code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
# encoding: utf-8 import sqlite3 from datetime import datetime class DB: def connect(): conn = sqlite3.connect("sektor.db") return conn def init(): conn = DB.connect() cursor = conn.cursor() try: cursor.execute( """CREATE TABLE IF NOT EXISTS track (time INTEGER, lat DOUBLE PRECISION, lon DOUBLE PRECISION, speed INT, distance INT, oil BOOLEAN, created_at DATETIME) """ ) conn.commit() cursor.execute( """ CREATE TABLE IF NOT EXISTS km_for_oil (id INT AUTO_INCREMENT, counter INTEGER) """ ) conn.commit() finally: conn.close() return True def update_km_for_oil(distance): conn = DB.connect() cursor = conn.cursor() try: result = cursor.execute( """ UPDATE counter set """ ).fetchone() return result[0] if result else False except Exception as ex: print("Exception: ", ex) return False def get_last_oil_counter(): conn = DB.connect() cursor = conn.cursor() try: result = cursor.execute( """ SELECT counter FROM km_for_oil """ ).fetchone() return result[0] if result else False except Exception as ex: print("Exception: ", ex) return False def find_last_position(): conn = DB.connect() cursor = conn.cursor() try: result = cursor.execute( """ SELECT track. `time`, track.lat, track.lon, track.speed, track.distance, track.oil FROM track ORDER BY created_at DESC LIMIT 1 """ ).fetchone() return result if result else False except Exception as ex: print("Exception on DB.find_last_position()") print("Exception: ", ex) return False finally: conn.close() return True def find_last_oil(): conn = DB.connect() cursor = cursor.execute("""SELECT * FROM track WHERE distance > 300 """) return cursor.fetchone() def save(time, lat, lon, speed, distance, oil=False): conn = DB.connect() cursor = conn.cursor() created_at = datetime.now() try: cursor.execute( """INSERT INTO track VALUES (?,?,?,?,?,?,?)""", (time, lat, lon, speed, distance, oil, created_at), ) conn.commit() except Exception as ex: print("Exception on DB.save()") print("Exception: ", ex) # TO-DO: Use logger return False finally: conn.close() return True
[ "sqlite3.connect", "datetime.datetime.now" ]
[((109, 137), 'sqlite3.connect', 'sqlite3.connect', (['"""sektor.db"""'], {}), "('sektor.db')\n", (124, 137), False, 'import sqlite3\n'), ((2726, 2740), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2738, 2740), False, 'from datetime import datetime\n')]
import argparse import pickle try: from duck.steps.parametrize import prepare_system from duck.utils.cal_ints import find_interaction from duck.steps.equlibrate import do_equlibrate from duck.utils.check_system import check_if_equlibrated except ModuleNotFoundError: print('Dependencies missing; check openmm, pdbfixer, and yank are installed from Omnia.') def main(): parser = argparse.ArgumentParser(description='Prepare system for dynamic undocking') parser.add_argument('-p', '--protein', help='Apoprotein in PDB format') parser.add_argument('-l', '--ligand', help='Ligand in mol format') # parser.add_argument('-o', '--output', help="PDB output") parser.add_argument('-c', '--chunk', help='Chunked protein') parser.add_argument('-i', '--interaction', help='Protein atom to use for ligand interaction.') parser.add_argument('-s', '--seed', type=int, help='Random seed.') parser.add_argument('--gpu-id', type=int, help='GPU ID (optional); if not specified, runs on CPU only.') parser.add_argument('--force-constant-eq', type=float, default=1.0, help='Force constant for equilibration.') args = parser.parse_args() # Parameterize the ligand prepare_system(args.ligand, args.chunk) # Now find the interaction and save to a file results = find_interaction(args.interaction, args.protein) print(results) # what happens to these? with open('complex_system.pickle', 'rb') as f: p = pickle.load(f) + results with open('complex_system.pickle', 'wb') as f: pickle.dump(p, f, protocol=pickle.HIGHEST_PROTOCOL) # pickle.dump(l, 'complex_system.pickle') # Now do the equlibration do_equlibrate(force_constant_equilibrate=args.force_constant_eq, gpu_id=args.gpu_id) if not check_if_equlibrated("density.csv", 1): raise EquilibrationError("System is not equilibrated.") if __name__ == "__main__": main()
[ "pickle.dump", "argparse.ArgumentParser", "duck.utils.cal_ints.find_interaction", "duck.utils.check_system.check_if_equlibrated", "duck.steps.parametrize.prepare_system", "pickle.load", "duck.steps.equlibrate.do_equlibrate" ]
[((404, 479), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Prepare system for dynamic undocking"""'}), "(description='Prepare system for dynamic undocking')\n", (427, 479), False, 'import argparse\n'), ((1215, 1254), 'duck.steps.parametrize.prepare_system', 'prepare_system', (['args.ligand', 'args.chunk'], {}), '(args.ligand, args.chunk)\n', (1229, 1254), False, 'from duck.steps.parametrize import prepare_system\n'), ((1319, 1367), 'duck.utils.cal_ints.find_interaction', 'find_interaction', (['args.interaction', 'args.protein'], {}), '(args.interaction, args.protein)\n', (1335, 1367), False, 'from duck.utils.cal_ints import find_interaction\n'), ((1700, 1789), 'duck.steps.equlibrate.do_equlibrate', 'do_equlibrate', ([], {'force_constant_equilibrate': 'args.force_constant_eq', 'gpu_id': 'args.gpu_id'}), '(force_constant_equilibrate=args.force_constant_eq, gpu_id=\n args.gpu_id)\n', (1713, 1789), False, 'from duck.steps.equlibrate import do_equlibrate\n'), ((1559, 1610), 'pickle.dump', 'pickle.dump', (['p', 'f'], {'protocol': 'pickle.HIGHEST_PROTOCOL'}), '(p, f, protocol=pickle.HIGHEST_PROTOCOL)\n', (1570, 1610), False, 'import pickle\n'), ((1796, 1834), 'duck.utils.check_system.check_if_equlibrated', 'check_if_equlibrated', (['"""density.csv"""', '(1)'], {}), "('density.csv', 1)\n", (1816, 1834), False, 'from duck.utils.check_system import check_if_equlibrated\n'), ((1475, 1489), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1486, 1489), False, 'import pickle\n')]
# -*- coding: utf-8 -*- # # Tencent is pleased to support the open source community by making QTA available. # Copyright (C) 2016THL A29 Limited, a Tencent company. All rights reserved. # Licensed under the BSD 3-Clause License (the "License"); you may not use this # file except in compliance with the License. You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS # OF ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. # '''测试报告 ''' import sys import codecs import cgi import socket import os import shutil import json import getpass import string import locale import argparse import pkg_resources import xml.dom.minidom as dom import xml.sax.saxutils as saxutils from datetime import datetime from testbase import testresult from testbase.testresult import EnumLogLevel REPORT_ENTRY_POINT = "qtaf.report" report_types = {} os_encoding = locale.getdefaultlocale()[1] report_usage = 'runtest <test ...> --report-type <report-type> [--report-args "<report-args>"]' def _to_unicode( s ): '''将任意字符串转换为unicode编码 ''' if isinstance(str, unicode): return s try: return s.decode('utf8') except UnicodeDecodeError: return s.decode(os_encoding) class ITestReport(object): '''测试报告接口 ''' def begin_report(self): '''开始测试执行 ''' pass def end_report(self): '''结束测试执行 :param passed: 测试是否通过 :type passed: boolean ''' pass def log_test_result(self, testcase, testresult ): '''记录一个测试结果 :param testcase: 测试用例 :type testcase: TestCase :param testresult: 测试结果 :type testresult: TestResult ''' pass def log_record(self, level, tag, msg, record): '''增加一个记录 :param level: 日志级别 :param msg: 日志消息 :param tag: 日志标签 :param record: 日志记录信息 :type level: string :type tag: string :type msg: string :type record: dict ''' pass def log_loaded_tests(self, loader, testcases): '''记录加载成功的用例 :param loader: 用例加载器 :type loader: TestLoader :param testcases: 测试用例列表 :type testcases: list ''' pass def log_filtered_test(self, loader, testcase, reason): '''记录一个被过滤的测试用例 :param loader: 用例加载器 :type loader: TestLoader :param testcase: 测试用例 :type testcase: TestCase :param reason: 过滤原因 :type reason: str ''' pass def log_load_error(self, loader, name, error): '''记录一个加载失败的用例或用例集 :param loader: 用例加载器 :type loader: TestLoader :param name: 名称 :type name: str :param error: 错误信息 :type error: str ''' pass def log_test_target(self, test_target): '''记录被测对象 :param test_target: 被测对象详情 :type test_target: any ''' pass def log_resource(self, res_type, resource): '''记录测试使用的资源 :param res_type: 资源类型 :type res_type: str :param resource: 资源详情 :type resource: dict ''' pass def get_testresult_factory(self): '''获取对应的TestResult工厂 :returns ITestResultFactory ''' raise NotImplementedError() def debug(self, tag, msg, record=None): '''记录一个DEBUG日志 :param msg: 日志消息 :param tag: 日志标签 :param record: 日志记录信息 :type tag: string :type msg: string :type record: dict ''' if record is None: record = {} self.log_record(EnumLogLevel.DEBUG, tag, msg, record) def info(self, tag, msg, record=None): '''记录一个INFO日志 :param msg: 日志消息 :param tag: 日志标签 :param record: 日志记录信息 :type tag: string :type msg: string :type record: dict ''' if record is None: record = {} self.log_record(EnumLogLevel.INFO, tag, msg, record) def warning(self, tag, msg, record=None): '''记录一个WARN日志 :param msg: 日志消息 :param tag: 日志标签 :param record: 日志记录信息 :type tag: string :type msg: string :type record: dict ''' if record is None: record = {} self.log_record(EnumLogLevel.WARNING, tag, msg, record) def error(self, tag, msg, record=None): '''记录一个ERROR日志 :param msg: 日志消息 :param tag: 日志标签 :param record: 日志记录信息 :type tag: string :type msg: string :type record: dict ''' if record is None: record = {} self.log_record(EnumLogLevel.ERROR, tag, msg, record) def critical(self, tag, msg, record=None): '''记录一个CRITICAL日志 :param msg: 日志消息 :param tag: 日志标签 :param record: 日志记录信息 :type tag: string :type msg: string :type record: dict ''' if record is None: record = {} self.log_record(EnumLogLevel.CRITICAL, tag, msg, record) @classmethod def get_parser(cls): '''获取命令行参数解析器(如果实现) :returns: 解析器对象 :rtype: argparse.ArgumentParser ''' raise NotImplementedError() @classmethod def parse_args(cls, args_string): '''通过命令行参数构造对象 :returns: 测试报告 :rtype: cls ''' raise NotImplementedError() class ITestResultFactory(object): '''TestResult工厂接口 ''' def create(self, testcase ): '''创建TestResult对象 :param testcase: 测试用例 :type testcase: TestCase :return TestResult ''' raise NotImplementedError() def dumps(self): '''序列化 :return picklable object ''' pass def loads(self, buf): '''反序列化 :param buf: dumps返回的序列化后的数据 :type buf: object ''' pass class EmptyTestResultFactory(ITestResultFactory): '''测试结果工厂 ''' def __init__(self, result_factory_func=None ): '''构造函数 :param result_factory_func: TestResult工厂函数 :type result_factory_func: Function ''' self._result_factory_func = result_factory_func def create(self, testcase ): '''创建TestResult对象 :param testcase: 测试用例 :type testcase: TestCase :return TestResult ''' if self._result_factory_func is None: return testresult.EmptyResult() else: return self._result_factory_func(testcase) def dumps(self): '''序列化 :return picklable object ''' return self._result_factory_func def loads(self, buf): '''反序列化 :param buf: dumps返回的序列化后的数据 :type buf: object ''' self._result_factory_func = buf class EmptyTestReport(ITestReport): '''不输出测试报告 ''' def __init__(self, result_factory_func=None ): '''构造函数 :param result_factory_func: TestResult工厂函数 :type result_factory_func: callable ''' self._result_factory_func = result_factory_func self._is_passed = True def get_testresult_factory(self): '''获取对应的TestResult工厂 :returns ITestResultFactory ''' return EmptyTestResultFactory(self._result_factory_func) def log_test_result(self, testcase, testresult ): '''记录一个测试结果 :param testcase: 测试用例 :type testcase: TestCase :param testresult: 测试结果 :type testresult: TestResult ''' if not testresult.passed: self._is_passed = False @property def passed(self): '''测试是否通过 ''' return self._is_passed @classmethod def get_parser(cls): '''获取命令行参数解析器(如果实现) :returns: 解析器对象 :rtype: argparse.ArgumentParser ''' return argparse.ArgumentParser(usage=report_usage) @classmethod def parse_args(cls, args_string): '''通过命令行参数构造对象 :returns: 测试报告 :rtype: cls ''' return EmptyTestReport() class StreamTestResultFactory(ITestResultFactory): '''流形式TestResult工厂 ''' def __init__(self, stream ): '''构造函数 :param stream: 指定要输出的流设备 :type stream: file ''' self._stream = stream def create(self, testcase ): '''创建TestResult对象 :param testcase: 测试用例 :type testcase: TestCase :return TestResult ''' return testresult.StreamResult(self._stream) def dumps(self): '''序列化 :return picklable object ''' fileno = self._stream.fileno() if fileno not in [0, 1]: raise ValueError("不支持的流对象: %s" % self._stream) return fileno def loads(self, buf): '''反序列化 :param buf: dumps返回的序列化后的数据 :type buf: object ''' fileno = buf if fileno == 1: self._stream = sys.stdout elif fileno == 2: self._stream = sys.stderr else: raise ValueError("invalid fd: %s" % fileno ) class StreamTestReport(ITestReport): '''流形式的测试报告 ''' def __init__(self, stream=sys.stdout, error_stream=sys.stderr, output_testresult=False, output_summary=True ): '''构造函数 :param stream: 指定要输出的流设备 :type stream: file :param output_testresult: 是否输出测试用例执行的日志 :type output_testresult: boolean :param output_summary: 是否输出执行汇总信息 :type output_summary: boolean ''' self._stream = stream self._err_stream = error_stream self._output_testresult = output_testresult self._output_summary = output_summary if stream.encoding and stream.encoding != 'utf8': self._write = lambda x: self._stream.write(x.decode('utf8').encode(stream.encoding)) self._write_err = lambda x: self._err_stream.write(x.decode('utf8').encode(stream.encoding)) else: self._write = self._stream.write self._write_err = self._err_stream.write self._passed_testresults = [] self._failed_testresults = [] def begin_report(self): '''开始测试执行 ''' self._start_time = datetime.now() self._write("Test runs at:%s.\n" % self._start_time.strftime("%Y-%m-%d %H:%M:%S")) def end_report(self): '''结束测试执行 :param passed: 测试是否通过 :type passed: boolean ''' end_time = datetime.now() self._write("Test ends at:%s.\n" % end_time.strftime("%Y-%m-%d %H:%M:%S")) #self._write("Total execution time is :%s\n" % str(end_time-self._start_time).split('.')[0]) if self._output_summary: self._write("\n" + "="*60 + "\n") self._write("SUMMARY:\n\n") self._write(" Totals: %s\t%0.4fs\n\n" % (len(self._failed_testresults) + len(self._passed_testresults), (end_time-self._start_time).total_seconds())) self._write(" Passed: %s\n" % len(self._passed_testresults)) for it in self._passed_testresults: self._write(" \t%s\t%0.4fs\n" % (it.testcase.test_name, it.end_time-it.begin_time)) self._write("\n") self._write(" Failed: %s\n" % len(self._failed_testresults)) for it in self._failed_testresults: self._write_err(" \t%s\t%0.4fs\n" % (it.testcase.test_name, it.end_time-it.begin_time)) def log_test_result(self, testcase, testresult ): '''记录一个测试结果 :param testcase: 测试用例 :type testcase: TestCase :param testresult: 测试结果 :type testresult: TestResult ''' if testresult.passed: self._passed_testresults.append(testresult) else: self._failed_testresults.append(testresult) self._write("run test case: %s(pass?:%s)\n" % (testcase.test_name, testresult.passed)) def log_record(self, level, tag, msg, record={}): '''增加一个记录 :param level: 日志级别 :param msg: 日志消息 :param tag: 日志标签 :param record: 日志记录信息 :type level: string :type tag: string :type msg: string :type record: dict ''' self._write("%s\n" % (msg)) def log_filtered_test(self, loader, testcase, reason): '''记录一个被过滤的测试用例 :param loader: 用例加载器 :type loader: TestLoader :param testcase: 测试用例 :type testcase: TestCase :param reason: 过滤原因 :type reason: str ''' self._write("filtered test case: %s (reason: %s)\n" % (testcase.test_name, reason)) def log_load_error(self, loader, name, error): '''记录一个加载失败的用例或用例集 :param loader: 用例加载器 :type loader: TestLoader :param name: 名称 :type name: str :param error: 错误信息 :type error: str ''' line = "" for line in reversed(error.split("\n")): if line.strip(): break self._write_err("load test failed: %s (error: %s)\n" % (name, line)) def get_testresult_factory(self): '''获取对应的TestResult工厂 :returns ITestResultFactory ''' if self._output_testresult: return StreamTestResultFactory(self._stream) else: return EmptyTestResultFactory() @classmethod def get_parser(cls): '''获取命令行参数解析器(如果实现) :returns: 解析器对象 :rtype: argparse.ArgumentParser ''' parser = argparse.ArgumentParser(usage=report_usage) parser.add_argument("--no-output-result", action="store_true", help="don't output detail result of test cases") parser.add_argument("--no-summary", action="store_true", help="don't output summary information") return parser @classmethod def parse_args(cls, args_string): '''通过命令行参数构造对象 :returns: 测试报告 :rtype: cls ''' args = cls.get_parser().parse_args(args_string) return cls( output_testresult=not args.no_output_result, output_summary=not args.no_summary) REPORT_XSL = """<?xml version="1.0" encoding="utf-8"?> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:template match="/RunResult"> <html> <head> <style> *{ font-size:12px; font-family: '宋体' , 'Courier New', Arial, 'Arial Unicode MS', ''; } .title { font-size:14px; font-weight: bold; margin: 20px auto 5px auto; } table{ border:solid 1px #0099CC; border-collapse:collapse; margin: 0px auto; } td { border:solid 1px #0099CC; padding: 6px 6px; } .td_Title { color:#FFF; font-weight: bold; background-color:#66CCFF; } .tr_pass { background-color:#B3E8B8; } .tr_fail { background-color:#F5BCBD; } .success { color:#0000FF; } .fail { color:#FF0000; } .exception { color:#00AA00; } </style> </head> <body> <div class='title'> <td>测试报告链接:</td> <td><a><xsl:attribute name="href"><xsl:value-of select="TestReportLink/Url"/></xsl:attribute>点击这里</a></td> </div> <div class='title'>测试运行环境:</div> <table> <tr> <td class='td_Title'>主机名</td> <td><xsl:value-of select="TestEnv/PC"/></td> </tr> <tr> <td class='td_Title'>操作系统</td> <td><xsl:value-of select="TestEnv/OS"/></td> </tr> </table> <div class='title'>测试运行时间:</div> <table> <tr> <td class='td_Title'>Run开始时间</td> <td><xsl:value-of select="RunTime/StartTime"/></td> </tr> <tr> <td class='td_Title'>Run结束时间</td> <td><xsl:value-of select="RunTime/EndTime"/></td> </tr> <tr> <td class='td_Title'>Run执行时间</td> <td><xsl:value-of select="RunTime/Duration"/></td> </tr> </table> <div class='title'>测试用例汇总:</div> <table> <tr> <td class='td_Title'>用例总数</td> <td class='td_Title'>通过用例数</td> <td class='td_Title'>失败用例数</td> </tr> <tr> <td> <xsl:value-of select="count(TestResult)"/> </td> <td> <xsl:value-of select="count(TestResult[@result='True'])"/> </td> <td> <xsl:value-of select="count(TestResult[@result='False'])"/> </td> </tr> </table> <div class='title'>加载失败模块:</div> <table> <tr> <td class='td_Title'>模块名</td> <td class='td_Title'>失败Log</td> </tr> <tr> <xsl:for-each select="LoadTestError"> <tr> <td><xsl:value-of select="@name"/></td> <td><a><xsl:attribute name="href"> <xsl:value-of select="@log"/> </xsl:attribute> Log </a></td> </tr> </xsl:for-each> </tr> </table> <div class='title'>测试用例详细信息:</div> <table> <tr> <td class='td_Title'>测试结果</td> <td class='td_Title'>测试用例</td> <td class='td_Title'>负责人</td> <td class='td_Title'>用例描述</td> <td class='td_Title'>用例状态</td> <td class='td_Title'>用例Log</td> </tr> <xsl:for-each select="TestResult"> <xsl:if test="@result='False'"> <tr class='tr_fail'> <td>失败</td> <td><xsl:value-of select="@name"/></td> <td><xsl:value-of select="@owner"/></td> <td><xsl:value-of select="."/></td> <td><xsl:value-of select="@status"/></td> <td><a><xsl:attribute name="href"> <xsl:value-of select="@log"/> </xsl:attribute> Log </a></td> </tr> </xsl:if> <xsl:if test="@result='True'"> <tr class='tr_pass'> <td>通过</td> <td><xsl:value-of select="@name"/></td> <td><xsl:value-of select="@owner"/></td> <td><xsl:value-of select="."/></td> <td><xsl:value-of select="@status"/></td> <td><a><xsl:attribute name="href"> <xsl:value-of select="@log"/> </xsl:attribute> Log </a></td> </tr> </xsl:if> </xsl:for-each> </table> </body> </html> </xsl:template> </xsl:stylesheet>""" RESULT_XLS = """<?xml version="1.0" encoding="utf-8"?><!-- DWXMLSource="tmp/qqtest.hello.HelloW.xml" --><!DOCTYPE xsl:stylesheet [ <!ENTITY nbsp "&#160;"> <!ENTITY copy "&#169;"> <!ENTITY reg "&#174;"> <!ENTITY trade "&#8482;"> <!ENTITY mdash "&#8212;"> <!ENTITY ldquo "&#8220;"> <!ENTITY rdquo "&#8221;"> <!ENTITY pound "&#163;"> <!ENTITY yen "&#165;"> <!ENTITY euro "&#8364;"> ]> <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <xsl:strip-space elements="*"/> <xsl:template match="/TEST"> <html> <head> <style> *{ font-size:12px; font-family: '宋体' , 'Courier New', Arial, 'Arial Unicode MS', ''; } .title { font-size:14px; font-weight: bold; margin: 20px auto 5px auto; } .subtable{ border:solid 1px #0099CC; border-collapse:collapse; margin: 0px auto auto 0px; } .subtable td { border:solid 1px #0099CC; padding: 6px 6px; } .td_title { color:#FFF; font-weight: bold; background-color:#66CCFF; } .tr_pass { background-color:#B3E8B8; } .tr_fail { background-color:#F5BCBD; } .suc_step_title { background-color:#B3E8B8; padding:2px 2px } .STYLE1 {font-size: 16px} .STYLE3 {font-size: 14px; color:#666666;} .STYLE4 {color: #999999} .STYLE5 { color: #FF0000; font-weight: bold; } .STYLE6 { color: #FF9900; font-weight: bold; } </style> </head> <body> <div> <table class="subtable"> <tr> <td class='td_title'>用例名字:</td> <td><xsl:value-of select="@name"/></td> <td class='td_title'>运行结果:</td> <td> <span> <xsl:attribute name="style"> <xsl:if test="@result='True'">color: #00FF00</xsl:if> <xsl:if test="@result='False'">color: #FF0000</xsl:if> </xsl:attribute> <xsl:apply-templates select="@result"/> </span> </td> </tr> <tr> <td class='td_title'>开始时间:</td> <td><xsl:value-of select="@begintime"/></td> <td class='td_title'>负责人:</td> <td><xsl:value-of select="@owner"/></td> </tr> <tr> <td class='td_title'>结束时间:</td> <td><xsl:value-of select="@endtime"/></td> <td class='td_title'>优先级:</td> <td><xsl:value-of select="@priority"/></td> </tr> <tr> <td class="td_title">运行时间:</td> <td><xsl:value-of select="@duration"/></td> <td class='td_title'>用例超时:</td> <td><xsl:value-of select="@timeout"/>分钟</td> </tr> </table> </div> <xsl:apply-templates/> </body> </html> </xsl:template> <xsl:template name="break_lines"> <xsl:param name="text" select="string(.)"/> <xsl:choose> <xsl:when test="contains($text, '&#xa;')"> <xsl:value-of select="substring-before($text, '&#xa;')"/> <br/> <xsl:call-template name="break_lines"> <xsl:with-param name="text" select="substring-after($text, '&#xa;')" /> </xsl:call-template> </xsl:when> <xsl:otherwise> <xsl:value-of select="$text"/> </xsl:otherwise> </xsl:choose> </xsl:template> <xsl:template match="@result"> <xsl:if test=".='True'">通过</xsl:if> <xsl:if test=".='False'">失败</xsl:if> </xsl:template> <xsl:template match="STEP"> <hr /> <div> <xsl:if test="@result='True'"> <xsl:attribute name="style"> padding:2px 2px; background-color:#B3E8B8 </xsl:attribute> </xsl:if> <xsl:if test="@result='False'"> <xsl:attribute name="style"> padding:2px 2px; background-color:#F5BCBD </xsl:attribute> </xsl:if> <table border="0"> <tr> <td><span class="STYLE1">步骤:</span></td> <td><span class="STYLE1"><xsl:value-of select="@title"/></span></td> <td><span class="STYLE1">&nbsp;<xsl:value-of select="@time"/></span></td> <td><span class="STYLE1">&nbsp; <xsl:apply-templates select="@result"/> </span></td> </tr> </table> </div> <hr /> <table> <xsl:apply-templates/> </table> </xsl:template> <xsl:template match="DEBUG"> <tr> <td valign="top"><strong>DEBUG:</strong></td> <td><xsl:value-of select="text()"/></td> </tr> </xsl:template> <xsl:template match="INFO"> <tr> <!--<td valign="top"><span class="STYLE4">12:12:11</span></td> --> <td valign="top"><strong>INFO:</strong></td> <td><xsl:value-of select="text()"/></td> </tr> </xsl:template> <xsl:template match="WARNING"> <tr> <!--<td valign="top"><span class="STYLE4">12:12:11</span></td> --> <td valign="top"><span class="STYLE6">WARNING:</span></td> <td><xsl:value-of select="text()"/></td> </tr> </xsl:template> <xsl:template match="ERROR"> <tr> <!--<td valign="top"><span class="STYLE4">12:12:11</span></td> --> <td valign="top"><span class="STYLE5">ERROR:</span></td> <td> <xsl:call-template name="break_lines" /> <pre> <xsl:value-of select="EXCEPT/text()"/> </pre> <table border="0"> <xsl:apply-templates select="EXPECT"/> <xsl:apply-templates select="ACTUAL"/> </table> <xsl:for-each select="ATTACHMENT"> <a> <xsl:attribute name="href"> <xsl:value-of select="@filepath"/> </xsl:attribute> [<xsl:value-of select="text()"/>] </a> </xsl:for-each> </td> </tr> </xsl:template> <xsl:template match="EXPECT"> <tr> <td>&nbsp;&nbsp;期望值:</td> <td><xsl:value-of select="text()"/></td> </tr> </xsl:template> <xsl:template match="ACTUAL"> <tr> <td>&nbsp;&nbsp;实际值:</td> <td><xsl:value-of select="text()"/></td> </tr> </xsl:template> </xsl:stylesheet>""" class XMLTestResultFactory(ITestResultFactory): '''XML形式TestResult工厂 ''' BAD_CHARS = r'\/*?:<>"|~' TRANS = string.maketrans(BAD_CHARS, '='*len(BAD_CHARS)) def create(self, testcase ): '''创建TestResult对象 :param testcase: 测试用例 :type testcase: TestCase :return TestResult ''' time_str=datetime.now().strftime("%Y%m%d_%H%M%S_%f")[:-3] filename = '%s_%s.xml' % (testcase.test_name.translate(self.TRANS),time_str) return testresult.XmlResult(filename) class XMLTestReport(ITestReport): '''XML形式的测试报告 ''' def __init__(self): '''构造函数 ''' self._xmldoc = dom.Document() self._xmldoc.appendChild(self._xmldoc.createProcessingInstruction("xml-stylesheet", 'type="text/xsl" href="TestReport.xsl"')) self._runrstnode = self._xmldoc.createElement("RunResult") self._xmldoc.appendChild(self._runrstnode) self._result_factory = XMLTestResultFactory() def begin_report(self): '''开始测试执行 ''' self._time_start = datetime.now() xmltpl = "<TestEnv><PC>%s</PC><OS>%s</OS></TestEnv>" hostname = socket.gethostname() if sys.platform == 'win32': osver = os.popen("ver").read().decode('gbk').encode('utf-8') else: osver = os.uname() # @UndefinedVariable envxml = dom.parseString(xmltpl % (hostname, osver)) self._runrstnode.appendChild(envxml.childNodes[0]) def end_report(self): '''结束测试执行 :param passed: 测试是否通过 :type passed: boolean ''' time_end = datetime.now() timexml = "<RunTime><StartTime>%s</StartTime><EndTime>%s</EndTime><Duration>%s</Duration></RunTime>" timexml = timexml % (self._time_start.strftime("%Y-%m-%d %H:%M:%S"), time_end.strftime("%Y-%m-%d %H:%M:%S"), str(time_end-self._time_start).split('.')[0] ) timenodes = dom.parseString(timexml) self._runrstnode.appendChild(timenodes.childNodes[0]) xmldata = self._xmldoc.toprettyxml(indent=" ", newl="\n", encoding='utf-8') with codecs.open('TestReport.xml', 'w') as fd: fd.write(xmldata) with codecs.open('TestReport.xsl', 'w') as fd: fd.write(REPORT_XSL) with codecs.open('TestResult.xsl', 'w') as fd: fd.write(RESULT_XLS) def log_test_result(self, testcase, testresult ): '''记录一个测试结果 :param testcase: 测试用例 :type testcase: TestCase :param testresult: 测试结果 :type testresult: XmlResult ''' casemark = cgi.escape(testcase.test_doc) nodestr = """<TestResult result="%s" log="%s" status="%s">%s</TestResult> """ % (testresult.passed, testresult.file_path, testcase.status, casemark) doc2 = dom.parseString(nodestr) resultNode = doc2.childNodes[0] resultNode.setAttribute("name", _to_unicode(saxutils.escape(testcase.test_name))) resultNode.setAttribute("owner", _to_unicode(saxutils.escape(testcase.owner))) self._runrstnode.appendChild(resultNode) def log_record(self, level, tag, msg, record={}): '''增加一个记录 :param level: 日志级别 :param msg: 日志消息 :param tag: 日志标签 :param record: 日志记录信息 :type level: string :type tag: string :type msg: string :type record: dict ''' if tag == 'LOADER' and level == EnumLogLevel.ERROR: if record.has_key('error_testname') and record.has_key('error'): testname = record['error_testname'] mdfailsnode = self._xmldoc.createElement("LoadFailure") self._runrstnode.appendChild(mdfailsnode) logfile = '%s.log' % testname xmltpl = """<Module name="%s" log="%s"/>""" % (testname, logfile) mdfailsnode.appendChild(dom.parseString(xmltpl).childNodes[0]) with open(logfile, 'w') as fd: fd.write(record['error']) def log_filtered_test(self, loader, testcase, reason): '''记录一个被过滤的测试用例 :param loader: 用例加载器 :type loader: TestLoader :param testcase: 测试用例 :type testcase: TestCase :param reason: 过滤原因 :type reason: str ''' nodestr = """<FilterTest name="%s" reason="%s"></FilterTest> """ % ( _to_unicode(saxutils.escape(testcase.test_name)), _to_unicode(saxutils.escape(reason)) ) doc2 = dom.parseString(nodestr) filterNode = doc2.childNodes[0] self._runrstnode.appendChild(filterNode) def log_load_error(self, loader, name, error): '''记录一个加载失败的用例或用例集 :param loader: 用例加载器 :type loader: TestLoader :param name: 名称 :type name: str :param error: 错误信息 :type error: str ''' log_file = "%s.log" % name nodestr = """<LoadTestError name="%s" log="%s"></LoadTestError> """ % ( _to_unicode(saxutils.escape(name)), log_file, ) doc2 = dom.parseString(nodestr) errNode = doc2.childNodes[0] self._runrstnode.appendChild(errNode) with open(log_file, 'w') as fd: fd.write(error) def get_testresult_factory(self): '''获取对应的TestResult工厂 :returns ITestResultFactory ''' return self._result_factory @classmethod def get_parser(cls): '''获取命令行参数解析器(如果实现) :returns: 解析器对象 :rtype: argparse.ArgumentParser ''' return argparse.ArgumentParser(usage=report_usage) @classmethod def parse_args(cls, args_string): '''通过命令行参数构造对象 :returns: 测试报告 :rtype: cls ''' return cls() class JSONTestResultFactory(ITestResultFactory): '''JSON形式TestResult工厂 ''' def create(self, testcase ): '''创建TestResult对象 :param testcase: 测试用例 :type testcase: TestCase :return TestResult ''' return testresult.JSONResult(testcase) class JSONTestReport(ITestReport): '''JSON格式的测试报告 ''' def __init__(self, name="调试测试报告", fd=None ): '''构造函数 :param name: 报告名 :type name: str :param fd: 输出流 :type fd: file object ''' if fd is None: self._fd = sys.stdout else: self._fd = fd self._results = [] self._logs = [] self._filtered_tests = [] self._load_errors = [] self._testcases = [] self._data = { "version": "1.0", "summary": { "tool": "QTA", "name": name, }, "results": self._results, "logs": self._logs, "filtered_tests": self._filtered_tests, "load_errors": self._load_errors, "loaded_testcases": self._testcases } self._testcase_total = 0 self._testcase_passed = 0 def begin_report(self): '''开始测试执行 ''' self._data["summary"]["start_time"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S") def end_report(self): '''结束测试执行 :param passed: 测试是否通过 :type passed: boolean ''' self._data["summary"]["testcase_total"] = self._testcase_total self._data["summary"]["testcase_passed"] = self._testcase_passed self._data["summary"]["succeed"] = self._testcase_passed == self._testcase_total self._data["summary"]["end_time"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S") json.dump(self._data, self._fd) def log_test_result(self, testcase, testresult ): '''记录一个测试结果 :param testcase: 测试用例 :type testcase: TestCase :param testresult: 测试结果 :type testresult: TestResult ''' self._testcase_total += 1 if testresult.passed: self._testcase_passed += 1 self._results.append(testresult.get_data()) def log_record(self, level, tag, msg, record): '''增加一个记录 :param level: 日志级别 :param msg: 日志消息 :param tag: 日志标签 :param record: 日志记录信息 :type level: string :type tag: string :type msg: string :type record: dict ''' self._logs.append({ "level": level, "tag": tag, "message": msg, "record": record }) def log_loaded_tests(self, loader, testcases): '''记录加载成功的用例 :param loader: 用例加载器 :type loader: TestLoader :param testcases: 测试用例列表 :type testcases: list ''' self._testcases += [ {"name": testcase.test_name} for testcase in testcases ] def log_filtered_test(self, loader, testcase, reason): '''记录一个被过滤的测试用例 :param loader: 用例加载器 :type loader: TestLoader :param testcase: 测试用例 :type testcase: TestCase :param reason: 过滤原因 :type reason: str ''' self._filtered_tests.append({ "name": testcase.test_name, "reason": reason }) def log_load_error(self, loader, name, error): '''记录一个加载失败的用例或用例集 :param loader: 用例加载器 :type loader: TestLoader :param name: 名称 :type name: str :param error: 错误信息 :type error: str ''' self._load_errors.append({ "name": name, "error": error }) def get_testresult_factory(self): '''获取对应的TestResult工厂 :returns ITestResultFactory ''' return JSONTestResultFactory() @classmethod def get_parser(cls): '''获取命令行参数解析器(如果实现) :returns: 解析器对象 :rtype: argparse.ArgumentParser ''' parser = argparse.ArgumentParser(usage=report_usage) parser.add_argument("--name", help="report title", default="Debug test report") parser.add_argument("-o", "--output", help="output file path, can be stdout & stderr", default="stdout") return parser @classmethod def parse_args(cls, args_string): '''通过命令行参数构造对象 :returns: 测试报告 :rtype: cls ''' args = cls.get_parser().parse_args(args_string) if args.output == 'stdout': fd = sys.stdout elif args.output == 'stderr': fd = sys.stderr else: fd = open(args.output, 'w') return cls( name=args.name, fd=fd) def __init_report_types(): global report_types if report_types: return report_types.update({ "empty": EmptyTestReport, "stream": StreamTestReport, "xml": XMLTestReport, "json": JSONTestReport, }) # Register other `ITestReport` implementiations from entry points for ep in pkg_resources.iter_entry_points(REPORT_ENTRY_POINT): if ep.name not in report_types: report_types[ep.name] = ep.load() __init_report_types() del __init_report_types
[ "xml.dom.minidom.Document", "json.dump", "locale.getdefaultlocale", "argparse.ArgumentParser", "xml.dom.minidom.parseString", "testbase.testresult.StreamResult", "testbase.testresult.JSONResult", "codecs.open", "testbase.testresult.get_data", "os.uname", "testbase.testresult.EmptyResult", "os.popen", "xml.sax.saxutils.escape", "testbase.testresult.XmlResult", "socket.gethostname", "cgi.escape", "datetime.datetime.now", "pkg_resources.iter_entry_points" ]
[((1148, 1173), 'locale.getdefaultlocale', 'locale.getdefaultlocale', ([], {}), '()\n', (1171, 1173), False, 'import locale\n'), ((36155, 36206), 'pkg_resources.iter_entry_points', 'pkg_resources.iter_entry_points', (['REPORT_ENTRY_POINT'], {}), '(REPORT_ENTRY_POINT)\n', (36186, 36206), False, 'import pkg_resources\n'), ((8285, 8328), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'usage': 'report_usage'}), '(usage=report_usage)\n', (8308, 8328), False, 'import argparse\n'), ((8924, 8961), 'testbase.testresult.StreamResult', 'testresult.StreamResult', (['self._stream'], {}), '(self._stream)\n', (8947, 8961), False, 'from testbase import testresult\n'), ((10693, 10707), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (10705, 10707), False, 'from datetime import datetime\n'), ((10939, 10953), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (10951, 10953), False, 'from datetime import datetime\n'), ((14177, 14220), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'usage': 'report_usage'}), '(usage=report_usage)\n', (14200, 14220), False, 'import argparse\n'), ((25527, 25557), 'testbase.testresult.XmlResult', 'testresult.XmlResult', (['filename'], {}), '(filename)\n', (25547, 25557), False, 'from testbase import testresult\n'), ((25694, 25708), 'xml.dom.minidom.Document', 'dom.Document', ([], {}), '()\n', (25706, 25708), True, 'import xml.dom.minidom as dom\n'), ((26109, 26123), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (26121, 26123), False, 'from datetime import datetime\n'), ((26213, 26233), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (26231, 26233), False, 'import socket\n'), ((26427, 26470), 'xml.dom.minidom.parseString', 'dom.parseString', (['(xmltpl % (hostname, osver))'], {}), '(xmltpl % (hostname, osver))\n', (26442, 26470), True, 'import xml.dom.minidom as dom\n'), ((26674, 26688), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (26686, 26688), False, 'from datetime import datetime\n'), ((26982, 27006), 'xml.dom.minidom.parseString', 'dom.parseString', (['timexml'], {}), '(timexml)\n', (26997, 27006), True, 'import xml.dom.minidom as dom\n'), ((27758, 27787), 'cgi.escape', 'cgi.escape', (['testcase.test_doc'], {}), '(testcase.test_doc)\n', (27768, 27787), False, 'import cgi\n'), ((27968, 27992), 'xml.dom.minidom.parseString', 'dom.parseString', (['nodestr'], {}), '(nodestr)\n', (27983, 27992), True, 'import xml.dom.minidom as dom\n'), ((29701, 29725), 'xml.dom.minidom.parseString', 'dom.parseString', (['nodestr'], {}), '(nodestr)\n', (29716, 29725), True, 'import xml.dom.minidom as dom\n'), ((30286, 30310), 'xml.dom.minidom.parseString', 'dom.parseString', (['nodestr'], {}), '(nodestr)\n', (30301, 30310), True, 'import xml.dom.minidom as dom\n'), ((30781, 30824), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'usage': 'report_usage'}), '(usage=report_usage)\n', (30804, 30824), False, 'import argparse\n'), ((31270, 31301), 'testbase.testresult.JSONResult', 'testresult.JSONResult', (['testcase'], {}), '(testcase)\n', (31291, 31301), False, 'from testbase import testresult\n'), ((32831, 32862), 'json.dump', 'json.dump', (['self._data', 'self._fd'], {}), '(self._data, self._fd)\n', (32840, 32862), False, 'import json\n'), ((35092, 35135), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'usage': 'report_usage'}), '(usage=report_usage)\n', (35115, 35135), False, 'import argparse\n'), ((6830, 6854), 'testbase.testresult.EmptyResult', 'testresult.EmptyResult', ([], {}), '()\n', (6852, 6854), False, 'from testbase import testresult\n'), ((26377, 26387), 'os.uname', 'os.uname', ([], {}), '()\n', (26385, 26387), False, 'import os\n'), ((27266, 27300), 'codecs.open', 'codecs.open', (['"""TestReport.xml"""', '"""w"""'], {}), "('TestReport.xml', 'w')\n", (27277, 27300), False, 'import codecs\n'), ((27351, 27385), 'codecs.open', 'codecs.open', (['"""TestReport.xsl"""', '"""w"""'], {}), "('TestReport.xsl', 'w')\n", (27362, 27385), False, 'import codecs\n'), ((27439, 27473), 'codecs.open', 'codecs.open', (['"""TestResult.xsl"""', '"""w"""'], {}), "('TestResult.xsl', 'w')\n", (27450, 27473), False, 'import codecs\n'), ((33222, 33243), 'testbase.testresult.get_data', 'testresult.get_data', ([], {}), '()\n', (33241, 33243), False, 'from testbase import testresult\n'), ((28085, 28120), 'xml.sax.saxutils.escape', 'saxutils.escape', (['testcase.test_name'], {}), '(testcase.test_name)\n', (28100, 28120), True, 'import xml.sax.saxutils as saxutils\n'), ((28176, 28207), 'xml.sax.saxutils.escape', 'saxutils.escape', (['testcase.owner'], {}), '(testcase.owner)\n', (28191, 28207), True, 'import xml.sax.saxutils as saxutils\n'), ((32339, 32353), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (32351, 32353), False, 'from datetime import datetime\n'), ((32778, 32792), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (32790, 32792), False, 'from datetime import datetime\n'), ((25378, 25392), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (25390, 25392), False, 'from datetime import datetime\n'), ((29589, 29624), 'xml.sax.saxutils.escape', 'saxutils.escape', (['testcase.test_name'], {}), '(testcase.test_name)\n', (29604, 29624), True, 'import xml.sax.saxutils as saxutils\n'), ((29651, 29674), 'xml.sax.saxutils.escape', 'saxutils.escape', (['reason'], {}), '(reason)\n', (29666, 29674), True, 'import xml.sax.saxutils as saxutils\n'), ((30215, 30236), 'xml.sax.saxutils.escape', 'saxutils.escape', (['name'], {}), '(name)\n', (30230, 30236), True, 'import xml.sax.saxutils as saxutils\n'), ((29057, 29080), 'xml.dom.minidom.parseString', 'dom.parseString', (['xmltpl'], {}), '(xmltpl)\n', (29072, 29080), True, 'import xml.dom.minidom as dom\n'), ((26290, 26305), 'os.popen', 'os.popen', (['"""ver"""'], {}), "('ver')\n", (26298, 26305), False, 'import os\n')]
import pygame from config import UPDATE_RATE from common import render_text_center def display_msg_affective_disscussion(screen, msg: str, milliseconds: int): start_ticks = pygame.time.get_ticks() clock = pygame.time.Clock() while pygame.time.get_ticks() - start_ticks < milliseconds: render_text_center(msg, (1250, 90), screen, font_size = 55 , x_offset = 0, y_offset=0) pygame.event.get() clock.tick(UPDATE_RATE)
[ "common.render_text_center", "pygame.time.get_ticks", "pygame.time.Clock", "pygame.event.get" ]
[((178, 201), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (199, 201), False, 'import pygame\n'), ((215, 234), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (232, 234), False, 'import pygame\n'), ((307, 392), 'common.render_text_center', 'render_text_center', (['msg', '(1250, 90)', 'screen'], {'font_size': '(55)', 'x_offset': '(0)', 'y_offset': '(0)'}), '(msg, (1250, 90), screen, font_size=55, x_offset=0,\n y_offset=0)\n', (325, 392), False, 'from common import render_text_center\n'), ((402, 420), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (418, 420), False, 'import pygame\n'), ((245, 268), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (266, 268), False, 'import pygame\n')]
# Face recognization import cv2 import os alg = "haarcascade_frontalface_default.xml" haar = cv2.CascadeClassifier(alg) cam = cv2.VideoCapture(0) path = "dataset" if not os.path.isdir(path): os.mkdir(path) (width,height) = (100,100) count = 0 while count<100: count+=1 print(count) _,img = cam.read() grayImg = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = haar.detectMultiScale(grayImg,1.3,5) for (x,y,w,h) in faces: cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),3) onlyFace = grayImg[y:y+h,x:x+w] resizeImg = cv2.resize(onlyFace, (width,height)) cv2.imwrite("%s/%s.jpg"%(path,count), resizeImg) cv2.imshow("faceDection", img) key = cv2.waitKey(1) & 0xFF if key == ord('q'): break print("Sucessfully colleted dataset") cam.release() cv2.destroyAllWindows()
[ "os.mkdir", "os.path.isdir", "cv2.cvtColor", "cv2.imwrite", "cv2.waitKey", "cv2.imshow", "cv2.VideoCapture", "cv2.rectangle", "cv2.CascadeClassifier", "cv2.destroyAllWindows", "cv2.resize" ]
[((94, 120), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', (['alg'], {}), '(alg)\n', (115, 120), False, 'import cv2\n'), ((127, 146), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (143, 146), False, 'import cv2\n'), ((761, 784), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (782, 784), False, 'import cv2\n'), ((173, 192), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (186, 192), False, 'import os\n'), ((195, 209), 'os.mkdir', 'os.mkdir', (['path'], {}), '(path)\n', (203, 209), False, 'import os\n'), ((321, 358), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2GRAY'], {}), '(img, cv2.COLOR_BGR2GRAY)\n', (333, 358), False, 'import cv2\n'), ((620, 650), 'cv2.imshow', 'cv2.imshow', (['"""faceDection"""', 'img'], {}), "('faceDection', img)\n", (630, 650), False, 'import cv2\n'), ((433, 491), 'cv2.rectangle', 'cv2.rectangle', (['img', '(x, y)', '(x + w, y + h)', '(0, 255, 0)', '(3)'], {}), '(img, (x, y), (x + w, y + h), (0, 255, 0), 3)\n', (446, 491), False, 'import cv2\n'), ((528, 565), 'cv2.resize', 'cv2.resize', (['onlyFace', '(width, height)'], {}), '(onlyFace, (width, height))\n', (538, 565), False, 'import cv2\n'), ((567, 618), 'cv2.imwrite', 'cv2.imwrite', (["('%s/%s.jpg' % (path, count))", 'resizeImg'], {}), "('%s/%s.jpg' % (path, count), resizeImg)\n", (578, 618), False, 'import cv2\n'), ((658, 672), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (669, 672), False, 'import cv2\n')]
""" провести в порядок тесты """ import unittest import os import shutil import csv from csvdb import CSVDB class TestCSVDB(unittest.TestCase): """ тесты для проверки работы объекта CSVDB """ def remove_dbdir(self): """ удаление БД папки даже она существует """ if os.path.exists(self.tst_name_db): shutil.rmtree(self.tst_name_db) def create_dbdir(self): """ создание БД папки если ёё нет, если есть то удаляется и заново создается """ if os.path.exists(self.tst_name_db): shutil.rmtree(self.tst_name_db) os.mkdir(self.tst_name_db) print("File ", self.file1) # создаем простой файл внутри папки with open(self.file1, "w") as f: f.write("Tecт") def setUp(self) -> None: self.tst_name_db = "my_test_db" self.file1 = f"{self.tst_name_db}/file1.csv" self.tst_table1 = 'table1' def tearDown(self) -> None: self.remove_dbdir() def test_initdb_noexist_dirdb(self): """ проверка правильно ли отрабатывается инициализация БД когда папки БД не существует """ # инициализация тестового окружения self.remove_dbdir() db = CSVDB(name_db=self.tst_name_db) flag = os.path.exists(self.tst_name_db) and os.path.isdir(self.tst_name_db) self.assertEqual(True, flag) def test_initdb_exist_dirdb_force(self): """ проверка правильно ли отрабатывается инициализация БД когда папки БД существует и нужно перезаписать """ # инициализация тестового окружения self.create_dbdir() db = CSVDB(name_db=self.tst_name_db, force=True) flag_dir = os.path.exists(self.tst_name_db) and os.path.isdir(self.tst_name_db) flag_file = os.path.exists(self.file1) and os.path.isfile(self.tst_name_db) self.assertEqual(True, flag_dir) self.assertEqual(False, flag_file) def test_initdb_exist_dirdb_noforce(self): """ проверка правильно ли отрабатывается инициализация БД когда папки БД существует и НЕ нужно перезаписать """ # инициализация тестового окружения self.create_dbdir() db = CSVDB(name_db=self.tst_name_db, force=False) flag_dir = os.path.exists(self.tst_name_db) and os.path.isdir(self.tst_name_db) flag_file = os.path.exists(self.file1) and os.path.isfile(self.file1) self.assertEqual(True, flag_dir) self.assertEqual(True, flag_file) def test_create_table(self): """ создание таблицы """ self.remove_dbdir() db = CSVDB(name_db=self.tst_name_db, force=False) headers_original = ['NUMBER', 'FIO', 'ROLE'] db.create_table(name_table=self.tst_table1, colums=headers_original) full_path_table1 = db.full_path(self.tst_table1) flag_name_table = db.tables[0] flag_exist_table = os.path.exists(full_path_table1) print(full_path_table1) # проверяем что файл присутствует self.assertEqual(True, flag_exist_table) # проверяем заголовки файла таблицы headers = [] with open(full_path_table1) as f: reader = csv.DictReader(f, delimiter=";") headers = reader.fieldnames self.assertEqual(headers, headers_original) def test_create_table_exist_table(self): """ создание таблицы, файл которой уже есть """ self.remove_dbdir() db = CSVDB(name_db=self.tst_name_db, force=False) headers_original = ['NUMBER', 'FIO', 'ROLE'] flag_noexist = db.create_table(name_table=self.tst_table1, colums=headers_original) flag_exist = db.create_table(name_table=self.tst_table1, colums=headers_original) self.assertEqual(True, flag_noexist) self.assertEqual(False, flag_exist) def test_insert_data(self): """ тест вставки данных :return: """ headers_original = ['NUMBER', 'FIO', 'ROLE'] data_original = {'NUMBER': '1', 'FIO': '<NAME>', 'ROLE': 'Admin'} self.remove_dbdir() db = CSVDB(name_db=self.tst_name_db, force=False) flag_noexist = db.create_table(name_table=self.tst_table1, colums=headers_original) full_path_table1 = db.full_path(self.tst_table1) db.insert_data(name_table=self.tst_table1, data=data_original) result_data = db.getall(name_table=self.tst_table1) self.assertEqual(result_data[0], data_original) # проверяем что запись одна self.assertEqual(1, len(result_data)) # добавляем ещё одну запись db.insert_data(name_table=self.tst_table1, data=data_original) result_data = db.getall(name_table=self.tst_table1) self.assertEqual(2, len(result_data)) if __name__ == '__main__': unittest.main()
[ "unittest.main", "os.mkdir", "csvdb.CSVDB", "os.path.isdir", "csv.DictReader", "os.path.exists", "os.path.isfile", "shutil.rmtree" ]
[((323, 355), 'os.path.exists', 'os.path.exists', (['self.tst_name_db'], {}), '(self.tst_name_db)\n', (337, 355), False, 'import os\n'), ((546, 578), 'os.path.exists', 'os.path.exists', (['self.tst_name_db'], {}), '(self.tst_name_db)\n', (560, 578), False, 'import os\n'), ((633, 659), 'os.mkdir', 'os.mkdir', (['self.tst_name_db'], {}), '(self.tst_name_db)\n', (641, 659), False, 'import os\n'), ((1275, 1306), 'csvdb.CSVDB', 'CSVDB', ([], {'name_db': 'self.tst_name_db'}), '(name_db=self.tst_name_db)\n', (1280, 1306), False, 'from csvdb import CSVDB\n'), ((1699, 1742), 'csvdb.CSVDB', 'CSVDB', ([], {'name_db': 'self.tst_name_db', 'force': '(True)'}), '(name_db=self.tst_name_db, force=True)\n', (1704, 1742), False, 'from csvdb import CSVDB\n'), ((2277, 2321), 'csvdb.CSVDB', 'CSVDB', ([], {'name_db': 'self.tst_name_db', 'force': '(False)'}), '(name_db=self.tst_name_db, force=False)\n', (2282, 2321), False, 'from csvdb import CSVDB\n'), ((2698, 2742), 'csvdb.CSVDB', 'CSVDB', ([], {'name_db': 'self.tst_name_db', 'force': '(False)'}), '(name_db=self.tst_name_db, force=False)\n', (2703, 2742), False, 'from csvdb import CSVDB\n'), ((3000, 3032), 'os.path.exists', 'os.path.exists', (['full_path_table1'], {}), '(full_path_table1)\n', (3014, 3032), False, 'import os\n'), ((3572, 3616), 'csvdb.CSVDB', 'CSVDB', ([], {'name_db': 'self.tst_name_db', 'force': '(False)'}), '(name_db=self.tst_name_db, force=False)\n', (3577, 3616), False, 'from csvdb import CSVDB\n'), ((4216, 4260), 'csvdb.CSVDB', 'CSVDB', ([], {'name_db': 'self.tst_name_db', 'force': '(False)'}), '(name_db=self.tst_name_db, force=False)\n', (4221, 4260), False, 'from csvdb import CSVDB\n'), ((4938, 4953), 'unittest.main', 'unittest.main', ([], {}), '()\n', (4951, 4953), False, 'import unittest\n'), ((369, 400), 'shutil.rmtree', 'shutil.rmtree', (['self.tst_name_db'], {}), '(self.tst_name_db)\n', (382, 400), False, 'import shutil\n'), ((592, 623), 'shutil.rmtree', 'shutil.rmtree', (['self.tst_name_db'], {}), '(self.tst_name_db)\n', (605, 623), False, 'import shutil\n'), ((1322, 1354), 'os.path.exists', 'os.path.exists', (['self.tst_name_db'], {}), '(self.tst_name_db)\n', (1336, 1354), False, 'import os\n'), ((1359, 1390), 'os.path.isdir', 'os.path.isdir', (['self.tst_name_db'], {}), '(self.tst_name_db)\n', (1372, 1390), False, 'import os\n'), ((1762, 1794), 'os.path.exists', 'os.path.exists', (['self.tst_name_db'], {}), '(self.tst_name_db)\n', (1776, 1794), False, 'import os\n'), ((1799, 1830), 'os.path.isdir', 'os.path.isdir', (['self.tst_name_db'], {}), '(self.tst_name_db)\n', (1812, 1830), False, 'import os\n'), ((1852, 1878), 'os.path.exists', 'os.path.exists', (['self.file1'], {}), '(self.file1)\n', (1866, 1878), False, 'import os\n'), ((1883, 1915), 'os.path.isfile', 'os.path.isfile', (['self.tst_name_db'], {}), '(self.tst_name_db)\n', (1897, 1915), False, 'import os\n'), ((2341, 2373), 'os.path.exists', 'os.path.exists', (['self.tst_name_db'], {}), '(self.tst_name_db)\n', (2355, 2373), False, 'import os\n'), ((2378, 2409), 'os.path.isdir', 'os.path.isdir', (['self.tst_name_db'], {}), '(self.tst_name_db)\n', (2391, 2409), False, 'import os\n'), ((2431, 2457), 'os.path.exists', 'os.path.exists', (['self.file1'], {}), '(self.file1)\n', (2445, 2457), False, 'import os\n'), ((2462, 2488), 'os.path.isfile', 'os.path.isfile', (['self.file1'], {}), '(self.file1)\n', (2476, 2488), False, 'import os\n'), ((3286, 3318), 'csv.DictReader', 'csv.DictReader', (['f'], {'delimiter': '""";"""'}), "(f, delimiter=';')\n", (3300, 3318), False, 'import csv\n')]
from functions import units from functions import gge_dictionary from functions import unit_cost_dictionary from functions import gge_cost_dictionary from functions import fuel_equivalent from functions import fuel_equivalent_cost from functions import co2_equivalent from functions import co2_emissions import pytest # ============================================================================ # Tests for units() # ============================================================================ def test_units(): """ Should not raise an error if units is correct. """ test = units() assert test == { 'Gasoline': 'gallon', 'Diesel': 'gallon', 'E85': 'gallon', 'Hydrogen': 'kg', 'Electricity': 'kWh' } # ============================================================================ # Tests for gge_dictionary() # ============================================================================ def test_gge_dictionary(): """ Should not raise an error if gge_dictionary is correctly formatted. """ test = gge_dictionary() assert test == { 'Gasoline': 1.0, 'Diesel': 1.155, 'E85': 0.734, 'Hydrogen': 1.019, 'Electricity': 0.031 } # ============================================================================ # Tests for unit_cost_dictionary() # ============================================================================ def test_unit_cost_dictionary(): """ Should not raise an error if unit_cost_dictionary is correctly formatted. """ test = unit_cost_dictionary() assert test == { 'Gasoline': 2.23, 'Diesel': 2.41, 'E85': 1.71, 'Hydrogen': 13.99, 'Electricity': 0.0426 } # ============================================================================ # Tests for gge_cost_dictionary() # ============================================================================ def test_gge_cost_dictionary(): """ Should not raise an error if gge_cost_dictionary is correctly formatted. """ test = gge_cost_dictionary() assert test == { 'Gasoline': 2.23, 'Diesel': 2.0865800865800868, 'E85': 2.329700272479564, 'Hydrogen': 13.729146221786067, 'Electricity': 1.3741935483870968 } # ============================================================================ # Tests for fuel_equivalent() # ============================================================================ def test_fuel_equivalent_1(): """ Should raise an IndexError if fuel_equivalent is properly set up. """ fuel_test = 'Plutonium' with pytest.raises(IndexError, match='Plutonium not supported.'): fuel_equivalent(fuel_test) def test_fuel_equivalent_2(): """ Should raise a TypeError if fuel_equivalent is properly set up. """ Hydrogen = 4 fuel_test = Hydrogen with pytest.raises(TypeError, match='Please'): fuel_equivalent(fuel_test) # ============================================================================ # Tests for fuel_equivalent_cost() # ============================================================================ def test_fuel_equivalent_cost_1(): """ Should raise an IndexError if fuel_equivalent_cost is properly set up. """ fuel_test = 'Plutonium' with pytest.raises(IndexError, match='Plutonium not supported.'): fuel_equivalent(fuel_test) def test_fuel_equivalent_cost_2(): """ Should raise a TypeError if fuel_equivalent_cost is properly set up. """ Hydrogen = 4 fuel_test = Hydrogen with pytest.raises(TypeError, match='Please'): fuel_equivalent(fuel_test) # ============================================================================ # Tests for co2_equivalent() # ============================================================================ def test_co2_equivalent(): """ Should not raise an error if co2_equivalent is properly set up. """ test = co2_equivalent() assert test == { 'Gasoline': 8.89, 'Diesel': 10.16, 'E85': 6.221, 'Hydrogen': 0, 'Electricity': 0 } # ============================================================================ # Tests for co2_emissions() # ============================================================================ def test_co2_emissions_1(): """ Should raise an IndexError if co2_emissions is set up properly. """ fuel_test = 'Plutonium' with pytest.raises(IndexError, match='Plutonium not supported.'): fuel_equivalent(fuel_test) def test_co2_emissions_2(): """ Should raise a TypeError if co2_emissions is set up properly. """ Hydrogen = 4 fuel_test = Hydrogen with pytest.raises(TypeError, match='Please'): fuel_equivalent(fuel_test)
[ "functions.unit_cost_dictionary", "functions.gge_dictionary", "functions.fuel_equivalent", "functions.units", "pytest.raises", "functions.co2_equivalent", "functions.gge_cost_dictionary" ]
[((598, 605), 'functions.units', 'units', ([], {}), '()\n', (603, 605), False, 'from functions import units\n'), ((1091, 1107), 'functions.gge_dictionary', 'gge_dictionary', ([], {}), '()\n', (1105, 1107), False, 'from functions import gge_dictionary\n'), ((1601, 1623), 'functions.unit_cost_dictionary', 'unit_cost_dictionary', ([], {}), '()\n', (1621, 1623), False, 'from functions import unit_cost_dictionary\n'), ((2114, 2135), 'functions.gge_cost_dictionary', 'gge_cost_dictionary', ([], {}), '()\n', (2133, 2135), False, 'from functions import gge_cost_dictionary\n'), ((4069, 4085), 'functions.co2_equivalent', 'co2_equivalent', ([], {}), '()\n', (4083, 4085), False, 'from functions import co2_equivalent\n'), ((2692, 2751), 'pytest.raises', 'pytest.raises', (['IndexError'], {'match': '"""Plutonium not supported."""'}), "(IndexError, match='Plutonium not supported.')\n", (2705, 2751), False, 'import pytest\n'), ((2761, 2787), 'functions.fuel_equivalent', 'fuel_equivalent', (['fuel_test'], {}), '(fuel_test)\n', (2776, 2787), False, 'from functions import fuel_equivalent\n'), ((2959, 2999), 'pytest.raises', 'pytest.raises', (['TypeError'], {'match': '"""Please"""'}), "(TypeError, match='Please')\n", (2972, 2999), False, 'import pytest\n'), ((3009, 3035), 'functions.fuel_equivalent', 'fuel_equivalent', (['fuel_test'], {}), '(fuel_test)\n', (3024, 3035), False, 'from functions import fuel_equivalent\n'), ((3399, 3458), 'pytest.raises', 'pytest.raises', (['IndexError'], {'match': '"""Plutonium not supported."""'}), "(IndexError, match='Plutonium not supported.')\n", (3412, 3458), False, 'import pytest\n'), ((3468, 3494), 'functions.fuel_equivalent', 'fuel_equivalent', (['fuel_test'], {}), '(fuel_test)\n', (3483, 3494), False, 'from functions import fuel_equivalent\n'), ((3677, 3717), 'pytest.raises', 'pytest.raises', (['TypeError'], {'match': '"""Please"""'}), "(TypeError, match='Please')\n", (3690, 3717), False, 'import pytest\n'), ((3727, 3753), 'functions.fuel_equivalent', 'fuel_equivalent', (['fuel_test'], {}), '(fuel_test)\n', (3742, 3753), False, 'from functions import fuel_equivalent\n'), ((4577, 4636), 'pytest.raises', 'pytest.raises', (['IndexError'], {'match': '"""Plutonium not supported."""'}), "(IndexError, match='Plutonium not supported.')\n", (4590, 4636), False, 'import pytest\n'), ((4646, 4672), 'functions.fuel_equivalent', 'fuel_equivalent', (['fuel_test'], {}), '(fuel_test)\n', (4661, 4672), False, 'from functions import fuel_equivalent\n'), ((4841, 4881), 'pytest.raises', 'pytest.raises', (['TypeError'], {'match': '"""Please"""'}), "(TypeError, match='Please')\n", (4854, 4881), False, 'import pytest\n'), ((4891, 4917), 'functions.fuel_equivalent', 'fuel_equivalent', (['fuel_test'], {}), '(fuel_test)\n', (4906, 4917), False, 'from functions import fuel_equivalent\n')]
# SPDX-License-Identifier: MIT # Copyright © 2020 <NAME> """Functions to fix various known issues with exported TFJS models""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import base64 from typing import Any, Dict, List, Optional import tfjs_graph_converter.common as common def _find_if_has_key(obj: Dict[str, Any], key: str, of_type: Optional[type] = None) -> List[Any]: """ Recursively find all objects with a given key in a dictionary Args: obj: Dictionary to search key: Key to find of_type: [optional] Type of the referenced item Returns: List of all objects that contain an item with the given key and matching type """ def get_children(item: Any) -> List[Any]: return [val for val in item.values() if isinstance(val, dict)] found = [] stack = get_children(obj) while len(stack) > 0: item = stack.pop() if key in item and (of_type is None or isinstance(item[key], of_type)): found.append(item) stack.extend(get_children(item)) return found def _convert_string_attrs(node: Dict[str, Any]) -> None: """ Deep search string attributes (labelled "s" in GraphDef proto) and convert ascii code lists to base64-encoded strings if necessary """ attr_key = common.TFJS_NODE_ATTR_KEY str_key = common.TFJS_ATTR_STRING_VALUE_KEY # some layers (e.g. PReLU) don't contain the `attr` key, # so test for its presence attrs: list = [] if attr_key in node: attrs = _find_if_has_key(node[attr_key], key=str_key, of_type=list) for attr in attrs: array = attr[str_key] # check if conversion is actually necessary if (len(array) > 0) and isinstance(array, list) \ and isinstance(array[0], int): string = ''.join(map(chr, array)) binary = string.encode('utf8') attr[str_key] = base64.encodebytes(binary) elif len(array) == 0: attr[str_key] = None def _fix_dilation_attrs(node: Dict[str, Any]) -> None: """ Search dilations-attribute and convert misaligned dilation rates if necessary see https://github.com/patlevin/tfjs-to-tf/issues/1 """ path = ['attr', 'dilations', 'list'] values = node found = True for key in path: if key in values: values = values[key] else: found = False break # if dilations are present, they're stored in 'values' now ints = common.TFJS_ATTR_INT_VALUE_KEY if found and ints in values and isinstance(values[ints], list): value = values[ints] if len(value) != 4: # must be NCHW-formatted 4D tensor or else TF can't handle it raise ValueError("Unsupported 'dilations'-attribute in node " f'{node[common.TFJS_NAME_KEY]}') # check for [>1,>1,1,1], which is likely a mistranslated [1,>1,>1,1] if int(value[0], 10) > 1: values[ints] = ['1', value[0], value[1], '1'] def fix_node_attributes(message_dict: Dict[str, Any]) -> Dict[str, Any]: """ Fix various known issues found "in the wild": • Node attributes in deserialised JSON may contain strings as lists of ascii codes when the TF GraphDef proto expects base64 encoded strings • 'dilation' attributes may be misaligned in a way unsupported by TF Further fixes will be added as issues are reported. Args: message_dict: Graph model formatted as parsed JSON dictionary Returns: Updated message dictionary with fixes applied if necessary """ if common.TFJS_NODE_KEY in message_dict: nodes = message_dict[common.TFJS_NODE_KEY] for node in nodes: _convert_string_attrs(node) _fix_dilation_attrs(node) return message_dict
[ "base64.encodebytes" ]
[((2108, 2134), 'base64.encodebytes', 'base64.encodebytes', (['binary'], {}), '(binary)\n', (2126, 2134), False, 'import base64\n')]
import os import sys sys.path.insert(0, os.path.abspath('../../.')) from tqdm import tqdm import torch from src.model.SparseNet import SparseNet from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from src.model.ImageDataset import NatPatchDataset from src.utils.cmd_line import parse_args from src.scripts.plotting import plot_rf # save to tensorboard board = SummaryWriter("../../runs/sparse-net") arg = parse_args() # if use cuda device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # create net sparse_net = SparseNet(arg.n_neuron, arg.size, R_lr=arg.r_learning_rate, lmda=arg.reg, device=device) # load data dataloader = DataLoader(NatPatchDataset(arg.batch_size, arg.size, arg.size), batch_size=250) # train optim = torch.optim.SGD([{'params': sparse_net.U.weight, "lr": arg.learning_rate}]) for e in range(arg.epoch): running_loss = 0 c = 0 for img_batch in tqdm(dataloader, desc='training', total=len(dataloader)): img_batch = img_batch.reshape(img_batch.shape[0], -1).to(device) # update pred = sparse_net(img_batch) loss = ((img_batch - pred) ** 2).sum() running_loss += loss.item() loss.backward() # update U optim.step() # zero grad sparse_net.zero_grad() # norm sparse_net.normalize_weights() c += 1 board.add_scalar('Loss', running_loss / c, e * len(dataloader) + c) if e % 5 == 4: # plotting fig = plot_rf(sparse_net.U.weight.T.reshape(arg.n_neuron, arg.size, arg.size).cpu().data.numpy(), arg.n_neuron, arg.size) board.add_figure('RF', fig, global_step=e * len(dataloader) + c) if e % 10 == 9: # save checkpoint torch.save(sparse_net, f"../../trained_models/ckpt-{e+1}.pth") torch.save(sparse_net, f"../../trained_models/ckpt-{e+1}.pth")
[ "os.path.abspath", "src.model.ImageDataset.NatPatchDataset", "src.model.SparseNet.SparseNet", "src.utils.cmd_line.parse_args", "torch.save", "torch.cuda.is_available", "torch.utils.tensorboard.SummaryWriter", "torch.optim.SGD" ]
[((401, 439), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', (['"""../../runs/sparse-net"""'], {}), "('../../runs/sparse-net')\n", (414, 439), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((446, 458), 'src.utils.cmd_line.parse_args', 'parse_args', ([], {}), '()\n', (456, 458), False, 'from src.utils.cmd_line import parse_args\n'), ((569, 661), 'src.model.SparseNet.SparseNet', 'SparseNet', (['arg.n_neuron', 'arg.size'], {'R_lr': 'arg.r_learning_rate', 'lmda': 'arg.reg', 'device': 'device'}), '(arg.n_neuron, arg.size, R_lr=arg.r_learning_rate, lmda=arg.reg,\n device=device)\n', (578, 661), False, 'from src.model.SparseNet import SparseNet\n'), ((779, 854), 'torch.optim.SGD', 'torch.optim.SGD', (["[{'params': sparse_net.U.weight, 'lr': arg.learning_rate}]"], {}), "([{'params': sparse_net.U.weight, 'lr': arg.learning_rate}])\n", (794, 854), False, 'import torch\n'), ((1816, 1880), 'torch.save', 'torch.save', (['sparse_net', 'f"""../../trained_models/ckpt-{e + 1}.pth"""'], {}), "(sparse_net, f'../../trained_models/ckpt-{e + 1}.pth')\n", (1826, 1880), False, 'import torch\n'), ((40, 66), 'os.path.abspath', 'os.path.abspath', (['"""../../."""'], {}), "('../../.')\n", (55, 66), False, 'import os\n'), ((694, 745), 'src.model.ImageDataset.NatPatchDataset', 'NatPatchDataset', (['arg.batch_size', 'arg.size', 'arg.size'], {}), '(arg.batch_size, arg.size, arg.size)\n', (709, 745), False, 'from src.model.ImageDataset import NatPatchDataset\n'), ((505, 530), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (528, 530), False, 'import torch\n'), ((1753, 1817), 'torch.save', 'torch.save', (['sparse_net', 'f"""../../trained_models/ckpt-{e + 1}.pth"""'], {}), "(sparse_net, f'../../trained_models/ckpt-{e + 1}.pth')\n", (1763, 1817), False, 'import torch\n')]
""" slixmpp: The Slick XMPP Library Copyright (C) 2016 <NAME> This file is part of slixmpp. See the file LICENSE for copying permission. """ from slixmpp.plugins.base import register_plugin from slixmpp.plugins.xep_0333.stanza import Markable, Received, Displayed, Acknowledged from slixmpp.plugins.xep_0333.hints import XEP_0333 register_plugin(XEP_0333)
[ "slixmpp.plugins.base.register_plugin" ]
[((350, 375), 'slixmpp.plugins.base.register_plugin', 'register_plugin', (['XEP_0333'], {}), '(XEP_0333)\n', (365, 375), False, 'from slixmpp.plugins.base import register_plugin\n')]
"""The PoolSense integration.""" import asyncio from datetime import timedelta import logging import async_timeout from poolsense import PoolSense from poolsense.exceptions import PoolSenseError from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_EMAIL, CONF_PASSWORD from homeassistant.core import HomeAssistant from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers import aiohttp_client, update_coordinator from homeassistant.helpers.update_coordinator import UpdateFailed from .const import DOMAIN PLATFORMS = ["sensor"] _LOGGER = logging.getLogger(__name__) async def async_setup(hass: HomeAssistant, config: dict): """Set up the PoolSense component.""" # Make sure coordinator is initialized. hass.data.setdefault(DOMAIN, {}) return True async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry): """Set up PoolSense from a config entry.""" poolsense = PoolSense() auth_valid = await poolsense.test_poolsense_credentials( aiohttp_client.async_get_clientsession(hass), entry.data[CONF_EMAIL], entry.data[CONF_PASSWORD], ) if not auth_valid: _LOGGER.error("Invalid authentication") return False coordinator = await get_coordinator(hass, entry) await hass.data[DOMAIN][entry.entry_id].async_refresh() if not coordinator.last_update_success: raise ConfigEntryNotReady hass.data[DOMAIN][entry.entry_id] = coordinator for component in PLATFORMS: hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, component) ) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry): """Unload a config entry.""" unload_ok = all( await asyncio.gather( *[ hass.config_entries.async_forward_entry_unload(entry, component) for component in PLATFORMS ] ) ) if unload_ok: hass.data[DOMAIN].pop(entry.entry_id) return unload_ok async def get_coordinator(hass, entry): """Get the data update coordinator.""" async def async_get_data(): _LOGGER.info("Run query to server") poolsense = PoolSense() return_data = {} with async_timeout.timeout(10): try: return_data = await poolsense.get_poolsense_data( aiohttp_client.async_get_clientsession(hass), entry.data[CONF_EMAIL], entry.data[CONF_PASSWORD], ) except (PoolSenseError) as error: raise UpdateFailed(error) return return_data return update_coordinator.DataUpdateCoordinator( hass, logging.getLogger(__name__), name=DOMAIN, update_method=async_get_data, update_interval=timedelta(hours=1), )
[ "homeassistant.helpers.update_coordinator.UpdateFailed", "async_timeout.timeout", "datetime.timedelta", "poolsense.PoolSense", "logging.getLogger", "homeassistant.helpers.aiohttp_client.async_get_clientsession" ]
[((607, 634), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (624, 634), False, 'import logging\n'), ((970, 981), 'poolsense.PoolSense', 'PoolSense', ([], {}), '()\n', (979, 981), False, 'from poolsense import PoolSense\n'), ((2273, 2284), 'poolsense.PoolSense', 'PoolSense', ([], {}), '()\n', (2282, 2284), False, 'from poolsense import PoolSense\n'), ((2800, 2827), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (2817, 2827), False, 'import logging\n'), ((1051, 1095), 'homeassistant.helpers.aiohttp_client.async_get_clientsession', 'aiohttp_client.async_get_clientsession', (['hass'], {}), '(hass)\n', (1089, 1095), False, 'from homeassistant.helpers import aiohttp_client, update_coordinator\n'), ((2323, 2348), 'async_timeout.timeout', 'async_timeout.timeout', (['(10)'], {}), '(10)\n', (2344, 2348), False, 'import async_timeout\n'), ((2912, 2930), 'datetime.timedelta', 'timedelta', ([], {'hours': '(1)'}), '(hours=1)\n', (2921, 2930), False, 'from datetime import timedelta\n'), ((2676, 2695), 'homeassistant.helpers.update_coordinator.UpdateFailed', 'UpdateFailed', (['error'], {}), '(error)\n', (2688, 2695), False, 'from homeassistant.helpers.update_coordinator import UpdateFailed\n'), ((2453, 2497), 'homeassistant.helpers.aiohttp_client.async_get_clientsession', 'aiohttp_client.async_get_clientsession', (['hass'], {}), '(hass)\n', (2491, 2497), False, 'from homeassistant.helpers import aiohttp_client, update_coordinator\n')]
import logging import os import time import pytest CURL = "/usr/bin/curl -X POST http://localhost:{} -d hello_my_plugins" WAITSTATUS = 0.1 def get_factory_args(port): # TODO: Find better way of getting an interpreter in the current env interpreter = os.path.abspath("./env-plugin/bin/python") args = [ interpreter, "-m", "restapi_echo_server", "--host", "0.0.0.0", "--port", str(port), ] return args @pytest.fixture(name="echoserver") def fixture_echoserver(process_factory): """ Custom fixture starts an echoserver on port 8090 """ # TODO: Find better way of getting an interpreter in the current env interpreter = os.path.abspath("./env-plugin/bin/python") process = process_factory( [ interpreter, "-m", "restapi_echo_server", "--host", "0.0.0.0", "--port", "8090", ], ) process.set_name("echoserver_") yield process logging.info("Killing echoserver") process.kill() @pytest.fixture(name="echoserver_2") def fixture_echoserver_2(process_factory): """ Custom fixture starts an echoserver on port 8092 """ # TODO: Find better way of getting an interpreter in the current env interpreter = os.path.abspath("./env-plugin/bin/python") process = process_factory( [ interpreter, "-m", "restapi_echo_server", "--host", "0.0.0.0", "--port", "8092", ], ) process.set_name("ecoserver_2_") yield process logging.info("Killing echoserver") process.kill() @pytest.fixture(name="asserts_echoserver") def fixture_asserts_echoserver(): yield logging.info("Asserts Echoserver") @pytest.fixture(name="cleanup_echoserver") def fixture_cleanup_echoserver(): yield logging.info("Cleanup Echoserver") def test_use_case_echo(echoserver): echoserver.run_bg() time.sleep(1) echoserver.kill() time.sleep(WAITSTATUS) # If this fails, there is maybe still one running assert echoserver.get_status() == "NotExisting" def test_use_case_echo_with_additional_cleanup( echoserver, asserts_echoserver, cleanup_echoserver ): _ = asserts_echoserver # for now just use them otherwise pylint will complain _ = cleanup_echoserver # Does not work right echoserver.run_bg() time.sleep(0.1) def test_use_case_echo_and_curl(process_factory, process): # TODO: Find better way of getting an interpreter in the current env interpreter = os.path.abspath("./env-plugin/bin/python") server = process_factory( [ interpreter, "-m", "restapi_echo_server", "--host", "0.0.0.0", "--port", "8080", ] ) server.run_bg() # give the server 100ms to start in the background time.sleep(0.1) process.set_command( CURL.format(8080).split(), ) assert process.run() == 0 def test_use_case_echo_and_curl_from_factory(process_factory): # TODO: Find better way of getting an interpreter in the current env interpreter = os.path.abspath("./env-plugin/bin/python") server = process_factory( [ interpreter, "-m", "restapi_echo_server", "--host", "0.0.0.0", "--port", "8080", ], "server_", ) server.run_bg() time.sleep(WAITSTATUS) assert server.get_status() == "Running" # make sure it still runs # give the server 100ms to start in the background time.sleep(0.1) client = process_factory( CURL.format(8080).split(), "client_", ) client.run_bg() time.sleep(WAITSTATUS) assert client.get_status() == 0 server.kill() time.sleep(WAITSTATUS) assert server.get_status() == "NotExisting" # For weird reasons the echoserver logs to stderr assert server.get_stdout() == "" assert "hello_my_plugins" in server.get_stderr() def test_use_case_echoserver_fixture_and_curl(process_factory, echoserver): echoserver.run_bg() time.sleep(WAITSTATUS) # give the server some time to start assert echoserver.get_status() == "Running" # make sure it still runs # give the server 100ms to start in the background time.sleep(0.1) client = process_factory( CURL.format(8090).split(), "client_", ) client.run_bg() time.sleep(WAITSTATUS) assert client.get_status() == 0 echoserver.kill() time.sleep(WAITSTATUS) assert echoserver.get_status() == "NotExisting" assert ( echoserver.get_stdout() == "" ) # For weird reasons the echoserver logs to stderr assert "hello_my_plugins" in echoserver.get_stderr() def test_use_case_echoserver_1_and_2(process_factory, echoserver, echoserver_2): echoserver_1 = echoserver echoserver_1.run_bg() echoserver_2.run_bg() time.sleep(0.1) assert echoserver_1.get_status() == "Running" assert echoserver_2.get_status() == "Running" time.sleep(0.1) client_a = process_factory( CURL.format(8090).split(), "client_a_", ) client_b = process_factory( CURL.format(8092).split(), "client_b_", ) client_a.run_bg() client_b.run_bg() time.sleep(0.1) assert client_a.get_status() == 0 assert client_b.get_status() == 0 echoserver_1.kill() echoserver_2.kill() time.sleep(0.1) assert echoserver_1.get_status() == "NotExisting" assert echoserver_2.get_status() == "NotExisting" assert "hello_my_plugins" in echoserver_1.get_stderr() assert "hello_my_plugins" in echoserver_2.get_stderr() def test_use_case_echo_and_curl_from_factory_n(process_factory): amount = 10 servers = [] clients = [] for i in range(amount): server = process_factory(get_factory_args(8080 + i), f"server_{i}_") server.run_bg() servers.append(server) time.sleep(0.1) logging.info("Polling server status") for server in servers: status = server.get_status() if status != "Running": logging.error("Something went wrong here is stdout") logging.error(server.get_stdout()) logging.error("Something went wrong here is stderr") logging.error(server.get_stderr()) assert status == "Running" time.sleep(0.5) logging.info("Starting clients") for i in range(amount): client = process_factory( CURL.format(8080 + i).split(), f"client_{i}_", ) client.run_bg() time.sleep(0.5) logging.info("Polling clients") # We expect, that all clients exited with zero for client in clients: assert client.get_status() == 0 clients.append(client) for server in servers: server.kill() time.sleep(0.1) for server in servers: assert server.get_status() == "NotExisting" for server in servers: # For weird reasons the echoserver logs to stderr assert server.get_stdout() == "" assert "hello_my_plugins" in server.get_stderr() for client in clients: assert "method" in client.get_stdout() assert "Total" in client.get_stderr()
[ "os.path.abspath", "logging.error", "pytest.fixture", "time.sleep", "logging.info" ]
[((484, 517), 'pytest.fixture', 'pytest.fixture', ([], {'name': '"""echoserver"""'}), "(name='echoserver')\n", (498, 517), False, 'import pytest\n'), ((1100, 1135), 'pytest.fixture', 'pytest.fixture', ([], {'name': '"""echoserver_2"""'}), "(name='echoserver_2')\n", (1114, 1135), False, 'import pytest\n'), ((1721, 1762), 'pytest.fixture', 'pytest.fixture', ([], {'name': '"""asserts_echoserver"""'}), "(name='asserts_echoserver')\n", (1735, 1762), False, 'import pytest\n'), ((1849, 1890), 'pytest.fixture', 'pytest.fixture', ([], {'name': '"""cleanup_echoserver"""'}), "(name='cleanup_echoserver')\n", (1863, 1890), False, 'import pytest\n'), ((262, 304), 'os.path.abspath', 'os.path.abspath', (['"""./env-plugin/bin/python"""'], {}), "('./env-plugin/bin/python')\n", (277, 304), False, 'import os\n'), ((719, 761), 'os.path.abspath', 'os.path.abspath', (['"""./env-plugin/bin/python"""'], {}), "('./env-plugin/bin/python')\n", (734, 761), False, 'import os\n'), ((1043, 1077), 'logging.info', 'logging.info', (['"""Killing echoserver"""'], {}), "('Killing echoserver')\n", (1055, 1077), False, 'import logging\n'), ((1339, 1381), 'os.path.abspath', 'os.path.abspath', (['"""./env-plugin/bin/python"""'], {}), "('./env-plugin/bin/python')\n", (1354, 1381), False, 'import os\n'), ((1664, 1698), 'logging.info', 'logging.info', (['"""Killing echoserver"""'], {}), "('Killing echoserver')\n", (1676, 1698), False, 'import logging\n'), ((1811, 1845), 'logging.info', 'logging.info', (['"""Asserts Echoserver"""'], {}), "('Asserts Echoserver')\n", (1823, 1845), False, 'import logging\n'), ((1939, 1973), 'logging.info', 'logging.info', (['"""Cleanup Echoserver"""'], {}), "('Cleanup Echoserver')\n", (1951, 1973), False, 'import logging\n'), ((2040, 2053), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (2050, 2053), False, 'import time\n'), ((2080, 2102), 'time.sleep', 'time.sleep', (['WAITSTATUS'], {}), '(WAITSTATUS)\n', (2090, 2102), False, 'import time\n'), ((2482, 2497), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (2492, 2497), False, 'import time\n'), ((2650, 2692), 'os.path.abspath', 'os.path.abspath', (['"""./env-plugin/bin/python"""'], {}), "('./env-plugin/bin/python')\n", (2665, 2692), False, 'import os\n'), ((2993, 3008), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (3003, 3008), False, 'import time\n'), ((3261, 3303), 'os.path.abspath', 'os.path.abspath', (['"""./env-plugin/bin/python"""'], {}), "('./env-plugin/bin/python')\n", (3276, 3303), False, 'import os\n'), ((3569, 3591), 'time.sleep', 'time.sleep', (['WAITSTATUS'], {}), '(WAITSTATUS)\n', (3579, 3591), False, 'import time\n'), ((3722, 3737), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (3732, 3737), False, 'import time\n'), ((3852, 3874), 'time.sleep', 'time.sleep', (['WAITSTATUS'], {}), '(WAITSTATUS)\n', (3862, 3874), False, 'import time\n'), ((3933, 3955), 'time.sleep', 'time.sleep', (['WAITSTATUS'], {}), '(WAITSTATUS)\n', (3943, 3955), False, 'import time\n'), ((4255, 4277), 'time.sleep', 'time.sleep', (['WAITSTATUS'], {}), '(WAITSTATUS)\n', (4265, 4277), False, 'import time\n'), ((4450, 4465), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (4460, 4465), False, 'import time\n'), ((4580, 4602), 'time.sleep', 'time.sleep', (['WAITSTATUS'], {}), '(WAITSTATUS)\n', (4590, 4602), False, 'import time\n'), ((4665, 4687), 'time.sleep', 'time.sleep', (['WAITSTATUS'], {}), '(WAITSTATUS)\n', (4675, 4687), False, 'import time\n'), ((5076, 5091), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (5086, 5091), False, 'import time\n'), ((5197, 5212), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (5207, 5212), False, 'import time\n'), ((5452, 5467), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (5462, 5467), False, 'import time\n'), ((5597, 5612), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (5607, 5612), False, 'import time\n'), ((6124, 6139), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (6134, 6139), False, 'import time\n'), ((6145, 6182), 'logging.info', 'logging.info', (['"""Polling server status"""'], {}), "('Polling server status')\n", (6157, 6182), False, 'import logging\n'), ((6547, 6562), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (6557, 6562), False, 'import time\n'), ((6567, 6599), 'logging.info', 'logging.info', (['"""Starting clients"""'], {}), "('Starting clients')\n", (6579, 6599), False, 'import logging\n'), ((6773, 6788), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (6783, 6788), False, 'import time\n'), ((6793, 6824), 'logging.info', 'logging.info', (['"""Polling clients"""'], {}), "('Polling clients')\n", (6805, 6824), False, 'import logging\n'), ((7030, 7045), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (7040, 7045), False, 'import time\n'), ((6291, 6343), 'logging.error', 'logging.error', (['"""Something went wrong here is stdout"""'], {}), "('Something went wrong here is stdout')\n", (6304, 6343), False, 'import logging\n'), ((6403, 6455), 'logging.error', 'logging.error', (['"""Something went wrong here is stderr"""'], {}), "('Something went wrong here is stderr')\n", (6416, 6455), False, 'import logging\n')]
import io import os import unittest import numpy as np from sklearn.linear_model import LogisticRegression from dragnet import Extractor from dragnet.blocks import TagCountNoCSSReadabilityBlockifier from dragnet.util import get_and_union_features from dragnet.compat import str_cast with io.open(os.path.join('test', 'datafiles', 'models_testing.html'), 'r') as f: big_html_doc = f.read() class TestExtractor(unittest.TestCase): def test_extractor(self): prob_threshold = 0.5 blockifier = TagCountNoCSSReadabilityBlockifier() features = get_and_union_features(['weninger', 'kohlschuetter', 'readability']) # initialize model from pre-fit attributes model_attrs = { 'C': 1.0, 'class_weight': None, 'classes_': [0, 1], 'coef_': [[0.00501458328421719, -0.0006331822163374379, -0.6699789320373452, 0.026069227973339763, -1.5552477377277252, 0.02980432745983307, -0.965575689884716, 0.019509367890934326, -0.35692924115362307]], 'dual': False, 'fit_intercept': True, 'intercept_': [-1.2071425754440765], 'intercept_scaling': 1, 'max_iter': 100, 'multi_class': 'ovr', 'n_iter_': [12], 'n_jobs': 1, 'penalty': 'l2', 'solver': 'liblinear', 'tol': 0.0001, 'warm_start': False} model = LogisticRegression() for k, v in model_attrs.items(): if isinstance(v, list): setattr(model, k, np.array(v)) else: setattr(model, k, v) # extract content via the extractor class extractor = Extractor(blockifier, features=features, model=model, to_extract='content', prob_threshold=prob_threshold) extractor_content = extractor.extract(big_html_doc) # extract content via individual components blocks = blockifier.blockify(big_html_doc) features_mat = features.transform(blocks) positive_idx = list(model.classes_).index(1) preds = (model.predict_proba(features_mat) > prob_threshold)[:, positive_idx].astype(int) components_content = '\n'.join(str_cast(blocks[ind].text) for ind in np.flatnonzero(preds)) self.assertIsNotNone(extractor_content) self.assertEqual(extractor_content, components_content) if __name__ == "__main__": unittest.main()
[ "unittest.main", "dragnet.Extractor", "numpy.flatnonzero", "dragnet.util.get_and_union_features", "sklearn.linear_model.LogisticRegression", "dragnet.compat.str_cast", "numpy.array", "dragnet.blocks.TagCountNoCSSReadabilityBlockifier", "os.path.join" ]
[((2451, 2466), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2464, 2466), False, 'import unittest\n'), ((300, 356), 'os.path.join', 'os.path.join', (['"""test"""', '"""datafiles"""', '"""models_testing.html"""'], {}), "('test', 'datafiles', 'models_testing.html')\n", (312, 356), False, 'import os\n'), ((521, 557), 'dragnet.blocks.TagCountNoCSSReadabilityBlockifier', 'TagCountNoCSSReadabilityBlockifier', ([], {}), '()\n', (555, 557), False, 'from dragnet.blocks import TagCountNoCSSReadabilityBlockifier\n'), ((577, 645), 'dragnet.util.get_and_union_features', 'get_and_union_features', (["['weninger', 'kohlschuetter', 'readability']"], {}), "(['weninger', 'kohlschuetter', 'readability'])\n", (599, 645), False, 'from dragnet.util import get_and_union_features\n'), ((1432, 1452), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (1450, 1452), False, 'from sklearn.linear_model import LogisticRegression\n'), ((1703, 1813), 'dragnet.Extractor', 'Extractor', (['blockifier'], {'features': 'features', 'model': 'model', 'to_extract': '"""content"""', 'prob_threshold': 'prob_threshold'}), "(blockifier, features=features, model=model, to_extract='content',\n prob_threshold=prob_threshold)\n", (1712, 1813), False, 'from dragnet import Extractor\n'), ((2244, 2270), 'dragnet.compat.str_cast', 'str_cast', (['blocks[ind].text'], {}), '(blocks[ind].text)\n', (2252, 2270), False, 'from dragnet.compat import str_cast\n'), ((1564, 1575), 'numpy.array', 'np.array', (['v'], {}), '(v)\n', (1572, 1575), True, 'import numpy as np\n'), ((2282, 2303), 'numpy.flatnonzero', 'np.flatnonzero', (['preds'], {}), '(preds)\n', (2296, 2303), True, 'import numpy as np\n')]
"""Initial metrics Revision ID: 6f9266e7a5fb Revises: 51415576d3e9 Create Date: 2017-12-12 10:38:27.166562 """ import model.utils import sqlalchemy as sa from alembic import op from rdr_service.participant_enums import MetricSetType, MetricsKey # revision identifiers, used by Alembic. revision = "6f9266e7a5fb" down_revision = "51415576d3e9" branch_labels = None depends_on = None def upgrade(engine_name): globals()["upgrade_%s" % engine_name]() def downgrade(engine_name): globals()["downgrade_%s" % engine_name]() def upgrade_rdr(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ### def downgrade_rdr(): # ### commands auto generated by Alembic - please adjust! ### pass # ### end Alembic commands ### def upgrade_metrics(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "metric_set", sa.Column("metric_set_id", sa.String(length=50), nullable=False), sa.Column("metric_set_type", model.utils.Enum(MetricSetType), nullable=False), sa.Column("last_modified", model.utils.UTCDateTime(), nullable=False), sa.PrimaryKeyConstraint("metric_set_id"), schema="metrics", ) op.create_table( "aggregate_metrics", sa.Column("metric_set_id", sa.String(length=50), nullable=False), sa.Column("metrics_key", model.utils.Enum(MetricsKey), nullable=False), sa.Column("value", sa.String(length=50), nullable=False), sa.Column("count", sa.Integer(), nullable=False), sa.ForeignKeyConstraint(["metric_set_id"], ["metrics.metric_set.metric_set_id"], ondelete="CASCADE"), sa.PrimaryKeyConstraint("metric_set_id", "metrics_key", "value"), schema="metrics", ) # ### end Alembic commands ### def downgrade_metrics(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table("aggregate_metrics", schema="metrics") op.drop_table("metric_set", schema="metrics") # ### end Alembic commands ###
[ "alembic.op.drop_table", "sqlalchemy.PrimaryKeyConstraint", "sqlalchemy.ForeignKeyConstraint", "sqlalchemy.String", "sqlalchemy.Integer" ]
[((1930, 1982), 'alembic.op.drop_table', 'op.drop_table', (['"""aggregate_metrics"""'], {'schema': '"""metrics"""'}), "('aggregate_metrics', schema='metrics')\n", (1943, 1982), False, 'from alembic import op\n'), ((1987, 2032), 'alembic.op.drop_table', 'op.drop_table', (['"""metric_set"""'], {'schema': '"""metrics"""'}), "('metric_set', schema='metrics')\n", (2000, 2032), False, 'from alembic import op\n'), ((1180, 1220), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""metric_set_id"""'], {}), "('metric_set_id')\n", (1203, 1220), True, 'import sqlalchemy as sa\n'), ((1590, 1695), 'sqlalchemy.ForeignKeyConstraint', 'sa.ForeignKeyConstraint', (["['metric_set_id']", "['metrics.metric_set.metric_set_id']"], {'ondelete': '"""CASCADE"""'}), "(['metric_set_id'], [\n 'metrics.metric_set.metric_set_id'], ondelete='CASCADE')\n", (1613, 1695), True, 'import sqlalchemy as sa\n'), ((1700, 1764), 'sqlalchemy.PrimaryKeyConstraint', 'sa.PrimaryKeyConstraint', (['"""metric_set_id"""', '"""metrics_key"""', '"""value"""'], {}), "('metric_set_id', 'metrics_key', 'value')\n", (1723, 1764), True, 'import sqlalchemy as sa\n'), ((967, 987), 'sqlalchemy.String', 'sa.String', ([], {'length': '(50)'}), '(length=50)\n', (976, 987), True, 'import sqlalchemy as sa\n'), ((1339, 1359), 'sqlalchemy.String', 'sa.String', ([], {'length': '(50)'}), '(length=50)\n', (1348, 1359), True, 'import sqlalchemy as sa\n'), ((1485, 1505), 'sqlalchemy.String', 'sa.String', ([], {'length': '(50)'}), '(length=50)\n', (1494, 1505), True, 'import sqlalchemy as sa\n'), ((1551, 1563), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (1561, 1563), True, 'import sqlalchemy as sa\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """Pyle makes it easy to use Python as a replacement for command line tools such as `sed` or `perl`. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from future import standard_library standard_library.install_aliases() from future.utils import string_types import argparse import io import re import sh import sys import traceback __version__ = "0.4.1" STANDARD_MODULES = { 're': re, 'sh': sh } def truncate_ellipsis(line, length=30): """Truncate a line to the specified length followed by ``...`` unless its shorter than length already.""" return line if len(line) < length else line[:length - 3] + "..." def pyle_evaluate(expressions=None, modules=(), inplace=False, files=None, print_traceback=False): """The main method of pyle.""" eval_globals = {} eval_globals.update(STANDARD_MODULES) for module_arg in modules or (): for module in module_arg.strip().split(","): module = module.strip() if module: eval_globals[module] = __import__(module) if not expressions: # Default 'do nothing' program expressions = ['line'] encoding = sys.getdefaultencoding() files = files or ['-'] eval_locals = {} for file in files: if file == '-': file = sys.stdin out_buf = sys.stdout if not inplace else io.StringIO() out_line = None with (io.open(file, 'r', encoding=encoding) if not hasattr(file, 'read') else file) as in_file: for num, line in enumerate(in_file.readlines()): was_whole_line = False if line[-1] == '\n': was_whole_line = True line = line[:-1] expr = "" try: for expr in expressions: words = [word.strip() for word in re.split(r'\s+', line) if word] eval_locals.update({ 'line': line, 'words': words, 'filename': in_file.name, 'num': num }) out_line = eval(expr, eval_globals, eval_locals) if out_line is None: continue # If the result is something list-like or iterable, # output each item space separated. if not isinstance(out_line, string_types): try: out_line = u' '.join(str(part) for part in out_line) except: # Guess it wasn't a list after all. out_line = str(out_line) line = out_line except Exception as e: sys.stdout.flush() sys.stderr.write("At %s:%d ('%s'): `%s`: %s\n" % ( in_file.name, num, truncate_ellipsis(line), expr, e)) if print_traceback: traceback.print_exc(None, sys.stderr) else: if out_line is None: continue out_line = out_line or u'' out_buf.write(out_line) if was_whole_line: out_buf.write('\n') if inplace: with io.open(file, 'w', encoding=encoding) as out_file: out_file.write(out_buf.getvalue()) out_buf.close() def pyle(argv=None): """Execute pyle with the specified arguments, or sys.argv if no arguments specified.""" parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("-m", "--modules", dest="modules", action='append', help="import MODULE before evaluation. May be specified more than once.") parser.add_argument("-i", "--inplace", dest="inplace", action='store_true', default=False, help="edit files in place. When used with file name arguments, the files will be replaced by the output of the evaluation") parser.add_argument("-e", "--expression", action="append", dest="expressions", help="an expression to evaluate for each line") parser.add_argument('files', nargs='*', help="files to read as input. If used with --inplace, the files will be replaced with the output") parser.add_argument("--traceback", action="store_true", default=False, help="print a traceback on stderr when an expression fails for a line") args = parser.parse_args() if not argv else parser.parse_args(argv) pyle_evaluate(args.expressions, args.modules, args.inplace, args.files, args.traceback) if __name__ == '__main__': pyle()
[ "io.StringIO", "traceback.print_exc", "re.split", "argparse.ArgumentParser", "future.standard_library.install_aliases", "sys.getdefaultencoding", "sys.stdout.flush", "io.open" ]
[((339, 373), 'future.standard_library.install_aliases', 'standard_library.install_aliases', ([], {}), '()\n', (371, 373), False, 'from future import standard_library\n'), ((1305, 1329), 'sys.getdefaultencoding', 'sys.getdefaultencoding', ([], {}), '()\n', (1327, 1329), False, 'import sys\n'), ((3943, 3987), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__doc__'}), '(description=__doc__)\n', (3966, 3987), False, 'import argparse\n'), ((1505, 1518), 'io.StringIO', 'io.StringIO', ([], {}), '()\n', (1516, 1518), False, 'import io\n'), ((1558, 1595), 'io.open', 'io.open', (['file', '"""r"""'], {'encoding': 'encoding'}), "(file, 'r', encoding=encoding)\n", (1565, 1595), False, 'import io\n'), ((3684, 3721), 'io.open', 'io.open', (['file', '"""w"""'], {'encoding': 'encoding'}), "(file, 'w', encoding=encoding)\n", (3691, 3721), False, 'import io\n'), ((3105, 3123), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (3121, 3123), False, 'import sys\n'), ((3337, 3374), 'traceback.print_exc', 'traceback.print_exc', (['None', 'sys.stderr'], {}), '(None, sys.stderr)\n', (3356, 3374), False, 'import traceback\n'), ((2049, 2071), 're.split', 're.split', (['"""\\\\s+"""', 'line'], {}), "('\\\\s+', line)\n", (2057, 2071), False, 'import re\n')]
import hashlib ENCODED = 'sha1$bh9ul$8e808fcea5418aa971311ea1598df65627ea3b98' _, SALT, PASSWORD = ENCODED.split('$') def check(possibility): return hashlib.sha1(SALT + possibility).hexdigest() == PASSWORD f = open('solutions/official/CSW12.txt', 'rb') for row in f: row = row.rstrip() if not row: continue if ' ' in row: word, _ = row.split(' ', 1) else: word = row if check(word.lower()): print(u'DECODED {0}'.format(word)) break else: print(u'Solution not found') f.close()
[ "hashlib.sha1" ]
[((152, 184), 'hashlib.sha1', 'hashlib.sha1', (['(SALT + possibility)'], {}), '(SALT + possibility)\n', (164, 184), False, 'import hashlib\n')]
"""Copyright © 2020-present, Swisscom (Schweiz) AG. All rights reserved.""" from .feature import Feature from scipy.stats import entropy import numpy as np class KLDivergence(Feature): r""" A feature that computes the KL divergence between the logits of each data points given by a classifier mean logits for each label and the mean of these logits for each label ---------- mean_logits : array-like of shape (n_classes, n_classes) is the mean of the logits of datapoints having the same label. First dimension should be labels, second should be the mean logit for this label Attributes ---------- mean_logits: ' ' """ def __init__(self, mean_logits): self.mean_logits = mean_logits def augment(self, logits): """ Performs the data augmentation. Computes the KL divergence between the parameter logits and the attribute mean_logits :param logits: array-like of shape (n_classes, n_samples) :return: C : array-like of shape (n_classes, n_samples) """ return np.array([entropy(logits, np.repeat(mean_logit[..., np.newaxis], logits.shape[1], axis=1), base=2) for mean_logit in self.mean_logits])
[ "numpy.repeat" ]
[((1168, 1231), 'numpy.repeat', 'np.repeat', (['mean_logit[..., np.newaxis]', 'logits.shape[1]'], {'axis': '(1)'}), '(mean_logit[..., np.newaxis], logits.shape[1], axis=1)\n', (1177, 1231), True, 'import numpy as np\n')]
import Anime_Scraper import Color import warnings import ssl import argparse import requests import shutil import os import re import sys from platform import system from threading import Thread from queue import Queue from art import text2art directory = "" threads = 1 token = None titles = False args = None gui = None class Worker(Thread) : def __init__(self, tasks) : Thread.__init__(self) self.tasks = tasks self.daemon = True self.start() def run(self) : global gui while True : func, arg, kargs = self.tasks.get() try : func(*arg, **kargs) except Exception as ex : # print(ex) Color.printer("ERROR", ex, gui) finally : self.tasks.task_done() class ThreadPool : def __init__(self, num_threads) : self.tasks = Queue(num_threads) for _ in range(num_threads) : Worker(self.tasks) def add_task(self, func, *arg, **kargs) : self.tasks.put((func, arg, kargs)) def map(self, func, args_list) : for arg in args_list : self.add_task(func, arg) def wait_completion(self) : self.tasks.join() def clean_file_name(file_name) : for c in r'[]/\;,><&*:%=+@#^()|?^': file_name = file_name.replace(c,'') return file_name def download_episode(episode) : global titles, gui Color.printer("INFO","Downloading "+episode.episode+"...", gui) if system() == "Windows" : episode.title = clean_file_name(episode.title) if titles : file_name = directory + episode.episode + " - " + episode.title + ".mp4" else : file_name = directory+episode.episode+".mp4" with requests.get(episode.download_url, stream=True, verify=False) as r: with open(file_name, 'wb') as f: shutil.copyfileobj(r.raw, f, length=16*1024*1024) Color.printer("INFO",episode.episode + " finished downloading...", gui) def download() : global directory, threads, gui try: _create_unverified_https_context = ssl._create_unverified_context except AttributeError: # Legacy Python that doesn't verify HTTPS certificates by default pass else: # Handle target environment that doesn't support HTTPS verification ssl._create_default_https_context = _create_unverified_https_context Color.printer("INFO","Downloading started...", gui) # for episode in Anime_Scraper.episodes : # print("Downloading", episode.episode) # urllib.request.urlretrieve(episode.download_url, directory+episode.episode+".mp4") pool = ThreadPool(threads) pool.map(download_episode, Anime_Scraper.episodes) pool.wait_completion() Color.printer("INFO", "Downloading finished!", gui) def print_banner() : banner = text2art("Anime Downloader") Color.printer("BANNER", banner) def main() : global directory, args, threads, titles, token print_banner() parser = argparse.ArgumentParser(description="Anime Downloader Command Line Tool") argparse.ArgumentParser(description="Help option parcer for Anime Downloader Command Line Tool", add_help=False, formatter_class=argparse.HelpFormatter) parser.add_argument("-u", "--url", required=True, help="9Anime.to URL for the anime to be downloaded", dest="url") parser.add_argument("-n", "--names", required=True, help="https://www.animefillerlist.com/ URL to retrieve episode titles", dest="title_url") parser.add_argument("-d", "--directory", required=False, help="Download destination. Will use the current directory if not provided", default="" , dest="dir") parser.add_argument("-s", "--start", required=False, help="Starting episode",default=1, type=int , dest="start") parser.add_argument("-e", "--end", required=False, help="End episode", default=9999, type=int ,dest="end") parser.add_argument("-c", "--code", required=False, help="Recaptcha answer token code. Insert this if you don't have 2captcha captcha bypass api_key", default=None, dest="token") parser.add_argument("-t", "--threads", required=False, help="Number of parrallel downloads. Will download sequencially if not provided", default=1, type=int ,dest="threads") parser.add_argument("-f", "--filler", required=False, help="Whether fillers needed", default=True, type=bool ,dest="isFiller") args = parser.parse_args() Anime_Scraper.download_9anime_url = args.url Anime_Scraper.title_url = args.title_url Anime_Scraper.isFiller = args.isFiller # Anime_Scraper.ts_no = args.ts_no token = args.token directory = args.dir threads = args.threads if args.title_url : titles = True if directory != "" : directory = directory.replace("\\", "/") if not directory.endswith("/") : directory+="/" Anime_Scraper.main(args.start, args.end, token) download() if __name__ == "__main__": #suppress warnings warnings.filterwarnings("ignore") #activate color codes if sys.platform.lower() == "win32" : os.system("color") main()
[ "threading.Thread.__init__", "argparse.ArgumentParser", "warnings.filterwarnings", "os.system", "sys.platform.lower", "Color.printer", "art.text2art", "Anime_Scraper.main", "requests.get", "platform.system", "shutil.copyfileobj", "queue.Queue" ]
[((1470, 1538), 'Color.printer', 'Color.printer', (['"""INFO"""', "('Downloading ' + episode.episode + '...')", 'gui'], {}), "('INFO', 'Downloading ' + episode.episode + '...', gui)\n", (1483, 1538), False, 'import Color\n'), ((1969, 2041), 'Color.printer', 'Color.printer', (['"""INFO"""', "(episode.episode + ' finished downloading...')", 'gui'], {}), "('INFO', episode.episode + ' finished downloading...', gui)\n", (1982, 2041), False, 'import Color\n'), ((2461, 2513), 'Color.printer', 'Color.printer', (['"""INFO"""', '"""Downloading started..."""', 'gui'], {}), "('INFO', 'Downloading started...', gui)\n", (2474, 2513), False, 'import Color\n'), ((2825, 2876), 'Color.printer', 'Color.printer', (['"""INFO"""', '"""Downloading finished!"""', 'gui'], {}), "('INFO', 'Downloading finished!', gui)\n", (2838, 2876), False, 'import Color\n'), ((2913, 2944), 'art.text2art', 'text2art', (['"""Anime Downloader"""'], {}), "('Anime Downloader')\n", (2921, 2944), False, 'from art import text2art\n'), ((2949, 2980), 'Color.printer', 'Color.printer', (['"""BANNER"""', 'banner'], {}), "('BANNER', banner)\n", (2962, 2980), False, 'import Color\n'), ((3081, 3154), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Anime Downloader Command Line Tool"""'}), "(description='Anime Downloader Command Line Tool')\n", (3104, 3154), False, 'import argparse\n'), ((3159, 3321), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Help option parcer for Anime Downloader Command Line Tool"""', 'add_help': '(False)', 'formatter_class': 'argparse.HelpFormatter'}), "(description=\n 'Help option parcer for Anime Downloader Command Line Tool', add_help=\n False, formatter_class=argparse.HelpFormatter)\n", (3182, 3321), False, 'import argparse\n'), ((4944, 4991), 'Anime_Scraper.main', 'Anime_Scraper.main', (['args.start', 'args.end', 'token'], {}), '(args.start, args.end, token)\n', (4962, 4991), False, 'import Anime_Scraper\n'), ((5063, 5096), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (5086, 5096), False, 'import warnings\n'), ((392, 413), 'threading.Thread.__init__', 'Thread.__init__', (['self'], {}), '(self)\n', (407, 413), False, 'from threading import Thread\n'), ((909, 927), 'queue.Queue', 'Queue', (['num_threads'], {}), '(num_threads)\n', (914, 927), False, 'from queue import Queue\n'), ((1542, 1550), 'platform.system', 'system', ([], {}), '()\n', (1548, 1550), False, 'from platform import system\n'), ((1793, 1854), 'requests.get', 'requests.get', (['episode.download_url'], {'stream': '(True)', 'verify': '(False)'}), '(episode.download_url, stream=True, verify=False)\n', (1805, 1854), False, 'import requests\n'), ((5135, 5155), 'sys.platform.lower', 'sys.platform.lower', ([], {}), '()\n', (5153, 5155), False, 'import sys\n'), ((5177, 5195), 'os.system', 'os.system', (['"""color"""'], {}), "('color')\n", (5186, 5195), False, 'import os\n'), ((1914, 1967), 'shutil.copyfileobj', 'shutil.copyfileobj', (['r.raw', 'f'], {'length': '(16 * 1024 * 1024)'}), '(r.raw, f, length=16 * 1024 * 1024)\n', (1932, 1967), False, 'import shutil\n'), ((737, 768), 'Color.printer', 'Color.printer', (['"""ERROR"""', 'ex', 'gui'], {}), "('ERROR', ex, gui)\n", (750, 768), False, 'import Color\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('mail', '0098_auto_20170522_0940'), ] operations = [ migrations.AddField( model_name='checksettings', name='hrisk_diff_sender_count', field=models.IntegerField(default=3, help_text='\u4e00\u5929\u5185 \u540c\u4e00\u53d1\u4ef6\u4eba\u540d\u79f0\u4e0d\u540c\u503c\u8d85\u8fc7N\u6b21\uff0c \u5219\u5728\u4ee5\u540e\u7684M\u65f6\u95f4\u5185\u62e6\u622a\u5176\u6240\u6709\u90ae\u4ef6\uff0c\u5e76\u653e\u5165\u201c\u9ad8\u5371\u53d1\u4ef6\u4eba\u201d\u8fdb\u884c\u4eba\u5de5\u5ba1\u6838', verbose_name='\u540d\u79f0\u4e0d\u540c\u7684\u9ad8\u5371\u53d1\u4ef6\u4eba(\u4e0d\u540c\u6b21\u6570)'), ), migrations.AddField( model_name='checksettings', name='hrisk_diff_sender_time', field=models.IntegerField(default=600, help_text='\u5355\u4f4d:\u5206\u949f, \u4e00\u5929\u5185 \u540c\u4e00\u53d1\u4ef6\u4eba\u540d\u79f0\u4e0d\u540c\u503c\u8d85\u8fc7N\u6b21\uff0c \u5219\u5728\u4ee5\u540e\u7684M\u65f6\u95f4\u5185\u62e6\u622a\u5176\u6240\u6709\u90ae\u4ef6\uff0c\u5e76\u653e\u5165\u201c\u9ad8\u5371\u53d1\u4ef6\u4eba\u201d\u8fdb\u884c\u4eba\u5de5\u5ba1\u6838', verbose_name='\u540d\u79f0\u4e0d\u540c\u7684\u9ad8\u5371\u53d1\u4ef6\u4eba(\u62e6\u622a\u65f6\u95f4)'), ), ]
[ "django.db.models.IntegerField" ]
[((371, 511), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(3)', 'help_text': '"""一天内 同一发件人名称不同值超过N次, 则在以后的M时间内拦截其所有邮件,并放入“高危发件人”进行人工审核"""', 'verbose_name': '"""名称不同的高危发件人(不同次数)"""'}), "(default=3, help_text=\n '一天内 同一发件人名称不同值超过N次, 则在以后的M时间内拦截其所有邮件,并放入“高危发件人”进行人工审核', verbose_name=\n '名称不同的高危发件人(不同次数)')\n", (390, 511), False, 'from django.db import models, migrations\n'), ((959, 1107), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(600)', 'help_text': '"""单位:分钟, 一天内 同一发件人名称不同值超过N次, 则在以后的M时间内拦截其所有邮件,并放入“高危发件人”进行人工审核"""', 'verbose_name': '"""名称不同的高危发件人(拦截时间)"""'}), "(default=600, help_text=\n '单位:分钟, 一天内 同一发件人名称不同值超过N次, 则在以后的M时间内拦截其所有邮件,并放入“高危发件人”进行人工审核',\n verbose_name='名称不同的高危发件人(拦截时间)')\n", (978, 1107), False, 'from django.db import models, migrations\n')]
""" Generate Accelerated Thrift bindings """ import os import argparse import re import shutil import subprocess import sys xpr_hints = re.compile(".*completion_hints.*") def parse_args(args=None): parser = argparse.ArgumentParser(description='Run some benchmarks') parser.add_argument('infile', nargs='?', type=argparse.FileType('r'), default=sys.stdin, help="mapd.thrift file") parser.add_argument('outfile', nargs='?', default="mapd.thrift", help="Patched mapd.thrift file") return parser.parse_args(args) def thrift_gen(spec): subprocess.check_output(['thrift', '-gen', 'py', '-r', spec]) def main(args=None): args = parse_args(args) thrift = args.infile.readlines() new = [x for x in thrift if not xpr_hints.match(x)] with open(args.outfile, 'wt') as f: f.write(''.join(new)) try: thrift_gen(args.outfile) shutil.rmtree("mapd", ignore_errors=True) shutil.copytree(os.path.join("gen-py", "mapd"), "mapd") finally: os.remove(args.outfile) shutil.rmtree("gen-py") if __name__ == '__main__': sys.exit(main(None))
[ "os.remove", "argparse.ArgumentParser", "subprocess.check_output", "shutil.rmtree", "os.path.join", "argparse.FileType", "re.compile" ]
[((137, 171), 're.compile', 're.compile', (['""".*completion_hints.*"""'], {}), "('.*completion_hints.*')\n", (147, 171), False, 'import re\n'), ((214, 272), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Run some benchmarks"""'}), "(description='Run some benchmarks')\n", (237, 272), False, 'import argparse\n'), ((604, 665), 'subprocess.check_output', 'subprocess.check_output', (["['thrift', '-gen', 'py', '-r', spec]"], {}), "(['thrift', '-gen', 'py', '-r', spec])\n", (627, 665), False, 'import subprocess\n'), ((931, 972), 'shutil.rmtree', 'shutil.rmtree', (['"""mapd"""'], {'ignore_errors': '(True)'}), "('mapd', ignore_errors=True)\n", (944, 972), False, 'import shutil\n'), ((1058, 1081), 'os.remove', 'os.remove', (['args.outfile'], {}), '(args.outfile)\n', (1067, 1081), False, 'import os\n'), ((1090, 1113), 'shutil.rmtree', 'shutil.rmtree', (['"""gen-py"""'], {}), "('gen-py')\n", (1103, 1113), False, 'import shutil\n'), ((323, 345), 'argparse.FileType', 'argparse.FileType', (['"""r"""'], {}), "('r')\n", (340, 345), False, 'import argparse\n'), ((997, 1027), 'os.path.join', 'os.path.join', (['"""gen-py"""', '"""mapd"""'], {}), "('gen-py', 'mapd')\n", (1009, 1027), False, 'import os\n')]
from huffman import HuffZipFile from os import listdir from os.path import isfile, join, splitext import hashlib import time def get_md5(path): md5 = hashlib.md5() with open(path, "rb") as f: while True: data = f.read(4096) if not data: break md5.update(data) return md5.hexdigest() if __name__ == "__main__": for f in listdir("testcase/"): path = join("testcase/", f) if isfile(path) and splitext(path)[1] != ".bak" and splitext(path)[1] != ".huff": print("Start {}".format(f)) start_time = time.time() from_file = open(path, "rb") to_file = open(join("testcase/", splitext(f)[0] + ".huff"), "wb") zip_file = HuffZipFile(decompress=False, file_stream=from_file) zip_file.compress(to_file) del zip_file # quit() print("File {} has finished compressing. Time {}. Decompressing...".format(f, time.time() - start_time)) start_time = time.time() from_file = open(join("testcase/", splitext(f)[0] + ".huff"), "rb") to_file = open(path + ".bak", "wb") zip_file = HuffZipFile(decompress=True, file_stream=from_file) zip_file.decompress(to_file) del zip_file print("File {} finished decompressing! Time {}.".format(f, time.time() - start_time)) md5_1 = get_md5(path) md5_2 = get_md5(path + ".bak") print("Result of {}".format(f)) if md5_1 != md5_2: print("Wrong!") else: print("Right!") print("")
[ "hashlib.md5", "time.time", "os.path.isfile", "os.path.splitext", "huffman.HuffZipFile", "os.path.join", "os.listdir" ]
[((156, 169), 'hashlib.md5', 'hashlib.md5', ([], {}), '()\n', (167, 169), False, 'import hashlib\n'), ((401, 421), 'os.listdir', 'listdir', (['"""testcase/"""'], {}), "('testcase/')\n", (408, 421), False, 'from os import listdir\n'), ((438, 458), 'os.path.join', 'join', (['"""testcase/"""', 'f'], {}), "('testcase/', f)\n", (442, 458), False, 'from os.path import isfile, join, splitext\n'), ((470, 482), 'os.path.isfile', 'isfile', (['path'], {}), '(path)\n', (476, 482), False, 'from os.path import isfile, join, splitext\n'), ((614, 625), 'time.time', 'time.time', ([], {}), '()\n', (623, 625), False, 'import time\n'), ((768, 820), 'huffman.HuffZipFile', 'HuffZipFile', ([], {'decompress': '(False)', 'file_stream': 'from_file'}), '(decompress=False, file_stream=from_file)\n', (779, 820), False, 'from huffman import HuffZipFile\n'), ((1048, 1059), 'time.time', 'time.time', ([], {}), '()\n', (1057, 1059), False, 'import time\n'), ((1212, 1263), 'huffman.HuffZipFile', 'HuffZipFile', ([], {'decompress': '(True)', 'file_stream': 'from_file'}), '(decompress=True, file_stream=from_file)\n', (1223, 1263), False, 'from huffman import HuffZipFile\n'), ((487, 501), 'os.path.splitext', 'splitext', (['path'], {}), '(path)\n', (495, 501), False, 'from os.path import isfile, join, splitext\n'), ((519, 533), 'os.path.splitext', 'splitext', (['path'], {}), '(path)\n', (527, 533), False, 'from os.path import isfile, join, splitext\n'), ((996, 1007), 'time.time', 'time.time', ([], {}), '()\n', (1005, 1007), False, 'import time\n'), ((1402, 1413), 'time.time', 'time.time', ([], {}), '()\n', (1411, 1413), False, 'import time\n'), ((712, 723), 'os.path.splitext', 'splitext', (['f'], {}), '(f)\n', (720, 723), False, 'from os.path import isfile, join, splitext\n'), ((1108, 1119), 'os.path.splitext', 'splitext', (['f'], {}), '(f)\n', (1116, 1119), False, 'from os.path import isfile, join, splitext\n')]
#! python3 import pyautogui, sys, time #print('Press Ctrl-C to quit.') while True: x, y = pyautogui.position() positionStr = ',' + str(x).rjust(4) + ',' + str(y).rjust(4) print( time.time(), positionStr, '\n', flush=True) time.sleep(0.05)
[ "pyautogui.position", "time.time", "time.sleep" ]
[((94, 114), 'pyautogui.position', 'pyautogui.position', ([], {}), '()\n', (112, 114), False, 'import pyautogui, sys, time\n'), ((238, 254), 'time.sleep', 'time.sleep', (['(0.05)'], {}), '(0.05)\n', (248, 254), False, 'import pyautogui, sys, time\n'), ((190, 201), 'time.time', 'time.time', ([], {}), '()\n', (199, 201), False, 'import pyautogui, sys, time\n')]
""" Implementation of the `multicodec spec <https://github.com/multiformats/multicodec>`_. Suggested usage: >>> from multiformats import multicodec """ import importlib.resources as importlib_resources from io import BufferedIOBase import json import re import sys from typing import AbstractSet, Any, cast, Dict, Iterable, Iterator, Mapping, Optional, overload, Set, Sequence, Tuple, Type, TypeVar, Union from typing_extensions import Literal from typing_validation import validate from multiformats import varint from multiformats.varint import BytesLike # from . import err from .err import MulticodecKeyError, MulticodecValueError def _hexcode(code: int) -> str: hexcode = hex(code) if len(hexcode) % 2 != 0: hexcode = "0x0"+hexcode[2:] return hexcode class Multicodec: """ Container class for a multicodec. Example usage: >>> Multicodec(**{ ... 'name': 'cidv1', 'tag': 'cid', 'code': '0x01', ... 'status': 'permanent', 'description': 'CIDv1'}) Multicodec(name='cidv1', tag='cid', code=1, status='permanent', description='CIDv1') :param name: the multicodec name :type name: :obj:`str` :param tag: the multicodec tag :type tag: :obj:`str` :param code: the multicodec code, as integer or ``0xYZ`` hex-string :type code: :obj:`int` or :obj:`str` :param status: the multicodec status :type status: ``'draft'`` or ``'permanent'``, *optional* :param description: the multicodec description :type description: :obj:`str`, *optional* """ _name: str _tag: str _code: int _status: Literal["draft", "permanent"] _description: str __slots__ = ("__weakref__", "_name", "_tag", "_code", "_status", "_description") def __init__(self, *, name: str, tag: str, code: Union[int, str], status: str = "draft", description: str = "" ): for arg in (name, tag, status, description): validate(arg, str) validate(code, Union[int, str]) name = Multicodec._validate_name(name) code = Multicodec.validate_code(code) status = Multicodec._validate_status(status) self._name = name self._tag = tag self._code = code self._status = status self._description = description @staticmethod def _validate_name(name: str) -> str: if not re.match(r"^[a-z][a-z0-9_-]+$", name): raise MulticodecValueError(f"Invalid multicodec name {repr(name)}") return name @staticmethod def validate_code(code: Union[int, str]) -> int: """ Validates a multicodec code and transforms it to unsigned integer format (if in hex format). :param code: the multicodec code, as integer or `0xYZ` hex-string :type code: :obj:`int` or :obj:`str` :raises ValueError: if the code is invalid """ if isinstance(code, str): if code.startswith("0x"): code = code[2:] code = int(code, base=16) if code < 0: raise MulticodecValueError(f"Invalid multicodec code {repr(code)}.") return code @staticmethod def _validate_status(status: str) -> Literal["draft", "permanent"]: if status not in ("draft", "permanent"): raise MulticodecValueError(f"Invalid multicodec status {repr(status)}.") return cast(Literal["draft", "permanent"], status) @property def name(self) -> str: """ Multicodec name. Must satisfy the following: .. code-block:: python re.match(r"^[a-z][a-z0-9_-]+$", name) """ return self._name @property def tag(self) -> str: """ Multicodec tag. """ return self._tag @property def code(self) -> int: """ Multicodec code. Must be a non-negative integer. """ return self._code @property def hexcode(self) -> str: """ Multicodec code as a hex string (with hex digits zero-padded to even length): Example usage: >>> m = multicodec.get(1) >>> m.code 1 >>> m.hexcode '0x01' """ return _hexcode(self._code) @property def status(self) -> Literal["draft", "permanent"]: """ Multicodec status. """ return self._status @property def description(self) -> str: """ Multicodec description. """ return self._description @property def is_private_use(self) -> bool: """ Whether this multicodec code is reserved for private use, i.e. whether it is in ``range(0x300000, 0x400000)``. """ return self.code in range(0x300000, 0x400000) def wrap(self, raw_data: BytesLike) -> bytes: """ Wraps raw binary data into multicodec data: .. code-block:: console <raw data> --> <code><raw data> Example usage: >>> ip4 = multicodec.get("ip4") >>> ip4 Multicodec(name='ip4', tag='multiaddr', code='0x04', status='permanent', description='') >>> raw_data = bytes([192, 168, 0, 254]) >>> multicodec_data = ip4.wrap(raw_data) >>> raw_data.hex() 'c0a800fe' >>> multicodec_data.hex() '04c0a800fe' >>> varint.encode(0x04).hex() '04' # 0x04 ^^^^ is the multicodec code for 'ip4' :param raw_data: the raw data to be wrapped :type raw_data: :obj:`~multiformats.varint.BytesLike` :raise ValueError: see :func:`~multiformats.varint.encode` """ return varint.encode(self.code)+raw_data def unwrap(self, multicodec_data: BytesLike) -> bytes: """ Unwraps multicodec binary data to raw data: .. code-block:: <code><raw data> --> <raw data> Additionally checks that the code listed by the data matches the code of this multicodec. Example usage: >>> multicodec_data = bytes.fromhex("c0a800fe") >>> raw_data = ip4.unwrap(multicodec_data) >>> multicodec_data.hex() '04c0a800fe' >>> raw_data.hex() 'c0a800fe' >>> varint.encode(0x04).hex() '04' # 0x04 ^^^^ is the multicodec code for 'ip4' :param multicodec_data: the multicodec data to be unwrapped :type multicodec_data: :obj:`~multiformats.varint.BytesLike` :raise ValueError: if the unwrapped multicodec code does not match this multicodec's code :raise ValueError: see :func:`multiformats.multicodec.unwrap_raw` :raise KeyError: see :func:`multiformats.multicodec.unwrap_raw` """ code, _, raw_data = unwrap_raw(multicodec_data) # code, _, raw_data = varint.decode_raw(multicodec_data) if code != self.code: hexcode = _hexcode(code) raise MulticodecValueError(f"Found code {hexcode} when unwrapping data, expected code {self.hexcode}.") return bytes(raw_data) def to_json(self) -> Mapping[str, str]: """ Returns a JSON dictionary representation of this multicodec object. Example usage: >>> m = multicodec.get(1) >>> m.to_json() {'name': 'cidv1', 'tag': 'cid', 'code': '0x01', 'status': 'permanent', 'description': 'CIDv1'} """ return { "name": self.name, "tag": self.tag, "code": self.hexcode, "status": self.status, "description": self.description } def __str__(self) -> str: if exists(self.name) and get(self.name) == self: return f"multicodec({repr(self.name)}, tag={repr(self.tag)})" return repr(self) def __repr__(self) -> str: return f"Multicodec({', '.join(f'{k}={repr(v)}' for k, v in self.to_json().items())})" @property def _as_tuple(self) -> Tuple[Type["Multicodec"], str, str, int, Literal["draft", "permanent"]]: return (Multicodec, self.name, self.tag, self.code, self.status) def __hash__(self) -> int: return hash(self._as_tuple) def __eq__(self, other: Any) -> bool: if self is other: return True if not isinstance(other, Multicodec): return NotImplemented return self._as_tuple == other._as_tuple def get(name: Optional[str] = None, *, code: Optional[int] = None) -> Multicodec: """ Gets the multicodec with given name or code. Example usage: >>> multicodec.get("identity") Multicodec(name='identity', tag='multihash', code=0, status='permanent', description='raw binary') >>> multicodec.get(code=0x01) Multicodec(name='cidv1', tag='ipld', code=1, status='permanent', description='CIDv1') :param name: the multicodec name :type name: :obj:`str` or :obj:`None`, *optional* :param code: the multicodec code :type code: :obj:`int` or :obj:`None`, *optional* :raises KeyError: if no such multicodec exists :raises ValueError: unless exactly one of ``name`` and ``code`` is specified """ validate(name, Optional[str]) validate(code, Optional[int]) if (name is None) == (code is None): raise MulticodecValueError("Must specify exactly one between 'name' and 'code'.") if name is not None: if name not in _name_table: raise MulticodecKeyError(f"No multicodec named {repr(name)}.") return _name_table[name] if code not in _code_table: raise MulticodecKeyError(f"No multicodec with code {repr(code)}.") return _code_table[code] def multicodec(name: str, *, tag: Optional[str] = None) -> Multicodec: """ An alias for :func:`get`, for use with multicodec name only. If a tag is passed, ensures that the multicodec tag matches the one given. Example usage: >>> from multiformats.multicodec import multicodec >>> multicodec("identity") Multicodec(name='identity', tag='multihash', code=0, status='permanent', description='raw binary') :param name: the multicodec name :type name: :obj:`str` :param tag: the optional multicodec tag :type tag: :obj:`str` or :obj:`None`, *optional* :raises KeyError: see :func:`get` """ codec = get(name) if tag is not None and codec.tag != tag: raise MulticodecKeyError(f"Multicodec {repr(name)} exists, but its tag is not {repr(tag)}.") return codec def exists(name: Union[None, str, Multicodec] = None, *, code: Optional[int] = None) -> bool: """ Checks whether there is a multicodec with the given name or code. Example usage: >>> multicodec.exists("identity") True >>> multicodec.exists(code=0x01) True :param name: the multicodec name :type name: :obj:`str` or :obj:`None`, *optional* :param code: the multicodec code :type code: :obj:`int` or :obj:`None`, *optional* :raises ValueError: unless exactly one of ``name`` and ``code`` is specified """ validate(name, Optional[str]) validate(code, Optional[int]) if (name is None) == (code is None): raise MulticodecValueError("Must specify exactly one between 'name' and 'code'.") if name is not None: return name in _name_table return code in _code_table def wrap(codec: Union[str, int, Multicodec], raw_data: BytesLike) -> bytes: """ Wraps raw binary data into multicodec data: .. code-block:: <raw data> --> <code><raw data> Example usage: >>> raw_data = bytes([192, 168, 0, 254]) >>> multicodec_data = multicodec.wrap("ip4", raw_data) >>> raw_data.hex() 'c0a800fe' >>> multicodec_data.hex() '04c0a800fe' >>> varint.encode(0x04).hex() '04' # 0x04 ^^^^ is the multicodec code for 'ip4' :param codec: the multicodec that the raw data refers to :type codec: :obj:`str`, :obj:`int` or :class:`Multicodec` :param raw_data: the raw binary data :type raw_data: :obj:`~multiformats.varint.BytesLike` :raises KeyError: see :func:`get` """ if isinstance(codec, str): codec = get(codec) elif isinstance(codec, int): codec = get(code=codec) else: validate(codec, Multicodec) return codec.wrap(raw_data) def unwrap(multicodec_data: BytesLike) -> Tuple[Multicodec, bytes]: """ Unwraps multicodec binary data to multicodec and raw data: Example usage: >>> multicodec_data = bytes.fromhex("04c0a800fe") >>> codec, raw_data = multicodec.unwrap(multicodec_data) >>> multicodec_data.hex() '04c0a800fe' >>> raw_data.hex() 'c0a800fe' >>> codec Multicodec(name='ip4', tag='multiaddr', code='0x04', status='permanent', description='') :param multicodec_data: the binary data prefixed with multicodec code :type multicodec_data: :obj:`~multiformats.varint.BytesLike` :raises KeyError: if the code does not correspond to a know multicodec """ code, _, raw_data = unwrap_raw(multicodec_data) return get(code=code), bytes(raw_data) _BufferedIOT = TypeVar("_BufferedIOT", bound=BufferedIOBase) @overload def unwrap_raw(multicodec_data: BytesLike) -> Tuple[int, int, memoryview]: ... @overload def unwrap_raw(multicodec_data: _BufferedIOT) -> Tuple[int, int, _BufferedIOT]: ... def unwrap_raw(multicodec_data: Union[BytesLike, BufferedIOBase]) -> Tuple[int, int, Union[memoryview, BufferedIOBase]]: """ Similar to :func:`unwrap`, but returns a triple of multicodec code, number of bytes read and remaining bytes. Example usage: >>> multicodec_data = bytes.fromhex("04c0a800fe") >>> code, num_bytes_read, remaining_bytes = multicodec.unwrap_raw(multicodec_data) >>> code 4 >>> num_bytes_read 1 >>> remaining_bytes <memory at 0x000001BE46B17640> >>> multicodec_data.hex() '04c0a800fe' >>> bytes(remaining_bytes).hex() 'c0a800fe' :param multicodec_data: the binary data prefixed with multicodec code :type multicodec_data: :obj:`~multiformats.varint.BytesLike` :raises KeyError: if the code does not correspond to a know multicodec """ code, n, raw_data = varint.decode_raw(multicodec_data) if not exists(code=code): raise MulticodecKeyError(f"No multicodec is known with unwrapped code {_hexcode(code)}.") return code, n, raw_data def validate_multicodec(codec: Multicodec) -> None: """ Validates an instance of :class:`Multicodec`. If the multicodec is registered (i.e. valid), no error is raised. :param codec: the instance to be validated :type codec: :class:`Multicodec` :raises KeyError: if no multicodec with the given name is registered :raises ValueError: if a multicodec with the given name is registered, but is different from the one given """ validate(codec, Multicodec) mc = get(codec.name) if mc != codec: raise MulticodecValueError(f"Multicodec named {codec.name} exists, but is not the one given.") def register(codec: Multicodec, *, overwrite: bool = False) -> None: """ Registers a given multicodec. Example usage: >>> m = Multicodec("my-multicodec", "my-tag", 0x300001, "draft", "...") >>> multicodec.register(m) >>> multicodec.exists(code=0x300001) True >>> multicodec.get(code=0x300001).name 'my-multicodec' >>> multicodec.get(code=0x300001).is_private_use True :param codec: the multicodec to register :type codec: :class:`Multicodec` :param overwrite: whether to overwrite a multicodec with existing code (optional, default :obj:`False`) :type overwrite: :obj:`bool`, *optional* :raises ValueError: if ``overwrite`` is :obj:`False` and a multicodec with the same name or code already exists :raises ValueError: if ``overwrite`` is :obj:`True` and a multicodec with the same name but different code already exists """ validate(codec, Multicodec) validate(overwrite, bool) if not overwrite and codec.code in _code_table: raise MulticodecValueError(f"Multicodec with code {repr(codec.code)} already exists: {_code_table[codec.code]}") if codec.name in _name_table and _name_table[codec.name].code != codec.code: raise MulticodecValueError(f"Multicodec with name {repr(codec.name)} already exists: {_name_table[codec.name]}") _code_table[codec.code] = codec _name_table[codec.name] = codec def unregister(name: Optional[str] = None, *, code: Optional[int] = None) -> None: """ Unregisters the multicodec with given name or code. Example usage: >>> multicodec.unregister(code=0x01) # cidv1 >>> multicodec.unregister(code=0x01) False :param name: the multicodec name :type name: :obj:`str` or :obj:`None`, *optional* :param code: the multicodec code :type code: :obj:`int` or :obj:`None`, *optional* :raises KeyError: if no such multicodec exists :raises ValueError: unless exactly one of ``name`` and ``code`` is specified """ m = get(name, code=code) del _code_table[m.code] del _name_table[m.name] def table(*, tag: Union[None, str, AbstractSet[str], Sequence[str]] = None, status: Union[None, str, AbstractSet[str], Sequence[str]] = None) -> Iterator[Multicodec]: """ Iterates through the registered multicodecs, in order of ascending code. Example usage: >>> len(list(multicodec.table())) # multicodec.table() returns an iterator 482 >>> selected = multicodec.table(tag=["cid", "cid", "multiaddr"], status="permanent") >>> [m.code for m in selected] [1, 4, 6, 41, 53, 54, 55, 56, 81, 85, 112, 113, 114, 120, 144, 145, 146, 147, 148, 149, 150, 151, 152, 176, 177, 178, 192, 193, 290, 297, 400, 421, 460, 477, 478, 479, 512] :param tag: one or more tags to be selected (if :obj:`None`, all tags are included) :type tag: :obj:`None`, :obj:`str`, set or sequence of :obj:`str`, *optional* :param status: one or more statuses to be selected (if :obj:`None`, all statuses are included) :type status: :obj:`None`, :obj:`str`, set or sequence of :obj:`str`, *optional* """ validate(tag, Union[None, str, AbstractSet[str], Sequence[str]]) validate(status, Union[None, str, AbstractSet[str], Sequence[str]]) tags: Union[None, AbstractSet[str], Sequence[str]] if tag is None: tags = None elif isinstance(tag, str): tags = [tag] else: tags = tag statuses: Union[None, AbstractSet[str], Sequence[str]] if status is None: statuses = None elif isinstance(status, str): statuses = [status] else: statuses = status for code in sorted(_code_table.keys()): m = _code_table[code] if tags is not None and m.tag not in tags: continue if statuses is not None and m.status not in statuses: continue yield m def build_multicodec_tables(codecs: Iterable[Multicodec], *, allow_private_use: bool = False) -> Tuple[Dict[int, Multicodec], Dict[str, Multicodec]]: """ Creates code->multicodec and name->multicodec mappings from a finite iterable of multicodecs, returning the mappings. Example usage: >>> code_table, name_table = build_multicodec_tables(codecs) :param codecs: multicodecs to be registered :type codecs: iterable of :class:`Multicodec` :param allow_private_use: whether to allow multicodec entries with private use codes in ``range(0x300000, 0x400000)`` (default :obj:`False`) :type allow_private_use: :obj:`bool`, *optional* :raises ValueError: if ``allow_private_use`` and a multicodec with private use code is encountered :raises ValueError: if the same multicodec code is encountered multiple times, unless exactly one of the multicodecs has permanent status (in which case that codec is the one inserted in the table) :raises ValueError: if the same name is encountered multiple times """ # validate(codecs, Iterable[Multicodec]) # TODO: not yet properly supported by typing-validation validate(allow_private_use, bool) code_table: Dict[int, Multicodec] = {} name_table: Dict[str, Multicodec] = {} overwritten_draft_codes: Set[int] = set() for m in codecs: if not allow_private_use and m.is_private_use: raise MulticodecValueError(f"Private use multicodec not allowed: {m}") if m.code in code_table: if code_table[m.code].status == "permanent": if m.status == "draft": # this draft code has been superseded by a permanent one, skip it continue raise MulticodecValueError(f"Multicodec code {m.hexcode} appears multiple times in table.") if m.status != "permanent": # overwriting draft code with another draft code: dodgy, need to check at the end overwritten_draft_codes.add(m.code) code_table[m.code] = m if m.name in name_table: raise MulticodecValueError(f"Multicodec name {m.name} appears multiple times in table.") name_table[m.name] = m for code in overwritten_draft_codes: m = code_table[code] if m.status != "permanent": raise MulticodecValueError(f"Code {m.code} appears multiple times in table, " "but none of the associated multicodecs is permanent.") return code_table, name_table # Create the global code->multicodec and name->multicodec mappings. _code_table: Dict[int, Multicodec] _name_table: Dict[str, Multicodec] with importlib_resources.open_text("multiformats.multicodec", "multicodec-table.json") as _table_f: _table_json = json.load(_table_f) _code_table, _name_table = build_multicodec_tables(Multicodec(**row) for row in _table_json)
[ "importlib.resources.open_text", "multiformats.varint.decode_raw", "json.load", "typing.cast", "multiformats.varint.encode", "re.match", "typing_validation.validate", "typing.TypeVar" ]
[((13775, 13820), 'typing.TypeVar', 'TypeVar', (['"""_BufferedIOT"""'], {'bound': 'BufferedIOBase'}), "('_BufferedIOT', bound=BufferedIOBase)\n", (13782, 13820), False, 'from typing import AbstractSet, Any, cast, Dict, Iterable, Iterator, Mapping, Optional, overload, Set, Sequence, Tuple, Type, TypeVar, Union\n'), ((9588, 9617), 'typing_validation.validate', 'validate', (['name', 'Optional[str]'], {}), '(name, Optional[str])\n', (9596, 9617), False, 'from typing_validation import validate\n'), ((9622, 9651), 'typing_validation.validate', 'validate', (['code', 'Optional[int]'], {}), '(code, Optional[int])\n', (9630, 9651), False, 'from typing_validation import validate\n'), ((11589, 11618), 'typing_validation.validate', 'validate', (['name', 'Optional[str]'], {}), '(name, Optional[str])\n', (11597, 11618), False, 'from typing_validation import validate\n'), ((11623, 11652), 'typing_validation.validate', 'validate', (['code', 'Optional[int]'], {}), '(code, Optional[int])\n', (11631, 11652), False, 'from typing_validation import validate\n'), ((14944, 14978), 'multiformats.varint.decode_raw', 'varint.decode_raw', (['multicodec_data'], {}), '(multicodec_data)\n', (14961, 14978), False, 'from multiformats import varint\n'), ((15625, 15652), 'typing_validation.validate', 'validate', (['codec', 'Multicodec'], {}), '(codec, Multicodec)\n', (15633, 15652), False, 'from typing_validation import validate\n'), ((16771, 16798), 'typing_validation.validate', 'validate', (['codec', 'Multicodec'], {}), '(codec, Multicodec)\n', (16779, 16798), False, 'from typing_validation import validate\n'), ((16803, 16828), 'typing_validation.validate', 'validate', (['overwrite', 'bool'], {}), '(overwrite, bool)\n', (16811, 16828), False, 'from typing_validation import validate\n'), ((19113, 19177), 'typing_validation.validate', 'validate', (['tag', 'Union[None, str, AbstractSet[str], Sequence[str]]'], {}), '(tag, Union[None, str, AbstractSet[str], Sequence[str]])\n', (19121, 19177), False, 'from typing_validation import validate\n'), ((19182, 19249), 'typing_validation.validate', 'validate', (['status', 'Union[None, str, AbstractSet[str], Sequence[str]]'], {}), '(status, Union[None, str, AbstractSet[str], Sequence[str]])\n', (19190, 19249), False, 'from typing_validation import validate\n'), ((21115, 21148), 'typing_validation.validate', 'validate', (['allow_private_use', 'bool'], {}), '(allow_private_use, bool)\n', (21123, 21148), False, 'from typing_validation import validate\n'), ((22639, 22724), 'importlib.resources.open_text', 'importlib_resources.open_text', (['"""multiformats.multicodec"""', '"""multicodec-table.json"""'], {}), "('multiformats.multicodec',\n 'multicodec-table.json')\n", (22668, 22724), True, 'import importlib.resources as importlib_resources\n'), ((22752, 22771), 'json.load', 'json.load', (['_table_f'], {}), '(_table_f)\n', (22761, 22771), False, 'import json\n'), ((2147, 2178), 'typing_validation.validate', 'validate', (['code', 'Union[int, str]'], {}), '(code, Union[int, str])\n', (2155, 2178), False, 'from typing_validation import validate\n'), ((3576, 3619), 'typing.cast', 'cast', (["Literal['draft', 'permanent']", 'status'], {}), "(Literal['draft', 'permanent'], status)\n", (3580, 3619), False, 'from typing import AbstractSet, Any, cast, Dict, Iterable, Iterator, Mapping, Optional, overload, Set, Sequence, Tuple, Type, TypeVar, Union\n'), ((2120, 2138), 'typing_validation.validate', 'validate', (['arg', 'str'], {}), '(arg, str)\n', (2128, 2138), False, 'from typing_validation import validate\n'), ((2547, 2583), 're.match', 're.match', (['"""^[a-z][a-z0-9_-]+$"""', 'name'], {}), "('^[a-z][a-z0-9_-]+$', name)\n", (2555, 2583), False, 'import re\n'), ((5914, 5938), 'multiformats.varint.encode', 'varint.encode', (['self.code'], {}), '(self.code)\n', (5927, 5938), False, 'from multiformats import varint\n'), ((12857, 12884), 'typing_validation.validate', 'validate', (['codec', 'Multicodec'], {}), '(codec, Multicodec)\n', (12865, 12884), False, 'from typing_validation import validate\n')]
from airflow.hooks.base_hook import BaseHook def get_conn(conn_id): # get connection by name from BaseHook conn = BaseHook.get_connection(conn_id) return conn
[ "airflow.hooks.base_hook.BaseHook.get_connection" ]
[((124, 156), 'airflow.hooks.base_hook.BaseHook.get_connection', 'BaseHook.get_connection', (['conn_id'], {}), '(conn_id)\n', (147, 156), False, 'from airflow.hooks.base_hook import BaseHook\n')]
from __future__ import absolute_import import sys import os.path import logging import random import FWCore.ParameterSet.SequenceTypes as sqt import FWCore.ParameterSet.Config as cms import FWCore.ParameterSet.Modules as mod import FWCore.ParameterSet.Types as typ import FWCore.ParameterSet.Mixins as mix from .Vispa.Plugins.ConfigEditor.ConfigDataAccessor import ConfigDataAccessor from FWCore.GuiBrowsers.FileExportPlugin import FileExportPlugin class JsonExport(FileExportPlugin): option_types={} plugin_name='JSON Export' file_types=('html','json') def __init__(self): FileExportPlugin.__init__(self) def produce(self,data): #pset = lambda pdict: [[k,repr(v).split('(',1)[0],(repr(v).split('(',1)[1][:-1])] for k,v in pdict.items()] def pset(pdict): result = [] for k,v in pdict.items(): if v.pythonTypeName()=='cms.PSet' or v.pythonTypeName()=='cms.untracked.PSet': result.append([k,v.pythonTypeName(),'pset',pset(v.parameters_())]) elif v.pythonTypeName()=='cms.VPSet' or v.pythonTypeName()=='cms.untracked.VPSet': result.append([k,v.pythonTypeName(),'vpset',[pset(a.parameters_()) for a in v]]) elif v.pythonTypeName().lower().startswith('cms.v') or v.pythonTypeName().lower().startswith('cms.untracked.v'): result.append([k,v.pythonTypeName(),'list',[repr(a) for a in v]]) else: result.append([k,v.pythonTypeName(),'single',repr(v.pythonValue())]) return result #allObjects = [d for d in data._allObjects if (data.type(d) in ("EDProducer","EDFilter","EDAnalyzer","OutputModule"))] #data.readConnections(allObjects) def moduledict(mod,prefix,links=False): result={} result['label']=data.label(mod) result['class']=data.classname(mod) result['file']=data.pypath(mod) result['line']=data.lineNumber(mod) result['package']=data.pypackage(mod) result['pset']=pset(mod.parameters_()) result['type']=data.type(mod) if links: result['uses']=[data.uses(mod)] result['usedby']=[data.usedBy(mod)] result['id']='%s_%s'%(prefix,data.label(mod)) return result all={} for tlo in data.topLevelObjects(): children=data.children(tlo) if children: all[tlo._label]=children process = {'name':data.process().name_(),'src':data._filename} #now unavailable #schedule = [] #if 'Schedule' in all: # for s in all['Schedule']: # schedule.append(data.label(s)) source={} if 'source' in all: s = all['source'][0] source['class']=data.classname(s) source['pset']=pset(s.parameters_()) essources=[] if 'essources' in all: for e in all['essources']: essources.append(moduledict(e,'essource')) esproducers=[] if 'esproducers' in all: for e in all['esproducers']: essources.append(moduledict(e,'esproducer')) esprefers=[] if 'esprefers' in all: for e in all['esprefers']: essources.append(moduledict(e,'esprefers')) services=[] if 'services' in all: for s in all['services']: services.append({'class':data.classname(s),'pset':pset(s.parameters_())}) def jsonPathRecursive(p,prefix): #print "At:",self.label(p),self.type(p) children = data.children(p) if children: children = [jsonPathRecursive(c,prefix) for c in children] return {'type':'Sequence','label':'Sequence %s'%(data.label(p)),'id':'seq_%s' % data.label(p),'children':children} else: return moduledict(p,prefix,True) paths=[] if 'paths' in all: for p in all['paths']: path=jsonPathRecursive(p,data.label(p)) if path: if not isinstance(path, type([])): if path['type']=='Sequence': path = path['children'] else: path = [path] else: path=[] paths.append({'label':data.label(p),'path':path}) endpaths=[] if 'endpaths' in all: for p in all['endpaths']: path=jsonPathRecursive(p,data.label(p)) if path: if not isinstance(path, type([])): if path['type']=='Sequence': path = path['children'] else: path = [path] else: path=[] endpaths.append({'label':data.label(p),'path':path}) #json={'process':process,'schedule':schedule,'source':source,'essources':essources,'esproducers':esproducers,'esprefers':esprefers,'services':services,'paths':paths,'endpaths':endpaths} json={'process':process,'source':source,'essources':essources,'esproducers':esproducers,'esprefers':esprefers,'services':services,'paths':paths,'endpaths':endpaths} return repr(json) def export(self,data,filename,filetype): if not data.process(): raise "JSONExport requires a cms.Process object" json = self.produce(data) if filetype=='json': jsonfile = open(filename,'w') jsonfile.write(json) jsonfile.close() if filetype=='html': #open the HTML template and inject the JSON... pass
[ "FWCore.GuiBrowsers.FileExportPlugin.FileExportPlugin.__init__", "FWCore.ParameterSet.Modules.parameters_" ]
[((589, 620), 'FWCore.GuiBrowsers.FileExportPlugin.FileExportPlugin.__init__', 'FileExportPlugin.__init__', (['self'], {}), '(self)\n', (614, 620), False, 'from FWCore.GuiBrowsers.FileExportPlugin import FileExportPlugin\n'), ((1963, 1980), 'FWCore.ParameterSet.Modules.parameters_', 'mod.parameters_', ([], {}), '()\n', (1978, 1980), True, 'import FWCore.ParameterSet.Modules as mod\n')]
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch.nn.functional as F from fairseq import metrics, utils from fairseq.criterions import register_criterion from .label_smoothed_cross_entropy import LabelSmoothedCrossEntropyCriterion @register_criterion('label_smoothed_cross_entropy_with_regularization') class LabelSmoothedCrossEntropyCriterionWithRegularization(LabelSmoothedCrossEntropyCriterion): def __init__(self, task, sentence_avg, label_smoothing, regularization_weight): super().__init__(task, sentence_avg, label_smoothing) self.regularization_weight = regularization_weight @staticmethod def add_args(parser): """Add criterion-specific arguments to the parser.""" LabelSmoothedCrossEntropyCriterion.add_args(parser) parser.add_argument('--regularization_weight', default=1.0, type=float, metavar='D', help='weight for the regularization loss') def forward(self, model, sample, reduce=True): """Compute the loss for the given sample. Returns a tuple with three elements: 1) the loss 2) the sample size, which is used as the denominator for the gradient 3) logging outputs to display while training """ if 'primary' not in sample or 'secondary' not in sample: return super().forward(model, sample, reduce=reduce) primary_net_output = model(**sample['primary']['net_input']) primary_loss, primary_nll_loss = self.compute_loss(model, primary_net_output, sample['primary'], reduce=reduce) primary_sample_size = sample['primary']['target'].size(0) if self.sentence_avg else sample['primary']['ntokens'] secondary_net_output = model(**sample['secondary']['net_input']) secondary_loss, secondary_nll_loss = self.compute_loss(model, secondary_net_output, sample['secondary'], reduce=reduce) secondary_sample_size = sample['secondary']['target'].size(0) if self.sentence_avg else sample['secondary']['ntokens'] primary_targets = model.get_targets(sample['primary'], primary_net_output).unsqueeze(-1) secondary_targets = model.get_targets(sample['secondary'], secondary_net_output).unsqueeze(-1) pad_mask = primary_targets.eq(self.padding_idx) | secondary_targets.eq(self.padding_idx) regularization_loss = self.compute_regularization_loss(model, primary_net_output, secondary_net_output, pad_mask=pad_mask, reduce=reduce) loss = primary_loss + secondary_loss + self.regularization_weight * regularization_loss nll_loss = primary_nll_loss + secondary_nll_loss ntokens = sample['primary']['ntokens'] + sample['secondary']['ntokens'] nsentences = sample['primary']['target'].size(0) + sample['secondary']['target'].size(0) sample_size = primary_sample_size + secondary_sample_size logging_output = { 'loss': utils.item(loss.data) if reduce else loss.data, 'nll_loss': utils.item(nll_loss.data) if reduce else nll_loss.data, 'regularization_loss': utils.item(regularization_loss.data) if reduce else regularization_loss.data, 'ntokens': ntokens, 'nsentences': nsentences, 'sample_size': sample_size, } return loss, sample_size, logging_output def compute_regularization_loss(self, model, primary_net_output, secondary_net_output, pad_mask=None, reduce=True): mean_net_output = (primary_net_output[0] + secondary_net_output[0]) / 2 m = model.get_normalized_probs((mean_net_output,), log_probs=False) p = model.get_normalized_probs(primary_net_output, log_probs=True) q = model.get_normalized_probs(secondary_net_output, log_probs=True) primary_loss = F.kl_div(p, m, reduction='none') secondary_loss = F.kl_div(q, m, reduction='none') if pad_mask is not None: primary_loss.masked_fill_(pad_mask, 0.) secondary_loss.masked_fill_(pad_mask, 0.) if reduce: primary_loss = primary_loss.sum() secondary_loss = secondary_loss.sum() loss = (primary_loss + secondary_loss) / 2 return loss @staticmethod def reduce_metrics(logging_outputs) -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = utils.item(sum(log.get('loss', 0) for log in logging_outputs)) nll_loss_sum = utils.item(sum(log.get('nll_loss', 0) for log in logging_outputs)) regularization_loss_sum = utils.item(sum(log.get('regularization_loss', 0) for log in logging_outputs)) ntokens = utils.item(sum(log.get('ntokens', 0) for log in logging_outputs)) sample_size = utils.item(sum(log.get('sample_size', 0) for log in logging_outputs)) metrics.log_scalar('loss', loss_sum / sample_size / math.log(2), sample_size, round=3) metrics.log_scalar('nll_loss', nll_loss_sum / ntokens / math.log(2), ntokens, round=3) metrics.log_scalar('regularization_loss', regularization_loss_sum / sample_size, sample_size, round=3) metrics.log_derived('ppl', lambda meters: utils.get_perplexity(meters['nll_loss'].avg)) @staticmethod def logging_outputs_can_be_summed() -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return True
[ "fairseq.utils.get_perplexity", "fairseq.utils.item", "torch.nn.functional.kl_div", "math.log", "fairseq.criterions.register_criterion", "fairseq.metrics.log_scalar" ]
[((390, 460), 'fairseq.criterions.register_criterion', 'register_criterion', (['"""label_smoothed_cross_entropy_with_regularization"""'], {}), "('label_smoothed_cross_entropy_with_regularization')\n", (408, 460), False, 'from fairseq.criterions import register_criterion\n'), ((3928, 3960), 'torch.nn.functional.kl_div', 'F.kl_div', (['p', 'm'], {'reduction': '"""none"""'}), "(p, m, reduction='none')\n", (3936, 3960), True, 'import torch.nn.functional as F\n'), ((3986, 4018), 'torch.nn.functional.kl_div', 'F.kl_div', (['q', 'm'], {'reduction': '"""none"""'}), "(q, m, reduction='none')\n", (3994, 4018), True, 'import torch.nn.functional as F\n'), ((5142, 5248), 'fairseq.metrics.log_scalar', 'metrics.log_scalar', (['"""regularization_loss"""', '(regularization_loss_sum / sample_size)', 'sample_size'], {'round': '(3)'}), "('regularization_loss', regularization_loss_sum /\n sample_size, sample_size, round=3)\n", (5160, 5248), False, 'from fairseq import metrics, utils\n'), ((3064, 3085), 'fairseq.utils.item', 'utils.item', (['loss.data'], {}), '(loss.data)\n', (3074, 3085), False, 'from fairseq import metrics, utils\n'), ((3136, 3161), 'fairseq.utils.item', 'utils.item', (['nll_loss.data'], {}), '(nll_loss.data)\n', (3146, 3161), False, 'from fairseq import metrics, utils\n'), ((3227, 3263), 'fairseq.utils.item', 'utils.item', (['regularization_loss.data'], {}), '(regularization_loss.data)\n', (3237, 3263), False, 'from fairseq import metrics, utils\n'), ((5004, 5015), 'math.log', 'math.log', (['(2)'], {}), '(2)\n', (5012, 5015), False, 'import math\n'), ((5103, 5114), 'math.log', 'math.log', (['(2)'], {}), '(2)\n', (5111, 5114), False, 'import math\n'), ((5295, 5339), 'fairseq.utils.get_perplexity', 'utils.get_perplexity', (["meters['nll_loss'].avg"], {}), "(meters['nll_loss'].avg)\n", (5315, 5339), False, 'from fairseq import metrics, utils\n')]
import sys import os import csv import decimal import pytest sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..')) import votelib.candidate import votelib.convert import votelib.evaluate.threshold import votelib.evaluate.proportional DATA_DIR = os.path.join(os.path.dirname(__file__), 'data') @pytest.fixture(scope='module') def sk_nr_2020_data(): fpath = os.path.join(DATA_DIR, 'sk_nr_2020.csv') with open(fpath, encoding='utf8') as infile: rows = list(csv.reader(infile, delimiter=';')) party_names, coalflags, votes, seats = [list(x) for x in zip(*rows)] parties = [ votelib.candidate.Coalition(name=name, parties=[ votelib.candidate.PoliticalParty(pname) for pname in name.split('-') ]) if int(coalflag) else votelib.candidate.PoliticalParty(name) for name, coalflag in zip(party_names, coalflags) ] return dict(zip(parties, [int(v) for v in votes])), { party: int(n_seats) for party, n_seats in zip(parties, seats) if int(n_seats) > 0 } def get_sk_nr_evaluator(): standard_elim = votelib.evaluate.threshold.RelativeThreshold( decimal.Decimal('.05'), accept_equal=True ) mem_2_3_elim = votelib.evaluate.threshold.RelativeThreshold( decimal.Decimal('.07'), accept_equal=True ) mem_4plus_elim = votelib.evaluate.threshold.RelativeThreshold( decimal.Decimal('.1'), accept_equal=True ) eliminator = votelib.evaluate.threshold.CoalitionMemberBracketer( {1: standard_elim, 2: mem_2_3_elim, 3: mem_2_3_elim}, mem_4plus_elim ) # main evaluator evaluator = votelib.evaluate.proportional.LargestRemainder( 'hagenbach_bischoff_rounded' ) # TODO: missing provisions for tie handling and low amount of candidates return votelib.evaluate.core.Conditioned(eliminator, evaluator) def test_sk_nr_2020(sk_nr_2020_data): votes, results = sk_nr_2020_data nominator = votelib.candidate.PartyNominator() for cand in votes.keys(): nominator.validate(cand) assert get_sk_nr_evaluator().evaluate(votes, 150) == results CZ_EP_EVALUATOR = votelib.evaluate.core.FixedSeatCount( votelib.evaluate.core.Conditioned( votelib.evaluate.threshold.RelativeThreshold( decimal.Decimal('.05'), accept_equal=True ), votelib.evaluate.proportional.HighestAverages('d_hondt') ), 21 ) def test_cz_ep_2019(): votes = { 'Klub angažovaných nestraníků': 2580, 'Strana nezávislosti ČR': 9676, 'Cesta odpovědné společnosti': 7890, 'Národní socialisté': 1312, 'Občanská demokratická strana': 344885, 'ANO, vytrollíme europarlament': 37046, 'Česká strana sociálně demokratická': 93664, 'Romská demokratická strana': 1651, 'KSČM': 164624, 'Koalice DSSS a NF': 4363, 'SPR-RSČ': 4284, '<NAME>, ND': 18715, 'Pravý Blok': 4752, 'NE-VOLIM.CZ': 2221, 'Pro Česko': 2760, 'Vědci pro Českou republiku': 19492, 'Koalice ČSNS, Patrioti ČR': 1289, 'JSI PRO?Jist.Solid.In.pro bud.': 836, 'PRO Zdraví a Sport': 7868, 'Moravské zemské hnutí': 3195, 'Česká Suverenita': 2609, 'TVŮJ KANDIDÁT': 1653, 'HLAS': 56449, '<NAME>, RČ': 15492, '<NAME>AN, TOP 09': 276220, 'Česká pirátská strana': 330844, 'Svoboda a přímá demokracie': 216718, 'Aliance národních sil': 1971, 'ANO 2011': 502343, 'Agrární demokratická strana': 4004, 'Moravané': 6599, 'První Republika': 844, 'Demokratická strana zelených': 14339, 'Bezpečnost,Odpovědnost,Solid.': 2583, '<NAME>kromníci, NEZ': 8720, 'Evropa společně': 12587, 'Konzervativní Alternativa': 235, 'KDU-ČSL': 171723, 'Alternativa pro Česk. rep.2017': 11729, } results = { 'ANO 2011': 6, 'Občanská demokratická strana': 4, 'Česká pirátská strana': 3, 'Koalice STAN, TOP 09': 3, 'Svoboda a přímá demokracie': 2, 'KDU-ČSL': 2, 'KSČM': 1, } assert CZ_EP_EVALUATOR.evaluate(votes) == results CZ_PSP_EVALUATOR = votelib.evaluate.core.ByConstituency( votelib.evaluate.proportional.HighestAverages('d_hondt'), votelib.evaluate.proportional.LargestRemainder('hare'), preselector=votelib.evaluate.threshold.RelativeThreshold( decimal.Decimal('.05'), accept_equal=True ) ) @pytest.fixture(scope='module') def cz_psp_2017_votes(): fpath = os.path.join(DATA_DIR, 'cz_psp_2017.csv') with open(fpath, encoding='utf8') as infile: rows = list(csv.reader(infile, delimiter=';')) region_names = rows[0][1:] votes = {region: {} for region in region_names} for row in rows[1:]: party = row[0] for regname, n_votes in zip(region_names, row[1:]): votes[regname][party] = int(n_votes) return votes def test_cz_psp_2017(cz_psp_2017_votes): reg_results = CZ_PSP_EVALUATOR.evaluate(cz_psp_2017_votes, 200) nat_agg = votelib.convert.VoteTotals() assert nat_agg.convert(reg_results) == { 'ANO': 78, 'ODS': 25, 'Piráti': 22, 'SPD': 22, 'ČSSD': 15, 'KSČM': 15, 'KDU-ČSL': 10, 'TOP 09': 7, 'STAN': 6, } assert reg_results['Hlavní město Praha'] == { 'ANO': 6, 'ODS': 5, 'Piráti': 5, 'SPD': 1, 'ČSSD': 1, 'KSČM': 1, 'KDU-ČSL': 1, 'TOP 09': 3, 'STAN': 1, } assert reg_results['Karlovarský kraj'] == { 'ANO': 3, 'Piráti': 1, 'SPD': 1, } def get_evaluators(): return [ CZ_EP_EVALUATOR, CZ_PSP_EVALUATOR, get_sk_nr_evaluator(), ]
[ "csv.reader", "decimal.Decimal", "os.path.dirname", "pytest.fixture", "os.path.join" ]
[((314, 344), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (328, 344), False, 'import pytest\n'), ((4559, 4589), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (4573, 4589), False, 'import pytest\n'), ((277, 302), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (292, 302), False, 'import os\n'), ((380, 420), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""sk_nr_2020.csv"""'], {}), "(DATA_DIR, 'sk_nr_2020.csv')\n", (392, 420), False, 'import os\n'), ((4627, 4668), 'os.path.join', 'os.path.join', (['DATA_DIR', '"""cz_psp_2017.csv"""'], {}), "(DATA_DIR, 'cz_psp_2017.csv')\n", (4639, 4668), False, 'import os\n'), ((93, 118), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (108, 118), False, 'import os\n'), ((1173, 1195), 'decimal.Decimal', 'decimal.Decimal', (['""".05"""'], {}), "('.05')\n", (1188, 1195), False, 'import decimal\n'), ((1294, 1316), 'decimal.Decimal', 'decimal.Decimal', (['""".07"""'], {}), "('.07')\n", (1309, 1316), False, 'import decimal\n'), ((1417, 1438), 'decimal.Decimal', 'decimal.Decimal', (['""".1"""'], {}), "('.1')\n", (1432, 1438), False, 'import decimal\n'), ((490, 523), 'csv.reader', 'csv.reader', (['infile'], {'delimiter': '""";"""'}), "(infile, delimiter=';')\n", (500, 523), False, 'import csv\n'), ((2321, 2343), 'decimal.Decimal', 'decimal.Decimal', (['""".05"""'], {}), "('.05')\n", (2336, 2343), False, 'import decimal\n'), ((4506, 4528), 'decimal.Decimal', 'decimal.Decimal', (['""".05"""'], {}), "('.05')\n", (4521, 4528), False, 'import decimal\n'), ((4738, 4771), 'csv.reader', 'csv.reader', (['infile'], {'delimiter': '""";"""'}), "(infile, delimiter=';')\n", (4748, 4771), False, 'import csv\n')]
import os import requests from shapely.geometry import Point import geopandas as gpd def geo_code(address, city): """ Geo code address sing open maps API Parameters ------------ address: str Address as clear as possible, better to check first if it can be found in open street search engine city: str Name of the city Returns --------- results: dict dictionary with latitude, longitud and state name information """ parameters = {'key': os.environ.get("CON_KEY"), 'location': '{0:s}, {1:s}, Brazil'.format(address, city), 'thumbMaps': False, 'maxResults': 1 } response = requests.get('http://www.mapquestapi.com/geocoding/v1/address', params=parameters) assert response.status_code==200, 'Review address or internet connection' results = response.json()['results'][0]['locations'][0]['latLng'] results['state_name'] = response.json()['results'][0]['locations'][0]['adminArea3'] results['street_name'] = response.json()['results'][0]['locations'][0]['street'] assert results['lat']!=39.78373, 'Review address or internet connection' return results def convert_geo_to_sector_code(geo_code_output, states_dict, path_to_shapes): """ Conver latitud, longitud and state reference to sector code Parameters ------------ geo_code_output: dict output of geo_code function states_dict: dict correspondence of states names path_to_shapes: str path to folder containing shapes Returns --------- sector code: str """ coordinate_point = Point(geo_code_output['lng'], geo_code_output['lat']) state_in_response = geo_code_output['state_name'] state_name = states_dict[state_in_response] assert state_name in os.listdir(path_to_shapes), 'There is no shape available to reference this address' file_name = [file for file in os.listdir(path_to_shapes+'/'+state_name) if file.find('.shp')>0][0] census_sector = gpd.read_file(path_to_shapes+'/{0:s}/{1:s}'.format(state_name, file_name), encoding='latin1') sector_code = census_sector.loc[census_sector.contains(coordinate_point), 'CD_GEOCODI'].values[0] return sector_code def flat_cell(cell): """ flat dictionarys in celss """ if isinstance(cell, dict): value_cell = list(cell.values())[0] else: value_cell = cell return value_cell
[ "os.environ.get", "shapely.geometry.Point", "os.listdir", "requests.get" ]
[((749, 836), 'requests.get', 'requests.get', (['"""http://www.mapquestapi.com/geocoding/v1/address"""'], {'params': 'parameters'}), "('http://www.mapquestapi.com/geocoding/v1/address', params=\n parameters)\n", (761, 836), False, 'import requests\n'), ((1714, 1767), 'shapely.geometry.Point', 'Point', (["geo_code_output['lng']", "geo_code_output['lat']"], {}), "(geo_code_output['lng'], geo_code_output['lat'])\n", (1719, 1767), False, 'from shapely.geometry import Point\n'), ((535, 560), 'os.environ.get', 'os.environ.get', (['"""CON_KEY"""'], {}), "('CON_KEY')\n", (549, 560), False, 'import os\n'), ((1905, 1931), 'os.listdir', 'os.listdir', (['path_to_shapes'], {}), '(path_to_shapes)\n', (1915, 1931), False, 'import os\n'), ((2028, 2073), 'os.listdir', 'os.listdir', (["(path_to_shapes + '/' + state_name)"], {}), "(path_to_shapes + '/' + state_name)\n", (2038, 2073), False, 'import os\n')]
class Url(object): def __init__(self, url, title, ref_num, depth): self.url = url self.title = title self.ref_num = ref_num self.depth = depth def __lt__(self, other): return self.ref_num > other.ref_num def __gt__(self, other): return self.ref_num < other.ref_num def __eq__(self, other): return self.ref_num == other.ref_num class Paper(Url): def __init__(self, url, title, ref_num, abstract, depth=-1): super(Paper, self).__init__(url, title, ref_num, depth) self.abstract = abstract class Url_pool(object): def __init__(self): from heapq import heapify self.url_his = set() self.title_his = set() self.urls = [] heapify(self.urls) def append_url(self, url): from heapq import heappush import re pun = "[\s+\.\!\/_,$%^*(+\"\']+|[+——!:‐-,。?、~@#¥%……&*()]+" if re.sub(pun, "", url.title) in self.title_his: pass elif url.url in self.url_his: pass else: self.url_his.add(url.url) self.title_his.add(re.sub(pun, "", url.title)) heappush(self.urls, url) def get_url(self): from heapq import heappop if len(self.urls) > 0: return heappop(self.urls) else: return None class PaperCrawler(object): def __init__(self, init_url="https://xueshu.baidu.com/usercenter/paper/show?paperid=3821a90f58762386e257eb4e6fa11f79", basic_url="https://xueshu.baidu.com", max_depth=5, tot_papers=10, wait_time=2): self.init_url = init_url self.basic_url = basic_url self.max_depth = max_depth self.tot_papers = tot_papers self.wait_time = wait_time self.url_pool = Url_pool() self.papers = [] def crawl(self): cur_depth = 0 self.papers.append(self.parse_url(self.init_url, cur_depth)) while len(self.papers) < self.tot_papers: url = self.url_pool.get_url() cur_depth = url.depth self.papers.append(self.parse_url(url.url, cur_depth)) self.store() def parse_url(self, url, depth): from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.chrome.options import Options options = Options() options.add_argument('--headless') options.add_experimental_option('excludeSwitches', ['enable-logging']) driver = webdriver.Chrome(options=options) driver.implicitly_wait(self.wait_time) driver.get(url) soup = BeautifulSoup(driver.page_source, 'html.parser') main_info = soup.find(name='div', attrs={"class":"main-info"}) title = main_info.find(name='h3').text.strip() print(f"Crawling {len(self.papers)+1}/{self.tot_papers}----------Title: {title}") try: abstract = main_info.find(name='p', attrs={"class":"abstract"}).text.strip() except Exception as e: abstract = "No Abstract" ref_num = main_info.find(name='p', attrs={"class":"ref-wr-num"}).text.strip() if ref_num.endswith("万"): ref_num = int(float(ref_num[:-1])*10000) else: ref_num = int(ref_num) paper = Paper(url, title, ref_num, abstract) rel_lists = soup.find(name='ul', attrs={"class":"related_lists"}) if rel_lists and depth < self.max_depth: rel_urls = rel_lists.find_all(name='li') for rel_url in rel_urls: url = self.basic_url + rel_url.find(name='p', attrs={"class":"rel_title"}).find(name="a").get('href') title = rel_url.find(name='p', attrs={"class":"rel_title"}).find(name="a").text.strip() try: ref_num = rel_url.find(name='div', attrs={"class":"sc_info"}).find(name="a").text.strip() if ref_num.endswith("万"): ref_num = int(float(ref_num[:-1])*10000) else: ref_num = int(ref_num) except Exception as e: ref_num = 0 self.url_pool.append_url(Url(url, title, ref_num, depth+1)) driver.quit() return paper def store(self, filename='result.txt', encoding='utf-8'): self.papers.sort() with open(filename, 'w', errors="ignore") as f: for paper in self.papers: f.write(f"Title: {paper.title}\n") f.write(f"Abstract: {paper.abstract}\n") f.write(f"Ref_num: {paper.ref_num}\n") f.write(f"URL: {paper.url}\n") f.write("\n") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("-d", "--max-depth", type=int, default=5, help="max_depth") parser.add_argument("-t", "--tot-papers", type=int, default=10, help="tot_papers") parser.add_argument("-w", "--wait-time", type=int, default=2, help="wait_time") parser.add_argument("-i", "--init-url", type=str, default="https://xueshu.baidu.com/usercenter/paper/show?paperid=3821a90f58762386e257eb4e6fa11f79" , help="init_url") args = parser.parse_args() crawler = PaperCrawler(init_url=args.init_url, max_depth=args.max_depth, tot_papers=args.tot_papers, wait_time=args.wait_time) crawler.crawl()
[ "selenium.webdriver.chrome.options.Options", "argparse.ArgumentParser", "heapq.heapify", "heapq.heappush", "heapq.heappop", "selenium.webdriver.Chrome", "bs4.BeautifulSoup", "re.sub" ]
[((4906, 4931), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (4929, 4931), False, 'import argparse\n'), ((791, 809), 'heapq.heapify', 'heapify', (['self.urls'], {}), '(self.urls)\n', (798, 809), False, 'from heapq import heapify\n'), ((2450, 2459), 'selenium.webdriver.chrome.options.Options', 'Options', ([], {}), '()\n', (2457, 2459), False, 'from selenium.webdriver.chrome.options import Options\n'), ((2600, 2633), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {'options': 'options'}), '(options=options)\n', (2616, 2633), False, 'from selenium import webdriver\n'), ((2720, 2768), 'bs4.BeautifulSoup', 'BeautifulSoup', (['driver.page_source', '"""html.parser"""'], {}), "(driver.page_source, 'html.parser')\n", (2733, 2768), False, 'from bs4 import BeautifulSoup\n'), ((986, 1012), 're.sub', 're.sub', (['pun', '""""""', 'url.title'], {}), "(pun, '', url.title)\n", (992, 1012), False, 'import re\n'), ((1364, 1382), 'heapq.heappop', 'heappop', (['self.urls'], {}), '(self.urls)\n', (1371, 1382), False, 'from heapq import heappop\n'), ((1227, 1251), 'heapq.heappush', 'heappush', (['self.urls', 'url'], {}), '(self.urls, url)\n', (1235, 1251), False, 'from heapq import heappush\n'), ((1187, 1213), 're.sub', 're.sub', (['pun', '""""""', 'url.title'], {}), "(pun, '', url.title)\n", (1193, 1213), False, 'import re\n')]
from pathlib import Path import click from flask import current_app as app from flask.cli import AppGroup, with_appcontext blueprints_cli = AppGroup( "blueprints", short_help="Creation and listing of blueprints." ) @blueprints_cli.command("create") @click.argument("name") @click.option( "-f", "--full", default=False, show_default=True, type=bool, help="Whether the blueprint creation should be minimal", ) @with_appcontext def create_bp(name, full): """Creates a blueprint with the specified name""" directory = Path(f"{app.config['BASE_DIR']}/src/{name}") if not directory.exists(): directory.mkdir(parents=True, exist_ok=True) click.echo("Created blueprint in {}".format(directory)) init_file = Path(f"{directory}/__init__.py") with open(init_file, "a") as f: if full: lines = [ "from flask import Blueprint \n\n", f"{name}_bp = Blueprint('{name}',__name__, template_folder='templates', static_folder='static', static_url_path='/static/{name}') \n\n", "from . import views", ] f.writelines(lines) else: lines = [ "from flask import Blueprint \n\n", f"{name}_bp = Blueprint('{name}',__name__) \n\n", "from . import views", ] f.writelines(lines) click.echo("Created __init__.py in {}".format(init_file)) if full: templates_directory = Path(f"{directory}/templates/{name}") templates_directory.mkdir(parents=True, exist_ok=True) click.echo("Created templates directory in {}".format(templates_directory)) static_directory = Path(f"{directory}/static") static_directory.mkdir() click.echo("Created static directory in {}".format(static_directory)) views_file = Path(f"{directory}/views.py") with open(views_file, "a") as f: lines = [f"from . import {name}_bp"] f.writelines(lines) click.echo("Created views.py.py in {}".format(views_file)) else: click.echo("Blueprint/directory exists already", err=True) @blueprints_cli.command("list") @with_appcontext def list(): """List registered blueprints in Flask app.""" bps = [_ for _ in app.blueprints.keys()] click.echo(bps) @blueprints_cli.command("delete") @click.argument("name") @with_appcontext def delete(name): """Deletes a blueprint folder""" directory = Path(f"{app.config['BASE_DIR']}/src/{name}") if directory.exists(): rmdir_recursive(directory) click.echo(f"Blueprint deleted in {directory}!") else: click.echo("Directory does not exist!", err=True) def rmdir_recursive(directory): for i in directory.iterdir(): if i.is_dir(): rmdir_recursive(i) else: i.unlink() directory.rmdir()
[ "flask.current_app.blueprints.keys", "click.argument", "click.option", "click.echo", "pathlib.Path", "flask.cli.AppGroup" ]
[((142, 214), 'flask.cli.AppGroup', 'AppGroup', (['"""blueprints"""'], {'short_help': '"""Creation and listing of blueprints."""'}), "('blueprints', short_help='Creation and listing of blueprints.')\n", (150, 214), False, 'from flask.cli import AppGroup, with_appcontext\n'), ((258, 280), 'click.argument', 'click.argument', (['"""name"""'], {}), "('name')\n", (272, 280), False, 'import click\n'), ((282, 416), 'click.option', 'click.option', (['"""-f"""', '"""--full"""'], {'default': '(False)', 'show_default': '(True)', 'type': 'bool', 'help': '"""Whether the blueprint creation should be minimal"""'}), "('-f', '--full', default=False, show_default=True, type=bool,\n help='Whether the blueprint creation should be minimal')\n", (294, 416), False, 'import click\n'), ((2499, 2521), 'click.argument', 'click.argument', (['"""name"""'], {}), "('name')\n", (2513, 2521), False, 'import click\n'), ((555, 599), 'pathlib.Path', 'Path', (['f"""{app.config[\'BASE_DIR\']}/src/{name}"""'], {}), '(f"{app.config[\'BASE_DIR\']}/src/{name}")\n', (559, 599), False, 'from pathlib import Path\n'), ((2446, 2461), 'click.echo', 'click.echo', (['bps'], {}), '(bps)\n', (2456, 2461), False, 'import click\n'), ((2610, 2654), 'pathlib.Path', 'Path', (['f"""{app.config[\'BASE_DIR\']}/src/{name}"""'], {}), '(f"{app.config[\'BASE_DIR\']}/src/{name}")\n', (2614, 2654), False, 'from pathlib import Path\n'), ((769, 801), 'pathlib.Path', 'Path', (['f"""{directory}/__init__.py"""'], {}), "(f'{directory}/__init__.py')\n", (773, 801), False, 'from pathlib import Path\n'), ((1982, 2011), 'pathlib.Path', 'Path', (['f"""{directory}/views.py"""'], {}), "(f'{directory}/views.py')\n", (1986, 2011), False, 'from pathlib import Path\n'), ((2224, 2282), 'click.echo', 'click.echo', (['"""Blueprint/directory exists already"""'], {'err': '(True)'}), "('Blueprint/directory exists already', err=True)\n", (2234, 2282), False, 'import click\n'), ((2725, 2773), 'click.echo', 'click.echo', (['f"""Blueprint deleted in {directory}!"""'], {}), "(f'Blueprint deleted in {directory}!')\n", (2735, 2773), False, 'import click\n'), ((2792, 2841), 'click.echo', 'click.echo', (['"""Directory does not exist!"""'], {'err': '(True)'}), "('Directory does not exist!', err=True)\n", (2802, 2841), False, 'import click\n'), ((1588, 1625), 'pathlib.Path', 'Path', (['f"""{directory}/templates/{name}"""'], {}), "(f'{directory}/templates/{name}')\n", (1592, 1625), False, 'from pathlib import Path\n'), ((1813, 1840), 'pathlib.Path', 'Path', (['f"""{directory}/static"""'], {}), "(f'{directory}/static')\n", (1817, 1840), False, 'from pathlib import Path\n'), ((2419, 2440), 'flask.current_app.blueprints.keys', 'app.blueprints.keys', ([], {}), '()\n', (2438, 2440), True, 'from flask import current_app as app\n')]
import socket import threading import time class Tello(object): """ Wrapper class to interact with the Tello drone. """ def __init__(self, local_ip, local_port, imperial=False, command_timeout=.3, tello_ip='192.168.10.1', tello_port=8889): """ Binds to the local IP/port and puts the Tello into command mode. :param local_ip: Local IP address to bind. :param local_port: Local port to bind. :param imperial: If True, speed is MPH and distance is feet. If False, speed is KPH and distance is meters. :param command_timeout: Number of seconds to wait for a response to a command. :param tello_ip: Tello IP. :param tello_port: Tello port. """ self.abort_flag = False self.command_timeout = command_timeout self.imperial = imperial self.response = None self.socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.tello_address = (tello_ip, tello_port) self.last_height = 0 self.socket.bind((local_ip, local_port)) # thread for receiving cmd ack self.receive_thread = threading.Thread(target=self._receive_thread) self.receive_thread.daemon = True self.receive_thread.start() self.socket.sendto(b'command', self.tello_address) print ('sent: command') def __del__(self): """ Closes the local socket. :return: None. """ self.socket.close() def _receive_thread(self): """ Listen to responses from the Tello. Runs as a thread, sets self.response to whatever the Tello last returned. :return: None. """ while True: try: self.response, _ = self.socket.recvfrom(3000) except socket.error as exc: print(f'Caught exception socket.error : {exc}') def send_command(self, command): """ Send a command to the Tello and wait for a response. :param command: Command to send. :return: Response from Tello. """ print(f'>> send cmd: {command}') self.abort_flag = False timer = threading.Timer(self.command_timeout, self.set_abort_flag) self.socket.sendto(command.encode('utf-8'), self.tello_address) timer.start() while self.response is None: if self.abort_flag is True: break timer.cancel() if self.response is None: response = 'none_response' else: response = self.response.decode('utf-8') self.response = None return response def set_abort_flag(self): """ Sets self.abort_flag to True. Used by the timer in Tello.send_command() to indicate to that a response timeout has occurred. :return: None. """ self.abort_flag = True def takeoff(self): """ Initiates take-off. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.send_command('takeoff') def set_speed(self, speed): """ Sets speed. This method expects KPH or MPH. The Tello API expects speeds from 1 to 100 centimeters/second. Metric: .1 to 3.6 KPH Imperial: .1 to 2.2 MPH :param speed: Speed. :return: Response from Tello, 'OK' or 'FALSE'. """ speed = float(speed) if self.imperial is True: speed = int(round(speed * 44.704)) else: speed = int(round(speed * 27.7778)) return self.send_command(f'speed {speed}') def rotate_cw(self, degrees): """ Rotates clockwise. :param degrees: Degrees to rotate, 1 to 360. :return:Response from Tello, 'OK' or 'FALSE'. """ return self.send_command(f'cw {degrees}') def rotate_ccw(self, degrees): """ Rotates counter-clockwise. :param degrees: Degrees to rotate, 1 to 360. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.send_command(f'ccw {degrees}') def flip(self, direction): """ Flips. :param direction: Direction to flip, 'l', 'r', 'f', 'b'. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.send_command(f'flip {direction}') def get_response(self): """ Returns response of tello. :return: Response of tello. """ response = self.response return response def get_height(self): """ Returns height(dm) of tello. :return: Height(dm) of tello. """ height = self.send_command('height?') height = str(height) height = filter(str.isdigit, height) try: height = int(height) self.last_height = height except: height = self.last_height pass return height def get_battery(self): """ Returns percent battery life remaining. :return: Percent battery life remaining. """ battery = self.send_command('battery?') try: battery = int(battery) except: pass return battery def get_flight_time(self): """ Returns the number of seconds elapsed during flight. :return: Seconds elapsed during flight. """ flight_time = self.send_command('time?') try: flight_time = int(flight_time) except: pass return flight_time def get_speed(self): """ Returns the current speed. :return: Current speed in KPH or MPH. """ speed = self.send_command('speed?') try: speed = float(speed) if self.imperial is True: speed = round((speed / 44.704), 1) else: speed = round((speed / 27.7778), 1) except: pass return speed def land(self): """ Initiates landing. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.send_command('land') def move(self, direction, distance): """ Moves in a direction for a distance. This method expects meters or feet. The Tello API expects distances from 20 to 500 centimeters. Metric: .02 to 5 meters Imperial: .7 to 16.4 feet :param direction: Direction to move, 'forward', 'back', 'right' or 'left'. :param distance: Distance to move. :return: Response from Tello, 'OK' or 'FALSE'. """ distance = float(distance) if self.imperial is True: distance = int(round(distance * 30.48)) else: distance = int(round(distance * 100)) return self.send_command(f'{direction} {distance}') def move_backward(self, distance): """ Moves backward for a distance. See comments for Tello.move(). :param distance: Distance to move. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.move('back', distance) def move_down(self, distance): """ Moves down for a distance. See comments for Tello.move(). :param distance: Distance to move. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.move('down', distance) def move_forward(self, distance): """ Moves forward for a distance. See comments for Tello.move(). :param distance: Distance to move. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.move('forward', distance) def move_left(self, distance): """ Moves left for a distance. See comments for Tello.move(). :param distance: Distance to move. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.move('left', distance) def move_right(self, distance): """ Moves right for a distance. See comments for Tello.move(). :param distance: Distance to move. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.move('right', distance) def move_up(self, distance): """ Moves up for a distance. See comments for Tello.move(). :param distance: Distance to move. :return: Response from Tello, 'OK' or 'FALSE'. """ return self.move('up', distance)
[ "threading.Thread", "threading.Timer", "socket.socket" ]
[((975, 1023), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_DGRAM'], {}), '(socket.AF_INET, socket.SOCK_DGRAM)\n', (988, 1023), False, 'import socket\n'), ((1224, 1269), 'threading.Thread', 'threading.Thread', ([], {'target': 'self._receive_thread'}), '(target=self._receive_thread)\n', (1240, 1269), False, 'import threading\n'), ((2275, 2333), 'threading.Timer', 'threading.Timer', (['self.command_timeout', 'self.set_abort_flag'], {}), '(self.command_timeout, self.set_abort_flag)\n', (2290, 2333), False, 'import threading\n')]
from pymongo import MongoClient from user import User import json class Database: def __init__(self): self.client = MongoClient( 'localhost', 27017, username="root", password="<PASSWORD>") self.db = self.client.test_database self.users = self.db.users self.settings = self.db.settings def get_user(self, name): data = self.users.find_one({"name": name}) if (data): return User(name=data["name"], balance=data["balance"]) else: return None def get_all_users(self): pass def create_user(self, user): if not self.user_exsists(user): create_id = self.users.insert_one(user.__dict__).inserted_id return create_id print("User already exsists") return def delete_user(self, name): self.users.delete_one({"name": name}) def update_balance(self, user): self.users.find_one_and_update( {"name": user.name}, {"$set": {"balance": user.balance}}) def increase_balance(self, user, amount): user.balance += amount self.update_balance(user) def decrease_balance(self, user, amount): user.balance -= amount self.update_balance(user) def user_exsists(self, user): if list(self.users.find({"name": user.name})): return True else: return False def get_settings(self): return self.settings.find_one({}) def update_settings(self, settings): items = {} for item in settings.items: items[item.name] = item.price self.settings.find_one_and_update({}, {"$set": items}) def create_settings(self, settings): items = {} for item in settings.items: items[item.name] = item.price self.settings.insert_one(items)
[ "pymongo.MongoClient", "user.User" ]
[((130, 201), 'pymongo.MongoClient', 'MongoClient', (['"""localhost"""', '(27017)'], {'username': '"""root"""', 'password': '"""<PASSWORD>"""'}), "('localhost', 27017, username='root', password='<PASSWORD>')\n", (141, 201), False, 'from pymongo import MongoClient\n'), ((455, 503), 'user.User', 'User', ([], {'name': "data['name']", 'balance': "data['balance']"}), "(name=data['name'], balance=data['balance'])\n", (459, 503), False, 'from user import User\n')]
import argparse import multiprocessing from multiprocessing.queues import Queue from queue import Empty from PIL.Image import Image from src.base import IO def repeat(queue: Queue, resize): try: while True: load_resize_save(queue.get(True, 5), resize) except Empty: return def load_resize_save(image_file, resize): img: Image = IO.load_image(image_file) img = img.resize(resize) img.save(image_file) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--source', type=str) parser.add_argument('--target_size', type=float) parser.add_argument('--worker', type=int) parser.add_argument('--image_glob', type=str, default='**/*.jpg') args = parser.parse_args() images = IO.get_image_paths(args.source, args.image_glob) resize = IO.load_image(images[0]).size resize = tuple(int(args.target_size * el) for el in resize) multiprocessing.set_start_method('spawn') q = multiprocessing.Queue() for img_file in images: q.put(img_file) processes = [ multiprocessing.Process(target=repeat, args=(q, resize), daemon=True) for w in range(args.worker) ] for process in processes: process.start() for process in processes: process.join()
[ "src.base.IO.get_image_paths", "argparse.ArgumentParser", "multiprocessing.set_start_method", "src.base.IO.load_image", "multiprocessing.Queue", "multiprocessing.Process" ]
[((374, 399), 'src.base.IO.load_image', 'IO.load_image', (['image_file'], {}), '(image_file)\n', (387, 399), False, 'from src.base import IO\n'), ((496, 521), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (519, 521), False, 'import argparse\n'), ((783, 831), 'src.base.IO.get_image_paths', 'IO.get_image_paths', (['args.source', 'args.image_glob'], {}), '(args.source, args.image_glob)\n', (801, 831), False, 'from src.base import IO\n'), ((945, 986), 'multiprocessing.set_start_method', 'multiprocessing.set_start_method', (['"""spawn"""'], {}), "('spawn')\n", (977, 986), False, 'import multiprocessing\n'), ((995, 1018), 'multiprocessing.Queue', 'multiprocessing.Queue', ([], {}), '()\n', (1016, 1018), False, 'import multiprocessing\n'), ((846, 870), 'src.base.IO.load_image', 'IO.load_image', (['images[0]'], {}), '(images[0])\n', (859, 870), False, 'from src.base import IO\n'), ((1098, 1167), 'multiprocessing.Process', 'multiprocessing.Process', ([], {'target': 'repeat', 'args': '(q, resize)', 'daemon': '(True)'}), '(target=repeat, args=(q, resize), daemon=True)\n', (1121, 1167), False, 'import multiprocessing\n')]
import numpy as np import pandas as pd import time from pathlib import Path from experiments.evaluation import calculate_metrics from causal_estimators.ipw_estimator import IPWEstimator from causal_estimators.standardization_estimator import \ StandardizationEstimator, StratifiedStandardizationEstimator from experiments.evaluation import run_model_cv from loading import load_from_folder from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC from sklearn.kernel_ridge import KernelRidge from sklearn.neural_network import MLPClassifier, MLPRegressor from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.gaussian_process import GaussianProcessClassifier, GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor, GradientBoostingRegressor,\ RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis from sklearn.pipeline import Pipeline, make_pipeline from sklearn.preprocessing import StandardScaler, PolynomialFeatures from sklearn.exceptions import UndefinedMetricWarning import warnings warnings.simplefilter(action='ignore', category=UndefinedMetricWarning) # warnings.filterwarnings("ignore", message="UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.") RESULTS_DIR = Path('results') alphas = {'alpha': np.logspace(-4, 5, 10)} # gammas = [] + ['scale'] Cs = np.logspace(-4, 5, 10) d_Cs = {'C': Cs} SVM = 'svm' d_Cs_pipeline = {SVM + '__C': Cs} max_depths = list(range(2, 10 + 1)) + [None] d_max_depths = {'max_depth': max_depths} d_max_depths_base = {'base_estimator__max_depth': max_depths} Ks = {'n_neighbors': [1, 2, 3, 5, 10, 15, 25, 50, 100, 200]} OUTCOME_MODEL_GRID = [ ('LinearRegression', LinearRegression(), {}), ('LinearRegression_interact', make_pipeline(PolynomialFeatures(degree=2, interaction_only=True), LinearRegression()), {}), ('LinearRegression_degree2', make_pipeline(PolynomialFeatures(degree=2), LinearRegression()), {}), # ('LinearRegression_degree3', # make_pipeline(PolynomialFeatures(degree=3), LinearRegression()), {}), ('Ridge', Ridge(), alphas), ('Lasso', Lasso(), alphas), ('ElasticNet', ElasticNet(), alphas), ('KernelRidge', KernelRidge(), alphas), ('SVM_rbf', SVR(kernel='rbf'), d_Cs), ('SVM_sigmoid', SVR(kernel='sigmoid'), d_Cs), ('LinearSVM', LinearSVR(), d_Cs), # (SVR(kernel='linear'), d_Cs), # doesn't seem to work (runs forever) # TODO: add tuning of SVM gamma, rather than using the default "scale" setting # SVMs are sensitive to input scale ('Standardized_SVM_rbf', Pipeline([('standard', StandardScaler()), (SVM, SVR(kernel='rbf'))]), d_Cs_pipeline), ('Standardized_SVM_sigmoid', Pipeline([('standard', StandardScaler()), (SVM, SVR(kernel='sigmoid'))]), d_Cs_pipeline), ('Standardized_LinearSVM', Pipeline([('standard', StandardScaler()), (SVM, LinearSVR())]), d_Cs_pipeline), ('kNN', KNeighborsRegressor(), Ks), # GaussianProcessRegressor(), # TODO: also cross-validate over min_samples_split and min_samples_leaf ('DecisionTree', DecisionTreeRegressor(), d_max_depths), # ('RandomForest', RandomForestRegressor(), d_max_depths), # TODO: also cross-validate over learning_rate # ('AdaBoost', AdaBoostRegressor(base_estimator=DecisionTreeRegressor(max_depth=None)), d_max_depths_base), # ('GradientBoosting', GradientBoostingRegressor(), d_max_depths), # MLPRegressor(max_iter=1000), # MLPRegressor(alpha=1, max_iter=1000), ] PROP_SCORE_MODEL_GRID = [ ('LogisticRegression_l2', LogisticRegression(penalty='l2'), d_Cs), ('LogisticRegression', LogisticRegression(penalty='none'), {}), ('LogisticRegression_l2_liblinear', LogisticRegression(penalty='l2', solver='liblinear'), d_Cs), ('LogisticRegression_l1_liblinear', LogisticRegression(penalty='l1', solver='liblinear'), d_Cs), ('LogisticRegression_l1_saga', LogisticRegression(penalty='l1', solver='saga'), d_Cs), ('LDA', LinearDiscriminantAnalysis(), {}), ('LDA_shrinkage', LinearDiscriminantAnalysis(solver='lsqr', shrinkage='auto'), {}), ('QDA', QuadraticDiscriminantAnalysis(), {}), # TODO: add tuning of SVM gamma, rather than using the default "scale" setting ('SVM_rbf', SVC(kernel='rbf', probability=True), d_Cs), ('SVM_sigmoid', SVC(kernel='sigmoid', probability=True), d_Cs), # ('SVM_linear', SVC(kernel='linear', probability=True), d_Cs), # doesn't seem to work (runs forever) # SVMs are sensitive to input scale ('Standardized_SVM_rbf', Pipeline([('standard', StandardScaler()), (SVM, SVC(kernel='rbf', probability=True))]), d_Cs_pipeline), ('Standardized_SVM_sigmoid', Pipeline([('standard', StandardScaler()), (SVM, SVC(kernel='sigmoid', probability=True))]), d_Cs_pipeline), # ('Standardized_SVM_linear', Pipeline([('standard', StandardScaler()), # (SVM, SVC(kernel='linear', probability=True))]), # d_Cs_pipeline), # doesn't seem to work (runs forever) ('kNN', KNeighborsClassifier(), Ks), # GaussianProcessClassifier(), ('GaussianNB', GaussianNB(), {}), # TODO: also cross-validate over min_samples_split and min_samples_leaf ('DecisionTree', DecisionTreeClassifier(), d_max_depths), # ('RandomForest', RandomForestClassifier(), max_depths), # TODO: also cross-validate over learning_rate # ('AdaBoost', AdaBoostClassifier(base_estimator=DecisionTreeClassifier(max_depth=None)), d_max_depths_base), # ('GradientBoosting', GradientBoostingClassifier(), d_max_depths), # MLPClassifier(max_iter=1000), # MLPClassifier(alpha=1, max_iter=1000), ] psid_gen_model, args = load_from_folder(dataset='lalonde_psid1') cps_gen_model, args = load_from_folder(dataset='lalonde_cps1') twins_gen_model, args = load_from_folder(dataset='twins') psid_ate = psid_gen_model.ate(noisy=True) psid_ite = psid_gen_model.ite(noisy=True).squeeze() cps_ate = cps_gen_model.ate(noisy=True) cps_ite = cps_gen_model.ite(noisy=True).squeeze() twins_ate = twins_gen_model.ate(noisy=False) twins_ite = twins_gen_model.ite(noisy=False).squeeze() GEN_MODELS = [ ('lalonde_psid', psid_gen_model, psid_ate, psid_ite), ('lalonde_cps', cps_gen_model, cps_ate, cps_ite), ('twins', twins_gen_model, twins_ate, twins_ite) ] t_start = time.time() N_SEEDS_CV = 5 N_SEEDS_METRICS = 5 def run_experiments_for_estimator(get_estimator_func, model_grid, save_location, meta_est_name, model_type, exclude=[], gen_models=GEN_MODELS, n_seeds_cv=N_SEEDS_CV, n_seeds_metrics=N_SEEDS_METRICS): # if outcome_model_grid is None and prop_score_model_grid is None: # raise ValueError('Either outcome_model_grid or prop_score_model_grid must be not None.') # if outcome_model_grid is not None and prop_score_model_grid is not None: # raise ValueError('Currently only supporting one non-None model grid.') # outcome_modeling = outcome_model_grid is not None # model_grid = outcome_model_grid if outcome_modeling else prop_score_model_grid # model_type = 'outcome' if outcome_modeling else 'prop_score' valid_model_types = ['outcome', 'prop_score'] if model_type not in valid_model_types: raise ValueError('Invalid model_type... Valid model_types: {}'.format(valid_model_types)) param_str = 'params_' + model_type + '_model' dataset_dfs = [] for gen_name, gen_model, ate, ite in gen_models: print('DATASET:', gen_name) dataset_start = time.time() model_dfs = [] for model_name, model, param_grid in model_grid: print('MODEL:', model_name) if (gen_name, model_name) in exclude or model_name in exclude: print('SKIPPING') continue model_start = time.time() results = run_model_cv(gen_model, model, model_name=model_name, param_grid=param_grid, n_seeds=n_seeds_cv, model_type=model_type, best_model=False, ret_time=False) metrics_list = [] for params in results[param_str]: try: est_start = time.time() estimator = get_estimator_func(model.set_params(**params)) metrics = calculate_metrics(gen_model, estimator, n_seeds=n_seeds_metrics, conf_ints=False, ate=ate, ite=ite) est_end = time.time() # Add estimator fitting time in minutes metrics['time'] = (est_end - est_start) / 60 metrics_list.append(metrics) except ValueError: print('Skipping {} params: {}'.format(model_name, params)) causal_metrics = pd.DataFrame(metrics_list) model_df = pd.concat([results, causal_metrics], axis=1) model_df.insert(0, 'dataset', gen_name) model_df.insert(1, 'meta-estimator', meta_est_name) model_dfs.append(model_df) model_end = time.time() print(model_name, 'time:', (model_end - model_start) / 60, 'minutes') dataset_df = pd.concat(model_dfs, axis=0) dataset_end = time.time() print(gen_name, 'time:', (dataset_end - dataset_start) / 60 / 60, 'hours') dataset_dfs.append(dataset_df) full_df = pd.concat(dataset_dfs, axis=0) t_end = time.time() print('Total time elapsed:', (t_end - t_start) / 60 / 60, 'hours') full_df.to_csv(save_location, float_format='%.2f', index=False) return full_df print('STANDARDIZATION') stand_df = run_experiments_for_estimator( lambda model: StandardizationEstimator(outcome_model=model), model_grid=OUTCOME_MODEL_GRID, save_location=RESULTS_DIR / 'psid_cps_twins_standard.csv', meta_est_name='standardization', model_type='outcome', gen_models=GEN_MODELS) print('STRATIFIED STANDARDIZATION') strat_df = run_experiments_for_estimator( lambda model: StratifiedStandardizationEstimator(outcome_models=model), model_grid=OUTCOME_MODEL_GRID, exclude=[('lalonde_cps', 'KernelRidge')], save_location=RESULTS_DIR / 'psid_cps_twins_strat_standard.csv', meta_est_name='stratified_standardization', model_type='outcome', gen_models=GEN_MODELS) print('IPW') ps_df = run_experiments_for_estimator( lambda model: IPWEstimator(prop_score_model=model), model_grid=PROP_SCORE_MODEL_GRID, # exclude=[('lalonde_psid', 'SVM_rbf')], exclude=['SVM_rbf'], save_location=RESULTS_DIR / 'psid_cps_twins_ipw.csv', meta_est_name='ipw', model_type='prop_score', gen_models=GEN_MODELS) print('IPW TRIM EPS 0.01') ps_trim_df = run_experiments_for_estimator( lambda model: IPWEstimator(prop_score_model=model, trim_eps=0.01), model_grid=PROP_SCORE_MODEL_GRID, # exclude=[('lalonde_psid', 'SVM_rbf')], exclude=['SVM_rbf'], save_location=RESULTS_DIR / 'psid_cps_twins_ipw_trim_01.csv', meta_est_name='ipw_trimeps.01', model_type='prop_score', gen_models=GEN_MODELS) print('IPW Stabilized weights') ps_stab_df = run_experiments_for_estimator( lambda model: IPWEstimator(prop_score_model=model, stabilized=True), model_grid=PROP_SCORE_MODEL_GRID, # exclude=[('lalonde_psid', 'SVM_rbf')], exclude=['SVM_rbf'], save_location=RESULTS_DIR / 'psid_cps_twins_ipw_stabilized.csv', meta_est_name='ipw_stabilized', model_type='prop_score', gen_models=GEN_MODELS)
[ "sklearn.preprocessing.StandardScaler", "numpy.logspace", "experiments.evaluation.calculate_metrics", "sklearn.tree.DecisionTreeClassifier", "loading.load_from_folder", "pathlib.Path", "sklearn.svm.SVC", "sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis", "causal_estimators.standardization_estimator.StandardizationEstimator", "pandas.DataFrame", "warnings.simplefilter", "sklearn.tree.DecisionTreeRegressor", "sklearn.linear_model.ElasticNet", "pandas.concat", "sklearn.svm.LinearSVR", "sklearn.linear_model.Lasso", "sklearn.linear_model.Ridge", "experiments.evaluation.run_model_cv", "sklearn.linear_model.LinearRegression", "sklearn.linear_model.LogisticRegression", "sklearn.discriminant_analysis.LinearDiscriminantAnalysis", "causal_estimators.ipw_estimator.IPWEstimator", "sklearn.svm.SVR", "sklearn.neighbors.KNeighborsRegressor", "sklearn.naive_bayes.GaussianNB", "sklearn.kernel_ridge.KernelRidge", "time.time", "causal_estimators.standardization_estimator.StratifiedStandardizationEstimator", "sklearn.preprocessing.PolynomialFeatures", "sklearn.neighbors.KNeighborsClassifier" ]
[((1465, 1536), 'warnings.simplefilter', 'warnings.simplefilter', ([], {'action': '"""ignore"""', 'category': 'UndefinedMetricWarning'}), "(action='ignore', category=UndefinedMetricWarning)\n", (1486, 1536), False, 'import warnings\n'), ((1754, 1769), 'pathlib.Path', 'Path', (['"""results"""'], {}), "('results')\n", (1758, 1769), False, 'from pathlib import Path\n'), ((1845, 1867), 'numpy.logspace', 'np.logspace', (['(-4)', '(5)', '(10)'], {}), '(-4, 5, 10)\n', (1856, 1867), True, 'import numpy as np\n'), ((6260, 6301), 'loading.load_from_folder', 'load_from_folder', ([], {'dataset': '"""lalonde_psid1"""'}), "(dataset='lalonde_psid1')\n", (6276, 6301), False, 'from loading import load_from_folder\n'), ((6324, 6364), 'loading.load_from_folder', 'load_from_folder', ([], {'dataset': '"""lalonde_cps1"""'}), "(dataset='lalonde_cps1')\n", (6340, 6364), False, 'from loading import load_from_folder\n'), ((6389, 6422), 'loading.load_from_folder', 'load_from_folder', ([], {'dataset': '"""twins"""'}), "(dataset='twins')\n", (6405, 6422), False, 'from loading import load_from_folder\n'), ((6902, 6913), 'time.time', 'time.time', ([], {}), '()\n', (6911, 6913), False, 'import time\n'), ((1790, 1812), 'numpy.logspace', 'np.logspace', (['(-4)', '(5)', '(10)'], {}), '(-4, 5, 10)\n', (1801, 1812), True, 'import numpy as np\n'), ((10030, 10060), 'pandas.concat', 'pd.concat', (['dataset_dfs'], {'axis': '(0)'}), '(dataset_dfs, axis=0)\n', (10039, 10060), True, 'import pandas as pd\n'), ((10074, 10085), 'time.time', 'time.time', ([], {}), '()\n', (10083, 10085), False, 'import time\n'), ((2189, 2207), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (2205, 2207), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((2605, 2612), 'sklearn.linear_model.Ridge', 'Ridge', ([], {}), '()\n', (2610, 2612), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((2637, 2644), 'sklearn.linear_model.Lasso', 'Lasso', ([], {}), '()\n', (2642, 2644), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((2674, 2686), 'sklearn.linear_model.ElasticNet', 'ElasticNet', ([], {}), '()\n', (2684, 2686), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((2718, 2731), 'sklearn.kernel_ridge.KernelRidge', 'KernelRidge', ([], {}), '()\n', (2729, 2731), False, 'from sklearn.kernel_ridge import KernelRidge\n'), ((2759, 2776), 'sklearn.svm.SVR', 'SVR', ([], {'kernel': '"""rbf"""'}), "(kernel='rbf')\n", (2762, 2776), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((2805, 2826), 'sklearn.svm.SVR', 'SVR', ([], {'kernel': '"""sigmoid"""'}), "(kernel='sigmoid')\n", (2808, 2826), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((2853, 2864), 'sklearn.svm.LinearSVR', 'LinearSVR', ([], {}), '()\n', (2862, 2864), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((3448, 3469), 'sklearn.neighbors.KNeighborsRegressor', 'KNeighborsRegressor', ([], {}), '()\n', (3467, 3469), False, 'from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor\n'), ((3609, 3632), 'sklearn.tree.DecisionTreeRegressor', 'DecisionTreeRegressor', ([], {}), '()\n', (3630, 3632), False, 'from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor\n'), ((4086, 4118), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""l2"""'}), "(penalty='l2')\n", (4104, 4118), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((4154, 4188), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""none"""'}), "(penalty='none')\n", (4172, 4188), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((4235, 4287), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""l2"""', 'solver': '"""liblinear"""'}), "(penalty='l2', solver='liblinear')\n", (4253, 4287), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((4336, 4388), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""l1"""', 'solver': '"""liblinear"""'}), "(penalty='l1', solver='liblinear')\n", (4354, 4388), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((4432, 4479), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'penalty': '"""l1"""', 'solver': '"""saga"""'}), "(penalty='l1', solver='saga')\n", (4450, 4479), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((4501, 4529), 'sklearn.discriminant_analysis.LinearDiscriminantAnalysis', 'LinearDiscriminantAnalysis', ([], {}), '()\n', (4527, 4529), False, 'from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis\n'), ((4558, 4617), 'sklearn.discriminant_analysis.LinearDiscriminantAnalysis', 'LinearDiscriminantAnalysis', ([], {'solver': '"""lsqr"""', 'shrinkage': '"""auto"""'}), "(solver='lsqr', shrinkage='auto')\n", (4584, 4617), False, 'from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis\n'), ((4636, 4667), 'sklearn.discriminant_analysis.QuadraticDiscriminantAnalysis', 'QuadraticDiscriminantAnalysis', ([], {}), '()\n', (4665, 4667), False, 'from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis\n'), ((4774, 4809), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': '"""rbf"""', 'probability': '(True)'}), "(kernel='rbf', probability=True)\n", (4777, 4809), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((4838, 4877), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': '"""sigmoid"""', 'probability': '(True)'}), "(kernel='sigmoid', probability=True)\n", (4841, 4877), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((5610, 5632), 'sklearn.neighbors.KNeighborsClassifier', 'KNeighborsClassifier', ([], {}), '()\n', (5630, 5632), False, 'from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor\n'), ((5694, 5706), 'sklearn.naive_bayes.GaussianNB', 'GaussianNB', ([], {}), '()\n', (5704, 5706), False, 'from sklearn.naive_bayes import GaussianNB\n'), ((5811, 5835), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {}), '()\n', (5833, 5835), False, 'from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor\n'), ((8169, 8180), 'time.time', 'time.time', ([], {}), '()\n', (8178, 8180), False, 'import time\n'), ((9831, 9859), 'pandas.concat', 'pd.concat', (['model_dfs'], {'axis': '(0)'}), '(model_dfs, axis=0)\n', (9840, 9859), True, 'import pandas as pd\n'), ((9882, 9893), 'time.time', 'time.time', ([], {}), '()\n', (9891, 9893), False, 'import time\n'), ((10331, 10376), 'causal_estimators.standardization_estimator.StandardizationEstimator', 'StandardizationEstimator', ([], {'outcome_model': 'model'}), '(outcome_model=model)\n', (10355, 10376), False, 'from causal_estimators.standardization_estimator import StandardizationEstimator, StratifiedStandardizationEstimator\n'), ((10663, 10719), 'causal_estimators.standardization_estimator.StratifiedStandardizationEstimator', 'StratifiedStandardizationEstimator', ([], {'outcome_models': 'model'}), '(outcome_models=model)\n', (10697, 10719), False, 'from causal_estimators.standardization_estimator import StandardizationEstimator, StratifiedStandardizationEstimator\n'), ((11043, 11079), 'causal_estimators.ipw_estimator.IPWEstimator', 'IPWEstimator', ([], {'prop_score_model': 'model'}), '(prop_score_model=model)\n', (11055, 11079), False, 'from causal_estimators.ipw_estimator import IPWEstimator\n'), ((11418, 11469), 'causal_estimators.ipw_estimator.IPWEstimator', 'IPWEstimator', ([], {'prop_score_model': 'model', 'trim_eps': '(0.01)'}), '(prop_score_model=model, trim_eps=0.01)\n', (11430, 11469), False, 'from causal_estimators.ipw_estimator import IPWEstimator\n'), ((11832, 11885), 'causal_estimators.ipw_estimator.IPWEstimator', 'IPWEstimator', ([], {'prop_score_model': 'model', 'stabilized': '(True)'}), '(prop_score_model=model, stabilized=True)\n', (11844, 11885), False, 'from causal_estimators.ipw_estimator import IPWEstimator\n'), ((2267, 2318), 'sklearn.preprocessing.PolynomialFeatures', 'PolynomialFeatures', ([], {'degree': '(2)', 'interaction_only': '(True)'}), '(degree=2, interaction_only=True)\n', (2285, 2318), False, 'from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n'), ((2339, 2357), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (2355, 2357), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((2422, 2450), 'sklearn.preprocessing.PolynomialFeatures', 'PolynomialFeatures', ([], {'degree': '(2)'}), '(degree=2)\n', (2440, 2450), False, 'from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n'), ((2452, 2470), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {}), '()\n', (2468, 2470), False, 'from sklearn.linear_model import LogisticRegression, LinearRegression, Lasso, Ridge, ElasticNet, RidgeClassifier\n'), ((8461, 8472), 'time.time', 'time.time', ([], {}), '()\n', (8470, 8472), False, 'import time\n'), ((8495, 8657), 'experiments.evaluation.run_model_cv', 'run_model_cv', (['gen_model', 'model'], {'model_name': 'model_name', 'param_grid': 'param_grid', 'n_seeds': 'n_seeds_cv', 'model_type': 'model_type', 'best_model': '(False)', 'ret_time': '(False)'}), '(gen_model, model, model_name=model_name, param_grid=param_grid,\n n_seeds=n_seeds_cv, model_type=model_type, best_model=False, ret_time=False\n )\n', (8507, 8657), False, 'from experiments.evaluation import run_model_cv\n'), ((9441, 9467), 'pandas.DataFrame', 'pd.DataFrame', (['metrics_list'], {}), '(metrics_list)\n', (9453, 9467), True, 'import pandas as pd\n'), ((9491, 9535), 'pandas.concat', 'pd.concat', (['[results, causal_metrics]'], {'axis': '(1)'}), '([results, causal_metrics], axis=1)\n', (9500, 9535), True, 'import pandas as pd\n'), ((9715, 9726), 'time.time', 'time.time', ([], {}), '()\n', (9724, 9726), False, 'import time\n'), ((3123, 3139), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (3137, 3139), False, 'from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n'), ((3148, 3165), 'sklearn.svm.SVR', 'SVR', ([], {'kernel': '"""rbf"""'}), "(kernel='rbf')\n", (3151, 3165), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((3247, 3263), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (3261, 3263), False, 'from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n'), ((3272, 3293), 'sklearn.svm.SVR', 'SVR', ([], {'kernel': '"""sigmoid"""'}), "(kernel='sigmoid')\n", (3275, 3293), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((3373, 3389), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (3387, 3389), False, 'from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n'), ((3398, 3409), 'sklearn.svm.LinearSVR', 'LinearSVR', ([], {}), '()\n', (3407, 3409), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((5087, 5103), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (5101, 5103), False, 'from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n'), ((5112, 5147), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': '"""rbf"""', 'probability': '(True)'}), "(kernel='rbf', probability=True)\n", (5115, 5147), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((5229, 5245), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (5243, 5245), False, 'from sklearn.preprocessing import StandardScaler, PolynomialFeatures\n'), ((5297, 5336), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': '"""sigmoid"""', 'probability': '(True)'}), "(kernel='sigmoid', probability=True)\n", (5300, 5336), False, 'from sklearn.svm import SVR, LinearSVR, SVC, LinearSVC\n'), ((8813, 8824), 'time.time', 'time.time', ([], {}), '()\n', (8822, 8824), False, 'import time\n'), ((8934, 9038), 'experiments.evaluation.calculate_metrics', 'calculate_metrics', (['gen_model', 'estimator'], {'n_seeds': 'n_seeds_metrics', 'conf_ints': '(False)', 'ate': 'ate', 'ite': 'ite'}), '(gen_model, estimator, n_seeds=n_seeds_metrics, conf_ints=\n False, ate=ate, ite=ite)\n', (8951, 9038), False, 'from experiments.evaluation import calculate_metrics\n'), ((9112, 9123), 'time.time', 'time.time', ([], {}), '()\n', (9121, 9123), False, 'import time\n')]
import os import json import torch import torch.nn as nn import torch.optim as optim import torch.utils as utils import sys import argparse import matplotlib import pdb import numpy as np import time import random import re import time import matplotlib.pyplot as plt from tqdm import tqdm from tqdm import trange from sklearn import metrics from torch.utils import data from collections import Counter from transformers import AdamW, get_linear_schedule_with_warmup from transformers import T5Tokenizer, T5ForConditionalGeneration, T5Config from torch.cuda.amp import autocast as autocast from torch.cuda.amp import GradScaler as GradScaler def seed_everything(args): random.seed(args.seed) os.environ['PYTHONASSEED'] = str(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = True def ifinclude(str1,str2): #name.lower() in linelist[0].lower(): str1list = str1.lower().split(' ') ####name str2list = str2.lower().split(' ') ####linelist ifin = False for i in range(0,len(str2list)): if str2list[i] == str1list[0]: ifin = True for j in range(1,len(str1list)): if str2list[i+j] != str1list[j]: ifin = False break if ifin == True: break else: continue return ifin def handlefile(inputfile,outputfile,allnumber,trainnumber): f = open(inputfile,'r') allres = {} alltype = [] for key in allnumber.keys(): alltype.append(key) insen = 0 allin = {} notinsen = 0 allnotin = {} while True: line = f.readline().strip() if not line: break linelist = line.split("__ans__") if len(linelist) != 2: continue entitylist = linelist[1] if entitylist == 'end': continue if ';' not in entitylist: continue allentity = entitylist.split(";") if len(allentity) != 2: continue firstentity = allentity[0] #print(firstentity) if '!' not in firstentity: continue splitent = firstentity.split('!') if len(splitent) != 2: continue thistype = splitent[1].strip() #print(thistype) if thistype not in alltype: continue #print(linelist[0] + '\t' + linelist[1]) name = linelist[1].split(";")[0].split("!")[0].strip(' ') entype = linelist[1].split(";")[0].split("!")[1].strip(' ') whole = name + " ! " + entype + " ;" #print(name) #####some filters thissen = linelist[0] ####length # senlist = thissen.split(' ') # if len(senlist) <= 3: # continue # digitnum = 0 # for one in senlist: # if re.search(r'\d', one): # digitnum += 1 # if len(senlist) - digitnum < 1: # continue #ifin = ifinclude(name,linelist[0]) #if ifin: if name.lower() in linelist[0].lower(): length = len(name) startindex = linelist[0].lower().find(name.lower()) endindex = startindex + length toreplace = linelist[0][startindex:endindex] #newsen = linelist[0] newsen = linelist[0].replace(toreplace,name) if thistype not in allin: #allin[thistype] = [linelist[0] + '\t' + linelist[1]] allin[thistype] = {} if whole not in allin[thistype]: insen += 1 allin[thistype][whole] = [newsen] #else: # allin[thistype][whole].append(linelist[0]) else: #allin[thistype].append(linelist[0] + '\t' + linelist[1]) if whole not in allin[thistype]: insen += 1 allin[thistype][whole] = [newsen] #else: # allin[thistype][whole].append(linelist[0]) else: ########some filter ##ensure the entity has similar words in sen # if name.lower() in linelist[0].lower(): # ###thisone will be used # str1list = name.lower().split(' ') ####name # nolowlist = name.split(' ') # str2list = linelist[0].lower().split(' ') ####linelist # ifin = False # touselist = linelist[0].split(' ') # for i in range(0, len(str2list)): # if str1list[0] in str2list[i]: # touselist[i] = nolowlist[0] # for j in range(1,len(str1list)): # touselist[i+j] = nolowlist[j] # else: # continue # newsen = ' '.join(touselist) # else: # ####whether first similar 0.75 5 # str1list = name.lower().split(' ') # tousestr = str1list[0] # str2list = linelist[0].lower().split(' ') # ifhave = 0 # index = -1 # for j in range(0,len(str2list)): # thistoken = str2list[j] # samenum = 0 # for k in range(min(len(tousestr),len(thistoken))): # if tousestr[k] == thistoken[k]: # samenum += 1 # else: # break # if min(len(tousestr),len(thistoken)) == 0: # continue # if samenum >= 5 or float(samenum) / float(min(len(tousestr),len(thistoken))) >= 0.75: # ifhave = 1 # index = j # break # if not ifhave: # continue # else: # ###replace # newlinelist = linelist[0].split()[0:index] + name.split(' ') + linelist[0].split()[index+1:] # newsen = " ".join(newlinelist) if thistype not in allnotin: #allnotin[thistype] = [linelist[0] + '\t' + linelist[1]] allnotin[thistype] = {} if whole not in allnotin[thistype]: notinsen += 1 newsen = linelist[0] + " " + name allnotin[thistype][whole] = [newsen] #else: # allnotin[thistype][whole].append(linelist[0]) else: #allnotin[thistype].append(linelist[0] + '\t' + linelist[1]) if whole not in allnotin[thistype]: notinsen += 1 newsen = linelist[0] + " " + name allnotin[thistype][whole] = [newsen] #else: # allnotin[thistype][whole].append(linelist[0]) f.close() print(insen) print(notinsen) # for key in allin: # print(key+"\t"+str(len(allin[key]))) # for key in allnotin: # print(key+"\t"+str(len(allnotin[key]))) # for key in allin: # for one in allin[key]: # for aa in allin[key][one]: # print(aa+" "+one) # for key in allnotin: # for one in allnotin[key]: # for aa in allnotin[key][one]: # print(aa + " " + one) finalres = {} fall = open("allgenerate",'w') for key in allnumber.keys(): finalres[key] = [] for key in allin: for one in allin[key]: for aa in allin[key][one]: finalres[key].append(aa+"\t"+one) fall.write(aa+"\t"+one+'\n') for key in allnotin: for one in allnotin[key]: for aa in allnotin[key][one]: finalres[key].append(aa+"\t"+one) fall.write(aa + "\t" + one + '\n') fall.close() #for key in finalres.keys(): # print(len(finalres[key])) sampleres = [] trainres = [] validres = [] for key in finalres.keys(): thissample = random.sample(finalres[key],allnumber[key]) #print(thissample) sampleres.extend(thissample) ####divide to train and valid thistrainnum = trainnumber[key] indexlist = [i for i in range(allnumber[key])] #print(indexlist) trainuse = random.sample(indexlist,thistrainnum) #print(trainuse) for j in range(allnumber[key]): if j in trainuse: trainres.append(thissample[j]) else: validres.append(thissample[j]) #print(trainres) #print(validres) #print(sampleres) fo = open(outputfile, 'w') for one in sampleres: fo.write(one+"\n") fo.close() fot = open('train_mem.txt', 'w') for one in trainres: fot.write(one+"\n") fot.close() fov = open('valid_mem.txt', 'w') for one in validres: fov.write(one + "\n") fov.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description="latentRE") parser.add_argument("--model", dest="model", type=str, default="T5", help="{T5}") parser.add_argument("--seed", dest="seed", type=int, default=160, help="seed for network") args = parser.parse_args() seed_everything(args) if args.model == "T5": #seed 100 #train: person:10 location:12 org:6 mix:7 #valid: person:16 location:12 org:11 mix:8 print("right!") # allnumber = {'org': 17, 'location': 24, 'person': 26, 'mix': 15} # trainnumber = {'org': 6, 'location': 12, 'person': 10, 'mix': 7} # allnumber = {'org':15,'location':14,'person':11,'mix':9} # trainnumber = {'org':7,'location':8,'person':5,'mix':4} allnumber = {'org': 16, 'location': 21, 'person': 20, 'mix': 16} trainnumber = {'org': 7, 'location': 10, 'person': 11, 'mix': 6} handlefile("pseudosamples", "allselect", allnumber, trainnumber) else: raise Exception("No such model! Please make sure that `model` takes the value in {T5}")
[ "numpy.random.seed", "argparse.ArgumentParser", "random.sample", "torch.manual_seed", "torch.cuda.manual_seed", "random.seed" ]
[((674, 696), 'random.seed', 'random.seed', (['args.seed'], {}), '(args.seed)\n', (685, 696), False, 'import random\n'), ((749, 774), 'numpy.random.seed', 'np.random.seed', (['args.seed'], {}), '(args.seed)\n', (763, 774), True, 'import numpy as np\n'), ((779, 807), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (796, 807), False, 'import torch\n'), ((812, 845), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['args.seed'], {}), '(args.seed)\n', (834, 845), False, 'import torch\n'), ((9238, 9285), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""latentRE"""'}), "(description='latentRE')\n", (9261, 9285), False, 'import argparse\n'), ((8280, 8324), 'random.sample', 'random.sample', (['finalres[key]', 'allnumber[key]'], {}), '(finalres[key], allnumber[key])\n', (8293, 8324), False, 'import random\n'), ((8566, 8604), 'random.sample', 'random.sample', (['indexlist', 'thistrainnum'], {}), '(indexlist, thistrainnum)\n', (8579, 8604), False, 'import random\n')]
import os import emulation_lib.ssh_lib as ssh import logging from datetime import datetime from datetime import timedelta from multiprocessing.dummy import Pool as ThreadPool import time from . import constants CONFIG = {} EXPECTED_RESULTFILES = {} CONFIG_FILES = {} REMOTE = 0 LOCAL = 1 setup_scripts = [] runtime_scripts = [] cmd = "" logger = logging.getLogger("emulation_lib") logger.setLevel(logging.INFO) def inventorize_scripts(): global setup_scripts global runtime_scripts # setup-scripts for filename in [f for f in os.listdir(CONFIG["COMMAND_DIR"]) if f.endswith(constants.SETUP_SCRIPT_POSTFIX)]: name = filename.replace(constants.SETUP_SCRIPT_POSTFIX, "") if name not in setup_scripts: setup_scripts.append(name) # runtime-scripts for filename in [f for f in os.listdir(CONFIG["COMMAND_DIR"]) if f.endswith(constants.RUNTIME_SCRIPT_POSTFIX)]: name = filename.replace(constants.RUNTIME_SCRIPT_POSTFIX, "") if name not in runtime_scripts: runtime_scripts.append(name) return def perform_sanity_checks(): for ip in setup_scripts: if ip not in runtime_scripts: raise ValueError(ip + " is missing a corresponding runtime-script, aborting ...") for ip in runtime_scripts: if ip not in setup_scripts: raise ValueError(ip + " is missing a corresponding setup-script, aborting ...") def perform_setup(ip): s = ssh.Connection(ip, CONFIG["SSH_USER"], password=CONFIG["SSH_PASSWORD"]) # create folder structure foldercmd = "mkdir -p " + CONFIG["REMOTE_EMULATION_DIR"] + " " + CONFIG["REMOTE_CONFIG_DIR"] + " " + CONFIG["REMOTE_RESULT_DIR"] + " " + CONFIG["REMOTE_DATA_DIR"] s.execute(foldercmd) target_setup_file = os.path.join(CONFIG["REMOTE_CONFIG_DIR"], constants.SETUP_SCRIPT_POSTFIX) target_runtime_file = os.path.join(CONFIG["REMOTE_CONFIG_DIR"], constants.RUNTIME_SCRIPT_POSTFIX) # transmit setup- and runtime-scripts s.put(os.path.join(CONFIG["COMMAND_DIR"], ip + constants.SETUP_SCRIPT_POSTFIX), target_setup_file) s.put(os.path.join(CONFIG["COMMAND_DIR"] + "/" + ip + constants.RUNTIME_SCRIPT_POSTFIX), target_runtime_file) # transmit config-files for config_file in CONFIG_FILES[ip]: s.put(config_file[LOCAL], config_file[REMOTE]) # transmit config-file s.execute("chmod +x " + target_setup_file) result = s.execute(target_setup_file + " > /dev/null 2>&1 ; date -u; echo 'finished setup'") # wait for completion logger.info(ip + ": " + str(result)) s.close() return def execute_runtime_script(ip): s = ssh.Connection(ip, CONFIG["SSH_USER"], password=CONFIG["SSH_PASSWORD"]) result = s.execute("screen -d -m " + cmd) #logger.info(result) s.close() return def collect_traces(ip): s = ssh.Connection(ip, CONFIG["SSH_USER"], password=CONFIG["SSH_PASSWORD"]) for fileTuple in EXPECTED_RESULTFILES[ip]: parentdir = os.path.dirname(fileTuple[LOCAL]) if not os.path.isdir(parentdir): os.makedirs(parentdir) # ensure local folder structure exists if fileTuple[LOCAL].endswith(".zip"): # zip first s.execute("rm " + fileTuple[REMOTE] + ".zip") # remove eventually already existing file s.execute("cd " + os.path.dirname(fileTuple[REMOTE]) + " && zip -j " + os.path.basename(fileTuple[REMOTE]) + ".zip " + os.path.basename(fileTuple[REMOTE])) s.get(fileTuple[REMOTE] + ".zip", fileTuple[LOCAL]) else: s.get(fileTuple[REMOTE], fileTuple[LOCAL]) s.close() # # main entry-point of the program # def start_emulation_run(duration, expectedResultfiles, configFiles, config): global cmd global CONFIG global EXPECTED_RESULTFILES global CONFIG_FILES CONFIG = config EXPECTED_RESULTFILES = expectedResultfiles CONFIG_FILES = configFiles # inventorize scripts inventorize_scripts() # perform sanity-checks (e.g. there must be a runtime-script for every setup-script and vice versa) perform_sanity_checks() # deploy scripts + run all setup-scripts and await their termination logger.info("Performing the setup (script-distribution + run all setup-scripts) ...") pool = ThreadPool() results = pool.map(perform_setup, setup_scripts) pool.close() pool.join() # logger.info(results) # run all runtime-scripts (async ssh-ops towards single starting-time for all nodes) logger.info("Starting all runtime-scripts (" + datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S') + ")") start = datetime.utcnow() + timedelta(seconds=CONFIG["MIN_START_TIME_OFFSET"]) + timedelta(seconds=1) start_time = start.strftime('%Y-%m-%d %H:%M:%S') with open(os.path.join(CONFIG["RESULT_DIR"] + 'start_times.txt'), 'a') as time_index: # save common start time for every run time_index.write(str(CONFIG["RUN"]) + '\t' + start_time + '\n') logger.info("Coordinated start at: " + start_time) # build runtime-script-command cmd = "cmdScheduler " + os.path.join(CONFIG["REMOTE_CONFIG_DIR"],constants.RUNTIME_SCRIPT_POSTFIX) + " " + start_time # call start-scripts pool = ThreadPool() pool.map(execute_runtime_script, setup_scripts) pool.close() pool.join() logger.info("Waiting for emulation to end") emulationEnd = start + timedelta(seconds=duration) time.sleep((emulationEnd - datetime.utcnow()).seconds + 1) # '+1' ... account for rounding errors # collect result-files logger.info("Waiting five seconds for logfiles to be written (" + datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S') + ")") time.sleep(5) # wait for (eventual) logfiles to be written logger.info("Collecting results (" + datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S') + ")") pool = ThreadPool() pool.map(collect_traces, expectedResultfiles) pool.close() pool.join()
[ "os.makedirs", "os.path.basename", "multiprocessing.dummy.Pool", "os.path.isdir", "os.path.dirname", "time.sleep", "datetime.datetime.utcnow", "emulation_lib.ssh_lib.Connection", "datetime.timedelta", "os.path.join", "os.listdir", "logging.getLogger" ]
[((349, 383), 'logging.getLogger', 'logging.getLogger', (['"""emulation_lib"""'], {}), "('emulation_lib')\n", (366, 383), False, 'import logging\n'), ((1461, 1532), 'emulation_lib.ssh_lib.Connection', 'ssh.Connection', (['ip', "CONFIG['SSH_USER']"], {'password': "CONFIG['SSH_PASSWORD']"}), "(ip, CONFIG['SSH_USER'], password=CONFIG['SSH_PASSWORD'])\n", (1475, 1532), True, 'import emulation_lib.ssh_lib as ssh\n'), ((1781, 1854), 'os.path.join', 'os.path.join', (["CONFIG['REMOTE_CONFIG_DIR']", 'constants.SETUP_SCRIPT_POSTFIX'], {}), "(CONFIG['REMOTE_CONFIG_DIR'], constants.SETUP_SCRIPT_POSTFIX)\n", (1793, 1854), False, 'import os\n'), ((1881, 1956), 'os.path.join', 'os.path.join', (["CONFIG['REMOTE_CONFIG_DIR']", 'constants.RUNTIME_SCRIPT_POSTFIX'], {}), "(CONFIG['REMOTE_CONFIG_DIR'], constants.RUNTIME_SCRIPT_POSTFIX)\n", (1893, 1956), False, 'import os\n'), ((2642, 2713), 'emulation_lib.ssh_lib.Connection', 'ssh.Connection', (['ip', "CONFIG['SSH_USER']"], {'password': "CONFIG['SSH_PASSWORD']"}), "(ip, CONFIG['SSH_USER'], password=CONFIG['SSH_PASSWORD'])\n", (2656, 2713), True, 'import emulation_lib.ssh_lib as ssh\n'), ((2844, 2915), 'emulation_lib.ssh_lib.Connection', 'ssh.Connection', (['ip', "CONFIG['SSH_USER']"], {'password': "CONFIG['SSH_PASSWORD']"}), "(ip, CONFIG['SSH_USER'], password=CONFIG['SSH_PASSWORD'])\n", (2858, 2915), True, 'import emulation_lib.ssh_lib as ssh\n'), ((4294, 4306), 'multiprocessing.dummy.Pool', 'ThreadPool', ([], {}), '()\n', (4304, 4306), True, 'from multiprocessing.dummy import Pool as ThreadPool\n'), ((5227, 5239), 'multiprocessing.dummy.Pool', 'ThreadPool', ([], {}), '()\n', (5237, 5239), True, 'from multiprocessing.dummy import Pool as ThreadPool\n'), ((5688, 5701), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (5698, 5701), False, 'import time\n'), ((5855, 5867), 'multiprocessing.dummy.Pool', 'ThreadPool', ([], {}), '()\n', (5865, 5867), True, 'from multiprocessing.dummy import Pool as ThreadPool\n'), ((2010, 2082), 'os.path.join', 'os.path.join', (["CONFIG['COMMAND_DIR']", '(ip + constants.SETUP_SCRIPT_POSTFIX)'], {}), "(CONFIG['COMMAND_DIR'], ip + constants.SETUP_SCRIPT_POSTFIX)\n", (2022, 2082), False, 'import os\n'), ((2113, 2199), 'os.path.join', 'os.path.join', (["(CONFIG['COMMAND_DIR'] + '/' + ip + constants.RUNTIME_SCRIPT_POSTFIX)"], {}), "(CONFIG['COMMAND_DIR'] + '/' + ip + constants.\n RUNTIME_SCRIPT_POSTFIX)\n", (2125, 2199), False, 'import os\n'), ((2983, 3016), 'os.path.dirname', 'os.path.dirname', (['fileTuple[LOCAL]'], {}), '(fileTuple[LOCAL])\n', (2998, 3016), False, 'import os\n'), ((4701, 4721), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(1)'}), '(seconds=1)\n', (4710, 4721), False, 'from datetime import timedelta\n'), ((5401, 5428), 'datetime.timedelta', 'timedelta', ([], {'seconds': 'duration'}), '(seconds=duration)\n', (5410, 5428), False, 'from datetime import timedelta\n'), ((548, 581), 'os.listdir', 'os.listdir', (["CONFIG['COMMAND_DIR']"], {}), "(CONFIG['COMMAND_DIR'])\n", (558, 581), False, 'import os\n'), ((830, 863), 'os.listdir', 'os.listdir', (["CONFIG['COMMAND_DIR']"], {}), "(CONFIG['COMMAND_DIR'])\n", (840, 863), False, 'import os\n'), ((3032, 3056), 'os.path.isdir', 'os.path.isdir', (['parentdir'], {}), '(parentdir)\n', (3045, 3056), False, 'import os\n'), ((3070, 3092), 'os.makedirs', 'os.makedirs', (['parentdir'], {}), '(parentdir)\n', (3081, 3092), False, 'import os\n'), ((4628, 4645), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (4643, 4645), False, 'from datetime import datetime\n'), ((4648, 4698), 'datetime.timedelta', 'timedelta', ([], {'seconds': "CONFIG['MIN_START_TIME_OFFSET']"}), "(seconds=CONFIG['MIN_START_TIME_OFFSET'])\n", (4657, 4698), False, 'from datetime import timedelta\n'), ((4790, 4844), 'os.path.join', 'os.path.join', (["(CONFIG['RESULT_DIR'] + 'start_times.txt')"], {}), "(CONFIG['RESULT_DIR'] + 'start_times.txt')\n", (4802, 4844), False, 'import os\n'), ((5096, 5171), 'os.path.join', 'os.path.join', (["CONFIG['REMOTE_CONFIG_DIR']", 'constants.RUNTIME_SCRIPT_POSTFIX'], {}), "(CONFIG['REMOTE_CONFIG_DIR'], constants.RUNTIME_SCRIPT_POSTFIX)\n", (5108, 5171), False, 'import os\n'), ((3444, 3479), 'os.path.basename', 'os.path.basename', (['fileTuple[REMOTE]'], {}), '(fileTuple[REMOTE])\n', (3460, 3479), False, 'import os\n'), ((5460, 5477), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (5475, 5477), False, 'from datetime import datetime\n'), ((4561, 4578), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (4576, 4578), False, 'from datetime import datetime\n'), ((5629, 5646), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (5644, 5646), False, 'from datetime import datetime\n'), ((5789, 5806), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (5804, 5806), False, 'from datetime import datetime\n'), ((3374, 3409), 'os.path.basename', 'os.path.basename', (['fileTuple[REMOTE]'], {}), '(fileTuple[REMOTE])\n', (3390, 3409), False, 'import os\n'), ((3321, 3355), 'os.path.dirname', 'os.path.dirname', (['fileTuple[REMOTE]'], {}), '(fileTuple[REMOTE])\n', (3336, 3355), False, 'import os\n')]
from __future__ import absolute_import, division, print_function from builtins import str from panoptes_client.panoptes import PanoptesObject, LinkResolver from panoptes_client.set_member_subject import SetMemberSubject from panoptes_client.subject import Subject from panoptes_client.utils import batchable class SubjectSet(PanoptesObject): _api_slug = 'subject_sets' _link_slug = 'subject_sets' _edit_attributes = ( 'display_name', { 'links': ( 'project', ), 'metadata': ( 'category', ) }, ) @property def subjects(self): """ A generator which yields :py:class:`.Subject` objects which are in this subject set. Examples:: for subject in subject_set.subjects: print(subject.id) """ for sms in SetMemberSubject.where(subject_set_id=self.id): yield sms.links.subject @batchable def add(self, subjects): """ Links the given subjects to this set. - **subjects** can be a list of :py:class:`.Subject` instances, a list of subject IDs, a single :py:class:`.Subject` instance, or a single subject ID. Examples:: subject_set.add(1234) subject_set.add([1,2,3,4]) subject_set.add(Subject(1234)) subject_set.add([Subject(12), Subject(34)]) """ _subjects = self._build_subject_list(subjects) self.http_post( '{}/links/subjects'.format(self.id), json={'subjects': _subjects} ) @batchable def remove(self, subjects): """ Unlinks the given subjects from this set. - **subjects** can be a list of :py:class:`.Subject` instances, a list of subject IDs, a single :py:class:`.Subject` instance, or a single subject ID. Examples:: subject_set.remove(1234) subject_set.remove([1,2,3,4]) subject_set.remove(Subject(1234)) subject_set.remove([Subject(12), Subject(34)]) """ _subjects = self._build_subject_list(subjects) _subjects_ids = ",".join(_subjects) self.http_delete( '{}/links/subjects/{}'.format(self.id, _subjects_ids) ) def __contains__(self, subject): """ Tests if the subject is linked to the subject_set. - **subject** a single :py:class:`.Subject` instance, or a single subject ID. Returns a boolean indicating if the subject is linked to the subject_set. Examples:: 1234 in subject_set Subject(1234) in subject_set """ if isinstance(subject, Subject): _subject_id = str(subject.id) else: _subject_id = str(subject) linked_subject_count = SetMemberSubject.where( subject_set_id=self.id, subject_id=_subject_id ).object_count return linked_subject_count == 1 def _build_subject_list(self, subjects): _subjects = [] for subject in subjects: if not ( isinstance(subject, Subject) or isinstance(subject, (int, str,)) ): raise TypeError if isinstance(subject, Subject): _subject_id = str(subject.id) else: _subject_id = str(subject) _subjects.append(_subject_id) return _subjects LinkResolver.register(SubjectSet) LinkResolver.register(SubjectSet, 'subject_set')
[ "builtins.str", "panoptes_client.panoptes.LinkResolver.register", "panoptes_client.set_member_subject.SetMemberSubject.where" ]
[((3590, 3623), 'panoptes_client.panoptes.LinkResolver.register', 'LinkResolver.register', (['SubjectSet'], {}), '(SubjectSet)\n', (3611, 3623), False, 'from panoptes_client.panoptes import PanoptesObject, LinkResolver\n'), ((3624, 3672), 'panoptes_client.panoptes.LinkResolver.register', 'LinkResolver.register', (['SubjectSet', '"""subject_set"""'], {}), "(SubjectSet, 'subject_set')\n", (3645, 3672), False, 'from panoptes_client.panoptes import PanoptesObject, LinkResolver\n'), ((906, 952), 'panoptes_client.set_member_subject.SetMemberSubject.where', 'SetMemberSubject.where', ([], {'subject_set_id': 'self.id'}), '(subject_set_id=self.id)\n', (928, 952), False, 'from panoptes_client.set_member_subject import SetMemberSubject\n'), ((2838, 2853), 'builtins.str', 'str', (['subject.id'], {}), '(subject.id)\n', (2841, 2853), False, 'from builtins import str\n'), ((2894, 2906), 'builtins.str', 'str', (['subject'], {}), '(subject)\n', (2897, 2906), False, 'from builtins import str\n'), ((2939, 3009), 'panoptes_client.set_member_subject.SetMemberSubject.where', 'SetMemberSubject.where', ([], {'subject_set_id': 'self.id', 'subject_id': '_subject_id'}), '(subject_set_id=self.id, subject_id=_subject_id)\n', (2961, 3009), False, 'from panoptes_client.set_member_subject import SetMemberSubject\n'), ((3442, 3457), 'builtins.str', 'str', (['subject.id'], {}), '(subject.id)\n', (3445, 3457), False, 'from builtins import str\n'), ((3506, 3518), 'builtins.str', 'str', (['subject'], {}), '(subject)\n', (3509, 3518), False, 'from builtins import str\n')]
from discord import Colour, Embed from discord.ext.commands import (BadArgument, Cog, CommandError, CommandNotFound, Context, MissingRequiredArgument) from bot.bot import SirRobin from bot.log import get_logger log = get_logger(__name__) class ErrorHandler(Cog): """Handles errors emitted from commands.""" def __init__(self, bot: SirRobin): self.bot = bot @staticmethod def _get_error_embed(title: str, body: str) -> Embed: """Return a embed with our error colour assigned.""" return Embed( title=title, colour=Colour.brand_red(), description=body ) @Cog.listener() async def on_command_error(self, ctx: Context, error: CommandError) -> None: """ Generic command error handling from other cogs. Using the error type, handle the error appropriately. if there is no handling for the error type raised, a message will be sent to the user & it will be logged. In the future, I would expect this to be used as a place to push errors to a sentry instance. """ log.trace(f"Handling a raised error {error} from {ctx.command}") # We could handle the subclasses of UserInputError errors together, using the error # name as the embed title. Before doing this we would have to verify that all messages # attached to subclasses of this error are human-readable, as they are user facing. if isinstance(error, BadArgument): embed = self._get_error_embed("Bad argument", str(error)) await ctx.send(embed=embed) return elif isinstance(error, CommandNotFound): embed = self._get_error_embed("Command not found", str(error)) await ctx.send(embed=embed) return elif isinstance(error, MissingRequiredArgument): embed = self._get_error_embed("Missing required argument", str(error)) await ctx.send(embed=embed) return # If we haven't handled it by this point, it is considered an unexpected/handled error. await ctx.send( f"Sorry, an unexpected error occurred. Please let us know!\n\n" f"```{error.__class__.__name__}: {error}```" ) log.error(f"Error executing command invoked by {ctx.message.author}: {ctx.message.content}", exc_info=error) async def setup(bot: SirRobin) -> None: """Load the ErrorHandler cog.""" await bot.add_cog(ErrorHandler(bot))
[ "bot.log.get_logger", "discord.Colour.brand_red", "discord.ext.commands.Cog.listener" ]
[((287, 307), 'bot.log.get_logger', 'get_logger', (['__name__'], {}), '(__name__)\n', (297, 307), False, 'from bot.log import get_logger\n'), ((715, 729), 'discord.ext.commands.Cog.listener', 'Cog.listener', ([], {}), '()\n', (727, 729), False, 'from discord.ext.commands import BadArgument, Cog, CommandError, CommandNotFound, Context, MissingRequiredArgument\n'), ((650, 668), 'discord.Colour.brand_red', 'Colour.brand_red', ([], {}), '()\n', (666, 668), False, 'from discord import Colour, Embed\n')]
import os import shlex import subprocess from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.core.management.base import BaseCommand class Command(BaseCommand): """ Compresses / uploads an ATLAS database tarball """ help = "Compresses / uploads an ATLAS database tarball" @staticmethod def do_shell_command(command_string): result = subprocess.check_output(shlex.split(command_string)) return result.decode("utf-8") def handle(self, *args, **options): database_path = settings.SV_ATLAS_DB_PATH if database_path is None: msg = "The SV_ATLAS_DB_PATH setting is missing and is required for this management command to work." raise ImproperlyConfigured(msg) self.stdout.write( "--[Creating / uploading database tarball]--" ) database_file = os.path.basename(database_path) result = self.do_shell_command(f"md5sum {database_path}") md5sha = result.split(" ")[0] self.stdout.write(f"{database_path} md5 sha: {md5sha}") database_dir = os.path.dirname(database_path) os.chdir(database_dir) compressed_db_filename = f"db-{md5sha}.tgz" self.stdout.write(f"Compressing {database_path} as {compressed_db_filename} ") tar_cmd = f"tar -cvzf {compressed_db_filename} {database_file}" self.do_shell_command(tar_cmd) bucket = "atlas-db-tarballs" site = "sv-pdl" self.stdout.write(f"Uploading {compressed_db_filename} to {bucket}") gsutil_cmd = f"gsutil -m cp -a public-read {compressed_db_filename} gs://{bucket}/{site}/{compressed_db_filename}" self.do_shell_command(gsutil_cmd) url = f"https://storage.googleapis.com/{bucket}/{site}/{compressed_db_filename}" self.stdout.write(f"Uploaded to {url}") self.stdout.write(f"Removing {compressed_db_filename}") rm_cmd = f"rm {compressed_db_filename}" self.do_shell_command(rm_cmd) self.stdout.write(f"Writing {url} to .atlas-db-url") atlas_db_url_path = os.path.join( settings.PROJECT_ROOT, ".atlas-db-url" ) with open(atlas_db_url_path, "w") as f: f.write(url) self.stdout.write("--[Done!]--") # NOTE: run export ATLAS_DB_URL=$(cat .atlas-db-url) # to populate $ATLAS_DB_URL
[ "django.core.exceptions.ImproperlyConfigured", "os.path.basename", "os.path.dirname", "shlex.split", "os.path.join", "os.chdir" ]
[((914, 945), 'os.path.basename', 'os.path.basename', (['database_path'], {}), '(database_path)\n', (930, 945), False, 'import os\n'), ((1138, 1168), 'os.path.dirname', 'os.path.dirname', (['database_path'], {}), '(database_path)\n', (1153, 1168), False, 'import os\n'), ((1177, 1199), 'os.chdir', 'os.chdir', (['database_dir'], {}), '(database_dir)\n', (1185, 1199), False, 'import os\n'), ((2134, 2186), 'os.path.join', 'os.path.join', (['settings.PROJECT_ROOT', '""".atlas-db-url"""'], {}), "(settings.PROJECT_ROOT, '.atlas-db-url')\n", (2146, 2186), False, 'import os\n'), ((443, 470), 'shlex.split', 'shlex.split', (['command_string'], {}), '(command_string)\n', (454, 470), False, 'import shlex\n'), ((767, 792), 'django.core.exceptions.ImproperlyConfigured', 'ImproperlyConfigured', (['msg'], {}), '(msg)\n', (787, 792), False, 'from django.core.exceptions import ImproperlyConfigured\n')]
from typing import Dict import pytest from limited import Zone from limited.exceptions import LimitExceededException class MockZone(Zone): buckets: Dict[str, int] def __init__(self, size: int = 10, rate: float = 1.0): self.rate = rate self.size = size self.buckets = dict() def count(self, key: str) -> int: return self.buckets[key] def remove(self, key: str, count: int) -> bool: if self.buckets[key] >= count: self.buckets[key] -= count return True else: return False def test_zone_ttl(): zone = MockZone(size=10, rate=2.0) assert zone.ttl == 5.0 def test_zone_check(): zone = MockZone() zone.buckets['a'] = 5 zone.buckets['b'] = 0 assert zone.check('a') assert not zone.check('b') def test_zone_increment(): zone = MockZone() zone.buckets['a'] = 5 zone.increment('a') assert zone.buckets['a'] == 4 def test_zone_limit(): zone = MockZone() zone.buckets['a'] = 5 zone.buckets['b'] = 0 assert not zone.limit('a') assert zone.limit('b') assert zone.buckets['a'] == 4 assert zone.buckets['b'] == 0 def test_zone_hard_limit(): zone = MockZone() zone.buckets['a'] = 5 zone.buckets['b'] = 0 zone.hard_limit('a') with pytest.raises(LimitExceededException): zone.hard_limit('b')
[ "pytest.raises" ]
[((1321, 1358), 'pytest.raises', 'pytest.raises', (['LimitExceededException'], {}), '(LimitExceededException)\n', (1334, 1358), False, 'import pytest\n')]
from msilib import Table from tkinter import * import tkinter as tk from tkinter import filedialog from pandastable import Table,TableModel import pandas as pd from Hesapla import MC_Karar_Agaci #gerekli değişkenler test_sinir_indeks = 0 #pencere oluşturma root = Tk() root.title("Karar Ağacı Projesi") root.geometry("1480x800") frame1 = Frame(root) frame1.pack() #label ekleme title = Label(frame1,text="\n Cevher ile Muhammed'in sınıflandırma için otomatik karar ağacı programına hoşgeldiniz..\n\n",font=16,fg="purple") title.grid() def Load(): root2 = Tk() root2.withdraw() global file_path file_path = filedialog.askopenfilename(filetypes=(("All files", "*.*"),("Csv Files", "*.csv"),("Data Files", "*.data"))) global dataset dataset = pd.read_csv(file_path) frame2 = Frame(root) frame2.pack(side=BOTTOM) # asagıda cerceve olusmasını sağladık. pt = Table(frame2, dataframe=dataset, showstatusbar=True, showtoolbar=True,width=1000,height=500) pt.show() def getResult(): root3 = Tk() root3.title("Model - Başarı") root3.geometry("1480x800") test_sinir_indeks = int(trainingLimitEntry.get()) trainData = dataset.iloc[0:test_sinir_indeks] # train testData = dataset.iloc[test_sinir_indeks:dataset.shape[0]+1] # test # model oluştur. MC = MC_Karar_Agaci() hedefNitelikAdi = targetColumnEntry.get() R,model = MC.modelOlustur(trainData, hedefNitelikAdi) # Tahmin yap print("\n") sonuc = MC.tahminEt(root=R, test=testData, i=test_sinir_indeks) # i test verisinin kaçıncı indisten başladığı. print("Tahmin sonucu :", sonuc) frame3 = Frame(root3) frame3.pack(side=LEFT) listbox = Listbox(frame3,width=50, height=50,font=16) for i in model: listbox.insert(END,i) listbox.pack(fill=BOTH, expand=0) frame4 = Frame(root3) frame4.pack(side=RIGHT) score=0 index = 0 for i in testData[hedefNitelikAdi]: if i == sonuc[index]: score = score + 1 if len(sonuc)-1 == index: break index = index + 1 accuracy_score = score / len(testData[hedefNitelikAdi]) print(accuracy_score) list = [] list.append("Sonuçlar") list.append("Accuracy Score : " + str(accuracy_score)) list.append("") list.append("") for i in range(len(sonuc)): list.append("P:" + str(sonuc[i])+" T:" + str(testData.iloc[i][hedefNitelikAdi])) listbox2 = Listbox(frame4, width=50, height=50,font=16) for i in list: listbox2.insert(END, i) listbox2.pack(fill=BOTH, expand=0) root3.mainloop() LoadDatasetBtn = Button(frame1, text=" Dataset seç ", fg="blue", command=Load,font=16) LoadDatasetBtn.grid(row=2) spacerLabel = Label(frame1,text=" ") spacerLabel.grid(row=3, column=0, sticky=W, pady=1) targetColumnLabel = Label(frame1,text="Hedef Kolonu Giriniz: \n",font=14) targetColumnLabel.grid(row=4, column=0, sticky=W, pady=1) targetColumnEntry = Entry(frame1,font=14) targetColumnEntry.grid(row=4, column=0,sticky=N) maxDeptLabel = Label(frame1,text="*iptal* Maksimum Derinlik: \n",font=14) maxDeptLabel.grid(row=5, column=0, sticky=W) maxDeptEntry = Entry(frame1,font=14) maxDeptEntry.grid(row=5,column=0,sticky=N) trainingLimitLabel = Label(frame1,text="Eğitim veriseti sınır indeksi:\n",font=14) trainingLimitLabel.grid(row=6, column=0, sticky=W) trainingLimitEntry = Entry(frame1,font=14) trainingLimitEntry.grid(row=6, column = 0,sticky=N) getResultBtn = Button(frame1,text="Sonuçları Göster",fg="green" ,command=getResult,font=16) getResultBtn.grid(row=7) root.mainloop()
[ "pandas.read_csv", "Hesapla.MC_Karar_Agaci", "pandastable.Table", "tkinter.filedialog.askopenfilename" ]
[((631, 745), 'tkinter.filedialog.askopenfilename', 'filedialog.askopenfilename', ([], {'filetypes': "(('All files', '*.*'), ('Csv Files', '*.csv'), ('Data Files', '*.data'))"}), "(filetypes=(('All files', '*.*'), ('Csv Files',\n '*.csv'), ('Data Files', '*.data')))\n", (657, 745), False, 'from tkinter import filedialog\n'), ((774, 796), 'pandas.read_csv', 'pd.read_csv', (['file_path'], {}), '(file_path)\n', (785, 796), True, 'import pandas as pd\n'), ((901, 999), 'pandastable.Table', 'Table', (['frame2'], {'dataframe': 'dataset', 'showstatusbar': '(True)', 'showtoolbar': '(True)', 'width': '(1000)', 'height': '(500)'}), '(frame2, dataframe=dataset, showstatusbar=True, showtoolbar=True,\n width=1000, height=500)\n', (906, 999), False, 'from pandastable import Table, TableModel\n'), ((1328, 1344), 'Hesapla.MC_Karar_Agaci', 'MC_Karar_Agaci', ([], {}), '()\n', (1342, 1344), False, 'from Hesapla import MC_Karar_Agaci\n')]
import numpy as np import torch class UnityEnv(): """Unity Reacher Environment Wrapper https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Examples.md """ def __init__(self, env_file='data/Reacher.exe', no_graphics=True, mlagents=False): if mlagents: from mlagents.envs.environment import UnityEnvironment else: from unityagents import UnityEnvironment self.env = UnityEnvironment(file_name=env_file, no_graphics=no_graphics) self.brain_name = self.env.brain_names[0] brain = self.env.brains[self.brain_name] self.action_size = brain.vector_action_space_size if type(self.action_size) != int: self.action_size = self.action_size[0] env_info = self.env.reset(train_mode=True)[self.brain_name] self.state_size = env_info.vector_observations.shape[1] self.num_agents = len(env_info.agents) def reset(self, train=True): env_info = self.env.reset(train_mode=train)[self.brain_name] return env_info.vector_observations def close(self): self.env.close() def step(self, actions): actions = np.clip(actions, -1, 1) env_info = self.env.step(actions)[self.brain_name] next_states = env_info.vector_observations rewards = env_info.rewards dones = env_info.local_done return next_states, np.array(rewards), np.array(dones) @property def action_shape(self): return (self.num_agents, self.action_size)
[ "numpy.array", "unityagents.UnityEnvironment", "numpy.clip" ]
[((468, 529), 'unityagents.UnityEnvironment', 'UnityEnvironment', ([], {'file_name': 'env_file', 'no_graphics': 'no_graphics'}), '(file_name=env_file, no_graphics=no_graphics)\n', (484, 529), False, 'from unityagents import UnityEnvironment\n'), ((1213, 1236), 'numpy.clip', 'np.clip', (['actions', '(-1)', '(1)'], {}), '(actions, -1, 1)\n', (1220, 1236), True, 'import numpy as np\n'), ((1447, 1464), 'numpy.array', 'np.array', (['rewards'], {}), '(rewards)\n', (1455, 1464), True, 'import numpy as np\n'), ((1466, 1481), 'numpy.array', 'np.array', (['dones'], {}), '(dones)\n', (1474, 1481), True, 'import numpy as np\n')]
""" Test fastview/permissions.py """ import pytest from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser from .app.models import Entry def test_public__public_can_access(test_data, request_public): perm = Public() assert perm.check(request_public) is True assert perm.filter(request_public, test_data).count() == test_data.count() def test_login__public_cannot_access(test_data, request_public): perm = Login() assert perm.check(request_public) is False assert perm.filter(request_public, test_data).count() == 0 def test_login__authed_can_access(test_data, request_owner): perm = Login() assert perm.check(request_owner) is True assert perm.filter(request_owner, test_data).count() == test_data.count() def test_staff__public_cannot_access(test_data, request_public): perm = Staff() assert perm.check(request_public) is False assert perm.filter(request_public, test_data).count() == 0 def test_staff__authed_cannot_access(test_data, request_owner): perm = Staff() assert perm.check(request_owner) is False assert perm.filter(request_owner, test_data).count() == 0 def test_staff__staff_can_access(test_data, request_staff): perm = Staff() assert perm.check(request_staff) is True assert perm.filter(request_staff, test_data).count() == test_data.count() def test_superuser__public_cannot_access(test_data, request_public): perm = Superuser() assert perm.check(request_public) is False assert perm.filter(request_public, test_data).count() == 0 def test_superuser__authed_cannot_access(test_data, request_owner): perm = Superuser() assert perm.check(request_owner) is False assert perm.filter(request_owner, test_data).count() == 0 def test_superuser__staff_cannot_access(test_data, request_staff): perm = Superuser() assert perm.check(request_staff) is False assert perm.filter(request_staff, test_data).count() == 0 def test_superuser__superuser_can_access(test_data, request_superuser): perm = Superuser() assert perm.check(request_superuser) is True assert perm.filter(request_superuser, test_data).count() == test_data.count() def test_django__public_cannot_access(test_data, request_public): perm = Django(action="add") assert perm.check(request_public, model=Entry) is False assert perm.filter(request_public, test_data).count() == 0 def test_django__authed_cannot_access(test_data, request_owner): perm = Django(action="add") assert perm.check(request_owner, model=Entry) is False assert perm.filter(request_owner, test_data).count() == 0 def test_django__staff_cannot_access(test_data, request_staff): perm = Django(action="add") assert perm.check(request_staff, model=Entry) is False assert perm.filter(request_staff, test_data).count() == 0 def test_django__superuser_can_access(test_data, request_superuser): perm = Django(action="add") assert perm.check(request_superuser, model=Entry) is True assert perm.filter(request_superuser, test_data).count() == test_data.count() @pytest.mark.django_db def test_django__user_with_permission_can_access( test_data, request_other, user_other, add_entry_permission ): user_other.user_permissions.add(add_entry_permission) perm = Django(action="add") assert perm.check(request_other, model=Entry) is True assert perm.filter(request_other, test_data).count() == test_data.count() def test_owner__public_cannot_access(test_data, request_public): perm = Owner(owner_field="author") # Test data is ordered, the first is owned by user_owner owned = test_data.first() assert perm.check(request_public, instance=owned) is False assert perm.filter(request_public, test_data).count() == 0 def test_owner__owner_can_access_theirs(test_data, request_owner, user_owner): perm = Owner(owner_field="author") owned = test_data.first() assert perm.check(request_owner, instance=owned) is True assert perm.filter(request_owner, test_data).count() == 2 assert perm.filter(request_owner, test_data).filter(author=user_owner).count() == 2 def test_owner__other_can_access_theirs(test_data, request_other, user_other): perm = Owner(owner_field="author") owned = test_data.first() assert perm.check(request_other, instance=owned) is False assert perm.filter(request_other, test_data).count() == 2 assert perm.filter(request_other, test_data).filter(author=user_other).count() == 2 def test_owner__staff_cannot_access(test_data, request_staff): perm = Owner(owner_field="author") owned = test_data.first() assert perm.check(request_staff, instance=owned) is False assert perm.filter(request_staff, test_data).count() == 0 def test_owner__superuser_cannot_access(test_data, request_superuser): perm = Owner(owner_field="author") owned = test_data.first() assert perm.check(request_superuser, instance=owned) is False assert perm.filter(request_superuser, test_data).count() == 0 def test_and__owner_and_staff__owner_cannot_access(test_data, request_owner): perm = Owner(owner_field="author") & Staff() owned = test_data.first() assert perm.check(request_owner, instance=owned) is False assert perm.filter(request_owner, test_data).count() == 0 def test_and__owner_and_staff__staff_cannot_access(test_data, request_staff): perm = Owner(owner_field="author") & Staff() owned = test_data.first() assert perm.check(request_staff, instance=owned) is False assert perm.filter(request_staff, test_data).count() == 0 def test_and__owner_and_staff__staff_owner_can_access( test_data, request_owner, user_owner ): perm = Owner(owner_field="author") & Staff() owned = test_data.first() user_owner.is_staff = True user_owner.save() assert perm.check(request_owner, instance=owned) is True assert perm.filter(request_owner, test_data).count() == 2 def test_or__owner_or_staff__owner_can_access(test_data, request_owner): perm = Owner(owner_field="author") | Staff() owned = test_data.first() assert perm.check(request_owner, instance=owned) is True assert perm.filter(request_owner, test_data).count() == 2 def test_or__owner_or_staff__staff_can_access(test_data, request_staff): perm = Owner(owner_field="author") | Staff() owned = test_data.first() assert perm.check(request_staff, instance=owned) is True assert perm.filter(request_staff, test_data).count() == 4 def test_or__owner_or_staff__staff_owner_can_access( test_data, request_owner, user_owner ): perm = Owner(owner_field="author") | Staff() owned = test_data.first() user_owner.is_staff = True user_owner.save() assert perm.check(request_owner, instance=owned) is True assert perm.filter(request_owner, test_data).count() == 4 def test_or__owner_or_staff__other_cannot_access(test_data, request_other, user_other): perm = Owner(owner_field="author") | Staff() owned = test_data.first() assert perm.check(request_other, instance=owned) is False assert perm.filter(request_other, test_data).count() == 2 assert perm.filter(request_other, test_data).filter(author=user_other).count() == 2 def test_not__not_owner__all_can_access_all_except_own( test_data, request_owner, user_owner ): perm = ~Owner(owner_field="author") owned = test_data.first() not_owned = test_data.exclude(author=user_owner).first() assert perm.check(request_owner, instance=owned) is False assert perm.check(request_owner, instance=not_owned) is True assert perm.filter(request_owner, test_data).count() == 2 assert perm.filter(request_owner, test_data).filter(author=user_owner).count() == 0 def test_and_not__staff_not_owner__staff_can_access_all_except_own( test_data, request_owner, user_owner ): perm = Staff() & ~Owner(owner_field="author") owned = test_data.first() not_owned = test_data.exclude(author=user_owner).first() user_owner.is_staff = True user_owner.save() assert perm.check(request_owner, instance=owned) is False assert perm.check(request_owner, instance=not_owned) is True assert perm.filter(request_owner, test_data).count() == 2 assert perm.filter(request_owner, test_data).filter(author=user_owner).count() == 0
[ "fastview.permissions.Superuser", "fastview.permissions.Django", "fastview.permissions.Public", "fastview.permissions.Staff", "fastview.permissions.Owner", "fastview.permissions.Login" ]
[((239, 247), 'fastview.permissions.Public', 'Public', ([], {}), '()\n', (245, 247), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((451, 458), 'fastview.permissions.Login', 'Login', ([], {}), '()\n', (456, 458), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((643, 650), 'fastview.permissions.Login', 'Login', ([], {}), '()\n', (648, 650), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((852, 859), 'fastview.permissions.Staff', 'Staff', ([], {}), '()\n', (857, 859), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((1047, 1054), 'fastview.permissions.Staff', 'Staff', ([], {}), '()\n', (1052, 1054), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((1236, 1243), 'fastview.permissions.Staff', 'Staff', ([], {}), '()\n', (1241, 1243), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((1449, 1460), 'fastview.permissions.Superuser', 'Superuser', ([], {}), '()\n', (1458, 1460), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((1652, 1663), 'fastview.permissions.Superuser', 'Superuser', ([], {}), '()\n', (1661, 1663), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((1852, 1863), 'fastview.permissions.Superuser', 'Superuser', ([], {}), '()\n', (1861, 1863), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((2057, 2068), 'fastview.permissions.Superuser', 'Superuser', ([], {}), '()\n', (2066, 2068), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((2279, 2299), 'fastview.permissions.Django', 'Django', ([], {'action': '"""add"""'}), "(action='add')\n", (2285, 2299), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((2501, 2521), 'fastview.permissions.Django', 'Django', ([], {'action': '"""add"""'}), "(action='add')\n", (2507, 2521), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((2720, 2740), 'fastview.permissions.Django', 'Django', ([], {'action': '"""add"""'}), "(action='add')\n", (2726, 2740), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((2944, 2964), 'fastview.permissions.Django', 'Django', ([], {'action': '"""add"""'}), "(action='add')\n", (2950, 2964), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((3319, 3339), 'fastview.permissions.Django', 'Django', ([], {'action': '"""add"""'}), "(action='add')\n", (3325, 3339), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((3554, 3581), 'fastview.permissions.Owner', 'Owner', ([], {'owner_field': '"""author"""'}), "(owner_field='author')\n", (3559, 3581), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((3891, 3918), 'fastview.permissions.Owner', 'Owner', ([], {'owner_field': '"""author"""'}), "(owner_field='author')\n", (3896, 3918), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((4252, 4279), 'fastview.permissions.Owner', 'Owner', ([], {'owner_field': '"""author"""'}), "(owner_field='author')\n", (4257, 4279), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((4598, 4625), 'fastview.permissions.Owner', 'Owner', ([], {'owner_field': '"""author"""'}), "(owner_field='author')\n", (4603, 4625), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((4864, 4891), 'fastview.permissions.Owner', 'Owner', ([], {'owner_field': '"""author"""'}), "(owner_field='author')\n", (4869, 4891), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((5145, 5172), 'fastview.permissions.Owner', 'Owner', ([], {'owner_field': '"""author"""'}), "(owner_field='author')\n", (5150, 5172), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((5175, 5182), 'fastview.permissions.Staff', 'Staff', ([], {}), '()\n', (5180, 5182), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((5428, 5455), 'fastview.permissions.Owner', 'Owner', ([], {'owner_field': '"""author"""'}), "(owner_field='author')\n", (5433, 5455), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((5458, 5465), 'fastview.permissions.Staff', 'Staff', ([], {}), '()\n', (5463, 5465), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((5732, 5759), 'fastview.permissions.Owner', 'Owner', ([], {'owner_field': '"""author"""'}), "(owner_field='author')\n", (5737, 5759), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((5762, 5769), 'fastview.permissions.Staff', 'Staff', ([], {}), '()\n', (5767, 5769), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((6062, 6089), 'fastview.permissions.Owner', 'Owner', ([], {'owner_field': '"""author"""'}), "(owner_field='author')\n", (6067, 6089), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((6092, 6099), 'fastview.permissions.Staff', 'Staff', ([], {}), '()\n', (6097, 6099), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((6339, 6366), 'fastview.permissions.Owner', 'Owner', ([], {'owner_field': '"""author"""'}), "(owner_field='author')\n", (6344, 6366), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((6369, 6376), 'fastview.permissions.Staff', 'Staff', ([], {}), '()\n', (6374, 6376), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((6640, 6667), 'fastview.permissions.Owner', 'Owner', ([], {'owner_field': '"""author"""'}), "(owner_field='author')\n", (6645, 6667), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((6670, 6677), 'fastview.permissions.Staff', 'Staff', ([], {}), '()\n', (6675, 6677), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((6985, 7012), 'fastview.permissions.Owner', 'Owner', ([], {'owner_field': '"""author"""'}), "(owner_field='author')\n", (6990, 7012), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((7015, 7022), 'fastview.permissions.Staff', 'Staff', ([], {}), '()\n', (7020, 7022), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((7379, 7406), 'fastview.permissions.Owner', 'Owner', ([], {'owner_field': '"""author"""'}), "(owner_field='author')\n", (7384, 7406), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((7900, 7907), 'fastview.permissions.Staff', 'Staff', ([], {}), '()\n', (7905, 7907), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n'), ((7911, 7938), 'fastview.permissions.Owner', 'Owner', ([], {'owner_field': '"""author"""'}), "(owner_field='author')\n", (7916, 7938), False, 'from fastview.permissions import Django, Login, Owner, Public, Staff, Superuser\n')]
from UE4Parse.BinaryReader import BinaryStream from UE4Parse.Assets.Objects.FName import FName from UE4Parse.Versions.EUnrealEngineObjectUE4Version import UE4Versions from UE4Parse.Assets.Objects.FGuid import FGuid from Usmap import StructProps from Usmap.Objects.FPropertyTag import FPropertyTag as UsmapTag class FPropertyTag2: def __init__(self, **kwargs) -> None: for k,v in kwargs.items(): setattr(self, k, v) class FPropertyTag: ArrayIndex = 0 position = 0 BoolVal: int EnumName: FName EnumType: FName HasPropertyGuid: bool = 0 InnerType: FName Name: FName PropertyGuid: FGuid Size: int SizeOffset: int StructGuid: FGuid StructName: FName Type: FName ValueType: FName def __init__(self, reader: BinaryStream, propMappings: StructProps = None): if propMappings: propdata = propMappings.data self.Name = FName(propMappings.Name) self.ArrayIndex = propMappings.ArraySize # data section for attr in ["EnumName", "InnerType", "StructName", "ValueType", "Type"]: val = getattr(propdata, attr, None) if val is None: continue if attr == "InnerType": self.InnerData = val #FPropertyTag2(**val) elif attr == "ValueType": self.ValueData = val #FPropertyTag2(val) if isinstance(val, str): val = FName(val) if isinstance(val, UsmapTag): val = FName(val.Type) setattr(self, attr, val) return self.Name = reader.readFName() if self.Name.isNone: return self.Type = reader.readFName() self.Size = reader.readInt32() self.ArrayIndex = reader.readInt32() self.position = reader.base_stream.tell() if self.Type.Number == 0: Type = self.Type.string if Type == "StructProperty": self.StructName = reader.readFName() if reader.version >= UE4Versions.VER_UE4_STRUCT_GUID_IN_PROPERTY_TAG: self.StructGuid = FGuid(reader) elif Type == "BoolProperty": self.BoolVal = reader.readByteToInt() elif Type == "ByteProperty" or Type == "EnumProperty": self.EnumName = reader.readFName() elif Type == "ArrayProperty": if reader.version >= UE4Versions.VAR_UE4_ARRAY_PROPERTY_INNER_TAGS: self.InnerType = reader.readFName() elif Type == "SetProperty": if reader.version >= UE4Versions.VER_UE4_PROPERTY_TAG_SET_MAP_SUPPORT: self.InnerType = reader.readFName() elif Type == "MapProperty": if reader.version >= UE4Versions.VER_UE4_PROPERTY_TAG_SET_MAP_SUPPORT: self.InnerType = reader.readFName() self.ValueType = reader.readFName() HasPropertyGuid = reader.readByteToInt() if HasPropertyGuid != 0: FGuid(reader) self.end_pos = reader.tell() def __repr__(self): return f"<{self.Name.string} : {self.Type.string}>"
[ "UE4Parse.Assets.Objects.FName.FName", "UE4Parse.Assets.Objects.FGuid.FGuid" ]
[((933, 957), 'UE4Parse.Assets.Objects.FName.FName', 'FName', (['propMappings.Name'], {}), '(propMappings.Name)\n', (938, 957), False, 'from UE4Parse.Assets.Objects.FName import FName\n'), ((3161, 3174), 'UE4Parse.Assets.Objects.FGuid.FGuid', 'FGuid', (['reader'], {}), '(reader)\n', (3166, 3174), False, 'from UE4Parse.Assets.Objects.FGuid import FGuid\n'), ((1525, 1535), 'UE4Parse.Assets.Objects.FName.FName', 'FName', (['val'], {}), '(val)\n', (1530, 1535), False, 'from UE4Parse.Assets.Objects.FName import FName\n'), ((1608, 1623), 'UE4Parse.Assets.Objects.FName.FName', 'FName', (['val.Type'], {}), '(val.Type)\n', (1613, 1623), False, 'from UE4Parse.Assets.Objects.FName import FName\n'), ((2235, 2248), 'UE4Parse.Assets.Objects.FGuid.FGuid', 'FGuid', (['reader'], {}), '(reader)\n', (2240, 2248), False, 'from UE4Parse.Assets.Objects.FGuid import FGuid\n')]
import sys import random import pygame def create_player_cards(): # 创建卡片信息,player _card = [x for x in range(13)] cards = [] player = [[], [], [], []] # 单副牌(除去大小王) for x in range(4): color = list(map(lambda n: (n, x), _card)) cards = cards + color # 再加一副牌 cards = cards * 2 # 洗牌 count = 0 random.shuffle(cards) # 发牌 for ct in cards: player[count % 4].append(ct) count += 1 return player def sort_by_card(_card): n, _ = _card if n <= 1: n += 13 return n '''--------------main-----------------''' # 初始化显示 pygame.init() size = width, height = 1280, 720 black = 0, 0, 0 screen = pygame.display.set_mode(size) # 载入牌面 card_colors = ('k', 'l', 'p', 's') # 花色 card_images = [[], [], [], []] for c in range(4): for i in range(1, 14): img = pygame.image.load(f"img/{card_colors[c]}{i}.png") card_images[c].append(img) # 载入所有牌面 players_cards = create_player_cards() l_count = 0 for li in range(4): r_count = 0 players_cards[li].sort(key=sort_by_card) for c in players_cards[li]: card, c_colors = c screen.blit(card_images[c_colors][card], (150 + r_count, 50 + l_count)) pygame.time.wait(10) pygame.display.flip() r_count += 30 l_count += 100 # 主循环 while 1: # 处理退出 for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit()
[ "pygame.event.get", "pygame.display.set_mode", "random.shuffle", "pygame.init", "pygame.display.flip", "pygame.time.wait", "pygame.image.load", "sys.exit" ]
[((649, 662), 'pygame.init', 'pygame.init', ([], {}), '()\n', (660, 662), False, 'import pygame\n'), ((724, 753), 'pygame.display.set_mode', 'pygame.display.set_mode', (['size'], {}), '(size)\n', (747, 753), False, 'import pygame\n'), ((366, 387), 'random.shuffle', 'random.shuffle', (['cards'], {}), '(cards)\n', (380, 387), False, 'import random\n'), ((1432, 1450), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (1448, 1450), False, 'import pygame\n'), ((901, 950), 'pygame.image.load', 'pygame.image.load', (['f"""img/{card_colors[c]}{i}.png"""'], {}), "(f'img/{card_colors[c]}{i}.png')\n", (918, 950), False, 'import pygame\n'), ((1288, 1308), 'pygame.time.wait', 'pygame.time.wait', (['(10)'], {}), '(10)\n', (1304, 1308), False, 'import pygame\n'), ((1318, 1339), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (1337, 1339), False, 'import pygame\n'), ((1504, 1514), 'sys.exit', 'sys.exit', ([], {}), '()\n', (1512, 1514), False, 'import sys\n')]
""" Scatterplot in one dimension only """ from __future__ import absolute_import from numpy import empty # Enthought library imports from enable.api import black_color_trait, ColorTrait, MarkerTrait from traits.api import Any, Bool, Callable, Enum, Float, Str # local imports from .base_1d_plot import Base1DPlot from .scatterplot import render_markers class ScatterPlot1D(Base1DPlot): """ A scatterplot that in 1D """ # The type of marker to use. This is a mapped trait using strings as the # keys. marker = MarkerTrait # The pixel size of the marker, not including the thickness of the outline. marker_size = Float(4.0) # The CompiledPath to use if **marker** is set to "custom". This attribute # must be a compiled path for the Kiva context onto which this plot will # be rendered. Usually, importing kiva.GraphicsContext will do # the right thing. custom_symbol = Any # The function which actually renders the markers render_markers_func = Callable(render_markers) # The thickness, in pixels, of the outline to draw around the marker. If # this is 0, no outline is drawn. line_width = Float(1.0) # The fill color of the marker. color = black_color_trait # The color of the outline to draw around the marker. outline_color = black_color_trait #------------------------------------------------------------------------ # Selection and selection rendering # A selection on the lot is indicated by setting the index or value # datasource's 'selections' metadata item to a list of indices, or the # 'selection_mask' metadata to a boolean array of the same length as the # datasource. #------------------------------------------------------------------------ #: the plot data metadata name to watch for selection information selection_metadata_name = Str("selections") #: whether or not to display a selection show_selection = Bool(True) #: the marker type for selected points selection_marker = MarkerTrait #: the marker size for selected points selection_marker_size = Float(4.0) #: the thickness, in pixels, of the selected points selection_line_width = Float(1.0) #: the color of the selected points selection_color = ColorTrait("yellow") #: the outline color of the selected points selection_outline_color = black_color_trait #: The fade amount for unselected regions unselected_alpha = Float(0.3) #: The marker outline width to use for unselected points unselected_line_width = Float(1.0) #: alignment of markers relative to non-index direction alignment = Enum("center", "left", "right", "top", "bottom") #: offset of markers relative to non-index direction in pixels marker_offset = Float #: private trait holding postion of markers relative to non-index direction _marker_position = Float def _draw_plot(self, gc, view_bounds=None, mode="normal"): coord = self._compute_screen_coord() pts = empty(shape=(len(coord), 2)) if self.orientation == 'v': pts[:, 1] = coord pts[:, 0] = self._marker_position else: pts[:, 0] = coord pts[:, 1] = self._marker_position self._render(gc, pts) def _render(self, gc, pts): with gc: gc.clip_to_rect(self.x, self.y, self.width, self.height) if not self.index: return name = self.selection_metadata_name md = self.index.metadata if name in md and md[name] is not None and len(md[name]) > 0: selected_mask = md[name][0] selected_pts = pts[selected_mask] unselected_pts = pts[~selected_mask] color = list(self.color_) color[3] *= self.unselected_alpha outline_color = list(self.outline_color_) outline_color[3] *= self.unselected_alpha if unselected_pts.size > 0: self.render_markers_func(gc, unselected_pts, self.marker, self.marker_size, tuple(color), self.unselected_line_width, tuple(outline_color), self.custom_symbol) if selected_pts.size > 0: self.render_markers_func(gc, selected_pts, self.marker, self.marker_size, self.selection_color_, self.line_width, self.outline_color_, self.custom_symbol) else: self.render_markers_func(gc, pts, self.marker, self.marker_size, self.color_, self.line_width, self.outline_color_, self.custom_symbol) def __marker_positon_default(self): return self._get_marker_position() def _get_marker_position(self): x, y = self.position w, h = self.bounds if self.orientation == 'v': y, h = x, w if self.alignment == 'center': position = y + h/2.0 elif self.alignment in ['left', 'bottom']: position = y elif self.alignment in ['right', 'top']: position = y + h position += self.marker_offset return position def _bounds_changed(self, old, new): super(ScatterPlot1D, self)._bounds_changed(old, new) self._marker_position = self._get_marker_position() def _bounds_items_changed(self, event): super(ScatterPlot1D, self)._bounds_items_changed(event) self._marker_position = self._get_marker_position() def _orientation_changed(self): super(ScatterPlot1D, self)._orientation_changed() self._marker_position = self._get_marker_position() def _alignment_changed(self): self._marker_position = self._get_marker_position()
[ "traits.api.Float", "traits.api.Callable", "traits.api.Bool", "enable.api.ColorTrait", "traits.api.Str", "traits.api.Enum" ]
[((645, 655), 'traits.api.Float', 'Float', (['(4.0)'], {}), '(4.0)\n', (650, 655), False, 'from traits.api import Any, Bool, Callable, Enum, Float, Str\n'), ((1009, 1033), 'traits.api.Callable', 'Callable', (['render_markers'], {}), '(render_markers)\n', (1017, 1033), False, 'from traits.api import Any, Bool, Callable, Enum, Float, Str\n'), ((1168, 1178), 'traits.api.Float', 'Float', (['(1.0)'], {}), '(1.0)\n', (1173, 1178), False, 'from traits.api import Any, Bool, Callable, Enum, Float, Str\n'), ((1883, 1900), 'traits.api.Str', 'Str', (['"""selections"""'], {}), "('selections')\n", (1886, 1900), False, 'from traits.api import Any, Bool, Callable, Enum, Float, Str\n'), ((1968, 1978), 'traits.api.Bool', 'Bool', (['(True)'], {}), '(True)\n', (1972, 1978), False, 'from traits.api import Any, Bool, Callable, Enum, Float, Str\n'), ((2130, 2140), 'traits.api.Float', 'Float', (['(4.0)'], {}), '(4.0)\n', (2135, 2140), False, 'from traits.api import Any, Bool, Callable, Enum, Float, Str\n'), ((2225, 2235), 'traits.api.Float', 'Float', (['(1.0)'], {}), '(1.0)\n', (2230, 2235), False, 'from traits.api import Any, Bool, Callable, Enum, Float, Str\n'), ((2299, 2319), 'enable.api.ColorTrait', 'ColorTrait', (['"""yellow"""'], {}), "('yellow')\n", (2309, 2319), False, 'from enable.api import black_color_trait, ColorTrait, MarkerTrait\n'), ((2487, 2497), 'traits.api.Float', 'Float', (['(0.3)'], {}), '(0.3)\n', (2492, 2497), False, 'from traits.api import Any, Bool, Callable, Enum, Float, Str\n'), ((2588, 2598), 'traits.api.Float', 'Float', (['(1.0)'], {}), '(1.0)\n', (2593, 2598), False, 'from traits.api import Any, Bool, Callable, Enum, Float, Str\n'), ((2676, 2724), 'traits.api.Enum', 'Enum', (['"""center"""', '"""left"""', '"""right"""', '"""top"""', '"""bottom"""'], {}), "('center', 'left', 'right', 'top', 'bottom')\n", (2680, 2724), False, 'from traits.api import Any, Bool, Callable, Enum, Float, Str\n')]
from django.forms import ModelForm from .models import contact from django import forms class ContactForm(ModelForm): class Meta: model = contact fields = ['name', 'email', 'relation'] Father = 'Father' Mother = 'Mother' Brother = 'Brother' Sister = 'Sister' Husband = 'Husband' Friend = 'Friend' Relative = 'Relative' Other = 'Other' relations = ( (Father, 'Father'), (Mother, 'Mother'), (Brother, 'Brother'), (Sister, 'Sister'), (Husband, 'Husband'), (Friend, 'Friend'), (Relative, 'Relative'), (Other, 'Other'), ) widgets = { 'relation': forms.Select(choices=relations, attrs={'class': 'form-control'}), }
[ "django.forms.Select" ]
[((760, 824), 'django.forms.Select', 'forms.Select', ([], {'choices': 'relations', 'attrs': "{'class': 'form-control'}"}), "(choices=relations, attrs={'class': 'form-control'})\n", (772, 824), False, 'from django import forms\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.utils.timezone from django.conf import settings import uuid class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('contenttypes', '0002_remove_content_type_name'), ] operations = [ migrations.CreateModel( name='Badge', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('name', models.CharField(max_length=150)), ('slug', models.CharField(max_length=150)), ('priority', models.IntegerField(default=1)), ], ), migrations.CreateModel( name='Offer', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('description', models.TextField()), ('requirements', models.TextField()), ('time_commitment', models.TextField()), ('benefits', models.TextField()), ('location', models.CharField(max_length=150)), ('title', models.CharField(max_length=150)), ('started_at', models.DateTimeField(blank=True, null=True)), ('finished_at', models.DateTimeField(blank=True, null=True)), ('time_period', models.CharField(blank=True, default='', max_length=150)), ('status_old', models.CharField(default='NEW', max_length=30, null=True)), ('offer_status', models.CharField(default='unpublished', choices=[('unpublished', 'Unpublished'), ('published', 'Published'), ('rejected', 'Rejected')], max_length=16)), ('recruitment_status', models.CharField(default='open', choices=[('open', 'Open'), ('supplemental', 'Supplemental'), ('closed', 'Closed')], max_length=16)), ('action_status', models.CharField(default='ongoing', choices=[('future', 'Future'), ('ongoing', 'Ongoing'), ('finished', 'Finished')], max_length=16)), ('votes', models.BooleanField(default=0)), ('recruitment_start_date', models.DateTimeField(blank=True, null=True)), ('recruitment_end_date', models.DateTimeField(blank=True, null=True)), ('reserve_recruitment', models.BooleanField(default=True)), ('reserve_recruitment_start_date', models.DateTimeField(blank=True, null=True)), ('reserve_recruitment_end_date', models.DateTimeField(blank=True, null=True)), ('action_ongoing', models.BooleanField(default=False)), ('constant_coop', models.BooleanField(default=False)), ('action_start_date', models.DateTimeField(blank=True, null=True)), ('action_end_date', models.DateTimeField(blank=True, null=True)), ('volunteers_limit', models.IntegerField(blank=True, default=0, null=True)), ], ), migrations.CreateModel( name='OfferImage', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('path', models.ImageField(upload_to='offers/')), ('is_main', models.BooleanField(default=False)), ('created_at', models.DateTimeField(auto_now_add=True)), ('offer', models.ForeignKey(to='volontulo.Offer')), ], ), migrations.CreateModel( name='Organization', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('name', models.CharField(max_length=150)), ('address', models.CharField(max_length=150)), ('description', models.TextField()), ], ), migrations.CreateModel( name='OrganizationGallery', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('path', models.ImageField(upload_to='gallery/')), ('is_main', models.BooleanField(default=False)), ('organization', models.ForeignKey(to='volontulo.Organization', related_name='images')), ], ), migrations.CreateModel( name='UserBadges', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('created_at', models.DateTimeField(blank=True, default=django.utils.timezone.now)), ('description', models.CharField(max_length=255)), ('counter', models.IntegerField(blank=True, default=0)), ('badge', models.ForeignKey(to='volontulo.Badge')), ('content_type', models.ForeignKey(null=True, to='contenttypes.ContentType')), ], ), migrations.CreateModel( name='UserGallery', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('image', models.ImageField(upload_to='profile/')), ('is_avatar', models.BooleanField(default=False)), ], ), migrations.CreateModel( name='UserProfile', fields=[ ('id', models.AutoField(verbose_name='ID', auto_created=True, primary_key=True, serialize=False)), ('is_administrator', models.BooleanField(default=False)), ('uuid', models.UUIDField(default=uuid.uuid4, unique=True)), ('badges', models.ManyToManyField(to='volontulo.Badge', through='volontulo.UserBadges', related_name='user_profile')), ('organizations', models.ManyToManyField(to='volontulo.Organization', related_name='userprofiles')), ('user', models.OneToOneField(to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='usergallery', name='userprofile', field=models.ForeignKey(to='volontulo.UserProfile', related_name='images'), ), migrations.AddField( model_name='userbadges', name='userprofile', field=models.ForeignKey(to='volontulo.UserProfile', db_column='userprofile_id'), ), migrations.AddField( model_name='organizationgallery', name='published_by', field=models.ForeignKey(to='volontulo.UserProfile', related_name='gallery'), ), migrations.AddField( model_name='offerimage', name='userprofile', field=models.ForeignKey(to='volontulo.UserProfile', related_name='offerimages'), ), migrations.AddField( model_name='offer', name='organization', field=models.ForeignKey(to='volontulo.Organization'), ), migrations.AddField( model_name='offer', name='volunteers', field=models.ManyToManyField(to=settings.AUTH_USER_MODEL), ), ]
[ "django.db.models.TextField", "django.db.models.OneToOneField", "django.db.migrations.swappable_dependency", "django.db.models.ManyToManyField", "django.db.models.UUIDField", "django.db.models.ForeignKey", "django.db.models.CharField", "django.db.models.BooleanField", "django.db.models.AutoField", "django.db.models.ImageField", "django.db.models.IntegerField", "django.db.models.DateTimeField" ]
[((251, 308), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (282, 308), False, 'from django.db import models, migrations\n'), ((6310, 6378), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'to': '"""volontulo.UserProfile"""', 'related_name': '"""images"""'}), "(to='volontulo.UserProfile', related_name='images')\n", (6327, 6378), False, 'from django.db import models, migrations\n'), ((6507, 6580), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'to': '"""volontulo.UserProfile"""', 'db_column': '"""userprofile_id"""'}), "(to='volontulo.UserProfile', db_column='userprofile_id')\n", (6524, 6580), False, 'from django.db import models, migrations\n'), ((6719, 6788), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'to': '"""volontulo.UserProfile"""', 'related_name': '"""gallery"""'}), "(to='volontulo.UserProfile', related_name='gallery')\n", (6736, 6788), False, 'from django.db import models, migrations\n'), ((6917, 6990), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'to': '"""volontulo.UserProfile"""', 'related_name': '"""offerimages"""'}), "(to='volontulo.UserProfile', related_name='offerimages')\n", (6934, 6990), False, 'from django.db import models, migrations\n'), ((7115, 7161), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'to': '"""volontulo.Organization"""'}), "(to='volontulo.Organization')\n", (7132, 7161), False, 'from django.db import models, migrations\n'), ((7284, 7335), 'django.db.models.ManyToManyField', 'models.ManyToManyField', ([], {'to': 'settings.AUTH_USER_MODEL'}), '(to=settings.AUTH_USER_MODEL)\n', (7306, 7335), False, 'from django.db import models, migrations\n'), ((497, 590), 'django.db.models.AutoField', 'models.AutoField', ([], {'verbose_name': '"""ID"""', 'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)'}), "(verbose_name='ID', auto_created=True, primary_key=True,\n serialize=False)\n", (513, 590), False, 'from django.db import models, migrations\n'), ((614, 646), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(150)'}), '(max_length=150)\n', (630, 646), False, 'from django.db import models, migrations\n'), ((674, 706), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(150)'}), '(max_length=150)\n', (690, 706), False, 'from django.db import models, migrations\n'), ((738, 768), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(1)'}), '(default=1)\n', (757, 768), False, 'from django.db import models, migrations\n'), ((899, 992), 'django.db.models.AutoField', 'models.AutoField', ([], {'verbose_name': '"""ID"""', 'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)'}), "(verbose_name='ID', auto_created=True, primary_key=True,\n serialize=False)\n", (915, 992), False, 'from django.db import models, migrations\n'), ((1023, 1041), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (1039, 1041), False, 'from django.db import models, migrations\n'), ((1077, 1095), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (1093, 1095), False, 'from django.db import models, migrations\n'), ((1134, 1152), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (1150, 1152), False, 'from django.db import models, migrations\n'), ((1184, 1202), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (1200, 1202), False, 'from django.db import models, migrations\n'), ((1234, 1266), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(150)'}), '(max_length=150)\n', (1250, 1266), False, 'from django.db import models, migrations\n'), ((1295, 1327), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(150)'}), '(max_length=150)\n', (1311, 1327), False, 'from django.db import models, migrations\n'), ((1361, 1404), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (1381, 1404), False, 'from django.db import models, migrations\n'), ((1439, 1482), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (1459, 1482), False, 'from django.db import models, migrations\n'), ((1517, 1573), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'default': '""""""', 'max_length': '(150)'}), "(blank=True, default='', max_length=150)\n", (1533, 1573), False, 'from django.db import models, migrations\n'), ((1607, 1664), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""NEW"""', 'max_length': '(30)', 'null': '(True)'}), "(default='NEW', max_length=30, null=True)\n", (1623, 1664), False, 'from django.db import models, migrations\n'), ((1700, 1858), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""unpublished"""', 'choices': "[('unpublished', 'Unpublished'), ('published', 'Published'), ('rejected',\n 'Rejected')]", 'max_length': '(16)'}), "(default='unpublished', choices=[('unpublished',\n 'Unpublished'), ('published', 'Published'), ('rejected', 'Rejected')],\n max_length=16)\n", (1716, 1858), False, 'from django.db import models, migrations\n'), ((1892, 2027), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""open"""', 'choices': "[('open', 'Open'), ('supplemental', 'Supplemental'), ('closed', 'Closed')]", 'max_length': '(16)'}), "(default='open', choices=[('open', 'Open'), ('supplemental',\n 'Supplemental'), ('closed', 'Closed')], max_length=16)\n", (1908, 2027), False, 'from django.db import models, migrations\n'), ((2060, 2197), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""ongoing"""', 'choices': "[('future', 'Future'), ('ongoing', 'Ongoing'), ('finished', 'Finished')]", 'max_length': '(16)'}), "(default='ongoing', choices=[('future', 'Future'), (\n 'ongoing', 'Ongoing'), ('finished', 'Finished')], max_length=16)\n", (2076, 2197), False, 'from django.db import models, migrations\n'), ((2221, 2251), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(0)'}), '(default=0)\n', (2240, 2251), False, 'from django.db import models, migrations\n'), ((2297, 2340), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (2317, 2340), False, 'from django.db import models, migrations\n'), ((2384, 2427), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (2404, 2427), False, 'from django.db import models, migrations\n'), ((2470, 2503), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(True)'}), '(default=True)\n', (2489, 2503), False, 'from django.db import models, migrations\n'), ((2557, 2600), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (2577, 2600), False, 'from django.db import models, migrations\n'), ((2652, 2695), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (2672, 2695), False, 'from django.db import models, migrations\n'), ((2733, 2767), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (2752, 2767), False, 'from django.db import models, migrations\n'), ((2804, 2838), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (2823, 2838), False, 'from django.db import models, migrations\n'), ((2879, 2922), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (2899, 2922), False, 'from django.db import models, migrations\n'), ((2961, 3004), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (2981, 3004), False, 'from django.db import models, migrations\n'), ((3044, 3097), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'blank': '(True)', 'default': '(0)', 'null': '(True)'}), '(blank=True, default=0, null=True)\n', (3063, 3097), False, 'from django.db import models, migrations\n'), ((3233, 3326), 'django.db.models.AutoField', 'models.AutoField', ([], {'verbose_name': '"""ID"""', 'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)'}), "(verbose_name='ID', auto_created=True, primary_key=True,\n serialize=False)\n", (3249, 3326), False, 'from django.db import models, migrations\n'), ((3350, 3388), 'django.db.models.ImageField', 'models.ImageField', ([], {'upload_to': '"""offers/"""'}), "(upload_to='offers/')\n", (3367, 3388), False, 'from django.db import models, migrations\n'), ((3419, 3453), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (3438, 3453), False, 'from django.db import models, migrations\n'), ((3487, 3526), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (3507, 3526), False, 'from django.db import models, migrations\n'), ((3555, 3594), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'to': '"""volontulo.Offer"""'}), "(to='volontulo.Offer')\n", (3572, 3594), False, 'from django.db import models, migrations\n'), ((3732, 3825), 'django.db.models.AutoField', 'models.AutoField', ([], {'verbose_name': '"""ID"""', 'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)'}), "(verbose_name='ID', auto_created=True, primary_key=True,\n serialize=False)\n", (3748, 3825), False, 'from django.db import models, migrations\n'), ((3849, 3881), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(150)'}), '(max_length=150)\n', (3865, 3881), False, 'from django.db import models, migrations\n'), ((3912, 3944), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(150)'}), '(max_length=150)\n', (3928, 3944), False, 'from django.db import models, migrations\n'), ((3979, 3997), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (3995, 3997), False, 'from django.db import models, migrations\n'), ((4142, 4235), 'django.db.models.AutoField', 'models.AutoField', ([], {'verbose_name': '"""ID"""', 'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)'}), "(verbose_name='ID', auto_created=True, primary_key=True,\n serialize=False)\n", (4158, 4235), False, 'from django.db import models, migrations\n'), ((4259, 4298), 'django.db.models.ImageField', 'models.ImageField', ([], {'upload_to': '"""gallery/"""'}), "(upload_to='gallery/')\n", (4276, 4298), False, 'from django.db import models, migrations\n'), ((4329, 4363), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (4348, 4363), False, 'from django.db import models, migrations\n'), ((4399, 4468), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'to': '"""volontulo.Organization"""', 'related_name': '"""images"""'}), "(to='volontulo.Organization', related_name='images')\n", (4416, 4468), False, 'from django.db import models, migrations\n'), ((4604, 4697), 'django.db.models.AutoField', 'models.AutoField', ([], {'verbose_name': '"""ID"""', 'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)'}), "(verbose_name='ID', auto_created=True, primary_key=True,\n serialize=False)\n", (4620, 4697), False, 'from django.db import models, migrations\n'), ((4727, 4794), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'default': 'django.utils.timezone.now'}), '(blank=True, default=django.utils.timezone.now)\n', (4747, 4794), False, 'from django.db import models, migrations\n'), ((4829, 4861), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (4845, 4861), False, 'from django.db import models, migrations\n'), ((4892, 4934), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'blank': '(True)', 'default': '(0)'}), '(blank=True, default=0)\n', (4911, 4934), False, 'from django.db import models, migrations\n'), ((4963, 5002), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'to': '"""volontulo.Badge"""'}), "(to='volontulo.Badge')\n", (4980, 5002), False, 'from django.db import models, migrations\n'), ((5038, 5097), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'null': '(True)', 'to': '"""contenttypes.ContentType"""'}), "(null=True, to='contenttypes.ContentType')\n", (5055, 5097), False, 'from django.db import models, migrations\n'), ((5234, 5327), 'django.db.models.AutoField', 'models.AutoField', ([], {'verbose_name': '"""ID"""', 'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)'}), "(verbose_name='ID', auto_created=True, primary_key=True,\n serialize=False)\n", (5250, 5327), False, 'from django.db import models, migrations\n'), ((5352, 5391), 'django.db.models.ImageField', 'models.ImageField', ([], {'upload_to': '"""profile/"""'}), "(upload_to='profile/')\n", (5369, 5391), False, 'from django.db import models, migrations\n'), ((5424, 5458), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (5443, 5458), False, 'from django.db import models, migrations\n'), ((5595, 5688), 'django.db.models.AutoField', 'models.AutoField', ([], {'verbose_name': '"""ID"""', 'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)'}), "(verbose_name='ID', auto_created=True, primary_key=True,\n serialize=False)\n", (5611, 5688), False, 'from django.db import models, migrations\n'), ((5724, 5758), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (5743, 5758), False, 'from django.db import models, migrations\n'), ((5786, 5835), 'django.db.models.UUIDField', 'models.UUIDField', ([], {'default': 'uuid.uuid4', 'unique': '(True)'}), '(default=uuid.uuid4, unique=True)\n', (5802, 5835), False, 'from django.db import models, migrations\n'), ((5865, 5974), 'django.db.models.ManyToManyField', 'models.ManyToManyField', ([], {'to': '"""volontulo.Badge"""', 'through': '"""volontulo.UserBadges"""', 'related_name': '"""user_profile"""'}), "(to='volontulo.Badge', through='volontulo.UserBadges',\n related_name='user_profile')\n", (5887, 5974), False, 'from django.db import models, migrations\n'), ((6007, 6092), 'django.db.models.ManyToManyField', 'models.ManyToManyField', ([], {'to': '"""volontulo.Organization"""', 'related_name': '"""userprofiles"""'}), "(to='volontulo.Organization', related_name='userprofiles'\n )\n", (6029, 6092), False, 'from django.db import models, migrations\n'), ((6115, 6164), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'to': 'settings.AUTH_USER_MODEL'}), '(to=settings.AUTH_USER_MODEL)\n', (6135, 6164), False, 'from django.db import models, migrations\n')]
"""Support for Elgato button.""" from __future__ import annotations import logging from elgato import Elgato, ElgatoError, Info from homeassistant.components.button import ButtonEntity, ButtonEntityDescription from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from homeassistant.helpers.entity import EntityCategory from homeassistant.helpers.entity_platform import AddEntitiesCallback from . import HomeAssistantElgatoData from .const import DOMAIN from .entity import ElgatoEntity _LOGGER = logging.getLogger(__name__) async def async_setup_entry( hass: HomeAssistant, entry: ConfigEntry, async_add_entities: AddEntitiesCallback, ) -> None: """Set up Elgato button based on a config entry.""" data: HomeAssistantElgatoData = hass.data[DOMAIN][entry.entry_id] async_add_entities([ElgatoIdentifyButton(data.client, data.info)]) class ElgatoIdentifyButton(ElgatoEntity, ButtonEntity): """Defines an Elgato identify button.""" def __init__(self, client: Elgato, info: Info) -> None: """Initialize the button entity.""" super().__init__(client, info) self.entity_description = ButtonEntityDescription( key="identify", name="Identify", icon="mdi:help", entity_category=EntityCategory.CONFIG, ) self._attr_unique_id = f"{info.serial_number}_{self.entity_description.key}" async def async_press(self) -> None: """Identify the light, will make it blink.""" try: await self.client.identify() except ElgatoError: _LOGGER.exception("An error occurred while identifying the Elgato Light")
[ "homeassistant.components.button.ButtonEntityDescription", "logging.getLogger" ]
[((546, 573), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (563, 573), False, 'import logging\n'), ((1188, 1304), 'homeassistant.components.button.ButtonEntityDescription', 'ButtonEntityDescription', ([], {'key': '"""identify"""', 'name': '"""Identify"""', 'icon': '"""mdi:help"""', 'entity_category': 'EntityCategory.CONFIG'}), "(key='identify', name='Identify', icon='mdi:help',\n entity_category=EntityCategory.CONFIG)\n", (1211, 1304), False, 'from homeassistant.components.button import ButtonEntity, ButtonEntityDescription\n')]
# -*- coding: utf-8 -*- # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """\ ================= TorrentWindow - a basic GUI for BitTorrent ================= This component supports downloading from multiple torrents simultaneously but no deletion or statistics other than percentage completuion so far. How does it work? ----------------- TorrentWindow uses Tkinter to produce a very simple GUI. It then produces messages for and accepts messages produced by a TorrentPatron component (also would work with TorrentClient but TorrentPatron is preferred, see their respective files). Example Usage ------------- The following setup allows torrents to be entered as HTTP URLs into the GUI and then downloaded with progress information for each torrent. Graphline( gui=TorrentWindow(), httpclient=SimpleHTTPClient(), backend=TorrentPatron(), linkages = { ("gui", "outbox") : ("backend", "inbox"), ("gui", "fetchersignal") : ("httpclient", "control"), ("gui", "signal") : ("backend", "control"), ("gui", "fetcher") : ("httpclient", "inbox"), ("httpclient", "outbox") : ("backend", "inbox"), ("backend", "outbox"): ("gui", "inbox") } ).run() """ from Kamaelia.UI.Tk.TkWindow import TkWindow from Axon.Ipc import producerFinished, shutdown import Tkinter, time from TorrentPatron import TorrentPatron from TorrentIPC import * class TorrentWindow(TkWindow): Inboxes = { "inbox" : "From TorrentPatron backend", "control" : "Tell me to shutdown", } Outboxes = { "outbox" : "To TorrentPatron backend", "fetcher" : "To TorrentPatron backend via a resource fetcher, e.g. file reader or HTTP client", "fetchersignal" : "Shutdown resource fetcher", "signal" : "When I've shutdown" } def __init__(self): self.pendingtorrents = [] self.torrents = {} super(TorrentWindow, self).__init__() def setupWindow(self): "Create the GUI controls and window for this application" self.entry = Tkinter.Entry(self.window) self.addtorrentbutton = Tkinter.Button(self.window, text="Add Torrent", command=self.addTorrent) self.window.title("Kamaelia BitTorrent Client") self.entry.grid(row=0, column=0, sticky=Tkinter.N+Tkinter.E+Tkinter.W+Tkinter.S) self.addtorrentbutton.grid(row=0, column=1, sticky=Tkinter.N+Tkinter.E+Tkinter.W+Tkinter.S) self.window.rowconfigure(0, weight=1) self.window.columnconfigure(0, weight=3) self.window.columnconfigure(1, weight=1) def addTorrent(self): "Request the addition of a new torrent" torrenturl = self.entry.get() self.pendingtorrents.append(torrenturl.rsplit("/", 1)[-1]) self.send(torrenturl, "fetcher") # forward on the torrent URL/path to the fetcher self.entry.delete(0, Tkinter.END) def main(self): while not self.isDestroyed(): time.sleep(0.05) # reduces CPU usage but a timer component would be better yield 1 if self.dataReady("control"): msg = self.recv("control") if isinstance(msg, producerFinished) or isinstance(msg, shutdown): self.send(msg, "signal") self.window.destroy() if self.dataReady("inbox"): msg = self.recv("inbox") if isinstance(msg, TIPCNewTorrentCreated): torrentname = self.pendingtorrents.pop(0) labeltext = Tkinter.StringVar() # allow us to change the label's text on the fly newlabel = Tkinter.Label(self.window, textvariable=labeltext) self.torrents[msg.torrentid] = (torrentname, newlabel, labeltext) labeltext.set(torrentname + " - 0%") newlabel.grid(row=len(self.torrents), column=0, columnspan=2, sticky=Tkinter.N+Tkinter.E+Tkinter.W+Tkinter.S) self.window.rowconfigure(len(self.torrents), weight=1) elif isinstance(msg, TIPCTorrentStartFail) or isinstance(msg, TIPCTorrentAlreadyDownloading): self.pendingtorrents.pop(0) # the oldest torrent not yet started failed so remove it from the list of pending torrents elif isinstance(msg, TIPCTorrentStatusUpdate): # print msg.statsdictionary.get("fractionDone","-1") self.torrents[msg.torrentid][2].set(self.torrents[msg.torrentid][0] + " - " + str(int(msg.statsdictionary.get("fractionDone","0") * 100)) + "%") self.tkupdate() self.send(shutdown(), "signal") self.send(shutdown(), "fetchersignal") if __name__ == "__main__": from Kamaelia.Chassis.Graphline import Graphline import sys sys.path.append("../HTTP") from HTTPClient import SimpleHTTPClient Graphline( gui=TorrentWindow(), httpclient=SimpleHTTPClient(), backend=TorrentPatron(), linkages = { ("gui", "outbox") : ("backend", "inbox"), ("gui", "fetchersignal") : ("httpclient", "control"), ("gui", "signal") : ("backend", "control"), ("gui", "fetcher") : ("httpclient", "inbox"), ("httpclient", "outbox") : ("backend", "inbox"), ("backend", "outbox"): ("gui", "inbox") } ).run()
[ "sys.path.append", "TorrentPatron.TorrentPatron", "HTTPClient.SimpleHTTPClient", "Tkinter.Label", "time.sleep", "Tkinter.StringVar", "Tkinter.Entry", "Tkinter.Button", "Axon.Ipc.shutdown" ]
[((5738, 5764), 'sys.path.append', 'sys.path.append', (['"""../HTTP"""'], {}), "('../HTTP')\n", (5753, 5764), False, 'import sys\n'), ((2860, 2886), 'Tkinter.Entry', 'Tkinter.Entry', (['self.window'], {}), '(self.window)\n', (2873, 2886), False, 'import Tkinter, time\n'), ((2919, 2991), 'Tkinter.Button', 'Tkinter.Button', (['self.window'], {'text': '"""Add Torrent"""', 'command': 'self.addTorrent'}), "(self.window, text='Add Torrent', command=self.addTorrent)\n", (2933, 2991), False, 'import Tkinter, time\n'), ((3781, 3797), 'time.sleep', 'time.sleep', (['(0.05)'], {}), '(0.05)\n', (3791, 3797), False, 'import Tkinter, time\n'), ((5552, 5562), 'Axon.Ipc.shutdown', 'shutdown', ([], {}), '()\n', (5560, 5562), False, 'from Axon.Ipc import producerFinished, shutdown\n'), ((5593, 5603), 'Axon.Ipc.shutdown', 'shutdown', ([], {}), '()\n', (5601, 5603), False, 'from Axon.Ipc import producerFinished, shutdown\n'), ((4365, 4384), 'Tkinter.StringVar', 'Tkinter.StringVar', ([], {}), '()\n', (4382, 4384), False, 'import Tkinter, time\n'), ((4465, 4515), 'Tkinter.Label', 'Tkinter.Label', (['self.window'], {'textvariable': 'labeltext'}), '(self.window, textvariable=labeltext)\n', (4478, 4515), False, 'import Tkinter, time\n'), ((5878, 5896), 'HTTPClient.SimpleHTTPClient', 'SimpleHTTPClient', ([], {}), '()\n', (5894, 5896), False, 'from HTTPClient import SimpleHTTPClient\n'), ((5914, 5929), 'TorrentPatron.TorrentPatron', 'TorrentPatron', ([], {}), '()\n', (5927, 5929), False, 'from TorrentPatron import TorrentPatron\n')]
from appi2c.ext.database import db from appi2c.ext.icon.icon_models import Icon def list_all_icon(): icon = Icon.query.all() return icon def list_icon_id(id: int) -> Icon: icon = Icon.query.filter_by(id=id).first() return icon def create_icon(html_class: str): icon = Icon(html_class=html_class) db.session.add(icon) db.session.commit() def update_icon(id: int, html_class: str): Icon.query.filter_by(id=id).update(dict(html_class=html_class)) db.session.commit() def list_icon_in_device(devices: list): if devices is not None: list_icon = [] for device in devices: icon = Icon.query.filter_by(id=device.icon_id).first() list_icon.append(icon.html_class) return list_icon return False
[ "appi2c.ext.icon.icon_models.Icon", "appi2c.ext.icon.icon_models.Icon.query.filter_by", "appi2c.ext.icon.icon_models.Icon.query.all", "appi2c.ext.database.db.session.commit", "appi2c.ext.database.db.session.add" ]
[((114, 130), 'appi2c.ext.icon.icon_models.Icon.query.all', 'Icon.query.all', ([], {}), '()\n', (128, 130), False, 'from appi2c.ext.icon.icon_models import Icon\n'), ((294, 321), 'appi2c.ext.icon.icon_models.Icon', 'Icon', ([], {'html_class': 'html_class'}), '(html_class=html_class)\n', (298, 321), False, 'from appi2c.ext.icon.icon_models import Icon\n'), ((326, 346), 'appi2c.ext.database.db.session.add', 'db.session.add', (['icon'], {}), '(icon)\n', (340, 346), False, 'from appi2c.ext.database import db\n'), ((351, 370), 'appi2c.ext.database.db.session.commit', 'db.session.commit', ([], {}), '()\n', (368, 370), False, 'from appi2c.ext.database import db\n'), ((488, 507), 'appi2c.ext.database.db.session.commit', 'db.session.commit', ([], {}), '()\n', (505, 507), False, 'from appi2c.ext.database import db\n'), ((195, 222), 'appi2c.ext.icon.icon_models.Icon.query.filter_by', 'Icon.query.filter_by', ([], {'id': 'id'}), '(id=id)\n', (215, 222), False, 'from appi2c.ext.icon.icon_models import Icon\n'), ((420, 447), 'appi2c.ext.icon.icon_models.Icon.query.filter_by', 'Icon.query.filter_by', ([], {'id': 'id'}), '(id=id)\n', (440, 447), False, 'from appi2c.ext.icon.icon_models import Icon\n'), ((651, 690), 'appi2c.ext.icon.icon_models.Icon.query.filter_by', 'Icon.query.filter_by', ([], {'id': 'device.icon_id'}), '(id=device.icon_id)\n', (671, 690), False, 'from appi2c.ext.icon.icon_models import Icon\n')]
import gym, yumi_gym import pybullet as p env = gym.make('yumi-v0') env.render() observation = env.reset() motorsIds = [] for joint in env.joints: motorsIds.append(p.addUserDebugParameter(joint, -1, 1, 0)) while True: env.render() action = [] for motorId in motorsIds: action.append(p.readUserDebugParameter(motorId)) observation, reward, done, info = env.step(action)
[ "pybullet.readUserDebugParameter", "gym.make", "pybullet.addUserDebugParameter" ]
[((49, 68), 'gym.make', 'gym.make', (['"""yumi-v0"""'], {}), "('yumi-v0')\n", (57, 68), False, 'import gym, yumi_gym\n'), ((170, 210), 'pybullet.addUserDebugParameter', 'p.addUserDebugParameter', (['joint', '(-1)', '(1)', '(0)'], {}), '(joint, -1, 1, 0)\n', (193, 210), True, 'import pybullet as p\n'), ((311, 344), 'pybullet.readUserDebugParameter', 'p.readUserDebugParameter', (['motorId'], {}), '(motorId)\n', (335, 344), True, 'import pybullet as p\n')]
import argparse import pandas as pd from multiprocessing import Pool, cpu_count from tqdm import tqdm from pathlib import Path import json import librosa from utils import get_amplitude_scaling_factor, xcorr_searcher_max, load_data # Filter out performances shorter than ```MIN_DURATION``` secs MIN_DURATION = 15.0 # Filter out songs with mixtures shorter than vocal in % # These are errors in the dataset DURATION_VAR = 0.95 # Framing parameters for RMS NHOP = 0.010 WIN = 0.025 # Command line arguments parser = argparse.ArgumentParser() parser.add_argument('--split', type=str, required=True, help='Dataset to process') parser.add_argument('--root_path', type=str, required=True, help='Root path to DAMP-VSEP') parser.add_argument('--sample_rate', type=int, required=True, default=16000) parser.add_argument('--output_meta_path', type=str, required=True, help='Path where save the metadata') def main(args): metadata_path = Path(args.output_meta_path) track_list = pd.read_csv(f"split/{args.split}.csv") metadata = [] pool = Pool(processes=cpu_count()) track_inputs = [(t, Path(args.root_path), args.sample_rate) for i, t in track_list.iterrows()] for meta in tqdm(pool.imap_unordered(build_metadata, track_inputs), total=len(track_inputs)): if meta: metadata.append(meta) tracks = {p: m for p, m in metadata} metadata_path.mkdir(parents=True, exist_ok=True) json.dump(tracks, open(metadata_path / f"{args.split}_sr{args.sample_rate}.json", 'w'), indent=2) def build_metadata(inputs): track, root, sample_rate = inputs hop_length = int(sample_rate * NHOP) frame_length = int(sample_rate * WIN) vocal = load_data(root / track['vocal_path'], sample_rate=sample_rate) # Discard silence vocal target if vocal.sum() == 0.0: print(f"Track {track['perf_key']} is silence - discarded") return None # Get original duration to discard short vocal target vocal_dur = librosa.get_duration(vocal, sr=sample_rate) if vocal_dur < MIN_DURATION: print(f"Track {track['perf_key']} too short ({vocal_dur} sec) - discarded") return None ori_mix = load_data(root / track['mix_path'], sample_rate=sample_rate) ori_mix_dur = librosa.get_duration(ori_mix, sr=sample_rate) if ori_mix_dur < vocal_dur * DURATION_VAR: print(f"Mixture {track['perf_key']} length ({ori_mix_dur}) is shorter than vocal length ({vocal_dur}) - discarded") return None # Get vocal shifting by doing several xcorr of small segments of vocal. # The shifting time determine the start point of background and vocal. vocal_shift = xcorr_searcher_max(ori_mix, vocal, sample_rate, frame_length, hop_length) if vocal_shift <= 0: vocal_start = abs(vocal_shift) back_start = 0 else: vocal_start = 0 back_start = vocal_shift # Get new/real min duration. back = load_data(root / track['background_path'], sample_rate=sample_rate) vocal = vocal[int(vocal_start * sample_rate):] back = back[int(back_start * sample_rate):] vocal_dur = librosa.get_duration(vocal, sr=sample_rate) back_dur = librosa.get_duration(back, sr=sample_rate) min_dur = min(vocal_dur, back_dur) # Create mixture to calculate mean and std mix = vocal[:int(min_dur * sample_rate)] + back[:int(min_dur * sample_rate)] # Get amplitude for SNR=0 amplitude_scaler = get_amplitude_scaling_factor(vocal, back) track_info = dict() track_info['original_mix'] = track['mix_path'] track_info['original_mix_mean'] = \ f"{ori_mix[int(back_start * sample_rate):int(min_dur * sample_rate)].mean()}" track_info['original_mix_std'] = \ f"{ori_mix[int(back_start * sample_rate):int(min_dur * sample_rate)].std()}" track_info['mix_mean'] = f"{mix.mean()}" track_info['mix_std'] = f"{mix.std()}" track_info['duration'] = f"{min_dur}" track_info['vocal'] = track['vocal_path'] track_info['vocal_start'] = f"{vocal_start}" track_info['scaler'] = f"{amplitude_scaler:}" track_info['background'] = track['background_path'] track_info['background_start'] = f"{back_start}" return track['perf_key'], track_info if __name__ == '__main__': args = parser.parse_args() main(args)
[ "utils.xcorr_searcher_max", "utils.load_data", "argparse.ArgumentParser", "pandas.read_csv", "utils.get_amplitude_scaling_factor", "multiprocessing.cpu_count", "pathlib.Path", "librosa.get_duration" ]
[((519, 544), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (542, 544), False, 'import argparse\n'), ((1018, 1045), 'pathlib.Path', 'Path', (['args.output_meta_path'], {}), '(args.output_meta_path)\n', (1022, 1045), False, 'from pathlib import Path\n'), ((1063, 1101), 'pandas.read_csv', 'pd.read_csv', (['f"""split/{args.split}.csv"""'], {}), "(f'split/{args.split}.csv')\n", (1074, 1101), True, 'import pandas as pd\n'), ((1865, 1927), 'utils.load_data', 'load_data', (["(root / track['vocal_path'])"], {'sample_rate': 'sample_rate'}), "(root / track['vocal_path'], sample_rate=sample_rate)\n", (1874, 1927), False, 'from utils import get_amplitude_scaling_factor, xcorr_searcher_max, load_data\n'), ((2203, 2246), 'librosa.get_duration', 'librosa.get_duration', (['vocal'], {'sr': 'sample_rate'}), '(vocal, sr=sample_rate)\n', (2223, 2246), False, 'import librosa\n'), ((2415, 2475), 'utils.load_data', 'load_data', (["(root / track['mix_path'])"], {'sample_rate': 'sample_rate'}), "(root / track['mix_path'], sample_rate=sample_rate)\n", (2424, 2475), False, 'from utils import get_amplitude_scaling_factor, xcorr_searcher_max, load_data\n'), ((2527, 2572), 'librosa.get_duration', 'librosa.get_duration', (['ori_mix'], {'sr': 'sample_rate'}), '(ori_mix, sr=sample_rate)\n', (2547, 2572), False, 'import librosa\n'), ((2958, 3031), 'utils.xcorr_searcher_max', 'xcorr_searcher_max', (['ori_mix', 'vocal', 'sample_rate', 'frame_length', 'hop_length'], {}), '(ori_mix, vocal, sample_rate, frame_length, hop_length)\n', (2976, 3031), False, 'from utils import get_amplitude_scaling_factor, xcorr_searcher_max, load_data\n'), ((3264, 3331), 'utils.load_data', 'load_data', (["(root / track['background_path'])"], {'sample_rate': 'sample_rate'}), "(root / track['background_path'], sample_rate=sample_rate)\n", (3273, 3331), False, 'from utils import get_amplitude_scaling_factor, xcorr_searcher_max, load_data\n'), ((3486, 3529), 'librosa.get_duration', 'librosa.get_duration', (['vocal'], {'sr': 'sample_rate'}), '(vocal, sr=sample_rate)\n', (3506, 3529), False, 'import librosa\n'), ((3549, 3591), 'librosa.get_duration', 'librosa.get_duration', (['back'], {'sr': 'sample_rate'}), '(back, sr=sample_rate)\n', (3569, 3591), False, 'import librosa\n'), ((3834, 3875), 'utils.get_amplitude_scaling_factor', 'get_amplitude_scaling_factor', (['vocal', 'back'], {}), '(vocal, back)\n', (3862, 3875), False, 'from utils import get_amplitude_scaling_factor, xcorr_searcher_max, load_data\n'), ((1147, 1158), 'multiprocessing.cpu_count', 'cpu_count', ([], {}), '()\n', (1156, 1158), False, 'from multiprocessing import Pool, cpu_count\n'), ((1184, 1204), 'pathlib.Path', 'Path', (['args.root_path'], {}), '(args.root_path)\n', (1188, 1204), False, 'from pathlib import Path\n')]
import matplotlib.pyplot as plt import numpy as np import re import os import sys from matplotlib import rcParams from cycler import cycler import itertools if len(sys.argv) < 2: print("Especifique la carpeta con resultados con la siguiente sintaxis:") print("python %s carpeta_resultados" % sys.argv[0]) exit(1) results_folder = sys.argv[1] digit = r'\d*\.?\d+' regex = r'^result_(%s)_(%s)_%s_\w+_%s_%s_%s_%s_\w+_%s_\.txt$' % (digit, digit, digit, digit, digit, digit, digit, digit) """ print(regex) tomatch = 'result_1.1000_0.6000_50.0000_WallPeriodicBC_1_0.5000_1_0.0100_False_1024_.txt' matches = re.match(regex, tomatch) if matches: print(matches.group(1)) print(matches.group(2)) else: print("no match") """ files = os.listdir(results_folder) time_lambda_curves = {} for filename in files: matches = re.match(regex, filename) if not matches: continue the_lambda = float(matches.group(1)) the_eta = float(matches.group(2)) with open(results_folder + filename, 'r') as f: first_line = f.readline() the_time = float(first_line) if the_eta not in time_lambda_curves: time_lambda_curves[the_eta] = { 'times': [], 'lambdas': [] } time_lambda_curves[the_eta]['times'].append(the_time) time_lambda_curves[the_eta]['lambdas'].append(the_lambda) marker = itertools.cycle(('s', 'X', '+', 'o', '*', '>', 'h', 'd', '.')) lines = itertools.cycle((':', '-.', '--', '-')) # Configuraciones de estilo de los graficos plt.figure(figsize=(12, 10), dpi=80, facecolor='w', edgecolor='k') plt.rc('lines', linewidth=1) plt.rc('axes', prop_cycle=(cycler('color', ['blue', 'green', 'red', 'magenta', 'black', 'purple', 'pink', 'brown', 'orange', 'coral', 'lightblue', 'lime', 'lavender', 'turquoise', 'darkgreen', 'tan', 'salmon', 'gold', 'darkred', 'darkblue']))) to_plot = [] for eta, values in time_lambda_curves.items(): to_plot.append((eta, values)) to_plot.sort() #for eta, values in time_lambda_curves.items(): for eta, values in to_plot: the_times = values['times'] the_lambdas = values['lambdas'] order = np.argsort(the_lambdas) xs = np.array(the_lambdas)[order] ys = np.array(the_times)[order] plt.plot(xs, ys, label="$\eta = %.1f$" % eta, marker=next(marker), markersize=15, linewidth=3) plt.xticks(np.arange(0.0, 1.4, 0.1)) plt.yticks(np.arange(0, 10001, 1000)) plt.xlabel('$\lambda$', fontsize=18) plt.ylabel('Tiempo (s)', fontsize=18) plt.title('Tiempo de ejecución del algoritmo de Listas de Verlet\n para un tiempo de simulación físico de 50 segundos', fontsize=22, y=1.02) #plot.legend(loc=2, prop={'size': 6}) plt.legend(prop={'size': 16}) plt.grid(alpha=0.5) plt.show()
[ "matplotlib.pyplot.title", "cycler.cycler", "matplotlib.pyplot.show", "matplotlib.pyplot.legend", "matplotlib.pyplot.ylabel", "re.match", "numpy.argsort", "matplotlib.pyplot.figure", "numpy.array", "matplotlib.pyplot.rc", "numpy.arange", "itertools.cycle", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.grid", "os.listdir" ]
[((753, 779), 'os.listdir', 'os.listdir', (['results_folder'], {}), '(results_folder)\n', (763, 779), False, 'import os\n'), ((1396, 1458), 'itertools.cycle', 'itertools.cycle', (["('s', 'X', '+', 'o', '*', '>', 'h', 'd', '.')"], {}), "(('s', 'X', '+', 'o', '*', '>', 'h', 'd', '.'))\n", (1411, 1458), False, 'import itertools\n'), ((1467, 1506), 'itertools.cycle', 'itertools.cycle', (["(':', '-.', '--', '-')"], {}), "((':', '-.', '--', '-'))\n", (1482, 1506), False, 'import itertools\n'), ((1552, 1618), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 10)', 'dpi': '(80)', 'facecolor': '"""w"""', 'edgecolor': '"""k"""'}), "(figsize=(12, 10), dpi=80, facecolor='w', edgecolor='k')\n", (1562, 1618), True, 'import matplotlib.pyplot as plt\n'), ((1619, 1647), 'matplotlib.pyplot.rc', 'plt.rc', (['"""lines"""'], {'linewidth': '(1)'}), "('lines', linewidth=1)\n", (1625, 1647), True, 'import matplotlib.pyplot as plt\n'), ((3019, 3048), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'prop': "{'size': 16}"}), "(prop={'size': 16})\n", (3029, 3048), True, 'import matplotlib.pyplot as plt\n'), ((3049, 3068), 'matplotlib.pyplot.grid', 'plt.grid', ([], {'alpha': '(0.5)'}), '(alpha=0.5)\n', (3057, 3068), True, 'import matplotlib.pyplot as plt\n'), ((3069, 3079), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3077, 3079), True, 'import matplotlib.pyplot as plt\n'), ((843, 868), 're.match', 're.match', (['regex', 'filename'], {}), '(regex, filename)\n', (851, 868), False, 'import re\n'), ((2470, 2493), 'numpy.argsort', 'np.argsort', (['the_lambdas'], {}), '(the_lambdas)\n', (2480, 2493), True, 'import numpy as np\n'), ((2756, 2793), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\lambda$"""'], {'fontsize': '(18)'}), "('$\\\\lambda$', fontsize=18)\n", (2766, 2793), True, 'import matplotlib.pyplot as plt\n'), ((2797, 2834), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Tiempo (s)"""'], {'fontsize': '(18)'}), "('Tiempo (s)', fontsize=18)\n", (2807, 2834), True, 'import matplotlib.pyplot as plt\n'), ((2839, 2992), 'matplotlib.pyplot.title', 'plt.title', (['"""Tiempo de ejecución del algoritmo de Listas de Verlet\n para un tiempo de simulación físico de 50 segundos"""'], {'fontsize': '(22)', 'y': '(1.02)'}), '(\n """Tiempo de ejecución del algoritmo de Listas de Verlet\n para un tiempo de simulación físico de 50 segundos"""\n , fontsize=22, y=1.02)\n', (2848, 2992), True, 'import matplotlib.pyplot as plt\n'), ((1675, 1897), 'cycler.cycler', 'cycler', (['"""color"""', "['blue', 'green', 'red', 'magenta', 'black', 'purple', 'pink', 'brown',\n 'orange', 'coral', 'lightblue', 'lime', 'lavender', 'turquoise',\n 'darkgreen', 'tan', 'salmon', 'gold', 'darkred', 'darkblue']"], {}), "('color', ['blue', 'green', 'red', 'magenta', 'black', 'purple',\n 'pink', 'brown', 'orange', 'coral', 'lightblue', 'lime', 'lavender',\n 'turquoise', 'darkgreen', 'tan', 'salmon', 'gold', 'darkred', 'darkblue'])\n", (1681, 1897), False, 'from cycler import cycler\n'), ((2504, 2525), 'numpy.array', 'np.array', (['the_lambdas'], {}), '(the_lambdas)\n', (2512, 2525), True, 'import numpy as np\n'), ((2542, 2561), 'numpy.array', 'np.array', (['the_times'], {}), '(the_times)\n', (2550, 2561), True, 'import numpy as np\n'), ((2684, 2708), 'numpy.arange', 'np.arange', (['(0.0)', '(1.4)', '(0.1)'], {}), '(0.0, 1.4, 0.1)\n', (2693, 2708), True, 'import numpy as np\n'), ((2725, 2750), 'numpy.arange', 'np.arange', (['(0)', '(10001)', '(1000)'], {}), '(0, 10001, 1000)\n', (2734, 2750), True, 'import numpy as np\n')]
import datetime from django.conf import settings from django.utils import dateformat import pytz from forum.models import ForumProfile def user_timezone(dt, user): """ Converts the given datetime to the given User's timezone, if they have one set in their forum profile. Adapted from http://www.djangosnippets.org/snippets/183/ """ tz = settings.TIME_ZONE if user.is_authenticated(): profile = ForumProfile.objects.get_for_user(user) if profile.timezone: tz = profile.timezone try: result = dt.astimezone(pytz.timezone(tz)) except ValueError: # The datetime was stored without timezone info, so use the # timezone configured in settings. result = dt.replace(tzinfo=pytz.timezone(settings.TIME_ZONE)) \ .astimezone(pytz.timezone(tz)) return result def format_datetime(dt, user, date_format, time_format, separator=' '): """ Formats a datetime, using ``'Today'`` or ``'Yesterday'`` instead of the given date format when appropriate. If a User is given and they have a timezone set in their profile, the datetime will be translated to their local time. """ if user: dt = user_timezone(dt, user) today = user_timezone(datetime.datetime.now(), user).date() else: today = datetime.date.today() date_part = dt.date() delta = date_part - today if delta.days == 0: date = u'Today' elif delta.days == -1: date = u'Yesterday' else: date = dateformat.format(dt, date_format) return u'%s%s%s' % (date, separator, dateformat.time_format(dt.time(), time_format))
[ "datetime.date.today", "django.utils.dateformat.format", "pytz.timezone", "forum.models.ForumProfile.objects.get_for_user", "datetime.datetime.now" ]
[((451, 490), 'forum.models.ForumProfile.objects.get_for_user', 'ForumProfile.objects.get_for_user', (['user'], {}), '(user)\n', (484, 490), False, 'from forum.models import ForumProfile\n'), ((1389, 1410), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (1408, 1410), False, 'import datetime\n'), ((598, 615), 'pytz.timezone', 'pytz.timezone', (['tz'], {}), '(tz)\n', (611, 615), False, 'import pytz\n'), ((1603, 1637), 'django.utils.dateformat.format', 'dateformat.format', (['dt', 'date_format'], {}), '(dt, date_format)\n', (1620, 1637), False, 'from django.utils import dateformat\n'), ((860, 877), 'pytz.timezone', 'pytz.timezone', (['tz'], {}), '(tz)\n', (873, 877), False, 'import pytz\n'), ((1323, 1346), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1344, 1346), False, 'import datetime\n'), ((790, 823), 'pytz.timezone', 'pytz.timezone', (['settings.TIME_ZONE'], {}), '(settings.TIME_ZONE)\n', (803, 823), False, 'import pytz\n')]
#!/usr/bin/env python __author__ = '<NAME>' import argparse from RouToolPa.Tools.Samtools import SamtoolsV1 from RouToolPa.Tools.Bedtools import BamToFastq from RouToolPa.GeneralRoutines import FileRoutines parser = argparse.ArgumentParser() parser.add_argument("-i", "--input", action="store", dest="input", required=True, help="Input bam file") parser.add_argument("-t", "--threads", action="store", dest="threads", type=int, default=1, help="Number of threads to use. Default - 1") parser.add_argument("-p", "--prepare_bam", action="store_true", dest="prepare_bam", help="Prepare bam for reads extraction(filter out supplementary and not primary alignments" "and sort by name)") """ parser.add_argument("-e", "--prepared_bam", action="store", dest="prepared_bam", help="File to write sorted bam file. Required if -p/--prepare_bam option is set") """ parser.add_argument("-e", "--prepared_bam_prefix", action="store", dest="prepared_bam_prefix", help="Prefix of sorted bam file(s). Required if -p/--prepare_bam option is set") parser.add_argument("-d", "--temp_dir", action="store", dest="temp_dir", help="Directory to use for temporary files. Required if -p/--prepare_bam option is set") parser.add_argument("-o", "--out_prefix", action="store", dest="out_prefix", required=True, help="Prefix of output fastq files") parser.add_argument("-s", "--single_ends", action="store_false", dest="paired", default=True, help="Reads are SE") parser.add_argument("-x", "--mix_ends", action="store_true", dest="mix_ends", default=False, help="Reads are mix of PE and SE") parser.add_argument("-m", "--max_memory_per_thread", action="store", dest="max_memory_per_thread", default="1G", help="Maximum memory per thread. Default - 1G") args = parser.parse_args() if args.prepare_bam and ((not args.prepared_bam_prefix) or (not args.temp_dir)): raise ValueError("Options -e/--prepared_bam_prefix and -m/--temp_dir must be set if -p/--prepare_bam option is used") SamtoolsV1.threads = args.threads if args.prepare_bam or args.mix_ends: FileRoutines.safe_mkdir(FileRoutines.check_path(args.temp_dir)) prepared_pe_bam_file = "%s.bam" % args.prepared_bam_prefix prepared_unpaired_bam_file = ("%s.unpaired.bam" % args.prepared_bam_prefix) if args.mix_ends else None """ SamtoolsV1.prepare_bam_for_read_extraction(args.input, args.prepared_bam, temp_file_prefix=args.temp_dir, max_memory_per_thread=args.max_memory_per_thread) """ SamtoolsV1.prepare_bam_for_read_extraction(args.input, prepared_pe_bam_file, temp_file_prefix=args.temp_dir, max_memory_per_thread=args.max_memory_per_thread, bam_file_to_write_unpaired_reads=prepared_unpaired_bam_file) if args.paired: left_fastq = "%s_1.fastq" % args.out_prefix right_fastq = "%s_2.fastq" % args.out_prefix unpaired_fastq = "%s.unpaired.fastq" % args.out_prefix else: left_fastq = "%s.fastq" % args.out_prefix right_fastq = None if args.mix_ends: BamToFastq.convert(prepared_unpaired_bam_file, unpaired_fastq, out_right_fastq=None) #BamToFastq.convert(args.prepared_bam if args.prepare_bam else args.input, left_fastq, out_right_fastq=right_fastq) BamToFastq.convert(prepared_pe_bam_file if args.prepare_bam else args.input, left_fastq, out_right_fastq=right_fastq)
[ "RouToolPa.Tools.Bedtools.BamToFastq.convert", "RouToolPa.Tools.Samtools.SamtoolsV1.prepare_bam_for_read_extraction", "RouToolPa.GeneralRoutines.FileRoutines.check_path", "argparse.ArgumentParser" ]
[((217, 242), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (240, 242), False, 'import argparse\n'), ((3507, 3628), 'RouToolPa.Tools.Bedtools.BamToFastq.convert', 'BamToFastq.convert', (['(prepared_pe_bam_file if args.prepare_bam else args.input)', 'left_fastq'], {'out_right_fastq': 'right_fastq'}), '(prepared_pe_bam_file if args.prepare_bam else args.input,\n left_fastq, out_right_fastq=right_fastq)\n', (3525, 3628), False, 'from RouToolPa.Tools.Bedtools import BamToFastq\n'), ((2721, 2954), 'RouToolPa.Tools.Samtools.SamtoolsV1.prepare_bam_for_read_extraction', 'SamtoolsV1.prepare_bam_for_read_extraction', (['args.input', 'prepared_pe_bam_file'], {'temp_file_prefix': 'args.temp_dir', 'max_memory_per_thread': 'args.max_memory_per_thread', 'bam_file_to_write_unpaired_reads': 'prepared_unpaired_bam_file'}), '(args.input, prepared_pe_bam_file,\n temp_file_prefix=args.temp_dir, max_memory_per_thread=args.\n max_memory_per_thread, bam_file_to_write_unpaired_reads=\n prepared_unpaired_bam_file)\n', (2763, 2954), False, 'from RouToolPa.Tools.Samtools import SamtoolsV1\n'), ((3305, 3393), 'RouToolPa.Tools.Bedtools.BamToFastq.convert', 'BamToFastq.convert', (['prepared_unpaired_bam_file', 'unpaired_fastq'], {'out_right_fastq': 'None'}), '(prepared_unpaired_bam_file, unpaired_fastq,\n out_right_fastq=None)\n', (3323, 3393), False, 'from RouToolPa.Tools.Bedtools import BamToFastq\n'), ((2284, 2322), 'RouToolPa.GeneralRoutines.FileRoutines.check_path', 'FileRoutines.check_path', (['args.temp_dir'], {}), '(args.temp_dir)\n', (2307, 2322), False, 'from RouToolPa.GeneralRoutines import FileRoutines\n')]
# -*- coding: utf-8 -*- import Lexico import Arbol import string import sys import os class Sintactico(): def __init__(self): with open('entrada.txt','r') as Archivo: self.Cadena = Archivo.read()+'$' Archivo.close() #=============================================================== self.Suma = Arbol.Suma self.Multi = Arbol.Multi self.Asign = Arbol.Asignacion self.ReservIf = Arbol.ReservIf self.ReservPrint = Arbol.ReservPrint self.Separador = Arbol.Separador self.Signo = Arbol.Signo self.ExpresionArb = Arbol.Expre self.Bloque = Arbol.Bloque self.ReservElse = Arbol.ReservElse self.ReservWhile = Arbol.ReservWhile self.Logico = Arbol.Logico self.Relacional = Arbol.Relacional self.Identi = Arbol.Identificador self.Entero = Arbol.Entero self.Flotante = Arbol.Flotante self.CadenaArb = Arbol.Cadena #=============================================================== self.ListaArbolesBloque = [[],[],[],[],[]] # Permite Anidación de hasta 5 niveles. self.ListaArboles = [] self.ArbolActual = [] self.ArbolPila = [] self.lexico = Lexico.Lexico(self.Cadena) self.Cadena = '' self.PalabReserv = ['if', 'else', 'do','while', 'print'] self.BloqueActivo = [False, False, False, False, False] # Permite Anidación de hasta 5 niveles. def Resultado(self, Salida): if Salida == 0: print('\n\n\n\t Error Sintáctico: ', Salida) for x in range(5): self.lexico.sigSimbolo() print(self.lexico.simbolo,end='') Archivo = open('salida.txt','w') Cadena = Archivo.write(str(Salida)) Archivo.close() def error(self): self.Resultado(0) sys.exit() def analiza(self): self.lexico.sigSimbolo() self.A() self.Comprueba(20) def Comprueba(self, Tipo): if self.lexico.tipo == Tipo: try: self.lexico.sigSimbolo() except: self.Resultado(1) else: self.error() def A(self): xD = True if self.lexico.tipo == 2 and self.lexico.simbolo in self.PalabReserv: while xD: xD = False if self.lexico.simbolo == 'if': self.If() xD = True if self.lexico.simbolo == 'do': self.DoWhile() xD = True if self.lexico.simbolo == 'while': self.While() xD = True if self.lexico.simbolo == 'for': self.For() xD = True if self.lexico.simbolo == 'print': self.Print() xD = True self.Asignacion() def Asignacion(self, Bool=True): #=============================================================== Simbolo = None #=============================================================== if self.lexico.tipo == 2: #================================================================ R = self.Identi(None, self.lexico.simbolo) #================================================================ self.lexico.sigSimbolo() self.Comprueba(15) #================================================================ P = self.Expresion() P = self.Asign(R,P) if self.BloqueActivo[0]: if self.BloqueActivo[4]: self.ListaArbolesBloque[4].append(P) elif self.BloqueActivo[3]: self.ListaArbolesBloque[3].append(P) elif self.BloqueActivo[2]: self.ListaArbolesBloque[2].append(P) elif self.BloqueActivo[1]: self.ListaArbolesBloque[1].append(P) elif self.BloqueActivo[0]: self.ListaArbolesBloque[0].append(P) else: self.ListaArboles.append(P) #================================================================ if Bool: self.Comprueba(12) self.A() def If(self): self.lexico.sigSimbolo() self.Comprueba(11) #=============================================================== P = self.ComparacionLogica() R = self.ReservIf() R.SetHijo(P) #=============================================================== self.Comprueba(22) if self.lexico.tipo == 23: #=============================================================== if self.BloqueActivo[0] == False: self.BloqueActivo[0] = True elif self.BloqueActivo[1] == False: self.BloqueActivo[1] = True elif self.BloqueActivo[2] == False: self.BloqueActivo[2] = True elif self.BloqueActivo[3] == False: self.BloqueActivo[3] = True elif self.BloqueActivo[4] == False: self.BloqueActivo[4] = True B = self.Bloque() #=============================================================== self.lexico.sigSimbolo() self.A() self.Comprueba(24) #=============================================================== if self.BloqueActivo[0]: if self.BloqueActivo[4]: B.SetListaHijos(self.ListaArbolesBloque[4]) self.BloqueActivo[4] = False self.ListaArbolesBloque[4] = [] elif self.BloqueActivo[3]: B.SetListaHijos(self.ListaArbolesBloque[3]) self.BloqueActivo[3] = False self.ListaArbolesBloque[3] = [] elif self.BloqueActivo[2]: B.SetListaHijos(self.ListaArbolesBloque[2]) self.BloqueActivo[2] = False self.ListaArbolesBloque[2] = [] elif self.BloqueActivo[1]: B.SetListaHijos(self.ListaArbolesBloque[1]) self.BloqueActivo[1] = False self.ListaArbolesBloque[1] = [] elif self.BloqueActivo[0]: B.SetListaHijos(self.ListaArbolesBloque[0]) self.BloqueActivo[0] = False self.ListaArbolesBloque[0] = [] R.SetHijo(B) #=============================================================== else: #=============================================================== if self.BloqueActivo[0] == False: self.BloqueActivo[0] = True elif self.BloqueActivo[1] == False: self.BloqueActivo[1] = True elif self.BloqueActivo[2] == False: self.BloqueActivo[2] = True elif self.BloqueActivo[3] == False: self.BloqueActivo[3] = True elif self.BloqueActivo[4] == False: self.BloqueActivo[4] = True B = self.Bloque() #=============================================================== if self.lexico.simbolo == 'print': self.Print() else: self.Asignacion(False) self.Comprueba(12); #=============================================================== if self.BloqueActivo[0]: if self.BloqueActivo[4]: B.SetListaHijos(self.ListaArbolesBloque[4]) self.BloqueActivo[4] = False self.ListaArbolesBloque[4] = [] elif self.BloqueActivo[3]: B.SetListaHijos(self.ListaArbolesBloque[3]) self.BloqueActivo[3] = False self.ListaArbolesBloque[3] = [] elif self.BloqueActivo[2]: B.SetListaHijos(self.ListaArbolesBloque[2]) self.BloqueActivo[2] = False self.ListaArbolesBloque[2] = [] elif self.BloqueActivo[1]: B.SetListaHijos(self.ListaArbolesBloque[1]) self.BloqueActivo[1] = False self.ListaArbolesBloque[1] = [] elif self.BloqueActivo[0]: B.SetListaHijos(self.ListaArbolesBloque[0]) self.BloqueActivo[0] = False self.ListaArbolesBloque[0] = [] R.SetHijo(B) #=============================================================== if self.lexico.simbolo == 'else': self.lexico.sigSimbolo() if self.lexico.tipo == 23: if self.BloqueActivo[0] == False: self.BloqueActivo[0] = True elif self.BloqueActivo[1] == False: self.BloqueActivo[1] = True elif self.BloqueActivo[2] == False: self.BloqueActivo[2] = True elif self.BloqueActivo[3] == False: self.BloqueActivo[3] = True elif self.BloqueActivo[4] == False: self.BloqueActivo[4] = True E = self.ReservElse() self.lexico.sigSimbolo() self.A() self.Comprueba(24) #=============================================================== if self.BloqueActivo[0]: if self.BloqueActivo[4]: E.SetListaHijos(self.ListaArbolesBloque[4]) self.BloqueActivo[4] = False self.ListaArbolesBloque[4] = [] elif self.BloqueActivo[3]: E.SetListaHijos(self.ListaArbolesBloque[3]) self.BloqueActivo[3] = False self.ListaArbolesBloque[3] = [] elif self.BloqueActivo[2]: E.SetListaHijos(self.ListaArbolesBloque[2]) self.BloqueActivo[2] = False self.ListaArbolesBloque[2] = [] elif self.BloqueActivo[1]: E.SetListaHijos(self.ListaArbolesBloque[1]) self.BloqueActivo[1] = False self.ListaArbolesBloque[1] = [] elif self.BloqueActivo[0]: E.SetListaHijos(self.ListaArbolesBloque[0]) self.BloqueActivo[0] = False self.ListaArbolesBloque[0] = [] #=============================================================== else: #=============================================================== if self.BloqueActivo[0] == False: self.BloqueActivo[0] = True elif self.BloqueActivo[1] == False: self.BloqueActivo[1] = True elif self.BloqueActivo[2] == False: self.BloqueActivo[2] = True elif self.BloqueActivo[3] == False: self.BloqueActivo[3] = True elif self.BloqueActivo[4] == False: self.BloqueActivo[4] = True E = self.ReservElse() #=============================================================== if self.lexico.simbolo == 'print': self.Print() else: self.Asignacion(False) self.Comprueba(12); #=============================================================== if self.BloqueActivo[0]: if self.BloqueActivo[4]: E.SetListaHijos(self.ListaArbolesBloque[4]) self.BloqueActivo[4] = False self.ListaArbolesBloque[4] = [] elif self.BloqueActivo[3]: E.SetListaHijos(self.ListaArbolesBloque[3]) self.BloqueActivo[3] = False self.ListaArbolesBloque[3] = [] elif self.BloqueActivo[2]: E.SetListaHijos(self.ListaArbolesBloque[2]) self.BloqueActivo[2] = False self.ListaArbolesBloque[2] = [] elif self.BloqueActivo[1]: E.SetListaHijos(self.ListaArbolesBloque[1]) self.BloqueActivo[1] = False self.ListaArbolesBloque[1] = [] elif self.BloqueActivo[0]: E.SetListaHijos(self.ListaArbolesBloque[0]) self.BloqueActivo[0] = False self.ListaArbolesBloque[0] = [] #=============================================================== #=============================================================== R.SetHijo(E) #=============================================================== #=============================================================== if self.BloqueActivo[0]: if self.BloqueActivo[4]: self.ListaArbolesBloque[4].append(R) elif self.BloqueActivo[3]: self.ListaArbolesBloque[3].append(R) elif self.BloqueActivo[2]: self.ListaArbolesBloque[2].append(R) elif self.BloqueActivo[1]: self.ListaArbolesBloque[1].append(R) elif self.BloqueActivo[0]: self.ListaArbolesBloque[0].append(R) else: self.ListaArboles.append(R) #=============================================================== def While(self): self.lexico.sigSimbolo() self.Comprueba(11) #=============================================================== P = self.ComparacionLogica() W = self.ReservWhile() W.SetHijo(P) #=============================================================== self.Comprueba(22) if self.lexico.tipo == 23: #=============================================================== if self.BloqueActivo[0] == False: self.BloqueActivo[0] = True elif self.BloqueActivo[1] == False: self.BloqueActivo[1] = True elif self.BloqueActivo[2] == False: self.BloqueActivo[2] = True elif self.BloqueActivo[3] == False: self.BloqueActivo[3] = True elif self.BloqueActivo[4] == False: self.BloqueActivo[4] = True B = self.Bloque() #=============================================================== self.lexico.sigSimbolo() self.A() self.Comprueba(24) #=============================================================== if self.BloqueActivo[0]: if self.BloqueActivo[4]: B.SetListaHijos(self.ListaArbolesBloque[4]) self.BloqueActivo[4] = False self.ListaArbolesBloque[4] = [] elif self.BloqueActivo[3]: B.SetListaHijos(self.ListaArbolesBloque[3]) self.BloqueActivo[3] = False self.ListaArbolesBloque[3] = [] elif self.BloqueActivo[2]: B.SetListaHijos(self.ListaArbolesBloque[2]) self.BloqueActivo[2] = False self.ListaArbolesBloque[2] = [] elif self.BloqueActivo[1]: B.SetListaHijos(self.ListaArbolesBloque[1]) self.BloqueActivo[1] = False self.ListaArbolesBloque[1] = [] elif self.BloqueActivo[0]: B.SetListaHijos(self.ListaArbolesBloque[0]) self.BloqueActivo[0] = False self.ListaArbolesBloque[0] = [] W.SetHijo(B) #=============================================================== #=============================================================== if self.BloqueActivo[0]: if self.BloqueActivo[4]: self.ListaArbolesBloque[4].append(W) elif self.BloqueActivo[3]: self.ListaArbolesBloque[3].append(W) elif self.BloqueActivo[2]: self.ListaArbolesBloque[2].append(W) elif self.BloqueActivo[1]: self.ListaArbolesBloque[1].append(W) elif self.BloqueActivo[0]: self.ListaArbolesBloque[0].append(W) else: self.ListaArboles.append(W) #=============================================================== def DoWhile(self): self.lexico.sigSimbolo() self.Comprueba(23) self.A() self.Comprueba(24) if self.lexico.simbolo == 'while': self.lexico.sigSimbolo() self.Comprueba(11) self.ComparacionLogica() self.Comprueba(22) self.Comprueba(12) else: self.error() def For(self): self.lexico.sigSimbolo() self.Comprueba(11) self.Asignacion(False) self.Comprueba(12) if (self.lexico.tipo == 2 or self.lexico.tipo == 3 or self.lexico.tipo == 5) and not self.lexico.tipo in self.PalabReserv: self.lexico.sigSimbolo() if self.lexico.tipo == 14: self.lexico.sigSimbolo() if (self.lexico.tipo == 2 or self.lexico.tipo == 3 or self.lexico.tipo == 5) and not self.lexico.tipo in self.PalabReserv: self.lexico.sigSimbolo() self.Comprueba(12) self.Asignacion(False) self.Comprueba(22) if self.lexico.tipo == 23: self.lexico.sigSimbolo() self.A() self.Comprueba(24) def Expresion(self, Bool=True): # Permite Recursividad #================================================================ P = None Q = None Tipo = None xD = False Sign = False ArbolPila = [] #================================================================ if self.lexico.tipo == 9: Sign = self.lexico.simbolo self.lexico.sigSimbolo() if self.lexico.tipo == 11: self.lexico.sigSimbolo() #================================================================ P = self.Expresion() ArbolPila.append(P) #================================================================ self.Comprueba(22) xD = True # 2 = IDENTIFICADOR; 3 = ENTERO; 5 = FLOTANTE; 8 = CADENA = "Hola xD" if self.lexico.tipo == 2 or self.lexico.tipo == 3\ or self.lexico.tipo == 5 or self.lexico.tipo == 8\ or xD == True: if xD == False: #================================================================ if self.lexico.tipo == 2: P = self.Identi(None, self.lexico.simbolo) elif self.lexico.tipo == 3: P = self.Entero('i', self.lexico.simbolo) elif self.lexico.tipo == 5: P = self.Flotante('r', self.lexico.simbolo) elif self.lexico.tipo == 8: P = self.CadenaArb('c', self.lexico.simbolo) ArbolPila.append(P) #================================================================ self.lexico.sigSimbolo() else: xD = False #================================================================ if Sign != False: P = self.Signo(P, Sign) ArbolPila.pop() ArbolPila.append(P) Sign = False #================================================================ while self.lexico.tipo == 9 or self.lexico.tipo == 10: #================================================================ Tipo = (self.lexico.tipo, self.lexico.simbolo) ArbolPila.append(Tipo) #================================================================ self.lexico.sigSimbolo() if self.lexico.tipo == 9: Sign = self.lexico.simbolo self.lexico.sigSimbolo() if self.lexico.tipo == 11: self.lexico.sigSimbolo() #================================================================ Q = self.Expresion() ArbolPila.append(Q) #================================================================ self.Comprueba(22) xD = True if self.lexico.tipo == 2 or self.lexico.tipo == 3\ or self.lexico.tipo == 5 or self.lexico.tipo == 8\ or xD == True: if xD == False: #================================================================ if self.lexico.tipo == 2: Q = self.Identi(None, self.lexico.simbolo) elif self.lexico.tipo == 3: Q = self.Entero('i', self.lexico.simbolo) elif self.lexico.tipo == 5: Q = self.Flotante('r', self.lexico.simbolo) elif self.lexico.tipo == 8: Q = self.CadenaArb('c', self.lexico.simbolo) ArbolPila.append(Q) #================================================================ self.lexico.sigSimbolo() else: xD = False else: self.error() #================================================================ if Sign != False: Q = self.Signo(Q, Sign) ArbolPila.pop() ArbolPila.append(Q) Sign = False if Bool: if Tipo[0] == 9: P = self.Suma(P, Q, Tipo[1]) elif Tipo[0] == 10: P = self.Multi(P, Q, Tipo[1]) #================================================================ if Bool == False: # ~ print('\n') ArbolPila = ArbolPila[::-1] P = ArbolPila.pop(0) # ~ print(P) if ArbolPila != []: Operador = ArbolPila.pop(0) Valor1 = ArbolPila.pop(0) # ~ print(Operador) # ~ print(Valor1) if Operador[0] == 9: P = self.Suma( Valor1, P, Operador[1]) elif Operador[0] == 10: P = self.Multi(Valor1, P, Operador[1]) Cont = 0 for x in ArbolPila: # ~ print(x) if Cont % 2 == 0: Operador = x elif Cont % 2 == 1: Valor1 = x if Operador[0] == 9: P = self.Suma( Valor1, P, Operador[1]) elif Operador[0] == 10: P = self.Multi(Valor1, P, Operador[1]) Cont += 1 return P def Print(self): self.lexico.sigSimbolo() self.Comprueba(11) #=============================================================== P = self.Expresion() P = self.ExpresionArb(P) #=============================================================== self.Comprueba(22) #=============================================================== P = self.ReservPrint(P) if self.BloqueActivo[0]: if self.BloqueActivo[4]: self.ListaArbolesBloque[4].append(P) elif self.BloqueActivo[3]: self.ListaArbolesBloque[3].append(P) elif self.BloqueActivo[2]: self.ListaArbolesBloque[2].append(P) elif self.BloqueActivo[1]: self.ListaArbolesBloque[1].append(P) elif self.BloqueActivo[0]: self.ListaArbolesBloque[0].append(P) else: self.ListaArboles.append(P) #=============================================================== self.Comprueba(12) def ComparacionLogica(self): #================================================================ P = self.ComparacionRelacional() #================================================================ while self.lexico.tipo == 19: self.lexico.sigSimbolo() #================================================================ Q = self.ComparacionRelacional() P = self.Logico(P, Q) #================================================================ #================================================================ return P #================================================================ def ComparacionRelacional(self): #================================================================ P = None Q = None Simbolo = None P = self.Expresion() #================================================================ if self.lexico.tipo == 16: Simbolo = self.lexico.simbolo self.lexico.sigSimbolo() Simbolo += self.lexico.simbolo self.Comprueba(15) #================================================================ Q = self.Expresion() P = self.Relacional(P, Q, Simbolo) #================================================================ elif self.lexico.tipo == 14: Simbolo = self.lexico.simbolo self.lexico.sigSimbolo() #================================================================ Q = self.Expresion() P = self.Relacional(P, Q, Simbolo) #================================================================ #================================================================ return P #================================================================ def P(self): os.system('Pause > Nul')
[ "Lexico.Lexico", "os.system", "sys.exit" ]
[((1128, 1154), 'Lexico.Lexico', 'Lexico.Lexico', (['self.Cadena'], {}), '(self.Cadena)\n', (1141, 1154), False, 'import Lexico\n'), ((1668, 1678), 'sys.exit', 'sys.exit', ([], {}), '()\n', (1676, 1678), False, 'import sys\n'), ((21406, 21430), 'os.system', 'os.system', (['"""Pause > Nul"""'], {}), "('Pause > Nul')\n", (21415, 21430), False, 'import os\n')]
from httpolice.citation import RFC from httpolice.parse import (auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst) from httpolice.syntax.common import ALPHA, DIGIT, HEXDIG pct_encoded = '%' + HEXDIG + HEXDIG > auto sub_delims = (literal('!') | '$' | '&' | "'" | '(' | ')' | '*' | '+' | ',' | ';' | '=') > auto unreserved = ALPHA | DIGIT | '-' | '.' | '_' | '~' > auto pchar = unreserved | sub_delims | ':' | '@' | pct_encoded > auto segment = string(pchar) > auto segment_nz = string1(pchar) > auto segment_nz_nc = string1(unreserved | sub_delims | '@' | pct_encoded) > auto scheme = ALPHA + string(ALPHA | DIGIT | '+' | '-' | '.') > pivot userinfo = string(unreserved | sub_delims | ':' | pct_encoded) > pivot dec_octet = (DIGIT | octet_range(0x31, 0x39) + DIGIT | '1' + DIGIT + DIGIT | '2' + octet_range(0x30, 0x34) + DIGIT | '25' + octet_range(0x30, 0x35)) > auto IPv4address = (dec_octet + '.' + dec_octet + '.' + dec_octet + '.' + dec_octet) > pivot h16 = string_times(1, 4, HEXDIG) > auto ls32 = (h16 + ':' + h16) | IPv4address > auto IPv6address = ( string_times(6, 6, h16 + ':') + ls32 | '::' + string_times(5, 5, h16 + ':') + ls32 | maybe_str(h16) + '::' + string_times(4, 4, h16 + ':') + ls32 | maybe_str(string_times(0, 1, h16 + ':') + h16) + '::' + string_times(3, 3, h16 + ':') + ls32 | maybe_str(string_times(0, 2, h16 + ':') + h16) + '::' + string_times(2, 2, h16 + ':') + ls32 | maybe_str(string_times(0, 3, h16 + ':') + h16) + '::' + h16 + ':' + ls32 | maybe_str(string_times(0, 4, h16 + ':') + h16) + '::' + ls32 | maybe_str(string_times(0, 5, h16 + ':') + h16) + '::' + h16 | maybe_str(string_times(0, 6, h16 + ':') + h16) + '::' ) > pivot IPvFuture = ('v' + string1(HEXDIG) + '.' + string1(unreserved | sub_delims | ':')) > pivot # As updated by RFC 6874 ZoneID = string1(unreserved | pct_encoded) > pivot IPv6addrz = IPv6address + '%25' + ZoneID > pivot IP_literal = '[' + (IPv6address | IPv6addrz | IPvFuture) + ']' > pivot reg_name = string(unreserved | sub_delims | pct_encoded) > pivot host = IP_literal | IPv4address | reg_name > pivot port = string(DIGIT) > pivot authority = maybe_str(userinfo + '@') + host + maybe_str(':' + port) > pivot path_abempty = string('/' + segment) > auto path_absolute = '/' + maybe_str(segment_nz + string('/' + segment)) > auto path_noscheme = segment_nz_nc + string('/' + segment) > auto path_rootless = segment_nz + string('/' + segment) > auto path_empty = subst(u'') << empty > auto hier_part = ('//' + authority + path_abempty | path_absolute | path_rootless | path_empty) > pivot query = string(pchar | '/' | '?') > pivot fragment = string(pchar | '/' | '?') > pivot absolute_URI = scheme + ':' + hier_part + maybe_str('?' + query) > pivot relative_part = ('//' + authority + path_abempty | path_absolute | path_noscheme | path_empty) > pivot URI = (scheme + ':' + hier_part + maybe_str('?' + query) + maybe_str('#' + fragment)) > pivot relative_ref = (relative_part + maybe_str('?' + query) + maybe_str('#' + fragment)) > pivot URI_reference = URI | relative_ref > pivot fill_names(globals(), RFC(3986))
[ "httpolice.parse.literal", "httpolice.parse.string1", "httpolice.parse.maybe_str", "httpolice.parse.subst", "httpolice.parse.string_times", "httpolice.parse.string", "httpolice.parse.octet_range", "httpolice.citation.RFC" ]
[((682, 695), 'httpolice.parse.string', 'string', (['pchar'], {}), '(pchar)\n', (688, 695), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((764, 778), 'httpolice.parse.string1', 'string1', (['pchar'], {}), '(pchar)\n', (771, 778), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((846, 898), 'httpolice.parse.string1', 'string1', (["(unreserved | sub_delims | '@' | pct_encoded)"], {}), "(unreserved | sub_delims | '@' | pct_encoded)\n", (853, 898), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((1001, 1052), 'httpolice.parse.string', 'string', (["(unreserved | sub_delims | ':' | pct_encoded)"], {}), "(unreserved | sub_delims | ':' | pct_encoded)\n", (1007, 1052), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((1442, 1468), 'httpolice.parse.string_times', 'string_times', (['(1)', '(4)', 'HEXDIG'], {}), '(1, 4, HEXDIG)\n', (1454, 1468), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((2493, 2526), 'httpolice.parse.string1', 'string1', (['(unreserved | pct_encoded)'], {}), '(unreserved | pct_encoded)\n', (2500, 2526), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((2736, 2781), 'httpolice.parse.string', 'string', (['(unreserved | sub_delims | pct_encoded)'], {}), '(unreserved | sub_delims | pct_encoded)\n', (2742, 2781), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((2892, 2905), 'httpolice.parse.string', 'string', (['DIGIT'], {}), '(DIGIT)\n', (2898, 2905), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((3061, 3082), 'httpolice.parse.string', 'string', (["('/' + segment)"], {}), "('/' + segment)\n", (3067, 3082), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((3578, 3603), 'httpolice.parse.string', 'string', (["(pchar | '/' | '?')"], {}), "(pchar | '/' | '?')\n", (3584, 3603), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((3661, 3686), 'httpolice.parse.string', 'string', (["(pchar | '/' | '?')"], {}), "(pchar | '/' | '?')\n", (3667, 3686), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((4276, 4285), 'httpolice.citation.RFC', 'RFC', (['(3986)'], {}), '(3986)\n', (4279, 4285), False, 'from httpolice.citation import RFC\n'), ((927, 966), 'httpolice.parse.string', 'string', (["(ALPHA | DIGIT | '+' | '-' | '.')"], {}), "(ALPHA | DIGIT | '+' | '-' | '.')\n", (933, 966), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((2391, 2429), 'httpolice.parse.string1', 'string1', (["(unreserved | sub_delims | ':')"], {}), "(unreserved | sub_delims | ':')\n", (2398, 2429), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((3012, 3033), 'httpolice.parse.maybe_str', 'maybe_str', (["(':' + port)"], {}), "(':' + port)\n", (3021, 3033), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((3236, 3257), 'httpolice.parse.string', 'string', (["('/' + segment)"], {}), "('/' + segment)\n", (3242, 3257), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((3312, 3333), 'httpolice.parse.string', 'string', (["('/' + segment)"], {}), "('/' + segment)\n", (3318, 3333), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((3375, 3385), 'httpolice.parse.subst', 'subst', (['u""""""'], {}), "(u'')\n", (3380, 3385), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((3773, 3795), 'httpolice.parse.maybe_str', 'maybe_str', (["('?' + query)"], {}), "('?' + query)\n", (3782, 3795), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((4010, 4035), 'httpolice.parse.maybe_str', 'maybe_str', (["('#' + fragment)"], {}), "('#' + fragment)\n", (4019, 4035), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((4132, 4157), 'httpolice.parse.maybe_str', 'maybe_str', (["('#' + fragment)"], {}), "('#' + fragment)\n", (4141, 4157), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((1246, 1265), 'httpolice.parse.octet_range', 'octet_range', (['(48)', '(53)'], {}), '(48, 53)\n', (1257, 1265), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((2977, 3002), 'httpolice.parse.maybe_str', 'maybe_str', (["(userinfo + '@')"], {}), "(userinfo + '@')\n", (2986, 3002), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((3985, 4007), 'httpolice.parse.maybe_str', 'maybe_str', (["('?' + query)"], {}), "('?' + query)\n", (3994, 4007), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((4107, 4129), 'httpolice.parse.maybe_str', 'maybe_str', (["('?' + query)"], {}), "('?' + query)\n", (4116, 4129), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((2354, 2369), 'httpolice.parse.string1', 'string1', (['HEXDIG'], {}), '(HEXDIG)\n', (2361, 2369), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((3170, 3191), 'httpolice.parse.string', 'string', (["('/' + segment)"], {}), "('/' + segment)\n", (3176, 3191), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((1192, 1211), 'httpolice.parse.octet_range', 'octet_range', (['(48)', '(52)'], {}), '(48, 52)\n', (1203, 1211), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((2210, 2239), 'httpolice.parse.string_times', 'string_times', (['(0)', '(6)', "(h16 + ':')"], {}), "(0, 6, h16 + ':')\n", (2222, 2239), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((1104, 1123), 'httpolice.parse.octet_range', 'octet_range', (['(49)', '(57)'], {}), '(49, 57)\n', (1115, 1123), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((2144, 2173), 'httpolice.parse.string_times', 'string_times', (['(0)', '(5)', "(h16 + ':')"], {}), "(0, 5, h16 + ':')\n", (2156, 2173), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((1945, 1974), 'httpolice.parse.string_times', 'string_times', (['(2)', '(2)', "(h16 + ':')"], {}), "(2, 2, h16 + ':')\n", (1957, 1974), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((2077, 2106), 'httpolice.parse.string_times', 'string_times', (['(0)', '(4)', "(h16 + ':')"], {}), "(0, 4, h16 + ':')\n", (2089, 2106), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((1838, 1867), 'httpolice.parse.string_times', 'string_times', (['(3)', '(3)', "(h16 + ':')"], {}), "(3, 3, h16 + ':')\n", (1850, 1867), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((1614, 1643), 'httpolice.parse.string_times', 'string_times', (['(6)', '(6)', "(h16 + ':')"], {}), "(6, 6, h16 + ':')\n", (1626, 1643), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((1731, 1760), 'httpolice.parse.string_times', 'string_times', (['(4)', '(4)', "(h16 + ':')"], {}), "(4, 4, h16 + ':')\n", (1743, 1760), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((377, 389), 'httpolice.parse.literal', 'literal', (['"""!"""'], {}), "('!')\n", (384, 389), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((1664, 1693), 'httpolice.parse.string_times', 'string_times', (['(5)', '(5)', "(h16 + ':')"], {}), "(5, 5, h16 + ':')\n", (1676, 1693), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((1707, 1721), 'httpolice.parse.maybe_str', 'maybe_str', (['h16'], {}), '(h16)\n', (1716, 1721), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((1891, 1920), 'httpolice.parse.string_times', 'string_times', (['(0)', '(2)', "(h16 + ':')"], {}), "(0, 2, h16 + ':')\n", (1903, 1920), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((1998, 2027), 'httpolice.parse.string_times', 'string_times', (['(0)', '(3)', "(h16 + ':')"], {}), "(0, 3, h16 + ':')\n", (2010, 2027), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n'), ((1784, 1813), 'httpolice.parse.string_times', 'string_times', (['(0)', '(1)', "(h16 + ':')"], {}), "(0, 1, h16 + ':')\n", (1796, 1813), False, 'from httpolice.parse import auto, empty, fill_names, literal, maybe_str, octet_range, pivot, string, string1, string_times, subst\n')]
""" pylinq setup script. """ from distutils.core import setup with open("README.rst", 'r') as f: readme = f.read() with open("HISTORY.rst", 'r') as f: history = f.read() setup( name='pinq', version='0.1.1', description='LINQ for python.', long_description="%s\n\n%s" % (readme, history), license='MIT', author='<NAME>', author_email='<EMAIL>', url='https://github.com/dlshriver/pinq', packages=[ 'pinq', ], classifiers=( "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Natural Language :: English", "License :: OSI Approved :: MIT License", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", ) )
[ "distutils.core.setup" ]
[((181, 938), 'distutils.core.setup', 'setup', ([], {'name': '"""pinq"""', 'version': '"""0.1.1"""', 'description': '"""LINQ for python."""', 'long_description': "('%s\\n\\n%s' % (readme, history))", 'license': '"""MIT"""', 'author': '"""<NAME>"""', 'author_email': '"""<EMAIL>"""', 'url': '"""https://github.com/dlshriver/pinq"""', 'packages': "['pinq']", 'classifiers': "('Development Status :: 3 - Alpha', 'Intended Audience :: Developers',\n 'Natural Language :: English', 'License :: OSI Approved :: MIT License',\n 'Programming Language :: Python', 'Programming Language :: Python :: 2',\n 'Programming Language :: Python :: 2.6',\n 'Programming Language :: Python :: 2.7',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.3',\n 'Programming Language :: Python :: 3.4',\n 'Programming Language :: Python :: 3.5')"}), "(name='pinq', version='0.1.1', description='LINQ for python.',\n long_description='%s\\n\\n%s' % (readme, history), license='MIT', author=\n '<NAME>', author_email='<EMAIL>', url=\n 'https://github.com/dlshriver/pinq', packages=['pinq'], classifiers=(\n 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers',\n 'Natural Language :: English', 'License :: OSI Approved :: MIT License',\n 'Programming Language :: Python', 'Programming Language :: Python :: 2',\n 'Programming Language :: Python :: 2.6',\n 'Programming Language :: Python :: 2.7',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3.3',\n 'Programming Language :: Python :: 3.4',\n 'Programming Language :: Python :: 3.5'))\n", (186, 938), False, 'from distutils.core import setup\n')]
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云(BlueKing) available. Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. urls config """ from django.urls import include, path # Uncomment the next two lines to enable the admin: from django.contrib import admin from django.conf import settings prefix = settings.SITE_URL.lstrip('/') # 公共URL配置 urlpatterns = [ path(prefix + 'admin/', admin.site.urls), path(prefix + 'auth/', include('rest_framework.urls')), path(prefix, include('home_application.urls')), ]
[ "django.conf.settings.SITE_URL.lstrip", "django.urls.path", "django.urls.include" ]
[((873, 902), 'django.conf.settings.SITE_URL.lstrip', 'settings.SITE_URL.lstrip', (['"""/"""'], {}), "('/')\n", (897, 902), False, 'from django.conf import settings\n'), ((934, 974), 'django.urls.path', 'path', (["(prefix + 'admin/')", 'admin.site.urls'], {}), "(prefix + 'admin/', admin.site.urls)\n", (938, 974), False, 'from django.urls import include, path\n'), ((1003, 1033), 'django.urls.include', 'include', (['"""rest_framework.urls"""'], {}), "('rest_framework.urls')\n", (1010, 1033), False, 'from django.urls import include, path\n'), ((1053, 1085), 'django.urls.include', 'include', (['"""home_application.urls"""'], {}), "('home_application.urls')\n", (1060, 1085), False, 'from django.urls import include, path\n')]
# -*- coding: utf-8 -*- """ Created on Fri May 22 08:52:50 2015 @author: sblanco Modified by jcid to log messages to standard output """ import logging import sys class Log: __logger__ = None __error__ = False def __init__(self, path, crear=False): try: self.__logger__ = logging.getLogger(__name__) self.__logger__ .setLevel(logging.DEBUG) # create a file handler # mode w create new file: if crear is True: handler = logging.FileHandler(path, mode='w') else: handler = logging.FileHandler(path) handler.setLevel(logging.DEBUG) # create a logging format formatter = logging.Formatter( '%(asctime)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger self.__logger__.addHandler(handler) # Add ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.DEBUG) formatter = logging.Formatter( '%(asctime)s - %(levelname)s - %(message)s') ch.setFormatter(formatter) self.__logger__.addHandler(ch) except: self.__error__ = True def debug(self, msg): if (self.__error__): print('DEBUG: {}'.format(msg)) else: self.__logger__.debug(msg) def info(self, msg): if (self.__error__): print('INFO: {}'.format(msg)) else: self.__logger__.info(msg) def warn(self, msg): if (self.__error__): print('WARN: {}'.format(msg)) else: self.__logger__.warn(msg) def error(self, msg): if (self.__error__): print('ERROR: {}'.format(msg)) else: self.__logger__.error(msg) def critical(self, msg): if (self.__error__): print('CRITICAL: {}'.format(msg)) else: self.__logger__.critical(msg)
[ "logging.Formatter", "logging.StreamHandler", "logging.FileHandler", "logging.getLogger" ]
[((340, 367), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (357, 367), False, 'import logging\n'), ((777, 839), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s - %(levelname)s - %(message)s"""'], {}), "('%(asctime)s - %(levelname)s - %(message)s')\n", (794, 839), False, 'import logging\n'), ((1039, 1072), 'logging.StreamHandler', 'logging.StreamHandler', (['sys.stdout'], {}), '(sys.stdout)\n', (1060, 1072), False, 'import logging\n'), ((1138, 1200), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s - %(levelname)s - %(message)s"""'], {}), "('%(asctime)s - %(levelname)s - %(message)s')\n", (1155, 1200), False, 'import logging\n'), ((558, 593), 'logging.FileHandler', 'logging.FileHandler', (['path'], {'mode': '"""w"""'}), "(path, mode='w')\n", (577, 593), False, 'import logging\n'), ((640, 665), 'logging.FileHandler', 'logging.FileHandler', (['path'], {}), '(path)\n', (659, 665), False, 'import logging\n')]
import matplotlib.pyplot as plt import pandas as pd def visualize(peak_dict): for i in range(len(peak_dict)): df = pd.DataFrame(peak_dict['peak_%s' % i], columns=['Position', 'Height', 'Width', 'Time']) plt.subplot(3, 1, 1) plt.plot(df['Time'], df['Height']) plt.title('Peak %s Dynamics' % (i+1)) plt.ylabel('Intensity') plt.subplot(3, 1, 2) plt.plot(df['Time'], df['Position']) plt.ylabel('Position') plt.subplot(3, 1, 3) plt.plot(df['Time'], df['Width']) plt.ylabel('Width') plt.xlabel('Time') plt.show() return
[ "pandas.DataFrame", "matplotlib.pyplot.subplot", "matplotlib.pyplot.title", "matplotlib.pyplot.show", "matplotlib.pyplot.plot", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel" ]
[((128, 219), 'pandas.DataFrame', 'pd.DataFrame', (["peak_dict['peak_%s' % i]"], {'columns': "['Position', 'Height', 'Width', 'Time']"}), "(peak_dict['peak_%s' % i], columns=['Position', 'Height',\n 'Width', 'Time'])\n", (140, 219), True, 'import pandas as pd\n'), ((242, 262), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(1)'], {}), '(3, 1, 1)\n', (253, 262), True, 'import matplotlib.pyplot as plt\n'), ((271, 305), 'matplotlib.pyplot.plot', 'plt.plot', (["df['Time']", "df['Height']"], {}), "(df['Time'], df['Height'])\n", (279, 305), True, 'import matplotlib.pyplot as plt\n'), ((314, 353), 'matplotlib.pyplot.title', 'plt.title', (["('Peak %s Dynamics' % (i + 1))"], {}), "('Peak %s Dynamics' % (i + 1))\n", (323, 353), True, 'import matplotlib.pyplot as plt\n'), ((360, 383), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Intensity"""'], {}), "('Intensity')\n", (370, 383), True, 'import matplotlib.pyplot as plt\n'), ((393, 413), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(2)'], {}), '(3, 1, 2)\n', (404, 413), True, 'import matplotlib.pyplot as plt\n'), ((422, 458), 'matplotlib.pyplot.plot', 'plt.plot', (["df['Time']", "df['Position']"], {}), "(df['Time'], df['Position'])\n", (430, 458), True, 'import matplotlib.pyplot as plt\n'), ((467, 489), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Position"""'], {}), "('Position')\n", (477, 489), True, 'import matplotlib.pyplot as plt\n'), ((499, 519), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(3)'], {}), '(3, 1, 3)\n', (510, 519), True, 'import matplotlib.pyplot as plt\n'), ((528, 561), 'matplotlib.pyplot.plot', 'plt.plot', (["df['Time']", "df['Width']"], {}), "(df['Time'], df['Width'])\n", (536, 561), True, 'import matplotlib.pyplot as plt\n'), ((570, 589), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Width"""'], {}), "('Width')\n", (580, 589), True, 'import matplotlib.pyplot as plt\n'), ((598, 616), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Time"""'], {}), "('Time')\n", (608, 616), True, 'import matplotlib.pyplot as plt\n'), ((625, 635), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (633, 635), True, 'import matplotlib.pyplot as plt\n')]
#!/usr/bin/env python3 # SPDX-FileCopyrightText: 2009 Fermi Research Alliance, LLC # SPDX-License-Identifier: Apache-2.0 import os import os.path import re import string import sys import time from glideinwms.frontend import glideinFrontendConfig, glideinFrontendDowntimeLib def usage(): print("Usage:") print(" manageFrontendDowntimes.py -dir frontend_dir -cmd [command] [options]") print("where command is one of:") print(" add - Add a scheduled downtime period") print(" down - Put the factory down now(+delay)") print(" up - Get the factory back up now(+delay)") print(" check - Report if the factory is in downtime now(+delay)") print("Other options:") print(" -start [[[YYYY-]MM-]DD-]HH:MM[:SS] (start time for adding a downtime)") print(" -end [[[YYYY-]MM-]DD-]HH:MM[:SS] (end time for adding a downtime)") print(" -delay [HHh][MMm][SS[s]] (delay a downtime for down, up, and check cmds)") # [[[YYYY-]MM-]DD-]HH:MM[:SS] def strtxt2time(timeStr): deftime = time.localtime(time.time()) year = deftime[0] month = deftime[1] day = deftime[2] seconds = 0 darr = timeStr.split("-") # [[[YYYY-]MM-]DD-]HH:MM[:SS] if len(darr) > 1: # we have at least part of the date timeStr = darr[-1] day = int(darr[-2]) if len(darr) > 2: month = int(darr[-3]) if len(darr) > 3: year = int(darr[-4]) tarr = timeStr.split(":") hours = int(tarr[0]) minutes = int(tarr[1]) if len(tarr) > 2: seconds = int(tarr[2]) outtime = time.mktime((year, month, day, hours, minutes, seconds, 0, 0, -1)) return outtime # this is epoch format # [[[YYYY-]MM-]DD-]HH:MM[:SS] # or # unix_time def str2time(timeStr): if len(timeStr.split(":", 1)) > 1: return strtxt2time(timeStr) # has a :, so it must be a text representation else: print(timeStr) return int(timeStr) # should be a simple number # [HHh][MMm][SS[s]] def delay2time(delayStr): hours = 0 minutes = 0 seconds = 0 # getting hours harr = delayStr.split("h", 1) if len(harr) == 2: hours = int(harr[0]) delayStr = harr[1] # getting minutes marr = delayStr.split("m", 1) if len(marr) == 2: minutes = int(marr[0]) delayStr = marr[1] # getting seconds if delayStr[-1:] == "s": delayStr = delayStr[:-1] # remove final s if present if len(delayStr) > 0: seconds = int(delayStr) return seconds + 60 * (minutes + 60 * hours) def get_downtime_fd(work_dir): frontendDescript = glideinFrontendConfig.FrontendDescript(work_dir) fd = glideinFrontendDowntimeLib.DowntimeFile(os.path.join(work_dir, frontendDescript.data["DowntimesFile"])) return fd # major commands def add(opt_dict): # glideinFrontendDowntimeLib.DowntimeFile( self.elementDescript.frontend_data['DowntimesFile'] ) down_fd = get_downtime_fd(opt_dict["dir"]) start_time = str2time(opt_dict["start"]) end_time = str2time(opt_dict["end"]) down_fd.addPeriod(start_time=start_time, end_time=end_time) return 0 # this calls checkDowntime(with delayed_start_time ) first and then startDowntime(with delayed_start_time and end_time) def down(opt_dict): down_fd = get_downtime_fd(opt_dict["dir"]) when = delay2time(opt_dict["delay"]) if opt_dict["start"] == "None": when += int(time.time()) else: # delay applies only to the start time when += str2time(opt_dict["start"]) if opt_dict["end"] == "None": end_time = None else: end_time = str2time(opt_dict["end"]) if not down_fd.checkDowntime(check_time=when): # only add a new line if not in downtime at that time return down_fd.startDowntime(start_time=when, end_time=end_time) else: print("Frontend is already down. ") return 0 # calls endDowntime( with end_time only ) def up(opt_dict): down_fd = get_downtime_fd(opt_dict["dir"]) when = delay2time(opt_dict["delay"]) if opt_dict["end"] == "None": when += int(time.time()) else: # delay applies only to the end time when += str2time(opt_dict["end"]) rtn = down_fd.endDowntime(end_time=when) if rtn > 0: return 0 else: print("Frontend is not in downtime.") return 1 def printtimes(opt_dict): down_fd = get_downtime_fd(opt_dict["dir"]) when = delay2time(opt_dict["delay"]) + int(time.time()) down_fd.printDowntime(check_time=when) def get_args(argv): opt_dict = {"comment": "", "sec": "All", "delay": "0", "end": "None", "start": "None", "frontend": "All"} index = 0 for arg in argv: if len(argv) <= index + 1: continue if arg == "-cmd": opt_dict["cmd"] = argv[index + 1] if arg == "-dir": opt_dict["dir"] = argv[index + 1] if arg == "-start": opt_dict["start"] = argv[index + 1] if arg == "-end": opt_dict["end"] = argv[index + 1] if arg == "-delay": opt_dict["delay"] = argv[index + 1] index = index + 1 return opt_dict def main(argv): if len(argv) < 3: usage() return 1 # Get the command line arguments opt_dict = get_args(argv) try: frontend_dir = opt_dict["dir"] cmd = opt_dict["cmd"] except KeyError as e: usage() print("-cmd -dir argument is required.") return 1 try: os.chdir(frontend_dir) except OSError as e: usage() print("Failed to locate factory %s" % frontend_dir) print("%s" % e) return 1 if cmd == "add": return add(opt_dict) elif cmd == "down": return down(opt_dict) elif cmd == "up": return up(opt_dict) elif cmd == "check": return printtimes(opt_dict) else: usage() print("Invalid command %s" % cmd) return 1 if __name__ == "__main__": sys.exit(main(sys.argv))
[ "time.time", "glideinwms.frontend.glideinFrontendConfig.FrontendDescript", "time.mktime", "os.path.join", "os.chdir" ]
[((1640, 1706), 'time.mktime', 'time.mktime', (['(year, month, day, hours, minutes, seconds, 0, 0, -1)'], {}), '((year, month, day, hours, minutes, seconds, 0, 0, -1))\n', (1651, 1706), False, 'import time\n'), ((2679, 2727), 'glideinwms.frontend.glideinFrontendConfig.FrontendDescript', 'glideinFrontendConfig.FrontendDescript', (['work_dir'], {}), '(work_dir)\n', (2717, 2727), False, 'from glideinwms.frontend import glideinFrontendConfig, glideinFrontendDowntimeLib\n'), ((1091, 1102), 'time.time', 'time.time', ([], {}), '()\n', (1100, 1102), False, 'import time\n'), ((2777, 2839), 'os.path.join', 'os.path.join', (['work_dir', "frontendDescript.data['DowntimesFile']"], {}), "(work_dir, frontendDescript.data['DowntimesFile'])\n", (2789, 2839), False, 'import os\n'), ((5610, 5632), 'os.chdir', 'os.chdir', (['frontend_dir'], {}), '(frontend_dir)\n', (5618, 5632), False, 'import os\n'), ((3495, 3506), 'time.time', 'time.time', ([], {}), '()\n', (3504, 3506), False, 'import time\n'), ((4184, 4195), 'time.time', 'time.time', ([], {}), '()\n', (4193, 4195), False, 'import time\n'), ((4568, 4579), 'time.time', 'time.time', ([], {}), '()\n', (4577, 4579), False, 'import time\n')]
import csv import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as tck from PIL import Image # for testing purposes, remove this later! from sys import exit """Data visualization on the Airbnb New York dataset from Kaggle. The dataset provides 16 pieces of data in the following order: 0: id 1: name 2: host_id 3: host_name 4: neighbourhood_group 5: neighbourhood 6: latitude 7: longitude 8: room_type 9: price 10: minimum_nights 11: number_of_reviews 12: last_review 13: reviews_per_month 14: calculated_host_listings_count 15: availability_365 All fields are fairly self-explanatory. I will not be using the 'id' or the 'host_id' field since they are not relevant, and the 'name' field since it does not make sense to in this context. This project is fully open source and free to use and share. Enjoy! """ header = [] data = {} num_columns = 16 num_entries = 0 with open('new_york_data.csv', encoding='utf-8') as csv_file: reader = csv.reader(csv_file, delimiter=',') # read the header header = next(reader) # read the entries body = [] for row in reader: body.append(row) num_entries = len(body) # parse the entries into np arrays and store them under in the data list for i in range(num_columns): dtype = 'str' # price, minimum nights, number of reviews # calculated host listings count, annual availability if i == 9 or i == 10 or i == 11 or i == 14 or i == 15: dtype = 'int64' # latitude, longitude, review per month if i == 6 or i == 7 or i == 13: dtype = 'float64' # reviews per month is blank sometimes in the original dataset if i == 13: # numpy cannot process empty strings to floats; so check for this col_data = np.asarray([body[j][i] if len(body[j][i]) > 0 else 0.0 for j in range(num_entries)], dtype=dtype) else: col_data = np.asarray([body[j][i] for j in range(num_entries)], dtype=dtype) data[header[i]] = col_data # Area that the cover maps; experimentally determined # (latitude, longitude) min_coords = (40.49279, -74.26442) max_coords = (40.91906, -73.68299) long_range = max_coords[1] - min_coords[1] lat_range = max_coords[0] - min_coords[0] image_extent = (min_coords[1], max_coords[1], min_coords[0], max_coords[0]) new_york_img = Image.open('new_york_map.png') # use large figure sizes matplotlib.rcParams['figure.figsize'] = (12, 7) # Room Type Bar Graph room_types, room_types_count = np.unique(data['room_type'], return_counts=True) plt.title('Distribution of Room Types') room_types_norm = room_types_count / sum(room_types_count) plt.barh(room_types, room_types_norm) ax = plt.gca() ax.xaxis.set_major_formatter(tck.FuncFormatter(lambda x, _: '{:.0%}'.format(x))) plt.show() # Neighbourhood Groups n_groups, n_groups_count = np.unique(data['neighbourhood_group'], return_counts=True) n_groups_colors = ['#1a535c', '#4ecdc4', '#b2ff66', '#ff6b6b', '#ffe66d'] explode = np.zeros((len(n_groups),), dtype='float64') for idx, group in enumerate(n_groups): if group == 'Manhattan': explode[idx] = 0.1 break plt.title('Distribution of Neighbourhood Groups') wedges, texts, _ = plt.pie( n_groups_count, labels=n_groups, explode=explode, autopct='%1.1f%%', pctdistance=0.8, colors=n_groups_colors) plt.show() # Neighbourhoods nbhs, nbhs_count = np.unique(data['neighbourhood'], return_counts=True) # zip the neighbourhood name and count into a tuple to sort by count nbhs_sorted_tuples = sorted(list(zip(nbhs, nbhs_count)), key=lambda elem: elem[1], reverse=True) # unzip the sorted tuples back into a list of names and a list of counts nbhs_sorted, nbhs_sorted_count = list(zip(*nbhs_sorted_tuples)) # take only the top 20 nbhs_sorted = nbhs_sorted[:20] nbhs_sorted_count = nbhs_sorted_count[:20] nbhs_price_avgs = [] for nbh in nbhs_sorted: prices = data['price'][data['neighbourhood'] == nbh] nbhs_price_avgs.append(np.average(prices)) fig, ax1 = plt.subplots() plt.title('Most Popular Neighbourhoods and Average Price') # pad the bottom of the plot to prevent text clipping plt.subplots_adjust(bottom=0.2) # rotate the labels so that they are easier to read ax1.set_xticklabels(nbhs_sorted, rotation=45, ha='right') ax1.set_xlabel('Neighbourhood'); # plot number of places on the left y-axis ax1.bar(nbhs_sorted, nbhs_sorted_count, width=-0.2, align='edge') ax1.set_ylabel('Number of places (blue)') # plot average price on the right y-axis ax2 = ax1.twinx() ax2.bar(nbhs_sorted, nbhs_price_avgs, width=0.2, align='edge', color='orange') ax2.set_ylabel('Average price (orange)') plt.show() # Price Histogram group_prices = [] # separate the price data based on neighbourhood groups for group in n_groups: group_prices.append(data['price'][data['neighbourhood_group'] == group]) # plot the price data for each group separately as stacked bars # use only prices less than 500 since most of the data belongs in this range # this also lets us not worry about huge outliers (there are a few places whose # nightly price is in the many thousands) plt.hist( group_prices, histtype='barstacked', bins=25, range=(0, 500), edgecolor='white', color=n_groups_colors) plt.legend(n_groups, loc='upper right') plt.title('Distribution of Price per Night') plt.xlim(0, 500) plt.ylabel('Number of places') plt.xlabel('Price range (USD)') plt.show() # Average Price Heatmap # compute the average pricing over a grid of 150 by 150 price_heatmap_bins = 150 price_heatmap_sum = np.zeros((price_heatmap_bins, price_heatmap_bins), dtype='float64') price_heatmap_count = np.zeros((price_heatmap_bins, price_heatmap_bins), dtype='float64') for long, lat, price in zip(data['longitude'], data['latitude'], data['price']): # take only prices below 500 to be consistent with price histogram if price < 500: idx_long = int((long - min_coords[1]) / long_range * price_heatmap_bins) idx_lat = int((lat - min_coords[0]) / lat_range * price_heatmap_bins) price_heatmap_sum[idx_lat, idx_long] += price price_heatmap_count[idx_lat, idx_long] += 1 # ensure that a divide by zero will not occur price_heatmap_count = np.clip(price_heatmap_count, 1, None) price_heatmap = price_heatmap_sum / price_heatmap_count plt.imshow(new_york_img, extent=image_extent) plt.imshow(price_heatmap, extent=image_extent, origin='lower', alpha=0.9) plt.colorbar() plt.title('Average Price per Night Heatmap') plt.show() # Housing Scatter Plot plt.imshow(new_york_img, extent=image_extent) # divide locations based on groups and display them as a scatter on the New York map for group, color in zip(n_groups, n_groups_colors): plt.scatter( data['longitude'][data['neighbourhood_group'] == group], data['latitude'][data['neighbourhood_group'] == group], s=2, color=color) plt.legend(n_groups, loc='upper left', markerscale=5) plt.title('Plot of Housing Locations') plt.xlabel('Longitude') plt.ylabel('Latitude') plt.show() # Housing Heatmap plt.imshow(new_york_img, extent=image_extent) plt.hist2d(data['longitude'], data['latitude'], bins=150, alpha=0.7) plt.title('Heatmap of Housing Locations') plt.colorbar() plt.xlabel('Longitude') plt.ylabel('Latitude') plt.show() # Minimum Nights Distribution group_min_nights = [] # separate the price data based on neighbourhood groups for group in n_groups: group_min_nights.append(data['minimum_nights'][data['neighbourhood_group'] == group]) # plot the price data for each group separately as stacked bars plt.hist( group_min_nights, histtype='barstacked', bins=20, range=(1, 21), edgecolor='white', color=n_groups_colors) plt.title('Minimum Number of Nights Required') plt.legend(n_groups, loc='upper right') plt.xlim(1, 21) plt.xticks(np.arange(1, 21)) plt.xlabel('Minimum Nights') plt.ylabel('Number of Places') plt.show() # Number of Reviews # compute the average number of reviews over a grid of 150 by 150 num_reviews_bins = 150 num_reviews_sum = np.zeros((num_reviews_bins, num_reviews_bins), dtype='float64') num_reviews_count = np.zeros((num_reviews_bins, num_reviews_bins), dtype='float64') for long, lat, price in zip(data['longitude'], data['latitude'], data['number_of_reviews']): idx_long = int((long - min_coords[1]) / long_range * num_reviews_bins) idx_lat = int((lat - min_coords[0]) / lat_range * num_reviews_bins) num_reviews_sum[idx_lat, idx_long] += price num_reviews_count[idx_lat, idx_long] += 1 # ensure that a divide by zero will not occur num_reviews_count = np.clip(num_reviews_count, 1, None) num_reviews = num_reviews_sum / num_reviews_count plt.imshow(new_york_img, extent=image_extent) plt.imshow(num_reviews, extent=image_extent, origin='lower', alpha=0.9) plt.colorbar() plt.title('Average Number of Reviews Heatmap') plt.show()
[ "matplotlib.pyplot.title", "csv.reader", "numpy.clip", "numpy.arange", "matplotlib.pyplot.gca", "numpy.unique", "matplotlib.pyplot.imshow", "matplotlib.pyplot.colorbar", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show", "numpy.average", "matplotlib.pyplot.legend", "matplotlib.pyplot.barh", "matplotlib.pyplot.pie", "matplotlib.pyplot.hist2d", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.subplots_adjust", "matplotlib.pyplot.xlim", "matplotlib.pyplot.hist", "matplotlib.pyplot.scatter", "numpy.zeros", "PIL.Image.open", "matplotlib.pyplot.xlabel" ]
[((2392, 2422), 'PIL.Image.open', 'Image.open', (['"""new_york_map.png"""'], {}), "('new_york_map.png')\n", (2402, 2422), False, 'from PIL import Image\n'), ((2551, 2599), 'numpy.unique', 'np.unique', (["data['room_type']"], {'return_counts': '(True)'}), "(data['room_type'], return_counts=True)\n", (2560, 2599), True, 'import numpy as np\n'), ((2600, 2639), 'matplotlib.pyplot.title', 'plt.title', (['"""Distribution of Room Types"""'], {}), "('Distribution of Room Types')\n", (2609, 2639), True, 'import matplotlib.pyplot as plt\n'), ((2699, 2736), 'matplotlib.pyplot.barh', 'plt.barh', (['room_types', 'room_types_norm'], {}), '(room_types, room_types_norm)\n', (2707, 2736), True, 'import matplotlib.pyplot as plt\n'), ((2742, 2751), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2749, 2751), True, 'import matplotlib.pyplot as plt\n'), ((2833, 2843), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2841, 2843), True, 'import matplotlib.pyplot as plt\n'), ((2895, 2953), 'numpy.unique', 'np.unique', (["data['neighbourhood_group']"], {'return_counts': '(True)'}), "(data['neighbourhood_group'], return_counts=True)\n", (2904, 2953), True, 'import numpy as np\n'), ((3192, 3241), 'matplotlib.pyplot.title', 'plt.title', (['"""Distribution of Neighbourhood Groups"""'], {}), "('Distribution of Neighbourhood Groups')\n", (3201, 3241), True, 'import matplotlib.pyplot as plt\n'), ((3261, 3382), 'matplotlib.pyplot.pie', 'plt.pie', (['n_groups_count'], {'labels': 'n_groups', 'explode': 'explode', 'autopct': '"""%1.1f%%"""', 'pctdistance': '(0.8)', 'colors': 'n_groups_colors'}), "(n_groups_count, labels=n_groups, explode=explode, autopct='%1.1f%%',\n pctdistance=0.8, colors=n_groups_colors)\n", (3268, 3382), True, 'import matplotlib.pyplot as plt\n'), ((3404, 3414), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (3412, 3414), True, 'import matplotlib.pyplot as plt\n'), ((3452, 3504), 'numpy.unique', 'np.unique', (["data['neighbourhood']"], {'return_counts': '(True)'}), "(data['neighbourhood'], return_counts=True)\n", (3461, 3504), True, 'import numpy as np\n'), ((4065, 4079), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4077, 4079), True, 'import matplotlib.pyplot as plt\n'), ((4080, 4138), 'matplotlib.pyplot.title', 'plt.title', (['"""Most Popular Neighbourhoods and Average Price"""'], {}), "('Most Popular Neighbourhoods and Average Price')\n", (4089, 4138), True, 'import matplotlib.pyplot as plt\n'), ((4193, 4224), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'bottom': '(0.2)'}), '(bottom=0.2)\n', (4212, 4224), True, 'import matplotlib.pyplot as plt\n'), ((4698, 4708), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4706, 4708), True, 'import matplotlib.pyplot as plt\n'), ((5165, 5281), 'matplotlib.pyplot.hist', 'plt.hist', (['group_prices'], {'histtype': '"""barstacked"""', 'bins': '(25)', 'range': '(0, 500)', 'edgecolor': '"""white"""', 'color': 'n_groups_colors'}), "(group_prices, histtype='barstacked', bins=25, range=(0, 500),\n edgecolor='white', color=n_groups_colors)\n", (5173, 5281), True, 'import matplotlib.pyplot as plt\n'), ((5303, 5342), 'matplotlib.pyplot.legend', 'plt.legend', (['n_groups'], {'loc': '"""upper right"""'}), "(n_groups, loc='upper right')\n", (5313, 5342), True, 'import matplotlib.pyplot as plt\n'), ((5343, 5387), 'matplotlib.pyplot.title', 'plt.title', (['"""Distribution of Price per Night"""'], {}), "('Distribution of Price per Night')\n", (5352, 5387), True, 'import matplotlib.pyplot as plt\n'), ((5388, 5404), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(500)'], {}), '(0, 500)\n', (5396, 5404), True, 'import matplotlib.pyplot as plt\n'), ((5405, 5435), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of places"""'], {}), "('Number of places')\n", (5415, 5435), True, 'import matplotlib.pyplot as plt\n'), ((5436, 5467), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Price range (USD)"""'], {}), "('Price range (USD)')\n", (5446, 5467), True, 'import matplotlib.pyplot as plt\n'), ((5468, 5478), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5476, 5478), True, 'import matplotlib.pyplot as plt\n'), ((5605, 5672), 'numpy.zeros', 'np.zeros', (['(price_heatmap_bins, price_heatmap_bins)'], {'dtype': '"""float64"""'}), "((price_heatmap_bins, price_heatmap_bins), dtype='float64')\n", (5613, 5672), True, 'import numpy as np\n'), ((5695, 5762), 'numpy.zeros', 'np.zeros', (['(price_heatmap_bins, price_heatmap_bins)'], {'dtype': '"""float64"""'}), "((price_heatmap_bins, price_heatmap_bins), dtype='float64')\n", (5703, 5762), True, 'import numpy as np\n'), ((6268, 6305), 'numpy.clip', 'np.clip', (['price_heatmap_count', '(1)', 'None'], {}), '(price_heatmap_count, 1, None)\n', (6275, 6305), True, 'import numpy as np\n'), ((6362, 6407), 'matplotlib.pyplot.imshow', 'plt.imshow', (['new_york_img'], {'extent': 'image_extent'}), '(new_york_img, extent=image_extent)\n', (6372, 6407), True, 'import matplotlib.pyplot as plt\n'), ((6408, 6481), 'matplotlib.pyplot.imshow', 'plt.imshow', (['price_heatmap'], {'extent': 'image_extent', 'origin': '"""lower"""', 'alpha': '(0.9)'}), "(price_heatmap, extent=image_extent, origin='lower', alpha=0.9)\n", (6418, 6481), True, 'import matplotlib.pyplot as plt\n'), ((6482, 6496), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (6494, 6496), True, 'import matplotlib.pyplot as plt\n'), ((6497, 6541), 'matplotlib.pyplot.title', 'plt.title', (['"""Average Price per Night Heatmap"""'], {}), "('Average Price per Night Heatmap')\n", (6506, 6541), True, 'import matplotlib.pyplot as plt\n'), ((6542, 6552), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6550, 6552), True, 'import matplotlib.pyplot as plt\n'), ((6577, 6622), 'matplotlib.pyplot.imshow', 'plt.imshow', (['new_york_img'], {'extent': 'image_extent'}), '(new_york_img, extent=image_extent)\n', (6587, 6622), True, 'import matplotlib.pyplot as plt\n'), ((6940, 6993), 'matplotlib.pyplot.legend', 'plt.legend', (['n_groups'], {'loc': '"""upper left"""', 'markerscale': '(5)'}), "(n_groups, loc='upper left', markerscale=5)\n", (6950, 6993), True, 'import matplotlib.pyplot as plt\n'), ((6994, 7032), 'matplotlib.pyplot.title', 'plt.title', (['"""Plot of Housing Locations"""'], {}), "('Plot of Housing Locations')\n", (7003, 7032), True, 'import matplotlib.pyplot as plt\n'), ((7033, 7056), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Longitude"""'], {}), "('Longitude')\n", (7043, 7056), True, 'import matplotlib.pyplot as plt\n'), ((7057, 7079), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Latitude"""'], {}), "('Latitude')\n", (7067, 7079), True, 'import matplotlib.pyplot as plt\n'), ((7080, 7090), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7088, 7090), True, 'import matplotlib.pyplot as plt\n'), ((7110, 7155), 'matplotlib.pyplot.imshow', 'plt.imshow', (['new_york_img'], {'extent': 'image_extent'}), '(new_york_img, extent=image_extent)\n', (7120, 7155), True, 'import matplotlib.pyplot as plt\n'), ((7156, 7224), 'matplotlib.pyplot.hist2d', 'plt.hist2d', (["data['longitude']", "data['latitude']"], {'bins': '(150)', 'alpha': '(0.7)'}), "(data['longitude'], data['latitude'], bins=150, alpha=0.7)\n", (7166, 7224), True, 'import matplotlib.pyplot as plt\n'), ((7225, 7266), 'matplotlib.pyplot.title', 'plt.title', (['"""Heatmap of Housing Locations"""'], {}), "('Heatmap of Housing Locations')\n", (7234, 7266), True, 'import matplotlib.pyplot as plt\n'), ((7267, 7281), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (7279, 7281), True, 'import matplotlib.pyplot as plt\n'), ((7282, 7305), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Longitude"""'], {}), "('Longitude')\n", (7292, 7305), True, 'import matplotlib.pyplot as plt\n'), ((7306, 7328), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Latitude"""'], {}), "('Latitude')\n", (7316, 7328), True, 'import matplotlib.pyplot as plt\n'), ((7329, 7339), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7337, 7339), True, 'import matplotlib.pyplot as plt\n'), ((7626, 7745), 'matplotlib.pyplot.hist', 'plt.hist', (['group_min_nights'], {'histtype': '"""barstacked"""', 'bins': '(20)', 'range': '(1, 21)', 'edgecolor': '"""white"""', 'color': 'n_groups_colors'}), "(group_min_nights, histtype='barstacked', bins=20, range=(1, 21),\n edgecolor='white', color=n_groups_colors)\n", (7634, 7745), True, 'import matplotlib.pyplot as plt\n'), ((7767, 7813), 'matplotlib.pyplot.title', 'plt.title', (['"""Minimum Number of Nights Required"""'], {}), "('Minimum Number of Nights Required')\n", (7776, 7813), True, 'import matplotlib.pyplot as plt\n'), ((7814, 7853), 'matplotlib.pyplot.legend', 'plt.legend', (['n_groups'], {'loc': '"""upper right"""'}), "(n_groups, loc='upper right')\n", (7824, 7853), True, 'import matplotlib.pyplot as plt\n'), ((7854, 7869), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(1)', '(21)'], {}), '(1, 21)\n', (7862, 7869), True, 'import matplotlib.pyplot as plt\n'), ((7899, 7927), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Minimum Nights"""'], {}), "('Minimum Nights')\n", (7909, 7927), True, 'import matplotlib.pyplot as plt\n'), ((7928, 7958), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Number of Places"""'], {}), "('Number of Places')\n", (7938, 7958), True, 'import matplotlib.pyplot as plt\n'), ((7959, 7969), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (7967, 7969), True, 'import matplotlib.pyplot as plt\n'), ((8098, 8161), 'numpy.zeros', 'np.zeros', (['(num_reviews_bins, num_reviews_bins)'], {'dtype': '"""float64"""'}), "((num_reviews_bins, num_reviews_bins), dtype='float64')\n", (8106, 8161), True, 'import numpy as np\n'), ((8182, 8245), 'numpy.zeros', 'np.zeros', (['(num_reviews_bins, num_reviews_bins)'], {'dtype': '"""float64"""'}), "((num_reviews_bins, num_reviews_bins), dtype='float64')\n", (8190, 8245), True, 'import numpy as np\n'), ((8646, 8681), 'numpy.clip', 'np.clip', (['num_reviews_count', '(1)', 'None'], {}), '(num_reviews_count, 1, None)\n', (8653, 8681), True, 'import numpy as np\n'), ((8732, 8777), 'matplotlib.pyplot.imshow', 'plt.imshow', (['new_york_img'], {'extent': 'image_extent'}), '(new_york_img, extent=image_extent)\n', (8742, 8777), True, 'import matplotlib.pyplot as plt\n'), ((8778, 8849), 'matplotlib.pyplot.imshow', 'plt.imshow', (['num_reviews'], {'extent': 'image_extent', 'origin': '"""lower"""', 'alpha': '(0.9)'}), "(num_reviews, extent=image_extent, origin='lower', alpha=0.9)\n", (8788, 8849), True, 'import matplotlib.pyplot as plt\n'), ((8850, 8864), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (8862, 8864), True, 'import matplotlib.pyplot as plt\n'), ((8865, 8911), 'matplotlib.pyplot.title', 'plt.title', (['"""Average Number of Reviews Heatmap"""'], {}), "('Average Number of Reviews Heatmap')\n", (8874, 8911), True, 'import matplotlib.pyplot as plt\n'), ((8912, 8922), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8920, 8922), True, 'import matplotlib.pyplot as plt\n'), ((988, 1023), 'csv.reader', 'csv.reader', (['csv_file'], {'delimiter': '""","""'}), "(csv_file, delimiter=',')\n", (998, 1023), False, 'import csv\n'), ((6764, 6911), 'matplotlib.pyplot.scatter', 'plt.scatter', (["data['longitude'][data['neighbourhood_group'] == group]", "data['latitude'][data['neighbourhood_group'] == group]"], {'s': '(2)', 'color': 'color'}), "(data['longitude'][data['neighbourhood_group'] == group], data[\n 'latitude'][data['neighbourhood_group'] == group], s=2, color=color)\n", (6775, 6911), True, 'import matplotlib.pyplot as plt\n'), ((7881, 7897), 'numpy.arange', 'np.arange', (['(1)', '(21)'], {}), '(1, 21)\n', (7890, 7897), True, 'import numpy as np\n'), ((4034, 4052), 'numpy.average', 'np.average', (['prices'], {}), '(prices)\n', (4044, 4052), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- import cv2 import argparse import time import numpy as np from training import Model classes = [] FRAME_SIZE = 256 font = cv2.FONT_HERSHEY_SIMPLEX switch = False def detect(image): crop_image = image[112:112 + FRAME_SIZE, 192:192 + FRAME_SIZE] result = model.predict(crop_image) index = np.argmax(result) cv2.putText(image, classes[index], (192, 112), font, 1, (0, 255, 0), 2) def crop_save(image): crop_image = image[112 + 2:112 + FRAME_SIZE - 2, 192 + 2:192 + FRAME_SIZE - 2] timestamp = str(time.time()) cv2.imwrite( 'C:\\Users\Akira.DESKTOP-HM7OVCC\Desktop\database\\' + timestamp + '.png', crop_image, (cv2.IMWRITE_PNG_COMPRESSION, 0) ) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--model_dir', type=str, help='folder contains model and labels' ) args = parser.parse_args() if args.model_dir: model = Model() try: model.load(file_path=args.model_dir + '\model.h5') with open(args.model_dir + '\labels.txt', 'r') as f: for line in f.readlines(): classes.append(line.strip()) except OSError as e: print("<--------------------Unable to open file-------------------->\n", e) else: cv2.namedWindow('Video') # open le camera capture = cv2.VideoCapture(0) while capture.isOpened(): _, frame = capture.read() cv2.rectangle(frame, (192, 112), (192 + FRAME_SIZE, 112 + FRAME_SIZE), (0, 255, 0), 2) if switch: detect(frame) cv2.imshow('Video', frame) key = cv2.waitKey(10) if key == ord('z'): switch = True elif key == ord('d'): switch = False elif key == ord('s'): crop_save(frame) elif key == ord('q'): # exit break capture.release() cv2.destroyWindow('Video') else: print('Input no found\nTry "python predict.py -h" for more information')
[ "cv2.putText", "argparse.ArgumentParser", "numpy.argmax", "cv2.waitKey", "cv2.imwrite", "time.time", "cv2.VideoCapture", "training.Model", "cv2.destroyWindow", "cv2.rectangle", "cv2.imshow", "cv2.namedWindow" ]
[((326, 343), 'numpy.argmax', 'np.argmax', (['result'], {}), '(result)\n', (335, 343), True, 'import numpy as np\n'), ((348, 419), 'cv2.putText', 'cv2.putText', (['image', 'classes[index]', '(192, 112)', 'font', '(1)', '(0, 255, 0)', '(2)'], {}), '(image, classes[index], (192, 112), font, 1, (0, 255, 0), 2)\n', (359, 419), False, 'import cv2\n'), ((564, 703), 'cv2.imwrite', 'cv2.imwrite', (["('C:\\\\Users\\\\Akira.DESKTOP-HM7OVCC\\\\Desktop\\\\database\\\\' + timestamp + '.png')", 'crop_image', '(cv2.IMWRITE_PNG_COMPRESSION, 0)'], {}), "('C:\\\\Users\\\\Akira.DESKTOP-HM7OVCC\\\\Desktop\\\\database\\\\' +\n timestamp + '.png', crop_image, (cv2.IMWRITE_PNG_COMPRESSION, 0))\n", (575, 703), False, 'import cv2\n'), ((769, 794), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (792, 794), False, 'import argparse\n'), ((547, 558), 'time.time', 'time.time', ([], {}), '()\n', (556, 558), False, 'import time\n'), ((986, 993), 'training.Model', 'Model', ([], {}), '()\n', (991, 993), False, 'from training import Model\n'), ((1370, 1394), 'cv2.namedWindow', 'cv2.namedWindow', (['"""Video"""'], {}), "('Video')\n", (1385, 1394), False, 'import cv2\n'), ((1447, 1466), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (1463, 1466), False, 'import cv2\n'), ((2127, 2153), 'cv2.destroyWindow', 'cv2.destroyWindow', (['"""Video"""'], {}), "('Video')\n", (2144, 2153), False, 'import cv2\n'), ((1565, 1656), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(192, 112)', '(192 + FRAME_SIZE, 112 + FRAME_SIZE)', '(0, 255, 0)', '(2)'], {}), '(frame, (192, 112), (192 + FRAME_SIZE, 112 + FRAME_SIZE), (0, \n 255, 0), 2)\n', (1578, 1656), False, 'import cv2\n'), ((1729, 1755), 'cv2.imshow', 'cv2.imshow', (['"""Video"""', 'frame'], {}), "('Video', frame)\n", (1739, 1755), False, 'import cv2\n'), ((1778, 1793), 'cv2.waitKey', 'cv2.waitKey', (['(10)'], {}), '(10)\n', (1789, 1793), False, 'import cv2\n')]
import bpy import threading, time from bpy.props import IntProperty, FloatProperty, StringProperty, FloatVectorProperty, CollectionProperty, EnumProperty from bpy.types import NodeTree, Node, NodeSocket class MyCustomSocketBank(NodeSocket): '''Custom node socket type for creating data input points for bank information.''' bl_idname = 'CustomSocketTypeBank' bl_label = "Bank Information" def update_bank_socket(self, context): '''This function updates the output of the current node.''' self.node.update() bank_country: bpy.props.BoolProperty(name="Bank Country", update=update_bank_socket) bank_items = ( ('BBAN', "BBAN", "Basic Bank Account Number"), ('IBAN', "IBAN", "International Bank Account Number"), ) bank_type: bpy.props.EnumProperty( name="Account Type", description="Choose the account information required", items=bank_items, default='BBAN', update=update_bank_socket ) def draw(self, context, layout, node, text): '''This function creates the labels for the socket panels within the node.''' if self.is_output or self.is_linked: layout.label(text=text) else: layout.label(text="Bank") layout.prop(self, "bank_country", text="Country") layout.prop(self, "bank_type", text="Account Type") def draw_color(self, context, node): '''This function determines the colour of the input and output points within the socket.''' return (1.0, 0.4, 0.216, 0.5)
[ "bpy.props.BoolProperty", "bpy.props.EnumProperty" ]
[((561, 631), 'bpy.props.BoolProperty', 'bpy.props.BoolProperty', ([], {'name': '"""Bank Country"""', 'update': 'update_bank_socket'}), "(name='Bank Country', update=update_bank_socket)\n", (583, 631), False, 'import bpy\n'), ((792, 961), 'bpy.props.EnumProperty', 'bpy.props.EnumProperty', ([], {'name': '"""Account Type"""', 'description': '"""Choose the account information required"""', 'items': 'bank_items', 'default': '"""BBAN"""', 'update': 'update_bank_socket'}), "(name='Account Type', description=\n 'Choose the account information required', items=bank_items, default=\n 'BBAN', update=update_bank_socket)\n", (814, 961), False, 'import bpy\n')]
# Copyright (c) 2018 <NAME> # # This software is released under the MIT License. # https://opensource.org/licenses/MIT import itertools import heapq from typing import List, Any, Union class PriorityQueue(object): REMOVED = '<removed-element>' EXISTS_LOWER_PRIORITY = 1 EXISTS_UPDATED = 2 NONEXIST = 0 def __init__(self, ) -> None: self.memory: List[Any] = [] self.counter = itertools.count() self.size = 0 self.map = {} def push(self, element: Any, priority: Union[float, int]=0) -> int: return_value = PriorityQueue.NONEXIST if element in self.map: if self.map[element][0] < priority: return PriorityQueue.EXISTS_LOWER_PRIORITY self.remove_element(element) return_value = PriorityQueue.EXISTS_UPDATED else: self.size += 1 count = next(self.counter) entry = [priority, count, element] self.map[element] = entry heapq.heappush(self.memory, entry) return return_value def remove_element(self, element) -> None: entry = self.map.pop(element) entry[-1] = PriorityQueue.REMOVED def pop(self, ) -> Any: while self.memory: priority, _, element = heapq.heappop(self.memory) if element is not PriorityQueue.REMOVED: del self.map[element] self.size -= 1 return (priority, element) raise KeyError("Tried to pop from an empty queue") def empty(self, ) -> bool: return self.size <= 0
[ "heapq.heappush", "itertools.count", "heapq.heappop" ]
[((418, 435), 'itertools.count', 'itertools.count', ([], {}), '()\n', (433, 435), False, 'import itertools\n'), ((996, 1030), 'heapq.heappush', 'heapq.heappush', (['self.memory', 'entry'], {}), '(self.memory, entry)\n', (1010, 1030), False, 'import heapq\n'), ((1282, 1308), 'heapq.heappop', 'heapq.heappop', (['self.memory'], {}), '(self.memory)\n', (1295, 1308), False, 'import heapq\n')]
from django.contrib import admin from biblioteca.models import Autor from biblioteca.models import Libro from biblioteca.models import Ejemplar from biblioteca.models import Usuario class LibroInline(admin.TabularInline): model = Libro class LibroAdmin(admin.ModelAdmin): list_display = ('Titulo','Editorial','Autor') list_display_links = ('Titulo','Editorial') class UsuarioAdmin(admin.ModelAdmin): list_display = ('Nombre','Telefono') fieldsets =( ('Datos',{ 'fields': ('Nombre',) }), ('Contacto',{ 'fields': ('Telefono','Direccion') }) ) class EjemplarAdmin(admin.ModelAdmin): list_display = ('NombreLibro', 'NombreEditorial') list_filter = ('Libro',) class AutorAdmin(admin.ModelAdmin): list_display = ('Codigo','Nombre') inlines = [LibroInline] search_fields = ['Nombre',] admin.site.register(Autor,AutorAdmin) admin.site.register(Libro,LibroAdmin) admin.site.register(Ejemplar,EjemplarAdmin) admin.site.register(Usuario,UsuarioAdmin)
[ "django.contrib.admin.site.register" ]
[((861, 899), 'django.contrib.admin.site.register', 'admin.site.register', (['Autor', 'AutorAdmin'], {}), '(Autor, AutorAdmin)\n', (880, 899), False, 'from django.contrib import admin\n'), ((899, 937), 'django.contrib.admin.site.register', 'admin.site.register', (['Libro', 'LibroAdmin'], {}), '(Libro, LibroAdmin)\n', (918, 937), False, 'from django.contrib import admin\n'), ((937, 981), 'django.contrib.admin.site.register', 'admin.site.register', (['Ejemplar', 'EjemplarAdmin'], {}), '(Ejemplar, EjemplarAdmin)\n', (956, 981), False, 'from django.contrib import admin\n'), ((981, 1023), 'django.contrib.admin.site.register', 'admin.site.register', (['Usuario', 'UsuarioAdmin'], {}), '(Usuario, UsuarioAdmin)\n', (1000, 1023), False, 'from django.contrib import admin\n')]
""" This module defines all functionality that is common to CLI programs. """ import sys import act.client.proxymgr as proxymgr from act.client.errors import NoSuchProxyError from act.client.errors import NoProxyFileError def getProxyIdFromProxy(proxyPath): """ Returns ID of proxy at the given path. Args: proxyPath: A string with path to the proxy. Raises: NoSuchProxyError: Proxy with DN and attributes of the proxy given in proxy path is not in the database. NoProxyFileError: No proxy on given path. """ manager = proxymgr.ProxyManager() try: return manager.getProxyIdForProxyFile(proxyPath) except NoSuchProxyError as e: print("error: no proxy for DN=\"{}\" and attributes=\"{}\" "\ "found in database; use actproxy".format(e.dn, e.attribute)) sys.exit(1) except NoProxyFileError as e: print("error: path \"{}\" is not a proxy file; use arcproxy".format(e.path)) sys.exit(2) def showHelpOnCommandOnly(argparser): """Show help if command is called without parameters.""" if len(sys.argv) == 1: argparser.print_help() sys.exit(0)
[ "act.client.proxymgr.ProxyManager", "sys.exit" ]
[((585, 608), 'act.client.proxymgr.ProxyManager', 'proxymgr.ProxyManager', ([], {}), '()\n', (606, 608), True, 'import act.client.proxymgr as proxymgr\n'), ((1183, 1194), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (1191, 1194), False, 'import sys\n'), ((864, 875), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (872, 875), False, 'import sys\n'), ((1004, 1015), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (1012, 1015), False, 'import sys\n')]
import sys,os os.environ['YHYDRA_CONFIG'] = sys.argv[1] import setup_device from load_config import CONFIG import glob RAWs = glob.glob(CONFIG['RAWs']) FASTA = glob.glob(CONFIG['FASTA'])[0] from fasta2db import digest_fasta f = digest_fasta(FASTA,REVERSE_DECOY=False) r = digest_fasta(FASTA,REVERSE_DECOY=True) from sanitize_db import sanitize_db s = sanitize_db() from embed_db import embed_db e = embed_db(REVERSE_DECOY=False) e = embed_db(REVERSE_DECOY=True) from pyThermoRawFileParser import parse_rawfiles raw = parse_rawfiles(RAWs) from search import search s = [search(RAW.replace('.raw','.mgf')) for RAW in RAWs] #s = [search(RAW) for RAW in RAWs] from search_score import search_score search_score() from fdr_filter import fdr_filter fdr_filter()
[ "fasta2db.digest_fasta", "search_score.search_score", "fdr_filter.fdr_filter", "embed_db.embed_db", "sanitize_db.sanitize_db", "pyThermoRawFileParser.parse_rawfiles", "glob.glob" ]
[((130, 155), 'glob.glob', 'glob.glob', (["CONFIG['RAWs']"], {}), "(CONFIG['RAWs'])\n", (139, 155), False, 'import glob\n'), ((234, 274), 'fasta2db.digest_fasta', 'digest_fasta', (['FASTA'], {'REVERSE_DECOY': '(False)'}), '(FASTA, REVERSE_DECOY=False)\n', (246, 274), False, 'from fasta2db import digest_fasta\n'), ((278, 317), 'fasta2db.digest_fasta', 'digest_fasta', (['FASTA'], {'REVERSE_DECOY': '(True)'}), '(FASTA, REVERSE_DECOY=True)\n', (290, 317), False, 'from fasta2db import digest_fasta\n'), ((358, 371), 'sanitize_db.sanitize_db', 'sanitize_db', ([], {}), '()\n', (369, 371), False, 'from sanitize_db import sanitize_db\n'), ((407, 436), 'embed_db.embed_db', 'embed_db', ([], {'REVERSE_DECOY': '(False)'}), '(REVERSE_DECOY=False)\n', (415, 436), False, 'from embed_db import embed_db\n'), ((441, 469), 'embed_db.embed_db', 'embed_db', ([], {'REVERSE_DECOY': '(True)'}), '(REVERSE_DECOY=True)\n', (449, 469), False, 'from embed_db import embed_db\n'), ((526, 546), 'pyThermoRawFileParser.parse_rawfiles', 'parse_rawfiles', (['RAWs'], {}), '(RAWs)\n', (540, 546), False, 'from pyThermoRawFileParser import parse_rawfiles\n'), ((705, 719), 'search_score.search_score', 'search_score', ([], {}), '()\n', (717, 719), False, 'from search_score import search_score\n'), ((755, 767), 'fdr_filter.fdr_filter', 'fdr_filter', ([], {}), '()\n', (765, 767), False, 'from fdr_filter import fdr_filter\n'), ((164, 190), 'glob.glob', 'glob.glob', (["CONFIG['FASTA']"], {}), "(CONFIG['FASTA'])\n", (173, 190), False, 'import glob\n')]
""" Возьмите тесты из шага — https://stepik.org/lesson/138920/step/11?unit=196194 Создайте новый файл Создайте в нем класс с тестами, который должен наследоваться от unittest.TestCase по аналогии с предыдущим шагом Перепишите в стиле unittest тест для страницы http://suninjuly.github.io/registration1.html Перепишите в стиле unittest второй тест для страницы http://suninjuly.github.io/registration2.html Оформите финальные проверки в тестах в стиле unittest, например, используя проверочный метод assertEqual Запустите получившиеся тесты из файла Просмотрите отчёт о запуске и найдите последнюю строчку Отправьте эту строчку в качестве ответа на это задание """ import time import unittest from selenium import webdriver LINK_TO_REG_FORM_V1 = 'http://suninjuly.github.io/registration1.html' LINK_TO_REG_FORM_V2 = 'http://suninjuly.github.io/registration2.html' REG_DATA = { 'first_name': 'John', 'last_name': 'Doe', 'email': '<EMAIL>', } driver = webdriver.Chrome() class TestABC(unittest.TestCase): def check_form(self, link_to_form): try: driver.get(link_to_form) required_elements = [ driver.find_element_by_xpath('//*[.="First name*"]/following-sibling::input'), driver.find_element_by_xpath('//*[.="Last name*"]/following-sibling::input'), driver.find_element_by_xpath('//*[.="Email*"]/following-sibling::input') ] for element, value in zip(required_elements, REG_DATA.values()): element.send_keys(value) driver.find_element_by_css_selector("button.btn").click() time.sleep(1) self.assertEqual( 'Congratulations! You have successfully registered!', driver.find_element_by_tag_name("h1").text ) finally: driver.quit() def test_reg_form_v1(self): self.check_form(LINK_TO_REG_FORM_V1) def test_reg_form_v2(self): self.check_form(LINK_TO_REG_FORM_V2) if __name__ == '__main__': unittest.main()
[ "unittest.main", "selenium.webdriver.Chrome", "time.sleep" ]
[((964, 982), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {}), '()\n', (980, 982), False, 'from selenium import webdriver\n'), ((2056, 2071), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2069, 2071), False, 'import unittest\n'), ((1637, 1650), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (1647, 1650), False, 'import time\n')]
import json from functools import reduce from base64 import b64decode from typing import Union import requests def generate_device_info() -> dict: return { "device_id": device.deviceGenerator(), "user_agent": "Dalvik/2.1.0 (Linux; U; Android 7.1.2; SM-G965N Build/star2ltexx-user 7.1.; com.narvii.amino.master/3.4.33592)" } def signature(data: Union[str, dict]) -> str: if isinstance(data, dict): data = json.dumps(data) return requests.get(f"http://forevercynical.com/generate/signature?data={str(data)}").json()['signature'] def decode_sid(sid: str) -> dict: return json.loads(b64decode(reduce(lambda a, e: a.replace(*e), ("-+", "_/"), sid + "=" * (-len(sid) % 4)).encode())[1:-20].decode()) def sid_to_uid(SID: str) -> str: return decode_sid(SID)["2"] def sid_to_ip_address(SID: str) -> str: return decode_sid(SID)["4"]
[ "json.dumps" ]
[((447, 463), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (457, 463), False, 'import json\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.11.11 on 2018-05-09 10:05 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('home', '0011_auto_20180327_1341'), ] operations = [ migrations.AddField( model_name='homepage', name='sector_button_text', field=models.TextField(default='Search more industries', max_length=255), ), ]
[ "django.db.models.TextField" ]
[((411, 477), 'django.db.models.TextField', 'models.TextField', ([], {'default': '"""Search more industries"""', 'max_length': '(255)'}), "(default='Search more industries', max_length=255)\n", (427, 477), False, 'from django.db import migrations, models\n')]
from django.db.models import Q from django.urls import reverse from django.contrib import admin from django.contrib.contenttypes.admin import GenericTabularInline from .models import Voluntario, AsignacionVoluntario, DatoDeContacto from .forms import VoluntarioForm, DatoDeContactoModelForm from django_admin_row_actions import AdminRowActionsMixin from django.contrib.admin.filters import DateFieldListFilter class FechaIsNull(DateFieldListFilter): def __init__(self, field, request, params, model, model_admin, field_path): super().__init__(field, request, params, model, model_admin, field_path) self.links = self.links[-2:] class ContactoAdminInline(GenericTabularInline): model = DatoDeContacto form = DatoDeContactoModelForm class AsignadoFilter(admin.SimpleListFilter): title = 'Asignación' parameter_name = 'asignado' def lookups(self, request, model_admin): return ( ('sí', 'sí'), ('no', 'no'), ) def queryset(self, request, queryset): value = self.value() if value: isnull = value == 'no' general = Q( tipo='general', asignacion_escuela__isnull=isnull, asignacion_escuela__eleccion__slug='generales2017' ) de_mesa = Q( tipo='de_mesa', asignacion_mesa__isnull=isnull, asignacion_mesa__mesa__eleccion__slug='generales2017' ) queryset = queryset.filter(general | de_mesa) return queryset class ReferenteFilter(admin.SimpleListFilter): title = 'Referente' parameter_name = 'referente' def lookups(self, request, model_admin): return ( ('sí', 'sí'), ('no', 'no'), ) def queryset(self, request, queryset): value = self.value() if value: isnull = value == 'no' queryset = queryset.filter(es_referente_de_circuito__isnull=isnull).distinct() return queryset class VoluntarioAdmin(AdminRowActionsMixin, admin.ModelAdmin): def get_row_actions(self, obj): row_actions = [] if obj.user: row_actions.append( { 'label': f'Loguearse como {obj.nombre}', 'url': f'/hijack/{obj.user.id}/', 'enabled': True, } ) row_actions += super().get_row_actions(obj) return row_actions def telefonos(o): return ' / '.join(o.telefonos) form = VoluntarioForm list_display = ('__str__', 'dni', telefonos) search_fields = ( 'apellido', 'nombre', 'dni', 'asignacion_escuela__lugar_votacion__nombre', 'asignacion_mesa__mesa__lugar_votacion__nombre' ) list_display_links = ('__str__',) list_filter = ('estado', 'email_confirmado', AsignadoFilter) # readonly_fields = ('mesas_desde_hasta',) inlines = [ ContactoAdminInline, ] class AsignacionVoluntarioAdmin(AdminRowActionsMixin, admin.ModelAdmin): list_filter = ('mesa__eleccion', 'mesa__lugar_votacion__circuito') raw_id_fields = ("mesa", "voluntario") search_fields = ( 'voluntario__apellido', 'voluntario__nombre', 'voluntario__dni', 'mesa__numero', 'mesa__lugar_votacion__nombre', 'mesa__lugar_votacion__direccion', 'mesa__lugar_votacion__barrio', 'mesa__lugar_votacion__ciudad', ) admin.site.register(AsignacionVoluntario, AsignacionVoluntarioAdmin) admin.site.register(Voluntario, VoluntarioAdmin)
[ "django.contrib.admin.site.register", "django.db.models.Q" ]
[((3509, 3577), 'django.contrib.admin.site.register', 'admin.site.register', (['AsignacionVoluntario', 'AsignacionVoluntarioAdmin'], {}), '(AsignacionVoluntario, AsignacionVoluntarioAdmin)\n', (3528, 3577), False, 'from django.contrib import admin\n'), ((3578, 3626), 'django.contrib.admin.site.register', 'admin.site.register', (['Voluntario', 'VoluntarioAdmin'], {}), '(Voluntario, VoluntarioAdmin)\n', (3597, 3626), False, 'from django.contrib import admin\n'), ((1141, 1249), 'django.db.models.Q', 'Q', ([], {'tipo': '"""general"""', 'asignacion_escuela__isnull': 'isnull', 'asignacion_escuela__eleccion__slug': '"""generales2017"""'}), "(tipo='general', asignacion_escuela__isnull=isnull,\n asignacion_escuela__eleccion__slug='generales2017')\n", (1142, 1249), False, 'from django.db.models import Q\n'), ((1330, 1438), 'django.db.models.Q', 'Q', ([], {'tipo': '"""de_mesa"""', 'asignacion_mesa__isnull': 'isnull', 'asignacion_mesa__mesa__eleccion__slug': '"""generales2017"""'}), "(tipo='de_mesa', asignacion_mesa__isnull=isnull,\n asignacion_mesa__mesa__eleccion__slug='generales2017')\n", (1331, 1438), False, 'from django.db.models import Q\n')]
# -*- coding: utf8 -*- import arcpy import os import setting class ToolValidator(object): """Class for validating a tool's parameter values and controlling the behavior of the tool's dialog.""" def __init__(self): """Setup arcpy and the list of tool parameters.""" self.params = arcpy.GetParameterInfo() self.current_path = setting.env[0] self.sdefile = os.path.join(self.current_path,"vector.sde") self.boundary = os.path.join(self.sdefile, 'SDE.Boundary') self.province = os.path.join(self.boundary,"SDE.全国省界") self.city = os.path.join(self.boundary,"SDE.全国市界") self.country = os.path.join(self.boundary,"SDE.全国区县界") self.project = os.path.join(self.sdefile, 'SDE.PROJECT') self.fields = ['NAME',"ADMINCODE",'SHAPE@'] self.prj_fields = ['PRODUCT_TY','LOCATION','PRJ_ID','PRO_YEAR','RESOLUTION','PRJ_NAME','SHAPE@'] def initializeParameters(self): """Refine the properties of a tool's parameters. This method is called when the tool is opened.""" cur = arcpy.da.SearchCursor(self.province, self.fields) self.province_list = [] for row in cur: self.province_name = row[0]+"-"+row[1] self.province_list.append(self.province_name) self.params[0].filter.list = self.province_list cur = arcpy.da.SearchCursor(self.city, self.fields) self.city_list = [] for row in cur: self.city_name = row[0] + "-" + row[1] self.city_list.append(self.city_name) self.params[1].filter.list = self.city_list cur = arcpy.da.SearchCursor(self.country, self.fields) self.country_list = [] for row in cur: self.country_name = row[0] + "-" + row[1] self.country_list.append(self.country_name) self.params[2].filter.list = self.country_list # cur = arcpy.da.SearchCursor(self.project, self.prj_fields) # self.project_list = [] # for row in cur: # self.project_name = row[2] + "-" + row[5] # self.project_list.append(self.project_name) # self.params[3].filter.list = self.project_list return def updateParameters(self): """Modify the values and properties of parameters before internal validation is performed. This method is called whenever a parameter has been changed.""" self.city_list = [] self.country_list = [] if self.params[0].value: pro_code = self.params[0].value.split('-')[1][:2] self.expresscity = "ADMINCODE LIKE '{0}%'".format(pro_code) cur = arcpy.da.SearchCursor(self.city, self.fields,self.expresscity) for row in cur: self.city_name = row[0]+"-"+row[1] self.city_list.append(self.city_name) self.params[1].filter.list = self.city_list if self.params[1].value: city_code = self.params[1].value.split('-')[1][:4] self.expresscountry = "ADMINCODE LIKE '{0}%'".format(city_code) cur = arcpy.da.SearchCursor(self.country, self.fields,self.expresscountry) for row in cur: self.country_name = row[0]+"-"+row[1] self.country_list.append(self.country_name) self.params[2].filter.list = self.country_list return def updateMessages(self): """Modify the messages created by internal validation for each tool parameter. This method is called after internal validation.""" return
[ "arcpy.GetParameterInfo", "os.path.join", "arcpy.da.SearchCursor" ]
[((294, 318), 'arcpy.GetParameterInfo', 'arcpy.GetParameterInfo', ([], {}), '()\n', (316, 318), False, 'import arcpy\n'), ((377, 422), 'os.path.join', 'os.path.join', (['self.current_path', '"""vector.sde"""'], {}), "(self.current_path, 'vector.sde')\n", (389, 422), False, 'import os\n'), ((442, 484), 'os.path.join', 'os.path.join', (['self.sdefile', '"""SDE.Boundary"""'], {}), "(self.sdefile, 'SDE.Boundary')\n", (454, 484), False, 'import os\n'), ((505, 544), 'os.path.join', 'os.path.join', (['self.boundary', '"""SDE.全国省界"""'], {}), "(self.boundary, 'SDE.全国省界')\n", (517, 544), False, 'import os\n'), ((560, 599), 'os.path.join', 'os.path.join', (['self.boundary', '"""SDE.全国市界"""'], {}), "(self.boundary, 'SDE.全国市界')\n", (572, 599), False, 'import os\n'), ((618, 658), 'os.path.join', 'os.path.join', (['self.boundary', '"""SDE.全国区县界"""'], {}), "(self.boundary, 'SDE.全国区县界')\n", (630, 658), False, 'import os\n'), ((677, 718), 'os.path.join', 'os.path.join', (['self.sdefile', '"""SDE.PROJECT"""'], {}), "(self.sdefile, 'SDE.PROJECT')\n", (689, 718), False, 'import os\n'), ((1021, 1070), 'arcpy.da.SearchCursor', 'arcpy.da.SearchCursor', (['self.province', 'self.fields'], {}), '(self.province, self.fields)\n', (1042, 1070), False, 'import arcpy\n'), ((1283, 1328), 'arcpy.da.SearchCursor', 'arcpy.da.SearchCursor', (['self.city', 'self.fields'], {}), '(self.city, self.fields)\n', (1304, 1328), False, 'import arcpy\n'), ((1526, 1574), 'arcpy.da.SearchCursor', 'arcpy.da.SearchCursor', (['self.country', 'self.fields'], {}), '(self.country, self.fields)\n', (1547, 1574), False, 'import arcpy\n'), ((2482, 2545), 'arcpy.da.SearchCursor', 'arcpy.da.SearchCursor', (['self.city', 'self.fields', 'self.expresscity'], {}), '(self.city, self.fields, self.expresscity)\n', (2503, 2545), False, 'import arcpy\n'), ((2893, 2962), 'arcpy.da.SearchCursor', 'arcpy.da.SearchCursor', (['self.country', 'self.fields', 'self.expresscountry'], {}), '(self.country, self.fields, self.expresscountry)\n', (2914, 2962), False, 'import arcpy\n')]
""" Copyright (c) 2019 Cisco Systems, Inc. All rights reserved. License at https://github.com/cisco/mercury/blob/master/LICENSE """ import os import sys import functools from socket import AF_INET, AF_INET6, inet_ntop sys.path.append(os.path.dirname(os.path.abspath(__file__))) sys.path.append(os.path.dirname(os.path.abspath(__file__))+'/../') from pmercury.protocols.protocol import Protocol MAX_CACHED_RESULTS = 2**24 class DHCP(Protocol): def __init__(self, fp_database=None, config=None): # populate fingerprint databases self.fp_db = None DHCP.static_data = set([0x35, 0x37]) DHCP.contextual_data = {0x03: ('router',lambda x: inet_ntop(AF_INET, x)), 0x06: ('domain_name_server',lambda x: inet_ntop(AF_INET, x)), 0x0c: ('hostname',lambda x: x.decode()), 0x0f: ('domain_name',lambda x: x.decode()), 0x32: ('requested_ip',lambda x: inet_ntop(AF_INET, x)), 0x3c: ('vendor_class_id',lambda x: x.decode())} @staticmethod def proto_identify(data, offset, data_len): if data_len < 230: return False if (data[offset] != 0x01 or data[offset+236] != 0x63 or data[offset+237] != 0x82 or data[offset+238] != 0x53 or data[offset+239] != 0x63): return False return True @staticmethod def fingerprint(data, offset, data_len): hardware_address_length = data[offset + 2] cmac = data[offset+28:offset+28+hardware_address_length].hex() context = [{'name': 'client_mac_address', 'data': '%s' % ':'.join(a+b for a,b in zip(cmac[::2], cmac[1::2]))}] offset += 240 fp_ = '(' while offset < data_len: kind = data[offset] if kind == 0xff or kind == 0x00: # End / Padding fp_ += '(%02x)' % kind break length = data[offset+1] if kind in DHCP.contextual_data: name_, transform_ = DHCP.contextual_data[kind] context.append({'name':name_, 'data':transform_(data[offset+2:offset+2+length])}) if offset+length+2 >= data_len: return None if kind not in DHCP.static_data: fp_ += '(%02x)' % kind offset += length+2 continue fp_ += '(%s)' % data[offset:offset+2+length].hex() offset += length+2 fp_ += ')' return fp_, context
[ "os.path.abspath", "socket.inet_ntop" ]
[((254, 279), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (269, 279), False, 'import os\n'), ((314, 339), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (329, 339), False, 'import os\n'), ((676, 697), 'socket.inet_ntop', 'inet_ntop', (['AF_INET', 'x'], {}), '(AF_INET, x)\n', (685, 697), False, 'from socket import AF_INET, AF_INET6, inet_ntop\n'), ((770, 791), 'socket.inet_ntop', 'inet_ntop', (['AF_INET', 'x'], {}), '(AF_INET, x)\n', (779, 791), False, 'from socket import AF_INET, AF_INET6, inet_ntop\n'), ((1007, 1028), 'socket.inet_ntop', 'inet_ntop', (['AF_INET', 'x'], {}), '(AF_INET, x)\n', (1016, 1028), False, 'from socket import AF_INET, AF_INET6, inet_ntop\n')]
from setuptools import setup, find_packages setup(name='aCT', version='0.1', description='ARC Control Tower', url='http://github.com/ARCControlTower/aCT', python_requires='>=3.6', author='aCT team', author_email='<EMAIL>', license='Apache 2.0', package_dir = {'': 'src'}, packages=find_packages('src'), install_requires=[ 'mysql-connector-python', # connection to MySQL database 'htcondor', # bindings to use HTCondor to submit jobs 'pylint', # for travis automatic tests 'requests', # for APF mon calls 'prometheus_client', # Prometheus monitoring 'selinux', # SELinux context handling 'psutil', # Reports of process kills 'pyopenssl', 'flask', 'gunicorn', 'sqlalchemy' ], entry_points={ 'console_scripts': [ 'actbootstrap = act.common.aCTBootstrap:main', 'actmain = act.common.aCTMain:main', 'actreport = act.common.aCTReport:main', 'actcriticalmonitor = act.common.aCTCriticalMonitor:main', 'actheartbeatwatchdog = act.atlas.aCTHeartbeatWatchdog:main', 'actldmxadmin = act.ldmx.aCTLDMXAdmin:main', 'actbulksub = act.client.actbulksub:main', 'actcat = act.client.actcat:main', 'actclean = act.client.actclean:main', 'actfetch = act.client.actfetch:main', 'actget = act.client.actget:main', 'actkill = act.client.actkill:main', 'actproxy = act.client.actproxy:main', 'actresub = act.client.actresub:main', 'actstat = act.client.actstat:main', 'actsub = act.client.actsub:main' ] }, data_files=[ ('etc/act', ['doc/aCTConfigARC.xml.template', 'doc/aCTConfigATLAS.xml.template']) ] )
[ "setuptools.find_packages" ]
[((336, 356), 'setuptools.find_packages', 'find_packages', (['"""src"""'], {}), "('src')\n", (349, 356), False, 'from setuptools import setup, find_packages\n')]
from rest_framework import serializers from blog.models import Post from django.contrib.auth.models import User class UserSerializer(serializers.ModelSerializer): fullName = serializers.SerializerMethodField() class Meta: model = User fields = ['id','username','first_name','last_name','fullName'] def get_fullName(self,obj): return obj.get_full_name() post_detail_url = serializers.HyperlinkedIdentityField( view_name = 'api:post-detail', lookup_field = 'pk' ) class PostSerializer(serializers.ModelSerializer): detail_url = post_detail_url author = UserSerializer() likes_count = serializers.SerializerMethodField() dislikes_count = serializers.SerializerMethodField() class Meta: model = Post fields = '__all__' def get_likes_count(self,obj): return obj.total_likes() def get_dislikes_count(self,obj): return obj.total_dislikes() class PostCreateSerializer(serializers.ModelSerializer): detail_url = post_detail_url class Meta: model = Post fields = ['name','body','image','detail_url']
[ "rest_framework.serializers.HyperlinkedIdentityField", "rest_framework.serializers.SerializerMethodField" ]
[((411, 499), 'rest_framework.serializers.HyperlinkedIdentityField', 'serializers.HyperlinkedIdentityField', ([], {'view_name': '"""api:post-detail"""', 'lookup_field': '"""pk"""'}), "(view_name='api:post-detail',\n lookup_field='pk')\n", (447, 499), False, 'from rest_framework import serializers\n'), ((179, 214), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', ([], {}), '()\n', (212, 214), False, 'from rest_framework import serializers\n'), ((643, 678), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', ([], {}), '()\n', (676, 678), False, 'from rest_framework import serializers\n'), ((700, 735), 'rest_framework.serializers.SerializerMethodField', 'serializers.SerializerMethodField', ([], {}), '()\n', (733, 735), False, 'from rest_framework import serializers\n')]
from checkvist.app import cli import sys sys.exit(cli.cli(prog_name='checkvist'))
[ "checkvist.app.cli.cli" ]
[((51, 81), 'checkvist.app.cli.cli', 'cli.cli', ([], {'prog_name': '"""checkvist"""'}), "(prog_name='checkvist')\n", (58, 81), False, 'from checkvist.app import cli\n')]
import app import Data.dataAnalysis as da import Data.liveDataLAN as lan import Data.liveDataNA as na import time #summonerName,server,lane = app.getUser() def getDataServer(server,summonerName): if server == "LAN": summonerId = lan.gettingSummonerId(summonerName) tier, rank = lan.getRankedPosition(summonerId) return summonerId,tier,rank else: summonerId= na.gettingSummonerId(summonerName) tier,rank = na.getRankedPosition(summonerId) return summonerId,tier,rank def refreshData(lane,server,summonerName,creepsPerMin,goldPerMin): while True: try: summonerId,tier,rank = getDataServer(server,summonerName) if server == "LAN": gameTime = lan.gettingLiveScores(summonerId) else: gameTime = na.gettingLiveScores(summonerId) creepsPerMin, goldPerMin = da.gettingAvgScores(gameTime,lane,tier,rank) time.sleep(60) except: print("Matched Ended") print("Your Score should look like") deaths = da.getAvgDeaths(lane,tier,rank) kills = da.getAvgKills(lane,tier,rank) assists = da.getAvgAssists(lane,tier,rank) wardsKilled = da.getAvgWardsKilled(lane,tier,rank) wardsPlaced = da.getAvgWardsPlaced(lane,tier,rank) print("Your KDA: "+ str(kills)+"/"+str(deaths)+"/"+str(assists)) print("Your wards placed: "+ str(wardsPlaced)+ " yes, wards are important even if you are not a support") print("Your wads killed: "+ str(wardsKilled)+ "yes, even killing wards is important") return deaths,kills,assists,wardsKilled,wardsPlaced
[ "Data.dataAnalysis.getAvgDeaths", "Data.liveDataNA.gettingLiveScores", "Data.liveDataNA.getRankedPosition", "Data.dataAnalysis.getAvgKills", "Data.dataAnalysis.gettingAvgScores", "Data.liveDataLAN.gettingSummonerId", "time.sleep", "Data.dataAnalysis.getAvgAssists", "Data.liveDataNA.gettingSummonerId", "Data.liveDataLAN.gettingLiveScores", "Data.dataAnalysis.getAvgWardsKilled", "Data.dataAnalysis.getAvgWardsPlaced", "Data.liveDataLAN.getRankedPosition" ]
[((243, 278), 'Data.liveDataLAN.gettingSummonerId', 'lan.gettingSummonerId', (['summonerName'], {}), '(summonerName)\n', (264, 278), True, 'import Data.liveDataLAN as lan\n'), ((300, 333), 'Data.liveDataLAN.getRankedPosition', 'lan.getRankedPosition', (['summonerId'], {}), '(summonerId)\n', (321, 333), True, 'import Data.liveDataLAN as lan\n'), ((400, 434), 'Data.liveDataNA.gettingSummonerId', 'na.gettingSummonerId', (['summonerName'], {}), '(summonerName)\n', (420, 434), True, 'import Data.liveDataNA as na\n'), ((455, 487), 'Data.liveDataNA.getRankedPosition', 'na.getRankedPosition', (['summonerId'], {}), '(summonerId)\n', (475, 487), True, 'import Data.liveDataNA as na\n'), ((901, 948), 'Data.dataAnalysis.gettingAvgScores', 'da.gettingAvgScores', (['gameTime', 'lane', 'tier', 'rank'], {}), '(gameTime, lane, tier, rank)\n', (920, 948), True, 'import Data.dataAnalysis as da\n'), ((958, 972), 'time.sleep', 'time.sleep', (['(60)'], {}), '(60)\n', (968, 972), False, 'import time\n'), ((750, 783), 'Data.liveDataLAN.gettingLiveScores', 'lan.gettingLiveScores', (['summonerId'], {}), '(summonerId)\n', (771, 783), True, 'import Data.liveDataLAN as lan\n'), ((829, 861), 'Data.liveDataNA.gettingLiveScores', 'na.gettingLiveScores', (['summonerId'], {}), '(summonerId)\n', (849, 861), True, 'import Data.liveDataNA as na\n'), ((1094, 1127), 'Data.dataAnalysis.getAvgDeaths', 'da.getAvgDeaths', (['lane', 'tier', 'rank'], {}), '(lane, tier, rank)\n', (1109, 1127), True, 'import Data.dataAnalysis as da\n'), ((1146, 1178), 'Data.dataAnalysis.getAvgKills', 'da.getAvgKills', (['lane', 'tier', 'rank'], {}), '(lane, tier, rank)\n', (1160, 1178), True, 'import Data.dataAnalysis as da\n'), ((1199, 1233), 'Data.dataAnalysis.getAvgAssists', 'da.getAvgAssists', (['lane', 'tier', 'rank'], {}), '(lane, tier, rank)\n', (1215, 1233), True, 'import Data.dataAnalysis as da\n'), ((1258, 1296), 'Data.dataAnalysis.getAvgWardsKilled', 'da.getAvgWardsKilled', (['lane', 'tier', 'rank'], {}), '(lane, tier, rank)\n', (1278, 1296), True, 'import Data.dataAnalysis as da\n'), ((1321, 1359), 'Data.dataAnalysis.getAvgWardsPlaced', 'da.getAvgWardsPlaced', (['lane', 'tier', 'rank'], {}), '(lane, tier, rank)\n', (1341, 1359), True, 'import Data.dataAnalysis as da\n')]
# This module is a simply a wrapper for libftpy.so that acts as a remainder how its interface is defined # C++ library libftpy must exist in same folder for this module to work import libftpy """Get bounding boxes for FASText connected components found with given parameters Parameters ---------- image : numpy array Short int (0-255) valued grayscale image of size 1024x1024x1 coun : int Maximum count of boxes that are returned - boxes with keypoints that have least amount of contrast are trimmed scales : int How many scales are used in the scale pyramid in addition of the original scale threshold : int Threshold use when defining a pixel is a FT keypoint or not positives : bool Are boxes found for positive ("bright") keypoints included in the results negatives : bool Are boxes found for negative ("dark") keypoints included in the results wLimit : int Boxes that are wider than wLimit are trimmed from the results hLimit : int Boxes that are higher than hLimit are trimmed from the results Returns ------- boxes : numpy array Numpy array of size N * 4 representing the found boxes in format x, y, width, height (dtype is int32) """ def getKpBoxes(image, count, scales, threshold, positives, negatives, wLimit, hLimit): padding = 0 return libftpy.getKpBoxes(image, padding, count, scales, threshold, positives, negatives, wLimit, hLimit) """Get FASText keypoints found with given parameters Parameters ---------- image : numpy array Short int (0-255) valued grayscale image of size 1024x1024 count : int Maximum count of boxes that are returned - boxes with keypoints that have least amount of contrast are trimmed scales : int How many scales are used in the scale pyramid in addition of the original scale threshold : int Threshold use when defining a pixel is a FT keypoint or not positives : bool Are boxes found for positive ("bright") keypoints included in the results negatives : bool Are boxes found for negative ("dark") keypoints included in the results icollector[y][x][0] = y; // y icollector[y][x][1] = x; // x icollector[y][x][2] = stats[0]; // kp type (end or bend) icollector[y][x][3] = stats[1]; // lightess (positive or negative) icollector[y][x][4] = stats[2]; // max contrast for nms icollector[y][x][5] = stats[3]; // difference used in thresholding Returns ------- keypoints : numpy array Numpy array of size N * 4 representing the found keypoints in format x, y, kp type (end=1, bend=2), kp lightness (positive=1, negative=2), difference for thresholding """ def getFTKeypoints(image, count, scales, threshold, positives, negatives): padding = 0 return libftpy.getFTKeypoints(image, padding, count, scales, threshold, positives, negatives) """Cluster CC boxes using a custom distance algorithm (which can be found in <EMAIL>) Parameters ---------- boxes : numpy array int32 bounding boxes for connected components in format left, top, right, top, right, bottom, left, bottom eps : floating point number Epsilon (distance) parameter for the dbscan algorithm min_samples : integer How many points have be in some points neighbourhood to be a core point Returns ------- labels : numpy array One-dimensional numpy array of cluster labels for each point Nb! NOISE points have label -2 """ def kpBoxDBSCAN(boxes, eps, min_samples): padding = 0 boxN = len(boxes) return libftpy.kpBoxDBSCAN(boxes, padding, boxN, eps, min_samples)
[ "libftpy.getFTKeypoints", "libftpy.kpBoxDBSCAN", "libftpy.getKpBoxes" ]
[((1300, 1402), 'libftpy.getKpBoxes', 'libftpy.getKpBoxes', (['image', 'padding', 'count', 'scales', 'threshold', 'positives', 'negatives', 'wLimit', 'hLimit'], {}), '(image, padding, count, scales, threshold, positives,\n negatives, wLimit, hLimit)\n', (1318, 1402), False, 'import libftpy\n'), ((2726, 2816), 'libftpy.getFTKeypoints', 'libftpy.getFTKeypoints', (['image', 'padding', 'count', 'scales', 'threshold', 'positives', 'negatives'], {}), '(image, padding, count, scales, threshold, positives,\n negatives)\n', (2748, 2816), False, 'import libftpy\n'), ((3472, 3531), 'libftpy.kpBoxDBSCAN', 'libftpy.kpBoxDBSCAN', (['boxes', 'padding', 'boxN', 'eps', 'min_samples'], {}), '(boxes, padding, boxN, eps, min_samples)\n', (3491, 3531), False, 'import libftpy\n')]
""" * This file contains source code for reading and extracting data from pdfs * @author: <NAME> """ import fitz from storage import enumrateFilenames def readAllPdf(): """ * @def: Read all the pdf files from the stotage and return the text from all in a list and the file name * @return: List of tuple, pdf name and text data from all the pdfs """ pages = [] for pdf in enumrateFilenames(): with fitz.open(pdf) as infile: for page in infile: pages.append((pdf, page.getText())) return pages def readPdf(pdfname): """ * @def: Read a pdf file from the stotage and return the text from all in a list and the file name * @param -> pdfname: path to the pdf * @return: List of tuple, pdf name and text data from the pdf """ pages = [] with fitz.open(pdfname) as infile: for page in infile: pages.append((pdfname, page.getText())) return pages
[ "fitz.open", "storage.enumrateFilenames" ]
[((396, 415), 'storage.enumrateFilenames', 'enumrateFilenames', ([], {}), '()\n', (413, 415), False, 'from storage import enumrateFilenames\n'), ((829, 847), 'fitz.open', 'fitz.open', (['pdfname'], {}), '(pdfname)\n', (838, 847), False, 'import fitz\n'), ((430, 444), 'fitz.open', 'fitz.open', (['pdf'], {}), '(pdf)\n', (439, 444), False, 'import fitz\n')]
r""" Deep Learning for Astronomers with Tensorflow """ from pkg_resources import get_distribution version = __version__ = get_distribution('astroNN').version
[ "pkg_resources.get_distribution" ]
[((124, 151), 'pkg_resources.get_distribution', 'get_distribution', (['"""astroNN"""'], {}), "('astroNN')\n", (140, 151), False, 'from pkg_resources import get_distribution\n')]
# This script is to run automate running machline for the Weber and Brebner results import numpy as np import json import subprocess import time import multiprocessing as mp import os # Record and print the time required to run MachLine start_time = time.time() def mach_iter(AoA, Node, formulation, freestream): if formulation == "source-free": formulation_adjusted = "source_free" else: formulation_adjusted = formulation # Modify freestream velocities based on angle of attack AoA_rad = float(AoA)*np.pi/180 x_flow = freestream * np.cos(AoA_rad) z_flow = freestream * np.sin(AoA_rad) # Identify filebases used throughout iterator filebase = "dev/results/half_wing_swept_45_deg/" output_filebase = filebase + "MachLine_Results/" + AoA + "_degrees_AoA/half_wing_A_" + Node + "_nodes_" + AoA + "_deg_AoA_" + formulation_adjusted # Rewrite the input files based on angle of attack and node densities dict1 = { "flow": { "freestream_velocity": [ x_flow, 0.0, z_flow ] }, "geometry": { "file": filebase + "half_wing_A_meshes/half_wing_A_" + Node + "_nodes.vtk", "mirror_about": "xz", "singularity_order": { "doublet": 1, "source": 0 }, "wake_model": { "wake_shedding_angle": 90.0, "trefftz_distance": 10000.0, "N_panels": 1 }, "reference": { "area": 1.0 } }, "solver": { "formulation": formulation, "control_point_offset": 1.1e-05 }, "post_processing" : { }, "output": { "body_file": output_filebase + "_formulation.vtk", "wake_file": output_filebase + "_formulation_wake.vtk", "control_point_file": output_filebase + "_control_points.vtk", "report_file": "../../report.txt" } } # Identify output file location filename = AoA + "_deg_angle_of_attack_input.json" inputfile = filebase + 'half_wing_A_swept_inputs/' + filename # file_location = "dev/results/half_wing_swept_45deg/test/" + AoA + "_degree_AoA_test_file_" + Node + "_nodes.json" with open(inputfile, "w") as output_file: json.dump(dict1, output_file, indent=4) print("\n***",Node, "node input file saved successfully ***\n") # Run machline with current input file # machline_command = "./machline.exe {0}".format(inputfile) subprocess.call(["./machline.exe", inputfile]) ## Main input_conditions = "Swept_half_wing_conditions_input.json" json_string = open(input_conditions).read() json_vals = json.loads(json_string) # Identify values to pass from input conditions file Nodes_input = json_vals["geometry"]["nodes"] AoA_list_input = json_vals["geometry"]["AoA list"] freestream_velocity = json_vals["flow conditions"]["freestream velocity"] formulation_input = json_vals["solver"]["formulation"] # Identify number of CPU available to work with # n_processors = mp.cpu_count() n_processors = 8 Arguments = [] # Change the working directory to the main MachLine directory for execution os.chdir("../../../") # Call the machline iterator with the desired inputs with mp.Pool(n_processors) as pool: for form in formulation_input: for AoA in AoA_list_input: for node in Nodes_input: Arguments.append((AoA, node, form, freestream_velocity)) pool.starmap(mach_iter, Arguments) pool.join() # mach_iter(AoA_list_input, Nodes_input, formulation_input, freestream_velocity) print("MachLine Iterator executed successfully in %s seconds" % "{:.4f}".format(time.time()-start_time))
[ "json.dump", "json.loads", "time.time", "numpy.sin", "subprocess.call", "numpy.cos", "multiprocessing.Pool", "os.chdir" ]
[((252, 263), 'time.time', 'time.time', ([], {}), '()\n', (261, 263), False, 'import time\n'), ((2816, 2839), 'json.loads', 'json.loads', (['json_string'], {}), '(json_string)\n', (2826, 2839), False, 'import json\n'), ((3313, 3334), 'os.chdir', 'os.chdir', (['"""../../../"""'], {}), "('../../../')\n", (3321, 3334), False, 'import os\n'), ((2642, 2688), 'subprocess.call', 'subprocess.call', (["['./machline.exe', inputfile]"], {}), "(['./machline.exe', inputfile])\n", (2657, 2688), False, 'import subprocess\n'), ((3394, 3415), 'multiprocessing.Pool', 'mp.Pool', (['n_processors'], {}), '(n_processors)\n', (3401, 3415), True, 'import multiprocessing as mp\n'), ((580, 595), 'numpy.cos', 'np.cos', (['AoA_rad'], {}), '(AoA_rad)\n', (586, 595), True, 'import numpy as np\n'), ((622, 637), 'numpy.sin', 'np.sin', (['AoA_rad'], {}), '(AoA_rad)\n', (628, 637), True, 'import numpy as np\n'), ((2412, 2451), 'json.dump', 'json.dump', (['dict1', 'output_file'], {'indent': '(4)'}), '(dict1, output_file, indent=4)\n', (2421, 2451), False, 'import json\n'), ((3828, 3839), 'time.time', 'time.time', ([], {}), '()\n', (3837, 3839), False, 'import time\n')]
# Automated tests for the `coloredlogs' package. # # Author: <NAME> <<EMAIL>> # Last Change: November 14, 2015 # URL: https://coloredlogs.readthedocs.org """Automated tests for the `coloredlogs` package.""" # Standard library modules. import logging import logging.handlers import os import random import re import string import sys import tempfile import unittest # External dependencies. from humanfriendly.terminal import ansi_wrap # The module we're testing. import coloredlogs import coloredlogs.cli from coloredlogs import ( CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree, ) from coloredlogs.syslog import SystemLogging from coloredlogs.converter import capture, convert # External test dependencies. from capturer import CaptureOutput from verboselogs import VerboseLogger from humanfriendly.compat import StringIO # Compiled regular expression that matches a single line of output produced by # the default log format (does not include matching of ANSI escape sequences). PLAIN_TEXT_PATTERN = re.compile(r''' (?P<date> \d{4}-\d{2}-\d{2} ) \s (?P<time> \d{2}:\d{2}:\d{2} ) \s (?P<hostname> \S+ ) \s (?P<logger_name> \w+ ) \[ (?P<process_id> \d+ ) \] \s (?P<severity> [A-Z]+ ) \s (?P<message> .* ) ''', re.VERBOSE) def setUpModule(): """Speed up the tests by disabling the demo's artificial delay.""" os.environ['COLOREDLOGS_DEMO_DELAY'] = '0' coloredlogs.demo.DEMO_DELAY = 0 class ColoredLogsTestCase(unittest.TestCase): """Container for the `coloredlogs` tests.""" def test_level_to_number(self): """Make sure :func:`level_to_number()` works as intended.""" # Make sure the default levels are translated as expected. assert level_to_number('debug') == logging.DEBUG assert level_to_number('info') == logging.INFO assert level_to_number('warn') == logging.WARNING assert level_to_number('error') == logging.ERROR assert level_to_number('fatal') == logging.FATAL # Make sure bogus level names don't blow up. assert level_to_number('bogus-level') == logging.INFO def test_find_hostname(self): """Make sure :func:`~find_hostname()` works correctly.""" assert find_hostname() # Create a temporary file as a placeholder for e.g. /etc/debian_chroot. fd, temporary_file = tempfile.mkstemp() try: with open(temporary_file, 'w') as handle: handle.write('first line\n') handle.write('second line\n') CHROOT_FILES.insert(0, temporary_file) # Make sure the chroot file is being read. assert find_hostname() == 'first line' finally: # Clean up. CHROOT_FILES.pop(0) os.unlink(temporary_file) # Test that unreadable chroot files don't break coloredlogs. try: CHROOT_FILES.insert(0, temporary_file) # Make sure that a usable value is still produced. assert find_hostname() finally: # Clean up. CHROOT_FILES.pop(0) def test_host_name_filter(self): """Make sure :func:`install()` integrates with :class:`~coloredlogs.HostNameFilter()`.""" install(fmt='%(hostname)s') with CaptureOutput() as capturer: logging.info("A truly insignificant message ..") output = capturer.get_text() assert find_hostname() in output def test_program_name_filter(self): """Make sure :func:`install()` integrates with :class:`~coloredlogs.ProgramNameFilter()`.""" install(fmt='%(programname)s') with CaptureOutput() as capturer: logging.info("A truly insignificant message ..") output = capturer.get_text() assert find_program_name() in output def test_system_logging(self): """Make sure the :mod:`coloredlogs.syslog` module works.""" expected_message = random_string(50) with SystemLogging(programname='coloredlogs-test-suite') as syslog: logging.info("%s", expected_message) if syslog and os.path.isfile('/var/log/syslog'): with open('/var/log/syslog') as handle: assert any(expected_message in line for line in handle) def test_name_normalization(self): """Make sure :class:`~coloredlogs.NameNormalizer` works as intended.""" nn = NameNormalizer() for canonical_name in ['debug', 'info', 'warning', 'error', 'critical']: assert nn.normalize_name(canonical_name) == canonical_name assert nn.normalize_name(canonical_name.upper()) == canonical_name assert nn.normalize_name('warn') == 'warning' assert nn.normalize_name('fatal') == 'critical' def test_style_parsing(self): """Make sure :func:`~coloredlogs.parse_encoded_styles()` works as intended.""" encoded_styles = 'debug=green;warning=yellow;error=red;critical=red,bold' decoded_styles = parse_encoded_styles(encoded_styles, normalize_key=lambda k: k.upper()) assert sorted(decoded_styles.keys()) == sorted(['debug', 'warning', 'error', 'critical']) assert decoded_styles['debug']['color'] == 'green' assert decoded_styles['warning']['color'] == 'yellow' assert decoded_styles['error']['color'] == 'red' assert decoded_styles['critical']['color'] == 'red' assert decoded_styles['critical']['bold'] is True def test_is_verbose(self): """Make sure is_verbose() does what it should :-).""" set_level(logging.INFO) assert not is_verbose() set_level(logging.DEBUG) assert is_verbose() set_level(logging.VERBOSE) assert is_verbose() def test_increase_verbosity(self): """Make sure increase_verbosity() respects default and custom levels.""" # Start from a known state. set_level(logging.INFO) assert get_level() == logging.INFO # INFO -> VERBOSE. increase_verbosity() assert get_level() == logging.VERBOSE # VERBOSE -> DEBUG. increase_verbosity() assert get_level() == logging.DEBUG # DEBUG -> NOTSET. increase_verbosity() assert get_level() == logging.NOTSET # NOTSET -> NOTSET. increase_verbosity() assert get_level() == logging.NOTSET def test_decrease_verbosity(self): """Make sure decrease_verbosity() respects default and custom levels.""" # Start from a known state. set_level(logging.INFO) assert get_level() == logging.INFO # INFO -> WARNING. decrease_verbosity() assert get_level() == logging.WARNING # WARNING -> ERROR. decrease_verbosity() assert get_level() == logging.ERROR # ERROR -> CRITICAL. decrease_verbosity() assert get_level() == logging.CRITICAL # CRITICAL -> CRITICAL. decrease_verbosity() assert get_level() == logging.CRITICAL def test_level_discovery(self): """Make sure find_defined_levels() always reports the levels defined in Python's standard library.""" defined_levels = find_defined_levels() level_values = defined_levels.values() for number in (0, 10, 20, 30, 40, 50): assert number in level_values def test_walk_propagation_tree(self): """Make sure walk_propagation_tree() properly walks the tree of loggers.""" root, parent, child, grand_child = self.get_logger_tree() # Check the default mode of operation. loggers = list(walk_propagation_tree(grand_child)) assert loggers == [grand_child, child, parent, root] # Now change the propagation (non-default mode of operation). child.propagate = False loggers = list(walk_propagation_tree(grand_child)) assert loggers == [grand_child, child] def test_find_handler(self): """Make sure find_handler() works as intended.""" root, parent, child, grand_child = self.get_logger_tree() # Add some handlers to the tree. stream_handler = logging.StreamHandler() syslog_handler = logging.handlers.SysLogHandler() child.addHandler(stream_handler) parent.addHandler(syslog_handler) # Make sure the first matching handler is returned. matched_handler, matched_logger = find_handler(grand_child, lambda h: isinstance(h, logging.Handler)) assert matched_handler is stream_handler # Make sure the first matching handler of the given type is returned. matched_handler, matched_logger = find_handler(child, lambda h: isinstance(h, logging.handlers.SysLogHandler)) assert matched_handler is syslog_handler def get_logger_tree(self): """Create and return a tree of loggers.""" # Get the root logger. root = logging.getLogger() # Create a top level logger for ourselves. parent_name = random_string() parent = logging.getLogger(parent_name) # Create a child logger. child_name = '%s.%s' % (parent_name, random_string()) child = logging.getLogger(child_name) # Create a grand child logger. grand_child_name = '%s.%s' % (child_name, random_string()) grand_child = logging.getLogger(grand_child_name) return root, parent, child, grand_child def test_plain_text_output_format(self): """Inspect the plain text output of coloredlogs.""" logger = VerboseLogger(random_string(25)) stream = StringIO() install(level=logging.NOTSET, logger=logger, stream=stream) # Test that filtering on severity works. logger.setLevel(logging.INFO) logger.debug("No one should see this message.") assert len(stream.getvalue().strip()) == 0 # Test that the default output format looks okay in plain text. logger.setLevel(logging.NOTSET) for method, severity in ((logger.debug, 'DEBUG'), (logger.info, 'INFO'), (logger.verbose, 'VERBOSE'), (logger.warning, 'WARN'), (logger.error, 'ERROR'), (logger.critical, 'CRITICAL')): # Prepare the text. text = "This is a message with severity %r." % severity.lower() # Log the message with the given severity. method(text) # Get the line of output generated by the handler. output = stream.getvalue() lines = output.splitlines() last_line = lines[-1] assert text in last_line assert severity in last_line assert PLAIN_TEXT_PATTERN.match(last_line) def test_html_conversion(self): """Check the conversion from ANSI escape sequences to HTML.""" ansi_encoded_text = 'I like %s - www.eelstheband.com' % ansi_wrap('birds', bold=True, color='blue') assert ansi_encoded_text == 'I like \x1b[1;34mbirds\x1b[0m - www.eelstheband.com' html_encoded_text = convert(ansi_encoded_text) assert html_encoded_text == ( 'I&nbsp;like&nbsp;<span style="font-weight: bold; color: blue;">birds</span>&nbsp;-&nbsp;' '<a href="http://www.eelstheband.com" style="color: inherit;">www.eelstheband.com</a>' ) def test_output_interception(self): """Test capturing of output from external commands.""" expected_output = 'testing, 1, 2, 3 ..' assert capture(['sh', '-c', 'echo -n %s' % expected_output]) == expected_output def test_cli_demo(self): """Test the command line colored logging demonstration.""" with CaptureOutput() as capturer: main('coloredlogs', '--demo') output = capturer.get_text() # Make sure the output contains all of the expected logging level names. for name in 'debug', 'info', 'warning', 'error', 'critical': assert name.upper() in output def test_cli_conversion(self): """Test the command line HTML conversion.""" output = main('coloredlogs', '--convert', 'coloredlogs', '--demo', capture=True) # Make sure the output is encoded as HTML. assert '<span' in output def test_implicit_usage_message(self): """Test that the usage message is shown when no actions are given.""" assert 'Usage:' in main('coloredlogs', capture=True) def test_explicit_usage_message(self): """Test that the usage message is shown when ``--help`` is given.""" assert 'Usage:' in main('coloredlogs', '--help', capture=True) def main(*arguments, **options): """Simple wrapper to run the command line interface.""" capture = options.get('capture', False) saved_argv = sys.argv saved_stdout = sys.stdout try: sys.argv = arguments if capture: sys.stdout = StringIO() coloredlogs.cli.main() if capture: return sys.stdout.getvalue() finally: sys.argv = saved_argv sys.stdout = saved_stdout def random_string(length=25): """Generate a random string.""" return ''.join(random.choice(string.ascii_letters) for i in range(25))
[ "coloredlogs.get_level", "coloredlogs.converter.capture", "os.unlink", "coloredlogs.CHROOT_FILES.pop", "os.path.isfile", "logging.handlers.SysLogHandler", "coloredlogs.increase_verbosity", "coloredlogs.find_program_name", "coloredlogs.find_defined_levels", "humanfriendly.compat.StringIO", "coloredlogs.converter.convert", "coloredlogs.set_level", "coloredlogs.decrease_verbosity", "coloredlogs.walk_propagation_tree", "coloredlogs.syslog.SystemLogging", "logging.StreamHandler", "coloredlogs.cli.main", "coloredlogs.is_verbose", "sys.stdout.getvalue", "humanfriendly.terminal.ansi_wrap", "re.compile", "coloredlogs.level_to_number", "tempfile.mkstemp", "coloredlogs.CHROOT_FILES.insert", "coloredlogs.install", "random.choice", "capturer.CaptureOutput", "logging.info", "coloredlogs.NameNormalizer", "coloredlogs.find_hostname", "logging.getLogger" ]
[((1263, 1535), 're.compile', 're.compile', (['"""\n (?P<date> \\\\d{4}-\\\\d{2}-\\\\d{2} )\n \\\\s (?P<time> \\\\d{2}:\\\\d{2}:\\\\d{2} )\n \\\\s (?P<hostname> \\\\S+ )\n \\\\s (?P<logger_name> \\\\w+ )\n \\\\[ (?P<process_id> \\\\d+ ) \\\\]\n \\\\s (?P<severity> [A-Z]+ )\n \\\\s (?P<message> .* )\n"""', 're.VERBOSE'], {}), '(\n """\n (?P<date> \\\\d{4}-\\\\d{2}-\\\\d{2} )\n \\\\s (?P<time> \\\\d{2}:\\\\d{2}:\\\\d{2} )\n \\\\s (?P<hostname> \\\\S+ )\n \\\\s (?P<logger_name> \\\\w+ )\n \\\\[ (?P<process_id> \\\\d+ ) \\\\]\n \\\\s (?P<severity> [A-Z]+ )\n \\\\s (?P<message> .* )\n"""\n , re.VERBOSE)\n', (1273, 1535), False, 'import re\n'), ((2472, 2487), 'coloredlogs.find_hostname', 'find_hostname', ([], {}), '()\n', (2485, 2487), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((2597, 2615), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {}), '()\n', (2613, 2615), False, 'import tempfile\n'), ((3490, 3517), 'coloredlogs.install', 'install', ([], {'fmt': '"""%(hostname)s"""'}), "(fmt='%(hostname)s')\n", (3497, 3517), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((3857, 3887), 'coloredlogs.install', 'install', ([], {'fmt': '"""%(programname)s"""'}), "(fmt='%(programname)s')\n", (3864, 3887), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((4681, 4697), 'coloredlogs.NameNormalizer', 'NameNormalizer', ([], {}), '()\n', (4695, 4697), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((5836, 5859), 'coloredlogs.set_level', 'set_level', (['logging.INFO'], {}), '(logging.INFO)\n', (5845, 5859), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((5900, 5924), 'coloredlogs.set_level', 'set_level', (['logging.DEBUG'], {}), '(logging.DEBUG)\n', (5909, 5924), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((5940, 5952), 'coloredlogs.is_verbose', 'is_verbose', ([], {}), '()\n', (5950, 5952), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((5961, 5987), 'coloredlogs.set_level', 'set_level', (['logging.VERBOSE'], {}), '(logging.VERBOSE)\n', (5970, 5987), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((6003, 6015), 'coloredlogs.is_verbose', 'is_verbose', ([], {}), '()\n', (6013, 6015), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((6181, 6204), 'coloredlogs.set_level', 'set_level', (['logging.INFO'], {}), '(logging.INFO)\n', (6190, 6204), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((6283, 6303), 'coloredlogs.increase_verbosity', 'increase_verbosity', ([], {}), '()\n', (6301, 6303), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((6386, 6406), 'coloredlogs.increase_verbosity', 'increase_verbosity', ([], {}), '()\n', (6404, 6406), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((6486, 6506), 'coloredlogs.increase_verbosity', 'increase_verbosity', ([], {}), '()\n', (6504, 6506), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((6588, 6608), 'coloredlogs.increase_verbosity', 'increase_verbosity', ([], {}), '()\n', (6606, 6608), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((6819, 6842), 'coloredlogs.set_level', 'set_level', (['logging.INFO'], {}), '(logging.INFO)\n', (6828, 6842), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((6921, 6941), 'coloredlogs.decrease_verbosity', 'decrease_verbosity', ([], {}), '()\n', (6939, 6941), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((7024, 7044), 'coloredlogs.decrease_verbosity', 'decrease_verbosity', ([], {}), '()\n', (7042, 7044), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((7126, 7146), 'coloredlogs.decrease_verbosity', 'decrease_verbosity', ([], {}), '()\n', (7144, 7146), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((7234, 7254), 'coloredlogs.decrease_verbosity', 'decrease_verbosity', ([], {}), '()\n', (7252, 7254), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((7474, 7495), 'coloredlogs.find_defined_levels', 'find_defined_levels', ([], {}), '()\n', (7493, 7495), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((8424, 8447), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (8445, 8447), False, 'import logging\n'), ((8473, 8505), 'logging.handlers.SysLogHandler', 'logging.handlers.SysLogHandler', ([], {}), '()\n', (8503, 8505), False, 'import logging\n'), ((9183, 9202), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (9200, 9202), False, 'import logging\n'), ((9309, 9339), 'logging.getLogger', 'logging.getLogger', (['parent_name'], {}), '(parent_name)\n', (9326, 9339), False, 'import logging\n'), ((9451, 9480), 'logging.getLogger', 'logging.getLogger', (['child_name'], {}), '(child_name)\n', (9468, 9480), False, 'import logging\n'), ((9609, 9644), 'logging.getLogger', 'logging.getLogger', (['grand_child_name'], {}), '(grand_child_name)\n', (9626, 9644), False, 'import logging\n'), ((9866, 9876), 'humanfriendly.compat.StringIO', 'StringIO', ([], {}), '()\n', (9874, 9876), False, 'from humanfriendly.compat import StringIO\n'), ((9885, 9944), 'coloredlogs.install', 'install', ([], {'level': 'logging.NOTSET', 'logger': 'logger', 'stream': 'stream'}), '(level=logging.NOTSET, logger=logger, stream=stream)\n', (9892, 9944), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((11440, 11466), 'coloredlogs.converter.convert', 'convert', (['ansi_encoded_text'], {}), '(ansi_encoded_text)\n', (11447, 11466), False, 'from coloredlogs.converter import capture, convert\n'), ((13305, 13327), 'coloredlogs.cli.main', 'coloredlogs.cli.main', ([], {}), '()\n', (13325, 13327), False, 'import coloredlogs\n'), ((1972, 1996), 'coloredlogs.level_to_number', 'level_to_number', (['"""debug"""'], {}), "('debug')\n", (1987, 1996), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((2029, 2052), 'coloredlogs.level_to_number', 'level_to_number', (['"""info"""'], {}), "('info')\n", (2044, 2052), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((2084, 2107), 'coloredlogs.level_to_number', 'level_to_number', (['"""warn"""'], {}), "('warn')\n", (2099, 2107), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((2142, 2166), 'coloredlogs.level_to_number', 'level_to_number', (['"""error"""'], {}), "('error')\n", (2157, 2166), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((2199, 2223), 'coloredlogs.level_to_number', 'level_to_number', (['"""fatal"""'], {}), "('fatal')\n", (2214, 2223), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((2309, 2339), 'coloredlogs.level_to_number', 'level_to_number', (['"""bogus-level"""'], {}), "('bogus-level')\n", (2324, 2339), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((2786, 2824), 'coloredlogs.CHROOT_FILES.insert', 'CHROOT_FILES.insert', (['(0)', 'temporary_file'], {}), '(0, temporary_file)\n', (2805, 2824), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((2984, 3003), 'coloredlogs.CHROOT_FILES.pop', 'CHROOT_FILES.pop', (['(0)'], {}), '(0)\n', (3000, 3003), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((3016, 3041), 'os.unlink', 'os.unlink', (['temporary_file'], {}), '(temporary_file)\n', (3025, 3041), False, 'import os\n'), ((3136, 3174), 'coloredlogs.CHROOT_FILES.insert', 'CHROOT_FILES.insert', (['(0)', 'temporary_file'], {}), '(0, temporary_file)\n', (3155, 3174), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((3257, 3272), 'coloredlogs.find_hostname', 'find_hostname', ([], {}), '()\n', (3270, 3272), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((3326, 3345), 'coloredlogs.CHROOT_FILES.pop', 'CHROOT_FILES.pop', (['(0)'], {}), '(0)\n', (3342, 3345), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((3531, 3546), 'capturer.CaptureOutput', 'CaptureOutput', ([], {}), '()\n', (3544, 3546), False, 'from capturer import CaptureOutput\n'), ((3572, 3620), 'logging.info', 'logging.info', (['"""A truly insignificant message .."""'], {}), "('A truly insignificant message ..')\n", (3584, 3620), False, 'import logging\n'), ((3901, 3916), 'capturer.CaptureOutput', 'CaptureOutput', ([], {}), '()\n', (3914, 3916), False, 'from capturer import CaptureOutput\n'), ((3942, 3990), 'logging.info', 'logging.info', (['"""A truly insignificant message .."""'], {}), "('A truly insignificant message ..')\n", (3954, 3990), False, 'import logging\n'), ((4243, 4294), 'coloredlogs.syslog.SystemLogging', 'SystemLogging', ([], {'programname': '"""coloredlogs-test-suite"""'}), "(programname='coloredlogs-test-suite')\n", (4256, 4294), False, 'from coloredlogs.syslog import SystemLogging\n'), ((4318, 4354), 'logging.info', 'logging.info', (['"""%s"""', 'expected_message'], {}), "('%s', expected_message)\n", (4330, 4354), False, 'import logging\n'), ((5879, 5891), 'coloredlogs.is_verbose', 'is_verbose', ([], {}), '()\n', (5889, 5891), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((6220, 6231), 'coloredlogs.get_level', 'get_level', ([], {}), '()\n', (6229, 6231), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((6319, 6330), 'coloredlogs.get_level', 'get_level', ([], {}), '()\n', (6328, 6330), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((6422, 6433), 'coloredlogs.get_level', 'get_level', ([], {}), '()\n', (6431, 6433), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((6522, 6533), 'coloredlogs.get_level', 'get_level', ([], {}), '()\n', (6531, 6533), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((6624, 6635), 'coloredlogs.get_level', 'get_level', ([], {}), '()\n', (6633, 6635), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((6858, 6869), 'coloredlogs.get_level', 'get_level', ([], {}), '()\n', (6867, 6869), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((6957, 6968), 'coloredlogs.get_level', 'get_level', ([], {}), '()\n', (6966, 6968), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((7060, 7071), 'coloredlogs.get_level', 'get_level', ([], {}), '()\n', (7069, 7071), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((7162, 7173), 'coloredlogs.get_level', 'get_level', ([], {}), '()\n', (7171, 7173), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((7270, 7281), 'coloredlogs.get_level', 'get_level', ([], {}), '()\n', (7279, 7281), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((7895, 7929), 'coloredlogs.walk_propagation_tree', 'walk_propagation_tree', (['grand_child'], {}), '(grand_child)\n', (7916, 7929), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((8117, 8151), 'coloredlogs.walk_propagation_tree', 'walk_propagation_tree', (['grand_child'], {}), '(grand_child)\n', (8138, 8151), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((11278, 11321), 'humanfriendly.terminal.ansi_wrap', 'ansi_wrap', (['"""birds"""'], {'bold': '(True)', 'color': '"""blue"""'}), "('birds', bold=True, color='blue')\n", (11287, 11321), False, 'from humanfriendly.terminal import ansi_wrap\n'), ((11884, 11937), 'coloredlogs.converter.capture', 'capture', (["['sh', '-c', 'echo -n %s' % expected_output]"], {}), "(['sh', '-c', 'echo -n %s' % expected_output])\n", (11891, 11937), False, 'from coloredlogs.converter import capture, convert\n'), ((12067, 12082), 'capturer.CaptureOutput', 'CaptureOutput', ([], {}), '()\n', (12080, 12082), False, 'from capturer import CaptureOutput\n'), ((13286, 13296), 'humanfriendly.compat.StringIO', 'StringIO', ([], {}), '()\n', (13294, 13296), False, 'from humanfriendly.compat import StringIO\n'), ((13367, 13388), 'sys.stdout.getvalue', 'sys.stdout.getvalue', ([], {}), '()\n', (13386, 13388), False, 'import sys\n'), ((13553, 13588), 'random.choice', 'random.choice', (['string.ascii_letters'], {}), '(string.ascii_letters)\n', (13566, 13588), False, 'import random\n'), ((2899, 2914), 'coloredlogs.find_hostname', 'find_hostname', ([], {}), '()\n', (2912, 2914), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((3681, 3696), 'coloredlogs.find_hostname', 'find_hostname', ([], {}), '()\n', (3694, 3696), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((4051, 4070), 'coloredlogs.find_program_name', 'find_program_name', ([], {}), '()\n', (4068, 4070), False, 'from coloredlogs import CHROOT_FILES, decrease_verbosity, find_defined_levels, find_handler, find_hostname, find_program_name, get_level, increase_verbosity, install, is_verbose, level_to_number, NameNormalizer, parse_encoded_styles, set_level, walk_propagation_tree\n'), ((4381, 4414), 'os.path.isfile', 'os.path.isfile', (['"""/var/log/syslog"""'], {}), "('/var/log/syslog')\n", (4395, 4414), False, 'import os\n')]
# This file is part of the NESi software. # # Copyright (c) 2020 # Original Software Design by <NAME> <https://github.com/etingof>. # # Software adapted by inexio <https://github.com/inexio>. # - <NAME> <https://github.com/unkn0wn-user> # - <NAME> <https://github.com/Connyko65> # - <NAME> <https://github.com/Dinker1996> # # License: https://github.com/inexio/NESi/LICENSE.rst import uuid from nesi.devices.softbox.api import db class PortProfile(db.Model): id = db.Column(db.Integer(), primary_key=True) name = db.Column(db.String(64)) description = db.Column(db.String()) box_id = db.Column(db.Integer, db.ForeignKey('box.id')) type = db.Column(db.Enum('service', 'spectrum', 'dpbo', 'rtx', 'vect', 'sos', 'ghs', 'qos', 'policer', 'vce', 'data-rate', 'noise-margin', 'inp-delay', 'mode-specific-psd')) # Alcatel Data up_policer = db.Column(db.String(), default=None, nullable=True) down_policer = db.Column(db.String(), default=None, nullable=True) committed_info_rate = db.Column(db.Integer(), default=0, nullable=False) committed_burst_size = db.Column(db.Integer(), default=0, nullable=False) logical_flow_type = db.Column(db.Enum('generic'), default='generic') # Huawei data maximum_bit_error_ratio = db.Column(db.Integer(), default=None) path_mode = db.Column(db.Integer(), default=None) rate = db.Column(db.String(), default=None) etr_max = db.Column(db.Integer(), default=None) etr_min = db.Column(db.Integer(), default=None) ndr_max = db.Column(db.Integer(), default=None) working_mode = db.Column(db.Integer(), default=None) eside_electrical_length = db.Column(db.String(), default=None) assumed_exchange_psd = db.Column(db.String(), default=None) eside_cable_model = db.Column(db.String(), default=None) min_usable_signal = db.Column(db.Integer(), default=None) span_frequency = db.Column(db.String(), default=None) dpbo_calculation = db.Column(db.Integer(), default=None) snr_margin = db.Column(db.String(), default=None) rate_adapt = db.Column(db.String(), default=None) snr_mode = db.Column(db.String(), default=None) inp_4khz = db.Column(db.String(), default=None) inp_8khz = db.Column(db.String(), default=None) interleaved_delay = db.Column(db.String(), default=None) delay_variation = db.Column(db.Integer(), default=None) channel_policy = db.Column(db.Integer(), default=None) nominal_transmit_PSD_ds = db.Column(db.Integer(), default=None) nominal_transmit_PSD_us = db.Column(db.Integer(), default=None) aggregate_transmit_power_ds = db.Column(db.Integer(), default=None) aggregate_transmit_power_us = db.Column(db.Integer(), default=None) aggregate_receive_power_us = db.Column(db.Integer(), default=None) upstream_psd_mask_selection = db.Column(db.Integer(), default=None) psd_class_mask = db.Column(db.Integer(), default=None) psd_limit_mask = db.Column(db.Integer(), default=None) l0_time = db.Column(db.Integer(), default=None) l2_time = db.Column(db.Integer(), default=None) l3_time = db.Column(db.Integer(), default=None) max_transmite_power_reduction = db.Column(db.Integer(), default=None) total_max_power_reduction = db.Column(db.Integer(), default=None) bit_swap_ds = db.Column(db.Integer(), default=None) bit_swap_us = db.Column(db.Integer(), default=None) overhead_datarate_us = db.Column(db.Integer(), default=None) overhead_datarate_ds = db.Column(db.Integer(), default=None) allow_transitions_to_idle = db.Column(db.Integer(), default=None) allow_transitions_to_lowpower = db.Column(db.Integer(), default=None) reference_clock = db.Column(db.String(), default=None) cyclic_extension_flag = db.Column(db.Integer(), default=None) force_inp_ds = db.Column(db.Integer(), default=None) force_inp_us = db.Column(db.Integer(), default=None) g_993_2_profile = db.Column(db.Integer(), default=None) mode_specific = db.Column(db.String(), default=None) transmode = db.Column(db.String(), default=None) T1_413 = db.Column(db.String(), default=None) G_992_1 = db.Column(db.String(), default=None) G_992_2 = db.Column(db.String(), default=None) G_992_3 = db.Column(db.String(), default=None) G_992_4 = db.Column(db.String(), default=None) G_992_5 = db.Column(db.String(), default=None) AnnexB_G_993_2 = db.Column(db.String(), default=None) ETSI = db.Column(db.String(), default=None) us0_psd_mask = db.Column(db.Integer(), default=None) vdsltoneblackout = db.Column(db.String(), default=None) internal_id = db.Column(db.Integer(), default=None) vmac_ipoe = db.Column(db.Enum('enable', 'disable'), default=None) vmac_pppoe = db.Column(db.Enum('enable', 'disable'), default=None) vmac_pppoa = db.Column(db.Enum('enable', 'disable'), default=None) vlan_mac = db.Column(db.Enum('forwarding', 'discard'), default=None) packet_policy_multicast = db.Column(db.Enum('forward', 'discard'), default=None) packet_policy_unicast = db.Column(db.Enum('forward', 'discard'), default=None) security_anti_ipspoofing = db.Column(db.Enum('enable', 'disable'), default=None) security_anti_macspoofing = db.Column(db.Enum('enable', 'disable'), default=None) igmp_mismatch = db.Column(db.Enum('transparent'), default=None) commit = db.Column(db.Boolean(), default=False) number = db.Column(db.Integer, default=None)
[ "nesi.devices.softbox.api.db.Column", "nesi.devices.softbox.api.db.Boolean", "nesi.devices.softbox.api.db.String", "nesi.devices.softbox.api.db.ForeignKey", "nesi.devices.softbox.api.db.Integer", "nesi.devices.softbox.api.db.Enum" ]
[((5442, 5477), 'nesi.devices.softbox.api.db.Column', 'db.Column', (['db.Integer'], {'default': 'None'}), '(db.Integer, default=None)\n', (5451, 5477), False, 'from nesi.devices.softbox.api import db\n'), ((481, 493), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (491, 493), False, 'from nesi.devices.softbox.api import db\n'), ((534, 547), 'nesi.devices.softbox.api.db.String', 'db.String', (['(64)'], {}), '(64)\n', (543, 547), False, 'from nesi.devices.softbox.api import db\n'), ((577, 588), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (586, 588), False, 'from nesi.devices.softbox.api import db\n'), ((625, 648), 'nesi.devices.softbox.api.db.ForeignKey', 'db.ForeignKey', (['"""box.id"""'], {}), "('box.id')\n", (638, 648), False, 'from nesi.devices.softbox.api import db\n'), ((671, 834), 'nesi.devices.softbox.api.db.Enum', 'db.Enum', (['"""service"""', '"""spectrum"""', '"""dpbo"""', '"""rtx"""', '"""vect"""', '"""sos"""', '"""ghs"""', '"""qos"""', '"""policer"""', '"""vce"""', '"""data-rate"""', '"""noise-margin"""', '"""inp-delay"""', '"""mode-specific-psd"""'], {}), "('service', 'spectrum', 'dpbo', 'rtx', 'vect', 'sos', 'ghs', 'qos',\n 'policer', 'vce', 'data-rate', 'noise-margin', 'inp-delay',\n 'mode-specific-psd')\n", (678, 834), False, 'from nesi.devices.softbox.api import db\n'), ((904, 915), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (913, 915), False, 'from nesi.devices.softbox.api import db\n'), ((975, 986), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (984, 986), False, 'from nesi.devices.softbox.api import db\n'), ((1053, 1065), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (1063, 1065), False, 'from nesi.devices.softbox.api import db\n'), ((1131, 1143), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (1141, 1143), False, 'from nesi.devices.softbox.api import db\n'), ((1206, 1224), 'nesi.devices.softbox.api.db.Enum', 'db.Enum', (['"""generic"""'], {}), "('generic')\n", (1213, 1224), False, 'from nesi.devices.softbox.api import db\n'), ((1304, 1316), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (1314, 1316), False, 'from nesi.devices.softbox.api import db\n'), ((1358, 1370), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (1368, 1370), False, 'from nesi.devices.softbox.api import db\n'), ((1407, 1418), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (1416, 1418), False, 'from nesi.devices.softbox.api import db\n'), ((1458, 1470), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (1468, 1470), False, 'from nesi.devices.softbox.api import db\n'), ((1510, 1522), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (1520, 1522), False, 'from nesi.devices.softbox.api import db\n'), ((1562, 1574), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (1572, 1574), False, 'from nesi.devices.softbox.api import db\n'), ((1619, 1631), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (1629, 1631), False, 'from nesi.devices.softbox.api import db\n'), ((1687, 1698), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (1696, 1698), False, 'from nesi.devices.softbox.api import db\n'), ((1751, 1762), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (1760, 1762), False, 'from nesi.devices.softbox.api import db\n'), ((1812, 1823), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (1821, 1823), False, 'from nesi.devices.softbox.api import db\n'), ((1873, 1885), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (1883, 1885), False, 'from nesi.devices.softbox.api import db\n'), ((1932, 1943), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (1941, 1943), False, 'from nesi.devices.softbox.api import db\n'), ((1992, 2004), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (2002, 2004), False, 'from nesi.devices.softbox.api import db\n'), ((2047, 2058), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (2056, 2058), False, 'from nesi.devices.softbox.api import db\n'), ((2101, 2112), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (2110, 2112), False, 'from nesi.devices.softbox.api import db\n'), ((2153, 2164), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (2162, 2164), False, 'from nesi.devices.softbox.api import db\n'), ((2205, 2216), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (2214, 2216), False, 'from nesi.devices.softbox.api import db\n'), ((2257, 2268), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (2266, 2268), False, 'from nesi.devices.softbox.api import db\n'), ((2318, 2329), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (2327, 2329), False, 'from nesi.devices.softbox.api import db\n'), ((2377, 2389), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (2387, 2389), False, 'from nesi.devices.softbox.api import db\n'), ((2436, 2448), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (2446, 2448), False, 'from nesi.devices.softbox.api import db\n'), ((2504, 2516), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (2514, 2516), False, 'from nesi.devices.softbox.api import db\n'), ((2572, 2584), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (2582, 2584), False, 'from nesi.devices.softbox.api import db\n'), ((2644, 2656), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (2654, 2656), False, 'from nesi.devices.softbox.api import db\n'), ((2716, 2728), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (2726, 2728), False, 'from nesi.devices.softbox.api import db\n'), ((2787, 2799), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (2797, 2799), False, 'from nesi.devices.softbox.api import db\n'), ((2859, 2871), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (2869, 2871), False, 'from nesi.devices.softbox.api import db\n'), ((2918, 2930), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (2928, 2930), False, 'from nesi.devices.softbox.api import db\n'), ((2977, 2989), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (2987, 2989), False, 'from nesi.devices.softbox.api import db\n'), ((3029, 3041), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (3039, 3041), False, 'from nesi.devices.softbox.api import db\n'), ((3081, 3093), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (3091, 3093), False, 'from nesi.devices.softbox.api import db\n'), ((3133, 3145), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (3143, 3145), False, 'from nesi.devices.softbox.api import db\n'), ((3207, 3219), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (3217, 3219), False, 'from nesi.devices.softbox.api import db\n'), ((3277, 3289), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (3287, 3289), False, 'from nesi.devices.softbox.api import db\n'), ((3333, 3345), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (3343, 3345), False, 'from nesi.devices.softbox.api import db\n'), ((3389, 3401), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (3399, 3401), False, 'from nesi.devices.softbox.api import db\n'), ((3454, 3466), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (3464, 3466), False, 'from nesi.devices.softbox.api import db\n'), ((3519, 3531), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (3529, 3531), False, 'from nesi.devices.softbox.api import db\n'), ((3589, 3601), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (3599, 3601), False, 'from nesi.devices.softbox.api import db\n'), ((3663, 3675), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (3673, 3675), False, 'from nesi.devices.softbox.api import db\n'), ((3723, 3734), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (3732, 3734), False, 'from nesi.devices.softbox.api import db\n'), ((3788, 3800), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (3798, 3800), False, 'from nesi.devices.softbox.api import db\n'), ((3845, 3857), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (3855, 3857), False, 'from nesi.devices.softbox.api import db\n'), ((3902, 3914), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (3912, 3914), False, 'from nesi.devices.softbox.api import db\n'), ((3962, 3974), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (3972, 3974), False, 'from nesi.devices.softbox.api import db\n'), ((4020, 4031), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (4029, 4031), False, 'from nesi.devices.softbox.api import db\n'), ((4073, 4084), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (4082, 4084), False, 'from nesi.devices.softbox.api import db\n'), ((4123, 4134), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (4132, 4134), False, 'from nesi.devices.softbox.api import db\n'), ((4174, 4185), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (4183, 4185), False, 'from nesi.devices.softbox.api import db\n'), ((4225, 4236), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (4234, 4236), False, 'from nesi.devices.softbox.api import db\n'), ((4276, 4287), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (4285, 4287), False, 'from nesi.devices.softbox.api import db\n'), ((4327, 4338), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (4336, 4338), False, 'from nesi.devices.softbox.api import db\n'), ((4378, 4389), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (4387, 4389), False, 'from nesi.devices.softbox.api import db\n'), ((4436, 4447), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (4445, 4447), False, 'from nesi.devices.softbox.api import db\n'), ((4484, 4495), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (4493, 4495), False, 'from nesi.devices.softbox.api import db\n'), ((4540, 4552), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (4550, 4552), False, 'from nesi.devices.softbox.api import db\n'), ((4601, 4612), 'nesi.devices.softbox.api.db.String', 'db.String', ([], {}), '()\n', (4610, 4612), False, 'from nesi.devices.softbox.api import db\n'), ((4656, 4668), 'nesi.devices.softbox.api.db.Integer', 'db.Integer', ([], {}), '()\n', (4666, 4668), False, 'from nesi.devices.softbox.api import db\n'), ((4711, 4739), 'nesi.devices.softbox.api.db.Enum', 'db.Enum', (['"""enable"""', '"""disable"""'], {}), "('enable', 'disable')\n", (4718, 4739), False, 'from nesi.devices.softbox.api import db\n'), ((4782, 4810), 'nesi.devices.softbox.api.db.Enum', 'db.Enum', (['"""enable"""', '"""disable"""'], {}), "('enable', 'disable')\n", (4789, 4810), False, 'from nesi.devices.softbox.api import db\n'), ((4853, 4881), 'nesi.devices.softbox.api.db.Enum', 'db.Enum', (['"""enable"""', '"""disable"""'], {}), "('enable', 'disable')\n", (4860, 4881), False, 'from nesi.devices.softbox.api import db\n'), ((4922, 4954), 'nesi.devices.softbox.api.db.Enum', 'db.Enum', (['"""forwarding"""', '"""discard"""'], {}), "('forwarding', 'discard')\n", (4929, 4954), False, 'from nesi.devices.softbox.api import db\n'), ((5010, 5039), 'nesi.devices.softbox.api.db.Enum', 'db.Enum', (['"""forward"""', '"""discard"""'], {}), "('forward', 'discard')\n", (5017, 5039), False, 'from nesi.devices.softbox.api import db\n'), ((5093, 5122), 'nesi.devices.softbox.api.db.Enum', 'db.Enum', (['"""forward"""', '"""discard"""'], {}), "('forward', 'discard')\n", (5100, 5122), False, 'from nesi.devices.softbox.api import db\n'), ((5179, 5207), 'nesi.devices.softbox.api.db.Enum', 'db.Enum', (['"""enable"""', '"""disable"""'], {}), "('enable', 'disable')\n", (5186, 5207), False, 'from nesi.devices.softbox.api import db\n'), ((5265, 5293), 'nesi.devices.softbox.api.db.Enum', 'db.Enum', (['"""enable"""', '"""disable"""'], {}), "('enable', 'disable')\n", (5272, 5293), False, 'from nesi.devices.softbox.api import db\n'), ((5339, 5361), 'nesi.devices.softbox.api.db.Enum', 'db.Enum', (['"""transparent"""'], {}), "('transparent')\n", (5346, 5361), False, 'from nesi.devices.softbox.api import db\n'), ((5400, 5412), 'nesi.devices.softbox.api.db.Boolean', 'db.Boolean', ([], {}), '()\n', (5410, 5412), False, 'from nesi.devices.softbox.api import db\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # ** # # ================== # # CONNECTION_HANDLER # # ================== # # Handler class for controlling the connection to the robot # # @author ES # ** import logging import threading from autobahn.twisted.component import Component, run from twisted.internet.defer import inlineCallbacks import es_common.utils.config_helper as config_helper from es_common.model.observable import Observable class ConnectionHandler(object): def __init__(self): self.logger = logging.getLogger("Connection Handler") self.rie = None self.session_observers = Observable() self.session = None @inlineCallbacks def on_connect(self, session, details=None): self.logger.debug("Created session: {}".format(session)) self.session = session yield self.session_observers.notify_all(session) def start_rie_session(self, robot_name=None, robot_realm=None): try: if robot_realm is None: # get the realm from config name_key = "pepper" if robot_name is None else robot_name.lower() robot_realm = config_helper.get_robot_settings()["realm"][name_key] self.logger.info("{} REALM: {}".format(robot_name, robot_realm)) self.rie = Component( transports=[{ 'url': u"wss://wamp.robotsindeklas.nl", 'serializers': ['msgpack'], 'max_retries': 0 }], realm=robot_realm ) self.logger.info("** {}".format(threading.current_thread().name)) self.rie.on_join(self.on_connect) self.logger.info("Running the rie component") run([self.rie]) except Exception as e: self.logger.error("Unable to run the rie component | {}".format(e)) def stop_session(self): try: if self.session: self.session.leave() self.session_observers.notify_all(None) self.logger.info("Closed the robot session.") else: self.logger.info("There is no active session.") except Exception as e: self.logger.error("Error while closing rie session: {}".format(e))
[ "autobahn.twisted.component.Component", "es_common.model.observable.Observable", "logging.getLogger", "es_common.utils.config_helper.get_robot_settings", "threading.current_thread", "autobahn.twisted.component.run" ]
[((527, 566), 'logging.getLogger', 'logging.getLogger', (['"""Connection Handler"""'], {}), "('Connection Handler')\n", (544, 566), False, 'import logging\n'), ((624, 636), 'es_common.model.observable.Observable', 'Observable', ([], {}), '()\n', (634, 636), False, 'from es_common.model.observable import Observable\n'), ((1318, 1451), 'autobahn.twisted.component.Component', 'Component', ([], {'transports': "[{'url': u'wss://wamp.robotsindeklas.nl', 'serializers': ['msgpack'],\n 'max_retries': 0}]", 'realm': 'robot_realm'}), "(transports=[{'url': u'wss://wamp.robotsindeklas.nl',\n 'serializers': ['msgpack'], 'max_retries': 0}], realm=robot_realm)\n", (1327, 1451), False, 'from autobahn.twisted.component import Component, run\n'), ((1768, 1783), 'autobahn.twisted.component.run', 'run', (['[self.rie]'], {}), '([self.rie])\n', (1771, 1783), False, 'from autobahn.twisted.component import Component, run\n'), ((1163, 1197), 'es_common.utils.config_helper.get_robot_settings', 'config_helper.get_robot_settings', ([], {}), '()\n', (1195, 1197), True, 'import es_common.utils.config_helper as config_helper\n'), ((1617, 1643), 'threading.current_thread', 'threading.current_thread', ([], {}), '()\n', (1641, 1643), False, 'import threading\n')]
""" Módulo da aplicação usando Streamlit para gerar a estrutura front-end """ # FIXME: Por algum motivo o streamlit não aceita importar as páginas # via __init__.py ou importação relativa # pylint: disable=import-error import streamlit as st from introducao import intro from questao_problema import case from analise_geografica import geografica from analise_prazos_x_atrasos import prazos_atrasos from report import report from solucoes import solucoes from consideracoes_finais import consideracoes_finais # pylint: enable=import-error PAGES = { "Introdução": intro, "Questão Problema": case, "Análise Geográfica das Vendas e Compras": geografica, "Análise dos Atrasos dos Pedidos": prazos_atrasos, "Pandas Profiling": report, "Relatório Final e Soluções Propostas": solucoes, "Considerações": consideracoes_finais, } st.sidebar.title("Índice") selection = st.sidebar.radio("", list(PAGES.keys())) page = PAGES[selection] page()
[ "streamlit.sidebar.title" ]
[((852, 878), 'streamlit.sidebar.title', 'st.sidebar.title', (['"""Índice"""'], {}), "('Índice')\n", (868, 878), True, 'import streamlit as st\n')]
# Generated by Django 3.2.4 on 2021-06-18 19:44 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('customer', '0001_initial'), ] operations = [ migrations.CreateModel( name='Messages', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=240, verbose_name='Name')), ('message', models.CharField(max_length=240, verbose_name='Name')), ], ), migrations.RemoveField( model_name='customer', name='created', ), ]
[ "django.db.migrations.RemoveField", "django.db.models.CharField", "django.db.models.AutoField" ]
[((613, 674), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""customer"""', 'name': '"""created"""'}), "(model_name='customer', name='created')\n", (635, 674), False, 'from django.db import migrations, models\n'), ((322, 415), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (338, 415), False, 'from django.db import migrations, models\n'), ((439, 492), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(240)', 'verbose_name': '"""Name"""'}), "(max_length=240, verbose_name='Name')\n", (455, 492), False, 'from django.db import migrations, models\n'), ((523, 576), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(240)', 'verbose_name': '"""Name"""'}), "(max_length=240, verbose_name='Name')\n", (539, 576), False, 'from django.db import migrations, models\n')]
import logging from uuid import UUID from fastapi import APIRouter, Depends from sqlalchemy.ext.asyncio import AsyncSession from starlette import status from starlette.requests import Request from api.core.config import settings from api.endpoints.dependencies.db import get_db from api.endpoints.dependencies.tenant_security import get_from_context from api.endpoints.routes.v1.link_utils import build_list_links from api.services.v1 import governance_service from api.endpoints.models.v1.governance import ( SchemaTemplateListResponse, SchemaTemplateListParameters, CreateSchemaTemplatePayload, CreateSchemaTemplateResponse, ImportSchemaTemplatePayload, ImportSchemaTemplateResponse, TemplateStatusType, ) from api.tasks import SendCredDefRequestTask, SendSchemaRequestTask router = APIRouter() logger = logging.getLogger(__name__) @router.get( "/", status_code=status.HTTP_200_OK, response_model=SchemaTemplateListResponse ) async def list_schema_templates( request: Request, page_num: int | None = 1, page_size: int | None = settings.DEFAULT_PAGE_SIZE, name: str | None = None, schema_id: str | None = None, schema_template_id: UUID | None = None, status: TemplateStatusType | None = None, tags: str | None = None, deleted: bool | None = False, db: AsyncSession = Depends(get_db), ) -> SchemaTemplateListResponse: wallet_id = get_from_context("TENANT_WALLET_ID") tenant_id = get_from_context("TENANT_ID") parameters = SchemaTemplateListParameters( url=str(request.url), page_num=page_num, page_size=page_size, name=name, deleted=deleted, schema_id=schema_id, schema_template_id=schema_template_id, status=status, tags=tags, ) items, total_count = await governance_service.list_schema_templates( db, tenant_id, wallet_id, parameters ) links = build_list_links(total_count, parameters) return SchemaTemplateListResponse( items=items, count=len(items), total=total_count, links=links ) @router.post("/", status_code=status.HTTP_200_OK) async def create_schema_template( payload: CreateSchemaTemplatePayload, db: AsyncSession = Depends(get_db), ) -> CreateSchemaTemplateResponse: """ Create a new schema and/or credential definition. "schema_definition", defines the new schema. If "credential_definition" is provided, create a credential definition. """ logger.info("> create_schema_template()") wallet_id = get_from_context("TENANT_WALLET_ID") tenant_id = get_from_context("TENANT_ID") logger.debug(f"wallet_id = {wallet_id}") logger.debug(f"tenant_id = {tenant_id}") item, c_t_item = await governance_service.create_schema_template( db, tenant_id, wallet_id, payload=payload ) links = [] # TODO # this will kick off the call to the ledger and then event listeners will finish # populating the schema (and cred def) data. logger.debug("> > SendSchemaRequestTask.assign()") await SendSchemaRequestTask.assign( tenant_id, wallet_id, payload.schema_definition, item.schema_template_id ) logger.debug("< < SendSchemaRequestTask.assign()") logger.debug(f"item = {item}") logger.debug(f"credential_template = {c_t_item}") logger.info("< create_schema_template()") return CreateSchemaTemplateResponse( item=item, credential_template=c_t_item, links=links ) @router.post("/import", status_code=status.HTTP_200_OK) async def import_schema_template( payload: ImportSchemaTemplatePayload, db: AsyncSession = Depends(get_db), ) -> ImportSchemaTemplateResponse: """ Import an existing public schema and optionally create a credential definition. "schema_id" is the ledger's schema id. If "credential_definition" is provided, create a credential definition. """ logger.info("> import_schema_template()") wallet_id = get_from_context("TENANT_WALLET_ID") tenant_id = get_from_context("TENANT_ID") logger.debug(f"wallet_id = {wallet_id}") logger.debug(f"tenant_id = {tenant_id}") item, c_t_item = await governance_service.import_schema_template( db, tenant_id, wallet_id, payload=payload ) links = [] # TODO # this will kick off the call to the ledger and then event listeners will finish # populating the cred def if c_t_item: logger.debug("> > SendCredDefRequestTask.assign()") await SendCredDefRequestTask.assign( tenant_id, wallet_id, c_t_item.credential_template_id ) logger.debug("< < SendCredDefRequestTask.assign()") logger.debug(f"item = {item}") logger.debug(f"credential_template = {c_t_item}") logger.info("< import_schema_template()") return ImportSchemaTemplateResponse( item=item, credential_template=c_t_item, links=links )
[ "api.endpoints.dependencies.tenant_security.get_from_context", "api.endpoints.models.v1.governance.CreateSchemaTemplateResponse", "api.endpoints.routes.v1.link_utils.build_list_links", "api.endpoints.models.v1.governance.ImportSchemaTemplateResponse", "api.services.v1.governance_service.import_schema_template", "api.services.v1.governance_service.create_schema_template", "api.tasks.SendSchemaRequestTask.assign", "api.services.v1.governance_service.list_schema_templates", "fastapi.Depends", "api.tasks.SendCredDefRequestTask.assign", "logging.getLogger", "fastapi.APIRouter" ]
[((818, 829), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (827, 829), False, 'from fastapi import APIRouter, Depends\n'), ((839, 866), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (856, 866), False, 'import logging\n'), ((1347, 1362), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (1354, 1362), False, 'from fastapi import APIRouter, Depends\n'), ((1413, 1449), 'api.endpoints.dependencies.tenant_security.get_from_context', 'get_from_context', (['"""TENANT_WALLET_ID"""'], {}), "('TENANT_WALLET_ID')\n", (1429, 1449), False, 'from api.endpoints.dependencies.tenant_security import get_from_context\n'), ((1466, 1495), 'api.endpoints.dependencies.tenant_security.get_from_context', 'get_from_context', (['"""TENANT_ID"""'], {}), "('TENANT_ID')\n", (1482, 1495), False, 'from api.endpoints.dependencies.tenant_security import get_from_context\n'), ((1935, 1976), 'api.endpoints.routes.v1.link_utils.build_list_links', 'build_list_links', (['total_count', 'parameters'], {}), '(total_count, parameters)\n', (1951, 1976), False, 'from api.endpoints.routes.v1.link_utils import build_list_links\n'), ((2244, 2259), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (2251, 2259), False, 'from fastapi import APIRouter, Depends\n'), ((2554, 2590), 'api.endpoints.dependencies.tenant_security.get_from_context', 'get_from_context', (['"""TENANT_WALLET_ID"""'], {}), "('TENANT_WALLET_ID')\n", (2570, 2590), False, 'from api.endpoints.dependencies.tenant_security import get_from_context\n'), ((2607, 2636), 'api.endpoints.dependencies.tenant_security.get_from_context', 'get_from_context', (['"""TENANT_ID"""'], {}), "('TENANT_ID')\n", (2623, 2636), False, 'from api.endpoints.dependencies.tenant_security import get_from_context\n'), ((3395, 3482), 'api.endpoints.models.v1.governance.CreateSchemaTemplateResponse', 'CreateSchemaTemplateResponse', ([], {'item': 'item', 'credential_template': 'c_t_item', 'links': 'links'}), '(item=item, credential_template=c_t_item, links\n =links)\n', (3423, 3482), False, 'from api.endpoints.models.v1.governance import SchemaTemplateListResponse, SchemaTemplateListParameters, CreateSchemaTemplatePayload, CreateSchemaTemplateResponse, ImportSchemaTemplatePayload, ImportSchemaTemplateResponse, TemplateStatusType\n'), ((3649, 3664), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (3656, 3664), False, 'from fastapi import APIRouter, Depends\n'), ((3983, 4019), 'api.endpoints.dependencies.tenant_security.get_from_context', 'get_from_context', (['"""TENANT_WALLET_ID"""'], {}), "('TENANT_WALLET_ID')\n", (3999, 4019), False, 'from api.endpoints.dependencies.tenant_security import get_from_context\n'), ((4036, 4065), 'api.endpoints.dependencies.tenant_security.get_from_context', 'get_from_context', (['"""TENANT_ID"""'], {}), "('TENANT_ID')\n", (4052, 4065), False, 'from api.endpoints.dependencies.tenant_security import get_from_context\n'), ((4827, 4914), 'api.endpoints.models.v1.governance.ImportSchemaTemplateResponse', 'ImportSchemaTemplateResponse', ([], {'item': 'item', 'credential_template': 'c_t_item', 'links': 'links'}), '(item=item, credential_template=c_t_item, links\n =links)\n', (4855, 4914), False, 'from api.endpoints.models.v1.governance import SchemaTemplateListResponse, SchemaTemplateListParameters, CreateSchemaTemplatePayload, CreateSchemaTemplateResponse, ImportSchemaTemplatePayload, ImportSchemaTemplateResponse, TemplateStatusType\n'), ((1829, 1907), 'api.services.v1.governance_service.list_schema_templates', 'governance_service.list_schema_templates', (['db', 'tenant_id', 'wallet_id', 'parameters'], {}), '(db, tenant_id, wallet_id, parameters)\n', (1869, 1907), False, 'from api.services.v1 import governance_service\n'), ((2755, 2844), 'api.services.v1.governance_service.create_schema_template', 'governance_service.create_schema_template', (['db', 'tenant_id', 'wallet_id'], {'payload': 'payload'}), '(db, tenant_id, wallet_id, payload\n =payload)\n', (2796, 2844), False, 'from api.services.v1 import governance_service\n'), ((3077, 3184), 'api.tasks.SendSchemaRequestTask.assign', 'SendSchemaRequestTask.assign', (['tenant_id', 'wallet_id', 'payload.schema_definition', 'item.schema_template_id'], {}), '(tenant_id, wallet_id, payload.\n schema_definition, item.schema_template_id)\n', (3105, 3184), False, 'from api.tasks import SendCredDefRequestTask, SendSchemaRequestTask\n'), ((4184, 4273), 'api.services.v1.governance_service.import_schema_template', 'governance_service.import_schema_template', (['db', 'tenant_id', 'wallet_id'], {'payload': 'payload'}), '(db, tenant_id, wallet_id, payload\n =payload)\n', (4225, 4273), False, 'from api.services.v1 import governance_service\n'), ((4513, 4602), 'api.tasks.SendCredDefRequestTask.assign', 'SendCredDefRequestTask.assign', (['tenant_id', 'wallet_id', 'c_t_item.credential_template_id'], {}), '(tenant_id, wallet_id, c_t_item.\n credential_template_id)\n', (4542, 4602), False, 'from api.tasks import SendCredDefRequestTask, SendSchemaRequestTask\n')]
########################################################################## # # pgAdmin 4 - PostgreSQL Tools # # Copyright (C) 2013 - 2018, The pgAdmin Development Team # This software is released under the PostgreSQL Licence # ########################################################################## import sys import simplejson as json from pgadmin.utils.route import BaseTestGenerator from regression import parent_node_dict from pgadmin.utils import server_utils as server_utils from pgadmin.browser.server_groups.servers.databases.tests import utils as \ database_utils if sys.version_info < (3, 3): from mock import patch, MagicMock else: from unittest.mock import patch, MagicMock class RestoreCreateJobTest(BaseTestGenerator): """Test the RestoreCreateJob class""" scenarios = [ ('When restore object with default options', dict( class_params=dict( sid=1, name='test_restore_server', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_restore_file', format='custom', custom=False, verbose=True, blobs=True, schemas=[], tables=[], database='postgres' ), url='/restore/job/{0}', expected_cmd_opts=['--verbose'], not_expected_cmd_opts=[], expected_exit_code=[0, None] )), ('When restore object with format directory', dict( class_params=dict( sid=1, name='test_restore_server', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_restore_file', format='directory', custom=False, verbose=True, blobs=False, schemas=[], tables=[], database='postgres' ), url='/restore/job/{0}', expected_cmd_opts=['--verbose', '--format=d'], not_expected_cmd_opts=[], expected_exit_code=[0, None] )), ('When restore object with the sections options', dict( class_params=dict( sid=1, name='test_restore_server', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_restore_file', format='custom', no_of_jobs='2', custom=False, verbose=True, schemas=[], tables=[], database='postgres', data=True, pre_data=True, post_data=True, only_data=True, only_schema=True ), url='/restore/job/{0}', expected_cmd_opts=['--verbose', '--jobs', '2', '--section=pre-data', '--section=data', '--section=post-data'], not_expected_cmd_opts=[], # Below options should be enabled once we fix the issue #3368 # not_expected_cmd_opts=['--data-only', '--schema-only'], expected_exit_code=[0, None], )), ('When restore the object with Type of objects', dict( class_params=dict( sid=1, name='test_restore_server', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_restore_file', format='custom', no_of_jobs='2', custom=False, verbose=True, schemas=[], tables=[], database='postgres', only_data=True, only_schema=True, dns_owner=True ), url='/restore/job/{0}', expected_cmd_opts=['--verbose', '--data-only'], not_expected_cmd_opts=[], # Below options should be enabled once we fix the issue #3368 # not_expected_cmd_opts=['--schema-only', '--no-owner'], expected_exit_code=[0, None], )), ('When restore object with option - Do not save', dict( class_params=dict( sid=1, name='test_restore_server', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_restore_file', format='custom', verbose=True, custom=False, schemas=[], tables=[], database='postgres', dns_owner=True, dns_privilege=True, dns_tablespace=True, only_data=False ), url='/restore/job/{0}', expected_cmd_opts=['--no-owner', '--no-tablespaces', '--no-privileges'], not_expected_cmd_opts=[], expected_exit_code=[0, None] )), ('When restore object with option - Do not save comments', dict( class_params=dict( sid=1, name='test_restore_server', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_restore_file', format='custom', verbose=True, custom=False, schemas=[], tables=[], database='postgres', no_comments=True, only_data=False ), url='/restore/job/{0}', expected_cmd_opts=['--no-comments'], not_expected_cmd_opts=[], expected_exit_code=[0, None], server_min_version=110000, message='Restore object with --no-comments are not supported ' 'by EPAS/PG server less than 11.0' )), ('When restore object with option - Queries', dict( class_params=dict( sid=1, name='test_restore_file', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_backup_file', format='custom', verbose=True, schemas=[], tables=[], database='postgres', clean=True, include_create_database=True, single_transaction=True, ), url='/restore/job/{0}', expected_cmd_opts=['--create', '--clean', '--single-transaction'], not_expected_cmd_opts=[], expected_exit_code=[0, None] )), ('When restore object with option - Disbale', dict( class_params=dict( sid=1, name='test_restore_file', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_backup_file', format='custom', verbose=True, schemas=[], tables=[], database='postgres', disable_trigger=True, no_data_fail_table=True, only_schema=False ), url='/restore/job/{0}', expected_cmd_opts=['--disable-triggers', '--no-data-for-failed-tables'], not_expected_cmd_opts=[], expected_exit_code=[0, None] )), ('When restore object with option - Miscellaneous', dict( class_params=dict( sid=1, name='test_restore_file', port=5444, host='localhost', database='postgres', bfile='test_restore', username='postgres' ), params=dict( file='test_backup_file', format='custom', verbose=True, schemas=[], tables=[], database='postgres', use_set_session_auth=True, exit_on_error=True, ), url='/restore/job/{0}', # Add '--use_set_session_auth' into # expected_cmd_opts once #3363 fixed expected_cmd_opts=['--exit-on-error'], not_expected_cmd_opts=[], expected_exit_code=[0, None] )), ] def setUp(self): if self.server['default_binary_paths'] is None: self.skipTest( "default_binary_paths is not set for the server {0}".format( self.server['name'] ) ) @patch('pgadmin.tools.restore.Server') @patch('pgadmin.tools.restore.current_user') @patch('pgadmin.tools.restore.RestoreMessage') @patch('pgadmin.tools.restore.filename_with_file_manager_path') @patch('pgadmin.tools.restore.BatchProcess') @patch('pgadmin.utils.driver.psycopg2.server_manager.ServerManager.' 'export_password_env') def runTest(self, export_password_env_mock, batch_process_mock, filename_mock, restore_message_mock, current_user_mock, server_mock): class TestMockServer(): def __init__(self, name, host, port, id, username): self.name = name self.host = host self.port = port self.id = id self.username = username self.db_name = '' self.server_id = parent_node_dict["server"][-1]["server_id"] mock_obj = TestMockServer(self.class_params['name'], self.class_params['host'], self.class_params['port'], self.server_id, self.class_params['username'] ) mock_result = server_mock.query.filter_by.return_value mock_result.first.return_value = mock_obj filename_mock.return_value = self.params['file'] batch_process_mock.set_env_variables = MagicMock( return_value=True ) batch_process_mock.start = MagicMock( return_value=True ) export_password_env_mock.return_value = True server_response = server_utils.connect_server(self, self.server_id) if server_response["info"] == "Server connected.": db_owner = server_response['data']['user']['name'] self.data = database_utils.get_db_data(db_owner) self.db_name = self.data['name'] if hasattr(self, 'server_min_version') and \ server_response["data"]["version"] < \ self.server_min_version: self.skipTest(self.message) url = self.url.format(self.server_id) # Create the restore job response = self.tester.post(url, data=json.dumps(self.params), content_type='html/json') self.assertEqual(response.status_code, 200) self.assertTrue(restore_message_mock.called) self.assertTrue(batch_process_mock.called) if self.expected_cmd_opts: for opt in self.expected_cmd_opts: self.assertIn( opt, batch_process_mock.call_args_list[0][1]['args'] ) if self.not_expected_cmd_opts: for opt in self.not_expected_cmd_opts: self.assertNotIn( opt, batch_process_mock.call_args_list[0][1]['args'] )
[ "pgadmin.browser.server_groups.servers.databases.tests.utils.get_db_data", "unittest.mock.MagicMock", "simplejson.dumps", "unittest.mock.patch", "pgadmin.utils.server_utils.connect_server" ]
[((10248, 10285), 'unittest.mock.patch', 'patch', (['"""pgadmin.tools.restore.Server"""'], {}), "('pgadmin.tools.restore.Server')\n", (10253, 10285), False, 'from unittest.mock import patch, MagicMock\n'), ((10291, 10334), 'unittest.mock.patch', 'patch', (['"""pgadmin.tools.restore.current_user"""'], {}), "('pgadmin.tools.restore.current_user')\n", (10296, 10334), False, 'from unittest.mock import patch, MagicMock\n'), ((10340, 10385), 'unittest.mock.patch', 'patch', (['"""pgadmin.tools.restore.RestoreMessage"""'], {}), "('pgadmin.tools.restore.RestoreMessage')\n", (10345, 10385), False, 'from unittest.mock import patch, MagicMock\n'), ((10391, 10453), 'unittest.mock.patch', 'patch', (['"""pgadmin.tools.restore.filename_with_file_manager_path"""'], {}), "('pgadmin.tools.restore.filename_with_file_manager_path')\n", (10396, 10453), False, 'from unittest.mock import patch, MagicMock\n'), ((10459, 10502), 'unittest.mock.patch', 'patch', (['"""pgadmin.tools.restore.BatchProcess"""'], {}), "('pgadmin.tools.restore.BatchProcess')\n", (10464, 10502), False, 'from unittest.mock import patch, MagicMock\n'), ((10508, 10605), 'unittest.mock.patch', 'patch', (['"""pgadmin.utils.driver.psycopg2.server_manager.ServerManager.export_password_env"""'], {}), "(\n 'pgadmin.utils.driver.psycopg2.server_manager.ServerManager.export_password_env'\n )\n", (10513, 10605), False, 'from unittest.mock import patch, MagicMock\n'), ((11694, 11722), 'unittest.mock.MagicMock', 'MagicMock', ([], {'return_value': '(True)'}), '(return_value=True)\n', (11703, 11722), False, 'from unittest.mock import patch, MagicMock\n'), ((11780, 11808), 'unittest.mock.MagicMock', 'MagicMock', ([], {'return_value': '(True)'}), '(return_value=True)\n', (11789, 11808), False, 'from unittest.mock import patch, MagicMock\n'), ((11912, 11961), 'pgadmin.utils.server_utils.connect_server', 'server_utils.connect_server', (['self', 'self.server_id'], {}), '(self, self.server_id)\n', (11939, 11961), True, 'from pgadmin.utils import server_utils as server_utils\n'), ((12108, 12144), 'pgadmin.browser.server_groups.servers.databases.tests.utils.get_db_data', 'database_utils.get_db_data', (['db_owner'], {}), '(db_owner)\n', (12134, 12144), True, 'from pgadmin.browser.server_groups.servers.databases.tests import utils as database_utils\n'), ((12559, 12582), 'simplejson.dumps', 'json.dumps', (['self.params'], {}), '(self.params)\n', (12569, 12582), True, 'import simplejson as json\n')]
""" A set of utilities for setting up property estimation workflows. """ from dataclasses import astuple, dataclass from typing import Generic, Optional, Tuple, TypeVar from openff.evaluator import unit from openff.evaluator.attributes import PlaceholderValue from openff.evaluator.datasets import PropertyPhase from openff.evaluator.protocols import ( analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage, ) from openff.evaluator.protocols.groups import ConditionalGroup from openff.evaluator.storage.data import StoredSimulationData from openff.evaluator.thermodynamics import Ensemble from openff.evaluator.utils.observables import ObservableType from openff.evaluator.workflow import ProtocolGroup from openff.evaluator.workflow.schemas import ProtocolReplicator from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue S = TypeVar("S", bound=analysis.BaseAverageObservable) T = TypeVar("T", bound=reweighting.BaseMBARProtocol) @dataclass class SimulationProtocols(Generic[S]): """The common set of protocols which would be required to estimate an observable by running a new molecule simulation.""" build_coordinates: coordinates.BuildCoordinatesPackmol assign_parameters: forcefield.BaseBuildSystem energy_minimisation: openmm.OpenMMEnergyMinimisation equilibration_simulation: openmm.OpenMMSimulation production_simulation: openmm.OpenMMSimulation analysis_protocol: S converge_uncertainty: ProtocolGroup decorrelate_trajectory: analysis.DecorrelateTrajectory decorrelate_observables: analysis.DecorrelateObservables def __iter__(self): yield from astuple(self) @dataclass class ReweightingProtocols(Generic[S, T]): """The common set of protocols which would be required to re-weight an observable from cached simulation data.""" unpack_stored_data: storage.UnpackStoredSimulationData join_trajectories: reweighting.ConcatenateTrajectories join_observables: reweighting.ConcatenateObservables build_reference_system: forcefield.BaseBuildSystem evaluate_reference_potential: reweighting.BaseEvaluateEnergies build_target_system: forcefield.BaseBuildSystem evaluate_target_potential: reweighting.BaseEvaluateEnergies statistical_inefficiency: S replicate_statistics: miscellaneous.DummyProtocol decorrelate_reference_potential: analysis.DecorrelateObservables decorrelate_target_potential: analysis.DecorrelateObservables decorrelate_observable: analysis.DecorrelateObservables zero_gradients: Optional[gradients.ZeroGradients] reweight_observable: T def __iter__(self): yield from astuple(self) def generate_base_reweighting_protocols( statistical_inefficiency: S, reweight_observable: T, replicator_id: str = "data_replicator", id_suffix: str = "", ) -> Tuple[ReweightingProtocols[S, T], ProtocolReplicator]: """Constructs a set of protocols which, when combined in a workflow schema, may be executed to reweight a set of cached simulation data to estimate the average value of an observable. Parameters ---------- statistical_inefficiency The protocol which will be used to compute the statistical inefficiency and equilibration time of the observable of interest. This information will be used to decorrelate the cached data prior to reweighting. reweight_observable The MBAR reweighting protocol to use to reweight the observable to the target state. This method will automatically set the reduced potentials on the object. replicator_id: str The id to use for the cached data replicator. id_suffix: str A string suffix to append to each of the protocol ids. Returns ------- The protocols to add to the workflow, a reference to the average value of the estimated observable (an ``Observable`` object), and the replicator which will clone the workflow for each piece of cached simulation data. """ # Create the replicator which will apply these protocol once for each piece of # cached simulation data. data_replicator = ProtocolReplicator(replicator_id=replicator_id) data_replicator.template_values = ProtocolPath("full_system_data", "global") # Validate the inputs. assert isinstance(statistical_inefficiency, analysis.BaseAverageObservable) assert data_replicator.placeholder_id in statistical_inefficiency.id assert data_replicator.placeholder_id not in reweight_observable.id replicator_suffix = f"_{data_replicator.placeholder_id}{id_suffix}" # Unpack all the of the stored data. unpack_stored_data = storage.UnpackStoredSimulationData( "unpack_data{}".format(replicator_suffix) ) unpack_stored_data.simulation_data_path = ReplicatorValue(replicator_id) # Join the individual trajectories together. join_trajectories = reweighting.ConcatenateTrajectories( f"join_trajectories{id_suffix}" ) join_trajectories.input_coordinate_paths = ProtocolPath( "coordinate_file_path", unpack_stored_data.id ) join_trajectories.input_trajectory_paths = ProtocolPath( "trajectory_file_path", unpack_stored_data.id ) join_observables = reweighting.ConcatenateObservables( f"join_observables{id_suffix}" ) join_observables.input_observables = ProtocolPath( "observables", unpack_stored_data.id ) # Calculate the reduced potentials for each of the reference states. build_reference_system = forcefield.BaseBuildSystem( f"build_system{replicator_suffix}" ) build_reference_system.force_field_path = ProtocolPath( "force_field_path", unpack_stored_data.id ) build_reference_system.coordinate_file_path = ProtocolPath( "coordinate_file_path", unpack_stored_data.id ) build_reference_system.substance = ProtocolPath("substance", unpack_stored_data.id) reduced_reference_potential = openmm.OpenMMEvaluateEnergies( f"reduced_potential{replicator_suffix}" ) reduced_reference_potential.parameterized_system = ProtocolPath( "parameterized_system", build_reference_system.id ) reduced_reference_potential.thermodynamic_state = ProtocolPath( "thermodynamic_state", unpack_stored_data.id ) reduced_reference_potential.coordinate_file_path = ProtocolPath( "coordinate_file_path", unpack_stored_data.id ) reduced_reference_potential.trajectory_file_path = ProtocolPath( "output_trajectory_path", join_trajectories.id ) # Calculate the reduced potential of the target state. build_target_system = forcefield.BaseBuildSystem(f"build_system_target{id_suffix}") build_target_system.force_field_path = ProtocolPath("force_field_path", "global") build_target_system.substance = ProtocolPath("substance", "global") build_target_system.coordinate_file_path = ProtocolPath( "output_coordinate_path", join_trajectories.id ) reduced_target_potential = openmm.OpenMMEvaluateEnergies( f"reduced_potential_target{id_suffix}" ) reduced_target_potential.thermodynamic_state = ProtocolPath( "thermodynamic_state", "global" ) reduced_target_potential.parameterized_system = ProtocolPath( "parameterized_system", build_target_system.id ) reduced_target_potential.coordinate_file_path = ProtocolPath( "output_coordinate_path", join_trajectories.id ) reduced_target_potential.trajectory_file_path = ProtocolPath( "output_trajectory_path", join_trajectories.id ) reduced_target_potential.gradient_parameters = ProtocolPath( "parameter_gradient_keys", "global" ) # Compute the observable gradients. zero_gradients = gradients.ZeroGradients(f"zero_gradients{id_suffix}") zero_gradients.force_field_path = ProtocolPath("force_field_path", "global") zero_gradients.gradient_parameters = ProtocolPath( "parameter_gradient_keys", "global" ) # Decorrelate the target potentials and observables. if not isinstance(statistical_inefficiency, analysis.BaseAverageObservable): raise NotImplementedError() decorrelate_target_potential = analysis.DecorrelateObservables( f"decorrelate_target_potential{id_suffix}" ) decorrelate_target_potential.time_series_statistics = ProtocolPath( "time_series_statistics", statistical_inefficiency.id ) decorrelate_target_potential.input_observables = ProtocolPath( "output_observables", reduced_target_potential.id ) decorrelate_observable = analysis.DecorrelateObservables( f"decorrelate_observable{id_suffix}" ) decorrelate_observable.time_series_statistics = ProtocolPath( "time_series_statistics", statistical_inefficiency.id ) decorrelate_observable.input_observables = ProtocolPath( "output_observables", zero_gradients.id ) # Decorrelate the reference potentials. Due to a quirk of how workflow replicators # work the time series statistics need to be passed via a dummy protocol first. # # Because the `statistical_inefficiency` and `decorrelate_reference_potential` # protocols are replicated by the same replicator the `time_series_statistics` # input of `decorrelate_reference_potential_X` will take its value from # the `time_series_statistics` output of `statistical_inefficiency_X` rather than # as a list of of [statistical_inefficiency_0.time_series_statistics... # statistical_inefficiency_N.time_series_statistics]. Passing the statistics via # an un-replicated intermediate resolves this. replicate_statistics = miscellaneous.DummyProtocol( f"replicated_statistics{id_suffix}" ) replicate_statistics.input_value = ProtocolPath( "time_series_statistics", statistical_inefficiency.id ) decorrelate_reference_potential = analysis.DecorrelateObservables( f"decorrelate_reference_potential{replicator_suffix}" ) decorrelate_reference_potential.time_series_statistics = ProtocolPath( "output_value", replicate_statistics.id ) decorrelate_reference_potential.input_observables = ProtocolPath( "output_observables", reduced_reference_potential.id ) # Finally, apply MBAR to get the reweighted value. reweight_observable.reference_reduced_potentials = ProtocolPath( "output_observables[ReducedPotential]", decorrelate_reference_potential.id ) reweight_observable.target_reduced_potentials = ProtocolPath( "output_observables[ReducedPotential]", decorrelate_target_potential.id ) reweight_observable.observable = ProtocolPath( "output_observables", decorrelate_observable.id ) reweight_observable.frame_counts = ProtocolPath( "time_series_statistics.n_uncorrelated_points", statistical_inefficiency.id ) protocols = ReweightingProtocols( unpack_stored_data, # join_trajectories, join_observables, # build_reference_system, reduced_reference_potential, # build_target_system, reduced_target_potential, # statistical_inefficiency, replicate_statistics, # decorrelate_reference_potential, decorrelate_target_potential, # decorrelate_observable, zero_gradients, # reweight_observable, ) return protocols, data_replicator def generate_reweighting_protocols( observable_type: ObservableType, replicator_id: str = "data_replicator", id_suffix: str = "", ) -> Tuple[ ReweightingProtocols[analysis.AverageObservable, reweighting.ReweightObservable], ProtocolReplicator, ]: assert observable_type not in [ ObservableType.KineticEnergy, ObservableType.TotalEnergy, ObservableType.Enthalpy, ] statistical_inefficiency = analysis.AverageObservable( f"observable_inefficiency_$({replicator_id}){id_suffix}" ) statistical_inefficiency.bootstrap_iterations = 1 reweight_observable = reweighting.ReweightObservable( f"reweight_observable{id_suffix}" ) protocols, data_replicator = generate_base_reweighting_protocols( statistical_inefficiency, reweight_observable, replicator_id, id_suffix ) protocols.statistical_inefficiency.observable = ProtocolPath( f"observables[{observable_type.value}]", protocols.unpack_stored_data.id ) if ( observable_type != ObservableType.PotentialEnergy and observable_type != ObservableType.TotalEnergy and observable_type != ObservableType.Enthalpy and observable_type != ObservableType.ReducedPotential ): protocols.zero_gradients.input_observables = ProtocolPath( f"output_observables[{observable_type.value}]", protocols.join_observables.id, ) else: protocols.zero_gradients = None protocols.decorrelate_observable = protocols.decorrelate_target_potential protocols.reweight_observable.observable = ProtocolPath( f"output_observables[{observable_type.value}]", protocols.decorrelate_observable.id, ) return protocols, data_replicator def generate_simulation_protocols( analysis_protocol: S, use_target_uncertainty: bool, id_suffix: str = "", conditional_group: Optional[ConditionalGroup] = None, n_molecules: int = 1000, ) -> Tuple[SimulationProtocols[S], ProtocolPath, StoredSimulationData]: """Constructs a set of protocols which, when combined in a workflow schema, may be executed to run a single simulation to estimate the average value of an observable. The protocols returned will: 1) Build a set of liquid coordinates for the property substance using packmol. 2) Assign a set of smirnoff force field parameters to the system. 3) Perform an energy minimisation on the system. 4) Run a short NPT equilibration simulation for 100000 steps using a timestep of 2fs. 5) Within a conditional group (up to a maximum of 100 times): 5a) Run a longer NPT production simulation for 1000000 steps using a timestep of 2fs 5b) Extract the average value of an observable and it's uncertainty. 5c) If a convergence mode is set by the options, check if the target uncertainty has been met. If not, repeat steps 5a), 5b) and 5c). 6) Extract uncorrelated configurations from a generated production simulation. 7) Extract uncorrelated statistics from a generated production simulation. Parameters ---------- analysis_protocol The protocol which will extract the observable of interest from the generated simulation data. use_target_uncertainty Whether to run the simulation until the observable is estimated to within the target uncertainty. id_suffix: str A string suffix to append to each of the protocol ids. conditional_group: ProtocolGroup, optional A custom group to wrap the main simulation / extraction protocols within. It is up to the caller of this method to manually add the convergence conditions to this group. If `None`, a default group with uncertainty convergence conditions is automatically constructed. n_molecules: int The number of molecules to use in the workflow. Returns ------- The protocols to add to the workflow, a reference to the average value of the estimated observable (an ``Observable`` object), and an object which describes the default data from a simulation to store, such as the uncorrelated statistics and configurations. """ build_coordinates = coordinates.BuildCoordinatesPackmol( f"build_coordinates{id_suffix}" ) build_coordinates.substance = ProtocolPath("substance", "global") build_coordinates.max_molecules = n_molecules assign_parameters = forcefield.BaseBuildSystem(f"assign_parameters{id_suffix}") assign_parameters.force_field_path = ProtocolPath("force_field_path", "global") assign_parameters.coordinate_file_path = ProtocolPath( "coordinate_file_path", build_coordinates.id ) assign_parameters.substance = ProtocolPath("output_substance", build_coordinates.id) # Equilibration energy_minimisation = openmm.OpenMMEnergyMinimisation( f"energy_minimisation{id_suffix}" ) energy_minimisation.input_coordinate_file = ProtocolPath( "coordinate_file_path", build_coordinates.id ) energy_minimisation.parameterized_system = ProtocolPath( "parameterized_system", assign_parameters.id ) equilibration_simulation = openmm.OpenMMSimulation( f"equilibration_simulation{id_suffix}" ) equilibration_simulation.ensemble = Ensemble.NPT equilibration_simulation.steps_per_iteration = 100000 equilibration_simulation.output_frequency = 5000 equilibration_simulation.timestep = 2.0 * unit.femtosecond equilibration_simulation.thermodynamic_state = ProtocolPath( "thermodynamic_state", "global" ) equilibration_simulation.input_coordinate_file = ProtocolPath( "output_coordinate_file", energy_minimisation.id ) equilibration_simulation.parameterized_system = ProtocolPath( "parameterized_system", assign_parameters.id ) # Production production_simulation = openmm.OpenMMSimulation(f"production_simulation{id_suffix}") production_simulation.ensemble = Ensemble.NPT production_simulation.steps_per_iteration = 1000000 production_simulation.output_frequency = 2000 production_simulation.timestep = 2.0 * unit.femtosecond production_simulation.thermodynamic_state = ProtocolPath( "thermodynamic_state", "global" ) production_simulation.input_coordinate_file = ProtocolPath( "output_coordinate_file", equilibration_simulation.id ) production_simulation.parameterized_system = ProtocolPath( "parameterized_system", assign_parameters.id ) production_simulation.gradient_parameters = ProtocolPath( "parameter_gradient_keys", "global" ) # Set up a conditional group to ensure convergence of uncertainty if conditional_group is None: conditional_group = groups.ConditionalGroup(f"conditional_group{id_suffix}") conditional_group.max_iterations = 100 if use_target_uncertainty: condition = groups.ConditionalGroup.Condition() condition.right_hand_value = ProtocolPath("target_uncertainty", "global") condition.type = groups.ConditionalGroup.Condition.Type.LessThan condition.left_hand_value = ProtocolPath( "value.error", conditional_group.id, analysis_protocol.id ) conditional_group.add_condition(condition) # Make sure the simulation gets extended after each iteration. production_simulation.total_number_of_iterations = ProtocolPath( "current_iteration", conditional_group.id ) conditional_group.add_protocols(production_simulation, analysis_protocol) # Point the analyse protocol to the correct data sources if not isinstance(analysis_protocol, analysis.BaseAverageObservable): raise ValueError( "The analysis protocol must inherit from either the " "AverageTrajectoryObservable or BaseAverageObservable " "protocols." ) analysis_protocol.thermodynamic_state = ProtocolPath( "thermodynamic_state", "global" ) analysis_protocol.potential_energies = ProtocolPath( f"observables[{ObservableType.PotentialEnergy.value}]", production_simulation.id, ) # Finally, extract uncorrelated data time_series_statistics = ProtocolPath( "time_series_statistics", conditional_group.id, analysis_protocol.id ) coordinate_file = ProtocolPath( "output_coordinate_file", conditional_group.id, production_simulation.id ) trajectory_path = ProtocolPath( "trajectory_file_path", conditional_group.id, production_simulation.id ) observables = ProtocolPath( "observables", conditional_group.id, production_simulation.id ) decorrelate_trajectory = analysis.DecorrelateTrajectory( f"decorrelate_trajectory{id_suffix}" ) decorrelate_trajectory.time_series_statistics = time_series_statistics decorrelate_trajectory.input_coordinate_file = coordinate_file decorrelate_trajectory.input_trajectory_path = trajectory_path decorrelate_observables = analysis.DecorrelateObservables( f"decorrelate_observables{id_suffix}" ) decorrelate_observables.time_series_statistics = time_series_statistics decorrelate_observables.input_observables = observables # Build the object which defines which pieces of simulation data to store. output_to_store = StoredSimulationData() output_to_store.thermodynamic_state = ProtocolPath("thermodynamic_state", "global") output_to_store.property_phase = PropertyPhase.Liquid output_to_store.force_field_id = PlaceholderValue() output_to_store.number_of_molecules = ProtocolPath( "output_number_of_molecules", build_coordinates.id ) output_to_store.substance = ProtocolPath("output_substance", build_coordinates.id) output_to_store.statistical_inefficiency = ProtocolPath( "time_series_statistics.statistical_inefficiency", conditional_group.id, analysis_protocol.id, ) output_to_store.observables = ProtocolPath( "output_observables", decorrelate_observables.id ) output_to_store.trajectory_file_name = ProtocolPath( "output_trajectory_path", decorrelate_trajectory.id ) output_to_store.coordinate_file_name = coordinate_file output_to_store.source_calculation_id = PlaceholderValue() # Define where the final values come from. final_value_source = ProtocolPath( "value", conditional_group.id, analysis_protocol.id ) base_protocols = SimulationProtocols( build_coordinates, assign_parameters, energy_minimisation, equilibration_simulation, production_simulation, analysis_protocol, conditional_group, decorrelate_trajectory, decorrelate_observables, ) return base_protocols, final_value_source, output_to_store
[ "openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies", "openff.evaluator.protocols.analysis.AverageObservable", "openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol", "openff.evaluator.protocols.groups.ConditionalGroup", "openff.evaluator.protocols.miscellaneous.DummyProtocol", "dataclasses.astuple", "openff.evaluator.storage.data.StoredSimulationData", "openff.evaluator.protocols.reweighting.ConcatenateObservables", "openff.evaluator.protocols.gradients.ZeroGradients", "openff.evaluator.protocols.forcefield.BaseBuildSystem", "openff.evaluator.workflow.utils.ProtocolPath", "openff.evaluator.protocols.groups.ConditionalGroup.Condition", "openff.evaluator.protocols.analysis.DecorrelateObservables", "openff.evaluator.protocols.analysis.DecorrelateTrajectory", "typing.TypeVar", "openff.evaluator.attributes.PlaceholderValue", "openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation", "openff.evaluator.protocols.reweighting.ReweightObservable", "openff.evaluator.protocols.reweighting.ConcatenateTrajectories", "openff.evaluator.workflow.utils.ReplicatorValue", "openff.evaluator.protocols.openmm.OpenMMSimulation", "openff.evaluator.workflow.schemas.ProtocolReplicator" ]
[((928, 978), 'typing.TypeVar', 'TypeVar', (['"""S"""'], {'bound': 'analysis.BaseAverageObservable'}), "('S', bound=analysis.BaseAverageObservable)\n", (935, 978), False, 'from typing import Generic, Optional, Tuple, TypeVar\n'), ((983, 1031), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {'bound': 'reweighting.BaseMBARProtocol'}), "('T', bound=reweighting.BaseMBARProtocol)\n", (990, 1031), False, 'from typing import Generic, Optional, Tuple, TypeVar\n'), ((4246, 4293), 'openff.evaluator.workflow.schemas.ProtocolReplicator', 'ProtocolReplicator', ([], {'replicator_id': 'replicator_id'}), '(replicator_id=replicator_id)\n', (4264, 4293), False, 'from openff.evaluator.workflow.schemas import ProtocolReplicator\n'), ((4332, 4374), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""full_system_data"""', '"""global"""'], {}), "('full_system_data', 'global')\n", (4344, 4374), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((4907, 4937), 'openff.evaluator.workflow.utils.ReplicatorValue', 'ReplicatorValue', (['replicator_id'], {}), '(replicator_id)\n', (4922, 4937), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((5012, 5080), 'openff.evaluator.protocols.reweighting.ConcatenateTrajectories', 'reweighting.ConcatenateTrajectories', (['f"""join_trajectories{id_suffix}"""'], {}), "(f'join_trajectories{id_suffix}')\n", (5047, 5080), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((5142, 5201), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""coordinate_file_path"""', 'unpack_stored_data.id'], {}), "('coordinate_file_path', unpack_stored_data.id)\n", (5154, 5201), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((5263, 5322), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""trajectory_file_path"""', 'unpack_stored_data.id'], {}), "('trajectory_file_path', unpack_stored_data.id)\n", (5275, 5322), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((5360, 5426), 'openff.evaluator.protocols.reweighting.ConcatenateObservables', 'reweighting.ConcatenateObservables', (['f"""join_observables{id_suffix}"""'], {}), "(f'join_observables{id_suffix}')\n", (5394, 5426), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((5482, 5532), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""observables"""', 'unpack_stored_data.id'], {}), "('observables', unpack_stored_data.id)\n", (5494, 5532), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((5650, 5712), 'openff.evaluator.protocols.forcefield.BaseBuildSystem', 'forcefield.BaseBuildSystem', (['f"""build_system{replicator_suffix}"""'], {}), "(f'build_system{replicator_suffix}')\n", (5676, 5712), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((5773, 5828), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""force_field_path"""', 'unpack_stored_data.id'], {}), "('force_field_path', unpack_stored_data.id)\n", (5785, 5828), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((5893, 5952), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""coordinate_file_path"""', 'unpack_stored_data.id'], {}), "('coordinate_file_path', unpack_stored_data.id)\n", (5905, 5952), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((6006, 6054), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""substance"""', 'unpack_stored_data.id'], {}), "('substance', unpack_stored_data.id)\n", (6018, 6054), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((6090, 6160), 'openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies', 'openmm.OpenMMEvaluateEnergies', (['f"""reduced_potential{replicator_suffix}"""'], {}), "(f'reduced_potential{replicator_suffix}')\n", (6119, 6160), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((6230, 6293), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""parameterized_system"""', 'build_reference_system.id'], {}), "('parameterized_system', build_reference_system.id)\n", (6242, 6293), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((6362, 6420), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""thermodynamic_state"""', 'unpack_stored_data.id'], {}), "('thermodynamic_state', unpack_stored_data.id)\n", (6374, 6420), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((6490, 6549), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""coordinate_file_path"""', 'unpack_stored_data.id'], {}), "('coordinate_file_path', unpack_stored_data.id)\n", (6502, 6549), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((6619, 6679), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_trajectory_path"""', 'join_trajectories.id'], {}), "('output_trajectory_path', join_trajectories.id)\n", (6631, 6679), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((6780, 6841), 'openff.evaluator.protocols.forcefield.BaseBuildSystem', 'forcefield.BaseBuildSystem', (['f"""build_system_target{id_suffix}"""'], {}), "(f'build_system_target{id_suffix}')\n", (6806, 6841), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((6885, 6927), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""force_field_path"""', '"""global"""'], {}), "('force_field_path', 'global')\n", (6897, 6927), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((6964, 6999), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""substance"""', '"""global"""'], {}), "('substance', 'global')\n", (6976, 6999), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((7047, 7107), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_coordinate_path"""', 'join_trajectories.id'], {}), "('output_coordinate_path', join_trajectories.id)\n", (7059, 7107), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((7154, 7223), 'openff.evaluator.protocols.openmm.OpenMMEvaluateEnergies', 'openmm.OpenMMEvaluateEnergies', (['f"""reduced_potential_target{id_suffix}"""'], {}), "(f'reduced_potential_target{id_suffix}')\n", (7183, 7223), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((7289, 7334), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""thermodynamic_state"""', '"""global"""'], {}), "('thermodynamic_state', 'global')\n", (7301, 7334), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((7401, 7461), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""parameterized_system"""', 'build_target_system.id'], {}), "('parameterized_system', build_target_system.id)\n", (7413, 7461), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((7528, 7588), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_coordinate_path"""', 'join_trajectories.id'], {}), "('output_coordinate_path', join_trajectories.id)\n", (7540, 7588), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((7655, 7715), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_trajectory_path"""', 'join_trajectories.id'], {}), "('output_trajectory_path', join_trajectories.id)\n", (7667, 7715), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((7781, 7830), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""parameter_gradient_keys"""', '"""global"""'], {}), "('parameter_gradient_keys', 'global')\n", (7793, 7830), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((7907, 7960), 'openff.evaluator.protocols.gradients.ZeroGradients', 'gradients.ZeroGradients', (['f"""zero_gradients{id_suffix}"""'], {}), "(f'zero_gradients{id_suffix}')\n", (7930, 7960), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((7999, 8041), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""force_field_path"""', '"""global"""'], {}), "('force_field_path', 'global')\n", (8011, 8041), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((8083, 8132), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""parameter_gradient_keys"""', '"""global"""'], {}), "('parameter_gradient_keys', 'global')\n", (8095, 8132), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((8358, 8433), 'openff.evaluator.protocols.analysis.DecorrelateObservables', 'analysis.DecorrelateObservables', (['f"""decorrelate_target_potential{id_suffix}"""'], {}), "(f'decorrelate_target_potential{id_suffix}')\n", (8389, 8433), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((8506, 8573), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""time_series_statistics"""', 'statistical_inefficiency.id'], {}), "('time_series_statistics', statistical_inefficiency.id)\n", (8518, 8573), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((8641, 8704), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_observables"""', 'reduced_target_potential.id'], {}), "('output_observables', reduced_target_potential.id)\n", (8653, 8704), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((8749, 8818), 'openff.evaluator.protocols.analysis.DecorrelateObservables', 'analysis.DecorrelateObservables', (['f"""decorrelate_observable{id_suffix}"""'], {}), "(f'decorrelate_observable{id_suffix}')\n", (8780, 8818), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((8885, 8952), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""time_series_statistics"""', 'statistical_inefficiency.id'], {}), "('time_series_statistics', statistical_inefficiency.id)\n", (8897, 8952), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((9014, 9067), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_observables"""', 'zero_gradients.id'], {}), "('output_observables', zero_gradients.id)\n", (9026, 9067), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((9827, 9891), 'openff.evaluator.protocols.miscellaneous.DummyProtocol', 'miscellaneous.DummyProtocol', (['f"""replicated_statistics{id_suffix}"""'], {}), "(f'replicated_statistics{id_suffix}')\n", (9854, 9891), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((9945, 10012), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""time_series_statistics"""', 'statistical_inefficiency.id'], {}), "('time_series_statistics', statistical_inefficiency.id)\n", (9957, 10012), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((10066, 10157), 'openff.evaluator.protocols.analysis.DecorrelateObservables', 'analysis.DecorrelateObservables', (['f"""decorrelate_reference_potential{replicator_suffix}"""'], {}), "(\n f'decorrelate_reference_potential{replicator_suffix}')\n", (10097, 10157), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((10228, 10281), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_value"""', 'replicate_statistics.id'], {}), "('output_value', replicate_statistics.id)\n", (10240, 10281), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((10352, 10418), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_observables"""', 'reduced_reference_potential.id'], {}), "('output_observables', reduced_reference_potential.id)\n", (10364, 10418), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((10544, 10636), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_observables[ReducedPotential]"""', 'decorrelate_reference_potential.id'], {}), "('output_observables[ReducedPotential]',\n decorrelate_reference_potential.id)\n", (10556, 10636), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((10699, 10788), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_observables[ReducedPotential]"""', 'decorrelate_target_potential.id'], {}), "('output_observables[ReducedPotential]',\n decorrelate_target_potential.id)\n", (10711, 10788), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((10836, 10897), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_observables"""', 'decorrelate_observable.id'], {}), "('output_observables', decorrelate_observable.id)\n", (10848, 10897), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((10951, 11044), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""time_series_statistics.n_uncorrelated_points"""', 'statistical_inefficiency.id'], {}), "('time_series_statistics.n_uncorrelated_points',\n statistical_inefficiency.id)\n", (10963, 11044), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((12101, 12190), 'openff.evaluator.protocols.analysis.AverageObservable', 'analysis.AverageObservable', (['f"""observable_inefficiency_$({replicator_id}){id_suffix}"""'], {}), "(\n f'observable_inefficiency_$({replicator_id}){id_suffix}')\n", (12127, 12190), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((12281, 12346), 'openff.evaluator.protocols.reweighting.ReweightObservable', 'reweighting.ReweightObservable', (['f"""reweight_observable{id_suffix}"""'], {}), "(f'reweight_observable{id_suffix}')\n", (12311, 12346), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((12570, 12661), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['f"""observables[{observable_type.value}]"""', 'protocols.unpack_stored_data.id'], {}), "(f'observables[{observable_type.value}]', protocols.\n unpack_stored_data.id)\n", (12582, 12661), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((16089, 16157), 'openff.evaluator.protocols.coordinates.BuildCoordinatesPackmol', 'coordinates.BuildCoordinatesPackmol', (['f"""build_coordinates{id_suffix}"""'], {}), "(f'build_coordinates{id_suffix}')\n", (16124, 16157), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((16206, 16241), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""substance"""', '"""global"""'], {}), "('substance', 'global')\n", (16218, 16241), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((16317, 16376), 'openff.evaluator.protocols.forcefield.BaseBuildSystem', 'forcefield.BaseBuildSystem', (['f"""assign_parameters{id_suffix}"""'], {}), "(f'assign_parameters{id_suffix}')\n", (16343, 16376), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((16418, 16460), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""force_field_path"""', '"""global"""'], {}), "('force_field_path', 'global')\n", (16430, 16460), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((16506, 16564), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""coordinate_file_path"""', 'build_coordinates.id'], {}), "('coordinate_file_path', build_coordinates.id)\n", (16518, 16564), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((16613, 16667), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_substance"""', 'build_coordinates.id'], {}), "('output_substance', build_coordinates.id)\n", (16625, 16667), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((16715, 16781), 'openff.evaluator.protocols.openmm.OpenMMEnergyMinimisation', 'openmm.OpenMMEnergyMinimisation', (['f"""energy_minimisation{id_suffix}"""'], {}), "(f'energy_minimisation{id_suffix}')\n", (16746, 16781), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((16844, 16902), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""coordinate_file_path"""', 'build_coordinates.id'], {}), "('coordinate_file_path', build_coordinates.id)\n", (16856, 16902), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((16964, 17022), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""parameterized_system"""', 'assign_parameters.id'], {}), "('parameterized_system', assign_parameters.id)\n", (16976, 17022), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((17069, 17132), 'openff.evaluator.protocols.openmm.OpenMMSimulation', 'openmm.OpenMMSimulation', (['f"""equilibration_simulation{id_suffix}"""'], {}), "(f'equilibration_simulation{id_suffix}')\n", (17092, 17132), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((17425, 17470), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""thermodynamic_state"""', '"""global"""'], {}), "('thermodynamic_state', 'global')\n", (17437, 17470), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((17538, 17600), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_coordinate_file"""', 'energy_minimisation.id'], {}), "('output_coordinate_file', energy_minimisation.id)\n", (17550, 17600), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((17667, 17725), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""parameterized_system"""', 'assign_parameters.id'], {}), "('parameterized_system', assign_parameters.id)\n", (17679, 17725), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((17786, 17846), 'openff.evaluator.protocols.openmm.OpenMMSimulation', 'openmm.OpenMMSimulation', (['f"""production_simulation{id_suffix}"""'], {}), "(f'production_simulation{id_suffix}')\n", (17809, 17846), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((18111, 18156), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""thermodynamic_state"""', '"""global"""'], {}), "('thermodynamic_state', 'global')\n", (18123, 18156), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((18221, 18288), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_coordinate_file"""', 'equilibration_simulation.id'], {}), "('output_coordinate_file', equilibration_simulation.id)\n", (18233, 18288), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((18352, 18410), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""parameterized_system"""', 'assign_parameters.id'], {}), "('parameterized_system', assign_parameters.id)\n", (18364, 18410), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((18473, 18522), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""parameter_gradient_keys"""', '"""global"""'], {}), "('parameter_gradient_keys', 'global')\n", (18485, 18522), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((19914, 19959), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""thermodynamic_state"""', '"""global"""'], {}), "('thermodynamic_state', 'global')\n", (19926, 19959), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((20017, 20115), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['f"""observables[{ObservableType.PotentialEnergy.value}]"""', 'production_simulation.id'], {}), "(f'observables[{ObservableType.PotentialEnergy.value}]',\n production_simulation.id)\n", (20029, 20115), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((20206, 20292), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""time_series_statistics"""', 'conditional_group.id', 'analysis_protocol.id'], {}), "('time_series_statistics', conditional_group.id,\n analysis_protocol.id)\n", (20218, 20292), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((20325, 20415), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_coordinate_file"""', 'conditional_group.id', 'production_simulation.id'], {}), "('output_coordinate_file', conditional_group.id,\n production_simulation.id)\n", (20337, 20415), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((20448, 20536), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""trajectory_file_path"""', 'conditional_group.id', 'production_simulation.id'], {}), "('trajectory_file_path', conditional_group.id,\n production_simulation.id)\n", (20460, 20536), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((20565, 20640), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""observables"""', 'conditional_group.id', 'production_simulation.id'], {}), "('observables', conditional_group.id, production_simulation.id)\n", (20577, 20640), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((20685, 20753), 'openff.evaluator.protocols.analysis.DecorrelateTrajectory', 'analysis.DecorrelateTrajectory', (['f"""decorrelate_trajectory{id_suffix}"""'], {}), "(f'decorrelate_trajectory{id_suffix}')\n", (20715, 20753), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((21008, 21078), 'openff.evaluator.protocols.analysis.DecorrelateObservables', 'analysis.DecorrelateObservables', (['f"""decorrelate_observables{id_suffix}"""'], {}), "(f'decorrelate_observables{id_suffix}')\n", (21039, 21078), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((21331, 21353), 'openff.evaluator.storage.data.StoredSimulationData', 'StoredSimulationData', ([], {}), '()\n', (21351, 21353), False, 'from openff.evaluator.storage.data import StoredSimulationData\n'), ((21397, 21442), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""thermodynamic_state"""', '"""global"""'], {}), "('thermodynamic_state', 'global')\n", (21409, 21442), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((21539, 21557), 'openff.evaluator.attributes.PlaceholderValue', 'PlaceholderValue', ([], {}), '()\n', (21555, 21557), False, 'from openff.evaluator.attributes import PlaceholderValue\n'), ((21601, 21665), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_number_of_molecules"""', 'build_coordinates.id'], {}), "('output_number_of_molecules', build_coordinates.id)\n", (21613, 21665), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((21712, 21766), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_substance"""', 'build_coordinates.id'], {}), "('output_substance', build_coordinates.id)\n", (21724, 21766), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((21814, 21925), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""time_series_statistics.statistical_inefficiency"""', 'conditional_group.id', 'analysis_protocol.id'], {}), "('time_series_statistics.statistical_inefficiency',\n conditional_group.id, analysis_protocol.id)\n", (21826, 21925), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((21987, 22049), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_observables"""', 'decorrelate_observables.id'], {}), "('output_observables', decorrelate_observables.id)\n", (21999, 22049), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((22107, 22172), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""output_trajectory_path"""', 'decorrelate_trajectory.id'], {}), "('output_trajectory_path', decorrelate_trajectory.id)\n", (22119, 22172), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((22291, 22309), 'openff.evaluator.attributes.PlaceholderValue', 'PlaceholderValue', ([], {}), '()\n', (22307, 22309), False, 'from openff.evaluator.attributes import PlaceholderValue\n'), ((22383, 22448), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""value"""', 'conditional_group.id', 'analysis_protocol.id'], {}), "('value', conditional_group.id, analysis_protocol.id)\n", (22395, 22448), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((12976, 13072), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['f"""output_observables[{observable_type.value}]"""', 'protocols.join_observables.id'], {}), "(f'output_observables[{observable_type.value}]', protocols.\n join_observables.id)\n", (12988, 13072), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((13288, 13390), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['f"""output_observables[{observable_type.value}]"""', 'protocols.decorrelate_observable.id'], {}), "(f'output_observables[{observable_type.value}]', protocols.\n decorrelate_observable.id)\n", (13300, 13390), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((18671, 18727), 'openff.evaluator.protocols.groups.ConditionalGroup', 'groups.ConditionalGroup', (['f"""conditional_group{id_suffix}"""'], {}), "(f'conditional_group{id_suffix}')\n", (18694, 18727), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((1715, 1728), 'dataclasses.astuple', 'astuple', (['self'], {}), '(self)\n', (1722, 1728), False, 'from dataclasses import astuple, dataclass\n'), ((2734, 2747), 'dataclasses.astuple', 'astuple', (['self'], {}), '(self)\n', (2741, 2747), False, 'from dataclasses import astuple, dataclass\n'), ((18836, 18871), 'openff.evaluator.protocols.groups.ConditionalGroup.Condition', 'groups.ConditionalGroup.Condition', ([], {}), '()\n', (18869, 18871), False, 'from openff.evaluator.protocols import analysis, coordinates, forcefield, gradients, groups, miscellaneous, openmm, reweighting, storage\n'), ((18913, 18957), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""target_uncertainty"""', '"""global"""'], {}), "('target_uncertainty', 'global')\n", (18925, 18957), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((19075, 19146), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""value.error"""', 'conditional_group.id', 'analysis_protocol.id'], {}), "('value.error', conditional_group.id, analysis_protocol.id)\n", (19087, 19146), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n'), ((19372, 19427), 'openff.evaluator.workflow.utils.ProtocolPath', 'ProtocolPath', (['"""current_iteration"""', 'conditional_group.id'], {}), "('current_iteration', conditional_group.id)\n", (19384, 19427), False, 'from openff.evaluator.workflow.utils import ProtocolPath, ReplicatorValue\n')]
from django.contrib.auth import get_user_model from django.test import TestCase, override_settings from django.urls import reverse from rest_framework import status from rest_framework.test import APIClient TASK_URL = reverse('todo:task-list') def sample_get_request(client): return client.get(TASK_URL) def sample_post_request(client): payload = {'title': 'Middleware POST test'} return client.post(TASK_URL, payload) class MiddlewareResponseTests(TestCase): """Tests the custom middleware""" def setUp(self): self.user = get_user_model().objects.create( email="<EMAIL>", password="<PASSWORD>") self.client = APIClient() self.client.force_authenticate(self.user) @override_settings(MAINTENANCE_MODE=True) def test_maintenance_mode_ON(self): """ Tests the response for all allowed methods when on maintenance mode enabled """ # Test GET method self.assertEqual(sample_get_request(self.client).status_code, status.HTTP_503_SERVICE_UNAVAILABLE) # Test POST method self.assertEqual(sample_post_request(self.client).status_code, status.HTTP_503_SERVICE_UNAVAILABLE) @override_settings(MAINTENANCE_MODE=False) def test_maintenance_mode_OFF(self): """ Test the response for all allowed methods when maintenance mode disabled """ # Test Get method self.assertEqual(sample_get_request(self.client).status_code, status.HTTP_200_OK) # Test POST method self.assertEqual(sample_post_request(self.client).status_code, status.HTTP_201_CREATED)
[ "django.urls.reverse", "rest_framework.test.APIClient", "django.test.override_settings", "django.contrib.auth.get_user_model" ]
[((222, 247), 'django.urls.reverse', 'reverse', (['"""todo:task-list"""'], {}), "('todo:task-list')\n", (229, 247), False, 'from django.urls import reverse\n'), ((749, 789), 'django.test.override_settings', 'override_settings', ([], {'MAINTENANCE_MODE': '(True)'}), '(MAINTENANCE_MODE=True)\n', (766, 789), False, 'from django.test import TestCase, override_settings\n'), ((1271, 1312), 'django.test.override_settings', 'override_settings', ([], {'MAINTENANCE_MODE': '(False)'}), '(MAINTENANCE_MODE=False)\n', (1288, 1312), False, 'from django.test import TestCase, override_settings\n'), ((681, 692), 'rest_framework.test.APIClient', 'APIClient', ([], {}), '()\n', (690, 692), False, 'from rest_framework.test import APIClient\n'), ((562, 578), 'django.contrib.auth.get_user_model', 'get_user_model', ([], {}), '()\n', (576, 578), False, 'from django.contrib.auth import get_user_model\n')]
from django.test import TestCase from mock import patch from cryton.lib.util import exceptions, logger from cryton.lib.models import session from cryton.cryton_rest_api.models import ( SessionModel, PlanExecutionModel, StepModel ) import os from model_bakery import baker TESTS_DIR = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) @patch('cryton.lib.util.logger.logger', logger.structlog.getLogger('cryton-debug')) class TestSession(TestCase): def setUp(self) -> None: self.plan_exec_obj = baker.make(PlanExecutionModel) self.named_session_obj = SessionModel.objects.create(plan_execution=self.plan_exec_obj, session_id='42', session_name='test-session', session_type=SessionModel.MSF_SHELL_TYPE ) self.step_model = baker.make(StepModel) pass def test_create_session(self): # Wrong plan execution ID with self.assertRaises(exceptions.PlanExecutionDoesNotExist): session.create_session(0, '0', 'test') sess_obj = session.create_session(self.plan_exec_obj.id, '0', 'test', SessionModel.MSF_SHELL_TYPE) self.assertEqual(sess_obj.session_name, 'test') self.assertEqual(sess_obj.session_type, SessionModel.MSF_SHELL_TYPE) def test_get_msf_session_id(self): session_id = session.get_msf_session_id('test-session', self.plan_exec_obj.id) self.assertEqual(session_id, '42') def test_get_msf_session_id_ex(self): with self.assertRaises(exceptions.SessionObjectDoesNotExist): session.get_msf_session_id('non-existent-session', self.plan_exec_obj.id) def test_set_msf_session_id(self): session.set_msf_session_id('test-session', '666', self.plan_exec_obj.id) self.assertEqual(session.get_msf_session_id('test-session', self.plan_exec_obj.id), '666') with self.assertRaises(exceptions.SessionObjectDoesNotExist): session.set_msf_session_id('test-session', '666', 666) # @patch('cryton.lib.session.get_session_ids') # def test_get_session_ids(self, mock_get_sess): # mock_stub = Mock() # mock_stub.sessions_list().sess_list = '["1", "2"]' # # self.step_model.use_any_session_to_target = '1.2.3.4' # session_list = session.get_session_ids('1.2.3.4', self.plan_exec_obj.id) # # self.assertEqual('2', session_list[-1])
[ "cryton.lib.models.session.create_session", "cryton.cryton_rest_api.models.SessionModel.objects.create", "os.path.realpath", "model_bakery.baker.make", "cryton.lib.models.session.get_msf_session_id", "cryton.lib.util.logger.structlog.getLogger", "cryton.lib.models.session.set_msf_session_id" ]
[((402, 444), 'cryton.lib.util.logger.structlog.getLogger', 'logger.structlog.getLogger', (['"""cryton-debug"""'], {}), "('cryton-debug')\n", (428, 444), False, 'from cryton.lib.util import exceptions, logger\n'), ((331, 357), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (347, 357), False, 'import os\n'), ((535, 565), 'model_bakery.baker.make', 'baker.make', (['PlanExecutionModel'], {}), '(PlanExecutionModel)\n', (545, 565), False, 'from model_bakery import baker\n'), ((599, 759), 'cryton.cryton_rest_api.models.SessionModel.objects.create', 'SessionModel.objects.create', ([], {'plan_execution': 'self.plan_exec_obj', 'session_id': '"""42"""', 'session_name': '"""test-session"""', 'session_type': 'SessionModel.MSF_SHELL_TYPE'}), "(plan_execution=self.plan_exec_obj, session_id=\n '42', session_name='test-session', session_type=SessionModel.MSF_SHELL_TYPE\n )\n", (626, 759), False, 'from cryton.cryton_rest_api.models import SessionModel, PlanExecutionModel, StepModel\n'), ((1021, 1042), 'model_bakery.baker.make', 'baker.make', (['StepModel'], {}), '(StepModel)\n', (1031, 1042), False, 'from model_bakery import baker\n'), ((1268, 1360), 'cryton.lib.models.session.create_session', 'session.create_session', (['self.plan_exec_obj.id', '"""0"""', '"""test"""', 'SessionModel.MSF_SHELL_TYPE'], {}), "(self.plan_exec_obj.id, '0', 'test', SessionModel.\n MSF_SHELL_TYPE)\n", (1290, 1360), False, 'from cryton.lib.models import session\n'), ((1552, 1617), 'cryton.lib.models.session.get_msf_session_id', 'session.get_msf_session_id', (['"""test-session"""', 'self.plan_exec_obj.id'], {}), "('test-session', self.plan_exec_obj.id)\n", (1578, 1617), False, 'from cryton.lib.models import session\n'), ((1910, 1982), 'cryton.lib.models.session.set_msf_session_id', 'session.set_msf_session_id', (['"""test-session"""', '"""666"""', 'self.plan_exec_obj.id'], {}), "('test-session', '666', self.plan_exec_obj.id)\n", (1936, 1982), False, 'from cryton.lib.models import session\n'), ((1209, 1247), 'cryton.lib.models.session.create_session', 'session.create_session', (['(0)', '"""0"""', '"""test"""'], {}), "(0, '0', 'test')\n", (1231, 1247), False, 'from cryton.lib.models import session\n'), ((1787, 1860), 'cryton.lib.models.session.get_msf_session_id', 'session.get_msf_session_id', (['"""non-existent-session"""', 'self.plan_exec_obj.id'], {}), "('non-existent-session', self.plan_exec_obj.id)\n", (1813, 1860), False, 'from cryton.lib.models import session\n'), ((2008, 2073), 'cryton.lib.models.session.get_msf_session_id', 'session.get_msf_session_id', (['"""test-session"""', 'self.plan_exec_obj.id'], {}), "('test-session', self.plan_exec_obj.id)\n", (2034, 2073), False, 'from cryton.lib.models import session\n'), ((2165, 2219), 'cryton.lib.models.session.set_msf_session_id', 'session.set_msf_session_id', (['"""test-session"""', '"""666"""', '(666)'], {}), "('test-session', '666', 666)\n", (2191, 2219), False, 'from cryton.lib.models import session\n')]
# -*- coding: utf-8 -*- ################################################################# # File : napari_browser_adv.py # Version : 0.0.1 # Author : czsrh # Date : 18.11.2020 # Institution : Carl Zeiss Microscopy GmbH # # Copyright (c) 2020 <NAME>, Germany. All Rights Reserved. ################################################################# from PyQt5.QtWidgets import ( # QPushButton, # QComboBox, QHBoxLayout, QFileDialog, QDialogButtonBox, QWidget, QTableWidget, QTableWidgetItem, QCheckBox, # QDockWidget, # QSlider, ) from PyQt5.QtCore import Qt from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtGui import QFont import napari import numpy as np # from czitools import imgfileutils as imf import imgfileutils as imf from aicsimageio import AICSImage import dask.array as da import os from pathlib import Path def show_image_napari(array, metadata, blending='additive', gamma=0.75, rename_sliders=False): """Show the multidimensional array using the Napari viewer :param array: multidimensional NumPy.Array containing the pixeldata :type array: NumPy.Array :param metadata: dictionary with CZI or OME-TIFF metadata :type metadata: dict :param blending: NapariViewer option for blending, defaults to 'additive' :type blending: str, optional :param gamma: NapariViewer value for Gamma, defaults to 0.85 :type gamma: float, optional :param verbose: show additional output, defaults to True :type verbose: bool, optional :param rename_sliders: name slider with correct labels output, defaults to False :type verbose: bool, optional """ # create scalefcator with all ones scalefactors = [1.0] * len(array.shape) dimpos = imf.get_dimpositions(metadata['Axes_aics']) # get the scalefactors from the metadata scalef = imf.get_scalefactor(metadata) # modify the tuple for the scales for napari scalefactors[dimpos['Z']] = scalef['zx'] # remove C dimension from scalefactor scalefactors_ch = scalefactors.copy() del scalefactors_ch[dimpos['C']] if metadata['SizeC'] > 1: # add all channels as layers for ch in range(metadata['SizeC']): try: # get the channel name chname = metadata['Channels'][ch] except KeyError as e: print(e) # or use CH1 etc. as string for the name chname = 'CH' + str(ch + 1) # cut out channel # use dask if array is a dask.array if isinstance(array, da.Array): print('Extract Channel using Dask.Array') channel = array.compute().take(ch, axis=dimpos['C']) else: # use normal numpy if not print('Extract Channel NumPy.Array') channel = array.take(ch, axis=dimpos['C']) # actually show the image array print('Adding Channel : ', chname) print('Shape Channel : ', ch, channel.shape) print('Scaling Factors : ', scalefactors_ch) # get min-max values for initial scaling clim = imf.calc_scaling(channel, corr_min=1.0, offset_min=0, corr_max=0.85, offset_max=0) # add channel to napari viewer viewer.add_image(channel, name=chname, scale=scalefactors_ch, contrast_limits=clim, blending=blending, gamma=gamma) if metadata['SizeC'] == 1: # just add one channel as a layer try: # get the channel name chname = metadata['Channels'][0] except KeyError: # or use CH1 etc. as string for the name chname = 'CH' + str(ch + 1) # actually show the image array print('Adding Channel: ', chname) print('Scaling Factors: ', scalefactors) # use dask if array is a dask.array if isinstance(array, da.Array): print('Extract Channel using Dask.Array') array = array.compute() # get min-max values for initial scaling clim = imf.calc_scaling(array) viewer.add_image(array, name=chname, scale=scalefactors, contrast_limits=clim, blending=blending, gamma=gamma) if rename_sliders: print('Renaming the Sliders based on the Dimension String ....') if metadata['SizeC'] == 1: # get the position of dimension entries after removing C dimension dimpos_viewer = imf.get_dimpositions(metadata['Axes_aics']) # get the label of the sliders sliders = viewer.dims.axis_labels # update the labels with the correct dimension strings slidernames = ['B', 'S', 'T', 'Z', 'C'] if metadata['SizeC'] > 1: new_dimstring = metadata['Axes_aics'].replace('C', '') # get the position of dimension entries after removing C dimension dimpos_viewer = imf.get_dimpositions(new_dimstring) # get the label of the sliders sliders = viewer.dims.axis_labels # update the labels with the correct dimension strings slidernames = ['B', 'S', 'T', 'Z'] for s in slidernames: if dimpos_viewer[s] >= 0: sliders[dimpos_viewer[s]] = s # apply the new labels to the viewer viewer.dims.axis_labels = sliders class CheckBoxWidget(QWidget): def __init__(self): super(QWidget, self).__init__() self.layout = QHBoxLayout(self) self.cbox = QCheckBox("Use Dask Delayed ImageReader", self) self.layout.addWidget(self.cbox) self.cbox.setChecked(True) # adjust font fnt = QFont() fnt.setPointSize(12) fnt.setBold(True) fnt.setFamily("Arial") self.cbox.setFont(fnt) class TableWidget(QWidget): # def __init__(self, md): def __init__(self): super(QWidget, self).__init__() self.layout = QHBoxLayout(self) self.mdtable = QTableWidget() self.layout.addWidget(self.mdtable) self.mdtable.setShowGrid(True) self.mdtable.setHorizontalHeaderLabels(['Parameter', 'Value']) header = self.mdtable.horizontalHeader() header.setDefaultAlignment(Qt.AlignLeft) def update_metadata(self, md): row_count = len(md) col_count = 2 self.mdtable.setColumnCount(col_count) self.mdtable.setRowCount(row_count) row = 0 for key, value in md.items(): newkey = QTableWidgetItem(key) self.mdtable.setItem(row, 0, newkey) newvalue = QTableWidgetItem(str(value)) self.mdtable.setItem(row, 1, newvalue) row += 1 # fit columns to content self.mdtable.resizeColumnsToContents() def update_style(self): fnt = QFont() fnt.setPointSize(11) fnt.setBold(True) fnt.setFamily("Arial") item1 = QtWidgets.QTableWidgetItem('Parameter') item1.setForeground(QtGui.QColor(25, 25, 25)) item1.setFont(fnt) self.mdtable.setHorizontalHeaderItem(0, item1) item2 = QtWidgets.QTableWidgetItem('Value') item2.setForeground(QtGui.QColor(25, 25, 25)) item2.setFont(fnt) self.mdtable.setHorizontalHeaderItem(1, item2) class Open_files(QWidget): def __init__(self): super(QWidget, self).__init__() self.layout = QHBoxLayout(self) self.file_dialog = QFileDialog() self.file_dialog.setWindowFlags(Qt.Widget) self.file_dialog.setModal(False) self.file_dialog.setOption(QFileDialog.DontUseNativeDialog) # Remove open and cancel button from widget self.buttonBox = self.file_dialog.findChild(QDialogButtonBox, "buttonBox") self.buttonBox.clear() # Only open following file types self.file_dialog.setNameFilter("Images (*.czi *.ome.tiff *ome.tif *.tiff *.tif)") self.layout.addWidget(self.file_dialog) self.file_dialog.currentChanged.connect(self.open_path) def open_path(self, path): if os.path.isfile(path): # remove exitings layers from napari viewer.layers.select_all() viewer.layers.remove_selected() # get the metadata md, addmd = imf.get_metadata(path) # add the metadata and adapt the table display mdbrowser.update_metadata(md) mdbrowser.update_style() use_dask = checkbox.cbox.isChecked() print('Use Dask : ', use_dask) # get AICSImageIO object img = AICSImage(path) if use_dask: stack = img.dask_data if not use_dask: stack = img.get_image_data() # add the image stack to the napari viewer show_image_napari(stack, md, blending='additive', gamma=0.85, rename_sliders=True) # start the main application with napari.gui_qt(): filebrowser = Open_files() mdbrowser = TableWidget() checkbox = CheckBoxWidget() # create a viewer viewer = napari.Viewer() # add widgets viewer.window.add_dock_widget(filebrowser, name='filebrowser', area='right') viewer.window.add_dock_widget(checkbox, name='checkbox', area='right') viewer.window.add_dock_widget(mdbrowser, name='mdbrowser', area='right')
[ "imgfileutils.calc_scaling", "PyQt5.QtWidgets.QTableWidget", "PyQt5.QtGui.QColor", "imgfileutils.get_metadata", "napari.gui_qt", "PyQt5.QtWidgets.QHBoxLayout", "PyQt5.QtWidgets.QCheckBox", "PyQt5.QtGui.QFont", "aicsimageio.AICSImage", "os.path.isfile", "imgfileutils.get_scalefactor", "imgfileutils.get_dimpositions", "PyQt5.QtWidgets.QTableWidgetItem", "napari.Viewer", "PyQt5.QtWidgets.QFileDialog" ]
[((1840, 1883), 'imgfileutils.get_dimpositions', 'imf.get_dimpositions', (["metadata['Axes_aics']"], {}), "(metadata['Axes_aics'])\n", (1860, 1883), True, 'import imgfileutils as imf\n'), ((1943, 1972), 'imgfileutils.get_scalefactor', 'imf.get_scalefactor', (['metadata'], {}), '(metadata)\n', (1962, 1972), True, 'import imgfileutils as imf\n'), ((9587, 9602), 'napari.gui_qt', 'napari.gui_qt', ([], {}), '()\n', (9600, 9602), False, 'import napari\n'), ((9734, 9749), 'napari.Viewer', 'napari.Viewer', ([], {}), '()\n', (9747, 9749), False, 'import napari\n'), ((4476, 4499), 'imgfileutils.calc_scaling', 'imf.calc_scaling', (['array'], {}), '(array)\n', (4492, 4499), True, 'import imgfileutils as imf\n'), ((6016, 6033), 'PyQt5.QtWidgets.QHBoxLayout', 'QHBoxLayout', (['self'], {}), '(self)\n', (6027, 6033), False, 'from PyQt5.QtWidgets import QHBoxLayout, QFileDialog, QDialogButtonBox, QWidget, QTableWidget, QTableWidgetItem, QCheckBox\n'), ((6054, 6101), 'PyQt5.QtWidgets.QCheckBox', 'QCheckBox', (['"""Use Dask Delayed ImageReader"""', 'self'], {}), "('Use Dask Delayed ImageReader', self)\n", (6063, 6101), False, 'from PyQt5.QtWidgets import QHBoxLayout, QFileDialog, QDialogButtonBox, QWidget, QTableWidget, QTableWidgetItem, QCheckBox\n'), ((6215, 6222), 'PyQt5.QtGui.QFont', 'QFont', ([], {}), '()\n', (6220, 6222), False, 'from PyQt5.QtGui import QFont\n'), ((6487, 6504), 'PyQt5.QtWidgets.QHBoxLayout', 'QHBoxLayout', (['self'], {}), '(self)\n', (6498, 6504), False, 'from PyQt5.QtWidgets import QHBoxLayout, QFileDialog, QDialogButtonBox, QWidget, QTableWidget, QTableWidgetItem, QCheckBox\n'), ((6528, 6542), 'PyQt5.QtWidgets.QTableWidget', 'QTableWidget', ([], {}), '()\n', (6540, 6542), False, 'from PyQt5.QtWidgets import QHBoxLayout, QFileDialog, QDialogButtonBox, QWidget, QTableWidget, QTableWidgetItem, QCheckBox\n'), ((7370, 7377), 'PyQt5.QtGui.QFont', 'QFont', ([], {}), '()\n', (7375, 7377), False, 'from PyQt5.QtGui import QFont\n'), ((7481, 7520), 'PyQt5.QtWidgets.QTableWidgetItem', 'QtWidgets.QTableWidgetItem', (['"""Parameter"""'], {}), "('Parameter')\n", (7507, 7520), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7673, 7708), 'PyQt5.QtWidgets.QTableWidgetItem', 'QtWidgets.QTableWidgetItem', (['"""Value"""'], {}), "('Value')\n", (7699, 7708), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7961, 7978), 'PyQt5.QtWidgets.QHBoxLayout', 'QHBoxLayout', (['self'], {}), '(self)\n', (7972, 7978), False, 'from PyQt5.QtWidgets import QHBoxLayout, QFileDialog, QDialogButtonBox, QWidget, QTableWidget, QTableWidgetItem, QCheckBox\n'), ((8006, 8019), 'PyQt5.QtWidgets.QFileDialog', 'QFileDialog', ([], {}), '()\n', (8017, 8019), False, 'from PyQt5.QtWidgets import QHBoxLayout, QFileDialog, QDialogButtonBox, QWidget, QTableWidget, QTableWidgetItem, QCheckBox\n'), ((8635, 8655), 'os.path.isfile', 'os.path.isfile', (['path'], {}), '(path)\n', (8649, 8655), False, 'import os\n'), ((3274, 3360), 'imgfileutils.calc_scaling', 'imf.calc_scaling', (['channel'], {'corr_min': '(1.0)', 'offset_min': '(0)', 'corr_max': '(0.85)', 'offset_max': '(0)'}), '(channel, corr_min=1.0, offset_min=0, corr_max=0.85,\n offset_max=0)\n', (3290, 3360), True, 'import imgfileutils as imf\n'), ((4987, 5030), 'imgfileutils.get_dimpositions', 'imf.get_dimpositions', (["metadata['Axes_aics']"], {}), "(metadata['Axes_aics'])\n", (5007, 5030), True, 'import imgfileutils as imf\n'), ((5452, 5487), 'imgfileutils.get_dimpositions', 'imf.get_dimpositions', (['new_dimstring'], {}), '(new_dimstring)\n', (5472, 5487), True, 'import imgfileutils as imf\n'), ((7050, 7071), 'PyQt5.QtWidgets.QTableWidgetItem', 'QTableWidgetItem', (['key'], {}), '(key)\n', (7066, 7071), False, 'from PyQt5.QtWidgets import QHBoxLayout, QFileDialog, QDialogButtonBox, QWidget, QTableWidget, QTableWidgetItem, QCheckBox\n'), ((7549, 7573), 'PyQt5.QtGui.QColor', 'QtGui.QColor', (['(25)', '(25)', '(25)'], {}), '(25, 25, 25)\n', (7561, 7573), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7737, 7761), 'PyQt5.QtGui.QColor', 'QtGui.QColor', (['(25)', '(25)', '(25)'], {}), '(25, 25, 25)\n', (7749, 7761), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((8846, 8868), 'imgfileutils.get_metadata', 'imf.get_metadata', (['path'], {}), '(path)\n', (8862, 8868), True, 'import imgfileutils as imf\n'), ((9157, 9172), 'aicsimageio.AICSImage', 'AICSImage', (['path'], {}), '(path)\n', (9166, 9172), False, 'from aicsimageio import AICSImage\n')]
#!/usr/bin/env python # coding:utf8 """ @Time : 2018/10/31 @Author : fls @Contact : <EMAIL> @Desc : fls易用性utils-日期相关utils @Modify Time @Author @Version @Desciption ------------ ------- -------- ----------- 2018/10/31 11:41 fls 1.0 create 2020/08/01 11:43 fls 1.1 新增函数get_current_week """ import datetime FMT_DATETIME = '%Y%m%d%H%M%S' FMT_DATETIME_SEPARATE = '%Y-%m-%d %H:%M:%S' FMT_DATE = '%Y%m%d' FMT_TIME = '%H%M%S' def fmt_date(date=None, fmt=FMT_DATETIME_SEPARATE): """格式化日期(date = datetime.datetime.now(), fmt = '%Y-%m-%d %H:%M:%S') \t\t@param: date 日期,为空则取当前日期 \t\t@param: fmt 格式化样式 """ if not date: date = datetime.datetime.now() n = date.strftime(fmt) return n def str2date(date=None, fmt=FMT_DATETIME_SEPARATE): """ 字符串转日期时间格式 :param date: :param fmt: :return: """ if not date: return fmt_date(date=None, fmt=fmt) return datetime.datetime.strptime(date, fmt) def get_day_n(date=None, day=1, fmt=FMT_DATETIME_SEPARATE): """获取n天后或-n天前的日期(date = datetime.datetime.now(), day = 1, fmt = '%Y-%m-%d %H:%M:%S') \t\t@param: date 日期,为空则取当前日期 \t\t@param: day n天后的日期,默认1天后,为负数则取n天前的日期 \t\t@param: fmt 格式化样式 """ if not date: date = datetime.datetime.now() return fmt_date(date=date + datetime.timedelta(days=day), fmt=fmt) def get_seconds_n(date=None, seconds=0, fmt=FMT_DATETIME_SEPARATE): """获取n秒后或-n秒前的日期(date = datetime.datetime.now(), seconds = 1, fmt = '%Y-%m-%d %H:%M:%S') \t\t@param: date 日期,为空则取当前日期 \t\t@param: seconds n秒后的时间,默认0秒后,为负数则取n秒前的时间 \t\t@param: fmt 格式化样式 """ if not date: date = datetime.datetime.now() return fmt_date(date=date + datetime.timedelta(seconds=seconds), fmt=fmt) def get_interval_day(start, end, fmt=FMT_DATE): """获取日期间的天数(start, end, fmt = '%Y%m%d') \t\t@param: start 开始日期 \t\t@param: end 结束日期 \t\t@param: fmt 格式化样式 """ def gen_dates(b_date, days): day = datetime.timedelta(days=1) for i in range(days): yield b_date + day * i if start is None: return [] start = datetime.datetime.strptime(start, fmt) if end is None: end = datetime.datetime.now() else: end = datetime.datetime.strptime(end, fmt) data = [] for d in gen_dates(start, (end - start).days + 1): data.append(d.strftime(fmt)) return data def reformat_date_str(rq1, fmt1, fmt2): """按目标格式,重新格式化日期(rq1, fmt1, fmt2) \t\t@param: rq1 开始日期 \t\t@param: fmt1 rq1的格式 \t\t@param: fmt2 目标格式 """ return datetime.datetime.strptime(rq1, fmt1).strftime(fmt2) def get_current_week(date=None, fmt=FMT_DATE): """ 返回日期所在周的日期字符串列表 :param date: :param fmt: :return: """ if not date: date = datetime.datetime.now() monday = date one_day = datetime.timedelta(days=1) while monday.weekday() != 0: monday -= one_day # 返回所在周的字符串列表 ret = [] for i in range(7): ret.append((monday + datetime.timedelta(days=i)).strftime(fmt)) return ret def help(num='①'): print(num + "关于日期时间") print("\tfmt_date(date = datetime.datetime.now(), fmt = '%Y-%m-%d %H:%M:%S')") print("\t" + fmt_date.__doc__) print("\tafter_date(date = datetime.datetime.now(), day = 1, fmt = '%Y-%m-%d %H:%M:%S)") print("\t" + get_day_n.__doc__) print("\tafterSeconds(date = datetime.datetime.now(), seconds = 0, fmt = '%Y-%m-%d %H:%M:%S)") print("\t" + get_seconds_n.__doc__) print("\tinterval_day(start, end, fmt = '%Y%m%d')") print("\t" + get_interval_day.__doc__) print("\treformat_date_str(rq1, fmt1, fmt2)") print("\t" + reformat_date_str.__doc__)
[ "datetime.datetime.strptime", "datetime.timedelta", "datetime.datetime.now" ]
[((996, 1033), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['date', 'fmt'], {}), '(date, fmt)\n', (1022, 1033), False, 'import datetime\n'), ((2210, 2248), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['start', 'fmt'], {}), '(start, fmt)\n', (2236, 2248), False, 'import datetime\n'), ((2940, 2966), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(1)'}), '(days=1)\n', (2958, 2966), False, 'import datetime\n'), ((729, 752), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (750, 752), False, 'import datetime\n'), ((1329, 1352), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1350, 1352), False, 'import datetime\n'), ((1735, 1758), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1756, 1758), False, 'import datetime\n'), ((2065, 2091), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(1)'}), '(days=1)\n', (2083, 2091), False, 'import datetime\n'), ((2283, 2306), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2304, 2306), False, 'import datetime\n'), ((2331, 2367), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['end', 'fmt'], {}), '(end, fmt)\n', (2357, 2367), False, 'import datetime\n'), ((2884, 2907), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2905, 2907), False, 'import datetime\n'), ((2668, 2705), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['rq1', 'fmt1'], {}), '(rq1, fmt1)\n', (2694, 2705), False, 'import datetime\n'), ((1385, 1413), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': 'day'}), '(days=day)\n', (1403, 1413), False, 'import datetime\n'), ((1791, 1826), 'datetime.timedelta', 'datetime.timedelta', ([], {'seconds': 'seconds'}), '(seconds=seconds)\n', (1809, 1826), False, 'import datetime\n'), ((3110, 3136), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': 'i'}), '(days=i)\n', (3128, 3136), False, 'import datetime\n')]
# Generated by Django 3.2.4 on 2021-09-30 11:52 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('api', '0006_reservation_iscanceled'), ] operations = [ migrations.AddField( model_name='reservation', name='Amount', field=models.DecimalField(decimal_places=2, default=10, max_digits=7), preserve_default=False, ), migrations.AddField( model_name='reservation', name='PricePerHour', field=models.DecimalField(decimal_places=2, default=3, max_digits=5), preserve_default=False, ), ]
[ "django.db.models.DecimalField" ]
[((339, 402), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'decimal_places': '(2)', 'default': '(10)', 'max_digits': '(7)'}), '(decimal_places=2, default=10, max_digits=7)\n', (358, 402), False, 'from django.db import migrations, models\n'), ((569, 631), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'decimal_places': '(2)', 'default': '(3)', 'max_digits': '(5)'}), '(decimal_places=2, default=3, max_digits=5)\n', (588, 631), False, 'from django.db import migrations, models\n')]
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.10.3 # kernelspec: # display_name: wikirecs # language: python # name: wikirecs # --- # # WikiRecs # A project to recommend the next Wikipedia article you might like to edit # + init_cell=true # %matplotlib inline # %load_ext autoreload # %autoreload 2 import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import logging import wikipedia import requests import os import wikirecs as wr import implicit from scipy.sparse import csr_matrix, csc_matrix, lil_matrix, coo_matrix from tqdm.auto import tqdm import umap import pickle import collections import recommenders import plotly.express as px from pyarrow import feather import itertools from itables import show import matplotlib from implicit.nearest_neighbours import ( bm25_weight) # - from itables.javascript import load_datatables load_datatables() # + init_cell=true pd.set_option('display.max_rows', 100) pd.set_option('display.min_rows', 100) # + init_cell=true logging.basicConfig() logging.getLogger().setLevel(logging.INFO) # - # # Assemble the complete histories import os all_histories = [] for fname in os.listdir('edit_histories_2021-05-28'): if 'feather' in fname: all_histories.append(feather.read_feather('edit_histories_2021-05-28/{}'.format(fname))) all_histories = pd.concat(all_histories, ignore_index=True) feather.write_feather(all_histories, "all_histories_2021-05-28.feather") # %%time all_histories = feather.read_feather("all_histories_2021-05-28.feather") all_histories.columns len(all_histories.pageid.unique()) # # Load all_histories (raw data), transform and split # + # %%time all_histories = feather.read_feather("all_histories_2021-05-28.feather") print("Length raw edit history data: {}".format(len(all_histories))) # + from pull_edit_histories import get_edit_history ## Add one particular user cols = ['userid', 'user', 'pageid', 'title', 'timestamp', 'sizediff'] with open("../username.txt", "r") as file: for username in file: oneuser = get_edit_history(user=username.strip(), latest_timestamp="2021-05-28T22:02:09Z", earliest_timestamp="2020-05-28T22:02:09Z") oneuser = pd.DataFrame(oneuser).loc[:,cols] all_histories = pd.concat([all_histories, oneuser], ignore_index=True) print("Length after adding users: {}".format(len(all_histories))) # - # ## EDA on raw histories # Look at the distribution of edit counts edit_counts = all_histories.groupby('userid').userid.count().values plt.figure(figsize=(20,8)) plt.subplot(1,2,1) sns.distplot(edit_counts,kde=False,bins=np.arange(0,20000,200)) plt.xlabel('Number of edits by user') plt.subplot(1,2,2) sns.distplot(edit_counts,kde=False,bins=np.arange(0,200,1)) plt.xlim([0,200]) plt.xlabel('Number of edits by user') num_counts = len(edit_counts) print("Median edit counts: %d" % np.median(edit_counts)) thres = 5 over_thres = np.sum(edit_counts > thres) print("Number over threshold %d: %d (%.f%%)" % (thres, over_thres, 100*over_thres/num_counts)) # Most edits by user all_histories.groupby(['userid','user']).userid.count().sort_values(ascending=False) # Find the elbow in number of edits plt.plot(all_histories.groupby(['userid','user']).userid.count().sort_values(ascending=False).values) # plt.ylim([0,20000]) # + # What are the most popular pages (edited by the most users) page_popularity = all_histories.drop_duplicates(subset=['title','user']).groupby('title').count().user.sort_values() pd.set_option('display.max_rows', 1000) page_popularity.iloc[-1000:].iloc[::-1] # - # ## Clean data # ### Remove consecutive edits and summarize runs # + # %%time def remove_consecutive_edits(df): c = dict(zip(df.columns, range(len(df.columns)))) keyfunc = lambda x: (x[c['userid']],x[c['pageid']]) first_and_last = lambda run: [run[0][c['userid']], run[0][c['user']], run[0][c['pageid']], run[0][c['title']], run[-1][c['timestamp']], run[0][c['timestamp']], sum([abs(r[c['sizediff']]) for r in run]), len(run)] d = df.values.tolist() return pd.DataFrame([first_and_last(list(g)) for k,g in itertools.groupby(d, key=keyfunc)], columns=['userid', 'user', 'pageid', 'title', 'first_timestamp', 'last_timestamp','sum_sizediff','consecutive_edits']) clean_histories = remove_consecutive_edits(all_histories) # - # ### Remove top N most popular pages # + # Get the top most popular pages TOPN = 20 popularpages = all_histories.drop_duplicates(subset=['title','pageid','userid']).groupby(['title','pageid']).count().user.sort_values()[-TOPN:] before_count = len(all_histories) # - popularpages # Remove those popular pages popular_pageids = popularpages.index.get_level_values(level='pageid').values is_popular_page_edit = clean_histories.pageid.isin(popular_pageids) clean_histories = clean_histories.loc[~is_popular_page_edit].copy() all_histories = None after_count = len(clean_histories) print("%d edits (%.1f%%) were in top %d popular pages. Length after removing: %d" % (np.sum(is_popular_page_edit), 100* np.sum(is_popular_page_edit)/before_count, TOPN, after_count) ) print("Number of unique page ids: {}".format(len(clean_histories.pageid.unique()))) # ### Remove users with too many or too few edits MIN_EDITS = 5 MAX_EDITS = 10000 # Get user edit counts all_user_edit_counts = clean_histories.groupby(['userid','user']).userid.count() # + # Remove users with too few edits keep_user = all_user_edit_counts.values >= MIN_EDITS # Remove users with too many edits keep_user = keep_user & (all_user_edit_counts.values <= MAX_EDITS) # Remove users with "bot" in the name is_bot = ['bot' in username.lower() for username in all_user_edit_counts.index.get_level_values(1).values] keep_user = keep_user & ~np.array(is_bot) print("Keep %d users out of %d (%.1f%%)" % (np.sum(keep_user), len(all_user_edit_counts), 100*float(np.sum(keep_user))/len(all_user_edit_counts))) # + # Remove those users userids_to_keep = all_user_edit_counts.index.get_level_values(0).values[keep_user] clean_histories = clean_histories.loc[clean_histories.userid.isin(userids_to_keep)] clean_histories = clean_histories.reset_index(drop=True) # - print("Length after removing users: {}".format(len(clean_histories))) # %%time # Save cleaned histories feather.write_feather(clean_histories, '../clean_histories_2021-05-28.feather') # ## Build lookup tables # %%time clean_histories = feather.read_feather('../clean_histories_2021-05-28.feather') # + # Page id to title and back lookup = clean_histories.drop_duplicates(subset=['pageid']).loc[:,['pageid','title']] p2t = dict(zip(lookup.pageid, lookup.title)) t2p = dict(zip(lookup.title, lookup.pageid)) # User id to name and back lookup = clean_histories.drop_duplicates(subset=['userid']).loc[:,['userid','user']] u2n = dict(zip(lookup.userid, lookup.user)) n2u = dict(zip(lookup.user, lookup.userid)) # + # Page id and userid to index in cooccurence matrix and back pageids = np.sort(clean_histories.pageid.unique()) userids = np.sort(clean_histories.userid.unique()) p2i = {pageid:i for i, pageid in enumerate(pageids)} u2i = {userid:i for i, userid in enumerate(userids)} i2p = {v: k for k, v in p2i.items()} i2u = {v: k for k, v in u2i.items()} # + # User name and page title to index and back n2i = {k:u2i[v] for k, v in n2u.items() if v in u2i} t2i = {k:p2i[v] for k, v in t2p.items() if v in p2i} i2n = {v: k for k, v in n2i.items()} i2t = {v: k for k, v in t2i.items()} # - wr.save_pickle((p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t), '../lookup_tables_2021-05-28.pickle') wr.save_pickle((userids, pageids), '../users_and_pages_2021-05-28.pickle') # # ## Build test and training set p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t = wr.load_pickle('../lookup_tables_2021-05-28.pickle') userids, pageids = wr.load_pickle('../users_and_pages_2021-05-28.pickle') # Make a test set from the most recent edit by each user histories_test = clean_histories.groupby(['userid','user'],as_index=False).first() # Subtract it from the rest to make the training set histories_train = wr.dataframe_set_subtract(clean_histories, histories_test) histories_train.reset_index(drop=True, inplace=True) # Make a dev set from the second most recent edit by each user histories_dev = histories_train.groupby(['userid','user'],as_index=False).first() # Subtract it from the rest to make the final training set histories_train = wr.dataframe_set_subtract(histories_train, histories_dev) histories_train.reset_index(drop=True, inplace=True) print("Length of test set: {}".format(len(histories_test))) print("Length of dev set: {}".format(len(histories_dev))) print("Length of training after removal of test: {}".format(len(histories_train))) print("Number of pages in training set: {}".format(len(histories_train.pageid.unique()))) print("Number of users in training set: {}".format(len(histories_train.userid.unique()))) print("Number of pages with > 1 user editing: {}".format(np.sum(histories_train.drop_duplicates(subset=['title','user']).groupby('title').count().user > 1))) feather.write_feather(histories_train, '../histories_train_2021-05-28.feather') feather.write_feather(histories_dev, '../histories_dev_2021-05-28.feather') feather.write_feather(histories_test, '../histories_test_2021-05-28.feather') # + resurface_userids, discovery_userids = wr.get_resurface_discovery(histories_train, histories_dev) print("%d out of %d userids are resurfaced (%.1f%%)" % (len(resurface_userids), len(userids), 100*float(len(resurface_userids))/len(userids))) print("%d out of %d userids are discovered (%.1f%%)" % (len(discovery_userids), len(userids), 100*float(len(discovery_userids))/len(userids))) # - wr.save_pickle((resurface_userids, discovery_userids), '../resurface_discovery_users_2021-05-28.pickle') # # FIG Rama and other examples print("Number of edits by Rama in a year: {}".format(len(all_histories.loc[all_histories.user == 'Rama']))) print("Number of pages edited: {}".format(len(all_histories.loc[all_histories.user == 'Rama'].drop_duplicates(subset=['pageid'])))) # + from pull_edit_histories import get_edit_history oneuser = get_edit_history(user="Thornstrom", latest_timestamp="2021-05-28T22:02:09Z", earliest_timestamp="2020-05-28T22:02:09Z") oneuser = pd.DataFrame(oneuser).loc[:,cols] # - wr.print_user_history(all_histories, user="Rama") wr.print_user_history(all_histories, user="Meow") # # Build matrix for implicit collaborative filtering # + # %%time # Get the user/page edit counts for_implicit = histories_train.groupby(["userid","pageid"]).count().first_timestamp.reset_index().rename(columns={'first_timestamp':'edits'}) for_implicit.loc[:,'edits'] = for_implicit.edits.astype(np.int32) # + row = np.array([p2i[p] for p in for_implicit.pageid.values]) col = np.array([u2i[u] for u in for_implicit.userid.values]) implicit_matrix_coo = coo_matrix((for_implicit.edits.values, (row, col))) implicit_matrix = csc_matrix(implicit_matrix_coo) # - # %%time wr.save_pickle(implicit_matrix,'../implicit_matrix_2021-05-28.pickle') # ### Test the matrix and indices implicit_matrix = wr.load_pickle('../implicit_matrix_2021-05-28.pickle') # + # Crude item to item recs by looking for items edited by the same editors (count how many editors overlap) veditors = np.flatnonzero(implicit_matrix[t2i['Hamburger'],:].toarray()) indices = np.flatnonzero(np.sum(implicit_matrix[:,veditors] > 0,axis=1)) totals = np.asarray(np.sum(implicit_matrix[:,veditors] > 0 ,axis=1)[indices]) sorted_order = np.argsort(totals.squeeze()) [i2t.get(i, "") + " " + str(total[0]) for i,total in zip(indices[sorted_order],totals[sorted_order])][::-1] # - # Histories of editors who had that item for ved in veditors: print("\n\n\n" + i2n[ved]) wr.print_user_history(all_histories, user=i2n[ved]) # # Implicit recommendation implicit_matrix = wr.load_pickle('../implicit_matrix_2021-05-28.pickle') p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t = wr.load_pickle('../lookup_tables_2021-05-28.pickle') bm25_matrix = bm25_weight(implicit_matrix, K1=100, B=0.25) num_factors =200 regularization = 0.01 os.environ["OPENBLAS_NUM_THREADS"] = "1" model = implicit.als.AlternatingLeastSquares( factors=num_factors, regularization=regularization ) model.fit(bm25_matrix) wr.save_pickle(model,'../als%d_bm25_model.pickle' % num_factors) model = wr.load_pickle('../als200_bm25_model_2021-05-28.pickle') results = model.similar_items(t2i['Steven Universe'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] u = n2u["Rama"] recommendations = model.recommend(u2i[u], bm25_matrix.tocsc(), N=1000, filter_already_liked_items=False) [ ("*" if implicit_matrix[ind,u2i[u]]>0 else "") + '%s %.4f' % (i2t[ind], score) + ' %d' % (implicit_matrix[ind,:]>0).sum() for ind, score in recommendations] # ## Grid search results grid_search_results = wr.load_pickle("../implicit_grid_search.pickle") pd.DataFrame(grid_search_results) pd.DataFrame([[i['num_factors'], i['regularization']] + list(i['metrics'].values()) for i in grid_search_results], columns = ['num_factors','regularization'] + list(grid_search_results[0]['metrics'].keys())) grid_search_results_bm25 = wr.load_pickle("../implicit_grid_search_bm25.pickle") pd.DataFrame([[i['num_factors'], i['regularization']] + list(i['metrics'].values()) for i in grid_search_results_bm25], columns = ['num_factors','regularization'] + list(grid_search_results_bm25[0]['metrics'].keys())) # # B25 Recommendation from implicit.nearest_neighbours import BM25Recommender # + bm25_matrix = bm25_weight(implicit_matrix, K1=20, B=1) bm25_matrix = bm25_matrix.tocsc() sns.distplot(implicit_matrix[implicit_matrix.nonzero()],bins = np.arange(0,100,1),kde=False) sns.distplot(bm25_matrix[bm25_matrix.nonzero()],bins = np.arange(0,100,1),kde=False) # - K1 = 100 B = 0.25 model = BM25Recommender(K1, B) model.fit(implicit_matrix) wr.save_pickle(model, '../bm25_model_2021-05-28.pkl') results = model.similar_items(t2i['<NAME>'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] a = ['Steven Universe 429.4746', 'List of Steven Universe episodes 178.4544', 'Demon Bear 128.7237', 'Legion of Super Heroes (TV series) 128.7237', 'The Amazing World of Gumball 126.3522', 'Steven Universe Future 123.9198'] results = model.similar_items(t2i['Steven Universe'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] results = model.similar_items(t2i['<NAME>'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] results = model.similar_items(t2i['Hamburger'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] u = n2u["Rama"] recommendations = model.recommend(u2i[u], implicit_matrix.astype(np.float32), N=1000, filter_already_liked_items=True) [ ("*" if implicit_matrix[ind,u2i[u]]>0 else "") + '%s %.4f' % (i2t[ind], score) for ind, score in recommendations] plt.plot([ score for i,(ind, score) in enumerate(recommendations) if implicit_matrix[ind,u2i[u]]==0]) wr.save_pickle(model, "b25_model.pickle") model = wr.load_pickle("b25_model.pickle") # # Evaluate models # ## Item to item recommendation results = model.similar_items(t2i['Steven Universe'],20) ['%s %.4f' % (i2t[ind], score) for ind, score in results] # ## User to item recommendations # + # Check out a specific example u = n2u["HyprMarc"] wr.print_user_history(clean_histories, userid=u) # - u = n2u["HyprMarc"] recommendations = model.recommend(u2i[u], implicit_matrix, N=100, filter_already_liked_items=False) [ ("*" if implicit_matrix[ind,u2i[u]]>0 else "") + '%s %.4f' % (i2t[ind], score) for ind, score in recommendations] # # Visualize implicit embeddings model = wr.load_pickle('../als150_model.pickle') # + # Only plot the ones with over 3 entries indices = np.squeeze(np.asarray(np.sum(implicit_matrix[nonzero,:],axis=1))) > 3 indices = nonzero[indices] # - len(indices) # Visualize the collaborative filtering item vectors, embedding into 2D space with UMAP # nonzero = np.flatnonzero(implicit_matrix.sum(axis=1)) # indices = nonzero[::100] embedding = umap.UMAP().fit_transform(model.item_factors[indices,:]) plt.figure(figsize=(10,10)) plt.plot(embedding[:,0], embedding[:,1],'.') # _ = plt.axis('square') # ## Visualize actors in the embeddings space # + edit_counts = np.squeeze(np.asarray(np.sum(implicit_matrix[indices,:],axis=1))) log_edit_counts = np.log10(np.squeeze(np.asarray(np.sum(implicit_matrix[indices,:],axis=1)))) emb_df = pd.DataFrame({'dim1':embedding[:,0].squeeze(), 'dim2':embedding[:,1].squeeze(), 'title':[i2t[i] for i in indices], 'edit_count':edit_counts, 'log_edit_count':log_edit_counts }) # - actors = ['<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME> (actor)', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>', '<NAME>'] actor_indices = [t2i[a] for a in actors] edit_counts = np.squeeze(np.asarray(np.sum(implicit_matrix[actor_indices,:],axis=1))) log_edit_counts = np.log10(np.squeeze(np.asarray(np.sum(implicit_matrix[actor_indices,:],axis=1)))) embedding = umap.UMAP().fit_transform(model.item_factors[actor_indices,:]) emb_df = pd.DataFrame({'dim1':embedding[:,0].squeeze(), 'dim2':embedding[:,1].squeeze(), 'title':[i2t[i] for i in actor_indices], 'edit_count':edit_counts, 'log_edit_count':log_edit_counts }) key = np.zeros(len(actors)) key[:8] = 1 fig = px.scatter(data_frame=emb_df, x='dim1', y='dim2', hover_name='title', color=key, hover_data=['edit_count']) fig.update_layout( autosize=False, width=600, height=600,) fig.show() # + # Full embedding plotly interactive visualization emb_df = pd.DataFrame({'dim1':embedding[:,0].squeeze(), 'dim2':embedding[:,1].squeeze(), 'title':[i2t[i] for i in indices], 'edit_count':edit_counts, 'log_edit_count':log_edit_counts }) fig = px.scatter(data_frame=emb_df, x='dim1', y='dim2', hover_name='title', color='log_edit_count', hover_data=['edit_count']) fig.update_layout( autosize=False, width=600, height=600,) fig.show() # - # # Evaluate on test set # + # Load the edit histories in the training set and the test set histories_train = feather.read_feather('../histories_train_2021-05-28.feather') histories_test = feather.read_feather('../histories_test_2021-05-28.feather') histories_dev = feather.read_feather('../histories_dev_2021-05-28.feather') implicit_matrix = wr.load_pickle('../implicit_matrix_2021-05-28.pickle') p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t = wr.load_pickle('../lookup_tables_2021-05-28.pickle') userids, pageids = wr.load_pickle('../users_and_pages_2021-05-28.pickle') resurface_userids, discovery_userids = wr.load_pickle('../resurface_discovery_users_2021-05-28.pickle') results = {} # - wr.display_recs_with_history( recs, userids[:100], histories_test, histories_train, p2t, u2n, recs_to_display=5, hist_to_display=10, ) # ## Most popular # + # %%time K=20 rec_name = "Popularity" prec = recommenders.PopularityRecommender(histories_train) precs = prec.recommend_all(userids, K) wr.save_pickle(precs, "../" + rec_name +"_recs.pickle") # + results[rec_name] = wr.get_recs_metrics( histories_dev, precs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # - # ## Most recent # %%time # Most recent K=20 rrec = recommenders.MostRecentRecommender(histories_train) rrecs = rrec.recommend_all(userids, K, interactions=histories_train) rec_name = "Recent" wr.save_pickle(rrecs, "../" + rec_name +"_recs.pickle") len(resurface_userids) results ={} results[rec_name] = wr.get_recs_metrics( histories_dev, rrecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # ## Most frequent # %%time # Sorted by frequency of edits K=20 frec = recommenders.MostFrequentRecommender(histories_train) frecs = frec.recommend_all(userids, K, interactions=histories_train) rec_name = "Frequent" wr.save_pickle(frecs, "../" + rec_name +"_recs.pickle") results[rec_name] = wr.get_recs_metrics( histories_dev, frecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # ## BM25 # %%time K=20 brec = recommenders.MyBM25Recommender(model, implicit_matrix) brecs = brec.recommend_all(userids, K, u2i=u2i, n2i=n2i, i2p=i2p, filter_already_liked_items=False) rec_name = "bm25" wr.save_pickle(brecs, "../" + rec_name +"_recs.pickle") # filter_already_liked_items = False results[rec_name] = wr.get_recs_metrics( histories_dev, brecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # filter_already_liked_items = True rec_name = "bm25_filtered" brecs_filtered = brec.recommend_all(userids, K, u2i=u2i, n2i=n2i, i2p=i2p, filter_already_liked_items=True) wr.save_pickle(brecs_filtered, "../" + rec_name +"_recs.pickle") results[rec_name] = wr.get_recs_metrics( histories_dev, recs['bm25_filtered'], K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] results[rec_name] = wr.get_recs_metrics( histories_dev, recs['bm25_filtered'], K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # ## ALS Implicit collaborative filtering model_als = wr.load_pickle('../als200_bm25_model_2021-05-28.pickle') # %%time rec_name = "als" K=20 irec = recommenders.ImplicitCollaborativeRecommender(model_als, bm25_matrix.tocsc()) irecs = irec.recommend_all(userids, K, i2p=i2p, filter_already_liked_items=False) wr.save_pickle(irecs, "../" + rec_name +"_recs.pickle") results[rec_name] = wr.get_recs_metrics( histories_dev, irecs, K, discovery_userids, resurface_userids, bm25_matrix.tocsc(), i2p, u2i) results[rec_name] rec_name = "als_filtered" K=20 irec = recommenders.ImplicitCollaborativeRecommender(model_als, bm25_matrix.tocsc()) irecs_filtered = irec.recommend_all(userids, K, i2p=i2p, filter_already_liked_items=True) results[rec_name] = wr.get_recs_metrics( histories_dev, irecs_filtered, K, discovery_userids, resurface_userids, bm25_matrix.tocsc(), i2p, u2i) results[rec_name] wr.save_pickle(irecs_filtered, "../" + rec_name +"_recs.pickle") show(pd.DataFrame(results).T) # ## Jaccard # %%time # Sorted by Jaccard K=20 rrec = recommenders.MostRecentRecommender(histories_train) recent_pages_dict = rrec.all_recent_only(K, userids, interactions=histories_train) jrec = recommenders.JaccardRecommender(implicit_matrix, p2i=p2i, t2i=t2i, i2t=i2t, i2p=i2p, n2i=n2i, u2i=u2i, i2u=i2u) jrecs = jrec.recommend_all(userids, K, num_lookpage_pages=1, recent_pages_dict=recent_pages_dict, interactions=histories_train) wr.save_pickle(jrecs,"jaccard-1_recs.pickle") rec_name = "Jaccard" results[rec_name] = wr.get_recs_metrics( histories_dev, jrecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] wr.display_recs_with_history( jrecs, userids[:30], histories_test, histories_train, p2t, u2n, recs_to_display=5, hist_to_display=10, ) # %%time # Sorted by Jaccard K=5 jrec = recommenders.JaccardRecommender(implicit_matrix, p2i=p2i, t2i=t2i, i2t=i2t, i2p=i2p, n2i=n2i, u2i=u2i, i2u=i2u) jrecs = jrec.recommend_all(userids[:1000], 10, num_lookpage_pages=50, recent_pages_dict=recent_pages_dict, interactions=histories_train) print("Jaccard") print("Recall @ %d: %.1f%%" % (K, 100*wr.recall(histories_test, jrecs, K))) print("Prop resurfaced: %.1f%%" % (100*wr.prop_resurface(jrecs, K, implicit_matrix, i2p, u2i))) print("Recall @ %d (discovery): %.1f%%" % (K, 100*wr.recall(histories_test, jrecs, K, userid_subset=discovery_userids))) print("Recall @ %d (resurface): %.1f%%" % (K, 100*wr.recall(histories_test, jrecs, K, userid_subset=resurface_userids))) # ## Interleaved recs.keys() # + # Interleaved jaccard and recent K=20 rec_name = "Interleaved" print(rec_name) intrec = recommenders.InterleaveRecommender() intrecs = intrec.recommend_all(K, [recs['Recent'], recs['bm25_filtered']]) wr.save_pickle(intrecs, "../" + rec_name +"_recs.pickle") # - results[rec_name] = wr.get_recs_metrics( histories_dev, intrecs, K, discovery_userids, resurface_userids, implicit_matrix, i2p, u2i) results[rec_name] # # Report on evaluations results # ## Hard coded metrics # + results = {} results["Popularity"] = {'recall': 0.16187274312040842, 'ndcg': 0.0005356797596941751, 'resurfaced': 0.6213422985929523, 'recall_discover': 0.11947959996459864, 'recall_resurface': 0.2624396388830569, 'ndcg_discover': 0.000410354483750028, 'ndcg_resurface': 0.0008329819416998272} results["Recent"] = {'recall': 22.618602913709378, 'ndcg': 0.14306080818547054, 'resurfaced': 71.13808990163118, 'recall_discover': 0.03982653332153288, 'recall_resurface': 76.18097837497375, 'ndcg_discover': 0.00011494775493754298, 'ndcg_resurface': 0.4821633227780786} results["Frequent"] = {'recall': 20.834889802017184, 'ndcg': 0.11356953338215306, 'resurfaced': 76.10353629684971, 'recall_discover': 0.035401362952473675, 'recall_resurface': 70.17635943732941, 'ndcg_discover': 9.90570471847343e-05, 'ndcg_resurface': 0.38274923359395385} results["ALS"] = {'recall': 5.488108579255385, 'ndcg': 0.026193145556306998, 'resurfaced': 16.251556468683848, 'recall_discover': 1.146119125586335, 'recall_resurface': 15.788368675204703, 'ndcg_discover': 0.004817135435898367, 'ndcg_resurface': 0.0769022655123215} results["ALS_filtered"] = {'recall': 0.9027518366330469, 'ndcg': 0.003856703716094881, 'resurfaced': 0.0, 'recall_discover': 1.2832994070271706, 'recall_resurface': 0.0, 'ndcg_discover': 0.005482465270193466, 'ndcg_resurface': 0.0} results["BM25"] = {'recall': 18.945336819823186, 'ndcg': 0.1015175508656068, 'resurfaced': 74.0469742248786, 'recall_discover': 1.3939286662536507, 'recall_resurface': 60.581566239764854, 'ndcg_discover': 0.004204510293040833, 'ndcg_resurface': 0.332367864833573} results["BM25_filtered"] = {'recall': 1.8148424853691942, 'ndcg': 0.008622285155255174, 'resurfaced': 0.14848711243929774, 'recall_discover': 2.522347110363749, 'recall_resurface': 0.1364686122191896, 'ndcg_discover': 0.011740495141426633, 'ndcg_resurface': 0.0012251290280766518} results["Interleaved"] = {'recall': 21.382766778732414, 'ndcg': 0.12924273396038563, 'resurfaced': 42.478676379031256, 'recall_discover': 1.8364457031595716, 'recall_resurface': 67.75141717404996, 'ndcg_discover': 0.006943981897312752, 'ndcg_resurface': 0.4193652616867473} results_df = pd.DataFrame(results).T results_df.reset_index(inplace=True) # - # ## Table of results results_df # ### FIG Table for post # + def scatter_text(x, y, text_column, data, title, xlabel, ylabel): """Scatter plot with country codes on the x y coordinates Based on this answer: https://stackoverflow.com/a/54789170/2641825""" # Create the scatter plot p1 = sns.scatterplot(x, y, data=data, size = 8, legend=False) # Add text besides each point for line in range(0,data.shape[0]): p1.text(data[x][line]+0.01, data[y][line], data[text_column][line], horizontalalignment='left', size='medium', color='black', weight='semibold') # Set title and axis labels plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) return p1 def highlight_max(s): ''' highlight the maximum in a Series yellow. ''' is_max = s == s.max() return ['background-color: yellow' if v else '' for v in is_max] results_df.sort_values("recall", ascending=False).style.apply(highlight_max, subset=["recall", "ndcg", "resurfaced", "recall_discover", "recall_resurface", "ndcg_discover", "ndcg_resurface",]).format({"recall": "{:.1f}%", "ndcg": "{:.3f}", "resurfaced": "{:.1f}%", "recall_discover": "{:.1f}%", "recall_resurface": "{:.1f}%", "ndcg_discover": "{:.3f}", "ndcg_resurface": "{:.3f}", }) # - colnames = ["Recommender", "Recall@20", "nDCG@20","Resurfaced","Recall@20 discovery","Recall@20 resurface","nDCG@20 discovery","nDCG@20 resurface"] #apply(highlight_max, subset=colnames[1:]). results_df.columns = colnames results_df.sort_values("Recall@20", ascending=False).style.\ format({"Recall@20": "{:.1f}%", "nDCG@20": "{:.3f}", "Resurfaced": "{:.1f}%", "Recall@20 discovery": "{:.1f}%", "Recall@20 resurface": "{:.1f}%", "nDCG@20 discovery": "{:.3f}", "nDCG@20 resurface": "{:.3f}", }) # ## Scatter plots (resurface vs discover) fig = px.scatter(data_frame=results_df, x='ndcg_discover', y='ndcg_resurface', hover_name='index') # hover_name='title',) fig.show() fig = px.scatter(data_frame=results_df, x='recall_discover', y='recall_resurface', hover_name='index') # hover_name='title',) fig.show() # ### FIG Scatterplot for post x = 2*[results_df.loc[results_df.Recommender == "Interleaved","Recall@20 resurface"].values[0]] y = [0, results_df.loc[results_df.Recommender == "Interleaved","Recall@20 discovery"].values[0]] # + sns.set_theme(style="darkgrid") matplotlib.rcParams.update({'font.size': 48, 'figure.figsize':(8,5), 'legend.edgecolor':'k'}) plt.figure(figsize=(12,7)) A = results_df.loc[:,'Recall@20 discovery'] B = results_df.loc[:,'Recall@20 resurface'] x = 2*[results_df.loc[results_df.Recommender == "Interleaved","Recall@20 discovery"].values[0]] y = [-1, results_df.loc[results_df.Recommender == "Interleaved","Recall@20 resurface"].values[0]] plt.plot(x,y,":k") x[0] = 0 y[0] = y[1] # plt.rcParams.update({'font.size': 48}) plt.rc('xtick', labelsize=3) font = {'family' : 'normal', 'weight' : 'normal', 'size' : 22} matplotlib.rc('font', **font) plt.plot(x,y,":k") plt.plot(A,B,'.', MarkerSize=15) for xyz in zip(results_df.Recommender, A, B): # <-- plt.gca().annotate('%s' % xyz[0], xy=np.array(xyz[1:])+(0.05,0), textcoords='data', fontsize=18) # <-- for tick in plt.gca().xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in plt.gca().yaxis.get_major_ticks(): tick.label.set_fontsize(20) plt.xlabel("Recall@20 discovery (%)",fontsize=20) plt.ylabel("Recall@20 resurface (%)",fontsize=20) plt.xlim([0,3]) plt.ylim([-2,85]) axes = plt.gca() # - # ## Read recs in from files recommender_names = ['Popularity', 'Recent', 'Frequent', 'ALS', 'ALS_filtered', 'BM25', 'BM25_filtered', 'Interleaved'] recs = {rname:wr.load_pickle("../" + rname + "_recs.pickle") for rname in recommender_names} # ## Recall curves histories_dev = feather.read_feather('../histories_dev_2021-05-28.feather') plt.figure(figsize=(15,10)) for rname in recommender_names: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20) # print(recall_curve[-1]) plt.plot(recall_curve,'.-') plt.legend(recommender_names) plt.figure(figsize=(15,10)) for rname in recommender_names: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20, discovery_userids) plt.plot(recall_curve,'.-') plt.legend(recommender_names) plt.figure(figsize=(15,10)) for rname in recommender_names: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20, resurface_userids) plt.plot(recall_curve,'.-') plt.legend(recommender_names) # ### FIG Implicit vs BM25 figure sns.set_theme(style="darkgrid") matplotlib.rcParams.update({'font.size': 18, 'figure.figsize':(8,5), 'legend.edgecolor':'k'}) plt.figure(figsize=(10,6)) for rname in ["ALS","BM25"]: recall_curve = wr.recall_curve(histories_dev, recs[rname], 20, discovery_userids) plt.plot(np.array(recall_curve)*100,'.-',markersize=12) plt.legend( ["ALS","BM25"],title="Algorithm", fontsize=16, title_fontsize=16, facecolor="w") plt.xlabel("@N",fontsize=20) plt.ylabel("Discovery recall (%)",fontsize=20) _ = plt.xticks(np.arange(0,20,2),np.arange(0,20,2)+1) # plt.gca().legend(prop=dict(size=20)) for tick in plt.gca().xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in plt.gca().yaxis.get_major_ticks(): tick.label.set_fontsize(20) # # User recommendation comparison recs_subset = ["Recent","Frequent","Popularity","Implicit","bm25","interleaved"] print("Next edit: " + histories_dev.loc[histories_dev.userid == userid].title.values[0]) # ## FIG Rama table # + def bold_viewed(val, viewed_pages): """ Takes a scalar and returns a string with the css property `'color: red'` for negative strings, black otherwise. """ weight = 'bold' if val in viewed_pages else 'normal' return 'font-weight: %s' % weight def color_target(val, target_page): """ Takes a scalar and returns a string with the css property `'color: red'` for negative strings, black otherwise. """ color = 'red' if val == target_page else 'black' return 'color: %s' % color def display_user_recs_comparison(user_name, recs, recs_subset, train_set, test_set, N=20): userid = n2u[user_name] recs_table = pd.DataFrame({rec_name: [p2t[r] for r in recs[rec_name][userid][:N]] for rec_name in recs_subset}) recs_table = recs_table.reset_index() recs_table.loc[:,"index"] = recs_table.loc[:,"index"]+1 recs_table = recs_table.rename(columns={"index":""}) viewed_pages = train_set.loc[train_set.userid == userid,["title"]].drop_duplicates(subset=["title"]).values.squeeze() target_page = test_set.loc[test_set.userid == userid].title.values[0] # print("Next edit: " + target_page) s = recs_table.style.applymap(bold_viewed, viewed_pages=viewed_pages).applymap(color_target, target_page=target_page) display(s) # + recs_subset = ["Recent","Frequent","Popularity","ALS","ALS_filtered","BM25","BM25_filtered"] display_user_recs_comparison('Rama', recs, recs_subset, histories_train, histories_dev, N=10) # - # ## Other individuals tables display_user_recs_comparison('Meow', recs, recs_subset, histories_train, histories_dev, N=10) display_user_recs_comparison('KingArti', recs, recs_subset, histories_train, histories_dev, N=10) display_user_recs_comparison('Tulietto', recs, recs_subset, histories_train, histories_dev, N=10) display_user_recs_comparison('Thornstrom', recs, recs_subset, histories_train, histories_dev, N=10) # ## FIG Interleaved display_user_recs_comparison('Rama', recs,['Interleaved'], histories_train, histories_dev, N=10) display_user_recs_comparison('KingArti', recs,['Interleaved'], histories_train, histories_dev, N=10) N = 20 display(pd.DataFrame({rec_name: [p2t[r] for r in recs[rec_name][n2u['HenryXVII']]][:N] for rec_name in recs_subset})) persons_of_interest = [ "DoctorWho42", "AxelSjögren", "<NAME>", "Tulietto", "LipaCityPH", "<NAME>", "Thornstrom", "Meow", "HyprMarc", "Jampilot", "Rama" ] N=10 irec_500 = recommenders.ImplicitCollaborativeRecommender(model, implicit_matrix) irecs_poi = irec_500.recommend_all([n2u[user_name] for user_name in persons_of_interest], N, u2i=u2i, n2i=n2i, i2p=i2p) # # Find interesting users # + edited_pages = clean_histories.drop_duplicates(subset=['title','user']).groupby('user').userid.count() edited_pages = edited_pages[edited_pages > 50] edited_pages = edited_pages[edited_pages < 300] # - clean_histories.columns display_user_recs_comparison("Rama", recs, recs_subset, histories_train, histories_dev, N=20) # + index = list(range(len(edited_pages))) np.random.shuffle(index) for i in index[:10]: user_name = edited_pages.index[i] print(user_name) display_user_recs_comparison(user_name, recs, recs_subset, histories_train, histories_dev, N=20) print("\n\n\n") # + index = list(range(len(edited_pages))) np.random.shuffle(index) for i in index[:10]: print(edited_pages.index[i]) display_user_recs_comparison wr.print_user_history(user=edited_pages.index[i],all_histories=clean_histories) print("\n\n\n") # - sns.distplot(edited_pages,kde=False,bins=np.arange(0,2000,20)) # # Repetition analysis import itertools clean_histories.head() clean_histories.iloc[:1000].values.tolist() df = clean_histories dict(zip(df.columns, range(len(df.columns)))) def identify_runs(df): d = df.loc[:,['userid','pageid']].values.tolist() return [(k, len(list(g))) for k,g in itertools.groupby(d)] # %%time runs = identify_runs(clean_histories) # + lens = np.array([r[1] for r in runs]) single_edits = np.sum(lens==1) total_edits = len(clean_histories) print("Percent of edits that are part of a run: %.1f%%" % (100*(1-(float(single_edits)/total_edits)))) print("Percent of edits that are repetitions: %.1f%%" % (100*(1-len(runs)/total_edits)))
[ "matplotlib.pyplot.title", "matplotlib.rc", "numpy.sum", "wikirecs.display_recs_with_history", "wikirecs.print_user_history", "recommenders.ImplicitCollaborativeRecommender", "recommenders.MostRecentRecommender", "recommenders.MostFrequentRecommender", "matplotlib.pyplot.figure", "numpy.arange", "wikirecs.recall", "matplotlib.pyplot.gca", "wikirecs.get_recs_metrics", "implicit.als.AlternatingLeastSquares", "pandas.set_option", "plotly.express.scatter", "recommenders.InterleaveRecommender", "pandas.DataFrame", "pyarrow.feather.read_feather", "matplotlib.rcParams.update", "scipy.sparse.coo_matrix", "matplotlib.pyplot.rc", "pandas.concat", "seaborn.set_theme", "numpy.random.shuffle", "matplotlib.pyplot.ylim", "seaborn.scatterplot", "numpy.median", "matplotlib.pyplot.legend", "pyarrow.feather.write_feather", "wikirecs.get_resurface_discovery", "umap.UMAP", "wikirecs.save_pickle", "recommenders.PopularityRecommender", "wikirecs.recall_curve", "itertools.groupby", "matplotlib.pyplot.ylabel", "wikirecs.load_pickle", "recommenders.JaccardRecommender", "os.listdir", "matplotlib.pyplot.subplot", "matplotlib.pyplot.xlim", "logging.basicConfig", "pull_edit_histories.get_edit_history", "implicit.nearest_neighbours.BM25Recommender", "matplotlib.pyplot.plot", "recommenders.MyBM25Recommender", "wikirecs.dataframe_set_subtract", "scipy.sparse.csc_matrix", "numpy.array", "implicit.nearest_neighbours.bm25_weight", "matplotlib.pyplot.xlabel", "itables.javascript.load_datatables", "logging.getLogger", "wikirecs.prop_resurface" ]
[((1071, 1088), 'itables.javascript.load_datatables', 'load_datatables', ([], {}), '()\n', (1086, 1088), False, 'from itables.javascript import load_datatables\n'), ((1109, 1147), 'pandas.set_option', 'pd.set_option', (['"""display.max_rows"""', '(100)'], {}), "('display.max_rows', 100)\n", (1122, 1147), True, 'import pandas as pd\n'), ((1148, 1186), 'pandas.set_option', 'pd.set_option', (['"""display.min_rows"""', '(100)'], {}), "('display.min_rows', 100)\n", (1161, 1186), True, 'import pandas as pd\n'), ((1207, 1228), 'logging.basicConfig', 'logging.basicConfig', ([], {}), '()\n', (1226, 1228), False, 'import logging\n'), ((1356, 1395), 'os.listdir', 'os.listdir', (['"""edit_histories_2021-05-28"""'], {}), "('edit_histories_2021-05-28')\n", (1366, 1395), False, 'import os\n'), ((1539, 1582), 'pandas.concat', 'pd.concat', (['all_histories'], {'ignore_index': '(True)'}), '(all_histories, ignore_index=True)\n', (1548, 1582), True, 'import pandas as pd\n'), ((1584, 1656), 'pyarrow.feather.write_feather', 'feather.write_feather', (['all_histories', '"""all_histories_2021-05-28.feather"""'], {}), "(all_histories, 'all_histories_2021-05-28.feather')\n", (1605, 1656), False, 'from pyarrow import feather\n'), ((1683, 1739), 'pyarrow.feather.read_feather', 'feather.read_feather', (['"""all_histories_2021-05-28.feather"""'], {}), "('all_histories_2021-05-28.feather')\n", (1703, 1739), False, 'from pyarrow import feather\n'), ((1887, 1943), 'pyarrow.feather.read_feather', 'feather.read_feather', (['"""all_histories_2021-05-28.feather"""'], {}), "('all_histories_2021-05-28.feather')\n", (1907, 1943), False, 'from pyarrow import feather\n'), ((2782, 2809), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 8)'}), '(figsize=(20, 8))\n', (2792, 2809), True, 'import matplotlib.pyplot as plt\n'), ((2809, 2829), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (2820, 2829), True, 'import matplotlib.pyplot as plt\n'), ((2892, 2929), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of edits by user"""'], {}), "('Number of edits by user')\n", (2902, 2929), True, 'import matplotlib.pyplot as plt\n'), ((2930, 2950), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (2941, 2950), True, 'import matplotlib.pyplot as plt\n'), ((3009, 3027), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0, 200]'], {}), '([0, 200])\n', (3017, 3027), True, 'import matplotlib.pyplot as plt\n'), ((3027, 3064), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of edits by user"""'], {}), "('Number of edits by user')\n", (3037, 3064), True, 'import matplotlib.pyplot as plt\n'), ((3175, 3202), 'numpy.sum', 'np.sum', (['(edit_counts > thres)'], {}), '(edit_counts > thres)\n', (3181, 3202), True, 'import numpy as np\n'), ((3750, 3789), 'pandas.set_option', 'pd.set_option', (['"""display.max_rows"""', '(1000)'], {}), "('display.max_rows', 1000)\n", (3763, 3789), True, 'import pandas as pd\n'), ((7057, 7136), 'pyarrow.feather.write_feather', 'feather.write_feather', (['clean_histories', '"""../clean_histories_2021-05-28.feather"""'], {}), "(clean_histories, '../clean_histories_2021-05-28.feather')\n", (7078, 7136), False, 'from pyarrow import feather\n'), ((7191, 7252), 'pyarrow.feather.read_feather', 'feather.read_feather', (['"""../clean_histories_2021-05-28.feather"""'], {}), "('../clean_histories_2021-05-28.feather')\n", (7211, 7252), False, 'from pyarrow import feather\n'), ((8253, 8371), 'wikirecs.save_pickle', 'wr.save_pickle', (['(p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t)', '"""../lookup_tables_2021-05-28.pickle"""'], {}), "((p2t, t2p, u2n, n2u, p2i, u2i, i2p, i2u, n2i, t2i, i2n, i2t),\n '../lookup_tables_2021-05-28.pickle')\n", (8267, 8371), True, 'import wikirecs as wr\n'), ((8369, 8443), 'wikirecs.save_pickle', 'wr.save_pickle', (['(userids, pageids)', '"""../users_and_pages_2021-05-28.pickle"""'], {}), "((userids, pageids), '../users_and_pages_2021-05-28.pickle')\n", (8383, 8443), True, 'import wikirecs as wr\n'), ((8542, 8594), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../lookup_tables_2021-05-28.pickle"""'], {}), "('../lookup_tables_2021-05-28.pickle')\n", (8556, 8594), True, 'import wikirecs as wr\n'), ((8614, 8668), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../users_and_pages_2021-05-28.pickle"""'], {}), "('../users_and_pages_2021-05-28.pickle')\n", (8628, 8668), True, 'import wikirecs as wr\n'), ((8882, 8940), 'wikirecs.dataframe_set_subtract', 'wr.dataframe_set_subtract', (['clean_histories', 'histories_test'], {}), '(clean_histories, histories_test)\n', (8907, 8940), True, 'import wikirecs as wr\n'), ((9217, 9274), 'wikirecs.dataframe_set_subtract', 'wr.dataframe_set_subtract', (['histories_train', 'histories_dev'], {}), '(histories_train, histories_dev)\n', (9242, 9274), True, 'import wikirecs as wr\n'), ((9870, 9949), 'pyarrow.feather.write_feather', 'feather.write_feather', (['histories_train', '"""../histories_train_2021-05-28.feather"""'], {}), "(histories_train, '../histories_train_2021-05-28.feather')\n", (9891, 9949), False, 'from pyarrow import feather\n'), ((9950, 10025), 'pyarrow.feather.write_feather', 'feather.write_feather', (['histories_dev', '"""../histories_dev_2021-05-28.feather"""'], {}), "(histories_dev, '../histories_dev_2021-05-28.feather')\n", (9971, 10025), False, 'from pyarrow import feather\n'), ((10026, 10103), 'pyarrow.feather.write_feather', 'feather.write_feather', (['histories_test', '"""../histories_test_2021-05-28.feather"""'], {}), "(histories_test, '../histories_test_2021-05-28.feather')\n", (10047, 10103), False, 'from pyarrow import feather\n'), ((10148, 10206), 'wikirecs.get_resurface_discovery', 'wr.get_resurface_discovery', (['histories_train', 'histories_dev'], {}), '(histories_train, histories_dev)\n', (10174, 10206), True, 'import wikirecs as wr\n'), ((10499, 10607), 'wikirecs.save_pickle', 'wr.save_pickle', (['(resurface_userids, discovery_userids)', '"""../resurface_discovery_users_2021-05-28.pickle"""'], {}), "((resurface_userids, discovery_userids),\n '../resurface_discovery_users_2021-05-28.pickle')\n", (10513, 10607), True, 'import wikirecs as wr\n'), ((10943, 11066), 'pull_edit_histories.get_edit_history', 'get_edit_history', ([], {'user': '"""Thornstrom"""', 'latest_timestamp': '"""2021-05-28T22:02:09Z"""', 'earliest_timestamp': '"""2020-05-28T22:02:09Z"""'}), "(user='Thornstrom', latest_timestamp='2021-05-28T22:02:09Z',\n earliest_timestamp='2020-05-28T22:02:09Z')\n", (10959, 11066), False, 'from pull_edit_histories import get_edit_history\n'), ((11170, 11219), 'wikirecs.print_user_history', 'wr.print_user_history', (['all_histories'], {'user': '"""Rama"""'}), "(all_histories, user='Rama')\n", (11191, 11219), True, 'import wikirecs as wr\n'), ((11221, 11270), 'wikirecs.print_user_history', 'wr.print_user_history', (['all_histories'], {'user': '"""Meow"""'}), "(all_histories, user='Meow')\n", (11242, 11270), True, 'import wikirecs as wr\n'), ((11592, 11646), 'numpy.array', 'np.array', (['[p2i[p] for p in for_implicit.pageid.values]'], {}), '([p2i[p] for p in for_implicit.pageid.values])\n', (11600, 11646), True, 'import numpy as np\n'), ((11653, 11707), 'numpy.array', 'np.array', (['[u2i[u] for u in for_implicit.userid.values]'], {}), '([u2i[u] for u in for_implicit.userid.values])\n', (11661, 11707), True, 'import numpy as np\n'), ((11731, 11782), 'scipy.sparse.coo_matrix', 'coo_matrix', (['(for_implicit.edits.values, (row, col))'], {}), '((for_implicit.edits.values, (row, col)))\n', (11741, 11782), False, 'from scipy.sparse import csr_matrix, csc_matrix, lil_matrix, coo_matrix\n'), ((11803, 11834), 'scipy.sparse.csc_matrix', 'csc_matrix', (['implicit_matrix_coo'], {}), '(implicit_matrix_coo)\n', (11813, 11834), False, 'from scipy.sparse import csr_matrix, csc_matrix, lil_matrix, coo_matrix\n'), ((11849, 11920), 'wikirecs.save_pickle', 'wr.save_pickle', (['implicit_matrix', '"""../implicit_matrix_2021-05-28.pickle"""'], {}), "(implicit_matrix, '../implicit_matrix_2021-05-28.pickle')\n", (11863, 11920), True, 'import wikirecs as wr\n'), ((11974, 12028), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../implicit_matrix_2021-05-28.pickle"""'], {}), "('../implicit_matrix_2021-05-28.pickle')\n", (11988, 12028), True, 'import wikirecs as wr\n'), ((12726, 12780), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../implicit_matrix_2021-05-28.pickle"""'], {}), "('../implicit_matrix_2021-05-28.pickle')\n", (12740, 12780), True, 'import wikirecs as wr\n'), ((12842, 12894), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../lookup_tables_2021-05-28.pickle"""'], {}), "('../lookup_tables_2021-05-28.pickle')\n", (12856, 12894), True, 'import wikirecs as wr\n'), ((12910, 12954), 'implicit.nearest_neighbours.bm25_weight', 'bm25_weight', (['implicit_matrix'], {'K1': '(100)', 'B': '(0.25)'}), '(implicit_matrix, K1=100, B=0.25)\n', (12921, 12954), False, 'from implicit.nearest_neighbours import bm25_weight\n'), ((13044, 13137), 'implicit.als.AlternatingLeastSquares', 'implicit.als.AlternatingLeastSquares', ([], {'factors': 'num_factors', 'regularization': 'regularization'}), '(factors=num_factors, regularization=\n regularization)\n', (13080, 13137), False, 'import implicit\n'), ((13163, 13228), 'wikirecs.save_pickle', 'wr.save_pickle', (['model', "('../als%d_bm25_model.pickle' % num_factors)"], {}), "(model, '../als%d_bm25_model.pickle' % num_factors)\n", (13177, 13228), True, 'import wikirecs as wr\n'), ((13237, 13293), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../als200_bm25_model_2021-05-28.pickle"""'], {}), "('../als200_bm25_model_2021-05-28.pickle')\n", (13251, 13293), True, 'import wikirecs as wr\n'), ((13741, 13789), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../implicit_grid_search.pickle"""'], {}), "('../implicit_grid_search.pickle')\n", (13755, 13789), True, 'import wikirecs as wr\n'), ((13791, 13824), 'pandas.DataFrame', 'pd.DataFrame', (['grid_search_results'], {}), '(grid_search_results)\n', (13803, 13824), True, 'import pandas as pd\n'), ((14076, 14129), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../implicit_grid_search_bm25.pickle"""'], {}), "('../implicit_grid_search_bm25.pickle')\n", (14090, 14129), True, 'import wikirecs as wr\n'), ((14462, 14502), 'implicit.nearest_neighbours.bm25_weight', 'bm25_weight', (['implicit_matrix'], {'K1': '(20)', 'B': '(1)'}), '(implicit_matrix, K1=20, B=1)\n', (14473, 14502), False, 'from implicit.nearest_neighbours import bm25_weight\n'), ((14747, 14769), 'implicit.nearest_neighbours.BM25Recommender', 'BM25Recommender', (['K1', 'B'], {}), '(K1, B)\n', (14762, 14769), False, 'from implicit.nearest_neighbours import BM25Recommender\n'), ((14798, 14851), 'wikirecs.save_pickle', 'wr.save_pickle', (['model', '"""../bm25_model_2021-05-28.pkl"""'], {}), "(model, '../bm25_model_2021-05-28.pkl')\n", (14812, 14851), True, 'import wikirecs as wr\n'), ((15881, 15922), 'wikirecs.save_pickle', 'wr.save_pickle', (['model', '"""b25_model.pickle"""'], {}), "(model, 'b25_model.pickle')\n", (15895, 15922), True, 'import wikirecs as wr\n'), ((15932, 15966), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""b25_model.pickle"""'], {}), "('b25_model.pickle')\n", (15946, 15966), True, 'import wikirecs as wr\n'), ((16231, 16279), 'wikirecs.print_user_history', 'wr.print_user_history', (['clean_histories'], {'userid': 'u'}), '(clean_histories, userid=u)\n', (16252, 16279), True, 'import wikirecs as wr\n'), ((16568, 16608), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../als150_model.pickle"""'], {}), "('../als150_model.pickle')\n", (16582, 16608), True, 'import wikirecs as wr\n'), ((17024, 17052), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (17034, 17052), True, 'import matplotlib.pyplot as plt\n'), ((17052, 17099), 'matplotlib.pyplot.plot', 'plt.plot', (['embedding[:, 0]', 'embedding[:, 1]', '"""."""'], {}), "(embedding[:, 0], embedding[:, 1], '.')\n", (17060, 17099), True, 'import matplotlib.pyplot as plt\n'), ((18470, 18582), 'plotly.express.scatter', 'px.scatter', ([], {'data_frame': 'emb_df', 'x': '"""dim1"""', 'y': '"""dim2"""', 'hover_name': '"""title"""', 'color': 'key', 'hover_data': "['edit_count']"}), "(data_frame=emb_df, x='dim1', y='dim2', hover_name='title', color\n =key, hover_data=['edit_count'])\n", (18480, 18582), True, 'import plotly.express as px\n'), ((19111, 19236), 'plotly.express.scatter', 'px.scatter', ([], {'data_frame': 'emb_df', 'x': '"""dim1"""', 'y': '"""dim2"""', 'hover_name': '"""title"""', 'color': '"""log_edit_count"""', 'hover_data': "['edit_count']"}), "(data_frame=emb_df, x='dim1', y='dim2', hover_name='title', color\n ='log_edit_count', hover_data=['edit_count'])\n", (19121, 19236), True, 'import plotly.express as px\n'), ((19516, 19577), 'pyarrow.feather.read_feather', 'feather.read_feather', (['"""../histories_train_2021-05-28.feather"""'], {}), "('../histories_train_2021-05-28.feather')\n", (19536, 19577), False, 'from pyarrow import feather\n'), ((19595, 19655), 'pyarrow.feather.read_feather', 'feather.read_feather', (['"""../histories_test_2021-05-28.feather"""'], {}), "('../histories_test_2021-05-28.feather')\n", (19615, 19655), False, 'from pyarrow import feather\n'), ((19672, 19731), 'pyarrow.feather.read_feather', 'feather.read_feather', (['"""../histories_dev_2021-05-28.feather"""'], {}), "('../histories_dev_2021-05-28.feather')\n", (19692, 19731), False, 'from pyarrow import feather\n'), ((19751, 19805), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../implicit_matrix_2021-05-28.pickle"""'], {}), "('../implicit_matrix_2021-05-28.pickle')\n", (19765, 19805), True, 'import wikirecs as wr\n'), ((19867, 19919), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../lookup_tables_2021-05-28.pickle"""'], {}), "('../lookup_tables_2021-05-28.pickle')\n", (19881, 19919), True, 'import wikirecs as wr\n'), ((19940, 19994), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../users_and_pages_2021-05-28.pickle"""'], {}), "('../users_and_pages_2021-05-28.pickle')\n", (19954, 19994), True, 'import wikirecs as wr\n'), ((20037, 20101), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../resurface_discovery_users_2021-05-28.pickle"""'], {}), "('../resurface_discovery_users_2021-05-28.pickle')\n", (20051, 20101), True, 'import wikirecs as wr\n'), ((20123, 20258), 'wikirecs.display_recs_with_history', 'wr.display_recs_with_history', (['recs', 'userids[:100]', 'histories_test', 'histories_train', 'p2t', 'u2n'], {'recs_to_display': '(5)', 'hist_to_display': '(10)'}), '(recs, userids[:100], histories_test,\n histories_train, p2t, u2n, recs_to_display=5, hist_to_display=10)\n', (20151, 20258), True, 'import wikirecs as wr\n'), ((20360, 20411), 'recommenders.PopularityRecommender', 'recommenders.PopularityRecommender', (['histories_train'], {}), '(histories_train)\n', (20394, 20411), False, 'import recommenders\n'), ((20451, 20507), 'wikirecs.save_pickle', 'wr.save_pickle', (['precs', "('../' + rec_name + '_recs.pickle')"], {}), "(precs, '../' + rec_name + '_recs.pickle')\n", (20465, 20507), True, 'import wikirecs as wr\n'), ((20534, 20647), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', 'precs', 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), '(histories_dev, precs, K, discovery_userids,\n resurface_userids, implicit_matrix, i2p, u2i)\n', (20553, 20647), True, 'import wikirecs as wr\n'), ((20727, 20778), 'recommenders.MostRecentRecommender', 'recommenders.MostRecentRecommender', (['histories_train'], {}), '(histories_train)\n', (20761, 20778), False, 'import recommenders\n'), ((20868, 20924), 'wikirecs.save_pickle', 'wr.save_pickle', (['rrecs', "('../' + rec_name + '_recs.pickle')"], {}), "(rrecs, '../' + rec_name + '_recs.pickle')\n", (20882, 20924), True, 'import wikirecs as wr\n'), ((20982, 21095), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', 'rrecs', 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), '(histories_dev, rrecs, K, discovery_userids,\n resurface_userids, implicit_matrix, i2p, u2i)\n', (21001, 21095), True, 'import wikirecs as wr\n'), ((21188, 21241), 'recommenders.MostFrequentRecommender', 'recommenders.MostFrequentRecommender', (['histories_train'], {}), '(histories_train)\n', (21224, 21241), False, 'import recommenders\n'), ((21333, 21389), 'wikirecs.save_pickle', 'wr.save_pickle', (['frecs', "('../' + rec_name + '_recs.pickle')"], {}), "(frecs, '../' + rec_name + '_recs.pickle')\n", (21347, 21389), True, 'import wikirecs as wr\n'), ((21411, 21524), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', 'frecs', 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), '(histories_dev, frecs, K, discovery_userids,\n resurface_userids, implicit_matrix, i2p, u2i)\n', (21430, 21524), True, 'import wikirecs as wr\n'), ((21577, 21631), 'recommenders.MyBM25Recommender', 'recommenders.MyBM25Recommender', (['model', 'implicit_matrix'], {}), '(model, implicit_matrix)\n', (21607, 21631), False, 'import recommenders\n'), ((21751, 21807), 'wikirecs.save_pickle', 'wr.save_pickle', (['brecs', "('../' + rec_name + '_recs.pickle')"], {}), "(brecs, '../' + rec_name + '_recs.pickle')\n", (21765, 21807), True, 'import wikirecs as wr\n'), ((21865, 21978), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', 'brecs', 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), '(histories_dev, brecs, K, discovery_userids,\n resurface_userids, implicit_matrix, i2p, u2i)\n', (21884, 21978), True, 'import wikirecs as wr\n'), ((22170, 22235), 'wikirecs.save_pickle', 'wr.save_pickle', (['brecs_filtered', "('../' + rec_name + '_recs.pickle')"], {}), "(brecs_filtered, '../' + rec_name + '_recs.pickle')\n", (22184, 22235), True, 'import wikirecs as wr\n'), ((22257, 22386), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', "recs['bm25_filtered']", 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), "(histories_dev, recs['bm25_filtered'], K,\n discovery_userids, resurface_userids, implicit_matrix, i2p, u2i)\n", (22276, 22386), True, 'import wikirecs as wr\n'), ((22427, 22556), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', "recs['bm25_filtered']", 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), "(histories_dev, recs['bm25_filtered'], K,\n discovery_userids, resurface_userids, implicit_matrix, i2p, u2i)\n", (22446, 22556), True, 'import wikirecs as wr\n'), ((22632, 22688), 'wikirecs.load_pickle', 'wr.load_pickle', (['"""../als200_bm25_model_2021-05-28.pickle"""'], {}), "('../als200_bm25_model_2021-05-28.pickle')\n", (22646, 22688), True, 'import wikirecs as wr\n'), ((22888, 22944), 'wikirecs.save_pickle', 'wr.save_pickle', (['irecs', "('../' + rec_name + '_recs.pickle')"], {}), "(irecs, '../' + rec_name + '_recs.pickle')\n", (22902, 22944), True, 'import wikirecs as wr\n'), ((23476, 23541), 'wikirecs.save_pickle', 'wr.save_pickle', (['irecs_filtered', "('../' + rec_name + '_recs.pickle')"], {}), "(irecs_filtered, '../' + rec_name + '_recs.pickle')\n", (23490, 23541), True, 'import wikirecs as wr\n'), ((23628, 23679), 'recommenders.MostRecentRecommender', 'recommenders.MostRecentRecommender', (['histories_train'], {}), '(histories_train)\n', (23662, 23679), False, 'import recommenders\n'), ((23771, 23886), 'recommenders.JaccardRecommender', 'recommenders.JaccardRecommender', (['implicit_matrix'], {'p2i': 'p2i', 't2i': 't2i', 'i2t': 'i2t', 'i2p': 'i2p', 'n2i': 'n2i', 'u2i': 'u2i', 'i2u': 'i2u'}), '(implicit_matrix, p2i=p2i, t2i=t2i, i2t=i2t,\n i2p=i2p, n2i=n2i, u2i=u2i, i2u=i2u)\n', (23802, 23886), False, 'import recommenders\n'), ((24156, 24202), 'wikirecs.save_pickle', 'wr.save_pickle', (['jrecs', '"""jaccard-1_recs.pickle"""'], {}), "(jrecs, 'jaccard-1_recs.pickle')\n", (24170, 24202), True, 'import wikirecs as wr\n'), ((24244, 24357), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', 'jrecs', 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), '(histories_dev, jrecs, K, discovery_userids,\n resurface_userids, implicit_matrix, i2p, u2i)\n', (24263, 24357), True, 'import wikirecs as wr\n'), ((24378, 24513), 'wikirecs.display_recs_with_history', 'wr.display_recs_with_history', (['jrecs', 'userids[:30]', 'histories_test', 'histories_train', 'p2t', 'u2n'], {'recs_to_display': '(5)', 'hist_to_display': '(10)'}), '(jrecs, userids[:30], histories_test,\n histories_train, p2t, u2n, recs_to_display=5, hist_to_display=10)\n', (24406, 24513), True, 'import wikirecs as wr\n'), ((24586, 24701), 'recommenders.JaccardRecommender', 'recommenders.JaccardRecommender', (['implicit_matrix'], {'p2i': 'p2i', 't2i': 't2i', 'i2t': 'i2t', 'i2p': 'i2p', 'n2i': 'n2i', 'u2i': 'u2i', 'i2u': 'i2u'}), '(implicit_matrix, p2i=p2i, t2i=t2i, i2t=i2t,\n i2p=i2p, n2i=n2i, u2i=u2i, i2u=i2u)\n', (24617, 24701), False, 'import recommenders\n'), ((25535, 25571), 'recommenders.InterleaveRecommender', 'recommenders.InterleaveRecommender', ([], {}), '()\n', (25569, 25571), False, 'import recommenders\n'), ((25648, 25706), 'wikirecs.save_pickle', 'wr.save_pickle', (['intrecs', "('../' + rec_name + '_recs.pickle')"], {}), "(intrecs, '../' + rec_name + '_recs.pickle')\n", (25662, 25706), True, 'import wikirecs as wr\n'), ((25731, 25846), 'wikirecs.get_recs_metrics', 'wr.get_recs_metrics', (['histories_dev', 'intrecs', 'K', 'discovery_userids', 'resurface_userids', 'implicit_matrix', 'i2p', 'u2i'], {}), '(histories_dev, intrecs, K, discovery_userids,\n resurface_userids, implicit_matrix, i2p, u2i)\n', (25750, 25846), True, 'import wikirecs as wr\n'), ((31005, 31101), 'plotly.express.scatter', 'px.scatter', ([], {'data_frame': 'results_df', 'x': '"""ndcg_discover"""', 'y': '"""ndcg_resurface"""', 'hover_name': '"""index"""'}), "(data_frame=results_df, x='ndcg_discover', y='ndcg_resurface',\n hover_name='index')\n", (31015, 31101), True, 'import plotly.express as px\n'), ((31206, 31306), 'plotly.express.scatter', 'px.scatter', ([], {'data_frame': 'results_df', 'x': '"""recall_discover"""', 'y': '"""recall_resurface"""', 'hover_name': '"""index"""'}), "(data_frame=results_df, x='recall_discover', y='recall_resurface',\n hover_name='index')\n", (31216, 31306), True, 'import plotly.express as px\n'), ((31635, 31666), 'seaborn.set_theme', 'sns.set_theme', ([], {'style': '"""darkgrid"""'}), "(style='darkgrid')\n", (31648, 31666), True, 'import seaborn as sns\n'), ((31667, 31767), 'matplotlib.rcParams.update', 'matplotlib.rcParams.update', (["{'font.size': 48, 'figure.figsize': (8, 5), 'legend.edgecolor': 'k'}"], {}), "({'font.size': 48, 'figure.figsize': (8, 5),\n 'legend.edgecolor': 'k'})\n", (31693, 31767), False, 'import matplotlib\n'), ((31763, 31790), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 7)'}), '(figsize=(12, 7))\n', (31773, 31790), True, 'import matplotlib.pyplot as plt\n'), ((32073, 32093), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '""":k"""'], {}), "(x, y, ':k')\n", (32081, 32093), True, 'import matplotlib.pyplot as plt\n'), ((32154, 32182), 'matplotlib.pyplot.rc', 'plt.rc', (['"""xtick"""'], {'labelsize': '(3)'}), "('xtick', labelsize=3)\n", (32160, 32182), True, 'import matplotlib.pyplot as plt\n'), ((32266, 32295), 'matplotlib.rc', 'matplotlib.rc', (['"""font"""'], {}), "('font', **font)\n", (32279, 32295), False, 'import matplotlib\n'), ((32297, 32317), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y', '""":k"""'], {}), "(x, y, ':k')\n", (32305, 32317), True, 'import matplotlib.pyplot as plt\n'), ((32317, 32351), 'matplotlib.pyplot.plot', 'plt.plot', (['A', 'B', '"""."""'], {'MarkerSize': '(15)'}), "(A, B, '.', MarkerSize=15)\n", (32325, 32351), True, 'import matplotlib.pyplot as plt\n'), ((32709, 32759), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Recall@20 discovery (%)"""'], {'fontsize': '(20)'}), "('Recall@20 discovery (%)', fontsize=20)\n", (32719, 32759), True, 'import matplotlib.pyplot as plt\n'), ((32759, 32809), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Recall@20 resurface (%)"""'], {'fontsize': '(20)'}), "('Recall@20 resurface (%)', fontsize=20)\n", (32769, 32809), True, 'import matplotlib.pyplot as plt\n'), ((32809, 32825), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0, 3]'], {}), '([0, 3])\n', (32817, 32825), True, 'import matplotlib.pyplot as plt\n'), ((32825, 32843), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[-2, 85]'], {}), '([-2, 85])\n', (32833, 32843), True, 'import matplotlib.pyplot as plt\n'), ((32850, 32859), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (32857, 32859), True, 'import matplotlib.pyplot as plt\n'), ((33146, 33205), 'pyarrow.feather.read_feather', 'feather.read_feather', (['"""../histories_dev_2021-05-28.feather"""'], {}), "('../histories_dev_2021-05-28.feather')\n", (33166, 33205), False, 'from pyarrow import feather\n'), ((33207, 33235), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 10)'}), '(figsize=(15, 10))\n', (33217, 33235), True, 'import matplotlib.pyplot as plt\n'), ((33396, 33425), 'matplotlib.pyplot.legend', 'plt.legend', (['recommender_names'], {}), '(recommender_names)\n', (33406, 33425), True, 'import matplotlib.pyplot as plt\n'), ((33427, 33455), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 10)'}), '(figsize=(15, 10))\n', (33437, 33455), True, 'import matplotlib.pyplot as plt\n'), ((33605, 33634), 'matplotlib.pyplot.legend', 'plt.legend', (['recommender_names'], {}), '(recommender_names)\n', (33615, 33634), True, 'import matplotlib.pyplot as plt\n'), ((33636, 33664), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(15, 10)'}), '(figsize=(15, 10))\n', (33646, 33664), True, 'import matplotlib.pyplot as plt\n'), ((33814, 33843), 'matplotlib.pyplot.legend', 'plt.legend', (['recommender_names'], {}), '(recommender_names)\n', (33824, 33843), True, 'import matplotlib.pyplot as plt\n'), ((33880, 33911), 'seaborn.set_theme', 'sns.set_theme', ([], {'style': '"""darkgrid"""'}), "(style='darkgrid')\n", (33893, 33911), True, 'import seaborn as sns\n'), ((33912, 34012), 'matplotlib.rcParams.update', 'matplotlib.rcParams.update', (["{'font.size': 18, 'figure.figsize': (8, 5), 'legend.edgecolor': 'k'}"], {}), "({'font.size': 18, 'figure.figsize': (8, 5),\n 'legend.edgecolor': 'k'})\n", (33938, 34012), False, 'import matplotlib\n'), ((34006, 34033), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (34016, 34033), True, 'import matplotlib.pyplot as plt\n'), ((34208, 34306), 'matplotlib.pyplot.legend', 'plt.legend', (["['ALS', 'BM25']"], {'title': '"""Algorithm"""', 'fontsize': '(16)', 'title_fontsize': '(16)', 'facecolor': '"""w"""'}), "(['ALS', 'BM25'], title='Algorithm', fontsize=16, title_fontsize=\n 16, facecolor='w')\n", (34218, 34306), True, 'import matplotlib.pyplot as plt\n'), ((34301, 34330), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""@N"""'], {'fontsize': '(20)'}), "('@N', fontsize=20)\n", (34311, 34330), True, 'import matplotlib.pyplot as plt\n'), ((34330, 34377), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Discovery recall (%)"""'], {'fontsize': '(20)'}), "('Discovery recall (%)', fontsize=20)\n", (34340, 34377), True, 'import matplotlib.pyplot as plt\n'), ((37355, 37424), 'recommenders.ImplicitCollaborativeRecommender', 'recommenders.ImplicitCollaborativeRecommender', (['model', 'implicit_matrix'], {}), '(model, implicit_matrix)\n', (37400, 37424), False, 'import recommenders\n'), ((37948, 37972), 'numpy.random.shuffle', 'np.random.shuffle', (['index'], {}), '(index)\n', (37965, 37972), True, 'import numpy as np\n'), ((38219, 38243), 'numpy.random.shuffle', 'np.random.shuffle', (['index'], {}), '(index)\n', (38236, 38243), True, 'import numpy as np\n'), ((38888, 38918), 'numpy.array', 'np.array', (['[r[1] for r in runs]'], {}), '([r[1] for r in runs])\n', (38896, 38918), True, 'import numpy as np\n'), ((38935, 38952), 'numpy.sum', 'np.sum', (['(lens == 1)'], {}), '(lens == 1)\n', (38941, 38952), True, 'import numpy as np\n'), ((12242, 12290), 'numpy.sum', 'np.sum', (['(implicit_matrix[:, veditors] > 0)'], {'axis': '(1)'}), '(implicit_matrix[:, veditors] > 0, axis=1)\n', (12248, 12290), True, 'import numpy as np\n'), ((12626, 12677), 'wikirecs.print_user_history', 'wr.print_user_history', (['all_histories'], {'user': 'i2n[ved]'}), '(all_histories, user=i2n[ved])\n', (12647, 12677), True, 'import wikirecs as wr\n'), ((28147, 28168), 'pandas.DataFrame', 'pd.DataFrame', (['results'], {}), '(results)\n', (28159, 28168), True, 'import pandas as pd\n'), ((28530, 28584), 'seaborn.scatterplot', 'sns.scatterplot', (['x', 'y'], {'data': 'data', 'size': '(8)', 'legend': '(False)'}), '(x, y, data=data, size=8, legend=False)\n', (28545, 28584), True, 'import seaborn as sns\n'), ((28887, 28903), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (28896, 28903), True, 'import matplotlib.pyplot as plt\n'), ((28908, 28926), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xlabel'], {}), '(xlabel)\n', (28918, 28926), True, 'import matplotlib.pyplot as plt\n'), ((28931, 28949), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['ylabel'], {}), '(ylabel)\n', (28941, 28949), True, 'import matplotlib.pyplot as plt\n'), ((33030, 33076), 'wikirecs.load_pickle', 'wr.load_pickle', (["('../' + rname + '_recs.pickle')"], {}), "('../' + rname + '_recs.pickle')\n", (33044, 33076), True, 'import wikirecs as wr\n'), ((33286, 33333), 'wikirecs.recall_curve', 'wr.recall_curve', (['histories_dev', 'recs[rname]', '(20)'], {}), '(histories_dev, recs[rname], 20)\n', (33301, 33333), True, 'import wikirecs as wr\n'), ((33368, 33396), 'matplotlib.pyplot.plot', 'plt.plot', (['recall_curve', '""".-"""'], {}), "(recall_curve, '.-')\n", (33376, 33396), True, 'import matplotlib.pyplot as plt\n'), ((33506, 33572), 'wikirecs.recall_curve', 'wr.recall_curve', (['histories_dev', 'recs[rname]', '(20)', 'discovery_userids'], {}), '(histories_dev, recs[rname], 20, discovery_userids)\n', (33521, 33572), True, 'import wikirecs as wr\n'), ((33577, 33605), 'matplotlib.pyplot.plot', 'plt.plot', (['recall_curve', '""".-"""'], {}), "(recall_curve, '.-')\n", (33585, 33605), True, 'import matplotlib.pyplot as plt\n'), ((33715, 33781), 'wikirecs.recall_curve', 'wr.recall_curve', (['histories_dev', 'recs[rname]', '(20)', 'resurface_userids'], {}), '(histories_dev, recs[rname], 20, resurface_userids)\n', (33730, 33781), True, 'import wikirecs as wr\n'), ((33786, 33814), 'matplotlib.pyplot.plot', 'plt.plot', (['recall_curve', '""".-"""'], {}), "(recall_curve, '.-')\n", (33794, 33814), True, 'import matplotlib.pyplot as plt\n'), ((34081, 34147), 'wikirecs.recall_curve', 'wr.recall_curve', (['histories_dev', 'recs[rname]', '(20)', 'discovery_userids'], {}), '(histories_dev, recs[rname], 20, discovery_userids)\n', (34096, 34147), True, 'import wikirecs as wr\n'), ((34392, 34411), 'numpy.arange', 'np.arange', (['(0)', '(20)', '(2)'], {}), '(0, 20, 2)\n', (34401, 34411), True, 'import numpy as np\n'), ((35535, 35637), 'pandas.DataFrame', 'pd.DataFrame', (['{rec_name: [p2t[r] for r in recs[rec_name][userid][:N]] for rec_name in\n recs_subset}'], {}), '({rec_name: [p2t[r] for r in recs[rec_name][userid][:N]] for\n rec_name in recs_subset})\n', (35547, 35637), True, 'import pandas as pd\n'), ((37028, 37141), 'pandas.DataFrame', 'pd.DataFrame', (["{rec_name: [p2t[r] for r in recs[rec_name][n2u['HenryXVII']]][:N] for\n rec_name in recs_subset}"], {}), "({rec_name: [p2t[r] for r in recs[rec_name][n2u['HenryXVII']]][\n :N] for rec_name in recs_subset})\n", (37040, 37141), True, 'import pandas as pd\n'), ((38336, 38421), 'wikirecs.print_user_history', 'wr.print_user_history', ([], {'user': 'edited_pages.index[i]', 'all_histories': 'clean_histories'}), '(user=edited_pages.index[i], all_histories=clean_histories\n )\n', (38357, 38421), True, 'import wikirecs as wr\n'), ((1229, 1248), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (1246, 1248), False, 'import logging\n'), ((2517, 2571), 'pandas.concat', 'pd.concat', (['[all_histories, oneuser]'], {'ignore_index': '(True)'}), '([all_histories, oneuser], ignore_index=True)\n', (2526, 2571), True, 'import pandas as pd\n'), ((2868, 2892), 'numpy.arange', 'np.arange', (['(0)', '(20000)', '(200)'], {}), '(0, 20000, 200)\n', (2877, 2892), True, 'import numpy as np\n'), ((2989, 3009), 'numpy.arange', 'np.arange', (['(0)', '(200)', '(1)'], {}), '(0, 200, 1)\n', (2998, 3009), True, 'import numpy as np\n'), ((3128, 3150), 'numpy.median', 'np.median', (['edit_counts'], {}), '(edit_counts)\n', (3137, 3150), True, 'import numpy as np\n'), ((6531, 6547), 'numpy.array', 'np.array', (['is_bot'], {}), '(is_bot)\n', (6539, 6547), True, 'import numpy as np\n'), ((11130, 11151), 'pandas.DataFrame', 'pd.DataFrame', (['oneuser'], {}), '(oneuser)\n', (11142, 11151), True, 'import pandas as pd\n'), ((12311, 12359), 'numpy.sum', 'np.sum', (['(implicit_matrix[:, veditors] > 0)'], {'axis': '(1)'}), '(implicit_matrix[:, veditors] > 0, axis=1)\n', (12317, 12359), True, 'import numpy as np\n'), ((14600, 14620), 'numpy.arange', 'np.arange', (['(0)', '(100)', '(1)'], {}), '(0, 100, 1)\n', (14609, 14620), True, 'import numpy as np\n'), ((14686, 14706), 'numpy.arange', 'np.arange', (['(0)', '(100)', '(1)'], {}), '(0, 100, 1)\n', (14695, 14706), True, 'import numpy as np\n'), ((16966, 16977), 'umap.UMAP', 'umap.UMAP', ([], {}), '()\n', (16975, 16977), False, 'import umap\n'), ((17210, 17253), 'numpy.sum', 'np.sum', (['implicit_matrix[indices, :]'], {'axis': '(1)'}), '(implicit_matrix[indices, :], axis=1)\n', (17216, 17253), True, 'import numpy as np\n'), ((17891, 17940), 'numpy.sum', 'np.sum', (['implicit_matrix[actor_indices, :]'], {'axis': '(1)'}), '(implicit_matrix[actor_indices, :], axis=1)\n', (17897, 17940), True, 'import numpy as np\n'), ((18053, 18064), 'umap.UMAP', 'umap.UMAP', ([], {}), '()\n', (18062, 18064), False, 'import umap\n'), ((23547, 23568), 'pandas.DataFrame', 'pd.DataFrame', (['results'], {}), '(results)\n', (23559, 23568), True, 'import pandas as pd\n'), ((34410, 34429), 'numpy.arange', 'np.arange', (['(0)', '(20)', '(2)'], {}), '(0, 20, 2)\n', (34419, 34429), True, 'import numpy as np\n'), ((38482, 38504), 'numpy.arange', 'np.arange', (['(0)', '(2000)', '(20)'], {}), '(0, 2000, 20)\n', (38491, 38504), True, 'import numpy as np\n'), ((5531, 5559), 'numpy.sum', 'np.sum', (['is_popular_page_edit'], {}), '(is_popular_page_edit)\n', (5537, 5559), True, 'import numpy as np\n'), ((6592, 6609), 'numpy.sum', 'np.sum', (['keep_user'], {}), '(keep_user)\n', (6598, 6609), True, 'import numpy as np\n'), ((16687, 16730), 'numpy.sum', 'np.sum', (['implicit_matrix[nonzero, :]'], {'axis': '(1)'}), '(implicit_matrix[nonzero, :], axis=1)\n', (16693, 16730), True, 'import numpy as np\n'), ((17303, 17346), 'numpy.sum', 'np.sum', (['implicit_matrix[indices, :]'], {'axis': '(1)'}), '(implicit_matrix[indices, :], axis=1)\n', (17309, 17346), True, 'import numpy as np\n'), ((17990, 18039), 'numpy.sum', 'np.sum', (['implicit_matrix[actor_indices, :]'], {'axis': '(1)'}), '(implicit_matrix[actor_indices, :], axis=1)\n', (17996, 18039), True, 'import numpy as np\n'), ((25112, 25166), 'wikirecs.prop_resurface', 'wr.prop_resurface', (['jrecs', 'K', 'implicit_matrix', 'i2p', 'u2i'], {}), '(jrecs, K, implicit_matrix, i2p, u2i)\n', (25129, 25166), True, 'import wikirecs as wr\n'), ((32446, 32455), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (32453, 32455), True, 'import matplotlib.pyplot as plt\n'), ((32562, 32571), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (32569, 32571), True, 'import matplotlib.pyplot as plt\n'), ((32641, 32650), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (32648, 32650), True, 'import matplotlib.pyplot as plt\n'), ((34161, 34183), 'numpy.array', 'np.array', (['recall_curve'], {}), '(recall_curve)\n', (34169, 34183), True, 'import numpy as np\n'), ((34482, 34491), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (34489, 34491), True, 'import matplotlib.pyplot as plt\n'), ((34561, 34570), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (34568, 34570), True, 'import matplotlib.pyplot as plt\n'), ((38805, 38825), 'itertools.groupby', 'itertools.groupby', (['d'], {}), '(d)\n', (38822, 38825), False, 'import itertools\n'), ((2459, 2480), 'pandas.DataFrame', 'pd.DataFrame', (['oneuser'], {}), '(oneuser)\n', (2471, 2480), True, 'import pandas as pd\n'), ((4596, 4629), 'itertools.groupby', 'itertools.groupby', (['d'], {'key': 'keyfunc'}), '(d, key=keyfunc)\n', (4613, 4629), False, 'import itertools\n'), ((25035, 25070), 'wikirecs.recall', 'wr.recall', (['histories_test', 'jrecs', 'K'], {}), '(histories_test, jrecs, K)\n', (25044, 25070), True, 'import wikirecs as wr\n'), ((25219, 25287), 'wikirecs.recall', 'wr.recall', (['histories_test', 'jrecs', 'K'], {'userid_subset': 'discovery_userids'}), '(histories_test, jrecs, K, userid_subset=discovery_userids)\n', (25228, 25287), True, 'import wikirecs as wr\n'), ((25340, 25408), 'wikirecs.recall', 'wr.recall', (['histories_test', 'jrecs', 'K'], {'userid_subset': 'resurface_userids'}), '(histories_test, jrecs, K, userid_subset=resurface_userids)\n', (25349, 25408), True, 'import wikirecs as wr\n'), ((32483, 32500), 'numpy.array', 'np.array', (['xyz[1:]'], {}), '(xyz[1:])\n', (32491, 32500), True, 'import numpy as np\n'), ((5652, 5680), 'numpy.sum', 'np.sum', (['is_popular_page_edit'], {}), '(is_popular_page_edit)\n', (5658, 5680), True, 'import numpy as np\n'), ((6648, 6665), 'numpy.sum', 'np.sum', (['keep_user'], {}), '(keep_user)\n', (6654, 6665), True, 'import numpy as np\n')]
import random import os.path import pygame import sys from pygame.locals import * WIDTH = 800 HEIGHT = 640 FPS = 60 POWERUP_TIME = 4000 RELOAD = 300 NUMSTARS = 30 TYPING_SPEED = 300 PLAYER_MAX_HEALTH = 100 BLACK = (0, 0, 0) WHITE = (255, 255, 255) RED = (255, 0, 0) GREEN = (0, 255, 0) YELLOW = (255, 211, 0) LIGHT_GREEN = (185, 235, 98) FONT = 'MyFont.ttf' pygame.mixer.pre_init(44100, -16, 1, 512) # Decreasing the size of the buffer will reduce the latency pygame.mixer.init() # handles sound pygame.init() screen = pygame.display.set_mode((WIDTH, HEIGHT)) pygame.display.set_caption('Save The Galaxy') clock = pygame.time.Clock() if hasattr(sys, '_MEIPASS'): main_dir = sys._MEIPASS else: main_dir = os.path.split(os.path.abspath(__file__))[0] + '\\data' textfile_dir = os.path.split(os.path.abspath(__file__))[0] FONT = main_dir + '\\' + FONT def loadImage(file): file = os.path.join(main_dir, file) img = pygame.image.load(file) return img.convert_alpha() iconImg = pygame.transform.scale(loadImage('icon.png'), (30, 30)) pygame.display.set_icon(iconImg) loadingScreenImg = pygame.transform.scale(loadImage('loadingscreen.png'), (WIDTH, HEIGHT)) loadingScreenImgRect = loadingScreenImg.get_rect() screen.blit(loadingScreenImg, loadingScreenImgRect) pygame.display.update() def loadSound(file): file = os.path.join(main_dir, file) sound = pygame.mixer.Sound(file) return sound def printText(surface, text, size, x, y, color, center = 0): font = pygame.font.Font(FONT, size) font.set_bold(True) textSurface = font.render(text, True, color) text_rect = textSurface.get_rect() if center == 0: text_rect.bottomleft = (x, y) else: text_rect.center = center surface.blit(textSurface, text_rect) def slowType(s, y): global TYPING_SPEED typeFPS = 60 k = len(s) i = 0 x = 30 lastLetter = pygame.time.get_ticks() while i < k: clock.tick(typeFPS) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() elif event.type == pygame.KEYDOWN: if event.key == K_KP_ENTER or event.key == K_ESCAPE: typeFPS = 0 if (pygame.time.get_ticks() - lastLetter) > (random.random()*TYPING_SPEED): printText(screen, s[i], 16, x, y, YELLOW) keyPress_sound.play() pygame.display.update() x += 16 i += 1 lastLetter = pygame.time.get_ticks() def showStory(): screen.blit(storyImg, storyImgRect) pygame.display.update() story_music.play(-1) slowType('GREETINGS BRAVE WARRIOR,', 20) slowType('YOUR GALAXY IS IN GREAT DANGER', 40) slowType('OF RUTHLESS ALIEN INVASION', 60) slowType('YOU HAVE BEEN CHOSEN', 80) slowType('TO FACE AGAINST THIS TYRANNY', 100) slowType('YOU GOT MOST ADVANCED SPACE SHIP', 120) slowType('YOU HAVE ASSIGNMENT TO DESTROY ENEMY ARMY', 140) slowType('AND DEFEAT CAPTAIN, GENERAL AND LEADER.', 160) slowType('IF YOU ACCOMPLISH THIS MISSION SUCCESSFULLY,', 180) slowType('WHOLE GALAXY WILL BE ETERNALLY GRATEFUL AND', 200) slowType('MAY THE FORCE ALWAYS BE ON YOUR SIDE', 220) slowType('PRESS ANY KEY TO CONTINUE...', 260) while True: clock.tick(FPS) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() elif event.type == pygame.KEYDOWN: story_music.stop() showGameStartScreen() def drawHealthBar(surface, x, y, health, healthColor, maxhealth, barLength): if health < 0: health = 0 barHeight = 25 fill = (health / maxhealth) * barLength outlineRect = pygame.Rect(x, y, barLength, barHeight) fillRect = pygame.Rect(x, y, fill, barHeight) pygame.draw.rect(surface, healthColor, fillRect) pygame.draw.rect(surface, WHITE, outlineRect, 2) def drawLives(surface, x, y, lives, img): for i in range(lives): imgRect = img.get_rect() imgRect.x = x + 35*i imgRect.y = y surface.blit(img, imgRect) class Player(pygame.sprite.Sprite): def __init__(self): pygame.sprite.Sprite.__init__(self) self.image = playerImg self.rect = self.image.get_rect() self.radius = 22 self.rect.bottom = HEIGHT - 30 self.rect.centerx = WIDTH / 2 self.speedx = 5 self.speedy = 3 self.lives = 3 self.health = PLAYER_MAX_HEALTH self.hidden = False self.hide_timer = pygame.time.get_ticks() self.immune = False self.immune_timer = pygame.time.get_ticks() self.powerLvl = 1 self.power_timer = pygame.time.get_ticks() self.shoot_timer = pygame.time.get_ticks() self.score = 0 def update(self): if self.immune: self.image = playerImg_immune else: self.image = playerImg if player.lives < 1: pygame.mixer.music.stop() boss_fight_music.stop() pygame.mixer.music.play(-1) showGameOverScreen() if self.powerLvl > 1: if pygame.time.get_ticks() - self.power_timer > POWERUP_TIME: self.powerLvl = 1 self.power_timer = pygame.time.get_ticks() if self.hidden and pygame.time.get_ticks() - self.hide_timer > 1200: self.hidden = False self.rect.bottom = HEIGHT - 30 self.rect.centerx = WIDTH / 2 self.immune = True self.immune_timer = pygame.time.get_ticks() if self.immune and pygame.time.get_ticks() - self.immune_timer > 1500: self.immune = False keystate = pygame.key.get_pressed() if keystate[K_LEFT]: self.rect.x -= self.speedx if keystate[K_RIGHT]: self.rect.x += self.speedx if keystate[K_UP]: self.rect.y -= self.speedy if keystate[K_DOWN]: self.rect.y += self.speedy if self.rect.right > WIDTH + 20: self.rect.right = WIDTH + 20 if self.rect.left < -20 and self.rect.left > -200: self.rect.left = -20 if self.rect.top <= 0 and self.rect.top > -200: self.rect.top = 0 if self.rect.bottom >= HEIGHT - 30: self.rect.bottom = HEIGHT - 30 def shoot(self): if not self.hidden: self.shoot_timer = pygame.time.get_ticks() if self.powerLvl == 1: bullet = Bullet(self.rect.centerx, self.rect.top) allSprites.add(bullet) bullets.add(bullet) shoot_sound.play() elif self.powerLvl == 2: bullet1 = Bullet(self.rect.left+5, self.rect.centery) bullet2 = Bullet(self.rect.right-5, self.rect.centery) allSprites.add(bullet1, bullet2) bullets.add(bullet1, bullet2) shoot_sound.play() else: bullet = Bullet(self.rect.centerx, self.rect.top) bullet1 = Bullet(self.rect.left + 5, self.rect.centery) bullet2 = Bullet(self.rect.right - 5, self.rect.centery) allSprites.add(bullet, bullet1, bullet2) bullets.add(bullet, bullet1, bullet2) shoot_sound.play() def hide(self): self.hidden = True self.hide_timer = pygame.time.get_ticks() self.rect.center = (-500, -500) def powerup(self): self.powerLvl += 1 self.power_timer = pygame.time.get_ticks() def reset(self): self.rect.bottom = HEIGHT - 30 self.rect.centerx = WIDTH / 2 self.lives = 3 self.health = PLAYER_MAX_HEALTH self.hidden = False self.powerLvl = 1 self.score = 0 class Alien(pygame.sprite.Sprite): def __init__(self, x, y, img1, img2, smartShoot, fly): pygame.sprite.Sprite.__init__(self) self.img1 = img1 self.img2 = img2 self.image = self.img1 self.rect = self.image.get_rect() self.radius = 20 self.rect.x = x self.rect.y = y self.speedy = 0 self.speedx = random.randrange(1, 3) self.direction = 1 self.lastUpdate = pygame.time.get_ticks() self.lastBomb = pygame.time.get_ticks() self.smartShoot = smartShoot self.canFly = fly self.fly = False self.fly_timer = pygame.time.get_ticks() self.starty = self.rect.y self.hitbottom = False self.flyTime = random.randrange(5000, 30000) def move(self, direction, y = 0): if self.rect.y < self.starty: self.rect.y = self.starty self.fly = False if y == 0: self.rect.x += self.speedx * self.direction else: self.rect.y += 4 * direction if self.rect.bottom > player.rect.bottom: self.rect.bottom = player.rect.bottom self.hitbottom = True if self.rect.y == self.starty: self.fly = False alliens.remove(self) hits = pygame.sprite.spritecollide(self, alliens, False) if hits: self.direction *= -1 alliens.add(self) def update(self): now = pygame.time.get_ticks() if now - self.lastUpdate > 80: self.lastUpdate = now if self.image == self.img1: self.image = self.img2 else: self.image = self.img1 x = self.rect.x y = self.rect.y self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y if self.canFly: if now - self.fly_timer > self.flyTime: self.fly_timer = now self.fly = True if self.fly == False: self.hitbottom = False if self.rect.left <=0: self.rect.left = 0 self.direction *= -1 if self.rect.right >= WIDTH: self.rect.right = WIDTH self.direction *= -1 self.move(self.direction) if now - self.lastBomb > random.randrange(800, 1000000): self.lastBomb = now if self.smartShoot: if self.rect.x < player.rect.x: bomba = Bomb(self.rect.centerx, self.rect.bottom, 1) else: bomba = Bomb(self.rect.centerx, self.rect.bottom, -1) else: bomba = Bomb(self.rect.centerx, self.rect.bottom, random.randrange(4)) allSprites.add(bomba) bombs.add(bomba) elif self.fly == True: if self.hitbottom: self.move(-1, 5) else: self.move(1, 5) class Boss(pygame.sprite.Sprite): def __init__(self, bosstype): pygame.sprite.Sprite.__init__(self) self.image = bossImg[bosstype-1] self.rect = self.image.get_rect() self.rect.centerx = screen.get_rect().centerx self.rect.y = 5 self.speedy = random.randrange(5*bosstype, 10*bosstype) self.speedx = random.randrange(5*bosstype, 10*bosstype) self.directionx = random.choice([-1, 1]) self.directiony = random.choice([-1, 1]) self.lastUpdate = pygame.time.get_ticks() self.lastDirection = pygame.time.get_ticks() self.lastBomb = pygame.time.get_ticks() self.bosstype = bosstype self.health = 1000 * bosstype def move(self): if self.rect.y < 5: self.rect.y = 5 if self.rect.bottom > HEIGHT - 200: self.rect.bottom = HEIGHT - 200 if self.rect.x >= 5 and self.rect.y <= HEIGHT - 200: self.rect.y += self.speedy * self.directiony if self.rect.x < 5: self.rect.x = 5 if self.rect.right > WIDTH - 5: self.rect.right = WIDTH - 5 if self.rect.x >= 5 and self.rect.x <= WIDTH - 5: self.rect.x += self.speedx * self.directionx def update(self): now = pygame.time.get_ticks() if now - self.lastDirection > random.randrange(1300,10000): self.lastDirection = now self.directionx = random.choice([-1, 1]) self.directiony = random.choice([-1, 1]) if now - self.lastUpdate > random.randrange(80, 200): self.lastUpdate = now self.move() if now - self.lastBomb > random.randrange(100, round(100000/self.bosstype)): self.lastBomb = now if self.bosstype > 1: if self.rect.x < player.rect.x: bomba1 = Bomb(self.rect.centerx, self.rect.bottom, 1) bomba2 = Bomb(self.rect.centerx - 20, self.rect.bottom, 1) bomba3 = Bomb(self.rect.centerx + 20, self.rect.bottom, 1) if self.bosstype == 3: bomba4 = Bomb(self.rect.centerx - 40, self.rect.bottom, 1) bomba5 = Bomb(self.rect.centerx + 40, self.rect.bottom, 1) allSprites.add(bomba4) bombs.add(bomba4) allSprites.add(bomba5) bombs.add(bomba5) else: bomba1 = Bomb(self.rect.centerx, self.rect.bottom, -1) bomba2 = Bomb(self.rect.centerx - 20, self.rect.bottom, -1) bomba3 = Bomb(self.rect.centerx + 20, self.rect.bottom, -1) if self.bosstype == 3: bomba4 = Bomb(self.rect.centerx - 40, self.rect.bottom, -1) bomba5 = Bomb(self.rect.centerx + 40, self.rect.bottom, -1) allSprites.add(bomba4) bombs.add(bomba4) allSprites.add(bomba5) bombs.add(bomba5) else: bomba1 = Bomb(self.rect.centerx, self.rect.bottom) bomba2 = Bomb(self.rect.centerx - 20, self.rect.bottom) bomba3 = Bomb(self.rect.centerx + 20, self.rect.bottom) allSprites.add(bomba1) bombs.add(bomba1) allSprites.add(bomba2) bombs.add(bomba2) allSprites.add(bomba3) bombs.add(bomba3) class Bomb(pygame.sprite.Sprite): def __init__(self, x, y, direction = random.choice([-1, 1])): pygame.sprite.Sprite.__init__(self) self.image = pygame.transform.scale(bombImg, (10, 20)) self.rect = self.image.get_rect() self.rect.midtop = (x, y) self.speedy = random.randrange(2, 6) self.speedx = random.randrange(3) self.direction = direction bomb_sound.play() def update(self): self.rect.y += self.speedy self.rect.x += self.speedx * self.direction if self.rect.top > HEIGHT or self.rect.left > WIDTH or self.rect.right < 0: self.kill() class Bullet(pygame.sprite.Sprite): def __init__(self, x, y): pygame.sprite.Sprite.__init__(self) self.image = pygame.transform.scale(bulletImg, (10, 25)) self.rect = self.image.get_rect() self.rect.bottom = y self.rect.centerx = x self.speedy = -7 def update(self): self.rect.y += self.speedy if self.rect.bottom < 0: self.kill() class PowerUp(pygame.sprite.Sprite): def __init__(self, center): pygame.sprite.Sprite.__init__(self) self.type = random.choice(['health', 'fire']) if random.random() > 0.9: self.type = 'life' self.image = powerupImgs[self.type] self.rect = self.image.get_rect() self.rect.center = center self.speedy = random.randrange(3, 6) def update(self): self.rect.y += self.speedy if self.rect.top > HEIGHT: self.kill() class Explosion(pygame.sprite.Sprite): def __init__(self, center, size): pygame.sprite.Sprite.__init__(self) self.size = size self.image = explosion[self.size][0] self.rect = self.image.get_rect() self.rect.center = center self.frame = 0 self.lastUpdate = pygame.time.get_ticks() self.frameRate = 50 def update(self): now = pygame.time.get_ticks() if now - self.lastUpdate > self.frameRate: self.lastUpdate = now self.frame += 1 if self.frame == len(explosion[self.size]): self.kill() else: center = self.rect.center self.image = explosion[self.size][self.frame] self.rect = self.image.get_rect() self.rect.center = center class Meteor(pygame.sprite.Sprite): def __init__(self, speedCap, timeCap = 0): pygame.sprite.Sprite.__init__(self) self.startImage = random.choice(meteorImg) self.image = self.startImage.copy() self.rect = self.image.get_rect() self.radius = int(self.rect.width / 2) self.rect.x = random.randrange(WIDTH - self.rect.width) self.rect.y = random.randrange(-150, -100) self.speedCap = speedCap self.speedx = random.randrange(3) self.speedy = random.randrange(self.speedCap) self.direction = random.choice([-1, 1]) self.timeCap = timeCap self.timeStart = pygame.time.get_ticks() self.rotationAngle = 0 self.rotationSpeed = random.randrange(-9, 9) self.lastRotation = pygame.time.get_ticks() def update(self): if self.timeCap > 0: if pygame.time.get_ticks() - self.timeStart > self.timeCap: if self.rect.y < 0: self.kill() now = pygame.time.get_ticks() if now - self.lastRotation > 50: self.lastRotation = now self.rotationAngle = (self.rotationAngle + self.rotationSpeed) % 360 oldCenter = self.rect.center self.image = pygame.transform.rotate(self.startImage, self.rotationAngle) self.rect = self.image.get_rect() self.rect.center = oldCenter self.rect.x += self.speedx * self.direction self.rect.y += self.speedy if self.rect.y > HEIGHT or self.rect.right < 0 or self.rect.width > WIDTH: self.rect.x = random.randrange(WIDTH - self.rect.width) self.rect.y = random.randrange(-150, -100) self.speedx = random.randrange(3) self.speedy = random.randrange(self.speedCap) class Star(pygame.sprite.Sprite): def __init__(self, x): pygame.sprite.Sprite.__init__(self) self.startImage = pygame.transform.scale(random.choice(starImg), (random.randrange(10,20),random.randrange(10,20))) self.image = self.startImage.copy() self.rect = self.image.get_rect() self.rect.x = x self.startx = x self.rect.y = -30 self.speedx = random.randrange(2, 5) self.speedy = random.randrange(2, 6) self.direction = random.choice([-1, 1]) self.timeStart = pygame.time.get_ticks() self.rotationAngle = 0 self.rotationSpeed = random.randrange(-7, 7) self.lastRotation = pygame.time.get_ticks() def update(self): self.rect.x += self.speedx * self.direction self.rect.y += self.speedy if self.rect.y > HEIGHT+25 or self.rect.x < 0-15 or self.rect.x > WIDTH+15: self.rect.y = -25 self.rect.x = self.startx now = pygame.time.get_ticks() if now - self.lastRotation > 50: self.lastRotation = now self.rotationAngle = (self.rotationAngle + self.rotationSpeed) % 360 oldCenter = self.rect.center self.image = pygame.transform.rotate(self.startImage, self.rotationAngle) self.rect = self.image.get_rect() self.rect.center = oldCenter def destroy(self): if self.rect.y > HEIGHT or self.rect.y < 0 or self.rect.x < 0 or self.rect.x > WIDTH: self.kill() class Button(pygame.sprite.Sprite): def __init__(self, x, y, type): pygame.sprite.Sprite.__init__(self) self.type = type self.image = buttonImg self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y self.clicked = pygame.mouse.get_pressed() def update(self): mouse = pygame.mouse.get_pos() self.clicked = pygame.mouse.get_pressed() if mouse[0] >= self.rect.x and mouse[0] <= self.rect.right and mouse[1] >= self.rect.y and mouse[1] <= self.rect.bottom: self.image = buttonLitImg if self.clicked[0] == 1: self.action() else: self.image = buttonImg printText(screen, self.type, 42, self.rect.x + 22, self.rect.y + 55, LIGHT_GREEN, self.rect.center) def action(self): if self.type == 'PLAY': runGame() elif self.type == 'EXIT': pygame.quit() playerImg = loadImage('avion.png') playerImg_immune = loadImage('avion_immune.png') playerLifeImg = pygame.transform.scale(loadImage('life.png'), (25, 20)) bulletImg = loadImage('raketa.png') bombImg = loadImage('bomba.png') allienImg = [loadImage('vanzemaljaca0.png'), loadImage('vanzemaljaca1.png'), loadImage('vanzemaljacb0.png'), loadImage('vanzemaljacb1.png'), loadImage('vanzemaljacc0.png'), loadImage('vanzemaljacc1.png'), ] bossImg = [pygame.transform.scale(loadImage('boss1.png'), (200, 200)), pygame.transform.scale(loadImage('boss2.png'), (200, 200)), pygame.transform.scale(loadImage('boss3.png'), (200, 200))] meteorImg = [pygame.transform.scale(loadImage('meteor1.png'), (100, 100)), pygame.transform.scale(loadImage('meteor2.png'), (70, 70)), pygame.transform.scale(loadImage('meteor3.png'), (50, 50)), pygame.transform.scale(loadImage('meteor4.png'), (30, 30)), pygame.transform.scale(loadImage('meteor5.png'), (20, 20))] starImg = [loadImage('star1.png'), loadImage('star2.png'), loadImage('star3.png'), loadImage('star4.png'), loadImage('star5.png')] buttonImg = pygame.transform.scale(loadImage('button.png'), (170, 70)) buttonLitImg = pygame.transform.scale(loadImage('buttonLit.png'), (170, 70)) backgroundImg = pygame.transform.scale(loadImage('starfield.png'), (WIDTH, HEIGHT)) backgroundRect = backgroundImg.get_rect() startImg = pygame.transform.scale(loadImage('startscreen.png'), (WIDTH, HEIGHT)) startImgRect = startImg.get_rect() storyImg = pygame.transform.scale(loadImage('storyImg.png'), (WIDTH, HEIGHT)) storyImgRect = storyImg.get_rect() pauseScreen = pygame.Surface((WIDTH, HEIGHT)).convert_alpha() pauseScreen.fill((0, 0, 0, 190)) explosion = {} explosion['large'] = [] explosion['small'] = [] powerupImgs = {} powerupImgs['health'] = pygame.transform.scale(loadImage('health.png'), (30, 30)) powerupImgs['fire'] = pygame.transform.scale(loadImage('fire.png'), (30, 30)) powerupImgs['life'] = pygame.transform.scale(loadImage('life.png'), (30, 30)) for i in range(10): file = 'explosion{}.png'.format(i) img = loadImage(file) imgLarge = pygame.transform.scale(img, (70, 70)) explosion['large'].append(imgLarge) imgSmall = pygame.transform.scale(img, (30, 30)) explosion['small'].append(imgSmall) background_music = loadSound('RoundtableRival.ogg') pygame.mixer.music = background_music pygame.mixer.music.set_volume(0.2) boss_fight_music = loadSound('DBZ_BOSS_FIGHT.ogg') story_music = loadSound('STAR_WARS.ogg') shoot_sound = loadSound('shoot.wav') pygame.mixer.Sound.set_volume(shoot_sound, 0.4) bomb_sound = loadSound('bomb.wav') pygame.mixer.Sound.set_volume(bomb_sound, 0.3) powerup_sound = loadSound('powerup.wav') pygame.mixer.Sound.set_volume(powerup_sound, 0.6) playerExplosion_sound = loadSound('playerExplosion.wav') meteorExplosion_sound = loadSound('meteorExplosion.wav') pygame.mixer.Sound.set_volume(meteorExplosion_sound, 0.6) allienExplosion_sound = loadSound('allienExplosion.wav') pygame.mixer.Sound.set_volume(allienExplosion_sound, 0.5) keyPress_sound = loadSound('keypress.wav') pygame.mixer.Sound.set_volume(keyPress_sound, 0.5) # LOADING HIGH SCORE try: with open(os.path.join(textfile_dir, 'highscore.txt'), 'r') as f: # automatic file close after loop try: highscore = int(f.read()) except: highscore = 0 except: with open(os.path.join(textfile_dir, 'highscore.txt'), 'w') as f: # automatic file close after loop highscore = 0 allSprites = pygame.sprite.Group() alliens = pygame.sprite.Group() meteors = pygame.sprite.Group() bullets = pygame.sprite.Group() bombs = pygame.sprite.Group() bosses = pygame.sprite.Group() stars = pygame.sprite.Group() powerups = pygame.sprite.Group() buttons = pygame.sprite.Group() player = Player() allSprites.add(player) paused = False level = 1 def initializeGame(): global paused alliens.empty() meteors.empty() bullets.empty() bombs.empty() powerups.empty() bosses.empty() stars.empty() player.reset() allSprites.empty() allSprites.add(player) paused = False def showGameStartScreen(): pygame.mixer.music.play(-1) buttons.empty() btn = Button(280, 300, 'PLAY') buttons.add(btn) btn = Button(600, 550, 'EXIT') buttons.add(btn) while True: clock.tick(FPS) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() screen.blit(startImg, startImgRect) buttons.draw(screen) printText(screen, 'HIGH SCORE:' + str(highscore), 30, WIDTH/2 - 165, HEIGHT-30, LIGHT_GREEN) buttons.update() # PRINTING TEXT ON BUTTONS pygame.display.update() def showTransitionScreen(text): global paused, level running = True timer = pygame.time.get_ticks() #add stars for i in range(NUMSTARS): x = random.randrange(WIDTH) z = Star(x) stars.add(z) stars.update() while stars: clock.tick(FPS) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() elif event.type == pygame.KEYDOWN: if event.key == K_SPACE and not paused and (pygame.time.get_ticks() - player.shoot_timer > RELOAD): player.shoot() if event.key == K_p: paused = not paused hits = pygame.sprite.spritecollide(player, powerups, True) for hit in hits: powerup_sound.play() if hit.type == 'health': player.health += 20 if player.health > PLAYER_MAX_HEALTH: player.health = PLAYER_MAX_HEALTH elif hit.type == 'life': player.lives += 1 if player.lives > 3: player.lives = 3 else: player.powerup() if not paused: stars.update() allSprites.update() # DRAW screen.fill(BLACK) screen.blit(backgroundImg, backgroundRect) stars.draw(screen) printText(screen, 'Level: ' + str(level), 25, 9, HEIGHT - 29, LIGHT_GREEN) printText(screen, 'SCORE:' + str(player.score), 25, WIDTH - 185, HEIGHT - 3, LIGHT_GREEN) allSprites.draw(screen) now = pygame.time.get_ticks() if now - timer > 3000 and now - timer < 6000: if (pygame.time.get_ticks() - timer) % 120 <= 100: printText(screen, text, 70, 0, 0, LIGHT_GREEN, (WIDTH/2, 100)) drawHealthBar(screen, 10, HEIGHT - 30, player.health, GREEN, PLAYER_MAX_HEALTH, 200) drawLives(screen, 15, HEIGHT - 29, player.lives, playerLifeImg) if paused: printText(screen, text, 70, 0, 0, LIGHT_GREEN, (WIDTH / 2, 100)) screen.blit(pauseScreen, (0, 0)) printText(screen, 'PAUSE', 100, 0, 0, LIGHT_GREEN, screen.get_rect().center) pygame.display.update() if now - timer > 5000 and not paused: for z in stars: Star.destroy(z) def startLevel(allienRows, smartShoot, suicide): for k in range(allienRows): for i in range(11): tmp = random.choice([0, 2, 4]) a = Alien(70 * i, k * 70, allienImg[tmp], allienImg[tmp + 1], smartShoot, suicide) allSprites.add(a) alliens.add(a) def startMeteorRain(k, speedCap, time): for i in range(k): m = Meteor(speedCap, time) meteors.add(m) allSprites.add(m) def spawnBoss(x): boss = Boss(x) bosses.add(boss) allSprites.add(boss) runLvl() boss_fight_music.stop() pygame.mixer.music.play(-1) def checkCollision(): hits = pygame.sprite.spritecollide(player, powerups, True) for hit in hits: powerup_sound.play() if hit.type == 'health': player.health += 20 if player.health > PLAYER_MAX_HEALTH: player.health = PLAYER_MAX_HEALTH elif hit.type == 'life': player.lives += 1 if player.lives > 3: player.lives = 3 else: player.powerup() hits = pygame.sprite.groupcollide(alliens, bullets, True, True) for hit in hits: player.score += 7 * hit.speedx allienExplosion_sound.play() expl = Explosion(hit.rect.center, 'large') allSprites.add(expl) if random.random() > 0.8: pow = PowerUp(hit.rect.center) powerups.add(pow) allSprites.add(pow) hits = pygame.sprite.groupcollide(bullets, bosses, True, False) for hit in hits: allienExplosion_sound.play() expl = Explosion(hit.rect.midtop, 'large') allSprites.add(expl) for boss in bosses: player.score += 5 * (boss.speedx + 1) boss.health -= 99 if boss.health <= 0: bosses.remove() hits = pygame.sprite.spritecollide(player, bombs, True) for hit in hits: if not player.immune: player.health -= 13 * hit.speedy if player.health <= 0: expl = Explosion(player.rect.center, 'large') player.lives -= 1 player.hide() allSprites.add(expl) playerExplosion_sound.play() if player.lives > 0: player.health = PLAYER_MAX_HEALTH else: expl = Explosion(hit.rect.center, 'small') allSprites.add(expl) playerExplosion_sound.play() hits = pygame.sprite.groupcollide(meteors, bullets, True, True) for hit in hits: player.score += 60 - hit.radius meteorExplosion_sound.play() expl = Explosion(hit.rect.center, 'large') allSprites.add(expl) hits = pygame.sprite.spritecollide(player, meteors, True, pygame.sprite.collide_circle) for hit in hits: if not player.immune: player.health -= 2 * hit.radius if player.health <= 0: expl = Explosion(hit.rect.center, 'large') player.lives -= 1 player.hide() allSprites.add(expl) expl = Explosion(player.rect.center, 'large') allSprites.add(expl) playerExplosion_sound.play() meteorExplosion_sound.play() if player.lives > 0: player.health = PLAYER_MAX_HEALTH else: expl = Explosion(hit.rect.center, 'small') allSprites.add(expl) playerExplosion_sound.play() hits = pygame.sprite.spritecollide(player, alliens, True) for hit in hits: if not player.immune: player.lives -= 1 if player.lives > 0: player.health = PLAYER_MAX_HEALTH expl = Explosion(player.rect.center, 'large') player.hide() allSprites.add(expl) playerExplosion_sound.play() expl = Explosion(hit.rect.center, 'large') allienExplosion_sound.play() allSprites.add(expl) hits = pygame.sprite.spritecollide(player, bosses, False) for hit in hits: if not player.immune: player.lives -= 1 if player.lives > 0: player.health = PLAYER_MAX_HEALTH expl = Explosion(player.rect.center, 'large') player.hide() allSprites.add(expl) playerExplosion_sound.play() def showGameOverScreen(): global highscore buttons.empty() btn = Button(280, 550, 'PLAY') buttons.add(btn) btn = Button(600, 550, 'EXIT') buttons.add(btn) if player.score > highscore: highscore = player.score with open(os.path.join(textfile_dir, 'highscore.txt'), 'w') as f: # automatic file close after loop f.write(str(highscore)) while True: clock.tick(FPS) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() screen.fill(BLACK) screen.blit(backgroundImg, backgroundRect) if player.lives > 0: printText(screen, 'VICTORY', 100, 0, 0, LIGHT_GREEN, (WIDTH/2, HEIGHT/2-120)) else: printText(screen, 'DEFEAT', 100, 0, 0, LIGHT_GREEN, (WIDTH/2, HEIGHT/2-120)) if player.score == highscore: printText(screen, 'NEW HIGH SCORE!', 70, 0, 0, LIGHT_GREEN, (WIDTH / 2, HEIGHT / 2)) printText(screen, str(highscore), 70, 0, 0, LIGHT_GREEN, (WIDTH / 2, HEIGHT / 2 + 90)) else: printText(screen, 'SCORE: ' + str(player.score), 65, 0, 0, LIGHT_GREEN, (WIDTH/2, HEIGHT/2)) printText(screen, 'HIGH SCORE: ' + str(highscore), 65, 0, 0, LIGHT_GREEN, (WIDTH/2, HEIGHT/2 + 90)) buttons.draw(screen) buttons.update() # PRINTING TEXT ON BUTTONS pygame.display.update() def runLvl(): global paused, player while alliens or meteors or bosses: clock.tick(FPS) # PROCESS for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() elif event.type == pygame.KEYDOWN: if event.key == K_SPACE and not paused and (pygame.time.get_ticks() - player.shoot_timer > RELOAD): player.shoot() if event.key == K_p: paused = not paused checkCollision() # UPDATE if not paused: allSprites.update() # DRAW screen.fill(BLACK) screen.blit(backgroundImg, backgroundRect) printText(screen, 'Level: ' + str(level), 25, 9, HEIGHT - 29, LIGHT_GREEN) printText(screen, 'SCORE:' + str(player.score), 25, WIDTH - 185, HEIGHT - 3, LIGHT_GREEN) allSprites.draw(screen) for boss in bosses: drawHealthBar(screen, 240, HEIGHT - 30, boss.health, RED, 1000*boss.bosstype, 350) if boss.health <= 0: player.score += 300*boss.bosstype bosses.remove(boss) allSprites.remove(boss) drawHealthBar(screen, 10, HEIGHT - 30, player.health, GREEN, PLAYER_MAX_HEALTH, 200) drawLives(screen, 15, HEIGHT - 29, player.lives, playerLifeImg) if paused: screen.blit(pauseScreen, (0, 0)) printText(screen, 'PAUSE', 100, 0, 0, LIGHT_GREEN, screen.get_rect().center) pygame.display.update() def runGame(): initializeGame() global level showTransitionScreen('ARMY ATTACKS') startLevel(3, False, False) runLvl() showTransitionScreen('METEOR RAIN') startMeteorRain(30, 6, 2500) runLvl() pygame.mixer.music.stop() boss_fight_music.play(-1) showTransitionScreen('CAPTAIN ATTACKS') spawnBoss(1) level += 1 showTransitionScreen('ARMY ATTACKS') startLevel(4, True, False) runLvl() showTransitionScreen('METEOR RAIN') startMeteorRain(45, 8, 5000) runLvl() pygame.mixer.music.stop() boss_fight_music.play(-1) showTransitionScreen('GENERAL ATTACKS') spawnBoss(2) level += 1 showTransitionScreen('ARMY ATTACKS') startLevel(5, True, True) runLvl() showTransitionScreen('METEOR RAIN') startMeteorRain(50, 8, 5500) runLvl() pygame.mixer.music.stop() boss_fight_music.play(-1) showTransitionScreen('LEADER ATTACKS') spawnBoss(3) if (not alliens) and (not bosses): showTransitionScreen('ALIENS DEFEATED') showGameOverScreen() # MAIN showStory() pygame.quit()
[ "pygame.event.get", "pygame.mixer.init", "pygame.Rect", "pygame.display.update", "pygame.sprite.spritecollide", "pygame.font.Font", "pygame.mouse.get_pos", "pygame.display.set_mode", "pygame.mixer.music.play", "pygame.transform.scale", "pygame.display.set_caption", "pygame.mixer.Sound", "pygame.quit", "pygame.mouse.get_pressed", "pygame.Surface", "pygame.draw.rect", "pygame.sprite.groupcollide", "pygame.mixer.pre_init", "pygame.init", "random.random", "pygame.image.load", "pygame.mixer.Sound.set_volume", "pygame.time.get_ticks", "pygame.time.Clock", "pygame.mixer.music.stop", "pygame.transform.rotate", "pygame.display.set_icon", "random.choice", "pygame.sprite.Group", "pygame.mixer.music.set_volume", "random.randrange", "pygame.sprite.Sprite.__init__", "pygame.key.get_pressed" ]
[((386, 427), 'pygame.mixer.pre_init', 'pygame.mixer.pre_init', (['(44100)', '(-16)', '(1)', '(512)'], {}), '(44100, -16, 1, 512)\n', (407, 427), False, 'import pygame\n'), ((490, 509), 'pygame.mixer.init', 'pygame.mixer.init', ([], {}), '()\n', (507, 509), False, 'import pygame\n'), ((528, 541), 'pygame.init', 'pygame.init', ([], {}), '()\n', (539, 541), False, 'import pygame\n'), ((552, 592), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(WIDTH, HEIGHT)'], {}), '((WIDTH, HEIGHT))\n', (575, 592), False, 'import pygame\n'), ((594, 639), 'pygame.display.set_caption', 'pygame.display.set_caption', (['"""Save The Galaxy"""'], {}), "('Save The Galaxy')\n", (620, 639), False, 'import pygame\n'), ((649, 668), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (666, 668), False, 'import pygame\n'), ((1104, 1136), 'pygame.display.set_icon', 'pygame.display.set_icon', (['iconImg'], {}), '(iconImg)\n', (1127, 1136), False, 'import pygame\n'), ((1335, 1358), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (1356, 1358), False, 'import pygame\n'), ((24339, 24373), 'pygame.mixer.music.set_volume', 'pygame.mixer.music.set_volume', (['(0.2)'], {}), '(0.2)\n', (24368, 24373), False, 'import pygame\n'), ((24507, 24554), 'pygame.mixer.Sound.set_volume', 'pygame.mixer.Sound.set_volume', (['shoot_sound', '(0.4)'], {}), '(shoot_sound, 0.4)\n', (24536, 24554), False, 'import pygame\n'), ((24592, 24638), 'pygame.mixer.Sound.set_volume', 'pygame.mixer.Sound.set_volume', (['bomb_sound', '(0.3)'], {}), '(bomb_sound, 0.3)\n', (24621, 24638), False, 'import pygame\n'), ((24682, 24731), 'pygame.mixer.Sound.set_volume', 'pygame.mixer.Sound.set_volume', (['powerup_sound', '(0.6)'], {}), '(powerup_sound, 0.6)\n', (24711, 24731), False, 'import pygame\n'), ((24849, 24906), 'pygame.mixer.Sound.set_volume', 'pygame.mixer.Sound.set_volume', (['meteorExplosion_sound', '(0.6)'], {}), '(meteorExplosion_sound, 0.6)\n', (24878, 24906), False, 'import pygame\n'), ((24966, 25023), 'pygame.mixer.Sound.set_volume', 'pygame.mixer.Sound.set_volume', (['allienExplosion_sound', '(0.5)'], {}), '(allienExplosion_sound, 0.5)\n', (24995, 25023), False, 'import pygame\n'), ((25069, 25119), 'pygame.mixer.Sound.set_volume', 'pygame.mixer.Sound.set_volume', (['keyPress_sound', '(0.5)'], {}), '(keyPress_sound, 0.5)\n', (25098, 25119), False, 'import pygame\n'), ((25511, 25532), 'pygame.sprite.Group', 'pygame.sprite.Group', ([], {}), '()\n', (25530, 25532), False, 'import pygame\n'), ((25544, 25565), 'pygame.sprite.Group', 'pygame.sprite.Group', ([], {}), '()\n', (25563, 25565), False, 'import pygame\n'), ((25577, 25598), 'pygame.sprite.Group', 'pygame.sprite.Group', ([], {}), '()\n', (25596, 25598), False, 'import pygame\n'), ((25610, 25631), 'pygame.sprite.Group', 'pygame.sprite.Group', ([], {}), '()\n', (25629, 25631), False, 'import pygame\n'), ((25641, 25662), 'pygame.sprite.Group', 'pygame.sprite.Group', ([], {}), '()\n', (25660, 25662), False, 'import pygame\n'), ((25673, 25694), 'pygame.sprite.Group', 'pygame.sprite.Group', ([], {}), '()\n', (25692, 25694), False, 'import pygame\n'), ((25704, 25725), 'pygame.sprite.Group', 'pygame.sprite.Group', ([], {}), '()\n', (25723, 25725), False, 'import pygame\n'), ((25738, 25759), 'pygame.sprite.Group', 'pygame.sprite.Group', ([], {}), '()\n', (25757, 25759), False, 'import pygame\n'), ((25771, 25792), 'pygame.sprite.Group', 'pygame.sprite.Group', ([], {}), '()\n', (25790, 25792), False, 'import pygame\n'), ((38018, 38031), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (38029, 38031), False, 'import pygame\n'), ((976, 999), 'pygame.image.load', 'pygame.image.load', (['file'], {}), '(file)\n', (993, 999), False, 'import pygame\n'), ((1439, 1463), 'pygame.mixer.Sound', 'pygame.mixer.Sound', (['file'], {}), '(file)\n', (1457, 1463), False, 'import pygame\n'), ((1560, 1588), 'pygame.font.Font', 'pygame.font.Font', (['FONT', 'size'], {}), '(FONT, size)\n', (1576, 1588), False, 'import pygame\n'), ((1977, 2000), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (1998, 2000), False, 'import pygame\n'), ((2690, 2713), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (2711, 2713), False, 'import pygame\n'), ((3890, 3929), 'pygame.Rect', 'pygame.Rect', (['x', 'y', 'barLength', 'barHeight'], {}), '(x, y, barLength, barHeight)\n', (3901, 3929), False, 'import pygame\n'), ((3946, 3980), 'pygame.Rect', 'pygame.Rect', (['x', 'y', 'fill', 'barHeight'], {}), '(x, y, fill, barHeight)\n', (3957, 3980), False, 'import pygame\n'), ((3986, 4034), 'pygame.draw.rect', 'pygame.draw.rect', (['surface', 'healthColor', 'fillRect'], {}), '(surface, healthColor, fillRect)\n', (4002, 4034), False, 'import pygame\n'), ((4040, 4088), 'pygame.draw.rect', 'pygame.draw.rect', (['surface', 'WHITE', 'outlineRect', '(2)'], {}), '(surface, WHITE, outlineRect, 2)\n', (4056, 4088), False, 'import pygame\n'), ((24068, 24105), 'pygame.transform.scale', 'pygame.transform.scale', (['img', '(70, 70)'], {}), '(img, (70, 70))\n', (24090, 24105), False, 'import pygame\n'), ((24163, 24200), 'pygame.transform.scale', 'pygame.transform.scale', (['img', '(30, 30)'], {}), '(img, (30, 30))\n', (24185, 24200), False, 'import pygame\n'), ((26181, 26208), 'pygame.mixer.music.play', 'pygame.mixer.music.play', (['(-1)'], {}), '(-1)\n', (26204, 26208), False, 'import pygame\n'), ((26872, 26895), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (26893, 26895), False, 'import pygame\n'), ((29837, 29864), 'pygame.mixer.music.play', 'pygame.mixer.music.play', (['(-1)'], {}), '(-1)\n', (29860, 29864), False, 'import pygame\n'), ((29904, 29955), 'pygame.sprite.spritecollide', 'pygame.sprite.spritecollide', (['player', 'powerups', '(True)'], {}), '(player, powerups, True)\n', (29931, 29955), False, 'import pygame\n'), ((30369, 30425), 'pygame.sprite.groupcollide', 'pygame.sprite.groupcollide', (['alliens', 'bullets', '(True)', '(True)'], {}), '(alliens, bullets, True, True)\n', (30395, 30425), False, 'import pygame\n'), ((30765, 30821), 'pygame.sprite.groupcollide', 'pygame.sprite.groupcollide', (['bullets', 'bosses', '(True)', '(False)'], {}), '(bullets, bosses, True, False)\n', (30791, 30821), False, 'import pygame\n'), ((31158, 31206), 'pygame.sprite.spritecollide', 'pygame.sprite.spritecollide', (['player', 'bombs', '(True)'], {}), '(player, bombs, True)\n', (31185, 31206), False, 'import pygame\n'), ((31809, 31865), 'pygame.sprite.groupcollide', 'pygame.sprite.groupcollide', (['meteors', 'bullets', '(True)', '(True)'], {}), '(meteors, bullets, True, True)\n', (31835, 31865), False, 'import pygame\n'), ((32063, 32148), 'pygame.sprite.spritecollide', 'pygame.sprite.spritecollide', (['player', 'meteors', '(True)', 'pygame.sprite.collide_circle'], {}), '(player, meteors, True, pygame.sprite.collide_circle\n )\n', (32090, 32148), False, 'import pygame\n'), ((32891, 32941), 'pygame.sprite.spritecollide', 'pygame.sprite.spritecollide', (['player', 'alliens', '(True)'], {}), '(player, alliens, True)\n', (32918, 32941), False, 'import pygame\n'), ((33411, 33461), 'pygame.sprite.spritecollide', 'pygame.sprite.spritecollide', (['player', 'bosses', '(False)'], {}), '(player, bosses, False)\n', (33438, 33461), False, 'import pygame\n'), ((37107, 37132), 'pygame.mixer.music.stop', 'pygame.mixer.music.stop', ([], {}), '()\n', (37130, 37132), False, 'import pygame\n'), ((37431, 37456), 'pygame.mixer.music.stop', 'pygame.mixer.music.stop', ([], {}), '()\n', (37454, 37456), False, 'import pygame\n'), ((37754, 37779), 'pygame.mixer.music.stop', 'pygame.mixer.music.stop', ([], {}), '()\n', (37777, 37779), False, 'import pygame\n'), ((2072, 2090), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (2088, 2090), False, 'import pygame\n'), ((3467, 3485), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (3483, 3485), False, 'import pygame\n'), ((4362, 4397), 'pygame.sprite.Sprite.__init__', 'pygame.sprite.Sprite.__init__', (['self'], {}), '(self)\n', (4391, 4397), False, 'import pygame\n'), ((4749, 4772), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (4770, 4772), False, 'import pygame\n'), ((4831, 4854), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (4852, 4854), False, 'import pygame\n'), ((4910, 4933), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (4931, 4933), False, 'import pygame\n'), ((4962, 4985), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (4983, 4985), False, 'import pygame\n'), ((5962, 5986), 'pygame.key.get_pressed', 'pygame.key.get_pressed', ([], {}), '()\n', (5984, 5986), False, 'import pygame\n'), ((7724, 7747), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (7745, 7747), False, 'import pygame\n'), ((7871, 7894), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (7892, 7894), False, 'import pygame\n'), ((8252, 8287), 'pygame.sprite.Sprite.__init__', 'pygame.sprite.Sprite.__init__', (['self'], {}), '(self)\n', (8281, 8287), False, 'import pygame\n'), ((8539, 8561), 'random.randrange', 'random.randrange', (['(1)', '(3)'], {}), '(1, 3)\n', (8555, 8561), False, 'import random\n'), ((8617, 8640), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (8638, 8640), False, 'import pygame\n'), ((8666, 8689), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (8687, 8689), False, 'import pygame\n'), ((8807, 8830), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (8828, 8830), False, 'import pygame\n'), ((8922, 8951), 'random.randrange', 'random.randrange', (['(5000)', '(30000)'], {}), '(5000, 30000)\n', (8938, 8951), False, 'import random\n'), ((9510, 9559), 'pygame.sprite.spritecollide', 'pygame.sprite.spritecollide', (['self', 'alliens', '(False)'], {}), '(self, alliens, False)\n', (9537, 9559), False, 'import pygame\n'), ((9679, 9702), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (9700, 9702), False, 'import pygame\n'), ((11375, 11410), 'pygame.sprite.Sprite.__init__', 'pygame.sprite.Sprite.__init__', (['self'], {}), '(self)\n', (11404, 11410), False, 'import pygame\n'), ((11599, 11644), 'random.randrange', 'random.randrange', (['(5 * bosstype)', '(10 * bosstype)'], {}), '(5 * bosstype, 10 * bosstype)\n', (11615, 11644), False, 'import random\n'), ((11664, 11709), 'random.randrange', 'random.randrange', (['(5 * bosstype)', '(10 * bosstype)'], {}), '(5 * bosstype, 10 * bosstype)\n', (11680, 11709), False, 'import random\n'), ((11733, 11755), 'random.choice', 'random.choice', (['[-1, 1]'], {}), '([-1, 1])\n', (11746, 11755), False, 'import random\n'), ((11783, 11805), 'random.choice', 'random.choice', (['[-1, 1]'], {}), '([-1, 1])\n', (11796, 11805), False, 'import random\n'), ((11833, 11856), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (11854, 11856), False, 'import pygame\n'), ((11887, 11910), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (11908, 11910), False, 'import pygame\n'), ((11936, 11959), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (11957, 11959), False, 'import pygame\n'), ((12625, 12648), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (12646, 12648), False, 'import pygame\n'), ((14995, 15017), 'random.choice', 'random.choice', (['[-1, 1]'], {}), '([-1, 1])\n', (15008, 15017), False, 'import random\n'), ((15029, 15064), 'pygame.sprite.Sprite.__init__', 'pygame.sprite.Sprite.__init__', (['self'], {}), '(self)\n', (15058, 15064), False, 'import pygame\n'), ((15087, 15128), 'pygame.transform.scale', 'pygame.transform.scale', (['bombImg', '(10, 20)'], {}), '(bombImg, (10, 20))\n', (15109, 15128), False, 'import pygame\n'), ((15230, 15252), 'random.randrange', 'random.randrange', (['(2)', '(6)'], {}), '(2, 6)\n', (15246, 15252), False, 'import random\n'), ((15276, 15295), 'random.randrange', 'random.randrange', (['(3)'], {}), '(3)\n', (15292, 15295), False, 'import random\n'), ((15666, 15701), 'pygame.sprite.Sprite.__init__', 'pygame.sprite.Sprite.__init__', (['self'], {}), '(self)\n', (15695, 15701), False, 'import pygame\n'), ((15724, 15767), 'pygame.transform.scale', 'pygame.transform.scale', (['bulletImg', '(10, 25)'], {}), '(bulletImg, (10, 25))\n', (15746, 15767), False, 'import pygame\n'), ((16104, 16139), 'pygame.sprite.Sprite.__init__', 'pygame.sprite.Sprite.__init__', (['self'], {}), '(self)\n', (16133, 16139), False, 'import pygame\n'), ((16161, 16194), 'random.choice', 'random.choice', (["['health', 'fire']"], {}), "(['health', 'fire'])\n", (16174, 16194), False, 'import random\n'), ((16408, 16430), 'random.randrange', 'random.randrange', (['(3)', '(6)'], {}), '(3, 6)\n', (16424, 16430), False, 'import random\n'), ((16647, 16682), 'pygame.sprite.Sprite.__init__', 'pygame.sprite.Sprite.__init__', (['self'], {}), '(self)\n', (16676, 16682), False, 'import pygame\n'), ((16884, 16907), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (16905, 16907), False, 'import pygame\n'), ((16977, 17000), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (16998, 17000), False, 'import pygame\n'), ((17520, 17555), 'pygame.sprite.Sprite.__init__', 'pygame.sprite.Sprite.__init__', (['self'], {}), '(self)\n', (17549, 17555), False, 'import pygame\n'), ((17583, 17607), 'random.choice', 'random.choice', (['meteorImg'], {}), '(meteorImg)\n', (17596, 17607), False, 'import random\n'), ((17767, 17808), 'random.randrange', 'random.randrange', (['(WIDTH - self.rect.width)'], {}), '(WIDTH - self.rect.width)\n', (17783, 17808), False, 'import random\n'), ((17832, 17860), 'random.randrange', 'random.randrange', (['(-150)', '(-100)'], {}), '(-150, -100)\n', (17848, 17860), False, 'import random\n'), ((17918, 17937), 'random.randrange', 'random.randrange', (['(3)'], {}), '(3)\n', (17934, 17937), False, 'import random\n'), ((17961, 17992), 'random.randrange', 'random.randrange', (['self.speedCap'], {}), '(self.speedCap)\n', (17977, 17992), False, 'import random\n'), ((18019, 18041), 'random.choice', 'random.choice', (['[-1, 1]'], {}), '([-1, 1])\n', (18032, 18041), False, 'import random\n'), ((18100, 18123), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (18121, 18123), False, 'import pygame\n'), ((18186, 18209), 'random.randrange', 'random.randrange', (['(-9)', '(9)'], {}), '(-9, 9)\n', (18202, 18209), False, 'import random\n'), ((18239, 18262), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (18260, 18262), False, 'import pygame\n'), ((18480, 18503), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (18501, 18503), False, 'import pygame\n'), ((19367, 19402), 'pygame.sprite.Sprite.__init__', 'pygame.sprite.Sprite.__init__', (['self'], {}), '(self)\n', (19396, 19402), False, 'import pygame\n'), ((19716, 19738), 'random.randrange', 'random.randrange', (['(2)', '(5)'], {}), '(2, 5)\n', (19732, 19738), False, 'import random\n'), ((19762, 19784), 'random.randrange', 'random.randrange', (['(2)', '(6)'], {}), '(2, 6)\n', (19778, 19784), False, 'import random\n'), ((19811, 19833), 'random.choice', 'random.choice', (['[-1, 1]'], {}), '([-1, 1])\n', (19824, 19833), False, 'import random\n'), ((19860, 19883), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (19881, 19883), False, 'import pygame\n'), ((19946, 19969), 'random.randrange', 'random.randrange', (['(-7)', '(7)'], {}), '(-7, 7)\n', (19962, 19969), False, 'import random\n'), ((19999, 20022), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (20020, 20022), False, 'import pygame\n'), ((20313, 20336), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (20334, 20336), False, 'import pygame\n'), ((20950, 20985), 'pygame.sprite.Sprite.__init__', 'pygame.sprite.Sprite.__init__', (['self'], {}), '(self)\n', (20979, 20985), False, 'import pygame\n'), ((21161, 21187), 'pygame.mouse.get_pressed', 'pygame.mouse.get_pressed', ([], {}), '()\n', (21185, 21187), False, 'import pygame\n'), ((21230, 21252), 'pygame.mouse.get_pos', 'pygame.mouse.get_pos', ([], {}), '()\n', (21250, 21252), False, 'import pygame\n'), ((21277, 21303), 'pygame.mouse.get_pressed', 'pygame.mouse.get_pressed', ([], {}), '()\n', (21301, 21303), False, 'import pygame\n'), ((23551, 23582), 'pygame.Surface', 'pygame.Surface', (['(WIDTH, HEIGHT)'], {}), '((WIDTH, HEIGHT))\n', (23565, 23582), False, 'import pygame\n'), ((26412, 26430), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (26428, 26430), False, 'import pygame\n'), ((26752, 26775), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (26773, 26775), False, 'import pygame\n'), ((26958, 26981), 'random.randrange', 'random.randrange', (['WIDTH'], {}), '(WIDTH)\n', (26974, 26981), False, 'import random\n'), ((27118, 27136), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (27134, 27136), False, 'import pygame\n'), ((27510, 27561), 'pygame.sprite.spritecollide', 'pygame.sprite.spritecollide', (['player', 'powerups', '(True)'], {}), '(player, powerups, True)\n', (27537, 27561), False, 'import pygame\n'), ((28453, 28476), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (28474, 28476), False, 'import pygame\n'), ((29092, 29115), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (29113, 29115), False, 'import pygame\n'), ((34267, 34285), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (34283, 34285), False, 'import pygame\n'), ((35239, 35262), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (35260, 35262), False, 'import pygame\n'), ((35418, 35436), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (35434, 35436), False, 'import pygame\n'), ((36833, 36856), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (36854, 36856), False, 'import pygame\n'), ((2507, 2530), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (2528, 2530), False, 'import pygame\n'), ((2598, 2621), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (2619, 2621), False, 'import pygame\n'), ((5197, 5222), 'pygame.mixer.music.stop', 'pygame.mixer.music.stop', ([], {}), '()\n', (5220, 5222), False, 'import pygame\n'), ((5273, 5300), 'pygame.mixer.music.play', 'pygame.mixer.music.play', (['(-1)'], {}), '(-1)\n', (5296, 5300), False, 'import pygame\n'), ((5801, 5824), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (5822, 5824), False, 'import pygame\n'), ((6710, 6733), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (6731, 6733), False, 'import pygame\n'), ((12688, 12717), 'random.randrange', 'random.randrange', (['(1300)', '(10000)'], {}), '(1300, 10000)\n', (12704, 12717), False, 'import random\n'), ((12787, 12809), 'random.choice', 'random.choice', (['[-1, 1]'], {}), '([-1, 1])\n', (12800, 12809), False, 'import random\n'), ((12841, 12863), 'random.choice', 'random.choice', (['[-1, 1]'], {}), '([-1, 1])\n', (12854, 12863), False, 'import random\n'), ((12900, 12925), 'random.randrange', 'random.randrange', (['(80)', '(200)'], {}), '(80, 200)\n', (12916, 12925), False, 'import random\n'), ((16207, 16222), 'random.random', 'random.random', ([], {}), '()\n', (16220, 16222), False, 'import random\n'), ((18733, 18793), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.startImage', 'self.rotationAngle'], {}), '(self.startImage, self.rotationAngle)\n', (18756, 18793), False, 'import pygame\n'), ((19087, 19128), 'random.randrange', 'random.randrange', (['(WIDTH - self.rect.width)'], {}), '(WIDTH - self.rect.width)\n', (19103, 19128), False, 'import random\n'), ((19156, 19184), 'random.randrange', 'random.randrange', (['(-150)', '(-100)'], {}), '(-150, -100)\n', (19172, 19184), False, 'import random\n'), ((19212, 19231), 'random.randrange', 'random.randrange', (['(3)'], {}), '(3)\n', (19228, 19231), False, 'import random\n'), ((19259, 19290), 'random.randrange', 'random.randrange', (['self.speedCap'], {}), '(self.speedCap)\n', (19275, 19290), False, 'import random\n'), ((19453, 19475), 'random.choice', 'random.choice', (['starImg'], {}), '(starImg)\n', (19466, 19475), False, 'import random\n'), ((20566, 20626), 'pygame.transform.rotate', 'pygame.transform.rotate', (['self.startImage', 'self.rotationAngle'], {}), '(self.startImage, self.rotationAngle)\n', (20589, 20626), False, 'import pygame\n'), ((29362, 29386), 'random.choice', 'random.choice', (['[0, 2, 4]'], {}), '([0, 2, 4])\n', (29375, 29386), False, 'import random\n'), ((30620, 30635), 'random.random', 'random.random', ([], {}), '()\n', (30633, 30635), False, 'import random\n'), ((2152, 2165), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (2163, 2165), False, 'import pygame\n'), ((2332, 2355), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (2353, 2355), False, 'import pygame\n'), ((2373, 2388), 'random.random', 'random.random', ([], {}), '()\n', (2386, 2388), False, 'import random\n'), ((3547, 3560), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (3558, 3560), False, 'import pygame\n'), ((5512, 5535), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (5533, 5535), False, 'import pygame\n'), ((10609, 10639), 'random.randrange', 'random.randrange', (['(800)', '(1000000)'], {}), '(800, 1000000)\n', (10625, 10639), False, 'import random\n'), ((19478, 19502), 'random.randrange', 'random.randrange', (['(10)', '(20)'], {}), '(10, 20)\n', (19494, 19502), False, 'import random\n'), ((19502, 19526), 'random.randrange', 'random.randrange', (['(10)', '(20)'], {}), '(10, 20)\n', (19518, 19526), False, 'import random\n'), ((21833, 21846), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (21844, 21846), False, 'import pygame\n'), ((26492, 26505), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (26503, 26505), False, 'import pygame\n'), ((27198, 27211), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (27209, 27211), False, 'import pygame\n'), ((34347, 34360), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (34358, 34360), False, 'import pygame\n'), ((35498, 35511), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (35509, 35511), False, 'import pygame\n'), ((5382, 5405), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (5403, 5405), False, 'import pygame\n'), ((5566, 5589), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (5587, 5589), False, 'import pygame\n'), ((5855, 5878), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (5876, 5878), False, 'import pygame\n'), ((18336, 18359), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (18357, 18359), False, 'import pygame\n'), ((11046, 11065), 'random.randrange', 'random.randrange', (['(4)'], {}), '(4)\n', (11062, 11065), False, 'import random\n'), ((28549, 28572), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (28570, 28572), False, 'import pygame\n'), ((27321, 27344), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (27342, 27344), False, 'import pygame\n'), ((35621, 35644), 'pygame.time.get_ticks', 'pygame.time.get_ticks', ([], {}), '()\n', (35642, 35644), False, 'import pygame\n')]
# coding=utf-8 """ General tools for the Jupyter Notebook and Lab """ from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, \ VBox, Button, Box, ToggleButton, IntSlider, FloatText from traitlets import List, Unicode, observe, Instance, Tuple, Int, Float from .. import batch # imports for async widgets from multiprocessing import Pool import time # import EE import ee if not ee.data._initialized: ee.Initialize() def create_accordion(dictionary): """ Create an Accordion output from a dict object """ widlist = [] ini = 0 widget = Accordion() widget.selected_index = None # this will unselect all for key, val in dictionary.items(): if isinstance(val, dict): newwidget = create_accordion(val) widlist.append(newwidget) elif isinstance(val, list): # tranform list to a dictionary dictval = {k: v for k, v in enumerate(val)} newwidget = create_accordion(dictval) widlist.append(newwidget) else: value = HTML(str(val)) widlist.append(value) widget.set_title(ini, key) ini += 1 widget.children = widlist return widget def create_object_output(object): ''' Create a output Widget for Images, Geometries and Features ''' ty = object.__class__.__name__ if ty == 'Image': info = object.getInfo() image_id = info['id'] if 'id' in info else 'No Image ID' prop = info['properties'] bands = info['bands'] bands_names = [band['id'] for band in bands] bands_types = [band['data_type']['precision'] for band in bands] bands_crs = [band['crs'] for band in bands] new_band_names = ['<li>{} - {} - {}</li>'.format(name, ty, epsg) for name, ty, epsg in zip(bands_names, bands_types, bands_crs)] new_properties = ['<li><b>{}</b>: {}</li>'.format(key, val) for key, val in prop.items()] header = HTML('<b>Image id:</b> {id} </br>'.format(id=image_id)) bands_wid = HTML('<ul>'+''.join(new_band_names)+'</ul>') prop_wid = HTML('<ul>'+''.join(new_properties)+'</ul>') acc = Accordion([bands_wid, prop_wid]) acc.set_title(0, 'Bands') acc.set_title(1, 'Properties') acc.selected_index = None # this will unselect all return VBox([header, acc]) elif ty == 'FeatureCollection': try: info = object.getInfo() except: print('FeatureCollection limited to 4000 features') info = object.limit(4000) return create_accordion(info) else: info = object.getInfo() return create_accordion(info) def create_async_output(object, widget): child = create_object_output(object) widget.children = [child] # def recrusive_delete_asset_to_widget(assetId, widget): def recrusive_delete_asset_to_widget(args): ''' adapted version to print streaming results in a widget ''' assetId = args[0] widget = args[1] try: content = ee.data.getList({'id':assetId}) except Exception as e: widget.value = str(e) return if content == 0: # delete empty colletion and/or folder ee.data.deleteAsset(assetId) else: for asset in content: path = asset['id'] ty = asset['type'] if ty == 'Image': ee.data.deleteAsset(path) widget.value += 'deleting {} ({})</br>'.format(path, ty) else: # clear output widget.value = '' recrusive_delete_asset_to_widget(path, widget) # delete empty colletion and/or folder ee.data.deleteAsset(assetId) class CheckRow(HBox): checkbox = Instance(Checkbox) widget = Instance(Widget) def __init__(self, widget, **kwargs): self.checkbox = Checkbox(indent=False, layout=Layout(flex='1 1 20', width='auto')) self.widget = widget super(CheckRow, self).__init__(children=(self.checkbox, self.widget), **kwargs) self.layout = Layout(display='flex', flex_flow='row', align_content='flex-start') @observe('widget') def _ob_wid(self, change): new = change['new'] self.children = (self.checkbox, new) def observe_checkbox(self, handler, extra_params={}, **kwargs): """ set handler for the checkbox widget. Use the property 'widget' of change to get the corresponding widget :param handler: callback function :type handler: function :param extra_params: extra parameters that can be passed to the handler :type extra_params: dict :param kwargs: parameters from traitlets.observe :type kwargs: dict """ # by default only observe value name = kwargs.get('names', 'value') def proxy_handler(handler): def wrap(change): change['widget'] = self.widget for key, val in extra_params.items(): change[key] = val return handler(change) return wrap self.checkbox.observe(proxy_handler(handler), names=name, **kwargs) def observe_widget(self, handler, extra_params={}, **kwargs): """ set handler for the widget alongside de checkbox :param handler: callback function :type handler: function :param extra_params: extra parameters that can be passed to the handler :type extra_params: dict :param kwargs: parameters from traitlets.observe :type kwargs: dict """ def proxy_handler(handler): def wrap(change): change['checkbox'] = self.checkbox for key, val in extra_params.items(): change[key] = val return handler(change) return wrap self.widget.observe(proxy_handler(handler), **kwargs) class CheckAccordion(VBox): widgets = Tuple() def __init__(self, widgets, **kwargs): # self.widgets = widgets super(CheckAccordion, self).__init__(**kwargs) self.widgets = widgets @observe('widgets') def _on_child(self, change): new = change['new'] # list of any widget newwidgets = [] for widget in new: # constract the widget acc = Accordion(children=(widget,)) acc.selected_index = None # this will unselect all # create a CheckRow checkrow = CheckRow(acc) newwidgets.append(checkrow) newchildren = tuple(newwidgets) self.children = newchildren def set_title(self, index, title): ''' set the title of the widget at indicated index''' checkrow = self.children[index] acc = checkrow.widget acc.set_title(0, title) def get_title(self, index): ''' get the title of the widget at indicated index''' checkrow = self.children[index] acc = checkrow.widget return acc.get_title(0) def get_check(self, index): ''' get the state of checkbox in index ''' checkrow = self.children[index] return checkrow.checkbox.value def set_check(self, index, state): ''' set the state of checkbox in index ''' checkrow = self.children[index] checkrow.checkbox.value = state def checked_rows(self): ''' return a list of indexes of checked rows ''' checked = [] for i, checkrow in enumerate(self.children): state = checkrow.checkbox.value if state: checked.append(i) return checked def get_widget(self, index): ''' get the widget in index ''' checkrow = self.children[index] return checkrow.widget def set_widget(self, index, widget): ''' set the widget for index ''' checkrow = self.children[index] checkrow.widget.children = (widget,) # Accordion has 1 child def set_row(self, index, title, widget): ''' set values for the row ''' self.set_title(index, title) self.set_widget(index, widget) def set_accordion_handler(self, index, handler, **kwargs): ''' set the handler for Accordion in index ''' checkrow = self.children[index] checkrow.observe_widget(handler, names=['selected_index'], **kwargs) def set_checkbox_handler(self, index, handler, **kwargs): ''' set the handler for CheckBox in index ''' checkrow = self.children[index] checkrow.observe_checkbox(handler, **kwargs) class AssetManager(VBox): """ Asset Manager Widget """ POOL_SIZE = 5 def __init__(self, map=None, **kwargs): super(AssetManager, self).__init__(**kwargs) # Thumb height self.thumb_height = kwargs.get('thumb_height', 300) self.root_path = ee.data.getAssetRoots()[0]['id'] # Map self.map = map # Header self.reload_button = Button(description='Reload') self.add2map = Button(description='Add to Map') self.delete = Button(description='Delete Selected') header_children = [self.reload_button, self.delete] # Add2map only if a Map has been passed if self.map: header_children.append(self.add2map) self.header = HBox(header_children) # Reload handler def reload_handler(button): new_accordion = self.core(self.root_path) # Set VBox children self.children = [self.header, new_accordion] # add2map handler def add2map_handler(themap): def wrap(button): selected_rows = self.get_selected() for asset, ty in selected_rows.items(): if ty == 'Image': im = ee.Image(asset) themap.addLayer(im, {}, asset) elif ty == 'ImageCollection': col = ee.ImageCollection(asset) themap.addLayer(col) return wrap # Set reload handler # self.reload_button.on_click(reload_handler) self.reload_button.on_click(self.reload) # Set reload handler self.add2map.on_click(add2map_handler(self.map)) # Set delete selected handler self.delete.on_click(self.delete_selected) # First Accordion self.root_acc = self.core(self.root_path) # Set VBox children self.children = [self.header, self.root_acc] def delete_selected(self, button=None): ''' function to delete selected assets ''' selected = self.get_selected() # Output widget output = HTML('') def handle_yes(button): self.children = [self.header, output] pool = Pool(self.POOL_SIZE) # pool = pp.ProcessPool(self.POOL_SIZE) if selected: ''' OLD for asset, ty in selected.items(): recrusive_delete_asset_to_widget(asset, output) args = [] for asset, ty in selected.items(): args.append((asset, output)) # pool.map(recrusive_delete_asset_to_widget, args) # pool.map(test2, args) # pool.close() # pool.join() ''' assets = [ass for ass in selected.keys()] pool.map(batch.recrusive_delete_asset, assets) # TODO: cant map recrusive_delete_asset_to_widget because the passed widget is not pickable pool.close() pool.join() # when deleting end, reload self.reload() def handle_no(button): self.reload() def handle_cancel(button): self.reload() assets_str = ['{} ({})'.format(ass, ty) for ass, ty in selected.items()] assets_str = '</br>'.join(assets_str) confirm = ConfirmationWidget('<h2>Delete {} assets</h2>'.format(len(selected.keys())), 'The following assets are going to be deleted: </br> {} </br> Are you sure?'.format(assets_str), handle_yes=handle_yes, handle_no=handle_no, handle_cancel=handle_cancel) self.children = [self.header, confirm, output] def reload(self, button=None): new_accordion = self.core(self.root_path) # Set VBox children self.children = [self.header, new_accordion] def get_selected(self): ''' get the selected assets :return: a dictionary with the type as key and asset root as value :rtype: dict ''' def wrap(checkacc, assets={}, root=self.root_path): children = checkacc.children # list of CheckRow for child in children: checkbox = child.children[0] # checkbox of the CheckRow widget = child.children[1] # widget of the CheckRow (Accordion) state = checkbox.value if isinstance(widget.children[0], CheckAccordion): title = widget.get_title(0).split(' ')[0] new_root = '{}/{}'.format(root, title) newselection = wrap(widget.children[0], assets, new_root) assets = newselection else: if state: title = child.children[1].get_title(0) # remove type that is between () ass = title.split(' ')[0] ty = title.split(' ')[1][1:-1] # append root ass = '{}/{}'.format(root, ass) # append title to selected list # assets.append(title) assets[ass] = ty return assets # get selection on root begin = self.children[1] # CheckAccordion of root return wrap(begin) def core(self, path): # Get Assets data root_list = ee.data.getList({'id': path}) # empty lists to fill with ids, types, widgets and paths ids = [] types = [] widgets = [] paths = [] # iterate over the list of the root for content in root_list: # get data id = content['id'] ty = content['type'] # append data to lists paths.append(id) ids.append(id.replace(path+'/', '')) types.append(ty) wid = HTML('Loading..') widgets.append(wid) # super(AssetManager, self).__init__(widgets=widgets, **kwargs) # self.widgets = widgets asset_acc = CheckAccordion(widgets=widgets) # TODO: set handler for title's checkbox: select all checkboxes # set titles for i, (title, ty) in enumerate(zip(ids, types)): final_title = '{title} ({type})'.format(title=title, type=ty) asset_acc.set_title(i, final_title) def handle_new_accordion(change): path = change['path'] index = change['index'] ty = change['type'] if ty == 'Folder' or ty == 'ImageCollection': wid = self.core(path) else: image = ee.Image(path) info = image.getInfo() width = int(info['bands'][0]['dimensions'][0]) height = int(info['bands'][0]['dimensions'][1]) new_width = int(self.thumb_height)/height*width thumb = image.getThumbURL({'dimensions':[new_width, self.thumb_height]}) # wid = ImageWid(value=thumb) wid_i = HTML('<img src={}>'.format(thumb)) wid_info = create_accordion(info) wid = HBox(children=[wid_i, wid_info]) asset_acc.set_widget(index, wid) def handle_checkbox(change): path = change['path'] widget = change['widget'] # Accordion wid_children = widget.children[0] # can be a HTML or CheckAccordion new = change['new'] if isinstance(wid_children, CheckAccordion): # set all checkboxes to True for child in wid_children.children: check = child.children[0] check.value = new # set handlers for i, (path, ty) in enumerate(zip(paths, types)): asset_acc.set_accordion_handler( i, handle_new_accordion, extra_params={'path':path, 'index':i, 'type': ty} ) asset_acc.set_checkbox_handler( i, handle_checkbox, extra_params={'path':path, 'index':i, 'type': ty} ) return asset_acc class TaskManager(VBox): def __init__(self, **kwargs): super(TaskManager, self).__init__(**kwargs) # Header self.checkbox = Checkbox(indent=False, layout=Layout(flex='1 1 20', width='auto')) self.cancel_selected = Button(description='Cancel Selected', tooltip='Cancel all selected tasks') self.cancel_all = Button(description='Cancell All', tooltip='Cancel all tasks') self.refresh = Button(description='Refresh', tooltip='Refresh Tasks List') self.autorefresh = ToggleButton(description='auto-refresh', tooltip='click to enable/disable autorefresh') self.slider = IntSlider(min=1, max=10, step=1, value=5) self.hbox = HBox([self.checkbox, self.refresh, self.cancel_selected, self.cancel_all, self.autorefresh, self.slider]) # Tabs for COMPLETED, FAILED, etc self.tabs = Tab() # Tabs index self.tab_index = {0: 'RUNNING', 1: 'COMPLETED', 2: 'FAILED', 3: 'CANCELED', 4: 'UNKNOWN'} self.taskVBox = VBox() self.runningVBox = VBox() self.completedVBox = VBox() self.failedVBox = VBox() self.canceledVBox = VBox() self.unknownVBox = VBox() self.tab_widgets_rel = {'RUNNING': self.runningVBox, 'COMPLETED': self.completedVBox, 'FAILED': self.failedVBox, 'CANCELED': self.canceledVBox, 'UNKNOWN': self.unknownVBox} # Create Tabs self.tab_widgets = [] for key, val in self.tab_index.items(): widget = self.tab_widgets_rel[val] self.tab_widgets.append(widget) self.tabs.children = self.tab_widgets self.tabs.set_title(key, val) ''' autorefresh def update_task_list(widget): # widget is a VBox tasklist = ee.data.getTaskList() widlist = [] for task in tasklist: accordion = create_accordion(task) if task.has_key('description'): name = '{} ({})'.format(task['description'], task['state']) else: name = '{} ({})'.format(task['output_url'][0].split('/')[-1], task['state']) mainacc = Accordion(children=(accordion, )) mainacc.set_title(0, name) mainacc.selected_index = None wid = CheckRow(mainacc) #wid = CheckRow(accordion) widlist.append(wid) widget.children = tuple(widlist) ''' def loop(widget): while True: self.update_task_list()(self.refresh) time.sleep(self.slider.value) # First widget self.update_task_list(vbox=self.runningVBox)(self.refresh) # self.children = (self.hbox, self.taskVBox) self.children = (self.hbox, self.tabs) # Set on_click for refresh button self.refresh.on_click(self.update_task_list(vbox=self.selected_tab())) ''' autorefresh thread = threading.Thread(target=loop, args=(self.taskVBox,)) thread.start() ''' # Set on_clicks self.cancel_all.on_click(self.cancel_all_click) self.cancel_selected.on_click(self.cancel_selected_click) # self.autorefresh def autorefresh_loop(self): pass def tab_handler(self, change): if change['name'] == 'selected_index': self.update_task_list()(self.refresh) def selected_tab(self): ''' get the selected tab ''' index = self.tabs.selected_index tab_name = self.tab_index[index] return self.tab_widgets_rel[tab_name] def update_task_list(self, **kwargs): def wrap(button): self.selected_tab().children = (HTML('Loading...'),) try: tasklist = ee.data.getTaskList() # empty lists running_list = [] completed_list = [] failed_list = [] canceled_list = [] unknown_list = [] all_list = {'RUNNING': running_list, 'COMPLETED': completed_list, 'FAILED': failed_list, 'CANCELED': canceled_list, 'UNKNOWN': unknown_list} for task in tasklist: state = task['state'] accordion = create_accordion(task) if task['state'] == 'COMPLETED': start = int(task['start_timestamp_ms']) end = int(task['creation_timestamp_ms']) seconds = float((start-end))/1000 name = '{} ({} sec)'.format(task['output_url'][0].split('/')[-1], seconds) else: name = '{}'.format(task['description']) # Accordion for CheckRow widget mainacc = Accordion(children=(accordion, )) mainacc.set_title(0, name) mainacc.selected_index = None # CheckRow wid = CheckRow(mainacc) # Append widget to the CORRECT list all_list[state].append(wid) # Assign Children self.runningVBox.children = tuple(running_list) self.completedVBox.children = tuple(completed_list) self.failedVBox.children = tuple(failed_list) self.canceledVBox.children = tuple(canceled_list) self.unknownVBox.children = tuple(unknown_list) except Exception as e: self.selected_tab().children = (HTML(str(e)),) return wrap def get_selected(self): """ Get selected Tasks :return: a list of the selected indexes """ selected = [] children = self.selected_tab().children for i, child in enumerate(children): # checkrow = child.children[0] # child is an accordion state = child.checkbox.value if state: selected.append(i) return selected def get_taskid(self, index): # Get selected Tab selected_wid = self.selected_tab() # VBox # Children of the Tab's VBox children = selected_wid.children # Get CheckRow that corresponds to the passed index checkrow = children[index] # Get main accordion mainacc = checkrow.widget # Get details accordion selectedacc = mainacc.children[0] for n, child in enumerate(selectedacc.children): title = selectedacc.get_title(n) if title == 'id': return child.value def get_selected_taskid(self): selected = self.get_selected() selected_wid = self.selected_tab() # VBox children = selected_wid.children taskid_list = [] for select in selected: ''' checkrow = children[select] mainacc = checkrow.widget selectedacc = mainacc.children[0] for n, child in enumerate(selectedacc.children): title = selectedacc.get_title(n) if title == 'id': taskid_list.append(child.value) ''' taskid = self.get_taskid(select) taskid_list.append(taskid) return taskid_list def cancel_selected_click(self, button): selected = self.get_selected_taskid() for taskid in selected: try: ee.data.cancelTask(taskid) except: continue self.update_task_list()(self.refresh) def cancel_all_click(self, button): selected_wid = self.selected_tab() # VBox children = selected_wid.children for n, child in enumerate(children): taskid = self.get_taskid(n) try: ee.data.cancelTask(taskid) except: continue self.update_task_list()(self.refresh) class ConfirmationWidget(VBox): def __init__(self, title='Confirmation', legend='Are you sure?', handle_yes=None, handle_no=None, handle_cancel=None, **kwargs): super(ConfirmationWidget, self).__init__(**kwargs) # Title Widget self.title = title self.title_widget = HTML(self.title) # Legend Widget self.legend = legend self.legend_widget = HTML(self.legend) # Buttons self.yes = Button(description='Yes') handler_yes = handle_yes if handle_yes else lambda x: x self.yes.on_click(handler_yes) self.no = Button(description='No') handler_no = handle_no if handle_no else lambda x: x self.no.on_click(handler_no) self.cancel = Button(description='Cancel') handler_cancel = handle_cancel if handle_cancel else lambda x: x self.cancel.on_click(handler_cancel) self.buttons = HBox([self.yes, self.no, self.cancel]) self.children = [self.title_widget, self.legend_widget, self.buttons] class RealBox(Box): """ Real Box Layout items: [[widget1, widget2], [widget3, widget4]] """ items = List() width = Int() border_inside = Unicode() border_outside = Unicode() def __init__(self, **kwargs): super(RealBox, self).__init__(**kwargs) self.layout = Layout(display='flex', flex_flow='column', border=self.border_outside) def max_row_elements(self): maxn = 0 for el in self.items: n = len(el) if n>maxn: maxn = n return maxn @observe('items') def _ob_items(self, change): layout_columns = Layout(display='flex', flex_flow='row') new = change['new'] children = [] # recompute size maxn = self.max_row_elements() width = 100/maxn for el in new: for wid in el: if not wid.layout.width: if self.width: wid.layout = Layout(width='{}px'.format(self.width), border=self.border_inside) else: wid.layout = Layout(width='{}%'.format(width), border=self.border_inside) hbox = Box(el, layout=layout_columns) children.append(hbox) self.children = children class FloatBandWidget(HBox): min = Float(0) max = Float(1) def __init__(self, **kwargs): super(FloatBandWidget, self).__init__(**kwargs) self.minWid = FloatText(value=self.min, description='min') self.maxWid = FloatText(value=self.max, description='max') self.children = [self.minWid, self.maxWid] self.observe(self._ob_min, names=['min']) self.observe(self._ob_max, names=['max']) def _ob_min(self, change): new = change['new'] self.minWid.value = new def _ob_max(self, change): new = change['new'] self.maxWid.value = new
[ "traitlets.Int", "traitlets.Float", "ipywidgets.Box", "ipywidgets.ToggleButton", "traitlets.List", "ee.data.cancelTask", "ipywidgets.Button", "ipywidgets.Tab", "ipywidgets.Accordion", "ipywidgets.Layout", "ee.Initialize", "traitlets.Instance", "ipywidgets.HTML", "ee.data.getList", "ipywidgets.IntSlider", "time.sleep", "ipywidgets.HBox", "traitlets.Tuple", "multiprocessing.Pool", "ipywidgets.VBox", "ipywidgets.FloatText", "ee.data.getAssetRoots", "ee.ImageCollection", "ee.Image", "traitlets.Unicode", "ee.data.deleteAsset", "ee.data.getTaskList", "traitlets.observe" ]
[((430, 445), 'ee.Initialize', 'ee.Initialize', ([], {}), '()\n', (443, 445), False, 'import ee\n'), ((582, 593), 'ipywidgets.Accordion', 'Accordion', ([], {}), '()\n', (591, 593), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((3778, 3796), 'traitlets.Instance', 'Instance', (['Checkbox'], {}), '(Checkbox)\n', (3786, 3796), False, 'from traitlets import List, Unicode, observe, Instance, Tuple, Int, Float\n'), ((3810, 3826), 'traitlets.Instance', 'Instance', (['Widget'], {}), '(Widget)\n', (3818, 3826), False, 'from traitlets import List, Unicode, observe, Instance, Tuple, Int, Float\n'), ((4274, 4291), 'traitlets.observe', 'observe', (['"""widget"""'], {}), "('widget')\n", (4281, 4291), False, 'from traitlets import List, Unicode, observe, Instance, Tuple, Int, Float\n'), ((6093, 6100), 'traitlets.Tuple', 'Tuple', ([], {}), '()\n', (6098, 6100), False, 'from traitlets import List, Unicode, observe, Instance, Tuple, Int, Float\n'), ((6270, 6288), 'traitlets.observe', 'observe', (['"""widgets"""'], {}), "('widgets')\n", (6277, 6288), False, 'from traitlets import List, Unicode, observe, Instance, Tuple, Int, Float\n'), ((26768, 26774), 'traitlets.List', 'List', ([], {}), '()\n', (26772, 26774), False, 'from traitlets import List, Unicode, observe, Instance, Tuple, Int, Float\n'), ((26787, 26792), 'traitlets.Int', 'Int', ([], {}), '()\n', (26790, 26792), False, 'from traitlets import List, Unicode, observe, Instance, Tuple, Int, Float\n'), ((26813, 26822), 'traitlets.Unicode', 'Unicode', ([], {}), '()\n', (26820, 26822), False, 'from traitlets import List, Unicode, observe, Instance, Tuple, Int, Float\n'), ((26844, 26853), 'traitlets.Unicode', 'Unicode', ([], {}), '()\n', (26851, 26853), False, 'from traitlets import List, Unicode, observe, Instance, Tuple, Int, Float\n'), ((27238, 27254), 'traitlets.observe', 'observe', (['"""items"""'], {}), "('items')\n", (27245, 27254), False, 'from traitlets import List, Unicode, observe, Instance, Tuple, Int, Float\n'), ((28092, 28100), 'traitlets.Float', 'Float', (['(0)'], {}), '(0)\n', (28097, 28100), False, 'from traitlets import List, Unicode, observe, Instance, Tuple, Int, Float\n'), ((28111, 28119), 'traitlets.Float', 'Float', (['(1)'], {}), '(1)\n', (28116, 28119), False, 'from traitlets import List, Unicode, observe, Instance, Tuple, Int, Float\n'), ((2175, 2207), 'ipywidgets.Accordion', 'Accordion', (['[bands_wid, prop_wid]'], {}), '([bands_wid, prop_wid])\n', (2184, 2207), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((2356, 2375), 'ipywidgets.VBox', 'VBox', (['[header, acc]'], {}), '([header, acc])\n', (2360, 2375), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((3052, 3084), 'ee.data.getList', 'ee.data.getList', (["{'id': assetId}"], {}), "({'id': assetId})\n", (3067, 3084), False, 'import ee\n'), ((3233, 3261), 'ee.data.deleteAsset', 'ee.data.deleteAsset', (['assetId'], {}), '(assetId)\n', (3252, 3261), False, 'import ee\n'), ((3710, 3738), 'ee.data.deleteAsset', 'ee.data.deleteAsset', (['assetId'], {}), '(assetId)\n', (3729, 3738), False, 'import ee\n'), ((4171, 4238), 'ipywidgets.Layout', 'Layout', ([], {'display': '"""flex"""', 'flex_flow': '"""row"""', 'align_content': '"""flex-start"""'}), "(display='flex', flex_flow='row', align_content='flex-start')\n", (4177, 4238), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((9102, 9130), 'ipywidgets.Button', 'Button', ([], {'description': '"""Reload"""'}), "(description='Reload')\n", (9108, 9130), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((9154, 9186), 'ipywidgets.Button', 'Button', ([], {'description': '"""Add to Map"""'}), "(description='Add to Map')\n", (9160, 9186), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((9209, 9246), 'ipywidgets.Button', 'Button', ([], {'description': '"""Delete Selected"""'}), "(description='Delete Selected')\n", (9215, 9246), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((9449, 9470), 'ipywidgets.HBox', 'HBox', (['header_children'], {}), '(header_children)\n', (9453, 9470), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((10837, 10845), 'ipywidgets.HTML', 'HTML', (['""""""'], {}), "('')\n", (10841, 10845), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((14321, 14350), 'ee.data.getList', 'ee.data.getList', (["{'id': path}"], {}), "({'id': path})\n", (14336, 14350), False, 'import ee\n'), ((17355, 17429), 'ipywidgets.Button', 'Button', ([], {'description': '"""Cancel Selected"""', 'tooltip': '"""Cancel all selected tasks"""'}), "(description='Cancel Selected', tooltip='Cancel all selected tasks')\n", (17361, 17429), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((17494, 17555), 'ipywidgets.Button', 'Button', ([], {'description': '"""Cancell All"""', 'tooltip': '"""Cancel all tasks"""'}), "(description='Cancell All', tooltip='Cancel all tasks')\n", (17500, 17555), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((17612, 17671), 'ipywidgets.Button', 'Button', ([], {'description': '"""Refresh"""', 'tooltip': '"""Refresh Tasks List"""'}), "(description='Refresh', tooltip='Refresh Tasks List')\n", (17618, 17671), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((17729, 17821), 'ipywidgets.ToggleButton', 'ToggleButton', ([], {'description': '"""auto-refresh"""', 'tooltip': '"""click to enable/disable autorefresh"""'}), "(description='auto-refresh', tooltip=\n 'click to enable/disable autorefresh')\n", (17741, 17821), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((17879, 17920), 'ipywidgets.IntSlider', 'IntSlider', ([], {'min': '(1)', 'max': '(10)', 'step': '(1)', 'value': '(5)'}), '(min=1, max=10, step=1, value=5)\n', (17888, 17920), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((17941, 18050), 'ipywidgets.HBox', 'HBox', (['[self.checkbox, self.refresh, self.cancel_selected, self.cancel_all, self.\n autorefresh, self.slider]'], {}), '([self.checkbox, self.refresh, self.cancel_selected, self.cancel_all,\n self.autorefresh, self.slider])\n', (17945, 18050), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((18162, 18167), 'ipywidgets.Tab', 'Tab', ([], {}), '()\n', (18165, 18167), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((18416, 18422), 'ipywidgets.VBox', 'VBox', ([], {}), '()\n', (18420, 18422), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((18451, 18457), 'ipywidgets.VBox', 'VBox', ([], {}), '()\n', (18455, 18457), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((18487, 18493), 'ipywidgets.VBox', 'VBox', ([], {}), '()\n', (18491, 18493), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((18520, 18526), 'ipywidgets.VBox', 'VBox', ([], {}), '()\n', (18524, 18526), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((18555, 18561), 'ipywidgets.VBox', 'VBox', ([], {}), '()\n', (18559, 18561), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((18589, 18595), 'ipywidgets.VBox', 'VBox', ([], {}), '()\n', (18593, 18595), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((25902, 25918), 'ipywidgets.HTML', 'HTML', (['self.title'], {}), '(self.title)\n', (25906, 25918), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((26001, 26018), 'ipywidgets.HTML', 'HTML', (['self.legend'], {}), '(self.legend)\n', (26005, 26018), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((26056, 26081), 'ipywidgets.Button', 'Button', ([], {'description': '"""Yes"""'}), "(description='Yes')\n", (26062, 26081), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((26204, 26228), 'ipywidgets.Button', 'Button', ([], {'description': '"""No"""'}), "(description='No')\n", (26210, 26228), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((26350, 26378), 'ipywidgets.Button', 'Button', ([], {'description': '"""Cancel"""'}), "(description='Cancel')\n", (26356, 26378), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((26521, 26559), 'ipywidgets.HBox', 'HBox', (['[self.yes, self.no, self.cancel]'], {}), '([self.yes, self.no, self.cancel])\n', (26525, 26559), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((26960, 27030), 'ipywidgets.Layout', 'Layout', ([], {'display': '"""flex"""', 'flex_flow': '"""column"""', 'border': 'self.border_outside'}), "(display='flex', flex_flow='column', border=self.border_outside)\n", (26966, 27030), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((27313, 27352), 'ipywidgets.Layout', 'Layout', ([], {'display': '"""flex"""', 'flex_flow': '"""row"""'}), "(display='flex', flex_flow='row')\n", (27319, 27352), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((28233, 28277), 'ipywidgets.FloatText', 'FloatText', ([], {'value': 'self.min', 'description': '"""min"""'}), "(value=self.min, description='min')\n", (28242, 28277), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((28300, 28344), 'ipywidgets.FloatText', 'FloatText', ([], {'value': 'self.max', 'description': '"""max"""'}), "(value=self.max, description='max')\n", (28309, 28344), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((6475, 6504), 'ipywidgets.Accordion', 'Accordion', ([], {'children': '(widget,)'}), '(children=(widget,))\n', (6484, 6504), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((10948, 10968), 'multiprocessing.Pool', 'Pool', (['self.POOL_SIZE'], {}), '(self.POOL_SIZE)\n', (10952, 10968), False, 'from multiprocessing import Pool\n'), ((14819, 14836), 'ipywidgets.HTML', 'HTML', (['"""Loading.."""'], {}), "('Loading..')\n", (14823, 14836), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((27953, 27983), 'ipywidgets.Box', 'Box', (['el'], {'layout': 'layout_columns'}), '(el, layout=layout_columns)\n', (27956, 27983), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((3410, 3435), 'ee.data.deleteAsset', 'ee.data.deleteAsset', (['path'], {}), '(path)\n', (3429, 3435), False, 'import ee\n'), ((3956, 3991), 'ipywidgets.Layout', 'Layout', ([], {'flex': '"""1 1 20"""', 'width': '"""auto"""'}), "(flex='1 1 20', width='auto')\n", (3962, 3991), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((8984, 9007), 'ee.data.getAssetRoots', 'ee.data.getAssetRoots', ([], {}), '()\n', (9005, 9007), False, 'import ee\n'), ((15585, 15599), 'ee.Image', 'ee.Image', (['path'], {}), '(path)\n', (15593, 15599), False, 'import ee\n'), ((16099, 16131), 'ipywidgets.HBox', 'HBox', ([], {'children': '[wid_i, wid_info]'}), '(children=[wid_i, wid_info])\n', (16103, 16131), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((17287, 17322), 'ipywidgets.Layout', 'Layout', ([], {'flex': '"""1 1 20"""', 'width': '"""auto"""'}), "(flex='1 1 20', width='auto')\n", (17293, 17322), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((20132, 20161), 'time.sleep', 'time.sleep', (['self.slider.value'], {}), '(self.slider.value)\n', (20142, 20161), False, 'import time\n'), ((21263, 21281), 'ipywidgets.HTML', 'HTML', (['"""Loading..."""'], {}), "('Loading...')\n", (21267, 21281), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((21328, 21349), 'ee.data.getTaskList', 'ee.data.getTaskList', ([], {}), '()\n', (21347, 21349), False, 'import ee\n'), ((25095, 25121), 'ee.data.cancelTask', 'ee.data.cancelTask', (['taskid'], {}), '(taskid)\n', (25113, 25121), False, 'import ee\n'), ((25463, 25489), 'ee.data.cancelTask', 'ee.data.cancelTask', (['taskid'], {}), '(taskid)\n', (25481, 25489), False, 'import ee\n'), ((22468, 22500), 'ipywidgets.Accordion', 'Accordion', ([], {'children': '(accordion,)'}), '(children=(accordion,))\n', (22477, 22500), False, 'from ipywidgets import HTML, Tab, Accordion, Checkbox, HBox, Layout, Widget, VBox, Button, Box, ToggleButton, IntSlider, FloatText\n'), ((9945, 9960), 'ee.Image', 'ee.Image', (['asset'], {}), '(asset)\n', (9953, 9960), False, 'import ee\n'), ((10096, 10121), 'ee.ImageCollection', 'ee.ImageCollection', (['asset'], {}), '(asset)\n', (10114, 10121), False, 'import ee\n')]