(file_name)) zipped_log = izip( log_file['times'], log_file['fiber_accel'], log_file['fiber_gyro']) with rosbag.Bag('{}.bag'.format(file_name), 'w') as bag: bar = Bar('Camera', max=len(camera_file['X'])) for i, img_data in enumerate(camera_file['X']): m_img = Image() m_img.header.stamp = rospy.Time.from_sec(0.01 * i) m_img.height = img_data.shape[1] m_img.width = img_data.shape[2] m_img.step = 3 * img_data.shape[2] m_img.encoding = 'rgb8' m_img.data = np.transpose(img_data, (1, 2, 0)).flatten().tolist() bag.write('/camera/image_raw', m_img, m_img.header.stamp) bar.next() bar.finish() bar = Bar('IMU', max=len(log_file['times'])) for time, v_accel, v_gyro in zipped_log: m_imu = Imu() m_imu.header.stamp = rospy.Time.from_sec(time) [setattr(m_imu.linear_acceleration, c, v_accel[i]) for i, c in enumerate('xyz')] [setattr(m_imu.angular_velocity, c, v_gyro[i]) for i, c in enumerate('xyz')] bag.write('/fiber_imu', m_imu, m_imu.header.stamp) bar.next() bar.finish() if __name__ == "__main__": main()
[ "sensor_msgs.msg.Image", "numpy.transpose", "sensor_msgs.msg.Imu", "rospy.Time.from_sec", "itertools.izip" ]
[((474, 546), 'itertools.izip', 'izip', (["log_file['times']", "log_file['fiber_accel']", "log_file['fiber_gyro']"], {}), "(log_file['times'], log_file['fiber_accel'], log_file['fiber_gyro'])\n", (478, 546), False, 'from itertools import izip\n'), ((737, 744), 'sensor_msgs.msg.Image', 'Image', ([], {}), '()\n', (742, 744), False, 'from sensor_msgs.msg import Imu, Image\n'), ((772, 801), 'rospy.Time.from_sec', 'rospy.Time.from_sec', (['(0.01 * i)'], {}), '(0.01 * i)\n', (791, 801), False, 'import rospy\n'), ((1243, 1248), 'sensor_msgs.msg.Imu', 'Imu', ([], {}), '()\n', (1246, 1248), False, 'from sensor_msgs.msg import Imu, Image\n'), ((1276, 1301), 'rospy.Time.from_sec', 'rospy.Time.from_sec', (['time'], {}), '(time)\n', (1295, 1301), False, 'import rospy\n'), ((969, 1002), 'numpy.transpose', 'np.transpose', (['img_data', '(1, 2, 0)'], {}), '(img_data, (1, 2, 0))\n', (981, 1002), True, 'import numpy as np\n')]
from django.db import models class Pokemon(models.Model): title = models.CharField(max_length=200, verbose_name="Русское название") title_en = models.CharField(max_length=200, verbose_name="Английское название", blank=True) title_jp = models.CharField(max_length=200, verbose_name="Японское название", blank=True) image = models.ImageField(verbose_name="Картинка покемона", null=True, blank=True) description = models.TextField(verbose_name="Описание", blank=True) previous_evolution = models.ForeignKey("self", verbose_name="Из кого эволюционирует", on_delete=models.SET_NULL, null=True, blank=True, related_name="evolution") def __str__(self): return self.title class PokemonEntity(models.Model): pokemon = models.ForeignKey(Pokemon, on_delete=models.CASCADE, related_name="entities") lat = models.FloatField(verbose_name="Lat") lon = models.FloatField(verbose_name="Lon") appeared_at = models.DateTimeField(null=True, verbose_name="Appeared at", blank=True) disappeared_at = models.DateTimeField(null=True, verbose_name="Disappeared at", blank=True) level = models.IntegerField(null=True, verbose_name="Level", blank=True) health = models.IntegerField(null=True, verbose_name="Health", blank=True) strength = models.IntegerField(null=True, verbose_name="Strength", blank=True) defence = models.IntegerField(null=True, verbose_name="Defence", blank=True) stamina = models.IntegerField(null=True, verbose_name="Stamina", blank=True) def __str__(self): return f'{self.pokemon}, lvl: {self.level}'
[ "django.db.models.TextField", "django.db.models.CharField", "django.db.models.ForeignKey", "django.db.models.FloatField", "django.db.models.ImageField", "django.db.models.IntegerField", "django.db.models.DateTimeField" ]
[((72, 137), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)', 'verbose_name': '"""Русское название"""'}), "(max_length=200, verbose_name='Русское название')\n", (88, 137), False, 'from django.db import models\n'), ((153, 238), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)', 'verbose_name': '"""Английское название"""', 'blank': '(True)'}), "(max_length=200, verbose_name='Английское название', blank=True\n )\n", (169, 238), False, 'from django.db import models\n'), ((249, 327), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)', 'verbose_name': '"""Японское название"""', 'blank': '(True)'}), "(max_length=200, verbose_name='Японское название', blank=True)\n", (265, 327), False, 'from django.db import models\n'), ((340, 414), 'django.db.models.ImageField', 'models.ImageField', ([], {'verbose_name': '"""Картинка покемона"""', 'null': '(True)', 'blank': '(True)'}), "(verbose_name='Картинка покемона', null=True, blank=True)\n", (357, 414), False, 'from django.db import models\n'), ((433, 486), 'django.db.models.TextField', 'models.TextField', ([], {'verbose_name': '"""Описание"""', 'blank': '(True)'}), "(verbose_name='Описание', blank=True)\n", (449, 486), False, 'from django.db import models\n'), ((512, 657), 'django.db.models.ForeignKey', 'models.ForeignKey', (['"""self"""'], {'verbose_name': '"""Из кого эволюционирует"""', 'on_delete': 'models.SET_NULL', 'null': '(True)', 'blank': '(True)', 'related_name': '"""evolution"""'}), "('self', verbose_name='Из кого эволюционирует', on_delete=\n models.SET_NULL, null=True, blank=True, related_name='evolution')\n", (529, 657), False, 'from django.db import models\n'), ((840, 917), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Pokemon'], {'on_delete': 'models.CASCADE', 'related_name': '"""entities"""'}), "(Pokemon, on_delete=models.CASCADE, related_name='entities')\n", (857, 917), False, 'from django.db import models\n'), ((928, 965), 'django.db.models.FloatField', 'models.FloatField', ([], {'verbose_name': '"""Lat"""'}), "(verbose_name='Lat')\n", (945, 965), False, 'from django.db import models\n'), ((976, 1013), 'django.db.models.FloatField', 'models.FloatField', ([], {'verbose_name': '"""Lon"""'}), "(verbose_name='Lon')\n", (993, 1013), False, 'from django.db import models\n'), ((1032, 1103), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'null': '(True)', 'verbose_name': '"""Appeared at"""', 'blank': '(True)'}), "(null=True, verbose_name='Appeared at', blank=True)\n", (1052, 1103), False, 'from django.db import models\n'), ((1125, 1199), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'null': '(True)', 'verbose_name': '"""Disappeared at"""', 'blank': '(True)'}), "(null=True, verbose_name='Disappeared at', blank=True)\n", (1145, 1199), False, 'from django.db import models\n'), ((1212, 1276), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'null': '(True)', 'verbose_name': '"""Level"""', 'blank': '(True)'}), "(null=True, verbose_name='Level', blank=True)\n", (1231, 1276), False, 'from django.db import models\n'), ((1290, 1355), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'null': '(True)', 'verbose_name': '"""Health"""', 'blank': '(True)'}), "(null=True, verbose_name='Health', blank=True)\n", (1309, 1355), False, 'from django.db import models\n'), ((1371, 1438), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'null': '(True)', 'verbose_name': '"""Strength"""', 'blank': '(True)'}), "(null=True, verbose_name='Strength', blank=True)\n", (1390, 1438), False, 'from django.db import models\n'), ((1453, 1519), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'null': '(True)', 'verbose_name': '"""Defence"""', 'blank': '(True)'}), "(null=True, verbose_name='Defence', blank=True)\n", (1472, 1519), False, 'from django.db import models\n'), ((1534, 1600), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'null': '(True)', 'verbose_name': '"""Stamina"""', 'blank': '(True)'}), "(null=True, verbose_name='Stamina', blank=True)\n", (1553, 1600), False, 'from django.db import models\n')]
import random import asyncio from discord.ext import commands import discord import typing from base import BaseCog # https://github.com/Rapptz/discord.py/blob/v1.7.2/examples/guessing_game.py class GuessingGame(BaseCog, name="Free guessing game -- with nothing at stake."): def __init__(self, bot): self.bot = bot async def tick(self, ctx, correct): emoji = '\N{WHITE HEAVY CHECK MARK}' if correct else '\N{CROSS MARK}' try: await ctx.message.add_reaction(emoji) except discord.HTTPException: pass @commands.command( name='free_guess_now', help='Guess a random number from 1-9', ) async def free_guess_now(self, ctx, num: int): answer = random.randint(1, 9) correct = num == answer await self.tick(ctx, correct) await ctx.reply('Correct!' if correct else f'Incorrect. The answer is {answer}', mention_author=True) @commands.command( name='free_guess', help='Guess a random number between 1-99 or a provided range.' ) async def free_guess(self, ctx, start: typing.Optional[int] = 1, end: typing.Optional[int]= 99): await ctx.send(f'Guess a number between {start}-{end}') def is_correct(m): return m.author == ctx.message.author and m.content.isdigit() answer = random.randint(start, end) try: guess = await self.bot.wait_for('message', check=is_correct, timeout=5.0) except asyncio.TimeoutError: return await ctx.reply(f'Sorry, you took too long. The answer is {answer}') correct = int(guess.content) == answer await self.tick(ctx, correct) await ctx.reply('Correct!' if correct else f'Incorrect. The answer is {answer}', mention_author=True) def setup(bot): bot.add_cog(GuessingGame(bot))
[ "discord.ext.commands.command", "random.randint" ]
[((578, 656), 'discord.ext.commands.command', 'commands.command', ([], {'name': '"""free_guess_now"""', 'help': '"""Guess a random number from 1-9"""'}), "(name='free_guess_now', help='Guess a random number from 1-9')\n", (594, 656), False, 'from discord.ext import commands\n'), ((951, 1055), 'discord.ext.commands.command', 'commands.command', ([], {'name': '"""free_guess"""', 'help': '"""Guess a random number between 1-99 or a provided range."""'}), "(name='free_guess', help=\n 'Guess a random number between 1-99 or a provided range.')\n", (967, 1055), False, 'from discord.ext import commands\n'), ((744, 764), 'random.randint', 'random.randint', (['(1)', '(9)'], {}), '(1, 9)\n', (758, 764), False, 'import random\n'), ((1354, 1380), 'random.randint', 'random.randint', (['start', 'end'], {}), '(start, end)\n', (1368, 1380), False, 'import random\n')]
# -*- coding: utf-8 -*- """ Tests for py33_exceptions. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest from trollius import py33_exceptions class TestWrapErrors(unittest.TestCase): def test_ebadf_wrapped_to_OSError(self): # https://github.com/jamadden/trollius/issues/17 import socket import os import errno s = socket.socket() os.close(s.fileno()) with self.assertRaises(socket.error) as exc: s.send(b'abc') self.assertEqual(exc.exception.errno, errno.EBADF) with self.assertRaises(OSError) as exc: py33_exceptions.wrap_error(s.send, b'abc') self.assertEqual(exc.exception.errno, errno.EBADF) if __name__ == '__main__': unittest.main()
[ "unittest.main", "trollius.py33_exceptions.wrap_error", "socket.socket" ]
[((824, 839), 'unittest.main', 'unittest.main', ([], {}), '()\n', (837, 839), False, 'import unittest\n'), ((442, 457), 'socket.socket', 'socket.socket', ([], {}), '()\n', (455, 457), False, 'import socket\n'), ((689, 731), 'trollius.py33_exceptions.wrap_error', 'py33_exceptions.wrap_error', (['s.send', "b'abc'"], {}), "(s.send, b'abc')\n", (715, 731), False, 'from trollius import py33_exceptions\n')]
import tensorflow as tf from tensorflow.keras.applications.resnet50 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.preprocessing.image import load_img import tensorflow_datasets as tfds import numpy as np import pandas as pd from sklearn.model_selection import train_test_split import json from glob import glob from PIL import Image import pickle import re import os import time import datetime from tqdm import tqdm # our visual transformer code import visual_transformer as vt ####### GPU CONFIGS FOR RTX 2070/NVidia GPU ############### ## Please comment out if not training on GPU ## ## this is important for running CuDNN on GPU ## tf.keras.backend.clear_session() # - for easy reset of notebook state # chck if GPU can be seen by TF tf.config.list_physical_devices('GPU') # tf.debugging.set_log_device_placement(True) # only to check GPU usage gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: # Restrict TensorFlow to only use the first GPU try: tf.config.experimental.set_memory_growth(gpus[0], True) tf.config.experimental.set_visible_devices(gpus[0], 'GPU') logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPU") except RuntimeError as e: # Visible devices must be set before GPUs have been initialized print(e) ############################################### ######################### # Load Data file mapping captions to images ######################### prefix = './data/' save_prefix = prefix + "features/" # for storing prefixes annot = prefix + 'data.csv' inputs = pd.read_csv(annot, header=None, names=["caption", "image"]) print("Data file loaded") ######################### # Tokenize Captions ######################### cap_tokenizer = tfds.features.text.SubwordTextEncoder.load_from_file( "captions") print(cap_tokenizer.encode("A man riding a wave on top of a surfboard.".lower())) print("Tokenizer hydrated") # Max length of captions split by spaces lens = inputs['caption'].map(lambda x: len(x.split())) # Max length of captions after tokenization # tfds demonstrated in earlier chapters # This is a quick way if data fits in memory lens = inputs['caption'].map(lambda x: len(cap_tokenizer.encode(x.lower()))) # We will set this as the max length of captions # which cover 99% of the captions without truncation max_len = int(lens.quantile(0.99) + 1) # for special tokens start = '<s>' end = '</s>' inputs['tokenized'] = inputs['caption'].map( lambda x: start + x.lower().strip() + end) print("Some prepared captions: ", inputs.tokenized[:5]) def tokenize_pad(x): x = cap_tokenizer.encode(x) if len(x) < max_len: x = x + [0] * int(max_len - len(x)) return x[:max_len] inputs['tokens'] = inputs.tokenized.map(lambda x: tokenize_pad(x)) print("Captions tokenized and padded/truncated") # now to compute a column with the new name of the saved image feature file inputs['img_features'] = inputs['image'].map(lambda x: save_prefix + x.split('/')[-1][:-3] + 'npy') ######################### # Prepare tf.DataSet for training ######################### captions = inputs.tokens.tolist() img_names = inputs.img_features.tolist() # we only took half validation examples so we dont need to split # img_train, img_val, cap_train, cap_val = train_test_split(img_names, # captions, # test_size=0.2, # random_state=42) img_train, cap_train = img_names, captions # Load the numpy file with extracted ResNet50 feature def load_image_feature(img_name, cap): img_tensor = np.load(img_name.decode('utf-8')) return img_tensor, cap dataset = tf.data.Dataset.from_tensor_slices((img_train, cap_train)) # Use map to load the numpy files in parallel dataset = dataset.map(lambda item1, item2: tf.numpy_function( load_image_feature, [item1, item2], [tf.float32, tf.int32]), num_parallel_calls=tf.data.experimental.AUTOTUNE) # To verify for img, cap in dataset.take(2): print(img.shape) print(cap.numpy()) print("Training dataset prepared.") ######################### # Build Transformer Model ######################### # These parameters control the size and complexity of the model # BERT (base) uses 12 layers, 768 as embedding dim, 12 attention heads # and 4H (4x768) as feedforward size # Small Model num_layers = 4 d_model = 128 dff = d_model * 4 num_heads = 8 # BERT Base Model # num_layers = 12 # d_model = 768 # dff = d_model * 4 # as per BERT paper # num_heads = 12 target_vocab_size = cap_tokenizer.vocab_size # already includes start/end tokens dropout_rate = 0.1 EPOCHS = 20 # should see results in 4-10 epochs also transformer = vt.Transformer(num_layers, d_model, num_heads, dff, target_vocab_size, pe_input=49, # 7x7 pixels pe_target=target_vocab_size, rate=dropout_rate, use_pe=False ) ######################### # Training Setup ######################### # Learning Rate Schedule, as per `Attention is All You Need' paper class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): def __init__(self, d_model, warmup_steps=4000): super(CustomSchedule, self).__init__() self.d_model = d_model self.d_model = tf.cast(self.d_model, tf.float32) self.warmup_steps = warmup_steps def __call__(self, step): arg1 = tf.math.rsqrt(step) arg2 = step * (self.warmup_steps ** -1.5) return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2) learning_rate = CustomSchedule(d_model) optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-9) # Visualize the schedule: uncomment to plot # import matplotlib.pyplot as plt # temp_learning_rate_schedule = CustomSchedule(d_model) # # plt.plot(temp_learning_rate_schedule(tf.range(40000, dtype=tf.float32))) # plt.ylabel("Learning Rate") # plt.xlabel("Train Step") ######################### # Loss and Metrics loss_object = tf.keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction='none') def loss_function(real, pred): mask = tf.math.logical_not(tf.math.equal(real, 0)) loss_ = loss_object(real, pred) mask = tf.cast(mask, dtype=loss_.dtype) loss_ *= mask return tf.reduce_sum(loss_) / tf.reduce_sum(mask) train_loss = tf.keras.metrics.Mean(name='train_loss') train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy( name='train_accuracy') ######################### # Helper function for creating masks def create_masks(inp, tar): # Encoder padding mask - This should just be 1's # input shape should be (batch_size, 49, 2048) inp_seq = tf.ones([inp.shape[0], inp.shape[1]]) # all pixels to be used enc_padding_mask = vt.create_padding_mask(inp_seq) # Used in the 2nd attention block in the decoder. # This padding mask is used to mask the encoder outputs. dec_padding_mask = vt.create_padding_mask(inp_seq) # Used in the 1st attention block in the decoder. # It is used to pad and mask future tokens in the input received by # the decoder. look_ahead_mask = vt.create_look_ahead_mask(tf.shape(tar)[1]) dec_target_padding_mask = vt.create_padding_mask(tar) combined_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask) return enc_padding_mask, combined_mask, dec_padding_mask # Checkpoints setup checkpoint_path = "./checkpoints/train-small-model-nope-20ep" ckpt = tf.train.Checkpoint(transformer=transformer, optimizer=optimizer) ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5) # if a checkpoint exists, restore the latest checkpoint. if ckpt_manager.latest_checkpoint: ckpt.restore(ckpt_manager.latest_checkpoint) print('Latest checkpoint restored!!') ######################### # Training Loops ######################### # setup training parameters BUFFER_SIZE = 1000 BATCH_SIZE = 64 # can reduce or increase depending on GPU capacity # Shuffle and batch dataset = dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE) dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) # Perform one step of raining on one batch in an epoch @tf.function def train_step(inp, tar): tar_inp = tar[:, :-1] tar_real = tar[:, 1:] enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp) with tf.GradientTape() as tape: predictions, _ = transformer(inp, tar_inp, True, enc_padding_mask, combined_mask, dec_padding_mask) loss = loss_function(tar_real, predictions) gradients = tape.gradient(loss, transformer.trainable_variables) optimizer.apply_gradients(zip(gradients, transformer.trainable_variables)) train_loss(loss) train_accuracy(tar_real, predictions) # Begin Training for epoch in range(EPOCHS): start_tm = time.time() train_loss.reset_states() train_accuracy.reset_states() # inp -> images, tar -> caption for (batch, (inp, tar)) in enumerate(dataset): train_step(inp, tar) if batch % 100 == 0: ts = datetime.datetime.now().strftime("%d-%b-%Y (%H:%M:%S)") print('[{}] Epoch {} Batch {} Loss {:.6f} Accuracy {:.6f}'.format( ts, epoch + 1, batch, train_loss.result(), train_accuracy.result())) if (epoch + 1) % 2 == 0: ckpt_save_path = ckpt_manager.save() print('Saving checkpoint for epoch {} at {}'.format(epoch + 1, ckpt_save_path)) print('Epoch {} Loss {:.6f} Accuracy {:.6f}'.format(epoch + 1, train_loss.result(), train_accuracy.result())) print('Time taken for 1 epoch: {} secs\n'.format(time.time() - start_tm)) transformer.summary()
[ "tensorflow.reduce_sum", "pandas.read_csv", "tensorflow.keras.metrics.Mean", "tensorflow.maximum", "tensorflow.numpy_function", "tensorflow.keras.losses.SparseCategoricalCrossentropy", "tensorflow.train.Checkpoint", "tensorflow.math.equal", "tensorflow.cast", "tensorflow.keras.optimizers.Adam", "datetime.datetime.now", "tensorflow.ones", "visual_transformer.create_padding_mask", "tensorflow.config.experimental.set_visible_devices", "tensorflow.keras.backend.clear_session", "tensorflow.config.experimental.set_memory_growth", "visual_transformer.Transformer", "tensorflow.config.experimental.list_logical_devices", "tensorflow.config.experimental.list_physical_devices", "tensorflow.math.minimum", "tensorflow_datasets.features.text.SubwordTextEncoder.load_from_file", "tensorflow.config.list_physical_devices", "tensorflow.data.Dataset.from_tensor_slices", "time.time", "tensorflow.shape", "tensorflow.keras.metrics.SparseCategoricalAccuracy", "tensorflow.train.CheckpointManager", "tensorflow.GradientTape", "tensorflow.math.rsqrt" ]
[((705, 737), 'tensorflow.keras.backend.clear_session', 'tf.keras.backend.clear_session', ([], {}), '()\n', (735, 737), True, 'import tensorflow as tf\n'), ((809, 847), 'tensorflow.config.list_physical_devices', 'tf.config.list_physical_devices', (['"""GPU"""'], {}), "('GPU')\n", (840, 847), True, 'import tensorflow as tf\n'), ((928, 979), 'tensorflow.config.experimental.list_physical_devices', 'tf.config.experimental.list_physical_devices', (['"""GPU"""'], {}), "('GPU')\n", (972, 979), True, 'import tensorflow as tf\n'), ((1712, 1771), 'pandas.read_csv', 'pd.read_csv', (['annot'], {'header': 'None', 'names': "['caption', 'image']"}), "(annot, header=None, names=['caption', 'image'])\n", (1723, 1771), True, 'import pandas as pd\n'), ((1887, 1951), 'tensorflow_datasets.features.text.SubwordTextEncoder.load_from_file', 'tfds.features.text.SubwordTextEncoder.load_from_file', (['"""captions"""'], {}), "('captions')\n", (1939, 1951), True, 'import tensorflow_datasets as tfds\n'), ((4035, 4093), 'tensorflow.data.Dataset.from_tensor_slices', 'tf.data.Dataset.from_tensor_slices', (['(img_train, cap_train)'], {}), '((img_train, cap_train))\n', (4069, 4093), True, 'import tensorflow as tf\n'), ((5059, 5208), 'visual_transformer.Transformer', 'vt.Transformer', (['num_layers', 'd_model', 'num_heads', 'dff', 'target_vocab_size'], {'pe_input': '(49)', 'pe_target': 'target_vocab_size', 'rate': 'dropout_rate', 'use_pe': '(False)'}), '(num_layers, d_model, num_heads, dff, target_vocab_size,\n pe_input=49, pe_target=target_vocab_size, rate=dropout_rate, use_pe=False)\n', (5073, 5208), True, 'import visual_transformer as vt\n'), ((6080, 6159), 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', (['learning_rate'], {'beta_1': '(0.9)', 'beta_2': '(0.98)', 'epsilon': '(1e-09)'}), '(learning_rate, beta_1=0.9, beta_2=0.98, epsilon=1e-09)\n', (6104, 6159), True, 'import tensorflow as tf\n'), ((6525, 6611), 'tensorflow.keras.losses.SparseCategoricalCrossentropy', 'tf.keras.losses.SparseCategoricalCrossentropy', ([], {'from_logits': '(True)', 'reduction': '"""none"""'}), "(from_logits=True, reduction=\n 'none')\n", (6570, 6611), True, 'import tensorflow as tf\n'), ((6869, 6909), 'tensorflow.keras.metrics.Mean', 'tf.keras.metrics.Mean', ([], {'name': '"""train_loss"""'}), "(name='train_loss')\n", (6890, 6909), True, 'import tensorflow as tf\n'), ((6927, 6992), 'tensorflow.keras.metrics.SparseCategoricalAccuracy', 'tf.keras.metrics.SparseCategoricalAccuracy', ([], {'name': '"""train_accuracy"""'}), "(name='train_accuracy')\n", (6969, 6992), True, 'import tensorflow as tf\n'), ((7996, 8061), 'tensorflow.train.Checkpoint', 'tf.train.Checkpoint', ([], {'transformer': 'transformer', 'optimizer': 'optimizer'}), '(transformer=transformer, optimizer=optimizer)\n', (8015, 8061), True, 'import tensorflow as tf\n'), ((8105, 8169), 'tensorflow.train.CheckpointManager', 'tf.train.CheckpointManager', (['ckpt', 'checkpoint_path'], {'max_to_keep': '(5)'}), '(ckpt, checkpoint_path, max_to_keep=5)\n', (8131, 8169), True, 'import tensorflow as tf\n'), ((6748, 6780), 'tensorflow.cast', 'tf.cast', (['mask'], {'dtype': 'loss_.dtype'}), '(mask, dtype=loss_.dtype)\n', (6755, 6780), True, 'import tensorflow as tf\n'), ((7209, 7246), 'tensorflow.ones', 'tf.ones', (['[inp.shape[0], inp.shape[1]]'], {}), '([inp.shape[0], inp.shape[1]])\n', (7216, 7246), True, 'import tensorflow as tf\n'), ((7296, 7327), 'visual_transformer.create_padding_mask', 'vt.create_padding_mask', (['inp_seq'], {}), '(inp_seq)\n', (7318, 7327), True, 'import visual_transformer as vt\n'), ((7467, 7498), 'visual_transformer.create_padding_mask', 'vt.create_padding_mask', (['inp_seq'], {}), '(inp_seq)\n', (7489, 7498), True, 'import visual_transformer as vt\n'), ((7741, 7768), 'visual_transformer.create_padding_mask', 'vt.create_padding_mask', (['tar'], {}), '(tar)\n', (7763, 7768), True, 'import visual_transformer as vt\n'), ((7789, 7841), 'tensorflow.maximum', 'tf.maximum', (['dec_target_padding_mask', 'look_ahead_mask'], {}), '(dec_target_padding_mask, look_ahead_mask)\n', (7799, 7841), True, 'import tensorflow as tf\n'), ((9650, 9661), 'time.time', 'time.time', ([], {}), '()\n', (9659, 9661), False, 'import time\n'), ((1058, 1113), 'tensorflow.config.experimental.set_memory_growth', 'tf.config.experimental.set_memory_growth', (['gpus[0]', '(True)'], {}), '(gpus[0], True)\n', (1098, 1113), True, 'import tensorflow as tf\n'), ((1122, 1180), 'tensorflow.config.experimental.set_visible_devices', 'tf.config.experimental.set_visible_devices', (['gpus[0]', '"""GPU"""'], {}), "(gpus[0], 'GPU')\n", (1164, 1180), True, 'import tensorflow as tf\n'), ((1204, 1254), 'tensorflow.config.experimental.list_logical_devices', 'tf.config.experimental.list_logical_devices', (['"""GPU"""'], {}), "('GPU')\n", (1247, 1254), True, 'import tensorflow as tf\n'), ((4184, 4261), 'tensorflow.numpy_function', 'tf.numpy_function', (['load_image_feature', '[item1, item2]', '[tf.float32, tf.int32]'], {}), '(load_image_feature, [item1, item2], [tf.float32, tf.int32])\n', (4201, 4261), True, 'import tensorflow as tf\n'), ((5759, 5792), 'tensorflow.cast', 'tf.cast', (['self.d_model', 'tf.float32'], {}), '(self.d_model, tf.float32)\n', (5766, 5792), True, 'import tensorflow as tf\n'), ((5881, 5900), 'tensorflow.math.rsqrt', 'tf.math.rsqrt', (['step'], {}), '(step)\n', (5894, 5900), True, 'import tensorflow as tf\n'), ((6676, 6698), 'tensorflow.math.equal', 'tf.math.equal', (['real', '(0)'], {}), '(real, 0)\n', (6689, 6698), True, 'import tensorflow as tf\n'), ((6811, 6831), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['loss_'], {}), '(loss_)\n', (6824, 6831), True, 'import tensorflow as tf\n'), ((6834, 6853), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['mask'], {}), '(mask)\n', (6847, 6853), True, 'import tensorflow as tf\n'), ((9040, 9057), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (9055, 9057), True, 'import tensorflow as tf\n'), ((5967, 5994), 'tensorflow.math.rsqrt', 'tf.math.rsqrt', (['self.d_model'], {}), '(self.d_model)\n', (5980, 5994), True, 'import tensorflow as tf\n'), ((5997, 6024), 'tensorflow.math.minimum', 'tf.math.minimum', (['arg1', 'arg2'], {}), '(arg1, arg2)\n', (6012, 6024), True, 'import tensorflow as tf\n'), ((7693, 7706), 'tensorflow.shape', 'tf.shape', (['tar'], {}), '(tar)\n', (7701, 7706), True, 'import tensorflow as tf\n'), ((10631, 10642), 'time.time', 'time.time', ([], {}), '()\n', (10640, 10642), False, 'import time\n'), ((9891, 9914), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (9912, 9914), False, 'import datetime\n')]
#!/usr/bin/env python3 """ main.py - The main module for processing data and creating visual summaries for this study. """ # =========================================================================== # # METADATA # =========================================================================== # __author__ = 'Robert (Bob) <NAME>' __credits__ = ['Robert (Bob) <NAME>'] __created_date__ = 'Sep 16, 2020' __modified_date__ = 'Sep 16, 2020' # =========================================================================== # # EXPORTS # =========================================================================== # # Define the module's API -- the list of exportable objects (classes, # functions, etc.) -- when performing a "wild import" (`from field import *`). __all__ = [ 'DEBUG', ] # =========================================================================== # # IMPORTS # =========================================================================== # # -- Python Standard Library -- # import os # -- 3rd Party -- # import matplotlib.dates as mpl_dates import matplotlib.pyplot as plt import pandas as pd import seaborn as sns # =========================================================================== # # CONSTANTS # =========================================================================== # # -- Data -- # DAILY = 'daily' WEEKLY = 'weekly' COLUMNS = { 'positive': 'pos', 'negative': 'neg', 'negativeIncrease': 'negIncrease', 'positiveIncrease': 'posIncrease', } DOW = [ 'Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', ] # -- Debugging -- # DEBUG = True # -- Filesytem -- # ROOT_DIR = os.path.join(os.getcwd(), '..') DATA_DIR = '../data' RESULTS_DIR = '../results' # -- URLs -- # SOURCE_URL = 'https://covidtracking.com/api/v1/us/daily.csv' # =========================================================================== # # FUNCTIONS # =========================================================================== # # -- Data Analytics -- # def plot_series(df: pd.DataFrame): fig = plt.figure() ax = plt.subplot(111) ax.xaxis.set_major_formatter( mpl_dates.DateFormatter('%m-%d-%Y'), ) sns.lineplot( data=df, x='date', y='posIncrease', marker='o', ) ax.set_title('COVID-19 | Year 2020 | USA | Daily New Positive Cases') ax.set_xlabel('Date') ax.set_ylabel('Count of Cases') ax.xaxis_date() # plt.show() # Debug data frame. DEBUG and preview(df, plot_series.__name__) fig.savefig(f'{RESULTS_DIR}/plot_series.png') def set_figure_defaults(): # Use seaborn style defaults. Set the default figure size. sns.set( style='darkgrid', rc={'figure.figsize': (16, 9)}, ) def summarize_by_dow(df: pd.DataFrame): fig = plt.figure() ax = plt.subplot(111) sns.boxplot( data=df, x='dow', y='posIncrease', order=DOW, ) ax.set_title('COVID-19 | Year 2020 | USA | Daily New Positive Cases') ax.set_xlabel('Day of Week') ax.set_ylabel('Count of Cases') # Debug data frame. DEBUG and preview(df, summarize_by_dow.__name__) # plt.show() fig.savefig(f'{RESULTS_DIR}/summarize_dow.png') def summarize_by_dow_percent(df: pd.DataFrame): fig = plt.figure() ax = plt.subplot(111) sns.boxplot( data=df, x='dow', y='pctWeeklyPosIncrease', order=DOW, ) ax.set_title('COVID-19 | Year 2020 | USA | Daily New Positive Cases') ax.set_xlabel('Day of Week') ax.set_ylabel('Percent of Weekly Count of Cases') # Debug data frame. DEBUG and preview(df, summarize_by_dow_percent.__name__) # plt.show() fig.savefig(f'{RESULTS_DIR}/summarize_dow_percent.png') def summarize_by_dow_zscore(df: pd.DataFrame): fig = plt.figure() ax = plt.subplot(111) sns.boxplot( data=df, x='dow', y='zscoreWeeklyPosIncrease', order=DOW, ) ax.set_title('COVID-19 | Year 2020 | USA | Daily New Positive Cases') ax.set_xlabel('Day of Week') ax.set_ylabel('Z-Score of Weekly Count of Cases') # Debug data frame. DEBUG and preview(df, summarize_by_dow_zscore.__name__) # plt.show() fig.savefig(f'{RESULTS_DIR}/summarize_dow_zscore.png') def summarize_maxima(df: pd.DataFrame): fig = plt.figure() ax = plt.subplot(111) sns.countplot( data=df, x='dow', order=DOW, ) ax.set_title('COVID-19 | Year 2020 | USA | Daily New Positive Cases') ax.set_xlabel('Day of Week') ax.set_ylabel('Count of Local Maxima of Cases') # Debug data frame. DEBUG and preview(df, summarize_maxima.__name__) # plt.show() fig.savefig(f'{RESULTS_DIR}/summarize_maxima.png') def visualize_data(df: pd.DataFrame): set_figure_defaults() plot_series(df.sort_values('date')) summarize_by_dow(df) summarize_by_dow_percent(df) summarize_by_dow_zscore(df) summarize_maxima(df[df['localMaximum'].eq(True)]) # Debug data frame. DEBUG and preview(df, visualize_data.__name__) # Return data frame for reuse. return df # -- Data Processing: Extract -- # def extract_data() -> pd.DataFrame: # Download source data as CSV from an API. df = pd.read_csv(SOURCE_URL) # Save a copy of the extracted data. df.to_csv( f'{DATA_DIR}/01_raw/{DAILY}_extract_data.csv', index=False, ) # Debug data frame. DEBUG and preview(df, extract_data.__name__) # Return data frame for reuse. return df # -- Data Processing: Transform -- # def transform_data(df: pd.DataFrame) -> pd.DataFrame: df = rename_columns(df) df = add_columns(df) # Debug data frame. DEBUG and preview(df, transform_data.__name__) # Return data frame for reuse. return df def add_columns(df: pd.DataFrame): # Format date. df.date = pd.to_datetime(df.date, format='%Y%m%d') # Set the date as the DataFrame's index. df = df.set_index('date') # Add date-derived columns. df['date'] = df.index.date df['year'] = df.index.year df['month'] = df.index.month df['week'] = df.index.week df['dow'] = df.index.day_name() df['dowIndex'] = df.index.dayofweek # Add group-summarization columns. df_weekly = df.groupby('week', as_index=False)['posIncrease'].agg( { 'weeklyPosIncrease': 'sum', 'meanWeeklyPosIncrease': 'mean', 'stdWeeklyPosIncrease': 'std', }, ) df = pd.merge( df, df_weekly, how='left', on='week', ) df['pctWeeklyPosIncrease'] = percent(df.posIncrease, df.weeklyPosIncrease) df['zscoreWeeklyPosIncrease'] = zScore( df.posIncrease, df.meanWeeklyPosIncrease, df.stdWeeklyPosIncrease, ) # Add delta columns. df['day1LagDelta'] = lag_delta(df.posIncrease, 1) df['day1LeadDelta'] = lead_delta(df.posIncrease, 1) # Add local extrema columns. df['localMaximum'] = df.apply(local_max, axis=1) df['localMinimum'] = df.apply(local_min, axis=1) # Save a copy of the processed data. df.to_csv( f'{DATA_DIR}/02_intermediate/{DAILY}_add_columns.csv', index=True, ) # Debug data frame. DEBUG and preview(df, add_columns.__name__) # Return data frame for reuse. return df def rename_columns(df: pd.DataFrame) -> pd.DataFrame: # Rename columns. df.rename(columns=COLUMNS, inplace=True) # Save a copy of the processed data. df.to_csv( f'{DATA_DIR}/02_intermediate/{DAILY}_rename_columns.csv', index=True, ) # Debug data frame. DEBUG and preview(df, rename_columns.__name__) # Return data frame for reuse. return df # -- Data Processing: Load -- # # -- Utilities -- # def lag_delta(series, period): return series - series.shift(period) def lead_delta(series, period): return series.shift(-period) - series def local_max(row): if row['day1LagDelta'] > 0 and row['day1LeadDelta'] < 0: return True else: return False def local_min(row): if row['day1LagDelta'] < 0 and row['day1LeadDelta'] > 0: return True else: return False def percent(num, denom): return 100 * num / denom def preview(df: pd.DataFrame, func_name: str): print(f'INSIDE {func_name}(): type =', type(df).__name__) print(df.head(5)) def zScore(x, mean, std): return (x - mean) / std # -- Main Program -- # def main(): df = extract_data() df = transform_data(df) visualize_data(df) # =========================================================================== # # MAIN EXECUTION # =========================================================================== # # -- Main Program -- # # If this module is in the main module, call the main() function. if __name__ == '__main__': main()
[ "matplotlib.pyplot.subplot", "seaborn.lineplot", "os.getcwd", "pandas.read_csv", "pandas.merge", "matplotlib.pyplot.figure", "seaborn.boxplot", "pandas.to_datetime", "seaborn.countplot", "matplotlib.dates.DateFormatter", "seaborn.set" ]
[((1681, 1692), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1690, 1692), False, 'import os\n'), ((2073, 2085), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2083, 2085), True, 'import matplotlib.pyplot as plt\n'), ((2096, 2112), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (2107, 2112), True, 'import matplotlib.pyplot as plt\n'), ((2204, 2264), 'seaborn.lineplot', 'sns.lineplot', ([], {'data': 'df', 'x': '"""date"""', 'y': '"""posIncrease"""', 'marker': '"""o"""'}), "(data=df, x='date', y='posIncrease', marker='o')\n", (2216, 2264), True, 'import seaborn as sns\n'), ((2699, 2756), 'seaborn.set', 'sns.set', ([], {'style': '"""darkgrid"""', 'rc': "{'figure.figsize': (16, 9)}"}), "(style='darkgrid', rc={'figure.figsize': (16, 9)})\n", (2706, 2756), True, 'import seaborn as sns\n'), ((2832, 2844), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2842, 2844), True, 'import matplotlib.pyplot as plt\n'), ((2855, 2871), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (2866, 2871), True, 'import matplotlib.pyplot as plt\n'), ((2877, 2934), 'seaborn.boxplot', 'sns.boxplot', ([], {'data': 'df', 'x': '"""dow"""', 'y': '"""posIncrease"""', 'order': 'DOW'}), "(data=df, x='dow', y='posIncrease', order=DOW)\n", (2888, 2934), True, 'import seaborn as sns\n'), ((3326, 3338), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3336, 3338), True, 'import matplotlib.pyplot as plt\n'), ((3349, 3365), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (3360, 3365), True, 'import matplotlib.pyplot as plt\n'), ((3371, 3437), 'seaborn.boxplot', 'sns.boxplot', ([], {'data': 'df', 'x': '"""dow"""', 'y': '"""pctWeeklyPosIncrease"""', 'order': 'DOW'}), "(data=df, x='dow', y='pctWeeklyPosIncrease', order=DOW)\n", (3382, 3437), True, 'import seaborn as sns\n'), ((3862, 3874), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3872, 3874), True, 'import matplotlib.pyplot as plt\n'), ((3885, 3901), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (3896, 3901), True, 'import matplotlib.pyplot as plt\n'), ((3907, 3976), 'seaborn.boxplot', 'sns.boxplot', ([], {'data': 'df', 'x': '"""dow"""', 'y': '"""zscoreWeeklyPosIncrease"""', 'order': 'DOW'}), "(data=df, x='dow', y='zscoreWeeklyPosIncrease', order=DOW)\n", (3918, 3976), True, 'import seaborn as sns\n'), ((4392, 4404), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (4402, 4404), True, 'import matplotlib.pyplot as plt\n'), ((4415, 4431), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (4426, 4431), True, 'import matplotlib.pyplot as plt\n'), ((4437, 4479), 'seaborn.countplot', 'sns.countplot', ([], {'data': 'df', 'x': '"""dow"""', 'order': 'DOW'}), "(data=df, x='dow', order=DOW)\n", (4450, 4479), True, 'import seaborn as sns\n'), ((5329, 5352), 'pandas.read_csv', 'pd.read_csv', (['SOURCE_URL'], {}), '(SOURCE_URL)\n', (5340, 5352), True, 'import pandas as pd\n'), ((5960, 6000), 'pandas.to_datetime', 'pd.to_datetime', (['df.date'], {'format': '"""%Y%m%d"""'}), "(df.date, format='%Y%m%d')\n", (5974, 6000), True, 'import pandas as pd\n'), ((6587, 6633), 'pandas.merge', 'pd.merge', (['df', 'df_weekly'], {'how': '"""left"""', 'on': '"""week"""'}), "(df, df_weekly, how='left', on='week')\n", (6595, 6633), True, 'import pandas as pd\n'), ((2156, 2191), 'matplotlib.dates.DateFormatter', 'mpl_dates.DateFormatter', (['"""%m-%d-%Y"""'], {}), "('%m-%d-%Y')\n", (2179, 2191), True, 'import matplotlib.dates as mpl_dates\n')]
"""Govee API client package.""" import asyncio import logging import time import math from contextlib import asynccontextmanager from dataclasses import dataclass from datetime import datetime from events import Events from typing import Any, List, Optional, Tuple, Union import aiohttp from govee_api_laggat.__version__ import VERSION from govee_api_laggat.learning_storage import ( GoveeAbstractLearningStorage, GoveeLearnedInfo, ) _LOGGER = logging.getLogger(__name__) _API_BASE_URL = "https://developer-api.govee.com" _API_PING = _API_BASE_URL + "/ping" _API_DEVICES = _API_BASE_URL + "/v1/devices" _API_DEVICES_CONTROL = _API_BASE_URL + "/v1/devices/control" _API_DEVICES_STATE = _API_BASE_URL + "/v1/devices/state" # API rate limit header keys _RATELIMIT_TOTAL = "Rate-Limit-Total" # The maximum number of requests you're permitted to make per minute. _RATELIMIT_REMAINING = "Rate-Limit-Remaining" # The number of requests remaining in the current rate limit window. _RATELIMIT_RESET = "Rate-Limit-Reset" # The time at which the current rate limit window resets in UTC epoch seconds. # return state from hisory for n seconds after controlling the device DELAY_GET_FOLLOWING_SET_SECONDS = 2 # do not send another control within n seconds after controlling the device DELAY_SET_FOLLOWING_SET_SECONDS = 1 @dataclass class GoveeDevice(object): """ Govee Device DTO """ device: str model: str device_name: str controllable: bool retrievable: bool support_cmds: List[str] support_turn: bool support_brightness: bool support_color: bool support_color_tem: bool online: bool power_state: bool brightness: int color: Tuple[int, int, int] color_temp: int timestamp: int source: str error: str lock_set_until: int lock_get_until: int learned_set_brightness_max: int learned_get_brightness_max: int before_set_brightness_turn_on: bool config_offline_is_off: bool # this is the learning config, possibly overridden by a global config class GoveeError(Exception): """Base Exception thrown from govee_api_laggat.""" class GoveeDeviceNotFound(GoveeError): """Device is unknown.""" class Govee(object): """Govee API client.""" async def __aenter__(self): """Async context manager enter.""" self._session = aiohttp.ClientSession() return self async def __aexit__(self, *err): """Async context manager exit.""" if self._session: await self._session.close() self._session = None def __init__( self, api_key: str, *, learning_storage: Optional[GoveeAbstractLearningStorage] = None, ): """Init with an API_KEY and storage for learned values.""" _LOGGER.debug("govee_api_laggat v%s", VERSION) self._online = True # assume we are online self.events = Events() self._api_key = api_key self._devices = {} self._rate_limit_on = 5 # safe available call count for multiple processes self._limit = 100 self._limit_remaining = 100 self._limit_reset = 0 self._config_offline_is_off = None self._learning_storage = learning_storage if not self._learning_storage: # use an internal learning storage as long as we run. # we will need to re-learn every time again. self._learning_storage = GoveeAbstractLearningStorage() @classmethod async def create( cls, api_key: str, *, learning_storage: Optional[GoveeAbstractLearningStorage] = None, ): """Use create method if you want to use this Client without an async context manager.""" self = Govee(api_key, learning_storage=learning_storage) await self.__aenter__() return self async def close(self): """Use close when your are finished with the Client without using an async context manager.""" await self.__aexit__() def _getHeaders(self, auth: bool): """Return Request headers with/without authentication.""" if auth: return {"Govee-API-Key": self._api_key} return {} @asynccontextmanager async def _api_put(self, *, auth=True, url: str, json): """API HTTP Put call.""" async with self._api_request_internal( lambda: self._session.put( url=url, headers=self._getHeaders(auth), json=json ) ) as response: yield response @asynccontextmanager async def _api_get(self, *, auth=True, url: str, params=None): """API HTTP Get call.""" async with self._api_request_internal( lambda: self._session.get( url=url, headers=self._getHeaders(auth), params=params ) ) as response: yield response @asynccontextmanager async def _api_request_internal(self, request_lambda): """API Methond handling all HTTP calls. This also handles: - rate-limiting - online/offline status """ err = None await self.rate_limit_delay() try: async with request_lambda() as response: self._set_online(True) # we got something, so we are online self._track_rate_limit(response) # return the async content manager response yield response except aiohttp.ClientError as ex: # we are offline self._set_online(False) err = "error from aiohttp: %s" % repr(ex) except Exception as ex: err = "unknown error: %s" % repr(ex) if err: class error_response: def __init__(self, err_msg): self._err_msg = err_msg status = -1 async def text(self): return self._err_msg yield error_response("_api_request_internal: " + err) def _utcnow(self): """Helper method to get utc now as seconds.""" return datetime.timestamp(datetime.now()) def _track_rate_limit(self, response): """Track rate limiting.""" if response.status == 429: _LOGGER.warning( f"Rate limit exceeded, check if other devices also utilize the govee API" ) limit_unknown = True if ( _RATELIMIT_TOTAL in response.headers and _RATELIMIT_REMAINING in response.headers and _RATELIMIT_RESET in response.headers ): try: self._limit = int(response.headers[_RATELIMIT_TOTAL]) self._limit_remaining = int(response.headers[_RATELIMIT_REMAINING]) self._limit_reset = float(response.headers[_RATELIMIT_RESET]) _LOGGER.debug( f"Rate limit total: {self._limit}, remaining: {self._limit_remaining} in {self.rate_limit_reset_seconds} seconds" ) limit_unknown = False except Exception as ex: _LOGGER.warning(f"Error trying to get rate limits: {ex}") if limit_unknown: self._limit_remaining -= 1 async def rate_limit_delay(self): """Delay a call when rate limiting is active.""" # do we have requests left? if self.rate_limit_remaining <= self.rate_limit_on: # do we need to sleep? sleep_sec = self.rate_limit_reset_seconds if sleep_sec > 0: _LOGGER.warning( f"Rate limiting active, {self._limit_remaining} of {self._limit} remaining, sleeping for {sleep_sec}s." ) await asyncio.sleep(sleep_sec) @property def rate_limit_total(self): """Rate limit is counted down from this value.""" return self._limit @property def rate_limit_remaining(self): """Remaining Rate limit.""" return self._limit_remaining @property def rate_limit_reset(self): """UTC time in seconds when the rate limit will be reset.""" return self._limit_reset @property def rate_limit_reset_seconds(self): """Seconds until the rate limit will be reset.""" return self._limit_reset - self._utcnow() @property def rate_limit_on(self): """Remaining calls that trigger rate limiting. Defaults to 5, which means there is some room for other clients. """ return self._rate_limit_on @rate_limit_on.setter def rate_limit_on(self, val): """Set the remaining calls that trigger rate limiting.""" if val > self._limit: raise GoveeError( f"Rate limiter threshold {val} must be below {self._limit}" ) if val < 1: raise GoveeError(f"Rate limiter threshold {val} must be above 1") self._rate_limit_on = val @property def config_offline_is_off(self): """Get the global config option config_offline_is_off.""" return self._config_offline_is_off @config_offline_is_off.setter def config_offline_is_off(self, val: bool): """ Set global behavour when device is offline. None: default, use config_offline_is_off from learning, or False by default. False: an offline device doesn't change power state. True: an offline device is shown as off. """ self._config_offline_is_off = val @property def devices(self) -> List[GoveeDevice]: """Cached devices list.""" lst = [] for dev in self._devices: lst.append(self._devices[dev]) return lst def device(self, device) -> GoveeDevice: """Single device from cache.""" _, device = self._get_device(device) return device @property def online(self): """Last request was able to connect to the API.""" return self._online def _set_online(self, online: bool): """Set the online state and fire an event on change.""" if self._online != online: self._online = online # inform about state change self.events.online(self._online) if not online: # show all devices as offline for device in self.devices: device.online = False async def check_connection(self) -> bool: """Check connection to API.""" try: # this will set self.online await self.ping() except: pass return self.online async def ping(self) -> Tuple[float, str]: """Ping the api endpoint. No API_KEY is needed.""" _LOGGER.debug("ping") start = time.time() ping_ok_delay = None err = None async with self._api_get(url=_API_PING, auth=False) as response: result = await response.text() delay = int((time.time() - start) * 1000) if response.status == 200: if "Pong" == result: ping_ok_delay = max(1, delay) else: err = f"API-Result wrong: {result}" else: result = await response.text() err = f"API-Error {response.status}: {result}" return ping_ok_delay, err async def get_devices(self) -> Tuple[List[GoveeDevice], str]: """Get and cache devices.""" _LOGGER.debug("get_devices") devices = {} err = None async with self._api_get(url=_API_DEVICES) as response: if response.status == 200: result = await response.json() timestamp = self._utcnow() learning_infos = await self._learning_storage._read_cached() for item in result["data"]["devices"]: device_str = item["device"] model_str = item["model"] is_retrievable = item["retrievable"] # assuming defaults for learned/configured values learned_set_brightness_max = None learned_get_brightness_max = None before_set_brightness_turn_on = False config_offline_is_off = False # effenctive state # defaults by some conditions if not is_retrievable: learned_get_brightness_max = -1 if model_str == "H6104": before_set_brightness_turn_on = True # load learned/configured values if device_str in learning_infos: learning_info = learning_infos[device_str] learned_set_brightness_max = learning_info.set_brightness_max learned_get_brightness_max = learning_info.get_brightness_max before_set_brightness_turn_on = learning_info.before_set_brightness_turn_on config_offline_is_off = learning_info.config_offline_is_off # create device DTO devices[device_str] = GoveeDevice( device=device_str, model=model_str, device_name=item["deviceName"], controllable=item["controllable"], retrievable=is_retrievable, support_cmds=item["supportCmds"], support_turn="turn" in item["supportCmds"], support_brightness="brightness" in item["supportCmds"], support_color="color" in item["supportCmds"], support_color_tem="colorTem" in item["supportCmds"], # defaults for state online=True, power_state=False, brightness=0, color=(0, 0, 0), color_temp=0, timestamp=timestamp, source="history", error=None, lock_set_until=0, lock_get_until=0, learned_set_brightness_max=learned_set_brightness_max, learned_get_brightness_max=learned_get_brightness_max, before_set_brightness_turn_on=before_set_brightness_turn_on, config_offline_is_off=config_offline_is_off ) else: result = await response.text() err = f"API-Error {response.status}: {result}" # cache last get_devices result self._devices = devices return self.devices, err def _get_device(self, device: Union[str, GoveeDevice]) -> Tuple[str, GoveeDevice]: """Get a device by address or GoveeDevice DTO. returns: device_address, device_dto """ device_str = device if isinstance(device, GoveeDevice): device_str = device.device if not device_str in self._devices: device = None # disallow unknown devices elif isinstance(device, str) and device_str in self._devices: device = self._devices[device_str] else: raise GoveeDeviceNotFound(device_str) return device_str, device def _is_success_result_message(self, result) -> bool: """Given an aiohttp result checks if it is a success result.""" return "message" in result and result["message"] == "Success" async def turn_on(self, device: Union[str, GoveeDevice]) -> Tuple[bool, str]: """Turn on a device, return success and error message.""" return await self._turn(device, "on") async def turn_off(self, device: Union[str, GoveeDevice]) -> Tuple[bool, str]: """Turn off a device, return success and error message.""" return await self._turn(device, "off") async def _turn( self, device: Union[str, GoveeDevice], onOff: str ) -> Tuple[bool, str]: """Turn command called by turn_on and turn_off.""" success = False err = None device_str, device = self._get_device(device) if not device: err = f"Invalid device {device_str}, {device}" else: command = "turn" params = onOff result, err = await self._control(device, command, params) success = False if not err: success = self._is_success_result_message(result) if success: self._devices[device_str].timestamp = self._utcnow self._devices[device_str].source = "history" self._devices[device_str].power_state = onOff == "on" return success, err async def set_brightness( self, device: Union[str, GoveeDevice], brightness: int ) -> Tuple[bool, str]: """Set brightness to 0-254.""" success = False err = None device_str, device = self._get_device(device) if not device: err = f"Invalid device {device_str}, {device}" else: if brightness < 0 or brightness > 254: err = f"set_brightness: invalid value {brightness}, allowed range 0 .. 254" else: if brightness > 0 and device.before_set_brightness_turn_on: await self.turn_on(device) # api doesn't work if we don't sleep await asyncio.sleep(1) # set brightness as 0..254 brightness_set = brightness brightness_result = brightness_set brightness_set_100 = 0 if brightness_set > 0: brightness_set_100 = max(1, math.floor(brightness * 100 / 254)) brightness_result_100 = math.ceil(brightness_set_100 * 254 / 100) if device.learned_set_brightness_max == 100: # set brightness as 0..100 brightness_set = brightness_set_100 brightness_result = brightness_result_100 command = "brightness" result, err = await self._control(device, command, brightness_set) if err: # try again with 0-100 range if "API-Error 400" in err: # Unsupported Cmd Value # set brightness as 0..100 as 0..254 didn't work brightness_set = brightness_set_100 brightness_result = brightness_result_100 result, err = await self._control( device, command, brightness_set ) if not err: device.learned_set_brightness_max = 100 await self._learn(device) else: if brightness_set > 100: device.learned_set_brightness_max = 254 await self._learn(device) if not err: success = self._is_success_result_message(result) if success: self._devices[device_str].timestamp = self._utcnow self._devices[device_str].source = "history" self._devices[device_str].brightness = brightness_result self._devices[device_str].power_state = brightness_result > 0 return success, err async def _learn(self, device): """Persist learned information from device DTO.""" learning_infos: Dict[ str, GoveeLearnedInfo ] = await self._learning_storage._read_cached() changed = False # init Dict and entry for device if learning_infos == None: learning_infos = {} if device.device not in learning_infos: learning_infos[device.device] = GoveeLearnedInfo() # output what was lerned, and learn if ( learning_infos[device.device].set_brightness_max != device.learned_set_brightness_max ): _LOGGER.debug( "learned device %s uses range 0-%s for setting brightness.", device.device, device.learned_set_brightness_max, ) learning_infos[ device.device ].set_brightness_max = device.learned_set_brightness_max changed = True if ( learning_infos[device.device].get_brightness_max != device.learned_get_brightness_max ): _LOGGER.debug( "learned device %s uses range 0-%s for getting brightness state.", device.device, device.learned_get_brightness_max, ) if device.learned_get_brightness_max == 100: _LOGGER.info( "brightness range for %s is assumed. If the brightness slider doesn't match the actual brightness pull the brightness up to max once.", device.device, ) changed = True learning_infos[ device.device ].get_brightness_max = device.learned_get_brightness_max if changed: await self._learning_storage._write_cached(learning_infos) async def set_color_temp( self, device: Union[str, GoveeDevice], color_temp: int ) -> Tuple[bool, str]: """Set color temperature to 2000-9000.""" success = False err = None device_str, device = self._get_device(device) if not device: err = f"Invalid device {device_str}, {device}" else: if color_temp < 2000 or color_temp > 9000: err = f"set_color_temp: invalid value {color_temp}, allowed range 2000-9000" else: command = "colorTem" result, err = await self._control(device, command, color_temp) if not err: success = self._is_success_result_message(result) if success: self._devices[device_str].timestamp = self._utcnow self._devices[device_str].source = "history" self._devices[device_str].color_temp = color_temp return success, err async def set_color( self, device: Union[str, GoveeDevice], color: Tuple[int, int, int] ) -> Tuple[bool, str]: """Set color (r, g, b) where each value may be in range 0-255 """ success = False err = None device_str, device = self._get_device(device) if not device: err = f"Invalid device {device_str}, {device}" else: if len(color) != 3: err = f"set_color: invalid value {color}, must be tuple with (r, g, b) values" else: red = color[0] green = color[1] blue = color[2] if red < 0 or red > 255: err = ( f"set_color: invalid value {color}, red must be within 0 .. 254" ) elif green < 0 or green > 255: err = f"set_color: invalid value {color}, green must be within 0 .. 254" elif blue < 0 or blue > 255: err = f"set_color: invalid value {color}, blue must be within 0 .. 254" else: command = "color" command_color = {"r": red, "g": green, "b": blue} result, err = await self._control(device, command, command_color) if not err: success = self._is_success_result_message(result) if success: self._devices[device_str].timestamp = self._utcnow self._devices[device_str].source = "history" self._devices[device_str].color = color return success, err def _get_lock_seconds(self, utcSeconds: int) -> int: """Get seconds to wait.""" seconds_lock = utcSeconds - self._utcnow() if seconds_lock < 0: seconds_lock = 0 return seconds_lock async def _control( self, device: Union[str, GoveeDevice], command: str, params: Any ) -> Tuple[Any, str]: """Control led strips and bulbs.""" device_str, device = self._get_device(device) cmd = {"name": command, "value": params} _LOGGER.debug(f"control {device_str}: {cmd}") result = None err = None if not device: err = f"Invalid device {device_str}, {device}" else: if not device.controllable: err = f"Device {device.device} is not controllable" _LOGGER.debug(f"control {device_str} not possible: {err}") elif not command in device.support_cmds: err = f"Command {command} not possible on device {device.device}" _LOGGER.warning(f"control {device_str} not possible: {err}") else: while True: seconds_locked = self._get_lock_seconds(device.lock_set_until) if not seconds_locked: break; _LOGGER.debug(f"control {device_str} is locked for {seconds_locked} seconds. Command waiting: {cmd}") await asyncio.sleep(seconds_locked) json = {"device": device.device, "model": device.model, "cmd": cmd} await self.rate_limit_delay() async with self._api_put( url=_API_DEVICES_CONTROL, json=json ) as response: if response.status == 200: device.lock_set_until = ( self._utcnow() + DELAY_SET_FOLLOWING_SET_SECONDS ) device.lock_get_until = ( self._utcnow() + DELAY_GET_FOLLOWING_SET_SECONDS ) result = await response.json() else: text = await response.text() err = f"API-Error {response.status} on command {cmd}: {text} for device {device}" _LOGGER.warning(f"control {device_str} not possible: {err}") return result, err async def get_states(self) -> List[GoveeDevice]: """Request states for all devices from API.""" _LOGGER.debug("get_states") for device_str in self._devices: state, err = await self._get_device_state(device_str) if err: _LOGGER.warning("error getting state for device %s: %s", device_str, err, ) self._devices[device_str].error = err else: self._devices[device_str] = state self._devices[device_str].error = None return self.devices async def _get_device_state( self, device: Union[str, GoveeDevice] ) -> Tuple[GoveeDevice, str]: """Get state for one specific device.""" device_str, device = self._get_device(device) result = None err = None seconds_locked = self._get_lock_seconds(device.lock_get_until) if not device: err = f"Invalid device {device_str}" elif not device.retrievable: # device {device_str} isn't able to return state, return 'history' state self._devices[device_str].source = "history" result = self._devices[device_str] elif seconds_locked: # we just changed something, return state from history self._devices[device_str].source = "history" result = self._devices[device_str] _LOGGER.debug( f"state object returned from cache: {result}, next state for {device.device} from api allowed in {seconds_locked} seconds" ) else: params = {"device": device.device, "model": device.model} async with self._api_get(url=_API_DEVICES_STATE, params=params) as response: if response.status == 200: timestamp = self._utcnow() json_obj = await response.json() prop_online = False prop_power_state = False prop_brightness = False prop_color = (0, 0, 0) prop_color_temp = 0 for prop in json_obj["data"]["properties"]: # somehow these are all dicts with one element if "online" in prop: prop_online = prop["online"] is True elif "powerState" in prop: prop_power_state = prop["powerState"] == "on" elif "brightness" in prop: prop_brightness = prop["brightness"] elif "color" in prop: prop_color = ( prop["color"]["r"], prop["color"]["g"], prop["color"]["b"], ) elif "colorTemInKelvin" in prop: prop_color_temp = prop["colorTemInKelvin"] else: _LOGGER.debug(f"unknown state property '{prop}'") if not prop_online: if self.config_offline_is_off is not None: # global option if self.config_offline_is_off: prop_power_state = False elif device.config_offline_is_off: # learning option prop_power_state = False # autobrightness learning if device.learned_get_brightness_max == None or ( device.learned_get_brightness_max == 100 and prop_brightness > 100 ): device.learned_get_brightness_max = ( 100 # assumption, as we didn't get anything higher ) if prop_brightness > 100: device.learned_get_brightness_max = 254 await self._learn(device) if device.learned_get_brightness_max == 100: # scale range 0-100 up to 0-254 prop_brightness = math.floor( prop_brightness * 254 / 100 ) result = self._devices[device_str] result.online = prop_online result.power_state = prop_power_state result.brightness = prop_brightness result.color = prop_color result.color_temp = prop_color_temp result.timestamp = timestamp result.source = "api" result.error = None _LOGGER.debug( f"state returned from API: {json_obj}, resulting state object: {result}" ) else: errText = await response.text() err = f"API-Error {response.status}: {errText}" return result, err
[ "govee_api_laggat.learning_storage.GoveeLearnedInfo", "govee_api_laggat.learning_storage.GoveeAbstractLearningStorage", "math.ceil", "asyncio.sleep", "math.floor", "time.time", "aiohttp.ClientSession", "events.Events", "datetime.datetime.now", "logging.getLogger" ]
[((456, 483), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (473, 483), False, 'import logging\n'), ((2352, 2375), 'aiohttp.ClientSession', 'aiohttp.ClientSession', ([], {}), '()\n', (2373, 2375), False, 'import aiohttp\n'), ((2913, 2921), 'events.Events', 'Events', ([], {}), '()\n', (2919, 2921), False, 'from events import Events\n'), ((10823, 10834), 'time.time', 'time.time', ([], {}), '()\n', (10832, 10834), False, 'import time\n'), ((3449, 3479), 'govee_api_laggat.learning_storage.GoveeAbstractLearningStorage', 'GoveeAbstractLearningStorage', ([], {}), '()\n', (3477, 3479), False, 'from govee_api_laggat.learning_storage import GoveeAbstractLearningStorage, GoveeLearnedInfo\n'), ((6146, 6160), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (6158, 6160), False, 'from datetime import datetime\n'), ((20195, 20213), 'govee_api_laggat.learning_storage.GoveeLearnedInfo', 'GoveeLearnedInfo', ([], {}), '()\n', (20211, 20213), False, 'from govee_api_laggat.learning_storage import GoveeAbstractLearningStorage, GoveeLearnedInfo\n'), ((18067, 18108), 'math.ceil', 'math.ceil', (['(brightness_set_100 * 254 / 100)'], {}), '(brightness_set_100 * 254 / 100)\n', (18076, 18108), False, 'import math\n'), ((7774, 7798), 'asyncio.sleep', 'asyncio.sleep', (['sleep_sec'], {}), '(sleep_sec)\n', (7787, 7798), False, 'import asyncio\n'), ((11025, 11036), 'time.time', 'time.time', ([], {}), '()\n', (11034, 11036), False, 'import time\n'), ((17710, 17726), 'asyncio.sleep', 'asyncio.sleep', (['(1)'], {}), '(1)\n', (17723, 17726), False, 'import asyncio\n'), ((17991, 18025), 'math.floor', 'math.floor', (['(brightness * 100 / 254)'], {}), '(brightness * 100 / 254)\n', (18001, 18025), False, 'import math\n'), ((25787, 25816), 'asyncio.sleep', 'asyncio.sleep', (['seconds_locked'], {}), '(seconds_locked)\n', (25800, 25816), False, 'import asyncio\n'), ((31119, 31158), 'math.floor', 'math.floor', (['(prop_brightness * 254 / 100)'], {}), '(prop_brightness * 254 / 100)\n', (31129, 31158), False, 'import math\n')]
""" Obtain the single photoelectron response for an SiPM. Can be used as an input to sim_telarray after normalisation with Konrads script """ import argparse from argparse import ArgumentDefaultsHelpFormatter as Formatter import numpy as np from scipy.special import binom from scipy.stats import norm from IPython import embed from matplotlib import pyplot as plt import os def sipm_enf(x, spe_sigma, opct, pap, dap): """ SiPM formula from Gentile 2010 http://adsabs.harvard.edu/abs/2010arXiv1006.3263G This implementation only considers the case for a 100% probability of a single inital fired microcell Parameters ---------- x : ndarray X points to evaluate at spe_sigma : float Width of the single photoelectron peak opct : float Probability of optical crosstalk pap : float Probability of afterpulse dap : float Distance of afterpulse peak from main peak """ n_peaks = 100 N = np.arange(n_peaks)[:, None] K = np.arange(1, n_peaks)[:, None] # Probability of n fired microcells due to optical crosstalk pct = ((1 - opct) * np.power(opct, N - 1) * binom(N - 1, 0))[:, 0] sap = spe_sigma papk = np.power(1 - pap, N[:, 0]) p0ap = pct * papk pap1 = pct * (1-papk) * papk pe_sigma = np.sqrt(K * spe_sigma ** 2) ap_sigma = np.sqrt(K * sap ** 2) signal = p0ap[K] * norm.pdf(x, K, pe_sigma) signal += pap1[K] * norm.pdf(x, K * (1.0-dap), ap_sigma) return signal.sum(0) def main(): description = ('Obtain the single photoelectron response for an SiPM. ' 'Can be used as an input to sim_telarray after ' 'normalisation with Konrads script') parser = argparse.ArgumentParser(description=description, formatter_class=Formatter) parser.add_argument('-o', '--output', dest='output_dir', action='store', required=True, help='Output directory for the files') parser.add_argument('--spe_sigma', dest='spe_sigma', action='store', default=0.1, type=float, help='Value for the standard deviation of the single ' 'photoelectron peak') parser.add_argument('--opct', dest='opct', action='store', default=0.1, type = float, help='Value for optical crosstalk') parser.add_argument('--pap', dest='pap', action='store', default=0, type=float, help='Value for the probability of afterpulses') parser.add_argument('--dap', dest='dap', action='store', default=0, type=float, help='Value for the distance of the afterpulse peak ' 'from main peak') args = parser.parse_args() output_dir = args.output_dir spe_sigma = args.spe_sigma opct = args.opct pap = args.pap dap = args.dap print( """ SPE Parameters: spe_sigma = {} opct = {} pap = {} dap = {} """.format(spe_sigma, opct, pap, dap) ) x = np.linspace(0, 100, 1000) y = sipm_enf(x, spe_sigma, opct, pap, dap) gt = y > 1E-15 x = x[gt] y = y[gt] # Resample x = np.linspace(x.min(), x.max(), 1000) y = sipm_enf(x, spe_sigma, opct, pap, dap) if not os.path.exists(output_dir): print("Creating directory: {}".format(output_dir)) os.makedirs(output_dir) output_path = os.path.join(output_dir, "checs_spe_spectrum.txt") np.savetxt(output_path, np.column_stack((x, y, y))) print("Created config : {}".format(output_path)) output_path = os.path.join(output_dir, "checs_spe_spectrum.pdf") plt.semilogy(x, y) plt.savefig(output_path, bbox_inches='tight') print("Created figure : {}".format(output_path)) if __name__ == '__main__': main()
[ "scipy.special.binom", "argparse.ArgumentParser", "os.makedirs", "numpy.power", "os.path.exists", "scipy.stats.norm.pdf", "numpy.arange", "numpy.linspace", "numpy.column_stack", "matplotlib.pyplot.semilogy", "os.path.join", "matplotlib.pyplot.savefig", "numpy.sqrt" ]
[((1223, 1249), 'numpy.power', 'np.power', (['(1 - pap)', 'N[:, 0]'], {}), '(1 - pap, N[:, 0])\n', (1231, 1249), True, 'import numpy as np\n'), ((1321, 1348), 'numpy.sqrt', 'np.sqrt', (['(K * spe_sigma ** 2)'], {}), '(K * spe_sigma ** 2)\n', (1328, 1348), True, 'import numpy as np\n'), ((1364, 1385), 'numpy.sqrt', 'np.sqrt', (['(K * sap ** 2)'], {}), '(K * sap ** 2)\n', (1371, 1385), True, 'import numpy as np\n'), ((1749, 1824), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'description', 'formatter_class': 'Formatter'}), '(description=description, formatter_class=Formatter)\n', (1772, 1824), False, 'import argparse\n'), ((3253, 3278), 'numpy.linspace', 'np.linspace', (['(0)', '(100)', '(1000)'], {}), '(0, 100, 1000)\n', (3264, 3278), True, 'import numpy as np\n'), ((3630, 3680), 'os.path.join', 'os.path.join', (['output_dir', '"""checs_spe_spectrum.txt"""'], {}), "(output_dir, 'checs_spe_spectrum.txt')\n", (3642, 3680), False, 'import os\n'), ((3809, 3859), 'os.path.join', 'os.path.join', (['output_dir', '"""checs_spe_spectrum.pdf"""'], {}), "(output_dir, 'checs_spe_spectrum.pdf')\n", (3821, 3859), False, 'import os\n'), ((3864, 3882), 'matplotlib.pyplot.semilogy', 'plt.semilogy', (['x', 'y'], {}), '(x, y)\n', (3876, 3882), True, 'from matplotlib import pyplot as plt\n'), ((3887, 3932), 'matplotlib.pyplot.savefig', 'plt.savefig', (['output_path'], {'bbox_inches': '"""tight"""'}), "(output_path, bbox_inches='tight')\n", (3898, 3932), True, 'from matplotlib import pyplot as plt\n'), ((986, 1004), 'numpy.arange', 'np.arange', (['n_peaks'], {}), '(n_peaks)\n', (995, 1004), True, 'import numpy as np\n'), ((1022, 1043), 'numpy.arange', 'np.arange', (['(1)', 'n_peaks'], {}), '(1, n_peaks)\n', (1031, 1043), True, 'import numpy as np\n'), ((1410, 1434), 'scipy.stats.norm.pdf', 'norm.pdf', (['x', 'K', 'pe_sigma'], {}), '(x, K, pe_sigma)\n', (1418, 1434), False, 'from scipy.stats import norm\n'), ((1459, 1497), 'scipy.stats.norm.pdf', 'norm.pdf', (['x', '(K * (1.0 - dap))', 'ap_sigma'], {}), '(x, K * (1.0 - dap), ap_sigma)\n', (1467, 1497), False, 'from scipy.stats import norm\n'), ((3492, 3518), 'os.path.exists', 'os.path.exists', (['output_dir'], {}), '(output_dir)\n', (3506, 3518), False, 'import os\n'), ((3587, 3610), 'os.makedirs', 'os.makedirs', (['output_dir'], {}), '(output_dir)\n', (3598, 3610), False, 'import os\n'), ((3709, 3735), 'numpy.column_stack', 'np.column_stack', (['(x, y, y)'], {}), '((x, y, y))\n', (3724, 3735), True, 'import numpy as np\n'), ((1167, 1182), 'scipy.special.binom', 'binom', (['(N - 1)', '(0)'], {}), '(N - 1, 0)\n', (1172, 1182), False, 'from scipy.special import binom\n'), ((1143, 1164), 'numpy.power', 'np.power', (['opct', '(N - 1)'], {}), '(opct, N - 1)\n', (1151, 1164), True, 'import numpy as np\n')]
# %% import pandas as pd from collections import defaultdict import pickle from typing import DefaultDict cmap_data = pickle.load(open("./cmap_transformer.pkl", "rb")) mm_data = pickle.load(open("./mm_report_transformer.pkl", "rb")) # %% def convert_to_metric_first(data): rows = defaultdict(dict) for model, metrics in data.items(): for metric, values in metrics.items(): for i, value in enumerate(values): rows[metric][model + f"_{i}"] = value return rows def save_to_csv(data, save_path): df = pd.DataFrame(data) df.to_csv(save_path) save_to_csv( convert_to_metric_first(cmap_data), "./cmap_report_transformer.csv" ) save_to_csv(convert_to_metric_first(mm_data), "./mm_report_transformer.csv") # %%
[ "collections.defaultdict", "pandas.DataFrame" ]
[((286, 303), 'collections.defaultdict', 'defaultdict', (['dict'], {}), '(dict)\n', (297, 303), False, 'from collections import defaultdict\n'), ((555, 573), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {}), '(data)\n', (567, 573), True, 'import pandas as pd\n')]
# -*- coding: utf-8 -*- """ New Discussions -- Provides a list of new discussions within a WikiProject's scope Copyright (C) 2015 <NAME>, 2016 <NAME> Licensed under MIT License: http://mitlicense.org """ from collections import namedtuple from datetime import datetime import re from reportsbot.task import Task from reportsbot.util import join_full_title import mwparserfromhell from pywikibot.data.api import Request __all__ = ["NewDiscussions"] _Section = namedtuple("_Section", ["name", "timestamp"]) _Discussion = namedtuple("_Discussion", ["title", "name", "timestamp"]) class NewDiscussions(Task): """Updates a list of new discussions within a WikiProject's scope.""" DISCUSSION_TEMPLATE = "WPX new discussion" DISCUSSIONS_PER_PAGE = 15 DISCUSSIONS_BEFORE_FOLD = 4 @staticmethod def _parse_timestamp(text): """Return a datetime for the given timestamp string, or ValueError.""" return datetime.strptime(str(text), "%H:%M, %d %B %Y (UTC)") def _extract_sections(self, text): """Return a list of section tuples for the given page.""" code = mwparserfromhell.parse(text) sections = set() for section in code.get_sections(levels=[2]): clean = section.strip_code() match = re.search(r"\d\d:\d\d,\s\d\d?\s\w+\s\d{4}\s\(UTC\)", clean) if not match: continue try: timestamp = self._parse_timestamp(match.group(0)) except ValueError: continue name = str(section.get(0).title.strip_code()).strip() sections.add(_Section(name, timestamp)) return sections def _load_pages(self, titles): """Load a chunk of pages from the API.""" def _get_rev(page): try: return page["revisions"][0]["slots"]["main"]["content"] except (KeyError, IndexError): return "" req = Request(self._bot.site, parameters={ "action": "query", "prop": "revisions", "rvprop": "content", "rvslots": "main", "formatversion": "2", "titles": "|".join(titles) }) data = req.submit() return [(page["title"], _get_rev(page)) for page in data["query"]["pages"]] def _get_updated_discussions(self, start, end): """Return a dict mapping talk page titles to lists of section tuples. The only pages included in the dict are those that have been updated in the given time range. """ query = """SELECT DISTINCT rc_namespace, rc_title FROM recentchanges WHERE rc_timestamp >= ? AND rc_timestamp < ? AND rc_namespace % 2 = 1 AND rc_namespace != 3 AND (rc_type = 0 OR rc_type = 1 OR rc_type = 3) AND rc_bot = 0""" startts = start.strftime("%Y%m%d%H%M%S") endts = end.strftime("%Y%m%d%H%M%S") self._logger.info("Fetching discussions updated between %s and %s", startts, endts) with self._bot.wikidb as cursor: cursor.execute(query, (startts, endts)) titles = [join_full_title(self._bot.site, ns, title.decode("utf8")) for (ns, title) in cursor.fetchall()] self._logger.debug("Fetching sections for %s pages", len(titles)) sections = {} chunksize = 50 for start in range(0, len(titles), chunksize): chunk = titles[start:start+chunksize] pages = self._load_pages(chunk) for title, text in pages: try: sections[title] = self._extract_sections(text) except mwparserfromhell.parser.ParserError: self._logger.exception("Failed to parse [[%s]]", title) return sections def _get_current_discussions(self, title): """Return a dict mapping talk page titles to lists of section tuples. Given a WikiProject new discussions page, return all discussions currently listed. """ text = self._bot.get_page(title).text code = mwparserfromhell.parse(text) discussions = {} for tmpl in code.filter_templates(): if tmpl.name != self.DISCUSSION_TEMPLATE: continue if not (tmpl.has("title") and tmpl.has("section") and tmpl.has("timestamp")): continue try: timestamp = self._parse_timestamp(tmpl.get("timestamp").value) except ValueError: continue title = str(tmpl.get("title").value) section = _Section(str(tmpl.get("section").value), timestamp) if title in discussions: discussions[title].add(section) else: discussions[title] = {section} return discussions def _process_discussions(self, pages, current, updated): """Return a sorted list of the most recent discussion tuples.""" sections = {} for page in pages: title = join_full_title(self._bot.site, page.ns + 1, page.title) if title in updated: sections[title] = updated[title] elif title in current: sections[title] = current[title] discussions = [_Discussion(title, section.name, section.timestamp) for title in sections for section in sections[title]] discussions.sort(key=lambda disc: disc.timestamp, reverse=True) discussions = discussions[:self.DISCUSSIONS_PER_PAGE] for disc in discussions: self._logger.debug(" [[%s#%s]] at %s", disc.title, disc.name, disc.timestamp.strftime("%Y %m %d, %H:%M:%S")) news = [disc.title for disc in discussions if disc.title not in current][:3] return discussions, news def _save_discussions(self, project, title, discussions, news): """Save the given list of discussions to the given page title.""" text = """<noinclude><div style="padding-bottom:1em;">{{Clickable button 2|%(projname)s|Return to WikiProject|class=mw-ui-neutral}}</div></noinclude> {{WPX action box|color={{{2|#086}}}|title=Have a question?|content= {{Clickable button 2|url={{fullurl:%(projtalk)s|action=edit&section=new}}|Ask the WikiProject|class=mw-ui-progressive mw-ui-block}} {{Clickable button 2|%(projtalk)s|View Other Discussions|class=mw-ui-block}} }} {{WPX list start|intro={{WPX last updated|%(title)s}}}} %(discussions)s {{WPX list end|more=%(title)s}} """ template = "{{WPX new discussion|color={{{1|#37f}}}|title=%(title)s|section=%(name)s|timestamp=%(timestamp)s}}" discitems = [ template % { "title": disc.title, "name": disc.name, "timestamp": disc.timestamp.strftime("%H:%M, %d %B %Y (UTC)") } for disc in discussions] fold = self.DISCUSSIONS_BEFORE_FOLD if len(discitems) > fold: before = "\n".join(discitems[:fold]) after = "\n".join(discitems[fold:]) disclist = before + "<noinclude>\n" + after + "</noinclude>" else: disclist = "\n".join(discitems) projtalk = self._bot.get_page(project.name).toggleTalkPage().title() page = self._bot.get_page(title) page.text = text % { "title": title, "projname": project.name, "projtalk": projtalk, "discussions": disclist } summary = "Updating new discussions" if news: summary += ": " + ", ".join("[[%s]]" % item for item in news) page.save(summary, minor=False) def _process(self, project, updated): """Process new discussions for the given project.""" self._logger.debug("Updating new discussions for %s", project.name) title = project.name + "/Discussions" pages = project.get_members() current = self._get_current_discussions(title) discussions, news = self._process_discussions(pages, current, updated) self._save_discussions(project, title, discussions, news) def run(self): start = self._bot.get_last_updated("new_discussions") end = datetime.utcnow() updated = self._get_updated_discussions(start, end) self._logger.info("Updating discussion reports") for project in self._bot.get_configured_projects(): if project.config.get("new_discussions"): self._process(project, updated) self._bot.set_last_updated("new_discussions", end)
[ "reportsbot.util.join_full_title", "mwparserfromhell.parse", "datetime.datetime.utcnow", "collections.namedtuple", "re.search" ]
[((465, 510), 'collections.namedtuple', 'namedtuple', (['"""_Section"""', "['name', 'timestamp']"], {}), "('_Section', ['name', 'timestamp'])\n", (475, 510), False, 'from collections import namedtuple\n'), ((525, 582), 'collections.namedtuple', 'namedtuple', (['"""_Discussion"""', "['title', 'name', 'timestamp']"], {}), "('_Discussion', ['title', 'name', 'timestamp'])\n", (535, 582), False, 'from collections import namedtuple\n'), ((1115, 1143), 'mwparserfromhell.parse', 'mwparserfromhell.parse', (['text'], {}), '(text)\n', (1137, 1143), False, 'import mwparserfromhell\n'), ((4136, 4164), 'mwparserfromhell.parse', 'mwparserfromhell.parse', (['text'], {}), '(text)\n', (4158, 4164), False, 'import mwparserfromhell\n'), ((8350, 8367), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (8365, 8367), False, 'from datetime import datetime\n'), ((1285, 1357), 're.search', 're.search', (['"""\\\\d\\\\d:\\\\d\\\\d,\\\\s\\\\d\\\\d?\\\\s\\\\w+\\\\s\\\\d{4}\\\\s\\\\(UTC\\\\)"""', 'clean'], {}), "('\\\\d\\\\d:\\\\d\\\\d,\\\\s\\\\d\\\\d?\\\\s\\\\w+\\\\s\\\\d{4}\\\\s\\\\(UTC\\\\)', clean)\n", (1294, 1357), False, 'import re\n'), ((5109, 5165), 'reportsbot.util.join_full_title', 'join_full_title', (['self._bot.site', '(page.ns + 1)', 'page.title'], {}), '(self._bot.site, page.ns + 1, page.title)\n', (5124, 5165), False, 'from reportsbot.util import join_full_title\n')]
########################## # Test script to check if "is_triggered_only = yes" events are triggered from somewhere # If they not - they'll never be triggered # By Pelmen, https://github.com/Pelmen323 ########################## import re from ..test_classes.generic_test_class import DataCleaner, ResultsReporter from ..test_classes.events_class import Events FALSE_POSITIVES = ['ace_promoted.1', 'ace_promoted.2', 'ace_died.1', 'ace_killed_by_ace.1', 'ace_killed_other_ace.1', 'aces_killed_each_other.1', 'nuke_dropped.0'] def test_check_triggered_events(test_runner: object): all_events = [] triggered_events_id = dict() invoked_events_id = [] # 1. Get all events code all_events = Events.get_all_events(test_runner=test_runner, lowercase=True) # 2. Get the "triggered only events" for event in all_events: if "is_triggered_only = yes" in event: pattern_matches = re.findall('id = .*', event) event_id = pattern_matches[0].strip('\t').strip() # Only first match is taken if '#' in event_id: event_id = event_id[:event_id.index('#')].strip() # Clean up comments event_id = event_id[5:].strip() # Remove "id =" part triggered_events_id[event_id] = 0 # Default value is set to zero # 3. Get all events triggered in files triggered_events_id = DataCleaner.clear_false_positives(input_iter=triggered_events_id, false_positives=FALSE_POSITIVES) invoked_events_id = Events.get_all_triggered_events_names(test_runner=test_runner, lowercase=True) # 4. Check if events are used for event in invoked_events_id: if event in triggered_events_id.keys(): triggered_events_id[event] += 1 results = [i for i in triggered_events_id.keys() if triggered_events_id[i] == 0] ResultsReporter.report_results(results=results, message="Those events have 'is_triggered_only = yes' attr but are never triggered from outside. Check console output")
[ "re.findall" ]
[((954, 982), 're.findall', 're.findall', (['"""id = .*"""', 'event'], {}), "('id = .*', event)\n", (964, 982), False, 'import re\n')]
from pathlib import Path from typing import Dict, Type, Iterator, List, Tuple import pyarrow as pa from pyarrow import csv as pcsv from pyarrow import parquet as pq from sqlalchemy import MetaData as AlchemyMetadata, Table as AlchemyTable from sqlalchemy import Integer, SmallInteger, Float, String, CHAR, Text, Boolean, Date, DateTime from sqlalchemy.sql.type_api import TypeEngine from src.schemas import all_metadata from src import EXTRACT_PATH_PREFIX, TRANSFORM_PATH_PREFIX PARQUET_PREFIX = TRANSFORM_PATH_PREFIX.joinpath("parquet") CSV_PREFIX = TRANSFORM_PATH_PREFIX.joinpath("csv") # How many bytes in each CSV chunk to bring into memory. # Larger sizes result in better compression and slightly faster time, # but don't want to risk OOM issues on small build boxes. BUFFER_SIZE_BYTES = 1000000000 sql_type_lookup: Dict[Type[TypeEngine], str] = { Integer: 'int32', SmallInteger: 'int16', Float: 'float64', String: 'str', CHAR: 'str', Text: 'str', Boolean: 'bool', # Some Parquet targets can't handle Parquet dates, so we need to parse and pass timestamps Date: 'timestamp[ms]', DateTime: 'timestamp[ms]' } def get_fields(table: AlchemyTable) -> List[Tuple[str, str]]: cols = [(c.name, c.type) for c in table.columns.values() if c.autoincrement is not True] return [(name, sql_type_lookup[type(dtype)]) for name, dtype in cols] def write_files(metadata: AlchemyMetadata) -> None: """ Creates a Parquet file for each table in the schema. """ tables: Iterator[AlchemyTable] = metadata.tables.values() for table in tables: name = table.name print(name) def get_path(prefix: Path, suffix: str): parent_dir = prefix.joinpath(metadata.schema) parent_dir.mkdir(exist_ok=True, parents=True) return parent_dir.joinpath(name).with_suffix(suffix) extract_file = get_path(EXTRACT_PATH_PREFIX, ".csv.zst") parquet_file = get_path(PARQUET_PREFIX, ".parquet") arrow_schema = pa.schema(get_fields(table)) column_names = [name for name, dtype in get_fields(table)] read_options = pcsv.ReadOptions(column_names=column_names, block_size=1000000000) parse_options = pcsv.ParseOptions(newlines_in_values=True) convert_options = pcsv.ConvertOptions(column_types=arrow_schema, timestamp_parsers=["%Y%m%d", "%Y-%m-%d"], true_values=["1", "T"], false_values=["0", "F"], strings_can_be_null=True) parquet_writer = pq.ParquetWriter(parquet_file, schema=arrow_schema, compression='zstd', version="2.0", use_dictionary=True) stream_reader = pcsv.open_csv(extract_file, read_options=read_options, parse_options=parse_options, convert_options=convert_options) for batch in stream_reader: table = pa.Table.from_batches([batch]) parquet_writer.write_table(table) parquet_writer.close() if __name__ == "__main__": for m in all_metadata: write_files(m)
[ "pyarrow.csv.ParseOptions", "pyarrow.Table.from_batches", "pyarrow.csv.ConvertOptions", "pyarrow.csv.ReadOptions", "pyarrow.csv.open_csv", "pyarrow.parquet.ParquetWriter", "src.TRANSFORM_PATH_PREFIX.joinpath" ]
[((499, 540), 'src.TRANSFORM_PATH_PREFIX.joinpath', 'TRANSFORM_PATH_PREFIX.joinpath', (['"""parquet"""'], {}), "('parquet')\n", (529, 540), False, 'from src import EXTRACT_PATH_PREFIX, TRANSFORM_PATH_PREFIX\n'), ((554, 591), 'src.TRANSFORM_PATH_PREFIX.joinpath', 'TRANSFORM_PATH_PREFIX.joinpath', (['"""csv"""'], {}), "('csv')\n", (584, 591), False, 'from src import EXTRACT_PATH_PREFIX, TRANSFORM_PATH_PREFIX\n'), ((2149, 2215), 'pyarrow.csv.ReadOptions', 'pcsv.ReadOptions', ([], {'column_names': 'column_names', 'block_size': '(1000000000)'}), '(column_names=column_names, block_size=1000000000)\n', (2165, 2215), True, 'from pyarrow import csv as pcsv\n'), ((2240, 2282), 'pyarrow.csv.ParseOptions', 'pcsv.ParseOptions', ([], {'newlines_in_values': '(True)'}), '(newlines_in_values=True)\n', (2257, 2282), True, 'from pyarrow import csv as pcsv\n'), ((2309, 2480), 'pyarrow.csv.ConvertOptions', 'pcsv.ConvertOptions', ([], {'column_types': 'arrow_schema', 'timestamp_parsers': "['%Y%m%d', '%Y-%m-%d']", 'true_values': "['1', 'T']", 'false_values': "['0', 'F']", 'strings_can_be_null': '(True)'}), "(column_types=arrow_schema, timestamp_parsers=['%Y%m%d',\n '%Y-%m-%d'], true_values=['1', 'T'], false_values=['0', 'F'],\n strings_can_be_null=True)\n", (2328, 2480), True, 'from pyarrow import csv as pcsv\n'), ((2545, 2656), 'pyarrow.parquet.ParquetWriter', 'pq.ParquetWriter', (['parquet_file'], {'schema': 'arrow_schema', 'compression': '"""zstd"""', 'version': '"""2.0"""', 'use_dictionary': '(True)'}), "(parquet_file, schema=arrow_schema, compression='zstd',\n version='2.0', use_dictionary=True)\n", (2561, 2656), True, 'from pyarrow import parquet as pq\n'), ((2719, 2840), 'pyarrow.csv.open_csv', 'pcsv.open_csv', (['extract_file'], {'read_options': 'read_options', 'parse_options': 'parse_options', 'convert_options': 'convert_options'}), '(extract_file, read_options=read_options, parse_options=\n parse_options, convert_options=convert_options)\n', (2732, 2840), True, 'from pyarrow import csv as pcsv\n'), ((2930, 2960), 'pyarrow.Table.from_batches', 'pa.Table.from_batches', (['[batch]'], {}), '([batch])\n', (2951, 2960), True, 'import pyarrow as pa\n')]
# -*- coding: utf-8 -*- import tools import time import db import threading from .threads import ThreadPool class DetectorBase(object): """the base class for detecting""" def __init__(self): self.T = tools.Tools() self.now = int(time.time() * 1000) def getItems(self): pass def onCompleted(self): pass def getSource(self): sourceItems = self.getItems() threads = ThreadPool(20) for info in sourceItems: threads.add_task(self.checkData, item = info) threads.wait_completion() self.onCompleted() def checkData(self, item): if 'url' in item and len(item['url']) > 0: self.T.logger('正在分析[ %s ]: %s' % (item['name'], item['url'])) netstat = self.T.chkPlayable(item['url']) item['online'] = 1 if netstat > 0 else 0 item['delay'] = netstat item['udTime'] = self.now if netstat == 0: item['failcount'] += 1 self.addData(item) def addData (self, data) : DB = db.DataBase() sql = "SELECT * FROM %s WHERE url = '%s'" % (DB.table, data['url']) result = DB.query(sql) if len(result) == 0 : DB.insert(data) else : id = result[0][0] if data['failcount'] >= 10: DB.delete(id) else: DB.edit(id, data)
[ "tools.Tools", "db.DataBase", "time.time" ]
[((218, 231), 'tools.Tools', 'tools.Tools', ([], {}), '()\n', (229, 231), False, 'import tools\n'), ((1085, 1098), 'db.DataBase', 'db.DataBase', ([], {}), '()\n', (1096, 1098), False, 'import db\n'), ((255, 266), 'time.time', 'time.time', ([], {}), '()\n', (264, 266), False, 'import time\n')]
# -*- coding: utf-8 -*- from django.db import models from model_utils.models import TimeStampedModel from apps.post.models import Post class Comment(TimeStampedModel): """Comment for Post """ class Meta: db_table = "comment" ordering = ["-created"] post = models.ForeignKey(Post, on_delete=models.CASCADE, related_name="comments") text = models.CharField(max_length=200) author = models.CharField(max_length=20) def __str__(self): return self.text
[ "django.db.models.ForeignKey", "django.db.models.CharField" ]
[((293, 367), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Post'], {'on_delete': 'models.CASCADE', 'related_name': '"""comments"""'}), "(Post, on_delete=models.CASCADE, related_name='comments')\n", (310, 367), False, 'from django.db import models\n'), ((379, 411), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (395, 411), False, 'from django.db import models\n'), ((425, 456), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)'}), '(max_length=20)\n', (441, 456), False, 'from django.db import models\n')]
from django.core.validators import MaxValueValidator from django.core.validators import MaxValueValidator from django.db import models from django.utils import timezone class Faculty(models.Model): name = models.CharField(max_length=80, blank=True, null=True) faculty_describtion = models.TextField(blank=True, null=True) class Meta: managed = False db_table = 'faculty' def __str__(self): return f'Faculty {self.name}' class Course(models.Model): # id = models.IntegerField(primary_key=True) name = models.CharField(max_length=80, blank=True, null=True) course_describtion = models.TextField(blank=True, null=True) faculty = models.ForeignKey('Faculty', models.DO_NOTHING, db_column='faculty', blank=True, null=True) category = models.IntegerField(blank=True, null=True) class Meta: managed = False db_table = 'course' def __str__(self): return f'Course {self.id} | Name: {self.name}' class Category(models.Model): name = models.CharField(max_length=80, blank=True, null=True) parent = models.ForeignKey('self', models.DO_NOTHING, db_column='parent', blank=True, null=True) class Meta: managed = False db_table = 'category' def __str__(self): return f'Category {self.name}' class Subject(models.Model): name = models.CharField(max_length=80, blank=True, null=True) category = models.ForeignKey(Category, models.DO_NOTHING, db_column='category', blank=True, null=True) thumb = models.CharField(max_length=100, blank=True, null=True) pic = models.CharField(max_length=200, blank=True, null=True) description = models.CharField(max_length=1000, blank=True, null=True) class Meta: managed = False db_table = 'subject' def __str__(self): return f'Subject {self.id} | Name: {self.name}' class SubjectRating(models.Model): subject = models.ForeignKey(Subject, models.DO_NOTHING, db_column='subject', blank=True, null=True) student = models.ForeignKey('users.Student', models.DO_NOTHING, db_column='student', blank=True, null=True) rating = models.IntegerField(blank=True, null=True) commence = models.TextField(blank=True, null=True) timestamp = models.DateTimeField(blank=True, null=True) class Meta: managed = False db_table = 'subject_rating' def __str__(self): return f'Subject: {self.subject.name} | Student {self.student.account.username} | Rating: {self.rating}' class Enrollment(models.Model): subject = models.ForeignKey('Subject', models.DO_NOTHING, db_column='subject') student = models.ForeignKey('users.Student', models.DO_NOTHING, db_column='student') status = models.IntegerField(blank=True, null=True) # lesson = models.ForeignKey('Lesson', models.DO_NOTHING, db_column='lesson', blank=True, null=True) class Meta: managed = False db_table = 'enrollment' def __str__(self): return f'Student {self.student.account.username} | Subject: {self.subject.name}'
[ "django.db.models.TextField", "django.db.models.CharField", "django.db.models.ForeignKey", "django.db.models.IntegerField", "django.db.models.DateTimeField" ]
[((211, 265), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(80)', 'blank': '(True)', 'null': '(True)'}), '(max_length=80, blank=True, null=True)\n', (227, 265), False, 'from django.db import models\n'), ((292, 331), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (308, 331), False, 'from django.db import models\n'), ((554, 608), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(80)', 'blank': '(True)', 'null': '(True)'}), '(max_length=80, blank=True, null=True)\n', (570, 608), False, 'from django.db import models\n'), ((634, 673), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (650, 673), False, 'from django.db import models\n'), ((688, 784), 'django.db.models.ForeignKey', 'models.ForeignKey', (['"""Faculty"""', 'models.DO_NOTHING'], {'db_column': '"""faculty"""', 'blank': '(True)', 'null': '(True)'}), "('Faculty', models.DO_NOTHING, db_column='faculty', blank=\n True, null=True)\n", (705, 784), False, 'from django.db import models\n'), ((795, 837), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (814, 837), False, 'from django.db import models\n'), ((1033, 1087), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(80)', 'blank': '(True)', 'null': '(True)'}), '(max_length=80, blank=True, null=True)\n', (1049, 1087), False, 'from django.db import models\n'), ((1101, 1192), 'django.db.models.ForeignKey', 'models.ForeignKey', (['"""self"""', 'models.DO_NOTHING'], {'db_column': '"""parent"""', 'blank': '(True)', 'null': '(True)'}), "('self', models.DO_NOTHING, db_column='parent', blank=True,\n null=True)\n", (1118, 1192), False, 'from django.db import models\n'), ((1369, 1423), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(80)', 'blank': '(True)', 'null': '(True)'}), '(max_length=80, blank=True, null=True)\n', (1385, 1423), False, 'from django.db import models\n'), ((1439, 1535), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Category', 'models.DO_NOTHING'], {'db_column': '"""category"""', 'blank': '(True)', 'null': '(True)'}), "(Category, models.DO_NOTHING, db_column='category', blank=\n True, null=True)\n", (1456, 1535), False, 'from django.db import models\n'), ((1543, 1598), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'blank': '(True)', 'null': '(True)'}), '(max_length=100, blank=True, null=True)\n', (1559, 1598), False, 'from django.db import models\n'), ((1609, 1664), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)', 'blank': '(True)', 'null': '(True)'}), '(max_length=200, blank=True, null=True)\n', (1625, 1664), False, 'from django.db import models\n'), ((1683, 1739), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(1000)', 'blank': '(True)', 'null': '(True)'}), '(max_length=1000, blank=True, null=True)\n', (1699, 1739), False, 'from django.db import models\n'), ((1941, 2035), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Subject', 'models.DO_NOTHING'], {'db_column': '"""subject"""', 'blank': '(True)', 'null': '(True)'}), "(Subject, models.DO_NOTHING, db_column='subject', blank=\n True, null=True)\n", (1958, 2035), False, 'from django.db import models\n'), ((2045, 2146), 'django.db.models.ForeignKey', 'models.ForeignKey', (['"""users.Student"""', 'models.DO_NOTHING'], {'db_column': '"""student"""', 'blank': '(True)', 'null': '(True)'}), "('users.Student', models.DO_NOTHING, db_column='student',\n blank=True, null=True)\n", (2062, 2146), False, 'from django.db import models\n'), ((2156, 2198), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (2175, 2198), False, 'from django.db import models\n'), ((2214, 2253), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (2230, 2253), False, 'from django.db import models\n'), ((2270, 2313), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (2290, 2313), False, 'from django.db import models\n'), ((2576, 2644), 'django.db.models.ForeignKey', 'models.ForeignKey', (['"""Subject"""', 'models.DO_NOTHING'], {'db_column': '"""subject"""'}), "('Subject', models.DO_NOTHING, db_column='subject')\n", (2593, 2644), False, 'from django.db import models\n'), ((2659, 2733), 'django.db.models.ForeignKey', 'models.ForeignKey', (['"""users.Student"""', 'models.DO_NOTHING'], {'db_column': '"""student"""'}), "('users.Student', models.DO_NOTHING, db_column='student')\n", (2676, 2733), False, 'from django.db import models\n'), ((2747, 2789), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (2766, 2789), False, 'from django.db import models\n')]
from dbnd._core.tracking.schemas.base import ApiStrictSchema from dbnd._vendor.marshmallow import fields, pre_load class MLAlert(ApiStrictSchema): sensitivity = fields.Float() look_back = fields.Integer() class AlertDefsSchema(ApiStrictSchema): severity = fields.Str(required=True) type = fields.Str(required=True) user_metric = fields.Str() operator = fields.Str() is_str_value = fields.Bool() created_at = fields.DateTime() scheduled_job_name = fields.Str(attribute="scheduled_job.name") source_instance_name = fields.Method("get_tracking_source_name") env = fields.Method("get_tracking_source_env") # TODO_CORE: API: Deprecate airflow_server_info airflow_instance_name = fields.Method("get_tracking_source_name") project_id = fields.Int(attribute="job.project_id") project_name = fields.Str(attribute="job.project.name") alert_on_historical_runs = fields.Bool() alert_group_uid = fields.Str(allow_none=True) uid = fields.Str(allow_none=True) value = fields.Str(allow_none=True) job_id = fields.Int(allow_none=True) summary = fields.Str(allow_none=True) job_name = fields.Str(attribute="job.name", allow_none=True) task_repr = fields.Str(allow_none=True) task_name = fields.Str(allow_none=True) custom_name = fields.Str(allow_none=True) original_uid = fields.Str(allow_none=True) advanced_json = fields.Str(allow_none=True) scheduled_job_uid = fields.Str(allow_none=True) custom_description = fields.Str(allow_none=True) ml_alert = fields.Nested(MLAlert, allow_none=True) # Fields for DatasetSlaAlert/DatasetSlaAdvancedAlert alert # -------------------------------------- seconds_delta = fields.Int(allow_none=True) # Converts to datetime.timedelta dataset_partial_name = fields.Str(allow_none=True) datasets_uids = fields.List(fields.Str(), allow_none=True) # Fields for OperationColumnStatAdvancedAlert alert # -------------------------------------- dataset_uid = fields.Str(allow_none=True) # Operation type (e.g. "read", "write", None=any) to filter stats by operation_type = fields.Str(allow_none=True) # Type of MetricRule, found in dbnd_web. Used to build advanced_json metrics_rules = fields.List(fields.Dict(), allow_none=True) # Used only used by the UI affected_datasets = fields.List(fields.Dict(), allow_none=True, dump_only=True) is_system = fields.Function( lambda alert_def: alert_def.owner == "system", dump_only=True, ) def get_tracking_source_name(self, obj): return self._get_tracking_source_instance(obj).name def get_tracking_source_env(self, obj): return self._get_tracking_source_instance(obj).env def _get_tracking_source_instance(self, obj): if obj.job: return obj.job.tracking_source return obj.tracking_source @pre_load def prepere(self, data: dict, **kwargs): value = data.get("value", None) if value is not None: data["value"] = str(data["value"]) return data class GroupAlertDefsSchema(ApiStrictSchema): type = fields.Str(required=True) tracking_source_uid = fields.UUID(required=True) severity = fields.Str(required=True) user_metric = fields.Str(required=True) value = fields.Str(allow_none=True) operator = fields.Str(allow_none=True) ml_alert = fields.Nested(MLAlert, allow_none=True) owner = fields.Str(allow_none=True) jobs = fields.List(fields.Int(), allow_none=True) custom_name = fields.Str(allow_none=True) custom_description = fields.Str(allow_none=True) @pre_load def prepere(self, data: dict, **kwargs): value = data.get("value", None) if value is not None: data["value"] = str(data["value"]) return data
[ "dbnd._vendor.marshmallow.fields.Function", "dbnd._vendor.marshmallow.fields.DateTime", "dbnd._vendor.marshmallow.fields.Integer", "dbnd._vendor.marshmallow.fields.Method", "dbnd._vendor.marshmallow.fields.Int", "dbnd._vendor.marshmallow.fields.UUID", "dbnd._vendor.marshmallow.fields.Dict", "dbnd._vendor.marshmallow.fields.Bool", "dbnd._vendor.marshmallow.fields.Float", "dbnd._vendor.marshmallow.fields.Str", "dbnd._vendor.marshmallow.fields.Nested" ]
[((167, 181), 'dbnd._vendor.marshmallow.fields.Float', 'fields.Float', ([], {}), '()\n', (179, 181), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((198, 214), 'dbnd._vendor.marshmallow.fields.Integer', 'fields.Integer', ([], {}), '()\n', (212, 214), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((272, 297), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'required': '(True)'}), '(required=True)\n', (282, 297), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((309, 334), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'required': '(True)'}), '(required=True)\n', (319, 334), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((353, 365), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {}), '()\n', (363, 365), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((381, 393), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {}), '()\n', (391, 393), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((413, 426), 'dbnd._vendor.marshmallow.fields.Bool', 'fields.Bool', ([], {}), '()\n', (424, 426), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((445, 462), 'dbnd._vendor.marshmallow.fields.DateTime', 'fields.DateTime', ([], {}), '()\n', (460, 462), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((488, 530), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'attribute': '"""scheduled_job.name"""'}), "(attribute='scheduled_job.name')\n", (498, 530), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((558, 599), 'dbnd._vendor.marshmallow.fields.Method', 'fields.Method', (['"""get_tracking_source_name"""'], {}), "('get_tracking_source_name')\n", (571, 599), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((610, 650), 'dbnd._vendor.marshmallow.fields.Method', 'fields.Method', (['"""get_tracking_source_env"""'], {}), "('get_tracking_source_env')\n", (623, 650), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((731, 772), 'dbnd._vendor.marshmallow.fields.Method', 'fields.Method', (['"""get_tracking_source_name"""'], {}), "('get_tracking_source_name')\n", (744, 772), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((790, 828), 'dbnd._vendor.marshmallow.fields.Int', 'fields.Int', ([], {'attribute': '"""job.project_id"""'}), "(attribute='job.project_id')\n", (800, 828), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((848, 888), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'attribute': '"""job.project.name"""'}), "(attribute='job.project.name')\n", (858, 888), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((920, 933), 'dbnd._vendor.marshmallow.fields.Bool', 'fields.Bool', ([], {}), '()\n', (931, 933), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((956, 983), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (966, 983), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((995, 1022), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (1005, 1022), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((1035, 1062), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (1045, 1062), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((1076, 1103), 'dbnd._vendor.marshmallow.fields.Int', 'fields.Int', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (1086, 1103), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((1118, 1145), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (1128, 1145), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((1161, 1210), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'attribute': '"""job.name"""', 'allow_none': '(True)'}), "(attribute='job.name', allow_none=True)\n", (1171, 1210), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((1227, 1254), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (1237, 1254), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((1271, 1298), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (1281, 1298), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((1317, 1344), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (1327, 1344), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((1364, 1391), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (1374, 1391), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((1412, 1439), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (1422, 1439), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((1464, 1491), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (1474, 1491), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((1517, 1544), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (1527, 1544), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((1560, 1599), 'dbnd._vendor.marshmallow.fields.Nested', 'fields.Nested', (['MLAlert'], {'allow_none': '(True)'}), '(MLAlert, allow_none=True)\n', (1573, 1599), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((1729, 1756), 'dbnd._vendor.marshmallow.fields.Int', 'fields.Int', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (1739, 1756), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((1818, 1845), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (1828, 1845), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((2029, 2056), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (2039, 2056), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((2151, 2178), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (2161, 2178), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((2450, 2528), 'dbnd._vendor.marshmallow.fields.Function', 'fields.Function', (["(lambda alert_def: alert_def.owner == 'system')"], {'dump_only': '(True)'}), "(lambda alert_def: alert_def.owner == 'system', dump_only=True)\n", (2465, 2528), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((3159, 3184), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'required': '(True)'}), '(required=True)\n', (3169, 3184), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((3211, 3237), 'dbnd._vendor.marshmallow.fields.UUID', 'fields.UUID', ([], {'required': '(True)'}), '(required=True)\n', (3222, 3237), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((3253, 3278), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'required': '(True)'}), '(required=True)\n', (3263, 3278), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((3297, 3322), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'required': '(True)'}), '(required=True)\n', (3307, 3322), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((3336, 3363), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (3346, 3363), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((3379, 3406), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (3389, 3406), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((3422, 3461), 'dbnd._vendor.marshmallow.fields.Nested', 'fields.Nested', (['MLAlert'], {'allow_none': '(True)'}), '(MLAlert, allow_none=True)\n', (3435, 3461), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((3474, 3501), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (3484, 3501), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((3575, 3602), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (3585, 3602), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((3628, 3655), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {'allow_none': '(True)'}), '(allow_none=True)\n', (3638, 3655), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((1878, 1890), 'dbnd._vendor.marshmallow.fields.Str', 'fields.Str', ([], {}), '()\n', (1888, 1890), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((2285, 2298), 'dbnd._vendor.marshmallow.fields.Dict', 'fields.Dict', ([], {}), '()\n', (2296, 2298), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((2385, 2398), 'dbnd._vendor.marshmallow.fields.Dict', 'fields.Dict', ([], {}), '()\n', (2396, 2398), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n'), ((3525, 3537), 'dbnd._vendor.marshmallow.fields.Int', 'fields.Int', ([], {}), '()\n', (3535, 3537), False, 'from dbnd._vendor.marshmallow import fields, pre_load\n')]
import datetime as dt import numpy as np import pandas as pd # START USER INPUT lgs_filepath = 'U:/CIO/#Data/output/investment/checker/lgs_table.csv' jpm_filepath = 'U:/CIO/#Data/input/jpm/report/investment/LGSS Preliminary Performance 202005.xlsx' lgs_dictionary_filepath = 'U:/CIO/#Data/input/lgs/dictionary/2020/06/New Dictionary_v10.xlsx' FYTD = 11 report_date = dt.datetime(2020, 5, 31) # End USER INPUT # Reads LGS table df_lgs = pd.read_csv(lgs_filepath) # Reads LGS dictionary df_lgs_dict = pd.read_excel( pd.ExcelFile(lgs_dictionary_filepath), sheet_name='Sheet1', header=0 ) # Reads JPM Performance Report df_jpm = pd.DataFrame() sheet_to_columns_dict = { 'Page 3 NOF': 'A:N', 'Page 5 NOF': 'B:O', 'Page 6 NOF': 'B:O', 'Page 7 NOF': 'B:O', 'Page 8': 'D:O' } for sheet, columns in sheet_to_columns_dict.items(): print('Accessing:', sheet) df_sheet = pd.read_excel( pd.ExcelFile(jpm_filepath), sheet_name=sheet, usecols=columns, skiprows=[0, 1, 2] ) df_sheet = df_sheet.rename( columns={ 'Unnamed: 0': 'ModelCode', 'Unnamed: 1': 'JPM ReportName', 'Unnamed: 2': 'JPM ReportName', } ) if sheet == 'Page 8': df_sheet = df_sheet.rename( columns={ 'Unnamed: 0': 'ModelCode', 'Unnamed: 4': 'JPM ReportName', } ) df_jpm = pd.concat([df_jpm, df_sheet], sort=False) df_jpm = df_jpm.reset_index(drop=True) df_jpm = df_jpm.replace('-', np.nan) df_jpm = df_jpm.drop(columns=['ModelCode'], axis=1) df_jpm['Market Value'] = (df_jpm['Market Value']/1000000).round(2) # Reads footers and removes them df_footers = pd.read_excel('U:/CIO/#Investment_Report/Data/input/testing/20191031 Footers.xlsx') remove_items = list(df_footers['Footers']) + [np.nan, 'Excess return'] df_jpm = df_jpm[~df_jpm['JPM ReportName'].isin(remove_items)].reset_index(drop=True) df_lgs_jpm = pd.merge( left=df_lgs, right=df_jpm, on=['JPM ReportName'], how='outer' ) df_later = df_lgs_jpm[df_lgs_jpm['Manager'].isin([np.nan])].reset_index(drop=True) df_lgs_jpm = df_lgs_jpm[~df_lgs_jpm['Manager'].isin([np.nan])].reset_index(drop=True) # Creates LGS to JPM column dictionary lgscolumn_to_jpmcolumn_dict = { 'Market Value_x': 'Market Value_y', '1_Return': '1 Month', '3_Return': '3 Months', 'FYTD_Return': 'FYTD', '12_Return': '1 Year', '36_Return': '3 Years', '60_Return': '5 Years', '84_Return': '7 Years' } # Performs the deviant check df_deviations = pd.DataFrame() deviants = [] columns = [] deviations = [] jpm_missing = [] lgs_missing = [] total_count = 0 deviant_count = 0 for lgscolumn, jpmcolumn in lgscolumn_to_jpmcolumn_dict.items(): for i in range(0, len(df_lgs_jpm)): deviation = df_lgs_jpm[lgscolumn][i] - df_lgs_jpm[jpmcolumn][i] if deviation >= 0.01: deviants.append(df_lgs_jpm['Manager'][i]) columns.append(jpmcolumn) deviations.append(deviation) deviant_count += 1 if (not pd.isna(df_lgs_jpm[jpmcolumn][i])) and (pd.isna(df_lgs_jpm[lgscolumn][i])): lgs_missing.append((df_lgs_jpm['Manager'][i], lgscolumn)) if (pd.isna(df_lgs_jpm[jpmcolumn][i])) and (not pd.isna(df_lgs_jpm[lgscolumn][i])): jpm_missing.append((df_lgs_jpm['JPM ReportName'][i], jpmcolumn)) total_count += 1 # Fixes the column names columns_fix = [] for column in columns: if column == 'Market Value_y': columns_fix.append('Market Value') else: columns_fix.append(column) df_deviations['Manager'] = deviants df_deviations['Column'] = columns_fix df_deviations['Deviations'] = deviations df_lgs_missing = pd.DataFrame(lgs_missing, columns=['Manager', 'Column']) df_jpm_missing = pd.DataFrame(jpm_missing, columns=['Manager', 'Column']) # Calculates accuracy accuracy = round(((total_count - deviant_count)/total_count)*100, 2) # Prints accuracy results print('\nMissing during check from LGS', lgs_missing) print('\nMissing during check from JPM', jpm_missing) print('\nThe deviants are:\n') print(df_deviations, '\n') print('Total Count: ', total_count, 'Deviant Count: ', deviant_count, 'Accuracy: ', accuracy, '%') # Checks for managers that have been completely missed. # Creates set containing fund managers that are currently open accounts. df_lgs_open = df_lgs_dict[df_lgs_dict['LGS Open'].isin([1])].reset_index(drop=True) df_lgs_open = df_lgs_open.rename(columns={'LGS Name': 'Manager'}) lgs_open_set = set(list(df_lgs_open['Manager'])) # Creates set containing strategies. df_lgs_strategy = df_lgs_dict[df_lgs_dict['LGS Strategy Aggregate'].isin([1])].reset_index(drop=True) df_lgs_strategy = df_lgs_strategy.rename(columns={'LGS Name': 'Manager'}) lgs_strategy_set = set(list(df_lgs_strategy['Manager'])) # Creates set containing liquidity accounts. df_lgs_liquidity = df_lgs_dict[df_lgs_dict['LGS Liquidity'].isin([1])].reset_index(drop=True) df_lgs_liquidity = df_lgs_liquidity.rename(columns={'LGS Name': 'Manager'}) lgs_liquidity_set = set(list(df_lgs_liquidity['Manager'])) # Creates set containing fund managers that have been checked. lgs_check_set = set(list(df_lgs_jpm['Manager'])) # Creates set containing fund managers that are open accounts but are not checked. df_lgs_missing_completely = lgs_open_set - lgs_check_set - lgs_strategy_set - lgs_liquidity_set - {np.nan} # Prints open accounts that are missing from LGS. print('\nMissing completely from LGS', df_lgs_missing_completely) # Import JPM_IAP, Accounts; By ID; Include Closed Accounts; Select All; Mode: Portfolio Only # jpm_iap_filepath = 'U:/CIO/#Investment_Report/Data/input/testing/jpm_iap/' # jpm_iap_filenames = sorted(os.listdir(jpm_iap_filepath)) # df_jpm_iap = pd.DataFrame() # for filename in jpm_iap_filenames: # jpm_iap_xlsx = pd.ExcelFile(jpm_iap_filepath + filename) # df_jpm_iap_temp = pd.read_excel( # jpm_iap_xlsx, # sheet_name='Sheet1', # skiprows=[0, 1], # header=0 # ) # df_jpm_iap_temp['Date'] = dt.datetime(int(filename[:4]), int(filename[4:6]), int(filename[6:8])) # df_jpm_iap = pd.concat([df_jpm_iap, df_jpm_iap_temp], sort=False) # # df_jpm_iap = df_jpm_iap.rename(columns={'Account Id': 'Manager'}).reset_index(drop=True) # df_jpm_iap = df_jpm_iap[['Manager', 'Date', 'Market Value']] # # # Merges the market values from JPM IAP with JPM HTS # df_jpm_main = pd\ # .merge( # left=df_jpm_iap, # right=df_jpm, # left_on=['Manager', 'Date'], # right_on=['Manager', 'Date'], # how='right' # )\ # .sort_values(['Manager', 'Date'])\ # .reset_index(drop=True)
[ "pandas.DataFrame", "pandas.read_csv", "pandas.merge", "pandas.ExcelFile", "datetime.datetime", "pandas.read_excel", "pandas.isna", "pandas.concat" ]
[((368, 392), 'datetime.datetime', 'dt.datetime', (['(2020)', '(5)', '(31)'], {}), '(2020, 5, 31)\n', (379, 392), True, 'import datetime as dt\n'), ((438, 463), 'pandas.read_csv', 'pd.read_csv', (['lgs_filepath'], {}), '(lgs_filepath)\n', (449, 463), True, 'import pandas as pd\n'), ((641, 655), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (653, 655), True, 'import pandas as pd\n'), ((1730, 1818), 'pandas.read_excel', 'pd.read_excel', (['"""U:/CIO/#Investment_Report/Data/input/testing/20191031 Footers.xlsx"""'], {}), "(\n 'U:/CIO/#Investment_Report/Data/input/testing/20191031 Footers.xlsx')\n", (1743, 1818), True, 'import pandas as pd\n'), ((1985, 2056), 'pandas.merge', 'pd.merge', ([], {'left': 'df_lgs', 'right': 'df_jpm', 'on': "['JPM ReportName']", 'how': '"""outer"""'}), "(left=df_lgs, right=df_jpm, on=['JPM ReportName'], how='outer')\n", (1993, 2056), True, 'import pandas as pd\n'), ((2597, 2611), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (2609, 2611), True, 'import pandas as pd\n'), ((3777, 3833), 'pandas.DataFrame', 'pd.DataFrame', (['lgs_missing'], {'columns': "['Manager', 'Column']"}), "(lgs_missing, columns=['Manager', 'Column'])\n", (3789, 3833), True, 'import pandas as pd\n'), ((3851, 3907), 'pandas.DataFrame', 'pd.DataFrame', (['jpm_missing'], {'columns': "['Manager', 'Column']"}), "(jpm_missing, columns=['Manager', 'Column'])\n", (3863, 3907), True, 'import pandas as pd\n'), ((521, 558), 'pandas.ExcelFile', 'pd.ExcelFile', (['lgs_dictionary_filepath'], {}), '(lgs_dictionary_filepath)\n', (533, 558), True, 'import pandas as pd\n'), ((1445, 1486), 'pandas.concat', 'pd.concat', (['[df_jpm, df_sheet]'], {'sort': '(False)'}), '([df_jpm, df_sheet], sort=False)\n', (1454, 1486), True, 'import pandas as pd\n'), ((926, 952), 'pandas.ExcelFile', 'pd.ExcelFile', (['jpm_filepath'], {}), '(jpm_filepath)\n', (938, 952), True, 'import pandas as pd\n'), ((3153, 3186), 'pandas.isna', 'pd.isna', (['df_lgs_jpm[lgscolumn][i]'], {}), '(df_lgs_jpm[lgscolumn][i])\n', (3160, 3186), True, 'import pandas as pd\n'), ((3272, 3305), 'pandas.isna', 'pd.isna', (['df_lgs_jpm[jpmcolumn][i]'], {}), '(df_lgs_jpm[jpmcolumn][i])\n', (3279, 3305), True, 'import pandas as pd\n'), ((3113, 3146), 'pandas.isna', 'pd.isna', (['df_lgs_jpm[jpmcolumn][i]'], {}), '(df_lgs_jpm[jpmcolumn][i])\n', (3120, 3146), True, 'import pandas as pd\n'), ((3316, 3349), 'pandas.isna', 'pd.isna', (['df_lgs_jpm[lgscolumn][i]'], {}), '(df_lgs_jpm[lgscolumn][i])\n', (3323, 3349), True, 'import pandas as pd\n')]
import os import json import calendar import time from boto.s3.connection import S3Connection from boto.s3.key import Key from .cachingHelper import getCache from .constants import LINKTAG_PUBTIME, FEEDTAG_DO_NOT_CLUSTER from .dbhelper import parseConnectionString, getS3Connection from .doc import Doc def _getEpochSecs(t): return calendar.timegm(time.strptime(t[:19], "%Y-%m-%dT%H:%M:%S")) class DocManager: """ Manage documents stored in cloud. Contains functions for CRUD operations on documents """ def __init__(self): """ Instantiates a new instance of DocManager class 'bucketConnString' : connection string of s3 bucket in which docs are stored. """ self.bucketConnString = os.environ['DOCSBUCKET_CONNECTIONSTRING'] self.cache = getCache() self.__cacheExpiry= 900 def __getBucket(self): bucketConnParams = parseConnectionString(self.bucketConnString) conn = getS3Connection(self.bucketConnString) return conn.get_bucket(bucketConnParams['bucketName'], validate=False) def __isDocNew(self, key, timeLimit): if _getEpochSecs(key.last_modified) < timeLimit: return False doc = self.get(key.name) return (doc.tags[LINKTAG_PUBTIME] > timeLimit) and \ (FEEDTAG_DO_NOT_CLUSTER not in doc.tags) def put(self, doc): k = Key(self.__getBucket()) k.key = doc.key # not storing tags directly in blob's metadata as the maximum size # allowed there is only 2kb. tags = dict(doc.tags) tags['content'] = doc.content keyContents = json.dumps(tags) k.set_contents_from_string(keyContents) self.cache.set(k.key, keyContents, self.__cacheExpiry) def get(self, docKey): keyContents = self.cache.get(docKey) if not keyContents: k = Key(self.__getBucket()) k.key = docKey keyContents = k.get_contents_as_string() self.cache.set(docKey, keyContents, self.__cacheExpiry) storedTags = json.loads(keyContents) content = storedTags.pop('content', None) tags = storedTags return Doc(docKey, content, tags) def delete(self, docKey): k = Key(self.__getBucket()) k.key = docKey k.delete() self.cache.delete(docKey)
[ "time.strptime", "json.loads", "json.dumps" ]
[((355, 397), 'time.strptime', 'time.strptime', (['t[:19]', '"""%Y-%m-%dT%H:%M:%S"""'], {}), "(t[:19], '%Y-%m-%dT%H:%M:%S')\n", (368, 397), False, 'import time\n'), ((1663, 1679), 'json.dumps', 'json.dumps', (['tags'], {}), '(tags)\n', (1673, 1679), False, 'import json\n'), ((2102, 2125), 'json.loads', 'json.loads', (['keyContents'], {}), '(keyContents)\n', (2112, 2125), False, 'import json\n')]
from django.urls import path from . import views app_name = 'blog' urlpatterns = [ path('', views.post_list, name='post_list'), path('<slug:post>/', views.post_detail, name='post_detail'), path('comment/reply/', views.reply_page, name='reply'), path('about', views.about_page, name='about'), ]
[ "django.urls.path" ]
[((88, 131), 'django.urls.path', 'path', (['""""""', 'views.post_list'], {'name': '"""post_list"""'}), "('', views.post_list, name='post_list')\n", (92, 131), False, 'from django.urls import path\n'), ((137, 196), 'django.urls.path', 'path', (['"""<slug:post>/"""', 'views.post_detail'], {'name': '"""post_detail"""'}), "('<slug:post>/', views.post_detail, name='post_detail')\n", (141, 196), False, 'from django.urls import path\n'), ((202, 256), 'django.urls.path', 'path', (['"""comment/reply/"""', 'views.reply_page'], {'name': '"""reply"""'}), "('comment/reply/', views.reply_page, name='reply')\n", (206, 256), False, 'from django.urls import path\n'), ((262, 307), 'django.urls.path', 'path', (['"""about"""', 'views.about_page'], {'name': '"""about"""'}), "('about', views.about_page, name='about')\n", (266, 307), False, 'from django.urls import path\n')]
from mycroft import MycroftSkill, intent_file_handler class Midicontrol(MycroftSkill): def __init__(self): MycroftSkill.__init__(self) @intent_file_handler('midicontrol.intent') def handle_midicontrol(self, message): self.speak_dialog('midicontrol') def create_skill(): return Midicontrol()
[ "mycroft.MycroftSkill.__init__", "mycroft.intent_file_handler" ]
[((155, 196), 'mycroft.intent_file_handler', 'intent_file_handler', (['"""midicontrol.intent"""'], {}), "('midicontrol.intent')\n", (174, 196), False, 'from mycroft import MycroftSkill, intent_file_handler\n'), ((121, 148), 'mycroft.MycroftSkill.__init__', 'MycroftSkill.__init__', (['self'], {}), '(self)\n', (142, 148), False, 'from mycroft import MycroftSkill, intent_file_handler\n')]
from os.path import expanduser from os import sep from re import split from functools import reduce from xmtrace import xmtrace @xmtrace def xm_path_translate(lua, ph): return expanduser(reduce(lambda a, b: a + sep + b, split(r"\\|/", ph)))
[ "re.split" ]
[((225, 244), 're.split', 'split', (['"""\\\\\\\\|/"""', 'ph'], {}), "('\\\\\\\\|/', ph)\n", (230, 244), False, 'from re import split\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import logging import logging.handlers CRITICAL = 1 ERROR = 2 WARNING = 3 INFO = 4 DEBUG = 5 class Logger: def __init__(self, fileName, level=DEBUG): dictLevel = { CRITICAL: logging.CRITICAL, ERROR: logging.ERROR, WARNING: logging.WARNING, INFO: logging.INFO, DEBUG: logging.DEBUG } if level < CRITICAL or level > DEBUG: level = DEBUG logLevel = dictLevel[level] # mkdir abspath = os.path.abspath(fileName) dir = os.path.dirname(abspath) if not os.path.exists(dir): os.makedirs(dir) self.logger = logging.getLogger(dir) self.logger.setLevel(logLevel) fmt = logging.Formatter('[%(asctime)s] [%(levelname)s] %(message)s') # 控制台日志 sh = logging.StreamHandler() sh.setFormatter(fmt) sh.setLevel(logLevel) # 文件日志 fh = logging.handlers.RotatingFileHandler(fileName, maxBytes=50*1024*1024, backupCount=20) fh.setFormatter(fmt) fh.setLevel(logLevel) self.logger.addHandler(fh) def debug(self, message): self.logger.debug(message) def info(self, message): self.logger.info(message) def warn(self, message): self.logger.warn(message) def error(self, message): self.logger.error(message) def critical(self, message): self.logger.critical(message) if __name__ == "__main__": logger = Logger('test.log', INFO) logger.debug('this is a debug message') logger.info('this is a info message') logger.warn('this is a warn message')
[ "os.path.abspath", "os.makedirs", "os.path.dirname", "logging.StreamHandler", "os.path.exists", "logging.Formatter", "logging.handlers.RotatingFileHandler", "logging.getLogger" ]
[((588, 613), 'os.path.abspath', 'os.path.abspath', (['fileName'], {}), '(fileName)\n', (603, 613), False, 'import os\n'), ((628, 652), 'os.path.dirname', 'os.path.dirname', (['abspath'], {}), '(abspath)\n', (643, 652), False, 'import os\n'), ((740, 762), 'logging.getLogger', 'logging.getLogger', (['dir'], {}), '(dir)\n', (757, 762), False, 'import logging\n'), ((816, 878), 'logging.Formatter', 'logging.Formatter', (['"""[%(asctime)s] [%(levelname)s] %(message)s"""'], {}), "('[%(asctime)s] [%(levelname)s] %(message)s')\n", (833, 878), False, 'import logging\n'), ((908, 931), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (929, 931), False, 'import logging\n'), ((1019, 1112), 'logging.handlers.RotatingFileHandler', 'logging.handlers.RotatingFileHandler', (['fileName'], {'maxBytes': '(50 * 1024 * 1024)', 'backupCount': '(20)'}), '(fileName, maxBytes=50 * 1024 * 1024,\n backupCount=20)\n', (1055, 1112), False, 'import logging\n'), ((668, 687), 'os.path.exists', 'os.path.exists', (['dir'], {}), '(dir)\n', (682, 687), False, 'import os\n'), ((701, 717), 'os.makedirs', 'os.makedirs', (['dir'], {}), '(dir)\n', (712, 717), False, 'import os\n')]
import matplotlib.pyplot as plt import numpy as np nus_lpf,mu_lpf=np.load("clpf.npz",allow_pickle=True)["arr_0"] nus_modit,mu_modit=np.load("cmodit4500.npz",allow_pickle=True)["arr_0"] fig=plt.figure(figsize=(8,4)) plt.plot(nus_modit,mu_modit,label="MODIT",color="C1") plt.plot(nus_lpf,mu_lpf,label="DIRECT",ls="dashed",color="C0") plt.xlabel("wavenumber (cm-1)") plt.ylabel("spectrum") plt.legend() plt.savefig("compspec_luhman16A.png") plt.show()
[ "numpy.load", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.pyplot.legend", "matplotlib.pyplot.figure", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.savefig" ]
[((192, 218), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 4)'}), '(figsize=(8, 4))\n', (202, 218), True, 'import matplotlib.pyplot as plt\n'), ((218, 274), 'matplotlib.pyplot.plot', 'plt.plot', (['nus_modit', 'mu_modit'], {'label': '"""MODIT"""', 'color': '"""C1"""'}), "(nus_modit, mu_modit, label='MODIT', color='C1')\n", (226, 274), True, 'import matplotlib.pyplot as plt\n'), ((272, 338), 'matplotlib.pyplot.plot', 'plt.plot', (['nus_lpf', 'mu_lpf'], {'label': '"""DIRECT"""', 'ls': '"""dashed"""', 'color': '"""C0"""'}), "(nus_lpf, mu_lpf, label='DIRECT', ls='dashed', color='C0')\n", (280, 338), True, 'import matplotlib.pyplot as plt\n'), ((336, 367), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""wavenumber (cm-1)"""'], {}), "('wavenumber (cm-1)')\n", (346, 367), True, 'import matplotlib.pyplot as plt\n'), ((368, 390), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""spectrum"""'], {}), "('spectrum')\n", (378, 390), True, 'import matplotlib.pyplot as plt\n'), ((391, 403), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (401, 403), True, 'import matplotlib.pyplot as plt\n'), ((404, 441), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""compspec_luhman16A.png"""'], {}), "('compspec_luhman16A.png')\n", (415, 441), True, 'import matplotlib.pyplot as plt\n'), ((442, 452), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (450, 452), True, 'import matplotlib.pyplot as plt\n'), ((68, 106), 'numpy.load', 'np.load', (['"""clpf.npz"""'], {'allow_pickle': '(True)'}), "('clpf.npz', allow_pickle=True)\n", (75, 106), True, 'import numpy as np\n'), ((134, 178), 'numpy.load', 'np.load', (['"""cmodit4500.npz"""'], {'allow_pickle': '(True)'}), "('cmodit4500.npz', allow_pickle=True)\n", (141, 178), True, 'import numpy as np\n')]
import icon_get import unittest import mainutils import iconmanager test_ini = """ [Rainmeter] Author=<EMAIL>.<EMAIL>.<EMAIL> Name=Mid Dock ------------------------------------------------------------------------ ;Metadata added by RainBrowser ;http://rainmeter.net/RainCMS/?q=Rainmeter101_AnatomyOfASkin [Metadata] Name= Config= Description= Instructions= Version= Tags= License= Variant= Preview= ;End of added Metadata ;----------------------------------------------------------------------- ; MEASURES MEASURES [MeasurePower] Measure=Plugin Plugin=Plugins\PowerPlugin.dll PowerState=PERCENT [MeasureBin] Measure=Plugin Plugin=RecycleManager.dll RecycleType=COUNT Drives=ALL [MeasureBin2] Measure=Plugin Plugin=RecycleManager.dll RecycleType=SIZE Drives=ALL [BinAction] Measure=Calc Formula=MeasureBin IfAboveAction=!execute [!RainmeterHideMeter IconEmpty][!RainmeterShowMeter IconFull] IfAboveValue=0 IfEqualAction=!execute [!RainmeterHideMeter IconFull][!RainmeterShowMeter IconEmpty] IfEqualValue=0 ;--------------------------------------------------------------------------- ; APPLICATIONS [video editor] Meter=Button Y=2R ButtonImage="E:\Desktop\Test junk\video editor icon.png" ButtonCommand=!execute ["E:\Desktop\Test junk\video editor.exe"] [stackoverflow help] Meter=Button Y=2R ButtonImage="E:\Desktop\Test junk\stackoverflow help icon.png" ButtonCommand=!execute ["E:\Desktop\Test junk\stackoverflow help.exe"] [movie maker] Meter=Button Y=2R ButtonImage="E:\Desktop\Test junk\movie maker icon.png" ButtonCommand=!execute ["E:\Desktop\Test junk\movie maker.exe"] [Terraria] Meter=Button Y=2R ButtonImage="E:\Desktop\Test junk\Terraria icon.png" ButtonCommand=!execute ["E:\Desktop\Test junk\Terraria.url"]""" class SmokeTests(unittest.TestCase): def test_get_urls(self): T = icon_get.get_urls assert T("minecraft") assert T("Dota 2") assert T("Photoshop") def test_sorting_by_ini(self): icon_names = ["Terraria", "movie maker", "video editor", "stackoverflow help", "new program"] icons = [iconmanager.IconManager(name=icon_name, image_save_path=".", app_path=".") for icon_name in icon_names] correctly_sorted_names = ["new program", "video editor", "stackoverflow help", "movie maker", "Terraria"] icons = mainutils.sort_by_ini(icons, ini_str=test_ini) for correct_name, actual_icon in zip(correctly_sorted_names, icons): assert actual_icon.name == correct_name, "Incorrectly sorted icons"
[ "iconmanager.IconManager", "mainutils.sort_by_ini" ]
[((2355, 2401), 'mainutils.sort_by_ini', 'mainutils.sort_by_ini', (['icons'], {'ini_str': 'test_ini'}), '(icons, ini_str=test_ini)\n', (2376, 2401), False, 'import mainutils\n'), ((2120, 2194), 'iconmanager.IconManager', 'iconmanager.IconManager', ([], {'name': 'icon_name', 'image_save_path': '"""."""', 'app_path': '"""."""'}), "(name=icon_name, image_save_path='.', app_path='.')\n", (2143, 2194), False, 'import iconmanager\n')]
from transformers import pipeline import wikipedia import warnings import streamlit as st warnings.filterwarnings("ignore") def get_context_from_wiki(query: str) -> str: "Given a query, return the summary about the query from wikipedia" results = wikipedia.search(query) # There could be more than 1 due to Disambiguation issue try: summary = wikipedia.summary(results[0], sentences=10) except wikipedia.DisambiguationError as e: ambiguous_terms = e.options # take the first one from the list of ambiguous terms and try again return wikipedia.summary(ambiguous_terms[0], sentences=10) return summary def get_qa_pipeline(): qa_pipeline = pipeline("question-answering") return qa_pipeline def answer_question(pipeline, question, context): result = pipeline(question=question, context=context) #return f"Answer: {result['answer']}, score: {round(result['score'], 4)}, start: {result['start']}, end: {result['end']}" return result if __name__ == '__main__': st.title("Extractive Question Answering") pipeline = get_qa_pipeline() add_select_option = st.sidebar.selectbox( "Exploration Options", ("Query Based", "Paragraph based") ) if add_select_option == "Query Based": paragraph_slot = st.empty() query = st.text_area("WIKI SEARCH TERM", "") if query: context = get_context_from_wiki(query) paragraph_slot.markdown(context) elif add_select_option == "Paragraph based": question = st.empty() context = st.text_area("Enter the paragraph to explore", value="...") question = st.text_input("QUESTION", "") # print(f"Context: {context}\n") # print(f"Question: {question}\n") # print(answer_question(pipeline, question=question, context=context)) if question: try: answer = answer_question(pipeline, question=question, context=context) st.write(answer['answer']) except: st.write("Provide a valid paragraph")
[ "wikipedia.search", "streamlit.text_input", "transformers.pipeline", "warnings.filterwarnings", "streamlit.title", "streamlit.write", "streamlit.text_area", "streamlit.sidebar.selectbox", "wikipedia.summary", "streamlit.empty" ]
[((92, 125), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (115, 125), False, 'import warnings\n'), ((255, 278), 'wikipedia.search', 'wikipedia.search', (['query'], {}), '(query)\n', (271, 278), False, 'import wikipedia\n'), ((675, 705), 'transformers.pipeline', 'pipeline', (['"""question-answering"""'], {}), "('question-answering')\n", (683, 705), False, 'from transformers import pipeline\n'), ((794, 838), 'transformers.pipeline', 'pipeline', ([], {'question': 'question', 'context': 'context'}), '(question=question, context=context)\n', (802, 838), False, 'from transformers import pipeline\n'), ((1017, 1058), 'streamlit.title', 'st.title', (['"""Extractive Question Answering"""'], {}), "('Extractive Question Answering')\n", (1025, 1058), True, 'import streamlit as st\n'), ((1117, 1196), 'streamlit.sidebar.selectbox', 'st.sidebar.selectbox', (['"""Exploration Options"""', "('Query Based', 'Paragraph based')"], {}), "('Exploration Options', ('Query Based', 'Paragraph based'))\n", (1137, 1196), True, 'import streamlit as st\n'), ((1631, 1660), 'streamlit.text_input', 'st.text_input', (['"""QUESTION"""', '""""""'], {}), "('QUESTION', '')\n", (1644, 1660), True, 'import streamlit as st\n'), ((359, 402), 'wikipedia.summary', 'wikipedia.summary', (['results[0]'], {'sentences': '(10)'}), '(results[0], sentences=10)\n', (376, 402), False, 'import wikipedia\n'), ((1276, 1286), 'streamlit.empty', 'st.empty', ([], {}), '()\n', (1284, 1286), True, 'import streamlit as st\n'), ((1303, 1339), 'streamlit.text_area', 'st.text_area', (['"""WIKI SEARCH TERM"""', '""""""'], {}), "('WIKI SEARCH TERM', '')\n", (1315, 1339), True, 'import streamlit as st\n'), ((563, 614), 'wikipedia.summary', 'wikipedia.summary', (['ambiguous_terms[0]'], {'sentences': '(10)'}), '(ambiguous_terms[0], sentences=10)\n', (580, 614), False, 'import wikipedia\n'), ((1522, 1532), 'streamlit.empty', 'st.empty', ([], {}), '()\n', (1530, 1532), True, 'import streamlit as st\n'), ((1551, 1610), 'streamlit.text_area', 'st.text_area', (['"""Enter the paragraph to explore"""'], {'value': '"""..."""'}), "('Enter the paragraph to explore', value='...')\n", (1563, 1610), True, 'import streamlit as st\n'), ((1938, 1964), 'streamlit.write', 'st.write', (["answer['answer']"], {}), "(answer['answer'])\n", (1946, 1964), True, 'import streamlit as st\n'), ((1993, 2030), 'streamlit.write', 'st.write', (['"""Provide a valid paragraph"""'], {}), "('Provide a valid paragraph')\n", (2001, 2030), True, 'import streamlit as st\n')]
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Classes for defining the data used to train machine learning models. Data to be used in training, prediction and evaluation is described in terms of features. This module provides functionality to define those features, and data transformations to apply to produce those features. """ from _features import CategoricalFeatureColumn from _features import Feature from _features import FeatureColumn from _features import FeatureFormat from _features import FeatureMetadata from _features import ImageFeatureColumn from _features import KeyFeatureColumn from _features import NumericFeatureColumn from _features import TargetFeatureColumn from _features import TextFeatureColumn from _predict import FeatureProducer from _registries import register_analyzer from _registries import register_transformer from _transforms import ExampleProtoFormatter from _transforms import FeatureVector def key(name): """Creates a feature representing the key of the instance. Args: name: Name of feature column. Returns: An instance of KeyFeatureColumn. """ return KeyFeatureColumn(name) def target(name='target'): """Creates a feature representing the target label or value of the instance. Args: name: Name of feature column. Returns: An instance of TargetFeatureColumn. """ return TargetFeatureColumn(name) def numeric(name, default=None, log_base=0): """Creates a numeric column within a feature. Args: name: Name of feature column. default: Default value for the column. log_base: Base of logarithm to be applied. Returns: An instance of NumericFeatureColumn. """ return NumericFeatureColumn(name, default=default, log_base=log_base) def categorical(name, default=None, frequency_threshold=5, split_regex=None): r"""Creates a categorical or discrete value column within a feature. Args: name: Name of feature column. default: Default value for the column. frequency_threshold: Frequency threshold below which words are not added to the vocab. split_regex: Regex rule to extract the column value. Defaults to None, which means no splitting. Examples: - Use r'\w{1,}' to group alphanumerical characters of len 1. - Use r'\w{3,}' to group alphanumerical characters of len 3. - Use r'\S+' to group on non-whitespace. Returns: An instance of CategoricalFeatureColumn. """ return CategoricalFeatureColumn(name, default=default, frequency_threshold=frequency_threshold, split_regex=split_regex) def text(name, default=None, sampling_percentage=100, split_regex=r'\w{3,}', stop_words='english', use_stemmer=False, ngrams=1, use_tf_idf=False, normalize=False, strip_html=False, removable_tags=None, word2vec_dict=None, frequency_threshold=0): """Creates a free-form text value column within a feature. Args: name: Name of feature column. default: Default value for the column. sampling_percentage: Percentage value (0-100) for the number of rows that should be sampled for constructing the vocabulary/ngrams. split_regex: Regex rule to split text stop_words: Either list or set, specifying the stop words to be ignored or a string representing the language of stopwords to be requested from nltk. Use [] for no stopwords. For more info nltk.corpus.stopwords.readme() use_stemmer: Boolean on whether text should be stemmed ngrams: number of ngrams the tokenizer should generate (2 for bigrams etc) use_tf_idf: Boolean on whether the BOW representation should be tf*idf normalize: Boolean on whether sparse vector (BOW or tf*idf) should be normalize (used with L2 norm) strip_html: Boolean on whether html_markup should be removed before processing removable_tags: list of html tags whose text should be ignored word2vec_dict: Dictionary of word -> word_vectors. If it is not empty, then the words will be replaced with a matrix, one row for each word frequency_threshold: Frequency threshold below which words/ngrams are not added to the vocab. Returns: An instance of TextFeatureColumn. """ return TextFeatureColumn( name, default=default, sampling_percentage=sampling_percentage, split_regex=split_regex, stop_words=stop_words, use_stemmer=use_stemmer, ngrams=ngrams, use_tf_idf=use_tf_idf, normalize=normalize, strip_html=strip_html, removable_tags=removable_tags, word2vec_dict=word2vec_dict, frequency_threshold=frequency_threshold) def image(name, default=None): """Creates an image column within a feature.. Args: name: name of image feature default: Default value for the column. Returns: An instance of ImageFeatureColumn. """ return ImageFeatureColumn(name, default=default)
[ "_features.ImageFeatureColumn", "_features.TextFeatureColumn", "_features.CategoricalFeatureColumn", "_features.KeyFeatureColumn", "_features.NumericFeatureColumn", "_features.TargetFeatureColumn" ]
[((1671, 1693), '_features.KeyFeatureColumn', 'KeyFeatureColumn', (['name'], {}), '(name)\n', (1687, 1693), False, 'from _features import KeyFeatureColumn\n'), ((1912, 1937), '_features.TargetFeatureColumn', 'TargetFeatureColumn', (['name'], {}), '(name)\n', (1931, 1937), False, 'from _features import TargetFeatureColumn\n'), ((2234, 2296), '_features.NumericFeatureColumn', 'NumericFeatureColumn', (['name'], {'default': 'default', 'log_base': 'log_base'}), '(name, default=default, log_base=log_base)\n', (2254, 2296), False, 'from _features import NumericFeatureColumn\n'), ((3023, 3141), '_features.CategoricalFeatureColumn', 'CategoricalFeatureColumn', (['name'], {'default': 'default', 'frequency_threshold': 'frequency_threshold', 'split_regex': 'split_regex'}), '(name, default=default, frequency_threshold=\n frequency_threshold, split_regex=split_regex)\n', (3047, 3141), False, 'from _features import CategoricalFeatureColumn\n'), ((4926, 5286), '_features.TextFeatureColumn', 'TextFeatureColumn', (['name'], {'default': 'default', 'sampling_percentage': 'sampling_percentage', 'split_regex': 'split_regex', 'stop_words': 'stop_words', 'use_stemmer': 'use_stemmer', 'ngrams': 'ngrams', 'use_tf_idf': 'use_tf_idf', 'normalize': 'normalize', 'strip_html': 'strip_html', 'removable_tags': 'removable_tags', 'word2vec_dict': 'word2vec_dict', 'frequency_threshold': 'frequency_threshold'}), '(name, default=default, sampling_percentage=\n sampling_percentage, split_regex=split_regex, stop_words=stop_words,\n use_stemmer=use_stemmer, ngrams=ngrams, use_tf_idf=use_tf_idf,\n normalize=normalize, strip_html=strip_html, removable_tags=\n removable_tags, word2vec_dict=word2vec_dict, frequency_threshold=\n frequency_threshold)\n', (4943, 5286), False, 'from _features import TextFeatureColumn\n'), ((5574, 5615), '_features.ImageFeatureColumn', 'ImageFeatureColumn', (['name'], {'default': 'default'}), '(name, default=default)\n', (5592, 5615), False, 'from _features import ImageFeatureColumn\n')]
from aedes_server.core.clusters import compute_clusters from django.core.management import BaseCommand class Command(BaseCommand): help = 'Calculate clusters for AedeSpot app.' def handle(self, *args, **options): ''' Computing clusters. ''' compute_clusters()
[ "aedes_server.core.clusters.compute_clusters" ]
[((284, 302), 'aedes_server.core.clusters.compute_clusters', 'compute_clusters', ([], {}), '()\n', (300, 302), False, 'from aedes_server.core.clusters import compute_clusters\n')]
import py_cui from pymusicterm.music import SongFile from pymusicterm.util.file import File, FileMetadata class SongInfoBlockLabel: _row:int=0 _column:int=2 _row_span:int=2 _column_span:int=3 _center:bool=False window:py_cui.widget_set.WidgetSet def __init__(self,window:py_cui.widget_set.WidgetSet): self.window=window self.block_label=self.window.add_block_label(self._initial_text(),self._row,self._column, row_span=self._row_span,column_span=self._column_span,center=self._center) self.__config() def _initial_text(self): file_path=File().get_file_path() text=""" Actual path: {} No Song Selected """.format(file_path) return text def set_song_info(self,song_file:SongFile): pass def __config(self): """ Function that configure the widget """ self.block_label._draw_border=True
[ "pymusicterm.util.file.File" ]
[((615, 621), 'pymusicterm.util.file.File', 'File', ([], {}), '()\n', (619, 621), False, 'from pymusicterm.util.file import File, FileMetadata\n')]
# Generated by Django 3.2.7 on 2021-09-18 10:42 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("podcasts", "0042_podcast_hub_exception"), ] operations = [ migrations.AlterField( model_name="podcast", name="hub_token", field=models.UUIDField(blank=True, editable=False, null=True, unique=True), ), ]
[ "django.db.models.UUIDField" ]
[((344, 412), 'django.db.models.UUIDField', 'models.UUIDField', ([], {'blank': '(True)', 'editable': '(False)', 'null': '(True)', 'unique': '(True)'}), '(blank=True, editable=False, null=True, unique=True)\n', (360, 412), False, 'from django.db import migrations, models\n')]
""" Admin access page settings """ from django.contrib import admin from blog.models import get_model_factory from .posts_admin import PostAdmin # Register your models here. admin.site.register(get_model_factory('PostsFactory').create(), PostAdmin)
[ "blog.models.get_model_factory" ]
[((195, 228), 'blog.models.get_model_factory', 'get_model_factory', (['"""PostsFactory"""'], {}), "('PostsFactory')\n", (212, 228), False, 'from blog.models import get_model_factory\n')]
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() # # The following code can be used if you have private dependencies. Basically it requires the user to set an # # environment variable `GH_PAT` to a Github Personal Access Token (with access to the private repository). If the env # # var cannot be found, an error is raised. If it can be found, the private package is installed. # import os # try: # gh_pat = os.environ["GH_PAT"] # except KeyError as e: # raise RuntimeError("You didn't set the environment variable `GH_PAT`. This is necessary because this package " # "relies on private package(s), and you need to be authenticated to install these. Please set " # "`GH_PAT` environment variable to your Personnal Access Token (from Github).") from e # # Example of specifying private dependencies : # reqs = [f"<package_name> @ git+https://{gh_pat}@github.com/<user>/<repo>@<tag>#egg=<package_name>"] reqs = [] extras_require = { "test": ["pytest~=7.0", "pytest-cov~=3.0", "coverage-badge~=1.0"], "hook": ["pre-commit~=2.15"], "lint": ["isort~=5.9", "black~=22.1", "flake518~=1.2", "darglint~=1.8"], "docs": ["mkdocs-material~=8.1", "mkdocstrings[python]~=0.18", "mike~=1.1"], } extras_require["all"] = sum(extras_require.values(), []) extras_require["dev"] = ( extras_require["test"] + extras_require["hook"] + extras_require["lint"] + extras_require["docs"] ) setuptools.setup( name="pytere", version="1.0.0.dev0", author="<NAME>", author_email="<EMAIL>", description="A Python Template Repository", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/astariul/pytere", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3.7", "Operating System :: OS Independent", ], python_requires=">=3.7", install_requires=reqs, extras_require=extras_require, )
[ "setuptools.find_packages" ]
[((1812, 1838), 'setuptools.find_packages', 'setuptools.find_packages', ([], {}), '()\n', (1836, 1838), False, 'import setuptools\n')]
import numpy as np from ligo.skymap import kde import matplotlib matplotlib.use('Agg') from matplotlib.colors import to_rgb from matplotlib import pyplot as plt from mpl_toolkits.basemap import Basemap #matplotlib.rc('text', usetex=True) def greedy(density): i,j = np.shape(density) idx = np.argsort(density.flatten())[::-1] c = np.cumsum(density.flatten()[idx]) c = c/c[-1] np.append(c,1.0) p = np.zeros(i*j) p[idx] = c[:] return p.reshape(i,j) def plot_sky(pts,contour=True,filled=False,ax=None,trueloc=None,cmap='Reds',col='red'): cls = kde.Clustered2DSkyKDE pts[:,0] = pts[:,0] - np.pi skypost = cls(pts, trials=5, jobs=8) # make up some data on a regular lat/lon grid. # nlats = 145; nlons = 291; delta = 2.*np.pi/(nlons-1) nlats = 145; nlons = 291; delta = 2.*np.pi/(nlons-1) lats = (0.5*np.pi-delta*np.indices((nlats,nlons))[0,:,:]) # lons = (delta*np.indices((nlats,nlons))[1,:,:]) lons = (delta*np.indices((nlats,nlons))[1,:,:]-np.pi) locs = np.column_stack((lons.flatten(),lats.flatten())) prob = skypost(locs).reshape(nlats,nlons) p1 = greedy(prob) # compute mean location of samples nx = np.cos(pts[:,1])*np.cos(pts[:,0]) ny = np.cos(pts[:,1])*np.sin(pts[:,0]) nz = np.sin(pts[:,1]) mean_n = [np.mean(nx),np.mean(ny),np.mean(nz)] # bestloc = [np.remainder(np.arctan2(mean_n[1],mean_n[0]),2.0*np.pi),np.arctan2(mean_n[2],np.sqrt(mean_n[0]**2 + mean_n[1]**2))] bestloc = [trueloc[0],trueloc[1]] if ax is None: # map = Basemap(projection='ortho',lon_0=-bestloc[0]*180/np.pi,lat_0=bestloc[1]*180/np.pi,resolution=None,celestial=True) map = Basemap(projection='moll',lon_0=0,resolution=None,celestial=True) map.drawmapboundary(fill_color='white') # draw lat/lon grid lines every 30 degrees. # map.drawmeridians(np.arange(0,360,30)) meridian = ["-180","-150","-120","-90","-60","-30","0","30","+60","+90","+120","+150"] map.drawmeridians(np.arange(-180,180,30),labels=[1,1,1,1]) for i in np.arange(len(meridian)): plt.annotate(r"$\textrm{%s}$" % meridian[i] + u"\u00b0",xy=map(np.arange(-180,180,30)[i],0),xycoords='data') map.drawparallels(np.arange(-90,90,30),labels=[1,0,0,0]) else: map = ax # compute native map projection coordinates of lat/lon grid. # x, y = map(lons*180./np.pi, lats*180./np.pi) x, y = map(lons*180./np.pi, lats*180./np.pi) # contour data over the map. if filled: base_color = np.array(to_rgb(col)) opp_color = 1.0 - base_color cs1 = map.contourf(x,y,1.0-p1,levels=[0.0,0.1,0.5,1.0],colors=[base_color+opp_color,base_color+0.8*opp_color,base_color+0.6*opp_color,base_color]) cs2 = map.contour(x,y,p1,levels=[0.5,0.9],linewidths=2.0,colors=col) if trueloc is not None: xx, yy = map((trueloc[0]*180./np.pi)-180.0, trueloc[1]*180./np.pi) map.plot(xx,yy,marker='+',markersize=20,linewidth=5,color='black') return map
[ "numpy.zeros", "matplotlib.colors.to_rgb", "numpy.shape", "numpy.append", "numpy.indices", "matplotlib.use", "numpy.sin", "numpy.mean", "numpy.cos", "numpy.arange", "mpl_toolkits.basemap.Basemap" ]
[((65, 86), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (79, 86), False, 'import matplotlib\n'), ((270, 287), 'numpy.shape', 'np.shape', (['density'], {}), '(density)\n', (278, 287), True, 'import numpy as np\n'), ((396, 413), 'numpy.append', 'np.append', (['c', '(1.0)'], {}), '(c, 1.0)\n', (405, 413), True, 'import numpy as np\n'), ((421, 436), 'numpy.zeros', 'np.zeros', (['(i * j)'], {}), '(i * j)\n', (429, 436), True, 'import numpy as np\n'), ((1278, 1295), 'numpy.sin', 'np.sin', (['pts[:, 1]'], {}), '(pts[:, 1])\n', (1284, 1295), True, 'import numpy as np\n'), ((1192, 1209), 'numpy.cos', 'np.cos', (['pts[:, 1]'], {}), '(pts[:, 1])\n', (1198, 1209), True, 'import numpy as np\n'), ((1209, 1226), 'numpy.cos', 'np.cos', (['pts[:, 0]'], {}), '(pts[:, 0])\n', (1215, 1226), True, 'import numpy as np\n'), ((1235, 1252), 'numpy.cos', 'np.cos', (['pts[:, 1]'], {}), '(pts[:, 1])\n', (1241, 1252), True, 'import numpy as np\n'), ((1252, 1269), 'numpy.sin', 'np.sin', (['pts[:, 0]'], {}), '(pts[:, 0])\n', (1258, 1269), True, 'import numpy as np\n'), ((1309, 1320), 'numpy.mean', 'np.mean', (['nx'], {}), '(nx)\n', (1316, 1320), True, 'import numpy as np\n'), ((1321, 1332), 'numpy.mean', 'np.mean', (['ny'], {}), '(ny)\n', (1328, 1332), True, 'import numpy as np\n'), ((1333, 1344), 'numpy.mean', 'np.mean', (['nz'], {}), '(nz)\n', (1340, 1344), True, 'import numpy as np\n'), ((1679, 1747), 'mpl_toolkits.basemap.Basemap', 'Basemap', ([], {'projection': '"""moll"""', 'lon_0': '(0)', 'resolution': 'None', 'celestial': '(True)'}), "(projection='moll', lon_0=0, resolution=None, celestial=True)\n", (1686, 1747), False, 'from mpl_toolkits.basemap import Basemap\n'), ((2014, 2038), 'numpy.arange', 'np.arange', (['(-180)', '(180)', '(30)'], {}), '(-180, 180, 30)\n', (2023, 2038), True, 'import numpy as np\n'), ((2245, 2267), 'numpy.arange', 'np.arange', (['(-90)', '(90)', '(30)'], {}), '(-90, 90, 30)\n', (2254, 2267), True, 'import numpy as np\n'), ((2560, 2571), 'matplotlib.colors.to_rgb', 'to_rgb', (['col'], {}), '(col)\n', (2566, 2571), False, 'from matplotlib.colors import to_rgb\n'), ((869, 895), 'numpy.indices', 'np.indices', (['(nlats, nlons)'], {}), '((nlats, nlons))\n', (879, 895), True, 'import numpy as np\n'), ((974, 1000), 'numpy.indices', 'np.indices', (['(nlats, nlons)'], {}), '((nlats, nlons))\n', (984, 1000), True, 'import numpy as np\n'), ((2173, 2197), 'numpy.arange', 'np.arange', (['(-180)', '(180)', '(30)'], {}), '(-180, 180, 30)\n', (2182, 2197), True, 'import numpy as np\n')]
# DLトレーニングで共通のロジック・モジュール import tensorflow as tf from tensorflow.python.data.ops.readers import TFRecordDatasetV2 from tensorflow.python.keras.callbacks import History from google.cloud import storage from typing import Callable, List import os def get_tfrecord_dataset( dataset_path: str, preprocessing: Callable, global_batch_size: int, split: str, data_augmentation: Callable = lambda x, y: (x, y), ) -> TFRecordDatasetV2: """TFRecordからデータパイプラインを構築する. Args: dataset_path (str): 目的のTFRecordファイルが保存されているパス. preprocessing (Callable): 適用する前処理関数. global_batch_size (int): バッチサイズ(分散処理の場合は合計). split (str): train or valid data_augmentation (Callable, optional): データオーグメンテーション関数. Defaults to lambdax:x. Raises: FileNotFoundError: dataset_pathにファイルが存在しない場合. Returns: TFRecordDatasetV2: 定義済みのデータパイプライン. """ # Build a pipeline file_names = tf.io.gfile.glob( f"{dataset_path}/{split}-*.tfrec" ) dataset = tf.data.TFRecordDataset( file_names, num_parallel_reads=tf.data.AUTOTUNE) if not file_names: raise FileNotFoundError(f"Not found: {dataset}") option = tf.data.Options() if split == "train": option.experimental_deterministic = False dataset = dataset.with_options(option) \ .map(lambda example: preprocessing(example=example), num_parallel_calls=tf.data.AUTOTUNE) \ .map(lambda x, y: data_augmentation(x, y)) \ .shuffle(512, reshuffle_each_iteration=True) \ .batch(global_batch_size, drop_remainder=True) \ .prefetch(tf.data.AUTOTUNE) else: option.experimental_deterministic = True dataset = dataset.with_options(option) \ .map(lambda example: preprocessing(example=example), num_parallel_calls=tf.data.AUTOTUNE) \ .batch(global_batch_size, drop_remainder=False) \ .prefetch(tf.data.AUTOTUNE) return dataset class Training: def __init__( self, build_model_func: Callable, job_dir: str, artifacts_dir: str = "", use_tpu: bool = True, ) -> None: """トレーニングの初期設定を行う. TPUノードの管理、TPUStrategyの設定、モデルのロード、コンパイル、checkpointの復旧などを行う. Arguments: build_model_func (Callable): 実験に使うモデルのbuild関数を渡す. job_dir (str): job管理用のGCSパス. checkpointやlogの保存をする. artifacts_dir (str): 実験結果の保存先GCSパス. use_tpu (bool): トレーニングにTPUを使うかどうか. """ # For job management self.job_dir = job_dir self.artifacts_dir = artifacts_dir self.use_tpu = use_tpu self.last_epoch = self._get_last_epoch() if self.use_tpu: # Tpu cluster setup cluster = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(cluster) tf.tpu.experimental.initialize_tpu_system(cluster) self.distribute_strategy = tf.distribute.TPUStrategy(cluster) # Load model in distribute_strategy scope with self.distribute_strategy.scope(): self._setup_model(build_model=build_model_func) else: self._setup_model(build_model=build_model_func) self.callbacks = [ tf.keras.callbacks.TensorBoard(log_dir=f"{self.job_dir}/logs", histogram_freq=1), tf.keras.callbacks.TerminateOnNaN(), tf.keras.callbacks.ModelCheckpoint( filepath=os.path.join(self.job_dir, "checkpoints/{epoch:05d}"), save_weights_only=True, save_freq="epoch" ) ] def _setup_model(self, build_model: Callable) -> None: if self.last_epoch == 0: self.model = build_model() else: checkpoint = f"{self.job_dir}/checkpoints/{self.last_epoch:0>5}" self.model = build_model(checkpoint=checkpoint) def _get_last_epoch(self) -> int: client = storage.Client() bucket_name = self.job_dir.split("/")[2] dest = self.job_dir.replace(f"gs://{bucket_name}/", "") blobs = client.list_blobs(bucket_name, prefix=f"{dest}/checkpoints") checkpoints = [0] for b in blobs: epoch = b.name.replace(f"{dest}/checkpoints/", "").split(".")[0] if epoch: checkpoints.append(int(epoch)) last_epoch = max(checkpoints) return last_epoch def add_callbacks(self, callbacks: List) -> None: self.callbacks.extend(callbacks) def run_train( self, train_ds: TFRecordDatasetV2, valid_ds: TFRecordDatasetV2, epochs: int ) -> History: """トレーニングを実施し、ログや結果を保存する. tf.keras.Model.fitでのトレーニングを行う. 複雑なトレーニングループが必要な場合もtf.keras.Model.train_stepをオーバーライドするなどして使う. Arguments: train_ds (TFRecordDatasetV2): tensorflowのデータセットパイプライン(学習用). valid_ds (TFRecordDatasetV2): tensorflowのデータセットパイプライン(検証用). epochs (int): トレーニングを回す合計エポック数. """ history = self.model.fit( train_ds, validation_data=valid_ds, callbacks=self.callbacks, initial_epoch=self.last_epoch, epochs=epochs ) if self.artifacts_dir: self.model.save(f"{self.artifacts_dir}/saved_model", include_optimizer=False) return history
[ "tensorflow.distribute.cluster_resolver.TPUClusterResolver", "tensorflow.data.TFRecordDataset", "tensorflow.distribute.TPUStrategy", "tensorflow.keras.callbacks.TerminateOnNaN", "tensorflow.data.Options", "google.cloud.storage.Client", "tensorflow.config.experimental_connect_to_cluster", "tensorflow.keras.callbacks.TensorBoard", "os.path.join", "tensorflow.tpu.experimental.initialize_tpu_system", "tensorflow.io.gfile.glob" ]
[((942, 993), 'tensorflow.io.gfile.glob', 'tf.io.gfile.glob', (['f"""{dataset_path}/{split}-*.tfrec"""'], {}), "(f'{dataset_path}/{split}-*.tfrec')\n", (958, 993), True, 'import tensorflow as tf\n'), ((1022, 1094), 'tensorflow.data.TFRecordDataset', 'tf.data.TFRecordDataset', (['file_names'], {'num_parallel_reads': 'tf.data.AUTOTUNE'}), '(file_names, num_parallel_reads=tf.data.AUTOTUNE)\n', (1045, 1094), True, 'import tensorflow as tf\n'), ((1198, 1215), 'tensorflow.data.Options', 'tf.data.Options', ([], {}), '()\n', (1213, 1215), True, 'import tensorflow as tf\n'), ((4022, 4038), 'google.cloud.storage.Client', 'storage.Client', ([], {}), '()\n', (4036, 4038), False, 'from google.cloud import storage\n'), ((2790, 2841), 'tensorflow.distribute.cluster_resolver.TPUClusterResolver', 'tf.distribute.cluster_resolver.TPUClusterResolver', ([], {}), '()\n', (2839, 2841), True, 'import tensorflow as tf\n'), ((2854, 2904), 'tensorflow.config.experimental_connect_to_cluster', 'tf.config.experimental_connect_to_cluster', (['cluster'], {}), '(cluster)\n', (2895, 2904), True, 'import tensorflow as tf\n'), ((2917, 2967), 'tensorflow.tpu.experimental.initialize_tpu_system', 'tf.tpu.experimental.initialize_tpu_system', (['cluster'], {}), '(cluster)\n', (2958, 2967), True, 'import tensorflow as tf\n'), ((3007, 3041), 'tensorflow.distribute.TPUStrategy', 'tf.distribute.TPUStrategy', (['cluster'], {}), '(cluster)\n', (3032, 3041), True, 'import tensorflow as tf\n'), ((3326, 3411), 'tensorflow.keras.callbacks.TensorBoard', 'tf.keras.callbacks.TensorBoard', ([], {'log_dir': 'f"""{self.job_dir}/logs"""', 'histogram_freq': '(1)'}), "(log_dir=f'{self.job_dir}/logs', histogram_freq=1\n )\n", (3356, 3411), True, 'import tensorflow as tf\n'), ((3420, 3455), 'tensorflow.keras.callbacks.TerminateOnNaN', 'tf.keras.callbacks.TerminateOnNaN', ([], {}), '()\n', (3453, 3455), True, 'import tensorflow as tf\n'), ((3530, 3583), 'os.path.join', 'os.path.join', (['self.job_dir', '"""checkpoints/{epoch:05d}"""'], {}), "(self.job_dir, 'checkpoints/{epoch:05d}')\n", (3542, 3583), False, 'import os\n')]
import numpy as np def align_depth_to_rgb( depth, bgr_cameramodel, depth_cameramodel, depth_to_rgb_transform): """Align depth image to color image. Parameters ---------- depth : numpy.ndarray depth image in meter order. bgr_cameramodel : cameramodels.PinholeCameraModel bgr cameramodel depth_cameramodel : cameramodels.PinholeCameraModel depth cameramodel depth_to_rgb_transform : numpy.ndarray 4x4 transformation matrix. Returns ------- aligned_img : numpy.ndarray aligned image. """ if depth.shape[0] != depth_cameramodel.height \ or depth.shape[1] != depth_cameramodel.width: raise ValueError depth = depth.copy() aligned_img = np.zeros((bgr_cameramodel.height, bgr_cameramodel.width), dtype=np.float32) depth[np.isnan(depth)] = 0 v, u = np.array(np.where(depth)) uv = np.array([u, v]).T rotation = depth_to_rgb_transform[:3, :3] translation = depth_to_rgb_transform[:3, 3] xyz_depth_frame = depth_cameramodel.batch_project_pixel_to_3d_ray( uv, depth=depth[depth > 0]) xyz_rgb_frame = (np.matmul( rotation.T, xyz_depth_frame.T) - np.matmul( rotation.T, translation).reshape(3, -1)).T rgb_uv, indices = bgr_cameramodel.batch_project3d_to_pixel( xyz_rgb_frame, project_valid_depth_only=True, return_indices=True) aligned_img.reshape(-1)[bgr_cameramodel.flatten_uv(rgb_uv)] = \ depth[depth > 0][indices] return aligned_img
[ "numpy.zeros", "numpy.isnan", "numpy.where", "numpy.array", "numpy.matmul" ]
[((780, 855), 'numpy.zeros', 'np.zeros', (['(bgr_cameramodel.height, bgr_cameramodel.width)'], {'dtype': 'np.float32'}), '((bgr_cameramodel.height, bgr_cameramodel.width), dtype=np.float32)\n', (788, 855), True, 'import numpy as np\n'), ((893, 908), 'numpy.isnan', 'np.isnan', (['depth'], {}), '(depth)\n', (901, 908), True, 'import numpy as np\n'), ((934, 949), 'numpy.where', 'np.where', (['depth'], {}), '(depth)\n', (942, 949), True, 'import numpy as np\n'), ((960, 976), 'numpy.array', 'np.array', (['[u, v]'], {}), '([u, v])\n', (968, 976), True, 'import numpy as np\n'), ((1203, 1243), 'numpy.matmul', 'np.matmul', (['rotation.T', 'xyz_depth_frame.T'], {}), '(rotation.T, xyz_depth_frame.T)\n', (1212, 1243), True, 'import numpy as np\n'), ((1276, 1310), 'numpy.matmul', 'np.matmul', (['rotation.T', 'translation'], {}), '(rotation.T, translation)\n', (1285, 1310), True, 'import numpy as np\n')]
#!/usr/bin/python import logging class NullHandler(logging.Handler): def emit(self, record): pass log = logging.getLogger('AppDataPublisher') log.setLevel(logging.ERROR) log.addHandler(NullHandler()) import copy import threading from DustLinkData import DustLinkData from EventBus import EventBusClient class AppDataPublisher(EventBusClient.EventBusClient): ''' \brief Publishes the data into the DustLinkData database. One instance of this class is created for each application. ''' def __init__(self,appName): # store params self._appName = appName # log log.info('creating instance') # initialize parent class EventBusClient.EventBusClient.__init__(self, 'parsedAppData_{0}'.format(self._appName), self._publish, ) self.name = 'DataConnector_AppDataPublisher_{0}'.format(self._appName) # add stats # local variables #======================== public ========================================== #======================== private ========================================= def _publish(self,sender,signal,data): dld = DustLinkData.DustLinkData() if not dld.getFastMode(): # add mote if needed try: dld.addMote(data['mac']) except ValueError: pass # happens when mote already exists # in demo mode, add demo mode apps to mote if dld.getDemoMode(): for appname in dld.DEMO_MODE_APPS.keys(): try: dld.attachAppToMote(data['mac'],appname) except ValueError: pass # happens when app does not exist, or already attached # attach app to mote if needed try: dld.attachAppToMote(data['mac'],self._appName) except ValueError: pass # happens when app not known, or app already attached to mote # publish in DustLinkData dld.indicateData(data['mac'], self._appName, data['fields'], timestamp=data['timestamp'], ) # log if log.isEnabledFor(logging.DEBUG): log.debug('published {0}'.format(data))
[ "DustLinkData.DustLinkData.DustLinkData", "logging.getLogger" ]
[((117, 154), 'logging.getLogger', 'logging.getLogger', (['"""AppDataPublisher"""'], {}), "('AppDataPublisher')\n", (134, 154), False, 'import logging\n'), ((1252, 1279), 'DustLinkData.DustLinkData.DustLinkData', 'DustLinkData.DustLinkData', ([], {}), '()\n', (1277, 1279), False, 'from DustLinkData import DustLinkData\n')]
import unittest from Sastrawi.Morphology.Disambiguator.DisambiguatorPrefixRule1 import DisambiguatorPrefixRule1a, DisambiguatorPrefixRule1b class Test_DisambiguatorPrefixRule1Test(unittest.TestCase): def setUp(self): self.subject1a = DisambiguatorPrefixRule1a() self.subject1b = DisambiguatorPrefixRule1b() return super(Test_DisambiguatorPrefixRule1Test, self).setUp() def test_disambiguate1a(self): self.assertEquals('ia-ia', self.subject1a.disambiguate('beria-ia')) self.assertIsNone(self.subject1a.disambiguate('berlari')) def test_disambiguate1b(self): self.assertEquals('rakit', self.subject1b.disambiguate('berakit')) self.assertIsNone(self.subject1b.disambiguate('bertabur')) if __name__ == '__main__': unittest.main()
[ "unittest.main", "Sastrawi.Morphology.Disambiguator.DisambiguatorPrefixRule1.DisambiguatorPrefixRule1a", "Sastrawi.Morphology.Disambiguator.DisambiguatorPrefixRule1.DisambiguatorPrefixRule1b" ]
[((786, 801), 'unittest.main', 'unittest.main', ([], {}), '()\n', (799, 801), False, 'import unittest\n'), ((247, 274), 'Sastrawi.Morphology.Disambiguator.DisambiguatorPrefixRule1.DisambiguatorPrefixRule1a', 'DisambiguatorPrefixRule1a', ([], {}), '()\n', (272, 274), False, 'from Sastrawi.Morphology.Disambiguator.DisambiguatorPrefixRule1 import DisambiguatorPrefixRule1a, DisambiguatorPrefixRule1b\n'), ((300, 327), 'Sastrawi.Morphology.Disambiguator.DisambiguatorPrefixRule1.DisambiguatorPrefixRule1b', 'DisambiguatorPrefixRule1b', ([], {}), '()\n', (325, 327), False, 'from Sastrawi.Morphology.Disambiguator.DisambiguatorPrefixRule1 import DisambiguatorPrefixRule1a, DisambiguatorPrefixRule1b\n')]
import itertools # This snippet has been turned into a full repo: # github.com/patrickleweryharris/anagram_solver def anagram_solver(lst): """ Return all possible combinations of letters in lst @type lst: [str] @rtype: None """ for i in range(0, len(lst) + 1): for subset in itertools.permutations(lst, i): possible = '' for letter in subset: possible += letter if len(possible) == len(lst): # itertools.permutations returns smaller lists print(possible) if __name__ == '__main__': lst = ['o', 'r', 'y', 'a', 'n'] anagram_solver(lst)
[ "itertools.permutations" ]
[((310, 340), 'itertools.permutations', 'itertools.permutations', (['lst', 'i'], {}), '(lst, i)\n', (332, 340), False, 'import itertools\n')]
from BranchFilters.BranchFilterer import BranchFilterer from Interoperability.ShellCommandExecuter import ShellCommandExecuter from RepositoryWalkers.BranchToCommitWalker import BranchToCommitWalker from Logger import Logger class HeadToMasterBranchFilterer(BranchFilterer): def __init__(self, repository): self.logger = Logger(self) self.repository = repository self.repository_directory = repr(repository).split('\'')[1][:-4] self.head_branch_name = self.repository.head.name[11:] self.generate_log_from_head_to_merge_base() def generate_log_from_head_to_merge_base(self): self.logger.log("Determining commit ids between the current head and master:") self.log_from_head_to_merge_base = [] self.logger.log("v head v") for id in self.walk_log_from_head_to_merge_base(): self.log_from_head_to_merge_base.append(id) self.logger.log(id) self.logger.log("^ master ^") def walk_log_from_head_to_merge_base(self): head_master_merge_base = self.get_merge_base("master", self.head_branch_name) walker = BranchToCommitWalker(self.repository, head_master_merge_base) head_branch = self.repository.branches[self.head_branch_name] for commit in walker.walk(head_branch): yield commit.hex def get_merge_base(self, branch_name, other_branch_name): args = ['git', 'merge-base', branch_name, other_branch_name] executer = ShellCommandExecuter(self.repository_directory, args) return executer.execute_for_output() def should_include_branch(self, branch_name): merge_base = self.get_merge_base(self.head_branch_name, branch_name) return merge_base in self.log_from_head_to_merge_base
[ "RepositoryWalkers.BranchToCommitWalker.BranchToCommitWalker", "Logger.Logger", "Interoperability.ShellCommandExecuter.ShellCommandExecuter" ]
[((334, 346), 'Logger.Logger', 'Logger', (['self'], {}), '(self)\n', (340, 346), False, 'from Logger import Logger\n'), ((1139, 1200), 'RepositoryWalkers.BranchToCommitWalker.BranchToCommitWalker', 'BranchToCommitWalker', (['self.repository', 'head_master_merge_base'], {}), '(self.repository, head_master_merge_base)\n', (1159, 1200), False, 'from RepositoryWalkers.BranchToCommitWalker import BranchToCommitWalker\n'), ((1499, 1552), 'Interoperability.ShellCommandExecuter.ShellCommandExecuter', 'ShellCommandExecuter', (['self.repository_directory', 'args'], {}), '(self.repository_directory, args)\n', (1519, 1552), False, 'from Interoperability.ShellCommandExecuter import ShellCommandExecuter\n')]
''' Colormapping The final glyph customization we'll practice is using the CategoricalColorMapper to color each glyph by a categorical property. Here, you're going to use the automobile dataset to plot miles-per-gallon vs weight and color each circle glyph by the region where the automobile was manufactured. The origin column will be used in the ColorMapper to color automobiles manufactured in the US as blue, Europe as red and Asia as green. The automobile data set is provided to you as a Pandas DataFrame called df. The figure is provided for you as p. INSTRUCTIONS 100XP Import CategoricalColorMapper from bokeh.models. Convert the DataFrame df to a ColumnDataSource called source. This has already been done for you. Make a CategoricalColorMapper object called color_mapper with the CategoricalColorMapper() function. It has two parameters here: factors and palette. Add a circle glyph to the figure p to plot 'mpg' (on the y-axis) vs 'weight' (on the x-axis). Remember to pass in source and 'origin' as arguments to source and legend. For the color parameter, use dict(field='origin', transform=color_mapper). ''' #Import CategoricalColorMapper from bokeh.models from bokeh.models import CategoricalColorMapper # Convert df to a ColumnDataSource: source source = ColumnDataSource(df) # Make a CategoricalColorMapper object: color_mapper color_mapper = CategoricalColorMapper(factors=['Europe', 'Asia', 'US'], palette=['red', 'green', 'blue']) # Add a circle glyph to the figure p p.circle('weight', 'mpg', source=source, color=dict(field='origin', transform=color_mapper), legend='origin') # Specify the name of the output file and show the result output_file('colormap.html') show(p)
[ "bokeh.models.CategoricalColorMapper" ]
[((1368, 1462), 'bokeh.models.CategoricalColorMapper', 'CategoricalColorMapper', ([], {'factors': "['Europe', 'Asia', 'US']", 'palette': "['red', 'green', 'blue']"}), "(factors=['Europe', 'Asia', 'US'], palette=['red',\n 'green', 'blue'])\n", (1390, 1462), False, 'from bokeh.models import CategoricalColorMapper\n')]
import asyncio import aiohttp import requests import json from .op import EsiOp from .auth import EsiAuth from .cache import EsiCache, DictCache from .esisession import EsiSession import logging logger = logging.getLogger("EsiPysi") class EsiPysi(object): """ The EsiPysi class creates "EsiOp" operations based on a provided swagger spec """ def __init__(self, swagger_url, **kwargs): """ Initialize the class Arguments: swagger_url -- Url to the swagger spec Keyword arguments: user_agent -- user agent to send with ESI calls cache -- EsiCache object to use for caching auth -- EsiAuth to use for authorized calls to ESI retries -- Number of retries when ESI returns a retryable error, 0 disables, -1 is unlimited loop -- Event loop to use for asyncio session -- aiohttp session to use, note: loop will be useless if set with session, set the loop you want in the session instead """ self.args = kwargs cache = kwargs.get("cache", DictCache()) if cache is not None: if not issubclass(type(cache), EsiCache): raise TypeError("cache should be of the type EsiCache") session = self.args.get('session') if session is not None: if not isinstance(type(session), aiohttp.ClientSession): raise TypeError("session must be a aiohttp ClientSession") self.operations = {} self.data = {} r = requests.get(swagger_url) try: data = r.json() except: logger.exception("Parse error, spec written to file") with open('esi-spec-error.json', 'w') as esifile: esifile.write(r.text) return finally: r.close() self.data = data self.__analyze_swagger() def session(self): session = EsiSession(self.base_url, self.operations, **self.args) return session def __analyze_swagger(self): #Get base url self.base_url = "https://" + self.data.get("host","") + self.data.get("basePath", "") #Reformat json paths = self.data.get("paths", {}) #each path for route, verbs in paths.items(): #each http verb in a path for verb, operation in verbs.items(): operation_id = operation.get("operationId") if operation_id is None: continue new_op = operation.copy() new_op["path"] = route new_op["verb"] = verb #Handle parameter refs params = operation.get("parameters") new_op["parameters"] = {} for param in params: path = param.get("$ref") if path is None: param_details = param.copy() else: param_details = self.__get_ref(path) param_name = param_details.get("name") new_op["parameters"][param_name] = param_details self.operations[operation_id] = new_op def __get_ref(self, path): path_split = path.split("/") if path_split[0] != "#": #Unsupported return None ref = self.data for i in range(1, len(path_split)): ref = ref.get(path_split[i], {}) return ref
[ "requests.get", "logging.getLogger" ]
[((205, 233), 'logging.getLogger', 'logging.getLogger', (['"""EsiPysi"""'], {}), "('EsiPysi')\n", (222, 233), False, 'import logging\n'), ((1557, 1582), 'requests.get', 'requests.get', (['swagger_url'], {}), '(swagger_url)\n', (1569, 1582), False, 'import requests\n')]
import numpy as np import torch def compute_lid(x, x_train, k, exclude_self=False): """ Calculate LID using the estimation from [1] [1] Ma et al., "Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality," ICLR 2018. """ with torch.no_grad(): x = x.view((x.size(0), -1)) x_train = x_train.view((x_train.size(0), -1)) lid = torch.zeros((x.size(0), )) for i, x_cur in enumerate(x): dist = (x_cur.view(1, -1) - x_train).norm(2, 1) # `largest` should be True when using cosine distance if exclude_self: topk_dist = dist.topk(k + 1, largest=False)[0][1:] else: topk_dist = dist.topk(k, largest=False)[0] mean_log = torch.log(topk_dist / topk_dist[-1]).mean() lid[i] = -1 / mean_log return lid # def cal_class_lid(x, x_train, k, exclude_self=False): # """ # Calculate LID on sample using the estimation from [1] # [1] Ma et al., "Characterizing Adversarial Subspaces Using # Local Intrinsic Dimensionality," ICLR 2018. # """ # x = x.view((x.size(0), -1)) # x_train = x_train.view((x_train.size(0), -1)) # lid = torch.zeros((x.size(0), )) # for i, x_cur in enumerate(x): # dist = (x_cur.view(1, -1) - x_train).norm(2, 1) # # `largest` should be True when using cosine distance # if exclude_self: # topk_dist = dist.topk(k + 1, largest=False)[0][1:] # else: # topk_dist = dist.topk(k, largest=False)[0] # mean_log = torch.log(topk_dist / topk_dist[-1]).mean() # lid[i] = -1 / mean_log # return lid def compute_spnorm(inputs, dknn, layers, batch_size=200): assert inputs.requires_grad num_total = inputs.size(0) norm = np.zeros((num_total, len(layers))) num_batches = int(np.ceil(num_total / batch_size)) for i in range(num_batches): begin, end = i * batch_size, (i + 1) * batch_size x = inputs[begin:end] reps = dknn.get_activations(x) for l, layer in enumerate(layers): y = reps[layer] norm[begin:end, l] = compute_spnorm_batch(x, y) return norm def compute_spnorm_batch(inputs, output): """ :param inputs: (batch_size, input_size) :param output: (batch_size, output_size) :return: jacobian: (batch_size, output_size, input_size) """ batch_size, input_dim = inputs.view(inputs.size(0), -1).size() output = output.view(batch_size, -1) jacobian = torch.zeros((batch_size, output.size(1), input_dim)) for i in range(output.size(1)): grad = torch.autograd.grad( output[:, i].sum(), inputs, retain_graph=True)[0] jacobian[:, i, :] = grad.view(batch_size, input_dim) norm = np.zeros((batch_size, )) for i in range(batch_size): norm[i] = np.linalg.norm(jacobian[i].detach().cpu().numpy(), 2) return norm
[ "torch.no_grad", "numpy.zeros", "numpy.ceil", "torch.log" ]
[((2835, 2858), 'numpy.zeros', 'np.zeros', (['(batch_size,)'], {}), '((batch_size,))\n', (2843, 2858), True, 'import numpy as np\n'), ((276, 291), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (289, 291), False, 'import torch\n'), ((1899, 1930), 'numpy.ceil', 'np.ceil', (['(num_total / batch_size)'], {}), '(num_total / batch_size)\n', (1906, 1930), True, 'import numpy as np\n'), ((785, 821), 'torch.log', 'torch.log', (['(topk_dist / topk_dist[-1])'], {}), '(topk_dist / topk_dist[-1])\n', (794, 821), False, 'import torch\n')]