code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
import unittest from spyd.authentication.services.vanilla.auth_success import VanillaAuthSuccess class TestVanillaAuthSuccess(unittest.TestCase): def setUp(self): self.instance = VanillaAuthSuccess('localhost', 'chasm') def test_get_group_names(self): group_names = self.instance.group_provider.get_group_names() self.assertEqual(group_names, ('localhost.auth', 'chasm@localhost')) def test_repr(self): self.assertEqual(repr(self.instance.group_provider), '<VanillaGroupProvider chasm@localhost>')
[ "spyd.authentication.services.vanilla.auth_success.VanillaAuthSuccess" ]
[((193, 233), 'spyd.authentication.services.vanilla.auth_success.VanillaAuthSuccess', 'VanillaAuthSuccess', (['"""localhost"""', '"""chasm"""'], {}), "('localhost', 'chasm')\n", (211, 233), False, 'from spyd.authentication.services.vanilla.auth_success import VanillaAuthSuccess\n')]
import tekore as tk app_token = tk.request_client_token("b516728497b34264afab4e995b4e2569", "<KEY>") spotify = tk.Spotify(app_token) def menu(): print("search for:\n1. Artist\n2. Album\n3. Track ") num = input("type your input there : ") if num == "1": artist_name = input("what's the artist name : ") searh_string = "artist:" + artist_name artists, = spotify.search(searh_string, types=('track',), limit=50) print_article(artists) elif num == "2": album_name = input("what's the album name : ") searh_string = "album:" + album_name album, = spotify.search(searh_string, types=('track',), limit=50) print_article(album) elif num == "3": track_name = input("what's the track name : ") tracks, = spotify.search(track_name, types=('track',), limit=50) print_article(tracks) else: print("what did you just type? try again!") menu() def print_article(element): print ("{:<10} {:<70} {:<40}".format("popularity", "name", "artist")) for elem in element.items: print ("{:<10} {:<70} {:<40}".format(elem.popularity , elem.name, elem.artists[0].name)) if __name__ == '__main__': menu()
[ "tekore.Spotify", "tekore.request_client_token" ]
[((33, 101), 'tekore.request_client_token', 'tk.request_client_token', (['"""b516728497b34264afab4e995b4e2569"""', '"""<KEY>"""'], {}), "('b516728497b34264afab4e995b4e2569', '<KEY>')\n", (56, 101), True, 'import tekore as tk\n'), ((112, 133), 'tekore.Spotify', 'tk.Spotify', (['app_token'], {}), '(app_token)\n', (122, 133), True, 'import tekore as tk\n')]
""" Generates a path on the given occupancy grid (map of the environment) """ import networkx as nx from grid_loader import Grid import numpy as np def euclidean(node1, node2): x1, y1 = node1 x2, y2 = node2 return ((x1-x2)**2+(y1-y2)**2)**0.5 class AStar: # Constructor def __init__(self): self.graph = None self.grid_res = None # m / pixel def load_grid(self, grid_obj: Grid, occ_thresh = 0.5): """ Load a given Grid object into a networkx graph The edges are given a weight 1 and the occupied cells are removed Parameters: - grid_obj: Grid A Grid object that is to be loaded for path finding - occ_thresh: float (default: 0.5) A threshold value for depicting occupied cell If cell value >= occ_thresh, it is considered occupied and removed Returns: - removed_nodes: int The number of nodes that were removed from grid (number of occupied cells) """ self.grid_res = grid_obj.grid_res # Useful for translation from px to m and back self.graph = nx.grid_2d_graph(grid_obj.w, grid_obj.h) removed_nodes = 0 for i in range(grid_obj.w): for j in range(grid_obj.h): if grid_obj.grid_data[i, j] >= occ_thresh: # Occupied self.graph.remove_node((i, j)) removed_nodes += 1 # Set edge properties of the graph nx.set_edge_attributes(self.graph, {e: 1 for e in self.graph.edges()}, "cost") return removed_nodes # Return a route of [x, y] points def get_route(self, start, end, heuristic = euclidean, weight = 0.5): start_px = tuple((np.array(start) / self.grid_res).astype(int)) end_px = tuple((np.array(end) / self.grid_res).astype(int)) astar_path = nx.astar_path(self.graph, start_px, end_px, heuristic=lambda n1, n2: weight*heuristic(n1, n2), weight="cost") astar_path = np.array(astar_path) astar_path_m = astar_path * self.grid_res return astar_path_m
[ "numpy.array", "networkx.grid_2d_graph" ]
[((1256, 1296), 'networkx.grid_2d_graph', 'nx.grid_2d_graph', (['grid_obj.w', 'grid_obj.h'], {}), '(grid_obj.w, grid_obj.h)\n', (1272, 1296), True, 'import networkx as nx\n'), ((2139, 2159), 'numpy.array', 'np.array', (['astar_path'], {}), '(astar_path)\n', (2147, 2159), True, 'import numpy as np\n'), ((1861, 1876), 'numpy.array', 'np.array', (['start'], {}), '(start)\n', (1869, 1876), True, 'import numpy as np\n'), ((1931, 1944), 'numpy.array', 'np.array', (['end'], {}), '(end)\n', (1939, 1944), True, 'import numpy as np\n')]
''' Created on Jan 25, 2017 @author: metelko ''' # riaps:keep_import:begin from riaps.run.comp import Component import logging import time import os # riaps:keep_import:end class TempSensor(Component): # riaps:keep_constr:begin def __init__(self): super(TempSensor, self).__init__() self.pid = os.getpid() self.temperature = 65 now = time.ctime(int(time.time())) self.logger.info("(PID %s)-starting TempSensor, %s" % (str(self.pid),str(now))) self.logger.info("Initial temp:%d, %s" % (self.temperature,str(now))) # riaps:keep_constr:end # riaps:keep_clock:begin def on_clock(self): now = time.ctime(int(time.time())) msg = self.clock.recv_pyobj() self.temperature = self.temperature + 1 msg = str(self.temperature) msg = (now,msg) self.logger.info("on_clock(): Temperature - %s, PID %s, %s" % (str(msg[1]),str(self.pid),str(now))) self.ready.send_pyobj(msg) # riaps:keep_clock:end # riaps:keep_impl:begin def __destroy__(self): now = time.time() self.logger.info("%s - stopping TempSensor, %s" % (str(self.pid),now)) # riaps:keep_impl:end
[ "os.getpid", "time.time" ]
[((315, 326), 'os.getpid', 'os.getpid', ([], {}), '()\n', (324, 326), False, 'import os\n'), ((1061, 1072), 'time.time', 'time.time', ([], {}), '()\n', (1070, 1072), False, 'import time\n'), ((386, 397), 'time.time', 'time.time', ([], {}), '()\n', (395, 397), False, 'import time\n'), ((669, 680), 'time.time', 'time.time', ([], {}), '()\n', (678, 680), False, 'import time\n')]
# -*- coding: utf-8 -*- from discord import Embed, Member from discord.ext.commands import command, Cog, Context import time from dataclasses import dataclass @dataclass class Job: title: str salary: float responsibilites: str requirements: str JOBS = [ Job( "Backend Specialist", 0.0, "Design, develop, and maintain a persistent data storage solution for the `-_-` bot. " "Also, seek a more reliable hosting platform on which to deploy the bot.", "Must have some experience with backend development, whether in a web development " "context or otherwise. Must have solid understanding of Python programming and " "working understanding of git and GitHub. Experience with discord.py and asynchronous " "programming is beneficial but not required; on-the-job training is available.", ), Job( "Discord Bot Developer", 0.0, "Skip the tutorial - work right at the cutting edge! Develop the newest and coolest " "features for our very own `-_-` bot. Enjoy both an educational and rewarding work " "environment. Aditionally, perform a basic beta testing and quality assurance role. ", "Must have proficient level of Python understanding and basic level of git/GitHub " "experience. No experience with discord.py necessary. Significant on-the-job training " "is available. Specify additional qualifications upon application.", ), Job( "Senior Marketing Manager", 0.0, "Encourage more server members to use the `-_-` bot on a regular basis. Coordinate with " "frequent users to gather and prioritize requested features. Recruit more developer to " "fill vacancies on the development team. Communicate results directly with the " "development team.", "Must have excellent communication and teamwork skills. No technical skills required. " "An excellent entry-level position for aspiring members.", ), ] class Develop(Cog): """Tools and utilites for bot developers.""" def __init__(self, bot): self.bot = bot self.start_time = time.time() @property def latency(self): """Returns the latency in milliseconds""" return round(1000 * self.bot.latency, 3) @command() async def ping(self, ctx: Context): """Ping the bot for a response and latency.""" await ctx.send(embed=Embed( title="Pong!", description=f"Latency: {self.latency} ms", )) @command() async def stats(self, ctx: Context): """Returns some stats about this bot.""" time_delta = time.time() - self.start_time result = Embed( title="-_- Bot Stats", description=f"Up time: {round(time_delta, 3)} s\n" f"Latency: {self.latency} ms\n" f"Guilds: {len(self.bot.guilds)}" ) await ctx.send(embed=result) @command() async def demoji(self, ctx: Context, emoji: str): """Get the Unicode codepoint of an emoji (or any character).""" hexpoint = str(hex(ord(emoji)))[2:] codepoint = "\\U" + "0" * (8 - len(hexpoint)) + hexpoint await ctx.send(f"`{codepoint}`") @command() async def develop(self, ctx: Context, member: Member = None): # default to person who called the command if member is None: if not isinstance(ctx.author, Member): await ctx.send("That's a user but not a member. " "Please try again or report a bug.") return member = ctx.author developer_role = ctx.guild.get_role(731262064391356487) # member already has role if developer_role in member.roles: await ctx.send(f"{member.mention}, you're already a {developer_role.mention}! " f"Congratulations!") return await member.add_roles(developer_role) await ctx.send(f"Congratulations, {member.mention}, you are now an official " f"{developer_role.mention} member! Please see `CONTRIBUTING.md` " f"in `-_- source` to get started. Please also reach out to another " f"developer at your earliest convenience. ") @command(aliases=['job']) async def jobs(self, ctx: Context): if JOBS: description = ("Exciting job offers are currently available!\n" "To apply, do `-_- develop`, then contact any developer.\n\n") description += "\n\n".join([ f"**{job.title}**\n" f"*Salary*: ${job.salary}/hr\n" f"*Responsibilities*: {job.responsibilites}\n" f"*Requirements*: {job.requirements}" for job in JOBS ]) else: description = ("No jobs are available at this time.\n" "Check back later for updates!") await ctx.send(embed=Embed( title="-_- Job Opportunities", description=description, )) def setup(bot): bot.add_cog(Develop(bot))
[ "discord.ext.commands.command", "discord.Embed", "time.time" ]
[((2336, 2345), 'discord.ext.commands.command', 'command', ([], {}), '()\n', (2343, 2345), False, 'from discord.ext.commands import command, Cog, Context\n'), ((2576, 2585), 'discord.ext.commands.command', 'command', ([], {}), '()\n', (2583, 2585), False, 'from discord.ext.commands import command, Cog, Context\n'), ((3016, 3025), 'discord.ext.commands.command', 'command', ([], {}), '()\n', (3023, 3025), False, 'from discord.ext.commands import command, Cog, Context\n'), ((3308, 3317), 'discord.ext.commands.command', 'command', ([], {}), '()\n', (3315, 3317), False, 'from discord.ext.commands import command, Cog, Context\n'), ((4392, 4416), 'discord.ext.commands.command', 'command', ([], {'aliases': "['job']"}), "(aliases=['job'])\n", (4399, 4416), False, 'from discord.ext.commands import command, Cog, Context\n'), ((2181, 2192), 'time.time', 'time.time', ([], {}), '()\n', (2190, 2192), False, 'import time\n'), ((2697, 2708), 'time.time', 'time.time', ([], {}), '()\n', (2706, 2708), False, 'import time\n'), ((2470, 2533), 'discord.Embed', 'Embed', ([], {'title': '"""Pong!"""', 'description': 'f"""Latency: {self.latency} ms"""'}), "(title='Pong!', description=f'Latency: {self.latency} ms')\n", (2475, 2533), False, 'from discord import Embed, Member\n'), ((5100, 5161), 'discord.Embed', 'Embed', ([], {'title': '"""-_- Job Opportunities"""', 'description': 'description'}), "(title='-_- Job Opportunities', description=description)\n", (5105, 5161), False, 'from discord import Embed, Member\n')]
import cv2 from model import PersonSegmentation if __name__ == '__main__': # change 'cpu' to 'cuda' if you have pytorch cuda and your discrete GPU has enough VRAM # output size will autoscale to fit input image aspect ratio # if you want full image resolution set 'is_resize=False' ps = PersonSegmentation('cpu', is_resize=True, resize_size=480) filename = r"test_image.png" seg_map = ps.person_segment(filename) frame, frame_original = ps.decode_segmap(seg_map, filename) # skin_frame, skin2img_ratio = ps.skin_segment(frame) skin_frame, skin2img_ratio = ps.skin_segment_pro(frame) print(f"Skin to Image Percentage: {100 * skin2img_ratio:.2f}%") cv2.imshow("Original vs Person Seg vs Skin segmented", cv2.vconcat([frame_original, frame, skin_frame])) cv2.waitKey(0) cv2.destroyAllWindows()
[ "cv2.waitKey", "cv2.destroyAllWindows", "model.PersonSegmentation", "cv2.vconcat" ]
[((304, 362), 'model.PersonSegmentation', 'PersonSegmentation', (['"""cpu"""'], {'is_resize': '(True)', 'resize_size': '(480)'}), "('cpu', is_resize=True, resize_size=480)\n", (322, 362), False, 'from model import PersonSegmentation\n'), ((802, 816), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (813, 816), False, 'import cv2\n'), ((821, 844), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (842, 844), False, 'import cv2\n'), ((748, 796), 'cv2.vconcat', 'cv2.vconcat', (['[frame_original, frame, skin_frame]'], {}), '([frame_original, frame, skin_frame])\n', (759, 796), False, 'import cv2\n')]
""" AnalysisConfig.py: Centralized configuration for the nu_e CCQE analysis: signal definitions (nu vs. anti-nu), file locations, etc. Original author: <NAME> (<EMAIL>) January 2014 """ import ROOT ROOT.PyConfig.IgnoreCommandLineOptions = True #ROOT.gErrorIgnoreLevel = ROOT.kWarning ROOT.gROOT.SetBatch() import math import argparse import os import sys import pprint import re BLUEARC = "/minerva/data/users/{}/nu_e".format(os.environ["USER"]) GIRDOUTPUT ="/pnfs/minerva/persistent/" SIDEBANDS=["Excess_High_Inline","Excess_Low_Inline","Pi0"] class _AnalysisConfig(object): Defaults = { "data_types": ["data", "mc",], } ALLOWED_HELICITIES = ["FHC", "RHC"] def __init__(self, **kwargs): params = _AnalysisConfig.Defaults.copy() params.update(kwargs) self._config_keys = set() for key, value in params.items(): self._config_keys.add(key) setattr(self, key, value) retained_dts = [] for dt in self.data_types: if (self.mc_only and "data" in dt.lower()) or (self.data_only and "mc" in dt.lower()): continue retained_dts.append(dt) self.data_types = retained_dts def __repr__(self): my_dict = dict([ (k, getattr(AnalysisConfig, k)) for k in AnalysisConfig._config_keys ]) return pprint.pformat(my_dict) #### properties #### #@property #def bknd_constraint_method(self): # return BKND_CONSTRAINT_METHOD @property def helicity(self): return self._helicity @helicity.setter def helicity(self, value): value_upper = value.upper() if value_upper not in _AnalysisConfig.ALLOWED_HELICITIES: raise NameError("Allowed helicities are '%s', not '%s'" % (value, _AnalysisConfig.ALLOWED_HELICITIES)) if "helicity" not in self._config_keys: self._config_keys.add("helicity") self._helicity = value_upper #@property #def POT(self): # if self.processing_pass == "Resurrection": # return POT # else: # raise Exception("Don't have POT data for processings other than Resurrection!") #@property #def POT_string(self, precision=2): # exponent = int(math.log10(self.POT["data"])) # mantissa = self.POT["data"] / 10**exponent # fmt_string = "%%.%(precision)df #times 10^{%%d} P.O.T." % {"precision": precision} # return fmt_string% (mantissa, exponent) # @property # def data_MC_POT_ratio(self): # return self.POT["data"] / self.POT["MC"] # @property # def processing_pass(self): # return self._processing_pass # @processing_pass.setter # def processing_pass(self, value): # value_cap = value.lower().capitalize() # if value_cap not in _AnalysisConfig.ALLOWED_PROCESSING_PASSES: # raise NameError("Allowed processing passes are '%s', not '%s'" % (value, _AnalysisConfig.ALLOWED_PROCESSING_PASSES)) # if "processing_pass" not in self._config_keys: # self._config_keys.add("processing_pass") # self._processing_pass = value_cap @property def right_sign_electron_pdg(self): """ Sign of the PDG code for "right sign" in this configuration """ return 1 if self.helicity == "FHC" else -1 # electron is +11; positron is -11 #### public interface #### def DataTypeNtupleList(self): filename_config = { "proc_pass": self.processing_pass, "helicity": self.helicity, } for dt in self.data_types: filename_config.update( { "data_type": dt } ) filename = NTUPLE_FILENAME_FORMAT % filename_config # print " searching for filename:", filename fullpaths = [] # print "looking here:", NTUPLE_PATH for root, dirs, files in os.walk(NTUPLE_PATH): # print "considering filenames:", files if filename in files: fullpaths.append(os.path.join(root, filename)) if len(fullpaths) == 1: # print "Found ntuple list for specification '%s':" % dt, fullpaths[-1] yield dt, fullpaths[-1] elif len(fullpaths) > 1: raise Exception("Multiple matches for data type specification '%s': %s" % (dt, fullpaths)) else: continue def FilePath(self, top_dir,tier_tag, playlist, data_tag, type_tag): return "{}/{}_{}{}_{}".format(top_dir,tier_tag, data_tag, playlist, type_tag) # print signal_defn # signal_defn = signal_defn if signal_defn is not None else self.signal_defn # signal_defn = SIGNAL_DEFN_TEXT[signal_defn] # print signal_defn # path = os.path.join(TOP_DIR, signal_defn, dirname) # if subdir: # path = os.path.join(path, subdir) # if helicity: # path = os.path.join(path, self.helicity) # return path def SelectionHistoPath(self, playlist, is_data, is_output = True): return self.FilePath(self.output_dir if is_output else self.input_dir, "kin_dist"+("test" if self.testing else ""), playlist, "data" if is_data else "mc", self.selection_tag+"_"+self.ntuple_tag+ ("_"+str(self.count[0]) if self.count[0] is not None else "")+ ".root") def CutStudyPath(self, playlist, is_data, is_output = True): return self.FilePath(self.output_dir if is_output else self.input_dir, "cut_study"+("test" if self.testing else ""), playlist, "data" if is_data else "mc", self.selection_tag+"_"+self.ntuple_tag+ ("_"+str(self.count[0]) if self.count[0] is not None else "")+ ".root") def TruthHistoPath(self,playlist,is_output = True): return self.FilePath(self.output_dir if is_output else self.input_dir, "truth_dist"+("test" if self.testing else ""),playlist, "mc", self.selection_tag+"_"+self.ntuple_tag+("_"+str(self.count[0]) if self.count[0] is not None else "")+ ".root") def UnfoldedHistoPath(self,playlist,tag,is_output=True): return self.FilePath(self.output_dir if is_output else self.input_dir, "unfolded"+("test" if self.testing else ""),playlist, "", self.selection_tag+"_"+self.ntuple_tag+"_"+tag+ ".root") def XSecHistoPath(self,playlist,is_output=True): return self.FilePath(self.output_dir if is_output else self.input_dir, "xsec"+("test" if self.testing else ""),playlist, "", self.selection_tag+"_"+self.ntuple_tag+ ".root") def BackgroundFitPath(self, playlist, tag, is_output = True): return self.FilePath(self.output_dir if is_output else self.input_dir, "bkgfit", playlist, "" , tag+"_"+self.selection_tag+"_"+self.ntuple_tag+".root") def PlotPath(self, plot_name, sideband,tag=""): return self.FilePath(self.output_dir,"plot/"+plot_name, sideband, "" , self.selection_tag+"_"+tag) #### entry point #### parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("-p", "--playlist", dest="playlist", help="Process given playlists." ) parser.add_argument("--grid", action="store_true", default = False, help = "Run macro on grid, Input/Output path must be updated to avoid direct access to BlueArc" ) parser.add_argument("-d", "--data_types", dest="data_types", action="append", help="Data types to process. Supply this once for every data type you want to use.", default=argparse.SUPPRESS, ) parser.add_argument("--use-sideband", "--use_sideband", dest="sidebands", nargs='*', help="Use this sideband rather than defalut. (If you use this option at all, you must use it to specify ALL the sidebands you want.) ", default=SIDEBANDS, ) parser.add_argument("--data_only", "--data-only", dest="data_only", action="store_true", help="Shortcut option to process only data from the 'data_types' option. If you supply both '--data_only' and '--mc_only', '--mc-only' takes precedence.", default=False, ) parser.add_argument("--mc_only", "--mc-only", dest="mc_only", action="store_true", help="Shortcut option to process only MC from the 'data_types' option. If you supply both '--data_only' and '--mc_only', '--mc-only' takes precedence.", default=False, ) parser.add_argument("--pc", dest="is_pc", action="store_true", help="running over particle cannon sample", default=False, ) parser.add_argument("--signal", dest="signal", action="store_true", help="Use only the extracted true signal event samples.", default=argparse.SUPPRESS, ) parser.add_argument("-t", "--test", "--testing", dest="testing", action="store_true", help="Use a smaller sample for testing purposes. ", default=False ) parser.add_argument("-o", "--output", dest = "output_dir", help="Use alternate location for output file.", default=BLUEARC ) parser.add_argument("-i", "--input", dest = "input_dir", help="Use alternate location for input files other than ntuple.", default=BLUEARC ) parser.add_argument("--ntuple_tag", "--ntuple-tag", help="Use ntuple playlist tagged by given tag.", default="LLR" ) parser.add_argument("--selection_tag","--selection-tag", help="Use event selection histograms tagged by given tag.", default="collab1" ) parser.add_argument("--bkgTune_tag","--bkgTune-tag", help="Use event selection histograms tagged by given tag.", default="Global" ) parser.add_argument("--count", help="process arg1 subruns starting from arg0 entry of playlist.", type = int, nargs = 2, default = [None,None]) parser.add_argument("--cal_POT","--cal-POT", help="recount POT even if POT info is available", dest = "POT_cal", action="store_true", default=False) parser.add_argument("--only_cal_POT","--only-cal-POT", help="do not run selection but only count POT", dest = "run_reco", action="store_false", default=True) parser.add_argument("--exclude_universes","--exclude-universes", help="do not want some systematics universes, list their ShortName()", nargs="*", ) parser.add_argument("--skip_2p2h","--skip_2p2h", help="do not want 2p2h events,(use this when you are going to run delicate 2p2h sample.)", action="store_true", default=False) parser.add_argument("--truth", help="run truth loop: more correct efficiency demominator", action="store_true", default=False) parser.add_argument("--extra_weighter", help="Name of extra weighter you want to use", default=None) options = parser.parse_args() if options.data_only and options.mc_only: options.data_only = False #if options.playlist is None: #print "Please specify a playlist." #sys.exit(1) # If only cal POT, doesn't make sense to read from record. if not options.run_reco: options.POT_cal=True if options.grid: #override start variable by $PROCESS variable nth_job = int(os.environ["PROCESS"]) options.count[0]=nth_job*options.count[1]+options.count[0] if options.testing: options.count = [0,1] AnalysisConfig = _AnalysisConfig(**vars(options)) print("Using analysis configuration:") print(AnalysisConfig)
[ "pprint.pformat", "argparse.ArgumentParser", "os.walk", "ROOT.gROOT.SetBatch", "os.path.join" ]
[((328, 349), 'ROOT.gROOT.SetBatch', 'ROOT.gROOT.SetBatch', ([], {}), '()\n', (347, 349), False, 'import ROOT\n'), ((7591, 7670), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter'}), '(formatter_class=argparse.ArgumentDefaultsHelpFormatter)\n', (7614, 7670), False, 'import argparse\n'), ((1394, 1417), 'pprint.pformat', 'pprint.pformat', (['my_dict'], {}), '(my_dict)\n', (1408, 1417), False, 'import pprint\n'), ((3939, 3959), 'os.walk', 'os.walk', (['NTUPLE_PATH'], {}), '(NTUPLE_PATH)\n', (3946, 3959), False, 'import os\n'), ((4090, 4118), 'os.path.join', 'os.path.join', (['root', 'filename'], {}), '(root, filename)\n', (4102, 4118), False, 'import os\n')]
import numpy as np import collections import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from sklearn.manifold import MDS from time import time from warnings import warn class ForestSim(): def __init__(self, forest): # TODO : adapt if non sklearn forest used self.forest = forest def fit(self, X, y = 2, randomize = False, nb_repet = 1, keep_all_mat = False): self.X = np.float32(X) #used in tree.apply function self.y = y self.n = self.X.shape[0] self.similarity_matrix = np.zeros((self.n,self.n)) # True to keep all sim matrices if keep_all_mat: self.co_ocs = [] # create the target vector if needed if not isinstance(self.y, collections.Sequence): self.y_ = np.random.choice(self.y, size = (self.n,)) else: self.y_ = self.y t0 = time() for repet_id in range(nb_repet): t = time() print("Fitting - {}/{} iteration".format(repet_id,nb_repet)) # random seed to have changing bootstrapping in forest.fit np.random.seed(repet_id) if randomize: np.random.shuffle(self.y_) self.forest.fit(self.X,self.y_) # check inplace op sim = self.calculate_a_sim_mat() self.similarity_matrix += sim if keep_all_mat: self.co_ocs.append(sim) print("Took {} seconds".format(np.round(time()-t, decimals=2))) print("Total time : {} seconds".format(np.round(time()-t0, decimals=2))) self.similarity_matrix /= nb_repet return (self) def calculate_a_sim_mat(self): co_oc = np.zeros((self.n,self.n)) for iter_, dt in enumerate(self.forest.estimators_): leafs_id = dt.tree_.apply(self.X) ser = pd.DataFrame(data={"ser":leafs_id, "ones":1}) ser = ser.pivot(columns="ser").fillna(0) ser = ser.dot(ser.T) co_oc+= ser.values # pondération par unique n of leaf a reflechir co_oc = co_oc/len(self.forest.estimators_) return (co_oc) # should we return a copy ? def get_similarity_matrix(self): return (self.similarity_matrix) def get_distance_matrix(self): return (np.sqrt(1-self.similarity_matrix)) # use sklearn.manifold.MDS kwags def apply_MDS(self,n_instance=100, dissimilarity = "precomputed",**kwargs): np.random.seed(0) if isinstance(n_instance,int) and 0<n_instance and n_instance<=self.n: idx = np.random.choice(self.n,n_instance,replace=False) elif isinstance(n_instance,float) and 0<n_instance and n_instance<=1: idx = np.random.choice(self.n,int(self.n*n_instance),replace=False) else: warn("invalid n_instance argument - should be in [0.0;1.0] or [0,self.n]") idx = np.arange(self.n) if len(idx) == self.n: print("Computing MDS on all {} instances.".format(self.n)) else: print("Computing MDS on {} / {} instances.".format(len(idx),self.n)) kwargs.update({"dissimilarity":dissimilarity}) if "dissimilarity" not in kwargs.keys(): print("Computing non precomputed MDS - set dissimilarity to precomputed to use the distance matrix") mds = MDS(**kwargs) self.X_mds = mds.fit_transform(self.X[idx,:]) else: print("Computing MDS on precomputed dissimilarities.") mds = MDS(**kwargs) dist_mat_ = self.get_distance_matrix()[idx][:,idx] self.X_mds = mds.fit_transform(dist_mat_) return (self.X_mds) def project_MDS_2D(self, **kwargs): # TODO : add saving options # TODO : add the necessary sampling, then stratified sampling... plt.figure(figsize=(8,8)) sns.scatterplot(x = self.X_mds[:,0], y=self.X_mds[:,1] ) plt.show() def main(): # should be able to take a standard csv file somewhere, apply one of the two methods, and output the sim mat in a csv file print("work in progress") if __name__ == "__main__": main()
[ "pandas.DataFrame", "numpy.random.seed", "matplotlib.pyplot.show", "seaborn.scatterplot", "numpy.float32", "numpy.zeros", "time.time", "matplotlib.pyplot.figure", "numpy.arange", "numpy.random.choice", "warnings.warn", "sklearn.manifold.MDS", "numpy.random.shuffle", "numpy.sqrt" ]
[((405, 418), 'numpy.float32', 'np.float32', (['X'], {}), '(X)\n', (415, 418), True, 'import numpy as np\n'), ((515, 541), 'numpy.zeros', 'np.zeros', (['(self.n, self.n)'], {}), '((self.n, self.n))\n', (523, 541), True, 'import numpy as np\n'), ((796, 802), 'time.time', 'time', ([], {}), '()\n', (800, 802), False, 'from time import time\n'), ((1470, 1496), 'numpy.zeros', 'np.zeros', (['(self.n, self.n)'], {}), '((self.n, self.n))\n', (1478, 1496), True, 'import numpy as np\n'), ((2006, 2041), 'numpy.sqrt', 'np.sqrt', (['(1 - self.similarity_matrix)'], {}), '(1 - self.similarity_matrix)\n', (2013, 2041), True, 'import numpy as np\n'), ((2155, 2172), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (2169, 2172), True, 'import numpy as np\n'), ((3349, 3375), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 8)'}), '(figsize=(8, 8))\n', (3359, 3375), True, 'import matplotlib.pyplot as plt\n'), ((3377, 3432), 'seaborn.scatterplot', 'sns.scatterplot', ([], {'x': 'self.X_mds[:, 0]', 'y': 'self.X_mds[:, 1]'}), '(x=self.X_mds[:, 0], y=self.X_mds[:, 1])\n', (3392, 3432), True, 'import seaborn as sns\n'), ((3442, 3452), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3450, 3452), True, 'import matplotlib.pyplot as plt\n'), ((718, 758), 'numpy.random.choice', 'np.random.choice', (['self.y'], {'size': '(self.n,)'}), '(self.y, size=(self.n,))\n', (734, 758), True, 'import numpy as np\n'), ((845, 851), 'time.time', 'time', ([], {}), '()\n', (849, 851), False, 'from time import time\n'), ((982, 1006), 'numpy.random.seed', 'np.random.seed', (['repet_id'], {}), '(repet_id)\n', (996, 1006), True, 'import numpy as np\n'), ((1604, 1651), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': "{'ser': leafs_id, 'ones': 1}"}), "(data={'ser': leafs_id, 'ones': 1})\n", (1616, 1651), True, 'import pandas as pd\n'), ((2255, 2306), 'numpy.random.choice', 'np.random.choice', (['self.n', 'n_instance'], {'replace': '(False)'}), '(self.n, n_instance, replace=False)\n', (2271, 2306), True, 'import numpy as np\n'), ((2935, 2948), 'sklearn.manifold.MDS', 'MDS', ([], {}), '(**kwargs)\n', (2938, 2948), False, 'from sklearn.manifold import MDS\n'), ((3073, 3086), 'sklearn.manifold.MDS', 'MDS', ([], {}), '(**kwargs)\n', (3076, 3086), False, 'from sklearn.manifold import MDS\n'), ((1028, 1054), 'numpy.random.shuffle', 'np.random.shuffle', (['self.y_'], {}), '(self.y_)\n', (1045, 1054), True, 'import numpy as np\n'), ((2459, 2533), 'warnings.warn', 'warn', (['"""invalid n_instance argument - should be in [0.0;1.0] or [0,self.n]"""'], {}), "('invalid n_instance argument - should be in [0.0;1.0] or [0,self.n]')\n", (2463, 2533), False, 'from warnings import warn\n'), ((2543, 2560), 'numpy.arange', 'np.arange', (['self.n'], {}), '(self.n)\n', (2552, 2560), True, 'import numpy as np\n'), ((1345, 1351), 'time.time', 'time', ([], {}), '()\n', (1349, 1351), False, 'from time import time\n'), ((1271, 1277), 'time.time', 'time', ([], {}), '()\n', (1275, 1277), False, 'from time import time\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """CNN_using_persistence_images_on_patch.py The aim of this script is to perform the training of a CNN using persistence images as a input. This script is inspired from this script: BorgwardtLab/ADNI_MRI_Analysis/blob/mixed_CNN/mixed_CNN/run_Sarah.py To get real time information into the model training and structure, run $ tensorboard --logdir logs/fit once this script has been started. NOTES: - One loaded, the "big" 100x100x3 images aren't that big (>400MB in RAM) so NO GENERATOR NEEDED """ __author__ = "<NAME>" __email__ = "<EMAIL>" import dotenv import datetime import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" import numpy as np import pandas as pd from tqdm import tqdm import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from itertools import islice import shutil print(tf.test.gpu_device_name()) DOTENV_KEY2VAL = dotenv.dotenv_values() tf.random.set_seed(42) N_BINS = 1000 N_FILTERS = 4 KERNEL_SIZE = 4 DROPOUT_RATE = 0.3 ################################################################################ # Functions ################################################################################ persistence_image_location = ( DOTENV_KEY2VAL["DATA_DIR"] + "/global_persistence_images/" ) partitions_location = DOTENV_KEY2VAL["DATA_DIR"] + "/partitions/" diagnosis_json = ( DOTENV_KEY2VAL["DATA_DIR"] + "/collected_diagnoses_complete.json" ) def make_model(input_shape): """Makes a keras model. Args: input_shape (tuple): input shape of the neural network num_classes (int): number of classes involved Returns: keral.Model: model ready to be trained """ inputs = keras.Input(shape=input_shape) tower_1 = layers.Conv2D( N_FILTERS, KERNEL_SIZE, padding="same", activation="relu" )(inputs[:, :, :, 0:1]) tower_1 = layers.BatchNormalization()(tower_1) tower_1 = layers.MaxPooling2D()(tower_1) tower_2 = layers.Conv2D( N_FILTERS, KERNEL_SIZE, padding="same", activation="relu" )(inputs[:, :, :, 1:2]) tower_2 = layers.BatchNormalization()(tower_2) tower_2 = layers.MaxPooling2D()(tower_2) tower_3 = layers.Conv2D( N_FILTERS, KERNEL_SIZE, padding="same", activation="relu" )(inputs[:, :, :, 2:]) tower_3 = layers.BatchNormalization()(tower_3) tower_3 = layers.MaxPooling2D()(tower_3) merged = layers.concatenate([tower_1, tower_2, tower_3], axis=1) merged = layers.Flatten()(merged) x = layers.Dense(500, activation="relu")(merged) x = layers.Dropout(DROPOUT_RATE)(x) x = layers.Dense(500, activation="relu")(merged) x = layers.Dropout(DROPOUT_RATE)(x) outputs = layers.Dense(1, activation="sigmoid")(x) return keras.Model(inputs, outputs) def get_partitions(partitions_location): partition = [] labels = [] for root, dirs, files in os.walk(partitions_location): for file in files: if file.split("_")[0] == "partition": partition.append( np.load( partitions_location + file, allow_pickle=True ).item() ) elif file.split("_")[0] == "labels": labels.append( np.load( partitions_location + file, allow_pickle=True ).item() ) else: print(f"File {file} is neither partition nor labels file") return partition, labels ################################################################################ # Main ################################################################################ def main(): ############################################################################ # Data loading and processing ############################################################################ inits = 3 partitions, labels = get_partitions(partitions_location) histories = [] for partition, label in zip(partitions, labels): for i in range(inits): # Make sure there aren't the same patients in train and test X_train_lst = [] y_train_lst = [] for image in tqdm(partition["train"]): X_train_lst.append( np.load(persistence_image_location + image + ".npy") ) y_train_lst.append(label[image]) X_train, y_train = ( np.stack(X_train_lst, axis=0).reshape( len(X_train_lst), N_BINS, N_BINS, 3 ), np.vstack(y_train_lst), ) print("Training data loadede") X_val_lst = [] y_val_lst = [] for image in tqdm(partition["validation"]): X_val_lst.append( np.load(persistence_image_location + image + ".npy") ) y_val_lst.append(label[image]) X_val, y_val = ( np.stack(X_val_lst, axis=0).reshape( len(X_val_lst), N_BINS, N_BINS, 3 ), np.vstack(y_val_lst), ) print("Validation data loadede") #################################################################### # Model definition #################################################################### model = make_model(input_shape=(N_BINS, N_BINS, 3)) tf.keras.utils.plot_model( model, to_file="model.png", show_shapes=True, show_layer_names=True, rankdir="TB", expand_nested=True, dpi=96, ) #################################################################### # Model training #################################################################### epochs = 100 tensorboard_logs = "logs/fit" if os.path.exists(tensorboard_logs): shutil.rmtree(tensorboard_logs) log_dir = "logs/fit/" + datetime.datetime.now().strftime( "%Y%m%d-%H%M%S" ) callbacks = [ tf.keras.callbacks.TensorBoard( log_dir=log_dir, histogram_freq=1 ), tf.keras.callbacks.EarlyStopping( monitor="val_accuracy", min_delta=0.001, patience=10, verbose=0, mode="auto", baseline=None, restore_best_weights=True, ), tf.keras.callbacks.ModelCheckpoint( filepath="model_weights", save_weights_only=True, monitor="val_accuracy", mode="max", save_best_only=True, ), ] lr = keras.optimizers.schedules.ExponentialDecay( 0.01, decay_steps=30, decay_rate=0.6, staircase=True ) model.compile( optimizer=keras.optimizers.Adam( learning_rate=lr, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False, ), loss="binary_crossentropy", metrics=[ keras.metrics.BinaryAccuracy(name="accuracy"), keras.metrics.Precision(name="precision"), keras.metrics.Recall(name="recall"), keras.metrics.AUC(name="auc"), ], # run_eagerly=True, ) history = model.fit( X_train, y_train, epochs=epochs, callbacks=callbacks, batch_size=16, validation_data=(X_val, y_val), ) histories.append(history) ############################################################################ # Model evaluation ############################################################################ # Mosly already included into the training procedure. last_acc = [] last_val_acc = [] last_val_prec = [] last_val_rec = [] last_val_auc = [] for hist in histories: last_acc.append(max(hist.history["accuracy"])) last_val_acc.append(max(hist.history["val_accuracy"])) last_val_prec.append(max(hist.history["val_precision"])) last_val_rec.append(max(hist.history["val_recall"])) last_val_auc.append(max(hist.history["val_auc"])) print( f"The mean training accuracy over the folds is {np.mean(last_acc)}, pm {np.std(last_acc)}" ) print( f"The mean validation accuracy over the folds is {np.mean(last_val_acc)}, pm {np.std(last_val_acc)}" ) print( f"The mean validation precision over the folds is {np.mean(last_val_prec)}, pm {np.std(last_val_prec)}" ) print( f"The mean validation recall over the folds is {np.mean(last_val_rec)}, pm {np.std(last_val_rec)}" ) print( f"The mean validation auc over the folds is {np.mean(last_val_auc)}, pm {np.std(last_val_auc)}" ) ############################################################################ # Model evaluation ############################################################################ # Here we actually extract the id of the samples that are misclassified # y_pred = model.predict(X_train) # difference = np.round(y_train - y_pred) # index = np.nonzero(difference) # y_pred = model.predict(X_val) # difference = np.round(y_val - y_pred) # index_2 = np.nonzero(difference) # df_misclassified_train = pd.DataFrame( # np.array(partitions[0]["train"])[index[0]] # ) # df_misclassified_val = pd.DataFrame( # np.array(partitions[0]["validation"])[index_2[0]] # ) # df_misclassified = pd.concat( # [df_misclassified_train, df_misclassified_val] # ) # df_misclassified.to_csv( # DOTENV_KEY2VAL["GEN_DATA_DIR"] + "misclassification.csv" # ) if __name__ == "__main__": main()
[ "tensorflow.random.set_seed", "numpy.load", "tensorflow.keras.layers.MaxPooling2D", "tensorflow.keras.layers.Dense", "os.walk", "tensorflow.keras.callbacks.ModelCheckpoint", "tensorflow.keras.layers.concatenate", "numpy.mean", "tensorflow.keras.metrics.BinaryAccuracy", "shutil.rmtree", "tensorflow.keras.callbacks.EarlyStopping", "tensorflow.keras.layers.Flatten", "tensorflow.keras.layers.BatchNormalization", "numpy.std", "tensorflow.keras.Input", "os.path.exists", "tensorflow.keras.utils.plot_model", "tensorflow.keras.optimizers.Adam", "tensorflow.keras.metrics.Precision", "dotenv.dotenv_values", "datetime.datetime.now", "numpy.stack", "tqdm.tqdm", "tensorflow.keras.metrics.AUC", "tensorflow.keras.layers.Dropout", "tensorflow.keras.Model", "tensorflow.test.gpu_device_name", "tensorflow.keras.optimizers.schedules.ExponentialDecay", "numpy.vstack", "tensorflow.keras.layers.Conv2D", "tensorflow.keras.metrics.Recall", "tensorflow.keras.callbacks.TensorBoard" ]
[((934, 956), 'dotenv.dotenv_values', 'dotenv.dotenv_values', ([], {}), '()\n', (954, 956), False, 'import dotenv\n'), ((957, 979), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['(42)'], {}), '(42)\n', (975, 979), True, 'import tensorflow as tf\n'), ((889, 914), 'tensorflow.test.gpu_device_name', 'tf.test.gpu_device_name', ([], {}), '()\n', (912, 914), True, 'import tensorflow as tf\n'), ((1742, 1772), 'tensorflow.keras.Input', 'keras.Input', ([], {'shape': 'input_shape'}), '(shape=input_shape)\n', (1753, 1772), False, 'from tensorflow import keras\n'), ((2446, 2501), 'tensorflow.keras.layers.concatenate', 'layers.concatenate', (['[tower_1, tower_2, tower_3]'], {'axis': '(1)'}), '([tower_1, tower_2, tower_3], axis=1)\n', (2464, 2501), False, 'from tensorflow.keras import layers\n'), ((2792, 2820), 'tensorflow.keras.Model', 'keras.Model', (['inputs', 'outputs'], {}), '(inputs, outputs)\n', (2803, 2820), False, 'from tensorflow import keras\n'), ((2928, 2956), 'os.walk', 'os.walk', (['partitions_location'], {}), '(partitions_location)\n', (2935, 2956), False, 'import os\n'), ((1788, 1860), 'tensorflow.keras.layers.Conv2D', 'layers.Conv2D', (['N_FILTERS', 'KERNEL_SIZE'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(N_FILTERS, KERNEL_SIZE, padding='same', activation='relu')\n", (1801, 1860), False, 'from tensorflow.keras import layers\n'), ((1911, 1938), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (1936, 1938), False, 'from tensorflow.keras import layers\n'), ((1962, 1983), 'tensorflow.keras.layers.MaxPooling2D', 'layers.MaxPooling2D', ([], {}), '()\n', (1981, 1983), False, 'from tensorflow.keras import layers\n'), ((2008, 2080), 'tensorflow.keras.layers.Conv2D', 'layers.Conv2D', (['N_FILTERS', 'KERNEL_SIZE'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(N_FILTERS, KERNEL_SIZE, padding='same', activation='relu')\n", (2021, 2080), False, 'from tensorflow.keras import layers\n'), ((2131, 2158), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (2156, 2158), False, 'from tensorflow.keras import layers\n'), ((2182, 2203), 'tensorflow.keras.layers.MaxPooling2D', 'layers.MaxPooling2D', ([], {}), '()\n', (2201, 2203), False, 'from tensorflow.keras import layers\n'), ((2228, 2300), 'tensorflow.keras.layers.Conv2D', 'layers.Conv2D', (['N_FILTERS', 'KERNEL_SIZE'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(N_FILTERS, KERNEL_SIZE, padding='same', activation='relu')\n", (2241, 2300), False, 'from tensorflow.keras import layers\n'), ((2350, 2377), 'tensorflow.keras.layers.BatchNormalization', 'layers.BatchNormalization', ([], {}), '()\n', (2375, 2377), False, 'from tensorflow.keras import layers\n'), ((2401, 2422), 'tensorflow.keras.layers.MaxPooling2D', 'layers.MaxPooling2D', ([], {}), '()\n', (2420, 2422), False, 'from tensorflow.keras import layers\n'), ((2515, 2531), 'tensorflow.keras.layers.Flatten', 'layers.Flatten', ([], {}), '()\n', (2529, 2531), False, 'from tensorflow.keras import layers\n'), ((2548, 2584), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['(500)'], {'activation': '"""relu"""'}), "(500, activation='relu')\n", (2560, 2584), False, 'from tensorflow.keras import layers\n'), ((2601, 2629), 'tensorflow.keras.layers.Dropout', 'layers.Dropout', (['DROPOUT_RATE'], {}), '(DROPOUT_RATE)\n', (2615, 2629), False, 'from tensorflow.keras import layers\n'), ((2641, 2677), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['(500)'], {'activation': '"""relu"""'}), "(500, activation='relu')\n", (2653, 2677), False, 'from tensorflow.keras import layers\n'), ((2694, 2722), 'tensorflow.keras.layers.Dropout', 'layers.Dropout', (['DROPOUT_RATE'], {}), '(DROPOUT_RATE)\n', (2708, 2722), False, 'from tensorflow.keras import layers\n'), ((2740, 2777), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['(1)'], {'activation': '"""sigmoid"""'}), "(1, activation='sigmoid')\n", (2752, 2777), False, 'from tensorflow.keras import layers\n'), ((4278, 4302), 'tqdm.tqdm', 'tqdm', (["partition['train']"], {}), "(partition['train'])\n", (4282, 4302), False, 'from tqdm import tqdm\n'), ((4844, 4873), 'tqdm.tqdm', 'tqdm', (["partition['validation']"], {}), "(partition['validation'])\n", (4848, 4873), False, 'from tqdm import tqdm\n'), ((5595, 5735), 'tensorflow.keras.utils.plot_model', 'tf.keras.utils.plot_model', (['model'], {'to_file': '"""model.png"""', 'show_shapes': '(True)', 'show_layer_names': '(True)', 'rankdir': '"""TB"""', 'expand_nested': '(True)', 'dpi': '(96)'}), "(model, to_file='model.png', show_shapes=True,\n show_layer_names=True, rankdir='TB', expand_nested=True, dpi=96)\n", (5620, 5735), True, 'import tensorflow as tf\n'), ((6136, 6168), 'os.path.exists', 'os.path.exists', (['tensorboard_logs'], {}), '(tensorboard_logs)\n', (6150, 6168), False, 'import os\n'), ((7120, 7221), 'tensorflow.keras.optimizers.schedules.ExponentialDecay', 'keras.optimizers.schedules.ExponentialDecay', (['(0.01)'], {'decay_steps': '(30)', 'decay_rate': '(0.6)', 'staircase': '(True)'}), '(0.01, decay_steps=30,\n decay_rate=0.6, staircase=True)\n', (7163, 7221), False, 'from tensorflow import keras\n'), ((6186, 6217), 'shutil.rmtree', 'shutil.rmtree', (['tensorboard_logs'], {}), '(tensorboard_logs)\n', (6199, 6217), False, 'import shutil\n'), ((6377, 6442), 'tensorflow.keras.callbacks.TensorBoard', 'tf.keras.callbacks.TensorBoard', ([], {'log_dir': 'log_dir', 'histogram_freq': '(1)'}), '(log_dir=log_dir, histogram_freq=1)\n', (6407, 6442), True, 'import tensorflow as tf\n'), ((6498, 6658), 'tensorflow.keras.callbacks.EarlyStopping', 'tf.keras.callbacks.EarlyStopping', ([], {'monitor': '"""val_accuracy"""', 'min_delta': '(0.001)', 'patience': '(10)', 'verbose': '(0)', 'mode': '"""auto"""', 'baseline': 'None', 'restore_best_weights': '(True)'}), "(monitor='val_accuracy', min_delta=0.001,\n patience=10, verbose=0, mode='auto', baseline=None,\n restore_best_weights=True)\n", (6530, 6658), True, 'import tensorflow as tf\n'), ((6827, 6976), 'tensorflow.keras.callbacks.ModelCheckpoint', 'tf.keras.callbacks.ModelCheckpoint', ([], {'filepath': '"""model_weights"""', 'save_weights_only': '(True)', 'monitor': '"""val_accuracy"""', 'mode': '"""max"""', 'save_best_only': '(True)'}), "(filepath='model_weights',\n save_weights_only=True, monitor='val_accuracy', mode='max',\n save_best_only=True)\n", (6861, 6976), True, 'import tensorflow as tf\n'), ((8923, 8940), 'numpy.mean', 'np.mean', (['last_acc'], {}), '(last_acc)\n', (8930, 8940), True, 'import numpy as np\n'), ((8947, 8963), 'numpy.std', 'np.std', (['last_acc'], {}), '(last_acc)\n', (8953, 8963), True, 'import numpy as np\n'), ((9041, 9062), 'numpy.mean', 'np.mean', (['last_val_acc'], {}), '(last_val_acc)\n', (9048, 9062), True, 'import numpy as np\n'), ((9069, 9089), 'numpy.std', 'np.std', (['last_val_acc'], {}), '(last_val_acc)\n', (9075, 9089), True, 'import numpy as np\n'), ((9168, 9190), 'numpy.mean', 'np.mean', (['last_val_prec'], {}), '(last_val_prec)\n', (9175, 9190), True, 'import numpy as np\n'), ((9197, 9218), 'numpy.std', 'np.std', (['last_val_prec'], {}), '(last_val_prec)\n', (9203, 9218), True, 'import numpy as np\n'), ((9294, 9315), 'numpy.mean', 'np.mean', (['last_val_rec'], {}), '(last_val_rec)\n', (9301, 9315), True, 'import numpy as np\n'), ((9322, 9342), 'numpy.std', 'np.std', (['last_val_rec'], {}), '(last_val_rec)\n', (9328, 9342), True, 'import numpy as np\n'), ((9415, 9436), 'numpy.mean', 'np.mean', (['last_val_auc'], {}), '(last_val_auc)\n', (9422, 9436), True, 'import numpy as np\n'), ((9443, 9463), 'numpy.std', 'np.std', (['last_val_auc'], {}), '(last_val_auc)\n', (9449, 9463), True, 'import numpy as np\n'), ((4360, 4412), 'numpy.load', 'np.load', (["(persistence_image_location + image + '.npy')"], {}), "(persistence_image_location + image + '.npy')\n", (4367, 4412), True, 'import numpy as np\n'), ((4680, 4702), 'numpy.vstack', 'np.vstack', (['y_train_lst'], {}), '(y_train_lst)\n', (4689, 4702), True, 'import numpy as np\n'), ((4929, 4981), 'numpy.load', 'np.load', (["(persistence_image_location + image + '.npy')"], {}), "(persistence_image_location + image + '.npy')\n", (4936, 4981), True, 'import numpy as np\n'), ((5239, 5259), 'numpy.vstack', 'np.vstack', (['y_val_lst'], {}), '(y_val_lst)\n', (5248, 5259), True, 'import numpy as np\n'), ((7301, 7401), 'tensorflow.keras.optimizers.Adam', 'keras.optimizers.Adam', ([], {'learning_rate': 'lr', 'beta_1': '(0.9)', 'beta_2': '(0.999)', 'epsilon': '(1e-07)', 'amsgrad': '(False)'}), '(learning_rate=lr, beta_1=0.9, beta_2=0.999, epsilon=\n 1e-07, amsgrad=False)\n', (7322, 7401), False, 'from tensorflow import keras\n'), ((6255, 6278), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (6276, 6278), False, 'import datetime\n'), ((7607, 7652), 'tensorflow.keras.metrics.BinaryAccuracy', 'keras.metrics.BinaryAccuracy', ([], {'name': '"""accuracy"""'}), "(name='accuracy')\n", (7635, 7652), False, 'from tensorflow import keras\n'), ((7674, 7715), 'tensorflow.keras.metrics.Precision', 'keras.metrics.Precision', ([], {'name': '"""precision"""'}), "(name='precision')\n", (7697, 7715), False, 'from tensorflow import keras\n'), ((7737, 7772), 'tensorflow.keras.metrics.Recall', 'keras.metrics.Recall', ([], {'name': '"""recall"""'}), "(name='recall')\n", (7757, 7772), False, 'from tensorflow import keras\n'), ((7794, 7823), 'tensorflow.keras.metrics.AUC', 'keras.metrics.AUC', ([], {'name': '"""auc"""'}), "(name='auc')\n", (7811, 7823), False, 'from tensorflow import keras\n'), ((3089, 3143), 'numpy.load', 'np.load', (['(partitions_location + file)'], {'allow_pickle': '(True)'}), '(partitions_location + file, allow_pickle=True)\n', (3096, 3143), True, 'import numpy as np\n'), ((4538, 4567), 'numpy.stack', 'np.stack', (['X_train_lst'], {'axis': '(0)'}), '(X_train_lst, axis=0)\n', (4546, 4567), True, 'import numpy as np\n'), ((5101, 5128), 'numpy.stack', 'np.stack', (['X_val_lst'], {'axis': '(0)'}), '(X_val_lst, axis=0)\n', (5109, 5128), True, 'import numpy as np\n'), ((3315, 3369), 'numpy.load', 'np.load', (['(partitions_location + file)'], {'allow_pickle': '(True)'}), '(partitions_location + file, allow_pickle=True)\n', (3322, 3369), True, 'import numpy as np\n')]
""" Create docstring tests for the following functions """ import doctest # Example def get_area_rect(length, width): """Returns area of rectangle >>> get_area_rect(5 , 5) 25 >>> get_area_rect(5 , 0) Traceback (most recent call last): ... ValueError >>> get_area_rect(5 , -1) Traceback (most recent call last): ... ValueError """ if(length <= 0) or (width <= 0): raise ValueError return length * width # Your turn def validate_input(x): """Validates that input give is between 1 and 10 >>> validate_input(5) True >>> validate_input(-2) False >>> validate_input(12) False """ x = int(x) if 1 <= x <= 10: return True else: return False def true_if_hello(x): """Will return true if and only if passed the str 'hello' >>> true_if_hello('hello') True >>> true_if_hello('olleh') False >>> true_if_hello(7) False """ x = str(x) if x == 'hello': return True return False doctest.testmod()
[ "doctest.testmod" ]
[((1230, 1247), 'doctest.testmod', 'doctest.testmod', ([], {}), '()\n', (1245, 1247), False, 'import doctest\n')]
"""A simple, 2D peridynamics simulation example.""" import argparse import cProfile from io import StringIO import numpy as np import pathlib from peridynamics import Model from peridynamics.model import initial_crack_helper from peridynamics.integrators import Euler from pstats import SortKey, Stats mesh_file = pathlib.Path(__file__).parent.absolute() / "test.msh" @initial_crack_helper def is_crack(x, y): """Determine whether a pair of particles define the crack.""" output = 0 crack_length = 0.3 p1 = x p2 = y if x[0] > y[0]: p2 = x p1 = y # 1e-6 makes it fall one side of central line of particles if p1[0] < 0.5 + 1e-6 and p2[0] > 0.5 + 1e-6: # draw a straight line between them m = (p2[1] - p1[1]) / (p2[0] - p1[0]) c = p1[1] - m * p1[0] # height a x = 0.5 height = m * 0.5 + c if (height > 0.5 * (1 - crack_length) and height < 0.5 * (1 + crack_length)): output = 1 return output def boundary_function(model, u, step): """ Apply a load to the system. Particles on each of the sides of the system are pulled apart with increasing time step. """ load_rate = 0.00001 u[model.lhs, 1:3] = np.zeros((len(model.lhs), 2)) u[model.rhs, 1:3] = np.zeros((len(model.rhs), 2)) u[model.lhs, 0] = ( -0.5 * step * load_rate * np.ones(len(model.rhs)) ) u[model.rhs, 0] = ( 0.5 * step * load_rate * np.ones(len(model.rhs)) ) return u def main(): """Conduct a peridynamics simulation.""" parser = argparse.ArgumentParser() parser.add_argument('--profile', action='store_const', const=True) args = parser.parse_args() if args.profile: profile = cProfile.Profile() profile.enable() model = Model(mesh_file, horizon=0.1, critical_strain=0.005, elastic_modulus=0.05, initial_crack=is_crack) # Set left-hand side and right-hand side of boundary indices = np.arange(model.nnodes) model.lhs = indices[model.coords[:, 0] < 1.5*model.horizon] model.rhs = indices[model.coords[:, 0] > 1.0 - 1.5*model.horizon] integrator = Euler(dt=1e-3) u, damage, *_ = model.simulate( steps=100, integrator=integrator, boundary_function=boundary_function, write=1000 ) if args.profile: profile.disable() s = StringIO() stats = Stats(profile, stream=s).sort_stats(SortKey.CUMULATIVE) stats.print_stats() print(s.getvalue()) if __name__ == "__main__": main()
[ "io.StringIO", "argparse.ArgumentParser", "peridynamics.Model", "pstats.Stats", "cProfile.Profile", "pathlib.Path", "numpy.arange", "peridynamics.integrators.Euler" ]
[((1611, 1636), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1634, 1636), False, 'import argparse\n'), ((1836, 1938), 'peridynamics.Model', 'Model', (['mesh_file'], {'horizon': '(0.1)', 'critical_strain': '(0.005)', 'elastic_modulus': '(0.05)', 'initial_crack': 'is_crack'}), '(mesh_file, horizon=0.1, critical_strain=0.005, elastic_modulus=0.05,\n initial_crack=is_crack)\n', (1841, 1938), False, 'from peridynamics import Model\n'), ((2025, 2048), 'numpy.arange', 'np.arange', (['model.nnodes'], {}), '(model.nnodes)\n', (2034, 2048), True, 'import numpy as np\n'), ((2201, 2216), 'peridynamics.integrators.Euler', 'Euler', ([], {'dt': '(0.001)'}), '(dt=0.001)\n', (2206, 2216), False, 'from peridynamics.integrators import Euler\n'), ((1779, 1797), 'cProfile.Profile', 'cProfile.Profile', ([], {}), '()\n', (1795, 1797), False, 'import cProfile\n'), ((2437, 2447), 'io.StringIO', 'StringIO', ([], {}), '()\n', (2445, 2447), False, 'from io import StringIO\n'), ((315, 337), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (327, 337), False, 'import pathlib\n'), ((2464, 2488), 'pstats.Stats', 'Stats', (['profile'], {'stream': 's'}), '(profile, stream=s)\n', (2469, 2488), False, 'from pstats import SortKey, Stats\n')]
############################################################################## # # Copyright (c) 2006 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Common WebDAV error handling code. There are two types of error views. Ones that get caught by the WebDAV protocol and the other which escapes to the publisher. Both these views implement different interface which we can control through the WebDAV package via the IPublication.handleException method. """ __docformat__ = 'restructuredtext' from xml.etree import ElementTree from zope import interface from zope import schema from zope import component import zope.publisher.interfaces.http from zope.publisher.interfaces.http import IHTTPException import zope.publisher.defaultview import z3c.dav.interfaces import z3c.dav.utils class DAVError(object): interface.implements(z3c.dav.interfaces.IDAVErrorWidget) component.adapts(interface.Interface, z3c.dav.interfaces.IWebDAVRequest) def __init__(self, context, request): self.context = context self.request = request status = None errors = [] propstatdescription = "" responsedescription = "" class ConflictError(DAVError): status = 409 class ForbiddenError(DAVError): status = 403 class PropertyNotFoundError(DAVError): status = 404 class FailedDependencyError(DAVError): # context is generally None for a failed dependency error. status = 424 class AlreadyLockedError(DAVError): status = 423 class UnauthorizedError(DAVError): status = 401 ################################################################################ # # Multi-status error view # ################################################################################ class MultiStatusErrorView(object): component.adapts(z3c.dav.interfaces.IWebDAVErrors, z3c.dav.interfaces.IWebDAVRequest) interface.implements(IHTTPException) def __init__(self, error, request): self.error = error self.request = request def __call__(self): multistatus = z3c.dav.utils.MultiStatus() if len(self.error.errors) == 1 and \ self.error.errors[0].resource == self.error.context: # If have only one error and the context on which we raised the # exception, then we just try and view the default view of the # error. error = self.error.errors[0] name = zope.publisher.defaultview.queryDefaultViewName( error, self.request) if name is not None: view = component.queryMultiAdapter( (error, self.request), name = name) return view() seenContext = False for error in self.error.errors: if error.resource == self.error.context: seenContext = True davwidget = component.getMultiAdapter( (error, self.request), z3c.dav.interfaces.IDAVErrorWidget) response = z3c.dav.utils.Response( z3c.dav.utils.getObjectURL(error.resource, self.request)) response.status = davwidget.status # we don't generate a propstat elements during this view so # we just ignore the propstatdescription. response.responsedescription += davwidget.responsedescription multistatus.responses.append(response) if not seenContext: response = z3c.dav.utils.Response( z3c.dav.utils.getObjectURL(self.error.context, self.request)) response.status = 424 # Failed Dependency multistatus.responses.append(response) self.request.response.setStatus(207) self.request.response.setHeader("content-type", "application/xml") return ElementTree.tostring(multistatus(), encoding = "utf-8") class WebDAVPropstatErrorView(object): interface.implements(IHTTPException) component.adapts(z3c.dav.interfaces.IWebDAVPropstatErrors, z3c.dav.interfaces.IWebDAVRequest) def __init__(self, error, request): self.error = error self.request = request def __call__(self): multistatus = z3c.dav.utils.MultiStatus() response = z3c.dav.utils.Response( z3c.dav.utils.getObjectURL(self.error.context, self.request)) multistatus.responses.append(response) for prop, error in self.error.items(): error_view = component.getMultiAdapter( (error, self.request), z3c.dav.interfaces.IDAVErrorWidget) propstat = response.getPropstat(error_view.status) if z3c.dav.interfaces.IDAVProperty.providedBy(prop): ## XXX - not tested - but is it needed? prop = "{%s}%s" %(prop.namespace, prop.__name__) propstat.properties.append(ElementTree.Element(prop)) ## XXX - needs testing. propstat.responsedescription += error_view.propstatdescription response.responsedescription += error_view.responsedescription self.request.response.setStatus(207) self.request.response.setHeader("content-type", "application/xml") return ElementTree.tostring(multistatus(), encoding = "utf-8") ################################################################################ # # Some more generic exception view. # ################################################################################ class HTTPForbiddenError(object): interface.implements(IHTTPException) component.adapts(z3c.dav.interfaces.IForbiddenError, zope.publisher.interfaces.http.IHTTPRequest) def __init__(self, error, request): self.error = error self.request = request def __call__(self): self.request.response.setStatus(403) return "" class HTTPConflictError(object): interface.implements(IHTTPException) component.adapts(z3c.dav.interfaces.IConflictError, zope.publisher.interfaces.http.IHTTPRequest) def __init__(self, error, request): self.error = error self.request = request def __call__(self): self.request.response.setStatus(409) return "" class PreconditionFailed(object): interface.implements(IHTTPException) component.adapts(z3c.dav.interfaces.IPreconditionFailed, zope.publisher.interfaces.http.IHTTPRequest) def __init__(self, error, request): self.error = error self.request = request def __call__(self): self.request.response.setStatus(412) return "" class HTTPUnsupportedMediaTypeError(object): interface.implements(IHTTPException) component.adapts(z3c.dav.interfaces.IUnsupportedMediaType, zope.publisher.interfaces.http.IHTTPRequest) def __init__(self, error, request): self.error = error self.request = request def __call__(self): self.request.response.setStatus(415) return "" class UnprocessableError(object): interface.implements(IHTTPException) component.adapts(z3c.dav.interfaces.IUnprocessableError, zope.publisher.interfaces.http.IHTTPRequest) def __init__(self, context, request): self.context = context self.request = request def __call__(self): self.request.response.setStatus(422) return "" class AlreadyLockedErrorView(object): interface.implements(IHTTPException) component.adapts(z3c.dav.interfaces.IAlreadyLocked, zope.publisher.interfaces.http.IHTTPRequest) def __init__(self, context, request): self.request = request def __call__(self): self.request.response.setStatus(423) return "" class BadGateway(object): interface.implements(IHTTPException) component.adapts(z3c.dav.interfaces.IBadGateway, zope.publisher.interfaces.http.IHTTPRequest) def __init__(self, error, request): self.error = error self.request = request def __call__(self): self.request.response.setStatus(502) return ""
[ "zope.component.queryMultiAdapter", "zope.interface.implements", "xml.etree.ElementTree.Element", "zope.component.adapts", "zope.component.getMultiAdapter" ]
[((1301, 1357), 'zope.interface.implements', 'interface.implements', (['z3c.dav.interfaces.IDAVErrorWidget'], {}), '(z3c.dav.interfaces.IDAVErrorWidget)\n', (1321, 1357), False, 'from zope import interface\n'), ((1362, 1434), 'zope.component.adapts', 'component.adapts', (['interface.Interface', 'z3c.dav.interfaces.IWebDAVRequest'], {}), '(interface.Interface, z3c.dav.interfaces.IWebDAVRequest)\n', (1378, 1434), False, 'from zope import component\n'), ((2280, 2370), 'zope.component.adapts', 'component.adapts', (['z3c.dav.interfaces.IWebDAVErrors', 'z3c.dav.interfaces.IWebDAVRequest'], {}), '(z3c.dav.interfaces.IWebDAVErrors, z3c.dav.interfaces.\n IWebDAVRequest)\n', (2296, 2370), False, 'from zope import component\n'), ((2391, 2427), 'zope.interface.implements', 'interface.implements', (['IHTTPException'], {}), '(IHTTPException)\n', (2411, 2427), False, 'from zope import interface\n'), ((4406, 4442), 'zope.interface.implements', 'interface.implements', (['IHTTPException'], {}), '(IHTTPException)\n', (4426, 4442), False, 'from zope import interface\n'), ((4447, 4545), 'zope.component.adapts', 'component.adapts', (['z3c.dav.interfaces.IWebDAVPropstatErrors', 'z3c.dav.interfaces.IWebDAVRequest'], {}), '(z3c.dav.interfaces.IWebDAVPropstatErrors, z3c.dav.\n interfaces.IWebDAVRequest)\n', (4463, 4545), False, 'from zope import component\n'), ((6013, 6049), 'zope.interface.implements', 'interface.implements', (['IHTTPException'], {}), '(IHTTPException)\n', (6033, 6049), False, 'from zope import interface\n'), ((6054, 6156), 'zope.component.adapts', 'component.adapts', (['z3c.dav.interfaces.IForbiddenError', 'zope.publisher.interfaces.http.IHTTPRequest'], {}), '(z3c.dav.interfaces.IForbiddenError, zope.publisher.\n interfaces.http.IHTTPRequest)\n', (6070, 6156), False, 'from zope import component\n'), ((6399, 6435), 'zope.interface.implements', 'interface.implements', (['IHTTPException'], {}), '(IHTTPException)\n', (6419, 6435), False, 'from zope import interface\n'), ((6440, 6541), 'zope.component.adapts', 'component.adapts', (['z3c.dav.interfaces.IConflictError', 'zope.publisher.interfaces.http.IHTTPRequest'], {}), '(z3c.dav.interfaces.IConflictError, zope.publisher.\n interfaces.http.IHTTPRequest)\n', (6456, 6541), False, 'from zope import component\n'), ((6785, 6821), 'zope.interface.implements', 'interface.implements', (['IHTTPException'], {}), '(IHTTPException)\n', (6805, 6821), False, 'from zope import interface\n'), ((6826, 6932), 'zope.component.adapts', 'component.adapts', (['z3c.dav.interfaces.IPreconditionFailed', 'zope.publisher.interfaces.http.IHTTPRequest'], {}), '(z3c.dav.interfaces.IPreconditionFailed, zope.publisher.\n interfaces.http.IHTTPRequest)\n', (6842, 6932), False, 'from zope import component\n'), ((7187, 7223), 'zope.interface.implements', 'interface.implements', (['IHTTPException'], {}), '(IHTTPException)\n', (7207, 7223), False, 'from zope import interface\n'), ((7228, 7336), 'zope.component.adapts', 'component.adapts', (['z3c.dav.interfaces.IUnsupportedMediaType', 'zope.publisher.interfaces.http.IHTTPRequest'], {}), '(z3c.dav.interfaces.IUnsupportedMediaType, zope.publisher.\n interfaces.http.IHTTPRequest)\n', (7244, 7336), False, 'from zope import component\n'), ((7580, 7616), 'zope.interface.implements', 'interface.implements', (['IHTTPException'], {}), '(IHTTPException)\n', (7600, 7616), False, 'from zope import interface\n'), ((7621, 7727), 'zope.component.adapts', 'component.adapts', (['z3c.dav.interfaces.IUnprocessableError', 'zope.publisher.interfaces.http.IHTTPRequest'], {}), '(z3c.dav.interfaces.IUnprocessableError, zope.publisher.\n interfaces.http.IHTTPRequest)\n', (7637, 7727), False, 'from zope import component\n'), ((7981, 8017), 'zope.interface.implements', 'interface.implements', (['IHTTPException'], {}), '(IHTTPException)\n', (8001, 8017), False, 'from zope import interface\n'), ((8022, 8123), 'zope.component.adapts', 'component.adapts', (['z3c.dav.interfaces.IAlreadyLocked', 'zope.publisher.interfaces.http.IHTTPRequest'], {}), '(z3c.dav.interfaces.IAlreadyLocked, zope.publisher.\n interfaces.http.IHTTPRequest)\n', (8038, 8123), False, 'from zope import component\n'), ((8334, 8370), 'zope.interface.implements', 'interface.implements', (['IHTTPException'], {}), '(IHTTPException)\n', (8354, 8370), False, 'from zope import interface\n'), ((8375, 8473), 'zope.component.adapts', 'component.adapts', (['z3c.dav.interfaces.IBadGateway', 'zope.publisher.interfaces.http.IHTTPRequest'], {}), '(z3c.dav.interfaces.IBadGateway, zope.publisher.interfaces.\n http.IHTTPRequest)\n', (8391, 8473), False, 'from zope import component\n'), ((3387, 3476), 'zope.component.getMultiAdapter', 'component.getMultiAdapter', (['(error, self.request)', 'z3c.dav.interfaces.IDAVErrorWidget'], {}), '((error, self.request), z3c.dav.interfaces.\n IDAVErrorWidget)\n', (3412, 3476), False, 'from zope import component\n'), ((4974, 5063), 'zope.component.getMultiAdapter', 'component.getMultiAdapter', (['(error, self.request)', 'z3c.dav.interfaces.IDAVErrorWidget'], {}), '((error, self.request), z3c.dav.interfaces.\n IDAVErrorWidget)\n', (4999, 5063), False, 'from zope import component\n'), ((3090, 3151), 'zope.component.queryMultiAdapter', 'component.queryMultiAdapter', (['(error, self.request)'], {'name': 'name'}), '((error, self.request), name=name)\n', (3117, 3151), False, 'from zope import component\n'), ((5366, 5391), 'xml.etree.ElementTree.Element', 'ElementTree.Element', (['prop'], {}), '(prop)\n', (5385, 5391), False, 'from xml.etree import ElementTree\n')]
import xml.etree.ElementTree as ET from os import sys #Return *.c for 1, *.o for 2 #tipo = sys.argv[1] #names_files = [] names_files = [] names_functions = [] hosts_ips = [] names = "" root = ET.parse('startup.xml').getroot() arquivo = open("Makefile","w") functions_file = open("functions_names","w") hosts = open("comm/hosts.cfg","w") config = open("comm/config","w") rank = 0 cont_rank = 0 cont = 0 for neighbor in root.iter('ipmachine'): cont_rank = 0 hosts.write(neighbor.get('ip')+" slots="+neighbor.get('ngpus')+"\n") while(cont_rank < int(neighbor.get('ngpus'))): config.write(str(rank)+"\t"+str(cont_rank)+"\n") cont_rank = cont_rank + 1 rank = rank + 1 for neighbor in root.iter('file'): names_files.append(neighbor.get('name')) for neighbor in root.iter('func'): cont +=1 names_functions.append(neighbor.get('funcName')) for neighbor in root.iter('file'): names = names +" "+ neighbor.get('name') functions_file.write(str(cont)+"\n") for i in names_functions: functions_file.write(i+"\n") #for i in hosts_ips: # hosts.write(i+"\n"); objs = "" for i in names_files: objs = objs+i.strip(".cu")+".o"+" " arquivo.write("CUFILES= "+names+"\n") arquivo.write("OBJS= "+objs+"\n") arquivo.write("TARGET= "+objs+" link.o libfw.so"+"\n") arquivo.write("\n") arquivo.write("\n") arquivo.write("\n") arquivo.write("all: $(TARGET)"+"\n") arquivo.write("\n") arquivo.write("\n") arquivo.write("\n") arquivo.write("libfw.so: link.o \n") arquivo.write("\tg++ -shared -Wl,-soname,libfw.so -o libfw.so " + objs +" comm/comm.o link.o -L/usr/local/cuda-8.0/lib64 -lcudart \n") arquivo.write("\n") arquivo.write("\n") arquivo.write("link.o: "+names+"\n") arquivo.write("\tnvcc -m64 -arch=sm_20 -dlink -Xcompiler -fPIC comm/comm.o "+objs+" -o link.o\n") arquivo.write("\n") arquivo.write("\n") for i in names_files: arquivo.write(i.strip(".cu")+".o: "+i+" "+i.strip(".cu")+".h comm/comm.h\n") arquivo.write("\tnvcc -m64 -arch=sm_20 -dc -Xcompiler -fPIC -c "+i+" \n") arquivo.write("\n") arquivo.write("\n") arquivo.write("clean: \n") arquivo.write("\trm -f link.o libfw.so "+ objs +" \n")
[ "xml.etree.ElementTree.parse" ]
[((194, 217), 'xml.etree.ElementTree.parse', 'ET.parse', (['"""startup.xml"""'], {}), "('startup.xml')\n", (202, 217), True, 'import xml.etree.ElementTree as ET\n')]
import pytest from pysyncgateway.exceptions import DoesNotExist def test(recipe_document, database): reload_document = database.get_document('butter_chicken') result = reload_document.retrieve() assert result is True for key in list(reload_document.data.keys()): assert isinstance(key, str) assert sorted(list(reload_document.data)) == ['ingredients', 'recipe'] assert reload_document.data['ingredients'] == ['chicken', 'butter'] assert reload_document.data['recipe'] == 'Mix the chicken and the butter. Voila!' assert isinstance(reload_document.data['recipe'], str) assert reload_document.rev == recipe_document.rev assert reload_document.channels == () def test_channels(permissions_document, database): """ Document with no data can be retrieved, channels are updated """ reload_document = database.get_document('permission-list') result = reload_document.retrieve() assert result is True assert reload_document.data == {} assert reload_document.rev == permissions_document.rev assert reload_document.channels == ('acc.1234', 'acc.7882') # --- FAILURES --- def test_missing(empty_document): with pytest.raises(DoesNotExist): empty_document.retrieve()
[ "pytest.raises" ]
[((1200, 1227), 'pytest.raises', 'pytest.raises', (['DoesNotExist'], {}), '(DoesNotExist)\n', (1213, 1227), False, 'import pytest\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import py_trees import random class Foo(py_trees.behaviour.Behaviour): def __init__(self, name): """ Minimal one-time initialisation. A good rule of thumb is to only include the initialisation relevant for being able to insert this behaviour in a tree for offline rendering to dot graphs. Other one-time initialisation requirements should be met via the setup() method. """ super(Foo, self).__init__(name) def setup(self): """ When is this called? This function should be either manually called by your program to setup this behaviour alone, or more commonly, via :meth:`~py_trees.behaviour.Behaviour.setup_with_descendants` or :meth:`~py_trees.trees.BehaviourTree.setup`, both of which will iterate over this behaviour, it's children (it's children's children ...) calling :meth:`~py_trees.behaviour.Behaviour.setup` on each in turn. If you have vital initialisation necessary to the success execution of your behaviour, put a guard in your :meth:`~py_trees.behaviour.Behaviour.initialise` method to protect against entry without having been setup. What to do here? Delayed one-time initialisation that would otherwise interfere with offline rendering of this behaviour in a tree to dot graph or validation of the behaviour's configuration. Good examples include: - Hardware or driver initialisation - Middleware initialisation (e.g. ROS pubs/subs/services) - A parallel checking for a valid policy configuration after children have been added or removed """ self.logger.debug(" %s [Foo::setup()]" % self.name) def initialise(self): """ When is this called? The first time your behaviour is ticked and anytime the status is not RUNNING thereafter. What to do here? Any initialisation you need before putting your behaviour to work. """ self.logger.debug(" %s [Foo::initialise()]" % self.name) def update(self): """ When is this called? Every time your behaviour is ticked. What to do here? - Triggering, checking, monitoring. Anything...but do not block! - Set a feedback message - return a py_trees.common.Status.[RUNNING, SUCCESS, FAILURE] """ self.logger.debug(" %s [Foo::update()]" % self.name) ready_to_make_a_decision = random.choice([True, False]) decision = random.choice([True, False]) if not ready_to_make_a_decision: return py_trees.common.Status.RUNNING elif decision: self.feedback_message = "We are not bar!" return py_trees.common.Status.SUCCESS else: self.feedback_message = "Uh oh" return py_trees.common.Status.FAILURE def terminate(self, new_status): """ When is this called? Whenever your behaviour switches to a non-running state. - SUCCESS || FAILURE : your behaviour's work cycle has finished - INVALID : a higher priority branch has interrupted, or shutting down """ self.logger.debug(" %s [Foo::terminate().terminate()][%s->%s]" % (self.name, self.status, new_status))
[ "random.choice" ]
[((2678, 2706), 'random.choice', 'random.choice', (['[True, False]'], {}), '([True, False])\n', (2691, 2706), False, 'import random\n'), ((2726, 2754), 'random.choice', 'random.choice', (['[True, False]'], {}), '([True, False])\n', (2739, 2754), False, 'import random\n')]
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/tslasso.main.ipynb (unless otherwise specified). __all__ = ['run_exp'] # Cell from ..atomgeom.features import get_features,get_D_feats_feats from ..atomgeom.utils import get_atoms_4 from ..simulations.rigidethanol import get_rigid_ethanol_data from ..utils.utils import get_234_indices, get_atoms3_full, get_atoms4_full, data_stream_custom_range, get_cosines from ..geometry.geometry import get_geom, get_wlpca_tangent_sel, get_rm_tangent_sel from ..statistics.normalization import normalize_L212 from ..optimization.gradientgrouplasso import get_sr_lambda_parallel from ..optimization.utils import get_selected_function_ids,get_selected_functions_lm2 from ..utils.replicates import Replicate, get_supports_brute_tslasso,get_supports_lasso from megaman.embedding import SpectralEmbedding import dill as pickle import os import sys import numpy as np import itertools from itertools import permutations,combinations from sklearn.decomposition import TruncatedSVD import pathos from pathos.multiprocessing import ProcessingPool as Pool # Cell def run_exp(positions, hparams): d = hparams.d n_components = hparams.n_components atoms2_feat = hparams.atoms2_feat atoms3_feat = hparams.atoms3_feat atoms4_feat = hparams.atoms4_feat atoms2_dict = hparams.atoms2_dict atoms3_dict = hparams.atoms3_dict atoms4_dict = hparams.atoms4_dict diagram = hparams.diagram ii = np.asarray(hparams.ii) jj = np.asarray(hparams.jj) outfile = hparams.outdir + '/' + hparams.name + 'results_tslasso' #load geometric features natoms = positions.shape[1] n = positions.shape[0] atoms2 = np.asarray(list(itertools.combinations(range(natoms), 2))) atoms2full = atoms2 atoms3 = np.asarray(list(itertools.combinations(range(natoms), 3))) atoms4 = np.asarray(list(itertools.combinations(range(natoms), 4))) atoms3full = get_atoms3_full(atoms3) atoms4full = get_atoms4_full(atoms4) if atoms2_feat: atoms2_feats = atoms2full else: atoms2_feats = np.asarray([]) if atoms3_feat: atoms3_feats = atoms3full else: atoms3_feats = np.asarray([]) if atoms4_feat: atoms4_feats = atoms4full else: atoms4_feats = np.asarray([]) #compute rotation/translation invariant featureization cores = pathos.multiprocessing.cpu_count() - 1 pool = Pool(cores) print('feature dimensions',atoms2_feats.shape, atoms3_feats.shape,atoms4_feats.shape) #import pdb;pdb.set_trace results = pool.map(lambda i: get_features(positions[i], atoms2 = atoms2_feats, atoms3 = atoms3_feats, atoms4 = atoms4_feats), data_stream_custom_range(list(range(n)))) data = np.vstack([np.hstack(results[i]) for i in range(n)]) data = data - np.mean(data, axis = 0) #apply SVD svd = TruncatedSVD(n_components=50) data_svd = svd.fit_transform(data) #compute geometry radius = hparams.radius n_neighbors = hparams.n_neighbors geom = get_geom(data_svd, radius, n_neighbors) print('computing embedding (for comparison)') spectral_embedding = SpectralEmbedding(n_components=n_components,eigen_solver='arpack',geom=geom) embed_spectral = spectral_embedding.fit_transform(data_svd) embedding = embed_spectral #obtain gradients if atoms2_dict: atoms2_dicts = atoms2full else: atoms2_dicts = np.asarray([]) if atoms3_dict: atoms3_dicts = atoms3full else: atoms3_dicts = np.asarray([]) if atoms4_dict and not diagram: atoms4_dicts = atoms4full elif atoms4_dict: atoms4_dicts= get_atoms_4(natoms, ii, jj)[0] else: atoms4_dicts = np.asarray([]) p = len(atoms2_dicts) + len(atoms3_dicts) + len(atoms4_dicts) #get gradients replicates = {} nreps = hparams.nreps nsel = hparams.nsel for r in range(nreps): #print(i) replicates[r] = Replicate(nsel = nsel, n = 10000) replicates[r].tangent_bases_M = get_wlpca_tangent_sel(data_svd, geom, replicates[r].selected_points, d) D_feats_feats = np.asarray([get_D_feats_feats(positions[replicates[r].selected_points[i]], atoms2in = atoms2_feats, atoms3in = atoms3_feats, atoms4in = atoms4_feats, atoms2out = atoms2_dicts, atoms3out = atoms3_dicts, atoms4out = atoms4_dicts) for i in range(nsel)]) replicates[r].dg_x = np.asarray([svd.transform(D_feats_feats[i].transpose()).transpose() for i in range(nsel)]) replicates[r].dg_x_normalized = normalize_L212(replicates[r].dg_x) replicates[r].dg_M = np.einsum('i b p, i b d -> i d p', replicates[r].dg_x_normalized, replicates[r].tangent_bases_M) #run ts lasso gl_itermax= hparams.gl_itermax reg_l2 = hparams.reg_l2 max_search = hparams.max_search d = hparams.d tol = hparams.tol learning_rate = hparams.learning_rate for r in range(nreps): replicates[r].results = get_sr_lambda_parallel(np.asarray([np.identity(d) for i in range(nsel)]), replicates[r].dg_M, gl_itermax,reg_l2, max_search, d, tol,learning_rate) replicates[r].get_ordered_axes() replicates[r].sel_l = replicates[r].get_selection_lambda() #get manifold lasso support selected_functions_unique = np.asarray(np.unique(get_selected_function_ids(replicates,d)), dtype = int) support_tensor_lasso, supports_lasso = get_supports_lasso(replicates,p,d) #get two stage support selected_functions_lm2 = get_selected_functions_lm2(replicates) support_tensor_ts, supports_ts = get_supports_brute_tslasso(replicates,nreps,p,d,selected_functions_lm2) selected_functions_unique_twostage = np.asarray(np.unique(supports_ts), dtype = int)#np.unique(np.asarray(np.where(support_tensor_ts > 0.)[0], dtype = int)) pool.close() pool.restart() #compute function values for plotting... needs 'order234' for full computation print('computing selected function values lasso, ' + str(selected_functions_unique)) selected_function_values = pool.map( lambda i: get_features(positions[i], atoms2 = np.asarray([]), atoms3 = np.asarray([]), atoms4 = atoms4_dicts[selected_functions_unique]), data_stream_custom_range(list(range(n)))) selected_function_values_array = np.vstack([np.hstack(selected_function_values[i]) for i in range(n)]) print('computing selected function values two stage, ' + str(selected_functions_unique_twostage)) selected_function_values_brute = pool.map( lambda i: get_features(positions[i], atoms2 = np.asarray([]), atoms3 = np.asarray([]), atoms4 = atoms4_dicts[selected_functions_unique_twostage]), data_stream_custom_range(list(range(n)))) selected_function_values_array_brute = np.vstack([np.hstack(selected_function_values_brute[i]) for i in range(n)]) #remove large gradient arrays print('prep save') replicates_small = {} for r in range(nreps): replicates_small[r] = Replicate(nsel=nsel, n=n, selected_points=replicates[r].selected_points) replicates_small[r].dg_M = replicates[r].dg_M replicates_small[r].cs_reorder = replicates[r].cs_reorder replicates_small[r].xaxis_reorder = replicates[r].xaxis_reorder print('getting cosines') cosine = get_cosines(replicates[0].dg_M) replicates_small[0].cosine_abs = np.mean(np.abs(cosine), axis = 0) #prepare to save results = {} results['replicates_small'] = replicates_small results['data'] = data_svd results['embed'] = embedding results['supports_ts'] = support_tensor_ts, supports_ts results['supports_lasso'] = support_tensor_lasso, supports_lasso results['supports_lasso_values'] = selected_function_values results['supports_ts_values'] = selected_function_values_brute results['selected_lasso'] = selected_functions_unique results['selected_ts'] = selected_functions_unique_twostage results['geom'] = geom results['dictionary'] = {} results['dictionary']['atoms2'] = atoms2_dicts results['dictionary']['atoms3'] = atoms3_dicts results['dictionary']['atoms4'] = atoms4_dicts #save with open(outfile,'wb') as output: pickle.dump(results, output, pickle.HIGHEST_PROTOCOL)
[ "numpy.abs", "pathos.multiprocessing.cpu_count", "sklearn.decomposition.TruncatedSVD", "numpy.asarray", "numpy.einsum", "numpy.identity", "numpy.hstack", "megaman.embedding.SpectralEmbedding", "numpy.mean", "dill.dump", "pathos.multiprocessing.ProcessingPool", "numpy.unique" ]
[((1456, 1478), 'numpy.asarray', 'np.asarray', (['hparams.ii'], {}), '(hparams.ii)\n', (1466, 1478), True, 'import numpy as np\n'), ((1488, 1510), 'numpy.asarray', 'np.asarray', (['hparams.jj'], {}), '(hparams.jj)\n', (1498, 1510), True, 'import numpy as np\n'), ((2422, 2433), 'pathos.multiprocessing.ProcessingPool', 'Pool', (['cores'], {}), '(cores)\n', (2426, 2433), True, 'from pathos.multiprocessing import ProcessingPool as Pool\n'), ((2959, 2988), 'sklearn.decomposition.TruncatedSVD', 'TruncatedSVD', ([], {'n_components': '(50)'}), '(n_components=50)\n', (2971, 2988), False, 'from sklearn.decomposition import TruncatedSVD\n'), ((3245, 3323), 'megaman.embedding.SpectralEmbedding', 'SpectralEmbedding', ([], {'n_components': 'n_components', 'eigen_solver': '"""arpack"""', 'geom': 'geom'}), "(n_components=n_components, eigen_solver='arpack', geom=geom)\n", (3262, 3323), False, 'from megaman.embedding import SpectralEmbedding\n'), ((2079, 2093), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (2089, 2093), True, 'import numpy as np\n'), ((2182, 2196), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (2192, 2196), True, 'import numpy as np\n'), ((2285, 2299), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (2295, 2299), True, 'import numpy as np\n'), ((2372, 2406), 'pathos.multiprocessing.cpu_count', 'pathos.multiprocessing.cpu_count', ([], {}), '()\n', (2404, 2406), False, 'import pathos\n'), ((2909, 2930), 'numpy.mean', 'np.mean', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (2916, 2930), True, 'import numpy as np\n'), ((3527, 3541), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (3537, 3541), True, 'import numpy as np\n'), ((3629, 3643), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (3639, 3643), True, 'import numpy as np\n'), ((4821, 4921), 'numpy.einsum', 'np.einsum', (['"""i b p, i b d -> i d p"""', 'replicates[r].dg_x_normalized', 'replicates[r].tangent_bases_M'], {}), "('i b p, i b d -> i d p', replicates[r].dg_x_normalized,\n replicates[r].tangent_bases_M)\n", (4830, 4921), True, 'import numpy as np\n'), ((5911, 5933), 'numpy.unique', 'np.unique', (['supports_ts'], {}), '(supports_ts)\n', (5920, 5933), True, 'import numpy as np\n'), ((7922, 7936), 'numpy.abs', 'np.abs', (['cosine'], {}), '(cosine)\n', (7928, 7936), True, 'import numpy as np\n'), ((8753, 8806), 'dill.dump', 'pickle.dump', (['results', 'output', 'pickle.HIGHEST_PROTOCOL'], {}), '(results, output, pickle.HIGHEST_PROTOCOL)\n', (8764, 8806), True, 'import dill as pickle\n'), ((2849, 2870), 'numpy.hstack', 'np.hstack', (['results[i]'], {}), '(results[i])\n', (2858, 2870), True, 'import numpy as np\n'), ((3822, 3836), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (3832, 3836), True, 'import numpy as np\n'), ((6669, 6707), 'numpy.hstack', 'np.hstack', (['selected_function_values[i]'], {}), '(selected_function_values[i])\n', (6678, 6707), True, 'import numpy as np\n'), ((7291, 7335), 'numpy.hstack', 'np.hstack', (['selected_function_values_brute[i]'], {}), '(selected_function_values_brute[i])\n', (7300, 7335), True, 'import numpy as np\n'), ((5213, 5227), 'numpy.identity', 'np.identity', (['d'], {}), '(d)\n', (5224, 5227), True, 'import numpy as np\n'), ((6380, 6394), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (6390, 6394), True, 'import numpy as np\n'), ((6448, 6462), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (6458, 6462), True, 'import numpy as np\n'), ((6987, 7001), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (6997, 7001), True, 'import numpy as np\n'), ((7055, 7069), 'numpy.asarray', 'np.asarray', (['[]'], {}), '([])\n', (7065, 7069), True, 'import numpy as np\n')]
# -*- encoding: utf-8 -*- from __future__ import absolute_import, unicode_literals import attr from attr import ib as Field from addonpayments.validators import RequestValidator from addonpayments.utils import GenerationUtils from addonpayments.mixins import HashMixin from addonpayments.api.mixins import XmlMixin @attr.s class ApiRequest(HashMixin, XmlMixin): """ Super class representing a request to be sent to API. This class contains all common attributes and functions for all other classes. You can consult the specific documentation of all request fields on the website https://desarrolladores.addonpayments.com Subclasses values (fields to be defined in the subclasses): request_type Type of the Addonpayments request (auth, receipt-in, payer-new, card-new, ...) Mixin HashMixin attributes: hash_fields Hash a string made up of the request values Mixin XMLMixin attributes: xml_root_tag If the object is a Request the root tag is <request attributes></ request>. xml_root_attributes Normalized request objects always have timestamp and type attributes in the root tag """ # Mandatory field merchantid = Field(validator=RequestValidator.merchant_id) type = Field(default=None) # Mandatory fields with auto-generation timestamp = Field(default=None, validator=RequestValidator.timestamp) orderid = Field(default=None, validator=RequestValidator.order_id) # Mandatory fields generated later sha1hash = Field(default=None, validator=RequestValidator.sha1hash) # Optional field account = Field(default='', validator=RequestValidator.account) # Static variables # Defined in subclasses request_type = '' # Default values for XmlMixin, all XML requests starts with <request type='' timestamp=''> xml_root_tag = 'request' xml_root_attributes = ['timestamp', 'type'] def __attrs_post_init__(self): """ This method will be called after the class is fully initialized. Uses method to set auto-generate values if they have not been initialized and request type """ self.type = self.request_type gen_utl = GenerationUtils() if not self.timestamp: self.timestamp = gen_utl.generate_timestamp() if not self.orderid: self.orderid = gen_utl.generate_order_id() def hash(self, secret): """ Set and validate sha1hash :param secret: string """ self.sha1hash = self.generate_hash(secret) # Validate hash attr.validate(self) return self.sha1hash
[ "attr.validate", "attr.ib", "addonpayments.utils.GenerationUtils" ]
[((1235, 1280), 'attr.ib', 'Field', ([], {'validator': 'RequestValidator.merchant_id'}), '(validator=RequestValidator.merchant_id)\n', (1240, 1280), True, 'from attr import ib as Field\n'), ((1292, 1311), 'attr.ib', 'Field', ([], {'default': 'None'}), '(default=None)\n', (1297, 1311), True, 'from attr import ib as Field\n'), ((1373, 1430), 'attr.ib', 'Field', ([], {'default': 'None', 'validator': 'RequestValidator.timestamp'}), '(default=None, validator=RequestValidator.timestamp)\n', (1378, 1430), True, 'from attr import ib as Field\n'), ((1445, 1501), 'attr.ib', 'Field', ([], {'default': 'None', 'validator': 'RequestValidator.order_id'}), '(default=None, validator=RequestValidator.order_id)\n', (1450, 1501), True, 'from attr import ib as Field\n'), ((1557, 1613), 'attr.ib', 'Field', ([], {'default': 'None', 'validator': 'RequestValidator.sha1hash'}), '(default=None, validator=RequestValidator.sha1hash)\n', (1562, 1613), True, 'from attr import ib as Field\n'), ((1650, 1703), 'attr.ib', 'Field', ([], {'default': '""""""', 'validator': 'RequestValidator.account'}), "(default='', validator=RequestValidator.account)\n", (1655, 1703), True, 'from attr import ib as Field\n'), ((2238, 2255), 'addonpayments.utils.GenerationUtils', 'GenerationUtils', ([], {}), '()\n', (2253, 2255), False, 'from addonpayments.utils import GenerationUtils\n'), ((2629, 2648), 'attr.validate', 'attr.validate', (['self'], {}), '(self)\n', (2642, 2648), False, 'import attr\n')]
__author__ = 'hofmann' import os import glob import time import shutil import tempfile from scripts.Validator.validator import Validator class MGCluster(Validator): """ Alignment and clustering of marker genes with references """ _label = "MGCluster" _cluster_method_choices = ['average', 'furthest', 'nearest'] _file_name_map = "map.tsv" _silva_ref_files = ["mothur_ref_distances", "mothur_ref_names", "mothur_alignment_ref.fasta", _file_name_map] # mothur command: cluster.split _mothur_cmd_cluster_split = "; ".join([ 'unique.seqs(fasta={mg_fasta})', 'align.seqs(candidate=current, template={ref_align}, align=gotoh, flip=t, processors={processors})', 'remove.seqs(accnos={filename}.unique.flip.accnos, fasta=current, name=current)', 'merge.files(input={filename}.names-{ref_names}, output={filename}.merged.names)', 'merge.files(input={filename}.pick.names-{ref_names}, output={filename}.merged.names)', 'set.current(name={filename}.merged.names, column={local_dist})', 'dist.seqs(oldfasta={ref_align}, column=current, cutoff={cutoff}, processors={processors}, calc=onegap, countends=F)', 'set.current(column={local_dist})', 'cluster.split(cutoff={cutoff}, method={method}, precision={precision}, column={local_dist}, name={filename}.merged.names)' ]) # mothur command: cluster _mothur_cmd_cluster = "; ".join([ "unique.seqs(fasta={mg_fasta})", "align.seqs(candidate=current, template={ref_align}, align=gotoh, flip=t, processors={processors})", "remove.seqs(accnos={filename}.unique.flip.accnos, fasta=current, name=current)", "merge.files(input={filename}.names-{ref_names}, output={filename}.merged.names)", "merge.files(input={filename}.pick.names-{ref_names}, output={filename}.merged.names)", "set.current(name={filename}.merged.names, column={local_dist})", "dist.seqs(oldfasta={ref_align}, column=current, cutoff={cutoff}, processors={processors}, calc=onegap, countends=F)", "set.current(column={local_dist})", "cluster(cutoff={cutoff}, method={method}, precision={precision}, column={local_dist}, name={filename}.merged.names)" ]) def __init__( self, mothur_executable, directory_silva_reference, max_processors=1, temp_directory=None, logfile=None, verbose=False, debug=False): """ Constructor @param mothur_executable: File path to mothur binary @type mothur_executable: str | unicode @param directory_silva_reference: Path to directory with SILVA reference database files @type directory_silva_reference: str | unicode @param max_processors: Maximum number of available processors @type max_processors: int | long @param temp_directory: Directory for temporary data @type temp_directory: str | unicode @param logfile: file handler or file path to a log file @type logfile: file | FileIO | StringIO | basestring @param verbose: Not verbose means that only warnings and errors will be past to stream @type verbose: bool @param debug: Display debug messages @type debug: bool """ assert self.validate_file(mothur_executable, executable=True) assert self.validate_dir(directory_silva_reference, file_names=self._silva_ref_files) assert self.validate_number(max_processors, minimum=1) assert self.validate_dir(temp_directory) super(MGCluster, self).__init__(logfile=logfile, verbose=verbose, debug=False) self._mothur_executable = mothur_executable self._tmp_dir = tempfile.mkdtemp(dir=temp_directory) self._max_processors = max_processors self._debug = debug ref_silva_distances = self._get_symbolic_link_path(os.path.join(directory_silva_reference, "mothur_ref_distances")) ref_silva_names = self._get_symbolic_link_path(os.path.join(directory_silva_reference, "mothur_ref_names")) # unique ref_silva_alignment = self._get_symbolic_link_path(os.path.join(directory_silva_reference, "mothur_alignment_ref.fasta")) self._ref_silva_distances = ref_silva_distances self._ref_silva_names = ref_silva_names self._ref_silva_alignment = ref_silva_alignment # local_distance = os.path.join(self._working_dir, "ref.align.dist") self._local_distance = "ref.align.dist" def __exit__(self, type, value, traceback): super(MGCluster, self).__exit__(type, value, traceback) if not self._debug: shutil.rmtree(self._tmp_dir) def cluster(self, marker_gene_fasta, output_cluster_file, distance_cutoff, precision=1000, method="average"): """ CLuster Markergenes @param marker_gene_fasta: Fasta formatted file with marker genes @type marker_gene_fasta: str | unicode @param output_cluster_file: Output of mg clustering @type output_cluster_file: str | unicode @param distance_cutoff: Exclude irrelevant higher distances before clustering @type distance_cutoff: int | long @param precision: Cluster are made in steps: 10: 0.1, 100: 0.01, 1000: 0.001 @type precision: int | long @param method: Cluster algorithm 'average', 'furthest', 'nearest' @type method: str | unicode @rtype: None """ assert self.validate_file(marker_gene_fasta) assert self.validate_dir(output_cluster_file, only_parent=True) assert self.validate_number(distance_cutoff, minimum=0, maximum=1) assert self.validate_number(precision, minimum=0) assert method in self._cluster_method_choices self._logger.info("Starting clustering process") start = time.time() old_dir = os.getcwd() # local paths required or mothur messes up the dist.seqs command, do not use absolut paths!!! os.chdir(self._tmp_dir) local_marker_gene_fasta = self._get_symbolic_link_path(marker_gene_fasta) shutil.copy2(self._ref_silva_distances, self._local_distance) mothur_cmd = self._get_mothur_cmd(local_marker_gene_fasta, distance_cutoff, precision, method=method) cmd = "{mothur_executable} '#{mothur_cmd}'".format( mothur_executable=self._mothur_executable, mothur_cmd=mothur_cmd) os.system(cmd) os.chdir(old_dir) project_folder = os.path.dirname(output_cluster_file) find_mask_list = os.path.join(self._tmp_dir, "*.list") list_of_files = glob.glob(find_mask_list) if len(list_of_files) == 0: msg = "Clustering with mothur failed #1" self._logger.error(msg) raise RuntimeError(msg) elif len(list_of_files) == 1: local_distance = os.path.join(self._tmp_dir, "ref.align.dist") if os.path.exists(local_distance): if self._debug: shutil.copy2(local_distance, os.path.join(project_folder, "mothur_distances.tsv")) shutil.copy2(list_of_files[0], output_cluster_file) self._logger.info("Clustering success") else: msg = "Clustering with mothur failed #2" self._logger.error(msg) raise RuntimeError(msg) else: msg = "Clustering with odd result, several files found!" self._logger.error(msg) raise RuntimeError(msg) end = time.time() # move logfiles find_mask_list = os.path.join(self._tmp_dir, "*.logfile") list_of_log_files = glob.glob(find_mask_list) for log_file in list_of_log_files: log_file_name = os.path.basename(log_file) shutil.copy2(log_file, os.path.join(project_folder, log_file_name)) self._logger.info("Done ({}s)".format(round(end - start), 1)) def _get_symbolic_link_path(self, original_file_path): """ Get path to local symbolic link since mothur might act odd else. @param original_file_path: @type original_file_path: str | unicode @return: Local path @rtype: str | unicode """ assert isinstance(original_file_path, basestring) basename = os.path.basename(original_file_path) new_path = os.path.join(self._tmp_dir, basename) os.symlink(original_file_path, new_path) # return new_path return basename def _get_mothur_cmd(self, marker_gene_fasta, cutoff, precision, method="average"): """ Get command line to run mothur @param marker_gene_fasta: Fasta formatted file with marker genes @type marker_gene_fasta: str | unicode @param cutoff: Exclude irrelevant higher distances before clustering @type cutoff: int | long @param precision: Cluster are made in steps: 10: 0.1, 100: 0.01, 1000: 0.001 @type precision: int | long @param method: Cluster algorithm 'average', 'furthest', 'nearest' @type method: str | unicode @return: Command line @rtype: str | unicode """ assert self.validate_file(marker_gene_fasta) assert self.validate_number(cutoff, minimum=0, maximum=1) assert self.validate_number(precision, minimum=0) assert method in self._cluster_method_choices # basename = os.path.basename(marker_gene_fasta) # filename, extension = os.path.splitext(basename) filename, extension = os.path.splitext(marker_gene_fasta) # # mothur_cmd = MGCluster._mothur_cmd_cluster mothur_cmd = MGCluster._mothur_cmd_cluster_split return mothur_cmd.format( wd=self._tmp_dir, debug=self._tmp_dir, # filename=os.path.join(self._working_dir, filename), filename=filename, mg_fasta=marker_gene_fasta, ref_align=self._ref_silva_alignment, ref_names=self._ref_silva_names, local_dist=self._local_distance, processors=self._max_processors, cutoff=cutoff, precision=precision, method=method) @staticmethod def get_file_name_of_map(): return MGCluster._file_name_map
[ "os.path.basename", "os.getcwd", "shutil.copy2", "os.path.dirname", "os.path.exists", "os.system", "time.time", "tempfile.mkdtemp", "os.path.splitext", "glob.glob", "shutil.rmtree", "os.symlink", "os.path.join", "os.chdir" ]
[((3389, 3425), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {'dir': 'temp_directory'}), '(dir=temp_directory)\n', (3405, 3425), False, 'import tempfile\n'), ((5297, 5308), 'time.time', 'time.time', ([], {}), '()\n', (5306, 5308), False, 'import time\n'), ((5321, 5332), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (5330, 5332), False, 'import os\n'), ((5431, 5454), 'os.chdir', 'os.chdir', (['self._tmp_dir'], {}), '(self._tmp_dir)\n', (5439, 5454), False, 'import os\n'), ((5533, 5594), 'shutil.copy2', 'shutil.copy2', (['self._ref_silva_distances', 'self._local_distance'], {}), '(self._ref_silva_distances, self._local_distance)\n', (5545, 5594), False, 'import shutil\n'), ((5828, 5842), 'os.system', 'os.system', (['cmd'], {}), '(cmd)\n', (5837, 5842), False, 'import os\n'), ((5845, 5862), 'os.chdir', 'os.chdir', (['old_dir'], {}), '(old_dir)\n', (5853, 5862), False, 'import os\n'), ((5883, 5919), 'os.path.dirname', 'os.path.dirname', (['output_cluster_file'], {}), '(output_cluster_file)\n', (5898, 5919), False, 'import os\n'), ((5939, 5976), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""*.list"""'], {}), "(self._tmp_dir, '*.list')\n", (5951, 5976), False, 'import os\n'), ((5995, 6020), 'glob.glob', 'glob.glob', (['find_mask_list'], {}), '(find_mask_list)\n', (6004, 6020), False, 'import glob\n'), ((6733, 6744), 'time.time', 'time.time', ([], {}), '()\n', (6742, 6744), False, 'import time\n'), ((6783, 6823), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""*.logfile"""'], {}), "(self._tmp_dir, '*.logfile')\n", (6795, 6823), False, 'import os\n'), ((6846, 6871), 'glob.glob', 'glob.glob', (['find_mask_list'], {}), '(find_mask_list)\n', (6855, 6871), False, 'import glob\n'), ((7410, 7446), 'os.path.basename', 'os.path.basename', (['original_file_path'], {}), '(original_file_path)\n', (7426, 7446), False, 'import os\n'), ((7460, 7497), 'os.path.join', 'os.path.join', (['self._tmp_dir', 'basename'], {}), '(self._tmp_dir, basename)\n', (7472, 7497), False, 'import os\n'), ((7500, 7540), 'os.symlink', 'os.symlink', (['original_file_path', 'new_path'], {}), '(original_file_path, new_path)\n', (7510, 7540), False, 'import os\n'), ((8507, 8542), 'os.path.splitext', 'os.path.splitext', (['marker_gene_fasta'], {}), '(marker_gene_fasta)\n', (8523, 8542), False, 'import os\n'), ((3541, 3604), 'os.path.join', 'os.path.join', (['directory_silva_reference', '"""mothur_ref_distances"""'], {}), "(directory_silva_reference, 'mothur_ref_distances')\n", (3553, 3604), False, 'import os\n'), ((3655, 3714), 'os.path.join', 'os.path.join', (['directory_silva_reference', '"""mothur_ref_names"""'], {}), "(directory_silva_reference, 'mothur_ref_names')\n", (3667, 3714), False, 'import os\n'), ((3779, 3848), 'os.path.join', 'os.path.join', (['directory_silva_reference', '"""mothur_alignment_ref.fasta"""'], {}), "(directory_silva_reference, 'mothur_alignment_ref.fasta')\n", (3791, 3848), False, 'import os\n'), ((4234, 4262), 'shutil.rmtree', 'shutil.rmtree', (['self._tmp_dir'], {}), '(self._tmp_dir)\n', (4247, 4262), False, 'import shutil\n'), ((6928, 6954), 'os.path.basename', 'os.path.basename', (['log_file'], {}), '(log_file)\n', (6944, 6954), False, 'import os\n'), ((6201, 6246), 'os.path.join', 'os.path.join', (['self._tmp_dir', '"""ref.align.dist"""'], {}), "(self._tmp_dir, 'ref.align.dist')\n", (6213, 6246), False, 'import os\n'), ((6253, 6283), 'os.path.exists', 'os.path.exists', (['local_distance'], {}), '(local_distance)\n', (6267, 6283), False, 'import os\n'), ((6981, 7024), 'os.path.join', 'os.path.join', (['project_folder', 'log_file_name'], {}), '(project_folder, log_file_name)\n', (6993, 7024), False, 'import os\n'), ((6397, 6448), 'shutil.copy2', 'shutil.copy2', (['list_of_files[0]', 'output_cluster_file'], {}), '(list_of_files[0], output_cluster_file)\n', (6409, 6448), False, 'import shutil\n'), ((6339, 6391), 'os.path.join', 'os.path.join', (['project_folder', '"""mothur_distances.tsv"""'], {}), "(project_folder, 'mothur_distances.tsv')\n", (6351, 6391), False, 'import os\n')]
from datetime import timedelta from celery import Celery from ..conf import setting celery = Celery( 'noweibo', broker=setting.CELERY_BROKER, ) celery.conf.update( CELERY_TIMEZONE='Asia/Shanghai', CELERY_IMPORTS=('noweibo.tasks.periodic', ), CELERY_RESULT_BACKEND=setting.CELERY_BACKEND, CELERY_IGNORE_RESULT=True, CELERY_ACCEPT_CONTENT=['pickle', 'json', ], CELERY_TASK_SERIALIZER='pickle', CELERYD_MAX_TASKS_PER_CHILD=100, CELERYBEAT_SCHEDULE={ 'user_update': { 'task': 'noweibo.tasks.periodic.user_update', 'schedule': timedelta(minutes=setting.SCHEDULE_PERIODIC), 'args': (), }, 'weibo_update': { 'task': 'noweibo.tasks.periodic.weibo_update', 'schedule': timedelta(minutes=setting.SCHEDULE_PERIODIC), 'args': (), }, 'weibo_scan': { 'task': 'noweibo.tasks.periodic.weibo_scan', 'schedule': timedelta(minutes=setting.SCHEDULE_PERIODIC), 'args': (), }, 'weibo_delete': { 'task': 'noweibo.tasks.periodic.weibo_delete', 'schedule': timedelta(minutes=setting.SCHEDULE_PERIODIC), 'args': (), }, }, ADMINS=(('<NAME>', '<EMAIL>'), ), CELERY_SEND_TASK_ERROR_EMAILS=True, SERVER_EMAIL='<EMAIL>', EMAIL_HOST='smtp.163.com', EMAIL_PORT=25, EMAIL_HOST_USER='<EMAIL>', EMAIL_HOST_PASSWORD='<PASSWORD>', ) if __name__ == '__main__': celery.start()
[ "celery.Celery", "datetime.timedelta" ]
[((97, 144), 'celery.Celery', 'Celery', (['"""noweibo"""'], {'broker': 'setting.CELERY_BROKER'}), "('noweibo', broker=setting.CELERY_BROKER)\n", (103, 144), False, 'from celery import Celery\n'), ((599, 643), 'datetime.timedelta', 'timedelta', ([], {'minutes': 'setting.SCHEDULE_PERIODIC'}), '(minutes=setting.SCHEDULE_PERIODIC)\n', (608, 643), False, 'from datetime import timedelta\n'), ((789, 833), 'datetime.timedelta', 'timedelta', ([], {'minutes': 'setting.SCHEDULE_PERIODIC'}), '(minutes=setting.SCHEDULE_PERIODIC)\n', (798, 833), False, 'from datetime import timedelta\n'), ((975, 1019), 'datetime.timedelta', 'timedelta', ([], {'minutes': 'setting.SCHEDULE_PERIODIC'}), '(minutes=setting.SCHEDULE_PERIODIC)\n', (984, 1019), False, 'from datetime import timedelta\n'), ((1165, 1209), 'datetime.timedelta', 'timedelta', ([], {'minutes': 'setting.SCHEDULE_PERIODIC'}), '(minutes=setting.SCHEDULE_PERIODIC)\n', (1174, 1209), False, 'from datetime import timedelta\n')]
"""Next-gen alignments with BWA (http://bio-bwa.sourceforge.net/) """ import contextlib import gzip import os from Bio.SeqIO.QualityIO import FastqGeneralIterator from bcbio.pipeline import config_utils from bcbio import utils from bcbio.distributed.transaction import file_transaction from bcbio.ngsalign import novoalign from bcbio.provenance import do galaxy_location_file = "bwa_index.loc" def align_bam(in_bam, ref_file, names, align_dir, config): """Perform direct alignment of an input BAM file with BWA using pipes. This avoids disk IO by piping between processes: - samtools sort of input BAM to queryname - bedtools conversion to interleaved FASTQ - bwa-mem alignment - samtools conversion to BAM - samtools sort to coordinate """ out_file = os.path.join(align_dir, "{0}-sort.bam".format(names["lane"])) samtools = config_utils.get_program("samtools", config) bedtools = config_utils.get_program("bedtools", config) bwa = config_utils.get_program("bwa", config) resources = config_utils.get_resources("samtools", config) num_cores = config["algorithm"].get("num_cores", 1) # adjust memory for samtools since used for input and output max_mem = config_utils.adjust_memory(resources.get("memory", "1G"), 3, "decrease") rg_info = novoalign.get_rg_info(names) if not utils.file_exists(out_file): with utils.curdir_tmpdir() as work_dir: with file_transaction(out_file) as tx_out_file: tx_out_prefix = os.path.splitext(tx_out_file)[0] prefix1 = "%s-in1" % tx_out_prefix cmd = ("{samtools} sort -n -o -l 0 -@ {num_cores} -m {max_mem} {in_bam} {prefix1} " "| {bedtools} bamtofastq -i /dev/stdin -fq /dev/stdout -fq2 /dev/stdout " "| {bwa} mem -p -M -t {num_cores} -R '{rg_info}' -v 1 {ref_file} - " "| {samtools} view -b -S -u - " "| {samtools} sort -@ {num_cores} -m {max_mem} - {tx_out_prefix}") cmd = cmd.format(**locals()) do.run(cmd, "bwa mem alignment from BAM: %s" % names["sample"], None, [do.file_nonempty(tx_out_file)]) return out_file def can_pipe(fastq_file): """bwa-mem handle longer (> 75bp) reads with improved piping. Default to no piping if more than half the first 500 reads are small. """ min_size = 75 thresh = 0.5 tocheck = 500 shorter = 0 if fastq_file.endswith(".gz"): handle = gzip.open(fastq_file, "rb") else: handle = open(fastq_file) with contextlib.closing(handle) as in_handle: fqit = FastqGeneralIterator(in_handle) for i, (_, seq, _) in enumerate(fqit): if len(seq) < min_size: shorter += 1 if i > tocheck: break return (float(shorter) / float(tocheck)) <= thresh def align_pipe(fastq_file, pair_file, ref_file, names, align_dir, config): """Perform piped alignment of fastq input files, generating sorted output BAM. """ pair_file = pair_file if pair_file else "" out_file = os.path.join(align_dir, "{0}-sort.bam".format(names["lane"])) samtools = config_utils.get_program("samtools", config) bwa = config_utils.get_program("bwa", config) resources = config_utils.get_resources("samtools", config) num_cores = config["algorithm"].get("num_cores", 1) # adjust memory for samtools since used alongside alignment max_mem = config_utils.adjust_memory(resources.get("memory", "2G"), 3, "decrease") rg_info = novoalign.get_rg_info(names) if not utils.file_exists(out_file): with utils.curdir_tmpdir() as work_dir: with file_transaction(out_file) as tx_out_file: tx_out_prefix = os.path.splitext(tx_out_file)[0] cmd = ("{bwa} mem -M -t {num_cores} -R '{rg_info}' -v 1 {ref_file} " "{fastq_file} {pair_file} " "| {samtools} view -b -S -u - " "| {samtools} sort -@ {num_cores} -m {max_mem} - {tx_out_prefix}") cmd = cmd.format(**locals()) do.run(cmd, "bwa mem alignment from fastq: %s" % names["sample"], None, [do.file_nonempty(tx_out_file)]) return out_file def align(fastq_file, pair_file, ref_file, out_base, align_dir, config, names=None): """Perform a BWA alignment, generating a SAM file. """ sai1_file = os.path.join(align_dir, "%s_1.sai" % out_base) sai2_file = (os.path.join(align_dir, "%s_2.sai" % out_base) if pair_file else None) sam_file = os.path.join(align_dir, "%s.sam" % out_base) if not utils.file_exists(sam_file): if not utils.file_exists(sai1_file): with file_transaction(sai1_file) as tx_sai1_file: _run_bwa_align(fastq_file, ref_file, tx_sai1_file, config) if sai2_file and not utils.file_exists(sai2_file): with file_transaction(sai2_file) as tx_sai2_file: _run_bwa_align(pair_file, ref_file, tx_sai2_file, config) align_type = "sampe" if sai2_file else "samse" sam_cl = [config_utils.get_program("bwa", config), align_type, ref_file, sai1_file] if sai2_file: sam_cl.append(sai2_file) sam_cl.append(fastq_file) if sai2_file: sam_cl.append(pair_file) with file_transaction(sam_file) as tx_sam_file: cmd = "{cl} > {out_file}".format(cl=" ".join(sam_cl), out_file=tx_sam_file) do.run(cmd, "bwa {align_type}".format(**locals()), None) return sam_file def _bwa_args_from_config(config): num_cores = config["algorithm"].get("num_cores", 1) core_flags = ["-t", str(num_cores)] if num_cores > 1 else [] qual_format = config["algorithm"].get("quality_format", "").lower() qual_flags = ["-I"] if qual_format == "illumina" else [] return core_flags + qual_flags def _run_bwa_align(fastq_file, ref_file, out_file, config): aln_cl = [config_utils.get_program("bwa", config), "aln", "-n %s" % config["algorithm"]["max_errors"], "-k %s" % config["algorithm"]["max_errors"]] aln_cl += _bwa_args_from_config(config) aln_cl += [ref_file, fastq_file] cmd = "{cl} > {out_file}".format(cl=" ".join(aln_cl), out_file=out_file) do.run(cmd, "bwa aln: {f}".format(f=os.path.basename(fastq_file)), None)
[ "bcbio.utils.file_exists", "bcbio.ngsalign.novoalign.get_rg_info", "gzip.open", "bcbio.pipeline.config_utils.get_resources", "bcbio.provenance.do.file_nonempty", "os.path.basename", "Bio.SeqIO.QualityIO.FastqGeneralIterator", "bcbio.utils.curdir_tmpdir", "bcbio.pipeline.config_utils.get_program", "os.path.splitext", "contextlib.closing", "bcbio.distributed.transaction.file_transaction", "os.path.join" ]
[((875, 919), 'bcbio.pipeline.config_utils.get_program', 'config_utils.get_program', (['"""samtools"""', 'config'], {}), "('samtools', config)\n", (899, 919), False, 'from bcbio.pipeline import config_utils\n'), ((935, 979), 'bcbio.pipeline.config_utils.get_program', 'config_utils.get_program', (['"""bedtools"""', 'config'], {}), "('bedtools', config)\n", (959, 979), False, 'from bcbio.pipeline import config_utils\n'), ((990, 1029), 'bcbio.pipeline.config_utils.get_program', 'config_utils.get_program', (['"""bwa"""', 'config'], {}), "('bwa', config)\n", (1014, 1029), False, 'from bcbio.pipeline import config_utils\n'), ((1046, 1092), 'bcbio.pipeline.config_utils.get_resources', 'config_utils.get_resources', (['"""samtools"""', 'config'], {}), "('samtools', config)\n", (1072, 1092), False, 'from bcbio.pipeline import config_utils\n'), ((1356, 1384), 'bcbio.ngsalign.novoalign.get_rg_info', 'novoalign.get_rg_info', (['names'], {}), '(names)\n', (1377, 1384), False, 'from bcbio.ngsalign import novoalign\n'), ((3278, 3322), 'bcbio.pipeline.config_utils.get_program', 'config_utils.get_program', (['"""samtools"""', 'config'], {}), "('samtools', config)\n", (3302, 3322), False, 'from bcbio.pipeline import config_utils\n'), ((3333, 3372), 'bcbio.pipeline.config_utils.get_program', 'config_utils.get_program', (['"""bwa"""', 'config'], {}), "('bwa', config)\n", (3357, 3372), False, 'from bcbio.pipeline import config_utils\n'), ((3389, 3435), 'bcbio.pipeline.config_utils.get_resources', 'config_utils.get_resources', (['"""samtools"""', 'config'], {}), "('samtools', config)\n", (3415, 3435), False, 'from bcbio.pipeline import config_utils\n'), ((3698, 3726), 'bcbio.ngsalign.novoalign.get_rg_info', 'novoalign.get_rg_info', (['names'], {}), '(names)\n', (3719, 3726), False, 'from bcbio.ngsalign import novoalign\n'), ((4605, 4651), 'os.path.join', 'os.path.join', (['align_dir', "('%s_1.sai' % out_base)"], {}), "(align_dir, '%s_1.sai' % out_base)\n", (4617, 4651), False, 'import os\n'), ((4772, 4816), 'os.path.join', 'os.path.join', (['align_dir', "('%s.sam' % out_base)"], {}), "(align_dir, '%s.sam' % out_base)\n", (4784, 4816), False, 'import os\n'), ((1396, 1423), 'bcbio.utils.file_exists', 'utils.file_exists', (['out_file'], {}), '(out_file)\n', (1413, 1423), False, 'from bcbio import utils\n'), ((2586, 2613), 'gzip.open', 'gzip.open', (['fastq_file', '"""rb"""'], {}), "(fastq_file, 'rb')\n", (2595, 2613), False, 'import gzip\n'), ((2667, 2693), 'contextlib.closing', 'contextlib.closing', (['handle'], {}), '(handle)\n', (2685, 2693), False, 'import contextlib\n'), ((2723, 2754), 'Bio.SeqIO.QualityIO.FastqGeneralIterator', 'FastqGeneralIterator', (['in_handle'], {}), '(in_handle)\n', (2743, 2754), False, 'from Bio.SeqIO.QualityIO import FastqGeneralIterator\n'), ((3738, 3765), 'bcbio.utils.file_exists', 'utils.file_exists', (['out_file'], {}), '(out_file)\n', (3755, 3765), False, 'from bcbio import utils\n'), ((4669, 4715), 'os.path.join', 'os.path.join', (['align_dir', "('%s_2.sai' % out_base)"], {}), "(align_dir, '%s_2.sai' % out_base)\n", (4681, 4715), False, 'import os\n'), ((4828, 4855), 'bcbio.utils.file_exists', 'utils.file_exists', (['sam_file'], {}), '(sam_file)\n', (4845, 4855), False, 'from bcbio import utils\n'), ((6166, 6205), 'bcbio.pipeline.config_utils.get_program', 'config_utils.get_program', (['"""bwa"""', 'config'], {}), "('bwa', config)\n", (6190, 6205), False, 'from bcbio.pipeline import config_utils\n'), ((1438, 1459), 'bcbio.utils.curdir_tmpdir', 'utils.curdir_tmpdir', ([], {}), '()\n', (1457, 1459), False, 'from bcbio import utils\n'), ((3780, 3801), 'bcbio.utils.curdir_tmpdir', 'utils.curdir_tmpdir', ([], {}), '()\n', (3799, 3801), False, 'from bcbio import utils\n'), ((4872, 4900), 'bcbio.utils.file_exists', 'utils.file_exists', (['sai1_file'], {}), '(sai1_file)\n', (4889, 4900), False, 'from bcbio import utils\n'), ((5307, 5346), 'bcbio.pipeline.config_utils.get_program', 'config_utils.get_program', (['"""bwa"""', 'config'], {}), "('bwa', config)\n", (5331, 5346), False, 'from bcbio.pipeline import config_utils\n'), ((5546, 5572), 'bcbio.distributed.transaction.file_transaction', 'file_transaction', (['sam_file'], {}), '(sam_file)\n', (5562, 5572), False, 'from bcbio.distributed.transaction import file_transaction\n'), ((1490, 1516), 'bcbio.distributed.transaction.file_transaction', 'file_transaction', (['out_file'], {}), '(out_file)\n', (1506, 1516), False, 'from bcbio.distributed.transaction import file_transaction\n'), ((3832, 3858), 'bcbio.distributed.transaction.file_transaction', 'file_transaction', (['out_file'], {}), '(out_file)\n', (3848, 3858), False, 'from bcbio.distributed.transaction import file_transaction\n'), ((4919, 4946), 'bcbio.distributed.transaction.file_transaction', 'file_transaction', (['sai1_file'], {}), '(sai1_file)\n', (4935, 4946), False, 'from bcbio.distributed.transaction import file_transaction\n'), ((5068, 5096), 'bcbio.utils.file_exists', 'utils.file_exists', (['sai2_file'], {}), '(sai2_file)\n', (5085, 5096), False, 'from bcbio import utils\n'), ((5115, 5142), 'bcbio.distributed.transaction.file_transaction', 'file_transaction', (['sai2_file'], {}), '(sai2_file)\n', (5131, 5142), False, 'from bcbio.distributed.transaction import file_transaction\n'), ((6530, 6558), 'os.path.basename', 'os.path.basename', (['fastq_file'], {}), '(fastq_file)\n', (6546, 6558), False, 'import os\n'), ((1565, 1594), 'os.path.splitext', 'os.path.splitext', (['tx_out_file'], {}), '(tx_out_file)\n', (1581, 1594), False, 'import os\n'), ((3907, 3936), 'os.path.splitext', 'os.path.splitext', (['tx_out_file'], {}), '(tx_out_file)\n', (3923, 3936), False, 'import os\n'), ((2238, 2267), 'bcbio.provenance.do.file_nonempty', 'do.file_nonempty', (['tx_out_file'], {}), '(tx_out_file)\n', (2254, 2267), False, 'from bcbio.provenance import do\n'), ((4378, 4407), 'bcbio.provenance.do.file_nonempty', 'do.file_nonempty', (['tx_out_file'], {}), '(tx_out_file)\n', (4394, 4407), False, 'from bcbio.provenance import do\n')]
from flask_login import current_user from portality.core import app from portality import models # query sanitisers ################## def public_query_validator(q): # no deep paging if q.from_result() > 10000: return False if q.size() > 200: return False # if the query has facets, that's fine # otherwise, if it has no facets, only allow "count" style # queries with zero results returned if q.has_facets(): return True else: return q.size() == 0 # query filters ############### def only_in_doaj(q): q.clear_match_all() q.add_must({"term" : {"admin.in_doaj" : True}}) return q def owner(q): q.clear_match_all() q.add_must({"term" : {"admin.owner.exact" : current_user.id}}) return q def update_request(q): q.clear_match_all() q.add_must({"range" : {"created_date" : {"gte" : app.config.get("UPDATE_REQUEST_SHOW_OLDEST")}}}) return q def associate(q): q.clear_match_all() q.add_must({"term" : {"admin.editor.exact" : current_user.id}}) return q def editor(q): gnames = [] groups = models.EditorGroup.groups_by_editor(current_user.id) for g in groups: gnames.append(g.name) q.clear_match_all() q.add_must({"terms" : {"admin.editor_group.exact" : gnames}}) return q def private_source(q): q.add_include(["admin.application_status", "suggestion", "admin.ticked", "admin.seal", "last_updated", "created_date", "id", "bibjson"]) return q def public_source(q): q.add_include(["admin.ticked", "admin.seal", "last_updated", "created_date", "id", "bibjson"]) return q # results filters ################# def public_result_filter(results, unpacked=False): # Dealing with single unpacked result if unpacked: if "admin" in results: for k in results["admin"].keys(): if k not in ["ticked", "seal"]: del results["admin"][k] return results # Dealing with a list of es results if "hits" not in results: return results if "hits" not in results["hits"]: return results for hit in results["hits"]["hits"]: if "_source" in hit: if "admin" in hit["_source"]: for k in hit["_source"]["admin"].keys(): if k not in ["ticked", "seal"]: del hit["_source"]["admin"][k] return results def prune_author_emails(results, unpacked=False): # Dealing with single unpacked ES result if unpacked: if "bibjson" in results: if "author" in results["bibjson"]: for a in results["bibjson"]["author"]: if "email" in a: del a["email"] return results # Dealing with a list of ES results if "hits" not in results: return results if "hits" not in results["hits"]: return results for hit in results["hits"]["hits"]: if "_source" in hit: if "bibjson" in hit["_source"]: if "author" in hit["_source"]["bibjson"]: for a in hit["_source"]["bibjson"]["author"]: if "email" in a: del a["email"] return results def publisher_result_filter(results, unpacked=False): # Dealing with single unpacked ES result if unpacked: if "admin" in results: for k in results["admin"].keys(): if k not in ["ticked", "seal", "in_doaj", "related_applications", "current_application", "current_journal", "application_status"]: del results["admin"][k] return results # Dealing with a list of ES results if "hits" not in results: return results if "hits" not in results["hits"]: return results for hit in results["hits"]["hits"]: if "_source" in hit: if "admin" in hit["_source"]: for k in hit["_source"]["admin"].keys(): if k not in ["ticked", "seal", "in_doaj", "related_applications", "current_application", "current_journal", "application_status"]: del hit["_source"]["admin"][k] return results
[ "portality.core.app.config.get", "portality.models.EditorGroup.groups_by_editor" ]
[((1118, 1170), 'portality.models.EditorGroup.groups_by_editor', 'models.EditorGroup.groups_by_editor', (['current_user.id'], {}), '(current_user.id)\n', (1153, 1170), False, 'from portality import models\n'), ((885, 929), 'portality.core.app.config.get', 'app.config.get', (['"""UPDATE_REQUEST_SHOW_OLDEST"""'], {}), "('UPDATE_REQUEST_SHOW_OLDEST')\n", (899, 929), False, 'from portality.core import app\n')]
import numpy as np import matplotlib.pyplot as plt import pandas as pd from pyGDM2 import (structures, materials, core, linear, fields, propagators, tools) def get_spectrum(geometry, step, wavelengths): '''Obtains a uv-vis spectra for a specified geometry''' material = materials.gold() struct = structures.struct(step, geometry, material, verbose=False) struct = structures.center_struct(struct) field_generator = fields.plane_wave kwargs = dict(theta=0, inc_angle=180) efield = fields.efield(field_generator, wavelengths=wavelengths, kwargs=kwargs) dyads = propagators.DyadsQuasistatic123(n1 = 1.33, n2 = 1.33, n3 = 1.33) sim = core.simulation(struct, efield, dyads) sim.scatter(verbose=False) field_kwargs = tools.get_possible_field_params_spectra(sim) config_idx = 0 wl, spectrum = tools.calculate_spectrum(sim, field_kwargs[config_idx], linear.extinct) abs_ = spectrum.T[2]/np.max(spectrum.T[2]) return abs_, geometry def obtain_spectra(step, radius_mean, radius_std, wavelength): '''Calculates the absorption spectra of polydisperse gold spheres that have a normally distributed radius. Inputs: - step: The step size used for the calculation. - radius_mean: The mean of the normal distribution used to calculate the radius of the sphere - radius_std: The std of the normal distribution used to calculate the radius of the sphere - wavelength: A 1-d array of the wavelength values to calculate the absorption spectra Outputs: - array: A 2d array of the wavelengths and Intensity values. ''' n_spheres = 7 radius_list = [] for i in range(n_spheres): # Normal distribution parameters for Sphere Radius radius_mean = 6 radius_std = 3 r = (np.random.randn(1)[0]*radius_std + radius_mean)/step radius_list.append(r) geometry = structures.sphere(step, R=r, mesh='cube') loc_array = np.array([[0,0,0],[0,0,1],[0,0,-1],[1,0,0],[-1,0,0],[0,1,0],[0,-1,0]]) sphere = np.hstack((geometry[:,0].reshape(-1,1) + 30*loc_array[i,0]*radius_mean, geometry[:,1].reshape(-1,1) + 30*loc_array[i,1]*radius_mean, geometry[:,2].reshape(-1,1)+ 30*loc_array[i,2]*radius_mean)) if i == 0: sample = sphere else: sample = np.vstack((sample, sphere)) I, g = get_spectrum(geometry, step, wavelength) array = np.hstack((wavelength.reshape(-1,1), I.reshape(-1,1))) return array
[ "numpy.random.randn", "pyGDM2.materials.gold", "pyGDM2.tools.calculate_spectrum", "pyGDM2.structures.center_struct", "pyGDM2.structures.struct", "pyGDM2.core.simulation", "numpy.max", "pyGDM2.structures.sphere", "numpy.array", "pyGDM2.propagators.DyadsQuasistatic123", "pyGDM2.fields.efield", "pyGDM2.tools.get_possible_field_params_spectra", "numpy.vstack" ]
[((322, 338), 'pyGDM2.materials.gold', 'materials.gold', ([], {}), '()\n', (336, 338), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((352, 410), 'pyGDM2.structures.struct', 'structures.struct', (['step', 'geometry', 'material'], {'verbose': '(False)'}), '(step, geometry, material, verbose=False)\n', (369, 410), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((424, 456), 'pyGDM2.structures.center_struct', 'structures.center_struct', (['struct'], {}), '(struct)\n', (448, 456), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((553, 623), 'pyGDM2.fields.efield', 'fields.efield', (['field_generator'], {'wavelengths': 'wavelengths', 'kwargs': 'kwargs'}), '(field_generator, wavelengths=wavelengths, kwargs=kwargs)\n', (566, 623), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((660, 718), 'pyGDM2.propagators.DyadsQuasistatic123', 'propagators.DyadsQuasistatic123', ([], {'n1': '(1.33)', 'n2': '(1.33)', 'n3': '(1.33)'}), '(n1=1.33, n2=1.33, n3=1.33)\n', (691, 718), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((736, 774), 'pyGDM2.core.simulation', 'core.simulation', (['struct', 'efield', 'dyads'], {}), '(struct, efield, dyads)\n', (751, 774), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((825, 869), 'pyGDM2.tools.get_possible_field_params_spectra', 'tools.get_possible_field_params_spectra', (['sim'], {}), '(sim)\n', (864, 869), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((909, 980), 'pyGDM2.tools.calculate_spectrum', 'tools.calculate_spectrum', (['sim', 'field_kwargs[config_idx]', 'linear.extinct'], {}), '(sim, field_kwargs[config_idx], linear.extinct)\n', (933, 980), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((1035, 1056), 'numpy.max', 'np.max', (['spectrum.T[2]'], {}), '(spectrum.T[2])\n', (1041, 1056), True, 'import numpy as np\n'), ((2015, 2056), 'pyGDM2.structures.sphere', 'structures.sphere', (['step'], {'R': 'r', 'mesh': '"""cube"""'}), "(step, R=r, mesh='cube')\n", (2032, 2056), False, 'from pyGDM2 import structures, materials, core, linear, fields, propagators, tools\n'), ((2077, 2172), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 1], [0, 0, -1], [1, 0, 0], [-1, 0, 0], [0, 1, 0], [0, -1, 0]\n ]'], {}), '([[0, 0, 0], [0, 0, 1], [0, 0, -1], [1, 0, 0], [-1, 0, 0], [0, 1, 0\n ], [0, -1, 0]])\n', (2085, 2172), True, 'import numpy as np\n'), ((2441, 2468), 'numpy.vstack', 'np.vstack', (['(sample, sphere)'], {}), '((sample, sphere))\n', (2450, 2468), True, 'import numpy as np\n'), ((1913, 1931), 'numpy.random.randn', 'np.random.randn', (['(1)'], {}), '(1)\n', (1928, 1931), True, 'import numpy as np\n')]
import logging log = logging.getLogger(__name__) class Codec(object): """Codec.""" def __init__(self): pass def compress(self, stream): """Compress. :param io.BytesIO stream: Uncompressed input stream. :rtype: io.BytesIO """ return stream def decompress(self, stream): """Decompress. :param io.BytesIO stream: Compressed input stream. :rtype: io.BytesIO """ return stream
[ "logging.getLogger" ]
[((22, 49), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (39, 49), False, 'import logging\n')]
# -*- coding: utf-8 -*- """ Created on Wed Jun 3 16:14:46 2020 @author: Dripta """ from covidindia import * import os import pickle file_path = os.path.dirname(os.path.abspath(__file__)) data_path=os.path.join(file_path,'static','server_data') with open(os.path.join(file_path,'updater.txt'),'a') as f: f.write('Update Started\nGathering Data..\n') init = initializer(silent=True) with open(os.path.join(data_path, 'init.pkl'), 'wb') as init_file: pickle.dump(init, init_file) filter_data = Data(init) with open(os.path.join(data_path, 'filter_data.pkl'), 'wb') as filter_file: pickle.dump(filter_data, filter_file) f.write('Gathering Demographic Data...\n') demo = Demographic_overview(init, silent=True) with open(os.path.join(data_path, 'demo.pkl'), 'wb') as demo_file: pickle.dump(demo, demo_file) f.write('Gathering tested data...\n') tested_df = filter_data.tested_subject_data() tested_df.to_csv(os.path.join(data_path, 'tested_data.csv'), index=False) f.write('Update Done.') f.close()
[ "os.path.abspath", "os.path.join", "pickle.dump" ]
[((202, 250), 'os.path.join', 'os.path.join', (['file_path', '"""static"""', '"""server_data"""'], {}), "(file_path, 'static', 'server_data')\n", (214, 250), False, 'import os\n'), ((164, 189), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (179, 189), False, 'import os\n'), ((261, 299), 'os.path.join', 'os.path.join', (['file_path', '"""updater.txt"""'], {}), "(file_path, 'updater.txt')\n", (273, 299), False, 'import os\n'), ((475, 503), 'pickle.dump', 'pickle.dump', (['init', 'init_file'], {}), '(init, init_file)\n', (486, 503), False, 'import pickle\n'), ((621, 658), 'pickle.dump', 'pickle.dump', (['filter_data', 'filter_file'], {}), '(filter_data, filter_file)\n', (632, 658), False, 'import pickle\n'), ((836, 864), 'pickle.dump', 'pickle.dump', (['demo', 'demo_file'], {}), '(demo, demo_file)\n', (847, 864), False, 'import pickle\n'), ((978, 1020), 'os.path.join', 'os.path.join', (['data_path', '"""tested_data.csv"""'], {}), "(data_path, 'tested_data.csv')\n", (990, 1020), False, 'import os\n'), ((410, 445), 'os.path.join', 'os.path.join', (['data_path', '"""init.pkl"""'], {}), "(data_path, 'init.pkl')\n", (422, 445), False, 'import os\n'), ((547, 589), 'os.path.join', 'os.path.join', (['data_path', '"""filter_data.pkl"""'], {}), "(data_path, 'filter_data.pkl')\n", (559, 589), False, 'import os\n'), ((771, 806), 'os.path.join', 'os.path.join', (['data_path', '"""demo.pkl"""'], {}), "(data_path, 'demo.pkl')\n", (783, 806), False, 'import os\n')]
from typing import List from aiohttp import web from openapi.db.path import ApiPath, SqlApiPath from openapi.exc import JsonHttpException from openapi.spec import op from .models import ( MultiKey, MultiKeyUnique, SourcePrice, Task, TaskAdd, TaskOrderableQuery, TaskPathSchema, TaskPathSchema2, TaskQuery, TaskUpdate, ) additional_routes = web.RouteTableDef() invalid_path_routes = web.RouteTableDef() invalid_method_description_routes = web.RouteTableDef() invalid_method_summary_routes = web.RouteTableDef() invalid_method_description_routes = web.RouteTableDef() invalid_tag_missing_description_routes = web.RouteTableDef() @additional_routes.view("/bulk/tasks") class TaskBulkPath(SqlApiPath): """ --- summary: Bulk manage tasks tags: - Task """ table = "tasks" @op(body_schema=List[TaskAdd], response_schema=List[Task]) async def post(self): """ --- summary: Create Tasks description: Create a group of Tasks responses: 201: description: Created tasks """ data = await self.create_list() return self.json_response(data, status=201) @additional_routes.view("/transaction/tasks") class TaskTransactionsPath(SqlApiPath): """ --- summary: Manage tasks with transactions tags: - Task - name: Transaction description: Endpoints that creates a new transaction """ table = "tasks" @op(body_schema=TaskAdd, response_schema=Task) async def post(self): """ --- summary: Create Task description: Create a Task using transatcion responses: 201: description: Created Task 500: description: Forced raised error """ data = await self.json_data() async with self.db.transaction() as conn: should_raise = data.pop("should_raise", False) task = await self.create_one(data=data, conn=conn) if should_raise: raise JsonHttpException(status=500) return self.json_response(data=task, status=201) @op(query_schema=TaskOrderableQuery, response_schema=List[Task]) async def get(self): """ --- summary: Retrieve Tasks description: Retrieve a list of Tasks using transaction responses: 200: description: Authenticated tasks """ paginated = await self.get_list() return paginated.json_response() @additional_routes.view("/transaction/tasks/{id}") class TaskTransactionPath(SqlApiPath): """ --- summary: Manage Tasks with transactions tags: - Task - Transaction """ table = "tasks" path_schema = TaskPathSchema @op(response_schema=Task) async def get(self): """ --- summary: Retrieve Task description: Retrieve an existing Task by ID using transaction responses: 200: description: the task """ async with self.db.transaction() as conn: data = await self.get_one(conn=conn) return self.json_response(data) @op(body_schema=TaskUpdate, response_schema=Task) async def patch(self): """ --- summary: Update Task description: Update an existing Task by ID using transaction responses: 200: description: the updated task """ data = await self.json_data() async with self.db.transaction() as conn: should_raise = data.pop("should_raise", False) task = await self.update_one(data=data, conn=conn) if should_raise: raise JsonHttpException(status=500) return self.json_response(data=task, status=200) @op() async def delete(self): """ --- summary: Delete Task description: Delete an existing task using transaction responses: 204: description: Task successfully deleted """ data = await self.json_data() async with self.db.transaction() as conn: should_raise = data.pop("should_raise", False) await self.delete_one(conn=conn) if should_raise: raise JsonHttpException(status=500) return self.json_response(data={}, status=204) @additional_routes.view("/transaction/bulk/tasks") class TaskBulkTransactionPath(SqlApiPath): """ --- summary: Bulk manage tasks with transactions tags: - Task - Transaction """ table = "tasks" @op(query_schema=TaskQuery) async def delete(self): """ --- summary: Delete Tasks description: Bulk delete a group of Tasks using transaction responses: 204: description: Tasks successfully deleted """ async with self.db.transaction() as conn: await self.delete_list(query=dict(self.request.query), conn=conn) return web.Response(status=204) @op(body_schema=List[TaskAdd], response_schema=List[Task]) async def post(self): """ --- summary: Create Tasks description: Bulk create Tasks using transaction responses: 201: description: created tasks """ async with self.db.transaction() as conn: data = await self.create_list(conn=conn) return self.json_response(data, status=201) @additional_routes.view("/tasks2/{task_id}") class TaskPath2(SqlApiPath): """ --- tags: - Task """ table = "tasks" path_schema = TaskPathSchema2 def get_filters(self): filters = super().get_filters() return {"id": filters["task_id"]} @op(response_schema=Task) async def get(self): """ --- summary: Retrieve a Task description: Retrieve an existing Task by ID responses: 200: description: the task """ data = await self.get_one(filters=self.get_filters()) return self.json_response(data) @op(response_schema=Task, body_schema=TaskUpdate) async def patch(self): """ --- summary: Update a Task description: Update an existing Task by ID responses: 200: description: the updated task """ data = await self.update_one(filters=self.get_filters()) return self.json_response(data) @op() async def delete(self): """ --- summary: Delete a Task description: Delete an existing Task responses: 204: description: Task successfully deleted """ await self.delete_one(filters=self.get_filters()) return web.Response(status=204) @additional_routes.view("/simple-list") class SipleList(ApiPath): """ --- tags: - Task """ @op(response_schema=List[int]) async def get(self): """ --- summary: Retrieve a list of integer description: list of simple integers responses: 200: description: list """ return self.json_response([2, 4, 5]) @additional_routes.view("/multikey") class MultiKeyPath(SqlApiPath): """ --- summary: Create rows in multikey constraint table tags: - name: Multikey description: several keys """ table = "multi_key" @op(response_schema=MultiKey, body_schema=MultiKey) async def post(self): """ --- summary: Create row in multi-column constrained table description: Create row in multi-column constrained table responses: 201: description: New row """ data = await self.create_one() return self.json_response(data, status=201) @op(response_schema=List[MultiKey]) async def get(self): """ --- summary: List multi-column constrained items description: List multi-column constrained items responses: 200: description: List of items """ paginated = await self.get_list() return paginated.json_response() @additional_routes.view("/multikey-unique") class MultiKeyUniquePath(SqlApiPath): """ --- summary: Create rows in multikey constraint table tags: - Multikey """ table = "multi_key_unique" @op(response_schema=MultiKeyUnique, body_schema=MultiKeyUnique) async def post(self): """ --- summary: Create row in multi-column constrained table description: Create row in multi-column constrained table responses: 201: description: New row """ data = await self.create_one() return self.json_response(data, status=201) @op(response_schema=List[MultiKeyUnique]) async def get(self): """ --- summary: List multi-column constrained items description: List multi-column constrained items responses: 200: description: List of items """ paginated = await self.get_list() return paginated.json_response() @additional_routes.view("/sources") class SourcePath(ApiPath): """ --- summary: Sources tags: - name: Sources description: Sources """ @op(response_schema=List[SourcePrice]) async def get(self): """ --- summary: List sources description: List sources responses: 200: description: List of sources """ return self.json_response([]) @invalid_path_routes.view("/tasks") class NoTagsTaskPath(SqlApiPath): """ --- """ pass @invalid_method_summary_routes.view("/tasks") class NoSummaryMethodPath(SqlApiPath): """ --- tags: - Tag """ @op(response_schema=List[Task]) def get(self): """ --- description: Valid method description responses: 200: description: Valid response description """ pass @invalid_method_description_routes.view("/tasks") class NoDescriptionMethodPath(SqlApiPath): """ --- tags: - Tag """ @op(response_schema=List[Task]) def get(self): """ --- summary: Valid method summary responses: 200: description: Valid response description """ pass @invalid_tag_missing_description_routes.view("/tasks") class NoTagDescriptionPath(SqlApiPath): """ " --- tags: - name: Task description: Simple description - Random """ pass
[ "aiohttp.web.RouteTableDef", "openapi.exc.JsonHttpException", "aiohttp.web.Response", "openapi.spec.op" ]
[((384, 403), 'aiohttp.web.RouteTableDef', 'web.RouteTableDef', ([], {}), '()\n', (401, 403), False, 'from aiohttp import web\n'), ((426, 445), 'aiohttp.web.RouteTableDef', 'web.RouteTableDef', ([], {}), '()\n', (443, 445), False, 'from aiohttp import web\n'), ((482, 501), 'aiohttp.web.RouteTableDef', 'web.RouteTableDef', ([], {}), '()\n', (499, 501), False, 'from aiohttp import web\n'), ((534, 553), 'aiohttp.web.RouteTableDef', 'web.RouteTableDef', ([], {}), '()\n', (551, 553), False, 'from aiohttp import web\n'), ((590, 609), 'aiohttp.web.RouteTableDef', 'web.RouteTableDef', ([], {}), '()\n', (607, 609), False, 'from aiohttp import web\n'), ((651, 670), 'aiohttp.web.RouteTableDef', 'web.RouteTableDef', ([], {}), '()\n', (668, 670), False, 'from aiohttp import web\n'), ((851, 908), 'openapi.spec.op', 'op', ([], {'body_schema': 'List[TaskAdd]', 'response_schema': 'List[Task]'}), '(body_schema=List[TaskAdd], response_schema=List[Task])\n', (853, 908), False, 'from openapi.spec import op\n'), ((1517, 1562), 'openapi.spec.op', 'op', ([], {'body_schema': 'TaskAdd', 'response_schema': 'Task'}), '(body_schema=TaskAdd, response_schema=Task)\n', (1519, 1562), False, 'from openapi.spec import op\n'), ((2212, 2275), 'openapi.spec.op', 'op', ([], {'query_schema': 'TaskOrderableQuery', 'response_schema': 'List[Task]'}), '(query_schema=TaskOrderableQuery, response_schema=List[Task])\n', (2214, 2275), False, 'from openapi.spec import op\n'), ((2868, 2892), 'openapi.spec.op', 'op', ([], {'response_schema': 'Task'}), '(response_schema=Task)\n', (2870, 2892), False, 'from openapi.spec import op\n'), ((3279, 3327), 'openapi.spec.op', 'op', ([], {'body_schema': 'TaskUpdate', 'response_schema': 'Task'}), '(body_schema=TaskUpdate, response_schema=Task)\n', (3281, 3327), False, 'from openapi.spec import op\n'), ((3932, 3936), 'openapi.spec.op', 'op', ([], {}), '()\n', (3934, 3936), False, 'from openapi.spec import op\n'), ((4762, 4788), 'openapi.spec.op', 'op', ([], {'query_schema': 'TaskQuery'}), '(query_schema=TaskQuery)\n', (4764, 4788), False, 'from openapi.spec import op\n'), ((5221, 5278), 'openapi.spec.op', 'op', ([], {'body_schema': 'List[TaskAdd]', 'response_schema': 'List[Task]'}), '(body_schema=List[TaskAdd], response_schema=List[Task])\n', (5223, 5278), False, 'from openapi.spec import op\n'), ((5962, 5986), 'openapi.spec.op', 'op', ([], {'response_schema': 'Task'}), '(response_schema=Task)\n', (5964, 5986), False, 'from openapi.spec import op\n'), ((6316, 6364), 'openapi.spec.op', 'op', ([], {'response_schema': 'Task', 'body_schema': 'TaskUpdate'}), '(response_schema=Task, body_schema=TaskUpdate)\n', (6318, 6364), False, 'from openapi.spec import op\n'), ((6703, 6707), 'openapi.spec.op', 'op', ([], {}), '()\n', (6705, 6707), False, 'from openapi.spec import op\n'), ((7160, 7189), 'openapi.spec.op', 'op', ([], {'response_schema': 'List[int]'}), '(response_schema=List[int])\n', (7162, 7189), False, 'from openapi.spec import op\n'), ((7706, 7756), 'openapi.spec.op', 'op', ([], {'response_schema': 'MultiKey', 'body_schema': 'MultiKey'}), '(response_schema=MultiKey, body_schema=MultiKey)\n', (7708, 7756), False, 'from openapi.spec import op\n'), ((8117, 8151), 'openapi.spec.op', 'op', ([], {'response_schema': 'List[MultiKey]'}), '(response_schema=List[MultiKey])\n', (8119, 8151), False, 'from openapi.spec import op\n'), ((8714, 8776), 'openapi.spec.op', 'op', ([], {'response_schema': 'MultiKeyUnique', 'body_schema': 'MultiKeyUnique'}), '(response_schema=MultiKeyUnique, body_schema=MultiKeyUnique)\n', (8716, 8776), False, 'from openapi.spec import op\n'), ((9137, 9177), 'openapi.spec.op', 'op', ([], {'response_schema': 'List[MultiKeyUnique]'}), '(response_schema=List[MultiKeyUnique])\n', (9139, 9177), False, 'from openapi.spec import op\n'), ((9692, 9729), 'openapi.spec.op', 'op', ([], {'response_schema': 'List[SourcePrice]'}), '(response_schema=List[SourcePrice])\n', (9694, 9729), False, 'from openapi.spec import op\n'), ((10221, 10251), 'openapi.spec.op', 'op', ([], {'response_schema': 'List[Task]'}), '(response_schema=List[Task])\n', (10223, 10251), False, 'from openapi.spec import op\n'), ((10607, 10637), 'openapi.spec.op', 'op', ([], {'response_schema': 'List[Task]'}), '(response_schema=List[Task])\n', (10609, 10637), False, 'from openapi.spec import op\n'), ((7012, 7036), 'aiohttp.web.Response', 'web.Response', ([], {'status': '(204)'}), '(status=204)\n', (7024, 7036), False, 'from aiohttp import web\n'), ((5190, 5214), 'aiohttp.web.Response', 'web.Response', ([], {'status': '(204)'}), '(status=204)\n', (5202, 5214), False, 'from aiohttp import web\n'), ((2114, 2143), 'openapi.exc.JsonHttpException', 'JsonHttpException', ([], {'status': '(500)'}), '(status=500)\n', (2131, 2143), False, 'from openapi.exc import JsonHttpException\n'), ((3834, 3863), 'openapi.exc.JsonHttpException', 'JsonHttpException', ([], {'status': '(500)'}), '(status=500)\n', (3851, 3863), False, 'from openapi.exc import JsonHttpException\n'), ((4429, 4458), 'openapi.exc.JsonHttpException', 'JsonHttpException', ([], {'status': '(500)'}), '(status=500)\n', (4446, 4458), False, 'from openapi.exc import JsonHttpException\n')]
import os count = 0 with open('listHis', 'w') as f: for root, dirs, files in os.walk('.'): tzt = [file for file in files if 'His.csv.gz' in file] for tztfile in tzt: p = os.path.join(root, tztfile) f.write(p) ; f.write('\n') count += 1 if count % 1000 == 0: print(p)
[ "os.walk", "os.path.join" ]
[((81, 93), 'os.walk', 'os.walk', (['"""."""'], {}), "('.')\n", (88, 93), False, 'import os\n'), ((202, 229), 'os.path.join', 'os.path.join', (['root', 'tztfile'], {}), '(root, tztfile)\n', (214, 229), False, 'import os\n')]
from django.contrib import admin from dfirtrack_artifacts.models import ( Artifact, Artifactpriority, Artifactstatus, Artifacttype, ) # Register your models here. admin.site.register(Artifact) admin.site.register(Artifactpriority) admin.site.register(Artifactstatus) admin.site.register(Artifacttype)
[ "django.contrib.admin.site.register" ]
[((181, 210), 'django.contrib.admin.site.register', 'admin.site.register', (['Artifact'], {}), '(Artifact)\n', (200, 210), False, 'from django.contrib import admin\n'), ((211, 248), 'django.contrib.admin.site.register', 'admin.site.register', (['Artifactpriority'], {}), '(Artifactpriority)\n', (230, 248), False, 'from django.contrib import admin\n'), ((249, 284), 'django.contrib.admin.site.register', 'admin.site.register', (['Artifactstatus'], {}), '(Artifactstatus)\n', (268, 284), False, 'from django.contrib import admin\n'), ((285, 318), 'django.contrib.admin.site.register', 'admin.site.register', (['Artifacttype'], {}), '(Artifacttype)\n', (304, 318), False, 'from django.contrib import admin\n')]
import urllib.request url = 'http://www.ifce.edu.br' # Obter o conteúdo da página pagina = urllib.request.urlopen(url) texto1 = pagina.read().decode('utf-8') # Outra forma de fazer a mesma coisa .. import requests page = requests.get(url) texto2 = page.content.decode('utf-8') # Verificamos que todas as linhas são iguais print(texto1.split('\n') == texto2.split('\n'))
[ "requests.get" ]
[((224, 241), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (236, 241), False, 'import requests\n')]
from dataclasses import dataclass, field __NAMESPACE__ = "http://www.opengis.net/ows" @dataclass class Title1: """ Title of this resource, normally used for display to a human. """ class Meta: name = "Title" namespace = "http://www.opengis.net/ows" value: str = field( default="", metadata={ "required": True, }, )
[ "dataclasses.field" ]
[((303, 349), 'dataclasses.field', 'field', ([], {'default': '""""""', 'metadata': "{'required': True}"}), "(default='', metadata={'required': True})\n", (308, 349), False, 'from dataclasses import dataclass, field\n')]
# -*- coding: utf-8 -*- """ Inputs ################# *Module* ``project.user.inputs`` This module defines routes to manage input new inputs of projects from users. """ import re, boto3, string from flask import render_template, redirect, url_for, Response, current_app from flask_login import login_required, current_user from . import user_app from .forms import ProjectInformationForm from .helpers import upload_file, generate_keyword, convert_into_seconds from .. import db from ..models import Project, Annotator, Batch, Tuple, Item # User - Upload project @user_app.route('/upload-project', methods=['GET','POST']) @login_required def upload_project(): """ Provide information of a new project from user at ``/user/upload-project``. Returns: user profile page at ``/user/<some_name>`` if new valid project is submitted. Note: Upload project on Mechanical Turk Platform or use local annotator system. Error: Error message emerges if there are invalid fields or there is no logged in user. """ # information about project project_form = ProjectInformationForm() if project_form.validate_on_submit(): # get data from uploaded file data = upload_file(project_form.upload.data) # check if user uploaded empty validated file(s) if not data: project_form.upload.errors.append(u'You uploaded only empty file(s)!') return render_template('user/upload-project.html', form=project_form, name=current_user.username) # check if user uploaded too few items elif data == 1: project_form.upload.errors.append(u'There are fewer than 5 items!') return render_template('user/upload-project.html', form=project_form, name=current_user.username) # get project name # if no name was given, then this project has the name 'project - <project-id>' if not project_form.name.data: name = 'project-%d'%(len(Project.query.all())) else: name = project_form.name.data.strip() # add link to project page for user to view project information p_name = ("%s"%(re.sub('[^\w]+', '-', name))).strip('-').strip('_') # if this name exists already (more than one user have the same project name) if Project.query.filter_by(name=name).first(): # create link for this new project by adding its id p_name = '%s-%d'%(p_name,len(Project.query.all())) # rename the project of this user uses the same name for more than # one of his project (which rarely happens) while Project.query.filter_by(name=name, user=current_user).first(): name = '%s (%d)'%(name,len([project for project in current_user.projects \ if project.name==name])) # if name of the project is unique but the link exists (p_name), # hope this will happen only once, but to make sure while Project.query.filter_by(p_name=p_name).first(): p_name = '%s-%d'%(p_name,len(Project.query.all())) # add new project current_project = Project(name=name, description=project_form.description.data, \ anno_number=project_form.anno_number.data, \ best_def=project_form.best_def.data, worst_def=project_form.worst_def.data, \ n_items=len(data.items), user=current_user, p_name=p_name, \ mturk=project_form.mturk.data) # user wants to upload this project on Mechanical Turk Market if project_form.mturk.data: # use the aws_access_key_id and aws_secret_access_key given from user # if this is not found in configuration aws_access_key_id = current_app.config['AWS_ACCESS_KEY_ID'] \ if current_app.config['AWS_ACCESS_KEY_ID'] \ else project_form.aws_access_key_id.data aws_secret_access_key = current_app.config['AWS_SECRET_ACCESS_KEY'] \ if current_app.config['AWS_SECRET_ACCESS_KEY'] \ else project_form.aws_secret_access_key.data # check if the user uses default values which never exists check = [] if aws_access_key_id == project_form.aws_access_key_id.default: project_form.aws_access_key_id.errors.append("""You must specify your own aws_access_key_id, default does not exist!""") check.append(True) if aws_secret_access_key == project_form.aws_secret_access_key.default: project_form.aws_secret_access_key.errors.append("""You must specify your own aws_secret_access_key, default does not exist!""") check.append(True) if any(check): return render_template('user/upload-project.html', form=project_form, name=current_user.username) mturk = boto3.client(service_name='mturk', aws_access_key_id = aws_access_key_id, aws_secret_access_key = aws_secret_access_key, region_name='us-east-1', endpoint_url = current_app.config['MTURK_URL']) # define endpoint to a HIT using generated hit_id hit_ids = set() hit_code = generate_keyword(chars=string.ascii_letters, k_length=3) # user wants to choose annotators themselves (they want to use our local system) else: # add keywords for annotators in local system for num_anno in range(project_form.anno_number.data): new_keyword = generate_keyword() # make sure the new created keyword is never used for any annotator of any project while Annotator.query.filter_by(keyword=new_keyword).first(): new_keyword = generate_keyword() # add new key word Annotator(keyword=new_keyword, project=current_project) # add batches, tuples and items for i, tuples_ in data.batches.items(): # create keyword for each batch to upload this project on Mechanical Turk Market if project_form.mturk.data: new_keyword = generate_keyword() # make sure the new created keyword is never used for any batch of any project while Batch.query.filter_by(keyword=new_keyword).first(): new_keyword = generate_keyword() # create this HIT on MTurk # create HIT_ID for the batch in local system (has nothing to do with HITID on MTurk) new_hit_id = hit_code+generate_keyword(chars=string.digits) while new_hit_id in hit_ids: new_hit_id = hit_code+generate_keyword(chars=string.digits) hit_ids.add(new_hit_id) # get url for the hit to save on corresponding one on MTurk url = url_for('mturk.hit', p_name=p_name, hit_id=new_hit_id, _external=True) # define the questions.xml template with the type box for keyword response = Response(render_template('questions.xml', title=project_form.name.data, description=project_form.description.data, url=url), mimetype='text/plain') response.implicit_sequence_conversion = False question = response.get_data(as_text=True) # get information from user for creating hit on MTurk p_keyword = project_form.keywords.data p_reward = project_form.reward.data lifetime = convert_into_seconds(duration=project_form.lifetime.data, \ unit=project_form.lifetimeunit.data) hit_duration = convert_into_seconds(duration=project_form.hit_duration.data, \ unit=project_form.duration_unit.data) # create new hit on MTurk new_hit = mturk.create_hit( Title = project_form.name.data, Description = project_form.description.data, Keywords = p_keyword, Reward = p_reward, MaxAssignments = project_form.anno_number.data, LifetimeInSeconds = lifetime, AssignmentDurationInSeconds = hit_duration, Question = question, AssignmentReviewPolicy = { 'PolicyName':'ScoreMyKnownAnswers/2011-09-01', 'Parameters': [ {'Key':'AnswerKey', 'MapEntries':[{ 'Key':'keyword', 'Values':[new_keyword] }] }, {'Key':'ApproveIfKnownAnswerScoreIsAtLeast', 'Values':['1'] }, {'Key':'RejectIfKnownAnswerScoreIsLessThan', 'Values':['1'] }, {'Key':'RejectReason', 'Values':['''Sorry, we could not approve your submission as you did not type in the right keyword.'''] } ] } ) # no need to create keyword and hit_id for batch as this is for the local process else: new_keyword = new_hit_id = None # add new batch current_batch = Batch(project=current_project, size=len(tuples_), keyword=new_keyword, hit_id=new_hit_id) for tuple_ in tuples_: # add new tuple current_tuple = Tuple(batch=current_batch) for item in tuple_: # check if this item is already saved in the database if Item.query.filter_by(item=item).first(): current_tuple.items.append(Item.query.filter_by(item=item).first()) else: new_item = Item(item=item) current_tuple.items.append(new_item) db.session.commit() return redirect(url_for('user.profile', some_name=current_user.username)) return render_template('user/upload-project.html', form=project_form, name=current_user.username)
[ "flask.url_for", "re.sub", "flask.render_template", "boto3.client" ]
[((8916, 9011), 'flask.render_template', 'render_template', (['"""user/upload-project.html"""'], {'form': 'project_form', 'name': 'current_user.username'}), "('user/upload-project.html', form=project_form, name=\n current_user.username)\n", (8931, 9011), False, 'from flask import render_template, redirect, url_for, Response, current_app\n'), ((1367, 1462), 'flask.render_template', 'render_template', (['"""user/upload-project.html"""'], {'form': 'project_form', 'name': 'current_user.username'}), "('user/upload-project.html', form=project_form, name=\n current_user.username)\n", (1382, 1462), False, 'from flask import render_template, redirect, url_for, Response, current_app\n'), ((4485, 4680), 'boto3.client', 'boto3.client', ([], {'service_name': '"""mturk"""', 'aws_access_key_id': 'aws_access_key_id', 'aws_secret_access_key': 'aws_secret_access_key', 'region_name': '"""us-east-1"""', 'endpoint_url': "current_app.config['MTURK_URL']"}), "(service_name='mturk', aws_access_key_id=aws_access_key_id,\n aws_secret_access_key=aws_secret_access_key, region_name='us-east-1',\n endpoint_url=current_app.config['MTURK_URL'])\n", (4497, 4680), False, 'import re, boto3, string\n'), ((8847, 8903), 'flask.url_for', 'url_for', (['"""user.profile"""'], {'some_name': 'current_user.username'}), "('user.profile', some_name=current_user.username)\n", (8854, 8903), False, 'from flask import render_template, redirect, url_for, Response, current_app\n'), ((1609, 1704), 'flask.render_template', 'render_template', (['"""user/upload-project.html"""'], {'form': 'project_form', 'name': 'current_user.username'}), "('user/upload-project.html', form=project_form, name=\n current_user.username)\n", (1624, 1704), False, 'from flask import render_template, redirect, url_for, Response, current_app\n'), ((4369, 4464), 'flask.render_template', 'render_template', (['"""user/upload-project.html"""'], {'form': 'project_form', 'name': 'current_user.username'}), "('user/upload-project.html', form=project_form, name=\n current_user.username)\n", (4384, 4464), False, 'from flask import render_template, redirect, url_for, Response, current_app\n'), ((6165, 6235), 'flask.url_for', 'url_for', (['"""mturk.hit"""'], {'p_name': 'p_name', 'hit_id': 'new_hit_id', '_external': '(True)'}), "('mturk.hit', p_name=p_name, hit_id=new_hit_id, _external=True)\n", (6172, 6235), False, 'from flask import render_template, redirect, url_for, Response, current_app\n'), ((6331, 6450), 'flask.render_template', 'render_template', (['"""questions.xml"""'], {'title': 'project_form.name.data', 'description': 'project_form.description.data', 'url': 'url'}), "('questions.xml', title=project_form.name.data, description=\n project_form.description.data, url=url)\n", (6346, 6450), False, 'from flask import render_template, redirect, url_for, Response, current_app\n'), ((2031, 2059), 're.sub', 're.sub', (['"""[^\\\\w]+"""', '"""-"""', 'name'], {}), "('[^\\\\w]+', '-', name)\n", (2037, 2059), False, 'import re, boto3, string\n')]
#!/usr/bin/env python3 import subprocess from ruamel.yaml import YAML import glob import re import argparse class Semver: def __init__(self, major: int, minor: int, patch: int): self.major = major self.minor = minor self.patch = patch def incr_major(self): self.major = self.major + 1 self.patch = 0 self.minor = 0 def incr_minor(self): self.minor = self.minor + 1 self.patch = 0 def incr_patch(self): self.patch = self.patch + 1 def to_string(self) -> str: return F'{self.major}.{self.minor}.{self.patch}' @classmethod def parse(self, input_str: str): # Parse and validate, return new instance of Semver if re.fullmatch(r'^([0-9]+)\.([0-9]+)\.([0-9]+)$', input_str): split_list = input_str.split('.') split_list = [int(i) for i in split_list] return self(*split_list) raise Exception(F'Invalid input version value: {input_str}') def update_charts(update_func): yaml = YAML() yaml.indent(mapping = 2, sequence=4, offset=2) main_dir = subprocess.run(["git", "rev-parse", "--show-toplevel"], check=True, stdout=subprocess.PIPE).stdout.strip().decode('utf-8') search_path = F'{main_dir}/charts/**/Chart.yaml' for path in glob.glob(search_path, recursive=True): if re.match('^.*cass-operator.*', path): continue with open(path) as f: chart = yaml.load(f) semver = Semver.parse(chart['version']) update_func(semver) chart['version'] = semver.to_string() with open(path, 'w') as f: yaml.dump(chart, f) print(F'Updated {path} to {semver.to_string()}') def main(): parser = argparse.ArgumentParser(description='Update Helm chart versions in k8ssandra project') parser.add_argument('--incr', choices=['major', 'minor', 'patch'], help='increase part of semver by one') args = parser.parse_args() if args.incr: if args.incr == 'major': update_charts(Semver.incr_major) elif args.incr == 'minor': update_charts(Semver.incr_minor) elif args.incr == 'patch': update_charts(Semver.incr_patch) if __name__ == "__main__": main()
[ "subprocess.run", "re.fullmatch", "argparse.ArgumentParser", "re.match", "ruamel.yaml.YAML", "glob.glob" ]
[((1050, 1056), 'ruamel.yaml.YAML', 'YAML', ([], {}), '()\n', (1054, 1056), False, 'from ruamel.yaml import YAML\n'), ((1315, 1353), 'glob.glob', 'glob.glob', (['search_path'], {'recursive': '(True)'}), '(search_path, recursive=True)\n', (1324, 1353), False, 'import glob\n'), ((1773, 1864), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Update Helm chart versions in k8ssandra project"""'}), "(description=\n 'Update Helm chart versions in k8ssandra project')\n", (1796, 1864), False, 'import argparse\n'), ((738, 797), 're.fullmatch', 're.fullmatch', (['"""^([0-9]+)\\\\.([0-9]+)\\\\.([0-9]+)$"""', 'input_str'], {}), "('^([0-9]+)\\\\.([0-9]+)\\\\.([0-9]+)$', input_str)\n", (750, 797), False, 'import re\n'), ((1367, 1403), 're.match', 're.match', (['"""^.*cass-operator.*"""', 'path'], {}), "('^.*cass-operator.*', path)\n", (1375, 1403), False, 'import re\n'), ((1123, 1219), 'subprocess.run', 'subprocess.run', (["['git', 'rev-parse', '--show-toplevel']"], {'check': '(True)', 'stdout': 'subprocess.PIPE'}), "(['git', 'rev-parse', '--show-toplevel'], check=True, stdout=\n subprocess.PIPE)\n", (1137, 1219), False, 'import subprocess\n')]
#! /usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals import requests import logging import time import re logger = logging.getLogger('data') USER_AGENT = "<NAME> (for academic research) <<EMAIL>>" default_requests_session = requests.Session() default_requests_session.headers['User-Agent'] = USER_AGENT def make_request(method, *args, **kwargs): # We read the max_attempts and retry_delay arguments from the kwargs dictionary # instead of named kwargs because we want to preserve the order of the # "request" method's positional arguments for clients of this method. max_attempts = kwargs.get('max_attempts', 2) retry_delay = kwargs.get('retry_delay', 10) try_again = True attempts = 0 res = None def log_error(err_msg): logger.warning( "Error (%s) For API call %s, Args: %s, Kwargs: %s", str(err_msg), str(method), str(args), str(kwargs) ) while try_again and attempts < max_attempts: try: res = method(*args, **kwargs) if hasattr(res, 'status_code') and res.status_code not in [200]: log_error(str(res.status_code)) res = None try_again = False except requests.exceptions.ConnectionError: log_error("ConnectionError") except requests.exceptions.ReadTimeout: log_error("ReadTimeout") if try_again: logger.warning("Waiting %d seconds for before retrying.", int(retry_delay)) time.sleep(retry_delay) attempts += 1 return res def _get_mendeley_item_count(response): ''' Returns and integer if a count was found, otherwise returns None. See https://dev.mendeley.com/reference/topics/pagination.html for more documentation. ''' if 'mendeley-count' not in response.headers: return None count = response.headers['mendeley-count'] count_int = None try: count_int = int(count) except ValueError as e: logger.warning("Unexpected item count %s: %s", count, e) return count_int def _get_next_page_url(response): # If there is no "Link" header, then there is no next page header = None if 'Link' in response.headers: header = response.headers['Link'] elif 'link' in response.headers: header = response.headers['link'] if header is None: return None # Extract the next URL from the Link header. next_url = None next_url_match = re.search("<([^>]*)>; rel=\"next\"", header) if next_url_match is not None: next_url = next_url_match.group(1) return next_url
[ "requests.Session", "re.search", "logging.getLogger", "time.sleep" ]
[((152, 177), 'logging.getLogger', 'logging.getLogger', (['"""data"""'], {}), "('data')\n", (169, 177), False, 'import logging\n'), ((263, 281), 'requests.Session', 'requests.Session', ([], {}), '()\n', (279, 281), False, 'import requests\n'), ((2537, 2579), 're.search', 're.search', (['"""<([^>]*)>; rel="next\\""""', 'header'], {}), '(\'<([^>]*)>; rel="next"\', header)\n', (2546, 2579), False, 'import re\n'), ((1550, 1573), 'time.sleep', 'time.sleep', (['retry_delay'], {}), '(retry_delay)\n', (1560, 1573), False, 'import time\n')]
import numpy as np with open("data.txt") as f: draws = np.array([int(d) for d in f.readline().split(",")]) boards = np.array([[[int(n) for n in r.split()] for r in b.split("\n")] for b in f.read()[1:].split("\n\n")]) def bingo(data: np.ndarray, fill: int): """ Returns horizontal (rows) and vertical (columns) bingo. TRUE if bingo. FALSE if not. """ transposed_data = np.transpose(data) return any(np.equal(data, [fill for _ in range(5)]).all(1)) or \ any(np.equal(transposed_data, [fill for _ in range(5)]).all(1)) def one(d_data: np.ndarray, b_data: np.ndarray) -> int: """ To guarantee victory against the giant squid, figure out which board will win first. What will your final score be if you choose that board? """ # If number is drawn, replace with {fill} fill = -1 for draw in d_data: # Replace drawn number by -1 b_data = np.where(b_data == draw, fill, b_data) for board in b_data: if bingo(board, fill): return np.sum(np.where(board == fill, 0, board)) * draw return -1 def two(d_data: np.ndarray, b_data: np.ndarray) -> int: """ Figure out which board will win last. Once it wins, what would its final score be? """ # If number is drawn, replace with {fill} fill = -1 # List of completed bingo boards completed_idx = [] for draw in d_data: # Replace drawn number by -1 b_data = np.where(b_data == draw, fill, b_data) for board, i in zip(b_data, range(len(b_data))): if bingo(board, fill) and i not in completed_idx: completed_idx.append(i) if len(completed_idx) == len(b_data): return np.sum(np.where(board == fill, 0, board)) * draw return -1 print(f"1. {one(draws, boards)}") print(f"2. {two(draws, boards)}")
[ "numpy.where", "numpy.transpose" ]
[((396, 414), 'numpy.transpose', 'np.transpose', (['data'], {}), '(data)\n', (408, 414), True, 'import numpy as np\n'), ((924, 962), 'numpy.where', 'np.where', (['(b_data == draw)', 'fill', 'b_data'], {}), '(b_data == draw, fill, b_data)\n', (932, 962), True, 'import numpy as np\n'), ((1478, 1516), 'numpy.where', 'np.where', (['(b_data == draw)', 'fill', 'b_data'], {}), '(b_data == draw, fill, b_data)\n', (1486, 1516), True, 'import numpy as np\n'), ((1058, 1091), 'numpy.where', 'np.where', (['(board == fill)', '(0)', 'board'], {}), '(board == fill, 0, board)\n', (1066, 1091), True, 'import numpy as np\n'), ((1766, 1799), 'numpy.where', 'np.where', (['(board == fill)', '(0)', 'board'], {}), '(board == fill, 0, board)\n', (1774, 1799), True, 'import numpy as np\n')]
from module import main main()
[ "module.main" ]
[((24, 30), 'module.main', 'main', ([], {}), '()\n', (28, 30), False, 'from module import main\n')]
############################################################## # # # Automatic design of an # # Asymmetrical Inverted Schmitt-Trigger with Single Supply # # for E24 resistors scale # # with tolerance analysis # # # ############################################################## # Author: <NAME> # # Date: 2019.08.30 # # License: MIT Open Source License # # Description: This is a simple program to make the # # automatic design of an Asymmetrical Inverted # # Schmitt-Trigger with Single Supply, with # # resistors from E24 scale. Typically used for # # 1%, but in this case used for 5% or 0.1% . # # The input is V_supply, V_low_threshold, # # V_high_threshold and Resistor_tolerance_perc. # # It works by making the full search of all # # combinations of values from E24 to identify # # the best ones. # # In this way it speeds up immensely the manual # # experimentation. It also makes resistor # # tolerance analysis. Please see the schematic # # diagram on the GitHub page. # ############################################################## ####### # Please fill the following 4 program variables to your # specification, see schematic diagram. # VCC voltage in volts. VCC = 5.0 # Input Voltage low threshold in volts. V_low_threshold_target = 0.555 # Input Voltage high threshold in volts. V_high_threshold_target = 0.575 # Resistor tolerance percentage 5.0%, 1.0%, 0.1%, one of this values [5.0, 1.0, 0.1]. Resistor_tolerance_perc = 1.0 ####### # Start of program. import math # E24 Standard resistor series. E24_values = [1.0, 1.1, 1.2, 1.3, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9, 4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1] # The scales of the resistor values so that an OpAmp circuit is stable, # normally are between 1K and 100K, but I use a extended version from # 100 Ohms to 1MOhms. scales = [100, 1000, 10000, 100000] def consistency_testing(VCC, V_low_threshold_target, V_high_threshold_target): passed_tests = True if not ( 0 < VCC): print("Error in specification VCC, it has to be: 0 < VCC") passed_tests = False if not (V_low_threshold_target < V_high_threshold_target): print("Error in specification, it has to be: V_low_threshold_target < V_high_threshold_target") passed_tests = False if not (0 <= V_low_threshold_target <= VCC): print("Error in specification, it has to be: 0 <= V_low_threshold_target <= VCC") passed_tests = False if not (0 <= V_high_threshold_target <= VCC): print("Error in specification, it has to be: 0 <= V_high_threshold_target <= VCC") passed_tests = False if Resistor_tolerance_perc not in [5.0, 1.0, 0.1]: print("Error in specification Resistor_tolerance_perc, it has to be: 5.0, 1.0 or 0.1") passed_tests = False return passed_tests def expansion_of_E24_values_for_range(E24_values, scales): values_list = [] for scale in scales: for val in E24_values: value = val * scale values_list.append(value) return values_list def calc_voltage_thresholds_for_circuit(VCC, R1, R2, R3): V_low_threshold = 0.0 V_high_threshold = 0.0 # Calc V_low_threshold. R_total_low = (R2 * R3) / float((R2 + R3)) V_low_threshold = VCC * R_total_low / float((R1 + R_total_low)) # Calc V_high_threshold. R_total_high = (R1 * R3) / float((R1 + R3)) V_high_threshold = VCC * R2 / float((R2 + R_total_high)) return (V_low_threshold, V_high_threshold) def calc_square_distance_error(V_low_threshold_target, V_high_threshold_target, V_low_threshold_obtained, V_high_threshold_obtained): res = math.sqrt( math.pow(V_low_threshold_target - V_low_threshold_obtained, 2) + math.pow(V_high_threshold_target - V_high_threshold_obtained, 2) ) return res def full_search_of_resister_values(values_list, VCC, V_low_threshold_target, V_high_threshold_target): best_error = 1000000000.0 best_V_low_threshold = -1000.0 best_V_high_threshold = -1000.0 best_R1 = -1000.0 best_R2 = -1000.0 best_R3 = -1000.0 for R1 in values_list: for R2 in values_list: for R3 in values_list: res = calc_voltage_thresholds_for_circuit(VCC, R1, R2, R3) V_low_threshold_obtained, V_high_threshold_obtained = res error = calc_square_distance_error(V_low_threshold_target, V_high_threshold_target, V_low_threshold_obtained, V_high_threshold_obtained) if error < best_error: best_error = error best_V_low_threshold = V_low_threshold_obtained best_V_high_threshold = V_high_threshold_obtained best_R1 = R1 best_R2 = R2 best_R3 = R3 return (best_error, best_V_low_threshold, best_V_high_threshold, best_R1, best_R2, best_R3) def expand_resistor_vals_tolerance(R_val, Resistor_tolerance_perc): resistor_vals = [] delta = R_val * Resistor_tolerance_perc * 0.01 resistor_vals.append(R_val - delta) resistor_vals.append(R_val) resistor_vals.append(R_val + delta) return resistor_vals def calc_absolute_distance_error(V_low_threshold_target, V_high_threshold_target, V_low_threshold_obtained, V_high_threshold_obtained): res = (math.fabs(V_low_threshold_target - V_low_threshold_obtained) + math.fabs(V_high_threshold_target - V_high_threshold_obtained)) return res def worst_tolerance_resistor_analysis(VCC, V_low_threshold_target, V_high_threshold_target, R1_nominal, R2_nominal, R3_nominal, Resistor_tolerance_perc): worst_error = 0.0 worst_V_low_threshold = 0.00000001 worst_V_high_threshold = 0.00000001 R1_values = expand_resistor_vals_tolerance(R1_nominal, Resistor_tolerance_perc) R2_values = expand_resistor_vals_tolerance(R2_nominal, Resistor_tolerance_perc) R3_values = expand_resistor_vals_tolerance(R3_nominal, Resistor_tolerance_perc) for R1 in R1_values: for R2 in R2_values: for R3 in R3_values: res = calc_voltage_thresholds_for_circuit(VCC, R1, R2, R3) V_low_threshold_obtained, V_high_threshold_obtained = res error = calc_absolute_distance_error(V_low_threshold_target, V_high_threshold_target, V_low_threshold_obtained, V_high_threshold_obtained) if error > worst_error: worst_error = error worst_V_low_threshold = V_low_threshold_obtained worst_V_high_threshold = V_high_threshold_obtained return (worst_error, worst_V_low_threshold, worst_V_high_threshold) def main(): print("##############################################################") print("# #") print("# Automatic design of an #") print("# Asymmetrical Inverted Schmitt-Trigger with Single Supply #") print("# for E24 resistors scale #") print("# with tolerance analysis #") print("# #") print("##############################################################") print("") print("### Specification:") print("VCC: ", VCC, " Volts") print("V_low_threshold_target: ", V_low_threshold_target, " Volts") print("V_high_threshold_target: ", V_high_threshold_target, " Volts") print("Resistor_tolerance_perc: ", Resistor_tolerance_perc, " %") print("") passed_tests = consistency_testing(VCC, V_low_threshold_target, V_high_threshold_target) if passed_tests == False: return values_list = expansion_of_E24_values_for_range(E24_values, scales) res = full_search_of_resister_values(values_list, VCC, V_low_threshold_target, V_high_threshold_target) best_error, V_low_threshold_obtained, V_high_threshold_obtained, best_R1, best_R2, best_R3 = res print("### Solution") print("Best_error: ", best_error) print("V_low_threshold_obtained: ", V_low_threshold_obtained, " Volts, delta: ", math.fabs(V_low_threshold_target - V_low_threshold_obtained), " Volts" ) print("V_high_threshold_obtained: ", V_high_threshold_obtained, " Volts, delta: ", math.fabs(V_high_threshold_target - V_high_threshold_obtained), " Volts" ) print("Best_R1: ", best_R1, " Ohms 1%") print("Best_R2: ", best_R2, " Ohms 1%") print("Best_R3: ", best_R3, " Ohms 1%") print("") res = worst_tolerance_resistor_analysis(VCC, V_low_threshold_target, V_high_threshold_target, best_R1, best_R2, best_R3, Resistor_tolerance_perc) worst_error, worst_V_low_threshold_obtained, worst_V_high_threshold_obtained = res print("### Resistor tolerance analysis") print("Worst_error: ", worst_error) print("Worst V_low_threshold_obtained: ", worst_V_low_threshold_obtained, " Volts, delta: ", math.fabs(V_low_threshold_target - worst_V_low_threshold_obtained), " Volts" ) print("Worst V_high_threshold_obtained: ", worst_V_high_threshold_obtained, " Volts, delta: ", math.fabs(V_high_threshold_target - worst_V_high_threshold_obtained), " Volts" ) if __name__ == "__main__": main()
[ "math.pow", "math.fabs" ]
[((6085, 6145), 'math.fabs', 'math.fabs', (['(V_low_threshold_target - V_low_threshold_obtained)'], {}), '(V_low_threshold_target - V_low_threshold_obtained)\n', (6094, 6145), False, 'import math\n'), ((6161, 6223), 'math.fabs', 'math.fabs', (['(V_high_threshold_target - V_high_threshold_obtained)'], {}), '(V_high_threshold_target - V_high_threshold_obtained)\n', (6170, 6223), False, 'import math\n'), ((9054, 9114), 'math.fabs', 'math.fabs', (['(V_low_threshold_target - V_low_threshold_obtained)'], {}), '(V_low_threshold_target - V_low_threshold_obtained)\n', (9063, 9114), False, 'import math\n'), ((9227, 9289), 'math.fabs', 'math.fabs', (['(V_high_threshold_target - V_high_threshold_obtained)'], {}), '(V_high_threshold_target - V_high_threshold_obtained)\n', (9236, 9289), False, 'import math\n'), ((9911, 9977), 'math.fabs', 'math.fabs', (['(V_low_threshold_target - worst_V_low_threshold_obtained)'], {}), '(V_low_threshold_target - worst_V_low_threshold_obtained)\n', (9920, 9977), False, 'import math\n'), ((10102, 10170), 'math.fabs', 'math.fabs', (['(V_high_threshold_target - worst_V_high_threshold_obtained)'], {}), '(V_high_threshold_target - worst_V_high_threshold_obtained)\n', (10111, 10170), False, 'import math\n'), ((4304, 4366), 'math.pow', 'math.pow', (['(V_low_threshold_target - V_low_threshold_obtained)', '(2)'], {}), '(V_low_threshold_target - V_low_threshold_obtained, 2)\n', (4312, 4366), False, 'import math\n'), ((4391, 4455), 'math.pow', 'math.pow', (['(V_high_threshold_target - V_high_threshold_obtained)', '(2)'], {}), '(V_high_threshold_target - V_high_threshold_obtained, 2)\n', (4399, 4455), False, 'import math\n')]
import json from typing import Any, Dict, List from contrib.descriptions import VulnDescriptionProvider from contrib.internal_types import ScanResult from contrib.report_builders import ReportBuilder class JsonReportBuilder(ReportBuilder): def __init__(self, description_provider: VulnDescriptionProvider): self.description_provider = description_provider self._buffer = {'ips': [], 'vulnerable': {}, 'not_vulnerable': {}} def init_report(self, start_date: str, nmap_command: str): self._buffer['start_date'] = start_date self._buffer['nmap_command'] = nmap_command def build(self) -> Any: return json.dumps(self._buffer) def add_vulnerable_services(self, scan_results: Dict[str, ScanResult]): for app_name, result in scan_results.items(): self._buffer['vulnerable'][app_name] = { 'vulnerabilities': [], 'locations': self._serialize_locations(result.locations) } for v in result.vulns: data = v.to_dict() description = self.description_provider.get_description(v.name, v.vuln_type) data['description'], data['url'] = description.text, description.url self._buffer['vulnerable'][app_name]['vulnerabilities'].append(data) def add_non_vulnerable_services(self, scan_results: Dict[str, ScanResult]): for app_name, result in scan_results.items(): self._buffer['not_vulnerable'][app_name] = { 'locations': self._serialize_locations(result.locations) } def add_ip_address(self, ip: str): self._buffer['ips'].append(ip) @staticmethod def _serialize_locations(locations: Dict[str, List[str]]): return {loc: [int(port) for port in ports] for loc, ports in locations.items()}
[ "json.dumps" ]
[((654, 678), 'json.dumps', 'json.dumps', (['self._buffer'], {}), '(self._buffer)\n', (664, 678), False, 'import json\n')]
import pytest from src.users.role import Role from .presets.role import role_metrics @pytest.mark.parametrize( ("name, can_edit_settings, can_create_users," "can_edit_roles, can_manage_roles"), role_metrics, ) def test_create_role_object( name, can_edit_settings, can_create_users, can_edit_roles, can_manage_roles, database, ): role = Role( name=name, can_edit_settings=can_edit_settings, can_create_users=can_create_users, can_edit_roles=can_edit_roles, can_manage_roles=can_manage_roles, ) database.session.add(role) database.session.commit()
[ "pytest.mark.parametrize", "src.users.role.Role" ]
[((89, 214), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""name, can_edit_settings, can_create_users,can_edit_roles, can_manage_roles"""', 'role_metrics'], {}), "(\n 'name, can_edit_settings, can_create_users,can_edit_roles, can_manage_roles'\n , role_metrics)\n", (112, 214), False, 'import pytest\n'), ((375, 538), 'src.users.role.Role', 'Role', ([], {'name': 'name', 'can_edit_settings': 'can_edit_settings', 'can_create_users': 'can_create_users', 'can_edit_roles': 'can_edit_roles', 'can_manage_roles': 'can_manage_roles'}), '(name=name, can_edit_settings=can_edit_settings, can_create_users=\n can_create_users, can_edit_roles=can_edit_roles, can_manage_roles=\n can_manage_roles)\n', (379, 538), False, 'from src.users.role import Role\n')]
# -*- coding: utf-8 -*- import time, os, io, picamera, threading from flask import Flask, request, session, url_for, redirect, render_template, g, Response, send_file # configuration DATABASE = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'minitwit.db') DEBUG = False SECRET_KEY = 'This is a very secrey key.' # PiCam, don't initialize the camera unless required. class PiCam: def __init__(self): self.cam = None self.time = 0 self.lock = threading.Lock() self.s = io.BytesIO() pass def init_cam(self): self.cam = picamera.PiCamera() self.cam.start_preview() self.cam.vflip = True self.cam.hflip = True time.sleep(2) pass def dup_stream(self): _s = io.BytesIO() self.lock.acquire() ### THREAD LOCK BEGIN self.s.seek(0) _s.write(self.s.read()) ### THREAD LOCK END self.lock.release() _s.seek(0) return _s def capture(self): if (self.cam is None): self.init_cam() _t = time.time() # 30fps: 0.0333... if (_t - self.time > 0.02): self.time = _t self.lock.acquire() ### THREAD LOCK BEGIN self.s.seek(0) self.cam.capture(self.s, 'png') ### THREAD LOCK END self.lock.release() return self.dup_stream() # create our little application :) app = Flask(__name__) app.config.from_object(__name__) app.config.from_envvar('PICAM_SETTINGS', silent=True) @app.route('/') def the_camera(): return render_template('index.html') @app.route('/login') def login(): return 'TODO: Login'; my_cam = PiCam() @app.route('/capture') def capture(): return send_file(my_cam.capture(), mimetype='image/png') if __name__ == "__main__": app.run(host='0.0.0.0') while True: pass
[ "io.BytesIO", "os.path.realpath", "flask.Flask", "time.sleep", "threading.Lock", "time.time", "flask.render_template", "picamera.PiCamera" ]
[((1335, 1350), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (1340, 1350), False, 'from flask import Flask, request, session, url_for, redirect, render_template, g, Response, send_file\n'), ((1482, 1511), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (1497, 1511), False, 'from flask import Flask, request, session, url_for, redirect, render_template, g, Response, send_file\n'), ((225, 251), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (241, 251), False, 'import time, os, io, picamera, threading\n'), ((469, 485), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (483, 485), False, 'import time, os, io, picamera, threading\n'), ((499, 511), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (509, 511), False, 'import time, os, io, picamera, threading\n'), ((561, 580), 'picamera.PiCamera', 'picamera.PiCamera', ([], {}), '()\n', (578, 580), False, 'import time, os, io, picamera, threading\n'), ((666, 679), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (676, 679), False, 'import time, os, io, picamera, threading\n'), ((725, 737), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (735, 737), False, 'import time, os, io, picamera, threading\n'), ((999, 1010), 'time.time', 'time.time', ([], {}), '()\n', (1008, 1010), False, 'import time, os, io, picamera, threading\n')]
import pickle from pathlib import Path from datetime import datetime as dt def storage_timestamp(t=dt.now(), storage_dir=Path.home() / ".pyx_store", ext="p"): """ Return a timestamp now suitable to create a file path as: yy/mm/dd/hh-mm-ss By default under `~/.pyx_store/` (`storage_dir`) with file extension `.p` (`ext`): ~/.pyx_store/yy/mm/dd/hh-mm-ss.p Assuming you will never pickle a workspace representation more than once per second, this can be used as a path into `~/.pyx_store/yy/mm/dd/hh_mm_ss`. """ assert type(t) is dt, TypeError("Time isn't a datetime.datetime instance") datestamp, timestamp = t.isoformat().split("T") datestamp = datestamp.replace("-", "/") timestamp = timestamp[:timestamp.find(".")].replace(":", "-") subpath = storage_dir / Path(datestamp) storage_path = storage_dir / subpath storage_path.mkdir(parents=True, exist_ok=True) file_name = f"{timestamp}.{ext}" return storage_path / file_name def pickle_vars(local_names=vars()): checklist = ["ff_session", "x_session", "wm_territory", "tmux_server"] pickle_filepath = storage_timestamp() # Create a dir for today's date under ~/.pyx_store/ storables = [] for var_name in checklist: if var_name in local_names: storables.append(local_names[var_name]) with open(pickle_filepath, "wb") as f: pickle.dump(storables, file=f, protocol=-1) return
[ "pathlib.Path", "datetime.datetime.now", "pathlib.Path.home", "pickle.dump" ]
[((100, 108), 'datetime.datetime.now', 'dt.now', ([], {}), '()\n', (106, 108), True, 'from datetime import datetime as dt\n'), ((122, 133), 'pathlib.Path.home', 'Path.home', ([], {}), '()\n', (131, 133), False, 'from pathlib import Path\n'), ((832, 847), 'pathlib.Path', 'Path', (['datestamp'], {}), '(datestamp)\n', (836, 847), False, 'from pathlib import Path\n'), ((1410, 1453), 'pickle.dump', 'pickle.dump', (['storables'], {'file': 'f', 'protocol': '(-1)'}), '(storables, file=f, protocol=-1)\n', (1421, 1453), False, 'import pickle\n')]
# Copyright (c) 2013--2014 King's College London # Created by the Software Development Team <http://soft-dev.org/> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import sys try: # checkout https://github.com/Brittix1023/mipy into eco/lib/ sys.path.append("../mipy") from mipy import kernel, request_listener has_mipy = True except ImportError: has_mipy = False from incparser.astree import TextNode, EOS #BOS, ImageNode, FinishSymbol from grammar_parser.gparser import IndentationTerminal # BOS, MagicTerminal, Nonterminal from PyQt5 import QtCore from PyQt5.QtGui import QPen, QColor, QImage from PyQt5.QtWidgets import QApplication import math, os class Renderer(object): def __init__(self, fontwt, fontht, fontd): self.fontwt = fontwt self.fontht = fontht self.fontd = fontd def paint_node(self, paint, node, x, y, highlighter): raise NotImplementedError def nextNode(self, node): node = node.next_term if isinstance(node, EOS): return None def update_image(self, node): pass def setStyle(self, paint, style): f = paint.font() if style == "italic": f.setItalic(True) f.setBold(False) elif style == "bold": f.setItalic(False) f.setBold(True) else: f.setItalic(False) f.setBold(False) paint.setFont(f) class NormalRenderer(Renderer): def paint_node(self, paint, node, x, y, highlighter): dx, dy = (0, 0) if node.symbol.name == "\r" or isinstance(node, EOS): return dx, dy if isinstance(node.symbol, IndentationTerminal): paint.setPen(QPen(QColor("#aa3333"))) self.setStyle(paint, highlighter.get_style(node)) if QApplication.instance().showindent is True: if node.symbol.name == "INDENT": text = ">" elif node.symbol.name == "DEDENT": text = "<" else: return dx, dy paint.drawText(QtCore.QPointF(x, 3 + self.fontht + y*self.fontht - self.fontd), text) return 1*self.fontwt, dy else: return dx, dy if isinstance(node, TextNode): paint.setPen(QPen(QColor(highlighter.get_color(node)))) self.setStyle(paint, highlighter.get_style(node)) text = node.symbol.name if not (node.lookup == "<ws>" and node.symbol.name.startswith(" ")): # speedhack: don't draw invisible nodes paint.drawText(QtCore.QPointF(x, 3 + self.fontht + y*self.fontht - self.fontd), text) dx = len(text) * self.fontwt dy = 0 return dx, dy def doubleClick(self): pass # select/unselect class ImageRenderer(NormalRenderer): def paint_node(self, paint, node, x, y, highlighter): self.update_image(node) dx, dy = (0, 0) if node.image is not None and not node.plain_mode: paint.drawImage(QtCore.QPoint(x, 3 + y * self.fontht), node.image) dx = int(math.ceil(node.image.width() * 1.0 / self.fontwt) * self.fontwt) dy = int(math.ceil(node.image.height() * 1.0 / self.fontht)) else: dx, dy = NormalRenderer.paint_node(self, paint, node, x, y, highlighter) return dx, dy def get_filename(self, node): return node.symbol.name def update_image(self, node): filename = self.get_filename(node) if node.image_src == filename: return if os.path.isfile(filename): node.image = QImage(filename) node.image_src = filename else: node.image = None node.image_src = None def doubleClick(self): pass # switch between display modes class ChemicalRenderer(ImageRenderer): def get_filename(self, node): return "chemicals/" + node.symbol.name + ".png" if not has_mipy: class IPythonRenderer(NormalRenderer): pass else: class IPythonRenderer(NormalRenderer): proc = kernel.IPythonKernelProcess() def paint_node(self, paint, node, x, y, highlighter): lbox = node.get_root().get_magicterminal() if lbox.plain_mode: return NormalRenderer.paint_node(self, paint, node, x, y, highlighter) else: dx, dy = NormalRenderer.paint_node(self, paint, node, x, y, highlighter) if isinstance(node.next_term, EOS): content = self.get_content(lbox) try: krn = IPythonRenderer.proc.connection if krn is not None: listener = IPythonExecuteListener() krn.execute_request(content, listener=listener) while not listener.finished: krn.poll(-1) text = str(listener.result) except Exception as e: text = e.message paint.drawText(QtCore.QPointF(x+100, self.fontht + y*self.fontht), " | "+text) return dx, dy def get_content(self, lbox): node = lbox.symbol.ast.children[0].next_term l = [] while not isinstance(node, EOS): if not isinstance(node.symbol, IndentationTerminal): l.append(node.symbol.name) node = node.next_term return "".join(l) class IPythonExecuteListener(request_listener.ExecuteRequestListener): def __init__(self): self.result = None self.finished = False def on_execute_result(self, execution_count, data, metadata): self.result = data['text/plain'] def on_execute_finished(self): self.finished = True def on_error(self, ename, value, traceback): raise Exception(ename) def get_renderer(parent, fontwt, fontht, fontd): if parent == "Chemicals": return ChemicalRenderer(fontwt, fontht, fontd) if parent == "Image": return ImageRenderer(fontwt, fontht, fontd) if parent == "IPython": return IPythonRenderer(fontwt, fontht, fontd) return NormalRenderer(fontwt, fontht, fontd)
[ "sys.path.append", "PyQt5.QtGui.QColor", "mipy.kernel.IPythonKernelProcess", "os.path.isfile", "PyQt5.QtGui.QImage", "PyQt5.QtCore.QPoint", "PyQt5.QtWidgets.QApplication.instance", "PyQt5.QtCore.QPointF" ]
[((1258, 1284), 'sys.path.append', 'sys.path.append', (['"""../mipy"""'], {}), "('../mipy')\n", (1273, 1284), False, 'import sys\n'), ((4638, 4662), 'os.path.isfile', 'os.path.isfile', (['filename'], {}), '(filename)\n', (4652, 4662), False, 'import math, os\n'), ((5162, 5191), 'mipy.kernel.IPythonKernelProcess', 'kernel.IPythonKernelProcess', ([], {}), '()\n', (5189, 5191), False, 'from mipy import kernel, request_listener\n'), ((4689, 4705), 'PyQt5.QtGui.QImage', 'QImage', (['filename'], {}), '(filename)\n', (4695, 4705), False, 'from PyQt5.QtGui import QPen, QColor, QImage\n'), ((4093, 4130), 'PyQt5.QtCore.QPoint', 'QtCore.QPoint', (['x', '(3 + y * self.fontht)'], {}), '(x, 3 + y * self.fontht)\n', (4106, 4130), False, 'from PyQt5 import QtCore\n'), ((2734, 2751), 'PyQt5.QtGui.QColor', 'QColor', (['"""#aa3333"""'], {}), "('#aa3333')\n", (2740, 2751), False, 'from PyQt5.QtGui import QPen, QColor, QImage\n'), ((2831, 2854), 'PyQt5.QtWidgets.QApplication.instance', 'QApplication.instance', ([], {}), '()\n', (2852, 2854), False, 'from PyQt5.QtWidgets import QApplication\n'), ((3124, 3189), 'PyQt5.QtCore.QPointF', 'QtCore.QPointF', (['x', '(3 + self.fontht + y * self.fontht - self.fontd)'], {}), '(x, 3 + self.fontht + y * self.fontht - self.fontd)\n', (3138, 3189), False, 'from PyQt5 import QtCore\n'), ((3641, 3706), 'PyQt5.QtCore.QPointF', 'QtCore.QPointF', (['x', '(3 + self.fontht + y * self.fontht - self.fontd)'], {}), '(x, 3 + self.fontht + y * self.fontht - self.fontd)\n', (3655, 3706), False, 'from PyQt5 import QtCore\n'), ((6190, 6244), 'PyQt5.QtCore.QPointF', 'QtCore.QPointF', (['(x + 100)', '(self.fontht + y * self.fontht)'], {}), '(x + 100, self.fontht + y * self.fontht)\n', (6204, 6244), False, 'from PyQt5 import QtCore\n')]
from django.contrib.auth import get_user_model from rest_framework import status from rest_framework.decorators import action from rest_framework.mixins import ListModelMixin, RetrieveModelMixin, CreateModelMixin from rest_framework.response import Response from rest_framework.viewsets import GenericViewSet, ModelViewSet from .serializers import ( GradeSerializer, SubmissionSerializer, AttachmentSerializer, TeacherSubmissionSerializer, ) from teleband.courses.models import Course from teleband.submissions.models import Grade, Submission, SubmissionAttachment from teleband.assignments.models import Assignment class SubmissionViewSet( ListModelMixin, RetrieveModelMixin, CreateModelMixin, GenericViewSet ): serializer_class = SubmissionSerializer queryset = Submission.objects.all() def get_queryset(self): return self.queryset.filter(assignment_id=self.kwargs["assignment_id"]) def perform_create(self, serializer): serializer.save( assignment=Assignment.objects.get(pk=self.kwargs["assignment_id"]) ) # @action(detail=False) # def get_ class AttachmentViewSet( ListModelMixin, RetrieveModelMixin, CreateModelMixin, GenericViewSet ): serializer_class = AttachmentSerializer queryset = SubmissionAttachment.objects.all() def get_queryset(self): return self.queryset.filter(submission_id=self.kwargs["submission_pk"]) def perform_create(self, serializer): serializer.save( submission=Submission.objects.get(pk=self.kwargs["submission_pk"]) ) class TeacherSubmissionViewSet(ListModelMixin, RetrieveModelMixin, GenericViewSet): serializer_class = TeacherSubmissionSerializer queryset = Submission.objects.all() # def get_queryset(self,): # pass @action(detail=False) def recent(self, request, **kwargs): if "piece_slug" not in request.GET or "activity_name" not in request.GET: return Response( status=status.HTTP_400_BAD_REQUEST, data={ "error": "Missing piece_slug or activity_name (figure it out!) in get data" }, ) course_id = self.kwargs["course_slug_slug"] piece_slug = request.GET["piece_slug"] activity_name = request.GET["activity_name"] queryset = ( Submission.objects.filter( assignment__enrollment__course__slug=course_id, assignment__activity__activity_type__name=activity_name, assignment__part__piece__slug=piece_slug, ) .order_by("assignment__enrollment", "-submitted") .distinct("assignment__enrollment") ) serializer = self.serializer_class( queryset, many=True, context={"request": request} ) return Response(status=status.HTTP_200_OK, data=serializer.data) class GradeViewSet(ModelViewSet): queryset = Grade.objects.all() serializer_class = GradeSerializer
[ "teleband.submissions.models.Submission.objects.all", "teleband.submissions.models.SubmissionAttachment.objects.all", "teleband.submissions.models.Submission.objects.filter", "rest_framework.response.Response", "rest_framework.decorators.action", "teleband.submissions.models.Submission.objects.get", "teleband.assignments.models.Assignment.objects.get", "teleband.submissions.models.Grade.objects.all" ]
[((797, 821), 'teleband.submissions.models.Submission.objects.all', 'Submission.objects.all', ([], {}), '()\n', (819, 821), False, 'from teleband.submissions.models import Grade, Submission, SubmissionAttachment\n'), ((1294, 1328), 'teleband.submissions.models.SubmissionAttachment.objects.all', 'SubmissionAttachment.objects.all', ([], {}), '()\n', (1326, 1328), False, 'from teleband.submissions.models import Grade, Submission, SubmissionAttachment\n'), ((1747, 1771), 'teleband.submissions.models.Submission.objects.all', 'Submission.objects.all', ([], {}), '()\n', (1769, 1771), False, 'from teleband.submissions.models import Grade, Submission, SubmissionAttachment\n'), ((1825, 1845), 'rest_framework.decorators.action', 'action', ([], {'detail': '(False)'}), '(detail=False)\n', (1831, 1845), False, 'from rest_framework.decorators import action\n'), ((3002, 3021), 'teleband.submissions.models.Grade.objects.all', 'Grade.objects.all', ([], {}), '()\n', (3019, 3021), False, 'from teleband.submissions.models import Grade, Submission, SubmissionAttachment\n'), ((2894, 2951), 'rest_framework.response.Response', 'Response', ([], {'status': 'status.HTTP_200_OK', 'data': 'serializer.data'}), '(status=status.HTTP_200_OK, data=serializer.data)\n', (2902, 2951), False, 'from rest_framework.response import Response\n'), ((1988, 2120), 'rest_framework.response.Response', 'Response', ([], {'status': 'status.HTTP_400_BAD_REQUEST', 'data': "{'error': 'Missing piece_slug or activity_name (figure it out!) in get data'}"}), "(status=status.HTTP_400_BAD_REQUEST, data={'error':\n 'Missing piece_slug or activity_name (figure it out!) in get data'})\n", (1996, 2120), False, 'from rest_framework.response import Response\n'), ((1022, 1077), 'teleband.assignments.models.Assignment.objects.get', 'Assignment.objects.get', ([], {'pk': "self.kwargs['assignment_id']"}), "(pk=self.kwargs['assignment_id'])\n", (1044, 1077), False, 'from teleband.assignments.models import Assignment\n'), ((1529, 1584), 'teleband.submissions.models.Submission.objects.get', 'Submission.objects.get', ([], {'pk': "self.kwargs['submission_pk']"}), "(pk=self.kwargs['submission_pk'])\n", (1551, 1584), False, 'from teleband.submissions.models import Grade, Submission, SubmissionAttachment\n'), ((2406, 2586), 'teleband.submissions.models.Submission.objects.filter', 'Submission.objects.filter', ([], {'assignment__enrollment__course__slug': 'course_id', 'assignment__activity__activity_type__name': 'activity_name', 'assignment__part__piece__slug': 'piece_slug'}), '(assignment__enrollment__course__slug=course_id,\n assignment__activity__activity_type__name=activity_name,\n assignment__part__piece__slug=piece_slug)\n', (2431, 2586), False, 'from teleband.submissions.models import Grade, Submission, SubmissionAttachment\n')]
import json import base64 import requests from flask import Flask, abort, jsonify, request from app.config import Config import os import schedule import threading import time from pathlib import Path app = Flask(__name__) # set environment variable app.config["ENV"] = Config.DEPLOY_ENV times = [] image_counter = 0 image_count = 20 image_path = Path.cwd() / 'images' def create_database(): image = get_image() save_image(image, f'takapuna{image_counter}.png') for i in range(0,image_count): save_image(image, f'takapuna{i}.png') create_database() def schedule_check(): while True: schedule.run_pending() time.sleep(5) def image_run(): try: update_images() except Exception as e: print('hit exepction!') print(e) pass def get_image(): r = requests.get('http://www.windsurf.co.nz/webcams/takapuna.jpg') if r.status_code is 200: return r.content else: print(r.status_code) print(r.text) def save_image(image, filename): f = open(image_path / filename, 'wb') # first argument is the filename f.write(image) f.close() def update_images(): global image_counter image = get_image() save_image(image, f'takapuna{image_counter}.png') image_counter += 1 schedule.every(5).minutes.do(image_run) x = threading.Thread(target=schedule_check, daemon=True) x.start() @app.errorhandler(404) def resource_not_found(e): return jsonify(error=str(e)), 404 @app.route("/health") def health(): return json.dumps({"status": "healthy"}) @app.route("/") def cam(): return create_page_from_images( get_latest_images() ) def get_latest_images(): image_list = [] for i in range(0,image_count): data_uri = base64.b64encode(open( image_path / f'takapuna{i}.png', 'rb').read()).decode('utf-8') img_tag = '<img src="data:image/png;base64,{0}">'.format(data_uri) image_list.append(img_tag) i += 1 return image_list def create_page_from_images(image_list): page = '' for im in image_list: page += im page += '\n' return page
[ "schedule.run_pending", "threading.Thread", "flask.Flask", "json.dumps", "time.sleep", "requests.get", "schedule.every", "pathlib.Path.cwd" ]
[((213, 228), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (218, 228), False, 'from flask import Flask, abort, jsonify, request\n'), ((1351, 1403), 'threading.Thread', 'threading.Thread', ([], {'target': 'schedule_check', 'daemon': '(True)'}), '(target=schedule_check, daemon=True)\n', (1367, 1403), False, 'import threading\n'), ((354, 364), 'pathlib.Path.cwd', 'Path.cwd', ([], {}), '()\n', (362, 364), False, 'from pathlib import Path\n'), ((836, 898), 'requests.get', 'requests.get', (['"""http://www.windsurf.co.nz/webcams/takapuna.jpg"""'], {}), "('http://www.windsurf.co.nz/webcams/takapuna.jpg')\n", (848, 898), False, 'import requests\n'), ((1552, 1585), 'json.dumps', 'json.dumps', (["{'status': 'healthy'}"], {}), "({'status': 'healthy'})\n", (1562, 1585), False, 'import json\n'), ((625, 647), 'schedule.run_pending', 'schedule.run_pending', ([], {}), '()\n', (645, 647), False, 'import schedule\n'), ((656, 669), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (666, 669), False, 'import time\n'), ((1307, 1324), 'schedule.every', 'schedule.every', (['(5)'], {}), '(5)\n', (1321, 1324), False, 'import schedule\n')]
from django.test import TestCase, Client from plan.models import Announcement class AnnouncementTestCase(TestCase): def setUp(self): self.client = Client() Announcement.objects.create(title='test1', content='test content1') Announcement.objects.create(title='test2', content='test content2') Announcement.objects.create(title='test3', content='test content3') def tearDown(self): Announcement.objects.all().delete() def test_get_one_announcement(self): """测试获取单个公告""" for anno in Announcement.objects.all(): response = self.client.get(f'/plan/announcement/{anno.id}/') self.assertEqual(response.status_code, 200) self.assertJSONEqual(response.content, { 'id': anno.id, 'title': anno.title, 'created_date': str(anno.created_date), 'changed_date': str(anno.changed_date), 'content': anno.content, }) def test_get_all_announcements(self): """测试获取所有公告""" response = self.client.get('/plan/announcement/') self.assertEqual(response.status_code, 200) expected_data = list() for anno in Announcement.objects.all(): expected_data.append({ 'id': anno.id, 'title': anno.title, 'created_date': str(anno.created_date), 'changed_date': str(anno.changed_date), }) self.assertJSONEqual(response.content, expected_data)
[ "plan.models.Announcement.objects.create", "plan.models.Announcement.objects.all", "django.test.Client" ]
[((162, 170), 'django.test.Client', 'Client', ([], {}), '()\n', (168, 170), False, 'from django.test import TestCase, Client\n'), ((179, 246), 'plan.models.Announcement.objects.create', 'Announcement.objects.create', ([], {'title': '"""test1"""', 'content': '"""test content1"""'}), "(title='test1', content='test content1')\n", (206, 246), False, 'from plan.models import Announcement\n'), ((255, 322), 'plan.models.Announcement.objects.create', 'Announcement.objects.create', ([], {'title': '"""test2"""', 'content': '"""test content2"""'}), "(title='test2', content='test content2')\n", (282, 322), False, 'from plan.models import Announcement\n'), ((331, 398), 'plan.models.Announcement.objects.create', 'Announcement.objects.create', ([], {'title': '"""test3"""', 'content': '"""test content3"""'}), "(title='test3', content='test content3')\n", (358, 398), False, 'from plan.models import Announcement\n'), ((565, 591), 'plan.models.Announcement.objects.all', 'Announcement.objects.all', ([], {}), '()\n', (589, 591), False, 'from plan.models import Announcement\n'), ((1242, 1268), 'plan.models.Announcement.objects.all', 'Announcement.objects.all', ([], {}), '()\n', (1266, 1268), False, 'from plan.models import Announcement\n'), ((436, 462), 'plan.models.Announcement.objects.all', 'Announcement.objects.all', ([], {}), '()\n', (460, 462), False, 'from plan.models import Announcement\n')]
#!/usr/bin/env python # # Copyright (c) 2021 Intel Corporation # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. # from ros_compatibility.core import get_ros_version ROS_VERSION = get_ros_version() if ROS_VERSION == 1: import rospy class ROSException(rospy.ROSException): pass class ROSInterruptException(rospy.ROSInterruptException): pass class ServiceException(rospy.ServiceException): pass elif ROS_VERSION == 2: import rclpy.exceptions class ROSException(Exception): pass class ROSInterruptException(rclpy.exceptions.ROSInterruptException): pass class ServiceException(Exception): pass
[ "ros_compatibility.core.get_ros_version" ]
[((252, 269), 'ros_compatibility.core.get_ros_version', 'get_ros_version', ([], {}), '()\n', (267, 269), False, 'from ros_compatibility.core import get_ros_version\n')]
import igraph as ig import numpy as np from scipy.special import betaln g = ig.Graph.Read_GML('karate.txt') X = np.array(g.get_adjacency().data) def irm(X, T, a, b, A, random_seed = 42): N = len(X) z = np.ones([N,1]) Z = [] np.random.seed(random_seed) for t in range(T): # for T iterations for n in range(N): # for each node n #nn = index mask without currently sampled node n nn = [_ for _ in range(N)] nn.remove(n) X_ = X[np.ix_(nn,nn)] #adjacency matrix without currently sampled node # K = n. of components K = len(z[0]) # Delete empty component if present if K > 1: idx = np.argwhere(np.sum(z[nn], 0) == 0) z = np.delete(z, idx, axis=1) K -= len(idx) # m = n. of nodes in each component m = np.sum(z[nn], 0)[np.newaxis] M = np.tile(m, (K, 1)) # M1 = n. of links between components without current node M1 = z[nn].T @ X_ @ z[nn] - np.diag(np.sum(X_@z[nn]*z[nn], 0) / 2) # M0 = n. of non-links between components without current node M0 = m.T@m - np.diag((m*(m+1) / 2).flatten()) - M1 # r = n. of links from current node to components r = z[nn].T @ X[nn, n] R = np.tile(r, (K, 1)) # lik matrix of current node sampled to each component likelihood = betaln(M1+R+a, M0+M-R+b) - betaln(M1+a, M0+b) # lik of current node to new component likelihood_n = betaln(r+a, m-r+b) - betaln(a,b) logLik = np.sum(np.concatenate([likelihood, likelihood_n]), 1) logPrior = np.log(np.append(m, A)) logPost = logPrior + logLik # Convert from log probabilities, normalized to max P = np.exp(logPost-max(logPost)) # Assignment through random draw fron unif(0,1), taking first value from prob. vector draw = np.random.rand() i = np.argwhere(draw<np.cumsum(P)/sum(P))[0] # Assignment of current node to component i z[n,:] = 0 if i == K: # If new component: add new column to partition matrix z = np.hstack((z, np.zeros((N,1)))) z[n,i] = 1 # Delete empty component if present idx = np.argwhere(np.all(z[..., :] == 0, axis=0)) z = np.delete(z, idx, axis=1) Z.append(z) print(z) print(m) return Z T = 500 a = 1 b = 1 A = 10 Z = irm(X, T, a, b, A) for i in range(1, 11): print(np.sum(Z[-i], 0))
[ "numpy.sum", "numpy.random.seed", "numpy.concatenate", "igraph.Graph.Read_GML", "numpy.ix_", "numpy.zeros", "numpy.ones", "scipy.special.betaln", "numpy.append", "numpy.cumsum", "numpy.tile", "numpy.random.rand", "numpy.delete", "numpy.all" ]
[((77, 108), 'igraph.Graph.Read_GML', 'ig.Graph.Read_GML', (['"""karate.txt"""'], {}), "('karate.txt')\n", (94, 108), True, 'import igraph as ig\n'), ((212, 227), 'numpy.ones', 'np.ones', (['[N, 1]'], {}), '([N, 1])\n', (219, 227), True, 'import numpy as np\n'), ((243, 270), 'numpy.random.seed', 'np.random.seed', (['random_seed'], {}), '(random_seed)\n', (257, 270), True, 'import numpy as np\n'), ((2486, 2511), 'numpy.delete', 'np.delete', (['z', 'idx'], {'axis': '(1)'}), '(z, idx, axis=1)\n', (2495, 2511), True, 'import numpy as np\n'), ((2663, 2679), 'numpy.sum', 'np.sum', (['Z[-i]', '(0)'], {}), '(Z[-i], 0)\n', (2669, 2679), True, 'import numpy as np\n'), ((951, 969), 'numpy.tile', 'np.tile', (['m', '(K, 1)'], {}), '(m, (K, 1))\n', (958, 969), True, 'import numpy as np\n'), ((1401, 1419), 'numpy.tile', 'np.tile', (['r', '(K, 1)'], {}), '(r, (K, 1))\n', (1408, 1419), True, 'import numpy as np\n'), ((2063, 2079), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (2077, 2079), True, 'import numpy as np\n'), ((2442, 2472), 'numpy.all', 'np.all', (['(z[..., :] == 0)'], {'axis': '(0)'}), '(z[..., :] == 0, axis=0)\n', (2448, 2472), True, 'import numpy as np\n'), ((509, 523), 'numpy.ix_', 'np.ix_', (['nn', 'nn'], {}), '(nn, nn)\n', (515, 523), True, 'import numpy as np\n'), ((784, 809), 'numpy.delete', 'np.delete', (['z', 'idx'], {'axis': '(1)'}), '(z, idx, axis=1)\n', (793, 809), True, 'import numpy as np\n'), ((906, 922), 'numpy.sum', 'np.sum', (['z[nn]', '(0)'], {}), '(z[nn], 0)\n', (912, 922), True, 'import numpy as np\n'), ((1513, 1547), 'scipy.special.betaln', 'betaln', (['(M1 + R + a)', '(M0 + M - R + b)'], {}), '(M1 + R + a, M0 + M - R + b)\n', (1519, 1547), False, 'from scipy.special import betaln\n'), ((1540, 1562), 'scipy.special.betaln', 'betaln', (['(M1 + a)', '(M0 + b)'], {}), '(M1 + a, M0 + b)\n', (1546, 1562), False, 'from scipy.special import betaln\n'), ((1637, 1661), 'scipy.special.betaln', 'betaln', (['(r + a)', '(m - r + b)'], {}), '(r + a, m - r + b)\n', (1643, 1661), False, 'from scipy.special import betaln\n'), ((1658, 1670), 'scipy.special.betaln', 'betaln', (['a', 'b'], {}), '(a, b)\n', (1664, 1670), False, 'from scipy.special import betaln\n'), ((1699, 1741), 'numpy.concatenate', 'np.concatenate', (['[likelihood, likelihood_n]'], {}), '([likelihood, likelihood_n])\n', (1713, 1741), True, 'import numpy as np\n'), ((1776, 1791), 'numpy.append', 'np.append', (['m', 'A'], {}), '(m, A)\n', (1785, 1791), True, 'import numpy as np\n'), ((741, 757), 'numpy.sum', 'np.sum', (['z[nn]', '(0)'], {}), '(z[nn], 0)\n', (747, 757), True, 'import numpy as np\n'), ((1103, 1132), 'numpy.sum', 'np.sum', (['(X_ @ z[nn] * z[nn])', '(0)'], {}), '(X_ @ z[nn] * z[nn], 0)\n', (1109, 1132), True, 'import numpy as np\n'), ((2329, 2345), 'numpy.zeros', 'np.zeros', (['(N, 1)'], {}), '((N, 1))\n', (2337, 2345), True, 'import numpy as np\n'), ((2113, 2125), 'numpy.cumsum', 'np.cumsum', (['P'], {}), '(P)\n', (2122, 2125), True, 'import numpy as np\n')]
from __future__ import annotations import logging import typing as t from fastapi import APIRouter, FastAPI from fastapi.param_functions import Depends from starlette.responses import ( JSONResponse, Response, ) from api.config import get_config from api.postgres import Connection, Postgres, connect_and_migrate logger = logging.getLogger(__name__) router = APIRouter() @router.get("/") async def get_home(conn: Connection = Depends(Postgres.connection)) -> Response: users = await conn.fetch("SELECT username FROM users;") return JSONResponse(content={"users": [user[1] for user in users]}) def create_app() -> FastAPI: config = get_config() async def on_startup() -> None: await connect_and_migrate(config.postgres) async def on_shutdown() -> None: await Postgres.disconnect() app = FastAPI( openapi_url=None, on_startup=[on_startup], on_shutdown=[on_shutdown], # CUSTOMIZE # exception_handlers={}, ) # CUSTOMIZE # app.mount( # "/static", app=StaticFiles(directory=config.static_dir, html=True) # ) app.include_router(router) return app
[ "api.config.get_config", "api.postgres.connect_and_migrate", "fastapi.param_functions.Depends", "starlette.responses.JSONResponse", "fastapi.FastAPI", "api.postgres.Postgres.disconnect", "logging.getLogger", "fastapi.APIRouter" ]
[((334, 361), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (351, 361), False, 'import logging\n'), ((371, 382), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (380, 382), False, 'from fastapi import APIRouter, FastAPI\n'), ((440, 468), 'fastapi.param_functions.Depends', 'Depends', (['Postgres.connection'], {}), '(Postgres.connection)\n', (447, 468), False, 'from fastapi.param_functions import Depends\n'), ((554, 614), 'starlette.responses.JSONResponse', 'JSONResponse', ([], {'content': "{'users': [user[1] for user in users]}"}), "(content={'users': [user[1] for user in users]})\n", (566, 614), False, 'from starlette.responses import JSONResponse, Response\n'), ((659, 671), 'api.config.get_config', 'get_config', ([], {}), '()\n', (669, 671), False, 'from api.config import get_config\n'), ((845, 922), 'fastapi.FastAPI', 'FastAPI', ([], {'openapi_url': 'None', 'on_startup': '[on_startup]', 'on_shutdown': '[on_shutdown]'}), '(openapi_url=None, on_startup=[on_startup], on_shutdown=[on_shutdown])\n', (852, 922), False, 'from fastapi import APIRouter, FastAPI\n'), ((723, 759), 'api.postgres.connect_and_migrate', 'connect_and_migrate', (['config.postgres'], {}), '(config.postgres)\n', (742, 759), False, 'from api.postgres import Connection, Postgres, connect_and_migrate\n'), ((812, 833), 'api.postgres.Postgres.disconnect', 'Postgres.disconnect', ([], {}), '()\n', (831, 833), False, 'from api.postgres import Connection, Postgres, connect_and_migrate\n')]
import networkx as nx import matplotlib.pyplot as plt G=nx.cubical_graph() #Return the 3-regular Platonic Cubical graph. plt.subplot(121) #subplot(nrows, ncols, index) nx.draw(G) # default spring_layout plt.subplot(122) nx.draw(G, pos=nx.circular_layout(G), nodecolor='r', edge_color='b')
[ "networkx.cubical_graph", "matplotlib.pyplot.subplot", "networkx.draw", "networkx.circular_layout" ]
[((57, 75), 'networkx.cubical_graph', 'nx.cubical_graph', ([], {}), '()\n', (73, 75), True, 'import networkx as nx\n'), ((122, 138), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(121)'], {}), '(121)\n', (133, 138), True, 'import matplotlib.pyplot as plt\n'), ((169, 179), 'networkx.draw', 'nx.draw', (['G'], {}), '(G)\n', (176, 179), True, 'import networkx as nx\n'), ((205, 221), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(122)'], {}), '(122)\n', (216, 221), True, 'import matplotlib.pyplot as plt\n'), ((237, 258), 'networkx.circular_layout', 'nx.circular_layout', (['G'], {}), '(G)\n', (255, 258), True, 'import networkx as nx\n')]
from flask import Flask from flask import render_template app = Flask(__name__) # main routes @app.route('/') def index(): return render_template('index.html') @app.route('/home') def home(): return render_template('home.html')
[ "flask.Flask", "flask.render_template" ]
[((65, 80), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (70, 80), False, 'from flask import Flask\n'), ((136, 165), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (151, 165), False, 'from flask import render_template\n'), ((210, 238), 'flask.render_template', 'render_template', (['"""home.html"""'], {}), "('home.html')\n", (225, 238), False, 'from flask import render_template\n')]
import datetime END_DATE = datetime.date(2019, 4, 25) STATE2DESCRIPTOR = {0: 'REST', 1: 'SLEEP', 2: 'ACTIVE', 3: 'RUN', 4: 'EAT&DRINK', 5: 'EAT'} DAY_NIGHTS = ['day', 'night'] STATES = list(STATE2DESCRIPTOR.values()) STATE_AGG_BASE_FEATURES = ['VO2', 'VCO2', 'VH2O', 'KCal_hr', 'RQ', 'Food', 'PedMeters', 'AllMeters'] STATE_AGGREGATE_FNS = ['nanmean', 'pp99'] CIRCADIAN_AGG_BASE_FEATURES = ["VO2", "RQ", "KCal_hr", "Food", "Water", "BodyMass", "WheelSpeed", "WheelMeters", 'PedMeters', "AllMeters", "XBreak", "YBreak", "ZBreak"] CIRCADIAN_AGGREGATE_FNS = ['mean', 'pp99'] INDEX_VARS = ['mouse_id', 'trace_id', 'date', 'age_in_months', 'day_of_week'] AGE_ORDER = ['00-03 months', '03-06 months', '06-09 months', '09-12 months', '12-15 months', '15-18 months', '18-21 months', '21-24 months', '24-27 months', '27-30 months', '30-33 months', '33 months or older']
[ "datetime.date" ]
[((29, 55), 'datetime.date', 'datetime.date', (['(2019)', '(4)', '(25)'], {}), '(2019, 4, 25)\n', (42, 55), False, 'import datetime\n')]
import os import re import sys import platform import subprocess import versioneer from setuptools import setup, Extension, find_packages from setuptools.command.build_ext import build_ext from distutils.version import LooseVersion cpus = os.cpu_count() here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() with open(os.path.join(here, 'requirements.txt')) as f: requirements = f.read().split() class CMakeExtension(Extension): def __init__(self, name, sourcedir=''): Extension.__init__(self, name, sources=[]) self.sourcedir = os.path.abspath(sourcedir) class CMakeBuild(build_ext): def run(self): try: out = subprocess.check_output(['cmake', '--version']) except OSError: raise RuntimeError("CMake must be installed to build the following" "extensions: , ".join( e.name for e in self.extensions)) if platform.system() == "Windows": cmake_version = LooseVersion( re.search(r'version\s*([\d.]+)', out.decode()).group(1)) if cmake_version < '3.1.0': raise RuntimeError("CMake >= 3.1.0 is required on Windows") for ext in self.extensions: self.build_extension(ext) def build_extension(self, ext): extdir = os.path.abspath( os.path.dirname(self.get_ext_fullpath(ext.name))) cmake_args = ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=' + extdir, '-DPYTHON_EXECUTABLE=' + sys.executable] # cfg = 'Debug' if self.debug else 'Release' cfg = 'RelWithDebInfo' build_args = ['--config', cfg] if platform.system() == "Windows": cmake_args += ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY_{}={}' .format(cfg.upper(), extdir)] if sys.maxsize > 2**32: cmake_args += ['-A', 'x64'] build_args += ['--', '/m'] else: cmake_args += ['-DCMAKE_BUILD_TYPE=' + cfg] build_args += ['--target', '_pyantplus'] build_args += ['--', '-j{}'.format(cpus)] env = os.environ.copy() env['CXXFLAGS'] = '{} -DPY_VERSION_INFO=\\"{}\\"' .format( env.get('CXXFLAGS', ''), self.distribution.get_version()) if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) subprocess.check_call(['cmake', ext.sourcedir] + cmake_args, cwd=self.build_temp, env=env) subprocess.check_call(['cmake', '--build', '.'] + build_args, cwd=self.build_temp) cmdclass = versioneer.get_cmdclass() cmdclass['build_ext'] = CMakeBuild setup( name='pyantplus', author='<NAME>', author_email='<EMAIL>', description='ANT+ Utilities', long_description=long_description, long_description_content_type='text/markdown', license='MIT', url='https://github.com/stuwilkins/ant-recorder', packages=find_packages(), install_requires=requirements, setup_requires=["pytest-runner"], tests_require=["pytest"], ext_modules=[CMakeExtension('_pyantplus')], cmdclass=cmdclass, zip_safe=False, version=versioneer.get_version(), )
[ "versioneer.get_version", "os.path.abspath", "setuptools.find_packages", "os.path.join", "os.makedirs", "os.path.dirname", "os.environ.copy", "subprocess.check_output", "os.path.exists", "versioneer.get_cmdclass", "os.cpu_count", "platform.system", "setuptools.Extension.__init__", "subprocess.check_call" ]
[((241, 255), 'os.cpu_count', 'os.cpu_count', ([], {}), '()\n', (253, 255), False, 'import os\n'), ((2774, 2799), 'versioneer.get_cmdclass', 'versioneer.get_cmdclass', ([], {}), '()\n', (2797, 2799), False, 'import versioneer\n'), ((279, 304), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (294, 304), False, 'import os\n'), ((317, 348), 'os.path.join', 'os.path.join', (['here', '"""README.md"""'], {}), "(here, 'README.md')\n", (329, 348), False, 'import os\n'), ((417, 455), 'os.path.join', 'os.path.join', (['here', '"""requirements.txt"""'], {}), "(here, 'requirements.txt')\n", (429, 455), False, 'import os\n'), ((586, 628), 'setuptools.Extension.__init__', 'Extension.__init__', (['self', 'name'], {'sources': '[]'}), '(self, name, sources=[])\n', (604, 628), False, 'from setuptools import setup, Extension, find_packages\n'), ((654, 680), 'os.path.abspath', 'os.path.abspath', (['sourcedir'], {}), '(sourcedir)\n', (669, 680), False, 'import os\n'), ((2255, 2272), 'os.environ.copy', 'os.environ.copy', ([], {}), '()\n', (2270, 2272), False, 'import os\n'), ((2519, 2614), 'subprocess.check_call', 'subprocess.check_call', (["(['cmake', ext.sourcedir] + cmake_args)"], {'cwd': 'self.build_temp', 'env': 'env'}), "(['cmake', ext.sourcedir] + cmake_args, cwd=self.\n build_temp, env=env)\n", (2540, 2614), False, 'import subprocess\n'), ((2648, 2735), 'subprocess.check_call', 'subprocess.check_call', (["(['cmake', '--build', '.'] + build_args)"], {'cwd': 'self.build_temp'}), "(['cmake', '--build', '.'] + build_args, cwd=self.\n build_temp)\n", (2669, 2735), False, 'import subprocess\n'), ((3124, 3139), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (3137, 3139), False, 'from setuptools import setup, Extension, find_packages\n'), ((3347, 3371), 'versioneer.get_version', 'versioneer.get_version', ([], {}), '()\n', (3369, 3371), False, 'import versioneer\n'), ((762, 809), 'subprocess.check_output', 'subprocess.check_output', (["['cmake', '--version']"], {}), "(['cmake', '--version'])\n", (785, 809), False, 'import subprocess\n'), ((1049, 1066), 'platform.system', 'platform.system', ([], {}), '()\n', (1064, 1066), False, 'import platform\n'), ((1787, 1804), 'platform.system', 'platform.system', ([], {}), '()\n', (1802, 1804), False, 'import platform\n'), ((2437, 2468), 'os.path.exists', 'os.path.exists', (['self.build_temp'], {}), '(self.build_temp)\n', (2451, 2468), False, 'import os\n'), ((2482, 2510), 'os.makedirs', 'os.makedirs', (['self.build_temp'], {}), '(self.build_temp)\n', (2493, 2510), False, 'import os\n')]
# Twitcaspy # Copyright 2021 Alma-field # See LICENSE for details. from twitcaspy import API, AppAuthHandler # The client id and/or secret can be found on your application's Details page # located at select app in https://twitcasting.tv/developer.php # (in "details" tab) CLIENT_ID = '' CLIENT_SECRET = '' auth = AppAuthHandler(CLIENT_ID, CLIENT_SECRET) api = API(auth) # Target User ID and screen ID user_id = '182224938' screen_id = 'twitcasting_jp' # If the authentication was successful, you should # see the name of the account print out print(api.get_user_info(id=user_id).user.name) result = api.get_webhook_list() print(result.all_count) for webhook in result.webhooks: print(f'{webhook.user_id}: {event}')
[ "twitcaspy.AppAuthHandler", "twitcaspy.API" ]
[((316, 356), 'twitcaspy.AppAuthHandler', 'AppAuthHandler', (['CLIENT_ID', 'CLIENT_SECRET'], {}), '(CLIENT_ID, CLIENT_SECRET)\n', (330, 356), False, 'from twitcaspy import API, AppAuthHandler\n'), ((363, 372), 'twitcaspy.API', 'API', (['auth'], {}), '(auth)\n', (366, 372), False, 'from twitcaspy import API, AppAuthHandler\n')]
from django.conf import settings from django.http import JsonResponse from common import errors def render_json(code=errors.OK, data=None): """ 自定义 json 输出 :param code: :param data: :return: """ result = { 'code': code } if data: result['data'] = data if settings.DEBUG: json_dumps_params = {'indent': 4, 'ensure_ascii': False} else: json_dumps_params = {'separators': (',', ':')} return JsonResponse(result, safe=False, json_dumps_params=json_dumps_params)
[ "django.http.JsonResponse" ]
[((475, 544), 'django.http.JsonResponse', 'JsonResponse', (['result'], {'safe': '(False)', 'json_dumps_params': 'json_dumps_params'}), '(result, safe=False, json_dumps_params=json_dumps_params)\n', (487, 544), False, 'from django.http import JsonResponse\n')]
import sys sys.path.append('./model') import argparse import torch import numpy as np from model.model import NCNet import torchvision.transforms as transforms from dataloader import TrainLoader, ValLoader from loss import WeakLoss import torch.optim as optim import json import os ## Parameters parser = argparse.ArgumentParser(description='Nc-Net Training') ## Input / Output parser.add_argument('--outDir', type=str, help='output model directory') parser.add_argument('--resumePth', type=str, help='resume model path') parser.add_argument('--featExtractorPth', type=str, default = 'model/FeatureExtractor/resnet18.pth', help='feature extractor path') parser.add_argument('--imgDir', type=str, default = 'data/pf-pascal/JPEGImages/', help='image Directory') parser.add_argument('--trainCSV', type=str, default = 'data/pf-pascal/train.csv', help='train csv') parser.add_argument('--valCSV', type=str, default = 'data/pf-pascal/val.csv', help='val csv') parser.add_argument('--imgSize', type=int, default = 400, help='train image size') ## learning parameter parser.add_argument('--lr', type=float, default=5e-4, help='learning rate') parser.add_argument('--batchSize', type=int, default=16, help='batch size') parser.add_argument('--nbEpoch', type=int, default=5, help='number of training epochs') parser.add_argument('--neighConsKernel', nargs='+', type=int, default=[5,5,5], help='kernels sizes in neigh. cons.') parser.add_argument('--neighConsChannel', nargs='+', type=int, default=[16,16,1], help='channels in neigh. cons') parser.add_argument('--finetuneFeatExtractor', action='store_true', help='whether fine-tuning feature extractor') parser.add_argument('--featExtractor', type=str, default='ResNet18Conv4', choices=['ResNet18Conv4', 'ResNet18Conv5'], help='feature extractor') parser.add_argument('--cuda', action='store_true', help='GPU setting') parser.add_argument('--softmaxMM', action='store_true', help='whether use softmax Mutual Matching') args = parser.parse_args() print(args) ## Set seed torch.manual_seed(1) if args.cuda: torch.cuda.manual_seed(1) else : raise RuntimeError('CPU Version is not supported yet.') np.random.seed(1) ## Initial Model model = NCNet(kernel_sizes=args.neighConsKernel, channels=args.neighConsChannel, featExtractor = args.featExtractor, featExtractorPth = args.featExtractorPth, finetuneFeatExtractor = args.finetuneFeatExtractor, softmaxMutualMatching = args.softmaxMM) if not args.finetuneFeatExtractor: msg = '\nIgnore the gradient for the parameters in the feature extractor' print (msg) for p in model.featExtractor.parameters(): p.requires_grad=False if args.resumePth : msg = '\nResume from {}'.format(args.resumePth) model.load_state_dict(torch.load(args.resumePth)) if args.cuda : model.cuda() optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr) ## Train Val DataLoader normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # ImageNet normalization trainTransform = transforms.Compose([transforms.RandomResizedCrop(args.imgSize), transforms.ToTensor(), normalize,]) valTransform = transforms.Compose([transforms.Resize(args.imgSize), transforms.CenterCrop(args.imgSize), transforms.ToTensor(), normalize,]) trainLoader = TrainLoader(batchSize=args.batchSize, pairCSV=args.trainCSV, imgDir = args.imgDir, trainTransform = trainTransform) valLoader = ValLoader(batchSize=args.batchSize, pairCSV=args.valCSV, imgDir = args.imgDir, valTransform = valTransform) if not os.path.exists(args.outDir) : os.mkdir(args.outDir) # Train bestValLoss = np.inf history = {'TrainLoss' : [], 'ValLoss' : []} outHistory = os.path.join(args.outDir, 'history.json') outModel = os.path.join(args.outDir, 'netBest.pth') for epoch in range(1, args.nbEpoch + 1) : trainLoss = 0. valLoss = 0. for i, batch in enumerate(trainLoader) : optimizer.zero_grad() if args.cuda : batch['source_image'] = batch['source_image'].cuda() batch['target_image'] = batch['target_image'].cuda() loss = WeakLoss(model, batch, args.softmaxMM) loss.backward() optimizer.step() trainLoss += loss.item() if i % 30 == 29 : msg = '\nEpoch {:d}, Batch {:d}, Train Loss : {:.4f}'.format(epoch, i + 1, trainLoss / (i + 1)) print (msg) ## Validation trainLoss = trainLoss / len(trainLoader) with torch.no_grad() : for i, batch in enumerate(valLoader) : if args.cuda : batch['source_image'] = batch['source_image'].cuda() batch['target_image'] = batch['target_image'].cuda() loss = WeakLoss(model, batch, args.softmaxMM) valLoss += loss.item() valLoss = valLoss / len(valLoader) msg = 'Epoch {:d}, Train Loss : {:.4f}, Val Loss : {:.4f}'.format(epoch, trainLoss , valLoss) with open(outHistory, 'w') as f : json.dump(history, f) print (msg) if valLoss < bestValLoss : msg = 'Validation Loss Improved from {:.4f} to {:.4f}'.format(bestValLoss, valLoss) print (msg) bestValLoss = valLoss torch.save(model.state_dict(), outModel) finalOut = os.path.join(args.outDir, 'netBest{:.3f}.pth'.format(bestValLoss)) cmd = 'mv {} {}'.format(outModel, finalOut) os.system(cmd)
[ "os.mkdir", "numpy.random.seed", "argparse.ArgumentParser", "model.model.NCNet", "loss.WeakLoss", "torchvision.transforms.Normalize", "torch.no_grad", "os.path.join", "sys.path.append", "torch.load", "os.path.exists", "dataloader.ValLoader", "torchvision.transforms.CenterCrop", "json.dump", "torch.manual_seed", "dataloader.TrainLoader", "torch.cuda.manual_seed", "os.system", "torchvision.transforms.Resize", "torchvision.transforms.RandomResizedCrop", "torchvision.transforms.ToTensor" ]
[((12, 38), 'sys.path.append', 'sys.path.append', (['"""./model"""'], {}), "('./model')\n", (27, 38), False, 'import sys\n'), ((311, 365), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Nc-Net Training"""'}), "(description='Nc-Net Training')\n", (334, 365), False, 'import argparse\n'), ((2024, 2044), 'torch.manual_seed', 'torch.manual_seed', (['(1)'], {}), '(1)\n', (2041, 2044), False, 'import torch\n'), ((2157, 2174), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (2171, 2174), True, 'import numpy as np\n'), ((2201, 2448), 'model.model.NCNet', 'NCNet', ([], {'kernel_sizes': 'args.neighConsKernel', 'channels': 'args.neighConsChannel', 'featExtractor': 'args.featExtractor', 'featExtractorPth': 'args.featExtractorPth', 'finetuneFeatExtractor': 'args.finetuneFeatExtractor', 'softmaxMutualMatching': 'args.softmaxMM'}), '(kernel_sizes=args.neighConsKernel, channels=args.neighConsChannel,\n featExtractor=args.featExtractor, featExtractorPth=args.\n featExtractorPth, finetuneFeatExtractor=args.finetuneFeatExtractor,\n softmaxMutualMatching=args.softmaxMM)\n', (2206, 2448), False, 'from model.model import NCNet\n'), ((3034, 3100), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['[0.485, 0.456, 0.406]', '[0.229, 0.224, 0.225]'], {}), '([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n', (3054, 3100), True, 'import torchvision.transforms as transforms\n'), ((3589, 3705), 'dataloader.TrainLoader', 'TrainLoader', ([], {'batchSize': 'args.batchSize', 'pairCSV': 'args.trainCSV', 'imgDir': 'args.imgDir', 'trainTransform': 'trainTransform'}), '(batchSize=args.batchSize, pairCSV=args.trainCSV, imgDir=args.\n imgDir, trainTransform=trainTransform)\n', (3600, 3705), False, 'from dataloader import TrainLoader, ValLoader\n'), ((3825, 3932), 'dataloader.ValLoader', 'ValLoader', ([], {'batchSize': 'args.batchSize', 'pairCSV': 'args.valCSV', 'imgDir': 'args.imgDir', 'valTransform': 'valTransform'}), '(batchSize=args.batchSize, pairCSV=args.valCSV, imgDir=args.imgDir,\n valTransform=valTransform)\n', (3834, 3932), False, 'from dataloader import TrainLoader, ValLoader\n'), ((4177, 4218), 'os.path.join', 'os.path.join', (['args.outDir', '"""history.json"""'], {}), "(args.outDir, 'history.json')\n", (4189, 4218), False, 'import os\n'), ((4230, 4270), 'os.path.join', 'os.path.join', (['args.outDir', '"""netBest.pth"""'], {}), "(args.outDir, 'netBest.pth')\n", (4242, 4270), False, 'import os\n'), ((5914, 5928), 'os.system', 'os.system', (['cmd'], {}), '(cmd)\n', (5923, 5928), False, 'import os\n'), ((2063, 2088), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['(1)'], {}), '(1)\n', (2085, 2088), False, 'import torch\n'), ((4023, 4050), 'os.path.exists', 'os.path.exists', (['args.outDir'], {}), '(args.outDir)\n', (4037, 4050), False, 'import os\n'), ((4058, 4079), 'os.mkdir', 'os.mkdir', (['args.outDir'], {}), '(args.outDir)\n', (4066, 4079), False, 'import os\n'), ((2836, 2862), 'torch.load', 'torch.load', (['args.resumePth'], {}), '(args.resumePth)\n', (2846, 2862), False, 'import torch\n'), ((3163, 3205), 'torchvision.transforms.RandomResizedCrop', 'transforms.RandomResizedCrop', (['args.imgSize'], {}), '(args.imgSize)\n', (3191, 3205), True, 'import torchvision.transforms as transforms\n'), ((3244, 3265), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (3263, 3265), True, 'import torchvision.transforms as transforms\n'), ((3354, 3385), 'torchvision.transforms.Resize', 'transforms.Resize', (['args.imgSize'], {}), '(args.imgSize)\n', (3371, 3385), True, 'import torchvision.transforms as transforms\n'), ((3425, 3460), 'torchvision.transforms.CenterCrop', 'transforms.CenterCrop', (['args.imgSize'], {}), '(args.imgSize)\n', (3446, 3460), True, 'import torchvision.transforms as transforms\n'), ((3500, 3521), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (3519, 3521), True, 'import torchvision.transforms as transforms\n'), ((4618, 4656), 'loss.WeakLoss', 'WeakLoss', (['model', 'batch', 'args.softmaxMM'], {}), '(model, batch, args.softmaxMM)\n', (4626, 4656), False, 'from loss import WeakLoss\n'), ((5007, 5022), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5020, 5022), False, 'import torch\n'), ((5530, 5551), 'json.dump', 'json.dump', (['history', 'f'], {}), '(history, f)\n', (5539, 5551), False, 'import json\n'), ((5264, 5302), 'loss.WeakLoss', 'WeakLoss', (['model', 'batch', 'args.softmaxMM'], {}), '(model, batch, args.softmaxMM)\n', (5272, 5302), False, 'from loss import WeakLoss\n')]
import sys for i in range(5): for j in range(i+1): sys.stdout.write("*") print()
[ "sys.stdout.write" ]
[((63, 84), 'sys.stdout.write', 'sys.stdout.write', (['"""*"""'], {}), "('*')\n", (79, 84), False, 'import sys\n')]
import cgi import json from types import FunctionType from typing import Any, Awaitable, Callable, Dict, List, Optional, Tuple, cast import attr from aiohttp import web from .context import COMPONENTS from .swagger import Swagger from .validators import MISSING, Validator, ValidatorError, schema_to_validator, security_to_validator _SwaggerHandler = Callable[..., Awaitable[web.StreamResponse]] class RequestValidationFailed(web.HTTPBadRequest): """This exception can be caught in a aiohttp middleware. :param dict errors: This dict stores validation errors. """ def __init__(self, errors: Dict, **kwargs: Any) -> None: super().__init__(**kwargs) self.errors = errors def _get_fn_parameters(fn: _SwaggerHandler) -> Tuple[str, ...]: func = cast(FunctionType, fn) if func.__closure__ is None: arg_count = func.__code__.co_argcount + func.__code__.co_kwonlyargcount return func.__code__.co_varnames[:arg_count] return _get_fn_parameters(func.__closure__[0].cell_contents) @attr.attrs(slots=True, auto_attribs=True) class Parameter: name: str validator: Validator required: bool class SwaggerRoute: __slots__ = ( "_swagger", "method", "path", "handler", "qp", "pp", "hp", "cp", "bp", "auth", "params", ) def __init__(self, method: str, path: str, handler: _SwaggerHandler, *, swagger: Swagger) -> None: self.method = method self.path = path self.handler = handler self.qp: List[Parameter] = [] self.pp: List[Parameter] = [] self.hp: List[Parameter] = [] self.cp: List[Parameter] = [] self.bp: Dict[str, Parameter] = {} self.auth: Optional[Parameter] = None self._swagger = swagger method_section = self._swagger.spec["paths"][path][method] parameters = method_section.get("parameters") body = method_section.get("requestBody") security = method_section.get("security") components = self._swagger.spec.get("components", {}) COMPONENTS.set(components) if security is not None: parameter = Parameter("", security_to_validator(security), True) self.auth = parameter if parameters is not None: for param in parameters: if "$ref" in param: if not components: raise Exception("file with components definitions is missing") # '#/components/parameters/Month' *_, section, obj = param["$ref"].split("/") param = components[section][obj] parameter = Parameter( param["name"], schema_to_validator(param["schema"]), param.get("required", False), ) if param["in"] == "query": self.qp.append(parameter) elif param["in"] == "path": self.pp.append(parameter) elif param["in"] == "header": parameter.name = parameter.name.lower() self.hp.append(parameter) elif param["in"] == "cookie": self.cp.append(parameter) if body is not None: for media_type, value in body["content"].items(): # check that we have handler for media_type self._swagger._get_media_type_handler(media_type) value = body["content"][media_type] self.bp[media_type] = Parameter( "body", schema_to_validator(value["schema"]), body.get("required", False), ) self.params = set(_get_fn_parameters(self.handler)) async def parse(self, request: web.Request) -> Dict: params = {} if "request" in self.params: params["request"] = request request_key = self._swagger.request_key request[request_key] = {} errors: Dict = {} # check auth if self.auth: try: values = self.auth.validator.validate(request, True) except ValidatorError as e: if isinstance(e.error, str): errors["authorization"] = e.error else: errors = e.error raise RequestValidationFailed(reason=json.dumps(errors), errors=errors) for key, value in values.items(): request[request_key][key] = value # query parameters if self.qp: for param in self.qp: if param.required: try: v: Any = request.rel_url.query.getall(param.name) except KeyError: errors[param.name] = "is required" continue if len(v) == 1: v = v[0] else: v = request.rel_url.query.getall(param.name, MISSING) if v != MISSING and len(v) == 1: v = v[0] try: value = param.validator.validate(v, True) except ValidatorError as e: errors[param.name] = e.error continue if value != MISSING: request[request_key][param.name] = value if param.name in self.params: params[param.name] = value # body parameters if self.bp: if "Content-Type" not in request.headers: if next(iter(self.bp.values())).required: errors["body"] = "is required" else: media_type, _ = cgi.parse_header(request.headers["Content-Type"]) if media_type not in self.bp: errors["body"] = f"no handler for {media_type}" else: handler = self._swagger._get_media_type_handler(media_type) param = self.bp[media_type] try: v, has_raw = await handler(request) except ValidatorError as e: errors[param.name] = e.error else: try: value = param.validator.validate(v, has_raw) except ValidatorError as e: errors[param.name] = e.error else: request[request_key][param.name] = value if param.name in self.params: params[param.name] = value # header parameters if self.hp: for param in self.hp: if param.required: try: v = request.headers.getone(param.name) except KeyError: errors[param.name] = "is required" continue else: v = request.headers.get(param.name, MISSING) try: value = param.validator.validate(v, True) except ValidatorError as e: errors[param.name] = e.error continue if value != MISSING: request[request_key][param.name] = value if param.name in self.params: params[param.name] = value # path parameters if self.pp: for param in self.pp: v = request.match_info[param.name] try: value = param.validator.validate(v, True) except ValidatorError as e: errors[param.name] = e.error continue request[request_key][param.name] = value if param.name in self.params: params[param.name] = value # cookie parameters if self.cp: for param in self.cp: if param.required: try: v = request.cookies[param.name] except KeyError: errors[param.name] = "is required" continue else: v = request.cookies.get(param.name, MISSING) try: value = param.validator.validate(v, True) except ValidatorError as e: errors[param.name] = e.error continue if value != MISSING: request[request_key][param.name] = value if param.name in self.params: params[param.name] = value if errors: raise RequestValidationFailed(reason=json.dumps(errors), errors=errors) return params
[ "typing.cast", "cgi.parse_header", "attr.attrs", "json.dumps" ]
[((1042, 1083), 'attr.attrs', 'attr.attrs', ([], {'slots': '(True)', 'auto_attribs': '(True)'}), '(slots=True, auto_attribs=True)\n', (1052, 1083), False, 'import attr\n'), ((785, 807), 'typing.cast', 'cast', (['FunctionType', 'fn'], {}), '(FunctionType, fn)\n', (789, 807), False, 'from typing import Any, Awaitable, Callable, Dict, List, Optional, Tuple, cast\n'), ((5899, 5948), 'cgi.parse_header', 'cgi.parse_header', (["request.headers['Content-Type']"], {}), "(request.headers['Content-Type'])\n", (5915, 5948), False, 'import cgi\n'), ((9050, 9068), 'json.dumps', 'json.dumps', (['errors'], {}), '(errors)\n', (9060, 9068), False, 'import json\n'), ((4508, 4526), 'json.dumps', 'json.dumps', (['errors'], {}), '(errors)\n', (4518, 4526), False, 'import json\n')]
from django_redis import get_redis_connection import json from .BaseOpration import BaseOpration from big_screen.utils import tools as t from big_screen.serialization.allSerialization import serMobile from big_screen.utils import re_format as f class defaultOp(BaseOpration): def __init__(self): BaseOpration.__init__(self) self.con = get_redis_connection("default") class sessionOp(BaseOpration): def __init__(self): BaseOpration.__init__(self) self.con = get_redis_connection("session") class isworkingOp(BaseOpration): def __init__(self): BaseOpration.__init__(self) self.con = get_redis_connection("isworking") self.mob = serMobile() def formatter_info(self, info): """ 格式转换 :param info: :return: """ lnglat = info.get("lnglat") address = t.getaddress(lnglat) if address is 0: address = { "status": 1, "district": f.UNKNOW_DISTRICT, 'formatted_address': "", "data_from": "", "adcode": f.UNKNOW_DISTRICT } info["address"] = address return (info.get("mobile"), info) class massmarkOp(BaseOpration): def __init__(self): """ 3号仓库 """ BaseOpration.__init__(self) self.con = get_redis_connection("massmark") def resetMassMarkData(self, content): """ 重置海量点数据 :param content: :return: """ self.flush_db() for con in content: self.pushMassMarkData(con) # ----------------- 数据插入 ----------------- def pushMassMarkData(self, info): """ 插入海量点数据 :param info: :return: """ k, v = info self.list_push(k, v) # --------------- 旧方法 --------------------- def formatter_data_from_ser(self, info): """ 用序列化器查询出的数据进行组织 :param info: :return: """ content = dict() lnglat = info.get("lnglat") content["time"] = info.get("time") content["address"] = info.get("address") content["category"] = info.get("category__name") content["freq"] = info.get("freq") return (lnglat, content) def formmater_data(self, info): """ 处理数据 :param content: :return: """ content = dict() lnglat = info.get("lnglat") content["time"] = info.get("time") content["address"] = info.get("address") content["category"] = info.get("category").name content["freq"] = info.get("freq") return (lnglat, content) def get_for_view(self): """ 为首页websocket组织数据 :return: """ content = list() keys = self.get_keys() if len(keys) is 0: return content else: for key in keys: info = dict() info["lnglat"] = key.split(",") data = self.list_get(key) data = list(map(lambda info: json.loads(info), data)) info["address"] = list(map(lambda info: info.pop("address"), data))[0] info["id_count"] = len(data) info["data"] = data content.append(info) return content class broadcastOp(BaseOpration): def __init__(self): """ 4号仓库 """ BaseOpration.__init__(self) self.con = get_redis_connection("broadcast") self.scrollKey = "scroll_n" self.heatmapKey = "heatmap_n" # -------------- 重置 ---------------- def resetScrollData(self, content): """ 重置轮播表数据 :param content: :return: """ self.del_key(self.scrollKey) for con in content: self.pushScrollData(con) def resetHeatMapData(self, content): """ 重置热力图数据 :param content: :return: """ self.del_key(self.heatmapKey) for con in content: self.pushHeatMapData(con) # -------------- 数据插入 --------------- def pushScrollData(self, info): """ 插入轮播表数据 :param info: :return: """ self.list_push(self.scrollKey, info) def pushHeatMapData(self, info): """ 插入热力图数据 :param info: :return: """ self.list_push(self.heatmapKey, info) # ------------- 旧方法 ----------------- def formatter_scroll_info(self, info): """ 格式化轮播表数据 :param info: :return: """ content = list() content.append(info.get("time")) content.append(info.get("freq")) content.append(info.get("category").name) content.append(info.get("address")) return content def formatter_heatmap_info(self, info): """ 格式化热力图数据 :param info: :return: """ content = dict() content["time"] = info.get("time") lnglat = info.get("lnglat").split(",") content["lng"] = lnglat[0] content["lat"] = lnglat[1] content["count"] = 1 return content def formatter_scroll_info_from_ser(self, info): """ 格式化轮播表数据,数据来源为序列化器 :param info: :return: """ content = list() content.append(info.get("time")) content.append(info.get("freq")) content.append(info.get("category__name")) content.append(info.get("address")) return content class chartOp(BaseOpration): def __init__(self): BaseOpration.__init__(self) self.con = get_redis_connection("chart") class whdisOp(BaseOpration): def __init__(self): BaseOpration.__init__(self) self.con = get_redis_connection("whdis") class MobListOp(BaseOpration): def __init__(self): BaseOpration.__init__(self) self.con = get_redis_connection("mob-list") self.mob = serMobile() def get_mob_list(self): """ 获取合法手机id列表 :return: """ result = self.kv_get("mob-list") if result == "no this key": mob_list = self.mob.get_mobile_list() result = mob_list self.kv_set("mob-list", mob_list) return result def update_mob_list(self): mob_list = self.mob.get_mobile_list() self.kv_set("mob-list", mob_list) class ObjectOp(BaseOpration): def __init__(self): BaseOpration.__init__(self) self.con = get_redis_connection("object") self.mob = serMobile() def get_mob_list(self): """ 获取合法手机id列表 :return: """ result = self.kv_get("mob-list") if result == "no this key": mob_list = self.mob.get_mobile_list() result = mob_list self.kv_set("mob-list", mob_list) return result def update_mob_list(self): mob_list = self.mob.get_mobile_list() self.kv_set("mob-list", mob_list)
[ "django_redis.get_redis_connection", "big_screen.utils.tools.getaddress", "big_screen.serialization.allSerialization.serMobile", "json.loads" ]
[((358, 389), 'django_redis.get_redis_connection', 'get_redis_connection', (['"""default"""'], {}), "('default')\n", (378, 389), False, 'from django_redis import get_redis_connection\n'), ((502, 533), 'django_redis.get_redis_connection', 'get_redis_connection', (['"""session"""'], {}), "('session')\n", (522, 533), False, 'from django_redis import get_redis_connection\n'), ((648, 681), 'django_redis.get_redis_connection', 'get_redis_connection', (['"""isworking"""'], {}), "('isworking')\n", (668, 681), False, 'from django_redis import get_redis_connection\n'), ((701, 712), 'big_screen.serialization.allSerialization.serMobile', 'serMobile', ([], {}), '()\n', (710, 712), False, 'from big_screen.serialization.allSerialization import serMobile\n'), ((879, 899), 'big_screen.utils.tools.getaddress', 't.getaddress', (['lnglat'], {}), '(lnglat)\n', (891, 899), True, 'from big_screen.utils import tools as t\n'), ((1383, 1415), 'django_redis.get_redis_connection', 'get_redis_connection', (['"""massmark"""'], {}), "('massmark')\n", (1403, 1415), False, 'from django_redis import get_redis_connection\n'), ((3527, 3560), 'django_redis.get_redis_connection', 'get_redis_connection', (['"""broadcast"""'], {}), "('broadcast')\n", (3547, 3560), False, 'from django_redis import get_redis_connection\n'), ((5719, 5748), 'django_redis.get_redis_connection', 'get_redis_connection', (['"""chart"""'], {}), "('chart')\n", (5739, 5748), False, 'from django_redis import get_redis_connection\n'), ((5859, 5888), 'django_redis.get_redis_connection', 'get_redis_connection', (['"""whdis"""'], {}), "('whdis')\n", (5879, 5888), False, 'from django_redis import get_redis_connection\n'), ((6001, 6033), 'django_redis.get_redis_connection', 'get_redis_connection', (['"""mob-list"""'], {}), "('mob-list')\n", (6021, 6033), False, 'from django_redis import get_redis_connection\n'), ((6053, 6064), 'big_screen.serialization.allSerialization.serMobile', 'serMobile', ([], {}), '()\n', (6062, 6064), False, 'from big_screen.serialization.allSerialization import serMobile\n'), ((6610, 6640), 'django_redis.get_redis_connection', 'get_redis_connection', (['"""object"""'], {}), "('object')\n", (6630, 6640), False, 'from django_redis import get_redis_connection\n'), ((6660, 6671), 'big_screen.serialization.allSerialization.serMobile', 'serMobile', ([], {}), '()\n', (6669, 6671), False, 'from big_screen.serialization.allSerialization import serMobile\n'), ((3123, 3139), 'json.loads', 'json.loads', (['info'], {}), '(info)\n', (3133, 3139), False, 'import json\n')]
import logging from collections import deque from abc import ABC, abstractmethod import math from lxml import etree from pyqtree import Index as PqtreeIndex from PIL import Image, ImageDraw, ImageColor from sciencebeam_gym.structured_document.svg import ( SVG_NSMAP, SVG_DOC, SVG_RECT, ) DEFAULT_NEARBY_TOLERANCE = 5 def get_logger(): return logging.getLogger(__name__) class AnnotationBlock(object): def __init__(self, tag, bounding_box): self.tag = tag self.bounding_box = bounding_box def merge_with(self, other): return AnnotationBlock( self.tag, self.bounding_box.include(other.bounding_box) ) def __str__(self): return 'AnnotationBlock({}, {})'.format(self.tag, self.bounding_box) def __repr__(self): return str(self) class BlockPoint(object): def __init__(self, block, x, y): self.block = block self.point = (x, y) def __str__(self): return 'BlockPoint({}, {})'.format(self.block, self.point) def __repr__(self): return str(self) def __len__(self): return len(self.point) def __getitem__(self, index): return self.point[index] def _to_bbox(bb): return (bb.x, bb.y, bb.x + bb.width - 1, bb.y + bb.height - 1) class DeletableWrapper(object): def __init__(self, data): self.data = data self.deleted = False def __hash__(self): return hash(self.data) def __eq__(self, other): return self.data == other.data class BlockSearch(object): def __init__(self, blocks): bboxs = [block.bounding_box for block in blocks] xmax = max([bb.x + bb.width for bb in bboxs]) ymax = max([bb.y + bb.height for bb in bboxs]) self.spindex = PqtreeIndex(bbox=(0, 0, xmax, ymax)) self.wrapper_map = {} for block in blocks: wrapper = DeletableWrapper(block) self.wrapper_map[block] = wrapper self.spindex.insert(wrapper, _to_bbox(block.bounding_box)) def find_intersection_with(self, search_bounding_box): return [ wrapper.data for wrapper in self.spindex.intersect(_to_bbox(search_bounding_box)) if not wrapper.deleted ] def remove(self, block): wrapper = self.wrapper_map.get(block) if wrapper is not None: wrapper.deleted = True def merge_blocks(blocks, nearby_tolerance=0): if len(blocks) <= 1: return blocks merged_blocks = deque() logger = get_logger() logger.debug('nearby_tolerance: %s', nearby_tolerance) logger.debug('blocks: %s', blocks) logger.debug('bboxs: %s', [_to_bbox(block.bounding_box) for block in blocks]) tags = sorted({b.tag for b in blocks}) logger.debug('tags: %s', tags) remaining_blocks = deque(blocks) search_by_tag = { tag: BlockSearch([b for b in remaining_blocks if b.tag == tag]) for tag in tags } while len(remaining_blocks) >= 2: merged_block = remaining_blocks.popleft() search = search_by_tag[merged_block.tag] search.remove(merged_block) search_bounding_box = merged_block.bounding_box.with_margin(1 + nearby_tolerance, 0) logger.debug('search_bounding_box: %s (%s)', search_bounding_box, _to_bbox(search_bounding_box)) neighbours = search.find_intersection_with(search_bounding_box) logger.debug('neighbours: %s', neighbours) neighbours_blocks_count = 0 for neighbour in neighbours: if neighbour.tag == merged_block.tag: merged_block = merged_block.merge_with(neighbour) search.remove(neighbour) remaining_blocks.remove(neighbour) neighbours_blocks_count += 1 if neighbours_blocks_count == 0 or len(remaining_blocks) == 0: logger.debug( 'no or all remaining blocks merged, mark block as merged: %d', neighbours_blocks_count ) merged_blocks.append(merged_block) else: logger.debug( 'some but not all remaining blocks merged, continue search: %d', neighbours_blocks_count ) remaining_blocks.appendleft(merged_block) result = list(merged_blocks) + list(remaining_blocks) return result def expand_bounding_box(bb): return bb.with_margin(4, 2) def expand_block(block): return AnnotationBlock(block.tag, expand_bounding_box(block.bounding_box)) def expand_blocks(blocks): return [expand_block(block) for block in blocks] def annotation_document_page_to_annotation_blocks(structured_document, page): tags_and_tokens = ( (structured_document.get_tag_value(token), token) for line in structured_document.get_lines_of_page(page) for token in structured_document.get_tokens_of_line(line) ) tags_and_bounding_boxes = ( (tag, structured_document.get_bounding_box(token)) for tag, token in tags_and_tokens if tag ) return [ AnnotationBlock(tag, bounding_box) for tag, bounding_box in tags_and_bounding_boxes if bounding_box ] def annotation_document_page_to_merged_blocks(structured_document, page, **kwargs): return merge_blocks( annotation_document_page_to_annotation_blocks(structured_document, page), **kwargs ) def extend_color_map_for_tags(color_map, tags): updated_color_map = dict(color_map) for tag in tags: if tag not in updated_color_map: updated_color_map[tag] = ( max(updated_color_map.values()) + 1 if len(updated_color_map) > 0 else 1 ) return updated_color_map def extend_color_map_for_blocks(color_map, blocks): return extend_color_map_for_tags( color_map, sorted({b.tag for b in blocks}) ) class AbstractSurface(ABC): @abstractmethod def rect(self, bounding_box, color, tag=None): pass class SvgSurface(AbstractSurface): def __init__(self, width, height, background): if not (width and height): raise AttributeError('width and height are required') self.svg_root = etree.Element(SVG_DOC, nsmap=SVG_NSMAP, attrib={ 'width': str(width), 'height': str(height) }) if background: self.svg_root.append(etree.Element(SVG_RECT, attrib={ 'width': '100%', 'height': '100%', 'fill': background, 'class': 'background' })) def rect(self, bounding_box, color, tag=None): attrib = { 'class': str(tag), 'shape-rendering': 'crispEdges', 'x': str(bounding_box.x), 'y': str(bounding_box.y), 'width': str(bounding_box.width), 'height': str(bounding_box.height) } if color: attrib['fill'] = str(color) rect = etree.Element(SVG_RECT, attrib=attrib) self.svg_root.append(rect) return rect def color_to_tuple(color): if isinstance(color, tuple): return color return ImageColor.getrgb(color) class ImageSurface(AbstractSurface): def __init__(self, width, height, background): if not (width and height): raise AttributeError('width and height are required') width = int(math.ceil(width)) height = int(math.ceil(height)) if background: self.image = Image.new('RGB', (width, height), color_to_tuple(background)) else: self.image = Image.new('RGBA', (width, height), (255, 255, 255, 0)) self._draw = ImageDraw.Draw(self.image) def rect(self, bounding_box, color, tag=None): if color is None: return self._draw.rectangle( ( (bounding_box.x, bounding_box.y), (bounding_box.x + bounding_box.width, bounding_box.y + bounding_box.height) ), fill=color_to_tuple(color) ) def annotated_blocks_to_surface(blocks, surface, color_map): for block in blocks: color = color_map.get(block.tag) surface.rect(block.bounding_box, color, block.tag) def annotated_blocks_to_svg(blocks, color_map, width=None, height=None, background=None): surface = SvgSurface(width, height, background) annotated_blocks_to_surface(blocks, surface, color_map) return surface.svg_root def annotated_blocks_to_image( blocks, color_map, width=None, height=None, background=None, scale_to_size=None): surface = ImageSurface(width, height, background) annotated_blocks_to_surface(blocks, surface, color_map) image = surface.image if scale_to_size: image = image.resize(scale_to_size, Image.NEAREST) return image
[ "PIL.Image.new", "lxml.etree.Element", "math.ceil", "pyqtree.Index", "PIL.ImageColor.getrgb", "logging.getLogger", "PIL.ImageDraw.Draw", "collections.deque" ]
[((363, 390), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (380, 390), False, 'import logging\n'), ((2547, 2554), 'collections.deque', 'deque', ([], {}), '()\n', (2552, 2554), False, 'from collections import deque\n'), ((2862, 2875), 'collections.deque', 'deque', (['blocks'], {}), '(blocks)\n', (2867, 2875), False, 'from collections import deque\n'), ((7254, 7278), 'PIL.ImageColor.getrgb', 'ImageColor.getrgb', (['color'], {}), '(color)\n', (7271, 7278), False, 'from PIL import Image, ImageDraw, ImageColor\n'), ((1802, 1838), 'pyqtree.Index', 'PqtreeIndex', ([], {'bbox': '(0, 0, xmax, ymax)'}), '(bbox=(0, 0, xmax, ymax))\n', (1813, 1838), True, 'from pyqtree import Index as PqtreeIndex\n'), ((7066, 7104), 'lxml.etree.Element', 'etree.Element', (['SVG_RECT'], {'attrib': 'attrib'}), '(SVG_RECT, attrib=attrib)\n', (7079, 7104), False, 'from lxml import etree\n'), ((7774, 7800), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['self.image'], {}), '(self.image)\n', (7788, 7800), False, 'from PIL import Image, ImageDraw, ImageColor\n'), ((7491, 7507), 'math.ceil', 'math.ceil', (['width'], {}), '(width)\n', (7500, 7507), False, 'import math\n'), ((7530, 7547), 'math.ceil', 'math.ceil', (['height'], {}), '(height)\n', (7539, 7547), False, 'import math\n'), ((7698, 7752), 'PIL.Image.new', 'Image.new', (['"""RGBA"""', '(width, height)', '(255, 255, 255, 0)'], {}), "('RGBA', (width, height), (255, 255, 255, 0))\n", (7707, 7752), False, 'from PIL import Image, ImageDraw, ImageColor\n'), ((6477, 6591), 'lxml.etree.Element', 'etree.Element', (['SVG_RECT'], {'attrib': "{'width': '100%', 'height': '100%', 'fill': background, 'class': 'background'}"}), "(SVG_RECT, attrib={'width': '100%', 'height': '100%', 'fill':\n background, 'class': 'background'})\n", (6490, 6591), False, 'from lxml import etree\n')]
import datetime def add_time(start, duration, weekday_name = ' '): start = datetime.datetime.strptime(start,'%I:%M %p') h_duration,m_duration = duration.split(':') t_duration = int(h_duration)*60 + int(m_duration) calc_time = start + datetime.timedelta(minutes=int(t_duration)) day = calc_time.day time = calc_time.strftime('%I:%M %p') if day == 1: day_text = '' elif day == 2: day_text = '(next day)' else: day_text = '('+ str(day-1) + ' days later)' list_weekdays = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"] if weekday_name != ' ' and day >= 2: weekday_name = weekday_name.lower().capitalize() weekday_name_index = list_weekdays.index(weekday_name) i=1 indexw = weekday_name_index while i != day: if indexw == 6: indexw = 0 i+=1 else: indexw = indexw + 1 i+=1 new_weekday_name = list_weekdays[indexw] new_time = str(time + ', ' + new_weekday_name + ' ' + day_text) elif weekday_name != ' ' and day == 1: new_time = str(time + ', '+ weekday_name.lower().capitalize()) else: new_time = str(time + ' ' + day_text) if new_time[0] == '0': new_time = new_time[1:] else: new_time = new_time return new_time.strip()
[ "datetime.datetime.strptime" ]
[((81, 126), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['start', '"""%I:%M %p"""'], {}), "(start, '%I:%M %p')\n", (107, 126), False, 'import datetime\n')]
import time from pdm.constants import BUFFER from urllib.request import ( build_opener, urlopen, Request ) from http.client import HTTPResponse, HTTPMessage from threading import Thread, Event from pdm.utils import get_filename from concurrent.futures import Future from pdm.hooker import ProgressDownloadHooker class _Retriever: def __init__( self, http_response: HTTPResponse, file: str, part: int, single_mode=False ): self.http = http_response if single_mode: self.file = file else: self.file = file + '.part' + str(part) self.speed_download = 0 def get_file(self): return open(self.file, 'wb') def download(self): file = self.get_file() chunk_size = int(BUFFER.__repr__()) while True: # adapted from https://github.com/choldgraf/download/blob/master/download/download.py#L380 # with some modifications t0 = time.time() chunk = self.http.read(chunk_size) dt = time.time() - t0 if dt < 0.005: chunk_size *= 2 elif dt > 0.1 and chunk_size > BUFFER: chunk_size = chunk_size // 2 if not chunk: break file.write(chunk) self.speed_download = len(chunk) * 8 if chunk == b'': break self.speed_download = 'finished' file.close() return self.file class Retriever1Connections: def __init__(self, url: str, info_length: int, filename: str=None): self.opener = build_opener() self.filename = filename self.url = url self.length = info_length def download(self): res = self.opener.open(self.url) filename = self.filename or get_filename(res) r = _Retriever(res, filename, 0, True) r.download() return filename class Retriever2Connections: def __init__(self, url: str, length: int, filename: str=None): self.opener = build_opener() self.filename = filename self.url = url self.length = self.get_length(length) def get_length(self, length: int): divided = length / 2 if not divided.is_integer(): final = [0, divided - 0.5, divided + 0.5, length] elif divided.is_integer(): final = [0, divided - 1, divided, length] return final def _download(self, part: int, start_from: int, end_from: int, future: Future): req = Request(self.url) req.headers['Range'] = 'bytes=%s-%s' % (int(start_from), int(end_from)) res = self.opener.open(req) filename = self.filename or get_filename(res) r = _Retriever(res, filename, part) future.set_result(r.download()) def download(self): fut1 = Future() thread = Thread(target=self._download, name='worker_pdm_0', daemon=True, args=( 0, self.length[0], self.length[1], fut1 )) thread.start() fut2 = Future() thread = Thread(target=self._download, name='worker_pdm_1', daemon=True, args=( 1, self.length[2], self.length[3], fut2 )) thread.start() return [ fut1.result(), fut2.result() ] class Retriever3Connections: def __init__(self, url: str, length: int, filename: str=None): self.opener = build_opener() self.filename = filename self.url = url self.length = self.get_length(length) def get_length(self, length: int): final = [0, int(length / 3), int(length / 3 + length / 3), length] return final def _download( self, part: int, start_from: int, end_from: int, future: Future, progress_bar: ProgressDownloadHooker ): req = Request(self.url) req.headers['Range'] = 'bytes=%s-%s' % (int(start_from), int(end_from)) res = self.opener.open(req) filename = self.filename or get_filename(res) r = _Retriever(res, filename, part) progress_bar.add_worker(r) future.set_result(r.download()) def download(self): fut1 = Future() print('Download Using 3 Connections') progress_bar = ProgressDownloadHooker() thread = Thread(target=self._download, name='worker_pdm_0', daemon=True, args=( 0, self.length[0], self.length[1], fut1, progress_bar )) thread.start() fut2 = Future() thread = Thread(target=self._download, name='worker_pdm_1', daemon=True, args=( 1, self.length[1], self.length[2], fut2, progress_bar )) thread.start() fut3 = Future() thread = Thread(target=self._download, name='worker_pdm_2', daemon=True, args=( 2, self.length[2], self.length[3], fut3, progress_bar )) thread.start() progress_bar.start() result = [ fut1.result(), fut2.result(), fut3.result() ] progress_bar.stop() return result class Retriever: def __init__( self, url: str, filename: str, timeout: int=None, connections: int=2 ): # Testing Connection to URL given tester = urlopen(url, timeout=timeout) tester.close() self.filename = filename self.url = url self._connections = connections def _download_single_conn(self): r = Retriever1Connections(self.url, self.filename) return r.download() def _download_multi_conn(self, info_length): if self._connections < 1 or self._connections > 4: raise ValueError('invalid connections value, maximum connections allowed is 4') else: if self._connections == 2: r = Retriever2Connections(self.url, info_length, self.filename) return r.download() elif self._connections == 3: r = Retriever3Connections(self.url, info_length, self.filename) return r.download() def get_info_length(self): return urlopen(self.url).length def retrieve(self): info_length = self.get_info_length() # for doesn't support get length file like google-drive # multi connection require to see length of the file if info_length is None: # if pdm can't retrieve Content-Length info # force download to single connection return self._download_single_conn() else: if self._connections == 1: return self._download_single_conn() else: return self._download_multi_conn(info_length) # def _retrieve(self, part, filename, start_from, end_from, event, single_mode=False): # r = Request(self.url) # if not single_mode: # r.headers['Range'] = 'bytes=%s-%s' % (int(start_from), int(end_from)) # print(r.headers) # http_response = self.opener.open(r) # print(http_response.headers['Content-Disposition']) # print(http_response.length, part) # if single_mode: # _ = _Retriever(self.url, http_response, filename, part, True) # _.download() # event.set() # else: # _ = _Retriever( # self.url, # http_response, # filename, # part # ) # _.download() # event.set() # def get_length(self, length: int): # divided = length / 2 # if not divided.is_integer(): # final = [0, divided - 0.5, divided + 0.5, length] # elif divided.is_integer(): # final = [0, divided - 1, divided, length] # return final # def retrieve(self): # info_length = self.get_info_length() # # for doesn't support get length file like google-drive # # multi connection require to see length of the file # if info_length is None: # return self._download_single_conn() # else: # return self._download_multi_conn(info_length) # def _download_single_conn(self): # e = Event() # self._retrieve(None, self.filename, None, None, e, True) # return [self.filename] # def _download_multi_conn(self, info_length): # i = 0 # length = self.get_length(info_length) # wait_event1 = Event() # thread = Thread(target=self._retrieve, name='worker_pdm_' + str(i), daemon=True, args=( # i, # self.filename, # length[0], # length[1], # wait_event1 # )) # thread.start() # i += 1 # wait_event2= Event() # thread = Thread(target=self._retrieve, name='worker_pdm_' + str(i), daemon=True, args=( # i, # self.filename, # length[2], # length[3], # wait_event2 # )) # thread.start() # wait_event1.wait() # wait_event2.wait() # return [ # self.filename + '.part0', # self.filename + '.part1' # ]
[ "threading.Thread", "concurrent.futures.Future", "urllib.request.Request", "urllib.request.urlopen", "urllib.request.build_opener", "time.time", "pdm.hooker.ProgressDownloadHooker", "pdm.utils.get_filename", "pdm.constants.BUFFER.__repr__" ]
[((1645, 1659), 'urllib.request.build_opener', 'build_opener', ([], {}), '()\n', (1657, 1659), False, 'from urllib.request import build_opener, urlopen, Request\n'), ((2081, 2095), 'urllib.request.build_opener', 'build_opener', ([], {}), '()\n', (2093, 2095), False, 'from urllib.request import build_opener, urlopen, Request\n'), ((2575, 2592), 'urllib.request.Request', 'Request', (['self.url'], {}), '(self.url)\n', (2582, 2592), False, 'from urllib.request import build_opener, urlopen, Request\n'), ((2887, 2895), 'concurrent.futures.Future', 'Future', ([], {}), '()\n', (2893, 2895), False, 'from concurrent.futures import Future\n'), ((2913, 3028), 'threading.Thread', 'Thread', ([], {'target': 'self._download', 'name': '"""worker_pdm_0"""', 'daemon': '(True)', 'args': '(0, self.length[0], self.length[1], fut1)'}), "(target=self._download, name='worker_pdm_0', daemon=True, args=(0,\n self.length[0], self.length[1], fut1))\n", (2919, 3028), False, 'from threading import Thread, Event\n'), ((3121, 3129), 'concurrent.futures.Future', 'Future', ([], {}), '()\n', (3127, 3129), False, 'from concurrent.futures import Future\n'), ((3147, 3262), 'threading.Thread', 'Thread', ([], {'target': 'self._download', 'name': '"""worker_pdm_1"""', 'daemon': '(True)', 'args': '(1, self.length[2], self.length[3], fut2)'}), "(target=self._download, name='worker_pdm_1', daemon=True, args=(1,\n self.length[2], self.length[3], fut2))\n", (3153, 3262), False, 'from threading import Thread, Event\n'), ((3539, 3553), 'urllib.request.build_opener', 'build_opener', ([], {}), '()\n', (3551, 3553), False, 'from urllib.request import build_opener, urlopen, Request\n'), ((3983, 4000), 'urllib.request.Request', 'Request', (['self.url'], {}), '(self.url)\n', (3990, 4000), False, 'from urllib.request import build_opener, urlopen, Request\n'), ((4330, 4338), 'concurrent.futures.Future', 'Future', ([], {}), '()\n', (4336, 4338), False, 'from concurrent.futures import Future\n'), ((4408, 4432), 'pdm.hooker.ProgressDownloadHooker', 'ProgressDownloadHooker', ([], {}), '()\n', (4430, 4432), False, 'from pdm.hooker import ProgressDownloadHooker\n'), ((4450, 4579), 'threading.Thread', 'Thread', ([], {'target': 'self._download', 'name': '"""worker_pdm_0"""', 'daemon': '(True)', 'args': '(0, self.length[0], self.length[1], fut1, progress_bar)'}), "(target=self._download, name='worker_pdm_0', daemon=True, args=(0,\n self.length[0], self.length[1], fut1, progress_bar))\n", (4456, 4579), False, 'from threading import Thread, Event\n'), ((4684, 4692), 'concurrent.futures.Future', 'Future', ([], {}), '()\n', (4690, 4692), False, 'from concurrent.futures import Future\n'), ((4710, 4839), 'threading.Thread', 'Thread', ([], {'target': 'self._download', 'name': '"""worker_pdm_1"""', 'daemon': '(True)', 'args': '(1, self.length[1], self.length[2], fut2, progress_bar)'}), "(target=self._download, name='worker_pdm_1', daemon=True, args=(1,\n self.length[1], self.length[2], fut2, progress_bar))\n", (4716, 4839), False, 'from threading import Thread, Event\n'), ((4944, 4952), 'concurrent.futures.Future', 'Future', ([], {}), '()\n', (4950, 4952), False, 'from concurrent.futures import Future\n'), ((4970, 5099), 'threading.Thread', 'Thread', ([], {'target': 'self._download', 'name': '"""worker_pdm_2"""', 'daemon': '(True)', 'args': '(2, self.length[2], self.length[3], fut3, progress_bar)'}), "(target=self._download, name='worker_pdm_2', daemon=True, args=(2,\n self.length[2], self.length[3], fut3, progress_bar))\n", (4976, 5099), False, 'from threading import Thread, Event\n'), ((5590, 5619), 'urllib.request.urlopen', 'urlopen', (['url'], {'timeout': 'timeout'}), '(url, timeout=timeout)\n', (5597, 5619), False, 'from urllib.request import build_opener, urlopen, Request\n'), ((811, 828), 'pdm.constants.BUFFER.__repr__', 'BUFFER.__repr__', ([], {}), '()\n', (826, 828), False, 'from pdm.constants import BUFFER\n'), ((1008, 1019), 'time.time', 'time.time', ([], {}), '()\n', (1017, 1019), False, 'import time\n'), ((1852, 1869), 'pdm.utils.get_filename', 'get_filename', (['res'], {}), '(res)\n', (1864, 1869), False, 'from pdm.utils import get_filename\n'), ((2745, 2762), 'pdm.utils.get_filename', 'get_filename', (['res'], {}), '(res)\n', (2757, 2762), False, 'from pdm.utils import get_filename\n'), ((4153, 4170), 'pdm.utils.get_filename', 'get_filename', (['res'], {}), '(res)\n', (4165, 4170), False, 'from pdm.utils import get_filename\n'), ((6438, 6455), 'urllib.request.urlopen', 'urlopen', (['self.url'], {}), '(self.url)\n', (6445, 6455), False, 'from urllib.request import build_opener, urlopen, Request\n'), ((1084, 1095), 'time.time', 'time.time', ([], {}), '()\n', (1093, 1095), False, 'import time\n')]
from unittest import mock from unittest.mock import patch from cartography.intel.gsuite import api def test_get_all_users(): client = mock.MagicMock() raw_request_1 = mock.MagicMock() raw_request_2 = mock.MagicMock() user1 = {'primaryEmail': '<EMAIL>'} user2 = {'primaryEmail': '<EMAIL>'} user3 = {'primaryEmail': '<EMAIL>'} client.users().list.return_value = raw_request_1 client.users().list_next.side_effect = [raw_request_2, None] raw_request_1.execute.return_value = {'users': [user1, user2]} raw_request_2.execute.return_value = {'users': [user3]} result = api.get_all_users(client) emails = [user['primaryEmail'] for response_object in result for user in response_object['users']] expected = [ '<EMAIL>', '<EMAIL>', '<EMAIL>', ] assert sorted(emails) == sorted(expected) def test_get_all_groups(): client = mock.MagicMock() raw_request_1 = mock.MagicMock() raw_request_2 = mock.MagicMock() group1 = {'email': '<EMAIL>'} group2 = {'email': '<EMAIL>'} group3 = {'email': '<EMAIL>'} client.groups().list.return_value = raw_request_1 client.groups().list_next.side_effect = [raw_request_2, None] raw_request_1.execute.return_value = {'groups': [group1, group2]} raw_request_2.execute.return_value = {'groups': [group3]} result = api.get_all_groups(client) emails = [group['email'] for response_object in result for group in response_object['groups']] expected = [ '<EMAIL>', '<EMAIL>', '<EMAIL>', ] assert sorted(emails) == sorted(expected) @patch('cartography.intel.gsuite.api.cleanup_gsuite_users') @patch('cartography.intel.gsuite.api.load_gsuite_users') @patch( 'cartography.intel.gsuite.api.get_all_users', return_value=[ {'users': [{'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}]}, {'users': [{'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}]}, ], ) def test_sync_gsuite_users(get_all_users, load_gsuite_users, cleanup_gsuite_users): client = mock.MagicMock() gsuite_update_tag = 1 session = mock.MagicMock() common_job_param = { "UPDATE_TAG": gsuite_update_tag, } api.sync_gsuite_users(session, client, gsuite_update_tag, common_job_param) users = api.transform_users(get_all_users()) load_gsuite_users.assert_called_with( session, users, gsuite_update_tag, ) cleanup_gsuite_users.assert_called_once() @patch('cartography.intel.gsuite.api.sync_gsuite_members') @patch('cartography.intel.gsuite.api.cleanup_gsuite_groups') @patch('cartography.intel.gsuite.api.load_gsuite_groups') @patch( 'cartography.intel.gsuite.api.get_all_groups', return_value=[ {'groups': [{'email': '<EMAIL>'}, {'email': '<EMAIL>'}]}, {'groups': [{'email': '<EMAIL>'}, {'email': '<EMAIL>'}]}, ], ) def test_sync_gsuite_groups(all_groups, load_gsuite_groups, cleanup_gsuite_groups, sync_gsuite_members): admin_client = mock.MagicMock() session = mock.MagicMock() gsuite_update_tag = 1 common_job_param = { "UPDATE_TAG": gsuite_update_tag, } api.sync_gsuite_groups(session, admin_client, gsuite_update_tag, common_job_param) groups = api.transform_groups(all_groups()) load_gsuite_groups.assert_called_with(session, groups, gsuite_update_tag) cleanup_gsuite_groups.assert_called_once() sync_gsuite_members.assert_called_with(groups, session, admin_client, gsuite_update_tag) def test_load_gsuite_groups(): ingestion_qry = """ UNWIND {GroupData} as group MERGE (g:GSuiteGroup{id: group.id}) ON CREATE SET g.firstseen = {UpdateTag} ON MATCH SET g.group_id = group.id, g.admin_created = group.adminCreated, g.description = group.description, g.direct_members_count = group.directMembersCount, g.email = group.email, g.etag = group.etag, g.kind = group.kind, g.name = group.name, g.lastupdated = {UpdateTag} """ groups = [] update_tag = 1 session = mock.MagicMock() api.load_gsuite_groups(session, groups, update_tag) session.run.assert_called_with( ingestion_qry, GroupData=groups, UpdateTag=update_tag, ) def test_load_gsuite_users(): ingestion_qry = """ UNWIND {UserData} as user MERGE (u:GSuiteUser{id: user.id}) ON CREATE SET u.firstseen = {UpdateTag} ON MATCH SET u.user_id = user.id, u.agreed_to_terms = user.agreedToTerms, u.archived = user.archived, u.change_password_at_next_login = user.changePasswordAtNextLogin, u.creation_time = user.creationTime, u.customer_id = user.customerId, u.etag = user.etag, u.include_in_global_address_list = user.includeInGlobalAddressList, u.ip_whitelisted = user.ipWhitelisted, u.is_admin = user.isAdmin, u.is_delegated_admin = user.isDelegatedAdmin, u.is_enforced_in_2_sv = user.isEnforcedIn2Sv, u.is_enrolled_in_2_sv = user.isEnrolledIn2Sv, u.is_mailbox_setup = user.isMailboxSetup, u.kind = user.kind, u.last_login_time = user.lastLoginTime, u.name = user.name.fullName, u.family_name = user.name.familyName, u.given_name = user.name.givenName, u.org_unit_path = user.orgUnitPath, u.primary_email = user.primaryEmail, u.email = user.primaryEmail, u.suspended = user.suspended, u.thumbnail_photo_etag = user.thumbnailPhotoEtag, u.thumbnail_photo_url = user.thumbnailPhotoUrl, u.lastupdated = {UpdateTag} """ users = [] update_tag = 1 session = mock.MagicMock() api.load_gsuite_users(session, users, update_tag) session.run.assert_called_with( ingestion_qry, UserData=users, UpdateTag=update_tag, ) def test_transform_groups(): param = [ {'groups': [{'email': '<EMAIL>'}, {'email': '<EMAIL>'}]}, {'groups': [{'email': '<EMAIL>'}, {'email': '<EMAIL>'}]}, ] expected = [ {'email': '<EMAIL>'}, {'email': 'group<EMAIL>'}, {'email': '<EMAIL>'}, {'email': '<EMAIL>'}, ] result = api.transform_groups(param) assert result == expected def test_transform_users(): param = [ {'users': [{'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}]}, {'users': [{'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}]}, ] expected = [ {'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}, ] result = api.transform_users(param) assert result == expected
[ "cartography.intel.gsuite.api.transform_users", "cartography.intel.gsuite.api.get_all_users", "unittest.mock.MagicMock", "cartography.intel.gsuite.api.load_gsuite_groups", "cartography.intel.gsuite.api.sync_gsuite_users", "cartography.intel.gsuite.api.load_gsuite_users", "unittest.mock.patch", "cartography.intel.gsuite.api.sync_gsuite_groups", "cartography.intel.gsuite.api.transform_groups", "cartography.intel.gsuite.api.get_all_groups" ]
[((1630, 1688), 'unittest.mock.patch', 'patch', (['"""cartography.intel.gsuite.api.cleanup_gsuite_users"""'], {}), "('cartography.intel.gsuite.api.cleanup_gsuite_users')\n", (1635, 1688), False, 'from unittest.mock import patch\n'), ((1690, 1745), 'unittest.mock.patch', 'patch', (['"""cartography.intel.gsuite.api.load_gsuite_users"""'], {}), "('cartography.intel.gsuite.api.load_gsuite_users')\n", (1695, 1745), False, 'from unittest.mock import patch\n'), ((1747, 1963), 'unittest.mock.patch', 'patch', (['"""cartography.intel.gsuite.api.get_all_users"""'], {'return_value': "[{'users': [{'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}]}, {\n 'users': [{'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}]}]"}), "('cartography.intel.gsuite.api.get_all_users', return_value=[{'users':\n [{'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}]}, {'users':\n [{'primaryEmail': '<EMAIL>'}, {'primaryEmail': '<EMAIL>'}]}])\n", (1752, 1963), False, 'from unittest.mock import patch\n'), ((2498, 2555), 'unittest.mock.patch', 'patch', (['"""cartography.intel.gsuite.api.sync_gsuite_members"""'], {}), "('cartography.intel.gsuite.api.sync_gsuite_members')\n", (2503, 2555), False, 'from unittest.mock import patch\n'), ((2557, 2616), 'unittest.mock.patch', 'patch', (['"""cartography.intel.gsuite.api.cleanup_gsuite_groups"""'], {}), "('cartography.intel.gsuite.api.cleanup_gsuite_groups')\n", (2562, 2616), False, 'from unittest.mock import patch\n'), ((2618, 2674), 'unittest.mock.patch', 'patch', (['"""cartography.intel.gsuite.api.load_gsuite_groups"""'], {}), "('cartography.intel.gsuite.api.load_gsuite_groups')\n", (2623, 2674), False, 'from unittest.mock import patch\n'), ((2676, 2869), 'unittest.mock.patch', 'patch', (['"""cartography.intel.gsuite.api.get_all_groups"""'], {'return_value': "[{'groups': [{'email': '<EMAIL>'}, {'email': '<EMAIL>'}]}, {'groups': [{\n 'email': '<EMAIL>'}, {'email': '<EMAIL>'}]}]"}), "('cartography.intel.gsuite.api.get_all_groups', return_value=[{\n 'groups': [{'email': '<EMAIL>'}, {'email': '<EMAIL>'}]}, {'groups': [{\n 'email': '<EMAIL>'}, {'email': '<EMAIL>'}]}])\n", (2681, 2869), False, 'from unittest.mock import patch\n'), ((141, 157), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (155, 157), False, 'from unittest import mock\n'), ((178, 194), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (192, 194), False, 'from unittest import mock\n'), ((215, 231), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (229, 231), False, 'from unittest import mock\n'), ((614, 639), 'cartography.intel.gsuite.api.get_all_users', 'api.get_all_users', (['client'], {}), '(client)\n', (631, 639), False, 'from cartography.intel.gsuite import api\n'), ((912, 928), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (926, 928), False, 'from unittest import mock\n'), ((949, 965), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (963, 965), False, 'from unittest import mock\n'), ((986, 1002), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (1000, 1002), False, 'from unittest import mock\n'), ((1374, 1400), 'cartography.intel.gsuite.api.get_all_groups', 'api.get_all_groups', (['client'], {}), '(client)\n', (1392, 1400), False, 'from cartography.intel.gsuite import api\n'), ((2083, 2099), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (2097, 2099), False, 'from unittest import mock\n'), ((2140, 2156), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (2154, 2156), False, 'from unittest import mock\n'), ((2233, 2308), 'cartography.intel.gsuite.api.sync_gsuite_users', 'api.sync_gsuite_users', (['session', 'client', 'gsuite_update_tag', 'common_job_param'], {}), '(session, client, gsuite_update_tag, common_job_param)\n', (2254, 2308), False, 'from cartography.intel.gsuite import api\n'), ((3014, 3030), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (3028, 3030), False, 'from unittest import mock\n'), ((3045, 3061), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (3059, 3061), False, 'from unittest import mock\n'), ((3164, 3250), 'cartography.intel.gsuite.api.sync_gsuite_groups', 'api.sync_gsuite_groups', (['session', 'admin_client', 'gsuite_update_tag', 'common_job_param'], {}), '(session, admin_client, gsuite_update_tag,\n common_job_param)\n', (3186, 3250), False, 'from cartography.intel.gsuite import api\n'), ((4117, 4133), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (4131, 4133), False, 'from unittest import mock\n'), ((4138, 4189), 'cartography.intel.gsuite.api.load_gsuite_groups', 'api.load_gsuite_groups', (['session', 'groups', 'update_tag'], {}), '(session, groups, update_tag)\n', (4160, 4189), False, 'from cartography.intel.gsuite import api\n'), ((5765, 5781), 'unittest.mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (5779, 5781), False, 'from unittest import mock\n'), ((5786, 5835), 'cartography.intel.gsuite.api.load_gsuite_users', 'api.load_gsuite_users', (['session', 'users', 'update_tag'], {}), '(session, users, update_tag)\n', (5807, 5835), False, 'from cartography.intel.gsuite import api\n'), ((6283, 6310), 'cartography.intel.gsuite.api.transform_groups', 'api.transform_groups', (['param'], {}), '(param)\n', (6303, 6310), False, 'from cartography.intel.gsuite import api\n'), ((6717, 6743), 'cartography.intel.gsuite.api.transform_users', 'api.transform_users', (['param'], {}), '(param)\n', (6736, 6743), False, 'from cartography.intel.gsuite import api\n')]
from django.conf import settings from notifications import constants, email, helpers def verification_code_not_given(): verification_code_not_given_first_reminder() verification_code_not_given_seconds_reminder() def verification_code_not_given_first_reminder(): days_ago = settings.VERIFICATION_CODE_NOT_GIVEN_DAYS category = constants.VERIFICATION_CODE_NOT_GIVEN company_users = ( helpers.get_unverified_suppliers(days_ago) .filter( company__is_uk_isd_company=False, ) .exclude( supplieremailnotification__category=category, ) ) for company_user in company_users: notification = email.VerificationWaitingNotification(company_user) notification.send() def verification_code_not_given_seconds_reminder(): days_ago = settings.VERIFICATION_CODE_NOT_GIVEN_DAYS_2ND_EMAIL category = constants.VERIFICATION_CODE_2ND_EMAIL company_users = ( helpers.get_unverified_suppliers(days_ago) .filter( company__is_uk_isd_company=False, ) .exclude( supplieremailnotification__category=category, ) ) for company_user in company_users: notification = email.VerificationStillWaitingNotification(company_user) notification.send() def new_companies_in_sector(): companies_grouped_by_industry = helpers.group_new_companies_by_industry() for subscriber in helpers.get_new_companies_anonymous_subscribers(): companies = set() for industry in subscriber['industries']: companies.update(companies_grouped_by_industry[industry]) if companies: notification = email.NewCompaniesInSectorNotification(subscriber=subscriber, companies=companies) notification.send() def company_user_unsubscribed(company_user): notification = email.SupplierUbsubscribed(company_user) notification.send() def anonymous_unsubscribed(recipient_email): recipient = {'email': recipient_email, 'name': None} notification = email.AnonymousSubscriberUbsubscribed(recipient) notification.send()
[ "notifications.helpers.group_new_companies_by_industry", "notifications.helpers.get_new_companies_anonymous_subscribers", "notifications.email.NewCompaniesInSectorNotification", "notifications.email.VerificationStillWaitingNotification", "notifications.helpers.get_unverified_suppliers", "notifications.email.SupplierUbsubscribed", "notifications.email.VerificationWaitingNotification", "notifications.email.AnonymousSubscriberUbsubscribed" ]
[((1393, 1434), 'notifications.helpers.group_new_companies_by_industry', 'helpers.group_new_companies_by_industry', ([], {}), '()\n', (1432, 1434), False, 'from notifications import constants, email, helpers\n'), ((1458, 1507), 'notifications.helpers.get_new_companies_anonymous_subscribers', 'helpers.get_new_companies_anonymous_subscribers', ([], {}), '()\n', (1505, 1507), False, 'from notifications import constants, email, helpers\n'), ((1885, 1925), 'notifications.email.SupplierUbsubscribed', 'email.SupplierUbsubscribed', (['company_user'], {}), '(company_user)\n', (1911, 1925), False, 'from notifications import constants, email, helpers\n'), ((2073, 2121), 'notifications.email.AnonymousSubscriberUbsubscribed', 'email.AnonymousSubscriberUbsubscribed', (['recipient'], {}), '(recipient)\n', (2110, 2121), False, 'from notifications import constants, email, helpers\n'), ((685, 736), 'notifications.email.VerificationWaitingNotification', 'email.VerificationWaitingNotification', (['company_user'], {}), '(company_user)\n', (722, 736), False, 'from notifications import constants, email, helpers\n'), ((1239, 1295), 'notifications.email.VerificationStillWaitingNotification', 'email.VerificationStillWaitingNotification', (['company_user'], {}), '(company_user)\n', (1281, 1295), False, 'from notifications import constants, email, helpers\n'), ((1704, 1791), 'notifications.email.NewCompaniesInSectorNotification', 'email.NewCompaniesInSectorNotification', ([], {'subscriber': 'subscriber', 'companies': 'companies'}), '(subscriber=subscriber, companies=\n companies)\n', (1742, 1791), False, 'from notifications import constants, email, helpers\n'), ((415, 457), 'notifications.helpers.get_unverified_suppliers', 'helpers.get_unverified_suppliers', (['days_ago'], {}), '(days_ago)\n', (447, 457), False, 'from notifications import constants, email, helpers\n'), ((969, 1011), 'notifications.helpers.get_unverified_suppliers', 'helpers.get_unverified_suppliers', (['days_ago'], {}), '(days_ago)\n', (1001, 1011), False, 'from notifications import constants, email, helpers\n')]
# encoding: utf-8 """ @author: liaoxingyu @contact: <EMAIL> """ import torchvision.transforms as T import random import numpy as np import PIL from .transforms import RandomErasing class AddGaussianNoise(object): def __call__(self, img): std = random.uniform(0, 1.0) if std > 0.5: return img # Convert to ndarray img = np.asarray(img).copy() noise = np.random.normal(size=img.shape, scale=std).astype(np.uint8) img += noise img = np.clip(img, 0, 255) # Convert back to PIL image img = PIL.Image.fromarray(img) return img def build_transforms(cfg, is_train=True): normalize_transform = T.Normalize(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD) if is_train: print('++++ hard train') transform = T.Compose([ T.Resize(cfg.INPUT.SIZE_DOWN), T.Resize(cfg.INPUT.SIZE_UP), T.RandomHorizontalFlip(p=cfg.INPUT.PROB), T.Pad(padding=cfg.INPUT.PADDING), T.RandomRotation(cfg.INPUT.DEGREE), T.ColorJitter(0.6,0.9,0.7), T.RandomCrop(cfg.INPUT.SIZE_TRAIN), #AddGaussianNoise(), T.ToTensor(), normalize_transform, RandomErasing(probability=cfg.INPUT.RE_PROB, mean=cfg.INPUT.PIXEL_MEAN) ]) else: print('++++ init test') transform = T.Compose([ T.Resize(cfg.INPUT.SIZE_TEST), T.ToTensor(), normalize_transform ]) return transform def build_transforms2(cfg, is_train=True): #print('++++ easy') normalize_transform = T.Normalize(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD) if is_train: print('++++ easy train') transform = T.Compose([ T.Resize(cfg.INPUT.SIZE_TRAIN), T.RandomHorizontalFlip(p=cfg.INPUT.PROB), #T.Pad(cfg.INPUT.PADDING), T.ColorJitter(0.4,0.6,0.7), T.RandomRotation(cfg.INPUT.DEGREE), #T.ColorJitter(0.4,0.6,0.7), T.Pad(cfg.INPUT.PADDING), T.RandomCrop(cfg.INPUT.SIZE_TRAIN), T.ToTensor(), normalize_transform, RandomErasing(probability=cfg.INPUT.RE_PROB, mean=cfg.INPUT.PIXEL_MEAN) ]) else: print('++++ easy test') transform = T.Compose([ T.Resize(cfg.INPUT.SIZE_TEST), T.ToTensor(), normalize_transform ]) return transform def build_transforms3(cfg, is_train=True): normalize_transform = T.Normalize(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD) if is_train: print('++++ init train') transform = T.Compose([ T.Resize(cfg.INPUT.SIZE_TRAIN), T.RandomHorizontalFlip(p=cfg.INPUT.PROB), T.Pad(cfg.INPUT.PADDING), T.RandomCrop(cfg.INPUT.SIZE_TRAIN), T.ToTensor(), normalize_transform, RandomErasing(probability=cfg.INPUT.RE_PROB, mean=cfg.INPUT.PIXEL_MEAN) ]) else: print('++++ init test') transform = T.Compose([ T.Resize(cfg.INPUT.SIZE_TEST), T.ToTensor(), normalize_transform ]) return transform
[ "torchvision.transforms.ColorJitter", "torchvision.transforms.RandomHorizontalFlip", "random.uniform", "torchvision.transforms.RandomRotation", "numpy.asarray", "numpy.clip", "torchvision.transforms.ToTensor", "torchvision.transforms.Pad", "numpy.random.normal", "PIL.Image.fromarray", "torchvision.transforms.Normalize", "torchvision.transforms.RandomCrop", "torchvision.transforms.Resize" ]
[((691, 754), 'torchvision.transforms.Normalize', 'T.Normalize', ([], {'mean': 'cfg.INPUT.PIXEL_MEAN', 'std': 'cfg.INPUT.PIXEL_STD'}), '(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD)\n', (702, 754), True, 'import torchvision.transforms as T\n'), ((1655, 1718), 'torchvision.transforms.Normalize', 'T.Normalize', ([], {'mean': 'cfg.INPUT.PIXEL_MEAN', 'std': 'cfg.INPUT.PIXEL_STD'}), '(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD)\n', (1666, 1718), True, 'import torchvision.transforms as T\n'), ((2593, 2656), 'torchvision.transforms.Normalize', 'T.Normalize', ([], {'mean': 'cfg.INPUT.PIXEL_MEAN', 'std': 'cfg.INPUT.PIXEL_STD'}), '(mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD)\n', (2604, 2656), True, 'import torchvision.transforms as T\n'), ((259, 281), 'random.uniform', 'random.uniform', (['(0)', '(1.0)'], {}), '(0, 1.0)\n', (273, 281), False, 'import random\n'), ((506, 526), 'numpy.clip', 'np.clip', (['img', '(0)', '(255)'], {}), '(img, 0, 255)\n', (513, 526), True, 'import numpy as np\n'), ((578, 602), 'PIL.Image.fromarray', 'PIL.Image.fromarray', (['img'], {}), '(img)\n', (597, 602), False, 'import PIL\n'), ((371, 386), 'numpy.asarray', 'np.asarray', (['img'], {}), '(img)\n', (381, 386), True, 'import numpy as np\n'), ((410, 453), 'numpy.random.normal', 'np.random.normal', ([], {'size': 'img.shape', 'scale': 'std'}), '(size=img.shape, scale=std)\n', (426, 453), True, 'import numpy as np\n'), ((853, 882), 'torchvision.transforms.Resize', 'T.Resize', (['cfg.INPUT.SIZE_DOWN'], {}), '(cfg.INPUT.SIZE_DOWN)\n', (861, 882), True, 'import torchvision.transforms as T\n'), ((896, 923), 'torchvision.transforms.Resize', 'T.Resize', (['cfg.INPUT.SIZE_UP'], {}), '(cfg.INPUT.SIZE_UP)\n', (904, 923), True, 'import torchvision.transforms as T\n'), ((937, 977), 'torchvision.transforms.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {'p': 'cfg.INPUT.PROB'}), '(p=cfg.INPUT.PROB)\n', (959, 977), True, 'import torchvision.transforms as T\n'), ((991, 1023), 'torchvision.transforms.Pad', 'T.Pad', ([], {'padding': 'cfg.INPUT.PADDING'}), '(padding=cfg.INPUT.PADDING)\n', (996, 1023), True, 'import torchvision.transforms as T\n'), ((1037, 1071), 'torchvision.transforms.RandomRotation', 'T.RandomRotation', (['cfg.INPUT.DEGREE'], {}), '(cfg.INPUT.DEGREE)\n', (1053, 1071), True, 'import torchvision.transforms as T\n'), ((1085, 1113), 'torchvision.transforms.ColorJitter', 'T.ColorJitter', (['(0.6)', '(0.9)', '(0.7)'], {}), '(0.6, 0.9, 0.7)\n', (1098, 1113), True, 'import torchvision.transforms as T\n'), ((1125, 1159), 'torchvision.transforms.RandomCrop', 'T.RandomCrop', (['cfg.INPUT.SIZE_TRAIN'], {}), '(cfg.INPUT.SIZE_TRAIN)\n', (1137, 1159), True, 'import torchvision.transforms as T\n'), ((1206, 1218), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (1216, 1218), True, 'import torchvision.transforms as T\n'), ((1438, 1467), 'torchvision.transforms.Resize', 'T.Resize', (['cfg.INPUT.SIZE_TEST'], {}), '(cfg.INPUT.SIZE_TEST)\n', (1446, 1467), True, 'import torchvision.transforms as T\n'), ((1481, 1493), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (1491, 1493), True, 'import torchvision.transforms as T\n'), ((1817, 1847), 'torchvision.transforms.Resize', 'T.Resize', (['cfg.INPUT.SIZE_TRAIN'], {}), '(cfg.INPUT.SIZE_TRAIN)\n', (1825, 1847), True, 'import torchvision.transforms as T\n'), ((1861, 1901), 'torchvision.transforms.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {'p': 'cfg.INPUT.PROB'}), '(p=cfg.INPUT.PROB)\n', (1883, 1901), True, 'import torchvision.transforms as T\n'), ((1954, 1982), 'torchvision.transforms.ColorJitter', 'T.ColorJitter', (['(0.4)', '(0.6)', '(0.7)'], {}), '(0.4, 0.6, 0.7)\n', (1967, 1982), True, 'import torchvision.transforms as T\n'), ((1994, 2028), 'torchvision.transforms.RandomRotation', 'T.RandomRotation', (['cfg.INPUT.DEGREE'], {}), '(cfg.INPUT.DEGREE)\n', (2010, 2028), True, 'import torchvision.transforms as T\n'), ((2083, 2107), 'torchvision.transforms.Pad', 'T.Pad', (['cfg.INPUT.PADDING'], {}), '(cfg.INPUT.PADDING)\n', (2088, 2107), True, 'import torchvision.transforms as T\n'), ((2121, 2155), 'torchvision.transforms.RandomCrop', 'T.RandomCrop', (['cfg.INPUT.SIZE_TRAIN'], {}), '(cfg.INPUT.SIZE_TRAIN)\n', (2133, 2155), True, 'import torchvision.transforms as T\n'), ((2169, 2181), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (2179, 2181), True, 'import torchvision.transforms as T\n'), ((2401, 2430), 'torchvision.transforms.Resize', 'T.Resize', (['cfg.INPUT.SIZE_TEST'], {}), '(cfg.INPUT.SIZE_TEST)\n', (2409, 2430), True, 'import torchvision.transforms as T\n'), ((2444, 2456), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (2454, 2456), True, 'import torchvision.transforms as T\n'), ((2755, 2785), 'torchvision.transforms.Resize', 'T.Resize', (['cfg.INPUT.SIZE_TRAIN'], {}), '(cfg.INPUT.SIZE_TRAIN)\n', (2763, 2785), True, 'import torchvision.transforms as T\n'), ((2799, 2839), 'torchvision.transforms.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {'p': 'cfg.INPUT.PROB'}), '(p=cfg.INPUT.PROB)\n', (2821, 2839), True, 'import torchvision.transforms as T\n'), ((2853, 2877), 'torchvision.transforms.Pad', 'T.Pad', (['cfg.INPUT.PADDING'], {}), '(cfg.INPUT.PADDING)\n', (2858, 2877), True, 'import torchvision.transforms as T\n'), ((2891, 2925), 'torchvision.transforms.RandomCrop', 'T.RandomCrop', (['cfg.INPUT.SIZE_TRAIN'], {}), '(cfg.INPUT.SIZE_TRAIN)\n', (2903, 2925), True, 'import torchvision.transforms as T\n'), ((2939, 2951), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (2949, 2951), True, 'import torchvision.transforms as T\n'), ((3171, 3200), 'torchvision.transforms.Resize', 'T.Resize', (['cfg.INPUT.SIZE_TEST'], {}), '(cfg.INPUT.SIZE_TEST)\n', (3179, 3200), True, 'import torchvision.transforms as T\n'), ((3214, 3226), 'torchvision.transforms.ToTensor', 'T.ToTensor', ([], {}), '()\n', (3224, 3226), True, 'import torchvision.transforms as T\n')]
from datetime import datetime from core.modules.output_mod import output def greet(master): hour = datetime.now().hour if 5 <= hour < 12: output(f"Good morning {master}") elif 12 <= hour < 18: output(f"Good afternoon {master}") else: output(f"Good evening {master}")
[ "core.modules.output_mod.output", "datetime.datetime.now" ]
[((106, 120), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (118, 120), False, 'from datetime import datetime\n'), ((158, 190), 'core.modules.output_mod.output', 'output', (['f"""Good morning {master}"""'], {}), "(f'Good morning {master}')\n", (164, 190), False, 'from core.modules.output_mod import output\n'), ((225, 259), 'core.modules.output_mod.output', 'output', (['f"""Good afternoon {master}"""'], {}), "(f'Good afternoon {master}')\n", (231, 259), False, 'from core.modules.output_mod import output\n'), ((278, 310), 'core.modules.output_mod.output', 'output', (['f"""Good evening {master}"""'], {}), "(f'Good evening {master}')\n", (284, 310), False, 'from core.modules.output_mod import output\n')]
import h5py from signal_filter.fft import LowPassFilter from signal_filter.mpi_signal_filter import SignalFilter h5_path = 'giv_raw.h5' h5_f = h5py.File(h5_path, mode='r+') h5_grp = h5_f['Measurement_000/Channel_000'] h5_main = h5_grp['Raw_Data'] samp_rate = h5_grp.attrs['IO_samp_rate_[Hz]'] num_spectral_pts = h5_main.shape[1] frequency_filters = [LowPassFilter(num_spectral_pts, samp_rate, 10E+3)] noise_tol = 1E-6 sig_filt = SignalFilter(h5_main, frequency_filters=frequency_filters, noise_threshold=noise_tol, write_filtered=True, write_condensed=False, num_pix=1, verbose=True) h5_filt_grp = sig_filt.compute() # VERIFICATION here: row_ind = 20 actual_line = h5_filt_grp['Filtered_Data'][row_ind] h5_ref_path = '/home/syz/giv/pzt_nanocap_6_just_translation_filt_resh_copy.h5' h5_ref_file = h5py.File(h5_ref_path, mode='r') h5_ref_grp = h5_ref_file[h5_filt_grp.name] ref_line = h5_ref_grp['Filtered_Data'][row_ind] import numpy as np print('Actual line close to reference:') print(np.max(np.abs(actual_line - ref_line))) print(np.allclose(actual_line, ref_line)) """ single_AO = h5_grp['Spectroscopic_Values'][0, :500] import numpy as np row_ind = 20 # read data for a specific scan line raw_line_resp = h5_main[row_ind] # break this up into pixels: raw_line_mat = np.reshape(raw_line_resp, (-1, single_AO.size)) filt_line_resp = h5_filt_grp['Filtered_Data'][row_ind] filt_line_mat = np.reshape(filt_line_resp, (-1, single_AO.size)) import pyUSID as usid fig, axes = usid.plot_utils.plot_curves(single_AO, [raw_line_mat, filt_line_mat], use_rainbow_plots=False, x_label='Bias (V)', y_label='Current (nA)', subtitle_prefix='Pixel', title=None, num_plots=9) fig.savefig('result.png', format='png', ) savefig(os.path.join(other_figures_folder, file_name + '.png'), format='png', dpi=300) """ h5_f.close()
[ "h5py.File", "numpy.abs", "numpy.allclose", "signal_filter.fft.LowPassFilter", "signal_filter.mpi_signal_filter.SignalFilter" ]
[((145, 174), 'h5py.File', 'h5py.File', (['h5_path'], {'mode': '"""r+"""'}), "(h5_path, mode='r+')\n", (154, 174), False, 'import h5py\n'), ((434, 597), 'signal_filter.mpi_signal_filter.SignalFilter', 'SignalFilter', (['h5_main'], {'frequency_filters': 'frequency_filters', 'noise_threshold': 'noise_tol', 'write_filtered': '(True)', 'write_condensed': '(False)', 'num_pix': '(1)', 'verbose': '(True)'}), '(h5_main, frequency_filters=frequency_filters, noise_threshold=\n noise_tol, write_filtered=True, write_condensed=False, num_pix=1,\n verbose=True)\n', (446, 597), False, 'from signal_filter.mpi_signal_filter import SignalFilter\n'), ((857, 889), 'h5py.File', 'h5py.File', (['h5_ref_path'], {'mode': '"""r"""'}), "(h5_ref_path, mode='r')\n", (866, 889), False, 'import h5py\n'), ((354, 405), 'signal_filter.fft.LowPassFilter', 'LowPassFilter', (['num_spectral_pts', 'samp_rate', '(10000.0)'], {}), '(num_spectral_pts, samp_rate, 10000.0)\n', (367, 405), False, 'from signal_filter.fft import LowPassFilter\n'), ((1094, 1128), 'numpy.allclose', 'np.allclose', (['actual_line', 'ref_line'], {}), '(actual_line, ref_line)\n', (1105, 1128), True, 'import numpy as np\n'), ((1055, 1085), 'numpy.abs', 'np.abs', (['(actual_line - ref_line)'], {}), '(actual_line - ref_line)\n', (1061, 1085), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import scrapy from scrapy.http import Request from scrapy_splash import SplashRequest from work.items import ShopItem import re class Test2Spider(scrapy.Spider): name = 'test2' allowed_domains = ['www.countryattire.com'] start_urls = ['https://www.countryattire.com/'] custom_settings = { 'MYSQL_TABLE': 'test', 'ITEM_PIPELINES': {} } def parse(self, response): nav = response.xpath('//ul[@id="pronav"]/li')[2:8] nav.pop(3) nav_level_1_list = nav for nav_level_1 in nav_level_1_list: cat1 = nav_level_1.xpath('./a/span/text()').get().strip() nav_level_2_list = nav_level_1.xpath('.//div[@id="menu"]/div')[1:] for nav_level_2 in nav_level_2_list: c2 = nav_level_2.xpath('./div/div/span/text()').get() if c2 is None: c2 = nav_level_2.xpath('./div/div/span/a/text()').get() if c2 is None: c2 = nav_level_2.xpath('./div/div/span/span/text()').get() cat2 = c2.strip() nav_level_3_list = nav_level_2.xpath('./div/span') if not nav_level_3_list: nav_level_2_url = nav_level_2.xpath('./a/@href').get() self.logger.info(f'{cat1}---{cat2}') meta = {'cat1': cat1, 'cat2': cat2} yield SplashRequest(response.urljoin(nav_level_2_url), self.parse_product_url, meta=meta) for nav_level_3 in nav_level_3_list: cat3 = nav_level_3.xpath('./a/text()').get().strip() nav_level_3_url = nav_level_3.xpath('./a/@href').get() self.logger.info(f'{cat1}---{cat2}---{cat3}') meta = {'cat1': cat1, 'cat2': cat2, 'cat3': cat3} yield SplashRequest(response.urljoin(nav_level_3_url), self.parse_product_url, meta=meta) def parse_product_url(self, response): product_list = response.xpath('//div[@class="products-grid"]/div') for product in product_list: product_url = product.xpath('./a/@href').get() self.logger.info('product url is %s' % product_url) # yield SplashRequest(response.urljoin(product_url), self.parse_product_info, meta=response.meta) next_page = response.xpath('//a[@class="next i-next"]/@href').get() # self.logger.info('next page is %s' % next_page) if next_page is not None: yield SplashRequest(response.urljoin(next_page), self.parse_product_url, meta=response.meta) def parse_product_info(self, response): item = ShopItem() item['PageUrl'] = response.url item['cat1'] = response.meta['cat1'] item['cat2'] = response.meta['cat2'] item['cat3'] = response.meta['cat3'] or '' item['brand'] = response.xpath('').get().strip() item['gender'] = item['cat1'] item['producttype'] = item['cat2'] item['title'] = response.xpath('').get() item['price'] = response.xpath('').get() item['short_content'] = '' item['content'] = response.xpath('').get() pictures = response.xpath('').getall() picture = response.xpath('').getall() item['pictures'] = pictures or picture item['color'] = '' item['size'] = response.xpath('').getall() yield item
[ "work.items.ShopItem" ]
[((2701, 2711), 'work.items.ShopItem', 'ShopItem', ([], {}), '()\n', (2709, 2711), False, 'from work.items import ShopItem\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-10-08 18:57 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Course', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, max_length=30, null=True)), ('code', models.CharField(blank=True, max_length=6, null=True)), ('days_given', models.IntegerField(blank=True, null=True)), ('ref_books', models.TextField(blank=True, max_length=500, null=True)), ('is_elective', models.BooleanField(default=False)), ('credits', models.IntegerField(blank=True, default=0, null=True)), ('classification', models.CharField(choices=[(b'Theory', b'Theory'), (b'Lab', b'LAB')], default=b'th', max_length=6, null=True)), ], options={ 'verbose_name': 'Course', 'verbose_name_plural': 'Courses', }, ), migrations.CreateModel( name='Semester', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(blank=True, choices=[(b'I', b'Semester I'), (b'II', b'Semester II'), (b'III', b'Semester III'), (b'IV', b'Semester IV'), (b'V', b'Semester V'), (b'VI', b'Semester VI'), (b'VII', b'Semester VII'), (b'VIII', b'Semester VIII')], default=b'Semester I', max_length=15, null=True)), ('spi', models.CharField(blank=True, max_length=10, null=True)), ], options={ 'ordering': ('name',), 'verbose_name': 'Semester', 'verbose_name_plural': 'Semesters', }, ), migrations.AddField( model_name='course', name='semester', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='semester.Semester'), ), ]
[ "django.db.models.TextField", "django.db.models.ForeignKey", "django.db.models.CharField", "django.db.models.BooleanField", "django.db.models.AutoField", "django.db.models.IntegerField" ]
[((2177, 2268), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""semester.Semester"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'semester.Semester')\n", (2194, 2268), False, 'from django.db import migrations, models\n'), ((400, 493), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (416, 493), False, 'from django.db import migrations, models\n'), ((517, 571), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(30)', 'null': '(True)'}), '(blank=True, max_length=30, null=True)\n', (533, 571), False, 'from django.db import migrations, models\n'), ((599, 652), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(6)', 'null': '(True)'}), '(blank=True, max_length=6, null=True)\n', (615, 652), False, 'from django.db import migrations, models\n'), ((686, 728), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (705, 728), False, 'from django.db import migrations, models\n'), ((761, 816), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'max_length': '(500)', 'null': '(True)'}), '(blank=True, max_length=500, null=True)\n', (777, 816), False, 'from django.db import migrations, models\n'), ((851, 885), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (870, 885), False, 'from django.db import migrations, models\n'), ((916, 969), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'blank': '(True)', 'default': '(0)', 'null': '(True)'}), '(blank=True, default=0, null=True)\n', (935, 969), False, 'from django.db import migrations, models\n'), ((1007, 1119), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[(b'Theory', b'Theory'), (b'Lab', b'LAB')]", 'default': "b'th'", 'max_length': '(6)', 'null': '(True)'}), "(choices=[(b'Theory', b'Theory'), (b'Lab', b'LAB')],\n default=b'th', max_length=6, null=True)\n", (1023, 1119), False, 'from django.db import migrations, models\n'), ((1378, 1471), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (1394, 1471), False, 'from django.db import migrations, models\n'), ((1495, 1804), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'choices': "[(b'I', b'Semester I'), (b'II', b'Semester II'), (b'III', b'Semester III'),\n (b'IV', b'Semester IV'), (b'V', b'Semester V'), (b'VI', b'Semester VI'),\n (b'VII', b'Semester VII'), (b'VIII', b'Semester VIII')]", 'default': "b'Semester I'", 'max_length': '(15)', 'null': '(True)'}), "(blank=True, choices=[(b'I', b'Semester I'), (b'II',\n b'Semester II'), (b'III', b'Semester III'), (b'IV', b'Semester IV'), (\n b'V', b'Semester V'), (b'VI', b'Semester VI'), (b'VII', b'Semester VII'\n ), (b'VIII', b'Semester VIII')], default=b'Semester I', max_length=15,\n null=True)\n", (1511, 1804), False, 'from django.db import migrations, models\n'), ((1813, 1867), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(10)', 'null': '(True)'}), '(blank=True, max_length=10, null=True)\n', (1829, 1867), False, 'from django.db import migrations, models\n')]
from django.db import models import datetime from django.contrib.auth.models import User # Create your models here. class Review(models.Model): user = models.ForeignKey(User,blank=True,null=True,on_delete=models.CASCADE) mark = models.IntegerField() text = models.TextField() created = models.DateTimeField(auto_now_add=True) def __str__(self): return self.user.username + str(self.mark)
[ "django.db.models.ForeignKey", "django.db.models.IntegerField", "django.db.models.TextField", "django.db.models.DateTimeField" ]
[((153, 225), 'django.db.models.ForeignKey', 'models.ForeignKey', (['User'], {'blank': '(True)', 'null': '(True)', 'on_delete': 'models.CASCADE'}), '(User, blank=True, null=True, on_delete=models.CASCADE)\n', (170, 225), False, 'from django.db import models\n'), ((231, 252), 'django.db.models.IntegerField', 'models.IntegerField', ([], {}), '()\n', (250, 252), False, 'from django.db import models\n'), ((261, 279), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (277, 279), False, 'from django.db import models\n'), ((291, 330), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (311, 330), False, 'from django.db import models\n')]
""" Run a job: i.e. run a configuration file through the DAGRunner """ import argparse import logging import warnings ###################################### ###################################### # Important: # # If your configuration uses custom node classes, be sure to set environment variable # PRIMROSE_EXT_NODE_PACKAGE to the location of your package before running primrose. # Example: # ``` # export PRIMROSE_EXT_NODE_PACKAGE=src/mypackage # python run_primrose.py --config_loc my_config.json # ``` # ###################################### ###################################### from primrose.configuration.configuration import Configuration from primrose.dag_runner import DagRunner from primrose.dag.config_layer_traverser import ConfigLayerTraverser from primrose.dag.depth_first_traverser import DepthFirstTraverser warnings.filterwarnings("ignore") def parse_arguments(): """ Parse command line arguments Returns: argument objects with flags as attributes """ parser = argparse.ArgumentParser() parser.add_argument( "--config_loc", help="Location of the configuration file", required=True ) parser.add_argument( "--is_dry_run", help="do a dry run of the DAG which will validatre config and log which nodes would be run", default=False, type=lambda x: (str(x).lower() == "true"), ) known_args, pipeline_args = parser.parse_known_args() return known_args, pipeline_args def main(): """ Run a job: i.e. run a configuration file through the DAGRunner """ args, _ = parse_arguments() logging.basicConfig( format="%(asctime)s %(levelname)s %(filename)s %(funcName)s: %(message)s", level=logging.INFO, ) configuration = Configuration(config_location=args.config_loc) DagRunner(configuration).run(dry_run=args.is_dry_run) if __name__ == "__main__": main()
[ "argparse.ArgumentParser", "logging.basicConfig", "warnings.filterwarnings", "primrose.dag_runner.DagRunner", "primrose.configuration.configuration.Configuration" ]
[((843, 876), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (866, 876), False, 'import warnings\n'), ((1028, 1053), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1051, 1053), False, 'import argparse\n'), ((1626, 1749), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s %(levelname)s %(filename)s %(funcName)s: %(message)s"""', 'level': 'logging.INFO'}), "(format=\n '%(asctime)s %(levelname)s %(filename)s %(funcName)s: %(message)s',\n level=logging.INFO)\n", (1645, 1749), False, 'import logging\n'), ((1785, 1831), 'primrose.configuration.configuration.Configuration', 'Configuration', ([], {'config_location': 'args.config_loc'}), '(config_location=args.config_loc)\n', (1798, 1831), False, 'from primrose.configuration.configuration import Configuration\n'), ((1837, 1861), 'primrose.dag_runner.DagRunner', 'DagRunner', (['configuration'], {}), '(configuration)\n', (1846, 1861), False, 'from primrose.dag_runner import DagRunner\n')]
""" Unit tests for the mqtt support class Copyright 2022 <NAME> SPDX-License-Identifier: Apache-2.0 Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import os import unittest import context # add rvc2mqtt package to the python path using local reference from rvc2mqtt.mqtt import * ## can't figure out how to unit test this..probably need to mock...but given this class is tightly coupled with ## paho mqtt not sure how useful....anyway..below is hack to test it with real mqtt server class device1(object): def __init__(self, name: str, mqtt_support:MQTT_Support): self.device_topic = mqtt_support.make_device_topic_root(name) self.status_topic = mqtt_support.make_device_topic_string(name, None, True) self.set_topic = mqtt_support.make_device_topic_string(name, None, False) mqtt_support.client.publish(self.status_topic, "unknown", retain=True) mqtt_support.register(self, self.set_topic, self.got_message) self.mqtt = mqtt_support def got_message(self, topic, payload): print(f"hello from device1 {topic} --- {payload.decode('utf-8')}") self.mqtt.client.publish(self.status_topic, payload, retain=True) if __name__ == '__main__': #unittest.main() mqs = MqttInitalize(Test_MQTT_Support.MQTT_BRIDGE_SETTINGS) mqs.client.loop_start() d1 = device1("try1", mqs) mqs.client.publish(d1.set_topic, "here", retain=False) import time time.sleep(5) mqs.shutdown()
[ "time.sleep" ]
[((1918, 1931), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (1928, 1931), False, 'import time\n')]
#!/usr/bin/env python import os, sys, subprocess from os.path import basename,dirname import h5py from netCDF4 import Dataset import numpy as np import numpy.ma as ma import gdal from gdalconst import * from osgeo import ogr, osr from datetime import datetime, date def createImgSCISAT(fileAbsPath): # read info from netcdf ncfile = Dataset(fileAbsPath, 'r') latitude = ncfile.groups['ACE-FTS-v2.2'].latitude longitude = ncfile.groups['ACE-FTS-v2.2'].longitude datestart = datetime.strptime(ncfile.groups['ACE-FTS-v2.2'].start_time,'%Y-%m-%d %H:%M:%S+00') dateend = datetime.strptime(ncfile.groups['ACE-FTS-v2.2'].end_time,'%Y-%m-%d %H:%M:%S+00') ozone = ncfile.groups['ACE-FTS-v2.2'].groups['Data-L2_1km_grid'].variables['O3'][:] heightLevels = ncfile.groups['ACE-FTS-v2.2'].groups['Data-L2_1km_grid'].variables['z'][:] numBand = len(ozone) ncfile.close() #common vars no_value = -9999 minValue = ma.min(ozone) maxValue = ma.max(ozone) ma.set_fill_value(ozone, no_value) ozone = ozone.filled() #ma.set_fill_value(heightLevels, no_value) #heightLevels = heightLevels.filled() sizeX = 1 sizeY = 1 dataType = gdal.GDT_Float32 resolution = 1.0 # in degree driver = gdal.GetDriverByName('GTiff' ) outFile = 'ACE-FTS_L2_ozone_'+datestart.strftime('%Y%m%d.%H%M%S')+'.tif' #create tiff dst_ds = driver.Create(outFile, sizeX, sizeY, numBand, dataType) for i in range(numBand): dst_ds.GetRasterBand(i+1).WriteArray(np.expand_dims(np.expand_dims(ozone[i],axis=0),axis=0)) # The computed stat produces this warning # Warning 1: Lost metadata writing to GeoTIFF ... too large to fit in tag. # An additional *.aux.xml is added #if ozone[i] != no_value: # dst_ds.GetRasterBand(i+1).ComputeStatistics(False) dst_ds.GetRasterBand(i+1).SetNoDataValue(no_value) #set geotrasform matrix top_left_x = longitude - (resolution / 2) w_e_pixel_resolution = resolution top_left_y = latitude - (resolution / 2) n_s_pixel_resolution = - resolution coord = [top_left_x, w_e_pixel_resolution, 0, top_left_y,0, n_s_pixel_resolution] dst_ds.SetGeoTransform(coord) srs = osr.SpatialReference() srs.SetWellKnownGeogCS('WGS84') dst_ds.SetProjection(srs.ExportToWkt()) #set metadata dst_ds.SetMetadataItem('GLOBAL_MAX',str(maxValue)) dst_ds.SetMetadataItem('GLOBAL_MIN',str(minValue)) dst_ds.SetMetadataItem('TIME_END', dateend.strftime('%Y-%m-%dT%H:%M:%SZ')) dst_ds.SetMetadataItem('TIME_START', datestart.strftime('%Y-%m-%dT%H:%M:%SZ')) dst_ds.SetMetadataItem('VERTICAL_LEVELS_NUMBER', str(len(heightLevels))) dst_ds.SetMetadataItem('VERTICAL_LEVELS', ','.join(str(x) for x in heightLevels)) dst_ds =None return [outFile] if __name__ == '__main__': if len(sys.argv) != 2: sys.exit('\nUsage: %s L2_SCISAT_file \n' % sys.argv[0] ) else: if not os.path.exists(sys.argv[1]): sys.exit('\nERROR: File %s was not found!\n' % sys.argv[1]) fileAbsPath = sys.argv[1] outFileName = createImgSCISAT(fileAbsPath) exit(0) # else: # Module is imported from another module
[ "netCDF4.Dataset", "numpy.ma.min", "gdal.GetDriverByName", "numpy.ma.set_fill_value", "os.path.exists", "numpy.expand_dims", "datetime.datetime.strptime", "sys.exit", "osgeo.osr.SpatialReference", "numpy.ma.max" ]
[((343, 368), 'netCDF4.Dataset', 'Dataset', (['fileAbsPath', '"""r"""'], {}), "(fileAbsPath, 'r')\n", (350, 368), False, 'from netCDF4 import Dataset\n'), ((495, 582), 'datetime.datetime.strptime', 'datetime.strptime', (["ncfile.groups['ACE-FTS-v2.2'].start_time", '"""%Y-%m-%d %H:%M:%S+00"""'], {}), "(ncfile.groups['ACE-FTS-v2.2'].start_time,\n '%Y-%m-%d %H:%M:%S+00')\n", (512, 582), False, 'from datetime import datetime, date\n'), ((592, 677), 'datetime.datetime.strptime', 'datetime.strptime', (["ncfile.groups['ACE-FTS-v2.2'].end_time", '"""%Y-%m-%d %H:%M:%S+00"""'], {}), "(ncfile.groups['ACE-FTS-v2.2'].end_time,\n '%Y-%m-%d %H:%M:%S+00')\n", (609, 677), False, 'from datetime import datetime, date\n'), ((957, 970), 'numpy.ma.min', 'ma.min', (['ozone'], {}), '(ozone)\n', (963, 970), True, 'import numpy.ma as ma\n'), ((986, 999), 'numpy.ma.max', 'ma.max', (['ozone'], {}), '(ozone)\n', (992, 999), True, 'import numpy.ma as ma\n'), ((1004, 1038), 'numpy.ma.set_fill_value', 'ma.set_fill_value', (['ozone', 'no_value'], {}), '(ozone, no_value)\n', (1021, 1038), True, 'import numpy.ma as ma\n'), ((1265, 1294), 'gdal.GetDriverByName', 'gdal.GetDriverByName', (['"""GTiff"""'], {}), "('GTiff')\n", (1285, 1294), False, 'import gdal\n'), ((2258, 2280), 'osgeo.osr.SpatialReference', 'osr.SpatialReference', ([], {}), '()\n', (2278, 2280), False, 'from osgeo import ogr, osr\n'), ((2959, 3016), 'sys.exit', 'sys.exit', (['("""\nUsage: %s L2_SCISAT_file \n""" % sys.argv[0])'], {}), '("""\nUsage: %s L2_SCISAT_file \n""" % sys.argv[0])\n', (2967, 3016), False, 'import os, sys, subprocess\n'), ((3041, 3068), 'os.path.exists', 'os.path.exists', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (3055, 3068), False, 'import os, sys, subprocess\n'), ((3082, 3143), 'sys.exit', 'sys.exit', (['("""\nERROR: File %s was not found!\n""" % sys.argv[1])'], {}), '("""\nERROR: File %s was not found!\n""" % sys.argv[1])\n', (3090, 3143), False, 'import os, sys, subprocess\n'), ((1554, 1586), 'numpy.expand_dims', 'np.expand_dims', (['ozone[i]'], {'axis': '(0)'}), '(ozone[i], axis=0)\n', (1568, 1586), True, 'import numpy as np\n')]
import logging from os import write import requests from typing import Any, Dict from cartpole import CartPole from tensorboardX import SummaryWriter class BonsaiAgent(object): """ The agent that gets the action from the trained brain exported as docker image and started locally """ def act(self, state) -> Dict[str, Any]: action = self.predict(state) #simulator expects action to be integer action["command"] = int(action["command"]) return action def predict(self, state): #local endpoint when running trained brain locally in docker container url = "http://localhost:5000/v1/prediction" response = requests.get(url, json=state) action = response.json() return action class RandomAgent(object): """The world's simplest agent!""" def __init__(self, cartpole: CartPole): self.cartpole = cartpole def act(self, state): return cartpole.gym_to_action(cartpole._env.action_space.sample()) if __name__ == '__main__': logging.basicConfig() log = logging.getLogger("cartpole") log.setLevel(level='INFO') writer = SummaryWriter() # we will use our environment (wrapper of OpenAI env) cartpole = CartPole() # specify which agent you want to use, # BonsaiAgent that uses trained Brain or # RandomAgent that randomly selects next action agent = BonsaiAgent() episode_count = 100 try: for i in range(episode_count): #start a new episode and get the new state cartpole.episode_start() state = cartpole.get_state() cum_reward = 0 while True: #get the action from the agent (based on the current state) action = agent.act(state) #do the next step of the simulation and get the new state cartpole.episode_step(action) state = cartpole.get_state() #get the last reward and add it the episode reward reward = cartpole.get_last_reward() cum_reward += reward if cartpole.halted(): writer.add_scalar("reward", cum_reward, i ) break writer.flush() cartpole.episode_finish("") writer.close() except KeyboardInterrupt: print("Stopped")
[ "tensorboardX.SummaryWriter", "logging.basicConfig", "requests.get", "cartpole.CartPole", "logging.getLogger" ]
[((1044, 1065), 'logging.basicConfig', 'logging.basicConfig', ([], {}), '()\n', (1063, 1065), False, 'import logging\n'), ((1076, 1105), 'logging.getLogger', 'logging.getLogger', (['"""cartpole"""'], {}), "('cartpole')\n", (1093, 1105), False, 'import logging\n'), ((1151, 1166), 'tensorboardX.SummaryWriter', 'SummaryWriter', ([], {}), '()\n', (1164, 1166), False, 'from tensorboardX import SummaryWriter\n'), ((1240, 1250), 'cartpole.CartPole', 'CartPole', ([], {}), '()\n', (1248, 1250), False, 'from cartpole import CartPole\n'), ((678, 707), 'requests.get', 'requests.get', (['url'], {'json': 'state'}), '(url, json=state)\n', (690, 707), False, 'import requests\n')]
""" Packing and unpacking of floats in the IEEE 32-bit and 64-bit formats. """ import math from pypy.rlib.rarithmetic import r_longlong, isinf, isnan, INFINITY, NAN def pack_float(result, number, size, bigendian): """Append to 'result' the 'size' characters of the 32-bit or 64-bit IEEE representation of the number. """ if size == 4: bias = 127 exp = 8 prec = 23 else: bias = 1023 exp = 11 prec = 52 if isnan(number): sign = 0x80 man, e = 1.5, bias + 1 else: if number < 0: sign = 0x80 number *= -1 elif number == 0.0: for i in range(size): result.append('\x00') return else: sign = 0x00 if isinf(number): man, e = 1.0, bias + 1 else: man, e = math.frexp(number) if 0.5 <= man and man < 1.0: man *= 2 e -= 1 man -= 1 e += bias power_of_two = r_longlong(1) << prec mantissa = r_longlong(power_of_two * man + 0.5) if mantissa >> prec : mantissa = 0 e += 1 for i in range(size-2): result.append(chr(mantissa & 0xff)) mantissa >>= 8 x = (mantissa & ((1<<(15-exp))-1)) | ((e & ((1<<(exp-7))-1))<<(15-exp)) result.append(chr(x)) x = sign | e >> (exp - 7) result.append(chr(x)) if bigendian: first = len(result) - size last = len(result) - 1 for i in range(size // 2): (result[first + i], result[last - i]) = ( result[last - i], result[first + i]) def unpack_float(input, bigendian): """Interpret the 'input' string into a 32-bit or 64-bit IEEE representation a the number. """ size = len(input) bytes = [] if bigendian: reverse_mask = size - 1 else: reverse_mask = 0 nonzero = False for i in range(size): x = ord(input[i ^ reverse_mask]) bytes.append(x) nonzero |= x if not nonzero: return 0.0 if size == 4: bias = 127 exp = 8 prec = 23 else: bias = 1023 exp = 11 prec = 52 mantissa_scale_factor = 0.5 ** prec # this is constant-folded if it's # right after the 'if' mantissa = r_longlong(bytes[size-2] & ((1<<(15-exp))-1)) for i in range(size-3, -1, -1): mantissa = mantissa << 8 | bytes[i] mantissa = 1 + mantissa * mantissa_scale_factor mantissa *= 0.5 e = (bytes[-1] & 0x7f) << (exp - 7) e += (bytes[size-2] >> (15 - exp)) & ((1<<(exp - 7)) -1) e -= bias e += 1 sign = bytes[-1] & 0x80 if e == bias + 2: if mantissa == 0.5: number = INFINITY else: return NAN else: number = math.ldexp(mantissa,e) if sign : number = -number return number
[ "pypy.rlib.rarithmetic.r_longlong", "pypy.rlib.rarithmetic.isnan", "pypy.rlib.rarithmetic.isinf", "math.frexp", "math.ldexp" ]
[((479, 492), 'pypy.rlib.rarithmetic.isnan', 'isnan', (['number'], {}), '(number)\n', (484, 492), False, 'from pypy.rlib.rarithmetic import r_longlong, isinf, isnan, INFINITY, NAN\n'), ((1048, 1084), 'pypy.rlib.rarithmetic.r_longlong', 'r_longlong', (['(power_of_two * man + 0.5)'], {}), '(power_of_two * man + 0.5)\n', (1058, 1084), False, 'from pypy.rlib.rarithmetic import r_longlong, isinf, isnan, INFINITY, NAN\n'), ((2355, 2404), 'pypy.rlib.rarithmetic.r_longlong', 'r_longlong', (['(bytes[size - 2] & (1 << 15 - exp) - 1)'], {}), '(bytes[size - 2] & (1 << 15 - exp) - 1)\n', (2365, 2404), False, 'from pypy.rlib.rarithmetic import r_longlong, isinf, isnan, INFINITY, NAN\n'), ((795, 808), 'pypy.rlib.rarithmetic.isinf', 'isinf', (['number'], {}), '(number)\n', (800, 808), False, 'from pypy.rlib.rarithmetic import r_longlong, isinf, isnan, INFINITY, NAN\n'), ((1011, 1024), 'pypy.rlib.rarithmetic.r_longlong', 'r_longlong', (['(1)'], {}), '(1)\n', (1021, 1024), False, 'from pypy.rlib.rarithmetic import r_longlong, isinf, isnan, INFINITY, NAN\n'), ((2851, 2874), 'math.ldexp', 'math.ldexp', (['mantissa', 'e'], {}), '(mantissa, e)\n', (2861, 2874), False, 'import math\n'), ((880, 898), 'math.frexp', 'math.frexp', (['number'], {}), '(number)\n', (890, 898), False, 'import math\n')]
import torchvision.transforms as T def aug_transform(crop, base_transform, cfg, extra_t=[]): """ augmentation transform generated from config """ return T.Compose( [ T.RandomApply( [T.ColorJitter(cfg.cj0, cfg.cj1, cfg.cj2, cfg.cj3)], p=cfg.cj_p ), T.RandomGrayscale(p=cfg.gs_p), T.RandomResizedCrop( crop, scale=(cfg.crop_s0, cfg.crop_s1), ratio=(cfg.crop_r0, cfg.crop_r1), interpolation=3, ), T.RandomHorizontalFlip(p=cfg.hf_p), *extra_t, base_transform(), ] ) class MultiSample: """ generates n samples with augmentation """ def __init__(self, transform, n=2): self.transform = transform self.num = n def __call__(self, x): return tuple(self.transform(x) for _ in range(self.num))
[ "torchvision.transforms.ColorJitter", "torchvision.transforms.RandomResizedCrop", "torchvision.transforms.RandomHorizontalFlip", "torchvision.transforms.RandomGrayscale" ]
[((318, 347), 'torchvision.transforms.RandomGrayscale', 'T.RandomGrayscale', ([], {'p': 'cfg.gs_p'}), '(p=cfg.gs_p)\n', (335, 347), True, 'import torchvision.transforms as T\n'), ((361, 476), 'torchvision.transforms.RandomResizedCrop', 'T.RandomResizedCrop', (['crop'], {'scale': '(cfg.crop_s0, cfg.crop_s1)', 'ratio': '(cfg.crop_r0, cfg.crop_r1)', 'interpolation': '(3)'}), '(crop, scale=(cfg.crop_s0, cfg.crop_s1), ratio=(cfg.\n crop_r0, cfg.crop_r1), interpolation=3)\n', (380, 476), True, 'import torchvision.transforms as T\n'), ((564, 598), 'torchvision.transforms.RandomHorizontalFlip', 'T.RandomHorizontalFlip', ([], {'p': 'cfg.hf_p'}), '(p=cfg.hf_p)\n', (586, 598), True, 'import torchvision.transforms as T\n'), ((228, 277), 'torchvision.transforms.ColorJitter', 'T.ColorJitter', (['cfg.cj0', 'cfg.cj1', 'cfg.cj2', 'cfg.cj3'], {}), '(cfg.cj0, cfg.cj1, cfg.cj2, cfg.cj3)\n', (241, 277), True, 'import torchvision.transforms as T\n')]
import argparse from torch import cuda def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--directory', metavar='EXPORT_DIR', help='destination where trained network should be saved') parser.add_argument('--training-dataset', default='GLDv2', help='training dataset: (default: GLDv2)') parser.add_argument('--imsize', default=1024, type=int, metavar='N', help='maximum size of longer image side used for training (default: 1024)') parser.add_argument('--num-workers', default=8, type=int, metavar='N', help='number of data loading workers (default: 8)') parser.add_argument('--device', type=str, default='cuda' if cuda.is_available() else 'cpu') parser.add_argument('--num-epochs', default=100, type=int, metavar='N', help='number of total epochs to run (default: 100)') parser.add_argument('--batch-size', '-b', default=5, type=int, metavar='N', help='number of (q,p,n1,...,nN) tuples in a mini-batch (default: 5)') parser.add_argument('--update-every', '-u', default=1, type=int, metavar='N', help='update model weights every N batches, used to handle really large batches, ' + 'batch_size effectively becomes update_every x batch_size (default: 1)') parser.add_argument('--resume', default=None, type=str, metavar='FILENAME', help='name of the latest checkpoint (default: None)') parser.add_argument('--warmup-epochs', type=int, default=0, help='learning rate will be linearly scaled during warm up period') parser.add_argument('--val-epoch', type=int, default=1) parser.add_argument('--warmup-lr', type=float, default=0, help='Initial warmup learning rate') parser.add_argument('--base-lr', type=float, default=1e-6) parser.add_argument('--final-lr', type=float, default=0) parser.add_argument('--momentum', type=float, default=0.9) parser.add_argument('--weight-decay', type=float, default=1e-6) parser.add_argument('--rank', type=int, default=None) parser.add_argument('--world_size', type=int, default=None) parser.add_argument('--gpu', type=int, default=None) parser.add_argument('--dist_backend', type=str, default='nccl') parser.add_argument('--dist_url', type=str, default='tcp://127.0.0.1:29324') parser.add_argument('--distributed', action='store_true') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--clip_max_norm', type=float, default=0) args = parser.parse_args() return args
[ "torch.cuda.is_available", "argparse.ArgumentParser" ]
[((70, 95), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (93, 95), False, 'import argparse\n'), ((661, 680), 'torch.cuda.is_available', 'cuda.is_available', ([], {}), '()\n', (678, 680), False, 'from torch import cuda\n')]
import os from flask import Flask from flask import request from flask import render_template app = Flask(__name__) @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'GET': return render_template('index.html') elif request.method == 'POST': data = request.form text = '''[spotify] username = {} password = {} client_id = {} client_secret = {} private_session = true [mpd] enabled = true '''.format(data['username'], data['password'], data['client_id'], data['client_secret']) text_file = open("/etc/mopidy/mopidy.conf", "w") text_file.write(text) text_file.close() print("Service restart:", os.system('sudo systemctl restart mopidy.service')) return render_template('index.html', flash="Credentials set!") @app.route('/alarm', methods=['POST']) def alarm(): cron_text = '{} {} * * * mpc clear && mpc add {} && mpc play'.format( request.form['minutes'], request.form['hours'], request.form['spotify_uri'] ) remove_cron_command = 'sudo crontab -r' cron_set_command = '(sudo crontab -l ; echo "{}") | sort - | uniq - | sudo crontab -'.format(cron_text) print("Removing old crontabs:", os.system(remove_cron_command)) print("Setting crontab:", os.system(cron_set_command)) return render_template('index.html', flash="Alarm set!")
[ "flask.Flask", "os.system", "flask.render_template" ]
[((101, 116), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (106, 116), False, 'from flask import Flask\n'), ((1411, 1460), 'flask.render_template', 'render_template', (['"""index.html"""'], {'flash': '"""Alarm set!"""'}), "('index.html', flash='Alarm set!')\n", (1426, 1460), False, 'from flask import render_template\n'), ((220, 249), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (235, 249), False, 'from flask import render_template\n'), ((1304, 1334), 'os.system', 'os.system', (['remove_cron_command'], {}), '(remove_cron_command)\n', (1313, 1334), False, 'import os\n'), ((1366, 1393), 'os.system', 'os.system', (['cron_set_command'], {}), '(cron_set_command)\n', (1375, 1393), False, 'import os\n'), ((821, 876), 'flask.render_template', 'render_template', (['"""index.html"""'], {'flash': '"""Credentials set!"""'}), "('index.html', flash='Credentials set!')\n", (836, 876), False, 'from flask import render_template\n'), ((753, 803), 'os.system', 'os.system', (['"""sudo systemctl restart mopidy.service"""'], {}), "('sudo systemctl restart mopidy.service')\n", (762, 803), False, 'import os\n')]
""" Rhino Python Script Tutorial Exercise 01 Draw point at origin. Important note: Python is very sensitive to indentation. Notice how the rs.AddPoint statement is indented inwards. This means that it is part of the Main method. All this will be clear in due time. """ import rhinoscriptsyntax as rs import math def Main(): rs.AddPoint([0,0,0]) Main()
[ "rhinoscriptsyntax.AddPoint" ]
[((359, 381), 'rhinoscriptsyntax.AddPoint', 'rs.AddPoint', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (370, 381), True, 'import rhinoscriptsyntax as rs\n')]
import time import random import numpy as np import pandas as pds from collections import namedtuple import torch import torch.nn as nn import torch.nn.functional as F from torchdiffeq import odeint_adjoint as odeint from config import D_TYPE def get_data(): Arg = namedtuple('Arg', ['method', 'data_size', 'batch_time', 'batch_size', 'niters', 'test_freq', 'viz', 'gpu', 'adjoint']) args = Arg('dopri5', 1000, 20, 1, 2000, 50, False, 1, True) true_y0 = torch.tensor([[0.0, 5.0]]) t = torch.linspace(0, 5, args.data_size + 1) class Lambda(nn.Module): def __init__(self, w0, f0, w1, dr): super(Lambda, self).__init__() self.w0 = torch.tensor(w0) self.f0 = torch.tensor(f0) self.w1 = torch.tensor(w1) self.dr = torch.tensor(dr) def force(self, t): return self.f0 * torch.sin(self.w1 * t) def forward(self, t, y): dy0_dt = y[:, 1] dy1_dt = -2. * self.w0 * y[:, 1] * self.dr - self.w0 ** 2 * y[:, 0] + self.force(t) return torch.cat((dy0_dt.reshape(-1, 1), dy1_dt.reshape(-1, 1)), axis=1) # This numerical solution given the true DE. with torch.no_grad(): lam = Lambda(5., 5., 3., 0.01) true_y = odeint(lam, true_y0, t, method='dopri5') dat_dict = dict() for s in range(args.data_size - args.batch_time): batch_t = t[s:s+args.batch_time] batch_y = torch.stack([true_y[s + i] for i in range(args.batch_time)], dim=0) dim = batch_y.shape[-1] x_reshaped = batch_y.reshape(args.batch_time, 1, 1, dim) dat_dict[str(s)] = dict(t=batch_t, x=x_reshaped) return dat_dict
[ "collections.namedtuple", "torch.linspace", "torch.no_grad", "torch.sin", "torch.tensor", "torchdiffeq.odeint_adjoint" ]
[((274, 396), 'collections.namedtuple', 'namedtuple', (['"""Arg"""', "['method', 'data_size', 'batch_time', 'batch_size', 'niters', 'test_freq',\n 'viz', 'gpu', 'adjoint']"], {}), "('Arg', ['method', 'data_size', 'batch_time', 'batch_size',\n 'niters', 'test_freq', 'viz', 'gpu', 'adjoint'])\n", (284, 396), False, 'from collections import namedtuple\n'), ((501, 527), 'torch.tensor', 'torch.tensor', (['[[0.0, 5.0]]'], {}), '([[0.0, 5.0]])\n', (513, 527), False, 'import torch\n'), ((536, 576), 'torch.linspace', 'torch.linspace', (['(0)', '(5)', '(args.data_size + 1)'], {}), '(0, 5, args.data_size + 1)\n', (550, 576), False, 'import torch\n'), ((1235, 1250), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1248, 1250), False, 'import torch\n'), ((1308, 1348), 'torchdiffeq.odeint_adjoint', 'odeint', (['lam', 'true_y0', 't'], {'method': '"""dopri5"""'}), "(lam, true_y0, t, method='dopri5')\n", (1314, 1348), True, 'from torchdiffeq import odeint_adjoint as odeint\n'), ((717, 733), 'torch.tensor', 'torch.tensor', (['w0'], {}), '(w0)\n', (729, 733), False, 'import torch\n'), ((756, 772), 'torch.tensor', 'torch.tensor', (['f0'], {}), '(f0)\n', (768, 772), False, 'import torch\n'), ((795, 811), 'torch.tensor', 'torch.tensor', (['w1'], {}), '(w1)\n', (807, 811), False, 'import torch\n'), ((834, 850), 'torch.tensor', 'torch.tensor', (['dr'], {}), '(dr)\n', (846, 850), False, 'import torch\n'), ((909, 931), 'torch.sin', 'torch.sin', (['(self.w1 * t)'], {}), '(self.w1 * t)\n', (918, 931), False, 'import torch\n')]
import json class Model: def __init__(self, zacetni_seznam_nalog, tema=''): self.naloge = zacetni_seznam_nalog self.aktualna_naloga = None self.tema = tema def dodaj_novo_nalogo(self, naloga): self.naloge.append(naloga) def v_slovar(self): seznam_nalog = [ naloga.v_slovar() for naloga in self.naloge ] return { "naloge": seznam_nalog, "tema": self.tema, } def stevilo_vseh_nalog(self): return len(self.naloge) @staticmethod def iz_slovarja(slovar): sez = [ Naloga.iz_slovarja(sl_naloga) for sl_naloga in slovar["naloge"] ] return Model( sez, slovar["tema"], ) def shrani_v_datoteko(self, ime_datoteke='stanje.json'): with open(ime_datoteke, "w") as dat: slovar = self.v_slovar() json.dump(slovar, dat) @staticmethod def preberi_iz_datoteke(ime_datoteke='stanje.json'): with open(ime_datoteke) as dat: slovar = json.load(dat) return Model.iz_slovarja(slovar) def preveri_podatke_nove_naloge(self, ime): napake = {} if not ime: napake['ime'] = 'Ime ne sme bitit prazno!' elif len(ime) > 20: napake['ime'] = 'Ime lahko vsebuje najvec 20 znakov.' return napake @staticmethod def naredi_svezega(): n1 = Naloga("Napoleon", "Kdaj se je rodil?", "15.8.1769") n2 = Naloga('New York', "Kje lezi?", "Severna Amerika") n3 = Naloga('Olimpijske igre', "Kdo je osvoji zlato medaljo za Slovenijo?", "<NAME>") n4 = Naloga( 'You Tube', "Kako je ime prvemu videu objavlenemu na You Tubu?", "Me at the ZOO") n5 = Naloga('Kardashianovi', "Koliko otrok ima <NAME>?", "6") n6 = Naloga('Ameriski predsedniki', "Kako je bilo ima prvemu ameriskemu predsedniku?", "<NAME>") seznam = [n1, n2, n3, n4, n5, n6] m = Model(seznam, "test") return m class Naloga: def __init__(self, ime, besedilo, pravilna_resitev, moja_resitev=None): self.ime = ime self.besedilo = besedilo self.pravilna_resitev = pravilna_resitev self.moja_resitev = moja_resitev def naloga_je_resena(self): return self.moja_resitev and self.pravilna_resitev.lower().strip() == self.moja_resitev.lower().strip() def v_slovar(self): return { "ime": self.ime, "besedilo": self.besedilo, "pravilna resitev": self.pravilna_resitev, "moja resitev": self.moja_resitev, } @staticmethod def iz_slovarja(slovar): return Naloga( slovar["ime"], slovar["besedilo"], slovar["pravilna resitev"], slovar["moja resitev"], )
[ "json.dump", "json.load" ]
[((926, 948), 'json.dump', 'json.dump', (['slovar', 'dat'], {}), '(slovar, dat)\n', (935, 948), False, 'import json\n'), ((1086, 1100), 'json.load', 'json.load', (['dat'], {}), '(dat)\n', (1095, 1100), False, 'import json\n')]
from django.utils import timezone from django_filters.rest_framework import DjangoFilterBackend from drf_haystack.viewsets import HaystackViewSet from rest_flex_fields.views import FlexFieldsMixin from rest_framework.permissions import AllowAny, IsAuthenticated from rest_framework.viewsets import ReadOnlyModelViewSet from rest_framework_extensions.cache.mixins import CacheResponseMixin from outpost.django.api.permissions import ExtendedDjangoModelPermissions from outpost.django.base.decorators import docstring_format from . import filters, key_constructors, models, serializers # from rest_framework_extensions.mixins import ( # CacheResponseAndETAGMixin, # ) # from rest_framework_extensions.cache.mixins import ( # CacheResponseMixin, # ) class RoomCategoryViewSet(CacheResponseMixin, ReadOnlyModelViewSet): queryset = models.RoomCategory.objects.all() serializer_class = serializers.RoomCategorySerializer object_cache_key_func = key_constructors.PersonKeyConstructor() list_cache_key_func = key_constructors.PersonKeyConstructor() permission_classes = (AllowAny,) class RoomViewSet(ReadOnlyModelViewSet): queryset = models.Room.objects.all() serializer_class = serializers.RoomSerializer permission_classes = (AllowAny,) filter_fields = ("category",) class FloorViewSet(ReadOnlyModelViewSet): queryset = models.Floor.objects.all() serializer_class = serializers.FloorSerializer permission_classes = (AllowAny,) class BuildingViewSet(ReadOnlyModelViewSet): queryset = models.Building.objects.all() serializer_class = serializers.BuildingSerializer permission_classes = (AllowAny,) @docstring_format( model=models.Function.__doc__, filter=filters.FunctionFilter.__doc__, serializer=serializers.FunctionSerializer.__doc__, ) class FunctionViewSet(FlexFieldsMixin, ReadOnlyModelViewSet): """ List organizational functions from CAMPUSonline. {model} {filter} {serializer} """ queryset = models.Function.objects.all() serializer_class = serializers.FunctionSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.FunctionFilter permission_classes = (IsAuthenticated,) permit_list_expands = ("persons",) @docstring_format( model=models.Organization.__doc__, filter=filters.OrganizationFilter.__doc__, serializer=serializers.OrganizationSerializer.__doc__, ) class OrganizationViewSet(FlexFieldsMixin, ReadOnlyModelViewSet): """ List organizations from CAMPUSonline. {model} {filter} {serializer} """ queryset = models.Organization.objects.all() serializer_class = serializers.OrganizationSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.OrganizationFilter permission_classes = (AllowAny,) permit_list_expands = ("persons", "persons_leave", "publication_authorship") def get_serializer_class(self): if self.request.user and self.request.user.is_authenticated(): return serializers.AuthenticatedOrganizationSerializer else: return self.serializer_class def get_serializer_context(self): return {"request": self.request} @docstring_format( model=models.Person.__doc__, filter=filters.PersonFilter.__doc__, serializer=serializers.PersonSerializer.__doc__, ) class PersonViewSet(FlexFieldsMixin, ReadOnlyModelViewSet): """ List staff accounts from CAMPUSonline. {model} {filter} {serializer} """ queryset = models.Person.objects.all() serializer_class = serializers.PersonSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.PersonFilter permission_classes = (AllowAny,) permit_list_expands = ( "functions", "organizations", "organizations_leave", "classifications", "expertise", "knowledge", "education", ) def get_serializer_class(self): if self.request.user and self.request.user.is_authenticated(): return serializers.AuthenticatedPersonSerializer else: return self.serializer_class def get_serializer_context(self): return {"request": self.request} def get_queryset(self): qs = super().get_queryset() if self.request.user and self.request.user.is_authenticated(): return qs else: return qs.filter(employed=True) @docstring_format( model=models.Student.__doc__, filter=filters.StudentFilter.__doc__, serializer=serializers.StudentSerializer.__doc__, ) class StudentViewSet(ReadOnlyModelViewSet): """ List student accounts from CAMPUSonline. {model} {filter} {serializer} """ queryset = models.Student.objects.all() serializer_class = serializers.StudentSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.StudentFilter permission_classes = (IsAuthenticated,) def get_serializer_class(self): if self.request.user and self.request.user.is_authenticated(): return serializers.AuthenticatedStudentSerializer else: return self.serializer_class @docstring_format(filter=filters.PersonOrganizationFunctionFilter.__doc__) class PersonOrganizationFunctionViewSet(ReadOnlyModelViewSet): """ Map person to organizational unit and function through CAMPUSonline. {filter} """ queryset = models.PersonOrganizationFunction.objects.all() serializer_class = serializers.PersonOrganizationFunctionSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.PersonOrganizationFunctionFilter permission_classes = (IsAuthenticated,) @docstring_format( model=models.DistributionList.__doc__, filter=filters.DistributionListFilter.__doc__, serializer=serializers.DistributionListSerializer.__doc__, ) class DistributionListViewSet( CacheResponseMixin, FlexFieldsMixin, ReadOnlyModelViewSet ): """ List distribution lists from CAMPUSonline. {model} {filter} {serializer} """ queryset = models.DistributionList.objects.all() serializer_class = serializers.DistributionListSerializer object_cache_key_func = key_constructors.DistributionListKeyConstructor() list_cache_key_func = key_constructors.DistributionListKeyConstructor() filter_backends = (DjangoFilterBackend,) filter_class = filters.DistributionListFilter permission_classes = (IsAuthenticated,) permit_list_expands = ("persons", "students") @docstring_format(model=models.Event.__doc__, filter=filters.EventFilter.__doc__) class EventViewSet(ReadOnlyModelViewSet): """ List events from CAMPUSonline. {model} {filter} """ queryset = models.Event.objects.all() serializer_class = serializers.EventSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.EventFilter permission_classes = (AllowAny,) def get_queryset(self): return self.queryset.filter(show_end__gte=timezone.now()) class CourseGroupTermViewSet(ReadOnlyModelViewSet): queryset = models.CourseGroupTerm.objects.all() serializer_class = serializers.CourseGroupTermSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.CourseGroupTermFilter permission_classes = (IsAuthenticated,) @docstring_format(model=models.Bulletin.__doc__, filter=filters.BulletinFilter.__doc__) class BulletinViewSet(ReadOnlyModelViewSet): """ List official bulletins from CAMPUSonline. {model} {filter} """ queryset = models.Bulletin.objects.all() serializer_class = serializers.BulletinSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.BulletinFilter @docstring_format( model=models.BulletinPage.__doc__, filter=filters.BulletinPageFilter.__doc__ ) class BulletinPageViewSet(ReadOnlyModelViewSet): """ List official bulletin pages with extracted text from CAMPUSonline. {model} {filter} """ queryset = models.BulletinPage.objects.all() serializer_class = serializers.BulletinPageSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.BulletinPageFilter permission_classes = (AllowAny,) class BulletinPageSearchViewSet(HaystackViewSet): index_models = [models.BulletinPage] serializer_class = serializers.BulletinPageSearchSerializer permission_classes = (AllowAny,) @docstring_format( model=models.FinalThesis.__doc__, filter=filters.FinalThesisFilter.__doc__, serializer=serializers.FinalThesisSerializer.__doc__, ) class FinalThesisViewSet(FlexFieldsMixin, ReadOnlyModelViewSet): """ List final thesis from CAMPUSonline. {model} {filter} {serializer} """ queryset = models.FinalThesis.objects.all() serializer_class = serializers.FinalThesisSerializer filter_backends = (DjangoFilterBackend,) filter_class = filters.FinalThesisFilter permission_classes = (IsAuthenticated,) permit_list_expands = ("author", "tutor", "organization")
[ "django.utils.timezone.now", "outpost.django.base.decorators.docstring_format" ]
[((1672, 1814), 'outpost.django.base.decorators.docstring_format', 'docstring_format', ([], {'model': 'models.Function.__doc__', 'filter': 'filters.FunctionFilter.__doc__', 'serializer': 'serializers.FunctionSerializer.__doc__'}), '(model=models.Function.__doc__, filter=filters.\n FunctionFilter.__doc__, serializer=serializers.FunctionSerializer.__doc__)\n', (1688, 1814), False, 'from outpost.django.base.decorators import docstring_format\n'), ((2272, 2431), 'outpost.django.base.decorators.docstring_format', 'docstring_format', ([], {'model': 'models.Organization.__doc__', 'filter': 'filters.OrganizationFilter.__doc__', 'serializer': 'serializers.OrganizationSerializer.__doc__'}), '(model=models.Organization.__doc__, filter=filters.\n OrganizationFilter.__doc__, serializer=serializers.\n OrganizationSerializer.__doc__)\n', (2288, 2431), False, 'from outpost.django.base.decorators import docstring_format\n'), ((3234, 3370), 'outpost.django.base.decorators.docstring_format', 'docstring_format', ([], {'model': 'models.Person.__doc__', 'filter': 'filters.PersonFilter.__doc__', 'serializer': 'serializers.PersonSerializer.__doc__'}), '(model=models.Person.__doc__, filter=filters.PersonFilter.\n __doc__, serializer=serializers.PersonSerializer.__doc__)\n', (3250, 3370), False, 'from outpost.django.base.decorators import docstring_format\n'), ((4485, 4624), 'outpost.django.base.decorators.docstring_format', 'docstring_format', ([], {'model': 'models.Student.__doc__', 'filter': 'filters.StudentFilter.__doc__', 'serializer': 'serializers.StudentSerializer.__doc__'}), '(model=models.Student.__doc__, filter=filters.StudentFilter\n .__doc__, serializer=serializers.StudentSerializer.__doc__)\n', (4501, 4624), False, 'from outpost.django.base.decorators import docstring_format\n'), ((5239, 5312), 'outpost.django.base.decorators.docstring_format', 'docstring_format', ([], {'filter': 'filters.PersonOrganizationFunctionFilter.__doc__'}), '(filter=filters.PersonOrganizationFunctionFilter.__doc__)\n', (5255, 5312), False, 'from outpost.django.base.decorators import docstring_format\n'), ((5767, 5938), 'outpost.django.base.decorators.docstring_format', 'docstring_format', ([], {'model': 'models.DistributionList.__doc__', 'filter': 'filters.DistributionListFilter.__doc__', 'serializer': 'serializers.DistributionListSerializer.__doc__'}), '(model=models.DistributionList.__doc__, filter=filters.\n DistributionListFilter.__doc__, serializer=serializers.\n DistributionListSerializer.__doc__)\n', (5783, 5938), False, 'from outpost.django.base.decorators import docstring_format\n'), ((6608, 6693), 'outpost.django.base.decorators.docstring_format', 'docstring_format', ([], {'model': 'models.Event.__doc__', 'filter': 'filters.EventFilter.__doc__'}), '(model=models.Event.__doc__, filter=filters.EventFilter.__doc__\n )\n', (6624, 6693), False, 'from outpost.django.base.decorators import docstring_format\n'), ((7426, 7517), 'outpost.django.base.decorators.docstring_format', 'docstring_format', ([], {'model': 'models.Bulletin.__doc__', 'filter': 'filters.BulletinFilter.__doc__'}), '(model=models.Bulletin.__doc__, filter=filters.\n BulletinFilter.__doc__)\n', (7442, 7517), False, 'from outpost.django.base.decorators import docstring_format\n'), ((7837, 7936), 'outpost.django.base.decorators.docstring_format', 'docstring_format', ([], {'model': 'models.BulletinPage.__doc__', 'filter': 'filters.BulletinPageFilter.__doc__'}), '(model=models.BulletinPage.__doc__, filter=filters.\n BulletinPageFilter.__doc__)\n', (7853, 7936), False, 'from outpost.django.base.decorators import docstring_format\n'), ((8534, 8690), 'outpost.django.base.decorators.docstring_format', 'docstring_format', ([], {'model': 'models.FinalThesis.__doc__', 'filter': 'filters.FinalThesisFilter.__doc__', 'serializer': 'serializers.FinalThesisSerializer.__doc__'}), '(model=models.FinalThesis.__doc__, filter=filters.\n FinalThesisFilter.__doc__, serializer=serializers.FinalThesisSerializer\n .__doc__)\n', (8550, 8690), False, 'from outpost.django.base.decorators import docstring_format\n'), ((7102, 7116), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (7114, 7116), False, 'from django.utils import timezone\n')]
from __future__ import print_function import torch.autograd as autograd from torch.autograd import Variable import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision import random import numpy as np import sys import os from ffn import FFN sys.path.insert(1, os.path.join(sys.path[0], '../..')) from helpers.model_helper import * import csv class ConvFFN(FFN): ''' This subclass inherits from the LSTM class and adds 1d convolution over the input time. ''' def __init__(self, hidden_dim, otu_handler, slice_len, use_gpu=False): super(ConvFFN, self).__init__(hidden_dim, otu_handler, slice_len, use_gpu=use_gpu) self.conv_element = nn.Sequential( nn.Conv1d(self.otu_handler.num_strains, hidden_dim, kernel_size=4, stride=2, padding=3), nn.ReLU(), nn.Conv1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.Conv1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.Conv1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.Conv1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.Conv1d(self.hidden_dim, self.hidden_dim, kernel_size=1, stride=1, padding=0), nn.ReLU(), ) self.time_transformer = nn.Sequential( nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU() ) self.deconv_element = nn.Sequential( nn.ConvTranspose1d(self.hidden_dim, self.hidden_dim, kernel_size=1, stride=1, padding=0), nn.ReLU(), nn.ConvTranspose1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.ConvTranspose1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.ConvTranspose1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.ConvTranspose1d(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1), nn.ReLU(), nn.ConvTranspose1d(self.hidden_dim, self.otu_handler.num_strains, kernel_size=4, stride=2, padding=3), nn.ReLU() ) # self.lin_final = nn.Linear(self.otu_handler.num_strains, # self.otu_handler.num_strains) def forward(self, data): # data is shape: sequence_size x batch x num_strains data = data.transpose(0, 1).transpose(1, 2) # print(data.size()) data = self.conv_element(data) # print(data.size()) data = data.transpose(0, 2).transpose(1, 2) data = self.time_transformer(data) # print(data.size()) data = self.deconv_element(data.transpose(0,1).transpose(1,2)) # print(data.size()) return data
[ "torch.nn.ReLU", "torch.nn.Conv1d", "torch.nn.ConvTranspose1d", "torch.nn.Linear", "os.path.join" ]
[((315, 349), 'os.path.join', 'os.path.join', (['sys.path[0]', '"""../.."""'], {}), "(sys.path[0], '../..')\n", (327, 349), False, 'import os\n'), ((846, 937), 'torch.nn.Conv1d', 'nn.Conv1d', (['self.otu_handler.num_strains', 'hidden_dim'], {'kernel_size': '(4)', 'stride': '(2)', 'padding': '(3)'}), '(self.otu_handler.num_strains, hidden_dim, kernel_size=4, stride=2,\n padding=3)\n', (855, 937), True, 'import torch.nn as nn\n'), ((969, 978), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (976, 978), True, 'import torch.nn as nn\n'), ((992, 1071), 'torch.nn.Conv1d', 'nn.Conv1d', (['self.hidden_dim', 'self.hidden_dim'], {'kernel_size': '(2)', 'stride': '(1)', 'padding': '(1)'}), '(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1)\n', (1001, 1071), True, 'import torch.nn as nn\n'), ((1108, 1117), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1115, 1117), True, 'import torch.nn as nn\n'), ((1131, 1210), 'torch.nn.Conv1d', 'nn.Conv1d', (['self.hidden_dim', 'self.hidden_dim'], {'kernel_size': '(2)', 'stride': '(1)', 'padding': '(1)'}), '(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1)\n', (1140, 1210), True, 'import torch.nn as nn\n'), ((1246, 1255), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1253, 1255), True, 'import torch.nn as nn\n'), ((1269, 1348), 'torch.nn.Conv1d', 'nn.Conv1d', (['self.hidden_dim', 'self.hidden_dim'], {'kernel_size': '(2)', 'stride': '(1)', 'padding': '(1)'}), '(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1)\n', (1278, 1348), True, 'import torch.nn as nn\n'), ((1384, 1393), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1391, 1393), True, 'import torch.nn as nn\n'), ((1407, 1486), 'torch.nn.Conv1d', 'nn.Conv1d', (['self.hidden_dim', 'self.hidden_dim'], {'kernel_size': '(2)', 'stride': '(1)', 'padding': '(1)'}), '(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=1, padding=1)\n', (1416, 1486), True, 'import torch.nn as nn\n'), ((1522, 1531), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1529, 1531), True, 'import torch.nn as nn\n'), ((1545, 1624), 'torch.nn.Conv1d', 'nn.Conv1d', (['self.hidden_dim', 'self.hidden_dim'], {'kernel_size': '(1)', 'stride': '(1)', 'padding': '(0)'}), '(self.hidden_dim, self.hidden_dim, kernel_size=1, stride=1, padding=0)\n', (1554, 1624), True, 'import torch.nn as nn\n'), ((1660, 1669), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1667, 1669), True, 'import torch.nn as nn\n'), ((1741, 1774), 'torch.nn.Linear', 'nn.Linear', (['hidden_dim', 'hidden_dim'], {}), '(hidden_dim, hidden_dim)\n', (1750, 1774), True, 'import torch.nn as nn\n'), ((1788, 1797), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1795, 1797), True, 'import torch.nn as nn\n'), ((1811, 1844), 'torch.nn.Linear', 'nn.Linear', (['hidden_dim', 'hidden_dim'], {}), '(hidden_dim, hidden_dim)\n', (1820, 1844), True, 'import torch.nn as nn\n'), ((1858, 1867), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1865, 1867), True, 'import torch.nn as nn\n'), ((1936, 2029), 'torch.nn.ConvTranspose1d', 'nn.ConvTranspose1d', (['self.hidden_dim', 'self.hidden_dim'], {'kernel_size': '(1)', 'stride': '(1)', 'padding': '(0)'}), '(self.hidden_dim, self.hidden_dim, kernel_size=1, stride=\n 1, padding=0)\n', (1954, 2029), True, 'import torch.nn as nn\n'), ((2038, 2047), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2045, 2047), True, 'import torch.nn as nn\n'), ((2061, 2154), 'torch.nn.ConvTranspose1d', 'nn.ConvTranspose1d', (['self.hidden_dim', 'self.hidden_dim'], {'kernel_size': '(2)', 'stride': '(1)', 'padding': '(1)'}), '(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=\n 1, padding=1)\n', (2079, 2154), True, 'import torch.nn as nn\n'), ((2194, 2203), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2201, 2203), True, 'import torch.nn as nn\n'), ((2217, 2310), 'torch.nn.ConvTranspose1d', 'nn.ConvTranspose1d', (['self.hidden_dim', 'self.hidden_dim'], {'kernel_size': '(2)', 'stride': '(1)', 'padding': '(1)'}), '(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=\n 1, padding=1)\n', (2235, 2310), True, 'import torch.nn as nn\n'), ((2350, 2359), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2357, 2359), True, 'import torch.nn as nn\n'), ((2373, 2466), 'torch.nn.ConvTranspose1d', 'nn.ConvTranspose1d', (['self.hidden_dim', 'self.hidden_dim'], {'kernel_size': '(2)', 'stride': '(1)', 'padding': '(1)'}), '(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=\n 1, padding=1)\n', (2391, 2466), True, 'import torch.nn as nn\n'), ((2506, 2515), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2513, 2515), True, 'import torch.nn as nn\n'), ((2529, 2622), 'torch.nn.ConvTranspose1d', 'nn.ConvTranspose1d', (['self.hidden_dim', 'self.hidden_dim'], {'kernel_size': '(2)', 'stride': '(1)', 'padding': '(1)'}), '(self.hidden_dim, self.hidden_dim, kernel_size=2, stride=\n 1, padding=1)\n', (2547, 2622), True, 'import torch.nn as nn\n'), ((2662, 2671), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2669, 2671), True, 'import torch.nn as nn\n'), ((2685, 2790), 'torch.nn.ConvTranspose1d', 'nn.ConvTranspose1d', (['self.hidden_dim', 'self.otu_handler.num_strains'], {'kernel_size': '(4)', 'stride': '(2)', 'padding': '(3)'}), '(self.hidden_dim, self.otu_handler.num_strains,\n kernel_size=4, stride=2, padding=3)\n', (2703, 2790), True, 'import torch.nn as nn\n'), ((2831, 2840), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2838, 2840), True, 'import torch.nn as nn\n')]
# ----------------------------------------------------------------------------- # Copyright (c) 2015, The Deblur Development Team. # # Distributed under the terms of the BSD 3-clause License. # # The full license is in the file LICENSE, distributed with this software. # ----------------------------------------------------------------------------- from unittest import TestCase, main from deblur.support_files import pos_db, neg_db import os.path class supportFilesTests(TestCase): """Test the supporting data files """ def test_reference_(self): """Test if the positive and negative filtering reference fasta files exist """ # the positive filtering fasta file self.assertTrue(os.path.isfile(pos_db)) # the negative filtering fasta file self.assertTrue(os.path.isfile(neg_db)) if __name__ == '__main__': main()
[ "unittest.main" ]
[((885, 891), 'unittest.main', 'main', ([], {}), '()\n', (889, 891), False, 'from unittest import TestCase, main\n')]
"""Class for converter.""" import numpy as np import math import cmath import scipy import logging from scipy import signal from scipy.integrate import odeint,ode #from converter_utilities import plot_signal, plot_FFT import converter_utilities import config from models import InverterModels class PowerElectronicConverter: """ Converter base class. Attributes: count (int): Number of converter objects. """ count = 0 #Object count def __init__(self,model_type): """Creates an instance of `Converter`. Args: fsw (float): Switching frequency in Hz. Raises: ValueError: If parameters corresponding to `Sinverter_rated` are not available. """ PowerElectronicConverter.count = PowerElectronicConverter.count+1 #Increment count to keep track of number of converter model instances self.name = 'converter_'+str(PowerElectronicConverter.count) #Generate a name for the instance self.model_type = model_type """ if self.model_type is 'switching': assert self.signal_type is 'square_wave' or self.signal_type is 'sinePWM', 'Switching model needs square or sine PWM as switching signal!' if self.model_type is 'average': assert self.signal_type is 'duty_cycle', 'Average model needs duty_cycle as switching signal!' """ def check_model_type(self,model_type): """Check if model type is valid.""" assert model_type in self.model_types, f'{model_type} is not a valid model type!' def show_spec(self): """Print the specs.""" print('Model type:{}'.format(self.model_type)) print('Switching signal type:{}'.format(self.signal_type)) def calc_primary(self,signal): """Calculate the primary switch.""" assert isinstance(signal,bool), 'Switching signal must be boolean.' Sprimary = int(signal) return Sprimary def calc_complimentary(self,signal): """Calculate the complimentary.""" assert isinstance(signal,bool), 'Switching signal must be boolean.' Scomplimentary = int(not signal) return Scomplimentary def calc_average(self,m): """Calculate average voltage.""" return Vdc #Current controller dynamics class PowerElectronicInverter(PowerElectronicConverter,InverterModels): """ Inverter class. Attributes: (): """ Rf = 0.01 Lf = 1.0e-3 Rload = 1.0 inverter_types = ['single_phase_half_bridge','single_phase_full_bridge', 'three_phase_full_bridge'] model_types = ['EMT_switching','EMT_average','dynamic_phasor'] def __init__(self,Vdc,model_type = 'EMT_average',inverter_type='single_phase_half_bridge'): """Creates an instance of `Converter`. Args: Vdc (float): DC link voltage. Raises: ValueError: To be added. """ self.check_model_type(model_type) super().__init__(model_type) #Initialize converter class (base class) self.update_Vdc(Vdc) self.inverter_type =inverter_type @property #Decorator used for auto updating def y(self): """List of initial states""" return [self.ia, 0.0] def update_Vdc(self,Vdc): """Update DC link voltage.""" self.Vdc = Vdc """ def control_signal_calc(self,signals,t): Calculate control signal. if self.model_type is 'EMT_switching': signals = self.switching_signal_calc(signals,t) control_signal = signals['switching'] elif self.model_type is 'EMT_average': signals = self.average_signal_calc(signals,t) control_signal = signals['modulating'] elif self.model_type is 'dynamicphasor': pass return control_signal """ def setup_model(self): """Initialize mode.""" self.initialize_model() self.vt_calc = self.select_vt_model() self.vpcc_calc = self.select_vpcc_model() self.ODE_model = self.select_ODE_model() #self.control_signal_calc = self.select_control_signal() def select_control_signal(self): """Select the control signal suitable for the problem.""" if self.model_type is 'EMT_switching': if self.inverter_type == 'single_phase_half_bridge': control_signal = self.switching_signal_single_phase elif self.inverter_type == 'single_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') elif self.model_type is 'EMT_average': if self.inverter_type == 'single_phase_half_bridge': control_signal = self.modulating_signal_single_phase elif self.inverter_type == 'single_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') elif self.model_type is 'dynamic_phasor': if self.inverter_type == 'single_phase_half_bridge': control_signal = self.phasor_signal_single_phase elif self.inverter_type == 'single_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') return control_signal def select_vt_model(self): """Get the terminal voltage model.""" if self.model_type == 'EMT_switching': if self.inverter_type == 'single_phase_half_bridge': vt_model = self.single_phase_half_bridge_switching elif self.inverter_type == 'single_phase_full_bridge': vt_model = self.single_phase_full_bridge_switching elif self.inverter_type == 'three_phase_full_bridge': vt_model = self.three_phase_full_bridge_switching else: print(f'{self.inverter_type} not found for model type {self.model_type}!') elif self.model_type == 'EMT_average': if self.inverter_type == 'single_phase_half_bridge': vt_model = self.single_phase_half_bridge_average elif self.inverter_type == 'single_phase_full_bridge': vt_model = self.single_phase_full_bridge_average elif self.inverter_type == 'three_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') else: print(f'{self.inverter_type} not found for model type {self.model_type}!') elif self.model_type == 'dynamicphasor': if self.inverter_type == 'single_phase_half_bridge': vt_model = self.single_phase_half_bridge_phasor elif self.inverter_type == 'single_phase_full_bridge': vt_model = self.single_phase_full_bridge_phasor elif self.inverter_type == 'three_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') else: print(f'{self.inverter_type} not found for model type {self.model_type}!') print(type(vt_model)) return vt_model def select_vpcc_model(self,grid=None): """Get the PCC voltage model.""" if not grid: vpcc_model = self.v_load_model() return vpcc_model def select_ODE_model(self): """Select ODE model.""" if self.model_type is 'EMT_switching' or self.model_type is 'EMT_average': if self.inverter_type is 'single_phase_half_bridge' or self.inverter_type is 'single_phase_full_bridge': ODE_model = self.ODE_model_single_phase_EMT elif self.inverter_type is 'three_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') elif self.model_type is 'dynamic_phasor': if self.inverter_type is 'single_phase_half_bridge' or self.inverter_type is 'single_phase_full_bridge': ODE_model = self.ODE_model_single_phase_dynamicphasor elif self.inverter_type is 'three_phase_full_bridge': raise NotImplementedError(f'{self.inverter_type} is not implemented!') return ODE_model def initialize_model(self): """Initialize mode.""" if self.model_type is 'EMT_switching' or self.model_type is 'EMT_average': if self.inverter_type is 'single_phase_half_bridge' or self.inverter_type is 'single_phase_full_bridge': self.ia = 0.0 elif self.inverter_type is 'three_phase_full_bridge': raise NotImplementedError elif self.model_type is 'dynamic_phasor': if self.inverter_type is 'single_phase_half_bridge' or self.inverter_type is 'single_phase_full_bridge': self.iaR = 0.0 self.iaI = 0.0 if self.inverter_type is 'three_phase_full_bridge': raise NotImplementedError """ def vta_calc(self,Vdc,control_signal): Calculate inverter terminal voltage. if self.model_type is 'switching': vta = self.half_bridge_switching(Vdc,control_signal) elif self.model_type is 'average': vta = self.half_bridge_average(Vdc,control_signal) return vta """ def v_load_model(self): """Calculate voltage across load at PCC.""" return self.Rload*self.ia def ODE_model_switching(self,y,t): """ODE model of inverter branch.""" self.ia,dummy = y # unpack current values of y Vdc = 100.0 #Get DC link voltage switching_signal = self.control_signal_calc(t) self.vta = self.half_bridge_switching(Vdc,switching_signal) self.va = self.PCC_voltage_calc(self.ia,t) dia = (1/self.Lf)*(-self.Rf*self.ia -self.va + self.vta) result = [dia,dummy] return np.array(result) def ODE_model_average(self,y,t): """ODE model of inverter branch.""" self.ia,dummy = y # unpack current values of y Vdc = 100.0 #Get DC link voltage modulating_signal = self.control_signal_calc(t) self.vta = self.half_bridge_average(Vdc,modulating_signal) self.va = self.PCC_voltage_calc(self.ia,t) dia = (1/self.Lf)*(-self.Rf*self.ia -self.va + self.vta) result = [dia,dummy] return np.array(result) def power_calc(self,v,i): """Calcuate instantaneous power.""" return v*i def show_states(self): """Show states.""" print('Inverter states:{}'.format(self.y))
[ "numpy.array" ]
[((10519, 10535), 'numpy.array', 'np.array', (['result'], {}), '(result)\n', (10527, 10535), True, 'import numpy as np\n'), ((11081, 11097), 'numpy.array', 'np.array', (['result'], {}), '(result)\n', (11089, 11097), True, 'import numpy as np\n')]
import pytest from todocli.todo import commands class TestCommandparser(object): successful_user_input = ['-f', 'file1', '-e', '.py', '-m', ] successfully_parsed_args = commands.command_interpreter(successful_user_input) no_args_parsed_args = commands.command_interpreter([]) # successful run def test_HasNamesAttribute(self): assert hasattr(self.successfully_parsed_args, 'names') def test_HasExtensionsAttribute(self): assert hasattr(self.successfully_parsed_args, 'extensions') def test_HasIsFolderAttribute(self): assert hasattr(self.successfully_parsed_args, 'is_folder') def test_HasNewConfigAttribute(self): assert hasattr(self.successfully_parsed_args, 'new_config') def test_FileNamePresent(self): assert 'file1' in self.successfully_parsed_args.names def test_ExtensionPresent(self): assert '.py' in self.successfully_parsed_args.extensions def test_IsFolderIsTrue(self): assert self.successfully_parsed_args.is_folder == True def test_NewConfigIsFalse(self): assert self.successfully_parsed_args.new_config == False # no filename arguement def test_NoFileNameArguement(self): assert self.no_args_parsed_args.names is None # no extension argument def test_NoExtensionsArgument(self): assert self.no_args_parsed_args.extensions is None # no is_folder argument def test_NoIsFolderArguement(self): assert self.no_args_parsed_args.is_folder is None # no new_config argument def test_NoNewConfigArgeuement(self): assert self.no_args_parsed_args.new_config is False # no debug argument def test_NoDebugArguement(self): assert self.no_args_parsed_args.debug_mode is False # no file name in input def test_NoFileName(self): no_file_name_user_input = ['-f', '-e', '.py', '-m', ] with pytest.raises(SystemExit): commands.command_interpreter(no_file_name_user_input) # No extensions in input def test_NoExtensions(self): no_extension_user_input = ['-f', 'File1', '-e', '-m', ] with pytest.raises(SystemExit): commands.command_interpreter(no_extension_user_input)
[ "todocli.todo.commands.command_interpreter", "pytest.raises" ]
[((178, 229), 'todocli.todo.commands.command_interpreter', 'commands.command_interpreter', (['successful_user_input'], {}), '(successful_user_input)\n', (206, 229), False, 'from todocli.todo import commands\n'), ((256, 288), 'todocli.todo.commands.command_interpreter', 'commands.command_interpreter', (['[]'], {}), '([])\n', (284, 288), False, 'from todocli.todo import commands\n'), ((1937, 1962), 'pytest.raises', 'pytest.raises', (['SystemExit'], {}), '(SystemExit)\n', (1950, 1962), False, 'import pytest\n'), ((1976, 2029), 'todocli.todo.commands.command_interpreter', 'commands.command_interpreter', (['no_file_name_user_input'], {}), '(no_file_name_user_input)\n', (2004, 2029), False, 'from todocli.todo import commands\n'), ((2176, 2201), 'pytest.raises', 'pytest.raises', (['SystemExit'], {}), '(SystemExit)\n', (2189, 2201), False, 'import pytest\n'), ((2215, 2268), 'todocli.todo.commands.command_interpreter', 'commands.command_interpreter', (['no_extension_user_input'], {}), '(no_extension_user_input)\n', (2243, 2268), False, 'from todocli.todo import commands\n')]
# -*- coding: utf-8 -*- """ Created on Mon May 4 12:48:05 2020 @author: sven """ import numpy as np def nearfield(f,c,theta): """ Compute the nearfield Parameters ---------- f : numeric Transducer Frequency in kHz [kHz]. c : numeric Ambient sound speed [m/s]. theta : numeric 3dB angle or beam width in degrees [degrees]. Returns ------- Rnf : numeric Range of the nearfield for the given conditions in meters [m]. """ lmbd = c/ ( f * 1000) k = 2* np.pi / lmbd a = 1.6 / (k * np.sin((theta * np.pi/180) / 2)) Rnf = (2*a)**2 / lmbd return Rnf def eba(f,c,theta): """ Compute the equivalent beam angle for a circular transducer. Parameters ---------- f : numeric Transducer Frequency in kHz [kHz]. c : numeric Ambient sound speed [m/s]. theta : numeric 3dB angle or beam width in degrees [degrees]. Returns ------- EBA : numeric equivalent beam angle in dB [dB]. """ lmbd = c/ ( f * 1000) k = 2* np.pi / lmbd a = 1.6 / (k * np.sin((theta * np.pi/180) / 2)) EBA = 10 * np.log10( 5.78 / ( ( k * a ) ** 2))#equivalent beam angle in steradians return EBA def vol_samp(f,c,theta,tau,R,start=0): f = f*1000 Rtot = R+start Vtot = 10**(eba(f,c,theta)/10) * Rtot**2 * c * tau / 2 V0 = 10**(eba(f,c,theta)/10) * start**2 * c * tau / 2 V = Vtot - V0 return V def footprint_radius(theta,R): return R * np.tan(theta * np.pi / 180 / 2) def footprint_area(theta, R): return np.pi * footprint_radius(theta,R)**2 ''' vol_samp(f=200,c=1450,theta=9.8,tau=6/1000,R=10) vol_samp(f=1000,c=1450,theta=4,tau=6/1000,R=10) #Zonar nearfield(200,1480,9.8) nearfield(1000,1480,4) c=1450;f=200000 0.045**2/(c/f) c=1450;f=1000000 0.022**2/(c/f) '''
[ "numpy.sin", "numpy.log10", "numpy.tan" ]
[((1024, 1053), 'numpy.log10', 'np.log10', (['(5.78 / (k * a) ** 2)'], {}), '(5.78 / (k * a) ** 2)\n', (1032, 1053), True, 'import numpy as np\n'), ((1356, 1387), 'numpy.tan', 'np.tan', (['(theta * np.pi / 180 / 2)'], {}), '(theta * np.pi / 180 / 2)\n', (1362, 1387), True, 'import numpy as np\n'), ((504, 535), 'numpy.sin', 'np.sin', (['(theta * np.pi / 180 / 2)'], {}), '(theta * np.pi / 180 / 2)\n', (510, 535), True, 'import numpy as np\n'), ((979, 1010), 'numpy.sin', 'np.sin', (['(theta * np.pi / 180 / 2)'], {}), '(theta * np.pi / 180 / 2)\n', (985, 1010), True, 'import numpy as np\n')]
from weather_tracker import weather_tracker, output_file_path from wt_exceptions import WeatherException, LocationException def check_selection_value(value): return value in [1, 2] if __name__ == '__main__': print("Welcome to the Automatic Weather Machine! We find your location (Based on IP Address) and tell you the " "weather for your area for the week") output = None try: print('1 - Print to Console') print('2 - Output to TXT File') while output is None or type(output) != int or output > 2 or output < 1: try: output = int(input("Output Selection: ")) if not check_selection_value(output): output = None print("Provide a valid selection for output!") except ValueError: print("{} is not a number, please enter a number only".format(output)) result = weather_tracker(output) if len(result) != 3: print('You can find your forecast in the file: {}'.format(output_file_path)) else: forecast = result[0] city = result[1] district = result[2] print("Here is the forecast for {}, {}:".format(city, district)) for day in forecast: print(day) except (LocationException, WeatherException) as error: print(error.args[0])
[ "weather_tracker.weather_tracker" ]
[((933, 956), 'weather_tracker.weather_tracker', 'weather_tracker', (['output'], {}), '(output)\n', (948, 956), False, 'from weather_tracker import weather_tracker, output_file_path\n')]
import pandas as pd import numpy as np class regout(object): def __init__(self, **kwargs): self.__dict__.update(kwargs) stat_names=['coeff', 'se', 't', 'p>t', 'CI_low', 'CI_high'] var_names=['mpg', 'length', '_cons'] tsls_std = regout( summary=pd.DataFrame(np.array([ [-1319.865169393102, 1906.786380881755, -.6921935160784805, .4910734473693195, -5121.889227450638, 2482.158888664433, ], [-217.1947537663291, 420.1260089670161, -.5169752624941175, .6067801835089433, -1054.902223005562, 620.5127154729038, ], [75092.75604853875, 119511.8053379244, .6283291917163411, .5318043826192644, -163207.0155842729, 313392.5276813505, ], ]), columns=stat_names, index=var_names), vce=pd.DataFrame(np.array([ [3635834.30231614, 799471.1768877679, -227680006.992276, ], [799471.1768877679, 176505.8634105533, -50197751.5841309, ], [-227680006.992276, -50197751.5841309, 14283071615.12995, ], ]), columns=var_names, index=var_names), N=74, r2=np.nan, r2_a=np.nan, mss=-1031817172.794085, tss=np.nan, rss=1666882568.915706, kappa=np.nan, F=3.97987798611259, pF=.0230019984382644, ) tsls_robust = regout( summary=pd.DataFrame(np.array([ [-1319.865169393102, 2357.647789772478, -.5598228773265894, .5773622437125422, -6020.881343525829, 3381.151004739624, ], [-217.1947537663291, 503.6720846601052, -.4312225362120266, .6676130605679584, -1221.488366543325, 787.0988590106673, ], [75092.75604853875, 144765.6412502902, .5187194654752942, .6055693972498957, -213561.7342143963, 363747.2463114738, ], ]), columns=stat_names, index=var_names), vce=pd.DataFrame(np.array([ [5558503.100619048, 1185986.375722446, -341107563.0831394, ], [1185986.375722446, 253685.5688658562, -72904288.91181517, ], [-341107563.0831394, -72904288.91181517, 20957090886.60773, ], ]), columns=var_names, index=var_names), N=74, r2=np.nan, r2_a=np.nan, mss=-1031817172.794085, tss=np.nan, rss=1666882568.915706, kappa=np.nan, F=3.406896316082843, pF=.0386511725211229, ) tsls_cluster = regout( summary=pd.DataFrame(np.array([ [-1319.865169393102, 2257.567862016117, -.5846403076514384, .5625396644960171, -5902.971584635199, 3263.241245848994, ], [-217.1947537663291, 486.3497477085017, -.4465814052329, .6579283787885248, -1204.537232491913, 770.1477249592547, ], [75092.75604853875, 139493.4175166438, .5383247280437371, .5937601902027558, -208093.9367907353, 358279.4488878128, ], ]), columns=stat_names, index=var_names), vce=pd.DataFrame(np.array([ [5096612.65160802, 1096219.32167181, -314686204.683651, ], [1096219.32167181, 236536.0770961233, -67830404.58467865, ], [-314686204.683651, -67830404.58467865, 19458413530.47272, ], ]), columns=var_names, index=var_names), N=74, r2=np.nan, r2_a=np.nan, mss=-1031817172.794085, tss=np.nan, rss=1666882568.915706, kappa=np.nan, F=3.125695274137819, pF=.0563657644983311, )
[ "numpy.array" ]
[((278, 673), 'numpy.array', 'np.array', (['[[-1319.865169393102, 1906.786380881755, -0.6921935160784805, \n 0.4910734473693195, -5121.889227450638, 2482.158888664433], [-\n 217.1947537663291, 420.1260089670161, -0.5169752624941175, \n 0.6067801835089432, -1054.902223005562, 620.5127154729038], [\n 75092.75604853875, 119511.8053379244, 0.628329191716341, \n 0.5318043826192644, -163207.0155842729, 313392.5276813505]]'], {}), '([[-1319.865169393102, 1906.786380881755, -0.6921935160784805, \n 0.4910734473693195, -5121.889227450638, 2482.158888664433], [-\n 217.1947537663291, 420.1260089670161, -0.5169752624941175, \n 0.6067801835089432, -1054.902223005562, 620.5127154729038], [\n 75092.75604853875, 119511.8053379244, 0.628329191716341, \n 0.5318043826192644, -163207.0155842729, 313392.5276813505]])\n', (286, 673), True, 'import numpy as np\n'), ((734, 930), 'numpy.array', 'np.array', (['[[3635834.30231614, 799471.1768877679, -227680006.992276], [\n 799471.1768877679, 176505.8634105533, -50197751.5841309], [-\n 227680006.992276, -50197751.5841309, 14283071615.12995]]'], {}), '([[3635834.30231614, 799471.1768877679, -227680006.992276], [\n 799471.1768877679, 176505.8634105533, -50197751.5841309], [-\n 227680006.992276, -50197751.5841309, 14283071615.12995]])\n', (742, 930), True, 'import numpy as np\n'), ((1185, 1581), 'numpy.array', 'np.array', (['[[-1319.865169393102, 2357.647789772478, -0.5598228773265894, \n 0.5773622437125422, -6020.881343525829, 3381.151004739624], [-\n 217.1947537663291, 503.6720846601052, -0.4312225362120266, \n 0.6676130605679584, -1221.488366543325, 787.0988590106673], [\n 75092.75604853875, 144765.6412502902, 0.5187194654752942, \n 0.6055693972498957, -213561.7342143963, 363747.2463114738]]'], {}), '([[-1319.865169393102, 2357.647789772478, -0.5598228773265894, \n 0.5773622437125422, -6020.881343525829, 3381.151004739624], [-\n 217.1947537663291, 503.6720846601052, -0.4312225362120266, \n 0.6676130605679584, -1221.488366543325, 787.0988590106673], [\n 75092.75604853875, 144765.6412502902, 0.5187194654752942, \n 0.6055693972498957, -213561.7342143963, 363747.2463114738]])\n', (1193, 1581), True, 'import numpy as np\n'), ((1641, 1842), 'numpy.array', 'np.array', (['[[5558503.100619048, 1185986.375722446, -341107563.0831394], [\n 1185986.375722446, 253685.5688658562, -72904288.91181517], [-\n 341107563.0831394, -72904288.91181517, 20957090886.60773]]'], {}), '([[5558503.100619048, 1185986.375722446, -341107563.0831394], [\n 1185986.375722446, 253685.5688658562, -72904288.91181517], [-\n 341107563.0831394, -72904288.91181517, 20957090886.60773]])\n', (1649, 1842), True, 'import numpy as np\n'), ((2099, 2492), 'numpy.array', 'np.array', (['[[-1319.865169393102, 2257.567862016117, -0.5846403076514384, \n 0.5625396644960171, -5902.971584635199, 3263.241245848994], [-\n 217.1947537663291, 486.3497477085017, -0.4465814052329, \n 0.6579283787885248, -1204.537232491913, 770.1477249592547], [\n 75092.75604853875, 139493.4175166438, 0.5383247280437371, \n 0.5937601902027558, -208093.9367907353, 358279.4488878128]]'], {}), '([[-1319.865169393102, 2257.567862016117, -0.5846403076514384, \n 0.5625396644960171, -5902.971584635199, 3263.241245848994], [-\n 217.1947537663291, 486.3497477085017, -0.4465814052329, \n 0.6579283787885248, -1204.537232491913, 770.1477249592547], [\n 75092.75604853875, 139493.4175166438, 0.5383247280437371, \n 0.5937601902027558, -208093.9367907353, 358279.4488878128]])\n', (2107, 2492), True, 'import numpy as np\n'), ((2552, 2748), 'numpy.array', 'np.array', (['[[5096612.65160802, 1096219.32167181, -314686204.683651], [1096219.32167181,\n 236536.0770961233, -67830404.58467865], [-314686204.683651, -\n 67830404.58467865, 19458413530.47272]]'], {}), '([[5096612.65160802, 1096219.32167181, -314686204.683651], [\n 1096219.32167181, 236536.0770961233, -67830404.58467865], [-\n 314686204.683651, -67830404.58467865, 19458413530.47272]])\n', (2560, 2748), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from django.db import models, migrations import django_extensions.db.fields class Migration(migrations.Migration): dependencies = [ ('omaha', '0022_auto_20150909_0755'), ] operations = [ migrations.AddField( model_name='request', name='ip', field=models.GenericIPAddressField(null=True, blank=True), ), ]
[ "django.db.models.GenericIPAddressField" ]
[((341, 392), 'django.db.models.GenericIPAddressField', 'models.GenericIPAddressField', ([], {'null': '(True)', 'blank': '(True)'}), '(null=True, blank=True)\n', (369, 392), False, 'from django.db import models, migrations\n')]
import gibberish def test_generate_word(): word = gibberish.generate_word() assert len(word) assert word.isalpha() def test_generate_words(): word_list = gibberish.generate_word() assert len(word_list) for word in word_list: assert len(word) assert word.isalpha()
[ "gibberish.generate_word" ]
[((56, 81), 'gibberish.generate_word', 'gibberish.generate_word', ([], {}), '()\n', (79, 81), False, 'import gibberish\n'), ((174, 199), 'gibberish.generate_word', 'gibberish.generate_word', ([], {}), '()\n', (197, 199), False, 'import gibberish\n')]
#import pygame #pygame.mixer.init() #pygame.mixer.music.load('desaf021.mp3') #pygame.mixer.music.play() #while pygame.mixer.music.get_busy(): pass import playsound playsound.playsound('desaf021.mp3')
[ "playsound.playsound" ]
[((164, 199), 'playsound.playsound', 'playsound.playsound', (['"""desaf021.mp3"""'], {}), "('desaf021.mp3')\n", (183, 199), False, 'import playsound\n')]
# Author: <NAME> # MIT license (see LICENCE.txt in the top-level folder) import unittest import numpy as np from numpy import random from numpy import linalg as LA from sklearn.linear_model import LinearRegression, LogisticRegression from single_neuron import models as models from single_neuron import math_utils as math_utils datasets_n = 50 max_ds_n = 10000 max_features_n = 100 max_abs_value = 1000 min_epochs = 100 max_epochs = 10000 min_lr = 1e-9 max_lr = 1e-5 def generate_synthetic_datasets(N_max, m_max, gaussian=False): N_train = random.randint(3, N_max + 1) N_valid = random.randint(3, N_max + 1) m = random.randint(2, m_max + 1) if gaussian: # we are generating a synthetic dataset based on a multivariate Gaussian # distribution. In order to generate the latter, we need a mean vector # (easy) and a positive definite matrix for the covariances. This matrix # is way more tricky to sample and I don' t know what is the best way. # My current brute-force approach is the following: (a) I sample m # vectors; (b) I take all the possible inner products (Gram matrix) as # the covariance matrix and (c) if the covariance matrix is singular, I # go back to step (b). mu = 2 * (random.rand(m) - 0.5) * max_abs_value Cov = np.zeros([m, m]) while LA.matrix_rank(Cov) != m: a = 2 * (random.rand(m) - 0.5) * max_abs_value X = a * random.rand(m, m) Cov = X.T.dot(X) train_ds = random.multivariate_normal(mu, Cov, N_train) valid_ds = random.multivariate_normal(mu, Cov, N_valid) else: # uniformly random datasets train_ds = 2 * (random.rand(N_train, m) - 0.5) * max_abs_value valid_ds = 2 * (random.rand(N_valid, m) - 0.5) * max_abs_value return train_ds, valid_ds class TestLinearNeuron(unittest.TestCase): def setUp(self): """ Prepare a few synthetic datasets for the tests. Two categories of datasets: One random without any implied structure and one that arises from a predefined distribution. """ self.train_X = [] self.valid_X = [] self.train_y = [] self.valid_y = [] for ds_i in range(0, datasets_n): # make sure that there are some datasets with extremely small values if ds_i < 10: N_max = 7 else: N_max = max_ds_n if ds_i < 10: m_max = 2 else: m_max = max_features_n #gaussian = random.rand() < 0.5 gaussian = True train_ds, valid_ds = generate_synthetic_datasets(N_max, m_max, gaussian) # we use the last column as the target variable self.train_X.append(train_ds[:, :-1]) self.valid_X.append(valid_ds[:, :-1]) self.train_y.append(train_ds[:, -1]) self.valid_y.append(valid_ds[:, -1]) self.lin_model = LinearRegression() def test_rmse_is_equal_with_sklearn(self): pass def test_params_are_equal_with_sklearn(self): pass def test_initialization_does_not_matter(self): pass class TestReluNeuron(unittest.TestCase): def test_rmse_is_equal_with_sklearn(self): pass def test_initialization_with_negatives_leads_to_zero_gradients(self): pass def test_initialization_does_not_matter(self): pass class TestLogisticNeuron(unittest.TestCase): def test_ce_is_equal_with_sklearn(self): pass def test_initialization_does_not_matter(self): pass
[ "numpy.zeros", "sklearn.linear_model.LinearRegression", "numpy.linalg.matrix_rank", "numpy.random.randint", "numpy.random.multivariate_normal", "numpy.random.rand" ]
[((551, 579), 'numpy.random.randint', 'random.randint', (['(3)', '(N_max + 1)'], {}), '(3, N_max + 1)\n', (565, 579), False, 'from numpy import random\n'), ((594, 622), 'numpy.random.randint', 'random.randint', (['(3)', '(N_max + 1)'], {}), '(3, N_max + 1)\n', (608, 622), False, 'from numpy import random\n'), ((631, 659), 'numpy.random.randint', 'random.randint', (['(2)', '(m_max + 1)'], {}), '(2, m_max + 1)\n', (645, 659), False, 'from numpy import random\n'), ((1359, 1375), 'numpy.zeros', 'np.zeros', (['[m, m]'], {}), '([m, m])\n', (1367, 1375), True, 'import numpy as np\n'), ((1569, 1613), 'numpy.random.multivariate_normal', 'random.multivariate_normal', (['mu', 'Cov', 'N_train'], {}), '(mu, Cov, N_train)\n', (1595, 1613), False, 'from numpy import random\n'), ((1633, 1677), 'numpy.random.multivariate_normal', 'random.multivariate_normal', (['mu', 'Cov', 'N_valid'], {}), '(mu, Cov, N_valid)\n', (1659, 1677), False, 'from numpy import random\n'), ((3207, 3225), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (3223, 3225), False, 'from sklearn.linear_model import LinearRegression, LogisticRegression\n'), ((1390, 1409), 'numpy.linalg.matrix_rank', 'LA.matrix_rank', (['Cov'], {}), '(Cov)\n', (1404, 1409), True, 'from numpy import linalg as LA\n'), ((1495, 1512), 'numpy.random.rand', 'random.rand', (['m', 'm'], {}), '(m, m)\n', (1506, 1512), False, 'from numpy import random\n'), ((1298, 1312), 'numpy.random.rand', 'random.rand', (['m'], {}), '(m)\n', (1309, 1312), False, 'from numpy import random\n'), ((1749, 1772), 'numpy.random.rand', 'random.rand', (['N_train', 'm'], {}), '(N_train, m)\n', (1760, 1772), False, 'from numpy import random\n'), ((1820, 1843), 'numpy.random.rand', 'random.rand', (['N_valid', 'm'], {}), '(N_valid, m)\n', (1831, 1843), False, 'from numpy import random\n'), ((1437, 1451), 'numpy.random.rand', 'random.rand', (['m'], {}), '(m)\n', (1448, 1451), False, 'from numpy import random\n')]
import logging logger = logging.getLogger() log_format = logging.Formatter("[%(asctime)s %(levelname)s] %(message)s") logger.setLevel(logging.INFO) console_handler = logging.StreamHandler() console_handler.setFormatter(log_format) logger.handlers = [console_handler]
[ "logging.Formatter", "logging.StreamHandler", "logging.getLogger" ]
[((25, 44), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (42, 44), False, 'import logging\n'), ((58, 118), 'logging.Formatter', 'logging.Formatter', (['"""[%(asctime)s %(levelname)s] %(message)s"""'], {}), "('[%(asctime)s %(levelname)s] %(message)s')\n", (75, 118), False, 'import logging\n'), ((168, 191), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (189, 191), False, 'import logging\n')]
from django import template from joblistings.models import Job from companies.models import Company register = template.Library() @register.inclusion_tag('dashbar.html') def get_dashbar(*args, **kwargs): location = kwargs['location'] return { 'location': location }
[ "django.template.Library" ]
[((114, 132), 'django.template.Library', 'template.Library', ([], {}), '()\n', (130, 132), False, 'from django import template\n')]
# Solution of; # Project Euler Problem 405: A rectangular tiling # https://projecteuler.net/problem=405 # # We wish to tile a rectangle whose length is twice its width. Let T(0) be the # tiling consisting of a single rectangle. For n > 0, let T(n) be obtained # from T(n-1) by replacing all tiles in the following manner:The following # animation demonstrates the tilings T(n) for n from 0 to 5:Let f(n) be the # number of points where four tiles meet in T(n). For example, f(1) = 0, f(4) # = 82 and f(109) mod 177 = 126897180. Find f(10k) for k = 1018, give your # answer modulo 177. # # by lcsm29 http://github.com/lcsm29/project-euler import timed def dummy(n): pass if __name__ == '__main__': n = 1000 i = 10000 prob_id = 405 timed.caller(dummy, n, i, prob_id)
[ "timed.caller" ]
[((762, 796), 'timed.caller', 'timed.caller', (['dummy', 'n', 'i', 'prob_id'], {}), '(dummy, n, i, prob_id)\n', (774, 796), False, 'import timed\n')]
import logging import numpy as np from time import time as now from gunpowder.batch import Batch from gunpowder.profiling import Timing from gunpowder.array import Array from gunpowder.nodes.hdf5like_source_base import Hdf5LikeSource from gunpowder.compat import ensure_str from gunpowder.coordinate import Coordinate from gunpowder.ext import ZarrFile logger = logging.getLogger(__name__) class Hdf5InMemory(Hdf5LikeSource): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.in_mem_datasets = {} def setup(self): super().setup() with self._open_file(self.filename) as data_file: for (array_key, ds_name) in self.datasets.items(): if ds_name not in data_file: raise RuntimeError("%s not in %s" % (ds_name, self.filename)) spec = self._Hdf5LikeSource__read_spec( array_key, data_file, ds_name) # logger.info(spec) # logger.info(spec.roi) # logger.info(spec.roi.get_offset()) # logger.info((spec.roi - spec.roi.get_offset()) / # spec.voxel_size) start = now() logger.info( f'start loading {ds_name} into memory') self.in_mem_datasets[array_key] = self._Hdf5LikeSource__read( data_file, self.datasets[array_key], (spec.roi - spec.roi.get_offset()) / spec.voxel_size, ) logger.info( f'loaded {ds_name} into memory in {now() - start} s') def provide(self, request): timing = Timing(self) timing.start() batch = Batch() for (array_key, request_spec) in request.array_specs.items(): voxel_size = self.spec[array_key].voxel_size # scale request roi to voxel units dataset_roi = request_spec.roi / voxel_size # shift request roi into dataset dataset_roi = ( dataset_roi - self.spec[array_key].roi.get_offset() / voxel_size ) # create array spec array_spec = self.spec[array_key].copy() array_spec.roi = request_spec.roi # add array to batch batch.arrays[array_key] = Array( self.__read(array_key, dataset_roi), array_spec ) logger.debug("done") timing.stop() batch.profiling_stats.add(timing) return batch def __read(self, array_key, roi): in_mem_array = self.in_mem_datasets[array_key] c = len(in_mem_array.shape) - self.ndims if self.channels_first: array = np.asarray( in_mem_array[(slice(None),) * c + roi.to_slices()]) else: array = np.asarray( in_mem_array[roi.to_slices() + (slice(None),) * c]) array = np.transpose( array, axes=[ i + self.ndims for i in range(c)] + list(range(self.ndims)) ) return array def __repr__(self): return self.filename class InMemZarrSource(Hdf5InMemory): '''A `zarr <https://github.com/zarr-developers/zarr>`_ data source. Provides arrays from zarr datasets. If the attribute ``resolution`` is set in a zarr dataset, it will be used as the array's ``voxel_size``. If the attribute ``offset`` is set in a dataset, it will be used as the offset of the :class:`Roi` for this array. It is assumed that the offset is given in world units. Args: filename (``string``): The zarr directory. datasets (``dict``, :class:`ArrayKey` -> ``string``): Dictionary of array keys to dataset names that this source offers. array_specs (``dict``, :class:`ArrayKey` -> :class:`ArraySpec`, optional): An optional dictionary of array keys to array specs to overwrite the array specs automatically determined from the data file. This is useful to set a missing ``voxel_size``, for example. Only fields that are not ``None`` in the given :class:`ArraySpec` will be used. channels_first (``bool``, optional): Specifies the ordering of the dimensions of the HDF5-like data source. If channels_first is set (default), then the input shape is expected to be (channels, spatial dimensions). This is recommended because of better performance. If channels_first is set to false, then the input data is read in channels_last manner and converted to channels_first. ''' def _get_voxel_size(self, dataset): if 'resolution' not in dataset.attrs: return None if self.filename.endswith('.n5'): return Coordinate(dataset.attrs['resolution'][::-1]) else: return Coordinate(dataset.attrs['resolution']) def _get_offset(self, dataset): if 'offset' not in dataset.attrs: return None if self.filename.endswith('.n5'): return Coordinate(dataset.attrs['offset'][::-1]) else: return Coordinate(dataset.attrs['offset']) def _open_file(self, filename): return ZarrFile(ensure_str(filename), mode='r')
[ "time.time", "gunpowder.coordinate.Coordinate", "gunpowder.compat.ensure_str", "gunpowder.profiling.Timing", "gunpowder.batch.Batch", "logging.getLogger" ]
[((365, 392), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (382, 392), False, 'import logging\n'), ((1743, 1755), 'gunpowder.profiling.Timing', 'Timing', (['self'], {}), '(self)\n', (1749, 1755), False, 'from gunpowder.profiling import Timing\n'), ((1796, 1803), 'gunpowder.batch.Batch', 'Batch', ([], {}), '()\n', (1801, 1803), False, 'from gunpowder.batch import Batch\n'), ((4952, 4997), 'gunpowder.coordinate.Coordinate', 'Coordinate', (["dataset.attrs['resolution'][::-1]"], {}), "(dataset.attrs['resolution'][::-1])\n", (4962, 4997), False, 'from gunpowder.coordinate import Coordinate\n'), ((5031, 5070), 'gunpowder.coordinate.Coordinate', 'Coordinate', (["dataset.attrs['resolution']"], {}), "(dataset.attrs['resolution'])\n", (5041, 5070), False, 'from gunpowder.coordinate import Coordinate\n'), ((5237, 5278), 'gunpowder.coordinate.Coordinate', 'Coordinate', (["dataset.attrs['offset'][::-1]"], {}), "(dataset.attrs['offset'][::-1])\n", (5247, 5278), False, 'from gunpowder.coordinate import Coordinate\n'), ((5312, 5347), 'gunpowder.coordinate.Coordinate', 'Coordinate', (["dataset.attrs['offset']"], {}), "(dataset.attrs['offset'])\n", (5322, 5347), False, 'from gunpowder.coordinate import Coordinate\n'), ((5409, 5429), 'gunpowder.compat.ensure_str', 'ensure_str', (['filename'], {}), '(filename)\n', (5419, 5429), False, 'from gunpowder.compat import ensure_str\n'), ((1247, 1252), 'time.time', 'now', ([], {}), '()\n', (1250, 1252), True, 'from time import time as now\n'), ((1673, 1678), 'time.time', 'now', ([], {}), '()\n', (1676, 1678), True, 'from time import time as now\n')]
from flask import make_response from ckan.common import config, c import ckan.plugins as p import ckan.model as model import ckan.authz as authz import ckan.logic as logic import ckan.lib.jobs as jobs from ckanext.iati.helpers import extras_to_dict, parse_error_object_to_list from ckanext.iati import helpers as h from ckanext.iati.logic import action import sqlalchemy import csv import StringIO from collections import OrderedDict import json from xlwt import Workbook import io import datetime as dt import os, codecs import logging log = logging.getLogger(__name__) _and_ = sqlalchemy.and_ _not_empty = p.toolkit.get_validator('not_empty') _ignore_empty = p.toolkit.get_validator('ignore_empty') _ignore_missing = p.toolkit.get_validator('ignore_missing') _int_validator = p.toolkit.get_validator('int_validator') ValidationError = logic.ValidationError class FormatError(Exception): pass class PublishersListDownload: def __init__(self, download_format, request_recent_publisher=False): self.request_type_recent_publisher = request_recent_publisher self.download_format = self._get_format(download_format) self._site_url = config.get('ckan.site_url') self._datasets_link = self._site_url + "/publisher/{}" self._func_mapping = { 'extras_publisher_organization_type':h.get_organization_type_title, 'extras_publisher_country':h.get_country_title } self._set_mapping() def _set_mapping(self): """ Set csv column headers accoring to the request type. If the request is from recent publishers )only for sysadmins), we need first_published_date column :return: """ self._headers = ['Publisher', 'IATI Organisation Identifier', 'Organization Type', 'HQ Country or Region', 'Datasets Count', 'Datasets Link'] self._mapping = ['display_name', 'extras_publisher_iati_id', 'extras_publisher_organization_type', 'extras_publisher_country', 'package_count'] if self.request_type_recent_publisher: self._headers.insert(4, "First Published Date") self._mapping.insert(4, "extras_publisher_first_publish_date") self._headers = tuple(self._headers) self._mapping = tuple(self._mapping) def _get_xml_value(self, val): val = val.replace('&', "&amp;") return val def _get_xml_name(self, val): val = val.lower() return val.replace(" ", '-') def _get_format(self, download_format): try: download_format = download_format.lower() _formats = ('csv', 'json', 'xml', 'xls') if download_format not in _formats: raise FormatError return download_format except Exception as e: raise FormatError(e) @staticmethod def _get_publisher_data(): """ We cannot use API organization_list with all_fields=True, because it will be expensive process to by pass max limits :return: dict """ # TODO: Need optimization # First get package count and then join with Group with ownr_org package_count = model.Session.query(model.Group, model.Package.owner_org, sqlalchemy.func.count(model.Package.id).label('package_count')).join( model.Package, model.Group.id == model.Package.owner_org).filter( _and_( model.Group.is_organization == True, model.Group.state == 'active', model.Package.private == False, model.Package.state == 'active' ) ).group_by(model.Group.id, model.Package.owner_org).subquery() organization = model.Session.query(model.Group, package_count.c.package_count).join( package_count, model.Group.id == package_count.c.id).join(model.GroupExtra) log.info(organization.as_scalar()) return organization.all() def _prepare(self, data): """ Prepare the data for download :param data: :return: """ clean_data = [] extras = dict(data.Group._extras) for key in self._mapping[:-1]: val = '' if hasattr(data.Group, key): val = getattr(data.Group, key).encode('utf-8') if "extras_" in key: val = extras.get(key.replace("extras_", ''), '') if val: val = val.value.encode('utf-8') if key in self._func_mapping: val = self._func_mapping.get(key)(val) clean_data.append(val) clean_data.append(data.package_count) clean_data.append(self._datasets_link.format(data.Group.name)) return clean_data def csv(self): """ CSV download. Sysadmin recent publisher is allowed to download only csv :return: """ f = StringIO.StringIO() writer = csv.writer(f) writer.writerow(list(self._headers)) _org_data = PublishersListDownload._get_publisher_data() rows = [] for org in _org_data: if org.Group.state == 'active' and int(org.package_count) > 0: org_data = self._prepare(org) if self.request_type_recent_publisher: rows.append(org_data) else: writer.writerow(org_data) # This is expensive but we need sorting for first published # date since its hard to get sorted for GroupExtra table if self.request_type_recent_publisher: rows = sorted(rows, key=lambda entry: entry[4], reverse=True) for csv_row in rows: writer.writerow(csv_row) output = f.getvalue() f.close() response = make_response(output) response.headers['Content-type'] = 'text/csv' return response def json(self): """ Json download :return: """ f = StringIO.StringIO() json_data = [] _org_data = PublishersListDownload._get_publisher_data() for org in _org_data: if org.Group.state == 'active' and int(org.package_count) > 0: json_data.append(OrderedDict(zip(self._headers, self._prepare(org)))) json.dump(json_data, f) output = f.getvalue() f.close() response = make_response(output) response.headers['Content-type'] = 'application/json' return response def xml(self): """ xml format download :return: """ f = StringIO.StringIO() fields = list(self._headers) fields.pop(1) xml = ['<?xml version="1.0" encoding="UTF-8" ?>'] _observations = ' <{}>{}</{}>' xml.append('<iati-publishers-list>') _org_data = PublishersListDownload._get_publisher_data() for org in _org_data: if org.Group.state == 'active' and int(org.package_count) > 0: _dt = self._prepare(org) _dt[4] = str(int(_dt[4])) # Package count to string _iati_identifier = _dt.pop(1) xml.append('<iati-identifier id="{}">'.format(_iati_identifier)) for _index, _field in enumerate(fields): field = self._get_xml_name(_field) if field == "Datasets Link": xml.append('<iati-publisher-page xmlns:xlink="http://www.w3.org/1999/xlink">') xml.append(' <iati-publisher-page xlink:type="simple" ' 'xlink:href="{}">{}</iati-publisher-page>'.format(_dt[_index], self._get_xml_value(_dt[0]))) xml.append('</iati-publisher-page>') else: xml.append(_observations.format(field, self._get_xml_value(_dt[_index]), field)) xml.append('</iati-identifier>') xml.append('</iati-publishers-list>') f.write("\n".join(xml)) output = f.getvalue() f.close() response = make_response(output) response.headers['Content-type'] = 'text/xml' return response def xls(self): """ xls format download :return: """ f = StringIO.StringIO() wb = Workbook(encoding='utf-8') sheet1 = wb.add_sheet('IATI Publishers List') _org_data = PublishersListDownload._get_publisher_data() # Write Headers for _index, _field in enumerate(self._headers): sheet1.write(0, _index, _field) # Write Rows and Values _row = 1 for org in _org_data: if org.Group.state == 'active' and int(org.package_count) > 0: _dt = self._prepare(org) # Write Items for _col, _item in enumerate(_dt): sheet1.write(_row, _col, _item) _row += 1 wb.save(f) output = f.getvalue() f.close() response = make_response(output) return response def download(self): response = getattr(PublishersListDownload, self.download_format)(self) file_name = 'iati_publishers_list' response.headers['Content-disposition'] = 'attachment;filename={}.{}'.format(file_name, self.download_format) return response class PublisherRecordsDownload: CSV_MAPPING = [ ('registry-publisher-id', 'organization', 'name'), ('registry-file-id', 'package', 'name'), ('title', 'package', 'title'), ('description', 'package', 'notes'), ('contact-email', 'package', 'author_email'), ('state', 'package', 'state'), ('source-url', 'resources', 'url'), ('file-type', 'package', 'filetype'), ('recipient-country', 'package', 'country'), ('default-language', 'package', 'language'), ('secondary-publisher', 'package', 'secondary_publisher'), ] OPTIONAL_COLUMNS = ['state', 'description', 'default-language', 'secondary-publisher'] MAX_ROWS = int(config.get('ckanext.iati.max_rows_csv_upload', 101)) def __init__(self): pass def _get_packages_for_org(self, context, org_name): """ :param context: :param org_name: :return: """ rows = 100 start = 0 packages = [] data_dict = { 'q': '*:*', 'fq': 'organization:' + org_name, 'rows': rows, 'start': start, } def do_query(context, data_dict): return p.toolkit.get_action('package_search')(context, data_dict) pending = True while pending: query = do_query(context, data_dict) if len(query['results']): packages.extend(query['results']) data_dict['start'] += rows else: pending = False return packages def write_to_csv(self, publisher): """ :param publisher: :return: """ context = {'model': model, 'user': c.user or c.author} try: if publisher == 'all': package_ids = p.toolkit.get_action('package_list')(context, {}) packages = [] for pkg_id in package_ids: try: package = p.toolkit.get_action('package_show')(context, {'id': pkg_id}) package.pop('state', None) packages.append(package) except p.toolkit.NotAuthorized: log.warn('User %s not authorized to read package %s' % (c.user, pkg_id)) continue elif publisher == 'template': # Just return an empty CSV file with just the headers packages = [] else: packages = self._get_packages_for_org(context, publisher) f = io.BytesIO() fieldnames = [n[0] for n in self.CSV_MAPPING if n[0] != 'state'] writer = csv.DictWriter(f, fieldnames=fieldnames, quoting=csv.QUOTE_ALL) headers = dict((n[0], n[0]) for n in self.CSV_MAPPING if n[0] != 'state') writer.writerow(headers) for package in packages: if package: row = {} extras_dict = extras_to_dict(package) for fieldname, entity, key in self.CSV_MAPPING: if key == 'state': continue value = None if entity == 'organization': if len(package['organization']): value = package['organization']['name'] elif entity == 'resources': if len(package['resources']) and key in package['resources'][0]: value = package['resources'][0][key] else: if key in package: value = package[key] elif key in extras_dict: value = extras_dict[key] row[fieldname] = value for field_to_check in ('title', 'description'): if fieldname == field_to_check and row.get(field_to_check): row[field_to_check] = row[field_to_check].encode('utf-8') writer.writerow(row) output = f.getvalue() f.close() return output except p.toolkit.ObjectNotFound: p.toolkit.abort(404, 'Organization not found') class PublisherRecordsUpload(PublisherRecordsDownload): def __init__(self, *args, **kwargs): PublisherRecordsDownload.__init__(self) def _validate_users(self): """ Validate user access - :return: None """ log.info("Validating the logged in user") if not c.user: return p.toolkit.abort(401, 'You are not logged. Please login') self.is_sysadmin = authz.is_sysadmin(c.user) context = {'model': model, 'user': c.user or c.author} self.authz_orgs = p.toolkit.get_action('organization_list_for_user')(context, {}) if not self.is_sysadmin and not self.authz_orgs: return p.toolkit.abort(403, 'You are not authorized. You are not an admin of any publisher.') return None def _validate_csv_files(self, csv_file): """ Validate uploaded csv files. :return: """ log.info("Validating the uploaded csv files") if not hasattr(csv_file, 'filename'): raise ValidationError("No CSV file provided. Please upload a CSV file.") # Verify csv file extension if os.path.splitext(csv_file.filename)[-1].lower() != '.csv': raise ValidationError( "Uploaded file is not a csv file. Please upload a csv file" ) # Validate csv columns # Validate Mandatory fields. bom_length = len(codecs.BOM_UTF8) data = csv_file.read() if data.startswith(codecs.BOM_UTF8): data = data[bom_length:] if not data: raise ValidationError("CSV file is empty") buffer = io.BytesIO(data) log.info("Validating CSV file....") reader = csv.reader(buffer) columns = next(reader) # Validate columns if not columns: buffer.close() raise ValidationError("Mandatory fields are missing. " "Download csv upload template (verify mandatory columns) and " "upload the file accordingly.") for _col in self.CSV_MAPPING: is_optional = _col[0] in self.OPTIONAL_COLUMNS in_columns = _col[0] in columns if not is_optional and not in_columns: buffer.close() raise ValidationError("Mandatory/unrecognized CSV columns. Given csv fields: {}") # Validate no of rows row_count = sum(1 for _ in reader) log.info("Number of rows in csv: {}".format(str(row_count))) if row_count > self.MAX_ROWS: raise ValidationError( "Exceeded the limit. Maximum allowed rows is 50" ) return data
[ "json.dump", "ckan.authz.is_sysadmin", "xlwt.Workbook", "io.BytesIO", "csv.writer", "csv.reader", "ckan.plugins.toolkit.abort", "ckan.model.Session.query", "ckan.plugins.toolkit.get_validator", "ckan.common.config.get", "ckan.plugins.toolkit.get_action", "ckanext.iati.helpers.extras_to_dict", "os.path.splitext", "sqlalchemy.func.count", "flask.make_response", "StringIO.StringIO", "logging.getLogger", "csv.DictWriter" ]
[((543, 570), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (560, 570), False, 'import logging\n'), ((609, 645), 'ckan.plugins.toolkit.get_validator', 'p.toolkit.get_validator', (['"""not_empty"""'], {}), "('not_empty')\n", (632, 645), True, 'import ckan.plugins as p\n'), ((662, 701), 'ckan.plugins.toolkit.get_validator', 'p.toolkit.get_validator', (['"""ignore_empty"""'], {}), "('ignore_empty')\n", (685, 701), True, 'import ckan.plugins as p\n'), ((720, 761), 'ckan.plugins.toolkit.get_validator', 'p.toolkit.get_validator', (['"""ignore_missing"""'], {}), "('ignore_missing')\n", (743, 761), True, 'import ckan.plugins as p\n'), ((779, 819), 'ckan.plugins.toolkit.get_validator', 'p.toolkit.get_validator', (['"""int_validator"""'], {}), "('int_validator')\n", (802, 819), True, 'import ckan.plugins as p\n'), ((1167, 1194), 'ckan.common.config.get', 'config.get', (['"""ckan.site_url"""'], {}), "('ckan.site_url')\n", (1177, 1194), False, 'from ckan.common import config, c\n'), ((5049, 5068), 'StringIO.StringIO', 'StringIO.StringIO', ([], {}), '()\n', (5066, 5068), False, 'import StringIO\n'), ((5086, 5099), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (5096, 5099), False, 'import csv\n'), ((5941, 5962), 'flask.make_response', 'make_response', (['output'], {}), '(output)\n', (5954, 5962), False, 'from flask import make_response\n'), ((6137, 6156), 'StringIO.StringIO', 'StringIO.StringIO', ([], {}), '()\n', (6154, 6156), False, 'import StringIO\n'), ((6446, 6469), 'json.dump', 'json.dump', (['json_data', 'f'], {}), '(json_data, f)\n', (6455, 6469), False, 'import json\n'), ((6537, 6558), 'flask.make_response', 'make_response', (['output'], {}), '(output)\n', (6550, 6558), False, 'from flask import make_response\n'), ((6746, 6765), 'StringIO.StringIO', 'StringIO.StringIO', ([], {}), '()\n', (6763, 6765), False, 'import StringIO\n'), ((8326, 8347), 'flask.make_response', 'make_response', (['output'], {}), '(output)\n', (8339, 8347), False, 'from flask import make_response\n'), ((8527, 8546), 'StringIO.StringIO', 'StringIO.StringIO', ([], {}), '()\n', (8544, 8546), False, 'import StringIO\n'), ((8560, 8586), 'xlwt.Workbook', 'Workbook', ([], {'encoding': '"""utf-8"""'}), "(encoding='utf-8')\n", (8568, 8586), False, 'from xlwt import Workbook\n'), ((9273, 9294), 'flask.make_response', 'make_response', (['output'], {}), '(output)\n', (9286, 9294), False, 'from flask import make_response\n'), ((10415, 10466), 'ckan.common.config.get', 'config.get', (['"""ckanext.iati.max_rows_csv_upload"""', '(101)'], {}), "('ckanext.iati.max_rows_csv_upload', 101)\n", (10425, 10466), False, 'from ckan.common import config, c\n'), ((14554, 14579), 'ckan.authz.is_sysadmin', 'authz.is_sysadmin', (['c.user'], {}), '(c.user)\n', (14571, 14579), True, 'import ckan.authz as authz\n'), ((15779, 15795), 'io.BytesIO', 'io.BytesIO', (['data'], {}), '(data)\n', (15789, 15795), False, 'import io\n'), ((15857, 15875), 'csv.reader', 'csv.reader', (['buffer'], {}), '(buffer)\n', (15867, 15875), False, 'import csv\n'), ((12322, 12334), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (12332, 12334), False, 'import io\n'), ((12433, 12496), 'csv.DictWriter', 'csv.DictWriter', (['f'], {'fieldnames': 'fieldnames', 'quoting': 'csv.QUOTE_ALL'}), '(f, fieldnames=fieldnames, quoting=csv.QUOTE_ALL)\n', (12447, 12496), False, 'import csv\n'), ((14469, 14525), 'ckan.plugins.toolkit.abort', 'p.toolkit.abort', (['(401)', '"""You are not logged. Please login"""'], {}), "(401, 'You are not logged. Please login')\n", (14484, 14525), True, 'import ckan.plugins as p\n'), ((14669, 14719), 'ckan.plugins.toolkit.get_action', 'p.toolkit.get_action', (['"""organization_list_for_user"""'], {}), "('organization_list_for_user')\n", (14689, 14719), True, 'import ckan.plugins as p\n'), ((14810, 14900), 'ckan.plugins.toolkit.abort', 'p.toolkit.abort', (['(403)', '"""You are not authorized. You are not an admin of any publisher."""'], {}), "(403,\n 'You are not authorized. You are not an admin of any publisher.')\n", (14825, 14900), True, 'import ckan.plugins as p\n'), ((10934, 10972), 'ckan.plugins.toolkit.get_action', 'p.toolkit.get_action', (['"""package_search"""'], {}), "('package_search')\n", (10954, 10972), True, 'import ckan.plugins as p\n'), ((14073, 14119), 'ckan.plugins.toolkit.abort', 'p.toolkit.abort', (['(404)', '"""Organization not found"""'], {}), "(404, 'Organization not found')\n", (14088, 14119), True, 'import ckan.plugins as p\n'), ((11544, 11580), 'ckan.plugins.toolkit.get_action', 'p.toolkit.get_action', (['"""package_list"""'], {}), "('package_list')\n", (11564, 11580), True, 'import ckan.plugins as p\n'), ((12749, 12772), 'ckanext.iati.helpers.extras_to_dict', 'extras_to_dict', (['package'], {}), '(package)\n', (12763, 12772), False, 'from ckanext.iati.helpers import extras_to_dict, parse_error_object_to_list\n'), ((3829, 3892), 'ckan.model.Session.query', 'model.Session.query', (['model.Group', 'package_count.c.package_count'], {}), '(model.Group, package_count.c.package_count)\n', (3848, 3892), True, 'import ckan.model as model\n'), ((15276, 15311), 'os.path.splitext', 'os.path.splitext', (['csv_file.filename'], {}), '(csv_file.filename)\n', (15292, 15311), False, 'import os, codecs\n'), ((11726, 11762), 'ckan.plugins.toolkit.get_action', 'p.toolkit.get_action', (['"""package_show"""'], {}), "('package_show')\n", (11746, 11762), True, 'import ckan.plugins as p\n'), ((3389, 3428), 'sqlalchemy.func.count', 'sqlalchemy.func.count', (['model.Package.id'], {}), '(model.Package.id)\n', (3410, 3428), False, 'import sqlalchemy\n')]
import uvicorn from uvicorn.reloaders.statreload import StatReload from uvicorn.main import run, get_logger from starlette.applications import Starlette from starlette.responses import JSONResponse from utils.tiempo import eightDigits from utils.pipeline import MongoDBPipeline from settings import BACKEND_PORT app = Starlette(debug='true') @app.route('/toplist') async def toplist(request): try: day = request.query_params['day'] except KeyError: day = eightDigits() try: chart = request.query_params['chart'] except KeyError: chart = 'rise' m = MongoDBPipeline() query = f'{day}.{chart}' result = m.ls(query) for item in result: item.pop('_id') return JSONResponse(result) if __name__ == '__main__': reloader = StatReload(get_logger('debug')) reloader.run(run, { 'app': app, 'host': '127.0.0.1', 'port': BACKEND_PORT, 'log_level': 'debug', 'debug': 'true' }) uvicorn.run(app=app, host='127.0.0.1', port=BACKEND_PORT, debug='true')
[ "starlette.applications.Starlette", "starlette.responses.JSONResponse", "utils.tiempo.eightDigits", "uvicorn.run", "utils.pipeline.MongoDBPipeline", "uvicorn.main.get_logger" ]
[((321, 344), 'starlette.applications.Starlette', 'Starlette', ([], {'debug': '"""true"""'}), "(debug='true')\n", (330, 344), False, 'from starlette.applications import Starlette\n'), ((607, 624), 'utils.pipeline.MongoDBPipeline', 'MongoDBPipeline', ([], {}), '()\n', (622, 624), False, 'from utils.pipeline import MongoDBPipeline\n'), ((739, 759), 'starlette.responses.JSONResponse', 'JSONResponse', (['result'], {}), '(result)\n', (751, 759), False, 'from starlette.responses import JSONResponse\n'), ((1004, 1075), 'uvicorn.run', 'uvicorn.run', ([], {'app': 'app', 'host': '"""127.0.0.1"""', 'port': 'BACKEND_PORT', 'debug': '"""true"""'}), "(app=app, host='127.0.0.1', port=BACKEND_PORT, debug='true')\n", (1015, 1075), False, 'import uvicorn\n'), ((815, 834), 'uvicorn.main.get_logger', 'get_logger', (['"""debug"""'], {}), "('debug')\n", (825, 834), False, 'from uvicorn.main import run, get_logger\n'), ((484, 497), 'utils.tiempo.eightDigits', 'eightDigits', ([], {}), '()\n', (495, 497), False, 'from utils.tiempo import eightDigits\n')]
import json, base64 import pulumi from pulumi.output import Output from pulumi.resource import ComponentResource, ResourceOptions import pulumi_gcp as gcp import pulumi_datadog as datadog import pulumi_random class GCPLogSinkToDataDog(ComponentResource): def __init__( self, name: str, opts: ResourceOptions = None): super().__init__('datadog_gcp_integration:index:GCPLogSinkToDataDog', name, None, opts) topic = gcp.pubsub.Topic( f'{name}-topic', name='export-logs-to-datadog', opts=ResourceOptions(parent=self)) dd_api_key = pulumi.Config(name='datadog').require('apiKey') push_to_dd = gcp.pubsub.Subscription( f'{name}-subscription', name='export-logs-to-datadog.push-to-dd', topic=topic.id, push_config=gcp.pubsub.SubscriptionPushConfigArgs( push_endpoint=f'https://gcp-intake.logs.datadoghq.eu/api/v2/logs?dd-api-key={dd_api_key}&dd-protocol=gcp'), expiration_policy=gcp.pubsub.SubscriptionExpirationPolicyArgs( ttl=''), retry_policy=gcp.pubsub.SubscriptionRetryPolicyArgs( minimum_backoff='10s', maximum_backoff='600s'), opts=ResourceOptions(parent=self)) project = gcp.organizations.get_project() pubsub_sa = f'serviceAccount:service-{project.number}@gcp-sa-pubsub.iam.gserviceaccount.com' gcp.pubsub.SubscriptionIAMBinding( f'{name}-subscriber-ack', subscription=push_to_dd.id, members=[pubsub_sa], role='roles/pubsub.subscriber', opts=ResourceOptions(parent=self)) log_sink = gcp.logging.ProjectSink( f'{name}-log-sink', name='export-logs-to-datadog', destination=Output.concat('pubsub.googleapis.com/', topic.id), unique_writer_identity=True, opts=ResourceOptions(parent=self, depends_on=[push_to_dd])) gcp.pubsub.TopicIAMMember( f'{name}-log-sink-pubsub-publisher', topic=topic.id, role='roles/pubsub.publisher', member=log_sink.writer_identity, opts=ResourceOptions(parent=self)) class DataDogGCPIntegration(ComponentResource): def __init__( self, name: str, enable_log_sink: bool = False, opts: ResourceOptions = None): super().__init__('datadog_gcp_integration:index:DataDogGCPIntegration', name, None, opts) suffix = pulumi_random.RandomString( f'{name}-gcp-sa-suffix', length=3, min_lower=3, opts=ResourceOptions(parent=self)) gcp_sa = gcp.serviceaccount.Account( f'{name}-gcp-sa', account_id=Output.concat('datadog-integration-', suffix.result), description='DataDog GCP Integration SA', opts=ResourceOptions(parent=self)) roles = [ 'roles/cloudasset.viewer', 'roles/compute.viewer', 'roles/container.viewer', 'roles/monitoring.viewer', ] iam_members = [] for role in roles: member = gcp.projects.IAMMember( f'{name}-gcp-sa-role-{role}', role=role, member=gcp_sa.email.apply(lambda email: f'serviceAccount:{email}'), opts=ResourceOptions(parent=self)) iam_members.append(member) gcp_sa_key = gcp.serviceaccount.Key( f'{name}-gcp-sa-key', service_account_id=gcp_sa.name, opts=ResourceOptions(parent=self)) gcp_sa_pk = gcp_sa_key.private_key.apply(lambda k: json.loads(base64.b64decode(k))) gcp_integration = datadog.gcp.Integration( f'{name}-datadog-gcp-integration', client_email=gcp_sa_pk.apply(lambda k: k['client_email']), client_id=gcp_sa_pk.apply(lambda k: k['client_id']), private_key=gcp_sa_pk.apply(lambda k: k['private_key']), private_key_id=gcp_sa_pk.apply(lambda k: k['private_key_id']), project_id=gcp_sa_pk.apply(lambda k: k['project_id']), opts=ResourceOptions(parent=self, depends_on=iam_members)) if enable_log_sink: GCPLogSinkToDataDog( f'{name}-export-gcp-logs-to-datadog', opts=ResourceOptions(parent=self, depends_on=[gcp_integration]))
[ "pulumi_gcp.pubsub.SubscriptionExpirationPolicyArgs", "pulumi.output.Output.concat", "pulumi_gcp.pubsub.SubscriptionRetryPolicyArgs", "pulumi.Config", "pulumi_gcp.pubsub.SubscriptionPushConfigArgs", "pulumi.resource.ResourceOptions", "base64.b64decode", "pulumi_gcp.organizations.get_project" ]
[((1341, 1372), 'pulumi_gcp.organizations.get_project', 'gcp.organizations.get_project', ([], {}), '()\n', (1370, 1372), True, 'import pulumi_gcp as gcp\n'), ((578, 606), 'pulumi.resource.ResourceOptions', 'ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (593, 606), False, 'from pulumi.resource import ComponentResource, ResourceOptions\n'), ((630, 659), 'pulumi.Config', 'pulumi.Config', ([], {'name': '"""datadog"""'}), "(name='datadog')\n", (643, 659), False, 'import pulumi\n'), ((867, 1021), 'pulumi_gcp.pubsub.SubscriptionPushConfigArgs', 'gcp.pubsub.SubscriptionPushConfigArgs', ([], {'push_endpoint': 'f"""https://gcp-intake.logs.datadoghq.eu/api/v2/logs?dd-api-key={dd_api_key}&dd-protocol=gcp"""'}), "(push_endpoint=\n f'https://gcp-intake.logs.datadoghq.eu/api/v2/logs?dd-api-key={dd_api_key}&dd-protocol=gcp'\n )\n", (904, 1021), True, 'import pulumi_gcp as gcp\n'), ((1060, 1111), 'pulumi_gcp.pubsub.SubscriptionExpirationPolicyArgs', 'gcp.pubsub.SubscriptionExpirationPolicyArgs', ([], {'ttl': '""""""'}), "(ttl='')\n", (1103, 1111), True, 'import pulumi_gcp as gcp\n'), ((1155, 1244), 'pulumi_gcp.pubsub.SubscriptionRetryPolicyArgs', 'gcp.pubsub.SubscriptionRetryPolicyArgs', ([], {'minimum_backoff': '"""10s"""', 'maximum_backoff': '"""600s"""'}), "(minimum_backoff='10s',\n maximum_backoff='600s')\n", (1193, 1244), True, 'import pulumi_gcp as gcp\n'), ((1292, 1320), 'pulumi.resource.ResourceOptions', 'ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (1307, 1320), False, 'from pulumi.resource import ComponentResource, ResourceOptions\n'), ((1690, 1718), 'pulumi.resource.ResourceOptions', 'ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (1705, 1718), False, 'from pulumi.resource import ComponentResource, ResourceOptions\n'), ((1864, 1913), 'pulumi.output.Output.concat', 'Output.concat', (['"""pubsub.googleapis.com/"""', 'topic.id'], {}), "('pubsub.googleapis.com/', topic.id)\n", (1877, 1913), False, 'from pulumi.output import Output\n'), ((1973, 2026), 'pulumi.resource.ResourceOptions', 'ResourceOptions', ([], {'parent': 'self', 'depends_on': '[push_to_dd]'}), '(parent=self, depends_on=[push_to_dd])\n', (1988, 2026), False, 'from pulumi.resource import ComponentResource, ResourceOptions\n'), ((2246, 2274), 'pulumi.resource.ResourceOptions', 'ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (2261, 2274), False, 'from pulumi.resource import ComponentResource, ResourceOptions\n'), ((2716, 2744), 'pulumi.resource.ResourceOptions', 'ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (2731, 2744), False, 'from pulumi.resource import ComponentResource, ResourceOptions\n'), ((2845, 2897), 'pulumi.output.Output.concat', 'Output.concat', (['"""datadog-integration-"""', 'suffix.result'], {}), "('datadog-integration-', suffix.result)\n", (2858, 2897), False, 'from pulumi.output import Output\n'), ((2970, 2998), 'pulumi.resource.ResourceOptions', 'ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (2985, 2998), False, 'from pulumi.resource import ComponentResource, ResourceOptions\n'), ((3669, 3697), 'pulumi.resource.ResourceOptions', 'ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (3684, 3697), False, 'from pulumi.resource import ComponentResource, ResourceOptions\n'), ((4255, 4307), 'pulumi.resource.ResourceOptions', 'ResourceOptions', ([], {'parent': 'self', 'depends_on': 'iam_members'}), '(parent=self, depends_on=iam_members)\n', (4270, 4307), False, 'from pulumi.resource import ComponentResource, ResourceOptions\n'), ((3458, 3486), 'pulumi.resource.ResourceOptions', 'ResourceOptions', ([], {'parent': 'self'}), '(parent=self)\n', (3473, 3486), False, 'from pulumi.resource import ComponentResource, ResourceOptions\n'), ((3770, 3789), 'base64.b64decode', 'base64.b64decode', (['k'], {}), '(k)\n', (3786, 3789), False, 'import json, base64\n'), ((4446, 4504), 'pulumi.resource.ResourceOptions', 'ResourceOptions', ([], {'parent': 'self', 'depends_on': '[gcp_integration]'}), '(parent=self, depends_on=[gcp_integration])\n', (4461, 4504), False, 'from pulumi.resource import ComponentResource, ResourceOptions\n')]
import tensorflow as tf import numpy as np from model import decoder,vae import cv2 vae.load_weights("vae_cnn.h5") lv = np.load("lv.npy") fourcc = cv2.VideoWriter_fourcc(*'XVID') video = cv2.VideoWriter("output.avi", fourcc, 30.0, (208, 120)) for i in range(1000): data = lv[i].reshape(1,128) img = decoder.predict(data) img = np.array(img).reshape(120,208,1) img = img * 255 img = np.array(img).astype("uint8") img = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB) video.write(img) video.release()
[ "numpy.load", "cv2.VideoWriter_fourcc", "model.decoder.predict", "cv2.cvtColor", "numpy.array", "cv2.VideoWriter", "model.vae.load_weights" ]
[((85, 115), 'model.vae.load_weights', 'vae.load_weights', (['"""vae_cnn.h5"""'], {}), "('vae_cnn.h5')\n", (101, 115), False, 'from model import decoder, vae\n'), ((121, 138), 'numpy.load', 'np.load', (['"""lv.npy"""'], {}), "('lv.npy')\n", (128, 138), True, 'import numpy as np\n'), ((148, 179), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'XVID'"], {}), "(*'XVID')\n", (170, 179), False, 'import cv2\n'), ((188, 243), 'cv2.VideoWriter', 'cv2.VideoWriter', (['"""output.avi"""', 'fourcc', '(30.0)', '(208, 120)'], {}), "('output.avi', fourcc, 30.0, (208, 120))\n", (203, 243), False, 'import cv2\n'), ((309, 330), 'model.decoder.predict', 'decoder.predict', (['data'], {}), '(data)\n', (324, 330), False, 'from model import decoder, vae\n'), ((444, 481), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_GRAY2RGB'], {}), '(img, cv2.COLOR_GRAY2RGB)\n', (456, 481), False, 'import cv2\n'), ((341, 354), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (349, 354), True, 'import numpy as np\n'), ((404, 417), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (412, 417), True, 'import numpy as np\n')]
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np USE_CUDA = torch.cuda.is_available() device = torch.device("cuda" if USE_CUDA else "cpu") class Bert_Base(nn.Module): def __init__(self, opt): super(Bert_Base, self).__init__() self.opt = opt #self.tokenizer = BertTokenizer.from_pretrained(model_path) def forward(self, inputs, use_hidden_state=False): text_raw_indices, text_raw_indices_mask, aspect_position_text = inputs[0], inputs[1], inputs[2] ctx = self.opt.bse.get_vector(text_raw_indices) ctx_len = torch.sum(text_raw_indices_mask != 0, dim=1) vectors = [] aspect_vectors = [] asp_len = [] for idx, vector in enumerate(ctx): # print(aspect_position_text[idx]) # print(vector.size()) #vector = torch.stack(vector) left, right = aspect_position_text[idx].split('_') vector = [np.asarray(each, dtype=float) for each in vector] aspect_vector = vector[int(left):int(right)] # if self.opt.device: # vector = vector.cpu() # aspect_vector = aspect_vector.cpu() pad_number = self.opt.max_seq_len - len(vector) + 2 #ctx_len.append(len(vector)) vector = np.asarray(vector, dtype=float) vector = vector[1:-1] vector = np.concatenate((vector, np.zeros((pad_number, self.opt.embed_dim)))) vector = vector.astype('float32') vector = torch.from_numpy(vector) #pad_tuple = (0, 0, left, 0) #vector = F.pad(vector, pad_tuple, 'constant', 0) pad_number = self.opt.max_seq_len - len(aspect_vector) asp_len.append(len(aspect_vector)) aspect_vector = np.asarray(aspect_vector) aspect_vector = np.concatenate((aspect_vector, np.zeros((pad_number, self.opt.embed_dim)))) aspect_vector = aspect_vector.astype('float32') aspect_vector = torch.from_numpy(aspect_vector) if self.opt.device: vector = vector.to(self.opt.device) aspect_vector = aspect_vector.to(self.opt.device) vectors.append(vector) aspect_vectors.append(aspect_vector) ctx = torch.stack(vectors) asp = torch.stack(aspect_vectors) asp_len = torch.from_numpy(np.asarray(asp_len)) #ctx_len = torch.from_numpy(np.asarray(ctx_len)) if self.opt.device: asp_len = asp_len.to(self.opt.device) ctx_len = ctx_len.to(self.opt.device) ctx.requires_grad = False asp.requires_grad = False # print(vectors.size()) # print(aspect_vectors.size()) return ctx, asp, ctx_len, asp_len
[ "torch.stack", "numpy.asarray", "numpy.zeros", "torch.cuda.is_available", "torch.device", "torch.sum", "torch.from_numpy" ]
[((98, 123), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (121, 123), False, 'import torch\n'), ((133, 176), 'torch.device', 'torch.device', (["('cuda' if USE_CUDA else 'cpu')"], {}), "('cuda' if USE_CUDA else 'cpu')\n", (145, 176), False, 'import torch\n'), ((603, 647), 'torch.sum', 'torch.sum', (['(text_raw_indices_mask != 0)'], {'dim': '(1)'}), '(text_raw_indices_mask != 0, dim=1)\n', (612, 647), False, 'import torch\n'), ((2324, 2344), 'torch.stack', 'torch.stack', (['vectors'], {}), '(vectors)\n', (2335, 2344), False, 'import torch\n'), ((2359, 2386), 'torch.stack', 'torch.stack', (['aspect_vectors'], {}), '(aspect_vectors)\n', (2370, 2386), False, 'import torch\n'), ((1332, 1363), 'numpy.asarray', 'np.asarray', (['vector'], {'dtype': 'float'}), '(vector, dtype=float)\n', (1342, 1363), True, 'import numpy as np\n'), ((1555, 1579), 'torch.from_numpy', 'torch.from_numpy', (['vector'], {}), '(vector)\n', (1571, 1579), False, 'import torch\n'), ((1826, 1851), 'numpy.asarray', 'np.asarray', (['aspect_vector'], {}), '(aspect_vector)\n', (1836, 1851), True, 'import numpy as np\n'), ((2044, 2075), 'torch.from_numpy', 'torch.from_numpy', (['aspect_vector'], {}), '(aspect_vector)\n', (2060, 2075), False, 'import torch\n'), ((2422, 2441), 'numpy.asarray', 'np.asarray', (['asp_len'], {}), '(asp_len)\n', (2432, 2441), True, 'import numpy as np\n'), ((970, 999), 'numpy.asarray', 'np.asarray', (['each'], {'dtype': 'float'}), '(each, dtype=float)\n', (980, 999), True, 'import numpy as np\n'), ((1443, 1485), 'numpy.zeros', 'np.zeros', (['(pad_number, self.opt.embed_dim)'], {}), '((pad_number, self.opt.embed_dim))\n', (1451, 1485), True, 'import numpy as np\n'), ((1911, 1953), 'numpy.zeros', 'np.zeros', (['(pad_number, self.opt.embed_dim)'], {}), '((pad_number, self.opt.embed_dim))\n', (1919, 1953), True, 'import numpy as np\n')]
from typing import Optional from aioros_action import ActionClient from aioros_action import create_client from aioros import NodeHandle from aioros_tf2.abc import BufferInterface from aioros_tf2.exceptions import ConnectivityException from aioros_tf2.exceptions import ExtrapolationException from aioros_tf2.exceptions import InvalidArgumentException from aioros_tf2.exceptions import LookupException from aioros_tf2.exceptions import TimeoutException from aioros_tf2.exceptions import TransformException from genpy import Duration from genpy import Time from geometry_msgs.msg import TransformStamped from tf2_msgs.msg import LookupTransformAction from tf2_msgs.msg import LookupTransformGoal from tf2_msgs.msg import TF2Error class BufferActionClient(BufferInterface): def __init__(self, ns: str) -> None: self._ns = ns self._action_client: Optional[ActionClient] = None async def init( self, node_handle: NodeHandle ) -> None: self._action_client = await create_client( node_handle, self._ns, LookupTransformAction) async def close(self) -> None: if self._action_client: await self._action_client.close() self._action_client = None async def wait_for_server(self) -> None: await self._action_client.wait_for_server() async def lookup_transform( self, target_frame: str, source_frame: str, time: Time, timeout: Optional[Duration] = None ) -> TransformStamped: return await self._call_action( LookupTransformGoal( target_frame=target_frame, source_frame=source_frame, source_time=time, timeout=timeout or Duration(), advanced=False)) async def lookup_transform_full( self, target_frame: str, target_time: Time, source_frame: str, source_time: Time, fixed_frame: str, timeout: Optional[Duration] = None ) -> TransformStamped: return await self._call_action( LookupTransformGoal( target_frame=target_frame, source_frame=source_frame, source_time=source_time, timeout=timeout or Duration(), target_time=target_time, fixed_frame=fixed_frame, advanced=True)) async def can_transform( self, target_frame: str, source_frame: str, time: Time, timeout: Optional[Duration] = None ) -> bool: try: self.lookup_transform( target_frame, source_frame, time, timeout) return True except TransformException: return False async def can_transform_full( self, target_frame: str, target_time: Time, source_frame: str, source_time: Time, fixed_frame: str, timeout: Optional[Duration] = None ) -> bool: try: self.lookup_transform_full( target_frame, target_time, source_frame, source_time, fixed_frame, timeout) return True except TransformException: return False async def _call_action( self, goal: LookupTransformGoal ) -> TransformStamped: goal_handle = self._action_client.send_goal(goal) result = await goal_handle.wait_for_result() if result.error.error != TF2Error.NO_ERROR: if result.error.error == TF2Error.LOOKUP_ERROR: raise LookupException(result.error.error_string) elif result.error.error == TF2Error.CONNECTIVITY_ERROR: raise ConnectivityException(result.error.error_string) elif result.error.error == TF2Error.EXTRAPOLATION_ERROR: raise ExtrapolationException(result.error.error_string) elif result.error.error == TF2Error.INVALID_ARGUMENT_ERROR: raise InvalidArgumentException(result.error.error_string) elif result.error.error == TF2Error.TIMEOUT_ERROR: raise TimeoutException(result.error.error_string) else: raise TransformException(result.error.error_string) return result.transform async def create_buffer_action_client( node_handle: NodeHandle, ns: str, ) -> BufferActionClient: buffer_action_client = BufferActionClient(ns) await buffer_action_client.init(node_handle) return buffer_action_client
[ "genpy.Duration", "aioros_tf2.exceptions.LookupException", "aioros_tf2.exceptions.TimeoutException", "aioros_tf2.exceptions.ConnectivityException", "aioros_tf2.exceptions.TransformException", "aioros_tf2.exceptions.InvalidArgumentException", "aioros_action.create_client", "aioros_tf2.exceptions.ExtrapolationException" ]
[((1018, 1077), 'aioros_action.create_client', 'create_client', (['node_handle', 'self._ns', 'LookupTransformAction'], {}), '(node_handle, self._ns, LookupTransformAction)\n', (1031, 1077), False, 'from aioros_action import create_client\n'), ((3762, 3804), 'aioros_tf2.exceptions.LookupException', 'LookupException', (['result.error.error_string'], {}), '(result.error.error_string)\n', (3777, 3804), False, 'from aioros_tf2.exceptions import LookupException\n'), ((3895, 3943), 'aioros_tf2.exceptions.ConnectivityException', 'ConnectivityException', (['result.error.error_string'], {}), '(result.error.error_string)\n', (3916, 3943), False, 'from aioros_tf2.exceptions import ConnectivityException\n'), ((4035, 4084), 'aioros_tf2.exceptions.ExtrapolationException', 'ExtrapolationException', (['result.error.error_string'], {}), '(result.error.error_string)\n', (4057, 4084), False, 'from aioros_tf2.exceptions import ExtrapolationException\n'), ((1785, 1795), 'genpy.Duration', 'Duration', ([], {}), '()\n', (1793, 1795), False, 'from genpy import Duration\n'), ((2321, 2331), 'genpy.Duration', 'Duration', ([], {}), '()\n', (2329, 2331), False, 'from genpy import Duration\n'), ((4179, 4230), 'aioros_tf2.exceptions.InvalidArgumentException', 'InvalidArgumentException', (['result.error.error_string'], {}), '(result.error.error_string)\n', (4203, 4230), False, 'from aioros_tf2.exceptions import InvalidArgumentException\n'), ((4316, 4359), 'aioros_tf2.exceptions.TimeoutException', 'TimeoutException', (['result.error.error_string'], {}), '(result.error.error_string)\n', (4332, 4359), False, 'from aioros_tf2.exceptions import TimeoutException\n'), ((4400, 4445), 'aioros_tf2.exceptions.TransformException', 'TransformException', (['result.error.error_string'], {}), '(result.error.error_string)\n', (4418, 4445), False, 'from aioros_tf2.exceptions import TransformException\n')]