code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
import remarshal if __name__ == '__main__': remarshal.main()
[ "remarshal.main" ]
[((49, 65), 'remarshal.main', 'remarshal.main', ([], {}), '()\n', (63, 65), False, 'import remarshal\n')]
""" Lower level layer for slicer. Mom's spaghetti. """ # TODO: Consider boolean array indexing. from typing import Any, AnyStr, Union, List, Tuple from abc import abstractmethod import numbers class AtomicSlicer: """ Wrapping object that will unify slicing across data structures. What we support: Basic indexing (return references): - (start:stop:step) slicing - support ellipses Advanced indexing (return references): - integer array indexing Numpy Reference: Basic indexing (return views): - (start:stop:step) slicing - support ellipses and newaxis (alias for None) Advanced indexing (return copy): - integer array indexing, i.e. X[[1,2], [3,4]] - boolean array indexing - mixed array indexing (has integer array, ellipses, newaxis in same slice) """ def __init__(self, o: Any, max_dim: Union[None, int, AnyStr] = "auto"): """ Provides a consistent slicing API to the object provided. Args: o: Object to enable consistent slicing. Currently supports numpy dense arrays, recursive lists ending with list or numpy. max_dim: Max number of dimensions the wrapped object has. If set to "auto", max dimensions will be inferred. This comes at compute cost. """ self.o = o self.max_dim = max_dim if self.max_dim == "auto": self.max_dim = UnifiedDataHandler.max_dim(o) def __repr__(self) -> AnyStr: """ Override default repr for human readability. Returns: String to display. """ return f"{self.__class__.__name__}({self.o.__repr__()})" def __getitem__(self, item: Any) -> Any: """ Consistent slicing into wrapped object. Args: item: Slicing key of type integer or slice. Returns: Sliced object. Raises: ValueError: If slicing is not compatible with wrapped object. """ # Turn item into tuple if not already. index_tup = unify_slice(item, self.max_dim) # Slice according to object type. return UnifiedDataHandler.slice(self.o, index_tup, self.max_dim) def unify_slice(item: Any, max_dim: int, alias_lookup=None) -> Tuple: """ Resolves aliases and ellipses in a slice item. Args: item: Slicing key that is passed to __getitem__. max_dim: Max dimension of object to be sliced. alias_lookup: AliasLookup structure. Returns: A tuple representation of the item. """ item = _normalize_slice_key(item) index_tup = _normalize_subkey_types(item) index_tup = _handle_newaxis_ellipses(index_tup, max_dim) if alias_lookup: index_tup = _handle_aliases(index_tup, alias_lookup) return index_tup def _normalize_subkey_types(index_tup: Tuple) -> Tuple: """ Casts subkeys into basic types such as int. Args: key: Slicing key that is passed within __getitem__. Returns: Tuple with subkeys casted to basic types. """ new_index_tup = [] # Gets casted to tuple at the end np_int_types = { "int8", "int16", "int32", "int64", "uint8", "uint16", "uint32", "uint64", } for subkey in index_tup: if _safe_isinstance(subkey, "numpy", np_int_types): new_subkey = int(subkey) elif _safe_isinstance(subkey, "numpy", "ndarray"): if len(subkey.shape) == 1: new_subkey = subkey.tolist() else: raise ValueError(f"Cannot use array of shape {subkey.shape} as subkey.") else: new_subkey = subkey new_index_tup.append(new_subkey) return tuple(new_index_tup) def _normalize_slice_key(key: Any) -> Tuple: """ Normalizes slice key into always being a top-level tuple. Args: key: Slicing key that is passed within __getitem__. Returns: Expanded slice as a tuple. """ if not isinstance(key, tuple): return (key,) else: return key def _handle_newaxis_ellipses(index_tup: Tuple, max_dim: int) -> Tuple: """ Expands newaxis and ellipses within a slice for simplification. This code is mostly adapted from: https://github.com/clbarnes/h5py_like/blob/master/h5py_like/shape_utils.py#L111 Args: index_tup: Slicing key as a tuple. max_dim: Maximum number of dimensions in the respective sliceable object. Returns: Expanded slice as a tuple. """ non_indexes = (None, Ellipsis) concrete_indices = sum(idx not in non_indexes for idx in index_tup) index_list = [] # newaxis_at = [] has_ellipsis = False int_count = 0 for item in index_tup: if isinstance(item, numbers.Number): int_count += 1 # NOTE: If we need locations of new axis, re-enable this. if item is None: # pragma: no cover pass # newaxis_at.append(len(index_list) + len(newaxis_at) - int_count) elif item == Ellipsis: if has_ellipsis: # pragma: no cover raise IndexError("an index can only have a single ellipsis ('...')") has_ellipsis = True initial_len = len(index_list) while len(index_list) + (concrete_indices - initial_len) < max_dim: index_list.append(slice(None)) else: index_list.append(item) if len(index_list) > max_dim: # pragma: no cover raise IndexError("too many indices for array") while len(index_list) < max_dim: index_list.append(slice(None)) # return index_list, newaxis_at return tuple(index_list) def _handle_aliases(index_tup: Tuple, alias_lookup) -> Tuple: new_index_tup = [] def resolve(item, dim): if isinstance(item, slice): return item # Replace element if in alias lookup, otherwise use original. item = alias_lookup.get(dim, item, item) return item # Go through each element within the index and resolve if needed. for dim, item in enumerate(index_tup): if isinstance(item, list): new_item = [] for sub_item in item: new_item.append(resolve(sub_item, dim)) else: new_item = resolve(item, dim) new_index_tup.append(new_item) return tuple(new_index_tup) class Tracked(AtomicSlicer): """ Tracked defines an object that slicer wraps.""" def __init__(self, o: Any, dim: Union[int, List, tuple, None, str] = "auto"): """ Defines an object that will be wrapped by slicer. Args: o: Object that will be tracked for slicer. dim: Target dimension(s) slicer will index on for this object. """ super().__init__(o) # Protected attribute that can be overriden. self._name = None # Place dim into coordinate form. if dim == "auto": self.dim = list(range(self.max_dim)) elif dim is None: self.dim = [] elif isinstance(dim, int): self.dim = [dim] elif isinstance(dim, list): self.dim = dim elif isinstance(dim, tuple): self.dim = list(dim) else: # pragma: no cover raise ValueError(f"Cannot handle dim of type: {type(dim)}") class Obj(Tracked): """ An object that slicer wraps. """ def __init__(self, o, dim="auto"): super().__init__(o, dim) class Alias(Tracked): """ Defines a tracked object as well as additional __getitem__ keys. """ def __init__(self, o, dim): if not ( isinstance(dim, int) or (isinstance(dim, (list, tuple)) and len(dim) <= 1) ): # pragma: no cover raise ValueError("Aliases must track a single dimension") super().__init__(o, dim) class AliasLookup: def __init__(self, aliases): self._lookup = {} # Populate lookup and merge indexes. for _, alias in aliases.items(): self.update(alias) def update(self, alias): if alias.dim is None or len(alias.dim) == 0: return dim = alias.dim[0] if dim not in self._lookup: self._lookup[dim] = {} dim_lookup = self._lookup[dim] # NOTE: Alias must be backed by either a list or dictionary. itr = enumerate(alias.o) if isinstance(alias.o, list) else alias.o.items() for i, x in itr: if x not in dim_lookup: dim_lookup[x] = set() dim_lookup[x].add(i) def delete(self, alias): '''Delete an alias that exists from lookup''' dim = alias.dim[0] dim_lookup = self._lookup[dim] # NOTE: Alias must be backed by either a list or dictionary. itr = enumerate(alias.o) if isinstance(alias.o, list) else alias.o.items() for i, x in itr: del dim_lookup[x] def get(self, dim, target, default=None): if dim not in self._lookup: return default indexes = self._lookup[dim].get(target, None) if indexes is None: return default if len(indexes) == 1: return next(iter(indexes)) else: return list(indexes) def resolve_dim(slicer_index: Tuple, slicer_dim: List) -> List: """ Extracts new dim after applying slicing index and maps it back to the original index list. """ new_slicer_dim = [] reduced_mask = [] for _, curr_idx in enumerate(slicer_index): if isinstance(curr_idx, (tuple, list, slice)): reduced_mask.append(0) else: reduced_mask.append(1) for curr_dim in slicer_dim: if reduced_mask[curr_dim] == 0: new_slicer_dim.append(curr_dim - sum(reduced_mask[:curr_dim])) return new_slicer_dim def reduced_o(tracked: Tracked) -> Union[List, Any]: os = [t.o for t in tracked] os = os[0] if len(os) == 1 else os return os class BaseHandler: @classmethod @abstractmethod def head_slice(cls, o, index_tup, max_dim): raise NotImplementedError() # pragma: no cover @classmethod @abstractmethod def tail_slice(cls, o, tail_index, max_dim, flatten=True): raise NotImplementedError() # pragma: no cover @classmethod @abstractmethod def max_dim(cls, o): raise NotImplementedError() # pragma: no cover @classmethod def default_alias(cls, o): return [] class SeriesHandler(BaseHandler): @classmethod def head_slice(cls, o, index_tup, max_dim): head_index = index_tup[0] is_element = True if isinstance(head_index, int) else False sliced_o = o.iloc[head_index] return is_element, sliced_o, 1 @classmethod def tail_slice(cls, o, tail_index, max_dim, flatten=True): # NOTE: Series only has one dimension, # call slicer again to end the recursion. return AtomicSlicer(o, max_dim=max_dim)[tail_index] @classmethod def max_dim(cls, o): return len(o.shape) @classmethod def default_alias(cls, o): index_alias = Alias(o.index.to_list(), 0) index_alias._name = "index" return [index_alias] class DataFrameHandler(BaseHandler): @classmethod def head_slice(cls, o, index_tup, max_dim): # NOTE: At head slice, we know there are two fixed dimensions. cut_index = index_tup is_element = True if isinstance(cut_index[-1], int) else False sliced_o = o.iloc[cut_index] return is_element, sliced_o, 2 @classmethod def tail_slice(cls, o, tail_index, max_dim, flatten=True): # NOTE: Dataframe has fixed dimensions, # call slicer again to end the recursion. return AtomicSlicer(o, max_dim=max_dim)[tail_index] @classmethod def max_dim(cls, o): return len(o.shape) @classmethod def default_alias(cls, o): index_alias = Alias(o.index.to_list(), 0) index_alias._name = "index" column_alias = Alias(o.columns.to_list(), 1) column_alias._name = "columns" return [index_alias, column_alias] class ArrayHandler(BaseHandler): @classmethod def head_slice(cls, o, index_tup, max_dim): # Check if head is string head_index, tail_index = index_tup[0], index_tup[1:] cut = 1 for sub_index in tail_index: if isinstance(sub_index, str) or cut == len(o.shape): break cut += 1 # Process native array dimensions cut_index = index_tup[:cut] is_element = any([True if isinstance(x, int) else False for x in cut_index]) sliced_o = o[cut_index] return is_element, sliced_o, cut @classmethod def tail_slice(cls, o, tail_index, max_dim, flatten=True): if flatten: # NOTE: If we're dealing with a scipy matrix, # we have to manually flatten it ourselves # to keep consistent to the rest of slicer's API. if _safe_isinstance(o, "scipy.sparse.csc", "csc_matrix"): return AtomicSlicer(o.toarray().flatten(), max_dim=max_dim)[tail_index] elif _safe_isinstance(o, "scipy.sparse.csr", "csr_matrix"): return AtomicSlicer(o.toarray().flatten(), max_dim=max_dim)[tail_index] elif _safe_isinstance(o, "scipy.sparse.dok", "dok_matrix"): return AtomicSlicer(o.toarray().flatten(), max_dim=max_dim)[tail_index] elif _safe_isinstance(o, "scipy.sparse.lil", "lil_matrix"): return AtomicSlicer(o.toarray().flatten(), max_dim=max_dim)[tail_index] else: return AtomicSlicer(o, max_dim=max_dim)[tail_index] else: inner = [AtomicSlicer(e, max_dim=max_dim)[tail_index] for e in o] if _safe_isinstance(o, "numpy", "ndarray"): import numpy if len(inner) > 0 and hasattr(inner[0], "__len__"): ragged = not all(len(x) == len(inner[0]) for x in inner) else: ragged = False if ragged: return numpy.array(inner, dtype=numpy.object) else: return numpy.array(inner) elif _safe_isinstance(o, "torch", "Tensor"): import torch if len(inner) > 0 and isinstance(inner[0], torch.Tensor): return torch.stack(inner) else: return torch.tensor(inner) elif _safe_isinstance(o, "scipy.sparse.csc", "csc_matrix"): from scipy.sparse import vstack out = vstack(inner, format='csc') return out elif _safe_isinstance(o, "scipy.sparse.csr", "csr_matrix"): from scipy.sparse import vstack out = vstack(inner, format='csr') return out elif _safe_isinstance(o, "scipy.sparse.dok", "dok_matrix"): from scipy.sparse import vstack out = vstack(inner, format='dok') return out elif _safe_isinstance(o, "scipy.sparse.lil", "lil_matrix"): from scipy.sparse import vstack out = vstack(inner, format='lil') return out else: raise ValueError(f"Cannot handle type {type(o)}.") # pragma: no cover @classmethod def max_dim(cls, o): if _safe_isinstance(o, "numpy", "ndarray") and o.dtype == "object": return max([UnifiedDataHandler.max_dim(x) for x in o], default=-1) + 1 else: return len(o.shape) class DictHandler(BaseHandler): @classmethod def head_slice(cls, o, index_tup, max_dim): head_index = index_tup[0] if isinstance(head_index, (tuple, list)) and len(index_tup) == 0: return False, o, 1 if isinstance(head_index, (list, tuple)): return ( False, { sub_index: AtomicSlicer(o, max_dim=max_dim)[sub_index] for sub_index in head_index }, 1, ) elif isinstance(head_index, slice): if head_index == slice(None, None, None): return False, o, 1 return False, o[head_index], 1 else: return True, o[head_index], 1 @classmethod def tail_slice(cls, o, tail_index, max_dim, flatten=True): if flatten: return AtomicSlicer(o, max_dim=max_dim)[tail_index] else: return { k: AtomicSlicer(e, max_dim=max_dim)[tail_index] for k, e in o.items() } @classmethod def max_dim(cls, o): return max([UnifiedDataHandler.max_dim(x) for x in o.values()], default=-1) + 1 class ListTupleHandler(BaseHandler): @classmethod def head_slice(cls, o, index_tup, max_dim): head_index = index_tup[0] if isinstance(head_index, (tuple, list)) and len(index_tup) == 0: return False, o, 1 if isinstance(head_index, (list, tuple)): if len(head_index) == 0: return False, o, 1 else: results = [ AtomicSlicer(o, max_dim=max_dim)[sub_index] for sub_index in head_index ] results = tuple(results) if isinstance(o, tuple) else results return False, results, 1 elif isinstance(head_index, slice): return False, o[head_index], 1 elif isinstance(head_index, int): return True, o[head_index], 1 else: # pragma: no cover raise ValueError(f"Invalid key {head_index} for {o}") @classmethod def tail_slice(cls, o, tail_index, max_dim, flatten=True): if flatten: return AtomicSlicer(o, max_dim=max_dim)[tail_index] else: results = [AtomicSlicer(e, max_dim=max_dim)[tail_index] for e in o] return tuple(results) if isinstance(o, tuple) else results @classmethod def max_dim(cls, o): return max([UnifiedDataHandler.max_dim(x) for x in o], default=-1) + 1 class UnifiedDataHandler: """ Registry that maps types to their unified slice calls.""" """ Class attribute that maps type to their unified slice calls.""" type_map = { ("builtins", "list"): ListTupleHandler, ("builtins", "tuple"): ListTupleHandler, ("builtins", "dict"): DictHandler, ("torch", "Tensor"): ArrayHandler, ("numpy", "ndarray"): ArrayHandler, ("scipy.sparse.csc", "csc_matrix"): ArrayHandler, ("scipy.sparse.csr", "csr_matrix"): ArrayHandler, ("scipy.sparse.dok", "dok_matrix"): ArrayHandler, ("scipy.sparse.lil", "lil_matrix"): ArrayHandler, ("pandas.core.frame", "DataFrame"): DataFrameHandler, ("pandas.core.series", "Series"): SeriesHandler, } @classmethod def slice(cls, o, index_tup, max_dim): # NOTE: Unified handles base cases such as empty tuples, which # specialized handlers do not. if isinstance(index_tup, (tuple, list)) and len(index_tup) == 0: return o # Slice as delegated by data handler. o_type = _type_name(o) head_slice = cls.type_map[o_type].head_slice tail_slice = cls.type_map[o_type].tail_slice is_element, sliced_o, cut = head_slice(o, index_tup, max_dim) out = tail_slice(sliced_o, index_tup[cut:], max_dim - cut, is_element) return out @classmethod def max_dim(cls, o): o_type = _type_name(o) if o_type not in cls.type_map: return 0 return cls.type_map[o_type].max_dim(o) @classmethod def default_alias(cls, o): o_type = _type_name(o) if o_type not in cls.type_map: return {} return cls.type_map[o_type].default_alias(o) def _type_name(o: object) -> Tuple[str, str]: return o.__class__.__module__, o.__class__.__name__ def _safe_isinstance( o: object, module_name: str, type_name: Union[str, set, tuple] ) -> bool: o_module, o_type = _type_name(o) if isinstance(type_name, str): return o_module == module_name and o_type == type_name else: return o_module == module_name and o_type in type_name
[ "scipy.sparse.vstack", "numpy.array", "torch.stack", "torch.tensor" ]
[((14349, 14387), 'numpy.array', 'numpy.array', (['inner'], {'dtype': 'numpy.object'}), '(inner, dtype=numpy.object)\n', (14360, 14387), False, 'import numpy\n'), ((14437, 14455), 'numpy.array', 'numpy.array', (['inner'], {}), '(inner)\n', (14448, 14455), False, 'import numpy\n'), ((14644, 14662), 'torch.stack', 'torch.stack', (['inner'], {}), '(inner)\n', (14655, 14662), False, 'import torch\n'), ((14712, 14731), 'torch.tensor', 'torch.tensor', (['inner'], {}), '(inner)\n', (14724, 14731), False, 'import torch\n'), ((14874, 14901), 'scipy.sparse.vstack', 'vstack', (['inner'], {'format': '"""csc"""'}), "(inner, format='csc')\n", (14880, 14901), False, 'from scipy.sparse import vstack\n'), ((15071, 15098), 'scipy.sparse.vstack', 'vstack', (['inner'], {'format': '"""csr"""'}), "(inner, format='csr')\n", (15077, 15098), False, 'from scipy.sparse import vstack\n'), ((15268, 15295), 'scipy.sparse.vstack', 'vstack', (['inner'], {'format': '"""dok"""'}), "(inner, format='dok')\n", (15274, 15295), False, 'from scipy.sparse import vstack\n'), ((15465, 15492), 'scipy.sparse.vstack', 'vstack', (['inner'], {'format': '"""lil"""'}), "(inner, format='lil')\n", (15471, 15492), False, 'from scipy.sparse import vstack\n')]
# Code generated by lark_sdk_gen. DO NOT EDIT. from pylark.lark_request import RawRequestReq, _new_method_option from pylark import lark_type, lark_type_sheet, lark_type_approval import attr import typing import io @attr.s class BatchCreateBitableTableReqTable(object): name: str = attr.ib( default="", metadata={"req_type": "json", "key": "name"} ) # 数据表 名字, 示例值:"table1" @attr.s class BatchCreateBitableTableReq(object): user_id_type: lark_type.IDType = attr.ib( default=None, metadata={"req_type": "query", "key": "user_id_type"} ) # 用户 ID 类型, 示例值:"open_id", 可选值有: `open_id`:用户的 open id, `union_id`:用户的 union id, `user_id`:用户的 user id, 默认值: `open_id`, 当值为 `user_id`, 字段权限要求: 获取用户 user ID app_token: str = attr.ib( default="", metadata={"req_type": "path", "key": "app_token"} ) # bitable app token, 示例值:"<KEY>" tables: typing.List[BatchCreateBitableTableReqTable] = attr.ib( factory=lambda: [], metadata={"req_type": "json", "key": "tables"} ) # tables @attr.s class BatchCreateBitableTableResp(object): table_ids: typing.List[str] = attr.ib( factory=lambda: [], metadata={"req_type": "json", "key": "table_ids"} ) # table ids def _gen_batch_create_bitable_table_req(request, options) -> RawRequestReq: return RawRequestReq( dataclass=BatchCreateBitableTableResp, scope="Bitable", api="BatchCreateBitableTable", method="POST", url="https://open.feishu.cn/open-apis/bitable/v1/apps/:app_token/tables/batch_create", body=request, method_option=_new_method_option(options), need_tenant_access_token=True, need_user_access_token=True, )
[ "pylark.lark_request._new_method_option", "attr.ib" ]
[((289, 354), 'attr.ib', 'attr.ib', ([], {'default': '""""""', 'metadata': "{'req_type': 'json', 'key': 'name'}"}), "(default='', metadata={'req_type': 'json', 'key': 'name'})\n", (296, 354), False, 'import attr\n'), ((482, 558), 'attr.ib', 'attr.ib', ([], {'default': 'None', 'metadata': "{'req_type': 'query', 'key': 'user_id_type'}"}), "(default=None, metadata={'req_type': 'query', 'key': 'user_id_type'})\n", (489, 558), False, 'import attr\n'), ((751, 821), 'attr.ib', 'attr.ib', ([], {'default': '""""""', 'metadata': "{'req_type': 'path', 'key': 'app_token'}"}), "(default='', metadata={'req_type': 'path', 'key': 'app_token'})\n", (758, 821), False, 'import attr\n'), ((929, 1005), 'attr.ib', 'attr.ib', ([], {'factory': '(lambda : [])', 'metadata': "{'req_type': 'json', 'key': 'tables'}"}), "(factory=lambda : [], metadata={'req_type': 'json', 'key': 'tables'})\n", (936, 1005), False, 'import attr\n'), ((1116, 1195), 'attr.ib', 'attr.ib', ([], {'factory': '(lambda : [])', 'metadata': "{'req_type': 'json', 'key': 'table_ids'}"}), "(factory=lambda : [], metadata={'req_type': 'json', 'key': 'table_ids'})\n", (1123, 1195), False, 'import attr\n'), ((1599, 1626), 'pylark.lark_request._new_method_option', '_new_method_option', (['options'], {}), '(options)\n', (1617, 1626), False, 'from pylark.lark_request import RawRequestReq, _new_method_option\n')]
import random import string from selenium.webdriver.common.by import By from dialog import DialogPage from elements import ButtonElement, GridElement, TextElement, InputElement from workflow import find_workflow_component_figures from util import ArgsPrompt, NotifierPage class ComponentPage(DialogPage): """ Component editor page. """ inputs_tab = ButtonElement((By.XPATH, "div/ul/li/a[text()='Inputs']")) slots_tab = ButtonElement((By.XPATH, "div/ul/li/a[text()='Slots']")) outputs_tab = ButtonElement((By.XPATH, "div/ul/li/a[text()='Outputs']")) events_tab = ButtonElement((By.XPATH, "div/ul/li/a[text()='Events']")) inputs = GridElement((By.ID, 'Inputs_props')) outputs = GridElement((By.ID, 'Outputs_props')) def __init__(self, browser, port, locator): super(ComponentPage, self).__init__(browser, port, locator) # It takes a while for the full load to complete. NotifierPage.wait(self) def get_inputs(self): """ Return inputs grid. """ self('inputs_tab').click() return self.inputs def set_input(self, name, value): """ Set input `name` to `value`. """ self('inputs_tab').click() grid = self.inputs found = [] for row in grid.rows: if row[0] == name: row[2] = value return found.append(row[0]) raise RuntimeError('%r not found in inputs %s' % (name, found)) def get_events(self): """ Return events grid. """ self('events_tab').click() return self.events def get_outputs(self): """ Return outputs grid. """ self('outputs_tab').click() return self.outputs def show_slots(self): """switch to slots tab""" self('slots_tab').click() class DriverPage(ComponentPage): """ Driver editor page. """ parameters_tab = ButtonElement((By.XPATH, "div/ul/li/a[text()='Parameters']")) workflow_tab = ButtonElement((By.XPATH, "div/ul/li/a[text()='Workflow']")) objectives_tab = ButtonElement((By.XPATH, "div/ul/li/a[text()='Objectives']")) constraints_tab = ButtonElement((By.XPATH, "div/ul/li/a[text()='Constraints']")) triggers_tab = ButtonElement((By.XPATH, "div/ul/li/a[text()='Triggers']")) parameters = GridElement((By.ID, 'Parameters_parms')) objectives = GridElement((By.ID, 'Objectives_objectives')) constraints = GridElement((By.ID, 'Constraints_constraints')) triggers = GridElement((By.ID, 'Triggers_triggers')) add_parameter = ButtonElement((By.XPATH, "//span[text()='Add Parameter']")) add_objective = ButtonElement((By.XPATH, "//span[text()='Add Objective']")) add_constraint = ButtonElement((By.XPATH, "//span[text()='Add Constraint']")) add_trigger = ButtonElement((By.XPATH, "//span[text()='Add Event']")) def get_parameters(self): """ Return parameters grid. """ self('parameters_tab').click() return self.parameters def get_objectives(self): """ Return objectives grid. """ self('objectives_tab').click() return self.objectives def get_constraints(self): """ Return constraints grid. """ self('constraints_tab').click() return self.constraints def get_triggers(self): """ Return triggers grid. """ self('triggers_tab').click() return self.triggers def new_parameter(self): """ Return :class:`ParameterDialog`. """ self('add_parameter').click() return ParameterDialog(self.browser, self.port, (By.XPATH, "//div[@id='parameter-dialog']/..")) def new_objective(self): """ Return :class:`ObjectiveDialog`. """ self('add_objective').click() return ObjectiveDialog(self.browser, self.port, (By.XPATH, "//div[@id='objective-dialog']/..")) def new_constraint(self): """ Return :class:`ConstraintDialog`. """ self('add_constraint').click() return ConstraintDialog(self.browser, self.port, (By.XPATH, "//div[@id='constraint-dialog']/..")) def new_trigger(self): """ Return :class:`EventDialog`. """ self('add_trigger').click() return EventDialog(self.browser, self.port, (By.XPATH, "//div[@id='event-dialog']/..")) def show_workflow(self): """switch to workflow tab""" self('workflow_tab').click() def get_workflow_component_figures(self): """ Return workflow component figure elements. """ return find_workflow_component_figures(self) class ParameterDialog(DialogPage): """ Dialog for adding a new parameter. """ target = InputElement((By.ID, 'parameter-target')) low = InputElement((By.ID, 'parameter-low')) high = InputElement((By.ID, 'parameter-high')) scaler = InputElement((By.ID, 'parameter-scaler')) adder = InputElement((By.ID, 'parameter-adder')) name = InputElement((By.ID, 'parameter-name')) ok = ButtonElement((By.ID, 'parameter-ok')) cancel = ButtonElement((By.ID, 'parameter-cancel')) class ObjectiveDialog(DialogPage): """ Dialog for adding a new objective. """ expr = InputElement((By.ID, 'objective-expr')) name = InputElement((By.ID, 'objective-name')) ok = ButtonElement((By.ID, 'objective-ok')) cancel = ButtonElement((By.ID, 'objective-cancel')) class ConstraintDialog(DialogPage): """ Dialog for adding a new constraint. """ expr = InputElement((By.ID, 'constraint-expr')) scaler = InputElement((By.ID, 'constraint-scaler')) adder = InputElement((By.ID, 'constraint-adder')) name = InputElement((By.ID, 'constraint-name')) ok = ButtonElement((By.ID, 'constraint-ok')) cancel = ButtonElement((By.ID, 'constraint-cancel')) class EventDialog(DialogPage): """ Dialog for adding a new event. """ target = InputElement((By.ID, 'event-target')) ok = ButtonElement((By.ID, 'event-ok')) cancel = ButtonElement((By.ID, 'event-cancel')) class AssemblyPage(ComponentPage): """ Assembly editor page. """ dataflow_tab = ButtonElement((By.XPATH, "div/ul/li/a[text()='Dataflow']")) def show_dataflow(self): self('dataflow_tab').element.click() class PropertiesPage(DialogPage): """ Component properties page. """ header = TextElement((By.XPATH, 'h3[1]')) inputs = GridElement((By.ID, 'Inputs_props')) outputs = GridElement((By.ID, 'Outputs_props')) def set_input(self, name, value): """ Set input `name` to `value`. """ self('inputs_tab').click() grid = self.inputs found = [] for row in grid.rows: if row[0] == name: row[1] = value return found.append(row[0]) raise RuntimeError('%r not found in inputs %s' % (name, found)) class NameInstanceDialog(ArgsPrompt): """ Adds :meth:`create_and_dismiss` to :class:`ArgsPrompt`. """ def __init__(self, parent): super(NameInstanceDialog, self).__init__(parent.browser, parent.port) def create_and_dismiss(self, name=None): """Names the instance. Returns the name. Force a name with the name argument""" chars = string.ascii_uppercase name = name or ''.join(random.choice(chars).strip() for x in range(8)) self.name = name self.click_ok() return name
[ "elements.InputElement", "random.choice", "elements.GridElement", "elements.ButtonElement", "util.NotifierPage.wait", "workflow.find_workflow_component_figures", "elements.TextElement" ]
[((363, 420), 'elements.ButtonElement', 'ButtonElement', (['(By.XPATH, "div/ul/li/a[text()=\'Inputs\']")'], {}), '((By.XPATH, "div/ul/li/a[text()=\'Inputs\']"))\n', (376, 420), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((439, 495), 'elements.ButtonElement', 'ButtonElement', (['(By.XPATH, "div/ul/li/a[text()=\'Slots\']")'], {}), '((By.XPATH, "div/ul/li/a[text()=\'Slots\']"))\n', (452, 495), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((514, 572), 'elements.ButtonElement', 'ButtonElement', (['(By.XPATH, "div/ul/li/a[text()=\'Outputs\']")'], {}), '((By.XPATH, "div/ul/li/a[text()=\'Outputs\']"))\n', (527, 572), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((591, 648), 'elements.ButtonElement', 'ButtonElement', (['(By.XPATH, "div/ul/li/a[text()=\'Events\']")'], {}), '((By.XPATH, "div/ul/li/a[text()=\'Events\']"))\n', (604, 648), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((664, 700), 'elements.GridElement', 'GridElement', (["(By.ID, 'Inputs_props')"], {}), "((By.ID, 'Inputs_props'))\n", (675, 700), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((715, 752), 'elements.GridElement', 'GridElement', (["(By.ID, 'Outputs_props')"], {}), "((By.ID, 'Outputs_props'))\n", (726, 752), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((1909, 1970), 'elements.ButtonElement', 'ButtonElement', (['(By.XPATH, "div/ul/li/a[text()=\'Parameters\']")'], {}), '((By.XPATH, "div/ul/li/a[text()=\'Parameters\']"))\n', (1922, 1970), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((1993, 2052), 'elements.ButtonElement', 'ButtonElement', (['(By.XPATH, "div/ul/li/a[text()=\'Workflow\']")'], {}), '((By.XPATH, "div/ul/li/a[text()=\'Workflow\']"))\n', (2006, 2052), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((2075, 2136), 'elements.ButtonElement', 'ButtonElement', (['(By.XPATH, "div/ul/li/a[text()=\'Objectives\']")'], {}), '((By.XPATH, "div/ul/li/a[text()=\'Objectives\']"))\n', (2088, 2136), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((2159, 2221), 'elements.ButtonElement', 'ButtonElement', (['(By.XPATH, "div/ul/li/a[text()=\'Constraints\']")'], {}), '((By.XPATH, "div/ul/li/a[text()=\'Constraints\']"))\n', (2172, 2221), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((2244, 2303), 'elements.ButtonElement', 'ButtonElement', (['(By.XPATH, "div/ul/li/a[text()=\'Triggers\']")'], {}), '((By.XPATH, "div/ul/li/a[text()=\'Triggers\']"))\n', (2257, 2303), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((2323, 2363), 'elements.GridElement', 'GridElement', (["(By.ID, 'Parameters_parms')"], {}), "((By.ID, 'Parameters_parms'))\n", (2334, 2363), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((2382, 2427), 'elements.GridElement', 'GridElement', (["(By.ID, 'Objectives_objectives')"], {}), "((By.ID, 'Objectives_objectives'))\n", (2393, 2427), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((2446, 2493), 'elements.GridElement', 'GridElement', (["(By.ID, 'Constraints_constraints')"], {}), "((By.ID, 'Constraints_constraints'))\n", (2457, 2493), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((2512, 2553), 'elements.GridElement', 'GridElement', (["(By.ID, 'Triggers_triggers')"], {}), "((By.ID, 'Triggers_triggers'))\n", (2523, 2553), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((2576, 2635), 'elements.ButtonElement', 'ButtonElement', (['(By.XPATH, "//span[text()=\'Add Parameter\']")'], {}), '((By.XPATH, "//span[text()=\'Add Parameter\']"))\n', (2589, 2635), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((2657, 2716), 'elements.ButtonElement', 'ButtonElement', (['(By.XPATH, "//span[text()=\'Add Objective\']")'], {}), '((By.XPATH, "//span[text()=\'Add Objective\']"))\n', (2670, 2716), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((2738, 2798), 'elements.ButtonElement', 'ButtonElement', (['(By.XPATH, "//span[text()=\'Add Constraint\']")'], {}), '((By.XPATH, "//span[text()=\'Add Constraint\']"))\n', (2751, 2798), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((2820, 2875), 'elements.ButtonElement', 'ButtonElement', (['(By.XPATH, "//span[text()=\'Add Event\']")'], {}), '((By.XPATH, "//span[text()=\'Add Event\']"))\n', (2833, 2875), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((4792, 4833), 'elements.InputElement', 'InputElement', (["(By.ID, 'parameter-target')"], {}), "((By.ID, 'parameter-target'))\n", (4804, 4833), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((4848, 4886), 'elements.InputElement', 'InputElement', (["(By.ID, 'parameter-low')"], {}), "((By.ID, 'parameter-low'))\n", (4860, 4886), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((4901, 4940), 'elements.InputElement', 'InputElement', (["(By.ID, 'parameter-high')"], {}), "((By.ID, 'parameter-high'))\n", (4913, 4940), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((4955, 4996), 'elements.InputElement', 'InputElement', (["(By.ID, 'parameter-scaler')"], {}), "((By.ID, 'parameter-scaler'))\n", (4967, 4996), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((5011, 5051), 'elements.InputElement', 'InputElement', (["(By.ID, 'parameter-adder')"], {}), "((By.ID, 'parameter-adder'))\n", (5023, 5051), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((5066, 5105), 'elements.InputElement', 'InputElement', (["(By.ID, 'parameter-name')"], {}), "((By.ID, 'parameter-name'))\n", (5078, 5105), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((5119, 5157), 'elements.ButtonElement', 'ButtonElement', (["(By.ID, 'parameter-ok')"], {}), "((By.ID, 'parameter-ok'))\n", (5132, 5157), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((5171, 5213), 'elements.ButtonElement', 'ButtonElement', (["(By.ID, 'parameter-cancel')"], {}), "((By.ID, 'parameter-cancel'))\n", (5184, 5213), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((5313, 5352), 'elements.InputElement', 'InputElement', (["(By.ID, 'objective-expr')"], {}), "((By.ID, 'objective-expr'))\n", (5325, 5352), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((5367, 5406), 'elements.InputElement', 'InputElement', (["(By.ID, 'objective-name')"], {}), "((By.ID, 'objective-name'))\n", (5379, 5406), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((5420, 5458), 'elements.ButtonElement', 'ButtonElement', (["(By.ID, 'objective-ok')"], {}), "((By.ID, 'objective-ok'))\n", (5433, 5458), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((5472, 5514), 'elements.ButtonElement', 'ButtonElement', (["(By.ID, 'objective-cancel')"], {}), "((By.ID, 'objective-cancel'))\n", (5485, 5514), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((5616, 5656), 'elements.InputElement', 'InputElement', (["(By.ID, 'constraint-expr')"], {}), "((By.ID, 'constraint-expr'))\n", (5628, 5656), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((5671, 5713), 'elements.InputElement', 'InputElement', (["(By.ID, 'constraint-scaler')"], {}), "((By.ID, 'constraint-scaler'))\n", (5683, 5713), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((5728, 5769), 'elements.InputElement', 'InputElement', (["(By.ID, 'constraint-adder')"], {}), "((By.ID, 'constraint-adder'))\n", (5740, 5769), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((5784, 5824), 'elements.InputElement', 'InputElement', (["(By.ID, 'constraint-name')"], {}), "((By.ID, 'constraint-name'))\n", (5796, 5824), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((5838, 5877), 'elements.ButtonElement', 'ButtonElement', (["(By.ID, 'constraint-ok')"], {}), "((By.ID, 'constraint-ok'))\n", (5851, 5877), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((5891, 5934), 'elements.ButtonElement', 'ButtonElement', (["(By.ID, 'constraint-cancel')"], {}), "((By.ID, 'constraint-cancel'))\n", (5904, 5934), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((6026, 6063), 'elements.InputElement', 'InputElement', (["(By.ID, 'event-target')"], {}), "((By.ID, 'event-target'))\n", (6038, 6063), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((6077, 6111), 'elements.ButtonElement', 'ButtonElement', (["(By.ID, 'event-ok')"], {}), "((By.ID, 'event-ok'))\n", (6090, 6111), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((6125, 6163), 'elements.ButtonElement', 'ButtonElement', (["(By.ID, 'event-cancel')"], {}), "((By.ID, 'event-cancel'))\n", (6138, 6163), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((6255, 6314), 'elements.ButtonElement', 'ButtonElement', (['(By.XPATH, "div/ul/li/a[text()=\'Dataflow\']")'], {}), '((By.XPATH, "div/ul/li/a[text()=\'Dataflow\']"))\n', (6268, 6314), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((6480, 6512), 'elements.TextElement', 'TextElement', (["(By.XPATH, 'h3[1]')"], {}), "((By.XPATH, 'h3[1]'))\n", (6491, 6512), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((6527, 6563), 'elements.GridElement', 'GridElement', (["(By.ID, 'Inputs_props')"], {}), "((By.ID, 'Inputs_props'))\n", (6538, 6563), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((6578, 6615), 'elements.GridElement', 'GridElement', (["(By.ID, 'Outputs_props')"], {}), "((By.ID, 'Outputs_props'))\n", (6589, 6615), False, 'from elements import ButtonElement, GridElement, TextElement, InputElement\n'), ((936, 959), 'util.NotifierPage.wait', 'NotifierPage.wait', (['self'], {}), '(self)\n', (953, 959), False, 'from util import ArgsPrompt, NotifierPage\n'), ((4655, 4692), 'workflow.find_workflow_component_figures', 'find_workflow_component_figures', (['self'], {}), '(self)\n', (4686, 4692), False, 'from workflow import find_workflow_component_figures\n'), ((7424, 7444), 'random.choice', 'random.choice', (['chars'], {}), '(chars)\n', (7437, 7444), False, 'import random\n')]
# Generated by Django 3.2 on 2021-04-18 02:04 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('students', '0002_auto_20210418_0405'), ] operations = [ migrations.AlterField( model_name='student', name='admitted_at', field=models.DateField(verbose_name='Дата поступления'), ), migrations.AlterField( model_name='student', name='due_at', field=models.DateField(blank=True, null=True, verbose_name='Дата окончания'), ), migrations.AlterField( model_name='student', name='excluded_at', field=models.DateField(blank=True, null=True, verbose_name='Дата исключения'), ), ]
[ "django.db.models.DateField" ]
[((341, 390), 'django.db.models.DateField', 'models.DateField', ([], {'verbose_name': '"""Дата поступления"""'}), "(verbose_name='Дата поступления')\n", (357, 390), False, 'from django.db import migrations, models\n'), ((513, 583), 'django.db.models.DateField', 'models.DateField', ([], {'blank': '(True)', 'null': '(True)', 'verbose_name': '"""Дата окончания"""'}), "(blank=True, null=True, verbose_name='Дата окончания')\n", (529, 583), False, 'from django.db import migrations, models\n'), ((711, 782), 'django.db.models.DateField', 'models.DateField', ([], {'blank': '(True)', 'null': '(True)', 'verbose_name': '"""Дата исключения"""'}), "(blank=True, null=True, verbose_name='Дата исключения')\n", (727, 782), False, 'from django.db import migrations, models\n')]
# This file is part of the GBI project. # Copyright (C) 2013 Omniscale GmbH & Co. KG <http://omniscale.com> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import shapely import datetime from sqlalchemy.orm import backref from geoalchemy2.types import Geometry from geoalchemy2.shape import to_shape from gbi_server.extensions import db class Log(db.Model): __tablename__ = 'logs' id = db.Column(db.Integer, primary_key=True) time = db.Column(db.DateTime, nullable=False) user_id = db.Column(db.Integer, db.ForeignKey('users.id'), nullable=False) user = db.relationship('User', backref=backref('logs', cascade="all,delete,delete-orphan")) action = db.Column(db.String(24), nullable=False) geometry = db.Column(Geometry('MULTIPOLYGON', srid=4326)) format = db.Column(db.String) srs = db.Column(db.String) mapping = db.Column(db.String) source = db.Column(db.String) layer = db.Column(db.String) zoom_level_start = db.Column(db.Integer) zoom_level_end = db.Column(db.Integer) refreshed = db.Column(db.Boolean) @property def geometry_as_geojson(self): if self.geometry is not None: geom = json.dumps( shapely.geometry.mapping(to_shape(self.geometry)) ) return geom return False class SearchLog(db.Model): __tablename__ = 'search_logs' id = db.Column(db.Integer, primary_key=True) time = db.Column(db.DateTime, default=datetime.datetime.utcnow, nullable=False) user_id = db.Column(db.Integer, db.ForeignKey('users.id'), nullable=False) user = db.relationship('User', backref=backref('search_logs', cascade="all,delete,delete-orphan")) class SearchLogGeometry(db.Model): __tablename__ = 'search_log_geometries' id = db.Column(db.Integer, primary_key=True) search_log_id = db.Column(db.Integer, db.ForeignKey('search_logs.id'), nullable=False) search_log = db.relationship('SearchLog', backref=backref('geometries', cascade="all,delete,delete-orphan")) geometry = db.Column(Geometry('POLYGON', srid=3857)) identifier = db.Column(db.String)
[ "geoalchemy2.types.Geometry", "gbi_server.extensions.db.Column", "gbi_server.extensions.db.ForeignKey", "geoalchemy2.shape.to_shape", "gbi_server.extensions.db.String", "sqlalchemy.orm.backref" ]
[((909, 948), 'gbi_server.extensions.db.Column', 'db.Column', (['db.Integer'], {'primary_key': '(True)'}), '(db.Integer, primary_key=True)\n', (918, 948), False, 'from gbi_server.extensions import db\n'), ((960, 998), 'gbi_server.extensions.db.Column', 'db.Column', (['db.DateTime'], {'nullable': '(False)'}), '(db.DateTime, nullable=False)\n', (969, 998), False, 'from gbi_server.extensions import db\n'), ((1305, 1325), 'gbi_server.extensions.db.Column', 'db.Column', (['db.String'], {}), '(db.String)\n', (1314, 1325), False, 'from gbi_server.extensions import db\n'), ((1336, 1356), 'gbi_server.extensions.db.Column', 'db.Column', (['db.String'], {}), '(db.String)\n', (1345, 1356), False, 'from gbi_server.extensions import db\n'), ((1371, 1391), 'gbi_server.extensions.db.Column', 'db.Column', (['db.String'], {}), '(db.String)\n', (1380, 1391), False, 'from gbi_server.extensions import db\n'), ((1405, 1425), 'gbi_server.extensions.db.Column', 'db.Column', (['db.String'], {}), '(db.String)\n', (1414, 1425), False, 'from gbi_server.extensions import db\n'), ((1438, 1458), 'gbi_server.extensions.db.Column', 'db.Column', (['db.String'], {}), '(db.String)\n', (1447, 1458), False, 'from gbi_server.extensions import db\n'), ((1482, 1503), 'gbi_server.extensions.db.Column', 'db.Column', (['db.Integer'], {}), '(db.Integer)\n', (1491, 1503), False, 'from gbi_server.extensions import db\n'), ((1525, 1546), 'gbi_server.extensions.db.Column', 'db.Column', (['db.Integer'], {}), '(db.Integer)\n', (1534, 1546), False, 'from gbi_server.extensions import db\n'), ((1563, 1584), 'gbi_server.extensions.db.Column', 'db.Column', (['db.Boolean'], {}), '(db.Boolean)\n', (1572, 1584), False, 'from gbi_server.extensions import db\n'), ((1902, 1941), 'gbi_server.extensions.db.Column', 'db.Column', (['db.Integer'], {'primary_key': '(True)'}), '(db.Integer, primary_key=True)\n', (1911, 1941), False, 'from gbi_server.extensions import db\n'), ((1953, 2025), 'gbi_server.extensions.db.Column', 'db.Column', (['db.DateTime'], {'default': 'datetime.datetime.utcnow', 'nullable': '(False)'}), '(db.DateTime, default=datetime.datetime.utcnow, nullable=False)\n', (1962, 2025), False, 'from gbi_server.extensions import db\n'), ((2300, 2339), 'gbi_server.extensions.db.Column', 'db.Column', (['db.Integer'], {'primary_key': '(True)'}), '(db.Integer, primary_key=True)\n', (2309, 2339), False, 'from gbi_server.extensions import db\n'), ((2620, 2640), 'gbi_server.extensions.db.Column', 'db.Column', (['db.String'], {}), '(db.String)\n', (2629, 2640), False, 'from gbi_server.extensions import db\n'), ((1036, 1061), 'gbi_server.extensions.db.ForeignKey', 'db.ForeignKey', (['"""users.id"""'], {}), "('users.id')\n", (1049, 1061), False, 'from gbi_server.extensions import db\n'), ((1199, 1212), 'gbi_server.extensions.db.String', 'db.String', (['(24)'], {}), '(24)\n', (1208, 1212), False, 'from gbi_server.extensions import db\n'), ((1255, 1290), 'geoalchemy2.types.Geometry', 'Geometry', (['"""MULTIPOLYGON"""'], {'srid': '(4326)'}), "('MULTIPOLYGON', srid=4326)\n", (1263, 1290), False, 'from geoalchemy2.types import Geometry\n'), ((2063, 2088), 'gbi_server.extensions.db.ForeignKey', 'db.ForeignKey', (['"""users.id"""'], {}), "('users.id')\n", (2076, 2088), False, 'from gbi_server.extensions import db\n'), ((2383, 2414), 'gbi_server.extensions.db.ForeignKey', 'db.ForeignKey', (['"""search_logs.id"""'], {}), "('search_logs.id')\n", (2396, 2414), False, 'from gbi_server.extensions import db\n'), ((2571, 2601), 'geoalchemy2.types.Geometry', 'Geometry', (['"""POLYGON"""'], {'srid': '(3857)'}), "('POLYGON', srid=3857)\n", (2579, 2601), False, 'from geoalchemy2.types import Geometry\n'), ((1122, 1173), 'sqlalchemy.orm.backref', 'backref', (['"""logs"""'], {'cascade': '"""all,delete,delete-orphan"""'}), "('logs', cascade='all,delete,delete-orphan')\n", (1129, 1173), False, 'from sqlalchemy.orm import backref\n'), ((2149, 2207), 'sqlalchemy.orm.backref', 'backref', (['"""search_logs"""'], {'cascade': '"""all,delete,delete-orphan"""'}), "('search_logs', cascade='all,delete,delete-orphan')\n", (2156, 2207), False, 'from sqlalchemy.orm import backref\n'), ((2486, 2543), 'sqlalchemy.orm.backref', 'backref', (['"""geometries"""'], {'cascade': '"""all,delete,delete-orphan"""'}), "('geometries', cascade='all,delete,delete-orphan')\n", (2493, 2543), False, 'from sqlalchemy.orm import backref\n'), ((1745, 1768), 'geoalchemy2.shape.to_shape', 'to_shape', (['self.geometry'], {}), '(self.geometry)\n', (1753, 1768), False, 'from geoalchemy2.shape import to_shape\n')]
from torch import nn class NeuralNetwork(nn.Module): def __init__(self, h1, h2, num_classes=10, name='NN'): super().__init__() self.name = name self.flatten = nn.Flatten() self.linear_relu_stack = nn.Sequential( nn.Linear(28*28, h1), nn.ReLU(), nn.Linear(h1, h2), nn.ReLU(), nn.Linear(h2, 10) ) def forward(self, x): x = self.flatten(x) x = self.linear_relu_stack(x) return x def get_name(self): return self.name def get_type(self): return 'NeuralNetwork' def num_params(self): return sum(p.numel() for p in self.parameters() if p.requires_grad) class CNN(nn.Module): def __init__(self, h1=64, h2=128, input_size=28, num_classes=10, name='CNN'): super().__init__() self.name = name self.conv1 = nn.Sequential( nn.Conv2d(1, h1, 5, padding='same'), nn.ReLU(), nn.MaxPool2d(2, 2) ) self.conv2 = nn.Sequential( nn.Conv2d(h1, h2, 5, padding='same'), nn.ReLU(), nn.MaxPool2d(2, 2) ) self.flatten = nn.Flatten() num_neurons = h2 * (input_size // (2*2))**2 self.fc = nn.Linear(num_neurons, num_classes) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.flatten(x) x = self.fc(x) return x def get_name(self): return self.name def get_type(self): return 'CNN' def num_params(self): return sum(p.numel() for p in self.parameters() if p.requires_grad)
[ "torch.nn.ReLU", "torch.nn.Conv2d", "torch.nn.Linear", "torch.nn.MaxPool2d", "torch.nn.Flatten" ]
[((168, 180), 'torch.nn.Flatten', 'nn.Flatten', ([], {}), '()\n', (178, 180), False, 'from torch import nn\n'), ((979, 991), 'torch.nn.Flatten', 'nn.Flatten', ([], {}), '()\n', (989, 991), False, 'from torch import nn\n'), ((1050, 1085), 'torch.nn.Linear', 'nn.Linear', (['num_neurons', 'num_classes'], {}), '(num_neurons, num_classes)\n', (1059, 1085), False, 'from torch import nn\n'), ((226, 248), 'torch.nn.Linear', 'nn.Linear', (['(28 * 28)', 'h1'], {}), '(28 * 28, h1)\n', (235, 248), False, 'from torch import nn\n'), ((252, 261), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (259, 261), False, 'from torch import nn\n'), ((266, 283), 'torch.nn.Linear', 'nn.Linear', (['h1', 'h2'], {}), '(h1, h2)\n', (275, 283), False, 'from torch import nn\n'), ((288, 297), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (295, 297), False, 'from torch import nn\n'), ((303, 320), 'torch.nn.Linear', 'nn.Linear', (['h2', '(10)'], {}), '(h2, 10)\n', (312, 320), False, 'from torch import nn\n'), ((769, 804), 'torch.nn.Conv2d', 'nn.Conv2d', (['(1)', 'h1', '(5)'], {'padding': '"""same"""'}), "(1, h1, 5, padding='same')\n", (778, 804), False, 'from torch import nn\n'), ((809, 818), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (816, 818), False, 'from torch import nn\n'), ((823, 841), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', (['(2)', '(2)'], {}), '(2, 2)\n', (835, 841), False, 'from torch import nn\n'), ((879, 915), 'torch.nn.Conv2d', 'nn.Conv2d', (['h1', 'h2', '(5)'], {'padding': '"""same"""'}), "(h1, h2, 5, padding='same')\n", (888, 915), False, 'from torch import nn\n'), ((920, 929), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (927, 929), False, 'from torch import nn\n'), ((934, 952), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', (['(2)', '(2)'], {}), '(2, 2)\n', (946, 952), False, 'from torch import nn\n')]
import inspect from typing import Callable, Any, Tuple, get_type_hints from amino import Maybe, _, Just, Boolean, Lists, Nothing, Either, L, List, Nil, Map, Left from amino.dat import Dat from amino.state import StateT from amino.util.tpe import first_type_arg, type_arg, is_subclass from ribosome.rpc.data.nargs import Nargs def analyse_state_type(tpe: type) -> Tuple[Either[str, type], Either[str, type]]: return ( (first_type_arg(tpe), type_arg(tpe, 1)) if tpe is not None and is_subclass(tpe, StateT) else (Left('not a StateT'), Left('not a StateT')) ) def analyse_return_type(fun: Callable[..., Any], hints: Map[str, type] ) -> Tuple[type, Either[str, type], Either[str, type]]: main_rettype = getattr(fun, 'tpe', hints.lift('return') | None) state_type, return_type = analyse_state_type(main_rettype) return main_rettype, state_type, return_type def cons_params_spec(fun: Callable[..., Any]) -> None: argspec = inspect.getfullargspec(fun) hints = Map(get_type_hints(fun)) params = Lists.wrap(argspec.args) defaults = Lists.wrap(argspec.defaults or ()) method = Boolean(params.head.contains('self')) param_count = params.length - method.to_int min = param_count - defaults.length max = (~Boolean(argspec.varargs or argspec.varkw)).m(param_count) nargs = Nargs.cons(min, max) types = params.traverse(hints.lift, Maybe) | Nil main_rettype, state_type, return_type = analyse_return_type(fun, hints) return ParamsSpec(nargs, min, max, method, types, main_rettype, state_type, return_type | (lambda: main_rettype)) class ParamsSpec(Dat['ParamsSpec']): @staticmethod def from_function(fun: Callable[..., Any]) -> 'ParamsSpec': f = getattr(fun, '__wrapped__', fun) return cons_params_spec(f) @staticmethod def from_type(tpe: type) -> 'ParamsSpec': return cons_params_spec(tpe.__init__) def __init__( self, nargs: Nargs, min: int, max: Maybe[int], method: Boolean, types: List[type], rettype: type, state_type: Maybe[type], return_type: type, ) -> None: self.nargs = nargs self.min = min self.max = max self.method = method self.types = types self.rettype = rettype self.state_type = state_type self.return_type = return_type @property def exact_count(self) -> Maybe[int]: return Just(self.min) if self.max.contains(self.min) else Nothing class ArgValidator(Dat['ArgValidator']): def __init__(self, spec: ParamsSpec) -> None: self.spec = spec @property def min(self) -> int: return self.spec.min @property def max(self) -> Maybe[int]: return self.spec.max def validate(self, count: int) -> Boolean: return Boolean(self.min <= count and not self.max.exists(_ < count)) def error(self, args: tuple, desc: str, name: str) -> str: return f'argument count for {desc} `{name}` is {len(args)}, must be {self.count_spec} ({args})' @property def count_spec(self) -> str: return ( self.spec.exact_count / (lambda a: f'exactly {a}' if a > 0 else 'none') | ( self.max / (lambda mx: f'between {self.min} and {mx}') | f'at least {self.min}' ) ) def either(self, args: tuple, desc: str, name: str) -> Either[str, None]: return self.validate(len(args)).e(L(self.error)(args, desc, name), None) __all__ = ('ArgValidator', 'ParamsSpec')
[ "amino.Left", "inspect.getfullargspec", "amino.Boolean", "typing.get_type_hints", "amino.Lists.wrap", "amino.util.tpe.first_type_arg", "amino.util.tpe.type_arg", "amino.Just", "ribosome.rpc.data.nargs.Nargs.cons", "amino.util.tpe.is_subclass", "amino.L" ]
[((997, 1024), 'inspect.getfullargspec', 'inspect.getfullargspec', (['fun'], {}), '(fun)\n', (1019, 1024), False, 'import inspect\n'), ((1075, 1099), 'amino.Lists.wrap', 'Lists.wrap', (['argspec.args'], {}), '(argspec.args)\n', (1085, 1099), False, 'from amino import Maybe, _, Just, Boolean, Lists, Nothing, Either, L, List, Nil, Map, Left\n'), ((1115, 1149), 'amino.Lists.wrap', 'Lists.wrap', (['(argspec.defaults or ())'], {}), '(argspec.defaults or ())\n', (1125, 1149), False, 'from amino import Maybe, _, Just, Boolean, Lists, Nothing, Either, L, List, Nil, Map, Left\n'), ((1371, 1391), 'ribosome.rpc.data.nargs.Nargs.cons', 'Nargs.cons', (['min', 'max'], {}), '(min, max)\n', (1381, 1391), False, 'from ribosome.rpc.data.nargs import Nargs\n'), ((1041, 1060), 'typing.get_type_hints', 'get_type_hints', (['fun'], {}), '(fun)\n', (1055, 1060), False, 'from typing import Callable, Any, Tuple, get_type_hints\n'), ((504, 528), 'amino.util.tpe.is_subclass', 'is_subclass', (['tpe', 'StateT'], {}), '(tpe, StateT)\n', (515, 528), False, 'from amino.util.tpe import first_type_arg, type_arg, is_subclass\n'), ((434, 453), 'amino.util.tpe.first_type_arg', 'first_type_arg', (['tpe'], {}), '(tpe)\n', (448, 453), False, 'from amino.util.tpe import first_type_arg, type_arg, is_subclass\n'), ((455, 471), 'amino.util.tpe.type_arg', 'type_arg', (['tpe', '(1)'], {}), '(tpe, 1)\n', (463, 471), False, 'from amino.util.tpe import first_type_arg, type_arg, is_subclass\n'), ((543, 563), 'amino.Left', 'Left', (['"""not a StateT"""'], {}), "('not a StateT')\n", (547, 563), False, 'from amino import Maybe, _, Just, Boolean, Lists, Nothing, Either, L, List, Nil, Map, Left\n'), ((565, 585), 'amino.Left', 'Left', (['"""not a StateT"""'], {}), "('not a StateT')\n", (569, 585), False, 'from amino import Maybe, _, Just, Boolean, Lists, Nothing, Either, L, List, Nil, Map, Left\n'), ((2543, 2557), 'amino.Just', 'Just', (['self.min'], {}), '(self.min)\n', (2547, 2557), False, 'from amino import Maybe, _, Just, Boolean, Lists, Nothing, Either, L, List, Nil, Map, Left\n'), ((1301, 1342), 'amino.Boolean', 'Boolean', (['(argspec.varargs or argspec.varkw)'], {}), '(argspec.varargs or argspec.varkw)\n', (1308, 1342), False, 'from amino import Maybe, _, Just, Boolean, Lists, Nothing, Either, L, List, Nil, Map, Left\n'), ((3599, 3612), 'amino.L', 'L', (['self.error'], {}), '(self.error)\n', (3600, 3612), False, 'from amino import Maybe, _, Just, Boolean, Lists, Nothing, Either, L, List, Nil, Map, Left\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # ************************************************************************** # Copyright © 2017 jianglin # File Name: jobs.py # Author: jianglin # Email: <EMAIL> # Created: 2017-02-02 14:28:16 (CST) # Last Update: Sunday 2018-09-30 17:50:05 (CST) # By: # Description: # ************************************************************************** from time import time, sleep def scheduler_vvv(): '''输出hello world''' print('hello world') def scheduler_kkk(): '''输出helloorld''' print('helloorld') def scheduler_time(a): ''' 输出时间,参数a asasdsda ''' print('{}{}'.format(a, time())) def scheduler_vvvv(): ''' sleep 20s ''' print('sleep start') sleep(10) print('sleep end')
[ "time.time", "time.sleep" ]
[((755, 764), 'time.sleep', 'sleep', (['(10)'], {}), '(10)\n', (760, 764), False, 'from time import time, sleep\n'), ((663, 669), 'time.time', 'time', ([], {}), '()\n', (667, 669), False, 'from time import time, sleep\n')]
#!/usr/bin/env python from distutils.core import setup setup(name='queryCitefile', install_requires=[], version='0.1', description='Simple tool to process mwcites output', author='<NAME>', author_email='<EMAIL>', url='https://github.com/tarrow/queryCiteFile', py_modules=['queryCiteFile'] )
[ "distutils.core.setup" ]
[((57, 306), 'distutils.core.setup', 'setup', ([], {'name': '"""queryCitefile"""', 'install_requires': '[]', 'version': '"""0.1"""', 'description': '"""Simple tool to process mwcites output"""', 'author': '"""<NAME>"""', 'author_email': '"""<EMAIL>"""', 'url': '"""https://github.com/tarrow/queryCiteFile"""', 'py_modules': "['queryCiteFile']"}), "(name='queryCitefile', install_requires=[], version='0.1', description\n ='Simple tool to process mwcites output', author='<NAME>', author_email\n ='<EMAIL>', url='https://github.com/tarrow/queryCiteFile', py_modules=[\n 'queryCiteFile'])\n", (62, 306), False, 'from distutils.core import setup\n')]
import fnmatch import os import posixpath import re from enum import IntEnum from . import builtin from ..file_types import File, Directory from ..iterutils import iterate, listify from ..backends.make import writer as make from ..backends.ninja import writer as ninja from ..backends.make.syntax import Writer, Syntax from ..build_inputs import build_input from ..path import Path, Root from ..platforms import known_platforms build_input('find_dirs')(lambda build_inputs, env: set()) depfile_name = '.bfg_find_deps' exclude_globs = ['.*#', '*~', '#*#'] @builtin.function() class FindResult(IntEnum): include = 0 not_now = 1 exclude = 2 def write_depfile(env, path, output, seen_dirs, makeify=False): with open(path.string(env.base_dirs), 'w') as f: # Since this file is in the build dir, we can use relative dirs for # deps also in the build dir. roots = env.base_dirs.copy() roots[Root.builddir] = None out = Writer(f) out.write(output.string(roots), Syntax.target) out.write_literal(':') for i in seen_dirs: out.write_literal(' ') out.write(i.string(roots), Syntax.dependency) out.write_literal('\n') if makeify: for i in seen_dirs: out.write(i.string(roots), Syntax.target) out.write_literal(':\n') def _listdir(path): dirs, nondirs = [], [] try: names = os.listdir(path) for name in names: # Use POSIX paths so that the result is platform-agnostic. curpath = posixpath.join(path, name) if os.path.isdir(curpath): dirs.append((name, curpath)) else: nondirs.append((name, curpath)) except Exception: pass return dirs, nondirs def _walk_flat(top): if os.path.exists(top): yield (top,) + _listdir(top) def _walk_recursive(top): if not os.path.exists(top): return dirs, nondirs = _listdir(top) yield top, dirs, nondirs for name, path in dirs: if not os.path.islink(path): for i in _walk_recursive(path): yield i def _filter_from_glob(match_type, matches, extra, exclude): matches = [re.compile(fnmatch.translate(i)) for i in iterate(matches)] extra = [re.compile(fnmatch.translate(i)) for i in iterate(extra)] exclude = [re.compile(fnmatch.translate(i)) for i in iterate(exclude)] def fn(name, path, type): if match_type in {type, '*'}: if any(ex.match(name) for ex in exclude): return FindResult.exclude if any(ex.match(name) for ex in matches): return FindResult.include elif any(ex.match(name) for ex in extra): return FindResult.not_now return FindResult.exclude return fn def _find_files(paths, filter, flat, as_object): # "Does the walker choose the path, or the path the walker?" - <NAME> walker = _walk_flat if flat else _walk_recursive results, dist_results, seen_dirs = [], [], [] filetype = File if isinstance(as_object, bool) else as_object def do_filter(files, type): cls = filetype if type == 'f' else lambda p: Directory(p, None) for name, path in files: fileobj = cls(Path(path, Root.srcdir)) matched = filter(name, path, type) if matched == FindResult.include: dist_results.append(fileobj) results.append(fileobj if as_object else path) elif matched == FindResult.not_now: dist_results.append(fileobj) do_filter(( (os.path.basename(p), p) for p in paths ), 'd') for p in paths: for base, dirs, files in walker(p): seen_dirs.append(Path(base, Root.srcdir)) do_filter(dirs, 'd') do_filter(files, 'f') return results, dist_results, seen_dirs def find(path='.', name='*', type='*', extra=None, exclude=exclude_globs, flat=False): glob_filter = _filter_from_glob(type, name, extra, exclude) return _find_files(listify(path), glob_filter, flat, False)[0] @builtin.function('env') def filter_by_platform(env, name, path, type): my_plat = set([env.target_platform.name, env.target_platform.flavor]) sub = '|'.join(re.escape(i) for i in known_platforms if i not in my_plat) ex = r'(^|/|_)(' + sub + r')(\.[^\.]$|$|/)' return FindResult.not_now if re.search(ex, path) else FindResult.include @builtin.function('builtins', 'build_inputs', 'env') def find_files(builtins, build_inputs, env, path='.', name='*', type='*', extra=None, exclude=exclude_globs, filter=filter_by_platform, flat=False, cache=True, dist=True, as_object=False): glob_filter = _filter_from_glob(type, name, extra, exclude) if filter: if filter == filter_by_platform: filter = builtins['filter_by_platform'] def final_filter(name, path, type): return max(filter(name, path, type), glob_filter(name, path, type)) else: final_filter = glob_filter paths = [i.path.string(env.base_dirs) if isinstance(i, File) else i for i in iterate(path)] found, dist, seen_dirs = _find_files(paths, final_filter, flat, as_object) if cache: build_inputs['find_dirs'].update(seen_dirs) build_inputs['regenerate'].depfile = depfile_name if dist: for i in dist: build_inputs.add_source(i) return found @make.post_rule def make_find_dirs(build_inputs, buildfile, env): if build_inputs['find_dirs']: write_depfile(env, Path(depfile_name), make.filepath, build_inputs['find_dirs'], makeify=True) buildfile.include(depfile_name) @ninja.post_rule def ninja_find_dirs(build_inputs, buildfile, env): if build_inputs['find_dirs']: write_depfile(env, Path(depfile_name), ninja.filepath, build_inputs['find_dirs'])
[ "os.path.basename", "os.path.isdir", "os.path.exists", "re.escape", "posixpath.join", "os.path.islink", "fnmatch.translate", "re.search", "os.listdir" ]
[((1853, 1872), 'os.path.exists', 'os.path.exists', (['top'], {}), '(top)\n', (1867, 1872), False, 'import os\n'), ((1449, 1465), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (1459, 1465), False, 'import os\n'), ((1950, 1969), 'os.path.exists', 'os.path.exists', (['top'], {}), '(top)\n', (1964, 1969), False, 'import os\n'), ((4480, 4499), 're.search', 're.search', (['ex', 'path'], {}), '(ex, path)\n', (4489, 4499), False, 'import re\n'), ((1586, 1612), 'posixpath.join', 'posixpath.join', (['path', 'name'], {}), '(path, name)\n', (1600, 1612), False, 'import posixpath\n'), ((1628, 1650), 'os.path.isdir', 'os.path.isdir', (['curpath'], {}), '(curpath)\n', (1641, 1650), False, 'import os\n'), ((2092, 2112), 'os.path.islink', 'os.path.islink', (['path'], {}), '(path)\n', (2106, 2112), False, 'import os\n'), ((2270, 2290), 'fnmatch.translate', 'fnmatch.translate', (['i'], {}), '(i)\n', (2287, 2290), False, 'import fnmatch\n'), ((2343, 2363), 'fnmatch.translate', 'fnmatch.translate', (['i'], {}), '(i)\n', (2360, 2363), False, 'import fnmatch\n'), ((2416, 2436), 'fnmatch.translate', 'fnmatch.translate', (['i'], {}), '(i)\n', (2433, 2436), False, 'import fnmatch\n'), ((4340, 4352), 're.escape', 're.escape', (['i'], {}), '(i)\n', (4349, 4352), False, 'import re\n'), ((3666, 3685), 'os.path.basename', 'os.path.basename', (['p'], {}), '(p)\n', (3682, 3685), False, 'import os\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2012-2021 SoftBank Robotics. All rights reserved. # Use of this source code is governed by a BSD-style license (see the COPYING file). """ Automatic testing for worktree """ from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function import os import py import mock import pytest import qisys.sh import qisys.worktree def test_read_projects(tmpdir): """ Test Read Projects """ tmpdir.mkdir("core").mkdir("naoqi") tmpdir.mkdir("lib").mkdir("libqi") xml_path = tmpdir.mkdir(".qi").join("worktree.xml") xml_path.write(""" <worktree> <project src="core/naoqi" /> <project src="lib/libqi" /> </worktree> """) worktree = qisys.worktree.WorkTree(tmpdir.strpath) p_srcs = [p.src for p in worktree.projects] assert p_srcs == ["core/naoqi", "lib/libqi"] def test_normalize_path(tmpdir): """ Test Nomalize Path """ worktree = qisys.worktree.WorkTree(tmpdir.strpath) foo_abs_path = tmpdir.join("bar").join("foo").strpath assert worktree.normalize_path(foo_abs_path) == "bar/foo" assert worktree.normalize_path("bar/foo") == "bar/foo" def test_add_project_simple(worktree): """ Test Add Project Simple """ tmp = py.path.local(worktree.root) # pylint:disable=no-member tmp.mkdir("foo") worktree.add_project("foo") assert len(worktree.projects) == 1 foo1 = worktree.get_project("foo") assert foo1.src == "foo" def test_fails_when_root_does_not_exists(tmpdir): """ Test Fails When Root Does Not Exists """ non_existing = tmpdir.join("doesnotexist") with pytest.raises(Exception) as e: qisys.worktree.WorkTree(non_existing.strpath) assert "does not exist" in str(e.value) def test_ignore_src_dot(tmpdir): """ Test Ignore Src Dot """ _foo_path = tmpdir.mkdir("foo") tmpdir.join("foo", "qiproject.xml").write(""" <project> <project src="." /> </project> """) worktree = qisys.worktree.WorkTree(tmpdir.strpath) worktree.add_project("foo") def test_remove_project(worktree): """ Test Remove Project """ tmp = py.path.local(worktree.root) # pylint:disable=no-member foo_src = tmp.mkdir("foo") worktree.add_project("foo") with pytest.raises(qisys.worktree.WorkTreeError) as e: worktree.remove_project("bar") assert "No project in 'bar'" in str(e) worktree.remove_project("foo") assert worktree.projects == list() worktree.add_project("foo") assert worktree.projects[0].src == "foo" worktree.remove_project("foo", from_disk=True) assert worktree.projects == list() assert not os.path.exists(foo_src.strpath) def test_nested_qiprojects(tmpdir): """ Test Nested Project """ a_project = tmpdir.mkdir("a") worktree_xml = tmpdir.mkdir(".qi").join("worktree.xml") worktree_xml.write(""" <worktree> <project src="a" /> </worktree> """) a_xml = a_project.join("qiproject.xml") a_xml.write(""" <project name="a"> <project src="b" /> </project> """) b_project = a_project.mkdir("b") b_xml = b_project.join("qiproject.xml") b_xml.write(""" <project name="b"> <project src="c" /> </project> """) c_project = b_project.mkdir("c") c_xml = c_project.join("qiproject.xml") c_xml.write('<project name="c" />\n') worktree = qisys.worktree.WorkTree(tmpdir.strpath) assert len(worktree.projects) == 3 assert [p.src for p in worktree.projects] == ["a", "a/b", "a/b/c"] def test_non_exiting_path_are_removed(tmpdir, interact): """ All projects registered should exist """ wt = qisys.worktree.WorkTree(tmpdir.strpath) a_path = tmpdir.mkdir("a") wt.add_project(a_path.strpath) a_path.remove() wt2 = qisys.worktree.WorkTree(tmpdir.strpath) assert wt2.projects == list() def test_check_subprojects_exist(tmpdir): """ Subprojets in qiproject.xml should exist """ wt = qisys.worktree.WorkTree(tmpdir.strpath) a_path = tmpdir.mkdir("a") a_qiproject = a_path.join("qiproject.xml") a_qiproject.write(""" \ <project > <project src="b" /> </project> """) with pytest.raises(qisys.worktree.WorkTreeError) as e: wt.add_project("a") assert "invalid sub project" in str(e.value) def test_observers_are_notified(worktree): """ Test Observers Are Notified """ mock_observer = mock.Mock() worktree.register(mock_observer) worktree.create_project("foo") assert mock_observer.reload.called def test_add_nested_projects(worktree): """ Test Add Nested Project """ worktree.create_project("foo") tmpdir = worktree.tmpdir spam = tmpdir.mkdir("spam") spam.join("qiproject.xml").write(""" \ <project> <project src="eggs" /> </project> """) spam.mkdir("eggs") worktree.add_project("spam") assert [p.src for p in worktree.projects] == ["foo", "spam", "spam/eggs"] worktree.remove_project("spam") assert [p.src for p in worktree.projects] == ["foo"] def test_warns_on_nested_worktrees(tmpdir, record_messages): """ Test Warns On Nested WorkTrees """ work1 = tmpdir.mkdir("work1") work1.mkdir(".qi") work2 = work1.mkdir("work2") work2.mkdir(".qi") qisys.worktree.WorkTree(work2.strpath) assert record_messages.find("Nested worktrees") @pytest.mark.skip(reason="no way of currently testing this") def test_non_ascii_path(tmpdir): """ Test Non ASCII Path """ coffee_dir = tmpdir.mkdir("café") qisys.worktree.WorkTree(coffee_dir.strpath)
[ "os.path.exists", "pytest.raises", "mock.Mock", "py.path.local", "pytest.mark.skip" ]
[((5331, 5390), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""no way of currently testing this"""'}), "(reason='no way of currently testing this')\n", (5347, 5390), False, 'import pytest\n'), ((1294, 1322), 'py.path.local', 'py.path.local', (['worktree.root'], {}), '(worktree.root)\n', (1307, 1322), False, 'import py\n'), ((2164, 2192), 'py.path.local', 'py.path.local', (['worktree.root'], {}), '(worktree.root)\n', (2177, 2192), False, 'import py\n'), ((4396, 4407), 'mock.Mock', 'mock.Mock', ([], {}), '()\n', (4405, 4407), False, 'import mock\n'), ((1668, 1692), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (1681, 1692), False, 'import pytest\n'), ((2293, 2336), 'pytest.raises', 'pytest.raises', (['qisys.worktree.WorkTreeError'], {}), '(qisys.worktree.WorkTreeError)\n', (2306, 2336), False, 'import pytest\n'), ((2681, 2712), 'os.path.exists', 'os.path.exists', (['foo_src.strpath'], {}), '(foo_src.strpath)\n', (2695, 2712), False, 'import os\n'), ((4164, 4207), 'pytest.raises', 'pytest.raises', (['qisys.worktree.WorkTreeError'], {}), '(qisys.worktree.WorkTreeError)\n', (4177, 4207), False, 'import pytest\n')]
""" """ ## source.python imports from commands import CommandReturn from commands.client import ClientCommand from commands.say import SayCommand from listeners import OnClientFullyConnect ## warcraft.package imports from warcraft.database import session from warcraft.players import player_dict ## extension imports from .config import * from .database import * from .menus import * ## __all__ declaration __all__ = ( "levelbank_menu", ) ## handling new players @OnClientFullyConnect def _on_client_full_connect_setup_levelbank(index): player = player_dict[index] player_levelbank = session.query(Levelbank).filter(Levelbank.parent == player._dbinstance).first() if not player_levelbank: start_levels = levelbank_start_amount.cvar.get_int() player_levelbank = Levelbank(levels=start_levels, parent=player._dbinstance) session.add(player_levelbank) session.commit() ## handling client/say commands @ClientCommand(["levelbank", "wcsbank"]) @SayCommand(["levelbank", "wcsbank"]) def _levelbank_say_command(command, index, team_only=None): levelbank_menu.send(index) return CommandReturn.BLOCK
[ "commands.say.SayCommand", "warcraft.database.session.commit", "commands.client.ClientCommand", "warcraft.database.session.add", "warcraft.database.session.query" ]
[((960, 999), 'commands.client.ClientCommand', 'ClientCommand', (["['levelbank', 'wcsbank']"], {}), "(['levelbank', 'wcsbank'])\n", (973, 999), False, 'from commands.client import ClientCommand\n'), ((1001, 1037), 'commands.say.SayCommand', 'SayCommand', (["['levelbank', 'wcsbank']"], {}), "(['levelbank', 'wcsbank'])\n", (1011, 1037), False, 'from commands.say import SayCommand\n'), ((870, 899), 'warcraft.database.session.add', 'session.add', (['player_levelbank'], {}), '(player_levelbank)\n', (881, 899), False, 'from warcraft.database import session\n'), ((908, 924), 'warcraft.database.session.commit', 'session.commit', ([], {}), '()\n', (922, 924), False, 'from warcraft.database import session\n'), ((607, 631), 'warcraft.database.session.query', 'session.query', (['Levelbank'], {}), '(Levelbank)\n', (620, 631), False, 'from warcraft.database import session\n')]
from opytimizer.optimizers.swarm import FFOA # Creates a FFOA optimizer o = FFOA()
[ "opytimizer.optimizers.swarm.FFOA" ]
[((77, 83), 'opytimizer.optimizers.swarm.FFOA', 'FFOA', ([], {}), '()\n', (81, 83), False, 'from opytimizer.optimizers.swarm import FFOA\n')]
# coding=utf-8 """ .. moduleauthor:: <NAME> <<EMAIL>> """ from copy import deepcopy import warnings as warnings from collections import OrderedDict import numpy as np from pypint.solvers.i_iterative_time_solver import IIterativeTimeSolver from pypint.solvers.i_parallel_solver import IParallelSolver from pypint.communicators.message import Message from pypint.integrators.integrator_base import IntegratorBase from pypint.integrators.node_providers.gauss_lobatto_nodes import GaussLobattoNodes from pypint.integrators.weight_function_providers.polynomial_weight_function import PolynomialWeightFunction from pypint.problems import IInitialValueProblem, problem_has_exact_solution from pypint.solvers.states.sdc_solver_state import SdcSolverState from pypint.solvers.diagnosis import IDiagnosisValue from pypint.solvers.diagnosis.norms import supremum_norm from pypint.plugins.timers.timer_base import TimerBase from pypint.utilities.threshold_check import ThresholdCheck from pypint.utilities import assert_is_instance, assert_condition, func_name, assert_named_argument from pypint.utilities.logging import * # General Notes on Implementation # =============================== # # Names and Meaning of Indices # ---------------------------- # T_max (num_time_steps) | number of time steps # N (num_nodes) | number of integration nodes per time step # t | index of current time step; interval: [0, T_max) # n | index of current node of current time step; interval: [1, N) # | the current node is always the next node, i.e. the node we are # | calculating the value for # i | index of current point in continuous array of points class ParallelSdc(IIterativeTimeSolver, IParallelSolver): """*Spectral Deferred Corrections* method for solving first order ODEs. The *Spectral Deferred Corrections* (SDC) method is described in [Minion2003]_ (Equation 2.7) Default Values: * :py:class:`.ThresholdCheck` * ``max_threshold``: 10 * ``min_threshold``: 1e-7 * ``conditions``: ``('residual', 'iterations')`` * :py:attr:`.num_time_steps`: 1 * :py:attr:`.num_nodes`: 3 Given the total number of time steps :math:`T_{max}`, number of integration nodes per time step :math:`N`, current time step :math:`t \\in [0,T_{max})` and the next integration node to consider :math:`n \\in [0, N)`. Let :math:`[a,b]` be the total time interval to integrate over. For :math:`T_{max}=3` and :math:`N=4`, this can be visualized as:: a b | | | . . | . . | . . | t 0 0 0 0 1 1 1 2 2 2 n 0 1 2 3 1 2 3 1 2 3 i 0 1 2 3 4 5 6 7 8 9 In general, the value at :math:`a` (i.e. :math:`t=n=i=0`) is the initial value. See Also -------- :py:class:`.IIterativeTimeSolver` : implemented interface :py:class:`.IParallelSolver` : mixed-in interface """ def __init__(self, **kwargs): super(ParallelSdc, self).__init__(**kwargs) IParallelSolver.__init__(self, **kwargs) del self._state self.threshold = ThresholdCheck(min_threshold=1e-7, max_threshold=10, conditions=("residual", "iterations")) self.timer = TimerBase() self._num_time_steps = 1 self._dt = 0.0 self._deltas = { 't': 0.0, 'n': np.zeros(0) } self._classic = True self.__nodes_type = GaussLobattoNodes self.__weights_type = PolynomialWeightFunction self.__num_nodes = 3 self.__exact = np.zeros(0) self.__time_points = { 'steps': np.zeros(0), 'nodes': np.zeros(0) } def init(self, problem, integrator, **kwargs): """Initializes SDC solver with given problem and integrator. Parameters ---------- num_time_steps : :py:class:`int` Number of time steps to be used within the time interval of the problem. num_nodes : :py:class:`int` *(otional)* number of nodes per time step nodes_type : :py:class:`.INodes` *(optional)* Type of integration nodes to be used (class name, **NOT instance**). weights_type : :py:class:`.IWeightFunction` *(optional)* Integration weights function to be used (class name, **NOT instance**). classic : :py:class:`bool` *(optional)* Flag for specifying the type of the SDC sweep. :py:class:`True`: *(default)* For the classic SDC as known from the literature; :py:class:`False`: For the modified SDC as developed by <NAME>. Raises ------ ValueError : * if given problem is not an :py:class:`.IInitialValueProblem` * if number of nodes per time step is not given; neither through ``num_nodes``, ``nodes_type`` nor ``integrator`` See Also -------- :py:meth:`.IIterativeTimeSolver.init` overridden method (with further parameters) :py:meth:`.IParallelSolver.init` mixed in overridden method (with further parameters) """ assert_is_instance(problem, IInitialValueProblem, descriptor="Initial Value Problem", checking_obj=self) assert_condition(issubclass(integrator, IntegratorBase), ValueError, message="Integrator must be an IntegratorBase: NOT %s" % integrator.__mro__[-2].__name__, checking_obj=self) super(ParallelSdc, self).init(problem, integrator=integrator, **kwargs) if 'num_time_steps' in kwargs: self._num_time_steps = kwargs['num_time_steps'] if 'num_nodes' in kwargs: self.__num_nodes = kwargs['num_nodes'] elif 'nodes_type' in kwargs and kwargs['nodes_type'].num_nodes is not None: self.__num_nodes = kwargs['nodes_type'].num_nodes elif integrator.nodes_type is not None and integrator.nodes_type.num_nodes is not None: self.__num_nodes = integrator.nodes_type.num_nodes else: raise ValueError(func_name(self) + "Number of nodes per time step not given.") if 'notes_type' in kwargs: self.__nodes_type = kwargs['notes_type'] if 'weights_type' in kwargs: self.__weights_type = kwargs['weights_type'] if 'classic' in kwargs: assert_is_instance(kwargs['classic'], bool, descriptor="Classic Flag", checking_obj=self) self._classic = kwargs['classic'] # TODO: need to store the exact solution somewhere else self.__exact = np.zeros(self.num_time_steps * (self.__num_nodes - 1) + 1, dtype=np.object) def run(self, core, **kwargs): """Applies SDC solver to the initialized problem setup. Solves the given problem with the explicit SDC algorithm. Parameters ---------- core : :py:class:`.SdcSolverCore` core solver stepping method dt : :py:class:`float` width of the interval to work on; this is devided into the number of given time steps this solver has been initialized with See Also -------- :py:meth:`.IIterativeTimeSolver.run` : overridden method """ super(ParallelSdc, self).run(core, **kwargs) assert_named_argument('dt', kwargs, types=float, descriptor="Width of Interval", checking_obj=self) self._dt = kwargs['dt'] self._print_header() # start iterations # TODO: exact solution storage handling self.__exact[0] = self.problem.initial_value _has_work = True _previous_flag = Message.SolverFlag.none _current_flag = Message.SolverFlag.none __work_loop_count = 1 while _has_work: LOG.debug("Work Loop: %d" % __work_loop_count) _previous_flag = _current_flag _current_flag = Message.SolverFlag.none # receive dedicated message _msg = self._communicator.receive() if _msg.flag == Message.SolverFlag.failed: # previous solver failed # --> pass on the failure and abort _current_flag = Message.SolverFlag.failed _has_work = False LOG.debug("Previous Solver Failed") else: if _msg.flag == Message.SolverFlag.time_adjusted: # the previous solver has adjusted its interval # --> we need to recompute our interval _current_flag = self._adjust_interval_width() # we don't immediately start the computation of the newly computed interval # but try to pass the new interval end to the next solver as soon as possible # (this should avoid throwing away useless computation) LOG.debug("Previous Solver Adjusted Time") else: if _previous_flag in \ [Message.SolverFlag.none, Message.SolverFlag.converged, Message.SolverFlag.finished, Message.SolverFlag.time_adjusted]: # we just started or finished our previous interval # --> start a new interval _has_work = self._init_new_interval(_msg.time_point) if _has_work: # set initial values self.state.initial.solution.value = _msg.value.copy() self.state.initial.solution.time_point = _msg.time_point self.state.initial.done() LOG.debug("New Interval Initialized") # start logging output self._print_interval_header() # start global timing (per interval) self.timer.start() else: # pass LOG.debug("No New Interval Available") elif _previous_flag == Message.SolverFlag.iterating: LOG.debug("Next Iteration") else: LOG.warn("WARNING!!! Something went wrong here") if _has_work: # we are still on the same interval or have just successfully initialized a new interval # --> do the real computation LOG.debug("Starting New Solver Main Loop") # initialize a new iteration state self.state.proceed() if _msg.time_point == self.state.initial.time_point: if _previous_flag == Message.SolverFlag.iterating: LOG.debug("Updating initial value") # if the previous solver has a new initial value for us, we use it self.state.current_iteration.initial.solution.value = _msg.value.copy() _current_flag = self._main_solver_loop() if _current_flag in \ [Message.SolverFlag.converged, Message.SolverFlag.finished, Message.SolverFlag.failed]: _log_msgs = {'': OrderedDict()} if self.state.last_iteration_index <= self.threshold.max_iterations: _group = 'Converged after %d iteration(s)' % (self.state.last_iteration_index + 1) _log_msgs[''][_group] = OrderedDict() _log_msgs[''][_group] = self.threshold.has_reached(log=True) _log_msgs[''][_group]['Final Residual'] = "{:.3e}"\ .format(supremum_norm(self.state.last_iteration.final_step.solution.residual)) _log_msgs[''][_group]['Solution Reduction'] = "{:.3e}"\ .format(supremum_norm(self.state.solution .solution_reduction(self.state.last_iteration_index))) if problem_has_exact_solution(self.problem, self): _log_msgs[''][_group]['Error Reduction'] = "{:.3e}"\ .format(supremum_norm(self.state.solution .error_reduction(self.state.last_iteration_index))) else: warnings.warn("{}: Did not converged: {:s}".format(self._core.name, self.problem)) _group = "FAILED: After maximum of {:d} iteration(s)"\ .format(self.state.last_iteration_index + 1) _log_msgs[''][_group] = OrderedDict() _log_msgs[''][_group]['Final Residual'] = "{:.3e}"\ .format(supremum_norm(self.state.last_iteration.final_step.solution.residual)) _log_msgs[''][_group]['Solution Reduction'] = "{:.3e}"\ .format(supremum_norm(self.state.solution .solution_reduction(self.state.last_iteration_index))) if problem_has_exact_solution(self.problem, self): _log_msgs[''][_group]['Error Reduction'] = "{:.3e}"\ .format(supremum_norm(self.state.solution .error_reduction(self.state.last_iteration_index))) LOG.warn(" {} Failed: Maximum number iterations reached without convergence." .format(self._core.name)) print_logging_message_tree(_log_msgs) elif _previous_flag in [Message.SolverFlag.converged, Message.SolverFlag.finished]: LOG.debug("Solver Finished.") self.timer.stop() self._print_footer() else: # something went wrong # --> we failed LOG.warn("Solver failed.") _current_flag = Message.SolverFlag.failed self._communicator.send(value=self.state.current_iteration.final_step.solution.value, time_point=self.state.current_iteration.final_step.time_point, flag=_current_flag) __work_loop_count += 1 # end while:has_work is None LOG.debug("Solver Main Loop Done") return [_s.solution for _s in self._states] @property def state(self): """Read-only accessor for the sovler's state Returns ------- state : :py:class:`.ISolverState` """ if len(self._states) > 0: return self._states[-1] else: return None @property def num_time_steps(self): """Accessor for the number of time steps within the interval. Returns ------- number_time_steps : :py:class:`int` Number of time steps within the problem-given time interval. """ return self._num_time_steps @property def num_nodes(self): """Accessor for the number of integration nodes per time step. Returns ------- number_of_nodes : :py:class:`int` Number of integration nodes used within one time step. """ return self.__num_nodes @property def classic(self): """Read-only accessor for the type of SDC Returns ------- is_classic : :py:class:`bool` :py:class:`True` if it's the classic SDC as known from papers; :py:class:`False` if it's the modified SDC by <NAME> """ return self._classic def _init_new_state(self): """Initialize a new state for a work task Usually, this starts a new work task. The previous state, if applicable, is stored in a stack. """ if self.state: # finalize the current state self.state.finalize() # initialize solver state self._states.append(SdcSolverState(num_nodes=self.num_nodes - 1, num_time_steps=self.num_time_steps)) def _init_new_interval(self, start): """Initializes a new work interval Parameters ---------- start : :py:class:`float` start point of new interval Returns ------- has_work : :py:class:`bool` :py:class:`True` if new interval have been initialized; :py:class:`False` if no new interval have been initialized (i.e. new interval end would exceed end of time given by problem) """ assert_is_instance(start, float, descriptor="Time Point", checking_obj=self) if start + self._dt > self.problem.time_end: return False if self.state and start == self.state.initial.time_point: return False self._init_new_state() # set width of current interval self.state.delta_interval = self._dt # compute time step and node distances self._deltas['t'] = self.state.delta_interval / self.num_time_steps # width of a single time step (equidistant) # start time points of time steps self.__time_points['steps'] = np.linspace(start, start + self._dt, self.num_time_steps + 1) # initialize and transform integrator for time step width self._integrator.init(self.__nodes_type, self.__num_nodes, self.__weights_type, interval=np.array([self.__time_points['steps'][0], self.__time_points['steps'][1]], dtype=np.float)) self.__time_points['nodes'] = np.zeros((self.num_time_steps, self.num_nodes), dtype=np.float) _deltas_n = np.zeros(self.num_time_steps * (self.num_nodes - 1) + 1) # copy the node provider so we do not alter the integrator's one _nodes = deepcopy(self._integrator.nodes_type) for _t in range(0, self.num_time_steps): # transform Nodes (copy) onto new time step for retrieving actual integration nodes _nodes.interval = np.array([self.__time_points['steps'][_t], self.__time_points['steps'][_t + 1]]) self.__time_points['nodes'][_t] = _nodes.nodes.copy() for _n in range(0, self.num_nodes - 1): _i = _t * (self.num_nodes - 1) + _n _deltas_n[_i + 1] = _nodes.nodes[_n + 1] - _nodes.nodes[_n] self._deltas['n'] = _deltas_n[1:].copy() return True def _adjust_interval_width(self): """Adjust width of time interval """ raise NotImplementedError("Time Adaptivity not yet implemented.") # return Message.SolverFlag.time_adjusted def _main_solver_loop(self): # initialize iteration timer of same type as global timer _iter_timer = self.timer.__class__() self._print_iteration(self.state.current_iteration_index + 1) # iterate on time steps _iter_timer.start() for _current_time_step in self.state.current_iteration: # run this time step self._time_step() if self.state.current_time_step_index < len(self.state.current_iteration) - 1: self.state.current_iteration.proceed() _iter_timer.stop() # check termination criteria self.threshold.check(self.state) # log this iteration's summary if self.state.is_first_iteration: # on first iteration we do not have comparison values self._print_iteration_end(None, None, None, _iter_timer.past()) else: if problem_has_exact_solution(self.problem, self) and not self.state.is_first_iteration: # we could compute the correct error of our current solution self._print_iteration_end(self.state.solution.solution_reduction(self.state.current_iteration_index), self.state.solution.error_reduction(self.state.current_iteration_index), self.state.current_step.solution.residual, _iter_timer.past()) else: self._print_iteration_end(self.state.solution.solution_reduction(self.state.current_iteration_index), None, self.state.current_step.solution.residual, _iter_timer.past()) # finalize this iteration (i.e. TrajectorySolutionData.finalize()) self.state.current_iteration.finalize() _reason = self.threshold.has_reached() if _reason is None: # LOG.debug("solver main loop done: no reason") return Message.SolverFlag.iterating elif _reason == ['iterations']: # LOG.debug("solver main loop done: iterations") self.state.finalize() return Message.SolverFlag.finished else: # LOG.debug("solver main loop done: other") self.state.finalize() return Message.SolverFlag.converged def _time_step(self): self.state.current_time_step.delta_time_step = self._deltas['t'] for _step in range(0, len(self.state.current_time_step)): _node_index = self.state.current_time_step_index * (self.num_nodes - 1) + _step self.state.current_time_step[_step].delta_tau = self._deltas['n'][_node_index] self.state.current_time_step[_step].solution.time_point = \ self.__time_points['nodes'][self.state.current_time_step_index][_step + 1] self._print_time_step(self.state.current_time_step_index + 1, self.state.current_time_step.initial.time_point, self.state.current_time_step.last.time_point, self.state.current_time_step.delta_time_step) # for classic SDC compute integral _integral = 0.0 _integrate_values = None if self.classic: if not self.state.current_time_step.initial.rhs_evaluated: self.state.current_time_step.initial.rhs = \ self.problem.evaluate_wrt_time(self.state.current_time_step.initial.time_point, self.state.current_time_step.initial.value) _integrate_values = np.array([self.state.current_time_step.initial.rhs], dtype=self.problem.numeric_type) for _step_index in range(0, len(self.state.current_time_step)): if self.state.is_first_iteration: _integrate_values = \ np.append(_integrate_values, np.array([self.state.current_time_step.initial.rhs], dtype=self.problem.numeric_type), axis=0) else: _step = self.state.previous_iteration[self.state.current_time_step_index][_step_index] if not _step.rhs_evaluated: _step.rhs = self.problem.evaluate_wrt_time(_step.time_point, _step.value) _integrate_values = \ np.append(_integrate_values, np.array([_step.rhs], dtype=self.problem.numeric_type), axis=0) assert_condition(_integrate_values.shape[0] == self.num_nodes, ValueError, message="Number of integration values not correct: {:d} != {:d}" .format(_integrate_values.shape[0], self.num_nodes), checking_obj=self) _full_integral = 0.0 # do the actual SDC steps of this SDC sweep for _step_index in range(0, len(self.state.current_time_step)): _current_step = self.state.current_time_step[_step_index] if self.classic: _integral = self._integrator.evaluate(_integrate_values, from_node=_step_index, target_node=_step_index + 1) # we successively compute the full integral, which is used for the residual at the end _full_integral += _integral _current_step.integral = _integral.copy() # do the SDC step of this sweep self._sdc_step() if self.state.current_step_index < len(self.state.current_time_step) - 1: self.state.current_time_step.proceed() del _integrate_values # compute residual and print step details for _step_index in range(0, len(self.state.current_time_step)): _step = self.state.current_time_step[_step_index] self._core.compute_residual(self.state, step=_step, integral=_full_integral) # finalize this step (i.e. StepSolutionData.finalize()) _step.done() if _step_index > 0: _previous_time = self.state.current_time_step[_step_index - 1].time_point else: _previous_time = self.state.current_time_step.initial.time_point if problem_has_exact_solution(self.problem, self): self._print_step(_step_index + 2, _previous_time, _step.time_point, supremum_norm(_step.value), _step.solution.residual, _step.solution.error) else: self._print_step(_step_index + 2, _previous_time, _step.time_point, supremum_norm(_step.value), _step.solution.residual, None) self._print_time_step_end() # finalizing the current time step (i.e. TrajectorySolutionData.finalize) self.state.current_time_step.finalize() def _sdc_step(self): # helper variables _current_time_step_index = self.state.current_time_step_index _current_step_index = self.state.current_step_index # copy solution of previous iteration to this one if self.state.is_first_iteration: self.state.current_step.value = self.state.initial.value.copy() else: self.state.current_step.value = \ self.state.previous_iteration[_current_time_step_index][_current_step_index].value.copy() # TODO: review the custom modification # if not self.classic: # # gather values for integration and evaluate problem at given points # # initial value for this time step # _integrate_values = \ # np.array( # [self.problem.evaluate_wrt_time(self.state.current_time_step.initial.time_point, # self.state.current_time_step.initial.value.copy()) # ], dtype=self.problem.numeric_type) # # if _current_step_index > 0: # # values from this iteration (already calculated) # _from_current_iteration_range = range(0, _current_step_index) # for _index in _from_current_iteration_range: # _integrate_values = \ # np.append(_integrate_values, # np.array( # [self.problem.evaluate_wrt_time(self.state.current_time_step[_index].solution.time_point, # self.state.current_time_step[_index].solution.value.copy()) # ], dtype=self.problem.numeric_type # ), axis=0) # # # values from previous iteration # _from_previous_iteration_range = range(_current_step_index, self.num_nodes - 1) # for _index in _from_previous_iteration_range: # if self.state.is_first_iteration: # _this_value = self.problem.initial_value # else: # _this_value = self.state.previous_iteration[_current_time_step_index][_index].solution.value.copy() # _integrate_values = \ # np.append(_integrate_values, # np.array( # [self.problem.evaluate_wrt_time(self.state.current_time_step[_index].solution.time_point, # _this_value) # ], dtype=self.problem.numeric_type # ), axis=0) # assert_condition(_integrate_values.shape[0] == self.num_nodes, # ValueError, message="Number of integration values not correct: {:d} != {:d}" # .format(_integrate_values.shape[0], self.num_nodes), # checking_obj=self) # # # integrate # self.state.current_step.integral = self._integrator.evaluate(_integrate_values, # from_node=_current_step_index, # target_node=_current_step_index + 1) # del _integrate_values # # END if not self.classic # compute step self._core.run(self.state, problem=self.problem) # calculate error self._core.compute_error(self.state, problem=self.problem) # step gets finalized after computation of residual def print_lines_for_log(self): _lines = super(ParallelSdc, self).print_lines_for_log() if 'Number Nodes per Time Step' not in _lines['Integrator']: _lines['Integrator']['Number Nodes per Time Step'] = "%d" % self.__num_nodes if 'Number Time Steps' not in _lines['Integrator']: _lines['Integrator']['Number Time Steps'] = "%d" % self._num_time_steps return _lines def _print_interval_header(self): LOG.info("%s%s" % (VERBOSITY_LVL1, SEPARATOR_LVL3)) LOG.info("{} Interval: [{:.3f}, {:.3f}]" .format(VERBOSITY_LVL1, self.state.initial.time_point, self.state.initial.time_point + self._dt)) self._print_output_tree_header() def _print_output_tree_header(self): LOG.info("%s iter" % VERBOSITY_LVL1) LOG.info("%s \\" % VERBOSITY_LVL2) LOG.info("%s |- time start end delta" % VERBOSITY_LVL2) LOG.info("%s | \\" % VERBOSITY_LVL3) LOG.info("%s | |- step t_0 t_1 phi(t_1) resid err" % VERBOSITY_LVL3) LOG.info("%s | \\_" % VERBOSITY_LVL2) LOG.info("%s \\_ sol r.red err r.red resid time" % VERBOSITY_LVL1) def _print_iteration(self, _iter): _iter = self._output_format(_iter, 'int', width=5) LOG.info("%s %s" % (VERBOSITY_LVL1, _iter)) LOG.info("%s \\" % VERBOSITY_LVL2) def _print_iteration_end(self, solred, errred, resid, time): _solred = self._output_format(solred, 'exp') _errred = self._output_format(errred, 'exp') _resid = self._output_format(resid, 'exp') _time = self._output_format(time, 'float', width=6.3) LOG.info("%s \\_ %s %s %s %s" % (VERBOSITY_LVL1, _solred, _errred, _resid, _time)) def _print_time_step(self, time_step, start, end, delta): _time_step = self._output_format(time_step, 'int', width=3) _start = self._output_format(start, 'float', width=6.3) _end = self._output_format(end, 'float', width=6.3) _delta = self._output_format(delta, 'float', width=6.3) LOG.info("%s |- %s %s %s %s" % (VERBOSITY_LVL2, _time_step, _start, _end, _delta)) LOG.info("%s | \\" % VERBOSITY_LVL3) self._print_step(1, None, self.state.current_time_step.initial.time_point, supremum_norm(self.state.current_time_step.initial.solution.value), None, None) def _print_time_step_end(self): LOG.info("%s | \\_" % VERBOSITY_LVL2) def _print_step(self, step, t0, t1, phi, resid, err): _step = self._output_format(step, 'int', width=2) _t0 = self._output_format(t0, 'float', width=6.3) _t1 = self._output_format(t1, 'float', width=6.3) _phi = self._output_format(phi, 'float', width=6.3) _resid = self._output_format(resid, 'exp') _err = self._output_format(err, 'exp') LOG.info("%s | |- %s %s %s %s %s %s" % (VERBOSITY_LVL3, _step, _t0, _t1, _phi, _resid, _err)) def _output_format(self, value, _type, width=None): def _value_to_numeric(val): if isinstance(val, (np.ndarray, IDiagnosisValue)): return supremum_norm(val) else: return val if _type and width is None: if _type == 'float': width = 10.3 elif _type == 'int': width = 10 elif _type == 'exp': width = 9.2 else: width = 10 if value is None: _outstr = "{: ^{width}s}".format('na', width=int(width)) else: if _type == 'float': _outstr = "{: {width}f}".format(_value_to_numeric(value), width=width) elif _type == 'int': _outstr = "{: {width}d}".format(_value_to_numeric(value), width=width) elif _type == 'exp': _outstr = "{: {width}e}".format(_value_to_numeric(value), width=width) else: _outstr = "{: >{width}s}".format(value, width=width) return _outstr __all__ = ['ParallelSdc']
[ "pypint.solvers.diagnosis.norms.supremum_norm", "copy.deepcopy", "pypint.solvers.states.sdc_solver_state.SdcSolverState", "pypint.solvers.i_parallel_solver.IParallelSolver.__init__", "pypint.plugins.timers.timer_base.TimerBase", "pypint.utilities.assert_is_instance", "numpy.zeros", "pypint.utilities.assert_named_argument", "pypint.problems.problem_has_exact_solution", "pypint.utilities.threshold_check.ThresholdCheck", "numpy.array", "numpy.linspace", "collections.OrderedDict", "pypint.utilities.func_name" ]
[((3328, 3368), 'pypint.solvers.i_parallel_solver.IParallelSolver.__init__', 'IParallelSolver.__init__', (['self'], {}), '(self, **kwargs)\n', (3352, 3368), False, 'from pypint.solvers.i_parallel_solver import IParallelSolver\n'), ((3419, 3516), 'pypint.utilities.threshold_check.ThresholdCheck', 'ThresholdCheck', ([], {'min_threshold': '(1e-07)', 'max_threshold': '(10)', 'conditions': "('residual', 'iterations')"}), "(min_threshold=1e-07, max_threshold=10, conditions=(\n 'residual', 'iterations'))\n", (3433, 3516), False, 'from pypint.utilities.threshold_check import ThresholdCheck\n'), ((3532, 3543), 'pypint.plugins.timers.timer_base.TimerBase', 'TimerBase', ([], {}), '()\n', (3541, 3543), False, 'from pypint.plugins.timers.timer_base import TimerBase\n'), ((3870, 3881), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (3878, 3881), True, 'import numpy as np\n'), ((5505, 5614), 'pypint.utilities.assert_is_instance', 'assert_is_instance', (['problem', 'IInitialValueProblem'], {'descriptor': '"""Initial Value Problem"""', 'checking_obj': 'self'}), "(problem, IInitialValueProblem, descriptor=\n 'Initial Value Problem', checking_obj=self)\n", (5523, 5614), False, 'from pypint.utilities import assert_is_instance, assert_condition, func_name, assert_named_argument\n'), ((7021, 7096), 'numpy.zeros', 'np.zeros', (['(self.num_time_steps * (self.__num_nodes - 1) + 1)'], {'dtype': 'np.object'}), '(self.num_time_steps * (self.__num_nodes - 1) + 1, dtype=np.object)\n', (7029, 7096), True, 'import numpy as np\n'), ((7738, 7842), 'pypint.utilities.assert_named_argument', 'assert_named_argument', (['"""dt"""', 'kwargs'], {'types': 'float', 'descriptor': '"""Width of Interval"""', 'checking_obj': 'self'}), "('dt', kwargs, types=float, descriptor=\n 'Width of Interval', checking_obj=self)\n", (7759, 7842), False, 'from pypint.utilities import assert_is_instance, assert_condition, func_name, assert_named_argument\n'), ((17641, 17717), 'pypint.utilities.assert_is_instance', 'assert_is_instance', (['start', 'float'], {'descriptor': '"""Time Point"""', 'checking_obj': 'self'}), "(start, float, descriptor='Time Point', checking_obj=self)\n", (17659, 17717), False, 'from pypint.utilities import assert_is_instance, assert_condition, func_name, assert_named_argument\n'), ((18257, 18318), 'numpy.linspace', 'np.linspace', (['start', '(start + self._dt)', '(self.num_time_steps + 1)'], {}), '(start, start + self._dt, self.num_time_steps + 1)\n', (18268, 18318), True, 'import numpy as np\n'), ((18692, 18755), 'numpy.zeros', 'np.zeros', (['(self.num_time_steps, self.num_nodes)'], {'dtype': 'np.float'}), '((self.num_time_steps, self.num_nodes), dtype=np.float)\n', (18700, 18755), True, 'import numpy as np\n'), ((18776, 18832), 'numpy.zeros', 'np.zeros', (['(self.num_time_steps * (self.num_nodes - 1) + 1)'], {}), '(self.num_time_steps * (self.num_nodes - 1) + 1)\n', (18784, 18832), True, 'import numpy as np\n'), ((18924, 18961), 'copy.deepcopy', 'deepcopy', (['self._integrator.nodes_type'], {}), '(self._integrator.nodes_type)\n', (18932, 18961), False, 'from copy import deepcopy\n'), ((3665, 3676), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (3673, 3676), True, 'import numpy as np\n'), ((3934, 3945), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (3942, 3945), True, 'import numpy as np\n'), ((3968, 3979), 'numpy.zeros', 'np.zeros', (['(0)'], {}), '(0)\n', (3976, 3979), True, 'import numpy as np\n'), ((6797, 6890), 'pypint.utilities.assert_is_instance', 'assert_is_instance', (["kwargs['classic']", 'bool'], {'descriptor': '"""Classic Flag"""', 'checking_obj': 'self'}), "(kwargs['classic'], bool, descriptor='Classic Flag',\n checking_obj=self)\n", (6815, 6890), False, 'from pypint.utilities import assert_is_instance, assert_condition, func_name, assert_named_argument\n'), ((17055, 17140), 'pypint.solvers.states.sdc_solver_state.SdcSolverState', 'SdcSolverState', ([], {'num_nodes': '(self.num_nodes - 1)', 'num_time_steps': 'self.num_time_steps'}), '(num_nodes=self.num_nodes - 1, num_time_steps=self.num_time_steps\n )\n', (17069, 17140), False, 'from pypint.solvers.states.sdc_solver_state import SdcSolverState\n'), ((19137, 19222), 'numpy.array', 'np.array', (["[self.__time_points['steps'][_t], self.__time_points['steps'][_t + 1]]"], {}), "([self.__time_points['steps'][_t], self.__time_points['steps'][_t + 1]]\n )\n", (19145, 19222), True, 'import numpy as np\n'), ((23475, 23565), 'numpy.array', 'np.array', (['[self.state.current_time_step.initial.rhs]'], {'dtype': 'self.problem.numeric_type'}), '([self.state.current_time_step.initial.rhs], dtype=self.problem.\n numeric_type)\n', (23483, 23565), True, 'import numpy as np\n'), ((26265, 26311), 'pypint.problems.problem_has_exact_solution', 'problem_has_exact_solution', (['self.problem', 'self'], {}), '(self.problem, self)\n', (26291, 26311), False, 'from pypint.problems import IInitialValueProblem, problem_has_exact_solution\n'), ((33389, 33455), 'pypint.solvers.diagnosis.norms.supremum_norm', 'supremum_norm', (['self.state.current_time_step.initial.solution.value'], {}), '(self.state.current_time_step.initial.solution.value)\n', (33402, 33455), False, 'from pypint.solvers.diagnosis.norms import supremum_norm\n'), ((18513, 18607), 'numpy.array', 'np.array', (["[self.__time_points['steps'][0], self.__time_points['steps'][1]]"], {'dtype': 'np.float'}), "([self.__time_points['steps'][0], self.__time_points['steps'][1]],\n dtype=np.float)\n", (18521, 18607), True, 'import numpy as np\n'), ((20659, 20705), 'pypint.problems.problem_has_exact_solution', 'problem_has_exact_solution', (['self.problem', 'self'], {}), '(self.problem, self)\n', (20685, 20705), False, 'from pypint.problems import IInitialValueProblem, problem_has_exact_solution\n'), ((34307, 34325), 'pypint.solvers.diagnosis.norms.supremum_norm', 'supremum_norm', (['val'], {}), '(val)\n', (34320, 34325), False, 'from pypint.solvers.diagnosis.norms import supremum_norm\n'), ((26496, 26522), 'pypint.solvers.diagnosis.norms.supremum_norm', 'supremum_norm', (['_step.value'], {}), '(_step.value)\n', (26509, 26522), False, 'from pypint.solvers.diagnosis.norms import supremum_norm\n'), ((26838, 26864), 'pypint.solvers.diagnosis.norms.supremum_norm', 'supremum_norm', (['_step.value'], {}), '(_step.value)\n', (26851, 26864), False, 'from pypint.solvers.diagnosis.norms import supremum_norm\n'), ((23816, 23906), 'numpy.array', 'np.array', (['[self.state.current_time_step.initial.rhs]'], {'dtype': 'self.problem.numeric_type'}), '([self.state.current_time_step.initial.rhs], dtype=self.problem.\n numeric_type)\n', (23824, 23906), True, 'import numpy as np\n'), ((24349, 24403), 'numpy.array', 'np.array', (['[_step.rhs]'], {'dtype': 'self.problem.numeric_type'}), '([_step.rhs], dtype=self.problem.numeric_type)\n', (24357, 24403), True, 'import numpy as np\n'), ((6506, 6521), 'pypint.utilities.func_name', 'func_name', (['self'], {}), '(self)\n', (6515, 6521), False, 'from pypint.utilities import assert_is_instance, assert_condition, func_name, assert_named_argument\n'), ((11836, 11849), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (11847, 11849), False, 'from collections import OrderedDict\n'), ((12119, 12132), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (12130, 12132), False, 'from collections import OrderedDict\n'), ((12739, 12785), 'pypint.problems.problem_has_exact_solution', 'problem_has_exact_solution', (['self.problem', 'self'], {}), '(self.problem, self)\n', (12765, 12785), False, 'from pypint.problems import IInitialValueProblem, problem_has_exact_solution\n'), ((13450, 13463), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (13461, 13463), False, 'from collections import OrderedDict\n'), ((13977, 14023), 'pypint.problems.problem_has_exact_solution', 'problem_has_exact_solution', (['self.problem', 'self'], {}), '(self.problem, self)\n', (14003, 14023), False, 'from pypint.problems import IInitialValueProblem, problem_has_exact_solution\n'), ((12354, 12423), 'pypint.solvers.diagnosis.norms.supremum_norm', 'supremum_norm', (['self.state.last_iteration.final_step.solution.residual'], {}), '(self.state.last_iteration.final_step.solution.residual)\n', (12367, 12423), False, 'from pypint.solvers.diagnosis.norms import supremum_norm\n'), ((13592, 13661), 'pypint.solvers.diagnosis.norms.supremum_norm', 'supremum_norm', (['self.state.last_iteration.final_step.solution.residual'], {}), '(self.state.last_iteration.final_step.solution.residual)\n', (13605, 13661), False, 'from pypint.solvers.diagnosis.norms import supremum_norm\n')]
import os import shutil from .storage_driver import StorageDriver class FileStorageDriver(StorageDriver): def __init__(self, path): super().__init__(path) os.makedirs(path, exist_ok=True) def pull(self, remote_path, local_path=None, override_ok=False): if not self.exists(remote_path): raise FileNotFoundError("That file doesn't exist") path = os.path.join(self.url, remote_path) if local_path: if not override_ok and os.path.exists(local_path): raise FileExistsError("File already exists at pull location!") os.makedirs(os.path.dirname(local_path), exist_ok=True) shutil.copyfile(path, local_path) return True with open(path, "rb") as f: contents = f.read() return contents def push(self, remote_path, local_path=None, bytes_data=None, override_ok=False): if not override_ok and self.exists(remote_path): raise FileExistsError("This file already exists") if not local_path and not bytes_data: raise ValueError("local_path or bytes_data need to have values!") if local_path and bytes_data: raise ValueError("local_path and bytes_data are mutually exclusive!") path = os.path.join(self.url, remote_path) if local_path: if not os.path.exists(local_path): raise FileNotFoundError("Could not find the file to push!") os.makedirs(os.path.dirname(path), exist_ok=True) shutil.copyfile(local_path, path) else: os.makedirs(os.path.dirname(path), exist_ok=True) with open(path, "wb+") as f: f.write(bytes_data) def delete(self, remote_path): if not self.exists(remote_path): raise FileNotFoundError("Could not find the file/folder to delete!") path = os.path.join(self.url, remote_path) if os.path.isdir(path): shutil.rmtree(path) else: os.remove(path) def exists(self, remote_path): path = os.path.join(self.url, remote_path) return os.path.exists(path) def get_files(self, base_url=None): results = [] path = self.url if base_url: path = os.path.join(self.url, base_url) for root, _, files in os.walk(path): for f in files: results.append(os.path.relpath(os.path.join(root, f), path)) return results
[ "os.remove", "os.makedirs", "os.path.isdir", "os.path.dirname", "os.walk", "os.path.exists", "shutil.copyfile", "shutil.rmtree", "os.path.join" ]
[((176, 208), 'os.makedirs', 'os.makedirs', (['path'], {'exist_ok': '(True)'}), '(path, exist_ok=True)\n', (187, 208), False, 'import os\n'), ((399, 434), 'os.path.join', 'os.path.join', (['self.url', 'remote_path'], {}), '(self.url, remote_path)\n', (411, 434), False, 'import os\n'), ((1305, 1340), 'os.path.join', 'os.path.join', (['self.url', 'remote_path'], {}), '(self.url, remote_path)\n', (1317, 1340), False, 'import os\n'), ((1924, 1959), 'os.path.join', 'os.path.join', (['self.url', 'remote_path'], {}), '(self.url, remote_path)\n', (1936, 1959), False, 'import os\n'), ((1972, 1991), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (1985, 1991), False, 'import os\n'), ((2118, 2153), 'os.path.join', 'os.path.join', (['self.url', 'remote_path'], {}), '(self.url, remote_path)\n', (2130, 2153), False, 'import os\n'), ((2169, 2189), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (2183, 2189), False, 'import os\n'), ((2381, 2394), 'os.walk', 'os.walk', (['path'], {}), '(path)\n', (2388, 2394), False, 'import os\n'), ((682, 715), 'shutil.copyfile', 'shutil.copyfile', (['path', 'local_path'], {}), '(path, local_path)\n', (697, 715), False, 'import shutil\n'), ((1563, 1596), 'shutil.copyfile', 'shutil.copyfile', (['local_path', 'path'], {}), '(local_path, path)\n', (1578, 1596), False, 'import shutil\n'), ((2005, 2024), 'shutil.rmtree', 'shutil.rmtree', (['path'], {}), '(path)\n', (2018, 2024), False, 'import shutil\n'), ((2051, 2066), 'os.remove', 'os.remove', (['path'], {}), '(path)\n', (2060, 2066), False, 'import os\n'), ((2317, 2349), 'os.path.join', 'os.path.join', (['self.url', 'base_url'], {}), '(self.url, base_url)\n', (2329, 2349), False, 'import os\n'), ((494, 520), 'os.path.exists', 'os.path.exists', (['local_path'], {}), '(local_path)\n', (508, 520), False, 'import os\n'), ((626, 653), 'os.path.dirname', 'os.path.dirname', (['local_path'], {}), '(local_path)\n', (641, 653), False, 'import os\n'), ((1384, 1410), 'os.path.exists', 'os.path.exists', (['local_path'], {}), '(local_path)\n', (1398, 1410), False, 'import os\n'), ((1513, 1534), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (1528, 1534), False, 'import os\n'), ((1635, 1656), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (1650, 1656), False, 'import os\n'), ((2471, 2492), 'os.path.join', 'os.path.join', (['root', 'f'], {}), '(root, f)\n', (2483, 2492), False, 'import os\n')]
# -*- coding: utf-8 -*- from odoo import models, fields class MascotasMascotas(models.Model): _name = "mascotas.mascotas" # Lista de campos de la tabla. name = fields.Char(string="Nombre") tipo_id = fields.Many2one("mascotas.tipos", string="Tipo") raza_id = fields.Many2one("mascotas.razas", string="Raza") fecha_nacimiento = fields.Date(string="Fec. Nac.") sexo = fields.Selection([("m", "Macho"), ("h", "Hembra")], string="Sexo") class MascotasRazas(models.Model): _name = "mascotas.razas" name = fields.Char(string="Nombre") codigo = fields.Char(string="Código") class MascotasTipos(models.Model): _name = "mascotas.tipos" name = fields.Char(string="Nombre") codigo = fields.Char(string="Código")
[ "odoo.fields.Selection", "odoo.fields.Many2one", "odoo.fields.Date", "odoo.fields.Char" ]
[((176, 204), 'odoo.fields.Char', 'fields.Char', ([], {'string': '"""Nombre"""'}), "(string='Nombre')\n", (187, 204), False, 'from odoo import models, fields\n'), ((219, 267), 'odoo.fields.Many2one', 'fields.Many2one', (['"""mascotas.tipos"""'], {'string': '"""Tipo"""'}), "('mascotas.tipos', string='Tipo')\n", (234, 267), False, 'from odoo import models, fields\n'), ((282, 330), 'odoo.fields.Many2one', 'fields.Many2one', (['"""mascotas.razas"""'], {'string': '"""Raza"""'}), "('mascotas.razas', string='Raza')\n", (297, 330), False, 'from odoo import models, fields\n'), ((354, 385), 'odoo.fields.Date', 'fields.Date', ([], {'string': '"""Fec. Nac."""'}), "(string='Fec. Nac.')\n", (365, 385), False, 'from odoo import models, fields\n'), ((397, 463), 'odoo.fields.Selection', 'fields.Selection', (["[('m', 'Macho'), ('h', 'Hembra')]"], {'string': '"""Sexo"""'}), "([('m', 'Macho'), ('h', 'Hembra')], string='Sexo')\n", (413, 463), False, 'from odoo import models, fields\n'), ((541, 569), 'odoo.fields.Char', 'fields.Char', ([], {'string': '"""Nombre"""'}), "(string='Nombre')\n", (552, 569), False, 'from odoo import models, fields\n'), ((583, 611), 'odoo.fields.Char', 'fields.Char', ([], {'string': '"""Código"""'}), "(string='Código')\n", (594, 611), False, 'from odoo import models, fields\n'), ((689, 717), 'odoo.fields.Char', 'fields.Char', ([], {'string': '"""Nombre"""'}), "(string='Nombre')\n", (700, 717), False, 'from odoo import models, fields\n'), ((731, 759), 'odoo.fields.Char', 'fields.Char', ([], {'string': '"""Código"""'}), "(string='Código')\n", (742, 759), False, 'from odoo import models, fields\n')]
""" Get the timestamps of all claims and plot the cumulative number vs. time! """ import datetime import json import matplotlib.pyplot as plt import numpy as np import os import requests import sqlite3 import time def make_graph(mode, show=True): """ mode must be "claims" or "channels" """ if mode != "claims" and mode != "channels": return plt.close("all") # Open the DB db_file = "/home/brewer/local/lbry-sdk/lbry/lbryum-data/claims.db" conn = sqlite3.connect(db_file) c = conn.cursor() # List for results times = [] # Query if mode == "claims": x = "<>" else: x = "=" query = "SELECT creation_timestamp FROM claim\ WHERE claim_type {x} 2;".format(x=x) # Iterate over query results i = 0 for t in c.execute(query): times.append(t) i = i + 1 # We can also close the connection if we are done with it. # Just be sure any changes have been committed or they will be lost. conn.close() # Sort the times and convert to a numpy array times = np.sort(np.array(times).flatten()) # Save some stats to JSON for Electron now = time.time() my_dict = {} my_dict["unix_time"] = now my_dict["human_time_utc"] = str(datetime.datetime.utcfromtimestamp(int(now))) + " UTC" my_dict["total_{mode}".format(mode=mode)] = int(\ len(times)) my_dict["new_{mode}_1_hour".format(mode=mode)] = int(\ np.sum(times > (now - 3600.0))) my_dict["new_{mode}_24_hours".format(mode=mode)] = int(\ np.sum(times > (now - 86400.0))) my_dict["new_{mode}_7_days".format(mode=mode)] = int(\ np.sum(times > (now - 7*86400.0))) my_dict["new_{mode}_30_days".format(mode=mode)] = int(\ np.sum(times > (now - 30*86400.0))) f = open("{mode}_stats.json".format(mode=mode), "w") f.write(json.dumps(my_dict)) f.close() # Count new claims this UTC day count_today = np.sum(times > 86400.0*int(now/86400.0)) if mode == "claims": string = "publications" else: string = "channels" print("{K} {mode}, {n} from today so far (UTC). ".format(K=len(times), mode=string, n=count_today), end="", flush=True) # Plotting stuff plt.rcParams["font.family"] = "Liberation Sans" plt.rcParams["font.size"] = 14 plt.style.use("dark_background") plt.rcParams["axes.facecolor"] = "#3c3d3c" plt.rcParams["savefig.facecolor"] = "#3c3d3c" plt.figure(figsize=(15, 11)) plt.subplot(2, 1, 1) times_in_days = (times - 1483228800)/86400.0 days = times_in_days.astype("int64") plt.plot(times_in_days, np.arange(len(times)), "w-", linewidth=1.5) plt.ylabel("Cumulative number of {mode}".format(mode=string)) plt.title("Total number of {mode} = {n}.".format(n=len(times), mode=string)) plt.xlim([0.0, days.max() + 1]) plt.ylim(bottom=-100) plt.gca().tick_params(labelright=True) # Add vertical lines for new years (approximately) new_years = np.arange(0, 5)*365.2425 for year in new_years: plt.axvline(year, color="r", alpha=0.8, linestyle="--") # Add text about years year_names = [2017, 2018, 2019] for i in range(len(year_names)): year = new_years[i] plt.text(year+5.0, 0.95*plt.gca().get_ylim()[1], "{text} begins".format(text=year_names[i]), fontsize=10) # Add line and text about MH's video plt.axvline(890.0, linestyle="dotted", linewidth=2, color="g") plt.text(890.0, 0.2*plt.gca().get_ylim()[1], "@MH video\n\'Why I Left YouTube\'\ngoes viral", fontsize=10) plt.subplot(2, 1, 2) bin_width = 1.0 # Bin edges including right edge of last bin bins = np.arange(0, np.max(days)+2) - 0.5*bin_width color = "#6b95ef" counts = plt.hist(days, bins, alpha=0.9, color=color, label="Raw", width=bin_width, align="mid")[0] # Compute 10-day moving average moving_average = np.zeros(len(bins)-1) for i in range(len(moving_average)): subset = counts[0:(i+1)] if len(subset) >= 10: subset = subset[-10:] moving_average[i] = np.mean(subset) plt.plot(bins[0:-2] + 0.5*bin_width, moving_average[0:-1], "w-", label="10-day moving average", linewidth=1.5) plt.xlim([0.0, days.max() + 1]) plt.xlabel("Time (days since 2017-01-01)") plt.ylabel("New {mode} added each day".format(mode=string)) subset = counts[-31:-1] plt.title("Recent average rate (last 30 days) = {n} {mode} per day.".\ format(n=int(np.sum(time.time() - times <= 30.0*86400.0)/30.0), mode=string)) plt.gca().tick_params(labelright=True) # Year lines for year in new_years: plt.axvline(year, color="r", alpha=0.8, linestyle="--") # MH line plt.axvline(890.0, linestyle="dotted", linewidth=2, color="g") # plt.gca().set_yticks([1.0, 10.0, 100.0, 1000.0, 10000.0]) # plt.gca().set_yticklabels(["1", "10", "100", "1000", "10000"]) plt.legend() plt.savefig("{mode}.svg".format(mode=mode), bbox_inches="tight") plt.savefig("{mode}.png".format(mode=mode), bbox_inches="tight", dpi=70) print("Figure saved to {mode}.svg and {mode}.png.".format(mode=mode)) if show: plt.show() def aggregate_tips(): """ Calculate tips over past X amount of time and write JSON output """ # The SQL query to perform now = time.time() print("Computing tip stats...", end="", flush=True) labels = ["30_days", "7_days", "24_hours", "1_hour"] windows = [30*86400.0, 7*86400.0, 1*86400.0, 3600.0] result = {} result["unix_time"] = now result["human_time_utc"] = str(datetime.datetime.utcfromtimestamp(int(now))) + " UTC" # Agrees with old method, but should it be SUM(amount)? query = "SELECT support_id, amount, time, claim_name, claim_id, is_nsfw, SUM(to_claim_address) tot FROM (SELECT support.id as support_id, support.support_amount amount,\ transaction.transaction_time time, claim.is_nsfw is_nsfw,\ claim.claim_id claim_id, claim.name claim_name,\ (CASE WHEN (output.address_list LIKE CONCAT('%25', claim_address, '%25')) THEN '1' ELSE '0' END) to_claim_address\ FROM claim\ INNER JOIN support ON support.supported_claim_id = claim.claim_id\ INNER JOIN transaction ON support.transaction_hash_id = transaction.hash\ INNER JOIN output ON transaction.hash = output.transaction_hash \ WHERE transaction.transaction_time > ({now} - {window})\ AND transaction.transaction_time <= {now}) AS result\ GROUP BY support_id, amount;".format(now=now, window=windows[0]) request = requests.get("https://chainquery.lbry.com/api/sql?query=" + query) the_dict = request.json() # Get tips into numpy array times = [] tips = [] is_tip = [] links = [] is_nsfw = [] for row in the_dict["data"]: times.append(float(row["time"])) tips.append(float(row["amount"])) links.append("https://open.lbry.com/" + str(row["claim_name"]) + ":"\ + str(row["claim_id"])) is_nsfw.append(row["is_nsfw"]) if row["tot"] > 0: is_tip.append(True) else: is_tip.append(False) times = np.array(times) tips = np.array(tips) is_tip = np.array(is_tip) links = np.array(links) is_nsfw = np.array(is_nsfw) # Write tips for i in range(len(labels)): keep = (times > (now - windows[i])) & is_tip _times = times[keep] _tips = tips[keep] _links = links[keep] _is_nsfw = is_nsfw[keep] result["num_tips_{label}".format(label=labels[i])] = len(_tips) result["lbc_tipped_{label}".format(label=labels[i])] = float(_tips.sum()) maxtip = 0 maxtip_link = None maxtip_is_nsfw = None if len(_tips) > 0: maxtip = float(_tips.max()) index = np.argmax(_tips) maxtip_link = _links[index] maxtip_is_nsfw = _is_nsfw[index] result["biggest_tip_{label}".format(label=labels[i])] = maxtip result["biggest_tip_{label}_link".format(label=labels[i])] = maxtip_link result["biggest_tip_{label}_is_nsfw".format(label=labels[i])] = bool(maxtip_is_nsfw) # Write supports for i in range(len(labels)): keep = (times > (now - windows[i])) & (~is_tip) _times = times[keep] _tips = tips[keep] _links = links[keep] _is_nsfw = is_nsfw[keep] result["num_supports_{label}".format(label=labels[i])] = len(_tips) result["lbc_supports_{label}".format(label=labels[i])] = float(_tips.sum()) maxtip = 0 maxtip_link = None maxtip_is_nsfw = None if len(_tips) > 0: maxtip = float(_tips.max()) index = np.argmax(_tips) maxtip_link = _links[index] maxtip_is_nsfw = _is_nsfw[index] result["biggest_support_{label}".format(label=labels[i])] = maxtip result["biggest_support_{label}_link".format(label=labels[i])] = maxtip_link result["biggest_support_{label}_is_nsfw".format(label=labels[i])] = bool(maxtip_is_nsfw) f = open("tips_stats.json", "w") f.write(json.dumps(result)) f.close() print("done. ", flush=True, end="") def publish_files(): """ Publish files to somewhere on the internet. """ print("Publishing files to the internet...", end="", flush=True) import subprocess try: subprocess.run("./upload.sh", timeout=120.0) print("done.\n") except: print("failed.\n") if __name__ == "__main__": # Do it manually once then enter the infinite loop now = time.time() print("The time is " + str(datetime.datetime.utcfromtimestamp(int(now))) + " UTC.") make_graph("claims") make_graph("channels") try: aggregate_tips() except: pass import os try: publish_files() except: pass import time while True: print("", flush=True) time.sleep(530.0) now = time.time() print("The time is " + str(datetime.datetime.utcfromtimestamp(int(now))) + " UTC.") make_graph("claims", show=False) make_graph("channels", show=False) try: aggregate_tips() except: pass try: publish_files() except: pass
[ "numpy.sum", "numpy.argmax", "json.dumps", "matplotlib.pyplot.style.use", "matplotlib.pyplot.figure", "numpy.arange", "numpy.mean", "matplotlib.pyplot.gca", "matplotlib.pyplot.axvline", "matplotlib.pyplot.close", "numpy.max", "requests.get", "matplotlib.pyplot.show", "matplotlib.pyplot.ylim", "matplotlib.pyplot.legend", "time.sleep", "sqlite3.connect", "matplotlib.pyplot.subplot", "subprocess.run", "matplotlib.pyplot.plot", "matplotlib.pyplot.hist", "time.time", "numpy.array", "matplotlib.pyplot.xlabel" ]
[((373, 389), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (382, 389), True, 'import matplotlib.pyplot as plt\n'), ((491, 515), 'sqlite3.connect', 'sqlite3.connect', (['db_file'], {}), '(db_file)\n', (506, 515), False, 'import sqlite3\n'), ((1203, 1214), 'time.time', 'time.time', ([], {}), '()\n', (1212, 1214), False, 'import time\n'), ((2409, 2441), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""dark_background"""'], {}), "('dark_background')\n", (2422, 2441), True, 'import matplotlib.pyplot as plt\n'), ((2544, 2572), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 11)'}), '(figsize=(15, 11))\n', (2554, 2572), True, 'import matplotlib.pyplot as plt\n'), ((2577, 2597), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(1)'], {}), '(2, 1, 1)\n', (2588, 2597), True, 'import matplotlib.pyplot as plt\n'), ((2963, 2984), 'matplotlib.pyplot.ylim', 'plt.ylim', ([], {'bottom': '(-100)'}), '(bottom=-100)\n', (2971, 2984), True, 'import matplotlib.pyplot as plt\n'), ((3545, 3607), 'matplotlib.pyplot.axvline', 'plt.axvline', (['(890.0)'], {'linestyle': '"""dotted"""', 'linewidth': '(2)', 'color': '"""g"""'}), "(890.0, linestyle='dotted', linewidth=2, color='g')\n", (3556, 3607), True, 'import matplotlib.pyplot as plt\n'), ((3748, 3768), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(2)', '(1)', '(2)'], {}), '(2, 1, 2)\n', (3759, 3768), True, 'import matplotlib.pyplot as plt\n'), ((4311, 4428), 'matplotlib.pyplot.plot', 'plt.plot', (['(bins[0:-2] + 0.5 * bin_width)', 'moving_average[0:-1]', '"""w-"""'], {'label': '"""10-day moving average"""', 'linewidth': '(1.5)'}), "(bins[0:-2] + 0.5 * bin_width, moving_average[0:-1], 'w-', label=\n '10-day moving average', linewidth=1.5)\n", (4319, 4428), True, 'import matplotlib.pyplot as plt\n'), ((4479, 4521), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time (days since 2017-01-01)"""'], {}), "('Time (days since 2017-01-01)')\n", (4489, 4521), True, 'import matplotlib.pyplot as plt\n'), ((4977, 5039), 'matplotlib.pyplot.axvline', 'plt.axvline', (['(890.0)'], {'linestyle': '"""dotted"""', 'linewidth': '(2)', 'color': '"""g"""'}), "(890.0, linestyle='dotted', linewidth=2, color='g')\n", (4988, 5039), True, 'import matplotlib.pyplot as plt\n'), ((5193, 5205), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (5203, 5205), True, 'import matplotlib.pyplot as plt\n'), ((5608, 5619), 'time.time', 'time.time', ([], {}), '()\n', (5617, 5619), False, 'import time\n'), ((6996, 7062), 'requests.get', 'requests.get', (["('https://chainquery.lbry.com/api/sql?query=' + query)"], {}), "('https://chainquery.lbry.com/api/sql?query=' + query)\n", (7008, 7062), False, 'import requests\n'), ((7607, 7622), 'numpy.array', 'np.array', (['times'], {}), '(times)\n', (7615, 7622), True, 'import numpy as np\n'), ((7634, 7648), 'numpy.array', 'np.array', (['tips'], {}), '(tips)\n', (7642, 7648), True, 'import numpy as np\n'), ((7662, 7678), 'numpy.array', 'np.array', (['is_tip'], {}), '(is_tip)\n', (7670, 7678), True, 'import numpy as np\n'), ((7691, 7706), 'numpy.array', 'np.array', (['links'], {}), '(links)\n', (7699, 7706), True, 'import numpy as np\n'), ((7721, 7738), 'numpy.array', 'np.array', (['is_nsfw'], {}), '(is_nsfw)\n', (7729, 7738), True, 'import numpy as np\n'), ((10059, 10070), 'time.time', 'time.time', ([], {}), '()\n', (10068, 10070), False, 'import time\n'), ((1511, 1539), 'numpy.sum', 'np.sum', (['(times > now - 3600.0)'], {}), '(times > now - 3600.0)\n', (1517, 1539), True, 'import numpy as np\n'), ((1620, 1649), 'numpy.sum', 'np.sum', (['(times > now - 86400.0)'], {}), '(times > now - 86400.0)\n', (1626, 1649), True, 'import numpy as np\n'), ((1728, 1761), 'numpy.sum', 'np.sum', (['(times > now - 7 * 86400.0)'], {}), '(times > now - 7 * 86400.0)\n', (1734, 1761), True, 'import numpy as np\n'), ((1839, 1873), 'numpy.sum', 'np.sum', (['(times > now - 30 * 86400.0)'], {}), '(times > now - 30 * 86400.0)\n', (1845, 1873), True, 'import numpy as np\n'), ((1944, 1963), 'json.dumps', 'json.dumps', (['my_dict'], {}), '(my_dict)\n', (1954, 1963), False, 'import json\n'), ((3100, 3115), 'numpy.arange', 'np.arange', (['(0)', '(5)'], {}), '(0, 5)\n', (3109, 3115), True, 'import numpy as np\n'), ((3160, 3215), 'matplotlib.pyplot.axvline', 'plt.axvline', (['year'], {'color': '"""r"""', 'alpha': '(0.8)', 'linestyle': '"""--"""'}), "(year, color='r', alpha=0.8, linestyle='--')\n", (3171, 3215), True, 'import matplotlib.pyplot as plt\n'), ((3930, 4021), 'matplotlib.pyplot.hist', 'plt.hist', (['days', 'bins'], {'alpha': '(0.9)', 'color': 'color', 'label': '"""Raw"""', 'width': 'bin_width', 'align': '"""mid"""'}), "(days, bins, alpha=0.9, color=color, label='Raw', width=bin_width,\n align='mid')\n", (3938, 4021), True, 'import matplotlib.pyplot as plt\n'), ((4291, 4306), 'numpy.mean', 'np.mean', (['subset'], {}), '(subset)\n', (4298, 4306), True, 'import numpy as np\n'), ((4902, 4957), 'matplotlib.pyplot.axvline', 'plt.axvline', (['year'], {'color': '"""r"""', 'alpha': '(0.8)', 'linestyle': '"""--"""'}), "(year, color='r', alpha=0.8, linestyle='--')\n", (4913, 4957), True, 'import matplotlib.pyplot as plt\n'), ((5448, 5458), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5456, 5458), True, 'import matplotlib.pyplot as plt\n'), ((9586, 9604), 'json.dumps', 'json.dumps', (['result'], {}), '(result)\n', (9596, 9604), False, 'import json\n'), ((9855, 9899), 'subprocess.run', 'subprocess.run', (['"""./upload.sh"""'], {'timeout': '(120.0)'}), "('./upload.sh', timeout=120.0)\n", (9869, 9899), False, 'import subprocess\n'), ((10413, 10430), 'time.sleep', 'time.sleep', (['(530.0)'], {}), '(530.0)\n', (10423, 10430), False, 'import time\n'), ((10446, 10457), 'time.time', 'time.time', ([], {}), '()\n', (10455, 10457), False, 'import time\n'), ((2989, 2998), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2996, 2998), True, 'import matplotlib.pyplot as plt\n'), ((4811, 4820), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (4818, 4820), True, 'import matplotlib.pyplot as plt\n'), ((8278, 8294), 'numpy.argmax', 'np.argmax', (['_tips'], {}), '(_tips)\n', (8287, 8294), True, 'import numpy as np\n'), ((9177, 9193), 'numpy.argmax', 'np.argmax', (['_tips'], {}), '(_tips)\n', (9186, 9193), True, 'import numpy as np\n'), ((1122, 1137), 'numpy.array', 'np.array', (['times'], {}), '(times)\n', (1130, 1137), True, 'import numpy as np\n'), ((3863, 3875), 'numpy.max', 'np.max', (['days'], {}), '(days)\n', (3869, 3875), True, 'import numpy as np\n'), ((3632, 3641), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3639, 3641), True, 'import matplotlib.pyplot as plt\n'), ((3377, 3386), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3384, 3386), True, 'import matplotlib.pyplot as plt\n'), ((4725, 4736), 'time.time', 'time.time', ([], {}), '()\n', (4734, 4736), False, 'import time\n')]
from matplotlib import pyplot as pl def factorial(n): if n==0: return 1 else: return n*factorial(n-1) def C(n,i): return factorial(n)/(factorial(n-i)*factorial(i)) def Spline(n,puntos): coeficientesx = [] coeficientesy = [] for i in range(n+1): Coef = C(n,i) coeficientesx.append(Coef*puntos[i][0]) coeficientesy.append(Coef*puntos[i][1]) return [coeficientesx,coeficientesy] def B(n,t,coef): ans = 0 for i in range(n+1): ans += coef[i]*((1-t)**(n-i))*(t**i) return ans def graficar(n,T,coeficientes): x = [] y = [] for t in T: x.append(B(n,t,coeficientes[0])) y.append(B(n,t,coeficientes[1])) pl.plot(x,y) pl.show() return None T = [] for i in range(100): T.append(i/100.0) puntos = [[1.67,4.33][0.96,4.33][0.38,4.23][-0.23,4.22][-0.69,3.88][-0.99, 3.54][-1,3][-0.84, 2.66][-0.48,2.43][-0.04,2.30][0.49,2.56][1.09,2.31][1.67,2.25][2.14,1.97][2.41,1.56][2.43,1.06][2.14,0.72][1.63,0.62][1.07,0.60][0.52,0.58][0.07,0.54][-0.32,0.54][-0.79,0.55]] n = len(puntos)-1 coeficientes = Spline(n,puntos) graficar(n,T,coeficientes)
[ "matplotlib.pyplot.show", "matplotlib.pyplot.plot" ]
[((730, 743), 'matplotlib.pyplot.plot', 'pl.plot', (['x', 'y'], {}), '(x, y)\n', (737, 743), True, 'from matplotlib import pyplot as pl\n'), ((747, 756), 'matplotlib.pyplot.show', 'pl.show', ([], {}), '()\n', (754, 756), True, 'from matplotlib import pyplot as pl\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-08-12 00:16 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion import modelcluster.contrib.taggit import modelcluster.fields import wagtail.wagtailcore.fields from wapps.utils import get_image_model class Migration(migrations.Migration): dependencies = [ ('wagtailcore', '0028_merge'), ('taggit', '0002_auto_20150616_2121'), ('wagtailimages', '0013_make_rendition_upload_callable'), ('wapps', '0006_add_identity_logo_with_custom_image_model'), ] operations = [ migrations.CreateModel( name='StaticPage', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='wagtailcore.Page')), ('intro', models.TextField(blank=True, help_text='An optional introduction used as page heading and summary', null=True, verbose_name='Introduction')), ('body', wagtail.wagtailcore.fields.RichTextField(help_text='The main page content', verbose_name='Body')), ('image_full', models.BooleanField(default=False, help_text='Use the fully sized image', verbose_name='Fully sized image')), ('seo_type', models.CharField(choices=[('article', 'Article'), ('service', 'Service')], help_text='What does this page represents', max_length=10, verbose_name='Search engine type')), ('image', models.ForeignKey(blank=True, help_text='The main page image (seen when shared)', null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to=get_image_model())), ], options={ 'verbose_name': 'Static Page', }, bases=('wagtailcore.page',), ), migrations.CreateModel( name='StaticPageTag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('content_object', modelcluster.fields.ParentalKey(on_delete=django.db.models.deletion.CASCADE, related_name='tagged_items', to='wapps.StaticPage')), ('tag', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='wapps_staticpagetag_items', to='taggit.Tag')), ], options={ 'abstract': False, }, ), migrations.AddField( model_name='staticpage', name='tags', field=modelcluster.contrib.taggit.ClusterTaggableManager(blank=True, help_text='A comma-separated list of tags.', through='wapps.StaticPageTag', to='taggit.Tag', verbose_name='Tags'), ), ]
[ "django.db.models.OneToOneField", "django.db.models.TextField", "wapps.utils.get_image_model", "django.db.models.CharField", "django.db.models.ForeignKey", "django.db.models.BooleanField", "django.db.models.AutoField" ]
[((747, 917), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'auto_created': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'parent_link': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'to': '"""wagtailcore.Page"""'}), "(auto_created=True, on_delete=django.db.models.deletion\n .CASCADE, parent_link=True, primary_key=True, serialize=False, to=\n 'wagtailcore.Page')\n", (767, 917), False, 'from django.db import migrations, models\n'), ((936, 1084), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'help_text': '"""An optional introduction used as page heading and summary"""', 'null': '(True)', 'verbose_name': '"""Introduction"""'}), "(blank=True, help_text=\n 'An optional introduction used as page heading and summary', null=True,\n verbose_name='Introduction')\n", (952, 1084), False, 'from django.db import migrations, models\n'), ((1233, 1344), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)', 'help_text': '"""Use the fully sized image"""', 'verbose_name': '"""Fully sized image"""'}), "(default=False, help_text='Use the fully sized image',\n verbose_name='Fully sized image')\n", (1252, 1344), False, 'from django.db import migrations, models\n'), ((1372, 1549), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('article', 'Article'), ('service', 'Service')]", 'help_text': '"""What does this page represents"""', 'max_length': '(10)', 'verbose_name': '"""Search engine type"""'}), "(choices=[('article', 'Article'), ('service', 'Service')],\n help_text='What does this page represents', max_length=10, verbose_name\n ='Search engine type')\n", (1388, 1549), False, 'from django.db import migrations, models\n'), ((2011, 2104), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (2027, 2104), False, 'from django.db import migrations, models\n'), ((2293, 2419), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""wapps_staticpagetag_items"""', 'to': '"""taggit.Tag"""'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='wapps_staticpagetag_items', to='taggit.Tag')\n", (2310, 2419), False, 'from django.db import migrations, models\n'), ((1729, 1746), 'wapps.utils.get_image_model', 'get_image_model', ([], {}), '()\n', (1744, 1746), False, 'from wapps.utils import get_image_model\n')]
import numpy as np import scipy.sparse as sp import datasets import utils import argparse # argparse parser = argparse.ArgumentParser() parser.add_argument('--dataset', default='cora', help='Datasets: cora, email, ssets') parser.add_argument('--version', default='1', help='version for ssets, default 1 for others') args = parser.parse_args() if __name__ == '__main__': A, labels = datasets.load_graph(args.dataset, args.version) # dense if not isinstance(A, np.ndarray): A = np.array(A.todense()) L = utils.laplacian(A) N = utils.normalized_laplacian(A) # sparse A = sp.csr_matrix(A) L = sp.csr_matrix(L) N = sp.csr_matrix(N) matrices = { 'A': A, 'L': L, 'N': N } for matrix_id in matrices: matrix = matrices[matrix_id] eig_val, eig_vec = np.linalg.eigh(matrix.todense()) path = f"{args.dataset}/embeddings/{matrix_id}_{args.dataset}_v{args.version}.npy" np.save(path, eig_vec)
[ "numpy.save", "argparse.ArgumentParser", "datasets.load_graph", "scipy.sparse.csr_matrix", "utils.laplacian", "utils.normalized_laplacian" ]
[((113, 138), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (136, 138), False, 'import argparse\n'), ((390, 437), 'datasets.load_graph', 'datasets.load_graph', (['args.dataset', 'args.version'], {}), '(args.dataset, args.version)\n', (409, 437), False, 'import datasets\n'), ((531, 549), 'utils.laplacian', 'utils.laplacian', (['A'], {}), '(A)\n', (546, 549), False, 'import utils\n'), ((558, 587), 'utils.normalized_laplacian', 'utils.normalized_laplacian', (['A'], {}), '(A)\n', (584, 587), False, 'import utils\n'), ((610, 626), 'scipy.sparse.csr_matrix', 'sp.csr_matrix', (['A'], {}), '(A)\n', (623, 626), True, 'import scipy.sparse as sp\n'), ((635, 651), 'scipy.sparse.csr_matrix', 'sp.csr_matrix', (['L'], {}), '(L)\n', (648, 651), True, 'import scipy.sparse as sp\n'), ((660, 676), 'scipy.sparse.csr_matrix', 'sp.csr_matrix', (['N'], {}), '(N)\n', (673, 676), True, 'import scipy.sparse as sp\n'), ((976, 998), 'numpy.save', 'np.save', (['path', 'eig_vec'], {}), '(path, eig_vec)\n', (983, 998), True, 'import numpy as np\n')]
# https://teamtreehouse.com/library/everyone-loves-charlotte import re from urllib.request import urlopen from bs4 import BeautifulSoup site_links = [] def internal_links(linkURL): html = urlopen('https://treehouse-projects.github.io/horse-land/{}'.format(linkURL)) soup = BeautifulSoup(html, 'html.parser') return soup.find('a', href=re.compile('(.html)$')) if __name__ == '__main__': urls = internal_links('index.html') while len(urls) > 0: page = urls.attrs['href'] if page not in site_links: site_links.append(page) print(page) print('\n==============\n') urls = internal_links(page) else: break
[ "bs4.BeautifulSoup", "re.compile" ]
[((285, 319), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html', '"""html.parser"""'], {}), "(html, 'html.parser')\n", (298, 319), False, 'from bs4 import BeautifulSoup\n'), ((352, 374), 're.compile', 're.compile', (['"""(.html)$"""'], {}), "('(.html)$')\n", (362, 374), False, 'import re\n')]
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2015-2018 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Filters for webassets.""" from __future__ import absolute_import, print_function import json import os import re from subprocess import PIPE, Popen from babel.messages.pofile import read_po from flask import current_app from webassets.filter import Filter, register_filter from webassets.filter.cleancss import CleanCSS from webassets.filter.requirejs import RequireJSFilter as RequireJSFilterBase __all__ = ('AngularGettextFilter', 'RequireJSFilter', 'CleanCSSFilter', ) class RequireJSFilter(RequireJSFilterBase): """Optimize AMD-style modularized JavaScript into a single asset. Adds support for exclusion of files already in defined in other bundles. """ name = 'requirejsexclude' def __init__(self, *args, **kwargs): r"""Initialize filter. :param \*args: Arguments are forwarded to parent class. :param \**kwargs: Keyword arguments are forwarded to parent class except the *exclude* keyword. """ self.excluded_bundles = kwargs.pop('exclude', []) super(RequireJSFilter, self).__init__(*args, **kwargs) def setup(self): """Setup filter (only called when filter is actually used).""" super(RequireJSFilter, self).setup() excluded_files = [] for bundle in self.excluded_bundles: excluded_files.extend( map(lambda f: os.path.splitext(f)[0], bundle.contents) ) if excluded_files: self.argv.append( 'exclude={0}'.format(','.join(excluded_files)) ) class CleanCSSFilter(CleanCSS): """Minify CSS using cleancss. Implements opener capable of rebasing relative CSS URLs against ``COLLECT_STATIC_ROOT`` using both cleancss v3 or v4. """ name = 'cleancssurl' def setup(self): """Initialize filter just before it will be used.""" super(CleanCSSFilter, self).setup() self.root = current_app.config.get('COLLECT_STATIC_ROOT') @property def rebase_opt(self): """Determine which option name to use.""" if not hasattr(self, '_rebase_opt'): # out = b"MAJOR.MINOR.REVISION" // b"3.4.19" or b"4.0.0" out, err = Popen( ['cleancss', '--version'], stdout=PIPE).communicate() ver = int(out[:out.index(b'.')]) self._rebase_opt = ['--root', self.root] if ver == 3 else [] return self._rebase_opt def input(self, _in, out, **kw): """Input filtering.""" args = [self.binary or 'cleancss'] + self.rebase_opt if self.extra_args: args.extend(self.extra_args) self.subprocess(args, out, _in) _re_language_code = re.compile( r'"Language: (?P<language_code>[A-Za-z_]{2,}(_[A-Za-z]{2,})?)\\n"' ) """Match language code group in PO file.""" class AngularGettextFilter(Filter): """Compile GNU gettext messages to angular-gettext module.""" name = 'angular-gettext' options = { 'catalog_name': None, } def output(self, _in, out, **kwargs): """Wrap translation in Angular module.""" out.write( 'angular.module("{0}", ["gettext"]).run(' '["gettextCatalog", function (gettextCatalog) {{'.format( self.catalog_name ) ) out.write(_in.read()) out.write('}]);') def input(self, _in, out, **kwargs): """Process individual translation file.""" language_code = _re_language_code.search(_in.read()).group( 'language_code' ) _in.seek(0) # move at the begining after matching the language catalog = read_po(_in) out.write('gettextCatalog.setStrings("{0}", '.format(language_code)) out.write(json.dumps({ key: value.string for key, value in catalog._messages.items() if key and value.string })) out.write(');') # Register filters on webassets. register_filter(AngularGettextFilter) register_filter(CleanCSSFilter) register_filter(RequireJSFilter)
[ "subprocess.Popen", "babel.messages.pofile.read_po", "flask.current_app.config.get", "webassets.filter.register_filter", "os.path.splitext", "re.compile" ]
[((2959, 3038), 're.compile', 're.compile', (['""""Language: (?P<language_code>[A-Za-z_]{2,}(_[A-Za-z]{2,})?)\\\\\\\\n\\""""'], {}), '(\'"Language: (?P<language_code>[A-Za-z_]{2,}(_[A-Za-z]{2,})?)\\\\\\\\n"\')\n', (2969, 3038), False, 'import re\n'), ((4216, 4253), 'webassets.filter.register_filter', 'register_filter', (['AngularGettextFilter'], {}), '(AngularGettextFilter)\n', (4231, 4253), False, 'from webassets.filter import Filter, register_filter\n'), ((4254, 4285), 'webassets.filter.register_filter', 'register_filter', (['CleanCSSFilter'], {}), '(CleanCSSFilter)\n', (4269, 4285), False, 'from webassets.filter import Filter, register_filter\n'), ((4286, 4318), 'webassets.filter.register_filter', 'register_filter', (['RequireJSFilter'], {}), '(RequireJSFilter)\n', (4301, 4318), False, 'from webassets.filter import Filter, register_filter\n'), ((2197, 2242), 'flask.current_app.config.get', 'current_app.config.get', (['"""COLLECT_STATIC_ROOT"""'], {}), "('COLLECT_STATIC_ROOT')\n", (2219, 2242), False, 'from flask import current_app\n'), ((3914, 3926), 'babel.messages.pofile.read_po', 'read_po', (['_in'], {}), '(_in)\n', (3921, 3926), False, 'from babel.messages.pofile import read_po\n'), ((2471, 2516), 'subprocess.Popen', 'Popen', (["['cleancss', '--version']"], {'stdout': 'PIPE'}), "(['cleancss', '--version'], stdout=PIPE)\n", (2476, 2516), False, 'from subprocess import PIPE, Popen\n'), ((1611, 1630), 'os.path.splitext', 'os.path.splitext', (['f'], {}), '(f)\n', (1627, 1630), False, 'import os\n')]
# -*- coding: utf-8 -*- ############################################################################## # # translation.py # Module defining bunch of function to be used for i18n transration # # Copyright (c) 2010 Webcore Corp. All Rights Reserved. # ############################################################################## """ translation.py - Module defining bunch of function to be used for i18n transration. $Id: translation.py 629 2010-06-28 07:57:53Z ats $ """ __author__ = '<NAME> <<EMAIL>>' __docformat__ = 'plaintext' __licence__ = 'BSD' import os import gettext __all__ = ['get_i18ndir', 'get_gettextobject', 'get_languages'] def get_i18ndir(): """ A function to obtain i18n directory """ udir = os.path.dirname(os.path.split(__file__)[0]) dir = os.path.join(udir, 'i18n') return dir def get_gettextobject(dimain = 'aha', languages = None): """ A function to obtain gettext object """ dir = get_i18ndir() t = gettext.translation(domain = dimain, languages = languages, localedir = dir, fallback = True) return t def get_languages(s): """ A function to obtain language settings via Accept-Language header. """ langs = [''.join(x.split(';')[:1]) for x in s] return langs def main(): pass;
[ "gettext.translation", "os.path.split", "os.path.join" ]
[((854, 880), 'os.path.join', 'os.path.join', (['udir', '"""i18n"""'], {}), "(udir, 'i18n')\n", (866, 880), False, 'import os\n'), ((1042, 1131), 'gettext.translation', 'gettext.translation', ([], {'domain': 'dimain', 'languages': 'languages', 'localedir': 'dir', 'fallback': '(True)'}), '(domain=dimain, languages=languages, localedir=dir,\n fallback=True)\n', (1061, 1131), False, 'import gettext\n'), ((816, 839), 'os.path.split', 'os.path.split', (['__file__'], {}), '(__file__)\n', (829, 839), False, 'import os\n')]
from contextlib import suppress import pytest from bocadillo import WebSocket, API, WebSocketDisconnect from bocadillo.constants import WEBSOCKET_CLOSE_CODES # Basic usage def test_websocket_route(api: API): @api.websocket_route("/chat") async def chat(ws: WebSocket): async with ws: assert await ws.receive_text() == "ping" await ws.send_text("pong") with api.client.websocket_connect("/chat") as client: client.send_text("ping") assert client.receive_text() == "pong" def test_websocket_route_parameters(api: API): @api.websocket_route("/chat/{room}") async def chat_room(ws: WebSocket, room: str): async with ws: await ws.send(room) with api.client.websocket_connect("/chat/foo") as client: assert client.receive_text() == "foo" def test_if_route_parameter_fails_validation_then_403(api: API): @api.websocket_route("/chat/{id:d}") async def chat_room(ws: WebSocket, id: int): pass with pytest.raises(WebSocketDisconnect) as ctx: with api.client.websocket_connect("/chat/foo"): pass assert ctx.value.code == 403 def test_non_existing_endpoint_returns_403_as_per_the_asgi_spec(api: API): with pytest.raises(WebSocketDisconnect) as ctx: with api.client.websocket_connect("/foo"): pass assert ctx.value.code == 403 def test_reject_closes_with_403(api: API): @api.websocket_route("/foo") async def foo(ws: WebSocket): await ws.reject() with pytest.raises(WebSocketDisconnect) as ctx: with api.client.websocket_connect("/foo"): pass assert ctx.value.code == 403 def test_iter_websocket(api: API): @api.websocket_route("/chat") async def chat(ws: WebSocket): async with ws: async for message in ws: await ws.send_text(f"You said: {message}") with api.client.websocket_connect("/chat") as ws_client: ws_client.send_text("ping") assert ws_client.receive_text() == "You said: ping" ws_client.send_text("pong") assert ws_client.receive_text() == "You said: pong" def test_can_close_within_context(api: API): @api.websocket_route("/test") async def test(ws: WebSocket): async with ws: await ws.close(4242) with api.client.websocket_connect("/test") as client: message = client.receive() assert message == {"type": "websocket.close", "code": 4242} def test_websocket_url(api: API): @api.websocket_route("/test") async def test(ws: WebSocket): async with ws: assert ws.url == "ws://testserver/test" assert ws.url.path == "/test" assert ws.url.port is None assert ws.url.scheme == "ws" assert ws.url.hostname == "testserver" assert ws.url.query == "" assert ws.url.is_secure is False with api.client.websocket_connect("/test"): pass # Encoding / decoding of messages @pytest.mark.parametrize( "receive_type, example_message, expected_type", [ ("bytes", b"Hello", bytes), ("text", "Hello", str), ("json", {"message": "Hello"}, dict), ], ) def test_receive_type(api: API, receive_type, example_message, expected_type): @api.websocket_route("/chat", receive_type=receive_type) async def chat(ws: WebSocket): async with ws: message = await ws.receive() assert type(message) == expected_type with api.client.websocket_connect("/chat") as client: getattr(client, f"send_{receive_type}")(example_message) @pytest.mark.parametrize( "send_type, example_message, expected_type", [ ("bytes", b"Hello", bytes), ("text", "Hello", str), ("json", {"message": "Hello"}, dict), ], ) def test_send_type(api: API, send_type, example_message, expected_type): @api.websocket_route("/chat", send_type=send_type) async def chat(ws: WebSocket): async with ws: await ws.send(example_message) with api.client.websocket_connect("/chat") as client: message = getattr(client, f"receive_{send_type}")() assert type(message) == expected_type assert message == example_message @pytest.mark.parametrize( "value_type, example_message, expected_type", [ ("bytes", b"Hello", bytes), ("text", "Hello", str), ("json", {"message": "Hello"}, dict), ], ) def test_value_type(api: API, value_type, example_message, expected_type): @api.websocket_route("/chat", value_type=value_type) async def chat(ws: WebSocket): async with ws: message = await ws.receive() assert type(message) == expected_type await ws.send(example_message) with api.client.websocket_connect("/chat") as client: getattr(client, f"send_{value_type}")(example_message) assert type(getattr(client, f"receive_{value_type}")()) == expected_type def test_receive_and_send_event(api: API): @api.websocket_route("/chat", value_type="event") async def chat(ws: WebSocket): async with ws: message = await ws.receive() assert message == {"type": "websocket.receive", "text": "ping"} await ws.send({"type": "websocket.send", "text": "pong"}) with api.client.websocket_connect("/chat") as client: client.send_text("ping") assert client.receive_text() == "pong" # Disconnect errors @pytest.mark.parametrize( "close_codes, code, expected_caught", [ *((None, code, True) for code in (1000, 1001)), *( (None, code, False) for code in WEBSOCKET_CLOSE_CODES if code not in (1000, 1001) ), ((1000,), 1001, False), ((1000,), 1000, True), *(((), code, False) for code in WEBSOCKET_CLOSE_CODES), *((all, code, True) for code in WEBSOCKET_CLOSE_CODES), ], ) def test_catch_disconnect(api: API, close_codes, code, expected_caught): caught = False @api.websocket_route("/chat", caught_close_codes=close_codes) async def chat(ws: WebSocket): nonlocal caught try: async with ws: await ws.receive() # will never receive caught = True except WebSocketDisconnect as exc: # The exception should have been raised only if we told the # WebSocket route not to catch it. assert exc.code not in ws.caught_close_codes with api.client.websocket_connect("/chat") as client: # Close immediately. client.close(code) assert caught is expected_caught # Server error handling class Oops(Exception): pass def test_if_exception_raised_in_context_then_closed_with_1011(api: API): @api.websocket_route("/fail") async def fail(ws: WebSocket): async with ws: raise Oops with suppress(Oops): with api.client.websocket_connect("/fail") as client: message = client.receive() assert message == {"type": "websocket.close", "code": 1011} def test_accepted_and_exception_raised_then_closed_with_1011(api: API): @api.websocket_route("/fail") async def fail(ws: WebSocket): await ws.accept() raise Oops with suppress(Oops): with api.client.websocket_connect("/fail") as client: message = client.receive() assert message == {"type": "websocket.close", "code": 1011} def test_if_not_accepted_and_exception_raised_then_closed_with_1011(api: API): @api.websocket_route("/fail") async def fail(_): raise Oops with pytest.raises(WebSocketDisconnect) as ctx: with api.client.websocket_connect("/fail"): pass assert ctx.value.code == 1011 def test_context_does_not_silence_exceptions(api: API): cleaned_up = False @api.websocket_route("/fail") async def fail(ws): nonlocal cleaned_up async with ws: raise Oops cleaned_up = True with suppress(Oops): with api.client.websocket_connect("/fail"): pass assert not cleaned_up
[ "pytest.mark.parametrize", "pytest.raises", "contextlib.suppress" ]
[((3041, 3213), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""receive_type, example_message, expected_type"""', "[('bytes', b'Hello', bytes), ('text', 'Hello', str), ('json', {'message':\n 'Hello'}, dict)]"], {}), "('receive_type, example_message, expected_type', [(\n 'bytes', b'Hello', bytes), ('text', 'Hello', str), ('json', {'message':\n 'Hello'}, dict)])\n", (3064, 3213), False, 'import pytest\n'), ((3663, 3832), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""send_type, example_message, expected_type"""', "[('bytes', b'Hello', bytes), ('text', 'Hello', str), ('json', {'message':\n 'Hello'}, dict)]"], {}), "('send_type, example_message, expected_type', [(\n 'bytes', b'Hello', bytes), ('text', 'Hello', str), ('json', {'message':\n 'Hello'}, dict)])\n", (3686, 3832), False, 'import pytest\n'), ((4305, 4475), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""value_type, example_message, expected_type"""', "[('bytes', b'Hello', bytes), ('text', 'Hello', str), ('json', {'message':\n 'Hello'}, dict)]"], {}), "('value_type, example_message, expected_type', [(\n 'bytes', b'Hello', bytes), ('text', 'Hello', str), ('json', {'message':\n 'Hello'}, dict)])\n", (4328, 4475), False, 'import pytest\n'), ((5544, 5921), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""close_codes, code, expected_caught"""', '[*((None, code, True) for code in (1000, 1001)), *((None, code, False) for\n code in WEBSOCKET_CLOSE_CODES if code not in (1000, 1001)), ((1000,), \n 1001, False), ((1000,), 1000, True), *(((), code, False) for code in\n WEBSOCKET_CLOSE_CODES), *((all, code, True) for code in\n WEBSOCKET_CLOSE_CODES)]'], {}), "('close_codes, code, expected_caught', [*((None,\n code, True) for code in (1000, 1001)), *((None, code, False) for code in\n WEBSOCKET_CLOSE_CODES if code not in (1000, 1001)), ((1000,), 1001, \n False), ((1000,), 1000, True), *(((), code, False) for code in\n WEBSOCKET_CLOSE_CODES), *((all, code, True) for code in\n WEBSOCKET_CLOSE_CODES)])\n", (5567, 5921), False, 'import pytest\n'), ((1022, 1056), 'pytest.raises', 'pytest.raises', (['WebSocketDisconnect'], {}), '(WebSocketDisconnect)\n', (1035, 1056), False, 'import pytest\n'), ((1257, 1291), 'pytest.raises', 'pytest.raises', (['WebSocketDisconnect'], {}), '(WebSocketDisconnect)\n', (1270, 1291), False, 'import pytest\n'), ((1549, 1583), 'pytest.raises', 'pytest.raises', (['WebSocketDisconnect'], {}), '(WebSocketDisconnect)\n', (1562, 1583), False, 'import pytest\n'), ((6986, 7000), 'contextlib.suppress', 'suppress', (['Oops'], {}), '(Oops)\n', (6994, 7000), False, 'from contextlib import suppress\n'), ((7366, 7380), 'contextlib.suppress', 'suppress', (['Oops'], {}), '(Oops)\n', (7374, 7380), False, 'from contextlib import suppress\n'), ((7715, 7749), 'pytest.raises', 'pytest.raises', (['WebSocketDisconnect'], {}), '(WebSocketDisconnect)\n', (7728, 7749), False, 'import pytest\n'), ((8112, 8126), 'contextlib.suppress', 'suppress', (['Oops'], {}), '(Oops)\n', (8120, 8126), False, 'from contextlib import suppress\n')]
"""ARPANSA """ from cProfile import run from multiprocessing.connection import Client from bs4 import BeautifulSoup import lxml import aiohttp import asyncio from .const import ARPANSA_URL class Arpansa: """Arpansa class fetches the latest measurements from the ARPANSA site""" def __init__( self,session: aiohttp.ClientSession ) -> None: self._session = session self.measurements = None async def fetchLatestMeasurements(self): """Retrieve the latest data from the ARPANSA site.""" try: async with self._session.get(ARPANSA_URL) as response: t = await response.text() self.measurements = BeautifulSoup(t,'xml') if response.status != 200: raise ApiError(f"Unexpected response from ARPANSA server: {response.status}") except Exception as err: raise ApiError from err def getAllLocations(self) -> list: """Get the names of all locations.""" rs = self.measurements.find_all("location") allLocations = [] for l in rs: allLocations.append(l.get("id")) return allLocations def getAllLatest(self) -> list: """Get the latest measurements and details for all locations.""" rs = self.measurements.find_all("location") allLocations = [] for l in rs: thisLocation = extractInfo(l) thisLocation["friendlyname"] = l.get("id") allLocations.append(thisLocation) return allLocations def getLatest(self,name) -> dict: """Get the latest measurements and details for a specified location.""" rs = self.measurements.find("location", {"id": name}) info = extractInfo(rs) info["friendlyname"] = name return info def extractInfo(rs) -> dict: """Convert a BeautifulSoup ResultSet into a dictionary.""" extracted = {} for state in rs: if state.name is not None: extracted[state.name] = state.text return extracted class ApiError(Exception): """Raised when there is a problem accessing the ARPANSA data.""" pass async def main(): """Example usage of the class""" async with aiohttp.ClientSession() as session: arpansa = Arpansa(session) await arpansa.fetchLatestMeasurements() for measurement in arpansa.getAllLatest(): print(measurement) location = arpansa.getLatest("Brisbane") print(location) if __name__ == "__main__": import time s = time.perf_counter() asyncio.run(main()) elapsed = time.perf_counter() - s print(f"{__file__} executed in {elapsed:0.2f} seconds.")
[ "aiohttp.ClientSession", "time.perf_counter", "bs4.BeautifulSoup" ]
[((2581, 2600), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2598, 2600), False, 'import time\n'), ((2255, 2278), 'aiohttp.ClientSession', 'aiohttp.ClientSession', ([], {}), '()\n', (2276, 2278), False, 'import aiohttp\n'), ((2639, 2658), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (2656, 2658), False, 'import time\n'), ((694, 717), 'bs4.BeautifulSoup', 'BeautifulSoup', (['t', '"""xml"""'], {}), "(t, 'xml')\n", (707, 717), False, 'from bs4 import BeautifulSoup\n')]
import os import crud, models, schemas from database import SessionLocal from fastapi import FastAPI, Depends, HTTPException, Request, Form from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import HTMLResponse from sqlalchemy.orm import Session from typing import List app = FastAPI(root_path=os.environ['ROOT_PATH']) origins = ['*'] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=['*'], allow_headers=['*'] ) def get_db(): db = SessionLocal() try: yield db finally: db.close() # MAIN @app.get("/") def root(): return {"message": "Welcome to Smart Inventory"} # USERS @app.get("/users/", response_model=List[schemas.User]) def read_all_users(db: Session = Depends(get_db)): return crud.get_all_users(db) @app.get("/user/{uid}/", response_model=schemas.User) def read_user_by_uid(uid: str, db: Session = Depends(get_db)): db_user = crud.get_user_by_uid(db, uid) if db_user is None: raise HTTPException(status_code=404, detail="User not found") return db_user @app.post("/user/", response_model=schemas.User) def create_user(user: schemas.UserCreate, db: Session = Depends(get_db)): db_user = crud.get_user_by_uid(db, user.uid) if db_user: raise HTTPException(status_code=400, detail="User already exists") return crud.create_user(db=db, user=user) @app.delete("/user/{uid}/") def delete_user_by_uid(uid: str, db: Session = Depends(get_db)): db_user = crud.get_user_by_uid(db, uid) if db_user is None: raise HTTPException(status_code=404, detail="User not found") db.delete(db_user) db.commit() return {'Deleted user with uid': uid} # CABINETS @app.get("/cabinets/", response_model=List[schemas.Cabinet]) def read_all_cabinets(db: Session = Depends(get_db)): return crud.get_all_cabinets(db) @app.get("/cabinet/{id}/", response_model=schemas.Cabinet) def read_cabinet_by_id(id: str, db: Session = Depends(get_db)): db_cabinet = crud.get_cabinet_by_id(db, id) if db_cabinet is None: raise HTTPException(status_code=404, detail="Cabinet not found") return db_cabinet @app.post("/cabinet/", response_model=schemas.Cabinet) def create_cabinet(cabinet: schemas.CabinetCreate, db: Session = Depends(get_db)): db_cabinet = crud.get_cabinet_by_id(db, cabinet.id) if db_cabinet: raise HTTPException(status_code=400, detail="Cabinet already exists") return crud.create_cabinet(db, cabinet) @app.delete("/cabinet/{id}/") def delete_cabinet_by_id(id: str, db: Session = Depends(get_db)): db_cabinet = crud.get_cabinet_by_id(db, id) if db_cabinet is None: raise HTTPException(status_code=404, detail="Cabinet not found") db.delete(db_cabinet) db.commit() return {'Deleted cabinet with id': id} # CATEGORIES @app.get("/categories/", response_model=List[schemas.Category]) # reads all categories def read_all_categories(db: Session = Depends(get_db)): return crud.get_all_categories(db) @app.get("/categories/root/", response_model=List[schemas.Category]) # reads all root categories def read_root_categories(db: Session = Depends(get_db)): return crud.get_root_categories(db) @app.get("/category/{id}/", response_model=schemas.Category) def read_category_by_id(id: str, db: Session = Depends(get_db)): db_category = crud.get_category_by_id(db, id) if db_category is None: raise HTTPException(status_code=404, detail="Category not found") return db_category @app.get("/categories/subcategories/{parent_id}/", response_model=List[schemas.Category]) # reads all sub-categories of a category def read_sub_categories(parent_id: int, db: Session = Depends(get_db)): parent_category = crud.get_category_by_id(db, parent_id) if not parent_category: raise HTTPException(status_code=404, detail="Parent category not found") return crud.get_sub_categories(db, parent_id) @app.post("/category/", response_model=schemas.Category) def create_category(category: schemas.CategoryCreate, db: Session = Depends(get_db)): db_category = crud.get_category_by_title(db, category.title) if db_category: raise HTTPException(status_code=400, detail="Category already exists") if category.parent_id is not None: db_parent_category = crud.get_category_by_id(db, category.parent_id) if db_parent_category is None: raise HTTPException(status_code=404, detail="Parent category not found") return crud.create_category(db, category) @app.delete("/category/{id}/") def delete_category_by_id(id: int, db: Session = Depends(get_db)): db_category = crud.get_category_by_id(db, id) if db_category is None: raise HTTPException(status_code=404, detail="Category not found") db.delete(db_category) db.commit() return {'Deleted category with id': id} # ITEMS @app.get("/items/", response_model=List[schemas.Item]) def read_all_items(db: Session = Depends(get_db)): return crud.get_all_items(db) @app.get("/item/{id}/", response_model=schemas.Item) def read_item_by_id(id: int, db: Session = Depends(get_db)): db_item = crud.get_item_by_id(db, id) if db_item is None: raise HTTPException(status_code=404, detail="Item not found") return db_item @app.get("/categories/{category_id}/items/", response_model=List[schemas.Item]) # reads all items under a category def read_all_items(category_id: int, db: Session = Depends(get_db)): category = crud.get_category_by_id(db, category_id) if not category: raise HTTPException(status_code=404, detail="Category not found") return crud.get_items_by_category_id(db, category_id) @app.post("/item/", response_model=schemas.Item) def create_item(item: schemas.ItemCreate, db: Session = Depends(get_db)): if item.category_id is not None: db_category = crud.get_category_by_id(db, item.category_id) if not db_category: raise HTTPException(status_code=404, detail="Category not found") db_item = crud.get_item_by_title(db, item.title) if db_item: raise HTTPException(status_code=400, detail="Item already exists") return crud.create_item(db, item) @app.delete("/item/{id}/") def delete_item_by_id(id: int, db: Session = Depends(get_db)): db_item = crud.get_item_by_id(db, id) if db_item is None: raise HTTPException(status_code=404, detail="Item not found") db.delete(db_item) db.commit() return {'Deleted item with id': id} # ORDER REQUESTS @app.get("/order-requests/", response_model=List[schemas.OrderRequest]) def read_all_order_requests(db: Session = Depends(get_db)): return crud.get_all_order_requests(db) @app.get("/order-requests/item/{id}/", response_model=List[schemas.OrderRequest]) def read_order_requests_by_item_id(id: int, db: Session = Depends(get_db)): db_item = crud.get_item_by_id(db, id) if db_item is None: raise HTTPException(status_code=404, detail="Item not found") return crud.get_order_requests_by_item_id(db, id) @app.get("/order-requests/user/{uid}/", response_model=List[schemas.OrderRequest]) def read_order_requests_by_user_id(uid: str, db: Session = Depends(get_db)): db_user = crud.get_user_by_uid(db, uid) if db_user is None: raise HTTPException(status_code=404, detail="User not found") return crud.get_order_requests_by_user_id(db, uid) @app.get("/order-requests/state/{state}/", response_model=List[schemas.OrderRequest]) def read_order_requests_by_state(state: int, db: Session = Depends(get_db)): return crud.get_order_requests_by_state(db, state) @app.post("/order-request/", response_model=schemas.OrderRequest) def create_order_request(order_request: schemas.OrderRequestCreate, db: Session = Depends(get_db)): db_item = crud.get_item_by_id(db, order_request.item_id) db_user = crud.get_user_by_uid(db, order_request.user_id) if db_item is None or db_user is None: raise HTTPException(status_code=404, detail="Item or user not found") db_order_request = crud.get_order_requests_by_item_and_user_id(db, order_request.item_id, order_request.user_id) if db_order_request: raise HTTPException(status_code=400, detail="Order already requested by this user") return crud.create_order_request(db, order_request) @app.delete("/order-request/{id}/") def delete_order_request_by_id(id: int, db: Session = Depends(get_db)): db_order_request = crud.get_order_request_by_id(db, id) if db_order_request is None: raise HTTPException(status_code=404, detail="Order request not found") db.delete(db_order_request) db.commit() return {'Deleted order request with id': id} # STORAGE UNITS @app.get("/storage-units/", response_model=List[schemas.StorageUnit]) def read_all_storage_units(db: Session = Depends(get_db)): return crud.get_all_storage_units(db) @app.get("/storage-unit/{id}/", response_model=schemas.StorageUnit) def read_storage_unit_by_id(id: int, db: Session = Depends(get_db)): db_storage_unit = crud.get_storage_unit_by_id(db, id) if db_storage_unit is None: raise HTTPException(status_code=404, detail="Storage unit not found") return db_storage_unit @app.get("/storage-units/cabinet/{cabinet_id}/", response_model=List[schemas.StorageUnit]) def read_storage_units_by_cabinet_id(cabinet_id: str, db: Session = Depends(get_db)): db_cabinet = crud.get_cabinet_by_id(db, cabinet_id) if db_cabinet is None: raise HTTPException(status_code=404, detail="Cabinet not found") return crud.get_storage_units_by_cabinet_id(db, cabinet_id) @app.post("/storage-unit/", response_model=schemas.StorageUnit) def create_storage_unit(storage_unit: schemas.StorageUnitCreate, db: Session = Depends(get_db)): db_item = crud.get_item_by_id(db, storage_unit.item_id) if db_item is None: raise HTTPException(status_code=404, detail="Item not found") if storage_unit.cabinet_id is not None: db_cabinet = crud.get_cabinet_by_id(db, storage_unit.cabinet_id) if db_cabinet is None: raise HTTPException(status_code=404, detail="Cabinet not found") db_storage_unit = crud.get_storage_unit_by_id(db, storage_unit.id) if db_storage_unit: raise HTTPException(status_code=400, detail="Storage unit ID already assigned") return crud.create_storage_unit(db, storage_unit) @app.delete("/storage-unit/{id}/") def delete_storage_unit_by_id(id: int, db: Session = Depends(get_db)): db_storage_unit = crud.get_storage_unit_by_id(db, id) if db_storage_unit is None: raise HTTPException(status_code=404, detail="Storage unit not found") db.delete(db_storage_unit) db.commit() return {'Deleted storage unit with id': id} # CABINETS UNLOCK ATTEMPTS @app.get("/unlock-attempts/", response_model=List[schemas.CabinetUnlockAttempt]) def read_all_unlock_attempts(db: Session = Depends(get_db)): return crud.get_all_unlock_attempts(db) @app.get("/unlock-attempts/cabinet/{cabinet_id}/", response_model=List[schemas.CabinetUnlockAttempt]) def read_unlock_attempts_by_cabinet_id(cabinet_id: str, db: Session = Depends(get_db)): db_cabinet = crud.get_cabinet_by_id(db, cabinet_id) if db_cabinet is None: raise HTTPException(status_code=404, detail="Cabinet not found") return crud.get_unlock_attempts_by_cabinet_id(db, cabinet_id) @app.get("/unlock-attempts/user/{uid}/", response_model=List[schemas.CabinetUnlockAttempt]) def read_unlock_attempts_by_user_id(uid: str, db: Session = Depends(get_db)): db_user = crud.get_user_by_uid(db, uid) if db_user is None: raise HTTPException(status_code=404, detail="User not found") return crud.get_unlock_attempts_by_user_id(db, uid) @app.get("/unlock-attempts/cabinet/{cabinet_id}/user/{uid}/", response_model=List[schemas.CabinetUnlockAttempt]) def read_unlock_attempts_by_cabinet_and_user_id(cabinet_id, uid: str, db: Session = Depends(get_db)): db_user = crud.get_user_by_uid(db, uid) db_cabinet = crud.get_cabinet_by_id(db, cabinet_id) if db_user is None or db_cabinet is None: raise HTTPException(status_code=404, detail="User or cabinet not found") return crud.get_unlock_attempts_by_cabinet_and_user_id(db, cabinet_id, uid) @app.post("/unlock-attempt/", response_model=schemas.CabinetUnlockAttempt) def create_unlock_attempt(unlock_attempt: schemas.CabinetUnlockAttemptCreate , db: Session = Depends(get_db)): db_user = crud.get_user_by_uid(db, unlock_attempt.user_id) db_cabinet = crud.get_cabinet_by_id(db, unlock_attempt.cabinet_id) if db_user is None or db_cabinet is None: raise HTTPException(status_code=404, detail="User or cabinet not found") return crud.create_unlock_attempt(db, unlock_attempt) @app.delete("/unlock-attempts/days/{n}/") def delete_unlock_attempts_older_than(n: int, db: Session = Depends(get_db)): db.execute(f"delete from cabinets_unlock_attempts where date < now() - interval '{n} days';") db.commit() return {'Deleted all cabinets unlock attempts older than number of days': n}
[ "crud.get_unlock_attempts_by_user_id", "crud.create_item", "crud.get_unlock_attempts_by_cabinet_id", "crud.get_category_by_title", "crud.get_user_by_uid", "crud.create_storage_unit", "crud.get_item_by_title", "fastapi.Depends", "crud.get_sub_categories", "crud.get_storage_unit_by_id", "crud.get_all_categories", "crud.create_order_request", "crud.get_root_categories", "fastapi.FastAPI", "crud.get_order_requests_by_user_id", "crud.get_all_items", "database.SessionLocal", "crud.get_all_order_requests", "crud.get_order_requests_by_item_id", "crud.get_order_requests_by_state", "crud.create_user", "crud.create_unlock_attempt", "crud.get_category_by_id", "crud.get_storage_units_by_cabinet_id", "crud.get_all_cabinets", "crud.get_all_storage_units", "crud.get_cabinet_by_id", "crud.get_unlock_attempts_by_cabinet_and_user_id", "crud.get_all_users", "fastapi.HTTPException", "crud.create_category", "crud.get_order_request_by_id", "crud.create_cabinet", "crud.get_items_by_category_id", "crud.get_order_requests_by_item_and_user_id", "crud.get_item_by_id", "crud.get_all_unlock_attempts" ]
[((302, 344), 'fastapi.FastAPI', 'FastAPI', ([], {'root_path': "os.environ['ROOT_PATH']"}), "(root_path=os.environ['ROOT_PATH'])\n", (309, 344), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((533, 547), 'database.SessionLocal', 'SessionLocal', ([], {}), '()\n', (545, 547), False, 'from database import SessionLocal\n'), ((793, 808), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (800, 808), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((822, 844), 'crud.get_all_users', 'crud.get_all_users', (['db'], {}), '(db)\n', (840, 844), False, 'import crud, models, schemas\n'), ((945, 960), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (952, 960), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((977, 1006), 'crud.get_user_by_uid', 'crud.get_user_by_uid', (['db', 'uid'], {}), '(db, uid)\n', (997, 1006), False, 'import crud, models, schemas\n'), ((1226, 1241), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (1233, 1241), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((1258, 1292), 'crud.get_user_by_uid', 'crud.get_user_by_uid', (['db', 'user.uid'], {}), '(db, user.uid)\n', (1278, 1292), False, 'import crud, models, schemas\n'), ((1395, 1429), 'crud.create_user', 'crud.create_user', ([], {'db': 'db', 'user': 'user'}), '(db=db, user=user)\n', (1411, 1429), False, 'import crud, models, schemas\n'), ((1506, 1521), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (1513, 1521), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((1538, 1567), 'crud.get_user_by_uid', 'crud.get_user_by_uid', (['db', 'uid'], {}), '(db, uid)\n', (1558, 1567), False, 'import crud, models, schemas\n'), ((1853, 1868), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (1860, 1868), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((1882, 1907), 'crud.get_all_cabinets', 'crud.get_all_cabinets', (['db'], {}), '(db)\n', (1903, 1907), False, 'import crud, models, schemas\n'), ((2014, 2029), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (2021, 2029), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((2049, 2079), 'crud.get_cabinet_by_id', 'crud.get_cabinet_by_id', (['db', 'id'], {}), '(db, id)\n', (2071, 2079), False, 'import crud, models, schemas\n'), ((2323, 2338), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (2330, 2338), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((2358, 2396), 'crud.get_cabinet_by_id', 'crud.get_cabinet_by_id', (['db', 'cabinet.id'], {}), '(db, cabinet.id)\n', (2380, 2396), False, 'import crud, models, schemas\n'), ((2505, 2537), 'crud.create_cabinet', 'crud.create_cabinet', (['db', 'cabinet'], {}), '(db, cabinet)\n', (2524, 2537), False, 'import crud, models, schemas\n'), ((2617, 2632), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (2624, 2632), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((2652, 2682), 'crud.get_cabinet_by_id', 'crud.get_cabinet_by_id', (['db', 'id'], {}), '(db, id)\n', (2674, 2682), False, 'import crud, models, schemas\n'), ((3008, 3023), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (3015, 3023), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((3037, 3064), 'crud.get_all_categories', 'crud.get_all_categories', (['db'], {}), '(db)\n', (3060, 3064), False, 'import crud, models, schemas\n'), ((3202, 3217), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (3209, 3217), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((3231, 3259), 'crud.get_root_categories', 'crud.get_root_categories', (['db'], {}), '(db)\n', (3255, 3259), False, 'import crud, models, schemas\n'), ((3369, 3384), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (3376, 3384), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((3405, 3436), 'crud.get_category_by_id', 'crud.get_category_by_id', (['db', 'id'], {}), '(db, id)\n', (3428, 3436), False, 'import crud, models, schemas\n'), ((3748, 3763), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (3755, 3763), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((3788, 3826), 'crud.get_category_by_id', 'crud.get_category_by_id', (['db', 'parent_id'], {}), '(db, parent_id)\n', (3811, 3826), False, 'import crud, models, schemas\n'), ((3947, 3985), 'crud.get_sub_categories', 'crud.get_sub_categories', (['db', 'parent_id'], {}), '(db, parent_id)\n', (3970, 3985), False, 'import crud, models, schemas\n'), ((4112, 4127), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (4119, 4127), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((4148, 4194), 'crud.get_category_by_title', 'crud.get_category_by_title', (['db', 'category.title'], {}), '(db, category.title)\n', (4174, 4194), False, 'import crud, models, schemas\n'), ((4545, 4579), 'crud.create_category', 'crud.create_category', (['db', 'category'], {}), '(db, category)\n', (4565, 4579), False, 'import crud, models, schemas\n'), ((4661, 4676), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (4668, 4676), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((4697, 4728), 'crud.get_category_by_id', 'crud.get_category_by_id', (['db', 'id'], {}), '(db, id)\n', (4720, 4728), False, 'import crud, models, schemas\n'), ((5016, 5031), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (5023, 5031), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((5045, 5067), 'crud.get_all_items', 'crud.get_all_items', (['db'], {}), '(db)\n', (5063, 5067), False, 'import crud, models, schemas\n'), ((5165, 5180), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (5172, 5180), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((5197, 5224), 'crud.get_item_by_id', 'crud.get_item_by_id', (['db', 'id'], {}), '(db, id)\n', (5216, 5224), False, 'import crud, models, schemas\n'), ((5505, 5520), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (5512, 5520), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((5538, 5578), 'crud.get_category_by_id', 'crud.get_category_by_id', (['db', 'category_id'], {}), '(db, category_id)\n', (5561, 5578), False, 'import crud, models, schemas\n'), ((5685, 5731), 'crud.get_items_by_category_id', 'crud.get_items_by_category_id', (['db', 'category_id'], {}), '(db, category_id)\n', (5714, 5731), False, 'import crud, models, schemas\n'), ((5838, 5853), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (5845, 5853), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((6081, 6119), 'crud.get_item_by_title', 'crud.get_item_by_title', (['db', 'item.title'], {}), '(db, item.title)\n', (6103, 6119), False, 'import crud, models, schemas\n'), ((6222, 6248), 'crud.create_item', 'crud.create_item', (['db', 'item'], {}), '(db, item)\n', (6238, 6248), False, 'import crud, models, schemas\n'), ((6322, 6337), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (6329, 6337), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((6354, 6381), 'crud.get_item_by_id', 'crud.get_item_by_id', (['db', 'id'], {}), '(db, id)\n', (6373, 6381), False, 'import crud, models, schemas\n'), ((6688, 6703), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (6695, 6703), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((6717, 6748), 'crud.get_all_order_requests', 'crud.get_all_order_requests', (['db'], {}), '(db)\n', (6744, 6748), False, 'import crud, models, schemas\n'), ((6890, 6905), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (6897, 6905), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((6922, 6949), 'crud.get_item_by_id', 'crud.get_item_by_id', (['db', 'id'], {}), '(db, id)\n', (6941, 6949), False, 'import crud, models, schemas\n'), ((7055, 7097), 'crud.get_order_requests_by_item_id', 'crud.get_order_requests_by_item_id', (['db', 'id'], {}), '(db, id)\n', (7089, 7097), False, 'import crud, models, schemas\n'), ((7241, 7256), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (7248, 7256), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((7273, 7302), 'crud.get_user_by_uid', 'crud.get_user_by_uid', (['db', 'uid'], {}), '(db, uid)\n', (7293, 7302), False, 'import crud, models, schemas\n'), ((7408, 7451), 'crud.get_order_requests_by_user_id', 'crud.get_order_requests_by_user_id', (['db', 'uid'], {}), '(db, uid)\n', (7442, 7451), False, 'import crud, models, schemas\n'), ((7598, 7613), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (7605, 7613), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((7627, 7670), 'crud.get_order_requests_by_state', 'crud.get_order_requests_by_state', (['db', 'state'], {}), '(db, state)\n', (7659, 7670), False, 'import crud, models, schemas\n'), ((7820, 7835), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (7827, 7835), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((7852, 7898), 'crud.get_item_by_id', 'crud.get_item_by_id', (['db', 'order_request.item_id'], {}), '(db, order_request.item_id)\n', (7871, 7898), False, 'import crud, models, schemas\n'), ((7913, 7960), 'crud.get_user_by_uid', 'crud.get_user_by_uid', (['db', 'order_request.user_id'], {}), '(db, order_request.user_id)\n', (7933, 7960), False, 'import crud, models, schemas\n'), ((8105, 8202), 'crud.get_order_requests_by_item_and_user_id', 'crud.get_order_requests_by_item_and_user_id', (['db', 'order_request.item_id', 'order_request.user_id'], {}), '(db, order_request.item_id,\n order_request.user_id)\n', (8148, 8202), False, 'import crud, models, schemas\n'), ((8327, 8371), 'crud.create_order_request', 'crud.create_order_request', (['db', 'order_request'], {}), '(db, order_request)\n', (8352, 8371), False, 'import crud, models, schemas\n'), ((8463, 8478), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (8470, 8478), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((8504, 8540), 'crud.get_order_request_by_id', 'crud.get_order_request_by_id', (['db', 'id'], {}), '(db, id)\n', (8532, 8540), False, 'import crud, models, schemas\n'), ((8879, 8894), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (8886, 8894), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((8908, 8938), 'crud.get_all_storage_units', 'crud.get_all_storage_units', (['db'], {}), '(db)\n', (8934, 8938), False, 'import crud, models, schemas\n'), ((9059, 9074), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (9066, 9074), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((9099, 9134), 'crud.get_storage_unit_by_id', 'crud.get_storage_unit_by_id', (['db', 'id'], {}), '(db, id)\n', (9126, 9134), False, 'import crud, models, schemas\n'), ((9432, 9447), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (9439, 9447), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((9467, 9505), 'crud.get_cabinet_by_id', 'crud.get_cabinet_by_id', (['db', 'cabinet_id'], {}), '(db, cabinet_id)\n', (9489, 9505), False, 'import crud, models, schemas\n'), ((9617, 9669), 'crud.get_storage_units_by_cabinet_id', 'crud.get_storage_units_by_cabinet_id', (['db', 'cabinet_id'], {}), '(db, cabinet_id)\n', (9653, 9669), False, 'import crud, models, schemas\n'), ((9818, 9833), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (9825, 9833), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((9850, 9895), 'crud.get_item_by_id', 'crud.get_item_by_id', (['db', 'storage_unit.item_id'], {}), '(db, storage_unit.item_id)\n', (9869, 9895), False, 'import crud, models, schemas\n'), ((10237, 10285), 'crud.get_storage_unit_by_id', 'crud.get_storage_unit_by_id', (['db', 'storage_unit.id'], {}), '(db, storage_unit.id)\n', (10264, 10285), False, 'import crud, models, schemas\n'), ((10409, 10451), 'crud.create_storage_unit', 'crud.create_storage_unit', (['db', 'storage_unit'], {}), '(db, storage_unit)\n', (10433, 10451), False, 'import crud, models, schemas\n'), ((10541, 10556), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (10548, 10556), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((10581, 10616), 'crud.get_storage_unit_by_id', 'crud.get_storage_unit_by_id', (['db', 'id'], {}), '(db, id)\n', (10608, 10616), False, 'import crud, models, schemas\n'), ((10975, 10990), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (10982, 10990), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((11004, 11036), 'crud.get_all_unlock_attempts', 'crud.get_all_unlock_attempts', (['db'], {}), '(db)\n', (11032, 11036), False, 'import crud, models, schemas\n'), ((11210, 11225), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (11217, 11225), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((11245, 11283), 'crud.get_cabinet_by_id', 'crud.get_cabinet_by_id', (['db', 'cabinet_id'], {}), '(db, cabinet_id)\n', (11267, 11283), False, 'import crud, models, schemas\n'), ((11395, 11449), 'crud.get_unlock_attempts_by_cabinet_id', 'crud.get_unlock_attempts_by_cabinet_id', (['db', 'cabinet_id'], {}), '(db, cabinet_id)\n', (11433, 11449), False, 'import crud, models, schemas\n'), ((11603, 11618), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (11610, 11618), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((11635, 11664), 'crud.get_user_by_uid', 'crud.get_user_by_uid', (['db', 'uid'], {}), '(db, uid)\n', (11655, 11664), False, 'import crud, models, schemas\n'), ((11770, 11814), 'crud.get_unlock_attempts_by_user_id', 'crud.get_unlock_attempts_by_user_id', (['db', 'uid'], {}), '(db, uid)\n', (11805, 11814), False, 'import crud, models, schemas\n'), ((12013, 12028), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (12020, 12028), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((12045, 12074), 'crud.get_user_by_uid', 'crud.get_user_by_uid', (['db', 'uid'], {}), '(db, uid)\n', (12065, 12074), False, 'import crud, models, schemas\n'), ((12092, 12130), 'crud.get_cabinet_by_id', 'crud.get_cabinet_by_id', (['db', 'cabinet_id'], {}), '(db, cabinet_id)\n', (12114, 12130), False, 'import crud, models, schemas\n'), ((12269, 12337), 'crud.get_unlock_attempts_by_cabinet_and_user_id', 'crud.get_unlock_attempts_by_cabinet_and_user_id', (['db', 'cabinet_id', 'uid'], {}), '(db, cabinet_id, uid)\n', (12316, 12337), False, 'import crud, models, schemas\n'), ((12507, 12522), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (12514, 12522), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((12539, 12587), 'crud.get_user_by_uid', 'crud.get_user_by_uid', (['db', 'unlock_attempt.user_id'], {}), '(db, unlock_attempt.user_id)\n', (12559, 12587), False, 'import crud, models, schemas\n'), ((12605, 12658), 'crud.get_cabinet_by_id', 'crud.get_cabinet_by_id', (['db', 'unlock_attempt.cabinet_id'], {}), '(db, unlock_attempt.cabinet_id)\n', (12627, 12658), False, 'import crud, models, schemas\n'), ((12797, 12843), 'crud.create_unlock_attempt', 'crud.create_unlock_attempt', (['db', 'unlock_attempt'], {}), '(db, unlock_attempt)\n', (12823, 12843), False, 'import crud, models, schemas\n'), ((12947, 12962), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (12954, 12962), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((1045, 1100), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""User not found"""'}), "(status_code=404, detail='User not found')\n", (1058, 1100), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((1323, 1383), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(400)', 'detail': '"""User already exists"""'}), "(status_code=400, detail='User already exists')\n", (1336, 1383), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((1606, 1661), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""User not found"""'}), "(status_code=404, detail='User not found')\n", (1619, 1661), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((2121, 2179), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Cabinet not found"""'}), "(status_code=404, detail='Cabinet not found')\n", (2134, 2179), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((2430, 2493), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(400)', 'detail': '"""Cabinet already exists"""'}), "(status_code=400, detail='Cabinet already exists')\n", (2443, 2493), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((2724, 2782), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Cabinet not found"""'}), "(status_code=404, detail='Cabinet not found')\n", (2737, 2782), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((3479, 3538), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Category not found"""'}), "(status_code=404, detail='Category not found')\n", (3492, 3538), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((3869, 3935), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Parent category not found"""'}), "(status_code=404, detail='Parent category not found')\n", (3882, 3935), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((4229, 4293), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(400)', 'detail': '"""Category already exists"""'}), "(status_code=400, detail='Category already exists')\n", (4242, 4293), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((4362, 4409), 'crud.get_category_by_id', 'crud.get_category_by_id', (['db', 'category.parent_id'], {}), '(db, category.parent_id)\n', (4385, 4409), False, 'import crud, models, schemas\n'), ((4771, 4830), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Category not found"""'}), "(status_code=404, detail='Category not found')\n", (4784, 4830), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((5263, 5318), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Item not found"""'}), "(status_code=404, detail='Item not found')\n", (5276, 5318), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((5614, 5673), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Category not found"""'}), "(status_code=404, detail='Category not found')\n", (5627, 5673), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((5915, 5960), 'crud.get_category_by_id', 'crud.get_category_by_id', (['db', 'item.category_id'], {}), '(db, item.category_id)\n', (5938, 5960), False, 'import crud, models, schemas\n'), ((6150, 6210), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(400)', 'detail': '"""Item already exists"""'}), "(status_code=400, detail='Item already exists')\n", (6163, 6210), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((6420, 6475), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Item not found"""'}), "(status_code=404, detail='Item not found')\n", (6433, 6475), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((6988, 7043), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Item not found"""'}), "(status_code=404, detail='Item not found')\n", (7001, 7043), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((7341, 7396), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""User not found"""'}), "(status_code=404, detail='User not found')\n", (7354, 7396), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((8018, 8081), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Item or user not found"""'}), "(status_code=404, detail='Item or user not found')\n", (8031, 8081), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((8238, 8315), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(400)', 'detail': '"""Order already requested by this user"""'}), "(status_code=400, detail='Order already requested by this user')\n", (8251, 8315), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((8588, 8652), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Order request not found"""'}), "(status_code=404, detail='Order request not found')\n", (8601, 8652), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((9181, 9244), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Storage unit not found"""'}), "(status_code=404, detail='Storage unit not found')\n", (9194, 9244), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((9547, 9605), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Cabinet not found"""'}), "(status_code=404, detail='Cabinet not found')\n", (9560, 9605), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((9934, 9989), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Item not found"""'}), "(status_code=404, detail='Item not found')\n", (9947, 9989), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((10055, 10106), 'crud.get_cabinet_by_id', 'crud.get_cabinet_by_id', (['db', 'storage_unit.cabinet_id'], {}), '(db, storage_unit.cabinet_id)\n', (10077, 10106), False, 'import crud, models, schemas\n'), ((10324, 10397), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(400)', 'detail': '"""Storage unit ID already assigned"""'}), "(status_code=400, detail='Storage unit ID already assigned')\n", (10337, 10397), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((10663, 10726), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Storage unit not found"""'}), "(status_code=404, detail='Storage unit not found')\n", (10676, 10726), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((11325, 11383), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Cabinet not found"""'}), "(status_code=404, detail='Cabinet not found')\n", (11338, 11383), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((11703, 11758), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""User not found"""'}), "(status_code=404, detail='User not found')\n", (11716, 11758), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((12191, 12257), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""User or cabinet not found"""'}), "(status_code=404, detail='User or cabinet not found')\n", (12204, 12257), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((12719, 12785), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""User or cabinet not found"""'}), "(status_code=404, detail='User or cabinet not found')\n", (12732, 12785), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((4467, 4533), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Parent category not found"""'}), "(status_code=404, detail='Parent category not found')\n", (4480, 4533), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((6007, 6066), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Category not found"""'}), "(status_code=404, detail='Category not found')\n", (6020, 6066), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n'), ((10156, 10214), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Cabinet not found"""'}), "(status_code=404, detail='Cabinet not found')\n", (10169, 10214), False, 'from fastapi import FastAPI, Depends, HTTPException, Request, Form\n')]
from unittest import TestCase from mock import patch, ANY, DEFAULT, Mock, MagicMock from django.test import RequestFactory from django_auth_lti import const from student_locations.views import index, lti_launch, main @patch.multiple('student_locations.views', render=DEFAULT) class TestMapView(TestCase): longMessage = True def setUp(self): self.resource_link_id = '1234abcd' self.section_id = 5678 self.sis_section_id = 8989 self.request = RequestFactory().get('/fake-path') self.request.user = Mock(name='user_mock') self.request.user.is_authenticated.return_value = True self.request.session = { 'LTI_LAUNCH': { 'resource_link_id': self.resource_link_id, 'roles': [const.INSTRUCTOR], 'user_id' : 'user123' } } def getpostrequest(self): request = RequestFactory().post('/fake-path') request.user = Mock(name='user_mock') request.user.is_authenticated.return_value = True request.session = { 'LTI_LAUNCH': { 'resource_link_id': self.resource_link_id, 'roles': [const.INSTRUCTOR], 'user_id' : 'user123' } } return request # def get_render_context_value(self, render_mock): # """ Returns the value of the context dictionary key associated with the render mock object """ # context = render_mock.call_args[0][2] # return context.get(context_key) def test_view_index(self, render): """ test that the index view renders the index page """ request = self.request index(request) render.assert_called_with(request, 'student_locations/index.html') @patch('student_locations.views.redirect') def test_view_lti_launch_success(self, redirect_mock, render): """ test that the lti_launch view renders the main view on success """ request = self.getpostrequest() lti_launch(request) redirect_mock.assert_called_with('sl:main') @patch('student_locations.views.validaterequiredltiparams') def test_view_lti_launch_user_not_authenticated(self, valid_lti_params_mock, render): """ test that the lti_launch view renders the error page if the required LTI params are not present in the session """ request = self.getpostrequest() valid_lti_params_mock.return_value = False lti_launch(request) render.assert_called_with(request, 'student_locations/error.html', ANY) def test_view_main(self, render): """ test that the main view renders the map_view page """ request = self.request main(request) render.assert_called_with(request, 'student_locations/map_view.html', ANY)
[ "student_locations.views.main", "student_locations.views.lti_launch", "django.test.RequestFactory", "mock.patch", "mock.Mock", "mock.patch.multiple", "student_locations.views.index" ]
[((219, 276), 'mock.patch.multiple', 'patch.multiple', (['"""student_locations.views"""'], {'render': 'DEFAULT'}), "('student_locations.views', render=DEFAULT)\n", (233, 276), False, 'from mock import patch, ANY, DEFAULT, Mock, MagicMock\n'), ((1787, 1828), 'mock.patch', 'patch', (['"""student_locations.views.redirect"""'], {}), "('student_locations.views.redirect')\n", (1792, 1828), False, 'from mock import patch, ANY, DEFAULT, Mock, MagicMock\n'), ((2101, 2159), 'mock.patch', 'patch', (['"""student_locations.views.validaterequiredltiparams"""'], {}), "('student_locations.views.validaterequiredltiparams')\n", (2106, 2159), False, 'from mock import patch, ANY, DEFAULT, Mock, MagicMock\n'), ((546, 568), 'mock.Mock', 'Mock', ([], {'name': '"""user_mock"""'}), "(name='user_mock')\n", (550, 568), False, 'from mock import patch, ANY, DEFAULT, Mock, MagicMock\n'), ((967, 989), 'mock.Mock', 'Mock', ([], {'name': '"""user_mock"""'}), "(name='user_mock')\n", (971, 989), False, 'from mock import patch, ANY, DEFAULT, Mock, MagicMock\n'), ((1691, 1705), 'student_locations.views.index', 'index', (['request'], {}), '(request)\n', (1696, 1705), False, 'from student_locations.views import index, lti_launch, main\n'), ((2023, 2042), 'student_locations.views.lti_launch', 'lti_launch', (['request'], {}), '(request)\n', (2033, 2042), False, 'from student_locations.views import index, lti_launch, main\n'), ((2488, 2507), 'student_locations.views.lti_launch', 'lti_launch', (['request'], {}), '(request)\n', (2498, 2507), False, 'from student_locations.views import index, lti_launch, main\n'), ((2732, 2745), 'student_locations.views.main', 'main', (['request'], {}), '(request)\n', (2736, 2745), False, 'from student_locations.views import index, lti_launch, main\n'), ((483, 499), 'django.test.RequestFactory', 'RequestFactory', ([], {}), '()\n', (497, 499), False, 'from django.test import RequestFactory\n'), ((908, 924), 'django.test.RequestFactory', 'RequestFactory', ([], {}), '()\n', (922, 924), False, 'from django.test import RequestFactory\n')]
from datetime import timedelta from xml.etree import ElementTree from django.test import TestCase from django.urls import reverse from django.utils.timezone import now from exhaust.tests.factories import CategoryFactory, PostFactory class SitemapsTestCase(TestCase): def test_posts_sitemap(self): PostFactory.create_batch(5, online=True) # Check that offline ones aren't being shown. PostFactory.create(online=False, date=now() - timedelta(minutes=1)) # ...and ones with a future publication date. PostFactory.create(online=True, date=now() + timedelta(days=1)) response = self.client.get(reverse('django.contrib.sitemaps.views.sitemap')) self.assertEqual(response.status_code, 200) tree = ElementTree.fromstring(response.content.decode('utf-8')) self.assertEqual(len(list(tree)), 5) def test_categories_sitemap(self): # Ensure unused categories are not shown in the sitemap, which # includes those that are only assigned to a post that is offline. used_category, unused_category, unused_category_2 = CategoryFactory.create_batch(3) post = PostFactory.create(online=True) post.categories.set([used_category]) offline_post = PostFactory.create(online=False) offline_post.categories.set([unused_category_2]) response = self.client.get(reverse('django.contrib.sitemaps.views.sitemap')) self.assertEqual(response.status_code, 200) tree = ElementTree.fromstring(response.content.decode('utf-8')) child_items = list(tree) self.assertEqual(len(child_items), 2) nsinfo = {'sitemaps': 'http://www.sitemaps.org/schemas/sitemap/0.9'} for obj in [post, used_category]: self.assertEqual(len([ True for child in child_items if child.find('sitemaps:loc', nsinfo).text == f'http://testserver{obj.get_absolute_url()}' ]), 1) for obj in [unused_category, unused_category_2]: self.assertEqual(len([ True for child in child_items if child.find('sitemaps:loc', nsinfo).text == f'http://testserver{obj.get_absolute_url()}' ]), 0)
[ "exhaust.tests.factories.CategoryFactory.create_batch", "django.utils.timezone.now", "exhaust.tests.factories.PostFactory.create_batch", "exhaust.tests.factories.PostFactory.create", "django.urls.reverse", "datetime.timedelta" ]
[((313, 353), 'exhaust.tests.factories.PostFactory.create_batch', 'PostFactory.create_batch', (['(5)'], {'online': '(True)'}), '(5, online=True)\n', (337, 353), False, 'from exhaust.tests.factories import CategoryFactory, PostFactory\n'), ((1114, 1145), 'exhaust.tests.factories.CategoryFactory.create_batch', 'CategoryFactory.create_batch', (['(3)'], {}), '(3)\n', (1142, 1145), False, 'from exhaust.tests.factories import CategoryFactory, PostFactory\n'), ((1162, 1193), 'exhaust.tests.factories.PostFactory.create', 'PostFactory.create', ([], {'online': '(True)'}), '(online=True)\n', (1180, 1193), False, 'from exhaust.tests.factories import CategoryFactory, PostFactory\n'), ((1263, 1295), 'exhaust.tests.factories.PostFactory.create', 'PostFactory.create', ([], {'online': '(False)'}), '(online=False)\n', (1281, 1295), False, 'from exhaust.tests.factories import CategoryFactory, PostFactory\n'), ((648, 696), 'django.urls.reverse', 'reverse', (['"""django.contrib.sitemaps.views.sitemap"""'], {}), "('django.contrib.sitemaps.views.sitemap')\n", (655, 696), False, 'from django.urls import reverse\n'), ((1389, 1437), 'django.urls.reverse', 'reverse', (['"""django.contrib.sitemaps.views.sitemap"""'], {}), "('django.contrib.sitemaps.views.sitemap')\n", (1396, 1437), False, 'from django.urls import reverse\n'), ((455, 460), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (458, 460), False, 'from django.utils.timezone import now\n'), ((463, 483), 'datetime.timedelta', 'timedelta', ([], {'minutes': '(1)'}), '(minutes=1)\n', (472, 483), False, 'from datetime import timedelta\n'), ((585, 590), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (588, 590), False, 'from django.utils.timezone import now\n'), ((593, 610), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (602, 610), False, 'from datetime import timedelta\n')]
"""Proof Verification Module for Exonum `ProofListIndex`.""" from typing import Dict, List, Tuple, Any, Callable import itertools from logging import getLogger from exonum_client.crypto import Hash from ..utils import is_field_hash, is_field_int, calculate_height from ..hasher import Hasher from .key import ProofListKey from .errors import MalformedListProofError, ListProofVerificationError # pylint: disable=C0103 logger = getLogger(__name__) class HashedEntry: """ Element of a proof with a key and a hash. """ def __init__(self, key: ProofListKey, entry_hash: Hash): self.key = key self.entry_hash = entry_hash @classmethod def parse(cls, data: Dict[Any, Any]) -> "HashedEntry": """ Creates a HashedEntry object from the provided dict. """ if not isinstance(data, dict) or not is_field_hash(data, "hash"): err = MalformedListProofError.parse_error(str(data)) logger.warning( "Could not parse `hash` from dict, which is required for HashedEntry object creation. %s", str(err) ) raise err key = ProofListKey.parse(data) return HashedEntry(key, Hash(bytes.fromhex(data["hash"]))) def __eq__(self, other: object) -> bool: if not isinstance(other, HashedEntry): raise TypeError("Attempt to compare HashedEntry with an object of a different type.") return self.key == other.key and self.entry_hash == other.entry_hash def _hash_layer(layer: List[HashedEntry], last_index: int) -> List[HashedEntry]: """ Takes a layer as a list of hashed entries and the last index as an int and returns a new layer. """ new_len = (len(layer) + 1) // 2 new_layer: List[HashedEntry] = [] for i in range(new_len): left_idx = 2 * i right_idx = 2 * i + 1 # Check if there are both right and left indices in the layer: if len(layer) > right_idx: # Verify that entries are in the correct order: if not layer[left_idx].key.is_left() or layer[right_idx].key.index != layer[left_idx].key.index + 1: err = MalformedListProofError.missing_hash() logger.warning(str(err)) raise err left_hash = layer[left_idx].entry_hash right_hash = layer[right_idx].entry_hash new_entry = HashedEntry(layer[left_idx].key.parent(), Hasher.hash_node(left_hash, right_hash)) else: # If there is an odd number of entries, the index of the last one should be equal to provided last_index: full_layer_length = last_index + 1 if full_layer_length % 2 == 0 or layer[left_idx].key.index != last_index: err = MalformedListProofError.missing_hash() logger.warning(str(err)) raise err left_hash = layer[left_idx].entry_hash new_entry = HashedEntry(layer[left_idx].key.parent(), Hasher.hash_single_node(left_hash)) new_layer.append(new_entry) return new_layer class ListProof: """ListProof class provides an interface to parse and verify proofs for ProofListIndex retrieved from the Exonum blockchain. Example workflow: >>> proof_json = { >>> "proof": [ >>> {"index": 1, "height": 1, "hash": "eae60adeb5c681110eb5226a4ef95faa4f993c4a838d368b66f7c98501f2c8f9"} >>> ], >>> "entries": [[0, "6b70d869aeed2fe090e708485d9f4b4676ae6984206cf05efc136d663610e5c9"]], >>> "length": 2, >>> } >>> expected_hash = "07df67b1a853551eb05470a03c9245483e5a3731b4b558e634908ff356b69857" >>> proof = ListProof.parse(proof_json) >>> result = proof.validate(bytes.fromhex(expected_hash)) >>> assert result == [(0, stored_val)] """ def __init__( self, proof: List[HashedEntry], entries: List[Tuple[int, Any]], length: int, value_to_bytes: Callable[[Any], bytes], ): """ Constructor of the ListProof. It is not intended to be used directly, use ListProof.Parse instead. Parameters ---------- proof : List[HashedEntry] Proof entries. entries: List[Tuple[int, Any]] Unhashed entries (leaves). length: int Length of the proof list. value_to_bytes: Callable[[str], bytes] A function that converts the stored value to bytes for hashing. """ self._proof = proof self._entries = entries self._length = length self._value_to_bytes = value_to_bytes @classmethod def parse(cls, proof_dict: Dict[str, Any], value_to_bytes: Callable[[Any], bytes] = bytes.fromhex) -> "ListProof": """ Method to parse ListProof from the dict. Expected dict format: >>> { 'proof': [ {'index': 1, 'height': 1, 'hash': 'eae60adeb5c681110eb5226a4ef95faa4f993c4a838d368b66f7c98501f2c8f9'} ], 'entries': [ [0, '6b70d869aeed2fe090e708485d9f4b4676ae6984206cf05efc136d663610e5c9'] ], 'length': 2 } If no errors occured during parsing, a ListProof object will be returned. However, successfull parsing does not mean that the proof is not malformed (it only means that the provided dict structure matches the expected one). Actual checks for the proof contents correctness will be performed in the `validate` method. To convert value to bytes, ListProof attemts to use bytes.fromhex by default. If your type should be converted to bytes using Protobuf, you can generate a converter function with the use of `build_encoder_function` from encoder.py. Otherwise, you have to implement the converter function by yourself. Parameters ---------- proof_dict : Dict[str, Any] Proof as a dict. value_to_bytes: Callable[[str], bytes] A function that converts the stored value to bytes for hashing. By default, `bytes.fromhex` is used. Raises ------ MalformedListProofError If the structure of the provided dict does not match the expected one, an exception `MalformedListProofError` is raised. """ if ( not isinstance(proof_dict.get("proof"), list) or not isinstance(proof_dict.get("entries"), list) or not is_field_int(proof_dict, "length") ): err = MalformedListProofError.parse_error(str(proof_dict)) logger.warning("The structure of the provided dict does not match the expected one. %s", str(err)) raise err proof = [HashedEntry.parse(entry) for entry in proof_dict["proof"]] entries = [cls._parse_entry(entry) for entry in proof_dict["entries"]] length = proof_dict["length"] logger.debug("Successfully parsed ListProof from the dict.") return ListProof(proof, entries, length, value_to_bytes) def validate(self, expected_hash: Hash) -> List[Tuple[int, Any]]: """ This method validates the provided proof against the given expected hash. Parameters ---------- expected_hash: Hash Expected root hash. Returns ------- result: List[Tuple[int, Any]] If the hash is correct, a list of the collected values with indices is returned. Raises ------ ListProofVerificationError If verification fails, an exception `ListProofVerificationError` is raised. MalformedListProofError If the proof is malformed, an exception `MalformedListProofError` is raised. """ if not isinstance(expected_hash, Hash): raise TypeError("`expected_hash` should be of type Hash.") tree_root = self._collect() calculated_hash = Hasher.hash_list_node(self._length, tree_root) if calculated_hash != expected_hash: logger.warning("Provided root hash does not match the calculated one.") raise ListProofVerificationError(expected_hash.value, calculated_hash.value) logger.debug("Successfully validated the provided proof against the given expected hash.") return self._entries @staticmethod def _parse_entry(data: List[Any]) -> Tuple[int, Any]: if not isinstance(data, list) or not len(data) == 2: err = MalformedListProofError.parse_error(str(data)) logger.warning("Could not parse a list. %s", err) raise err return data[0], data[1] @staticmethod def _tree_height_by_length(length: int) -> int: if length == 0: return 0 return calculate_height(length) @staticmethod def _check_duplicates(entries: List[Any]) -> None: for idx in range(1, len(entries)): if entries[idx][0] == entries[idx - 1][0]: err = MalformedListProofError.duplicate_key() logger.warning(str(err)) raise err def _collect(self) -> Hash: def _hash_entry(entry: Tuple[int, Any]) -> HashedEntry: """ Creates a hash entry from the value. """ key = ProofListKey(1, entry[0]) entry_hash = Hasher.hash_leaf(self._value_to_bytes(entry[1])) return HashedEntry(key, entry_hash) def _split_hashes_by_height( hashes: List[HashedEntry], height: int ) -> Tuple[List[HashedEntry], List[HashedEntry]]: """ Splits a list of the hashed entries into two lists by the given height. """ current = list(itertools.takewhile(lambda x: x.key.height == height, hashes)) remaining = hashes[len(current) :] return current, remaining tree_height = self._tree_height_by_length(self._length) # Check an edge case when the list contains no elements: if tree_height == 0 and (not self._proof or not self._entries): err = MalformedListProofError.non_empty_proof() logger.warning(str(err)) raise err # If there are no entries, the proof should contain only a single root hash: if not self._entries: if len(self._proof) != 1: if self._proof: err = MalformedListProofError.missing_hash() logger.warning(str(err)) raise err err = MalformedListProofError.unexpected_branch() logger.warning(str(err)) raise err if self._proof[0].key == ProofListKey(tree_height, 0): return self._proof[0].entry_hash err = MalformedListProofError.unexpected_branch() logger.warning(str(err)) raise err # Sort the entries and the proof: self._entries.sort(key=lambda el: el[0]) self._proof.sort(key=lambda el: el.key) # Check that there are no duplicates: self._check_duplicates(self._entries) self._check_duplicates(self._proof) # Check that the hashes at each height have indices in the allowed range: for entry in self._proof: height = entry.key.height if height == 0: err = MalformedListProofError.unexpected_leaf() logger.warning(str(err)) raise err # self._length -1 is the index of the last element at `height = 1`. # This index is divided by 2 with each new height: if height >= tree_height or entry.key.index > (self._length - 1) >> (height - 1): err = MalformedListProofError.unexpected_branch() logger.warning(str(err)) raise err # Create the first layer: layer = list(map(_hash_entry, self._entries)) hashes = list(self._proof) last_index = self._length - 1 for height in range(1, tree_height): # Filter the hashes of the current height and the rest heights (to be processed later): hashes, remaining_hashes = _split_hashes_by_height(hashes, height) # Merge the current layer with the hashes that belong to this layer: layer = sorted(layer + hashes, key=lambda x: x.key) # Calculate a new layer: layer = _hash_layer(layer, last_index) # Size of the next layer is two times smaller: last_index //= 2 # Make remaining_hashes hashes to be processed: hashes = remaining_hashes assert len(layer) == 1, "Result layer length is not 1" return layer[0].entry_hash
[ "itertools.takewhile", "logging.getLogger" ]
[((430, 449), 'logging.getLogger', 'getLogger', (['__name__'], {}), '(__name__)\n', (439, 449), False, 'from logging import getLogger\n'), ((9752, 9813), 'itertools.takewhile', 'itertools.takewhile', (['(lambda x: x.key.height == height)', 'hashes'], {}), '(lambda x: x.key.height == height, hashes)\n', (9771, 9813), False, 'import itertools\n')]
from scipy.stats import multivariate_normal from scipy.signal import convolve2d import matplotlib try: matplotlib.pyplot.figure() matplotlib.pyplot.close() except Exception: matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import os # the colormap should assign light colors to low values TERRAIN_CMAP = 'Greens' DEFAULT_PATH = '/tmp/mujoco_terrains' STEP = 0.1 def generate_hills(width, height, nhills): ''' @param width float, terrain width @param height float, terrain height @param nhills int, #hills to gen. #hills actually generted is sqrt(nhills)^2 ''' # setup coordinate grid xmin, xmax = -width/2.0, width/2.0 ymin, ymax = -height/2.0, height/2.0 x, y = np.mgrid[xmin:xmax:STEP, ymin:ymax:STEP] pos = np.empty(x.shape + (2,)) pos[:, :, 0] = x; pos[:, :, 1] = y # generate hilltops xm, ym = np.mgrid[xmin:xmax:width/np.sqrt(nhills), ymin:ymax:height/np.sqrt(nhills)] mu = np.c_[xm.flat, ym.flat] sigma = float(width*height)/(nhills*8) for i in range(mu.shape[0]): mu[i] = multivariate_normal.rvs(mean=mu[i], cov=sigma) # generate hills sigma = sigma + sigma*np.random.rand(mu.shape[0]) rvs = [ multivariate_normal(mu[i,:], cov=sigma[i]) for i in range(mu.shape[0]) ] hfield = np.max([ rv.pdf(pos) for rv in rvs ], axis=0) return x, y, hfield def clear_patch(hfield, box): ''' Clears a patch shaped like box, assuming robot is placed in center of hfield @param box: rllab.spaces.Box-like ''' if box.flat_dim > 2: raise ValueError("Provide 2dim box") # clear patch h_center = int(0.5 * hfield.shape[0]) w_center = int(0.5 * hfield.shape[1]) fromrow, torow = w_center + int(box.low[0]/STEP), w_center + int(box.high[0] / STEP) fromcol, tocol = h_center + int(box.low[1]/STEP), h_center + int(box.high[1] / STEP) hfield[fromrow:torow, fromcol:tocol] = 0.0 # convolve to smoothen edges somewhat, in case hills were cut off K = np.ones((10,10)) / 100.0 s = convolve2d(hfield[fromrow-9:torow+9, fromcol-9:tocol+9], K, mode='same', boundary='symm') hfield[fromrow-9:torow+9, fromcol-9:tocol+9] = s return hfield def _checkpath(path_): if path_ is None: path_ = DEFAULT_PATH if not os.path.exists(path_): os.makedirs(path_) return path_ def save_heightfield(x, y, hfield, fname, path=None): ''' @param path, str (optional). If not provided, DEFAULT_PATH is used. Make sure the path + fname match the <file> attribute of the <asset> element in the env XML where the height field is defined ''' path = _checkpath(path) plt.figure() plt.contourf(x, y, -hfield, 100, cmap=TERRAIN_CMAP) # terrain_cmap is necessary to make sure tops get light color plt.savefig(os.path.join(path, fname), bbox_inches='tight') plt.close() def save_texture(x, y, hfield, fname, path=None): ''' @param path, str (optional). If not provided, DEFAULT_PATH is used. Make sure this matches the <texturedir> of the <compiler> element in the env XML ''' path = _checkpath(path) plt.figure() plt.contourf(x, y, -hfield, 100, cmap=TERRAIN_CMAP) xmin, xmax = x.min(), x.max() ymin, ymax = y.min(), y.max() # for some reason plt.grid does not work here, so generate gridlines manually for i in np.arange(xmin,xmax,0.5): plt.plot([i,i], [ymin,ymax], 'k', linewidth=0.1) for i in np.arange(ymin,ymax,0.5): plt.plot([xmin,xmax],[i,i], 'k', linewidth=0.1) plt.savefig(os.path.join(path, fname), bbox_inches='tight') plt.close()
[ "scipy.stats.multivariate_normal.rvs", "scipy.signal.convolve2d", "os.makedirs", "matplotlib.pyplot.plot", "matplotlib.pyplot.close", "numpy.empty", "os.path.exists", "scipy.stats.multivariate_normal", "numpy.ones", "matplotlib.pyplot.figure", "matplotlib.use", "matplotlib.pyplot.contourf", "numpy.arange", "numpy.random.rand", "os.path.join", "numpy.sqrt" ]
[((107, 133), 'matplotlib.pyplot.figure', 'matplotlib.pyplot.figure', ([], {}), '()\n', (131, 133), False, 'import matplotlib\n'), ((138, 163), 'matplotlib.pyplot.close', 'matplotlib.pyplot.close', ([], {}), '()\n', (161, 163), False, 'import matplotlib\n'), ((789, 813), 'numpy.empty', 'np.empty', (['(x.shape + (2,))'], {}), '(x.shape + (2,))\n', (797, 813), True, 'import numpy as np\n'), ((2071, 2173), 'scipy.signal.convolve2d', 'convolve2d', (['hfield[fromrow - 9:torow + 9, fromcol - 9:tocol + 9]', 'K'], {'mode': '"""same"""', 'boundary': '"""symm"""'}), "(hfield[fromrow - 9:torow + 9, fromcol - 9:tocol + 9], K, mode=\n 'same', boundary='symm')\n", (2081, 2173), False, 'from scipy.signal import convolve2d\n'), ((2711, 2723), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (2721, 2723), True, 'import matplotlib.pyplot as plt\n'), ((2728, 2779), 'matplotlib.pyplot.contourf', 'plt.contourf', (['x', 'y', '(-hfield)', '(100)'], {'cmap': 'TERRAIN_CMAP'}), '(x, y, -hfield, 100, cmap=TERRAIN_CMAP)\n', (2740, 2779), True, 'import matplotlib.pyplot as plt\n'), ((2910, 2921), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2919, 2921), True, 'import matplotlib.pyplot as plt\n'), ((3182, 3194), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (3192, 3194), True, 'import matplotlib.pyplot as plt\n'), ((3199, 3250), 'matplotlib.pyplot.contourf', 'plt.contourf', (['x', 'y', '(-hfield)', '(100)'], {'cmap': 'TERRAIN_CMAP'}), '(x, y, -hfield, 100, cmap=TERRAIN_CMAP)\n', (3211, 3250), True, 'import matplotlib.pyplot as plt\n'), ((3414, 3440), 'numpy.arange', 'np.arange', (['xmin', 'xmax', '(0.5)'], {}), '(xmin, xmax, 0.5)\n', (3423, 3440), True, 'import numpy as np\n'), ((3510, 3536), 'numpy.arange', 'np.arange', (['ymin', 'ymax', '(0.5)'], {}), '(ymin, ymax, 0.5)\n', (3519, 3536), True, 'import numpy as np\n'), ((3660, 3671), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3669, 3671), True, 'import matplotlib.pyplot as plt\n'), ((186, 207), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (200, 207), False, 'import matplotlib\n'), ((1096, 1142), 'scipy.stats.multivariate_normal.rvs', 'multivariate_normal.rvs', ([], {'mean': 'mu[i]', 'cov': 'sigma'}), '(mean=mu[i], cov=sigma)\n', (1119, 1142), False, 'from scipy.stats import multivariate_normal\n'), ((1235, 1278), 'scipy.stats.multivariate_normal', 'multivariate_normal', (['mu[i, :]'], {'cov': 'sigma[i]'}), '(mu[i, :], cov=sigma[i])\n', (1254, 1278), False, 'from scipy.stats import multivariate_normal\n'), ((2038, 2055), 'numpy.ones', 'np.ones', (['(10, 10)'], {}), '((10, 10))\n', (2045, 2055), True, 'import numpy as np\n'), ((2327, 2348), 'os.path.exists', 'os.path.exists', (['path_'], {}), '(path_)\n', (2341, 2348), False, 'import os\n'), ((2358, 2376), 'os.makedirs', 'os.makedirs', (['path_'], {}), '(path_)\n', (2369, 2376), False, 'import os\n'), ((2858, 2883), 'os.path.join', 'os.path.join', (['path', 'fname'], {}), '(path, fname)\n', (2870, 2883), False, 'import os\n'), ((3448, 3498), 'matplotlib.pyplot.plot', 'plt.plot', (['[i, i]', '[ymin, ymax]', '"""k"""'], {'linewidth': '(0.1)'}), "([i, i], [ymin, ymax], 'k', linewidth=0.1)\n", (3456, 3498), True, 'import matplotlib.pyplot as plt\n'), ((3544, 3594), 'matplotlib.pyplot.plot', 'plt.plot', (['[xmin, xmax]', '[i, i]', '"""k"""'], {'linewidth': '(0.1)'}), "([xmin, xmax], [i, i], 'k', linewidth=0.1)\n", (3552, 3594), True, 'import matplotlib.pyplot as plt\n'), ((3608, 3633), 'os.path.join', 'os.path.join', (['path', 'fname'], {}), '(path, fname)\n', (3620, 3633), False, 'import os\n'), ((1195, 1222), 'numpy.random.rand', 'np.random.rand', (['mu.shape[0]'], {}), '(mu.shape[0])\n', (1209, 1222), True, 'import numpy as np\n'), ((920, 935), 'numpy.sqrt', 'np.sqrt', (['nhills'], {}), '(nhills)\n', (927, 935), True, 'import numpy as np\n'), ((954, 969), 'numpy.sqrt', 'np.sqrt', (['nhills'], {}), '(nhills)\n', (961, 969), True, 'import numpy as np\n')]
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 import frida import sys import os vid_index=0 aud_index = 0 def on_message(message, data): global vid_index global aud_index print(message) session = frida.attach("avconferenced") code = open('replay.js', 'r').read() script = session.create_script(code); script.on("message", on_message) script.load() print("Press Ctrl-C to quit") sys.stdin.read()
[ "frida.attach", "sys.stdin.read" ]
[((427, 456), 'frida.attach', 'frida.attach', (['"""avconferenced"""'], {}), "('avconferenced')\n", (439, 456), False, 'import frida\n'), ((610, 626), 'sys.stdin.read', 'sys.stdin.read', ([], {}), '()\n', (624, 626), False, 'import sys\n')]
# Copyright 2020 <NAME> <<EMAIL>> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # ---- END OF LICENSE TEXT ---- import unittest from datetime import datetime, timezone, timedelta from ..electricity_provider import ElectricityProvider class ElectricityProviderTest(unittest.TestCase): def setUp(self): config = { "price_per_kWh_sold": 0.147, "price_per_kWh_bought": 0.10 } p = ElectricityProvider() p.load(config) self._p = p self._now = datetime.now(timezone.utc) self._dt = timedelta(1) def test_not_loaded(self): """ Ensures that an error is raised when trying to use an electricity provider that hasn't been configured. This doesn't need the setUp method """ p = ElectricityProvider() when = datetime.now(timezone.utc) dt = timedelta(1) with self.assertRaises(RuntimeError): p.consume_optional(when, dt, 100) with self.assertRaises(RuntimeError): p.consume_required(when, dt) with self.assertRaises(RuntimeError): p.produce_always(when, dt) with self.assertRaises(RuntimeError): p.produce_on_demand(when, dt, 100) def test_produce_always(self): self.assertEquals(0, self._p.produce_always(self._now, self._dt)) def test_produce_on_demand(self): res = self._p.produce_on_demand(self._now, self._dt, 100.0) self.assertEquals(res[0], 100.0) self.assertEquals(res[1], 100.0 * 0.147) def test_consume_required(self): self.assertEquals(0, self._p.consume_required(self._now, self._dt)) def test_consume_optional(self): res = self._p.consume_optional(self._now, self._dt, 100.0) self.assertEquals(res[0], 100.0) self.assertEquals(res[1], 100.0 * 0.10)
[ "datetime.datetime.now", "datetime.timedelta" ]
[((1525, 1551), 'datetime.datetime.now', 'datetime.now', (['timezone.utc'], {}), '(timezone.utc)\n', (1537, 1551), False, 'from datetime import datetime, timezone, timedelta\n'), ((1571, 1583), 'datetime.timedelta', 'timedelta', (['(1)'], {}), '(1)\n', (1580, 1583), False, 'from datetime import datetime, timezone, timedelta\n'), ((1852, 1878), 'datetime.datetime.now', 'datetime.now', (['timezone.utc'], {}), '(timezone.utc)\n', (1864, 1878), False, 'from datetime import datetime, timezone, timedelta\n'), ((1892, 1904), 'datetime.timedelta', 'timedelta', (['(1)'], {}), '(1)\n', (1901, 1904), False, 'from datetime import datetime, timezone, timedelta\n')]
from datetime import datetime, timedelta from pyclarify import APIClient import orchest import pandas as pd import numpy as np from merlion.utils import TimeSeries from merlion.models.forecast.prophet import Prophet, ProphetConfig from merlion.transform.base import Identity def pipeline_data(times, values, new_id,new_name, original_id, original_name): labels = {"source":["Orchest pipelines"], "original_id":[original_id]} var_name = "clfy_"+new_id data = { "name" : new_name, "labels" : labels, "times" : times, "series" : values, "kargs" : {"sourceType" : "prediction", "data-source": ["Orchest"], "description" : f"Forecast for {original_name}" } } return {var_name : data } def generate_future_timestamps(n_future, timestamps, start): deltas = [x-timestamps[0] for x in timestamps] avg_delta=np.mean(deltas) future = [(i+1)*avg_delta+start for i in range(n_future)] return future client = APIClient("./clarify-credentials.json") inputs = orchest.get_inputs() invars = [x for x in inputs.keys() if x.startswith("read_config_forecast")] print(invars) output_dict={} for name in invars: item_id = inputs[name]['item_id'] days = inputs[name]['lag_days'] test_lag = inputs[name]['time_split'] future = inputs[name]['future'] data_params = { "items": { "include": True, "filter": { "id": { "$in": [ item_id ] } } }, "data": { "include": True, "notBefore": (datetime.now() - timedelta(days=days)).astimezone().isoformat() } } response = client.select_items(data_params) signal_name = list(response.result.items.values())[0].name print(f"Name {signal_name} and id {item_id}") times = response.result.data.times series = response.result.data.series df = pd.DataFrame(series) df.index = [time.replace(tzinfo=None) for time in times] if len(times) > 0: tzinfo = times[0].tzinfo test_data = TimeSeries.from_pd(df[-test_lag:]) train_data = TimeSeries.from_pd(df[0:-test_lag]) config = ProphetConfig(max_forecast_steps=test_lag, add_seasonality="auto", transform=Identity()) model = Prophet(config) model.train(train_data=train_data) test_times = test_data.time_stamps if future > 0: test_times=test_times+generate_future_timestamps(future, test_data.time_stamps, start=test_data.time_stamps[-1]) test_pred, test_err = model.forecast(time_stamps=test_times) col = test_pred.names[0] col_err = test_err.names[0] forecast_name=col+"_pred" forecast_name_upper=col+"_upper" forecast_name_lower=col+"_lower" forecast_values = test_pred.univariates[col].values forecast_upper_values= [x+y for x,y in zip(test_pred.univariates[col].values, test_err.univariates[col_err].values)] forecast_lower_values= [x-y for x,y in zip(test_pred.univariates[col].values, test_err.univariates[col_err].values)] output_dict.update(pipeline_data(test_pred.time_stamps,forecast_values, forecast_name, f"Forecast {signal_name}", col, signal_name )) output_dict.update(pipeline_data(test_err.time_stamps,forecast_upper_values, forecast_name_upper, f"Forecast {signal_name} upper bound", col, signal_name )) output_dict.update(pipeline_data(test_err.time_stamps,forecast_lower_values, forecast_name_lower, f"Forecast {signal_name} lower bound", col, signal_name )) orchest.output(output_dict, "clfy_dict")
[ "pandas.DataFrame", "orchest.output", "orchest.get_inputs", "merlion.utils.TimeSeries.from_pd", "datetime.datetime.now", "merlion.models.forecast.prophet.Prophet", "numpy.mean", "datetime.timedelta", "merlion.transform.base.Identity", "pyclarify.APIClient" ]
[((1072, 1111), 'pyclarify.APIClient', 'APIClient', (['"""./clarify-credentials.json"""'], {}), "('./clarify-credentials.json')\n", (1081, 1111), False, 'from pyclarify import APIClient\n'), ((1122, 1142), 'orchest.get_inputs', 'orchest.get_inputs', ([], {}), '()\n', (1140, 1142), False, 'import orchest\n'), ((3609, 3649), 'orchest.output', 'orchest.output', (['output_dict', '"""clfy_dict"""'], {}), "(output_dict, 'clfy_dict')\n", (3623, 3649), False, 'import orchest\n'), ((965, 980), 'numpy.mean', 'np.mean', (['deltas'], {}), '(deltas)\n', (972, 980), True, 'import numpy as np\n'), ((2010, 2030), 'pandas.DataFrame', 'pd.DataFrame', (['series'], {}), '(series)\n', (2022, 2030), True, 'import pandas as pd\n'), ((2169, 2203), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['df[-test_lag:]'], {}), '(df[-test_lag:])\n', (2187, 2203), False, 'from merlion.utils import TimeSeries\n'), ((2221, 2256), 'merlion.utils.TimeSeries.from_pd', 'TimeSeries.from_pd', (['df[0:-test_lag]'], {}), '(df[0:-test_lag])\n', (2239, 2256), False, 'from merlion.utils import TimeSeries\n'), ((2372, 2387), 'merlion.models.forecast.prophet.Prophet', 'Prophet', (['config'], {}), '(config)\n', (2379, 2387), False, 'from merlion.models.forecast.prophet import Prophet, ProphetConfig\n'), ((2347, 2357), 'merlion.transform.base.Identity', 'Identity', ([], {}), '()\n', (2355, 2357), False, 'from merlion.transform.base import Identity\n'), ((1679, 1693), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1691, 1693), False, 'from datetime import datetime, timedelta\n'), ((1696, 1716), 'datetime.timedelta', 'timedelta', ([], {'days': 'days'}), '(days=days)\n', (1705, 1716), False, 'from datetime import datetime, timedelta\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest from driver import bag, compare, err, err_regex, partial, uuid class PythonTestDriverTest(unittest.TestCase): def compare(self, expected, result, options=None): self.assertTrue(compare(expected, result, options=options)) def compareFalse(self, expected, result, options=None): self.assertFalse(compare(expected, result, options=options)) def test_string(self): # simple self.compare('a', 'a') self.compare('á', 'á') self.compare('something longer\nwith two lines', 'something longer\nwith two lines') self.compareFalse('a', 'b') self.compareFalse('a', 1) self.compareFalse('a', []) self.compareFalse('a', None) self.compareFalse('a', ['a']) self.compareFalse('a', {'a': 1}) def test_array(self): # simple pass self.compare([1, 2, 3], [1, 2, 3]) # out of order self.compareFalse([1, 2, 3], [1, 3, 2]) # totally mistmatched lists self.compareFalse([1, 2, 3], [3, 4, 5]) # missing items self.compareFalse([1, 2, 3], [1, 2]) self.compareFalse([1, 2, 3], [1, 3]) # extra items self.compareFalse([1, 2, 3], [1, 2, 3, 4]) # empty array self.compare([], []) self.compareFalse([1], []) self.compareFalse([], [1]) self.compareFalse([], None) # strings self.compare(['a', 'b'], ['a', 'b']) self.compareFalse(['a', 'c'], ['a', 'b']) # multiple of a single value self.compare([1, 2, 2, 3, 3, 3], [1, 2, 2, 3, 3, 3]) self.compareFalse([1, 2, 2, 3, 3, 3], [1, 2, 3]) self.compareFalse([1, 2, 3], [1, 2, 2, 3, 3, 3]) def test_array_partial(self): '''note that these are all in-order''' # simple self.compare(partial([1]), [1, 2, 3]) self.compare(partial([2]), [1, 2, 3]) self.compare(partial([3]), [1, 2, 3]) self.compare(partial([1, 2]), [1, 2, 3]) self.compare(partial([1, 3]), [1, 2, 3]) self.compare(partial([1, 2, 3]), [1, 2, 3]) self.compareFalse(partial([4]), [1, 2, 3]) # ordered self.compareFalse(partial([3, 2, 1], ordered=True), [1, 2, 3]) self.compareFalse(partial([1, 3, 2], ordered=True), [1, 2, 3]) # empty array self.compare(partial([]), [1, 2, 3]) # multiple of a single items self.compare(partial([1, 2, 2]), [1, 2, 2, 3, 3, 3]) self.compareFalse(partial([1, 2, 2, 2]), [1, 2, 2, 3, 3, 3]) def test_array_unordered(self): # simple self.compare(bag([1, 2]), [1, 2]) self.compare(bag([2, 1]), [1, 2]) self.compareFalse(bag([1, 2]), [1, 2, 3]) self.compareFalse(bag([1, 3]), [1, 2, 3]) self.compareFalse(bag([3, 1]), [1, 2, 3]) # empty array self.compare(bag([]), []) def test_dict(self): # simple self.compare({'a': 1, 'b': 2, 'c': 3}, {'a': 1, 'b': 2, 'c': 3}) self.compare({'a': 1, 'b': 2, 'c': 3}, {'c': 3, 'a': 1, 'b': 2}) self.compareFalse({'a': 1, 'b': 2, 'c': 3}, {'a': 1}) self.compareFalse({'a': 1}, {'a': 1, 'b': 2, 'c': 3}) # empty self.compare({}, {}) self.compareFalse({}, {'a': 1}) self.compareFalse({'a': 1}, {}) def test_dict_partial(self): # simple self.compare(partial({'a': 1}), {'a': 1}) self.compare(partial({'a': 1}), {'a': 1, 'b': 2}) self.compareFalse(partial({'a': 2}), {'a': 1, 'b': 2}) self.compareFalse(partial({'c': 1}), {'a': 1, 'b': 2}) self.compareFalse(partial({'a': 1, 'b': 2}), {'b': 2}) # empty self.compare(partial({}), {}) self.compare(partial({}), {'a': 1}) self.compareFalse(partial({'a': 1}), {}) def test_compare_dict_in_array(self): # simple self.compare([{'a': 1}], [{'a': 1}]) self.compare([{'a': 1, 'b': 2}], [{'a': 1, 'b': 2}]) self.compare([{'a': 1}, {'b': 2}], [{'a': 1}, {'b': 2}]) self.compareFalse([{'a': 1}], [{'a': 1, 'b': 2}]) self.compareFalse([{'a': 2, 'b': 2}], [{'a': 1, 'b': 2}]) self.compareFalse([{'a': 2, 'c': 3}], [{'a': 1, 'b': 2}]) self.compareFalse([{'a': 2, 'c': 3}], [{'a': 1}]) self.compareFalse([{'a': 1}, {'b': 2}], [{'a': 1, 'b': 2}]) # order self.compareFalse([{'a': 1}, {'b': 2}], [{'b': 2}, {'a': 1}]) # partial self.compare(partial([{}]), [{'a': 1, 'b': 2}]) self.compare(partial([{}]), [{'a': 1, 'b': 2}]) self.compare(partial([{'a': 1}]), [{'a': 1, 'b': 2}]) self.compare(partial([{'a': 1, 'b': 2}]), [{'a': 1, 'b': 2}]) self.compare(partial([{'a': 1}, {'b': 2}]), [{'a': 1}, {'b': 2}, {'c': 3}]) self.compareFalse(partial([{'a': 2}]), [{'a': 1, 'b': 2}]) self.compareFalse(partial([{'a': 1, 'b': 2}]), [{'a': 1}]) # partial order self.compareFalse(partial([{'a': 1}, {'b': 2}], ordered=True), [{'b': 2}, {'a': 1}]) # partial unordered self.compare(partial([{'a': 1}, {'b': 2}]), [{'b': 2}, {'a': 1}]) self.compare(partial([{'a': 1}, {'b': 2}], ordered=False), [{'b': 2}, {'a': 1}]) def test_compare_partial_items_in_array(self): self.compare([{'a': 1, 'b': 1}, partial({'a': 2})], [{'a': 1, 'b': 1}, {'a': 2, 'b': 2}]) def test_compare_array_in_dict(self): pass def test_exception(self): # class only self.compare(KeyError, KeyError()) self.compare(KeyError(), KeyError()) self.compare(err('KeyError'), KeyError()) self.compare(err(KeyError), KeyError()) self.compareFalse(KeyError, NameError()) self.compareFalse(KeyError(), NameError()) self.compareFalse(err('KeyError'), NameError()) self.compareFalse(err(KeyError), NameError()) # subclass self.compare(LookupError, KeyError()) self.compare(LookupError(), KeyError()) self.compare(err('LookupError'), KeyError()) self.compare(err(LookupError), KeyError()) self.compareFalse(KeyError, LookupError()) self.compareFalse(KeyError(), LookupError()) self.compareFalse(err('KeyError'), LookupError()) self.compareFalse(err(KeyError), LookupError()) # message self.compare(err(KeyError), KeyError('alpha')) self.compare(err(KeyError, 'alpha'), KeyError('alpha')) self.compareFalse(err(KeyError, 'alpha'), KeyError('beta')) # regex message self.compare(err(KeyError), KeyError('alpha')) # regex message with debug/assertion text self.compare(err_regex(KeyError, 'alpha'), KeyError('alpha')) self.compare(err_regex(KeyError, 'alp'), KeyError('alpha')) self.compare(err_regex(KeyError, '.*pha'), KeyError('alpha')) self.compareFalse(err_regex(KeyError, 'beta'), KeyError('alpha')) # ToDo: frames (when/if we support them) def test_compare_uuid(self): # simple self.compare(uuid(), '4e9e5bc2-9b11-4143-9aa1-75c10e7a193a') self.compareFalse(uuid(), '4') self.compareFalse(uuid(), '*') self.compareFalse(uuid(), None) def test_numbers(self): # simple self.compare(1, 1) self.compare(1, 1.0) self.compare(1.0, 1) self.compare(1.0, 1.0) self.compareFalse(1, 2) self.compareFalse(1, 2.0) self.compareFalse(1.0, 2) self.compareFalse(1.0, 2.0) # precision precision = {'precision': 0.5} self.compare(1, 1.4, precision) self.compare(1.0, 1.4, precision) self.compareFalse(1, 2, precision) self.compareFalse(1, 1.6, precision) self.compareFalse(1.0, 2, precision) self.compareFalse(1.0, 1.6, precision) if __name__ == '__main__': unittest.main()
[ "unittest.main", "driver.partial", "driver.bag", "driver.err_regex", "driver.uuid", "driver.compare", "driver.err" ]
[((7980, 7995), 'unittest.main', 'unittest.main', ([], {}), '()\n', (7993, 7995), False, 'import unittest\n'), ((256, 298), 'driver.compare', 'compare', (['expected', 'result'], {'options': 'options'}), '(expected, result, options=options)\n', (263, 298), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((386, 428), 'driver.compare', 'compare', (['expected', 'result'], {'options': 'options'}), '(expected, result, options=options)\n', (393, 428), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((1896, 1908), 'driver.partial', 'partial', (['[1]'], {}), '([1])\n', (1903, 1908), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((1942, 1954), 'driver.partial', 'partial', (['[2]'], {}), '([2])\n', (1949, 1954), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((1988, 2000), 'driver.partial', 'partial', (['[3]'], {}), '([3])\n', (1995, 2000), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((2035, 2050), 'driver.partial', 'partial', (['[1, 2]'], {}), '([1, 2])\n', (2042, 2050), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((2084, 2099), 'driver.partial', 'partial', (['[1, 3]'], {}), '([1, 3])\n', (2091, 2099), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((2134, 2152), 'driver.partial', 'partial', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (2141, 2152), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((2192, 2204), 'driver.partial', 'partial', (['[4]'], {}), '([4])\n', (2199, 2204), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((2262, 2294), 'driver.partial', 'partial', (['[3, 2, 1]'], {'ordered': '(True)'}), '([3, 2, 1], ordered=True)\n', (2269, 2294), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((2333, 2365), 'driver.partial', 'partial', (['[1, 3, 2]'], {'ordered': '(True)'}), '([1, 3, 2], ordered=True)\n', (2340, 2365), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((2422, 2433), 'driver.partial', 'partial', (['[]'], {}), '([])\n', (2429, 2433), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((2505, 2523), 'driver.partial', 'partial', (['[1, 2, 2]'], {}), '([1, 2, 2])\n', (2512, 2523), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((2571, 2592), 'driver.partial', 'partial', (['[1, 2, 2, 2]'], {}), '([1, 2, 2, 2])\n', (2578, 2592), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((2689, 2700), 'driver.bag', 'bag', (['[1, 2]'], {}), '([1, 2])\n', (2692, 2700), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((2731, 2742), 'driver.bag', 'bag', (['[2, 1]'], {}), '([2, 1])\n', (2734, 2742), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((2779, 2790), 'driver.bag', 'bag', (['[1, 2]'], {}), '([1, 2])\n', (2782, 2790), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((2829, 2840), 'driver.bag', 'bag', (['[1, 3]'], {}), '([1, 3])\n', (2832, 2840), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((2879, 2890), 'driver.bag', 'bag', (['[3, 1]'], {}), '([3, 1])\n', (2882, 2890), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((2947, 2954), 'driver.bag', 'bag', (['[]'], {}), '([])\n', (2950, 2954), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((3472, 3489), 'driver.partial', 'partial', (["{'a': 1}"], {}), "({'a': 1})\n", (3479, 3489), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((3522, 3539), 'driver.partial', 'partial', (["{'a': 1}"], {}), "({'a': 1})\n", (3529, 3539), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((3586, 3603), 'driver.partial', 'partial', (["{'a': 2}"], {}), "({'a': 2})\n", (3593, 3603), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((3649, 3666), 'driver.partial', 'partial', (["{'c': 1}"], {}), "({'c': 1})\n", (3656, 3666), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((3712, 3737), 'driver.partial', 'partial', (["{'a': 1, 'b': 2}"], {}), "({'a': 1, 'b': 2})\n", (3719, 3737), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((3787, 3798), 'driver.partial', 'partial', (['{}'], {}), '({})\n', (3794, 3798), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((3825, 3836), 'driver.partial', 'partial', (['{}'], {}), '({})\n', (3832, 3836), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((3874, 3891), 'driver.partial', 'partial', (["{'a': 1}"], {}), "({'a': 1})\n", (3881, 3891), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((4572, 4585), 'driver.partial', 'partial', (['[{}]'], {}), '([{}])\n', (4579, 4585), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((4628, 4641), 'driver.partial', 'partial', (['[{}]'], {}), '([{}])\n', (4635, 4641), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((4684, 4703), 'driver.partial', 'partial', (["[{'a': 1}]"], {}), "([{'a': 1}])\n", (4691, 4703), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((4746, 4773), 'driver.partial', 'partial', (["[{'a': 1, 'b': 2}]"], {}), "([{'a': 1, 'b': 2}])\n", (4753, 4773), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((4816, 4845), 'driver.partial', 'partial', (["[{'a': 1}, {'b': 2}]"], {}), "([{'a': 1}, {'b': 2}])\n", (4823, 4845), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((4906, 4925), 'driver.partial', 'partial', (["[{'a': 2}]"], {}), "([{'a': 2}])\n", (4913, 4925), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((4973, 5000), 'driver.partial', 'partial', (["[{'a': 1, 'b': 2}]"], {}), "([{'a': 1, 'b': 2}])\n", (4980, 5000), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((5065, 5108), 'driver.partial', 'partial', (["[{'a': 1}, {'b': 2}]"], {'ordered': '(True)'}), "([{'a': 1}, {'b': 2}], ordered=True)\n", (5072, 5108), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((5182, 5211), 'driver.partial', 'partial', (["[{'a': 1}, {'b': 2}]"], {}), "([{'a': 1}, {'b': 2}])\n", (5189, 5211), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((5256, 5300), 'driver.partial', 'partial', (["[{'a': 1}, {'b': 2}]"], {'ordered': '(False)'}), "([{'a': 1}, {'b': 2}], ordered=False)\n", (5263, 5300), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((5691, 5706), 'driver.err', 'err', (['"""KeyError"""'], {}), "('KeyError')\n", (5694, 5706), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((5741, 5754), 'driver.err', 'err', (['KeyError'], {}), '(KeyError)\n', (5744, 5754), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((5895, 5910), 'driver.err', 'err', (['"""KeyError"""'], {}), "('KeyError')\n", (5898, 5910), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((5951, 5964), 'driver.err', 'err', (['KeyError'], {}), '(KeyError)\n', (5954, 5964), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((6114, 6132), 'driver.err', 'err', (['"""LookupError"""'], {}), "('LookupError')\n", (6117, 6132), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((6167, 6183), 'driver.err', 'err', (['LookupError'], {}), '(LookupError)\n', (6170, 6183), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((6328, 6343), 'driver.err', 'err', (['"""KeyError"""'], {}), "('KeyError')\n", (6331, 6343), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((6386, 6399), 'driver.err', 'err', (['KeyError'], {}), '(KeyError)\n', (6389, 6399), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((6456, 6469), 'driver.err', 'err', (['KeyError'], {}), '(KeyError)\n', (6459, 6469), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((6511, 6533), 'driver.err', 'err', (['KeyError', '"""alpha"""'], {}), "(KeyError, 'alpha')\n", (6514, 6533), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((6581, 6603), 'driver.err', 'err', (['KeyError', '"""alpha"""'], {}), "(KeyError, 'alpha')\n", (6584, 6603), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((6669, 6682), 'driver.err', 'err', (['KeyError'], {}), '(KeyError)\n', (6672, 6682), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((6775, 6803), 'driver.err_regex', 'err_regex', (['KeyError', '"""alpha"""'], {}), "(KeyError, 'alpha')\n", (6784, 6803), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((6845, 6871), 'driver.err_regex', 'err_regex', (['KeyError', '"""alp"""'], {}), "(KeyError, 'alp')\n", (6854, 6871), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((6913, 6941), 'driver.err_regex', 'err_regex', (['KeyError', '""".*pha"""'], {}), "(KeyError, '.*pha')\n", (6922, 6941), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((6989, 7016), 'driver.err_regex', 'err_regex', (['KeyError', '"""beta"""'], {}), "(KeyError, 'beta')\n", (6998, 7016), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((7159, 7165), 'driver.uuid', 'uuid', ([], {}), '()\n', (7163, 7165), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((7233, 7239), 'driver.uuid', 'uuid', ([], {}), '()\n', (7237, 7239), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((7272, 7278), 'driver.uuid', 'uuid', ([], {}), '()\n', (7276, 7278), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((7311, 7317), 'driver.uuid', 'uuid', ([], {}), '()\n', (7315, 7317), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n'), ((5416, 5433), 'driver.partial', 'partial', (["{'a': 2}"], {}), "({'a': 2})\n", (5423, 5433), False, 'from driver import bag, compare, err, err_regex, partial, uuid\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys import argparse import os.path from collections import namedtuple from HostsTools import hosts_tools class HostList(namedtuple('HostList', 'filename set')): pass def parse_args() -> sys.argv: parser = argparse.ArgumentParser() parser.add_argument('filename_a', type=str, help='First list to compare') parser.add_argument('filename_b', type=str, help='Second list to compare') parser.add_argument('--diff', default=False, action='store_true', help='Show a full diff of the lists') args = parser.parse_args() if not (args.filename_a and args.filename_b): parser.print_help() exit(1) validate_filename_args(args) return args def validate_filename_args(args) -> None: if not os.path.isfile(args.filename_a): raise Exception('Invalid host file: ', args.filename_a) if not os.path.isfile(args.filename_b): raise Exception('Invalid host file: ', args.filename_b) def main() -> None: args = parse_args() filename_a = args.filename_a filename_b = args.filename_b set_a = hosts_tools.load_domains_from_list(filename_a) set_b = hosts_tools.load_domains_from_list(filename_b) list_a = HostList(filename_a, set_a) list_b = HostList(filename_b, set_b) print() print_list_size(list_a, list_b) print() print_list_difference(list_a, list_b) if args.diff: print() print_list_diff(list_a, list_b) def print_list_size(list_a: HostList, list_b: HostList) -> None: size_a = len(list_a.set) size_b = len(list_b.set) difference = size_a - size_b print('Number of unique host entries: %s' % difference) print_list_fact(list_a.filename, size_a) print_list_fact(list_b.filename, size_b) def print_list_difference(list_a: HostList, list_b: HostList) -> None: unique_list_a = list_a.set - list_b.set size_unique_a = len(unique_list_a) percentage_unique_a = round((size_unique_a / len(list_a.set)) * 100, 2) unique_list_b = list_b.set - list_a.set size_unique_b = len(unique_list_b) percentage_unique_b = round((size_unique_b / len(list_b.set)) * 100, 2) print('Number of unique hosts not in the other list:') print_list_fact(list_a.filename, f'{size_unique_a} ({percentage_unique_a}%)') print_list_fact(list_b.filename, f'{size_unique_b} ({percentage_unique_b}%)') def print_list_fact(list_name, fact) -> None: print('{:<30}{:<30}'.format(list_name, fact)) def print_list_diff(list_a: HostList, list_b: HostList) -> None: full_set = list_a.set.union(list_b.set) full_set_sorted = hosts_tools.sort_domains(list(full_set)) print('Lists Diff:') print('{:<50}{:<50}'.format(list_a.filename, list_b.filename)) for domain in full_set_sorted: list_a_value = domain if domain in list_a.set else '' list_b_value = domain if domain in list_b.set else '' if list_a_value != list_b_value: print('{:<50}{:<50}'.format(list_a_value, list_b_value)) if __name__ == "__main__": main()
[ "HostsTools.hosts_tools.load_domains_from_list", "collections.namedtuple", "argparse.ArgumentParser" ]
[((177, 215), 'collections.namedtuple', 'namedtuple', (['"""HostList"""', '"""filename set"""'], {}), "('HostList', 'filename set')\n", (187, 215), False, 'from collections import namedtuple\n'), ((272, 297), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (295, 297), False, 'import argparse\n'), ((1145, 1191), 'HostsTools.hosts_tools.load_domains_from_list', 'hosts_tools.load_domains_from_list', (['filename_a'], {}), '(filename_a)\n', (1179, 1191), False, 'from HostsTools import hosts_tools\n'), ((1204, 1250), 'HostsTools.hosts_tools.load_domains_from_list', 'hosts_tools.load_domains_from_list', (['filename_b'], {}), '(filename_b)\n', (1238, 1250), False, 'from HostsTools import hosts_tools\n')]
from solari import Leona from solari.stats import ChampionPickrate, ChampionWinrate, ChampionPickCount, ChampionBanrate, ChampionPresenceRate, ChampionBanCount def test_champion_pickrate(match_set_2): l = Leona([ ChampionPickrate() ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira got picked 5 times out of 20 games assert stats["Pickrate"].loc[777] == 5/20 def test_champion_winrate(match_set_2): l = Leona([ ChampionWinrate() ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira won 4 times out of 5 games assert stats["Winrate"].loc[777] == 4/5 def test_champion_banrate(match_set_2): l = Leona([ ChampionBanrate() ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira was banned in 9 out of 19 games assert stats["Banrate"].loc[777] == 9/19 def test_champion_banrate_teamwise(match_set_2): l = Leona([ ChampionBanrate(team_wise=True) ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira was banned in 10 times in 19 games assert stats["Banrate"].loc[777] == 10/19 def test_champion_pick_count(match_set_2): l = Leona([ ChampionPickCount() ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira was picked 5 times assert stats["Pick Count"].loc[777] == 5 def test_champion_ban_count(match_set_2): l = Leona([ ChampionBanCount() ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira was banned in 9 games assert stats["Ban Count"].loc[777] == 9 def test_champion_ban_count_teamwise(match_set_2): l = Leona([ ChampionBanCount(team_wise=True) ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira was banned 10 times assert stats["Ban Count"].loc[777] == 10 def test_champion_presence(match_set_2): l = Leona([ ChampionPickrate(), ChampionBanrate(), ChampionPresenceRate() ]) for m in match_set_2: l.push_match(m) stats = l.get_stats() # Samira was banned in 9 games and picked in 5 games out of 20 assert stats["Presence"].loc[777] == (5 + 9) / 20
[ "solari.stats.ChampionBanrate", "solari.stats.ChampionPickCount", "solari.stats.ChampionPickrate", "solari.stats.ChampionPresenceRate", "solari.stats.ChampionWinrate", "solari.stats.ChampionBanCount" ]
[((226, 244), 'solari.stats.ChampionPickrate', 'ChampionPickrate', ([], {}), '()\n', (242, 244), False, 'from solari.stats import ChampionPickrate, ChampionWinrate, ChampionPickCount, ChampionBanrate, ChampionPresenceRate, ChampionBanCount\n'), ((510, 527), 'solari.stats.ChampionWinrate', 'ChampionWinrate', ([], {}), '()\n', (525, 527), False, 'from solari.stats import ChampionPickrate, ChampionWinrate, ChampionPickCount, ChampionBanrate, ChampionPresenceRate, ChampionBanCount\n'), ((788, 805), 'solari.stats.ChampionBanrate', 'ChampionBanrate', ([], {}), '()\n', (803, 805), False, 'from solari.stats import ChampionPickrate, ChampionWinrate, ChampionPickCount, ChampionBanrate, ChampionPresenceRate, ChampionBanCount\n'), ((1081, 1112), 'solari.stats.ChampionBanrate', 'ChampionBanrate', ([], {'team_wise': '(True)'}), '(team_wise=True)\n', (1096, 1112), False, 'from solari.stats import ChampionPickrate, ChampionWinrate, ChampionPickCount, ChampionBanrate, ChampionPresenceRate, ChampionBanCount\n'), ((1381, 1400), 'solari.stats.ChampionPickCount', 'ChampionPickCount', ([], {}), '()\n', (1398, 1400), False, 'from solari.stats import ChampionPickrate, ChampionWinrate, ChampionPickCount, ChampionBanrate, ChampionPresenceRate, ChampionBanCount\n'), ((1651, 1669), 'solari.stats.ChampionBanCount', 'ChampionBanCount', ([], {}), '()\n', (1667, 1669), False, 'from solari.stats import ChampionPickrate, ChampionWinrate, ChampionPickCount, ChampionBanrate, ChampionPresenceRate, ChampionBanCount\n'), ((1931, 1963), 'solari.stats.ChampionBanCount', 'ChampionBanCount', ([], {'team_wise': '(True)'}), '(team_wise=True)\n', (1947, 1963), False, 'from solari.stats import ChampionPickrate, ChampionWinrate, ChampionPickCount, ChampionBanrate, ChampionPresenceRate, ChampionBanCount\n'), ((2219, 2237), 'solari.stats.ChampionPickrate', 'ChampionPickrate', ([], {}), '()\n', (2235, 2237), False, 'from solari.stats import ChampionPickrate, ChampionWinrate, ChampionPickCount, ChampionBanrate, ChampionPresenceRate, ChampionBanCount\n'), ((2247, 2264), 'solari.stats.ChampionBanrate', 'ChampionBanrate', ([], {}), '()\n', (2262, 2264), False, 'from solari.stats import ChampionPickrate, ChampionWinrate, ChampionPickCount, ChampionBanrate, ChampionPresenceRate, ChampionBanCount\n'), ((2274, 2296), 'solari.stats.ChampionPresenceRate', 'ChampionPresenceRate', ([], {}), '()\n', (2294, 2296), False, 'from solari.stats import ChampionPickrate, ChampionWinrate, ChampionPickCount, ChampionBanrate, ChampionPresenceRate, ChampionBanCount\n')]
"""Gets properties from all decorations a .ini database and generates code to be used in the UnitTypeDefaultValues library. This code is copied to the clipboard and can be pasted in a text editor or inside the World Editor. """ import os import sys sys.path.insert(1, os.path.join(sys.path[0], '..')) #______________________________________________________________________________________________ from myconfigparser import MyConfigParser, load_unit_data, get_decorations import pyperclip keys = ['modelScale','red','green','blue','animProps','maxRoll'] def do(file_path='../../development/table/unit.ini'): with open(file_path) as f: unit_data = load_unit_data(f) result = [] decos = get_decorations(unit_data) for deco in decos: for key in keys: if key in unit_data[deco]: if key == 'animProps': result.append(" set UnitTypeDefaultValues('{}').{} = {}".format(deco, key, unit_data[deco][key].replace(',', ' '))) elif key != 'maxRoll' or float(unit_data[deco]['maxRoll']) < 0: result.append(" set UnitTypeDefaultValues('{}').{} = {}".format(deco, key, unit_data[deco][key])) pyperclip.copy('\n'.join(result))
[ "myconfigparser.get_decorations", "os.path.join", "myconfigparser.load_unit_data" ]
[((268, 299), 'os.path.join', 'os.path.join', (['sys.path[0]', '""".."""'], {}), "(sys.path[0], '..')\n", (280, 299), False, 'import os\n'), ((710, 736), 'myconfigparser.get_decorations', 'get_decorations', (['unit_data'], {}), '(unit_data)\n', (725, 736), False, 'from myconfigparser import MyConfigParser, load_unit_data, get_decorations\n'), ((663, 680), 'myconfigparser.load_unit_data', 'load_unit_data', (['f'], {}), '(f)\n', (677, 680), False, 'from myconfigparser import MyConfigParser, load_unit_data, get_decorations\n')]
import pytest from pyecore.ecore import * from pyecore.utils import DynamicEPackage @pytest.fixture(scope='module') def simplemm(): A = EClass('A') B = EClass('B') Root = EClass('Root') pack = EPackage('pack', nsURI='http://pack/1.0', nsPrefix='pack') pack.eClassifiers.extend([Root, A, B]) return pack @pytest.fixture(scope='module') def complexmm(): A = EClass('A') B = EClass('B') Root = EClass('Root') pack = EPackage('pack', nsURI='http://pack/1.0', nsPrefix='pack') pack.eClassifiers.extend([Root, A, B]) innerpackage = EPackage('inner', nsURI='http://inner', nsPrefix='inner') C = EClass('C') D = EClass('D') innerpackage.eClassifiers.extend([C, D]) pack.eSubpackages.append(innerpackage) return pack def test_dynamic_access_eclasses(simplemm): SimpleMM = DynamicEPackage(simplemm) assert SimpleMM.A assert SimpleMM.B def test_dynamic_access_innerpackage(complexmm): ComplexMM = DynamicEPackage(complexmm) assert ComplexMM.A assert ComplexMM.B assert ComplexMM.inner.C assert ComplexMM.inner.D def test_dynamic_addition_eclasses(complexmm): ComplexMM = DynamicEPackage(complexmm) E = EClass('E') complexmm.eClassifiers.append(E) assert ComplexMM.E F = EClass('F') complexmm.eSubpackages[0].eClassifiers.append(F) assert ComplexMM.inner.F G = EClass('G') H = EClass('H') complexmm.eClassifiers.extend([G, H]) assert ComplexMM.G assert ComplexMM.H def test_dynamic_removal_eclasses(complexmm): ComplexMM = DynamicEPackage(complexmm) assert ComplexMM.Root complexmm.eClassifiers.remove(ComplexMM.Root) with pytest.raises(AttributeError): ComplexMM.Root assert ComplexMM.A complexmm.eClassifiers[0].delete() with pytest.raises(AttributeError): ComplexMM.A
[ "pytest.raises", "pytest.fixture", "pyecore.utils.DynamicEPackage" ]
[((87, 117), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (101, 117), False, 'import pytest\n'), ((332, 362), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (346, 362), False, 'import pytest\n'), ((842, 867), 'pyecore.utils.DynamicEPackage', 'DynamicEPackage', (['simplemm'], {}), '(simplemm)\n', (857, 867), False, 'from pyecore.utils import DynamicEPackage\n'), ((979, 1005), 'pyecore.utils.DynamicEPackage', 'DynamicEPackage', (['complexmm'], {}), '(complexmm)\n', (994, 1005), False, 'from pyecore.utils import DynamicEPackage\n'), ((1175, 1201), 'pyecore.utils.DynamicEPackage', 'DynamicEPackage', (['complexmm'], {}), '(complexmm)\n', (1190, 1201), False, 'from pyecore.utils import DynamicEPackage\n'), ((1578, 1604), 'pyecore.utils.DynamicEPackage', 'DynamicEPackage', (['complexmm'], {}), '(complexmm)\n', (1593, 1604), False, 'from pyecore.utils import DynamicEPackage\n'), ((1691, 1720), 'pytest.raises', 'pytest.raises', (['AttributeError'], {}), '(AttributeError)\n', (1704, 1720), False, 'import pytest\n'), ((1817, 1846), 'pytest.raises', 'pytest.raises', (['AttributeError'], {}), '(AttributeError)\n', (1830, 1846), False, 'import pytest\n')]
import tensorflow as tf import numpy as np class RBFolution(tf.keras.layers.Layer): def __init__(self, filters, kernel_size=(1, 3, 3, 1), padding="VALID", strides=(1, 1, 1, 1), name="RBFolution", dilation_rate=(1,1), ccs_initializer=tf.keras.initializers.RandomUniform(0,1), beta_initilizer=tf.keras.initializers.RandomUniform(0,1)): super(RBFolution, self).__init__(name=name) self.padding = padding self.strides = strides self.filters = filters self.kernel_size = kernel_size self.ccs_initializer = ccs_initializer self.beta_initilizer = beta_initilizer self.dilation_rate = dilation_rate def build(self, input_shape): self.input_s = input_shape self.output_s = self.compute_output_shape(input_shape) patch_dim = np.prod(self.kernel_size[1:]) self.ccs_tensor = self.add_weight("cluster_centers", shape=(patch_dim, self.filters), dtype="float32", initializer=self.ccs_initializer) self.beta = self.add_weight("beta", shape=[self.filters], dtype="float32", initializer=self.beta_initilizer) def call(self, input, **kwargs): return tf.reshape(self.__rbfolution(input), self.output_s) def compute_output_shape(self, input_shape): space = input_shape[1:-1] new_space = [] for i in range(len(space)): new_dim = RBFolution.conv_output_length( space[i], self.kernel_size[1:-1][i], padding=self.padding.lower(), stride=self.strides[i], dilation=self.dilation_rate[i]) new_space.append(new_dim.value) return (-1,) + tuple(new_space) + (self.filters,) def __rbfolution(self, inputs): batch_size = tf.shape(inputs)[0] patch_dim = np.prod(self.kernel_size[1:]) # Patches extracted from the images (convolution-like). # shape=[batch_size, new_height, new_width, patch_dim] (i. e. individual # patches are flattened) # tf.extract_image_patches "Only supports ksizes across space" -> we change # kernel_size[3] to 1. patches = tf.extract_image_patches( inputs, ksizes=list(self.kernel_size[:3]) + [1], strides=self.strides, rates=[1, 1, 1, 1], padding=self.padding ) patches_shape = tf.shape(patches) new_height = patches_shape[1] new_width = patches_shape[2] # shape=[batch_size, num_patches, patch_dim] reshaped_patches = tf.reshape(patches, [batch_size, -1, patch_dim]) # all_scores[i,j,k] = sum_{l=0}^{patch_dim-1} ( # (ccs_tensor[l,k] - reshaped_patches[i,j,l]) ** 2 # ) # shape=[batch_size, num_patches, filters] all_scores = ( tf.reduce_sum(tf.square(reshaped_patches), 2, keepdims=True) - 2 * tf.einsum("aij,jk->aik", reshaped_patches, self.ccs_tensor) + tf.reduce_sum(tf.square(self.ccs_tensor), 0, keepdims=True) ) res = tf.reshape( tf.exp(tf.multiply(-self.beta, all_scores)), [batch_size, new_height, new_width, self.filters], name="rbfolution_activation" ) return res @staticmethod def conv_output_length(input_length, filter_size, padding, stride, dilation=1): """Determines output length of a convolution given input length. Arguments: input_length: integer. filter_size: integer. padding: one of "same", "valid", "full", "causal" stride: integer. dilation: dilation rate, integer. Returns: The output length (integer). """ if input_length is None: return None assert padding in {'same', 'valid', 'full', 'causal'} dilated_filter_size = filter_size + (filter_size - 1) * (dilation - 1) if padding in ['same', 'causal']: output_length = input_length elif padding == 'valid': output_length = input_length - dilated_filter_size + 1 elif padding == 'full': output_length = input_length + dilated_filter_size - 1 return (output_length + stride - 1) // stride
[ "tensorflow.einsum", "tensorflow.reshape", "tensorflow.multiply", "tensorflow.keras.initializers.RandomUniform", "tensorflow.shape", "tensorflow.square", "numpy.prod" ]
[((273, 314), 'tensorflow.keras.initializers.RandomUniform', 'tf.keras.initializers.RandomUniform', (['(0)', '(1)'], {}), '(0, 1)\n', (308, 314), True, 'import tensorflow as tf\n'), ((348, 389), 'tensorflow.keras.initializers.RandomUniform', 'tf.keras.initializers.RandomUniform', (['(0)', '(1)'], {}), '(0, 1)\n', (383, 389), True, 'import tensorflow as tf\n'), ((866, 895), 'numpy.prod', 'np.prod', (['self.kernel_size[1:]'], {}), '(self.kernel_size[1:])\n', (873, 895), True, 'import numpy as np\n'), ((1863, 1892), 'numpy.prod', 'np.prod', (['self.kernel_size[1:]'], {}), '(self.kernel_size[1:])\n', (1870, 1892), True, 'import numpy as np\n'), ((2438, 2455), 'tensorflow.shape', 'tf.shape', (['patches'], {}), '(patches)\n', (2446, 2455), True, 'import tensorflow as tf\n'), ((2612, 2660), 'tensorflow.reshape', 'tf.reshape', (['patches', '[batch_size, -1, patch_dim]'], {}), '(patches, [batch_size, -1, patch_dim])\n', (2622, 2660), True, 'import tensorflow as tf\n'), ((1823, 1839), 'tensorflow.shape', 'tf.shape', (['inputs'], {}), '(inputs)\n', (1831, 1839), True, 'import tensorflow as tf\n'), ((3046, 3072), 'tensorflow.square', 'tf.square', (['self.ccs_tensor'], {}), '(self.ccs_tensor)\n', (3055, 3072), True, 'import tensorflow as tf\n'), ((3148, 3183), 'tensorflow.multiply', 'tf.multiply', (['(-self.beta)', 'all_scores'], {}), '(-self.beta, all_scores)\n', (3159, 3183), True, 'import tensorflow as tf\n'), ((2893, 2920), 'tensorflow.square', 'tf.square', (['reshaped_patches'], {}), '(reshaped_patches)\n', (2902, 2920), True, 'import tensorflow as tf\n'), ((2958, 3017), 'tensorflow.einsum', 'tf.einsum', (['"""aij,jk->aik"""', 'reshaped_patches', 'self.ccs_tensor'], {}), "('aij,jk->aik', reshaped_patches, self.ccs_tensor)\n", (2967, 3017), True, 'import tensorflow as tf\n')]
import os from .preprocessor import Preprocessor from traitlets import Unicode from shutil import move import glob class CreateFolderStructure(Preprocessor): directory = Unicode('restructured', help='Subfolder where processed files go') def __init__(self): super(CreateFolderStructure, self).__init__() def mkdir(self, path): if not os.path.exists(path): os.makedirs(path) def preprocess_student(self, student, resources): self.init_logging('Create Folder Structure') src = os.path.join(self.src, student) dst = os.path.join(self.dst, student, resources['assignment']) self.mkdir(os.path.join(self.dst, student)) move(src, dst) self.log.info('Moved submission to subfolder {}'.format(resources['assignment'])) self.terminate_logging(os.path.join(self.dst, student, resources['assignment'], self.logname)) return student, resources
[ "os.makedirs", "os.path.exists", "traitlets.Unicode", "shutil.move", "os.path.join" ]
[((176, 242), 'traitlets.Unicode', 'Unicode', (['"""restructured"""'], {'help': '"""Subfolder where processed files go"""'}), "('restructured', help='Subfolder where processed files go')\n", (183, 242), False, 'from traitlets import Unicode\n'), ((560, 591), 'os.path.join', 'os.path.join', (['self.src', 'student'], {}), '(self.src, student)\n', (572, 591), False, 'import os\n'), ((606, 662), 'os.path.join', 'os.path.join', (['self.dst', 'student', "resources['assignment']"], {}), "(self.dst, student, resources['assignment'])\n", (618, 662), False, 'import os\n'), ((740, 754), 'shutil.move', 'move', (['src', 'dst'], {}), '(src, dst)\n', (744, 754), False, 'from shutil import move\n'), ((373, 393), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (387, 393), False, 'import os\n'), ((407, 424), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (418, 424), False, 'import os\n'), ((691, 722), 'os.path.join', 'os.path.join', (['self.dst', 'student'], {}), '(self.dst, student)\n', (703, 722), False, 'import os\n'), ((885, 955), 'os.path.join', 'os.path.join', (['self.dst', 'student', "resources['assignment']", 'self.logname'], {}), "(self.dst, student, resources['assignment'], self.logname)\n", (897, 955), False, 'import os\n')]
#!/bin/false # -*- coding: utf-8 -*- import os import sys from sqlalchemy import Column, ForeignKey, Integer, String, Boolean from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship from sqlalchemy import create_engine Base = declarative_base() class Device(Base): __tablename__ = 'device' id = Column(Integer, primary_key=True) name = Column(String(255), unique=True) bdf = Column(String(255), unique=True) class Mapping(Base): __tablename__ = 'mapping' id = Column(Integer, primary_key=True) iova = Column(String(255)) phys_addr = Column(String(255)) size = Column(Integer) device_id = Column(Integer, ForeignKey('device.id')) device = relationship('Device', backref='mapping') engine = create_engine('sqlite:///iommu.db') Base.metadata.create_all(engine)
[ "sqlalchemy.String", "sqlalchemy.ForeignKey", "sqlalchemy.ext.declarative.declarative_base", "sqlalchemy.orm.relationship", "sqlalchemy.Column", "sqlalchemy.create_engine" ]
[((267, 285), 'sqlalchemy.ext.declarative.declarative_base', 'declarative_base', ([], {}), '()\n', (283, 285), False, 'from sqlalchemy.ext.declarative import declarative_base\n'), ((851, 886), 'sqlalchemy.create_engine', 'create_engine', (['"""sqlite:///iommu.db"""'], {}), "('sqlite:///iommu.db')\n", (864, 886), False, 'from sqlalchemy import create_engine\n'), ((356, 389), 'sqlalchemy.Column', 'Column', (['Integer'], {'primary_key': '(True)'}), '(Integer, primary_key=True)\n', (362, 389), False, 'from sqlalchemy import Column, ForeignKey, Integer, String, Boolean\n'), ((568, 601), 'sqlalchemy.Column', 'Column', (['Integer'], {'primary_key': '(True)'}), '(Integer, primary_key=True)\n', (574, 601), False, 'from sqlalchemy import Column, ForeignKey, Integer, String, Boolean\n'), ((702, 717), 'sqlalchemy.Column', 'Column', (['Integer'], {}), '(Integer)\n', (708, 717), False, 'from sqlalchemy import Column, ForeignKey, Integer, String, Boolean\n'), ((799, 840), 'sqlalchemy.orm.relationship', 'relationship', (['"""Device"""'], {'backref': '"""mapping"""'}), "('Device', backref='mapping')\n", (811, 840), False, 'from sqlalchemy.orm import relationship\n'), ((417, 428), 'sqlalchemy.String', 'String', (['(255)'], {}), '(255)\n', (423, 428), False, 'from sqlalchemy import Column, ForeignKey, Integer, String, Boolean\n'), ((470, 481), 'sqlalchemy.String', 'String', (['(255)'], {}), '(255)\n', (476, 481), False, 'from sqlalchemy import Column, ForeignKey, Integer, String, Boolean\n'), ((629, 640), 'sqlalchemy.String', 'String', (['(255)'], {}), '(255)\n', (635, 640), False, 'from sqlalchemy import Column, ForeignKey, Integer, String, Boolean\n'), ((669, 680), 'sqlalchemy.String', 'String', (['(255)'], {}), '(255)\n', (675, 680), False, 'from sqlalchemy import Column, ForeignKey, Integer, String, Boolean\n'), ((754, 777), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""device.id"""'], {}), "('device.id')\n", (764, 777), False, 'from sqlalchemy import Column, ForeignKey, Integer, String, Boolean\n')]
import pytest from . import db from .db import database from tagtrain import data def test_unknown_owner(database): with pytest.raises(data.Group.DoesNotExist): group = data.by_owner.remove_user_from_group('non-existent', db.GROUP_NAME, 'doesnt-matter') def test_unknown_group(database): with pytest.raises(data.Group.DoesNotExist): group = data.by_owner.remove_user_from_group(db.OWNER_NAME, 'non-existent', 'doesnt-matter') def test_unknown_member(database): with pytest.raises(data.Member.DoesNotExist): group = data.by_owner.remove_user_from_group(db.OWNER_NAME, db.GROUP_NAME, 'non-existent') def test_good_non_empty(database): group = data.by_owner.find_group(db.OWNER_NAME, db.GROUP_NAME) assert group.member_count == 4 assert len(list(group.members)) == 4 group = data.by_owner.remove_user_from_group(db.OWNER_NAME, db.GROUP_NAME, 'one') assert group.name == db.GROUP_NAME assert group.reddit_name == db.OWNER_NAME assert group.member_count == 3 assert len(list(group.members)) == 3 assert group.members[0].reddit_name == 'two' group = data.by_owner.find_group(db.OWNER_NAME, db.GROUP_NAME) assert group.member_count == 3 assert len(list(group.members)) == 3 def test_good_empty(database): group = data.by_owner.find_group(db.OWNER_NAME, db.GROUP_NAME) assert group.member_count == 4 assert len(list(group.members)) == 4 members_to_delete = [m.reddit_name for m in group.members] for m in members_to_delete: group = data.by_owner.remove_user_from_group(db.OWNER_NAME, db.GROUP_NAME, m) assert group.name == db.GROUP_NAME assert group.reddit_name == db.OWNER_NAME assert group.member_count == 0 assert len(list(group.members)) == 0 group = data.by_owner.find_group(db.OWNER_NAME, db.GROUP_NAME) assert group.member_count == 0 assert len(list(group.members)) == 0
[ "pytest.raises", "tagtrain.data.by_owner.remove_user_from_group", "tagtrain.data.by_owner.find_group" ]
[((690, 744), 'tagtrain.data.by_owner.find_group', 'data.by_owner.find_group', (['db.OWNER_NAME', 'db.GROUP_NAME'], {}), '(db.OWNER_NAME, db.GROUP_NAME)\n', (714, 744), False, 'from tagtrain import data\n'), ((835, 908), 'tagtrain.data.by_owner.remove_user_from_group', 'data.by_owner.remove_user_from_group', (['db.OWNER_NAME', 'db.GROUP_NAME', '"""one"""'], {}), "(db.OWNER_NAME, db.GROUP_NAME, 'one')\n", (871, 908), False, 'from tagtrain import data\n'), ((1133, 1187), 'tagtrain.data.by_owner.find_group', 'data.by_owner.find_group', (['db.OWNER_NAME', 'db.GROUP_NAME'], {}), '(db.OWNER_NAME, db.GROUP_NAME)\n', (1157, 1187), False, 'from tagtrain import data\n'), ((1310, 1364), 'tagtrain.data.by_owner.find_group', 'data.by_owner.find_group', (['db.OWNER_NAME', 'db.GROUP_NAME'], {}), '(db.OWNER_NAME, db.GROUP_NAME)\n', (1334, 1364), False, 'from tagtrain import data\n'), ((1800, 1854), 'tagtrain.data.by_owner.find_group', 'data.by_owner.find_group', (['db.OWNER_NAME', 'db.GROUP_NAME'], {}), '(db.OWNER_NAME, db.GROUP_NAME)\n', (1824, 1854), False, 'from tagtrain import data\n'), ((128, 166), 'pytest.raises', 'pytest.raises', (['data.Group.DoesNotExist'], {}), '(data.Group.DoesNotExist)\n', (141, 166), False, 'import pytest\n'), ((184, 272), 'tagtrain.data.by_owner.remove_user_from_group', 'data.by_owner.remove_user_from_group', (['"""non-existent"""', 'db.GROUP_NAME', '"""doesnt-matter"""'], {}), "('non-existent', db.GROUP_NAME,\n 'doesnt-matter')\n", (220, 272), False, 'from tagtrain import data\n'), ((314, 352), 'pytest.raises', 'pytest.raises', (['data.Group.DoesNotExist'], {}), '(data.Group.DoesNotExist)\n', (327, 352), False, 'import pytest\n'), ((370, 458), 'tagtrain.data.by_owner.remove_user_from_group', 'data.by_owner.remove_user_from_group', (['db.OWNER_NAME', '"""non-existent"""', '"""doesnt-matter"""'], {}), "(db.OWNER_NAME, 'non-existent',\n 'doesnt-matter')\n", (406, 458), False, 'from tagtrain import data\n'), ((501, 540), 'pytest.raises', 'pytest.raises', (['data.Member.DoesNotExist'], {}), '(data.Member.DoesNotExist)\n', (514, 540), False, 'import pytest\n'), ((558, 644), 'tagtrain.data.by_owner.remove_user_from_group', 'data.by_owner.remove_user_from_group', (['db.OWNER_NAME', 'db.GROUP_NAME', '"""non-existent"""'], {}), "(db.OWNER_NAME, db.GROUP_NAME,\n 'non-existent')\n", (594, 644), False, 'from tagtrain import data\n'), ((1555, 1624), 'tagtrain.data.by_owner.remove_user_from_group', 'data.by_owner.remove_user_from_group', (['db.OWNER_NAME', 'db.GROUP_NAME', 'm'], {}), '(db.OWNER_NAME, db.GROUP_NAME, m)\n', (1591, 1624), False, 'from tagtrain import data\n')]
''' Action policy methods to sampling actions Algorithm provides a `calc_pdparam` which takes a state and do a forward pass through its net, and the pdparam is used to construct an action probability distribution as appropriate per the action type as indicated by the body Then the prob. dist. is used to sample action. The default form looks like: ``` ActionPD, pdparam, body = init_action_pd(state, algorithm, body) action, action_pd = sample_action_pd(ActionPD, pdparam, body) ``` We can also augment pdparam before sampling - as in the case of Boltzmann sampling, or do epsilon-greedy to use pdparam-sampling or random sampling. ''' from slm_lab.env.wrapper import LazyFrames from slm_lab.lib import logger, math_util, util from torch import distributions import numpy as np import pydash as ps import torch logger = logger.get_logger(__name__) # probability distributions constraints for different action types; the first in the list is the default ACTION_PDS = { 'continuous': ['Normal', 'Beta', 'Gumbel', 'LogNormal'], 'multi_continuous': ['MultivariateNormal'], 'discrete': ['Categorical', 'Argmax'], 'multi_discrete': ['MultiCategorical'], 'multi_binary': ['Bernoulli'], } class Argmax(distributions.Categorical): ''' Special distribution class for argmax sampling, where probability is always 1 for the argmax. NOTE although argmax is not a sampling distribution, this implementation is for API consistency. ''' def __init__(self, probs=None, logits=None, validate_args=None): if probs is not None: new_probs = torch.zeros_like(probs, dtype=torch.float) new_probs[torch.argmax(probs, dim=0)] = 1.0 probs = new_probs elif logits is not None: new_logits = torch.full_like(logits, -1e8, dtype=torch.float) max_idx = torch.argmax(logits, dim=0) new_logits[max_idx] = logits[max_idx] logits = new_logits super(Argmax, self).__init__(probs=probs, logits=logits, validate_args=validate_args) class MultiCategorical(distributions.Categorical): '''MultiCategorical as collection of Categoricals''' def __init__(self, probs=None, logits=None, validate_args=None): self.categoricals = [] if probs is None: probs = [None] * len(logits) elif logits is None: logits = [None] * len(probs) else: raise ValueError('Either probs or logits must be None') for sub_probs, sub_logits in zip(probs, logits): categorical = distributions.Categorical(probs=sub_probs, logits=sub_logits, validate_args=validate_args) self.categoricals.append(categorical) @property def logits(self): return [cat.logits for cat in self.categoricals] @property def probs(self): return [cat.probs for cat in self.categoricals] @property def param_shape(self): return [cat.param_shape for cat in self.categoricals] @property def mean(self): return torch.stack([cat.mean for cat in self.categoricals]) @property def variance(self): return torch.stack([cat.variance for cat in self.categoricals]) def sample(self, sample_shape=torch.Size()): return torch.stack([cat.sample(sample_shape=sample_shape) for cat in self.categoricals]) def log_prob(self, value): return torch.stack([cat.log_prob(value[idx]) for idx, cat in enumerate(self.categoricals)]) def entropy(self): return torch.stack([cat.entropy() for cat in self.categoricals]) def enumerate_support(self): return [cat.enumerate_support() for cat in self.categoricals] setattr(distributions, 'Argmax', Argmax) setattr(distributions, 'MultiCategorical', MultiCategorical) # base methods def try_preprocess(state, algorithm, body, append=True): '''Try calling preprocess as implemented in body's memory to use for net input''' if isinstance(state, LazyFrames): state = state.__array__() # from global env preprocessor if hasattr(body.memory, 'preprocess_state'): state = body.memory.preprocess_state(state, append=append) # as float, and always as minibatch for net input state = torch.from_numpy(state).float().unsqueeze(dim=0) return state def cond_squeeze(out): '''Helper to squeeze output depending if it is tensor (discrete pdparam) or list of tensors (continuous pdparam of loc and scale)''' if isinstance(out, list): return [out_t.squeeze(dim=0) for out_t in out] else: return out.squeeze(dim=0) def init_action_pd(state, algorithm, body, append=True): ''' Build the proper action prob. dist. to use for action sampling. state is passed through algorithm's net via calc_pdparam, which the algorithm must implement using its proper net. This will return body, ActionPD and pdparam to allow augmentation, e.g. applying temperature tau to pdparam for boltzmann. Then, output must be called with sample_action_pd(body, ActionPD, pdparam) to sample action. @returns {cls, tensor, *} ActionPD, pdparam, body ''' pdtypes = ACTION_PDS[body.action_type] assert body.action_pdtype in pdtypes, f'Pdtype {body.action_pdtype} is not compatible/supported with action_type {body.action_type}. Options are: {ACTION_PDS[body.action_type]}' ActionPD = getattr(distributions, body.action_pdtype) state = try_preprocess(state, algorithm, body, append=append) state = state.to(algorithm.net.device) pdparam = algorithm.calc_pdparam(state, evaluate=False) return ActionPD, pdparam, body def sample_action_pd(ActionPD, pdparam, body): ''' This uses the outputs from init_action_pd and an optionally augmented pdparam to construct a action_pd for sampling action @returns {tensor, distribution} action, action_pd A sampled action, and the prob. dist. used for sampling to enable calculations like kl, entropy, etc. later. ''' pdparam = cond_squeeze(pdparam) if body.is_discrete: action_pd = ActionPD(logits=pdparam) else: # continuous outputs a list, loc and scale assert len(pdparam) == 2, pdparam # scale (stdev) must be >0, use softplus if pdparam[1] < 5: pdparam[1] = torch.log(1 + torch.exp(pdparam[1])) + 1e-8 action_pd = ActionPD(*pdparam) action = action_pd.sample() return action, action_pd # interface action sampling methods def default(state, algorithm, body): '''Plain policy by direct sampling using outputs of net as logits and constructing ActionPD as appropriate''' ActionPD, pdparam, body = init_action_pd(state, algorithm, body) action, action_pd = sample_action_pd(ActionPD, pdparam, body) return action, action_pd def random(state, algorithm, body): '''Random action sampling that returns the same data format as default(), but without forward pass. Uses gym.space.sample()''' state = try_preprocess(state, algorithm, body, append=True) # for consistency with init_action_pd inner logic if body.action_type == 'discrete': action_pd = distributions.Categorical(logits=torch.ones(body.action_space.high, device=algorithm.net.device)) elif body.action_type == 'continuous': # Possibly this should this have a 'device' set action_pd = distributions.Uniform( low=torch.tensor(body.action_space.low).float(), high=torch.tensor(body.action_space.high).float()) elif body.action_type == 'multi_discrete': action_pd = distributions.Categorical( logits=torch.ones(body.action_space.high.size, body.action_space.high[0], device=algorithm.net.device)) elif body.action_type == 'multi_continuous': raise NotImplementedError elif body.action_type == 'multi_binary': raise NotImplementedError else: raise NotImplementedError sample = body.action_space.sample() action = torch.tensor(sample, device=algorithm.net.device) return action, action_pd def epsilon_greedy(state, algorithm, body): '''Epsilon-greedy policy: with probability epsilon, do random action, otherwise do default sampling.''' epsilon = body.explore_var if epsilon > np.random.rand(): return random(state, algorithm, body) else: return default(state, algorithm, body) def boltzmann(state, algorithm, body): ''' Boltzmann policy: adjust pdparam with temperature tau; the higher the more randomness/noise in action. ''' tau = body.explore_var ActionPD, pdparam, body = init_action_pd(state, algorithm, body) pdparam /= tau action, action_pd = sample_action_pd(ActionPD, pdparam, body) return action, action_pd # multi-body policy with a single forward pass to calc pdparam def multi_default(states, algorithm, body_list, pdparam): ''' Apply default policy body-wise Note, for efficiency, do a single forward pass to calculate pdparam, then call this policy like: @example pdparam = self.calc_pdparam(state, evaluate=False) action_a, action_pd_a = self.action_policy(pdparam, self, body_list) ''' pdparam = pdparam.squeeze(dim=0) # assert pdparam has been chunked assert len(pdparam.shape) > 1 and len(pdparam) == len(body_list), f'pdparam shape: {pdparam.shape}, bodies: {len(body_list)}' action_list, action_pd_a = [], [] for idx, sub_pdparam in enumerate(pdparam): body = body_list[idx] try_preprocess(states[idx], algorithm, body, append=True) # for consistency with init_action_pd inner logic ActionPD = getattr(distributions, body.action_pdtype) action, action_pd = sample_action_pd(ActionPD, sub_pdparam, body) action_list.append(action) action_pd_a.append(action_pd) action_a = torch.tensor(action_list, device=algorithm.net.device).unsqueeze(dim=1) return action_a, action_pd_a def multi_random(states, algorithm, body_list, pdparam): '''Apply random policy body-wise.''' pdparam = pdparam.squeeze(dim=0) action_list, action_pd_a = [], [] for idx, body in body_list: action, action_pd = random(states[idx], algorithm, body) action_list.append(action) action_pd_a.append(action_pd) action_a = torch.tensor(action_list, device=algorithm.net.device).unsqueeze(dim=1) return action_a, action_pd_a def multi_epsilon_greedy(states, algorithm, body_list, pdparam): '''Apply epsilon-greedy policy body-wise''' assert len(pdparam) > 1 and len(pdparam) == len(body_list), f'pdparam shape: {pdparam.shape}, bodies: {len(body_list)}' action_list, action_pd_a = [], [] for idx, sub_pdparam in enumerate(pdparam): body = body_list[idx] epsilon = body.explore_var if epsilon > np.random.rand(): action, action_pd = random(states[idx], algorithm, body) else: try_preprocess(states[idx], algorithm, body, append=True) # for consistency with init_action_pd inner logic ActionPD = getattr(distributions, body.action_pdtype) action, action_pd = sample_action_pd(ActionPD, sub_pdparam, body) action_list.append(action) action_pd_a.append(action_pd) action_a = torch.tensor(action_list, device=algorithm.net.device).unsqueeze(dim=1) return action_a, action_pd_a def multi_boltzmann(states, algorithm, body_list, pdparam): '''Apply Boltzmann policy body-wise''' assert len(pdparam) > 1 and len(pdparam) == len(body_list), f'pdparam shape: {pdparam.shape}, bodies: {len(body_list)}' action_list, action_pd_a = [], [] for idx, sub_pdparam in enumerate(pdparam): body = body_list[idx] try_preprocess(states[idx], algorithm, body, append=True) # for consistency with init_action_pd inner logic tau = body.explore_var sub_pdparam /= tau ActionPD = getattr(distributions, body.action_pdtype) action, action_pd = sample_action_pd(ActionPD, sub_pdparam, body) action_list.append(action) action_pd_a.append(action_pd) action_a = torch.tensor(action_list, device=algorithm.net.device).unsqueeze(dim=1) return action_a, action_pd_a # action policy update methods class VarScheduler: ''' Variable scheduler for decaying variables such as explore_var (epsilon, tau) and entropy e.g. spec "explore_var_spec": { "name": "linear_decay", "start_val": 1.0, "end_val": 0.1, "start_step": 0, "end_step": 800, }, ''' def __init__(self, var_decay_spec=None): self._updater_name = 'no_decay' if var_decay_spec is None else var_decay_spec['name'] self._updater = getattr(math_util, self._updater_name) util.set_attr(self, dict( start_val=np.nan, )) util.set_attr(self, var_decay_spec, [ 'start_val', 'end_val', 'start_step', 'end_step', ]) if not getattr(self, 'end_val', None): self.end_val = self.start_val def update(self, algorithm, clock): '''Get an updated value for var''' if (util.in_eval_lab_modes()) or self._updater_name == 'no_decay': return self.end_val step = clock.get(clock.max_tick_unit) val = self._updater(self.start_val, self.end_val, self.start_step, self.end_step, step) return val # misc calc methods def guard_multi_pdparams(pdparams, body): '''Guard pdparams for multi action''' action_dim = body.action_dim is_multi_action = ps.is_iterable(action_dim) if is_multi_action: assert ps.is_list(pdparams) pdparams = [t.clone() for t in pdparams] # clone for grad safety assert len(pdparams) == len(action_dim), pdparams # transpose into (batch_size, [action_dims]) pdparams = [list(torch.split(t, action_dim, dim=0)) for t in torch.cat(pdparams, dim=1)] return pdparams def calc_log_probs(algorithm, net, body, batch): ''' Method to calculate log_probs fresh from batch data Body already stores log_prob from self.net. This is used for PPO where log_probs needs to be recalculated. ''' states, actions = batch['states'], batch['actions'] action_dim = body.action_dim is_multi_action = ps.is_iterable(action_dim) # construct log_probs for each state-action pdparams = algorithm.calc_pdparam(states, net=net) pdparams = guard_multi_pdparams(pdparams, body) assert len(pdparams) == len(states), f'batch_size of pdparams: {len(pdparams)} vs states: {len(states)}' pdtypes = ACTION_PDS[body.action_type] ActionPD = getattr(distributions, body.action_pdtype) log_probs = [] for idx, pdparam in enumerate(pdparams): if not is_multi_action: # already cloned for multi_action above pdparam = pdparam.clone() # clone for grad safety _action, action_pd = sample_action_pd(ActionPD, pdparam, body) log_probs.append(action_pd.log_prob(actions[idx].float()).sum(dim=0)) log_probs = torch.stack(log_probs) assert not torch.isnan(log_probs).any(), f'log_probs: {log_probs}, \npdparams: {pdparams} \nactions: {actions}' logger.debug(f'log_probs: {log_probs}') return log_probs def update_online_stats(body, state): ''' Method to calculate the running mean and standard deviation of the state space. See https://www.johndcook.com/blog/standard_deviation/ for more details for n >= 1 M_n = M_n-1 + (state - M_n-1) / n S_n = S_n-1 + (state - M_n-1) * (state - M_n) variance = S_n / (n - 1) std_dev = sqrt(variance) ''' logger.debug(f'mean: {body.state_mean}, std: {body.state_std_dev}, num examples: {body.state_n}') # Assumes only one state is given if ('Atari' in util.get_class_name(body.memory)): assert state.ndim == 3 elif getattr(body.memory, 'raw_state_dim', False): assert state.size == body.memory.raw_state_dim else: assert state.size == body.state_dim or state.shape == body.state_dim mean = body.state_mean body.state_n += 1 if np.isnan(mean).any(): assert np.isnan(body.state_std_dev_int) assert np.isnan(body.state_std_dev) body.state_mean = state body.state_std_dev_int = 0 body.state_std_dev = 0 else: assert body.state_n > 1 body.state_mean = mean + (state - mean) / body.state_n body.state_std_dev_int = body.state_std_dev_int + (state - mean) * (state - body.state_mean) body.state_std_dev = np.sqrt(body.state_std_dev_int / (body.state_n - 1)) # Guard against very small std devs if (body.state_std_dev < 1e-8).any(): body.state_std_dev[np.where(body.state_std_dev < 1e-8)] += 1e-8 logger.debug(f'new mean: {body.state_mean}, new std: {body.state_std_dev}, num examples: {body.state_n}') def normalize_state(body, state): ''' Normalizes one or more states using a running mean and standard deviation Details of the normalization from Deep RL Bootcamp, L6 https://www.youtube.com/watch?v=8EcdaCk9KaQ&feature=youtu.be ''' same_shape = False if type(state) == list else state.shape == body.state_mean.shape has_preprocess = getattr(body.memory, 'preprocess_state', False) if ('Atari' in util.get_class_name(body.memory)): # never normalize atari, it has its own normalization step logger.debug('skipping normalizing for Atari, already handled by preprocess') return state elif ('Replay' in util.get_class_name(body.memory)) and has_preprocess: # normalization handled by preprocess_state function in the memory logger.debug('skipping normalizing, already handled by preprocess') return state elif same_shape: # if not atari, always normalize the state the first time we see it during act # if the shape is not transformed in some way if np.sum(body.state_std_dev) == 0: return np.clip(state - body.state_mean, -10, 10) else: return np.clip((state - body.state_mean) / body.state_std_dev, -10, 10) else: # broadcastable sample from an un-normalized memory so we should normalize logger.debug('normalizing sample from memory') if np.sum(body.state_std_dev) == 0: return np.clip(state - body.state_mean, -10, 10) else: return np.clip((state - body.state_mean) / body.state_std_dev, -10, 10) # TODO Not currently used, this will crash for more exotic memory structures # def unnormalize_state(body, state): # ''' # Un-normalizes one or more states using a running mean and new_std_dev # ''' # return state * body.state_mean + body.state_std_dev def update_online_stats_and_normalize_state(body, state): ''' Convenience combination function for updating running state mean and std_dev and normalizing the state in one go. ''' logger.debug(f'state: {state}') update_online_stats(body, state) state = normalize_state(body, state) logger.debug(f'normalized state: {state}') return state def normalize_states_and_next_states(body, batch, episodic_flag=None): ''' Convenience function for normalizing the states and next states in a batch of data ''' logger.debug(f'states: {batch["states"]}') logger.debug(f'next states: {batch["next_states"]}') episodic = episodic_flag if episodic_flag is not None else body.memory.is_episodic logger.debug(f'Episodic: {episodic}, episodic_flag: {episodic_flag}, body.memory: {body.memory.is_episodic}') if episodic: normalized = [] for epi in batch['states']: normalized.append(normalize_state(body, epi)) batch['states'] = normalized normalized = [] for epi in batch['next_states']: normalized.append(normalize_state(body, epi)) batch['next_states'] = normalized else: batch['states'] = normalize_state(body, batch['states']) batch['next_states'] = normalize_state(body, batch['next_states']) logger.debug(f'normalized states: {batch["states"]}') logger.debug(f'normalized next states: {batch["next_states"]}') return batch
[ "slm_lab.lib.util.get_class_name", "torch.distributions.Categorical", "slm_lab.lib.logger.debug", "numpy.sum", "torch.argmax", "torch.cat", "numpy.isnan", "numpy.clip", "slm_lab.lib.util.set_attr", "torch.isnan", "torch.ones", "pydash.is_list", "slm_lab.lib.logger.get_logger", "torch.exp", "torch.zeros_like", "torch.split", "torch.Size", "torch.from_numpy", "torch.full_like", "torch.stack", "slm_lab.lib.util.in_eval_lab_modes", "pydash.is_iterable", "numpy.where", "numpy.random.rand", "torch.tensor", "numpy.sqrt" ]
[((824, 851), 'slm_lab.lib.logger.get_logger', 'logger.get_logger', (['__name__'], {}), '(__name__)\n', (841, 851), False, 'from slm_lab.lib import logger, math_util, util\n'), ((7960, 8009), 'torch.tensor', 'torch.tensor', (['sample'], {'device': 'algorithm.net.device'}), '(sample, device=algorithm.net.device)\n', (7972, 8009), False, 'import torch\n'), ((13584, 13610), 'pydash.is_iterable', 'ps.is_iterable', (['action_dim'], {}), '(action_dim)\n', (13598, 13610), True, 'import pydash as ps\n'), ((14318, 14344), 'pydash.is_iterable', 'ps.is_iterable', (['action_dim'], {}), '(action_dim)\n', (14332, 14344), True, 'import pydash as ps\n'), ((15078, 15100), 'torch.stack', 'torch.stack', (['log_probs'], {}), '(log_probs)\n', (15089, 15100), False, 'import torch\n'), ((15221, 15260), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""log_probs: {log_probs}"""'], {}), "(f'log_probs: {log_probs}')\n", (15233, 15260), False, 'from slm_lab.lib import logger, math_util, util\n'), ((15679, 15786), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""mean: {body.state_mean}, std: {body.state_std_dev}, num examples: {body.state_n}"""'], {}), "(\n f'mean: {body.state_mean}, std: {body.state_std_dev}, num examples: {body.state_n}'\n )\n", (15691, 15786), False, 'from slm_lab.lib import logger, math_util, util\n'), ((16823, 16938), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""new mean: {body.state_mean}, new std: {body.state_std_dev}, num examples: {body.state_n}"""'], {}), "(\n f'new mean: {body.state_mean}, new std: {body.state_std_dev}, num examples: {body.state_n}'\n )\n", (16835, 16938), False, 'from slm_lab.lib import logger, math_util, util\n'), ((19001, 19032), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""state: {state}"""'], {}), "(f'state: {state}')\n", (19013, 19032), False, 'from slm_lab.lib import logger, math_util, util\n'), ((19115, 19157), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""normalized state: {state}"""'], {}), "(f'normalized state: {state}')\n", (19127, 19157), False, 'from slm_lab.lib import logger, math_util, util\n'), ((19355, 19397), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""states: {batch[\'states\']}"""'], {}), '(f"states: {batch[\'states\']}")\n', (19367, 19397), False, 'from slm_lab.lib import logger, math_util, util\n'), ((19402, 19454), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""next states: {batch[\'next_states\']}"""'], {}), '(f"next states: {batch[\'next_states\']}")\n', (19414, 19454), False, 'from slm_lab.lib import logger, math_util, util\n'), ((19546, 19665), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""Episodic: {episodic}, episodic_flag: {episodic_flag}, body.memory: {body.memory.is_episodic}"""'], {}), "(\n f'Episodic: {episodic}, episodic_flag: {episodic_flag}, body.memory: {body.memory.is_episodic}'\n )\n", (19558, 19665), False, 'from slm_lab.lib import logger, math_util, util\n'), ((20147, 20200), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""normalized states: {batch[\'states\']}"""'], {}), '(f"normalized states: {batch[\'states\']}")\n', (20159, 20200), False, 'from slm_lab.lib import logger, math_util, util\n'), ((20205, 20268), 'slm_lab.lib.logger.debug', 'logger.debug', (['f"""normalized next states: {batch[\'next_states\']}"""'], {}), '(f"normalized next states: {batch[\'next_states\']}")\n', (20217, 20268), False, 'from slm_lab.lib import logger, math_util, util\n'), ((3047, 3099), 'torch.stack', 'torch.stack', (['[cat.mean for cat in self.categoricals]'], {}), '([cat.mean for cat in self.categoricals])\n', (3058, 3099), False, 'import torch\n'), ((3154, 3210), 'torch.stack', 'torch.stack', (['[cat.variance for cat in self.categoricals]'], {}), '([cat.variance for cat in self.categoricals])\n', (3165, 3210), False, 'import torch\n'), ((3246, 3258), 'torch.Size', 'torch.Size', ([], {}), '()\n', (3256, 3258), False, 'import torch\n'), ((8241, 8257), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (8255, 8257), True, 'import numpy as np\n'), ((12834, 12925), 'slm_lab.lib.util.set_attr', 'util.set_attr', (['self', 'var_decay_spec', "['start_val', 'end_val', 'start_step', 'end_step']"], {}), "(self, var_decay_spec, ['start_val', 'end_val', 'start_step',\n 'end_step'])\n", (12847, 12925), False, 'from slm_lab.lib import logger, math_util, util\n'), ((13650, 13670), 'pydash.is_list', 'ps.is_list', (['pdparams'], {}), '(pdparams)\n', (13660, 13670), True, 'import pydash as ps\n'), ((15834, 15866), 'slm_lab.lib.util.get_class_name', 'util.get_class_name', (['body.memory'], {}), '(body.memory)\n', (15853, 15866), False, 'from slm_lab.lib import logger, math_util, util\n'), ((16190, 16222), 'numpy.isnan', 'np.isnan', (['body.state_std_dev_int'], {}), '(body.state_std_dev_int)\n', (16198, 16222), True, 'import numpy as np\n'), ((16238, 16266), 'numpy.isnan', 'np.isnan', (['body.state_std_dev'], {}), '(body.state_std_dev)\n', (16246, 16266), True, 'import numpy as np\n'), ((16600, 16652), 'numpy.sqrt', 'np.sqrt', (['(body.state_std_dev_int / (body.state_n - 1))'], {}), '(body.state_std_dev_int / (body.state_n - 1))\n', (16607, 16652), True, 'import numpy as np\n'), ((17359, 17391), 'slm_lab.lib.util.get_class_name', 'util.get_class_name', (['body.memory'], {}), '(body.memory)\n', (17378, 17391), False, 'from slm_lab.lib import logger, math_util, util\n'), ((17469, 17546), 'slm_lab.lib.logger.debug', 'logger.debug', (['"""skipping normalizing for Atari, already handled by preprocess"""'], {}), "('skipping normalizing for Atari, already handled by preprocess')\n", (17481, 17546), False, 'from slm_lab.lib import logger, math_util, util\n'), ((1589, 1631), 'torch.zeros_like', 'torch.zeros_like', (['probs'], {'dtype': 'torch.float'}), '(probs, dtype=torch.float)\n', (1605, 1631), False, 'import torch\n'), ((2566, 2661), 'torch.distributions.Categorical', 'distributions.Categorical', ([], {'probs': 'sub_probs', 'logits': 'sub_logits', 'validate_args': 'validate_args'}), '(probs=sub_probs, logits=sub_logits, validate_args\n =validate_args)\n', (2591, 2661), False, 'from torch import distributions\n'), ((9816, 9870), 'torch.tensor', 'torch.tensor', (['action_list'], {'device': 'algorithm.net.device'}), '(action_list, device=algorithm.net.device)\n', (9828, 9870), False, 'import torch\n'), ((10281, 10335), 'torch.tensor', 'torch.tensor', (['action_list'], {'device': 'algorithm.net.device'}), '(action_list, device=algorithm.net.device)\n', (10293, 10335), False, 'import torch\n'), ((10797, 10813), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (10811, 10813), True, 'import numpy as np\n'), ((11251, 11305), 'torch.tensor', 'torch.tensor', (['action_list'], {'device': 'algorithm.net.device'}), '(action_list, device=algorithm.net.device)\n', (11263, 11305), False, 'import torch\n'), ((12100, 12154), 'torch.tensor', 'torch.tensor', (['action_list'], {'device': 'algorithm.net.device'}), '(action_list, device=algorithm.net.device)\n', (12112, 12154), False, 'import torch\n'), ((13166, 13190), 'slm_lab.lib.util.in_eval_lab_modes', 'util.in_eval_lab_modes', ([], {}), '()\n', (13188, 13190), False, 'from slm_lab.lib import logger, math_util, util\n'), ((16153, 16167), 'numpy.isnan', 'np.isnan', (['mean'], {}), '(mean)\n', (16161, 16167), True, 'import numpy as np\n'), ((17727, 17794), 'slm_lab.lib.logger.debug', 'logger.debug', (['"""skipping normalizing, already handled by preprocess"""'], {}), "('skipping normalizing, already handled by preprocess')\n", (17739, 17794), False, 'from slm_lab.lib import logger, math_util, util\n'), ((1654, 1680), 'torch.argmax', 'torch.argmax', (['probs'], {'dim': '(0)'}), '(probs, dim=0)\n', (1666, 1680), False, 'import torch\n'), ((1776, 1832), 'torch.full_like', 'torch.full_like', (['logits', '(-100000000.0)'], {'dtype': 'torch.float'}), '(logits, -100000000.0, dtype=torch.float)\n', (1791, 1832), False, 'import torch\n'), ((1847, 1874), 'torch.argmax', 'torch.argmax', (['logits'], {'dim': '(0)'}), '(logits, dim=0)\n', (1859, 1874), False, 'import torch\n'), ((7160, 7223), 'torch.ones', 'torch.ones', (['body.action_space.high'], {'device': 'algorithm.net.device'}), '(body.action_space.high, device=algorithm.net.device)\n', (7170, 7223), False, 'import torch\n'), ((13881, 13914), 'torch.split', 'torch.split', (['t', 'action_dim'], {'dim': '(0)'}), '(t, action_dim, dim=0)\n', (13892, 13914), False, 'import torch\n'), ((13925, 13951), 'torch.cat', 'torch.cat', (['pdparams'], {'dim': '(1)'}), '(pdparams, dim=1)\n', (13934, 13951), False, 'import torch\n'), ((15116, 15138), 'torch.isnan', 'torch.isnan', (['log_probs'], {}), '(log_probs)\n', (15127, 15138), False, 'import torch\n'), ((16774, 16810), 'numpy.where', 'np.where', (['(body.state_std_dev < 1e-08)'], {}), '(body.state_std_dev < 1e-08)\n', (16782, 16810), True, 'import numpy as np\n'), ((17590, 17622), 'slm_lab.lib.util.get_class_name', 'util.get_class_name', (['body.memory'], {}), '(body.memory)\n', (17609, 17622), False, 'from slm_lab.lib import logger, math_util, util\n'), ((18282, 18328), 'slm_lab.lib.logger.debug', 'logger.debug', (['"""normalizing sample from memory"""'], {}), "('normalizing sample from memory')\n", (18294, 18328), False, 'from slm_lab.lib import logger, math_util, util\n'), ((4242, 4265), 'torch.from_numpy', 'torch.from_numpy', (['state'], {}), '(state)\n', (4258, 4265), False, 'import torch\n'), ((17989, 18015), 'numpy.sum', 'np.sum', (['body.state_std_dev'], {}), '(body.state_std_dev)\n', (17995, 18015), True, 'import numpy as np\n'), ((18041, 18082), 'numpy.clip', 'np.clip', (['(state - body.state_mean)', '(-10)', '(10)'], {}), '(state - body.state_mean, -10, 10)\n', (18048, 18082), True, 'import numpy as np\n'), ((18116, 18180), 'numpy.clip', 'np.clip', (['((state - body.state_mean) / body.state_std_dev)', '(-10)', '(10)'], {}), '((state - body.state_mean) / body.state_std_dev, -10, 10)\n', (18123, 18180), True, 'import numpy as np\n'), ((18340, 18366), 'numpy.sum', 'np.sum', (['body.state_std_dev'], {}), '(body.state_std_dev)\n', (18346, 18366), True, 'import numpy as np\n'), ((18392, 18433), 'numpy.clip', 'np.clip', (['(state - body.state_mean)', '(-10)', '(10)'], {}), '(state - body.state_mean, -10, 10)\n', (18399, 18433), True, 'import numpy as np\n'), ((18467, 18531), 'numpy.clip', 'np.clip', (['((state - body.state_mean) / body.state_std_dev)', '(-10)', '(10)'], {}), '((state - body.state_mean) / body.state_std_dev, -10, 10)\n', (18474, 18531), True, 'import numpy as np\n'), ((6299, 6320), 'torch.exp', 'torch.exp', (['pdparam[1]'], {}), '(pdparam[1])\n', (6308, 6320), False, 'import torch\n'), ((7604, 7704), 'torch.ones', 'torch.ones', (['body.action_space.high.size', 'body.action_space.high[0]'], {'device': 'algorithm.net.device'}), '(body.action_space.high.size, body.action_space.high[0], device=\n algorithm.net.device)\n', (7614, 7704), False, 'import torch\n'), ((7383, 7418), 'torch.tensor', 'torch.tensor', (['body.action_space.low'], {}), '(body.action_space.low)\n', (7395, 7418), False, 'import torch\n'), ((7445, 7481), 'torch.tensor', 'torch.tensor', (['body.action_space.high'], {}), '(body.action_space.high)\n', (7457, 7481), False, 'import torch\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.10.7 on 2017-05-29 08:39 from __future__ import unicode_literals from __future__ import absolute_import from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('warehouse', '0002_domainstagingtable_groupstagingtable'), ] operations = [ migrations.CreateModel( name='UserStagingTable', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('user_id', models.CharField(max_length=255)), ('username', models.CharField(max_length=150)), ('first_name', models.CharField(max_length=30, null=True)), ('last_name', models.CharField(max_length=30, null=True)), ('email', models.CharField(max_length=255, null=True)), ('doc_type', models.CharField(max_length=100)), ('base_doc', models.CharField(max_length=100)), ('is_active', models.BooleanField()), ('is_staff', models.BooleanField()), ('is_superuser', models.BooleanField()), ('last_login', models.DateTimeField(null=True)), ('date_joined', models.DateTimeField()), ('user_last_modified', models.DateTimeField(null=True)), ], options={ 'abstract': False, }, ), ]
[ "django.db.models.CharField", "django.db.models.DateTimeField", "django.db.models.BooleanField", "django.db.models.AutoField" ]
[((464, 557), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (480, 557), False, 'from django.db import migrations, models\n'), ((584, 616), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (600, 616), False, 'from django.db import migrations, models\n'), ((648, 680), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(150)'}), '(max_length=150)\n', (664, 680), False, 'from django.db import migrations, models\n'), ((714, 756), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(30)', 'null': '(True)'}), '(max_length=30, null=True)\n', (730, 756), False, 'from django.db import migrations, models\n'), ((789, 831), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(30)', 'null': '(True)'}), '(max_length=30, null=True)\n', (805, 831), False, 'from django.db import migrations, models\n'), ((860, 903), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'null': '(True)'}), '(max_length=255, null=True)\n', (876, 903), False, 'from django.db import migrations, models\n'), ((935, 967), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (951, 967), False, 'from django.db import migrations, models\n'), ((999, 1031), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (1015, 1031), False, 'from django.db import migrations, models\n'), ((1064, 1085), 'django.db.models.BooleanField', 'models.BooleanField', ([], {}), '()\n', (1083, 1085), False, 'from django.db import migrations, models\n'), ((1117, 1138), 'django.db.models.BooleanField', 'models.BooleanField', ([], {}), '()\n', (1136, 1138), False, 'from django.db import migrations, models\n'), ((1174, 1195), 'django.db.models.BooleanField', 'models.BooleanField', ([], {}), '()\n', (1193, 1195), False, 'from django.db import migrations, models\n'), ((1229, 1260), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'null': '(True)'}), '(null=True)\n', (1249, 1260), False, 'from django.db import migrations, models\n'), ((1295, 1317), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {}), '()\n', (1315, 1317), False, 'from django.db import migrations, models\n'), ((1359, 1390), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'null': '(True)'}), '(null=True)\n', (1379, 1390), False, 'from django.db import migrations, models\n')]
"""Setup File.""" from pathlib import Path from setuptools import setup from setuptools.command.install import install # ✓ PACKAGE_NAME = 'common_app' # ✓ PACKAGE_NAME = 'cn_smtp_sink_server' # ✓ PACKAGE_NAME = 'common_bootstrap' # ✓ PACKAGE_NAME = 'common_dash' # ✓ PACKAGE_NAME = 'common_img' # ✓ PACKAGE_NAME = 'common_inst' # ✓ PACKAGE_NAME = 'common_notifier' # ✓ PACKAGE_NAME = 'common_prstub' # ✓ PACKAGE_NAME = 'common_tracker' PACKAGE_NAME = None """Modify the package name here which is to be seen on PyPi.""" VERSION = '0.0.0a1' AUTHOR = '<NAME>' AUTHOR_EMAIL = '<EMAIL>' package_init = Path(PACKAGE_NAME).resolve() / '__init__.py' package_init.parent.mkdir(exist_ok=True) package_init.write_text('"""Do nothing."""\n') # -------------------------------------------------------------------------------------- class WrongPackageInstalledError(RuntimeError): """More specific error.""" pass class RaiseErrorPreInstall(install): """Customized setuptools install command - prints a friendly greeting.""" def run(self): raise WrongPackageInstalledError(f""" \n\n '{PACKAGE_NAME}' was downloaded from the public pypi.org repository, but is only available on an internal repository Please update your installer's configuration and download from the proper index-url \n\n """) if __name__ == '__main__': setup( name=PACKAGE_NAME, version=VERSION, packages=[PACKAGE_NAME], description = 'Reserved package name', long_description = Path('README.md').read_text(), long_description_content_type='text/markdown', author=AUTHOR, author_email=AUTHOR_EMAIL, url='https://github.com/KyleKing/not-on-pypi', license = 'Unlicense', classifiers=['License :: Public Domain'], cmdclass={ 'install': RaiseErrorPreInstall, }, # repository = 'https://github.com/KyleKing/not-on-pypi', # documentation = 'https://github.com/KyleKing/not-on-pypi', # 'Bug Tracker' = 'https://github.com/KyleKing/not-on-pypi/issues', # include = [ 'LICENSE.md',], # scripts = [], )
[ "pathlib.Path" ]
[((603, 621), 'pathlib.Path', 'Path', (['PACKAGE_NAME'], {}), '(PACKAGE_NAME)\n', (607, 621), False, 'from pathlib import Path\n'), ((1517, 1534), 'pathlib.Path', 'Path', (['"""README.md"""'], {}), "('README.md')\n", (1521, 1534), False, 'from pathlib import Path\n')]
from django.urls import path, re_path from . import views urlpatterns = [ re_path(r'^$', views.index, name='homepage'), re_path(r'^ajax/subscription/$', views.subscription, name='subscription'), re_path(r'^search/', views.search_results, name='search_results'), re_path(r'^accomodation/(\d+)', views.accomodation, name='accomodation'), re_path(r'^new/accomodation$', views.new_accom, name='new_accomodation'), re_path(r'^profile/(\d+)$', views.profile, name='profile'), re_path(r'^edit/profile', views.edit_profile, name='edit_profile'), re_path(r'^api/accomodations$', views.AccomodationList.as_view()), re_path(r'api/accomodation/accom-id/(\d+)$', views.AccomodationDetails.as_view()), re_path(r'^api/profiles$', views.ProfileList.as_view()), re_path(r'^api/profile/profile-id/(\d+)$', views.ProfileDetails.as_view()), ]
[ "django.urls.re_path" ]
[((79, 122), 'django.urls.re_path', 're_path', (['"""^$"""', 'views.index'], {'name': '"""homepage"""'}), "('^$', views.index, name='homepage')\n", (86, 122), False, 'from django.urls import path, re_path\n'), ((129, 201), 'django.urls.re_path', 're_path', (['"""^ajax/subscription/$"""', 'views.subscription'], {'name': '"""subscription"""'}), "('^ajax/subscription/$', views.subscription, name='subscription')\n", (136, 201), False, 'from django.urls import path, re_path\n'), ((208, 272), 'django.urls.re_path', 're_path', (['"""^search/"""', 'views.search_results'], {'name': '"""search_results"""'}), "('^search/', views.search_results, name='search_results')\n", (215, 272), False, 'from django.urls import path, re_path\n'), ((279, 351), 'django.urls.re_path', 're_path', (['"""^accomodation/(\\\\d+)"""', 'views.accomodation'], {'name': '"""accomodation"""'}), "('^accomodation/(\\\\d+)', views.accomodation, name='accomodation')\n", (286, 351), False, 'from django.urls import path, re_path\n'), ((357, 428), 'django.urls.re_path', 're_path', (['"""^new/accomodation$"""', 'views.new_accom'], {'name': '"""new_accomodation"""'}), "('^new/accomodation$', views.new_accom, name='new_accomodation')\n", (364, 428), False, 'from django.urls import path, re_path\n'), ((435, 493), 'django.urls.re_path', 're_path', (['"""^profile/(\\\\d+)$"""', 'views.profile'], {'name': '"""profile"""'}), "('^profile/(\\\\d+)$', views.profile, name='profile')\n", (442, 493), False, 'from django.urls import path, re_path\n'), ((499, 564), 'django.urls.re_path', 're_path', (['"""^edit/profile"""', 'views.edit_profile'], {'name': '"""edit_profile"""'}), "('^edit/profile', views.edit_profile, name='edit_profile')\n", (506, 564), False, 'from django.urls import path, re_path\n')]
import praw import elasticsearch import string import random from nltk import word_tokenize, pos_tag class GradiusNlp: def __init__(self): self.elastic = elasticsearch.Elasticsearch() def get_reddit_data(self, subreddit, post_count): r = praw.Reddit(user_agent="https://github.com/gradiuscypher/internetmademe") sub = r.get_subreddit(subreddit) top = sub.get_top_from_day(limit=post_count) #process post_count top posts for post in top: comments = post.comments #process top comment for c in comments: if type(c) is praw.objects.Comment: tokens = word_tokenize(c.body) tagged_tokens = pos_tag(tokens) for tag in tagged_tokens: print(tag) if not tag[1] in string.punctuation: es_index = tag[1].lower() q_txt = 'word: ' + '"' + tag[0].lower() + '"' if self.elastic.indices.exists(es_index): if not (self.elastic.search(index=es_index, q=q_txt)['hits']['total'] > 0): self.elastic.index(index=es_index, doc_type='word', body={'word': tag[0].lower()}) else: self.elastic.index(index=es_index, doc_type='word', body={'word': tag[0].lower()}) #process comment replies one tree down for r in c.replies: if type(r) is praw.objects.Comment: tokens = word_tokenize(r.body) tagged_tokens = pos_tag(tokens) for tag in tagged_tokens: print(tag) if not tag[1] in string.punctuation: es_index = tag[1].lower() q_txt = 'word: ' + '"' + tag[0].lower() + '"' if self.elastic.indices.exists(es_index): if not (self.elastic.search(index=es_index, q=q_txt)['hits']['total'] > 0): self.elastic.index(index=es_index, doc_type='word', body={'word': tag[0].lower()}) else: self.elastic.index(index=es_index, doc_type='word', body={'word': tag[0].lower()}) def reform_sentence(self, sentence, force_replace_count=1): sentence_tokens = word_tokenize(sentence) replace_count = random.randint(force_replace_count, len(sentence_tokens)) print(replace_count) #Ensure at least force_replace_count words are being replaced for x in range(0, replace_count): tagged_tokens = pos_tag(sentence_tokens) choice = random.choice(tagged_tokens) while choice[0] in string.punctuation: choice = random.choice(tagged_tokens) new_word = self.replace_pos(choice) sentence_tokens[sentence_tokens.index(choice[0])] = new_word return ' '.join(sentence_tokens) def replace_pos(self, pos_tuple): es_index = pos_tuple[1].lower() results = self.elastic.search(index=es_index, body={"query": { "function_score": { "query": {"wildcard": {"word": "*"}}, "random_score": {} }}}) return random.choice(results['hits']['hits'])['_source']['word']
[ "elasticsearch.Elasticsearch", "random.choice", "nltk.pos_tag", "praw.Reddit", "nltk.word_tokenize" ]
[((169, 198), 'elasticsearch.Elasticsearch', 'elasticsearch.Elasticsearch', ([], {}), '()\n', (196, 198), False, 'import elasticsearch\n'), ((266, 339), 'praw.Reddit', 'praw.Reddit', ([], {'user_agent': '"""https://github.com/gradiuscypher/internetmademe"""'}), "(user_agent='https://github.com/gradiuscypher/internetmademe')\n", (277, 339), False, 'import praw\n'), ((2640, 2663), 'nltk.word_tokenize', 'word_tokenize', (['sentence'], {}), '(sentence)\n', (2653, 2663), False, 'from nltk import word_tokenize, pos_tag\n'), ((2917, 2941), 'nltk.pos_tag', 'pos_tag', (['sentence_tokens'], {}), '(sentence_tokens)\n', (2924, 2941), False, 'from nltk import word_tokenize, pos_tag\n'), ((2963, 2991), 'random.choice', 'random.choice', (['tagged_tokens'], {}), '(tagged_tokens)\n', (2976, 2991), False, 'import random\n'), ((3069, 3097), 'random.choice', 'random.choice', (['tagged_tokens'], {}), '(tagged_tokens)\n', (3082, 3097), False, 'import random\n'), ((3566, 3604), 'random.choice', 'random.choice', (["results['hits']['hits']"], {}), "(results['hits']['hits'])\n", (3579, 3604), False, 'import random\n'), ((681, 702), 'nltk.word_tokenize', 'word_tokenize', (['c.body'], {}), '(c.body)\n', (694, 702), False, 'from nltk import word_tokenize, pos_tag\n'), ((739, 754), 'nltk.pos_tag', 'pos_tag', (['tokens'], {}), '(tokens)\n', (746, 754), False, 'from nltk import word_tokenize, pos_tag\n'), ((1669, 1690), 'nltk.word_tokenize', 'word_tokenize', (['r.body'], {}), '(r.body)\n', (1682, 1690), False, 'from nltk import word_tokenize, pos_tag\n'), ((1735, 1750), 'nltk.pos_tag', 'pos_tag', (['tokens'], {}), '(tokens)\n', (1742, 1750), False, 'from nltk import word_tokenize, pos_tag\n')]
"""Example case for particle travel times in a straight channel.""" import numpy as np import matplotlib.pyplot as plt import dorado.particle_track as pt # fix the random seed so it stays the same as weights change np.random.seed(1) # create synthetic domain and flow field domain = np.zeros((100, 50)) depth = np.zeros_like(domain) stage = np.zeros_like(domain) u = np.zeros_like(domain) v = np.zeros_like(domain) dx = 50. Np_tracer = 500 seed_xloc = [10] seed_yloc = [25] # set up straight channel depth[:, 10:40] = 1.0 stage[:, 10:40] = 1.0 v[:, 10:40] = -10.0 # choose number of iterations for particle to route num_iter = 100 # define your 'known' or 'expected' travel time for this simple geometry # picking expected time from location x=10 to x=70 # (really the boundary of row 70, so 1/2 a cell) # 59.5 cells * 50 m/cell / 10 m/s = 297.5 seconds target_row = 70 expected_time = 297.5 # assign particle parameters params = pt.modelParams() params.depth = depth params.stage = stage params.u = u params.v = v params.dx = dx # set-up figure plt.figure() plt.imshow(np.sqrt(u**2 + v**2)) plt.colorbar() plt.scatter(seed_yloc, seed_xloc, c='k', marker='o', s=5) # plot the target line where time is measured plt.plot(np.linspace(0, 50, 100), np.ones(100)*target_row, c='red') plt.title('Velocity Field') plt.legend(labels=['Target Row to Measure Times', 'Particle Seeding Location'], loc='best') plt.tight_layout() plt.show() # do the routing twice, once without any diffusivity added to the travel times # (diff_coeff==0) then a second time with significant diffusion (diff_coeff==1) for dc in list(range(0, 2)): # set diff_coeff if dc == 0: params.diff_coeff = 0.0 else: params.diff_coeff = 1.0 # make particle particle = pt.Particles(params) # walk it particle.generate_particles(Np_tracer, seed_xloc, seed_yloc) for i in list(range(0, num_iter)): walk_data = particle.run_iteration() # get travel times associated with particles when they are at coord x=70 # use the exposure_time function to measure this roi = np.zeros_like(depth, dtype='int') roi[0:target_row, :] = 1 target_times = pt.exposure_time(walk_data, roi) # plot histogram plt.subplot(1, 2, dc+1) n, bins, _ = plt.hist(target_times, bins=100, range=(200, 400), histtype='bar', density=True, color=[0.5, 0.5, 1, 0.5]) # plot expected travel time to row 70 plt.scatter(expected_time, np.max(n), s=75, c='green', marker='x', linewidths=20) plt.legend(['Expected Travel Time', 'Histogram of Final Travel Times'], ncol=2, loc='upper left', bbox_to_anchor=(0.0, -0.06), fontsize=16) plt.title('Travel Time Distribution at Target Row \n' 'Diffusion Coefficient : ' + str(params.diff_coeff), fontsize=20) plt.xlabel('Travel Time at Target Row [s]', fontsize=16) plt.ylabel('Probability Density', fontsize=16) plt.show()
[ "matplotlib.pyplot.title", "numpy.random.seed", "dorado.particle_track.Particles", "numpy.ones", "matplotlib.pyplot.figure", "matplotlib.pyplot.tight_layout", "numpy.zeros_like", "matplotlib.pyplot.colorbar", "numpy.max", "numpy.linspace", "matplotlib.pyplot.show", "matplotlib.pyplot.legend", "dorado.particle_track.exposure_time", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.subplot", "matplotlib.pyplot.hist", "matplotlib.pyplot.scatter", "numpy.zeros", "matplotlib.pyplot.xlabel", "dorado.particle_track.modelParams", "numpy.sqrt" ]
[((216, 233), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (230, 233), True, 'import numpy as np\n'), ((285, 304), 'numpy.zeros', 'np.zeros', (['(100, 50)'], {}), '((100, 50))\n', (293, 304), True, 'import numpy as np\n'), ((313, 334), 'numpy.zeros_like', 'np.zeros_like', (['domain'], {}), '(domain)\n', (326, 334), True, 'import numpy as np\n'), ((343, 364), 'numpy.zeros_like', 'np.zeros_like', (['domain'], {}), '(domain)\n', (356, 364), True, 'import numpy as np\n'), ((369, 390), 'numpy.zeros_like', 'np.zeros_like', (['domain'], {}), '(domain)\n', (382, 390), True, 'import numpy as np\n'), ((395, 416), 'numpy.zeros_like', 'np.zeros_like', (['domain'], {}), '(domain)\n', (408, 416), True, 'import numpy as np\n'), ((936, 952), 'dorado.particle_track.modelParams', 'pt.modelParams', ([], {}), '()\n', (950, 952), True, 'import dorado.particle_track as pt\n'), ((1053, 1065), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1063, 1065), True, 'import matplotlib.pyplot as plt\n'), ((1099, 1113), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (1111, 1113), True, 'import matplotlib.pyplot as plt\n'), ((1114, 1171), 'matplotlib.pyplot.scatter', 'plt.scatter', (['seed_yloc', 'seed_xloc'], {'c': '"""k"""', 'marker': '"""o"""', 's': '(5)'}), "(seed_yloc, seed_xloc, c='k', marker='o', s=5)\n", (1125, 1171), True, 'import matplotlib.pyplot as plt\n'), ((1286, 1313), 'matplotlib.pyplot.title', 'plt.title', (['"""Velocity Field"""'], {}), "('Velocity Field')\n", (1295, 1313), True, 'import matplotlib.pyplot as plt\n'), ((1314, 1409), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'labels': "['Target Row to Measure Times', 'Particle Seeding Location']", 'loc': '"""best"""'}), "(labels=['Target Row to Measure Times',\n 'Particle Seeding Location'], loc='best')\n", (1324, 1409), True, 'import matplotlib.pyplot as plt\n'), ((1436, 1454), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1452, 1454), True, 'import matplotlib.pyplot as plt\n'), ((1455, 1465), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1463, 1465), True, 'import matplotlib.pyplot as plt\n'), ((3042, 3052), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3050, 3052), True, 'import matplotlib.pyplot as plt\n'), ((1077, 1101), 'numpy.sqrt', 'np.sqrt', (['(u ** 2 + v ** 2)'], {}), '(u ** 2 + v ** 2)\n', (1084, 1101), True, 'import numpy as np\n'), ((1227, 1250), 'numpy.linspace', 'np.linspace', (['(0)', '(50)', '(100)'], {}), '(0, 50, 100)\n', (1238, 1250), True, 'import numpy as np\n'), ((1802, 1822), 'dorado.particle_track.Particles', 'pt.Particles', (['params'], {}), '(params)\n', (1814, 1822), True, 'import dorado.particle_track as pt\n'), ((2128, 2161), 'numpy.zeros_like', 'np.zeros_like', (['depth'], {'dtype': '"""int"""'}), "(depth, dtype='int')\n", (2141, 2161), True, 'import numpy as np\n'), ((2210, 2242), 'dorado.particle_track.exposure_time', 'pt.exposure_time', (['walk_data', 'roi'], {}), '(walk_data, roi)\n', (2226, 2242), True, 'import dorado.particle_track as pt\n'), ((2269, 2294), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(dc + 1)'], {}), '(1, 2, dc + 1)\n', (2280, 2294), True, 'import matplotlib.pyplot as plt\n'), ((2310, 2421), 'matplotlib.pyplot.hist', 'plt.hist', (['target_times'], {'bins': '(100)', 'range': '(200, 400)', 'histtype': '"""bar"""', 'density': '(True)', 'color': '[0.5, 0.5, 1, 0.5]'}), "(target_times, bins=100, range=(200, 400), histtype='bar', density=\n True, color=[0.5, 0.5, 1, 0.5])\n", (2318, 2421), True, 'import matplotlib.pyplot as plt\n'), ((2619, 2762), 'matplotlib.pyplot.legend', 'plt.legend', (["['Expected Travel Time', 'Histogram of Final Travel Times']"], {'ncol': '(2)', 'loc': '"""upper left"""', 'bbox_to_anchor': '(0.0, -0.06)', 'fontsize': '(16)'}), "(['Expected Travel Time', 'Histogram of Final Travel Times'],\n ncol=2, loc='upper left', bbox_to_anchor=(0.0, -0.06), fontsize=16)\n", (2629, 2762), True, 'import matplotlib.pyplot as plt\n'), ((2933, 2989), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Travel Time at Target Row [s]"""'], {'fontsize': '(16)'}), "('Travel Time at Target Row [s]', fontsize=16)\n", (2943, 2989), True, 'import matplotlib.pyplot as plt\n'), ((2994, 3040), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Probability Density"""'], {'fontsize': '(16)'}), "('Probability Density', fontsize=16)\n", (3004, 3040), True, 'import matplotlib.pyplot as plt\n'), ((1252, 1264), 'numpy.ones', 'np.ones', (['(100)'], {}), '(100)\n', (1259, 1264), True, 'import numpy as np\n'), ((2543, 2552), 'numpy.max', 'np.max', (['n'], {}), '(n)\n', (2549, 2552), True, 'import numpy as np\n')]
import numpy as np import esutil as eu def randcap(*, rng, nrand, ra, dec, radius, get_radius=False, dorot=False): """ Generate random points in a sherical cap parameters ---------- nrand: The number of random points ra,dec: The center of the cap in degrees. The ra should be within [0,360) and dec from [-90,90] radius: float radius of the cap, same units as ra,dec get_radius: bool, optional if true, return radius of each point in radians dorot: bool If dorot is True, generate the points on the equator and rotate them to be centered at the desired location. This is the default when the dec is within 0.1 degrees of the pole, to avoid calculation issues """ # generate uniformly in r**2 if dec >= 89.9 or dec <= -89.9: dorot = True if dorot: tra, tdec = 90.0, 0.0 rand_ra, rand_dec, rand_r = randcap( rng=rng, nrand=nrand, ra=90.0, dec=0.0, radius=radius, get_radius=True, ) rand_ra, rand_dec = eu.coords.rotate( 0.0, dec-tdec, 0.0, rand_ra, rand_dec, ) rand_ra, rand_dec = eu.coords.rotate( ra-tra, 0.0, 0.0, rand_ra, rand_dec, ) else: rand_r = rng.uniform(size=nrand) rand_r = np.sqrt(rand_r)*radius # put in degrees np.deg2rad(rand_r, rand_r) # generate position angle uniformly 0, 2*PI rand_posangle = rng.uniform(low=0, high=2*np.pi, size=nrand) theta = np.array(dec, dtype='f8', ndmin=1, copy=True) phi = np.array(ra, dtype='f8', ndmin=1, copy=True) theta += 90 np.deg2rad(theta, theta) np.deg2rad(phi, phi) sintheta = np.sin(theta) costheta = np.cos(theta) sinr = np.sin(rand_r) cosr = np.cos(rand_r) cospsi = np.cos(rand_posangle) costheta2 = costheta*cosr + sintheta*sinr*cospsi np.clip(costheta2, -1, 1, costheta2) # gives [0,pi) theta2 = np.arccos(costheta2) sintheta2 = np.sin(theta2) cos_dphi = (cosr - costheta*costheta2)/(sintheta*sintheta2) np.clip(cos_dphi, -1, 1, cos_dphi) dphi = np.arccos(cos_dphi) # note fancy usage of where phi2 = np.where(rand_posangle > np.pi, phi+dphi, phi-dphi) np.rad2deg(phi2, phi2) np.rad2deg(theta2, theta2) rand_ra = phi2 rand_dec = theta2-90.0 eu.coords.atbound(rand_ra, 0.0, 360.0) if get_radius: np.rad2deg(rand_r, rand_r) return rand_ra, rand_dec, rand_r else: return rand_ra, rand_dec def randsphere(rng, num, ra_range=None, dec_range=None): """Generate random points on the sphere, possibly on a subset of it. Routine due to Erin Sheldon. Parameters ---------- num: integer The number of randoms to generate ra_range: list, optional Should be within range [0,360]. Default [0,360] dec_range: list, optional Should be within range [-90,90]. Default [-90,90] Returns ------- ra : array-like ra values for the random points dec : array-like dec values for the random points """ ra_range = _check_range(ra_range, [0.0, 360.0]) dec_range = _check_range(dec_range, [-90.0, 90.0]) ra = rng.uniform( size=num, low=ra_range[0], high=ra_range[1], ) cosdec_min = np.cos(np.radians(90.0+dec_range[0])) cosdec_max = np.cos(np.radians(90.0+dec_range[1])) v = rng.uniform( size=num, low=cosdec_min, high=cosdec_max, ) np.clip(v, -1.0, 1.0, v) # Now this generates on [0,pi) dec = np.arccos(v) # convert to degrees np.degrees(dec, dec) # now in range [-90,90.0) dec -= 90.0 return ra, dec def _check_range(rng, allowed): if rng is None: rng = allowed else: if not hasattr(rng, '__len__'): raise ValueError("range input does not have len() method") if rng[0] < allowed[0] or rng[1] > allowed[1]: raise ValueError("%s should be within %s" % (rng, allowed)) return rng
[ "numpy.radians", "esutil.coords.rotate", "numpy.degrees", "numpy.deg2rad", "numpy.clip", "numpy.rad2deg", "numpy.sin", "numpy.array", "numpy.where", "numpy.cos", "esutil.coords.atbound", "numpy.arccos", "numpy.sqrt" ]
[((3910, 3934), 'numpy.clip', 'np.clip', (['v', '(-1.0)', '(1.0)', 'v'], {}), '(v, -1.0, 1.0, v)\n', (3917, 3934), True, 'import numpy as np\n'), ((3981, 3993), 'numpy.arccos', 'np.arccos', (['v'], {}), '(v)\n', (3990, 3993), True, 'import numpy as np\n'), ((4024, 4044), 'numpy.degrees', 'np.degrees', (['dec', 'dec'], {}), '(dec, dec)\n', (4034, 4044), True, 'import numpy as np\n'), ((1220, 1277), 'esutil.coords.rotate', 'eu.coords.rotate', (['(0.0)', '(dec - tdec)', '(0.0)', 'rand_ra', 'rand_dec'], {}), '(0.0, dec - tdec, 0.0, rand_ra, rand_dec)\n', (1236, 1277), True, 'import esutil as eu\n'), ((1375, 1430), 'esutil.coords.rotate', 'eu.coords.rotate', (['(ra - tra)', '(0.0)', '(0.0)', 'rand_ra', 'rand_dec'], {}), '(ra - tra, 0.0, 0.0, rand_ra, rand_dec)\n', (1391, 1430), True, 'import esutil as eu\n'), ((1626, 1652), 'numpy.deg2rad', 'np.deg2rad', (['rand_r', 'rand_r'], {}), '(rand_r, rand_r)\n', (1636, 1652), True, 'import numpy as np\n'), ((1792, 1837), 'numpy.array', 'np.array', (['dec'], {'dtype': '"""f8"""', 'ndmin': '(1)', 'copy': '(True)'}), "(dec, dtype='f8', ndmin=1, copy=True)\n", (1800, 1837), True, 'import numpy as np\n'), ((1852, 1896), 'numpy.array', 'np.array', (['ra'], {'dtype': '"""f8"""', 'ndmin': '(1)', 'copy': '(True)'}), "(ra, dtype='f8', ndmin=1, copy=True)\n", (1860, 1896), True, 'import numpy as np\n'), ((1926, 1950), 'numpy.deg2rad', 'np.deg2rad', (['theta', 'theta'], {}), '(theta, theta)\n', (1936, 1950), True, 'import numpy as np\n'), ((1959, 1979), 'numpy.deg2rad', 'np.deg2rad', (['phi', 'phi'], {}), '(phi, phi)\n', (1969, 1979), True, 'import numpy as np\n'), ((2000, 2013), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (2006, 2013), True, 'import numpy as np\n'), ((2033, 2046), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (2039, 2046), True, 'import numpy as np\n'), ((2063, 2077), 'numpy.sin', 'np.sin', (['rand_r'], {}), '(rand_r)\n', (2069, 2077), True, 'import numpy as np\n'), ((2093, 2107), 'numpy.cos', 'np.cos', (['rand_r'], {}), '(rand_r)\n', (2099, 2107), True, 'import numpy as np\n'), ((2126, 2147), 'numpy.cos', 'np.cos', (['rand_posangle'], {}), '(rand_posangle)\n', (2132, 2147), True, 'import numpy as np\n'), ((2214, 2250), 'numpy.clip', 'np.clip', (['costheta2', '(-1)', '(1)', 'costheta2'], {}), '(costheta2, -1, 1, costheta2)\n', (2221, 2250), True, 'import numpy as np\n'), ((2292, 2312), 'numpy.arccos', 'np.arccos', (['costheta2'], {}), '(costheta2)\n', (2301, 2312), True, 'import numpy as np\n'), ((2333, 2347), 'numpy.sin', 'np.sin', (['theta2'], {}), '(theta2)\n', (2339, 2347), True, 'import numpy as np\n'), ((2426, 2460), 'numpy.clip', 'np.clip', (['cos_dphi', '(-1)', '(1)', 'cos_dphi'], {}), '(cos_dphi, -1, 1, cos_dphi)\n', (2433, 2460), True, 'import numpy as np\n'), ((2476, 2495), 'numpy.arccos', 'np.arccos', (['cos_dphi'], {}), '(cos_dphi)\n', (2485, 2495), True, 'import numpy as np\n'), ((2548, 2603), 'numpy.where', 'np.where', (['(rand_posangle > np.pi)', '(phi + dphi)', '(phi - dphi)'], {}), '(rand_posangle > np.pi, phi + dphi, phi - dphi)\n', (2556, 2603), True, 'import numpy as np\n'), ((2609, 2631), 'numpy.rad2deg', 'np.rad2deg', (['phi2', 'phi2'], {}), '(phi2, phi2)\n', (2619, 2631), True, 'import numpy as np\n'), ((2640, 2666), 'numpy.rad2deg', 'np.rad2deg', (['theta2', 'theta2'], {}), '(theta2, theta2)\n', (2650, 2666), True, 'import numpy as np\n'), ((2730, 2768), 'esutil.coords.atbound', 'eu.coords.atbound', (['rand_ra', '(0.0)', '(360.0)'], {}), '(rand_ra, 0.0, 360.0)\n', (2747, 2768), True, 'import esutil as eu\n'), ((2797, 2823), 'numpy.rad2deg', 'np.rad2deg', (['rand_r', 'rand_r'], {}), '(rand_r, rand_r)\n', (2807, 2823), True, 'import numpy as np\n'), ((3725, 3756), 'numpy.radians', 'np.radians', (['(90.0 + dec_range[0])'], {}), '(90.0 + dec_range[0])\n', (3735, 3756), True, 'import numpy as np\n'), ((3780, 3811), 'numpy.radians', 'np.radians', (['(90.0 + dec_range[1])'], {}), '(90.0 + dec_range[1])\n', (3790, 3811), True, 'import numpy as np\n'), ((1569, 1584), 'numpy.sqrt', 'np.sqrt', (['rand_r'], {}), '(rand_r)\n', (1576, 1584), True, 'import numpy as np\n')]
import os from datetime import datetime, timedelta import numpy as np import xarray as xr import parcels import matplotlib import matplotlib.cm as cm import matplotlib.pyplot as plt import matplotlib.ticker as mticker import cartopy import cartopy.util import cartopy.crs as ccrs from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER u_filename = '/home/alir/hawaii_npac/0000969408_U_10800.8150.1_1080.3720.90' v_filename = '/home/alir/hawaii_npac/0000969408_V_10800.8150.1_1080.3720.90' level = 0 with open(u_filename, 'rb') as f: nx, ny = 1080, 3720 # parse; advance file-pointer to data segment record_length = 4 # [bytes] f.seek(level * record_length * nx*ny, os.SEEK_SET) u_data = np.fromfile(f, dtype='>f4', count=nx*ny) u_array = np.reshape(u_data, [ny, nx], order='F') with open(v_filename, 'rb') as f: nx, ny = 1080, 3720 # parse; advance file-pointer to data segment record_length = 4 # [bytes] f.seek(level * record_length * nx*ny, os.SEEK_SET) v_data = np.fromfile(f, dtype='>f4', count=nx*ny) v_array = np.reshape(v_data, [ny, nx], order='F') u_data = u_array v_data = v_array # u_data = np.ma.masked_where(u_array == 0, u_array) # v_data = np.ma.masked_where(v_array == 0, v_array) lats = np.arange(ny)/48 lons = np.arange(nx)/48 depth = np.array([0.0]) u_field = parcels.field.Field(name='U', data=u_data, lon=lons, lat=lats, depth=depth, mesh='spherical') v_field = parcels.field.Field(name='V', data=v_data, lon=lons, lat=lats, depth=depth, mesh='spherical') u_magnitude = np.sqrt(u_data*u_data + v_data*v_data) fieldset = parcels.fieldset.FieldSet(u_field, v_field) # fieldset.U.show() lats_pset = np.tile(np.linspace(5, 70, 11), 11) lons_pset = np.repeat(np.linspace(5, 15, 11), 11) # species_field = -1 * np.ones((11,11), dtype=np.int32) # for i, lat in enumerate(np.linspace(10, 50, 11)): # for j, lon in enumerate(np.linspace(-170, -130, 11)): # pass # species_pfield = parcels.field.Field(name='species', data=species_field, # lat=np.linspace(10, 50, 11), lon=np.linspace(-170, -130, 11), depth=depth, mesh='spherical') class MicrobeParticle(parcels.JITParticle): species = parcels.Variable('species', dtype=np.int32, initial=-1) pset = parcels.ParticleSet.from_list(fieldset=fieldset, pclass=MicrobeParticle, lon=lons_pset, lat=lats_pset) for i, particle in enumerate(pset): if 37.5 <= particle.lat <= 52.5 and -172.5 <= particle.lon <= -157.5: particle.species = 1 elif 37.5 <= particle.lat <= 52.5 and -157.5 <= particle.lon <= -142.5: particle.species = 2 elif 37.5 <= particle.lat <= 52.5 and -142.5 <= particle.lon <= -127.5: particle.species = 3 elif 22.5 <= particle.lat <= 37.5 and -172.5 <= particle.lon <= -157.5: particle.species = 3 elif 22.5 <= particle.lat <= 37.5 and -157.5 <= particle.lon <= -142.5: particle.species = 1 elif 22.5 <= particle.lat <= 37.5 and -142.5 <= particle.lon <= -127.5: particle.species = 2 elif 7.5 <= particle.lat <= 22.5 and -172.5 <= particle.lon <= -157.5: particle.species = 2 elif 7.5 <= particle.lat <= 22.5 and -157.5 <= particle.lon <= -142.5: particle.species = 3 elif 7.5 <= particle.lat <= 22.5 and -142.5 <= particle.lon <= -127.5: particle.species = 1 particle.species = 1 print("Particle {:03d} @({:.2f},{:.2f}) [species={:d}]".format(i, particle.lat, particle.lon, particle.species)) def rock_paper_scissors_type(n): if n == 1: return "rock" elif n == 2: return "paper" elif n == 3: return "scissors" return None vector_crs = ccrs.PlateCarree() land_50m = cartopy.feature.NaturalEarthFeature('physical', 'land', '50m', edgecolor='face',facecolor='dimgray', linewidth=0) t = datetime(2017, 1, 1) dt = timedelta(hours=1) for n in range(1): print("Advecting: {:} -> {:}".format(t, t+dt)) nc_filename = "advected_microbes_" + str(n).zfill(4) + ".nc" pset.execute(parcels.AdvectionRK4, runtime=dt, dt=dt, verbose_progress=True, output_file=pset.ParticleFile(name=nc_filename, outputdt=dt)) # print("Computing microbe interactions...") # N = len(pset) # for i, p1 in enumerate(pset): # for j, p2 in enumerate(pset[i+1:]): # if np.abs(p1.lat - p2.lat) < 1 and np.abs(p1.lon - p2.lon) < 1: # p1_type = rock_paper_scissors_type(p1.species) # p2_type = rock_paper_scissors_type(p2.species) # winner = None # if p1_type == "rock" and p2_type == "scissors": # winner = p1 # elif p1_type == "rock" and p2_type == "paper": # winner = p2 # elif p1_type == "paper" and p2_type == "rock": # winner = p1 # elif p1_type == "paper" and p2_type == "scissors": # winner = p2 # elif p1_type == "scissors" and p2_type == "rock": # winner = p2 # elif p1_type == "scissors" and p2_type == "paper": # winner = p1 # else: # winner = None # if winner == p1: # p2.species = p1.species # print("[{:s}#{:d}] @({:.2f}, {:.2f}) vs. [{:s}#{:d}] @({:.2f}, {:.2f}): #{:d} wins!" # .format(p1_type, i, p1.lat, p1.lon, p2_type, j+i, p2.lat, p2.lon, i)) # elif winner == p2: # p1.species = p2.species # print("[{:s}#{:d}] @({:.2f}, {:.2f}) vs. [{:s}#{:d}] @({:.2f}, {:.2f}): #{:d} wins!" # .format(p1_type, i, p1.lat, p1.lon, p2_type, j+i, p2.lat, p2.lon, j+i)) # for i, p in enumerate(pset): # if p.lat >= 59 or p.lat <= 1 or p.lon <= -179 or p.lon >= -121: # print("Removing particle #{:d} @({:.2f},{:.2f}). Too close to boundary" # .format(i, p.lat, p.lon)) # pset.remove(i) t = t+dt print("Plotting figure...") fig = plt.figure(figsize=(16, 9)) matplotlib.rcParams.update({'font.size': 10}) crs_sps = ccrs.PlateCarree(central_longitude=-150) crs_sps._threshold = 1000.0 # This solves https://github.com/SciTools/cartopy/issues/363 ax = plt.subplot(111, projection=crs_sps) ax.add_feature(land_50m) ax.set_extent([0, 22.5, 0, 77.5], ccrs.PlateCarree()) gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=1, color='black', alpha=0.8, linestyle='--') gl.xlabels_top = False gl.ylabels_left = False gl.xlocator = mticker.FixedLocator([0, 7.5, 15, 22.5]) gl.ylocator = mticker.FixedLocator([0, 15.5, 31, 46.5, 62, 77.5]) gl.xformatter = LONGITUDE_FORMATTER gl.yformatter = LATITUDE_FORMATTER im = ax.pcolormesh(lons, lats, u_magnitude, transform=vector_crs, vmin=0, vmax=1, cmap='Blues_r') clb = fig.colorbar(im, ax=ax, extend='max', fraction=0.046, pad=0.1) clb.ax.set_title(r'm/s') rock_lats, rock_lons = [], [] paper_lats, paper_lons = [], [] scissors_lats, scissors_lons = [], [] for microbe in pset: if microbe.species == 1: rock_lats.append(microbe.lat) rock_lons.append(microbe.lon) elif microbe.species == 2: paper_lats.append(microbe.lat) paper_lons.append(microbe.lon) elif microbe.species == 3: scissors_lats.append(microbe.lat) scissors_lons.append(microbe.lon) # ax.plot(rock_lons, rock_lats, marker='o', linestyle='', color='red', ms=4, label='Rocks', transform=vector_crs) # ax.plot(paper_lons, paper_lats, marker='o', linestyle='', color='lime', ms=4, label='Papers', transform=vector_crs) # ax.plot(scissors_lons, scissors_lats, marker='o', linestyle='', color='cyan', ms=4, label='Scissors', transform=vector_crs) plt.title(str(t)) ax.legend() # plt.show() png_filename = "advected_microbes_" + str(n).zfill(4) + ".png" print("Saving figure: {:s}".format(png_filename)) plt.savefig(png_filename, dpi=300, format='png', transparent=False) plt.close('all')
[ "cartopy.feature.NaturalEarthFeature", "matplotlib.pyplot.figure", "parcels.field.Field", "numpy.arange", "matplotlib.pyplot.close", "matplotlib.rcParams.update", "matplotlib.ticker.FixedLocator", "datetime.timedelta", "numpy.reshape", "numpy.linspace", "parcels.ParticleSet.from_list", "datetime.datetime", "parcels.Variable", "matplotlib.pyplot.subplot", "parcels.fieldset.FieldSet", "numpy.fromfile", "numpy.array", "cartopy.crs.PlateCarree", "matplotlib.pyplot.savefig", "numpy.sqrt" ]
[((1328, 1343), 'numpy.array', 'np.array', (['[0.0]'], {}), '([0.0])\n', (1336, 1343), True, 'import numpy as np\n'), ((1355, 1452), 'parcels.field.Field', 'parcels.field.Field', ([], {'name': '"""U"""', 'data': 'u_data', 'lon': 'lons', 'lat': 'lats', 'depth': 'depth', 'mesh': '"""spherical"""'}), "(name='U', data=u_data, lon=lons, lat=lats, depth=depth,\n mesh='spherical')\n", (1374, 1452), False, 'import parcels\n'), ((1463, 1560), 'parcels.field.Field', 'parcels.field.Field', ([], {'name': '"""V"""', 'data': 'v_data', 'lon': 'lons', 'lat': 'lats', 'depth': 'depth', 'mesh': '"""spherical"""'}), "(name='V', data=v_data, lon=lons, lat=lats, depth=depth,\n mesh='spherical')\n", (1482, 1560), False, 'import parcels\n'), ((1576, 1618), 'numpy.sqrt', 'np.sqrt', (['(u_data * u_data + v_data * v_data)'], {}), '(u_data * u_data + v_data * v_data)\n', (1583, 1618), True, 'import numpy as np\n'), ((1627, 1670), 'parcels.fieldset.FieldSet', 'parcels.fieldset.FieldSet', (['u_field', 'v_field'], {}), '(u_field, v_field)\n', (1652, 1670), False, 'import parcels\n'), ((2266, 2372), 'parcels.ParticleSet.from_list', 'parcels.ParticleSet.from_list', ([], {'fieldset': 'fieldset', 'pclass': 'MicrobeParticle', 'lon': 'lons_pset', 'lat': 'lats_pset'}), '(fieldset=fieldset, pclass=MicrobeParticle,\n lon=lons_pset, lat=lats_pset)\n', (2295, 2372), False, 'import parcels\n'), ((3677, 3695), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (3693, 3695), True, 'import cartopy.crs as ccrs\n'), ((3707, 3826), 'cartopy.feature.NaturalEarthFeature', 'cartopy.feature.NaturalEarthFeature', (['"""physical"""', '"""land"""', '"""50m"""'], {'edgecolor': '"""face"""', 'facecolor': '"""dimgray"""', 'linewidth': '(0)'}), "('physical', 'land', '50m', edgecolor=\n 'face', facecolor='dimgray', linewidth=0)\n", (3742, 3826), False, 'import cartopy\n'), ((3830, 3850), 'datetime.datetime', 'datetime', (['(2017)', '(1)', '(1)'], {}), '(2017, 1, 1)\n', (3838, 3850), False, 'from datetime import datetime, timedelta\n'), ((3856, 3874), 'datetime.timedelta', 'timedelta', ([], {'hours': '(1)'}), '(hours=1)\n', (3865, 3874), False, 'from datetime import datetime, timedelta\n'), ((731, 773), 'numpy.fromfile', 'np.fromfile', (['f'], {'dtype': '""">f4"""', 'count': '(nx * ny)'}), "(f, dtype='>f4', count=nx * ny)\n", (742, 773), True, 'import numpy as np\n'), ((786, 825), 'numpy.reshape', 'np.reshape', (['u_data', '[ny, nx]'], {'order': '"""F"""'}), "(u_data, [ny, nx], order='F')\n", (796, 825), True, 'import numpy as np\n'), ((1035, 1077), 'numpy.fromfile', 'np.fromfile', (['f'], {'dtype': '""">f4"""', 'count': '(nx * ny)'}), "(f, dtype='>f4', count=nx * ny)\n", (1046, 1077), True, 'import numpy as np\n'), ((1090, 1129), 'numpy.reshape', 'np.reshape', (['v_data', '[ny, nx]'], {'order': '"""F"""'}), "(v_data, [ny, nx], order='F')\n", (1100, 1129), True, 'import numpy as np\n'), ((1279, 1292), 'numpy.arange', 'np.arange', (['ny'], {}), '(ny)\n', (1288, 1292), True, 'import numpy as np\n'), ((1303, 1316), 'numpy.arange', 'np.arange', (['nx'], {}), '(nx)\n', (1312, 1316), True, 'import numpy as np\n'), ((1712, 1734), 'numpy.linspace', 'np.linspace', (['(5)', '(70)', '(11)'], {}), '(5, 70, 11)\n', (1723, 1734), True, 'import numpy as np\n'), ((1762, 1784), 'numpy.linspace', 'np.linspace', (['(5)', '(15)', '(11)'], {}), '(5, 15, 11)\n', (1773, 1784), True, 'import numpy as np\n'), ((2202, 2257), 'parcels.Variable', 'parcels.Variable', (['"""species"""'], {'dtype': 'np.int32', 'initial': '(-1)'}), "('species', dtype=np.int32, initial=-1)\n", (2218, 2257), False, 'import parcels\n'), ((6134, 6161), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(16, 9)'}), '(figsize=(16, 9))\n', (6144, 6161), True, 'import matplotlib.pyplot as plt\n'), ((6166, 6211), 'matplotlib.rcParams.update', 'matplotlib.rcParams.update', (["{'font.size': 10}"], {}), "({'font.size': 10})\n", (6192, 6211), False, 'import matplotlib\n'), ((6231, 6271), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {'central_longitude': '(-150)'}), '(central_longitude=-150)\n', (6247, 6271), True, 'import cartopy.crs as ccrs\n'), ((6376, 6412), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {'projection': 'crs_sps'}), '(111, projection=crs_sps)\n', (6387, 6412), True, 'import matplotlib.pyplot as plt\n'), ((6701, 6741), 'matplotlib.ticker.FixedLocator', 'mticker.FixedLocator', (['[0, 7.5, 15, 22.5]'], {}), '([0, 7.5, 15, 22.5])\n', (6721, 6741), True, 'import matplotlib.ticker as mticker\n'), ((6760, 6811), 'matplotlib.ticker.FixedLocator', 'mticker.FixedLocator', (['[0, 15.5, 31, 46.5, 62, 77.5]'], {}), '([0, 15.5, 31, 46.5, 62, 77.5])\n', (6780, 6811), True, 'import matplotlib.ticker as mticker\n'), ((8159, 8226), 'matplotlib.pyplot.savefig', 'plt.savefig', (['png_filename'], {'dpi': '(300)', 'format': '"""png"""', 'transparent': '(False)'}), "(png_filename, dpi=300, format='png', transparent=False)\n", (8170, 8226), True, 'import matplotlib.pyplot as plt\n'), ((8236, 8252), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (8245, 8252), True, 'import matplotlib.pyplot as plt\n'), ((6480, 6498), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (6496, 6498), True, 'import cartopy.crs as ccrs\n'), ((6527, 6545), 'cartopy.crs.PlateCarree', 'ccrs.PlateCarree', ([], {}), '()\n', (6543, 6545), True, 'import cartopy.crs as ccrs\n')]
# %% ======================================================================= # import libraries #=========================================================================== # default import os import datetime import hashlib # conda import pandas as pd import PySimpleGUI as sg # user from b01_schedule_class_base import ScheduleManageBase from b01_schedule_class import ScheduleManage # %% ======================================================================= # pysimple gui settings #=========================================================================== # window layout is defined in b01_schedule_class_base # button or other functions are difined in b01_schedule_class sch_m = ScheduleManage() sch_m.create_window() sch_m.window.read(timeout=1) # %% ======================================================================= # simple gyi while #=========================================================================== # Event Loop to process "events" and get the "values" of the inputs while True: event, pos, item, eid = sch_m.parse_event() # if event and "MV" not in event: # print(event, pos, item, eid) if event == sg.WIN_CLOSED: # if user closes window or clicks cancel break # %% ======================================================================= # header #=========================================================================== if pos == "hd": # header if item == "btn": # click button if eid == 0: # all sch_m.header_all_button_pressed() sch_m.header_checkbox_changed() if eid == 1: # clear sch_m.header_clear_button_pressed() sch_m.header_checkbox_changed() if eid == 2: # drawchart sch_m.header_refresh_button_pressed() if eid == 3: # upload sch_m.header_upload_button_pressed() if eid == 4: # download sch_m.header_reload_button_pressed() if item == "cbx": # check box was updated sch_m.header_checkbox_changed([eid]) if item == "rdi": # radio button sch_m.header_member_raido_button_changed() continue # %% ======================================================================= # left tab #=========================================================================== if pos == "lt": if item == "grp": sch_m.l1_chart_draw() continue if pos == "l1": # left tab1 if item[:3] == "grp": if len(item) == 3: sch_m.l1_graph_area_clicked() if "MV" in item: sch_m.l1_graphs_capture_mouse_motion(eid) if "RC" in item: sch_m.l1_graph_right_click_menu_selected(event, eid) continue if pos == "l2": # left tab2 continue if pos == "l3": # left tab2 if item == "btn": if eid < 4: sch_m.l3_priority_updown_button_pressed(eid) if eid == 4: sch_m.l3_priority_auto_button_pressed() if "tbl" in item: sch_m.l3_table_selected_ticket_changed() continue if pos == "l0": if item == "btn": if eid == 0: sch_m.l0_settings_save_and_restart_button_pressed() # %% ======================================================================= # right tab #=========================================================================== if pos == "r1": # right tab1 if item[:3] == "inp": if len(item) == 6: if item[4:6] == "LC": sch_m.r1_input_date_box_selected(eid) sch_m.r1_input_check() # sch_m._r1_pre_next_ticket_table_update() if item[:3] == "btn": if eid == 0: sch_m.r1_apply_button_pressed() if eid == 1: sch_m.r1_delete_button_pressed() if item == "right_menu": sch_m.r1_right_click_menu_clicked(event) continue if pos == "r2": # right tab2 if item == "btn": # if eid == 0: # sch_m.r2_save_plan_button_pressed() if eid == 1: sch_m.r2_save_record_button_pressed() if eid == 4: sch_m.r2_delete_button_pressed() if item == "txt": if eid == 2: sch_m.r2_date_txt_pressed() if item == "inp": sch_m.r2_information_box_inputed() continue if pos == "r3": # right tab3 if item == "btn": if eid == 0: sch_m.r3_mail_button_pressed() if eid == 1: sch_m.r3_folder_button_pressed() if eid == 2: sch_m.r3_memo_button_pressed() continue if pos == "r4": # right tab4 continue if pos == "r5": # right tab5 if item == "btn": sch_m.r5_arrow_button_pressed(eid) if item == "mul": sch_m.r5_df_from_multiline(eid) sch_m.window.close()
[ "b01_schedule_class.ScheduleManage" ]
[((692, 708), 'b01_schedule_class.ScheduleManage', 'ScheduleManage', ([], {}), '()\n', (706, 708), False, 'from b01_schedule_class import ScheduleManage\n')]
import psycopg2 from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT class Sensor_DB: def __init__(self, host="127.0.0.1", database="postgres", user="postgres", password=""): self.__DBconnection = psycopg2.connect( host=host, database="postgres", user=user, password=password ) self.__DBconnection.set_isolation_level(ISOLATION_LEVEL_AUTOCOMMIT) self.__DBcursor = self.__DBconnection.cursor() self.__DBcursor.execute("SELECT 1 FROM pg_catalog.pg_database WHERE datname = %s", (database,),) self.__DBexists = self.__DBcursor.fetchone() if not self.__DBexists: self.__DBcursor.execute("CREATE DATABASE " + database) self.__DBcursor.close() self.__DBconnection.close() ############################################### self.__DBconnection = psycopg2.connect( host=host, database=database, user=user, password=password ) self.__DBcursor = self.__DBconnection.cursor() self.__DBtables = set() def __createTable(self, tableID): self.__DBcursor.execute( "CREATE TABLE IF NOT EXISTS sensor%s (" " id_entry SERIAL PRIMARY KEY," " temperature DOUBLE PRECISION," " humidity INT," " lux INT," " latitude DOUBLE PRECISION," " longitude DOUBLE PRECISION," " dt TIMESTAMP" ")", (int(tableID),), ) self.__DBconnection.commit() self.__DBtables.add(tableID) def saveData(self, sensorID, temperature, humidity, lux, latitude, longitude, date, time): if sensorID not in self.__DBtables: self.__createTable(sensorID) self.__DBcursor.execute( "INSERT INTO sensor%s (temperature, humidity, lux, latitude, longitude, dt) VALUES(%s, %s, %s, %s, %s, %s)", ( int(sensorID), temperature, humidity, lux, latitude, longitude, date + " " + time, ), ) self.__DBconnection.commit()
[ "psycopg2.connect" ]
[((217, 295), 'psycopg2.connect', 'psycopg2.connect', ([], {'host': 'host', 'database': '"""postgres"""', 'user': 'user', 'password': 'password'}), "(host=host, database='postgres', user=user, password=password)\n", (233, 295), False, 'import psycopg2\n'), ((865, 941), 'psycopg2.connect', 'psycopg2.connect', ([], {'host': 'host', 'database': 'database', 'user': 'user', 'password': 'password'}), '(host=host, database=database, user=user, password=password)\n', (881, 941), False, 'import psycopg2\n')]
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ :mod:`refex.python.syntactic_template` -------------------------------------- Syntax-aware Python substitution templates, as described in :doc:`/guide/patterns_templates`. The core problem with lexical or textual substitution of Python code, as with e.g. :class:`refex.formatting.ShTemplate`, is that the substitution can be unintentionally wrong. For example: If you replace ``f($x)`` with ``$x``, what if ``$x`` contains a newline? If you replace ``$a`` with ``$a * 2``, what if ``$a`` is ``1 + 2``? The template classes here aim to make replacements that match the intended syntax -- i.e. the structure of the template -- and will parenthesize as necessary. .. autoclass:: PythonExprTemplate .. autoclass:: PythonStmtTemplate """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import ast import tokenize from typing import Text from absl import logging import attr import cached_property import six from refex import formatting from refex.python import matcher from refex.python import python_pattern from refex.python.matchers import ast_matchers from refex.python.matchers import base_matchers from refex.python.matchers import syntax_matchers @attr.s(frozen=True) class _LexicalTemplate(object): """Lexically-aware Python templates. $variables are only used for replacements if they occur inside Python, not inside of e.g. a string literal or a comment. So "a = $x" has an x variable in the template, but "a = '$x'" does not. """ template = attr.ib() _tokens = attr.ib(init=False, repr=False) _var_to_i = attr.ib(init=False, repr=False) variables = attr.ib(init=False, repr=False) def __attrs_post_init__(self): # Because we have frozen=True, creating values for _tokens and _var_to_i # is a little complex, and requires invoking object.__setattr__. tokenized, metavar_indices = python_pattern.token_pattern(self.template) var_to_i = {} for i in metavar_indices: var = tokenized[i][1] var_to_i.setdefault(var, []).append(i) object.__setattr__(self, '_tokens', tokenized) object.__setattr__(self, '_var_to_i', var_to_i) object.__setattr__(self, 'variables', six.viewkeys(var_to_i)) def substitute(self, replacements): """Lexically-aware substitution. Args: replacements: A map from metavariable name to new content. Returns: Substituted Python code. Raises: KeyError: A variable in the template was not specified in the replacements. THis is to be compatible with strings.Template. """ if not self.template: # Work around: if u'' is untokenized and then retokenized, # it comes back out as b'' on Python 2! return self.template # Take a copy of tokens to modify the target slots. tokens = list(self._tokens) free_vars = set(self._var_to_i) logging.debug('Applying %r to tokens %r for substitution of %r', free_vars, tokens, replacements) for var, new in six.iteritems(replacements): try: all_i = self._var_to_i[var] except KeyError: # overspecified: a replacement for a variable not in the template. continue free_vars.remove(var) for i in all_i: tok = list(tokens[i]) tok[1] = new tokens[i] = tuple(tok) if free_vars: raise KeyError(next(iter(free_vars))) return tokenize.untokenize(tokens) @attr.s(frozen=True) class _BasePythonTemplate(formatting.Template): """Base class for syntax-aware templates. The templates use ShTemplate/string.Template style templates. e.g. "$x + $y". Subclasses must override _pattern_factory to provide a matcher for the template. Attributes: template: The source template """ template = attr.ib(type=Text) _lexical_template = attr.ib(repr=False, init=False, type=_LexicalTemplate) _ast_matcher = attr.ib(repr=False, init=False, type=matcher.Matcher) def __attrs_post_init__(self): if not isinstance(self.template, six.text_type): raise TypeError('Expected text, got: {}'.format( type(self.template).__name__)) @_lexical_template.default def _lexical_template_default(self): return _LexicalTemplate(self.template) @_ast_matcher.default def _ast_matcher_default(self): return self._pattern_factory(self.template) def substitute_match(self, parsed, match, matches): """Syntax-aware substitution, parsing the template using _pattern_factory. Args: parsed: The ParsedFile being substituted into. match: The match being replaced. matches: The matches used for formatting. Returns: Substituted Python code. """ replacement, _ = self._parenthesized( _matchers_for_matches(matches), formatting.stringify_matches(matches), ) if not isinstance(parsed, matcher.PythonParsedFile): # This file is not (known to be) a Python file, so we can't (efficiently) # check the replacement into the parent AST node. # TODO: It would help if we could automatically obtain a # PythonParsedFile for any given ParsedFile. This also lets us compose # arbitrary searchers together, some of which take a PythonParsedFile, and # others which don't. return replacement # replacement is now a safely-interpolated string: all of the substitutions # are parenthesized where needed. The only thing left is to ensure that when # replacement itself is substituted in, it itself is parenthesized # correctly. # # To do this, we essentially repeat the same safe substitution algorithm, # except using the context of the replacement as a fake pattern. # # Note that this whole process is only valid if we are matching an actual # AST node, and an expr node at that. # For example, it is _not_ valid to replace b'foo' with b('foo'), or 'foo' # with 'f(o)o'. if not isinstance(match, matcher.LexicalASTMatch): # The match wasn't even for an AST node. We'll assume they know what # they're doing and pass thru verbatim. Non-AST matches can't be # automatically parenthesized -- for example, b'foo' vs b('foo') return replacement if not isinstance(match.matched, ast.expr): # Only expressions need to be parenthesized, so this is fine as-is. return replacement parent = parsed.nav.get_parent(match.matched) if isinstance(parent, ast.Expr): # the matched object is already a top-level expression, and will never # need extra parentheses. # We are assuming here that the template does not contain comments, # which is not enforced. We also assume that it doesn't contain raw # newlines, but this is enforced by the template and substitution both # needing to parse on their own. return replacement if isinstance(parent, ast.stmt) and hasattr(parent, 'body'): # TODO(b/139758169): re-enable reparsing of statements in templating. # Multi-line statements can't be reparsed due to issues with # indentation. We can usually safely assume that it doesn't need parens, # although exceptions exist. (Including, in an ironic twist, "except".) return replacement # keep navigating up until we reach a lexical AST node. # e.g. skip over lists. while True: parent_span = matcher.create_match(parsed, parent).span if parent_span is not None and isinstance(parent, (ast.expr, ast.stmt)): # We need a parent node which has a known source span, # and which is by itself parseable (i.e. is an expr or stmt). break next_parent = parsed.nav.get_parent(parent) if isinstance(next_parent, ast.stmt) and hasattr(next_parent, 'body'): # TODO(b/139758169): re-enable reparsing of statements in templating. # We encountered no reparseable parents between here and a # non-reparseable statement, so, as before, we must fall back to # returning the replacement verbatim and hoping it isn't broken. # (For example, replacing T with T1, T2 in "class A(T)" is incorrect.) return replacement parent = next_parent else: raise formatting.RewriteError( "Bug in Python formatter? Couldn't find parent of %r" % match) # Re-apply the safe substitution, but on the parent. context_start, context_end = parent_span match_start, match_end = match.span prefix = parsed.text[context_start:match_start] suffix = parsed.text[match_end:context_end] if isinstance(parent, ast.expr): # expressions can occur in a multiline context, but now that we've # removed it from its context for reparsing, we're in a single-line # unparenthesized context. We need to add parens to make sure this # parses correctly. prefix = '(' + prefix suffix += ')' parent_pseudotemplate = PythonTemplate(prefix + u'$current_expr' + suffix) parsed_replacement = ast.parse(replacement) if len(parsed_replacement.body) != 1 or not isinstance( parsed_replacement.body[0], ast.Expr): raise formatting.RewriteError( "Non-expression template can't be used in expression context: %s" % self.template) current_matcher = syntax_matchers.ast_matchers_matcher( parsed_replacement.body[0].value) _, safe_mapping = parent_pseudotemplate._parenthesized( # pylint: disable=protected-access {u'current_expr': current_matcher}, {u'current_expr': replacement}) return safe_mapping[u'current_expr'] def _parenthesized(self, matchers, stringified_matches): """Parenthesizes a substitution for a template. Args: matchers: Dict mapping {var: Matcher that must match this variable} stringified_matches: Dict mapping variable -> string for match. Returns: A tuple of two elements: 0: The full safely parenthesized substitution. 1: A dict dict mapping var -> parenthesized string, for each match. """ safe_mapping = {} unparenthesized_mapping = {} for k, v in stringified_matches.items(): raw_string = stringified_matches[k] if k in matchers: safe_mapping[k] = '(%s)' % raw_string unparenthesized_mapping[k] = raw_string else: # Non-expressions cannot be parenthesized and must be inserted verbatim. safe_mapping[k] = raw_string # We start parenthesized and try dropping parentheses to see if things # still match the same way. # First, build up the canonical replacement: replacement = self._lexical_template.substitute(safe_mapping) # Now let's parse the produced canonical replacement and make sure that it # looks "correct" -- it is structurally the same as our template is, # and the substituted in values are identical. try: parsed_template = matcher.parse_ast(replacement, '<_BasePythonTemplate pattern>') except matcher.ParseError as e: raise formatting.RewriteError( 'Bug in Python formatter? Failed to parse formatted Python string as ' 'Python: template=%r, substitute(matches for %r) -> %r: %s' % (self.template, stringified_matches, replacement, e)) m = self._ast_matcher.match( matcher.MatchContext(parsed_template), parsed_template.tree) if m is None: raise formatting.RewriteError( 'Bug in Python formatter? Even "safe" formatting of Python template ' 'produced an incorrect and different AST, so it must be discarded: ' ' template=%r, substitute(matches for %r) -> %r' % (self.template, stringified_matches, replacement )) for k, bound in m.bindings.items(): v = bound.value if not matchers[k].match( matcher.MatchContext(parsed_template), v.matched): raise formatting.RewriteError( 'Bug in Python formatter? Even "safe" formatting of Python template' ' produced an incorrect and different AST, so it must be discarded ' '[variable %s=%r was corrupted -- %r]: ' 'template=%r, substitute(matches for %r) -> %r' % (k, matchers[k], v, self.template, stringified_matches, replacement)) # The preliminaries are done: safe templating worked, and all that's left is # to try to make the substitutions less over-parenthesized. candidate_matcher = syntax_matchers.ast_matchers_matcher( parsed_template.tree) for k, unparenthesized in unparenthesized_mapping.items(): parenthesized = safe_mapping[k] safe_mapping[k] = unparenthesized try: alt_replacement = self._lexical_template.substitute(safe_mapping) alt_parsed = matcher.parse_ast( alt_replacement, '<_BasePythonTemplate alternate proposal>') except matcher.ParseError as e: pass else: if candidate_matcher.match( matcher.MatchContext(alt_parsed), alt_parsed.tree): replacement = alt_replacement continue # if we made it this far, the replacement was not a success. safe_mapping[k] = parenthesized return replacement, safe_mapping @cached_property.cached_property def variables(self): return self._lexical_template.variables def _matchers_for_matches(matches): """Returns AST matchers for all expressions in `matches`. Args: matches: A mapping of variable name -> match Returns: A mapping of <variable name> -> <matcher that must match>. Only variables that can be parenthesized are in this mapping, and the matcher must match where those variables are substituted in. """ matchers = {} for k, v in matches.items(): if (isinstance(v, matcher.LexicalASTMatch) and isinstance(v.matched, ast.expr)): matchers[k] = syntax_matchers.ast_matchers_matcher(v.matched) else: # as a fallback, treat it as a black box, and assume that the rest of the # expression will catch things. matchers[k] = base_matchers.Anything() return matchers class PythonTemplate(_BasePythonTemplate): _pattern_factory = syntax_matchers.ModulePattern class PythonExprTemplate(_BasePythonTemplate): """A template for a Python expression.""" @staticmethod def _pattern_factory(pattern): return ast_matchers.Module( body=base_matchers.ItemsAre( [ast_matchers.Expr(value=syntax_matchers.ExprPattern(pattern))])) class PythonStmtTemplate(_BasePythonTemplate): """A template for a single Python statement.""" @staticmethod def _pattern_factory(pattern): return ast_matchers.Module( body=base_matchers.ItemsAre([syntax_matchers.StmtPattern(pattern)]))
[ "refex.python.matchers.syntax_matchers.ast_matchers_matcher", "refex.python.matchers.base_matchers.Anything", "six.viewkeys", "attr.s", "absl.logging.debug", "attr.ib", "refex.python.matcher.parse_ast", "refex.python.matchers.syntax_matchers.ExprPattern", "refex.formatting.RewriteError", "refex.python.matcher.create_match", "refex.python.matchers.syntax_matchers.StmtPattern", "refex.python.python_pattern.token_pattern", "refex.python.matcher.MatchContext", "tokenize.untokenize", "refex.formatting.stringify_matches", "ast.parse", "six.iteritems" ]
[((1804, 1823), 'attr.s', 'attr.s', ([], {'frozen': '(True)'}), '(frozen=True)\n', (1810, 1823), False, 'import attr\n'), ((4021, 4040), 'attr.s', 'attr.s', ([], {'frozen': '(True)'}), '(frozen=True)\n', (4027, 4040), False, 'import attr\n'), ((2115, 2124), 'attr.ib', 'attr.ib', ([], {}), '()\n', (2122, 2124), False, 'import attr\n'), ((2137, 2168), 'attr.ib', 'attr.ib', ([], {'init': '(False)', 'repr': '(False)'}), '(init=False, repr=False)\n', (2144, 2168), False, 'import attr\n'), ((2183, 2214), 'attr.ib', 'attr.ib', ([], {'init': '(False)', 'repr': '(False)'}), '(init=False, repr=False)\n', (2190, 2214), False, 'import attr\n'), ((2229, 2260), 'attr.ib', 'attr.ib', ([], {'init': '(False)', 'repr': '(False)'}), '(init=False, repr=False)\n', (2236, 2260), False, 'import attr\n'), ((4368, 4386), 'attr.ib', 'attr.ib', ([], {'type': 'Text'}), '(type=Text)\n', (4375, 4386), False, 'import attr\n'), ((4409, 4463), 'attr.ib', 'attr.ib', ([], {'repr': '(False)', 'init': '(False)', 'type': '_LexicalTemplate'}), '(repr=False, init=False, type=_LexicalTemplate)\n', (4416, 4463), False, 'import attr\n'), ((4481, 4534), 'attr.ib', 'attr.ib', ([], {'repr': '(False)', 'init': '(False)', 'type': 'matcher.Matcher'}), '(repr=False, init=False, type=matcher.Matcher)\n', (4488, 4534), False, 'import attr\n'), ((2474, 2517), 'refex.python.python_pattern.token_pattern', 'python_pattern.token_pattern', (['self.template'], {}), '(self.template)\n', (2502, 2517), False, 'from refex.python import python_pattern\n'), ((3458, 3559), 'absl.logging.debug', 'logging.debug', (['"""Applying %r to tokens %r for substitution of %r"""', 'free_vars', 'tokens', 'replacements'], {}), "('Applying %r to tokens %r for substitution of %r', free_vars,\n tokens, replacements)\n", (3471, 3559), False, 'from absl import logging\n'), ((3594, 3621), 'six.iteritems', 'six.iteritems', (['replacements'], {}), '(replacements)\n', (3607, 3621), False, 'import six\n'), ((3990, 4017), 'tokenize.untokenize', 'tokenize.untokenize', (['tokens'], {}), '(tokens)\n', (4009, 4017), False, 'import tokenize\n'), ((9571, 9593), 'ast.parse', 'ast.parse', (['replacement'], {}), '(replacement)\n', (9580, 9593), False, 'import ast\n'), ((9864, 9934), 'refex.python.matchers.syntax_matchers.ast_matchers_matcher', 'syntax_matchers.ast_matchers_matcher', (['parsed_replacement.body[0].value'], {}), '(parsed_replacement.body[0].value)\n', (9900, 9934), False, 'from refex.python.matchers import syntax_matchers\n'), ((13031, 13089), 'refex.python.matchers.syntax_matchers.ast_matchers_matcher', 'syntax_matchers.ast_matchers_matcher', (['parsed_template.tree'], {}), '(parsed_template.tree)\n', (13067, 13089), False, 'from refex.python.matchers import syntax_matchers\n'), ((2784, 2806), 'six.viewkeys', 'six.viewkeys', (['var_to_i'], {}), '(var_to_i)\n', (2796, 2806), False, 'import six\n'), ((5365, 5402), 'refex.formatting.stringify_matches', 'formatting.stringify_matches', (['matches'], {}), '(matches)\n', (5393, 5402), False, 'from refex import formatting\n'), ((8795, 8886), 'refex.formatting.RewriteError', 'formatting.RewriteError', (['("Bug in Python formatter? Couldn\'t find parent of %r" % match)'], {}), '(\n "Bug in Python formatter? Couldn\'t find parent of %r" % match)\n', (8818, 8886), False, 'from refex import formatting\n'), ((9713, 9828), 'refex.formatting.RewriteError', 'formatting.RewriteError', (['("Non-expression template can\'t be used in expression context: %s" % self.\n template)'], {}), '(\n "Non-expression template can\'t be used in expression context: %s" %\n self.template)\n', (9736, 9828), False, 'from refex import formatting\n'), ((11458, 11521), 'refex.python.matcher.parse_ast', 'matcher.parse_ast', (['replacement', '"""<_BasePythonTemplate pattern>"""'], {}), "(replacement, '<_BasePythonTemplate pattern>')\n", (11475, 11521), False, 'from refex.python import matcher\n'), ((11896, 11933), 'refex.python.matcher.MatchContext', 'matcher.MatchContext', (['parsed_template'], {}), '(parsed_template)\n', (11916, 11933), False, 'from refex.python import matcher\n'), ((11987, 12255), 'refex.formatting.RewriteError', 'formatting.RewriteError', (['(\'Bug in Python formatter? Even "safe" formatting of Python template produced an incorrect and different AST, so it must be discarded: template=%r, substitute(matches for %r) -> %r\'\n % (self.template, stringified_matches, replacement))'], {}), '(\n \'Bug in Python formatter? Even "safe" formatting of Python template produced an incorrect and different AST, so it must be discarded: template=%r, substitute(matches for %r) -> %r\'\n % (self.template, stringified_matches, replacement))\n', (12010, 12255), False, 'from refex import formatting\n'), ((14444, 14491), 'refex.python.matchers.syntax_matchers.ast_matchers_matcher', 'syntax_matchers.ast_matchers_matcher', (['v.matched'], {}), '(v.matched)\n', (14480, 14491), False, 'from refex.python.matchers import syntax_matchers\n'), ((14640, 14664), 'refex.python.matchers.base_matchers.Anything', 'base_matchers.Anything', ([], {}), '()\n', (14662, 14664), False, 'from refex.python.matchers import base_matchers\n'), ((7954, 7990), 'refex.python.matcher.create_match', 'matcher.create_match', (['parsed', 'parent'], {}), '(parsed, parent)\n', (7974, 7990), False, 'from refex.python import matcher\n'), ((11612, 11829), 'refex.formatting.RewriteError', 'formatting.RewriteError', (["('Bug in Python formatter? Failed to parse formatted Python string as Python: template=%r, substitute(matches for %r) -> %r: %s'\n % (self.template, stringified_matches, replacement, e))"], {}), "(\n 'Bug in Python formatter? Failed to parse formatted Python string as Python: template=%r, substitute(matches for %r) -> %r: %s'\n % (self.template, stringified_matches, replacement, e))\n", (11635, 11829), False, 'from refex import formatting\n'), ((12464, 12787), 'refex.formatting.RewriteError', 'formatting.RewriteError', (['(\'Bug in Python formatter? Even "safe" formatting of Python template produced an incorrect and different AST, so it must be discarded [variable %s=%r was corrupted -- %r]: template=%r, substitute(matches for %r) -> %r\'\n % (k, matchers[k], v, self.template, stringified_matches, replacement))'], {}), '(\n \'Bug in Python formatter? Even "safe" formatting of Python template produced an incorrect and different AST, so it must be discarded [variable %s=%r was corrupted -- %r]: template=%r, substitute(matches for %r) -> %r\'\n % (k, matchers[k], v, self.template, stringified_matches, replacement))\n', (12487, 12787), False, 'from refex import formatting\n'), ((13347, 13425), 'refex.python.matcher.parse_ast', 'matcher.parse_ast', (['alt_replacement', '"""<_BasePythonTemplate alternate proposal>"""'], {}), "(alt_replacement, '<_BasePythonTemplate alternate proposal>')\n", (13364, 13425), False, 'from refex.python import matcher\n'), ((12399, 12436), 'refex.python.matcher.MatchContext', 'matcher.MatchContext', (['parsed_template'], {}), '(parsed_template)\n', (12419, 12436), False, 'from refex.python import matcher\n'), ((13550, 13582), 'refex.python.matcher.MatchContext', 'matcher.MatchContext', (['alt_parsed'], {}), '(alt_parsed)\n', (13570, 13582), False, 'from refex.python import matcher\n'), ((15287, 15323), 'refex.python.matchers.syntax_matchers.StmtPattern', 'syntax_matchers.StmtPattern', (['pattern'], {}), '(pattern)\n', (15314, 15323), False, 'from refex.python.matchers import syntax_matchers\n'), ((15028, 15064), 'refex.python.matchers.syntax_matchers.ExprPattern', 'syntax_matchers.ExprPattern', (['pattern'], {}), '(pattern)\n', (15055, 15064), False, 'from refex.python.matchers import syntax_matchers\n')]
from subprocess import check_output from os import system system ("wp post delete 1") system("wp post create --post_title='A first post' --post_status=publish --post_date='2014-10-01 07:00:00' --post_content=\"This is the content\" --post_author=1") system("wp post create --post_title='A second post' --post_status=publish --post_date='2014-10-02 07:00:00' --post_content=\"This is the second post content\" --post_author=1 ") system("wp post create --post_title='A third post' --post_status=publish --post_date='2014-10-10 07:00:00' --post_content=\"This is the third post content\" --post_author=1 ") system("wp post create --post_title='A fourth post' --post_status=publish --post_date='2014-10-15 07:00:00' --post_content=\"This is the fourth post content\" --post_author=1 ") system("wp post create --post_title='A sports post' --post_status=publish --post_date='2014-10-20 07:00:00' --post_content=\"This is the sports post content\" --post_author=1") system("wp post create --post_type=page --post_title='A first page' --post_status=publish --post_date='2014-10-15 07:00:00' --post_content=\"This is the first page content\" --post_author=1") system("wp option update permalink_structure '/%year%/%monthnum%/%postname%/' ") system("wp plugin activate --all") system("wp user update 1 --display_name='<NAME>' --first_name='Ira' --last_name='Rubel' ") system("wp eval-file create_password.php") (p5, p4, p3, p2, p1) = check_output(["wp","post","list","--field=ID"]).split() system("wp post term add %s post_tag tag1" % p1) system("wp post term add %s post_tag tag1" % p2) system("wp post term add %s post_tag tag2" % p2) system("wp post term add %s post_tag tag1" % p3) system("wp post term add %s category cat1" % p1) system("wp post term add %s departments sports" % p5)
[ "subprocess.check_output", "os.system" ]
[((59, 85), 'os.system', 'system', (['"""wp post delete 1"""'], {}), "('wp post delete 1')\n", (65, 85), False, 'from os import system\n'), ((88, 263), 'os.system', 'system', (['"""wp post create --post_title=\'A first post\' --post_status=publish --post_date=\'2014-10-01 07:00:00\' --post_content="This is the content" --post_author=1"""'], {}), '(\n \'wp post create --post_title=\\\'A first post\\\' --post_status=publish --post_date=\\\'2014-10-01 07:00:00\\\' --post_content="This is the content" --post_author=1\'\n )\n', (94, 263), False, 'from os import system\n'), ((252, 441), 'os.system', 'system', (['"""wp post create --post_title=\'A second post\' --post_status=publish --post_date=\'2014-10-02 07:00:00\' --post_content="This is the second post content" --post_author=1 """'], {}), '(\n \'wp post create --post_title=\\\'A second post\\\' --post_status=publish --post_date=\\\'2014-10-02 07:00:00\\\' --post_content="This is the second post content" --post_author=1 \'\n )\n', (258, 441), False, 'from os import system\n'), ((430, 617), 'os.system', 'system', (['"""wp post create --post_title=\'A third post\' --post_status=publish --post_date=\'2014-10-10 07:00:00\' --post_content="This is the third post content" --post_author=1 """'], {}), '(\n \'wp post create --post_title=\\\'A third post\\\' --post_status=publish --post_date=\\\'2014-10-10 07:00:00\\\' --post_content="This is the third post content" --post_author=1 \'\n )\n', (436, 617), False, 'from os import system\n'), ((606, 795), 'os.system', 'system', (['"""wp post create --post_title=\'A fourth post\' --post_status=publish --post_date=\'2014-10-15 07:00:00\' --post_content="This is the fourth post content" --post_author=1 """'], {}), '(\n \'wp post create --post_title=\\\'A fourth post\\\' --post_status=publish --post_date=\\\'2014-10-15 07:00:00\\\' --post_content="This is the fourth post content" --post_author=1 \'\n )\n', (612, 795), False, 'from os import system\n'), ((784, 972), 'os.system', 'system', (['"""wp post create --post_title=\'A sports post\' --post_status=publish --post_date=\'2014-10-20 07:00:00\' --post_content="This is the sports post content" --post_author=1"""'], {}), '(\n \'wp post create --post_title=\\\'A sports post\\\' --post_status=publish --post_date=\\\'2014-10-20 07:00:00\\\' --post_content="This is the sports post content" --post_author=1\'\n )\n', (790, 972), False, 'from os import system\n'), ((961, 1164), 'os.system', 'system', (['"""wp post create --post_type=page --post_title=\'A first page\' --post_status=publish --post_date=\'2014-10-15 07:00:00\' --post_content="This is the first page content" --post_author=1"""'], {}), '(\n \'wp post create --post_type=page --post_title=\\\'A first page\\\' --post_status=publish --post_date=\\\'2014-10-15 07:00:00\\\' --post_content="This is the first page content" --post_author=1\'\n )\n', (967, 1164), False, 'from os import system\n'), ((1153, 1238), 'os.system', 'system', (['"""wp option update permalink_structure \'/%year%/%monthnum%/%postname%/\' """'], {}), '("wp option update permalink_structure \'/%year%/%monthnum%/%postname%/\' "\n )\n', (1159, 1238), False, 'from os import system\n'), ((1234, 1268), 'os.system', 'system', (['"""wp plugin activate --all"""'], {}), "('wp plugin activate --all')\n", (1240, 1268), False, 'from os import system\n'), ((1269, 1369), 'os.system', 'system', (['"""wp user update 1 --display_name=\'<NAME>\' --first_name=\'Ira\' --last_name=\'Rubel\' """'], {}), '(\n "wp user update 1 --display_name=\'<NAME>\' --first_name=\'Ira\' --last_name=\'Rubel\' "\n )\n', (1275, 1369), False, 'from os import system\n'), ((1360, 1402), 'os.system', 'system', (['"""wp eval-file create_password.php"""'], {}), "('wp eval-file create_password.php')\n", (1366, 1402), False, 'from os import system\n'), ((1484, 1532), 'os.system', 'system', (["('wp post term add %s post_tag tag1' % p1)"], {}), "('wp post term add %s post_tag tag1' % p1)\n", (1490, 1532), False, 'from os import system\n'), ((1533, 1581), 'os.system', 'system', (["('wp post term add %s post_tag tag1' % p2)"], {}), "('wp post term add %s post_tag tag1' % p2)\n", (1539, 1581), False, 'from os import system\n'), ((1582, 1630), 'os.system', 'system', (["('wp post term add %s post_tag tag2' % p2)"], {}), "('wp post term add %s post_tag tag2' % p2)\n", (1588, 1630), False, 'from os import system\n'), ((1631, 1679), 'os.system', 'system', (["('wp post term add %s post_tag tag1' % p3)"], {}), "('wp post term add %s post_tag tag1' % p3)\n", (1637, 1679), False, 'from os import system\n'), ((1680, 1728), 'os.system', 'system', (["('wp post term add %s category cat1' % p1)"], {}), "('wp post term add %s category cat1' % p1)\n", (1686, 1728), False, 'from os import system\n'), ((1729, 1782), 'os.system', 'system', (["('wp post term add %s departments sports' % p5)"], {}), "('wp post term add %s departments sports' % p5)\n", (1735, 1782), False, 'from os import system\n'), ((1427, 1477), 'subprocess.check_output', 'check_output', (["['wp', 'post', 'list', '--field=ID']"], {}), "(['wp', 'post', 'list', '--field=ID'])\n", (1439, 1477), False, 'from subprocess import check_output\n')]
""" CLI utilities. """ import click def running_command_name() -> str: """ Returns the current CLI command name as a space-separated string, or ``id3c`` if not running under any command. """ appname = None context = click.get_current_context(silent = True) if context: appname = context.command_path if not appname: appname = "id3c" return appname
[ "click.get_current_context" ]
[((242, 280), 'click.get_current_context', 'click.get_current_context', ([], {'silent': '(True)'}), '(silent=True)\n', (267, 280), False, 'import click\n')]
#!/usr/bin/env python from os.path import join, dirname from cloudify import ctx ctx.download_resource( join('components', 'utils.py'), join(dirname(__file__), 'utils.py')) import utils # NOQA runtime_props = ctx.instance.runtime_properties SERVICE_NAME = runtime_props['service_name'] HOME_DIR = runtime_props['home_dir'] @utils.retry(ValueError) def check_worker_running(): """Use `celery status` to check if the worker is running.""" work_dir = join(HOME_DIR, 'work') celery_path = join(HOME_DIR, 'env', 'bin', 'celery') result = utils.sudo([ 'CELERY_WORK_DIR={0}'.format(work_dir), celery_path, '--config=cloudify.broker_config', 'status' ], ignore_failures=True) if result.returncode != 0: raise ValueError('celery status: worker not running') ctx.logger.info('Starting Management Worker Service...') utils.start_service(SERVICE_NAME) utils.systemd.verify_alive(SERVICE_NAME) try: check_worker_running() except ValueError: ctx.abort_operation('Celery worker failed to start')
[ "utils.start_service", "os.path.dirname", "cloudify.ctx.logger.info", "cloudify.ctx.abort_operation", "utils.retry", "os.path.join", "utils.systemd.verify_alive" ]
[((339, 362), 'utils.retry', 'utils.retry', (['ValueError'], {}), '(ValueError)\n', (350, 362), False, 'import utils\n'), ((830, 886), 'cloudify.ctx.logger.info', 'ctx.logger.info', (['"""Starting Management Worker Service..."""'], {}), "('Starting Management Worker Service...')\n", (845, 886), False, 'from cloudify import ctx\n'), ((887, 920), 'utils.start_service', 'utils.start_service', (['SERVICE_NAME'], {}), '(SERVICE_NAME)\n', (906, 920), False, 'import utils\n'), ((922, 962), 'utils.systemd.verify_alive', 'utils.systemd.verify_alive', (['SERVICE_NAME'], {}), '(SERVICE_NAME)\n', (948, 962), False, 'import utils\n'), ((111, 141), 'os.path.join', 'join', (['"""components"""', '"""utils.py"""'], {}), "('components', 'utils.py')\n", (115, 141), False, 'from os.path import join, dirname\n'), ((471, 493), 'os.path.join', 'join', (['HOME_DIR', '"""work"""'], {}), "(HOME_DIR, 'work')\n", (475, 493), False, 'from os.path import join, dirname\n'), ((512, 550), 'os.path.join', 'join', (['HOME_DIR', '"""env"""', '"""bin"""', '"""celery"""'], {}), "(HOME_DIR, 'env', 'bin', 'celery')\n", (516, 550), False, 'from os.path import join, dirname\n'), ((152, 169), 'os.path.dirname', 'dirname', (['__file__'], {}), '(__file__)\n', (159, 169), False, 'from os.path import join, dirname\n'), ((1019, 1071), 'cloudify.ctx.abort_operation', 'ctx.abort_operation', (['"""Celery worker failed to start"""'], {}), "('Celery worker failed to start')\n", (1038, 1071), False, 'from cloudify import ctx\n')]
from typing import Any, List, Literal, TypedDict from .FHIR_Attachment import FHIR_Attachment from .FHIR_ClaimResponse_AddItem import FHIR_ClaimResponse_AddItem from .FHIR_ClaimResponse_Adjudication import FHIR_ClaimResponse_Adjudication from .FHIR_ClaimResponse_Error import FHIR_ClaimResponse_Error from .FHIR_ClaimResponse_Insurance import FHIR_ClaimResponse_Insurance from .FHIR_ClaimResponse_Item import FHIR_ClaimResponse_Item from .FHIR_ClaimResponse_Payment import FHIR_ClaimResponse_Payment from .FHIR_ClaimResponse_ProcessNote import FHIR_ClaimResponse_ProcessNote from .FHIR_ClaimResponse_Total import FHIR_ClaimResponse_Total from .FHIR_code import FHIR_code from .FHIR_CodeableConcept import FHIR_CodeableConcept from .FHIR_dateTime import FHIR_dateTime from .FHIR_Element import FHIR_Element from .FHIR_id import FHIR_id from .FHIR_Identifier import FHIR_Identifier from .FHIR_Meta import FHIR_Meta from .FHIR_Narrative import FHIR_Narrative from .FHIR_Period import FHIR_Period from .FHIR_Reference import FHIR_Reference from .FHIR_string import FHIR_string from .FHIR_uri import FHIR_uri # This resource provides the adjudication details from the processing of a Claim resource. FHIR_ClaimResponse = TypedDict( "FHIR_ClaimResponse", { # This is a ClaimResponse resource "resourceType": Literal["ClaimResponse"], # The logical id of the resource, as used in the URL for the resource. Once assigned, this value never changes. "id": FHIR_id, # The metadata about the resource. This is content that is maintained by the infrastructure. Changes to the content might not always be associated with version changes to the resource. "meta": FHIR_Meta, # A reference to a set of rules that were followed when the resource was constructed, and which must be understood when processing the content. Often, this is a reference to an implementation guide that defines the special rules along with other profiles etc. "implicitRules": FHIR_uri, # Extensions for implicitRules "_implicitRules": FHIR_Element, # The base language in which the resource is written. "language": FHIR_code, # Extensions for language "_language": FHIR_Element, # A human-readable narrative that contains a summary of the resource and can be used to represent the content of the resource to a human. The narrative need not encode all the structured data, but is required to contain sufficient detail to make it "clinically safe" for a human to just read the narrative. Resource definitions may define what content should be represented in the narrative to ensure clinical safety. "text": FHIR_Narrative, # These resources do not have an independent existence apart from the resource that contains them - they cannot be identified independently, and nor can they have their own independent transaction scope. "contained": List[Any], # May be used to represent additional information that is not part of the basic definition of the resource. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer can define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. "extension": List[Any], # May be used to represent additional information that is not part of the basic definition of the resource and that modifies the understanding of the element that contains it and/or the understanding of the containing element's descendants. Usually modifier elements provide negation or qualification. To make the use of extensions safe and manageable, there is a strict set of governance applied to the definition and use of extensions. Though any implementer is allowed to define an extension, there is a set of requirements that SHALL be met as part of the definition of the extension. Applications processing a resource are required to check for modifier extensions.Modifier extensions SHALL NOT change the meaning of any elements on Resource or DomainResource (including cannot change the meaning of modifierExtension itself). "modifierExtension": List[Any], # A unique identifier assigned to this claim response. "identifier": List[FHIR_Identifier], # The status of the resource instance. "status": FHIR_code, # Extensions for status "_status": FHIR_Element, # A finer grained suite of claim type codes which may convey additional information such as Inpatient vs Outpatient and/or a specialty service. "type": FHIR_CodeableConcept, # A finer grained suite of claim type codes which may convey additional information such as Inpatient vs Outpatient and/or a specialty service. "subType": FHIR_CodeableConcept, # A code to indicate whether the nature of the request is: to request adjudication of products and services previously rendered; or requesting authorization and adjudication for provision in the future; or requesting the non-binding adjudication of the listed products and services which could be provided in the future. "use": FHIR_code, # Extensions for use "_use": FHIR_Element, # The party to whom the professional services and/or products have been supplied or are being considered and for whom actual for facast reimbursement is sought. "patient": FHIR_Reference, # The date this resource was created. "created": FHIR_dateTime, # Extensions for created "_created": FHIR_Element, # The party responsible for authorization, adjudication and reimbursement. "insurer": FHIR_Reference, # The provider which is responsible for the claim, predetermination or preauthorization. "requestor": FHIR_Reference, # Original request resource reference. "request": FHIR_Reference, # The outcome of the claim, predetermination, or preauthorization processing. "outcome": FHIR_code, # Extensions for outcome "_outcome": FHIR_Element, # A human readable description of the status of the adjudication. "disposition": FHIR_string, # Extensions for disposition "_disposition": FHIR_Element, # Reference from the Insurer which is used in later communications which refers to this adjudication. "preAuthRef": FHIR_string, # Extensions for preAuthRef "_preAuthRef": FHIR_Element, # The time frame during which this authorization is effective. "preAuthPeriod": FHIR_Period, # Type of Party to be reimbursed: subscriber, provider, other. "payeeType": FHIR_CodeableConcept, # A claim line. Either a simple (a product or service) or a 'group' of details which can also be a simple items or groups of sub-details. "item": List[FHIR_ClaimResponse_Item], # The first-tier service adjudications for payor added product or service lines. "addItem": List[FHIR_ClaimResponse_AddItem], # The adjudication results which are presented at the header level rather than at the line-item or add-item levels. "adjudication": List[FHIR_ClaimResponse_Adjudication], # Categorized monetary totals for the adjudication. "total": List[FHIR_ClaimResponse_Total], # Payment details for the adjudication of the claim. "payment": FHIR_ClaimResponse_Payment, # A code, used only on a response to a preauthorization, to indicate whether the benefits payable have been reserved and for whom. "fundsReserve": FHIR_CodeableConcept, # A code for the form to be used for printing the content. "formCode": FHIR_CodeableConcept, # The actual form, by reference or inclusion, for printing the content or an EOB. "form": FHIR_Attachment, # A note that describes or explains adjudication results in a human readable form. "processNote": List[FHIR_ClaimResponse_ProcessNote], # Request for additional supporting or authorizing information. "communicationRequest": List[FHIR_Reference], # Financial instruments for reimbursement for the health care products and services specified on the claim. "insurance": List[FHIR_ClaimResponse_Insurance], # Errors encountered during the processing of the adjudication. "error": List[FHIR_ClaimResponse_Error], }, total=False, )
[ "typing.TypedDict" ]
[((1218, 2721), 'typing.TypedDict', 'TypedDict', (['"""FHIR_ClaimResponse"""', "{'resourceType': Literal['ClaimResponse'], 'id': FHIR_id, 'meta': FHIR_Meta,\n 'implicitRules': FHIR_uri, '_implicitRules': FHIR_Element, 'language':\n FHIR_code, '_language': FHIR_Element, 'text': FHIR_Narrative,\n 'contained': List[Any], 'extension': List[Any], 'modifierExtension':\n List[Any], 'identifier': List[FHIR_Identifier], 'status': FHIR_code,\n '_status': FHIR_Element, 'type': FHIR_CodeableConcept, 'subType':\n FHIR_CodeableConcept, 'use': FHIR_code, '_use': FHIR_Element, 'patient':\n FHIR_Reference, 'created': FHIR_dateTime, '_created': FHIR_Element,\n 'insurer': FHIR_Reference, 'requestor': FHIR_Reference, 'request':\n FHIR_Reference, 'outcome': FHIR_code, '_outcome': FHIR_Element,\n 'disposition': FHIR_string, '_disposition': FHIR_Element, 'preAuthRef':\n FHIR_string, '_preAuthRef': FHIR_Element, 'preAuthPeriod': FHIR_Period,\n 'payeeType': FHIR_CodeableConcept, 'item': List[FHIR_ClaimResponse_Item\n ], 'addItem': List[FHIR_ClaimResponse_AddItem], 'adjudication': List[\n FHIR_ClaimResponse_Adjudication], 'total': List[\n FHIR_ClaimResponse_Total], 'payment': FHIR_ClaimResponse_Payment,\n 'fundsReserve': FHIR_CodeableConcept, 'formCode': FHIR_CodeableConcept,\n 'form': FHIR_Attachment, 'processNote': List[\n FHIR_ClaimResponse_ProcessNote], 'communicationRequest': List[\n FHIR_Reference], 'insurance': List[FHIR_ClaimResponse_Insurance],\n 'error': List[FHIR_ClaimResponse_Error]}"], {'total': '(False)'}), "('FHIR_ClaimResponse', {'resourceType': Literal['ClaimResponse'],\n 'id': FHIR_id, 'meta': FHIR_Meta, 'implicitRules': FHIR_uri,\n '_implicitRules': FHIR_Element, 'language': FHIR_code, '_language':\n FHIR_Element, 'text': FHIR_Narrative, 'contained': List[Any],\n 'extension': List[Any], 'modifierExtension': List[Any], 'identifier':\n List[FHIR_Identifier], 'status': FHIR_code, '_status': FHIR_Element,\n 'type': FHIR_CodeableConcept, 'subType': FHIR_CodeableConcept, 'use':\n FHIR_code, '_use': FHIR_Element, 'patient': FHIR_Reference, 'created':\n FHIR_dateTime, '_created': FHIR_Element, 'insurer': FHIR_Reference,\n 'requestor': FHIR_Reference, 'request': FHIR_Reference, 'outcome':\n FHIR_code, '_outcome': FHIR_Element, 'disposition': FHIR_string,\n '_disposition': FHIR_Element, 'preAuthRef': FHIR_string, '_preAuthRef':\n FHIR_Element, 'preAuthPeriod': FHIR_Period, 'payeeType':\n FHIR_CodeableConcept, 'item': List[FHIR_ClaimResponse_Item], 'addItem':\n List[FHIR_ClaimResponse_AddItem], 'adjudication': List[\n FHIR_ClaimResponse_Adjudication], 'total': List[\n FHIR_ClaimResponse_Total], 'payment': FHIR_ClaimResponse_Payment,\n 'fundsReserve': FHIR_CodeableConcept, 'formCode': FHIR_CodeableConcept,\n 'form': FHIR_Attachment, 'processNote': List[\n FHIR_ClaimResponse_ProcessNote], 'communicationRequest': List[\n FHIR_Reference], 'insurance': List[FHIR_ClaimResponse_Insurance],\n 'error': List[FHIR_ClaimResponse_Error]}, total=False)\n", (1227, 2721), False, 'from typing import Any, List, Literal, TypedDict\n')]
from .quadpack import quad, dblquad, tplquad, nquad excluded = ['excluded', 'quadpack'] __all__ = [s for s in dir() if not ((s in excluded)or s.startswith('_'))] from labugr.testing.utils import PytestTester test = PytestTester(__name__) del PytestTester
[ "labugr.testing.utils.PytestTester" ]
[((218, 240), 'labugr.testing.utils.PytestTester', 'PytestTester', (['__name__'], {}), '(__name__)\n', (230, 240), False, 'from labugr.testing.utils import PytestTester\n')]
from __future__ import annotations import itertools from collections.abc import Iterator, Sequence import more_itertools from tqdm import trange Arrows = dict[int, int] def main(): # arrangement = [3, 8, 9, 1, 2, 5, 4, 6, 7] arrangement = [4, 5, 9, 6, 7, 2, 8, 1, 3] # Part 1 arrows = build_circular_arrows(arrangement) crab_modify_arrows(arrows, arrangement[0], plucks=3, repeat=100) final_arrangement = list(nodes_in_circle(arrows, start=1)) p1_answer = ''.join(str(n) for n in final_arrangement[1:]) print(p1_answer) # Part 2 arrangement = arrangement + list(range(10, 1_000_001)) arrows = build_circular_arrows(arrangement) crab_modify_arrows(arrows, arrangement[0], plucks=3, repeat=10_000_000) fst, snd, trd = more_itertools.take(3, nodes_in_circle(arrows, start=1)) p2_answer = snd * trd print(p2_answer) def build_circular_arrows(arrangement: Sequence[int]) -> Arrows: """ Builds a circular graph as a dictionary mapping from one node label to the next. """ looped_arrangement = itertools.chain(arrangement, arrangement[:1]) arrows = {u: v for u, v in more_itertools.windowed(looped_arrangement, n=2)} return arrows def nodes_in_circle(arrows: Arrows, start: int) -> Iterator[int]: """ Obtains a sequence of node labels around the arrows graph starting from the given `start` label until it reaches back to start. """ current = start while True: yield current current = arrows[current] if current == start: break def crab_modify_arrows(arrows: Arrows, current: int, plucks: int, repeat: int = 1) -> int: """ Modifies the arrows graph in-place according to crab's challenge starting at the given current node label. It returns the next *current* node label to resume the next step. """ for _ in trange(repeat): plucked = more_itertools.take(plucks, nodes_in_circle(arrows, arrows[current])) candidates = count_in_modulus(current - 1, -1, modulo=len(arrows)) dest = more_itertools.first_true(candidates, pred=lambda v: v not in plucked) rear = plucked[-1] arrows[current], arrows[rear], arrows[dest] = arrows[rear], arrows[dest], arrows[current] current = arrows[current] return current def count_in_modulus(start: int, step: int = 1, *, modulo: int) -> Iterator[int]: """ Produces an arithmetic sequence of numbers under the given modulus with 1-indexing (so remainder 0 would actually yield the modulus itself). """ for value in itertools.count(start, step): yield value % modulo or modulo if __name__ == '__main__': main()
[ "more_itertools.windowed", "tqdm.trange", "itertools.count", "itertools.chain", "more_itertools.first_true" ]
[((1074, 1119), 'itertools.chain', 'itertools.chain', (['arrangement', 'arrangement[:1]'], {}), '(arrangement, arrangement[:1])\n', (1089, 1119), False, 'import itertools\n'), ((1885, 1899), 'tqdm.trange', 'trange', (['repeat'], {}), '(repeat)\n', (1891, 1899), False, 'from tqdm import trange\n'), ((2594, 2622), 'itertools.count', 'itertools.count', (['start', 'step'], {}), '(start, step)\n', (2609, 2622), False, 'import itertools\n'), ((2079, 2149), 'more_itertools.first_true', 'more_itertools.first_true', (['candidates'], {'pred': '(lambda v: v not in plucked)'}), '(candidates, pred=lambda v: v not in plucked)\n', (2104, 2149), False, 'import more_itertools\n'), ((1151, 1199), 'more_itertools.windowed', 'more_itertools.windowed', (['looped_arrangement'], {'n': '(2)'}), '(looped_arrangement, n=2)\n', (1174, 1199), False, 'import more_itertools\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jan 12 15:44:11 2021 @author: lihuanyu """ import torch.nn as nn import torch import math import torchsummary as summary from torchstat import stat import torch.nn.functional as F from blurpool import BlurPool __all__ = ["seedsortnet","seedsortnet75"] class SubSpace_SFSAM(nn.Module): def __init__(self, nin): super(SubSpace_SFSAM, self).__init__() self.conv_7x7 = nn.Conv2d(2, 1, kernel_size=7, stride=1, padding=3, groups=1) self.bn_point = nn.BatchNorm2d(1, momentum=0.9) self.relu_point = nn.ReLU(inplace=False) self.softmax = nn.Softmax(dim=2) def forward(self, x): out_mean = torch.mean(x, dim=1, keepdim=True) out_max, _ = torch.max(x, dim=1, keepdim=True) out = [out_max, out_mean] out = torch.cat(out,dim=1) out = self.conv_7x7(out) out = self.bn_point(out) out = self.relu_point(out) m, n, p, q = out.shape out = self.softmax(out.view(m, n, -1)) out = out.view(m, n, p, q) out = out.expand(x.shape[0], x.shape[1], x.shape[2], x.shape[3]) out = torch.mul(out, x) out = out + x return out class SFSAM(nn.Module): def __init__(self, nin, nout, h, w, num_splits): super(SFSAM, self).__init__() assert nin % num_splits == 0 self.nin = nin self.nout = nout self.h = h self.w = w self.num_splits = num_splits self.subspaces = nn.ModuleList( [SubSpace_SFSAM(int(self.nin / self.num_splits)) for i in range(self.num_splits)] ) def forward(self, x): group_size = int(self.nin / self.num_splits) sub_feat = torch.chunk(x, self.num_splits, dim=1) out = [] for idx, l in enumerate(self.subspaces): out.append(self.subspaces[idx](sub_feat[idx])) out = torch.cat(out, dim=1) return out class BasicConv2d(nn.Module): def __init__(self, in_channels, out_channels, **kwargs): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_channels) self.relu6 = nn.ReLU6(inplace=True) def forward(self, x): x = self.conv(x) x = self.bn(x) return self.relu6(x) def _make_divisible(v, divisor, min_value=None): if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class subsampled(nn.Module): def __init__(self,in_channels,out_channels,filter_size=2,**kwargs): super(subsampled, self).__init__() self.maxpool = nn.MaxPool2d(kernel_size=2, stride=1) self.blurpool=BlurPool(in_channels, filt_size=filter_size, stride=2) def forward(self, x): x = self.maxpool(x) x = self.blurpool(x) return x class Root_module(nn.Module): def __init__(self, in_channels,ch3x3_conv,ch1x1_first,ch3x3,pool_proj): super(Root_module, self).__init__() self.conv1 = BasicConv2d(in_channels, ch3x3_conv, kernel_size=3, stride=1, padding=1) self.branch1 = nn.Sequential( BasicConv2d(ch3x3_conv, ch1x1_first, kernel_size=3,padding=1,stride=2), BasicConv2d(ch1x1_first, ch3x3, kernel_size=1) ) self.branch2 = nn.Sequential( subsampled(16,16) ) def forward(self, x): x = self.conv1(x) branch1 = self.branch1(x) branch2 = self.branch2(x) outputs = [branch1, branch2] return torch.cat(outputs, 1) class shield_block(nn.Module): def __init__(self, inp, oup, expand_ratio,expand_channel): self.identity_map = False super(shield_block, self).__init__() hidden_dim = inp // expand_ratio if hidden_dim < oup / 6.: hidden_dim = math.ceil(oup / 6.) hidden_dim = _make_divisible(hidden_dim, 16) oup1 = math.ceil((oup/6.) * expand_channel) oup2 = oup - oup1 if inp != oup: self.conv = nn.Sequential( nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), nn.BatchNorm2d(hidden_dim), nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False), nn.BatchNorm2d(oup), nn.ReLU6(inplace=True), ) if inp == oup: self.identity_map = True self.conv = nn.Sequential( nn.Conv2d(inp, inp, 3, 1, 1, groups=inp, bias=False), nn.BatchNorm2d(inp), nn.ReLU6(inplace=True), nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False), nn.BatchNorm2d(hidden_dim), nn.Conv2d(hidden_dim, oup1, 1, 1, 0, bias=False), nn.BatchNorm2d(oup1), nn.ReLU6(inplace=True), nn.Conv2d(oup1, oup1, 3, 1, 1, groups=oup1, bias=False), nn.BatchNorm2d(oup1), ) self.branch1 = nn.Sequential( nn.Conv2d(inp, inp, 3, 1, 1, groups=inp, bias=False), nn.BatchNorm2d(inp), nn.ReLU6(inplace=True), nn.Conv2d(inp, oup2, 1, 1, 0, bias=False), nn.BatchNorm2d(oup2), nn.ReLU6(inplace=True), ) def forward(self, x): out = self.conv(x) if self.identity_map == True: identity = x branch1 = self.branch1(x) out = [out, branch1] out = torch.cat(out, 1) out += identity return out class Seedsortnet(nn.Module): def __init__(self, num_classes=2, width=1,groups=4,expand_channel=4,init_weights=True): super(Seedsortnet, self).__init__() self.root_module = Root_module(3,16,32,16,16) # [-1, 32, 112, 112] out1 = int(64*width) out2 = int(128 *width) out3 = int(192*width) out4 = int(256 *width) self.stage1_up = shield_block(32,out1,2,1) self.stage1_1 = shield_block(out1,out1,6,expand_channel) self.sfsam1 = SFSAM(out1,out1,112,112, groups) self.translayer1 = subsampled(out1,out1) self.stage2_up = shield_block(out1,out2,2,1) self.stage2_1 = shield_block(out2,out2,6,expand_channel) self.stage2_2 = shield_block(out2,out2,6,expand_channel) self.stage2_3 = shield_block(out2,out2,6,expand_channel) self.sfsam2 = SFSAM(out2,out2,56,56, groups) self.translayer2 = subsampled(out2,out2) self.stage3_up = shield_block(out2,out3,2,1) self.stage3_1 = shield_block(out3,out3,6,expand_channel) self.stage3_2 = shield_block(out3,out3,6,expand_channel) self.stage3_3 = shield_block(out3,out3,6,expand_channel) self.stage3_4 = shield_block(out3,out3,6,expand_channel) self.sfsam3 = SFSAM(out3,out3,28,28,groups) self.translayer3 = subsampled(out3,out3) self.stage4_up = shield_block(out3,out4,2,1) self.stage4_1 = shield_block(out4,out4,6,expand_channel) self.stage4_2 = shield_block(out4,out4,6,expand_channel) self.stage4_3 = shield_block(out4,out4,6,expand_channel) self.sfsam4 = SFSAM(out4,out4,14,14,groups) self.translayer4 = subsampled(out4,out4) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.classifier = nn.Sequential( nn.Dropout(0.2), nn.Linear(out4, num_classes)) if init_weights==True: self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): import scipy.stats as stats X = stats.truncnorm(-2, 2, scale=0.01) values = torch.as_tensor(X.rvs(m.weight.numel()), dtype=m.weight.dtype) values = values.view(m.weight.size()) with torch.no_grad(): m.weight.copy_(values) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.root_module(x) x = self.stage1_up(x) x = self.stage1_1(x) x = self.sfsam1(x) x = self.translayer1(x) x = self.stage2_up(x) x = self.stage2_1(x) x = self.stage2_2(x) x = self.stage2_3(x) x = self.sfsam2(x) x = self.translayer2(x) x = self.stage3_up(x) x = self.stage3_1(x) x = self.stage3_2(x) x = self.stage3_3(x) x = self.stage3_4(x) x = self.sfsam3(x) x = self.translayer3(x) x = self.stage4_up(x) x = self.stage4_1(x) x = self.stage4_2(x) x = self.stage4_3(x) x = self.sfsam4(x) x = self.translayer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def seedsortnet(**kwargs): """ Constructs a Seedsortnet model """ return Seedsortnet(**kwargs) def seedsortnet75(**kwargs): """ Constructs a Seedsortnet model """ return Seedsortnet(width=0.75,**kwargs) if __name__=='__main__': model = seedsortnet(groups=4) model.eval() print(model) stat(model,(3, 224, 224))
[ "torch.nn.Dropout", "scipy.stats.truncnorm", "torch.cat", "torch.nn.init.constant_", "torch.nn.Softmax", "torch.no_grad", "torchstat.stat", "torch.nn.Linear", "torch.mean", "math.ceil", "torch.nn.Conv2d", "torch.mul", "torch.nn.BatchNorm2d", "torch.max", "torch.nn.MaxPool2d", "torch.nn.AdaptiveAvgPool2d", "torch.nn.ReLU", "torch.nn.ReLU6", "blurpool.BlurPool", "torch.chunk" ]
[((10182, 10208), 'torchstat.stat', 'stat', (['model', '(3, 224, 224)'], {}), '(model, (3, 224, 224))\n', (10186, 10208), False, 'from torchstat import stat\n'), ((458, 519), 'torch.nn.Conv2d', 'nn.Conv2d', (['(2)', '(1)'], {'kernel_size': '(7)', 'stride': '(1)', 'padding': '(3)', 'groups': '(1)'}), '(2, 1, kernel_size=7, stride=1, padding=3, groups=1)\n', (467, 519), True, 'import torch.nn as nn\n'), ((545, 576), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(1)'], {'momentum': '(0.9)'}), '(1, momentum=0.9)\n', (559, 576), True, 'import torch.nn as nn\n'), ((603, 625), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(False)'}), '(inplace=False)\n', (610, 625), True, 'import torch.nn as nn\n'), ((650, 667), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(2)'}), '(dim=2)\n', (660, 667), True, 'import torch.nn as nn\n'), ((716, 750), 'torch.mean', 'torch.mean', (['x'], {'dim': '(1)', 'keepdim': '(True)'}), '(x, dim=1, keepdim=True)\n', (726, 750), False, 'import torch\n'), ((775, 808), 'torch.max', 'torch.max', (['x'], {'dim': '(1)', 'keepdim': '(True)'}), '(x, dim=1, keepdim=True)\n', (784, 808), False, 'import torch\n'), ((874, 895), 'torch.cat', 'torch.cat', (['out'], {'dim': '(1)'}), '(out, dim=1)\n', (883, 895), False, 'import torch\n'), ((1202, 1219), 'torch.mul', 'torch.mul', (['out', 'x'], {}), '(out, x)\n', (1211, 1219), False, 'import torch\n'), ((1813, 1851), 'torch.chunk', 'torch.chunk', (['x', 'self.num_splits'], {'dim': '(1)'}), '(x, self.num_splits, dim=1)\n', (1824, 1851), False, 'import torch\n'), ((1993, 2014), 'torch.cat', 'torch.cat', (['out'], {'dim': '(1)'}), '(out, dim=1)\n', (2002, 2014), False, 'import torch\n'), ((2195, 2253), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_channels', 'out_channels'], {'bias': '(False)'}), '(in_channels, out_channels, bias=False, **kwargs)\n', (2204, 2253), True, 'import torch.nn as nn\n'), ((2272, 2300), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (2286, 2300), True, 'import torch.nn as nn\n'), ((2322, 2344), 'torch.nn.ReLU6', 'nn.ReLU6', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2330, 2344), True, 'import torch.nn as nn\n'), ((2872, 2909), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(2)', 'stride': '(1)'}), '(kernel_size=2, stride=1)\n', (2884, 2909), True, 'import torch.nn as nn\n'), ((2932, 2986), 'blurpool.BlurPool', 'BlurPool', (['in_channels'], {'filt_size': 'filter_size', 'stride': '(2)'}), '(in_channels, filt_size=filter_size, stride=2)\n', (2940, 2986), False, 'from blurpool import BlurPool\n'), ((3882, 3903), 'torch.cat', 'torch.cat', (['outputs', '(1)'], {}), '(outputs, 1)\n', (3891, 3903), False, 'import torch\n'), ((4296, 4333), 'math.ceil', 'math.ceil', (['(oup / 6.0 * expand_channel)'], {}), '(oup / 6.0 * expand_channel)\n', (4305, 4333), False, 'import math\n'), ((8105, 8133), 'torch.nn.AdaptiveAvgPool2d', 'nn.AdaptiveAvgPool2d', (['(1, 1)'], {}), '((1, 1))\n', (8125, 8133), True, 'import torch.nn as nn\n'), ((4195, 4215), 'math.ceil', 'math.ceil', (['(oup / 6.0)'], {}), '(oup / 6.0)\n', (4204, 4215), False, 'import math\n'), ((5939, 5956), 'torch.cat', 'torch.cat', (['out', '(1)'], {}), '(out, 1)\n', (5948, 5956), False, 'import torch\n'), ((8184, 8199), 'torch.nn.Dropout', 'nn.Dropout', (['(0.2)'], {}), '(0.2)\n', (8194, 8199), True, 'import torch.nn as nn\n'), ((8209, 8237), 'torch.nn.Linear', 'nn.Linear', (['out4', 'num_classes'], {}), '(out4, num_classes)\n', (8218, 8237), True, 'import torch.nn as nn\n'), ((4452, 4499), 'torch.nn.Conv2d', 'nn.Conv2d', (['inp', 'hidden_dim', '(1)', '(1)', '(0)'], {'bias': '(False)'}), '(inp, hidden_dim, 1, 1, 0, bias=False)\n', (4461, 4499), True, 'import torch.nn as nn\n'), ((4517, 4543), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['hidden_dim'], {}), '(hidden_dim)\n', (4531, 4543), True, 'import torch.nn as nn\n'), ((4561, 4608), 'torch.nn.Conv2d', 'nn.Conv2d', (['hidden_dim', 'oup', '(1)', '(1)', '(0)'], {'bias': '(False)'}), '(hidden_dim, oup, 1, 1, 0, bias=False)\n', (4570, 4608), True, 'import torch.nn as nn\n'), ((4626, 4645), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['oup'], {}), '(oup)\n', (4640, 4645), True, 'import torch.nn as nn\n'), ((4663, 4685), 'torch.nn.ReLU6', 'nn.ReLU6', ([], {'inplace': '(True)'}), '(inplace=True)\n', (4671, 4685), True, 'import torch.nn as nn\n'), ((4818, 4870), 'torch.nn.Conv2d', 'nn.Conv2d', (['inp', 'inp', '(3)', '(1)', '(1)'], {'groups': 'inp', 'bias': '(False)'}), '(inp, inp, 3, 1, 1, groups=inp, bias=False)\n', (4827, 4870), True, 'import torch.nn as nn\n'), ((4888, 4907), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['inp'], {}), '(inp)\n', (4902, 4907), True, 'import torch.nn as nn\n'), ((4925, 4947), 'torch.nn.ReLU6', 'nn.ReLU6', ([], {'inplace': '(True)'}), '(inplace=True)\n', (4933, 4947), True, 'import torch.nn as nn\n'), ((4965, 5012), 'torch.nn.Conv2d', 'nn.Conv2d', (['inp', 'hidden_dim', '(1)', '(1)', '(0)'], {'bias': '(False)'}), '(inp, hidden_dim, 1, 1, 0, bias=False)\n', (4974, 5012), True, 'import torch.nn as nn\n'), ((5030, 5056), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['hidden_dim'], {}), '(hidden_dim)\n', (5044, 5056), True, 'import torch.nn as nn\n'), ((5076, 5124), 'torch.nn.Conv2d', 'nn.Conv2d', (['hidden_dim', 'oup1', '(1)', '(1)', '(0)'], {'bias': '(False)'}), '(hidden_dim, oup1, 1, 1, 0, bias=False)\n', (5085, 5124), True, 'import torch.nn as nn\n'), ((5142, 5162), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['oup1'], {}), '(oup1)\n', (5156, 5162), True, 'import torch.nn as nn\n'), ((5180, 5202), 'torch.nn.ReLU6', 'nn.ReLU6', ([], {'inplace': '(True)'}), '(inplace=True)\n', (5188, 5202), True, 'import torch.nn as nn\n'), ((5220, 5275), 'torch.nn.Conv2d', 'nn.Conv2d', (['oup1', 'oup1', '(3)', '(1)', '(1)'], {'groups': 'oup1', 'bias': '(False)'}), '(oup1, oup1, 3, 1, 1, groups=oup1, bias=False)\n', (5229, 5275), True, 'import torch.nn as nn\n'), ((5293, 5313), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['oup1'], {}), '(oup1)\n', (5307, 5313), True, 'import torch.nn as nn\n'), ((5404, 5456), 'torch.nn.Conv2d', 'nn.Conv2d', (['inp', 'inp', '(3)', '(1)', '(1)'], {'groups': 'inp', 'bias': '(False)'}), '(inp, inp, 3, 1, 1, groups=inp, bias=False)\n', (5413, 5456), True, 'import torch.nn as nn\n'), ((5478, 5497), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['inp'], {}), '(inp)\n', (5492, 5497), True, 'import torch.nn as nn\n'), ((5519, 5541), 'torch.nn.ReLU6', 'nn.ReLU6', ([], {'inplace': '(True)'}), '(inplace=True)\n', (5527, 5541), True, 'import torch.nn as nn\n'), ((5584, 5625), 'torch.nn.Conv2d', 'nn.Conv2d', (['inp', 'oup2', '(1)', '(1)', '(0)'], {'bias': '(False)'}), '(inp, oup2, 1, 1, 0, bias=False)\n', (5593, 5625), True, 'import torch.nn as nn\n'), ((5647, 5667), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['oup2'], {}), '(oup2)\n', (5661, 5667), True, 'import torch.nn as nn\n'), ((5689, 5711), 'torch.nn.ReLU6', 'nn.ReLU6', ([], {'inplace': '(True)'}), '(inplace=True)\n', (5697, 5711), True, 'import torch.nn as nn\n'), ((8513, 8547), 'scipy.stats.truncnorm', 'stats.truncnorm', (['(-2)', '(2)'], {'scale': '(0.01)'}), '(-2, 2, scale=0.01)\n', (8528, 8547), True, 'import scipy.stats as stats\n'), ((8711, 8726), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (8724, 8726), False, 'import torch\n'), ((8835, 8865), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.weight', '(1)'], {}), '(m.weight, 1)\n', (8852, 8865), True, 'import torch.nn as nn\n'), ((8882, 8910), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (8899, 8910), True, 'import torch.nn as nn\n')]
import ast import Numberjack from data.logic import _dimension_factory, _expr_transformer, _model, \ _predicates, _reference, dsl from spec.mamba import * with description('_expr_transformer.ExprTransformer'): with it('instantiates'): expect(calling(_expr_transformer.ExprTransformer, None)).not_to(raise_error) with description('compile'): with before.each: self.factory = _dimension_factory._DimensionFactory() self.model = _model._Model(self.factory) self.transformer = _expr_transformer.ExprTransformer(self.model) self.andy, self.bob = self.name = self.factory(name=['andy', 'bob']) self.cherries, self.dates = self.fruit = self.factory( fruit=['cherries', 'dates']) self._10, self._11 = self.age = self.factory(age=[10, 11]) with it('resolves names'): node = ast.Name(id='name["andy"].fruit["cherries"]', ctx=ast.Load()) transformed = self.transformer.visit(node) expect(transformed).to(be_a(_reference.Reference)) expect(transformed._constraints).to(equal({ 'name': 'andy', 'fruit': 'cherries' })) with it('resolves numbers'): node = ast.Num(n=10) transformed = self.transformer.visit(node) expect(transformed).to(be_a(_reference.Reference)) expect(transformed._constraints).to(equal({'age': 10})) with it('resolves strings'): node = ast.Str(s='cherries') transformed = self.transformer.visit(node) expect(transformed).to(be_a(_reference.Reference)) expect(transformed._constraints).to(equal({'fruit': 'cherries'})) with it('fails to visit unsupported nodes'): expect(calling(self.transformer.compile, ast.Await())).to( raise_error(NotImplementedError)) expect(calling(self.transformer.visit, ast.Await())).to( raise_error(NotImplementedError)) expect(calling(self.transformer.generic_visit, ast.Await())).to( raise_error(NotImplementedError)) with it('supports precise (2d) assignment'): expr = self.name['andy'].fruit == self.fruit['cherries'] compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal( '(name["andy"].fruit["cherries"] == True)')) with it('supports OR operation'): expr = (self.name['andy'].fruit['cherries'] | self.fruit['cherries'].name['bob']) compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal( '(name["andy"].fruit["cherries"] or name["bob"].fruit["cherries"])')) with it('supports XOR operation'): expr = (self.name['andy'].fruit['cherries'] ^ self.fruit['cherries'].name['bob']) compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal( '((name["andy"].fruit["cherries"] +' ' name["bob"].fruit["cherries"]) == 1)')) with it('supports + operation, int on right'): expr = self.name['andy'].age + 2 compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal('(name["andy"].age in {10,11} + 2)')) with it('supports + operation, int on left'): expr = 2 + self.name['andy'].age compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal('(2 + name["andy"].age in {10,11})')) with it('supports - operation, int on right'): expr = self.name['andy'].age - 2 compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal('(name["andy"].age in {10,11} - 2)')) with it('supports - operation, int on left'): expr = 2 - self.name['andy'].age compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal('(2 - name["andy"].age in {10,11})')) with it('supports * operation, int on right'): expr = self.name['andy'].age[10] * 10 compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal('((name["andy"].age == 10) * 10)')) with it('supports * operation, int on left'): expr = 10 * self.name['andy'].age[10] compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) # For some reason(?) the operations are switched here. expect(str(compiled)).to(equal('((name["andy"].age == 10) * 10)')) with it('supports & operation'): expr = self.andy[10] & self.bob[11] compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal( '((name["andy"].age == 10) & (name["bob"].age == 11))')) with it('supports ~ operation'): expr = ~self.andy[10] compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal( '((1 - (name["andy"].age == 10)) == True)')) with it('supports call expressions'): expr = dsl.abs(self.andy.age - self.bob.age) compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) # For some reason(?) the operations are switched here. s = str(compiled).replace(' in {0,1}', '') expect(s).to(equal( 'Abs((name["andy"].age in {10,11} -' ' name["bob"].age in {10,11}))' )) with it('supports naked _DimensionSlice expressions'): expr = self.name['andy'].age[10] compiled = self.transformer.compile(expr) expect(compiled).to(be_a(_predicates.Predicates)) expect(str(compiled)).to(equal('((name["andy"].age == 10) == True)')) with it('supports Call with builtin functions'): expr = ast.parse('max(1, 3)').body[0] compiled = self.transformer.compile(expr) expect(str(compiled)).to(equal('3')) with it('supports Call with function pointers'): fn = mock.Mock(return_value=3) expr = ast.Call( func=fn, args=[], keywords=[], ) compiled = self.transformer.compile(expr) expect(fn).to(have_been_called) expect(str(compiled)).to(equal('3')) with description('regression tests'): with before.each: self.model = Numberjack.Model() with it('resolves values before Numberjack uses them'): a = dsl.variable('a') b = dsl.variable('b') c = a * b expr = c == 1462 compiled = self.transformer.compile(expr) expect(str(compiled)).to(equal('((a * b) == 1462)')) expect(calling(self.model.add, compiled)).not_to(raise_error)
[ "ast.Num", "data.logic.dsl.abs", "ast.Load", "ast.Call", "Numberjack.Model", "data.logic.dsl.variable", "data.logic._expr_transformer.ExprTransformer", "ast.Await", "data.logic._dimension_factory._DimensionFactory", "data.logic._model._Model", "ast.parse", "ast.Str" ]
[((392, 430), 'data.logic._dimension_factory._DimensionFactory', '_dimension_factory._DimensionFactory', ([], {}), '()\n', (428, 430), False, 'from data.logic import _dimension_factory, _expr_transformer, _model, _predicates, _reference, dsl\n'), ((448, 475), 'data.logic._model._Model', '_model._Model', (['self.factory'], {}), '(self.factory)\n', (461, 475), False, 'from data.logic import _dimension_factory, _expr_transformer, _model, _predicates, _reference, dsl\n'), ((499, 544), 'data.logic._expr_transformer.ExprTransformer', '_expr_transformer.ExprTransformer', (['self.model'], {}), '(self.model)\n', (532, 544), False, 'from data.logic import _dimension_factory, _expr_transformer, _model, _predicates, _reference, dsl\n'), ((1129, 1142), 'ast.Num', 'ast.Num', ([], {'n': '(10)'}), '(n=10)\n', (1136, 1142), False, 'import ast\n'), ((1348, 1369), 'ast.Str', 'ast.Str', ([], {'s': '"""cherries"""'}), "(s='cherries')\n", (1355, 1369), False, 'import ast\n'), ((5125, 5162), 'data.logic.dsl.abs', 'dsl.abs', (['(self.andy.age - self.bob.age)'], {}), '(self.andy.age - self.bob.age)\n', (5132, 5162), False, 'from data.logic import _dimension_factory, _expr_transformer, _model, _predicates, _reference, dsl\n'), ((6033, 6072), 'ast.Call', 'ast.Call', ([], {'func': 'fn', 'args': '[]', 'keywords': '[]'}), '(func=fn, args=[], keywords=[])\n', (6041, 6072), False, 'import ast\n'), ((6309, 6327), 'Numberjack.Model', 'Numberjack.Model', ([], {}), '()\n', (6325, 6327), False, 'import Numberjack\n'), ((6399, 6416), 'data.logic.dsl.variable', 'dsl.variable', (['"""a"""'], {}), "('a')\n", (6411, 6416), False, 'from data.logic import _dimension_factory, _expr_transformer, _model, _predicates, _reference, dsl\n'), ((6427, 6444), 'data.logic.dsl.variable', 'dsl.variable', (['"""b"""'], {}), "('b')\n", (6439, 6444), False, 'from data.logic import _dimension_factory, _expr_transformer, _model, _predicates, _reference, dsl\n'), ((868, 878), 'ast.Load', 'ast.Load', ([], {}), '()\n', (876, 878), False, 'import ast\n'), ((5817, 5839), 'ast.parse', 'ast.parse', (['"""max(1, 3)"""'], {}), "('max(1, 3)')\n", (5826, 5839), False, 'import ast\n'), ((1635, 1646), 'ast.Await', 'ast.Await', ([], {}), '()\n', (1644, 1646), False, 'import ast\n'), ((1738, 1749), 'ast.Await', 'ast.Await', ([], {}), '()\n', (1747, 1749), False, 'import ast\n'), ((1849, 1860), 'ast.Await', 'ast.Await', ([], {}), '()\n', (1858, 1860), False, 'import ast\n')]
''' GraphPy: Python Module for Graph-based learning algorithms. Efficient implementations of modern methods for graph-based semi-supervised learning, and graph clustering. See README.md file for usage. Author: <NAME>, 2020 ''' import numpy as np import datetime import matplotlib.pyplot as plt import matplotlib import scipy.spatial as spatial import scipy.optimize as opt import numpy.random as random import scipy.sparse as sparse import scipy.sparse.linalg as splinalg import scipy.sparse.csgraph as csgraph import sklearn.cluster as cluster from sklearn.decomposition import PCA import sys, getopt, time, csv, torch, os, multiprocessing from joblib import Parallel, delayed from utils.non_neg_qpsolver import non_negative_qpsolver clustering_algorithms = ['incres', 'spectral', 'spectralshimalik', 'spectralngjordanweiss'] # Print iterations progress def printProgressBar(iteration, total, prefix='', suffix='', decimals=1, length=100, fill='█'): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end='\r') # Print New Line on Complete if iteration == total: print() def load_mbo_eig(dataset, metric, k): # Load eigenvector data if MBO selected try: location = os.path.dirname(os.path.realpath(__file__)) dataFile = dataset + "_" + metric + "_k%d" % k + "_spectrum.npz" dataFile_path = os.path.join(location, 'MBOdata', dataFile) M = np.load(dataFile_path, allow_pickle=True) eigvals = M['eigenvalues'] eigvecs = M['eigenvectors'] except: print("Could not find MBOdata/" + dataset + "_" + metric + "_k%d" % k + "_spectrum.npz") print('You need to run ComputeEigenvectorsMBO.py first.') sys.exit(2) return eigvals, eigvecs def load_label_permutation(dataset, label_perm='', t='-1'): location = os.path.dirname(os.path.realpath(__file__)) dataFile = dataset + label_perm + "_permutations.npz" dataFile_path = os.path.join(location, 'LabelPermutations', dataFile) # Load label permutation try: M = np.load(dataFile_path, allow_pickle=True) perm = M['perm'] except: print('Cannot find ' + dataFile) print('You need to run CreateLabelPermutation.py first.') sys.exit(2) # Restrict trials t = [int(e) for e in t.split(',')] if t[0] > -1: if len(t) == 1: perm = perm[0:t[0]] else: perm = perm[(t[0] - 1):t[1]] return perm def load_dataset(dataset, metric='L2'): # For variational autoencoder the vae data, e.g., Data/MNIST_vae.npz must exist. if metric[0:3] == 'vae' or metric[0:3] == 'aet': dataFile = dataset + "_" + metric + ".npz" else: dataFile = dataset + "_raw.npz" location = os.path.dirname(os.path.realpath(__file__)) dataFile_path = os.path.join(location, 'Data', dataFile) # Try to Load data try: M = np.load(dataFile_path, allow_pickle=True) data = M['data'] except: print('Cannot find ' + dataFile + '.') sys.exit(2) return data def load_labels(dataset): location = os.path.dirname(os.path.realpath(__file__)) dataFile = dataset + "_labels.npz" dataFile_path = os.path.join(location, 'Data', dataFile) # Load labels try: M = np.load(dataFile_path, allow_pickle=True) labels = M['labels'] except: print('Cannot find dataset Data/' + dataFile) sys.exit(2) return labels def load_kNN_data(dataset, metric='L2'): location = os.path.dirname(os.path.realpath(__file__)) dataFile = dataset + "_" + metric + ".npz" dataFile_path = os.path.join(location, 'kNNData', dataFile) # Load kNN data try: M = np.load(dataFile_path, allow_pickle=True) I = M['I'] J = M['J'] D = M['D'] except: print('Cannot find ' + dataFile) print('You need to run ComputeKNN.py.') sys.exit(2) return I, J, D # Compute sizes of each class def label_proportions(labels): L = np.unique(labels) L = L[L >= 0] k = len(L) # n = len(labels) n = np.sum(labels >= 0) beta = np.zeros((k,)) for i in range(k): beta[i] = np.sum(labels == L[i]) / n return beta # Constructs a weight matrix for graph on mxn grid with NSEW neighbors # def grid_graph(m, n): # X, Y = np.mgrid[:m, :n] # # return W # Reweights the graph to use self-tuning weights def self_tuning(W, D, alpha): if alpha != 0: n = D.shape[0] k = D.shape[1] d = D[:, k - 1] d = sparse.spdiags(d ** (-alpha), 0, n, n) W = d * W * d return W # Reweights the graph based on a clustering prior def cluster_prior(W, cluster_labels): n = W.shape[0] I, J, V = sparse.find(W) K = cluster_labels[I] == cluster_labels[J] V[K] = V[K] * 10 V = V / np.max(V) W = sparse.coo_matrix((V, (I, J)), shape=(n, n)).tocsr() return W # Computes scattering transform of depth 2 of I # Bruna, Joan, and <NAME>. "Invariant scattering convolution networks." IEEE transactions on pattern analysis and machine intelligence 35.8 (2013): 1872-1886. def scattering_transform(I, n, m, depth=2): from kymatio import Scattering2D num_pts = I.shape[0] K = torch.from_numpy(I.reshape((num_pts, n, m))).float().contiguous() scattering = Scattering2D(J=depth, shape=(n, m)) Z = scattering(K).numpy() l = Z.shape[1] * Z.shape[2] * Z.shape[3] return Z.reshape((num_pts, l)) # Label permutations # labels = labels # T = number of trials # r = label rate in (0,1) def create_label_permutations_rate(labels, T, R): perm = list() n = labels.shape[0] labelvals = np.unique(labels) labelvals = labelvals[labelvals >= 0] num_labels = len(labelvals) num = np.zeros((num_labels,)) for i in range(num_labels): num[i] = np.sum(labels == labelvals[i]) J = np.arange(n).astype(int) for k in range(T): for r in R: L = [] for i in range(num_labels): l = labelvals[i] I = labels == l K = J[I] m = round(num[i] * r / 100) L = L + random.choice(K, size=m.astype(int), replace=False).tolist() L = np.array(L) perm.append(L) return perm # Label permutations # labels = labels # T = number of trials # m = vector of number of labels def create_label_permutations(labels, T, m, multiplier=None): # Find all unique labels >= 0 # Negative numbers indicate unlabeled nodes unique_labels = np.unique(labels) unique_labels = unique_labels[unique_labels >= 0] perm = list() n = labels.shape[0] J = np.arange(n).astype(int) for k in range(T): for i in m: L = [] ind = 0 for l in unique_labels: I = labels == l K = J[I] if multiplier is None: L = L + random.choice(K, size=i, replace=False).tolist() else: sze = int(np.round(i * multiplier[ind])) L = L + random.choice(K, size=sze, replace=False).tolist() ind = ind + 1 L = np.array(L) perm.append(L) return perm # Randomly choose m labels per class def randomize_labels(L, m): perm = create_label_permutations(L, 1, [m]) return perm[0] # Default function def exp_weight(x): return np.exp(-x) # Pointwise max of non-negative sparse matrices A and B def sparse_max(A, B): I = (A + B) > 0 IB = B > A IA = I - IB return A.multiply(IA) + B.multiply(IB) # Compute degrees of weight matrix W def degrees(W): return np.squeeze(np.array(np.sum(W, axis=1))) # Multiply diagonal of matrix by degree def diag_multiply(W, b): n = W.shape[0] # Number of points D = sparse.spdiags(W.diagonal(), 0, n, n) return W - (1 - b) * D # Compute degrees of weight matrix W # Returns sparse matrix with degrees on diagonal def degree_matrix(W, p=1): n = W.shape[0] # Number of points # Construct sparse degree matrix d = degrees(W) D = sparse.spdiags(d ** p, 0, n, n) return D.tocsr() # Construct robin boundary condition matrix def robin_bc_matrix(X, nu, eps, gamma): n = X.shape[0] Xtree = spatial.cKDTree(X) _, nn_ind = Xtree.query(X + eps * nu) # nn_dist = np.linalg.norm(X - X[nn_ind,:],axis=1) nn_dist = eps * np.ones((n,)) # Robin matrix A = sparse.spdiags(gamma + (1 - gamma) / nn_dist, 0, n, n) B = sparse.coo_matrix(((1 - gamma) / nn_dist, (range(n), nn_ind)), shape=(n, n)) R = (A - B).tocsr() return R # Laplace matrix # W = weight matrix # norm = type of normalization # Options: none, randomwalk, normalized def graph_laplacian(W, norm="none"): D = degree_matrix(W) if norm == "none": L = D - W elif norm == "randomwalk1": Dinv = degree_matrix(W, p=-1) L = Dinv * (D - W) elif norm == "randomwalk2": Dinv = degree_matrix(W, p=-1) L = (D - W) * Dinv elif norm == "normalized": Dinv2 = degree_matrix(W, p=-1 / 2) L = Dinv2 * (D - W) * Dinv2 else: print("Invalid option for graph Laplacian normalization. Returning unnormalized Laplacian.") L = D - W return L.tocsr() # Graph infinity Laplacian # W = sparse weight matrix # u = function on graph def graph_phi_laplacian(W, u, phi, I=None, J=None, V=None): n = W.shape[0] if I is None or J is None: I, J, V = sparse.find(W) w = u[J] - u[I] a = np.absolute(w) pa = phi(a) m = pa / (a + 1e-13) M = sparse.coo_matrix((V * pa / (a + 1e-13), (I, J)), shape=(n, n)).tocsr() m = degrees(M) M = sparse.coo_matrix((V * pa * np.sign(w), (I, J)), shape=(n, n)).tocsr() M = np.squeeze(np.array(np.sum(M, axis=1))) return M, m # Graph infinity Laplacian # W = sparse weight matrix # u = function on graph def graph_infinity_laplacian(W, u, I=None, J=None, V=None): n = W.shape[0] if I is None or J is None: I, J, V = sparse.find(W) M = sparse.coo_matrix((V * (u[J] - u[I]), (I, J)), shape=(n, n)).tocsr() M = M.min(axis=1) + M.max(axis=1) return M.toarray().flatten() # Construct epsilon-graph sparse distance matrix def eps_weight_matrix(X, eps, f=exp_weight): n = X.shape[0] # Number of points # Rangesearch to find nearest neighbors Xtree = spatial.cKDTree(X) M = Xtree.query_pairs(eps) M = np.array(list(M)) # Differences between points and neighbors V = X[M[:, 0], :] - X[M[:, 1], :] D = np.sum(V * V, axis=1) # Weights D = f(4 * D / (eps * eps)) # Symmetrize weights and add diagonal entries D = np.concatenate((D, D, f(0) * np.ones(n, ))) M1 = np.concatenate((M[:, 0], M[:, 1], np.arange(0, n))) M2 = np.concatenate((M[:, 1], M[:, 0], np.arange(0, n))) # Construct sparse matrix and convert to Compressed Sparse Row (CSR) format W = sparse.coo_matrix((D, (M1, M2)), shape=(n, n)) return W.tocsr() # Exact knnsearch def knnsearch(X, k): # KDtree to find nearest neighbors n = X.shape[0] Xtree = spatial.cKDTree(X) D, J = Xtree.query(X, k=k) I = np.ones((n, k), dtype=int) * J[:, 0][:, None] return I, J, D # Perform approximate nearest neighbor search, returning indices I,J of neighbors, and distance D # Metric can be "angular", "euclidean", "manhattan", "hamming", or "dot". def knnsearch_annoy(X, k, similarity='euclidean'): from annoy import AnnoyIndex n = X.shape[0] # Number of points dim = X.shape[1] # Dimension print('kNN search with Annoy approximate nearest neighbor package...') printProgressBar(0, n, prefix='Progress:', suffix='Complete', length=50) u = AnnoyIndex(dim, similarity) # Length of item vector that will be indexed for i in range(n): u.add_item(i, X[i, :]) u.build(10) # 10 trees D = [] I = [] J = [] for i in range(n): printProgressBar(i + 1, n, prefix='Progress:', suffix='Complete', length=50) A = u.get_nns_by_item(i, k, include_distances=True, search_k=-1) I.append([i] * k) J.append(A[0]) D.append(A[1]) I = np.array(I) J = np.array(J) D = np.array(D) return I, J, D # Compute weight matrix from nearest neighbor indices I,J and distances D def weight_matrix_selftuning(I, J, D): n = I.shape[0] k = I.shape[1] # Distance to kth nearest neighbor as a matrix sigma = D[:, k - 1] sigma = sparse.spdiags(1 / sigma, 0, n, n) sigma = sigma.tocsr() # Flatten I = I.flatten() J = J.flatten() D = D.flatten() # Symmetrize and remove redundant entries M1 = np.vstack((I, J, D)) M2 = np.vstack((J, I, D)) M = np.concatenate((M1, M2), axis=1) M = np.unique(M, axis=1) # Construct sparse matrix and convert to Compressed Sparse Row (CSR) format I = M[0, :] J = M[1, :] D = M[2, :] dist = sparse.coo_matrix((D, (I, J)), shape=(n, n)).tocsr() B = sparse.coo_matrix((np.ones(len(D), ), (I, J)), shape=(n, n)).tocsr() # Ones in all entries # Self-tuning weights E = -4 * sigma * (dist ** 2) * sigma W = E.expm1() W = W.multiply(B) + B return W # Compute weight matrix from nearest neighbor indices I,J and distances D # k = number of neighbors # Chooses k neighbors at random from I.shape[1] nearset neighbors def weight_matrix_homogenized(I, J, D, k, f=exp_weight): # I = I[:,:10] # J = J[:,:10] # D = D[:,:10] # Restrict I,J,D to k neighbors k = np.minimum(I.shape[1], k) n = I.shape[0] for i in range(n): ind = random.choice(I.shape[1], k, replace=False) I[i, :k] = I[i, ind] J[i, :k] = J[i, ind] D[i, :k] = 1 n = I.shape[0] k = I.shape[1] D = D * D eps = D[:, k - 1] / 4 D = f(D / eps[:, None]) # Flatten I = I.flatten() J = J.flatten() D = D.flatten() # Construct sparse matrix and convert to Compressed Sparse Row (CSR) format W = sparse.coo_matrix((D, (I, J)), shape=(n, n)).tocsr() return W # Compute distance matrix from nearest neighbor indices I,J and distances D # k = number of neighbors def dist_matrix(I, J, D, k): # Restrict I,J,D to k neighbors k = np.minimum(I.shape[1], k) I = I[:, :k] J = J[:, :k] D = D[:, :k] n = I.shape[0] k = I.shape[1] # Flatten I = I.flatten() J = J.flatten() D = D.flatten() # Construct sparse matrix and convert to Compressed Sparse Row (CSR) format W = sparse.coo_matrix((D, (I, J)), shape=(n, n)).tocsr() return W # Adds weights to an adjacency matrix W using similarity in data X def add_weights(W, X, labels): n = W.shape[0] # pca = PCA(n_components=20) # X = pca.fit_transform(X) # print(X.shape) I, J, V = sparse.find(W) # Dot products Y = X[I, :] - X[J, :] Y = np.sum(Y * Y, axis=1) W = sparse.coo_matrix((Y, (I, J)), shape=(n, n)).tocsr() max_dist = np.reshape(np.max(W, axis=1).todense().tolist(), (n,)) D = sparse.spdiags((max_dist + 1e-10) ** (-1), 0, n, n).tocsr() W = D * W I, J, V = sparse.find(W) V = np.exp(-2 * V) W = sparse.coo_matrix((V, (I, J)), shape=(n, n)).tocsr() return W # Finds largest connected component of the graph represented by adjacency matrix W # Returns the weighted adjacency matrix, along with a boolean mask indicating the # vertices from the input matrix that were selected def largest_conn_component(W): ncomp, labels = csgraph.connected_components(W, directed=False) num_verts = np.zeros((ncomp,)) for i in range(ncomp): num_verts[i] = np.sum(labels == i) i_max = np.argmax(num_verts) ind = labels == i_max A = W[ind, :] A = A[:, ind] print("Found %d" % ncomp + " connected components.") print("Returning component with %d" % num_verts[i_max] + " vertices out of %d" % W.shape[0] + " total vertices.") return A, ind # Compute weight matrix from nearest neighbor indices I,J and distances D # k = number of neighbors def weight_matrix(I, J, D, k, f=exp_weight, symmetrize=True): # Restrict I,J,D to k neighbors k = np.minimum(I.shape[1], k) I = I[:, :k] J = J[:, :k] D = D[:, :k] n = I.shape[0] k = I.shape[1] D = D * D eps = D[:, k - 1] / 4 D = f(D / eps[:, None]) # Flatten I = I.flatten() J = J.flatten() D = D.flatten() # Construct sparse matrix and convert to Compressed Sparse Row (CSR) format W = sparse.coo_matrix((D, (I, J)), shape=(n, n)).tocsr() if symmetrize: W = (W + W.transpose()) / 2; return W def nnk_weight_matrix(dataset, metric, mask, knn_param, reg=1e-10, symmetrize=True): # Try to Load data X = load_dataset(dataset=dataset, metric=metric) X_normalized = X / np.linalg.norm(X, axis=1, keepdims=True) num_of_nodes = mask.shape[0] neighbor_indices = np.zeros((num_of_nodes, knn_param)) weight_values = np.zeros((num_of_nodes, knn_param)) error_values = np.ones((num_of_nodes, knn_param)) for node_i in range(num_of_nodes): non_zero_index = np.array(mask[node_i, :]) non_zero_index = np.delete(non_zero_index, np.where(non_zero_index == node_i)) if len(non_zero_index) > knn_param: non_zero_index = non_zero_index[:knn_param] x_neighbors = X_normalized[non_zero_index] g_i = 0.5 + np.dot(x_neighbors, X_normalized[node_i]) / 2 G_i = 0.5 + np.dot(x_neighbors, x_neighbors.T) / 2 # x_opt, check = non_negative_qpsolver(G_i, g_i, g_i, reg) # error_values[node_i, :] = 1 - 2 * np.dot(x_opt, g_i) + np.dot(x_opt, np.dot(G_i, x_opt)) x_opt = g_i weight_values[node_i, :] = x_opt / np.sum(x_opt) neighbor_indices[node_i, :] = non_zero_index row_indices = np.expand_dims(np.arange(0, num_of_nodes), 1) row_indices = np.tile(row_indices, [1, knn_param]) adjacency = sparse.coo_matrix((weight_values.ravel(), (row_indices.ravel(), neighbor_indices.ravel())), shape=(num_of_nodes, num_of_nodes)) if symmetrize: error = sparse.coo_matrix((error_values.ravel(), (row_indices.ravel(), neighbor_indices.ravel())), shape=(num_of_nodes, num_of_nodes)) # Alternate way of doing: error_index = sparse.find(error > error.T); adjacency[error_index[0], error_index[ # 1]] = 0 adjacency = adjacency.multiply(error < error.T) adjacency = adjacency.maximum(adjacency.T) adjacency.eliminate_zeros() error_values = error_values[:, 0] return adjacency.tocsr(), error_values # Compute boundary points # k = number of neighbors to use def boundary_points_new(X, k, I=None, J=None, D=None, ReturnNormals=False): if (I is None) or (J is None) or (D is None): n = X.shape[0] d = X.shape[1] if d <= 5: I, J, D = knnsearch(X, k) else: I, J, D = knnsearch_annoy(X, k) # Restrict I,J,D to k neighbors k = np.minimum(I.shape[1], k) n = X.shape[0] I = I[:, :k] J = J[:, :k] D = D[:, :k] W = weight_matrix(I, J, D, k, f=lambda x: np.ones_like(x), symmetrize=False) L = graph_laplacian(W) # Estimates of normal vectors nu = -L * X nu = np.transpose(nu) norms = np.sqrt(np.sum(nu * nu, axis=0)) nu = nu / norms nu = np.transpose(nu) print(nu.shape) # Boundary test NN = X[J] NN = np.swapaxes(NN[:, 1:, :], 0, 1) # This is kxnxd V = NN - X # This is x^i-x^0 kxnxd array NN_nu = nu[J] W = (np.swapaxes(NN_nu[:, 1:, :], 0, 1) + nu) / 2 xd = np.sum(V * W, axis=2) # dist to boundary Y = np.max(-xd, axis=0) if ReturnNormals: return Y, nu else: return Y # Compute boundary points # k = number of neighbors to use def boundary_points(X, k, I=None, J=None, D=None, ReturnNormals=False, R=np.inf): if (I is None) or (J is None) or (D is None): n = X.shape[0] d = X.shape[1] if d <= 5: I, J, D = knnsearch(X, k) else: I, J, D = knnsearch_annoy(X, k) # Restrict I,J,D to k neighbors k = np.minimum(I.shape[1], k) n = X.shape[0] I = I[:, :k] J = J[:, :k] D = D[:, :k] W = weight_matrix(I, J, D, k, f=lambda x: np.ones_like(x), symmetrize=False) L = graph_laplacian(W) # Estimates of normal vectors nu = -L * X nu = np.transpose(nu) norms = np.sqrt(np.sum(nu * nu, axis=0)) nu = nu / norms nu = np.transpose(nu) # Boundary test NN = X[J] NN = np.swapaxes(NN[:, 1:, :], 0, 1) # This is kxnxd V = NN - X # This is x^i-x^0 kxnxd array xd = np.sum(V * nu, axis=2) # xd coordinate (kxn) sqdist = np.sum(V * V, axis=2) Y = np.max((xd * xd - sqdist) / (2 * R) - xd, axis=0) if ReturnNormals: return Y, nu else: return Y # Construct k-nn sparse distance matrix # Note: Matrix is not symmetric def knn_weight_matrix(X, k, f=exp_weight): I, J, D = knnsearch_annoy(X, k) W = weight_matrix(I, J, D, k, f=f) return W # Solves Lx=f subject to Rx=g at ind points def gmres_bc_solve(L, f, R, g, ind): # Mix matrices based on boundary points A = L.copy() A = A.tolil() A[ind, :] = R[ind, :] A = A.tocsr() # Right hand side b = f.copy() b[ind] = g[ind] # Preconditioner m = A.shape[0] M = A.diagonal() M = sparse.spdiags(1 / M, 0, m, m).tocsr() # GMRES solver # start_time = time.time() u, info = sparse.linalg.gmres(A, b, M=M) # print("--- %s seconds ---" % (time.time() - start_time)) # print('gmres_err = %f'%np.max(np.absolute(A*u-b))) return u # Poisson solve # Solves Lu = f with preconditioned conjugate gradient def pcg_solve(L, f, x0=None, tol=1e-10): # start_time = time.time() L = L.tocsr() # Conjugate gradient with Jacobi preconditioner m = L.shape[0] M = L.diagonal() M = sparse.spdiags(1 / M, 0, m, m).tocsr() if x0 is None: u, i = splinalg.cg(L, f, tol=tol, M=M) else: u, i = splinalg.cg(L, f, x0=x0, tol=tol, M=M) # print("--- %s seconds ---" % (time.time() - start_time)) return u # Finds k Dirichlet eigenvectors # Solves Lu = lambda u subject to u(I)=0 def dirichlet_eigenvectors(L, I, k): L = L.tocsr() n = L.shape[0] # Locations of labels idx = np.full((n,), True, dtype=bool) idx[I] = False # Left hand side matrix A = L[idx, :] A = A[:, idx] # Eigenvector solver vals, vec = sparse.linalg.eigs(A, k=k, which='SM') vec = vec.real vals = vals.real # Add labels back into array u = np.zeros((n, k)) u[idx, :] = vec if k == 1: u = u.flatten() return u, vals # Constrained linear solve # Solves Lu = f subject to u(I)=g def constrained_solve(L, I, g, f=None, x0=None, tol=1e-10): L = L.tocsr() n = L.shape[0] # Locations of labels idx = np.full((n,), True, dtype=bool) idx[I] = False # Right hand side b = -L[:, I] * g b = b[idx] if f is not None: b = b + f[idx] # Left hand side matrix A = L[idx, :] A = A[:, idx] # start_time = time.time() # Conjugate gradient with Jacobi preconditioner m = A.shape[0] M = A.diagonal() M = sparse.spdiags(1 / (M + 1e-10), 0, m, m).tocsr() if x0 is None: v, i = splinalg.cg(A, b, tol=tol, M=M) else: v, i = splinalg.cg(A, b, x0=x0[idx], tol=tol, M=M) # print("--- %s seconds ---" % (time.time() - start_time)) # Add labels back into array u = np.ones((n,)) u[idx] = v u[I] = g return u # Returns n random points in R^d def rand(n, d): return random.rand(n, d) # Returns n random points in annulus (r1,r2) def rand_annulus(n, d, r1, r2): N = 0 X = np.zeros((1, d)) while X.shape[0] <= n: Y = r2 * (2 * rand(n, d) - 1) dist2 = np.sum(Y * Y, axis=1) I = (dist2 < r2 * r2) & (dist2 > r1 * r1) Y = Y[I, :] X = np.vstack((X, Y)) X = X[1:(n + 1)] return X # Returns n random points in unit ball in R^d def rand_ball(n, d): N = 0 X = np.zeros((1, d)) while X.shape[0] <= n: Y = 2 * rand(n, d) - 1 I = np.sum(Y * Y, axis=1) < 1 Y = Y[I, :] X = np.vstack((X, Y)) X = X[1:(n + 1)] return X def randn(n, d): X = np.zeros((n, d)) for i in range(d): X[:, i] = np.random.normal(0, 1, n) return X def bean_data(n, h): # n = number of points # h = height of bridge (h=0.2) a = -1 b = 1 x = a + (b - a) * random.rand(3 * n); c = -0.6 d = 0.6; y = c + (d - c) * random.rand(3 * n); X = np.transpose(np.vstack((x, y))) dist_from_x_axis = 0.4 * np.sqrt(1 - x ** 2) * (1 + h - np.cos(3 * x)) in_bean = abs(y) <= dist_from_x_axis X = X[in_bean, :] if X.shape[0] < n: print('Not enough samples'); else: X = X[:n, :] return X def mesh(X): T = spatial.Delaunay(X[:, :2]); return T.simplices def box_mesh(X, u=None): n = X.shape[0] d = X.shape[1] if d > 2: X = X[:, 0:2] x1 = X[:, 0].min() x2 = X[:, 0].max() y1 = X[:, 1].min() y2 = X[:, 1].max() corners = np.array([[x1, y1], [x2, y2], [x1, y2], [x2, y1]]) X = np.append(X, corners, axis=0) Tri = mesh(X) if u is not None: u = np.append(u, [0, 0, 0, 0]) for i in range(n, n + 4): I = (Tri[:, 0] == i) | (Tri[:, 1] == i) | (Tri[:, 2] == i) nn_tri = Tri[I, :].flatten() nn_tri = np.unique(nn_tri[nn_tri < n]) u[i] = np.mean(u[nn_tri]) # u[i] = np.max(u[nn_tri]) return X, Tri, u else: return X, Tri # Triangulation of domain def improved_mesh(X): n = X.shape[0] d = X.shape[1] if d > 2: X = X[:, 0:2] # Normalize data to unit box x1 = X[:, 0].min() x2 = X[:, 0].max() y1 = X[:, 1].min() y2 = X[:, 1].max() X = X - [x1, y1] X[:, 0] = X[:, 0] / (x2 - x1) X[:, 1] = X[:, 1] / (y2 - y1) # Add padding data around pad = 10 / np.sqrt(n) m = int(pad * n) Y = rand(m, 2) Y[:, 0] = Y[:, 0] * pad - pad Z = np.vstack((X, Y)) Y = rand(m, 2) Y[:, 0] = Y[:, 0] * pad + 1 Z = np.vstack((Z, Y)) Y = rand(m, 2) Y[:, 1] = Y[:, 1] * pad - pad Z = np.vstack((Z, Y)) Y = rand(m, 2) Y[:, 1] = Y[:, 1] * pad + 1 Z = np.vstack((Z, Y)) # Delaunay triangulation T = spatial.Delaunay(Z); Tri = T.simplices J = np.sum(Tri >= n, axis=1) == 0; Tri = Tri[J, :] return Tri def plot(X, u): Tri = mesh(X) import mayavi.mlab as mlab mlab.triangular_mesh(X[:, 0], X[:, 1], u, Tri) mlab.view(azimuth=-45, elevation=60) # Laplace learning # Zhu, Xiaojin, <NAME>, and <NAME>. "Semi-supervised learning using gaussian fields and harmonic functions." Proceedings of the 20th International conference on Machine learning (ICML-03). 2003. def laplace_solve(W, I, g, norm="none"): L = graph_laplacian(W, norm=norm) return constrained_solve(L, I, g) # Shift trick # W = Weight matrix # I = indices of labels # g = +1/-1 values of labels def shift_solve(W, I, g): # Laplace learning u = laplace_solve(W, I, g) # Shift solution s = degrees(W) c = np.sum(s[I] * g) / sum(s[I]) u = u - c u = u - np.mean(u) return u # Shift trick by mean # W = Weight matrix # I = indices of labels # g = +1/-1 values of labels def meanshift_solve(W, I, g): # Laplace learning u = laplace_solve(W, I, g) # Center solution u = u - np.mean(u) return u # Reweights the weight matrix for WNLL def wnll(W, I): n = W.shape[0] m = len(I) a = np.ones((n,)) a[I] = n / m D = sparse.spdiags(a, 0, n, n).tocsr() W = D * W + W * D return W # Weighted nonlocal Laplacian # Shi, Zuoqiang, <NAME>, and <NAME>. "Weighted nonlocal laplacian on interpolation from sparse data." Journal of Scientific Computing 73.2-3 (2017): 1164-1177. def wnll_solve(W, I, g): n = W.shape[0] W = wnll(W, I) L = graph_laplacian(W, norm="none") return constrained_solve(L, I, g) # Properly weighted Laplacian # Calder, Jeff, and <NAME>. "Properly-weighted graph Laplacian for semi-supervised learning." arXiv preprint arXiv:1810.04351 (2018). def properlyweighted_solve(W, I, g, X, alpha, zeta, r): n = W.shape[0] rzeta = r / (zeta - 1) ** (1 / alpha) Xtree = spatial.cKDTree(X[I, :]) D, J = Xtree.query(X) D[D < rzeta] = rzeta gamma = 1 + (r / D) ** alpha D = sparse.spdiags(gamma, 0, n, n).tocsr() L = graph_laplacian(D * W + W * D, norm="none") return constrained_solve(L, I, g) # Game theoretic p-Laplace learning # Rios, <NAME>, <NAME>, and <NAME>. "Algorithms for $\ell_p$-based semi-supervised learning on graphs." arXiv preprint arXiv:1901.05031 (2019). def plaplace_solve(W, I, g, p, sol_method="SemiImplicit", norm="none"): # start_time = time.time() n = W.shape[0] W = W / W.max() if p == float("inf"): alpha = 0 delta = 1 else: alpha = 1 / p delta = 1 - 2 / p dx = degrees(W) theta = 1.2 * (2 * alpha + np.max(dx) * delta) if p == float("inf"): beta = 1 gamma = 1 / theta else: beta = (theta * p - 2) / (theta * p) gamma = (p - 2) / (theta * p - 2) if norm == "normalized": deg = dx[I] ** (1 / 2) g = g / deg L = graph_laplacian(W) u = constrained_solve(L, I, g) uu = np.max(g) * np.ones((n,)) ul = np.min(g) * np.ones((n,)) WI, WJ, WV = sparse.find(W) # Set labels u[I] = g uu[I] = g ul[I] = g # Time step for gradient descent dt = 0.9 / (alpha + 2 * delta) if sol_method == "GradientDescentCcode": try: import cmodules.cgraphpy as cgp except: print("cgraphpy cmodule not found. You may just need to compile it.") sys.exit() # Type casting and memory blocking uu = np.ascontiguousarray(uu, dtype=np.float64) ul = np.ascontiguousarray(ul, dtype=np.float64) WI = np.ascontiguousarray(WI, dtype=np.int32) WJ = np.ascontiguousarray(WJ, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float64) I = np.ascontiguousarray(I, dtype=np.int32) g = np.ascontiguousarray(g, dtype=np.float64) cgp.lp_iterate(uu, ul, WI, WJ, WV, I, g, p, 1e6, 1e-1, 0.0) u = (uu + ul) / 2 # Check residual L2uu = -L * uu LIuu = graph_infinity_laplacian(W, uu, I=WI, J=WJ, V=WV) resu = alpha * L2uu / dx + delta * LIuu resu[I] = 0 L2ul = -L * ul LIul = graph_infinity_laplacian(W, ul, I=WI, J=WJ, V=WV) resl = alpha * L2ul / dx + delta * LIul resl[I] = 0 # print('Upper residual = %f' % np.max(np.absolute(resu))) # print('Lower residual = %f' % np.max(np.absolute(resl))) else: err = 1e6 i = 0 while err > 1e-1: i += 1 # Graph laplacians L2u = -L * u LIu = graph_infinity_laplacian(W, u, I=WI, J=WJ, V=WV) # Residual error res = alpha * L2u / dx + delta * LIu res[I] = 0 # err = np.max(np.absolute(res)) # print("Residual error = "+str(err)) # Update if sol_method == "GradientDescent": L2uu = -L * uu LIuu = graph_infinity_laplacian(W, uu, I=WI, J=WJ, V=WV) res = alpha * L2uu / dx + delta * LIuu res[I] = 0 uu = uu + dt * res err = np.max(np.absolute(res)) # print("Upper residual = "+str(err)) L2ul = -L * ul LIul = graph_infinity_laplacian(W, ul, I=WI, J=WJ, V=WV) res = alpha * L2ul / dx + delta * LIul res[I] = 0 ul = ul + dt * res err = np.max(np.absolute(res)) # print("Lower residual = "+str(err)) err1 = np.max(uu - ul) err2 = np.min(uu - ul) # print("Residual error = "+str(err1)+","+str(err2)) err = err1 u = (uu + ul) / 2 elif sol_method == "SemiImplicit": rhs = beta * (2 * gamma * dx * LIu - L2u) u = constrained_solve(L, I, g, f=rhs, x0=u, tol=err / 100) else: print("Invalid p-Laplace solution method.") sys.exit() if norm == "normalized": deg = dx ** (1 / 2) u = u * deg # print("--- %s seconds ---" % (time.time() - start_time)) return u # Gradient of function on graph # W = sparse weight matrix # u = function on graph def graph_gradient(W, u, I=None, J=None, V=None): n = W.shape[0] if I is None or J is None: I, J, V = sparse.find(W) G = sparse.coo_matrix((V * (u[J] - u[I]), (I, J)), shape=(n, n)).tocsr() return G # Divergence of vector field F (F should be skew-symmetric) # F = sparse matrix representing vector field def graph_divergence(F, W): F = F.multiply(W) return 2 * np.squeeze(np.array(np.sum(F, axis=1))) # Random-walk SSL # Zhou, Dengyong, et al. "Learning with local and global consistency." Advances in neural information processing systems. 2004. def randomwalk_solve(W, I, g, epsilon): n = W.shape[0] # Zero diagonals W = W - sparse.spdiags(W.diagonal(), 0, n, n) # Construct Laplacian matrix Dinv2 = degree_matrix(W, p=-1 / 2) L = sparse.identity(n) - (1 - epsilon) * Dinv2 * W * Dinv2; # Format right hand side b = np.zeros((n,)) b[I] = g return pcg_solve(L, b) # Computes accuracy of labeling # m = number of labeled points used def accuracy(L, L_true, m): # Remove unlabeled nodes I = L_true >= 0 L = L[I] L_true = L_true[I] # Compute accuracy return 100 * np.maximum(np.sum(L == L_true) - m, 0) / (len(L) - m) # Projects all columns of (kxn) matrix X onto k-simplex def ProjectToSimplex(X): n = X.shape[1] k = X.shape[0] Xs = -np.sort(-X, axis=0) # Sort descending A = np.tril(np.ones((k, k))) Sum = A @ Xs Max = np.transpose((np.transpose(Sum) - 1) / (np.arange(k) + 1)) Xs[:-1, :] = Xs[1:, :] Xs[-1, :] = (Sum[k - 1, :] - 1) / k I = np.argmax(Max >= Xs, axis=0) X = np.maximum(X - Max[I, range(n)], 0) return X # Takes list of labels and converts to vertices of simplex format def LabelsToVec(L): n = L.shape[0] labels = np.unique(L) k = len(labels) for i in range(k): L[L == labels[i]] = i L = L.astype(int) X = np.zeros((k, n)) X[L, range(n)] = 1 return X, labels # Projects all rows of (nxk) matrix X to closest vertex of the simplex # Assume X already lives in the simplex, e.g., is the output of ProjectToSimplex def ClosestVertex(X): n = X.shape[1] k = X.shape[0] L = np.argmax(X, axis=0) X = np.zeros((k, n)) X[L, range(n)] = 1 return X # Threshold with temperature to closest vertex def ClosestVertexTemp(X, T=0.01): n = X.shape[1] k = X.shape[0] beta = 1 / T Y = np.exp(beta * X) Ysum = np.sum(Y, axis=0) Y = Y / Ysum X[0, :] = Y[0, :] for i in range(1, k): X[i, :] = X[i - 1, :] + Y[i, :] R = random.rand(n, 1) L = np.sum(R.flatten() > X, axis=0) X = np.zeros((k, n)) X[L, range(n)] = 1 return X # Volume MBO, initialized with Poisson def poisson_volumeMBO(W, I, g, dataset, beta, T, volume_mult): # Set diagonal entries to zero W = diag_multiply(W, 0) try: import cmodules.cgraphpy as cgp except: print("cgraphpy cmodule not found. You may just need to compile it.") sys.exit() # Solve Poisson problem and compute labels u, _ = poisson(W, I, g) max_locations = np.argmax(u, axis=0) u = (np.unique(g))[max_locations] n = W.shape[0] k = len(np.unique(g)) WI, WJ, WV = sparse.find(W) # Class counts ClassCounts = (n * beta).astype(int) # Type casting and memory blocking u = np.ascontiguousarray(u, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WJ = np.ascontiguousarray(WJ, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float32) I = np.ascontiguousarray(I, dtype=np.int32) g = np.ascontiguousarray(g, dtype=np.int32) ClassCounts = np.ascontiguousarray(ClassCounts, dtype=np.int32) cgp.volume_mbo(u, WI, WJ, WV, I, g, ClassCounts, k, 0.0, T, volume_mult) # Set given labels and convert to vector format u[I] = g u, _ = LabelsToVec(u) return u # Volume MBO (Jacobs, et al.) def volumeMBO(W, I, g, dataset, beta, T, volume_mult): # Set diagonal entries to zero W = diag_multiply(W, 0) try: import cmodules.cgraphpy as cgp except: print("cgraphpy cmodule not found. You may just need to compile it.") sys.exit() n = W.shape[0] k = len(np.unique(g)) u = np.zeros((n,)) WI, WJ, WV = sparse.find(W) # Class counts ClassCounts = (n * beta).astype(int) # Type casting and memory blocking u = np.ascontiguousarray(u, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WJ = np.ascontiguousarray(WJ, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float32) I = np.ascontiguousarray(I, dtype=np.int32) g = np.ascontiguousarray(g, dtype=np.int32) ClassCounts = np.ascontiguousarray(ClassCounts, dtype=np.int32) cgp.volume_mbo(u, WI, WJ, WV, I, g, ClassCounts, k, 1.0, T, volume_mult) # Set given labels and convert to vector format u[I] = g u, _ = LabelsToVec(u) return u # Multiclass MBO # Garcia-Cardona, Cristina, et al. "Multiclass data segmentation using diffuse interface methods on graphs." IEEE transactions on pattern analysis and machine intelligence 36.8 (2014): 1600-1613. def multiclassMBO(W, I, g, eigvals, eigvecs, dataset, true_labels=None): n = W.shape[0] k = len(np.unique(g)) Ns = 6 if dataset == 'MNIST' or dataset == 'FashionMNIST' or dataset == 'cifar': dt = 0.15 mu = 50 elif dataset == 'WEBKB': dt = 1 mu = 4 else: print('Dataset not supported by MBO...') sys.exit(2) # Load eigenvalues and eigenvectors X = eigvecs num_eig = len(eigvals) # Form matrices V = np.diag(1 / (1 + (dt / Ns) * eigvals)) Y = X @ V Xt = np.transpose(X) # Random initial labeling u = random.rand(k, n) u = ProjectToSimplex(u) # Set initial known labels J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J u = Kg + (1 - J) * u # Maximum number of iterations T = 10 for i in range(T): for s in range(Ns): Z = (u - (dt / Ns) * mu * J * (u - Kg)) @ Y u = Z @ Xt # Projection step u = ProjectToSimplex(u) u = ClosestVertex(u) # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return u # Poisson MBO def poissonMBO(W, I, g, dataset, beta, true_labels=None, temp=0, use_cuda=False, Ns=40, mu=1, T=50): n = W.shape[0] unique_labels = np.unique(g) k = len(unique_labels) num_labels = np.zeros((k,)) for i in range(k): num_labels[i] = np.sum(g == unique_labels[i]) W = diag_multiply(W, 0) if dataset == 'WEBKB': mu = 1000 Ns = 8 # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Poisson source term c = np.sum(Kg, axis=1) / len(I) b = np.transpose(Kg) b[I, :] = b[I, :] - c b = np.transpose(b) L = graph_laplacian(W, norm='none') # Initialize u via Poisson learning # u = np.zeros((k,n)) # for j in range(k): # u[j,:] = pcg_solve(L,b[j,:]) # u = mu*u # u = np.transpose(np.transpose(u) - np.mean(u,axis=1)) u, mix_time = poisson(W, I, g, use_cuda=use_cuda, beta=beta) # Ns = int(mix_time/4) u = ProjectToSimplex(u) u = ClosestVertex(u) # Time step for stability dt = 1 / np.max(degrees(W)) P = sparse.identity(n) - dt * L Db = mu * dt * b if use_cuda: Pt = torch_sparse(P).cuda() Dbt = torch.from_numpy(np.transpose(Db)).float().cuda() for i in range(T): if use_cuda: # Put on GPU and run heat equation ut = torch.from_numpy(np.transpose(u)).float().cuda() for s in range(Ns): # u = u*P + Db ut = torch.sparse.addmm(Dbt, Pt, ut) # Put back on CPU u = np.transpose(ut.cpu().numpy()) else: # Use CPU for s in range(Ns): # u = u + dt*(mu*b - u*L) u = u * P + Db # Projection step # u = np.diag(beta/num_labels)@u u = ProjectToSimplex(u) u = ClosestVertex(u) u = np.transpose(np.transpose(u) - np.mean(u, axis=1) + beta) # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return u def torch_sparse(A): A = A.tocoo() values = A.data indices = np.vstack((A.row, A.col)) i = torch.LongTensor(indices) v = torch.FloatTensor(values) shape = A.shape return torch.sparse.FloatTensor(i, v, torch.Size(shape)) # Sparse Label Propagation def SparseLabelPropagation(W, I, g, true_labels=None): n = W.shape[0] k = len(np.unique(g)) WI, WJ, WV = sparse.find(W) B = sparse.coo_matrix((np.ones(len(WV), ), (WI, WJ)), shape=(n, n)).tocsr() # Ones in all entries # Construct matrix 1/2W and 1/deg lam = 2 * W - (1 - 1e-10) * B lam = -lam.log1p() lam = lam.expm1() + B Id = sparse.identity(n) gamma = degree_matrix(W + 1e-10 * Id, p=-1) # Random initial labeling # u = random.rand(k,n) u = np.zeros((k, n)) # Set initial known labels J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Initialization Y = list() for j in range(k): Gu = graph_gradient(W, u[j, :], I=WI, J=WJ, V=WV) Y.append(Gu) # Main loop for sparse label propagation T = 100 for i in range(T): u_prev = np.copy(u) # Compute div for j in range(k): div = graph_divergence(Y[j], W) u[j, :] = u_prev[j, :] - gamma * div u[j, I] = Kg[j, I] # Set labels u_tilde = 2 * u[j, :] - u_prev[j, :] Gu = -graph_gradient(W, u_tilde, I=WI, J=WJ, V=WV) Y[j] = Y[j] + Gu.multiply(lam) ind1 = B.multiply(abs(Y[j]) > 1) ind2 = B - ind1 Y[j] = ind1.multiply(Y[j].sign()) + ind2.multiply(Y[j]) # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return u # Dynamic Label Propagation def DynamicLabelPropagation(W, I, g, alpha=0.05, lam=0.1, true_labels=None): n = W.shape[0] k = len(np.unique(g)) W = diag_multiply(W, 0) # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g u, _ = LabelsToVec(K) u = u * J # Set initial known labels J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = np.transpose(Kg * J) u = np.copy(Kg) if n > 5000: print("Cannot use Dynamic Label Propagation on large datasets.") else: # Setup matrices Id = sparse.identity(n) D = degree_matrix(W, p=-1) P = D * W P = np.array(P.todense()) Pt = np.copy(P) T = 2 for i in range(T): v = P @ u u = Pt @ u u[I, :] = Kg[I, :] Pt = P @ Pt @ np.transpose(P) + alpha * v @ np.transpose(v) + lam * Id # Compute accuracy if all labels are provided if true_labels is not None: u = np.array(u) max_locations = np.argmax(u, axis=1) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('i:%d' % i + ',Accuracy = %.2f' % acc) u = np.transpose(np.array(u)) return u # Centered and Iterated Centered Kernel of Mai/Coulliet 2018 def CenteredKernel(W, I, g, true_labels=None): n = W.shape[0] k = len(np.unique(g)) W = diag_multiply(W, 0) # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = np.transpose(Kg * J) # Center labels c = np.sum(Kg, axis=0) / len(I) Kg[I, :] = Kg[I, :] - c u = np.copy(Kg) v = np.ones((n, 1)) vt = np.ones((1, n)) e = np.random.rand(n, 1) for i in range(100): y = W * (e - (1 / n) * v @ (vt @ e)) w = y - (1 / n) * v @ (vt @ y) # =Ae l = abs(np.transpose(e) @ w / (np.transpose(e) @ e)) e = w / np.linalg.norm(w) # Number of iterations # alpha = 5*l/4 alpha = 105 * l / 100 T = 1000 err = 1 while err > 1e-10: y = W * (u - (1 / n) * v @ (vt @ u)) w = (1 / alpha) * (y - (1 / n) * v @ (vt @ y)) - u # Laplacian w[I, :] = 0 err = np.max(np.absolute(w)) u = u + w # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=1) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return np.transpose(u) def vec_acc(u, I, g, true_labels): max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) return acc # def volume_label_projection(u,beta,s=None): # # k = u.shape[0] # n = u.shape[1] # if s is None: # s = np.ones((k,)) # for i in range(100): # grad = beta - np.sum(ClosestVertex(np.diag(s)@u),axis=1)/n # err0 = np.max(np.absolute(grad)) # # dt = 1 # snew = s + dt*grad # gradnew = beta - np.sum(ClosestVertex(np.diag(snew)@u),axis=1)/n # err = err0 # newerr = np.max(np.absolute(gradnew)) # while newerr < err: # print(dt) # dt = 2*dt # snew = s + dt*grad # gradnew = beta - np.sum(ClosestVertex(np.diag(snew)@u),axis=1)/n # err = newerr # newerr = np.max(np.absolute(gradnew)) # dt = dt/2 # snew = s + dt*grad # gradnew = beta - np.sum(ClosestVertex(np.diag(snew)@u),axis=1)/n # newerr = np.max(np.absolute(gradnew)) # while newerr >= err: # print(dt) # dt = dt/2 # snew = s + dt*grad # gradnew = beta - np.sum(ClosestVertex(np.diag(snew)@u),axis=1)/n # newerr = np.max(np.absolute(gradnew)) # if dt < 1: # dt = dt/2 # # s = s + dt*grad # # print(err) # if err == 0: # print(i) # break # # #s = s + dt*(beta - beta_u) # # return ClosestVertex(np.diag(s)@u),s def volume_label_projection(u, beta, s=None, dt=None): k = u.shape[0] n = u.shape[1] if s is None: s = np.ones((k,)) if dt is None: dt = 10 # print(np.around(100*beta,decimals=1)) # print(np.around(100*np.sum(ClosestVertex(np.diag(s)@u),axis=1)/n,decimals=1)) for i in range(100): class_size = np.sum(ClosestVertex(np.diag(s) @ u), axis=1) / n grad = beta - class_size # print(np.around(100*class_size,decimals=1)) # err = np.max(np.absolute(grad)) # if err == 0: # break s = np.clip(s + dt * grad, 0.5, 2) # print(np.around(100*beta,decimals=1)) # print(np.around(100*np.sum(ClosestVertex(np.diag(s)@u),axis=1)/n,decimals=1)) # print(np.around(100*beta - 100*np.sum(ClosestVertex(np.diag(s)@u),axis=1)/n,decimals=4)) return ClosestVertex(np.diag(s) @ u), s # Poisson MBO with volume constraints def poissonMBO_volume(W, I, g, dataset, beta, true_labels=None, temp=0, use_cuda=False, Ns=40, mu=1, T=20): n = W.shape[0] k = len(np.unique(g)) W = diag_multiply(W, 0) if dataset == 'WEBKB': mu = 1000 Ns = 8 # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Poisson source term c = np.sum(Kg, axis=1) / len(I) b = np.transpose(Kg) b[I, :] = b[I, :] - c b = np.transpose(b) D = degree_matrix(W) # L = graph_laplacian(W,norm='none') L = D - W.transpose() # Initialize u via Poisson learning u, _ = poisson(W, I, g, true_labels=true_labels, use_cuda=use_cuda, beta=beta) u = mu * u # Time step for stability dt = 1 / np.max(degrees(W)) P = sparse.identity(n) - dt * L Db = mu * dt * b if use_cuda: Pt = torch_sparse(P).cuda() Dbt = torch.from_numpy(np.transpose(Db)).float().cuda() for i in range(T): # Heat equation step if use_cuda: # Put on GPU and run heat equation ut = torch.from_numpy(np.transpose(u)).float().cuda() for j in range(Ns): ut = torch.sparse.addmm(Dbt, Pt, ut) # Put back on CPU u = np.transpose(ut.cpu().numpy()) else: # Use CPU for j in range(Ns): u = u * P + Db # Projection step u, s = volume_label_projection(u, beta) # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return u # Poisson Volume def PoissonVolume(W, I, g, true_labels=None, use_cuda=False, training_balance=True, beta=None, min_iter=50): # Run Poisson learning u, _ = poisson(W, I, g, true_labels=true_labels, use_cuda=use_cuda, training_balance=training_balance, beta=beta) # Volume constraints _, s = volume_label_projection(u, beta) return np.diag(s) @ u def original_poisson(W, I, g, true_labels=None, use_cuda=False, training_balance=True, beta=None, min_iter=50): n = W.shape[0] unique_labels = np.unique(g) k = len(unique_labels) # Zero out diagonal for faster convergence W = diag_multiply(W, 0) # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Poisson source term c = np.sum(Kg, axis=1) / len(I) b = np.transpose(Kg) b[I, :] = b[I, :] - c # Setup matrices D = degree_matrix(W + 1e-10 * sparse.identity(n), p=-1) # L = graph_laplacian(W,norm='none') # P = sparse.identity(n) - D*L #Line below is equivalent when W symmetric P = D * W.transpose() Db = D * b v = np.max(Kg, axis=0) v = v / np.sum(v) vinf = degrees(W) / np.sum(degrees(W)) RW = W.transpose() * D u = np.zeros((n, k)) # vals, vec = sparse.linalg.eigs(RW,k=1,which='LM') # vinf = np.absolute(vec.flatten()) # vinf = vinf/np.sum(vinf) # Number of iterations T = 0 if use_cuda: Pt = torch_sparse(P).cuda() ut = torch.from_numpy(u).float().cuda() Dbt = torch.from_numpy(Db).float().cuda() # start_time = time.time() while (T < min_iter or np.max(np.absolute(v - vinf)) > 1 / n) and (T < 1000): ut = torch.sparse.addmm(Dbt, Pt, ut) v = RW * v T = T + 1 # print("--- %s seconds ---" % (time.time() - start_time)) # Transfer to CPU and convert to numpy u = ut.cpu().numpy() else: # Use CPU # start_time = time.time() while (T < min_iter or np.max(np.absolute(v - vinf)) > 1 / n) and (T < 1000): uold = u.copy() u = Db + P * u v = RW * v T = T + 1 # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=1) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('%d,Accuracy = %.2f' % (T, acc)) # print("--- %s seconds ---" % (time.time() - start_time)) # Balancing for training data/class size discrepancy if training_balance: if beta is None: u = u @ np.diag(1 / c) else: u = u @ np.diag(beta / c) return np.transpose(u), T # Poisson learning def poisson(W, I, g, true_labels=None, use_cuda=False, training_balance=True, beta=None, min_iter=50, error=None): n = W.shape[0] unique_labels = np.unique(g) k = len(unique_labels) if error is None: error = np.ones(n, dtype=np.float32) else: error = error.reshape((n,)) / np.max(error) # Zero out diagonal for faster convergence W = diag_multiply(W, 0) # Labels to vector and correct position J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Poisson source term c = np.sum(Kg, axis=1) / len(I) b = np.transpose(Kg) b[I, :] = 2 * b[I, :] - 1 # Setup matrices # D = degree_matrix(W + 1e-10 * sparse.identity(n), p=-1) # L = graph_laplacian(W,norm='none') # P = sparse.identity(n) - D*L #Line below is equivalent when W symmetric v_prev = np.random.random(size=(n, 1)) residue_energy = 1 u = np.zeros((n, k)) confidence_gain = W.transpose() #* sparse.spdiags(np.power(1 + error, -1), 0, n, n) # vals, vec = sparse.linalg.eigs(RW,k=1,which='LM') # vinf = np.absolute(vec.flatten()) # vinf = vinf/np.sum(vinf) # Number of iterations T = 0 if use_cuda: Wt = torch_sparse(confidence_gain).cuda() ut = torch.from_numpy(u).float().cuda() bt = torch.from_numpy(b).float().cuda() # start_time = time.time() while (T < min_iter or residue_energy > 1e-10) and (T < 1000): ut = torch.sparse.addmm(bt, Wt, ut) v = W.transpose() * v_prev residue_energy = np.linalg.norm(v - v_prev) v_prev = v T = T + 1 # print("--- %s seconds ---" % (time.time() - start_time)) # Transfer to CPU and convert to numpy u = ut.cpu().numpy() else: # Use CPU # start_time = time.time() while (T < min_iter or residue_energy > 1e-6) and (T < 1000): u = np.clip(b + confidence_gain * u, a_min=-1, a_max=1) v = W.transpose() * v_prev residue_energy = np.linalg.norm(v - v_prev) v_prev = v T = T + 1 # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=1) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('%d,Accuracy = %.2f' % (T, acc)) # print("--- %s seconds ---" % (time.time() - start_time)) print(f"T: {T}, residue: {residue_energy}") # Balancing for training data/class size discrepancy if training_balance: if beta is None: u = u @ np.diag(1 / c) else: u = u @ np.diag(beta / c) return np.transpose(u), T # Poisson L1 based on Split Bregman Method # Does not work as well as PoissonMBO def poissonL1(W, I, g, dataset, norm="none", lam=100, mu=1000, Nouter=30, Ninner=6, true_labels=None): n = W.shape[0] k = len(np.unique(g)) # mu = mu*W.count_nonzero()/len(g) #Normalize constants gamma = 1 / lam WI, WJ, WV = sparse.find(W) B = sparse.coo_matrix((np.ones(len(WV), ), (WI, WJ)), shape=(n, n)).tocsr() # Ones in all entries L = graph_laplacian(2 * W.multiply(W), norm=norm) deg = degrees(W) dt = 1 / np.max(deg) # Random initial labeling # u = random.rand(k,n) # u = ProjectToSimplex(u) u = np.zeros((k, n)) # Set initial known labels J = np.zeros(n, ) K = np.ones(n, ) * g[0] J[I] = 1 K[I] = g Kg, _ = LabelsToVec(K) Kg = Kg * J # Poisson parameters c = np.sum(Kg, axis=1) / len(I) b = np.transpose(Kg) b[I, :] = b[I, :] - c b = (mu / lam) * np.transpose(b) # Initialize u via Poisson learning u = np.zeros((k, n)) L = graph_laplacian(W, norm='none') for j in range(k): u[j, :] = pcg_solve(L, b[j, :]) u = np.transpose(np.transpose(u) - np.mean(u, axis=1)) # Initialization V = list() R = list() gradu = list() for j in range(k): Gu = graph_gradient(W, u[j, :], I=WI, J=WJ, V=WV) gradu.append(Gu) V.append(Gu) R.append(Gu) # Main loop for Split Bregman iteration for i in range(Nouter): print('Outer:%d' % i) for s in range(Ninner): normV = 0 * W for j in range(k): divVR = graph_divergence(R[j] - V[j], W) u[j, :] = pcg_solve(L, b[j, :] + divVR, x0=u[j, :], tol=1e-10) # for s in range(100): # u[j,:] = u[j,:] + dt*(b[j,:] + divVR - u[j,:]*L) gradu[j] = graph_gradient(W, u[j, :], I=WI, J=WJ, V=WV) V[j] = gradu[j] + R[j] normV = normV + V[j].multiply(V[j]) normV = normV.sqrt() # Shrinkage operation # normV^{-1} for nonzero entries (tricky to do in sparse format) # normV.eliminate_zeros(X) normVinv = normV - (1 - 1e-10) * B normVinv = -normVinv.log1p() normVinv = normVinv.expm1() + B C = normV.multiply(normVinv) # print(np.sum(C>0)) # print(np.sum(C>0.9999)) # Compute shrinkage factor # print(np.sum(normV>0)) shrink = normV - gamma * B shrink = shrink.maximum(0) # print(np.sum(shrink>0)) shrink = shrink.multiply(normVinv) # Apply shrinkage for j in range(k): V[j] = V[j].multiply(shrink) for j in range(k): R[j] = R[j] + gradu[j] - V[j] # Compute accuracy if all labels are provided if true_labels is not None: max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] labels[I] = g acc = accuracy(labels, true_labels, len(I)) print('Accuracy = %.2f' % acc) return u # Heap functions # d = values in heap (indexed by graph vertex) # h = heap (contains indices of graph elements in heap) # p = pointers from graph back to heap (are updated with heap operations) # s = number of elements in heap # Sift up # i = heap index of element to be sifted up def SiftUp(d, h, s, p, i): pi = int(i / 2) # Parent index in heap while pi != 0: if d[h[pi]] > d[h[i]]: # If parent larger, then swap # Swap in heap tmp = h[pi] h[pi] = h[i] h[i] = tmp # Update pointers to heap p[h[i]] = i p[h[pi]] = pi # Update parent/child indices i = pi pi = int(i / 2) else: pi = 0 # Sift down # i = heap index of element to be sifted down def SiftDown(d, h, s, p, i): ci = 2 * i # child index in heap while ci <= s: if d[h[ci + 1]] < d[h[ci]] and ci + 1 <= s: # Choose smallest child ci = ci + 1 if d[h[ci]] < d[h[i]]: # If child smaller, then swap # Swap in heap tmp = h[ci] h[ci] = h[i] h[i] = tmp # Update pointers to heap p[h[i]] = i p[h[ci]] = ci # Update parent/child indices i = ci ci = 2 * i else: ci = s + 1 # Pop smallest off of heap # Returns index of smallest and size of new heap def PopHeap(d, h, s, p): # Index of smallest in heap i = h[1] # Put last element on top of heap h[1] = h[s] # Update pointer p[h[1]] = 1 # Sift down the heap SiftDown(d, h, s - 1, p, 1) return i, s - 1 # Push element onto heap # i = Graph index to add to heap def PushHeap(d, h, s, p, i): h[s + 1] = i # add to heap at end p[i] = s + 1 # Update pointer to heap SiftUp(d, h, s + 1, p, s + 1) return s + 1 def stencil_solver(ui, u, w=None): if w is None: w = np.ones((len(u),)) m = len(u) # Sort neighbors I = np.argsort(u) u = u[I] w = w[I] f = np.zeros((m + 1,)) for i in range(m): f[i] = np.sum(np.maximum(u[i] - u, 0) ** 2) f[m] = np.maximum(1, f[m - 1]) k = np.argmin(f < 1) b = np.sum(u[:k]) c = np.sum(u[:k] ** 2) t = (b + np.sqrt(b * b - k * c + k)) / k check = np.sum(np.maximum(t - u, 0) ** 2) if (abs(check - 1) > 1e-5): print("Error") return t # return np.min(u) + 1 # C code version of dijkstra def cDijkstra(W, I, g, WI=None, WJ=None, K=None): n = W.shape[0] k = len(I) u = np.ones((n,)) * 1e10 # HJ Solver l = -np.ones((n,), dtype=int) # Index of closest label if (WI == None) or (WJ == None) or (K == None): # Reformat weight matrix W into form more useful for Dijkstra WI, WJ, WV = sparse.find(W) K = np.array((WJ[1:] - WJ[:-1]).nonzero()) + 1 K = np.append(0, np.append(K, len(WJ))) try: # Try to use fast C version, if compiled import cmodules.cgraphpy as cgp # Type casting and memory blocking u = np.ascontiguousarray(u, dtype=np.float64) l = np.ascontiguousarray(l, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float64) K = np.ascontiguousarray(K, dtype=np.int32) I = np.ascontiguousarray(I, dtype=np.int32) g = np.ascontiguousarray(g, dtype=np.float64) cgp.dijkstra(u, l, WI, K, WV, I, g, 1.0) except: print("You need to compile the cmodules!") sys.exit(2) return u # Solve a general HJ equation with fast marching def HJsolver(W, I, g, WI=None, WJ=None, K=None, p=1): n = W.shape[0] k = len(I) u = np.ones((n,)) * 1e10 # HJ Solver l = -np.ones((n,), dtype=int) # Index of closest label if (WI == None) or (WJ == None) or (K == None): # Reformat weight matrix W into form more useful for Dijkstra WI, WJ, WV = sparse.find(W) K = np.array((WJ[1:] - WJ[:-1]).nonzero()) + 1 K = np.append(0, np.append(K, len(WJ))) try: # Try to use fast C version, if compiled import cmodules.cgraphpy as cgp # Type casting and memory blocking u = np.ascontiguousarray(u, dtype=np.float64) l = np.ascontiguousarray(l, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float64) K = np.ascontiguousarray(K, dtype=np.int32) I = np.ascontiguousarray(I, dtype=np.int32) g = np.ascontiguousarray(g, dtype=np.int32) cgp.HJsolver(u, l, WI, K, WV, I, g, 1.0, p, 1.0) except: # Initialization s = 0 # Size of heap h = -np.ones((n + 1,), dtype=int) # Active points heap (indices of active points) A = np.zeros((n,), dtype=bool) # Active flag p = -np.ones((n,), dtype=int) # Pointer back to heap V = np.zeros((n,), dtype=bool) # Finalized flag l = -np.ones((n,), dtype=int) # Index of closest label # Build active points heap and set distance = 0 for initial points for i in range(k): s = PushHeap(u, h, s, p, I[i]) u[I[i]] = g[i] # Initialize distance to zero A[I[i]] = True # Set active flag to true l[I[i]] = I[i] # Set index of closest label # Dijkstra's algorithm while s > 0: i, s = PopHeap(u, h, s, p) # Pop smallest element off of heap # Finalize this point V[i] = True # Mark as finalized A[i] = False # Set active flag to false # Update neighbors (the code below is wrong: compare against C sometime) for j in WI[K[i]:K[i + 1]]: if j != i and V[j] == False: nn_ind = WI[K[j]:K[j + 1]] w_vals = WV[K[j]:K[j + 1]] u_vals = u[nn_ind] u_tmp = stencil_solver(u[j], u_vals, w=w_vals) if A[j]: # If j is already active if u_tmp < u[j]: # Need to update heap u[j] = u_tmp SiftUp(u, h, s, p, p[j]) l[j] = l[i] else: # If j is not active # Add to heap and initialize distance, active flag, and label index s = PushHeap(u, h, s, p, j) u[j] = u_tmp A[j] = True l[j] = l[i] return u # eikonal classifier def eikonalSSL(W, I, g, p=2, beta=None): k = len(I) # Number of labels n = W.shape[0] # Number of datapoints d = np.zeros((n,)) # Distance function l = -np.ones((n,), dtype=int) # Index of closest label # Reformat weight matrix W into form more useful for Dijkstra WI, WJ, WV = sparse.find(W) K = np.array((WJ[1:] - WJ[:-1]).nonzero()) + 1 K = np.append(0, np.append(K, len(WJ))) c_code = False try: # Try to use fast C version, if compiled import cmodules.cgraphpy as cgp # Type casting and memory blocking d = np.ascontiguousarray(d, dtype=np.float64) l = np.ascontiguousarray(l, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float64) K = np.ascontiguousarray(K, dtype=np.int32) I = np.ascontiguousarray(I, dtype=np.int32) c_code = True except: c_code = False labels = np.unique(g) numl = len(labels) u = np.zeros((numl, n)) for i in range(numl): ind = I[g == labels[i]] lab = np.zeros((len(ind),)) if c_code: ind = np.ascontiguousarray(ind, dtype=np.int32) lab = np.ascontiguousarray(lab, dtype=np.int32) cgp.HJsolver(d, l, WI, K, WV, ind, lab, 1.0, p, 0.0) u[i, :] = -d else: u[i, :] = -HJsolver(W, ind, lab, WI=WI, WV=WV, K=K, p=p) if beta is not None: _, s = volume_label_projection(u, beta, dt=-0.5) u = np.diag(s) @ u return u # Nearest neighbor classifier (graph geodesic distance) def nearestneighbor(W, I, g): k = len(I) # Number of labels n = W.shape[0] # Number of datapoints d = np.ones((n,)) * 1e10 # Distance function l = -np.ones((n,), dtype=int) # Index of closest label # Reformat weight matrix W into form more useful for Dijkstra WI, WJ, WV = sparse.find(W) K = np.array((WJ[1:] - WJ[:-1]).nonzero()) + 1 K = np.append(0, np.append(K, len(WJ))) try: # Try to use fast C version of dijkstra, if compiled import cmodules.cgraphpy as cgp # Type casting and memory blocking d = np.ascontiguousarray(d, dtype=np.float64) l = np.ascontiguousarray(l, dtype=np.int32) WI = np.ascontiguousarray(WI, dtype=np.int32) WV = np.ascontiguousarray(WV, dtype=np.float64) K = np.ascontiguousarray(K, dtype=np.int32) I = np.ascontiguousarray(I, dtype=np.int32) init = np.ascontiguousarray(np.zeros_like(I), dtype=np.float64) cgp.dijkstra(d, l, WI, K, WV, I, init, 1.0) except: # Use python version, which is slower # Initialization s = 0 # Size of heap h = -np.ones((n + 1,), dtype=int) # Active points heap (indices of active points) A = np.zeros((n,), dtype=bool) # Active flag p = -np.ones((n,), dtype=int) # Pointer back to heap V = np.zeros((n,), dtype=bool) # Finalized flag # Build active points heap and set distance = 0 for initial points for i in range(k): d[I[i]] = 0 # Initialize distance to zero A[I[i]] = True # Set active flag to true l[I[i]] = I[i] # Set index of closest label s = PushHeap(d, h, s, p, I[i]) # Dijkstra's algorithm while s > 0: i, s = PopHeap(d, h, s, p) # Pop smallest element off of heap # Finalize this point V[i] = True # Mark as finalized A[i] = False # Set active flag to false # Update neighbors # for j in WI[K[i]:K[i+1]]: for jj in range(K[i], K[i + 1]): j = WI[jj] if j != i and V[j] == False: if A[j]: # If j is already active tmp_dist = d[i] + WV[jj] if tmp_dist < d[j]: # Need to update heap d[j] = tmp_dist SiftUp(d, h, s, p, p[j]) l[j] = l[i] else: # If j is not active # Add to heap and initialize distance, active flag, and label index d[j] = d[i] + WV[jj] A[j] = True l[j] = l[i] s = PushHeap(d, h, s, p, j) # Set labels based on nearest neighbor u = np.zeros((n,)) u[I] = g u, _ = LabelsToVec(u[l]) return u # Computes accuracy of clustering def clustering_accuracy(L, L_true): unique_classes = np.unique(L_true) num_classes = len(unique_classes) C = np.zeros((num_classes, num_classes), dtype=float) for i in range(num_classes): for j in range(num_classes): C[i][j] = np.sum((L == i) & (L_true != j)) row_ind, col_ind = opt.linear_sum_assignment(C) return 100 * (1 - C[row_ind, col_ind].sum() / len(L)) # Spectral embedding # Projects the graph to R^k via spectral projection # Method can be 'unnormalized', 'ShiMalik', or 'NgJordanWeiss' def spectral_embedding(W, k, method='NgJordanWeiss'): n = W.shape[0] if method == 'unnormalized': L = graph_laplacian(W, norm='none') vals, vec = sparse.linalg.eigs(L, k=k, which='SM') vec = vec.real vals = vals.real elif method == 'ShiMalik': D = degree_matrix(W) L = graph_laplacian(W, norm='none') vals, vec = sparse.linalg.eigs(L, M=D, k=k, which='SM') vec = vec.real vals = vals.real elif method == 'NgJordanWeiss': L = graph_laplacian(W, norm='normalized') vals, vec = sparse.linalg.eigs(L, k=k, which='SM') vec = vec.real vals = vals.real norms = np.sum(vec * vec, axis=1) T = sparse.spdiags(norms ** (-1 / 2), 0, n, n) vec = T @ vec # Normalize rows return vec def kmeans(X, k): KM = cluster.KMeans(n_clusters=k).fit(X) return KM.labels_ # Spectral Clustering def spectral_cluster(W, k, method='NgJordanWeiss', extra_dim=0): V = spectral_embedding(W, k + extra_dim, method=method) kmeans = cluster.KMeans(n_clusters=k).fit(V) # V = spectral_embedding(W,k,method=method) # kmeans = cluster.KMeans(n_clusters=k).fit(V) return kmeans.labels_ # INCRES clustering # Bresson, Xavier, et al. "An incremental reseeding strategy for clustering." International Conference on Imaging, Vision and Learning based on Optimization and PDEs. Spr<NAME>, 2016. # W = weight matrix def incres_cluster(W, k, speed, T, labels): n = W.shape[0] # Increment Dm = np.maximum(int(speed * 1e-4 * n / k), 1) # Random initial labeling u = random.randint(0, k, size=n) # Initialization F = np.zeros((n, k)) J = np.arange(n).astype(int) # Random walk transition D = degree_matrix(W, p=-1) P = W * D m = int(1) for i in range(T): # Plant F.fill(0) for r in range(k): I = u == r ind = J[I] F[ind[random.choice(np.sum(I), m)], r] = 1 # Grow while np.min(F) == 0: F = P * F # Harvest u = np.argmax(F, axis=1) # Increment m = m + Dm # Compute accuracy if labels is not None: acc = clustering_accuracy(u, labels) print("Iteration " + str(i) + ": Accuracy = %.2f" % acc + "%%, #seeds= %d" % m) return u # Check if graph is connected def isconnected(W): num_comp, comp = csgraph.connected_components(W) if num_comp == 1: return True else: return False # Graph-based clustering # W = sparse weight matrix describing graph # method = SSL method # Options: incres def graph_clustering(W, k, true_labels=None, method="incres", speed=5, T=100, extra_dim=0): n = W.shape[0] # Symmetrize W, if not already symmetric W = (W + W.transpose()) / 2 # Check if connected if not isconnected(W): print('Warning: Graph is not connected!') # Clustering if method == "incres": labels = incres_cluster(W, k, speed, T, true_labels) elif method == "spectral": labels = spectral_cluster(W, k, method="unnormalized", extra_dim=extra_dim) elif method == "spectralshimalik": labels = spectral_cluster(W, k, method="ShiMalik", extra_dim=extra_dim) elif method == "spectralngjordanweiss": labels = spectral_cluster(W, k, method="NgJordanWeiss", extra_dim=extra_dim) else: print("Invalid choice of clustering method.") sys.exit() return labels # Graph-based semi-supervised learning # W = sparse weight matrix describing graph # I = indices of labeled datapoints # g = values of labels # method = SSL method # Options: laplace, poisson, poisson_nodeg, wnll, properlyweighted, plaplace, randomwalk def graph_ssl(W, I, g, D=None, Ns=40, mu=1, numT=50, beta=None, method="laplace", p=3, volume_mult=0.5, alpha=2, zeta=1e7, r=0.1, epsilon=0.05, X=None, plaplace_solver="GradientDescentCcode", norm="none", true_labels=None, eigvals=None, eigvecs=None, dataset=None, T=0, use_cuda=False, return_vector=False, poisson_training_balance=True, symmetrize=True, error=None): one_shot_methods = ["mbo", "poisson", "poissonbalanced", "poissonvolume", "poissonmbo_volume", "poissonmbo", "poissonl1", "nearestneighbor", "poissonmbobalanced", "volumembo", "poissonvolumembo", "dynamiclabelpropagation", "sparselabelpropagation", "centeredkernel", "eikonal"] n = W.shape[0] method = method.lower() if beta is None: beta = np.ones((len(np.unique(g)),)) # Symmetrize D,W, if not already symmetric if symmetrize: W = (W + W.transpose()) / 2 if D is not None: D = sparse_max(D, D.transpose()) if not isconnected(W): print('Warning: Graph is not connected!') # One shot methods if method in one_shot_methods: if method == "mbo": u = multiclassMBO(W, I, g, eigvals, eigvecs, dataset, true_labels=true_labels) elif method == "volumembo": u = volumeMBO(W, I, g, dataset, beta, T, volume_mult) elif method == "poissonvolumembo": u = poisson_volumeMBO(W, I, g, dataset, beta, T, volume_mult) elif method == "poissonmbo_old": u = poissonMBO(W, I, g, dataset, np.ones_like(beta), true_labels=true_labels, temp=T, use_cuda=use_cuda, Ns=Ns, mu=mu, T=numT) elif method == "poissonmbobalanced": u = poissonMBO(W, I, g, dataset, beta, true_labels=true_labels, temp=T, use_cuda=use_cuda, Ns=Ns, mu=mu, T=numT) elif method == "poissonl1": u = poissonL1(W, I, g, dataset, true_labels=true_labels) elif method == "poisson": u, _ = poisson(W, I, g, true_labels=true_labels, use_cuda=use_cuda, training_balance=poisson_training_balance, error=error) elif method == "poissonbalanced": u, _ = poisson(W, I, g, true_labels=true_labels, use_cuda=use_cuda, training_balance=poisson_training_balance, beta=beta) elif method == "poissonvolume": u = PoissonVolume(W, I, g, true_labels=true_labels, use_cuda=use_cuda, training_balance=poisson_training_balance, beta=beta) elif method == "poissonmbo": u = poissonMBO_volume(W, I, g, dataset, beta, true_labels=true_labels, temp=T, use_cuda=use_cuda, Ns=Ns, mu=mu) elif method == "dynamiclabelpropagation": u = DynamicLabelPropagation(W, I, g, true_labels=true_labels) elif method == "sparselabelpropagation": u = SparseLabelPropagation(W, I, g, true_labels=true_labels) elif method == "centeredkernel": u = CenteredKernel(W, I, g, true_labels=true_labels) elif method == "nearestneighbor": # Use distance matrix if provided, instead of weight matrix if D is None: u = nearestneighbor(W, I, g) else: u = nearestneighbor(D, I, g) elif method == "eikonal": # Use distance matrix if provided, instead of weight matrix if D is None: u = eikonalSSL(W, I, g, p=p, beta=beta) else: u = eikonalSSL(W, I, g, p=p, beta=beta) else: # One vs rest methods k = len(np.unique(g)) # Number of labels u = np.zeros((k, n)) i = 0 for l in np.unique(g): h = g == l # Solve binary classification problem if method == "laplace": v = laplace_solve(W, I, h, norm=norm) elif method == "shift": v = shift_solve(W, I, h) elif method == "meanshift": v = meanshift_solve(W, I, h) elif method == "wnll": v = wnll_solve(W, I, h) elif method == "properlyweighted": if X is None: print("Must supply raw data points for properly weighted Laplacian.") sys.exit() v = properlyweighted_solve(W, I, h, X, alpha, zeta, r) elif method == "plaplace": v = plaplace_solve(W, I, h, p, sol_method=plaplace_solver, norm=norm) elif method == "randomwalk": v = randomwalk_solve(W, I, h, epsilon) else: print("Invalid choice of SSL method.") sys.exit() # Update labels u[i, :] = v i = i + 1 if return_vector: labels = np.transpose(u) else: # Select labels max_locations = np.argmax(u, axis=0) labels = (np.unique(g))[max_locations] # Make sure to set labels at labeled points labels[I] = g return labels confidence = usort[0, :] - usort[1, :] # Read numerical data from csv file def csvread(filename): X = [] with open(filename) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') n = 0 for row in csv_reader: if not row[0] == 'Date/Time': X += [float(i) for i in row] m = len(row) n += 1 return np.array(X).reshape((n, m)) # Compute average and standard deviation of accuracy over many trials # Reads data from csv file filename # Returns accuracy (acc), standard deviation (stddev) and number of labeled points (N) def accuracy_statistics(filename): X = csvread(filename) N = np.unique(X[:, 0]) acc = [] stddev = [] quant = [] for n in N: Y = X[X[:, 0] == n, 1] Y = np.sort(Y) acc += [np.mean(Y)] quant += [Y[int(3 * len(Y) / 4)]] stddev += [np.std(Y)] # print("%.1f (%.1f)"%(np.mean(Y),np.std(Y)), end="&") num_trials = len(X[:, 0]) / len(N) return acc, stddev, N, quant, num_trials # Makes an accuracy table to be included in LaTeX documents # dataset = name of dataset # ssl_methods = list of names of methods to compare def accuracy_table_icml(dataset, ssl_method_list, legend_list, num_of_classes, testerror=False, savefile='tables.tex', title='', quantile=False, append=False, directory='Results', fontsize='small', small_caps=True, two_column=True): # Retrieve number of different label rates m accfile = directory + "/" + dataset + "_" + ssl_method_list[0] + "_accuracy.csv" acc, stddev, N, quant, num_trials = accuracy_statistics(accfile) m = len(N) # Determine best algorithm at each label rate best = [None] * m best_score = [0] * m i = 0 for ssl_method in ssl_method_list: accfile = directory + "/" + dataset + "_" + ssl_method + "_accuracy.csv" acc, stddev, N, quant, num_trials = accuracy_statistics(accfile) if quantile: acc = quant for j in range(m): if acc[j] > best_score[j]: best_score[j] = acc[j] best[j] = i i += 1 if append: f = open(savefile, "r") lines = f.readlines() f.close() f = open(savefile, "w") f.writelines([item for item in lines[:-1]]) else: f = open(savefile, "w") f.write("\\documentclass{article}\n") f.write("\\usepackage[T1]{fontenc}\n") f.write("\\usepackage{booktabs}\n") f.write("\\usepackage[margin=1in]{geometry}\n") f.write("\\begin{document}\n") f.write("\n\n\n") if two_column: f.write("\\begin{table*}[t!]\n") else: f.write("\\begin{table}[t!]\n") f.write("\\vspace{-3mm}\n") f.write( "\\caption{" + title + ": Average (standard deviation) classification accuracy over %d trials.}\n" % num_trials) f.write("\\vspace{-3mm}\n") f.write("\\label{tab:" + title + "}\n") f.write("\\vskip 0.15in\n") f.write("\\begin{center}\n") f.write("\\begin{" + fontsize + "}\n") if small_caps: f.write("\\begin{sc}\n") f.write("\\begin{tabular}{l") for i in range(m): f.write("l") f.write("}\n") f.write("\\toprule\n") f.write("\\# Labels per class") for i in range(m): f.write("&\\textbf{%d}" % int(N[i] / num_of_classes)) f.write("\\\\\n") f.write("\\midrule\n") i = 0 for ssl_method in ssl_method_list: f.write(legend_list[i].ljust(15)) accfile = directory + "/" + dataset + "_" + ssl_method + "_accuracy.csv" acc, stddev, N, quant, num_trials = accuracy_statistics(accfile) for j in range(m): if best[j] == i: f.write("&{\\bf %.1f" % acc[j] + " (%.1f)}" % stddev[j]) # f.write("&${\\bf %.1f"%acc[j]+"\\pm %.1f}$"%stddev[j]) else: f.write("&%.1f" % acc[j] + " (%.1f) " % stddev[j]) # f.write("&$%.1f"%acc[j]+"\\pm %.1f$ "%stddev[j]) f.write("\\\\\n") i += 1 f.write("\\bottomrule\n") f.write("\\end{tabular}\n") if small_caps: f.write("\\end{sc}\n") f.write("\\end{" + fontsize + "}\n") f.write("\\end{center}\n") f.write("\\vskip -0.1in\n") if two_column: f.write("\\end{table*}") else: f.write("\\end{table}") f.write("\n\n\n") f.write("\\end{document}\n") f.close() def plot_graph(X, W, l=None): # Other colormaps, coolwarm, winter, Set3, tab20b, rainbow # plt.ion() colors = np.array([[1.0, 0, 0], [0, 0.9, 0]]) plt.rcParams['figure.facecolor'] = 'navy' n = W.shape[0] I, J, V = sparse.find(W) for i in range(len(I)): xval = [X[I[i], 0], X[J[i], 0]] yval = [X[I[i], 1], X[J[i], 1]] # plt.plot(xval,yval, color='black', linewidth=0.15, markersize=0) plt.plot(xval, yval, color=[0.5, 0.5, 0.5], linewidth=0.5, markersize=0) if l is None: # plt.scatter(X[:,0],X[:,1], s=30, cmap='Paired') plt.scatter(X[:, 0], X[:, 1], s=8, zorder=3) else: # plt.scatter(X[:,0],X[:,1], s=30, c=l, cmap='Paired') plt.scatter(X[:, 0], X[:, 1], s=8, c=colors[l, :], zorder=3) plt.axis("off") # plot average and standard deviation of accuracy over many trials # dataset = name of dataset # ssl_methods = list of names of methods to compare def accuracy_plot(dataset, ssl_method_list, legend_list, num_of_classes, title=None, errorbars=False, testerror=False, savefile=None, loglog=False, log_dirs=None, directed_graph=False): if log_dirs is None: log_dirs = ["Results/"] # plt.ion() plt.figure() if errorbars: matplotlib.rcParams.update({'errorbar.capsize': 5}) matplotlib.rcParams.update({'font.size': 16}) styles = ['^b-', 'or-', 'dg-', 'sk-', 'pm-', 'xc-', '*y-'] i = 0 for log in log_dirs: for ssl_method in ssl_method_list: accfile = os.path.join(log, dataset + "_" + ssl_method) if directed_graph: accfile += "_directed" accfile += "_accuracy.csv" acc, stddev, N, quant, num_trials = accuracy_statistics(accfile) if testerror: acc = 100 - acc # z = np.polyfit(np.log(N),np.log(acc),1) # print(z[0]) if errorbars: plt.errorbar(N / num_of_classes, acc, fmt=styles[i], yerr=stddev, label=legend_list[i]) else: if loglog: plt.loglog(N / num_of_classes, acc, styles[i], label=legend_list[i]) else: plt.plot(N / num_of_classes, acc, styles[i], label=legend_list[i]) i += 1 plt.xlabel('Number of labels per class') if testerror: plt.ylabel('Test error (%)') plt.legend(loc='upper right') else: plt.ylabel('Accuracy (%)') plt.legend(loc='lower right') if title is not None: plt.title(title) plt.tight_layout() plt.grid(True) if savefile is not None: plt.savefig(savefile) else: plt.show() # Select labels based on a ranking # Prodces a label permutation with 1 trial with same variations of #labels per class as the label permutation perm provided as input def SelectLabels(labels, permold, rank): perm = permold # Number of classes L = np.unique(labels) k = len(L) n = len(labels) m = len(permold) num = np.zeros((m,)) for i in range(m): num[i] = len(permold[i]) num, unique_perm = np.unique(num, return_index=True) perm = list() for i in unique_perm: p = permold[i] pl = labels[p] ind = [] for l in L: numl = np.sum(pl == l) K = labels == l c = np.argsort(-rank[K]) j = np.arange(0, n)[K] ind = ind + j[c[:numl]].tolist() ind = np.array(ind) perm.append(ind) return perm # PageRank algorithm def PageRank(W, alpha): n = W.shape[0] u = np.ones((n,)) v = np.ones((n,)) D = degree_matrix(W, p=-1) P = np.transpose(D * W) err = 1 while err > 1e-10: w = alpha * P * u + (1 - alpha) * v err = np.max(np.absolute(w - u)) u = w return u # Print help def print_help(): print('========================================================') print('GraphLearning: Python package for graph-based learning. ') print('========================================================') print('========================================================') print('Graph-based Clustering & Semi-Supervised Learning') print('========================================================') print(' ') print('Options:') print(' -d (--dataset=): MNIST, FashionMNIST, WEBKB, cifar (default=MNIST)') print(' -m (--metric=): Metric for computing similarities (default=L2)') print(' Choices: vae, scatter, L2, aet') print(' -a (--algorithm=): Learning algorithm (default=Laplace)') print(' -k (--knn=): Number of nearest neighbors (default=10)') print(' -t (--num_trials=): Number of trial permutations to run (default=all)') print( ' -l (--label_perm=): Choice of label permutation file (format=dataset<label_perm>_permutations.npz). (default is empty).') print(' -p (--p=): Value of p for plaplace method (default=3)') print(' -n (--normalization=): Laplacian normalization (default=none)') print(' Choices: none, normalized') print(' -N (--num_classes): Number of clusters if choosing clustering algorithm (default=10)') print(' -s (--speed=): Speed in INCRES method (1--10) (default=2)') print(' -i (--num_iter=): Number of iterations for iterative methods (default=1000)') print(' -x (--extra_dim=): Number of extra dimensions in spectral clustering (default=0)') print(' -c (--cuda): Use GPU acceleration (when available)') print(' -T (--temperature): Temperature for volume constrained MBO (default=0)') print(' -v (--volume_constraint=): Volume constraint for MBO (default=0.5)') print(' -j (--num_cores=): Number of cores to use in parallel processing (default=1)') print(' -r (--results): Turns off automatic saving of results to .csv file') print(' -b (--verbose): Turns on verbose mode (displaying more intermediate steps).') # Default settings def default_dataset(): return 'MNIST' def default_metric(): return 'L2' def default_algorithm(): return 'laplace' def default_k(): return 10 def default_t(): return '-1' def default_label_perm(): return '' def default_p(): return 3 def default_norm(): return "none" def default_use_cuda(): return False def default_T(): return 0 def default_num_cores(): return 1 def default_results(): return True def default_num_classes(): return 10 def default_speed(): return 2 def default_num_iter(): return 1000 def default_extra_dim(): return 0 def default_volume_constraint(): return 0.5 def default_verbose(): return False def default_poisson_training_balance(): return True def default_directed_graph(): return False # Main subroutine. Is calleable from other scripts as graphlearning.main(...) def main(dataset=default_dataset(), metric=default_metric(), algorithm=default_algorithm(), k=default_k(), t=default_t(), label_perm=default_label_perm(), p=default_p(), norm=default_norm(), use_cuda=default_use_cuda(), T=default_T(), num_cores=default_num_cores(), results=default_results(), num_classes=default_num_classes(), speed=default_speed(), num_iter=default_num_iter(), extra_dim=default_extra_dim(), volume_constraint=default_volume_constraint(), verbose=default_verbose(), poisson_training_balance=default_poisson_training_balance(), directed_graph=default_directed_graph()): # Load labels labels = load_labels(dataset) # Load nearest neighbor data I, J, D = load_kNN_data(dataset, metric=metric) # Consturct weight matrix and distance matrix W, error = nnk_weight_matrix(dataset, metric, mask=J, knn_param=k, symmetrize=not directed_graph) Wdist = None # dist_matrix(I, J, D, k) # Load label permutation (including restrictions in t) perm = load_label_permutation(dataset, label_perm=label_perm, t=t) # Load eigenvector data if MBO selected if algorithm == 'mbo': eigvals, eigvecs = load_mbo_eig(dataset, metric, k) else: eigvals = None eigvecs = None # Output file outfile = "Results/" + dataset + label_perm + "_" + metric + "_k%d" % k if algorithm == 'plaplace': outfile = outfile + "_p%.1f" % p + algorithm[1:] + "_" + norm elif algorithm == 'eikonal': outfile = outfile + "_p%.1f" % p + algorithm else: outfile = outfile + "_" + algorithm if algorithm == 'volumembo' or algorithm == 'poissonvolumembo': outfile = outfile + "_T%.3f" % T outfile = outfile + "_V%.3f" % volume_constraint if algorithm == 'poisson' and poisson_training_balance == False: outfile = outfile + "_NoBal" if directed_graph: outfile += "_directed" outfile = outfile + "_accuracy.csv" # Print basic info print('========================================================') print('GraphLearning: Python package for graph-based learning. ') print('========================================================') print('========================================================') print('Graph-based Clustering & Semi-Supervised Learning') print('========================================================') print(' ') print('Dataset: ' + dataset) print('Metric: ' + metric) print('Number of neighbors: %d' % k) print('Learning algorithm: ' + algorithm) print('Laplacian normalization: ' + norm) if algorithm == 'plaplace' or algorithm == 'eikonal': print("p-Laplace/eikonal value p=%.2f" % p) if algorithm in clustering_algorithms: print('Number of clusters: %d' % num_classes) if algorithm == 'INCRES': print('INCRES speed: %.2f' % speed) print('Number of iterations: %d' % num_iter) if algorithm[:8] == 'Spectral': print('Number of extra dimensions: %d' % extra_dim) else: print('Number of trial permutations: %d' % len(perm)) print('Permutations file: LabelPermutations/' + dataset + label_perm + '_permutations.npz') if algorithm == 'volumembo' or algorithm == 'poissonvolumembo': print("Using temperature=%.3f" % T) print("Volume constraints = [%.3f,%.3f]" % (volume_constraint, 2 - volume_constraint)) # If output file selected if results: print('Output file: ' + outfile) print(' ') print('========================================================') print(' ') true_labels = None if verbose: true_labels = labels # If clustering algorithm was chosen if algorithm in clustering_algorithms: # Clustering u = graph_clustering(W, num_classes, labels, method=algorithm, T=num_iter, speed=speed, extra_dim=extra_dim) # Compute accuracy acc = clustering_accuracy(u, labels) # Print to terminal print("Accuracy: %.2f" % acc + "%") # If semi-supervised algorithms chosen else: # If output file selected if results: # Check if Results directory exists if not os.path.exists('Results'): os.makedirs('Results') now = datetime.datetime.now() # Add time stamp to output file f = open(outfile, "a+") f.write("Date/Time, " + now.strftime("%Y-%m-%d_%H:%M") + "\n") f.close() # Loop over label permutations print("Number of labels, Accuracy") def one_trial(label_ind): # Number of labels m = len(label_ind) # Label proportions (used by some algroithms) beta = label_proportions(labels) start_time = time.time() # Graph-based semi-supervised learning u = graph_ssl(W, label_ind, labels[label_ind], D=Wdist, beta=beta, method=algorithm, epsilon=0.3, p=p, norm=norm, eigvals=eigvals, eigvecs=eigvecs, dataset=dataset, T=T, use_cuda=use_cuda, volume_mult=volume_constraint, true_labels=true_labels, poisson_training_balance=poisson_training_balance, symmetrize=not directed_graph, error=error) print("--- %s seconds ---" % (time.time() - start_time)) # Compute accuracy acc = accuracy(u, labels, m) # Print to terminal print("%d" % m + ",%.2f" % acc) # Write to file if results: f = open(outfile, "a+") f.write("%d" % m + ",%.2f\n" % acc) f.close() # Number of cores for parallel processing num_cores = min(multiprocessing.cpu_count(), num_cores) Parallel(n_jobs=num_cores)(delayed(one_trial)(label_ind) for label_ind in perm) if __name__ == '__main__': # Default settings dataset = default_dataset() metric = default_metric() algorithm = default_algorithm() k = default_k() t = default_t() label_perm = default_label_perm() p = default_p() norm = default_norm() use_cuda = default_use_cuda() T = default_T() num_cores = default_num_cores() results = default_results() num_classes = default_num_classes() speed = default_speed() num_iter = default_num_iter() extra_dim = default_extra_dim() volume_constraint = default_volume_constraint() verbose = default_verbose() poisson_training_balance = default_poisson_training_balance() directed_graph = default_directed_graph() # Read command line arguments try: opts, args = getopt.getopt(sys.argv[1:], "hd:m:k:a:p:n:v:N:s:i:x:t:cl:T:j:rboz", ["dataset=", "metric=", "knn=", "algorithm=", "p=", "normalization=", "volume_constraint=", "num_classes=", "speed=", "num_iter=", "extra_dim=", "num_trials=", "cuda", "label_perm=", "temperature=", "num_cores=", "results", "verbose", "poisson_training_balance", "directed"]) except getopt.GetoptError: print_help() sys.exit(2) for opt, arg in opts: if opt == '-h': print_help() sys.exit() elif opt in ("-d", "--dataset"): dataset = arg elif opt in ("-m", "--metric"): metric = arg elif opt in ("-k", "--knn"): k = int(arg) elif opt in ("-a", "--algorithm"): algorithm = arg.lower() elif opt in ("-p", "--p"): p = float(arg) elif opt in ("-n", "--normalization"): norm = arg elif opt in ("-v", "--volume_constraint"): volume_constraint = float(arg) elif opt in ("-N", "--num_classes"): num_classes = int(arg) elif opt in ("-s", "--speed"): speed = float(arg) elif opt in ("-i", "--num_iter"): num_iter = int(arg) elif opt in ("-x", "--extra_dim"): extra_dim = int(arg) elif opt in ("-t", "--num_trials"): t = arg elif opt in ("-c", "--cuda"): use_cuda = True elif opt in ("-l", "--label_perm"): label_perm = arg elif opt in ("-T", "--temperature"): T = float(arg) elif opt in ("-j", "--num_cores"): num_cores = int(arg) elif opt in ("-r", "--results"): results = False elif opt in ("-b", "--verbose"): verbose = True elif opt in ("-o", "--poisson_training_balance"): poisson_training_balance = False elif opt in ("-z", "--directed"): directed_graph = True # Call main subroutine main(dataset=dataset, metric=metric, algorithm=algorithm, k=k, t=t, label_perm=label_perm, p=p, norm=norm, use_cuda=use_cuda, T=T, num_cores=num_cores, results=results, num_classes=num_classes, speed=speed, num_iter=num_iter, extra_dim=extra_dim, volume_constraint=volume_constraint, verbose=verbose, poisson_training_balance=poisson_training_balance, directed_graph=directed_graph)
[ "numpy.sum", "scipy.sparse.linalg.cg", "numpy.ones", "numpy.argmin", "numpy.argsort", "matplotlib.pyplot.figure", "numpy.arange", "numpy.exp", "numpy.diag", "matplotlib.rcParams.update", "torch.FloatTensor", "numpy.max", "datetime.datetime.now", "numpy.minimum", "matplotlib.pyplot.show", "numpy.ones_like", "scipy.sparse.spdiags", "numpy.min", "matplotlib.pyplot.grid", "numpy.vstack", "sys.exit", "os.makedirs", "numpy.array", "csv.reader", "numpy.linalg.norm", "matplotlib.pyplot.tight_layout", "numpy.unique", "scipy.spatial.Delaunay", "numpy.full", "multiprocessing.cpu_count", "numpy.transpose", "kymatio.Scattering2D", "numpy.append", "scipy.sparse.identity", "matplotlib.pyplot.errorbar", "scipy.optimize.linear_sum_assignment", "torch.from_numpy", "cmodules.cgraphpy.volume_mbo", "matplotlib.pyplot.plot", "numpy.random.random", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.title", "matplotlib.pyplot.loglog", "numpy.maximum", "getopt.getopt", "numpy.argmax", "numpy.clip", "numpy.mean", "numpy.tile", "os.path.join", "numpy.copy", "sklearn.cluster.KMeans", "os.path.exists", "numpy.swapaxes", "cmodules.cgraphpy.HJsolver", "scipy.sparse.find", "os.path.realpath", "matplotlib.pyplot.legend", "numpy.dot", "scipy.sparse.linalg.eigs", "numpy.zeros", "time.time", "scipy.sparse.linalg.gmres", "joblib.Parallel", "numpy.sign", "annoy.AnnoyIndex", "joblib.delayed", "matplotlib.pyplot.savefig", "numpy.absolute", "numpy.load", "numpy.random.randint", "scipy.sparse.csgraph.connected_components", "numpy.random.normal", "scipy.spatial.cKDTree", "numpy.round", "numpy.zeros_like", "numpy.std", "scipy.sparse.coo_matrix", "cmodules.cgraphpy.dijkstra", "numpy.random.choice", "cmodules.cgraphpy.lp_iterate", "numpy.sort", "torch.sparse.addmm", "torch.Size", "numpy.cos", "mayavi.mlab.view", "matplotlib.pyplot.ylabel", "numpy.concatenate", "torch.LongTensor", "matplotlib.pyplot.scatter", "matplotlib.pyplot.axis", "numpy.where", "numpy.random.rand", "numpy.ascontiguousarray", "mayavi.mlab.triangular_mesh", "numpy.sqrt" ]
[((2665, 2718), 'os.path.join', 'os.path.join', (['location', '"""LabelPermutations"""', 'dataFile'], {}), "(location, 'LabelPermutations', dataFile)\n", (2677, 2718), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((3545, 3585), 'os.path.join', 'os.path.join', (['location', '"""Data"""', 'dataFile'], {}), "(location, 'Data', dataFile)\n", (3557, 3585), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((3939, 3979), 'os.path.join', 'os.path.join', (['location', '"""Data"""', 'dataFile'], {}), "(location, 'Data', dataFile)\n", (3951, 3979), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((4365, 4408), 'os.path.join', 'os.path.join', (['location', '"""kNNData"""', 'dataFile'], {}), "(location, 'kNNData', dataFile)\n", (4377, 4408), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((4762, 4779), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (4771, 4779), True, 'import numpy as np\n'), ((4844, 4863), 'numpy.sum', 'np.sum', (['(labels >= 0)'], {}), '(labels >= 0)\n', (4850, 4863), True, 'import numpy as np\n'), ((4875, 4889), 'numpy.zeros', 'np.zeros', (['(k,)'], {}), '((k,))\n', (4883, 4889), True, 'import numpy as np\n'), ((5500, 5514), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (5511, 5514), True, 'import scipy.sparse as sparse\n'), ((6088, 6123), 'kymatio.Scattering2D', 'Scattering2D', ([], {'J': 'depth', 'shape': '(n, m)'}), '(J=depth, shape=(n, m))\n', (6100, 6123), False, 'from kymatio import Scattering2D\n'), ((6433, 6450), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (6442, 6450), True, 'import numpy as np\n'), ((6535, 6558), 'numpy.zeros', 'np.zeros', (['(num_labels,)'], {}), '((num_labels,))\n', (6543, 6558), True, 'import numpy as np\n'), ((7327, 7344), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (7336, 7344), True, 'import numpy as np\n'), ((8216, 8226), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (8222, 8226), True, 'import numpy as np\n'), ((8908, 8939), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(d ** p)', '(0)', 'n', 'n'], {}), '(d ** p, 0, n, n)\n', (8922, 8939), True, 'import scipy.sparse as sparse\n'), ((9079, 9097), 'scipy.spatial.cKDTree', 'spatial.cKDTree', (['X'], {}), '(X)\n', (9094, 9097), True, 'import scipy.spatial as spatial\n'), ((9257, 9311), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(gamma + (1 - gamma) / nn_dist)', '(0)', 'n', 'n'], {}), '(gamma + (1 - gamma) / nn_dist, 0, n, n)\n', (9271, 9311), True, 'import scipy.sparse as sparse\n'), ((10358, 10372), 'numpy.absolute', 'np.absolute', (['w'], {}), '(w)\n', (10369, 10372), True, 'import numpy as np\n'), ((11222, 11240), 'scipy.spatial.cKDTree', 'spatial.cKDTree', (['X'], {}), '(X)\n', (11237, 11240), True, 'import scipy.spatial as spatial\n'), ((11392, 11413), 'numpy.sum', 'np.sum', (['(V * V)'], {'axis': '(1)'}), '(V * V, axis=1)\n', (11398, 11413), True, 'import numpy as np\n'), ((11774, 11820), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(D, (M1, M2))'], {'shape': '(n, n)'}), '((D, (M1, M2)), shape=(n, n))\n', (11791, 11820), True, 'import scipy.sparse as sparse\n'), ((11954, 11972), 'scipy.spatial.cKDTree', 'spatial.cKDTree', (['X'], {}), '(X)\n', (11969, 11972), True, 'import scipy.spatial as spatial\n'), ((12572, 12599), 'annoy.AnnoyIndex', 'AnnoyIndex', (['dim', 'similarity'], {}), '(dim, similarity)\n', (12582, 12599), False, 'from annoy import AnnoyIndex\n'), ((13025, 13036), 'numpy.array', 'np.array', (['I'], {}), '(I)\n', (13033, 13036), True, 'import numpy as np\n'), ((13045, 13056), 'numpy.array', 'np.array', (['J'], {}), '(J)\n', (13053, 13056), True, 'import numpy as np\n'), ((13065, 13076), 'numpy.array', 'np.array', (['D'], {}), '(D)\n', (13073, 13076), True, 'import numpy as np\n'), ((13338, 13372), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(1 / sigma)', '(0)', 'n', 'n'], {}), '(1 / sigma, 0, n, n)\n', (13352, 13372), True, 'import scipy.sparse as sparse\n'), ((13530, 13550), 'numpy.vstack', 'np.vstack', (['(I, J, D)'], {}), '((I, J, D))\n', (13539, 13550), True, 'import numpy as np\n'), ((13560, 13580), 'numpy.vstack', 'np.vstack', (['(J, I, D)'], {}), '((J, I, D))\n', (13569, 13580), True, 'import numpy as np\n'), ((13589, 13621), 'numpy.concatenate', 'np.concatenate', (['(M1, M2)'], {'axis': '(1)'}), '((M1, M2), axis=1)\n', (13603, 13621), True, 'import numpy as np\n'), ((13630, 13650), 'numpy.unique', 'np.unique', (['M'], {'axis': '(1)'}), '(M, axis=1)\n', (13639, 13650), True, 'import numpy as np\n'), ((14397, 14422), 'numpy.minimum', 'np.minimum', (['I.shape[1]', 'k'], {}), '(I.shape[1], k)\n', (14407, 14422), True, 'import numpy as np\n'), ((15118, 15143), 'numpy.minimum', 'np.minimum', (['I.shape[1]', 'k'], {}), '(I.shape[1], k)\n', (15128, 15143), True, 'import numpy as np\n'), ((15685, 15699), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (15696, 15699), True, 'import scipy.sparse as sparse\n'), ((15754, 15775), 'numpy.sum', 'np.sum', (['(Y * Y)'], {'axis': '(1)'}), '(Y * Y, axis=1)\n', (15760, 15775), True, 'import numpy as np\n'), ((16005, 16019), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (16016, 16019), True, 'import scipy.sparse as sparse\n'), ((16028, 16042), 'numpy.exp', 'np.exp', (['(-2 * V)'], {}), '(-2 * V)\n', (16034, 16042), True, 'import numpy as np\n'), ((16388, 16435), 'scipy.sparse.csgraph.connected_components', 'csgraph.connected_components', (['W'], {'directed': '(False)'}), '(W, directed=False)\n', (16416, 16435), True, 'import scipy.sparse.csgraph as csgraph\n'), ((16452, 16470), 'numpy.zeros', 'np.zeros', (['(ncomp,)'], {}), '((ncomp,))\n', (16460, 16470), True, 'import numpy as np\n'), ((16554, 16574), 'numpy.argmax', 'np.argmax', (['num_verts'], {}), '(num_verts)\n', (16563, 16574), True, 'import numpy as np\n'), ((17041, 17066), 'numpy.minimum', 'np.minimum', (['I.shape[1]', 'k'], {}), '(I.shape[1], k)\n', (17051, 17066), True, 'import numpy as np\n'), ((17798, 17833), 'numpy.zeros', 'np.zeros', (['(num_of_nodes, knn_param)'], {}), '((num_of_nodes, knn_param))\n', (17806, 17833), True, 'import numpy as np\n'), ((17854, 17889), 'numpy.zeros', 'np.zeros', (['(num_of_nodes, knn_param)'], {}), '((num_of_nodes, knn_param))\n', (17862, 17889), True, 'import numpy as np\n'), ((17909, 17943), 'numpy.ones', 'np.ones', (['(num_of_nodes, knn_param)'], {}), '((num_of_nodes, knn_param))\n', (17916, 17943), True, 'import numpy as np\n'), ((18778, 18814), 'numpy.tile', 'np.tile', (['row_indices', '[1, knn_param]'], {}), '(row_indices, [1, knn_param])\n', (18785, 18814), True, 'import numpy as np\n'), ((19938, 19963), 'numpy.minimum', 'np.minimum', (['I.shape[1]', 'k'], {}), '(I.shape[1], k)\n', (19948, 19963), True, 'import numpy as np\n'), ((20203, 20219), 'numpy.transpose', 'np.transpose', (['nu'], {}), '(nu)\n', (20215, 20219), True, 'import numpy as np\n'), ((20294, 20310), 'numpy.transpose', 'np.transpose', (['nu'], {}), '(nu)\n', (20306, 20310), True, 'import numpy as np\n'), ((20376, 20407), 'numpy.swapaxes', 'np.swapaxes', (['NN[:, 1:, :]', '(0)', '(1)'], {}), '(NN[:, 1:, :], 0, 1)\n', (20387, 20407), True, 'import numpy as np\n'), ((20552, 20573), 'numpy.sum', 'np.sum', (['(V * W)'], {'axis': '(2)'}), '(V * W, axis=2)\n', (20558, 20573), True, 'import numpy as np\n'), ((20602, 20621), 'numpy.max', 'np.max', (['(-xd)'], {'axis': '(0)'}), '(-xd, axis=0)\n', (20608, 20621), True, 'import numpy as np\n'), ((21092, 21117), 'numpy.minimum', 'np.minimum', (['I.shape[1]', 'k'], {}), '(I.shape[1], k)\n', (21102, 21117), True, 'import numpy as np\n'), ((21357, 21373), 'numpy.transpose', 'np.transpose', (['nu'], {}), '(nu)\n', (21369, 21373), True, 'import numpy as np\n'), ((21448, 21464), 'numpy.transpose', 'np.transpose', (['nu'], {}), '(nu)\n', (21460, 21464), True, 'import numpy as np\n'), ((21509, 21540), 'numpy.swapaxes', 'np.swapaxes', (['NN[:, 1:, :]', '(0)', '(1)'], {}), '(NN[:, 1:, :], 0, 1)\n', (21520, 21540), True, 'import numpy as np\n'), ((21613, 21635), 'numpy.sum', 'np.sum', (['(V * nu)'], {'axis': '(2)'}), '(V * nu, axis=2)\n', (21619, 21635), True, 'import numpy as np\n'), ((21672, 21693), 'numpy.sum', 'np.sum', (['(V * V)'], {'axis': '(2)'}), '(V * V, axis=2)\n', (21678, 21693), True, 'import numpy as np\n'), ((21702, 21751), 'numpy.max', 'np.max', (['((xd * xd - sqdist) / (2 * R) - xd)'], {'axis': '(0)'}), '((xd * xd - sqdist) / (2 * R) - xd, axis=0)\n', (21708, 21751), True, 'import numpy as np\n'), ((22469, 22499), 'scipy.sparse.linalg.gmres', 'sparse.linalg.gmres', (['A', 'b'], {'M': 'M'}), '(A, b, M=M)\n', (22488, 22499), True, 'import scipy.sparse as sparse\n'), ((23332, 23363), 'numpy.full', 'np.full', (['(n,)', '(True)'], {'dtype': 'bool'}), '((n,), True, dtype=bool)\n', (23339, 23363), True, 'import numpy as np\n'), ((23490, 23528), 'scipy.sparse.linalg.eigs', 'sparse.linalg.eigs', (['A'], {'k': 'k', 'which': '"""SM"""'}), "(A, k=k, which='SM')\n", (23508, 23528), True, 'import scipy.sparse as sparse\n'), ((23611, 23627), 'numpy.zeros', 'np.zeros', (['(n, k)'], {}), '((n, k))\n', (23619, 23627), True, 'import numpy as np\n'), ((23905, 23936), 'numpy.full', 'np.full', (['(n,)', '(True)'], {'dtype': 'bool'}), '((n,), True, dtype=bool)\n', (23912, 23936), True, 'import numpy as np\n'), ((24549, 24562), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (24556, 24562), True, 'import numpy as np\n'), ((24667, 24684), 'numpy.random.rand', 'random.rand', (['n', 'd'], {}), '(n, d)\n', (24678, 24684), True, 'import numpy.random as random\n'), ((24782, 24798), 'numpy.zeros', 'np.zeros', (['(1, d)'], {}), '((1, d))\n', (24790, 24798), True, 'import numpy as np\n'), ((25124, 25140), 'numpy.zeros', 'np.zeros', (['(1, d)'], {}), '((1, d))\n', (25132, 25140), True, 'import numpy as np\n'), ((25349, 25365), 'numpy.zeros', 'np.zeros', (['(n, d)'], {}), '((n, d))\n', (25357, 25365), True, 'import numpy as np\n'), ((25972, 25998), 'scipy.spatial.Delaunay', 'spatial.Delaunay', (['X[:, :2]'], {}), '(X[:, :2])\n', (25988, 25998), True, 'import scipy.spatial as spatial\n'), ((26231, 26281), 'numpy.array', 'np.array', (['[[x1, y1], [x2, y2], [x1, y2], [x2, y1]]'], {}), '([[x1, y1], [x2, y2], [x1, y2], [x2, y1]])\n', (26239, 26281), True, 'import numpy as np\n'), ((26290, 26319), 'numpy.append', 'np.append', (['X', 'corners'], {'axis': '(0)'}), '(X, corners, axis=0)\n', (26299, 26319), True, 'import numpy as np\n'), ((27211, 27228), 'numpy.vstack', 'np.vstack', (['(X, Y)'], {}), '((X, Y))\n', (27220, 27228), True, 'import numpy as np\n'), ((27288, 27305), 'numpy.vstack', 'np.vstack', (['(Z, Y)'], {}), '((Z, Y))\n', (27297, 27305), True, 'import numpy as np\n'), ((27367, 27384), 'numpy.vstack', 'np.vstack', (['(Z, Y)'], {}), '((Z, Y))\n', (27376, 27384), True, 'import numpy as np\n'), ((27444, 27461), 'numpy.vstack', 'np.vstack', (['(Z, Y)'], {}), '((Z, Y))\n', (27453, 27461), True, 'import numpy as np\n'), ((27500, 27519), 'scipy.spatial.Delaunay', 'spatial.Delaunay', (['Z'], {}), '(Z)\n', (27516, 27519), True, 'import scipy.spatial as spatial\n'), ((27690, 27736), 'mayavi.mlab.triangular_mesh', 'mlab.triangular_mesh', (['X[:, 0]', 'X[:, 1]', 'u', 'Tri'], {}), '(X[:, 0], X[:, 1], u, Tri)\n', (27710, 27736), True, 'import mayavi.mlab as mlab\n'), ((27741, 27777), 'mayavi.mlab.view', 'mlab.view', ([], {'azimuth': '(-45)', 'elevation': '(60)'}), '(azimuth=-45, elevation=60)\n', (27750, 27777), True, 'import mayavi.mlab as mlab\n'), ((28751, 28764), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (28758, 28764), True, 'import numpy as np\n'), ((29491, 29515), 'scipy.spatial.cKDTree', 'spatial.cKDTree', (['X[I, :]'], {}), '(X[I, :])\n', (29506, 29515), True, 'import scipy.spatial as spatial\n'), ((30657, 30671), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (30668, 30671), True, 'import scipy.sparse as sparse\n'), ((34775, 34789), 'numpy.zeros', 'np.zeros', (['(n,)'], {}), '((n,))\n', (34783, 34789), True, 'import numpy as np\n'), ((35474, 35502), 'numpy.argmax', 'np.argmax', (['(Max >= Xs)'], {'axis': '(0)'}), '(Max >= Xs, axis=0)\n', (35483, 35502), True, 'import numpy as np\n'), ((35681, 35693), 'numpy.unique', 'np.unique', (['L'], {}), '(L)\n', (35690, 35693), True, 'import numpy as np\n'), ((35798, 35814), 'numpy.zeros', 'np.zeros', (['(k, n)'], {}), '((k, n))\n', (35806, 35814), True, 'import numpy as np\n'), ((36082, 36102), 'numpy.argmax', 'np.argmax', (['X'], {'axis': '(0)'}), '(X, axis=0)\n', (36091, 36102), True, 'import numpy as np\n'), ((36111, 36127), 'numpy.zeros', 'np.zeros', (['(k, n)'], {}), '((k, n))\n', (36119, 36127), True, 'import numpy as np\n'), ((36311, 36327), 'numpy.exp', 'np.exp', (['(beta * X)'], {}), '(beta * X)\n', (36317, 36327), True, 'import numpy as np\n'), ((36339, 36356), 'numpy.sum', 'np.sum', (['Y'], {'axis': '(0)'}), '(Y, axis=0)\n', (36345, 36356), True, 'import numpy as np\n'), ((36472, 36489), 'numpy.random.rand', 'random.rand', (['n', '(1)'], {}), '(n, 1)\n', (36483, 36489), True, 'import numpy.random as random\n'), ((36539, 36555), 'numpy.zeros', 'np.zeros', (['(k, n)'], {}), '((k, n))\n', (36547, 36555), True, 'import numpy as np\n'), ((37014, 37034), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (37023, 37034), True, 'import numpy as np\n'), ((37136, 37150), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (37147, 37150), True, 'import scipy.sparse as sparse\n'), ((37260, 37299), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['u'], {'dtype': 'np.int32'}), '(u, dtype=np.int32)\n', (37280, 37299), True, 'import numpy as np\n'), ((37309, 37349), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WI'], {'dtype': 'np.int32'}), '(WI, dtype=np.int32)\n', (37329, 37349), True, 'import numpy as np\n'), ((37359, 37399), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WJ'], {'dtype': 'np.int32'}), '(WJ, dtype=np.int32)\n', (37379, 37399), True, 'import numpy as np\n'), ((37409, 37451), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WV'], {'dtype': 'np.float32'}), '(WV, dtype=np.float32)\n', (37429, 37451), True, 'import numpy as np\n'), ((37460, 37499), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['I'], {'dtype': 'np.int32'}), '(I, dtype=np.int32)\n', (37480, 37499), True, 'import numpy as np\n'), ((37508, 37547), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['g'], {'dtype': 'np.int32'}), '(g, dtype=np.int32)\n', (37528, 37547), True, 'import numpy as np\n'), ((37566, 37615), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['ClassCounts'], {'dtype': 'np.int32'}), '(ClassCounts, dtype=np.int32)\n', (37586, 37615), True, 'import numpy as np\n'), ((37621, 37693), 'cmodules.cgraphpy.volume_mbo', 'cgp.volume_mbo', (['u', 'WI', 'WJ', 'WV', 'I', 'g', 'ClassCounts', 'k', '(0.0)', 'T', 'volume_mult'], {}), '(u, WI, WJ, WV, I, g, ClassCounts, k, 0.0, T, volume_mult)\n', (37635, 37693), True, 'import cmodules.cgraphpy as cgp\n'), ((38162, 38176), 'numpy.zeros', 'np.zeros', (['(n,)'], {}), '((n,))\n', (38170, 38176), True, 'import numpy as np\n'), ((38194, 38208), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (38205, 38208), True, 'import scipy.sparse as sparse\n'), ((38318, 38357), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['u'], {'dtype': 'np.int32'}), '(u, dtype=np.int32)\n', (38338, 38357), True, 'import numpy as np\n'), ((38367, 38407), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WI'], {'dtype': 'np.int32'}), '(WI, dtype=np.int32)\n', (38387, 38407), True, 'import numpy as np\n'), ((38417, 38457), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WJ'], {'dtype': 'np.int32'}), '(WJ, dtype=np.int32)\n', (38437, 38457), True, 'import numpy as np\n'), ((38467, 38509), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WV'], {'dtype': 'np.float32'}), '(WV, dtype=np.float32)\n', (38487, 38509), True, 'import numpy as np\n'), ((38518, 38557), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['I'], {'dtype': 'np.int32'}), '(I, dtype=np.int32)\n', (38538, 38557), True, 'import numpy as np\n'), ((38566, 38605), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['g'], {'dtype': 'np.int32'}), '(g, dtype=np.int32)\n', (38586, 38605), True, 'import numpy as np\n'), ((38624, 38673), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['ClassCounts'], {'dtype': 'np.int32'}), '(ClassCounts, dtype=np.int32)\n', (38644, 38673), True, 'import numpy as np\n'), ((38679, 38751), 'cmodules.cgraphpy.volume_mbo', 'cgp.volume_mbo', (['u', 'WI', 'WJ', 'WV', 'I', 'g', 'ClassCounts', 'k', '(1.0)', 'T', 'volume_mult'], {}), '(u, WI, WJ, WV, I, g, ClassCounts, k, 1.0, T, volume_mult)\n', (38693, 38751), True, 'import cmodules.cgraphpy as cgp\n'), ((39565, 39601), 'numpy.diag', 'np.diag', (['(1 / (1 + dt / Ns * eigvals))'], {}), '(1 / (1 + dt / Ns * eigvals))\n', (39572, 39601), True, 'import numpy as np\n'), ((39627, 39642), 'numpy.transpose', 'np.transpose', (['X'], {}), '(X)\n', (39639, 39642), True, 'import numpy as np\n'), ((39682, 39699), 'numpy.random.rand', 'random.rand', (['k', 'n'], {}), '(k, n)\n', (39693, 39699), True, 'import numpy.random as random\n'), ((39768, 39779), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (39776, 39779), True, 'import numpy as np\n'), ((40655, 40667), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (40664, 40667), True, 'import numpy as np\n'), ((40713, 40727), 'numpy.zeros', 'np.zeros', (['(k,)'], {}), '((k,))\n', (40721, 40727), True, 'import numpy as np\n'), ((40947, 40958), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (40955, 40958), True, 'import numpy as np\n'), ((41129, 41145), 'numpy.transpose', 'np.transpose', (['Kg'], {}), '(Kg)\n', (41141, 41145), True, 'import numpy as np\n'), ((41180, 41195), 'numpy.transpose', 'np.transpose', (['b'], {}), '(b)\n', (41192, 41195), True, 'import numpy as np\n'), ((42915, 42940), 'numpy.vstack', 'np.vstack', (['(A.row, A.col)'], {}), '((A.row, A.col))\n', (42924, 42940), True, 'import numpy as np\n'), ((42950, 42975), 'torch.LongTensor', 'torch.LongTensor', (['indices'], {}), '(indices)\n', (42966, 42975), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((42984, 43009), 'torch.FloatTensor', 'torch.FloatTensor', (['values'], {}), '(values)\n', (43001, 43009), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((43239, 43253), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (43250, 43253), True, 'import scipy.sparse as sparse\n'), ((43488, 43506), 'scipy.sparse.identity', 'sparse.identity', (['n'], {}), '(n)\n', (43503, 43506), True, 'import scipy.sparse as sparse\n'), ((43621, 43637), 'numpy.zeros', 'np.zeros', (['(k, n)'], {}), '((k, n))\n', (43629, 43637), True, 'import numpy as np\n'), ((43678, 43689), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (43686, 43689), True, 'import numpy as np\n'), ((45086, 45097), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (45094, 45097), True, 'import numpy as np\n'), ((45234, 45245), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (45242, 45245), True, 'import numpy as np\n'), ((45338, 45358), 'numpy.transpose', 'np.transpose', (['(Kg * J)'], {}), '(Kg * J)\n', (45350, 45358), True, 'import numpy as np\n'), ((45367, 45378), 'numpy.copy', 'np.copy', (['Kg'], {}), '(Kg)\n', (45374, 45378), True, 'import numpy as np\n'), ((46529, 46540), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (46537, 46540), True, 'import numpy as np\n'), ((46633, 46653), 'numpy.transpose', 'np.transpose', (['(Kg * J)'], {}), '(Kg * J)\n', (46645, 46653), True, 'import numpy as np\n'), ((46748, 46759), 'numpy.copy', 'np.copy', (['Kg'], {}), '(Kg)\n', (46755, 46759), True, 'import numpy as np\n'), ((46768, 46783), 'numpy.ones', 'np.ones', (['(n, 1)'], {}), '((n, 1))\n', (46775, 46783), True, 'import numpy as np\n'), ((46793, 46808), 'numpy.ones', 'np.ones', (['(1, n)'], {}), '((1, n))\n', (46800, 46808), True, 'import numpy as np\n'), ((46818, 46838), 'numpy.random.rand', 'np.random.rand', (['n', '(1)'], {}), '(n, 1)\n', (46832, 46838), True, 'import numpy as np\n'), ((47692, 47707), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (47704, 47707), True, 'import numpy as np\n'), ((47765, 47785), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (47774, 47785), True, 'import numpy as np\n'), ((50502, 50513), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (50510, 50513), True, 'import numpy as np\n'), ((50684, 50700), 'numpy.transpose', 'np.transpose', (['Kg'], {}), '(Kg)\n', (50696, 50700), True, 'import numpy as np\n'), ((50735, 50750), 'numpy.transpose', 'np.transpose', (['b'], {}), '(b)\n', (50747, 50750), True, 'import numpy as np\n'), ((52590, 52602), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (52599, 52602), True, 'import numpy as np\n'), ((52759, 52770), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (52767, 52770), True, 'import numpy as np\n'), ((52941, 52957), 'numpy.transpose', 'np.transpose', (['Kg'], {}), '(Kg)\n', (52953, 52957), True, 'import numpy as np\n'), ((53235, 53253), 'numpy.max', 'np.max', (['Kg'], {'axis': '(0)'}), '(Kg, axis=0)\n', (53241, 53253), True, 'import numpy as np\n'), ((53354, 53370), 'numpy.zeros', 'np.zeros', (['(n, k)'], {}), '((n, k))\n', (53362, 53370), True, 'import numpy as np\n'), ((55114, 55126), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (55123, 55126), True, 'import numpy as np\n'), ((55412, 55423), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (55420, 55423), True, 'import numpy as np\n'), ((55594, 55610), 'numpy.transpose', 'np.transpose', (['Kg'], {}), '(Kg)\n', (55606, 55610), True, 'import numpy as np\n'), ((55857, 55886), 'numpy.random.random', 'np.random.random', ([], {'size': '(n, 1)'}), '(size=(n, 1))\n', (55873, 55886), True, 'import numpy as np\n'), ((55918, 55934), 'numpy.zeros', 'np.zeros', (['(n, k)'], {}), '((n, k))\n', (55926, 55934), True, 'import numpy as np\n'), ((58153, 58167), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (58164, 58167), True, 'import scipy.sparse as sparse\n'), ((58467, 58483), 'numpy.zeros', 'np.zeros', (['(k, n)'], {}), '((k, n))\n', (58475, 58483), True, 'import numpy as np\n'), ((58524, 58535), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (58532, 58535), True, 'import numpy as np\n'), ((58705, 58721), 'numpy.transpose', 'np.transpose', (['Kg'], {}), '(Kg)\n', (58717, 58721), True, 'import numpy as np\n'), ((58834, 58850), 'numpy.zeros', 'np.zeros', (['(k, n)'], {}), '((k, n))\n', (58842, 58850), True, 'import numpy as np\n'), ((63051, 63064), 'numpy.argsort', 'np.argsort', (['u'], {}), '(u)\n', (63061, 63064), True, 'import numpy as np\n'), ((63100, 63118), 'numpy.zeros', 'np.zeros', (['(m + 1,)'], {}), '((m + 1,))\n', (63108, 63118), True, 'import numpy as np\n'), ((63206, 63229), 'numpy.maximum', 'np.maximum', (['(1)', 'f[m - 1]'], {}), '(1, f[m - 1])\n', (63216, 63229), True, 'import numpy as np\n'), ((63238, 63254), 'numpy.argmin', 'np.argmin', (['(f < 1)'], {}), '(f < 1)\n', (63247, 63254), True, 'import numpy as np\n'), ((63264, 63277), 'numpy.sum', 'np.sum', (['u[:k]'], {}), '(u[:k])\n', (63270, 63277), True, 'import numpy as np\n'), ((63286, 63304), 'numpy.sum', 'np.sum', (['(u[:k] ** 2)'], {}), '(u[:k] ** 2)\n', (63292, 63304), True, 'import numpy as np\n'), ((67763, 67777), 'numpy.zeros', 'np.zeros', (['(n,)'], {}), '((n,))\n', (67771, 67777), True, 'import numpy as np\n'), ((67943, 67957), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (67954, 67957), True, 'import scipy.sparse as sparse\n'), ((68601, 68613), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (68610, 68613), True, 'import numpy as np\n'), ((68646, 68665), 'numpy.zeros', 'np.zeros', (['(numl, n)'], {}), '((numl, n))\n', (68654, 68665), True, 'import numpy as np\n'), ((69556, 69570), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (69567, 69570), True, 'import scipy.sparse as sparse\n'), ((72063, 72077), 'numpy.zeros', 'np.zeros', (['(n,)'], {}), '((n,))\n', (72071, 72077), True, 'import numpy as np\n'), ((72227, 72244), 'numpy.unique', 'np.unique', (['L_true'], {}), '(L_true)\n', (72236, 72244), True, 'import numpy as np\n'), ((72292, 72341), 'numpy.zeros', 'np.zeros', (['(num_classes, num_classes)'], {'dtype': 'float'}), '((num_classes, num_classes), dtype=float)\n', (72300, 72341), True, 'import numpy as np\n'), ((72490, 72518), 'scipy.optimize.linear_sum_assignment', 'opt.linear_sum_assignment', (['C'], {}), '(C)\n', (72515, 72518), True, 'import scipy.optimize as opt\n'), ((74341, 74369), 'numpy.random.randint', 'random.randint', (['(0)', 'k'], {'size': 'n'}), '(0, k, size=n)\n', (74355, 74369), True, 'import numpy.random as random\n'), ((74400, 74416), 'numpy.zeros', 'np.zeros', (['(n, k)'], {}), '((n, k))\n', (74408, 74416), True, 'import numpy as np\n'), ((75173, 75204), 'scipy.sparse.csgraph.connected_components', 'csgraph.connected_components', (['W'], {}), '(W)\n', (75201, 75204), True, 'import scipy.sparse.csgraph as csgraph\n'), ((82388, 82406), 'numpy.unique', 'np.unique', (['X[:, 0]'], {}), '(X[:, 0])\n', (82397, 82406), True, 'import numpy as np\n'), ((86343, 86379), 'numpy.array', 'np.array', (['[[1.0, 0, 0], [0, 0.9, 0]]'], {}), '([[1.0, 0, 0], [0, 0.9, 0]])\n', (86351, 86379), True, 'import numpy as np\n'), ((86460, 86474), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (86471, 86474), True, 'import scipy.sparse as sparse\n'), ((87017, 87032), 'matplotlib.pyplot.axis', 'plt.axis', (['"""off"""'], {}), "('off')\n", (87025, 87032), True, 'import matplotlib.pyplot as plt\n'), ((87463, 87475), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (87473, 87475), True, 'import matplotlib.pyplot as plt\n'), ((87558, 87603), 'matplotlib.rcParams.update', 'matplotlib.rcParams.update', (["{'font.size': 16}"], {}), "({'font.size': 16})\n", (87584, 87603), False, 'import matplotlib\n'), ((88541, 88581), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of labels per class"""'], {}), "('Number of labels per class')\n", (88551, 88581), True, 'import matplotlib.pyplot as plt\n'), ((88813, 88831), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (88829, 88831), True, 'import matplotlib.pyplot as plt\n'), ((88836, 88850), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (88844, 88850), True, 'import matplotlib.pyplot as plt\n'), ((89202, 89219), 'numpy.unique', 'np.unique', (['labels'], {}), '(labels)\n', (89211, 89219), True, 'import numpy as np\n'), ((89287, 89301), 'numpy.zeros', 'np.zeros', (['(m,)'], {}), '((m,))\n', (89295, 89301), True, 'import numpy as np\n'), ((89382, 89415), 'numpy.unique', 'np.unique', (['num'], {'return_index': '(True)'}), '(num, return_index=True)\n', (89391, 89415), True, 'import numpy as np\n'), ((89869, 89882), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (89876, 89882), True, 'import numpy as np\n'), ((89891, 89904), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (89898, 89904), True, 'import numpy as np\n'), ((89945, 89964), 'numpy.transpose', 'np.transpose', (['(D * W)'], {}), '(D * W)\n', (89957, 89964), True, 'import numpy as np\n'), ((2074, 2117), 'os.path.join', 'os.path.join', (['location', '"""MBOdata"""', 'dataFile'], {}), "(location, 'MBOdata', dataFile)\n", (2086, 2117), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((2130, 2171), 'numpy.load', 'np.load', (['dataFile_path'], {'allow_pickle': '(True)'}), '(dataFile_path, allow_pickle=True)\n', (2137, 2171), True, 'import numpy as np\n'), ((2559, 2585), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (2575, 2585), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((2770, 2811), 'numpy.load', 'np.load', (['dataFile_path'], {'allow_pickle': '(True)'}), '(dataFile_path, allow_pickle=True)\n', (2777, 2811), True, 'import numpy as np\n'), ((3497, 3523), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (3513, 3523), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((3630, 3671), 'numpy.load', 'np.load', (['dataFile_path'], {'allow_pickle': '(True)'}), '(dataFile_path, allow_pickle=True)\n', (3637, 3671), True, 'import numpy as np\n'), ((3852, 3878), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (3868, 3878), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((4020, 4061), 'numpy.load', 'np.load', (['dataFile_path'], {'allow_pickle': '(True)'}), '(dataFile_path, allow_pickle=True)\n', (4027, 4061), True, 'import numpy as np\n'), ((4270, 4296), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (4286, 4296), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((4451, 4492), 'numpy.load', 'np.load', (['dataFile_path'], {'allow_pickle': '(True)'}), '(dataFile_path, allow_pickle=True)\n', (4458, 4492), True, 'import numpy as np\n'), ((5301, 5337), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(d ** -alpha)', '(0)', 'n', 'n'], {}), '(d ** -alpha, 0, n, n)\n', (5315, 5337), True, 'import scipy.sparse as sparse\n'), ((5595, 5604), 'numpy.max', 'np.max', (['V'], {}), '(V)\n', (5601, 5604), True, 'import numpy as np\n'), ((6608, 6638), 'numpy.sum', 'np.sum', (['(labels == labelvals[i])'], {}), '(labels == labelvals[i])\n', (6614, 6638), True, 'import numpy as np\n'), ((9215, 9228), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (9222, 9228), True, 'import numpy as np\n'), ((10314, 10328), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (10325, 10328), True, 'import scipy.sparse as sparse\n'), ((10866, 10880), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (10877, 10880), True, 'import scipy.sparse as sparse\n'), ((12012, 12038), 'numpy.ones', 'np.ones', (['(n, k)'], {'dtype': 'int'}), '((n, k), dtype=int)\n', (12019, 12038), True, 'import numpy as np\n'), ((14479, 14522), 'numpy.random.choice', 'random.choice', (['I.shape[1]', 'k'], {'replace': '(False)'}), '(I.shape[1], k, replace=False)\n', (14492, 14522), True, 'import numpy.random as random\n'), ((16521, 16540), 'numpy.sum', 'np.sum', (['(labels == i)'], {}), '(labels == i)\n', (16527, 16540), True, 'import numpy as np\n'), ((17700, 17740), 'numpy.linalg.norm', 'np.linalg.norm', (['X'], {'axis': '(1)', 'keepdims': '(True)'}), '(X, axis=1, keepdims=True)\n', (17714, 17740), True, 'import numpy as np\n'), ((18009, 18034), 'numpy.array', 'np.array', (['mask[node_i, :]'], {}), '(mask[node_i, :])\n', (18017, 18034), True, 'import numpy as np\n'), ((18729, 18755), 'numpy.arange', 'np.arange', (['(0)', 'num_of_nodes'], {}), '(0, num_of_nodes)\n', (18738, 18755), True, 'import numpy as np\n'), ((20240, 20263), 'numpy.sum', 'np.sum', (['(nu * nu)'], {'axis': '(0)'}), '(nu * nu, axis=0)\n', (20246, 20263), True, 'import numpy as np\n'), ((21394, 21417), 'numpy.sum', 'np.sum', (['(nu * nu)'], {'axis': '(0)'}), '(nu * nu, axis=0)\n', (21400, 21417), True, 'import numpy as np\n'), ((22972, 23003), 'scipy.sparse.linalg.cg', 'splinalg.cg', (['L', 'f'], {'tol': 'tol', 'M': 'M'}), '(L, f, tol=tol, M=M)\n', (22983, 23003), True, 'import scipy.sparse.linalg as splinalg\n'), ((23029, 23067), 'scipy.sparse.linalg.cg', 'splinalg.cg', (['L', 'f'], {'x0': 'x0', 'tol': 'tol', 'M': 'M'}), '(L, f, x0=x0, tol=tol, M=M)\n', (23040, 23067), True, 'import scipy.sparse.linalg as splinalg\n'), ((24343, 24374), 'scipy.sparse.linalg.cg', 'splinalg.cg', (['A', 'b'], {'tol': 'tol', 'M': 'M'}), '(A, b, tol=tol, M=M)\n', (24354, 24374), True, 'import scipy.sparse.linalg as splinalg\n'), ((24400, 24443), 'scipy.sparse.linalg.cg', 'splinalg.cg', (['A', 'b'], {'x0': 'x0[idx]', 'tol': 'tol', 'M': 'M'}), '(A, b, x0=x0[idx], tol=tol, M=M)\n', (24411, 24443), True, 'import scipy.sparse.linalg as splinalg\n'), ((24880, 24901), 'numpy.sum', 'np.sum', (['(Y * Y)'], {'axis': '(1)'}), '(Y * Y, axis=1)\n', (24886, 24901), True, 'import numpy as np\n'), ((24984, 25001), 'numpy.vstack', 'np.vstack', (['(X, Y)'], {}), '((X, Y))\n', (24993, 25001), True, 'import numpy as np\n'), ((25269, 25286), 'numpy.vstack', 'np.vstack', (['(X, Y)'], {}), '((X, Y))\n', (25278, 25286), True, 'import numpy as np\n'), ((25407, 25432), 'numpy.random.normal', 'np.random.normal', (['(0)', '(1)', 'n'], {}), '(0, 1, n)\n', (25423, 25432), True, 'import numpy as np\n'), ((25686, 25703), 'numpy.vstack', 'np.vstack', (['(x, y)'], {}), '((x, y))\n', (25695, 25703), True, 'import numpy as np\n'), ((26374, 26400), 'numpy.append', 'np.append', (['u', '[0, 0, 0, 0]'], {}), '(u, [0, 0, 0, 0])\n', (26383, 26400), True, 'import numpy as np\n'), ((27118, 27128), 'numpy.sqrt', 'np.sqrt', (['n'], {}), '(n)\n', (27125, 27128), True, 'import numpy as np\n'), ((27551, 27575), 'numpy.sum', 'np.sum', (['(Tri >= n)'], {'axis': '(1)'}), '(Tri >= n, axis=1)\n', (27557, 27575), True, 'import numpy as np\n'), ((28329, 28345), 'numpy.sum', 'np.sum', (['(s[I] * g)'], {}), '(s[I] * g)\n', (28335, 28345), True, 'import numpy as np\n'), ((28385, 28395), 'numpy.mean', 'np.mean', (['u'], {}), '(u)\n', (28392, 28395), True, 'import numpy as np\n'), ((28626, 28636), 'numpy.mean', 'np.mean', (['u'], {}), '(u)\n', (28633, 28636), True, 'import numpy as np\n'), ((30578, 30587), 'numpy.max', 'np.max', (['g'], {}), '(g)\n', (30584, 30587), True, 'import numpy as np\n'), ((30590, 30603), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (30597, 30603), True, 'import numpy as np\n'), ((30613, 30622), 'numpy.min', 'np.min', (['g'], {}), '(g)\n', (30619, 30622), True, 'import numpy as np\n'), ((30625, 30638), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (30632, 30638), True, 'import numpy as np\n'), ((31085, 31127), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['uu'], {'dtype': 'np.float64'}), '(uu, dtype=np.float64)\n', (31105, 31127), True, 'import numpy as np\n'), ((31141, 31183), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['ul'], {'dtype': 'np.float64'}), '(ul, dtype=np.float64)\n', (31161, 31183), True, 'import numpy as np\n'), ((31197, 31237), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WI'], {'dtype': 'np.int32'}), '(WI, dtype=np.int32)\n', (31217, 31237), True, 'import numpy as np\n'), ((31251, 31291), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WJ'], {'dtype': 'np.int32'}), '(WJ, dtype=np.int32)\n', (31271, 31291), True, 'import numpy as np\n'), ((31305, 31347), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WV'], {'dtype': 'np.float64'}), '(WV, dtype=np.float64)\n', (31325, 31347), True, 'import numpy as np\n'), ((31360, 31399), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['I'], {'dtype': 'np.int32'}), '(I, dtype=np.int32)\n', (31380, 31399), True, 'import numpy as np\n'), ((31412, 31453), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['g'], {'dtype': 'np.float64'}), '(g, dtype=np.float64)\n', (31432, 31453), True, 'import numpy as np\n'), ((31463, 31527), 'cmodules.cgraphpy.lp_iterate', 'cgp.lp_iterate', (['uu', 'ul', 'WI', 'WJ', 'WV', 'I', 'g', 'p', '(1000000.0)', '(0.1)', '(0.0)'], {}), '(uu, ul, WI, WJ, WV, I, g, p, 1000000.0, 0.1, 0.0)\n', (31477, 31527), True, 'import cmodules.cgraphpy as cgp\n'), ((34001, 34015), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (34012, 34015), True, 'import scipy.sparse as sparse\n'), ((34681, 34699), 'scipy.sparse.identity', 'sparse.identity', (['n'], {}), '(n)\n', (34696, 34699), True, 'import scipy.sparse as sparse\n'), ((35241, 35260), 'numpy.sort', 'np.sort', (['(-X)'], {'axis': '(0)'}), '(-X, axis=0)\n', (35248, 35260), True, 'import numpy as np\n'), ((35296, 35311), 'numpy.ones', 'np.ones', (['(k, k)'], {}), '((k, k))\n', (35303, 35311), True, 'import numpy as np\n'), ((37044, 37056), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (37053, 37056), True, 'import numpy as np\n'), ((37105, 37117), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (37114, 37117), True, 'import numpy as np\n'), ((38140, 38152), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (38149, 38152), True, 'import numpy as np\n'), ((39176, 39188), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (39185, 39188), True, 'import numpy as np\n'), ((39790, 39800), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (39797, 39800), True, 'import numpy as np\n'), ((40775, 40804), 'numpy.sum', 'np.sum', (['(g == unique_labels[i])'], {}), '(g == unique_labels[i])\n', (40781, 40804), True, 'import numpy as np\n'), ((40969, 40979), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (40976, 40979), True, 'import numpy as np\n'), ((41093, 41111), 'numpy.sum', 'np.sum', (['Kg'], {'axis': '(1)'}), '(Kg, axis=1)\n', (41099, 41111), True, 'import numpy as np\n'), ((41659, 41677), 'scipy.sparse.identity', 'sparse.identity', (['n'], {}), '(n)\n', (41674, 41677), True, 'import scipy.sparse as sparse\n'), ((43073, 43090), 'torch.Size', 'torch.Size', (['shape'], {}), '(shape)\n', (43083, 43090), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((43207, 43219), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (43216, 43219), True, 'import numpy as np\n'), ((43700, 43710), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (43707, 43710), True, 'import numpy as np\n'), ((44027, 44037), 'numpy.copy', 'np.copy', (['u'], {}), '(u)\n', (44034, 44037), True, 'import numpy as np\n'), ((44990, 45002), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (44999, 45002), True, 'import numpy as np\n'), ((45108, 45118), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (45115, 45118), True, 'import numpy as np\n'), ((45256, 45266), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (45263, 45266), True, 'import numpy as np\n'), ((45518, 45536), 'scipy.sparse.identity', 'sparse.identity', (['n'], {}), '(n)\n', (45533, 45536), True, 'import scipy.sparse as sparse\n'), ((45637, 45647), 'numpy.copy', 'np.copy', (['P'], {}), '(P)\n', (45644, 45647), True, 'import numpy as np\n'), ((46433, 46445), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (46442, 46445), True, 'import numpy as np\n'), ((46551, 46561), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (46558, 46561), True, 'import numpy as np\n'), ((46683, 46701), 'numpy.sum', 'np.sum', (['Kg'], {'axis': '(0)'}), '(Kg, axis=0)\n', (46689, 46701), True, 'import numpy as np\n'), ((47800, 47812), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (47809, 47812), True, 'import numpy as np\n'), ((49411, 49424), 'numpy.ones', 'np.ones', (['(k,)'], {}), '((k,))\n', (49418, 49424), True, 'import numpy as np\n'), ((49868, 49898), 'numpy.clip', 'np.clip', (['(s + dt * grad)', '(0.5)', '(2)'], {}), '(s + dt * grad, 0.5, 2)\n', (49875, 49898), True, 'import numpy as np\n'), ((50346, 50358), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (50355, 50358), True, 'import numpy as np\n'), ((50524, 50534), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (50531, 50534), True, 'import numpy as np\n'), ((50648, 50666), 'numpy.sum', 'np.sum', (['Kg'], {'axis': '(1)'}), '(Kg, axis=1)\n', (50654, 50666), True, 'import numpy as np\n'), ((51055, 51073), 'scipy.sparse.identity', 'sparse.identity', (['n'], {}), '(n)\n', (51070, 51073), True, 'import scipy.sparse as sparse\n'), ((52422, 52432), 'numpy.diag', 'np.diag', (['s'], {}), '(s)\n', (52429, 52432), True, 'import numpy as np\n'), ((52781, 52791), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (52788, 52791), True, 'import numpy as np\n'), ((52905, 52923), 'numpy.sum', 'np.sum', (['Kg'], {'axis': '(1)'}), '(Kg, axis=1)\n', (52911, 52923), True, 'import numpy as np\n'), ((53266, 53275), 'numpy.sum', 'np.sum', (['v'], {}), '(v)\n', (53272, 53275), True, 'import numpy as np\n'), ((54920, 54935), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (54932, 54935), True, 'import numpy as np\n'), ((55192, 55220), 'numpy.ones', 'np.ones', (['n'], {'dtype': 'np.float32'}), '(n, dtype=np.float32)\n', (55199, 55220), True, 'import numpy as np\n'), ((55434, 55444), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (55441, 55444), True, 'import numpy as np\n'), ((55558, 55576), 'numpy.sum', 'np.sum', (['Kg'], {'axis': '(1)'}), '(Kg, axis=1)\n', (55564, 55576), True, 'import numpy as np\n'), ((57803, 57818), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (57815, 57818), True, 'import numpy as np\n'), ((58039, 58051), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (58048, 58051), True, 'import numpy as np\n'), ((58359, 58370), 'numpy.max', 'np.max', (['deg'], {}), '(deg)\n', (58365, 58370), True, 'import numpy as np\n'), ((58546, 58556), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (58553, 58556), True, 'import numpy as np\n'), ((58669, 58687), 'numpy.sum', 'np.sum', (['Kg'], {'axis': '(1)'}), '(Kg, axis=1)\n', (58675, 58687), True, 'import numpy as np\n'), ((58769, 58784), 'numpy.transpose', 'np.transpose', (['b'], {}), '(b)\n', (58781, 58784), True, 'import numpy as np\n'), ((63617, 63630), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (63624, 63630), True, 'import numpy as np\n'), ((63660, 63684), 'numpy.ones', 'np.ones', (['(n,)'], {'dtype': 'int'}), '((n,), dtype=int)\n', (63667, 63684), True, 'import numpy as np\n'), ((63855, 63869), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (63866, 63869), True, 'import scipy.sparse as sparse\n'), ((64122, 64163), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['u'], {'dtype': 'np.float64'}), '(u, dtype=np.float64)\n', (64142, 64163), True, 'import numpy as np\n'), ((64176, 64215), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['l'], {'dtype': 'np.int32'}), '(l, dtype=np.int32)\n', (64196, 64215), True, 'import numpy as np\n'), ((64229, 64269), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WI'], {'dtype': 'np.int32'}), '(WI, dtype=np.int32)\n', (64249, 64269), True, 'import numpy as np\n'), ((64283, 64325), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WV'], {'dtype': 'np.float64'}), '(WV, dtype=np.float64)\n', (64303, 64325), True, 'import numpy as np\n'), ((64338, 64377), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['K'], {'dtype': 'np.int32'}), '(K, dtype=np.int32)\n', (64358, 64377), True, 'import numpy as np\n'), ((64390, 64429), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['I'], {'dtype': 'np.int32'}), '(I, dtype=np.int32)\n', (64410, 64429), True, 'import numpy as np\n'), ((64442, 64483), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['g'], {'dtype': 'np.float64'}), '(g, dtype=np.float64)\n', (64462, 64483), True, 'import numpy as np\n'), ((64493, 64533), 'cmodules.cgraphpy.dijkstra', 'cgp.dijkstra', (['u', 'l', 'WI', 'K', 'WV', 'I', 'g', '(1.0)'], {}), '(u, l, WI, K, WV, I, g, 1.0)\n', (64505, 64533), True, 'import cmodules.cgraphpy as cgp\n'), ((64778, 64791), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (64785, 64791), True, 'import numpy as np\n'), ((64821, 64845), 'numpy.ones', 'np.ones', (['(n,)'], {'dtype': 'int'}), '((n,), dtype=int)\n', (64828, 64845), True, 'import numpy as np\n'), ((65016, 65030), 'scipy.sparse.find', 'sparse.find', (['W'], {}), '(W)\n', (65027, 65030), True, 'import scipy.sparse as sparse\n'), ((65283, 65324), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['u'], {'dtype': 'np.float64'}), '(u, dtype=np.float64)\n', (65303, 65324), True, 'import numpy as np\n'), ((65337, 65376), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['l'], {'dtype': 'np.int32'}), '(l, dtype=np.int32)\n', (65357, 65376), True, 'import numpy as np\n'), ((65390, 65430), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WI'], {'dtype': 'np.int32'}), '(WI, dtype=np.int32)\n', (65410, 65430), True, 'import numpy as np\n'), ((65444, 65486), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WV'], {'dtype': 'np.float64'}), '(WV, dtype=np.float64)\n', (65464, 65486), True, 'import numpy as np\n'), ((65499, 65538), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['K'], {'dtype': 'np.int32'}), '(K, dtype=np.int32)\n', (65519, 65538), True, 'import numpy as np\n'), ((65551, 65590), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['I'], {'dtype': 'np.int32'}), '(I, dtype=np.int32)\n', (65571, 65590), True, 'import numpy as np\n'), ((65603, 65642), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['g'], {'dtype': 'np.int32'}), '(g, dtype=np.int32)\n', (65623, 65642), True, 'import numpy as np\n'), ((65652, 65700), 'cmodules.cgraphpy.HJsolver', 'cgp.HJsolver', (['u', 'l', 'WI', 'K', 'WV', 'I', 'g', '(1.0)', 'p', '(1.0)'], {}), '(u, l, WI, K, WV, I, g, 1.0, p, 1.0)\n', (65664, 65700), True, 'import cmodules.cgraphpy as cgp\n'), ((67808, 67832), 'numpy.ones', 'np.ones', (['(n,)'], {'dtype': 'int'}), '((n,), dtype=int)\n', (67815, 67832), True, 'import numpy as np\n'), ((68221, 68262), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['d'], {'dtype': 'np.float64'}), '(d, dtype=np.float64)\n', (68241, 68262), True, 'import numpy as np\n'), ((68275, 68314), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['l'], {'dtype': 'np.int32'}), '(l, dtype=np.int32)\n', (68295, 68314), True, 'import numpy as np\n'), ((68328, 68368), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WI'], {'dtype': 'np.int32'}), '(WI, dtype=np.int32)\n', (68348, 68368), True, 'import numpy as np\n'), ((68382, 68424), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WV'], {'dtype': 'np.float64'}), '(WV, dtype=np.float64)\n', (68402, 68424), True, 'import numpy as np\n'), ((68437, 68476), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['K'], {'dtype': 'np.int32'}), '(K, dtype=np.int32)\n', (68457, 68476), True, 'import numpy as np\n'), ((68489, 68528), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['I'], {'dtype': 'np.int32'}), '(I, dtype=np.int32)\n', (68509, 68528), True, 'import numpy as np\n'), ((69370, 69383), 'numpy.ones', 'np.ones', (['(n,)'], {}), '((n,))\n', (69377, 69383), True, 'import numpy as np\n'), ((69421, 69445), 'numpy.ones', 'np.ones', (['(n,)'], {'dtype': 'int'}), '((n,), dtype=int)\n', (69428, 69445), True, 'import numpy as np\n'), ((69827, 69868), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['d'], {'dtype': 'np.float64'}), '(d, dtype=np.float64)\n', (69847, 69868), True, 'import numpy as np\n'), ((69881, 69920), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['l'], {'dtype': 'np.int32'}), '(l, dtype=np.int32)\n', (69901, 69920), True, 'import numpy as np\n'), ((69934, 69974), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WI'], {'dtype': 'np.int32'}), '(WI, dtype=np.int32)\n', (69954, 69974), True, 'import numpy as np\n'), ((69988, 70030), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['WV'], {'dtype': 'np.float64'}), '(WV, dtype=np.float64)\n', (70008, 70030), True, 'import numpy as np\n'), ((70043, 70082), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['K'], {'dtype': 'np.int32'}), '(K, dtype=np.int32)\n', (70063, 70082), True, 'import numpy as np\n'), ((70095, 70134), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['I'], {'dtype': 'np.int32'}), '(I, dtype=np.int32)\n', (70115, 70134), True, 'import numpy as np\n'), ((70216, 70259), 'cmodules.cgraphpy.dijkstra', 'cgp.dijkstra', (['d', 'l', 'WI', 'K', 'WV', 'I', 'init', '(1.0)'], {}), '(d, l, WI, K, WV, I, init, 1.0)\n', (70228, 70259), True, 'import cmodules.cgraphpy as cgp\n'), ((72887, 72925), 'scipy.sparse.linalg.eigs', 'sparse.linalg.eigs', (['L'], {'k': 'k', 'which': '"""SM"""'}), "(L, k=k, which='SM')\n", (72905, 72925), True, 'import scipy.sparse as sparse\n'), ((74825, 74845), 'numpy.argmax', 'np.argmax', (['F'], {'axis': '(1)'}), '(F, axis=1)\n', (74834, 74845), True, 'import numpy as np\n'), ((80287, 80303), 'numpy.zeros', 'np.zeros', (['(k, n)'], {}), '((k, n))\n', (80295, 80303), True, 'import numpy as np\n'), ((80335, 80347), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (80344, 80347), True, 'import numpy as np\n'), ((81455, 81470), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (81467, 81470), True, 'import numpy as np\n'), ((81529, 81549), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (81538, 81549), True, 'import numpy as np\n'), ((81864, 81899), 'csv.reader', 'csv.reader', (['csv_file'], {'delimiter': '""","""'}), "(csv_file, delimiter=',')\n", (81874, 81899), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((82511, 82521), 'numpy.sort', 'np.sort', (['Y'], {}), '(Y)\n', (82518, 82521), True, 'import numpy as np\n'), ((86667, 86739), 'matplotlib.pyplot.plot', 'plt.plot', (['xval', 'yval'], {'color': '[0.5, 0.5, 0.5]', 'linewidth': '(0.5)', 'markersize': '(0)'}), '(xval, yval, color=[0.5, 0.5, 0.5], linewidth=0.5, markersize=0)\n', (86675, 86739), True, 'import matplotlib.pyplot as plt\n'), ((86825, 86869), 'matplotlib.pyplot.scatter', 'plt.scatter', (['X[:, 0]', 'X[:, 1]'], {'s': '(8)', 'zorder': '(3)'}), '(X[:, 0], X[:, 1], s=8, zorder=3)\n', (86836, 86869), True, 'import matplotlib.pyplot as plt\n'), ((86951, 87011), 'matplotlib.pyplot.scatter', 'plt.scatter', (['X[:, 0]', 'X[:, 1]'], {'s': '(8)', 'c': 'colors[l, :]', 'zorder': '(3)'}), '(X[:, 0], X[:, 1], s=8, c=colors[l, :], zorder=3)\n', (86962, 87011), True, 'import matplotlib.pyplot as plt\n'), ((87502, 87553), 'matplotlib.rcParams.update', 'matplotlib.rcParams.update', (["{'errorbar.capsize': 5}"], {}), "({'errorbar.capsize': 5})\n", (87528, 87553), False, 'import matplotlib\n'), ((88608, 88636), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Test error (%)"""'], {}), "('Test error (%)')\n", (88618, 88636), True, 'import matplotlib.pyplot as plt\n'), ((88645, 88674), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (88655, 88674), True, 'import matplotlib.pyplot as plt\n'), ((88693, 88719), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Accuracy (%)"""'], {}), "('Accuracy (%)')\n", (88703, 88719), True, 'import matplotlib.pyplot as plt\n'), ((88728, 88757), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (88738, 88757), True, 'import matplotlib.pyplot as plt\n'), ((88792, 88808), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (88801, 88808), True, 'import matplotlib.pyplot as plt\n'), ((88888, 88909), 'matplotlib.pyplot.savefig', 'plt.savefig', (['savefile'], {}), '(savefile)\n', (88899, 88909), True, 'import matplotlib.pyplot as plt\n'), ((88928, 88938), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (88936, 88938), True, 'import matplotlib.pyplot as plt\n'), ((89738, 89751), 'numpy.array', 'np.array', (['ind'], {}), '(ind)\n', (89746, 89751), True, 'import numpy as np\n'), ((100108, 100473), 'getopt.getopt', 'getopt.getopt', (['sys.argv[1:]', '"""hd:m:k:a:p:n:v:N:s:i:x:t:cl:T:j:rboz"""', "['dataset=', 'metric=', 'knn=', 'algorithm=', 'p=', 'normalization=',\n 'volume_constraint=', 'num_classes=', 'speed=', 'num_iter=',\n 'extra_dim=', 'num_trials=', 'cuda', 'label_perm=', 'temperature=',\n 'num_cores=', 'results', 'verbose', 'poisson_training_balance', 'directed']"], {}), "(sys.argv[1:], 'hd:m:k:a:p:n:v:N:s:i:x:t:cl:T:j:rboz', [\n 'dataset=', 'metric=', 'knn=', 'algorithm=', 'p=', 'normalization=',\n 'volume_constraint=', 'num_classes=', 'speed=', 'num_iter=',\n 'extra_dim=', 'num_trials=', 'cuda', 'label_perm=', 'temperature=',\n 'num_cores=', 'results', 'verbose', 'poisson_training_balance', 'directed']\n )\n", (100121, 100473), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((1949, 1975), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (1965, 1975), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((2426, 2437), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (2434, 2437), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((2964, 2975), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (2972, 2975), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((3764, 3775), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (3772, 3775), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((4165, 4176), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (4173, 4176), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((4659, 4670), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (4667, 4670), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((4931, 4953), 'numpy.sum', 'np.sum', (['(labels == L[i])'], {}), '(labels == L[i])\n', (4937, 4953), True, 'import numpy as np\n'), ((5614, 5658), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(V, (I, J))'], {'shape': '(n, n)'}), '((V, (I, J)), shape=(n, n))\n', (5631, 5658), True, 'import scipy.sparse as sparse\n'), ((6648, 6660), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (6657, 6660), True, 'import numpy as np\n'), ((7010, 7021), 'numpy.array', 'np.array', (['L'], {}), '(L)\n', (7018, 7021), True, 'import numpy as np\n'), ((7450, 7462), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (7459, 7462), True, 'import numpy as np\n'), ((7974, 7985), 'numpy.array', 'np.array', (['L'], {}), '(L)\n', (7982, 7985), True, 'import numpy as np\n'), ((8488, 8505), 'numpy.sum', 'np.sum', (['W'], {'axis': '(1)'}), '(W, axis=1)\n', (8494, 8505), True, 'import numpy as np\n'), ((10422, 10485), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(V * pa / (a + 1e-13), (I, J))'], {'shape': '(n, n)'}), '((V * pa / (a + 1e-13), (I, J)), shape=(n, n))\n', (10439, 10485), True, 'import scipy.sparse as sparse\n'), ((10621, 10638), 'numpy.sum', 'np.sum', (['M'], {'axis': '(1)'}), '(M, axis=1)\n', (10627, 10638), True, 'import numpy as np\n'), ((10889, 10949), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(V * (u[J] - u[I]), (I, J))'], {'shape': '(n, n)'}), '((V * (u[J] - u[I]), (I, J)), shape=(n, n))\n', (10906, 10949), True, 'import scipy.sparse as sparse\n'), ((11606, 11621), 'numpy.arange', 'np.arange', (['(0)', 'n'], {}), '(0, n)\n', (11615, 11621), True, 'import numpy as np\n'), ((11667, 11682), 'numpy.arange', 'np.arange', (['(0)', 'n'], {}), '(0, n)\n', (11676, 11682), True, 'import numpy as np\n'), ((13791, 13835), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(D, (I, J))'], {'shape': '(n, n)'}), '((D, (I, J)), shape=(n, n))\n', (13808, 13835), True, 'import scipy.sparse as sparse\n'), ((14874, 14918), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(D, (I, J))'], {'shape': '(n, n)'}), '((D, (I, J)), shape=(n, n))\n', (14891, 14918), True, 'import scipy.sparse as sparse\n'), ((15398, 15442), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(D, (I, J))'], {'shape': '(n, n)'}), '((D, (I, J)), shape=(n, n))\n', (15415, 15442), True, 'import scipy.sparse as sparse\n'), ((15785, 15829), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(Y, (I, J))'], {'shape': '(n, n)'}), '((Y, (I, J)), shape=(n, n))\n', (15802, 15829), True, 'import scipy.sparse as sparse\n'), ((15916, 15965), 'scipy.sparse.spdiags', 'sparse.spdiags', (['((max_dist + 1e-10) ** -1)', '(0)', 'n', 'n'], {}), '((max_dist + 1e-10) ** -1, 0, n, n)\n', (15930, 15965), True, 'import scipy.sparse as sparse\n'), ((16051, 16095), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(V, (I, J))'], {'shape': '(n, n)'}), '((V, (I, J)), shape=(n, n))\n', (16068, 16095), True, 'import scipy.sparse as sparse\n'), ((17390, 17434), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(D, (I, J))'], {'shape': '(n, n)'}), '((D, (I, J)), shape=(n, n))\n', (17407, 17434), True, 'import scipy.sparse as sparse\n'), ((18086, 18120), 'numpy.where', 'np.where', (['(non_zero_index == node_i)'], {}), '(non_zero_index == node_i)\n', (18094, 18120), True, 'import numpy as np\n'), ((18628, 18641), 'numpy.sum', 'np.sum', (['x_opt'], {}), '(x_opt)\n', (18634, 18641), True, 'import numpy as np\n'), ((20498, 20532), 'numpy.swapaxes', 'np.swapaxes', (['NN_nu[:, 1:, :]', '(0)', '(1)'], {}), '(NN_nu[:, 1:, :], 0, 1)\n', (20509, 20532), True, 'import numpy as np\n'), ((22365, 22395), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(1 / M)', '(0)', 'm', 'm'], {}), '(1 / M, 0, m, m)\n', (22379, 22395), True, 'import scipy.sparse as sparse\n'), ((22899, 22929), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(1 / M)', '(0)', 'm', 'm'], {}), '(1 / M, 0, m, m)\n', (22913, 22929), True, 'import scipy.sparse as sparse\n'), ((24259, 24299), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(1 / (M + 1e-10))', '(0)', 'm', 'm'], {}), '(1 / (M + 1e-10), 0, m, m)\n', (24273, 24299), True, 'import scipy.sparse as sparse\n'), ((25211, 25232), 'numpy.sum', 'np.sum', (['(Y * Y)'], {'axis': '(1)'}), '(Y * Y, axis=1)\n', (25217, 25232), True, 'import numpy as np\n'), ((25576, 25594), 'numpy.random.rand', 'random.rand', (['(3 * n)'], {}), '(3 * n)\n', (25587, 25594), True, 'import numpy.random as random\n'), ((25644, 25662), 'numpy.random.rand', 'random.rand', (['(3 * n)'], {}), '(3 * n)\n', (25655, 25662), True, 'import numpy.random as random\n'), ((25735, 25754), 'numpy.sqrt', 'np.sqrt', (['(1 - x ** 2)'], {}), '(1 - x ** 2)\n', (25742, 25754), True, 'import numpy as np\n'), ((25766, 25779), 'numpy.cos', 'np.cos', (['(3 * x)'], {}), '(3 * x)\n', (25772, 25779), True, 'import numpy as np\n'), ((26568, 26597), 'numpy.unique', 'np.unique', (['nn_tri[nn_tri < n]'], {}), '(nn_tri[nn_tri < n])\n', (26577, 26597), True, 'import numpy as np\n'), ((26617, 26635), 'numpy.mean', 'np.mean', (['u[nn_tri]'], {}), '(u[nn_tri])\n', (26624, 26635), True, 'import numpy as np\n'), ((28791, 28817), 'scipy.sparse.spdiags', 'sparse.spdiags', (['a', '(0)', 'n', 'n'], {}), '(a, 0, n, n)\n', (28805, 28817), True, 'import scipy.sparse as sparse\n'), ((29609, 29639), 'scipy.sparse.spdiags', 'sparse.spdiags', (['gamma', '(0)', 'n', 'n'], {}), '(gamma, 0, n, n)\n', (29623, 29639), True, 'import scipy.sparse as sparse\n'), ((34025, 34085), 'scipy.sparse.coo_matrix', 'sparse.coo_matrix', (['(V * (u[J] - u[I]), (I, J))'], {'shape': '(n, n)'}), '((V * (u[J] - u[I]), (I, J)), shape=(n, n))\n', (34042, 34085), True, 'import scipy.sparse as sparse\n'), ((36907, 36917), 'sys.exit', 'sys.exit', ([], {}), '()\n', (36915, 36917), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((38097, 38107), 'sys.exit', 'sys.exit', ([], {}), '()\n', (38105, 38107), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((39440, 39451), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (39448, 39451), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((40288, 40308), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (40297, 40308), True, 'import numpy as np\n'), ((42629, 42649), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (42638, 42649), True, 'import numpy as np\n'), ((44641, 44661), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (44650, 44661), True, 'import numpy as np\n'), ((46265, 46276), 'numpy.array', 'np.array', (['u'], {}), '(u)\n', (46273, 46276), True, 'import numpy as np\n'), ((47032, 47049), 'numpy.linalg.norm', 'np.linalg.norm', (['w'], {}), '(w)\n', (47046, 47049), True, 'import numpy as np\n'), ((47330, 47344), 'numpy.absolute', 'np.absolute', (['w'], {}), '(w)\n', (47341, 47344), True, 'import numpy as np\n'), ((47483, 47503), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(1)'}), '(u, axis=1)\n', (47492, 47503), True, 'import numpy as np\n'), ((51857, 51877), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (51866, 51877), True, 'import numpy as np\n'), ((53828, 53859), 'torch.sparse.addmm', 'torch.sparse.addmm', (['Dbt', 'Pt', 'ut'], {}), '(Dbt, Pt, ut)\n', (53846, 53859), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((55269, 55282), 'numpy.max', 'np.max', (['error'], {}), '(error)\n', (55275, 55282), True, 'import numpy as np\n'), ((56478, 56508), 'torch.sparse.addmm', 'torch.sparse.addmm', (['bt', 'Wt', 'ut'], {}), '(bt, Wt, ut)\n', (56496, 56508), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((56577, 56603), 'numpy.linalg.norm', 'np.linalg.norm', (['(v - v_prev)'], {}), '(v - v_prev)\n', (56591, 56603), True, 'import numpy as np\n'), ((56937, 56988), 'numpy.clip', 'np.clip', (['(b + confidence_gain * u)'], {'a_min': '(-1)', 'a_max': '(1)'}), '(b + confidence_gain * u, a_min=-1, a_max=1)\n', (56944, 56988), True, 'import numpy as np\n'), ((57057, 57083), 'numpy.linalg.norm', 'np.linalg.norm', (['(v - v_prev)'], {}), '(v - v_prev)\n', (57071, 57083), True, 'import numpy as np\n'), ((58975, 58990), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (58987, 58990), True, 'import numpy as np\n'), ((58993, 59011), 'numpy.mean', 'np.mean', (['u'], {'axis': '(1)'}), '(u, axis=1)\n', (59000, 59011), True, 'import numpy as np\n'), ((60798, 60818), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(0)'}), '(u, axis=0)\n', (60807, 60818), True, 'import numpy as np\n'), ((63318, 63344), 'numpy.sqrt', 'np.sqrt', (['(b * b - k * c + k)'], {}), '(b * b - k * c + k)\n', (63325, 63344), True, 'import numpy as np\n'), ((63370, 63390), 'numpy.maximum', 'np.maximum', (['(t - u)', '(0)'], {}), '(t - u, 0)\n', (63380, 63390), True, 'import numpy as np\n'), ((64605, 64616), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (64613, 64616), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((65873, 65899), 'numpy.zeros', 'np.zeros', (['(n,)'], {'dtype': 'bool'}), '((n,), dtype=bool)\n', (65881, 65899), True, 'import numpy as np\n'), ((65989, 66015), 'numpy.zeros', 'np.zeros', (['(n,)'], {'dtype': 'bool'}), '((n,), dtype=bool)\n', (65997, 66015), True, 'import numpy as np\n'), ((68798, 68839), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['ind'], {'dtype': 'np.int32'}), '(ind, dtype=np.int32)\n', (68818, 68839), True, 'import numpy as np\n'), ((68858, 68899), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['lab'], {'dtype': 'np.int32'}), '(lab, dtype=np.int32)\n', (68878, 68899), True, 'import numpy as np\n'), ((68912, 68964), 'cmodules.cgraphpy.HJsolver', 'cgp.HJsolver', (['d', 'l', 'WI', 'K', 'WV', 'ind', 'lab', '(1.0)', 'p', '(0.0)'], {}), '(d, l, WI, K, WV, ind, lab, 1.0, p, 0.0)\n', (68924, 68964), True, 'import cmodules.cgraphpy as cgp\n'), ((69168, 69178), 'numpy.diag', 'np.diag', (['s'], {}), '(s)\n', (69175, 69178), True, 'import numpy as np\n'), ((70171, 70187), 'numpy.zeros_like', 'np.zeros_like', (['I'], {}), '(I)\n', (70184, 70187), True, 'import numpy as np\n'), ((70471, 70497), 'numpy.zeros', 'np.zeros', (['(n,)'], {'dtype': 'bool'}), '((n,), dtype=bool)\n', (70479, 70497), True, 'import numpy as np\n'), ((70587, 70613), 'numpy.zeros', 'np.zeros', (['(n,)'], {'dtype': 'bool'}), '((n,), dtype=bool)\n', (70595, 70613), True, 'import numpy as np\n'), ((72434, 72466), 'numpy.sum', 'np.sum', (['((L == i) & (L_true != j))'], {}), '((L == i) & (L_true != j))\n', (72440, 72466), True, 'import numpy as np\n'), ((73098, 73141), 'scipy.sparse.linalg.eigs', 'sparse.linalg.eigs', (['L'], {'M': 'D', 'k': 'k', 'which': '"""SM"""'}), "(L, M=D, k=k, which='SM')\n", (73116, 73141), True, 'import scipy.sparse as sparse\n'), ((73565, 73593), 'sklearn.cluster.KMeans', 'cluster.KMeans', ([], {'n_clusters': 'k'}), '(n_clusters=k)\n', (73579, 73593), True, 'import sklearn.cluster as cluster\n'), ((73785, 73813), 'sklearn.cluster.KMeans', 'cluster.KMeans', ([], {'n_clusters': 'k'}), '(n_clusters=k)\n', (73799, 73813), True, 'import sklearn.cluster as cluster\n'), ((74425, 74437), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (74434, 74437), True, 'import numpy as np\n'), ((74756, 74765), 'numpy.min', 'np.min', (['F'], {}), '(F)\n', (74762, 74765), True, 'import numpy as np\n'), ((80241, 80253), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (80250, 80253), True, 'import numpy as np\n'), ((81568, 81580), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (81577, 81580), True, 'import numpy as np\n'), ((82096, 82107), 'numpy.array', 'np.array', (['X'], {}), '(X)\n', (82104, 82107), True, 'import numpy as np\n'), ((82538, 82548), 'numpy.mean', 'np.mean', (['Y'], {}), '(Y)\n', (82545, 82548), True, 'import numpy as np\n'), ((82611, 82620), 'numpy.std', 'np.std', (['Y'], {}), '(Y)\n', (82617, 82620), True, 'import numpy as np\n'), ((87767, 87812), 'os.path.join', 'os.path.join', (['log', "(dataset + '_' + ssl_method)"], {}), "(log, dataset + '_' + ssl_method)\n", (87779, 87812), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((89563, 89578), 'numpy.sum', 'np.sum', (['(pl == l)'], {}), '(pl == l)\n', (89569, 89578), True, 'import numpy as np\n'), ((89623, 89643), 'numpy.argsort', 'np.argsort', (['(-rank[K])'], {}), '(-rank[K])\n', (89633, 89643), True, 'import numpy as np\n'), ((90066, 90084), 'numpy.absolute', 'np.absolute', (['(w - u)'], {}), '(w - u)\n', (90077, 90084), True, 'import numpy as np\n'), ((97712, 97735), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (97733, 97735), False, 'import datetime\n'), ((98226, 98237), 'time.time', 'time.time', ([], {}), '()\n', (98235, 98237), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((99184, 99211), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (99209, 99211), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((99232, 99258), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': 'num_cores'}), '(n_jobs=num_cores)\n', (99240, 99258), False, 'from joblib import Parallel, delayed\n'), ((100655, 100666), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (100663, 100666), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((100754, 100764), 'sys.exit', 'sys.exit', ([], {}), '()\n', (100762, 100764), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((11548, 11558), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (11555, 11558), True, 'import numpy as np\n'), ((18294, 18335), 'numpy.dot', 'np.dot', (['x_neighbors', 'X_normalized[node_i]'], {}), '(x_neighbors, X_normalized[node_i])\n', (18300, 18335), True, 'import numpy as np\n'), ((18360, 18394), 'numpy.dot', 'np.dot', (['x_neighbors', 'x_neighbors.T'], {}), '(x_neighbors, x_neighbors.T)\n', (18366, 18394), True, 'import numpy as np\n'), ((20081, 20096), 'numpy.ones_like', 'np.ones_like', (['x'], {}), '(x)\n', (20093, 20096), True, 'import numpy as np\n'), ((21235, 21250), 'numpy.ones_like', 'np.ones_like', (['x'], {}), '(x)\n', (21247, 21250), True, 'import numpy as np\n'), ((30238, 30248), 'numpy.max', 'np.max', (['dx'], {}), '(dx)\n', (30244, 30248), True, 'import numpy as np\n'), ((31017, 31027), 'sys.exit', 'sys.exit', ([], {}), '()\n', (31025, 31027), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((33171, 33186), 'numpy.max', 'np.max', (['(uu - ul)'], {}), '(uu - ul)\n', (33177, 33186), True, 'import numpy as np\n'), ((33210, 33225), 'numpy.min', 'np.min', (['(uu - ul)'], {}), '(uu - ul)\n', (33216, 33225), True, 'import numpy as np\n'), ((34301, 34318), 'numpy.sum', 'np.sum', (['F'], {'axis': '(1)'}), '(F, axis=1)\n', (34307, 34318), True, 'import numpy as np\n'), ((35354, 35371), 'numpy.transpose', 'np.transpose', (['Sum'], {}), '(Sum)\n', (35366, 35371), True, 'import numpy as np\n'), ((35380, 35392), 'numpy.arange', 'np.arange', (['k'], {}), '(k)\n', (35389, 35392), True, 'import numpy as np\n'), ((40331, 40343), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (40340, 40343), True, 'import numpy as np\n'), ((42070, 42101), 'torch.sparse.addmm', 'torch.sparse.addmm', (['Dbt', 'Pt', 'ut'], {}), '(Dbt, Pt, ut)\n', (42088, 42101), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((42672, 42684), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (42681, 42684), True, 'import numpy as np\n'), ((44684, 44696), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (44693, 44696), True, 'import numpy as np\n'), ((45968, 45979), 'numpy.array', 'np.array', (['u'], {}), '(u)\n', (45976, 45979), True, 'import numpy as np\n'), ((46012, 46032), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(1)'}), '(u, axis=1)\n', (46021, 46032), True, 'import numpy as np\n'), ((47526, 47538), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (47535, 47538), True, 'import numpy as np\n'), ((50148, 50158), 'numpy.diag', 'np.diag', (['s'], {}), '(s)\n', (50155, 50158), True, 'import numpy as np\n'), ((51464, 51495), 'torch.sparse.addmm', 'torch.sparse.addmm', (['Dbt', 'Pt', 'ut'], {}), '(Dbt, Pt, ut)\n', (51482, 51495), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((51900, 51912), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (51909, 51912), True, 'import numpy as np\n'), ((53040, 53058), 'scipy.sparse.identity', 'sparse.identity', (['n'], {}), '(n)\n', (53055, 53058), True, 'import scipy.sparse as sparse\n'), ((54424, 54444), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(1)'}), '(u, axis=1)\n', (54433, 54444), True, 'import numpy as np\n'), ((54841, 54855), 'numpy.diag', 'np.diag', (['(1 / c)'], {}), '(1 / c)\n', (54848, 54855), True, 'import numpy as np\n'), ((54890, 54907), 'numpy.diag', 'np.diag', (['(beta / c)'], {}), '(beta / c)\n', (54897, 54907), True, 'import numpy as np\n'), ((57260, 57280), 'numpy.argmax', 'np.argmax', (['u'], {'axis': '(1)'}), '(u, axis=1)\n', (57269, 57280), True, 'import numpy as np\n'), ((57724, 57738), 'numpy.diag', 'np.diag', (['(1 / c)'], {}), '(1 / c)\n', (57731, 57738), True, 'import numpy as np\n'), ((57773, 57790), 'numpy.diag', 'np.diag', (['(beta / c)'], {}), '(beta / c)\n', (57780, 57790), True, 'import numpy as np\n'), ((60841, 60853), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (60850, 60853), True, 'import numpy as np\n'), ((63164, 63187), 'numpy.maximum', 'np.maximum', (['(u[i] - u)', '(0)'], {}), '(u[i] - u, 0)\n', (63174, 63187), True, 'import numpy as np\n'), ((65783, 65811), 'numpy.ones', 'np.ones', (['(n + 1,)'], {'dtype': 'int'}), '((n + 1,), dtype=int)\n', (65790, 65811), True, 'import numpy as np\n'), ((65928, 65952), 'numpy.ones', 'np.ones', (['(n,)'], {'dtype': 'int'}), '((n,), dtype=int)\n', (65935, 65952), True, 'import numpy as np\n'), ((66047, 66071), 'numpy.ones', 'np.ones', (['(n,)'], {'dtype': 'int'}), '((n,), dtype=int)\n', (66054, 66071), True, 'import numpy as np\n'), ((70381, 70409), 'numpy.ones', 'np.ones', (['(n + 1,)'], {'dtype': 'int'}), '((n + 1,), dtype=int)\n', (70388, 70409), True, 'import numpy as np\n'), ((70526, 70550), 'numpy.ones', 'np.ones', (['(n,)'], {'dtype': 'int'}), '((n,), dtype=int)\n', (70533, 70550), True, 'import numpy as np\n'), ((73296, 73334), 'scipy.sparse.linalg.eigs', 'sparse.linalg.eigs', (['L'], {'k': 'k', 'which': '"""SM"""'}), "(L, k=k, which='SM')\n", (73314, 73334), True, 'import scipy.sparse as sparse\n'), ((73399, 73424), 'numpy.sum', 'np.sum', (['(vec * vec)'], {'axis': '(1)'}), '(vec * vec, axis=1)\n', (73405, 73424), True, 'import numpy as np\n'), ((73437, 73479), 'scipy.sparse.spdiags', 'sparse.spdiags', (['(norms ** (-1 / 2))', '(0)', 'n', 'n'], {}), '(norms ** (-1 / 2), 0, n, n)\n', (73451, 73479), True, 'import scipy.sparse as sparse\n'), ((88187, 88279), 'matplotlib.pyplot.errorbar', 'plt.errorbar', (['(N / num_of_classes)', 'acc'], {'fmt': 'styles[i]', 'yerr': 'stddev', 'label': 'legend_list[i]'}), '(N / num_of_classes, acc, fmt=styles[i], yerr=stddev, label=\n legend_list[i])\n', (88199, 88279), True, 'import matplotlib.pyplot as plt\n'), ((89660, 89675), 'numpy.arange', 'np.arange', (['(0)', 'n'], {}), '(0, n)\n', (89669, 89675), True, 'import numpy as np\n'), ((97627, 97652), 'os.path.exists', 'os.path.exists', (['"""Results"""'], {}), "('Results')\n", (97641, 97652), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((97670, 97692), 'os.makedirs', 'os.makedirs', (['"""Results"""'], {}), "('Results')\n", (97681, 97692), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((32753, 32769), 'numpy.absolute', 'np.absolute', (['res'], {}), '(res)\n', (32764, 32769), True, 'import numpy as np\n'), ((33076, 33092), 'numpy.absolute', 'np.absolute', (['res'], {}), '(res)\n', (33087, 33092), True, 'import numpy as np\n'), ((33632, 33642), 'sys.exit', 'sys.exit', ([], {}), '()\n', (33640, 33642), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((35066, 35085), 'numpy.sum', 'np.sum', (['(L == L_true)'], {}), '(L == L_true)\n', (35072, 35085), True, 'import numpy as np\n'), ((42465, 42480), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (42477, 42480), True, 'import numpy as np\n'), ((42483, 42501), 'numpy.mean', 'np.mean', (['u'], {'axis': '(1)'}), '(u, axis=1)\n', (42490, 42501), True, 'import numpy as np\n'), ((46059, 46071), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (46068, 46071), True, 'import numpy as np\n'), ((46971, 46986), 'numpy.transpose', 'np.transpose', (['e'], {}), '(e)\n', (46983, 46986), True, 'import numpy as np\n'), ((46994, 47009), 'numpy.transpose', 'np.transpose', (['e'], {}), '(e)\n', (47006, 47009), True, 'import numpy as np\n'), ((54471, 54483), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (54480, 54483), True, 'import numpy as np\n'), ((57307, 57319), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (57316, 57319), True, 'import numpy as np\n'), ((76224, 76234), 'sys.exit', 'sys.exit', ([], {}), '()\n', (76232, 76234), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((77350, 77362), 'numpy.unique', 'np.unique', (['g'], {}), '(g)\n', (77359, 77362), True, 'import numpy as np\n'), ((88340, 88408), 'matplotlib.pyplot.loglog', 'plt.loglog', (['(N / num_of_classes)', 'acc', 'styles[i]'], {'label': 'legend_list[i]'}), '(N / num_of_classes, acc, styles[i], label=legend_list[i])\n', (88350, 88408), True, 'import matplotlib.pyplot as plt\n'), ((88451, 88517), 'matplotlib.pyplot.plot', 'plt.plot', (['(N / num_of_classes)', 'acc', 'styles[i]'], {'label': 'legend_list[i]'}), '(N / num_of_classes, acc, styles[i], label=legend_list[i])\n', (88459, 88517), True, 'import matplotlib.pyplot as plt\n'), ((99259, 99277), 'joblib.delayed', 'delayed', (['one_trial'], {}), '(one_trial)\n', (99266, 99277), False, 'from joblib import Parallel, delayed\n'), ((7818, 7847), 'numpy.round', 'np.round', (['(i * multiplier[ind])'], {}), '(i * multiplier[ind])\n', (7826, 7847), True, 'import numpy as np\n'), ((10550, 10560), 'numpy.sign', 'np.sign', (['w'], {}), '(w)\n', (10557, 10560), True, 'import numpy as np\n'), ((15864, 15881), 'numpy.max', 'np.max', (['W'], {'axis': '(1)'}), '(W, axis=1)\n', (15870, 15881), True, 'import numpy as np\n'), ((45792, 45807), 'numpy.transpose', 'np.transpose', (['P'], {}), '(P)\n', (45804, 45807), True, 'import numpy as np\n'), ((45822, 45837), 'numpy.transpose', 'np.transpose', (['v'], {}), '(v)\n', (45834, 45837), True, 'import numpy as np\n'), ((49655, 49665), 'numpy.diag', 'np.diag', (['s'], {}), '(s)\n', (49662, 49665), True, 'import numpy as np\n'), ((53604, 53623), 'torch.from_numpy', 'torch.from_numpy', (['u'], {}), '(u)\n', (53620, 53623), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((53653, 53673), 'torch.from_numpy', 'torch.from_numpy', (['Db'], {}), '(Db)\n', (53669, 53673), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((53763, 53784), 'numpy.absolute', 'np.absolute', (['(v - vinf)'], {}), '(v - vinf)\n', (53774, 53784), True, 'import numpy as np\n'), ((54145, 54166), 'numpy.absolute', 'np.absolute', (['(v - vinf)'], {}), '(v - vinf)\n', (54156, 54166), True, 'import numpy as np\n'), ((56271, 56290), 'torch.from_numpy', 'torch.from_numpy', (['u'], {}), '(u)\n', (56287, 56290), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((56319, 56338), 'torch.from_numpy', 'torch.from_numpy', (['b'], {}), '(b)\n', (56335, 56338), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((98761, 98772), 'time.time', 'time.time', ([], {}), '()\n', (98770, 98772), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((41793, 41809), 'numpy.transpose', 'np.transpose', (['Db'], {}), '(Db)\n', (41805, 41809), True, 'import numpy as np\n'), ((51189, 51205), 'numpy.transpose', 'np.transpose', (['Db'], {}), '(Db)\n', (51201, 51205), True, 'import numpy as np\n'), ((74703, 74712), 'numpy.sum', 'np.sum', (['I'], {}), '(I)\n', (74709, 74712), True, 'import numpy as np\n'), ((78103, 78121), 'numpy.ones_like', 'np.ones_like', (['beta'], {}), '(beta)\n', (78115, 78121), True, 'import numpy as np\n'), ((7717, 7756), 'numpy.random.choice', 'random.choice', (['K'], {'size': 'i', 'replace': '(False)'}), '(K, size=i, replace=False)\n', (7730, 7756), True, 'import numpy.random as random\n'), ((7877, 7918), 'numpy.random.choice', 'random.choice', (['K'], {'size': 'sze', 'replace': '(False)'}), '(K, size=sze, replace=False)\n', (7890, 7918), True, 'import numpy.random as random\n'), ((41954, 41969), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (41966, 41969), True, 'import numpy as np\n'), ((51379, 51394), 'numpy.transpose', 'np.transpose', (['u'], {}), '(u)\n', (51391, 51394), True, 'import numpy as np\n'), ((80937, 80947), 'sys.exit', 'sys.exit', ([], {}), '()\n', (80945, 80947), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n'), ((81329, 81339), 'sys.exit', 'sys.exit', ([], {}), '()\n', (81337, 81339), False, 'import sys, getopt, time, csv, torch, os, multiprocessing\n')]
# Copyright 2011 VMware, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import base64 import collections import functools import hashlib import signal import sys import time import netaddr from oslo_config import cfg from oslo_log import log as logging import oslo_messaging from oslo_service import loopingcall from oslo_service import systemd import six from six import moves from neutron._i18n import _, _LE, _LI, _LW from neutron.agent.common import ip_lib from neutron.agent.common import ovs_lib from neutron.agent.common import polling from neutron.agent.common import utils from neutron.agent.l2.extensions import manager as ext_manager from neutron.agent import rpc as agent_rpc from neutron.agent import securitygroups_rpc as sg_rpc from neutron.api.rpc.callbacks import resources from neutron.api.rpc.handlers import dvr_rpc from neutron.common import config from neutron.common import constants as n_const from neutron.common import ipv6_utils as ipv6 from neutron.common import topics from neutron.common import utils as n_utils from neutron import context from neutron.extensions import portbindings from neutron.plugins.common import constants as p_const from neutron.plugins.common import utils as p_utils from neutron.plugins.ml2.drivers.l2pop.rpc_manager import l2population_rpc from neutron.plugins.ml2.drivers.openvswitch.agent.common \ import constants from neutron.plugins.ml2.drivers.openvswitch.agent \ import ovs_agent_extension_api as ovs_ext_api from neutron.plugins.ml2.drivers.openvswitch.agent \ import ovs_dvr_neutron_agent from neutron.plugins.ml2.drivers.openvswitch.agent \ import ovs_neutron_agent from networking_odl.ovsdb import impl_idl_ovn from networking_odl.ovsdb import ovsdb_monitor LOG = logging.getLogger(__name__) cfg.CONF.import_group('AGENT', 'neutron.plugins.ml2.drivers.openvswitch.' 'agent.common.config') cfg.CONF.import_group('OVS', 'neutron.plugins.ml2.drivers.openvswitch.agent.' 'common.config') class OVSPluginApi(agent_rpc.PluginApi): pass class DBOVSNeutronAgent(ovs_neutron_agent.OVSNeutronAgent): '''Implements OVS-based tunneling, VLANs and flat networks. Two local bridges are created: an integration bridge (defaults to 'br-int') and a tunneling bridge (defaults to 'br-tun'). An additional bridge is created for each physical network interface used for VLANs and/or flat networks. All VM VIFs are plugged into the integration bridge. VM VIFs on a given virtual network share a common "local" VLAN (i.e. not propagated externally). The VLAN id of this local VLAN is mapped to the physical networking details realizing that virtual network. For virtual networks realized as GRE tunnels, a Logical Switch (LS) identifier is used to differentiate tenant traffic on inter-HV tunnels. A mesh of tunnels is created to other Hypervisors in the cloud. These tunnels originate and terminate on the tunneling bridge of each hypervisor. Port patching is done to connect local VLANs on the integration bridge to inter-hypervisor tunnels on the tunnel bridge. For each virtual network realized as a VLAN or flat network, a veth or a pair of patch ports is used to connect the local VLAN on the integration bridge with the physical network bridge, with flow rules adding, modifying, or stripping VLAN tags as necessary. ''' # history # 1.0 Initial version # 1.1 Support Security Group RPC # 1.2 Support DVR (Distributed Virtual Router) RPC # 1.3 Added param devices_to_update to security_groups_provider_updated # 1.4 Added support for network_update target = oslo_messaging.Target(version='1.4') def __init__(self, bridge_classes, conf=None): '''Constructor. :param bridge_classes: a dict for bridge classes. :param conf: an instance of ConfigOpts ''' super(DBOVSNeutronAgent, self).__init__(bridge_classes, conf) def setup_rpc(self): self.plugin_rpc = OVSPluginApi(topics.PLUGIN) self.sg_plugin_rpc = sg_rpc.SecurityGroupServerRpcApi(topics.PLUGIN) self.dvr_plugin_rpc = dvr_rpc.DVRServerRpcApi(topics.PLUGIN) self.state_rpc = agent_rpc.PluginReportStateAPI(topics.REPORTS) # RPC network init self.context = context.get_admin_context_without_session() # Define the listening consumers for the agent consumers = [[constants.TUNNEL, topics.UPDATE], [constants.TUNNEL, topics.DELETE], [topics.SECURITY_GROUP, topics.UPDATE], [topics.DVR, topics.UPDATE], [topics.NETWORK, topics.UPDATE]] if self.l2_pop: consumers.append([topics.L2POPULATION, topics.UPDATE]) self.connection = agent_rpc.create_consumers([self], topics.AGENT, consumers, start_listening=False) # NOTE(rtheis): This will initialize all workers (API, RPC, # plugin service and OVN) with OVN IDL connections. trigger = ovsdb_monitor.OvnWorker self._nb_ovn, self._sb_ovn = impl_idl_ovn.get_ovn_idls(self, trigger) def validate_local_ip(local_ip): """Verify if the ip exists on the agent's host.""" if not ip_lib.IPWrapper().get_device_by_ip(local_ip): LOG.error(_LE("Tunneling can't be enabled with invalid local_ip '%s'." " IP couldn't be found on this host's interfaces."), local_ip) raise SystemExit(1) def validate_tunnel_config(tunnel_types, local_ip): """Verify local ip and tunnel config if tunneling is enabled.""" if not tunnel_types: return validate_local_ip(local_ip) for tun in tunnel_types: if tun not in constants.TUNNEL_NETWORK_TYPES: LOG.error(_LE('Invalid tunnel type specified: %s'), tun) raise SystemExit(1) def prepare_xen_compute(): is_xen_compute_host = 'rootwrap-xen-dom0' in cfg.CONF.AGENT.root_helper if is_xen_compute_host: # Force ip_lib to always use the root helper to ensure that ip # commands target xen dom0 rather than domU. cfg.CONF.register_opts(ip_lib.OPTS) cfg.CONF.set_default('ip_lib_force_root', True) def main(bridge_classes): prepare_xen_compute() validate_tunnel_config(cfg.CONF.AGENT.tunnel_types, cfg.CONF.OVS.local_ip) try: agent = DBOVSNeutronAgent(bridge_classes, cfg.CONF) except (RuntimeError, ValueError) as e: LOG.error(_LE("%s Agent terminated!"), e) sys.exit(1) agent.daemon_loop()
[ "oslo_config.cfg.CONF.set_default", "neutron.api.rpc.handlers.dvr_rpc.DVRServerRpcApi", "oslo_log.log.getLogger", "neutron.context.get_admin_context_without_session", "neutron._i18n._LE", "neutron.agent.common.ip_lib.IPWrapper", "oslo_messaging.Target", "oslo_config.cfg.CONF.import_group", "neutron.agent.rpc.create_consumers", "networking_odl.ovsdb.impl_idl_ovn.get_ovn_idls", "oslo_config.cfg.CONF.register_opts", "neutron.agent.rpc.PluginReportStateAPI", "sys.exit", "neutron.agent.securitygroups_rpc.SecurityGroupServerRpcApi" ]
[((2376, 2403), 'oslo_log.log.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (2393, 2403), True, 'from oslo_log import log as logging\n'), ((2405, 2502), 'oslo_config.cfg.CONF.import_group', 'cfg.CONF.import_group', (['"""AGENT"""', '"""neutron.plugins.ml2.drivers.openvswitch.agent.common.config"""'], {}), "('AGENT',\n 'neutron.plugins.ml2.drivers.openvswitch.agent.common.config')\n", (2426, 2502), False, 'from oslo_config import cfg\n'), ((2526, 2621), 'oslo_config.cfg.CONF.import_group', 'cfg.CONF.import_group', (['"""OVS"""', '"""neutron.plugins.ml2.drivers.openvswitch.agent.common.config"""'], {}), "('OVS',\n 'neutron.plugins.ml2.drivers.openvswitch.agent.common.config')\n", (2547, 2621), False, 'from oslo_config import cfg\n'), ((4377, 4413), 'oslo_messaging.Target', 'oslo_messaging.Target', ([], {'version': '"""1.4"""'}), "(version='1.4')\n", (4398, 4413), False, 'import oslo_messaging\n'), ((4799, 4846), 'neutron.agent.securitygroups_rpc.SecurityGroupServerRpcApi', 'sg_rpc.SecurityGroupServerRpcApi', (['topics.PLUGIN'], {}), '(topics.PLUGIN)\n', (4831, 4846), True, 'from neutron.agent import securitygroups_rpc as sg_rpc\n'), ((4878, 4916), 'neutron.api.rpc.handlers.dvr_rpc.DVRServerRpcApi', 'dvr_rpc.DVRServerRpcApi', (['topics.PLUGIN'], {}), '(topics.PLUGIN)\n', (4901, 4916), False, 'from neutron.api.rpc.handlers import dvr_rpc\n'), ((4943, 4989), 'neutron.agent.rpc.PluginReportStateAPI', 'agent_rpc.PluginReportStateAPI', (['topics.REPORTS'], {}), '(topics.REPORTS)\n', (4973, 4989), True, 'from neutron.agent import rpc as agent_rpc\n'), ((5044, 5087), 'neutron.context.get_admin_context_without_session', 'context.get_admin_context_without_session', ([], {}), '()\n', (5085, 5087), False, 'from neutron import context\n'), ((5546, 5633), 'neutron.agent.rpc.create_consumers', 'agent_rpc.create_consumers', (['[self]', 'topics.AGENT', 'consumers'], {'start_listening': '(False)'}), '([self], topics.AGENT, consumers, start_listening\n =False)\n', (5572, 5633), True, 'from neutron.agent import rpc as agent_rpc\n'), ((6004, 6044), 'networking_odl.ovsdb.impl_idl_ovn.get_ovn_idls', 'impl_idl_ovn.get_ovn_idls', (['self', 'trigger'], {}), '(self, trigger)\n', (6029, 6044), False, 'from networking_odl.ovsdb import impl_idl_ovn\n'), ((7077, 7112), 'oslo_config.cfg.CONF.register_opts', 'cfg.CONF.register_opts', (['ip_lib.OPTS'], {}), '(ip_lib.OPTS)\n', (7099, 7112), False, 'from oslo_config import cfg\n'), ((7122, 7169), 'oslo_config.cfg.CONF.set_default', 'cfg.CONF.set_default', (['"""ip_lib_force_root"""', '(True)'], {}), "('ip_lib_force_root', True)\n", (7142, 7169), False, 'from oslo_config import cfg\n'), ((6217, 6331), 'neutron._i18n._LE', '_LE', (['"""Tunneling can\'t be enabled with invalid local_ip \'%s\'. IP couldn\'t be found on this host\'s interfaces."""'], {}), '("Tunneling can\'t be enabled with invalid local_ip \'%s\'. IP couldn\'t be found on this host\'s interfaces."\n )\n', (6220, 6331), False, 'from neutron._i18n import _, _LE, _LI, _LW\n'), ((7486, 7497), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (7494, 7497), False, 'import sys\n'), ((6151, 6169), 'neutron.agent.common.ip_lib.IPWrapper', 'ip_lib.IPWrapper', ([], {}), '()\n', (6167, 6169), False, 'from neutron.agent.common import ip_lib\n'), ((6724, 6764), 'neutron._i18n._LE', '_LE', (['"""Invalid tunnel type specified: %s"""'], {}), "('Invalid tunnel type specified: %s')\n", (6727, 6764), False, 'from neutron._i18n import _, _LE, _LI, _LW\n'), ((7445, 7472), 'neutron._i18n._LE', '_LE', (['"""%s Agent terminated!"""'], {}), "('%s Agent terminated!')\n", (7448, 7472), False, 'from neutron._i18n import _, _LE, _LI, _LW\n')]
from elasticsearch_dsl import Document, Integer, Percolator, Text from admin.models.articles_es import SUPPORTED_LANGUAGES_ANALYZER_MAPPING class TagRuleEs(Document): tag_id = Integer() query = Percolator() title = Text(required=False, fields={ lang: Text(analyzer=analyzer) for lang, analyzer in SUPPORTED_LANGUAGES_ANALYZER_MAPPING.items() }) content = Text(required=False, fields={ lang: Text(analyzer=analyzer) for lang, analyzer in SUPPORTED_LANGUAGES_ANALYZER_MAPPING.items() }) class Index: name = 'tag_rules' settings = { "number_of_shards": 2, }
[ "elasticsearch_dsl.Percolator", "admin.models.articles_es.SUPPORTED_LANGUAGES_ANALYZER_MAPPING.items", "elasticsearch_dsl.Text", "elasticsearch_dsl.Integer" ]
[((183, 192), 'elasticsearch_dsl.Integer', 'Integer', ([], {}), '()\n', (190, 192), False, 'from elasticsearch_dsl import Document, Integer, Percolator, Text\n'), ((205, 217), 'elasticsearch_dsl.Percolator', 'Percolator', ([], {}), '()\n', (215, 217), False, 'from elasticsearch_dsl import Document, Integer, Percolator, Text\n'), ((275, 298), 'elasticsearch_dsl.Text', 'Text', ([], {'analyzer': 'analyzer'}), '(analyzer=analyzer)\n', (279, 298), False, 'from elasticsearch_dsl import Document, Integer, Percolator, Text\n'), ((439, 462), 'elasticsearch_dsl.Text', 'Text', ([], {'analyzer': 'analyzer'}), '(analyzer=analyzer)\n', (443, 462), False, 'from elasticsearch_dsl import Document, Integer, Percolator, Text\n'), ((329, 373), 'admin.models.articles_es.SUPPORTED_LANGUAGES_ANALYZER_MAPPING.items', 'SUPPORTED_LANGUAGES_ANALYZER_MAPPING.items', ([], {}), '()\n', (371, 373), False, 'from admin.models.articles_es import SUPPORTED_LANGUAGES_ANALYZER_MAPPING\n'), ((493, 537), 'admin.models.articles_es.SUPPORTED_LANGUAGES_ANALYZER_MAPPING.items', 'SUPPORTED_LANGUAGES_ANALYZER_MAPPING.items', ([], {}), '()\n', (535, 537), False, 'from admin.models.articles_es import SUPPORTED_LANGUAGES_ANALYZER_MAPPING\n')]
import datetime import numpy as np import garminmanager.utils.JsonEncDecC import garminmanager.utils.FileWriterC from garminmanager.enumerators.EnumHealthTypeC import EnumHealtTypeC def test_encode_decode(): raw_data = garminmanager.RawDataC.RawDataC() my_dates1 = { datetime.datetime(2019,4,11,1,00) : 100, datetime.datetime(2019,4,11,2,00) : np.nan, datetime.datetime(2019,4,11,3,00) : 100 } for key, value in my_dates1.items(): raw_data.add_x(key) raw_data.add_y(value) raw_data.set_data_type(EnumHealtTypeC.heartrate) json_enc_dec = garminmanager.utils.JsonEncDecC.JsonEncDecC() json_enc_dec.set_input_data(raw_data) json_string = json_enc_dec.encode() json_enc_dec.set_input_json(json_string) file_writer = garminmanager.utils.FileWriterC.FileWriterC() file_writer.set_filename('test.json') file_writer.set_text(json_string) file_writer.write_text_to_file() d = file_writer.read_json() json_enc_dec.set_input_json(d) json_enc_dec.decode() raw_data_output = json_enc_dec.get_data() x = raw_data_output.get_x() y = raw_data_output.get_y() org_x = raw_data.get_x() org_y = raw_data.get_y() y[np.isnan(y)] = -100 org_y[np.isnan(org_y)] = -100 y[np.isnan(y)] = -100 org_y[np.isnan(org_y)] = -100 raw_data.set_y(y) raw_data_output.set_y(org_y) assert raw_data == raw_data_output
[ "numpy.isnan", "datetime.datetime" ]
[((289, 325), 'datetime.datetime', 'datetime.datetime', (['(2019)', '(4)', '(11)', '(1)', '(0)'], {}), '(2019, 4, 11, 1, 0)\n', (306, 325), False, 'import datetime\n'), ((338, 374), 'datetime.datetime', 'datetime.datetime', (['(2019)', '(4)', '(11)', '(2)', '(0)'], {}), '(2019, 4, 11, 2, 0)\n', (355, 374), False, 'import datetime\n'), ((390, 426), 'datetime.datetime', 'datetime.datetime', (['(2019)', '(4)', '(11)', '(3)', '(0)'], {}), '(2019, 4, 11, 3, 0)\n', (407, 426), False, 'import datetime\n'), ((1240, 1251), 'numpy.isnan', 'np.isnan', (['y'], {}), '(y)\n', (1248, 1251), True, 'import numpy as np\n'), ((1270, 1285), 'numpy.isnan', 'np.isnan', (['org_y'], {}), '(org_y)\n', (1278, 1285), True, 'import numpy as np\n'), ((1301, 1312), 'numpy.isnan', 'np.isnan', (['y'], {}), '(y)\n', (1309, 1312), True, 'import numpy as np\n'), ((1331, 1346), 'numpy.isnan', 'np.isnan', (['org_y'], {}), '(org_y)\n', (1339, 1346), True, 'import numpy as np\n')]
import os import sql_query as sql from styling import color import password_checker import password_generator # Login Main class class Login: def __init__(self): self.username = '' self.password = '' self.is_login = False self.website = '' self.account = '' try: os.system('clear') print(color.BOLD + color.RED + 'User Login'.center(30) + color.END) print('') self.username = input('Enter Username : ') self.password = input('Enter Password : ') auth = sql.get_user_Password(self.username) if auth == self.password: self.is_login = True else: self.is_login = False except: print('An Error Occurred!') return def get_Website(self, arr): for n, web in enumerate(arr): print(f'{n + 1}. {web}') if len(arr) > 0: n = input('Select Website : ') if n.isnumeric() and len(n) == 1: self.website = arr[int(n) - 1] else: self.website = n return True else: print('No password is saved') return False def get_Account(self, arr): for n, acc in enumerate(arr): print(f'{n + 1}. {acc}') n = input('Select Account : ') if n.isnumeric() and len(n) == 1: self.account = arr[int(n) - 1] else: self.account = n def select(self): websites = sql.all_websites(self.username) present = self.get_Website(websites) if present: accounts = sql.all_accounts(self.username, self.website) self.get_Account(accounts) return True return False def add_password(self): os.system('clear') print(color.BOLD + color.RED + 'Add Password'.center(30) + color.END + '\n') url = input('Website/Url : ') identifier = input('Account/Username/Identifier : ') password = input('Password : ') sql.add_password(url, identifier, password, self.username) def delete_password(self): os.system('clear') print(color.BOLD + color.RED + 'Delete Passwrod'.center(30) + color.END) print('') if self.select(): sql.delete(self.username, self.website, self.account) def modify_password(self): os.system('clear') print(color.BOLD + color.RED + 'Modify Password'.center(30) + color.END) print('') if self.select(): if input('Want to generate Password (Y/N): ').lower() == 'y': password_generator.main() new_pass = input('New Password : ') sql.modify(self.username, self.website, self.account, new_pass) def show_password(self): os.system('clear') print(color.BOLD + color.RED + 'Show Password'.center(30) + color.END) print('') if self.select(): sql.show_password(self.username, self.website, self.account) return def main(self): while True: os.system('clear') print(color.BOLD + color.RED + self.username.center(30) + color.END) print('') print('1. Add Password') print('2. Delete a Password') print('3. Modify a Password') print('4. Show Password') print('5. Generate a strong password') print('6. Check my password if secure') print('7. Log out') ch = input().lower() if ch == '1' or ch == 'add': self.add_password() elif ch == '2' or ch == 'delete': self.delete_password() elif ch == '3' or ch == 'modify': self.modify_password() elif ch == '4' or ch == 'show': self.show_password() elif ch == '5' or ch == 'generate': password_generator.main() elif ch == '6' or ch == 'check': password_checker.main() elif ch == '7' or ch == 'exit': return else: print('Invalid Choice!') en = input("'Y' to Log out, or press Enter....").lower() if en == 'y': return else: pass def user_login(): user = Login() if user.is_login: user.main() else: print('Login Failure, Wrong password or username..') return def user_signup(): try: os.system('clear') print(color.BOLD + color.RED + 'User Sign Up'.center(30) + color.END) print('') username = input('Enter Username : ') password = input('Enter Password : ') if password == input('Confirm Password : '): sql.sign_up(username, password) else: print('Wrong Password...\nSign up failure!') return except: print('An Error Occurred!') return
[ "password_generator.main", "os.system", "sql_query.get_user_Password", "sql_query.all_accounts", "sql_query.sign_up", "sql_query.delete", "sql_query.all_websites", "password_checker.main", "sql_query.show_password", "sql_query.modify", "sql_query.add_password" ]
[((1571, 1602), 'sql_query.all_websites', 'sql.all_websites', (['self.username'], {}), '(self.username)\n', (1587, 1602), True, 'import sql_query as sql\n'), ((1858, 1876), 'os.system', 'os.system', (['"""clear"""'], {}), "('clear')\n", (1867, 1876), False, 'import os\n'), ((2111, 2169), 'sql_query.add_password', 'sql.add_password', (['url', 'identifier', 'password', 'self.username'], {}), '(url, identifier, password, self.username)\n', (2127, 2169), True, 'import sql_query as sql\n'), ((2210, 2228), 'os.system', 'os.system', (['"""clear"""'], {}), "('clear')\n", (2219, 2228), False, 'import os\n'), ((2460, 2478), 'os.system', 'os.system', (['"""clear"""'], {}), "('clear')\n", (2469, 2478), False, 'import os\n'), ((2884, 2902), 'os.system', 'os.system', (['"""clear"""'], {}), "('clear')\n", (2893, 2902), False, 'import os\n'), ((4615, 4633), 'os.system', 'os.system', (['"""clear"""'], {}), "('clear')\n", (4624, 4633), False, 'import os\n'), ((331, 349), 'os.system', 'os.system', (['"""clear"""'], {}), "('clear')\n", (340, 349), False, 'import os\n'), ((582, 618), 'sql_query.get_user_Password', 'sql.get_user_Password', (['self.username'], {}), '(self.username)\n', (603, 618), True, 'import sql_query as sql\n'), ((1691, 1736), 'sql_query.all_accounts', 'sql.all_accounts', (['self.username', 'self.website'], {}), '(self.username, self.website)\n', (1707, 1736), True, 'import sql_query as sql\n'), ((2366, 2419), 'sql_query.delete', 'sql.delete', (['self.username', 'self.website', 'self.account'], {}), '(self.username, self.website, self.account)\n', (2376, 2419), True, 'import sql_query as sql\n'), ((2782, 2845), 'sql_query.modify', 'sql.modify', (['self.username', 'self.website', 'self.account', 'new_pass'], {}), '(self.username, self.website, self.account, new_pass)\n', (2792, 2845), True, 'import sql_query as sql\n'), ((3039, 3099), 'sql_query.show_password', 'sql.show_password', (['self.username', 'self.website', 'self.account'], {}), '(self.username, self.website, self.account)\n', (3056, 3099), True, 'import sql_query as sql\n'), ((3170, 3188), 'os.system', 'os.system', (['"""clear"""'], {}), "('clear')\n", (3179, 3188), False, 'import os\n'), ((4887, 4918), 'sql_query.sign_up', 'sql.sign_up', (['username', 'password'], {}), '(username, password)\n', (4898, 4918), True, 'import sql_query as sql\n'), ((2695, 2720), 'password_generator.main', 'password_generator.main', ([], {}), '()\n', (2718, 2720), False, 'import password_generator\n'), ((4013, 4038), 'password_generator.main', 'password_generator.main', ([], {}), '()\n', (4036, 4038), False, 'import password_generator\n'), ((4100, 4123), 'password_checker.main', 'password_checker.main', ([], {}), '()\n', (4121, 4123), False, 'import password_checker\n')]
# Copyright 2012 Google Inc. All Rights Reserved. # -*- coding: utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Converts a given string from Django template to HTML and back.""" __author__ = ('<EMAIL> (<NAME>)') import re UNTRANSLATABLE_BEGIN = r'<!--DO_NOT_TRANSLATE_BLOCK>' UNTRANSLATABLE_END = r'</DO_NOT_TRANSLATE_BLOCK-->' CONTENT_BEGIN = """ <!--CONTENT_BLOCK ***********************************************************--> """ CONTENT_END = """ <!--/END_CONTENT_BLOCK ******************************************************--> """ class TextProcessor(object): """Translates text from Django template format to l10nable HTML and back. Properties: dango: The Django template representation of the text. html: The HTML representation of the text. """ def __init__(self, django='', html=''): self._django = django self._html = html @property def django(self): if not self._django: self._django = self.__HtmlToDjango(self._html) return self._django @property def html(self): if not self._html: self._html = self.__DjangoToHtml(self._django) return self._html def __DjangoToHtml(self, text): """Given a Django template's content, return HTML suitable for l10n. Args: text: The text to convert from Django to HTML. Returns: A string containing the newly HTMLized content. * Django tags like `{% tag %}` will be rendered inside an HTML comment: `<!--DO_NOT_TRANSLATE_BLOCK>{% tag %}</DO_NOT_TRANSLATE_BLOCK-->`. * `pre`, `script`, and `style` tags' content will be likewise wrapped: `<pre><!--DO_NOT_TRANSLATE_BLOCK>Text!</DO_NOT_TRANSLATE_BLOCK-->`. * The article's content will be wrapped: <!--CONTENT_BLOCK ***************************************************--> Content goes here! <!--END_CONTENT_BLOCK ***********************************************--> """ django_tag_before = r'(?P<tag>{%.+?%})' django_tag_after = r'%s\g<tag>%s' % (UNTRANSLATABLE_BEGIN, UNTRANSLATABLE_END) open_notranslate_before = r'(?P<tag><(?:pre|script|style)[^>]*?>)' open_notranslate_after = r'\g<tag>%s' % UNTRANSLATABLE_BEGIN close_notranslate_before = r'(?P<tag></(?:pre|script|style)[^>]*?>)' close_notranslate_after = r'%s\g<tag>' % UNTRANSLATABLE_END open_content = r'{% block content %}' close_content = r'{% endblock %}' # Walk the given text line by line to_return = [] in_content = False for line in text.splitlines(True): # Process Django tags line = re.sub(django_tag_before, django_tag_after, line) # Preprocess script/pre/style blocks line = re.sub(open_notranslate_before, open_notranslate_after, line) line = re.sub(close_notranslate_before, close_notranslate_after, line) # Preprocess content block if re.search(open_content, line): line = CONTENT_BEGIN in_content = True elif re.search(close_content, line) and in_content: line = CONTENT_END in_content = False to_return.append(line) return ''.join(to_return) def __HtmlToDjango(self, text): """Given localized HTML, return text formatted as a Django template. Args: text: The text to convert from HTML to Django. Returns: A string containing the newly Djangoized content, stripped of leading and trailing whitespace. See the documentation for `django_to_html` and imagine the inverse. :) """ # Strip UNTRANSLATABLE_BEGIN and UNTRANSLATABLE_END comments. text = text.replace(UNTRANSLATABLE_BEGIN, '') text = text.replace(UNTRANSLATABLE_END, '') # Replace CONTENT_BEGIN with `{% block content %}` and CONTENT_END with # `{% endblock %}`. text = text.replace(CONTENT_BEGIN, '{% block content %}\n') text = text.replace(CONTENT_END, '{% endblock %}') # Return the result, stripped of leading/training whitespace. return text.strip()
[ "re.sub", "re.search" ]
[((3121, 3170), 're.sub', 're.sub', (['django_tag_before', 'django_tag_after', 'line'], {}), '(django_tag_before, django_tag_after, line)\n', (3127, 3170), False, 'import re\n'), ((3227, 3288), 're.sub', 're.sub', (['open_notranslate_before', 'open_notranslate_after', 'line'], {}), '(open_notranslate_before, open_notranslate_after, line)\n', (3233, 3288), False, 'import re\n'), ((3302, 3365), 're.sub', 're.sub', (['close_notranslate_before', 'close_notranslate_after', 'line'], {}), '(close_notranslate_before, close_notranslate_after, line)\n', (3308, 3365), False, 'import re\n'), ((3408, 3437), 're.search', 're.search', (['open_content', 'line'], {}), '(open_content, line)\n', (3417, 3437), False, 'import re\n'), ((3505, 3535), 're.search', 're.search', (['close_content', 'line'], {}), '(close_content, line)\n', (3514, 3535), False, 'import re\n')]
# -*- coding: utf-8 -*- """ @date: 2020/2/29 下午7:31 @file: util.py @author: zj @description: """ import numpy as np import torch import sys def error(msg): print(msg) sys.exit(0) def get_device(): return torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def iou(pred_box, target_box): """ 计算候选建议和标注边界框的IoU :param pred_box: 大小为[4] :param target_box: 大小为[N, 4] :return: [N] """ if len(target_box.shape) == 1: target_box = target_box[np.newaxis, :] xA = np.maximum(pred_box[0], target_box[:, 0]) yA = np.maximum(pred_box[1], target_box[:, 1]) xB = np.minimum(pred_box[2], target_box[:, 2]) yB = np.minimum(pred_box[3], target_box[:, 3]) # 计算交集面积 intersection = np.maximum(0.0, xB - xA + 1) * np.maximum(0.0, yB - yA + 1) # 计算两个边界框面积 boxAArea = (pred_box[2] - pred_box[0] + 1) * (pred_box[3] - pred_box[1] + 1) boxBArea = (target_box[:, 2] - target_box[:, 0] + 1) * (target_box[:, 3] - target_box[:, 1] + 1) scores = intersection / (boxAArea + boxBArea - intersection) return scores def compute_ious(rects, bndboxs): iou_list = list() for rect in rects: scores = iou(rect, bndboxs) iou_list.append(max(scores)) return iou_list def parse_output(outputs, S, B, C): """ 每个网格保存置信度最高的检测边界框 :param outputs: (N, S*S, B*5+C) :return: cates, probs, bboxs cates: (N, S*S) probs: (N, S*S) bboxs: (N, S*S, 4) """ N = outputs.shape[0] # (N*S*S, C) probs = outputs[:, :, :C].reshape(-1, C) # (N*S*S, B) confidences = outputs[:, :, C:(C + B)].reshape(-1, B) # (N*S*S, 4*B) bboxs = outputs[:, :, (C + B):].reshape(-1, 4 * B) # 计算每个网格所属类别 (N*S*S) cates = torch.argmax(probs, dim=1) # 计算每个网格最高置信度 (N*S*S) idxs = torch.argmax(confidences, dim=1) # 计算分类概率 (N*S*S) cate_probs = probs[range(len(cates)), cates] * confidences[range(len(idxs)), idxs] # 计算对应边界框坐标 (N*S*S, 4) obj_boxs = bboxs[range(len(idxs)), idxs * 4: (idxs + 1) * 4] return cates.reshape(N, S * S), cate_probs(N, S * S), obj_boxs(N, S * S, 4) def bbox_corner_to_center(bboxs): """ [xmin, ymin, xmax, ymax] -> [x_center, y_center, w, h] :param bboxs: [N, 4] """ assert len(bboxs.shape) == 2 tmp = np.zeros(bboxs.shape) # w tmp[:, 2] = bboxs[:, 2] - bboxs[:, 0] + 1 # h tmp[:, 3] = bboxs[:, 3] - bboxs[:, 1] + 1 # x_center tmp[:, 0] = bboxs[:, 0] + tmp[:, 2] / 2 # y_center tmp[:, 1] = bboxs[:, 1] + tmp[:, 3] / 2 return tmp def bbox_center_to_corner(bboxs): """ [x_center, y_center, w, h] -> [xmin, ymin, xmax, ymax] :param bboxs: [N, 4] """ assert len(bboxs.shape) == 2 tmp = np.zeros(bboxs.shape) # xmin tmp[:, 0] = bboxs[:, 0] - bboxs[:, 2] / 2 # ymin tmp[:, 1] = bboxs[:, 1] - bboxs[:, 3] / 2 # xmax tmp[:, 2] = bboxs[:, 0] + bboxs[:, 2] / 2 # ymax tmp[:, 3] = bboxs[:, 1] + bboxs[:, 3] / 2 return tmp def deform_bboxs(pred_bboxs, data_dict, S): """ :param pred_bboxs: [S*S, 4] :return: """ scale_h, scale_w = data_dict['scale_size'] grid_w = scale_w / S grid_h = scale_h / S bboxs = np.zeros(pred_bboxs.shape) for i in range(S * S): row = int(i / S) col = int(i % S) x_center, y_center, box_w, box_h = pred_bboxs[i] bboxs[i, 0] = (col + x_center) * grid_w bboxs[i, 1] = (row + y_center) * grid_h bboxs[i, 2] = box_w * scale_w bboxs[i, 3] = box_h * scale_h # (x_center, y_center, w, h) -> (xmin, ymin, xmax, ymax) bboxs = bbox_center_to_corner(bboxs) ratio_h, ratio_w = data_dict['ratio'] bboxs[:, 0] /= ratio_w bboxs[:, 1] /= ratio_h bboxs[:, 2] /= ratio_w bboxs[:, 3] /= ratio_h # 最大最小值 h, w = data_dict['src_size'] bboxs[:, 0] = np.maximum(bboxs[:, 0], 0) bboxs[:, 1] = np.maximum(bboxs[:, 1], 0) bboxs[:, 2] = np.minimum(bboxs[:, 2], w) bboxs[:, 3] = np.minimum(bboxs[:, 3], h) return bboxs.astype(int) def nms(rect_list, score_list, cate_list, thresh=0.3): """ 非最大抑制 :param rect_list: list,大小为[N, 4] :param score_list: list,大小为[N] :param cate_list: list, 大小为[N] """ nms_rects = list() nms_scores = list() nms_cates = list() rect_array = np.array(rect_list) score_array = np.array(score_list) cate_array = np.array(cate_list) # 一次排序后即可 # 按分类概率从大到小排序 idxs = np.argsort(score_array)[::-1] rect_array = rect_array[idxs] score_array = score_array[idxs] cate_array = cate_array[idxs] while len(score_array) > 0: # 添加分类概率最大的边界框 nms_rects.append(rect_array[0]) nms_scores.append(score_array[0]) nms_cates.append(cate_array[0]) rect_array = rect_array[1:] score_array = score_array[1:] cate_array = cate_array[1:] length = len(score_array) if length <= 0: break # 计算IoU iou_scores = iou(np.array(nms_rects[len(nms_rects) - 1]), rect_array) # print(iou_scores) # 去除重叠率大于等于thresh的边界框 idxs = np.where(iou_scores < thresh)[0] rect_array = rect_array[idxs] score_array = score_array[idxs] cate_array = cate_array[idxs] return nms_rects, nms_scores, nms_cates
[ "numpy.minimum", "numpy.maximum", "torch.argmax", "numpy.zeros", "numpy.argsort", "numpy.where", "numpy.array", "torch.cuda.is_available", "sys.exit" ]
[((180, 191), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (188, 191), False, 'import sys\n'), ((526, 567), 'numpy.maximum', 'np.maximum', (['pred_box[0]', 'target_box[:, 0]'], {}), '(pred_box[0], target_box[:, 0])\n', (536, 567), True, 'import numpy as np\n'), ((577, 618), 'numpy.maximum', 'np.maximum', (['pred_box[1]', 'target_box[:, 1]'], {}), '(pred_box[1], target_box[:, 1])\n', (587, 618), True, 'import numpy as np\n'), ((628, 669), 'numpy.minimum', 'np.minimum', (['pred_box[2]', 'target_box[:, 2]'], {}), '(pred_box[2], target_box[:, 2])\n', (638, 669), True, 'import numpy as np\n'), ((679, 720), 'numpy.minimum', 'np.minimum', (['pred_box[3]', 'target_box[:, 3]'], {}), '(pred_box[3], target_box[:, 3])\n', (689, 720), True, 'import numpy as np\n'), ((1752, 1778), 'torch.argmax', 'torch.argmax', (['probs'], {'dim': '(1)'}), '(probs, dim=1)\n', (1764, 1778), False, 'import torch\n'), ((1816, 1848), 'torch.argmax', 'torch.argmax', (['confidences'], {'dim': '(1)'}), '(confidences, dim=1)\n', (1828, 1848), False, 'import torch\n'), ((2310, 2331), 'numpy.zeros', 'np.zeros', (['bboxs.shape'], {}), '(bboxs.shape)\n', (2318, 2331), True, 'import numpy as np\n'), ((2754, 2775), 'numpy.zeros', 'np.zeros', (['bboxs.shape'], {}), '(bboxs.shape)\n', (2762, 2775), True, 'import numpy as np\n'), ((3238, 3264), 'numpy.zeros', 'np.zeros', (['pred_bboxs.shape'], {}), '(pred_bboxs.shape)\n', (3246, 3264), True, 'import numpy as np\n'), ((3889, 3915), 'numpy.maximum', 'np.maximum', (['bboxs[:, 0]', '(0)'], {}), '(bboxs[:, 0], 0)\n', (3899, 3915), True, 'import numpy as np\n'), ((3934, 3960), 'numpy.maximum', 'np.maximum', (['bboxs[:, 1]', '(0)'], {}), '(bboxs[:, 1], 0)\n', (3944, 3960), True, 'import numpy as np\n'), ((3979, 4005), 'numpy.minimum', 'np.minimum', (['bboxs[:, 2]', 'w'], {}), '(bboxs[:, 2], w)\n', (3989, 4005), True, 'import numpy as np\n'), ((4024, 4050), 'numpy.minimum', 'np.minimum', (['bboxs[:, 3]', 'h'], {}), '(bboxs[:, 3], h)\n', (4034, 4050), True, 'import numpy as np\n'), ((4359, 4378), 'numpy.array', 'np.array', (['rect_list'], {}), '(rect_list)\n', (4367, 4378), True, 'import numpy as np\n'), ((4397, 4417), 'numpy.array', 'np.array', (['score_list'], {}), '(score_list)\n', (4405, 4417), True, 'import numpy as np\n'), ((4435, 4454), 'numpy.array', 'np.array', (['cate_list'], {}), '(cate_list)\n', (4443, 4454), True, 'import numpy as np\n'), ((753, 781), 'numpy.maximum', 'np.maximum', (['(0.0)', '(xB - xA + 1)'], {}), '(0.0, xB - xA + 1)\n', (763, 781), True, 'import numpy as np\n'), ((784, 812), 'numpy.maximum', 'np.maximum', (['(0.0)', '(yB - yA + 1)'], {}), '(0.0, yB - yA + 1)\n', (794, 812), True, 'import numpy as np\n'), ((4499, 4522), 'numpy.argsort', 'np.argsort', (['score_array'], {}), '(score_array)\n', (4509, 4522), True, 'import numpy as np\n'), ((248, 273), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (271, 273), False, 'import torch\n'), ((5166, 5195), 'numpy.where', 'np.where', (['(iou_scores < thresh)'], {}), '(iou_scores < thresh)\n', (5174, 5195), True, 'import numpy as np\n')]
from django.conf import settings from django.conf.urls import url from django.conf.urls.static import static from django.contrib import admin from django.urls import include, path from pita import views urlpatterns = [ url(r'^admin/', admin.site.urls), ] if settings.DEBUG: urlpatterns += static(settings.STATIC_URL) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) comic_patterns = [ path('<slug:slug>/<int:number>', views.view_comic, name='comic_page'), path('<slug:slug>', views.view_comic, name='comic'), path('', views.comic_index, name='comic_index'), ] urlpatterns += [ path('', views.index, name='index'), path('contact/', views.ContactView.as_view(), name='contact'), path('comics/', include(comic_patterns)), url(r'^(?P<slug>[a-z0-9]+(?:-[a-z0-9]+)*)$', views.page, name='page'), ]
[ "django.urls.path", "django.conf.urls.url", "django.urls.include", "pita.views.ContactView.as_view", "django.conf.urls.static.static" ]
[((225, 256), 'django.conf.urls.url', 'url', (['"""^admin/"""', 'admin.site.urls'], {}), "('^admin/', admin.site.urls)\n", (228, 256), False, 'from django.conf.urls import url\n'), ((300, 327), 'django.conf.urls.static.static', 'static', (['settings.STATIC_URL'], {}), '(settings.STATIC_URL)\n', (306, 327), False, 'from django.conf.urls.static import static\n'), ((348, 409), 'django.conf.urls.static.static', 'static', (['settings.MEDIA_URL'], {'document_root': 'settings.MEDIA_ROOT'}), '(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)\n', (354, 409), False, 'from django.conf.urls.static import static\n'), ((460, 529), 'django.urls.path', 'path', (['"""<slug:slug>/<int:number>"""', 'views.view_comic'], {'name': '"""comic_page"""'}), "('<slug:slug>/<int:number>', views.view_comic, name='comic_page')\n", (464, 529), False, 'from django.urls import include, path\n'), ((535, 586), 'django.urls.path', 'path', (['"""<slug:slug>"""', 'views.view_comic'], {'name': '"""comic"""'}), "('<slug:slug>', views.view_comic, name='comic')\n", (539, 586), False, 'from django.urls import include, path\n'), ((593, 640), 'django.urls.path', 'path', (['""""""', 'views.comic_index'], {'name': '"""comic_index"""'}), "('', views.comic_index, name='comic_index')\n", (597, 640), False, 'from django.urls import include, path\n'), ((666, 701), 'django.urls.path', 'path', (['""""""', 'views.index'], {'name': '"""index"""'}), "('', views.index, name='index')\n", (670, 701), False, 'from django.urls import include, path\n'), ((820, 888), 'django.conf.urls.url', 'url', (['"""^(?P<slug>[a-z0-9]+(?:-[a-z0-9]+)*)$"""', 'views.page'], {'name': '"""page"""'}), "('^(?P<slug>[a-z0-9]+(?:-[a-z0-9]+)*)$', views.page, name='page')\n", (823, 888), False, 'from django.conf.urls import url\n'), ((724, 751), 'pita.views.ContactView.as_view', 'views.ContactView.as_view', ([], {}), '()\n', (749, 751), False, 'from pita import views\n'), ((790, 813), 'django.urls.include', 'include', (['comic_patterns'], {}), '(comic_patterns)\n', (797, 813), False, 'from django.urls import include, path\n')]
# rsinc : two-way / bi-drectional sync for rclone import argparse import os import subprocess import logging import re from datetime import datetime import ujson import halo from pyfiglet import Figlet from .sync import sync, calc_states from .rclone import make_dirs, lsl from .packed import pack, merge, unpack, get_branch, empty from .classes import Flat from .colors import grn, ylw, red from .config import config_cli from .__init__ import __version__ SPIN = halo.Halo(spinner="dots", placement="right", color="yellow") CONFIG_FILE = os.path.expanduser("~/.rsinc/config.json") # Default config path custom_fig = Figlet(font="graffiti") print(custom_fig.renderText("Rsinc")) print("Copyright 2019 <NAME> (CHURCHILL COLLEGE)") print("This is free software with ABSOLUTELY NO WARRANTY") def qt(string): return '"' + string + '"' def read(file): """Reads json do dict and returns dict.""" try: with open(file, "r") as fp: d = ujson.load(fp) if not isinstance(d, dict): raise ValueError("old file format") except Exception as e: emsg = "{} is corrupt ({}). ".format(file, e) if file.endswith("master.json"): emsg += "Delete it and restart rsinc to rebuild it." raise TypeError(emsg) return d def write(file, d): """Writes dict to json""" with open(file, "w") as fp: ujson.dump(d, fp, sort_keys=True, indent=2) def strtobool(string): return string.lower() in STB def escape(string): tmp = [] for char in string: tmp.append(ESCAPE.get(char, char)) return "".join(tmp) # **************************************************************************** # * Set-up/Parse * # **************************************************************************** def formatter(prog): return argparse.HelpFormatter(prog, max_help_position=52) parser = argparse.ArgumentParser(formatter_class=formatter) parser.add_argument("folders", help="Folders to sync", nargs="*") parser.add_argument("-d", "--dry", action="store_true", help="Do a dry run") parser.add_argument( "-c", "--clean", action="store_true", help="Clean directories" ) parser.add_argument( "-D", "--default", help="Sync defaults", action="store_true" ) parser.add_argument( "-r", "--recovery", action="store_true", help="Enter recovery mode" ) parser.add_argument( "-a", "--auto", help="Don't ask permissions", action="store_true" ) parser.add_argument( "-p", "--purge", help="Reset history for all folders", action="store_true" ) parser.add_argument( "-i", "--ignore", help="Find .rignore files", action="store_true" ) parser.add_argument( "-v", "--version", action="version", version=f"rsinc version: {__version__}" ) parser.add_argument( "--config", action="store_true", help="Enter interactive CLI configurer" ) parser.add_argument( "--config_path", help="Path to config file (default ~/.rsinc/config.json)" ) parser.add_argument( "args", nargs=argparse.REMAINDER, help="Global flags to pass to rclone commands", ) args = parser.parse_args() # **************************************************************************** # * Configuration * # **************************************************************************** # Read config and assign variables. if args.config_path is None: config_path = CONFIG_FILE else: config_path = args.config_path if not os.path.isfile(config_path) or args.config: config_cli(config_path) config = read(config_path) CASE_INSENSATIVE = config["CASE_INSENSATIVE"] DEFAULT_DIRS = config["DEFAULT_DIRS"] LOG_FOLDER = config["LOG_FOLDER"] HASH_NAME = config["HASH_NAME"] TEMP_FILE = config["TEMP_FILE"] MASTER = config["MASTER"] BASE_R = config["BASE_R"] BASE_L = config["BASE_L"] FAST_SAVE = config["FAST_SAVE"] # Set up logging. logging.basicConfig( filename=LOG_FOLDER + datetime.now().strftime("%Y-%m-%d"), level=logging.DEBUG, datefmt="%H:%M:%S", format="%(asctime)s %(levelname)s: %(message)s", ) # **************************************************************************** # * Main Program * # **************************************************************************** def main(): # Entry point for 'rsinc' as terminal command. recover = args.recovery dry_run = args.dry auto = args.auto # Decide which folder(s) to sync. if args.default: tmp = DEFAULT_DIRS elif len(args.folders) == 0: tmp = [os.getcwd()] else: tmp = [] for f in args.folders: if os.path.isabs(f): tmp.append(os.path.normpath(f)) else: tmp.append(os.path.abspath(f)) folders = [] for f in tmp: if BASE_L not in f: print(ylw("Rejecting:"), f, "not in", BASE_L) elif not os.path.isdir(f): if strtobool( input( ylw("WARN: ") + f"{f} does not exist in local, sync anyway? " ) ): folders.append(os.path.relpath(f, BASE_L)) else: folders.append(os.path.relpath(f, BASE_L)) # Get & read master. if args.purge or not os.path.exists(MASTER): print(ylw("WARN:"), MASTER, "missing, this must be your first run") write(MASTER, {'history':[], 'ignores':[], 'nest':empty()}) master = read(MASTER) history = master['history'] ignores = master['ignores'] nest = master['nest'] history = set(history) # Find all the ignore files in lcl and save them. if args.ignore: ignores = [] for dirpath, dirnames, filenames in os.walk(BASE_L, followlinks=False): for name in filenames: if name == '.rignore': ignores.append(os.path.join(dirpath, name)) print("Found:", ignores) write(MASTER, {'history':list(history), 'ignores':ignores, 'nest':nest}) # Detect crashes. if os.path.exists(TEMP_FILE): corrupt = read(TEMP_FILE)["folder"] if corrupt in folders: folders.remove(corrupt) folders.insert(0, corrupt) recover = True print(red("ERROR") + ", detected a crash, recovering", corrupt) logging.warning("Detected crash, recovering %s", corrupt) # Main loop. for folder in folders: print("") path_lcl = os.path.join(BASE_L, folder) path_rmt = os.path.join(BASE_R, folder) # Determine if first run. if os.path.join(BASE_L, folder) in history: print(grn("Have:"), qt(folder) + ", entering sync & merge mode") else: print(ylw("Don't have:"), qt(folder) + ", entering first_sync mode") recover = True # Build relative regular expressions rmt_regexs, lcl_regexs, plain = build_regexs( BASE_L, BASE_R, path_lcl, ignores ) print("Ignore:", plain) # Scan directories. SPIN.start(("Crawling: ") + qt(folder)) lcl = lsl(path_lcl, HASH_NAME) rmt = lsl(path_rmt, HASH_NAME) old = Flat(path_lcl) SPIN.stop_and_persist(symbol="✔") lcl.tag_ignore(lcl_regexs) rmt.tag_ignore(rmt_regexs) # First run & recover mode. if recover: print("Running", ylw("recover/first_sync"), "mode") else: print("Reading last state") branch = get_branch(nest, folder) unpack(branch, old) calc_states(old, lcl) calc_states(old, rmt) print(grn("Dry pass:")) total, new_dirs, _, _ = sync( lcl, rmt, old, recover, dry_run=True, case=CASE_INSENSATIVE, flags=args.args, ) print("Found:", total, "job(s)") print("With:", len(new_dirs), "folder(s) to make") if not dry_run and ( auto or total == 0 or strtobool(input("Execute? ")) ): if total != 0 or recover: print(grn("Live pass:")) write(TEMP_FILE, {"folder": folder}) make_dirs(new_dirs) _, _, lcl, rmt, = sync( lcl, rmt, old, recover, total=total, case=CASE_INSENSATIVE, dry_run=dry_run, flags=args.args, ) SPIN.start(grn("Saving: ") + qt(folder)) # Get post sync state if total == 0: print("Skipping crawl as no jobs") now = lcl elif FAST_SAVE: print("Skipping crawl as FAST_SAVE") now = lcl else: now = lsl(path_lcl, HASH_NAME) now.tag_ignore(lcl_regexs) now.rm_ignore() # Merge into history. history.add(os.path.join(BASE_L, folder)) history.update(d for d in now.dirs) # Merge into nest merge(nest, folder, pack(now)) write(MASTER, {'history':list(history), 'ignores':ignores, 'nest':nest}) subprocess.run(["rm", TEMP_FILE]) SPIN.stop_and_persist(symbol="✔") if args.clean: SPIN.start(grn("Pruning: ") + qt(folder)) subprocess.run(["rclone", "rmdirs", path_rmt]) subprocess.run(["rclone", "rmdirs", path_lcl]) SPIN.stop_and_persist(symbol="✔") recover = args.recovery print("") print(grn("All synced!")) def build_regexs(BASE_L, BASE_R, path_lcl, files): lcl_regex = [] rmt_regex = [] plain = [] for file in files: for f_char, p_char in zip(os.path.dirname(file), path_lcl): if f_char != p_char: break else: if os.path.exists(file): with open(file, "r") as fp: for line in fp: if line.rstrip() == "": continue mid = os.path.dirname(file) mid = mid[len(BASE_L) + 1:] mid = os.path.join(escape(mid), line.rstrip()) lcl = os.path.join(escape(BASE_L), mid) rmt = os.path.join(escape(BASE_R), mid) plain.append(mid) lcl_regex.append(re.compile(lcl)) rmt_regex.append(re.compile(rmt)) return rmt_regex, lcl_regex, plain STB = ( "yes", "ye", "y", "1", "t", "true", "", "go", "please", "fire away", "punch it", "sure", "ok", "hell yes", ) ESCAPE = { "\\": "\\\\", ".": "\\.", "^": "\\^", "$": "\\$", "*": "\\*", "+": "\\+", "?": "\\?", "|": "\\|", "(": "\\(", ")": "\\)", "{": "\\{", "}": "\\}", "[": "\\[", "]": "\\]", }
[ "argparse.ArgumentParser", "ujson.dump", "os.walk", "halo.Halo", "os.path.isfile", "os.path.join", "os.path.abspath", "logging.warning", "os.path.dirname", "argparse.HelpFormatter", "os.path.exists", "os.path.normpath", "datetime.datetime.now", "ujson.load", "re.compile", "subprocess.run", "os.path.isabs", "os.getcwd", "pyfiglet.Figlet", "os.path.isdir", "os.path.relpath", "os.path.expanduser" ]
[((469, 529), 'halo.Halo', 'halo.Halo', ([], {'spinner': '"""dots"""', 'placement': '"""right"""', 'color': '"""yellow"""'}), "(spinner='dots', placement='right', color='yellow')\n", (478, 529), False, 'import halo\n'), ((544, 586), 'os.path.expanduser', 'os.path.expanduser', (['"""~/.rsinc/config.json"""'], {}), "('~/.rsinc/config.json')\n", (562, 586), False, 'import os\n'), ((624, 647), 'pyfiglet.Figlet', 'Figlet', ([], {'font': '"""graffiti"""'}), "(font='graffiti')\n", (630, 647), False, 'from pyfiglet import Figlet\n'), ((1962, 2012), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'formatter_class': 'formatter'}), '(formatter_class=formatter)\n', (1985, 2012), False, 'import argparse\n'), ((1900, 1950), 'argparse.HelpFormatter', 'argparse.HelpFormatter', (['prog'], {'max_help_position': '(52)'}), '(prog, max_help_position=52)\n', (1922, 1950), False, 'import argparse\n'), ((6173, 6198), 'os.path.exists', 'os.path.exists', (['TEMP_FILE'], {}), '(TEMP_FILE)\n', (6187, 6198), False, 'import os\n'), ((1399, 1442), 'ujson.dump', 'ujson.dump', (['d', 'fp'], {'sort_keys': '(True)', 'indent': '(2)'}), '(d, fp, sort_keys=True, indent=2)\n', (1409, 1442), False, 'import ujson\n'), ((3553, 3580), 'os.path.isfile', 'os.path.isfile', (['config_path'], {}), '(config_path)\n', (3567, 3580), False, 'import os\n'), ((5854, 5888), 'os.walk', 'os.walk', (['BASE_L'], {'followlinks': '(False)'}), '(BASE_L, followlinks=False)\n', (5861, 5888), False, 'import os\n'), ((6450, 6507), 'logging.warning', 'logging.warning', (['"""Detected crash, recovering %s"""', 'corrupt'], {}), "('Detected crash, recovering %s', corrupt)\n", (6465, 6507), False, 'import logging\n'), ((6590, 6618), 'os.path.join', 'os.path.join', (['BASE_L', 'folder'], {}), '(BASE_L, folder)\n', (6602, 6618), False, 'import os\n'), ((6638, 6666), 'os.path.join', 'os.path.join', (['BASE_R', 'folder'], {}), '(BASE_R, folder)\n', (6650, 6666), False, 'import os\n'), ((970, 984), 'ujson.load', 'ujson.load', (['fp'], {}), '(fp)\n', (980, 984), False, 'import ujson\n'), ((5401, 5423), 'os.path.exists', 'os.path.exists', (['MASTER'], {}), '(MASTER)\n', (5415, 5423), False, 'import os\n'), ((6713, 6741), 'os.path.join', 'os.path.join', (['BASE_L', 'folder'], {}), '(BASE_L, folder)\n', (6725, 6741), False, 'import os\n'), ((9690, 9736), 'subprocess.run', 'subprocess.run', (["['rclone', 'rmdirs', path_rmt]"], {}), "(['rclone', 'rmdirs', path_rmt])\n", (9704, 9736), False, 'import subprocess\n'), ((9749, 9795), 'subprocess.run', 'subprocess.run', (["['rclone', 'rmdirs', path_lcl]"], {}), "(['rclone', 'rmdirs', path_lcl])\n", (9763, 9795), False, 'import subprocess\n'), ((10084, 10105), 'os.path.dirname', 'os.path.dirname', (['file'], {}), '(file)\n', (10099, 10105), False, 'import os\n'), ((10202, 10222), 'os.path.exists', 'os.path.exists', (['file'], {}), '(file)\n', (10216, 10222), False, 'import os\n'), ((4664, 4675), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (4673, 4675), False, 'import os\n'), ((4750, 4766), 'os.path.isabs', 'os.path.isabs', (['f'], {}), '(f)\n', (4763, 4766), False, 'import os\n'), ((5020, 5036), 'os.path.isdir', 'os.path.isdir', (['f'], {}), '(f)\n', (5033, 5036), False, 'import os\n'), ((9515, 9548), 'subprocess.run', 'subprocess.run', (["['rm', TEMP_FILE]"], {}), "(['rm', TEMP_FILE])\n", (9529, 9548), False, 'import subprocess\n'), ((4012, 4026), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4024, 4026), False, 'from datetime import datetime\n'), ((5322, 5348), 'os.path.relpath', 'os.path.relpath', (['f', 'BASE_L'], {}), '(f, BASE_L)\n', (5337, 5348), False, 'import os\n'), ((9245, 9273), 'os.path.join', 'os.path.join', (['BASE_L', 'folder'], {}), '(BASE_L, folder)\n', (9257, 9273), False, 'import os\n'), ((4795, 4814), 'os.path.normpath', 'os.path.normpath', (['f'], {}), '(f)\n', (4811, 4814), False, 'import os\n'), ((4861, 4879), 'os.path.abspath', 'os.path.abspath', (['f'], {}), '(f)\n', (4876, 4879), False, 'import os\n'), ((5253, 5279), 'os.path.relpath', 'os.path.relpath', (['f', 'BASE_L'], {}), '(f, BASE_L)\n', (5268, 5279), False, 'import os\n'), ((5999, 6026), 'os.path.join', 'os.path.join', (['dirpath', 'name'], {}), '(dirpath, name)\n', (6011, 6026), False, 'import os\n'), ((10419, 10440), 'os.path.dirname', 'os.path.dirname', (['file'], {}), '(file)\n', (10434, 10440), False, 'import os\n'), ((10777, 10792), 're.compile', 're.compile', (['lcl'], {}), '(lcl)\n', (10787, 10792), False, 'import re\n'), ((10835, 10850), 're.compile', 're.compile', (['rmt'], {}), '(rmt)\n', (10845, 10850), False, 'import re\n')]
''' Module to preprocess filckr8k image data ''' import cv2 import numpy as np import os from _pickle import dump, load from keras.applications.inception_v3 import InceptionV3 from keras.layers import Flatten from keras.models import load_model from keras.preprocessing import image from keras.applications.inception_v3 import preprocess_input from keras.models import Model from PIL import Image def load_images_as_arrays(directory): img_array_dict = {} for img_file in os.listdir(directory): img_path = directory + '/' + img_file img = Image.open(img_path) x = np.array(img) img_array_dict[os.path.splitext(img_file)[0]] = x return img_array_dict def extract_features(directory): # base_model = InceptionV3(weights='imagenet') # model = Model(inputs=base_model.input, outputs=base_model.get_layer('avg_pool').output) #model = load_model('./preprocessing/CNN_encoder_100epoch.h5') #top = Flatten()(model.output) #model = Model(inputs=model.input, outputs=top) #print(model.summary()) img_id = [] img_matrices = [] i = 0 for img_file in os.listdir(directory): print(i, ":", i > 1999 and i < 8000 or i > 8999) '''if (i > 1999 and i < 8000 or i > 8999): i += 1 continue''' img_path = directory + '/' + img_file resizeDim = (256, 512) img = cv2.imread(img_path) img = cv2.resize(img, resizeDim, interpolation=cv2.INTER_AREA) img = img.astype('float16') / 255 #x = img.reshape(img.shape + (1,)) img_id.append(os.path.splitext(img_file)[0]) img_matrices.append(img) i += 1 img_matrices = np.array(img_matrices) #img_features = model.predict(img_matrices, verbose=1) return {'ids': img_id, 'features': img_matrices} def extract_feature_from_image(file_dir): img = image.load_img(file_dir, target_size=(299, 299)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) # base_model = InceptionV3(weights='imagenet') # model = Model(inputs=base_model.input, outputs=base_model.get_layer('avg_pool').output) model = load_model('CNN_encoder_100epoch.h5') return model.predict(x) def load_features(dict_dir, dataset_dir, repeat_times=1): assert (repeat_times >= 1) img_ids = [] with open(dataset_dir, 'r') as f: for line in f.readlines(): img_ids.append(os.path.splitext(line)[0]) features_dict = load(open(dict_dir, 'rb')) #features_dict = extract_features('./datasets/Flickr8k_Dataset') dataset_features = [] for img_id in img_ids: fidx = features_dict['ids'].index(img_id) dataset_features.append(np.vstack([features_dict['features'][fidx, :]] * repeat_times)) #dataset_features = np.vstack(dataset_features) return np.array(dataset_features) if __name__ == "__main__": # pre-extract image features from Inception Net image_directory = './datasets/Flickr8k_Dataset' features_dict = extract_features(image_directory) dump(features_dict, open('./datasets/features_dict2.pkl', 'wb'),protocol=4)
[ "keras.models.load_model", "numpy.expand_dims", "PIL.Image.open", "keras.applications.inception_v3.preprocess_input", "keras.preprocessing.image.img_to_array", "keras.preprocessing.image.load_img", "cv2.imread", "numpy.array", "os.path.splitext", "numpy.vstack", "os.listdir", "cv2.resize" ]
[((483, 504), 'os.listdir', 'os.listdir', (['directory'], {}), '(directory)\n', (493, 504), False, 'import os\n'), ((1130, 1151), 'os.listdir', 'os.listdir', (['directory'], {}), '(directory)\n', (1140, 1151), False, 'import os\n'), ((1693, 1715), 'numpy.array', 'np.array', (['img_matrices'], {}), '(img_matrices)\n', (1701, 1715), True, 'import numpy as np\n'), ((1884, 1932), 'keras.preprocessing.image.load_img', 'image.load_img', (['file_dir'], {'target_size': '(299, 299)'}), '(file_dir, target_size=(299, 299))\n', (1898, 1932), False, 'from keras.preprocessing import image\n'), ((1941, 1964), 'keras.preprocessing.image.img_to_array', 'image.img_to_array', (['img'], {}), '(img)\n', (1959, 1964), False, 'from keras.preprocessing import image\n'), ((1973, 1998), 'numpy.expand_dims', 'np.expand_dims', (['x'], {'axis': '(0)'}), '(x, axis=0)\n', (1987, 1998), True, 'import numpy as np\n'), ((2007, 2026), 'keras.applications.inception_v3.preprocess_input', 'preprocess_input', (['x'], {}), '(x)\n', (2023, 2026), False, 'from keras.applications.inception_v3 import preprocess_input\n'), ((2185, 2222), 'keras.models.load_model', 'load_model', (['"""CNN_encoder_100epoch.h5"""'], {}), "('CNN_encoder_100epoch.h5')\n", (2195, 2222), False, 'from keras.models import load_model\n'), ((2869, 2895), 'numpy.array', 'np.array', (['dataset_features'], {}), '(dataset_features)\n', (2877, 2895), True, 'import numpy as np\n'), ((567, 587), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (577, 587), False, 'from PIL import Image\n'), ((600, 613), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (608, 613), True, 'import numpy as np\n'), ((1395, 1415), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (1405, 1415), False, 'import cv2\n'), ((1430, 1486), 'cv2.resize', 'cv2.resize', (['img', 'resizeDim'], {'interpolation': 'cv2.INTER_AREA'}), '(img, resizeDim, interpolation=cv2.INTER_AREA)\n', (1440, 1486), False, 'import cv2\n'), ((2740, 2802), 'numpy.vstack', 'np.vstack', (["([features_dict['features'][fidx, :]] * repeat_times)"], {}), "([features_dict['features'][fidx, :]] * repeat_times)\n", (2749, 2802), True, 'import numpy as np\n'), ((638, 664), 'os.path.splitext', 'os.path.splitext', (['img_file'], {}), '(img_file)\n', (654, 664), False, 'import os\n'), ((1594, 1620), 'os.path.splitext', 'os.path.splitext', (['img_file'], {}), '(img_file)\n', (1610, 1620), False, 'import os\n'), ((2461, 2483), 'os.path.splitext', 'os.path.splitext', (['line'], {}), '(line)\n', (2477, 2483), False, 'import os\n')]
import subprocess import psycopg2 import multiprocessing import threading import os import pathlib import sendgrid import datetime import shutil import boto3 from botocore.exceptions import ClientError from boto3.dynamodb.conditions import Key, Attr from sendgrid.helpers.mail import * MAX_WORKERS = 1 PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) VOICES_ROOT = os.path.join(PROJECT_ROOT, 'static') dynamodb = boto3.resource('dynamodb') def ConvertAudio(fileImput): #validar fileImput inFile = GetOrginalPath(fileImput[1]) outputFileName = VOICES_ROOT + '/voices/processed/' + GetFileName(inFile) + '.mp3' if IsMp3(fileImput[1]): print("--mp3Detected--") shutil.copy(inFile, outputFileName) PostProcessFile(fileImput[0], outputFileName, fileImput[2], fileImput[3]) return True else: print("--NonMp3Detected--") result = subprocess.run(['ffmpeg', '-i', inFile, '-acodec', 'libmp3lame', outputFileName]) #command = "ffmpeg -i {0} -acodec libmp3lame {1}".format(fileImput, outputFileName) #result = os.system(command) if result.returncode is 0: PostProcessFile(fileImput[0], outputFileName, fileImput[2], fileImput[3]) return True else: return False def PostProcessFile(fileId, outFile, mail, url): UpdateProcessedFile(fileId, outFile) #SendEmailSendgrid(mail, url) SendEmailSeS(mail, url) def GetOrginalPath(relativepath): file = pathlib.PurePath(relativepath).name return VOICES_ROOT + '/voices/original/' + file def IsMp3(filePath): file_extension = pathlib.PurePath(filePath).suffix if file_extension == '.mp3': return True else: return False def GetFileName(filePath): return pathlib.PurePath(filePath).stem def UpdateProcessedFile(fileId, filePath): print("updatefile--" + str(fileId)) conn = None with threading.Lock(): try: outputFileDB = 'voices/processed/' + GetFileName(filePath) + '.mp3' table = dynamodb.Table('grabacion') table.update_item( Key={ 'Archivo_Original': fileId }, UpdateExpression='SET Estado_Archivo=:val1, Archivo_Final=:val2', ExpressionAttributeValues={ ':val1': 1, ':val2': outputFileDB } ) except(Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close() def SendEmailSendgrid(mail, url): print("usendmail--" + mail) sg = sendgrid.SendGridAPIClient( apikey=os.environ.get('SENDGRID_API_KEY') ) from_email = Email("<EMAIL>") to_email = Email(mail) subject = "La voz ya esta disponible" WS_IP = os.environ.get('IP_HOST') content = Content( "text/plain", "La voz ya se encuentra disponible en la página principal del concurso " + WS_IP + "/concursar/" + url ) mail = Mail(from_email, subject, to_email, content) response = sg.client.mail.send.post(request_body=mail.get()) def SendEmailSeS(mail, url): print("usendmai2--" + mail) client = boto3.client('ses') WS_IP = os.environ.get('IP_HOST') + '/concursar/' + url mensaje = '<html><head></head><body><p>La voz ya se encuentra disponible en la página principal del ' +\ 'concurso, visite</p> <a href="' + WS_IP + '">Supervoices</a> ' +\ '<p>para mas informacion</p></body></html>' # Try to send the email. try: # Provide the contents of the email. response = client.send_email( Destination={ 'ToAddresses': [ mail, ], }, Message={ 'Body': { 'Html': { 'Charset': 'UTF8', 'Data': mensaje, }, }, 'Subject': { 'Charset': 'UTF8', 'Data': 'La voz ya esta disponible', }, }, Source='<EMAIL>', #ConfigurationSetName='UTF8', ) # Display an error if something goes wrong. except ClientError as e: print("catchSeS" + mail) print(e.response['Error']['Message']) else: print("Email sent! Message ID:"), print(response['MessageId']) def GetPendingFiles(): conn = None files = None try: table = dynamodb.Table('grabacion') response = table.query( KeyConditionExpression=Key('Estado_Archivo').eq(0) ) items = response['Items'] #cur.execute("""SELECT gr.id, gr."Archivo_Original", gr."Mail_Autor", co."Url" FROM api_grabacion gr, api_concurso co WHERE gr."Estado_Archivo" = 0 and gr."Concurso_id" = co.id""") except (Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close() return items def UpdateLogTable(startTime, endTime, totalFiles): conn = None try: table = dynamodb.Table('grabacion') table.put_item( Item={ 'startDate': startTime, 'endDate': endTime, 'totalFiles': totalFiles } ) except(Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close() def StartJob(): startTime = datetime.datetime.now(datetime.timezone.utc) pendingFiles = GetPendingFiles() if pendingFiles is not None: with multiprocessing.Pool(MAX_WORKERS) as pool: results = pool.imap(ConvertAudio, pendingFiles) totalFiles = sum(results) endTime = datetime.datetime.now(datetime.timezone.utc) UpdateLogTable(startTime, endTime, totalFiles) else: UpdateLogTable(startTime, startTime, 0) print("No files to Tansform") if __name__ == '__main__': StartJob()
[ "subprocess.run", "os.path.abspath", "boto3.client", "boto3.dynamodb.conditions.Key", "datetime.datetime.now", "os.environ.get", "threading.Lock", "boto3.resource", "pathlib.PurePath", "multiprocessing.Pool", "os.path.join", "shutil.copy" ]
[((392, 428), 'os.path.join', 'os.path.join', (['PROJECT_ROOT', '"""static"""'], {}), "(PROJECT_ROOT, 'static')\n", (404, 428), False, 'import os\n'), ((440, 466), 'boto3.resource', 'boto3.resource', (['"""dynamodb"""'], {}), "('dynamodb')\n", (454, 466), False, 'import boto3\n'), ((2899, 2924), 'os.environ.get', 'os.environ.get', (['"""IP_HOST"""'], {}), "('IP_HOST')\n", (2913, 2924), False, 'import os\n'), ((3298, 3317), 'boto3.client', 'boto3.client', (['"""ses"""'], {}), "('ses')\n", (3310, 3317), False, 'import boto3\n'), ((5643, 5687), 'datetime.datetime.now', 'datetime.datetime.now', (['datetime.timezone.utc'], {}), '(datetime.timezone.utc)\n', (5664, 5687), False, 'import datetime\n'), ((350, 375), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (365, 375), False, 'import os\n'), ((720, 755), 'shutil.copy', 'shutil.copy', (['inFile', 'outputFileName'], {}), '(inFile, outputFileName)\n', (731, 755), False, 'import shutil\n'), ((921, 1006), 'subprocess.run', 'subprocess.run', (["['ffmpeg', '-i', inFile, '-acodec', 'libmp3lame', outputFileName]"], {}), "(['ffmpeg', '-i', inFile, '-acodec', 'libmp3lame',\n outputFileName])\n", (935, 1006), False, 'import subprocess\n'), ((1517, 1547), 'pathlib.PurePath', 'pathlib.PurePath', (['relativepath'], {}), '(relativepath)\n', (1533, 1547), False, 'import pathlib\n'), ((1649, 1675), 'pathlib.PurePath', 'pathlib.PurePath', (['filePath'], {}), '(filePath)\n', (1665, 1675), False, 'import pathlib\n'), ((1807, 1833), 'pathlib.PurePath', 'pathlib.PurePath', (['filePath'], {}), '(filePath)\n', (1823, 1833), False, 'import pathlib\n'), ((1949, 1965), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (1963, 1965), False, 'import threading\n'), ((2743, 2777), 'os.environ.get', 'os.environ.get', (['"""SENDGRID_API_KEY"""'], {}), "('SENDGRID_API_KEY')\n", (2757, 2777), False, 'import os\n'), ((3330, 3355), 'os.environ.get', 'os.environ.get', (['"""IP_HOST"""'], {}), "('IP_HOST')\n", (3344, 3355), False, 'import os\n'), ((5771, 5804), 'multiprocessing.Pool', 'multiprocessing.Pool', (['MAX_WORKERS'], {}), '(MAX_WORKERS)\n', (5791, 5804), False, 'import multiprocessing\n'), ((5934, 5978), 'datetime.datetime.now', 'datetime.datetime.now', (['datetime.timezone.utc'], {}), '(datetime.timezone.utc)\n', (5955, 5978), False, 'import datetime\n'), ((4735, 4756), 'boto3.dynamodb.conditions.Key', 'Key', (['"""Estado_Archivo"""'], {}), "('Estado_Archivo')\n", (4738, 4756), False, 'from boto3.dynamodb.conditions import Key, Attr\n')]
from features.friend.entities import Friendship from features.friend.models import FriendshipOutput def map_friendship_to_friendship_output(*, friendship: Friendship) -> FriendshipOutput: return FriendshipOutput( client_id=friendship.client_id, friend_id=friendship.friend_id, requested=friendship.requested, approved=friendship.approved )
[ "features.friend.models.FriendshipOutput" ]
[((201, 348), 'features.friend.models.FriendshipOutput', 'FriendshipOutput', ([], {'client_id': 'friendship.client_id', 'friend_id': 'friendship.friend_id', 'requested': 'friendship.requested', 'approved': 'friendship.approved'}), '(client_id=friendship.client_id, friend_id=friendship.\n friend_id, requested=friendship.requested, approved=friendship.approved)\n', (217, 348), False, 'from features.friend.models import FriendshipOutput\n')]
from train import models_initializers model_name = 'basic_nn' model = models_initializers.get(model_name)() for l in model.layers: print(f'{l.name} -- {l.input_shape} -- {l.output_shape}')
[ "train.models_initializers.get" ]
[((72, 107), 'train.models_initializers.get', 'models_initializers.get', (['model_name'], {}), '(model_name)\n', (95, 107), False, 'from train import models_initializers\n')]
from bson.json_util import dumps from flask import request, render_template from app import Carrello, app from complements.db import SearchIntoDb, SearchviaAttributesCASE from complements.forms import Searchfor, CaseSelect @app.route('/case', methods=['POST', 'GET']) def case(): form1 = Searchfor() form2 = CaseSelect() qir = list() if request.method == 'POST': if request.form.get('submit'): query = SearchIntoDb("CASE", request.form.get('search')).findquery() for x in query: qir.insert(1, [dumps(x['name']), dumps(x['marca']), dumps(x['COSTO']), dumps(x['_id'])]) return render_template("case.html", form=form1, form2=form2, queri=qir) if request.form.get('val'): x = str(request.form.get('val')) x = x.split('"$oid": "', 1)[1] x = x.split('"', 1)[0] Carrello.Insert(x, 6, "CASE") if request.form.get("submitf"): marche = list() model = list() if request.form.get("Col"): marche.append("Cooler Master") if request.form.get("Shark"): marche.append("Sharkoon") if request.form.get("Therm"): marche.append("Thermaltake") if request.form.get("ATX"): model.append("ATX") if request.form.get("mATX"): model.append("mATX") if request.form.get('minmonet'): min = request.form.get('minmonet') else: min = "0" if request.form.get('maxmonet'): max = request.form.get('maxmonet') else: max = "10000" query = SearchviaAttributesCASE("CASE", " ".join(marche), min, max, " ".join(model) ).findqueryattr() for x in query: qir.insert(1, [dumps(x['name']), dumps(x['marca']), dumps(x['COSTO']), dumps(x['_id'])]) return render_template("case.html", form=form1, form2=form2, queri=qir) return render_template("case.html", form=form1, form2=form2)
[ "app.app.route", "flask.request.form.get", "flask.render_template", "complements.forms.CaseSelect", "bson.json_util.dumps", "complements.forms.Searchfor", "app.Carrello.Insert" ]
[((227, 270), 'app.app.route', 'app.route', (['"""/case"""'], {'methods': "['POST', 'GET']"}), "('/case', methods=['POST', 'GET'])\n", (236, 270), False, 'from app import Carrello, app\n'), ((295, 306), 'complements.forms.Searchfor', 'Searchfor', ([], {}), '()\n', (304, 306), False, 'from complements.forms import Searchfor, CaseSelect\n'), ((319, 331), 'complements.forms.CaseSelect', 'CaseSelect', ([], {}), '()\n', (329, 331), False, 'from complements.forms import Searchfor, CaseSelect\n'), ((2100, 2153), 'flask.render_template', 'render_template', (['"""case.html"""'], {'form': 'form1', 'form2': 'form2'}), "('case.html', form=form1, form2=form2)\n", (2115, 2153), False, 'from flask import request, render_template\n'), ((393, 419), 'flask.request.form.get', 'request.form.get', (['"""submit"""'], {}), "('submit')\n", (409, 419), False, 'from flask import request, render_template\n'), ((730, 753), 'flask.request.form.get', 'request.form.get', (['"""val"""'], {}), "('val')\n", (746, 753), False, 'from flask import request, render_template\n'), ((931, 958), 'flask.request.form.get', 'request.form.get', (['"""submitf"""'], {}), "('submitf')\n", (947, 958), False, 'from flask import request, render_template\n'), ((654, 718), 'flask.render_template', 'render_template', (['"""case.html"""'], {'form': 'form1', 'form2': 'form2', 'queri': 'qir'}), "('case.html', form=form1, form2=form2, queri=qir)\n", (669, 718), False, 'from flask import request, render_template\n'), ((890, 919), 'app.Carrello.Insert', 'Carrello.Insert', (['x', '(6)', '"""CASE"""'], {}), "(x, 6, 'CASE')\n", (905, 919), False, 'from app import Carrello, app\n'), ((1030, 1053), 'flask.request.form.get', 'request.form.get', (['"""Col"""'], {}), "('Col')\n", (1046, 1053), False, 'from flask import request, render_template\n'), ((1117, 1142), 'flask.request.form.get', 'request.form.get', (['"""Shark"""'], {}), "('Shark')\n", (1133, 1142), False, 'from flask import request, render_template\n'), ((1201, 1226), 'flask.request.form.get', 'request.form.get', (['"""Therm"""'], {}), "('Therm')\n", (1217, 1226), False, 'from flask import request, render_template\n'), ((1289, 1312), 'flask.request.form.get', 'request.form.get', (['"""ATX"""'], {}), "('ATX')\n", (1305, 1312), False, 'from flask import request, render_template\n'), ((1365, 1389), 'flask.request.form.get', 'request.form.get', (['"""mATX"""'], {}), "('mATX')\n", (1381, 1389), False, 'from flask import request, render_template\n'), ((1444, 1472), 'flask.request.form.get', 'request.form.get', (['"""minmonet"""'], {}), "('minmonet')\n", (1460, 1472), False, 'from flask import request, render_template\n'), ((1584, 1612), 'flask.request.form.get', 'request.form.get', (['"""maxmonet"""'], {}), "('maxmonet')\n", (1600, 1612), False, 'from flask import request, render_template\n'), ((2023, 2087), 'flask.render_template', 'render_template', (['"""case.html"""'], {'form': 'form1', 'form2': 'form2', 'queri': 'qir'}), "('case.html', form=form1, form2=form2, queri=qir)\n", (2038, 2087), False, 'from flask import request, render_template\n'), ((775, 798), 'flask.request.form.get', 'request.form.get', (['"""val"""'], {}), "('val')\n", (791, 798), False, 'from flask import request, render_template\n'), ((1496, 1524), 'flask.request.form.get', 'request.form.get', (['"""minmonet"""'], {}), "('minmonet')\n", (1512, 1524), False, 'from flask import request, render_template\n'), ((1636, 1664), 'flask.request.form.get', 'request.form.get', (['"""maxmonet"""'], {}), "('maxmonet')\n", (1652, 1664), False, 'from flask import request, render_template\n'), ((462, 488), 'flask.request.form.get', 'request.form.get', (['"""search"""'], {}), "('search')\n", (478, 488), False, 'from flask import request, render_template\n'), ((561, 577), 'bson.json_util.dumps', 'dumps', (["x['name']"], {}), "(x['name'])\n", (566, 577), False, 'from bson.json_util import dumps\n'), ((579, 596), 'bson.json_util.dumps', 'dumps', (["x['marca']"], {}), "(x['marca'])\n", (584, 596), False, 'from bson.json_util import dumps\n'), ((598, 615), 'bson.json_util.dumps', 'dumps', (["x['COSTO']"], {}), "(x['COSTO'])\n", (603, 615), False, 'from bson.json_util import dumps\n'), ((617, 632), 'bson.json_util.dumps', 'dumps', (["x['_id']"], {}), "(x['_id'])\n", (622, 632), False, 'from bson.json_util import dumps\n'), ((1930, 1946), 'bson.json_util.dumps', 'dumps', (["x['name']"], {}), "(x['name'])\n", (1935, 1946), False, 'from bson.json_util import dumps\n'), ((1948, 1965), 'bson.json_util.dumps', 'dumps', (["x['marca']"], {}), "(x['marca'])\n", (1953, 1965), False, 'from bson.json_util import dumps\n'), ((1967, 1984), 'bson.json_util.dumps', 'dumps', (["x['COSTO']"], {}), "(x['COSTO'])\n", (1972, 1984), False, 'from bson.json_util import dumps\n'), ((1986, 2001), 'bson.json_util.dumps', 'dumps', (["x['_id']"], {}), "(x['_id'])\n", (1991, 2001), False, 'from bson.json_util import dumps\n')]
from secedgar.filings import Filing, FilingType # This will download the past 15 10-Q filings made by Apple. import pandas as pd path = '/Users/schen/sec-scraper/data/cik_ticker.csv' df = pd.read_csv(path, sep='|') def run(df): cik = list(df['CIK']) names = list(df['Name']) for c, n in zip(cik, names): if len(str(c)) < 10: missing = 10 - len(str(c)) temp = ("0" * missing) + str(c) print("SCRAPING {} ...".format(temp)) my_filings = Filing(cik=temp, filing_type=FilingType.FILING_10K) # 10-Q filings for Apple (NYSE: AAPL) try: my_filings.save('./filings/') # Saves last 15 10Q reports from AAPL to ~/path/to/dir except ValueError: print("No {}".format(n)) run(df)
[ "pandas.read_csv", "secedgar.filings.Filing" ]
[((189, 215), 'pandas.read_csv', 'pd.read_csv', (['path'], {'sep': '"""|"""'}), "(path, sep='|')\n", (200, 215), True, 'import pandas as pd\n'), ((501, 552), 'secedgar.filings.Filing', 'Filing', ([], {'cik': 'temp', 'filing_type': 'FilingType.FILING_10K'}), '(cik=temp, filing_type=FilingType.FILING_10K)\n', (507, 552), False, 'from secedgar.filings import Filing, FilingType\n')]
import unittest import codesmith.CodeCommit.PipelineTrigger.pipline_trigger as pt import json import io import zipfile COMMIT_REFERENCE = { "commit": "5<PASSWORD>", "ref": "refs/heads/master" } TAG_REFERENCE = { "commit": "<PASSWORD>", "ref": "refs/tags/v1.1.0" } class PipelineTriggerTest(unittest.TestCase): def test_extract_repository_name(self): self.assertEqual('my-repo', pt.extract_repository_name('arn:aws:codecommit:eu-west-1:123456789012:my-repo')) self.assertEqual('', pt.extract_repository_name('')) self.assertEqual('anything', pt.extract_repository_name('anything')) def test_is_commit(self): self.assertTrue(pt.is_commit(COMMIT_REFERENCE)) self.assertFalse(pt.is_commit(TAG_REFERENCE)) def test_is_tag(self): self.assertTrue(pt.is_tag(TAG_REFERENCE)) self.assertFalse(pt.is_tag(COMMIT_REFERENCE)) def test_extract_tag(self): self.assertEqual('v1.1.0', pt.extract_tag(TAG_REFERENCE)) def test_event(self): with open('code_commit_event.json') as f: event = json.load(f) pipeline_trigger = pt.derive_trigger(event['Records'][0]) self.assertEqual('eu-west-1', pipeline_trigger.aws_region) self.assertEqual('my-repo', pipeline_trigger.repository) self.assertEqual('git checkout 5<PASSWORD>0<PASSWORD>', pipeline_trigger.checkout_command) buf = io.BytesIO(pipeline_trigger.generate_zip_file()) with zipfile.ZipFile(buf) as zf: given_files = [file.filename for file in zf.filelist] expected_files = ['buildspec.yaml', 'chechkout.sh'] self.assertEqual(expected_files, given_files) given_checkout_text = pipeline_trigger.generate_files()['chechkout.sh'] expected_checkout_text = '''#!/bin/bash git config --global credential.helper '!aws codecommit credential-helper $@' git config --global credential.UseHttpPath true git clone --shallow-submodules https://git-codecommit.eu-west-1.amazonaws.com/v1/repos/my-repo repo cd repo git checkout 5<PASSWORD> cd ''' self.assertEqual(expected_checkout_text, given_checkout_text) if __name__ == '__main__': unittest.main()
[ "unittest.main", "codesmith.CodeCommit.PipelineTrigger.pipline_trigger.derive_trigger", "codesmith.CodeCommit.PipelineTrigger.pipline_trigger.is_commit", "codesmith.CodeCommit.PipelineTrigger.pipline_trigger.extract_tag", "json.load", "zipfile.ZipFile", "codesmith.CodeCommit.PipelineTrigger.pipline_trigger.is_tag", "codesmith.CodeCommit.PipelineTrigger.pipline_trigger.extract_repository_name" ]
[((2202, 2217), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2215, 2217), False, 'import unittest\n'), ((1139, 1177), 'codesmith.CodeCommit.PipelineTrigger.pipline_trigger.derive_trigger', 'pt.derive_trigger', (["event['Records'][0]"], {}), "(event['Records'][0])\n", (1156, 1177), True, 'import codesmith.CodeCommit.PipelineTrigger.pipline_trigger as pt\n'), ((410, 489), 'codesmith.CodeCommit.PipelineTrigger.pipline_trigger.extract_repository_name', 'pt.extract_repository_name', (['"""arn:aws:codecommit:eu-west-1:123456789012:my-repo"""'], {}), "('arn:aws:codecommit:eu-west-1:123456789012:my-repo')\n", (436, 489), True, 'import codesmith.CodeCommit.PipelineTrigger.pipline_trigger as pt\n'), ((521, 551), 'codesmith.CodeCommit.PipelineTrigger.pipline_trigger.extract_repository_name', 'pt.extract_repository_name', (['""""""'], {}), "('')\n", (547, 551), True, 'import codesmith.CodeCommit.PipelineTrigger.pipline_trigger as pt\n'), ((590, 628), 'codesmith.CodeCommit.PipelineTrigger.pipline_trigger.extract_repository_name', 'pt.extract_repository_name', (['"""anything"""'], {}), "('anything')\n", (616, 628), True, 'import codesmith.CodeCommit.PipelineTrigger.pipline_trigger as pt\n'), ((685, 715), 'codesmith.CodeCommit.PipelineTrigger.pipline_trigger.is_commit', 'pt.is_commit', (['COMMIT_REFERENCE'], {}), '(COMMIT_REFERENCE)\n', (697, 715), True, 'import codesmith.CodeCommit.PipelineTrigger.pipline_trigger as pt\n'), ((742, 769), 'codesmith.CodeCommit.PipelineTrigger.pipline_trigger.is_commit', 'pt.is_commit', (['TAG_REFERENCE'], {}), '(TAG_REFERENCE)\n', (754, 769), True, 'import codesmith.CodeCommit.PipelineTrigger.pipline_trigger as pt\n'), ((823, 847), 'codesmith.CodeCommit.PipelineTrigger.pipline_trigger.is_tag', 'pt.is_tag', (['TAG_REFERENCE'], {}), '(TAG_REFERENCE)\n', (832, 847), True, 'import codesmith.CodeCommit.PipelineTrigger.pipline_trigger as pt\n'), ((874, 901), 'codesmith.CodeCommit.PipelineTrigger.pipline_trigger.is_tag', 'pt.is_tag', (['COMMIT_REFERENCE'], {}), '(COMMIT_REFERENCE)\n', (883, 901), True, 'import codesmith.CodeCommit.PipelineTrigger.pipline_trigger as pt\n'), ((971, 1000), 'codesmith.CodeCommit.PipelineTrigger.pipline_trigger.extract_tag', 'pt.extract_tag', (['TAG_REFERENCE'], {}), '(TAG_REFERENCE)\n', (985, 1000), True, 'import codesmith.CodeCommit.PipelineTrigger.pipline_trigger as pt\n'), ((1099, 1111), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1108, 1111), False, 'import json\n'), ((1487, 1507), 'zipfile.ZipFile', 'zipfile.ZipFile', (['buf'], {}), '(buf)\n', (1502, 1507), False, 'import zipfile\n')]
# Copyright (c) 2017, <NAME> from datetime import datetime import time def convert(date): """Convert a date string into a datetime instance. Assumes date string is RfC 3339 format.""" time_s = time.strptime(date, '%Y-%m-%dT%H:%M:%S') return datetime.fromtimestamp(time.mktime(time_s))
[ "time.mktime", "time.strptime" ]
[((208, 248), 'time.strptime', 'time.strptime', (['date', '"""%Y-%m-%dT%H:%M:%S"""'], {}), "(date, '%Y-%m-%dT%H:%M:%S')\n", (221, 248), False, 'import time\n'), ((283, 302), 'time.mktime', 'time.mktime', (['time_s'], {}), '(time_s)\n', (294, 302), False, 'import time\n')]
# Omid55 # Test module for network_utils. from __future__ import division from __future__ import print_function from __future__ import absolute_import import networkx as nx import pandas as pd import numpy as np import unittest import datetime import re from parameterized import parameterized import utils import network_utils class MyTestClass(unittest.TestCase): @classmethod def setUpClass(cls): cls.triad_map, cls.triad_list = ( network_utils.generate_all_possible_sparse_triads()) @classmethod def tearDownClass(cls): del cls.triad_map del cls.triad_list # ========================================================================= # ==================== extract_graph ====================================== # ========================================================================= @parameterized.expand([ ["latest_multiple_edge_weight", False], ["sum_of_multiple_edge_weights", True]]) def test_extract_graph(self, name, sum_multiple_edge): matrix_edges = [ [1, 2, +1, datetime.datetime(2017, 1, 1)], [1, 2, +5, datetime.datetime(2017, 1, 2)], [2, 3, +3, datetime.datetime(2017, 1, 4)], [3, 1, +1, datetime.datetime(2017, 2, 5)], [2, 3, -2, datetime.datetime(2017, 1, 6)], [1, 4, -1, datetime.datetime(2017, 2, 13)], [4, 3, -5, datetime.datetime(2017, 2, 22)], [4, 3, -5, datetime.datetime(2017, 2, 24)]] sample_edge_list = pd.DataFrame( matrix_edges, columns=['source', 'target', 'weight', 'edge_date']) expected = nx.DiGraph() expected.add_nodes_from([1, 2, 3, 4]) if sum_multiple_edge: expected.add_edge(1, 2, weight=6) else: expected.add_edge(1, 2, weight=5) if sum_multiple_edge: expected.add_edge(2, 3, weight=1) else: expected.add_edge(2, 3, weight=-2) expected.add_edge(3, 1, weight=1) expected.add_edge(1, 4, weight=-1) if sum_multiple_edge: expected.add_edge(4, 3, weight=-10) else: expected.add_edge(4, 3, weight=-5) computed = network_utils.extract_graph( sample_edge_list, sum_multiple_edge=sum_multiple_edge) self.assertTrue( utils.graph_equals( expected, computed, weight_column_name='weight')) # ========================================================================= # ==================== extract_graphs ===================================== # ========================================================================= def test_extract_graphs_raises_with_missing_columns(self): sample_edge_list = pd.DataFrame({'source': [1, 2], 'target': [5, 6]}) with self.assertRaises(ValueError): network_utils.extract_graphs(edge_list=sample_edge_list) @parameterized.expand( [["seperated graphs", False], ["accumulative graphs", True]]) def test_extract_graphs(self, name, accumulative): # source, target, weight, edge_date matrix_edges = [[1, 2, +1, datetime.datetime(2017, 1, 1)], [2, 3, +3, datetime.datetime(2017, 1, 4)], [3, 1, +1, datetime.datetime(2017, 2, 5)], [1, 4, -1, datetime.datetime(2017, 2, 13)], [4, 3, -5, datetime.datetime(2017, 2, 24)], [-1, -1, -1, datetime.datetime(2017, 2, 28)]] # The last one is going to be ignored because fall into another period # which is neglected. sample_edge_list = pd.DataFrame( matrix_edges, columns=['source', 'target', 'weight', 'edge_date']) g1 = nx.DiGraph() g1.add_nodes_from([1, 2, 3]) g1.add_edge(1, 2, weight=1) g1.add_edge(2, 3, weight=3) g2 = nx.DiGraph() g2.add_nodes_from([1, 3, 4]) g2.add_edge(3, 1, weight=1) g2.add_edge(1, 4, weight=-1) g2.add_edge(4, 3, weight=-5) g3 = nx.DiGraph() g3.add_nodes_from([1, 2, 3, 4]) g3.add_edge(1, 2, weight=1) g3.add_edge(2, 3, weight=3) g3.add_edge(3, 1, weight=1) g3.add_edge(1, 4, weight=-1) g3.add_edge(4, 3, weight=-5) if not accumulative: expected = [g1, g2] else: expected = [g1, g3] computed = network_utils.extract_graphs( edge_list=sample_edge_list, weeks=4, accumulative=accumulative) for expected_graph, computed_graph in zip(expected, computed): self.assertTrue( utils.graph_equals( expected_graph, computed_graph, weight_column_name='weight')) # ========================================================================= # ====================== get_all_degrees ================================== # ========================================================================= def test_get_all_degrees(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 1, weight=6) dg.add_edge(1, 2, weight=1) dg.add_edge(1, 4, weight=-5) dg.add_edge(2, 2, weight=-1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-4) dg.add_edge(3, 2, weight=4) dg.add_edge(4, 4, weight=-10) computed = network_utils.get_all_degrees(dg) expected = ( {1: {'self': 6, 'out': -4, 'in': -4}, 2: {'self': -1, 'out': 1, 'in': 5}, 3: {'self': 0, 'out': 0, 'in': 1}, 4: {'self': -10, 'out': 0, 'in': -5}, 5: {'self': 0, 'out': 0, 'in': 0}}) self.assertDictEqual(computed, expected) # ========================================================================= # ===================== get_just_periods ================================== # ========================================================================= def test_get_just_periods(self): matrix_edges = [[1, 2, +1, datetime.datetime(2017, 1, 1)], [2, 3, +3, datetime.datetime(2017, 1, 4)], [3, 1, +1, datetime.datetime(2017, 2, 5)], [1, 4, -1, datetime.datetime(2017, 2, 13)], [4, 3, -5, datetime.datetime(2017, 2, 24)], [-1, -1, -1, datetime.datetime(2017, 2, 28)]] sample_edge_list = pd.DataFrame( matrix_edges, columns=['source', 'target', 'weight', 'edge_date']) expected = [['2017-01-01', '2017-01-29'], ['2017-01-29', '2017-02-26']] computed = network_utils.get_just_periods( sample_edge_list, weeks=4, accumulative=False) self.assertEqual(expected, computed) # ========================================================================= # ==================== get_metrics_for_network ============================ # ========================================================================= def test_get_metrics_for_network(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-1) dg.add_edge(1, 3, weight=-1) computed = network_utils.get_metrics_for_network(dg) expected = { '#edges': 4, '#edges/#nodes': 1, '#gcc edges': 3, '#gcc neg edges': 1, '#gcc nodes': 3, '#gcc pos edges': 2, '#neg edges': 2, '#nodes': 4, '#pos edges': 2, 'algebraic connectivity': 0, 'average (und) clustering coefficient': 0.75, 'average betweenness': 0.0833, 'average closeness': 0.3888, 'average degree': 2, 'average eigenvector': 0.4222, 'average harmonic': 1.25, 'average in degree': 1, 'average w in degree': 0, 'average w out degree': 0, 'average load': 0.0833, 'average out degree': 1, 'gcc algebraic connectivity': 2.9999, 'gcc diameter': 1, 'unbalanced cycles 3 ratio': 1, 'weights max': 1, 'weights average': 0, 'weights min': -1, 'weights std': 1 } # utils.print_dict_pretty(computed) # self.assertDictEqual(computed, expected) for key, value in expected.items(): self.assertAlmostEqual(value, computed[key], places=3) # ========================================================================= # ====================== cartwright_harary_balance_ratio ================== # ========================================================================= def test_cartwright_harary_balance_ratio_notbalanced_graph1(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-1) self.assertEqual(network_utils.cartwright_harary_balance_ratio(dg), 0) def test_cartwright_harary_balance_ratio_notbalanced_graph2(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=-1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) self.assertEqual(network_utils.cartwright_harary_balance_ratio(dg), 0) def test_cartwright_harary_balance_ratio_balanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) self.assertEqual(network_utils.cartwright_harary_balance_ratio(dg), 1) def test_cartwright_harary_balance_ratio_halfbalanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) dg.add_edge(3, 4, weight=-1) dg.add_edge(4, 1, weight=-1) dg.add_edge(1, 5, weight=1) dg.add_edge(5, 1, weight=-1) dg.add_edge(2, 1, weight=1) self.assertEqual( network_utils.cartwright_harary_balance_ratio(dg), 0.5) # ========================================================================= # ========================= sprase_balance_ratio ========================== # ========================================================================= def test_sparse_balance_ratio_raises_when_incorrect_balance_type(self): with self.assertRaises(ValueError): network_utils.sprase_balance_ratio( dgraph=nx.DiGraph(), balance_type=0) @parameterized.expand([ ['CartwrightHarary', 1, [0.3, 3, 7]], ['Clustering', 2, [0.5, 5, 5]], ['Transitivity', 3, [0.9, 9, 1]]]) def test_sprase_balance_ratio( self, name, balance_type, expected_values): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 2, weight=5) dg.add_edge(2, 3, weight=-4) dg.add_edge(3, 1, weight=-7) dg.add_edge(3, 4, weight=-1) dg.add_edge(4, 1, weight=-2) dg.add_edge(1, 5, weight=9) dg.add_edge(5, 1, weight=-11) dg.add_edge(2, 1, weight=100) computed = network_utils.sprase_balance_ratio( dgraph=dg, balance_type=balance_type) np.testing.assert_array_almost_equal( computed, expected_values, decimal=2) # ========================================================================= # ======================= fullyconnected_balance_ratio ==================== # ========================================================================= def test_fullyconnected_balance_ratio_raises_when_incorrect_balance_type( self): with self.assertRaises(ValueError): network_utils.fullyconnected_balance_ratio( dgraph=nx.DiGraph(), balance_type=0) def test_fullyconnected_balance_ratio_raises_when_negative_in_dgraph(self): with self.assertRaises(ValueError): dg = nx.DiGraph() dg.add_nodes_from([1, 2]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=-1) network_utils.fullyconnected_balance_ratio( dgraph=dg, balance_type=1) @parameterized.expand([ ['Classical', 1, [0.4, 4, 6]], ['Clustering', 2, [0.7, 7, 3]], ['Transitivity', 3, [0.8, 8, 2]]]) def test_fullyconnected_balance_ratio( self, name, balance_type, expected_values): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=1) dg.add_edge(5, 1, weight=1) dg.add_edge(1, 5, weight=1) dg.add_edge(5, 2, weight=1) dg.add_edge(2, 5, weight=1) dg.add_edge(5, 3, weight=1) dg.add_edge(2, 3, weight=1) computed = network_utils.fullyconnected_balance_ratio( dgraph=dg, balance_type=balance_type) np.testing.assert_array_almost_equal( computed, expected_values, decimal=2) # ========================================================================= # ====================== count_different_signed_edges ===================== # ========================================================================= def test_count_different_signed_edges(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=1) dg.add_edge(3, 1, weight=-5) dg.add_edge(1, 3, weight=-2) self.assertEqual(network_utils.count_different_signed_edges(dg), 0) def test_count_different_signed_edges1(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=3) dg.add_edge(2, 1, weight=4) dg.add_edge(3, 1, weight=1) dg.add_edge(1, 3, weight=-1) self.assertEqual(network_utils.count_different_signed_edges(dg), 1) def test_count_different_signed_edges2(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=-1) dg.add_edge(2, 1, weight=1) dg.add_edge(3, 1, weight=9) dg.add_edge(1, 3, weight=-2) self.assertEqual(network_utils.count_different_signed_edges(dg), 2) # ========================================================================= # ==================== terzi_sprase_balance_ratio ========================= # ========================================================================= def test_terzi_sprase_balance_ratio_notbalanced_graph1(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-1) expected = 0 computed = network_utils.terzi_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_terzi_sprase_balance_ratio_notbalanced_graph2(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=-1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) expected = 0 computed = network_utils.terzi_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_terzi_sprase_balance_ratio_balanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) expected = 1 computed = network_utils.terzi_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_terzi_sprase_balance_ratio_halfbalanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) dg.add_edge(3, 4, weight=-1) dg.add_edge(4, 1, weight=-1) dg.add_edge(1, 5, weight=1) dg.add_edge(5, 1, weight=-1) dg.add_edge(2, 1, weight=1) expected = 0.5 computed = network_utils.terzi_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) # ========================================================================= # ================= kunegis_sprase_balance_ratio ========================== # ========================================================================= def test_kunegis_sprase_balance_ratio_notbalanced_graph1(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-1) expected = 0 computed = network_utils.kunegis_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_kunegis_sprase_balance_ratio_notbalanced_graph2(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=-1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) expected = 0 computed = network_utils.kunegis_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_kunegis_sprase_balance_ratio_balanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) expected = 1 computed = network_utils.kunegis_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected) def test_kunegis_sprase_balance_ratio_halfbalanced_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=-1) dg.add_edge(3, 1, weight=-1) dg.add_edge(3, 4, weight=-1) dg.add_edge(4, 1, weight=-1) dg.add_edge(1, 5, weight=1) dg.add_edge(5, 1, weight=-1) dg.add_edge(2, 1, weight=1) expected = 0.6 computed = network_utils.kunegis_sprase_balance_ratio( dg, undirected=True) np.testing.assert_almost_equal(computed, expected, decimal=1) # ========================================================================= # ====================== compute_vanderijt_edge_balance =================== # ========================================================================= def test_compute_vanderijt_edge_balance_small_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=1) dg.add_edge(2, 3, weight=-5) dg.add_edge(3, 1, weight=-2) expected = {(2, 1): {'#nodes3': 1, '#balanced_node3': 1}} computed = network_utils.compute_vanderijt_edge_balance(dg) self.assertDictEqual(computed, expected) def test_compute_vanderijt_edge_balance_allnegative_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=-1) dg.add_edge(2, 3, weight=-1) dg.add_edge(1, 3, weight=-1) dg.add_edge(2, 4, weight=-1) dg.add_edge(4, 2, weight=-1) dg.add_edge(2, 1, weight=1) dg.add_edge(3, 2, weight=1) dg.add_edge(3, 1, weight=-1) dg.add_edge(4, 1, weight=-5) dg.add_edge(1, 4, weight=-5) dg.add_edge(4, 3, weight=-2) dg.add_edge(3, 4, weight=1) expected = { (1, 2): {'#balanced_node3': 1, '#nodes3': 2}, (3, 2): {'#balanced_node3': 1, '#nodes3': 2}, (1, 3): {'#balanced_node3': 0, '#nodes3': 2}, (3, 4): {'#balanced_node3': 1, '#nodes3': 2}, (3, 1): {'#balanced_node3': 1, '#nodes3': 2}, (1, 4): {'#balanced_node3': 1, '#nodes3': 2}, (2, 3): {'#balanced_node3': 1, '#nodes3': 2}, (2, 1): {'#balanced_node3': 2, '#nodes3': 2}, (4, 3): {'#balanced_node3': 0, '#nodes3': 2}, (4, 2): {'#balanced_node3': 1, '#nodes3': 2}, (4, 1): {'#balanced_node3': 1, '#nodes3': 2}, (2, 4): {'#balanced_node3': 2, '#nodes3': 2}} computed = network_utils.compute_vanderijt_edge_balance(dg) self.assertDictEqual(computed, expected) # @parameterized.expand( # [["no_isomorph_cycles", False], ["no_isomorph_cycles", True]]) # def test_compute_vanderijt_edge_balance_small_graph( # self, name, no_isomorph_cycles): # dg = nx.DiGraph() # dg.add_nodes_from([1, 2, 3]) # dg.add_edge(1, 2, weight=1) # dg.add_edge(2, 1, weight=1) # dg.add_edge(2, 3, weight=-5) # dg.add_edge(3, 1, weight=-2) # if no_isomorph_cycles: # expected = { # (1, 2): { # '#balanced': 1, # '#cycle3': 1, # 'weight_distance': 9, # 'as_expected_sign': True}} # else: # expected = { # (1, 2): { # '#balanced': 1, # '#cycle3': 1, # 'weight_distance': 9, # 'as_expected_sign': True}, # (3, 1): { # '#balanced': 1, # '#cycle3': 1, # 'weight_distance': 3, # 'as_expected_sign': True}, # (2, 3): { # '#balanced': 1, # '#cycle3': 1, # 'weight_distance': 3, # 'as_expected_sign': True}} # computed = network_utils.compute_vanderijt_edge_balance( # dg, no_isomorph_cycles=no_isomorph_cycles) # self.assertDictEqual(computed, expected) # @parameterized.expand( # [["no_isomorph_cycles", False], # ["no_isomorph_cycles", True]]) # def test_compute_vanderijt_edge_balance_allnegative_graph( # self, name, no_isomorph_cycles): # dg = nx.DiGraph() # dg.add_nodes_from([1, 2, 3, 4]) # dg.add_edge(1, 2, weight=-1) # dg.add_edge(2, 3, weight=-1) # dg.add_edge(3, 1, weight=-1) # dg.add_edge(1, 4, weight=-5) # dg.add_edge(4, 3, weight=-2) # if no_isomorph_cycles: # expected = { # (1, 2): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 2, # 'as_expected_sign': False}, # (1, 4): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 7, # 'as_expected_sign': False}} # else: # expected = { # (1, 2): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 2, # 'as_expected_sign': False}, # (1, 4): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 7, # 'as_expected_sign': False}, # (2, 3): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 2, # 'as_expected_sign': False}, # (3, 1): { # '#balanced': 0, # '#cycle3': 2, # 'weight_distance': 13, # 'as_expected_sign': False}, # (4, 3): { # '#balanced': 0, # '#cycle3': 1, # 'weight_distance': 7, # 'as_expected_sign': False}} # computed = network_utils.compute_vanderijt_edge_balance( # dg, no_isomorph_cycles=no_isomorph_cycles) # self.assertDictEqual(computed, expected) # ========================================================================= # ====================== compute_fairness_goodness ======================== # ========================================================================= def test_compute_fairness_goodness(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=1.0) dg.add_edge(2, 3, weight=1.0) dg.add_edge(3, 1, weight=1.0) dg.add_edge(1, 4, weight=2.0) dg.add_edge(4, 3, weight=-1.0) expected = {'fairness': {1: 1.0, 2: 0.95, 3: 1.0, 4: 0.95}, 'goodness': {1: 1.0, 2: 1.0, 3: 0.0, 4: 2.0}} computed = network_utils.compute_fairness_goodness(dg, verbose=False) self.assertDictEqual(computed, expected) # ========================================================================= # ====================== is_sparsely_transitive_balanced ================== # ========================================================================= def test_is_sparsely_transitive_balanced_raises_when_self_loops(self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_sparsely_transitive_balanced(triad_with_self_loop) @parameterized.expand([ ["120U", np.array( [[0, 1, 1], [1, 0, 1], [-1, -1, 0]]), True], ["120D", np.array( [[0, 1, -1], [1, 0, -1], [1, 1, 0]]), True], ["0122Z", np.array( [[0, 0, -1], [-1, 0, 0], [1, -1, 0]]), True], ["030TZ", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), True], ["003", np.array( [[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]), True], ["0032Z", np.array( [[0, 0, -1], [-1, 0, 0], [-1, -1, 0]]), True], ["030T", np.array( [[0, 1, 1], [-1, 0, 1], [-1, -1, 0]]), True], ["021C", np.array( [[0, 1, -1], [-1, 0, 1], [-1, -1, 0]]), False], ["030T2negZ", np.array( [[0, 1, -1], [0, 0, -1], [0, 0, 0]]), True], ["021UnegZ", np.array( [[0, 1, 0], [0, 0, 0], [0, -1, 0]]), True], ["021DZ", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), True], ["210", np.array( [[0, 1, -1], [1, 0, 1], [1, 1, 0]]), False], ["210Z", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False], ["003Z", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), True], ["102Z", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["102negZ", np.array( [[0, -1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["102posnegZ", np.array( [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["012Z", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), True], ["012", np.array( [[0, 1, -1], [-1, 0, -1], [-1, -1, 0]]), True]] ) def test_is_sparsely_transitive_balanced( self, name, triad, expected_balance): self.assertEqual( network_utils.is_sparsely_transitive_balanced(triad), expected_balance) # ========================================================================= # ====================== is_sparsely_cartwright_harary_balanced =========== # ========================================================================= def test_is_sparsely_cartwright_harary_balanced_raises_when_self_loops( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_sparsely_cartwright_harary_balanced( triad_with_self_loop) @parameterized.expand([ ["120U", np.array( [[0, 1, 1], [1, 0, 1], [-1, -1, 0]]), False], ["120D", np.array( [[0, 1, -1], [1, 0, -1], [1, 1, 0]]), False], ["0122Z", np.array( [[0, 0, -1], [-1, 0, 0], [1, -1, 0]]), False], ["030TZ", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), True], ["003", np.array( [[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]), False], ["0032Z", np.array( [[0, 0, -1], [-1, 0, 0], [-1, -1, 0]]), False], ["030T", np.array( [[0, 1, 1], [-1, 0, 1], [-1, -1, 0]]), False], ["021C", np.array( [[0, 1, -1], [-1, 0, 1], [-1, -1, 0]]), False], ["030T2negZ", np.array( [[0, 1, -1], [0, 0, -1], [0, 0, 0]]), True], ["021UnegZ", np.array( [[0, 1, 0], [0, 0, 0], [0, -1, 0]]), True], ["021DZ", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), True], ["210", np.array( [[0, 1, -1], [1, 0, 1], [1, 1, 0]]), False], ["210Z", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False], ["003Z", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), True], ["102Z", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["102negZ", np.array( [[0, -1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["102posnegZ", np.array( [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["012Z", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), True], ["012", np.array( [[0, 1, -1], [-1, 0, -1], [-1, -1, 0]]), False]] ) def test_is_sparsely_cartwright_harary_balanced( self, name, triad, expected_balance): self.assertEqual( network_utils.is_sparsely_cartwright_harary_balanced(triad), expected_balance) # ========================================================================= # ====================== is_sparsely_clustering_balanced ================== # ========================================================================= def test_is_sparsely_clustering_balanced_raises_when_self_loops(self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_sparsely_clustering_balanced( triad_with_self_loop) @parameterized.expand([ ["120U", np.array( [[0, 1, 1], [1, 0, 1], [-1, -1, 0]]), False], ["120D", np.array( [[0, 1, -1], [1, 0, -1], [1, 1, 0]]), False], ["0122Z", np.array( [[0, 0, -1], [-1, 0, 0], [1, -1, 0]]), True], ["030TZ", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), True], ["003", np.array( [[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]), True], ["0032Z", np.array( [[0, 0, -1], [-1, 0, 0], [-1, -1, 0]]), True], ["030T", np.array( [[0, 1, 1], [-1, 0, 1], [-1, -1, 0]]), False], ["021C", np.array( [[0, 1, -1], [-1, 0, 1], [-1, -1, 0]]), False], ["030T2negZ", np.array( [[0, 1, -1], [0, 0, -1], [0, 0, 0]]), True], ["021UnegZ", np.array( [[0, 1, 0], [0, 0, 0], [0, -1, 0]]), True], ["021DZ", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), True], ["210", np.array( [[0, 1, -1], [1, 0, 1], [1, 1, 0]]), False], ["210Z", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False], ["003Z", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), True], ["102Z", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["102negZ", np.array( [[0, -1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["102posnegZ", np.array( [[0, 1, 0], [-1, 0, 0], [0, 0, 0]]), True], ["012Z", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), True], ["012", np.array( [[0, 1, -1], [-1, 0, -1], [-1, -1, 0]]), True]] ) def test_is_sparsely_clustering_balanced( self, name, triad, expected_balance): self.assertEqual( network_utils.is_sparsely_clustering_balanced(triad), expected_balance) # ========================================================================= # ========= is_fullyconnected_cartwright_harary_balance =================== # ========================================================================= def test_is_fullyconnected_cartwright_harary_balance_raises_when_selfloops( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_fullyconnected_cartwright_harary_balance( triad_with_self_loop) def test_is_fullyconnected_cartwright_harary_balance_raises_when_negative( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [-1, 0, 0]]) network_utils.is_fullyconnected_cartwright_harary_balance( triad_with_self_loop) @parameterized.expand([ ["300", np.array( [[0, 1, 1], [1, 0, 1], [1, 1, 0]]), True], ["102", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["003", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), False], ["120D", np.array( [[0, 0, 1], [1, 0, 1], [1, 0, 0]]), False], ["120U", np.array( [[0, 1, 1], [0, 0, 0], [1, 1, 0]]), False], ["030T", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), False], ["021D", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), False], ["021U", np.array( [[0, 1, 0], [0, 0, 0], [0, 1, 0]]), False], ["012", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), False], ["021C", np.array( [[0, 1, 0], [0, 0, 1], [0, 0, 0]]), False], ["111U", np.array( [[0, 1, 0], [1, 0, 1], [0, 0, 0]]), False], ["111D", np.array( [[0, 1, 0], [1, 0, 0], [0, 1, 0]]), False], ["030C", np.array( [[0, 1, 0], [0, 0, 1], [1, 0, 0]]), False], ["201", np.array( [[0, 1, 1], [1, 0, 0], [1, 0, 0]]), False], ["120C", np.array( [[0, 1, 0], [1, 0, 1], [1, 0, 0]]), False], ["210", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False]] ) def test_is_fullyconnected_cartwright_harary_balance( self, name, triad, expected_balance): self.assertEqual( network_utils.is_fullyconnected_cartwright_harary_balance(triad), expected_balance) # ========================================================================= # =============== is_fullyconnected_clustering_balanced =================== # ========================================================================= def test_is_fullyconnected_clustering_balanced_raises_when_self_loops( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_fullyconnected_clustering_balanced( triad_with_self_loop) def test_is_fullyconnected_clustering_balanced_raises_when_negative( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [-1, 0, 0]]) network_utils.is_fullyconnected_clustering_balanced( triad_with_self_loop) @parameterized.expand([ ["300", np.array( [[0, 1, 1], [1, 0, 1], [1, 1, 0]]), True], ["102", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["003", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), True], ["120D", np.array( [[0, 0, 1], [1, 0, 1], [1, 0, 0]]), False], ["120U", np.array( [[0, 1, 1], [0, 0, 0], [1, 1, 0]]), False], ["030T", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), False], ["021D", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), False], ["021U", np.array( [[0, 1, 0], [0, 0, 0], [0, 1, 0]]), False], ["012", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), True], ["021C", np.array( [[0, 1, 0], [0, 0, 1], [0, 0, 0]]), False], ["111U", np.array( [[0, 1, 0], [1, 0, 1], [0, 0, 0]]), False], ["111D", np.array( [[0, 1, 0], [1, 0, 0], [0, 1, 0]]), False], ["030C", np.array( [[0, 1, 0], [0, 0, 1], [1, 0, 0]]), False], ["201", np.array( [[0, 1, 1], [1, 0, 0], [1, 0, 0]]), False], ["120C", np.array( [[0, 1, 0], [1, 0, 1], [1, 0, 0]]), False], ["210", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False]] ) def test_is_fullyconnected_clustering_balanced( self, name, triad, expected_balance): self.assertEqual( network_utils.is_fullyconnected_clustering_balanced(triad), expected_balance) # ========================================================================= # ============= is_fullyconnected_transitivity_balanced =================== # ========================================================================= def test_is_fullyconnected_transitivity_balanced_raises_when_self_loops( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [0, 0, 0]]) network_utils.is_fullyconnected_transitivity_balanced( triad_with_self_loop) def test_is_fullyconnected_transitivity_balanced_raises_when_negative( self): with self.assertRaises(ValueError): triad_with_self_loop = np.array( [[0, 1, 0], [0, 1, 1], [-1, 0, 0]]) network_utils.is_fullyconnected_transitivity_balanced( triad_with_self_loop) @parameterized.expand([ ["300", np.array( [[0, 1, 1], [1, 0, 1], [1, 1, 0]]), True], ["102", np.array( [[0, 1, 0], [1, 0, 0], [0, 0, 0]]), True], ["003", np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), True], ["120D", np.array( [[0, 0, 1], [1, 0, 1], [1, 0, 0]]), True], ["120U", np.array( [[0, 1, 1], [0, 0, 0], [1, 1, 0]]), True], ["030T", np.array( [[0, 1, 1], [0, 0, 1], [0, 0, 0]]), True], ["021D", np.array( [[0, 0, 0], [1, 0, 1], [0, 0, 0]]), True], ["021U", np.array( [[0, 1, 0], [0, 0, 0], [0, 1, 0]]), True], ["012", np.array( [[0, 1, 0], [0, 0, 0], [0, 0, 0]]), True], ["021C", np.array( [[0, 1, 0], [0, 0, 1], [0, 0, 0]]), False], ["111U", np.array( [[0, 1, 0], [1, 0, 1], [0, 0, 0]]), False], ["111D", np.array( [[0, 1, 0], [1, 0, 0], [0, 1, 0]]), False], ["030C", np.array( [[0, 1, 0], [0, 0, 1], [1, 0, 0]]), False], ["201", np.array( [[0, 1, 1], [1, 0, 0], [1, 0, 0]]), False], ["120C", np.array( [[0, 1, 0], [1, 0, 1], [1, 0, 0]]), False], ["210", np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]), False]] ) def test_is_fullyconnected_transitivity_balanced( self, name, triad, expected_balance): self.assertEqual( network_utils.is_fullyconnected_transitivity_balanced(triad), expected_balance) # # ======================================================================= # # =================== is_sparsely_ranked_clustering_balanced ============ # # ======================================================================= # def test_is_sparsely_ranked_clustering_balanced_raises_when_self_loops( # self): # with self.assertRaises(ValueError): # triad_with_self_loop = np.array( # [[0, 1, 0], # [0, 1, 1], # [0, 0, 0]]) # network_utils.is_sparsely_ranked_clustering_balanced( # triad_with_self_loop) # @parameterized.expand([ # ["120U", np.array( # [[0, 1, 1], # [1, 0, 1], # [-1, -1, 0]]), True], # ["120D", np.array( # [[0, 1, -1], # [1, 0, -1], # [1, 1, 0]]), True], # ["0122Z", np.array( # [[0, 0, -1], # [-1, 0, 0], # [1, -1, 0]]), True], # ["030TZ", np.array( # [[0, 1, 1], # [0, 0, 1], # [0, 0, 0]]), True], # ["003", np.array( # [[0, -1, -1], # [-1, 0, -1], # [-1, -1, 0]]), True], # ["0032Z", np.array( # [[0, 0, -1], # [-1, 0, 0], # [-1, -1, 0]]), True], # ["030T", np.array( # [[0, 1, 1], # [-1, 0, 1], # [-1, -1, 0]]), False], # ["021C", np.array( # [[0, 1, -1], # [-1, 0, 1], # [-1, -1, 0]]), False], # ["030T2negZ", np.array( # [[0, 1, -1], # [0, 0, -1], # [0, 0, 0]]), True], # ["021UnegZ", np.array( # [[0, 1, 0], # [0, 0, 0], # [0, -1, 0]]), True], # ["021DZ", np.array( # [[0, 0, 0], # [1, 0, 1], # [0, 0, 0]]), True], # ["210", np.array( # [[0, 1, -1], # [1, 0, 1], # [1, 1, 0]]), False], # ["210Z", np.array( # [[0, 1, 0], # [1, 0, 1], # [1, 1, 0]]), False], # ["003Z", np.array( # [[0, 0, 0], # [0, 0, 0], # [0, 0, 0]]), True], # ["102Z", np.array( # [[0, 1, 0], # [1, 0, 0], # [0, 0, 0]]), True], # ["102negZ", np.array( # [[0, -1, 0], # [-1, 0, 0], # [0, 0, 0]]), True], # ["102posnegZ", np.array( # [[0, 1, 0], # [-1, 0, 0], # [0, 0, 0]]), True], # ["012Z", np.array( # [[0, 1, 0], # [0, 0, 0], # [0, 0, 0]]), True], # ["012", np.array( # [[0, 1, -1], # [-1, 0, -1], # [-1, -1, 0]]), True]] # ) # def test_is_sparsely_ranked_clustering_balanced( # self, name, triad, expected_balance): # self.assertEqual( # network_utils.is_sparsely_ranked_clustering_balanced(triad), # expected_balance) # ========================================================================= # ====================== get_all_triad_permutations ======================= # ========================================================================= def test_get_all_triad_permutations(self): triad_adj_matrix = np.array( [[0, 1, 0], [1, 0, 1], [1, 1, 0]]) expected = set([ '[[0 1 1]\n [1 0 1]\n [1 0 0]]', '[[0 0 1]\n [1 0 1]\n [1 1 0]]', '[[0 1 1]\n [0 0 1]\n [1 1 0]]', '[[0 1 1]\n [1 0 1]\n [0 1 0]]', '[[0 1 1]\n [1 0 0]\n [1 1 0]]', '[[0 1 0]\n [1 0 1]\n [1 1 0]]']) computed = network_utils._get_all_triad_permutations(triad_adj_matrix) self.assertEqual(expected, computed) # ========================================================================= # ====================== generate_all_possible_sparse_triads ============== # ========================================================================= def test_generate_all_possible_sparse_triads(self): computed_triad_map, computed_triad_list = ( network_utils.generate_all_possible_sparse_triads()) # Testing triad_list self.assertTrue( len(computed_triad_list) == 138, 'Length of triad_list is not correct.') np.testing.assert_array_equal( computed_triad_list[0], np.array( [[0, 0, 0], [0, 0, 0], [0, 0, 0]]), 'First triad_list is incorrect.') np.testing.assert_array_equal( computed_triad_list[-1], np.array( [[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]), 'Last triad_list is incorrect.') np.testing.assert_array_equal( computed_triad_list[69], np.array( [[0, 0, 1], [1, 0, -1], [1, 0, 0]]), 'Middle triad_list is incorrect.') # Testing triad_map. expected_key1 = '[[0 0 0]\n [1 0 0]\n [0 0 0]]' expected_value1 = 1 expected_key2 = '[[ 0 1 1]\n [-1 0 1]\n [-1 -1 0]]' expected_value2 = 129 self.assertTrue( expected_key1 in computed_triad_map, 'First key was not found in computed_triad_map.') self.assertTrue( expected_key2 in computed_triad_map, 'Second key was not found in computed_triad_map.') self.assertEqual( computed_triad_map[expected_key1], expected_value1, 'First value was not found in computed_triad_map.') self.assertEqual( computed_triad_map[expected_key2], expected_value2, 'Second value was not found in computed_triad_map.') # ========================================================================= # ====================== detect_triad_type_for_all_subgraph3 ============== # ========================================================================= def test_detect_triad_type_for_all_subgraph3(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=1) dg.add_edge(1, 4, weight=2) dg.add_edge(4, 3, weight=-5) expected = { '(1, 2, 3)': 55, # [[0, 0, 1], # [1, 0, 0], # [0, 1, 0]] '(1, 2, 4)': 3, # [[0, 0, 0], # [0, 0, 0], # [1, 1, 0]] '(1, 3, 4)': 56, # [[0, 0, 1], # [1, 0, 0], # [0,-1, 0]] '(2, 3, 4)': 24 # [[0, 0, 0], # [1, 0, 0], # [-1, 0, 0]] } computed = network_utils._detect_triad_type_for_all_subgraph3( dgraph=dg, triad_map=self.triad_map) self.assertDictEqual(expected, computed) def test_detect_triad_type_for_all_subgraph3_nodes_with_str_name(self): dg = nx.DiGraph() dg.add_nodes_from(['b', 'c', 'a', 'd']) dg.add_edge('b', 'c', weight=1) dg.add_edge('c', 'a', weight=1) dg.add_edge('a', 'b', weight=1) dg.add_edge('b', 'd', weight=2) dg.add_edge('d', 'a', weight=-5) expected = { "('a', 'b', 'c')": 55, "('a', 'b', 'd')": 56, "('a', 'c', 'd')": 24, "('b', 'c', 'd')": 3 } computed = network_utils._detect_triad_type_for_all_subgraph3( dgraph=dg, triad_map=self.triad_map) self.assertDictEqual(expected, computed) def test_detect_triad_type_for_all_subgraph3_has_unique_keys(self): dg = nx.DiGraph() dg.add_nodes_from(['b', 'c', 'a', 'd']) dg.add_edge('b', 'c', weight=1) dg.add_edge('c', 'a', weight=1) dg.add_edge('a', 'b', weight=1) dg.add_edge('b', 'd', weight=2) dg.add_edge('d', 'a', weight=-5) computed = network_utils._detect_triad_type_for_all_subgraph3( dgraph=dg, triad_map=self.triad_map) truncated_keys = [] for key in list(computed.keys()): key = re.sub(r'[^\w]', ' ', key) key = key.replace(" ", "") truncated_keys.append(''.join(sorted(key))) self.assertEqual(len(truncated_keys), len(np.unique(truncated_keys))) # ========================================================================= # ====================== compute_transition_matrix ======================== # ========================================================================= def test_compute_transition_matrix(self): dg1 = nx.DiGraph() dg1.add_nodes_from([1, 2, 3, 4]) dg1.add_edge(1, 2, weight=1) dg1.add_edge(2, 1, weight=1) dg1.add_edge(2, 3, weight=1) dg1.add_edge(3, 1, weight=-1) dg1.add_edge(3, 4, weight=1) dg2 = nx.DiGraph() dg2.add_nodes_from([1, 2, 3, 4]) dg2.add_edge(1, 2, weight=1) dg2.add_edge(1, 3, weight=1) dg2.add_edge(2, 1, weight=1) dg2.add_edge(2, 3, weight=1) dg2.add_edge(2, 4, weight=1) dg2.add_edge(3, 1, weight=1) dg2.add_edge(3, 4, weight=1) dg2.add_edge(4, 1, weight=1) dgraphs = [dg1, dg2] triads_types = [ {'(1, 2, 3)': 76, '(1, 2, 4)': 6, '(1, 3, 4)': 4, '(2, 3, 4)': 8}, {'(1, 2, 3)': 63, '(1, 2, 4)': 57, '(1, 3, 4)': 57, '(2, 3, 4)': 22}] n = len(self.triad_list) transition_matrix = np.zeros((n, n)) transition_matrix[76, 63] = 1 transition_matrix[6, 57] = 1 transition_matrix[4, 57] = 1 transition_matrix[8, 22] = 1 computed = network_utils.compute_transition_matrix( dgraphs=dgraphs, unique_triad_num=n, triad_map=self.triad_map) # self.assertDictEqual(expected, computed) self.assertTrue( 'triads_types' in computed, 'triads_types was not found in computed transition matrix.') self.assertTrue( 'transition_matrices' in computed, 'transition_matrices was not found in computed transition matrix.') self.assertEqual( triads_types, computed['triads_types'], 'Triad types were different.') np.testing.assert_array_equal( transition_matrix, computed['transition_matrices'][0], 'Transition matrices were different.') # ========================================================================= # ====================== get_stationary_distribution ====================== # ========================================================================= def test_get_stationary_distribution_simple(self): transition_matrix = np.array( [[0, 0, 1], [0, 0, 1], [0, 0, 1]], dtype=float) expected = np.array([0, 0, 1]) computed = network_utils.get_stationary_distribution( transition_matrix, aperiodic_irreducible_eps=0.0) np.testing.assert_array_almost_equal(expected, computed, decimal=4) def test_get_stationary_distribution_full_matrix(self): transition_matrix = np.array( [[0.6, 0.1, 0.3], [0.1, 0.7, 0.2], [0.2, 0.2, 0.6]], dtype=float) expected = np.array([0.2759, 0.3448, 0.3793]) computed = network_utils.get_stationary_distribution( transition_matrix, aperiodic_irreducible_eps=0.0) np.testing.assert_array_almost_equal(expected, computed, decimal=4) def test_get_stationary_distribution_not_row_stochastic(self): transition_matrix = np.array( [[0, 0, 0], [9, 0, 1], [1, 0, 3]], dtype=float) expected = np.array([0.3571, 0.1191, 0.5238]) computed = network_utils.get_stationary_distribution( transition_matrix, aperiodic_irreducible_eps=0.0001) np.testing.assert_array_almost_equal(expected, computed, decimal=4) def test_get_stationary_distribution(self): transition_matrix = np.array( [[0, 0, 0], [0.9, 0, 0.1], [0.25, 0, 0.75]], dtype=float) expected = np.array([0.3571, 0.1191, 0.5238]) computed = network_utils.get_stationary_distribution( transition_matrix, aperiodic_irreducible_eps=0.0001) np.testing.assert_array_almost_equal(expected, computed, decimal=4) # ========================================================================= # ====================== get_mixing_time_range ============================ # ========================================================================= def test_get_mixing_time_range(self): transition_matrix = np.array( [[0, 0, 0], [0.9, 0, 0.1], [0.25, 0, 0.75]], dtype=float) expected = 13.7081 computed = network_utils.get_mixing_time_range( transition_matrix, aperiodic_irreducible_eps=0.0001, distance_from_stationary_eps=0.01) self.assertEqual(np.round(expected, 4), np.round(computed, 4)) # ========================================================================= # ====================== _randomize_network =============================== # ========================================================================= def test_randomize_network_with_unweighted_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5, 6]) dg.add_edge(1, 2) dg.add_edge(2, 1) dg.add_edge(2, 3) dg.add_edge(3, 1) dg.add_edge(3, 4) dg.add_edge(4, 5) dg.add_edge(5, 4) dg.add_edge(1, 6) dg.add_edge(6, 1) dg.add_edge(6, 5) computed = network_utils._randomize_network(dg, switching_count_coef=2) self.assertEqual( sorted(dict(dg.degree()).values()), sorted(dict(computed.degree()).values())) self.assertEqual( sorted(dg.nodes()), sorted(computed.nodes())) def test_randomize_network_with_all_positive_weighted_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5, 6]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=2) dg.add_edge(3, 4, weight=5) dg.add_edge(4, 5, weight=9) dg.add_edge(5, 4, weight=6) dg.add_edge(1, 6, weight=9) dg.add_edge(6, 1, weight=1) dg.add_edge(6, 5, weight=16) computed = network_utils._randomize_network(dg, switching_count_coef=2) self.assertEqual( sorted(dict(dg.degree()).values()), sorted(dict(computed.degree()).values())) self.assertEqual( sorted(dg.nodes()), sorted(computed.nodes())) def test_randomize_network_with_signed_weighted_graph(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4, 5, 6]) dg.add_edge(1, 2, weight=1) dg.add_edge(2, 1, weight=1) dg.add_edge(2, 3, weight=1) dg.add_edge(3, 1, weight=-2) dg.add_edge(3, 4, weight=5) dg.add_edge(4, 5, weight=9) dg.add_edge(5, 4, weight=-6) dg.add_edge(1, 6, weight=-9) dg.add_edge(6, 1, weight=1) dg.add_edge(6, 5, weight=-16) computed = network_utils._randomize_network(dg, switching_count_coef=2) self.assertEqual( sorted(dict(dg.degree()).values()), sorted(dict(computed.degree()).values())) self.assertEqual( sorted(dg.nodes()), sorted(computed.nodes())) # ========================================================================= # ================== get_robustness_of_transitions ======================== # ========================================================================= def test_get_robustness_of_transitions(self): transition_matrices = [ np.array( [[0.9, 0.1, 0], [0.6, 0.2, 0.2], [0.7, 0.1, 0.2]]), np.array( [[0.1, 0.8, 0.1], [0, 0.9, 0.1], [0.1, 0.1, 0.8]]) ] # Expected dataframe. columns = [ 'Transitions', 'Matrix L2-Norm Dist. from Average', 'Matrix Pearson r-value', 'Matrix Pearson p-value', 'Stationary Dist. L2-Norm Dist. from Average', 'Stationary Dist. Pearson r-value', 'Stationary Dist. Pearson p-value'] expected_df = pd.DataFrame({ columns[0]: ['Period 1 to Period 2', 'Period 2 to Period 3'], columns[1]: [0.8444, 0.8083], columns[2]: [0.4256, 0.6522], columns[3]: [0.2534, 0.0569], columns[4]: [0.5833, 0.4404], columns[5]: [0.4637, 0.1319], columns[6]: [0.6930, 0.9156], }, columns=columns) expected_df = pd.DataFrame( expected_df, columns=columns) # Computed dataframe. computed_df = network_utils.get_robustness_of_transitions( transition_matrices, lnorm=2) # Comparing computed with expected. pd.testing.assert_frame_equal( expected_df, computed_df, check_less_precise=2) # ========================================================================= # ================== generate_converted_graphs ============================ # ========================================================================= def test_generate_converted_graphs_raises_when_wrong_percentage(self): with self.assertRaises(ValueError): network_utils.generate_converted_graphs( dgraph=nx.DiGraph(), percentage=-1) def test_generate_converted_graphs_when_it_adds_edges(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=1) dg.add_edge(1, 3, weight=2) dg.add_edge(2, 3, weight=5) dg.add_edge(3, 1, weight=1) percentage = 25 computed_graphs = network_utils.generate_converted_graphs( dgraph=dg, convert_from=0, convert_to=1, percentage=percentage, how_many_to_generate=5) for computed in computed_graphs: # It should contain all nodes. self.assertEqual(dg.nodes(), computed.nodes()) # It should contain all dg's edges. self.assertEqual(len(nx.difference(dg, computed).edges()), 0) # It should contain percentage% more edges. remaining_edges_count = 4 * 3 - 4 self.assertEqual( len(nx.difference(computed, dg).edges()), int(percentage*remaining_edges_count/100)) def test_generate_converted_graphs_when_all_edges_exist(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) dg.add_edge(1, 2, weight=2) dg.add_edge(1, 3, weight=-5) dg.add_edge(2, 3, weight=-2) dg.add_edge(3, 1, weight=2) dg.add_edge(4, 1, weight=2) dg.add_edge(4, 3, weight=2) percentage = 25 computed_graphs = network_utils.generate_converted_graphs( dgraph=dg, convert_from=2, convert_to=3, percentage=percentage, how_many_to_generate=2) for computed in computed_graphs: converted_cnt = 0 # It should contain all nodes. self.assertEqual(dg.nodes(), computed.nodes()) # It should contain all dg's edges. self.assertEqual(dg.edges(), computed.edges()) # Checking every edge weight. for edge in dg.edges(): w1 = dg.get_edge_data(edge[0], edge[1])['weight'] w2 = computed.get_edge_data(edge[0], edge[1])['weight'] if w1 == w2: continue if w1 != w2 and w1 == 2 and w2 == 3 and converted_cnt == 0: converted_cnt += 1 else: self.assertTrue( False, 'Found more converted edges than expeced.') def test_generate_converted_graphs(self): dg = nx.DiGraph() dg.add_nodes_from([1, 2, 3, 4]) percentage = 10 computed_graphs = network_utils.generate_converted_graphs( dgraph=dg, convert_from=0, convert_to=1, percentage=percentage, how_many_to_generate=2) for computed in computed_graphs: # It should contain all nodes. self.assertEqual(dg.nodes(), computed.nodes()) # It should contain percentage extra edges. self.assertEqual( len(computed.edges()), int(4 * 3 * percentage / 100)) def test_generate_converted_graphs_for_large_networks(self): n = 100 m = 300 dgraph = nx.gnm_random_graph(n=n, m=m, directed=True) percentage = 5 computed_graphs = network_utils.generate_converted_graphs( dgraph=dgraph, convert_from=0, convert_to=1, percentage=percentage, how_many_to_generate=6) for computed in computed_graphs: # It should contain all nodes. self.assertEqual(dgraph.nodes(), computed.nodes()) # It should contain percentage extra edges. self.assertEqual( len(computed.edges()), m + int( (n * (n-1) - m) * percentage / 100)) if __name__ == '__main__': unittest.main()
[ "network_utils.generate_converted_graphs", "network_utils.is_fullyconnected_cartwright_harary_balance", "numpy.testing.assert_array_almost_equal", "numpy.round", "network_utils.compute_vanderijt_edge_balance", "network_utils.get_just_periods", "numpy.unique", "unittest.main", "pandas.DataFrame", "network_utils.generate_all_possible_sparse_triads", "network_utils.is_sparsely_cartwright_harary_balanced", "network_utils.extract_graph", "network_utils.kunegis_sprase_balance_ratio", "network_utils.get_robustness_of_transitions", "numpy.testing.assert_almost_equal", "network_utils.get_all_degrees", "network_utils.count_different_signed_edges", "re.sub", "networkx.gnm_random_graph", "pandas.testing.assert_frame_equal", "network_utils.is_sparsely_transitive_balanced", "network_utils.get_metrics_for_network", "network_utils._detect_triad_type_for_all_subgraph3", "numpy.testing.assert_array_equal", "utils.graph_equals", "network_utils.cartwright_harary_balance_ratio", "datetime.datetime", "parameterized.parameterized.expand", "network_utils._get_all_triad_permutations", "network_utils.is_sparsely_clustering_balanced", "network_utils.is_fullyconnected_clustering_balanced", "network_utils.compute_transition_matrix", "network_utils.terzi_sprase_balance_ratio", "networkx.DiGraph", "network_utils.sprase_balance_ratio", "network_utils.get_stationary_distribution", "network_utils.compute_fairness_goodness", "network_utils.is_fullyconnected_transitivity_balanced", "network_utils.extract_graphs", "numpy.zeros", "network_utils.fullyconnected_balance_ratio", "networkx.difference", "numpy.array", "network_utils._randomize_network", "network_utils.get_mixing_time_range" ]
[((865, 972), 'parameterized.parameterized.expand', 'parameterized.expand', (["[['latest_multiple_edge_weight', False], ['sum_of_multiple_edge_weights', True]\n ]"], {}), "([['latest_multiple_edge_weight', False], [\n 'sum_of_multiple_edge_weights', True]])\n", (885, 972), False, 'from parameterized import parameterized\n'), ((2978, 3065), 'parameterized.parameterized.expand', 'parameterized.expand', (["[['seperated graphs', False], ['accumulative graphs', True]]"], {}), "([['seperated graphs', False], ['accumulative graphs', \n True]])\n", (2998, 3065), False, 'from parameterized import parameterized\n'), ((10923, 11054), 'parameterized.parameterized.expand', 'parameterized.expand', (["[['CartwrightHarary', 1, [0.3, 3, 7]], ['Clustering', 2, [0.5, 5, 5]], [\n 'Transitivity', 3, [0.9, 9, 1]]]"], {}), "([['CartwrightHarary', 1, [0.3, 3, 7]], ['Clustering', \n 2, [0.5, 5, 5]], ['Transitivity', 3, [0.9, 9, 1]]])\n", (10943, 11054), False, 'from parameterized import parameterized\n'), ((12682, 12805), 'parameterized.parameterized.expand', 'parameterized.expand', (["[['Classical', 1, [0.4, 4, 6]], ['Clustering', 2, [0.7, 7, 3]], [\n 'Transitivity', 3, [0.8, 8, 2]]]"], {}), "([['Classical', 1, [0.4, 4, 6]], ['Clustering', 2, [0.7,\n 7, 3]], ['Transitivity', 3, [0.8, 8, 2]]])\n", (12702, 12805), False, 'from parameterized import parameterized\n'), ((65583, 65598), 'unittest.main', 'unittest.main', ([], {}), '()\n', (65596, 65598), False, 'import unittest\n'), ((467, 518), 'network_utils.generate_all_possible_sparse_triads', 'network_utils.generate_all_possible_sparse_triads', ([], {}), '()\n', (516, 518), False, 'import network_utils\n'), ((1539, 1618), 'pandas.DataFrame', 'pd.DataFrame', (['matrix_edges'], {'columns': "['source', 'target', 'weight', 'edge_date']"}), "(matrix_edges, columns=['source', 'target', 'weight', 'edge_date'])\n", (1551, 1618), True, 'import pandas as pd\n'), ((1651, 1663), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (1661, 1663), True, 'import networkx as nx\n'), ((2226, 2313), 'network_utils.extract_graph', 'network_utils.extract_graph', (['sample_edge_list'], {'sum_multiple_edge': 'sum_multiple_edge'}), '(sample_edge_list, sum_multiple_edge=\n sum_multiple_edge)\n', (2253, 2313), False, 'import network_utils\n'), ((2808, 2858), 'pandas.DataFrame', 'pd.DataFrame', (["{'source': [1, 2], 'target': [5, 6]}"], {}), "({'source': [1, 2], 'target': [5, 6]})\n", (2820, 2858), True, 'import pandas as pd\n'), ((3724, 3803), 'pandas.DataFrame', 'pd.DataFrame', (['matrix_edges'], {'columns': "['source', 'target', 'weight', 'edge_date']"}), "(matrix_edges, columns=['source', 'target', 'weight', 'edge_date'])\n", (3736, 3803), True, 'import pandas as pd\n'), ((3830, 3842), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (3840, 3842), True, 'import networkx as nx\n'), ((3965, 3977), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (3975, 3977), True, 'import networkx as nx\n'), ((4138, 4150), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (4148, 4150), True, 'import networkx as nx\n'), ((4499, 4595), 'network_utils.extract_graphs', 'network_utils.extract_graphs', ([], {'edge_list': 'sample_edge_list', 'weeks': '(4)', 'accumulative': 'accumulative'}), '(edge_list=sample_edge_list, weeks=4,\n accumulative=accumulative)\n', (4527, 4595), False, 'import network_utils\n'), ((5153, 5165), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (5163, 5165), True, 'import networkx as nx\n'), ((5521, 5554), 'network_utils.get_all_degrees', 'network_utils.get_all_degrees', (['dg'], {}), '(dg)\n', (5550, 5554), False, 'import network_utils\n'), ((6584, 6663), 'pandas.DataFrame', 'pd.DataFrame', (['matrix_edges'], {'columns': "['source', 'target', 'weight', 'edge_date']"}), "(matrix_edges, columns=['source', 'target', 'weight', 'edge_date'])\n", (6596, 6663), True, 'import pandas as pd\n'), ((6776, 6853), 'network_utils.get_just_periods', 'network_utils.get_just_periods', (['sample_edge_list'], {'weeks': '(4)', 'accumulative': '(False)'}), '(sample_edge_list, weeks=4, accumulative=False)\n', (6806, 6853), False, 'import network_utils\n'), ((7210, 7222), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (7220, 7222), True, 'import networkx as nx\n'), ((7428, 7469), 'network_utils.get_metrics_for_network', 'network_utils.get_metrics_for_network', (['dg'], {}), '(dg)\n', (7465, 7469), False, 'import network_utils\n'), ((9028, 9040), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (9038, 9040), True, 'import networkx as nx\n'), ((9351, 9363), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (9361, 9363), True, 'import networkx as nx\n'), ((9672, 9684), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (9682, 9684), True, 'import networkx as nx\n'), ((9996, 10008), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (10006, 10008), True, 'import networkx as nx\n'), ((11215, 11227), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (11225, 11227), True, 'import networkx as nx\n'), ((11586, 11658), 'network_utils.sprase_balance_ratio', 'network_utils.sprase_balance_ratio', ([], {'dgraph': 'dg', 'balance_type': 'balance_type'}), '(dgraph=dg, balance_type=balance_type)\n', (11620, 11658), False, 'import network_utils\n'), ((11692, 11766), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['computed', 'expected_values'], {'decimal': '(2)'}), '(computed, expected_values, decimal=2)\n', (11728, 11766), True, 'import numpy as np\n'), ((12975, 12987), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (12985, 12987), True, 'import networkx as nx\n'), ((13338, 13423), 'network_utils.fullyconnected_balance_ratio', 'network_utils.fullyconnected_balance_ratio', ([], {'dgraph': 'dg', 'balance_type': 'balance_type'}), '(dgraph=dg, balance_type=balance_type\n )\n', (13380, 13423), False, 'import network_utils\n'), ((13452, 13526), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['computed', 'expected_values'], {'decimal': '(2)'}), '(computed, expected_values, decimal=2)\n', (13488, 13526), True, 'import numpy as np\n'), ((13843, 13855), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (13853, 13855), True, 'import networkx as nx\n'), ((14179, 14191), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (14189, 14191), True, 'import networkx as nx\n'), ((14514, 14526), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (14524, 14526), True, 'import networkx as nx\n'), ((15106, 15118), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (15116, 15118), True, 'import networkx as nx\n'), ((15305, 15366), 'network_utils.terzi_sprase_balance_ratio', 'network_utils.terzi_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (15345, 15366), False, 'import network_utils\n'), ((15388, 15438), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {}), '(computed, expected)\n', (15418, 15438), True, 'import numpy as np\n'), ((15519, 15531), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (15529, 15531), True, 'import networkx as nx\n'), ((15720, 15781), 'network_utils.terzi_sprase_balance_ratio', 'network_utils.terzi_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (15760, 15781), False, 'import network_utils\n'), ((15803, 15853), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {}), '(computed, expected)\n', (15833, 15853), True, 'import numpy as np\n'), ((15930, 15942), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (15940, 15942), True, 'import networkx as nx\n'), ((16130, 16191), 'network_utils.terzi_sprase_balance_ratio', 'network_utils.terzi_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (16170, 16191), False, 'import network_utils\n'), ((16213, 16263), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {}), '(computed, expected)\n', (16243, 16263), True, 'import numpy as np\n'), ((16344, 16356), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (16354, 16356), True, 'import networkx as nx\n'), ((16735, 16796), 'network_utils.terzi_sprase_balance_ratio', 'network_utils.terzi_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (16775, 16796), False, 'import network_utils\n'), ((16818, 16868), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {}), '(computed, expected)\n', (16848, 16868), True, 'import numpy as np\n'), ((17191, 17203), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (17201, 17203), True, 'import networkx as nx\n'), ((17390, 17453), 'network_utils.kunegis_sprase_balance_ratio', 'network_utils.kunegis_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (17432, 17453), False, 'import network_utils\n'), ((17475, 17525), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {}), '(computed, expected)\n', (17505, 17525), True, 'import numpy as np\n'), ((17608, 17620), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (17618, 17620), True, 'import networkx as nx\n'), ((17809, 17872), 'network_utils.kunegis_sprase_balance_ratio', 'network_utils.kunegis_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (17851, 17872), False, 'import network_utils\n'), ((17894, 17944), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {}), '(computed, expected)\n', (17924, 17944), True, 'import numpy as np\n'), ((18023, 18035), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (18033, 18035), True, 'import networkx as nx\n'), ((18223, 18286), 'network_utils.kunegis_sprase_balance_ratio', 'network_utils.kunegis_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (18265, 18286), False, 'import network_utils\n'), ((18308, 18358), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {}), '(computed, expected)\n', (18338, 18358), True, 'import numpy as np\n'), ((18441, 18453), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (18451, 18453), True, 'import networkx as nx\n'), ((18832, 18895), 'network_utils.kunegis_sprase_balance_ratio', 'network_utils.kunegis_sprase_balance_ratio', (['dg'], {'undirected': '(True)'}), '(dg, undirected=True)\n', (18874, 18895), False, 'import network_utils\n'), ((18917, 18978), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (['computed', 'expected'], {'decimal': '(1)'}), '(computed, expected, decimal=1)\n', (18947, 18978), True, 'import numpy as np\n'), ((19296, 19308), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (19306, 19308), True, 'import networkx as nx\n'), ((19577, 19625), 'network_utils.compute_vanderijt_edge_balance', 'network_utils.compute_vanderijt_edge_balance', (['dg'], {}), '(dg)\n', (19621, 19625), False, 'import network_utils\n'), ((19758, 19770), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (19768, 19770), True, 'import networkx as nx\n'), ((20988, 21036), 'network_utils.compute_vanderijt_edge_balance', 'network_utils.compute_vanderijt_edge_balance', (['dg'], {}), '(dg)\n', (21032, 21036), False, 'import network_utils\n'), ((25020, 25032), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (25030, 25032), True, 'import networkx as nx\n'), ((25417, 25475), 'network_utils.compute_fairness_goodness', 'network_utils.compute_fairness_goodness', (['dg'], {'verbose': '(False)'}), '(dg, verbose=False)\n', (25456, 25475), False, 'import network_utils\n'), ((46930, 46973), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 1, 0]])\n', (46938, 46973), True, 'import numpy as np\n'), ((47328, 47387), 'network_utils._get_all_triad_permutations', 'network_utils._get_all_triad_permutations', (['triad_adj_matrix'], {}), '(triad_adj_matrix)\n', (47369, 47387), False, 'import network_utils\n'), ((47794, 47845), 'network_utils.generate_all_possible_sparse_triads', 'network_utils.generate_all_possible_sparse_triads', ([], {}), '()\n', (47843, 47845), False, 'import network_utils\n'), ((49732, 49744), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (49742, 49744), True, 'import networkx as nx\n'), ((50443, 50535), 'network_utils._detect_triad_type_for_all_subgraph3', 'network_utils._detect_triad_type_for_all_subgraph3', ([], {'dgraph': 'dg', 'triad_map': 'self.triad_map'}), '(dgraph=dg, triad_map=\n self.triad_map)\n', (50493, 50535), False, 'import network_utils\n'), ((50683, 50695), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (50693, 50695), True, 'import networkx as nx\n'), ((51133, 51225), 'network_utils._detect_triad_type_for_all_subgraph3', 'network_utils._detect_triad_type_for_all_subgraph3', ([], {'dgraph': 'dg', 'triad_map': 'self.triad_map'}), '(dgraph=dg, triad_map=\n self.triad_map)\n', (51183, 51225), False, 'import network_utils\n'), ((51369, 51381), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (51379, 51381), True, 'import networkx as nx\n'), ((51650, 51742), 'network_utils._detect_triad_type_for_all_subgraph3', 'network_utils._detect_triad_type_for_all_subgraph3', ([], {'dgraph': 'dg', 'triad_map': 'self.triad_map'}), '(dgraph=dg, triad_map=\n self.triad_map)\n', (51700, 51742), False, 'import network_utils\n'), ((52340, 52352), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (52350, 52352), True, 'import networkx as nx\n'), ((52594, 52606), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (52604, 52606), True, 'import networkx as nx\n'), ((53330, 53346), 'numpy.zeros', 'np.zeros', (['(n, n)'], {}), '((n, n))\n', (53338, 53346), True, 'import numpy as np\n'), ((53515, 53621), 'network_utils.compute_transition_matrix', 'network_utils.compute_transition_matrix', ([], {'dgraphs': 'dgraphs', 'unique_triad_num': 'n', 'triad_map': 'self.triad_map'}), '(dgraphs=dgraphs, unique_triad_num=n,\n triad_map=self.triad_map)\n', (53554, 53621), False, 'import network_utils\n'), ((54137, 54265), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['transition_matrix', "computed['transition_matrices'][0]", '"""Transition matrices were different."""'], {}), "(transition_matrix, computed[\n 'transition_matrices'][0], 'Transition matrices were different.')\n", (54166, 54265), True, 'import numpy as np\n'), ((54622, 54678), 'numpy.array', 'np.array', (['[[0, 0, 1], [0, 0, 1], [0, 0, 1]]'], {'dtype': 'float'}), '([[0, 0, 1], [0, 0, 1], [0, 0, 1]], dtype=float)\n', (54630, 54678), True, 'import numpy as np\n'), ((54737, 54756), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (54745, 54756), True, 'import numpy as np\n'), ((54776, 54871), 'network_utils.get_stationary_distribution', 'network_utils.get_stationary_distribution', (['transition_matrix'], {'aperiodic_irreducible_eps': '(0.0)'}), '(transition_matrix,\n aperiodic_irreducible_eps=0.0)\n', (54817, 54871), False, 'import network_utils\n'), ((54889, 54956), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['expected', 'computed'], {'decimal': '(4)'}), '(expected, computed, decimal=4)\n', (54925, 54956), True, 'import numpy as np\n'), ((55046, 55120), 'numpy.array', 'np.array', (['[[0.6, 0.1, 0.3], [0.1, 0.7, 0.2], [0.2, 0.2, 0.6]]'], {'dtype': 'float'}), '([[0.6, 0.1, 0.3], [0.1, 0.7, 0.2], [0.2, 0.2, 0.6]], dtype=float)\n', (55054, 55120), True, 'import numpy as np\n'), ((55179, 55213), 'numpy.array', 'np.array', (['[0.2759, 0.3448, 0.3793]'], {}), '([0.2759, 0.3448, 0.3793])\n', (55187, 55213), True, 'import numpy as np\n'), ((55233, 55328), 'network_utils.get_stationary_distribution', 'network_utils.get_stationary_distribution', (['transition_matrix'], {'aperiodic_irreducible_eps': '(0.0)'}), '(transition_matrix,\n aperiodic_irreducible_eps=0.0)\n', (55274, 55328), False, 'import network_utils\n'), ((55346, 55413), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['expected', 'computed'], {'decimal': '(4)'}), '(expected, computed, decimal=4)\n', (55382, 55413), True, 'import numpy as np\n'), ((55510, 55566), 'numpy.array', 'np.array', (['[[0, 0, 0], [9, 0, 1], [1, 0, 3]]'], {'dtype': 'float'}), '([[0, 0, 0], [9, 0, 1], [1, 0, 3]], dtype=float)\n', (55518, 55566), True, 'import numpy as np\n'), ((55625, 55659), 'numpy.array', 'np.array', (['[0.3571, 0.1191, 0.5238]'], {}), '([0.3571, 0.1191, 0.5238])\n', (55633, 55659), True, 'import numpy as np\n'), ((55679, 55777), 'network_utils.get_stationary_distribution', 'network_utils.get_stationary_distribution', (['transition_matrix'], {'aperiodic_irreducible_eps': '(0.0001)'}), '(transition_matrix,\n aperiodic_irreducible_eps=0.0001)\n', (55720, 55777), False, 'import network_utils\n'), ((55795, 55862), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['expected', 'computed'], {'decimal': '(4)'}), '(expected, computed, decimal=4)\n', (55831, 55862), True, 'import numpy as np\n'), ((55940, 56006), 'numpy.array', 'np.array', (['[[0, 0, 0], [0.9, 0, 0.1], [0.25, 0, 0.75]]'], {'dtype': 'float'}), '([[0, 0, 0], [0.9, 0, 0.1], [0.25, 0, 0.75]], dtype=float)\n', (55948, 56006), True, 'import numpy as np\n'), ((56065, 56099), 'numpy.array', 'np.array', (['[0.3571, 0.1191, 0.5238]'], {}), '([0.3571, 0.1191, 0.5238])\n', (56073, 56099), True, 'import numpy as np\n'), ((56119, 56217), 'network_utils.get_stationary_distribution', 'network_utils.get_stationary_distribution', (['transition_matrix'], {'aperiodic_irreducible_eps': '(0.0001)'}), '(transition_matrix,\n aperiodic_irreducible_eps=0.0001)\n', (56160, 56217), False, 'import network_utils\n'), ((56235, 56302), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['expected', 'computed'], {'decimal': '(4)'}), '(expected, computed, decimal=4)\n', (56271, 56302), True, 'import numpy as np\n'), ((56614, 56680), 'numpy.array', 'np.array', (['[[0, 0, 0], [0.9, 0, 0.1], [0.25, 0, 0.75]]'], {'dtype': 'float'}), '([[0, 0, 0], [0.9, 0, 0.1], [0.25, 0, 0.75]], dtype=float)\n', (56622, 56680), True, 'import numpy as np\n'), ((56766, 56893), 'network_utils.get_mixing_time_range', 'network_utils.get_mixing_time_range', (['transition_matrix'], {'aperiodic_irreducible_eps': '(0.0001)', 'distance_from_stationary_eps': '(0.01)'}), '(transition_matrix,\n aperiodic_irreducible_eps=0.0001, distance_from_stationary_eps=0.01)\n', (56801, 56893), False, 'import network_utils\n'), ((57312, 57324), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (57322, 57324), True, 'import networkx as nx\n'), ((57650, 57710), 'network_utils._randomize_network', 'network_utils._randomize_network', (['dg'], {'switching_count_coef': '(2)'}), '(dg, switching_count_coef=2)\n', (57682, 57710), False, 'import network_utils\n'), ((58020, 58032), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (58030, 58032), True, 'import networkx as nx\n'), ((58459, 58519), 'network_utils._randomize_network', 'network_utils._randomize_network', (['dg'], {'switching_count_coef': '(2)'}), '(dg, switching_count_coef=2)\n', (58491, 58519), False, 'import network_utils\n'), ((58823, 58835), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (58833, 58835), True, 'import networkx as nx\n'), ((59266, 59326), 'network_utils._randomize_network', 'network_utils._randomize_network', (['dg'], {'switching_count_coef': '(2)'}), '(dg, switching_count_coef=2)\n', (59298, 59326), False, 'import network_utils\n'), ((60510, 60795), 'pandas.DataFrame', 'pd.DataFrame', (["{columns[0]: ['Period 1 to Period 2', 'Period 2 to Period 3'], columns[1]:\n [0.8444, 0.8083], columns[2]: [0.4256, 0.6522], columns[3]: [0.2534, \n 0.0569], columns[4]: [0.5833, 0.4404], columns[5]: [0.4637, 0.1319],\n columns[6]: [0.693, 0.9156]}"], {'columns': 'columns'}), "({columns[0]: ['Period 1 to Period 2', 'Period 2 to Period 3'],\n columns[1]: [0.8444, 0.8083], columns[2]: [0.4256, 0.6522], columns[3]:\n [0.2534, 0.0569], columns[4]: [0.5833, 0.4404], columns[5]: [0.4637, \n 0.1319], columns[6]: [0.693, 0.9156]}, columns=columns)\n", (60522, 60795), True, 'import pandas as pd\n'), ((60917, 60959), 'pandas.DataFrame', 'pd.DataFrame', (['expected_df'], {'columns': 'columns'}), '(expected_df, columns=columns)\n', (60929, 60959), True, 'import pandas as pd\n'), ((61025, 61098), 'network_utils.get_robustness_of_transitions', 'network_utils.get_robustness_of_transitions', (['transition_matrices'], {'lnorm': '(2)'}), '(transition_matrices, lnorm=2)\n', (61068, 61098), False, 'import network_utils\n'), ((61164, 61241), 'pandas.testing.assert_frame_equal', 'pd.testing.assert_frame_equal', (['expected_df', 'computed_df'], {'check_less_precise': '(2)'}), '(expected_df, computed_df, check_less_precise=2)\n', (61193, 61241), True, 'import pandas as pd\n'), ((61815, 61827), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (61825, 61827), True, 'import networkx as nx\n'), ((62062, 62193), 'network_utils.generate_converted_graphs', 'network_utils.generate_converted_graphs', ([], {'dgraph': 'dg', 'convert_from': '(0)', 'convert_to': '(1)', 'percentage': 'percentage', 'how_many_to_generate': '(5)'}), '(dgraph=dg, convert_from=0,\n convert_to=1, percentage=percentage, how_many_to_generate=5)\n', (62101, 62193), False, 'import network_utils\n'), ((62846, 62858), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (62856, 62858), True, 'import networkx as nx\n'), ((63167, 63298), 'network_utils.generate_converted_graphs', 'network_utils.generate_converted_graphs', ([], {'dgraph': 'dg', 'convert_from': '(2)', 'convert_to': '(3)', 'percentage': 'percentage', 'how_many_to_generate': '(2)'}), '(dgraph=dg, convert_from=2,\n convert_to=3, percentage=percentage, how_many_to_generate=2)\n', (63206, 63298), False, 'import network_utils\n'), ((64219, 64231), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (64229, 64231), True, 'import networkx as nx\n'), ((64322, 64453), 'network_utils.generate_converted_graphs', 'network_utils.generate_converted_graphs', ([], {'dgraph': 'dg', 'convert_from': '(0)', 'convert_to': '(1)', 'percentage': 'percentage', 'how_many_to_generate': '(2)'}), '(dgraph=dg, convert_from=0,\n convert_to=1, percentage=percentage, how_many_to_generate=2)\n', (64361, 64453), False, 'import network_utils\n'), ((64925, 64969), 'networkx.gnm_random_graph', 'nx.gnm_random_graph', ([], {'n': 'n', 'm': 'm', 'directed': '(True)'}), '(n=n, m=m, directed=True)\n', (64944, 64969), True, 'import networkx as nx\n'), ((65019, 65154), 'network_utils.generate_converted_graphs', 'network_utils.generate_converted_graphs', ([], {'dgraph': 'dgraph', 'convert_from': '(0)', 'convert_to': '(1)', 'percentage': 'percentage', 'how_many_to_generate': '(6)'}), '(dgraph=dgraph, convert_from=0,\n convert_to=1, percentage=percentage, how_many_to_generate=6)\n', (65058, 65154), False, 'import network_utils\n'), ((2359, 2426), 'utils.graph_equals', 'utils.graph_equals', (['expected', 'computed'], {'weight_column_name': '"""weight"""'}), "(expected, computed, weight_column_name='weight')\n", (2377, 2426), False, 'import utils\n'), ((2915, 2971), 'network_utils.extract_graphs', 'network_utils.extract_graphs', ([], {'edge_list': 'sample_edge_list'}), '(edge_list=sample_edge_list)\n', (2943, 2971), False, 'import network_utils\n'), ((9212, 9261), 'network_utils.cartwright_harary_balance_ratio', 'network_utils.cartwright_harary_balance_ratio', (['dg'], {}), '(dg)\n', (9257, 9261), False, 'import network_utils\n'), ((9537, 9586), 'network_utils.cartwright_harary_balance_ratio', 'network_utils.cartwright_harary_balance_ratio', (['dg'], {}), '(dg)\n', (9582, 9586), False, 'import network_utils\n'), ((9857, 9906), 'network_utils.cartwright_harary_balance_ratio', 'network_utils.cartwright_harary_balance_ratio', (['dg'], {}), '(dg)\n', (9902, 9906), False, 'import network_utils\n'), ((10383, 10432), 'network_utils.cartwright_harary_balance_ratio', 'network_utils.cartwright_harary_balance_ratio', (['dg'], {}), '(dg)\n', (10428, 10432), False, 'import network_utils\n'), ((12429, 12441), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (12439, 12441), True, 'import networkx as nx\n'), ((12573, 12642), 'network_utils.fullyconnected_balance_ratio', 'network_utils.fullyconnected_balance_ratio', ([], {'dgraph': 'dg', 'balance_type': '(1)'}), '(dgraph=dg, balance_type=1)\n', (12615, 12642), False, 'import network_utils\n'), ((14064, 14110), 'network_utils.count_different_signed_edges', 'network_utils.count_different_signed_edges', (['dg'], {}), '(dg)\n', (14106, 14110), False, 'import network_utils\n'), ((14399, 14445), 'network_utils.count_different_signed_edges', 'network_utils.count_different_signed_edges', (['dg'], {}), '(dg)\n', (14441, 14445), False, 'import network_utils\n'), ((14735, 14781), 'network_utils.count_different_signed_edges', 'network_utils.count_different_signed_edges', (['dg'], {}), '(dg)\n', (14777, 14781), False, 'import network_utils\n'), ((25920, 25963), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [0, 0, 0]])\n', (25928, 25963), True, 'import numpy as np\n'), ((26027, 26094), 'network_utils.is_sparsely_transitive_balanced', 'network_utils.is_sparsely_transitive_balanced', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (26072, 26094), False, 'import network_utils\n'), ((28378, 28430), 'network_utils.is_sparsely_transitive_balanced', 'network_utils.is_sparsely_transitive_balanced', (['triad'], {}), '(triad)\n', (28423, 28430), False, 'import network_utils\n'), ((28877, 28920), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [0, 0, 0]])\n', (28885, 28920), True, 'import numpy as np\n'), ((28984, 29058), 'network_utils.is_sparsely_cartwright_harary_balanced', 'network_utils.is_sparsely_cartwright_harary_balanced', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (29036, 29058), False, 'import network_utils\n'), ((31373, 31432), 'network_utils.is_sparsely_cartwright_harary_balanced', 'network_utils.is_sparsely_cartwright_harary_balanced', (['triad'], {}), '(triad)\n', (31425, 31432), False, 'import network_utils\n'), ((31859, 31902), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [0, 0, 0]])\n', (31867, 31902), True, 'import numpy as np\n'), ((31966, 32033), 'network_utils.is_sparsely_clustering_balanced', 'network_utils.is_sparsely_clustering_balanced', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (32011, 32033), False, 'import network_utils\n'), ((34337, 34389), 'network_utils.is_sparsely_clustering_balanced', 'network_utils.is_sparsely_clustering_balanced', (['triad'], {}), '(triad)\n', (34382, 34389), False, 'import network_utils\n'), ((34840, 34883), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [0, 0, 0]])\n', (34848, 34883), True, 'import numpy as np\n'), ((34947, 35026), 'network_utils.is_fullyconnected_cartwright_harary_balance', 'network_utils.is_fullyconnected_cartwright_harary_balance', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (35004, 35026), False, 'import network_utils\n'), ((35222, 35266), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [-1, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [-1, 0, 0]])\n', (35230, 35266), True, 'import numpy as np\n'), ((35330, 35409), 'network_utils.is_fullyconnected_cartwright_harary_balance', 'network_utils.is_fullyconnected_cartwright_harary_balance', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (35387, 35409), False, 'import network_utils\n'), ((37352, 37416), 'network_utils.is_fullyconnected_cartwright_harary_balance', 'network_utils.is_fullyconnected_cartwright_harary_balance', (['triad'], {}), '(triad)\n', (37409, 37416), False, 'import network_utils\n'), ((37862, 37905), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [0, 0, 0]])\n', (37870, 37905), True, 'import numpy as np\n'), ((37969, 38042), 'network_utils.is_fullyconnected_clustering_balanced', 'network_utils.is_fullyconnected_clustering_balanced', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (38020, 38042), False, 'import network_utils\n'), ((38232, 38276), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [-1, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [-1, 0, 0]])\n', (38240, 38276), True, 'import numpy as np\n'), ((38340, 38413), 'network_utils.is_fullyconnected_clustering_balanced', 'network_utils.is_fullyconnected_clustering_balanced', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (38391, 38413), False, 'import network_utils\n'), ((40348, 40406), 'network_utils.is_fullyconnected_clustering_balanced', 'network_utils.is_fullyconnected_clustering_balanced', (['triad'], {}), '(triad)\n', (40399, 40406), False, 'import network_utils\n'), ((40854, 40897), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [0, 0, 0]])\n', (40862, 40897), True, 'import numpy as np\n'), ((40961, 41036), 'network_utils.is_fullyconnected_transitivity_balanced', 'network_utils.is_fullyconnected_transitivity_balanced', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (41014, 41036), False, 'import network_utils\n'), ((41228, 41272), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 1, 1], [-1, 0, 0]]'], {}), '([[0, 1, 0], [0, 1, 1], [-1, 0, 0]])\n', (41236, 41272), True, 'import numpy as np\n'), ((41336, 41411), 'network_utils.is_fullyconnected_transitivity_balanced', 'network_utils.is_fullyconnected_transitivity_balanced', (['triad_with_self_loop'], {}), '(triad_with_self_loop)\n', (41389, 41411), False, 'import network_utils\n'), ((43343, 43403), 'network_utils.is_fullyconnected_transitivity_balanced', 'network_utils.is_fullyconnected_transitivity_balanced', (['triad'], {}), '(triad)\n', (43396, 43403), False, 'import network_utils\n'), ((48074, 48117), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n', (48082, 48117), True, 'import numpy as np\n'), ((48280, 48329), 'numpy.array', 'np.array', (['[[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]'], {}), '([[0, -1, -1], [-1, 0, -1], [-1, -1, 0]])\n', (48288, 48329), True, 'import numpy as np\n'), ((48493, 48537), 'numpy.array', 'np.array', (['[[0, 0, 1], [1, 0, -1], [1, 0, 0]]'], {}), '([[0, 0, 1], [1, 0, -1], [1, 0, 0]])\n', (48501, 48537), True, 'import numpy as np\n'), ((51839, 51865), 're.sub', 're.sub', (['"""[^\\\\w]"""', '""" """', 'key'], {}), "('[^\\\\w]', ' ', key)\n", (51845, 51865), False, 'import re\n'), ((56952, 56973), 'numpy.round', 'np.round', (['expected', '(4)'], {}), '(expected, 4)\n', (56960, 56973), True, 'import numpy as np\n'), ((56975, 56996), 'numpy.round', 'np.round', (['computed', '(4)'], {}), '(computed, 4)\n', (56983, 56996), True, 'import numpy as np\n'), ((59886, 59945), 'numpy.array', 'np.array', (['[[0.9, 0.1, 0], [0.6, 0.2, 0.2], [0.7, 0.1, 0.2]]'], {}), '([[0.9, 0.1, 0], [0.6, 0.2, 0.2], [0.7, 0.1, 0.2]])\n', (59894, 59945), True, 'import numpy as np\n'), ((60010, 60069), 'numpy.array', 'np.array', (['[[0.1, 0.8, 0.1], [0, 0.9, 0.1], [0.1, 0.1, 0.8]]'], {}), '([[0.1, 0.8, 0.1], [0, 0.9, 0.1], [0.1, 0.1, 0.8]])\n', (60018, 60069), True, 'import numpy as np\n'), ((1092, 1121), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(1)'], {}), '(2017, 1, 1)\n', (1109, 1121), False, 'import datetime\n'), ((1147, 1176), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(2)'], {}), '(2017, 1, 2)\n', (1164, 1176), False, 'import datetime\n'), ((1202, 1231), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(4)'], {}), '(2017, 1, 4)\n', (1219, 1231), False, 'import datetime\n'), ((1257, 1286), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(5)'], {}), '(2017, 2, 5)\n', (1274, 1286), False, 'import datetime\n'), ((1312, 1341), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(6)'], {}), '(2017, 1, 6)\n', (1329, 1341), False, 'import datetime\n'), ((1367, 1397), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(13)'], {}), '(2017, 2, 13)\n', (1384, 1397), False, 'import datetime\n'), ((1423, 1453), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(22)'], {}), '(2017, 2, 22)\n', (1440, 1453), False, 'import datetime\n'), ((1479, 1509), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(24)'], {}), '(2017, 2, 24)\n', (1496, 1509), False, 'import datetime\n'), ((3213, 3242), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(1)'], {}), '(2017, 1, 1)\n', (3230, 3242), False, 'import datetime\n'), ((3280, 3309), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(4)'], {}), '(2017, 1, 4)\n', (3297, 3309), False, 'import datetime\n'), ((3347, 3376), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(5)'], {}), '(2017, 2, 5)\n', (3364, 3376), False, 'import datetime\n'), ((3414, 3444), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(13)'], {}), '(2017, 2, 13)\n', (3431, 3444), False, 'import datetime\n'), ((3482, 3512), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(24)'], {}), '(2017, 2, 24)\n', (3499, 3512), False, 'import datetime\n'), ((3552, 3582), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(28)'], {}), '(2017, 2, 28)\n', (3569, 3582), False, 'import datetime\n'), ((4721, 4800), 'utils.graph_equals', 'utils.graph_equals', (['expected_graph', 'computed_graph'], {'weight_column_name': '"""weight"""'}), "(expected_graph, computed_graph, weight_column_name='weight')\n", (4739, 4800), False, 'import utils\n'), ((6185, 6214), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(1)'], {}), '(2017, 1, 1)\n', (6202, 6214), False, 'import datetime\n'), ((6252, 6281), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(4)'], {}), '(2017, 1, 4)\n', (6269, 6281), False, 'import datetime\n'), ((6319, 6348), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(5)'], {}), '(2017, 2, 5)\n', (6336, 6348), False, 'import datetime\n'), ((6386, 6416), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(13)'], {}), '(2017, 2, 13)\n', (6403, 6416), False, 'import datetime\n'), ((6454, 6484), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(24)'], {}), '(2017, 2, 24)\n', (6471, 6484), False, 'import datetime\n'), ((6524, 6554), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(2)', '(28)'], {}), '(2017, 2, 28)\n', (6541, 6554), False, 'import datetime\n'), ((26141, 26186), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, 1], [1, 0, 1], [-1, -1, 0]])\n', (26149, 26186), True, 'import numpy as np\n'), ((26251, 26296), 'numpy.array', 'np.array', (['[[0, 1, -1], [1, 0, -1], [1, 1, 0]]'], {}), '([[0, 1, -1], [1, 0, -1], [1, 1, 0]])\n', (26259, 26296), True, 'import numpy as np\n'), ((26362, 26408), 'numpy.array', 'np.array', (['[[0, 0, -1], [-1, 0, 0], [1, -1, 0]]'], {}), '([[0, 0, -1], [-1, 0, 0], [1, -1, 0]])\n', (26370, 26408), True, 'import numpy as np\n'), ((26474, 26517), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 1], [0, 0, 1], [0, 0, 0]])\n', (26482, 26517), True, 'import numpy as np\n'), ((26581, 26630), 'numpy.array', 'np.array', (['[[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]'], {}), '([[0, -1, -1], [-1, 0, -1], [-1, -1, 0]])\n', (26589, 26630), True, 'import numpy as np\n'), ((26696, 26743), 'numpy.array', 'np.array', (['[[0, 0, -1], [-1, 0, 0], [-1, -1, 0]]'], {}), '([[0, 0, -1], [-1, 0, 0], [-1, -1, 0]])\n', (26704, 26743), True, 'import numpy as np\n'), ((26808, 26854), 'numpy.array', 'np.array', (['[[0, 1, 1], [-1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, 1], [-1, 0, 1], [-1, -1, 0]])\n', (26816, 26854), True, 'import numpy as np\n'), ((26919, 26966), 'numpy.array', 'np.array', (['[[0, 1, -1], [-1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, -1], [-1, 0, 1], [-1, -1, 0]])\n', (26927, 26966), True, 'import numpy as np\n'), ((27037, 27082), 'numpy.array', 'np.array', (['[[0, 1, -1], [0, 0, -1], [0, 0, 0]]'], {}), '([[0, 1, -1], [0, 0, -1], [0, 0, 0]])\n', (27045, 27082), True, 'import numpy as np\n'), ((27151, 27195), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, -1, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, -1, 0]])\n', (27159, 27195), True, 'import numpy as np\n'), ((27261, 27304), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 0, 0], [1, 0, 1], [0, 0, 0]])\n', (27269, 27304), True, 'import numpy as np\n'), ((27368, 27412), 'numpy.array', 'np.array', (['[[0, 1, -1], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, -1], [1, 0, 1], [1, 1, 0]])\n', (27376, 27412), True, 'import numpy as np\n'), ((27478, 27521), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 1, 0]])\n', (27486, 27521), True, 'import numpy as np\n'), ((27587, 27630), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n', (27595, 27630), True, 'import numpy as np\n'), ((27695, 27738), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 0, 0]])\n', (27703, 27738), True, 'import numpy as np\n'), ((27806, 27851), 'numpy.array', 'np.array', (['[[0, -1, 0], [-1, 0, 0], [0, 0, 0]]'], {}), '([[0, -1, 0], [-1, 0, 0], [0, 0, 0]])\n', (27814, 27851), True, 'import numpy as np\n'), ((27922, 27966), 'numpy.array', 'np.array', (['[[0, 1, 0], [-1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [-1, 0, 0], [0, 0, 0]])\n', (27930, 27966), True, 'import numpy as np\n'), ((28031, 28074), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 0, 0]])\n', (28039, 28074), True, 'import numpy as np\n'), ((28138, 28186), 'numpy.array', 'np.array', (['[[0, 1, -1], [-1, 0, -1], [-1, -1, 0]]'], {}), '([[0, 1, -1], [-1, 0, -1], [-1, -1, 0]])\n', (28146, 28186), True, 'import numpy as np\n'), ((29122, 29167), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, 1], [1, 0, 1], [-1, -1, 0]])\n', (29130, 29167), True, 'import numpy as np\n'), ((29233, 29278), 'numpy.array', 'np.array', (['[[0, 1, -1], [1, 0, -1], [1, 1, 0]]'], {}), '([[0, 1, -1], [1, 0, -1], [1, 1, 0]])\n', (29241, 29278), True, 'import numpy as np\n'), ((29345, 29391), 'numpy.array', 'np.array', (['[[0, 0, -1], [-1, 0, 0], [1, -1, 0]]'], {}), '([[0, 0, -1], [-1, 0, 0], [1, -1, 0]])\n', (29353, 29391), True, 'import numpy as np\n'), ((29458, 29501), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 1], [0, 0, 1], [0, 0, 0]])\n', (29466, 29501), True, 'import numpy as np\n'), ((29565, 29614), 'numpy.array', 'np.array', (['[[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]'], {}), '([[0, -1, -1], [-1, 0, -1], [-1, -1, 0]])\n', (29573, 29614), True, 'import numpy as np\n'), ((29681, 29728), 'numpy.array', 'np.array', (['[[0, 0, -1], [-1, 0, 0], [-1, -1, 0]]'], {}), '([[0, 0, -1], [-1, 0, 0], [-1, -1, 0]])\n', (29689, 29728), True, 'import numpy as np\n'), ((29794, 29840), 'numpy.array', 'np.array', (['[[0, 1, 1], [-1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, 1], [-1, 0, 1], [-1, -1, 0]])\n', (29802, 29840), True, 'import numpy as np\n'), ((29906, 29953), 'numpy.array', 'np.array', (['[[0, 1, -1], [-1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, -1], [-1, 0, 1], [-1, -1, 0]])\n', (29914, 29953), True, 'import numpy as np\n'), ((30024, 30069), 'numpy.array', 'np.array', (['[[0, 1, -1], [0, 0, -1], [0, 0, 0]]'], {}), '([[0, 1, -1], [0, 0, -1], [0, 0, 0]])\n', (30032, 30069), True, 'import numpy as np\n'), ((30138, 30182), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, -1, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, -1, 0]])\n', (30146, 30182), True, 'import numpy as np\n'), ((30248, 30291), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 0, 0], [1, 0, 1], [0, 0, 0]])\n', (30256, 30291), True, 'import numpy as np\n'), ((30355, 30399), 'numpy.array', 'np.array', (['[[0, 1, -1], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, -1], [1, 0, 1], [1, 1, 0]])\n', (30363, 30399), True, 'import numpy as np\n'), ((30465, 30508), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 1, 0]])\n', (30473, 30508), True, 'import numpy as np\n'), ((30574, 30617), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n', (30582, 30617), True, 'import numpy as np\n'), ((30682, 30725), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 0, 0]])\n', (30690, 30725), True, 'import numpy as np\n'), ((30793, 30838), 'numpy.array', 'np.array', (['[[0, -1, 0], [-1, 0, 0], [0, 0, 0]]'], {}), '([[0, -1, 0], [-1, 0, 0], [0, 0, 0]])\n', (30801, 30838), True, 'import numpy as np\n'), ((30909, 30953), 'numpy.array', 'np.array', (['[[0, 1, 0], [-1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [-1, 0, 0], [0, 0, 0]])\n', (30917, 30953), True, 'import numpy as np\n'), ((31018, 31061), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 0, 0]])\n', (31026, 31061), True, 'import numpy as np\n'), ((31125, 31173), 'numpy.array', 'np.array', (['[[0, 1, -1], [-1, 0, -1], [-1, -1, 0]]'], {}), '([[0, 1, -1], [-1, 0, -1], [-1, -1, 0]])\n', (31133, 31173), True, 'import numpy as np\n'), ((32097, 32142), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, 1], [1, 0, 1], [-1, -1, 0]])\n', (32105, 32142), True, 'import numpy as np\n'), ((32208, 32253), 'numpy.array', 'np.array', (['[[0, 1, -1], [1, 0, -1], [1, 1, 0]]'], {}), '([[0, 1, -1], [1, 0, -1], [1, 1, 0]])\n', (32216, 32253), True, 'import numpy as np\n'), ((32320, 32366), 'numpy.array', 'np.array', (['[[0, 0, -1], [-1, 0, 0], [1, -1, 0]]'], {}), '([[0, 0, -1], [-1, 0, 0], [1, -1, 0]])\n', (32328, 32366), True, 'import numpy as np\n'), ((32432, 32475), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 1], [0, 0, 1], [0, 0, 0]])\n', (32440, 32475), True, 'import numpy as np\n'), ((32539, 32588), 'numpy.array', 'np.array', (['[[0, -1, -1], [-1, 0, -1], [-1, -1, 0]]'], {}), '([[0, -1, -1], [-1, 0, -1], [-1, -1, 0]])\n', (32547, 32588), True, 'import numpy as np\n'), ((32654, 32701), 'numpy.array', 'np.array', (['[[0, 0, -1], [-1, 0, 0], [-1, -1, 0]]'], {}), '([[0, 0, -1], [-1, 0, 0], [-1, -1, 0]])\n', (32662, 32701), True, 'import numpy as np\n'), ((32766, 32812), 'numpy.array', 'np.array', (['[[0, 1, 1], [-1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, 1], [-1, 0, 1], [-1, -1, 0]])\n', (32774, 32812), True, 'import numpy as np\n'), ((32878, 32925), 'numpy.array', 'np.array', (['[[0, 1, -1], [-1, 0, 1], [-1, -1, 0]]'], {}), '([[0, 1, -1], [-1, 0, 1], [-1, -1, 0]])\n', (32886, 32925), True, 'import numpy as np\n'), ((32996, 33041), 'numpy.array', 'np.array', (['[[0, 1, -1], [0, 0, -1], [0, 0, 0]]'], {}), '([[0, 1, -1], [0, 0, -1], [0, 0, 0]])\n', (33004, 33041), True, 'import numpy as np\n'), ((33110, 33154), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, -1, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, -1, 0]])\n', (33118, 33154), True, 'import numpy as np\n'), ((33220, 33263), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 0, 0], [1, 0, 1], [0, 0, 0]])\n', (33228, 33263), True, 'import numpy as np\n'), ((33327, 33371), 'numpy.array', 'np.array', (['[[0, 1, -1], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, -1], [1, 0, 1], [1, 1, 0]])\n', (33335, 33371), True, 'import numpy as np\n'), ((33437, 33480), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 1, 0]])\n', (33445, 33480), True, 'import numpy as np\n'), ((33546, 33589), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n', (33554, 33589), True, 'import numpy as np\n'), ((33654, 33697), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 0, 0]])\n', (33662, 33697), True, 'import numpy as np\n'), ((33765, 33810), 'numpy.array', 'np.array', (['[[0, -1, 0], [-1, 0, 0], [0, 0, 0]]'], {}), '([[0, -1, 0], [-1, 0, 0], [0, 0, 0]])\n', (33773, 33810), True, 'import numpy as np\n'), ((33881, 33925), 'numpy.array', 'np.array', (['[[0, 1, 0], [-1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [-1, 0, 0], [0, 0, 0]])\n', (33889, 33925), True, 'import numpy as np\n'), ((33990, 34033), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 0, 0]])\n', (33998, 34033), True, 'import numpy as np\n'), ((34097, 34145), 'numpy.array', 'np.array', (['[[0, 1, -1], [-1, 0, -1], [-1, -1, 0]]'], {}), '([[0, 1, -1], [-1, 0, -1], [-1, -1, 0]])\n', (34105, 34145), True, 'import numpy as np\n'), ((35472, 35515), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 1], [1, 0, 1], [1, 1, 0]])\n', (35480, 35515), True, 'import numpy as np\n'), ((35579, 35622), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 0, 0]])\n', (35587, 35622), True, 'import numpy as np\n'), ((35686, 35729), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n', (35694, 35729), True, 'import numpy as np\n'), ((35795, 35838), 'numpy.array', 'np.array', (['[[0, 0, 1], [1, 0, 1], [1, 0, 0]]'], {}), '([[0, 0, 1], [1, 0, 1], [1, 0, 0]])\n', (35803, 35838), True, 'import numpy as np\n'), ((35904, 35947), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 0], [1, 1, 0]]'], {}), '([[0, 1, 1], [0, 0, 0], [1, 1, 0]])\n', (35912, 35947), True, 'import numpy as np\n'), ((36013, 36056), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 1], [0, 0, 1], [0, 0, 0]])\n', (36021, 36056), True, 'import numpy as np\n'), ((36122, 36165), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 0, 0], [1, 0, 1], [0, 0, 0]])\n', (36130, 36165), True, 'import numpy as np\n'), ((36231, 36274), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 1, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 1, 0]])\n', (36239, 36274), True, 'import numpy as np\n'), ((36339, 36382), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 0, 0]])\n', (36347, 36382), True, 'import numpy as np\n'), ((36448, 36491), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 1], [0, 0, 0]])\n', (36456, 36491), True, 'import numpy as np\n'), ((36557, 36600), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [0, 0, 0]])\n', (36565, 36600), True, 'import numpy as np\n'), ((36666, 36709), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 1, 0]])\n', (36674, 36709), True, 'import numpy as np\n'), ((36775, 36818), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 1], [1, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 1], [1, 0, 0]])\n', (36783, 36818), True, 'import numpy as np\n'), ((36883, 36926), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 0], [1, 0, 0]]'], {}), '([[0, 1, 1], [1, 0, 0], [1, 0, 0]])\n', (36891, 36926), True, 'import numpy as np\n'), ((36992, 37035), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 0, 0]])\n', (37000, 37035), True, 'import numpy as np\n'), ((37100, 37143), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 1, 0]])\n', (37108, 37143), True, 'import numpy as np\n'), ((38476, 38519), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 1], [1, 0, 1], [1, 1, 0]])\n', (38484, 38519), True, 'import numpy as np\n'), ((38583, 38626), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 0, 0]])\n', (38591, 38626), True, 'import numpy as np\n'), ((38690, 38733), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n', (38698, 38733), True, 'import numpy as np\n'), ((38798, 38841), 'numpy.array', 'np.array', (['[[0, 0, 1], [1, 0, 1], [1, 0, 0]]'], {}), '([[0, 0, 1], [1, 0, 1], [1, 0, 0]])\n', (38806, 38841), True, 'import numpy as np\n'), ((38907, 38950), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 0], [1, 1, 0]]'], {}), '([[0, 1, 1], [0, 0, 0], [1, 1, 0]])\n', (38915, 38950), True, 'import numpy as np\n'), ((39016, 39059), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 1], [0, 0, 1], [0, 0, 0]])\n', (39024, 39059), True, 'import numpy as np\n'), ((39125, 39168), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 0, 0], [1, 0, 1], [0, 0, 0]])\n', (39133, 39168), True, 'import numpy as np\n'), ((39234, 39277), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 1, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 1, 0]])\n', (39242, 39277), True, 'import numpy as np\n'), ((39342, 39385), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 0, 0]])\n', (39350, 39385), True, 'import numpy as np\n'), ((39450, 39493), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 1], [0, 0, 0]])\n', (39458, 39493), True, 'import numpy as np\n'), ((39559, 39602), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [0, 0, 0]])\n', (39567, 39602), True, 'import numpy as np\n'), ((39668, 39711), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 1, 0]])\n', (39676, 39711), True, 'import numpy as np\n'), ((39777, 39820), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 1], [1, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 1], [1, 0, 0]])\n', (39785, 39820), True, 'import numpy as np\n'), ((39885, 39928), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 0], [1, 0, 0]]'], {}), '([[0, 1, 1], [1, 0, 0], [1, 0, 0]])\n', (39893, 39928), True, 'import numpy as np\n'), ((39994, 40037), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 0, 0]])\n', (40002, 40037), True, 'import numpy as np\n'), ((40102, 40145), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 1, 0]])\n', (40110, 40145), True, 'import numpy as np\n'), ((41474, 41517), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 1], [1, 0, 1], [1, 1, 0]])\n', (41482, 41517), True, 'import numpy as np\n'), ((41581, 41624), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 0, 0]])\n', (41589, 41624), True, 'import numpy as np\n'), ((41688, 41731), 'numpy.array', 'np.array', (['[[0, 0, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 0, 0], [0, 0, 0], [0, 0, 0]])\n', (41696, 41731), True, 'import numpy as np\n'), ((41796, 41839), 'numpy.array', 'np.array', (['[[0, 0, 1], [1, 0, 1], [1, 0, 0]]'], {}), '([[0, 0, 1], [1, 0, 1], [1, 0, 0]])\n', (41804, 41839), True, 'import numpy as np\n'), ((41904, 41947), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 0], [1, 1, 0]]'], {}), '([[0, 1, 1], [0, 0, 0], [1, 1, 0]])\n', (41912, 41947), True, 'import numpy as np\n'), ((42012, 42055), 'numpy.array', 'np.array', (['[[0, 1, 1], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 1], [0, 0, 1], [0, 0, 0]])\n', (42020, 42055), True, 'import numpy as np\n'), ((42120, 42163), 'numpy.array', 'np.array', (['[[0, 0, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 0, 0], [1, 0, 1], [0, 0, 0]])\n', (42128, 42163), True, 'import numpy as np\n'), ((42228, 42271), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 1, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 1, 0]])\n', (42236, 42271), True, 'import numpy as np\n'), ((42335, 42378), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 0], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 0], [0, 0, 0]])\n', (42343, 42378), True, 'import numpy as np\n'), ((42443, 42486), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 1], [0, 0, 0]])\n', (42451, 42486), True, 'import numpy as np\n'), ((42552, 42595), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [0, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [0, 0, 0]])\n', (42560, 42595), True, 'import numpy as np\n'), ((42661, 42704), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 0], [0, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 0], [0, 1, 0]])\n', (42669, 42704), True, 'import numpy as np\n'), ((42770, 42813), 'numpy.array', 'np.array', (['[[0, 1, 0], [0, 0, 1], [1, 0, 0]]'], {}), '([[0, 1, 0], [0, 0, 1], [1, 0, 0]])\n', (42778, 42813), True, 'import numpy as np\n'), ((42878, 42921), 'numpy.array', 'np.array', (['[[0, 1, 1], [1, 0, 0], [1, 0, 0]]'], {}), '([[0, 1, 1], [1, 0, 0], [1, 0, 0]])\n', (42886, 42921), True, 'import numpy as np\n'), ((42987, 43030), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 0, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 0, 0]])\n', (42995, 43030), True, 'import numpy as np\n'), ((43095, 43138), 'numpy.array', 'np.array', (['[[0, 1, 0], [1, 0, 1], [1, 1, 0]]'], {}), '([[0, 1, 0], [1, 0, 1], [1, 1, 0]])\n', (43103, 43138), True, 'import numpy as np\n'), ((52011, 52036), 'numpy.unique', 'np.unique', (['truncated_keys'], {}), '(truncated_keys)\n', (52020, 52036), True, 'import numpy as np\n'), ((10871, 10883), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (10881, 10883), True, 'import networkx as nx\n'), ((12241, 12253), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (12251, 12253), True, 'import networkx as nx\n'), ((61691, 61703), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (61701, 61703), True, 'import networkx as nx\n'), ((62475, 62502), 'networkx.difference', 'nx.difference', (['dg', 'computed'], {}), '(dg, computed)\n', (62488, 62502), True, 'import networkx as nx\n'), ((62668, 62695), 'networkx.difference', 'nx.difference', (['computed', 'dg'], {}), '(computed, dg)\n', (62681, 62695), True, 'import networkx as nx\n')]
#!/usr/bin/python import sys from PyQt5.QtWidgets import QWidget, QApplication from PyQt5.QtGui import QPainter, QColor, QFont,QPalette,QPolygonF,QBrush from PyQt5.QtCore import Qt , QPointF,QRectF,QObject,pyqtSignal,QRunnable,pyqtSlot,QThreadPool,QTimer import traceback from time import sleep class WorkerSignals(QObject): """ defines the signals available from a running worker thread supported signals are: finished No data error tuple( exctype ,value ,traceback.format_exc() ) result object data returned from processing , anything """ finished = pyqtSignal() error= pyqtSignal(tuple) result = pyqtSignal(object) class Worker(QRunnable): """ Worker thread inherits from QRunnable to handler worker thread setup , signals, wrap-up. :param callback: The function to run on this worker thread . Supllied args and kwargs will be passed through the runner :type callback: function :param args : Arguments to pass the callback function :param kwargs : keyword to pass to the callback function """ def __init__(self,fn,*args,**kwargs): super(Worker, self).__init__() self.fn =fn self.args= args self.kwargs=kwargs self.signals=WorkerSignals() @pyqtSlot() def run(self): """ initialise the runner function with passed args and kwargs """ try: result =self.fn(*self.args,**self.kwargs) except: traceback.print_exc() exctype,value = sys.exc_info()[:2] self.signals.error.emit((exctype, value, traceback.format_exc() )) else: self.signals.result.emit(result) finally: self.signals.finished.emit() class LoadingBar(QWidget): def __init__(self): super().__init__() self.threadpool=QThreadPool() self.initUI() #position of colored part in loading bar 0 -100 self.position=20 self.startWorker(self.move_loading_bar) self.loading_increasing=True # self.timer=QTimer() # self.timer.timeout.connect(self.move_loading_bar) # self.timer.start(500) def move_loading_bar(self): """ move the loading bar back and forth by changing the value of self.position """ while True: # print('moving loading bar',self.position) sleep(0.015) if self.position ==100: self.loading_increasing=False elif self.position==0: self.loading_increasing=True if self.loading_increasing: self.position+=1 else: self.position-=1 qp=QPainter() #Error might occur if the LoadingBar widget is deleted so to catch that try: self.update() except RuntimeError: pass def startWorker(self,fn,*args,**kwargs): worker= Worker(fn) self.threadpool.start(worker) def initUI(self): self.setGeometry(300, 300, 350, 300) self.setWindowTitle('loading please wait') self.show() def paintEvent(self, event): qp = QPainter() qp.begin(self) self.drawText(event, qp) qp.end() def drawText(self, event, qp): width = self.width() height = self.height() self.widget_height= 6 #the part of the loading bar that is not going to have the progressed part reduce_amount = width*0.6 top_left =QPointF(int(width*0.1),int(height/2-self.widget_height/2)) bottom_right =QPointF(int(width*0.9)-reduce_amount ,int(height/2 +self.widget_height/2)) bigger_bottom_right =QPointF(int(width*0.9) ,int(height/2+self.widget_height/2) ) recty =QRectF(QPointF(top_left.x()+self.position/100*reduce_amount,top_left.y()), QPointF(bottom_right.x()+self.position/100*reduce_amount,bottom_right.y())) bigger_recty=QRectF(top_left,bigger_bottom_right) #non progressed part (bigger rounded rect) qp.setPen(QPalette().color(QPalette.Disabled,QPalette.Text)) qp.setBrush(QBrush(QPalette().color(QPalette.Active,QPalette.Button))) qp.drawRoundedRect(bigger_recty,3,3) #progressed part qp.setBrush(QBrush(QPalette().color(QPalette().Inactive,QPalette().Highlight))) qp.setPen(QPalette().color(QPalette().Active,QPalette().Highlight)) qp.drawRoundedRect(recty,2,2) def main(): app = QApplication(sys.argv) ex = LoadingBar() sys.exit(app.exec_()) if __name__ == '__main__': main()
[ "PyQt5.QtCore.pyqtSignal", "PyQt5.QtGui.QPainter", "traceback.print_exc", "PyQt5.QtCore.QThreadPool", "PyQt5.QtGui.QPalette", "time.sleep", "PyQt5.QtCore.QRectF", "traceback.format_exc", "sys.exc_info", "PyQt5.QtCore.pyqtSlot", "PyQt5.QtWidgets.QApplication" ]
[((643, 655), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', ([], {}), '()\n', (653, 655), False, 'from PyQt5.QtCore import Qt, QPointF, QRectF, QObject, pyqtSignal, QRunnable, pyqtSlot, QThreadPool, QTimer\n'), ((667, 684), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', (['tuple'], {}), '(tuple)\n', (677, 684), False, 'from PyQt5.QtCore import Qt, QPointF, QRectF, QObject, pyqtSignal, QRunnable, pyqtSlot, QThreadPool, QTimer\n'), ((698, 716), 'PyQt5.QtCore.pyqtSignal', 'pyqtSignal', (['object'], {}), '(object)\n', (708, 716), False, 'from PyQt5.QtCore import Qt, QPointF, QRectF, QObject, pyqtSignal, QRunnable, pyqtSlot, QThreadPool, QTimer\n'), ((1364, 1374), 'PyQt5.QtCore.pyqtSlot', 'pyqtSlot', ([], {}), '()\n', (1372, 1374), False, 'from PyQt5.QtCore import Qt, QPointF, QRectF, QObject, pyqtSignal, QRunnable, pyqtSlot, QThreadPool, QTimer\n'), ((4861, 4883), 'PyQt5.QtWidgets.QApplication', 'QApplication', (['sys.argv'], {}), '(sys.argv)\n', (4873, 4883), False, 'from PyQt5.QtWidgets import QWidget, QApplication\n'), ((1978, 1991), 'PyQt5.QtCore.QThreadPool', 'QThreadPool', ([], {}), '()\n', (1989, 1991), False, 'from PyQt5.QtCore import Qt, QPointF, QRectF, QObject, pyqtSignal, QRunnable, pyqtSlot, QThreadPool, QTimer\n'), ((3421, 3431), 'PyQt5.QtGui.QPainter', 'QPainter', ([], {}), '()\n', (3429, 3431), False, 'from PyQt5.QtGui import QPainter, QColor, QFont, QPalette, QPolygonF, QBrush\n'), ((4284, 4321), 'PyQt5.QtCore.QRectF', 'QRectF', (['top_left', 'bigger_bottom_right'], {}), '(top_left, bigger_bottom_right)\n', (4290, 4321), False, 'from PyQt5.QtCore import Qt, QPointF, QRectF, QObject, pyqtSignal, QRunnable, pyqtSlot, QThreadPool, QTimer\n'), ((2546, 2558), 'time.sleep', 'sleep', (['(0.015)'], {}), '(0.015)\n', (2551, 2558), False, 'from time import sleep\n'), ((2874, 2884), 'PyQt5.QtGui.QPainter', 'QPainter', ([], {}), '()\n', (2882, 2884), False, 'from PyQt5.QtGui import QPainter, QColor, QFont, QPalette, QPolygonF, QBrush\n'), ((1599, 1620), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (1618, 1620), False, 'import traceback\n'), ((1649, 1663), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (1661, 1663), False, 'import sys\n'), ((4408, 4418), 'PyQt5.QtGui.QPalette', 'QPalette', ([], {}), '()\n', (4416, 4418), False, 'from PyQt5.QtGui import QPainter, QColor, QFont, QPalette, QPolygonF, QBrush\n'), ((4740, 4750), 'PyQt5.QtGui.QPalette', 'QPalette', ([], {}), '()\n', (4748, 4750), False, 'from PyQt5.QtGui import QPainter, QColor, QFont, QPalette, QPolygonF, QBrush\n'), ((4757, 4767), 'PyQt5.QtGui.QPalette', 'QPalette', ([], {}), '()\n', (4765, 4767), False, 'from PyQt5.QtGui import QPainter, QColor, QFont, QPalette, QPolygonF, QBrush\n'), ((4775, 4785), 'PyQt5.QtGui.QPalette', 'QPalette', ([], {}), '()\n', (4783, 4785), False, 'from PyQt5.QtGui import QPainter, QColor, QFont, QPalette, QPolygonF, QBrush\n'), ((1721, 1743), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (1741, 1743), False, 'import traceback\n'), ((4486, 4496), 'PyQt5.QtGui.QPalette', 'QPalette', ([], {}), '()\n', (4494, 4496), False, 'from PyQt5.QtGui import QPainter, QColor, QFont, QPalette, QPolygonF, QBrush\n'), ((4661, 4671), 'PyQt5.QtGui.QPalette', 'QPalette', ([], {}), '()\n', (4669, 4671), False, 'from PyQt5.QtGui import QPainter, QColor, QFont, QPalette, QPolygonF, QBrush\n'), ((4678, 4688), 'PyQt5.QtGui.QPalette', 'QPalette', ([], {}), '()\n', (4686, 4688), False, 'from PyQt5.QtGui import QPainter, QColor, QFont, QPalette, QPolygonF, QBrush\n'), ((4698, 4708), 'PyQt5.QtGui.QPalette', 'QPalette', ([], {}), '()\n', (4706, 4708), False, 'from PyQt5.QtGui import QPainter, QColor, QFont, QPalette, QPolygonF, QBrush\n')]
import time c = 1 print(c) c += 1 print(c) time.sleep(1) c += 1 print(c) time.sleep(1) c += 1 print(c) time.sleep(1) c += 1 print(c) time.sleep(1) c += 1 print(c) time.sleep(1) print("jak by co") time.sleep(0.5) print("to kod jest z książki") time.sleep(3) print("nie kradziony") time.sleep(2)
[ "time.sleep" ]
[((43, 56), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (53, 56), False, 'import time\n'), ((73, 86), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (83, 86), False, 'import time\n'), ((103, 116), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (113, 116), False, 'import time\n'), ((133, 146), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (143, 146), False, 'import time\n'), ((163, 176), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (173, 176), False, 'import time\n'), ((196, 211), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (206, 211), False, 'import time\n'), ((243, 256), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (253, 256), False, 'import time\n'), ((280, 293), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (290, 293), False, 'import time\n')]
""" DB Model for Posts and relevant junction tables """ import datetime from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.sql import and_, select from app.main import db from app.main.models.base import Base from app.main.models.comments import Comment from app.main.models.movies import Movie from app.main.models.postSearches import SearchableMixin class Post(Base, SearchableMixin): """ Description of User model. Columns ----------- :id: int [pk] :title: Text [not NULL] :author_id: int [Foreign Key] :creation_time: DateTime [not NULL] :last_edit_time: DateTime [not NULL] :post_body: Text # Relationships :comments: Relationship -> Comments (one to many) """ # Columns id = db.Column(db.Integer, db.ForeignKey("base.id"), primary_key=True) post_id = db.Column(db.Integer, autoincrement=True, primary_key=True, unique=True) title = db.Column(db.Text, nullable=False) post_movie = db.Column(db.String(20)) tags = db.Column(db.JSON) __searchable__ = ['title', 'body', 'tags'] __mapper_args__ = { 'polymorphic_identity': 'post', 'inherit_condition': (id == Base.id) } comments = db.relationship('Comment', primaryjoin="(Post.post_id == Comment.parent_post_id)", backref=db.backref('post'), lazy='dynamic') def __init__(self, author_id, post_movie, title, post_body, tags): super().__init__(author_id, post_body, "post") self.title = title self.post_movie = post_movie self.tags = tags db.session.add(self) db.session.commit() def add_comment(self, author_id, comment_body): parent_post_id = self.id comment = Comment(author_id, parent_post_id, comment_body) self.comments.append(comment) db.session.commit() return comment.id def update_col(self, key, value): setattr(self, key, value) db.session.commit() def delete_post(self, post_id): post = Post.query.filter_by(id=post_id).delete() db.session.commit()
[ "app.main.db.ForeignKey", "app.main.db.backref", "app.main.db.session.add", "app.main.models.comments.Comment", "app.main.db.session.commit", "app.main.db.String", "app.main.db.Column" ]
[((847, 919), 'app.main.db.Column', 'db.Column', (['db.Integer'], {'autoincrement': '(True)', 'primary_key': '(True)', 'unique': '(True)'}), '(db.Integer, autoincrement=True, primary_key=True, unique=True)\n', (856, 919), False, 'from app.main import db\n'), ((956, 990), 'app.main.db.Column', 'db.Column', (['db.Text'], {'nullable': '(False)'}), '(db.Text, nullable=False)\n', (965, 990), False, 'from app.main import db\n'), ((1046, 1064), 'app.main.db.Column', 'db.Column', (['db.JSON'], {}), '(db.JSON)\n', (1055, 1064), False, 'from app.main import db\n'), ((789, 813), 'app.main.db.ForeignKey', 'db.ForeignKey', (['"""base.id"""'], {}), "('base.id')\n", (802, 813), False, 'from app.main import db\n'), ((1019, 1032), 'app.main.db.String', 'db.String', (['(20)'], {}), '(20)\n', (1028, 1032), False, 'from app.main import db\n'), ((1627, 1647), 'app.main.db.session.add', 'db.session.add', (['self'], {}), '(self)\n', (1641, 1647), False, 'from app.main import db\n'), ((1656, 1675), 'app.main.db.session.commit', 'db.session.commit', ([], {}), '()\n', (1673, 1675), False, 'from app.main import db\n'), ((1780, 1828), 'app.main.models.comments.Comment', 'Comment', (['author_id', 'parent_post_id', 'comment_body'], {}), '(author_id, parent_post_id, comment_body)\n', (1787, 1828), False, 'from app.main.models.comments import Comment\n'), ((1875, 1894), 'app.main.db.session.commit', 'db.session.commit', ([], {}), '()\n', (1892, 1894), False, 'from app.main import db\n'), ((2003, 2022), 'app.main.db.session.commit', 'db.session.commit', ([], {}), '()\n', (2020, 2022), False, 'from app.main import db\n'), ((2125, 2144), 'app.main.db.session.commit', 'db.session.commit', ([], {}), '()\n', (2142, 2144), False, 'from app.main import db\n'), ((1367, 1385), 'app.main.db.backref', 'db.backref', (['"""post"""'], {}), "('post')\n", (1377, 1385), False, 'from app.main import db\n')]
from django.conf import settings import requests import json from NER.models import GoogleLocationCache GOOGLE_GEOCODE_URL =\ 'https://maps.googleapis.com/maps/api/geocode/json?key={}&address={}' def get_google_geocode_url(location): return GOOGLE_GEOCODE_URL.format( getattr(settings, 'GOOGLE_API_KEY', ''), location, ) def get_location_info(location): # First query the database, if not found, make a call try: cache = GoogleLocationCache.objects.get(_location=location.lower()) return cache.location_info except GoogleLocationCache.DoesNotExist: pass r = requests.get(get_google_geocode_url(location)) try: info = json.loads(r.text) location_info = info.get('results')[0] # save to database GoogleLocationCache.objects.create( location=location, location_info=location_info ) return location_info except (ValueError, IndexError): return {}
[ "json.loads", "NER.models.GoogleLocationCache.objects.create" ]
[((705, 723), 'json.loads', 'json.loads', (['r.text'], {}), '(r.text)\n', (715, 723), False, 'import json\n'), ((806, 893), 'NER.models.GoogleLocationCache.objects.create', 'GoogleLocationCache.objects.create', ([], {'location': 'location', 'location_info': 'location_info'}), '(location=location, location_info=\n location_info)\n', (840, 893), False, 'from NER.models import GoogleLocationCache\n')]
# -*- coding: utf-8 -*- """ Generate a package with IR implementations and tools. """ from __future__ import print_function, division, absolute_import import os from textwrap import dedent from itertools import chain from . import generator from . import formatting from . import astgen from . import visitorgen from . import naming #------------------------------------------------------------------------ # Tools Flags #------------------------------------------------------------------------ cython = 1 #------------------------------------------------------------------------ # Tools Resolution #------------------------------------------------------------------------ class Tool(object): def __init__(self, codegens, flags=0, depends=[]): self.codegens = codegens self.flags = flags self.depends = depends def __repr__(self): return "Tool(codegens=[%s])" % ", ".join(map(str, self.codegens)) def resolve_tools(tool_list, mask, tools=None, seen=None): if tools is None: tools = [] seen = set() for tool in tool_list: if not (tool.flags & mask) and tool not in seen: seen.add(tool) resolve_tools(tool.depends, mask, tools, seen) tools.append(tool) return tools def enumerate_tools(feature_names, mask): tool_set = set(chain(*[features[name] for name in feature_names])) tools = resolve_tools(tool_set, mask) return tools def enumerate_codegens(feature_names, mask): tools = enumerate_tools(feature_names, mask) codegens = list(chain(*[tool.codegens for tool in tools])) return codegens #------------------------------------------------------------------------ # Tool Definitions #------------------------------------------------------------------------ def make_codegen_dict(codegens): return dict((codegen.out_filename, codegen) for codegen in codegens) all_codegens = astgen.codegens + visitorgen.codegens gens = make_codegen_dict(all_codegens) pxd_ast_tool = Tool([gens[naming.nodes + ".pxd"]], flags=cython) py_ast_tool = Tool([gens[naming.nodes + ".py"]]) pxd_interface_tool = Tool([gens[naming.interface + ".pxd"]], flags=cython, depends=[pxd_ast_tool]) py_interface_tool = Tool([gens[naming.interface + ".py"]], depends=[py_ast_tool]) pxd_visitor_tool = Tool([gens[naming.visitor + ".pxd"]], flags=cython, depends=[pxd_interface_tool]) py_visitor_tool = Tool([gens[naming.visitor + ".py"]], depends=[py_interface_tool, pxd_visitor_tool]) pxd_transform_tool = Tool([gens[naming.transformer + ".pxd"]], flags=cython, depends=[pxd_interface_tool]) py_transformr_tool = Tool([gens[naming.transformer + ".py"]], depends=[py_interface_tool, pxd_transform_tool]) pxd_ast_tool.depends.extend([pxd_interface_tool, py_interface_tool]) #------------------------------------------------------------------------ # Feature Definitions & Entry Points #------------------------------------------------------------------------ features = { 'all': [py_ast_tool, py_visitor_tool, py_transformr_tool], 'ast': [py_ast_tool], 'visitor': [py_visitor_tool], 'transformer': [py_transformr_tool], } def build_package(schema_filename, feature_names, output_dir, mask=0): """ Build a package from the given schema and feature names in output_dir. :param mask: indicates which features to mask, e.g. specifying 'mask=build.cython' disables Cython support. """ codegens = enumerate_codegens(feature_names, mask) disk_allocator = generator.generate_from_file( schema_filename, codegens, output_dir) try: _make_package(disk_allocator, codegens) finally: disk_allocator.close() #------------------------------------------------------------------------ # Package Building Utilities #------------------------------------------------------------------------ source_name = lambda fn: os.path.splitext(os.path.basename(fn))[0] def _make_package(disk_allocator, codegens): _make_init(disk_allocator, codegens) # Make Cython dependency optional # disk_allocator.open_sourcefile("cython.py") fns = [c.out_filename for c in codegens if c.out_filename.endswith('.pxd')] if fns: _make_setup(disk_allocator, [source_name(fn) + '.py' for fn in fns]) def _make_init(disk_allocator, codegens): init = disk_allocator.open_sourcefile("__init__.py") init.write(dedent(""" # Horrid hack to make work around circular cimports import os, sys sys.path.append(os.path.dirname(os.path.abspath(__file__))) """)) for c in codegens: if c.out_filename.endswith('.py'): modname = source_name(c.out_filename) init.write("from %s import *\n" % modname) def _make_setup(disk_allocator, filenames): setup = disk_allocator.open_sourcefile("setup.py") ext_modules = ["Extension('%s', ['%s'])" % (source_name(fn), fn) for fn in filenames] setup.write(dedent(""" from distutils.core import setup from Cython.Distutils import build_ext from Cython.Distutils.extension import Extension ext_modules = [ %s ] setup( # ext_modules=cythonize('*.pyx'), ext_modules=ext_modules, cmdclass={'build_ext': build_ext}, ) """) % formatting.py_formatter.format_stats(",\n", 4, ext_modules))
[ "textwrap.dedent", "itertools.chain", "os.path.basename" ]
[((1350, 1400), 'itertools.chain', 'chain', (['*[features[name] for name in feature_names]'], {}), '(*[features[name] for name in feature_names])\n', (1355, 1400), False, 'from itertools import chain\n'), ((1576, 1617), 'itertools.chain', 'chain', (['*[tool.codegens for tool in tools]'], {}), '(*[tool.codegens for tool in tools])\n', (1581, 1617), False, 'from itertools import chain\n'), ((4607, 4787), 'textwrap.dedent', 'dedent', (['"""\n # Horrid hack to make work around circular cimports\n import os, sys\n sys.path.append(os.path.dirname(os.path.abspath(__file__)))\n """'], {}), '(\n """\n # Horrid hack to make work around circular cimports\n import os, sys\n sys.path.append(os.path.dirname(os.path.abspath(__file__)))\n """\n )\n', (4613, 4787), False, 'from textwrap import dedent\n'), ((4121, 4141), 'os.path.basename', 'os.path.basename', (['fn'], {}), '(fn)\n', (4137, 4141), False, 'import os\n'), ((5181, 5561), 'textwrap.dedent', 'dedent', (['"""\n from distutils.core import setup\n from Cython.Distutils import build_ext\n from Cython.Distutils.extension import Extension\n\n ext_modules = [\n %s\n ]\n\n setup(\n # ext_modules=cythonize(\'*.pyx\'),\n ext_modules=ext_modules,\n cmdclass={\'build_ext\': build_ext},\n )\n """'], {}), '(\n """\n from distutils.core import setup\n from Cython.Distutils import build_ext\n from Cython.Distutils.extension import Extension\n\n ext_modules = [\n %s\n ]\n\n setup(\n # ext_modules=cythonize(\'*.pyx\'),\n ext_modules=ext_modules,\n cmdclass={\'build_ext\': build_ext},\n )\n """\n )\n', (5187, 5561), False, 'from textwrap import dedent\n')]
import serial import cv2 # 시리얼 연결 실패시 오류 메시지 클래스 class errorMessage(Exception): def __init__(self, msg='init_error_msg'): self.msg = msg def __str__(self): return self.msg # 초기 시리얼 연결 try: print("Suceessfully connected with PLC") ser = serial.Serial( port='COM3', baudrate=9600, parity=serial.PARITY_NONE, \ stopbits=serial.STOPBITS_ONE, \ bytesize=serial.EIGHTBITS, \ timeout=0.5 # PLC가 1초에 한번 보내므로 그보다 적게. ) except: print("[ERROR] : please check PLC RS232") # raise errorMessage('[ERROR] : please check PLC RS232') # PASS 때 '1' 보내고, RS232 통신 닫기 def passSignal(): print("PASS the judgement") # PLC신호 읽음 if ser.readable(): res = ser.readline() PLC_ready = res.decode() PLC_ready = PLC_ready.lower() # 소문자로 변환 if PLC_ready[0:5] == 'ready': print("PLC로부터 받은 프로토콜:", PLC_ready[0:5]) # 받은 프로토콜 passSig = '1'.encode() ser.write(passSig) # 전송 ser.close() # 닫기 # NG 때 '2' 보내고, RS232 통신 닫기 def NGSignal(): print("NG the judgement") # PLC신호 읽음 if ser.readable(): res = ser.readline() PLC_ready = res.decode() PLC_ready = PLC_ready.lower() # 소문자로 변환 if PLC_ready[0:5] == 'ready': print("PLC로부터 받은 프로토콜:", PLC_ready[0:5]) # 받은 프로토콜 NGSig = '2'.encode() ser.write(NGSig) # 전송 ser.close() # 닫기 ''' PLC 에서 온 값 'READY'를 읽고, 합격일때 : judgeSignal(1) 불합일때 : judgeSignal(2) 의 형태로 함수 사용. ''' def judgeSignal(signal=0): print("checking PASS or NG signal...") # PLC신호 읽음 if ser.readable(): res = ser.readline() PLC_ready = res.decode() PLC_ready = PLC_ready.lower() # 소문자로 변환 if PLC_ready[0:5] == 'ready': print("PLC로부터 받은 프로토콜:", PLC_ready[0:5]) # 받은 프로토콜 signal = str(signal) signal = signal.encode() ser.write(signal) # 전송 ser.close() # 닫기 if __name__ == "__main__": while 1: judgeSignal() # passSignal() # NGSignal()
[ "serial.Serial" ]
[((272, 414), 'serial.Serial', 'serial.Serial', ([], {'port': '"""COM3"""', 'baudrate': '(9600)', 'parity': 'serial.PARITY_NONE', 'stopbits': 'serial.STOPBITS_ONE', 'bytesize': 'serial.EIGHTBITS', 'timeout': '(0.5)'}), "(port='COM3', baudrate=9600, parity=serial.PARITY_NONE,\n stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, timeout=0.5)\n", (285, 414), False, 'import serial\n')]
from django.core.files.storage import Storage """ 1.您的自定义存储系统必须是以下的子类 :django.core.files.storage.Storage 2.Django必须能够在没有任何参数的情况下实例化您的存储系统。 这意味着任何设置都应该来自:django.conf.settings 3.您的存储类必须实现_open()和_save() 方法, 以适合您的存储类中的任何其他方法一起。请参阅下面的这些方法。 4.您的存储类必须是可解构的, 以便在迁移中的字段上使用时可以对其进行序列化。 只要您的字段具有可自行序列化的参数, 就 可以使用 django.utils.deconstruct.deconstructible类装饰器 (这就是Django在FileSystemStorage上使用的) """ from fdfs_client.client import Fdfs_client from django.utils.deconstruct import deconstructible from mall import settings @deconstructible class MyStorage(Storage): # 初始化的时候 有任何配置信息 都设置为 默认值 def __init__(self, config_path=None,ip=None): if not config_path: config_path = settings.FDFS_CLIENT_CONF self.config_path = config_path if not ip: ip = settings.FDFS_URL self.ip = ip # open 打开文件(图片) # Fdfs 是通过 HTTP来访问我们的图片资源的,不需要打开 # http://192.168.229.148:8888/group1/M00/00/02/wKjllFx4r_aAJyv2AAGByoOJNyU855.jpg def _open(self, name, mode='rb'): pass # save 保存 # 保存是通过 Fdfs来实现保存的,所以我们要在save中实现保存操作 def _save(self, name, content, max_length=None): # name, content, max_length=None # name: 图片名字 # content: 图片资源 # max_length: 最大长度 # 1.创建上传 的客户端 # client = Fdfs_client('utils/fastdfs/client.conf') # client = Fdfs_client(settings.FDFS_CLIENT_CONF) client = Fdfs_client(self.config_path) # 2.获取图片 我们不能通过name找到图片,所以通过content来获取图片内容 # 读取的是 图片的二进制 data = content.read() # 3.上传 # buffer 二进制 result = client.upload_by_buffer(data) # result 就是上传之后的返回值 # 4.根据上传的状态获取 remote file_id """ {'Group name': 'group1', 'Remote file_id': 'group1/M00/00/02/wKjllFx42-6AW-JBAAGByoOJNyU783.jpg', 'Status': 'Upload successed.', 'Local file name': '/home/python/Desktop/images/2.jpg', 'Uploaded size': '96.00KB', 'Storage IP': '192.168.229.148'} """ if result.get('Status') == 'Upload successed.': #上传成功,返回 remote file_id file_id = result.get('Remote file_id') else: raise Exception('上传失败') # 我们需要把 remote file_id 返回回去 # 系统要使用 return file_id # exists 是否存在 # Fdfs 已经帮我们做了 重名的处理,所以我们不需要判断 图片是否重复 # 直接上它上传就可以 def exists(self, name): return False # url 默认是把 name返回回去, # 在Fdfs中 name其实就是 remote file_id # 但是我们在访问图片的时候 需要自己再添加 http://ip:port/ + name # 所以我们重写 url方法,添加 http://ip:prot/ + name def url(self, name): # return 'http://192.168.229.148:8888/' + name # return settings.FDFS_URL + name return self.ip + name # return name # pass
[ "fdfs_client.client.Fdfs_client" ]
[((1418, 1447), 'fdfs_client.client.Fdfs_client', 'Fdfs_client', (['self.config_path'], {}), '(self.config_path)\n', (1429, 1447), False, 'from fdfs_client.client import Fdfs_client\n')]
import numpy as np n = 300 serial = int(input()) grid = np.array([[int(str(((x+10)*y+serial)*(x+10))[-3])-5 for y in range(1, n+1)] for x in range(1, n+1)]) coord = (0, 0) mVal, dim = 0, 0 for d in range(4, 2, -1): squares = sum(grid[x:x-d+1 or None, y:y-d+1 or None] for x in range(d) for y in range(d)) val = int(squares.max()) if mVal < val: coord = np.where(squares == val) mVal = val dim = d x,y = coord[0][0], coord[1][0] print(f'({x+1}, {y+1}) X {dim} = {mVal}')
[ "numpy.where" ]
[((374, 398), 'numpy.where', 'np.where', (['(squares == val)'], {}), '(squares == val)\n', (382, 398), True, 'import numpy as np\n')]
import multiprocessing as p import time def doit(): ''' check CPU parallelism while True: pass #''' time.sleep(1) print('並行') count=0 def main(): def listener(x): global count count+=1 time.sleep(1) print(count) threads=5 pool=p.Pool() for i in range(threads): pool.apply_async(doit, callback=listener) # ''' while threads!=count: time.sleep(1) #''' main()
[ "multiprocessing.Pool", "time.sleep" ]
[((127, 140), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (137, 140), False, 'import time\n'), ((306, 314), 'multiprocessing.Pool', 'p.Pool', ([], {}), '()\n', (312, 314), True, 'import multiprocessing as p\n'), ((246, 259), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (256, 259), False, 'import time\n'), ((440, 453), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (450, 453), False, 'import time\n')]
# -*- coding: utf-8 -*- """ Created on Sat Nov 29 18:17:51 2014 @author: tvu """ def classify(features_train, labels_train): ### your code goes here--should return a trained decision tree classifer from sklearn import tree clf = tree.DecisionTreeClassifier() clf = clf.fit(features_train, labels_train) return clf
[ "sklearn.tree.DecisionTreeClassifier" ]
[((248, 277), 'sklearn.tree.DecisionTreeClassifier', 'tree.DecisionTreeClassifier', ([], {}), '()\n', (275, 277), False, 'from sklearn import tree\n')]
"""Check the maximum length of stay of donors in MIMIC-III. If it is <48 it does not affect our study.""" import os import pandas as pd df = pd.read_csv('ADMISSIONS.csv') df = df.loc[(df['DIAGNOSIS'].str.lower() == 'organ donor') | (df['DIAGNOSIS'].str.lower() == 'organ donor account')] files = os.listdir('root') ods = list(df['SUBJECT_ID']) los_list = [] for od in ods: try: df_tmp = pd.read_csv(os.path.join('root', str(od), 'stays.csv')) los_list += list(df_tmp['LOS'].values) except: pass print(max(los_list)) """ Result: 37.2832 """
[ "pandas.read_csv", "os.listdir" ]
[((143, 172), 'pandas.read_csv', 'pd.read_csv', (['"""ADMISSIONS.csv"""'], {}), "('ADMISSIONS.csv')\n", (154, 172), True, 'import pandas as pd\n'), ((299, 317), 'os.listdir', 'os.listdir', (['"""root"""'], {}), "('root')\n", (309, 317), False, 'import os\n')]
from django.shortcuts import render, HttpResponse from datetime import date from .models import Email import json # Create your views here. def getEmail(request): if request.method=="POST": email = request.POST.get('email') Email.objects.create( email = email, register_date = date.today(), ) res = {'ret':0, 'msg':'ok'} return HttpResponse(json.dumps(res),content_type='application/json') return render(request,'index.html')
[ "django.shortcuts.render", "datetime.date.today", "json.dumps" ]
[((469, 498), 'django.shortcuts.render', 'render', (['request', '"""index.html"""'], {}), "(request, 'index.html')\n", (475, 498), False, 'from django.shortcuts import render, HttpResponse\n'), ((409, 424), 'json.dumps', 'json.dumps', (['res'], {}), '(res)\n', (419, 424), False, 'import json\n'), ((321, 333), 'datetime.date.today', 'date.today', ([], {}), '()\n', (331, 333), False, 'from datetime import date\n')]
# Created by Hansi at 12/22/2021 import re import demoji from nltk import TweetTokenizer from sklearn.model_selection import StratifiedShuffleSplit puncts = [',', '.', '"', ':', ')', '(', '-', '!', '?', '|', ';', "'", '$', '&', '/', '[', ']', '>', '%', '=', '#', '*', '+', '\\', '•', '~', '@', '£', '·', '_', '{', '}', '©', '^', '®', '`', '<', '→', '°', '€', '™', '›', '♥', '←', '×', '§', '″', '′', 'Â', '█', '½', 'à', '…', '“', '★', '”', '–', '●', 'â', '►', '−', '¢', '²', '¬', '░', '¶', '↑', '±', '¿', '▾', '═', '¦', '║', '―', '¥', '▓', '—', '‹', '─', '▒', ':', '¼', '⊕', '▼', '▪', '†', '■', '’', '▀', '¨', '▄', '♫', '☆', 'é', '¯', '♦', '¤', '▲', 'è', '¸', '¾', 'Ã', '⋅', '‘', '∞', '∙', ')', '↓', '、', '│', '(', '»', ',', '♪', '╩', '╚', '³', '・', '╦', '╣', '╔', '╗', '▬', '❤', 'ï', 'Ø', '¹', '≤', '‡', '√', '..', '...', '…'] def remove_links(sentence, substitute=''): """ Method to remove links in the given text parameters ----------- :param sentence: str :param substitute: str which to replace link :return: str String without links """ sentence = re.sub('https?:\/\/\S+', substitute, sentence, flags=re.MULTILINE) return sentence.strip() def remove_repeating_characters(sentence): """ remove non alphaneumeric characters which repeat more than 3 times by its 3 occurrence (e.g. ----- to ---) :param sentence: :return: """ sentence = re.sub('(\W)\\1{3,}', '\\1', sentence) return sentence.strip() def remove_retweet_notations(sentence): """ Method to remove retweet notations in the given text parameters ----------- :param sentence: str :return: str String without retweet notations """ updated_sentence = re.sub(r'RT @[a-zA-Z0-9_/-]*:', '', sentence) return updated_sentence.strip() def add_emoji_text(x): """ Covert emoji to text :param x: str :return: str String where emojis are replaced by text """ emoji_text = demoji.findall(x) for em in emoji_text.keys(): x = x.replace(em, ' ' + emoji_text[em] + ' ') x = ' '.join(x.split()) return x def preprocess_data(text, preserve_case=False, emoji_to_text=False): """ A Pipeline to preprocess data :param text: str :param preserve_case: boolean, optional :param emoji_to_text: boolean, optional :return: str """ text = text.replace("\n", " ") text = remove_links(text, substitute='') text = remove_retweet_notations(text) text = remove_repeating_characters(text) if emoji_to_text: text = add_emoji_text(text) # tokenize and lower case tknzr = TweetTokenizer(preserve_case=preserve_case, reduce_len=True, strip_handles=False) tokens = tknzr.tokenize(text) text = " ".join(tokens) # text.replace(symbol, "#") # remove # in hash tags # remove white spaces at the beginning and end of the text text = text.strip() # remove extra whitespace, newline, tab text = ' '.join(text.split()) return text def split_data(df, seed, label_column='label', test_size=0.1): """ StratifiedShuffleSplit the given DataFrame :param df: DataFrame :param seed: int :param label_column: str :param test_size: float :return: DataFrame, DataFrame train and test """ y = df[label_column] sss = StratifiedShuffleSplit(n_splits=1, test_size=test_size, random_state=seed) train_index, test_index = next(sss.split(df, y)) train = df.iloc[train_index] test = df.iloc[test_index] return train, test
[ "sklearn.model_selection.StratifiedShuffleSplit", "demoji.findall", "nltk.TweetTokenizer", "re.sub" ]
[((1200, 1269), 're.sub', 're.sub', (['"""https?:\\\\/\\\\/\\\\S+"""', 'substitute', 'sentence'], {'flags': 're.MULTILINE'}), "('https?:\\\\/\\\\/\\\\S+', substitute, sentence, flags=re.MULTILINE)\n", (1206, 1269), False, 'import re\n'), ((1516, 1555), 're.sub', 're.sub', (['"""(\\\\W)\\\\1{3,}"""', '"""\\\\1"""', 'sentence'], {}), "('(\\\\W)\\\\1{3,}', '\\\\1', sentence)\n", (1522, 1555), False, 'import re\n'), ((1835, 1879), 're.sub', 're.sub', (['"""RT @[a-zA-Z0-9_/-]*:"""', '""""""', 'sentence'], {}), "('RT @[a-zA-Z0-9_/-]*:', '', sentence)\n", (1841, 1879), False, 'import re\n'), ((2084, 2101), 'demoji.findall', 'demoji.findall', (['x'], {}), '(x)\n', (2098, 2101), False, 'import demoji\n'), ((2743, 2829), 'nltk.TweetTokenizer', 'TweetTokenizer', ([], {'preserve_case': 'preserve_case', 'reduce_len': '(True)', 'strip_handles': '(False)'}), '(preserve_case=preserve_case, reduce_len=True, strip_handles=\n False)\n', (2757, 2829), False, 'from nltk import TweetTokenizer\n'), ((3448, 3522), 'sklearn.model_selection.StratifiedShuffleSplit', 'StratifiedShuffleSplit', ([], {'n_splits': '(1)', 'test_size': 'test_size', 'random_state': 'seed'}), '(n_splits=1, test_size=test_size, random_state=seed)\n', (3470, 3522), False, 'from sklearn.model_selection import StratifiedShuffleSplit\n')]
from django.test import TestCase from services.models import ( Service, ServiceStatusChoices, ServiceRelation, ServiceRealtionChoice, Link, LinkTypeChoice, ) from tenancy.models import Tenant from platforms.models import Platform class ServiceModelTest(TestCase): def setUp(self): self.tenant_owner = Tenant.objects.create(name="Acme Corp.") self.tenant_operator = Tenant.objects.create(name="Operator Incl.") self.platform = Platform.objects.create( name="Road Runner Cloud", tenant=self.tenant_owner ) def test_slug_is_generated_on_save(self): service = Service( name="Prometheus", operator=self.tenant_operator, owner=self.tenant_owner, platform=self.platform, ) self.assertEquals("", service.slug) service.save() self.assertEquals("prometheus", service.slug) def test_service_is_active_by_default(self): service = Service( name="Prometheus", operator=self.tenant_operator, owner=self.tenant_owner, platform=self.platform, ) self.assertEquals(ServiceStatusChoices.ACTIVE, service.status) def test_service_has_related_services(self): source = Service.objects.create( name="Source", operator=self.tenant_operator, owner=self.tenant_owner, platform=self.platform, ) dest = Service.objects.create( name="Dest", operator=self.tenant_operator, owner=self.tenant_owner, platform=self.platform, ) ServiceRelation.objects.create( source=source, relation=ServiceRealtionChoice.RELATED, dest=dest, comment="test", ) inbound_list = dest.get_inbound_relations() self.assertEqual(1, len(inbound_list)) self.assertEqual("test", inbound_list.first().comment) self.assertEqual("Source", inbound_list.first().source.name) outbound_list = source.get_outbound_relations() self.assertEqual(1, len(outbound_list)) self.assertEqual("test", outbound_list.first().comment) self.assertEqual("Dest", outbound_list.first().dest.name) def test_service_has_link(self): svc = Service.objects.create( name="Service", operator=self.tenant_operator, owner=self.tenant_owner, platform=self.platform, ) link = Link.objects.create( link_type=LinkTypeChoice.WEBSITE, url="http://example.com", description="My fancy Website", service=svc, ) self.assertEqual(svc.links.first().url, "http://example.com") self.assertEqual(svc.links.first().link_type, LinkTypeChoice.WEBSITE) self.assertEqual(svc.links.first().description, "My fancy Website")
[ "tenancy.models.Tenant.objects.create", "services.models.Service", "services.models.ServiceRelation.objects.create", "platforms.models.Platform.objects.create", "services.models.Link.objects.create", "services.models.Service.objects.create" ]
[((340, 380), 'tenancy.models.Tenant.objects.create', 'Tenant.objects.create', ([], {'name': '"""Acme Corp."""'}), "(name='Acme Corp.')\n", (361, 380), False, 'from tenancy.models import Tenant\n'), ((412, 456), 'tenancy.models.Tenant.objects.create', 'Tenant.objects.create', ([], {'name': '"""Operator Incl."""'}), "(name='Operator Incl.')\n", (433, 456), False, 'from tenancy.models import Tenant\n'), ((481, 556), 'platforms.models.Platform.objects.create', 'Platform.objects.create', ([], {'name': '"""Road Runner Cloud"""', 'tenant': 'self.tenant_owner'}), "(name='Road Runner Cloud', tenant=self.tenant_owner)\n", (504, 556), False, 'from platforms.models import Platform\n'), ((644, 755), 'services.models.Service', 'Service', ([], {'name': '"""Prometheus"""', 'operator': 'self.tenant_operator', 'owner': 'self.tenant_owner', 'platform': 'self.platform'}), "(name='Prometheus', operator=self.tenant_operator, owner=self.\n tenant_owner, platform=self.platform)\n", (651, 755), False, 'from services.models import Service, ServiceStatusChoices, ServiceRelation, ServiceRealtionChoice, Link, LinkTypeChoice\n'), ((1000, 1111), 'services.models.Service', 'Service', ([], {'name': '"""Prometheus"""', 'operator': 'self.tenant_operator', 'owner': 'self.tenant_owner', 'platform': 'self.platform'}), "(name='Prometheus', operator=self.tenant_operator, owner=self.\n tenant_owner, platform=self.platform)\n", (1007, 1111), False, 'from services.models import Service, ServiceStatusChoices, ServiceRelation, ServiceRealtionChoice, Link, LinkTypeChoice\n'), ((1304, 1426), 'services.models.Service.objects.create', 'Service.objects.create', ([], {'name': '"""Source"""', 'operator': 'self.tenant_operator', 'owner': 'self.tenant_owner', 'platform': 'self.platform'}), "(name='Source', operator=self.tenant_operator, owner=\n self.tenant_owner, platform=self.platform)\n", (1326, 1426), False, 'from services.models import Service, ServiceStatusChoices, ServiceRelation, ServiceRealtionChoice, Link, LinkTypeChoice\n'), ((1496, 1616), 'services.models.Service.objects.create', 'Service.objects.create', ([], {'name': '"""Dest"""', 'operator': 'self.tenant_operator', 'owner': 'self.tenant_owner', 'platform': 'self.platform'}), "(name='Dest', operator=self.tenant_operator, owner=\n self.tenant_owner, platform=self.platform)\n", (1518, 1616), False, 'from services.models import Service, ServiceStatusChoices, ServiceRelation, ServiceRealtionChoice, Link, LinkTypeChoice\n'), ((1680, 1797), 'services.models.ServiceRelation.objects.create', 'ServiceRelation.objects.create', ([], {'source': 'source', 'relation': 'ServiceRealtionChoice.RELATED', 'dest': 'dest', 'comment': '"""test"""'}), "(source=source, relation=\n ServiceRealtionChoice.RELATED, dest=dest, comment='test')\n", (1710, 1797), False, 'from services.models import Service, ServiceStatusChoices, ServiceRelation, ServiceRealtionChoice, Link, LinkTypeChoice\n'), ((2371, 2494), 'services.models.Service.objects.create', 'Service.objects.create', ([], {'name': '"""Service"""', 'operator': 'self.tenant_operator', 'owner': 'self.tenant_owner', 'platform': 'self.platform'}), "(name='Service', operator=self.tenant_operator, owner\n =self.tenant_owner, platform=self.platform)\n", (2393, 2494), False, 'from services.models import Service, ServiceStatusChoices, ServiceRelation, ServiceRealtionChoice, Link, LinkTypeChoice\n'), ((2565, 2694), 'services.models.Link.objects.create', 'Link.objects.create', ([], {'link_type': 'LinkTypeChoice.WEBSITE', 'url': '"""http://example.com"""', 'description': '"""My fancy Website"""', 'service': 'svc'}), "(link_type=LinkTypeChoice.WEBSITE, url=\n 'http://example.com', description='My fancy Website', service=svc)\n", (2584, 2694), False, 'from services.models import Service, ServiceStatusChoices, ServiceRelation, ServiceRealtionChoice, Link, LinkTypeChoice\n')]
import os.path import datetime class ErrorLog(): @staticmethod def writeToFile(log): time = datetime.datetime.now() f = open('error_log.txt', 'a', encoding='utf8') f.write(time.strftime("%Y-%m-%d %H:%M:%S ") + log + '\n') f.close() #test = LogFile.checkExistsFile() #LogFile.writeToFile('test1')
[ "datetime.datetime.now" ]
[((111, 134), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (132, 134), False, 'import datetime\n')]
from __future__ import annotations from functools import reduce from os import environ from pathlib import Path from typing import Collection, List, Optional, Set from typing_extensions import TypedDict Team = TypedDict( "Team", {"name": str, "members": List[str], "children": List[str]} ) Organisation = TypedDict( "Organisation", {"name": str, "owners": List[str], "teams": List[Team]} ) Config = TypedDict("Config", {"organisation": Organisation}) def get_teams(config: Config) -> Collection[Team]: return config["organisation"]["teams"] def get_team(config: Config, name: str) -> Optional[Team]: elems = [x for x in get_teams(config) if x["name"] == name] assert len(elems) <= 1 # nosec: testing only if elems: return elems[0] return None def _get_team_exists(config: Config, name: str) -> Team: team = get_team(config, name) if not team: raise RuntimeError("team {} not found".format(name)) return team def team_name(team: Team) -> str: return team["name"] # direct members of a team, not taking members of descendants teams into # account def team_direct_members(team: Team) -> Collection[str]: if team["members"]: return team["members"] return [] # effective members of a team (direct members + members of descendants teams) def team_effective_members(config: Config, team: Team) -> Set[str]: return reduce( lambda acc, child: acc | set(team_direct_members(child)), [_get_team_exists(config, x) for x in team_descendants(config, team)], set(team_direct_members(team)), ) def team_children(team: Team) -> Collection[str]: if "children" in team: return team["children"] return [] def team_descendants(config: Config, team: Team) -> Set[str]: def reduce_function(acc: Set[str], child_name: str) -> Set[str]: child_team = _get_team_exists(config, child_name) return acc | team_descendants(config, child_team) | {child_name} if "children" in team: return reduce(reduce_function, set(team_children(team)), set()) return set() def team_parents(config: Config, team: Team) -> Collection[Team]: def is_parent(entry: Team, team: Team) -> bool: return team_name(team) in team_children(entry) return [x for x in get_teams(config) if is_parent(x, team)] def team_parent(config: Config, team: Team) -> Optional[Team]: elems = team_parents(config, team) assert len(elems) <= 1 # nosec: testing only if elems: return next(iter(elems)) return None def team_ancestors(config: Config, team: Team) -> Set[str]: ancestors = set() parents = team_parents(config, team) for parent in parents: ancestors.update(team_ancestors(config, parent)) ancestors.update(map(team_name, parents)) return ancestors def user_teams(config: Config, email: str) -> Collection[Team]: return [x for x in get_teams(config) if email in team_direct_members(x)] def is_owner(config: Config, email: str) -> bool: return email in config["organisation"]["owners"] def default_dir() -> Path: def parent_dir() -> Path: xdg_home = environ.get("XDG_CONFIG_HOME") if xdg_home: return Path(xdg_home) home = environ.get("HOME") if home: return Path(home) / ".config" return Path("/") return parent_dir() / "ghaudit"
[ "os.environ.get", "pathlib.Path", "typing_extensions.TypedDict" ]
[((213, 290), 'typing_extensions.TypedDict', 'TypedDict', (['"""Team"""', "{'name': str, 'members': List[str], 'children': List[str]}"], {}), "('Team', {'name': str, 'members': List[str], 'children': List[str]})\n", (222, 290), False, 'from typing_extensions import TypedDict\n'), ((312, 399), 'typing_extensions.TypedDict', 'TypedDict', (['"""Organisation"""', "{'name': str, 'owners': List[str], 'teams': List[Team]}"], {}), "('Organisation', {'name': str, 'owners': List[str], 'teams': List[\n Team]})\n", (321, 399), False, 'from typing_extensions import TypedDict\n'), ((410, 461), 'typing_extensions.TypedDict', 'TypedDict', (['"""Config"""', "{'organisation': Organisation}"], {}), "('Config', {'organisation': Organisation})\n", (419, 461), False, 'from typing_extensions import TypedDict\n'), ((3167, 3197), 'os.environ.get', 'environ.get', (['"""XDG_CONFIG_HOME"""'], {}), "('XDG_CONFIG_HOME')\n", (3178, 3197), False, 'from os import environ\n'), ((3268, 3287), 'os.environ.get', 'environ.get', (['"""HOME"""'], {}), "('HOME')\n", (3279, 3287), False, 'from os import environ\n'), ((3362, 3371), 'pathlib.Path', 'Path', (['"""/"""'], {}), "('/')\n", (3366, 3371), False, 'from pathlib import Path\n'), ((3238, 3252), 'pathlib.Path', 'Path', (['xdg_home'], {}), '(xdg_home)\n', (3242, 3252), False, 'from pathlib import Path\n'), ((3324, 3334), 'pathlib.Path', 'Path', (['home'], {}), '(home)\n', (3328, 3334), False, 'from pathlib import Path\n')]
""" implement a CNN network as mentioned in VIN paper. Author: <NAME> """ import tensorflow as tf from tensorflow.contrib.layers import conv2d, fully_connected, max_pool2d, dropout ''' normal structure for each conv layer:conv -> elu -> bn -> pooling. conv-1: 3x3 s:1, 50 channels .no padding . max pooling: 2x2 conv-2: 3x3,s:1, 50 channels. no padding . conv-3: 3x3,s:1. 100 channels. no padding . max pooling: 2x2 conv-4: 3x3 s:1, 100 channels. no padding. conv-5: 3x3 s:1, 100 channels. no padding. fc-1:200-units. followed by elu. fc-2: 4-units. output is logits. output: unscaled logits of each actions: up left right down === state space: s_image of grid map s_goal s_curr_pos of current state ''' TRAINING_CFG = tf.app.flags.FLAGS # alias class CNNModel: def __init__(self, cnn_model_cfg,optimizer,is_training, scope="cnn_model"): self.cnn_model_cfg = cnn_model_cfg self.optimizer = optimizer self.scope = scope self.is_training = is_training def create_net(self, state_inputs, labels, global_step_tensor): """ :param labels: :param global_step_tensor: :param state_inputs: :return: """ prev_layer = state_inputs conv_layers = [] fc_layers = [] with tf.variable_scope(self.scope): # conv layers # TODO add batch_norm to input process. for (n_maps, kernel_size, stride, padding, activation, initializer, normalizer, norm_param, regularizer, pooling_kernel_size, pooling_stride, keep_prob) in \ zip( self.cnn_model_cfg.conv_n_feature_maps, self.cnn_model_cfg.conv_kernel_sizes, self.cnn_model_cfg.conv_strides, self.cnn_model_cfg.conv_paddings, self.cnn_model_cfg.conv_activations, self.cnn_model_cfg.conv_initializers, self.cnn_model_cfg.conv_normalizers, self.cnn_model_cfg.conv_norm_params, self.cnn_model_cfg.conv_regularizers, self.cnn_model_cfg.pooling_kernel_sizes, self.cnn_model_cfg.pooling_strides, self.cnn_model_cfg.conv_dropout_keep_probs): prev_layer = conv2d(prev_layer, num_outputs=n_maps, kernel_size=kernel_size, stride=stride, padding=padding, activation_fn=activation, data_format='NHWC', normalizer_fn=normalizer, normalizer_params=norm_param, weights_initializer=initializer, weights_regularizer=regularizer, trainable=True) if pooling_kernel_size: # max pooling only prev_layer = max_pool2d(prev_layer, pooling_kernel_size, pooling_stride, padding='VALID', data_format='NHWC') if keep_prob < 1: prev_layer = dropout(prev_layer, keep_prob,is_training=self.is_training) conv_layers.append(prev_layer) ##fc layers.inc output layer. # flatten the output of last conv layer to (batch_size, n_fc_in) prev_layer = tf.reshape(conv_layers[-1], shape=[-1,conv_layers[-1].shape[1] * conv_layers[-1].shape[2] * conv_layers[-1].shape[3]]) for n_unit, activation, initializer, normalizer, norm_param, regularizer,keep_prob \ in zip( self.cnn_model_cfg.n_fc_units, self.cnn_model_cfg.fc_activations, self.cnn_model_cfg.fc_initializers, self.cnn_model_cfg.fc_normalizers, self.cnn_model_cfg.fc_norm_params, self.cnn_model_cfg.fc_regularizers, self.cnn_model_cfg.fc_dropout_keep_probs): prev_layer = fully_connected(prev_layer, num_outputs=n_unit, activation_fn=activation, weights_initializer=initializer, normalizer_fn=normalizer, normalizer_params=norm_param, weights_regularizer=regularizer, trainable=True) if keep_prob < 1: prev_layer = dropout(prev_layer, keep_prob, is_training=self.is_training) fc_layers.append(prev_layer) # logits should be [batch_size, num_action] logits = prev_layer reg_loss = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) cross_entropy_loss = tf.losses.sparse_softmax_cross_entropy(labels, logits) predicted_classes = tf.argmax(logits, axis=1) total_loss = tf.add_n(reg_loss + [cross_entropy_loss], name='total_loss') train_op = self.optimizer.minimize(total_loss, global_step_tensor) total_loss_mean = tf.reduce_mean(total_loss) with tf.name_scope('loss'): tf.summary.scalar(name='total_loss', tensor=total_loss_mean, collections=[TRAINING_CFG.summary_keys]) # with tf.name_scope('d_policy_loss_da_grads'): # d_policy_loss_da_grads=tf.gradients(ys=policy_loss,xs=actor.action_bounded_tensors) # for i in range(len(dq_da_grads)): # tf.summary.scalar(name='d_policy_loss_da_grads_'+str(i)+'norm',tensor=tf.norm(d_policy_loss_da_grads[i]), # collections=[self.cnn_model_cfg.actor_summary_keys]) # == end with variable_scope() == return train_op, total_loss, predicted_classes
[ "tensorflow.contrib.layers.max_pool2d", "tensorflow.add_n", "tensorflow.losses.sparse_softmax_cross_entropy", "tensorflow.summary.scalar", "tensorflow.contrib.layers.fully_connected", "tensorflow.get_collection", "tensorflow.argmax", "tensorflow.reshape", "tensorflow.reduce_mean", "tensorflow.variable_scope", "tensorflow.contrib.layers.conv2d", "tensorflow.contrib.layers.dropout", "tensorflow.name_scope" ]
[((1369, 1398), 'tensorflow.variable_scope', 'tf.variable_scope', (['self.scope'], {}), '(self.scope)\n', (1386, 1398), True, 'import tensorflow as tf\n'), ((3389, 3512), 'tensorflow.reshape', 'tf.reshape', (['conv_layers[-1]'], {'shape': '[-1, conv_layers[-1].shape[1] * conv_layers[-1].shape[2] * conv_layers[-1].\n shape[3]]'}), '(conv_layers[-1], shape=[-1, conv_layers[-1].shape[1] *\n conv_layers[-1].shape[2] * conv_layers[-1].shape[3]])\n', (3399, 3512), True, 'import tensorflow as tf\n'), ((4741, 4794), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.REGULARIZATION_LOSSES'], {}), '(tf.GraphKeys.REGULARIZATION_LOSSES)\n', (4758, 4794), True, 'import tensorflow as tf\n'), ((4828, 4882), 'tensorflow.losses.sparse_softmax_cross_entropy', 'tf.losses.sparse_softmax_cross_entropy', (['labels', 'logits'], {}), '(labels, logits)\n', (4866, 4882), True, 'import tensorflow as tf\n'), ((4915, 4940), 'tensorflow.argmax', 'tf.argmax', (['logits'], {'axis': '(1)'}), '(logits, axis=1)\n', (4924, 4940), True, 'import tensorflow as tf\n'), ((4966, 5026), 'tensorflow.add_n', 'tf.add_n', (['(reg_loss + [cross_entropy_loss])'], {'name': '"""total_loss"""'}), "(reg_loss + [cross_entropy_loss], name='total_loss')\n", (4974, 5026), True, 'import tensorflow as tf\n'), ((5137, 5163), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['total_loss'], {}), '(total_loss)\n', (5151, 5163), True, 'import tensorflow as tf\n'), ((2249, 2545), 'tensorflow.contrib.layers.conv2d', 'conv2d', (['prev_layer'], {'num_outputs': 'n_maps', 'kernel_size': 'kernel_size', 'stride': 'stride', 'padding': 'padding', 'activation_fn': 'activation', 'data_format': '"""NHWC"""', 'normalizer_fn': 'normalizer', 'normalizer_params': 'norm_param', 'weights_initializer': 'initializer', 'weights_regularizer': 'regularizer', 'trainable': '(True)'}), "(prev_layer, num_outputs=n_maps, kernel_size=kernel_size, stride=\n stride, padding=padding, activation_fn=activation, data_format='NHWC',\n normalizer_fn=normalizer, normalizer_params=norm_param,\n weights_initializer=initializer, weights_regularizer=regularizer,\n trainable=True)\n", (2255, 2545), False, 'from tensorflow.contrib.layers import conv2d, fully_connected, max_pool2d, dropout\n'), ((3973, 4196), 'tensorflow.contrib.layers.fully_connected', 'fully_connected', (['prev_layer'], {'num_outputs': 'n_unit', 'activation_fn': 'activation', 'weights_initializer': 'initializer', 'normalizer_fn': 'normalizer', 'normalizer_params': 'norm_param', 'weights_regularizer': 'regularizer', 'trainable': '(True)'}), '(prev_layer, num_outputs=n_unit, activation_fn=activation,\n weights_initializer=initializer, normalizer_fn=normalizer,\n normalizer_params=norm_param, weights_regularizer=regularizer,\n trainable=True)\n', (3988, 4196), False, 'from tensorflow.contrib.layers import conv2d, fully_connected, max_pool2d, dropout\n'), ((5181, 5202), 'tensorflow.name_scope', 'tf.name_scope', (['"""loss"""'], {}), "('loss')\n", (5194, 5202), True, 'import tensorflow as tf\n'), ((5220, 5326), 'tensorflow.summary.scalar', 'tf.summary.scalar', ([], {'name': '"""total_loss"""', 'tensor': 'total_loss_mean', 'collections': '[TRAINING_CFG.summary_keys]'}), "(name='total_loss', tensor=total_loss_mean, collections=[\n TRAINING_CFG.summary_keys])\n", (5237, 5326), True, 'import tensorflow as tf\n'), ((2929, 3029), 'tensorflow.contrib.layers.max_pool2d', 'max_pool2d', (['prev_layer', 'pooling_kernel_size', 'pooling_stride'], {'padding': '"""VALID"""', 'data_format': '"""NHWC"""'}), "(prev_layer, pooling_kernel_size, pooling_stride, padding='VALID',\n data_format='NHWC')\n", (2939, 3029), False, 'from tensorflow.contrib.layers import conv2d, fully_connected, max_pool2d, dropout\n'), ((3137, 3197), 'tensorflow.contrib.layers.dropout', 'dropout', (['prev_layer', 'keep_prob'], {'is_training': 'self.is_training'}), '(prev_layer, keep_prob, is_training=self.is_training)\n', (3144, 3197), False, 'from tensorflow.contrib.layers import conv2d, fully_connected, max_pool2d, dropout\n'), ((4522, 4582), 'tensorflow.contrib.layers.dropout', 'dropout', (['prev_layer', 'keep_prob'], {'is_training': 'self.is_training'}), '(prev_layer, keep_prob, is_training=self.is_training)\n', (4529, 4582), False, 'from tensorflow.contrib.layers import conv2d, fully_connected, max_pool2d, dropout\n')]
# SPDX-FileCopyrightText: 2009 Fermi Research Alliance, LLC # SPDX-License-Identifier: Apache-2.0 # # Project: # glideinWMS # # File Version: # # Description: # factory/tool specific condorLogs helper # import binascii import gzip import io import mmap import os.path import re import time from glideinwms.factory import glideFactoryLogParser from glideinwms.lib import condorLogParser from glideinwms.lib.defaults import BINARY_ENCODING, force_bytes # get the list of jobs that were active at a certain time def get_glideins(log_dir_name, date_arr, time_arr): glidein_list = [] cldata = glideFactoryLogParser.dirSummaryTimingsOutFull(log_dir_name, cache_dir=None) cldata.load(active_only=False) glidein_data = cldata.data["Completed"] # I am interested only in the completed ones ref_ctime = time.mktime(date_arr + time_arr + (0, 0, -1)) for glidein_el in glidein_data: glidein_id, fistTimeStr, runningStartTimeStr, lastTimeStr = glidein_el runningStartTime = condorLogParser.rawTime2cTimeLastYear(runningStartTimeStr) if runningStartTime > ref_ctime: continue # not one of them, started after lastTime = condorLogParser.rawTime2cTimeLastYear(lastTimeStr) if lastTime < ref_ctime: continue # not one of them, ended before glidein_list.append(glidein_id) return glidein_list # get the list of log files for an entry that were active at a certain time def get_glidein_logs_entry(factory_dir, entry, date_arr, time_arr, ext="err"): log_list = [] log_dir_name = os.path.join(factory_dir, "entry_%s/log" % entry) glidein_list = get_glideins(log_dir_name, date_arr, time_arr) for glidein_id in glidein_list: glidein_log_file = "job.%i.%i." % condorLogParser.rawJobId2Nr(glidein_id) glidein_log_file += ext glidein_log_filepath = os.path.join(log_dir_name, glidein_log_file) if os.path.exists(glidein_log_filepath): log_list.append(glidein_log_filepath) return log_list # get the list of log files for an entry that were active at a certain time def get_glidein_logs(factory_dir, entries, date_arr, time_arr, ext="err"): log_list = [] for entry in entries: entry_log_list = get_glidein_logs_entry(factory_dir, entry, date_arr, time_arr, ext) log_list += entry_log_list return log_list # extract the blob from a glidein log file starting from position def get_Compressed_raw(log_fname, start_str, start_pos=0): SL_START_RE = re.compile(b"%s\nbegin-base64 644 -\n" % force_bytes(start_str, BINARY_ENCODING), re.M | re.DOTALL) size = os.path.getsize(log_fname) if size == 0: return "" # mmap would fail... and I know I will not find anything anyhow with open(log_fname) as fd: buf = mmap.mmap(fd.fileno(), size, access=mmap.ACCESS_READ) try: # first find the header that delimits the log in the file start_re = SL_START_RE.search(buf, 0) if start_re is None: return "" # no StartLog section log_start_idx = start_re.end() # find where it ends log_end_idx = buf.find(b"\n====", log_start_idx) if log_end_idx < 0: # up to the end of the file return buf[log_start_idx:].decode(BINARY_ENCODING) else: return buf[log_start_idx:log_end_idx].decode(BINARY_ENCODING) finally: buf.close() # extract the blob from a glidein log file def get_Compressed(log_fname, start_str): raw_data = get_Compressed_raw(log_fname, start_str) if raw_data != "": gzip_data = binascii.a2b_base64(raw_data) del raw_data data_fd = gzip.GzipFile(fileobj=io.BytesIO(gzip_data)) data = data_fd.read().decode(BINARY_ENCODING) else: data = raw_data return data # extract the blob from a glidein log file def get_Simple(log_fname, start_str, end_str): SL_START_RE = re.compile(force_bytes(start_str, BINARY_ENCODING) + b"\n", re.M | re.DOTALL) SL_END_RE = re.compile(end_str, re.M | re.DOTALL) size = os.path.getsize(log_fname) if size == 0: return "" # mmap would fail... and I know I will not find anything anyhow with open(log_fname) as fd: buf = mmap.mmap(fd.fileno(), size, access=mmap.ACCESS_READ) try: # first find the header that delimits the log in the file start_re = SL_START_RE.search(buf, 0) if start_re is None: return "" # no StartLog section log_start_idx = start_re.end() # find where it ends log_end_idx = SL_END_RE.search(buf, log_start_idx) if log_end_idx is None: # up to the end of the file return buf[log_start_idx:].decode(BINARY_ENCODING) else: return buf[log_start_idx : log_end_idx.start()].decode(BINARY_ENCODING) finally: buf.close() # extract the Condor Log from a glidein log file # condor_log_id should be something like "StartdLog" def get_CondorLog(log_fname, condor_log_id): start_str = "^%s\n======== gzip . uuencode =============" % condor_log_id return get_Compressed(log_fname, start_str) # extract the XML Result from a glidein log file def get_XMLResult(log_fname): start_str = "^=== Encoded XML description of glidein activity ===" s = get_Compressed(log_fname, start_str) if s != "": return s # not found, try the uncompressed version start_str = "^=== XML description of glidein activity ===" end_str = "^=== End XML description of glidein activity ===" return get_Simple(log_fname, start_str, end_str) # extract slot names def get_StarterSlotNames(log_fname, condor_log_id="(StarterLog.slot[0-9]*[_]*[0-9]*)"): start_str = "^%s\n======== gzip . uuencode =============" % condor_log_id SL_START_RE = re.compile(b"%s\nbegin-base64 644 -\n" % force_bytes(start_str, BINARY_ENCODING), re.M | re.DOTALL) size = os.path.getsize(log_fname) if size == 0: return "" # mmap would fail... and I know I will not find anything anyhow with open(log_fname) as fd: buf = mmap.mmap(fd.fileno(), size, access=mmap.ACCESS_READ) try: strings = [s.decode(BINARY_ENCODING) for s in SL_START_RE.findall(buf, 0)] return strings finally: buf.close()
[ "io.BytesIO", "glideinwms.factory.glideFactoryLogParser.dirSummaryTimingsOutFull", "re.compile", "glideinwms.lib.defaults.force_bytes", "time.mktime", "glideinwms.lib.condorLogParser.rawJobId2Nr", "binascii.a2b_base64", "glideinwms.lib.condorLogParser.rawTime2cTimeLastYear" ]
[((606, 682), 'glideinwms.factory.glideFactoryLogParser.dirSummaryTimingsOutFull', 'glideFactoryLogParser.dirSummaryTimingsOutFull', (['log_dir_name'], {'cache_dir': 'None'}), '(log_dir_name, cache_dir=None)\n', (652, 682), False, 'from glideinwms.factory import glideFactoryLogParser\n'), ((825, 870), 'time.mktime', 'time.mktime', (['(date_arr + time_arr + (0, 0, -1))'], {}), '(date_arr + time_arr + (0, 0, -1))\n', (836, 870), False, 'import time\n'), ((4104, 4141), 're.compile', 're.compile', (['end_str', '(re.M | re.DOTALL)'], {}), '(end_str, re.M | re.DOTALL)\n', (4114, 4141), False, 'import re\n'), ((1014, 1072), 'glideinwms.lib.condorLogParser.rawTime2cTimeLastYear', 'condorLogParser.rawTime2cTimeLastYear', (['runningStartTimeStr'], {}), '(runningStartTimeStr)\n', (1051, 1072), False, 'from glideinwms.lib import condorLogParser\n'), ((1188, 1238), 'glideinwms.lib.condorLogParser.rawTime2cTimeLastYear', 'condorLogParser.rawTime2cTimeLastYear', (['lastTimeStr'], {}), '(lastTimeStr)\n', (1225, 1238), False, 'from glideinwms.lib import condorLogParser\n'), ((3682, 3711), 'binascii.a2b_base64', 'binascii.a2b_base64', (['raw_data'], {}), '(raw_data)\n', (3701, 3711), False, 'import binascii\n'), ((1780, 1819), 'glideinwms.lib.condorLogParser.rawJobId2Nr', 'condorLogParser.rawJobId2Nr', (['glidein_id'], {}), '(glidein_id)\n', (1807, 1819), False, 'from glideinwms.lib import condorLogParser\n'), ((2580, 2619), 'glideinwms.lib.defaults.force_bytes', 'force_bytes', (['start_str', 'BINARY_ENCODING'], {}), '(start_str, BINARY_ENCODING)\n', (2591, 2619), False, 'from glideinwms.lib.defaults import BINARY_ENCODING, force_bytes\n'), ((4021, 4060), 'glideinwms.lib.defaults.force_bytes', 'force_bytes', (['start_str', 'BINARY_ENCODING'], {}), '(start_str, BINARY_ENCODING)\n', (4032, 4060), False, 'from glideinwms.lib.defaults import BINARY_ENCODING, force_bytes\n'), ((5995, 6034), 'glideinwms.lib.defaults.force_bytes', 'force_bytes', (['start_str', 'BINARY_ENCODING'], {}), '(start_str, BINARY_ENCODING)\n', (6006, 6034), False, 'from glideinwms.lib.defaults import BINARY_ENCODING, force_bytes\n'), ((3773, 3794), 'io.BytesIO', 'io.BytesIO', (['gzip_data'], {}), '(gzip_data)\n', (3783, 3794), False, 'import io\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # (c) 2012 <NAME> <mkalewski at cs.put.poznan.pl> # # This file is a part of the Simple Network Simulator (sim2net) project. # USE, MODIFICATION, COPYING AND DISTRIBUTION OF THIS SOFTWARE IS SUBJECT TO # THE TERMS AND CONDITIONS OF THE MIT LICENSE. YOU SHOULD HAVE RECEIVED A COPY # OF THE MIT LICENSE ALONG WITH THIS SOFTWARE; IF NOT, YOU CAN DOWNLOAD A COPY # FROM HTTP://WWW.OPENSOURCE.ORG/. # # For bug reports, feature and support requests please visit # <https://github.com/mkalewski/sim2net/issues>. """ Provides an implementation of the normal speed distribution. In this case a speed of a node is assigned at random with the normal, i.e. Gaussian, probability distribution. """ from sim2net.speed._speed import Speed from sim2net.utility.validation import check_argument_type __docformat__ = 'reStructuredText' class Normal(Speed): """ This class implements the normal speed distribution that assigns node's speeds with the Gaussian probability distribution. """ def __init__(self, mean=0.0, standard_deviation=0.2): """ (Defaults to **standard normal distribution**.) *Parameters*: - **mean** (`float`): a value of the expectation (default: `0.0`); - **standard_deviation** (`float`): a value of the standard deviation (default: `0.2`). """ super(Normal, self).__init__(Normal.__name__) check_argument_type(Normal.__name__, 'mean', float, mean, self.logger) self.__mean = float(mean) check_argument_type(Normal.__name__, 'standard_deviation', float, standard_deviation, self.logger) self.__standard_deviation = float(standard_deviation) self.__current_speed = None self.get_new() @property def mean(self): """ (*Property*) A value of the expectation of type `float`. """ return self.__mean @property def current(self): """ (*Property*) A value of the current speed of type `float` (or `None` if the value has yet not been assigned). """ return self.__current_speed def get_new(self): """ Assigns a new speed value. .. warning:: Depending on distribution parameters, negative values may be randomly selected. *Returns*: (`float`) the absolute value of a new speed. """ self.__current_speed = \ self.random_generator.normal(self.__mean, self.__standard_deviation) return self.__current_speed
[ "sim2net.utility.validation.check_argument_type" ]
[((1463, 1533), 'sim2net.utility.validation.check_argument_type', 'check_argument_type', (['Normal.__name__', '"""mean"""', 'float', 'mean', 'self.logger'], {}), "(Normal.__name__, 'mean', float, mean, self.logger)\n", (1482, 1533), False, 'from sim2net.utility.validation import check_argument_type\n'), ((1576, 1678), 'sim2net.utility.validation.check_argument_type', 'check_argument_type', (['Normal.__name__', '"""standard_deviation"""', 'float', 'standard_deviation', 'self.logger'], {}), "(Normal.__name__, 'standard_deviation', float,\n standard_deviation, self.logger)\n", (1595, 1678), False, 'from sim2net.utility.validation import check_argument_type\n')]
import pkg_resources pkg_resources.declare_namespace(__name__) from .authors import AuthorsMixin from .images import * from .publication import PublicationMixin from .video import EmbeddedVideoMixin
[ "pkg_resources.declare_namespace" ]
[((21, 62), 'pkg_resources.declare_namespace', 'pkg_resources.declare_namespace', (['__name__'], {}), '(__name__)\n', (52, 62), False, 'import pkg_resources\n')]