code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
# -*- coding: utf-8 -*- from django.contrib.contenttypes.models import ContentType from django.db import models import django if (hasattr(django,"version") and django.version > 1.8) or (hasattr(django,"get_version") and django.get_version()): from django.contrib.contenttypes.fields import GenericForeignKey from django.db.transaction import atomic else: from django.contrib.contenttypes.generic import GenericForeignKey from django.db.transaction import commit_manually as atomic from django.contrib.contenttypes.models import ContentType from django.db import transaction,IntegrityError from datetime import timedelta from django.utils import timezone now = timezone.now from django.db.models import signals from django.conf import settings class HitManager(models.Manager): def get_for(self, obj, bucket=None): if bucket is None: bucket_kwargs = {'bucket__isnull': True} else: bucket_kwargs = {'bucket': bucket} if isinstance(obj, models.Model): content_type = ContentType.objects.get_for_model(obj.__class__) object_pk = getattr(obj, obj._meta.pk.column) try: return self.get_or_create(content_type=content_type, object_pk=object_pk, **bucket_kwargs)[0] except IntegrityError: # catch race condition return self.get(content_type=content_type, object_pk=object_pk, **bucket_kwargs) elif isinstance(obj, (str, unicode)): try: return self.get_or_create(content_type__isnull=True, object_pk=obj, **bucket_kwargs)[0] except IntegrityError: # catch race condition return self.get(content_type__isnull=True, object_pk=obj, **bucket_kwargs) else: raise Exception("Don't know what to do with this obj!?") def hit(self, obj, user, ip, bucket=None): hit = self.get_for(obj, bucket=bucket) hit.hit(user, ip) return hit class Hit(models.Model): content_type = models.ForeignKey(ContentType, null=True) object_pk = models.CharField(max_length=50) # TextField not possible, because unique_together is needed, must be enough content_object = GenericForeignKey(ct_field="content_type", fk_field="object_pk") bucket = models.CharField(max_length=50, blank=True, null=True) # Each object may have multiple buckets hits get counted in views = models.PositiveIntegerField(default=0) # page hits/views visits = models.PositiveIntegerField(default=0) # unique visits objects = HitManager() def hit(self, user, ip): try: with transaction.atomic(): if self.has_hit_from(user, ip): self.update_hit_from(user, ip) Hit.objects.filter(pk=self.pk).update(views=models.F('views') + 1) self.views += 1 return True else: self.log.create(user=user, ip=ip) Hit.objects.filter(pk=self.pk).update(views=models.F('views') + 1, visits=models.F('visits') + 1) self.views += 1 self.visits += 1 return True except IntegrityError: # CATCH RACE CONDITION # log-extry was already created # happens when users double-click or reload to fast # (we ignore this) return False def has_hit_from(self, user, ip): self.clear_log() if self.log.filter(user=user, ip=ip).count(): return True else: return False def update_hit_from(self, user, ip): self.log.filter(user=user, ip=ip).update(when=now()) def clear_log(self): timespan = now() - timedelta(days=30) for l in self.log.filter(when__lt=timespan).order_by('-when')[25:]: l.delete() class Meta: unique_together = (('content_type', 'object_pk', 'bucket'),) class HitLog(models.Model): hit = models.ForeignKey(Hit, related_name='log') user = models.ForeignKey(settings.AUTH_USER_MODEL, related_name='hits_log', null=True) ip = models.GenericIPAddressField(null=True) if hasattr(models,"GenericIPAddressField") else models.IPAddressField(null=True) when = models.DateTimeField(default=now) class Meta: unique_together = (('hit', 'user', 'ip'),) class HitHistory(models.Model): hit = models.ForeignKey(Hit, related_name='history') when = models.DateTimeField(default=now) views = models.PositiveIntegerField(default=0) visits = models.PositiveIntegerField(default=0) views_change = models.PositiveIntegerField(default=0) visits_change = models.PositiveIntegerField(default=0)
[ "django.db.models.IPAddressField", "django.db.models.ForeignKey", "django.db.models.CharField", "django.db.models.PositiveIntegerField", "django.contrib.contenttypes.models.ContentType.objects.get_for_model", "django.db.models.GenericIPAddressField", "django.db.models.F", "datetime.timedelta", "django.contrib.contenttypes.generic.GenericForeignKey", "django.db.models.DateTimeField", "django.db.transaction.atomic", "django.get_version" ]
[((2020, 2061), 'django.db.models.ForeignKey', 'models.ForeignKey', (['ContentType'], {'null': '(True)'}), '(ContentType, null=True)\n', (2037, 2061), False, 'from django.db import models\n'), ((2078, 2109), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)'}), '(max_length=50)\n', (2094, 2109), False, 'from django.db import models\n'), ((2208, 2272), 'django.contrib.contenttypes.generic.GenericForeignKey', 'GenericForeignKey', ([], {'ct_field': '"""content_type"""', 'fk_field': '"""object_pk"""'}), "(ct_field='content_type', fk_field='object_pk')\n", (2225, 2272), False, 'from django.contrib.contenttypes.generic import GenericForeignKey\n'), ((2287, 2341), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)', 'blank': '(True)', 'null': '(True)'}), '(max_length=50, blank=True, null=True)\n', (2303, 2341), False, 'from django.db import models\n'), ((2416, 2454), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'default': '(0)'}), '(default=0)\n', (2443, 2454), False, 'from django.db import models\n'), ((2487, 2525), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'default': '(0)'}), '(default=0)\n', (2514, 2525), False, 'from django.db import models\n'), ((4017, 4059), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Hit'], {'related_name': '"""log"""'}), "(Hit, related_name='log')\n", (4034, 4059), False, 'from django.db import models\n'), ((4071, 4150), 'django.db.models.ForeignKey', 'models.ForeignKey', (['settings.AUTH_USER_MODEL'], {'related_name': '"""hits_log"""', 'null': '(True)'}), "(settings.AUTH_USER_MODEL, related_name='hits_log', null=True)\n", (4088, 4150), False, 'from django.db import models\n'), ((4293, 4326), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'default': 'now'}), '(default=now)\n', (4313, 4326), False, 'from django.db import models\n'), ((4439, 4485), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Hit'], {'related_name': '"""history"""'}), "(Hit, related_name='history')\n", (4456, 4485), False, 'from django.db import models\n'), ((4497, 4530), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'default': 'now'}), '(default=now)\n', (4517, 4530), False, 'from django.db import models\n'), ((4544, 4582), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'default': '(0)'}), '(default=0)\n', (4571, 4582), False, 'from django.db import models\n'), ((4596, 4634), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'default': '(0)'}), '(default=0)\n', (4623, 4634), False, 'from django.db import models\n'), ((4655, 4693), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'default': '(0)'}), '(default=0)\n', (4682, 4693), False, 'from django.db import models\n'), ((4714, 4752), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'default': '(0)'}), '(default=0)\n', (4741, 4752), False, 'from django.db import models\n'), ((220, 240), 'django.get_version', 'django.get_version', ([], {}), '()\n', (238, 240), False, 'import django\n'), ((4160, 4199), 'django.db.models.GenericIPAddressField', 'models.GenericIPAddressField', ([], {'null': '(True)'}), '(null=True)\n', (4188, 4199), False, 'from django.db import models\n'), ((4248, 4280), 'django.db.models.IPAddressField', 'models.IPAddressField', ([], {'null': '(True)'}), '(null=True)\n', (4269, 4280), False, 'from django.db import models\n'), ((1045, 1093), 'django.contrib.contenttypes.models.ContentType.objects.get_for_model', 'ContentType.objects.get_for_model', (['obj.__class__'], {}), '(obj.__class__)\n', (1078, 1093), False, 'from django.contrib.contenttypes.models import ContentType\n'), ((3773, 3791), 'datetime.timedelta', 'timedelta', ([], {'days': '(30)'}), '(days=30)\n', (3782, 3791), False, 'from datetime import timedelta\n'), ((2631, 2651), 'django.db.transaction.atomic', 'transaction.atomic', ([], {}), '()\n', (2649, 2651), False, 'from django.db import transaction, IntegrityError\n'), ((2816, 2833), 'django.db.models.F', 'models.F', (['"""views"""'], {}), "('views')\n", (2824, 2833), False, 'from django.db import models\n'), ((3047, 3064), 'django.db.models.F', 'models.F', (['"""views"""'], {}), "('views')\n", (3055, 3064), False, 'from django.db import models\n'), ((3077, 3095), 'django.db.models.F', 'models.F', (['"""visits"""'], {}), "('visits')\n", (3085, 3095), False, 'from django.db import models\n')]
#!/usr/bin/env python # stdlib imports import urllib.request as request import tempfile import os.path import sys from datetime import datetime # third party imports import numpy as np # local imports from losspager.utils.expocat import ExpoCat def commify(value): if np.isnan(value): return 'NaN' return format(int(value), ",d") def get_max_mmi(tdict, minimum=1000): indices = ['MMI1', 'MMI2', 'MMI3', 'MMI4', 'MMI5', 'MMI6', 'MMI7', 'MMI8', 'MMI9+'] exparray = np.array([tdict[idx] for idx in indices]) imax = (exparray > 1000).nonzero()[0].max() return (imax + 1, exparray[imax]) def test(): homedir = os.path.dirname(os.path.abspath( __file__)) # where is this script? expocat = ExpoCat.fromDefault() clat = 0.37 clon = -79.94 radius = 400 ndeaths = 9 minicat = expocat.selectByRadius(clat, clon, radius) print('Testing that historical events returned are correct...') maxmmi = 8 nmaxmmi = 103000 events = minicat.getHistoricalEvents(maxmmi, nmaxmmi, ndeaths, clat, clon) assert events[0]['EventID'] == '199603282303' assert events[1]['EventID'] == '197912120759' assert events[2]['EventID'] == '198703060410' print('Passed.') print('Testing that events selected by hazard are correct...') fire = expocat.selectByHazard('fire') tsunami = expocat.selectByHazard('tsunami') liquefaction = expocat.selectByHazard('liquefaction') landslide = expocat.selectByHazard('landslide') assert fire._dataframe['Fire'].sum() == len(fire) assert tsunami._dataframe['Tsunami'].sum() == len(tsunami) assert liquefaction._dataframe['Liquefaction'].sum() == len(liquefaction) assert landslide._dataframe['Landslide'].sum() == len(landslide) # test exclusion method test_time = datetime(1994, 1, 1) expocat.excludeFutureEvents(test_time) assert expocat._dataframe['Time'].max() < test_time print('Passed.') if __name__ == '__main__': test()
[ "losspager.utils.expocat.ExpoCat.fromDefault", "numpy.array", "numpy.isnan", "datetime.datetime" ]
[((277, 292), 'numpy.isnan', 'np.isnan', (['value'], {}), '(value)\n', (285, 292), True, 'import numpy as np\n'), ((509, 550), 'numpy.array', 'np.array', (['[tdict[idx] for idx in indices]'], {}), '([tdict[idx] for idx in indices])\n', (517, 550), True, 'import numpy as np\n'), ((756, 777), 'losspager.utils.expocat.ExpoCat.fromDefault', 'ExpoCat.fromDefault', ([], {}), '()\n', (775, 777), False, 'from losspager.utils.expocat import ExpoCat\n'), ((1836, 1856), 'datetime.datetime', 'datetime', (['(1994)', '(1)', '(1)'], {}), '(1994, 1, 1)\n', (1844, 1856), False, 'from datetime import datetime\n')]
#!/usr/bin/env python # encoding: utf-8 """ AutomaticSeeding_t.py Created by <NAME> on 2010-08-30. Copyright (c) 2010 Fermilab. All rights reserved. """ from __future__ import print_function import sys import os import unittest from WMCore.JobSplitting.Generators.AutomaticSeeding import AutomaticSeeding from WMCore.DataStructs.Job import Job from PSetTweaks.PSetTweak import PSetTweak class AutomaticSeeding_tTests(unittest.TestCase): def testA(self): """test creating the plugin""" try: seeder = AutomaticSeeding() except Exception as ex: msg = "Failed to instantiate an AutomaticSeeder: " msg += str(ex) self.fail(msg) def testB(self): """test plugin acts on a Job as expected""" job = Job("TestJob") seeder = AutomaticSeeding() seeder(job) def testC(self): """test building a tweak from the seeds""" job = Job("TestJob") seeder = AutomaticSeeding() job.addBaggageParameter("process.RandomNumberGeneratorService.seed1.initialSeed", 123445) job.addBaggageParameter("process.RandomNumberGeneratorService.seed2.initialSeed", 123445) job.addBaggageParameter("process.RandomNumberGeneratorService.seed3.initialSeed", 7464738) job.addBaggageParameter("process.RandomNumberGeneratorService.seed44.initialSeed", 98273762) seeder(job) tweak = PSetTweak() for x in job.baggage.process.RandomNumberGeneratorService: parameter = "process.RandomNumberGeneratorService.%s.initialSeed" % x._internal_name tweak.addParameter(parameter, x.initialSeed) print(tweak) if __name__ == '__main__': unittest.main()
[ "unittest.main", "WMCore.JobSplitting.Generators.AutomaticSeeding.AutomaticSeeding", "WMCore.DataStructs.Job.Job", "PSetTweaks.PSetTweak.PSetTweak" ]
[((1731, 1746), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1744, 1746), False, 'import unittest\n'), ((797, 811), 'WMCore.DataStructs.Job.Job', 'Job', (['"""TestJob"""'], {}), "('TestJob')\n", (800, 811), False, 'from WMCore.DataStructs.Job import Job\n'), ((829, 847), 'WMCore.JobSplitting.Generators.AutomaticSeeding.AutomaticSeeding', 'AutomaticSeeding', ([], {}), '()\n', (845, 847), False, 'from WMCore.JobSplitting.Generators.AutomaticSeeding import AutomaticSeeding\n'), ((955, 969), 'WMCore.DataStructs.Job.Job', 'Job', (['"""TestJob"""'], {}), "('TestJob')\n", (958, 969), False, 'from WMCore.DataStructs.Job import Job\n'), ((987, 1005), 'WMCore.JobSplitting.Generators.AutomaticSeeding.AutomaticSeeding', 'AutomaticSeeding', ([], {}), '()\n', (1003, 1005), False, 'from WMCore.JobSplitting.Generators.AutomaticSeeding import AutomaticSeeding\n'), ((1442, 1453), 'PSetTweaks.PSetTweak.PSetTweak', 'PSetTweak', ([], {}), '()\n', (1451, 1453), False, 'from PSetTweaks.PSetTweak import PSetTweak\n'), ((538, 556), 'WMCore.JobSplitting.Generators.AutomaticSeeding.AutomaticSeeding', 'AutomaticSeeding', ([], {}), '()\n', (554, 556), False, 'from WMCore.JobSplitting.Generators.AutomaticSeeding import AutomaticSeeding\n')]
#!/usr/bin/env python2 """ This script extracts crackable hashes from krb5's credential cache files (e.g. /tmp/krb5cc_1000). NOTE: This attack technique only works against MS Active Directory servers. This was tested with CentOS 7.4 client running krb5-1.15.1 software against a Windows 2012 R2 Active Directory server. Usage: python ccache2john.py ccache_file Upstream: https://github.com/rvazarkar/KrbCredExport Authors: <NAME> (main author), <NAME> (splitting support), and <NAME> (misc. glue) Resources, https://lapo.it/asn1js/ https://tools.ietf.org/html/rfc1510#section-5.8.1 https://github.com/CoreSecurity/impacket/tree/master/impacket/krb5 https://www.gnu.org/software/shishi/manual/html_node/The-Credential-Cache-Binary-File-Format.html https://github.com/wireshark/wireshark/blob/master/epan/dissectors/asn1/kerberos/KerberosV5Spec2.asn """ import sys import os.path import time import struct import datetime from pyasn1.codec.ber import decoder # LB is a single byte representing the length of the rest of the section # LT is a 3 byte structure consisting of the byte 82 followed by 2 bytes representing the length of the rest of the file # header { # uint16 tag # uint16 taglen # uint8[taglen] tagdata # } class Header: def __init__(self): self.tag = None self.taglen = None self.deltatime = DeltaTime() def parsefile(self, f): self.tag, self.taglen = struct.unpack(">HH", f.read(4)) self.deltatime.parsefile(f) def tostring(self): r = '' r += struct.pack(">HH", self.tag, self.taglen) r += self.deltatime.tostring() return r # deltatime { # uint32 time_offset # uint32 usec_offset # } class DeltaTime: def __init__(self): self.usec_offset = None self.time_offset = None def parsefile(self, f): self.time_offset, self.usec_offset = struct.unpack(">LL", f.read(8)) def tostring(self): r = '' r += struct.pack(">LL", self.time_offset, self.usec_offset) return r # ccacheheader { # uint16 version # uint16 header_len # header[] headers # principal primary_principal # } class CCacheHeader: def __init__(self): self.version = None self.header_length = None self.header = Header() def parsefile(self, f): self.version, = struct.unpack(">H", f.read(2)) self.header_length, = struct.unpack(">H", f.read(2)) # self.header.parsefile(f) # this is perhaps buggy? f.read(self.header_length) def tostring(self): r = '' r += struct.pack(">HH", self.version, self.header_length) r += self.header.tostring() return r # times { # uint32 authtime # uint32 starttime # uint32 endtime # uint32 renew_till # } class KerbTimes: def __init__(self): self.authtime = None self.starttime = None self.endtime = None self.renew_till = None def parsefile(self, f): self.authtime, self.starttime, self.endtime, self.renew_till = struct.unpack(">IIII", f.read(16)) def tostring(self): return struct.pack(">IIII", self.authtime, self.starttime, self.endtime, self.renew_till) # counted_octet { # uint32 length # uint8[char] data # } class CountedOctet: def __init__(self): self.length = None self.data = None def parsefile(self, f): self.length, = struct.unpack(">L", f.read(4)) self.data, = struct.unpack(">%ds" % self.length, f.read(self.length)) def tostring(self): r = b'' r += struct.pack(">L", self.length) r += struct.pack(">%ds" % self.length, self.data) return r # keyblock { # uint16 keytype # uint16 etype # uint16 keylen # uint8[keylen] key # } class Keyblock: def __init__(self): self.keytype = None self.etype = None self.keylen = None self.key = None def parsefile(self, f): self.keytype, self.etype, self.keylen = struct.unpack(">HHH", f.read(6)) self.key, = struct.unpack(">%ds" % self.keylen, f.read(self.keylen)) def tostring(self): r = '' r += struct.pack(">HHH", self.keytype, self.etype, self.keylen) r += struct.pack(">%ds" % self.keylen, self.key) return r # principal { # uint32 name_type # uint32 num_components # counted_octet realm # counted_octet[num_components] components # } class Principal: def __init__(self): self.name_type = None self.num_components = None self.realm = CountedOctet() self.components = [] def parsefile(self, f): self.name_type, self.num_components = struct.unpack(">LL", f.read(8)) self.realm.parsefile(f) for i in range(0, self.num_components): component = CountedOctet() component.parsefile(f) self.components.append(component.data) def tostring(self): r = '' r += struct.pack(">LL", self.name_type, self.num_components) r += self.realm.tostring() for i in self.components: r += struct.pack(">L", len(i)) r += i return r # address { # uint16 address_type # counted_octet address # } class Address: def __init__(self): self.address_type = None self.address = CountedOctet() def parsefile(self, f): self.address_type, = struct.unpack(">H", f.read(2)) self.address.parsefile(f) def tostring(self): r = '' r += struct.pack(">H", self.address_type) r += self.address.tostring() return r # authdata { # uint16 authtype # counted_octet authdata # } class AuthData: def __init__(self): self.authtype = None self.authdata = CountedOctet() def parsefile(self, f): self.authtype, = struct.unpack(">H", f.read(2)) self.authdata.parsefile(f) def tostring(self): r = '' r += struct.pack(">H", self.authtype) r += self.authdata.tostring() return r # credential { # principal client # principal server # keyblock key # times timedata # uint8 skey # uint32 tktFlags (Reverse Byte Order!) # uint32 num_address # address[num_address] addresses # uint32 num_authdata # authdata[num_authdata] auths # counted_octet ticket_1 # counted_octet ticket_2 (nothing here in what I've seen) # } class Credential: def __init__(self): self.client = Principal() self.server = Principal() self.keyblock = Keyblock() self.times = KerbTimes() self.is_skey = None self.tktFlags = None self.num_address = None self.address = [] self.num_authdata = None self.authdata = [] self.ticket = CountedOctet() self.secondticket = CountedOctet() def parsefile(self, f): self.client.parsefile(f) self.server.parsefile(f) self.keyblock.parsefile(f) self.times.parsefile(f) self.is_skey, = struct.unpack(">B", f.read(1)) self.tktFlags, = struct.unpack("<I", f.read(4)) self.num_address, = struct.unpack(">I", f.read(4)) for i in range(0, self.num_address): self.address.append(Address().parsefile(f)) self.num_authdata, = struct.unpack(">I", f.read(4)) for i in range(0, self.num_authdata): self.authdata.append(AuthData().parsefile(f)) self.ticket.parsefile(f) self.secondticket.parsefile(f) def tostring(self): r = '' r += self.client.tostring() r += self.server.tostring() r += self.keyblock.tostring() r += self.times.tostring() r += struct.pack(">B", self.is_skey) r += struct.pack("<I", self.tktFlags) r += struct.pack(">I", self.num_address) for i in self.address: r += i.tostring() r += struct.pack(">I", self.num_authdata) for i in self.authdata: r += i.tostring() r += self.ticket.tostring() r += self.secondticket.tostring() return r # Prepend, shortened for convenience def p(a, b): return b + a # Returns the length of s as a single byte def clen(s): return chr(len(s)) # key { # 0xA0 LB # 0x30 LB # 0xA0 0x03 0x02 0x01 # uint8 key_type # 0xA1 LB # 0x03 LB # keydata # } class Key: def __init__(self): self.key = None self.keytype = None def parsefile(self, f): f.read(8) self.keytype, = struct.unpack('>B', f.read(1)) f.read(3) keylen, = struct.unpack('>B', f.read(1)) self.key, = struct.unpack(">%ds" % keylen, f.read(keylen)) def tostring(self): r = '' r += self.key r = p(r, clen(r)) r = p(r, '\x04') r = p(r, clen(r)) r = p(r, '\xA1') r = p(r, chr(self.keytype)) r = p(r, '\xA0\x03\x02\x01') r = p(r, clen(r)) r = p(r, '\x30') r = p(r, clen(r)) r = p(r, '\xA0') return r # This section represents the primary principal realm. Corresponds to the domain name # prealm { # 0xA1 LB # 0x1B LB # Primary Principal Realm # } class PRealm: def __init__(self): self.principal_realm = None def parsefile(self, f): f.read(3) length, = struct.unpack(">b", f.read(1)) self.principal_realm, = struct.unpack(">%ds" % length, f.read(length)) def tostring(self): r = '' r += self.principal_realm r = p(r, clen(r)) r = p(r, '\x1B') r = p(r, clen(r)) r = p(r, '\xA1') return r # This section represents the primary principal realm # pname { # 0xA2 LB # 0x30 LB # 0xA0 0x03 0x02 0x01 # uint8 name_type # 0xA1 LB # 0x30 LB # 0x1B LB # Primary Principal Name # } class PName: def __init__(self): self.principal_components = [] self.principal_name_type = None def parsefile(self, f): f.read(8) self.principal_name_type, = struct.unpack(">B", f.read(1)) f.read(3) rem_length, = struct.unpack(">B", f.read(1)) while (rem_length > 0): f.read(1) l, = struct.unpack(">B", f.read(1)) component, = struct.unpack("%ds" % l, f.read(l)) self.principal_components.append(component) rem_length -= (2 + l) def tostring(self): r = '' for s in self.principal_components: r += '\x1B' + chr(len(s)) + s r = p(r, clen(r)) r = p(r, '\x30') r = p(r, clen(r)) r = p(r, '\xA1') r = p(r, chr(self.principal_name_type)) r = p(r, '\xA0\x03\x02\x01') r = p(r, clen(r)) r = p(r, '\x30') r = p(r, clen(r)) r = p(r, '\xA2') return r # This section details flags for the ticket # tktflags { # 0xA3 LB # 0x03 LB # 0x00 Always 0, apparently number of unused bytes. tktFlags is always a uint32 # uint32 Ticket Flags # } class TicketFlags: def __init__(self): self.ticket_flags = None def parsefile(self, f): f.read(5) self.ticket_flags, = struct.unpack("I", f.read(4)) def tostring(self): r = '' r += struct.pack("I", self.ticket_flags) r = p(r, '\x00') r = p(r, clen(r)) r = p(r, '\x03') r = p(r, clen(r)) r = p(r, '\xA3') return r # These sections contain the ticket timestamps. Note that the timestamps are in a consistent format, so length tags are always the same # Timestamp format is YYYYmmddHHMMSSZ and must be UTC! # 0xA5 is starttime, 0xA6 is endtime, 0xA7 is renew_till # time { # uint8 Identifier # LB (Always 0x11) # 0x18 LB (Always 0x0F) # start_time # } class Time: def __init__(self, identifier): self.identifier = identifier self.time = None @staticmethod def convert_to_unix(timestr): epoch = datetime.datetime(1970, 1, 1) t = datetime.datetime.strptime(timestr[:-1], '%Y%m%d%H%M%S') td = t - epoch return int((td.microseconds + (td.seconds + td.days * 24 * 3600) * 10 ** 6) / 1e6) @staticmethod def convert_to_kerbtime(unixtime): t = datetime.datetime.utcfromtimestamp(unixtime) t = ''.join([t.strftime('%Y'), t.strftime('%m'), t.strftime('%d'), t.strftime('%H'), t.strftime('%M'), t.strftime('%S'), 'Z']) return t def parsefile(self, f): self.identifier, = struct.unpack(">B", f.read(1)) f.read(3) strtime, = struct.unpack(">15s", f.read(15)) self.time = Time.convert_to_unix(strtime) def tostring(self): r = '' r += struct.pack(">15s", Time.convert_to_kerbtime(self.time)) r = p(r, '\x11\x18\x0F') r = p(r, chr(self.identifier)) return r # This section represents the server realm (domain) # srealm { # 0xA8 LB # 0x1B LB # server_realm (domain name of server) # } class SRealm: def __init__(self): self.server_realm = None def parsefile(self, f): f.read(3) length, = struct.unpack(">B", f.read(1)) self.server_realm, = struct.unpack(">%ds" % length, f.read(length)) def tostring(self): r = '' r += self.server_realm r = p(r, clen(r)) r = p(r, '\x1B') r = p(r, clen(r)) r = p(r, '\xA8') return r # This section represents the server name components # sname { # 0xA9 LB # 0x30 LB # 0xA0 0x03 0x02 0x01 # uint8 server_name_type # 0xA1 LB # 0x30 LB # components[] # } # # components { # 0x1B # uint8 Component Length # Component # } class SName: def __init__(self): self.server_components = [] self.server_name_type = None def parsefile(self, f): f.read(8) self.server_name_type, = struct.unpack(">B", f.read(1)) f.read(3) rem_length, = struct.unpack(">B", f.read(1)) while rem_length > 0: f.read(1) l, = struct.unpack(">B", f.read(1)) component, = struct.unpack(">%ds" % l, f.read(l)) self.server_components.append(component) rem_length -= (2 + l) def tostring(self): r = '' for s in self.server_components: r += '\x1B' + chr(len(s)) + s r = p(r, clen(r)) r = p(r, '\x30') r = p(r, clen(r)) r = p(r, '\xA1') r = p(r, chr(self.server_name_type)) r = p(r, '\xA0\x03\x02\x01') r = p(r, clen(r)) r = p(r, '\x30') r = p(r, clen(r)) r = p(r, '\xA9') return r # header { # 0x7D LT # 0x30 LT # 0xA0 LT # 0x30 LT # 0x30 LT # } class KrbCredInfo: def __init__(self): self.krbcredinfo = None self.key = Key() self.prealm = PRealm() self.pname = PName() self.flags = TicketFlags() self.starttime = Time(165) self.endtime = Time(166) self.renew_till = Time(167) self.srealm = SRealm() self.sname = SName() def parsefile(self, f): f.read(20) self.key.parsefile(f) self.prealm.parsefile(f) self.pname.parsefile(f) self.flags.parsefile(f) self.starttime.parsefile(f) self.endtime.parsefile(f) self.renew_till.parsefile(f) self.srealm.parsefile(f) self.sname.parsefile(f) self.krbcredinfo = self.key.tostring() + self.prealm.tostring() + self.pname.tostring() + self.flags.tostring() + \ self.starttime.tostring() + self.endtime.tostring() + \ self.renew_till.tostring() + self.srealm.tostring() + \ self.sname.tostring() def tostring(self): r = self.krbcredinfo r = p(r, struct.pack(">H", len(r))) r = p(r, '\x30\x82') r = p(r, struct.pack(">H", len(r))) r = p(r, '\x30\x82') r = p(r, struct.pack(">H", len(r))) r = p(r, '\xA0\x82') r = p(r, struct.pack(">H", len(r))) r = p(r, '\x30\x82') r = p(r, struct.pack(">H", len(r))) r = p(r, '\x7D\x82') return r def createkrbcrdinfo(self): self.krbcredinfo = self.key.tostring() + self.prealm.tostring() + self.pname.tostring() + self.flags.tostring() + \ self.starttime.tostring() + self.endtime.tostring() + \ self.renew_till.tostring() + self.srealm.tostring() + \ self.sname.tostring() # The encpart serves as a sort of header for the EncKrbCredPart # encpart { # 0xA0 0x03 0x02 0x01 # uint8 etype (Seems to always be 0 in my testing) # 0xA2 LT # 0x04 LT # } class EncPart: def __init__(self): self.krbcredinfo = KrbCredInfo() self.etype = None def parsefile(self, f): f.read(4) self.etype, = struct.unpack(">B", f.read(1)) f.read(8) self.krbcredinfo.parsefile(f) def tostring(self): r = self.krbcredinfo.tostring() r = p(r, struct.pack(">H", len(r))) r = p(r, '\x04\x82') r = p(r, struct.pack(">H", len(r))) r = p(r, '\xA2\x82') r = p(r, chr(self.etype)) r = p(r, '\xA0\x03\x02\x01') return r # This section represents the tickets section of the overall KrbCred # tickets { # 0xA2 0x82 # uint16 ticket_length + 4 # 0x30 0x82 # uint16 ticket_length # ticket # 0xA3 LT # 0x30 LT # } class TicketPart: def __init__(self): self.ticket = None self.encpart = EncPart() def parsefile(self, f): f.read(6) ticketlen, = struct.unpack(">H", f.read(2)) self.ticket, = struct.unpack(">%ds" % ticketlen, f.read(ticketlen)) f.read(8) self.encpart.parsefile(f) def tostring(self): r = self.encpart.tostring() r = p(r, struct.pack(">H", len(r))) r = p(r, '\x30\x82') r = p(r, struct.pack(">H", len(r))) r = p(r, '\xA3\x82') r = p(r, self.ticket) r = p(r, struct.pack(">H", len(self.ticket))) r = p(r, '\x30\x82') r = p(r, struct.pack(">H", len(self.ticket) + 4)) r = p(r, '\xA2\x82') return r # This is the header for the kerberos ticket, and the final section # header { # 0x76 LT # 0x30 LT # 0xA0 0x03 0x02 0x01 # uint8 pvno (Protocol Version, always 0x05) # 0xA1 0x03 0x02 0x01 # uint8 msg-type (Always 0x16 for krbcred) # } class KrbCredHeader: def __init__(self): self.ticketpart = TicketPart() def parsefile(self, f): f.read(18) self.ticketpart.parsefile(f) def tostring(self): r = self.ticketpart.tostring() r = p(r, '\xA1\x03\x02\x01\x16') r = p(r, '\xA0\x03\x02\x01\x05') r = p(r, struct.pack(">H", len(r))) r = p(r, '\x30\x82') r = p(r, struct.pack(">H", len(r))) r = p(r, '\x76\x82') return r # borrowed from https://stackoverflow.com def swap32(i): return struct.unpack("<I", struct.pack(">I", i))[0] # src/include/krb5/krb5.h """ #define TKT_FLG_FORWARDABLE 0x40000000 #define TKT_FLG_FORWARDED 0x20000000 #define TKT_FLG_PROXIABLE 0x10000000 #define TKT_FLG_PROXY 0x08000000 #define TKT_FLG_MAY_POSTDATE 0x04000000 #define TKT_FLG_POSTDATED 0x02000000 #define TKT_FLG_INVALID 0x01000000 #define TKT_FLG_RENEWABLE 0x00800000 #define TKT_FLG_PRE_AUTH 0x00200000 #define TKT_FLG_HW_AUTH 0x00100000 #define TKT_FLG_TRANSIT_POLICY_CHECKED 0x00080000 #define TKT_FLG_OK_AS_DELEGATE 0x00040000 #define TKT_FLG_ENC_PA_REP 0x00010000 #define TKT_FLG_ANONYMOUS 0x00008000 """ TKT_FLG_INITIAL = 0x00400000 if __name__ == "__main__": if len(sys.argv) < 2: print("Usage: {0} <input credential cache file>".format(sys.argv[0])) print("\nExample: {0} /tmp/krb5cc_1000".format(sys.argv[0])) sys.exit(0) with open(sys.argv[1], 'rb') as f: fileid, = struct.unpack(">B", f.read(1)) if fileid == 0x5: # Credential Cache (ccache) f.seek(0) header = CCacheHeader() primary_principal = Principal() credential = Credential() header.parsefile(f) primary_principal.parsefile(f) i = 0 sys.stderr.write("WARNING: Not all the hashes generated by this program are crackable. Please select the relevant hashes manually!\n") time.sleep(2) # Check if you've reached the end of the file. If not get the next credential while(f.read(1) != ''): f.seek(-1, 1) credential.parsefile(f) out = [] KrbCred = KrbCredHeader() KrbCred.ticketpart.ticket = credential.ticket.data # extract hash from here! try: # this code is terrible! etype = str(decoder.decode(credential.ticket.data)[0][3][0]) data = str(decoder.decode(credential.ticket.data)[0][3][2]) if etype != "23": sys.stderr.write("Unsupported etype %s found. Such hashes can't be cracked it seems.\n" % etype) continue except: continue # print(credential.ticket.data.encode("hex")) KrbCred.ticketpart.encpart.etype = credential.keyblock.etype krbcredinfo = KrbCred.ticketpart.encpart.krbcredinfo krbcredinfo.key.key = credential.keyblock.key krbcredinfo.key.keytype = credential.keyblock.keytype # print(credential.keyblock.keytype) krbcredinfo.prealm.principal_realm = primary_principal.realm.data # print(primary_principal.realm.data) krbcredinfo.pname.principal_components = primary_principal.components # print(primary_principal.components) krbcredinfo.pname.principal_name_type = primary_principal.name_type krbcredinfo.flags.ticket_flags = credential.tktFlags tktFlags = swap32(credential.tktFlags) if tktFlags & TKT_FLG_INITIAL: continue krbcredinfo.starttime.time = credential.times.starttime krbcredinfo.endtime.time = credential.times.endtime krbcredinfo.renew_till.time = credential.times.renew_till krbcredinfo.srealm.server_realm = credential.server.realm.data # print(credential.server.realm.data) krbcredinfo.sname.server_components = credential.server.components for c in credential.server.components: # dirty hack if c not in ['krbtgt', 'krb5_ccache_conf_data', 'pa_type']: out.append(c) name = b"-".join(out[-2:]) krbcredinfo.sname.server_name_type = credential.server.name_type krbcredinfo.createkrbcrdinfo() sys.stdout.write("%s:$krb5tgs$%s$%s$%s\n" % (os.path.basename(name), etype, data[:16].encode("hex"), data[16:].encode("hex"))) """ # Write seperate files for each ticket found. postfix is just a number for now. with open(sys.argv[2] + "_" + str(i), 'wb') as o: o.write(KrbCred.tostring()) i = i + 1 """ sys.exit(0) elif fileid == 0x76: # untested code, don't use! f.seek(0) KrbCred = KrbCredHeader() KrbCred.parsefile(f) header = CCacheHeader() primary_principal = Principal() credential = Credential() header.version = 0x504 header.header_length = 0xC header.header.deltatime.time_offset = 4294967295 header.header.deltatime.usec_offset = 0 header.header.tag = 0x01 header.header.taglen = 0x08 KrbCredInfo_ = KrbCred.ticketpart.encpart.krbcredinfo primary_principal.name_type = KrbCredInfo_.pname.principal_name_type primary_principal.components = KrbCredInfo_.pname.principal_components primary_principal.num_components = len(primary_principal.components) primary_principal.realm.data = KrbCredInfo.prealm.principal_realm primary_principal.realm.length = len(primary_principal.realm.data) credential.client.name_type = KrbCredInfo.pname.principal_name_type credential.client.components = KrbCredInfo.pname.principal_components credential.client.num_components = len(credential.client.components) credential.client.realm.data = KrbCredInfo.prealm.principal_realm credential.client.realm.length = len(credential.client.realm.data) credential.server.name_type = KrbCredInfo.sname.server_name_type credential.server.components = KrbCredInfo.sname.server_components credential.server.num_components = len(credential.server.components) credential.server.realm.data = KrbCredInfo.srealm.server_realm credential.server.realm.length = len(credential.server.realm.data) credential.keyblock.etype = KrbCred.ticketpart.encpart.etype credential.keyblock.key = KrbCredInfo.key.key credential.keyblock.keylen = len(credential.keyblock.key) credential.keyblock.keytype = KrbCredInfo.key.keytype credential.times.authtime = KrbCredInfo.starttime.time credential.times.starttime = KrbCredInfo.starttime.time credential.times.endtime = KrbCredInfo.endtime.time credential.times.renew_till = KrbCredInfo.renew_till.time credential.is_skey = 0 credential.tktFlags = KrbCredInfo.flags.ticket_flags credential.num_address = 0 credential.address = [] credential.num_authdata = 0 credential.authdata = [] credential.ticket.data = KrbCred.ticketpart.ticket credential.ticket.length = len(credential.ticket.data) credential.secondticket.length = 0 credential.secondticket.data = '' with open(sys.argv[2], 'wb') as o: o.write(header.tostring()) o.write(primary_principal.tostring()) o.write(credential.tostring()) sys.exit(0) else: print('Unknown File Type!') sys.exit(0)
[ "struct.pack", "datetime.datetime", "time.sleep", "datetime.datetime.utcfromtimestamp", "datetime.datetime.strptime", "pyasn1.codec.ber.decoder.decode", "sys.stderr.write", "sys.exit" ]
[((1545, 1586), 'struct.pack', 'struct.pack', (['""">HH"""', 'self.tag', 'self.taglen'], {}), "('>HH', self.tag, self.taglen)\n", (1556, 1586), False, 'import struct\n'), ((1973, 2027), 'struct.pack', 'struct.pack', (['""">LL"""', 'self.time_offset', 'self.usec_offset'], {}), "('>LL', self.time_offset, self.usec_offset)\n", (1984, 2027), False, 'import struct\n'), ((2593, 2645), 'struct.pack', 'struct.pack', (['""">HH"""', 'self.version', 'self.header_length'], {}), "('>HH', self.version, self.header_length)\n", (2604, 2645), False, 'import struct\n'), ((3131, 3218), 'struct.pack', 'struct.pack', (['""">IIII"""', 'self.authtime', 'self.starttime', 'self.endtime', 'self.renew_till'], {}), "('>IIII', self.authtime, self.starttime, self.endtime, self.\n renew_till)\n", (3142, 3218), False, 'import struct\n'), ((3588, 3618), 'struct.pack', 'struct.pack', (['""">L"""', 'self.length'], {}), "('>L', self.length)\n", (3599, 3618), False, 'import struct\n'), ((3632, 3676), 'struct.pack', 'struct.pack', (["('>%ds' % self.length)", 'self.data'], {}), "('>%ds' % self.length, self.data)\n", (3643, 3676), False, 'import struct\n'), ((4174, 4232), 'struct.pack', 'struct.pack', (['""">HHH"""', 'self.keytype', 'self.etype', 'self.keylen'], {}), "('>HHH', self.keytype, self.etype, self.keylen)\n", (4185, 4232), False, 'import struct\n'), ((4246, 4289), 'struct.pack', 'struct.pack', (["('>%ds' % self.keylen)", 'self.key'], {}), "('>%ds' % self.keylen, self.key)\n", (4257, 4289), False, 'import struct\n'), ((4979, 5034), 'struct.pack', 'struct.pack', (['""">LL"""', 'self.name_type', 'self.num_components'], {}), "('>LL', self.name_type, self.num_components)\n", (4990, 5034), False, 'import struct\n'), ((5537, 5573), 'struct.pack', 'struct.pack', (['""">H"""', 'self.address_type'], {}), "('>H', self.address_type)\n", (5548, 5573), False, 'import struct\n'), ((5975, 6007), 'struct.pack', 'struct.pack', (['""">H"""', 'self.authtype'], {}), "('>H', self.authtype)\n", (5986, 6007), False, 'import struct\n'), ((7721, 7752), 'struct.pack', 'struct.pack', (['""">B"""', 'self.is_skey'], {}), "('>B', self.is_skey)\n", (7732, 7752), False, 'import struct\n'), ((7766, 7798), 'struct.pack', 'struct.pack', (['"""<I"""', 'self.tktFlags'], {}), "('<I', self.tktFlags)\n", (7777, 7798), False, 'import struct\n'), ((7812, 7847), 'struct.pack', 'struct.pack', (['""">I"""', 'self.num_address'], {}), "('>I', self.num_address)\n", (7823, 7847), False, 'import struct\n'), ((7922, 7958), 'struct.pack', 'struct.pack', (['""">I"""', 'self.num_authdata'], {}), "('>I', self.num_authdata)\n", (7933, 7958), False, 'import struct\n'), ((11278, 11313), 'struct.pack', 'struct.pack', (['"""I"""', 'self.ticket_flags'], {}), "('I', self.ticket_flags)\n", (11289, 11313), False, 'import struct\n'), ((11984, 12013), 'datetime.datetime', 'datetime.datetime', (['(1970)', '(1)', '(1)'], {}), '(1970, 1, 1)\n', (12001, 12013), False, 'import datetime\n'), ((12026, 12082), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['timestr[:-1]', '"""%Y%m%d%H%M%S"""'], {}), "(timestr[:-1], '%Y%m%d%H%M%S')\n", (12052, 12082), False, 'import datetime\n'), ((12267, 12311), 'datetime.datetime.utcfromtimestamp', 'datetime.datetime.utcfromtimestamp', (['unixtime'], {}), '(unixtime)\n', (12301, 12311), False, 'import datetime\n'), ((20057, 20068), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (20065, 20068), False, 'import sys\n'), ((19044, 19064), 'struct.pack', 'struct.pack', (['""">I"""', 'i'], {}), "('>I', i)\n", (19055, 19064), False, 'import struct\n'), ((20460, 20607), 'sys.stderr.write', 'sys.stderr.write', (['"""WARNING: Not all the hashes generated by this program are crackable. Please select the relevant hashes manually!\n"""'], {}), '(\n """WARNING: Not all the hashes generated by this program are crackable. Please select the relevant hashes manually!\n"""\n )\n', (20476, 20607), False, 'import sys\n'), ((20607, 20620), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (20617, 20620), False, 'import time\n'), ((23625, 23636), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (23633, 23636), False, 'import sys\n'), ((26740, 26751), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (26748, 26751), False, 'import sys\n'), ((26662, 26673), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (26670, 26673), False, 'import sys\n'), ((21269, 21374), 'sys.stderr.write', 'sys.stderr.write', (['("Unsupported etype %s found. Such hashes can\'t be cracked it seems.\\n" % etype\n )'], {}), '(\n "Unsupported etype %s found. Such hashes can\'t be cracked it seems.\\n" %\n etype)\n', (21285, 21374), False, 'import sys\n'), ((21078, 21116), 'pyasn1.codec.ber.decoder.decode', 'decoder.decode', (['credential.ticket.data'], {}), '(credential.ticket.data)\n', (21092, 21116), False, 'from pyasn1.codec.ber import decoder\n'), ((21158, 21196), 'pyasn1.codec.ber.decoder.decode', 'decoder.decode', (['credential.ticket.data'], {}), '(credential.ticket.data)\n', (21172, 21196), False, 'from pyasn1.codec.ber import decoder\n')]
import configparser def get_base_url(): parser = configparser.ConfigParser() parser.read('token.cfg') token = parser.get('creds', 'token') return f"https://api.telegram.org/bot{token}/"
[ "configparser.ConfigParser" ]
[((55, 82), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (80, 82), False, 'import configparser\n')]
import os from flask import Flask from flask import request try: from SimpleHTTPServer import SimpleHTTPRequestHandler as Handler from SocketServer import TCPServer as Server except ImportError: from http.server import SimpleHTTPRequestHandler as Handler from http.server import HTTPServer as Server # Read port selected by the cloud for our application PORT = int(os.getenv('PORT', 8000)) # Change current directory to avoid exposure of control files #os.chdir('static') # server http port 8000 #httpd = Server(("", PORT), Handler) #try: # print("Start pythonserving at port %i" % PORT) # httpd.serve_forever() #except KeyboardInterrupt: # pass #httpd.server_close() # flask http port app = Flask(__name__) print ("port num", PORT) @app.route("/flask") def hello(): return "Hello World! ftom flask \n" if __name__ == '__main__': app.run(debug=True, port=PORT) #app.run(host="", debug=True)
[ "flask.Flask", "os.getenv" ]
[((711, 726), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (716, 726), False, 'from flask import Flask\n'), ((375, 398), 'os.getenv', 'os.getenv', (['"""PORT"""', '(8000)'], {}), "('PORT', 8000)\n", (384, 398), False, 'import os\n')]
# -*- coding: utf-8 -*- import networkx as nx from networkx.readwrite import json_graph import json def read_json_file(filename: object) -> object: # from http://stackoverflow.com/a/34665365 """ :type filename: object """ with open(filename.name) as f: js_graph = json.load(f) return json_graph.node_link_graph(js_graph) def city_build(name_list, qid_list) -> object: object_list = [] for e in qid_list: x = [e, name_list[e]] object_list.append(x) object_list = sorted(object_list, key=lambda x: x[1]) return object_list def get(w, d) -> object: wikipedia = nx.DiGraph(w) wikidata = nx.DiGraph(d) root_nodes = nx.get_node_attributes(wikipedia, 'group') wikidata_root_nodes = nx.get_node_attributes(wikidata, 'group') assert (len(root_nodes) == len(wikidata_root_nodes)), 'Error: Graph root size should be the same!' url_wiki = nx.get_node_attributes(wikipedia, 'url') url_data = nx.get_node_attributes(wikidata, 'url') revision_id_wikipedia = nx.get_node_attributes(wikipedia, 'revision_id_wikipedia') revision_id_wikidata = nx.get_node_attributes(wikidata, 'revision_id_wikidata') city_list = [] for c in root_nodes.keys(): wg_neighbors = wikipedia.successors(c) wd_neighbors = wikidata.successors(c) pedia = set(wg_neighbors) data = set(wd_neighbors) intersection = set(pedia).intersection(data) wikipedia_missing = set(data) - set(pedia) wikidata_missing = set(pedia) - set(data) city_dict = {'qid': c, 'revision_id_wikipedia': revision_id_wikipedia[c], 'revision_id_wikidata': revision_id_wikidata[c], 'url': url_wiki[c], 'miss_wikipedia': city_build(url_data, wikipedia_missing), 'intersection': city_build(url_wiki, intersection), 'data_cities': city_build(url_wiki, wikidata_missing) } city_list.append(city_dict) city_list = sorted(city_list, key=lambda x: x['url']) return city_list
[ "networkx.readwrite.json_graph.node_link_graph", "networkx.DiGraph", "json.load", "networkx.get_node_attributes" ]
[((317, 353), 'networkx.readwrite.json_graph.node_link_graph', 'json_graph.node_link_graph', (['js_graph'], {}), '(js_graph)\n', (343, 353), False, 'from networkx.readwrite import json_graph\n'), ((631, 644), 'networkx.DiGraph', 'nx.DiGraph', (['w'], {}), '(w)\n', (641, 644), True, 'import networkx as nx\n'), ((660, 673), 'networkx.DiGraph', 'nx.DiGraph', (['d'], {}), '(d)\n', (670, 673), True, 'import networkx as nx\n'), ((692, 734), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['wikipedia', '"""group"""'], {}), "(wikipedia, 'group')\n", (714, 734), True, 'import networkx as nx\n'), ((761, 802), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['wikidata', '"""group"""'], {}), "(wikidata, 'group')\n", (783, 802), True, 'import networkx as nx\n'), ((922, 962), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['wikipedia', '"""url"""'], {}), "(wikipedia, 'url')\n", (944, 962), True, 'import networkx as nx\n'), ((978, 1017), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['wikidata', '"""url"""'], {}), "(wikidata, 'url')\n", (1000, 1017), True, 'import networkx as nx\n'), ((1046, 1104), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['wikipedia', '"""revision_id_wikipedia"""'], {}), "(wikipedia, 'revision_id_wikipedia')\n", (1068, 1104), True, 'import networkx as nx\n'), ((1132, 1188), 'networkx.get_node_attributes', 'nx.get_node_attributes', (['wikidata', '"""revision_id_wikidata"""'], {}), "(wikidata, 'revision_id_wikidata')\n", (1154, 1188), True, 'import networkx as nx\n'), ((293, 305), 'json.load', 'json.load', (['f'], {}), '(f)\n', (302, 305), False, 'import json\n')]
import numpy as np import pandas as pd import fasttext from sklearn.preprocessing import MultiLabelBinarizer from skmultilearn.model_selection import IterativeStratification, \ iterative_train_test_split from functools import reduce CIP_TAGS = list(map(lambda x: x.strip(), "gratis, mat, musik, kurs, casino, dans, musuem, inlines, " "båt, barn, film, språk, hockey, bowling, fika, sport, " "biljard, bingo, bio, opera, kultur, grilla, kubb, " "festival, cykel, brännboll, picknick, konsert, pub, " "frisbeegolf, mc, gokart, svamp, bangolf, teater, " "afterwork, promenad, humor, utmaning, fest, shopping, " "resa, sällskapsspel, träna, pubquiz, poker, bok, foto, " "hund, skridskor, karaoke, dart, bada, diskussion, " "badminton, pyssel, golf, klättring, loppis, boule, mässa, " "flytthjälp, yoga, innebandy, pingis, handboll, jogga, " "tennis, högtid, astronomi, fiske, beachvolleyboll, " "friluftsliv, volleyboll, geocaching, vindsurfing, " "shuffleboard, SUP, standup, paddel".split(','))) def load_raw_normalized_dataset(path, drop_missing): """Load raw CiP dataset. Args: path: Path to raw CSV file drop_missing: If true, drop events with missing titles or descriptions Returns: events_df, tags_df: Event and tag dataframes as tuple """ # FIXME: Import 'id' as integer cip_df = pd.read_csv(path, header=None, names=['id', 'weekday', 'time', 'title', 'description', 'tag_status', 'tag'], na_values=['-01:00:00']) # Drop any events with missing titles or descriptions cip_df.dropna(subset=['title', 'description'], inplace=True) # Convert time strings to actual times cip_df['time'] = pd.to_datetime(cip_df['time']).dt.time events_df = cip_df.groupby('id').first().drop( columns=['tag_status', 'tag']).reset_index() tags_df = pd.DataFrame({ 'id': cip_df['id'], 'tag': cip_df['tag'], 'verified': cip_df['tag_status'] == 1, 'removed': cip_df['tag_status'] == 2 }) # Ignore verified and remove 'removed' tags tags_df = tags_df[~tags_df['removed']] tags_df.drop(columns=['verified', 'removed'], inplace=True) return events_df, tags_df def calculate_top_tags(tags_df, n_tags, use_cip_tags=True): """Calculate top tags from tags dataset Args: tags_df: Dataset to extract top tags from n_tags: Number of topmost tags to get if generating use_cip_tags: Use pre-defined tags from CiP (ignores `n_tags`) Returns: List of topmost tags """ tag_counts = tags_df['tag'].value_counts() if use_cip_tags: # Not all CiP tags are necessarily present in the dataset # and not necessarily in sufficient amounts present_tags = set(tag_counts[tag_counts > 5].index) return list(filter(lambda t: t in present_tags, CIP_TAGS)) else: return tag_counts.index[:n_tags] def tags_to_matrix(events_df, tags_df, top_tags): """Converts tags to feature matrix Args: events_df: Events dataset tags_df: Tags dataset top_tags: Tags to include Returns: Feature matrix for tags """ # Combine tags into lists tags = tags_df.groupby('id')['tag'].agg(lambda x: list(x)).reset_index() # Handle events with no top tags # TODO: Kludge, write nicer missing_tags = pd.DataFrame({ 'id': events_df[~events_df['id'].isin(tags['id'])]['id'].unique() }) missing_tags['tag'] = [[] for _ in range(len(missing_tags))] tags = pd.concat([tags, missing_tags]) # Align tags with events aligned_tags = events_df.merge(tags, on='id') # Convert aligned tags to matrix mlb = MultiLabelBinarizer(classes=top_tags) return mlb.fit_transform(aligned_tags['tag']) def matrix_to_tags(tags, top_tags): top_array = np.array(top_tags) joined_tags = [] for row in tags: joined_tags.append(reduce(lambda a, b: a + "," + b, top_array[row > 0])) return np.array(joined_tags) def load_datasets(path, drop_missing=True, n_tags=72, test_size=0.2, random_state=42): """Load and split dataset from raw CiP data. Args: path: Path to raw CiP dataset drop_missing: Drop events with no description or title n_tags: Number of top tags to use (ignored) test_size: Fraction of events to include in test set random_state: Random state for the split Returns: (events_train, tags_train, events_test, tags_test, top_tags, tags_train_stats) """ events_df, tags_df = load_raw_normalized_dataset(path, drop_missing=drop_missing) top_tags = calculate_top_tags(tags_df, n_tags=n_tags) # Only keep top tags tags_df = tags_df[tags_df['tag'].isin(top_tags)] tag_matrix = tags_to_matrix(events_df, tags_df, top_tags) # Split data into public training set and private test set stratifier = IterativeStratification( n_splits=2, order=2, sample_distribution_per_fold=[test_size, 1.0 - test_size], random_state=random_state) train_indices, test_indices = next(stratifier.split(events_df, tag_matrix)) events_train, tags_train = events_df.iloc[train_indices], \ tag_matrix[train_indices, :] events_test, tags_test = events_df.iloc[test_indices], \ tag_matrix[test_indices, :] tags_train_stats = pd.DataFrame({ 'tag': top_tags, 'count': tags_train.sum(axis=0) }).sort_values('count', ascending=False) return (events_train, tags_train, events_test, tags_test, top_tags, tags_train_stats) def extract_corpus(events_df): """Extract text corpus from event descriptions. Args: events_df: Event dataset Returns: List of event descriptions as raw text """ from tagger._preprocessing.html import HTMLToText from tagger._preprocessing.characterset import CharacterSet from tagger._preprocessing.lowercase import Lowercase from sklearn.pipeline import Pipeline cleaning_pipeline = Pipeline([ ('html', HTMLToText()), ('cset', CharacterSet(punctuation=False)), ('lcase', Lowercase()) ]) return list(cleaning_pipeline.fit_transform(events_df['description'])) def fasttext_wordvectors(corpus_path, model_path): """Compute word vectors using FastText. Args: corpus_path: Path to corpus model_path: Path for storing FastText model Returns: FastText model """ model = fasttext.train_unsupervised(corpus_path) model.save_model(model_path) return model def save_corpus(events_df, path): """Extract and store corpus for events. Args: events_df: Events dataset path: Path for storing corpus """ corpus = extract_corpus(events_df) with open(path, 'w') as f: for doc in corpus: f.write(doc + '\n') if __name__ == '__main__': # Generate static datasets and wordvectors for local dev import os print("Current working directory:", os.getcwd()) # Compute word vectors events_df, tags_df = load_raw_normalized_dataset( "../../../data/raw/citypolarna_public_events_out.csv", drop_missing=True) CORPUS_PATH = "../../../data/corpus.txt" MODEL_PATH = "../../../data/wordvectors.bin" save_corpus(events_df, CORPUS_PATH) model = fasttext_wordvectors(CORPUS_PATH, MODEL_PATH) # Split datasets events_train, tags_train, events_test, tags_test, top_tags, tags_train_stats = load_datasets( "../../../data/raw/citypolarna_public_events_out.csv" ) print(f"Number of train events: {len(events_train)}") print(f"Number of test events: {len(events_test)}") # TODO: Proper path handling DATA_PATH = "../../../data/" events_train.to_csv(DATA_PATH + "events_train.csv", index=False) events_test.to_csv(DATA_PATH + "events_test.csv", index=False) # A kludge, but convenient — pandas can load from URL:s pd.DataFrame(tags_train).to_csv(DATA_PATH + "tags_train.csv", index=False) pd.DataFrame(tags_test).to_csv(DATA_PATH + "tags_test.csv", index=False) pd.DataFrame({'tag': top_tags}).to_csv(DATA_PATH + "top_tags.csv", index=False) tags_train_stats.to_csv(DATA_PATH + "tags_train_stats.csv", index=False)
[ "pandas.DataFrame", "pandas.read_csv", "fasttext.train_unsupervised", "os.getcwd", "sklearn.preprocessing.MultiLabelBinarizer", "tagger._preprocessing.characterset.CharacterSet", "tagger._preprocessing.html.HTMLToText", "skmultilearn.model_selection.IterativeStratification", "numpy.array", "pandas.to_datetime", "functools.reduce", "tagger._preprocessing.lowercase.Lowercase", "pandas.concat" ]
[((1601, 1738), 'pandas.read_csv', 'pd.read_csv', (['path'], {'header': 'None', 'names': "['id', 'weekday', 'time', 'title', 'description', 'tag_status', 'tag']", 'na_values': "['-01:00:00']"}), "(path, header=None, names=['id', 'weekday', 'time', 'title',\n 'description', 'tag_status', 'tag'], na_values=['-01:00:00'])\n", (1612, 1738), True, 'import pandas as pd\n'), ((2189, 2327), 'pandas.DataFrame', 'pd.DataFrame', (["{'id': cip_df['id'], 'tag': cip_df['tag'], 'verified': cip_df['tag_status'] ==\n 1, 'removed': cip_df['tag_status'] == 2}"], {}), "({'id': cip_df['id'], 'tag': cip_df['tag'], 'verified': cip_df[\n 'tag_status'] == 1, 'removed': cip_df['tag_status'] == 2})\n", (2201, 2327), True, 'import pandas as pd\n'), ((3884, 3915), 'pandas.concat', 'pd.concat', (['[tags, missing_tags]'], {}), '([tags, missing_tags])\n', (3893, 3915), True, 'import pandas as pd\n'), ((4044, 4081), 'sklearn.preprocessing.MultiLabelBinarizer', 'MultiLabelBinarizer', ([], {'classes': 'top_tags'}), '(classes=top_tags)\n', (4063, 4081), False, 'from sklearn.preprocessing import MultiLabelBinarizer\n'), ((4186, 4204), 'numpy.array', 'np.array', (['top_tags'], {}), '(top_tags)\n', (4194, 4204), True, 'import numpy as np\n'), ((4339, 4360), 'numpy.array', 'np.array', (['joined_tags'], {}), '(joined_tags)\n', (4347, 4360), True, 'import numpy as np\n'), ((5332, 5467), 'skmultilearn.model_selection.IterativeStratification', 'IterativeStratification', ([], {'n_splits': '(2)', 'order': '(2)', 'sample_distribution_per_fold': '[test_size, 1.0 - test_size]', 'random_state': 'random_state'}), '(n_splits=2, order=2, sample_distribution_per_fold=[\n test_size, 1.0 - test_size], random_state=random_state)\n', (5355, 5467), False, 'from skmultilearn.model_selection import IterativeStratification, iterative_train_test_split\n'), ((6963, 7003), 'fasttext.train_unsupervised', 'fasttext.train_unsupervised', (['corpus_path'], {}), '(corpus_path)\n', (6990, 7003), False, 'import fasttext\n'), ((7499, 7510), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (7508, 7510), False, 'import os\n'), ((2031, 2061), 'pandas.to_datetime', 'pd.to_datetime', (["cip_df['time']"], {}), "(cip_df['time'])\n", (2045, 2061), True, 'import pandas as pd\n'), ((4274, 4326), 'functools.reduce', 'reduce', (["(lambda a, b: a + ',' + b)", 'top_array[row > 0]'], {}), "(lambda a, b: a + ',' + b, top_array[row > 0])\n", (4280, 4326), False, 'from functools import reduce\n'), ((8447, 8471), 'pandas.DataFrame', 'pd.DataFrame', (['tags_train'], {}), '(tags_train)\n', (8459, 8471), True, 'import pandas as pd\n'), ((8526, 8549), 'pandas.DataFrame', 'pd.DataFrame', (['tags_test'], {}), '(tags_test)\n', (8538, 8549), True, 'import pandas as pd\n'), ((8604, 8635), 'pandas.DataFrame', 'pd.DataFrame', (["{'tag': top_tags}"], {}), "({'tag': top_tags})\n", (8616, 8635), True, 'import pandas as pd\n'), ((6531, 6543), 'tagger._preprocessing.html.HTMLToText', 'HTMLToText', ([], {}), '()\n', (6541, 6543), False, 'from tagger._preprocessing.html import HTMLToText\n'), ((6563, 6594), 'tagger._preprocessing.characterset.CharacterSet', 'CharacterSet', ([], {'punctuation': '(False)'}), '(punctuation=False)\n', (6575, 6594), False, 'from tagger._preprocessing.characterset import CharacterSet\n'), ((6615, 6626), 'tagger._preprocessing.lowercase.Lowercase', 'Lowercase', ([], {}), '()\n', (6624, 6626), False, 'from tagger._preprocessing.lowercase import Lowercase\n')]
#!/usr/bin/env python import rospy from std_msgs.msg import String class MessageSubscriber: def __init__( self, node_name, topic_name ): rospy.init_node(node_name) self._topic_name = topic_name self._subscriber = rospy.Subscriber( self._topic_name, String, callback=self._callback, queue_size=1) def _callback(self, msg): rospy.loginfo("I heard: {}".format(msg.data)) if __name__ == "__main__": message_subscriber = MessageSubscriber("message_subscriber", "example_messaging/messages") rospy.spin()
[ "rospy.spin", "rospy.Subscriber", "rospy.init_node" ]
[((631, 643), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (641, 643), False, 'import rospy\n'), ((194, 220), 'rospy.init_node', 'rospy.init_node', (['node_name'], {}), '(node_name)\n', (209, 220), False, 'import rospy\n'), ((287, 372), 'rospy.Subscriber', 'rospy.Subscriber', (['self._topic_name', 'String'], {'callback': 'self._callback', 'queue_size': '(1)'}), '(self._topic_name, String, callback=self._callback,\n queue_size=1)\n', (303, 372), False, 'import rospy\n')]
import gym import rlkit.torch.pytorch_util as ptu from rlkit.data_management.obs_dict_replay_buffer import ObsDictRelabelingBuffer, WeightedObsDictRelabelingBuffer from rlkit.launchers.launcher_util import setup_logger from rlkit.samplers.data_collector import GoalConditionedPathCollector from rlkit.torch.her.her import HERTrainer from rlkit.torch.networks import ConcatMlp from rlkit.torch.sac.policies import MakeDeterministic, TanhGaussianPolicy from rlkit.torch.sac.sac import SACTrainer from rlkit.torch.torch_rl_algorithm import TorchBatchRLAlgorithm from robosuite.wrappers import Wrapper, GymWrapper import robosuite as suite from robosuite import load_controller_config import numpy as np class GoalMountainCar(gym.Wrapper): def reset(self, **kwargs): state = self.env.reset(**kwargs) ag = np.array(self.env.state) g = np.array([self.env.goal_position, self.env.goal_velocity]) state = {'observation': state, 'achieved_goal': ag, 'desired_goal': g} return state def compute_reward(self, achieved_goal, desired_goal, info): shape = False dense = 100*((math.sin(3*achieved_goal[0]) * 0.0025 + 0.5 * achieved_goal[1] * achieved_goal[1]) - (math.sin(3*desired_goal[0]) * 0.0025 + 0.5 * desired_goal[1] * desired_goal[1])) if achieved_goal[0] != desired_goal[0]: return -1 if not shape else dense else: return 0 if achieved_goal[0] >= desired_goal[0] else (-1 if not shape else dense) def step(self, action): state, _, done, info = super().step(action) ag = np.array(self.env.state) g = np.array([self.env.goal_position, self.env.goal_velocity]) reward = self.compute_reward(ag, g, info) state = {'observation': state, 'achieved_goal': ag, 'desired_goal': g} info['is_success'] = reward==0 return state, reward, done, info class GoalMountainCarContinuous(gym.Wrapper): def __init__(self, env): super().__init__(env=env) env = env.env print(env) self.observation_space = gym.spaces.Dict({"observation": env.observation_space, "achieved_goal": env.observation_space, "desired_goal":env.observation_space}) self.action_space = env.action_space # Default goal_Velocity is 0 - any speed will do (>=) self.goal = np.array([env.goal_position, 0]) def reset(self, **kwargs): state = self.env.reset(**kwargs) ag = np.array(state) g = self.goal state = {'observation': state, 'achieved_goal': ag, 'desired_goal': g} return state def compute_reward(self, achieved_goal, desired_goal, info): return 100 if achieved_goal[1] >= desired_goal[1] and achieved_goal[0] >= desired_goal[0] else -1 def step(self, action): state, _, done, info = super().step(action) ag = np.array(state) g = self.goal reward = self.compute_reward(ag, g, None) state = {'observation': state, 'achieved_goal': ag, 'desired_goal': g} info['is_success'] = int(ag[1] >= g[1] and ag[0] >= g[0]) return state, reward, done, info class DoorWrapper(Wrapper): """ Initializes the Gym wrapper. Mimics many of the required functionalities of the Wrapper class found in the gym.core module Args: env (MujocoEnv): The environment to wrap. keys (None or list of str): If provided, each observation will consist of concatenated keys from the wrapped environment's observation dictionary. Defaults to robot-state and object-state. Raises: AssertionError: [Object observations must be enabled if no keys] """ def __init__(self, env, keys=None): # Run super method super().__init__(env=env) # Create name for gym robots = "".join([type(robot.robot_model).__name__ for robot in self.env.robots]) self.name = robots + "_" + type(self.env).__name__ # Get reward range self.reward_range = (0, self.env.reward_scale) if keys is None: assert self.env.use_object_obs, "Object observations need to be enabled." keys = ["object-state"] # Iterate over all robots to add to state for idx in range(len(self.env.robots)): keys += ["robot{}_robot-state".format(idx)] self.keys = keys # Gym specific attributes self.env.spec = None self.metadata = None self.goal = np.array([.3]) # set up observation and action spaces flat_ob = self._flatten_obs(self.env.reset(), verbose=True) self.obs_dim = flat_ob.size high = np.inf * np.ones(self.obs_dim) low = -high self.observation_space = gym.spaces.Dict({"observation": gym.spaces.Box(low=low, high=high), "achieved_goal": gym.spaces.Box(low=np.zeros(1), high=np.ones(1), shape=(1,)), "desired_goal": gym.spaces.Box(low=np.zeros(1), high=np.ones(1), shape=(1,))}) low, high = self.env.action_spec self.action_space = gym.spaces.Box(low=low, high=high) def _flatten_obs(self, obs_dict, verbose=False): """ Filters keys of interest out and concatenate the information. Args: obs_dict (OrderedDict): ordered dictionary of observations verbose (bool): Whether to print out to console as observation keys are processed Returns: np.array: observations flattened into a 1d array """ ob_lst = [] for key in obs_dict: if key in self.keys: if verbose: print("adding key: {}".format(key)) ob_lst.append(obs_dict[key]) return np.concatenate(ob_lst) def reset(self): """ Extends env reset method to return flattened observation instead of normal OrderedDict. Returns: np.array: Flattened environment observation space after reset occurs """ ob_dict = self.env.reset() state = self._flatten_obs(ob_dict) ag = np.array([self.env.sim.data.qpos[self.env.hinge_qpos_addr]]) g = self.goal return {'observation': state, 'achieved_goal': ag, 'desired_goal': g} def step(self, action): """ Extends vanilla step() function call to return flattened observation instead of normal OrderedDict. Args: action (np.array): Action to take in environment Returns: 4-tuple: - (np.array) flattened observations from the environment - (float) reward from the environment - (bool) whether the current episode is completed or not - (dict) misc information """ ob_dict, reward, done, info = self.env.step(action) state = self._flatten_obs(ob_dict) ag = np.array([self.env.sim.data.qpos[self.env.hinge_qpos_addr]]) g = self.goal ob_dict = {'observation': state, 'achieved_goal': ag, 'desired_goal': g} info['is_success'] = int(ag[0] > g[0]) return ob_dict, reward, done, info def seed(self, seed=None): """ Utility function to set numpy seed Args: seed (None or int): If specified, numpy seed to set Raises: TypeError: [Seed must be integer] """ # Seed the generator if seed is not None: try: np.random.seed(seed) except: TypeError("Seed must be an integer type!") def compute_reward(self, achieved_goal, desired_goal, info): return 1 if achieved_goal[0] > desired_goal[0] else 0 def make_env(): controller = load_controller_config(default_controller="OSC_POSE") env = GymWrapper(suite.make( "PickPlaceCan", robots="Panda", # use Sawyer robot use_camera_obs=False, # do not use pixel observations has_offscreen_renderer=False, # not needed since not using pixel obs has_renderer=False, # make sure we can render to the screen reward_shaping=True, # use dense rewards reward_scale=1.0, # scale max 1 per timestep control_freq=20, # control should happen fast enough so that simulation looks smooth horizon=500, ignore_done=True, hard_reset=False, controller_configs=controller )) return env # GoalMountainCarContinuous(gym.make("MountainCarContinuous-v0")) # GoalMountainCar(gym.make(MountainCar-v0)) def experiment(variant): # unwrap the TimeLimitEnv wrapper since we manually termiante after 50 steps # eval_env = gym.make('FetchPickAndPlace-v1').env # expl_env = gym.make('FetchPickAndPlace-v1').env eval_env = make_env() expl_env = make_env() print(eval_env.observation_space) observation_key = 'observation' desired_goal_key = 'desired_goal' # achieved_goal_key = desired_goal_key.replace("desired", "achieved") # replay_buffer = ObsDictRelabelingBuffer( # env=eval_env, # observation_key=observation_key, # desired_goal_key=desired_goal_key, # achieved_goal_key=achieved_goal_key, # **variant['replay_buffer_kwargs'] # ) obs_dim = eval_env.observation_space.low.size action_dim = eval_env.action_space.low.size # goal_dim = eval_env.observation_space.spaces['desired_goal'].low.size print(obs_dim) print(action_dim) # print(goal_dim) qf1 = ConcatMlp( input_size=obs_dim + action_dim + goal_dim, output_size=1, **variant['qf_kwargs'] ) qf2 = ConcatMlp( input_size=obs_dim + action_dim + goal_dim, output_size=1, **variant['qf_kwargs'] ) target_qf1 = ConcatMlp( input_size=obs_dim + action_dim + goal_dim, output_size=1, **variant['qf_kwargs'] ) target_qf2 = ConcatMlp( input_size=obs_dim + action_dim + goal_dim, output_size=1, **variant['qf_kwargs'] ) policy = TanhGaussianPolicy( obs_dim=obs_dim + goal_dim, action_dim=action_dim, **variant['policy_kwargs'] ) eval_policy = MakeDeterministic(policy) trainer = SACTrainer( env=eval_env, policy=policy, qf1=qf1, qf2=qf2, target_qf1=target_qf1, target_qf2=target_qf2, **variant['sac_trainer_kwargs'] ) trainer = HERTrainer(trainer, use_per=False) eval_path_collector = GoalConditionedPathCollector( eval_env, eval_policy, observation_key=observation_key, desired_goal_key=desired_goal_key, ) expl_path_collector = GoalConditionedPathCollector( expl_env, policy, observation_key=observation_key, desired_goal_key=desired_goal_key, ) algorithm = TorchBatchRLAlgorithm( trainer=trainer, exploration_env=expl_env, evaluation_env=eval_env, exploration_data_collector=expl_path_collector, evaluation_data_collector=eval_path_collector, replay_buffer=replay_buffer, **variant['algo_kwargs'] ) algorithm.to(ptu.device) algorithm.train() if __name__ == "__main__": variant = dict( algorithm='HER-SAC', version='normal', algo_kwargs=dict( batch_size=512, num_epochs=500, num_eval_steps_per_epoch=5000, num_expl_steps_per_train_loop=500, num_trains_per_train_loop=500, min_num_steps_before_training=1000, max_path_length=500, ), sac_trainer_kwargs=dict( discount=0.99, soft_target_tau=5e-3, target_update_period=1, policy_lr=3E-4, qf_lr=3E-4, reward_scale=1, use_automatic_entropy_tuning=True, ), replay_buffer_kwargs=dict( max_size=int(50000), fraction_goals_rollout_goals=0.2, # equal to k = 4 in HER paper fraction_goals_env_goals=0, ), qf_kwargs=dict( hidden_sizes=[256, 256], ), policy_kwargs=dict( hidden_sizes=[256, 256], ), ) setup_logger('her-sac-door-experiment', variant=variant) experiment(variant)
[ "rlkit.torch.sac.sac.SACTrainer", "rlkit.torch.sac.policies.MakeDeterministic", "rlkit.torch.torch_rl_algorithm.TorchBatchRLAlgorithm", "numpy.concatenate", "rlkit.samplers.data_collector.GoalConditionedPathCollector", "robosuite.make", "numpy.random.seed", "rlkit.torch.her.her.HERTrainer", "numpy.zeros", "numpy.ones", "rlkit.torch.networks.ConcatMlp", "numpy.array", "rlkit.launchers.launcher_util.setup_logger", "rlkit.torch.sac.policies.TanhGaussianPolicy", "gym.spaces.Box", "robosuite.load_controller_config", "gym.spaces.Dict" ]
[((7709, 7762), 'robosuite.load_controller_config', 'load_controller_config', ([], {'default_controller': '"""OSC_POSE"""'}), "(default_controller='OSC_POSE')\n", (7731, 7762), False, 'from robosuite import load_controller_config\n'), ((9648, 9745), 'rlkit.torch.networks.ConcatMlp', 'ConcatMlp', ([], {'input_size': '(obs_dim + action_dim + goal_dim)', 'output_size': '(1)'}), "(input_size=obs_dim + action_dim + goal_dim, output_size=1, **\n variant['qf_kwargs'])\n", (9657, 9745), False, 'from rlkit.torch.networks import ConcatMlp\n'), ((9781, 9878), 'rlkit.torch.networks.ConcatMlp', 'ConcatMlp', ([], {'input_size': '(obs_dim + action_dim + goal_dim)', 'output_size': '(1)'}), "(input_size=obs_dim + action_dim + goal_dim, output_size=1, **\n variant['qf_kwargs'])\n", (9790, 9878), False, 'from rlkit.torch.networks import ConcatMlp\n'), ((9921, 10018), 'rlkit.torch.networks.ConcatMlp', 'ConcatMlp', ([], {'input_size': '(obs_dim + action_dim + goal_dim)', 'output_size': '(1)'}), "(input_size=obs_dim + action_dim + goal_dim, output_size=1, **\n variant['qf_kwargs'])\n", (9930, 10018), False, 'from rlkit.torch.networks import ConcatMlp\n'), ((10061, 10158), 'rlkit.torch.networks.ConcatMlp', 'ConcatMlp', ([], {'input_size': '(obs_dim + action_dim + goal_dim)', 'output_size': '(1)'}), "(input_size=obs_dim + action_dim + goal_dim, output_size=1, **\n variant['qf_kwargs'])\n", (10070, 10158), False, 'from rlkit.torch.networks import ConcatMlp\n'), ((10197, 10299), 'rlkit.torch.sac.policies.TanhGaussianPolicy', 'TanhGaussianPolicy', ([], {'obs_dim': '(obs_dim + goal_dim)', 'action_dim': 'action_dim'}), "(obs_dim=obs_dim + goal_dim, action_dim=action_dim, **\n variant['policy_kwargs'])\n", (10215, 10299), False, 'from rlkit.torch.sac.policies import MakeDeterministic, TanhGaussianPolicy\n'), ((10343, 10368), 'rlkit.torch.sac.policies.MakeDeterministic', 'MakeDeterministic', (['policy'], {}), '(policy)\n', (10360, 10368), False, 'from rlkit.torch.sac.policies import MakeDeterministic, TanhGaussianPolicy\n'), ((10383, 10524), 'rlkit.torch.sac.sac.SACTrainer', 'SACTrainer', ([], {'env': 'eval_env', 'policy': 'policy', 'qf1': 'qf1', 'qf2': 'qf2', 'target_qf1': 'target_qf1', 'target_qf2': 'target_qf2'}), "(env=eval_env, policy=policy, qf1=qf1, qf2=qf2, target_qf1=\n target_qf1, target_qf2=target_qf2, **variant['sac_trainer_kwargs'])\n", (10393, 10524), False, 'from rlkit.torch.sac.sac import SACTrainer\n'), ((10596, 10630), 'rlkit.torch.her.her.HERTrainer', 'HERTrainer', (['trainer'], {'use_per': '(False)'}), '(trainer, use_per=False)\n', (10606, 10630), False, 'from rlkit.torch.her.her import HERTrainer\n'), ((10657, 10781), 'rlkit.samplers.data_collector.GoalConditionedPathCollector', 'GoalConditionedPathCollector', (['eval_env', 'eval_policy'], {'observation_key': 'observation_key', 'desired_goal_key': 'desired_goal_key'}), '(eval_env, eval_policy, observation_key=\n observation_key, desired_goal_key=desired_goal_key)\n', (10685, 10781), False, 'from rlkit.samplers.data_collector import GoalConditionedPathCollector\n'), ((10842, 10961), 'rlkit.samplers.data_collector.GoalConditionedPathCollector', 'GoalConditionedPathCollector', (['expl_env', 'policy'], {'observation_key': 'observation_key', 'desired_goal_key': 'desired_goal_key'}), '(expl_env, policy, observation_key=\n observation_key, desired_goal_key=desired_goal_key)\n', (10870, 10961), False, 'from rlkit.samplers.data_collector import GoalConditionedPathCollector\n'), ((11012, 11264), 'rlkit.torch.torch_rl_algorithm.TorchBatchRLAlgorithm', 'TorchBatchRLAlgorithm', ([], {'trainer': 'trainer', 'exploration_env': 'expl_env', 'evaluation_env': 'eval_env', 'exploration_data_collector': 'expl_path_collector', 'evaluation_data_collector': 'eval_path_collector', 'replay_buffer': 'replay_buffer'}), "(trainer=trainer, exploration_env=expl_env,\n evaluation_env=eval_env, exploration_data_collector=expl_path_collector,\n evaluation_data_collector=eval_path_collector, replay_buffer=\n replay_buffer, **variant['algo_kwargs'])\n", (11033, 11264), False, 'from rlkit.torch.torch_rl_algorithm import TorchBatchRLAlgorithm\n'), ((12398, 12454), 'rlkit.launchers.launcher_util.setup_logger', 'setup_logger', (['"""her-sac-door-experiment"""'], {'variant': 'variant'}), "('her-sac-door-experiment', variant=variant)\n", (12410, 12454), False, 'from rlkit.launchers.launcher_util import setup_logger\n'), ((825, 849), 'numpy.array', 'np.array', (['self.env.state'], {}), '(self.env.state)\n', (833, 849), True, 'import numpy as np\n'), ((862, 920), 'numpy.array', 'np.array', (['[self.env.goal_position, self.env.goal_velocity]'], {}), '([self.env.goal_position, self.env.goal_velocity])\n', (870, 920), True, 'import numpy as np\n'), ((1595, 1619), 'numpy.array', 'np.array', (['self.env.state'], {}), '(self.env.state)\n', (1603, 1619), True, 'import numpy as np\n'), ((1632, 1690), 'numpy.array', 'np.array', (['[self.env.goal_position, self.env.goal_velocity]'], {}), '([self.env.goal_position, self.env.goal_velocity])\n', (1640, 1690), True, 'import numpy as np\n'), ((2077, 2216), 'gym.spaces.Dict', 'gym.spaces.Dict', (["{'observation': env.observation_space, 'achieved_goal': env.\n observation_space, 'desired_goal': env.observation_space}"], {}), "({'observation': env.observation_space, 'achieved_goal': env\n .observation_space, 'desired_goal': env.observation_space})\n", (2092, 2216), False, 'import gym\n'), ((2332, 2364), 'numpy.array', 'np.array', (['[env.goal_position, 0]'], {}), '([env.goal_position, 0])\n', (2340, 2364), True, 'import numpy as np\n'), ((2452, 2467), 'numpy.array', 'np.array', (['state'], {}), '(state)\n', (2460, 2467), True, 'import numpy as np\n'), ((2857, 2872), 'numpy.array', 'np.array', (['state'], {}), '(state)\n', (2865, 2872), True, 'import numpy as np\n'), ((4489, 4504), 'numpy.array', 'np.array', (['[0.3]'], {}), '([0.3])\n', (4497, 4504), True, 'import numpy as np\n'), ((5050, 5084), 'gym.spaces.Box', 'gym.spaces.Box', ([], {'low': 'low', 'high': 'high'}), '(low=low, high=high)\n', (5064, 5084), False, 'import gym\n'), ((5716, 5738), 'numpy.concatenate', 'np.concatenate', (['ob_lst'], {}), '(ob_lst)\n', (5730, 5738), True, 'import numpy as np\n'), ((6070, 6130), 'numpy.array', 'np.array', (['[self.env.sim.data.qpos[self.env.hinge_qpos_addr]]'], {}), '([self.env.sim.data.qpos[self.env.hinge_qpos_addr]])\n', (6078, 6130), True, 'import numpy as np\n'), ((6863, 6923), 'numpy.array', 'np.array', (['[self.env.sim.data.qpos[self.env.hinge_qpos_addr]]'], {}), '([self.env.sim.data.qpos[self.env.hinge_qpos_addr]])\n', (6871, 6923), True, 'import numpy as np\n'), ((7784, 8046), 'robosuite.make', 'suite.make', (['"""PickPlaceCan"""'], {'robots': '"""Panda"""', 'use_camera_obs': '(False)', 'has_offscreen_renderer': '(False)', 'has_renderer': '(False)', 'reward_shaping': '(True)', 'reward_scale': '(1.0)', 'control_freq': '(20)', 'horizon': '(500)', 'ignore_done': '(True)', 'hard_reset': '(False)', 'controller_configs': 'controller'}), "('PickPlaceCan', robots='Panda', use_camera_obs=False,\n has_offscreen_renderer=False, has_renderer=False, reward_shaping=True,\n reward_scale=1.0, control_freq=20, horizon=500, ignore_done=True,\n hard_reset=False, controller_configs=controller)\n", (7794, 8046), True, 'import robosuite as suite\n'), ((4680, 4701), 'numpy.ones', 'np.ones', (['self.obs_dim'], {}), '(self.obs_dim)\n', (4687, 4701), True, 'import numpy as np\n'), ((4787, 4821), 'gym.spaces.Box', 'gym.spaces.Box', ([], {'low': 'low', 'high': 'high'}), '(low=low, high=high)\n', (4801, 4821), False, 'import gym\n'), ((7447, 7467), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (7461, 7467), True, 'import numpy as np\n'), ((4859, 4870), 'numpy.zeros', 'np.zeros', (['(1)'], {}), '(1)\n', (4867, 4870), True, 'import numpy as np\n'), ((4877, 4887), 'numpy.ones', 'np.ones', (['(1)'], {}), '(1)\n', (4884, 4887), True, 'import numpy as np\n'), ((4937, 4948), 'numpy.zeros', 'np.zeros', (['(1)'], {}), '(1)\n', (4945, 4948), True, 'import numpy as np\n'), ((4955, 4965), 'numpy.ones', 'np.ones', (['(1)'], {}), '(1)\n', (4962, 4965), True, 'import numpy as np\n')]
# Copyright 2021, Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl.testing import absltest import tensorflow as tf from dual_encoder import keras_layers l2_normalize_fn = lambda x: tf.keras.backend.l2_normalize(x, axis=-1) class KerasLayersTest(absltest.TestCase): def test_masked_average_3d(self): masked_average_layer = keras_layers.MaskedAverage(1) inputs = tf.constant([ [[0.5, 0.3], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]], [[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], [[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], ]) mask = tf.constant([[True, True, True], [False, False, True], [True, False, False], [False, False, False]]) output_average = masked_average_layer.call(inputs, mask=mask) output_mask = masked_average_layer.compute_mask(inputs, mask=mask) expected_average = tf.constant([ [1.3 / 3, 0.5 / 3], [0.4, 0.1], [0.9, 0.4], [0.0, 0.0] ]) expected_mask = None tf.debugging.assert_near(expected_average, output_average) self.assertEqual(expected_mask, output_mask) def test_masked_average_4d(self): masked_average_layer = keras_layers.MaskedAverage(2) inputs = tf.constant([ [[[0.5, 0.3], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]]], [[[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]]], [[[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]]], [[[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]]], ]) mask = tf.constant([[[True, True, True], [True, False, True]], [[False, False, True], [False, False, False]], [[True, False, False], [True, True, True]], [[False, False, False], [True, False, False]]]) output_average = masked_average_layer.call(inputs, mask=mask) output_mask = masked_average_layer.compute_mask(inputs, mask=mask) expected_average = tf.constant([ [[1.3 / 3, 0.5 / 3], [0.5, 0.45]], [[0.4, 0.1], [0.0, 0.0]], [[0.9, 0.4], [0.5, 1.3 / 3]], [[0.0, 0.0], [0.6, 0.8]], ]) expected_mask = tf.constant([[True, True], [True, False], [True, True], [False, True]]) tf.debugging.assert_near(expected_average, output_average) tf.debugging.assert_equal(expected_mask, output_mask) def test_masked_average_raises_error(self): masked_average_layer = keras_layers.MaskedAverage(1) inputs = tf.constant([ [[0.5, 0.3], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]], [[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], ]) mask = None with self.assertRaises(ValueError): masked_average_layer.call(inputs, mask=mask) with self.assertRaises(ValueError): masked_average_layer.compute_mask(inputs, mask=mask) def test_masked_reshape(self): masked_reshape_layer = keras_layers.MaskedReshape((4, 4, 2, 1), (4, 4, 2)) inputs = tf.constant([ [[1.0], [2.0], [0.5], [0.4], [0.4], [0.1], [0.0], [0.0]], [[0.4], [0.1], [0.0], [0.0], [0.0], [0.0], [0.6], [0.8]], [[0.9], [0.4], [0.5], [3.0], [0.9], [0.4], [0.5], [3.0]], [[0.0], [0.0], [0.6], [0.8], [0.4], [0.1], [0.0], [0.0]], ]) mask = tf.constant( [[True, False, True, True, True, False, False, False], [True, False, True, True, True, True, False, True], [False, True, True, False, True, True, True, True], [False, True, True, True, True, False, False, True]]) output = masked_reshape_layer.call(inputs, mask=mask) output_mask = masked_reshape_layer.compute_mask(inputs, mask=mask) expected_output = tf.constant([ [[[1.0], [2.0]], [[0.5], [0.4]], [[0.4], [0.1]], [[0.0], [0.0]]], [[[0.4], [0.1]], [[0.0], [0.0]], [[0.0], [0.0]], [[0.6], [0.8]]], [[[0.9], [0.4]], [[0.5], [3.0]], [[0.9], [0.4]], [[0.5], [3.0]]], [[[0.0], [0.0]], [[0.6], [0.8]], [[0.4], [0.1]], [[0.0], [0.0]]], ]) expected_mask = tf.constant( [[[True, False], [True, True], [True, False], [False, False]], [[True, False], [True, True], [True, True], [False, True]], [[False, True], [True, False], [True, True], [True, True]], [[False, True], [True, True], [True, False], [False, True]]]) tf.debugging.assert_near(expected_output, output) tf.debugging.assert_equal(expected_mask, output_mask) def test_masked_reshape_unknown_batch_size(self): masked_reshape_layer = keras_layers.MaskedReshape((-1, 4, 2, 1), (-1, 4, 2)) inputs = tf.constant([ [[1.0], [2.0], [0.5], [0.4], [0.4], [0.1], [0.0], [0.0]], [[0.4], [0.1], [0.0], [0.0], [0.0], [0.0], [0.6], [0.8]], [[0.9], [0.4], [0.5], [3.0], [0.9], [0.4], [0.5], [3.0]], [[0.0], [0.0], [0.6], [0.8], [0.4], [0.1], [0.0], [0.0]], ]) mask = tf.constant( [[True, False, True, True, True, False, False, False], [True, False, True, True, True, True, False, True], [False, True, True, False, True, True, True, True], [False, True, True, True, True, False, False, True]]) output = masked_reshape_layer.call(inputs, mask=mask) output_mask = masked_reshape_layer.compute_mask(inputs, mask=mask) expected_output = tf.constant([ [[[1.0], [2.0]], [[0.5], [0.4]], [[0.4], [0.1]], [[0.0], [0.0]]], [[[0.4], [0.1]], [[0.0], [0.0]], [[0.0], [0.0]], [[0.6], [0.8]]], [[[0.9], [0.4]], [[0.5], [3.0]], [[0.9], [0.4]], [[0.5], [3.0]]], [[[0.0], [0.0]], [[0.6], [0.8]], [[0.4], [0.1]], [[0.0], [0.0]]], ]) expected_mask = tf.constant( [[[True, False], [True, True], [True, False], [False, False]], [[True, False], [True, True], [True, True], [False, True]], [[False, True], [True, False], [True, True], [True, True]], [[False, True], [True, True], [True, False], [False, True]]]) tf.debugging.assert_near(expected_output, output) tf.debugging.assert_equal(expected_mask, output_mask) def test_masked_reshape_raises_error(self): masked_reshape_layer = keras_layers.MaskedReshape((-1, 4, 2, 1), (-1, 4, 2)) inputs = tf.constant([ [[1.0], [2.0], [0.5], [0.4], [0.4], [0.1], [0.0], [0.0]], [[0.4], [0.1], [0.0], [0.0], [0.0], [0.0], [0.6], [0.8]], [[0.9], [0.4], [0.5], [3.0], [0.9], [0.4], [0.5], [3.0]], [[0.0], [0.0], [0.6], [0.8], [0.4], [0.1], [0.0], [0.0]], ]) mask = None with self.assertRaises(ValueError): masked_reshape_layer.call(inputs, mask=mask) with self.assertRaises(ValueError): masked_reshape_layer.compute_mask(inputs, mask=mask) def test_embedding_spreadout_regularizer_dot_product(self): weights = tf.constant( [[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, 0.1], [0.0, 1.0, 0.0]]) regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.1, normalization_fn=None, l2_regularization=0.0) # Similarities without diagonal looks like: # 0.0 2.0 0.1 0.3 0.0 # 2.0 0.0 1.2 1.2 2.0 # 0.1 1.2 0.0 0.1 0.2 # 0.3 1.2 0.1 0.0 0.2 # 0.0 2.0 0.2 0.2 0.0 loss = regularizer(weights) # L2 norm of above similarities. expected_loss = 0.47053161424 tf.debugging.assert_near(expected_loss, loss) regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.1, normalization_fn=None, l2_regularization=1.0) l2_regularizer = tf.keras.regularizers.l2(1.0) loss = regularizer(weights) expected_loss = 0.47053161424 + l2_regularizer(weights) tf.debugging.assert_near(expected_loss, loss) def test_embedding_spreadout_regularizer_cosine_similarity(self): weights = tf.constant( [[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, 0.1], [0.0, 1.0, 0.0]]) regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.1, normalization_fn=l2_normalize_fn, l2_regularization=0.0) loss = regularizer(weights) # L2 norm of above similarities. expected_loss = 0.2890284 tf.debugging.assert_near(expected_loss, loss) regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.1, normalization_fn=l2_normalize_fn, l2_regularization=1.0) l2_regularizer = tf.keras.regularizers.l2(1.0) loss = regularizer(weights) expected_loss = 0.2890284 + l2_regularizer(weights) tf.debugging.assert_near(expected_loss, loss) def test_embedding_spreadout_regularizer_no_spreadout(self): weights = tf.constant( [[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, 0.1], [0.0, 1.0, 0.0]]) regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.0, normalization_fn=None, l2_regularization=0.0) loss = regularizer(weights) expected_loss = 0.0 tf.debugging.assert_near(expected_loss, loss) # Test that L2 normalization behaves normally. regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.0, normalization_fn=None, l2_regularization=0.1) l2_regularizer = tf.keras.regularizers.l2(0.1) loss = regularizer(weights) l2_loss = l2_regularizer(weights) tf.debugging.assert_near(l2_loss, loss) # Test that normalization_fn has no effect. regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.0, normalization_fn=l2_normalize_fn, l2_regularization=0.1) l2_regularizer = tf.keras.regularizers.l2(0.1) loss = regularizer(weights) l2_loss = l2_regularizer(weights) tf.debugging.assert_near(l2_loss, loss) def test_embedding_spreadout_regularizer_get_config(self): weights = tf.constant( [[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, 0.1], [0.0, 1.0, 0.0]]) regularizer = keras_layers.EmbeddingSpreadoutRegularizer( spreadout_lambda=0.0, normalization_fn=l2_normalize_fn, l2_regularization=0.1) config = regularizer.get_config() expected_config = { 'spreadout_lambda': 0.0, 'normalization_fn': l2_normalize_fn, 'l2_regularization': 0.1 } new_regularizer = ( keras_layers.EmbeddingSpreadoutRegularizer.from_config(config)) l2_regularizer = tf.keras.regularizers.l2(0.1) loss = new_regularizer(weights) l2_loss = l2_regularizer(weights) self.assertEqual(config, expected_config) tf.debugging.assert_near(l2_loss, loss) if __name__ == '__main__': absltest.main()
[ "absl.testing.absltest.main", "dual_encoder.keras_layers.EmbeddingSpreadoutRegularizer.from_config", "tensorflow.debugging.assert_equal", "dual_encoder.keras_layers.MaskedReshape", "tensorflow.constant", "dual_encoder.keras_layers.MaskedAverage", "tensorflow.keras.backend.l2_normalize", "tensorflow.debugging.assert_near", "dual_encoder.keras_layers.EmbeddingSpreadoutRegularizer", "tensorflow.keras.regularizers.l2" ]
[((704, 745), 'tensorflow.keras.backend.l2_normalize', 'tf.keras.backend.l2_normalize', (['x'], {'axis': '(-1)'}), '(x, axis=-1)\n', (733, 745), True, 'import tensorflow as tf\n'), ((11535, 11550), 'absl.testing.absltest.main', 'absltest.main', ([], {}), '()\n', (11548, 11550), False, 'from absl.testing import absltest\n'), ((854, 883), 'dual_encoder.keras_layers.MaskedAverage', 'keras_layers.MaskedAverage', (['(1)'], {}), '(1)\n', (880, 883), False, 'from dual_encoder import keras_layers\n'), ((898, 1072), 'tensorflow.constant', 'tf.constant', (['[[[0.5, 0.3], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]],\n [[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], [[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]]]'], {}), '([[[0.5, 0.3], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4],\n [0.4, 0.1]], [[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], [[0.9, 0.4], [0.4, \n 0.1], [0.4, 0.1]]])\n', (909, 1072), True, 'import tensorflow as tf\n'), ((1114, 1218), 'tensorflow.constant', 'tf.constant', (['[[True, True, True], [False, False, True], [True, False, False], [False, \n False, False]]'], {}), '([[True, True, True], [False, False, True], [True, False, False],\n [False, False, False]])\n', (1125, 1218), True, 'import tensorflow as tf\n'), ((1448, 1517), 'tensorflow.constant', 'tf.constant', (['[[1.3 / 3, 0.5 / 3], [0.4, 0.1], [0.9, 0.4], [0.0, 0.0]]'], {}), '([[1.3 / 3, 0.5 / 3], [0.4, 0.1], [0.9, 0.4], [0.0, 0.0]])\n', (1459, 1517), True, 'import tensorflow as tf\n'), ((1586, 1644), 'tensorflow.debugging.assert_near', 'tf.debugging.assert_near', (['expected_average', 'output_average'], {}), '(expected_average, output_average)\n', (1610, 1644), True, 'import tensorflow as tf\n'), ((1758, 1787), 'dual_encoder.keras_layers.MaskedAverage', 'keras_layers.MaskedAverage', (['(2)'], {}), '(2)\n', (1784, 1787), False, 'from dual_encoder import keras_layers\n'), ((1802, 2143), 'tensorflow.constant', 'tf.constant', (['[[[[0.5, 0.3], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]\n ]], [[[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [\n 0.4, 0.1]]], [[[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, \n 0.4], [0.4, 0.1]]], [[[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8],\n [0.5, 0.4], [0.4, 0.1]]]]'], {}), '([[[[0.5, 0.3], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4],\n [0.4, 0.1]]], [[[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]], [[0.6, 0.8], [0.5,\n 0.4], [0.4, 0.1]]], [[[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8],\n [0.5, 0.4], [0.4, 0.1]]], [[[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]], [[0.6,\n 0.8], [0.5, 0.4], [0.4, 0.1]]]])\n', (1813, 2143), True, 'import tensorflow as tf\n'), ((2214, 2418), 'tensorflow.constant', 'tf.constant', (['[[[True, True, True], [True, False, True]], [[False, False, True], [False, \n False, False]], [[True, False, False], [True, True, True]], [[False, \n False, False], [True, False, False]]]'], {}), '([[[True, True, True], [True, False, True]], [[False, False, \n True], [False, False, False]], [[True, False, False], [True, True, True\n ]], [[False, False, False], [True, False, False]]])\n', (2225, 2418), True, 'import tensorflow as tf\n'), ((2642, 2777), 'tensorflow.constant', 'tf.constant', (['[[[1.3 / 3, 0.5 / 3], [0.5, 0.45]], [[0.4, 0.1], [0.0, 0.0]], [[0.9, 0.4],\n [0.5, 1.3 / 3]], [[0.0, 0.0], [0.6, 0.8]]]'], {}), '([[[1.3 / 3, 0.5 / 3], [0.5, 0.45]], [[0.4, 0.1], [0.0, 0.0]], [\n [0.9, 0.4], [0.5, 1.3 / 3]], [[0.0, 0.0], [0.6, 0.8]]])\n', (2653, 2777), True, 'import tensorflow as tf\n'), ((2832, 2903), 'tensorflow.constant', 'tf.constant', (['[[True, True], [True, False], [True, True], [False, True]]'], {}), '([[True, True], [True, False], [True, True], [False, True]])\n', (2843, 2903), True, 'import tensorflow as tf\n'), ((3008, 3066), 'tensorflow.debugging.assert_near', 'tf.debugging.assert_near', (['expected_average', 'output_average'], {}), '(expected_average, output_average)\n', (3032, 3066), True, 'import tensorflow as tf\n'), ((3071, 3124), 'tensorflow.debugging.assert_equal', 'tf.debugging.assert_equal', (['expected_mask', 'output_mask'], {}), '(expected_mask, output_mask)\n', (3096, 3124), True, 'import tensorflow as tf\n'), ((3199, 3228), 'dual_encoder.keras_layers.MaskedAverage', 'keras_layers.MaskedAverage', (['(1)'], {}), '(1)\n', (3225, 3228), False, 'from dual_encoder import keras_layers\n'), ((3243, 3374), 'tensorflow.constant', 'tf.constant', (['[[[0.5, 0.3], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4], [0.4, 0.1]],\n [[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]]]'], {}), '([[[0.5, 0.3], [0.4, 0.1], [0.4, 0.1]], [[0.6, 0.8], [0.5, 0.4],\n [0.4, 0.1]], [[0.9, 0.4], [0.4, 0.1], [0.4, 0.1]]])\n', (3254, 3374), True, 'import tensorflow as tf\n'), ((3671, 3722), 'dual_encoder.keras_layers.MaskedReshape', 'keras_layers.MaskedReshape', (['(4, 4, 2, 1)', '(4, 4, 2)'], {}), '((4, 4, 2, 1), (4, 4, 2))\n', (3697, 3722), False, 'from dual_encoder import keras_layers\n'), ((3737, 3995), 'tensorflow.constant', 'tf.constant', (['[[[1.0], [2.0], [0.5], [0.4], [0.4], [0.1], [0.0], [0.0]], [[0.4], [0.1], [\n 0.0], [0.0], [0.0], [0.0], [0.6], [0.8]], [[0.9], [0.4], [0.5], [3.0],\n [0.9], [0.4], [0.5], [3.0]], [[0.0], [0.0], [0.6], [0.8], [0.4], [0.1],\n [0.0], [0.0]]]'], {}), '([[[1.0], [2.0], [0.5], [0.4], [0.4], [0.1], [0.0], [0.0]], [[\n 0.4], [0.1], [0.0], [0.0], [0.0], [0.0], [0.6], [0.8]], [[0.9], [0.4],\n [0.5], [3.0], [0.9], [0.4], [0.5], [3.0]], [[0.0], [0.0], [0.6], [0.8],\n [0.4], [0.1], [0.0], [0.0]]])\n', (3748, 3995), True, 'import tensorflow as tf\n'), ((4033, 4271), 'tensorflow.constant', 'tf.constant', (['[[True, False, True, True, True, False, False, False], [True, False, True, \n True, True, True, False, True], [False, True, True, False, True, True, \n True, True], [False, True, True, True, True, False, False, True]]'], {}), '([[True, False, True, True, True, False, False, False], [True, \n False, True, True, True, True, False, True], [False, True, True, False,\n True, True, True, True], [False, True, True, True, True, False, False, \n True]])\n', (4044, 4271), True, 'import tensorflow as tf\n'), ((4447, 4739), 'tensorflow.constant', 'tf.constant', (['[[[[1.0], [2.0]], [[0.5], [0.4]], [[0.4], [0.1]], [[0.0], [0.0]]], [[[0.4],\n [0.1]], [[0.0], [0.0]], [[0.0], [0.0]], [[0.6], [0.8]]], [[[0.9], [0.4]\n ], [[0.5], [3.0]], [[0.9], [0.4]], [[0.5], [3.0]]], [[[0.0], [0.0]], [[\n 0.6], [0.8]], [[0.4], [0.1]], [[0.0], [0.0]]]]'], {}), '([[[[1.0], [2.0]], [[0.5], [0.4]], [[0.4], [0.1]], [[0.0], [0.0]\n ]], [[[0.4], [0.1]], [[0.0], [0.0]], [[0.0], [0.0]], [[0.6], [0.8]]], [\n [[0.9], [0.4]], [[0.5], [3.0]], [[0.9], [0.4]], [[0.5], [3.0]]], [[[0.0\n ], [0.0]], [[0.6], [0.8]], [[0.4], [0.1]], [[0.0], [0.0]]]])\n', (4458, 4739), True, 'import tensorflow as tf\n'), ((4784, 5054), 'tensorflow.constant', 'tf.constant', (['[[[True, False], [True, True], [True, False], [False, False]], [[True, \n False], [True, True], [True, True], [False, True]], [[False, True], [\n True, False], [True, True], [True, True]], [[False, True], [True, True],\n [True, False], [False, True]]]'], {}), '([[[True, False], [True, True], [True, False], [False, False]],\n [[True, False], [True, True], [True, True], [False, True]], [[False, \n True], [True, False], [True, True], [True, True]], [[False, True], [\n True, True], [True, False], [False, True]]])\n', (4795, 5054), True, 'import tensorflow as tf\n'), ((5082, 5131), 'tensorflow.debugging.assert_near', 'tf.debugging.assert_near', (['expected_output', 'output'], {}), '(expected_output, output)\n', (5106, 5131), True, 'import tensorflow as tf\n'), ((5136, 5189), 'tensorflow.debugging.assert_equal', 'tf.debugging.assert_equal', (['expected_mask', 'output_mask'], {}), '(expected_mask, output_mask)\n', (5161, 5189), True, 'import tensorflow as tf\n'), ((5270, 5323), 'dual_encoder.keras_layers.MaskedReshape', 'keras_layers.MaskedReshape', (['(-1, 4, 2, 1)', '(-1, 4, 2)'], {}), '((-1, 4, 2, 1), (-1, 4, 2))\n', (5296, 5323), False, 'from dual_encoder import keras_layers\n'), ((5338, 5596), 'tensorflow.constant', 'tf.constant', (['[[[1.0], [2.0], [0.5], [0.4], [0.4], [0.1], [0.0], [0.0]], [[0.4], [0.1], [\n 0.0], [0.0], [0.0], [0.0], [0.6], [0.8]], [[0.9], [0.4], [0.5], [3.0],\n [0.9], [0.4], [0.5], [3.0]], [[0.0], [0.0], [0.6], [0.8], [0.4], [0.1],\n [0.0], [0.0]]]'], {}), '([[[1.0], [2.0], [0.5], [0.4], [0.4], [0.1], [0.0], [0.0]], [[\n 0.4], [0.1], [0.0], [0.0], [0.0], [0.0], [0.6], [0.8]], [[0.9], [0.4],\n [0.5], [3.0], [0.9], [0.4], [0.5], [3.0]], [[0.0], [0.0], [0.6], [0.8],\n [0.4], [0.1], [0.0], [0.0]]])\n', (5349, 5596), True, 'import tensorflow as tf\n'), ((5634, 5872), 'tensorflow.constant', 'tf.constant', (['[[True, False, True, True, True, False, False, False], [True, False, True, \n True, True, True, False, True], [False, True, True, False, True, True, \n True, True], [False, True, True, True, True, False, False, True]]'], {}), '([[True, False, True, True, True, False, False, False], [True, \n False, True, True, True, True, False, True], [False, True, True, False,\n True, True, True, True], [False, True, True, True, True, False, False, \n True]])\n', (5645, 5872), True, 'import tensorflow as tf\n'), ((6048, 6340), 'tensorflow.constant', 'tf.constant', (['[[[[1.0], [2.0]], [[0.5], [0.4]], [[0.4], [0.1]], [[0.0], [0.0]]], [[[0.4],\n [0.1]], [[0.0], [0.0]], [[0.0], [0.0]], [[0.6], [0.8]]], [[[0.9], [0.4]\n ], [[0.5], [3.0]], [[0.9], [0.4]], [[0.5], [3.0]]], [[[0.0], [0.0]], [[\n 0.6], [0.8]], [[0.4], [0.1]], [[0.0], [0.0]]]]'], {}), '([[[[1.0], [2.0]], [[0.5], [0.4]], [[0.4], [0.1]], [[0.0], [0.0]\n ]], [[[0.4], [0.1]], [[0.0], [0.0]], [[0.0], [0.0]], [[0.6], [0.8]]], [\n [[0.9], [0.4]], [[0.5], [3.0]], [[0.9], [0.4]], [[0.5], [3.0]]], [[[0.0\n ], [0.0]], [[0.6], [0.8]], [[0.4], [0.1]], [[0.0], [0.0]]]])\n', (6059, 6340), True, 'import tensorflow as tf\n'), ((6385, 6655), 'tensorflow.constant', 'tf.constant', (['[[[True, False], [True, True], [True, False], [False, False]], [[True, \n False], [True, True], [True, True], [False, True]], [[False, True], [\n True, False], [True, True], [True, True]], [[False, True], [True, True],\n [True, False], [False, True]]]'], {}), '([[[True, False], [True, True], [True, False], [False, False]],\n [[True, False], [True, True], [True, True], [False, True]], [[False, \n True], [True, False], [True, True], [True, True]], [[False, True], [\n True, True], [True, False], [False, True]]])\n', (6396, 6655), True, 'import tensorflow as tf\n'), ((6683, 6732), 'tensorflow.debugging.assert_near', 'tf.debugging.assert_near', (['expected_output', 'output'], {}), '(expected_output, output)\n', (6707, 6732), True, 'import tensorflow as tf\n'), ((6737, 6790), 'tensorflow.debugging.assert_equal', 'tf.debugging.assert_equal', (['expected_mask', 'output_mask'], {}), '(expected_mask, output_mask)\n', (6762, 6790), True, 'import tensorflow as tf\n'), ((6865, 6918), 'dual_encoder.keras_layers.MaskedReshape', 'keras_layers.MaskedReshape', (['(-1, 4, 2, 1)', '(-1, 4, 2)'], {}), '((-1, 4, 2, 1), (-1, 4, 2))\n', (6891, 6918), False, 'from dual_encoder import keras_layers\n'), ((6933, 7191), 'tensorflow.constant', 'tf.constant', (['[[[1.0], [2.0], [0.5], [0.4], [0.4], [0.1], [0.0], [0.0]], [[0.4], [0.1], [\n 0.0], [0.0], [0.0], [0.0], [0.6], [0.8]], [[0.9], [0.4], [0.5], [3.0],\n [0.9], [0.4], [0.5], [3.0]], [[0.0], [0.0], [0.6], [0.8], [0.4], [0.1],\n [0.0], [0.0]]]'], {}), '([[[1.0], [2.0], [0.5], [0.4], [0.4], [0.1], [0.0], [0.0]], [[\n 0.4], [0.1], [0.0], [0.0], [0.0], [0.0], [0.6], [0.8]], [[0.9], [0.4],\n [0.5], [3.0], [0.9], [0.4], [0.5], [3.0]], [[0.0], [0.0], [0.6], [0.8],\n [0.4], [0.1], [0.0], [0.0]]])\n', (6944, 7191), True, 'import tensorflow as tf\n'), ((7503, 7606), 'tensorflow.constant', 'tf.constant', (['[[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, 0.1], [0.0, \n 1.0, 0.0]]'], {}), '([[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, \n 0.1], [0.0, 1.0, 0.0]])\n', (7514, 7606), True, 'import tensorflow as tf\n'), ((7666, 7780), 'dual_encoder.keras_layers.EmbeddingSpreadoutRegularizer', 'keras_layers.EmbeddingSpreadoutRegularizer', ([], {'spreadout_lambda': '(0.1)', 'normalization_fn': 'None', 'l2_regularization': '(0.0)'}), '(spreadout_lambda=0.1,\n normalization_fn=None, l2_regularization=0.0)\n', (7708, 7780), False, 'from dual_encoder import keras_layers\n'), ((8090, 8135), 'tensorflow.debugging.assert_near', 'tf.debugging.assert_near', (['expected_loss', 'loss'], {}), '(expected_loss, loss)\n', (8114, 8135), True, 'import tensorflow as tf\n'), ((8155, 8269), 'dual_encoder.keras_layers.EmbeddingSpreadoutRegularizer', 'keras_layers.EmbeddingSpreadoutRegularizer', ([], {'spreadout_lambda': '(0.1)', 'normalization_fn': 'None', 'l2_regularization': '(1.0)'}), '(spreadout_lambda=0.1,\n normalization_fn=None, l2_regularization=1.0)\n', (8197, 8269), False, 'from dual_encoder import keras_layers\n'), ((8312, 8341), 'tensorflow.keras.regularizers.l2', 'tf.keras.regularizers.l2', (['(1.0)'], {}), '(1.0)\n', (8336, 8341), True, 'import tensorflow as tf\n'), ((8440, 8485), 'tensorflow.debugging.assert_near', 'tf.debugging.assert_near', (['expected_loss', 'loss'], {}), '(expected_loss, loss)\n', (8464, 8485), True, 'import tensorflow as tf\n'), ((8569, 8672), 'tensorflow.constant', 'tf.constant', (['[[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, 0.1], [0.0, \n 1.0, 0.0]]'], {}), '([[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, \n 0.1], [0.0, 1.0, 0.0]])\n', (8580, 8672), True, 'import tensorflow as tf\n'), ((8732, 8857), 'dual_encoder.keras_layers.EmbeddingSpreadoutRegularizer', 'keras_layers.EmbeddingSpreadoutRegularizer', ([], {'spreadout_lambda': '(0.1)', 'normalization_fn': 'l2_normalize_fn', 'l2_regularization': '(0.0)'}), '(spreadout_lambda=0.1,\n normalization_fn=l2_normalize_fn, l2_regularization=0.0)\n', (8774, 8857), False, 'from dual_encoder import keras_layers\n'), ((8984, 9029), 'tensorflow.debugging.assert_near', 'tf.debugging.assert_near', (['expected_loss', 'loss'], {}), '(expected_loss, loss)\n', (9008, 9029), True, 'import tensorflow as tf\n'), ((9049, 9174), 'dual_encoder.keras_layers.EmbeddingSpreadoutRegularizer', 'keras_layers.EmbeddingSpreadoutRegularizer', ([], {'spreadout_lambda': '(0.1)', 'normalization_fn': 'l2_normalize_fn', 'l2_regularization': '(1.0)'}), '(spreadout_lambda=0.1,\n normalization_fn=l2_normalize_fn, l2_regularization=1.0)\n', (9091, 9174), False, 'from dual_encoder import keras_layers\n'), ((9217, 9246), 'tensorflow.keras.regularizers.l2', 'tf.keras.regularizers.l2', (['(1.0)'], {}), '(1.0)\n', (9241, 9246), True, 'import tensorflow as tf\n'), ((9341, 9386), 'tensorflow.debugging.assert_near', 'tf.debugging.assert_near', (['expected_loss', 'loss'], {}), '(expected_loss, loss)\n', (9365, 9386), True, 'import tensorflow as tf\n'), ((9465, 9568), 'tensorflow.constant', 'tf.constant', (['[[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, 0.1], [0.0, \n 1.0, 0.0]]'], {}), '([[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, \n 0.1], [0.0, 1.0, 0.0]])\n', (9476, 9568), True, 'import tensorflow as tf\n'), ((9628, 9742), 'dual_encoder.keras_layers.EmbeddingSpreadoutRegularizer', 'keras_layers.EmbeddingSpreadoutRegularizer', ([], {'spreadout_lambda': '(0.0)', 'normalization_fn': 'None', 'l2_regularization': '(0.0)'}), '(spreadout_lambda=0.0,\n normalization_fn=None, l2_regularization=0.0)\n', (9670, 9742), False, 'from dual_encoder import keras_layers\n'), ((9826, 9871), 'tensorflow.debugging.assert_near', 'tf.debugging.assert_near', (['expected_loss', 'loss'], {}), '(expected_loss, loss)\n', (9850, 9871), True, 'import tensorflow as tf\n'), ((9942, 10056), 'dual_encoder.keras_layers.EmbeddingSpreadoutRegularizer', 'keras_layers.EmbeddingSpreadoutRegularizer', ([], {'spreadout_lambda': '(0.0)', 'normalization_fn': 'None', 'l2_regularization': '(0.1)'}), '(spreadout_lambda=0.0,\n normalization_fn=None, l2_regularization=0.1)\n', (9984, 10056), False, 'from dual_encoder import keras_layers\n'), ((10099, 10128), 'tensorflow.keras.regularizers.l2', 'tf.keras.regularizers.l2', (['(0.1)'], {}), '(0.1)\n', (10123, 10128), True, 'import tensorflow as tf\n'), ((10205, 10244), 'tensorflow.debugging.assert_near', 'tf.debugging.assert_near', (['l2_loss', 'loss'], {}), '(l2_loss, loss)\n', (10229, 10244), True, 'import tensorflow as tf\n'), ((10312, 10437), 'dual_encoder.keras_layers.EmbeddingSpreadoutRegularizer', 'keras_layers.EmbeddingSpreadoutRegularizer', ([], {'spreadout_lambda': '(0.0)', 'normalization_fn': 'l2_normalize_fn', 'l2_regularization': '(0.1)'}), '(spreadout_lambda=0.0,\n normalization_fn=l2_normalize_fn, l2_regularization=0.1)\n', (10354, 10437), False, 'from dual_encoder import keras_layers\n'), ((10480, 10509), 'tensorflow.keras.regularizers.l2', 'tf.keras.regularizers.l2', (['(0.1)'], {}), '(0.1)\n', (10504, 10509), True, 'import tensorflow as tf\n'), ((10586, 10625), 'tensorflow.debugging.assert_near', 'tf.debugging.assert_near', (['l2_loss', 'loss'], {}), '(l2_loss, loss)\n', (10610, 10625), True, 'import tensorflow as tf\n'), ((10702, 10805), 'tensorflow.constant', 'tf.constant', (['[[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, 0.1], [0.0, \n 1.0, 0.0]]'], {}), '([[1.0, 0.0, 0.0], [2.0, 2.0, 2.0], [0.1, 0.2, 0.3], [0.3, 0.2, \n 0.1], [0.0, 1.0, 0.0]])\n', (10713, 10805), True, 'import tensorflow as tf\n'), ((10864, 10989), 'dual_encoder.keras_layers.EmbeddingSpreadoutRegularizer', 'keras_layers.EmbeddingSpreadoutRegularizer', ([], {'spreadout_lambda': '(0.0)', 'normalization_fn': 'l2_normalize_fn', 'l2_regularization': '(0.1)'}), '(spreadout_lambda=0.0,\n normalization_fn=l2_normalize_fn, l2_regularization=0.1)\n', (10906, 10989), False, 'from dual_encoder import keras_layers\n'), ((11224, 11286), 'dual_encoder.keras_layers.EmbeddingSpreadoutRegularizer.from_config', 'keras_layers.EmbeddingSpreadoutRegularizer.from_config', (['config'], {}), '(config)\n', (11278, 11286), False, 'from dual_encoder import keras_layers\n'), ((11309, 11338), 'tensorflow.keras.regularizers.l2', 'tf.keras.regularizers.l2', (['(0.1)'], {}), '(0.1)\n', (11333, 11338), True, 'import tensorflow as tf\n'), ((11465, 11504), 'tensorflow.debugging.assert_near', 'tf.debugging.assert_near', (['l2_loss', 'loss'], {}), '(l2_loss, loss)\n', (11489, 11504), True, 'import tensorflow as tf\n')]
from typing import ( Any, Callable, cast, Generic, Mapping, NoReturn, Optional, TypeVar, Union, ) from abc import ABC, abstractmethod from functools import wraps import math import collections from util import * __all__ = ["Maybe", "Some", "Nothing", "maybe"] class Maybe(Generic[T], ABC): """ Generic class and type for the pysome Maybe object. Two classes inherit from this abstract class: Some and Nothing. """ def __init__(self, value, is_none=False): if not is_none: self._value = value super().__init__() @abstractmethod def get(self) -> Union[T, NoReturn]: """ Get the value that is stored if it is a `Some` object, or throw an error if it is `Nothing` object. Should only be used if you know that it is a `Some` object. If you are unsure, you can use `Maybe.or_else()`. """ pass @abstractmethod def or_else(self, value: T) -> T: """ Get the value that is stored if it is a `Some` object, or return `value` if it is a `Nothing` object. value: T - A default value to be returned if it is a Nothing class """ pass def some_or_else(self, value: T) -> "Maybe[T]": return maybe(self.or_else(value)) @abstractmethod def is_some(self) -> bool: """ Return whether or not the class is `Some`. Equivalent to `isinstnace(self, Some). """ pass @abstractmethod def is_none(self) -> bool: """ Return whether or not the class is `Some`. Equivalent to `isinstnace(self, Nothing). """ pass @abstractmethod def comb(self, *funcs: Callable[["Maybe"], "Maybe"]) -> "Maybe": """ Given a list of functions, call each function iteratively on self and return the result. It should be noted that the following two are equivalent. The functions are assumed to be "maybe" functions, in that they take in a Maybe object and return a Maybe object. If you have a function that is not of that type, you can use the @maybefunction wrapper to convert it. > something.comb(f1, f2, f3) > something.comb(f1).comb(f2).comb(f3) funcs: Callable[[Maybe], Maybe] - A "maybe" function that takes in a Maybe object and returns a Maybe object. """ pass class Some(Maybe[T]): """ A class that contains something. While it is possible to directly instatiate a `Some` object, you should instead use the `maybe()` function. """ def __init__(self, value): super().__init__(value) def get(self) -> T: return self._value def or_else(self, value: T) -> T: return self.get() def is_some(self): return True def is_none(self): return False def comb(self, *funcs: Callable[[Maybe[T]], Maybe[U]]) -> Maybe[U]: value = self.get() for func in funcs: value = func(value) if value == Nothing(): return value return value def __magic_wrapper(f): def wrapper(self, *args): return f(self.get(), *args) return wrapper def __eq__(self, other): if isinstance(other, Some): return self.get() == other.get() elif isinstance(other, Nothing): return False return self.get() == other def __getitem__(self, key: K) -> Maybe[V]: try: return maybe(self.get()[key]) except KeyError: return Nothing() except IndexError: return Nothing() except TypeError: return Nothing() def __setitem__(self, key, value): self.get()[key] = value __int__ = __magic_wrapper(int) __complex__ = __magic_wrapper(complex) __float__ = __magic_wrapper(float) __bool__ = __magic_wrapper(bool) __round__ = __magic_wrapper(round) __trunc__ = __magic_wrapper(math.trunc) __floor__ = __magic_wrapper(math.floor) __ceil__ = __magic_wrapper(math.ceil) __len__ = __magic_wrapper(len) __hash__ = __magic_wrapper(hash) def __op_wrapper(func): @wraps(func) def wrapper(self, other: Any) -> Maybe: # Normalize if isinstance(other, Some): other = other.get() try: return maybe(func(self.get(), other)) # type: ignore except TypeError: return Nothing() # Division case (I don't know how much overhead this adds) except ZeroDivisionError: return Nothing() return wrapper __add__ = __op_wrapper(lambda x, y: x + y) __radd__ = __op_wrapper(lambda x, y: y + x) __sub__ = __op_wrapper(lambda x, y: x - y) __rsub__ = __op_wrapper(lambda x, y: y - x) __mul__ = __op_wrapper(lambda x, y: x * y) __rmul__ = __op_wrapper(lambda x, y: y * x) __truediv__ = __op_wrapper(lambda x, y: x / y) __rtruediv__ = __op_wrapper(lambda x, y: y / x) def __getattr__(self, attr): try: if hasattr(self.get(), "__getattr__"): return self.get().__getattr__(attr) return self.get().__getattribute__(attr) except AttributeError: return Nothing() def __str__(self): return str(self.get()) def __repr__(self): return "Some(%s)" % repr(self.get()) class Nothing(Maybe[T]): def __init__(self): super().__init__(None, True) @staticmethod def __return_nothing(*args, **kwargs): return Nothing() def get(self) -> NoReturn: raise Exception("bad") def or_else(self, value: T) -> T: return value def is_some(self): return False def is_none(self): return True def comb(self, *funcs: Callable[[T], Maybe]) -> Maybe: return self def __eq__(self, other): return isinstance(other, Nothing) # All operators should return Nothing __add__ = __return_nothing __radd__ = __return_nothing __sub__ = __return_nothing __rsub__ = __return_nothing __mul__ = __return_nothing __rmul__ = __return_nothing __truediv__ = __return_nothing __rtruediv__ = __return_nothing __getitem__ = __return_nothing __getattr__ = __return_nothing __call__ = __return_nothing def __str__(self): return "None" def __repr__(self): return "Nothing" def maybe(value): if value == Nothing(): return Nothing() elif isinstance(value, Some): return value return Some(value)
[ "functools.wraps" ]
[((4287, 4298), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (4292, 4298), False, 'from functools import wraps\n')]
# программа сортировки файлов по папкам по их типу или расширению import os from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler from conf import conf_ext print( ' PythonSorter by SI ver 0.5' ) print( '-----------------------------------------------------------' ) print( ' Здравствуйте, ' + os.getlogin() + '!' ) print( ' Вас приветствует программа сортировки ваших файлов' ) print( '-----------------------------------------------------------' ) print( ' Давайте начнём с выбора задачи: ' ) print( '-----------------------------------------------------------' ) print( ' 1 | сортировка файлов по папкам' ) print( ' 2 | просмотр конфигурации типов' ) print( '-----------------------------------------------------------' ) task = int( input( ' ' ) ) if not ((task == 1) or (task == 2)): print( '-----------------------------------------------------------' ) print( ' Ошибка: нет такой задачи, вы вероятно ошиблись, бывает' ) print( ' Совет: перезапустите программу и попробуйте снова' ) print( '-----------------------------------------------------------' ) exit() if task == 1: print( '-----------------------------------------------------------' ) print( ' Перед началом работы давайте всё настроим как вам нужно' ) print( '-----------------------------------------------------------' ) print( ' Выберите режим сортировки:' ) print( '-----------------------------------------------------------' ) print( ' 1 | по типу' ) print( ' 2 | по расширению' ) print( '-----------------------------------------------------------' ) regime = int( input( ' ' ) ) if not ((regime == 1) or (regime == 2)): print( '-----------------------------------------------------------' ) print( ' Ошибка: нет такого режима, вы вероятно ошиблись, бывает' ) print( ' Совет: перезапустите программу и попробуйте снова' ) print( '-----------------------------------------------------------' ) exit() print( '-----------------------------------------------------------' ) print( ' Введите путь к папке в таком формате:' ) print( ' C:/example/path/to/files/' ) print( '-----------------------------------------------------------' ) folder = str( input( ' ' ) ) print( '-----------------------------------------------------------' ) print( ' Настройки сохранены, всё уже работает' ) print( ' Для выхода введите что угодно или закройте консоль' ) print( '-----------------------------------------------------------' ) print( ' Ход работы:' ) class Handler( FileSystemEventHandler ): def on_modified( self, event ): global count count = 0 for filename in os.listdir( folder ): extension = filename.split( "." ) if len( extension ) > 1: if regime == 1: count += 1 for i in range( 0, len( conf_ext ) ): if extension[ -1 ].lower() in conf_ext[ i ][ 1 ]: print( ' ' + str( count ) + ' | ' + conf_ext[ i ][ 0 ][ 0 ] + ' | ' + filename ) try: os.chdir( folder + conf_ext[ i ][ 0 ][ 0 ] + '/' ) except: try: os.makedirs( folder + conf_ext[ i ][ 0 ][ 0 ] + '/' ) except: pass file = folder + filename file_new = folder + conf_ext[ i ][ 0 ][ 0 ] + '/' + filename try: os.rename( file, file_new ) except: file_new = folder + conf_ext[ i ][ 0 ][ 0 ] + '/' + str( count ) + filename try: os.rename( file, file_new ) except: pass if regime == 2: count += 1 print( ' ' + str( count ) + ' | ' + extension[ -1 ].lower() + ' | ' + filename ) try: os.chdir( folder + extension[ -1 ].lower() + '/' ) except: try: os.makedirs( folder + extension[ -1 ].lower() + '/' ) except: pass file = folder + filename file_new = folder + extension[ -1 ].lower() + '/' + filename try: os.rename( file, file_new ) except: file_new = folder + extension[ -1 ].lower() + '/' + str( count ) + filename try: os.rename( file, file_new ) except: pass handle = Handler() observer = Observer() observer.schedule( handle, folder, recursive = False ) observer.start() if input(): observer.stop() observer.join() if task == 2: print( '-----------------------------------------------------------' ) print( ' Запускаю вывод всех соотношений типов и расширений...' ) print( '-----------------------------------------------------------' ) conf_ext.sort() for i in range(0, len(conf_ext)): print( f' тип {conf_ext[i][0][0]}:' ) conf_ext[i][1].sort() for j in range(0, len(conf_ext[i][1])): print( f' - {conf_ext[i][1][j]}' ) print('') # M:/FilesDump/
[ "os.getlogin", "conf.conf_ext.sort", "os.makedirs", "os.rename", "os.chdir", "os.listdir", "watchdog.observers.Observer" ]
[((4334, 4344), 'watchdog.observers.Observer', 'Observer', ([], {}), '()\n', (4342, 4344), False, 'from watchdog.observers import Observer\n'), ((4716, 4731), 'conf.conf_ext.sort', 'conf_ext.sort', ([], {}), '()\n', (4729, 4731), False, 'from conf import conf_ext\n'), ((359, 372), 'os.getlogin', 'os.getlogin', ([], {}), '()\n', (370, 372), False, 'import os\n'), ((2713, 2731), 'os.listdir', 'os.listdir', (['folder'], {}), '(folder)\n', (2723, 2731), False, 'import os\n'), ((4087, 4112), 'os.rename', 'os.rename', (['file', 'file_new'], {}), '(file, file_new)\n', (4096, 4112), False, 'import os\n'), ((3085, 3127), 'os.chdir', 'os.chdir', (["(folder + conf_ext[i][0][0] + '/')"], {}), "(folder + conf_ext[i][0][0] + '/')\n", (3093, 3127), False, 'import os\n'), ((3405, 3430), 'os.rename', 'os.rename', (['file', 'file_new'], {}), '(file, file_new)\n', (3414, 3430), False, 'import os\n'), ((4236, 4261), 'os.rename', 'os.rename', (['file', 'file_new'], {}), '(file, file_new)\n', (4245, 4261), False, 'import os\n'), ((3179, 3224), 'os.makedirs', 'os.makedirs', (["(folder + conf_ext[i][0][0] + '/')"], {}), "(folder + conf_ext[i][0][0] + '/')\n", (3190, 3224), False, 'import os\n'), ((3562, 3587), 'os.rename', 'os.rename', (['file', 'file_new'], {}), '(file, file_new)\n', (3571, 3587), False, 'import os\n')]
import glob import logging import platform import re import socket from typing import Any logger = logging.getLogger("hepynet") def get_current_platform_name() -> str: """Returns the name of the current platform. Returns: str: name of current platform """ return platform.platform() def get_current_hostname() -> str: """Returns the hostname of current machine Returns: str: current hostname """ return socket.gethostname() def get_default_if_none(input_var: Any, default_value: Any): if input_var is None: return default_value else: return input_var def get_newest_file_version( path_pattern: str, n_digit: int = 2, ver_num: int = None, use_existing: bool = False, ): """Check existed file and return last available file path with version. Version range 00 -> 99 (or 999) If reach limit, last available version will be used. 99 (or 999) """ # Return file path if ver_num is given if ver_num is not None: return { "ver_num": ver_num, "path": path_pattern.format(str(ver_num).zfill(n_digit)), } # Otherwise try to find ver_num path_list = glob.glob(path_pattern.format("*")) path_list = sorted(path_list) if len(path_list) < 1: if use_existing: logger.debug( f"Can't find existing file with path pattern: {path_pattern}, returning empty." ) return {} else: ver_num = 0 path = path_pattern.format(str(0).zfill(n_digit)) else: path = path_list[-1] # Choose the last match version_tag_search = re.compile("v(" + "\d" * n_digit + ")") ver_num = int(version_tag_search.search(path).group(1)) if not use_existing: ver_num += 1 path = path_pattern.format(str(ver_num).zfill(n_digit)) return { "ver_num": ver_num, "path": path, } def get_significant_digits(number: float, n_digits: int): if round(number) == number: m = len(str(number)) - 1 - n_digits if number / (10 ** m) == 0.0: return number else: return float(int(number) / (10 ** m) * (10 ** m)) if len(str(number)) > n_digits + 1: return round(number, n_digits - len(str(int(number)))) else: return number
[ "platform.platform", "socket.gethostname", "logging.getLogger", "re.compile" ]
[((100, 128), 'logging.getLogger', 'logging.getLogger', (['"""hepynet"""'], {}), "('hepynet')\n", (117, 128), False, 'import logging\n'), ((291, 310), 'platform.platform', 'platform.platform', ([], {}), '()\n', (308, 310), False, 'import platform\n'), ((458, 478), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (476, 478), False, 'import socket\n'), ((1684, 1724), 're.compile', 're.compile', (["('v(' + '\\\\d' * n_digit + ')')"], {}), "('v(' + '\\\\d' * n_digit + ')')\n", (1694, 1724), False, 'import re\n')]
# Copyright (C) 2019 by eHealth Africa : http://www.eHealthAfrica.org # # See the NOTICE file distributed with this work for additional information # regarding copyright ownership. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from django.contrib.auth import get_user_model from aether.sdk.multitenancy.utils import get_current_realm, add_user_to_realm UserModel = get_user_model() user_objects = UserModel.objects def get_or_create_user(request, username): # gets the existing user or creates a new one _username = parse_username(request, username) try: user = user_objects.get(username=_username) except UserModel.DoesNotExist: realm = get_current_realm(request) user = user_objects.create_user( username=_username, first_name=username, last_name=realm or '', password=user_objects.make_random_password(length=100), ) # only add user if it doesn't exist. add_user_to_realm(request, user) return user def parse_username(request, username): # the internal username prepends the realm name realm = get_current_realm(request) if realm and not username.startswith(f'{realm}__'): username = f'{realm}__{username}' return username def unparse_username(request, username): # the internal username prepends the realm name realm = get_current_realm(request) if realm and username.startswith(f'{realm}__'): username = username[len(f'{realm}__'):] return username def user_to_string(user, request=None): ''' Returns a readable name of the user. - ``first_name`` + ``last_name`` - ``username`` ''' if user.first_name and user.last_name: return f'{user.first_name} {user.last_name}' if request: return unparse_username(request, user.username) return user.username
[ "aether.sdk.multitenancy.utils.get_current_realm", "django.contrib.auth.get_user_model", "aether.sdk.multitenancy.utils.add_user_to_realm" ]
[((871, 887), 'django.contrib.auth.get_user_model', 'get_user_model', ([], {}), '()\n', (885, 887), False, 'from django.contrib.auth import get_user_model\n'), ((1632, 1658), 'aether.sdk.multitenancy.utils.get_current_realm', 'get_current_realm', (['request'], {}), '(request)\n', (1649, 1658), False, 'from aether.sdk.multitenancy.utils import get_current_realm, add_user_to_realm\n'), ((1885, 1911), 'aether.sdk.multitenancy.utils.get_current_realm', 'get_current_realm', (['request'], {}), '(request)\n', (1902, 1911), False, 'from aether.sdk.multitenancy.utils import get_current_realm, add_user_to_realm\n'), ((1178, 1204), 'aether.sdk.multitenancy.utils.get_current_realm', 'get_current_realm', (['request'], {}), '(request)\n', (1195, 1204), False, 'from aether.sdk.multitenancy.utils import get_current_realm, add_user_to_realm\n'), ((1477, 1509), 'aether.sdk.multitenancy.utils.add_user_to_realm', 'add_user_to_realm', (['request', 'user'], {}), '(request, user)\n', (1494, 1509), False, 'from aether.sdk.multitenancy.utils import get_current_realm, add_user_to_realm\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import time import paddle from paddle.amp import auto_cast from .mixup import Mixup from core.evaluate import accuracy from utils.comm import comm def train_one_epoch(config, train_loader, model, criterion, optimizer, epoch, output_dir, tb_log_dir, writer_dict, scaler=None): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() logging.info('=> switch to train mode') model.train() aug = config.AUG mixup_fn = Mixup(mixup_alpha=aug.MIXUP, cutmix_alpha=aug.MIXCUT, cutmix_minmax=aug.MIXCUT_MINMAX if aug.MIXCUT_MINMAX else None, prob=aug.MIXUP_PROB, switch_prob=aug.MIXUP_SWITCH_PROB, mode=aug.MIXUP_MODE, label_smoothing=config.LOSS.LABEL_SMOOTHING, num_classes=config.MODEL.NUM_CLASSES) if aug.MIXUP_PROB > 0.0 else None end = time.time() for i, (x, y) in enumerate(train_loader): data_time.update(time.time() - end) if mixup_fn: x, y = mixup_fn(x, y) with auto_cast(enable=config.AMP.ENABLED): outputs = model(x) loss = criterion(outputs, y) optimizer.clear_grad() is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order scaler.scale(loss).backward(create_graph=is_second_order) if config.TRAIN.CLIP_GRAD_NORM > 0.0: scaler.unscale_(optimizer) paddle.fluid.layers.nn.clip_by_norm( model.parameters(), config.TRAIN.CLIP_GRAD_NORM ) scaler.step(optimizer) scaler.update() losses.update(loss.item(), x.shape[0]) if mixup_fn: y = paddle.argmax(y, axis=1) prec1, prec5 = accuracy(outputs, y, (1, 5)) top1.update(prec1, x.shape[0]) top5.update(prec5, x.shape[0]) batch_time.update(time.time() - end) end = time.time() if i % config.PRINT_FREQ == 0: msg = ( '=> Epoch[{0}][{1}/{2}]: ' 'Time {batch_time.val:.3f}s\t ' '({batch_time.avg:.3f}s)\t' 'Speed {speed:.1f} samples/s\t' 'Data {data_time.val:.3f}s ({data_time.avg:.3f}s)\t' 'Loss {loss.val:.5f} ({loss.avg:.5f})\t' 'Accuracy@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Accuracy@5 {top5.val:.3f} ({top5.avg:.3f})\t'.format(epoch, i, len(train_loader), batch_time=batch_time, speed=x.shape[0] / batch_time.val, data_time=data_time, loss=losses, top1=top1, top5=top5)) logging.info(msg) if writer_dict and comm.is_main_process(): writer = writer_dict['writer'] global_steps = writer_dict['train_global_steps'] writer.add_scalar('train_loss', losses.avg, global_steps) writer.add_scalar('train_top1', top1.avg, global_steps) writer_dict['train_global_steps'] = global_steps + 1 @paddle.no_grad() def test(config, val_loader, model, criterion, output_dir, tb_log_dir, writer_dict=None, distributed=False, real_labels=None, valid_labels=None): batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() logging.info('=> switch to eval mode') model.eval() end = time.time() for i, (x, y) in enumerate(val_loader): outputs = model(x) if valid_labels: outputs = outputs[:, valid_labels] loss = criterion(outputs, y) if real_labels and not distributed: real_labels.add_result(outputs) losses.update(loss.item(), x.shape[0]) prec1, prec5 = accuracy(outputs, y, (1, 5)) top1.update(prec1, x.shape[0]) top5.update(prec5, x.shape[0]) batch_time.update(time.time() - end) end = time.time() logging.info('=> synchronize...') comm.synchronize() top1_acc, top5_acc, loss_avg = map(_meter_reduce if distributed else lambda x: x.avg, [top1, top5, losses]) if real_labels and not distributed: real_top1 = real_labels.get_accuracy(k=1) real_top5 = real_labels.get_accuracy(k=5) msg = ('=> TEST using Reassessed labels:\t' 'Error@1 {error1:.3f}%\t' 'Error@5 {error5:.3f}%\t' 'Accuracy@1 {top1:.3f}%\t' 'Accuracy@5 {top5:.3f}%\t' .format(top1=real_top1, top5=real_top5, error1=100 - real_top1, error5=100 - real_top5)) logging.info(msg) if comm.is_main_process(): msg = ('=> TEST:\t' 'Loss {loss_avg:.4f}\t' 'Error@1 {error1:.3f}%\t' 'Error@5 {error5:.3f}%\t' 'Accuracy@1 {top1:.3f}%\t' 'Accuracy@5 {top5:.3f}%\t' .format(loss_avg=loss_avg, top1=top1_acc, top5=top5_acc, error1=100 - top1_acc, error5=100 - top5_acc)) logging.info(msg) if writer_dict and comm.is_main_process(): writer = writer_dict['writer'] global_steps = writer_dict['valid_global_steps'] writer.add_scalar('valid_loss', loss_avg, global_steps) writer.add_scalar('valid_top1', top1_acc, global_steps) writer_dict['valid_global_steps'] = global_steps + 1 logging.info('=> switch to train mode') model.train() return top1_acc def _meter_reduce(meter): rank = comm.local_rank meter_sum = paddle.to_tensor([meter.sum], dtype=paddle.float32)#.cuda(rank) meter_count = paddle.to_tensor([meter.count], dtype=paddle.float32)#.cuda(rank) paddle.distributed.reduce(meter_sum, 0) paddle.distributed.reduce(meter_count, 0) meter_avg = meter_sum / meter_count return meter_avg.item() class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count
[ "core.evaluate.accuracy", "paddle.argmax", "paddle.no_grad", "paddle.amp.auto_cast", "time.time", "logging.info", "utils.comm.comm.synchronize", "paddle.distributed.reduce", "utils.comm.comm.is_main_process", "paddle.to_tensor" ]
[((3523, 3539), 'paddle.no_grad', 'paddle.no_grad', ([], {}), '()\n', (3537, 3539), False, 'import paddle\n'), ((598, 637), 'logging.info', 'logging.info', (['"""=> switch to train mode"""'], {}), "('=> switch to train mode')\n", (610, 637), False, 'import logging\n'), ((1108, 1119), 'time.time', 'time.time', ([], {}), '()\n', (1117, 1119), False, 'import time\n'), ((3830, 3868), 'logging.info', 'logging.info', (['"""=> switch to eval mode"""'], {}), "('=> switch to eval mode')\n", (3842, 3868), False, 'import logging\n'), ((3900, 3911), 'time.time', 'time.time', ([], {}), '()\n', (3909, 3911), False, 'import time\n'), ((4460, 4493), 'logging.info', 'logging.info', (['"""=> synchronize..."""'], {}), "('=> synchronize...')\n", (4472, 4493), False, 'import logging\n'), ((4499, 4517), 'utils.comm.comm.synchronize', 'comm.synchronize', ([], {}), '()\n', (4515, 4517), False, 'from utils.comm import comm\n'), ((5229, 5251), 'utils.comm.comm.is_main_process', 'comm.is_main_process', ([], {}), '()\n', (5249, 5251), False, 'from utils.comm import comm\n'), ((6035, 6074), 'logging.info', 'logging.info', (['"""=> switch to train mode"""'], {}), "('=> switch to train mode')\n", (6047, 6074), False, 'import logging\n'), ((6193, 6244), 'paddle.to_tensor', 'paddle.to_tensor', (['[meter.sum]'], {'dtype': 'paddle.float32'}), '([meter.sum], dtype=paddle.float32)\n', (6209, 6244), False, 'import paddle\n'), ((6276, 6329), 'paddle.to_tensor', 'paddle.to_tensor', (['[meter.count]'], {'dtype': 'paddle.float32'}), '([meter.count], dtype=paddle.float32)\n', (6292, 6329), False, 'import paddle\n'), ((6347, 6386), 'paddle.distributed.reduce', 'paddle.distributed.reduce', (['meter_sum', '(0)'], {}), '(meter_sum, 0)\n', (6372, 6386), False, 'import paddle\n'), ((6392, 6433), 'paddle.distributed.reduce', 'paddle.distributed.reduce', (['meter_count', '(0)'], {}), '(meter_count, 0)\n', (6417, 6433), False, 'import paddle\n'), ((2017, 2045), 'core.evaluate.accuracy', 'accuracy', (['outputs', 'y', '(1, 5)'], {}), '(outputs, y, (1, 5))\n', (2025, 2045), False, 'from core.evaluate import accuracy\n'), ((2191, 2202), 'time.time', 'time.time', ([], {}), '()\n', (2200, 2202), False, 'import time\n'), ((3201, 3223), 'utils.comm.comm.is_main_process', 'comm.is_main_process', ([], {}), '()\n', (3221, 3223), False, 'from utils.comm import comm\n'), ((4269, 4297), 'core.evaluate.accuracy', 'accuracy', (['outputs', 'y', '(1, 5)'], {}), '(outputs, y, (1, 5))\n', (4277, 4297), False, 'from core.evaluate import accuracy\n'), ((4441, 4452), 'time.time', 'time.time', ([], {}), '()\n', (4450, 4452), False, 'import time\n'), ((5201, 5218), 'logging.info', 'logging.info', (['msg'], {}), '(msg)\n', (5213, 5218), False, 'import logging\n'), ((5670, 5687), 'logging.info', 'logging.info', (['msg'], {}), '(msg)\n', (5682, 5687), False, 'import logging\n'), ((5714, 5736), 'utils.comm.comm.is_main_process', 'comm.is_main_process', ([], {}), '()\n', (5734, 5736), False, 'from utils.comm import comm\n'), ((1287, 1323), 'paddle.amp.auto_cast', 'auto_cast', ([], {'enable': 'config.AMP.ENABLED'}), '(enable=config.AMP.ENABLED)\n', (1296, 1323), False, 'from paddle.amp import auto_cast\n'), ((1968, 1992), 'paddle.argmax', 'paddle.argmax', (['y'], {'axis': '(1)'}), '(y, axis=1)\n', (1981, 1992), False, 'import paddle\n'), ((3157, 3174), 'logging.info', 'logging.info', (['msg'], {}), '(msg)\n', (3169, 3174), False, 'import logging\n'), ((1193, 1204), 'time.time', 'time.time', ([], {}), '()\n', (1202, 1204), False, 'import time\n'), ((2157, 2168), 'time.time', 'time.time', ([], {}), '()\n', (2166, 2168), False, 'import time\n'), ((4407, 4418), 'time.time', 'time.time', ([], {}), '()\n', (4416, 4418), False, 'import time\n')]
from localtileserver import examples def test_get_blue_marble(): client = examples.get_blue_marble() assert client.metadata() def test_get_virtual_earth(): client = examples.get_virtual_earth() assert client.metadata() def test_get_arcgis(): client = examples.get_arcgis() assert client.metadata() def test_get_elevation(): client = examples.get_elevation() assert client.metadata() def test_get_bahamas(): client = examples.get_bahamas() assert client.metadata() def test_get_pine_gulch(): client = examples.get_pine_gulch() assert client.metadata() def test_get_landsat(): client = examples.get_landsat() assert client.metadata() def test_get_san_francisco(): client = examples.get_san_francisco() assert client.metadata() def test_get_oam2(): client = examples.get_oam2() assert client.metadata() def test_get_elevation_us(): client = examples.get_elevation_us() assert client.metadata()
[ "localtileserver.examples.get_bahamas", "localtileserver.examples.get_elevation_us", "localtileserver.examples.get_blue_marble", "localtileserver.examples.get_san_francisco", "localtileserver.examples.get_oam2", "localtileserver.examples.get_elevation", "localtileserver.examples.get_pine_gulch", "localtileserver.examples.get_landsat", "localtileserver.examples.get_arcgis", "localtileserver.examples.get_virtual_earth" ]
[((80, 106), 'localtileserver.examples.get_blue_marble', 'examples.get_blue_marble', ([], {}), '()\n', (104, 106), False, 'from localtileserver import examples\n'), ((181, 209), 'localtileserver.examples.get_virtual_earth', 'examples.get_virtual_earth', ([], {}), '()\n', (207, 209), False, 'from localtileserver import examples\n'), ((277, 298), 'localtileserver.examples.get_arcgis', 'examples.get_arcgis', ([], {}), '()\n', (296, 298), False, 'from localtileserver import examples\n'), ((369, 393), 'localtileserver.examples.get_elevation', 'examples.get_elevation', ([], {}), '()\n', (391, 393), False, 'from localtileserver import examples\n'), ((462, 484), 'localtileserver.examples.get_bahamas', 'examples.get_bahamas', ([], {}), '()\n', (482, 484), False, 'from localtileserver import examples\n'), ((556, 581), 'localtileserver.examples.get_pine_gulch', 'examples.get_pine_gulch', ([], {}), '()\n', (579, 581), False, 'from localtileserver import examples\n'), ((650, 672), 'localtileserver.examples.get_landsat', 'examples.get_landsat', ([], {}), '()\n', (670, 672), False, 'from localtileserver import examples\n'), ((747, 775), 'localtileserver.examples.get_san_francisco', 'examples.get_san_francisco', ([], {}), '()\n', (773, 775), False, 'from localtileserver import examples\n'), ((841, 860), 'localtileserver.examples.get_oam2', 'examples.get_oam2', ([], {}), '()\n', (858, 860), False, 'from localtileserver import examples\n'), ((934, 961), 'localtileserver.examples.get_elevation_us', 'examples.get_elevation_us', ([], {}), '()\n', (959, 961), False, 'from localtileserver import examples\n')]
"""Added location to proposal Revision ID: 4dbf686f4380 Revises: <PASSWORD> Create Date: 2013-11-08 23:35:43.433963 """ # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '1<PASSWORD>' from alembic import op import sqlalchemy as sa def upgrade(): ### commands auto generated by Alembic - please adjust! ### op.add_column('proposal', sa.Column('location', sa.Unicode(length=80), server_default=sa.text(u"''"), nullable=False)) op.alter_column('proposal', 'location', server_default=None) ### end Alembic commands ### def downgrade(): ### commands auto generated by Alembic - please adjust! ### op.drop_column('proposal', 'location') ### end Alembic commands ###
[ "alembic.op.drop_column", "alembic.op.alter_column", "sqlalchemy.text", "sqlalchemy.Unicode" ]
[((469, 529), 'alembic.op.alter_column', 'op.alter_column', (['"""proposal"""', '"""location"""'], {'server_default': 'None'}), "('proposal', 'location', server_default=None)\n", (484, 529), False, 'from alembic import op\n'), ((650, 688), 'alembic.op.drop_column', 'op.drop_column', (['"""proposal"""', '"""location"""'], {}), "('proposal', 'location')\n", (664, 688), False, 'from alembic import op\n'), ((394, 415), 'sqlalchemy.Unicode', 'sa.Unicode', ([], {'length': '(80)'}), '(length=80)\n', (404, 415), True, 'import sqlalchemy as sa\n'), ((432, 446), 'sqlalchemy.text', 'sa.text', (['u"""\'\'"""'], {}), '(u"\'\'")\n', (439, 446), True, 'import sqlalchemy as sa\n')]
import functools from typing import List class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: """ Same thought as LC96, we can generate trees recursively. If the root of tree is i The left subtree has a sequence of [start ... i - 1] The right subtree has a sequence of [i + 1 ... end] Can use cache to improve performance. """ def generateTrees(self, n: int) -> List[TreeNode]: if not n: return [] return self.generate_subtrees(1, n) @functools.lru_cache(None) def generate_subtrees(self, start, end): res = [] if end < start: return [None] for i in range(start, end + 1): # More concise than declare left/right list. Have same performance. for left in self.generate_subtrees(start, i - 1): for right in self.generate_subtrees(i + 1, end): node = TreeNode(i) node.left = left node.right = right res.append(node) return res
[ "functools.lru_cache" ]
[((604, 629), 'functools.lru_cache', 'functools.lru_cache', (['None'], {}), '(None)\n', (623, 629), False, 'import functools\n')]
import os from pipeline_tools.shared import http_requests from pipeline_tools.tests.http_requests_manager import HttpRequestsManager class TestHttpRequestsManager(object): def test_enter_creates_directory(self): with HttpRequestsManager() as temp_dir: assert os.path.isdir(temp_dir) is True def test_exit_deletes_directory(self): with HttpRequestsManager() as temp_dir: temp_dir_name = temp_dir assert os.path.isdir(temp_dir_name) is True assert os.path.isdir(temp_dir) is False def test_enter_sets_environment_vars(self): with HttpRequestsManager() as temp_dir: assert http_requests.HTTP_RECORD_DIR in os.environ assert os.environ[http_requests.HTTP_RECORD_DIR] == temp_dir assert http_requests.RECORD_HTTP_REQUESTS in os.environ assert os.environ[http_requests.RECORD_HTTP_REQUESTS] == 'true' assert http_requests.RETRY_MAX_TRIES in os.environ assert os.environ[http_requests.RETRY_MAX_TRIES] == '3' assert http_requests.RETRY_MAX_INTERVAL in os.environ assert os.environ[http_requests.RETRY_MAX_INTERVAL] == '10' assert http_requests.RETRY_TIMEOUT in os.environ assert os.environ[http_requests.RETRY_TIMEOUT] == '1' assert http_requests.RETRY_MULTIPLIER in os.environ assert os.environ[http_requests.RETRY_MULTIPLIER] == '0.01' assert http_requests.INDIVIDUAL_REQUEST_TIMEOUT in os.environ assert os.environ[http_requests.INDIVIDUAL_REQUEST_TIMEOUT] == '1' def test_exit_deletes_environment_var(self): with HttpRequestsManager() as temp_dir: pass assert http_requests.HTTP_RECORD_DIR not in os.environ assert http_requests.RECORD_HTTP_REQUESTS not in os.environ assert http_requests.RETRY_MAX_TRIES not in os.environ assert http_requests.RETRY_MAX_INTERVAL not in os.environ assert http_requests.RETRY_TIMEOUT not in os.environ assert http_requests.RETRY_MULTIPLIER not in os.environ assert http_requests.INDIVIDUAL_REQUEST_TIMEOUT not in os.environ
[ "os.path.isdir", "pipeline_tools.tests.http_requests_manager.HttpRequestsManager" ]
[((232, 253), 'pipeline_tools.tests.http_requests_manager.HttpRequestsManager', 'HttpRequestsManager', ([], {}), '()\n', (251, 253), False, 'from pipeline_tools.tests.http_requests_manager import HttpRequestsManager\n'), ((375, 396), 'pipeline_tools.tests.http_requests_manager.HttpRequestsManager', 'HttpRequestsManager', ([], {}), '()\n', (394, 396), False, 'from pipeline_tools.tests.http_requests_manager import HttpRequestsManager\n'), ((518, 541), 'os.path.isdir', 'os.path.isdir', (['temp_dir'], {}), '(temp_dir)\n', (531, 541), False, 'import os\n'), ((613, 634), 'pipeline_tools.tests.http_requests_manager.HttpRequestsManager', 'HttpRequestsManager', ([], {}), '()\n', (632, 634), False, 'from pipeline_tools.tests.http_requests_manager import HttpRequestsManager\n'), ((1676, 1697), 'pipeline_tools.tests.http_requests_manager.HttpRequestsManager', 'HttpRequestsManager', ([], {}), '()\n', (1695, 1697), False, 'from pipeline_tools.tests.http_requests_manager import HttpRequestsManager\n'), ((286, 309), 'os.path.isdir', 'os.path.isdir', (['temp_dir'], {}), '(temp_dir)\n', (299, 309), False, 'import os\n'), ((466, 494), 'os.path.isdir', 'os.path.isdir', (['temp_dir_name'], {}), '(temp_dir_name)\n', (479, 494), False, 'import os\n')]
""" Faça um programa que mostre na tela uma contagem regressiva para o estouro de fogos de artifício, indo de 10 até 0, com uma pausa de 1 segundo entre eles. """ #importar a bliblioteca para esperar from time import sleep print("contagem regressiva para os fogos!!!!") for a in range(10,0,-1): print(a) sleep(1) print("FOGOS")
[ "time.sleep" ]
[((315, 323), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (320, 323), False, 'from time import sleep\n')]
from __future__ import unicode_literals from django import forms from django.contrib.auth.models import User from django.db import models from ckeditor_uploader.fields import RichTextUploadingField # Create your models here. from django.utils.safestring import mark_safe class Main(models.Model): STATUS = ( ('True', 'Evet'), ('False', 'Hayir'), ) name = models.CharField(default='', max_length=40) status = models.CharField(default='', max_length=40, choices=STATUS) title = models.CharField(max_length=15) about = RichTextUploadingField() keyword = models.TextField(max_length=10000) description = models.TextField(max_length=10000) company = models.TextField(max_length=10000) smtpserver = models.CharField(max_length=44) smtpemail = models.CharField(max_length=44) smtpPassword = models.CharField(max_length=150) smtpPort = models.CharField(max_length=150) pagefa = models.CharField(max_length=150) pagetw = models.CharField(max_length=150) pageyt = models.CharField(max_length=105) pageLink = models.CharField(max_length=150) pageTe = models.CharField(max_length=20,default=0) icon = models.ImageField(blank=True,upload_to='images/') name_set = models.CharField(max_length=20,default='-') def __str__(self): return self.name_set + " ||" +str(self.pk) class UserProfile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) phone = models.CharField(blank=True,max_length=20) address = models.CharField(blank=True,max_length=202) city = models.CharField(blank=True,max_length=20) country= models.CharField(blank=True,max_length=20) image = models.ImageField(upload_to="images/profile_images/", blank=True) def __str__(self): return self.user.username @property def use_name(self): return self.user.usernames @property def image_tag(self): if self.image is None: return '' self.image.short_description = 'Image' return mark_safe('<img src="{}" width="50" height="50" />'.format(self.image.url)) class UserProfileForm(forms.ModelForm): class Meta: model = UserProfile fields = ('phone', 'address', 'city', 'country','image') class FAQ(models.Model): STATUS = ( ('True', 'Evet'), ('False', 'Hayir'), ) orderNumber = models.IntegerField() question = models.CharField(default='', max_length=150) answer = models.TextField(max_length=1000) status = models.CharField(default='', max_length=40, choices=STATUS) create_at = models.DateTimeField(auto_now_add=True) update_at = models.DateTimeField(auto_now_add=True) def __str__(self): return self.question
[ "django.db.models.TextField", "django.db.models.OneToOneField", "django.db.models.CharField", "ckeditor_uploader.fields.RichTextUploadingField", "django.db.models.ImageField", "django.db.models.IntegerField", "django.db.models.DateTimeField" ]
[((387, 430), 'django.db.models.CharField', 'models.CharField', ([], {'default': '""""""', 'max_length': '(40)'}), "(default='', max_length=40)\n", (403, 430), False, 'from django.db import models\n'), ((444, 503), 'django.db.models.CharField', 'models.CharField', ([], {'default': '""""""', 'max_length': '(40)', 'choices': 'STATUS'}), "(default='', max_length=40, choices=STATUS)\n", (460, 503), False, 'from django.db import models\n'), ((517, 548), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(15)'}), '(max_length=15)\n', (533, 548), False, 'from django.db import models\n'), ((562, 586), 'ckeditor_uploader.fields.RichTextUploadingField', 'RichTextUploadingField', ([], {}), '()\n', (584, 586), False, 'from ckeditor_uploader.fields import RichTextUploadingField\n'), ((601, 635), 'django.db.models.TextField', 'models.TextField', ([], {'max_length': '(10000)'}), '(max_length=10000)\n', (617, 635), False, 'from django.db import models\n'), ((655, 689), 'django.db.models.TextField', 'models.TextField', ([], {'max_length': '(10000)'}), '(max_length=10000)\n', (671, 689), False, 'from django.db import models\n'), ((705, 739), 'django.db.models.TextField', 'models.TextField', ([], {'max_length': '(10000)'}), '(max_length=10000)\n', (721, 739), False, 'from django.db import models\n'), ((758, 789), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(44)'}), '(max_length=44)\n', (774, 789), False, 'from django.db import models\n'), ((807, 838), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(44)'}), '(max_length=44)\n', (823, 838), False, 'from django.db import models\n'), ((858, 890), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(150)'}), '(max_length=150)\n', (874, 890), False, 'from django.db import models\n'), ((907, 939), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(150)'}), '(max_length=150)\n', (923, 939), False, 'from django.db import models\n'), ((954, 986), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(150)'}), '(max_length=150)\n', (970, 986), False, 'from django.db import models\n'), ((1001, 1033), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(150)'}), '(max_length=150)\n', (1017, 1033), False, 'from django.db import models\n'), ((1048, 1080), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(105)'}), '(max_length=105)\n', (1064, 1080), False, 'from django.db import models\n'), ((1097, 1129), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(150)'}), '(max_length=150)\n', (1113, 1129), False, 'from django.db import models\n'), ((1143, 1185), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)', 'default': '(0)'}), '(max_length=20, default=0)\n', (1159, 1185), False, 'from django.db import models\n'), ((1197, 1247), 'django.db.models.ImageField', 'models.ImageField', ([], {'blank': '(True)', 'upload_to': '"""images/"""'}), "(blank=True, upload_to='images/')\n", (1214, 1247), False, 'from django.db import models\n'), ((1264, 1308), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)', 'default': '"""-"""'}), "(max_length=20, default='-')\n", (1280, 1308), False, 'from django.db import models\n'), ((1430, 1482), 'django.db.models.OneToOneField', 'models.OneToOneField', (['User'], {'on_delete': 'models.CASCADE'}), '(User, on_delete=models.CASCADE)\n', (1450, 1482), False, 'from django.db import models\n'), ((1495, 1538), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(20)'}), '(blank=True, max_length=20)\n', (1511, 1538), False, 'from django.db import models\n'), ((1552, 1596), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(202)'}), '(blank=True, max_length=202)\n', (1568, 1596), False, 'from django.db import models\n'), ((1607, 1650), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(20)'}), '(blank=True, max_length=20)\n', (1623, 1650), False, 'from django.db import models\n'), ((1663, 1706), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(20)'}), '(blank=True, max_length=20)\n', (1679, 1706), False, 'from django.db import models\n'), ((1718, 1783), 'django.db.models.ImageField', 'models.ImageField', ([], {'upload_to': '"""images/profile_images/"""', 'blank': '(True)'}), "(upload_to='images/profile_images/', blank=True)\n", (1735, 1783), False, 'from django.db import models\n'), ((2422, 2443), 'django.db.models.IntegerField', 'models.IntegerField', ([], {}), '()\n', (2441, 2443), False, 'from django.db import models\n'), ((2459, 2503), 'django.db.models.CharField', 'models.CharField', ([], {'default': '""""""', 'max_length': '(150)'}), "(default='', max_length=150)\n", (2475, 2503), False, 'from django.db import models\n'), ((2517, 2550), 'django.db.models.TextField', 'models.TextField', ([], {'max_length': '(1000)'}), '(max_length=1000)\n', (2533, 2550), False, 'from django.db import models\n'), ((2564, 2623), 'django.db.models.CharField', 'models.CharField', ([], {'default': '""""""', 'max_length': '(40)', 'choices': 'STATUS'}), "(default='', max_length=40, choices=STATUS)\n", (2580, 2623), False, 'from django.db import models\n'), ((2640, 2679), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (2660, 2679), False, 'from django.db import models\n'), ((2696, 2735), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (2716, 2735), False, 'from django.db import models\n')]
import numpy as np from PIL import Image import time import cv2 global img global point1, point2 global min_x, min_y, width, height, max_x, max_y def on_mouse(event, x, y, flags, param): global img, point1, point2, min_x, min_y, width, height, max_x, max_y img2 = img.copy() if event == cv2.EVENT_LBUTTONDOWN: # 左键点击 point1 = (x, y) cv2.circle(img2, point1, 10, (0, 255, 0), 2) cv2.imshow('image', img2) elif event == cv2.EVENT_MOUSEMOVE and (flags & cv2.EVENT_FLAG_LBUTTON): # 按住左键拖曳 cv2.rectangle(img2, point1, (x, y), (255, 0, 0), 2) cv2.imshow('image', img2) elif event == cv2.EVENT_LBUTTONUP: # 左键释放 point2 = (x, y) cv2.rectangle(img2, point1, point2, (0, 0, 255), 2) cv2.imshow('image', img2) min_y = min(point1[0], point2[0]) min_x = min(point1[1], point2[1]) width = abs(point1[0] - point2[0]) height = abs(point1[1] - point2[1]) max_x = min_x + height max_y = min_y + width def overlap_restricted_area(x, y, patch_size, min_x, max_x, min_y, max_y): dx0 = dy0 = patch_size // 2 minx1 = x - dx0 miny1 = y - dy0 maxx1 = x + dx0 maxy1 = y + dy0 minx2 = min_x miny2 = min_y maxx2 = max_x maxy2 = max_y minx = max(minx1, minx2) miny = max(miny1, miny2) maxx = min(maxx1, maxx2) maxy = min(maxy1, maxy2) if minx > maxx or miny > maxy: return False else: return True def cal_distance(a, b, A_padding, B, p_size): p = p_size // 2 patch_a = A_padding[a[0]:a[0] + p_size, a[1]:a[1] + p_size, :] patch_b = B[b[0] - p:b[0] + p + 1, b[1] - p:b[1] + p + 1, :] temp = patch_b - patch_a num = np.sum(1 - np.int32(np.isnan(temp))) dist = np.sum(np.square(np.nan_to_num(temp))) / num return dist def cal_alpha(dis, gamma=2.0): return gamma ** (-dis) def reconstruction(f, A, B, p_size, dist, min_x, max_x, min_y, max_y, itter): A_h = np.size(A, 0) A_w = np.size(A, 1) B_h = np.size(B, 0) B_w = np.size(B, 1) temp = np.zeros_like(A) p = p_size // 2 for i in range(A_h): for j in range(A_w): cnt = 0 ans = np.zeros(3) for m in range(-p, p + 1, 1): for n in range(-p, p + 1, 1): if not ((0 <= i + m < A_h) and (0 <= j + n < A_w)): continue if not ((0 <= f[i + m][j + n][0] - m < B_h) and (0 <= f[i + m][j + n][1] - n < B_w)): continue if overlap_restricted_area(f[i + m][j + n][0] - m, f[i + m][j + n][1] - n, p_size, min_x, max_x, min_y, max_y): continue alpha = cal_alpha(dis=dist[i + m, j + n]) cnt += alpha ans += alpha * B[f[i + m][j + n][0] - m, f[i + m][j + n][1] - n, :] temp[i, j, :] = ans / cnt tmp = np.copy(B) # temp = cv2.GaussianBlur(temp, (3, 3), 0) tmp[min_x:min_x + A_h, min_y:min_y + A_w, :] = temp # Image.fromarray(tmp).show() return tmp, temp def initialization(A, B, f, p_size, min_x, max_x, min_y, max_y, create_f=False): A_h = np.size(A, 0) A_w = np.size(A, 1) B_h = np.size(B, 0) B_w = np.size(B, 1) p = p_size // 2 # A_padding = np.ones([A_h+p*2, A_w+p*2, 3]) * np.nan A_padding = B[min_x - p:min_x + A_h + p, min_y - p:min_y + A_w + p, :] A_padding[p:A_h + p, p:A_w + p, :] = A random_B_r = np.random.randint(p, B_h - p, [A_h, A_w]) random_B_c = np.random.randint(p, B_w - p, [A_h, A_w]) for i in range(A_h): for j in range(A_w): while overlap_restricted_area(random_B_r[i][j], random_B_c[i][j], p_size, min_x, max_x, min_y, max_y): random_B_r[i][j] = np.random.randint(p, B_h - p) random_B_c[i][j] = np.random.randint(p, B_w - p) if create_f: f = np.zeros([A_h, A_w], dtype=object) dist = np.zeros([A_h, A_w]) for i in range(A_h): for j in range(A_w): a = np.array([i, j]) if create_f: b = np.array([random_B_r[i, j], random_B_c[i, j]], dtype=np.int32) f[i, j] = b else: b = np.array([random_B_r[i, j], random_B_c[i, j]], dtype=np.int32) if (i % 2 == 0) or (j % 2 == 0): f[i, j] = b else: b = f[i, j] dist[i, j] = cal_distance(a, b, A_padding, B, p_size) return f, dist, A_padding def propagation(f, a, dist, A_padding, B, p_size, is_odd, min_x, max_x, min_y, max_y): A_h = np.size(A_padding, 0) - p_size + 1 A_w = np.size(A_padding, 1) - p_size + 1 # print(A_h, A_w) x = a[0] y = a[1] if is_odd: d_left = dist[max(x - 1, 0), y] d_up = dist[x, max(y - 1, 0)] d_current = dist[x, y] idx = np.argmin(np.array([d_current, d_left, d_up])) if idx == 1 and (not overlap_restricted_area(f[max(x - 1, 0), y][0] + 1, f[max(x - 1, 0), y][1], p_size, min_x, max_x, min_y, max_y)): f[x, y] = f[max(x - 1, 0), y] dist[x, y] = cal_distance(a, f[x, y], A_padding, B, p_size) if idx == 2 and (not overlap_restricted_area(f[x, max(y - 1, 0)][0], f[x, max(y - 1, 0)][1] + 1, p_size, min_x, max_x, min_y, max_y)): f[x, y] = f[x, max(y - 1, 0)] dist[x, y] = cal_distance(a, f[x, y], A_padding, B, p_size) else: # print(dist.shape) # print(min(x + 1, A_h - 1), y) d_right = dist[min(x + 1, A_h - 1), y] d_down = dist[x, min(y + 1, A_w - 1)] d_current = dist[x, y] idx = np.argmin(np.array([d_current, d_right, d_down])) if idx == 1 and ( not overlap_restricted_area(f[min(x + 1, A_h - 1), y][0] - 1, f[min(x + 1, A_h - 1), y][1], p_size, min_x, max_x, min_y, max_y)): f[x, y] = f[min(x + 1, A_h - 1), y] dist[x, y] = cal_distance(a, f[x, y], A_padding, B, p_size) if idx == 2 and ( not overlap_restricted_area(f[x, min(y + 1, A_w - 1)][0], f[x, min(y + 1, A_w - 1)][1] - 1, p_size, min_x, max_x, min_y, max_y)): f[x, y] = f[x, min(y + 1, A_w - 1)] dist[x, y] = cal_distance(a, f[x, y], A_padding, B, p_size) def random_search(f, a, dist, A_padding, B, p_size, min_x, max_x, min_y, max_y, alpha=0.5): x = a[0] y = a[1] B_h = np.size(B, 0) B_w = np.size(B, 1) p = p_size // 2 i = 4 search_h = B_h * alpha ** i search_w = B_w * alpha ** i b_x = f[x, y][0] b_y = f[x, y][1] while search_h > 1 and search_w > 1: search_min_r = max(b_x - search_h, p) search_max_r = min(b_x + search_h, B_h - p) random_b_x = np.random.randint(search_min_r, search_max_r) search_min_c = max(b_y - search_w, p) search_max_c = min(b_y + search_w, B_w - p) random_b_y = np.random.randint(search_min_c, search_max_c) search_h = B_h * alpha ** i search_w = B_w * alpha ** i b = np.array([random_b_x, random_b_y]) d = cal_distance(a, b, A_padding, B, p_size) if d < dist[x, y] and (not overlap_restricted_area(b[0], b[1], p_size, min_x, max_x, min_y, max_y)): dist[x, y] = d f[x, y] = b i += 1 def NNS(img, ref, p_size, itr, f, dist, img_padding, min_x, max_x, min_y, max_y): A_h = np.size(img, 0) A_w = np.size(img, 1) # print(A_h, A_w) # print(img_padding.shape) for itr in range(1, itr + 1): if itr % 2 == 0: for i in range(A_h - 1, -1, -1): for j in range(A_w - 1, -1, -1): a = np.array([i, j]) propagation(f, a, dist, img_padding, ref, p_size, False, min_x, max_x, min_y, max_y) random_search(f, a, dist, img_padding, ref, p_size, min_x, max_x, min_y, max_y) else: for i in range(A_h): for j in range(A_w): a = np.array([i, j]) propagation(f, a, dist, img_padding, ref, p_size, True, min_x, max_x, min_y, max_y) random_search(f, a, dist, img_padding, ref, p_size, min_x, max_x, min_y, max_y) print("iteration: %d" % (itr)) return f def upsample_nnf(nnf): temp = np.zeros((nnf.shape[0], nnf.shape[1], 3)) for x in range(nnf.shape[0]): for y in range(nnf.shape[1]): temp[x][y] = [nnf[x][y][0], nnf[x][y][1], 0] # img = np.zeros(shape=(size, size, 2), dtype=np.int) # small_size = nnf.shape[0] aw_ratio = 2 # ((size) // small_size) ah_ratio = 2 # ((size) // small_size) temp = cv2.resize(temp, None, fx=aw_ratio, fy=aw_ratio, interpolation=cv2.INTER_NEAREST) imge = np.zeros(shape=(temp.shape[0], temp.shape[1], 2), dtype=np.int) for i in range(temp.shape[0]): for j in range(temp.shape[1]): pos = temp[i, j] imge[i, j] = pos[0] * aw_ratio, pos[1] * ah_ratio return imge padding_size = [15, 15, 13, 9, 5, 2] # padding_size = [9, 7, 5, 3, 3, 2] iter_arr = [2, 2, 16, 40, 64, 64] def main(img_path): # img_path = 'IMAGE/face.jpg' global img img = cv2.imread(img_path) cv2.namedWindow('image') cv2.setMouseCallback('image', on_mouse) cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows() # print(min_x, min_y, height, width) global_min_x = min_x global_min_y = min_y global_max_x = max_x global_max_y = max_y # img = np.array(Image.open("./cup_a.jpg")) origin_ref = np.array(Image.open(img_path)) # ref = cv2.pyrDown(origin_ref, (np.size(origin_ref, 0)//2, np.size(origin_ref, 1)//2)) # Image.fromarray(ref).show() itr = 4 start = time.time() # origin_img = origin_ref[min_x: max_x + 1, min_y:max_y + 1, :] # img = cv2.resize(origin_img, None, fx=2 ** (-4), fy=2 ** (-4), interpolation=cv2.INTER_NEAREST) f = 0 depth = 3 for l in range(depth, -1, -1): p_size = padding_size[l] gmin_x = global_min_x // (2 ** l) gmin_y = global_min_y // (2 ** l) gmax_x = global_max_x // (2 ** l) gmax_y = global_max_y // (2 ** l) # print(origin_ref.shape) # ref = cv2.resize(origin_ref, None, fx=2 ** (-l), fy=2 ** (-l), interpolation=cv2.INTER_LINEAR) ref = origin_ref for kk in range(l): ref = cv2.pyrDown(ref, (np.size(origin_ref, 0) // 2, np.size(origin_ref, 1) // 2)) # print(ref.shape) # print(gmin_x, gmin_y, gmax_x, gmax_y) # !!!!!!!!! img = ref[gmin_x: gmax_x + 1, gmin_y:gmax_y + 1, :] # !!!!!!!!! if l == depth: # img = ref[gmin_x: gmax_x + 1, gmin_y:gmax_y + 1, :] # img = np.zeros([gmax_x - gmin_x + 1, gmax_y - gmin_y + 1, 3]) # !!!!!!!!!! # img = np.random.randint(0, 256, size=(gmax_x - gmin_x + 1, gmax_y - gmin_y + 1, 3), dtype=np.uint8) # !!!!!!!!!! # print(np.shape(img)[0] // 4) f, dist, img_padding = initialization(img, ref, f, p_size, gmin_x, gmax_x, gmin_y, gmax_y, create_f=True) else: # print(img.shape) fake, dist, img_padding = initialization(img, ref, f, p_size, gmin_x, gmax_x, gmin_y, gmax_y, create_f=False) # Image.fromarray(ref).show() # Image.fromarray(img).show() # print(img.shape) # print(img_padding.shape) for itter in range(iter_arr[l]): f = NNS(img, ref, p_size, itr, f, dist, img_padding, gmin_x, gmax_x, gmin_y, gmax_y) end = time.time() print(end - start) print(l, itter + 1, '/', iter_arr[l]) tmp, img = reconstruction(f, img, ref, p_size, dist, gmin_x, gmax_x, gmin_y, gmax_y, itter) # if itter == iter_arr[l] - 1: # Image.fromarray(tmp).show() # img = cv2.resize(img, None, fx=2, fy=2, interpolation=cv2.INTER_LINEAR) # Image.fromarray(img).show() img = cv2.pyrUp(img, (np.size(img, 0) * 2, np.size(img, 1) * 2)) f = upsample_nnf(f) # Image.fromarray(img).show() tmp = Image.fromarray(tmp) tmp.save("temp.jpg") return "temp.jpg" if __name__ == '__main__': img_path = 'D://project//Image_Completion//IMAGE//face.jpg' # img_path = 'D://project//Image_Completion//IMAGE//birds.jpg' while True: img_path = main(img_path)
[ "numpy.nan_to_num", "numpy.isnan", "numpy.random.randint", "cv2.rectangle", "cv2.imshow", "numpy.zeros_like", "numpy.copy", "cv2.setMouseCallback", "cv2.destroyAllWindows", "cv2.resize", "numpy.size", "cv2.circle", "cv2.waitKey", "numpy.zeros", "time.time", "PIL.Image.open", "cv2.imread", "numpy.array", "PIL.Image.fromarray", "cv2.namedWindow" ]
[((1982, 1995), 'numpy.size', 'np.size', (['A', '(0)'], {}), '(A, 0)\n', (1989, 1995), True, 'import numpy as np\n'), ((2006, 2019), 'numpy.size', 'np.size', (['A', '(1)'], {}), '(A, 1)\n', (2013, 2019), True, 'import numpy as np\n'), ((2030, 2043), 'numpy.size', 'np.size', (['B', '(0)'], {}), '(B, 0)\n', (2037, 2043), True, 'import numpy as np\n'), ((2054, 2067), 'numpy.size', 'np.size', (['B', '(1)'], {}), '(B, 1)\n', (2061, 2067), True, 'import numpy as np\n'), ((2079, 2095), 'numpy.zeros_like', 'np.zeros_like', (['A'], {}), '(A)\n', (2092, 2095), True, 'import numpy as np\n'), ((3042, 3052), 'numpy.copy', 'np.copy', (['B'], {}), '(B)\n', (3049, 3052), True, 'import numpy as np\n'), ((3304, 3317), 'numpy.size', 'np.size', (['A', '(0)'], {}), '(A, 0)\n', (3311, 3317), True, 'import numpy as np\n'), ((3328, 3341), 'numpy.size', 'np.size', (['A', '(1)'], {}), '(A, 1)\n', (3335, 3341), True, 'import numpy as np\n'), ((3352, 3365), 'numpy.size', 'np.size', (['B', '(0)'], {}), '(B, 0)\n', (3359, 3365), True, 'import numpy as np\n'), ((3376, 3389), 'numpy.size', 'np.size', (['B', '(1)'], {}), '(B, 1)\n', (3383, 3389), True, 'import numpy as np\n'), ((3603, 3644), 'numpy.random.randint', 'np.random.randint', (['p', '(B_h - p)', '[A_h, A_w]'], {}), '(p, B_h - p, [A_h, A_w])\n', (3620, 3644), True, 'import numpy as np\n'), ((3662, 3703), 'numpy.random.randint', 'np.random.randint', (['p', '(B_w - p)', '[A_h, A_w]'], {}), '(p, B_w - p, [A_h, A_w])\n', (3679, 3703), True, 'import numpy as np\n'), ((4078, 4098), 'numpy.zeros', 'np.zeros', (['[A_h, A_w]'], {}), '([A_h, A_w])\n', (4086, 4098), True, 'import numpy as np\n'), ((6754, 6767), 'numpy.size', 'np.size', (['B', '(0)'], {}), '(B, 0)\n', (6761, 6767), True, 'import numpy as np\n'), ((6778, 6791), 'numpy.size', 'np.size', (['B', '(1)'], {}), '(B, 1)\n', (6785, 6791), True, 'import numpy as np\n'), ((7740, 7755), 'numpy.size', 'np.size', (['img', '(0)'], {}), '(img, 0)\n', (7747, 7755), True, 'import numpy as np\n'), ((7766, 7781), 'numpy.size', 'np.size', (['img', '(1)'], {}), '(img, 1)\n', (7773, 7781), True, 'import numpy as np\n'), ((8651, 8692), 'numpy.zeros', 'np.zeros', (['(nnf.shape[0], nnf.shape[1], 3)'], {}), '((nnf.shape[0], nnf.shape[1], 3))\n', (8659, 8692), True, 'import numpy as np\n'), ((9010, 9096), 'cv2.resize', 'cv2.resize', (['temp', 'None'], {'fx': 'aw_ratio', 'fy': 'aw_ratio', 'interpolation': 'cv2.INTER_NEAREST'}), '(temp, None, fx=aw_ratio, fy=aw_ratio, interpolation=cv2.\n INTER_NEAREST)\n', (9020, 9096), False, 'import cv2\n'), ((9103, 9166), 'numpy.zeros', 'np.zeros', ([], {'shape': '(temp.shape[0], temp.shape[1], 2)', 'dtype': 'np.int'}), '(shape=(temp.shape[0], temp.shape[1], 2), dtype=np.int)\n', (9111, 9166), True, 'import numpy as np\n'), ((9539, 9559), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (9549, 9559), False, 'import cv2\n'), ((9564, 9588), 'cv2.namedWindow', 'cv2.namedWindow', (['"""image"""'], {}), "('image')\n", (9579, 9588), False, 'import cv2\n'), ((9593, 9632), 'cv2.setMouseCallback', 'cv2.setMouseCallback', (['"""image"""', 'on_mouse'], {}), "('image', on_mouse)\n", (9613, 9632), False, 'import cv2\n'), ((9637, 9661), 'cv2.imshow', 'cv2.imshow', (['"""image"""', 'img'], {}), "('image', img)\n", (9647, 9661), False, 'import cv2\n'), ((9666, 9680), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (9677, 9680), False, 'import cv2\n'), ((9685, 9708), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (9706, 9708), False, 'import cv2\n'), ((10096, 10107), 'time.time', 'time.time', ([], {}), '()\n', (10105, 10107), False, 'import time\n'), ((12563, 12583), 'PIL.Image.fromarray', 'Image.fromarray', (['tmp'], {}), '(tmp)\n', (12578, 12583), False, 'from PIL import Image\n'), ((365, 409), 'cv2.circle', 'cv2.circle', (['img2', 'point1', '(10)', '(0, 255, 0)', '(2)'], {}), '(img2, point1, 10, (0, 255, 0), 2)\n', (375, 409), False, 'import cv2\n'), ((418, 443), 'cv2.imshow', 'cv2.imshow', (['"""image"""', 'img2'], {}), "('image', img2)\n", (428, 443), False, 'import cv2\n'), ((4032, 4066), 'numpy.zeros', 'np.zeros', (['[A_h, A_w]'], {'dtype': 'object'}), '([A_h, A_w], dtype=object)\n', (4040, 4066), True, 'import numpy as np\n'), ((7088, 7133), 'numpy.random.randint', 'np.random.randint', (['search_min_r', 'search_max_r'], {}), '(search_min_r, search_max_r)\n', (7105, 7133), True, 'import numpy as np\n'), ((7253, 7298), 'numpy.random.randint', 'np.random.randint', (['search_min_c', 'search_max_c'], {}), '(search_min_c, search_max_c)\n', (7270, 7298), True, 'import numpy as np\n'), ((7383, 7417), 'numpy.array', 'np.array', (['[random_b_x, random_b_y]'], {}), '([random_b_x, random_b_y])\n', (7391, 7417), True, 'import numpy as np\n'), ((9924, 9944), 'PIL.Image.open', 'Image.open', (['img_path'], {}), '(img_path)\n', (9934, 9944), False, 'from PIL import Image\n'), ((538, 589), 'cv2.rectangle', 'cv2.rectangle', (['img2', 'point1', '(x, y)', '(255, 0, 0)', '(2)'], {}), '(img2, point1, (x, y), (255, 0, 0), 2)\n', (551, 589), False, 'import cv2\n'), ((598, 623), 'cv2.imshow', 'cv2.imshow', (['"""image"""', 'img2'], {}), "('image', img2)\n", (608, 623), False, 'import cv2\n'), ((2208, 2219), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (2216, 2219), True, 'import numpy as np\n'), ((4169, 4185), 'numpy.array', 'np.array', (['[i, j]'], {}), '([i, j])\n', (4177, 4185), True, 'import numpy as np\n'), ((4753, 4774), 'numpy.size', 'np.size', (['A_padding', '(0)'], {}), '(A_padding, 0)\n', (4760, 4774), True, 'import numpy as np\n'), ((4798, 4819), 'numpy.size', 'np.size', (['A_padding', '(1)'], {}), '(A_padding, 1)\n', (4805, 4819), True, 'import numpy as np\n'), ((5029, 5064), 'numpy.array', 'np.array', (['[d_current, d_left, d_up]'], {}), '([d_current, d_left, d_up])\n', (5037, 5064), True, 'import numpy as np\n'), ((5912, 5950), 'numpy.array', 'np.array', (['[d_current, d_right, d_down]'], {}), '([d_current, d_right, d_down])\n', (5920, 5950), True, 'import numpy as np\n'), ((12008, 12019), 'time.time', 'time.time', ([], {}), '()\n', (12017, 12019), False, 'import time\n'), ((703, 754), 'cv2.rectangle', 'cv2.rectangle', (['img2', 'point1', 'point2', '(0, 0, 255)', '(2)'], {}), '(img2, point1, point2, (0, 0, 255), 2)\n', (716, 754), False, 'import cv2\n'), ((763, 788), 'cv2.imshow', 'cv2.imshow', (['"""image"""', 'img2'], {}), "('image', img2)\n", (773, 788), False, 'import cv2\n'), ((1743, 1757), 'numpy.isnan', 'np.isnan', (['temp'], {}), '(temp)\n', (1751, 1757), True, 'import numpy as np\n'), ((1788, 1807), 'numpy.nan_to_num', 'np.nan_to_num', (['temp'], {}), '(temp)\n', (1801, 1807), True, 'import numpy as np\n'), ((3908, 3937), 'numpy.random.randint', 'np.random.randint', (['p', '(B_h - p)'], {}), '(p, B_h - p)\n', (3925, 3937), True, 'import numpy as np\n'), ((3973, 4002), 'numpy.random.randint', 'np.random.randint', (['p', '(B_w - p)'], {}), '(p, B_w - p)\n', (3990, 4002), True, 'import numpy as np\n'), ((4231, 4293), 'numpy.array', 'np.array', (['[random_B_r[i, j], random_B_c[i, j]]'], {'dtype': 'np.int32'}), '([random_B_r[i, j], random_B_c[i, j]], dtype=np.int32)\n', (4239, 4293), True, 'import numpy as np\n'), ((4360, 4422), 'numpy.array', 'np.array', (['[random_B_r[i, j], random_B_c[i, j]]'], {'dtype': 'np.int32'}), '([random_B_r[i, j], random_B_c[i, j]], dtype=np.int32)\n', (4368, 4422), True, 'import numpy as np\n'), ((8012, 8028), 'numpy.array', 'np.array', (['[i, j]'], {}), '([i, j])\n', (8020, 8028), True, 'import numpy as np\n'), ((8342, 8358), 'numpy.array', 'np.array', (['[i, j]'], {}), '([i, j])\n', (8350, 8358), True, 'import numpy as np\n'), ((12444, 12459), 'numpy.size', 'np.size', (['img', '(0)'], {}), '(img, 0)\n', (12451, 12459), True, 'import numpy as np\n'), ((12465, 12480), 'numpy.size', 'np.size', (['img', '(1)'], {}), '(img, 1)\n', (12472, 12480), True, 'import numpy as np\n'), ((10766, 10788), 'numpy.size', 'np.size', (['origin_ref', '(0)'], {}), '(origin_ref, 0)\n', (10773, 10788), True, 'import numpy as np\n'), ((10795, 10817), 'numpy.size', 'np.size', (['origin_ref', '(1)'], {}), '(origin_ref, 1)\n', (10802, 10817), True, 'import numpy as np\n')]
# Author: <NAME> # Created: 2019-01-25 # Copyright (C) 2018, <NAME> # License: MIT import math class Tween(): ''' Tweening class for scalar values Initial value is set on construction. wait() maintains the current value for the requested number of frames pad() similar to wait, but pads until the total length of the tween is the required size. set() sets a new current values, and adds it for the requested number of frames (which can be zero) to() moves linearly from the current value to the supplied value. The first frame added will have the current value, the last frame added will have the new value, with values spaced evenly in between. The final value will be set as the new current value. You can use get(n) to get the nth frame, or alternatively you can use tween[n]. The built in len() function can be used to find the sequence length. Tween are iterable, so they can be used with for loops etc. ''' def __init__(self, value=0): self.check_value(value, None) self.frames = [] self.previous = value self.nextFrame = 0 def wait(self, count): self.check_count(count) self.frames.extend([self.previous for i in range(count)]) return self def pad(self, final_length): self.check_count(final_length) required = final_length - len(self.frames) if required > 0: self.frames.extend([self.previous for i in range(required)]) return self def set(self, value, count=0): self.check_value(value, self.previous) self.check_count(count) self.frames.extend([value for i in range(count)]) self.previous = value return self def to(self, value, count): self.check_value(value, self.previous) self.check_count(count) for i in range(count): factor = (i + 1) / count self.frames.append(self.previous + factor * (value - self.previous)) self.previous = value return self def ease(self, value, count, ease_function): self.check_value(value, self.previous) self.check_count(count) for i in range(count): factor = ease_function((i + 1) / count) self.frames.append(self.previous + factor * (value - self.previous)) self.previous = value return self def get(self, frame): if frame >= len(self.frames): return self.previous return self.frames[frame] def __getitem__(self, key): return self.get(key) def __next__(self): if self.nextFrame >= len(self.frames): raise StopIteration() frame = self.get(self.nextFrame) self.nextFrame += 1 return frame def __iter__(self): return self def check_value(self, value, previous): if (not isinstance(value, (int, float))) or isinstance(value, bool): raise ValueError('Numeric value required') def check_index(self, value): if not isinstance(value, int): raise ValueError('Integer value required') def check_count(self, value): if not isinstance(value, int) or value < 0: raise ValueError('Non-negative integer value required') def __len__(self): return len(self.frames) class TweenVector(Tween): ''' Tweening class for vector quantities. Similar to Tween, but the values are vector quantities (ie tuples of lists), such as (x, y) positions or (r, g, b, a) colours. The vector quantities must have at least 1 element, but normally it will be 2 or more. Every value added must have the same length as the initial value, for example if you start with an (x, y) value, every new value must also have 2 dimansions. ''' def __init__(self, value=(0, 0)): Tween.__init__(self, value) def to(self, value, count): self.check_value(value, self.previous) self.check_count(count) for i in range(count): nextvalue = [] factor = (i + 1) / count for a, b in zip(self.previous, value): nextvalue.append(a + factor * (b - a)) self.frames.append(nextvalue) self.previous = value return self def ease(self, value, count, ease_function): self.check_value(value, self.previous) self.check_count(count) for i in range(count): nextvalue = [] factor = ease_function((i + 1) / count) for a, b in zip(self.previous, value): nextvalue.append(a + factor * (b - a)) self.frames.append(nextvalue) self.previous = value return self def check_value(self, value, previous): try: if len(value) <= 0: raise ValueError('Vectors of rank 0 are not supported') if previous and len(value) != len(self.previous): raise ValueError('All values must be vectors of equal rank') except: ValueError('Sequence value required') def ease_linear(): return lambda x: x def ease_in_harm(): return lambda x: 1 + math.sin(math.pi * (x / 2 - 0.5)) def ease_out_harm(): return lambda x: math.sin(math.pi * x / 2) def ease_in_out_harm(): return lambda x: 0.5 + 0.5 * math.sin(math.pi * (x - 0.5)) def ease_in_elastic(): return lambda x: math.sin(2.25 * 2 * math.pi * (x)) * pow(2, 10 * (x - 1)) def ease_out_elastic(): return lambda x: 1 - math.sin(2.25 * 2 * math.pi * (1 - x)) * pow(2, -10 * x) def ease_in_out_elastic(): def fn(x): if x < 0.5: f = 2 * x return 0.5 * (math.sin(2.25 * 2 * math.pi * f) * pow(2, 10 * (f - 1))) else: f = (2 * x - 1) return 0.5 * (1 - math.sin(2.25 * 2 * math.pi * (1 - f)) * pow(2, -10 * f)) + 0.5 return fn def ease_in_back(): return lambda x: x * x * x - x * math.sin(x * math.pi) def ease_out_back(): def fn(x): f = (1 - x) return 1 - (f * f * f - f * math.sin(f * math.pi)) return fn def ease_in_out_back(): def fn(x): if x < 0.5: f = 2 * x return 0.5 * (f * f * f - f * math.sin(f * math.pi)) else: f = (1 - (2 * x - 1)) return 0.5 * (1 - (f * f * f - f * math.sin(f * math.pi))) + 0.5 return fn # Basic bounce function used by the bounce easing functions. # Don't use this function directly, use the ease_*_bounce functions instead. def _bounce(x): if x < 4 / 11.0: return (121 * x * x) / 16.0 elif x < 8 / 11.0: return (363 / 40.0 * x * x) - (99 / 10.0 * x) + 17 / 5.0 elif x < 9 / 10.0: return (4356 / 361.0 * x * x) - (35442 / 1805.0 * x) + 16061 / 1805.0 else: return (54 / 5.0 * x * x) - (513 / 25.0 * x) + 268 / 25.0 def ease_in_bounce(): return lambda x: 1 - _bounce(1 - x) def ease_out_bounce(): return lambda x: _bounce(x) def ease_in_out_bounce(): def fn(x): if x < 0.5: return 0.5 * (1 - _bounce(1 - x * 2)) else: return 0.5 * _bounce(x * 2 - 1) + 0.5 return fn
[ "math.sin" ]
[((5275, 5300), 'math.sin', 'math.sin', (['(math.pi * x / 2)'], {}), '(math.pi * x / 2)\n', (5283, 5300), False, 'import math\n'), ((5197, 5230), 'math.sin', 'math.sin', (['(math.pi * (x / 2 - 0.5))'], {}), '(math.pi * (x / 2 - 0.5))\n', (5205, 5230), False, 'import math\n'), ((5436, 5468), 'math.sin', 'math.sin', (['(2.25 * 2 * math.pi * x)'], {}), '(2.25 * 2 * math.pi * x)\n', (5444, 5468), False, 'import math\n'), ((5360, 5389), 'math.sin', 'math.sin', (['(math.pi * (x - 0.5))'], {}), '(math.pi * (x - 0.5))\n', (5368, 5389), False, 'import math\n'), ((5545, 5583), 'math.sin', 'math.sin', (['(2.25 * 2 * math.pi * (1 - x))'], {}), '(2.25 * 2 * math.pi * (1 - x))\n', (5553, 5583), False, 'import math\n'), ((5981, 6002), 'math.sin', 'math.sin', (['(x * math.pi)'], {}), '(x * math.pi)\n', (5989, 6002), False, 'import math\n'), ((5714, 5746), 'math.sin', 'math.sin', (['(2.25 * 2 * math.pi * f)'], {}), '(2.25 * 2 * math.pi * f)\n', (5722, 5746), False, 'import math\n'), ((6097, 6118), 'math.sin', 'math.sin', (['(f * math.pi)'], {}), '(f * math.pi)\n', (6105, 6118), False, 'import math\n'), ((6260, 6281), 'math.sin', 'math.sin', (['(f * math.pi)'], {}), '(f * math.pi)\n', (6268, 6281), False, 'import math\n'), ((5843, 5881), 'math.sin', 'math.sin', (['(2.25 * 2 * math.pi * (1 - f))'], {}), '(2.25 * 2 * math.pi * (1 - f))\n', (5851, 5881), False, 'import math\n'), ((6378, 6399), 'math.sin', 'math.sin', (['(f * math.pi)'], {}), '(f * math.pi)\n', (6386, 6399), False, 'import math\n')]
import requests class MoneyAPI(): def __init__(self): self.API_URL = "https://economia.awesomeapi.com.br/json/all/CAD" self.SUCESS_STATUS_CODE = 200 def request_money(self): resp = requests.get(self.API_URL) if resp.status_code != self.SUCESS_STATUS_CODE: raise Exception # ('GET /tasks/ {}'.format(resp.status_code)) dollar_info = resp.json()["CAD"] # adicionando um item que é só as horas e os minutos check_time = dollar_info["create_date"].split(" ")[1].split(":") dollar_info["check_time"] = f"{check_time[0]}:{check_time[1]}" return dollar_info if __name__ == "__main__": money = MoneyAPI() print(money.request_money()["check_time"])
[ "requests.get" ]
[((216, 242), 'requests.get', 'requests.get', (['self.API_URL'], {}), '(self.API_URL)\n', (228, 242), False, 'import requests\n')]
from hydra.experimental import compose, initialize from random import randint from random import seed from soundbay.data import ClassifierDataset import numpy as np def test_dataloader() -> None: seed(1) with initialize(config_path="../soundbay/conf"): # config is relative to a module cfg = compose(config_name="runs/main") data_loader = ClassifierDataset(cfg.data.train_dataset.data_path, cfg.data.train_dataset.metadata_path, augmentations=cfg.data.train_dataset.augmentations, augmentations_p=cfg.data.train_dataset.augmentations_p, preprocessors=cfg.data.train_dataset.preprocessors) assert data_loader.metadata.shape[1] == 5 # make sure metadata has 5 columns assert data_loader.metadata.shape[0] > 0 # make sure metadata is not empty data_size = data_loader.metadata.shape[0] value = randint(0, data_size) sample = data_loader[value] assert np.issubdtype(sample[1], np.integer) if 'spectrogram' in cfg.data.train_dataset.preprocessors: assert len(sample[0].shape) == 3 if 'utils.LibrosaMelSpectrogram' in cfg.data.train_dataset.preprocessors.spectrogram._target_: assert sample[0].shape[1] == cfg.data.train_dataset.preprocessors.spectrogram.n_mels else: assert sample[0].shape[1] == (cfg.data.train_dataset.preprocessors.spectrogram.n_fft // 2 + 1) else: assert sample[0].shape[1] == 1
[ "hydra.experimental.compose", "random.randint", "soundbay.data.ClassifierDataset", "random.seed", "hydra.experimental.initialize", "numpy.issubdtype" ]
[((202, 209), 'random.seed', 'seed', (['(1)'], {}), '(1)\n', (206, 209), False, 'from random import seed\n'), ((219, 261), 'hydra.experimental.initialize', 'initialize', ([], {'config_path': '"""../soundbay/conf"""'}), "(config_path='../soundbay/conf')\n", (229, 261), False, 'from hydra.experimental import compose, initialize\n'), ((318, 350), 'hydra.experimental.compose', 'compose', ([], {'config_name': '"""runs/main"""'}), "(config_name='runs/main')\n", (325, 350), False, 'from hydra.experimental import compose, initialize\n'), ((373, 636), 'soundbay.data.ClassifierDataset', 'ClassifierDataset', (['cfg.data.train_dataset.data_path', 'cfg.data.train_dataset.metadata_path'], {'augmentations': 'cfg.data.train_dataset.augmentations', 'augmentations_p': 'cfg.data.train_dataset.augmentations_p', 'preprocessors': 'cfg.data.train_dataset.preprocessors'}), '(cfg.data.train_dataset.data_path, cfg.data.train_dataset.\n metadata_path, augmentations=cfg.data.train_dataset.augmentations,\n augmentations_p=cfg.data.train_dataset.augmentations_p, preprocessors=\n cfg.data.train_dataset.preprocessors)\n', (390, 636), False, 'from soundbay.data import ClassifierDataset\n'), ((979, 1000), 'random.randint', 'randint', (['(0)', 'data_size'], {}), '(0, data_size)\n', (986, 1000), False, 'from random import randint\n'), ((1052, 1088), 'numpy.issubdtype', 'np.issubdtype', (['sample[1]', 'np.integer'], {}), '(sample[1], np.integer)\n', (1065, 1088), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import json, os, requests from dotenv import load_dotenv from telegram import Bot, InlineKeyboardButton, InlineKeyboardMarkup, Update from telegram.ext import (CallbackContext, CallbackQueryHandler, CommandHandler, Filters, MessageHandler, Updater) load_dotenv() TELEGRAM_TOKEN = os.getenv('TELEGRAM_TOKEN') CHAT_ID = os.getenv('TELEGRAM_CHAT_ID') DELLIN_KEY = os.getenv('DELLIN_KEY') DELLIN_ID = os.getenv('DELLIN_ID') URL_DELLIN_CALC = os.getenv('URL_DELLIN_CALC') URL_DELLIN_KLADR = os.getenv('URL_DELLIN_KLADR') URL_SBER = os.getenv('URL_SBER') URL_GLAVDOSTAVKA = os.getenv('URL_GLAVDOSTAVKA') USERS = {} bot = Bot(TELEGRAM_TOKEN) updater = Updater(TELEGRAM_TOKEN) def start(update, context): USERS[update.effective_user.id] = { 'progress': 1, 'derival': '', 'arrival': '' } bot.send_message(update.effective_message.chat.id, 'Введите город отправления посылки' ) def progress(update, context): if USERS[update.effective_user.id]['progress'] == 1: return city(update, context) elif USERS[update.effective_user.id]['progress'] == 2: return result(update, context) def city(update: Update, context: CallbackContext): USERS[update.effective_user.id]['derival'] = update['message']['text'] USERS[update.effective_user.id]['progress'] = 2 bot.send_message(update.effective_message.chat.id, 'Введите город получения посылки' ) def result(update: Update, context: CallbackContext): USERS[update.effective_user.id]['arrival'] = update['message']['text'] derival = USERS[update.effective_user.id]['derival'].lower() arrival = USERS[update.effective_user.id]['arrival'].lower() derival_dellin = requests.post( URL_DELLIN_KLADR, json={"appkey": DELLIN_KEY, "q": derival, "limit": 1} ) arrival_dellin = requests.post( URL_DELLIN_KLADR, json={"appkey": DELLIN_KEY, "q": arrival, "limit": 1} ) try: derival_dellin = derival_dellin.json().get('cities')[0]['code'] arrival_dellin = arrival_dellin.json().get('cities')[0]['code'] except IndexError: del USERS[update.effective_user.id] keyboard = [[InlineKeyboardButton( 'Новый расчет', callback_data='new' )]] reply_markup = InlineKeyboardMarkup(keyboard) bot.send_message(update.effective_message.chat.id, 'Ошибка в названии города. Попробуйте еще.', reply_markup=reply_markup ) dellin = requests.post( URL_DELLIN_CALC, json={"appkey": DELLIN_KEY, "sessionID": DELLIN_ID, "derival": {"city": derival_dellin}, "arrival": {"city": arrival_dellin} } ) with open('sber_cities.json', 'r', encoding='utf-8') as g: sber_cities = json.load(g) derival_sber = [city['kladr_id'] for city in sber_cities \ if city.get('name').lower() == derival][0] arrival_sber = [city['kladr_id'] for city in sber_cities \ if city.get('name').lower() == arrival][0] sber = requests.post( URL_SBER, json={"id": "JsonRpcClient.js", "jsonrpc": "2.0", "method": "calculateShipping", "params": { "stock": True, "kladr_id_from": derival_sber, "kladr_id": arrival_sber, "length": 50, "width": 35, "height": 35, "weight": 5, "cod": 0, "declared_cost": 0, "courier": "sberlogistics" } } ) sber = sber.json()['result']['methods'][0] with open('glav_cities.json', 'r', encoding='utf-8') as g: GLAV_CITIES = json.load(g) derival_glav = [city['id'] for city in GLAV_CITIES \ if city.get('name', '').lower() == derival][0] arrival_glav = [city['id'] for city in GLAV_CITIES \ if city.get('name', '').lower() == arrival][0] glavdostavka = requests.post( URL_GLAVDOSTAVKA + f'&depPoint={derival_glav}&arrPoint={arrival_glav}' ) price_glavdostavka = glavdostavka.json()['price'] dellin = dellin.json()['data']['terminals_standard'] price_dellin = dellin['price'] period_dellin = dellin['period_to'] price_sber = sber['cost']['total']['sum'] period_sber = sber['max_days'] del USERS[update.effective_user.id] keyboard = [[InlineKeyboardButton('Новый расчет', callback_data='new')]] reply_markup = InlineKeyboardMarkup(keyboard) derival = derival[0].upper() + derival[1:] arrival = arrival[0].upper() + arrival[1:] bot.send_message(update.effective_message.chat.id, f'Стоимость и сроки доставки посылки с габаритами ' f'не превышающими 0.5х0.35х0.35(м) и массой не более 5кг ' f'из города {derival} в город {arrival} ' f'(от терминала до терминала):\n\n' f'Деловые линии: {price_dellin} руб. ' f'До {period_dellin} дней.\n' f'СберЛогистика: {price_sber} руб. ' f'До {period_sber} дней.\n' f'ГлавДоставка: {price_glavdostavka} руб', reply_markup=reply_markup ) def button(update: Update, context: CallbackContext): start(update, context) def main(): start_handler = CommandHandler('start', start) updater.dispatcher.add_handler(start_handler) updater.dispatcher.add_handler(CallbackQueryHandler(button)) updater.dispatcher.add_handler(MessageHandler(Filters.text, progress)) updater.start_polling() updater.idle() if __name__ == '__main__': main()
[ "json.load", "telegram.ext.CallbackQueryHandler", "telegram.InlineKeyboardButton", "dotenv.load_dotenv", "telegram.ext.Updater", "telegram.Bot", "telegram.InlineKeyboardMarkup", "telegram.ext.MessageHandler", "requests.post", "telegram.ext.CommandHandler", "os.getenv" ]
[((301, 314), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (312, 314), False, 'from dotenv import load_dotenv\n'), ((334, 361), 'os.getenv', 'os.getenv', (['"""TELEGRAM_TOKEN"""'], {}), "('TELEGRAM_TOKEN')\n", (343, 361), False, 'import json, os, requests\n'), ((372, 401), 'os.getenv', 'os.getenv', (['"""TELEGRAM_CHAT_ID"""'], {}), "('TELEGRAM_CHAT_ID')\n", (381, 401), False, 'import json, os, requests\n'), ((416, 439), 'os.getenv', 'os.getenv', (['"""DELLIN_KEY"""'], {}), "('DELLIN_KEY')\n", (425, 439), False, 'import json, os, requests\n'), ((452, 474), 'os.getenv', 'os.getenv', (['"""DELLIN_ID"""'], {}), "('DELLIN_ID')\n", (461, 474), False, 'import json, os, requests\n'), ((493, 521), 'os.getenv', 'os.getenv', (['"""URL_DELLIN_CALC"""'], {}), "('URL_DELLIN_CALC')\n", (502, 521), False, 'import json, os, requests\n'), ((541, 570), 'os.getenv', 'os.getenv', (['"""URL_DELLIN_KLADR"""'], {}), "('URL_DELLIN_KLADR')\n", (550, 570), False, 'import json, os, requests\n'), ((583, 604), 'os.getenv', 'os.getenv', (['"""URL_SBER"""'], {}), "('URL_SBER')\n", (592, 604), False, 'import json, os, requests\n'), ((625, 654), 'os.getenv', 'os.getenv', (['"""URL_GLAVDOSTAVKA"""'], {}), "('URL_GLAVDOSTAVKA')\n", (634, 654), False, 'import json, os, requests\n'), ((674, 693), 'telegram.Bot', 'Bot', (['TELEGRAM_TOKEN'], {}), '(TELEGRAM_TOKEN)\n', (677, 693), False, 'from telegram import Bot, InlineKeyboardButton, InlineKeyboardMarkup, Update\n'), ((704, 727), 'telegram.ext.Updater', 'Updater', (['TELEGRAM_TOKEN'], {}), '(TELEGRAM_TOKEN)\n', (711, 727), False, 'from telegram.ext import CallbackContext, CallbackQueryHandler, CommandHandler, Filters, MessageHandler, Updater\n'), ((1848, 1938), 'requests.post', 'requests.post', (['URL_DELLIN_KLADR'], {'json': "{'appkey': DELLIN_KEY, 'q': derival, 'limit': 1}"}), "(URL_DELLIN_KLADR, json={'appkey': DELLIN_KEY, 'q': derival,\n 'limit': 1})\n", (1861, 1938), False, 'import json, os, requests\n'), ((2010, 2100), 'requests.post', 'requests.post', (['URL_DELLIN_KLADR'], {'json': "{'appkey': DELLIN_KEY, 'q': arrival, 'limit': 1}"}), "(URL_DELLIN_KLADR, json={'appkey': DELLIN_KEY, 'q': arrival,\n 'limit': 1})\n", (2023, 2100), False, 'import json, os, requests\n'), ((2765, 2930), 'requests.post', 'requests.post', (['URL_DELLIN_CALC'], {'json': "{'appkey': DELLIN_KEY, 'sessionID': DELLIN_ID, 'derival': {'city':\n derival_dellin}, 'arrival': {'city': arrival_dellin}}"}), "(URL_DELLIN_CALC, json={'appkey': DELLIN_KEY, 'sessionID':\n DELLIN_ID, 'derival': {'city': derival_dellin}, 'arrival': {'city':\n arrival_dellin}})\n", (2778, 2930), False, 'import json, os, requests\n'), ((3363, 3680), 'requests.post', 'requests.post', (['URL_SBER'], {'json': "{'id': 'JsonRpcClient.js', 'jsonrpc': '2.0', 'method': 'calculateShipping',\n 'params': {'stock': True, 'kladr_id_from': derival_sber, 'kladr_id':\n arrival_sber, 'length': 50, 'width': 35, 'height': 35, 'weight': 5,\n 'cod': 0, 'declared_cost': 0, 'courier': 'sberlogistics'}}"}), "(URL_SBER, json={'id': 'JsonRpcClient.js', 'jsonrpc': '2.0',\n 'method': 'calculateShipping', 'params': {'stock': True,\n 'kladr_id_from': derival_sber, 'kladr_id': arrival_sber, 'length': 50,\n 'width': 35, 'height': 35, 'weight': 5, 'cod': 0, 'declared_cost': 0,\n 'courier': 'sberlogistics'}})\n", (3376, 3680), False, 'import json, os, requests\n'), ((4356, 4445), 'requests.post', 'requests.post', (["(URL_GLAVDOSTAVKA + f'&depPoint={derival_glav}&arrPoint={arrival_glav}')"], {}), "(URL_GLAVDOSTAVKA +\n f'&depPoint={derival_glav}&arrPoint={arrival_glav}')\n", (4369, 4445), False, 'import json, os, requests\n'), ((4863, 4893), 'telegram.InlineKeyboardMarkup', 'InlineKeyboardMarkup', (['keyboard'], {}), '(keyboard)\n', (4883, 4893), False, 'from telegram import Bot, InlineKeyboardButton, InlineKeyboardMarkup, Update\n'), ((5786, 5816), 'telegram.ext.CommandHandler', 'CommandHandler', (['"""start"""', 'start'], {}), "('start', start)\n", (5800, 5816), False, 'from telegram.ext import CallbackContext, CallbackQueryHandler, CommandHandler, Filters, MessageHandler, Updater\n'), ((3087, 3099), 'json.load', 'json.load', (['g'], {}), '(g)\n', (3096, 3099), False, 'import json, os, requests\n'), ((4076, 4088), 'json.load', 'json.load', (['g'], {}), '(g)\n', (4085, 4088), False, 'import json, os, requests\n'), ((5902, 5930), 'telegram.ext.CallbackQueryHandler', 'CallbackQueryHandler', (['button'], {}), '(button)\n', (5922, 5930), False, 'from telegram.ext import CallbackContext, CallbackQueryHandler, CommandHandler, Filters, MessageHandler, Updater\n'), ((5967, 6005), 'telegram.ext.MessageHandler', 'MessageHandler', (['Filters.text', 'progress'], {}), '(Filters.text, progress)\n', (5981, 6005), False, 'from telegram.ext import CallbackContext, CallbackQueryHandler, CommandHandler, Filters, MessageHandler, Updater\n'), ((2513, 2543), 'telegram.InlineKeyboardMarkup', 'InlineKeyboardMarkup', (['keyboard'], {}), '(keyboard)\n', (2533, 2543), False, 'from telegram import Bot, InlineKeyboardButton, InlineKeyboardMarkup, Update\n'), ((4784, 4841), 'telegram.InlineKeyboardButton', 'InlineKeyboardButton', (['"""Новый расчет"""'], {'callback_data': '"""new"""'}), "('Новый расчет', callback_data='new')\n", (4804, 4841), False, 'from telegram import Bot, InlineKeyboardButton, InlineKeyboardMarkup, Update\n'), ((2392, 2449), 'telegram.InlineKeyboardButton', 'InlineKeyboardButton', (['"""Новый расчет"""'], {'callback_data': '"""new"""'}), "('Новый расчет', callback_data='new')\n", (2412, 2449), False, 'from telegram import Bot, InlineKeyboardButton, InlineKeyboardMarkup, Update\n')]
import sys import json import os.path import requests def posts_at_url(url): current_page = 1 max_page = sys.maxint while current_page <= max_page: url = os.path.expandvars(url) resp = requests.get(url, params={'page':current_page, 'count': '-1'}) results = json.loads(resp.content) current_page += 1 max_page = results['pages'] for p in results['posts']: yield p def documents(name, url, **kwargs): for post in posts_at_url(url): yield process_office(post) def process_office(item): item['_id'] = item['slug'] custom_fields = item['custom_fields'] # get intro text & subscribe form data from custom fields for attr in ['intro_text', 'intro_subscribe_form', 'related_contact']: if attr in custom_fields: item[attr] = custom_fields[attr][0] # build top story dict top_story = {} for attr in ['top_story_head', 'top_story_desc']: if attr in custom_fields: top_story[attr] = custom_fields[attr][0] # convert top story links into a proper list top_story_links = [] for x in xrange(0,5): key = 'top_story_links_%s' % x if key in custom_fields: top_story_links.append(custom_fields[key]) if top_story_links: top_story['top_story_links'] = top_story_links if top_story: item['top_story'] = top_story # create list of office resource dicts item['resources'] = [] for x in xrange(0,4): resource = {} fields = ['head', 'desc', 'icon', 'link'] for field in fields: field_name = 'resource_%s_%s' % (str(x), field) if field_name in custom_fields and custom_fields[field_name][0] != '': if field == 'link': resource[field] = custom_fields[field_name] else: resource[field] = custom_fields[field_name][0] if resource: item['resources'].append(resource) return item
[ "json.loads", "requests.get" ]
[((221, 284), 'requests.get', 'requests.get', (['url'], {'params': "{'page': current_page, 'count': '-1'}"}), "(url, params={'page': current_page, 'count': '-1'})\n", (233, 284), False, 'import requests\n'), ((302, 326), 'json.loads', 'json.loads', (['resp.content'], {}), '(resp.content)\n', (312, 326), False, 'import json\n')]
import os CMD = 'docker ps' os.system(CMD) ls = os.popen(CMD).read().split('\n')[1:-1] zombies = [] for line in ls: container, image = line.split()[:2] if 'bigga' not in image and ':' not in image: print(container, image) zombies.append(container) print("Zombies: ", " ".join(zombies)) # docker kill <zombies> # docker system prune
[ "os.popen", "os.system" ]
[((30, 44), 'os.system', 'os.system', (['CMD'], {}), '(CMD)\n', (39, 44), False, 'import os\n'), ((50, 63), 'os.popen', 'os.popen', (['CMD'], {}), '(CMD)\n', (58, 63), False, 'import os\n')]
import sqlite3 from sqlite3 import IntegrityError import logging from typing import List from datetime import datetime from togglcmder.toggl.types.workspace import Workspace from togglcmder.toggl.builders.workspace_builder import WorkspaceBuilder from togglcmder.toggl.types.time_entry import TimeEntry from togglcmder.toggl.builders.time_entry_builder import TimeEntryBuilder from togglcmder.toggl.types.user import User from togglcmder.toggl.builders.user_builder import UserBuilder from togglcmder.toggl.types.tag import Tag from togglcmder.toggl.builders.tag_builder import TagBuilder from togglcmder.toggl.types.project import Project from togglcmder.toggl.builders.project_builder import ProjectBuilder class Caching(object): WORKSPACE_TABLE = ''' CREATE TABLE IF NOT EXISTS workspaces ( name TEXT NOT NULL, identifier INTEGER PRIMARY KEY, last_updated TIMESTAMP NOT NULL ) ''' PROJECT_TABLE = ''' CREATE TABLE IF NOT EXISTS projects ( name TEXT NOT NULL, color INTEGER, last_updated TIMESTAMP NOT NULL, created TIMESTAMP NOT NULL, identifier INTEGER PRIMARY KEY, workspace_identifier INTEGER NOT NULL, FOREIGN KEY (workspace_identifier) REFERENCES workspaces (identifier) ON DELETE CASCADE ) ''' TAG_TABLE = ''' CREATE TABLE IF NOT EXISTS tags ( name TEXT, identifier INTEGER PRIMARY KEY, workspace_identifier INTEGER, FOREIGN KEY (workspace_identifier) REFERENCES workspaces (identifier) ON DELETE CASCADE ) ''' TIME_ENTRY_TABLE = ''' CREATE TABLE IF NOT EXISTS time_entries ( description TEXT, start_time TIMESTAMP NOT NULL, stop_time TIMESTAMP, duration INTEGER, identifier INTEGER PRIMARY KEY, project_identifier INTEGER, workspace_identifier INTEGER NOT NULL, last_updated TIMESTAMP, FOREIGN KEY (project_identifier) REFERENCES projects (identifier) ON DELETE CASCADE, FOREIGN KEY (workspace_identifier) REFERENCES workspaces (identifier) ) ''' TIME_ENTRY_TAG_JUNCTION_TABLE = ''' CREATE TABLE IF NOT EXISTS time_entry_tags ( tag_identifier INTEGER NOT NULL, time_entry_identifier INTEGER NOT NULL, FOREIGN KEY (tag_identifier) REFERENCES tags (identifier) ON DELETE CASCADE, FOREIGN KEY (time_entry_identifier) REFERENCES time_entries (identifier) ON DELETE CASCADE ) ''' USER_TABLE = ''' CREATE TABLE IF NOT EXISTS users ( name TEXT, api_token TEXT, identifier INTEGER PRIMARY KEY, last_updated TIMESTAMP NOT NULL ) ''' def __init__(self, *, cache_name: str = "cache.db"): self.__connection = sqlite3.connect(cache_name) self.__connection.set_trace_callback(logging.getLogger(__name__).debug) self.__cursor = self.__connection.cursor() self.__cursor.execute("PRAGMA foreign_keys = 1") self.__connection.commit() self.__cursor.execute(Caching.WORKSPACE_TABLE) self.__cursor.execute(Caching.PROJECT_TABLE) self.__cursor.execute(Caching.TAG_TABLE) self.__cursor.execute(Caching.TIME_ENTRY_TABLE) self.__cursor.execute(Caching.TIME_ENTRY_TAG_JUNCTION_TABLE) self.__cursor.execute(Caching.USER_TABLE) self.__connection.commit() self.__workspaces: List[Workspace] = [] self.__projects: List[Project] = [] self.__tags: List[Tag] = [] self.__time_entries: List[TimeEntry] = [] def __del__(self): self.__connection.close() def update_workspace_cache(self, workspaces: List[Workspace]) -> int: insert_sql = ''' INSERT INTO workspaces (name, identifier, last_updated) VALUES (?, ?, ?) ''' update_sql = ''' UPDATE workspaces SET name=?, last_updated=? WHERE identifier=? ''' for workspace in workspaces: try: self.__cursor.execute( insert_sql, (workspace.name, workspace.identifier, workspace.last_updated.timestamp())) except IntegrityError: self.__cursor.execute( update_sql, (workspace.name, workspace.last_updated.timestamp(), workspace.identifier)) self.__connection.commit() return self.__cursor.rowcount def retrieve_workspace_cache(self) -> List[Workspace]: sql = ''' SELECT name, identifier, last_updated FROM workspaces ''' self.__cursor.execute(sql) results = self.__cursor.fetchall() if results: return [ WorkspaceBuilder() .name(result[0]) .identifier(result[1]) .last_updated(epoch=result[2]).build() for result in results ] def update_user_cache(self, user: User) -> int: insert_sql = ''' INSERT INTO users (name, api_token, identifier, last_updated) VALUES (?, ?, ?, ?) ''' update_sql = ''' UPDATE users SET name=?, api_token=?, last_updated=? WHERE identifier=? ''' try: self.__cursor.execute( insert_sql, (user.name, user.api_token, user.identifier, user.last_updated.timestamp())) except IntegrityError: self.__cursor.execute( update_sql, (user.name, user.api_token, user.last_updated.timestamp(), user.identifier)) self.__connection.commit() return self.__cursor.rowcount def retrieve_user_cache(self) -> User: sql = ''' SELECT name, api_token, identifier, last_updated FROM users ''' self.__cursor.execute(sql) results = self.__cursor.fetchone() if results: return UserBuilder()\ .name(results[0])\ .api_token(results[1])\ .identifier(results[2])\ .last_updated(epoch=results[3]).build() def update_project_cache(self, projects: List[Project]) -> int: insert_sql = ''' INSERT INTO projects (name, color, last_updated, created, identifier, workspace_identifier) VALUES (?, ?, ?, ?, ?, ?) ''' update_sql = ''' UPDATE projects SET name=?, color=?, last_updated=?, workspace_identifier=? WHERE identifier=? ''' for project in projects: try: self.__cursor.execute( insert_sql, (project.name, project.color.value, project.last_updated.timestamp(), project.created.timestamp() if project.created else datetime.now().timestamp(), project.identifier, project.workspace_identifier)) except IntegrityError: self.__cursor.execute( update_sql, (project.name, project.color.value, project.last_updated.timestamp(), project.workspace_identifier, project.identifier)) self.__connection.commit() return self.__cursor.rowcount def retrieve_project_cache(self) -> List[Project]: sql = ''' SELECT name, color, last_updated, created, identifier, workspace_identifier FROM projects ''' self.__cursor.execute(sql) results = self.__cursor.fetchall() if results: return [ ProjectBuilder() .name(result[0]) .color(result[1]) .last_updated(epoch=result[2]) .created(epoch=result[3]) .identifier(result[4]) .workspace_identifier(result[5]).build() for result in results ] def remove_project_from_cache(self, project: Project) -> None: sql = ''' DELETE FROM projects WHERE identifier=? ''' self.__cursor.execute(sql, (project.identifier,)) self.__connection.commit() def update_tag_cache(self, tags: List[Tag]) -> int: insert_sql = ''' INSERT INTO tags (name, identifier, workspace_identifier) VALUES (?, ?, ?) ''' update_sql = ''' UPDATE tags SET name=?, workspace_identifier=? WHERE identifier=? ''' rows_affected = 0 for tag in tags: try: self.__cursor.execute( insert_sql, (tag.name, tag.identifier, tag.workspace_identifier)) except IntegrityError: self.__cursor.execute( update_sql, (tag.name, tag.workspace_identifier, tag.identifier)) rows_affected += self.__cursor.rowcount self.__connection.commit() return rows_affected def retrieve_tag_cache(self) -> List[Tag]: sql = """ SELECT name, identifier, workspace_identifier FROM tags """ self.__cursor.execute(sql) results = self.__cursor.fetchall() if results: return [ TagBuilder() .name(result[0]) .identifier(result[1]) .workspace_identifier(result[2]).build() for result in results ] def remove_tag_from_cache(self, tag: Tag) -> None: tag_removal_sql = ''' DELETE FROM tags WHERE identifier=? ''' self.__cursor.execute(tag_removal_sql, (tag.identifier,)) join_table_removal_sql = ''' DELETE FROM time_entry_tags WHERE tag_identifier=? ''' self.__cursor.execute(join_table_removal_sql, (tag.identifier,)) self.__connection.commit() def __retrieve_time_entry_tags_join(self, time_entry_identifier: int) -> List[tuple]: sql = ''' SELECT name, tag_identifier, time_entry_identifier FROM time_entry_tags INNER JOIN tags ON time_entry_tags.tag_identifier = tags.identifier WHERE time_entry_identifier=? ''' self.__cursor.execute(sql, (time_entry_identifier,)) return self.__cursor.fetchall() def __retrieve_time_entry_tags(self, time_entry_identifier: int) -> List[tuple]: sql = ''' SELECT tag_identifier, time_entry_identifier FROM time_entry_tags WHERE time_entry_identifier=? ''' self.__cursor.execute(sql, (time_entry_identifier,)) return self.__cursor.fetchall() def __check_existing(self, tags: List[int], time_entry_identifier: int) -> List[int]: # returns a tuple of (tag_id, time_entry_id) existing_time_entry_tags = self.__retrieve_time_entry_tags(time_entry_identifier) if len(tags) == 0 or len(existing_time_entry_tags) == 0: return tags return list( # 2. map each tuple to be just the tag identifier, so given x, # return the tag_id map(lambda x: x[0], # 1. filter so we only get tags tuples that aren't in the existing list # of tags (checked based on x[0], which is the tag identifier) filter(lambda x: x[0] not in tags, existing_time_entry_tags))) def update_time_entry_cache(self, time_entries: List[TimeEntry]) -> int: insert_sql = ''' INSERT INTO time_entries (description, start_time, stop_time, duration, identifier, project_identifier, workspace_identifier, last_updated) VALUES (?, ?, ?, ?, ?, ?, ?, ?) ''' update_sql = ''' UPDATE time_entries SET description=?, start_time=?, stop_time=?, duration=?, project_identifier=?, workspace_identifier=?, last_updated=? WHERE identifier=? ''' insert_time_entry_tag_sql = ''' INSERT INTO time_entry_tags (tag_identifier, time_entry_identifier) VALUES (?, ?) ''' tag_rows = self.retrieve_tag_cache() rows_affected = 0 for time_entry in time_entries: try: self.__cursor.execute( insert_sql, (time_entry.description, time_entry.start_time.timestamp(), None if not time_entry.stop_time else time_entry.stop_time.timestamp(), time_entry.duration, time_entry.identifier, time_entry.project_identifier, time_entry.workspace_identifier, time_entry.last_updated.timestamp())) except IntegrityError: self.__cursor.execute( update_sql, (time_entry.description, time_entry.start_time.timestamp(), None if not time_entry.stop_time else time_entry.stop_time.timestamp(), time_entry.duration, time_entry.project_identifier, time_entry.workspace_identifier, time_entry.last_updated.timestamp(), time_entry.identifier)) rows_affected += self.__cursor.rowcount tag_ids = [] if time_entry.tags: for tag in time_entry.tags: for tag_row in tag_rows: if tag == tag_row.name: tag_ids.append(tag_row.identifier) break for tag_id in self.__check_existing(tag_ids, time_entry.identifier): self.__cursor.execute( insert_time_entry_tag_sql, (tag_id, time_entry.identifier)) self.__connection.commit() return rows_affected def retrieve_time_entry_cache(self) -> List[TimeEntry]: time_entry_sql = """ SELECT description, start_time, stop_time, duration, identifier, project_identifier, workspace_identifier, last_updated FROM time_entries """ time_entries = [] self.__cursor.execute(time_entry_sql) results = self.__cursor.fetchall() for result in results: tag_results = self.__retrieve_time_entry_tags_join(result[4]) builder = TimeEntryBuilder()\ .description(result[0])\ .start_time(epoch=result[1])\ .stop_time(epoch=result[2])\ .duration(result[3])\ .identifier(result[4])\ .project_identifier(result[5])\ .workspace_identifier(result[6])\ .last_updated(epoch=result[7])\ .tags([tag_result[0] for tag_result in tag_results]) time_entries.append(builder.build()) return time_entries def remove_time_entry_from_cache(self, time_entry: TimeEntry) -> None: entry_removal_sql = ''' DELETE FROM time_entries WHERE identifier=? ''' self.__cursor.execute(entry_removal_sql, (time_entry.identifier,)) joined_entry_removal_sql = ''' DELETE FROM time_entry_tags WHERE time_entry_identifier=? ''' self.__cursor.execute(joined_entry_removal_sql, (time_entry.identifier,)) self.__connection.commit() def get_workspace_identifier(self, workspace_name: str) -> int: sql = """ SELECT identifier FROM workspaces WHERE name=? """ self.__cursor.execute(sql, (workspace_name,)) return self.__cursor.fetchone()[0] def get_project_identifier(self, project_name: str) -> int: sql = """ SELECT identifier FROM projects WHERE name=? """ self.__cursor.execute(sql, (project_name,)) return self.__cursor.fetchone()[0]
[ "togglcmder.toggl.builders.tag_builder.TagBuilder", "togglcmder.toggl.builders.workspace_builder.WorkspaceBuilder", "togglcmder.toggl.builders.project_builder.ProjectBuilder", "togglcmder.toggl.builders.user_builder.UserBuilder", "sqlite3.connect", "togglcmder.toggl.builders.time_entry_builder.TimeEntryBuilder", "datetime.datetime.now", "logging.getLogger" ]
[((2782, 2809), 'sqlite3.connect', 'sqlite3.connect', (['cache_name'], {}), '(cache_name)\n', (2797, 2809), False, 'import sqlite3\n'), ((2855, 2882), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (2872, 2882), False, 'import logging\n'), ((7221, 7235), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (7233, 7235), False, 'from datetime import datetime\n'), ((4870, 4888), 'togglcmder.toggl.builders.workspace_builder.WorkspaceBuilder', 'WorkspaceBuilder', ([], {}), '()\n', (4886, 4888), False, 'from togglcmder.toggl.builders.workspace_builder import WorkspaceBuilder\n'), ((9954, 9966), 'togglcmder.toggl.builders.tag_builder.TagBuilder', 'TagBuilder', ([], {}), '()\n', (9964, 9966), False, 'from togglcmder.toggl.builders.tag_builder import TagBuilder\n'), ((6260, 6273), 'togglcmder.toggl.builders.user_builder.UserBuilder', 'UserBuilder', ([], {}), '()\n', (6271, 6273), False, 'from togglcmder.toggl.builders.user_builder import UserBuilder\n'), ((8123, 8139), 'togglcmder.toggl.builders.project_builder.ProjectBuilder', 'ProjectBuilder', ([], {}), '()\n', (8137, 8139), False, 'from togglcmder.toggl.builders.project_builder import ProjectBuilder\n'), ((15637, 15655), 'togglcmder.toggl.builders.time_entry_builder.TimeEntryBuilder', 'TimeEntryBuilder', ([], {}), '()\n', (15653, 15655), False, 'from togglcmder.toggl.builders.time_entry_builder import TimeEntryBuilder\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import logging def init_logger() -> None: logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", )
[ "logging.basicConfig" ]
[((96, 203), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'format': '"""%(asctime)s - %(name)s - %(levelname)s - %(message)s"""'}), "(level=logging.INFO, format=\n '%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n", (115, 203), False, 'import logging\n')]
import boto3 exceptions = boto3.client('discovery').exceptions AuthorizationErrorException = exceptions.AuthorizationErrorException ConflictErrorException = exceptions.ConflictErrorException InvalidParameterException = exceptions.InvalidParameterException InvalidParameterValueException = exceptions.InvalidParameterValueException OperationNotPermittedException = exceptions.OperationNotPermittedException ResourceInUseException = exceptions.ResourceInUseException ResourceNotFoundException = exceptions.ResourceNotFoundException ServerInternalErrorException = exceptions.ServerInternalErrorException
[ "boto3.client" ]
[((27, 52), 'boto3.client', 'boto3.client', (['"""discovery"""'], {}), "('discovery')\n", (39, 52), False, 'import boto3\n')]
#!/usr/bin/env python import os import subprocess import sys from pathlib import Path basedir = Path(__file__).parent.parent os.chdir(basedir) deps = { "flake8": [ "darglint", "flake8-bugbear", "flake8-builtins", "flake8-comprehensions", "flake8-datetimez", "flake8-debugger", "flake8-docstrings", "flake8-eradicate", "flake8-print", "flake8-too-many", "pep8-naming", "tryceratops", ], "mypy": [ "arrow", "httpx", "hypothesis", "importlib-metadata", "pydantic", "pytest", "pytest-asyncio", "starlette", "types-dataclasses", ], } if __name__ == "__main__": subprocess.call(["pip", "install", "-U", *deps[sys.argv[1]]]) exit(subprocess.call([sys.argv[1], "."]))
[ "pathlib.Path", "subprocess.call", "os.chdir" ]
[((128, 145), 'os.chdir', 'os.chdir', (['basedir'], {}), '(basedir)\n', (136, 145), False, 'import os\n'), ((749, 810), 'subprocess.call', 'subprocess.call', (["['pip', 'install', '-U', *deps[sys.argv[1]]]"], {}), "(['pip', 'install', '-U', *deps[sys.argv[1]]])\n", (764, 810), False, 'import subprocess\n'), ((99, 113), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (103, 113), False, 'from pathlib import Path\n'), ((820, 855), 'subprocess.call', 'subprocess.call', (["[sys.argv[1], '.']"], {}), "([sys.argv[1], '.'])\n", (835, 855), False, 'import subprocess\n')]
import yaml import os import numpy as np class DataOrganizer: def __init__(self,parameter_file_path): self.base_path = parameter_file_path self.load_params() def load_params(self): params_file = os.path.join(self.base_path,'params.yaml') with open(params_file) as yamlstream: self.params = yaml.load(yamlstream,Loader=yaml.SafeLoader) def get_closest_index_and_value(self,value,array): index = np.argmin(np.abs(array - value)) value = array[index] return index, value
[ "numpy.abs", "yaml.load", "os.path.join" ]
[((229, 272), 'os.path.join', 'os.path.join', (['self.base_path', '"""params.yaml"""'], {}), "(self.base_path, 'params.yaml')\n", (241, 272), False, 'import os\n'), ((344, 389), 'yaml.load', 'yaml.load', (['yamlstream'], {'Loader': 'yaml.SafeLoader'}), '(yamlstream, Loader=yaml.SafeLoader)\n', (353, 389), False, 'import yaml\n'), ((471, 492), 'numpy.abs', 'np.abs', (['(array - value)'], {}), '(array - value)\n', (477, 492), True, 'import numpy as np\n')]
from flask import Blueprint, abort, current_app, render_template, request from flask.json import jsonify from jinja2 import TemplateNotFound from .constants import EXTENSION_NAME from .extension import FlaskPancake bp = Blueprint("pancake", __name__, template_folder="templates") def aggregate_data(ext: FlaskPancake): if ext.group_funcs: group_ids = list(ext.group_funcs.keys()) flags = [ { "name": flag.name, "default": flag.default, "is_active": flag.is_active_globally(), "groups": { group_id: { object_id: flag.is_active_group( group_id=group_id, object_id=object_id ) for object_id in func.get_candidate_ids() } for group_id, func in ext.group_funcs.items() }, } for flag in ext.flags.values() ] else: group_ids = [] flags = [ { "name": flag.name, "default": flag.default, "is_active": flag.is_active_globally(), "groups": {}, } for flag in ext.flags.values() ] samples = [ {"name": sample.name, "default": sample.default, "value": sample.get()} for sample in ext.samples.values() ] switches = [ { "name": switch.name, "default": switch.default, "is_active": switch.is_active(), } for switch in ext.switches.values() ] return { "name": ext.name, "group_ids": group_ids, "flags": flags, "samples": samples, "switches": switches, } def aggregate_is_active_data(ext: FlaskPancake): flags = [ {"name": flag.name, "is_active": flag.is_active()} for flag in ext.flags.values() ] samples = [ {"name": sample.name, "is_active": sample.is_active()} for sample in ext.samples.values() ] switches = [ {"name": switch.name, "is_active": switch.is_active()} for switch in ext.switches.values() ] return { "flags": flags, "samples": samples, "switches": switches, } @bp.route("/overview", defaults={"pancake": EXTENSION_NAME}) @bp.route("/overview/<pancake>") def overview(pancake): ext = current_app.extensions.get(pancake) if ext is None or not isinstance(ext, FlaskPancake): return "Unknown", 404 context = aggregate_data(ext) if request.accept_mimetypes.accept_html: try: return render_template("flask_pancake/overview.html", **context) except TemplateNotFound: # pragma: no cover abort(404) else: return jsonify(context) @bp.route("/status", defaults={"pancake": EXTENSION_NAME}) @bp.route("/status/<pancake>") def status(pancake): ext = current_app.extensions.get(pancake) if ext is None or not isinstance(ext, FlaskPancake): return "Unknown", 404 context = aggregate_is_active_data(ext) return jsonify(context)
[ "flask.Blueprint", "flask.abort", "flask.json.jsonify", "flask.current_app.extensions.get", "flask.render_template" ]
[((222, 281), 'flask.Blueprint', 'Blueprint', (['"""pancake"""', '__name__'], {'template_folder': '"""templates"""'}), "('pancake', __name__, template_folder='templates')\n", (231, 281), False, 'from flask import Blueprint, abort, current_app, render_template, request\n'), ((2473, 2508), 'flask.current_app.extensions.get', 'current_app.extensions.get', (['pancake'], {}), '(pancake)\n', (2499, 2508), False, 'from flask import Blueprint, abort, current_app, render_template, request\n'), ((3008, 3043), 'flask.current_app.extensions.get', 'current_app.extensions.get', (['pancake'], {}), '(pancake)\n', (3034, 3043), False, 'from flask import Blueprint, abort, current_app, render_template, request\n'), ((3186, 3202), 'flask.json.jsonify', 'jsonify', (['context'], {}), '(context)\n', (3193, 3202), False, 'from flask.json import jsonify\n'), ((2868, 2884), 'flask.json.jsonify', 'jsonify', (['context'], {}), '(context)\n', (2875, 2884), False, 'from flask.json import jsonify\n'), ((2709, 2766), 'flask.render_template', 'render_template', (['"""flask_pancake/overview.html"""'], {}), "('flask_pancake/overview.html', **context)\n", (2724, 2766), False, 'from flask import Blueprint, abort, current_app, render_template, request\n'), ((2832, 2842), 'flask.abort', 'abort', (['(404)'], {}), '(404)\n', (2837, 2842), False, 'from flask import Blueprint, abort, current_app, render_template, request\n')]
import torch import torch.nn as nn from torch.autograd import Variable import numpy as np import os import os.path as osp def save_network(model, network_label, epoch, iteration, args): dataset = args.data_path.split(os.sep)[-1] save_filename = "{0}_net_{1}_{2}_{3}.pth".format(network_label, args.model, epoch, iteration) model_save_dir = osp.join(args.save_dir, dataset) if not os.path.exists(model_save_dir): os.makedirs(model_save_dir) save_path = os.path.join(model_save_dir, save_filename) model_state = { 'state_dict': model.cpu().state_dict(), 'epoch': epoch, 'iteration': iteration, 'model': args.model, 'color_space': args.color_space, 'batch_size': args.batch_size, 'dataset': dataset, 'image_size': args.image_size } torch.save(model_state, save_path) model.cuda() print("Saved {0} at epoch: {1}, iter: {2}".format(network_label, epoch, iteration)) def load_network(model, network_label, epoch, iteration, args): dataset = args.data_path.split(os.sep)[-1] save_filename = "{0}_net_{1}_{2}_{3}.pth".format(network_label, args.model, epoch, iteration) # model_save_dir = osp.join(args.load_dir, dataset) save_path = osp.join(args.load_dir, save_filename) model_state = torch.load(save_path) if "state_dict" in model_state: model.load_state_dict(model_state["state_dict"]) else: model.load_state_dict(model_state) model_state = { 'state_dict': model.cpu().state_dict(), 'epoch': epoch, 'iteration': iteration, 'model': args.model, 'color_space': args.color_space, 'batch_size': args.batch_size, 'dataset': dataset, 'image_size': args.image_size } model.cuda(device_id=args.gpu) print('Loaded {0} from epoch: {1} itr: {2}'.format(network_label, epoch, args.load)) def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm2d') != -1 or classname.find('InstanceNorm2d') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) def get_norm_layer(norm_type): if norm_type == 'batch': norm_layer = nn.BatchNorm2d elif norm_type == 'instance': norm_layer = nn.InstanceNorm2d else: print('normalization layer [%s] is not found' % norm_type) return norm_layer def define_G(input_nc, output_nc, ngf, norm='batch', use_dropout=False, gpu_ids=[]): netG = None use_gpu = len(gpu_ids) > 0 norm_layer = get_norm_layer(norm_type=norm) if use_gpu: assert(torch.cuda.is_available()) netG = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9, gpu_ids=gpu_ids) if len(gpu_ids) > 0: netG.cuda(device_id=gpu_ids[0]) netG.apply(weights_init) return netG def define_D(input_nc, ndf, norm='batch', use_sigmoid=False, gpu_ids=[]): netD = None use_gpu = len(gpu_ids) > 0 norm_layer = get_norm_layer(norm_type=norm) if use_gpu: assert(torch.cuda.is_available()) netD = NLayerDiscriminator(input_nc, ndf, n_layers=3, norm_layer=norm_layer, use_sigmoid=use_sigmoid, gpu_ids=gpu_ids) if use_gpu: netD.cuda(device_id=gpu_ids[0]) netD.apply(weights_init) return netD def print_network(net): num_params = 0 for param in net.parameters(): num_params += param.numel() print(net) print('Total number of parameters: %d' % num_params) # Defines the GAN loss which uses either LSGAN or the regular GAN. class GANLoss(nn.Module): def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0, tensor=torch.FloatTensor): super(GANLoss, self).__init__() self.real_label = target_real_label self.fake_label = target_fake_label self.real_label_var = None self.fake_label_var = None self.Tensor = tensor if use_lsgan: self.loss = nn.MSELoss() else: self.loss = nn.BCELoss() def get_target_tensor(self, input, target_is_real): target_tensor = None if target_is_real: create_label = ((self.real_label_var is None) or (self.real_label_var.numel() != input.numel())) if create_label: real_tensor = self.Tensor(input.size()).fill_(self.real_label) self.real_label_var = Variable(real_tensor, requires_grad=False) target_tensor = self.real_label_var else: create_label = ((self.fake_label_var is None) or (self.fake_label_var.numel() != input.numel())) if create_label: fake_tensor = self.Tensor(input.size()).fill_(self.fake_label) self.fake_label_var = Variable(fake_tensor, requires_grad=False) target_tensor = self.fake_label_var return target_tensor def __call__(self, input, target_is_real): target_tensor = self.get_target_tensor(input, target_is_real) return self.loss(input, target_tensor.cuda()) # TODO define forward() for GANLoss? # Defines the generator that consists of Resnet blocks between a few # downsampling/upsampling operations. class ResnetGenerator(nn.Module): def __init__(self, input_nc, output_nc, ngf=64, norm_layer=nn.BatchNorm2d, use_dropout=False, n_blocks=6, gpu_ids=[]): assert(n_blocks >= 0) super(ResnetGenerator, self).__init__() self.input_nc = input_nc self.output_nc = output_nc self.ngf = ngf self.gpu_ids = gpu_ids model = [nn.Conv2d(input_nc, ngf, kernel_size=7, padding=3), norm_layer(ngf, affine=True), nn.ReLU(True)] n_downsampling = 2 for i in range(n_downsampling): mult = 2**i model += [nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), norm_layer(ngf * mult * 2, affine=True), nn.ReLU(True)] mult = 2**n_downsampling for i in range(n_blocks): model += [ResnetBlock(ngf * mult, 'zero', norm_layer=norm_layer, use_dropout=use_dropout)] for i in range(n_downsampling): mult = 2**(n_downsampling - i) model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1), norm_layer(int(ngf * mult / 2), affine=True), nn.ReLU(True)] model += [nn.Conv2d(ngf, output_nc, kernel_size=7, padding=3)] model += [nn.Tanh()] self.model = nn.Sequential(*model) def forward(self, x): if self.gpu_ids and isinstance(x.data, torch.cuda.FloatTensor): return nn.parallel.data_parallel(self.model, x, self.gpu_ids) else: return self.model(x) # Define a resnet block class ResnetBlock(nn.Module): def __init__(self, dim, padding_type, norm_layer, use_dropout): super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout) def build_conv_block(self, dim, padding_type, norm_layer, use_dropout): conv_block = [] p = 0 assert(padding_type == 'zero') p = 1 conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim, affine=True), nn.ReLU(True)] if use_dropout: conv_block += [nn.Dropout(0.5)] conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim, affine=True)] return nn.Sequential(*conv_block) def forward(self, x): out = x + self.conv_block(x) return out # Defines the PatchGAN discriminator. class NLayerDiscriminator(nn.Module): def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, gpu_ids=[]): super(NLayerDiscriminator, self).__init__() self.gpu_ids = gpu_ids kw = 4 padw = int(np.ceil((kw-1)/2)) sequence = [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): nf_mult_prev = nf_mult nf_mult = min(2**n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw), norm_layer(ndf * nf_mult, affine=True), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2**n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw), norm_layer(ndf * nf_mult, affine=True), nn.LeakyReLU(0.2, True) ] sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)] if use_sigmoid: sequence += [nn.Sigmoid()] self.model = nn.Sequential(*sequence) def forward(self, x): if len(self.gpu_ids) and isinstance(x.data, torch.cuda.FloatTensor): return nn.parallel.data_parallel(self.model, x, self.gpu_ids) else: return self.model(x) class GramMatrix(nn.Module): def forward(self, input): a, b, c, d = input.size() # a=batch size(=1) # b=number of feature maps # (c,d)=dimensions of a f. map (N=c*d) features = input.view(a, b, c * d) # resize F_XL into \hat F_XL G = torch.bmm(features, features.transpose(1, 2)) # compute the gram product # normalize the values of the gram matrix # by dividing by the number of element in each feature maps. return G.div(b * c * d) class FeatureExtractor(nn.Module): # Extract features from intermediate layers of a network def __init__(self, submodule, extracted_layers): super(FeatureExtractor, self).__init__() self.submodule = submodule self.extracted_layers = extracted_layers def forward(self, x): outputs = [] for name, module in self.submodule._modules.items(): x = module(x) if name in self.extracted_layers: outputs += [x] return outputs + [x]
[ "torch.nn.Dropout", "torch.nn.MSELoss", "torch.nn.ReLU", "os.makedirs", "torch.nn.BCELoss", "torch.nn.Sequential", "torch.nn.Tanh", "numpy.ceil", "torch.load", "torch.nn.Conv2d", "os.path.exists", "torch.autograd.Variable", "torch.nn.Sigmoid", "torch.save", "torch.cuda.is_available", "torch.nn.LeakyReLU", "os.path.join", "torch.nn.parallel.data_parallel" ]
[((355, 387), 'os.path.join', 'osp.join', (['args.save_dir', 'dataset'], {}), '(args.save_dir, dataset)\n', (363, 387), True, 'import os.path as osp\n'), ((484, 527), 'os.path.join', 'os.path.join', (['model_save_dir', 'save_filename'], {}), '(model_save_dir, save_filename)\n', (496, 527), False, 'import os\n'), ((839, 873), 'torch.save', 'torch.save', (['model_state', 'save_path'], {}), '(model_state, save_path)\n', (849, 873), False, 'import torch\n'), ((1263, 1301), 'os.path.join', 'osp.join', (['args.load_dir', 'save_filename'], {}), '(args.load_dir, save_filename)\n', (1271, 1301), True, 'import os.path as osp\n'), ((1325, 1346), 'torch.load', 'torch.load', (['save_path'], {}), '(save_path)\n', (1335, 1346), False, 'import torch\n'), ((399, 429), 'os.path.exists', 'os.path.exists', (['model_save_dir'], {}), '(model_save_dir)\n', (413, 429), False, 'import os\n'), ((439, 466), 'os.makedirs', 'os.makedirs', (['model_save_dir'], {}), '(model_save_dir)\n', (450, 466), False, 'import os\n'), ((2754, 2779), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2777, 2779), False, 'import torch\n'), ((3226, 3251), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3249, 3251), False, 'import torch\n'), ((6976, 6997), 'torch.nn.Sequential', 'nn.Sequential', (['*model'], {}), '(*model)\n', (6989, 6997), True, 'import torch.nn as nn\n'), ((8015, 8041), 'torch.nn.Sequential', 'nn.Sequential', (['*conv_block'], {}), '(*conv_block)\n', (8028, 8041), True, 'import torch.nn as nn\n'), ((9545, 9569), 'torch.nn.Sequential', 'nn.Sequential', (['*sequence'], {}), '(*sequence)\n', (9558, 9569), True, 'import torch.nn as nn\n'), ((4164, 4176), 'torch.nn.MSELoss', 'nn.MSELoss', ([], {}), '()\n', (4174, 4176), True, 'import torch.nn as nn\n'), ((4215, 4227), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (4225, 4227), True, 'import torch.nn as nn\n'), ((5830, 5880), 'torch.nn.Conv2d', 'nn.Conv2d', (['input_nc', 'ngf'], {'kernel_size': '(7)', 'padding': '(3)'}), '(input_nc, ngf, kernel_size=7, padding=3)\n', (5839, 5880), True, 'import torch.nn as nn\n'), ((5946, 5959), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (5953, 5959), True, 'import torch.nn as nn\n'), ((6872, 6923), 'torch.nn.Conv2d', 'nn.Conv2d', (['ngf', 'output_nc'], {'kernel_size': '(7)', 'padding': '(3)'}), '(ngf, output_nc, kernel_size=7, padding=3)\n', (6881, 6923), True, 'import torch.nn as nn\n'), ((6943, 6952), 'torch.nn.Tanh', 'nn.Tanh', ([], {}), '()\n', (6950, 6952), True, 'import torch.nn as nn\n'), ((7116, 7170), 'torch.nn.parallel.data_parallel', 'nn.parallel.data_parallel', (['self.model', 'x', 'self.gpu_ids'], {}), '(self.model, x, self.gpu_ids)\n', (7141, 7170), True, 'import torch.nn as nn\n'), ((7670, 7715), 'torch.nn.Conv2d', 'nn.Conv2d', (['dim', 'dim'], {'kernel_size': '(3)', 'padding': 'p'}), '(dim, dim, kernel_size=3, padding=p)\n', (7679, 7715), True, 'import torch.nn as nn\n'), ((7793, 7806), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (7800, 7806), True, 'import torch.nn as nn\n'), ((7899, 7944), 'torch.nn.Conv2d', 'nn.Conv2d', (['dim', 'dim'], {'kernel_size': '(3)', 'padding': 'p'}), '(dim, dim, kernel_size=3, padding=p)\n', (7908, 7944), True, 'import torch.nn as nn\n'), ((8433, 8454), 'numpy.ceil', 'np.ceil', (['((kw - 1) / 2)'], {}), '((kw - 1) / 2)\n', (8440, 8454), True, 'import numpy as np\n'), ((8485, 8549), 'torch.nn.Conv2d', 'nn.Conv2d', (['input_nc', 'ndf'], {'kernel_size': 'kw', 'stride': '(2)', 'padding': 'padw'}), '(input_nc, ndf, kernel_size=kw, stride=2, padding=padw)\n', (8494, 8549), True, 'import torch.nn as nn\n'), ((8563, 8586), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', (['(0.2)', '(True)'], {}), '(0.2, True)\n', (8575, 8586), True, 'import torch.nn as nn\n'), ((9138, 9226), 'torch.nn.Conv2d', 'nn.Conv2d', (['(ndf * nf_mult_prev)', '(ndf * nf_mult)'], {'kernel_size': 'kw', 'stride': '(1)', 'padding': 'padw'}), '(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1,\n padding=padw)\n', (9147, 9226), True, 'import torch.nn as nn\n'), ((9334, 9357), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', (['(0.2)', '(True)'], {}), '(0.2, True)\n', (9346, 9357), True, 'import torch.nn as nn\n'), ((9390, 9457), 'torch.nn.Conv2d', 'nn.Conv2d', (['(ndf * nf_mult)', '(1)'], {'kernel_size': 'kw', 'stride': '(1)', 'padding': 'padw'}), '(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)\n', (9399, 9457), True, 'import torch.nn as nn\n'), ((9694, 9748), 'torch.nn.parallel.data_parallel', 'nn.parallel.data_parallel', (['self.model', 'x', 'self.gpu_ids'], {}), '(self.model, x, self.gpu_ids)\n', (9719, 9748), True, 'import torch.nn as nn\n'), ((4624, 4666), 'torch.autograd.Variable', 'Variable', (['real_tensor'], {'requires_grad': '(False)'}), '(real_tensor, requires_grad=False)\n', (4632, 4666), False, 'from torch.autograd import Variable\n'), ((5012, 5054), 'torch.autograd.Variable', 'Variable', (['fake_tensor'], {'requires_grad': '(False)'}), '(fake_tensor, requires_grad=False)\n', (5020, 5054), False, 'from torch.autograd import Variable\n'), ((6075, 6148), 'torch.nn.Conv2d', 'nn.Conv2d', (['(ngf * mult)', '(ngf * mult * 2)'], {'kernel_size': '(3)', 'stride': '(2)', 'padding': '(1)'}), '(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1)\n', (6084, 6148), True, 'import torch.nn as nn\n'), ((6267, 6280), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (6274, 6280), True, 'import torch.nn as nn\n'), ((6838, 6851), 'torch.nn.ReLU', 'nn.ReLU', (['(True)'], {}), '(True)\n', (6845, 6851), True, 'import torch.nn as nn\n'), ((7859, 7874), 'torch.nn.Dropout', 'nn.Dropout', (['(0.5)'], {}), '(0.5)\n', (7869, 7874), True, 'import torch.nn as nn\n'), ((8792, 8880), 'torch.nn.Conv2d', 'nn.Conv2d', (['(ndf * nf_mult_prev)', '(ndf * nf_mult)'], {'kernel_size': 'kw', 'stride': '(2)', 'padding': 'padw'}), '(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2,\n padding=padw)\n', (8801, 8880), True, 'import torch.nn as nn\n'), ((8996, 9019), 'torch.nn.LeakyReLU', 'nn.LeakyReLU', (['(0.2)', '(True)'], {}), '(0.2, True)\n', (9008, 9019), True, 'import torch.nn as nn\n'), ((9509, 9521), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (9519, 9521), True, 'import torch.nn as nn\n')]
from .loaders.loader import DatasetLoader from omegaconf import OmegaConf class DatasetSuite: def __init__(self, name, cache_dir, datasets): self.name = name self.cache_dir = cache_dir self.datasets = datasets def fetch_and_cache_dataset(self, dataset_index): loader_type = self.datasets[int(dataset_index)].pop('loader') loader_cls = DatasetLoader.by_name(loader_type) loader = loader_cls(**self.datasets[int(dataset_index)]) loader.fetch_and_cache(self.cache_dir) @classmethod def fetch_and_cache_from_cfg(cls, cfg, dataset_index): resolved_cfg = OmegaConf.to_container(cfg, resolve=True) suite = cls(resolved_cfg['name'], resolved_cfg['cache_dir'], resolved_cfg['datasets']) suite.fetch_and_cache_dataset(dataset_index)
[ "omegaconf.OmegaConf.to_container" ]
[((637, 678), 'omegaconf.OmegaConf.to_container', 'OmegaConf.to_container', (['cfg'], {'resolve': '(True)'}), '(cfg, resolve=True)\n', (659, 678), False, 'from omegaconf import OmegaConf\n')]
from collections import namedtuple ImageBuilderResult = namedtuple( "ImageBuilderResult", ("consumed_files", "file_errors_map", "new_images", "new_image_files"), )
[ "collections.namedtuple" ]
[((57, 165), 'collections.namedtuple', 'namedtuple', (['"""ImageBuilderResult"""', "('consumed_files', 'file_errors_map', 'new_images', 'new_image_files')"], {}), "('ImageBuilderResult', ('consumed_files', 'file_errors_map',\n 'new_images', 'new_image_files'))\n", (67, 165), False, 'from collections import namedtuple\n')]
"""ESCALATE Capture Main point of entry for for EscalateCAPTURE """ import os import sys import ast import xlrd import logging import argparse as ap from log import init from capture import specify from capture import devconfig from utils import globals, data_handling def escalatecapture(rxndict, vardict): """Point of entry into the data pipeline Manages processing calls to specify, generate, and prepare --> leads to execute :param rxndict: dictionary of Excel-specified params :param vardict: dictionary of dev-specified params :return None: """ modlog = logging.getLogger('capture.escalatecapture') modlog.info("Initializing specify") specify.datapipeline(rxndict, vardict) def linkprocess(linkfile): """TODO: what was this going to be for?""" return def build_rxndict(rxnvarfile): """Read Template file and return a dict representation The rxndict is a mapping of Variables => Values (column B => column d) in the uncommented rows of the reaction excel file :param rxnvarfile: path to excel file containing reaction specification :return rxndict: dictionary representation of reaction specification """ rxndict = {} varfile = rxnvarfile wb = xlrd.open_workbook(varfile) sheet = wb.sheet_by_name('WF1') for i in range(sheet.nrows): commentval = sheet.cell(i, 0).value if commentval == '#': continue else: cell_dict_value = sheet.cell(i, 3).value cell_dict_id = sheet.cell(i, 1).value cell_dict_type = sheet.cell(i, 4).value if cell_dict_id == "": pass if cell_dict_type == 'list': rxndict[cell_dict_id] = ast.literal_eval(cell_dict_value) else: rxndict[cell_dict_id.strip()] = cell_dict_value # cannot use globals.get_lab() here since it has not been set # if rxndict['lab'] == 'MIT_PVLab': # data_handling.get_user_actions(rxndict, sheet) return rxndict if __name__ == "__main__": parser = ap.ArgumentParser(description='Generate experimental run data') parser.add_argument('Variables', type=str, help='Target xls file containing run information specified by the user\ format should be "filename.xlsx"') parser.add_argument('-s', '--ss', default=0, type=int, choices=[0, 1, 2], help='0 - quasi-random experiments generate, 1 - Generates stateset\ for exp_1 user specified reagents, 2 - generate prototype run for\ exp_1 user specified reagents') parser.add_argument('-d', '--debug', default=0, type=int, choices=[0,1,2], help='0 - complete run generation and upload to google drive,\ 1 - retain all tables from gdrive & keep runtime content,\ 2 - full offline debugging (no uploading)') args = parser.parse_args() challengeproblem = args.ss rxndict = build_rxndict(args.Variables) rxndict['challengeproblem'] = challengeproblem # vardict will hold variables configured by developers vardict = { 'exefilename': args.Variables, 'challengeproblem': challengeproblem, 'debug': args.debug, 'lab': rxndict['lab'] } if not os.path.exists('./localfiles'): os.mkdir('./localfiles') globals.set_lab(rxndict['lab']) init.runuidgen(rxndict, vardict) loggerfile = init.buildlogger(rxndict) rxndict['logfile'] = loggerfile # log the initial state of the run init.initialize(rxndict, vardict) # TODO: >>>> insert variable tests here <<<< escalatecapture(rxndict, vardict) if vardict['debug'] == 0: # if no debuggin if os.path.exists("./mycred.txt"): os.remove("./mycred.txt") if os.path.exists("./capture/user_cli_variables.py"): os.remove("./capture/user_cli_variables.py")
[ "os.mkdir", "os.remove", "argparse.ArgumentParser", "xlrd.open_workbook", "utils.globals.set_lab", "os.path.exists", "log.init.initialize", "log.init.buildlogger", "log.init.runuidgen", "ast.literal_eval", "logging.getLogger", "capture.specify.datapipeline" ]
[((595, 639), 'logging.getLogger', 'logging.getLogger', (['"""capture.escalatecapture"""'], {}), "('capture.escalatecapture')\n", (612, 639), False, 'import logging\n'), ((684, 722), 'capture.specify.datapipeline', 'specify.datapipeline', (['rxndict', 'vardict'], {}), '(rxndict, vardict)\n', (704, 722), False, 'from capture import specify\n'), ((1242, 1269), 'xlrd.open_workbook', 'xlrd.open_workbook', (['varfile'], {}), '(varfile)\n', (1260, 1269), False, 'import xlrd\n'), ((2080, 2143), 'argparse.ArgumentParser', 'ap.ArgumentParser', ([], {'description': '"""Generate experimental run data"""'}), "(description='Generate experimental run data')\n", (2097, 2143), True, 'import argparse as ap\n'), ((3347, 3378), 'utils.globals.set_lab', 'globals.set_lab', (["rxndict['lab']"], {}), "(rxndict['lab'])\n", (3362, 3378), False, 'from utils import globals, data_handling\n'), ((3384, 3416), 'log.init.runuidgen', 'init.runuidgen', (['rxndict', 'vardict'], {}), '(rxndict, vardict)\n', (3398, 3416), False, 'from log import init\n'), ((3435, 3460), 'log.init.buildlogger', 'init.buildlogger', (['rxndict'], {}), '(rxndict)\n', (3451, 3460), False, 'from log import init\n'), ((3541, 3574), 'log.init.initialize', 'init.initialize', (['rxndict', 'vardict'], {}), '(rxndict, vardict)\n', (3556, 3574), False, 'from log import init\n'), ((3277, 3307), 'os.path.exists', 'os.path.exists', (['"""./localfiles"""'], {}), "('./localfiles')\n", (3291, 3307), False, 'import os\n'), ((3317, 3341), 'os.mkdir', 'os.mkdir', (['"""./localfiles"""'], {}), "('./localfiles')\n", (3325, 3341), False, 'import os\n'), ((3722, 3752), 'os.path.exists', 'os.path.exists', (['"""./mycred.txt"""'], {}), "('./mycred.txt')\n", (3736, 3752), False, 'import os\n'), ((3803, 3852), 'os.path.exists', 'os.path.exists', (['"""./capture/user_cli_variables.py"""'], {}), "('./capture/user_cli_variables.py')\n", (3817, 3852), False, 'import os\n'), ((3766, 3791), 'os.remove', 'os.remove', (['"""./mycred.txt"""'], {}), "('./mycred.txt')\n", (3775, 3791), False, 'import os\n'), ((3866, 3910), 'os.remove', 'os.remove', (['"""./capture/user_cli_variables.py"""'], {}), "('./capture/user_cli_variables.py')\n", (3875, 3910), False, 'import os\n'), ((1740, 1773), 'ast.literal_eval', 'ast.literal_eval', (['cell_dict_value'], {}), '(cell_dict_value)\n', (1756, 1773), False, 'import ast\n')]
""" CSE Partial Factorization and Post-Processing The following script will perform partial factorization on SymPy expressions, which should occur before common subexpression elimination (CSE) to prevent the identification of undesirable patterns, and perform post-processing on the the resulting replaced/reduced expressions after the CSE procedure was applied. """ # Author: <NAME> # Email: <EMAIL> from SIMDExprTree import ExprTree import sympy as sp # Input: expr_list = single SymPy expression or list of SymPy expressions # prefix = string prefix for variable names (i.e. replacement symbols) # declare = declare negative one symbol (i.e. _NegativeOne_) # factor = perform partial factorization (excluding negative one) # Output: modified SymPy expression(s) where all integers and rationals were replaced # with temporary placeholder variables that allow for partial factorization def cse_preprocess(expr_list, prefix='', declare=False, factor=True, debug=False): if not isinstance(expr_list, list): expr_list = [expr_list] def expand(a, n): if n == 2: return sp.Mul(a, a, evaluate=False) elif n > 2: return sp.Mul(expand(a, n - 1), a, evaluate=False) return sp.Pow(expand(a, -n), -1, evaluate=False) _NegativeOne_ = sp.Symbol(prefix + '_NegativeOne_') map_sym_to_rat, map_rat_to_sym = {}, {} for i, expr in enumerate(expr_list): tree = ExprTree(expr) # Expand power function, preventing replacement of exponent argument for subtree in tree.preorder(tree.root): subexpr = subtree.expr if subexpr.func == sp.Pow: exponent = subtree.children[1].expr if exponent.func == sp.Integer and abs(exponent) > 1: subtree.expr = expand(*subexpr.args) tree.build(subtree, clear=True) # Search through expression tree for integers/rationals for subtree in tree.preorder(): subexpr = subtree.expr if isinstance(subexpr, sp.Rational) and subexpr != sp.S.NegativeOne: # If rational < 0, factor out negative and declare positive rational sign = 1 if subexpr >= 0 else -1 subexpr *= sign # Check whether rational was already declared, otherwise declare rational try: repl = map_rat_to_sym[subexpr] except KeyError: p, q = subexpr.p, subexpr.q var_name = prefix + '_Rational_' + str(p) + '_' + str(q) \ if q != 1 else prefix + '_Integer_' + str(p) repl = sp.Symbol(var_name) map_sym_to_rat[repl], map_rat_to_sym[subexpr] = subexpr, repl subtree.expr = repl * sign if sign < 0: tree.build(subtree, clear=True) # If declare == True, then declare symbol for -1 or extracted negative elif declare and subexpr == sp.S.NegativeOne: try: subtree.expr = map_rat_to_sym[sp.S.NegativeOne] except KeyError: repl = _NegativeOne_ map_sym_to_rat[repl], map_rat_to_sym[subexpr] = subexpr, repl subtree.expr = repl # If exponent was replaced with symbol (usually -1), then back-substitute for subtree in tree.preorder(tree.root): subexpr = subtree.expr if subexpr.func == sp.Pow: exponent = subtree.children[1].expr if exponent.func == sp.Symbol: subtree.children[1].expr = map_sym_to_rat[exponent] expr = tree.reconstruct() # If factor == True, then perform partial factoring if factor: # Handle the separate case of function arguments for subtree in tree.preorder(): if isinstance(subtree.expr, sp.Function): for var in map_sym_to_rat: if var != _NegativeOne_: child = subtree.children[0] child.expr = sp.collect(child.expr, var) child.children.clear() expr = tree.reconstruct() # Perform partial factoring on the expression(s) for var in map_sym_to_rat: if var != _NegativeOne_: expr = sp.collect(expr, var) # If debug == True, then back-substitute everything and check difference if debug: def lookup_rational(arg): if arg.func == sp.Symbol: try: arg = map_sym_to_rat[arg] except KeyError: pass return arg debug_tree = ExprTree(expr) for subtree in debug_tree.preorder(): subexpr = subtree.expr if subexpr.func == sp.Symbol: subtree.expr = lookup_rational(subexpr) debug_expr = tree.reconstruct() expr_diff = expr - debug_expr if sp.simplify(expr_diff) != 0: raise Warning('Expression Difference: ' + str(expr_diff)) expr_list[i] = expr if len(expr_list) == 1: expr_list = expr_list[0] return expr_list, map_sym_to_rat # Input: cse_output = output from SymPy CSE with tuple format: (list of ordered pairs that # contain substituted symbols and their replaced expressions, reduced SymPy expression) # Output: output from SymPy CSE where postprocessing, such as back-substitution of addition/product # of symbols, has been applied to the replaced/reduced expression(s) def cse_postprocess(cse_output): replaced, reduced = cse_output i = 0 while i < len(replaced): sym, expr = replaced[i] # Search through replaced expressions for negative symbols if (expr.func == sp.Mul and len(expr.args) == 2 and \ any((arg.func == sp.Symbol) for arg in expr.args) and \ any((arg == sp.S.NegativeOne or '_NegativeOne_' in str(arg)) for arg in expr.args)): for k in range(i + 1, len(replaced)): if sym in replaced[k][1].free_symbols: replaced[k] = (replaced[k][0], replaced[k][1].subs(sym, expr)) for k in range(len(reduced)): if sym in reduced[k].free_symbols: reduced[k] = reduced[k].subs(sym, expr) # Remove the replaced expression from the list replaced.pop(i) if i != 0: i -= 1 # Search through replaced expressions for addition/product of 2 or less symbols if ((expr.func == sp.Add or expr.func == sp.Mul) and 0 < len(expr.args) < 3 and \ all((arg.func == sp.Symbol or arg.is_integer or arg.is_rational) for arg in expr.args)) or \ (expr.func == sp.Pow and expr.args[0].func == sp.Symbol and expr.args[1] == 2): sym_count = 0 # Count the number of occurrences of the substituted symbol for k in range(len(replaced) - i): # Check if the substituted symbol appears in the replaced expressions if sym in replaced[i + k][1].free_symbols: for arg in sp.preorder_traversal(replaced[i + k][1]): if arg.func == sp.Symbol and str(arg) == str(sym): sym_count += 1 for k in range(len(reduced)): # Check if the substituted symbol appears in the reduced expression if sym in reduced[k].free_symbols: for arg in sp.preorder_traversal(reduced[k]): if arg.func == sp.Symbol and str(arg) == str(sym): sym_count += 1 # If the number of occurrences of the substituted symbol is 2 or less, back-substitute if 0 < sym_count < 3: for k in range(i + 1, len(replaced)): if sym in replaced[k][1].free_symbols: replaced[k] = (replaced[k][0], replaced[k][1].subs(sym, expr)) for k in range(len(reduced)): if sym in reduced[k].free_symbols: reduced[k] = reduced[k].subs(sym, expr) # Remove the replaced expression from the list replaced.pop(i); i -= 1 i += 1 return replaced, reduced
[ "sympy.Symbol", "sympy.collect", "SIMDExprTree.ExprTree", "sympy.simplify", "sympy.Mul", "sympy.preorder_traversal" ]
[((1318, 1353), 'sympy.Symbol', 'sp.Symbol', (["(prefix + '_NegativeOne_')"], {}), "(prefix + '_NegativeOne_')\n", (1327, 1353), True, 'import sympy as sp\n'), ((1454, 1468), 'SIMDExprTree.ExprTree', 'ExprTree', (['expr'], {}), '(expr)\n', (1462, 1468), False, 'from SIMDExprTree import ExprTree\n'), ((1140, 1168), 'sympy.Mul', 'sp.Mul', (['a', 'a'], {'evaluate': '(False)'}), '(a, a, evaluate=False)\n', (1146, 1168), True, 'import sympy as sp\n'), ((4772, 4786), 'SIMDExprTree.ExprTree', 'ExprTree', (['expr'], {}), '(expr)\n', (4780, 4786), False, 'from SIMDExprTree import ExprTree\n'), ((5084, 5106), 'sympy.simplify', 'sp.simplify', (['expr_diff'], {}), '(expr_diff)\n', (5095, 5106), True, 'import sympy as sp\n'), ((4426, 4447), 'sympy.collect', 'sp.collect', (['expr', 'var'], {}), '(expr, var)\n', (4436, 4447), True, 'import sympy as sp\n'), ((7277, 7318), 'sympy.preorder_traversal', 'sp.preorder_traversal', (['replaced[i + k][1]'], {}), '(replaced[i + k][1])\n', (7298, 7318), True, 'import sympy as sp\n'), ((7646, 7679), 'sympy.preorder_traversal', 'sp.preorder_traversal', (['reduced[k]'], {}), '(reduced[k])\n', (7667, 7679), True, 'import sympy as sp\n'), ((2684, 2703), 'sympy.Symbol', 'sp.Symbol', (['var_name'], {}), '(var_name)\n', (2693, 2703), True, 'import sympy as sp\n'), ((4141, 4168), 'sympy.collect', 'sp.collect', (['child.expr', 'var'], {}), '(child.expr, var)\n', (4151, 4168), True, 'import sympy as sp\n')]
# coding=utf-8 from aip import AipOcr import re opt_aux_word = ['《', '》'] def get_file_content(file): with open(file, 'rb') as fp: return fp.read() def image_to_str(name, client): image = get_file_content(name) text_result = client.basicGeneral(image) print(text_result) result = get_question_and_options(text_result) return result def init_baidu_ocr(baidu_ocr_config): app_id, api_key, secret_key = baidu_ocr_config client = AipOcr(app_id, api_key, secret_key) return client # {'words_result': [{'words': '11.代表作之一是《蒙娜丽莎的眼'}, # {'words': '泪》的歌手是?'}, {'words': '林志颖'}, # {'words': '林志炫'}, {'words': '林志玲'}], # 'log_id': 916087026228727188, 'words_result_num': 5} def get_question_and_options(text): if 'error_code' in text: print('请确保百度OCR配置正确') exit(-1) if text['words_result_num'] == 0: return '', [] result_arr = text['words_result'] option_arr = [] question_str = '' question_obj, options_obj = get_question(result_arr) for question in question_obj: word = question['words'] word = re.sub('^\d+\.*', '', word) question_str += word for option in options_obj: word = option['words'] if word.startswith('《'): word = word[1:] if word.endswith('》'): word = word[:-1] print(word) option_arr.append(word) print(question_str) print(option_arr) return question_str, option_arr # 先按'?'分割问题和答案,若无问号,用索引分割 def get_question(result_arr): result_num = len(result_arr) index = -1 question_obj, options_obj = [], [] for i, result in enumerate(result_arr): if '?' in result['words']: index = i break if index > -1: question_obj = result_arr[:index + 1] options_obj = result_arr[index + 1:] return question_obj, options_obj else: # 按照经验,4个结果为1行问题,5、6个为2行问题,8个以上为公布答案 if result_num <= 4: question_obj = result_arr[:1] options_obj = result_arr[1:] elif result_num == 5: question_obj = result_arr[:2] options_obj = result_arr[2:] elif result_num == 6: # 暂时 question_obj = result_arr[:2] options_obj = result_arr[2:] elif result_num == 7 or result_num == 8: question_obj = result_arr[:3] options_obj = result_arr[3:] return question_obj, options_obj
[ "aip.AipOcr", "re.sub" ]
[((473, 508), 'aip.AipOcr', 'AipOcr', (['app_id', 'api_key', 'secret_key'], {}), '(app_id, api_key, secret_key)\n', (479, 508), False, 'from aip import AipOcr\n'), ((1145, 1174), 're.sub', 're.sub', (['"""^\\\\d+\\\\.*"""', '""""""', 'word'], {}), "('^\\\\d+\\\\.*', '', word)\n", (1151, 1174), False, 'import re\n')]
import torch, os from os import path as osp from math import ceil import sys from yaml import load from basicsr.data import build_dataloader, build_dataset from basicsr.utils.options import parse_options import torch.nn as nn import torch.nn.functional as F import torch from torch.autograd import Variable import cv2 from copy import deepcopy import os.path as osp from torch.nn.parallel import DataParallel, DistributedDataParallel from basicsr.archs.edvr_arch import EDVR def chop_forward(model, inp, shave=8, min_size=120000): # This part will divide your input in 4 small images b, n, c, h, w = inp.size() h_half, w_half = h // 2, w // 2 h_size, w_size = h_half + shave, w_half + shave mod_size = 4 if h_size % mod_size: h_size = ceil(h_size/mod_size)*mod_size # The ceil() function returns the uploaded integer of a number if w_size % mod_size: w_size = ceil(w_size/mod_size)*mod_size inputlist = [ inp[:, :, :, 0:h_size, 0:w_size], inp[:, :, :, 0:h_size, (w - w_size):w], inp[:, :, :, (h - h_size):h, 0:w_size], inp[:, :, :, (h - h_size):h, (w - w_size):w]] if w_size * h_size < min_size: outputlist = [] for i in range(4): with torch.no_grad(): input_batch = inputlist[i] output_batch = model(input_batch) outputlist.append(output_batch) else: outputlist = [ chop_forward(model, patch) \ for patch in inputlist] scale=4 h, w = scale * h, scale * w h_half, w_half = scale * h_half, scale * w_half h_size, w_size = scale * h_size, scale * w_size shave *= scale with torch.no_grad(): output_ht = Variable(inp.data.new(b, c, h, w)) output_ht[:, :, 0:h_half, 0:w_half] = outputlist[0][:, :, 0:h_half, 0:w_half] output_ht[:, :, 0:h_half, w_half:w] = outputlist[1][:, :, 0:h_half, (w_size - w + w_half):w_size] output_ht[:, :, h_half:h, 0:w_half] = outputlist[2][:, :, (h_size - h + h_half):h_size, 0:w_half] output_ht[:, :, h_half:h, w_half:w] = outputlist[3][:, :, (h_size - h + h_half):h_size, (w_size - w + w_half):w_size] return output_ht def demo_pipeline(root_path): # parse options, set distributed setting, set ramdom seed opt, args = parse_options(root_path, is_train=False) print("video path: ",args.video_path) video_name = osp.basename(args.video_path).split(".")[0] torch.backends.cudnn.benchmark = True # create test dataset and dataloader test_loaders = [] for _, dataset_opt in sorted(opt['datasets'].items()): test_set = build_dataset(dataset_opt) test_loader = build_dataloader( test_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt['dist'], sampler=None, seed=opt['manual_seed']) test_loaders.append(test_loader) # create model model_config = opt['network_g'] _ = model_config.pop("type", "Unkown") model = EDVR(**model_config) device = torch.device('cuda' if opt['num_gpu'] != 0 else 'cpu') model = model.to(device=device) param_key='params' load_net = torch.load(opt["path"].get("pretrain_network_g", "Unkown"), map_location=lambda storage, loc: storage) find_unused_parameters = opt.get('find_unused_parameters', False) model = DistributedDataParallel( model, device_ids=[torch.cuda.current_device()], find_unused_parameters=find_unused_parameters) # load weights if param_key is not None: if param_key not in load_net and 'params' in load_net: param_key = 'params' load_net = load_net[param_key] for k, v in deepcopy(load_net).items(): load_net['module.' + k] = v load_net.pop(k) model.load_state_dict(load_net, strict=True) model.eval() # set min size min_size = 921599 # test clips for test_loader in test_loaders: for idx, data in enumerate(test_loader): frame_name = "{:08d}.png".format(idx) frame_name = osp.join("sr_video", video_name, frame_name) if osp.exists(frame_name): continue height, width = data.size()[-2:] if height * width < min_size: output = model(data) else: output = chop_forward(model, data) print("imwrite {:08d}.png. | totol: {}".format(idx, len(test_loader))) output = torch.squeeze(output.data.cpu(), dim=0).clamp(0,1).permute(1,2,0).numpy() cv2.imwrite(frame_name, cv2.cvtColor(output*255, cv2.COLOR_BGR2RGB), [cv2.IMWRITE_PNG_COMPRESSION, 0]) if __name__ == '__main__': root_path = osp.abspath(osp.join(__file__, osp.pardir, osp.pardir)) demo_pipeline(root_path)
[ "copy.deepcopy", "math.ceil", "os.path.basename", "cv2.cvtColor", "basicsr.data.build_dataset", "basicsr.archs.edvr_arch.EDVR", "os.path.exists", "torch.device", "basicsr.utils.options.parse_options", "torch.no_grad", "os.path.join", "basicsr.data.build_dataloader", "torch.cuda.current_device" ]
[((2310, 2350), 'basicsr.utils.options.parse_options', 'parse_options', (['root_path'], {'is_train': '(False)'}), '(root_path, is_train=False)\n', (2323, 2350), False, 'from basicsr.utils.options import parse_options\n'), ((2976, 2996), 'basicsr.archs.edvr_arch.EDVR', 'EDVR', ([], {}), '(**model_config)\n', (2980, 2996), False, 'from basicsr.archs.edvr_arch import EDVR\n'), ((3011, 3065), 'torch.device', 'torch.device', (["('cuda' if opt['num_gpu'] != 0 else 'cpu')"], {}), "('cuda' if opt['num_gpu'] != 0 else 'cpu')\n", (3023, 3065), False, 'import torch\n'), ((1698, 1713), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1711, 1713), False, 'import torch\n'), ((2641, 2667), 'basicsr.data.build_dataset', 'build_dataset', (['dataset_opt'], {}), '(dataset_opt)\n', (2654, 2667), False, 'from basicsr.data import build_dataloader, build_dataset\n'), ((2690, 2815), 'basicsr.data.build_dataloader', 'build_dataloader', (['test_set', 'dataset_opt'], {'num_gpu': "opt['num_gpu']", 'dist': "opt['dist']", 'sampler': 'None', 'seed': "opt['manual_seed']"}), "(test_set, dataset_opt, num_gpu=opt['num_gpu'], dist=opt[\n 'dist'], sampler=None, seed=opt['manual_seed'])\n", (2706, 2815), False, 'from basicsr.data import build_dataloader, build_dataset\n'), ((4674, 4716), 'os.path.join', 'osp.join', (['__file__', 'osp.pardir', 'osp.pardir'], {}), '(__file__, osp.pardir, osp.pardir)\n', (4682, 4716), True, 'import os.path as osp\n'), ((771, 794), 'math.ceil', 'ceil', (['(h_size / mod_size)'], {}), '(h_size / mod_size)\n', (775, 794), False, 'from math import ceil\n'), ((909, 932), 'math.ceil', 'ceil', (['(w_size / mod_size)'], {}), '(w_size / mod_size)\n', (913, 932), False, 'from math import ceil\n'), ((3659, 3677), 'copy.deepcopy', 'deepcopy', (['load_net'], {}), '(load_net)\n', (3667, 3677), False, 'from copy import deepcopy\n'), ((4035, 4079), 'os.path.join', 'osp.join', (['"""sr_video"""', 'video_name', 'frame_name'], {}), "('sr_video', video_name, frame_name)\n", (4043, 4079), True, 'import os.path as osp\n'), ((4096, 4118), 'os.path.exists', 'osp.exists', (['frame_name'], {}), '(frame_name)\n', (4106, 4118), True, 'import os.path as osp\n'), ((1256, 1271), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1269, 1271), False, 'import torch\n'), ((2412, 2441), 'os.path.basename', 'osp.basename', (['args.video_path'], {}), '(args.video_path)\n', (2424, 2441), True, 'import os.path as osp\n'), ((3380, 3407), 'torch.cuda.current_device', 'torch.cuda.current_device', ([], {}), '()\n', (3405, 3407), False, 'import torch\n'), ((4538, 4583), 'cv2.cvtColor', 'cv2.cvtColor', (['(output * 255)', 'cv2.COLOR_BGR2RGB'], {}), '(output * 255, cv2.COLOR_BGR2RGB)\n', (4550, 4583), False, 'import cv2\n')]
from pydeck_carto import load_carto_credentials def test_load_carto_credentials(requests_mock): requests_mock.post( "https://auth.carto.com/oauth/token", text='{"access_token":"asdf1234"}' ) creds = load_carto_credentials("tests/fixtures/mock_credentials.json") assert creds == { "apiVersion": "v3", "apiBaseUrl": "https://api.carto.com", "accessToken": "asdf1234", }
[ "pydeck_carto.load_carto_credentials" ]
[((221, 283), 'pydeck_carto.load_carto_credentials', 'load_carto_credentials', (['"""tests/fixtures/mock_credentials.json"""'], {}), "('tests/fixtures/mock_credentials.json')\n", (243, 283), False, 'from pydeck_carto import load_carto_credentials\n')]
"""Regular few-shot episode sampler. Author: <NAME> (<EMAIL>) """ from __future__ import (absolute_import, division, print_function, unicode_literals) from fewshot.data.registry import RegisterSampler from fewshot.data.samplers.incremental_sampler import IncrementalSampler @RegisterSampler('fewshot') class FewshotSampler(IncrementalSampler): """Standard few-shot learning sampler.""" def __init__(self, seed): super(FewshotSampler, self).__init__(seed) def sample_episode_classes(self, n, nshot=1, **kwargs): """See EpisodeSampler for documentation.""" return super(FewshotSampler, self).sample_episode_classes( n, nshot_min=nshot, nshot_max=nshot)
[ "fewshot.data.registry.RegisterSampler" ]
[((304, 330), 'fewshot.data.registry.RegisterSampler', 'RegisterSampler', (['"""fewshot"""'], {}), "('fewshot')\n", (319, 330), False, 'from fewshot.data.registry import RegisterSampler\n')]
# -*- coding: utf-8 -*- """Wrapper to run RCSCON from the command line. :copyright: Copyright (c) 2019 RadiaSoft LLC. All Rights Reserved. :license: http://www.apache.org/licenses/LICENSE-2.0.html """ from __future__ import absolute_import, division, print_function from pykern.pkcollections import PKDict from pykern.pkdebug import pkdp, pkdc, pkdlog from sirepo import simulation_db from sirepo.template import sdds_util from sirepo.template import template_common import numpy as np import py.path import sirepo.template.rcscon as template def run(cfg_dir): template_common.exec_parameters() template.extract_report_data( py.path.local(cfg_dir), simulation_db.read_json(template_common.INPUT_BASE_NAME), ) def run_background(cfg_dir): data = simulation_db.read_json(template_common.INPUT_BASE_NAME) if data.report == 'elegantAnimation': return _run_elegant_simulation(cfg_dir) template_common.exec_parameters() def _build_arrays(): sigma = sdds_util.read_sdds_pages( 'run_setup.sigma.sdds', ['s', 's1', 's12', 's2', 's3', 's34', 's4', 's5', 's56', 's6'], ) errors = _error_values() inputs = [] outputs = [] k = 0 for i in range(len(errors)): for j in range(int(len(sigma.s) / len(errors))): initial_index = k - j inputs.append([ errors[i, 1], errors[i, 2], sigma.s[k], sigma.s1[initial_index], sigma.s12[initial_index], sigma.s2[initial_index], sigma.s3[initial_index], sigma.s34[initial_index], sigma.s4[initial_index], sigma.s5[initial_index], sigma.s56[initial_index], sigma.s6[initial_index], ]) outputs.append([ sigma.s1[k], sigma.s12[k], sigma.s2[k], sigma.s3[k], sigma.s34[k], sigma.s4[k], sigma.s5[k], sigma.s56[k], sigma.s6[k], ]) k+=1 return np.asarray(inputs), np.asarray(outputs) def _error_values(): pages = sdds_util.read_sdds_pages( 'error_control.error_log.sdds', ['ElementParameter', 'ParameterValue'], True) res = [] for page in range(len(pages.ElementParameter)): values = PKDict() for idx in range(len(pages.ElementParameter[page])): p = pages.ElementParameter[page][idx] v = pages.ParameterValue[page][idx] if p not in values: values[p] = [] values[p].append(v) res.append( [page, np.mean(np.asarray(values.PHASE)), np.sum(np.asarray(values.VOLT))], ) return np.asarray(res) def _run_elegant_simulation(cfg_dir): import sirepo.pkcli.elegant sirepo.pkcli.elegant.run_elegant() inputs, outputs = _build_arrays() common = [ 's1', 's12', 's2', 's3', 's34', 's4', 's5', 's56', 's6', ] in_cols = ['average phase', 'total volts', 'position'] in_header = ','.join(in_cols + ['initial ' + x for x in common]) out_header = ','.join(common) np.savetxt('inputs.csv', inputs, delimiter=',', comments='', header=in_header) np.savetxt('outputs.csv', outputs, delimiter=',', comments='', header=out_header)
[ "sirepo.template.template_common.exec_parameters", "numpy.asarray", "numpy.savetxt", "sirepo.simulation_db.read_json", "sirepo.template.sdds_util.read_sdds_pages", "pykern.pkcollections.PKDict" ]
[((569, 602), 'sirepo.template.template_common.exec_parameters', 'template_common.exec_parameters', ([], {}), '()\n', (600, 602), False, 'from sirepo.template import template_common\n'), ((783, 839), 'sirepo.simulation_db.read_json', 'simulation_db.read_json', (['template_common.INPUT_BASE_NAME'], {}), '(template_common.INPUT_BASE_NAME)\n', (806, 839), False, 'from sirepo import simulation_db\n'), ((934, 967), 'sirepo.template.template_common.exec_parameters', 'template_common.exec_parameters', ([], {}), '()\n', (965, 967), False, 'from sirepo.template import template_common\n'), ((1003, 1120), 'sirepo.template.sdds_util.read_sdds_pages', 'sdds_util.read_sdds_pages', (['"""run_setup.sigma.sdds"""', "['s', 's1', 's12', 's2', 's3', 's34', 's4', 's5', 's56', 's6']"], {}), "('run_setup.sigma.sdds', ['s', 's1', 's12', 's2',\n 's3', 's34', 's4', 's5', 's56', 's6'])\n", (1028, 1120), False, 'from sirepo.template import sdds_util\n'), ((2026, 2134), 'sirepo.template.sdds_util.read_sdds_pages', 'sdds_util.read_sdds_pages', (['"""error_control.error_log.sdds"""', "['ElementParameter', 'ParameterValue']", '(True)'], {}), "('error_control.error_log.sdds', [\n 'ElementParameter', 'ParameterValue'], True)\n", (2051, 2134), False, 'from sirepo.template import sdds_util\n'), ((2629, 2644), 'numpy.asarray', 'np.asarray', (['res'], {}), '(res)\n', (2639, 2644), True, 'import numpy as np\n'), ((3062, 3140), 'numpy.savetxt', 'np.savetxt', (['"""inputs.csv"""', 'inputs'], {'delimiter': '""","""', 'comments': '""""""', 'header': 'in_header'}), "('inputs.csv', inputs, delimiter=',', comments='', header=in_header)\n", (3072, 3140), True, 'import numpy as np\n'), ((3145, 3231), 'numpy.savetxt', 'np.savetxt', (['"""outputs.csv"""', 'outputs'], {'delimiter': '""","""', 'comments': '""""""', 'header': 'out_header'}), "('outputs.csv', outputs, delimiter=',', comments='', header=\n out_header)\n", (3155, 3231), True, 'import numpy as np\n'), ((677, 733), 'sirepo.simulation_db.read_json', 'simulation_db.read_json', (['template_common.INPUT_BASE_NAME'], {}), '(template_common.INPUT_BASE_NAME)\n', (700, 733), False, 'from sirepo import simulation_db\n'), ((1951, 1969), 'numpy.asarray', 'np.asarray', (['inputs'], {}), '(inputs)\n', (1961, 1969), True, 'import numpy as np\n'), ((1971, 1990), 'numpy.asarray', 'np.asarray', (['outputs'], {}), '(outputs)\n', (1981, 1990), True, 'import numpy as np\n'), ((2237, 2245), 'pykern.pkcollections.PKDict', 'PKDict', ([], {}), '()\n', (2243, 2245), False, 'from pykern.pkcollections import PKDict\n'), ((2547, 2571), 'numpy.asarray', 'np.asarray', (['values.PHASE'], {}), '(values.PHASE)\n', (2557, 2571), True, 'import numpy as np\n'), ((2581, 2604), 'numpy.asarray', 'np.asarray', (['values.VOLT'], {}), '(values.VOLT)\n', (2591, 2604), True, 'import numpy as np\n')]
# Generated by Django 2.2.10 on 2020-02-05 01:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('dcim', '0092_fix_rack_outer_unit'), ] operations = [ migrations.AddField( model_name='device', name='cpus', field=models.PositiveSmallIntegerField(blank=True, null=True), ), migrations.AddField( model_name='device', name='disk', field=models.PositiveIntegerField(blank=True, null=True), ), migrations.AddField( model_name='device', name='memory', field=models.PositiveIntegerField(blank=True, null=True), ), ]
[ "django.db.models.PositiveIntegerField", "django.db.models.PositiveSmallIntegerField" ]
[((331, 386), 'django.db.models.PositiveSmallIntegerField', 'models.PositiveSmallIntegerField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (363, 386), False, 'from django.db import migrations, models\n'), ((504, 554), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (531, 554), False, 'from django.db import migrations, models\n'), ((674, 724), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (701, 724), False, 'from django.db import migrations, models\n')]
from django import forms from django.core.exceptions import ValidationError from django_select2.forms import Select2MultipleWidget from tracker.models import Track, Tracker class TrackerForm(forms.ModelForm): class Meta: model = Tracker fields = ('nom', 'icone', 'color') widgets = { 'nom': forms.TextInput(attrs={'class': 'form-control'}) } class TrackForm(forms.ModelForm): datetime = forms.DateTimeField( required=True, input_formats=['%Y-%m-%dT%H:%M'] ) class Meta: model = Track fields = ('commentaire', 'datetime') widgets = { 'tracker': forms.HiddenInput(), 'commentaire': forms.TextInput(attrs={'placeholder': 'Commentaire facultatif', 'class': 'form-control'}) } labels = {'commentaire': 'Ajouter un nouveau track'} class SelectTrackersForm(forms.Form): trackers = forms.ModelMultipleChoiceField( label='Sélectionner des trackers à comparer', queryset=Tracker.objects.all(), widget=Select2MultipleWidget(attrs={'class': 'form-control'}) ) def __init__(self, user, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['trackers'].queryset = user.profil.trackers.all() def clean_trackers(self): trackers = self.cleaned_data.get('trackers') if len(trackers) < 2: raise ValidationError('Veuillez sélectionner au minimum 2 trackers.') return trackers
[ "django.core.exceptions.ValidationError", "django.forms.DateTimeField", "django.forms.TextInput", "django_select2.forms.Select2MultipleWidget", "django.forms.HiddenInput", "tracker.models.Tracker.objects.all" ]
[((444, 512), 'django.forms.DateTimeField', 'forms.DateTimeField', ([], {'required': '(True)', 'input_formats': "['%Y-%m-%dT%H:%M']"}), "(required=True, input_formats=['%Y-%m-%dT%H:%M'])\n", (463, 512), False, 'from django import forms\n'), ((334, 382), 'django.forms.TextInput', 'forms.TextInput', ([], {'attrs': "{'class': 'form-control'}"}), "(attrs={'class': 'form-control'})\n", (349, 382), False, 'from django import forms\n'), ((662, 681), 'django.forms.HiddenInput', 'forms.HiddenInput', ([], {}), '()\n', (679, 681), False, 'from django import forms\n'), ((710, 803), 'django.forms.TextInput', 'forms.TextInput', ([], {'attrs': "{'placeholder': 'Commentaire facultatif', 'class': 'form-control'}"}), "(attrs={'placeholder': 'Commentaire facultatif', 'class':\n 'form-control'})\n", (725, 803), False, 'from django import forms\n'), ((1029, 1050), 'tracker.models.Tracker.objects.all', 'Tracker.objects.all', ([], {}), '()\n', (1048, 1050), False, 'from tracker.models import Track, Tracker\n'), ((1067, 1121), 'django_select2.forms.Select2MultipleWidget', 'Select2MultipleWidget', ([], {'attrs': "{'class': 'form-control'}"}), "(attrs={'class': 'form-control'})\n", (1088, 1121), False, 'from django_select2.forms import Select2MultipleWidget\n'), ((1420, 1483), 'django.core.exceptions.ValidationError', 'ValidationError', (['"""Veuillez sélectionner au minimum 2 trackers."""'], {}), "('Veuillez sélectionner au minimum 2 trackers.')\n", (1435, 1483), False, 'from django.core.exceptions import ValidationError\n')]
import datetime as dt from datetime import datetime import numpy as np import pandas as pd import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func from sqlalchemy import inspect from dateutil.relativedelta import relativedelta from flask import Flask, jsonify engine = create_engine("sqlite:///Resources/hawaii.sqlite") # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # We can view all of the classes that automap found Base.classes.keys() # Save references to each table Measurement = Base.classes.measurement Station = Base.classes.station # Create our session (link) from Python to the DB session = Session(bind=engine) # Flask Setup app = Flask(__name__) # Flask Routes # @app.route("/") - List all routes that are available. @app.route("/") def home_page(): """List all routes.""" return ( f"All Routes:<br/>" f"/api/v1.0/precipitation<br/>" f"/api/v1.0/stations<br/>" f"/api/v1.0/tobs<br/>" f"/api/v1.0/start<br/>" f"/api/v1.0/start-end<br/>" ) # /api/v1.0/precipitation # Convert the query results to a dictionary using date as the key and prcp as the value. # Return the JSON representation of your dictionary. @app.route("/api/v1.0/precipitation/") def precipitation(): # Create our session (link) from Python to the DB session = Session(engine) """Return a list of all precipitation amounts""" # Retrieve precipitation data precip = (session.query(Measurement.date, Measurement.tobs).order_by(Measurement.date)) session.close() # Convert the query results to a dictionary using date as the key and prcp as the value. prcp_list = [] for result in precip: prcp_dict = {} prcp_dict["date"] = result[0] prcp_dict["prcp"] = result[1] prcp_list.append(prcp_dict) return jsonify(prcp_list) # /api/v1.0/stations Return a JSON list of stations from the dataset. @app.route("/api/v1.0/stations/") def stations(): # Create our session (link) from Python to the DB session = Session(engine) """Return a list of all active stations""" # Query all active stations results_stations = session.query(Station).all() #session.close() list_stations = [] for station in results_stations: station_dict = {} station_dict["id"] = station.id station_dict["station"] = station.station station_dict["name"] = station.name station_dict["latitude"] = station.latitude station_dict["longitude"] = station.longitude station_dict["elevation"] = station.elevation list_stations.append(station_dict) return jsonify(list_stations) # /api/v1.0/tobs # Query the dates and temperature observations of the most active station for the last year of data. # Return a JSON list of temperature observations (TOBS) for the previous year. @app.route("/api/v1.0/tobs") def tobs(): # Create our session (link) from Python to the DB session = Session(engine) """Return a list of all tobs""" # Determine the last date and year ago latest_date = (session.query(Measurement.date).order_by(Measurement.date.desc()).first()) latest = latest_date[0] # Calculate the date 1 year ago from the last data point in the database latest = dt.datetime.strptime(latest, '%Y-%m-%d') latest = latest.date() year_ago = latest - relativedelta(days=365) # Determine active stations and order by most active active_stations = session.query(Measurement.station, func.count(Measurement.station)).group_by(Measurement.station).order_by(func.count(Measurement.station).desc()).all() # Identify most active station most_active = active_stations[0][0] # Query the dates and temperature observations of the most active station for the last year of data. temp_data = session.query(Measurement.date, Measurement.tobs). filter(Measurement.date >= year_ago).filter(Measurement.station==most_active).all() session.close() # Return a list of all tobs all_tobs = [] for tob in temp_data: tobs_dict = {} tobs_dict["date"] = tob.date tobs_dict["tobs"] = tob.tobs all_tobs.append(tobs_dict) return jsonify(all_tobs) # /api/v1.0/<start> # Return a JSON list of the minimum temperature, the average temperature, and the max temperature for a given start or start-end range. # When given the start only, calculate TMIN, TAVG, and TMAX for all dates greater than and equal to the start date. @app.route("/api/v1.0/start") def start(): # Create our session (link) from Python to the DB session = Session(engine) """Start date""" # Design a query to retrieve the last 12 months of precipitation data and plot the results latest_date = (session.query(Measurement.date).order_by(Measurement.date.desc()).first()) latest = latest_date[0] # Calculate the date 1 year ago from the last data point in the database latest = dt.datetime.strptime(latest, '%Y-%m-%d') latest = latest.date() year_ago = latest - relativedelta(days=365) active_stations = session.query(Measurement.station, func.count(Measurement.station)).group_by(Measurement.station).order_by(func.count(Measurement.station).desc()).all() most_active = active_stations[0][0] results = session.query(func.min(Measurement.tobs), func.max(Measurement.tobs), func.avg(Measurement.tobs)).filter(Measurement.station==most_active).filter(Measurement.date >= year_ago).all() session.close() return jsonify(results) # /api/v1.0/<api/v1.0/start-end # Return a JSON list of the minimum temperature, the average temperature, and the max temperature for a given start or start-end range. # When given the start and the end date, calculate the TMIN, TAVG, and TMAX for dates between the start and end date inclusive. @app.route("/api/v1.0/start-end") def start_end(): # Create our session (link) from Python to the DB session = Session(engine) """Start - End date""" # Design a query to retrieve the last 12 months of precipitation data and plot the results latest_date = (session.query(Measurement.date).order_by(Measurement.date.desc()).first()) latest = latest_date[0] # Calculate the date 1 year ago from the last data point in the database latest = dt.datetime.strptime(latest, '%Y-%m-%d') latest = latest.date() year_ago = latest - relativedelta(days=365) active_stations = session.query(Measurement.station, func.count(Measurement.station)).group_by(Measurement.station).order_by(func.count(Measurement.station).desc()).all() most_active = active_stations[0][0] results = session.query(func.min(Measurement.tobs), func.max(Measurement.tobs), func.avg(Measurement.tobs)).filter(Measurement.station==most_active).filter(Measurement.date >= year_ago).filter(Measurement.date <= latest).all() session.close() return jsonify(results) if __name__ == '__main__': app.run(debug=True)
[ "sqlalchemy.func.avg", "flask.Flask", "dateutil.relativedelta.relativedelta", "sqlalchemy.orm.Session", "flask.jsonify", "datetime.datetime.strptime", "sqlalchemy.func.min", "sqlalchemy.func.count", "sqlalchemy.create_engine", "sqlalchemy.ext.automap.automap_base", "sqlalchemy.func.max" ]
[((360, 410), 'sqlalchemy.create_engine', 'create_engine', (['"""sqlite:///Resources/hawaii.sqlite"""'], {}), "('sqlite:///Resources/hawaii.sqlite')\n", (373, 410), False, 'from sqlalchemy import create_engine, func\n'), ((467, 481), 'sqlalchemy.ext.automap.automap_base', 'automap_base', ([], {}), '()\n', (479, 481), False, 'from sqlalchemy.ext.automap import automap_base\n'), ((777, 797), 'sqlalchemy.orm.Session', 'Session', ([], {'bind': 'engine'}), '(bind=engine)\n', (784, 797), False, 'from sqlalchemy.orm import Session\n'), ((819, 834), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (824, 834), False, 'from flask import Flask, jsonify\n'), ((1494, 1509), 'sqlalchemy.orm.Session', 'Session', (['engine'], {}), '(engine)\n', (1501, 1509), False, 'from sqlalchemy.orm import Session\n'), ((2011, 2029), 'flask.jsonify', 'jsonify', (['prcp_list'], {}), '(prcp_list)\n', (2018, 2029), False, 'from flask import Flask, jsonify\n'), ((2223, 2238), 'sqlalchemy.orm.Session', 'Session', (['engine'], {}), '(engine)\n', (2230, 2238), False, 'from sqlalchemy.orm import Session\n'), ((2865, 2887), 'flask.jsonify', 'jsonify', (['list_stations'], {}), '(list_stations)\n', (2872, 2887), False, 'from flask import Flask, jsonify\n'), ((3204, 3219), 'sqlalchemy.orm.Session', 'Session', (['engine'], {}), '(engine)\n', (3211, 3219), False, 'from sqlalchemy.orm import Session\n'), ((3526, 3566), 'datetime.datetime.strptime', 'dt.datetime.strptime', (['latest', '"""%Y-%m-%d"""'], {}), "(latest, '%Y-%m-%d')\n", (3546, 3566), True, 'import datetime as dt\n'), ((4500, 4517), 'flask.jsonify', 'jsonify', (['all_tobs'], {}), '(all_tobs)\n', (4507, 4517), False, 'from flask import Flask, jsonify\n'), ((4911, 4926), 'sqlalchemy.orm.Session', 'Session', (['engine'], {}), '(engine)\n', (4918, 4926), False, 'from sqlalchemy.orm import Session\n'), ((5272, 5312), 'datetime.datetime.strptime', 'dt.datetime.strptime', (['latest', '"""%Y-%m-%d"""'], {}), "(latest, '%Y-%m-%d')\n", (5292, 5312), True, 'import datetime as dt\n'), ((5853, 5869), 'flask.jsonify', 'jsonify', (['results'], {}), '(results)\n', (5860, 5869), False, 'from flask import Flask, jsonify\n'), ((6301, 6316), 'sqlalchemy.orm.Session', 'Session', (['engine'], {}), '(engine)\n', (6308, 6316), False, 'from sqlalchemy.orm import Session\n'), ((6674, 6714), 'datetime.datetime.strptime', 'dt.datetime.strptime', (['latest', '"""%Y-%m-%d"""'], {}), "(latest, '%Y-%m-%d')\n", (6694, 6714), True, 'import datetime as dt\n'), ((7315, 7331), 'flask.jsonify', 'jsonify', (['results'], {}), '(results)\n', (7322, 7331), False, 'from flask import Flask, jsonify\n'), ((3618, 3641), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(365)'}), '(days=365)\n', (3631, 3641), False, 'from dateutil.relativedelta import relativedelta\n'), ((5364, 5387), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(365)'}), '(days=365)\n', (5377, 5387), False, 'from dateutil.relativedelta import relativedelta\n'), ((6766, 6789), 'dateutil.relativedelta.relativedelta', 'relativedelta', ([], {'days': '(365)'}), '(days=365)\n', (6779, 6789), False, 'from dateutil.relativedelta import relativedelta\n'), ((3838, 3869), 'sqlalchemy.func.count', 'func.count', (['Measurement.station'], {}), '(Measurement.station)\n', (3848, 3869), False, 'from sqlalchemy import create_engine, func\n'), ((5522, 5553), 'sqlalchemy.func.count', 'func.count', (['Measurement.station'], {}), '(Measurement.station)\n', (5532, 5553), False, 'from sqlalchemy import create_engine, func\n'), ((6925, 6956), 'sqlalchemy.func.count', 'func.count', (['Measurement.station'], {}), '(Measurement.station)\n', (6935, 6956), False, 'from sqlalchemy import create_engine, func\n'), ((3766, 3797), 'sqlalchemy.func.count', 'func.count', (['Measurement.station'], {}), '(Measurement.station)\n', (3776, 3797), False, 'from sqlalchemy import create_engine, func\n'), ((5450, 5481), 'sqlalchemy.func.count', 'func.count', (['Measurement.station'], {}), '(Measurement.station)\n', (5460, 5481), False, 'from sqlalchemy import create_engine, func\n'), ((5648, 5674), 'sqlalchemy.func.min', 'func.min', (['Measurement.tobs'], {}), '(Measurement.tobs)\n', (5656, 5674), False, 'from sqlalchemy import create_engine, func\n'), ((5676, 5702), 'sqlalchemy.func.max', 'func.max', (['Measurement.tobs'], {}), '(Measurement.tobs)\n', (5684, 5702), False, 'from sqlalchemy import create_engine, func\n'), ((5704, 5730), 'sqlalchemy.func.avg', 'func.avg', (['Measurement.tobs'], {}), '(Measurement.tobs)\n', (5712, 5730), False, 'from sqlalchemy import create_engine, func\n'), ((6853, 6884), 'sqlalchemy.func.count', 'func.count', (['Measurement.station'], {}), '(Measurement.station)\n', (6863, 6884), False, 'from sqlalchemy import create_engine, func\n'), ((7058, 7084), 'sqlalchemy.func.min', 'func.min', (['Measurement.tobs'], {}), '(Measurement.tobs)\n', (7066, 7084), False, 'from sqlalchemy import create_engine, func\n'), ((7086, 7112), 'sqlalchemy.func.max', 'func.max', (['Measurement.tobs'], {}), '(Measurement.tobs)\n', (7094, 7112), False, 'from sqlalchemy import create_engine, func\n'), ((7114, 7140), 'sqlalchemy.func.avg', 'func.avg', (['Measurement.tobs'], {}), '(Measurement.tobs)\n', (7122, 7140), False, 'from sqlalchemy import create_engine, func\n')]
import seaborn as sns import matplotlib.pyplot as plt import matplotlib.patches as mpatches import pandas as pd import os dam_cols_ap2 = ['co2_dam', 'so2_dam_ap2', 'nox_dam_ap2', 'pm25_dam_ap2'] dam_cols_eas = ['co2_dam', 'so2_dam_eas', 'nox_dam_eas', 'pm25_dam_eas'] # Plotting total damage stacked plot def plot_total_damages(dam_type, intervention_effects_df, example_case, title=False): fontsize=18 plt.rcParams['hatch.linewidth'] = 0.5 sns.set(style="whitegrid", color_codes=True) dam_cols = dam_cols_eas if dam_type == 'EASIUR' else dam_cols_ap2 se_col = 'dam_{}-se'.format('eas' if dam_type == 'EASIUR' else 'ap2') df = get_onelabel_formatted(dam_cols, intervention_effects_df, example_case) if example_case == 'building_lighting': df = (df.set_index(['spat', 'kind', 'time'])).reset_index() elif example_case == 'demand_response': df = (df.set_index(['spat', 'kind', 'time'])/1e6).reset_index() # millions of dollars elif example_case == 'summer_load': df = (df.set_index(['spat', 'kind', 'time'])/1e9).reset_index() # billions of dollars df_cum = df.set_index(['spat', 'kind', 'time']).cumsum(axis=1).reset_index() # Stacked bar plot g = sns.FacetGrid(data=df_cum, col='spat', size=3, aspect=1) hatches = ['||', '///', '', '\\\\\\'] hue_orders = dict([('building_lighting', ['Annual', 'Monthly', 'Monthly TOD']), ('demand_response', ['Annual', 'Monthly']), ('summer_load', ['Annual', 'Monthly', 'Monthly TOD', 'Hourly'])]) colors = dict([('building_lighting', [0,2,3]), ('demand_response', [0,2]), ('summer_load', [0,2,3,4])]) g.map(sns.barplot, 'kind', dam_cols[-1], 'time', hue_order=hue_orders[example_case], order=['Marginal', 'Average'], palette=[sns.color_palette('muted')[x] for x in colors[example_case]], edgecolor='black', hatch=hatches[0]) g.map(sns.barplot, 'kind', dam_cols[-2], 'time', hue_order=hue_orders[example_case], order=['Marginal', 'Average'], palette=[sns.color_palette('muted')[x] for x in colors[example_case]], edgecolor='black', hatch=hatches[1]) g.map(sns.barplot, 'kind', dam_cols[-3], 'time', hue_order=hue_orders[example_case], order=['Marginal', 'Average'], palette=[sns.color_palette('muted')[x] for x in colors[example_case]], edgecolor='black', hatch=hatches[2]) g.map(sns.barplot, 'kind', dam_cols[-4], 'time', hue_order=hue_orders[example_case], order=['Marginal', 'Average'], palette=[sns.color_palette('muted')[x] for x in colors[example_case]], edgecolor='black', hatch=hatches[3]).set_titles('{col_name}') g.despine(left='true') # Legend, fontsize, and other formatting xoffset=0.035 for i, ax in enumerate(g.axes.flatten()): ax.set_xlabel('') # No x-label if i == 0: # y label on left plot dollar_units = dict([('building_lighting', ''), ('demand_response', ' millions'), ('summer_load', ' billions')]) ax.set_ylabel('Total damages\n{}(\${})'.format( '' if example_case == 'summer_load' else 'avoided ', dollar_units[example_case])) # pollutants legend leg_dict = dict(zip(dam_cols, ['CO$_2$', 'SO$_2$', 'NO$_x$', 'PM$_{{2.5}}$'])) dam_patches = [] for dam, hatch in zip(dam_cols, hatches[::-1]): patch = mpatches.Patch(facecolor='white', label=leg_dict[dam], edgecolor='black', hatch=hatch) dam_patches.append(patch) offsets = dict([('building_lighting', (0.16, -0.175)), ('demand_response', (0.18, -0.17)), ('summer_load', (0.16, -0.175))]) lgd = ax.legend(handles=dam_patches, loc='center left', bbox_to_anchor=(0.3+xoffset, -0.15), ncol=4, frameon=True, fontsize=fontsize, bbox_transform=plt.gcf().transFigure) plt.text(offsets[example_case][0]+xoffset, offsets[example_case][1], 'Pollutants:', transform=plt.gcf().transFigure, fontsize=fontsize, fontweight='bold') lgd.get_frame().set_edgecolor('white') if i == 1: # temporal scope legend (same length as pollutants legend for alignment) if example_case == 'building_lighting': blank_patch = mpatches.Patch(color='white', label='') ann_patch = mpatches.Patch(color=sns.color_palette('muted')[0], label='Annual', edgecolor='black') month_patch = mpatches.Patch(color=sns.color_palette('muted')[2], label='Monthly', edgecolor='black') tod_patch = mpatches.Patch(color=sns.color_palette('muted')[3], label='Monthly TOD', edgecolor='black') time_patches = [blank_patch, ann_patch, month_patch, tod_patch, blank_patch] lgd2 = ax.legend(handles=time_patches, loc='center left', bbox_to_anchor=(0.19+xoffset, -0.025), ncol=5, frameon=True, fontsize=fontsize, bbox_transform=plt.gcf().transFigure) plt.text(0.09+xoffset, -0.045, 'Temporal scopes:', transform=plt.gcf().transFigure, fontsize=fontsize, fontweight='bold') elif example_case == 'demand_response': blank_patch = mpatches.Patch(color='white', label='') ann_patch = mpatches.Patch(color=sns.color_palette('muted')[0], label='Annual', edgecolor='black') tod_patch = mpatches.Patch(color=sns.color_palette('muted')[2], label='Monthly', edgecolor='black') time_patches = [blank_patch, ann_patch, tod_patch, blank_patch] lgd2 = ax.legend(handles=time_patches, loc='center left', bbox_to_anchor=(0.3+xoffset, -0.0115), ncol=4, frameon=True, fontsize=fontsize, bbox_transform=plt.gcf().transFigure) plt.text(0.11+xoffset, -0.0425, 'Temporal scopes:', transform=plt.gcf().transFigure, fontsize=fontsize, fontweight='bold') elif example_case == 'summer_load': blank_patch = mpatches.Patch(color='white', label='') ann_patch = mpatches.Patch(color=sns.color_palette('muted')[0], label='Annual', edgecolor='black') month_patch = mpatches.Patch(color=sns.color_palette('muted')[2], label='Monthly', edgecolor='black') tod_patch = mpatches.Patch(color=sns.color_palette('muted')[3], label='Monthly TOD', edgecolor='black') hr_patch = mpatches.Patch(color=sns.color_palette('muted')[4], label='Hourly', edgecolor='black') time_patches = [ann_patch, month_patch, tod_patch, hr_patch] lgd2 = ax.legend(handles=time_patches, loc='center left', bbox_to_anchor=(0.27+xoffset, -0.025), ncol=4, frameon=True, fontsize=fontsize-1, bbox_transform=plt.gcf().transFigure) plt.text(0.09+xoffset, -0.045, 'Temporal scopes:', transform=plt.gcf().transFigure, fontsize=fontsize, fontweight='bold') lgd2.get_frame().set_edgecolor('white') # Annotate baseline # For building lighting: PJM fossil-plus marginal monthly TOD # For demand response: PJM fossil-plus marginal monthly # For summer load: PJM fossil-plus average monthly TOD baseline_locs = dict([('building_lighting', (2, 0.27)), ('demand_response', (2, 0.2)), ('summer_load', (2, 1.3))]) if i == baseline_locs[example_case][0]: baseline_x = baseline_locs[example_case][1] patch_width = [p.get_width() for p in ax.patches][0] baseline_y = max([p.get_height() \ for p in ax.patches if abs(p.get_xy()[0]+patch_width/2-baseline_x)<=patch_width/4]) ax.text(s='*', x=baseline_x, y=1.05 * baseline_y, horizontalalignment='center', verticalalignment='center', fontsize=fontsize*2, fontweight='bold') # Set font size for item in ([ # ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(fontsize) ax.title.set_fontsize(fontsize-2) # Hacky errorbars df_tot = get_onelabel_formatted(se_col[:-3], intervention_effects_df, example_case) df_tot_se = get_onelabel_formatted(se_col, intervention_effects_df, example_case) errbar_locs = dict([('building_lighting', [-0.27, 0, 0.27]), ('demand_response', [-0.2, 0.2]), ('summer_load', [-0.3,-0.1, 0.1])]) for i, ax in enumerate(g.axes[0]): spat = df_tot['spat'].dtype.categories[i] df_tot_slice = df_tot.query('spat == @spat').query('kind == "Marginal"') df_tot_se_slice = df_tot_se.query('spat == @spat').query('kind == "Marginal"') if example_case == 'building_lighting': val, errval = df_tot_slice[se_col[:-3]].values, df_tot_se_slice[se_col].values elif example_case == 'demand_response': val, errval = df_tot_slice[se_col[:-3]].values/1e6, df_tot_se_slice[se_col].values/1e6 elif example_case == 'summer_load': val, errval = df_tot_slice[se_col[:-3]].values/1e9, df_tot_se_slice[se_col].values/1e9 ax.errorbar(errbar_locs[example_case], val, yerr=errval, ms=20, color='black', linewidth=0, elinewidth=2, capsize=2, capthick=2) # Line around legend fig = plt.gcf() if example_case == 'building_lighting': leg_line = \ mpatches.Rectangle( (0.073+xoffset, -0.2), 0.8, 0.24, facecolor='none', edgecolor='lightgray', transform=fig.transFigure, figure=fig) elif example_case == 'demand_response': leg_line = \ mpatches.Rectangle( (0.1+xoffset, -0.195), 0.77, 0.24, facecolor='none', edgecolor='lightgray', transform=fig.transFigure, figure=fig) elif example_case == 'summer_load': leg_line = \ mpatches.Rectangle( (0.073+xoffset, -0.2), 0.875, 0.24, facecolor='none', edgecolor='lightgray', transform=fig.transFigure, figure=fig) fig.patches.extend([leg_line]) extra_artists = (lgd, lgd2) if title: sup=fig.text(0.5, 0.9, 'Total damages ({})\n'.format(dam_type), fontsize=fontsize, fontweight='bold', fontstyle='italic', transform=fig.transFigure, ha='center') extra_artists = extra_artists + (sup,) plt.tight_layout() dirname = os.path.join('plots', example_case) if not os.path.exists(dirname): os.makedirs(dirname) g.fig.savefig(os.path.join(dirname, '{}-stacked-with-error{}.pdf'.format(dam_type, '-titled' if title else '')), bbox_extra_artists=extra_artists, bbox_inches='tight') # Plotting one graph per damage factor def get_stacked_plot(label, intervention_effects_df, example_case): df = get_onelabel_formatted(label, intervention_effects_df, example_case) df_se = get_onelabel_formatted('{}-se'.format(label), intervention_effects_df, example_case) # Get bar plot sns.set(style="whitegrid") colors = dict([('building_lighting', [0,2,3]), ('demand_response', [0,2]), ('summer_load', [0,2,3,4])]) g = sns.catplot(x='kind', y=label, hue='time', col='spat', data=df, kind='bar', palette=[sns.color_palette('muted')[x] for x in colors[example_case]], legend=False, ci=None, height=3, aspect=1).set_titles('{col_name}') g.despine(left=True); # Adjust font size and add legend fontsize=18 for i, ax in enumerate(g.axes.flatten()): ax.set_xlabel('') for item in ([#ax.title, ax.xaxis.label, ax.yaxis.label] + ax.get_xticklabels() + ax.get_yticklabels()): item.set_fontsize(fontsize) ax.title.set_fontsize(fontsize-2) if i == 0: ncols = dict([('building_lighting', 3), ('demand_response', 2), ('summer_load', 4)]) lgd = ax.legend(loc='center left', bbox_to_anchor=(0.75, -0.3), ncol=ncols[example_case], frameon=True, fontsize=fontsize) ax.set_ylabel(format_axis(label, example_case)) # Annotate baseline # For building lighting: PJM fossil-plus marginal monthly TOD # For demand response: PJM fossil-plus marginal monthly # For summer load: PJM fossil-plus average monthly TOD baseline_locs = dict([('building_lighting', (2, 0.27)), ('demand_response', (2, 0.2)), ('summer_load', (2, 1.3))]) if i == baseline_locs[example_case][0]: baseline_x = baseline_locs[example_case][1] patch_width = [p.get_width() for p in ax.patches][0] baseline_y = max([p.get_height() \ for p in ax.patches if abs(p.get_xy()[0]+patch_width/2-baseline_x)<=patch_width/4]) ax.text(s='*', x=baseline_x, y=1.05 * baseline_y, horizontalalignment='center', verticalalignment='center', fontsize=fontsize*2, fontweight='bold') # Hacky errorbars errbar_locs = dict([('building_lighting', [-0.27, 0, 0.27]), ('demand_response', [-0.2, 0.2]), ('summer_load', [-0.3,-0.1, 0.1])]) for i, ax in enumerate(g.axes[0]): spat = df['spat'].dtype.categories[i] df_slice = df.query('spat == @spat').query('kind == "Marginal"') df_se_slice = df_se.query('spat == @spat').query('kind == "Marginal"') ax.errorbar(errbar_locs[example_case], df_slice[label].values, yerr=df_se_slice['{}-se'.format(label)].values, ms=20, color='black', linewidth=0, elinewidth=2, capsize=2, capthick=2) # Plot title fig = plt.gcf() # sup=fig.text(0.5, 1, format_title(label), # fontsize=fontsize, fontweight='bold', fontstyle='italic', # transform=fig.transFigure, ha='center') plt.tight_layout() dirname = os.path.join('plots', example_case) if not os.path.exists(dirname): os.makedirs(dirname) g.fig.savefig(os.path.join(dirname, 'si-{}.pdf'.format(label)), bbox_extra_artists=(lgd,), #(lgd,sup), bbox_inches='tight') ## Formatting helpers def get_dam_name(dam_abbr): return 'AP2' if dam_abbr == 'ap2' else 'EASIUR' FULL_DAMS = ['dam_ap2', 'dam_eas'] def format_title(label): l = label.split('_') if label in FULL_DAMS: t = 'Total damages ({})'.format('AP2' if l[1] == 'ap2' else 'EASIUR') else: t = '{0}$_{{{1}}}$ {2}'.format(l[0][:2].upper(), l[0][2:], 'emissions' if l[1] == 'kg' else 'damages') if len(l) > 2: t += ' ({})'.format('AP2' if l[2] == 'ap2' else 'EASIUR') return t def format_axis(label, example_case): l = label.split('_') if example_case == 'summer_load': if label in FULL_DAMS: t = 'Total damages ($)' elif len(l) > 2 or l[1] == 'dam': t = 'Damages ($)' else: t = 'Emissions (kg)' else: if label in FULL_DAMS: t = 'Total damages\navoided ($)' elif len(l) > 2 or l[1] == 'dam': t = 'Damages\navoided ($)' else: t = 'Emissions\navoided (kg)' return t # Get formatted df with intervention effects for given label def get_onelabel_formatted(label, intervention_effects_df, example_case): kind_map = dict([('MEF', 'Marginal'), ('AEF', 'Average')]) time_map = dict([('YearOnly', 'Annual'), ('MonthTOD', 'Monthly TOD'), ('Month', 'Monthly'), ('Hour', 'Hourly')]) df = intervention_effects_df[label].reset_index() df['spat'] = df.apply( lambda x: '{} ({}-{}{})'.format( x['region'], x['fuel_type'][:-4].lower(), x['fuel_type'][-4:].lower(), ' 2016' if x['year'] == 2016 else ''), axis=1) df['spat'] = df['spat'].str.replace('fossil-plus', 'fossil+non-emit') df = df.drop(['region', 'fuel_type', 'year'], axis=1) df['kind'] = df['kind'].map(lambda x: kind_map[x]).astype( pd.CategoricalDtype(categories=['Marginal', 'Average'], ordered=True)) times = dict([('building_lighting', ['Annual', 'Monthly', 'Monthly TOD']), ('demand_response', ['Annual', 'Monthly']), ('summer_load', ['Annual', 'Monthly', 'Monthly TOD', 'Hourly'])]) df['time'] = df['time'].map(lambda x: time_map[x]).astype( pd.CategoricalDtype(categories=times[example_case], ordered=True)) df['spat'] = df['spat'].astype(pd.CategoricalDtype( categories=['PJM (fossil-only)', 'PJM (fossil+non-emit 2016)', 'PJM (fossil+non-emit)', 'RFC (fossil-only)'], ordered=True)) df = df.sort_values(['spat', 'kind', 'time']) return df
[ "matplotlib.pyplot.tight_layout", "seaborn.set", "os.makedirs", "matplotlib.patches.Rectangle", "os.path.exists", "pandas.CategoricalDtype", "seaborn.color_palette", "matplotlib.patches.Patch", "matplotlib.pyplot.gcf", "os.path.join", "seaborn.FacetGrid" ]
[((465, 509), 'seaborn.set', 'sns.set', ([], {'style': '"""whitegrid"""', 'color_codes': '(True)'}), "(style='whitegrid', color_codes=True)\n", (472, 509), True, 'import seaborn as sns\n'), ((1239, 1295), 'seaborn.FacetGrid', 'sns.FacetGrid', ([], {'data': 'df_cum', 'col': '"""spat"""', 'size': '(3)', 'aspect': '(1)'}), "(data=df_cum, col='spat', size=3, aspect=1)\n", (1252, 1295), True, 'import seaborn as sns\n'), ((9693, 9702), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (9700, 9702), True, 'import matplotlib.pyplot as plt\n'), ((10788, 10806), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (10804, 10806), True, 'import matplotlib.pyplot as plt\n'), ((10821, 10856), 'os.path.join', 'os.path.join', (['"""plots"""', 'example_case'], {}), "('plots', example_case)\n", (10833, 10856), False, 'import os\n'), ((11447, 11473), 'seaborn.set', 'sns.set', ([], {'style': '"""whitegrid"""'}), "(style='whitegrid')\n", (11454, 11473), True, 'import seaborn as sns\n'), ((14129, 14138), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (14136, 14138), True, 'import matplotlib.pyplot as plt\n'), ((14324, 14342), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (14340, 14342), True, 'import matplotlib.pyplot as plt\n'), ((14362, 14397), 'os.path.join', 'os.path.join', (['"""plots"""', 'example_case'], {}), "('plots', example_case)\n", (14374, 14397), False, 'import os\n'), ((9780, 9918), 'matplotlib.patches.Rectangle', 'mpatches.Rectangle', (['(0.073 + xoffset, -0.2)', '(0.8)', '(0.24)'], {'facecolor': '"""none"""', 'edgecolor': '"""lightgray"""', 'transform': 'fig.transFigure', 'figure': 'fig'}), "((0.073 + xoffset, -0.2), 0.8, 0.24, facecolor='none',\n edgecolor='lightgray', transform=fig.transFigure, figure=fig)\n", (9798, 9918), True, 'import matplotlib.patches as mpatches\n'), ((10868, 10891), 'os.path.exists', 'os.path.exists', (['dirname'], {}), '(dirname)\n', (10882, 10891), False, 'import os\n'), ((10893, 10913), 'os.makedirs', 'os.makedirs', (['dirname'], {}), '(dirname)\n', (10904, 10913), False, 'import os\n'), ((14409, 14432), 'os.path.exists', 'os.path.exists', (['dirname'], {}), '(dirname)\n', (14423, 14432), False, 'import os\n'), ((14434, 14454), 'os.makedirs', 'os.makedirs', (['dirname'], {}), '(dirname)\n', (14445, 14454), False, 'import os\n'), ((16451, 16520), 'pandas.CategoricalDtype', 'pd.CategoricalDtype', ([], {'categories': "['Marginal', 'Average']", 'ordered': '(True)'}), "(categories=['Marginal', 'Average'], ordered=True)\n", (16470, 16520), True, 'import pandas as pd\n'), ((16799, 16864), 'pandas.CategoricalDtype', 'pd.CategoricalDtype', ([], {'categories': 'times[example_case]', 'ordered': '(True)'}), '(categories=times[example_case], ordered=True)\n', (16818, 16864), True, 'import pandas as pd\n'), ((16902, 17053), 'pandas.CategoricalDtype', 'pd.CategoricalDtype', ([], {'categories': "['PJM (fossil-only)', 'PJM (fossil+non-emit 2016)', 'PJM (fossil+non-emit)',\n 'RFC (fossil-only)']", 'ordered': '(True)'}), "(categories=['PJM (fossil-only)',\n 'PJM (fossil+non-emit 2016)', 'PJM (fossil+non-emit)',\n 'RFC (fossil-only)'], ordered=True)\n", (16921, 17053), True, 'import pandas as pd\n'), ((10024, 10163), 'matplotlib.patches.Rectangle', 'mpatches.Rectangle', (['(0.1 + xoffset, -0.195)', '(0.77)', '(0.24)'], {'facecolor': '"""none"""', 'edgecolor': '"""lightgray"""', 'transform': 'fig.transFigure', 'figure': 'fig'}), "((0.1 + xoffset, -0.195), 0.77, 0.24, facecolor='none',\n edgecolor='lightgray', transform=fig.transFigure, figure=fig)\n", (10042, 10163), True, 'import matplotlib.patches as mpatches\n'), ((3451, 3541), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'facecolor': '"""white"""', 'label': 'leg_dict[dam]', 'edgecolor': '"""black"""', 'hatch': 'hatch'}), "(facecolor='white', label=leg_dict[dam], edgecolor='black',\n hatch=hatch)\n", (3465, 3541), True, 'import matplotlib.patches as mpatches\n'), ((4387, 4426), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'color': '"""white"""', 'label': '""""""'}), "(color='white', label='')\n", (4401, 4426), True, 'import matplotlib.patches as mpatches\n'), ((10265, 10405), 'matplotlib.patches.Rectangle', 'mpatches.Rectangle', (['(0.073 + xoffset, -0.2)', '(0.875)', '(0.24)'], {'facecolor': '"""none"""', 'edgecolor': '"""lightgray"""', 'transform': 'fig.transFigure', 'figure': 'fig'}), "((0.073 + xoffset, -0.2), 0.875, 0.24, facecolor='none',\n edgecolor='lightgray', transform=fig.transFigure, figure=fig)\n", (10283, 10405), True, 'import matplotlib.patches as mpatches\n'), ((1809, 1835), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {}), "('muted')\n", (1826, 1835), True, 'import seaborn as sns\n'), ((2060, 2086), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {}), "('muted')\n", (2077, 2086), True, 'import seaborn as sns\n'), ((2309, 2335), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {}), "('muted')\n", (2326, 2335), True, 'import seaborn as sns\n'), ((5376, 5415), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'color': '"""white"""', 'label': '""""""'}), "(color='white', label='')\n", (5390, 5415), True, 'import matplotlib.patches as mpatches\n'), ((3936, 3945), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (3943, 3945), True, 'import matplotlib.pyplot as plt\n'), ((4065, 4074), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (4072, 4074), True, 'import matplotlib.pyplot as plt\n'), ((6227, 6266), 'matplotlib.patches.Patch', 'mpatches.Patch', ([], {'color': '"""white"""', 'label': '""""""'}), "(color='white', label='')\n", (6241, 6266), True, 'import matplotlib.patches as mpatches\n'), ((2558, 2584), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {}), "('muted')\n", (2575, 2584), True, 'import seaborn as sns\n'), ((4476, 4502), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {}), "('muted')\n", (4493, 4502), True, 'import seaborn as sns\n'), ((4593, 4619), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {}), "('muted')\n", (4610, 4619), True, 'import seaborn as sns\n'), ((4709, 4735), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {}), "('muted')\n", (4726, 4735), True, 'import seaborn as sns\n'), ((5107, 5116), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (5114, 5116), True, 'import matplotlib.pyplot as plt\n'), ((5207, 5216), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (5214, 5216), True, 'import matplotlib.pyplot as plt\n'), ((11698, 11724), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {}), "('muted')\n", (11715, 11724), True, 'import seaborn as sns\n'), ((5465, 5491), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {}), "('muted')\n", (5482, 5491), True, 'import seaborn as sns\n'), ((5580, 5606), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {}), "('muted')\n", (5597, 5606), True, 'import seaborn as sns\n'), ((5961, 5970), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (5968, 5970), True, 'import matplotlib.pyplot as plt\n'), ((6062, 6071), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (6069, 6071), True, 'import matplotlib.pyplot as plt\n'), ((6316, 6342), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {}), "('muted')\n", (6333, 6342), True, 'import seaborn as sns\n'), ((6433, 6459), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {}), "('muted')\n", (6450, 6459), True, 'import seaborn as sns\n'), ((6549, 6575), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {}), "('muted')\n", (6566, 6575), True, 'import seaborn as sns\n'), ((6668, 6694), 'seaborn.color_palette', 'sns.color_palette', (['"""muted"""'], {}), "('muted')\n", (6685, 6694), True, 'import seaborn as sns\n'), ((7047, 7056), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (7054, 7056), True, 'import matplotlib.pyplot as plt\n'), ((7147, 7156), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (7154, 7156), True, 'import matplotlib.pyplot as plt\n')]
# Main.py - Pixels Fighting # # Author: <NAME> # # ---------------------# # Imports # import pygame from pygame.locals import * from helpers import * import random import numpy as np import time # ---------------------# # Initialize number of rows/columns INT = 100 INT_SQ = INT*INT # Initialize size of arrays SIZE = 5 # Initialize Pygame pygame.init() # Initialize screen, status and clock screen = pygame.display.set_mode((80+INT*SIZE,160+INT*SIZE)) running = True clock = pygame.time.Clock() # Defining Colors COLOR_ALIVE = (random.randint(1,256),random.randint(0,256),random.randint(0,256)) COLOR_DEAD = (random.randint(1,256),random.randint(0,256),random.randint(0,256)) # Initialize Status Array - Making an array with half dead and half alive zero = np.zeros((INT,INT//2), dtype=int) one = np.ones((INT,INT//2), dtype=int) current_status_array = np.concatenate((zero,one), axis=1) # ---------------------# # For Title Text to be displayed # Defining font style and size font = pygame.font.Font('freesansbold.ttf', 32) text_title = font.render('Pixels Fighting', True, (255,255,255), (0,0,0)) textRectTitle = text_title.get_rect() textRectTitle.center = (40+INT*SIZE/2, 40) # ---------------------# # Defining Box Class class Box(): # Status can be dead (0) or alive(1); def __init__(self, x, y, alive): self.x = x self.y = y self.alive = alive self.surf = pygame.Surface((SIZE,SIZE)) self.rect = (40 + SIZE*self.y, 100 + SIZE*self.x) # Function to fill surface with color def assign_color(self): if self.alive == 0: self.surf.fill(COLOR_DEAD) else: self.surf.fill(COLOR_ALIVE) screen.blit(self.surf,self.rect) # Function to update surface; as per current_status_array def update(self): self.alive = current_status_array[self.x][self.y] self.assign_color() # ---------------------# # Creating 'INT_SQ' instances of box class, and appending them to a list for accessibility boxes = [] for i in range(INT_SQ): # x,y will be filled sequentially x = i//INT y = i%INT # Alive status depening on current array boxes.append(Box(x,y,current_status_array[x][y])) # ---------------------# # For Ratio Text to be displayed and updated continuously # Defining font style and size font = pygame.font.Font('freesansbold.ttf', 25) def UpdateRatioText(): # For the alive ones text_alive = font.render('Alive: {:.4f}'.format(IsAliveWinning(current_status_array, INT_SQ)), True, COLOR_ALIVE, (0,0,0)) textRectAlive = text_alive.get_rect() textRectAlive.x = 80 + INT*SIZE - 210 textRectAlive.y = 115 + INT*SIZE # For the dead ones text_dead = font.render('Dead: {:.4f}'.format(1-IsAliveWinning(current_status_array, INT_SQ)), True, COLOR_DEAD, (0,0,0)) textRectDead = text_dead.get_rect() textRectDead.x = 60 textRectDead.y = 115 + INT*SIZE # Updating the font on the rect screen.blit(text_alive, textRectAlive) screen.blit(text_dead, textRectDead) # ---------------------# # Main python loop while running: # Main python quit function for event in pygame.event.get(): if event.type == pygame.QUIT: running = False # For updating array and boxes status current_status_array = UpdateArray(current_status_array, INT) for box in boxes: box.update() # Update Ratio text UpdateRatioText() # Display Title screen.blit(text_title, textRectTitle) # Refresh screen pygame.display.update() # A more optimal version of the clock.tick() function, determines fps of display basically time.sleep(0.1) # ---------------------#
[ "random.randint", "pygame.Surface", "pygame.event.get", "pygame.display.set_mode", "numpy.zeros", "numpy.ones", "pygame.init", "time.sleep", "pygame.display.update", "pygame.font.Font", "pygame.time.Clock", "numpy.concatenate" ]
[((346, 359), 'pygame.init', 'pygame.init', ([], {}), '()\n', (357, 359), False, 'import pygame\n'), ((408, 468), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(80 + INT * SIZE, 160 + INT * SIZE)'], {}), '((80 + INT * SIZE, 160 + INT * SIZE))\n', (431, 468), False, 'import pygame\n'), ((483, 502), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (500, 502), False, 'import pygame\n'), ((768, 804), 'numpy.zeros', 'np.zeros', (['(INT, INT // 2)'], {'dtype': 'int'}), '((INT, INT // 2), dtype=int)\n', (776, 804), True, 'import numpy as np\n'), ((808, 843), 'numpy.ones', 'np.ones', (['(INT, INT // 2)'], {'dtype': 'int'}), '((INT, INT // 2), dtype=int)\n', (815, 843), True, 'import numpy as np\n'), ((864, 899), 'numpy.concatenate', 'np.concatenate', (['(zero, one)'], {'axis': '(1)'}), '((zero, one), axis=1)\n', (878, 899), True, 'import numpy as np\n'), ((998, 1038), 'pygame.font.Font', 'pygame.font.Font', (['"""freesansbold.ttf"""', '(32)'], {}), "('freesansbold.ttf', 32)\n", (1014, 1038), False, 'import pygame\n'), ((2375, 2415), 'pygame.font.Font', 'pygame.font.Font', (['"""freesansbold.ttf"""', '(25)'], {}), "('freesansbold.ttf', 25)\n", (2391, 2415), False, 'import pygame\n'), ((538, 560), 'random.randint', 'random.randint', (['(1)', '(256)'], {}), '(1, 256)\n', (552, 560), False, 'import random\n'), ((560, 582), 'random.randint', 'random.randint', (['(0)', '(256)'], {}), '(0, 256)\n', (574, 582), False, 'import random\n'), ((582, 604), 'random.randint', 'random.randint', (['(0)', '(256)'], {}), '(0, 256)\n', (596, 604), False, 'import random\n'), ((619, 641), 'random.randint', 'random.randint', (['(1)', '(256)'], {}), '(1, 256)\n', (633, 641), False, 'import random\n'), ((641, 663), 'random.randint', 'random.randint', (['(0)', '(256)'], {}), '(0, 256)\n', (655, 663), False, 'import random\n'), ((663, 685), 'random.randint', 'random.randint', (['(0)', '(256)'], {}), '(0, 256)\n', (677, 685), False, 'import random\n'), ((3204, 3222), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (3220, 3222), False, 'import pygame\n'), ((3579, 3602), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (3600, 3602), False, 'import pygame\n'), ((3703, 3718), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (3713, 3718), False, 'import time\n'), ((1427, 1455), 'pygame.Surface', 'pygame.Surface', (['(SIZE, SIZE)'], {}), '((SIZE, SIZE))\n', (1441, 1455), False, 'import pygame\n')]
#!/usr/bin/env python3 # Copyright (c) 2019-2021, Dr.-Ing. <NAME> # All rights reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import sys import sympy as sp # coronary model with a 3-element Windkessel (ZCR, proximal part) in series with a 2-element Windkessel (CR, distal part) # according to Vieira et al. (2018) "Patient-specific modeling of right coronary circulation vulnerability post-liver transplant in Alagille’s syndrome", PLoS ONE 13(11), e0205829 # here their R_e is Z_corp_sys, C_e is C_corp_sys, R_p is R_corp_sys, C_i is C_cord_sys, and R_d is R_cord_sys # the distal compliance is fed by the left ventricular pressure in order to have a phase-dependent tone of the coronary # (coronaries almost entirely fill in diastole, not during systole) #\begin{align} #&C_{\mathrm{cor,p}}^{\mathrm{sys}} \left(\frac{\mathrm{d}p_{\mathrm{ar}}^{\mathrm{sys}}}{\mathrm{d}t}-Z_{\mathrm{cor,p}}^{\mathrm{sys}}\frac{\mathrm{d}q_{\mathrm{cor,p,in}}^{\mathrm{sys}}}{\mathrm{d}t}\right) = q_{\mathrm{cor,p,in}}^{\mathrm{sys}} - q_{\mathrm{cor,p}}^{\mathrm{sys}}\\ #&R_{\mathrm{cor,p}}^{\mathrm{sys}}\,q_{\mathrm{cor,p}}^{\mathrm{sys}}=p_{\mathrm{ar}}^{\mathrm{sys}}-p_{\mathrm{cor,d}}^{\mathrm{sys}} - Z_{\mathrm{cor,p}}^{\mathrm{sys}}\,q_{\mathrm{cor,p,in}}^{\mathrm{sys}}\\ #&C_{\mathrm{cor,d}}^{\mathrm{sys}} \frac{\mathrm{d}(p_{\mathrm{cor,d}}^{\mathrm{sys}}-p_{\mathrm{v}}^{\ell})}{\mathrm{d}t} = q_{\mathrm{cor,p}}^{\mathrm{sys}} - q_{\mathrm{cor,d}}^{\mathrm{sys}}\\ #&R_{\mathrm{cor,d}}^{\mathrm{sys}}\,q_{\mathrm{cor,d}}^{\mathrm{sys}}=p_{\mathrm{cor,d}}^{\mathrm{sys}}-p_{\mathrm{at}}^{r} #\end{align} class coronary_circ_ZCRp_CRd(): def __init__(self, params, varmap, auxmap, vs): self.Z_corp_sys = params['Z_corp_sys'] self.C_corp_sys = params['C_corp_sys'] self.R_corp_sys = params['R_corp_sys'] self.C_cord_sys = params['C_cord_sys'] self.R_cord_sys = params['R_cord_sys'] try: self.V_corp_sys_u = params['V_corp_sys_u'] except: self.V_corp_sys_u = 0 try: self.V_cord_sys_u = params['V_cord_sys_u'] except: self.V_cord_sys_u = 0 self.ndcor = 4 self.varmap = varmap self.auxmap = auxmap self.vs = vs def equation_map(self, vindex, aindex, x_, a_, df_, f_, p_ar_, p_v_, p_at_): self.varmap['q_corp_sys_in'] = vindex self.varmap['q_corp_sys'] = vindex+1 self.varmap['p_cord_sys'] = vindex+2 self.varmap['q_ven'+str(self.vs+1)+'_sys'] = vindex+3 q_corp_sys_in_ = sp.Symbol('q_corp_sys_in_') q_corp_sys_ = sp.Symbol('q_corp_sys_') p_cord_sys_ = sp.Symbol('p_cord_sys_') q_cord_sys_ = sp.Symbol('q_ven'+str(self.vs+1)+'_sys_') x_[self.varmap['q_corp_sys_in']] = q_corp_sys_in_ x_[self.varmap['q_corp_sys']] = q_corp_sys_ x_[self.varmap['p_cord_sys']] = p_cord_sys_ x_[self.varmap['q_ven'+str(self.vs+1)+'_sys']] = q_cord_sys_ # populate df_ and f_ arrays df_[vindex] = self.C_corp_sys * (p_ar_[0] - self.Z_corp_sys * q_corp_sys_in_) # coronary proximal volume rate df_[vindex+1] = 0. df_[vindex+2] = self.C_cord_sys * (p_cord_sys_ - p_v_) # coronary distal volume rate df_[vindex+3] = 0. f_[vindex] = q_corp_sys_ - q_corp_sys_in_ # coronary proximal flow balance f_[vindex+1] = (p_cord_sys_ - p_ar_[0] + self.Z_corp_sys * q_corp_sys_in_)/self.R_corp_sys + q_corp_sys_ # coronary proximal momentum f_[vindex+2] = q_cord_sys_ - q_corp_sys_ # coronary distal flow balance f_[vindex+3] = (p_at_ - p_cord_sys_)/self.R_cord_sys + q_cord_sys_ # coronary distal momentum # auxiliary map and variables self.auxmap['V_corp_sys'] = aindex self.auxmap['V_cord_sys'] = aindex+1 a_[self.auxmap['V_corp_sys']] = self.C_corp_sys * (p_ar_[0] - self.Z_corp_sys * q_corp_sys_in_) + self.V_corp_sys_u a_[self.auxmap['V_cord_sys']] = self.C_cord_sys * (p_cord_sys_ - p_v_) + self.V_cord_sys_u # safety check that we don't hand in a zero symbol for p_v if p_v_ is sp.S.Zero: raise ValueError("Zero symbol for left ventricular pressure!") return [q_corp_sys_in_], q_cord_sys_ def initialize(self, var, iniparam): try: var[self.varmap['q_corp_sys_in']] = iniparam['q_corp_sys_in_0'] except: var[self.varmap['q_corp_sys_in']] = iniparam['q_corp_sys_0'] var[self.varmap['q_corp_sys']] = iniparam['q_corp_sys_0'] var[self.varmap['p_cord_sys']] = iniparam['p_cord_sys_0'] try: var[self.varmap['q_ven'+str(self.vs+1)+'_sys']] = iniparam['q_ven'+str(self.vs+1)+'_sys_0'] except: var[self.varmap['q_ven'+str(self.vs+1)+'_sys']] = iniparam['q_ven_sys_0'] def print_to_screen(self, var_sq, aux): print("Output of 0D coronary model (ZCRp_CRd):") print('{:<10s}{:<3s}{:<7.3f}'.format('p_cord_sys',' = ',var_sq[self.varmap['p_cord_sys']])) sys.stdout.flush() # equivalent model to ZCRp_CRd, but individually for left and right coronary arteries #\begin{align} #&C_{\mathrm{cor,p}}^{\mathrm{sys},\ell} \left(\frac{\mathrm{d}p_{\mathrm{ar}}^{\mathrm{sys},\ell}}{\mathrm{d}t}-Z_{\mathrm{cor,p}}^{\mathrm{sys},\ell}\frac{\mathrm{d}q_{\mathrm{cor,p,in}}^{\mathrm{sys},\ell}}{\mathrm{d}t}\right) = q_{\mathrm{cor,p,in}}^{\mathrm{sys},\ell} - q_{\mathrm{cor,p}}^{\mathrm{sys},\ell}\\ #&R_{\mathrm{cor,p}}^{\mathrm{sys},\ell}\,q_{\mathrm{cor,p}}^{\mathrm{sys},\ell}=p_{\mathrm{ar}}^{\mathrm{sys}}-p_{\mathrm{cor,d}}^{\mathrm{sys},\ell} - Z_{\mathrm{cor,p}}^{\mathrm{sys},\ell}\,q_{\mathrm{cor,p,in}}^{\mathrm{sys},\ell}\\ #&C_{\mathrm{cor,d}}^{\mathrm{sys},\ell} \frac{\mathrm{d}(p_{\mathrm{cor,d}}^{\mathrm{sys},\ell}-p_{\mathrm{v}}^{\ell})}{\mathrm{d}t} = q_{\mathrm{cor,p}}^{\mathrm{sys},\ell} - q_{\mathrm{cor,d}}^{\mathrm{sys},\ell}\\ #&R_{\mathrm{cor,d}}^{\mathrm{sys},\ell}\,q_{\mathrm{cor,d}}^{\mathrm{sys},\ell}=p_{\mathrm{cor,d}}^{\mathrm{sys},\ell}-p_{\mathrm{at}}^{r}\\ #&C_{\mathrm{cor,p}}^{\mathrm{sys},r} \left(\frac{\mathrm{d}p_{\mathrm{ar}}^{\mathrm{sys},r}}{\mathrm{d}t}-Z_{\mathrm{cor,p}}^{\mathrm{sys},r}\frac{\mathrm{d}q_{\mathrm{cor,p,in}}^{\mathrm{sys},r}}{\mathrm{d}t}\right) = q_{\mathrm{cor,p,in}}^{\mathrm{sys},r} - q_{\mathrm{cor,p}}^{\mathrm{sys},r}\\ #&R_{\mathrm{cor,p}}^{\mathrm{sys},r}\,q_{\mathrm{cor,p}}^{\mathrm{sys},r}=p_{\mathrm{ar}}^{\mathrm{sys}}-p_{\mathrm{cor,d}}^{\mathrm{sys},r} - Z_{\mathrm{cor,p}}^{\mathrm{sys},r}\,q_{\mathrm{cor,p,in}}^{\mathrm{sys},r}\\ #&C_{\mathrm{cor,d}}^{\mathrm{sys},r} \frac{\mathrm{d}(p_{\mathrm{cor,d}}^{\mathrm{sys},r}-p_{\mathrm{v}}^{\ell})}{\mathrm{d}t} = q_{\mathrm{cor,p}}^{\mathrm{sys},r} - q_{\mathrm{cor,d}}^{\mathrm{sys},r}\\ #&R_{\mathrm{cor,d}}^{\mathrm{sys},r}\,q_{\mathrm{cor,d}}^{\mathrm{sys},r}=p_{\mathrm{cor,d}}^{\mathrm{sys},r}-p_{\mathrm{at}}^{r}\\ #&0=q_{\mathrm{cor,d}}^{\mathrm{sys},\ell}+q_{\mathrm{cor,d}}^{\mathrm{sys},r}-q_{\mathrm{cor,d,out}}^{\mathrm{sys}} #\end{align} class coronary_circ_ZCRp_CRd_lr(): def __init__(self, params, varmap, auxmap, vs): self.Z_corp_sys_l = params['Z_corp_sys_l'] self.C_corp_sys_l = params['C_corp_sys_l'] self.R_corp_sys_l = params['R_corp_sys_l'] self.C_cord_sys_l = params['C_cord_sys_l'] self.R_cord_sys_l = params['R_cord_sys_l'] self.Z_corp_sys_r = params['Z_corp_sys_r'] self.C_corp_sys_r = params['C_corp_sys_r'] self.R_corp_sys_r = params['R_corp_sys_r'] self.C_cord_sys_r = params['C_cord_sys_r'] self.R_cord_sys_r = params['R_cord_sys_r'] try: self.V_corp_sys_l_u = params['V_corp_sys_l_u'] except: self.V_corp_sys_l_u = 0 try: self.V_cord_sys_l_u = params['V_cord_sys_l_u'] except: self.V_cord_sys_l_u = 0 try: self.V_corp_sys_r_u = params['V_corp_sys_r_u'] except: self.V_corp_sys_r_u = 0 try: self.V_cord_sys_r_u = params['V_cord_sys_r_u'] except: self.V_cord_sys_r_u = 0 self.ndcor = 9 self.varmap = varmap self.auxmap = auxmap self.vs = vs def equation_map(self, vindex, aindex, x_, a_, df_, f_, p_ar_, p_v_, p_at_): self.varmap['q_corp_sys_l_in'] = vindex self.varmap['q_corp_sys_l'] = vindex+1 self.varmap['p_cord_sys_l'] = vindex+2 self.varmap['q_cord_sys_l'] = vindex+3 self.varmap['q_corp_sys_r_in'] = vindex+4 self.varmap['q_corp_sys_r'] = vindex+5 self.varmap['p_cord_sys_r'] = vindex+6 self.varmap['q_cord_sys_r'] = vindex+7 self.varmap['q_ven'+str(self.vs+1)+'_sys'] = vindex+8 q_corp_sys_l_in_ = sp.Symbol('q_corp_sys_l_in_') q_corp_sys_l_ = sp.Symbol('q_corp_sys_l_') p_cord_sys_l_ = sp.Symbol('p_cord_sys_l_') q_cord_sys_l_ = sp.Symbol('q_cord_sys_l_') q_corp_sys_r_in_ = sp.Symbol('q_corp_sys_r_in_') q_corp_sys_r_ = sp.Symbol('q_corp_sys_r_') p_cord_sys_r_ = sp.Symbol('p_cord_sys_r_') q_cord_sys_r_ = sp.Symbol('q_cord_sys_r_') q_cord_sys_out_ = sp.Symbol('q_ven'+str(self.vs+1)+'_sys_') x_[self.varmap['q_corp_sys_l_in']] = q_corp_sys_l_in_ x_[self.varmap['q_corp_sys_l']] = q_corp_sys_l_ x_[self.varmap['p_cord_sys_l']] = p_cord_sys_l_ x_[self.varmap['q_cord_sys_l']] = q_cord_sys_l_ x_[self.varmap['q_corp_sys_r_in']] = q_corp_sys_r_in_ x_[self.varmap['q_corp_sys_r']] = q_corp_sys_r_ x_[self.varmap['p_cord_sys_r']] = p_cord_sys_r_ x_[self.varmap['q_cord_sys_r']] = q_cord_sys_r_ x_[self.varmap['q_ven'+str(self.vs+1)+'_sys']] = q_cord_sys_out_ # populate df_ and f_ arrays df_[vindex] = self.C_corp_sys_l * (p_ar_[0] - self.Z_corp_sys_l * q_corp_sys_l_in_) # left coronary proximal volume rate df_[vindex+1] = 0. df_[vindex+2] = self.C_cord_sys_l * (p_cord_sys_l_ - p_v_) # left coronary distal volume rate df_[vindex+3] = 0. df_[vindex+4] = self.C_corp_sys_r * (p_ar_[1] - self.Z_corp_sys_r * q_corp_sys_r_in_) # right coronary proximal volume rate df_[vindex+5] = 0. df_[vindex+6] = self.C_cord_sys_r * (p_cord_sys_r_ - p_v_) # right coronary distal volume rate df_[vindex+7] = 0. df_[vindex+8] = 0. f_[vindex] = q_corp_sys_l_ - q_corp_sys_l_in_ # left coronary proximal flow balance f_[vindex+1] = (p_cord_sys_l_ - p_ar_[0] + self.Z_corp_sys_l * q_corp_sys_l_in_)/self.R_corp_sys_l + q_corp_sys_l_ # left coronary proximal momentum f_[vindex+2] = q_cord_sys_l_ - q_corp_sys_l_ # left coronary distal flow balance f_[vindex+3] = (p_at_ - p_cord_sys_l_)/self.R_cord_sys_l + q_cord_sys_l_ # left coronary distal momentum f_[vindex+4] = q_corp_sys_r_ - q_corp_sys_r_in_ # right coronary proximal flow balance f_[vindex+5] = (p_cord_sys_r_ - p_ar_[1] + self.Z_corp_sys_r * q_corp_sys_r_in_)/self.R_corp_sys_r + q_corp_sys_r_ # right coronary proximal momentum f_[vindex+6] = q_cord_sys_r_ - q_corp_sys_r_ # right coronary distal flow balance f_[vindex+7] = (p_at_ - p_cord_sys_r_)/self.R_cord_sys_r + q_cord_sys_r_ # right coronary distal momentum f_[vindex+8] = q_cord_sys_out_ - q_cord_sys_l_ - q_cord_sys_r_ # coronary sinus flow balance # auxiliary map and variables self.auxmap['V_corp_sys_l'] = aindex self.auxmap['V_cord_sys_l'] = aindex+1 self.auxmap['V_corp_sys_r'] = aindex+2 self.auxmap['V_cord_sys_r'] = aindex+3 a_[self.auxmap['V_corp_sys_l']] = self.C_corp_sys_l * (p_ar_[0] - self.Z_corp_sys_l * q_corp_sys_l_in_) + self.V_corp_sys_l_u a_[self.auxmap['V_cord_sys_l']] = self.C_cord_sys_l * (p_cord_sys_l_ - p_v_) + self.V_cord_sys_l_u a_[self.auxmap['V_corp_sys_r']] = self.C_corp_sys_r * (p_ar_[1] - self.Z_corp_sys_r * q_corp_sys_r_in_) + self.V_corp_sys_r_u a_[self.auxmap['V_cord_sys_r']] = self.C_cord_sys_r * (p_cord_sys_r_ - p_v_) + self.V_cord_sys_r_u # safety check that we don't hand in a zero symbol for p_v if p_v_ is sp.S.Zero: raise ValueError("Zero symbol for left ventricular pressure!") return [q_corp_sys_l_in_,q_corp_sys_r_in_], q_cord_sys_out_ def initialize(self, var, iniparam): try: var[self.varmap['q_corp_sys_l_in']] = iniparam['q_corp_sys_l_in_0'] except: var[self.varmap['q_corp_sys_l_in']] = iniparam['q_corp_sys_l_0'] var[self.varmap['q_corp_sys_l']] = iniparam['q_corp_sys_l_0'] var[self.varmap['p_cord_sys_l']] = iniparam['p_cord_sys_l_0'] var[self.varmap['q_cord_sys_l']] = iniparam['q_cord_sys_l_0'] try: var[self.varmap['q_corp_sys_r_in']] = iniparam['q_corp_sys_r_in_0'] except: var[self.varmap['q_corp_sys_r_in']] = iniparam['q_corp_sys_r_0'] var[self.varmap['q_corp_sys_r']] = iniparam['q_corp_sys_r_0'] var[self.varmap['p_cord_sys_r']] = iniparam['p_cord_sys_r_0'] var[self.varmap['q_cord_sys_r']] = iniparam['q_cord_sys_r_0'] try: var[self.varmap['q_ven'+str(self.vs+1)+'_sys']] = iniparam['q_ven'+str(self.vs+1)+'_sys_0'] except: var[self.varmap['q_ven'+str(self.vs+1)+'_sys']] = iniparam['q_ven_sys_0'] def print_to_screen(self, var_sq, aux): print("Output of 0D coronary model (ZCRp_CRd_lr):") print('{:<12s}{:<3s}{:<7.3f}{:<3s}{:<12s}{:<3s}{:<7.3f}'.format('p_cord_sys_l',' = ',var_sq[self.varmap['p_cord_sys_l']],' ','p_cord_sys_r',' = ',var_sq[self.varmap['p_cord_sys_r']])) sys.stdout.flush()
[ "sympy.Symbol", "sys.stdout.flush" ]
[((2717, 2744), 'sympy.Symbol', 'sp.Symbol', (['"""q_corp_sys_in_"""'], {}), "('q_corp_sys_in_')\n", (2726, 2744), True, 'import sympy as sp\n'), ((2770, 2794), 'sympy.Symbol', 'sp.Symbol', (['"""q_corp_sys_"""'], {}), "('q_corp_sys_')\n", (2779, 2794), True, 'import sympy as sp\n'), ((2820, 2844), 'sympy.Symbol', 'sp.Symbol', (['"""p_cord_sys_"""'], {}), "('p_cord_sys_')\n", (2829, 2844), True, 'import sympy as sp\n'), ((5570, 5588), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (5586, 5588), False, 'import sys\n'), ((9463, 9492), 'sympy.Symbol', 'sp.Symbol', (['"""q_corp_sys_l_in_"""'], {}), "('q_corp_sys_l_in_')\n", (9472, 9492), True, 'import sympy as sp\n'), ((9520, 9546), 'sympy.Symbol', 'sp.Symbol', (['"""q_corp_sys_l_"""'], {}), "('q_corp_sys_l_')\n", (9529, 9546), True, 'import sympy as sp\n'), ((9574, 9600), 'sympy.Symbol', 'sp.Symbol', (['"""p_cord_sys_l_"""'], {}), "('p_cord_sys_l_')\n", (9583, 9600), True, 'import sympy as sp\n'), ((9628, 9654), 'sympy.Symbol', 'sp.Symbol', (['"""q_cord_sys_l_"""'], {}), "('q_cord_sys_l_')\n", (9637, 9654), True, 'import sympy as sp\n'), ((9691, 9720), 'sympy.Symbol', 'sp.Symbol', (['"""q_corp_sys_r_in_"""'], {}), "('q_corp_sys_r_in_')\n", (9700, 9720), True, 'import sympy as sp\n'), ((9748, 9774), 'sympy.Symbol', 'sp.Symbol', (['"""q_corp_sys_r_"""'], {}), "('q_corp_sys_r_')\n", (9757, 9774), True, 'import sympy as sp\n'), ((9802, 9828), 'sympy.Symbol', 'sp.Symbol', (['"""p_cord_sys_r_"""'], {}), "('p_cord_sys_r_')\n", (9811, 9828), True, 'import sympy as sp\n'), ((9856, 9882), 'sympy.Symbol', 'sp.Symbol', (['"""q_cord_sys_r_"""'], {}), "('q_cord_sys_r_')\n", (9865, 9882), True, 'import sympy as sp\n'), ((15260, 15278), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (15276, 15278), False, 'import sys\n')]
import genism from genism.models.doc2vec import Doc2Vec , TaggedDocument from sklearn.metrics.pairwise import cosine_similarity f= open('dataset.txt','r') print(f.read) corpus = [ "This is first Sentence", "This is second Sentence", "This is third Sentence", "This is fourth Sentence", "This is fifth Sentence", ] documents = [TaggedDocument(doc,[i]) for i, doc in enumerate(corpus)] model = Doc2Vec(documents , vector_size = 10 , window = 2 , min_count = 1 , workers =4) model.save('sentenceEmbedderModel.pkl') print('Model Creation Successful.' + repr(model)) vector = model.infer_vector(['this is not a sentence']) vector_2 = model.infer_vector(['this is not a first sentence']) vector_3 = model.infer_vector(['this is not a sentence']) print("vector is " + repr(vector)) print("1 vs 2 " + repr(cosine_similarity([vector],[vector_2]))) print("1 vs 3 " + repr(cosine_similarity([vector],[vector_3])))
[ "genism.models.doc2vec.Doc2Vec", "sklearn.metrics.pairwise.cosine_similarity", "genism.models.doc2vec.TaggedDocument" ]
[((431, 499), 'genism.models.doc2vec.Doc2Vec', 'Doc2Vec', (['documents'], {'vector_size': '(10)', 'window': '(2)', 'min_count': '(1)', 'workers': '(4)'}), '(documents, vector_size=10, window=2, min_count=1, workers=4)\n', (438, 499), False, 'from genism.models.doc2vec import Doc2Vec, TaggedDocument\n'), ((365, 389), 'genism.models.doc2vec.TaggedDocument', 'TaggedDocument', (['doc', '[i]'], {}), '(doc, [i])\n', (379, 389), False, 'from genism.models.doc2vec import Doc2Vec, TaggedDocument\n'), ((850, 889), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['[vector]', '[vector_2]'], {}), '([vector], [vector_2])\n', (867, 889), False, 'from sklearn.metrics.pairwise import cosine_similarity\n'), ((915, 954), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['[vector]', '[vector_3]'], {}), '([vector], [vector_3])\n', (932, 954), False, 'from sklearn.metrics.pairwise import cosine_similarity\n')]
from helper import unittest, PillowTestCase, hopper from PIL import Image, BmpImagePlugin import io class TestFileBmp(PillowTestCase): def roundtrip(self, im): outfile = self.tempfile("temp.bmp") im.save(outfile, 'BMP') reloaded = Image.open(outfile) reloaded.load() self.assertEqual(im.mode, reloaded.mode) self.assertEqual(im.size, reloaded.size) self.assertEqual(reloaded.format, "BMP") def test_sanity(self): self.roundtrip(hopper()) self.roundtrip(hopper("1")) self.roundtrip(hopper("L")) self.roundtrip(hopper("P")) self.roundtrip(hopper("RGB")) def test_invalid_file(self): with open("Tests/images/flower.jpg", "rb") as fp: self.assertRaises(SyntaxError, BmpImagePlugin.BmpImageFile, fp) def test_save_to_bytes(self): output = io.BytesIO() im = hopper() im.save(output, "BMP") output.seek(0) reloaded = Image.open(output) self.assertEqual(im.mode, reloaded.mode) self.assertEqual(im.size, reloaded.size) self.assertEqual(reloaded.format, "BMP") def test_dpi(self): dpi = (72, 72) output = io.BytesIO() im = hopper() im.save(output, "BMP", dpi=dpi) output.seek(0) reloaded = Image.open(output) self.assertEqual(reloaded.info["dpi"], dpi) def test_save_bmp_with_dpi(self): # Test for #1301 # Arrange outfile = self.tempfile("temp.jpg") im = Image.open("Tests/images/hopper.bmp") # Act im.save(outfile, 'JPEG', dpi=im.info['dpi']) # Assert reloaded = Image.open(outfile) reloaded.load() self.assertEqual(im.info['dpi'], reloaded.info['dpi']) self.assertEqual(im.size, reloaded.size) self.assertEqual(reloaded.format, "JPEG") def test_load_dib(self): # test for #1293, Imagegrab returning Unsupported Bitfields Format im = BmpImagePlugin.DibImageFile('Tests/images/clipboard.dib') target = Image.open('Tests/images/clipboard_target.png') self.assert_image_equal(im, target) if __name__ == '__main__': unittest.main()
[ "io.BytesIO", "helper.unittest.main", "PIL.Image.open", "PIL.BmpImagePlugin.DibImageFile", "helper.hopper" ]
[((2252, 2267), 'helper.unittest.main', 'unittest.main', ([], {}), '()\n', (2265, 2267), False, 'from helper import unittest, PillowTestCase, hopper\n'), ((265, 284), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (275, 284), False, 'from PIL import Image, BmpImagePlugin\n'), ((914, 926), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (924, 926), False, 'import io\n'), ((940, 948), 'helper.hopper', 'hopper', ([], {}), '()\n', (946, 948), False, 'from helper import unittest, PillowTestCase, hopper\n'), ((1023, 1041), 'PIL.Image.open', 'Image.open', (['output'], {}), '(output)\n', (1033, 1041), False, 'from PIL import Image, BmpImagePlugin\n'), ((1256, 1268), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (1266, 1268), False, 'import io\n'), ((1282, 1290), 'helper.hopper', 'hopper', ([], {}), '()\n', (1288, 1290), False, 'from helper import unittest, PillowTestCase, hopper\n'), ((1374, 1392), 'PIL.Image.open', 'Image.open', (['output'], {}), '(output)\n', (1384, 1392), False, 'from PIL import Image, BmpImagePlugin\n'), ((1585, 1622), 'PIL.Image.open', 'Image.open', (['"""Tests/images/hopper.bmp"""'], {}), "('Tests/images/hopper.bmp')\n", (1595, 1622), False, 'from PIL import Image, BmpImagePlugin\n'), ((1728, 1747), 'PIL.Image.open', 'Image.open', (['outfile'], {}), '(outfile)\n', (1738, 1747), False, 'from PIL import Image, BmpImagePlugin\n'), ((2052, 2109), 'PIL.BmpImagePlugin.DibImageFile', 'BmpImagePlugin.DibImageFile', (['"""Tests/images/clipboard.dib"""'], {}), "('Tests/images/clipboard.dib')\n", (2079, 2109), False, 'from PIL import Image, BmpImagePlugin\n'), ((2127, 2174), 'PIL.Image.open', 'Image.open', (['"""Tests/images/clipboard_target.png"""'], {}), "('Tests/images/clipboard_target.png')\n", (2137, 2174), False, 'from PIL import Image, BmpImagePlugin\n'), ((507, 515), 'helper.hopper', 'hopper', ([], {}), '()\n', (513, 515), False, 'from helper import unittest, PillowTestCase, hopper\n'), ((541, 552), 'helper.hopper', 'hopper', (['"""1"""'], {}), "('1')\n", (547, 552), False, 'from helper import unittest, PillowTestCase, hopper\n'), ((577, 588), 'helper.hopper', 'hopper', (['"""L"""'], {}), "('L')\n", (583, 588), False, 'from helper import unittest, PillowTestCase, hopper\n'), ((613, 624), 'helper.hopper', 'hopper', (['"""P"""'], {}), "('P')\n", (619, 624), False, 'from helper import unittest, PillowTestCase, hopper\n'), ((649, 662), 'helper.hopper', 'hopper', (['"""RGB"""'], {}), "('RGB')\n", (655, 662), False, 'from helper import unittest, PillowTestCase, hopper\n')]
from keras.layers.convolutional import Convolution2D from keras import backend as K import tensorflow as tf permutation = [[1, 0], [0, 0], [0, 1], [2, 0], [1, 1], [0, 2], [2, 1], [2, 2], [1, 2]] def shift_rotate(w, shift=1): shape = w.get_shape() for i in range(shift): w = tf.reshape(tf.gather_nd(w, permutation), shape) return w class Convolution2D_4(Convolution2D): def call(self, x, mask=None): w = self.W w_rot = [w] for i in range(3): w = shift_rotate(w, shift=2) w_rot.append(w) outputs = tf.stack([K.conv2d(x, w_i, strides=self.subsample, border_mode=self.border_mode, dim_ordering=self.dim_ordering, filter_shape=self.W_shape) for w_i in w_rot]) output = K.max(outputs, 0) if self.bias: if self.dim_ordering == 'th': output += K.reshape(self.b, (1, self.nb_filter, 1, 1)) elif self.dim_ordering == 'tf': output += K.reshape(self.b, (1, 1, 1, self.nb_filter)) else: raise ValueError('Invalid dim_ordering:', self.dim_ordering) output = self.activation(output) return output class Convolution2D_8(Convolution2D): def call(self, x, mask=None): w = self.W w_rot = [w] for i in range(7): w = shift_rotate(w) w_rot.append(w) outputs = tf.stack([K.conv2d(x, w_i, strides=self.subsample, border_mode=self.border_mode, dim_ordering=self.dim_ordering, filter_shape=self.W_shape) for w_i in w_rot]) output = K.max(outputs, 0) if self.bias: if self.dim_ordering == 'th': output += K.reshape(self.b, (1, self.nb_filter, 1, 1)) elif self.dim_ordering == 'tf': output += K.reshape(self.b, (1, 1, 1, self.nb_filter)) else: raise ValueError('Invalid dim_ordering:', self.dim_ordering) output = self.activation(output) return output
[ "tensorflow.gather_nd", "keras.backend.reshape", "keras.backend.conv2d", "keras.backend.max" ]
[((871, 888), 'keras.backend.max', 'K.max', (['outputs', '(0)'], {}), '(outputs, 0)\n', (876, 888), True, 'from keras import backend as K\n'), ((1805, 1822), 'keras.backend.max', 'K.max', (['outputs', '(0)'], {}), '(outputs, 0)\n', (1810, 1822), True, 'from keras import backend as K\n'), ((305, 333), 'tensorflow.gather_nd', 'tf.gather_nd', (['w', 'permutation'], {}), '(w, permutation)\n', (317, 333), True, 'import tensorflow as tf\n'), ((593, 726), 'keras.backend.conv2d', 'K.conv2d', (['x', 'w_i'], {'strides': 'self.subsample', 'border_mode': 'self.border_mode', 'dim_ordering': 'self.dim_ordering', 'filter_shape': 'self.W_shape'}), '(x, w_i, strides=self.subsample, border_mode=self.border_mode,\n dim_ordering=self.dim_ordering, filter_shape=self.W_shape)\n', (601, 726), True, 'from keras import backend as K\n'), ((980, 1024), 'keras.backend.reshape', 'K.reshape', (['self.b', '(1, self.nb_filter, 1, 1)'], {}), '(self.b, (1, self.nb_filter, 1, 1))\n', (989, 1024), True, 'from keras import backend as K\n'), ((1527, 1660), 'keras.backend.conv2d', 'K.conv2d', (['x', 'w_i'], {'strides': 'self.subsample', 'border_mode': 'self.border_mode', 'dim_ordering': 'self.dim_ordering', 'filter_shape': 'self.W_shape'}), '(x, w_i, strides=self.subsample, border_mode=self.border_mode,\n dim_ordering=self.dim_ordering, filter_shape=self.W_shape)\n', (1535, 1660), True, 'from keras import backend as K\n'), ((1914, 1958), 'keras.backend.reshape', 'K.reshape', (['self.b', '(1, self.nb_filter, 1, 1)'], {}), '(self.b, (1, self.nb_filter, 1, 1))\n', (1923, 1958), True, 'from keras import backend as K\n'), ((1095, 1139), 'keras.backend.reshape', 'K.reshape', (['self.b', '(1, 1, 1, self.nb_filter)'], {}), '(self.b, (1, 1, 1, self.nb_filter))\n', (1104, 1139), True, 'from keras import backend as K\n'), ((2029, 2073), 'keras.backend.reshape', 'K.reshape', (['self.b', '(1, 1, 1, self.nb_filter)'], {}), '(self.b, (1, 1, 1, self.nb_filter))\n', (2038, 2073), True, 'from keras import backend as K\n')]
import kahoot import threading import utils class Flooder: def __init__(self, gamepin, botname, amount, delay, window): self.gamepin = gamepin self.botname = botname self.amount = amount self.delay = delay self.window = window self.suffix = 0 self.bot = kahoot.client() def loop(self): if self.suffix < int(self.amount): self.suffix += 1 self.bot.join(int(self.gamepin), f"{self.botname} [{self.suffix}]") self.bot.on("joined") self.window.after(int(self.delay), self.loop()) def start(self): notifier = utils.Notifier() notifier.send("Kahoot Flooder", f"Starting flood with {self.amount} bots, GUI may hang.") self.window.after(int(self.delay), self.loop())
[ "utils.Notifier", "kahoot.client" ]
[((316, 331), 'kahoot.client', 'kahoot.client', ([], {}), '()\n', (329, 331), False, 'import kahoot\n'), ((653, 669), 'utils.Notifier', 'utils.Notifier', ([], {}), '()\n', (667, 669), False, 'import utils\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import json as jsn import os import sys import unicodedata from utils import six def read_json(filename): def _convert_from_unicode(data): new_data = dict() for name, value in six.iteritems(data): if isinstance(name, six.string_types): name = unicodedata.normalize('NFKD', name).encode( 'ascii', 'ignore') if isinstance(value, six.string_types): value = unicodedata.normalize('NFKD', value).encode( 'ascii', 'ignore') if isinstance(value, dict): value = _convert_from_unicode(value) new_data[name] = value return new_data output_dict = None with open(filename, "r") as f: lines = f.readlines() try: output_dict = jsn.loads(''.join(lines), encoding='utf-8') except: raise ValueError('Could not read %s. %s' % (filename, sys.exc_info()[1])) output_dict = _convert_from_unicode(output_dict) return output_dict def _replace_quotes(x): return x.replace("\'", "\"") def _parse_value(value): if isinstance(value, tuple): value = list(value) if value is None: return "null" if isinstance(value, str): if value.lower() == "none": return "null" if value.lower() == "false": return "false" if value.lower() == "true": return "true" value = value.replace("\'", "\"") return "\"%s\"" % _replace_quotes(value) if isinstance(value, bool): return str(value).lower() if isinstance(value, list): result = "[" for i, item in enumerate(value): result += _parse_value(item) if i < len(value) - 1: result += ", " result += "]" return result if isinstance(value, dict): result = "{" item_iterator = six.itersorteditems(value) for i, (dict_key, dict_value) in enumerate(item_iterator): result += "\"%s\": %s" % (dict_key, _parse_value(dict_value)) if i < len(value) - 1: result += ", " result += "}" return result return "%s" % _replace_quotes(str(value)) # ---------------------------------------------------------------------------- # Writes all pairs to a filename for book keeping # Either .txt or .json # ---------------------------------------------------------------------------- def write_dictionary_to_file(input_dict, filename, sortkeys=False): # ensure dir d = os.path.dirname(filename) if not os.path.exists(d): os.makedirs(d) item_iterator = six.itersorteditems(input_dict) if sortkeys else six.iteritems(input_dict) # check for json extension ext = os.path.splitext(filename)[1] if ext == ".json": with open(filename, 'w') as file: file.write("{\n") for i, (key, value) in enumerate(item_iterator): file.write(" \"%s\": %s" % (key, _parse_value(value))) if i < len(input_dict) - 1: file.write(',\n') else: file.write('\n') file.write("}\n") else: with open(filename, 'w') as file: for key, value in item_iterator: file.write('%s: %s\n' % (key, value))
[ "unicodedata.normalize", "utils.six.iteritems", "os.makedirs", "os.path.dirname", "os.path.exists", "utils.six.itersorteditems", "os.path.splitext", "sys.exc_info" ]
[((2698, 2723), 'os.path.dirname', 'os.path.dirname', (['filename'], {}), '(filename)\n', (2713, 2723), False, 'import os\n'), ((309, 328), 'utils.six.iteritems', 'six.iteritems', (['data'], {}), '(data)\n', (322, 328), False, 'from utils import six\n'), ((2047, 2073), 'utils.six.itersorteditems', 'six.itersorteditems', (['value'], {}), '(value)\n', (2066, 2073), False, 'from utils import six\n'), ((2735, 2752), 'os.path.exists', 'os.path.exists', (['d'], {}), '(d)\n', (2749, 2752), False, 'import os\n'), ((2762, 2776), 'os.makedirs', 'os.makedirs', (['d'], {}), '(d)\n', (2773, 2776), False, 'import os\n'), ((2798, 2829), 'utils.six.itersorteditems', 'six.itersorteditems', (['input_dict'], {}), '(input_dict)\n', (2817, 2829), False, 'from utils import six\n'), ((2847, 2872), 'utils.six.iteritems', 'six.iteritems', (['input_dict'], {}), '(input_dict)\n', (2860, 2872), False, 'from utils import six\n'), ((2915, 2941), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (2931, 2941), False, 'import os\n'), ((404, 439), 'unicodedata.normalize', 'unicodedata.normalize', (['"""NFKD"""', 'name'], {}), "('NFKD', name)\n", (425, 439), False, 'import unicodedata\n'), ((563, 599), 'unicodedata.normalize', 'unicodedata.normalize', (['"""NFKD"""', 'value'], {}), "('NFKD', value)\n", (584, 599), False, 'import unicodedata\n'), ((1053, 1067), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (1065, 1067), False, 'import sys\n')]
import json import numpy as np import os import pkg_resources import re from typing import Any, AnyStr, Dict, List, Optional, Tuple def load_peripheral(pdata, templates=None): """Load a peripheral from a dict This loads a peripheral with support for templates, as used in the board definition file format Args: pdata: A dict containing the peripheral definition templates: A dict mapping types to template definitions """ if not 'type' in pdata: raise ValueError("Peripheral definition requires a type field") template = None if templates is not None and pdata['type'] in templates: template = templates[pdata['type']] periph = pdata # Override electrodes with fields from template def map_electrode(e): eid = e['id'] if template is None: return e e_template = next((x for x in template['electrodes'] if x['id'] == eid), None) if e_template is None: return e # Merge dicts, with values in e taking priority in case of duplicate keys return {**e_template, **e} periph['electrodes'] = [map_electrode(e) for e in periph['electrodes']] return periph class Fiducial(object): """Represents a fiducial location """ def __init__(self, corners: List[List[int]], label: str=""): self.corners = corners self.label = label @staticmethod def from_dict(data): return Fiducial(**data) def to_dict(self): return { 'corners': self.corners, 'label': self.label } class ControlPoint(object): """Represents a control point in an image A control point is a pair of corresponding points -- one in image coordinates and the other in grid coordinates -- used to calibrate the position of the electrode grid relative to fiducials. """ def __init__(self, grid_coord: Tuple[float, float], image_coord: Tuple[float, float]): self.grid = grid_coord self.image = image_coord def from_dict(data): if not 'grid' in data: raise ValueError(f'A control point must have a `grid` and `image` attribute: {data}') if not 'image' in data: raise ValueError(f'A control point must have a `grid` and `image` attribute: {data}') return ControlPoint(data['grid'], data['image']) class Registration(object): """A registration is a collection of fiducials and control points which together define relationship between the electrode locations and fiducials """ def __init__(self, data: dict): if not 'fiducials' in data: raise ValueError(f'A Registration requires a fiducials attribute, not found in: {data}') if not 'control_points' in data: raise ValueError(f'A Registration requires a control points attribute, not found in: {data}') if not isinstance(data['fiducials'], list): raise ValueError(f'A Registration `fiducial` attribute must be a list: {data}') if not isinstance(data['control_points'], list): raise ValueError(f'a Registration `control_points` attribute must be a list: {data}') self.fiducials = [Fiducial.from_dict(f) for f in data['fiducials']] self.control_points = [ControlPoint.from_dict(cp) for cp in data['control_points']] class Layout(object): """Represents the 'layout' property of a baord definition A layout defines the placement and pin mapping for the electrodes on the board. """ def __init__(self, layout_def: Dict[str, Any]): self.peripherals = None self.grids = [] def intify_pins(grid_pins): result = [] for row in grid_pins: new_row: List[Optional[int]] = [] for pin in row: if pin == -1 or pin is None: new_row.append(None) else: new_row.append(int(pin)) result.append(new_row) return result # Old format files use 'grid' to define a single grid # New format uses an array of objects, under the key 'grids' if 'grid' in layout_def: self.grids.append({ 'origin': [0.0, 0.0], 'pitch': 1.0, 'pins': intify_pins(layout_def['grid']) }) elif 'grids' in layout_def: for g in layout_def['grids']: self.grids.append({ 'origin': g['origin'], 'pitch': g['pitch'], 'pins': intify_pins(g['pins']), }) if 'peripherals' in layout_def: self.peripherals = [load_peripheral(p, layout_def.get('peripheral_templates', None)) for p in layout_def['peripherals']] def grid_location_to_pin(self, x: int, y: int, grid_number:int =0): """Return the pin number at given grid location, or None if no pin is defined there. """ if grid_number < len(self.grids): grid = self.grids[grid_number]['pins'] else: grid = [[]] # Empty grid if y < 0 or y >= len(grid): return None row = grid[y] if x < 0 or x >= len(row): return None return grid[y][x] def pin_to_grid_location(self, pin: int) -> Optional[Tuple[Tuple[int, int], int]]: """Return the grid location of a given pin number """ for g, grid in enumerate(self.grids): for y, row in enumerate(grid['pins']): for x, p in enumerate(row): if p == pin: return ((x, y), g) return None def pin_polygon(self, pin: int) -> Optional[List[Tuple[int, int]]]: """Get the polygon defining a pin in board coordinates """ # Try to find the pin in a grid grid_info = self.pin_to_grid_location(pin) if grid_info is not None: loc, grid_idx = grid_info square = np.array([[0., 0.], [0., 1.], [1., 1.], [1., 0.]]) grid = self.grids[grid_idx] polygon = (square + loc) * grid['pitch'] + grid['origin'] return polygon.tolist() # Try to find the pin in a peripheral if self.peripherals is None: return None for periph in self.peripherals: for el in periph['electrodes']: if el['pin'] == pin: polygon = np.array(el['polygon']) rotation = np.deg2rad(periph.get('rotation', 0.0)) R = np.array([[np.cos(rotation), -np.sin(rotation)], [np.sin(rotation), np.cos(rotation)]]) polygon = np.dot(R, polygon.T).T return (polygon + periph['origin']).tolist() return None def as_dict(self) -> dict: """Return a serializable dict version of the board definition """ return { "grids": self.grids, "peripherals": self.peripherals } class Board(object): """Represents the top-level object in an electrode board definition file """ def __init__(self, board_def: Dict[str, Any]): self.registration: Optional[Registration] = None if not 'layout' in board_def: raise RuntimeError("Board definition file must contain a 'layout' object") self.layout = Layout(board_def['layout']) self.oversized_electrodes = board_def.get('oversized_electrodes', []) if 'registration' in board_def: self.registration = Registration(board_def['registration']) @staticmethod def load_from_file(filepath): """Create a Board from a board definition file """ with open(filepath, 'r') as f: data = json.loads(f.read()) return Board(data) @staticmethod def load_from_string(data: AnyStr) -> 'Board': """Create a board from a JSON string in memory """ return Board(json.loads(data)) def as_dict(self) -> dict: """Return a serializable dict representation of the board """ return { 'layout': self.layout.as_dict(), 'oversized_electrodes': self.oversized_electrodes, } def list_boards(): """Find all available board definitions. Uses same search rules as load_board; see :func:`load_board`. Returns: A list of board names, which can be passed to `load_board` """ config_dir = os.path.expanduser("~/.config/purpledrop/boards") package_files = pkg_resources.resource_listdir('purpledrop', 'boards') if os.path.isdir(config_dir): config_files = os.listdir(config_dir) else: config_files = [] board_names = [] def add_files(files): for f in files: print(f"Checking {f}") match = re.match(r'(.+).json', os.path.basename(f)) if match: board_names.append(match.group(1)) # Config files take priority, if there are any duplicates add_files(package_files) add_files(config_files) return board_names def load_board(name) -> Optional[Board]: """Load a board definition by name or path Attempt to load a board definition from the name, using the following priorities (the first to succeed is returned): 1. Load as a full path 2. Load from ~/.config/purpledrop/boards/{name}.json 3. Load from package resources (`purpledrop/boards` in repo) """ if os.path.isfile(name): return Board.load_from_file(name) home_path = os.path.expanduser(f"~/.config/purpledrop/boards/{name}.json") if os.path.isfile(home_path): return Board.load_from_file(home_path) try: resource_data = pkg_resources.resource_string('purpledrop', f"boards/{name}.json") return Board.load_from_string(resource_data) except FileNotFoundError: pass return None
[ "pkg_resources.resource_listdir", "json.loads", "os.path.basename", "os.path.isdir", "os.path.isfile", "numpy.sin", "numpy.array", "pkg_resources.resource_string", "numpy.cos", "numpy.dot", "os.path.expanduser", "os.listdir" ]
[((8557, 8606), 'os.path.expanduser', 'os.path.expanduser', (['"""~/.config/purpledrop/boards"""'], {}), "('~/.config/purpledrop/boards')\n", (8575, 8606), False, 'import os\n'), ((8627, 8681), 'pkg_resources.resource_listdir', 'pkg_resources.resource_listdir', (['"""purpledrop"""', '"""boards"""'], {}), "('purpledrop', 'boards')\n", (8657, 8681), False, 'import pkg_resources\n'), ((8689, 8714), 'os.path.isdir', 'os.path.isdir', (['config_dir'], {}), '(config_dir)\n', (8702, 8714), False, 'import os\n'), ((9567, 9587), 'os.path.isfile', 'os.path.isfile', (['name'], {}), '(name)\n', (9581, 9587), False, 'import os\n'), ((9648, 9710), 'os.path.expanduser', 'os.path.expanduser', (['f"""~/.config/purpledrop/boards/{name}.json"""'], {}), "(f'~/.config/purpledrop/boards/{name}.json')\n", (9666, 9710), False, 'import os\n'), ((9718, 9743), 'os.path.isfile', 'os.path.isfile', (['home_path'], {}), '(home_path)\n', (9732, 9743), False, 'import os\n'), ((8739, 8761), 'os.listdir', 'os.listdir', (['config_dir'], {}), '(config_dir)\n', (8749, 8761), False, 'import os\n'), ((9826, 9892), 'pkg_resources.resource_string', 'pkg_resources.resource_string', (['"""purpledrop"""', 'f"""boards/{name}.json"""'], {}), "('purpledrop', f'boards/{name}.json')\n", (9855, 9892), False, 'import pkg_resources\n'), ((6070, 6128), 'numpy.array', 'np.array', (['[[0.0, 0.0], [0.0, 1.0], [1.0, 1.0], [1.0, 0.0]]'], {}), '([[0.0, 0.0], [0.0, 1.0], [1.0, 1.0], [1.0, 0.0]])\n', (6078, 6128), True, 'import numpy as np\n'), ((8056, 8072), 'json.loads', 'json.loads', (['data'], {}), '(data)\n', (8066, 8072), False, 'import json\n'), ((8948, 8967), 'os.path.basename', 'os.path.basename', (['f'], {}), '(f)\n', (8964, 8967), False, 'import os\n'), ((6525, 6548), 'numpy.array', 'np.array', (["el['polygon']"], {}), "(el['polygon'])\n", (6533, 6548), True, 'import numpy as np\n'), ((6762, 6782), 'numpy.dot', 'np.dot', (['R', 'polygon.T'], {}), '(R, polygon.T)\n', (6768, 6782), True, 'import numpy as np\n'), ((6655, 6671), 'numpy.cos', 'np.cos', (['rotation'], {}), '(rotation)\n', (6661, 6671), True, 'import numpy as np\n'), ((6694, 6710), 'numpy.sin', 'np.sin', (['rotation'], {}), '(rotation)\n', (6700, 6710), True, 'import numpy as np\n'), ((6712, 6728), 'numpy.cos', 'np.cos', (['rotation'], {}), '(rotation)\n', (6718, 6728), True, 'import numpy as np\n'), ((6674, 6690), 'numpy.sin', 'np.sin', (['rotation'], {}), '(rotation)\n', (6680, 6690), True, 'import numpy as np\n')]
from multiprocessing import Queue, Process from threading import Thread import numpy as np import utils from agent import PPOAgent from policy import get_policy from worker import Worker import environments class SimpleMaster: def __init__(self, env_producer): self.env_name = env_producer.get_env_name() self.config = environments.get_config(self.env_name) self.worker_size = self.config["worker_num"] self.env_producer = env_producer self.queues = [] self.w_in_queue = Queue() self.init_workers() self.session = None self.trainable_vars = None self.accum_vars = None self.p_opt_vars = None self.v_opt_vars = None self.assign_op = None self.agent = None self.saver = None self.summary_writer = None self.beta = 1 self.lr_multiplier = 1.0 self.iter_count = 1 self.variables_file_path = "models/%s/variables.txt" % self.env_name self.model_path = "models/%s/model" % self.env_name self.initialized = False self.cur_step = -1 self.start() def init_workers(self): for i in range(self.worker_size): q = Queue() self.queues.append(q) t = Process(target=make_worker, args=(self.env_producer, i, q, self.w_in_queue)) t.start() def start(self): import tensorflow as tf env_opts = environments.get_env_options(self.env_name, self.env_producer.get_use_gpu()) self.summary_writer = tf.summary.FileWriter("logs/%s" % self.env_name) self.session = utils.create_session(env_opts, True) with tf.variable_scope("master-0"): pol = get_policy(env_opts, self.session) self.agent = PPOAgent(pol, self.session, "master-0", env_opts) self.trainable_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, "master-0") self.accum_vars = [tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in self.trainable_vars] p_vars = self.agent.p_opt.variables() v_vars = self.agent.v_opt.variables() self.p_opt_vars = [tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in p_vars] self.v_opt_vars = [tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in v_vars] p_assign_ops = [p_vars[i].assign(self.p_opt_vars[i]) for i in range(len(p_vars))] v_assign_ops = [v_vars[i].assign(self.v_opt_vars[i]) for i in range(len(v_vars))] assign_ops = [self.trainable_vars[i].assign(self.accum_vars[i]) for i in range(len(self.trainable_vars))] self.assign_op = tf.group(assign_ops + p_assign_ops + v_assign_ops) self.restore_variables() self.saver = tf.train.Saver(max_to_keep=1) self.session.run(tf.global_variables_initializer()) try: self.saver = tf.train.import_meta_graph( tf.train.latest_checkpoint("models/%s/" % env_opts["env_name"]) + ".meta") self.saver.restore(self.session, tf.train.latest_checkpoint("models/%s/" % env_opts["env_name"])) except: print("failed to restore model") while True: if self.iter_count % 10 == 0: print("Saving model...") self.save_variables() self.saver.save(self.session, self.model_path, self.iter_count) print("Model saved") self.broadcast_weights() self.merge_weights() self.iter_count += 1 def restore_variables(self): try: lines = open(self.variables_file_path).readlines() result = {} for l in lines: a, b = l.split("=") b = b.strip() result[a] = b self.iter_count = int(result["global_step"]) + 1 self.beta = float(result["beta"]) self.lr_multiplier = float(result["lr_multiplier"]) except: print("failed to restore variables") def save_variables(self): f = open(self.variables_file_path, "w") lines = [] lines.append("global_step=%s\n" % self.iter_count) lines.append("beta=%s\n" % self.beta) lines.append("lr_multiplier=%s\n" % self.lr_multiplier) f.writelines(lines) f.close() def broadcast_weights(self): weights, p_opt_weights, v_opt_weights = self.session.run([self.trainable_vars, self.agent.p_opt.variables(), self.agent.v_opt.variables()]) arr = [self.beta, self.lr_multiplier, p_opt_weights, v_opt_weights, weights] for q in self.queues: q.put(arr) def merge_weights(self): results = [] for i in range(self.worker_size): results.append(self.w_in_queue.get()) self.beta = np.mean([x[0] for x in results]) self.lr_multiplier = np.mean([x[1] for x in results]) p_opt_weights = self.make_means([x[2] for x in results]) v_opt_weights = self.make_means([x[3] for x in results]) weights = self.make_means([x[4] for x in results]) first_worker = [x for x in results if x[5]["idx"] == 0][0] self.record_stats(first_worker[5]) fd = {} for i, t in enumerate(self.accum_vars): fd[t] = weights[i] for i, t in enumerate(self.p_opt_vars): fd[t] = p_opt_weights[i] for i, t in enumerate(self.v_opt_vars): fd[t] = v_opt_weights[i] self.session.run(self.assign_op, feed_dict=fd) def make_means(self, weights): result = [] for i in range(len(weights[0])): acc = [] for j in range(len(weights)): acc.append(weights[j][i]) acc = np.mean(acc, axis=0) result.append(acc) return result def record_stats(self, stats): if self.cur_step == stats["step"]: return self.cur_step = stats["step"] self.record_losses(stats["kl"], stats["entropy"], stats["hinge"], stats["src_policy_loss"], stats["vloss"], stats["ploss"], stats["step"]) cum_rew = 0 for s in stats["stats"]: self.log_summary(s["reward"], s["step"], s["a_probs"], s["picked_a"], s["a_dim"], s["discrete"]) cum_rew += s["reward"] cum_rew /= max(1, len(stats["stats"])) print("Average reward: %s" % cum_rew) def record_losses(self, cur_kl, entropy, hinge, src_policy_loss, vloss, ploss, step): import tensorflow as tf summary = tf.Summary() summary.value.add(tag='Losses/value_loss', simple_value=vloss) summary.value.add(tag='Losses/policy_loss', simple_value=ploss) summary.value.add(tag='Losses/kl_divergence', simple_value=cur_kl) summary.value.add(tag='Losses/entropy', simple_value=entropy) summary.value.add(tag='Losses/src_policy_loss', simple_value=src_policy_loss) summary.value.add(tag='Losses/hinge', simple_value=hinge) summary.value.add(tag='Vars/beta', simple_value=self.beta) summary.value.add(tag='Vars/lr_multiplier', simple_value=self.lr_multiplier) self.summary_writer.add_summary(summary, step) self.summary_writer.flush() def log_summary(self, reward, step, a_probs, picked_a, a_dim, discrete): import tensorflow as tf summary = tf.Summary() summary.value.add(tag='Reward/per_episode', simple_value=float(reward)) if not discrete: for i in range(a_dim): prefix = "Action" + str(i) summary.value.add(tag=prefix + '/mean', simple_value=float(a_probs[i])) summary.value.add(tag=prefix + "/std", simple_value=float(a_probs[i + a_dim])) summary.value.add(tag=prefix + '/picked', simple_value=float(picked_a[i])) else: for i in range(a_dim): prefix = "Action" + str(i) summary.value.add(tag=prefix + '/prob', simple_value=float(a_probs[i])) summary.value.add(tag='Action/picked', simple_value=float(picked_a)) self.summary_writer.add_summary(summary, step) self.summary_writer.flush() def make_worker(env_producer, i, q, w_in_queue): return Worker(env_producer, i, q, w_in_queue)
[ "policy.get_policy", "environments.get_config", "utils.create_session", "tensorflow.train.Saver", "tensorflow.Summary", "tensorflow.get_collection", "tensorflow.global_variables_initializer", "worker.Worker", "tensorflow.variable_scope", "tensorflow.summary.FileWriter", "numpy.mean", "agent.PPOAgent", "multiprocessing.Queue", "tensorflow.group", "tensorflow.train.latest_checkpoint", "multiprocessing.Process" ]
[((8593, 8631), 'worker.Worker', 'Worker', (['env_producer', 'i', 'q', 'w_in_queue'], {}), '(env_producer, i, q, w_in_queue)\n', (8599, 8631), False, 'from worker import Worker\n'), ((343, 381), 'environments.get_config', 'environments.get_config', (['self.env_name'], {}), '(self.env_name)\n', (366, 381), False, 'import environments\n'), ((527, 534), 'multiprocessing.Queue', 'Queue', ([], {}), '()\n', (532, 534), False, 'from multiprocessing import Queue, Process\n'), ((1561, 1609), 'tensorflow.summary.FileWriter', 'tf.summary.FileWriter', (["('logs/%s' % self.env_name)"], {}), "('logs/%s' % self.env_name)\n", (1582, 1609), True, 'import tensorflow as tf\n'), ((1633, 1669), 'utils.create_session', 'utils.create_session', (['env_opts', '(True)'], {}), '(env_opts, True)\n', (1653, 1669), False, 'import utils\n'), ((2903, 2932), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {'max_to_keep': '(1)'}), '(max_to_keep=1)\n', (2917, 2932), True, 'import tensorflow as tf\n'), ((5136, 5168), 'numpy.mean', 'np.mean', (['[x[0] for x in results]'], {}), '([x[0] for x in results])\n', (5143, 5168), True, 'import numpy as np\n'), ((5198, 5230), 'numpy.mean', 'np.mean', (['[x[1] for x in results]'], {}), '([x[1] for x in results])\n', (5205, 5230), True, 'import numpy as np\n'), ((6885, 6897), 'tensorflow.Summary', 'tf.Summary', ([], {}), '()\n', (6895, 6897), True, 'import tensorflow as tf\n'), ((7709, 7721), 'tensorflow.Summary', 'tf.Summary', ([], {}), '()\n', (7719, 7721), True, 'import tensorflow as tf\n'), ((1224, 1231), 'multiprocessing.Queue', 'Queue', ([], {}), '()\n', (1229, 1231), False, 'from multiprocessing import Queue, Process\n'), ((1282, 1358), 'multiprocessing.Process', 'Process', ([], {'target': 'make_worker', 'args': '(self.env_producer, i, q, self.w_in_queue)'}), '(target=make_worker, args=(self.env_producer, i, q, self.w_in_queue))\n', (1289, 1358), False, 'from multiprocessing import Queue, Process\n'), ((1683, 1712), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""master-0"""'], {}), "('master-0')\n", (1700, 1712), True, 'import tensorflow as tf\n'), ((1732, 1766), 'policy.get_policy', 'get_policy', (['env_opts', 'self.session'], {}), '(env_opts, self.session)\n', (1742, 1766), False, 'from policy import get_policy\n'), ((1792, 1841), 'agent.PPOAgent', 'PPOAgent', (['pol', 'self.session', '"""master-0"""', 'env_opts'], {}), "(pol, self.session, 'master-0', env_opts)\n", (1800, 1841), False, 'from agent import PPOAgent\n'), ((1876, 1939), 'tensorflow.get_collection', 'tf.get_collection', (['tf.GraphKeys.TRAINABLE_VARIABLES', '"""master-0"""'], {}), "(tf.GraphKeys.TRAINABLE_VARIABLES, 'master-0')\n", (1893, 1939), True, 'import tensorflow as tf\n'), ((2797, 2847), 'tensorflow.group', 'tf.group', (['(assign_ops + p_assign_ops + v_assign_ops)'], {}), '(assign_ops + p_assign_ops + v_assign_ops)\n', (2805, 2847), True, 'import tensorflow as tf\n'), ((2958, 2991), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (2989, 2991), True, 'import tensorflow as tf\n'), ((6070, 6090), 'numpy.mean', 'np.mean', (['acc'], {'axis': '(0)'}), '(acc, axis=0)\n', (6077, 6090), True, 'import numpy as np\n'), ((3226, 3289), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (["('models/%s/' % env_opts['env_name'])"], {}), "('models/%s/' % env_opts['env_name'])\n", (3252, 3289), True, 'import tensorflow as tf\n'), ((3075, 3138), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (["('models/%s/' % env_opts['env_name'])"], {}), "('models/%s/' % env_opts['env_name'])\n", (3101, 3138), True, 'import tensorflow as tf\n')]
import os from flask import abort from flask import request from flask import send_from_directory from app import app from app.main.RequestParameters import RequestParameters from app.main.Session import Session from app.main.Session import Status from app.main.exceptions.exceptions import InvalidSessionIdError API_PATH_PREFIX = '/api' def _get_session(session_id): try: return Session(session_id) except InvalidSessionIdError: abort(404) def _get_status_url(session_id): return API_PATH_PREFIX + '/status/' + session_id def _get_result_file_url(session_id): return API_PATH_PREFIX + '/results/' + session_id @app.route(API_PATH_PREFIX + '/process', methods=['POST']) def new_request(): try: file = request.files['file'] if not file: abort(400) # TODO Validate file session = Session() session.store_input_file(file) request_parameters = RequestParameters.parse(request.form) session.start_processing(request_parameters) return { 'status_url': _get_status_url(session.session_id), } except ValueError: abort(400) @app.route(API_PATH_PREFIX + '/health') def health(): return 'health' @app.route(API_PATH_PREFIX + '/status/<path:session_id>') def check_status(session_id): session = _get_session(session_id) status_result = { 'status': 'in_progress', } status = session.get_status() if status == Status.SUCCESS: status_result['status'] = 'done' elif status == Status.FAILURE: status_result['status'] = 'error' is_done = session.get_status() == Status.SUCCESS if is_done: status_result['result_url'] = _get_result_file_url(session_id) return status_result @app.route(API_PATH_PREFIX + '/results/<path:session_id>') def results(session_id): session = _get_session(session_id) return send_from_directory( os.path.join('..', session.get_session_directory()), session.get_result_file_name(), )
[ "app.app.route", "app.main.Session.Session", "flask.abort", "app.main.RequestParameters.RequestParameters.parse" ]
[((655, 712), 'app.app.route', 'app.route', (["(API_PATH_PREFIX + '/process')"], {'methods': "['POST']"}), "(API_PATH_PREFIX + '/process', methods=['POST'])\n", (664, 712), False, 'from app import app\n'), ((1175, 1213), 'app.app.route', 'app.route', (["(API_PATH_PREFIX + '/health')"], {}), "(API_PATH_PREFIX + '/health')\n", (1184, 1213), False, 'from app import app\n'), ((1251, 1307), 'app.app.route', 'app.route', (["(API_PATH_PREFIX + '/status/<path:session_id>')"], {}), "(API_PATH_PREFIX + '/status/<path:session_id>')\n", (1260, 1307), False, 'from app import app\n'), ((1793, 1850), 'app.app.route', 'app.route', (["(API_PATH_PREFIX + '/results/<path:session_id>')"], {}), "(API_PATH_PREFIX + '/results/<path:session_id>')\n", (1802, 1850), False, 'from app import app\n'), ((397, 416), 'app.main.Session.Session', 'Session', (['session_id'], {}), '(session_id)\n', (404, 416), False, 'from app.main.Session import Session\n'), ((870, 879), 'app.main.Session.Session', 'Session', ([], {}), '()\n', (877, 879), False, 'from app.main.Session import Session\n'), ((948, 985), 'app.main.RequestParameters.RequestParameters.parse', 'RequestParameters.parse', (['request.form'], {}), '(request.form)\n', (971, 985), False, 'from app.main.RequestParameters import RequestParameters\n'), ((459, 469), 'flask.abort', 'abort', (['(404)'], {}), '(404)\n', (464, 469), False, 'from flask import abort\n'), ((811, 821), 'flask.abort', 'abort', (['(400)'], {}), '(400)\n', (816, 821), False, 'from flask import abort\n'), ((1161, 1171), 'flask.abort', 'abort', (['(400)'], {}), '(400)\n', (1166, 1171), False, 'from flask import abort\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for the Windows Event Log message resource extractor class.""" import unittest from dfvfs.helpers import fake_file_system_builder from dfvfs.helpers import windows_path_resolver from dfvfs.lib import definitions as dfvfs_definitions from dfvfs.path import factory as path_spec_factory from winevtrc import extractor from winevtrc import resources from tests import test_lib as shared_test_lib class TestOutputWriter(object): """Class that defines a test output writer. Attributes: event_log_providers (list[EventLogProvider]): event log providers. message_files (list[MessageFile]): message files. """ def __init__(self): """Initializes the test output writer.""" super(TestOutputWriter, self).__init__() self.event_log_providers = [] self.message_files = [] def Close(self): """Closes the output writer.""" return def Open(self): """Opens the output writer. Returns: bool: True if successful or False if not. """ return True def WriteEventLogProvider(self, event_log_provider): """Writes the Event Log provider. Args: event_log_provider (EventLogProvider): event log provider. """ self.event_log_providers.append(event_log_provider) # pylint: disable=unused-argument def WriteMessageFile( self, event_log_provider, message_resource_file, message_filename, message_file_type): """Writes the Windows Message Resource file. Args: event_log_provider (EventLogProvider): event log provider. message_resource_file (MessageResourceFile): message resource file. message_filename (str): message filename. message_file_type (str): message file type. """ self.message_files.append(message_resource_file) class EventMessageStringRegistryFileReaderTest(shared_test_lib.BaseTestCase): """Tests for the Windows Registry file reader.""" def testOpen(self): """Tests the Open function.""" volume_scanner = extractor.EventMessageStringExtractor() file_reader = extractor.EventMessageStringRegistryFileReader( volume_scanner) test_file_path = self._GetTestFilePath(['SOFTWARE']) # TODO: implement tests. # file_reader.Open(test_file_path) # file_reader.Open('bogus') _ = file_reader _ = test_file_path @shared_test_lib.skipUnlessHasTestFile(['SOFTWARE']) @shared_test_lib.skipUnlessHasTestFile(['SYSTEM']) class EventMessageStringExtractorTest(shared_test_lib.BaseTestCase): """Tests for the Windows Event Log message resource extractor.""" # pylint: disable=protected-access def _CreateTestEventMessageStringExtractor(self): """Creates an event message string extractor for testing. Returns: EventMessageStringExtractor: an event message string extractor. """ file_system_builder = fake_file_system_builder.FakeFileSystemBuilder() test_file_path = self._GetTestFilePath(['SOFTWARE']) file_system_builder.AddFileReadData( '/Windows/System32/config/SOFTWARE', test_file_path) test_file_path = self._GetTestFilePath(['SYSTEM']) file_system_builder.AddFileReadData( '/Windows/System32/config/SYSTEM', test_file_path) mount_point = path_spec_factory.Factory.NewPathSpec( dfvfs_definitions.TYPE_INDICATOR_FAKE, location='/') extractor_object = extractor.EventMessageStringExtractor() extractor_object._file_system = file_system_builder.file_system extractor_object._path_resolver = ( windows_path_resolver.WindowsPathResolver( file_system_builder.file_system, mount_point)) extractor_object._windows_directory = 'C:\\Windows' extractor_object._path_resolver.SetEnvironmentVariable( 'SystemRoot', extractor_object._windows_directory) extractor_object._path_resolver.SetEnvironmentVariable( 'WinDir', extractor_object._windows_directory) return extractor_object def testWindowsVersionProperty(self): """Tests the windows_version property.""" extractor_object = self._CreateTestEventMessageStringExtractor() windows_version = extractor_object.windows_version # TODO: improve test. self.assertIsNone(windows_version) def testCollectEventLogTypes(self): """Tests the _CollectEventLogTypes function.""" extractor_object = self._CreateTestEventMessageStringExtractor() event_log_types = extractor_object._CollectEventLogTypes() self.assertEqual(len(event_log_types), 3) self.assertEqual(len(event_log_types['Application']), 65) self.assertEqual(len(event_log_types['Security']), 7) self.assertEqual(len(event_log_types['System']), 186) # TODO: hide duplication warnings. event_log_types = extractor_object._CollectEventLogTypes( all_control_sets=True) self.assertEqual(len(event_log_types), 3) self.assertEqual(len(event_log_types['Application']), 65) self.assertEqual(len(event_log_types['Security']), 7) self.assertEqual(len(event_log_types['System']), 186) def testCollectEventLogProvidersFromKey(self): """Tests the _CollectEventLogProvidersFromKey function.""" extractor_object = self._CreateTestEventMessageStringExtractor() generator = extractor_object._CollectEventLogProvidersFromKey(None) # TODO: fix generator method. self.assertIsNotNone(generator) def testExtractMessageFile(self): """Tests the _ExtractMessageFile function.""" extractor_object = self._CreateTestEventMessageStringExtractor() # TODO: improve test. output_writer = TestOutputWriter() processed_message_filenames = [] event_log_provider = resources.EventLogProvider( 'log_type', 'log_source', 'provider_guid') message_filename = '' message_file_type = '' extractor_object._ExtractMessageFile( output_writer, processed_message_filenames, event_log_provider, message_filename, message_file_type) self.assertEqual(len(output_writer.event_log_providers), 0) self.assertEqual(len(output_writer.message_files), 0) def testGetEventLogProviders(self): """Tests the _GetEventLogProviders function.""" extractor_object = self._CreateTestEventMessageStringExtractor() event_log_providers = list(extractor_object._GetEventLogProviders()) self.assertEqual(len(event_log_providers), 258) event_log_providers = list( extractor_object._GetEventLogProviders(all_control_sets=True)) self.assertEqual(len(event_log_providers), 516) def testGetSystemRoot(self): """Tests the _GetSystemRoot function.""" extractor_object = self._CreateTestEventMessageStringExtractor() system_root = extractor_object._GetSystemRoot() self.assertEqual(system_root, 'C:\\WINDOWS') def testGetWindowsVersion(self): """Tests the _GetWindowsVersion function.""" extractor_object = self._CreateTestEventMessageStringExtractor() windows_version = extractor_object._GetWindowsVersion() # TODO: improve test. self.assertIsNone(windows_version) def testOpenMessageResourceFile(self): """Tests the _OpenMessageResourceFile function.""" extractor_object = self._CreateTestEventMessageStringExtractor() # TODO: improve test. message_resource_file = extractor_object._OpenMessageResourceFile( 'C:\\Windows\\System32\\wrc_test.dll') self.assertIsNone(message_resource_file) # TODO: test _OpenMessageResourceFileByPathSpec def testExtractEventLogMessageStrings(self): """Tests the ExtractEventLogMessageStrings function.""" extractor_object = self._CreateTestEventMessageStringExtractor() output_writer = TestOutputWriter() extractor_object.ExtractEventLogMessageStrings(output_writer) self.assertEqual(len(output_writer.event_log_providers), 258) self.assertEqual(len(output_writer.message_files), 0) if __name__ == '__main__': unittest.main()
[ "unittest.main", "dfvfs.helpers.windows_path_resolver.WindowsPathResolver", "winevtrc.resources.EventLogProvider", "dfvfs.helpers.fake_file_system_builder.FakeFileSystemBuilder", "winevtrc.extractor.EventMessageStringRegistryFileReader", "tests.test_lib.skipUnlessHasTestFile", "dfvfs.path.factory.Factory.NewPathSpec", "winevtrc.extractor.EventMessageStringExtractor" ]
[((2358, 2409), 'tests.test_lib.skipUnlessHasTestFile', 'shared_test_lib.skipUnlessHasTestFile', (["['SOFTWARE']"], {}), "(['SOFTWARE'])\n", (2395, 2409), True, 'from tests import test_lib as shared_test_lib\n'), ((2411, 2460), 'tests.test_lib.skipUnlessHasTestFile', 'shared_test_lib.skipUnlessHasTestFile', (["['SYSTEM']"], {}), "(['SYSTEM'])\n", (2448, 2460), True, 'from tests import test_lib as shared_test_lib\n'), ((7880, 7895), 'unittest.main', 'unittest.main', ([], {}), '()\n', (7893, 7895), False, 'import unittest\n'), ((2021, 2060), 'winevtrc.extractor.EventMessageStringExtractor', 'extractor.EventMessageStringExtractor', ([], {}), '()\n', (2058, 2060), False, 'from winevtrc import extractor\n'), ((2080, 2142), 'winevtrc.extractor.EventMessageStringRegistryFileReader', 'extractor.EventMessageStringRegistryFileReader', (['volume_scanner'], {}), '(volume_scanner)\n', (2126, 2142), False, 'from winevtrc import extractor\n'), ((2869, 2917), 'dfvfs.helpers.fake_file_system_builder.FakeFileSystemBuilder', 'fake_file_system_builder.FakeFileSystemBuilder', ([], {}), '()\n', (2915, 2917), False, 'from dfvfs.helpers import fake_file_system_builder\n'), ((3253, 3347), 'dfvfs.path.factory.Factory.NewPathSpec', 'path_spec_factory.Factory.NewPathSpec', (['dfvfs_definitions.TYPE_INDICATOR_FAKE'], {'location': '"""/"""'}), "(dfvfs_definitions.TYPE_INDICATOR_FAKE,\n location='/')\n", (3290, 3347), True, 'from dfvfs.path import factory as path_spec_factory\n'), ((3377, 3416), 'winevtrc.extractor.EventMessageStringExtractor', 'extractor.EventMessageStringExtractor', ([], {}), '()\n', (3414, 3416), False, 'from winevtrc import extractor\n'), ((3534, 3625), 'dfvfs.helpers.windows_path_resolver.WindowsPathResolver', 'windows_path_resolver.WindowsPathResolver', (['file_system_builder.file_system', 'mount_point'], {}), '(file_system_builder.file_system,\n mount_point)\n', (3575, 3625), False, 'from dfvfs.helpers import windows_path_resolver\n'), ((5647, 5716), 'winevtrc.resources.EventLogProvider', 'resources.EventLogProvider', (['"""log_type"""', '"""log_source"""', '"""provider_guid"""'], {}), "('log_type', 'log_source', 'provider_guid')\n", (5673, 5716), False, 'from winevtrc import resources\n')]
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import rospkg import threading import yaml from copy import deepcopy import message_filters import numpy as np import pyrobot.utils.util as prutil import rospy from pyrobot.core import Camera from sensor_msgs.msg import CameraInfo from sensor_msgs.msg import Image from std_msgs.msg import Float64 import sys ros_path = '/opt/ros/kinetic/lib/python2.7/dist-packages' if ros_path in sys.path: sys.path.remove(ros_path) import cv2 sys.path.append(ros_path) from cv_bridge import CvBridge, CvBridgeError class Kinect2Camera(Camera): """ This is camera class that interfaces with the KinectV2 camera """ def __init__(self, configs): """ Constructor of the KinectV2Camera class. :param configs: Camera specific configuration object :type configs: YACS CfgNode """ super(Kinect2Camera, self).__init__(configs=configs) self.cv_bridge = CvBridge() self.camera_info_lock = threading.RLock() self.camera_img_lock = threading.RLock() self.rgb_img = None self.depth_img = None self.camera_info = None self.camera_P = None rospy.Subscriber(self.configs.CAMERA.ROSTOPIC_CAMERA_INFO_STREAM, CameraInfo, self._camera_info_callback) rgb_topic = self.configs.CAMERA.ROSTOPIC_CAMERA_RGB_STREAM self.rgb_sub = message_filters.Subscriber(rgb_topic, Image) depth_topic = self.configs.CAMERA.ROSTOPIC_CAMERA_DEPTH_STREAM self.depth_sub = message_filters.Subscriber(depth_topic, Image) img_subs = [self.rgb_sub, self.depth_sub] self.sync = message_filters.ApproximateTimeSynchronizer(img_subs, queue_size=10, slop=0.2) self.sync.registerCallback(self._sync_callback) self.DepthMapFactor = float(self.configs.CAMERA.DEPTH_MAP_FACTOR) self.intrinsic_mat = None def _sync_callback(self, rgb, depth): self.camera_img_lock.acquire() try: self.rgb_img = self.cv_bridge.imgmsg_to_cv2(rgb, "bgr8") self.rgb_img = self.rgb_img[:, :, ::-1] self.depth_img = self.cv_bridge.imgmsg_to_cv2(depth, "passthrough") except CvBridgeError as e: rospy.logerr(e) self.camera_img_lock.release() def _camera_info_callback(self, msg): self.camera_info_lock.acquire() self.camera_info = msg self.camera_P = np.array(msg.P).reshape((3, 4)) self.camera_info_lock.release() def get_rgb(self): ''' This function returns the RGB image perceived by the camera. :rtype: np.ndarray or None ''' self.camera_img_lock.acquire() rgb = deepcopy(self.rgb_img) self.camera_img_lock.release() return rgb def get_depth(self): ''' This function returns the depth image perceived by the camera. :rtype: np.ndarray or None ''' self.camera_img_lock.acquire() depth = deepcopy(self.depth_img) self.camera_img_lock.release() return depth def get_rgb_depth(self): ''' This function returns both the RGB and depth images perceived by the camera. :rtype: np.ndarray or None ''' self.camera_img_lock.acquire() rgb = deepcopy(self.rgb_img) depth = deepcopy(self.depth_img) self.camera_img_lock.release() return rgb, depth def get_intrinsics(self): """ This function returns the camera intrinsics. :rtype: np.ndarray """ if self.camera_P is None: return self.camera_P self.camera_info_lock.acquire() P = deepcopy(self.camera_P) self.camera_info_lock.release() return P[:3, :3] def get_current_pcd(self): """ Return the point cloud at current time step (one frame only) :returns: tuple (pts, colors) pts: point coordinates in camera frame (shape: :math:`[N, 3]`) colors: rgb values for pts_in_cam (shape: :math:`[N, 3]`) :rtype: tuple(np.ndarray, np.ndarray) """ rgb_im, depth_im = self.get_rgb_depth() depth = depth_im.reshape(-1) / self.DepthMapFactor rgb = rgb_im.reshape(-1, 3) if self.intrinsic_mat is None: self.intrinsic_mat = self.get_intrinsics() self.intrinsic_mat_inv = np.linalg.inv(self.intrinsic_mat) #TODO: image height --> rgb_im.shape[0] and width--> rgb_im.shape[1] img_pixs = np.mgrid[0: rgb_im.shape[0]: 1, 0: rgb_im.shape[1]: 1] img_pixs = img_pixs.reshape(2, -1) img_pixs[[0, 1], :] = img_pixs[[1, 0], :] self.uv_one = np.concatenate((img_pixs, np.ones((1, img_pixs.shape[1])))) self.uv_one_in_cam = np.dot(self.intrinsic_mat_inv, self.uv_one) pts_in_cam = np.multiply(self.uv_one_in_cam, depth) pts_in_cam = np.concatenate((pts_in_cam, np.ones((1, pts_in_cam.shape[1]))), axis=0) pts = pts_in_cam[:3, :].T return pts, rgb def pix_to_3dpt(self, rs, cs, reduce = 'none', k=5): """ Get the 3D points of the pixels in RGB images. :param rs: rows of interest in the RGB image. It can be a list or 1D numpy array which contains the row indices. The default value is None, which means all rows. :param cs: columns of interest in the RGB image. It can be a list or 1D numpy array which contains the column indices. The default value is None, which means all columns. :param reduce: whether to consider the depth at nearby pixels 'none': no neighbour consideration 'mean': depth based on the mean of kernel sized k centered at [rs,cs] 'max': depth based on the max of kernel sized k centered at [rs,cs] 'min': depth based on the min of kernel sized k centered at [rs,cs] :param k: kernel size for reduce type['mean', 'max', 'min'] :type rs: list or np.ndarray :type cs: list or np.ndarray :type reduce: str :tyep k: int :returns: tuple (pts, colors) pts: point coordinates in world frame (shape: :math:`[N, 3]`) colors: rgb values for pts_in_cam (shape: :math:`[N, 3]`) :rtype: tuple(np.ndarray, np.ndarray) """ assert isinstance(rs, int) or isinstance(rs, list) or isinstance(rs, np.ndarray) assert isinstance(cs, int) or isinstance(cs, list) or isinstance(cs, np.ndarray) if isinstance(rs, int): rs = [rs] if isinstance(cs, int): cs = [cs] if isinstance(rs, np.ndarray): rs = rs.flatten() if isinstance(cs, np.ndarray): cs = cs.flatten() rgb_im, depth_im = self.get_rgb_depth() R,C,_ = rgb_im.shape if reduce == 'none': depth_im = depth_im[rs, cs] elif reduce == 'mean': depth_im = np.array([np.mean(depth_im[max(i-k,0):min(i+k,R), max(j-k,0):min(j+k,C)]) for i,j in zip(rs,cs)]) elif reduce == 'max': depth_im = np.array([np.max(depth_im[max(i-k,0):min(i+k,R), max(j-k,0):min(j+k,C)]) for i,j in zip(rs,cs)]) elif reduce == 'min': depth_im = np.array([np.min(depth_im[max(i-k,0):min(i+k,R), max(j-k,0):min(j+k,C)]) for i,j in zip(rs,cs)]) else: raise ValueError('Invalid reduce name provided, only the following' ' are currently available: [{}, {}, {}, {}]'.format('none','mean', 'max', 'min')) #depth_im = depth_im[rs, cs] depth = depth_im.reshape(-1) / self.DepthMapFactor img_pixs = np.stack((rs, cs)).reshape(2, -1) img_pixs[[0, 1], :] = img_pixs[[1, 0], :] uv_one = np.concatenate((img_pixs, np.ones((1, img_pixs.shape[1])))) if self.intrinsic_mat is None: self.intrinsic_mat = self.get_intrinsics() self.intrinsic_mat_inv = np.linalg.inv(self.intrinsic_mat) uv_one_in_cam = np.dot(self.intrinsic_mat_inv, uv_one) pts_in_cam = np.multiply(uv_one_in_cam, depth) pts_in_cam = np.concatenate((pts_in_cam, np.ones((1, pts_in_cam.shape[1]))), axis=0) pts = pts_in_cam[:3, :].T colors = rgb_im[rs, cs].reshape(-1, 3) return pts, colors
[ "sys.path.append", "numpy.stack", "cv_bridge.CvBridge", "sys.path.remove", "rospy.Subscriber", "copy.deepcopy", "numpy.multiply", "rospy.logerr", "threading.RLock", "message_filters.ApproximateTimeSynchronizer", "numpy.ones", "numpy.linalg.inv", "numpy.array", "message_filters.Subscriber", "numpy.dot" ]
[((627, 652), 'sys.path.append', 'sys.path.append', (['ros_path'], {}), '(ros_path)\n', (642, 652), False, 'import sys\n'), ((586, 611), 'sys.path.remove', 'sys.path.remove', (['ros_path'], {}), '(ros_path)\n', (601, 611), False, 'import sys\n'), ((1101, 1111), 'cv_bridge.CvBridge', 'CvBridge', ([], {}), '()\n', (1109, 1111), False, 'from cv_bridge import CvBridge, CvBridgeError\n'), ((1144, 1161), 'threading.RLock', 'threading.RLock', ([], {}), '()\n', (1159, 1161), False, 'import threading\n'), ((1193, 1210), 'threading.RLock', 'threading.RLock', ([], {}), '()\n', (1208, 1210), False, 'import threading\n'), ((1338, 1447), 'rospy.Subscriber', 'rospy.Subscriber', (['self.configs.CAMERA.ROSTOPIC_CAMERA_INFO_STREAM', 'CameraInfo', 'self._camera_info_callback'], {}), '(self.configs.CAMERA.ROSTOPIC_CAMERA_INFO_STREAM,\n CameraInfo, self._camera_info_callback)\n', (1354, 1447), False, 'import rospy\n'), ((1585, 1629), 'message_filters.Subscriber', 'message_filters.Subscriber', (['rgb_topic', 'Image'], {}), '(rgb_topic, Image)\n', (1611, 1629), False, 'import message_filters\n'), ((1726, 1772), 'message_filters.Subscriber', 'message_filters.Subscriber', (['depth_topic', 'Image'], {}), '(depth_topic, Image)\n', (1752, 1772), False, 'import message_filters\n'), ((1843, 1921), 'message_filters.ApproximateTimeSynchronizer', 'message_filters.ApproximateTimeSynchronizer', (['img_subs'], {'queue_size': '(10)', 'slop': '(0.2)'}), '(img_subs, queue_size=10, slop=0.2)\n', (1886, 1921), False, 'import message_filters\n'), ((3035, 3057), 'copy.deepcopy', 'deepcopy', (['self.rgb_img'], {}), '(self.rgb_img)\n', (3043, 3057), False, 'from copy import deepcopy\n'), ((3327, 3351), 'copy.deepcopy', 'deepcopy', (['self.depth_img'], {}), '(self.depth_img)\n', (3335, 3351), False, 'from copy import deepcopy\n'), ((3647, 3669), 'copy.deepcopy', 'deepcopy', (['self.rgb_img'], {}), '(self.rgb_img)\n', (3655, 3669), False, 'from copy import deepcopy\n'), ((3686, 3710), 'copy.deepcopy', 'deepcopy', (['self.depth_img'], {}), '(self.depth_img)\n', (3694, 3710), False, 'from copy import deepcopy\n'), ((4030, 4053), 'copy.deepcopy', 'deepcopy', (['self.camera_P'], {}), '(self.camera_P)\n', (4038, 4053), False, 'from copy import deepcopy\n'), ((5306, 5344), 'numpy.multiply', 'np.multiply', (['self.uv_one_in_cam', 'depth'], {}), '(self.uv_one_in_cam, depth)\n', (5317, 5344), True, 'import numpy as np\n'), ((9059, 9097), 'numpy.dot', 'np.dot', (['self.intrinsic_mat_inv', 'uv_one'], {}), '(self.intrinsic_mat_inv, uv_one)\n', (9065, 9097), True, 'import numpy as np\n'), ((9119, 9152), 'numpy.multiply', 'np.multiply', (['uv_one_in_cam', 'depth'], {}), '(uv_one_in_cam, depth)\n', (9130, 9152), True, 'import numpy as np\n'), ((4759, 4792), 'numpy.linalg.inv', 'np.linalg.inv', (['self.intrinsic_mat'], {}), '(self.intrinsic_mat)\n', (4772, 4792), True, 'import numpy as np\n'), ((5232, 5275), 'numpy.dot', 'np.dot', (['self.intrinsic_mat_inv', 'self.uv_one'], {}), '(self.intrinsic_mat_inv, self.uv_one)\n', (5238, 5275), True, 'import numpy as np\n'), ((9001, 9034), 'numpy.linalg.inv', 'np.linalg.inv', (['self.intrinsic_mat'], {}), '(self.intrinsic_mat)\n', (9014, 9034), True, 'import numpy as np\n'), ((2565, 2580), 'rospy.logerr', 'rospy.logerr', (['e'], {}), '(e)\n', (2577, 2580), False, 'import rospy\n'), ((2758, 2773), 'numpy.array', 'np.array', (['msg.P'], {}), '(msg.P)\n', (2766, 2773), True, 'import numpy as np\n'), ((5431, 5464), 'numpy.ones', 'np.ones', (['(1, pts_in_cam.shape[1])'], {}), '((1, pts_in_cam.shape[1]))\n', (5438, 5464), True, 'import numpy as np\n'), ((8676, 8694), 'numpy.stack', 'np.stack', (['(rs, cs)'], {}), '((rs, cs))\n', (8684, 8694), True, 'import numpy as np\n'), ((8836, 8867), 'numpy.ones', 'np.ones', (['(1, img_pixs.shape[1])'], {}), '((1, img_pixs.shape[1]))\n', (8843, 8867), True, 'import numpy as np\n'), ((9239, 9272), 'numpy.ones', 'np.ones', (['(1, pts_in_cam.shape[1])'], {}), '((1, pts_in_cam.shape[1]))\n', (9246, 9272), True, 'import numpy as np\n'), ((5165, 5196), 'numpy.ones', 'np.ones', (['(1, img_pixs.shape[1])'], {}), '((1, img_pixs.shape[1]))\n', (5172, 5196), True, 'import numpy as np\n')]
import matplotlib.pyplot as plt import numpy as np from typing import List, Union from ..storage import History from .util import to_lists_or_default def plot_sample_numbers( histories: Union[List, History], labels: Union[List, str] = None, rotation: int = 0, title: str = "Total required samples", size: tuple = None): """ Plot required numbers of samples over all iterations. Parameters ---------- histories: Union[List, History] The histories to plot from. History ids must be set correctly. labels: Union[List ,str], optional Labels corresponding to the histories. If None are provided, indices are used as labels. rotation: int, optional (default = 0) Rotation to apply to the plot's x tick labels. For longer labels, a tilting of 45 or even 90 can be preferable. title: str, optional (default = "Total required samples") Title for the plot. size: tuple of float, optional The size of the plot in inches. Returns ------- ax: Axis of the generated plot. """ # preprocess input histories, labels = to_lists_or_default(histories, labels) # create figure fig, ax = plt.subplots() n_run = len(histories) # extract sample numbers samples = [] for history in histories: # note: the first entry corresponds to the calibration and should # be included here to be fair against methods not requiring # calibration samples.append(np.array(history.get_all_populations()['samples'])) # create matrix n_pop = max(len(sample) for sample in samples) matrix = np.zeros((n_pop, n_run)) for i_sample, sample in enumerate(samples): matrix[:len(sample), i_sample] = sample # plot bars for i_pop in range(n_pop): ax.bar(x=np.arange(n_run), height=matrix[i_pop, :], bottom=np.sum(matrix[:i_pop, :], axis=0)) # add labels ax.set_xticks(np.arange(n_run)) ax.set_xticklabels(labels, rotation=rotation) ax.set_title(title) ax.set_ylabel("Samples") ax.set_xlabel("Run") # set size if size is not None: fig.set_size_inches(size) fig.tight_layout() return ax
[ "numpy.zeros", "numpy.sum", "matplotlib.pyplot.subplots", "numpy.arange" ]
[((1238, 1252), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1250, 1252), True, 'import matplotlib.pyplot as plt\n'), ((1682, 1706), 'numpy.zeros', 'np.zeros', (['(n_pop, n_run)'], {}), '((n_pop, n_run))\n', (1690, 1706), True, 'import numpy as np\n'), ((2019, 2035), 'numpy.arange', 'np.arange', (['n_run'], {}), '(n_run)\n', (2028, 2035), True, 'import numpy as np\n'), ((1868, 1884), 'numpy.arange', 'np.arange', (['n_run'], {}), '(n_run)\n', (1877, 1884), True, 'import numpy as np\n'), ((1948, 1981), 'numpy.sum', 'np.sum', (['matrix[:i_pop, :]'], {'axis': '(0)'}), '(matrix[:i_pop, :], axis=0)\n', (1954, 1981), True, 'import numpy as np\n')]
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Manages a debugging session with GDB. This module is meant to be imported from inside GDB. Once loaded, the |DebugSession| attaches GDB to a running Mojo Shell process on an Android device using a remote gdbserver. At startup and each time the execution stops, |DebugSession| associates debugging symbols for every frame. For more information, see |DebugSession| documentation. """ import gdb import glob import itertools import logging import os import os.path import shutil import subprocess import sys import tempfile import traceback import urllib2 sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import android_gdb.config as config from android_gdb.remote_file_connection import RemoteFileConnection from android_gdb.signatures import get_signature logging.getLogger().setLevel(logging.INFO) def _gdb_execute(command): """Executes a GDB command.""" return gdb.execute(command, to_string=True) class Mapping(object): """Represents a mapped memory region.""" def __init__(self, line): self.start = int(line[0], 16) self.end = int(line[1], 16) self.size = int(line[2], 16) self.offset = int(line[3], 16) self.filename = line[4] def _get_mapped_files(): """Retrieves all the files mapped into the debugged process memory. Returns: List of mapped memory regions grouped by files. """ # info proc map returns a space-separated table with the following fields: # start address, end address, size, offset, file path. mappings = [Mapping(x) for x in [x.split() for x in _gdb_execute("info proc map").split('\n')] if len(x) == 5 and x[4][0] == '/'] res = {} for m in mappings: libname = m.filename[m.filename.rfind('/') + 1:] res[libname] = res.get(libname, []) + [m] return res.values() class DebugSession(object): def __init__(self, build_directory_list, package_name, pyelftools_dir, adb): build_directories = build_directory_list.split(',') if len(build_directories) == 0 or not all(map(os.path.exists, build_directories)): logging.fatal("Please pass a list of valid build directories") sys.exit(1) self._package_name = package_name self._adb = adb self._remote_file_cache = os.path.join(os.getenv('HOME'), '.mojosymbols') if pyelftools_dir != None: sys.path.append(pyelftools_dir) try: import elftools.elf.elffile as elffile except ImportError: logging.fatal("Unable to find elftools module; please install pyelftools " "and specify its path on the command line using " "--pyelftools-dir.") sys.exit(1) self._elffile_module = elffile self._libraries = self._find_libraries(build_directories) self._rfc = RemoteFileConnection('localhost', 10000) self._remote_file_reader_process = None if not os.path.exists(self._remote_file_cache): os.makedirs(self._remote_file_cache) self._done_mapping = set() self._downloaded_files = [] def __del__(self): # Note that, per python interpreter documentation, __del__ is not # guaranteed to be called when the interpreter (GDB, in our case) quits. # Also, most (all?) globals are no longer available at this time (launching # a subprocess does not work). self.stop() def stop(self, _unused_return_value=None): if self._remote_file_reader_process != None: self._remote_file_reader_process.kill() def _find_libraries(self, lib_dirs): """Finds all libraries in |lib_dirs| and key them by their signatures. """ res = {} for lib_dir in lib_dirs: for fn in glob.glob('%s/*.so' % lib_dir): with open(fn, 'r') as f: s = get_signature(f, self._elffile_module) if s is not None: res[s] = fn return res def _associate_symbols(self, mapping, local_file): with open(local_file, "r") as f: elf = self._elffile_module.ELFFile(f) s = elf.get_section_by_name(".text") text_address = mapping[0].start + s['sh_offset'] _gdb_execute("add-symbol-file %s 0x%x" % (local_file, text_address)) def _download_file(self, signature, remote): """Downloads a remote file either from the cloud or through GDB connection. Returns: The filename of the downloaded file """ temp_file = tempfile.NamedTemporaryFile() logging.info("Trying to download symbols from the cloud.") symbols_url = "http://storage.googleapis.com/mojo/symbols/%s" % signature try: symbol_file = urllib2.urlopen(symbols_url) try: with open(temp_file.name, "w") as dst: shutil.copyfileobj(symbol_file, dst) logging.info("Getting symbols for %s at %s." % (remote, symbols_url)) # This allows the deletion of temporary files on disk when the # debugging session terminates. self._downloaded_files.append(temp_file) return temp_file.name finally: symbol_file.close() except urllib2.HTTPError: pass logging.info("Downloading file %s" % remote) _gdb_execute("remote get %s %s" % (remote, temp_file.name)) # This allows the deletion of temporary files on disk when the debugging # session terminates. self._downloaded_files.append(temp_file) return temp_file.name def _find_mapping_for_address(self, mappings, address): """Returns the list of all mappings of the file occupying the |address| memory address. """ for file_mappings in mappings: for mapping in file_mappings: if address >= mapping.start and address <= mapping.end: return file_mappings return None def _try_to_map(self, mapping): remote_file = mapping[0].filename if remote_file in self._done_mapping: return False self._done_mapping.add(remote_file) self._rfc.open(remote_file) signature = get_signature(self._rfc, self._elffile_module) if signature is not None: if signature in self._libraries: self._associate_symbols(mapping, self._libraries[signature]) else: # This library file is not known locally. Download it from the device or # the cloud and put it in cache so, if it got symbols, we can see them. local_file = os.path.join(self._remote_file_cache, signature) if not os.path.exists(local_file): tmp_output = self._download_file(signature, remote_file) shutil.move(tmp_output, local_file) self._associate_symbols(mapping, local_file) return True return False def _map_symbols_on_current_thread(self, mapped_files): """Updates the symbols for the current thread using files from mapped_files. """ frame = gdb.newest_frame() while frame and frame.is_valid(): if frame.name() is None: m = self._find_mapping_for_address(mapped_files, frame.pc()) if m is not None and self._try_to_map(m): # Force gdb to recompute its frames. _gdb_execute("info threads") frame = gdb.newest_frame() assert frame.is_valid() if (frame.older() is not None and frame.older().is_valid() and frame.older().pc() != frame.pc()): frame = frame.older() else: frame = None def update_symbols(self, current_thread_only): """Updates the mapping between symbols as seen from GDB and local library files. If current_thread_only is True, only update symbols for the current thread. """ logging.info("Updating symbols") mapped_files = _get_mapped_files() # Map all symbols from native libraries packages with the APK. for file_mappings in mapped_files: filename = file_mappings[0].filename if ((filename.startswith('/data/data/') or filename.startswith('/data/app')) and not filename.endswith('.apk') and not filename.endswith('.dex')): logging.info('Pre-mapping: %s' % file_mappings[0].filename) self._try_to_map(file_mappings) if current_thread_only: self._map_symbols_on_current_thread(mapped_files) else: logging.info('Updating all threads\' symbols') current_thread = gdb.selected_thread() nb_threads = len(_gdb_execute("info threads").split("\n")) - 2 for i in xrange(nb_threads): try: _gdb_execute("thread %d" % (i + 1)) self._map_symbols_on_current_thread(mapped_files) except gdb.error: traceback.print_exc() current_thread.switch() def _get_device_application_pid(self, application): """Gets the PID of an application running on a device.""" output = subprocess.check_output([self._adb, 'shell', 'ps']) for line in output.split('\n'): elements = line.split() if len(elements) > 0 and elements[-1] == application: return elements[1] return None def start(self): """Starts a debugging session.""" gdbserver_pid = self._get_device_application_pid('gdbserver') if gdbserver_pid is not None: subprocess.check_call([self._adb, 'shell', 'kill', gdbserver_pid]) shell_pid = self._get_device_application_pid(self._package_name) if shell_pid is None: raise Exception('Unable to find a running mojo shell.') subprocess.check_call([self._adb, 'forward', 'tcp:9999', 'tcp:9999']) subprocess.Popen( [self._adb, 'shell', 'gdbserver', '--attach', ':9999', shell_pid], # os.setpgrp ensures signals passed to this file (such as SIGINT) are # not propagated to child processes. preexec_fn = os.setpgrp) # Kill stray remote reader processes. See __del__ comment for more info. remote_file_reader_pid = self._get_device_application_pid( config.REMOTE_FILE_READER_DEVICE_PATH) if remote_file_reader_pid is not None: subprocess.check_call([self._adb, 'shell', 'kill', remote_file_reader_pid]) self._remote_file_reader_process = subprocess.Popen( [self._adb, 'shell', config.REMOTE_FILE_READER_DEVICE_PATH], stdout=subprocess.PIPE, preexec_fn = os.setpgrp) port = int(self._remote_file_reader_process.stdout.readline()) subprocess.check_call([self._adb, 'forward', 'tcp:10000', 'tcp:%d' % port]) self._rfc.connect() _gdb_execute('target remote localhost:9999') self.update_symbols(current_thread_only=False) def on_stop(_): self.update_symbols(current_thread_only=True) gdb.events.stop.connect(on_stop) gdb.events.exited.connect(self.stop) # Register the update-symbols command. UpdateSymbols(self) class UpdateSymbols(gdb.Command): """Command to update symbols loaded into GDB. GDB usage: update-symbols [all|current] """ _UPDATE_COMMAND = "update-symbols" def __init__(self, session): super(UpdateSymbols, self).__init__(self._UPDATE_COMMAND, gdb.COMMAND_STACK) self._session = session def invoke(self, arg, _unused_from_tty): if arg == 'current': self._session.update_symbols(current_thread_only=True) else: self._session.update_symbols(current_thread_only=False) def complete(self, text, _unused_word): if text == self._UPDATE_COMMAND: return ('all', 'current') elif text in self._UPDATE_COMMAND + ' all': return ['all'] elif text in self._UPDATE_COMMAND + ' current': return ['current'] else: return []
[ "glob.glob", "os.path.join", "urllib2.urlopen", "subprocess.check_call", "sys.path.append", "os.path.abspath", "traceback.print_exc", "os.path.exists", "gdb.newest_frame", "shutil.copyfileobj", "subprocess.Popen", "subprocess.check_output", "android_gdb.remote_file_connection.RemoteFileConnection", "logging.fatal", "gdb.events.exited.connect", "os.getenv", "sys.exit", "tempfile.NamedTemporaryFile", "gdb.selected_thread", "gdb.execute", "gdb.events.stop.connect", "os.makedirs", "logging.info", "android_gdb.signatures.get_signature", "shutil.move", "logging.getLogger" ]
[((1069, 1105), 'gdb.execute', 'gdb.execute', (['command'], {'to_string': '(True)'}), '(command, to_string=True)\n', (1080, 1105), False, 'import gdb\n'), ((956, 975), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (973, 975), False, 'import logging\n'), ((2991, 3031), 'android_gdb.remote_file_connection.RemoteFileConnection', 'RemoteFileConnection', (['"""localhost"""', '(10000)'], {}), "('localhost', 10000)\n", (3011, 3031), False, 'from android_gdb.remote_file_connection import RemoteFileConnection\n'), ((4557, 4586), 'tempfile.NamedTemporaryFile', 'tempfile.NamedTemporaryFile', ([], {}), '()\n', (4584, 4586), False, 'import tempfile\n'), ((4591, 4649), 'logging.info', 'logging.info', (['"""Trying to download symbols from the cloud."""'], {}), "('Trying to download symbols from the cloud.')\n", (4603, 4649), False, 'import logging\n'), ((5257, 5301), 'logging.info', 'logging.info', (["('Downloading file %s' % remote)"], {}), "('Downloading file %s' % remote)\n", (5269, 5301), False, 'import logging\n'), ((6107, 6153), 'android_gdb.signatures.get_signature', 'get_signature', (['self._rfc', 'self._elffile_module'], {}), '(self._rfc, self._elffile_module)\n', (6120, 6153), False, 'from android_gdb.signatures import get_signature\n'), ((6939, 6957), 'gdb.newest_frame', 'gdb.newest_frame', ([], {}), '()\n', (6955, 6957), False, 'import gdb\n'), ((7722, 7754), 'logging.info', 'logging.info', (['"""Updating symbols"""'], {}), "('Updating symbols')\n", (7734, 7754), False, 'import logging\n'), ((8869, 8920), 'subprocess.check_output', 'subprocess.check_output', (["[self._adb, 'shell', 'ps']"], {}), "([self._adb, 'shell', 'ps'])\n", (8892, 8920), False, 'import subprocess\n'), ((9482, 9551), 'subprocess.check_call', 'subprocess.check_call', (["[self._adb, 'forward', 'tcp:9999', 'tcp:9999']"], {}), "([self._adb, 'forward', 'tcp:9999', 'tcp:9999'])\n", (9503, 9551), False, 'import subprocess\n'), ((9556, 9666), 'subprocess.Popen', 'subprocess.Popen', (["[self._adb, 'shell', 'gdbserver', '--attach', ':9999', shell_pid]"], {'preexec_fn': 'os.setpgrp'}), "([self._adb, 'shell', 'gdbserver', '--attach', ':9999',\n shell_pid], preexec_fn=os.setpgrp)\n", (9572, 9666), False, 'import subprocess\n'), ((10186, 10315), 'subprocess.Popen', 'subprocess.Popen', (["[self._adb, 'shell', config.REMOTE_FILE_READER_DEVICE_PATH]"], {'stdout': 'subprocess.PIPE', 'preexec_fn': 'os.setpgrp'}), "([self._adb, 'shell', config.REMOTE_FILE_READER_DEVICE_PATH\n ], stdout=subprocess.PIPE, preexec_fn=os.setpgrp)\n", (10202, 10315), False, 'import subprocess\n'), ((10401, 10476), 'subprocess.check_call', 'subprocess.check_call', (["[self._adb, 'forward', 'tcp:10000', 'tcp:%d' % port]"], {}), "([self._adb, 'forward', 'tcp:10000', 'tcp:%d' % port])\n", (10422, 10476), False, 'import subprocess\n'), ((10679, 10711), 'gdb.events.stop.connect', 'gdb.events.stop.connect', (['on_stop'], {}), '(on_stop)\n', (10702, 10711), False, 'import gdb\n'), ((10716, 10752), 'gdb.events.exited.connect', 'gdb.events.exited.connect', (['self.stop'], {}), '(self.stop)\n', (10741, 10752), False, 'import gdb\n'), ((772, 797), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (787, 797), False, 'import os\n'), ((2301, 2363), 'logging.fatal', 'logging.fatal', (['"""Please pass a list of valid build directories"""'], {}), "('Please pass a list of valid build directories')\n", (2314, 2363), False, 'import logging\n'), ((2370, 2381), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2378, 2381), False, 'import sys\n'), ((2483, 2500), 'os.getenv', 'os.getenv', (['"""HOME"""'], {}), "('HOME')\n", (2492, 2500), False, 'import os\n'), ((2556, 2587), 'sys.path.append', 'sys.path.append', (['pyelftools_dir'], {}), '(pyelftools_dir)\n', (2571, 2587), False, 'import sys\n'), ((3087, 3126), 'os.path.exists', 'os.path.exists', (['self._remote_file_cache'], {}), '(self._remote_file_cache)\n', (3101, 3126), False, 'import os\n'), ((3134, 3170), 'os.makedirs', 'os.makedirs', (['self._remote_file_cache'], {}), '(self._remote_file_cache)\n', (3145, 3170), False, 'import os\n'), ((3856, 3886), 'glob.glob', 'glob.glob', (["('%s/*.so' % lib_dir)"], {}), "('%s/*.so' % lib_dir)\n", (3865, 3886), False, 'import glob\n'), ((4757, 4785), 'urllib2.urlopen', 'urllib2.urlopen', (['symbols_url'], {}), '(symbols_url)\n', (4772, 4785), False, 'import urllib2\n'), ((8336, 8381), 'logging.info', 'logging.info', (['"""Updating all threads\' symbols"""'], {}), '("Updating all threads\' symbols")\n', (8348, 8381), False, 'import logging\n'), ((8406, 8427), 'gdb.selected_thread', 'gdb.selected_thread', ([], {}), '()\n', (8425, 8427), False, 'import gdb\n'), ((9254, 9320), 'subprocess.check_call', 'subprocess.check_call', (["[self._adb, 'shell', 'kill', gdbserver_pid]"], {}), "([self._adb, 'shell', 'kill', gdbserver_pid])\n", (9275, 9320), False, 'import subprocess\n'), ((10042, 10117), 'subprocess.check_call', 'subprocess.check_call', (["[self._adb, 'shell', 'kill', remote_file_reader_pid]"], {}), "([self._adb, 'shell', 'kill', remote_file_reader_pid])\n", (10063, 10117), False, 'import subprocess\n'), ((2672, 2821), 'logging.fatal', 'logging.fatal', (['"""Unable to find elftools module; please install pyelftools and specify its path on the command line using --pyelftools-dir."""'], {}), "(\n 'Unable to find elftools module; please install pyelftools and specify its path on the command line using --pyelftools-dir.'\n )\n", (2685, 2821), False, 'import logging\n'), ((2864, 2875), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2872, 2875), False, 'import sys\n'), ((6486, 6534), 'os.path.join', 'os.path.join', (['self._remote_file_cache', 'signature'], {}), '(self._remote_file_cache, signature)\n', (6498, 6534), False, 'import os\n'), ((8135, 8194), 'logging.info', 'logging.info', (["('Pre-mapping: %s' % file_mappings[0].filename)"], {}), "('Pre-mapping: %s' % file_mappings[0].filename)\n", (8147, 8194), False, 'import logging\n'), ((3935, 3973), 'android_gdb.signatures.get_signature', 'get_signature', (['f', 'self._elffile_module'], {}), '(f, self._elffile_module)\n', (3948, 3973), False, 'from android_gdb.signatures import get_signature\n'), ((4854, 4890), 'shutil.copyfileobj', 'shutil.copyfileobj', (['symbol_file', 'dst'], {}), '(symbol_file, dst)\n', (4872, 4890), False, 'import shutil\n'), ((4901, 4970), 'logging.info', 'logging.info', (["('Getting symbols for %s at %s.' % (remote, symbols_url))"], {}), "('Getting symbols for %s at %s.' % (remote, symbols_url))\n", (4913, 4970), False, 'import logging\n'), ((6550, 6576), 'os.path.exists', 'os.path.exists', (['local_file'], {}), '(local_file)\n', (6564, 6576), False, 'import os\n'), ((6655, 6690), 'shutil.move', 'shutil.move', (['tmp_output', 'local_file'], {}), '(tmp_output, local_file)\n', (6666, 6690), False, 'import shutil\n'), ((7250, 7268), 'gdb.newest_frame', 'gdb.newest_frame', ([], {}), '()\n', (7266, 7268), False, 'import gdb\n'), ((8687, 8708), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (8706, 8708), False, 'import traceback\n')]
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="norma43parser", version="1.1.2", license="MIT", author="<NAME>", author_email="<EMAIL>", description="Parser for Bank Account information files formatted in Norma 43", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/sergief/norma43parser", packages=setuptools.find_packages(), keywords=["norma43", "parser", "bank", "account", "n43", "csb"], classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "Topic :: Software Development :: Libraries :: Python Modules", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], python_requires=">=3.6", )
[ "setuptools.find_packages" ]
[((459, 485), 'setuptools.find_packages', 'setuptools.find_packages', ([], {}), '()\n', (483, 485), False, 'import setuptools\n')]
""" Search for a good model for the [MNIST](https://keras.io/datasets/#mnist-database-of-handwritten-digits) dataset. """ import argparse import os import autokeras as ak import tensorflow_cloud as tfc from tensorflow.keras.datasets import mnist parser = argparse.ArgumentParser(description="Model save path arguments.") parser.add_argument("--path", required=True, type=str, help="Keras model save path") args = parser.parse_args() tfc.run( chief_config=tfc.COMMON_MACHINE_CONFIGS["V100_1X"], docker_base_image="haifengjin/autokeras:1.0.3", ) # Prepare the dataset. (x_train, y_train), (x_test, y_test) = mnist.load_data() print(x_train.shape) # (60000, 28, 28) print(y_train.shape) # (60000,) print(y_train[:3]) # array([7, 2, 1], dtype=uint8) # Initialize the ImageClassifier. clf = ak.ImageClassifier(max_trials=2) # Search for the best model. clf.fit(x_train, y_train, epochs=10) # Evaluate on the testing data. print("Accuracy: {accuracy}".format(accuracy=clf.evaluate(x_test, y_test)[1])) clf.export_model().save(os.path.join(args.path, "model.h5"))
[ "argparse.ArgumentParser", "autokeras.ImageClassifier", "tensorflow.keras.datasets.mnist.load_data", "os.path.join", "tensorflow_cloud.run" ]
[((258, 323), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Model save path arguments."""'}), "(description='Model save path arguments.')\n", (281, 323), False, 'import argparse\n'), ((437, 548), 'tensorflow_cloud.run', 'tfc.run', ([], {'chief_config': "tfc.COMMON_MACHINE_CONFIGS['V100_1X']", 'docker_base_image': '"""haifengjin/autokeras:1.0.3"""'}), "(chief_config=tfc.COMMON_MACHINE_CONFIGS['V100_1X'],\n docker_base_image='haifengjin/autokeras:1.0.3')\n", (444, 548), True, 'import tensorflow_cloud as tfc\n'), ((619, 636), 'tensorflow.keras.datasets.mnist.load_data', 'mnist.load_data', ([], {}), '()\n', (634, 636), False, 'from tensorflow.keras.datasets import mnist\n'), ((803, 835), 'autokeras.ImageClassifier', 'ak.ImageClassifier', ([], {'max_trials': '(2)'}), '(max_trials=2)\n', (821, 835), True, 'import autokeras as ak\n'), ((1038, 1073), 'os.path.join', 'os.path.join', (['args.path', '"""model.h5"""'], {}), "(args.path, 'model.h5')\n", (1050, 1073), False, 'import os\n')]
from flask_restful import Resource, reqparse, request from flask_restful import fields, marshal_with, marshal from sqlalchemy.exc import IntegrityError from sqlalchemy import or_, and_, text from flask_jwt_extended import jwt_required from models.course import Course from app import db from utils.util import max_res from helpers.courses_resource_helper import * class CoursesResource(Resource): @jwt_required def get(self, course_id=None): if course_id: course = Course.find_by_id(course_id) return max_res(marshal(course, course_fields)) else: conditions = [] args = course_query_parser.parse_args() page = args['page'] per_page = args['pagesize'] if args['orderby'] not in sortable_fields: return max_res('', code=500, errmsg='排序非法字段') sort = args['orderby'] if args['desc']>0: sort = args['orderby'] + ' desc' conditions = make_conditions(conditions,args) # 在这里添加更多的 条件查询 例如 # if args['name'] is not None: # conditions.append(Course.name.like('%'+args['name']+'%')) if conditions is []: pagination = Course.query.order_by(text(sort)).paginate(page, per_page, error_out=False) else: pagination = Course.query.filter(*conditions).order_by(text(sort)).paginate(page, per_page, error_out=False) paginate = { 'total':pagination.total, 'pageSize': pagination.per_page, 'current': pagination.page } print(pagination.items) return max_res(marshal({ 'pagination': paginate, 'list': [marshal(u, course_fields) for u in pagination.items] }, course_list_fields)) @jwt_required def post(self): args = course_post_parser.parse_args() course = Course(**args) try: course.add() except IntegrityError: return max_res('', code=401, errmsg='名称重复') return max_res(marshal(course, course_fields)) def put(self, course_id=None): course = Course.find_by_id(course_id) args = course_update_parser.parse_args() course = update_all_fields(args, course) #可以在这里继续添加 需要更新的字段 如 # if args['name']: # o.name = args['name'] # db.session.commit() try: course.update() except Exception as e: return max_res('',500, 'Failed to modify.') return max_res(marshal(course, course_fields)) def delete(self, course_id=None): course = Course.find_by_id(course_id) try: course.delete() except Exception as e: return max_res('',500, 'The record has already deleted.') return max_res('The course has been deleted.')
[ "utils.util.max_res", "models.course.Course.query.filter", "sqlalchemy.text", "app.db.session.commit", "models.course.Course", "flask_restful.marshal", "models.course.Course.find_by_id" ]
[((1993, 2007), 'models.course.Course', 'Course', ([], {}), '(**args)\n', (1999, 2007), False, 'from models.course import Course\n'), ((2247, 2275), 'models.course.Course.find_by_id', 'Course.find_by_id', (['course_id'], {}), '(course_id)\n', (2264, 2275), False, 'from models.course import Course\n'), ((2500, 2519), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (2517, 2519), False, 'from app import db\n'), ((2764, 2792), 'models.course.Course.find_by_id', 'Course.find_by_id', (['course_id'], {}), '(course_id)\n', (2781, 2792), False, 'from models.course import Course\n'), ((2952, 2991), 'utils.util.max_res', 'max_res', (['"""The course has been deleted."""'], {}), "('The course has been deleted.')\n", (2959, 2991), False, 'from utils.util import max_res\n'), ((497, 525), 'models.course.Course.find_by_id', 'Course.find_by_id', (['course_id'], {}), '(course_id)\n', (514, 525), False, 'from models.course import Course\n'), ((2157, 2187), 'flask_restful.marshal', 'marshal', (['course', 'course_fields'], {}), '(course, course_fields)\n', (2164, 2187), False, 'from flask_restful import fields, marshal_with, marshal\n'), ((2672, 2702), 'flask_restful.marshal', 'marshal', (['course', 'course_fields'], {}), '(course, course_fields)\n', (2679, 2702), False, 'from flask_restful import fields, marshal_with, marshal\n'), ((553, 583), 'flask_restful.marshal', 'marshal', (['course', 'course_fields'], {}), '(course, course_fields)\n', (560, 583), False, 'from flask_restful import fields, marshal_with, marshal\n'), ((831, 869), 'utils.util.max_res', 'max_res', (['""""""'], {'code': '(500)', 'errmsg': '"""排序非法字段"""'}), "('', code=500, errmsg='排序非法字段')\n", (838, 869), False, 'from utils.util import max_res\n'), ((2096, 2132), 'utils.util.max_res', 'max_res', (['""""""'], {'code': '(401)', 'errmsg': '"""名称重复"""'}), "('', code=401, errmsg='名称重复')\n", (2103, 2132), False, 'from utils.util import max_res\n'), ((2611, 2648), 'utils.util.max_res', 'max_res', (['""""""', '(500)', '"""Failed to modify."""'], {}), "('', 500, 'Failed to modify.')\n", (2618, 2648), False, 'from utils.util import max_res\n'), ((2885, 2936), 'utils.util.max_res', 'max_res', (['""""""', '(500)', '"""The record has already deleted."""'], {}), "('', 500, 'The record has already deleted.')\n", (2892, 2936), False, 'from utils.util import max_res\n'), ((1289, 1299), 'sqlalchemy.text', 'text', (['sort'], {}), '(sort)\n', (1293, 1299), False, 'from sqlalchemy import or_, and_, text\n'), ((1432, 1442), 'sqlalchemy.text', 'text', (['sort'], {}), '(sort)\n', (1436, 1442), False, 'from sqlalchemy import or_, and_, text\n'), ((1799, 1824), 'flask_restful.marshal', 'marshal', (['u', 'course_fields'], {}), '(u, course_fields)\n', (1806, 1824), False, 'from flask_restful import fields, marshal_with, marshal\n'), ((1390, 1422), 'models.course.Course.query.filter', 'Course.query.filter', (['*conditions'], {}), '(*conditions)\n', (1409, 1422), False, 'from models.course import Course\n')]
import random import math import numpy as np import matplotlib.pyplot as plt # Calculating Pi using Monte Carlo algorithm. def montecarlo_pi(times:int): inside = 0 total = times for i in range(times): x_i = random.random() y_i = random.random() delta = x_i ** 2 + y_i **2 - 1 if delta <= 0: inside += 1 approx_pi = 4 * inside / total print('\nRandom test: ' + str(times)) print('Approximation of pi is:{:.8f}'.format(approx_pi)) return approx_pi if __name__ == '__main__': numlist = [100, 500, 1000, 5000, 10000, 50000, 100000, 500000, 1000000, 5000000, 10000000, 30000000, 50000000, 75000000, 100000000] x_list = list(np.log10(numlist)) pi_ = [] for times in numlist: pi_.append(montecarlo_pi(times)) plt.figure() plt.plot([min(x_list), max(x_list)], [math.pi, math.pi], color='red', label='true value') plt.plot(x_list, pi_, 'b.-', label='approximation') plt.legend() plt.xlabel('log10(n)') plt.ylabel('pi') my_y_ticks = np.arange(3, 3.4, 0.02) plt.yticks(my_y_ticks) plt.ylim((min(pi_)-0.1, max(pi_)+0.1)) plt.show()
[ "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.pyplot.legend", "matplotlib.pyplot.yticks", "random.random", "matplotlib.pyplot.figure", "numpy.arange", "matplotlib.pyplot.ylabel", "numpy.log10", "matplotlib.pyplot.xlabel" ]
[((816, 828), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (826, 828), True, 'import matplotlib.pyplot as plt\n'), ((927, 978), 'matplotlib.pyplot.plot', 'plt.plot', (['x_list', 'pi_', '"""b.-"""'], {'label': '"""approximation"""'}), "(x_list, pi_, 'b.-', label='approximation')\n", (935, 978), True, 'import matplotlib.pyplot as plt\n'), ((984, 996), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (994, 996), True, 'import matplotlib.pyplot as plt\n'), ((1001, 1023), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""log10(n)"""'], {}), "('log10(n)')\n", (1011, 1023), True, 'import matplotlib.pyplot as plt\n'), ((1028, 1044), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""pi"""'], {}), "('pi')\n", (1038, 1044), True, 'import matplotlib.pyplot as plt\n'), ((1063, 1086), 'numpy.arange', 'np.arange', (['(3)', '(3.4)', '(0.02)'], {}), '(3, 3.4, 0.02)\n', (1072, 1086), True, 'import numpy as np\n'), ((1091, 1113), 'matplotlib.pyplot.yticks', 'plt.yticks', (['my_y_ticks'], {}), '(my_y_ticks)\n', (1101, 1113), True, 'import matplotlib.pyplot as plt\n'), ((1162, 1172), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1170, 1172), True, 'import matplotlib.pyplot as plt\n'), ((231, 246), 'random.random', 'random.random', ([], {}), '()\n', (244, 246), False, 'import random\n'), ((261, 276), 'random.random', 'random.random', ([], {}), '()\n', (274, 276), False, 'import random\n'), ((712, 729), 'numpy.log10', 'np.log10', (['numlist'], {}), '(numlist)\n', (720, 729), True, 'import numpy as np\n')]
# Licensed under a 3-clause BSD style license - see LICENSE.rst # # TODO: Remove this when https://github.com/parejkoj/astropy/tree/luptonRGB # is in Astropy. """ Combine 3 images to produce a properly-scaled RGB image following Lupton et al. (2004). For details, see : http://adsabs.harvard.edu/abs/2004PASP..116..133L The three images must be aligned and have the same pixel scale and size. Example usage: imageR = np.random.random((100,100)) imageG = np.random.random((100,100)) imageB = np.random.random((100,100)) image = lupton_rgb.makeRGB(imageR, imageG, imageB, fileName='randoms.png') lupton_rgb.displayRGB(image) """ import numpy as np try: import scipy.misc HAVE_SCIPY_MISC = True except ImportError: HAVE_SCIPY_MISC = False # from lsst.afw.display.displayLib import replaceSaturatedPixels, getZScale def compute_intensity(imageR, imageG=None, imageB=None): """ Return a naive total intensity from the red, blue, and green intensities. Parameters ---------- imageR : `~numpy.ndarray` Intensity of image to be mapped to red; or total intensity if imageG and imageB are None. imageG : `~numpy.ndarray` Intensity of image to be mapped to green; or None. imageB : `~numpy.ndarray` Intensity of image to be mapped to blue; or None. """ if imageG is None or imageB is None: assert imageG is None and imageB is None, \ "Please specify either a single image or red, green, and blue images" return imageR intensity = (imageR + imageG + imageB)/3.0 # Repack into whatever type was passed to us return np.array(intensity, dtype=imageR.dtype) def zscale(image, nSamples=1000, contrast=0.25): """ TBD: replace with newly added astropy.zscale function. This emulates ds9's zscale feature. Returns the suggested minimum and maximum values to display. Parameters ---------- image : `~numpy.ndarray` The image to compute the scaling on. nSamples : int How many samples to take when building the histogram. contrast : float ??? """ stride = image.size/nSamples samples = image.flatten()[::stride] samples.sort() chop_size = int(0.10*len(samples)) subset = samples[chop_size:-chop_size] i_midpoint = int(len(subset)/2) I_mid = subset[i_midpoint] fit = np.polyfit(np.arange(len(subset)) - i_midpoint, subset, 1) # fit = [ slope, intercept] z1 = I_mid + fit[0]/contrast * (1-i_midpoint)/1.0 z2 = I_mid + fit[0]/contrast * (len(subset)-i_midpoint)/1.0 return z1, z2 class Mapping(object): """Baseclass to map red, blue, green intensities into uint8 values""" def __init__(self, minimum=None, image=None): """ Create a mapping Parameters ---------- minimum : float or sequence(3) Intensity that should be mapped to black (a scalar or array for R, G, B). image : `~numpy.ndarray` The image to be used to calculate the mapping. If provided, it is also used as the default for makeRgbImage(). """ self._uint8Max = float(np.iinfo(np.uint8).max) try: len(minimum) except: minimum = 3*[minimum] assert len(minimum) == 3, "Please provide 1 or 3 values for minimum" self.minimum = minimum self._image = image def makeRgbImage(self, imageR=None, imageG=None, imageB=None, xSize=None, ySize=None, rescaleFactor=None): """ Convert 3 arrays, imageR, imageG, and imageB into a numpy RGB image. Parameters ---------- imageR : `~numpy.ndarray` Image to map to red (if None, use the image passed to the constructor). imageG : `~numpy.ndarray` Image to map to green (if None, use imageR). imageB : `~numpy.ndarray` Image to map to blue (if None, use imageR). xSize : int Desired width of RGB image (or None). If ySize is None, preserve aspect ratio. ySize : int Desired height of RGB image (or None). rescaleFactor : float Make size of output image rescaleFactor*size of the input image. Cannot be specified if xSize or ySize are given. """ if imageR is None: if self._image is None: raise RuntimeError("You must provide an image or pass one to the constructor") imageR = self._image if imageG is None: imageG = imageR if imageB is None: imageB = imageR if xSize is not None or ySize is not None: assert rescaleFactor is None, "You may not specify a size and rescaleFactor" h, w = imageR.shape if ySize is None: ySize = int(xSize*h/float(w) + 0.5) elif xSize is None: xSize = int(ySize*w/float(h) + 0.5) # need to cast to int when passing tuple to imresize. size = (int(ySize), int(xSize)) # n.b. y, x order for scipy elif rescaleFactor is not None: size = float(rescaleFactor) # a float is intepreted as a percentage else: size = None if size is not None: if not HAVE_SCIPY_MISC: raise RuntimeError("Unable to rescale as scipy.misc is unavailable.") imageR = scipy.misc.imresize(imageR, size, interp='bilinear', mode='F') imageG = scipy.misc.imresize(imageG, size, interp='bilinear', mode='F') imageB = scipy.misc.imresize(imageB, size, interp='bilinear', mode='F') return np.dstack(self._convertImagesToUint8(imageR, imageG, imageB)).astype(np.uint8) def intensity(self, imageR, imageG, imageB): """ Return the total intensity from the red, blue, and green intensities. This is a naive computation, and may be overridden by subclasses. """ return compute_intensity(imageR, imageG, imageB) def mapIntensityToUint8(self, I): """ Return an array which, when multiplied by an image, returns that image mapped to the range of a uint8, [0, 255] (but not converted to uint8). The intensity is assumed to have had minimum subtracted (as that can be done per-band). """ with np.errstate(invalid='ignore', divide='ignore'): # n.b. np.where can't and doesn't short-circuit return np.where(I <= 0, 0, np.where(I < self._uint8Max, I, self._uint8Max)) def _convertImagesToUint8(self, imageR, imageG, imageB): """Use the mapping to convert images imageR, imageG, and imageB to a triplet of uint8 images""" imageR = imageR - self.minimum[0] # n.b. makes copy imageG = imageG - self.minimum[1] imageB = imageB - self.minimum[2] fac = self.mapIntensityToUint8(self.intensity(imageR, imageG, imageB)) imageRGB = [imageR, imageG, imageB] for c in imageRGB: c *= fac c[c < 0] = 0 # individual bands can still be < 0, even if fac isn't pixmax = self._uint8Max r0, g0, b0 = imageRGB # copies -- could work row by row to minimise memory usage with np.errstate(invalid='ignore', divide='ignore'): # n.b. np.where can't and doesn't short-circuit for i, c in enumerate(imageRGB): c = np.where(r0 > g0, np.where(r0 > b0, np.where(r0 >= pixmax, c*pixmax/r0, c), np.where(b0 >= pixmax, c*pixmax/b0, c)), np.where(g0 > b0, np.where(g0 >= pixmax, c*pixmax/g0, c), np.where(b0 >= pixmax, c*pixmax/b0, c))).astype(np.uint8) c[c > pixmax] = pixmax imageRGB[i] = c return imageRGB class LinearMapping(Mapping): """A linear map map of red, blue, green intensities into uint8 values""" def __init__(self, minimum=None, maximum=None, image=None): """ A linear stretch from [minimum, maximum]. If one or both are omitted use image min and/or max to set them. Parameters ---------- minimum : float Intensity that should be mapped to black (a scalar or array for R, G, B). maximum : float Intensity that should be mapped to white (a scalar). """ if minimum is None or maximum is None: assert image is not None, "You must provide an image if you don't set both minimum and maximum" if minimum is None: minimum = image.min() if maximum is None: maximum = image.max() Mapping.__init__(self, minimum=minimum, image=image) self.maximum = maximum if maximum is None: self._range = None else: assert maximum - minimum != 0, "minimum and maximum values must not be equal" self._range = float(maximum - minimum) def mapIntensityToUint8(self, I): with np.errstate(invalid='ignore', divide='ignore'): # n.b. np.where can't and doesn't short-circuit return np.where(I <= 0, 0, np.where(I >= self._range, self._uint8Max/I, self._uint8Max/self._range)) class ZScaleMapping(LinearMapping): """ A mapping for a linear stretch chosen by the zscale algorithm. (preserving colours independent of brightness) x = (I - minimum)/range """ def __init__(self, image, nSamples=1000, contrast=0.25): """ A linear stretch from [z1, z2] chosen by the zscale algorithm. Parameters ---------- nSamples : int The number of samples to use to estimate the zscale parameters. contrast : float The number of samples to use to estimate the zscale parameters. """ z1, z2 = zscale(image, nSamples, contrast) LinearMapping.__init__(self, z1, z2, image) class AsinhMapping(Mapping): """ A mapping for an asinh stretch (preserving colours independent of brightness) x = asinh(Q (I - minimum)/range)/Q This reduces to a linear stretch if Q == 0 See http://adsabs.harvard.edu/abs/2004PASP..116..133L """ def __init__(self, minimum, dataRange, Q=8): """ asinh stretch from minimum to minimum + dataRange, scaled by Q, via: x = asinh(Q (I - minimum)/dataRange)/Q Parameters ---------- minimum : float Intensity that should be mapped to black (a scalar or array for R, G, B). dataRange : float minimum+dataRange defines the white level of the image. Q : float The asinh softening parameter. """ Mapping.__init__(self, minimum) epsilon = 1.0/2**23 # 32bit floating point machine epsilon; sys.float_info.epsilon is 64bit if abs(Q) < epsilon: Q = 0.1 else: Qmax = 1e10 if Q > Qmax: Q = Qmax if False: self._slope = self._uint8Max/Q # gradient at origin is self._slope else: frac = 0.1 # gradient estimated using frac*range is _slope self._slope = frac*self._uint8Max/np.arcsinh(frac*Q) self._soften = Q/float(dataRange) def mapIntensityToUint8(self, I): with np.errstate(invalid='ignore', divide='ignore'): # n.b. np.where can't and doesn't short-circuit return np.where(I <= 0, 0, np.arcsinh(I*self._soften)*self._slope/I) class AsinhZScaleMapping(AsinhMapping): """ A mapping for an asinh stretch, estimating the linear stretch by zscale. x = asinh(Q (I - z1)/(z2 - z1))/Q See AsinhMapping """ def __init__(self, image1, image2=None, image3=None, Q=8, pedestal=None): """ Create an asinh mapping from an image, setting the linear part of the stretch using zscale. Parameters ---------- image1 : `~numpy.ndarray` The image to analyse, # or a list of 3 images to be converted to an intensity image. image2 : `~numpy.ndarray` the second image to analyse (must be specified with image3). image3 : `~numpy.ndarray` the third image to analyse (must be specified with image2). Q : float The asinh softening parameter. pedestal : float or sequence(3) The value, or array of 3 values, to subtract from the images; or None. pedestal, if not None, is removed from the images when calculating the zscale stretch, and added back into Mapping.minimum. """ if image2 is None or image3 is None: assert image2 is None and image3 is None, "Please specify either a single image or three images." image = [image1] else: image = [image1, image2, image3] if pedestal is not None: try: assert len(pedestal) in (1, 3,), "Please provide 1 or 3 pedestals." except TypeError: pedestal = 3*[pedestal] image = list(image) # needs to be mutable for i, im in enumerate(image): if pedestal[i] != 0.0: image[i] = im - pedestal[i] # n.b. a copy else: pedestal = len(image)*[0.0] image = compute_intensity(*image) zscale = ZScaleMapping(image) dataRange = zscale.maximum - zscale.minimum[0] # zscale.minimum is always a triple minimum = zscale.minimum for i, level in enumerate(pedestal): minimum[i] += level AsinhMapping.__init__(self, minimum, dataRange, Q) self._image = image def makeRGB(imageR, imageG=None, imageB=None, minimum=0, dataRange=5, Q=8, saturatedBorderWidth=0, saturatedPixelValue=None, xSize=None, ySize=None, rescaleFactor=None, fileName=None): """ Make an RGB color image from 3 images using an asinh stretch. Parameters ---------- imageR : `~numpy.ndarray` Image to map to red (if None, use the image passed to the constructor). imageG : `~numpy.ndarray` Image to map to green (if None, use imageR). imageB : `~numpy.ndarray` Image to map to blue (if None, use imageR). minimum : float Intensity that should be mapped to black (a scalar or array for R, G, B). dataRange : float minimum+dataRange defines the white level of the image. Q : float The asinh softening parameter. saturatedBorderWidth : int If saturatedBorderWidth is non-zero, replace saturated pixels with saturatedPixelValue. Note that replacing saturated pixels requires that the input images be MaskedImages. saturatedPixelValue : float Value to replace saturated pixels with. xSize : int Desired width of RGB image (or None). If ySize is None, preserve aspect ratio. ySize : int Desired height of RGB image (or None). rescaleFactor : float Make size of output image rescaleFactor*size of the input image. Cannot be specified if xSize or ySize are given. """ if imageG is None: imageG = imageR if imageB is None: imageB = imageR if saturatedBorderWidth: if saturatedPixelValue is None: raise ValueError("saturatedPixelValue must be set if saturatedBorderWidth is set") msg = "Cannot do this until we extract replaceSaturatedPixels out of afw/display/saturated.cc" raise NotImplementedError(msg) # replaceSaturatedPixels(imageR, imageG, imageB, saturatedBorderWidth, saturatedPixelValue) asinhMap = AsinhMapping(minimum, dataRange, Q) rgb = asinhMap.makeRgbImage(imageR, imageG, imageB, xSize=xSize, ySize=ySize, rescaleFactor=rescaleFactor) if fileName: writeRGB(fileName, rgb) return rgb def displayRGB(rgb, show=True, title=None): """ Display an rgb image using matplotlib. Parameters ---------- rgb : `~numpy.ndarray` The RGB image to display show : bool If true, call plt.show() title : str Title to use for the displayed image. """ import matplotlib.pyplot as plt plt.imshow(rgb, interpolation='nearest', origin="lower") if title: plt.title(title) if show: plt.show() return plt def writeRGB(fileName, rgbImage): """ Write an RGB image to disk. Most versions of matplotlib support png and pdf (although the eps/pdf/svg writers may be buggy, possibly due an interaction with useTeX=True in the matplotlib settings). If your matplotlib bundles pil/pillow you should also be able to write jpeg and tiff files. Parameters ---------- fileName : str The output file. The extension defines the format, and must be supported by matplotlib.imsave(). rgbImage : `~numpy.ndarray` The RGB image to save. """ import matplotlib.image matplotlib.image.imsave(fileName, rgbImage)
[ "matplotlib.pyplot.title", "matplotlib.pyplot.show", "matplotlib.pyplot.imshow", "numpy.iinfo", "numpy.errstate", "numpy.where", "numpy.array", "numpy.arcsinh" ]
[((1660, 1699), 'numpy.array', 'np.array', (['intensity'], {'dtype': 'imageR.dtype'}), '(intensity, dtype=imageR.dtype)\n', (1668, 1699), True, 'import numpy as np\n'), ((16626, 16682), 'matplotlib.pyplot.imshow', 'plt.imshow', (['rgb'], {'interpolation': '"""nearest"""', 'origin': '"""lower"""'}), "(rgb, interpolation='nearest', origin='lower')\n", (16636, 16682), True, 'import matplotlib.pyplot as plt\n'), ((16705, 16721), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (16714, 16721), True, 'import matplotlib.pyplot as plt\n'), ((16743, 16753), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (16751, 16753), True, 'import matplotlib.pyplot as plt\n'), ((6445, 6491), 'numpy.errstate', 'np.errstate', ([], {'invalid': '"""ignore"""', 'divide': '"""ignore"""'}), "(invalid='ignore', divide='ignore')\n", (6456, 6491), True, 'import numpy as np\n'), ((7355, 7401), 'numpy.errstate', 'np.errstate', ([], {'invalid': '"""ignore"""', 'divide': '"""ignore"""'}), "(invalid='ignore', divide='ignore')\n", (7366, 7401), True, 'import numpy as np\n'), ((9274, 9320), 'numpy.errstate', 'np.errstate', ([], {'invalid': '"""ignore"""', 'divide': '"""ignore"""'}), "(invalid='ignore', divide='ignore')\n", (9285, 9320), True, 'import numpy as np\n'), ((11647, 11693), 'numpy.errstate', 'np.errstate', ([], {'invalid': '"""ignore"""', 'divide': '"""ignore"""'}), "(invalid='ignore', divide='ignore')\n", (11658, 11693), True, 'import numpy as np\n'), ((3197, 3215), 'numpy.iinfo', 'np.iinfo', (['np.uint8'], {}), '(np.uint8)\n', (3205, 3215), True, 'import numpy as np\n'), ((6581, 6628), 'numpy.where', 'np.where', (['(I < self._uint8Max)', 'I', 'self._uint8Max'], {}), '(I < self._uint8Max, I, self._uint8Max)\n', (6589, 6628), True, 'import numpy as np\n'), ((9438, 9514), 'numpy.where', 'np.where', (['(I >= self._range)', '(self._uint8Max / I)', '(self._uint8Max / self._range)'], {}), '(I >= self._range, self._uint8Max / I, self._uint8Max / self._range)\n', (9446, 9514), True, 'import numpy as np\n'), ((11533, 11553), 'numpy.arcsinh', 'np.arcsinh', (['(frac * Q)'], {}), '(frac * Q)\n', (11543, 11553), True, 'import numpy as np\n'), ((11783, 11811), 'numpy.arcsinh', 'np.arcsinh', (['(I * self._soften)'], {}), '(I * self._soften)\n', (11793, 11811), True, 'import numpy as np\n'), ((7620, 7662), 'numpy.where', 'np.where', (['(r0 >= pixmax)', '(c * pixmax / r0)', 'c'], {}), '(r0 >= pixmax, c * pixmax / r0, c)\n', (7628, 7662), True, 'import numpy as np\n'), ((7698, 7740), 'numpy.where', 'np.where', (['(b0 >= pixmax)', '(c * pixmax / b0)', 'c'], {}), '(b0 >= pixmax, c * pixmax / b0, c)\n', (7706, 7740), True, 'import numpy as np\n'), ((7824, 7866), 'numpy.where', 'np.where', (['(g0 >= pixmax)', '(c * pixmax / g0)', 'c'], {}), '(g0 >= pixmax, c * pixmax / g0, c)\n', (7832, 7866), True, 'import numpy as np\n'), ((7902, 7944), 'numpy.where', 'np.where', (['(b0 >= pixmax)', '(c * pixmax / b0)', 'c'], {}), '(b0 >= pixmax, c * pixmax / b0, c)\n', (7910, 7944), True, 'import numpy as np\n')]
import os import re from mendeley.response import SessionResponseObject class File(SessionResponseObject): """ A file attached to a document. .. attribute:: id .. attribute:: size .. attribute:: file_name .. attribute:: mime_type .. attribute:: filehash .. attribute:: download_url """ content_type = 'application/vnd.mendeley-file.1+json' filename_regex = re.compile('filename="(\S+)"') @property def download_url(self): """ the URL at which the file can be downloaded. This is only valid for a short time, so should not be cached. """ file_url = '/files/%s' % self.id rsp = self.session.get(file_url, allow_redirects=False) return rsp.headers['location'] def document(self, view=None): """ :param view: document view to return. :return: a :class:`UserDocument <mendeley.models.documents.UserDocument>` or :class:`CatalogDocument <mendeley.models.catalog.CatalogDocument>`, depending on which the document is attached to. """ if 'document_id' in self.json: return self.session.documents.get_lazy(self.json['document_id'], view=view) elif 'catalog_id' in self.json: return self.session.catalog.get_lazy(self.json['catalog_id'], view=view) else: return None def download(self, directory): """ Downloads the file. :param directory: the directory to download the file to. This must exist. :return: the path to the downloaded file. """ rsp = self.session.get('/files/%s' % self.id, stream=True) filename = self.filename_regex.search(rsp.headers['content-disposition']).group(1) path = os.path.join(directory, filename) with open(path, 'wb') as f: for block in rsp.iter_content(1024): if not block: break f.write(block) return path def delete(self): """ Deletes the file. """ self.session.delete('/files/%s' % self.id) @classmethod def fields(cls): return ['id', 'size', 'file_name', 'mime_type', 'filehash']
[ "os.path.join", "re.compile" ]
[((405, 436), 're.compile', 're.compile', (['"""filename="(\\\\S+)\\""""'], {}), '(\'filename="(\\\\S+)"\')\n', (415, 436), False, 'import re\n'), ((1789, 1822), 'os.path.join', 'os.path.join', (['directory', 'filename'], {}), '(directory, filename)\n', (1801, 1822), False, 'import os\n')]
import tensorflow as tf from . tf_net import TFNet class Resnet(TFNet): """ """ def __init__(self, data, data_format, num_classes, is_train=True): dtype = data.dtype.base_dtype super(Resnet, self).__init__(dtype, data_format, train=is_train) self.net_out = tf.identity(data, name='data') self.num_classes = num_classes def _resnet_block(self, filters, kernel, stride=(1,1), act_fn='relu', conv_1x1=0, name=None): """ """ data = self.net_out shortcut = data bn_out = self.batch_norm(data, act_fn, name=name+'_bn') if conv_1x1: shortcut = self.convolution(bn_out, filters, (1,1), stride, pad='same', act_fn='', no_bias=True, name=name+'_1x1_conv') net_out = self.convolution(bn_out, filters, kernel, stride, act_fn=act_fn, add_bn=True, name=name+'_conv1') net_out = self.convolution(net_out, filters, kernel, (1,1), act_fn='', no_bias=True, name=name+'_conv2') self.net_out = net_out + shortcut def _resnet_unit(self, num_blocks, filters, kernel, stride=1, act_fn='relu', name=None): """ """ strides = (stride, stride) self._resnet_block(filters, kernel, strides, act_fn, conv_1x1=1, name=name+'_block0') for i in range(1, num_blocks): self._resnet_block(filters, kernel, (1,1), act_fn, name=name+'_block'+str(i)) def __call__(self, num_stages=3, num_blocks=3, filters=[16, 32, 64], strides=[1,2,2]): """ """ self.net_out = self.convolution(self.net_out, filters[0], (3,3), (1,1), act_fn='', no_bias=True, name='Conv0') for k in range(num_stages): self._resnet_unit(num_blocks, filters[k], (3,3), strides[k], name='stage'+str(k)) net_out = self.pooling(self.net_out, 'avg', (8,8), name="global_pool") net_out = self.dropout(net_out, 0.5) net_out = self.flatten(net_out) net_out = self.Softmax(net_out, self.num_classes) return net_out def snpx_net_create(num_classes, input_data, data_format="NHWC", is_training=True): """ """ net = Resnet(input_data, data_format, num_classes, is_training) net_out = net(num_stages=3, num_blocks=3, filters=[16, 32, 64], strides=[1,2,2]) return net_out
[ "tensorflow.identity" ]
[((294, 324), 'tensorflow.identity', 'tf.identity', (['data'], {'name': '"""data"""'}), "(data, name='data')\n", (305, 324), True, 'import tensorflow as tf\n')]
import copy import typing import splendor_sim.interfaces.action.i_action as i_action import splendor_sim.interfaces.card.i_card as i_card import splendor_sim.interfaces.coin.i_coin_type as i_coin_type import splendor_sim.interfaces.game_state.i_game_state as i_game_state import splendor_sim.interfaces.player.i_player as i_player class ReserveCardAction(i_action.IAction): def __init__( self, valid_coin_type_set: typing.Set[i_coin_type.ICoinType], current_player: i_player.IPlayer, coins: typing.Dict[i_coin_type.ICoinType, int], card: i_card.ICard, ): self._validate_input(valid_coin_type_set, coins) self._card = card self._coin_dictionary = copy.copy(coins) self._current_player = current_player def validate(self, game_state: i_game_state.IGameState) -> bool: number_of_reserved_cards = ( self._current_player.get_card_inventory().get_number_of_reserved_cards() ) max_number_of_reserved_cards = ( self._current_player.get_card_inventory().get_max_number_of_reserved_cards() ) if number_of_reserved_cards < max_number_of_reserved_cards: if self._card in game_state.get_card_reserve().get_cards_for_sale(): if game_state.get_coin_reserve().has_minimum(self._coin_dictionary): return True return False def execute(self, game_state: i_game_state.IGameState) -> None: if not self.validate(game_state): raise ValueError("invalid action") game_state.get_coin_reserve().remove_coins(self._coin_dictionary) game_state.get_card_reserve().remove_card(self._card) self._current_player.get_coin_inventory().add_coins(self._coin_dictionary) self._current_player.get_card_inventory().add_card_to_reserved(self._card) @staticmethod def _validate_input( valid_coin_type_set: typing.Set[i_coin_type.ICoinType], coins: typing.Dict[i_coin_type.ICoinType, int], ): if len(coins.keys()) != 1: raise ValueError("can only take 1 type of coin") for coin_type, number_of_coins in coins.items(): if number_of_coins != 1: raise ValueError("can only take one coin") if coin_type not in valid_coin_type_set: raise ValueError("invalid coin type")
[ "copy.copy" ]
[((721, 737), 'copy.copy', 'copy.copy', (['coins'], {}), '(coins)\n', (730, 737), False, 'import copy\n')]
import re HUEVELS = { 'у': 'хую', 'У': 'хую', 'е': 'хуе', 'Е': 'хуе', 'ё': 'хуё', 'Ё': 'хуё', 'а': 'хуя', 'А': 'хуя', 'о': 'хуё', 'О': 'хуё', 'э': 'хуе', 'Э': 'хуе', 'я': 'хуя', 'Я': 'хуя', 'и': 'хуи', 'И': 'хуи', 'ы': 'хуы', 'Ы': 'хуы', 'ю': 'хую', 'Ю': 'хую' } PUNCT_MARKS = [',', '.', ';', ':'] def count_syllabiles(word): count = 0 for letter in word: if letter in HUEVELS: count += 1 return count def get_last_letter(word): if word == '': return word last_letter = word[-1] if last_letter in PUNCT_MARKS: return get_last_letter(word[:-1]) return last_letter def first_vowel(word): res = re.search("[уеёыаоэяию]", word, re.IGNORECASE) if res: return res.start(), res.group() return -1, '' def huificator(word): num_syl = count_syllabiles(word) last_letter = get_last_letter(word) if num_syl == 0: return word if num_syl == 1: if last_letter in HUEVELS: return word pos, vow = first_vowel(word) if pos == -1: return word repl = HUEVELS[vow].upper() if len(word) >= 2 and word[:2].isupper() else HUEVELS[vow] result = repl + word[pos+1:] if word.isupper(): result = result.upper() elif word[:1].isupper(): result = result[:1].upper() + result[1:] return result
[ "re.search" ]
[((748, 794), 're.search', 're.search', (['"""[уеёыаоэяию]"""', 'word', 're.IGNORECASE'], {}), "('[уеёыаоэяию]', word, re.IGNORECASE)\n", (757, 794), False, 'import re\n')]
import model import tensorflow as tf import utils def train(target, num_param_servers, is_chief, lstm_size=64, input_filenames=None, sentence_length=128, vocab_size=2**15, learning_rate=0.01, output_dir=None, batch_size=1024, embedding_size=128, num_epochs=2): graph = tf.Graph() with graph.as_default(): sentences, scores = model.get_inputs( input_filenames, batch_size, num_epochs, sentence_length) with tf.device(tf.train.replica_device_setter()): lstm = model.BasicRegressionLSTM( sentences, scores, num_param_servers, vocab_size, learning_rate, embedding_size, lstm_size ) tf.contrib.learn.train( graph, output_dir, lstm.train_op, lstm.loss, global_step_tensor=lstm.global_step, supervisor_is_chief=is_chief, supervisor_master=target ) if __name__ == "__main__": parser = utils.base_parser() parser.add_argument( '--learning-rate', type=float, default=0.01 ) utils.dispatch( train, **parser.parse_args().__dict__ )
[ "model.get_inputs", "utils.base_parser", "tensorflow.contrib.learn.train", "model.BasicRegressionLSTM", "tensorflow.Graph", "tensorflow.train.replica_device_setter" ]
[((386, 396), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (394, 396), True, 'import tensorflow as tf\n'), ((869, 1037), 'tensorflow.contrib.learn.train', 'tf.contrib.learn.train', (['graph', 'output_dir', 'lstm.train_op', 'lstm.loss'], {'global_step_tensor': 'lstm.global_step', 'supervisor_is_chief': 'is_chief', 'supervisor_master': 'target'}), '(graph, output_dir, lstm.train_op, lstm.loss,\n global_step_tensor=lstm.global_step, supervisor_is_chief=is_chief,\n supervisor_master=target)\n', (891, 1037), True, 'import tensorflow as tf\n'), ((1134, 1153), 'utils.base_parser', 'utils.base_parser', ([], {}), '()\n', (1151, 1153), False, 'import utils\n'), ((454, 528), 'model.get_inputs', 'model.get_inputs', (['input_filenames', 'batch_size', 'num_epochs', 'sentence_length'], {}), '(input_filenames, batch_size, num_epochs, sentence_length)\n', (470, 528), False, 'import model\n'), ((620, 741), 'model.BasicRegressionLSTM', 'model.BasicRegressionLSTM', (['sentences', 'scores', 'num_param_servers', 'vocab_size', 'learning_rate', 'embedding_size', 'lstm_size'], {}), '(sentences, scores, num_param_servers, vocab_size,\n learning_rate, embedding_size, lstm_size)\n', (645, 741), False, 'import model\n'), ((566, 598), 'tensorflow.train.replica_device_setter', 'tf.train.replica_device_setter', ([], {}), '()\n', (596, 598), True, 'import tensorflow as tf\n')]
"""The main Klaxer server""" import logging import json import hug from falcon import HTTP_400, HTTP_500 from klaxer.rules import Rules from klaxer.errors import AuthorizationError, NoRouteFoundError, ServiceNotDefinedError from klaxer.lib import classify, enrich, filtered, route, send, validate from klaxer.models import Alert from klaxer.users import create_user, add_message, bootstrap, api_key_authentication, is_existing_user CURRENT_FILTERS = [] RULES = Rules() @hug.post('/alert/{service_name}/{token}') def incoming(service_name: hug.types.text, token: hug.types.text, response, debug=False, body=None): """An incoming alert. The core API method""" try: validate(service_name, token) alert = Alert.from_service(service_name, body) alert = classify(alert, RULES.get_classification_rules(service_name)) # Filter based on rules (e.g. junk an alert if a string is in the body or if it came from a CI bot). if filtered(alert, RULES.get_exclusion_rules(service_name)): return #Filtered based on user interactions (e.g. bail if we've snoozed the notification type snoozed). if filtered(alert, CURRENT_FILTERS): return #Enriched based on custom rules (e.g. all alerts with 'keepalive' have '@deborah' appended to them so Deborah gets an extra level of notification priority. alert = enrich(alert, RULES.get_enrichment_rules(service_name)) # Determine where the message goes alert = route(alert, RULES.get_routing_rules(service_name)) # Present relevant debug info without actually sending the Alert if debug: return alert.to_dict() #The target channel gets queried for the most recent message. If it's identical, perform rollup. Otherwise, post the alert. send(alert) return {"status": "ok"} except (AuthorizationError, NoRouteFoundError, ServiceNotDefinedError) as error: logging.exception('Failed to serve an alert response') response.status = HTTP_500 return {"status": error.message} @hug.post('/user/register') def register(response, body=None): """Register for Klaxer and get a key in return.""" if not body: response.status = HTTP_400 return {"status": "No request body provided"} email = body.get('email') name = body.get('name') if not email or not name: response.status = HTTP_400 return {"status": "Please provide a valid name and email."} if is_existing_user(email): response.status = HTTP_400 return {"status": f"Email {email} is already registered"} user = create_user(name=name, email=email) return { 'id': user.id, 'api_key': user.api_key } @hug.get('/user/me', requires=api_key_authentication) def profile(user: hug.directives.user, response, body=None): """If authenticated, give the user back their profile information.""" return user.to_dict() @hug.startup() def startup(api): """Bootstrap the database when the API starts.""" bootstrap()
[ "klaxer.lib.send", "klaxer.rules.Rules", "hug.get", "hug.post", "logging.exception", "klaxer.models.Alert.from_service", "klaxer.users.is_existing_user", "hug.startup", "klaxer.users.create_user", "klaxer.lib.filtered", "klaxer.lib.validate", "klaxer.users.bootstrap" ]
[((467, 474), 'klaxer.rules.Rules', 'Rules', ([], {}), '()\n', (472, 474), False, 'from klaxer.rules import Rules\n'), ((477, 518), 'hug.post', 'hug.post', (['"""/alert/{service_name}/{token}"""'], {}), "('/alert/{service_name}/{token}')\n", (485, 518), False, 'import hug\n'), ((2101, 2127), 'hug.post', 'hug.post', (['"""/user/register"""'], {}), "('/user/register')\n", (2109, 2127), False, 'import hug\n'), ((2772, 2824), 'hug.get', 'hug.get', (['"""/user/me"""'], {'requires': 'api_key_authentication'}), "('/user/me', requires=api_key_authentication)\n", (2779, 2824), False, 'import hug\n'), ((2989, 3002), 'hug.startup', 'hug.startup', ([], {}), '()\n', (3000, 3002), False, 'import hug\n'), ((2522, 2545), 'klaxer.users.is_existing_user', 'is_existing_user', (['email'], {}), '(email)\n', (2538, 2545), False, 'from klaxer.users import create_user, add_message, bootstrap, api_key_authentication, is_existing_user\n'), ((2659, 2694), 'klaxer.users.create_user', 'create_user', ([], {'name': 'name', 'email': 'email'}), '(name=name, email=email)\n', (2670, 2694), False, 'from klaxer.users import create_user, add_message, bootstrap, api_key_authentication, is_existing_user\n'), ((3079, 3090), 'klaxer.users.bootstrap', 'bootstrap', ([], {}), '()\n', (3088, 3090), False, 'from klaxer.users import create_user, add_message, bootstrap, api_key_authentication, is_existing_user\n'), ((686, 715), 'klaxer.lib.validate', 'validate', (['service_name', 'token'], {}), '(service_name, token)\n', (694, 715), False, 'from klaxer.lib import classify, enrich, filtered, route, send, validate\n'), ((732, 770), 'klaxer.models.Alert.from_service', 'Alert.from_service', (['service_name', 'body'], {}), '(service_name, body)\n', (750, 770), False, 'from klaxer.models import Alert\n'), ((1162, 1194), 'klaxer.lib.filtered', 'filtered', (['alert', 'CURRENT_FILTERS'], {}), '(alert, CURRENT_FILTERS)\n', (1170, 1194), False, 'from klaxer.lib import classify, enrich, filtered, route, send, validate\n'), ((1830, 1841), 'klaxer.lib.send', 'send', (['alert'], {}), '(alert)\n', (1834, 1841), False, 'from klaxer.lib import classify, enrich, filtered, route, send, validate\n'), ((1967, 2021), 'logging.exception', 'logging.exception', (['"""Failed to serve an alert response"""'], {}), "('Failed to serve an alert response')\n", (1984, 2021), False, 'import logging\n')]
# Copyright 2016, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """HTTP2 Test Server""" import argparse import logging import twisted import twisted.internet import twisted.internet.endpoints import twisted.internet.reactor import http2_base_server import test_goaway import test_max_streams import test_ping import test_rst_after_data import test_rst_after_header import test_rst_during_data _TEST_CASE_MAPPING = { 'rst_after_header': test_rst_after_header.TestcaseRstStreamAfterHeader, 'rst_after_data': test_rst_after_data.TestcaseRstStreamAfterData, 'rst_during_data': test_rst_during_data.TestcaseRstStreamDuringData, 'goaway': test_goaway.TestcaseGoaway, 'ping': test_ping.TestcasePing, 'max_streams': test_max_streams.TestcaseSettingsMaxStreams, } class H2Factory(twisted.internet.protocol.Factory): def __init__(self, testcase): logging.info('Creating H2Factory for new connection.') self._num_streams = 0 self._testcase = testcase def buildProtocol(self, addr): self._num_streams += 1 logging.info('New Connection: %d' % self._num_streams) if not _TEST_CASE_MAPPING.has_key(self._testcase): logging.error('Unknown test case: %s' % self._testcase) assert(0) else: t = _TEST_CASE_MAPPING[self._testcase] if self._testcase == 'goaway': return t(self._num_streams).get_base_server() else: return t().get_base_server() if __name__ == '__main__': logging.basicConfig( format='%(levelname) -10s %(asctime)s %(module)s:%(lineno)s | %(message)s', level=logging.INFO) parser = argparse.ArgumentParser() parser.add_argument('--test_case', choices=sorted(_TEST_CASE_MAPPING.keys()), help='test case to run', required=True) parser.add_argument('--port', type=int, default=8080, help='port to run the server (default: 8080)') args = parser.parse_args() logging.info('Running test case %s on port %d' % (args.test_case, args.port)) endpoint = twisted.internet.endpoints.TCP4ServerEndpoint( twisted.internet.reactor, args.port, backlog=128) endpoint.listen(H2Factory(args.test_case)) twisted.internet.reactor.run()
[ "logging.error", "argparse.ArgumentParser", "logging.basicConfig", "logging.info", "twisted.internet.reactor.run", "twisted.internet.endpoints.TCP4ServerEndpoint" ]
[((2906, 3030), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(levelname) -10s %(asctime)s %(module)s:%(lineno)s | %(message)s"""', 'level': 'logging.INFO'}), "(format=\n '%(levelname) -10s %(asctime)s %(module)s:%(lineno)s | %(message)s',\n level=logging.INFO)\n", (2925, 3030), False, 'import logging\n'), ((3042, 3067), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3065, 3067), False, 'import argparse\n'), ((3330, 3407), 'logging.info', 'logging.info', (["('Running test case %s on port %d' % (args.test_case, args.port))"], {}), "('Running test case %s on port %d' % (args.test_case, args.port))\n", (3342, 3407), False, 'import logging\n'), ((3421, 3520), 'twisted.internet.endpoints.TCP4ServerEndpoint', 'twisted.internet.endpoints.TCP4ServerEndpoint', (['twisted.internet.reactor', 'args.port'], {'backlog': '(128)'}), '(twisted.internet.reactor,\n args.port, backlog=128)\n', (3466, 3520), False, 'import twisted\n'), ((3569, 3599), 'twisted.internet.reactor.run', 'twisted.internet.reactor.run', ([], {}), '()\n', (3597, 3599), False, 'import twisted\n'), ((2324, 2378), 'logging.info', 'logging.info', (['"""Creating H2Factory for new connection."""'], {}), "('Creating H2Factory for new connection.')\n", (2336, 2378), False, 'import logging\n'), ((2500, 2554), 'logging.info', 'logging.info', (["('New Connection: %d' % self._num_streams)"], {}), "('New Connection: %d' % self._num_streams)\n", (2512, 2554), False, 'import logging\n'), ((2616, 2671), 'logging.error', 'logging.error', (["('Unknown test case: %s' % self._testcase)"], {}), "('Unknown test case: %s' % self._testcase)\n", (2629, 2671), False, 'import logging\n')]
"""This module implements the QFactor class.""" from __future__ import annotations import logging from typing import Any from typing import TYPE_CHECKING import numpy as np import numpy.typing as npt from bqskitrs import QFactorInstantiatorNative from bqskit.ir.opt.instantiater import Instantiater from bqskit.qis.state.state import StateVector from bqskit.qis.unitary import LocallyOptimizableUnitary from bqskit.qis.unitary.unitarymatrix import UnitaryMatrix if TYPE_CHECKING: from bqskit.ir.circuit import Circuit _logger = logging.getLogger(__name__) class QFactor(QFactorInstantiatorNative, Instantiater): """The QFactor circuit instantiater.""" def __new__(cls, **kwargs: dict[str, Any]) -> Any: if 'cost_fn_gen' in kwargs: del kwargs['cost_fn_gen'] return super().__new__(cls, **kwargs) def instantiate( self, circuit: Circuit, target: UnitaryMatrix | StateVector, x0: npt.NDArray[np.float64], ) -> npt.NDArray[np.float64]: """Instantiate `circuit`, see Instantiater for more info.""" return super().instantiate(circuit, target, x0) @staticmethod def is_capable(circuit: Circuit) -> bool: """Return true if the circuit can be instantiated.""" return all( isinstance(gate, LocallyOptimizableUnitary) for gate in circuit.gate_set ) @staticmethod def get_violation_report(circuit: Circuit) -> str: """ Return a message explaining why `circuit` cannot be instantiated. Args: circuit (Circuit): Generate a report for this circuit. Raises: ValueError: If `circuit` can be instantiated with this instantiater. """ invalid_gates = { gate for gate in circuit.gate_set if not isinstance(gate, LocallyOptimizableUnitary) } if len(invalid_gates) == 0: raise ValueError('Circuit can be instantiated.') return ( 'Cannot instantiate circuit with qfactor' ' because the following gates are not locally optimizable: %s.' % ', '.join(str(g) for g in invalid_gates) ) @staticmethod def get_method_name() -> str: """Return the name of this method.""" return 'qfactor'
[ "logging.getLogger" ]
[((538, 565), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (555, 565), False, 'import logging\n')]
import tensorflow as tf def create_pb_model(pb_path, sz, bs): def load_graph(frozen_graph_filename): # We load the protobuf file from the disk and parse it to retrieve the # unserialized graph_def with tf.compat.v1.gfile.GFile(frozen_graph_filename, "rb") as f: graph_def = tf.compat.v1.GraphDef() graph_def.ParseFromString(f.read()) # Then, we can use again a convenient built-in function to import a graph_def into the # current default Graph with tf.Graph().as_default() as graph: tf.import_graph_def(graph_def,input_map=None,return_elements=None,name="prefix",op_dict=None,producer_op_list=None) return graph, graph_def def wrap_frozen_graph(graph_def, inputs, outputs): def _imports_graph_def(): tf.compat.v1.import_graph_def(graph_def, name="") wrapped_import = tf.compat.v1.wrap_function(_imports_graph_def, []) import_graph = wrapped_import.graph return wrapped_import.prune( tf.nest.map_structure(import_graph.as_graph_element, inputs), tf.nest.map_structure(import_graph.as_graph_element, outputs)) graph, graph_def = load_graph(pb_path) model_fn = wrap_frozen_graph(graph_def, 'data:0', 'prob:0') lam = tf.keras.layers.Lambda(model_fn) inpt = tf.keras.layers.Input(sz, batch_size=bs) out = lam(inpt) model = tf.keras.models.Model(inpt, out) return model
[ "tensorflow.compat.v1.wrap_function", "tensorflow.compat.v1.gfile.GFile", "tensorflow.keras.models.Model", "tensorflow.nest.map_structure", "tensorflow.keras.layers.Input", "tensorflow.Graph", "tensorflow.import_graph_def", "tensorflow.compat.v1.GraphDef", "tensorflow.keras.layers.Lambda", "tensorflow.compat.v1.import_graph_def" ]
[((1285, 1317), 'tensorflow.keras.layers.Lambda', 'tf.keras.layers.Lambda', (['model_fn'], {}), '(model_fn)\n', (1307, 1317), True, 'import tensorflow as tf\n'), ((1330, 1370), 'tensorflow.keras.layers.Input', 'tf.keras.layers.Input', (['sz'], {'batch_size': 'bs'}), '(sz, batch_size=bs)\n', (1351, 1370), True, 'import tensorflow as tf\n'), ((1404, 1436), 'tensorflow.keras.models.Model', 'tf.keras.models.Model', (['inpt', 'out'], {}), '(inpt, out)\n', (1425, 1436), True, 'import tensorflow as tf\n'), ((894, 944), 'tensorflow.compat.v1.wrap_function', 'tf.compat.v1.wrap_function', (['_imports_graph_def', '[]'], {}), '(_imports_graph_def, [])\n', (920, 944), True, 'import tensorflow as tf\n'), ((231, 284), 'tensorflow.compat.v1.gfile.GFile', 'tf.compat.v1.gfile.GFile', (['frozen_graph_filename', '"""rb"""'], {}), "(frozen_graph_filename, 'rb')\n", (255, 284), True, 'import tensorflow as tf\n'), ((315, 338), 'tensorflow.compat.v1.GraphDef', 'tf.compat.v1.GraphDef', ([], {}), '()\n', (336, 338), True, 'import tensorflow as tf\n'), ((573, 698), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['graph_def'], {'input_map': 'None', 'return_elements': 'None', 'name': '"""prefix"""', 'op_dict': 'None', 'producer_op_list': 'None'}), "(graph_def, input_map=None, return_elements=None, name=\n 'prefix', op_dict=None, producer_op_list=None)\n", (592, 698), True, 'import tensorflow as tf\n'), ((821, 870), 'tensorflow.compat.v1.import_graph_def', 'tf.compat.v1.import_graph_def', (['graph_def'], {'name': '""""""'}), "(graph_def, name='')\n", (850, 870), True, 'import tensorflow as tf\n'), ((1032, 1092), 'tensorflow.nest.map_structure', 'tf.nest.map_structure', (['import_graph.as_graph_element', 'inputs'], {}), '(import_graph.as_graph_element, inputs)\n', (1053, 1092), True, 'import tensorflow as tf\n'), ((1104, 1165), 'tensorflow.nest.map_structure', 'tf.nest.map_structure', (['import_graph.as_graph_element', 'outputs'], {}), '(import_graph.as_graph_element, outputs)\n', (1125, 1165), True, 'import tensorflow as tf\n'), ((527, 537), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (535, 537), True, 'import tensorflow as tf\n')]
""" Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: MIT-0 """ from urllib.parse import urlparse from cfn_policy_validator.application_error import ApplicationError from cfn_policy_validator.parsers.output import Policy, Resource class SqsQueuePolicyParser: """ AWS::SQS::QueuePolicy """ def __init__(self): self.queue_policies = [] def parse(self, _, resource): evaluated_resource = resource.eval(sqs_queue_policy_schema) properties = evaluated_resource['Properties'] queue_urls = properties['Queues'] policy_document = properties['PolicyDocument'] for queue in queue_urls: parsed_url = urlparse(queue) try: queue_name = parsed_url.path.split('/')[2] except IndexError: raise ApplicationError(f'Invalid queue URL. Unable to parse name from URL. Invalid value: "{queue}"') policy = Policy('QueuePolicy', policy_document) resource = Resource(queue_name, 'AWS::SQS::Queue', policy) self.queue_policies.append(resource) def get_policies(self): return self.queue_policies sqs_queue_policy_schema = { 'type': 'object', 'properties': { 'Properties': { 'type': 'object', 'properties': { 'PolicyDocument': { 'type': 'object' }, 'Queues': { 'type': 'array', 'minItems': 1, 'items': { 'type': 'string' } } }, 'required': ['PolicyDocument', 'Queues'] } }, 'required': ['Properties'] }
[ "cfn_policy_validator.application_error.ApplicationError", "cfn_policy_validator.parsers.output.Policy", "urllib.parse.urlparse", "cfn_policy_validator.parsers.output.Resource" ]
[((713, 728), 'urllib.parse.urlparse', 'urlparse', (['queue'], {}), '(queue)\n', (721, 728), False, 'from urllib.parse import urlparse\n'), ((976, 1014), 'cfn_policy_validator.parsers.output.Policy', 'Policy', (['"""QueuePolicy"""', 'policy_document'], {}), "('QueuePolicy', policy_document)\n", (982, 1014), False, 'from cfn_policy_validator.parsers.output import Policy, Resource\n'), ((1038, 1085), 'cfn_policy_validator.parsers.output.Resource', 'Resource', (['queue_name', '"""AWS::SQS::Queue"""', 'policy'], {}), "(queue_name, 'AWS::SQS::Queue', policy)\n", (1046, 1085), False, 'from cfn_policy_validator.parsers.output import Policy, Resource\n'), ((858, 963), 'cfn_policy_validator.application_error.ApplicationError', 'ApplicationError', (['f"""Invalid queue URL. Unable to parse name from URL. Invalid value: "{queue}\\""""'], {}), '(\n f\'Invalid queue URL. Unable to parse name from URL. Invalid value: "{queue}"\'\n )\n', (874, 963), False, 'from cfn_policy_validator.application_error import ApplicationError\n')]
import torch import torch.nn as nn from torch.functional import F from utils import * class SequenceModel(nn.Module): """docstring for SequenceModel""" def __init__(self, input_size, hidden_size, n_layers, **kwargs): super(SequenceModel, self).__init__() self.rnn = nn.LSTM(input_size, hidden_size, n_layers, **kwargs) self.linear = nn.Sequential(linear(hidden_size, hidden_size, True, 0.5), linear(hidden_size, hidden_size, True, 0.5)) self.fc = nn.Linear(hidden_size, 128) # load def forward(self, x): x, _ = self.rnn(x) x = x.mean(1) x = self.linear(x) return self.fc(x)
[ "torch.nn.LSTM", "torch.nn.Linear" ]
[((277, 329), 'torch.nn.LSTM', 'nn.LSTM', (['input_size', 'hidden_size', 'n_layers'], {}), '(input_size, hidden_size, n_layers, **kwargs)\n', (284, 329), True, 'import torch.nn as nn\n'), ((472, 499), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', '(128)'], {}), '(hidden_size, 128)\n', (481, 499), True, 'import torch.nn as nn\n')]
import pytest import numpy as np import pandas as pd from .stats import IV, WOE, gini, gini_cond, entropy_cond, quality, _IV, VIF np.random.seed(1) feature = np.random.rand(500) target = np.random.randint(2, size = 500) A = np.random.randint(100, size = 500) B = np.random.randint(100, size = 500) mask = np.random.randint(8, size = 500) df = pd.DataFrame({ 'feature': feature, 'target': target, 'A': A, 'B': B, }) def test_woe(): value = WOE(0.2, 0.3) assert value == -0.4054651081081643 def test_iv_priv(): value, _ = _IV(df['feature'], df['target']) assert value == 0.010385942643745403 def test_iv(): value = IV(df['feature'], df['target'], n_bins = 10, method = 'dt') assert value == 0.2735917707743619 def test_iv_return_sub(): _, sub = IV(mask, df['target'], return_sub = True, n_bins = 10, method = 'dt') assert len(sub) == 8 assert sub[4] == 0.006449386778057019 def test_iv_frame(): res = IV(df, 'target', n_bins = 10, method = 'chi') assert res.loc[0, 'A'] == 0.226363832867123 def test_gini(): value = gini(df['target']) assert value == 0.499352 def test_gini_cond(): value = gini_cond(df['feature'], df['target']) assert value == 0.4970162601626016 def test_entropy_cond(): value = entropy_cond(df['feature'], df['target']) assert value == 0.6924990371522171 def test_quality(): result = quality(df, 'target') assert result.loc['feature', 'iv'] == 0.2735917707743619 assert result.loc['A', 'gini'] == 0.49284164671885444 assert result.loc['B', 'entropy'] == 0.6924956879070063 assert result.loc['feature', 'unique'] == 500 def test_quality_iv_only(): result = quality(df, 'target', iv_only = True) assert np.isnan(result.loc['feature', 'gini']) def test_quality_object_type_array_with_nan(): feature = np.array([np.nan, 'A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype = 'O')[mask] df = pd.DataFrame({ 'feature': feature, 'target': target, }) result = quality(df) assert result.loc['feature', 'iv'] == 0.016379338180530334 def test_vif(): vif = VIF(df) assert vif['A'] == 2.969336442640111
[ "pandas.DataFrame", "numpy.random.seed", "numpy.isnan", "numpy.random.randint", "numpy.array", "numpy.random.rand" ]
[((133, 150), 'numpy.random.seed', 'np.random.seed', (['(1)'], {}), '(1)\n', (147, 150), True, 'import numpy as np\n'), ((162, 181), 'numpy.random.rand', 'np.random.rand', (['(500)'], {}), '(500)\n', (176, 181), True, 'import numpy as np\n'), ((191, 221), 'numpy.random.randint', 'np.random.randint', (['(2)'], {'size': '(500)'}), '(2, size=500)\n', (208, 221), True, 'import numpy as np\n'), ((228, 260), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(500)'}), '(100, size=500)\n', (245, 260), True, 'import numpy as np\n'), ((267, 299), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(500)'}), '(100, size=500)\n', (284, 299), True, 'import numpy as np\n'), ((309, 339), 'numpy.random.randint', 'np.random.randint', (['(8)'], {'size': '(500)'}), '(8, size=500)\n', (326, 339), True, 'import numpy as np\n'), ((348, 416), 'pandas.DataFrame', 'pd.DataFrame', (["{'feature': feature, 'target': target, 'A': A, 'B': B}"], {}), "({'feature': feature, 'target': target, 'A': A, 'B': B})\n", (360, 416), True, 'import pandas as pd\n'), ((1746, 1785), 'numpy.isnan', 'np.isnan', (["result.loc['feature', 'gini']"], {}), "(result.loc['feature', 'gini'])\n", (1754, 1785), True, 'import numpy as np\n'), ((1931, 1983), 'pandas.DataFrame', 'pd.DataFrame', (["{'feature': feature, 'target': target}"], {}), "({'feature': feature, 'target': target})\n", (1943, 1983), True, 'import pandas as pd\n'), ((1848, 1912), 'numpy.array', 'np.array', (["[np.nan, 'A', 'B', 'C', 'D', 'E', 'F', 'G']"], {'dtype': '"""O"""'}), "([np.nan, 'A', 'B', 'C', 'D', 'E', 'F', 'G'], dtype='O')\n", (1856, 1912), True, 'import numpy as np\n')]
# ***************************************************************************** # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ***************************************************************************** import abc from contextlib import contextmanager import os from shutil import copyfile import subprocess from time import sleep from scp import SCPClient import paramiko import six from dlab_core.domain.helper import break_after @six.add_metaclass(abc.ABCMeta) class BaseCommandExecutor(object): @abc.abstractmethod def run(self, command): """Run cli command :type command: str :param command: cli command """ raise NotImplementedError @abc.abstractmethod def sudo(self, command): """Run cli sudo command :type command: str :param command: cli command """ raise NotImplementedError @abc.abstractmethod def cd(self, path): """Change work directory to path :type path: str :param path: directory location """ raise NotImplementedError @abc.abstractmethod def put(self, local_path, remote_path): """Copy file :type local_path: str :param local_path: path to local object :type remote_path: str :param remote_path: path to remote object """ raise NotImplementedError class LocalCommandExecutor(BaseCommandExecutor): def run(self, command): # pragma: no cover """Run cli command :type command: str :param command: cli command :rtype: str :return execution result """ lines = [] process = subprocess.Popen( command, shell=True, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) while process.poll() is None: line = process.stdout.readline() lines.append(line) # TODO: Add logging return ' '.join(lines) def sudo(self, command): """Run cli sudo command :type command: str :param command: cli command :rtype: str :return execution result """ raise NotImplementedError @contextmanager def cd(self, path): """Change work directory to path :type path: str :param path: directory location """ current_dir = os.getcwd() try: os.chdir(path) yield finally: os.chdir(current_dir) def put(self, local_path, remote_path): """Copy file :type local_path: str :param local_path: path to local object :type remote_path: str :param remote_path: path to remote object """ copyfile(local_path, remote_path) class ParamikoCommandExecutor(BaseCommandExecutor): def __init__(self, host, name, identity_file): """ :type host: str :param host: ip address or host name :type name: str :param name: user name :type: str :param identity_file: path to file """ self.current_dir = None self._connection = None self.host = host self.name = name self.identity_file = identity_file @property def connection(self): """Return paramiko connection""" return self._connection or self.init_connection() @break_after(180) def init_connection(self): """Init connection""" connection = paramiko.SSHClient() connection.set_missing_host_key_policy( paramiko.AutoAddPolicy()) while True: try: connection.connect(self.host, username=self.name, key_filename=self.identity_file) connection.exec_command('ls') return connection except Exception: sleep(10) @property def current_dir(self): """Default directory""" return self._current_dir @current_dir.setter def current_dir(self, val): """Set default directory :type val: str :param val: new directory """ self._current_dir = val def run(self, command): """Run cli command :type command: str :param command: cli command :rtype: str :return execution result """ if self.current_dir: command = 'cd {}; {}'.format(self.current_dir, command) stdin, stdout, stderr = self.connection.exec_command(command) return stdout.read().decode('ascii').strip("\n") def sudo(self, command): """Run sudo cli command :type command: str :param command: cli command :rtype: str :return execution result """ command = 'sudo {}'.format(command) return self.run(command) @contextmanager def cd(self, path): try: self.current_dir = path yield finally: self.current_dir = None def put(self, local_path, remote_path): """Copy file :type local_path: str :param local_path: path to local object :type remote_path: str :param remote_path: path to remote object """ scp = SCPClient(self.connection.get_transport()) scp.put(local_path, recursive=True, remote_path=remote_path) scp.close()
[ "subprocess.Popen", "paramiko.SSHClient", "os.getcwd", "six.add_metaclass", "paramiko.AutoAddPolicy", "time.sleep", "dlab_core.domain.helper.break_after", "shutil.copyfile", "os.chdir" ]
[((1183, 1213), 'six.add_metaclass', 'six.add_metaclass', (['abc.ABCMeta'], {}), '(abc.ABCMeta)\n', (1200, 1213), False, 'import six\n'), ((4171, 4187), 'dlab_core.domain.helper.break_after', 'break_after', (['(180)'], {}), '(180)\n', (4182, 4187), False, 'from dlab_core.domain.helper import break_after\n'), ((2424, 2541), 'subprocess.Popen', 'subprocess.Popen', (['command'], {'shell': '(True)', 'universal_newlines': '(True)', 'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.STDOUT'}), '(command, shell=True, universal_newlines=True, stdout=\n subprocess.PIPE, stderr=subprocess.STDOUT)\n', (2440, 2541), False, 'import subprocess\n'), ((3150, 3161), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (3159, 3161), False, 'import os\n'), ((3517, 3550), 'shutil.copyfile', 'copyfile', (['local_path', 'remote_path'], {}), '(local_path, remote_path)\n', (3525, 3550), False, 'from shutil import copyfile\n'), ((4270, 4290), 'paramiko.SSHClient', 'paramiko.SSHClient', ([], {}), '()\n', (4288, 4290), False, 'import paramiko\n'), ((3187, 3201), 'os.chdir', 'os.chdir', (['path'], {}), '(path)\n', (3195, 3201), False, 'import os\n'), ((3249, 3270), 'os.chdir', 'os.chdir', (['current_dir'], {}), '(current_dir)\n', (3257, 3270), False, 'import os\n'), ((4351, 4375), 'paramiko.AutoAddPolicy', 'paramiko.AutoAddPolicy', ([], {}), '()\n', (4373, 4375), False, 'import paramiko\n'), ((4674, 4683), 'time.sleep', 'sleep', (['(10)'], {}), '(10)\n', (4679, 4683), False, 'from time import sleep\n')]
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'acq4/modules/MultiPatch/pipetteTemplate.ui' # # Created by: PyQt5 UI code generator 5.8.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_PipetteControl(object): def setupUi(self, PipetteControl): PipetteControl.setObjectName("PipetteControl") PipetteControl.resize(333, 75) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(PipetteControl.sizePolicy().hasHeightForWidth()) PipetteControl.setSizePolicy(sizePolicy) self.gridLayout = QtWidgets.QGridLayout(PipetteControl) self.gridLayout.setContentsMargins(0, 0, 0, 0) self.gridLayout.setSpacing(3) self.gridLayout.setObjectName("gridLayout") self.targetBtn = QtWidgets.QPushButton(PipetteControl) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.targetBtn.sizePolicy().hasHeightForWidth()) self.targetBtn.setSizePolicy(sizePolicy) self.targetBtn.setMaximumSize(Qt.QSize(40, 16777215)) self.targetBtn.setObjectName("targetBtn") self.gridLayout.addWidget(self.targetBtn, 1, 4, 1, 1) self.stateCombo = QtWidgets.QComboBox(PipetteControl) self.stateCombo.setObjectName("stateCombo") self.stateCombo.addItem("") self.stateCombo.addItem("") self.stateCombo.addItem("") self.stateCombo.addItem("") self.stateCombo.addItem("") self.stateCombo.addItem("") self.stateCombo.addItem("") self.stateCombo.addItem("") self.gridLayout.addWidget(self.stateCombo, 0, 3, 1, 2) self.plotLayoutWidget = QtWidgets.QWidget(PipetteControl) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.plotLayoutWidget.sizePolicy().hasHeightForWidth()) self.plotLayoutWidget.setSizePolicy(sizePolicy) self.plotLayoutWidget.setObjectName("plotLayoutWidget") self.plotLayout = QtWidgets.QHBoxLayout(self.plotLayoutWidget) self.plotLayout.setContentsMargins(0, 0, 0, 0) self.plotLayout.setSpacing(0) self.plotLayout.setObjectName("plotLayout") self.gridLayout.addWidget(self.plotLayoutWidget, 0, 5, 4, 1) self.selectBtn = QtWidgets.QPushButton(PipetteControl) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Minimum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.selectBtn.sizePolicy().hasHeightForWidth()) self.selectBtn.setSizePolicy(sizePolicy) self.selectBtn.setMaximumSize(Qt.QSize(30, 16777215)) font = Qt.QFont() font.setPointSize(12) font.setBold(True) font.setWeight(75) self.selectBtn.setFont(font) self.selectBtn.setCheckable(True) self.selectBtn.setObjectName("selectBtn") self.gridLayout.addWidget(self.selectBtn, 0, 0, 4, 1) self.tipBtn = QtWidgets.QPushButton(PipetteControl) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.tipBtn.sizePolicy().hasHeightForWidth()) self.tipBtn.setSizePolicy(sizePolicy) self.tipBtn.setMaximumSize(Qt.QSize(40, 16777215)) self.tipBtn.setObjectName("tipBtn") self.gridLayout.addWidget(self.tipBtn, 2, 4, 1, 1) self.soloBtn = QtWidgets.QPushButton(PipetteControl) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.soloBtn.sizePolicy().hasHeightForWidth()) self.soloBtn.setSizePolicy(sizePolicy) self.soloBtn.setMaximumSize(Qt.QSize(30, 16777215)) self.soloBtn.setCheckable(True) self.soloBtn.setObjectName("soloBtn") self.gridLayout.addWidget(self.soloBtn, 2, 3, 1, 1) self.lockBtn = QtWidgets.QPushButton(PipetteControl) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.lockBtn.sizePolicy().hasHeightForWidth()) self.lockBtn.setSizePolicy(sizePolicy) self.lockBtn.setMaximumSize(Qt.QSize(30, 16777215)) self.lockBtn.setCheckable(True) self.lockBtn.setObjectName("lockBtn") self.gridLayout.addWidget(self.lockBtn, 1, 3, 1, 1) self.retranslateUi(PipetteControl) Qt.QMetaObject.connectSlotsByName(PipetteControl) def retranslateUi(self, PipetteControl): _translate = Qt.QCoreApplication.translate PipetteControl.setWindowTitle(_translate("PipetteControl", "Form")) self.targetBtn.setText(_translate("PipetteControl", "target")) self.stateCombo.setItemText(0, _translate("PipetteControl", "out")) self.stateCombo.setItemText(1, _translate("PipetteControl", "bath")) self.stateCombo.setItemText(2, _translate("PipetteControl", "approach")) self.stateCombo.setItemText(3, _translate("PipetteControl", "seal")) self.stateCombo.setItemText(4, _translate("PipetteControl", "attached")) self.stateCombo.setItemText(5, _translate("PipetteControl", "break in")) self.stateCombo.setItemText(6, _translate("PipetteControl", "whole cell")) self.stateCombo.setItemText(7, _translate("PipetteControl", "outside-out")) self.selectBtn.setText(_translate("PipetteControl", "1")) self.tipBtn.setText(_translate("PipetteControl", "tip")) self.soloBtn.setText(_translate("PipetteControl", "Solo")) self.lockBtn.setText(_translate("PipetteControl", "Lock"))
[ "PyQt5.QtWidgets.QComboBox", "PyQt5.QtWidgets.QSizePolicy", "PyQt5.QtWidgets.QWidget", "PyQt5.QtWidgets.QGridLayout", "PyQt5.QtWidgets.QPushButton", "PyQt5.QtWidgets.QHBoxLayout" ]
[((458, 550), 'PyQt5.QtWidgets.QSizePolicy', 'QtWidgets.QSizePolicy', (['QtWidgets.QSizePolicy.Expanding', 'QtWidgets.QSizePolicy.Expanding'], {}), '(QtWidgets.QSizePolicy.Expanding, QtWidgets.\n QSizePolicy.Expanding)\n', (479, 550), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((791, 828), 'PyQt5.QtWidgets.QGridLayout', 'QtWidgets.QGridLayout', (['PipetteControl'], {}), '(PipetteControl)\n', (812, 828), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((999, 1036), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['PipetteControl'], {}), '(PipetteControl)\n', (1020, 1036), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1058, 1153), 'PyQt5.QtWidgets.QSizePolicy', 'QtWidgets.QSizePolicy', (['QtWidgets.QSizePolicy.MinimumExpanding', 'QtWidgets.QSizePolicy.Fixed'], {}), '(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.\n QSizePolicy.Fixed)\n', (1079, 1153), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1568, 1603), 'PyQt5.QtWidgets.QComboBox', 'QtWidgets.QComboBox', (['PipetteControl'], {}), '(PipetteControl)\n', (1587, 1603), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2039, 2072), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', (['PipetteControl'], {}), '(PipetteControl)\n', (2056, 2072), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2094, 2186), 'PyQt5.QtWidgets.QSizePolicy', 'QtWidgets.QSizePolicy', (['QtWidgets.QSizePolicy.Expanding', 'QtWidgets.QSizePolicy.Expanding'], {}), '(QtWidgets.QSizePolicy.Expanding, QtWidgets.\n QSizePolicy.Expanding)\n', (2115, 2186), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2505, 2549), 'PyQt5.QtWidgets.QHBoxLayout', 'QtWidgets.QHBoxLayout', (['self.plotLayoutWidget'], {}), '(self.plotLayoutWidget)\n', (2526, 2549), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2789, 2826), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['PipetteControl'], {}), '(PipetteControl)\n', (2810, 2826), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2848, 2936), 'PyQt5.QtWidgets.QSizePolicy', 'QtWidgets.QSizePolicy', (['QtWidgets.QSizePolicy.Maximum', 'QtWidgets.QSizePolicy.Minimum'], {}), '(QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.\n Minimum)\n', (2869, 2936), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3536, 3573), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['PipetteControl'], {}), '(PipetteControl)\n', (3557, 3573), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3595, 3683), 'PyQt5.QtWidgets.QSizePolicy', 'QtWidgets.QSizePolicy', (['QtWidgets.QSizePolicy.Expanding', 'QtWidgets.QSizePolicy.Fixed'], {}), '(QtWidgets.QSizePolicy.Expanding, QtWidgets.\n QSizePolicy.Fixed)\n', (3616, 3683), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4077, 4114), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['PipetteControl'], {}), '(PipetteControl)\n', (4098, 4114), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4136, 4215), 'PyQt5.QtWidgets.QSizePolicy', 'QtWidgets.QSizePolicy', (['QtWidgets.QSizePolicy.Fixed', 'QtWidgets.QSizePolicy.Fixed'], {}), '(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed)\n', (4157, 4215), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4660, 4697), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['PipetteControl'], {}), '(PipetteControl)\n', (4681, 4697), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4719, 4798), 'PyQt5.QtWidgets.QSizePolicy', 'QtWidgets.QSizePolicy', (['QtWidgets.QSizePolicy.Fixed', 'QtWidgets.QSizePolicy.Fixed'], {}), '(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed)\n', (4740, 4798), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n')]
import sys import string import datetime import logging from nltk.tokenize import word_tokenize from transformers import BertTokenizer logger = logging.getLogger(__name__) def decode_preprocessing(dataset, output_file, tokenizer, max_len, mode): with open(dataset, 'r') as fin: input_lines = fin.readlines() starttime = datetime.datetime.now() if mode == 'sent_line': lines = [] for line in input_lines: tok_line = word_tokenize(line.strip()) lines += [token + ' O\n' for token in tok_line] + ['\n'] else: lines = input_lines subword_len_counter = 0 last_punc_buffer = "" output = "" for line in lines: line_copy = line line = line.rstrip() if not line: # print(line) output += line + '\n' last_punc_buffer = "" subword_len_counter = 0 continue token = line.split()[0] current_subwords_len = len(tokenizer.tokenize(token)) # Token contains strange control characters like \x96 or \x95 # Just filter out the complete line if current_subwords_len == 0: continue if all(char in string.punctuation for char in token) and line.split()[1] == 'O': last_punc_buffer = "" else: last_punc_buffer += line_copy if (subword_len_counter + current_subwords_len) > max_len: # print("") output += '\n' # print(last_punc_buffer.rstrip()) output += last_punc_buffer.rstrip() + '\n' subword_len_counter = len(last_punc_buffer.split('\n')) last_punc_buffer = "" continue subword_len_counter += current_subwords_len # print(line) output += line + '\n' endtime = datetime.datetime.now() duration = (endtime-starttime).total_seconds() logger.info(duration) with open(output_file, 'w') as fout: fout.write(output) return
[ "datetime.datetime.now", "logging.getLogger" ]
[((145, 172), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (162, 172), False, 'import logging\n'), ((343, 366), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (364, 366), False, 'import datetime\n'), ((1844, 1867), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1865, 1867), False, 'import datetime\n')]
import socket class VMUDPBase: def __init__(self): self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.sock.settimeout(2.0)
[ "socket.socket" ]
[((77, 125), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_DGRAM'], {}), '(socket.AF_INET, socket.SOCK_DGRAM)\n', (90, 125), False, 'import socket\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-06-10 17:25 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('locations', '0001_initial'), ] operations = [ migrations.AlterField( model_name='locationformat', name='char_definition', field=models.CharField(help_text="Determine the character position definition where alpha='\\a', numeric='\\d', punctuation='\\p', or any hard coded character. ex. \\a\\d\\d\\d could be B001 or \\a@\\d\\d could be D@99.", max_length=250, verbose_name='Format'), ), ]
[ "django.db.models.CharField" ]
[((409, 673), 'django.db.models.CharField', 'models.CharField', ([], {'help_text': '"""Determine the character position definition where alpha=\'\\\\a\', numeric=\'\\\\d\', punctuation=\'\\\\p\', or any hard coded character. ex. \\\\a\\\\d\\\\d\\\\d could be B001 or \\\\a@\\\\d\\\\d could be D@99."""', 'max_length': '(250)', 'verbose_name': '"""Format"""'}), '(help_text=\n "Determine the character position definition where alpha=\'\\\\a\', numeric=\'\\\\d\', punctuation=\'\\\\p\', or any hard coded character. ex. \\\\a\\\\d\\\\d\\\\d could be B001 or \\\\a@\\\\d\\\\d could be D@99."\n , max_length=250, verbose_name=\'Format\')\n', (425, 673), False, 'from django.db import migrations, models\n')]
# This file will implement images import os from skimage.io import imsave def visualize_image(image, image_name): """Given an image, will save the image to the figures directory Parameters: image: a [N,M,3] tensor filename (str): name of the image """ image_path = os.path.join("../figures", image_name + ".jpg") print(image_path) imsave(image_path, image)
[ "os.path.join", "skimage.io.imsave" ]
[((301, 348), 'os.path.join', 'os.path.join', (['"""../figures"""', "(image_name + '.jpg')"], {}), "('../figures', image_name + '.jpg')\n", (313, 348), False, 'import os\n'), ((376, 401), 'skimage.io.imsave', 'imsave', (['image_path', 'image'], {}), '(image_path, image)\n', (382, 401), False, 'from skimage.io import imsave\n')]
import pickle import numpy as np with open('data/fake.pkl', 'rb') as f: points, labels, scores, keys = pickle.load(f) with open('data/fake_gt.pkl', 'rb') as f: gt_points, gt_bboxes, gt_labels, gt_areas, gt_crowdeds = pickle.load(f) gt_points_yx = [] gt_point_is_valids = [] for gt_point in gt_points: gt_point_yx = [] gt_point_is_valid = [] for pnt in gt_point: gt_point_yx.append(pnt[:, :2]) gt_point_is_valid.append(pnt[:, 2]) gt_points_yx.append(gt_point_yx) gt_point_is_valids.append(gt_point_is_valid) points_yx = [] for point in points: point_yx = [] for pnt in point: point_yx.append(pnt[:, :2]) points_yx.append(point_yx) np.savez('eval_point_coco_dataset_2019_02_18.npz', points=gt_points_yx, is_valids=gt_point_is_valids, bboxes=gt_bboxes, labels=gt_labels, areas=gt_areas, crowdeds=gt_crowdeds) np.savez('eval_point_coco_result_2019_02_18.npz', points=points_yx, scores=scores, labels=labels,)
[ "numpy.savez", "pickle.load" ]
[((700, 884), 'numpy.savez', 'np.savez', (['"""eval_point_coco_dataset_2019_02_18.npz"""'], {'points': 'gt_points_yx', 'is_valids': 'gt_point_is_valids', 'bboxes': 'gt_bboxes', 'labels': 'gt_labels', 'areas': 'gt_areas', 'crowdeds': 'gt_crowdeds'}), "('eval_point_coco_dataset_2019_02_18.npz', points=gt_points_yx,\n is_valids=gt_point_is_valids, bboxes=gt_bboxes, labels=gt_labels, areas\n =gt_areas, crowdeds=gt_crowdeds)\n", (708, 884), True, 'import numpy as np\n'), ((930, 1032), 'numpy.savez', 'np.savez', (['"""eval_point_coco_result_2019_02_18.npz"""'], {'points': 'points_yx', 'scores': 'scores', 'labels': 'labels'}), "('eval_point_coco_result_2019_02_18.npz', points=points_yx, scores=\n scores, labels=labels)\n", (938, 1032), True, 'import numpy as np\n'), ((109, 123), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (120, 123), False, 'import pickle\n'), ((228, 242), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (239, 242), False, 'import pickle\n')]
import pytest from reggol import strip_prefix from testfixtures import LogCapture from ravestate import * DEFAULT_MODULE_NAME = 'module' DEFAULT_PROPERTY_NAME = 'property' DEFAULT_PROPERTY_ID = f"{DEFAULT_MODULE_NAME}:{DEFAULT_PROPERTY_NAME}" DEFAULT_PROPERTY_VALUE = 'Kruder' DEFAULT_PROPERTY_CHANGED = f"{DEFAULT_PROPERTY_ID}:changed" NEW_PROPERTY_VALUE = 'Dorfmeister' DEFAULT_PROPERTY = Property(name=DEFAULT_PROPERTY_NAME, default_value=DEFAULT_PROPERTY_VALUE) DEFAULT_PROPERTY.set_parent_path(DEFAULT_MODULE_NAME) SIGNAL_A = SignalRef(f"{DEFAULT_MODULE_NAME}:a") SIGNAL_B = SignalRef(f"{DEFAULT_MODULE_NAME}:b") SIGNAL_C = SignalRef(f"{DEFAULT_MODULE_NAME}:c") SIGNAL_D = SignalRef(f"{DEFAULT_MODULE_NAME}:d") @pytest.fixture def state_fixture(mocker): @state(write=(DEFAULT_PROPERTY,), read=(DEFAULT_PROPERTY,)) def state_mock_fn(ctx): ctx[DEFAULT_PROPERTY] = "test" state_mock_fn.module_name = DEFAULT_MODULE_NAME return state_mock_fn @pytest.fixture def state_signal_a_fixture(mocker): @state(read=(DEFAULT_PROPERTY,), signal=SIGNAL_A) def state_mock_a_fn(ctx): pass state_mock_a_fn.module_name = DEFAULT_MODULE_NAME return state_mock_a_fn @pytest.fixture def state_signal_b_fixture(mocker): @state(signal=SIGNAL_B, cond=SIGNAL_A) def state_mock_b_fn(ctx): pass state_mock_b_fn.module_name = DEFAULT_MODULE_NAME return state_mock_b_fn @pytest.fixture def state_signal_c_fixture(mocker): @state(signal=SIGNAL_C, cond=SIGNAL_A) def state_mock_c_fn(ctx): pass state_mock_c_fn.module_name = DEFAULT_MODULE_NAME return state_mock_c_fn @pytest.fixture def state_signal_d_fixture(mocker): @state(signal=SIGNAL_D, cond=SIGNAL_B | SIGNAL_C) def state_mock_c_fn(ctx): pass state_mock_c_fn.module_name = DEFAULT_MODULE_NAME return state_mock_c_fn @pytest.fixture def context_fixture(mocker): return Context() @pytest.fixture def context_with_property_fixture(mocker, context_fixture) -> Context: context_fixture.add_prop(prop=DEFAULT_PROPERTY) mocker.patch.object(context_fixture, 'add_prop') return context_fixture @pytest.fixture def context_with_property_and_state_fixture(mocker, context_with_property_fixture, state_fixture): context_with_property_fixture.add_state(st=state_fixture) mocker.patch.object(context_with_property_fixture, 'add_state') return context_with_property_fixture @pytest.fixture def context_wrapper_fixture(context_with_property_fixture, state_fixture): return ContextWrapper(ctx=context_with_property_fixture, state=state_fixture) @pytest.fixture def activation_fixture(state_fixture: State, context_with_property_and_state_fixture: Context): return Activation(state_fixture, context_with_property_and_state_fixture) @pytest.fixture def activation_fixture_fallback(activation_fixture: Activation): activation_fixture.state_to_activate.write_props = None return activation_fixture @pytest.fixture def spike_fixture(): return Spike(sig=DEFAULT_PROPERTY_CHANGED) @pytest.fixture def triple_fixture(mocker): token_mock = mocker.Mock() token_mock.children = () from ravestate_nlp import Triple return Triple(token_mock, token_mock, token_mock)
[ "ravestate_nlp.Triple" ]
[((3237, 3279), 'ravestate_nlp.Triple', 'Triple', (['token_mock', 'token_mock', 'token_mock'], {}), '(token_mock, token_mock, token_mock)\n', (3243, 3279), False, 'from ravestate_nlp import Triple\n')]
from scipy.ndimage.filters import maximum_filter as _max_filter from scipy.ndimage.morphology import binary_erosion as _binary_erosion from skimage.feature import peak_local_max def detect_skimage(image, neighborhood, threshold=1e-12): """Detect peaks using a local maximum filter (via skimage) Parameters ---------- image : numpy.ndarray (2D) The imagery to find the local maxima of neighborhood : numpy.ndarray (2D) A boolean matrix specifying a scanning window for maxima detection. The neigborhood size is implicitly defined by the matrix dimensions. threshold : float The minimum acceptable value of a peak Returns ------- numpy.ndarray (2D) A boolean matrix specifying maxima locations (True) and background locations (False) """ return peak_local_max(image, footprint=neighborhood, threshold_abs=threshold, indices=False) def detect_maximum_filter(image, neighborhood, threshold=1e-12): """Detect peaks using a local maximum filter Code courtesy https://stackoverflow.com/a/3689710 (adapted slightly). Parameters ---------- image : numpy.ndarray (2D) The imagery to find the local maxima of neighborhood : numpy.ndarray (2D) A boolean matrix specifying a scanning window for maxima detection. The neigborhood size is implicitly defined by the matrix dimensions. threshold : float The minimum acceptable value of a peak Returns ------- numpy.ndarray (2D) A boolean matrix specifying maxima locations (True) and background locations (False) """ # Apply the local maximum filter, then remove any background (below # threshold) values from our result. detected_peaks = _max_filter(image, footprint=neighborhood) == image detected_peaks[image < threshold] = False return detected_peaks
[ "scipy.ndimage.filters.maximum_filter", "skimage.feature.peak_local_max" ]
[((839, 928), 'skimage.feature.peak_local_max', 'peak_local_max', (['image'], {'footprint': 'neighborhood', 'threshold_abs': 'threshold', 'indices': '(False)'}), '(image, footprint=neighborhood, threshold_abs=threshold,\n indices=False)\n', (853, 928), False, 'from skimage.feature import peak_local_max\n'), ((1856, 1898), 'scipy.ndimage.filters.maximum_filter', '_max_filter', (['image'], {'footprint': 'neighborhood'}), '(image, footprint=neighborhood)\n', (1867, 1898), True, 'from scipy.ndimage.filters import maximum_filter as _max_filter\n')]
# -*- coding: utf-8 -*- import random """ 折半插入排序 O(n) = n^2 """ class BinaryInsertion(object): def __init__(self, original_list): self.original_list = original_list def sort(self): length = len(self.original_list) for i in range(1, length): self.binary(start=0, end=i-1, current=i) def binary(self, start, end, current): cursor = int((end + start) / 2) if end != start else end if (end == start) or (cursor == 0) or (self.original_list[current] == self.original_list[cursor]): if self.original_list[current] >= self.original_list[cursor]: self.original_list.insert(cursor+1, self.original_list[current]) else: self.original_list.insert(cursor, self.original_list[current]) del self.original_list[current+1] elif self.original_list[current] > self.original_list[cursor]: self.binary(cursor+1, end, current) elif self.original_list[current] < self.original_list[cursor]: self.binary(start, cursor-1, current) if __name__ == '__main__': my_list = [random.randint(0, 100) for _ in range(0, 10)] print("before sort: {}".format(my_list)) BinaryInsertion(my_list).sort() print("after sort: {}".format(my_list))
[ "random.randint" ]
[((1127, 1149), 'random.randint', 'random.randint', (['(0)', '(100)'], {}), '(0, 100)\n', (1141, 1149), False, 'import random\n')]
"""models.py - Contains class definitions for Datastore entities used by the Concentration Game API. Definitions for User, Game, and Score classes, with associated methods. Additionally, contains definitions for Forms used in transmitting messages to users.""" ### Imports import random import pickle from datetime import date import httplib import endpoints from protorpc import messages from google.appengine.ext import ndb ### Import game logic import game as gm ### User Related Classes and Methods class User(ndb.Model): """User profile""" name = ndb.StringProperty(required=True) email = ndb.StringProperty() total_games = ndb.IntegerProperty(default = 0) total_score = ndb.IntegerProperty(default = 0) avg_score = ndb.FloatProperty(default = 0) def to_form(self): """Returns a UserForm representation of a User""" form = UserForm() form.name = self.name form.urlsafe_key = self.key.urlsafe() form.total_games = self.total_games form.total_score = self.total_score form.avg_score = round(self.avg_score) return form def calc_score(self): """Calculate the player's average score -- to be called whenever a new game is won""" avg_score = self.total_score / self.total_games return avg_score ### Game Related Class and Methods class Game(ndb.Model): """Game object""" board = ndb.StringProperty(repeated=True) boardState = ndb.StringProperty(repeated=True) guesses = ndb.IntegerProperty(required=True, default=0) cards = ndb.IntegerProperty(required=True, default=52) status = ndb.StringProperty(required=True, default='In Progress') user = ndb.KeyProperty(required=True, kind='User') history = ndb.PickleProperty(repeated=True) score = ndb.FloatProperty() @classmethod def new_game(self, user, cards=52): """Creates and returns a new game""" if cards < 8 or cards > 52 or cards % 2 != 0: raise ValueError('Cards dealt must be an even number between 8 and 52') newGame = Game(board=gm.constructBoard(cards), boardState=gm.initialBoardState(cards), guesses=0, cards=cards, status='In Progress', user=user) newGame.put() return newGame def to_form(self, message): """Returns a GameForm representation of the Game""" form = GameForm() form.urlsafe_key = self.key.urlsafe() form.user_name = self.user.get().name form.guesses = self.guesses form.cards = self.cards form.status = self.status form.message = message form.boardState = self.boardState return form def to_mini_form(self): """Return a MiniGameForm representation of a Game""" form = MiniGameForm() form.urlsafe_key = self.key.urlsafe() form.guesses = self.guesses form.cards = self.cards form.status = self.status return form def to_history_form(self): """Returns a game history form after a game has been won""" form = HistoryForm() form.urlsafe_key = self.key.urlsafe() form.cards = self.cards form.guesses = self.guesses form.board = self.board form.score = self.score form.history = [h for h in self.history] return form def win_game(self): """Updates score and user information once game is won""" # Add the game to the score 'board' total_score = int(round((self.cards ** 4) / self.guesses)) self.score = total_score self.put() score = Score(user=self.user, date=date.today(), cards=self.cards, guesses=self.guesses, score=total_score) score.put() user = self.user.get() # Add the current score to the user's total score, but handle error # if user's current score is 0 try: user.total_score += total_score except TypeError: user.total_score = total_score user.put() user.avg_score = user.calc_score() user.put() ### Score Class and Methods class Score(ndb.Model): """Score object""" user = ndb.KeyProperty(required=True, kind='User') date = ndb.DateProperty(required=True) cards = ndb.IntegerProperty(required=True) guesses = ndb.IntegerProperty(required=True) score = ndb.FloatProperty(required=True) def to_form(self): return ScoreForm(user_name=self.user.get().name, cards=self.cards, date=str(self.date), guesses=self.guesses, score=self.score) ### Game Forms -- Display class GameForm(messages.Message): """GameForm for outbound game state information""" urlsafe_key = messages.StringField(1) guesses = messages.IntegerField(2) status = messages.StringField(3) message = messages.StringField(4) boardState = messages.StringField(5, repeated=True) user_name = messages.StringField(6) cards = messages.IntegerField(7) class MiniGameForm(messages.Message): """Abbreviated Game Form for reporting, rather than play purposes""" urlsafe_key = messages.StringField(1) guesses = messages.IntegerField(2) cards = messages.IntegerField(3) status = messages.StringField(4) class HistoryForm(messages.Message): """Form to display a game history, as well as score information""" urlsafe_key = messages.StringField(1) cards = messages.IntegerField(2) guesses = messages.IntegerField(3) board = messages.StringField(4, repeated=True) score = messages.FloatField(5) history = messages.StringField(6, repeated=True) class MiniGameForms(messages.Message): """Hold a list of abbreviated Game Forms""" games = messages.MessageField(MiniGameForm, 1, repeated=True) class NewGameForm(messages.Message): """Used to create a new game""" user_name = messages.StringField(1, required=True) cards = messages.IntegerField(2, default=52) ### Gameplay Forms class FlipCardForm(messages.Message): """Form to allow players to guess a card by supplying its index""" queryCard = messages.IntegerField(1, required=True) class CardForm(messages.Message): """Form to respond to player guess by revealing a card value""" cardValue = messages.StringField(1) class MakeGuessForm(messages.Message): """Used to make a move in an existing game""" card1 = messages.IntegerField(1, required=True) card2 = messages.IntegerField(2, required=True) class HintForm(messages.Message): """Send the index of a matching card (hint) back to a user""" hint = messages.IntegerField(1, required=True) ### Score Forms class ScoreForm(messages.Message): """ScoreForm for outbound Score information""" user_name = messages.StringField(1, required=True) date = messages.StringField(2, required=True) cards = messages.IntegerField(3, required=True) guesses = messages.IntegerField(4, required=True) score = messages.FloatField(5, required=True) class ScoreForms(messages.Message): """Return multiple ScoreForms""" items = messages.MessageField(ScoreForm, 1, repeated=True) ## User and Rankings Message Classes class UserForm(messages.Message): """User detail form""" name = messages.StringField(1) urlsafe_key = messages.StringField(2) total_games = messages.IntegerField(3) total_score = messages.IntegerField(4) avg_score = messages.FloatField(5) class UserForms(messages.Message): """Return information mulitiple users for ranking""" users = messages.MessageField(UserForm, 1, repeated=True) ### Assorted Message Classes class StringMessage(messages.Message): """StringMessage-- outbound (single) string message""" message = messages.StringField(1, required=True)
[ "google.appengine.ext.ndb.FloatProperty", "protorpc.messages.FloatField", "datetime.date.today", "protorpc.messages.IntegerField", "protorpc.messages.StringField", "game.constructBoard", "google.appengine.ext.ndb.PickleProperty", "google.appengine.ext.ndb.IntegerProperty", "google.appengine.ext.ndb.StringProperty", "google.appengine.ext.ndb.DateProperty", "google.appengine.ext.ndb.KeyProperty", "protorpc.messages.MessageField", "game.initialBoardState" ]
[((568, 601), 'google.appengine.ext.ndb.StringProperty', 'ndb.StringProperty', ([], {'required': '(True)'}), '(required=True)\n', (586, 601), False, 'from google.appengine.ext import ndb\n'), ((614, 634), 'google.appengine.ext.ndb.StringProperty', 'ndb.StringProperty', ([], {}), '()\n', (632, 634), False, 'from google.appengine.ext import ndb\n'), ((653, 683), 'google.appengine.ext.ndb.IntegerProperty', 'ndb.IntegerProperty', ([], {'default': '(0)'}), '(default=0)\n', (672, 683), False, 'from google.appengine.ext import ndb\n'), ((704, 734), 'google.appengine.ext.ndb.IntegerProperty', 'ndb.IntegerProperty', ([], {'default': '(0)'}), '(default=0)\n', (723, 734), False, 'from google.appengine.ext import ndb\n'), ((753, 781), 'google.appengine.ext.ndb.FloatProperty', 'ndb.FloatProperty', ([], {'default': '(0)'}), '(default=0)\n', (770, 781), False, 'from google.appengine.ext import ndb\n'), ((1428, 1461), 'google.appengine.ext.ndb.StringProperty', 'ndb.StringProperty', ([], {'repeated': '(True)'}), '(repeated=True)\n', (1446, 1461), False, 'from google.appengine.ext import ndb\n'), ((1479, 1512), 'google.appengine.ext.ndb.StringProperty', 'ndb.StringProperty', ([], {'repeated': '(True)'}), '(repeated=True)\n', (1497, 1512), False, 'from google.appengine.ext import ndb\n'), ((1527, 1572), 'google.appengine.ext.ndb.IntegerProperty', 'ndb.IntegerProperty', ([], {'required': '(True)', 'default': '(0)'}), '(required=True, default=0)\n', (1546, 1572), False, 'from google.appengine.ext import ndb\n'), ((1585, 1631), 'google.appengine.ext.ndb.IntegerProperty', 'ndb.IntegerProperty', ([], {'required': '(True)', 'default': '(52)'}), '(required=True, default=52)\n', (1604, 1631), False, 'from google.appengine.ext import ndb\n'), ((1645, 1701), 'google.appengine.ext.ndb.StringProperty', 'ndb.StringProperty', ([], {'required': '(True)', 'default': '"""In Progress"""'}), "(required=True, default='In Progress')\n", (1663, 1701), False, 'from google.appengine.ext import ndb\n'), ((1713, 1756), 'google.appengine.ext.ndb.KeyProperty', 'ndb.KeyProperty', ([], {'required': '(True)', 'kind': '"""User"""'}), "(required=True, kind='User')\n", (1728, 1756), False, 'from google.appengine.ext import ndb\n'), ((1771, 1804), 'google.appengine.ext.ndb.PickleProperty', 'ndb.PickleProperty', ([], {'repeated': '(True)'}), '(repeated=True)\n', (1789, 1804), False, 'from google.appengine.ext import ndb\n'), ((1817, 1836), 'google.appengine.ext.ndb.FloatProperty', 'ndb.FloatProperty', ([], {}), '()\n', (1834, 1836), False, 'from google.appengine.ext import ndb\n'), ((4300, 4343), 'google.appengine.ext.ndb.KeyProperty', 'ndb.KeyProperty', ([], {'required': '(True)', 'kind': '"""User"""'}), "(required=True, kind='User')\n", (4315, 4343), False, 'from google.appengine.ext import ndb\n'), ((4355, 4386), 'google.appengine.ext.ndb.DateProperty', 'ndb.DateProperty', ([], {'required': '(True)'}), '(required=True)\n', (4371, 4386), False, 'from google.appengine.ext import ndb\n'), ((4399, 4433), 'google.appengine.ext.ndb.IntegerProperty', 'ndb.IntegerProperty', ([], {'required': '(True)'}), '(required=True)\n', (4418, 4433), False, 'from google.appengine.ext import ndb\n'), ((4448, 4482), 'google.appengine.ext.ndb.IntegerProperty', 'ndb.IntegerProperty', ([], {'required': '(True)'}), '(required=True)\n', (4467, 4482), False, 'from google.appengine.ext import ndb\n'), ((4495, 4527), 'google.appengine.ext.ndb.FloatProperty', 'ndb.FloatProperty', ([], {'required': '(True)'}), '(required=True)\n', (4512, 4527), False, 'from google.appengine.ext import ndb\n'), ((4927, 4950), 'protorpc.messages.StringField', 'messages.StringField', (['(1)'], {}), '(1)\n', (4947, 4950), False, 'from protorpc import messages\n'), ((4965, 4989), 'protorpc.messages.IntegerField', 'messages.IntegerField', (['(2)'], {}), '(2)\n', (4986, 4989), False, 'from protorpc import messages\n'), ((5003, 5026), 'protorpc.messages.StringField', 'messages.StringField', (['(3)'], {}), '(3)\n', (5023, 5026), False, 'from protorpc import messages\n'), ((5041, 5064), 'protorpc.messages.StringField', 'messages.StringField', (['(4)'], {}), '(4)\n', (5061, 5064), False, 'from protorpc import messages\n'), ((5082, 5120), 'protorpc.messages.StringField', 'messages.StringField', (['(5)'], {'repeated': '(True)'}), '(5, repeated=True)\n', (5102, 5120), False, 'from protorpc import messages\n'), ((5137, 5160), 'protorpc.messages.StringField', 'messages.StringField', (['(6)'], {}), '(6)\n', (5157, 5160), False, 'from protorpc import messages\n'), ((5173, 5197), 'protorpc.messages.IntegerField', 'messages.IntegerField', (['(7)'], {}), '(7)\n', (5194, 5197), False, 'from protorpc import messages\n'), ((5329, 5352), 'protorpc.messages.StringField', 'messages.StringField', (['(1)'], {}), '(1)\n', (5349, 5352), False, 'from protorpc import messages\n'), ((5367, 5391), 'protorpc.messages.IntegerField', 'messages.IntegerField', (['(2)'], {}), '(2)\n', (5388, 5391), False, 'from protorpc import messages\n'), ((5404, 5428), 'protorpc.messages.IntegerField', 'messages.IntegerField', (['(3)'], {}), '(3)\n', (5425, 5428), False, 'from protorpc import messages\n'), ((5442, 5465), 'protorpc.messages.StringField', 'messages.StringField', (['(4)'], {}), '(4)\n', (5462, 5465), False, 'from protorpc import messages\n'), ((5593, 5616), 'protorpc.messages.StringField', 'messages.StringField', (['(1)'], {}), '(1)\n', (5613, 5616), False, 'from protorpc import messages\n'), ((5629, 5653), 'protorpc.messages.IntegerField', 'messages.IntegerField', (['(2)'], {}), '(2)\n', (5650, 5653), False, 'from protorpc import messages\n'), ((5668, 5692), 'protorpc.messages.IntegerField', 'messages.IntegerField', (['(3)'], {}), '(3)\n', (5689, 5692), False, 'from protorpc import messages\n'), ((5705, 5743), 'protorpc.messages.StringField', 'messages.StringField', (['(4)'], {'repeated': '(True)'}), '(4, repeated=True)\n', (5725, 5743), False, 'from protorpc import messages\n'), ((5756, 5778), 'protorpc.messages.FloatField', 'messages.FloatField', (['(5)'], {}), '(5)\n', (5775, 5778), False, 'from protorpc import messages\n'), ((5793, 5831), 'protorpc.messages.StringField', 'messages.StringField', (['(6)'], {'repeated': '(True)'}), '(6, repeated=True)\n', (5813, 5831), False, 'from protorpc import messages\n'), ((5933, 5986), 'protorpc.messages.MessageField', 'messages.MessageField', (['MiniGameForm', '(1)'], {'repeated': '(True)'}), '(MiniGameForm, 1, repeated=True)\n', (5954, 5986), False, 'from protorpc import messages\n'), ((6078, 6116), 'protorpc.messages.StringField', 'messages.StringField', (['(1)'], {'required': '(True)'}), '(1, required=True)\n', (6098, 6116), False, 'from protorpc import messages\n'), ((6129, 6165), 'protorpc.messages.IntegerField', 'messages.IntegerField', (['(2)'], {'default': '(52)'}), '(2, default=52)\n', (6150, 6165), False, 'from protorpc import messages\n'), ((6313, 6352), 'protorpc.messages.IntegerField', 'messages.IntegerField', (['(1)'], {'required': '(True)'}), '(1, required=True)\n', (6334, 6352), False, 'from protorpc import messages\n'), ((6473, 6496), 'protorpc.messages.StringField', 'messages.StringField', (['(1)'], {}), '(1)\n', (6493, 6496), False, 'from protorpc import messages\n'), ((6600, 6639), 'protorpc.messages.IntegerField', 'messages.IntegerField', (['(1)'], {'required': '(True)'}), '(1, required=True)\n', (6621, 6639), False, 'from protorpc import messages\n'), ((6652, 6691), 'protorpc.messages.IntegerField', 'messages.IntegerField', (['(2)'], {'required': '(True)'}), '(2, required=True)\n', (6673, 6691), False, 'from protorpc import messages\n'), ((6805, 6844), 'protorpc.messages.IntegerField', 'messages.IntegerField', (['(1)'], {'required': '(True)'}), '(1, required=True)\n', (6826, 6844), False, 'from protorpc import messages\n'), ((6966, 7004), 'protorpc.messages.StringField', 'messages.StringField', (['(1)'], {'required': '(True)'}), '(1, required=True)\n', (6986, 7004), False, 'from protorpc import messages\n'), ((7016, 7054), 'protorpc.messages.StringField', 'messages.StringField', (['(2)'], {'required': '(True)'}), '(2, required=True)\n', (7036, 7054), False, 'from protorpc import messages\n'), ((7067, 7106), 'protorpc.messages.IntegerField', 'messages.IntegerField', (['(3)'], {'required': '(True)'}), '(3, required=True)\n', (7088, 7106), False, 'from protorpc import messages\n'), ((7121, 7160), 'protorpc.messages.IntegerField', 'messages.IntegerField', (['(4)'], {'required': '(True)'}), '(4, required=True)\n', (7142, 7160), False, 'from protorpc import messages\n'), ((7173, 7210), 'protorpc.messages.FloatField', 'messages.FloatField', (['(5)'], {'required': '(True)'}), '(5, required=True)\n', (7192, 7210), False, 'from protorpc import messages\n'), ((7298, 7348), 'protorpc.messages.MessageField', 'messages.MessageField', (['ScoreForm', '(1)'], {'repeated': '(True)'}), '(ScoreForm, 1, repeated=True)\n', (7319, 7348), False, 'from protorpc import messages\n'), ((7461, 7484), 'protorpc.messages.StringField', 'messages.StringField', (['(1)'], {}), '(1)\n', (7481, 7484), False, 'from protorpc import messages\n'), ((7503, 7526), 'protorpc.messages.StringField', 'messages.StringField', (['(2)'], {}), '(2)\n', (7523, 7526), False, 'from protorpc import messages\n'), ((7545, 7569), 'protorpc.messages.IntegerField', 'messages.IntegerField', (['(3)'], {}), '(3)\n', (7566, 7569), False, 'from protorpc import messages\n'), ((7588, 7612), 'protorpc.messages.IntegerField', 'messages.IntegerField', (['(4)'], {}), '(4)\n', (7609, 7612), False, 'from protorpc import messages\n'), ((7629, 7651), 'protorpc.messages.FloatField', 'messages.FloatField', (['(5)'], {}), '(5)\n', (7648, 7651), False, 'from protorpc import messages\n'), ((7758, 7807), 'protorpc.messages.MessageField', 'messages.MessageField', (['UserForm', '(1)'], {'repeated': '(True)'}), '(UserForm, 1, repeated=True)\n', (7779, 7807), False, 'from protorpc import messages\n'), ((7952, 7990), 'protorpc.messages.StringField', 'messages.StringField', (['(1)'], {'required': '(True)'}), '(1, required=True)\n', (7972, 7990), False, 'from protorpc import messages\n'), ((2107, 2131), 'game.constructBoard', 'gm.constructBoard', (['cards'], {}), '(cards)\n', (2124, 2131), True, 'import game as gm\n'), ((2164, 2191), 'game.initialBoardState', 'gm.initialBoardState', (['cards'], {}), '(cards)\n', (2184, 2191), True, 'import game as gm\n'), ((3742, 3754), 'datetime.date.today', 'date.today', ([], {}), '()\n', (3752, 3754), False, 'from datetime import date\n')]
import os import sys import shutil from io import BytesIO from functools import wraps from textwrap import dedent from random import choice, shuffle from collections import defaultdict import urllib.request required = ["locmaker.py","locmaker_README.txt","Run.cmd"] for item in required: print('Downloading '+item+'...') url = 'https://raw.github.com/Chupachu/LocMaker/master/'+item urllib.request.urlretrieve(url, item) optionals = ["countries.txt","ideologies.txt","out.yml"] for item in optionals: if not os.path.isfile(item): print('Downloading '+item+'...') url = 'https://raw.github.com/Chupachu/LocMaker/master/'+item urllib.request.urlretrieve(url, item)
[ "os.path.isfile" ]
[((531, 551), 'os.path.isfile', 'os.path.isfile', (['item'], {}), '(item)\n', (545, 551), False, 'import os\n')]
''' This contains tests for the parse and get_bad_paths methods. ''' import unittest import parser class TestParser(unittest.TestCase): ''' This contains tests for the parse and get_bad_paths methods. ''' def test_empty(self): ''' Parse an empty string.''' self.assertEqual(parser.parse(''), []) def test_one_disallow(self): ''' Parse a string with one disallow.''' self.assertEqual(parser.parse("Disallow: /stuff/"), ['/stuff/']) def test_two_disallows(self): ''' Parse a string with two disallows.''' self.assertEqual(parser.parse("Disallow: /stuff/\nDisallow: /home/"), ['/stuff/', '/home/']) def test_allow(self): ''' Parse an string with an allow statemnt.''' self.assertEqual(parser.parse("Allow: /stuff/"), []) def test_applicable_useragent(self): ''' Parse a string with a user-agent and a relevant disallow.''' self.assertEqual(parser.parse("User-agent: * \nDisallow: /stuff/"), ['/stuff/']) def test_not_applicable_useragent(self): ''' Parse a string with an unknown user-agent and a disallow that is ignored.''' self.assertEqual(parser.parse("User-agent: someone else \nDisallow: /stuff/"), []) def test_basic_page(self): ''' Test a simple robots.txt page. ''' expected_result = ['/cgi-bin/', '/rcs/', '/~sibel/poetry/poems/', '/~sibel/poetry/books/', '/~musser/dagproc'] self.assertEqual(parser.get_bad_paths("http://cs.rpi.edu/robots.txt"), expected_result) def test_nonexistent_page(self): ''' Test a page that doesn't exist.''' self.assertEqual(parser.get_bad_paths("http://rpi.edu/robots.taxt"), []) def test_targeted_disallows(self): ''' Test a page that has targeted disallows.''' expected_result = ['/feed/', '/c/accounts/', '/c/crontab/', '/c/graphics/', '/c/locale/', '/c.new/', '/c.bak/', '/c_hacks', '/c/pinc/', '/c/setup/', '/c/stats/', '/c/tools/', '/c/users/', '/down/', '/dpmail/', '/d', '/out', '/jpgraph/', '/jpgraph-1.14', '/archive', '/projects', '/mailman/', '/noncvs', '/phpbb2', '/phpbb3', '/phpbb-3.2.0', '/phpmyadmin', '/sawiki', '/squirrels', '/stats/', '/tools', '/w', '/wikiheiro'] self.assertEqual(parser.get_bad_paths("https://www.pgdp.net/robots.txt"), expected_result) def test_allows(self): ''' Test a page that has allows.''' self.assertEqual(parser.get_bad_paths("https://www.choiceofgames.com/robots.txt"), []) if __name__ == "__main__": unittest.main()
[ "unittest.main", "parser.parse", "parser.get_bad_paths" ]
[((2541, 2556), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2554, 2556), False, 'import unittest\n'), ((317, 333), 'parser.parse', 'parser.parse', (['""""""'], {}), "('')\n", (329, 333), False, 'import parser\n'), ((447, 480), 'parser.parse', 'parser.parse', (['"""Disallow: /stuff/"""'], {}), "('Disallow: /stuff/')\n", (459, 480), False, 'import parser\n'), ((605, 661), 'parser.parse', 'parser.parse', (['"""Disallow: /stuff/\nDisallow: /home/"""'], {}), '("""Disallow: /stuff/\nDisallow: /home/""")\n', (617, 661), False, 'import parser\n'), ((790, 820), 'parser.parse', 'parser.parse', (['"""Allow: /stuff/"""'], {}), "('Allow: /stuff/')\n", (802, 820), False, 'import parser\n'), ((966, 1018), 'parser.parse', 'parser.parse', (['"""User-agent: * \nDisallow: /stuff/"""'], {}), '("""User-agent: * \nDisallow: /stuff/""")\n', (978, 1018), False, 'import parser\n'), ((1190, 1253), 'parser.parse', 'parser.parse', (['"""User-agent: someone else \nDisallow: /stuff/"""'], {}), '("""User-agent: someone else \nDisallow: /stuff/""")\n', (1202, 1253), False, 'import parser\n'), ((1479, 1531), 'parser.get_bad_paths', 'parser.get_bad_paths', (['"""http://cs.rpi.edu/robots.txt"""'], {}), "('http://cs.rpi.edu/robots.txt')\n", (1499, 1531), False, 'import parser\n'), ((1660, 1710), 'parser.get_bad_paths', 'parser.get_bad_paths', (['"""http://rpi.edu/robots.taxt"""'], {}), "('http://rpi.edu/robots.taxt')\n", (1680, 1710), False, 'import parser\n'), ((2267, 2322), 'parser.get_bad_paths', 'parser.get_bad_paths', (['"""https://www.pgdp.net/robots.txt"""'], {}), "('https://www.pgdp.net/robots.txt')\n", (2287, 2322), False, 'import parser\n'), ((2438, 2502), 'parser.get_bad_paths', 'parser.get_bad_paths', (['"""https://www.choiceofgames.com/robots.txt"""'], {}), "('https://www.choiceofgames.com/robots.txt')\n", (2458, 2502), False, 'import parser\n')]
from datetime import datetime time_now = datetime.now() print(time_now.strftime('%B/%d/%Y:%H/%M'))
[ "datetime.datetime.now" ]
[((42, 56), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (54, 56), False, 'from datetime import datetime\n')]
""" Test module for the Fedex Tools. """ import unittest import logging import sys sys.path.insert(0, '..') import fedex.config import fedex.services.ship_service as service # Any request object will do. import fedex.tools.conversion logging.getLogger('suds').setLevel(logging.ERROR) logging.getLogger('fedex').setLevel(logging.INFO) class FedexToolsTests(unittest.TestCase): """ These tests verify that the fedex tools are working properly. """ def test_conversion_tools(self): # Empty config, since we are not actually sending anything config = fedex.config.FedexConfig(key='', password='', account_number='', meter_number='', use_test_server=True) # We need a mock suds object, a request object or sub-object will do. waybill_request = service.FedexProcessShipmentRequest(config) obj = waybill_request.create_wsdl_object_of_type('ProcessShipmentRequest') # Test basic sobject to dict. dict_obj = fedex.tools.conversion.basic_sobject_to_dict(obj) assert type(dict_obj) == dict # Test with serialization and case conversion. dict_obj = fedex.tools.conversion.sobject_to_dict(obj, key_to_lower=True, json_serialize=True) assert type(dict_obj) == dict # JSON string object test dict_obj = fedex.tools.conversion.sobject_to_json(obj) assert dict_obj, "Expecting a JSON string object." if __name__ == "__main__": logging.basicConfig(stream=sys.stdout, level=logging.INFO) unittest.main()
[ "unittest.main", "logging.basicConfig", "sys.path.insert", "fedex.services.ship_service.FedexProcessShipmentRequest", "logging.getLogger" ]
[((85, 109), 'sys.path.insert', 'sys.path.insert', (['(0)', '""".."""'], {}), "(0, '..')\n", (100, 109), False, 'import sys\n'), ((1540, 1598), 'logging.basicConfig', 'logging.basicConfig', ([], {'stream': 'sys.stdout', 'level': 'logging.INFO'}), '(stream=sys.stdout, level=logging.INFO)\n', (1559, 1598), False, 'import logging\n'), ((1603, 1618), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1616, 1618), False, 'import unittest\n'), ((239, 264), 'logging.getLogger', 'logging.getLogger', (['"""suds"""'], {}), "('suds')\n", (256, 264), False, 'import logging\n'), ((289, 315), 'logging.getLogger', 'logging.getLogger', (['"""fedex"""'], {}), "('fedex')\n", (306, 315), False, 'import logging\n'), ((880, 923), 'fedex.services.ship_service.FedexProcessShipmentRequest', 'service.FedexProcessShipmentRequest', (['config'], {}), '(config)\n', (915, 923), True, 'import fedex.services.ship_service as service\n')]
from .algo import Algo from .algo_code import AlgoCode from .entity_slot import Slot from .entity_space import Space from . import log, show_adding_box_log from .exception import DistributionException import time class AlgoSingle(Algo): """ pack items into a single bin for single bin packing we merely need to operate on one bin. Don't accept input bins larger than size one @param item_collection: set of items @returns one bin packed with items """ def run(self): log.debug("Entering algorithm SINGLE") bin_collection = self.bins item_collection =self.items if len(bin_collection.items) == 0 or len(bin_collection.items) > 1: raise DistributionException("Single takes only one item") bin = bin_collection.next() """ checks with the bin can continue within the space for single algo """ def continue_fn(bin, space, item): if bin.occupied_space(space, item): return AlgoCode.NO_SPACE m_y = bin.get_min_y_pos(space.y) if space.x + (item.w > bin.w): """ try z now """ space.z += item.d space.x = 0 else: space.x += 1 """ if space.z fails and so does space.x """ """ go up in height make sure y """ """ is at the proper juxtaposition """ if space.z + item.d > bin.d: space.y += m_y.max_y space.x = m_y.min_x space.z = m_y.min_z if int(space.y + item.h) > bin.h: return AlgoCode.LAST_ITEM return AlgoCode.FOUND_SPACE while bin: log.info("Trying to allocate items for bin: {0}".format(bin.id)) item_collection.reset() bin.start_time = time.time() item = item_collection.next() while item: item = item_collection.current() if not bin.can_fit( item ) : item_collection.next() continue space = Space(x=0, y=0, z=0) """ if item.w > bin.w: """ """ self.binner.add_lost(item) """ can_continue = continue_fn(bin, space, item) while can_continue == AlgoCode.NO_SPACE: """ if were at the top of the box """ """ we cannot allocate any more space so we can move on """ space.compute_next_sequence() can_continue = continue_fn(bin, space, item) if can_continue == AlgoCode.LAST_ITEM: continue show_adding_box_log(space, item) slot = Slot.from_space_and_item(space, item) bin.append(slot) item = item_collection.next() bin.end_time = time.time() bin = bin_collection.next() return self.binner
[ "time.time" ]
[((1717, 1728), 'time.time', 'time.time', ([], {}), '()\n', (1726, 1728), False, 'import time\n'), ((2598, 2609), 'time.time', 'time.time', ([], {}), '()\n', (2607, 2609), False, 'import time\n')]
import numpy as np import time from unityagents import UnityEnvironment from agent_utils import env_initialize, env_reset, state_reward_done_unpack from dqn_agent import DQN_Agent from agent_utils import load_dqn from agent_utils import load_params, load_weights def demo_agent(env, agent, n_episodes, epsilon=0.05, seed=0, train_mode=False): print(f'\r\nRunning demo of \'{agent.name}\' with epsilon={epsilon}') scores = [] for i in range(1, n_episodes+1): score = 0 state = env_reset(env, agent.brain_name, train_mode=train_mode) while True: action = int(agent.act(state, epsilon)) env_info = env.step(action)[agent.brain_name] next_state, reward, done = state_reward_done_unpack(env_info) score += reward state = next_state if done: break scores.append(score) print(f'Episode {i}\tScore: {score:.2f}') print('\r\nDemo complete! Scores:\tMin:{:.2f}\tMax:{:.2f}\tAvg:{:.3f}'.format( np.min(scores), np.max(scores), np.mean(scores))) return scores def demo_saved_agent(env, agent_name, n_episodes=3, epsilon=0.05, seed=0, train_mode=False, verbose=False): # initialize environment and scenario info brain, brain_name, state, action_size, state_size = env_initialize(env, train_mode=train_mode) # load the agent params and create the agent params, local_weights, target_weights = load_dqn(agent_name, verbose=verbose) agent = DQN_Agent(state_size, action_size, brain_name, seed, params=params) print(agent.display_params()) # set trained agent weights agent.qnetwork_local.load_state_dict(local_weights) agent.qnetwork_target.load_state_dict(target_weights) # run demo return demo_agent(env, agent, n_episodes=n_episodes, epsilon=epsilon, seed=seed, train_mode=train_mode) def demo_random_agent_discrete(env, n_episodes=3, train_mode=False, verbose=False): """ Runs the environment using a uniform random action selection policy. """ # setup the environment and get initial info brain, brain_name, state, action_size, state_size = env_initialize(env, train_mode=train_mode, verbose=verbose) start_time = time.time() for n_episode in range(1, n_episodes+1): # reset the environment for the new episode state = env_reset(env, brain_name, train_mode=train_mode) # track scores and the number of steps in an episode score = 0 steps = 0 while True: # choose a random action action = np.random.randint(action_size) # send action to environment and get updated info env_info = env.step(action)[brain_name] next_state, reward, done = state_reward_done_unpack(env_info) score += reward steps += 1 # set the state for next iteration state = next_state if done: break # end episode if we get the done signal print (f'Episode {n_episode} score: {score} in {steps} steps.') end_time = time.time() avg_episode_time = (end_time - start_time) / n_episodes print (f'Random agent demo complete, avg episode duration: {avg_episode_time:.3f}s.')
[ "agent_utils.env_initialize", "agent_utils.state_reward_done_unpack", "agent_utils.load_dqn", "dqn_agent.DQN_Agent", "time.time", "numpy.min", "numpy.max", "numpy.mean", "numpy.random.randint", "agent_utils.env_reset" ]
[((1355, 1397), 'agent_utils.env_initialize', 'env_initialize', (['env'], {'train_mode': 'train_mode'}), '(env, train_mode=train_mode)\n', (1369, 1397), False, 'from agent_utils import env_initialize, env_reset, state_reward_done_unpack\n'), ((1496, 1533), 'agent_utils.load_dqn', 'load_dqn', (['agent_name'], {'verbose': 'verbose'}), '(agent_name, verbose=verbose)\n', (1504, 1533), False, 'from agent_utils import load_dqn\n'), ((1550, 1617), 'dqn_agent.DQN_Agent', 'DQN_Agent', (['state_size', 'action_size', 'brain_name', 'seed'], {'params': 'params'}), '(state_size, action_size, brain_name, seed, params=params)\n', (1559, 1617), False, 'from dqn_agent import DQN_Agent\n'), ((2243, 2302), 'agent_utils.env_initialize', 'env_initialize', (['env'], {'train_mode': 'train_mode', 'verbose': 'verbose'}), '(env, train_mode=train_mode, verbose=verbose)\n', (2257, 2302), False, 'from agent_utils import env_initialize, env_reset, state_reward_done_unpack\n'), ((2325, 2336), 'time.time', 'time.time', ([], {}), '()\n', (2334, 2336), False, 'import time\n'), ((3255, 3266), 'time.time', 'time.time', ([], {}), '()\n', (3264, 3266), False, 'import time\n'), ((508, 563), 'agent_utils.env_reset', 'env_reset', (['env', 'agent.brain_name'], {'train_mode': 'train_mode'}), '(env, agent.brain_name, train_mode=train_mode)\n', (517, 563), False, 'from agent_utils import env_initialize, env_reset, state_reward_done_unpack\n'), ((2450, 2499), 'agent_utils.env_reset', 'env_reset', (['env', 'brain_name'], {'train_mode': 'train_mode'}), '(env, brain_name, train_mode=train_mode)\n', (2459, 2499), False, 'from agent_utils import env_initialize, env_reset, state_reward_done_unpack\n'), ((733, 767), 'agent_utils.state_reward_done_unpack', 'state_reward_done_unpack', (['env_info'], {}), '(env_info)\n', (757, 767), False, 'from agent_utils import env_initialize, env_reset, state_reward_done_unpack\n'), ((1054, 1068), 'numpy.min', 'np.min', (['scores'], {}), '(scores)\n', (1060, 1068), True, 'import numpy as np\n'), ((1070, 1084), 'numpy.max', 'np.max', (['scores'], {}), '(scores)\n', (1076, 1084), True, 'import numpy as np\n'), ((1086, 1101), 'numpy.mean', 'np.mean', (['scores'], {}), '(scores)\n', (1093, 1101), True, 'import numpy as np\n'), ((2693, 2723), 'numpy.random.randint', 'np.random.randint', (['action_size'], {}), '(action_size)\n', (2710, 2723), True, 'import numpy as np\n'), ((2890, 2924), 'agent_utils.state_reward_done_unpack', 'state_reward_done_unpack', (['env_info'], {}), '(env_info)\n', (2914, 2924), False, 'from agent_utils import env_initialize, env_reset, state_reward_done_unpack\n')]
# Copyright (c) 2020 BlenderNPR and contributors. MIT license. import os, time import bpy from BlenderMalt import MaltMaterial, MaltMeshes, MaltTextures __BRIDGE = None __PIPELINE_PARAMETERS = None __INITIALIZED = False TIMESTAMP = time.time() def get_bridge(world=None): global __BRIDGE bridge = __BRIDGE if bridge is None or bridge.lost_connection: __BRIDGE = None try: if world is None: bpy.context.scene.world.malt.update_pipeline(bpy.context) else: world.malt.update_pipeline(bpy.context) except: pass return __BRIDGE def set_bridge(bridge): global __BRIDGE __BRIDGE = bridge def set_pipeline_parameters(parameters): global __PIPELINE_PARAMETERS __PIPELINE_PARAMETERS = parameters def set_initialized(initialized): global __INITIALIZED __INITIALIZED = initialized class MaltPipeline(bpy.types.PropertyGroup): def update_pipeline(self, context): global TIMESTAMP TIMESTAMP = time.time() #TODO: Sync all scenes. Only one active pipeline per Blender instance is supported atm. pipeline = self.pipeline if pipeline == '': current_dir = os.path.dirname(os.path.abspath(__file__)) default_pipeline = os.path.join(current_dir,'.MaltPath','Malt','Pipelines','NPR_Pipeline','NPR_Pipeline.py') pipeline = default_pipeline debug_mode = bool(bpy.context.preferences.addons['BlenderMalt'].preferences.debug_mode) path = bpy.path.abspath(pipeline, library=self.id_data.library) import Bridge bridge = Bridge.Client_API.Bridge(path, debug_mode) import logging as log log.info('Blender {} {} {}'.format(bpy.app.version_string, bpy.app.build_branch, bpy.app.build_hash)) params = bridge.get_parameters() set_bridge(bridge) set_pipeline_parameters(params) MaltMaterial.reset_materials() MaltMeshes.reset_meshes() MaltTextures.reset_textures() setup_all_ids() set_initialized(True) pipeline : bpy.props.StringProperty(name="Malt Pipeline", subtype='FILE_PATH', update=update_pipeline) # There's no StringVectorProperty ?!?!? overrides : bpy.props.StringProperty(name='Pipeline Overrides', default='Preview,Final Render') def draw_ui(self, layout): layout.prop(self, 'pipeline') class MALT_PT_Pipeline(bpy.types.Panel): bl_space_type = 'PROPERTIES' bl_region_type = 'WINDOW' bl_context = "world" bl_label = "Pipeline Settings" COMPAT_ENGINES = {'MALT'} @classmethod def poll(cls, context): return context.scene.render.engine == 'MALT' and context.world is not None def draw(self, context): context.scene.world.malt.draw_ui(self.layout) classes = ( MaltPipeline, MALT_PT_Pipeline, ) def setup_all_ids(): setup_parameters(bpy.data.scenes) setup_parameters(bpy.data.worlds) setup_parameters(bpy.data.cameras) setup_parameters(bpy.data.objects) setup_parameters(bpy.data.materials) setup_parameters(bpy.data.meshes) setup_parameters(bpy.data.curves) setup_parameters(bpy.data.lights) MaltMaterial.track_shader_changes(force_update=True) def setup_parameters(ids): global __PIPELINE_PARAMETERS pipeline_parameters = __PIPELINE_PARAMETERS class_parameters_map = { bpy.types.Scene : pipeline_parameters.scene, bpy.types.World : pipeline_parameters.world, bpy.types.Camera : pipeline_parameters.camera, bpy.types.Object : pipeline_parameters.object, bpy.types.Material : pipeline_parameters.material, bpy.types.Mesh : pipeline_parameters.mesh, bpy.types.Curve : pipeline_parameters.mesh, bpy.types.Light : pipeline_parameters.light, } for bid in ids: for cls, parameters in class_parameters_map.items(): if isinstance(bid, cls): bid.malt_parameters.setup(parameters) @bpy.app.handlers.persistent def depsgraph_update(scene, depsgraph): global __INITIALIZED if scene.render.engine != 'MALT': # Don't do anything if Malt is not the active renderer, # but make sure we setup all IDs the next time Malt is enabled __INITIALIZED = False return if __INITIALIZED == False: scene.world.malt.update_pipeline(bpy.context) return ids = [] class_data_map = { bpy.types.Scene : bpy.data.scenes, bpy.types.World : bpy.data.worlds, bpy.types.Camera : bpy.data.cameras, bpy.types.Object : bpy.data.objects, bpy.types.Material : bpy.data.materials, bpy.types.Mesh : bpy.data.meshes, bpy.types.Curve : bpy.data.curves, bpy.types.Light : bpy.data.lights, } for update in depsgraph.updates: # Try to avoid as much re-setups as possible. # Ideally we would do it only on ID creation. if update.is_updated_geometry == True or update.is_updated_transform == False: for cls, data in class_data_map.items(): if isinstance(update.id, cls): ids.append(data[update.id.name]) setup_parameters(ids) redraw = False for update in depsgraph.updates: if update.is_updated_geometry: if 'Object' in str(update.id.__class__): MaltMeshes.unload_mesh(update.id) if update.id.__class__ == bpy.types.Image: MaltTextures.unload_texture(update.id) redraw = True elif update.id.__class__ == bpy.types.Material: MaltTextures.unload_gradients(update.id) redraw = True if redraw: for screen in bpy.data.screens: for area in screen.areas: area.tag_redraw() @bpy.app.handlers.persistent def load_scene(dummy1=None,dummy2=None): global __INITIALIZED __INITIALIZED = False def track_pipeline_changes(): if bpy.context.scene.render.engine != 'MALT': return 1 try: scene = bpy.context.scene malt = scene.world.malt path = bpy.path.abspath(malt.pipeline, library=malt.id_data.library) if os.path.exists(path): stats = os.stat(path) if stats.st_mtime > TIMESTAMP: malt.update_pipeline(bpy.context) except: import traceback print(traceback.format_exc()) return 1 def register(): for _class in classes: bpy.utils.register_class(_class) bpy.types.World.malt = bpy.props.PointerProperty(type=MaltPipeline) bpy.app.handlers.depsgraph_update_post.append(depsgraph_update) bpy.app.handlers.load_post.append(load_scene) bpy.app.timers.register(track_pipeline_changes, persistent=True) def unregister(): for _class in classes: bpy.utils.unregister_class(_class) del bpy.types.World.malt bpy.app.handlers.depsgraph_update_post.remove(depsgraph_update) bpy.app.handlers.load_post.remove(load_scene) bpy.app.timers.unregister(track_pipeline_changes)
[ "BlenderMalt.MaltTextures.unload_texture", "BlenderMalt.MaltMaterial.reset_materials", "os.path.join", "bpy.app.handlers.load_post.append", "bpy.props.PointerProperty", "BlenderMalt.MaltMaterial.track_shader_changes", "bpy.context.scene.world.malt.update_pipeline", "os.path.abspath", "bpy.path.abspath", "os.path.exists", "bpy.utils.unregister_class", "traceback.format_exc", "BlenderMalt.MaltMeshes.reset_meshes", "Bridge.Client_API.Bridge", "bpy.app.handlers.depsgraph_update_post.append", "BlenderMalt.MaltTextures.reset_textures", "os.stat", "bpy.app.handlers.depsgraph_update_post.remove", "BlenderMalt.MaltTextures.unload_gradients", "bpy.app.handlers.load_post.remove", "bpy.app.timers.unregister", "bpy.app.timers.register", "BlenderMalt.MaltMeshes.unload_mesh", "time.time", "bpy.props.StringProperty", "bpy.utils.register_class" ]
[((237, 248), 'time.time', 'time.time', ([], {}), '()\n', (246, 248), False, 'import os, time\n'), ((2152, 2248), 'bpy.props.StringProperty', 'bpy.props.StringProperty', ([], {'name': '"""Malt Pipeline"""', 'subtype': '"""FILE_PATH"""', 'update': 'update_pipeline'}), "(name='Malt Pipeline', subtype='FILE_PATH', update=\n update_pipeline)\n", (2176, 2248), False, 'import bpy\n'), ((2305, 2393), 'bpy.props.StringProperty', 'bpy.props.StringProperty', ([], {'name': '"""Pipeline Overrides"""', 'default': '"""Preview,Final Render"""'}), "(name='Pipeline Overrides', default=\n 'Preview,Final Render')\n", (2329, 2393), False, 'import bpy\n'), ((3259, 3311), 'BlenderMalt.MaltMaterial.track_shader_changes', 'MaltMaterial.track_shader_changes', ([], {'force_update': '(True)'}), '(force_update=True)\n', (3292, 3311), False, 'from BlenderMalt import MaltMaterial, MaltMeshes, MaltTextures\n'), ((6604, 6648), 'bpy.props.PointerProperty', 'bpy.props.PointerProperty', ([], {'type': 'MaltPipeline'}), '(type=MaltPipeline)\n', (6629, 6648), False, 'import bpy\n'), ((6653, 6716), 'bpy.app.handlers.depsgraph_update_post.append', 'bpy.app.handlers.depsgraph_update_post.append', (['depsgraph_update'], {}), '(depsgraph_update)\n', (6698, 6716), False, 'import bpy\n'), ((6721, 6766), 'bpy.app.handlers.load_post.append', 'bpy.app.handlers.load_post.append', (['load_scene'], {}), '(load_scene)\n', (6754, 6766), False, 'import bpy\n'), ((6771, 6835), 'bpy.app.timers.register', 'bpy.app.timers.register', (['track_pipeline_changes'], {'persistent': '(True)'}), '(track_pipeline_changes, persistent=True)\n', (6794, 6835), False, 'import bpy\n'), ((6954, 7017), 'bpy.app.handlers.depsgraph_update_post.remove', 'bpy.app.handlers.depsgraph_update_post.remove', (['depsgraph_update'], {}), '(depsgraph_update)\n', (6999, 7017), False, 'import bpy\n'), ((7022, 7067), 'bpy.app.handlers.load_post.remove', 'bpy.app.handlers.load_post.remove', (['load_scene'], {}), '(load_scene)\n', (7055, 7067), False, 'import bpy\n'), ((7072, 7121), 'bpy.app.timers.unregister', 'bpy.app.timers.unregister', (['track_pipeline_changes'], {}), '(track_pipeline_changes)\n', (7097, 7121), False, 'import bpy\n'), ((1042, 1053), 'time.time', 'time.time', ([], {}), '()\n', (1051, 1053), False, 'import os, time\n'), ((1570, 1626), 'bpy.path.abspath', 'bpy.path.abspath', (['pipeline'], {'library': 'self.id_data.library'}), '(pipeline, library=self.id_data.library)\n', (1586, 1626), False, 'import bpy\n'), ((1666, 1708), 'Bridge.Client_API.Bridge', 'Bridge.Client_API.Bridge', (['path', 'debug_mode'], {}), '(path, debug_mode)\n', (1690, 1708), False, 'import Bridge\n'), ((1974, 2004), 'BlenderMalt.MaltMaterial.reset_materials', 'MaltMaterial.reset_materials', ([], {}), '()\n', (2002, 2004), False, 'from BlenderMalt import MaltMaterial, MaltMeshes, MaltTextures\n'), ((2013, 2038), 'BlenderMalt.MaltMeshes.reset_meshes', 'MaltMeshes.reset_meshes', ([], {}), '()\n', (2036, 2038), False, 'from BlenderMalt import MaltMaterial, MaltMeshes, MaltTextures\n'), ((2047, 2076), 'BlenderMalt.MaltTextures.reset_textures', 'MaltTextures.reset_textures', ([], {}), '()\n', (2074, 2076), False, 'from BlenderMalt import MaltMaterial, MaltMeshes, MaltTextures\n'), ((6189, 6250), 'bpy.path.abspath', 'bpy.path.abspath', (['malt.pipeline'], {'library': 'malt.id_data.library'}), '(malt.pipeline, library=malt.id_data.library)\n', (6205, 6250), False, 'import bpy\n'), ((6262, 6282), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (6276, 6282), False, 'import os, time\n'), ((6544, 6576), 'bpy.utils.register_class', 'bpy.utils.register_class', (['_class'], {}), '(_class)\n', (6568, 6576), False, 'import bpy\n'), ((6886, 6920), 'bpy.utils.unregister_class', 'bpy.utils.unregister_class', (['_class'], {}), '(_class)\n', (6912, 6920), False, 'import bpy\n'), ((1319, 1417), 'os.path.join', 'os.path.join', (['current_dir', '""".MaltPath"""', '"""Malt"""', '"""Pipelines"""', '"""NPR_Pipeline"""', '"""NPR_Pipeline.py"""'], {}), "(current_dir, '.MaltPath', 'Malt', 'Pipelines', 'NPR_Pipeline',\n 'NPR_Pipeline.py')\n", (1331, 1417), False, 'import os, time\n'), ((5547, 5585), 'BlenderMalt.MaltTextures.unload_texture', 'MaltTextures.unload_texture', (['update.id'], {}), '(update.id)\n', (5574, 5585), False, 'from BlenderMalt import MaltMaterial, MaltMeshes, MaltTextures\n'), ((6304, 6317), 'os.stat', 'os.stat', (['path'], {}), '(path)\n', (6311, 6317), False, 'import os, time\n'), ((452, 509), 'bpy.context.scene.world.malt.update_pipeline', 'bpy.context.scene.world.malt.update_pipeline', (['bpy.context'], {}), '(bpy.context)\n', (496, 509), False, 'import bpy\n'), ((1261, 1286), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (1276, 1286), False, 'import os, time\n'), ((5450, 5483), 'BlenderMalt.MaltMeshes.unload_mesh', 'MaltMeshes.unload_mesh', (['update.id'], {}), '(update.id)\n', (5472, 5483), False, 'from BlenderMalt import MaltMaterial, MaltMeshes, MaltTextures\n'), ((5680, 5720), 'BlenderMalt.MaltTextures.unload_gradients', 'MaltTextures.unload_gradients', (['update.id'], {}), '(update.id)\n', (5709, 5720), False, 'from BlenderMalt import MaltMaterial, MaltMeshes, MaltTextures\n'), ((6462, 6484), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (6482, 6484), False, 'import traceback\n')]
import os from time import sleep from datetime import datetime MESSAGE_COUNT = int(os.getenv("MESSAGE_COUNT", 10000)) SIZE = int(os.getenv("SIZE", 128)) FREQ = float(os.getenv("FREQ", "1")) MESSAGE_COUNT = max(MESSAGE_COUNT, 5) MY_HOST = os.getenv("MY_HOST", os.uname()[1]) def print_beginning(): print("---begin---") def print_ending(): later = datetime.now() print("generated %d messages in %d seconds" % (MESSAGE_COUNT, int((later - now).total_seconds()))) print("EPS: %d" % (MESSAGE_COUNT / (later - now).total_seconds())) print("---end---") def print_log(i): log_meta = " ".join(["num:", str(i), "|", MY_HOST, "|", datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f"), "|"]) print(log_meta, "r"*(max(1, SIZE-len(log_meta)))) sleep(FREQ) now = datetime.now() i = 1 if MESSAGE_COUNT <= 0: print_beginning() while True: print_log(i) i += 1 else: print_beginning() while i <= MESSAGE_COUNT - 4: print_log(i) i += 1 print_ending() while True: sleep(60)
[ "os.uname", "datetime.datetime.now", "os.getenv", "time.sleep" ]
[((789, 803), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (801, 803), False, 'from datetime import datetime\n'), ((84, 117), 'os.getenv', 'os.getenv', (['"""MESSAGE_COUNT"""', '(10000)'], {}), "('MESSAGE_COUNT', 10000)\n", (93, 117), False, 'import os\n'), ((130, 152), 'os.getenv', 'os.getenv', (['"""SIZE"""', '(128)'], {}), "('SIZE', 128)\n", (139, 152), False, 'import os\n'), ((167, 189), 'os.getenv', 'os.getenv', (['"""FREQ"""', '"""1"""'], {}), "('FREQ', '1')\n", (176, 189), False, 'import os\n'), ((360, 374), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (372, 374), False, 'from datetime import datetime\n'), ((765, 776), 'time.sleep', 'sleep', (['FREQ'], {}), '(FREQ)\n', (770, 776), False, 'from time import sleep\n'), ((1042, 1051), 'time.sleep', 'sleep', (['(60)'], {}), '(60)\n', (1047, 1051), False, 'from time import sleep\n'), ((261, 271), 'os.uname', 'os.uname', ([], {}), '()\n', (269, 271), False, 'import os\n'), ((652, 666), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (664, 666), False, 'from datetime import datetime\n')]
#!/usr/bin/python # coding: utf8 from __future__ import absolute_import import logging from geocoder.base import OneResult, MultipleResultsQuery class GeolyticaResult(OneResult): def __init__(self, json_content): # create safe shortcuts self._standard = json_content.get('standard', {}) # proceed with super.__init__ super(GeolyticaResult, self).__init__(json_content) @property def lat(self): lat = self.raw.get('latt', '').strip() if lat: return float(lat) @property def lng(self): lng = self.raw.get('longt', '').strip() if lng: return float(lng) @property def postal(self): return self.raw.get('postal', '').strip() @property def housenumber(self): return self._standard.get('stnumber', '').strip() @property def street(self): return self._standard.get('staddress', '').strip() @property def city(self): return self._standard.get('city', '').strip() @property def state(self): return self._standard.get('prov', '').strip() @property def address(self): if self.street_number: return u'{0} {1}, {2}'.format(self.street_number, self.route, self.locality) elif self.route and self.route != 'un-known': return u'{0}, {1}'.format(self.route, self.locality) else: return self.locality class GeolyticaQuery(MultipleResultsQuery): """ Geocoder.ca =========== A Canadian and US location geocoder. API Reference ------------- http://geocoder.ca/?api=1 """ provider = 'geolytica' method = 'geocode' _URL = 'http://geocoder.ca' _RESULT_CLASS = GeolyticaResult _KEY_MANDATORY = False def _build_params(self, location, provider_key, **kwargs): params = { 'json': 1, 'locate': location, 'geoit': 'xml' } if 'strictmode' in kwargs: params.update({'strictmode': kwargs.pop('strictmode')}) if 'strict' in kwargs: params.update({'strict': kwargs.pop('strict')}) if 'auth' in kwargs: params.update({'auth': kwargs.pop('auth')}) return params def _adapt_results(self, json_response): return [json_response] if __name__ == '__main__': logging.basicConfig(level=logging.INFO) g = GeolyticaQuery('1552 Payette dr., Ottawa') g.debug()
[ "logging.basicConfig" ]
[((2385, 2424), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (2404, 2424), False, 'import logging\n')]