prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import os import json import pprint import numpy as np import pandas as pd import tensorflow as tf from commonmodels2.models.model import ModelBase from commonmodels2.log.logger import Logger class DataContainer(): def __init__(self): self._keystore = {} def __str__(self): return pprint.pformat(self._keystore, indent=2) def get_item(self, key): if key in self.get_keys(): return self._keystore[key] else: raise KeyError("provided key '{}' not present in {}".format(key, type(self).__name__)) def set_item(self, key, obj): if type(key) != str: raise ValueError("provided key must be string type") self._keystore[key] = obj def get_keys(self): return self._keystore.keys() def save(self, out_dir_path): Logger.getInst().info("Saving data container. This may take a while...") str_dict = self._make_json_compatible(self._keystore, out_dir_path) out_json_str = json.dumps(str_dict, sort_keys=True, indent=3, separators=(',', ': ')) with open(os.path.join(out_dir_path, 'data_info.json'), 'w') as outfile: outfile.write(out_json_str) # Helper method for _make_json_compatible(). This function allows values # stored in a dict object associated with certain keys to be processed differently. # For example, all lists will be stored as json-compatible lists inside the output # json object after calling _make_json_compatible(), but this function allows certain # lists to be stored differently @classmethod def _special_dict_key_handler(cls, key, value, out_file_path): replace_val = value if key == 'predictions': if not os.path.isdir(os.path.dirname(out_file_path)): os.makedirs(os.path.dirname(out_file_path)) out_file_path += '.csv' out_preds = np.array(value) num_cols = 1 if out_preds.ndim == 1 else out_preds.shape[1] pred_cols = ['Predictions'] if num_cols > 1: pred_cols = ['Prediction_%d'%(i) for i in range(num_cols)] preds_df =
pd.DataFrame(data=out_preds, columns=pred_cols)
pandas.DataFrame
""" concavity_automator comports multiple scripts automating concavity constraining method for landscape """ import lsdtopytools as lsd import numpy as np import numba as nb import pandas as pd from matplotlib import pyplot as plt import sys import matplotlib from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection import math from lsdtopytools.numba_tools import travelling_salesman_algortihm, remove_outliers_in_drainage_divide import random import matplotlib.gridspec as gridspec from multiprocessing import Pool, current_process from scipy import spatial,stats import numba as nb import copy from pathlib import Path import pylab as pl from scipy.signal import savgol_filter from scipy.interpolate import interp1d def norm_by_row(A): """ Subfunction used to vectorised normalisation of disorder by max of row using apply_along_axis function B.G """ return A/A.max() def norm_by_row_by_range(A): """ Subfunction used to vectorised normalisation of disorder by range of concavity using apply_along_axis function B.G """ return (A - A.min())/(A.max() - A.min()) def numfmt(x, pos): """ Plotting subfunction to automate tick formatting from metres to kilometres B.G """ s = '{:d}'.format(int(round(x / 1000.0))) return s def get_best_bit_and_err_from_Dstar(thetas, medD, fstD, thdD): """ Takes ouput from concavity calculation to calculate the best-fit theta and its error """ # Calculating the index of minimum medium disorder to get the best-fit index_of_BF = np.argmin(medD) # Getting the Dstar value of the best-fit dstar_val = medD[index_of_BF] # Getting the acutal best-fit BF = thetas[index_of_BF] # Preformatting 2 arrays for calculating the error: I am just interested by the first half for the first error and the second for the second A = np.copy(fstD) A[index_of_BF+1:] = 9999 B = np.copy(fstD) B[:index_of_BF] = 9999 # calculating the error by extracting the closest theta with a Dstar close to the median best fit ones err = ( thetas[np.abs(A - dstar_val).argmin()] , thetas[np.abs(B - dstar_val).argmin()] ) # REturning a tuple with [0] being the best fit and [1] another tuple f error return BF,err def process_basin(ls, **kwargs): """ Main function processing the concavity. It looks a bit convoluted but it is required for clean multiprocessing. Takes at least one argument: ls, which is a list of arguments ls[0] -> the number of the basin (heavily used by automatic multiprocessing) ls[1] -> the X coordinate of the basin outlet ls[2] -> the Y coordinate of the basin outlet ls[3] -> area_threshold used for the analysis ls[4] -> prefix befor the number of the basin to read the file input Also takes option kwargs argument: ignore_numbering: jsut use the prefix as name for the DEM extension: if your extension is not .tif, you can give it here WITHOUT THE DOT overwrite_dem_name: used if you want to use thefunction from outside the automations: you need to provide the dem name WITH THE EXTENSION """ number = ls[0] X = ls[1] Y = ls[2] area_threshold = ls[3] prefix = ls[4] print("Processing basin ", number, " with proc ", current_process()) if("ignore_numbering" not in kwargs): kwargs["ignore_numbering"] = False if("extension" not in kwargs): kwargs["extension"] = "tif" if("n_tribs_by_combo" not in kwargs): kwargs["n_tribs_by_combo"] = 4 if(kwargs["ignore_numbering"] == True): name = prefix else: name = prefix + "%s"%(number) if(kwargs["precipitation_raster"] == ""): precipitation = False else: precipitation = True # I spent a significant amount of time preprocessing it, see SM n_rivers = 0 dem_name ="%s.%s"%(name,kwargs["extension"]) if("overwrite_dem_name" in kwargs): dem_name = kwargs["overwrite_dem_name"] MD = lsd.LSDDEM(file_name = dem_name, already_preprocessed = True) # Extracting basins if(precipitation): MD.CommonFlowRoutines( ingest_precipitation_raster = kwargs["precipitation_raster"], precipitation_raster_multiplier = 1, discharge = True) else: MD.CommonFlowRoutines() MD.ExtractRiverNetwork( method = "area_threshold", area_threshold_min = area_threshold) print("River extracted") MD.DefineCatchment( method="from_XY", X_coords = [X], Y_coords = [Y], coord_search_radius_nodes = 10 )#, X_coords = [X_coordinates_outlets[7]], Y_coords = [Y_coordinates_outlets[7]]) print("CAtchment defined") MD.GenerateChi(theta = 0.4, A_0 = 1) print("River_network_generated") n_rivers = MD.df_base_river.source_key.unique().shape[0] print("You have", n_rivers, "rivers and",MD.df_base_river.shape[0],"river pixels") MD.df_base_river.to_feather("%s_rivers.feather"%(name)) print("Starting the movern calculation") MD.cppdem.calculate_movern_disorder(0.05, 0.025, 38, 1, area_threshold, kwargs["n_tribs_by_combo"]) print("DONE with movern, let's format the output") OVR_dis = MD.cppdem.get_disorder_dict()[0] OVR_tested = MD.cppdem.get_disorder_vec_of_tested_movern() pd.DataFrame({"overall_disorder":OVR_dis, "tested_movern":OVR_tested }).to_feather("%s_overall_test.feather"%(name)) normalizer = MD.cppdem.get_n_pixels_by_combinations()[0] np.save("%s_disorder_normaliser.npy"%(name), normalizer) all_disorder = MD.cppdem.get_best_fits_movern_per_BK() np.save("%s_concavity_tot.npy"%(name), all_disorder[0]) print("Getting results") results = np.array(MD.cppdem.get_all_disorder_values()[0]) np.save("%s_disorder_tot.npy"%(name), results) XY = MD.cppdem.query_xy_for_each_basin()["0"] tdf = pd.DataFrame(XY) tdf.to_feather("%s_XY.feather"%(name)) return 0 def theta_quick_constrain_single_basin(MD,X_coordinate_outlet = 0, Y_coordinate_outlet = 0, area_threshold = 1500): """ Main function processing the concavity. It looks a bit convoluted but it is required for clean multiprocessing. Takes at least one argument: ls, which is a list of arguments ls[0] -> the number of the basin (heavily used by automatic multiprocessing) ls[1] -> the X coordinate of the basin outlet ls[2] -> the Y coordinate of the basin outlet ls[3] -> area_threshold used for the analysis ls[4] -> prefix befor the number of the basin to read the file input Also takes option kwargs argument: ignore_numbering: jsut use the prefix as name for the DEM extension: if your extension is not .tif, you can give it here WITHOUT THE DOT overwrite_dem_name: used if you want to use thefunction from outside the automations: you need to provide the dem name WITH THE EXTENSION """ # number = ls[0] # X = ls[1] # Y = ls[2] # area_threshold = ls[3] # prefix = ls[4] # print("Processing basin ", number, " with proc ", current_process()) # if("ignore_numbering" not in kwargs): # kwargs["ignore_numbering"] = False # if("extension" not in kwargs): # kwargs["extension"] = "tif" # if("n_tribs_by_combo" not in kwargs): # kwargs["n_tribs_by_combo"] = 4 # if(kwargs["ignore_numbering"] == True): # name = prefix # else: # name = prefix + "%s"%(number) # if(kwargs["precipitation_raster"] == ""): # precipitation = False # else: # precipitation = True # I spent a significant amount of time preprocessing it, see SM n_rivers = 0 # dem_name ="%s.%s"%(name,kwargs["extension"]) # if("overwrite_dem_name" in kwargs): # dem_name = kwargs["overwrite_dem_name"] # MD = lsd.LSDDEM(file_name = dem_name, already_preprocessed = True) # # Extracting basins # if(precipitation): # MD.CommonFlowRoutines( ingest_precipitation_raster = kwargs["precipitation_raster"], precipitation_raster_multiplier = 1, discharge = True) # else: # MD.CommonFlowRoutines() # print("Experimental function (Gailleton et al., submitted), if it crashes restart from a clean LSDDEM object with only the flow routines processed.") MD.ExtractRiverNetwork( method = "area_threshold", area_threshold_min = area_threshold) # print("River pre-extracted") MD.DefineCatchment( method="from_XY", X_coords = X_coordinate_outlet, Y_coords = Y_coordinate_outlet, coord_search_radius_nodes = 10 )#, X_coords = [X_coordinates_outlets[7]], Y_coords = [Y_coordinates_outlets[7]]) # print("CAtchment defined") MD.GenerateChi(theta = 0.4, A_0 = 1) # print("River_network_generated") n_rivers = MD.df_base_river.source_key.unique().shape[0] print("DEBUG::You have", n_rivers, "rivers and",MD.df_base_river.shape[0],"river pixels \n") # MD.df_base_river.to_feather("%s_rivers.feather"%(name)) # print("Starting the movern calculation") MD.cppdem.calculate_movern_disorder(0.05, 0.025, 38, 1, area_threshold, 4) # print("DONE with movern, let's format the output") OVR_dis = MD.cppdem.get_disorder_dict()[0] OVR_tested = MD.cppdem.get_disorder_vec_of_tested_movern() # pd.DataFrame({"overall_disorder":OVR_dis, "tested_movern":OVR_tested }).to_feather("%s_overall_test.feather"%(name)) normalizer = MD.cppdem.get_n_pixels_by_combinations()[0] # np.save("%s_disorder_normaliser.npy"%(name), normalizer) all_disorder = MD.cppdem.get_best_fits_movern_per_BK() # np.save("%s_concavity_tot.npy"%(name), all_disorder[0]) # print("Getting results") results = np.array(MD.cppdem.get_all_disorder_values()[0]) # np.save("%s_disorder_tot.npy"%(name), results) # XY = MD.cppdem.query_xy_for_each_basin()["0"] # tdf = pd.DataFrame(XY) # tdf.to_feather("%s_XY.feather"%(name)) # print("\n\n") try: from IPython.display import display, Markdown, Latex todusplay = r""" **Thanks for constraning** $\theta$ with the disorder algorithm from _Mudd et al., 2018_ and _Gailleton et al, submitted_. Keep in mind that it is not straightforward and that the "best fit" we suggest is most of the time the "least worst" value maximising the collinearity in $\chi$ space. Especially in large, complex basin, several $\theta$ actually fit different areas and the best fit is just a try to make everyone happy where it is not necessarily possible. $\theta$ constraining results: median $\theta$ | $1^{st}$ Q | $3^{rd}$ Q --- | --- | --- %s | %s | %s """%(round(np.nanmedian(all_disorder[0]),3), round(np.nanpercentile(all_disorder[0],25),3), round(np.nanpercentile(all_disorder[0],75),3)) display(Markdown(todusplay)) except: pass return all_disorder def get_median_first_quartile_Dstar(ls): """ Function which post-process results from one analysis to return the median and first quartile curve of all best-fits param: ls: full prefix (= including basin number if needed) B.G """ print("Normalising D* for ", ls) name_to_load = ls # loading the file containng ALL the data all_data = np.load(name_to_load + "_disorder_tot.npy") if(all_data.shape[0]>1): # normalise by max each row all_data = np.apply_along_axis(norm_by_row,1,all_data) # Median by column ALLDmed = np.apply_along_axis(np.median,0,all_data) # Percentile by column ALLDfstQ = np.apply_along_axis(lambda z: np.percentile(z,25),0,all_data) else: return name_to_load return ALLDmed, ALLDfstQ, ls def get_median_first_quartile_Dstar_r(ls): """ Function which post-process results from one analysis to return the median and first quartile curve of all best-fits param: ls: full prefix (= including basin number if needed) B.G """ print("Normalising D*_r for ", ls) name_to_load = ls # loading the file containng ALL the data all_data = np.load(name_to_load + "_disorder_tot.npy") if(all_data.shape[0]>1): # normalise by max each row all_data = np.apply_along_axis(norm_by_row_by_range,1,all_data) # Median by column ALLDmed = np.apply_along_axis(np.median,0,all_data) # Percentile by column ALLDfstQ = np.apply_along_axis(lambda z: np.percentile(z,25),0,all_data) else: return name_to_load return ALLDmed, ALLDfstQ, ls def plot_single_theta(ls, **kwargs): """ For a multiple analysis on the same DEM this plot the global with each basins colored by D^* Need post-processing function to pre-analyse the ouputs. The layout of this function might seems a bit convoluted, but that's making multiprocessing easy, as they take time to plot param """ this_theta = ls[0] prefix = ls[1] # Loading the small summary df df = pd.read_csv(prefix +"summary_results.csv") # Loading the HillShade HS = lsd.raster_loader.load_raster(prefix + "HS.tif") # Formatting ticks import matplotlib.ticker as tkr # has classes for tick-locating and -formatting yfmt = tkr.FuncFormatter(numfmt) xfmt = tkr.FuncFormatter(numfmt) print("plotting D* for theta", this_theta) # Getting the Figure and the ticks right fig,ax = plt.subplots() ax.yaxis.set_major_formatter(yfmt) ax.xaxis.set_major_formatter(xfmt) # Normalising the Hillshade and taking care of the no data HS["array"] = HS["array"]/HS["array"].max() HS["array"][HS["array"]<0] = np.nan # Plotting the hillshade ax.imshow(HS["array"], extent = HS["extent"], cmap = "gray", vmin= 0.2, vmax = 0.8) # Building the array of concavity A = np.zeros(HS["array"].shape) A[:,:] = np.nan # For each raster, I am reading rows and col corresponding to the main raster and potting it with the requested value for name in df["raster_name"]: row = np.load(name + "_row.npy") col = np.load(name + "_col.npy") val = df["D*_%s"%this_theta][df["raster_name"] == name].values[0] # A wee convoluted but it work and it is fast so... A[row,col] = val # PLOTTING THE D* ax.imshow(A, extent = HS["extent"], cmap= "gnuplot2", zorder = 2, alpha = 0.75, vmin = 0.1, vmax = 0.9) # You may want to change the extents of the plot if("xlim" in kwargs): ax.set_xlim(kwargs["xlim"]) if("ylim" in kwargs): ax.set_ylim(kwargs["ylim"]) ax.set_xlabel("Easting (km)") ax.set_ylabel("Northing (km)") # Saving the figure plt.tight_layout()# plt.savefig(prefix + "MAP_disorder_%s.png"%(this_theta), dpi = 500) plt.close(fig) print("plotting D*_r for theta", this_theta) # Getting the Figure and the ticks right fig,ax = plt.subplots() ax.yaxis.set_major_formatter(yfmt) ax.xaxis.set_major_formatter(xfmt) # Plotting the hillshade ax.imshow(HS["array"], extent = HS["extent"], cmap = "gray", vmin= 0.2, vmax = 0.8) # Building the array of concavity A = np.zeros(HS["array"].shape) A[:,:] = np.nan # For each raster, I am reading rows and col corresponding to the main raster and potting it with the requested value for name in df["raster_name"]: row = np.load(name + "_row.npy") col = np.load(name + "_col.npy") val = df["D*_r_%s"%this_theta][df["raster_name"] == name].values[0] # A wee convoluted but it work and it is fast so... A[row,col] = val # PLOTTING THE D* ax.imshow(A, extent = HS["extent"], cmap= "gnuplot2", zorder = 2, alpha = 0.75, vmin = 0.1, vmax = 0.9) # You may want to change the extents of the plot if("xlim" in kwargs): ax.set_xlim(kwargs["xlim"]) if("ylim" in kwargs): ax.set_ylim(kwargs["ylim"]) ax.set_xlabel("Easting (km)") ax.set_ylabel("Northing (km)") # Saving the figure plt.tight_layout()# plt.savefig(prefix + "MAP_disorder_by_range_%s.png"%(this_theta), dpi = 500) plt.close(fig) def plot_min_D_star_map(ls, **kwargs): """ For a multiple analysis on the same DEM this plot the global with each basins colored by D^* Need post-processing function to pre-analyse the ouputs. The layout of this function might seems a bit convoluted, but that's making multiprocessing easy, as they take time to plot param """ this_theta = ls[0] prefix = ls[1] # Loading the small summary df df = pd.read_csv(prefix +"summary_results.csv") # Loading the HillShade HS = lsd.raster_loader.load_raster(prefix + "HS.tif") # Formatting ticks import matplotlib.ticker as tkr # has classes for tick-locating and -formatting yfmt = tkr.FuncFormatter(numfmt) xfmt = tkr.FuncFormatter(numfmt) print("plotting D* for theta", this_theta) # Getting the Figure and the ticks right fig,ax = plt.subplots() ax.yaxis.set_major_formatter(yfmt) ax.xaxis.set_major_formatter(xfmt) # Normalising the Hillshade and taking care of the no data HS["array"] = HS["array"]/HS["array"].max() HS["array"][HS["array"]<0] = np.nan # Plotting the hillshade ax.imshow(HS["array"], extent = HS["extent"], cmap = "gray", vmin= 0.2, vmax = 0.8) # Building the array of concavity A = np.zeros(HS["array"].shape) A[:,:] = np.nan df_theta =
pd.read_csv(prefix + "all_raster_names.csv")
pandas.read_csv
import numpy as np import pandas as pd import glob from pmdarima.arima import ndiffs from pandas.tseries.offsets import QuarterBegin, QuarterEnd from .hand_select import hand_select import pandas_datareader.data as web import xlrd, csv from openpyxl.workbook import Workbook from openpyxl.reader.excel import load_workbook, InvalidFileException def set_date_as_index(df): df.columns = [name.lower() for name in df.columns] df["date"] = pd.to_datetime(df["date"]) df.set_index("date", inplace=True) return df def make_float(df): df = df.replace(".", np.nan) df = df.astype(float) return df def read_files(paths, fillna=True): csv_list = [] xls_list = [] for path in paths: csv_files = glob.glob(path + "/*.csv") xls_files = glob.glob(path + "/*.xls") for elt in csv_files: df = pd.read_csv(elt) df = set_date_as_index(df) df = make_float(df) if fillna: df = df.fillna(method='ffill') csv_list.append(df) for elt in xls_files: try: df = pd.read_excel(elt) df = set_date_as_index(df) df = make_float(df) if fillna: df = df.fillna(method='ffill') xls_files.append(df) except Exception: pass return csv_list, xls_list def make_stationary(df): df = hand_select(df) df = df.dropna() columns = df.columns for name in columns: x = df[name].values d_kpss = ndiffs(x, test='kpss') d_adf = ndiffs(x, test='adf') d_pp = ndiffs(x, test='pp') d_ = max(d_kpss, d_adf, d_pp) if d_ > 0: new_name = name + '_diff' + str(d_) if d_ == 1: df[new_name] = df[name].diff() elif d_ == 2: df[new_name] = df[name].diff().diff() elif d_ > 2: raise ValueError('High order differentiation') else: raise Exception('Some thing is wrong') df = df.drop(columns=[name]) return df def open_xls_as_xlsx(filename): # first open using xlrd book = xlrd.open_workbook(filename) index = 0 nrows, ncols = 0, 0 while nrows * ncols == 0: sheet = book.sheet_by_index(index) nrows = sheet.nrows ncols = sheet.ncols index += 1 # prepare a xlsx sheet book1 = Workbook() sheet1 = book1.active for row in range(1, nrows): for col in range(1, ncols): sheet1.cell(row=row, column=col).value = sheet.cell_value(row, col) return book1 def read_data(path, sheet=False, header='infer'): file_format = path.split('.')[-1] if 'msci' in path: header = 6 if sheet is False: # if file_format == 'csv': # df = pd.read_csv(path, header=header) # elif file_format == 'xls': # df = open_xls_as_xlsx(path) # else: try: df = pd.read_excel(path, header=header, engine='openpyxl') except Exception: try: df = open_xls_as_xlsx(path) except Exception as e: try: df = pd.read_csv(path, header=header) except Exception as e: raise Exception(e) else: try: # excel_file = pd.ExcelFile(path) # assert sheet in excel_file.sheet_names # df = excel_file.parse(sheet, header=header) df = pd.read_excel(path, header=header, engine='openpyxl', sheet_name=sheet) except Exception: raise Exception("Can not read sheet") df.columns = [name.lower() for name in df.columns] if 'year2' in df.columns: drop_columns = ['year2'] else: drop_columns = [] for elt in df.columns: if 'unnamed' in elt: drop_columns.append(elt) df.drop(columns=drop_columns, inplace=True) first_valid = df.iloc[:, 1].first_valid_index() last_valid = df.iloc[:, 1].last_valid_index() + 1 df = df.iloc[first_valid:last_valid] df.columns = df.columns.str.replace('.', '_') df.columns = df.columns.str.replace(' ', '_') df.columns = df.columns.str.replace('__', '_') return df def make_monthly_date(df, offset=True): datetime = pd.to_datetime( ( df['year'].astype(int) * 100 + df['month'].astype(int) ).astype(str), format='%Y%m' ) if offset: datetime += pd.tseries.offsets.MonthBegin(1) else: datetime = datetime df['date'] = datetime df.drop(columns=['year', 'month'], inplace=True) df.set_index('date', inplace=True) df.columns = [elt + '_monthly' for elt in df.columns] return df def make_quarterly_date(df, offset=True): df['year'] = df['year'].str.lower() df['year'] = df['year'].str.replace(r'(q\d)-(\d+)', r'\2-\1') if offset: # Bug that quarterbegin is March 01 df['date'] = pd.to_datetime(df['year'])\ + pd.tseries.offsets.DateOffset(days=1)\ + pd.tseries.offsets.QuarterBegin(1, startingMonth=1) else: df['date'] = pd.to_datetime(df['year']) df.drop(columns=['year'], inplace=True) df.set_index('date', inplace=True) # Manually shift because of QuarterBegin bug df.columns = [elt + '_quarterly' for elt in df.columns] df = df.dropna() return df def make_daily_date(df): datetime = pd.to_datetime( ( df['year'].astype(int) * 10000 + df['month'].astype(int) * 100 + df['day'].astype(int) ).astype(str), format='%Y%m%d' ) df['date'] = datetime df.drop(columns=['year', 'month', 'day'], inplace=True) df.set_index('date', inplace=True) df.columns = [elt + '_daily' for elt in df.columns] return df # If date of low frequency data is specified, assume It is announced # before the start of the market # If not specified, assume it is announced after the market is closed def daily_data(df, freq, offset=True, fill_method='ffill'): drop_columns = [] for elt in df.columns: if 'unnamed' in elt: drop_columns.append(elt) df.drop(columns=drop_columns, inplace=True) if freq.lower() == 'monthly': try: df = make_monthly_date(df, offset=offset) except Exception: print("set monthly date as index") datetime =
pd.to_datetime(df['date'])
pandas.to_datetime
#!/usr/bin/env python # coding: utf-8 # # Predicting Student Admissions with Neural Networks in Keras # In this notebook, we predict student admissions to graduate school at UCLA based on three pieces of data: # - GRE Scores (Test) # - GPA Scores (Grades) # - Class rank (1-4) # # The dataset originally came from here: http://www.ats.ucla.edu/ # # ## Loading the data # To load the data and format it nicely, we will use two very useful packages called Pandas and Numpy. You can read on the documentation here: # - https://pandas.pydata.org/pandas-docs/stable/ # - https://docs.scipy.org/ # In[11]: # Importing pandas and numpy import pandas as pd import numpy as np # Reading the csv file into a pandas DataFrame data =
pd.read_csv('student_data.csv')
pandas.read_csv
# -*- encoding: utf-8 -*- # @Time : 2020/12/17 # @Author : <NAME> # @email : <EMAIL> # UPDATE # @Time : 2020/12/17 # @Author : <NAME> # @email : <EMAIL> import json import math import re import shutil from collections import OrderedDict from typing import Union, Tuple import torch from .metrics import Metric def _line_width(): try: # if we're in an interactive ipython notebook, hardcode a longer width __IPYTHON__ return 128 except NameError: return shutil.get_terminal_size((88, 24)).columns def float_formatter(f: Union[float, int]) -> str: """ Format a float as a pretty string. """ if f != f: # instead of returning nan, return "" so it shows blank in table return "" if isinstance(f, int): # don't do any rounding of integers, leave them alone return str(f) if f >= 1000: # numbers > 1000 just round to the nearest integer s = f'{f:.0f}' else: # otherwise show 4 significant figures, regardless of decimal spot s = f'{f:.4g}' # replace leading 0's with blanks for easier reading # example: -0.32 to -.32 s = s.replace('-0.', '-.') if s.startswith('0.'): s = s[1:] # Add the trailing 0's to always show 4 digits # example: .32 to .3200 if s[0] == '.' and len(s) < 5: s += '0' * (5 - len(s)) return s def round_sigfigs(x: Union[float, 'torch.Tensor'], sigfigs=4) -> float: """ Round value to specified significant figures. :param x: input number :param sigfigs: number of significant figures to return :returns: float number rounded to specified sigfigs """ x_: float if isinstance(x, torch.Tensor): x_ = x.item() else: x_ = x # type: ignore try: if x_ == 0: return 0 return round(x_, -math.floor(math.log10(abs(x_)) - sigfigs + 1)) except (ValueError, OverflowError) as ex: if x_ in [float('inf'), float('-inf')] or x_ != x_: # inf or nan return x_ else: raise ex def _report_sort_key(report_key: str) -> Tuple[str, str]: """ Sorting name for reports. Sorts by main metric alphabetically, then by task. """ # if metric is on its own, like "f1", we will return ('', 'f1') # if metric is from multitask, we denote it. # e.g. "convai2/f1" -> ('convai2', 'f1') # we handle multiple cases of / because sometimes teacher IDs have # filenames. fields = report_key.split("/") main_key = fields.pop(-1) sub_key = '/'.join(fields) return (sub_key or 'all', main_key) def nice_report(report) -> str: """ Render an agent Report as a beautiful string. If pandas is installed, we will use it to render as a table. Multitask metrics will be shown per row, e.g. .. code-block: f1 ppl all .410 27.0 task1 .400 32.0 task2 .420 22.0 If pandas is not available, we will use a dict with like-metrics placed next to each other. """ if not report: return "" try: import pandas as pd use_pandas = True except ImportError: use_pandas = False sorted_keys = sorted(report.keys(), key=_report_sort_key) output: OrderedDict[Union[str, Tuple[str, str]], float] = OrderedDict() for k in sorted_keys: v = report[k] if isinstance(v, Metric): v = v.value() if use_pandas: output[_report_sort_key(k)] = v else: output[k] = v if use_pandas: line_width = _line_width() df = pd.DataFrame([output]) df.columns =
pd.MultiIndex.from_tuples(df.columns)
pandas.MultiIndex.from_tuples
import pandas as pd # Пакет для работы с таблицами import numpy as np # Пакет для работы с векторами и матрицами # Из библиотеки для работы с текстами вытащим # методы для предобработки и модели from gensim import corpora, models from gensim.models.callbacks import PerplexityMetric # Пара дополнительных комбинаторных штук для картинок from collections import defaultdict import itertools # Пакет, чтобы делать глубокие копии import copy # Пакет для работы со специфичными для питона данными import pickle # Косинусная метрика для рассчёта расстояний from scipy.spatial.distance import cosine import json import pickle path = '/Users/dmitrys/Yandex.Disk.localized/top_russian_music/comments/vk/' print("Reading data") with open(path + "vk_comments_full_1", 'rb') as f: comments = pickle.load(f) with open(path + "vk_comments_full_2", 'rb') as f: comments.extend(pickle.load(f)) data =
pd.DataFrame(comments)
pandas.DataFrame
# -*- coding: utf-8 -*- import sys import os import argparse import toml import librosa import pandas as pd import numpy as np from tqdm import tqdm from joblib import Parallel, delayed sys.path.append(os.getcwd()) from audio.metrics import SI_SDR, STOI, WB_PESQ, NB_PESQ, REGISTERED_METRICS def calculate_metric(noisy_file, clean_file, sr=16000, metric_type="STOI", pre_load=False): # get noisy, clean if pre_load == False: noisy, _ = librosa.load(noisy_file, sr=sr) clean, _ = librosa.load(clean_file, sr=sr) else: noisy = noisy_file clean = clean_file assert len(noisy) == len(clean) # get metric score if metric_type in ["SI_SDR"]: return SI_SDR(noisy, clean) elif metric_type in ["STOI"]: return STOI(noisy, clean, sr=sr) elif metric_type in ["WB_PESQ"]: return WB_PESQ(noisy, clean) elif metric_type in ["NB_PESQ"]: return NB_PESQ(noisy, clean) def compute_metric(noisy_files, clean_files, metrics, n_folds=1, n_jobs=8, pre_load=False): for metric_type, _ in metrics.items(): assert metric_type in REGISTERED_METRICS split_num = len(noisy_files) // n_folds score = [] for n in range(n_folds): metric_score = Parallel(n_jobs=n_jobs)( delayed(calculate_metric)( noisy_file, clean_file, sr=8000 if metric_type in ["NB_PESQ"] else 16000, metric_type=metric_type, pre_load=pre_load, ) for noisy_file, clean_file in tqdm( zip( noisy_files[n * split_num : (n + 1) * split_num], clean_files[n * split_num : (n + 1) * split_num], ) ) ) score.append(np.mean(metric_score)) metrics[metric_type] = np.mean(score) if __name__ == "__main__": parser = argparse.ArgumentParser(description="compute_metrics") parser.add_argument("-c", "--config", required=True, type=str, help="Config (*.toml).") args = parser.parse_args() # get dataset path dataset_path = os.path.join(os.getcwd(), "dataset_csv") # get set path train_path = os.path.join(dataset_path, "train.csv") valid_path = os.path.join(dataset_path, "valid.csv") test_path = os.path.join(dataset_path, "test.csv") # get train files train_files =
pd.read_csv(train_path)
pandas.read_csv
import pandas as pd import numpy as np from statsmodels.formula.api import ols import plotly_express import plotly.graph_objs as go from plotly.subplots import make_subplots # Read in data batter_data = pd.read_csv("~/Desktop/MLB_FA/Data/fg_bat_data.csv") del batter_data['Age'] print(len(batter_data)) print(batter_data.head()) pitcher_data = pd.read_csv("~/Desktop/MLB_FA/Data/fg_pitch_data.csv") del pitcher_data['Age'] print(len(pitcher_data)) print(pitcher_data.head()) salary_data = pd.read_csv("~/Desktop/MLB_FA/Data/salary_data.csv") print(len(salary_data)) injury_data = pd.read_csv("~/Desktop/MLB_FA/Data/injury_data_use.csv") # Check for whether there is overlap between injury data and the salary data players # injury_data_players = injury_data['Player'].unique() # mutual = salary_data[salary_data['Player'].isin(injury_data_players)] # 945 out of 1135 players included # excl = salary_data[~salary_data['Player'].isin(injury_data_players)] # print(len(excl['Player'].unique())) # 129 unique players injury data omitted; use mlb.com trans for these # Define inflation def npv(df, rate): r = rate df['Salary'] = pd.to_numeric(df['Salary']) df['AAV'] = salary_data['Salary'] / df['Years'] df['NPV'] = 0 df['NPV'] = round(df['AAV'] * (1 - (1 / ((1 + r) ** df['Years']))) / r, 2) return df salary_data = npv(salary_data, 0.05) # Lagged metrics to see if there is carryover value / value in continuity class Metrics: def lagged_batter(df): df['WAR'] =
pd.to_numeric(df['WAR'])
pandas.to_numeric
import os import sys import time import subprocess import webbrowser from collections import defaultdict import pandas as pd import numpy as np from numpy import floor, ceil path = os.path.dirname(os.path.realpath(__file__)) sys.path.append(path) pd.set_option('display.float_format', lambda x: '%.3f' % x) from validate_ez import * from validate_full import * from validate_pf import * import data """ <Class> <Methods> <description> <related methods> Utilities generate_token builds a "token" dictionary to pass between the loops with all values necessary for the current EIN update_df_row extracts an updated row from a token to write back to the dataframe get_components handles cross-referencing equation components (denoted by the * in the display) load_data loads the dataframe at the start of the program load_saved loads previously saved entries and merges them sort_data sorts data by the specified criteria on program start build_url builds Foundation Center URLs from the current EINs data pdf_opener opens Foundation Center PDFs in default browser get_form_crosswalk connects column names to IRS form 990 lines for user reference process_token_storage handles the restoring of the EIN placed on hold in order to go back one Display display main display loop display_static_header program info at top between the *** lines display_form_header header with info on the current form, including eins completed/remaining - also has the validation reason from the current EIN display_ein_header header with info on the current row, rev/ass/exp both current and prior, plus tax period display_failed_equations manages the failed equation display between the --- lines failure_entries used for updating the failed equations section on the fly UserInput get_explanation asks user to explain what was done get_user initial setup questions col_viewer helper function for formatting output user_input main menu, and methods related to it: ui_fixed ui_checked ui_ignore ui_skip ui_reset ui_quit ui_options ui_done_so_far ui_view ui_view_group ui_modify_row ui_get_fix CoreFixer __init__ environmental variables start base method called to begin the validation tool dataframe_loop manages the loop through every row of the dataframe row_loop manages the loop through a single row until fixed end handles wrap-up and saving """ def wprint(text, chars=99, indent=True, ident=4): #adds auto wrapping and optional indenting to printed text first_line = True lines = [] while len(text) > 0: if not first_line: eol = chars - ident else: eol = chars curr_line_rev = text[eol-1::-1] if '-' in curr_line_rev and '+' in curr_line_rev: split_pt = min(curr_line_rev.find('+'), curr_line_rev.find('-')) elif '-' in curr_line_rev: split_pt = curr_line_rev.find('-') elif '+' in curr_line_rev: split_pt = curr_line_rev.find('+') else: split_pt = 0 if len(text) >= eol: line = text[:eol-split_pt] else: line = text text = text[len(line):].lstrip() if not first_line: line = ' '*ident + line else: first_line = False lines.append(line) for line in lines: print(line) class Utilities(): def generate_token(self, ein, row): if row['SOURCE'].split('.')[0].upper().endswith('EZ'): source = 'EZ' elif row['SOURCE'].split('.')[0].upper().endswith('990'): source = 'Full' elif row['SOURCE'].split('.')[0].upper().endswith('PF'): source = 'PF' else: source = '' token = {'current_ein': ein, 'irs_source' : source, 'original_row': row, 'modified_row': row.copy(), 'exit': False, 'write': None, 'changes':{}} return token def update_df_row(self, token): self.df.loc[token['current_ein']] = token['modified_row'] #write result back to original def get_components(self): """ Loads the methods for validation calculations from Core, then builds the cross references needed to track relations between equations (e.g. one equation that fails has TOTREV2 in it, so the program finds all equations with TOTREV2 and displays those also) """ #creates an instance of the validation code from the main program validator = {'EZ':ValidateEZ(), 'Full':ValidateFull(), 'PF':ValidatePF()} components = {} validators = {} equations = {} validators['EZ'] = {'validate_ez_totrev': validator['EZ'].ez_validate_totrev, 'validate_ez_netinc': validator['EZ'].ez_validate_netinc, 'validate_ez_ass_eoy': validator['EZ'].ez_validate_ass_eoy, 'validate_ez_saleothn': validator['EZ'].ez_validate_saleothn, 'validate_ez_netincfndrsng': validator['EZ'].ez_validate_netincfndrsng, 'validate_ez_grprof': validator['EZ'].ez_validate_grprof } validators['Full'] = {'validate_fu_netrent':validator['Full'].full_validate_netrent, 'validate_fu_netgnls':validator['Full'].full_validate_netgnls, 'validate_fu_netincfndrsng':validator['Full'].full_validate_netincfndrsng, 'validate_fu_netincgaming':validator['Full'].full_validate_netincgaming, 'validate_fu_grprof':validator['Full'].full_validate_grprof, 'validate_fu_totrev2':validator['Full'].full_validate_totrev2, 'validate_fu_fundbal':validator['Full'].full_validate_fundbal } validators['PF'] = {'validate_pf_p1totrev':validator['PF'].pf_validate_p1totrev, 'validate_pf_p1totexp':validator['PF'].pf_validate_p1totexp, 'validate_pf_p1excrev':validator['PF'].pf_validate_p1excrev, 'validate_pf_p2tinvsc':validator['PF'].pf_validate_p2tinvsc, 'validate_pf_p14tnadj':validator['PF'].pf_validate_p14tnadj, 'validate_pf_p14tqdis':validator['PF'].pf_validate_p14tqdis, 'validate_pf_p14tasvl':validator['PF'].pf_validate_p14tasvl, 'validate_pf_p14t4942':validator['PF'].pf_validate_p14t4942, 'validate_pf_p14tendw':validator['PF'].pf_validate_p14tendw, 'validate_pf_p14ttsup':validator['PF'].pf_validate_p14ttsup, 'validate_pf_p14tpsup':validator['PF'].pf_validate_p14tpsup, 'validate_pf_p14tginv':validator['PF'].pf_validate_p14tginv } for form in ['EZ', 'Full', 'PF']: equations[form] = {'_'.join(k.split('_')[2:]).upper(): v(None, fixer_display=True) for k, v in validators[form].items()} components[form] = {k: v.translate(str.maketrans({kk: None for kk in '+-=()'})).split() for k, v in equations[form].items()} all_cols = {} multiples = {} cross_components_dict = {} for form in ['EZ', 'Full', 'PF']: all_cols[form] = [col for cols in components[form].values() for col in cols] #all_cols[form] = ['col1', 'col2', 'col3'...] multiples[form] = [] uniques = list(set(all_cols[form])) #unique list of every column in components keys or values for col in uniques: if all_cols[form].count(col) > 1: multiples[form].append(col) #reverse the components dict, so every name that shows up more than once is a key, while the key it shows up in in components is a value cross_components_dict[form] = defaultdict(lambda: []) for m in multiples[form]: for k, v in components[form].items(): if m in v: cross_components_dict[form][m].append(k) cross_components_dict[form] = dict(cross_components_dict[form]) #pointers for ease of reference later components['FU'] = components['Full'] cross_components_dict['FU'] = cross_components_dict['Full'] multiples['FU'] = multiples['Full'] validators['FU'] = validators['Full'] equations['FU'] = equations['Full'] return components, cross_components_dict, multiples, equations, validators def load_data(self): df = pd.read_csv(os.path.join(self.path, 'validation', 'failures', '{}_{}_validate.csv'.format(self.form.lower(), self.year)), dtype=self.make_strings) df.set_index('EIN', inplace=True) num_cols = df.select_dtypes(include=[np.number]).columns for c in num_cols: df[c.lower()+'_adjusted_by'] = 0 #initialize empty adjustment tracking columns df['validated_by'] = '' df['EXPLANATION'] = '' if self.load_df is not None: try: df.loc[self.load_df.index] = self.load_df except KeyError: #if the main process has been rerun and new validation output is present, but the fixes already applied haven't been deleted from the folder, they will fail to assign print('\nWARNING: It appears the existing fixes have already been integrated into the main process, as some of the EINs in the saved fix content are no longer marked for validating.') _ = input('Press any key to continue WITHOUT loading the fixes. They will be OVERWRITTEN the next time you save. Otherwise please exit the program to resolve the conflict.') failures = [c for c in df.columns if c.startswith('validate_') and 'adjusted' not in c] df.loc[:,failures] = df[failures].fillna(0) #filters out any entries that have already been solved (does not filter any entries if there is no loaded content) #stopped filtering this way to avoid overwriting content on save changes only, now just used to calculate start length. df['INCLUDE'] = ((df['VALIDATION_STATE'] != 2) & ((abs(df[failures]) >= self.threshold).any(1) | (df['VALIDATION_REASON'].isin(self.sort_criteria) & ~df['VALIDATION_STATE'].isin([1,3])))) # df = df[df['INCLUDE']] start_len = len(df[df['INCLUDE']]) del df['INCLUDE'] df['VALIDATION_REASON'] = pd.Categorical(df['VALIDATION_REASON'], self.sort_criteria, ordered=True) self.df = df self.num_cols = num_cols self.failures = failures self.start_len = start_len def load_saved(self, form): #form: (str) co, pc, pf load_df = pd.read_csv(os.path.join(path, 'validation', 'fixes', '{}_{}_validate.csv'.format(form.lower(), self.year)), dtype=self.make_strings) load_df.set_index('EIN', inplace=True) tracking_df = pd.read_csv(os.path.join(path, 'final output', '{}_change_tracker.csv'.format(form.lower())), dtype={'EIN':'str'}) tracking_df.set_index('EIN', inplace=True) load_df = load_df.merge(tracking_df, how='outer', left_index=True, right_index=True, indicator=True) assert((load_df['_merge'] == 'both').all(axis=0)), 'Warning, EINs do not line up when merging existing changes with change tracking.' load_df.drop('_merge', axis=1, inplace=True) load_df['VALIDATION_REASON'] = pd.Categorical(load_df['VALIDATION_REASON'], self.sort_criteria, ordered=True) print('{} previously completed rows loaded.'.format(len(load_df))) return load_df def sort_data(self): df = self.df form = self.form if form == 'PF': rev = 'P1TOTREV' else: rev = 'TOTREV2' self.df = self.df.sort_values(['VALIDATION_REASON', rev], ascending=[True, False]) def build_url(self, filename, taxperp): if self.form == 'PF': pf = 'pf' else: pf = '' if not taxperp: return 'http://990s.foundationcenter.org/990{}_pdf_archive/{}/{}/{}.pdf'.format(pf, filename[:3], filename.split('_')[0], filename) else: fn_split = filename.split('_') pfn = '_'.join([ fn_split[0], str(taxperp).rstrip('.0'), fn_split[2] ]) return 'http://990s.foundationcenter.org/990{}_pdf_archive/{}/{}/{}.pdf'.format(pf, filename[:3], filename.split('_')[0], pfn) def pdf_opener(self, filename, taxperp=None, url=None): if not url: url = self.build_url(filename, taxperp) webbrowser.open_new_tab(url) def get_form_crosswalk(self): """ For connecting column names to 990 form locations """ return {'FULL': pd.Series(['Part VIII Line 1h', 'Part VIII Line 2g (A)', 'Part VIII Line 3A', 'Part VIII Line 4A', 'Part VIII Line 5A', 'Part VIII Line 6a (i)', 'Part VIII Line 6a (ii)', 'Sum of Part VIII Line 6a (i) and (ii)', 'Part VIII Line 6b (i)', 'Part VIII Line 6b (ii)', 'Sum of Part VIII Line 6b (i) and (ii)', 'Part VIII Line 6c (i)', 'Part VIII Line 6c (ii)', 'Part VIII Line 6d (A)', 'Part VIII Line 7a (i)', 'Part VIII Line 7b (i)', 'Part VIII Line 7c (i)', 'Part VIII Line 7a (ii)', 'Part VIII Line 7b (ii)', 'Part VIII Line 7c (ii)', 'Part VIII Line 7d', 'Part VIII Line 8a', 'Part VIII Line 8b', 'Part VIII Line 8c', 'Part VIII Line 9a', 'Part VIII Line 9b', 'Part VIII Line 9c', 'Sum of Part VIII Line 8a and 9a', 'Sum of Part VIII Line 8b and 9b', 'Sum of Part VIII Line 8c (A) and 9c (A)', 'Part VIII Line 10a', 'Part VIII Line 10b', 'Part VIII Line 10c (A)', 'Part VIII Line 11e (A)', 'Part VIII Line 12 (A)', 'Part IX Line 5 (A)', 'Part IX Line 7 (A)', 'Part IX Line 10 (A)', 'Part IX Line 11e (A)', 'Part IX Line 25 (A)', 'Part X Line 16 (A)', 'Part X Line 16 (B)', 'Part X Line 20 (B)', 'Part X Line 23 (B)', 'Part X Line 24 (B)', 'Part X Line 26 (A)', 'Part X Line 26 (B)', 'Part X Line 32 (B)', 'Part X Line 33 (B)'], index=['CONT', 'PROGREV', 'INVINC', 'TXEXMPTBNDSPROCEEDS', 'ROYALTSINC', 'GRSRNTSREAL', 'GRSRNTSPRSNL', 'RENTINC', 'RNTLEXPNSREAL', 'RNTLEXPNSPRSNL', 'RENTEXP', 'RNTLINCREAL', 'RNTLINCPRSNL', 'NETRENT', 'SECUR', 'SALESEXP', 'SALESECN', 'SALEOTHG', 'SALEOTHE', 'SALEOTHN', 'NETGNLS', 'GRSINCFNDRSNG', 'LESSDIRFNDRSNG', 'NETINCFNDRSNG', 'GRSINCGAMING', 'LESSDIRGAMING', 'NETINCGAMING', 'SPEVTG', 'DIREXP', 'FUNDINC', 'INVENTG', 'GOODS', 'GRPROF', 'OTHINC', 'TOTREV2', 'COMPENS', 'OTHSAL', 'PAYTAX', 'FUNDFEES', 'EXPS', 'ASS_BOY', 'ASS_EOY', 'BOND_EOY', 'MRTG_EOY', 'UNSECUREDNOTESEND', 'LIAB_BOY', 'LIAB_EOY', 'RETEARN', 'FUNDBAL'], ), 'EZ': None, 'PF': None} def process_token_storage(self, token): """ Method for when the user has gone back to the previous token and then finished it and needs to restore the delayed one. """ self.update_df_row(token) #update the df with the prior token token = self.token_storage['on_hold'] #extract the token that was placed on hold self.token_storage['on_hold'] = None #empty the token storage return token #return the token that was placed on hold and make it the current token class Display(): def display(self, token): self.display_static_header() self.display_form_header(token) self.display_ein_header(token) self.display_failed_equations(token) def display_static_header(self): os.system('cls' if os.name == 'nt' else 'clear') line0 = '****************************************' line1 = 'NCCS Core File Validation Tool v7.2017' line2 = 'Created by <NAME> (<EMAIL>)' line_list = [line0, line1, line2, line0, ''] for line in line_list: print(line.center(self.terminal_width)) def display_form_header(self, token): form = self.form num_fixed = self.num_fixed remaining = self.start_len - num_fixed ein = token['current_ein'] firm_name = str(token['modified_row']['NAME']) reason = token['modified_row']['VALIDATION_REASON'] lcol = int(floor(self.terminal_width / 2)) rcol = int(self.terminal_width - lcol) sides = int(floor(self.terminal_width / 3)) cent = int(self.terminal_width - 2*sides) line4a = 'Form: {}'.format(form).ljust(sides) line4c = 'Validation Reasons: {}'.format(', '.join(list(reason))).center(cent) line4b = 'EINs Completed: {}'.format(num_fixed).rjust(sides) line5a = 'EIN: {}'.format(ein).ljust(lcol) line5b = 'EINs Remaining: {}'.format(remaining).rjust(rcol) line6 = firm_name.center(self.terminal_width) line7 = '-'*len(firm_name) + '--' print(line4a+line4c+line4b) print(line5a+line5b) print(line6) print(line7.center(self.terminal_width)) def display_ein_header(self, token): row = token['modified_row'] source = token['irs_source'] sides = int(floor(self.terminal_width / 3)) cent = int(self.terminal_width - 2*sides) if source in ['EZ', 'Full']: current = (float(row['TOTREV2']),float(row['EXPS']), float(row['ASS_EOY'])) prior = (float(row['TOTREVP']), float(row['EXPSP']), float(row['ASS_BOY'])) elif source == 'PF': current = (float(row['P1TOTREV']), float(row['P1TOTEXP']), float(row['P2TOTAST'])) prior = None else: current, prior = None, None taxper = 'TAX PERIOD: '+row['TAXPER'][:4]+'-'+row['TAXPER'][4:] print(taxper.center(self.terminal_width)) print('') if current: line1 = 'CURRENT: Revenue: {:,.0f}'.format(current[0]).center(sides) + 'Expenses: {:,.0f}'.format(current[1]).center(cent) + 'Assets: {:,.0f}'.format(current[2]).center(sides) print(line1) if prior: line2 = 'PRIOR: Revenue: {:,.0f}'.format(prior[0]).center(sides) + 'Expenses: {:,.0f}'.format(prior[1]).center(cent) + 'Assets: {:,.0f}'.format(prior[2]).center(sides) print(line2) if current or prior: print('') print(' ' + '-'*int((ceil(self.terminal_width))-2)) print('') def display_failed_equations(self, token): row = token['modified_row'] failures = self.failure_entries(token) for fail in failures.index: eq = self.equations[fail[9:11].upper()][fail[12:].upper()] cols = self.components[fail[9:11].upper()][fail[12:].upper()] for col in cols: eq = eq.replace(col, col+' [{:,.0f}]'.format(row[col])) entries = '${:,.0f} = '.format(int(row[fail])) + eq for multiple in self.multiples[fail[9:11].upper()]: entries = entries.replace(multiple, multiple+'*') ident = len(fail[12:])+6 if row[fail] < 0: ident += 1 wprint(entries, ident=ident) print('') if len(failures.index) == 0: print('No validation failures found.\n'.center(self.terminal_width)) def failure_entries(self, token): row = token['modified_row'] failures = row.loc[self.failures] failures = failures[(abs(failures) >= self.threshold)] #display all failure columns #adds to the display any columns that passed validation, but contain columns that are parts of columns that did fail validation add_related = [] for fail in failures.index: #e.g. fail='validate_ez_totrev' fail_components = self.components[fail[9:11].upper()][fail[12:].upper()] #e.g. fail_components=['CONT', 'PRGMSRVREV'...] for fail_component in fail_components: if fail_component in self.multiples[fail[9:11].upper()]: component_sources = self.cross_components[fail[9:11].upper()][fail_component] for potential in component_sources: if 'validate_'+fail[9:11].lower()+'_'+potential.lower() not in failures.index: add_related.append('validate_'+fail[9:11]+'_'+potential.lower()) if len(add_related) > 0: failures =
pd.concat([failures, row.loc[add_related]])
pandas.concat
"""Module to read, check and write a HDSR meetpuntconfiguratie.""" __title__ = "histTags2mpt" __description__ = "to evaluate a HDSR FEWS-config with a csv with CAW histTags" __version__ = "0.1.0" __author__ = "<NAME>" __author_email__ = "<EMAIL>" __license__ = "MIT License" from meetpuntconfig.fews_utilities import FewsConfig, xml_to_dict from pathlib import Path import json import numpy as np import pandas as pd import logging from openpyxl import load_workbook from openpyxl.styles import Font, PatternFill import os import sys import re from shapely.geometry import Point pd.options.mode.chained_assignment = None def idmap2tags(row, idmap): """Add FEWS-locationIds to hist_tags in df.apply() method.""" exloc, expar = row["serie"].split("_", 1) fews_locs = [ col["internalLocation"] for col in idmap if col["externalLocation"] == exloc and col["externalParameter"] == expar ] if len(fews_locs) == 0: fews_locs = np.NaN return fews_locs def get_validation_attribs(validation_rules, int_pars=None, loc_type=None): """Get attributes from validationRules.""" if int_pars is None: int_pars = [rule["parameter"] for rule in validation_rules] result = [] for rule in validation_rules: if "type" in rule.keys(): if rule["type"] == loc_type: if any(re.match(rule["parameter"], int_par) for int_par in int_pars): for key, attribute in rule["extreme_values"].items(): if isinstance(attribute, list): result += [value["attribute"] for value in attribute] else: result += [attribute] elif any(re.match(rule["parameter"], int_par) for int_par in int_pars): for key, attribute in rule["extreme_values"].items(): if isinstance(attribute, list): result += [value["attribute"] for value in attribute] else: result += [attribute] return result def update_hlocs(row, h_locs, mpt_df): """Add startdate and enddate op hoofdloc dataframe with df.apply() method.""" loc_id = row.name start_date = row["STARTDATE"] end_date = row["ENDDATE"] if loc_id in h_locs: start_date = ( mpt_df[mpt_df.index.str.contains(loc_id[0:-1])]["STARTDATE"].dropna().min() ) end_date = ( mpt_df[mpt_df.index.str.contains(loc_id[0:-1])]["ENDDATE"].dropna().max() ) return start_date, end_date def update_date(row, mpt_df, date_threshold): """Return start and end-date in df.apply() method.""" int_loc = row["LOC_ID"] if int_loc in mpt_df.index: start_date = mpt_df.loc[int_loc]["STARTDATE"].strftime("%Y%m%d") end_date = mpt_df.loc[int_loc]["ENDDATE"] if end_date > date_threshold: end_date = pd.Timestamp(year=2100, month=1, day=1) end_date = end_date.strftime("%Y%m%d") else: start_date = row["START"] end_date = row["EIND"] return start_date, end_date def update_histtag(row, grouper): """Assign last histTag to waterstandsloc in df.apply method.""" return next( ( df.sort_values("total_max_end_dt", ascending=False)["serie"].values[0] for loc_id, df in grouper if loc_id == row["LOC_ID"] ), None, ) def _sort_validation_attribs(rule): result = {} for key, value in rule.items(): if isinstance(value, str): result[key] = [value] elif isinstance(value, list): periods = [val["period"] for val in value] attribs = [val["attribute"] for val in value] result[key] = [attrib for _, attrib in sorted(zip(periods, attribs))] return result class MeetpuntConfig: """Meetpuntconfig class.""" def __init__(self, config_path, log_level="INFO"): self.paths = dict() self.fews_config = None self.location_sets = dict() self.hist_tags = None self.hist_tags_ignore = None self.fixed_sheets = None self.idmap_files = None self.idmap_sections = None self.external_parameters_allowed = None self.consistency = None self.parameter_mapping = None self.validation_rules = None self.logging = logging self.hoofdloc = None self.subloc = None self.waterstandloc = None self.mswloc = None self.mpt_hist_tags = None self._locs_mapping = dict( hoofdlocaties="hoofdloc", sublocaties="subloc", waterstandlocaties="waterstandloc", mswlocaties="mswloc", ) self.logging.basicConfig(level=os.environ.get("LOGLEVEL", log_level)) self._read_config(Path(config_path)) def _read_config(self, config_json): if config_json.exists(): with open(config_json) as src: config = json.load(src) workdir = Path(config_json).parent else: self.logging.error(f"{config_json} does not exist") sys.exit() # add paths to config for key, path in config["paden"].items(): path = Path(path) if not path.is_absolute(): path = workdir.joinpath(path).resolve() if path.exists(): self.paths[key] = path else: if path.suffix == "": logging.warning(f"{path} does not exist. Folder will be created") path.mkdir() else: self.logging.error( ( f"{path} does not exist. " f"Please define existing file " f"in {config_json}." ) ) sys.exit() # add fews_config self.fews_config = FewsConfig(self.paths["fews_config"]) # add location_sets for key, value in config["location_sets"].items(): if value in self.fews_config.locationSets.keys(): if "csvFile" in self.fews_config.locationSets[value].keys(): self.location_sets[key] = { "id": value, "gdf": self.fews_config.get_locations(value), } else: self.logging.error((f"{key} not a csvFile location-set")) else: self.logging.error( ( f"locationSet {key} specified in {config_json} " f"not in fews-config" ) ) # add rest of config self.idmap_files = config["idmap_files"] self.idmap_sections = config["idmap_sections"] self.external_parameters_allowed = config["external_parameters_allowed"] self.parameter_mapping = config["parameter_mapping"] self.validation_rules = config["validation_rules"] self.fixed_sheets = config["fixed_sheets"] # read consistency df from input-excel self.consistency = pd.read_excel( self.paths["consistency_xlsx"], sheet_name=None, engine="openpyxl" ) self.consistency = { key: value for key, value in self.consistency.items() if key in self.fixed_sheets } def _read_hist_tags(self, force=False): if (not self.hist_tags) or force: if "hist_tags_csv" in self.paths.keys(): self.logging.info(f"reading histags: {self.paths['hist_tags_csv']}") dtype_cols = ["total_min_start_dt", "total_max_end_dt"] self.hist_tags = pd.read_csv( self.paths["hist_tags_csv"], parse_dates=dtype_cols, sep=None, engine="python", ) for col in dtype_cols: if not pd.api.types.is_datetime64_dtype(self.hist_tags[col]): self.logging.error( ( f"col '{col}' in '{self.paths['hist_tags_csv']} " "can't be converted to np.datetime64 format. " "Check if values are dates." ) ) sys.exit() def _read_hist_tags_ignore(self, force=False): if (not self.hist_tags_ignore) or force: if "mpt_ignore_csv" in self.paths.keys(): self.logging.info( f"Reading hist tags to be ingored from " f"{self.paths['mpt_ignore_csv']}" ) self.hist_tags_ignore = pd.read_csv( self.paths["mpt_ignore_csv"], sep=None, header=0, engine="python" ) elif "histTag_ignore" in self.consistency.keys(): self.hist_tags_ignore = self.consistency["histTag_ignore"] self.logging.info( f"Reading hist tags to be ignored from " f"{self.paths['consistency_xlsx']}" ) else: self.logging.error( ( f"specify a histTag_ignore worksheet in " f"{self.paths['consistency_xlsx']} or a csv-file " "in the config-json" ) ) sys.exit() self.hist_tags_ignore["UNKNOWN_SERIE"] = self.hist_tags_ignore[ "UNKNOWN_SERIE" ].str.replace("#", "") def _get_idmaps(self, idmap_files=None): if not idmap_files: idmap_files = self.idmap_files idmaps = [ xml_to_dict(self.fews_config.IdMapFiles[idmap])["idMap"]["map"] for idmap in idmap_files ] return [item for sublist in idmaps for item in sublist] def _read_locs(self): self.hoofdloc = self.fews_config.get_locations("OPVLWATER_HOOFDLOC") self.subloc = self.fews_config.get_locations("OPVLWATER_SUBLOC") self.waterstandloc = self.fews_config.get_locations( "OPVLWATER_WATERSTANDEN_AUTO" ) self.mswloc = self.fews_config.get_locations("MSW_STATIONS") def _update_staff_gauge(self, row): """Assign upstream and downstream staff gauges to subloc.""" result = {"HBOV": "", "HBEN": ""} for key in result.keys(): df = self.waterstandloc.loc[self.waterstandloc["LOC_ID"] == row[key]] if not df.empty: result[key] = df["PEILSCHAAL"].values[0] return result["HBOV"], result["HBEN"] def hist_tags_to_mpt(self, sheet_name="mpt"): """Convert histTag-ids to mpt-ids.""" if self.hist_tags is None: self._read_hist_tags() idmaps = self._get_idmaps() hist_tags_df = self.hist_tags.copy() hist_tags_df["fews_locid"] = hist_tags_df.apply( idmap2tags, args=[idmaps], axis=1 ) hist_tags_df = hist_tags_df[hist_tags_df["fews_locid"].notna()] mpt_hist_tags_df = hist_tags_df.explode("fews_locid").reset_index(drop=True) self.mpt_hist_tags = mpt_hist_tags_df mpt_df = pd.concat( [ mpt_hist_tags_df.groupby(["fews_locid"], sort=False)[ "total_min_start_dt" ].min(), mpt_hist_tags_df.groupby(["fews_locid"], sort=False)[ "total_max_end_dt" ].max(), ], axis=1, ) mpt_df = mpt_df.sort_index(axis=0) mpt_df.columns = ["STARTDATE", "ENDDATE"] mpt_df.index.name = "LOC_ID" kw_locs = list(mpt_df[mpt_df.index.str.contains("KW", regex=False)].index) h_locs = np.unique(["{}0".format(loc[0:-1]) for loc in kw_locs]) h_locs_missing = [loc for loc in h_locs if loc not in list(mpt_df.index)] h_locs_df = pd.DataFrame( data={ "LOC_ID": h_locs_missing, "STARTDATE": [pd.NaT] * len(h_locs_missing), "ENDDATE": [pd.NaT] * len(h_locs_missing), } ) h_locs_df = h_locs_df.set_index("LOC_ID") mpt_df = pd.concat([mpt_df, h_locs_df], axis=0) mpt_df[["STARTDATE", "ENDDATE"]] = mpt_df.apply( update_hlocs, args=[h_locs, mpt_df], axis=1, result_type="expand" ) mpt_df = mpt_df.sort_index() self.consistency["mpt"] = mpt_df def check_idmap_sections(self, sheet_name="idmap section error"): """Check if all KW/OW locations are in the correct section.""" self.consistency[sheet_name] = pd.DataFrame( columns=[ "bestand", "externalLocation", "externalParameter", "internalLocation", "internalParameter", ] ) for idmap, subsecs in self.idmap_sections.items(): for section_type, sections in subsecs.items(): for section in sections: if section_type == "KUNSTWERKEN": prefix = "KW" if section_type == "WATERSTANDLOCATIES": prefix = "OW" if section_type == "MSWLOCATIES": prefix = "(OW|KW)" pattern = fr"{prefix}\d{{6}}$" idmapping = xml_to_dict( self.fews_config.IdMapFiles[idmap], **section )["idMap"]["map"] idmap_wrong_section = [ idmap for idmap in idmapping if not bool(re.match(pattern, idmap["internalLocation"])) ] if idmap_wrong_section: section_start = ( section["section_start"] if "section_start" in section.keys() else "" ) section_end = ( section["section_end"] if "section_end" in section.keys() else "" ) self.logging.warning( ( f"{len(idmap_wrong_section)} " f"internalLocations not {prefix}XXXXXX " f"between {section_start} and {section_end} " f"in {idmap}." ) ) df = pd.DataFrame(idmap_wrong_section) df["sectie"] = section_start df["bestand"] = idmap self.consistency[sheet_name] = pd.concat( [self.consistency[sheet_name], df], axis=0 ) def check_missing_hist_tags(self, sheet_name="histTags noMatch"): """Check if hisTags are missing in config.""" if self.hist_tags_ignore is None: self._read_hist_tags_ignore() if self.hist_tags is None: self._read_hist_tags() hist_tags_df = self.hist_tags.copy() idmaps = self._get_idmaps() hist_tags_df["fews_locid"] = self.hist_tags.apply( idmap2tags, args=[idmaps], axis=1 ) hist_tags_no_match_df = hist_tags_df[hist_tags_df["fews_locid"].isna()] hist_tags_no_match_df = hist_tags_no_match_df[ ~hist_tags_no_match_df["serie"].isin(self.hist_tags_ignore["UNKNOWN_SERIE"]) ] hist_tags_no_match_df = hist_tags_no_match_df.drop("fews_locid", axis=1) hist_tags_no_match_df.columns = ["UNKNOWN_SERIE", "STARTDATE", "ENDDATE"] hist_tags_no_match_df = hist_tags_no_match_df.set_index("UNKNOWN_SERIE") self.consistency[sheet_name] = hist_tags_no_match_df if not self.consistency[sheet_name].empty: self.logging.warning( "{} histTags not in idMaps".format(len(self.consistency[sheet_name])) ) else: self.logging.info("all histTags in idMaps") def check_ignored_hist_tags( self, sheet_name="histTags ignore match", idmap_files=["IdOPVLWATER"] ): """Check if ignored histTags do match with idmap.""" if self.hist_tags_ignore is None: self._read_hist_tags_ignore() if self.hist_tags is None: self._read_hist_tags() hist_tags_opvlwater_df = self.hist_tags.copy() idmaps = self._get_idmaps(idmap_files=idmap_files) hist_tags_opvlwater_df["fews_locid"] = self.hist_tags.apply( idmap2tags, args=[idmaps], axis=1 ) hist_tags_opvlwater_df = hist_tags_opvlwater_df[ hist_tags_opvlwater_df["fews_locid"].notna() ] hist_tag_ignore_match_df = self.hist_tags_ignore[ self.hist_tags_ignore["UNKNOWN_SERIE"].isin(hist_tags_opvlwater_df["serie"]) ] hist_tag_ignore_match_df = hist_tag_ignore_match_df.set_index("UNKNOWN_SERIE") self.consistency[sheet_name] = hist_tag_ignore_match_df if not self.consistency[sheet_name].empty: self.logging.warning( ( f"{len(self.consistency[sheet_name])} " r"histTags should not be in histTags ignore." ) ) else: self.logging.info("hisTags ignore list consistent with idmaps") def check_double_idmaps(self, sheet_name="idmaps double"): """Check if identical idmaps are doubled.""" self.consistency[sheet_name] = pd.DataFrame( columns=[ "bestand", "externalLocation", "externalParameter", "internalLocation", "internalParameter", ] ) for idmap_file in self.idmap_files: idmaps = self._get_idmaps(idmap_files=[idmap_file]) idmap_doubles = [idmap for idmap in idmaps if idmaps.count(idmap) > 1] if len(idmap_doubles) > 0: idmap_doubles = list( { idmap["externalLocation"]: idmap for idmap in idmap_doubles }.values() ) df = pd.DataFrame( idmap_doubles, columns=[ "internalLocation", "externalLocation", "internalParameter", "externalParameter", ], ) df["bestand"] = idmap_file self.consistency[sheet_name] = pd.concat( [self.consistency[sheet_name], df], axis=0 ) self.logging.warning( "{} double idmap(s) in {}".format(len(idmap_doubles), idmap_file) ) else: self.logging.info("No double idmaps in {}".format(idmap_file)) def check_missing_pars(self, sheet_name="pars missing"): """Check if internal parameters in idmaps are missing in paramters.xml.""" config_parameters = list( self.fews_config.get_parameters(dict_keys="parameters").keys() ) idmaps = self._get_idmaps() id_map_parameters = [id_map["internalParameter"] for id_map in idmaps] params_missing = [ parameter for parameter in id_map_parameters if parameter not in config_parameters ] if len(params_missing) == 0: self.logging.info("all internal paramters are in config") else: self.logging.warning( "{} parameter(s) in idMaps are missing in config".format( len(params_missing) ) ) self.consistency[sheet_name] = pd.DataFrame({"parameters": params_missing}) # self.consistency[sheet_name] = self.consistency[sheet_name].set_index( # "parameters" # ) def check_hloc_consistency(self, sheet_name="hloc error"): """Check if all sublocs of same hloc have consistent parameters.""" if "xy_ignore" in self.consistency.keys(): xy_ignore_df = self.consistency["xy_ignore"] else: xy_ignore_df = pd.DataFrame({"internalLocation": [], "x": [], "y": []}) if self.hoofdloc is None: self._read_locs() hloc_errors = { "LOC_ID": [], "SUB_LOCS": [], "LOC_NAME": [], "GEOMETRY": [], "SYSTEEM": [], "RAYON": [], "KOMPAS": [], } grouper = self.subloc.groupby("PAR_ID") par_dict = { "LOC_ID": [], "LOC_NAME": [], "X": [], "Y": [], "ALLE_TYPES": [], "START": [], "EIND": [], "SYSTEEM": [], "RAYON": [], "KOMPAS": [], } for loc_id, gdf in grouper: caw_code = loc_id[2:-2] errors = dict.fromkeys( ["LOC_NAME", "GEOMETRY", "SYSTEEM", "RAYON", "KOMPAS"], False ) fields = dict.fromkeys(par_dict.keys(), None) fields["LOC_ID"] = loc_id loc_names = np.unique( gdf["LOC_NAME"] .str.extract(pat=f"([A-Z0-9 ]*_{caw_code}-K_[A-Z0-9 ]*)") .values ) if not len(loc_names) == 1: errors["LOC_NAME"] = ",".join(loc_names) else: fields["LOC_NAME"] = loc_names[0] if any([re.match(loc, loc_id) for loc in xy_ignore_df["internalLocation"]]): fields["X"], fields["Y"] = next( [row["x"], row["y"]] for index, row in xy_ignore_df.iterrows() if re.match(row["internalLocation"], loc_id) ) else: geoms = gdf["geometry"].unique() if not len(geoms) == 1: errors["GEOMETRY"] = ",".join( [f"({geom.x} {geom.y})" for geom in geoms] ) else: fields["X"] = geoms[0].x fields["Y"] = geoms[0].y all_types = list(gdf["TYPE"].unique()) all_types.sort() fields["ALLE_TYPES"] = "/".join(all_types) fields["START"] = gdf["START"].min() fields["EIND"] = gdf["EIND"].max() for attribuut in ["SYSTEEM", "RAYON", "KOMPAS"]: vals = gdf[attribuut].unique() if not len(vals) == 1: errors[attribuut] = ",".join(vals) else: fields[attribuut] = vals[0] if None not in fields.values(): for key, value in fields.items(): par_dict[key].append(value) if any(errors.values()): hloc_errors["LOC_ID"].append(loc_id) hloc_errors["SUB_LOCS"].append(",".join(gdf["LOC_ID"].values)) for key, value in errors.items(): if value is False: value = "" hloc_errors[key].append(value) self.consistency[sheet_name] = pd.DataFrame(hloc_errors) if self.consistency[sheet_name].empty: self.logging.info("no consistency errors. Hlocs rewritten from sublocs") par_gdf = pd.DataFrame(par_dict) columns = list(self.hoofdloc.columns) drop_cols = [ col for col in self.hoofdloc.columns if (col in par_gdf.columns) & (not col == "LOC_ID") ] drop_cols = drop_cols + ["geometry"] self.hoofdloc = self.hoofdloc.drop(drop_cols, axis=1) self.hoofdloc = par_gdf.merge(self.hoofdloc, on="LOC_ID") self.hoofdloc["geometry"] = self.hoofdloc.apply( (lambda x: Point(float(x["X"]), float(x["Y"]))), axis=1 ) self.hoofdloc = self.hoofdloc[columns] else: self.logging.warning( "{} Errors in consistency hlocs".format( len(self.consistency[sheet_name]) ) ) self.logging.warning( ( "Hoofdlocaties will only be re-written " "when consistency errors are resolved" ) ) def check_expar_errors_intloc_missing( self, expar_sheet="exPar error", intloc_sheet="intLoc missing" ): """Check on wrong external parameters and missing internal locations.""" expars_allowed = self.external_parameters_allowed if self.hoofdloc is None: self._read_locs() ex_par_errors = { "internalLocation": [], "locationType": [], "exParError": [], "types": [], "FQ": [], "I.X": [], "IX.": [], "SS./SM.": [], } int_loc_missing = [] idmap_df = pd.DataFrame.from_dict(self._get_idmaps(["IdOPVLWATER"])) for int_loc, loc_group in idmap_df.groupby("internalLocation"): errors = dict.fromkeys(["I.X", "IX.", "FQ", "SS./SM."], False) ex_pars = np.unique(loc_group["externalParameter"].values) ex_pars_gen = [re.sub(r"\d", ".", ex_par) for ex_par in ex_pars] if int_loc in self.hoofdloc["LOC_ID"].values: loc_properties = self.hoofdloc[self.hoofdloc["LOC_ID"] == int_loc] loc_type = "hoofdloc" elif int_loc in self.subloc["LOC_ID"].values: loc_properties = self.subloc[self.subloc["LOC_ID"] == int_loc] loc_type = "subloc" regexes = ["HR.$"] elif int_loc in self.waterstandloc["LOC_ID"].values: loc_type = "waterstandloc" elif int_loc in self.mswloc["LOC_ID"].values: loc_type = "mswloc" else: loc_type = None int_loc_missing += [int_loc] if loc_type in ["hoofdloc", "subloc"]: all_types = loc_properties["ALLE_TYPES"].values[0].split("/") all_types = [item.lower() for item in all_types] elif loc_type == "waterstandloc": all_types = ["waterstandloc"] if loc_type == "subloc": sub_type = self.subloc[self.subloc["LOC_ID"] == int_loc]["TYPE"].values[ 0 ] regexes += [ j for i in [ values for keys, values in expars_allowed.items() if keys in all_types ] for j in i ] regexes += list(dict.fromkeys(regexes)) ex_par_error = [ ex_par for ex_par in ex_pars if not any( [ regex.match(ex_par) for regex in [re.compile(rex) for rex in regexes] ] ) ] if sub_type == "schuif": if not any( [ex_par for ex_par in ex_pars_gen if ex_par in ["SS.", "SM."]] ): errors["SS./SM."] = True if any( [ ex_par for ex_par in ex_pars_gen if ex_par in ["I.B", "I.H", "I.L"] ] ): if not any( [ ex_par for ex_par in ex_pars_gen if ex_par in ["IB.", "IH.", "IL."] ] ): errors["IX."] = True elif any( [ ex_par for ex_par in ex_pars_gen if ex_par in ["IB.", "IH.", "IL."] ] ): errors["I.X"] = True if "FQ." in ex_pars_gen: if not any( [ ex_par for ex_par in ex_pars_gen if ex_par in ["IB.", "IH.", "IL.", "I.B", "I.H", "I.L"] ] ): errors["FQ"] = True elif loc_type == "hoofdloc": regexes = ["HS.$", "QR.$", "QS.$", "WR", "WS"] ex_par_error = [ ex_par for ex_par in ex_pars if not any( [ regex.match(ex_par) for regex in [re.compile(rex) for rex in regexes] ] ) ] else: ex_par_error = [] if len(ex_par_error) > 0 | any(errors.values()): ex_par_errors["internalLocation"].append(int_loc) ex_par_errors["locationType"].append(loc_type) ex_par_errors["exParError"].append(",".join(ex_par_error)) ex_par_errors["types"].append(",".join(all_types)) for key, value in errors.items(): ex_par_errors[key].append(value) self.consistency[expar_sheet] = pd.DataFrame(ex_par_errors) self.consistency[intloc_sheet] = pd.DataFrame( {"internalLocation": int_loc_missing} ) if len(self.consistency[expar_sheet]) == 0: self.logging.info("geen ExPar errors") else: self.logging.warning( "{} locaties met ExPar errors".format( len(self.consistency[expar_sheet]) ) ) if len(self.consistency[intloc_sheet]) == 0: self.logging.info("All internal locations are in locationSets") else: self.logging.warning( "{} Internal locations are not in locationSets.".format( len(self.consistency[intloc_sheet]) ) ) def check_expar_missing(self, sheet_name="exPar missing"): """Check if external paramters are missing on locations.""" ex_par_missing = { "internalLocation": [], "exPars": [], "QR": [], "QS": [], "HS": [], } if self.hoofdloc is None: self._read_locs() idmap_df = pd.DataFrame.from_dict(self._get_idmaps(["IdOPVLWATER"])) for index, row in self.hoofdloc.iterrows(): missings = dict.fromkeys(["QR", "QS", "HS"], False) int_loc = row["LOC_ID"] loc_group = next( ( df for loc, df in idmap_df.groupby("internalLocation") if loc == int_loc ), pd.DataFrame(), ) if not loc_group.empty: ex_pars = np.unique(loc_group["externalParameter"].values) ex_pars_gen = [re.sub(r"\d", ".", ex_par) for ex_par in ex_pars] else: ex_pars = [] ex_pars_gen = [] if not ("HS." in ex_pars_gen): missings["HS"] = True if not ("QR." in ex_pars_gen): missings["QR"] = True if not ("QS." in ex_pars_gen): missings["QS"] = True if any(missings.values()): ex_par_missing["internalLocation"].append(int_loc) ex_par_missing["exPars"].append(",".join(ex_pars)) for key, value in missings.items(): ex_par_missing[key].append(value) self.consistency[sheet_name] = pd.DataFrame(ex_par_missing) if len(self.consistency[sheet_name]) == 0: self.logging.info("No ExPar missing") else: self.logging.warning( "{} Locations with ExPar missing".format( len(self.consistency[sheet_name]) ) ) def check_exloc_intloc_consistency(self, sheet_name="exLoc error"): """Check if external locations are consistent with internal locations.""" ex_loc_errors = {"internalLocation": [], "externalLocation": []} idmap_df = pd.DataFrame.from_dict(self._get_idmaps(["IdOPVLWATER"])) for loc_group in idmap_df.groupby("externalLocation"): int_loc_error = [] ex_loc = loc_group[0] int_locs = np.unique(loc_group[1]["internalLocation"].values) if len(ex_loc) == 3: if not bool(re.match("8..$", ex_loc)): int_loc_error = [ int_loc for int_loc in int_locs if not bool(re.match(f"...{ex_loc}..$", int_loc)) ] else: for loc_type in ["KW", "OW"]: int_locs_select = [ int_loc for int_loc in int_locs if bool(re.match(f"{loc_type}.", int_loc)) ] if ( len( np.unique([int_loc[:-1] for int_loc in int_locs_select]) ) > 1 ): int_loc_error += list(int_locs_select) if len(ex_loc) == 4: if not bool(re.match(".8..$", ex_loc)): int_loc_error += [ int_loc for int_loc in int_locs if not bool(re.match(f"..{ex_loc}..$", int_loc)) ] else: for loc_type in ["KW", "OW"]: int_locs_select = [ int_loc for int_loc in int_locs if bool(re.match(f"{loc_type}.", int_loc)) ] if ( len( np.unique([int_loc[:-1] for int_loc in int_locs_select]) ) > 1 ): int_loc_error += list(int_locs_select) if "exLoc_ignore" in self.consistency.keys(): if ( int(ex_loc) in self.consistency["exLoc_ignore"]["externalLocation"].values ): int_loc_error = [ int_loc for int_loc in int_loc_error if int_loc not in self.consistency["exLoc_ignore"][ self.consistency["exLoc_ignore"]["externalLocation"] == int(ex_loc) ]["internalLocation"].values ] for int_loc in int_loc_error: ex_loc_errors["internalLocation"].append(int_loc) ex_loc_errors["externalLocation"].append(ex_loc) self.consistency[sheet_name] =
pd.DataFrame(ex_loc_errors)
pandas.DataFrame
from multiprocessing import cpu_count import numba as nb import numexpr as ne import numpy as np import pandas as pd from typing import Tuple, Union, List, Callable, Iterable EPS = 1.0e-7 def matrix_balancing_1d(m: np.ndarray, a: np.ndarray, axis: int) -> np.ndarray: """Balances a matrix using a single constraint. Args: m (numpy.ndarray): The matrix (a 2-dimensional ndarray) to be balanced a (numpy.ndarray): The totals vector (a 1-dimensional ndarray) constraint axis (int): Direction to constrain (0 = along columns, 1 = along rows) Return: numpy.ndarray: A balanced matrix """ assert axis in [0, 1], "axis must be either 0 or 1" assert m.ndim == 2, "`m` must be a two-dimensional matrix" assert a.ndim == 1, "`a` must be an one-dimensional vector" assert np.all(m.shape[axis] == a.shape[0]), "axis %d of matrices 'm' and 'a' must be the same." % axis return _balance(m, a, axis) def matrix_balancing_2d(m: Union[np.ndarray, pd.DataFrame], a: np.ndarray, b: np.ndarray, totals_to_use: str = 'raise', max_iterations: int = 1000, rel_error: float = 0.0001, n_procs: int = 1) -> Tuple[Union[np.ndarray, pd.DataFrame], float, int]: """Balances a two-dimensional matrix using iterative proportional fitting. Args: m (Union[numpy.ndarray, pandas.DataFrame]): The matrix (a 2-dimensional ndarray) to be balanced. If a DataFrame is supplied, the output will be returned as a DataFrame. a (numpy.ndarray): The row totals (a 1-dimensional ndarray) to use for balancing b (numpy.ndarray): The column totals (a 1-dimensional ndarray) to use for balancing totals_to_use (str, optional): Defaults to ``'raise'``. Describes how to scale the row and column totals if their sums do not match. Must be one of ['rows', 'columns', 'average', 'raise']. - rows: scales the columns totals so that their sums matches the row totals - columns: scales the row totals so that their sums matches the column totals - average: scales both row and column totals to the average value of their sums - raise: raises an Exception if the sums of the row and column totals do not match max_iterations (int, optional): Defaults to ``1000``. Maximum number of iterations rel_error (float, optional): Defaults to ``1.0E-4``. Relative error stopping criteria n_procs (int, optional): Defaults to ``1``. Number of processors for parallel computation. (Not used) Return: Tuple[Union[numpy.ndarray, pandas.DataFrame], float, int]: The balanced matrix, residual, and n_iterations """ max_iterations = int(max_iterations) n_procs = int(n_procs) # Test if matrix is Pandas DataFrame data_type = '' m_pd = None if isinstance(m, pd.DataFrame): data_type = 'pd' m_pd = m m = m_pd.values if isinstance(a, pd.Series) or isinstance(a, pd.DataFrame): a = a.values if isinstance(b, pd.Series) or isinstance(b, pd.DataFrame): b = b.values # ################################################################################## # Validations: # - m is an MxM square matrix, a and b are vectors of size M # - totals_to_use is one of ['rows', 'columns', 'average'] # - the max_iterations is a +'ve integer # - rel_error is a +'ve float between 0 and 1 # - the n_procs is a +'ve integer between 1 and the number of available processors # ################################################################################## valid_totals_to_use = ['rows', 'columns', 'average', 'raise'] assert m.ndim == 2 and m.shape[0] == m.shape[1], "m must be a two-dimensional square matrix" assert a.ndim == 1 and a.shape[0] == m.shape[0], \ "'a' must be a one-dimensional array, whose size matches that of 'm'" assert b.ndim == 1 and b.shape[0] == m.shape[0], \ "'a' must be a one-dimensional array, whose size matches that of 'm'" assert totals_to_use in valid_totals_to_use, "totals_to_use must be one of %s" % valid_totals_to_use assert max_iterations >= 1, "max_iterations must be integer >= 1" assert 0 < rel_error < 1.0, "rel_error must be float between 0.0 and 1.0" assert 1 <= n_procs <= cpu_count(), \ "n_procs must be integer between 1 and the number of processors (%d) " % cpu_count() if n_procs > 1: raise NotImplementedError("Multiprocessing capability is not implemented yet.") # Scale row and column totals, if required a_sum = a.sum() b_sum = b.sum() if not np.isclose(a_sum, b_sum): if totals_to_use == 'rows': b = np.multiply(b, a_sum / b_sum) elif totals_to_use == 'columns': a = np.multiply(a, b_sum / a_sum) elif totals_to_use == 'average': avg_sum = 0.5 * (a_sum + b_sum) a = np.multiply(a, avg_sum / a_sum) b = np.multiply(b, avg_sum / b_sum) else: raise RuntimeError("a and b vector totals do not match.") initial_error = _calc_error(m, a, b) err = 1.0 i = 0 while err > rel_error: if i > max_iterations: # todo: convert to logger, if possible print("Matrix balancing did not converge") break m = _balance(m, a, 1) m = _balance(m, b, 0) err = _calc_error(m, a, b) / initial_error i += 1 if data_type == 'pd': new_df = pd.DataFrame(m, index=m_pd.index, columns=m_pd.columns) return new_df, err, i else: return m, err, i def _balance(matrix: np.ndarray, tot: np.ndarray, axis: int) -> np.ndarray: """Balances a matrix using a single constraint. Args: matrix (numpy.ndarray): The matrix to be balanced tot (numpy.ndarray): The totals constraint axis (int): Direction to constrain (0 = along columns, 1 = along rows) Return: numpy.ndarray: The balanced matrix """ sc = tot / (matrix.sum(axis) + EPS) sc = np.nan_to_num(sc) # replace divide by 0 errors from the prev. line if axis: # along rows matrix = np.multiply(matrix.T, sc).T else: # along columns matrix = np.multiply(matrix, sc) return matrix def _calc_error(m, a, b): row_sum = np.absolute(a - m.sum(1)).sum() col_sum = np.absolute(b - m.sum(0)).sum() return row_sum + col_sum @nb.jit(nb.float64[:, :](nb.float64[:, :], nb.int64)) def _nbf_bucket_round(a_, decimals=0): a = a_.ravel() b = np.copy(a) residual = 0 for i in range(0, len(b)): b[i] = np.round(a[i] + residual, decimals) residual += a[i] - b[i] return b.reshape(a_.shape) def matrix_bucket_rounding(m: Union[np.ndarray, pd.DataFrame], decimals: int = 0) -> Union[np.ndarray, pd.DataFrame]: """Bucket rounds to the given number of decimals. Args: m (Union[numpy.ndarray, pandas.DataFrame]): The matrix to be rounded decimals (int, optional): Defaults to ``0``. Number of decimal places to round to. If decimals is negative, it specifies the number of positions to the left of the decimal point. Return: Union[numpy.ndarray, pandas.DataFrame]: The rounded matrix """ # Test if matrix is Pandas DataFrame data_type = '' m_pd = None if isinstance(m, pd.DataFrame): data_type = 'pd' m_pd = m m = m_pd.values decimals = int(decimals) # I really can't think of a way to vectorize bucket rounding, so here goes the slow for loop b = _nbf_bucket_round(m, decimals) if decimals <= 0: b = b.astype(np.int32) if data_type == 'pd': new_df = pd.DataFrame(b.reshape(m.shape), index=m_pd.index, columns=m_pd.columns) return new_df else: return b.reshape(m.shape) def split_zone_in_matrix(base_matrix: pd.DataFrame, old_zone: int, new_zones: List[int], proportions: List[float]) -> pd.DataFrame: """Takes a zone in a matrix (as a DataFrame) and splits it into several new zones, prorating affected cells by a vector of proportions (one value for each new zone). The old zone is removed. Args: base_matrix (pandas.DataFrame): The matrix to re-shape old_zone (int): The original zone to split new_zones (List[int]): The list of new zones to add proportions (List[float]): The proportions to split the original zone to. The list must be the same length as ``new_zones`` and sum to 1.0 Returns: pandas.DataFrame: The re-shaped matrix """ assert isinstance(base_matrix, pd.DataFrame), "Base matrix must be a DataFrame" old_zone = int(old_zone) new_zones = np.array(new_zones, dtype=np.int32) proportions = np.array(proportions, dtype=np.float64) assert len(new_zones) == len(proportions), "Proportion array must be the same length as the new zone array" assert len(new_zones.shape) == 1, "New zones must be a vector" assert base_matrix.index.equals(base_matrix.columns), "DataFrame is not a matrix" assert np.isclose(proportions.sum(), 1.0), "Proportions must sum to 1.0 " n_new_zones = len(new_zones) intersection_index = base_matrix.index.drop(old_zone) new_index = intersection_index for z in new_zones: new_index = new_index.insert(-1, z) new_index = pd.Index(sorted(new_index)) new_matrix = pd.DataFrame(0, index=new_index, columns=new_index, dtype=base_matrix.dtypes.iat[0]) # 1. Copy over the values from the regions of the matrix not being updated new_matrix.loc[intersection_index, intersection_index] = base_matrix # 2. Prorate the row corresponding to the dropped zone # This section (and the next) works with the underlying Numpy arrays, since they handle # broadcasting better than Pandas does original_row = base_matrix.loc[old_zone, intersection_index] original_row = original_row.values[:] # Make a shallow copy to preserve shape of the original data original_row.shape = 1, len(intersection_index) proportions.shape = n_new_zones, 1 result = pd.DataFrame(original_row * proportions, index=new_zones, columns=intersection_index) new_matrix.loc[result.index, result.columns] = result # 3. Proprate the column corresponding to the dropped zone original_column = base_matrix.loc[intersection_index, old_zone] original_column = original_column.values[:] original_column.shape = len(intersection_index), 1 proportions.shape = 1, n_new_zones result = pd.DataFrame(original_column * proportions, index=intersection_index, columns=new_zones) new_matrix.loc[result.index, result.columns] = result # 4. Expand the old intrazonal proportions_copy = proportions[:, :] proportions_copy.shape = 1, n_new_zones proportions.shape = n_new_zones, 1 intrzonal_matrix = proportions * proportions_copy intrazonal_scalar = base_matrix.at[old_zone, old_zone] result =
pd.DataFrame(intrazonal_scalar * intrzonal_matrix, index=new_zones, columns=new_zones)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Oct 11 20:08:48 2021 @author: jan_c """ import pandas as pd from tkinter import * from tkinter import filedialog if __name__ == '__main__': def frame(): def abrir_archivo(): global archivo archivo = filedialog.askopenfilename(title="Abrir archivo .xlsx", initialdir="F:/", filetypes=(("Archivo .xlsx", "*.xlsx"), ("Archivo .xls", "*.xls"))) raiz.destroy() raiz = Tk() mi_frame = Frame(raiz, width=200, height=60) mi_frame.pack() boton = Button(raiz, text="Abrir archivo", command=abrir_archivo) boton.pack(fill=X) boton.config(cursor="hand2") boton.config(bd=4) boton.config(relief="groove") raiz.mainloop() return archivo archivo = frame() #Leer archivo de entrada datos = pd.read_excel(archivo, sheet_name="Resumen de resultados", header=4) # Se filtran las columnas de interes y se generan los datos ordenados filtro_fluorescencia = datos.filter(regex = "Fluorescencia") # filtra columnas datos_f = pd.DataFrame(filtro_fluorescencia) muestra =
pd.DataFrame(datos["Muestra"])
pandas.DataFrame
import os import pandas as pd # https://github.com/CSSEGISandData/COVID-19.git REPOSITORY = "https://raw.githubusercontent.com/CSSEGISandData" MAIN_FOLDER = "COVID-19/master/csse_covid_19_data/csse_covid_19_time_series" CONFIRMED_FILE = "time_series_covid19_confirmed_global.csv" DEATHS_FILE = "time_series_covid19_deaths_global.csv" RECOVERED_FILE = "time_series_covid19_recovered_global.csv" CONFIRMED_PATH = os.path.join(REPOSITORY, MAIN_FOLDER, CONFIRMED_FILE) DEATHS_PATH = os.path.join(REPOSITORY, MAIN_FOLDER, DEATHS_FILE) RECOVERED_PATH = os.path.join(REPOSITORY, MAIN_FOLDER, RECOVERED_FILE) def group_data_by_country(df): df = df.drop(columns=["Lat", "Long"]) df_bycountry = df.groupby("Country/Region").sum() # summing for all country df_bycountry.loc["Total"] = df_bycountry.sum(axis=0) return df_bycountry def get_data_normalized(df): # dividing by the sum maximums = df.iloc[:, -1] df_normalized = df.div(maximums.to_numpy(), axis=0) return df_normalized def get_data_for_sir(df_death, df_recovered, df_confirmed): df_recovered_or_passed = df_recovered + df_death df_infected = df_confirmed - df_recovered_or_passed return df_recovered_or_passed, df_infected def extract_process_data(): df_confirmed = pd.read_csv(CONFIRMED_PATH) df_deaths = pd.read_csv(DEATHS_PATH) df_recovered = pd.read_csv(RECOVERED_PATH) df_confirmed_by_country = group_data_by_country(df_confirmed) df_deaths_by_country = group_data_by_country(df_deaths) df_recovered_by_country = group_data_by_country(df_recovered) df_recovered_or_passed_by_country, df_infected_by_country = get_data_for_sir( df_deaths_by_country, df_recovered_by_country, df_confirmed_by_country ) return ( add_datetime(df_confirmed_by_country), add_datetime(df_deaths_by_country), add_datetime(df_recovered_by_country), add_datetime(df_recovered_or_passed_by_country), add_datetime(df_infected_by_country), ) def add_datetime(df): df.loc["Time"] =
pd.period_range(df.columns[0], df.columns[-1], freq="D")
pandas.period_range
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import xarray as xr def plot_obs_preds(pred_file, obs_file, site_id, start_date, end_date, outfile=None, info_dict=None): df_pred =
pd.read_feather(pred_file)
pandas.read_feather
from sqlalchemy import true import FinsterTab.W2020.DataForecast import datetime as dt from FinsterTab.W2020.dbEngine import DBEngine import pandas as pd import sqlalchemy as sal import numpy from datetime import datetime, timedelta, date import pandas_datareader.data as dr def get_past_data(self): """ Get raw data from Yahoo! Finance for SPY during Great Recession Store data in MySQL database :param sources: provides ticker symbols of instruments being tracked """ # Assume that date is 2010 now = dt.date(2009, 1, 1) # Date Variables start = now - timedelta(days=1500) # get date value from 5 years ago end = now # data will be a 2D Pandas Dataframe data = dr.DataReader('SPY', 'yahoo', start, end) symbol = [3] * len(data) # add column to identify instrument id number data['instrumentid'] = symbol data = data.reset_index() # no designated index - easier to work with mysql database # Yahoo! Finance columns to match column names in MySQL database. # Column names are kept same to avoid any ambiguity. # Column names are not case-sensitive. data.rename(columns={'Date': 'date', 'High': 'high', 'Low': 'low', 'Open': 'open', 'Close': 'close', 'Adj Close': 'adj close', 'Volume': 'volume'}, inplace=True) data.sort_values(by=['date']) # make sure data is ordered by trade date # send data to database # replace data each time program is run data.to_sql('dbo_paststatistics', self.engine, if_exists=('replace'), index=False, dtype={'date': sal.Date, 'open': sal.FLOAT, 'high': sal.FLOAT, 'low': sal.FLOAT, 'close': sal.FLOAT, 'adj close': sal.FLOAT, 'volume': sal.FLOAT}) # Tests the accuracy of the old functions def accuracy(self): query = 'SELECT * FROM dbo_algorithmmaster' algorithm_df = pd.read_sql_query(query, self.engine) query = 'SELECT * FROM dbo_instrumentmaster' instrument_master_df = pd.read_sql_query(query, self.engine) # Changes algorithm code for code in range(len(algorithm_df)): # Dynamic range for changing instrument ID starting at 1 for ID in range(1, len(instrument_master_df) + 1): query = 'SELECT * FROM dbo_algorithmforecast AS a, dbo_instrumentstatistics AS b WHERE a.forecastdate = b.date AND' \ ' a.instrumentid = %d AND b.instrumentid = %d AND a.algorithmcode = "%s"' % ( ID, ID, algorithm_df['algorithmcode'][code]) df = pd.read_sql_query(query, self.engine) count = 0 # Calculates accuracy for x in range((len(df) - 1)): # Check if upward or downward trend if (df['close'][x + 1] > df['close'][x] and df['forecastcloseprice'][x + 1] > df['forecastcloseprice'][ x]) or \ (df['close'][x + 1] < df['close'][x] and df['forecastcloseprice'][x + 1] < df['forecastcloseprice'][ x]): count += 1 # Populates absolute_percent_error with the calculated percent error for a specific data point absolute_percent_error = [] for i in range(len(df)): absolute_percent_error.append( abs((df['close'].loc[i] - df['forecastcloseprice'].loc[i]) / df['close'].loc[i])) # Calculate sum of percent error and find average average_percent_error = 0 for i in absolute_percent_error: average_percent_error = average_percent_error + i average_percent_error = average_percent_error / len(df) # return the average percent error calculated above print("Average percent error for instrument: %d and algorithm: %s " % (ID, algorithm_df['algorithmcode'][code]), average_percent_error) #print('Algorithm:', algorithm_df['algorithmcode'][code]) #print('instrumentid: %d' % ID, instrument_master_df['instrumentname'][ID - 1]) #print('length of data is:', len(df)) #print('number correct: ', count) d = len(df) b = (count / d) * 100 #print('The accuracy is: %.2f%%\n' % b) # Isolated tests for ARIMA as we where trying to determine why it was so accurate def arima_accuracy(self): query = 'SELECT * FROM dbo_algorithmforecast AS a, dbo_instrumentstatistics AS b WHERE a.forecastdate = b.date AND' \ ' a.instrumentid = 1 AND b.instrumentid = 1 AND a.algorithmcode = "ARIMA"' df = pd.read_sql_query(query, self.engine) df = df.tail(10) df = df.reset_index(drop=true) #print(df) arima_count = 0 for x in range((len(df) - 1)): # Check if upward or downward trend if df['close'][x + 1] > df['close'][x] and df['forecastcloseprice'][x + 1] > df['forecastcloseprice'][x] \ or (df['close'][x + 1] < df['close'][x] and df['forecastcloseprice'][x + 1] < df['forecastcloseprice'][x]): arima_count += 1 #print(df['close'], df['forecastcloseprice']) #print(arima_count) #print(arima_count/len(df)) # Accuracy test for the new function MSF1 def MSF1_accuracy(self): # Queires the database to grab all of the Macro Economic Variable codes query = "SELECT macroeconcode FROM dbo_macroeconmaster WHERE activecode = 'A'" id = pd.read_sql_query(query, self.engine) id = id.reset_index(drop=True) # Queries the database to grab all of the instrument IDs query = 'SELECT instrumentid FROM dbo_instrumentmaster' id2 = pd.read_sql_query(query, self.engine) id2 = id2.reset_index(drop=True) # These are the date ranges we are working with # start_date represents the starting date for the forecasts and the end of the training dates start_date = "'2018-01-01'" # end_date represents the date for which the forecasting ends end_date = "'2020-01-01'" # train_date represents the date we start collecting the instrument statistics used to forecast prices train_date = "'2016-01-01'" # Bool to determine whether we append to dbo_tempvisualize or replace the values to_append = False # Create a for loop to iterate through all of the instrument ids for v in id2['instrumentid']: # Initializes a list for which we will eventually be storing all data to add to the macroeconalgorithm database table data = [] # Data1 will be used to store the forecastdate, instrumentid, forecastprice, and algorithm code # It will be used to graph our backtested forecast against the actual instrument prices data1 = [] # Getting Dates for Future Forecast as well as actual close prices for instrumentID# # We chose 2018 - 2020, to alter this date range simply change the dates in the 3rd line of the query for the dates you want to test on # Make sure they are valid dates as some instruments only have statistics that go back so far, check the instrument statistic table to figure out how far back each instrument goes query = "SELECT date, close FROM ( SELECT date, close, instrumentID, ROW_NUMBER() OVER " \ "(PARTITION BY YEAR(date), MONTH(date) ORDER BY DAY(date) DESC) AS rowNum FROM " \ "dbo_instrumentstatistics WHERE instrumentid = {} AND date BETWEEN {} AND {} ) z " \ "WHERE rowNum = 1 AND ( MONTH(z.date) = 3 OR MONTH(z.date) = 6 OR MONTH(z.date) = 9 OR " \ "MONTH(z.date) = 12)".format(v, start_date, end_date) # instrument_stats will hold the closing prices and the dates for the dates we are forecasting for instrument_stats = pd.read_sql_query(query, self.engine) # We isolate the dates and closing prices into individual arrays to make them easier to work with date = [] close = [] for i in instrument_stats['date']: date.append(i) for i in instrument_stats['close']: close.append(i) # n will always correspond to the amount of dates, as the amount of dates is the number of data points being compared n = len(date) # Median_forecast will be a dictionary where the key is the date and the value is a list of forecasted prices median_forecast = {} # This disctionary will be used to easily combine all of the forecasts for different dates to determine the median forecast value for i in date: temp = {i: []} median_forecast.update(temp) # This query will grab quarterly instrument prices from between 2014 and the current date to be used in the forecasting query = "SELECT date, close, instrumentid FROM ( SELECT date, close, instrumentid, ROW_NUMBER() OVER " \ "(PARTITION BY YEAR(date), MONTH(date) ORDER BY DAY(date) DESC) AS rowNum FROM " \ "dbo_instrumentstatistics WHERE instrumentid = {} AND date BETWEEN {} AND {} ) z " \ "WHERE rowNum = 1 AND ( MONTH(z.date) = 3 OR MONTH(z.date) = 6 OR MONTH(z.date) = 9 OR " \ "MONTH(z.date) = 12)".format(v, train_date, start_date) # Executes the query and stores the result in a dataframe variable df2 = pd.read_sql_query(query, self.engine) # This for loop iterates through the different macro economic codes to calculate the percent change for each macroeconomic variable for x in id['macroeconcode']: # Retrieves the most recent macro economic statistics prior to the date for which we are testing our algorithm query = "SELECT * FROM dbo_macroeconstatistics WHERE macroeconcode = {} and date <= {} ".format('"' + str(x) + '"', start_date) df = pd.read_sql_query(query, self.engine) macro = df.tail(n) SP = df2.tail(n) temp = df.tail(n + 1) temp = temp.reset_index() # Converts macro variables to precent change macroPercentChange = macro macro = macro.reset_index(drop=True) SP = SP.reset_index(drop=True) macroPercentChange = macroPercentChange.reset_index(drop=True) for i in range(0, n): if (i == 0): macrov = (macro['statistics'][i] - temp['statistics'][i]) / temp['statistics'][i] macroPercentChange['statistics'].iloc[i] = macrov * 100 else: macrov = (macro['statistics'][i] - macro['statistics'][i - 1]) / macro['statistics'][i - 1] macroPercentChange['statistics'].iloc[i] = macrov * 100 # Algorithm for forecast price S = calc(self, macroPercentChange, SP,n) # Calculates the average GDP and S&P values for the given data points over n days and performs operations on GDP average # isFirst will determine whether or not this is the first calculation being done # If it is true then we use the most recent instrument statistic to forecast the first pricepoint # IF it is false then we use the previous forecast price to predict the next forecast price isFirst = True # temp_price will be used to hold the previous forecast price for the next prediction temp_price = 0 # Setup a for loop to calculate the final forecast price and add data to the list variable data for i in range(n): if isFirst: if x in [2, 3, 4]: temp_price = ((S * (SP['close'].iloc[n-1])) + (SP['close'].iloc[n-1])) isFirst = False else: temp_price = ((S * SP['close'].iloc[n-1]) + SP['close'].iloc[n-1]) isFirst = False else: if x in [2, 3, 4]: temp_price = ((S * temp_price) + temp_price) else: temp_price = ((S * temp_price) + temp_price) # Once the forecast price is calculated append it to median_forecast list median_forecast[date[i]].append(temp_price) # Calculates the median value for each date using a list of prices forecasted by each individual macro economic variable forecast_prices = [] for i in date: # Sort the forecasted prices based on date sorted_prices = sorted(median_forecast[i]) # calculate the median forecasted price for each date if len(sorted_prices) % 2 == 0: center = int(len(sorted_prices) / 2) forecast_prices.append(sorted_prices[center]) else: center = int(len(sorted_prices) / 2) forecast_prices.append((sorted_prices[center] + sorted_prices[center - 1]) / 2) # Set up a for loop to construct a list using variables associated with macroeconalgorithm database table for i in range(len(forecast_prices)): data.append([date[i], v, 'ALL', forecast_prices[i], close[i], 'MSF1', 0]) data1.append([date[i], v, forecast_prices[i], 'MSF1']) # Convert data list to dataframe variable df = pd.DataFrame(data, columns=['forecastdate', 'instrumentid', 'macroeconcode', 'forecastcloseprice', 'close', 'algorithmcode', 'prederror']) df1 = pd.DataFrame(data1, columns=['forecastdate', 'instrumentid', 'forecastcloseprice', 'algorithmcode']) df1.to_sql('dbo_tempvisualize', self.engine, if_exists=('replace' if not to_append else 'append'), index=False) to_append = True # Populates absolute_percent_error with the calculated percent error for a specific data point absolute_percent_error = [] for i in range(n): absolute_percent_error.append(abs((df['close'].loc[i] - df['forecastcloseprice'].loc[i]) / df['close'].loc[i])) # Calculate sum of percent error and find average average_percent_error = 0 for i in absolute_percent_error: average_percent_error = average_percent_error + i average_percent_error = average_percent_error / n count = 0 # Calculates trend accuracy for x in range((len(df) - 1)): # Check if upward or downward trend if (df['close'][x + 1] > df['close'][x] and df['forecastcloseprice'][x + 1] > df['forecastcloseprice'][ x]) or \ (df['close'][x + 1] < df['close'][x] and df['forecastcloseprice'][x + 1] < df['forecastcloseprice'][ x]): count += 1 length = len(df) trend_error = (count / length) * 100 print("Trend accuracy for %s for instrument %d is %.2f%%" % ('MSF1', v, trend_error)) print("The average percent error for %s for instrument %d is %.2f%%" % ('MSF1', v, average_percent_error * 100)) # return the average percent error calculated above # This function is not currently used, it can be used to check the accuracy of MSF2 but will need set weightings # The functions below this one will test the accuracy using a variety of weightings and choose the weightings with the best results def MSF2_accuracy(self): n = 8 #Gets the macro economic variables codes and names to loop through the inidividual macro variables query = "SELECT macroeconcode, macroeconname FROM dbo_macroeconmaster WHERE activecode = 'A'" data = pd.read_sql_query(query, self.engine) macrocodes = [] indicators = {} for i in range(len(data['macroeconcode'])): macrocodes.append(data['macroeconcode'].loc[i]) d = {data['macroeconcode'].loc[i]: []} indicators.update(d) #Gets the instrument ids to loop through the individual instruments query = 'SELECT instrumentid, instrumentname FROM dbo_instrumentmaster' data = pd.read_sql_query(query, self.engine) instrumentids = [] for i in data['instrumentid']: instrumentids.append(i) # These are the date ranges we are working with # start_date represents the starting date for the forecasts and the end of the training dates start_date = "'2018-01-01'" # end_date represents the date for which the forecasting ends end_date = "'2020-01-01'" # train_date represents the date we start collecting the instrument statistics used to forecast prices train_date = "'2016-01-01'" #Loops through each instrument id to preform error calculations 1 instrument at a time for i in instrumentids: #Gets the instrument statistics to run through the function query = "SELECT date, close, instrumentid FROM ( SELECT date, close, instrumentID, ROW_NUMBER() OVER " \ "(PARTITION BY YEAR(date), MONTH(date) ORDER BY DAY(date) DESC) AS rowNum FROM " \ "dbo_instrumentstatistics WHERE instrumentid = {} AND date BETWEEN {} AND {} ) z " \ "WHERE rowNum = 1 AND ( MONTH(z.date) = 3 OR MONTH(z.date) = 6 OR MONTH(z.date) = 9 OR " \ "MONTH(z.date) = 12)".format(i, train_date, start_date) train_data = pd.read_sql_query(query, self.engine) #Gets the instrument statistics to check against the forecast prices query = "SELECT date, close, instrumentid FROM ( SELECT date, close, instrumentID, ROW_NUMBER() OVER " \ "(PARTITION BY YEAR(date), MONTH(date) ORDER BY DAY(date) DESC) AS rowNum FROM " \ "dbo_instrumentstatistics WHERE instrumentid = {} AND date BETWEEN {} AND {} ) z " \ "WHERE rowNum = 1 AND ( MONTH(z.date) = 3 OR MONTH(z.date) = 6 OR MONTH(z.date) = 9 OR " \ "MONTH(z.date) = 12)".format(i, start_date, end_date) check_data = pd.read_sql_query(query, self.engine) #Gets the dates for the future forecast prices so they match the instrument statistics dates = [] for l in check_data['date']: dates.append(str(l)) #Loops through the macro economic variable codes to calculate percent change for j in macrocodes: #Retrieves macro economic statistics for each macro variables query = "SELECT date, statistics, macroeconcode FROM dbo_macroeconstatistics WHERE macroeconcode = {} AND date <= {}".format('"' + j + '"', start_date) data = pd.read_sql_query(query, self.engine) # For loop to retrieve macro statistics and calculate percent change for k in range(n): temp = data.tail(n + 1) data = data.tail(n) if j == k: macrov = (data['statistics'].iloc[k] - temp['statistics'].iloc[0]) / temp['statistics'].iloc[0] indicators[j].append(macrov) else: macrov = (data['statistics'].iloc[k] - data['statistics'].iloc[k - 1]) / data['statistics'].iloc[ k - 1] indicators[j].append(macrov) #Preforms the actual calculations and stores them in an array called calculated forecast calculated_forecast = [] for k in range(n): stat = indicators['GDP'][k] * 1 - (indicators['UR'][k] * 0 + indicators['IR'][k] * .5) - ( indicators['MI'][k] * indicators['MI'][k]) stat = (stat * train_data['close'].iloc[n-1]) + train_data['close'].iloc[n-1] calculated_forecast.append(stat) #Creates and inserts the forecast dates, instrument ids, calculated forecast prices, and actual close prices into an array results = [] for k in range(n): results.append([dates[k], i, calculated_forecast[k], check_data['close'].loc[k]]) #Creates a dataframe out of the array created above df = pd.DataFrame(results, columns=['forecastdate', 'instrumentid', 'forecastcloseprice', 'close']) #print(df) count = 0 # Calculates accuracy percent_error = [] temp_error = 0 for x in range((len(df) - 1)): # Check if upward or downward trend if (df['close'][x + 1] > df['close'][x] and df['forecastcloseprice'][x + 1] > df['forecastcloseprice'][x]) or \ (df['close'][x + 1] < df['close'][x] and df['forecastcloseprice'][x + 1] < df['forecastcloseprice'][x]): count += 1 temp_error = abs((df['close'][x] - df['forecastcloseprice'][x]))/df['close'] #Percent Error calculation temp_error = (df['close'] - df['forecastcloseprice']) / df['close'] absolute_percent_error = [abs(ele) for ele in temp_error] percent_error.append(absolute_percent_error) if df['instrumentid'][i] == 1: gm_temp_error = (df['close'] - df['forecastcloseprice']) / df['close'] gm_absolute_percent_error = [abs(ele) for ele in gm_temp_error] #Calculate sum of percent error and find average gm_average_percent_error = sum(gm_absolute_percent_error) / 8 #print("Average percent error of MSF2 on GM stock is: ", gm_average_percent_error * 100, "%") if df['instrumentid'][i] == 2: pfe_temp_error = (df['close'] - df['forecastcloseprice']) / df['close'] pfe_absolute_percent_error = [abs(ele) for ele in pfe_temp_error] #Calculate sum of percent error and find average pfe_average_percent_error = sum(pfe_absolute_percent_error) / 8 #print("Average percent error of MSF2 on PFE stock is: ", pfe_average_percent_error * 100, "%") if df['instrumentid'][i] == 3: spy_temp_error = (df['close'] - df['forecastcloseprice']) / df['close'] spy_absolute_percent_error = [abs(ele) for ele in spy_temp_error] #Calculate sum of percent error and find average spy_average_percent_error = sum(spy_absolute_percent_error) / 8 #print("Average percent error of MSF2 on S&P 500 stock is: ", spy_average_percent_error * 100, "%") if df['instrumentid'][i] == 4: xph_temp_error = (df['close'] - df['forecastcloseprice']) / df['close'] xph_absolute_percent_error = [abs(ele) for ele in xph_temp_error] #Calculate sum of percent error and find average xph_average_percent_error = sum(xph_absolute_percent_error) / 8 #print("Average percent error of MSF2 on XPH stock is: ", xph_average_percent_error * 100, "%") if df['instrumentid'][i] == 5: carz_temp_error = (df['close'] - df['forecastcloseprice']) / df['close'] carz_absolute_percent_error = [abs(ele) for ele in carz_temp_error] #Calculate sum of percent error and find average carz_average_percent_error = sum(carz_absolute_percent_error) / 8 #print("Average percent error of MSF2 on CARZ index stock is: ", carz_average_percent_error * 100, "%") if df['instrumentid'][i] == 6: tyx_temp_error = (df['close'] - df['forecastcloseprice']) / df['close'] tyx_absolute_percent_error = [abs(ele) for ele in tyx_temp_error] #Calculate sum of percent error and find average tyx_average_percent_error = sum(tyx_absolute_percent_error) / 8 #print("Average percent error of MSF2 on TYX 30-YR bond is: ", tyx_average_percent_error * 100, "%") d = len(df) b = (count / d) * 100 #Prints the trend accuracy #print('The accuracy for instrument %d: %.2f%%\n' % (i, b)) #Create weightings MSF2 runs the MSF2 algorithm for past dates and compares them to actual instrument prices, generating a percent error calculation #We then iterate through several different weightings and we compare each percent error for each instrument and determine the weightings with the lowest percent error def create_weightings_MSF2(self, setWeightings): # Query to grab the macroeconcodes and macroeconnames from the macroeconmaster database table query = "SELECT macroeconcode, macroeconname FROM dbo_macroeconmaster WHERE activecode = 'A'" data = pd.read_sql_query(query, self.engine) # Query to grab the instrumentid and instrument name from the instrumentmaster database table query = 'SELECT instrumentid, instrumentname FROM dbo_instrumentmaster' data1 = pd.read_sql_query(query, self.engine) # Keys is a dictionary that will be used to store the macro econ code for each macro econ name keys = {} for i in range(len(data)): keys.update({data['macroeconname'].iloc[i]: data['macroeconcode'].iloc[i]}) # ikeys is a dictionary that will be used to store instrument ids for each instrument name ikeys = {} for x in range(len(data1)): ikeys.update({data1['instrumentname'].iloc[x]: data1['instrumentid'].iloc[x]}) #Vars is a dictionary used to store the macro economic variable percent change for each macro economic code vars = {} #Vars is only populated with the relevant macro economic variables (GDP, COVI, CPIUC, and FSI) for i in data['macroeconcode']: if (i == 'GDP' or i == 'UR' or i == 'IR' or i == 'MI'): d = {i: []} vars.update(d) #Weightings is used to store the best weightings for each instrument id which is returned to dataforecast and used for actual prediction weightings = {} #n represents the number of datapoints we are working with (represented in quarters) n = 8 # These are the date ranges we are working with # start_date represents the starting date for the forecasts and the end of the training dates start_date = "'2018-01-01'" # end_date represents the date for which the forecasting ends end_date = "'2020-01-01'" # train_date represents the date we start collecting the instrument statistics used to forecast prices train_date = "'2016-01-01'" # For loop to loop through the macroeconomic codes to calculate the macro economic variable percent change for i in keys: # Check to make sure the macroeconcode we are working with is one of the relevant ones if keys[i] in vars: # Query to grab the macroeconomic statistics from the database using the relevant macro economic codes query = "SELECT date, statistics, macroeconcode FROM dbo_macroeconstatistics WHERE macroeconcode = {} AND date <= {}".format( '"' + keys[i] + '"', start_date) data = pd.read_sql_query(query, self.engine) # For loop to retrieve macro statistics and calculate percent change for j in range(n): # This will grab the n+1 statistic to use to calculate the percent change to the n statistic temp = data.tail(n + 1) # This will grab the most recent n statistics from the query, as we are working only with n points data = data.tail(n) # For the first iteration we need to use the n+1th statistic to calculate percent change on the oldest point if j == 0: macrov = (data['statistics'].iloc[j] - temp['statistics'].iloc[0]) / temp['statistics'].iloc[0] vars[keys[i]].append(macrov) else: macrov = (data['statistics'].iloc[j] - data['statistics'].iloc[j - 1]) / \ data['statistics'].iloc[j - 1] vars[keys[i]].append(macrov) # If you are not using set weightings then this if statement will run and create the best fit weightings if not setWeightings: # We now iterate through the instrument ids for x in ikeys: # This query will grab the quarterly instrument statistics from 2016 to 2018 query = "SELECT date, close, instrumentid FROM ( SELECT date, close, instrumentid, ROW_NUMBER() OVER " \ "(PARTITION BY YEAR(date), MONTH(date) ORDER BY DAY(date) DESC) AS rowNum FROM " \ "dbo_instrumentstatistics WHERE instrumentid = {} AND date BETWEEN {} AND {} ) z " \ "WHERE rowNum = 1 AND ( MONTH(z.date) = 3 OR MONTH(z.date) = 6 OR MONTH(z.date) = 9 OR " \ "MONTH(z.date) = 12)".format(ikeys[x], train_date, start_date) # Then we execute the query and store the returned values in instrumentStats, and grab the last n stats from the dataframe as we are only using n datapoints instrumentStats = pd.read_sql_query(query, self.engine) instrumentStats = instrumentStats.tail(n) #Best weightings will be used to store the best weightings for each instrument best_weightings = [0, 0, 0] #Best avg error will be used to store the best average percent error for each isntrument best_avg_error = -1 #Best trend error will be used to store the best trend error for each instrument best_trend_error = -1 #Best forecast prices will be used to store the forecast prices for the best weightings to store them in a database for visual comparison later best_forecast_prices = [] # We now iterate through all 3 different possible weightings for weight in numpy.arange(-5.7, 2.8, .25): for uweight in numpy.arange(-3.7, 3.6, .25): for iweight in numpy.arange(-.8, .9, .25): # We intialize a list to store the resulting forecasted prices to compare in another function stat_check = [] # isFirst will determine whether or not this is the first calculation being done # If it is true then we use the most recent instrument statistic to forecast the first pricepoint # IF it is false then we use the previous forecast price to predict the next forecast price isFirst = True # This is the actual calculation of MSF3 where we store the result in stat_check to compare to actual instrument prices for i in range(n): if isFirst: #Change to pluses and test accuracy stat = vars['GDP'][i] * weight - vars['UR'][i] * uweight + vars['IR'][i] * iweight - ( vars['MI'][i] * vars['MI'][i]) stat = (stat * instrumentStats['close'].iloc[n-1]) + instrumentStats['close'].iloc[n-1] stat_check.append(stat) temp_price = stat isFirst = False else: stat = vars['GDP'][i] * weight - (vars['UR'][i] * uweight + vars['IR'][i] * iweight) - ( vars['MI'][i] * vars['MI'][i]) stat = (stat * temp_price) + temp_price stat_check.append(stat) temp_price = stat # We call to the weight check function using the list of forecasted prices, the current instrument id, the amount of datapoints we are working with, and the name of the function we are testing # It then returns the average percent error and trend error for the forecasted prices, as well as the dates we are forecasting for so we can insert them into the visualize table temp_avg_error, temp_trend_error, dates = weight_check(DBEngine().mysql_engine(), stat_check, ikeys[x], n, 'MSF2', start_date, end_date) # Check to see if the best_avg_error has been initialized to a valid average percent error, if not then no average error or trend error has been calculated yet if (best_avg_error < 0): # If so store the average percent error, the best weightings, best trend error, and the resulting forecasted prices for comparison with other weightings best_avg_error = temp_avg_error best_weightings = [weight, uweight, iweight] best_trend_error = temp_trend_error best_forecast_prices = stat_check # Otherwise check if the newly calculated average percent error is worse than the newly calculated one elif (best_avg_error > temp_avg_error): # And if so set the values for all the relevant variables best_avg_error = temp_avg_error best_weightings = [weight, uweight, iweight] best_trend_error = temp_trend_error best_forecast_prices = stat_check # Print statements to view the average percent error, trend error, and best weightings print("The lowest avg percent error is %.7f%% for instrumentID %d" % (best_avg_error * 100, ikeys[x]), ' for function: MSF2') print("The weightings are: ", best_weightings, ' for function: MSF2') print('The trend accuracy is: ', best_trend_error) # initializes weightings dictionary as the best weightings found for each instrument id weightings[ikeys[x]] = best_weightings # visual_comparisons will be used to store the past forecasted prices so we can visualize them compared to actual instrument prices on a graph visual_comparisons = [] for k in range(n): visual_comparisons.append([dates[k], ikeys[x], best_forecast_prices[k], 'MSF2']) df1 = pd.DataFrame(visual_comparisons, columns=['forecastdate', 'instrumentid', 'forecastcloseprice', 'algorithmcode']) df1.to_sql('dbo_tempvisualize', self.engine, if_exists=('append'), index=False) # The weightings for each instrument ID are returned to dataforecast and used for prediction return weightings # This else statement will make use of the preset weightings for prediction and comparison else: # These are the set weightings as of 4/14/2020, these may not be relevant in the future. Feel free to change them weightings = {1: [-2.2, 3.3, 0.44999999999999996], 2: [1.0499999999999998, -3.2, -0.8], 3: [2.55, 3.3, 0.7], 4: [0.04999999999999982, 3.05, 0.7], 5: [-4.7, 3.3, 0.44999999999999996], 6: [-1.2000000000000002, -3.7, -0.8]} # We now iterate through the instrument ids for x in ikeys: # This query will grab the quarterly instrument statistics from 2016 to 2018 query = "SELECT date, close, instrumentid FROM ( SELECT date, close, instrumentid, ROW_NUMBER() OVER " \ "(PARTITION BY YEAR(date), MONTH(date) ORDER BY DAY(date) DESC) AS rowNum FROM " \ "dbo_instrumentstatistics WHERE instrumentid = {} AND date BETWEEN {} AND {} ) z " \ "WHERE rowNum = 1 AND ( MONTH(z.date) = 3 OR MONTH(z.date) = 6 OR MONTH(z.date) = 9 OR " \ "MONTH(z.date) = 12)".format(ikeys[x], train_date, start_date) # Then we execute the query and store the returned values in instrumentStats, and grab the last n stats from the dataframe as we are only using n datapoints instrumentStats =
pd.read_sql_query(query, self.engine)
pandas.read_sql_query
import warnings warnings.simplefilter(action='ignore', category=FutureWarning) import os import sys import glob import pandas as pd import numpy as np import gym from gym import spaces import sim_analysis import tqdm from pprint import pprint import config from scipy.spatial.distance import cdist import sim_utils class DynamicPlume: def __init__(self, sim_dt=0.01, birth_rate=1.0, env_dt=0.04, birthx=1.0, # per-episode puff birth rate sparsity minimum birthx_max=1.0, # overall odor puff birth rate sparsity max wind_speed=0.5, wind_y_var=0.5, qvar=0.0, # Variance of init. location; higher = more off-plume initializations diff_max=0.8, # teacher curriculum diff_min=0.4, # teacher curriculum warmup=25, # warmup upto these many steps max_steps=300, # max steps in episode (used for switch_idxs, ok to run longer) dataset=None, # optional: imitate a "dataset" verbose=0): super(DynamicPlume, self).__init__() # Init # print(os.getcwd()) self.verbose = verbose self.warmup = warmup self.max_steps = max_steps self.snapshots = self.init_snapshots(config.datadir) self.birthx = birthx self.steps_per_env_dt = 4 # env_dt/sim_dt hardcoded self.birth_rate = birth_rate self.wind_y_var = wind_y_var self.wind_speed = wind_speed self.wind_degree = 0 # self.switch_counts = [0]*6 + [i for i in range(1, 13)] # mix of constant & switch self.switch_counts = [0, 0, 0, 1, 1, 1, 2, 4, 6, 8] # mix of constant & switch if dataset is not None and 'constant' in dataset: self.switch_counts = [0] if dataset is not None and 'noisy' in dataset: self.switch_counts = [0, 0, 1, 1, 1, 2, 3, 4, 5, 6] # mix of constant & switch self.diff_min = diff_min self.diff_max = diff_max self.qvar = qvar self.reset() def init_snapshots(self, snapshots_dir): fnames = list(glob.glob(f"{snapshots_dir}/*_snapshot.csv"))[:10] if len(fnames) < 1: print(len(fnames), snapshots_dir) return [
pd.read_csv(x)
pandas.read_csv
from datetime import datetime import warnings import numpy as np import pytest from pandas.core.dtypes.generic import ABCDateOffset import pandas as pd from pandas import ( DatetimeIndex, Index, PeriodIndex, Series, Timestamp, bdate_range, date_range, ) from pandas.tests.test_base import Ops import pandas.util.testing as tm from pandas.tseries.offsets import BDay, BMonthEnd, CDay, Day, Hour START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestDatetimeIndexOps(Ops): def setup_method(self, method): super().setup_method(method) mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): f = lambda x: isinstance(x, DatetimeIndex) self.check_ops_properties(DatetimeIndex._field_ops, f) self.check_ops_properties(DatetimeIndex._object_ops, f) self.check_ops_properties(DatetimeIndex._bool_ops, f) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH#7206 msg = "'Series' object has no attribute '{}'" for op in ["year", "day", "second", "weekday"]: with pytest.raises(AttributeError, match=msg.format(op)): getattr(self.dt_series, op) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) assert s.year == 2000 assert s.month == 1 assert s.day == 10 msg = "'Series' object has no attribute 'weekday'" with pytest.raises(AttributeError, match=msg): s.weekday def test_repeat_range(self, tz_naive_fixture): tz = tz_naive_fixture rng = date_range("1/1/2000", "1/1/2001") result = rng.repeat(5) assert result.freq is None assert len(result) == 5 * len(rng) index = pd.date_range("2001-01-01", periods=2, freq="D", tz=tz) exp = pd.DatetimeIndex( ["2001-01-01", "2001-01-01", "2001-01-02", "2001-01-02"], tz=tz ) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.date_range("2001-01-01", periods=2, freq="2D", tz=tz) exp = pd.DatetimeIndex( ["2001-01-01", "2001-01-01", "2001-01-03", "2001-01-03"], tz=tz ) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.DatetimeIndex(["2001-01-01", "NaT", "2003-01-01"], tz=tz) exp = pd.DatetimeIndex( [ "2001-01-01", "2001-01-01", "2001-01-01", "NaT", "NaT", "NaT", "2003-01-01", "2003-01-01", "2003-01-01", ], tz=tz, ) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) assert res.freq is None def test_repeat(self, tz_naive_fixture): tz = tz_naive_fixture reps = 2 msg = "the 'axis' parameter is not supported" rng = pd.date_range(start="2016-01-01", periods=2, freq="30Min", tz=tz) expected_rng = DatetimeIndex( [ Timestamp("2016-01-01 00:00:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:00:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:30:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:30:00", tz=tz, freq="30T"), ] ) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) assert res.freq is None tm.assert_index_equal(np.repeat(rng, reps), expected_rng) with pytest.raises(ValueError, match=msg): np.repeat(rng, reps, axis=1) def test_resolution(self, tz_naive_fixture): tz = tz_naive_fixture for freq, expected in zip( ["A", "Q", "M", "D", "H", "T", "S", "L", "U"], [ "day", "day", "day", "day", "hour", "minute", "second", "millisecond", "microsecond", ], ): idx = pd.date_range(start="2013-04-01", periods=30, freq=freq, tz=tz) assert idx.resolution == expected def test_value_counts_unique(self, tz_naive_fixture): tz = tz_naive_fixture # GH 7735 idx = pd.date_range("2011-01-01 09:00", freq="H", periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range("2011-01-01 18:00", freq="-1H", periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype="int64") for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range("2011-01-01 09:00", freq="H", periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex( [ "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 08:00", "2013-01-01 08:00", pd.NaT, ], tz=tz, ) exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00"], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00", pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map( DatetimeIndex, ( [0, 1, 0], [0, 0, -1], [0, -1, -1], ["2015", "2015", "2016"], ["2015", "2015", "2014"], ), ): assert idx[0] in idx @pytest.mark.parametrize( "idx", [ DatetimeIndex( ["2011-01-01", "2011-01-02", "2011-01-03"], freq="D", name="idx" ), DatetimeIndex( ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"], freq="H", name="tzidx", tz="Asia/Tokyo", ), ], ) def test_order_with_freq(self, idx): ordered = idx.sort_values() tm.assert_index_equal(ordered, idx) assert ordered.freq == idx.freq ordered = idx.sort_values(ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) assert ordered.freq == expected.freq assert ordered.freq.n == -1 ordered, indexer = idx.sort_values(return_indexer=True) tm.assert_index_equal(ordered, idx) tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) assert ordered.freq == idx.freq ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) assert ordered.freq == expected.freq assert ordered.freq.n == -1 @pytest.mark.parametrize( "index_dates,expected_dates", [ ( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], ), ( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], ), ( [pd.NaT, "2011-01-03", "2011-01-05", "2011-01-02", pd.NaT], [pd.NaT, pd.NaT, "2011-01-02", "2011-01-03", "2011-01-05"], ), ], ) def test_order_without_freq(self, index_dates, expected_dates, tz_naive_fixture): tz = tz_naive_fixture # without freq index = DatetimeIndex(index_dates, tz=tz, name="idx") expected = DatetimeIndex(expected_dates, tz=tz, name="idx") ordered = index.sort_values() tm.assert_index_equal(ordered, expected) assert ordered.freq is None ordered = index.sort_values(ascending=False) tm.assert_index_equal(ordered, expected[::-1]) assert ordered.freq is None ordered, indexer = index.sort_values(return_indexer=True) tm.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None ordered, indexer = index.sort_values(return_indexer=True, ascending=False) tm.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) tm.assert_numpy_array_equal(indexer, exp, check_dtype=False) assert ordered.freq is None def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range("2011-01-01", "2011-01-31", freq="D", name="idx") result = idx.drop_duplicates()
tm.assert_index_equal(idx, result)
pandas.util.testing.assert_index_equal
import pandas as pd def dataframe_column_to_str(dataframe, col_name, inplace=False, return_col=False): """Convert columun in the dataframe into string type while preserving NaN values. This method is useful when performing join over numeric columns. Currently, the join methods expect the join columns to be of string type. Hence, the numeric columns need to be converted to string type before performing the join. Args: dataframe (DataFrame): Input pandas dataframe. col_name (string): Name of the column in the dataframe to be converted. inplace (boolean): A flag indicating whether the input dataframe should be modified inplace or in a copy of it. return_col (boolean): A flag indicating whether a copy of the converted column should be returned. When this flag is set to True, the method will not modify the original dataframe and will return a new column of string type. Only one of inplace and return_col can be set to True. Returns: A Boolean value when inplace is set to True. A new dataframe when inplace is set to False and return_col is set to False. A series when inplace is set to False and return_col is set to True. """ if not isinstance(dataframe, pd.DataFrame): raise AssertionError('First argument is not of type pandas dataframe') if col_name not in dataframe.columns: raise AssertionError('Column \'' + col_name + '\' not found in the' + \ ' input dataframe') if not isinstance(inplace, bool): raise AssertionError('Parameter \'inplace\' is not of type bool') if not isinstance(return_col, bool): raise AssertionError('Parameter \'return_col\' is not of type bool') if inplace and return_col: raise AssertionError('Both \'inplace\' and \'return_col\' parameters' +\ 'cannot be set to True') col_type = dataframe[col_name].dtype if inplace: num_rows = len(dataframe[col_name]) if (num_rows == 0 or sum(pd.isnull(dataframe[col_name])) == num_rows): dataframe[col_name] = dataframe[col_name].astype(pd.np.object) return True else: return series_to_str(dataframe[col_name], inplace) elif return_col: return series_to_str(dataframe[col_name], inplace) else: dataframe_copy = dataframe.copy() series_to_str(dataframe_copy[col_name], True) return dataframe_copy def series_to_str(series, inplace=False): """Convert series into string type while preserving NaN values. Args: series (Series): Input pandas series. inplace (boolean): A flag indicating whether the input series should be modified inplace or in a copy of it. This flag is ignored when the input series consists of only NaN values or the series is empty (with int or float type). In these two cases, we always return a copy irrespective of the inplace flag. Returns: A Boolean value when inplace is set to True. A series when inplace is set to False. """ if not isinstance(series, pd.Series): raise AssertionError('First argument is not of type pandas dataframe') if not isinstance(inplace, bool): raise AssertionError('Parameter \'inplace\' is not of type bool') col_type = series.dtype # Currently, we ignore the inplace flag when the series is empty and is of # type int or float. In this case, we will always return a copy. if len(series) == 0: if col_type == pd.np.object and inplace: return True else: return series.astype(pd.np.object) if col_type == pd.np.object: # If column is already of type object, do not perform any conversion. if inplace: return True else: return series.copy() elif pd.np.issubdtype(col_type, pd.np.integer): # If the column is of type int, then there are no missing values in the # column and hence we can directly convert it to string using # the astype method. col_str = series.astype(str) if inplace: series.update(col_str) return True else: return col_str elif pd.np.issubdtype(col_type, pd.np.float): # If the column is of type float, then there are two cases: # (1) column only contains interger values along with NaN. # (2) column actually contains floating point values. # For case 1, we preserve the NaN values as such and convert the float # values to string by first converting them to int and then to string. # For case 1, we preserve the NaN values as such and convert the float # values directly to string. # get the column values that are not NaN col_non_nan_values = series.dropna() # Currently, we ignore the inplace flag when all values in the column # are NaN and will always return a copy of the column cast into # object type. if len(col_non_nan_values) == 0: return series.astype(pd.np.object) # find how many of these values are actually integer values cast into # float. int_values = sum(col_non_nan_values.apply(lambda val: val.is_integer())) # if all these values are interger values, then we handle according # to case 1, else we proceed by case 2. if int_values == len(col_non_nan_values): col_str = series.apply(lambda val: pd.np.NaN if
pd.isnull(val)
pandas.isnull
import numpy as np import pandas as pd from nilearn import image import json import pytest from neuroquery_image_search import _searching, _datasets def test_image_search(tmp_path, fake_img): img_path = str(tmp_path / "img.nii.gz") fake_img.to_filename(img_path) results_path = tmp_path / "results.json" _searching.image_search( f"{img_path} -o {results_path} --n_studies 7 --n_terms 3".split() ) results = json.loads(results_path.read_text()) study_results = pd.DataFrame(results["studies"]) assert study_results.shape == (7, 4) assert np.allclose(study_results.reset_index().at[0, "similarity"], 1.0) results_path = tmp_path / "results.html" _searching.image_search( [img_path, "-o", str(results_path), "--n_studies", "1"] ) results = results_path.read_text() assert results.strip().startswith("<!DOCTYPE html>") _searching.image_search(["-o", str(results_path), "--n_studies", "7"]) results = results_path.read_text() assert "Image" in results _searching.image_search([]) def test_json_encoder(): df = pd.DataFrame({"A": [2, 3]}, index=list("ab")) data = {"a": {"B": 3.3}, "b": df} as_json = json.dumps(data, cls=_searching._JSONEncoder) loaded = json.loads(as_json) loaded_df =
pd.DataFrame(loaded["b"])
pandas.DataFrame
""" This script loads Google and Apple Mobility reports, builds cleaned reports in different formats and builds merged files from both sources. Original data: - Google Community Mobility reports: https://www.google.com/covid19/mobility/ - Apple Mobility Trends reports: https://www.apple.com/covid19/mobility """ import io import os import datetime import requests import urllib.request import time from bs4 import BeautifulSoup import re import json import pandas as pd def get_google_link(): '''Get link of Google Community Mobility report file Returns: link (str): link of Google Community report file ''' # get webpage source url = 'https://www.google.com/covid19/mobility/' response = requests.get(url) soup = BeautifulSoup(response.text, "html.parser") csv_tag = soup.find('a', {"class": "icon-link"}) link = csv_tag['href'] return link def download_google_reports(directory="google_reports"): '''Download Google Community Mobility report in CSV format Args: directory: directory to which CSV report will be downloaded Returns: new_files (bool): flag indicating whether or not new files have been downloaded ''' new_files = False # create directory if it don't exist if not os.path.exists(directory): os.makedirs(directory) # download CSV file link = get_google_link() file_name = "Global_Mobility_Report.csv" path = os.path.join(directory, file_name) if not os.path.isfile(path): new_files = True urllib.request.urlretrieve(link, path) else: path_new = os.path.join(directory, file_name + "_new") urllib.request.urlretrieve(link, path_new) if os.path.getsize(path) == os.path.getsize(path_new): os.remove(path_new) else: new_files = True os.remove(path) os.rename(path_new, path) if not new_files: print('Google: No updates') else: print('Google: Update available') return new_files def build_google_report( source="Global_Mobility_Report.csv", destination="mobility_report.csv", report_type="regions"): '''Build cleaned Google report for worldwide or for some country (currently only for the US) Args: source: location of the raw Google CSV report destination: destination file path report_type: two options available: "regions" - report for worldwide, "US" - report for the US ''' df = pd.read_csv(source, low_memory=False) df = df.drop(columns=['country_region_code']) df = df.rename( columns={ 'country_region': 'country', 'retail_and_recreation_percent_change_from_baseline': 'retail', 'grocery_and_pharmacy_percent_change_from_baseline': 'grocery and pharmacy', 'parks_percent_change_from_baseline': 'parks', 'transit_stations_percent_change_from_baseline': 'transit stations', 'workplaces_percent_change_from_baseline': 'workplaces', 'residential_percent_change_from_baseline': 'residential'}) if report_type == "regions": df = df[df['sub_region_2'].isnull()] df = df.drop(columns=['sub_region_2']) df = df.rename(columns={'sub_region_1': 'region'}) df['region'].fillna('Total', inplace=True) elif report_type == "US": df = df[(df['country'] == "United States")] df = df.drop(columns=['country']) df = df.rename( columns={ 'sub_region_1': 'state', 'sub_region_2': 'county'}) df['state'].fillna('Total', inplace=True) df['county'].fillna('Total', inplace=True) df.to_csv(destination, index=False) def get_apple_link(): '''Get link of Apple Mobility Trends report file Returns: link (str): link of Apple Mobility Trends report file ''' # get link via API json_link = "https://covid19-static.cdn-apple.com/covid19-mobility-data/current/v3/index.json" with urllib.request.urlopen(json_link) as url: json_data = json.loads(url.read().decode()) link = "https://covid19-static.cdn-apple.com" + \ json_data['basePath'] + json_data['regions']['en-us']['csvPath'] return link def download_apple_report(directory="apple_reports"): '''Download Apple Mobility Trends report in CSV Args: directory: directory to which CSV report will be downloaded Returns: new_files (bool): flag indicating whether or not a new file has been downloaded ''' new_files = False if not os.path.exists(directory): os.makedirs(directory) link = get_apple_link() file_name = "applemobilitytrends.csv" path = os.path.join(directory, file_name) if not os.path.isfile(path): new_files = True urllib.request.urlretrieve(link, path) else: path_new = os.path.join(directory, file_name + "_new") urllib.request.urlretrieve(link, path_new) if os.path.getsize(path) == os.path.getsize(path_new): os.remove(path_new) else: new_files = True os.remove(path) os.rename(path_new, path) if not new_files: print('Apple: No updates') else: print('Apple: Update available') return new_files def build_apple_report( source=os.path.join( 'apple_reports', "applemobilitytrends.csv"), destination=os.path.join( 'apple_reports', "apple_mobility_report.csv"), report_type="regions"): '''Build cleaned Apple report (transform dates from columns to rows, add country names for subregions and cities) for worldwide or for some country (currently only for the US) Args: source: location of the raw Apple CSV report destination: destination file path report_type: two options available: "regions" - report for worldwide, "US" - report for the US ''' apple = pd.read_csv(source) apple = apple.drop(columns=['alternative_name']) apple['country'] = apple.apply( lambda x: x['region'] if x['geo_type'] == 'country/region' else x['country'], axis=1) if report_type == 'regions': apple = apple[apple.geo_type != 'county'] apple['sub-region'] = apple.apply(lambda x: 'Total' if x['geo_type'] == 'country/region' else ( x['region'] if x['geo_type'] == 'sub-region' else x['sub-region']), axis=1) apple['subregion_and_city'] = apple.apply( lambda x: 'Total' if x['geo_type'] == 'country/region' else x['region'], axis=1) apple = apple.drop(columns=['region']) apple['sub-region'] = apple['sub-region'].fillna( apple['subregion_and_city']) apple = apple.melt( id_vars=[ 'geo_type', 'subregion_and_city', 'sub-region', 'transportation_type', 'country'], var_name='date') apple['value'] = apple['value'] - 100 apple = apple.pivot_table( index=[ "geo_type", "subregion_and_city", "sub-region", "date", "country"], columns='transportation_type').reset_index() apple.columns = [t + (v if v != "value" else "") for v, t in apple.columns] apple = apple[['country', 'sub-region', 'subregion_and_city', 'geo_type', 'date', 'driving', 'transit', 'walking']] apple = apple.sort_values(by=['country', 'sub-region', 'subregion_and_city', 'date']).reset_index(drop=True) elif report_type == "US": apple = apple[apple.country == "United States"].drop(columns=[ 'country']) apple['sub-region'] = apple['sub-region'].fillna( apple['region']).replace({"United States": "Total"}) apple['region'] = apple.apply(lambda x: x['region'] if ( x['geo_type'] == 'city' or x['geo_type'] == 'county') else 'Total', axis=1) apple = apple.rename( columns={ 'sub-region': 'state', 'region': 'county_and_city'}) apple = apple.melt( id_vars=[ 'geo_type', 'state', 'county_and_city', 'transportation_type'], var_name='date') apple['value'] = apple['value'] - 100 apple = apple.pivot_table( index=[ 'geo_type', 'state', 'county_and_city', 'date'], columns='transportation_type').reset_index() apple.columns = [t + (v if v != "value" else "") for v, t in apple.columns] apple = apple[['state', 'county_and_city', 'geo_type', 'date', 'driving', 'transit', 'walking']] apple = apple.sort_values( by=['state', 'county_and_city', 'geo_type', 'date']).reset_index(drop=True) apple.to_csv(destination, index=False) def build_summary_report( apple_source=os.path.join( 'apple_reports', "applemobilitytrends.csv"), google_source=os.path.join( "google_reports", "Global_Mobility_Report.csv"), destination=os.path.join( "summary_reports", "summary_report.csv")): '''Build a merged report from Google and Apple data Args: apple_source: location of the raw Apple CSV report google_source: location of the raw Google CSV report destination: destination file path ''' # preprocess apple data apple = pd.read_csv(apple_source) apple['country'] = apple.apply( lambda x: x['region'] if x['geo_type'] == 'country/region' else x['country'], axis=1) apple['sub_region_1'] = apple.apply( lambda x: 'Total' if x['geo_type'] == 'country/region' else ( x['region'] if x['geo_type'] == 'city' or x['geo_type'] == 'sub-region' else ( x['sub-region'] if x['geo_type'] == 'county' else None)), axis=1) apple['sub_region_2'] = apple.apply( lambda x: x['region'] if x['geo_type'] == 'county' else 'Total', axis=1) apple = apple.drop( columns=[ 'alternative_name', 'geo_type', 'region', 'sub-region']) apple = apple.melt( id_vars=[ 'country', 'sub_region_1', 'sub_region_2', 'transportation_type'], var_name='date') apple['value'] = apple['value'] - 100 apple = apple.pivot_table( index=[ 'country', 'sub_region_1', 'sub_region_2', 'date'], columns='transportation_type').reset_index() apple.columns = [t + (v if v != "value" else "")for v, t in apple.columns] # convert Apple countries and subregions to Google names country_AtoG_file = os.path.join( 'auxiliary_data', 'country_Apple_to_Google.csv') subregions_AtoG_file = os.path.join( 'auxiliary_data', 'subregions_Apple_to_Google.csv') if os.path.isfile(country_AtoG_file): country_AtoG = pd.read_csv(country_AtoG_file, index_col=0) else: country_AtoG = None if os.path.isfile(subregions_AtoG_file): subregions_AtoG = pd.read_csv(subregions_AtoG_file, index_col=0) else: subregions_AtoG = None apple['country'] = apple.apply(lambda x: country_AtoG.loc[x['country'], 'country_google'] if ( country_AtoG is not None and x['country'] in country_AtoG.index) else x['country'], axis=1) apple['sub_region_1'] = apple.apply(lambda x: subregions_AtoG.loc[x['sub_region_1'], 'subregion_Google'] if ( subregions_AtoG is not None and x['sub_region_1'] in subregions_AtoG.index) else x['sub_region_1'], axis=1) # process google data google =
pd.read_csv(google_source, low_memory=False)
pandas.read_csv
import numpy as np import sys import pandas as pd import os import datetime from fnmatch import fnmatch from splitDate import splitDate from ObligorReminder import ObligorReminder def UpdatePeopleState(ifEmail): PeopleExpenditure() PeopleAccount() if ifEmail == 'yes': key = raw_input("Shall people with negative balance be informed via email [y/N]? ") if key == 'y' or key == 'Y': ObligorReminder() def PeopleExpenditure(): df = pd.read_csv('PeopleList') # os.system("rm *~") # os.system("clear") names= df['Name'].values Dates = FindcsvMarks() tmp = np.empty((len(names),len(Dates))) tmp[:] = 0 df = pd.DataFrame(tmp,index=names,columns=Dates) for d in Dates: df_tmp = pd.read_csv('Marks_'+ d) df_tmp = df_tmp.loc[0:len(df_tmp)-2] name_tmp = df_tmp['Name'].values df_tmp = df_tmp['Total (euros)'].values df.loc[name_tmp,d] = df_tmp df['Name'] = names df = df[['Name']+Dates] df.to_csv('PeopleExpenditure',header=True,index=False) if len(Dates) == 0: CreatePeopleExpenditure() def PeopleAccount(): df = pd.read_csv('PeopleList') num_members = len(df) if num_members >0: if os.path.isfile('PeoplePayment'): pass else: CreatePeoplePayment() df = pd.read_csv('PeoplePayment') paid = df['Sum'] df = pd.read_csv('PeopleExpenditure') # nam = df['Name'] Dates = FindcsvMarks() Header = np.hstack(('Name','Paid', Dates,'Balance')) tmp = np.empty((len(df),1)) tmp[:] = 0 df['Paid'] = paid df['Balance'] = tmp df = df[Header] df['Balance'] = df['Paid']-df[Dates].sum(axis=1) df.to_csv('PeopleBalance',header=True,index=False) tmp_balance = df['Balance'] df = pd.read_csv('PeopleList') df['Balance'] = tmp_balance df.to_csv('PeopleList',header=True,index=False) def FindcsvMarks(): pwd = os.getcwd() Files = filter(lambda x: fnmatch(x,'Marks_*'),os.listdir(pwd)) for idx in range(len(Files)): f = Files[idx] Files[idx] = f.split('_',1).pop() pass Files.sort(key=splitDate,reverse=True) Dates = Files return Dates def CreatePeopleExpenditure(): df = pd.read_csv('PeopleList') names= df['Name'].values Dates = ['00.00.0000'] tmp = np.empty((len(names),len(Dates))) tmp[:] = 0 df = pd.DataFrame(tmp,index=names,columns=Dates) df['Name'] = names df = df[['Name']+Dates] df.to_csv('PeopleExpenditure',header=True,index=False) def CreatePeoplePayment(): df =
pd.read_csv('PeopleList')
pandas.read_csv
import pandas as pd import numpy as np import xml.etree.ElementTree as ET from math import radians, cos, sin, asin, sqrt def parse_gpx(filename): """Parse data from a GPX file and return a Pandas Dataframe""" tree = ET.parse(filename) root = tree.getroot() # define a namespace dictionary to make element names simpler # this mirrors the namespace definintions in the XML files ns = {'gpx':'http://www.topografix.com/GPX/1/1', 'gpxtpx': 'http://www.garmin.com/xmlschemas/TrackPointExtension/v1'} # when we look for elements, we need to use the namespace prefix trk = root.find('gpx:trk', ns) trkseg = trk.find('gpx:trkseg', ns) data = [] times = [] # iterate over the first ten trkpt elements - the children of trkseg for trkpt in trkseg: # get some properties from the attributes lon = trkpt.attrib['lon'] lat = trkpt.attrib['lat'] # get values from the child elements ele = trkpt.find('gpx:ele', ns).text time = trkpt.find('gpx:time', ns).text # now dive into the extensions ext = trkpt.find('gpx:extensions', ns) if ext.find('gpx:power', ns) != None: power = ext.find('gpx:power', ns).text else: power = 0.0 tpext = ext.find('gpxtpx:TrackPointExtension', ns) if tpext.find('gpxtpx:atemp', ns) != None: temp = tpext.find('gpxtpx:atemp', ns).text else: temp = 0.0 if tpext.find('gpxtpx:cad', ns) != None: cadence = tpext.find('gpxtpx:cad', ns).text else: cadence = 0.0 hr = tpext.find('gpxtpx:hr', ns).text row = { 'latitude': float(lat), 'longitude': float(lon), 'elevation': float(ele), 'temperature': float(temp), 'power': float(power), 'cadence': float(cadence), 'hr': float(hr), } data.append(row) times.append(time) times = pd.to_datetime(times) df =
pd.DataFrame(data, index=times)
pandas.DataFrame
import builtins from io import StringIO import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, isna import pandas._testing as tm import pandas.core.nanops as nanops from pandas.util import _test_decorators as td @pytest.fixture( params=[np.int32, np.int64, np.float32, np.float64], ids=["np.int32", "np.int64", "np.float32", "np.float64"], ) def numpy_dtypes_for_minmax(request): """ Fixture of numpy dtypes with min and max values used for testing cummin and cummax """ dtype = request.param min_val = ( np.iinfo(dtype).min if np.dtype(dtype).kind == "i" else np.finfo(dtype).min ) max_val = ( np.iinfo(dtype).max if np.dtype(dtype).kind == "i" else np.finfo(dtype).max ) return (dtype, min_val, max_val) @pytest.mark.parametrize("agg_func", ["any", "all"]) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize( "vals", [ ["foo", "bar", "baz"], ["foo", "", ""], ["", "", ""], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1.0, 2.0, 3.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan], ], ) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == "any": exp = False exp_df = DataFrame([exp] * 2, columns=["val"], index=Index(["a", "b"], name="key")) result = getattr(df.groupby("key"), agg_func)(skipna=skipna) tm.assert_frame_equal(result, exp_df) def test_max_min_non_numeric(): # #2700 aa = DataFrame({"nn": [11, 11, 22, 22], "ii": [1, 2, 3, 4], "ss": 4 * ["mama"]}) result = aa.groupby("nn").max() assert "ss" in result result = aa.groupby("nn").max(numeric_only=False) assert "ss" in result result = aa.groupby("nn").min() assert "ss" in result result = aa.groupby("nn").min(numeric_only=False) assert "ss" in result def test_min_date_with_nans(): # GH26321 dates = pd.to_datetime( pd.Series(["2019-05-09", "2019-05-09", "2019-05-09"]), format="%Y-%m-%d" ).dt.date df = pd.DataFrame({"a": [np.nan, "1", np.nan], "b": [0, 1, 1], "c": dates}) result = df.groupby("b", as_index=False)["c"].min()["c"] expected = pd.to_datetime( pd.Series(["2019-05-09", "2019-05-09"], name="c"), format="%Y-%m-%d" ).dt.date tm.assert_series_equal(result, expected) result = df.groupby("b")["c"].min() expected.index.name = "b" tm.assert_series_equal(result, expected) def test_intercept_builtin_sum(): s =
Series([1.0, 2.0, np.nan, 3.0])
pandas.Series
from datasets import load_dataset import streamlit as st import pandas as pd from googletrans import Translator import session_state import time from fuzzywuzzy import fuzz,process # Security #passlib,hashlib,bcrypt,scrypt import hashlib # DB Management import sqlite3 import os import psycopg2 # import torch # from transformers import PegasusForConditionalGeneration, PegasusTokenizer state = session_state.get(question_number=0) translator = Translator() # model_name = 'tuner007/pegasus_paraphrase' # torch_device = 'cuda' if torch.cuda.is_available() else 'cpu' # tokenizer = PegasusTokenizer.from_pretrained(model_name) # model = PegasusForConditionalGeneration.from_pretrained(model_name).to(torch_device) # def get_response(input_text,num_return_sequences,num_beams): # batch = tokenizer([input_text],truncation=True,padding='longest',max_length=60, return_tensors="pt").to(torch_device) # translated = model.generate(**batch,max_length=60,num_beams=num_beams, num_return_sequences=num_return_sequences, temperature=1.5) # tgt_text = tokenizer.batch_decode(translated, skip_special_tokens=True) # return tgt_text @st.cache(suppress_st_warning=True) def get_qa_pair_low(file, rand): df = pd.read_csv(file, sep="\t", lineterminator='\n') a = df.sample(1).reset_index() st.text(df) return { "text": a["text"][0], "question": a["question"][0], "answer": a["answer\r"][0] } @st.cache(suppress_st_warning=True) def get_qa_pair_mid(file, rand): df = pd.read_csv(file,sep="\t", lineterminator='\n') a = df.sample(1).reset_index() return { "text": a["text"][0], "question": a["question"][0], "answer": a["answer\r"][0] } @st.cache(suppress_st_warning=True) def get_qa_pair_high(file, rand): df = pd.read_csv(file,sep="\t", lineterminator='\n') a = df.sample(1).reset_index() return { "text": a["text"][0], "question": a["question"][0], "answer": a["answer\r"][0] } @st.cache(suppress_st_warning=True) def getmcq(rand): df =
pd.read_csv("mcq.tsv",sep="\t", lineterminator='\n')
pandas.read_csv
import click import pandas as pd from Bio.SeqIO import parse, write from random import randint, choice TENMIL = 10 * 1000 * 1000 REGION_SIZES = [1000, 2 * 1000, 4 * 1000, 8 * 1000, 16 * 1000, 32 * 1000] def insert_repetitive_regions(seq_rec, window_size=TENMIL, region_sizes=REGION_SIZES): """Insert repetitive regions into seq_rec in place. Return their coordinates.""" nwindows, regions = len(seq_rec.seq) // window_size, {} if not nwindows: return for i in range(nwindows): window_start, window_end = window_size * i, window_size * (i + 1) region_start = randint(window_start + window_size / 4, window_end - window_size / 4) before_region, after_region = seq_rec.seq[:region_start], seq_rec.seq[region_start:] region_size = choice(region_sizes) seq_rec.seq = before_region + 'A' * region_size + after_region regions[(seq_rec.id, i)] = { 'region_start': region_start, 'region_size': region_size, 'motif': 'A', } return
pd.DataFrame.from_dict(regions, orient='index')
pandas.DataFrame.from_dict
import sys import numpy as np import pandas as pd import sqlalchemy from sqlalchemy import create_engine # import sqlite3 def load_data(messages_filepath, categories_filepath): ''' Function to load data and merge them into one file Args: messages_filepath: Filepath to load the messages.csv categories_filepath: Filepath to load the categories.csv Output: df: combined dataFrame ''' messages =
pd.read_csv(messages_filepath)
pandas.read_csv
import datetime from datetime import datetime from functools import reduce from pkg_resources import normalize_path import streamlit as st import pandas as pd import altair as alt import plotly.express as px import plotly.graph_objects as go import pydeck as pdk import os import matplotlib.pyplot as plt import numpy as np #Poblaciones en 2021 (actualizado el 25-Abril-2021) habitantes = { 'Andorra': 0.077, 'Argentina': 45.20, 'Australia': 25.50, 'Austria': 9.06, 'Bangladesh': 164.69, 'Belgium': 11.59, 'Brazil': 212.56, 'Canada': 37.74, 'China': 1439.33, 'Colombia': 50.88, 'Denmark': 5.79, 'Egypt': 102.33, 'Ethiopia': 114.96, 'France': 65.27, 'Germany': 83.78, 'Greece': 10.42, 'India': 1380.00, 'Indonesia': 273.52, 'Italy': 60.46, 'Japan': 126.47, 'Netherlands': 17.13, 'Norway': 5.41, 'Poland': 37.84, 'Romania': 19.23, 'Russia': 145.93, 'Spain': 46.75, 'Sweden': 10.09, 'Switzerland': 8.65, 'United Kingdom': 67.89} @st.cache(ttl=60*60*1) def read_data(): BASEURL = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series" url_confirmed = f"{BASEURL}/time_series_covid19_confirmed_global.csv" url_deaths = f"{BASEURL}/time_series_covid19_deaths_global.csv" url_recovered = f"{BASEURL}/time_series_covid19_recovered_global.csv" confirmed = pd.read_csv(url_confirmed, index_col=0) deaths =
pd.read_csv(url_deaths, index_col=0)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # # Дружественные числа. Исследование # ### #Занимательная Математика # # #### Весь код на Github, ссылка в конце статьи! # Импорт библиотек # In[1]: from IPython.display import Image from IPython.core.display import HTML from IPython.core.interactiveshell import InteractiveShell from scipy.ndimage.filters import gaussian_filter1d from scipy.signal import savgol_filter import numpy as np import sympy as sp import pandas as pd import random as r import time import matplotlib.pyplot as plt import ipyturtle as turtle InteractiveShell.ast_node_interactivity = "all" def drawPlot(ss,title="Скорости",y="Секунд",x="Номер итерации"): fig,ax=plt.subplots(figsize=(6,6)) ax.set_facecolor("#F2F2F2") ax.grid() ax.set_title(title) ax.set_ylabel(y) ax.set_xlabel(x) ax.plot(ss) # In[45]: Image(url="https://sun9-46.userapi.com/c858036/v858036072/1e3bba/s6JwXFoOgLM.jpg", width=400) # Хммм. Что же такое дружественные числа? # # Посмотрим на примере: # Есть число 220. И есть число 284. Так вот. Они - друзья. # # Почему? Как определить дружественные числа? # Дружественные числа - это такая пара, у которой сумма собственных делителей каждого числа равна другому числу. # # Посмотрим на практике. Создадим функцию поиска делителей, а потом просуммируем. # In[3]: def Divisors(num): from math import sqrt as mmsq s=set([1]) i=1 a=int(mmsq(num)+1) while i<=a: if(num//i==num): i+=1 continue if (num%i==0): if (num//i!=i): s.add(num//i) s.add(i) i+=1 return s # In[4]: Divisors(220)," #Делители числа 220" Divisors(284)," #Делители числа 284" # 1+2+4 = 6 Верно? Продолжим прибавлять.. # 1+2+4+5+10+11+20+22+44+55+110 # # Ну, или зачем вручную. Для подсчёта суммы любого множества(списка) есть готовая функция **sum()** # In[5]: sum(Divisors(220)) sum(Divisors(284)) # И что мы наблюдаем? Сумма собственных делителей у 220 равна 284, а у числа 284 сумма - 220 # Поэтому эти числа и являются парой друзей :) # In[6]: Image(url="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f9a3fcecf20f39301b0f651492c3fbe712262d") # In[7]: Image(url="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c5a454d5e4adb6fb2e7e3e467e0804e28d01824") # А ещё кстати говоря, эта пара является первой из всего списка дружественных чисел! # Кстати интересный факт, но хоть нам и известно уже огромное количество таких пар, мы не знаем есть ли такая пара, у которой числа были разной чётности. Вот например 220 и 284 чётные...Есть числа, где первое и второе нечётные, но чтобы один чётный, другой нечётный, такого мы не знаем ещё. # А вот возникает наверное вопрос. Как находить эти пары? # Конкретной формулы пока ещё нет для этих чисел, поэтому я создал итерационную фунцию. # # Для этого я создал функцию **AmicableNumber()**, которая на вход принимает какое-либо число. В самой функции алгоритм находит друга, если он есть на ближайшей дистанции по числовой оси. # In[8]: def AmicableNumber(k,returni=False): allDels = dict() from itertools import chain concatenated = chain( range(k, int(k*1.6)+1 ),range(k, int(k/1.6)+1 ,-1) ) for i in concatenated: if(str(i) not in allDels): allDels[str(i)] = Divisors(i) if(i != k and sum(allDels[str(i)]) == k and sum(allDels[str(k)]) == i): if(returni): return (k,i) else: print(k,"->",i) # In[9]: AmicableNumber(1) #Например тут ответа нет AmicableNumber(219) #Например тут ответа нет AmicableNumber(220) #А тут уже есть # Если не понятно, что я имел в виду под "дистанциями", то объясню. Для начала нам нужно найти хотя-бы 5 пар дружественных чисел. # In[10]: AmicableNumbers=[] i=0 while len(AmicableNumbers)!=10: i+=1 amn=AmicableNumber(i,True) if(amn is not None): AmicableNumbers.append(amn) AmicableNumbers=[{tuple(sorted(amn)) for amn in AmicableNumbers}] print(AmicableNumbers) # Решил найти только первые 5 пар, потому что таким алгоритмом всё это вычисляется примерно 10 минут. # А как он работает? # # Мы просто перебираем относительно заданного числа x в интервале x/1.6 -> 1.6x # Это значительно ускоряет программу, но всё ещё недостаточно. # Вопрос, почему именно такие цифры? # # Показываю. Возьмём первые 10 пар дружественных чисел, а потом составим вектор из отношений чисел в парах. # # In[11]: df=
pd.DataFrame([(220,284),(1184,1210),(2620,2924),(5020,5564),(6232,6368),(10744,10856),(12285,14595),(17296,18416),(63020,76084),(66928,66992)])
pandas.DataFrame
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 import logging, os import h5py import glob import numpy as np import io3d.datareader as DR import io3d.datawriter as DW import argparse import pandas as pd import imtools.misc as misc logger = logging.getLogger(__name__) def sliver_preparation(datadirpath, output_datadirpath="output_data", res=100, ax=0, organ='liver'): csvpath = output_datadirpath + '/sliver_label_'+str(res)+'_'+str(ax)+'_'+organ+'.csv' stat = output_datadirpath + '/sliver_stat'+str(res)+'_'+str(ax)+'_'+organ+'.csv' # datadirpath = '/home/trineon/projects/metalisa/data/SLIVER' f = h5py.File(output_datadirpath + '/sliver_' + str(res) + '_' + str(ax) + '_' + organ +'.hdf5', 'a') num = 1 for image in glob.glob(datadirpath + '/*orig*.mhd'): group = f.create_group(image.split('/')[-1]) orig, _ = DR.read(image) if ax != 0: orig = np.rollaxis(orig, ax) i = orig.shape[0] orig = misc.resize_to_shape(orig, [i, res, res]) DW.write(orig, output_datadirpath + '/sliver_' +str(num)+ '_' + str(res)+'_' + str(ax)+ '.pklz', metadata={"voxelsize_mm": [1, 1, 1]}) filename = output_datadirpath + '/sliver' +str(num) +'_' + str(res)+ '_' + str(ax)+ '.pklz' num += 1 seg = image.replace('orig','seg') lab, _ = DR.read(seg) if ax != 0: lab = np.rollaxis(lab, ax) l = list() a = 1 for slice in lab: if len(np.unique(slice)) > 1: l.append(2) a = 2 else: if a == 2: l.append(3) else: l.append(1) del lab for ind, slice in enumerate(orig): name = str(ind) dset = group.create_dataset(name, data=slice) dset.attrs['teacher'] = l[ind] dset.attrs['origin file'] = filename if l[-1] == 2: x = len(l) else: x = l.index(3) if l[0] == 2: y = 0 else: y = l.index(2) dt = {'filename': [filename, filename, filename], 'label': ['under ' + organ, organ, 'above ' + organ], 'start_slice_number': [0, y, x], 'stop_slice_number': [y - 1, x - 1, len(l)-1], 'axis': ax} if dt['stop_slice_number'][0] == -1: dt['stop_slice_number'][0] = 0 if os.path.exists(csvpath): new_df = pd.read_csv(csvpath) df = pd.DataFrame.from_dict(dt) new_df = pd.concat([new_df, df], ignore_index=True) else: df0 = pd.DataFrame.from_dict(dt) new_df = df0 new_df.to_csv(csvpath, index=False) a = y b = x-y c = len(l)-x dt = {'filename': [filename], 'under liver': [a] , 'liver': [b], 'above liver': [c], 'slices':[len(l)]} if os.path.exists(stat): new_df = pd.read_csv(stat) df = pd.DataFrame.from_dict(dt) new_df = pd.concat([new_df, df], ignore_index=True) else: df0 = pd.DataFrame.from_dict(dt) new_df = df0 new_df.to_csv(stat, index=False) pass def ircad_group(datadirpath, organ='liver'): # datadirpath = '/home/trineon/projects/metalisa/data/IRCAD' for folder in glob.glob(datadirpath + '/labels/*/'+organ+'/'): name = folder.split('/')[-3] if (folder + 'IRCAD_' + str(name) + '_' + organ +'.pklz') in glob.glob(folder+'*'): continue else: # concatenate CT slicis to one 3D ndarray [number_of slices, res(1), res(2)] scan = [None]* len(glob.glob(folder + '*')) for image in glob.glob(folder + '*'): label, _ = DR.read(image) scan[int(image.split('/')[-1].split('_')[-1])] = label scan = np.array(scan).astype(np.int32) scan = scan.squeeze() DW.write(scan, folder + 'IRCAD_' + str(name) + '_' + organ + '.pklz', metadata={"voxelsize_mm": [1, 1, 1]}) pass def ircad_preparation(datadirpath, output_datadirpath="output_data", organ="liver",res=100, ax=0): #test stat = output_datadirpath+'/stat_ircad'+str(res)+'_'+str(ax)+'_'+organ+'.csv' csvpath = output_datadirpath+'/label_ircad_'+str(res)+'_'+str(ax)+'_'+organ+'.csv' # datadirpath = '/home/trineon/projects/metalisa/data/IRCAD' seznam = [None] * 20 for folder in glob.glob(datadirpath+'/Pacient/*/'): count = len(glob.glob(folder+'*')) l = [None] * count for image in glob.glob(folder+'*'): number = int(image.split('/')[-1].split('_')[-1])-1 l[number], _ = DR.read(image) if ax != 0: l[number] = np.rollaxis(l[number], ax) for ind, i in enumerate(l): l[ind] = misc.resize_to_shape(i, [1, res, res]) scan = np.array(l) if ax != 0: np.rollaxis(scan, ax) name = folder.split('/')[-2] scan = scan.squeeze() DW.write(scan, output_datadirpath + '/IRCAD_' +str(name) +'_' + str(res)+'_' + str(ax)+'.pklz', metadata={"voxelsize_mm": [1, 1, 1]}) seznam[int(name)-1] = output_datadirpath + '/IRCAD_'+str(name) +'_' + str(res)+'_' + str(ax)+'.pklz' ll = [None] * 20 for folder in glob.glob(datadirpath + '/labels/*/'+organ+'/'): count = len(glob.glob(folder+'*')) sez = list() for image in glob.glob(folder+'IRCAD*.pklz'): label, _ = DR.read(image) if ax != 0: label = np.rollaxis(label, ax) l = list() a = 1 for slice in label: if len(np.unique(slice)) > 1: l.append(2) a = 2 else: if a == 2: l.append(3) else: l.append(1) ll[int(folder.split('/')[-3])-1] = l file = seznam[int(folder.split('/')[-3])-1] if l[-1] == 2: x = len(l) else: x = l.index(3) if l[0] == 2: y = 0 else: y = l.index(2) dt = {'filename': [file, file, file], 'label': ['under ' + organ, organ, 'above ' + organ], 'start_slice_number': [0, y, x], 'stop_slice_number': [y - 1, x - 1, len(l) - 1], 'axis': ax} if dt['stop_slice_number'][0] == -1: dt['stop_slice_number'][0] = 0 if os.path.exists(csvpath): new_df = pd.read_csv(csvpath) df = pd.DataFrame.from_dict(dt) new_df = pd.concat([new_df, df], ignore_index=True) else: df0 = pd.DataFrame.from_dict(dt) new_df = df0 new_df.to_csv(csvpath, index=False) a = y b = x - y c = len(l) - x dt = {'filename': [file], 'under liver': [a], 'liver': [b], 'above liver': [c], 'slices': [len(l)]} if os.path.exists(stat): new_df = pd.read_csv(stat) df =
pd.DataFrame.from_dict(dt)
pandas.DataFrame.from_dict
import itertools import numpy as np import pytest from pandas import ( DataFrame, Series, notna, ) # create the data only once as we are not setting it def _create_consistency_data(): def create_series(): return [ Series(dtype=np.float64, name="a"), Series([np.nan] * 5), Series([1.0] * 5), Series(range(5, 0, -1)), Series(range(5)), Series([np.nan, 1.0, np.nan, 1.0, 1.0]), Series([np.nan, 1.0, np.nan, 2.0, 3.0]), Series([np.nan, 1.0, np.nan, 3.0, 2.0]), ] def create_dataframes(): return [ DataFrame(columns=["a", "a"]), DataFrame(np.arange(15).reshape((5, 3)), columns=["a", "a", 99]), ] + [DataFrame(s) for s in create_series()] def is_constant(x): values = x.values.ravel("K") return len(set(values[
notna(values)
pandas.notna
from flask import Flask, render_template, request, redirect, url_for, session import pandas as pd import pymysql import os import io #from werkzeug.utils import secure_filename from pulp import * import numpy as np import pymysql import pymysql.cursors from pandas.io import sql #from sqlalchemy import create_engine import pandas as pd import numpy as np #import io import statsmodels.formula.api as smf import statsmodels.api as sm import scipy.optimize as optimize import matplotlib.mlab as mlab import matplotlib.pyplot as plt #from flask import Flask, render_template, request, redirect, url_for, session, g from sklearn.linear_model import LogisticRegression from math import sin, cos, sqrt, atan2, radians from statsmodels.tsa.arima_model import ARIMA #from sqlalchemy import create_engine from collections import defaultdict from sklearn import linear_model import statsmodels.api as sm import scipy.stats as st import pandas as pd import numpy as np from pulp import * import pymysql import math app = Flask(__name__) app.secret_key = os.urandom(24) localaddress="D:\\home\\site\\wwwroot" localpath=localaddress os.chdir(localaddress) @app.route('/') def index(): return redirect(url_for('home')) @app.route('/home') def home(): return render_template('home.html') @app.route('/demandplanning') def demandplanning(): return render_template("Demand_Planning.html") @app.route("/elasticopt",methods = ['GET','POST']) def elasticopt(): if request.method== 'POST': start_date =request.form['from'] end_date=request.form['to'] prdct_name=request.form['typedf'] # connection = pymysql.connect(host='localhost', # user='user', # password='', # db='test', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) # # x=connection.cursor() # x.execute("select * from `transcdata`") # connection.commit() # datass=pd.DataFrame(x.fetchall()) datass = pd.read_csv("C:\\Users\\1026819\\Downloads\\optimizdata.csv") # datas = datass[(datass['Week']>=start_date) & (datass['Week']<=end_date )] datas=datass df = datas[datas['Product'] == prdct_name] df=datass changeData=pd.concat([df['Product_Price'],df['Product_Qty']],axis=1) changep=[] changed=[] for i in range(0,len(changeData)-1): changep.append(changeData['Product_Price'].iloc[i]-changeData['Product_Price'].iloc[i+1]) changed.append(changeData['Product_Qty'].iloc[1]-changeData['Product_Qty'].iloc[i+1]) cpd=pd.concat([pd.DataFrame(changep),pd.DataFrame(changed)],axis=1) cpd.columns=['Product_Price','Product_Qty'] sortedpricedata=df.sort_values(['Product_Price'], ascending=[True]) spq=pd.concat([sortedpricedata['Product_Price'],sortedpricedata['Product_Qty']],axis=1).reset_index(drop=True) pint=[] dint=[] x = spq['Product_Price'] num_bins = 5 # n, pint, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5) y = spq['Product_Qty'] num_bins = 5 # n, dint, patches = plt.hist(y, num_bins, facecolor='blue', alpha=0.5) arr= np.zeros(shape=(len(pint),len(dint))) count=0 for i in range(0, len(pint)): lbp=pint[i] if i==len(pint)-1: ubp=pint[i]+1 else: ubp=pint[i+1] for j in range(0, len(dint)): lbd=dint[j] if j==len(dint)-1: ubd=dint[j]+1 else: ubd=dint[j+1] print(lbd,ubd) for k in range(0, len(spq)): if (spq['Product_Price'].iloc[k]>=lbp\ and spq['Product_Price'].iloc[k]<ubp): if(spq['Product_Qty'].iloc[k]>=lbd\ and spq['Product_Qty'].iloc[k]<ubd): count+=1 arr[i][j]+=1 price_range=np.zeros(shape=(len(pint),2)) for j in range(0,len(pint)): lbp=pint[j] price_range[j][0]=lbp if j==len(pint)-1: ubp=pint[j]+1 price_range[j][1]=ubp else: ubp=pint[j+1] price_range[j][1]=ubp demand_range=np.zeros(shape=(len(dint),2)) for j in range(0,len(dint)): lbd=dint[j] demand_range[j][0]=lbd if j==len(dint)-1: ubd=dint[j]+1 demand_range[j][1]=ubd else: ubd=dint[j+1] demand_range[j][1]=ubd pr=pd.DataFrame(price_range) pr.columns=['Price','Demand'] dr=pd.DataFrame(demand_range) dr.columns=['Price','Demand'] priceranges=pr.Price.astype(str).str.cat(pr.Demand.astype(str), sep='-') demandranges=dr.Price.astype(str).str.cat(dr.Demand.astype(str), sep='-') price=pd.DataFrame(arr) price.columns=demandranges price.index=priceranges pp=price.reset_index() global data data=pd.concat([df['Week'],df['Product_Qty'],df['Product_Price'],df['Comp_Prod_Price'],df['Promo1'],df['Promo2'],df['overallsale']],axis=1) return render_template('dataview.html',cpd=cpd.values,pp=pp.to_html(index=False),data=data.to_html(index=False),graphdata=data.values,ss=1) return render_template('dataview.html') @app.route('/priceelasticity',methods = ['GET','POST']) def priceelasticity(): return render_template('Optimisation_heatmap_revenue.html') @app.route("/elasticity",methods = ['GET','POST']) def elasticity(): if request.method== 'POST': Price=0 Average_Price=0 Promotions=0 Promotionss=0 if request.form.get('Price'): Price=1 if request.form.get('Average_Price'): Average_Price=1 if request.form.get('Promotion_1'): Promotions=1 if request.form.get('Promotion_2'): Promotionss=1 Modeldata=pd.DataFrame() Modeldata['Product_Qty']=data.Product_Qty lst=[] for row in data.index: lst.append(row+1) Modeldata['Week']=np.log(lst) if Price == 1: Modeldata['Product_Price']=data['Product_Price'] if Price == 0: Modeldata['Product_Price']=0 if Average_Price==1: Modeldata['Comp_Prod_Price']=data['Comp_Prod_Price'] if Average_Price==0: Modeldata['Comp_Prod_Price']=0 if Promotions==1: Modeldata['Promo1']=data['Promo1'] if Promotions==0: Modeldata['Promo1']=0 if Promotionss==1: Modeldata['Promo2']=data['Promo2'] if Promotionss==0: Modeldata['Promo2']=0 diffpriceprodvscomp= (Modeldata['Product_Price']-Modeldata['Comp_Prod_Price']) promo1=Modeldata.Promo1 promo2=Modeldata.Promo2 week=Modeldata.Week quantityproduct=Modeldata.Product_Qty df=pd.concat([quantityproduct,diffpriceprodvscomp,promo1,promo2,week],axis=1) df.columns=['quantityproduct','diffpriceprodvscomp','promo1','promo2','week'] Model = smf.ols(formula='df.quantityproduct ~ df.diffpriceprodvscomp + df.promo1 + df.promo2 + df.week', data=df) res = Model.fit() global intercept,diffpriceprodvscomp_param,promo1_param,promo2_param,week_param intercept=res.params[0] diffpriceprodvscomp_param=res.params[1] promo1_param=res.params[2] promo2_param=res.params[3] week_param=res.params[4] Product_Price_min=0 maxvalue_of_price=int(Modeldata['Product_Price'].max()) Product_Price_max=int(Modeldata['Product_Price'].max()) if maxvalue_of_price==0: Product_Price_max=1 maxfunction=[] pricev=[] weeks=[] dd=[] ddl=[] for vatr in range(0,len(Modeldata)): weeks.append(lst[vatr]) for Product_Price in range(Product_Price_min,Product_Price_max+1): function=0 function=(intercept+(Modeldata['Promo1'].iloc[vatr]*promo1_param)+(Modeldata['Promo2'].iloc[vatr]*promo2_param) + (diffpriceprodvscomp_param*(Product_Price-Modeldata['Comp_Prod_Price'].iloc[vatr]))+(Modeldata['Week'].iloc[vatr]*lst[vatr])) maxfunction.append(function) dd.append(Product_Price) ddl.append(vatr) for Product_Price in range(Product_Price_min,Product_Price_max+1): pricev.append(Product_Price) df1=pd.DataFrame(maxfunction) df2=pd.DataFrame(dd) df3=pd.DataFrame(ddl) dfo=pd.concat([df3,df2,df1],axis=1) dfo.columns=['weeks','prices','Demandfunctions'] demand=[] for rows in dfo.values: w=int(rows[0]) p=int(rows[1]) d=int(rows[2]) demand.append([w,p,d]) Co_eff=pd.DataFrame(res.params.values)#intercept standard_error=pd.DataFrame(res.bse.values)#standard error p_values=pd.DataFrame(res.pvalues.values) conf_lower =pd.DataFrame(res.conf_int()[0].values) conf_higher =pd.DataFrame(res.conf_int()[1].values) R_square=res.rsquared atr=['Intercept','DeltaPrice','Promo1','Promo2','Week'] atribute=pd.DataFrame(atr) SummaryTable=pd.concat([atribute,Co_eff,standard_error,p_values,conf_lower,conf_higher],axis=1) SummaryTable.columns=['Atributes','Co_eff','Standard_error','P_values','conf_lower','conf_higher'] reshapedf=df1.values.reshape(len(Modeldata),(-Product_Price_min+(Product_Price_max+1))) dataofmas=pd.DataFrame(reshapedf) maxv=dataofmas.apply( max, axis=1 ) minv=dataofmas.apply(min,axis=1) avgv=dataofmas.sum(axis=1)/(-Product_Price_min+(Product_Price_max+1)) wks=pd.DataFrame(weeks) ddofs=pd.concat([wks,minv,avgv,maxv],axis=1) dataofmas=pd.DataFrame(reshapedf) kk=pd.DataFrame() sums=0 for i in range(0,len(dataofmas.columns)): sums=sums+i vv=i*dataofmas[[i]] kk=pd.concat([kk,vv],axis=1) dfr=pd.DataFrame(kk) mrevenue=dfr.apply( max, axis=1 ) prices=dfr.idxmax(axis=1) wks=pd.DataFrame(weeks) revenuedf=pd.concat([wks,mrevenue,prices],axis=1) return render_template('Optimisation_heatmap_revenue.html',revenuedf=revenuedf.values,ddofs=ddofs.values,SummaryTable=SummaryTable.to_html(index=False),ss=1,weeks=weeks,demand=demand,pricev=pricev,R_square=R_square) @app.route('/inputtomaxm',methods=["GET","POST"]) def inputtomaxm(): return render_template("Optimize.html") @app.route("/maxm",methods=["GET","POST"]) def maxm(): if request.method=="POST": week=request.form['TimePeriod'] price_low=request.form['Price_Lower'] price_max=request.form['Price_Upper'] promofirst=request.form['Promotion_1'] promosecond=request.form['Promotion_2'] # week=24 # price_low=6 # price_max=20 # promofirst=1 # promosecond=0 # # time_period=24 # # global a # a=243.226225 # global b # b=-9.699634 # global d # d=1.671505 # global pr1 # pr1=21.866260 # global pr2 # pr2=-0.511606 # global cm # cm=-14.559594 # global s_0 # s_0= 2000 # promo1=1 # promo2=0 time_period=int(week) global a a=intercept global b b=diffpriceprodvscomp_param global d d=week_param global pr1 pr1=promo1_param global pr2 pr2=promo2_param global s_0 s_0= 2000 promo1=int(promofirst) promo2=int(promosecond) global comp comp=np.random.randint(7,15,time_period) def demand(p, a=a, b=b, d=d, promo1=promo1,promo2_param=promo2,comp=comp, t=np.linspace(1,time_period,time_period)): """ Return demand given an array of prices p for times t (see equation 5 above)""" return a+(b*(p-comp))+(d*t)+(promo1*pr1)+(promo2*pr2) def objective(p_t, a, b, d,promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): return -1.0 * np.sum( p_t * demand(p_t, a, b, d,promo1,promo2, comp, t) ) def constraint_1(p_t, s_0, a, b, d, promo1,promo2, comp, t=np.linspace(1,time_period,time_period)): """ Inventory constraint. s_0 - np.sum(x_t) >= 0. This is an inequality constraint. See more below. """ return s_0 - np.sum(demand(p_t, a, b, d,promo1,promo2, comp, t)) def constraint_2(p_t): #""" Positive demand. Another inequality constraint x_t >= 0 """ return p_t t = np.linspace(1,time_period,time_period) # Starting values : b_min=int(price_low) p_start = b_min * np.ones(len(t)) # bounds on the values : bmax=int(price_max) bounds = tuple((0,bmax) for x in p_start) import scipy.optimize as optimize # Constraints : constraints = ({'type': 'ineq', 'fun': lambda x, s_0=s_0: constraint_1(x,s_0, a, b, d,promo1,promo2, comp, t=t)}, {'type': 'ineq', 'fun': lambda x: constraint_2(x)} ) opt_results = optimize.minimize(objective, p_start, args=(a, b, d,promo1,promo2, comp, t), method='SLSQP', bounds=bounds, constraints=constraints) np.sum(opt_results['x']) opt_price=opt_results['x'] opt_demand=demand(opt_results['x'], a, b, d, promo1,promo2_param, comp, t=t) weeks=[] for row in range(1,len(opt_price)+1): weeks.append(row) d=pd.DataFrame(weeks).astype(int) dd=pd.DataFrame(opt_price) optimumumprice_perweek=pd.concat([d,dd,pd.DataFrame(opt_demand).astype(int)],axis=1) optimumumprice_perweek.columns=['Week','Price','Demand'] dataval=optimumumprice_perweek diff=[] diffs=[] for i in range(0,len(opt_demand)-1): valss=opt_demand[i]-opt_demand[i+1] diff.append(valss) diffs.append(i+1) differenceofdemand_df=pd.concat([pd.DataFrame(diffs),pd.DataFrame(diff)],axis=1) MP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmin()],1) minimumprice=pd.DataFrame(MP).T MaxP=round(optimumumprice_perweek.loc[optimumumprice_perweek['Price'].idxmax()],1) maximumprice=pd.DataFrame(MaxP).T averageprice=round((optimumumprice_perweek['Price'].sum()/len(optimumumprice_perweek)),2) MD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmin()],0) minimumDemand=pd.DataFrame(MD).T MaxD=round(optimumumprice_perweek.loc[optimumumprice_perweek['Demand'].idxmax()],0) maximumDemand=pd.DataFrame(MaxD).T averageDemand=round((optimumumprice_perweek['Demand'].sum()/len(optimumumprice_perweek)),0) totaldemand=round(optimumumprice_perweek['Demand'].sum(),0) return render_template("Optimize.html",totaldemand=totaldemand,averageDemand=averageDemand,maximumDemand=maximumDemand.values,minimumDemand=minimumDemand.values,averageprice=averageprice,maximumprice=maximumprice.values,minimumprice=minimumprice.values,dataval=dataval.values,differenceofdemand_df=differenceofdemand_df.values,optimumumprice_perweek=optimumumprice_perweek.to_html(index=False),ll=1) @app.route("/Inventorymanagment",methods=["GET","POST"]) def Inventorymanagment(): return render_template("Inventory_Management.html") @app.route("/DISTRIBUTION_NETWORK_OPT",methods=["GET","POST"]) def DISTRIBUTION_NETWORK_OPT(): return render_template("DISTRIBUTION_NETWORK_OPTIMIZATION.html") @app.route("/Procurement_Plan",methods=["GET","POST"]) def Procurement_Plan(): return render_template("Procurement_Planning.html") #<NAME> @app.route("/fleetallocation") def fleetallocation(): return render_template('fleetallocation.html') @app.route("/reset") def reset(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM `input`") cur.execute("DELETE FROM `output`") cur.execute("DELETE FROM `Scenario`") conn.commit() conn.close() open(localaddress+'\\static\\demodata.txt', 'w').close() return render_template('fleetallocation.html') @app.route("/dalink",methods = ['GET','POST']) def dalink(): sql = "INSERT INTO `input` (`Route`,`SLoc`,`Ship-to Abb`,`Primary Equipment`,`Batch`,`Prod Dt`,`SW`,`Met Held`,`Heat No`,`Delivery Qty`,`Width`,`Length`,`Test Cut`,`Customer Priority`) VALUES( %s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() if request.method == 'POST': typ = request.form.get('type') frm = request.form.get('from') to = request.form.get('to') if typ and frm and to: conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("SELECT * FROM `inventory_data` WHERE `Primary Equipment` = '" + typ + "' AND `Prod Dt` BETWEEN '" + frm + "' AND '" + to + "'") res = cur.fetchall() if len(res)==0: conn.close() return render_template('fleetallocation.html',alert='No data available') sfile = pd.DataFrame(res) df1 = pd.DataFrame(sfile) df1['Prod Dt'] =df1['Prod Dt'].astype(object) for index, i in df1.iterrows(): data = (i['Route'],i['SLoc'],i['Ship-to Abb'],i['Primary Equipment'],i['Batch'],i['Prod Dt'],i['SW'],i['Met Held'],i['Heat No'],i['Delivery Qty'],i['Width'],i['Length'],i['Test Cut'],i['Customer Priority']) curr.execute(sql,data) conn.commit() conn.close() return render_template('fleetallocation.html',typ=" Equipment type: "+typ,frm="From: "+frm,to=" To:"+to,data = sfile.to_html(index=False)) else: return render_template('fleetallocation.html',alert ='All input fields are required') return render_template('fleetallocation.html') @app.route('/optimise', methods=['GET', 'POST']) def optimise(): open(localaddress+'\\static\\demodata.txt', 'w').close() conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() cur.execute("DELETE FROM `output`") conn.commit() os.system('python optimising.py') sa=1 cur.execute("SELECT * FROM `output`") result = cur.fetchall() if len(result)==0: say=0 else: say=1 curr.execute("SELECT * FROM `input`") sfile = curr.fetchall() if len(sfile)==0: conn.close() return render_template('fleetallocation.html',say=say,sa=sa,alert='No data available') sfile = pd.DataFrame(sfile) conn.close() with open(localaddress+"\\static\\demodata.txt", "r") as f: content = f.read() return render_template('fleetallocation.html',say=say,sa=sa,data = sfile.to_html(index=False),content=content) @app.route("/scenario") def scenario(): return render_template('scenario.html') @app.route("/scenario_insert", methods=['GET','POST']) def scenario_insert(): if request.method == 'POST': scenario = request.form.getlist("scenario[]") customer_priority = request.form.getlist("customer_priority[]") oldest_sw = request.form.getlist("oldest_sw[]") production_date = request.form.getlist("production_date[]") met_held_group = request.form.getlist("met_held_group[]") test_cut_group = request.form.getlist("test_cut_group[]") sub_grouping_rules = request.form.getlist("sub_grouping_rules[]") load_lower_bounds = request.form.getlist("load_lower_bounds[]") load_upper_bounds = request.form.getlist("load_upper_bounds[]") width_bounds = request.form.getlist("width_bounds[]") length_bounds = request.form.getlist("length_bounds[]") description = request.form.getlist("description[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() curr = conn.cursor() lngth = len(scenario) curr.execute("DELETE FROM `scenario`") if scenario and customer_priority and oldest_sw and production_date and met_held_group and test_cut_group and sub_grouping_rules and load_lower_bounds and load_upper_bounds and width_bounds and length_bounds and description: say=0 for i in range(lngth): scenario_clean = scenario[i] customer_priority_clean = customer_priority[i] oldest_sw_clean = oldest_sw[i] production_date_clean = production_date[i] met_held_group_clean = met_held_group[i] test_cut_group_clean = test_cut_group[i] sub_grouping_rules_clean = sub_grouping_rules[i] load_lower_bounds_clean = load_lower_bounds[i] load_upper_bounds_clean = load_upper_bounds[i] width_bounds_clean = width_bounds[i] length_bounds_clean = length_bounds[i] description_clean = description[i] if scenario_clean and customer_priority_clean and oldest_sw_clean and production_date_clean and met_held_group_clean and test_cut_group_clean and sub_grouping_rules_clean and load_lower_bounds_clean and load_upper_bounds_clean and width_bounds_clean and length_bounds_clean: cur.execute("INSERT INTO `scenario`(scenario, customer_priority, oldest_sw, production_date, met_held_group, test_cut_group, sub_grouping_rules, load_lower_bounds, load_upper_bounds, width_bounds, length_bounds, description) VALUES('"+scenario_clean+"' ,'"+customer_priority_clean+"','"+oldest_sw_clean+"','"+production_date_clean+"','"+met_held_group_clean+"','"+test_cut_group_clean+"', '"+sub_grouping_rules_clean+"','"+load_lower_bounds_clean+"', '"+load_upper_bounds_clean+"','"+width_bounds_clean+"','"+length_bounds_clean+"','"+description_clean+"')") else: say = 1 conn.commit() if(say==0): alert='All Scenarios inserted' else: alert='Some scenarios were not inserted' return (alert) conn.close() return ('All fields are required!') return ('Failed!!!') @app.route("/fetch", methods=['GET','POST']) def fetch(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM scenario") result = cur.fetchall() if len(result)==0: conn.close() return render_template('scenario.html',alert1='No scenarios Available') result1 = pd.DataFrame(result) result1 = result1.drop('Sub-grouping rules', axis=1) conn.close() return render_template('scenario.html',sdata = result1.to_html(index=False)) return ("Error") @app.route("/delete", methods=['GET','POST']) def delete(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("DELETE FROM scenario") conn.commit() conn.close() return render_template('scenario.html',alert1="All the scenerios were dropped!") return ("Error") @app.route('/papadashboard', methods=['GET', 'POST']) def papadashboard(): sql1 = "SELECT `Scenario`, MAX(`Wagon-No`) AS 'Wagon Used', COUNT(`Batch`) AS 'Products Allocated', SUM(`Delivery Qty`) AS 'Total Product Allocated', SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', SUM(`Width`)/(MAX(`Wagon-No`)) AS 'Average Width Used' FROM `output` WHERE `Wagon-No`>0 GROUP BY `Scenario`" conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curs = conn.cursor() curs.execute("SELECT `scenario` FROM `scenario`") sdata = curs.fetchall() if len(sdata)==0: conn.close() return render_template('warning.html',alert='No data available') cur1 = conn.cursor() cur1.execute(sql1) data1 = cur1.fetchall() if len(data1)==0: conn.close() return render_template('warning.html',alert='Infeasible to due Insufficient Load') cu = conn.cursor() cu.execute("SELECT `length_bounds`,`width_bounds`,`load_lower_bounds`,`load_upper_bounds` FROM `scenario`") sdaa = cu.fetchall() sdaa = pd.DataFrame(sdaa) asa=list() for index, i in sdaa.iterrows(): hover = "Length Bound:"+str(i['length_bounds'])+", Width Bound:"+str(i['width_bounds'])+", Load Upper Bound:"+str(i['load_upper_bounds'])+", Load Lower Bound:"+str(i['load_lower_bounds']) asa.append(hover) asa=pd.DataFrame(asa) asa.columns=['Details'] data1 = pd.DataFrame(data1) data1['Average Width Used'] = data1['Average Width Used'].astype(int) data1['Total Product Allocated'] = data1['Total Product Allocated'].astype(int) data1['Average Load Carried'] = data1['Average Load Carried'].astype(float) data1['Average Load Carried'] = round(data1['Average Load Carried'],2) data1['Average Load Carried'] = data1['Average Load Carried'].astype(str) fdata = pd.DataFrame(columns=['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used','Details']) fdata[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] = data1[['Scenario','Wagon Used','Products Allocated','Total Product Allocated','Average Load Carried','Average Width Used']] fdata['Details'] = asa['Details'] fdata = fdata.values sql11 = "SELECT `Scenario`, SUM(`Delivery Qty`)/(MAX(`Wagon-No`)) AS 'Average Load Carried', COUNT(`Batch`) AS 'Allocated', SUM(`Delivery Qty`) AS 'Load Allocated' FROM `output`WHERE `Wagon-No`>0 GROUP BY `Scenario`" sql21 = "SELECT COUNT(`Batch`) AS 'Total Allocated' FROM `output` GROUP BY `Scenario`" sql31 = "SELECT `load_upper_bounds` FROM `scenario`" conn1 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur11 = conn1.cursor() cur21 = conn1.cursor() cur31 = conn1.cursor() cur11.execute(sql11) data11 = cur11.fetchall() data11 = pd.DataFrame(data11) cur21.execute(sql21) data21 = cur21.fetchall() data21 = pd.DataFrame(data21) cur31.execute(sql31) data31 = cur31.fetchall() data31 = pd.DataFrame(data31) data11['Average Load Carried']=data11['Average Load Carried'].astype(float) fdata1 = pd.DataFrame(columns=['Scenario','Utilisation Percent','Allocation Percent','Total Load Allocated']) fdata1['Utilisation Percent'] = round(100*(data11['Average Load Carried']/data31['load_upper_bounds']),2) data11['Load Allocated']=data11['Load Allocated'].astype(int) fdata1[['Scenario','Total Load Allocated']]=data11[['Scenario','Load Allocated']] data11['Allocated']=data11['Allocated'].astype(float) data21['Total Allocated']=data21['Total Allocated'].astype(float) fdata1['Allocation Percent'] = round(100*(data11['Allocated']/data21['Total Allocated']),2) fdata1['Allocation Percent'] = fdata1['Allocation Percent'].astype(str) fdat1 = fdata1.values conn1.close() if request.method == 'POST': conn2 = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn2.cursor() ata = request.form['name'] cur.execute("SELECT * FROM `output` WHERE `Scenario` = '"+ata+"' ") ssdata = cur.fetchall() datasss = pd.DataFrame(ssdata) data=datasss.replace("Not Allocated", 0) df=data[['Delivery Qty','Wagon-No','Width','Group-Number']] df['Wagon-No']=df['Wagon-No'].astype(int) a=df['Wagon-No'].max() ##bar1 result_array = np.array([]) for i in range (a): data_i = df[df['Wagon-No'] == i+1] del_sum_i = data_i['Delivery Qty'].sum() per_i=[((del_sum_i)/(205000)*100)] result_array = np.append(result_array, per_i) result_array1 = np.array([]) for j in range (a): data_j = df[df['Wagon-No'] == j+1] del_sum_j = data_j['Width'].sum() per_util_j=[((del_sum_j)/(370)*100)] result_array1 = np.append(result_array1, per_util_j) ##pie1 df112 = df[df['Wagon-No'] == 0] pie1 = df112 ['Width'].sum() df221 = df[df['Wagon-No'] > 0] pie11 = df221['Width'].sum() df1=data[['SW','Group-Number']] dff1 = df1[data['Wagon-No'] == 0] da1 =dff1.groupby(['SW']).count() re11 = np.array([]) res12 = np.append(re11,da1) da1['SW'] = da1.index r1 = np.array([]) r12 = np.append(r1, da1['SW']) df0=data[['Group-Number','Route','SLoc','Ship-to Abb','Wagon-No','Primary Equipment']] df1=df0.replace("Not Allocated", 0) f2 = pd.DataFrame(df1) f2['Wagon-No']=f2['Wagon-No'].astype(int) ####Not-Allocated f2['Group']=data['Group-Number'] df=f2[['Group','Wagon-No']] dee = df[df['Wagon-No'] == 0] deer =dee.groupby(['Group']).count()##Not Allocated deer['Group'] = deer.index ##Total-Data f2['Group1']=data['Group-Number'] dfc=f2[['Group1','Wagon-No']] dfa=pd.DataFrame(dfc) der = dfa[dfa['Wagon-No'] >= 0] dear =der.groupby(['Group1']).count()##Wagons >1 dear['Group1'] = dear.index dear.rename(columns={'Wagon-No': 'Allocated'}, inplace=True) result = pd.concat([deer, dear], axis=1, join_axes=[dear.index]) resu=result[['Group1','Wagon-No','Allocated']] result1=resu.fillna(00) r5 = np.array([]) r6 = np.append(r5, result1['Wagon-No']) r66=r6[0:73]###Not Allocated r7 = np.append(r5, result1['Allocated']) r77=r7[0:73]####total r8 = np.append(r5, result1['Group1']) r88=r8[0:73]###group conn2.close() return render_template('papadashboard.html',say=1,data=fdata,data1=fdat1,ata=ata,bar1=result_array,bar11=result_array1,pie11=pie1,pie111=pie11,x=r12,y=res12,xname=r88, bar7=r77,bar8=r66) conn.close() return render_template('papadashboard.html',data=fdata,data1=fdat1) @app.route('/facilityallocation') def facilityallocation(): return render_template('facilityhome.html') @app.route('/dataimport') def dataimport(): return render_template('facilityimport.html') @app.route('/dataimport1') def dataimport1(): return redirect(url_for('dataimport')) @app.route('/facility_location') def facility_location(): return render_template('facility_location.html') @app.route('/facility') def facility(): return redirect(url_for('facilityallocation')) @app.route("/imprt", methods=['GET','POST']) def imprt(): global customerdata global factorydata global Facyy global Custo customerfile = request.files['CustomerData'].read() factoryfile = request.files['FactoryData'].read() if len(customerfile)==0 or len(factoryfile)==0: return render_template('facilityhome.html',warning='Data Invalid') cdat=pd.read_csv(io.StringIO(customerfile.decode('utf-8'))) customerdata=pd.DataFrame(cdat) fdat=pd.read_csv(io.StringIO(factoryfile.decode('utf-8'))) factorydata=pd.DataFrame(fdat) Custo=customerdata.drop(['Lat','Long'],axis=1) Facyy=factorydata.drop(['Lat','Long'],axis=1) return render_template('facilityimport1.html',loc1=factorydata.values,loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False)) @app.route("/gmap") def gmap(): custdata=customerdata Factorydata=factorydata price=1 #to get distance beetween customer and factory #first get the Dimension #get no of factories Numberoffact=len(Factorydata) #get Number of Customer Numberofcust=len(custdata) #Get The dist/unit cost cost=price #def function for distance calculation # approximate radius of earth in km def dist(lati1,long1,lati2,long2,cost): R = 6373.0 lat1 = radians(lati1) lon1 = radians(long1) lat2 = radians(lati2) lon2 = radians(long2) dlon = lon2 - lon1 dlat = lat2 - lat1 a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2 c = 2 * atan2(sqrt(a), sqrt(1 - a)) distance =round(R * c,2) return distance*cost #Create a list for customer and factory def costtable(custdata,Factorydata): distance=list() for lat1,long1 in zip(custdata.Lat, custdata.Long): for lat2,long2 in zip(Factorydata.Lat, Factorydata.Long): distance.append(dist(lat1,long1,lat2,long2,cost)) distable=np.reshape(distance, (Numberofcust,Numberoffact)).T tab=pd.DataFrame(distable,index=[Factorydata.Factory],columns=[custdata.Customer]) return tab DelCost=costtable(custdata,Factorydata)#return cost table of the customer and factoery #creating Demand Table demand=np.array(custdata.Demand) col1=np.array(custdata.Customer) Demand=pd.DataFrame(demand,col1).T cols=sorted(col1) #Creating capacity table fact=np.array(Factorydata.Capacity) col2=np.array(Factorydata.Factory) Capacity=pd.DataFrame(fact,index=col2).T colo=sorted(col2) #creating Fixed cost table fixed_c=np.array(Factorydata.FixedCost) col3=np.array(Factorydata.Factory) FixedCost= pd.DataFrame(fixed_c,index=col3) # Create the 'prob' variable to contain the problem data model = LpProblem("Min Cost Facility Location problem",LpMinimize) production = pulp.LpVariable.dicts("Production", ((factory, cust) for factory in Capacity for cust in Demand), lowBound=0, cat='Integer') factory_status =pulp.LpVariable.dicts("factory_status", (factory for factory in Capacity), cat='Binary') cap_slack =pulp.LpVariable.dicts("capslack", (cust for cust in Demand), lowBound=0, cat='Integer') model += pulp.lpSum( [DelCost.loc[factory, cust] * production[factory, cust] for factory in Capacity for cust in Demand] + [FixedCost.loc[factory] * factory_status[factory] for factory in Capacity] + 5000000*cap_slack[cust] for cust in Demand) for cust in Demand: model += pulp.lpSum(production[factory, cust] for factory in Capacity)+cap_slack[cust] == Demand[cust] for factory in Capacity: model += pulp.lpSum(production[factory, cust] for cust in Demand) <= Capacity[factory]*factory_status[factory] model.solve() print("Status:", LpStatus[model.status]) for v in model.variables(): print(v.name, "=", v.varValue) print("Total Cost of Ingredients per can = ", value(model.objective)) # Getting the table for the Factorywise Allocation def factoryalloc(model,Numberoffact,Numberofcust,listoffac,listofcus): listj=list() listk=list() listcaps=list() for v in model.variables(): listj.append(v.varValue) customer=listj[(len(listj)-Numberofcust-Numberoffact):(len(listj)-Numberoffact)] del listj[(len(listj)-Numberoffact-Numberofcust):len(listj)] for row in listj: if row==0: listk.append(0) else: listk.append(1) x=np.reshape(listj,(Numberoffact,Numberofcust)) y=np.reshape(listk,(Numberoffact,Numberofcust)) FactoryAlloc_table=pd.DataFrame(x,index=listoffac,columns=listofcus) Factorystatus=pd.DataFrame(y,index=listoffac,columns=listofcus) return FactoryAlloc_table,Factorystatus,customer Alltable,FactorystatusTable,ded=factoryalloc(model,Numberoffact,Numberofcust,colo,cols) Allstatus=list() dede=pd.DataFrame(ded,columns=['UnSatisfied']) finaldede=dede[dede.UnSatisfied != 0] colss=pd.DataFrame(cols,columns=['CustomerLocation']) fina=pd.concat([colss,finaldede],axis=1, join='inner') print(fina) for i in range(len(Alltable)): for j in range(len(Alltable.columns)): if (Alltable.loc[Alltable.index[i], Alltable.columns[j]]>0): all=[Alltable.index[i], Alltable.columns[j], Alltable.loc[Alltable.index[i], Alltable.columns[j]]] Allstatus.append(all) Status=pd.DataFrame(Allstatus,columns=['Factory','Customer','Allocation']).astype(str) #To get the Factory Data con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) #Making Connection to the Database cur = con.cursor() engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Status.to_sql(con=engine, name='facilityallocation',index=False, if_exists='replace') cur = con.cursor() cur1 = con.cursor() cur.execute("SELECT * FROM `facilityallocation`") file=cur.fetchall() dat=pd.DataFrame(file) lst=dat[['Factory','Customer']] mlst=[] names=lst['Factory'].unique().tolist() for name in names: lsty=lst.loc[lst.Factory==name] mlst.append(lsty.values) data=dat[['Factory','Customer','Allocation']] sql="SELECT SUM(`Allocation`) AS 'UseCapacity', `Factory` FROM `facilityallocation` GROUP BY `Factory`" cur1.execute(sql) file2=cur1.fetchall() udata=pd.DataFrame(file2) bdata=factorydata.sort_values(by=['Factory']) adata=bdata['Capacity'] con.close() infdata=dat[['Customer','Factory','Allocation']] infodata=infdata.sort_values(by=['Customer']) namess=infodata.Customer.unique() lstyy=[] for nam in namess: bb=infodata[infodata.Customer==nam] comment=bb['Factory']+":"+bb['Allocation'] prin=[nam,str(comment.values).strip('[]')] lstyy.append(prin) return render_template('facilityoptimise.html',say=1,lstyy=lstyy,x1=adata.values,x2=udata.values,dat=mlst,loc1=factorydata.values, loc2=customerdata.values,factory=Facyy.to_html(index=False),customer=Custo.to_html(index=False),summary=data.to_html(index=False)) #Demand Forecast @app.route('/demandforecast') def demandforecast(): return render_template('demandforecast.html') @app.route("/demandforecastdataimport",methods = ['GET','POST']) def demandforecastdataimport(): if request.method== 'POST': global actualforecastdata flat=request.files['flat'].read() if len(flat)==0: return('No Data Selected') cdat=pd.read_csv(io.StringIO(flat.decode('utf-8'))) actualforecastdata=pd.DataFrame(cdat) return render_template('demandforecast.html',data=actualforecastdata.to_html(index=False)) @app.route('/demandforecastinput', methods = ['GET', 'POST']) def demandforecastinput(): if request.method=='POST': global demandforecastfrm global demandforecasttoo global demandforecastinputdata demandforecastfrm=request.form['from'] demandforecasttoo=request.form['to'] value=request.form['typedf'] demandforecastinputdata=actualforecastdata[(actualforecastdata['Date'] >= demandforecastfrm) & (actualforecastdata['Date'] <= demandforecasttoo)] if value=='monthly': ##monthly engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) demandforecastinputdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('monthlyforecast')) if value=='quarterly': ##quarterly global Quaterdata dated2 = demandforecastinputdata['Date'] nlst=[] for var in dated2: var1 = int(var[5:7]) if var1 >=1 and var1 <4: varr=var[:4]+'-01-01' elif var1 >=4 and var1 <7: varr=var[:4]+'-04-01' elif var1 >=7 and var1 <10: varr=var[:4]+'-07-01' else: varr=var[:4]+'-10-01' nlst.append(varr) nwlst=pd.DataFrame(nlst,columns=['Newyear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=nwlst['Newyear'] Quaterdata=demandforecastinputdata.groupby(['Date']).sum() Quaterdata=Quaterdata.reset_index() Quaterdata=Quaterdata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Quaterdata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('quarterlyforecast')) if value=='yearly': ##yearly global Yeardata #copydata=demandforecastinputdata dated1 = demandforecastinputdata['Date'] lst=[] for var in dated1: var1 = var[:4]+'-01-01' lst.append(var1) newlst=pd.DataFrame(lst,columns=['NewYear']) demandforecastinputdata=demandforecastinputdata.reset_index() demandforecastinputdata['Date']=newlst['NewYear'] Yeardata=demandforecastinputdata.groupby(['Date']).sum() Yeardata=Yeardata.reset_index() Yeardata=Yeardata.drop('index',axis=1) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Yeardata.to_sql(con=engine, name='demandforecastinputdata', index=False,if_exists='replace') return redirect(url_for('yearlyforecast')) #if value=='weakly': ##weakly # return redirect(url_for('output4')) return render_template('demandforecast.html') @app.route("/monthlyforecast",methods = ['GET','POST']) def monthlyforecast(): data = pd.DataFrame(demandforecastinputdata) # container1 a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True]) # container2 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True]) # container3 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True]) # container4 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True]) # container1 df=a1[['GDP']] re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']] vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutput`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutput`") con.commit() sql = "INSERT INTO `forecastoutput` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutput` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutput',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutput`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('monthly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('monthly.html',sayy=1,smt='Monthly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##quarterly @app.route("/quarterlyforecast",methods = ['GET','POST']) def quarterlyforecast(): data = pd.DataFrame(Quaterdata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/3 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'].astype(str) tre11 = np.array([]) tres11 = np.append(tre11,tdf) tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/3 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputq`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputq`") con.commit() sql = "INSERT INTO `forecastoutputq` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma tdfs['Date']=(tdfs.index).strftime("20%y-%m-%d") tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='3M') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='3M', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y-%m-%d") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='3M') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='3M', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y-%m-%d") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputq` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutputq',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutputq`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('quarterly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('quarterly.html',sayy=1,smt='Quarterly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) ##yearly @app.route("/yearlyforecast",methods = ['GET','POST']) def yearlyforecast(): data = pd.DataFrame(Yeardata) a1=data.sort_values(['GDP','TotalDemand'], ascending=[True,True])# container1 a2=data.sort_values(['Pi_Exports','TotalDemand'], ascending=[True,True])# container2 a3=data.sort_values(['Market_Share','TotalDemand'], ascending=[True,True])# container3 a4=data.sort_values(['Advertisement_Expense','TotalDemand'], ascending=[True,True])# container4 # container1 df=a1[['GDP']]/12 re11 = np.array([]) res11 = np.append(re11,df) df1=a1[['TotalDemand']] r1 = np.array([]) r11 = np.append(r1, df1) # top graph tdf=data['Date'] vari=[] for var in tdf: vari.append(var[:4]) tres11 = vari tr1 = np.array([]) tr11 = np.append(tr1, df1) # container2 udf=a2[['Pi_Exports']] ure11 = np.array([]) ures11 = np.append(ure11,udf) ur1 = np.array([]) ur11 = np.append(ur1, df1) # container3 vdf=a3[['Market_Share']]/12 vre11 = np.array([]) vres11 = np.append(vre11,vdf) vr1 = np.array([]) vr11 = np.append(vr1, df1) # container4 wdf=a4[['Advertisement_Expense']] wre11 = np.array([]) wres11 = np.append(wre11,wdf) wr1 = np.array([]) wr11 = np.append(wr1, df1) if request.method == 'POST': mov=0 exp=0 reg=0 ari=0 arx=0 till = request.form.get('till') if request.form.get('moving'): mov=1 if request.form.get('ESPO'): exp=1 if request.form.get('regression'): reg=1 if request.form.get('ARIMA'): ari=1 if request.form.get('ARIMAX'): arx=1 con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `ftech` (`mov` VARCHAR(1),`exp` VARCHAR(1), `reg` VARCHAR(1),`ari` VARCHAR(1),`arx` VARCHAR(1),`till` VARCHAR(10))") cur.execute("DELETE FROM `ftech`") con.commit() cur.execute("INSERT INTO `ftech` VALUES('"+str(mov)+"','"+str(exp)+"','"+str(reg)+"','"+str(ari)+"','"+str(arx)+"','"+str(till)+"')") con.commit() cur.execute("CREATE TABLE IF NOT EXISTS `forecastoutputy`(`Model` VARCHAR(25),`Date` VARCHAR(10),`TotalDemand` VARCHAR(10),`RatioIncrease` VARCHAR(10),`Spain` VARCHAR(10),`Austria` VARCHAR(10),`Japan` VARCHAR(10),`Hungary` VARCHAR(10),`Germany` VARCHAR(10),`Polland` VARCHAR(10),`UK` VARCHAR(10),`France` VARCHAR(10),`Romania` VARCHAR(10),`Italy` VARCHAR(10),`Greece` VARCHAR(10),`Crotia` VARCHAR(10),`Holland` VARCHAR(10),`Finland` VARCHAR(10),`Hongkong` VARCHAR(10))") con.commit() cur.execute("DELETE FROM `forecastoutputy`") con.commit() sql = "INSERT INTO `forecastoutputy` (`Model`,`Date`,`TotalDemand`,`RatioIncrease`,`Spain`,`Austria`,`Japan`,`Hungary`,`Germany`,`Polland`,`UK`,`France`,`Romania`,`Italy`,`Greece`,`Crotia`,`Holland`,`Finland`,`Hongkong`) VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)" #read the monthly file and index that with time df=data.set_index('Date') split_point =int(0.7*len(df)) D, V = df[0:split_point],df[split_point:] data=pd.DataFrame(D) #Functions for ME, MAE, MAPE #ME def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 cur1=con.cursor() cur1.execute("SELECT * FROM `ftech`") ftech=pd.DataFrame(cur1.fetchall()) ari=int(ftech['ari']) arx=int(ftech['arx']) exp=int(ftech['exp']) mov=int(ftech['mov']) reg=int(ftech['reg']) start_index1=str(D['GDP'].index[-1]) end_index1=str(ftech['till'][0]) #end_index1=indx[:4] df2 = pd.DataFrame(data=0,index=["ME","MAE","MAPE"],columns=["Moving Average","ARIMA","Exponential Smoothing","Regression"]) if mov==1: #2---------------simple moving average------------------------- #################################MovingAverage####################### list1=list() def mavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(0,0,1)) results_ARIMA1=model1.fit(disp=0) # start_index1 = '2017-01-01' # end_index1 = '2022-01-01' #4 year forecast ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list1.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["Moving Average"].iloc[0]=s df2["Moving Average"].iloc[1]=so df2["Moving Average"].iloc[2]=son s=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(s)+1): a=s.iloc[j-2] b=s.iloc[j-1] ratio_inc.append(int(((b-a)/a)*100)) return list1,ratio_inc print(data) Ma_Out,ratio_incma=mavg(data) dfs=pd.DataFrame(Ma_Out) tdfs=dfs.T print(tdfs) tdfs.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] tdfs['Model']='Moving Average' tdfs['RatioIncrease']=ratio_incma dindex=(tdfs.index).strftime("20%y") tdfs['Date']=(dindex) tdfs.astype(str) for index, i in tdfs.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if ari==1: ##--------------min errors--ARIMA (1,0,0)----------------------------- ############################for Total Demand Monthly#################################### list2=list() def AutoRimavg(data): m=len(data.columns.tolist()) for i in range(0,m-5): #Arima Model Fitting model1=ARIMA(data[data.columns.tolist()[i]].astype(float), order=(1,0,0)) results_ARIMA1=model1.fit(disp=0) ARIMA_fit1= results_ARIMA1.fittedvalues forecast2=results_ARIMA1.predict(start=start_index1, end=end_index1) list2.append(forecast2) if(i==0): #ME s=ME(data['TotalDemand'],ARIMA_fit1) #MAE so=MAE(data['TotalDemand'],ARIMA_fit1) #MAPE son=MAPE(data['TotalDemand'],ARIMA_fit1) df2["ARIMA"].iloc[0]=s df2["ARIMA"].iloc[1]=so df2["ARIMA"].iloc[2]=son Ars=pd.DataFrame(forecast2) ratio_inc=[] ratio_inc.append(0) for j in range(2,len(Ars)+1): As=(Ars.iloc[j-2]) bs=(Ars.iloc[j-1]) ratio_inc.append(int(((As-bs)/As)*100)) return list1,ratio_inc Arimamodel,ratio_inc=AutoRimavg(data) Amodel=pd.DataFrame(Arimamodel) Results=Amodel.T Results.astype(str) Results.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] Results['Model']="ARIMA" Results['RatioIncrease']=ratio_inc Results['Date']=Results.index.astype(str) for index, i in Results.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if reg==1: #Linear Regression #Regression Modeling dates=pd.date_range(start_index1,end_index1,freq='A') lprd=len(dates) dateofterms= pd.PeriodIndex(freq='A', start=start_index1, periods=lprd+1) dofterm=dateofterms.strftime("20%y") Rdate=pd.DataFrame(dofterm) noofterms=len(dofterm) def regression(data,V,noofterms): #Getting length of Data Frame lenofdf=len(data.columns.tolist()) #Getting List Of Atributes in Data Frame listofatr=list() listofatr=data.columns.tolist() #making list of pred pred=pd.DataFrame() #now riun for each row for i in range(0,(lenofdf)-5): df=pd.DataFrame(data[data.columns.tolist()[i]].reset_index()) xvar=list() for row in df[listofatr[i]]: xvar.append(row) df5=pd.DataFrame(xvar) yvar=list() for j in range(0,len(df[listofatr[i]])): yvar.append(j) dfss=pd.DataFrame(yvar) clf = linear_model.LinearRegression() clf.fit(dfss,df5) # Make predictions using the testing set dfv=pd.DataFrame(V[V.columns.tolist()[i]].reset_index()) k=list() for l in range(len(df[listofatr[i]]),len(df[listofatr[i]])+len(dfv)): k.append(l) ks=pd.DataFrame(k) #Future prediction predlist=list() for j in range(len(df[listofatr[i]]),len(df[listofatr[i]])+noofterms): predlist.append(j) dataframeoflenofpred=pd.DataFrame(predlist) dateframeofpred=pd.DataFrame(clf.predict(dataframeoflenofpred)) pred=pd.concat([pred,dateframeofpred],axis=1) #Accuracy Of the mODEL y_pred = clf.predict(ks) if(i==0): meanerror=ME(dfv[listofatr[i]], y_pred) mae=MAE(dfv[listofatr[i]], y_pred) mape=MAPE(dfv[listofatr[i]],y_pred) df2["Regression"].iloc[0]=meanerror df2["Regression"].iloc[1]=mae df2["Regression"].iloc[2]=mape regp=pd.DataFrame(pred) ratio_incrr=[] ratio_incrr.append(0) for j in range(2,len(regp)+1): Ra=regp.iloc[j-2] Rb=regp.iloc[j-1] ratio_incrr.append(int(((Rb-Ra)/Ra)*100)) return pred,ratio_incrr monthlyRegression,ratio_incrr=regression(data,V,noofterms) r=pd.DataFrame(monthlyRegression) r.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] r['Model']="Regression" r['Date']=Rdate r['RatioIncrease']=ratio_incrr r.astype(str) for index, i in r.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() if exp==1: #Exponential Smoothing dates=pd.date_range(start_index1,end_index1,freq='A') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='A', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y") Edate=pd.DataFrame(dateofterms) predictonterm=len(Edate) def exponential_smoothing(series, alpha,predictonterm): result = [series[0]] # first value is same as series for i in range(1,len(series)): result.append(alpha * series[i] + (1 - alpha) * result[i-1]) preds=result[len(series)-1]#pred actual=series[len(series)-1]#actual forecastlist=[] for i in range(0,predictonterm): forecast=(alpha*actual)+((1-alpha)*preds) forecastlist.append(forecast) actual=preds preds=forecast return result,forecastlist def Exponentialmooth(data,alpha,predicterm): predexp=list() forecaste=pd.DataFrame() m=len(data.columns.tolist()) for i in range(0,m-5): pred,forecasts=exponential_smoothing(data[data.columns.tolist()[i]],0.5,predictonterm) ss=pd.DataFrame(forecasts) predexp.append(pred) forecaste=pd.concat([forecaste,ss],axis=1) if(i==0): meanerr=ME(len(data[data.columns.tolist()[i]]),predexp) meanaverr=MAE(data[data.columns.tolist()[i]],predexp) mperr=MAPE(data[data.columns.tolist()[i]],predexp) df2["Exponential Smoothing"].iloc[0]=meanerr df2["Exponential Smoothing"].iloc[1]=meanaverr df2["Exponential Smoothing"].iloc[2]=mperr Exponentials=pd.DataFrame(forecaste) ratio_incex=[] ratio_incex.append(0) for j in range(2,len(Exponentials)+1): Ea=Exponentials.iloc[j-2] Eb=Exponentials.iloc[j-1] ratio_incex.append(int(((Eb-Ea)/Ea)*100)) return forecaste,ratio_incex fore,ratio_incex=Exponentialmooth(data,0.5,predictonterm) skf=pd.DataFrame(fore) skf.columns=["TotalDemand","Spain","Austria","Japan","Hungary","Germany","Polland","UK","France","Romania","Italy","Greece","Crotia","Holland","Finland","Hongkong"] skf['Model']="Exponential Smoothing" skf['Date']=Edate skf['RatioIncrease']=ratio_incex skf.astype(str) for index, i in skf.iterrows(): dat = (i['Model'],i['Date'],i['TotalDemand'],i['RatioIncrease'],i['Spain'],i['Austria'],i['Japan'],i['Hungary'],i['Germany'],i['Polland'],i['UK'],i['France'],i['Romania'],i['Italy'],i['Greece'],i['Crotia'],i['Holland'],i['Finland'],i['Hongkong']) cur.execute(sql,dat) con.commit() dates=pd.date_range(start_index1,end_index1,freq='A') lengthofprd=len(dates) dateofterm= pd.PeriodIndex(freq='A', start=start_index1, periods=lengthofprd+1) dateofterms=dateofterm.strftime("20%y") ss=pd.DataFrame(dateofterms,columns=['Date']) dataframeforsum=pd.concat([ss]) if mov==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Moving Average'" ) Xmdata = cur.fetchall() Xmadata = pd.DataFrame(Xmdata) movsummm=pd.DataFrame(Xmadata) movsummm.columns=['Moving Average'] dataframeforsum=pd.concat([dataframeforsum,movsummm],axis=1) if ari==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'ARIMA'" ) Xadata = cur.fetchall() Xardata = pd.DataFrame(Xadata) movsumma=pd.DataFrame(Xardata) movsumma.columns=['ARIMA'] dataframeforsum=pd.concat([dataframeforsum,movsumma],axis=1) if exp==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Exponential Smoothing'" ) Xedata = cur.fetchall() Xesdata = pd.DataFrame(Xedata) exp=pd.DataFrame(Xesdata) exp.columns=['Exponential Smoothing'] dataframeforsum=pd.concat([dataframeforsum,exp],axis=1) if reg==1: cur.execute("SELECT `TotalDemand` FROM `forecastoutputy` WHERE `Model`= 'Regression'" ) Xrdata = cur.fetchall() Xredata = pd.DataFrame(Xrdata) regr=pd.DataFrame(Xredata) regr.columns=['Regression'] dataframeforsum=pd.concat([dataframeforsum,regr],axis=1) dataframeforsum.astype(str) from pandas.io import sql engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) dataframeforsum.to_sql(con=engine, name='summaryoutputy',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) df2.to_sql(con=engine2, name='summaryerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `summaryoutputy`") sdata = cnr.fetchall() summaryq = pd.DataFrame(sdata) con.close() return render_template('yearly.html',summaryq=summaryq.to_html(index=False),sayy=1,smt='Yearly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) return render_template('yearly.html',sayy=1,smt='Yearly',yr1=demandforecastfrm+' to ',yr2=demandforecasttoo,x=res11,y=r11,x1=tres11,y1=tr11,x2=ures11,y2=ur11,x3=vres11,y3=vr11,x4=wres11,y4=wr11) #############################Dashboard####################################### #yearly @app.route('/youtgraph', methods = ['GET','POST']) def youtgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutputy` GROUP BY `Model`") sfile=cur.fetchall() global yqst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) yqst=qlst.values con.close() return render_template('ydashboard.html',qulist=yqst) @app.route('/youtgraph1', methods = ['GET', 'POST']) def youtgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutputy` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'] index=np.concatenate((indx,edata['Date'].values),axis=0) yindx=[] for var in index: var1 = var[:4] yindx.append(var1) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutputy` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('ydashboard.html',mon=value,qulist=yqst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=yindx,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) #monthly @app.route('/moutgraph', methods = ['GET','POST']) def moutgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutput` GROUP BY `Model`") sfile=cur.fetchall() global mqst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) mqst=qlst.values con.close() return render_template('mdashboard.html',qulist=mqst) @app.route('/moutgraph1', methods = ['GET', 'POST']) def moutgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutput` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'].astype(str).values index=np.concatenate((indx,edata['Date'].values),axis=0) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutput` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('mdashboard.html',mon=value,qulist=mqst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=index,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) #quarterly @app.route('/qoutgraph', methods = ['GET','POST']) def qoutgraph(): con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("SELECT `Model` FROM `forecastoutputq` GROUP BY `Model`") sfile=cur.fetchall() global qst qlist=pd.DataFrame(sfile) qlst=qlist['Model'].astype(str) qst=qlst.values con.close() return render_template('qdashboard.html',qulist=qst) @app.route('/qoutgraph1', methods = ['GET', 'POST']) def qoutgraph1(): if request.method=='POST': value=request.form['item'] qconn = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) qcur = qconn.cursor() qcur.execute("SELECT * FROM `demandforecastinputdata") qsdata = qcur.fetchall() qdata = pd.DataFrame(qsdata) #graph1 adata=qdata['TotalDemand'] x_axis=qdata['Date'].astype(str) #predictedgraph1 pcur = qconn.cursor() pcur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") psdata = pcur.fetchall() edata = pd.DataFrame(psdata) eedata=edata['TotalDemand'].astype(float) ldata=eedata.values nur = qconn.cursor() nur.execute("SELECT MIN(`Date`) AS 'MIN' FROM `forecastoutputq` WHERE `Model`='"+value+"'") MIN=nur.fetchone() pdata=[] i=0 k=0 a="null" while(x_axis[i]<MIN['MIN']): pdata.append(a) i=i+1 k=k+1 ata=np.concatenate((pdata,ldata),axis=0) #x axis fcur = qconn.cursor() fcur.execute("SELECT `Date` FROM `demandforecastinputdata` WHERE `Date`<'"+MIN['MIN']+"'") fsdata = fcur.fetchall() indx = pd.DataFrame(fsdata) indx=indx['Date'].astype(str).values index=np.concatenate((indx,edata['Date'].values),axis=0) #bargraph bcur = qconn.cursor() bcur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") bsdata = bcur.fetchall() bdata = pd.DataFrame(bsdata) btdf=bdata['Date'].astype(str) btre11 = np.array([]) btres11 = np.append(btre11,btdf) b1tdf1=bdata[['Spain']] #spain b1tr1 = np.array([]) b1tr11 = np.append(b1tr1, b1tdf1) b2tdf1=bdata[['Austria']] #austria b2tr1 = np.array([]) b2tr11 = np.append(b2tr1, b2tdf1) b3tdf1=bdata[['Japan']] #japan b3tr1 = np.array([]) b3tr11 = np.append(b3tr1, b3tdf1) b4tdf1=bdata[['Hungary']] #hungry b4tr1 = np.array([]) b4tr11 = np.append(b4tr1, b4tdf1) b5tdf1=bdata[['Germany']] #germany b5tr1 = np.array([]) b5tr11 = np.append(b5tr1, b5tdf1) b6tdf1=bdata[['TotalDemand']] #total b6tr1 = np.array([]) b6tr11 = np.append(b6tr1, b6tdf1) #comparisonbar ccur = qconn.cursor() ccur.execute("SELECT * FROM `forecastoutputq` WHERE `Model`='"+value+"'") csdata = ccur.fetchall() cdata = pd.DataFrame(csdata) ctdf=cdata['Date'].astype(str) ctre11 = np.array([]) ctres11 = np.append(ctre11,ctdf) c1tdf1=cdata[['RatioIncrease']] #ratioincrease c1tr1 = np.array([]) c1tr11 = np.append(c1tr1, c1tdf1) qcur.execute("SELECT * FROM `summaryerror`") sdata = qcur.fetchall() mape = pd.DataFrame(sdata) qconn.close() return render_template('qdashboard.html',mon=value,qulist=qst,mape=mape.to_html(index=False),say=1,pdata=ata,adata=adata.values,x_axis=index,frm=len(qdata)-1,to=k,x13=btres11,x14=ctres11,y13=b1tr11,y14=b2tr11,y15=b3tr11,y16=b4tr11,y17=b5tr11,y18=b6tr11,y19=c1tr11) @app.route("/yearlysimulation",methods = ['GET','POST']) def yearlysimulation(): if request.method == 'POST': gdp=0 pi=0 ms=0 adv=0 gdp_dis=request.form.get('gdp_dis') pi_dis=request.form.get('pi_dis') ms_dis=request.form.get('ms_dis') adv_dis=request.form.get('adv_dis') min=request.form.get('min') max=request.form.get('max') mue=request.form.get('mue') sig=request.form.get('sig') cval=request.form.get('cval') min1=request.form.get('min1') max1=request.form.get('max1') mue1=request.form.get('mue1') sig1=request.form.get('sig1') cval1=request.form.get('cval1') min2=request.form.get('min2') max2=request.form.get('max2') mue2=request.form.get('mue2') sig2=request.form.get('sig2') cval2=request.form.get('cval2') min3=request.form.get('min3') max3=request.form.get('max3') mue3=request.form.get('mue3') sig3=request.form.get('sig3') cval3=request.form.get('cval3') itr= int(request.form.get('itr')) frm = request.form.get('from') sfrm=int(frm[:4]) to = request.form.get('to') sto=int(to[:4]) kwargs={} atrtable=[] if request.form.get('gdp'): gdp=1 atrtable.append('Gdp') if gdp_dis == 'gdp_dis1': min=request.form.get('min') max=request.form.get('max') kwargs['Gdp_dis']='Uniform' kwargs['gdpvalues']=[min,max] if gdp_dis == 'gdp_dis2': mue=request.form.get('mue') sig=request.form.get('sig') kwargs['Gdp_dis']='Normal' kwargs['gdpvalues']=[mue,sig] if gdp_dis == 'gdp_dis3': kwargs['Gdp_dis']='Random' pass if gdp_dis == 'gdp_dis4': cval=request.form.get('cval') kwargs['Gdp_dis']='Constant' kwargs['gdpvalues']=[cval] if request.form.get('pi'): pi=1 atrtable.append('Pi') if pi_dis == 'pi_dis1': min1=request.form.get('min1') max1=request.form.get('max1') kwargs['Pi_dis']='Uniform' kwargs['pivalues']=[min1,max1] if pi_dis == 'pi_dis2': mue1=request.form.get('mue1') sig1=request.form.get('sig1') kwargs['Pi_dis']='Normal' kwargs['pivalues']=[mue1,sig1] if pi_dis == 'pi_dis3': kwargs['Pi_dis']='Random' pass if pi_dis == 'pi_dis4': cval1=request.form.get('cval1') kwargs['Pi_dis']='Constant' kwargs['pivalues']=[cval1] if request.form.get('ms'): ms=1 atrtable.append('Ms') if ms_dis == 'ms_dis1': min=request.form.get('min2') max=request.form.get('max2') kwargs['Ms_dis']='Uniform' kwargs['msvalues']=[min2,max2] if ms_dis == 'ms_dis2': mue=request.form.get('mue2') sig=request.form.get('sig2') kwargs['Ms_dis']='Normal' kwargs['msvalues']=[mue2,sig2] if ms_dis == 'ms_dis3': kwargs['Ms_dis']='Random' pass if ms_dis == 'ms_dis4': cval=request.form.get('cval2') kwargs['Ms_dis']='Constant' kwargs['msvalues']=[cval2] if request.form.get('adv'): adv=1 atrtable.append('Adv') if adv_dis == 'adv_dis1': min=request.form.get('min3') max=request.form.get('max3') kwargs['Adv_dis']='Uniform' kwargs['advvalues']=[min3,max3] if adv_dis == 'adv_dis2': mue=request.form.get('mue3') sig=request.form.get('sig3') kwargs['Adv_dis']='Normal' kwargs['advvalues']=[mue3,sig3] if adv_dis == 'adv_dis3': kwargs['Adv_dis']='Random' pass if adv_dis == 'adv_dis4': cval=request.form.get('cval3') kwargs['Adv_dis']='Constant' kwargs['advvalues']=[cval3] #print(kwargs) #print(atrtable) con = pymysql.connect(host='localhost',user='root',password='',db='inventory_management',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = con.cursor() cur.execute("CREATE TABLE IF NOT EXISTS `stech` (`gdp` VARCHAR(1),`pi` VARCHAR(1), `ms` VARCHAR(1),`adv` VARCHAR(1),`itr` VARCHAR(5),`sfrm` VARCHAR(10),`sto` VARCHAR(10))") cur.execute("DELETE FROM `stech`") con.commit() cur.execute("INSERT INTO `stech` VALUES('"+str(gdp)+"','"+str(pi)+"','"+str(ms)+"','"+str(adv)+"','"+str(itr)+"','"+str(sfrm)+"','"+str(sto)+"')") con.commit() data = pd.DataFrame(Yeardata) #print(data) data.columns xvar=pd.concat([data['GDP'],data['Pi_Exports'],data['Market_Share'],data['Advertisement_Expense']],axis=1) yvar=pd.DataFrame(data['TotalDemand']) regr = linear_model.LinearRegression() regr.fit(xvar,yvar) # predict=regr.predict(xvar) #Error Measures def ME(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(y_true - y_pred) #MAE def MAE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) #MAPE def MAPE(y_true, y_pred): y_true, y_pred = np.array(y_true), np.array(y_pred) return np.mean(np.abs((y_true - y_pred) / y_pred)) * 100 def sim(iteration,data,startyear,endyear,atrtable,Gdp_dis=None,gdpvalues=None,Adv_dis=None,advvalues=None,Ms_dis=None,msvalues=None,Pi_dis=None,pivalues=None): preddata=pd.DataFrame() simdata=pd.DataFrame() #Errordf=pd.DataFrame() Errormsr=pd.DataFrame() date=pd.date_range(start=pd.datetime(startyear, 1, 1), end=pd.datetime(endyear+1, 1, 1),freq='A') date=pd.DataFrame(date.strftime("%Y")) #Fetching The Orignal Data Of Available Years of the Orignal Data That We Have Actually m=len(date) Arrayofdates=data['Date'] vari=[] for var in Arrayofdates: vari.append(var[:4]) Arrayofdates=pd.DataFrame(vari) dates=[] Fetchdata=[] for i in range(0,m): years=date.loc[i] for j in range(0,len(Arrayofdates)): if int(Arrayofdates.loc[j])==int(years): da=data['TotalDemand'].loc[j] Fetchdata.append(da) #Gives Data In the Given Range That we have actually dates.extend(years) #Gives Years that we have data for i in range(0,iteration): df=pd.DataFrame() #for The Gdp S='flag' for row in atrtable: if row=='Gdp': S='Gdp' if S=='Gdp': for row in Gdp_dis: if row=='Normal': gdpdf=pd.DataFrame(np.random.normal(gdpvalues[0],gdpvalues[1],m)) elif row=='Uniform': gdpdf=pd.DataFrame(np.random.normal(gdpvalues[0],gdpvalues[1],m)) elif row=='Constant': gdpdf=pd.DataFrame(np.random.choice([gdpvalues[0]],m)) else: gdpdf=pd.DataFrame(np.random.uniform(-4,4,m)) else: gdpdf=pd.DataFrame(np.random.uniform(0,0,m)) # for the pi dataframe O='flag' for row in atrtable: if row=='Pi': O='Pi' if O=='Pi': for row in Pi_dis: if row=='Normal': pidf=pd.DataFrame(np.random.normal(pivalues[0],pivalues[1],m)) elif row=='Uniform': pidf=pd.DataFrame(np.random.normal(pivalues[0],pivalues[1],m)) elif row=='Constant': pidf=pd.DataFrame(np.random.choice([pivalues[0]],m)) else: pidf=pd.DataFrame(np.random.random_integers(80,120,m)) else: pidf=pd.DataFrame(np.random.uniform(0,0,m)) #for the Adv Dataframe N='flag' for row in atrtable: if row=='Adv': N='Adv' if N=='Adv': for row in Adv_dis: if row=='Normal': advdf=pd.DataFrame(np.random.normal(advvalues[0],advvalues[1],m)) elif row=='Uniform': advdf=pd.DataFrame(np.random.normal(advvalues[0],advvalues[1],m)) elif row=='Constant': advdf=pd.DataFrame(np.random.choice([advvalues[0]],m)) else: advdf=pd.DataFrame(np.random.random_integers(500000,1000000,m)) else: advdf=pd.DataFrame(np.random.uniform(0,0,m)) #for the Ms dataframe U='flag' for row in atrtable: if row=='Ms': U='Ms' if U=='Ms': for row in Ms_dis: if row=='Normal': msdf=pd.DataFrame(np.random.normal(msvalues[0],msvalues[1],m)) elif row=='Uniform': msdf=pd.DataFrame(np.random.normal(msvalues[0],msvalues[1],m)) elif row=='Constant': msdf=pd.DataFrame(np.random.choice([msvalues[0]],m)) else: msdf=pd.DataFrame(np.random.uniform(0.1,0.5,m)) else: msdf=pd.DataFrame(np.random.uniform(0,0,m)) #Concatenating All the dataframes for Simulation Data df=pd.concat([gdpdf,pidf,msdf,advdf],axis=1) simid=pd.DataFrame(np.random.choice([i+1],m)) dd=pd.concat([simid,gdpdf,pidf,advdf,msdf],axis=1) dd.columns=['Year','Gdp','Pi','Adv','Ms'] simdata=pd.concat([simdata,dd],axis=0) #Predicting the Data And store in pred data through onhand Regression Method dfs=pd.DataFrame(regr.predict(df)) datatable=pd.concat([simid,date,dfs],axis=1) datatable.columns=['simid','Year','Total_Demand(Tonnes)'] preddata=pd.concat([datatable,preddata],axis=0) datas=list() #Geting Data With Respective Dates # print(datatable) for row in dates: # print(dates) datas.extend(datatable.loc[datatable['Year'] ==row, 'Total_Demand(Tonnes)']) kkk=pd.DataFrame(datas) me=ME(Fetchdata,kkk) mae=MAE(Fetchdata,kkk) mape=MAPE(Fetchdata,kkk) dfe=pd.DataFrame([me,mae,mape],index=['ME','MAE','MAPE']).T Errormsr=pd.concat([Errormsr,dfe],axis=0).reset_index(drop=True) return preddata,simdata,Errormsr preddata,simdata,Errormsr=sim(itr,data,sfrm,sto,atrtable,**kwargs) engine = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) preddata.to_sql(con=engine, name='predicteddata',index=False, if_exists='replace') engine2 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) simdata.to_sql(con=engine2, name='simulationdata',index=False, if_exists='replace') con.commit() engine3 = create_engine("mysql+pymysql://{user}:{pw}@localhost/{db}".format(user="root",pw="",db="inventory_management")) Errormsr.to_sql(con=engine3, name='simerror',index=False, if_exists='replace') con.commit() cnr=con.cursor() cnr.execute("SELECT * FROM `simerror`") sdata = cnr.fetchall() simerror = pd.DataFrame(sdata) con.close() return render_template('ysimulation.html',sayy=1,simerror=simerror.to_html(index=False)) return render_template('ysimulation.html') ##PROCURMENT PLANNING @app.route('/procurementplanning') def procurementplanning(): return render_template('vendorselection_criterianumberask.html') @app.route("/criteriagenerate", methods=['GET','POST']) def criteriagenerate(): if request.method == 'POST': global cnmbr global vnmbr cnmbr = int(request.form['cnmbr']) vnmbr = int(request.form['vnmbr']) if cnmbr == 0 or vnmbr==0: return render_template('criterianumberask.html',warning='Data Invalid') cmainlist=[] global cnames cnames = [] for i in range (1,cnmbr+1): lst=[] name='cname'+str(i) lst.append(i) lst.append(name) cmainlist.append(lst) cnames.append(name) vmainlist=[] global vnames vnames = [] for i in range (1,vnmbr+1): lst=[] name='vname'+str(i) lst.append(i) lst.append(name) vmainlist.append(lst) vnames.append(name) return render_template('vendorselection_criteriagenerate.html',cmainlist=cmainlist,vmainlist=vmainlist) return render_template('vendorselection_criterianumberask.html') @app.route("/criteriagenerated", methods=['GET','POST']) def criteriagenerated(): if request.method == 'POST': global criterianames criterianames=[] for name in cnames: criterianame = request.form[name] criterianames.append(criterianame) global vendornames vendornames=[] for name in vnames: vendorname = request.form[name] vendornames.append(vendorname) mcrlst=[] cn=len(criterianames) k=1 global maincriteriaoption maincriteriaoption=[] global maincritriacri maincritriacri=[] for i in range(cn-1): for j in range (i+1,cn): cri='criteriaorder'+str(k) opt='coption'+str(k) crlst=[k,cri,criterianames[i],criterianames[j],opt] mcrlst.append(crlst) k=k+1 maincriteriaoption.append(opt) maincritriacri.append(cri) mvrlst=[] vn=len(vendornames) k=1 global mainvendoroption mainvendoroption=[] global mainvendorcri mainvendorcri=[] for z in criterianames: mvrlst1=[] vcri=[] vopt=[] for i in range(vn-1): for j in range (i+1,vn): cri='vendororder'+z+str(k) opt='voption'+z+str(k) vrlst=[k,cri,vendornames[i],vendornames[j],opt] mvrlst1.append(vrlst) k=k+1 vcri.append(cri) vopt.append(opt) mvrlst.append(mvrlst1) mainvendorcri.append(vcri) mainvendoroption.append(vopt) return render_template('vendorselection_maincriteria.html',mcrlst=mcrlst,mvrlst=mvrlst) return render_template('vendorselection_criteriagenerated.html') def tablecreator(imp,val,crit): n=len(imp) for i in range(n): if imp[i]==1: val[i]=float(1/val[i]) fdata=pd.DataFrame(columns=[crit],index=[crit]) i=0 k=0 for index in fdata.index: j=0 for columns in fdata.columns: if i==j: fdata[index][columns]=1 if i<j: fdata[index][columns]=round((float(val[k])),2) fdata[columns][index]=round((1/val[k]),2) k=k+1 j=j+1 i=i+1 return fdata @app.route("/criteriaread", methods=['GET','POST']) def criteriaread(): if request.method == 'POST': importances = [] values = [] for name1 in maincritriacri: imp = int(request.form[name1]) importances.append(imp) for name2 in maincriteriaoption: val = int(request.form[name2]) values.append(val) #global maincriteriadata maincriteriadata=tablecreator(importances,values,criterianames) mainimportances=[] for crioption in mainvendorcri: importance=[] for option1 in crioption: impc = int(request.form[option1]) importance.append(impc) mainimportances.append(importance) mainvalues=[] for vendoroption in mainvendoroption: vvalues=[] for option2 in vendoroption: valuev = int(request.form[option2]) vvalues.append(valuev) mainvalues.append(vvalues) maindf=[] for z in range(len(criterianames)): df=tablecreator(mainimportances[z],mainvalues[z],vendornames) maindf.append(df) dictmain={'crit':maincriteriadata} names=criterianames dfs=maindf dictionary=dict((n,d) for (n,d) in zip(names,dfs)) def ahpmain(dictmain): global wt_Crit wt_Crit=[] key=[] key=list(dictmain.keys()) for i in key: Crit=np.dot(dictmain[i],dictmain[i]) row_sum=[] for j in range(len(Crit)): row_sum.append(sum(Crit[j])) wt_Crit.append([s/sum(row_sum) for s in row_sum]) Crit=[] return wt_Crit def ahp(dictmain,dictionary): global output main= ahpmain(dictmain) submain= ahpmain(dictionary) dd=pd.DataFrame(submain).T df=pd.DataFrame(main).T output=np.dot(dd,df) return output,dd yaxis,dd=ahp(dictmain,dictionary) yax=pd.DataFrame(yaxis,index=vendornames,columns=['Score']).sort_values('Score',ascending=False).T ynames=yax.columns yval=yax.T.values dd.index=vendornames dd.columns=names dd=dd.T opq23=[] for column in dd.columns: opq21=[] opq22=[] opq21.append(column) for val in dd[column]: opq22.append(val) opq21.append(opq22) opq23.append(opq21) return render_template('vendorselection_ahp_final_output.html',ynames=ynames,yval=yval,dd=opq23,names=names) return render_template('vendorselection_criteriagenerated.html') #DETERMINISTIC STARTS @app.route("/spt") def spt(): return render_template('SinglePeriod.html') @app.route("/ppbreak") def ppbreak(): return render_template('pbreak.html') @app.route('/pbrk', methods=['GET','POST']) def pbrk(): return render_template('pbrk.html') @app.route('/eoq', methods=['GET','POST']) def eoq(): ##setUpCost::setting up cost prior(>>setUpCost;<<moving rate) AnnulaUnitsDemand=100##purchase demand of product per year FixedCost=500 ##cost fixed for the product AnnHoldingcost=0.25 ##remaining goods cost UnitCost=445 ##purchasing cost LeadTime=10 ##time b/w initiation and completion of a production process. SafetyStock=100##extra stock if request.method == 'POST': AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] FixedCost=request.form['FixedCost'] AnnHoldingcost=request.form['AnnHoldingcost'] UnitCost=request.form['UnitCost'] LeadTime=request.form['LeadTime'] SafetyStock=request.form['SafetyStock'] AnnulaUnitsDemand=float(AnnulaUnitsDemand) FixedCost=float(FixedCost) AnnHoldingcost=float(AnnHoldingcost) UnitCost=float(UnitCost) LeadTime=float(LeadTime) SafetyStock=float(SafetyStock) sgap=1 pgap=1 HoldingCost=AnnHoldingcost*UnitCost EOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))*sgap),2) REOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))*sgap),0) totOrderCost=round((FixedCost*AnnulaUnitsDemand/EOQ),2) totHoldCost=round(((HoldingCost*EOQ*pgap)/2),2) TotalCost=round((totOrderCost+totHoldCost),2) NumOrders=round((AnnulaUnitsDemand/EOQ),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) count=round((EOQ*.75),0) qtylist1=[] hclist=[] sclist=[] mtlist=[] tclist=[] while (count < EOQ): qtylist1.append(count) hclist.append(round((count/2*HoldingCost),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round((count/2*HoldingCost+AnnulaUnitsDemand/count*FixedCost),2)) count +=2 qtylist1.append(EOQ) hclist.append(totHoldCost) sclist.append(totOrderCost) tclist.append(totHoldCost+totOrderCost) while (count < (EOQ*2)): qtylist1.append(count) hclist.append(round((count/2*HoldingCost),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round((count/2*HoldingCost+AnnulaUnitsDemand/count*FixedCost),2)) count +=2 val=0 for i in range(len(tclist)): if(EOQ==qtylist1[i]): val=i # sstock=int(math.sqrt((LeadTime^2)+(int(ReorderPoint)^2))) return render_template('eoq.html',NumOrders=NumOrders,OrderTime=OrderTime, ReorderPoint=ReorderPoint,HoldCost=totHoldCost,TotalCost=TotalCost, EOQ=EOQ,REOQ=REOQ, sclist=sclist,hclist=hclist,tclist=tclist,val=val,qtylist1=qtylist1, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,LeadTime=LeadTime, SafetyStock=SafetyStock) ########################EEEEppppppppppQQQQQQ############ ########################EEEEppppppppppQQQQQQ############ @app.route('/eproduction', methods=['GET','POST']) def eproduction(): AnnulaUnitsDemand=100 Prodrate=125 FixedCost=500 AnnHoldingcost=0.1 UnitCost=25000 LeadTime=10 SafetyStock=100 if request.method == 'POST': AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] Prodrate=request.form['Prodrate'] FixedCost=request.form['FixedCost'] AnnHoldingcost=request.form['AnnHoldingcost'] UnitCost=request.form['UnitCost'] LeadTime=request.form['LeadTime'] SafetyStock=request.form['SafetyStock'] AnnulaUnitsDemand=int(AnnulaUnitsDemand) Prodrate=int(Prodrate) FixedCost=int(FixedCost) AnnHoldingcost=float(AnnHoldingcost) UnitCost=int(UnitCost) LeadTime=int(LeadTime) SafetyStock=int(SafetyStock) if(Prodrate<=AnnulaUnitsDemand): return render_template('eproduction.html',warning='Production date should not be least than Annual Demand', AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,Prodrate=Prodrate, LeadTime=LeadTime,SafetyStock=SafetyStock ) pgap=round((1-(AnnulaUnitsDemand/Prodrate)),2) HoldingCost=float(AnnHoldingcost*UnitCost) EOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))),2) REOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost*pgap))),0) totOrderCost=round((FixedCost*AnnulaUnitsDemand/EOQ),2) totHoldCost=round(((HoldingCost*EOQ*pgap)/2),2) TotalCost=round((totOrderCost+totHoldCost),2) NumOrders=round((AnnulaUnitsDemand/EOQ),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) count=EOQ*.75 qtylist1=[] hclist=[] sclist=[] mtlist=[] tclist=[] while (count < EOQ): qtylist1.append(int(count)) hclist.append(round((count/2*HoldingCost*pgap),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round(((count/2*HoldingCost*pgap+AnnulaUnitsDemand/count*FixedCost)),2)) count +=2 qtylist1.append(EOQ) hclist.append(totHoldCost) sclist.append(totOrderCost) tclist.append(totOrderCost+totHoldCost) while (count < (EOQ*1.7)): qtylist1.append(int(count)) hclist.append(round((count/2*HoldingCost*pgap),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) tclist.append(round(((count/2*HoldingCost*pgap+AnnulaUnitsDemand/count*FixedCost)),2)) count +=2 val=0 for i in range(len(tclist)): if(EOQ==qtylist1[i]): val=i return render_template('eproduction.html',NumOrders=NumOrders,OrderTime=OrderTime, ReorderPoint=ReorderPoint,HoldCost=totHoldCost,TotalCost=TotalCost, EOQ=EOQ,REOQ=REOQ, sclist=sclist,hclist=hclist,tclist=tclist,val=val,qtylist1=qtylist1, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,Prodrate=Prodrate, LeadTime=LeadTime,SafetyStock=SafetyStock ) ######################EEEEppppppppppQQQQQQ############ ######################EEEEppppppppppQQQQQQ############ @app.route('/eoq_backorders', methods=['GET','POST']) def eoq_backorders(): AnnulaUnitsDemand=12000 shortcost=1.1 FixedCost=8000 AnnHoldingcost=0.3 UnitCost=1 LeadTime=10 SafetyStock=100 if request.method == 'POST': AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] shortcost=request.form['shortcost'] FixedCost=request.form['FixedCost'] AnnHoldingcost=request.form['AnnHoldingcost'] UnitCost=request.form['UnitCost'] LeadTime=request.form['LeadTime'] SafetyStock=request.form['SafetyStock'] AnnulaUnitsDemand=int(AnnulaUnitsDemand) shortcost=int(shortcost) FixedCost=int(FixedCost) AnnHoldingcost=float(AnnHoldingcost) UnitCost=int(UnitCost) LeadTime=int(LeadTime) SafetyStock=int(SafetyStock) HoldingCost=float(AnnHoldingcost*UnitCost) sgap=(shortcost+HoldingCost)/shortcost EOQ=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/HoldingCost))*(math.sqrt(sgap)),2) REOQ=round(math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost)*sgap),0) totbackorder=EOQ*(HoldingCost/(shortcost+HoldingCost)) totOrderCost=round(((FixedCost*AnnulaUnitsDemand)/EOQ),2) totHoldCost=round(((HoldingCost*((EOQ-totbackorder)**2))/(2*EOQ)),2) totshortcost=round((shortcost*(totbackorder**2)/(2*EOQ)),2) TotalCost=round((totOrderCost+totHoldCost+totshortcost),2) NumOrders=round((AnnulaUnitsDemand/EOQ),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) count= EOQ*.75 qtylist1=[] hclist=[] sclist=[] mtlist=[] shlist=[] tclist=[] while (count < EOQ): qtylist1.append(int((count))) hclist.append(round(((HoldingCost*((count-totbackorder)**2))/(2*count)),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) shlist.append(round((shortcost*((totbackorder)**2)/(2*count)),2)) tclist.append(round(((((HoldingCost*((count-totbackorder)**2))/(2*count))+AnnulaUnitsDemand/count*FixedCost)+shortcost*((totbackorder)**2)/(2*count)),2)) count +=2 qtylist1.append(EOQ) hclist.append(totHoldCost) sclist.append(totOrderCost) shlist.append(totshortcost) tclist.append(totOrderCost+totshortcost+totHoldCost) while (count < (EOQ*1.7)): qtylist1.append(int((count))) hclist.append(round(((HoldingCost*((count-totbackorder)**2))/(2*count)),2)) sclist.append(round((AnnulaUnitsDemand/count*FixedCost),2)) mtlist.append(round((AnnulaUnitsDemand*UnitCost),2)) shlist.append(round((shortcost*((totbackorder)**2)/(2*count)),2)) tclist.append(round(((((HoldingCost*((count-totbackorder)**2))/(2*count))+AnnulaUnitsDemand/count*FixedCost)+shortcost*((totbackorder)**2)/(2*count)),2)) count +=2 val=0 for i in range(len(tclist)): if(EOQ==qtylist1[i]): val=i return render_template('eoq_backorders.html',NumOrders=NumOrders,OrderTime=OrderTime, ReorderPoint=ReorderPoint,HoldCost=totHoldCost,TotalCost=TotalCost, EOQ=EOQ,REOQ=REOQ, shlist=shlist,sclist=sclist,hclist=hclist,tclist=tclist,val=val,qtylist1=qtylist1, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,shortcost=shortcost, LeadTime=LeadTime,SafetyStock=SafetyStock) #################pbreak###################### @app.route("/pbreak_insert", methods=['GET','POST']) def pbreak_insert(): if request.method == 'POST': quantity = request.form.getlist("quantity[]") price = request.form.getlist("price[]") conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curr = conn.cursor() curr.execute("CREATE TABLE IF NOT EXISTS `pbreaktable` (quantity int(8),price int(8))") curr.execute("DELETE FROM `pbreaktable`") conn.commit() say=1 for i in range(len(quantity)): quantity_clean = quantity[i] price_clean = price[i] if quantity_clean and price_clean: curr.execute("INSERT INTO `pbreaktable`(`quantity`,`price`) VALUES('"+quantity_clean+"','"+price_clean+"')") conn.commit() else: say=0 if say==0: message="Some values were not inserted!" else: message="All values were inserted!" return(message) @app.route('/view', methods=['GET','POST']) def view(): if request.method == 'POST': conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curr = conn.cursor() curr.execute("SELECT * FROM `pbreaktable`") res = curr.fetchall() ress=pd.DataFrame(res) return render_template('pbrk.html',username=username,ress =ress.to_html()) @app.route('/pbreakcalculate', methods=['GET','POST']) def pbreakcalculate(): AnnulaUnitsDemand=10 FixedCost=1 AnnHoldingcost=0.1 UnitCost=445 LeadTime=10 SafetyStock=100 if request.method == 'POST': if request.form['AnnulaUnitsDemand']: AnnulaUnitsDemand= request.form['AnnulaUnitsDemand'] AnnulaUnitsDemand=float(AnnulaUnitsDemand) if request.form['FixedCost']: FixedCost=request.form['FixedCost'] FixedCost=float(FixedCost) if request.form['AnnHoldingcost']: AnnHoldingcost=request.form['AnnHoldingcost'] AnnHoldingcost=float(AnnHoldingcost) conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) curr = conn.cursor() curr.execute("SELECT * FROM `pbreaktable`") res = curr.fetchall() ress=pd.DataFrame(res) conn.close() datatable=pd.DataFrame(columns=['Quantity','Price','EOQ','TotalCost']) mainlist=[] Qu=ress['quantity'] Qm=0 for index, i in ress.iterrows(): tcl=[] quantity = i['quantity'] price = i['price'] HoldingCost1=AnnHoldingcost*price eoq1=round((math.sqrt((2*AnnulaUnitsDemand*FixedCost)/(HoldingCost1))),2) REOQ=round(eoq1,0) totOrderCost1=round((FixedCost*AnnulaUnitsDemand/eoq1),2) totHoldCost1=round(((HoldingCost1*eoq1)/2),2) totalcost1=float(round((totOrderCost1+totHoldCost1),2)) lst=[quantity,price,eoq1,totalcost1] a=pd.DataFrame(lst).T a.columns=['Quantity','Price','EOQ','TotalCost'] datatable=pd.concat([datatable,a],ignore_index=True) name='TotalCost (Price='+str(a['Price'][0])+')' tcl.append(name) Qmin=1 Qmax=Qu[Qm] qtylist2=[] tclist1=[] while (Qmin < Qmax): qtylist2.append(Qmin) tclist1.append(round((Qmin/2*totHoldCost1+AnnulaUnitsDemand/Qmin*FixedCost),2)) Qmin +=2 Qmin=Qmax+1 qtylist2.append(eoq1) tclist1.append(totalcost1) tcl.append(tclist1) mainlist.append(tcl) Eu=datatable['EOQ'] Qu=datatable['Quantity'] Tu=datatable['TotalCost'] minlst=[] for i in range(len(Eu)): if i ==0: if Eu[i]<=Qu[i]: minlst.append(i) else: if Eu[i]<=Qu[i] and Eu[i]>Qu[i-1]: minlst.append(i) if len(minlst)==0: minnval='Solution not feasible' else: minval=Tu[minlst[0]] minnval=Eu[minlst[0]] for j in minlst: if Tu[j]<minval: minval=Tu[j] minnval=Eu[j] val1=0 for i in range(len(tclist1)): if (round(minnval))==qtylist2[i]: val1=i minival=round(minval) minnival=round(minnval) NumOrders=round((AnnulaUnitsDemand/minnval),2) OrderTime=round((365/NumOrders),2) ReorderPoint=round((((AnnulaUnitsDemand/365)*LeadTime)+SafetyStock),0) return render_template('pbreak.html', NumOrders=NumOrders,OrderTime=OrderTime,REOQ=REOQ,ReorderPoint=ReorderPoint, AnnulaUnitsDemand=AnnulaUnitsDemand,FixedCost=FixedCost, AnnHoldingcost=AnnHoldingcost,UnitCost=UnitCost,LeadTime=LeadTime, SafetyStock=SafetyStock,minnval=minnval,minval=minval,minival=minival,minnival=minnival, datatable=datatable.to_html(index=False),mainlist=mainlist, val1=val1,tclist1=tclist1,qtylist2=qtylist2) #################Demand problalstic###################### @app.route('/demand', methods=['GET', 'POST']) def demand(): cost=10 price=12 salvage=2 if request.method == 'POST': cost=request.form['cost'] price=request.form['price'] salvage=request.form['salvage'] cost=int(cost) price=int(price) salvage=int(salvage) data=pd.read_csv(localpath+"\\Demand.csv") data = pd.DataFrame(data) cdf=[] sum=0 for row in data['Prob']: sum=sum+row cdf.append(sum) cumm_freq=(pd.DataFrame(cdf)).values##y-axis overcost=cost-salvage undercost=price-cost CSl=undercost/(undercost+overcost) k=[row>CSl for row in cumm_freq] count=1 for row in k: if row==False: count=count+1 demand=(data['Demand']).values w=data['Demand'].loc[count]##line across x-axis val=0 for i in range(len(cumm_freq)): if(w==demand[i]): val=i return render_template('demand.html',cost=cost,price=price,salvage=salvage, cumm_freq=cumm_freq,demand=demand,val=val) @app.route('/normal', methods=['GET', 'POST']) def normal(): cost=10 price=12 salvage=9 sd=2 if request.method == 'POST': cost=request.form['cost'] price=request.form['price'] salvage=request.form['salvage'] cost=int(cost) price=int(price) salvage=int(salvage) data=pd.read_csv(localpath+"\\Demand.csv") data = pd.DataFrame(data) overcost1=cost-salvage undercost1=price-cost CSl=undercost1/(undercost1+overcost1) zz=st.norm.ppf(CSl)##x-line z=float(format(zz, '.2f')) # Expecteddemand=round(mea+(z*sd)) mean = 0; sd = 1; variance = np.square(sd) x = np.arange(-4,4,.01)##x-axis f =(np.exp(-np.square(x-mean)/2*variance)/(np.sqrt(2*np.pi*variance)))##y-axis val=0 for i in range(len(f)): if(z==round((x[i]),2)): val=i return render_template('normal.html',x=x,f=f,val=val,cost=cost,price=price,salvage=salvage) @app.route('/utype', methods=['GET','POST']) def utype(): cost=10 price=12 salvage=2 mini=1 maxi=10 if request.method == 'POST': cost=request.form['cost'] price=request.form['price'] salvage=request.form['salvage'] mini=request.form['mini'] maxi=request.form['maxi'] cost=int(cost) price=int(price) salvage=int(salvage) mini=int(mini) maxi=int(maxi) data=pd.read_csv(localpath+"\\Demand.csv") data = pd.DataFrame(data) overcost=cost-salvage undercost=price-cost CSl=undercost/(undercost+overcost) expdemand1=round(mini+((maxi-mini)*CSl)) # a=[mini,0] # b=[mini,100] # c=[maxi,0] # d=[maxi,100] # width = c[0] - b[0] # height = d[1] - a[1] lims = np.arange(0,maxi,1) val=0 for i in range(len(lims)): if(expdemand1==lims[i]): val=i return render_template('utype.html',x=lims,f=lims,val=val,cost=cost,price=price,salvage=salvage,mini=mini,maxi=maxi) @app.route('/outputx', methods=['GET', 'POST']) def outputx(): conn = pymysql.connect(host='localhost',user='root',password='',db='inventory_classification',charset='utf8mb4',cursorclass=pymysql.cursors.DictCursor) cur = conn.cursor() cur.execute("SELECT * FROM `abc`") all_data = cur.fetchall() all_data = pd.DataFrame(all_data) A_ccat=.8 B_ccat=.95 A_ucat=.1 B_ucat=.25 tot_cost=all_data['Cost'].sum() tot_usage=all_data['Annual Usage'].sum() all_data['perc_cost']=all_data['Cost']/tot_cost all_data['perc_usage']=all_data['Annual Usage']/tot_usage all_data.sort_values(by=['perc_cost'], inplace=True, ascending=False) sort_data=all_data.reset_index() sort_data['cum_cperc']=np.nan sort_data['cum_uperc']=np.nan sort_data['Class']='' for i in range(len(sort_data)): if(i==0): sort_data.set_value(i, 'cum_cperc', sort_data['perc_cost'][i]) sort_data.set_value(i, 'cum_uperc', sort_data['perc_usage'][i]) # cperc_data.append(all_data['perc_cost'][i]) sort_data.set_value(i,'Class','A') else: sort_data.set_value(i, 'cum_cperc', sort_data['perc_cost'][i]+sort_data['cum_cperc'][i-1]) sort_data.set_value(i, 'cum_uperc', sort_data['perc_usage'][i]+sort_data['cum_uperc'][i-1]) if(sort_data['cum_cperc'][i]<=A_ccat and sort_data['cum_uperc'][i]<=A_ucat): sort_data.set_value(i,'Class','A') elif(sort_data['cum_cperc'][i]<=B_ccat and sort_data['cum_uperc'][i]<=B_ucat): sort_data.set_value(i,'Class','B') else: sort_data.set_value(i,'Class','C') x7=sort_data[['cum_cperc']] x1=x7*100 x3=np.round(x1) x2=np.array([]) x5 = np.append(x2,x3) y7= sort_data[['cum_uperc']] y1=y7*100 y3=np.round(y1) y2=np.array([]) y5 = np.append(y2,y3) ###############% of Total cost// a= sort_data[(sort_data['Class']=='A')][['perc_cost']] j=a.sum() k=j*100 pd.DataFrame(k) kf=k[0] b= sort_data[(sort_data['Class']=='B')][['perc_cost']] n=b.sum() m=n*100 pd.DataFrame(m) mf=m[0] c= sort_data[(sort_data['Class']=='C')][['perc_cost']] o=c.sum() p=o*100 pd.DataFrame(p) pf=p[0] tes=k,m,p t2 = np.array([]) te2 = np.append(t2,tes) ###################Items // Annual Usage # z=sort_data[['Product number']] # z1=z.sum() f= sort_data[(sort_data['Class']=='A')][['Product number']] v=f.sum() pd.DataFrame(v) vif=v[0] f1= sort_data[(sort_data['Class']=='B')][['Product number']] u=f1.sum() pd.DataFrame(u) uif=u[0] f2= sort_data[(sort_data['Class']=='C')][['Product number']] vf=f2.sum() pd.DataFrame(vf) kif=vf[0] #################% of Total units // Annual Usage t= sort_data[(sort_data['Class']=='A')][['perc_usage']] i=t.sum() p1=i*100 pd.DataFrame(p1) nf=p1[0] l= sort_data[(sort_data['Class']=='B')][['perc_usage']] t=l.sum() q1=t*100
pd.DataFrame(q1)
pandas.DataFrame
import json import pandas as pd from vvc.utils import json_utils def to_df(json_file): count_summary = {} time_summary = {} with open(json_file) as json_data: data = json.load(json_data) for frame_id, objects in data['frames'].items(): # Extract counts if frame_id not in count_summary: count_summary[frame_id] = {} for obj in objects['objects']: tag = obj['tag'] if tag not in count_summary[frame_id]: count_summary[frame_id][tag] = 0 count_summary[frame_id][tag] += 1 # Extract running time if frame_id not in time_summary: time_summary[frame_id] = {} for key, value in objects['timestamps'].items(): time_summary[frame_id][key] = value df = pd.DataFrame.from_dict(count_summary, orient='index') df = df.fillna(0) df = df.set_index(pd.to_numeric(df.index)) df = df.sort_index(kind='mergesort') df = df.reindex(sorted(df.columns), axis=1) exp = pd.DataFrame() # Set the values for each perspective for column in df.columns: for fb_side in ['front', 'back']: for lr_side in ['left', 'right']: tag = column # + '_' + fb_side + '_' + lr_side exp[tag] = df[column] exp = exp.sort_index(kind='mergesort') times =
pd.DataFrame.from_dict(time_summary, orient='index')
pandas.DataFrame.from_dict
import os import copy import numpy as np import pandas as pd import itertools from tqdm import tqdm from abc import ABC, abstractmethod from collections.abc import Iterable, Mapping from sklearn.model_selection import KFold, GroupKFold, StratifiedKFold from sklearn.preprocessing import LabelEncoder from sklearn.utils import shuffle from .stage_base import StageBase from .pipeline import Pipeline from ..models.model import ModelBase, PyTorchModel, SklearnModel, TensorFlowModel from .load_data import DataFrameLoaderStage from .preprocessing import PreprocessingStageBase from .training_stage import ModelTrainingStage, SupervisedTrainingContext from .evaluation_stage import EvaluationStage, SupervisedEvaluationContext from .prediction_stage import ModelPredictionStage, PredictionContext from ..utils.utils import get_sklearn_scoring_func, get_tensorflow_loss_func, get_torch_loss_func, get_any_scoring_func from ..log.logger import Logger class GenerateCVFoldsStage(StageBase): def __init__(self, strategy, strategy_args): super().__init__() self._strategy = strategy.lower() self._strategy_args = strategy_args @classmethod def _random_kfold(cls, data, args): if 'num_folds' not in args.keys(): raise ValueError("{} with 'random' strategy must provide a 'num_folds' strategy arg".format(type(cls).__name__)) if 'seed' not in args.keys(): raise ValueError("{} with 'random' strategy must provide a 'seed' strategy arg".format(type(cls).__name__)) kf = KFold(n_splits=args['num_folds'], shuffle=True, random_state=args['seed']) return [x for x in kf.split(data)] @classmethod def _random_grouped_kfold(cls, data, args): if 'num_folds' not in args.keys(): raise ValueError("{} with 'random_grouped' strategy must provide a 'num_folds' strategy arg".format(type(cls).__name__)) if 'seed' not in args.keys(): raise ValueError("{} with 'random_grouped' strategy must provide a 'seed' strategy arg".format(type(cls).__name__)) if 'group_by' not in args.keys(): raise ValueError("{} with 'random_grouped' strategy must provide a 'group_by' strategy arg".format(type(cls).__name__)) data = shuffle(data, random_state=args['seed']).reset_index(drop=True) # Shuffle the data first because GroupKFold doesn't support it group_le = LabelEncoder() groups = group_le.fit_transform(data[args['group_by']].values) Logger.getInst().info("Shuffling and grouping data in folds by column: {}, found {} groups".format(args['group_by'], len(group_le.classes_))) gkf = GroupKFold(n_splits=args['num_folds']) return [x for x in gkf.split(data, groups=groups)] @classmethod def _stratified_kfold(cls, data, args): if 'num_folds' not in args.keys(): raise ValueError("{} with 'stratified' strategy must provide a 'num_folds' strategy arg".format(type(cls).__name__)) if 'percentile_bins' not in args.keys() and 'bin_edges' not in args.keys(): raise ValueError("{} with 'stratified' strategy must provide either a 'percentile_bins' or 'bin_edges' strategy arg".format(type(cls).__name__)) if 'seed' not in args.keys(): Logger.getInst().info("{} with 'stratified' strategy can randomly shuffle the data if a 'seed' integer strategy arg is provided. No shuffling used".format(type(cls).__name__)) if 'stratify_on' not in args.keys(): raise ValueError("{} with 'stratified' strategy must provide a 'stratify_on' strategy arg".format(type(cls).__name__)) if 'seed' in args.keys(): skf = StratifiedKFold(n_splits=args['num_folds'], shuffle=True, random_state=args['seed']) else: skf = StratifiedKFold(n_splits=args['num_folds']) if 'percentile_bins' in args.keys(): y = pd.qcut(data[args['stratify_on']].argsort(kind='stable'), q=args['percentile_bins'], labels=range(args['percentile_bins'])).tolist() else: y = np.digitize(data[args['stratify_on']], bins=args['bin_edges']) return list(skf.split(data, y)) @classmethod def _stratified_grouped_kfold(cls, data, args): if 'num_folds' not in args.keys(): raise ValueError("{} with 'stratified_grouped' strategy must provide a 'num_folds' strategy arg".format(type(cls).__name__)) if 'percentile_bins' not in args.keys() and 'bin_edges' not in args.keys(): raise ValueError("{} with 'stratified_grouped' strategy must provide either a 'percentile_bins' or 'bin_edges' strategy arg".format(type(cls).__name__)) if 'seed' not in args.keys(): Logger.getInst().info("{} with 'stratified_grouped' strategy can randomly shuffle the data if a 'seed' integer strategy arg is provided. No shuffling used".format(type(cls).__name__)) if 'stratify_on' not in args.keys(): raise ValueError("{} with 'stratified_grouped' strategy must provide a 'stratify_on' strategy arg".format(type(cls).__name__)) if 'group_by' not in args.keys(): raise ValueError("{} with 'stratified_grouped' strategy must provide a 'group_by' strategy arg".format(type(cls).__name__)) group_le = LabelEncoder() groups = group_le.fit_transform(data[args['group_by']].values) grouped_data = data.groupby(by=groups, group_keys=True).mean() grouped_stratify_on =
pd.Series(data[args['stratify_on']])
pandas.Series
from functools import partial from pathlib import Path import multiprocessing import glob import tqdm import pandas as pd import numpy as np import torch import torchaudio # fastai2_audio # add flac to supported audio types import mimetypes mimetypes.types_map[".flac"] = "audio/flac" from fastai2_audio.core.all import get_audio_files from libreasr.lib.utils import sanitize_str PRINT_DROP = False def str2bool(v): if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("Boolean value expected.") def save(df, path, print_fun=print): df.to_csv(path, index=False) print_fun(f"df saved to {path}") def process_one(file, get_labels): rows = [] try: if file.suffix == ".m4a": raise Exception("no audio file") aud, sr = torchaudio.load(file) assert aud.size(0) >= 1 and aud.size(1) >= 1 xlen = int((aud.size(1) / float(sr)) * 1000.0) labels = get_labels(file, duration=xlen) for (xstart, spanlen, label, ylen) in labels: if ylen >= 2: bad = False else: bad = True if spanlen == -1: spanlen = xlen rows.append((str(file.absolute()), xstart, spanlen, label, ylen, sr, bad)) except Exception as e: pass finally: if len(rows) == 0: xstart, xlen, label, ylen, sr, bad = 0, 0, "", 0, -1, True rows.append((str(file.absolute()), xstart, xlen, label, ylen, sr, bad)) return rows if __name__ == "__main__": import argparse parser = argparse.ArgumentParser() parser.add_argument("path", type=str, help="path to the dataset") parser.add_argument( "dataset", type=str, help="which dataset: common-voice | tatoeba | tf-speech | librispeech | yt", ) parser.add_argument( "--workers", default=1, type=int, help="how many pool workers to create" ) parser.add_argument( "--block-size", default=2, type=int, help="in case of vtt format, how many sentences to collect together (min: 2)", ) parser.add_argument( "--save-every-pcent", default=5, type=int, help="save resulting df every N% of all files", ) parser.add_argument( "--print-every-pcent", default=5, type=int, help="print info every N% of all files", ) parser.add_argument( "--lang", default="en", type=str, help="language", ) parser.add_argument( "--out", default="asr-dataset.csv", type=str, help="name of the resulting csv file", ) parser.add_argument( "--soundfile", type=str2bool, const=True, default=False, nargs="?", help="use torchaudio soundfile implementation", ) args = parser.parse_args() if args.soundfile: torchaudio.set_audio_backend("soundfile") path = Path(args.path) dataset = args.dataset p = path save_path = path / args.out # create df # see if exists cols = [ "file", "xstart", "xlen", "label", "ylen", "sr", "bad", ] if save_path.exists(): df = pd.read_csv(save_path) print(f"> df restored from {save_path}") else: df = pd.DataFrame(columns=cols) print("> df NOT restored (not found?)") # grab all audio files files = get_audio_files(p) print("> raw files:", len(files)) # filter out files that are already in the df files = pd.Series([str(x) for x in files]) res = files.isin(df.file) files = [Path(x) for x in files[~res].tolist()] print("> filtered files:", len(files)) # get_labels for each dataset format if dataset == "common-voice": label_df = pd.read_csv(path / "validated.tsv", delimiter="\t") def get_labels(file, **kwargs): n = file.stem + ".mp3" l = label_df[label_df.path == n].sentence.iloc[0] return [(0, -1, l, len(l))] elif dataset == "tatoeba": fname = glob.glob(str(path) + "/dataset_*.csv")[0] label_df =
pd.read_csv(fname)
pandas.read_csv
""" <NAME> <EMAIL> <EMAIL> """ """ This is used to generate images containing data from a Slifer Lab NMR cooldown. The NMR analysis toolsuite produces a file called "global_analysis.csv" which this program needs in tandem with the raw DAQ .csv to form an image sequence that captures the cooldown datastream. """ import pandas, os, numpy, multiprocessing, numpy, time, matplotlib, sys from matplotlib import pyplot as plt sys.path.insert(1, '..') import variablenames # Sept 14 2020 data """ rootdir = "../datasets/sep_2020/data_record_9-14-2020/video/" flist = ['data_record_9-14-2020_abridged.csv', 'data_record_9-15-2020_abridged.csv'] daqdatafile = ["../datasets/sep_2020/rawdata/"+i for i in flist] csvdirectory = rootdir+"graph_data/" globalcsv = rootdir+"global_analysis.csv" globalcsv2 = rootdir+"global_analysis_2.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = rootdir+"saveme_9_14.csv" spline_df_location = rootdir+"spline_df_saved_9_14.csv" rawsig_ym, rawsig_YM = -4, 4 fitsub_xm, fitsub_XM = 32.4,33.4 fitsub_ym, fitsub_YM= -.2, 1.5 poor_fit_ym, poor_fit_YM = -1.6,-.8 """ # Dec 3 2020 Data rootdir = "../datasets/dec_2020/data_record_12-3-2020/" daqdatafile = '../datasets/dec_2020/rawdata/data_record_12-3-2020_abriged.csv' csvdirectory = rootdir+"graph_data/" globalcsv2 = rootdir+"global_analysis_2.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = rootdir+'saveme_12_3_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 32.55,33.45 fitsub_ym, fitsub_YM = -.4, .2 rawsig_ym, rawsig_YM = -2, 2 poor_fit_ym, poor_fit_YM = -1,1 # Dec 4 2020 Data """ rootdir = "../datasets/dec_2020/data_record_12-4-2020/analysis/polarization/" csvdirectory = rootdir+"graph_data/" globalcsv2 = rootdir+"global_analysis_2.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = rootdir+'saveme_12_4_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 32.55,33.45 fitsub_ym, fitsub_YM = -.075, .075 rawsig_ym, rawsig_YM = -2, 2 poor_fit_ym, poor_fit_YM = -1,1 """ # Dec 7 2020 """ rootdir = "../datasets/dec_2020/data_record_12-7-2020/analysis/Enhanced/" csvdirectory = rootdir+"graph_data/" globalcsv2 = rootdir+"global_analysis_2.csv" yfitsub = 'Fit 1 Subtraction' karlmethod = rootdir+'saveme_12_7_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 31.85,32.55 fitsub_ym, fitsub_YM = -.3, .2 rawsig_ym, rawsig_YM = -2, 2 poor_fit_ym, poor_fit_YM = -.6,-.1 """ # Dec 8 2020 """rootdir = "../datasets/dec_2020/data_record_12-8-2020/analysis/enhanced/" csvdirectory = rootdir+"graph_data/" globalcsv2 = rootdir+"global_analysis_2.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = rootdir+'saveme_12_8_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 212.45,212.94 fitsub_ym, fitsub_YM = -.01, .02 rawsig_ym, rawsig_YM = -.3, .3 poor_fit_ym, poor_fit_YM = -.018,-.01 """ # Dec 9 2020 """ rootdir = "../datasets/dec_2020/data_record_12-9-2020/video/" csvdirectory = rootdir+"graph_data/" globalcsv2 = rootdir+"global_analysis_2.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = rootdir+'saveme_12_9_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 212.45,212.94 fitsub_ym, fitsub_YM = -.01, .02 rawsig_ym, rawsig_YM = -.3, .3 poor_fit_ym, poor_fit_YM = -.018,-.01 poor_fit_ym, poor_fit_YM = -.005,-.03 """ # Dec 10 2020 data """ csvdirectory = "../datasets/dec_2020/data_record_12-10-2020/video_analysis/graph_data/" globalcsv2 = "../datasets/dec_2020/data_record_12-10-2020/video_analysis/global_analysis_2.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = 'datasets/2020_12_10/saveme_12_10_20.csv' spline_df_location = 'datasets/2020_12_10/spline_df.csv' fitsub_xm, fitsub_XM = 32.6,33.5 fitsub_ym, fitsub_YM = -.2, .25 rawsig_ym, rawsig_YM = -4, 3.5 poor_fit_ym, poor_fit_YM = -.5,0 """ # Dec 11 2020 data """ rootdir = "../datasets/dec_2020/data_record_12-11-2020/video/" daqdatafile = "../datasets/dec_2020/rawdata/data_record_12-11-2020_abridged.csv" csvdirectory = rootdir+"graph_data/" globalcsv = rootdir+"global_analysis.csv" globalcsv2 = rootdir+"global_analysis_2.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = rootdir+'saveme_12_9_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 32.6,33.5 fitsub_ym, fitsub_YM = -.2, .25 rawsig_ym, rawsig_YM = -4, 3.5 poor_fit_ym, poor_fit_YM = -.5,0 """ # Sept 12 2020 data """ rootdir = "../datasets/sep_2020/data_record_9-12-2020/video/" daqdatafile = "../datasets/sep_2020/rawdata/data_record_9-12-2020_abridged.csv" csvdirectory = rootdir+"graph_data/" globalcsv = rootdir+"global_analysis.csv" globalcsv2 = rootdir+"global_analysis_2.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = rootdir+'saveme_9_12_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 32.6,33.5 fitsub_ym, fitsub_YM = -.2, .25 rawsig_ym, rawsig_YM = -4, 3.5 poor_fit_ym, poor_fit_YM = -.5,.4 """ # Sept 11 2020 data """ rootdir = "../datasets/sep_2020/data_record_9-11-2020/video/" daqdatafile = ["../datasets/sep_2020/rawdata/data_record_9-11-2020_abridged.csv", "../datasets/sep_2020/rawdata/data_record_9-10-2020_abridged.csv"] csvdirectory = rootdir+"graph_data/" globalcsv = rootdir+"global_analysis.csv" globalcsv2 = rootdir+"global_analysis_2_redo.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = rootdir+'saveme_9_12_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 32.6,33.5 fitsub_ym, fitsub_YM = -.2, .25 rawsig_ym, rawsig_YM = -4, 3.5 poor_fit_ym, poor_fit_YM = -.5,.4 """ # Sept 12 2020 data #FOR TE FIXING """ rootdir = "../datasets/sep_2020/data_record_9-12-2020_old_analysis/TE/" daqdatafile = "../datasets/sep_2020/rawdata/data_record_9-12-2020_abridged.csv" csvdirectory = rootdir+"graph_data/" globalcsv = "../datasets/sep_2020/data_record_9-12-2020_old_analysis/TE/912_536pTE/global_analysis.csv" globalcsv2 = "../datasets/sep_2020/data_record_9-12-2020_old_analysis/TE/912_536pTE/global_analysis_with_extra_stuff.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = rootdir+'saveme_9_12_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 32.6,33.5 fitsub_ym, fitsub_YM = -.2, .25 rawsig_ym, rawsig_YM = -4, 3.5 poor_fit_ym, poor_fit_YM = -.5,.4 """ # Sept 11 2020 data """ rootdir = "../datasets/sep_2020/data_record_9-11-2020/video/" daqdatafile = "../datasets/sep_2020/rawdata/data_record_9-11-2020_abridged.csv" csvdirectory = rootdir+"graph_data/" globalcsv = rootdir+"global_analysis.csv" globalcsv2 = rootdir+"global_analysis_2.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = rootdir+'saveme_9_11_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 31.95,32.85 fitsub_ym, fitsub_YM = -.2, .25 rawsig_ym, rawsig_YM = -4, 3.5 poor_fit_ym, poor_fit_YM = -.5,.4 """ # Sept 13 2020 Dat """ rootdir = "../datasets/sep_2020/data_record_9-13-2020/video/" daqdatafile = "../datasets/sep_2020/rawdata/data_record_9-13-2020_abridged.csv" csvdirectory = rootdir+"graph_data/" globalcsv = rootdir+"global_analysis.csv" globalcsv2 = rootdir+"global_analysis_2.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = rootdir+'saveme_9_13_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 31.95,32.85 fitsub_ym, fitsub_YM = -.05, .5 rawsig_ym, rawsig_YM = -4, 3.5 poor_fit_ym, poor_fit_YM = -.5,.4 """ # Sept 15 2020 Data #enhanced """ rootdir = "../datasets/sep_2020/data_record_9-13-2020/video/" daqdatafile = ["../datasets/sep_2020/rawdata/data_record_9-15-2020_abridged.csv", "../datasets/sep_2020/rawdata/data_record_9-14-2020_abridged.csv"] csvdirectory = rootdir+"graph_data/" globalcsv = "../datasets/sep_2020/data_record_9-15-2020/video/global_analysis.csv" globalcsv2 = "../datasets/sep_2020/data_record_9-15-2020/video/global_analysis_long_fixed.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = rootdir+'saveme_9_13_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 31.95,32.85 fitsub_ym, fitsub_YM = -.05, .5 rawsig_ym, rawsig_YM = -4, 3.5 poor_fit_ym, poor_fit_YM = -.5,.4 """ # Sept 15 2020 Data #te """ rootdir = "../datasets/sep_2020/data_record_9-13-2020/video/" daqdatafile = ["../datasets/sep_2020/rawdata/data_record_9-15-2020_abridged.csv", "../datasets/sep_2020/rawdata/data_record_9-14-2020_abridged.csv"] csvdirectory = rootdir+"graph_data/" globalcsv = "../datasets/sep_2020/data_record_9-14-2020_old_analysis/700pte/7p_lab/global_analysis.csv" globalcsv2 = "../datasets/sep_2020/data_record_9-14-2020_old_analysis/700pte/7p_lab/global_analysis_long_fixed.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = rootdir+'saveme_9_13_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 31.95,32.85 fitsub_ym, fitsub_YM = -.05, .5 rawsig_ym, rawsig_YM = -4, 3.5 poor_fit_ym, poor_fit_YM = -.5,.4""" # Dec 10 2020 Data null """ rootdir = "../datasets/dec_2020/data_record_12-10-2020/Complete_analysis/null_pure/" daqdatafile = "../datasets/dec_2020/rawdata/data_record_12-10-2020_abridged.csv" csvdirectory = rootdir+"graph_data/" globalcsv = rootdir+"global_analysis.csv" globalcsv2 = rootdir+"global_analysis_2.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = rootdir+'saveme_12_10_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 32.6,33.5 fitsub_ym, fitsub_YM = -.2, .25 rawsig_ym, rawsig_YM = -4, 3.5 poor_fit_ym, poor_fit_YM = -.5,0 """ # Dec 10 2020 Data """ rootdir = "../datasets/dec_2020/data_record_12-10-2020/Complete_analysis/enhanced_pure/" daqdatafile = "../datasets/dec_2020/rawdata/data_record_12-10-2020_abridged.csv" csvdirectory = rootdir+"graph_data/" globalcsv = rootdir+"global_analysis.csv" globalcsv2 = rootdir+"global_analysis_2.csv" yfitsub = 'Third order Polynomial 0 Subtraction' karlmethod = rootdir+'saveme_12_10_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 32.6,33.5 fitsub_ym, fitsub_YM = -.2, .25 rawsig_ym, rawsig_YM = -4, 3.5 poor_fit_ym, poor_fit_YM = -.5,0 """ # Dec 11 2020 Data """ rootdir = "../datasets/dec_2020/data_record_12-11-2020/video/" daqdatafile = "../datasets/dec_2020/rawdata/data_record_12-11-2020_abridged.csv" csvdirectory = rootdir+"graph_data/" globalcsv = rootdir+"global_analysis.csv" globalcsv2 = rootdir+"global_analysis_2.csv" yfitsub = 'Fit 1 Subtraction' karlmethod = rootdir+'saveme_12_11_20.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 32.6,33.5 fitsub_ym, fitsub_YM = -.2, .25 rawsig_ym, rawsig_YM = -4, 3.5 poor_fit_ym, poor_fit_YM = -.5,0 """ # Dec 19 2019 Data """ rootdir = "../datasets/dec_2019/vme_data/data_record_12-19-2019/" daqdatafile = rootdir+"../rawdata/data_record_12-19-2019_abridged.csv" csvdirectory = rootdir+"Results/enhanced/graph_data/" globalcsv = rootdir+"enhanced_global_analysis.csv" globalcsv2 = rootdir+"global_analysis_2.csv" yfitsub = 'Fit 1 Subtraction' karlmethod = rootdir+'saveme_12_19_19.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 212.7,213.15 fitsub_ym, fitsub_YM = -.02, .04 rawsig_ym, rawsig_YM = -.2, .2 poor_fit_ym, poor_fit_YM = -.5,0 """ # Dec 21 2019 Data rootdir = "../datasets/dec_2019/vme_data/data_record_12-21-2019/" daqdatafile = rootdir+"../rawdata/data_record_12-21-2019_abridged.csv" csvdirectory = rootdir+"results/enhanced/graph_data/" globalcsv = rootdir+"enhanced_global_analysis.csv" globalcsv2 = rootdir+"global_analysis_2.csv" yfitsub = 'Fit 1 Subtraction' karlmethod = rootdir+'saveme_12_19_19.csv' spline_df_location = rootdir+'spline_df.csv' fitsub_xm, fitsub_XM = 211.7,212.5 fitsub_ym, fitsub_YM = -.02, .06 rawsig_ym, rawsig_YM = -.2, .2 poor_fit_ym, poor_fit_YM = -.5,0 dump = "../dump3/" thermistor1 ="CCS.F11 (K)" thermistor2 ="CCS.F10 (K)" thermistor3 ="CCX.T1 (K)" thermistor4 ="CX.T2 (K)" NMR_Variable = "Diode Tune (V)" NMR_Tune = 'Phase Tune (V)' NMR_Performance_Metric = NMR_Variable#'IFOFF (V)' columns_to_absolutely_save = [thermistor1, NMR_Tune, NMR_Variable, thermistor2, thermistor3, "UCA Voltage (V)", "Mmwaves Frequency (GHz)", thermistor4] raw = "Potential (V)" x = "MHz" bl = "BL Potential (V)" def forkitindexer(filelist): """ Return a list of tuples of indecies that divide the passed list into almost equal slices """ p = int(8*multiprocessing.cpu_count()/10) lenset = len(filelist) modulus = int(lenset%p) floordiv = int(lenset/p) slicer = [[floordiv*i, floordiv*(i+1)] for i in range(p-1)] slicer.append([floordiv*(p-1), p*floordiv+int(modulus)-1]) return slicer def plotter(files, indexes, times, ga_fixed, id_num, deltas, timesteps, deltastime, tkbackend): deltasx = 'time' deltasy = 'sum' if tkbackend == 'on': pass elif tkbackend == 'off': matplotlib.use('Agg') s,f = indexes todo = files[s:f] timedeltas = [] for i, val in enumerate(todo): t1 = time.time() fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(16, 8), constrained_layout=True) fig.suptitle(str(times[s+i])) with open(csvdirectory+val, 'r') as f: df = pandas.read_csv(f) ss = ga_fixed.loc[times[s+i], 'sigstart'] sf = ga_fixed.loc[times[s+i], 'sigfinish'] signal_removed_df = df[(df[x]>ss) & (df[x]<sf)] ax[0,0].scatter(df[x], df[yfitsub], label='Fit Subtracted Signal', color='blue') ax[0,0].scatter(signal_removed_df[x], signal_removed_df[yfitsub], label='User Selected Region', color='red') ax[0,0].legend(loc='best') ax[0,0].set_title("Fit Subtracted Signal") ax[0,0].set_ylabel('Volts (V)') ax[0,0].set_xlabel('Frequency (MHz)') ax[0,0].set_ylim(fitsub_ym, fitsub_YM) ax[0,1].set_title('Temperature') ax[0,1].scatter(ga_fixed.index.tolist(), ga_fixed[thermistor2], color='red', label=thermistor2) ax[0,1].scatter(ga_fixed.index.tolist(), ga_fixed[thermistor3], color='orange', label=thermistor3) ax[0,1].scatter(ga_fixed.index.tolist(), ga_fixed[thermistor1], color='green', label=thermistor1) ax[0,1].scatter(ga_fixed.index.tolist(), ga_fixed[thermistor4], color='blue', label=thermistor4) ax[0,1].set_ylim(-.5, 7) ax[0,1].set_ylabel('Kelvin (K)') ax[0,1].set_xlabel('Time') ax[1,0].set_title("Raw Sweeps") ax[1,0].scatter(df[x], df[bl], label='Baseline', color='blue') ax[1,0].scatter(df[x], df[raw], label =''.join(list(val)[:-4]), color = 'red') ax[1,0].set_ylim(rawsig_ym, rawsig_YM) ax[1,0].set_ylabel('Volt') ax[1,0].set_xlabel('Frequency (MHz)') ax[1,1].scatter(ga_fixed.index.tolist(), ga_fixed['data_area'], color='green', label='Enhanced Data Area') ax[1,1].set_title("Data Area") #ax[1,1].set_ylim(-.025,.05) ax[1,1].scatter(timesteps[s+i], ga_fixed.loc[times[s+i], 'data_area'], color='magenta', label='Current sweep') ax[1,1].set_ylabel('Volt-Area') ax[1,1].set_xlabel('Time') ax[0,2].scatter(ga_fixed.index.tolist(), ga_fixed[NMR_Performance_Metric], label=NMR_Performance_Metric) ax[0,2].scatter(timesteps[s+i], ga_fixed.loc[times[s+i],NMR_Performance_Metric], color='magenta', label="Current Sweep") ax[0,2].grid(True) ax[0,2].legend(loc='best') ax[0,2].set_title("VME & Microwave Stuff") ax[0,2].set_ylabel('Volts (V)') ax[0,2].set_xlabel('Time') #ax[1,2].set_ylim(poor_fit_ym, poor_fit_YM) ax[1,2].scatter(deltastime, deltas[deltasy], label="Signal-Wing avg value") if timesteps[s+i] in deltastime: ax[1,2].scatter(timesteps[s+i], deltas.loc[times[s+i], deltasy], color='magenta', label="Current Sweep") ax[1,2].grid(True) ax[1,2].legend(loc='best') ax[1,2].set_title("Poor-fit indicator prototype") ax[1,2].set_xlabel('Time') ax[0,1].scatter(timesteps[s+i], ga_fixed.loc[times[s+i], thermistor2], color='magenta', label="Current Sweep") ax[0,1].scatter(timesteps[s+i], ga_fixed.loc[times[s+i], thermistor3], color='blue') ax[0,1].scatter(timesteps[s+i], ga_fixed.loc[times[s+i], thermistor1], color='magenta') ax[0,1].scatter(timesteps[s+i], ga_fixed.loc[times[s+i], thermistor4], color='magenta') ax[0,0].grid(True) ax[1,0].grid(True) ax[1,1].grid(True) ax[0,1].grid(True) ax[0,1].legend(loc='best') ax[0,0].legend(loc='best') ax[1,0].legend(loc='best') ax[1,1].legend(loc='best') plt.savefig(dump+str("{0:05d}".format(s+i))) plt.clf() plt.close('all') t2 = time.time() timedeltas.append(t2-t1) print('ID:', id_num, ":", (i+1), "of", len(todo), '['+str(round((i+1)*100/len(todo),4))+'%]', "ETA: ", round((len(todo)-(i+1))*numpy.mean(timedeltas),1), 's') def get_csv_files(): csvs = [] for root, dirs, files in os.walk(csvdirectory): for f in files: if f.endswith('.csv'): csvs.append(''.join(list(f)[:-4])) # removes suffixes return csvs def get_global_analysis(): with open(globalcsv2, 'r') as f: df = pandas.read_csv(f) name = 'name' # Set the indexer as the user-defined name of the analyzed instance # which reflects the file names gotten in the function get_csv_files() dffixed = df.set_index(name) return dffixed def sync_timestamps_with_csv_filenames(dffixed, csvs): timesteps = [] keys = [] for i, index in enumerate(csvs): try: timesteps.append(dffixed.loc[index, 'time']) keys.append(index+'.csv') except KeyError as e: print("Key error", e, "file exists, but no entry in global analysis.") continue corrected_DF = pandas.DataFrame(dict(zip(['keys', 'time'],[keys, timesteps]))) sorted_df = corrected_DF.sort_values(by='time') return sorted_df def cutter(ga_csv, sorted_df, tolerance): import cutter as cutter2 minn = -.3 maxx=-.23 deltasx = 'time' deltasy = 'sum' deltasmin = 'spline min' deltasmax = 'spline max' edited = input("do you need to subsect (CUT) the data? [Y/N]: ") edited = True if edited.upper() == 'Y' else False if edited: try: with open(spline_df_location, 'r') as f: deltas = pandas.read_csv(f) except: deltas = cutter2.main(tolerance=tolerance, neededpath=karlmethod, global_analysis=globalcsv2) with open(spline_df_location, 'w') as f: deltas.to_csv(f) else: with open(karlmethod, 'r') as f: deltas = pandas.read_csv(f) deltas = deltas.sort_values(by=deltasx) deltas[deltasx] = pandas.to_datetime(deltas[deltasx],format="%Y-%m-%d %H:%M:%S") ga_csv['time'] = pandas.to_datetime(ga_csv['time'], format="%Y-%m-%d %H:%M:%S") asd = columns_to_absolutely_save for i in asd: ga_csv[i] = pandas.to_numeric(ga_csv[i], errors='coerce') ga_csv.replace(to_replace='Off\n', value=dict(zip(asd,[numpy.nan for a in asd])), inplace=True) ga_csv.replace(to_replace='Off', value=dict(zip(asd,[numpy.nan for a in asd])), inplace=True) ga_csv = ga_csv.fillna(0) ga_csv = ga_csv.sort_values(by='time') # Sycronize indecies deltas = deltas.set_index(deltasx) ga_fixed = ga_csv.set_index('time') sorted_df['time'] = pandas.to_datetime(sorted_df['time'],format="%Y-%m-%d %H:%M:%S") sorted_df = sorted_df.set_index('time') # Merge the dataframes ga_fixed = ga_fixed.merge(deltas,left_index=True, right_index=True, how = 'right') #ga_fixed = ga_fixed.merge(sorted_df,left_index=True, right_index=False, how = 'right') ga_fixed = ga_fixed.join(sorted_df) # Take "Cuts" (in python/R/SQL language: take a subset based on VALUE critera) if edited: deltas =deltas[(deltas[deltasy]>deltas[deltasmin])&(deltas[deltasy]<deltas[deltasmax])] ga_fixed =ga_fixed[(ga_fixed[deltasy]>ga_fixed[deltasmin])&(ga_fixed[deltasy]<ga_fixed[deltasmax])] deltastime = deltas.index.tolist() timesteps = ga_fixed.index.tolist() sorted_df = pandas.DataFrame({'time':timesteps, 'keys':ga_fixed['keys'].to_list()}) trashlist = [] for index,value in enumerate(ga_fixed['keys']): try: trashlist.append(''.join(list(value)[:-4])) except: trashlist.append('') with open(rootdir+"global_analysis_cleaned.csv", 'w') as f: ga_fixed.to_csv(f, columns=[]) else: deltastime = deltas.index.tolist() timesteps = ga_fixed.index.tolist() return ga_fixed, deltas, timesteps, deltastime, sorted_df def fetch_df(path, delimiter=','): try: with open(path, 'r') as f: df = pandas.read_csv(f, delimiter=delimiter) return df except FileNotFoundError: print("Can not find path") def merger(primary_path:str, secondary_path:str, desired_columns:list, shared_column="time"): """ --> Primary path is the global analysis file produced by analyzing NMR spectra --> Secondary path is the raw-data file recorded by the DAQ. --> Desired columns is a list of columns that you want to MIGRATE from the raw-data file INTO the global analysis file. --> Shared column needs to be some form of timestamp. """ primary_df = fetch_df(primary_path) print(primary_df) primary_df[shared_column] =
pandas.to_datetime(primary_df[variablenames.vd_GA_timecol], format="%Y-%m-%d %H:%M:%S")
pandas.to_datetime
import numpy as np import pandas as pd import matplotlib.pyplot as plt import os import time from sklearn.model_selection import train_test_split import string import nltk from nltk.corpus import stopwords plt.style.use(style='seaborn') #%matplotlib inline df=pd.read_csv('all-data.csv',encoding = "ISO-8859-1") print(df.head()) y=df['Sentiment'].values x=df['News Headline'].values (x_train,x_test,y_train,y_test)=train_test_split(x,y,test_size=0.4) # Train df1=pd.DataFrame(x_train) df1=df1.rename(columns={0:'news'}) df2=pd.DataFrame(y_train) df2=df2.rename(columns={0:'sentiment'}) df_train=pd.concat([df1,df2],axis=1) print(df_train.head()) # Test df3=
pd.DataFrame(x_test)
pandas.DataFrame
"""Test the enrichment of the entire dataset, or specific clusters against gene ontologies associated with complexes""" import re import os import pandas as pd import numpy as np from collections import defaultdict from scipy import stats from utilities.database_map_and_filter import ortholog_map, uniprot_go_genes from utilities.statistical_tests import fischers_test, apply_oneway_anova from loguru import logger from GEN_Utils import FileHandling logger.info('Import OK') cluster_path = f'results/lysate_denaturation/clustering/clustered.xlsx' background_path = f'results/lysate_denaturation/normalised/normalised_summary.xlsx' ontology_path = 'results/lysate_denaturation/gene_ontology_datasets/go_term_summary.xlsx' size_path = 'results/lysate_denaturation/gene_ontology_datasets/size_summary.xlsx' output_folder = 'results/lysate_denaturation/go_enrichment/' resource_folder = 'resources/bioinformatics_databases/' if not os.path.exists(output_folder): os.makedirs(output_folder) # -----------------Read in standard components----------------- # clustered data clustered_data = pd.read_excel(f'{cluster_path}', sheet_name='summary') clustered_data.drop([col for col in clustered_data.columns.tolist() if 'Unnamed: ' in col], axis=1, inplace=True) # raw data as background background_genes = pd.read_excel(f'{background_path}', sheet_name='raw')['Proteins'].unique() # read in ontologies ontology_genes =
pd.read_excel(f'{ontology_path}')
pandas.read_excel
#can choose to import in global namespace from classes import INSTINCT_process,Split_process,SplitRun_process,Unify_process,INSTINCT_userprocess from getglobals import PARAMSET_GLOBALS from misc import get_param_names from .misc import file_peek,get_difftime import hashlib import pandas as pd import os from pipe_shapes import * from .pipe_shapes import * #custom modification of process to hash files (I use this for FormatFG and FormatGT) ############# #this will load in the attributes that are shared by both INSTINCT processes and jobs. class HashableFile: def getfilehash(self): if self.__class__.__name__=="FormatFG": path = PARAMSET_GLOBALS['project_root']+ "lib/user/Data/FileGroups/" + self.parameters['file_groupID'] elif self.__class__.__name__=="FormatGT": dirpath = PARAMSET_GLOBALS['project_root']+ "lib/user/Data/GroundTruth/"+self.parameters['signal_code'] path = dirpath + "/"+self.parameters['signal_code']+"_" + self.ports[0].parameters['file_groupID'] if not os.path.exists(path): #if GT file doesn't exist, create an empty file GT = pd.DataFrame(columns = ["StartTime","EndTime","LowFreq","HighFreq","StartFile","EndFile","label","Type","SignalCode"]) #import code #code.interact(local=locals()) os.makedirs(dirpath,exist_ok=True) GT.to_csv(path,index=False) def hashfile(path): buff_size = 65536 sha1 = hashlib.sha1() with open(path, 'rb') as f: while True: data = f.read(buff_size) if not data: break sha1.update(data) return sha1.hexdigest() ##### ####custom function to find the right decimation level from format FG. Usually just the port, but if it is looped, it won't be.. def find_decimation_level(obj,portnum): if obj.ports[portnum].__class__.__name__ == "CombineExtLoop": return obj.ports[portnum].ports[0].parameters['target_samp_rate'] else: return obj.ports[portnum].parameters['target_samp_rate'] class SplitED(Split_process,INSTINCT_process): outfile = 'FileGroupFormat.csv.gz' def run(self): inFile = self.ports[0].outfilegen() FG_dict = file_peek(inFile,fn_type = object,fp_type = object,st_type = object,\ dur_type = 'float64',comp_type = 'gzip') FG = pd.read_csv(inFile, dtype=FG_dict,compression='gzip') if self.splits == 1: FG.to_csv(self.outfilegen(),index=False,compression='gzip') else: row_counts = len(FG['DiffTime']) breaks = int(row_counts/self.splits) blist = numpy.repeat(range(0,self.splits),breaks) bdiff = row_counts - len(blist) extra = numpy.repeat(self.splits-1,bdiff) flist = list(blist.tolist() + extra.tolist()) FG.loc[[x==self.split_ID-1 for x in flist]].to_csv(self.outfilegen(),index=False,compression='gzip') class RunED(Split_process,SplitRun_process,INSTINCT_process): #need to define an outpath that is based on splitED... default goes off of last port. outfile = 'DETx.csv.gz' SplitInitial=SplitED def run(self): if 'verbose' in self.arguments: if self.arguments['verbose']=='y': verbose = 'y' else: verbose = 'n' else: verbose = 'n' #import code #code.interact(local=locals()) #param_names grandfathered in, should just have R parse dictionaries as a standard self.cmd_args=[PARAMSET_GLOBALS['SF_foc'] + "/" + find_decimation_level(self,0),self.outpath(),self.outpath(),\ os.path.basename(self.input().path),'1',self.arguments['cpu'],self.arguments['file_chunk_size'],verbose,\ 'method1',self.parameters['methodID'] + '-' + self.parameters['methodvers'],self.param_string,get_param_names(self.parameters)] #params self.run_cmd() #do this manually instead of using run_cmd to be compatible with prvs method #rework ED wrapper to work with python dict before reworking run_cmd to work with wrapper class EventDetector(Unify_process,INSTINCT_process): outfile = 'DETx.csv.gz' SplitRun = RunED def run(self): EDdict = {'StartTime': 'float64', 'EndTime': 'float64','LowFreq': 'float64', 'HighFreq': 'float64', 'StartFile': 'category','EndFile': 'category','ProcessTag': 'category'} dataframes = [None] * int(self.arguments['splits']) for k in range(int(self.arguments['splits'])): dataframes[k] = pd.read_csv(self.outpath() +'/DETx' + str(k+1) + "_" + self.arguments['splits'] + '.csv.gz',dtype=EDdict) ED = pd.concat(dataframes,ignore_index=True) ED['ProcessTag2']=ED.ProcessTag.str.split('_', 1).map(lambda x: x[0]) #determin PT changes statustest=[None]*len(ED['ProcessTag']) for n in range(len(ED['StartTime'])-1): statustest[n]=(ED['ProcessTag'][n]==ED['ProcessTag'][n+1]) #will need a catch in here for if this situation is not present chED= ED.loc[[x==False for x in statustest]] statustest2=[None]*len(chED['ProcessTag']) for n in range(len(chED['StartTime'])-1): statustest2[n]=(chED['ProcessTag2'].values[n]==chED['ProcessTag2'].values[n+1]) chED2= chED.loc[[x==True for x in statustest2]] indecesED = chED2.index.append(chED2.index+1) #import code #code.interact(local=locals()) if indecesED.empty: EDfin = ED[['StartTime','EndTime','LowFreq','HighFreq','StartFile','EndFile']] ED.to_csv(self.outfilegen(),index=False,compression='gzip') else: EDfin = ED.loc[indecesED._values] #reduce this to just file names to pass to Energy detector (FG style) FG_cols = ['FileName','FullPath','StartTime','Duration','DiffTime','Deployment','SegStart','SegDur'] FG_dict = {'FileName': 'string','FullPath': 'category', 'StartTime': 'string','Duration': 'float','Deployment':'string','SegStart':'float','SegDur':'float','DiffTime':'int'} #import code #code.interact(local=locals()) FG = pd.read_csv(self.ports[0].outpath() +'/FileGroupFormat.csv.gz', dtype=FG_dict, usecols=FG_cols) FG = FG[FG.DiffTime.isin(EDfin['ProcessTag2'].astype('int32'))&FG.FileName.isin(EDfin['StartFile'])] #subset based on both of these: if a long difftime, will only #take the relevant start files, but will also go shorter than two files in the case of longer segments. #recalculate difftime based on new files included. <- metacomment: not sure why we need to do this? FG['StartTime'] = pd.to_datetime(FG['StartTime'], format='%Y-%m-%d %H:%M:%S') FG = get_difftime(FG) #save FG FG.to_csv(self.outpath() + '/EDoutCorrect.csv.gz',index=False,compression='gzip') if 'verbose' in self.arguments: if self.arguments['verbose']=='y': verbose = 'y' else: verbose = 'n' else: verbose = 'n' #run second stage of EventDetector method self.cmd_args=[PARAMSET_GLOBALS['SF_foc'] + "/" + find_decimation_level(self,0),self.outpath(),self.outpath(),\ 'EDoutCorrect.csv.gz','2',self.arguments['cpu'],self.arguments['file_chunk_size'],verbose,\ 'method1',self.parameters['methodID'] + '-' + self.parameters['methodvers'],self.param_string,get_param_names(self.parameters)] self.process_ID = self.__class__.__name__ #needs to be specified here since it's a wrapper, otherwise assumed as class name self.run_cmd() ED = ED.drop(columns="ProcessTag") ED = ED.drop(columns="ProcessTag2") EDdict2 = {'StartTime': 'float64', 'EndTime': 'float64','LowFreq': 'float64', 'HighFreq': 'float64', 'StartFile': 'category','EndFile': 'category','DiffTime': 'int'} #now load in result, EDpatches = pd.read_csv(self.outpath()+'/DETx_int.csv.gz',dtype=EDdict2) PatchList = [None] * len(EDpatches['DiffTime'].unique().tolist()) for n in range(len(EDpatches['DiffTime'].unique().tolist())): nPatch = [EDpatches['DiffTime'].unique().tolist()[n]] EDpatchN=EDpatches.loc[EDpatches['DiffTime'].isin(nPatch),] FGpatch = FG[FG['DiffTime']==(n+1)] FirstFile = EDpatchN.iloc[[0]]['StartFile'].astype('string').iloc[0] LastFile = EDpatchN.iloc[[-1]]['StartFile'].astype('string').iloc[0] BeginRangeStart= FGpatch.iloc[0]['SegStart'] BeginRangeEnd = BeginRangeStart+FGpatch.iloc[0]['SegDur']/2 LastRangeStart= FGpatch.iloc[-1]['SegStart'] LastRangeEnd = LastRangeStart+FGpatch.iloc[-1]['SegDur']/2 EDpatchN = EDpatchN[((EDpatchN['StartTime'] > BeginRangeEnd) & (EDpatchN['StartFile'] == FirstFile)) | (EDpatchN['StartFile'] != FirstFile)] EDpatchN = EDpatchN[((EDpatchN['StartTime'] < LastRangeEnd) & (EDpatchN['StartFile'] == LastFile)) | (EDpatchN['StartFile'] != LastFile)] EDpatchN=EDpatchN.drop(columns="DiffTime") ED1 = ED.copy()[(ED['StartTime'] <= BeginRangeEnd) & (ED['StartFile'] == FirstFile)] #get all before patch ED2 = ED.copy()[(ED['StartTime'] >= LastRangeEnd) & (ED['StartFile'] == LastFile)] #get all after patch ED3 = ED.copy()[(ED['StartFile'] != FirstFile) & (ED['StartFile'] != LastFile)] ED = pd.concat([ED1,ED2,ED3],ignore_index=True) EDpNfiles = pd.Series(EDpatchN['StartFile'].append(EDpatchN['EndFile']).unique()) #switched to numpy array on an unknown condition, pd.Series forces it to stay this datatype. Needs testing FandLfile = [FirstFile,LastFile] internalFiles = EDpNfiles[EDpNfiles.isin(FandLfile)==False] if len(internalFiles)>0: #subset to remove internal files from patch from ED ED = ED[(ED.StartFile.isin(internalFiles)==False)&(ED.EndFile.isin(internalFiles)==False)] #here, subset all the detections within EDpatchN: find any sound files that are not start and end file, and remove them from ED #hint: isin to find files in EDpN, and isin to subset ED. #ED = ED[(ED.StartFile.isin(EDpatchN['StartFile'])==False) #save ED patch PatchList[n]=EDpatchN EDpatchsub = pd.concat(PatchList,ignore_index=True) #combine ED and EDpatch ED = pd.concat([EDpatchsub,ED],ignore_index=True) ED = ED.sort_values(['StartFile','StartTime'], ascending=[True,True]) os.remove(self.outpath() + '/DETx_int.csv.gz') os.remove(self.outpath() + '/EDoutCorrect.csv.gz') ED.to_csv(self.outfilegen(),index=False,compression='gzip') class SplitFE(Split_process,INSTINCT_process): outfile = 'DETx.csv.gz' def run(self): inFile = self.ports[0].outfilegen() DETdict = {'StartTime': 'float64', 'EndTime': 'float64','LowFreq': 'float64', 'HighFreq': 'float64', 'StartFile': 'category','EndFile': 'category'} DET =
pd.read_csv(inFile, dtype=DETdict,compression='gzip')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Tue Apr 9 12:44:52 2019 @author: Jarvis AQ Map fuctions libary for compter project """ #All the imports #pip install folium #pip install vincent #pip install mpld3 import folium from folium import plugins #needed to get plot in popup import vincent import json import datetime import time import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates import glob #for random data generator import random import math import codecs #get AQ Fuctios import sys from folium.plugins import TimestampedGeoJson #color bars import branca.colormap as cm #import folium from folium import IFrame import os import mpld3 import csv sys.path.append("..") #Import varaibles in run from AQ_Plot_server directory #sys.path.append(sys.path[0][0:sys.path[0].find("AQ_run")]) #Import varaiblesif run from home directory import variables as V #IMport the file names, you dont want to type them out #set varables for all fuctions #colors used for the color bar and the data plots colors=["green","greenyellow","yellow","gold","orange","salmon","red","purple"] #get data def Walkdata(loc): try: #read the data df=pd.read_csv(loc,header=4,error_bad_lines=False,usecols=[0,1,2,3,4,5,6,7]) #df=pd.DataFrame({'time':data['time'] 'PM2':data['pm2'],'PM10':data['pm10'],'PM1':data['pm2'], 'RH':data['RH'],'lat':data['lat'],'lon':data['lon']}) # print("Data check 1",df.head(3)) df.index=pd.to_datetime(df.index,yearfirst=True) #for col in df.columns: # df[col].iloc(df[df[col]=="None"].index,col)=np.nan() df.set_index('time', inplace=True) # print(df.index) #print("Data check 2",df.head(3)) #read in info from csv with open(loc) as f: reader=csv.reader(f) info={} i=0 for row in reader: i=i+1 if i<5: # print("row",i) # print(row) rowinfo=rowinfo=list(filter(None,row[1:len(row)])) print(rowinfo) info[row[0]]=rowinfo if i==4: return df, info except Exception as e: print("Error in reading file ",loc," /n please check file") print('Error on line {}'.format(sys.exc_info()[-1].tb_lineno)) print(type(e)) print(e.args) # vectorized haversine function def gendist(data): """ Genrate the distance between two point and add them as a new row called dist """ earth_radius=6371 diffs=[] #reset indec, to get the number not time print("gen dist") # print(data["lat"].iloc[3]) for ind in range(0,len(data)): # print(ind) #if not first point and last point try: if ind != 0 and ind != len(data)-1: # print(data["lat"][ind]) lat1=data["lat"].iloc[ind] lat2=data["lat"].iloc[ind+1] lon1=data["lon"].iloc[ind] lon2=data["lon"].iloc[ind+1] lat1, lon1, lat2, lon2 = np.radians([lat1, lon1, lat2, lon2]) dlat=lat2-lat1 dlon=lon2-lon1 a = np.sin((dlat)/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin((dlon)/2.0)**2 diff=earth_radius * 2 * np.arcsin(np.sqrt(a))*1000 else: diff="nan" diffs.append(diff) except IndexError: diff="nan" diffs.append(diff) except Exception as e: print("Error in GPS distance, check columns names") print('Error on line {}'.format(sys.exc_info()[-1].tb_lineno)) print(type(e)) print(e.args) pass data.insert(len(data.columns),"dist",diffs,True) return data def Staticsitedate(df,val,location,m,locname): """ Plot static data, take in the data df, located the data in Geolocation from the file name and plot it """ #get date from name in the GPS data # print(df.head(5)) #plot the data as popup Goefol="Data//GeoLocations.csv" # Geolocs=pd.read_csv(Goefol,header=0,encoding = 'unicode_escape',error_bad_lines=False) with codecs.open(Goefol, "br",encoding="utf8", errors='ignore') as file: Geolocs = pd.read_table(file, delimiter=",") #Geolocs.set_index("Site") # print(Geolocs) #find the site information in the Geolocsation for i,ind in enumerate(Geolocs["Site"]): if ind==location: try: Lat=Geolocs["Lat"][i] lon=Geolocs["lon"][i] info={} info["Site"]=Geolocs["Site"][i] info["Sensor"]=Geolocs["Sensor"][i] info["start date"]=Geolocs["start date"][i] info["end date"]=Geolocs["end date"][i] info["Link"]=Geolocs["Link"][i] print("siteinfo",Lat,lon) except: print("Site infromation error") pass try: popup=plotdataPopInfo(df,val,info,locname) except: print("Popup error") popup=info["Site"] folium.Marker(location=[Lat,lon], popup=popup, #get icon and color based of mean value , of the first value icon=folium.Icon(color= genfill_color(df[val[0]].mean(),100)) ).add_to(m) print("Markger Generated") def Stationrydata(data): """ Fuction: Run through GPS data files, find stationry data cuts its of the old data. Then it run though the Stationry data to find if there are multiple statiory spots, if so it splits the stationory data into dic elements. """ print("-------------------------") print("plot Stationydata") print("-------------------------") #get dist data data=gendist(data) #get the date data=data[~data.duplicated(keep='first')] #print("Distance", data["dist"]) Statdata=pd.DataFrame(index=data.index,columns=data.columns) #create a stationy data frame arraynumber Statdata["StatGroup"]=0 #StaticDataGroups save=pd.DataFrame() # Nanlatlon=pd.DataFrame(index=data.index,columns=data.columns) #create a GPS error dataframe array #pDataFrame(columns=data.columns) a=0 #set an index for the save #loop through the data SG=0 #StatGroups try: for index,row in data.iterrows(): diff=row["dist"] # print(diff) if diff != "nan": if a==0: save=pd.DataFrame() # rec="on" if diff<5: #dict1.update() a=a+1 save[index]=row.T if a>5: #if 5 stationry points in row # print(Statdata.loc[index]) # print(row) if a==6: save=save.T save.index.name="time" #print(save) Statdata.loc[save.index]=save # print(Statdata.loc[save.index]) Statdata["StatGroup"]=SG else: row["StatGroup"]=SG # if (Statdata.loc[index])>1: Statdata.loc[index]=row.T else: SG+=1 a=0 #reset index print("Stationary Data") print(Statdata.head(4)) Newdata=Statdata[Statdata['dist'].notnull()] #cut the data from old array data=data[Statdata['dist'].isnull()] # checks # print("OldD",data.head(4)) # print("NewD",Newdata.head(4)) #of there is some still data #chaeck if Still data is close to one another in time #If it is split the data into diffrenct section Stilldic={} #dic to add the splits Satname="Sat" #place holdername Satgroups=Newdata.groupby("StatGroup") for group in Satgroups: print(group) print(Satname+"_"+str(group[0])) Stilldic[Satname+"_"+str(group[0])]=group[1] """ satnum=1 #set number to add to satname for diffrent station data sets saveindex=0 #set a index to deal with multiple silld save=Newdata.index[0] #place holder to get the function working for index,row in Newdata.iterrows(): if index != 0: timediff=divmod((index-save).total_seconds(),60) if timediff[1] >120: #if greater than 2 mins split #add to still data to dic Stilldic[Satname+str(satnum)]=pd.DataFrame(Newdata.ilox[saveindex:index]) satnum=satnum+1 #add to the satnum #save the index for next interval save=index if len(Stilldic) <1: # if there only 1 sill data, then add it to the dict. This is to make future code what loop through a dic easyer Stilldic[Satname]=Newdata """ print("Got GPS Stationy data") print("Still Dic") # print(Newdata.head(3)) except Exception as e: print("No stationry GPS data ") print('Error on line {}'.format(sys.exc_info()[-1].tb_lineno)) print(type(e)) print(e.args) Stilldic="ERROR" pass return Stilldic #color map def colormap(m,index,caption): """ Def a color map, need the map m, an array of colors with a matching index and caption for the name. """ CB= cm.StepColormap(colors, vmin=0,vmax=50,index=index, caption=caption ) m.add_child(CB) def genfill_color(val,ref): """ Generate colors for to fill cirles based on data values need a color lits and index defined before the use """ val=val/ref col="" try: if val <= 0.05: col=colors[0] elif (val >= 0.05 and val <0.1): col=colors[1] elif (val >0.1 and val <0.15): col=colors[2] elif (val >0.15 and val <0.20): col=colors[3] elif (val >= 0.20 and val <0.25): col=colors[4] elif (val >= 0.25 and val <0.3): col=colors[5] elif(val >=0.3 and val <0.4 ): col=colors[6] elif val>0.4: col=colors[7] return col except Exception as e: print("Error in genfill_color") print('Error on line {}'.format(sys.exc_info()[-1].tb_lineno)) print(type(e)) print(e.args) pass def GenPMCircles(data,val,group,outlinecolor): """ Generate walk map data as circles data, need data, the varaibles and the map group i.e for diffrent dates And an outlinecolor for """ data=data.dropna() try: for index,row in data.iterrows(): ref=100 folium.Circle(location=[row['lat'],row['lon']], radius=8, popup=("Time <br>"+str(index)+" "+val+"+:"+str(round(row[val],2))+"ug/m^2"+" Temp:"+str(round(row['DHT-T'],2))+"C"+" RH:"+str(round(row['DHT-RH'],1))+"(%)"), fill_color=genfill_color(row[val],ref), color=genfill_color(row[val],ref), fill_opacity=0.8, opacity=0.9, ).add_to(group) except Exception as e: print("-----------Error in GPS Data cirlce generation----------") print(val) print('Error on line {}'.format(sys.exc_info()[-1].tb_lineno)) print(type(e)) print(e.args) pass def DataCircle(df,lat, lon,group,val): """ Data circle fuction but this time iver with a data plot of mean data """ #generate data cirles with plots of the data or mean depending on length #print(df) try: if len(df)>1 and len(df)<10: #just plot mean data, too small for a time series popup="Mean <br> Time <br>"+str(min(df.index))+"_"+str(max(df.index))+"PM2.5:"+str(round(df[val[0]],2))+"ug/m^2"+" PM10:"+str(round(df[val[1]],2))+"ug/m^2" +" Temp:"+str(round(df['DHT-T'],2))+"C"+" RH:"+str(round(df['DHT-RH'],1))+"(%)" if "BinCount" in df.colomns: ref=1000 popup=popup+"Partical Count:"+str(round(df['BinCount'],2)) fill_color=genfill_color(df[val[0]],ref) else: fill_color=genfill_color(df[val[0]],100) df=df.mean() folium.Circle(location=[df['lat'],df['lon']], radius=8, fill_color=fill_color, color="grey", fill_opacity=0.8, opacity=0.9, ).add_to(group) else: #if more than 10 data points, plot the time series of the data folium.Circle(location=[lat,lon], popup=plotdataPop(df,val), radius=10, fill=True,color='black' ).add_to(group) except Exception as e: print("Error in GPS Data cirlce generation") print('Error on line {}'.format(sys.exc_info()[-1].tb_lineno)) print(type(e)) print(e.args) pass def DataMarker(df,val,lat, lon,group): folium.Marker(location=[lat,lon], popup=plotdataPop(df,val), icon=folium.Icon(color= genfill_color(df[val[0]].mean(),100)) ).add_to(group) def DataMarkerInfo(df,val,lat, lon,group,info,locname): #2019 data makrder # folium.Marker(location=[lat,lon], popup=plotdataPopInfo(df,[val],info,locname), icon=folium.Icon(color= genfill_color(df[val].mean(),100)) ).add_to(group) def plotdataPopInfo(df,vals,info,locname): """ Popup data ploter with information columns Takes in the data desired to plot, the varaibles and the infomration about the location and sensor for the popup returned the popup """ print("-------------------------") print("plot Popup") print("-------------------------") #def data beased on values figname="" df.index=pd.to_datetime(df.index) try: #df=df.copy() width=600#len(df.index) if width <500: #if there not much data, still make is big enoguh width=400 #if more values are wanted to be plotted, add fadding alpha=1 if len(vals) >1: alpha=0.8 fig, ax = plt.subplots(figsize=(8,4)) ax = df[vals].plot(ax=ax, legend=True, alpha=alpha) ax.set_ylabel('Mass concentration (uu g/m^3)') ax.set_xlabel('') # ax.xaxis.set_major_locator(mdates.MinuteLocator(interval=60*3)) #to get a tick every 6 hours #ax.format_xdata = plt.DateFormatter('%H:%M') ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M')) #optional formatting # ax.set_title(info["Site"]) ax.grid() #create a htlmfile for the plot date=
pd.to_datetime(df.index[0])
pandas.to_datetime
import numpy as np import pandas as pd from shapely.geometry import Point, Polygon, GeometryCollection import geopandas from geopandas import GeoDataFrame, GeoSeries, base, read_file, sjoin from pandas.util.testing import assert_frame_equal import pytest @pytest.fixture() def dfs(request): polys1 = GeoSeries( [ Polygon([(0, 0), (5, 0), (5, 5), (0, 5)]), Polygon([(5, 5), (6, 5), (6, 6), (5, 6)]), Polygon([(6, 0), (9, 0), (9, 3), (6, 3)]), ] ) polys2 = GeoSeries( [ Polygon([(1, 1), (4, 1), (4, 4), (1, 4)]), Polygon([(4, 4), (7, 4), (7, 7), (4, 7)]), Polygon([(7, 7), (10, 7), (10, 10), (7, 10)]), ] ) df1 = GeoDataFrame({"geometry": polys1, "df1": [0, 1, 2]}) df2 = GeoDataFrame({"geometry": polys2, "df2": [3, 4, 5]}) if request.param == "string-index": df1.index = ["a", "b", "c"] df2.index = ["d", "e", "f"] if request.param == "named-index": df1.index.name = "df1_ix" df2.index.name = "df2_ix" if request.param == "multi-index": i1 = ["a", "b", "c"] i2 = ["d", "e", "f"] df1 = df1.set_index([i1, i2]) df2 = df2.set_index([i2, i1]) if request.param == "named-multi-index": i1 = ["a", "b", "c"] i2 = ["d", "e", "f"] df1 = df1.set_index([i1, i2]) df2 = df2.set_index([i2, i1]) df1.index.names = ["df1_ix1", "df1_ix2"] df2.index.names = ["df2_ix1", "df2_ix2"] # construction expected frames expected = {} part1 = df1.copy().reset_index().rename(columns={"index": "index_left"}) part2 = ( df2.copy() .iloc[[0, 1, 1, 2]] .reset_index() .rename(columns={"index": "index_right"}) ) part1["_merge"] = [0, 1, 2] part2["_merge"] = [0, 0, 1, 3] exp = pd.merge(part1, part2, on="_merge", how="outer") expected["intersects"] = exp.drop("_merge", axis=1).copy() part1 = df1.copy().reset_index().rename(columns={"index": "index_left"}) part2 = df2.copy().reset_index().rename(columns={"index": "index_right"}) part1["_merge"] = [0, 1, 2] part2["_merge"] = [0, 3, 3] exp = pd.merge(part1, part2, on="_merge", how="outer") expected["contains"] = exp.drop("_merge", axis=1).copy() part1["_merge"] = [0, 1, 2] part2["_merge"] = [3, 1, 3] exp = pd.merge(part1, part2, on="_merge", how="outer") expected["within"] = exp.drop("_merge", axis=1).copy() return [request.param, df1, df2, expected] @pytest.mark.skipif(not base.HAS_SINDEX, reason="Rtree absent, skipping") class TestSpatialJoin: @pytest.mark.parametrize("dfs", ["default-index", "string-index"], indirect=True) def test_crs_mismatch(self, dfs): index, df1, df2, expected = dfs df1.crs = {"init": "epsg:4326", "no_defs": True} with pytest.warns(UserWarning): sjoin(df1, df2) @pytest.mark.parametrize( "dfs", [ "default-index", "string-index", "named-index", "multi-index", "named-multi-index", ], indirect=True, ) @pytest.mark.parametrize("op", ["intersects", "contains", "within"]) def test_inner(self, op, dfs): index, df1, df2, expected = dfs res = sjoin(df1, df2, how="inner", op=op) exp = expected[op].dropna().copy() exp = exp.drop("geometry_y", axis=1).rename(columns={"geometry_x": "geometry"}) exp[["df1", "df2"]] = exp[["df1", "df2"]].astype("int64") if index == "default-index": exp[["index_left", "index_right"]] = exp[ ["index_left", "index_right"] ].astype("int64") if index == "named-index": exp[["df1_ix", "df2_ix"]] = exp[["df1_ix", "df2_ix"]].astype("int64") exp = exp.set_index("df1_ix").rename(columns={"df2_ix": "index_right"}) if index in ["default-index", "string-index"]: exp = exp.set_index("index_left") exp.index.name = None if index == "multi-index": exp = exp.set_index(["level_0_x", "level_1_x"]).rename( columns={"level_0_y": "index_right0", "level_1_y": "index_right1"} ) exp.index.names = df1.index.names if index == "named-multi-index": exp = exp.set_index(["df1_ix1", "df1_ix2"]).rename( columns={"df2_ix1": "index_right0", "df2_ix2": "index_right1"} ) exp.index.names = df1.index.names assert_frame_equal(res, exp) @pytest.mark.parametrize( "dfs", [ "default-index", "string-index", "named-index", "multi-index", "named-multi-index", ], indirect=True, ) @pytest.mark.parametrize("op", ["intersects", "contains", "within"]) def test_left(self, op, dfs): index, df1, df2, expected = dfs res = sjoin(df1, df2, how="left", op=op) if index in ["default-index", "string-index"]: exp = expected[op].dropna(subset=["index_left"]).copy() elif index == "named-index": exp = expected[op].dropna(subset=["df1_ix"]).copy() elif index == "multi-index": exp = expected[op].dropna(subset=["level_0_x"]).copy() elif index == "named-multi-index": exp = expected[op].dropna(subset=["df1_ix1"]).copy() exp = exp.drop("geometry_y", axis=1).rename(columns={"geometry_x": "geometry"}) exp["df1"] = exp["df1"].astype("int64") if index == "default-index": exp["index_left"] = exp["index_left"].astype("int64") # TODO: in result the dtype is object res["index_right"] = res["index_right"].astype(float) elif index == "named-index": exp[["df1_ix"]] = exp[["df1_ix"]].astype("int64") exp = exp.set_index("df1_ix").rename(columns={"df2_ix": "index_right"}) if index in ["default-index", "string-index"]: exp = exp.set_index("index_left") exp.index.name = None if index == "multi-index": exp = exp.set_index(["level_0_x", "level_1_x"]).rename( columns={"level_0_y": "index_right0", "level_1_y": "index_right1"} ) exp.index.names = df1.index.names if index == "named-multi-index": exp = exp.set_index(["df1_ix1", "df1_ix2"]).rename( columns={"df2_ix1": "index_right0", "df2_ix2": "index_right1"} ) exp.index.names = df1.index.names assert_frame_equal(res, exp) def test_empty_join(self): # Check empty joins polygons = geopandas.GeoDataFrame( { "col2": [1, 2], "geometry": [ Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]), Polygon([(1, 0), (2, 0), (2, 1), (1, 1)]), ], } ) not_in = geopandas.GeoDataFrame({"col1": [1], "geometry": [Point(-0.5, 0.5)]}) empty = sjoin(not_in, polygons, how="left", op="intersects") assert empty.index_right.isnull().all() empty = sjoin(not_in, polygons, how="right", op="intersects") assert empty.index_left.isnull().all() empty = sjoin(not_in, polygons, how="inner", op="intersects") assert empty.empty @pytest.mark.parametrize("dfs", ["default-index", "string-index"], indirect=True) def test_sjoin_invalid_args(self, dfs): index, df1, df2, expected = dfs with pytest.raises(ValueError, match="'left_df' should be GeoDataFrame"): sjoin(df1.geometry, df2) with pytest.raises(ValueError, match="'right_df' should be GeoDataFrame"): sjoin(df1, df2.geometry) @pytest.mark.parametrize( "dfs", [ "default-index", "string-index", "named-index", "multi-index", "named-multi-index", ], indirect=True, ) @pytest.mark.parametrize("op", ["intersects", "contains", "within"]) def test_right(self, op, dfs): index, df1, df2, expected = dfs res = sjoin(df1, df2, how="right", op=op) if index in ["default-index", "string-index"]: exp = expected[op].dropna(subset=["index_right"]).copy() elif index == "named-index": exp = expected[op].dropna(subset=["df2_ix"]).copy() elif index == "multi-index": exp = expected[op].dropna(subset=["level_0_y"]).copy() elif index == "named-multi-index": exp = expected[op].dropna(subset=["df2_ix1"]).copy() exp = exp.drop("geometry_x", axis=1).rename(columns={"geometry_y": "geometry"}) exp["df2"] = exp["df2"].astype("int64") if index == "default-index": exp["index_right"] = exp["index_right"].astype("int64") res["index_left"] = res["index_left"].astype(float) elif index == "named-index": exp[["df2_ix"]] = exp[["df2_ix"]].astype("int64") exp = exp.set_index("df2_ix").rename(columns={"df1_ix": "index_left"}) if index in ["default-index", "string-index"]: exp = exp.set_index("index_right") exp = exp.reindex(columns=res.columns) exp.index.name = None if index == "multi-index": exp = exp.set_index(["level_0_y", "level_1_y"]).rename( columns={"level_0_x": "index_left0", "level_1_x": "index_left1"} ) exp.index.names = df2.index.names if index == "named-multi-index": exp = exp.set_index(["df2_ix1", "df2_ix2"]).rename( columns={"df1_ix1": "index_left0", "df1_ix2": "index_left1"} ) exp.index.names = df2.index.names assert_frame_equal(res, exp, check_index_type=False) @pytest.mark.skipif(not base.HAS_SINDEX, reason="Rtree absent, skipping") class TestSpatialJoinNYBB: def setup_method(self): nybb_filename = geopandas.datasets.get_path("nybb") self.polydf = read_file(nybb_filename) self.crs = self.polydf.crs N = 20 b = [int(x) for x in self.polydf.total_bounds] self.pointdf = GeoDataFrame( [ {"geometry": Point(x, y), "pointattr1": x + y, "pointattr2": x - y} for x, y in zip( range(b[0], b[2], int((b[2] - b[0]) / N)), range(b[1], b[3], int((b[3] - b[1]) / N)), ) ], crs=self.crs, ) def test_geometry_name(self): # test sjoin is working with other geometry name polydf_original_geom_name = self.polydf.geometry.name self.polydf = self.polydf.rename(columns={"geometry": "new_geom"}).set_geometry( "new_geom" ) assert polydf_original_geom_name != self.polydf.geometry.name res = sjoin(self.polydf, self.pointdf, how="left") assert self.polydf.geometry.name == res.geometry.name def test_sjoin_left(self): df = sjoin(self.pointdf, self.polydf, how="left") assert df.shape == (21, 8) for i, row in df.iterrows(): assert row.geometry.type == "Point" assert "pointattr1" in df.columns assert "BoroCode" in df.columns def test_sjoin_right(self): # the inverse of left df = sjoin(self.pointdf, self.polydf, how="right") df2 = sjoin(self.polydf, self.pointdf, how="left") assert df.shape == (12, 8) assert df.shape == df2.shape for i, row in df.iterrows(): assert row.geometry.type == "MultiPolygon" for i, row in df2.iterrows(): assert row.geometry.type == "MultiPolygon" def test_sjoin_inner(self): df = sjoin(self.pointdf, self.polydf, how="inner") assert df.shape == (11, 8) def test_sjoin_op(self): # points within polygons df = sjoin(self.pointdf, self.polydf, how="left", op="within") assert df.shape == (21, 8) assert df.loc[1]["BoroName"] == "Staten Island" # points contain polygons? never happens so we should have nulls df = sjoin(self.pointdf, self.polydf, how="left", op="contains") assert df.shape == (21, 8) assert np.isnan(df.loc[1]["Shape_Area"]) def test_sjoin_bad_op(self): # AttributeError: 'Point' object has no attribute 'spandex' with pytest.raises(ValueError): sjoin(self.pointdf, self.polydf, how="left", op="spandex") def test_sjoin_duplicate_column_name(self): pointdf2 = self.pointdf.rename(columns={"pointattr1": "Shape_Area"}) df = sjoin(pointdf2, self.polydf, how="left") assert "Shape_Area_left" in df.columns assert "Shape_Area_right" in df.columns @pytest.mark.parametrize("how", ["left", "right", "inner"]) def test_sjoin_named_index(self, how): # original index names should be unchanged pointdf2 = self.pointdf.copy() pointdf2.index.name = "pointid" polydf = self.polydf.copy() polydf.index.name = "polyid" res = sjoin(pointdf2, polydf, how=how) assert pointdf2.index.name == "pointid" assert polydf.index.name == "polyid" # original index name should pass through to result if how == "right": assert res.index.name == "polyid" else: # how == "left", how == "inner" assert res.index.name == "pointid" def test_sjoin_values(self): # GH190 self.polydf.index = [1, 3, 4, 5, 6] df = sjoin(self.pointdf, self.polydf, how="left") assert df.shape == (21, 8) df = sjoin(self.polydf, self.pointdf, how="left") assert df.shape == (12, 8) @pytest.mark.xfail def test_no_overlapping_geometry(self): # Note: these tests are for correctly returning GeoDataFrame # when result of the join is empty df_inner = sjoin(self.pointdf.iloc[17:], self.polydf, how="inner") df_left = sjoin(self.pointdf.iloc[17:], self.polydf, how="left") df_right = sjoin(self.pointdf.iloc[17:], self.polydf, how="right") expected_inner_df = pd.concat( [ self.pointdf.iloc[:0],
pd.Series(name="index_right", dtype="int64")
pandas.Series
import argparse import os import logging from netCDF4 import Dataset import numpy as np import pandas as pd def nc2csv_obs_and_M(src_file_path, dst_dir): with Dataset(src_file_path) as nc: if not os.path.exists(dst_dir): os.mkdir(dst_dir) stations = nc.variables['station'][:] date = nc.variables['date'][:] id_list = [] for i in range(len(date)): for j in range(37): id = str(date[i])[:8] + '_' + '{:02d}'.format(j) id_list.append(id) ID =
pd.Series(data=id_list, name='Time')
pandas.Series
from __future__ import absolute_import, division, print_function import os import numpy as np import pandas as pd import nibabel as nib from scipy.stats import zscore, gaussian_kde from sklearn.decomposition import PCA from matplotlib import pyplot as plt from matplotlib.cm import ScalarMappable from matplotlib.colors import Normalize # Matoplotlib parameters for saving vector figures properly plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 plt.rcParams['svg.fonttype'] = 'none' __all__ = ["pearsonr_2d", "get_axis_coords", "Dataset"] # Small value added to some denominators to avoid zero division EPSILON = 1e-9 def pearsonr_2d(A, B): """Calculates row-wise Pearson's correlation between 2 2d-arrays Parameters ---------- A : 2d-array shape N x T B : 2d-array shape M x T Returns ------- R : 2d-array N x M shaped correlation matrix between all row combinations of A and B """ # Check if the 2 input arrays are 2d and have the same column number T if (A.ndim != 2) or (B.ndim) != 2: raise ValueError('A and B must be 2d numpy arrays.') if A.shape[1] != B.shape[1]: raise ValueError('A and B arrays must have the same shape.') # Subtract row-wise mean from input arrays A_mA = A - A.mean(1)[:, None] B_mB = B - B.mean(1)[:, None] # Sum of squares across rows ssA = (A_mA ** 2).sum(1) ssB = (B_mB ** 2).sum(1) # Finally get and return correlation coefficient numerator = np.dot(A_mA, B_mB.T) denominator = np.sqrt(np.dot(ssA[:, None], ssB[None])) + EPSILON return numerator / denominator def get_axis_coords(fig, ax): """Gets various coordinates of an axis within the figure space. Parameters ---------- fig : matplotlib figure object ax : matplotlib axis object Returns ------- coords : dictionary Contains the various coordinates: xmin, xmax, ymin, ymax, W (width), H (height), xcen (x center), ycen (ycenter) """ try: size_x, size_y = fig.get_size_inches() * fig.dpi except ValueError: print('fig must be a matplotlib figure object') try: box = ax.bbox except ValueError: print('ax must be a matplotlib axis object') xmin, xmax = box.xmin, box.xmax ymin, ymax = box.ymin, box.ymax x0 = xmin / size_x x1 = xmax / size_x y0 = ymin / size_y y1 = ymax / size_y width = x1 - x0 height = y1 - y0 xc = x0 + width / 2 yc = y0 + height / 2 coords = {'xmin': x0, 'xmax': x1, 'ymin': y0, 'ymax': y1, 'W': width, 'H': height, 'xcen': xc, 'ycen': yc} return coords class Dataset(object): """Class for generating carpet plot from fMRI data and fitting PCA to it""" def __init__(self, fmri_file, mask_file, output_dir): """ Initialize a Dataset object and import data. Parameters ---------- fmri_file : str Path to 4d (3d + time) functional MRI data in NIFTI format. mask_file : str Path to 3d mask in NIFTI format (e.g. cortical mask). Must have same coordinate space and data matrix as :fmri: output_dir : str Path to folder where results will be saved. If it doesn't exist, it's created. """ self.fmri_file = fmri_file self.mask_file = mask_file # Create output directory if it doesn't exist if not os.path.isdir(output_dir): try: os.mkdir(output_dir) except IOError: print("Could not create 'output_dir'") self.output_dir = output_dir print("\nInitialized Dataset object:") print(f"\tfMRI file: {fmri_file}") print(f"\tMask file: {mask_file}") print(f"\tOutput directory: {output_dir}") def import_data(self): """ Loads fMRI and mask data using nibabel. """ print("Reading data...") # Check if input files exist and try importing them with nibabel if os.path.isfile(self.fmri_file): try: fmri_nifti = nib.load(self.fmri_file) except IOError: print(f"Could not load {self.fmri_file} using nibabel.") print("Make sure it's a valid NIFTI file.") else: print(f"Could not find {self.fmri_file} file.") if os.path.isfile(self.mask_file): try: mask_nifti = nib.load(self.mask_file) except IOError: print(f"Could not load {self.mask_file} using nibabel.") print("Make sure it's a valid NIFTI file.") else: print(f"Could not find {self.mask_file} file.") # Ensure that data dimensions are correct data = fmri_nifti.get_fdata() mask = mask_nifti.get_fdata() print(f"\tfMRI data read: dimensions {data.shape}") print(f"\tMask read: dimensions {mask.shape}") if len(data.shape) != 4: raise ValueError('fMRI must be 4-dimensional!') if len(mask.shape) != 3: raise ValueError('Mask must be 3-dimensional!') if data.shape[:3] != mask.shape: raise ValueError('fMRI and mask must be in the same space!') # read data dimensions, header, and affine self.x, self.y, self.z, self.t = data.shape self.header = fmri_nifti.header self.affine = fmri_nifti.affine # store data and mask variables as object attributes self.data = data self.mask = mask return def get_carpet(self, tSNR_thresh=15.0, reorder_carpet=True, save_carpet=False): """ Makes a carpet matrix from fMRI data. A carpet is a 2d matrix shaped voxels x time which contains the normalized (z-score) BOLD-fMRI signal from within a mask Parameters ---------- tSNR_thresh : float or None Voxels with tSNR values below this threshold will be excluded. To deactivate set to None. Default: 15.0 reorder_carpet : boolean Whether to reorder carpet voxels according to their (decreasing) correlation with the global (mean across voxels) signal Default: True save_carpet : boolean Whether to save the carpet matrix in the output directory. The file might be large (possibly > 100MB depending on fMRI data and mask size). Default: False """ # compute fMRI data mean, std, and tSNR across time data_mean = self.data.mean(axis=-1, keepdims=True) data_std = self.data.std(axis=-1, keepdims=True) data_tsnr = data_mean / (data_std + EPSILON) # Mask fMRI data array with 'mask' # Also mask voxels below tSNR threshold (if given) mask = self.mask < 0.5 mask_4d = np.repeat(mask[:, :, :, np.newaxis], self.t, axis=3) tsnr_mask_4d = np.zeros(mask_4d.shape, dtype=bool) if tSNR_thresh is not None: tsnr_mask = data_tsnr.squeeze() < tSNR_thresh tsnr_mask_4d = np.repeat(tsnr_mask[:, :, :, np.newaxis], self.t, axis=3) data_masked = np.ma.masked_where(mask_4d | tsnr_mask_4d, self.data) # Reshape data in 2-d (voxels x time) data_2d = data_masked.reshape((-1, self.t)) print(f"fMRI data reshaped to voxels x time {data_2d.shape}.") # Get indices for non-masked rows (voxels) indices_valid = np.where(np.any(~np.ma.getmask(data_2d), axis=1))[0] print(f"{len(indices_valid)} voxels retained after masking.") # Keep only valid rows in carpet matrix carpet = data_2d[indices_valid, :].data print(f"Carpet matrix created with shape {carpet.shape}.") # Normalize carpet (z-score) carpet = zscore(carpet, axis=1) print("Carpet normalized to zero-mean unit-variance.") # Re-order carpet plot based on correlation with the global signal if reorder_carpet: gs = np.mean(carpet, axis=0) gs_corr = pearsonr_2d(carpet, gs.reshape((1, self.t))).flatten() sort_index = [int(i) for i in np.flip(np.argsort(gs_corr))] carpet = carpet[sort_index, :] print('Carpet reordered.') # Save carpet to npy file if save_carpet: np.save(os.path.join(self.output_dir, 'carpet.npy'), carpet) print("Carpet saved as 'carpet.npy'.") self.carpet = carpet return def fit_pca2carpet(self, save_pca_scores=False): """ Fits PCA to carpet matrix and saves the principal componens (PCs), the explained variance ratios, and optionally the PCA scores (PCA-tranformed carpet) Parameters ---------- save_pca_scores : boolean Whether to save the PCA scores (transformed carpet) in the output directory. The file might be large (possibly > 100MB depending on fMRI data and mask size). Default: False """ # Fit PCA model = PCA(whiten=True) pca_scores = model.fit_transform(self.carpet) self.pca_comps = model.components_ self.expl_var = model.explained_variance_ratio_ # Save results to npy files np.save(os.path.join(self.output_dir, 'PCs.npy'), self.pca_comps) np.save(os.path.join(self.output_dir, 'PCA_expl_var.npy'), self.expl_var) if save_pca_scores: np.save(os.path.join(self.output_dir, 'PCA_scores.npy'), pca_scores) print("PCA fit to carpet and results saved.") return def correlate_with_carpet(self, ncomp=5, flip_sign=True): """ Correlates the first ncomp principal components (PCs) with all carpet voxel time-series. Saves the correlation matrix. Parameters ---------- ncomp : int Number of PCA components to retain. These first PCs (fPCs) are correlated with all carpet voxels. Default: 5 flip_sign : boolean If True, an fPC (and its correlation values) will be sign-flipped when the median of its original correlation with carpet voxels is negative. This enforces the sign of the fPC to match the sign of the BOLD signal activity for most voxels. The sign-flipped fPCs are only used for downstream analysis and visualization (the saved PCA components and scores retain the original sign). Default: True """ # Assert that ncomp can be taken as integer try: self.ncomp = int(ncomp) except ValueError: print("'ncomp' must be an integer!") # Pass first ncomp PCs (fPCs) to pandas dataframe and save as csv comp_names = ['PC' + str(i + 1) for i in range(self.ncomp)] fPCs = pd.DataFrame(data=self.pca_comps.T[:, :self.ncomp], columns=comp_names) fPCs.to_csv(os.path.join(self.output_dir, 'fPCs.csv'), index=False) # Correlate fPCs with carpet matrix fPC_carpet_R = pearsonr_2d(self.carpet, fPCs.values.T) # Save correlation matrix (voxels x ncom) as npy np.save(os.path.join(self.output_dir, 'fPCs_carpet_corr.npy'), fPC_carpet_R) print(f"First {ncomp} PCs correlated with carpet.") # Construct table reporting various metrics for each fPC report =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np from datetime import datetime from multiprocessing import Pool from functools import partial from plots import * from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) ''' Notice: This computer software was prepared by Battelle Memorial Institute, hereinafter the Contractor, under Contract No. DE-AC05-76RL01830 with the Department of Energy (DOE). All rights in the computer software are reserved by DOE on behalf of the United States Government and the Contractor as provided in the Contract. You are authorized to use this computer software for Governmental purposes but it is not to be released or distributed to the public. NEITHER THE GOVERNMENT NOR THE CONTRACTOR MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. This notice including this sentence must appear on any copies of this computer software. ''' ''' This class implements repo centric methods. These metrics assume that the data is in the order id,created_at,type,actor.id,repo.id ''' ''' This method returns the distributon for the diffusion delay. Question #1 Inputs: DataFrame - Data eventType - A list of events to filter data on unit - Time unit for time differences, e.g. "s","d","h" metadata_file - CSV file with repo creation times. Otherwise use first repo observation as proxy for creation time. Output: A list (array) of deltas in days ''' def getRepoDiffusionDelay(df,eventType=None,unit='h',metadata_file = '', plot=False, saveData=False): if metadata_file != '': repo_metadata = pd.read_csv(metadata_file) repo_metadata = repo_metadata[['full_name_h','created_at']] repo_metadata['created_at'] = pd.to_datetime(repo_metadata['created_at']) #Standardize Time and Sort Dataframe df.columns = ['time','event','user','repo'] #Checks for specific event type, uses both Fork and WatchEvent if eventType is not None: df = df[df.event.isin(eventType)] df['time'] = pd.to_datetime(df['time']) df = df.sort_values(by='time') if metadata_file != '': df = df.merge(repo_metadata,left_on='repo',right_on='full_name_h',how='left') df = df[['repo','created_at','time']].dropna() df['delta'] = (df['time']-df['created_at']).apply(lambda x: int(x / np.timedelta64(1, unit))) else: #Find difference between event time and "creation time" of repo #Creation time is first seen event creation_day = df['time'].min() df['delta'] = (df['time']-creation_day).apply(lambda x: int(x / np.timedelta64(1, unit))) df = df.iloc[1:] delta = df['delta'].values if plot==False: return delta ############## ## Plotting ## ############## if eventType is not None: eventList = [] for ele in eventType: eventList.append(ele[:-5]) eventType = '/'.join(eventList) else: eventType = 'All' unit_labels = {'s':'Seconds', 'h':'Hours', 'd':'Days'} ##To Save or not if saveData != False: plot_histogram(delta,unit_labels[unit] + ' Between '+eventType+' Event and Creation Event','Number of Events','Diffusion Delay',loc=saveData + '_histogram.png') ##plotting line graph plot_line_graph(delta,'Event Number','Delta between '+eventType+' Event and Creation','Diffusion Delay',labels=eventType,loc=saveData + '_linegraph.png') else: print(plot_histogram(delta,unit_labels[unit] + ' Between '+eventType+' Event and Creation Event','Number of Events','Diffusion Delay',loc=saveData)) ##plotting line graph print(plot_line_graph(delta,'Event Number','Delta between '+eventType+' Event and Creation','Diffusion Delay',labels=eventType,loc=saveData)) return delta ''' This method returns the growth of a repo over time. Question #2 Input: df - Dataframe of all data for a repo cumSum - This is a boolean that indicates if the dataframe should be cumuluative over time. output - A dataframe that describes the repo growth. Indexed on time. ''' def getRepoGrowth(df, cumSum=False, plot=False, saveData=False): df.columns = ['time', 'event','user', 'repo'] df['id'] = df.index df['time'] = pd.to_datetime(df['time']) df = df.sort_values(by='time') df.set_index('time', inplace=True) df['hour'] = df.index.hour df['day'] = df.index.day df['month'] = df.index.month df['year'] = df.index.year #get daily event counts p = df[['year', 'month', 'day', 'id']].groupby(['year', 'month', 'day']).count() p = pd.DataFrame(p).reset_index() #get cumulative sum of daily event counts if cumSum == True: p['id'] = p.cumsum(axis=0)['id'] p.columns = ['year', 'month', 'day', 'value'] p['date'] = p.apply(lambda x: datetime.strptime("{0} {1} {2}".format(x['year'], x['month'], x['day']), "%Y %m %d"), axis=1) p['date'] = pd.to_datetime(p['date'].dt.strftime('%Y-%m-%d')) p = p.set_index(p['date']) del p['year'] del p['month'] del p['day'] del p['date'] p = p.reset_index() if plot== False: return p ############## ## Plotting ## ############## cumTitle = '' if cumSum: cumTitle = 'Cumulative Sum of ' if saveData != False: plot_time_series(p,'Time','Total Number of Events', cumTitle + 'Events Over Time', loc=saveData+'_time_series_cumsum'+str(cumSum)+'.png') #To mimic PNNL Graph, run with CumSum as False plot_histogram(p['value'].values,'Events Per Day',cumTitle + 'Total Number of Days','Distribution Over Daily Event Counts', loc=saveData + 'histogram_cumsum' +str(cumSum)+'.png') else: print(plot_time_series(p,'Time','Total Number of Events',cumTitle + 'Events Over Time')) #To mimic PNNL Graph, run with CumSum as False print(plot_histogram(p['value'].values,'Events Per Day',cumTitle + 'Total Number of Days','Distribution Over Daily Event Counts')) return p ''' This method returns the the number of events on a repo before it "dies" (deleted or no activity) Question #2 Input - Dataframe of a repo Output - Number of events before death ''' def getLifetimeDepth(df): df.columns = ['time','event','user','repo'] df['time'] = pd.to_datetime(df['time']) df = df.sort_values(by='time') return len(df) ''' Time from creation to "death" of repo (deleted or no activity) Question #2 Input - Dataframe of a repo Output - Time from creation to "death" (default is days) ''' def getLifetimeTime(df): df.columns = ['time', 'event', 'user', 'repo'] df['time'] =
pd.to_datetime(df['time'])
pandas.to_datetime
import pandas as pd import numpy as np import random from scipy.optimize import minimize import networkx as nx import math from gurobipy import * # Liscence needed, free academic liscence available at https://www.gurobi.com/ # =====================================# # Component Based Event Simulation # Stochastic Power Network Failure Under Extreme Weather Events # =====================================# # # Modeling Components: # # Weather Event Generation: # Simulates maximum windspeed exerted on each transmission line of network # # Fragility Model: # Simulates breakage for each transmission line of the network # # Based on fragility of transmission towers reported in: # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>. Power System Resilience to # Extreme Weather: Fragility Modelling, Probabilistic Impact Assessment, and Adaptation # Measures. IEEE Trans Power Syst 2017 32:1-1. doi:10.1109/TPWRS.2016.2641463. # # and further available from: # Bennett, <NAME>.; DeCarolis, <NAME>.; Clarens, <NAME>., 2020, "Model and data for # "Extending energy system modelling to include extreme weather risks and application to hurricane # events in Puerto Rico"", https://doi.org/10.18130/V3/QB0NPX, University of Virginia Dataverse, V1 # # Stochastic Network Breakage: # Simulates breakages of network links # # Power Flow Model # Simulates power flow through any given network # # Social Vulnerability Model # Estimates impact of network loss on social vulnerability based on network power loss # # # Special thanks to <NAME> for contributions to this code #=====================================# # =====================================# # INFER DISTANCES # =====================================# def distances(nodes_file ='NetworkNodes.csv', links_file = 'NetworkLinks.csv'): """This function takes csv files with data on power network links and nodes and returns a list of the haversine distances between each pair of nodes in the network. Used to infer length of transmission line (and subsequnt number of towers) when exact length or number of towers is not known empirically. Input: nodes_file: containing information about the network nodes links_file: containing information about the network links Output: lengths: a pandas series lising the length of each network link in miles.""" # load data nodes = pd.read_csv(nodes_file) links =
pd.read_csv(links_file)
pandas.read_csv
from __future__ import division import pytest import numpy as np from datetime import timedelta from pandas import ( Interval, IntervalIndex, Index, isna, notna, interval_range, Timestamp, Timedelta, compat, date_range, timedelta_range, DateOffset) from pandas.compat import lzip from pandas.tseries.offsets import Day from pandas._libs.interval import IntervalTree from pandas.tests.indexes.common import Base import pandas.util.testing as tm import pandas as pd @pytest.fixture(scope='class', params=['left', 'right', 'both', 'neither']) def closed(request): return request.param @pytest.fixture(scope='class', params=[None, 'foo']) def name(request): return request.param class TestIntervalIndex(Base): _holder = IntervalIndex def setup_method(self, method): self.index = IntervalIndex.from_arrays([0, 1], [1, 2]) self.index_with_nan = IntervalIndex.from_tuples( [(0, 1), np.nan, (1, 2)]) self.indices = dict(intervalIndex=tm.makeIntervalIndex(10)) def create_index(self, closed='right'): return IntervalIndex.from_breaks(range(11), closed=closed) def create_index_with_nan(self, closed='right'): mask = [True, False] + [True] * 8 return IntervalIndex.from_arrays( np.where(mask, np.arange(10), np.nan), np.where(mask, np.arange(1, 11), np.nan), closed=closed) def test_constructors(self, closed, name): left, right = Index([0, 1, 2, 3]), Index([1, 2, 3, 4]) ivs = [Interval(l, r, closed=closed) for l, r in lzip(left, right)] expected = IntervalIndex._simple_new( left=left, right=right, closed=closed, name=name) result = IntervalIndex(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals(ivs, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_breaks( np.arange(5), closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_arrays( left.values, right.values, closed=closed, name=name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( lzip(left, right), closed=closed, name=name) tm.assert_index_equal(result, expected) result = Index(ivs, name=name) assert isinstance(result, IntervalIndex) tm.assert_index_equal(result, expected) # idempotent tm.assert_index_equal(Index(expected), expected) tm.assert_index_equal(IntervalIndex(expected), expected) result = IntervalIndex.from_intervals(expected) tm.assert_index_equal(result, expected) result = IntervalIndex.from_intervals( expected.values, name=expected.name) tm.assert_index_equal(result, expected) left, right = expected.left, expected.right result = IntervalIndex.from_arrays( left, right, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) result = IntervalIndex.from_tuples( expected.to_tuples(), closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) breaks = expected.left.tolist() + [expected.right[-1]] result = IntervalIndex.from_breaks( breaks, closed=expected.closed, name=expected.name) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [[np.nan], [np.nan] * 2, [np.nan] * 50]) def test_constructors_nan(self, closed, data): # GH 18421 expected_values = np.array(data, dtype=object) expected_idx = IntervalIndex(data, closed=closed) # validate the expected index assert expected_idx.closed == closed tm.assert_numpy_array_equal(expected_idx.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks([np.nan] + data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_idx) tm.assert_numpy_array_equal(result.values, expected_values) @pytest.mark.parametrize('data', [ [], np.array([], dtype='int64'), np.array([], dtype='float64'), np.array([], dtype=object)]) def test_constructors_empty(self, data, closed): # GH 18421 expected_dtype = data.dtype if isinstance(data, np.ndarray) else object expected_values = np.array([], dtype=object) expected_index = IntervalIndex(data, closed=closed) # validate the expected index assert expected_index.empty assert expected_index.closed == closed assert expected_index.dtype.subtype == expected_dtype tm.assert_numpy_array_equal(expected_index.values, expected_values) result = IntervalIndex.from_tuples(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_breaks(data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) result = IntervalIndex.from_arrays(data, data, closed=closed) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) if closed == 'right': # Can't specify closed for IntervalIndex.from_intervals result = IntervalIndex.from_intervals(data) tm.assert_index_equal(result, expected_index) tm.assert_numpy_array_equal(result.values, expected_values) def test_constructors_errors(self): # scalar msg = ('IntervalIndex\(...\) must be called with a collection of ' 'some kind, 5 was passed') with tm.assert_raises_regex(TypeError, msg): IntervalIndex(5) # not an interval msg = ("type <(class|type) 'numpy.int64'> with value 0 " "is not an interval") with tm.assert_raises_regex(TypeError, msg): IntervalIndex([0, 1]) with tm.assert_raises_regex(TypeError, msg): IntervalIndex.from_intervals([0, 1]) # invalid closed msg = "invalid options for 'closed': invalid" with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays([0, 1], [1, 2], closed='invalid') # mismatched closed within intervals msg = 'intervals must all be closed on the same side' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_intervals([Interval(0, 1), Interval(1, 2, closed='left')]) with tm.assert_raises_regex(ValueError, msg): Index([Interval(0, 1), Interval(2, 3, closed='left')]) # mismatched closed inferred from intervals vs constructor. msg = 'conflicting values for closed' with tm.assert_raises_regex(ValueError, msg): iv = [Interval(0, 1, closed='both'), Interval(1, 2, closed='both')] IntervalIndex(iv, closed='neither') # no point in nesting periods in an IntervalIndex msg = 'Period dtypes are not supported, use a PeriodIndex instead' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_breaks( pd.period_range('2000-01-01', periods=3)) # decreasing breaks/arrays msg = 'left side of interval must be <= right side' with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_breaks(range(10, -1, -1)) with tm.assert_raises_regex(ValueError, msg): IntervalIndex.from_arrays(range(10, -1, -1), range(9, -2, -1)) def test_constructors_datetimelike(self, closed): # DTI / TDI for idx in [pd.date_range('20130101', periods=5), pd.timedelta_range('1 day', periods=5)]: result = IntervalIndex.from_breaks(idx, closed=closed) expected = IntervalIndex.from_breaks(idx.values, closed=closed) tm.assert_index_equal(result, expected) expected_scalar_type = type(idx[0]) i = result[0] assert isinstance(i.left, expected_scalar_type) assert isinstance(i.right, expected_scalar_type) def test_constructors_error(self): # non-intervals def f(): IntervalIndex.from_intervals([0.997, 4.0]) pytest.raises(TypeError, f) def test_properties(self, closed): index = self.create_index(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) tm.assert_index_equal(index.left, Index(np.arange(10))) tm.assert_index_equal(index.right, Index(np.arange(1, 11))) tm.assert_index_equal(index.mid, Index(np.arange(0.5, 10.5))) assert index.closed == closed ivs = [Interval(l, r, closed) for l, r in zip(range(10), range(1, 11))] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) # with nans index = self.create_index_with_nan(closed=closed) assert len(index) == 10 assert index.size == 10 assert index.shape == (10, ) expected_left = Index([0, np.nan, 2, 3, 4, 5, 6, 7, 8, 9]) expected_right = expected_left + 1 expected_mid = expected_left + 0.5 tm.assert_index_equal(index.left, expected_left) tm.assert_index_equal(index.right, expected_right) tm.assert_index_equal(index.mid, expected_mid) assert index.closed == closed ivs = [Interval(l, r, closed) if notna(l) else np.nan for l, r in zip(expected_left, expected_right)] expected = np.array(ivs, dtype=object) tm.assert_numpy_array_equal(np.asarray(index), expected) tm.assert_numpy_array_equal(index.values, expected) def test_with_nans(self, closed): index = self.create_index(closed=closed) assert not index.hasnans result = index.isna() expected = np.repeat(False, len(index)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.repeat(True, len(index)) tm.assert_numpy_array_equal(result, expected) index = self.create_index_with_nan(closed=closed) assert index.hasnans result = index.isna() expected = np.array([False, True] + [False] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) result = index.notna() expected = np.array([True, False] + [True] * (len(index) - 2)) tm.assert_numpy_array_equal(result, expected) def test_copy(self, closed): expected = self.create_index(closed=closed) result = expected.copy() assert result.equals(expected) result = expected.copy(deep=True) assert result.equals(expected) assert result.left is not expected.left def test_ensure_copied_data(self, closed): # exercise the copy flag in the constructor # not copying index = self.create_index(closed=closed) result = IntervalIndex(index, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='same') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='same') # by-definition make a copy result = IntervalIndex.from_intervals(index.values, copy=False) tm.assert_numpy_array_equal(index.left.values, result.left.values, check_same='copy') tm.assert_numpy_array_equal(index.right.values, result.right.values, check_same='copy') def test_equals(self, closed): expected = IntervalIndex.from_breaks(np.arange(5), closed=closed) assert expected.equals(expected) assert expected.equals(expected.copy()) assert not expected.equals(expected.astype(object)) assert not expected.equals(np.array(expected)) assert not expected.equals(list(expected)) assert not expected.equals([1, 2]) assert not expected.equals(np.array([1, 2])) assert not expected.equals(pd.date_range('20130101', periods=2)) expected_name1 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='foo') expected_name2 = IntervalIndex.from_breaks( np.arange(5), closed=closed, name='bar') assert expected.equals(expected_name1) assert expected_name1.equals(expected_name2) for other_closed in {'left', 'right', 'both', 'neither'} - {closed}: expected_other_closed = IntervalIndex.from_breaks( np.arange(5), closed=other_closed) assert not expected.equals(expected_other_closed) def test_astype(self, closed): idx = self.create_index(closed=closed) for dtype in [np.int64, np.float64, 'datetime64[ns]', 'datetime64[ns, US/Eastern]', 'timedelta64', 'period[M]']: pytest.raises(ValueError, idx.astype, dtype) result = idx.astype(object) tm.assert_index_equal(result, Index(idx.values, dtype='object')) assert not idx.equals(result) assert idx.equals(IntervalIndex.from_intervals(result)) result = idx.astype('interval') tm.assert_index_equal(result, idx) assert result.equals(idx) result = idx.astype('category') expected = pd.Categorical(idx, ordered=True) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize('klass', [list, tuple, np.array, pd.Series]) def test_where(self, closed, klass): idx = self.create_index(closed=closed) cond = [True] * len(idx) expected = idx result = expected.where(klass(cond)) tm.assert_index_equal(result, expected) cond = [False] + [True] * len(idx[1:]) expected = IntervalIndex([np.nan] + idx[1:].tolist()) result = idx.where(klass(cond)) tm.assert_index_equal(result, expected) def test_delete(self, closed): expected = IntervalIndex.from_breaks(np.arange(1, 11), closed=closed) result = self.create_index(closed=closed).delete(0) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('data', [ interval_range(0, periods=10, closed='neither'), interval_range(1.7, periods=8, freq=2.5, closed='both'), interval_range(Timestamp('20170101'), periods=12, closed='left'), interval_range(Timedelta('1 day'), periods=6, closed='right'), IntervalIndex.from_tuples([('a', 'd'), ('e', 'j'), ('w', 'z')]), IntervalIndex.from_tuples([(1, 2), ('a', 'z'), (3.14, 6.28)])]) def test_insert(self, data): item = data[0] idx_item = IntervalIndex([item]) # start expected = idx_item.append(data) result = data.insert(0, item) tm.assert_index_equal(result, expected) # end expected = data.append(idx_item) result = data.insert(len(data), item) tm.assert_index_equal(result, expected) # mid expected = data[:3].append(idx_item).append(data[3:]) result = data.insert(3, item) tm.assert_index_equal(result, expected) # invalid type msg = 'can only insert Interval objects and NA into an IntervalIndex' with tm.assert_raises_regex(ValueError, msg): data.insert(1, 'foo') # invalid closed msg = 'inserted item must be closed on the same side as the index' for closed in {'left', 'right', 'both', 'neither'} - {item.closed}: with tm.assert_raises_regex(ValueError, msg): bad_item = Interval(item.left, item.right, closed=closed) data.insert(1, bad_item) # GH 18295 (test missing) na_idx = IntervalIndex([np.nan], closed=data.closed) for na in (np.nan, pd.NaT, None): expected = data[:1].append(na_idx).append(data[1:]) result = data.insert(1, na) tm.assert_index_equal(result, expected) def test_take(self, closed): index = self.create_index(closed=closed) result = index.take(range(10)) tm.assert_index_equal(result, index) result = index.take([0, 0, 1]) expected = IntervalIndex.from_arrays( [0, 0, 1], [1, 1, 2], closed=closed) tm.assert_index_equal(result, expected) def test_unique(self, closed): # unique non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (2, 3), (4, 5)], closed=closed) assert idx.is_unique # unique overlapping - distinct endpoints idx = IntervalIndex.from_tuples([(0, 1), (0.5, 1.5)], closed=closed) assert idx.is_unique # unique overlapping - shared endpoints idx = pd.IntervalIndex.from_tuples( [(1, 2), (1, 3), (2, 3)], closed=closed) assert idx.is_unique # unique nested idx = IntervalIndex.from_tuples([(-1, 1), (-2, 2)], closed=closed) assert idx.is_unique # duplicate idx = IntervalIndex.from_tuples( [(0, 1), (0, 1), (2, 3)], closed=closed) assert not idx.is_unique # unique mixed idx = IntervalIndex.from_tuples([(0, 1), ('a', 'b')], closed=closed) assert idx.is_unique # duplicate mixed idx = IntervalIndex.from_tuples( [(0, 1), ('a', 'b'), (0, 1)], closed=closed) assert not idx.is_unique # empty idx = IntervalIndex([], closed=closed) assert idx.is_unique def test_monotonic(self, closed): # increasing non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (2, 3), (4, 5)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing non-overlapping idx = IntervalIndex.from_tuples( [(4, 5), (2, 3), (1, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # unordered non-overlapping idx = IntervalIndex.from_tuples( [(0, 1), (4, 5), (2, 3)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # increasing overlapping idx = IntervalIndex.from_tuples( [(0, 2), (0.5, 2.5), (1, 3)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing overlapping idx = IntervalIndex.from_tuples( [(1, 3), (0.5, 2.5), (0, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # unordered overlapping idx = IntervalIndex.from_tuples( [(0.5, 2.5), (0, 2), (1, 3)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # increasing overlapping shared endpoints idx = pd.IntervalIndex.from_tuples( [(1, 2), (1, 3), (2, 3)], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert not idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # decreasing overlapping shared endpoints idx = pd.IntervalIndex.from_tuples( [(2, 3), (1, 3), (1, 2)], closed=closed) assert not idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing # stationary idx = IntervalIndex.from_tuples([(0, 1), (0, 1)], closed=closed) assert idx.is_monotonic assert not idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert not idx._is_strictly_monotonic_decreasing # empty idx = IntervalIndex([], closed=closed) assert idx.is_monotonic assert idx._is_strictly_monotonic_increasing assert idx.is_monotonic_decreasing assert idx._is_strictly_monotonic_decreasing @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr(self): i = IntervalIndex.from_tuples([(0, 1), (1, 2)], closed='right') expected = ("IntervalIndex(left=[0, 1]," "\n right=[1, 2]," "\n closed='right'," "\n dtype='interval[int64]')") assert repr(i) == expected i = IntervalIndex.from_tuples((Timestamp('20130101'), Timestamp('20130102')), (Timestamp('20130102'), Timestamp('20130103')), closed='right') expected = ("IntervalIndex(left=['2013-01-01', '2013-01-02']," "\n right=['2013-01-02', '2013-01-03']," "\n closed='right'," "\n dtype='interval[datetime64[ns]]')") assert repr(i) == expected @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_max_seq_item_setting(self): super(TestIntervalIndex, self).test_repr_max_seq_item_setting() @pytest.mark.xfail(reason='not a valid repr as we use interval notation') def test_repr_roundtrip(self): super(TestIntervalIndex, self).test_repr_roundtrip() def test_get_item(self, closed): i = IntervalIndex.from_arrays((0, 1, np.nan), (1, 2, np.nan), closed=closed) assert i[0] == Interval(0.0, 1.0, closed=closed) assert i[1] == Interval(1.0, 2.0, closed=closed) assert isna(i[2]) result = i[0:1] expected = IntervalIndex.from_arrays((0.,), (1.,), closed=closed) tm.assert_index_equal(result, expected) result = i[0:2] expected = IntervalIndex.from_arrays((0., 1), (1., 2.), closed=closed) tm.assert_index_equal(result, expected) result = i[1:3] expected = IntervalIndex.from_arrays((1., np.nan), (2., np.nan), closed=closed) tm.assert_index_equal(result, expected) def test_get_loc_value(self): pytest.raises(KeyError, self.index.get_loc, 0) assert self.index.get_loc(0.5) == 0 assert self.index.get_loc(1) == 0 assert self.index.get_loc(1.5) == 1 assert self.index.get_loc(2) == 1 pytest.raises(KeyError, self.index.get_loc, -1) pytest.raises(KeyError, self.index.get_loc, 3) idx = IntervalIndex.from_tuples([(0, 2), (1, 3)]) assert idx.get_loc(0.5) == 0 assert idx.get_loc(1) == 0 tm.assert_numpy_array_equal(idx.get_loc(1.5), np.array([0, 1], dtype='int64')) tm.assert_numpy_array_equal(np.sort(idx.get_loc(2)), np.array([0, 1], dtype='int64')) assert idx.get_loc(3) == 1 pytest.raises(KeyError, idx.get_loc, 3.5) idx = IntervalIndex.from_arrays([0, 2], [1, 3]) pytest.raises(KeyError, idx.get_loc, 1.5) def slice_locs_cases(self, breaks): # TODO: same tests for more index types index = IntervalIndex.from_breaks([0, 1, 2], closed='right') assert index.slice_locs() == (0, 2) assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(0, 0.5) == (0, 1) assert index.slice_locs(start=1) == (0, 2) assert index.slice_locs(start=1.2) == (1, 2) assert index.slice_locs(end=1) == (0, 1) assert index.slice_locs(end=1.1) == (0, 2) assert index.slice_locs(end=1.0) == (0, 1) assert index.slice_locs(-1, -1) == (0, 0) index = IntervalIndex.from_breaks([0, 1, 2], closed='neither') assert index.slice_locs(0, 1) == (0, 1) assert index.slice_locs(0, 2) == (0, 2) assert index.slice_locs(0.5, 1.5) == (0, 2) assert index.slice_locs(1, 1) == (1, 1) assert index.slice_locs(1, 2) == (1, 2) index = IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)], closed='both') assert index.slice_locs(1, 1) == (0, 1) assert index.slice_locs(1, 2) == (0, 2) def test_slice_locs_int64(self): self.slice_locs_cases([0, 1, 2]) def test_slice_locs_float64(self): self.slice_locs_cases([0.0, 1.0, 2.0]) def slice_locs_decreasing_cases(self, tuples): index = IntervalIndex.from_tuples(tuples) assert index.slice_locs(1.5, 0.5) == (1, 3) assert index.slice_locs(2, 0) == (1, 3) assert index.slice_locs(2, 1) == (1, 3) assert index.slice_locs(3, 1.1) == (0, 3) assert index.slice_locs(3, 3) == (0, 2) assert index.slice_locs(3.5, 3.3) == (0, 1) assert index.slice_locs(1, -3) == (2, 3) slice_locs = index.slice_locs(-1, -1) assert slice_locs[0] == slice_locs[1] def test_slice_locs_decreasing_int64(self): self.slice_locs_cases([(2, 4), (1, 3), (0, 2)]) def test_slice_locs_decreasing_float64(self): self.slice_locs_cases([(2., 4.), (1., 3.), (0., 2.)]) def test_slice_locs_fails(self): index = IntervalIndex.from_tuples([(1, 2), (0, 1), (2, 3)]) with pytest.raises(KeyError): index.slice_locs(1, 2) def test_get_loc_interval(self): assert self.index.get_loc(Interval(0, 1)) == 0 assert self.index.get_loc(Interval(0, 0.5)) == 0 assert self.index.get_loc(Interval(0, 1, 'left')) == 0 pytest.raises(KeyError, self.index.get_loc, Interval(2, 3)) pytest.raises(KeyError, self.index.get_loc, Interval(-1, 0, 'left')) def test_get_indexer(self): actual = self.index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, -1, 0, 0, 1, 1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(self.index) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) index = IntervalIndex.from_breaks([0, 1, 2], closed='left') actual = index.get_indexer([-1, 0, 0.5, 1, 1.5, 2, 3]) expected = np.array([-1, 0, 0, 1, 1, -1, -1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index[:1]) expected = np.array([0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(index) expected = np.array([-1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_get_indexer_subintervals(self): # TODO: is this right? # return indexers for wholly contained subintervals target = IntervalIndex.from_breaks(np.linspace(0, 2, 5)) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='p') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.67, 1.33, 2]) actual = self.index.get_indexer(target) expected = np.array([0, 0, 1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) actual = self.index.get_indexer(target[[0, -1]]) expected = np.array([0, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) target = IntervalIndex.from_breaks([0, 0.33, 0.67, 1], closed='left') actual = self.index.get_indexer(target) expected = np.array([0, 0, 0], dtype='intp') tm.assert_numpy_array_equal(actual, expected) def test_contains(self): # Only endpoints are valid. i = IntervalIndex.from_arrays([0, 1], [1, 2]) # Invalid assert 0 not in i assert 1 not in i assert 2 not in i # Valid assert Interval(0, 1) in i assert Interval(0, 2) in i assert Interval(0, 0.5) in i assert Interval(3, 5) not in i assert Interval(-1, 0, closed='left') not in i def testcontains(self): # can select values that are IN the range of a value i = IntervalIndex.from_arrays([0, 1], [1, 2]) assert i.contains(0.1) assert i.contains(0.5) assert i.contains(1) assert i.contains(Interval(0, 1)) assert i.contains(Interval(0, 2)) # these overlaps completely assert i.contains(Interval(0, 3)) assert i.contains(Interval(1, 3)) assert not i.contains(20) assert not i.contains(-20) def test_dropna(self, closed): expected = IntervalIndex.from_tuples( [(0.0, 1.0), (1.0, 2.0)], closed=closed) ii = IntervalIndex.from_tuples([(0, 1), (1, 2), np.nan], closed=closed) result = ii.dropna() tm.assert_index_equal(result, expected) ii = IntervalIndex.from_arrays( [0, 1, np.nan], [1, 2, np.nan], closed=closed) result = ii.dropna() tm.assert_index_equal(result, expected) def test_non_contiguous(self, closed): index = IntervalIndex.from_tuples([(0, 1), (2, 3)], closed=closed) target = [0.5, 1.5, 2.5] actual = index.get_indexer(target) expected = np.array([0, -1, 1], dtype='intp') tm.assert_numpy_array_equal(actual, expected) assert 1.5 not in index def test_union(self, closed): index = self.create_index(closed=closed) other = IntervalIndex.from_breaks(range(5, 13), closed=closed) expected = IntervalIndex.from_breaks(range(13), closed=closed) result = index.union(other) tm.assert_index_equal(result, expected) result = other.union(index) tm.assert_index_equal(result, expected) tm.assert_index_equal(index.union(index), index) tm.assert_index_equal(index.union(index[:1]), index) def test_intersection(self, closed): index = self.create_index(closed=closed) other = IntervalIndex.from_breaks(range(5, 13), closed=closed) expected = IntervalIndex.from_breaks(range(5, 11), closed=closed) result = index.intersection(other) tm.assert_index_equal(result, expected) result = other.intersection(index) tm.assert_index_equal(result, expected) tm.assert_index_equal(index.intersection(index), index) def test_difference(self, closed): index = self.create_index(closed=closed) tm.assert_index_equal(index.difference(index[:1]), index[1:]) def test_symmetric_difference(self, closed): idx = self.create_index(closed=closed) result = idx[1:].symmetric_difference(idx[:-1]) expected = IntervalIndex([idx[0], idx[-1]]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize('op_name', [ 'union', 'intersection', 'difference', 'symmetric_difference']) def test_set_operation_errors(self, closed, op_name): index = self.create_index(closed=closed) set_op = getattr(index, op_name) # test errors msg = ('can only do set operations between two IntervalIndex objects ' 'that are closed on the same side') with tm.assert_raises_regex(ValueError, msg): set_op(Index([1, 2, 3])) for other_closed in {'right', 'left', 'both', 'neither'} - {closed}: other = self.create_index(closed=other_closed) with tm.assert_raises_regex(ValueError, msg): set_op(other) def test_isin(self, closed): index = self.create_index(closed=closed) expected = np.array([True] + [False] * (len(index) - 1)) result = index.isin(index[:1]) tm.assert_numpy_array_equal(result, expected) result = index.isin([index[0]]) tm.assert_numpy_array_equal(result, expected) other = IntervalIndex.from_breaks(np.arange(-2, 10), closed=closed) expected = np.array([True] * (len(index) - 1) + [False]) result = index.isin(other) tm.assert_numpy_array_equal(result, expected) result = index.isin(other.tolist()) tm.assert_numpy_array_equal(result, expected) for other_closed in {'right', 'left', 'both', 'neither'}: other = self.create_index(closed=other_closed) expected = np.repeat(closed == other_closed, len(index)) result = index.isin(other) tm.assert_numpy_array_equal(result, expected) result = index.isin(other.tolist()) tm.assert_numpy_array_equal(result, expected) def test_comparison(self): actual = Interval(0, 1) < self.index expected = np.array([False, True]) tm.assert_numpy_array_equal(actual, expected) actual = Interval(0.5, 1.5) < self.index expected = np.array([False, True]) tm.assert_numpy_array_equal(actual, expected) actual = self.index > Interval(0.5, 1.5) tm.assert_numpy_array_equal(actual, expected) actual = self.index == self.index expected = np.array([True, True]) tm.assert_numpy_array_equal(actual, expected) actual = self.index <= self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index >= self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index < self.index expected = np.array([False, False]) tm.assert_numpy_array_equal(actual, expected) actual = self.index > self.index tm.assert_numpy_array_equal(actual, expected) actual = self.index == IntervalIndex.from_breaks([0, 1, 2], 'left') tm.assert_numpy_array_equal(actual, expected) actual = self.index == self.index.values tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index.values == self.index tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index <= self.index.values tm.assert_numpy_array_equal(actual, np.array([True, True])) actual = self.index != self.index.values tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index > self.index.values tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index.values > self.index tm.assert_numpy_array_equal(actual, np.array([False, False])) # invalid comparisons actual = self.index == 0 tm.assert_numpy_array_equal(actual, np.array([False, False])) actual = self.index == self.index.left tm.assert_numpy_array_equal(actual, np.array([False, False])) with tm.assert_raises_regex(TypeError, 'unorderable types'): self.index > 0 with tm.assert_raises_regex(TypeError, 'unorderable types'): self.index <= 0 with pytest.raises(TypeError): self.index > np.arange(2) with pytest.raises(ValueError): self.index > np.arange(3) def test_missing_values(self, closed): idx = Index([np.nan, Interval(0, 1, closed=closed), Interval(1, 2, closed=closed)]) idx2 = IntervalIndex.from_arrays( [np.nan, 0, 1], [np.nan, 1, 2], closed=closed) assert idx.equals(idx2) with pytest.raises(ValueError): IntervalIndex.from_arrays( [np.nan, 0, 1], np.array([0, 1, 2]), closed=closed) tm.assert_numpy_array_equal(isna(idx), np.array([True, False, False])) def test_sort_values(self, closed): index = self.create_index(closed=closed) result = index.sort_values() tm.assert_index_equal(result, index) result = index.sort_values(ascending=False) tm.assert_index_equal(result, index[::-1]) # with nan index = IntervalIndex([Interval(1, 2), np.nan, Interval(0, 1)]) result = index.sort_values() expected = IntervalIndex([
Interval(0, 1)
pandas.Interval
#!/usr/local/bin/python3 # <NAME> - <EMAIL> # Create Markdown of Spotify Play History from spotipy import Spotify from spotipy import util import pandas as pd # Get authorization token for this user - resfreshes or asks for permission as needed my_token = util.prompt_for_user_token(username="1238655357", # Michelle's ID scope="user-read-recently-played", # allows us to see recently played songs redirect_uri="http://127.0.0.1:12345") # URL in our app # Object for interacting with spotify user spotify = Spotify(auth=my_token) # list of last 50 songs last_songs_dict = spotify.current_user_recently_played()['items'] print("*** MARKDOWN LIST OF ARTISTS WITH LINKS ***") # frame to hold artists artists =
pd.DataFrame()
pandas.DataFrame
""" Code was adapted from https://github.com/Britefury/self-ensemble-visual-domain-adapt """ """ Incorporates mean teacher, from: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results <NAME>, <NAME> https://arxiv.org/abs/1703.01780 """ from bayes_opt import BayesianOptimization import data_loaders from sklearn.model_selection import StratifiedKFold import time import numpy as np from batchup import data_source, work_pool import network_architectures import augmentation import torch, torch.cuda from torch import nn from torch.nn import functional as F import optim_weight_ema from sklearn.preprocessing import label_binarize from sklearn import metrics from sklearn.metrics import confusion_matrix import os import pickle import datetime import pandas as pd import cmdline_helpers import argparse INNER_K_FOLD = 3 OUTER_K_FOLD = 10 num_epochs = 100 bo_num_iter = 50 init_points = 5 PATIENCE = 5 BEST_EPOCHS_LIST = [] parser = argparse.ArgumentParser() parser.add_argument('--exp', type=str, default='syndigits_svhn') args = parser.parse_args() exp = args.exp log_file = f'results_exp_meanteacher_hila/log_{exp}_run.txt' model_file = '' seed = 0 device = 'cpu' epoch_size = 'target' batch_size = 30 torch_device = torch.device(device) pool = work_pool.WorkerThreadPool(2) # Setup output def log(text): print(text) if log_file is not None: with open(log_file, 'a') as f: f.write(text + '\n') f.flush() f.close() def ensure_containing_dir_exists(path): dir_name = os.path.dirname(path) if dir_name != '' and not os.path.exists(dir_name): os.makedirs(dir_name) return path def load_data(exp): settings = locals().copy() if exp == 'svhn_mnist': d_source = data_loaders.load_svhn(zero_centre=False, greyscale=True) d_target = data_loaders.load_mnist(invert=False, zero_centre=False, pad32=True, val=False) elif exp == 'mnist_svhn': d_source = data_loaders.load_mnist(invert=False, zero_centre=False, pad32=True) d_target = data_loaders.load_svhn(zero_centre=False, greyscale=True, val=False) elif exp == 'svhn_mnist_rgb': d_source = data_loaders.load_svhn(zero_centre=False, greyscale=False) d_target = data_loaders.load_mnist(invert=False, zero_centre=False, pad32=True, val=False, rgb=True) elif exp == 'mnist_svhn_rgb': d_source = data_loaders.load_mnist(invert=False, zero_centre=False, pad32=True, rgb=True) d_target = data_loaders.load_svhn(zero_centre=False, greyscale=False, val=False) elif exp == 'cifar_stl': d_source = data_loaders.load_cifar10(range_01=False) d_target = data_loaders.load_stl(zero_centre=False, val=False) elif exp == 'stl_cifar': d_source = data_loaders.load_stl(zero_centre=False) d_target = data_loaders.load_cifar10(range_01=False, val=False) elif exp == 'mnist_usps': d_source = data_loaders.load_mnist(zero_centre=False) d_target = data_loaders.load_usps(zero_centre=False, scale28=True, val=False) elif exp == 'usps_mnist': d_source = data_loaders.load_usps(zero_centre=False, scale28=True) d_target = data_loaders.load_mnist(zero_centre=False, val=False) elif exp == 'syndigits_svhn': d_source = data_loaders.load_syn_digits(zero_centre=False) d_target = data_loaders.load_svhn(zero_centre=False, val=False) elif exp == 'svhn_syndigits': d_source = data_loaders.load_svhn(zero_centre=False, val=False) d_target = data_loaders.load_syn_digits(zero_centre=False) else: print('Unknown experiment type \'{}\''.format(exp)) return source_x = np.array(list(d_source.train_X[:]) + list(d_source.test_X[:])) target_x = np.array(list(d_target.train_X[:]) + list(d_target.test_X[:])) source_y = np.array(list(d_source.train_y[:]) + list(d_source.test_y[:])) target_y = np.array(list(d_target.train_y[:]) + list(d_target.test_y[:])) n_classes = d_source.n_classes print('Loaded data') return source_x, source_y, target_x, target_y, n_classes def build_and_train_model(source_train_x_inner, source_train_y_inner, target_train_x_inner, source_validation_x, source_validation_y, target_validation_x, target_validation_y, confidence_thresh, teacher_alpha, unsup_weight, cls_balance, learning_rate, arch='', test_model=False, loss='var', num_epochs=num_epochs, cls_bal_scale=False, cls_bal_scale_range=0.0, cls_balance_loss='bce', src_affine_std=0.0, src_xlat_range=0.0, src_hflip=False, src_intens_flip=False, src_gaussian_noise_std=0.0, tgt_affine_std=0.0, tgt_xlat_range=0.0, tgt_hflip=False, tgt_intens_flip='', tgt_gaussian_noise_std=0.0): net_class, expected_shape = network_architectures.get_net_and_shape_for_architecture(arch) settings = locals().copy() src_intens_scale_range_lower, src_intens_scale_range_upper, src_intens_offset_range_lower, src_intens_offset_range_upper = \ None, None, None, None tgt_intens_scale_range_lower, tgt_intens_scale_range_upper, tgt_intens_offset_range_lower, tgt_intens_offset_range_upper = \ None, None, None, None if expected_shape != source_train_x_inner.shape[1:]: print('Architecture {} not compatible with experiment {}; it needs samples of shape {}, ' 'data has samples of shape {}'.format(arch, exp, expected_shape, source_train_x_inner.shape[1:])) return student_net = net_class(n_classes).to(torch_device) teacher_net = net_class(n_classes).to(torch_device) student_params = list(student_net.parameters()) teacher_params = list(teacher_net.parameters()) for param in teacher_params: param.requires_grad = False student_optimizer = torch.optim.Adam(student_params, lr=learning_rate) teacher_optimizer = optim_weight_ema.OldWeightEMA(teacher_net, student_net, alpha=teacher_alpha) classification_criterion = nn.CrossEntropyLoss() print('Built network') src_aug = augmentation.ImageAugmentation( src_hflip, src_xlat_range, src_affine_std, intens_flip=src_intens_flip, intens_scale_range_lower=src_intens_scale_range_lower, intens_scale_range_upper=src_intens_scale_range_upper, intens_offset_range_lower=src_intens_offset_range_lower, intens_offset_range_upper=src_intens_offset_range_upper, gaussian_noise_std=src_gaussian_noise_std ) tgt_aug = augmentation.ImageAugmentation( tgt_hflip, tgt_xlat_range, tgt_affine_std, intens_flip=tgt_intens_flip, intens_scale_range_lower=tgt_intens_scale_range_lower, intens_scale_range_upper=tgt_intens_scale_range_upper, intens_offset_range_lower=tgt_intens_offset_range_lower, intens_offset_range_upper=tgt_intens_offset_range_upper, gaussian_noise_std=tgt_gaussian_noise_std ) def augment(X_src, y_src, X_tgt): X_src = src_aug.augment(X_src) X_tgt_stu, X_tgt_tea = tgt_aug.augment_pair(X_tgt) return X_src, y_src, X_tgt_stu, X_tgt_tea rampup_weight_in_list = [0] cls_bal_fn = network_architectures.get_cls_bal_function(cls_balance_loss) def compute_aug_loss(stu_out, tea_out): # Augmentation loss conf_tea = torch.max(tea_out, 1)[0] unsup_mask = conf_mask = (conf_tea > confidence_thresh).float() unsup_mask_count = conf_mask_count = conf_mask.sum() if loss == 'bce': aug_loss = network_architectures.robust_binary_crossentropy(stu_out, tea_out) else: d_aug_loss = stu_out - tea_out aug_loss = d_aug_loss * d_aug_loss # Class balance scaling if cls_bal_scale: n_samples = unsup_mask.sum() avg_pred = n_samples / float(n_classes) bal_scale = avg_pred / torch.clamp(tea_out.sum(dim=0), min=1.0) if cls_bal_scale_range != 0.0: bal_scale = torch.clamp(bal_scale, min=1.0 / cls_bal_scale_range, max=cls_bal_scale_range) bal_scale = bal_scale.detach() aug_loss = aug_loss * bal_scale[None, :] aug_loss = aug_loss.mean(dim=1) unsup_loss = (aug_loss * unsup_mask).mean() # Class balance loss if cls_balance > 0.0: # Compute per-sample average predicated probability # Average over samples to get average class prediction avg_cls_prob = stu_out.mean(dim=0) # Compute loss equalise_cls_loss = cls_bal_fn(avg_cls_prob, float(1.0 / n_classes)) equalise_cls_loss = equalise_cls_loss.mean() * n_classes equalise_cls_loss = equalise_cls_loss * unsup_mask.mean(dim=0) unsup_loss += equalise_cls_loss * cls_balance return unsup_loss, conf_mask_count, unsup_mask_count def f_train(X_src, y_src, X_tgt0, X_tgt1): X_src = torch.tensor(X_src, dtype=torch.float, device=torch_device) y_src = torch.tensor(y_src, dtype=torch.long, device=torch_device) X_tgt0 = torch.tensor(X_tgt0, dtype=torch.float, device=torch_device) X_tgt1 = torch.tensor(X_tgt1, dtype=torch.float, device=torch_device) student_optimizer.zero_grad() student_net.train() teacher_net.train() src_logits_out = student_net(X_src) student_tgt_logits_out = student_net(X_tgt0) student_tgt_prob_out = F.softmax(student_tgt_logits_out, dim=1) teacher_tgt_logits_out = teacher_net(X_tgt1) teacher_tgt_prob_out = F.softmax(teacher_tgt_logits_out, dim=1) # Supervised classification loss clf_loss = classification_criterion(src_logits_out, y_src) unsup_loss, conf_mask_count, unsup_mask_count = compute_aug_loss(student_tgt_prob_out, teacher_tgt_prob_out) loss_expr = clf_loss + unsup_loss * unsup_weight loss_expr.backward() student_optimizer.step() teacher_optimizer.step() n_samples = X_src.size()[0] outputs = [float(clf_loss) * n_samples, float(unsup_loss) * n_samples] return tuple(outputs) print('Compiled training function') def f_pred(X_sup): X_var = torch.tensor(X_sup, dtype=torch.float, device=torch_device) student_net.eval() teacher_net.eval() return (F.softmax(student_net(X_var), dim=1).detach().cpu().numpy(), F.softmax(teacher_net(X_var), dim=1).detach().cpu().numpy()) def f_eval(X_sup, y_sup): y_pred_prob_stu, y_pred_prob_tea = f_pred(X_sup) y_pred_stu = np.argmax(y_pred_prob_stu, axis=1) y_pred_tea = np.argmax(y_pred_prob_tea, axis=1) return (float((y_pred_stu != y_sup).sum()), float((y_pred_tea != y_sup).sum())) def f_pred_for_metrics(X_sup, y_sup): y_pred_prob_stu, y_pred_prob_tea = f_pred(X_sup) y_pred_stu = np.argmax(y_pred_prob_stu, axis=1) y_pred_tea = np.argmax(y_pred_prob_tea, axis=1) return (y_pred_stu, y_pred_tea, y_pred_prob_stu, y_pred_prob_tea) print('Compiled evaluation function') cmdline_helpers.ensure_containing_dir_exists(log_file) # Report setttings log(f'confidence_thresh={confidence_thresh}, teacher_alpha={teacher_alpha},\ unsup_weight={unsup_weight}, cls_balance={cls_balance}, learning_rate={learning_rate}, num_epochs={num_epochs}' f'test_model={test_model}') print('Training...') sup_ds = data_source.ArrayDataSource([source_train_x_inner, source_train_y_inner], repeats=-1) tgt_train_ds = data_source.ArrayDataSource([target_train_x_inner], repeats=-1) train_ds = data_source.CompositeDataSource([sup_ds, tgt_train_ds]).map(augment) train_ds = pool.parallel_data_source(train_ds) if epoch_size == 'large': n_samples = max(source_train_x_inner.shape[0], target_train_x_inner.shape[0]) elif epoch_size == 'small': n_samples = min(source_train_x_inner.shape[0], target_train_x_inner.shape[0]) elif epoch_size == 'target': n_samples = target_train_x_inner.shape[0] n_train_batches = n_samples // batch_size source_test_ds = data_source.ArrayDataSource([source_validation_x, source_validation_y]) target_test_ds = data_source.ArrayDataSource([target_validation_x, target_validation_y]) if seed != 0: shuffle_rng = np.random.RandomState(seed) else: shuffle_rng = np.random train_batch_iter = train_ds.batch_iterator(batch_size=batch_size, shuffle=shuffle_rng) best_teacher_model_state = {k: v.cpu().numpy() for k, v in teacher_net.state_dict().items()} best_conf_mask_rate = 0.0 best_src_test_err = 1.0 best_target_tea_err = 1.0 best_epoch = 0 count_no_improve = 0 count_no_improve_flag = False t_training_1 = time.time() for epoch in range(num_epochs): t1 = time.time() train_res = data_source.batch_map_mean(f_train, train_batch_iter, n_batches=n_train_batches) train_clf_loss = train_res[0] unsup_loss_string = 'unsup (tgt) loss={:.6f}'.format(train_res[1]) src_test_err_stu, src_test_err_tea = source_test_ds.batch_map_mean(f_eval, batch_size=batch_size * 2) tgt_test_err_stu, tgt_test_err_tea = target_test_ds.batch_map_mean(f_eval, batch_size=batch_size * 2) conf_mask_rate = train_res[-2] unsup_mask_rate = train_res[-1] if conf_mask_rate > best_conf_mask_rate: best_conf_mask_rate = conf_mask_rate improve = '*** ' best_teacher_model_state = {k: v.cpu().numpy() for k, v in teacher_net.state_dict().items()} best_target_tea_err = tgt_test_err_tea best_epoch = epoch if count_no_improve_flag: count_no_improve_flag = False count_no_improve = 0 else: improve = '' count_no_improve_flag = True count_no_improve += 1 unsup_loss_string = '{}, conf mask={:.3%}, unsup mask={:.3%}'.format( unsup_loss_string, conf_mask_rate, unsup_mask_rate) t2 = time.time() log('{}Epoch {} took {:.2f}s: TRAIN clf loss={:.6f}, {}; ' 'SRC TEST ERR={:.3%}, TGT TEST student err={:.3%}, TGT TEST teacher err={:.3%}'.format( improve, epoch, t2 - t1, train_clf_loss, unsup_loss_string, src_test_err_stu, tgt_test_err_stu, tgt_test_err_tea)) if count_no_improve >= PATIENCE: break t_training_2 = time.time() if test_model: t_inference_1 = time.time() src_pred_stu, src_pred_tea, src_prob_stu, src_prob_tea = source_test_ds.batch_map_concat(f_pred_for_metrics, batch_size=batch_size * 2) t_inference_2 = time.time() tgt_pred_stu, tgt_pred_tea, tgt_prob_stu, tgt_prob_tea = target_test_ds.batch_map_concat(f_pred_for_metrics, batch_size=batch_size * 2) src_stu_scores_dict, src_tea_scores_dict = create_metrics_results(source_validation_y, src_pred_stu, src_pred_tea, src_prob_stu, src_prob_tea) tgt_stu_scores_dict, tgt_tea_scores_dict = create_metrics_results(target_validation_y, tgt_pred_stu, tgt_pred_tea, tgt_prob_stu, tgt_prob_tea) inference_time_for_1000 = (t_inference_2-t_inference_1)/len(src_pred_stu)*1000 return src_stu_scores_dict, src_tea_scores_dict, tgt_stu_scores_dict, tgt_tea_scores_dict, round(t_training_2-t_training_1, 3), round(inference_time_for_1000, 4) return best_target_tea_err, best_teacher_model_state, best_epoch def calc_metrics(sup_y, sup_y_one_hot, pred_y, prob, class_labels): scores_dict = {} conf = confusion_matrix(sup_y, pred_y) tpr_list = [] fpr_list = [] for label in range(conf.shape[0]): tpr = conf[label][label] / sum(conf[label]) tpr_list.append(tpr) fpr_numerator = sum([pred_row[label] for pred_row in conf]) - conf[label][label] fpr_denominator = sum(sum(conf)) - sum(conf[label]) fpr_list.append(fpr_numerator / fpr_denominator) scores_dict['tpr'] = np.round(np.mean(tpr_list), 4) scores_dict['fpr'] = np.round(np.mean(fpr_list), 4) scores_dict['acc'] = np.round(metrics.accuracy_score(sup_y, pred_y), 2) scores_dict['roc_auc'] = np.round(metrics.roc_auc_score(sup_y, prob, multi_class='ovr'), 4) scores_dict['precision'] = np.round(metrics.precision_score(sup_y, pred_y, average='macro'), 4) pred_one_hot = label_binarize(pred_y, classes=class_labels) scores_dict['recall_precision_auc'] = np.round(metrics.average_precision_score(sup_y_one_hot, pred_one_hot, average="macro"), 4) scores_dict['err'] = float((pred_y != sup_y).mean()) return scores_dict def create_metrics_results(sup_y, pred_stu, pred_tea, prob_stu, prob_tea): class_labels = list(np.unique(sup_y)) sup_y_one_hot = label_binarize(sup_y, classes=class_labels) stu_scores_dict = calc_metrics(sup_y, sup_y_one_hot, pred_stu, prob_stu, class_labels) tea_scores_dict = calc_metrics(sup_y, sup_y_one_hot, pred_tea, prob_tea, class_labels) return stu_scores_dict, tea_scores_dict def get_arch(exp, arch): if arch == '': if exp in {'mnist_usps', 'usps_mnist'}: arch = 'mnist-bn-32-64-256' elif exp in {'svhn_mnist', 'mnist_svhn'}: arch = 'mnist-bn-32-32-64-256' if exp in {'cifar_stl', 'stl_cifar', 'syndigits_svhn', 'svhn_syndigits', 'svhn_mnist_rgb', 'mnist_svhn_rgb'}: arch = 'mnist-bn-32-32-64-256-rgb' return arch def evaluate_exp(confidence_thresh, teacher_alpha, unsup_weight, cls_balance, learning_rate, arch=''): arch = get_arch(exp, arch) cv_source = StratifiedKFold(n_splits=INNER_K_FOLD, shuffle=True) source_train_validation_list = [] for train_idx, validation_idx in cv_source.split(source_train_x, source_train_y): source_dict = {} train_data, validation_data = source_train_x[train_idx], source_train_x[validation_idx] train_target, validation_target = source_train_y[train_idx], source_train_y[validation_idx] source_dict['source_train_x'] = train_data source_dict['source_train_y'] = train_target source_dict['source_validation_x'] = validation_data source_dict['source_validation_y'] = validation_target source_train_validation_list.append(source_dict) cv_target = StratifiedKFold(n_splits=INNER_K_FOLD, shuffle=True) target_train_validation_list = [] for train_idx, validation_idx in cv_target.split(target_train_x, target_train_y): target_dict = {} train_data, validation_data = target_train_x[train_idx], target_train_x[validation_idx] validation_target = target_train_y[validation_idx] target_dict['target_train_x'] = train_data target_dict['target_validation_x'] = validation_data target_dict['target_validation_y'] = validation_target target_train_validation_list.append(target_dict) target_test_err_list = [] best_epoch_list = [] for cv_idx in range(INNER_K_FOLD): print(f'start inner cv {cv_idx}') log(f'start inner cv {cv_idx}') source_train_x_inner = source_train_validation_list[cv_idx]['source_train_x'] source_train_y_inner = source_train_validation_list[cv_idx]['source_train_y'] source_validation_x = source_train_validation_list[cv_idx]['source_validation_x'] source_validation_y = source_train_validation_list[cv_idx]['source_validation_y'] target_train_x_inner = target_train_validation_list[cv_idx]['target_train_x'] target_validation_x = target_train_validation_list[cv_idx]['target_validation_x'] target_validation_y = target_train_validation_list[cv_idx]['target_validation_y'] if cv_idx == 0: # Report dataset size log('Dataset:') log('SOURCE Train: X.shape={}, y.shape={}'.format(source_train_x_inner.shape, source_train_y_inner.shape)) log('SOURCE Val: X.shape={}, y.shape={}'.format(source_validation_x.shape, source_validation_y.shape)) log('TARGET Train: X.shape={}'.format(target_train_x_inner.shape)) log('TARGET Val: X.shape={}, y.shape={}'.format(target_validation_x.shape, target_validation_y.shape)) best_target_tea_err, best_teacher_model_state, best_epoch = build_and_train_model( source_train_x_inner, source_train_y_inner, target_train_x_inner, source_validation_x, source_validation_y, target_validation_x, target_validation_y, confidence_thresh, teacher_alpha, unsup_weight, cls_balance, learning_rate, arch) target_test_err_list.append(best_target_tea_err) best_epoch_list.append(best_epoch) # Save network if model_file != '': cmdline_helpers.ensure_containing_dir_exists(model_file) with open(model_file, 'wb') as f: pickle.dump(best_teacher_model_state, f) BEST_EPOCHS_LIST.append(int(np.mean(best_epoch_list))) return -np.mean(target_test_err_list) def rebuild_and_test_model(params, source_train_x, source_train_y, target_train_x, source_test_x, source_test_y, target_test_x, target_test_y, arch=''): log(f"Start rebuild on test set") arch = get_arch(exp, arch) best_epoch = np.max(BEST_EPOCHS_LIST) log(f'best_epoch: {best_epoch}') results = build_and_train_model( source_train_x, source_train_y, target_train_x, source_test_x, source_test_y, target_test_x, target_test_y, arch=arch, test_model=True, num_epochs=best_epoch, **params) src_stu_scores_dict = results[0] src_tea_scores_dict = results[1] tgt_stu_scores_dict = results[2] tgt_tea_scores_dict = results[3] training_time = results[4] inference_time = results[5] log(f'src_stu_scores_dict: {src_stu_scores_dict}') log(f'src_tea_scores_dict: {src_tea_scores_dict}') log(f'tgt_stu_scores_dict: {tgt_stu_scores_dict}') log(f'tgt_tea_scores_dict: {tgt_tea_scores_dict}') log(f'training_time: {training_time}') log(f'inference_time for 1000 instences: {inference_time}') tgt_tea_scores_dict.update({'training_time': training_time, 'inference_time': inference_time, 'params': params}) tgt_scores =
pd.Series(tgt_tea_scores_dict)
pandas.Series
import cv2 import face_recognition import pickle import os import numpy as np import pandas as pd from datetime import datetime from scipy.spatial import distance as dist class Attendance(object): def __init__(self): self.ENCODINGS_PATH = "encodings.pkl" self.ATTENDANCE_FILE = "./Attendance.xlsx" self.EYE_AR_THRESH = 0.25 self.ATTENDANCE_DATA = pd.read_excel(self.ATTENDANCE_FILE) if not os.path.exists(self.ENCODINGS_PATH): self.ENCODINGS,self.NAMES = None, None print("WARNING: Encodings File not found. Process may fail, please run the train script first.") print("-----------------------------------------------------------------------------------------------------------------------------------") else: self.ENCODINGS,self.NAMES = self.read_encodings() #Function to read encodings def read_encodings(self): data = pickle.loads(open(self.ENCODINGS_PATH, "rb").read()) data = np.array(data) encodings = [d["encoding"] for d in data] names=[d["name"] for d in data] return encodings,names # Function to calculate EAR Value def eye_aspect_ratio(self,eye): A = dist.euclidean(eye[1], eye[5]) B = dist.euclidean(eye[2], eye[4]) C = dist.euclidean(eye[0], eye[3]) ear = (A + B) / (2.0 * C) return ear # Function to mark attendance def mark_attendance(self,name,landmarks): left_eye = landmarks['left_eye'] right_eye = landmarks['right_eye'] leftEAR = self.eye_aspect_ratio(left_eye) rightEAR = self.eye_aspect_ratio(right_eye) # average the eye aspect ratio together for both eyes ear = (leftEAR + rightEAR) / 2.0 if ear < self.EYE_AR_THRESH: # Check if entry already exists or not temp = self.ATTENDANCE_DATA.copy() temp = temp[temp['Name'] == name] if len(temp)<1: # No entry exists, create new entry data = { 'Name' : name, 'Check-In' : datetime.now(), 'Check-Out' : None } self.ATTENDANCE_DATA = self.ATTENDANCE_DATA.append(data,ignore_index = True) print("INFO: Marked checkin for {}".format(name)) else: # Entries exist, check if last entry has checked out or not if
pd.isna(temp.iloc[-1]['Check-Out'])
pandas.isna
# -*- coding: utf-8 -*- import logging import numpy as np import pandas as pd import scipy.stats import statsmodels.stats.proportion from sklearn.metrics import accuracy_score from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import KBinsDiscretizer from dku_data_drift.preprocessing import Preprocessor from dku_data_drift.model_tools import format_proba_density from dku_data_drift.model_drift_constants import ModelDriftConstants logger = logging.getLogger(__name__) class DriftAnalyzer(object): def __init__(self, prediction_type=None): self.prediction_type = prediction_type self.drift_clf = RandomForestClassifier(n_estimators=100, random_state=1337, max_depth=13, min_samples_leaf=1) self._original_df = None self._new_df = None self._drift_test_X = None self._drift_test_Y = None self._model_accessor = None self.has_predictions = False self.target = None self.features_in_drift_model = None self.sample_size = None def get_prediction_type(self): return self.prediction_type def fit(self, new_df, model_accessor=None, original_df=None, target=None): """ Trains a classifier that attempts to discriminate between rows from the provided dataframe and rows from the dataset originally used to evaluate the model Returns (columns, classifier) """ logger.info("Preparing the drift model...") if model_accessor is not None and original_df is not None: raise ValueError('model_accessor and original_df can not be defined at the same time. Please choose one of them.') if model_accessor is not None and original_df is None and target is None: self._model_accessor = model_accessor self.has_predictions = True self.target = self._model_accessor.get_target_variable() self.prediction_type = self._model_accessor.get_prediction_type() original_df = self._model_accessor.get_original_test_df() df = self.prepare_data_when_having_model(new_df, original_df) elif model_accessor is None and original_df is not None and target is not None: self.has_predictions = True self.target = target df = self.prepare_data_when_having_target(new_df, original_df) elif model_accessor is None and original_df is not None and target is None: df = self.prepare_data_when_without_target(new_df, original_df) else: raise NotImplementedError('You need to precise either a model accessor or an original df.') preprocessor = Preprocessor(df, target=ModelDriftConstants.ORIGIN_COLUMN) train, test = preprocessor.get_processed_train_test() drift_train_X = train.drop(ModelDriftConstants.ORIGIN_COLUMN, axis=1) drift_train_Y = np.array(train[ModelDriftConstants.ORIGIN_COLUMN]) self._drift_test_X = test.drop(ModelDriftConstants.ORIGIN_COLUMN, axis=1) # we will use them later when compute metrics self._drift_test_Y = np.array(test[ModelDriftConstants.ORIGIN_COLUMN]) self.features_in_drift_model = drift_train_X.columns logger.info("Fitting the drift model...") self.drift_clf.fit(drift_train_X, drift_train_Y) def prepare_data_when_having_model(self, new_df, original_df): logger.info('Prepare data with model') if self.target not in original_df: raise ValueError('The original dataset does not contain target "{}".'.format(self.target)) self._new_df = new_df self._original_df = original_df original_df_without_target = original_df.drop(self.target, axis=1) return self._prepare_data_for_drift_model(new_df, original_df_without_target) def prepare_data_when_having_target(self, new_df, original_df): logger.info('Prepare data with target for drift model') if self.target not in new_df: raise ValueError('The new dataset does not contain target "{}".'.format(self.target)) if self.target not in original_df: raise ValueError('The original dataset does not contain target "{}".'.format(self.target)) self._new_df = new_df self._original_df = original_df new_df_without_target = new_df.drop(self.target, axis=1) original_df_without_target = original_df.drop(self.target, axis=1) return self._prepare_data_for_drift_model(new_df_without_target, original_df_without_target) def prepare_data_when_without_target(self, new_df, original_df): logger.info('Prepare data without target for drift model') return self._prepare_data_for_drift_model(new_df, original_df) def get_drift_metrics_for_webapp(self): """ Return a dict of metrics with a format to be easily used in frontend """ if self.features_in_drift_model is None or self.drift_clf is None: logger.warning('drift_features and drift_clf must be defined') return {} logger.info("Computing drift metrics ...") drift_accuracy, drift_accuracy_lower, drift_accuracy_upper, drift_test_pvalue = self.get_drift_score(output_raw_score=True) feature_importance_metrics, riskiest_features = self._get_feature_importance_metrics() if self.prediction_type == ModelDriftConstants.REGRRSSION_TYPE: kde_dict = self._get_regression_prediction_kde() fugacity_metrics = {} label_list = [] elif self.prediction_type == ModelDriftConstants.CLASSIFICATION_TYPE: logger.info("Compute classification drift metrics for classification") kde_dict, fugacity_metrics, label_list = self._get_classification_prediction_metrics() else: raise ValueError('Prediction type not defined.') return {'type': self.prediction_type, 'sample_size': self.sample_size, 'feature_importance': feature_importance_metrics, 'drift_accuracy': round(drift_accuracy, 3), 'drift_accuracy_lower': round(drift_accuracy_lower, 3), 'drift_accuracy_upper': round(drift_accuracy_upper, 3), 'drift_test_pvalue': round(drift_test_pvalue, 5), 'kde': kde_dict, 'fugacity': fugacity_metrics, 'label_list': label_list, 'riskiest_features': riskiest_features} def _get_classification_prediction_metrics(self): if not self.has_predictions: raise ValueError('DriftAnalyzer needs a target.') if self.prediction_type != ModelDriftConstants.CLASSIFICATION_TYPE: raise ValueError('Can not use this function with a {} model.'.format(self.prediction_type)) if self._model_accessor is not None: prediction_dict = self.get_predictions_from_original_model(limit=ModelDriftConstants.PREDICTION_TEST_SIZE) predictions_by_class = {} for label in prediction_dict.get(ModelDriftConstants.FROM_ORIGINAL).columns: if 'proba_' in label: original_proba = np.around(prediction_dict.get(ModelDriftConstants.FROM_ORIGINAL)[label].values, 2).tolist() new_proba = np.around(prediction_dict.get(ModelDriftConstants.FROM_NEW)[label].values, 2).tolist() predictions_by_class[label] = {ModelDriftConstants.FROM_ORIGINAL: original_proba, ModelDriftConstants.FROM_NEW: new_proba} kde_dict = {} for label in predictions_by_class.keys(): kde_original = format_proba_density(predictions_by_class.get(label).get(ModelDriftConstants.FROM_ORIGINAL)) kde_new = format_proba_density(predictions_by_class.get(label).get(ModelDriftConstants.FROM_NEW)) cleaned_label = label.replace('proba_', ModelDriftConstants.CLASS) kde_dict[cleaned_label] = {ModelDriftConstants.FROM_ORIGINAL: kde_original, ModelDriftConstants.FROM_NEW: kde_new} fugacity = self.get_classification_fugacity(reformat=True) label_list = [label for label in fugacity[0].keys() if label != 'source'] return kde_dict, fugacity, label_list else: fugacity = self.get_classification_fugacity() label_list = fugacity[ModelDriftConstants.CLASS].unique() return None, fugacity, label_list def _get_regression_prediction_kde(self): if not self.has_predictions: raise ValueError('No target was defined at fit phase.') if self.prediction_type != ModelDriftConstants.REGRRSSION_TYPE: raise ValueError('Can not use this function with a {} model.'.format(self.prediction_type)) prediction_dict = self.get_predictions_from_original_model(limit=ModelDriftConstants.PREDICTION_TEST_SIZE) original_serie = prediction_dict.get(ModelDriftConstants.FROM_ORIGINAL).values new_serie = prediction_dict.get(ModelDriftConstants.FROM_NEW).values min_support = float(min(min(original_serie), min(new_serie))) max_support = float(max(max(original_serie), max(new_serie))) logger.info("Computed histogram support: [{},{}]".format(min_support, max_support)) kde_original = format_proba_density(original_serie, min_support=min_support, max_support=max_support) kde_new = format_proba_density(new_serie, min_support=min_support, max_support=max_support) kde_dict= { 'Prediction': { ModelDriftConstants.FROM_ORIGINAL: kde_original, ModelDriftConstants.FROM_NEW: kde_new, "min_support": min_support, "max_support": max_support } } return kde_dict def get_regression_fugacity(self): """ TODO refactor """ kde_dict = self._get_regression_prediction_kde() new = kde_dict.get('Prediction').get('new') old = kde_dict.get('Prediction').get('original') old_arr = np.array(old).T df =
pd.DataFrame(new, columns=['val_new', 'new_density'])
pandas.DataFrame
""" Data: Temeprature and Salinity time series from SIO Scripps Pier Salinity: measured in PSU at the surface (~0.5m) and at depth (~5m) Temp: measured in degrees C at the surface (~0.5m) and at depth (~5m) - Timestamp included beginning in 1990 """ # imports import sys,os import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime from scipy import signal import scipy.stats as ss import SIO_modules as SIO_mod from importlib import reload reload(SIO_mod) # read in temp and sal files sal_data = pd.read_csv('/Users/MMStoll/Python/Data/Ocean569_Data/SIO_Data/SIO_SALT_1916-201905.txt', sep='\t', skiprows = 27) temp_data = pd.read_csv('/Users/MMStoll/Python/Data/Ocean569_Data/SIO_Data/SIO_TEMP_1916_201905.txt', sep='\t', skiprows = 26) ENSO_data = pd.read_excel('/Users/MMStoll/Python/Data/Ocean569_Data/SIO_Data/NOAA_ENSO_data.xlsx') ENSO_data_recent = pd.read_excel('/Users/MMStoll/Python/Data/Ocean569_Data/SIO_Data/NOAA_ENSO_recent_data.xlsx') precip_data = pd.read_csv('/Users/MMStoll/Python/Data/Ocean569_Data/SIO_Data/NOAA_Precip_data.csv') PDO_data = pd.read_csv('/Users/MMStoll/Python/Data/Ocean569_Data/SIO_Data/NOAA_PDO_data.csv', skiprows = 1) path_out = '/Users/MMStoll/Python/Output/Ocean569_Output/SIO_Output/' # convert year, month, day columns to single DATE column sal_data['DATE'] = pd.to_datetime(sal_data[['YEAR', 'MONTH', 'DAY']]) temp_data['DATE'] = pd.to_datetime(temp_data[['YEAR', 'MONTH', 'DAY']]) precip_data['Date'] = pd.to_datetime(precip_data['DATE'], format='%Y-%m-%d') ENSO_data_all = ENSO_data.append(ENSO_data_recent[323:], ignore_index = True) PDO_data['DATE'] =
pd.to_datetime(PDO_data['Date'], format='%Y%m')
pandas.to_datetime
import pandas as pd import numpy as np from sklearn import svm from sklearn import model_selection from sklearn.model_selection import learning_curve from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import cross_val_score from sklearn.model_selection import cross_val_predict from sklearn.linear_model import ElasticNetCV from sklearn.model_selection import KFold from sklearn import linear_model import xgboost as xgb import matplotlib.pyplot as plt from sklearn.preprocessing import RobustScaler from sklearn.pipeline import make_pipeline from sklearn.linear_model import LassoCV from sklearn.linear_model import RidgeCV from lightgbm import LGBMRegressor import feature_list def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=-1, train_sizes=np.linspace(.1, 1.0, 5), verbose=0): plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color='r') plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color='g') plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return plt def select_drop_standand(traindata, testdata, num): # 选取特征 if num == 1: selected, select_list = feature_list.select_feature1(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature1(testdata, False) if num == 2: selected, select_list = feature_list.select_feature2(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature2(testdata, False) if num == 3: selected, select_list = feature_list.select_feature3(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature3(testdata, False) if num == 4: selected, select_list = feature_list.select_feature4(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature4(testdata, False) if num == 5: selected, select_list = feature_list.select_feature5(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature5(testdata, False) if num == 6: selected, select_list = feature_list.select_feature6(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature6(testdata, False) if num == 7: selected, select_list = feature_list.select_feature7(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature7(testdata, False) if num == 8: selected, select_list = feature_list.select_feature8(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature8(testdata, False) if num == 9: selected, select_list = feature_list.select_feature9(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature9(testdata, False) if num == 10: selected, select_list = feature_list.select_feature10(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature10(testdata, False) if num == 11: selected, select_list = feature_list.select_feature11(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature11(testdata, False) if num == 12: selected, select_list = feature_list.select_feature12(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature12(testdata, False) if num == 13: selected, select_list = feature_list.select_feature13(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature13(testdata, False) if num == 14: selected, select_list = feature_list.select_feature14(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature14(testdata, False) if num == 15: selected, select_list = feature_list.select_feature15(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature15(testdata, False) if num == 16: selected, select_list = feature_list.select_feature16(traindata, True) selected_testB_features, select_list_testB = feature_list.select_feature16(testdata, False) selected.reset_index(drop=True, inplace=True) selected_testB_features.reset_index(drop=True, inplace=True) # 清理空行 selected_nonan = selected.dropna(axis=0, how='any') train_targets = pd.DataFrame(selected_nonan['charge_energy'], columns=['charge_energy']) train_nonan_features = selected_nonan.drop(['charge_energy'], axis=1) train_test_features = pd.concat([train_nonan_features, selected_testB_features], axis=0) train_test_features.reset_index(drop=True, inplace=True) # 注意标准化方法,RobustScaler quantile_range=(25.0, 75.0) # 基于分位数标准化 features select_list.remove('charge_energy') x_scaler = RobustScaler() y_scaler = RobustScaler() n_X_train_test = x_scaler.fit_transform(np.array(train_test_features)) # n_y_train = y_scaler.fit_transform(np.log1p(np.array(train_targets))) # ln(x+1)变换 n_y_train = y_scaler.fit_transform(np.array(train_targets)) n_X_train_test_pd = pd.DataFrame(n_X_train_test, columns=select_list) n_X_train_test_mer = n_X_train_test_pd.copy() # 时间维稀疏矩阵 # chargemode_dummies = pd.get_dummies(train_test_features['charge_mode'], prefix='mode', prefix_sep='_') # hour_dummies = pd.get_dummies(train_test_features['hour'], prefix='hour', prefix_sep='_') # week_dummies = pd.get_dummies(train_test_features['week'], prefix='week', prefix_sep='_') # month_dummies = pd.get_dummies(train_test_features['month'], prefix='month', prefix_sep='_') # if 'phase' in select_list: # phase_dummies = pd.get_dummies(train_test_features['phase'], prefix='phase', prefix_sep='_') # n_X_train_test_mer = pd.concat([n_X_train_test_pd, chargemode_dummies, hour_dummies, week_dummies, month_dummies,phase_dummies], axis=1) # n_X_train_test_mer.drop(['charge_mode', 'hour', 'week', 'month', 'phase'], axis=1, inplace=True) # else: # n_X_train_test_mer = pd.concat([n_X_train_test_pd, chargemode_dummies, hour_dummies, week_dummies, month_dummies], axis=1) # n_X_train_test_mer.drop(['charge_mode', 'hour', 'week', 'month'], axis=1, inplace=True) n_testB = n_X_train_test_mer.tail(selected_testB_features.shape[0]) n_X_train = n_X_train_test_mer.drop(n_testB.index.tolist()) return n_X_train, n_y_train, n_testB, y_scaler ram_num = 5 kfolds = KFold(n_splits=10, shuffle=True, random_state=ram_num) def cv_rmse(model, train, y_train): rmse = np.sqrt(-cross_val_score(model, train, y_train, scoring="neg_mean_squared_error", cv = kfolds)) return(rmse) def ridge_selector(k, X, y): model = make_pipeline(RidgeCV(alphas = [k], cv=kfolds)).fit(X, y) rmse = cv_rmse(model, X, y).mean() return(rmse) def lasso_selector(k, X, y): model = make_pipeline(LassoCV(max_iter=1e7, alphas = [k], cv = kfolds)).fit(X, y) rmse = cv_rmse(model, X, y).mean() return(rmse) if __name__ == '__main__': # 分别读取16个车的数据 features + target readFile_carfeatures = [] readFile_testfeatures = [] car_train_list = [] car_test_list = [] filenum = 17 for i in range(1,filenum): readFile_carfeatures.append('../dataset/feature/train_feature/car' + str(i) + '_features.csv') for i in range(1,filenum): readFile_testfeatures.append('../dataset/feature/test_feature/car' + str(i) + 'testB_features.csv') # train features + target for i in range(len(readFile_carfeatures)): car_train = pd.read_csv(readFile_carfeatures[i], dtype={'charge_start_time': str, 'charge_end_time': str}) car_train_list.append(car_train) # test features for i in range(len(readFile_carfeatures)): car_test =
pd.read_csv(readFile_testfeatures[i])
pandas.read_csv
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.linear_model import LogisticRegression import pdb from sklearn.metrics import * import matplotlib.pyplot as plt from sklearn import preprocessing from sklearn.preprocessing import StandardScaler import itertools import json import pickle class User: def __init__(self, id): self.id = id self.positive = [] self.negative = [] def add_positive(self, movie_id): self.positive.append(movie_id) def add_negative(self, movie_id): self.negative.append(movie_id) def get_positive(self): return self.positive def get_negative(self): return self.negative np.random.seed(1) class EventsGenerator: NUM_OF_USERS = 1 def __init__(self, learning_data, buy_probability, opened): self.learning_data = learning_data self.buy_probability = buy_probability self.users = [] self.NUM_OF_OPENED_MOVIES_PER_USER = opened for id in range(1, self.NUM_OF_USERS+1): self.users.append(User(id)) def run(self, pairwise=False): # print (self.users, "hellp") for user in self.users: # print (self.learning_data.index) opened_movies = np.random.choice(self.learning_data.index.values, self.NUM_OF_OPENED_MOVIES_PER_USER) self.__add_positives_and_negatives_to(user, opened_movies) return self.__build_events_data() def __add_positives_and_negatives_to(self, user, opened_movies): # print (opened_movies) for movie_id in opened_movies: if np.random.binomial(1, self.buy_probability.loc[movie_id]): user.add_positive(movie_id) else: user.add_negative(movie_id) def __build_events_data(self): events_data = [] for user in self.users: for positive_id in user.get_positive(): # print(positive_id) tmp = self.learning_data.loc[positive_id].to_dict() tmp['outcome'] = 1 events_data += [tmp] for negative_id in user.get_negative(): tmp = self.learning_data.loc[negative_id].to_dict() tmp['outcome'] = 0 events_data += [tmp] # print(events_data) return
pd.DataFrame(events_data)
pandas.DataFrame
# this functino is to run the mlp on the 0.5s binned data created by Shashiks # features: downloaded bytes amount is the feature to be updated. import pandas as pd import numpy as np import os import math import argparse from keras import Sequential from keras.layers import Dense, BatchNormalization, Dropout, Conv1D, MaxPooling1D, Flatten from sklearn.metrics import accuracy_score, average_precision_score, recall_score from sklearn.preprocessing import MinMaxScaler from sklearn.utils import shuffle # constant values YT = 1 FB = 0 V360 = 1 VNormal = 0 # select the train and test ids according to this random state and the seen and unseen nature def select_train_and_test_id(random_state, is_seen): # a set means id sets ranging from the 1-10,21-20,... if is_seen: test_ind = list(np.arange(1, 51)) train_ind = list(np.arange(1, 51)) else: num_of_ids_from_one_set = 3 all_videos = np.arange(1, 51) test_ind = [] # make sure that each video id is present in the test set at least 2 times for ind_set in range(5): for sub_id in range(num_of_ids_from_one_set): test_ind.append(ind_set * 10 + (sub_id + random_state)) train_ind = list(set(list(all_videos)) - set(list(test_ind))) return train_ind, test_ind # based on the train and test list get the original and synthesis dataset from the # processed data def truncate_train_list(temp_train_df, number_of_traces): temp_train_df = shuffle(temp_train_df, random_state=123) temp_train_df.reset_index(inplace=True, drop=True) len_temp_train_df = temp_train_df.shape[0] truncated_train_df = temp_train_df.loc[0:np.ceil(number_of_traces * len_temp_train_df) - 1, :] return truncated_train_df def get_synth_df(synth_df, indices, num_of_synth_samples): temp_df_list = [] for i in (indices): temp_df_list.append( synth_df.loc[i * num_of_synth_samples:i * num_of_synth_samples + num_of_synth_samples - 1, :]) df = pd.concat(temp_df_list) # print(df.shape[0]) return df def get_processed_train_test_synth_orit(train_list, test_list, is_seen, number_of_traces, random_state, platform,path): main_path = path data_processed_types = ['original_data', 'synthesized_data'] video_type = ['V360', 'VNormal'] # split the dataset according to the seen condition. first 60% of traces are in the # train set and the remaining are in the test set if is_seen: data = [[], [], [], []] v_type_path_ori = main_path + '/original_data/' + platform + '/' v_type_path_synth = main_path + '/synthesized_data/' + platform + '/' ori_360 = pd.read_csv(v_type_path_ori + 'V360.csv') ori_normal = pd.read_csv(v_type_path_ori + '/' + 'VNormal.csv') synth_360 =
pd.read_csv(v_type_path_synth + '/' + 'V360.csv')
pandas.read_csv
# Created by rahman at 14:51 2020-03-05 using PyCharm import os import random import pandas as pd import scipy from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier from sklearn.linear_model import LogisticRegression city = 'ny' #'ny' DATAPATH = '../data/' + city + "/" classifiers = { 'RF':(RandomForestClassifier, {"n_estimators": 101, "max_depth": 10}), 'GBM': (GradientBoostingClassifier,{'n_estimators':100, 'max_depth': 3}), 'AB':(AdaBoostClassifier, {"n_estimators": 101}), 'LR_SAG_L2penalty':(LogisticRegression, {'solver': 'sag'}), 'LR_liblinear_L2penalty': (LogisticRegression, {'solver': 'liblinear', 'penalty': 'l2'})} def folder_setup(city): '''setup folders for each city Args: city: city Returns: ''' if not os.path.exists('data/'+city): os.mkdir('data/'+city) if not os.path.exists('data/'+city+'/emb/'): os.mkdir('data/'+city+'/emb/') if not os.path.exists('data/'+city+'/feature/'): os.mkdir('data/'+city+'/feature/') #os.mkdir('data/'+city+'/process/') if not os.path.exists('data/'+city+'/result/'): os.mkdir('data/'+city+'/result/') def isFriends(friends,a, b): friends_a=friends[friends.u1==a].u2 return True if b in friends_a.values else False def pickPairs(friends, i, SP, MAX_PAIRS,ulist): '''picks friend and stranger pairs Args: friends: friends list (asymetric) [u1, u2] i: iteration SP: list of stranger pairs MAX_PAIRS: number of existing friend pairs ulist: randomly shuffled user list Returns: pairs: [u1,u2,label] ''' #print " permutation", i while len(ulist) >= 2: a = ulist.pop() b = ulist.pop() if not isFriends(friends, a,b): SP.append([a,b]) if len(SP)>=MAX_PAIRS: return SP else: print ("friends found ", a,b) return SP def make_allPairs(pairsFile, u_list_file, DATAPATH, friendFile, makeStrangers): '''gets friend and stranger pairs and writes to "clean_allPairs.csv" Args: friends: friends list (asymetric) [u1, u2] unordered pairs, duplicates exist u_list_file: dataset from which to read uids Returns: pairs: [u1,u2,label] ''' u_list = pd.read_csv(DATAPATH + u_list_file).index.values friends = pd.read_csv(DATAPATH + friendFile) # take only pairs {u1, u2} where u1<u2, because {u2, u1} also exist but is a duplicate smallFriends=friends.loc[(friends.u1< friends.u2) & (friends.u1.isin(u_list))& (friends.u2.isin(u_list))].reset_index(drop=True) smallFriends["label"] = 1 if makeStrangers: MAX_PAIRS, SP = len(smallFriends.u1), [] #print MAX_PAIRS i = 0 while len(SP) < MAX_PAIRS: SP = pickPairs(friends, i, SP, MAX_PAIRS, random.sample(u_list, k=len(u_list))) i += 1 #print SP with open(DATAPATH + "strangers.csv", "wb") as f: for pair in SP: f.write(str(pair[0]) + ", " + str(pair[1]) + '\n') strangers=pd.read_csv(DATAPATH+"strangers.csv", names=['u1', 'u2']) strangers["label"]=0 allPairs=smallFriends.append(strangers, ignore_index=True) #print "smallFriends.shape, strangers.shape", smallFriends.shape, strangers.shape, "allPairs.shape", allPairs.shape assert(len(allPairs)==len(smallFriends)*2 == len(strangers)*2) allPairs.to_csv(DATAPATH+ pairsFile)#, index=False) return allPairs def pair_construct(u_list, friendFile, downSample): ''' construct users pairs Args: u_list: user list friends: file of DF of list of friends pairFile: store here for future downSample: Boolean True for word2vec features, if False downsample later after calculation of overlap based features Returns: pair: u1, u2, label ''' friends = pd.read_csv(DATAPATH + friendFile) # positive i.e. friend pairs pair_p = friends.loc[(friends.u1.isin(u_list)) & (friends.u2.isin(u_list))].copy() # sampling negative pairs , i.e. strangers pair_n = pd.DataFrame(pd.np.random.choice(u_list, 9 * pair_p.shape[0]), columns=['u1']) pair_n['u2'] = pd.np.random.choice(u_list, 9 * pair_p.shape[0]) # remove dup user in pair pair_n = pair_n.loc[pair_n.u1 != pair_n.u2] # remove asymetric dups pair_n = pair_n.loc[pair_n.u1 < pair_n.u2] # remove dups pair_n = pair_n.drop_duplicates().reset_index(drop=True) # delete friends inside by setting the columns of the positive pairs to be indexes pair_n = pair_n.loc[~pair_n.set_index(list(pair_n.columns)).index.isin(pair_p.set_index(list(pair_p.columns)).index)] # now shuffle and reset the index pair_n = pair_n.loc[
pd.np.random.permutation(pair_n.index)
pandas.np.random.permutation
""" Misc tools for implementing data structures """ try: import cPickle as pickle except ImportError: # pragma: no cover import pickle import itertools from numpy.lib.format import read_array, write_array import numpy as np import pandas.algos as algos import pandas.lib as lib import pandas.tslib as tslib from pandas.util import py3compat import codecs import csv from pandas.util.py3compat import StringIO, BytesIO from pandas.core.config import get_option # XXX: HACK for NumPy 1.5.1 to suppress warnings try: np.seterr(all='ignore') # np.set_printoptions(suppress=True) except Exception: # pragma: no cover pass class PandasError(Exception): pass class AmbiguousIndexError(PandasError, KeyError): pass def isnull(obj): ''' Replacement for numpy.isnan / -numpy.isfinite which is suitable for use on object arrays. Parameters ---------- arr: ndarray or object value Returns ------- boolean ndarray or boolean ''' if lib.isscalar(obj): return lib.checknull(obj) from pandas.core.generic import PandasObject if isinstance(obj, np.ndarray): return _isnull_ndarraylike(obj) elif isinstance(obj, PandasObject): # TODO: optimize for DataFrame, etc. return obj.apply(isnull) elif isinstance(obj, list) or hasattr(obj, '__array__'): return _isnull_ndarraylike(obj) else: return obj is None isnull_new = isnull def isnull_old(obj): ''' Replacement for numpy.isnan / -numpy.isfinite which is suitable for use on object arrays. Treat None, NaN, INF, -INF as null. Parameters ---------- arr: ndarray or object value Returns ------- boolean ndarray or boolean ''' if lib.isscalar(obj): return lib.checknull_old(obj) from pandas.core.generic import PandasObject if isinstance(obj, np.ndarray): return _isnull_ndarraylike_old(obj) elif isinstance(obj, PandasObject): # TODO: optimize for DataFrame, etc. return obj.apply(isnull_old) elif isinstance(obj, list) or hasattr(obj, '__array__'): return _isnull_ndarraylike_old(obj) else: return obj is None def use_inf_as_null(flag): ''' Choose which replacement for numpy.isnan / -numpy.isfinite is used. Parameters ---------- flag: bool True means treat None, NaN, INF, -INF as null (old way), False means None and NaN are null, but INF, -INF are not null (new way). Notes ----- This approach to setting global module values is discussed and approved here: * http://stackoverflow.com/questions/4859217/ programmatically-creating-variables-in-python/4859312#4859312 ''' if flag == True: globals()['isnull'] = isnull_old else: globals()['isnull'] = isnull_new def _isnull_ndarraylike(obj): from pandas import Series values = np.asarray(obj) if values.dtype.kind in ('O', 'S', 'U'): # Working around NumPy ticket 1542 shape = values.shape if values.dtype.kind in ('S', 'U'): result = np.zeros(values.shape, dtype=bool) else: result = np.empty(shape, dtype=bool) vec = lib.isnullobj(values.ravel()) result[:] = vec.reshape(shape) if isinstance(obj, Series): result = Series(result, index=obj.index, copy=False) elif values.dtype == np.dtype('M8[ns]'): # this is the NaT pattern result = values.view('i8') == tslib.iNaT elif issubclass(values.dtype.type, np.timedelta64): result = -np.isfinite(values.view('i8')) else: result = -np.isfinite(obj) return result def _isnull_ndarraylike_old(obj): from pandas import Series values = np.asarray(obj) if values.dtype.kind in ('O', 'S', 'U'): # Working around NumPy ticket 1542 shape = values.shape if values.dtype.kind in ('S', 'U'): result = np.zeros(values.shape, dtype=bool) else: result = np.empty(shape, dtype=bool) vec = lib.isnullobj_old(values.ravel()) result[:] = vec.reshape(shape) if isinstance(obj, Series): result =
Series(result, index=obj.index, copy=False)
pandas.Series
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None with pytest.raises(Exception): store.select("df2") def test_mode(self, setup_path): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError): with HDFStore(path, mode=mode) as store: # noqa pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: with pytest.raises(ValueError): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(self, setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # invalid mode change with pytest.raises(PossibleDataLossError): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(self, setup_path): with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() left = store.get("a") right = store["a"] tm.assert_series_equal(left, right) left = store.get("/a") right = store["/a"] tm.assert_series_equal(left, right) with pytest.raises(KeyError, match="'No object named b in the file'"): store.get("b") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(self, where, expected, setup_path): # GH10143 objs = { "df1": pd.DataFrame([1, 2, 3]), "df2": pd.DataFrame([4, 5, 6]), "df3": pd.DataFrame([6, 7, 8]), "df4": pd.DataFrame([9, 10, 11]), "s1": pd.Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(self, setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: with pytest.raises(AttributeError): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, "_{x}".format(x=x)) def test_put(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store["a"] = ts store["b"] = df[:10] store["foo/bar/bah"] = df[:10] store["foo"] = df[:10] store["/foo"] = df[:10] store.put("c", df[:10], format="table") # not OK, not a table with pytest.raises(ValueError): store.put("b", df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case _maybe_remove(store, "f") with pytest.raises(ValueError): store.put("f", df[10:], append=True) # can't put to a table (use append instead) with pytest.raises(ValueError): store.put("c", df[10:], append=True) # overwrite table store.put("c", df[:10], format="table", append=False) tm.assert_frame_equal(df[:10], store["c"]) def test_put_string_index(self, setup_path): with ensure_clean_store(setup_path) as store: index = Index( ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(20), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) # mixed length index = Index( ["abcdefghijklmnopqrstuvwxyz1234567890"] + ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(21), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) def test_put_compression(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() store.put("c", df, format="table", complib="zlib") tm.assert_frame_equal(store["c"], df) # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="zlib") @td.skip_if_windows_python_3 def test_put_compression_blosc(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="blosc") store.put("c", df, format="table", complib="blosc") tm.assert_frame_equal(store["c"], df) def test_complibs_default_settings(self, setup_path): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complevel=9) result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "zlib" # Set complib and check to see if compression is disabled with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complib="zlib") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(setup_path) as tmpfile: store = pd.HDFStore(tmpfile) store.append("dfc", df, complevel=9, complib="blosc") store.append("df", df) store.close() with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where="/dfc", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "blosc" def test_complibs(self, setup_path): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version("lzo"): all_complibs.remove("lzo") # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(setup_path) as tmpfile: gname = "foo" # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode="r") for node in h5table.walk_nodes(where="/" + gname, classname="Leaf"): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() def test_put_integer(self, setup_path): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal, setup_path) @td.xfail_non_writeable def test_put_mixed_type(self, setup_path): df = tm.makeTimeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store.put("df", df) expected = store.get("df") tm.assert_frame_equal(expected, df) @pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) def test_append(self, setup_path): with ensure_clean_store(setup_path) as store: # this is allowed by almost always don't want to do it # tables.NaturalNameWarning): with catch_warnings(record=True): df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) _maybe_remove(store, "df2") store.put("df2", df[:10], format="table") store.append("df2", df[10:]) tm.assert_frame_equal(store["df2"], df) _maybe_remove(store, "df3") store.append("/df3", df[:10]) store.append("/df3", df[10:]) tm.assert_frame_equal(store["df3"], df) # this is allowed by almost always don't want to do it # tables.NaturalNameWarning _maybe_remove(store, "/df3 foo") store.append("/df3 foo", df[:10]) store.append("/df3 foo", df[10:]) tm.assert_frame_equal(store["df3 foo"], df) # dtype issues - mizxed type in a single object column df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]]) df["mixed_column"] = "testing" df.loc[2, "mixed_column"] = np.nan _maybe_remove(store, "df") store.append("df", df) tm.assert_frame_equal(store["df"], df) # uints - test storage of uints uint_data = DataFrame( { "u08": Series( np.random.randint(0, high=255, size=5), dtype=np.uint8 ), "u16": Series( np.random.randint(0, high=65535, size=5), dtype=np.uint16 ), "u32": Series( np.random.randint(0, high=2 ** 30, size=5), dtype=np.uint32 ), "u64": Series( [2 ** 58, 2 ** 59, 2 ** 60, 2 ** 61, 2 ** 62], dtype=np.uint64, ), }, index=np.arange(5), ) _maybe_remove(store, "uints") store.append("uints", uint_data) tm.assert_frame_equal(store["uints"], uint_data) # uints - test storage of uints in indexable columns _maybe_remove(store, "uints") # 64-bit indices not yet supported store.append("uints", uint_data, data_columns=["u08", "u16", "u32"]) tm.assert_frame_equal(store["uints"], uint_data) def test_append_series(self, setup_path): with ensure_clean_store(setup_path) as store: # basic ss = tm.makeStringSeries() ts = tm.makeTimeSeries() ns = Series(np.arange(100)) store.append("ss", ss) result = store["ss"] tm.assert_series_equal(result, ss) assert result.name is None store.append("ts", ts) result = store["ts"] tm.assert_series_equal(result, ts) assert result.name is None ns.name = "foo" store.append("ns", ns) result = store["ns"] tm.assert_series_equal(result, ns) assert result.name == ns.name # select on the values expected = ns[ns > 60] result = store.select("ns", "foo>60") tm.assert_series_equal(result, expected) # select on the index and values expected = ns[(ns > 70) & (ns.index < 90)] result = store.select("ns", "foo>70 and index<90") tm.assert_series_equal(result, expected) # multi-index mi = DataFrame(np.random.randn(5, 1), columns=["A"]) mi["B"] = np.arange(len(mi)) mi["C"] = "foo" mi.loc[3:5, "C"] = "bar" mi.set_index(["C", "B"], inplace=True) s = mi.stack() s.index = s.index.droplevel(2) store.append("mi", s) tm.assert_series_equal(store["mi"], s) def test_store_index_types(self, setup_path): # GH5386 # test storing various index types with ensure_clean_store(setup_path) as store: def check(format, index): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index = index(len(df)) _maybe_remove(store, "df") store.put("df", df, format=format) tm.assert_frame_equal(df, store["df"]) for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex, ]: check("table", index) check("fixed", index) # period index currently broken for table # seee GH7796 FIXME check("fixed", tm.makePeriodIndex) # check('table',tm.makePeriodIndex) # unicode index = tm.makeUnicodeIndex check("table", index) check("fixed", index) @pytest.mark.skipif( not is_platform_little_endian(), reason="reason platform is not little endian" ) def test_encoding(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A="foo", B="bar"), index=range(5)) df.loc[2, "A"] = np.nan df.loc[3, "B"] = np.nan _maybe_remove(store, "df") store.append("df", df, encoding="ascii") tm.assert_frame_equal(store["df"], df) expected = df.reindex(columns=["A"]) result = store.select("df", Term("columns=A", encoding="ascii")) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "val", [ [b"E\xc9, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"a", b"b", b"c"], [b"EE, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], [b"", b"a", b"b", b"c"], [b"\xf8\xfc", b"a", b"b", b"c"], [b"A\xf8\xfc", b"", b"a", b"b", b"c"], [np.nan, b"", b"b", b"c"], [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], ], ) @pytest.mark.parametrize("dtype", ["category", object]) def test_latin_encoding(self, setup_path, dtype, val): enc = "latin-1" nan_rep = "" key = "data" val = [x.decode(enc) if isinstance(x, bytes) else x for x in val] ser = pd.Series(val, dtype=dtype) with ensure_clean_path(setup_path) as store: ser.to_hdf(store, key, format="table", encoding=enc, nan_rep=nan_rep) retr = read_hdf(store, key) s_nan = ser.replace(nan_rep, np.nan) if is_categorical_dtype(s_nan): assert is_categorical_dtype(retr) tm.assert_series_equal( s_nan, retr, check_dtype=False, check_categorical=False ) else: tm.assert_series_equal(s_nan, retr) # FIXME: don't leave commented-out # fails: # for x in examples: # roundtrip(s, nan_rep=b'\xf8\xfc') def test_append_some_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( { "A": Series(np.random.randn(20)).astype("int32"), "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) # some nans _maybe_remove(store, "df1") df.loc[0:15, ["A1", "B", "D", "E"]] = np.nan store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) # first column df1 = df.copy() df1.loc[:, "A1"] = np.nan _maybe_remove(store, "df1") store.append("df1", df1[:10]) store.append("df1", df1[10:]) tm.assert_frame_equal(store["df1"], df1) # 2nd column df2 = df.copy() df2.loc[:, "A2"] = np.nan _maybe_remove(store, "df2") store.append("df2", df2[:10]) store.append("df2", df2[10:]) tm.assert_frame_equal(store["df2"], df2) # datetimes df3 = df.copy() df3.loc[:, "E"] = np.nan _maybe_remove(store, "df3") store.append("df3", df3[:10]) store.append("df3", df3[10:]) tm.assert_frame_equal(store["df3"], df3) def test_append_all_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( {"A1": np.random.randn(20), "A2": np.random.randn(20)}, index=np.arange(20), ) df.loc[0:15, :] = np.nan # nan some entire rows (dropna=True) _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df[-4:]) # nan some entire rows (dropna=False) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # tests the option io.hdf.dropna_table pd.set_option("io.hdf.dropna_table", False) _maybe_remove(store, "df3") store.append("df3", df[:10]) store.append("df3", df[10:]) tm.assert_frame_equal(store["df3"], df) pd.set_option("io.hdf.dropna_table", True) _maybe_remove(store, "df4") store.append("df4", df[:10]) store.append("df4", df[10:]) tm.assert_frame_equal(store["df4"], df[-4:]) # nan some entire rows (string are still written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # nan some entire rows (but since we have dates they are still # written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # Test to make sure defaults are to not drop. # Corresponding to Issue 9382 df_with_missing = DataFrame( {"col1": [0, np.nan, 2], "col2": [1, np.nan, np.nan]} ) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df_with_missing", format="table") reloaded = read_hdf(path, "df_with_missing") tm.assert_frame_equal(df_with_missing, reloaded) def test_read_missing_key_close_store(self, setup_path): # GH 25766 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(path, "k2") # smoke test to test that file is properly closed after # read with KeyError before another write df.to_hdf(path, "k2") def test_read_missing_key_opened_store(self, setup_path): # GH 28699 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") store = pd.HDFStore(path, "r") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(store, "k2") # Test that the file is still open after a KeyError and that we can # still read from it. pd.read_hdf(store, "k1") def test_append_frame_column_oriented(self, setup_path): with ensure_clean_store(setup_path) as store: # column oriented df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df.iloc[:, :2], axes=["columns"]) store.append("df1", df.iloc[:, 2:]) tm.assert_frame_equal(store["df1"], df) result = store.select("df1", "columns=A") expected = df.reindex(columns=["A"]) tm.assert_frame_equal(expected, result) # selection on the non-indexable result = store.select("df1", ("columns=A", "index=df.index[0:4]")) expected = df.reindex(columns=["A"], index=df.index[0:4]) tm.assert_frame_equal(expected, result) # this isn't supported with pytest.raises(TypeError): store.select("df1", "columns=A and index>df.index[4]") def test_append_with_different_block_ordering(self, setup_path): # GH 4096; using same frames, but different block orderings with ensure_clean_store(setup_path) as store: for i in range(10): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df["index"] = range(10) df["index"] += i * 10 df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") if i % 2 == 0: del df["int64"] df["int64"] = Series([1] * len(df), dtype="int64") if i % 3 == 0: a = df.pop("A") df["A"] = a df.set_index("index", inplace=True) store.append("df", df) # test a different ordering but with more fields (like invalid # combinate) with ensure_clean_store(setup_path) as store: df = DataFrame(np.random.randn(10, 2), columns=list("AB"), dtype="float64") df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") store.append("df", df) # store additional fields in different blocks df["int16_2"] = Series([1] * len(df), dtype="int16") with pytest.raises(ValueError): store.append("df", df) # store multile additional fields in different blocks df["float_3"] = Series([1.0] * len(df), dtype="float64") with pytest.raises(ValueError): store.append("df", df) def test_append_with_strings(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big", df) tm.assert_frame_equal(store.select("df_big"), df) check_col("df_big", "values_block_1", 15) # appending smaller string ok df2 = DataFrame([[124, "asdqy"], [346, "dggnhefbdfb"]]) store.append("df_big", df2) expected = concat([df, df2]) tm.assert_frame_equal(store.select("df_big"), expected) check_col("df_big", "values_block_1", 15) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big2", df, min_itemsize={"values": 50}) tm.assert_frame_equal(store.select("df_big2"), df) check_col("df_big2", "values_block_1", 50) # bigger string on next append store.append("df_new", df) df_new = DataFrame( [[124, "abcdefqhij"], [346, "abcdefghijklmnopqrtsuvwxyz"]] ) with pytest.raises(ValueError): store.append("df_new", df_new) # min_itemsize on Series index (GH 11412) df = tm.makeMixedDataFrame().set_index("C") store.append("ss", df["B"], min_itemsize={"index": 4}) tm.assert_series_equal(store.select("ss"), df["B"]) # same as above, with data_columns=True store.append( "ss2", df["B"], data_columns=True, min_itemsize={"index": 4} ) tm.assert_series_equal(store.select("ss2"), df["B"]) # min_itemsize in index without appending (GH 10381) store.put("ss3", df, format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") store.append("ss3", df2) tm.assert_frame_equal(store.select("ss3"), pd.concat([df, df2])) # same as above, with a Series store.put("ss4", df["B"], format="table", min_itemsize={"index": 6}) store.append("ss4", df2["B"]) tm.assert_series_equal( store.select("ss4"), pd.concat([df["B"], df2["B"]]) ) # with nans _maybe_remove(store, "df") df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[1:4, "string"] = np.nan df["string2"] = "bar" df.loc[4:8, "string2"] = np.nan df["string3"] = "bah" df.loc[1:, "string3"] = np.nan store.append("df", df) result = store.select("df") tm.assert_frame_equal(result, df) with ensure_clean_store(setup_path) as store: def check_col(key, name, size): assert getattr( store.get_storer(key).table.description, name ).itemsize, size df = DataFrame(dict(A="foo", B="bar"), index=range(10)) # a min_itemsize that creates a data_column _maybe_remove(store, "df") store.append("df", df, min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["B", "A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"values": 200}) check_col("df", "B", 200) check_col("df", "values_block_0", 200) assert store.get_storer("df").data_columns == ["B"] # infer the .typ on subsequent appends _maybe_remove(store, "df") store.append("df", df[:5], min_itemsize=200) store.append("df", df[5:], min_itemsize=200) tm.assert_frame_equal(store["df"], df) # invalid min_itemsize keys df = DataFrame(["foo", "foo", "foo", "barh", "barh", "barh"], columns=["A"]) _maybe_remove(store, "df") with pytest.raises(ValueError): store.append("df", df, min_itemsize={"foo": 20, "foobar": 20}) def test_append_with_empty_string(self, setup_path): with ensure_clean_store(setup_path) as store: # with all empty strings (GH 12242) df = DataFrame({"x": ["a", "b", "c", "d", "e", "f", ""]}) store.append("df", df[:-1], min_itemsize={"x": 1}) store.append("df", df[-1:], min_itemsize={"x": 1}) tm.assert_frame_equal(store.select("df"), df) def test_to_hdf_with_min_itemsize(self, setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(pd.read_hdf(path, "ss3"), pd.concat([df, df2])) # same as above, with a Series df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6}) df2["B"].to_hdf(path, "ss4", append=True, format="table") tm.assert_series_equal( pd.read_hdf(path, "ss4"), pd.concat([df["B"], df2["B"]]) ) @pytest.mark.parametrize( "format", [pytest.param("fixed", marks=td.xfail_non_writeable), "table"] ) def test_to_hdf_errors(self, format, setup_path): data = ["\ud800foo"] ser = pd.Series(data, index=pd.Index(data)) with ensure_clean_path(setup_path) as path: # GH 20835 ser.to_hdf(path, "table", format=format, errors="surrogatepass") result = pd.read_hdf(path, "table", errors="surrogatepass") tm.assert_series_equal(result, ser) def test_append_with_data_columns(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() df.iloc[0, df.columns.get_loc("B")] = 1.0 _maybe_remove(store, "df") store.append("df", df[:2], data_columns=["B"]) store.append("df", df[2:]) tm.assert_frame_equal(store["df"], df) # check that we have indices created assert store._handle.root.df.table.cols.index.is_indexed is True assert store._handle.root.df.table.cols.B.is_indexed is True # data column searching result = store.select("df", "B>0") expected = df[df.B > 0] tm.assert_frame_equal(result, expected) # data column searching (with an indexable and a data_columns) result = store.select("df", "B>0 and index>df.index[3]") df_new = df.reindex(index=df.index[4:]) expected = df_new[df_new.B > 0] tm.assert_frame_equal(result, expected) # data column selection with a string data_column df_new = df.copy() df_new["string"] = "foo" df_new.loc[1:4, "string"] = np.nan df_new.loc[5:6, "string"] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"]) result = store.select("df", "string='foo'") expected = df_new[df_new.string == "foo"] tm.assert_frame_equal(result, expected) # using min_itemsize and a data column def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"string": 30} ) check_col("df", "string", 30) _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"], min_itemsize=30) check_col("df", "string", 30) _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"values": 30} ) check_col("df", "string", 30) with ensure_clean_store(setup_path) as store: df_new["string2"] = "foobarbah" df_new["string_block1"] = "foobarbah1" df_new["string_block2"] = "foobarbah2" _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string", "string2"], min_itemsize={"string": 30, "string2": 40, "values": 50}, ) check_col("df", "string", 30) check_col("df", "string2", 40) check_col("df", "values_block_1", 50) with ensure_clean_store(setup_path) as store: # multiple data columns df_new = df.copy() df_new.iloc[0, df_new.columns.get_loc("A")] = 1.0 df_new.iloc[0, df_new.columns.get_loc("B")] = -1.0 df_new["string"] = "foo" sl = df_new.columns.get_loc("string") df_new.iloc[1:4, sl] = np.nan df_new.iloc[5:6, sl] = "bar" df_new["string2"] = "foo" sl = df_new.columns.get_loc("string2") df_new.iloc[2:5, sl] = np.nan df_new.iloc[7:8, sl] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["A", "B", "string", "string2"]) result = store.select( "df", "string='foo' and string2='foo' and A>0 and B<0" ) expected = df_new[ (df_new.string == "foo") & (df_new.string2 == "foo") & (df_new.A > 0) & (df_new.B < 0) ] tm.assert_frame_equal(result, expected, check_index_type=False) # yield an empty frame result = store.select("df", "string='foo' and string2='cool'") expected = df_new[(df_new.string == "foo") & (df_new.string2 == "cool")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example df_dc = df.copy() df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc["string2"] = "cool" df_dc["datetime"] = Timestamp("20010102") df_dc = df_dc._convert(datetime=True) df_dc.loc[3:5, ["A", "B", "datetime"]] = np.nan _maybe_remove(store, "df_dc") store.append( "df_dc", df_dc, data_columns=["B", "C", "string", "string2", "datetime"] ) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected, check_index_type=False) result = store.select("df_dc", ["B > 0", "C > 0", "string == foo"]) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example part 2 np.random.seed(1234) index = date_range("1/1/2000", periods=8) df_dc = DataFrame( np.random.randn(8, 3), index=index, columns=["A", "B", "C"] ) df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc.loc[:, ["B", "C"]] = df_dc.loc[:, ["B", "C"]].abs() df_dc["string2"] = "cool" # on-disk operations store.append("df_dc", df_dc, data_columns=["B", "C", "string", "string2"]) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected) result = store.select("df_dc", ["B > 0", "C > 0", 'string == "foo"']) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected) def test_create_table_index(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string", "string2"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True assert col("f", "string2").is_indexed is True # specify index=columns store.append( "f2", df, index=["string"], data_columns=["string", "string2"] ) assert col("f2", "index").is_indexed is False assert col("f2", "string").is_indexed is True assert col("f2", "string2").is_indexed is False # try to index a non-table _maybe_remove(store, "f2") store.put("f2", df) with pytest.raises(TypeError): store.create_table_index("f2") def test_append_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.append("mi", df) result = store.select("mi") tm.assert_frame_equal(result, df) # GH 3748 result = store.select("mi", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) with ensure_clean_path("test.hdf") as path: df.to_hdf(path, "df", format="table") result = read_hdf(path, "df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_column_multiindex(self, setup_path): # GH 4710 # recreate multi-indexes properly index = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")], names=["first", "second"] ) df = DataFrame(np.arange(12).reshape(3, 4), columns=index) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df", df) tm.assert_frame_equal( store["df"], expected, check_index_type=True, check_column_type=True ) store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) with pytest.raises(ValueError): store.put("df2", df, format="table", data_columns=["A"]) with pytest.raises(ValueError): store.put("df3", df, format="table", data_columns=True) # appending multi-column on existing table (see GH 6167) with ensure_clean_store(setup_path) as store: store.append("df2", df) store.append("df2", df) tm.assert_frame_equal(store["df2"], concat((df, df))) # non_index_axes name df = DataFrame( np.arange(12).reshape(3, 4), columns=Index(list("ABCD"), name="foo") ) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) def test_store_multiindex(self, setup_path): # validate multi-index names # GH 5527 with ensure_clean_store(setup_path) as store: def make_index(names=None): return MultiIndex.from_tuples( [ (datetime.datetime(2013, 12, d), s, t) for d in range(1, 3) for s in range(2) for t in range(3) ], names=names, ) # no names _maybe_remove(store, "df") df = DataFrame(np.zeros((12, 2)), columns=["a", "b"], index=make_index()) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # partial names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", None, None]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # series _maybe_remove(store, "s") s = Series(np.zeros(12), index=make_index(["date", None, None])) store.append("s", s) xp = Series(np.zeros(12), index=make_index(["date", "level_1", "level_2"])) tm.assert_series_equal(store.select("s"), xp) # dup with column _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "a", "t"]), ) with pytest.raises(ValueError): store.append("df", df) # dup within level _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "date", "date"]), ) with pytest.raises(ValueError): store.append("df", df) # fully names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "s", "t"]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) def test_select_columns_in_where(self, setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_mi_data_columns(self, setup_path): # GH 14435 idx = pd.MultiIndex.from_arrays( [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"] ) df = pd.DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=True) actual = store.select("df", where="id == 1") expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_pass_spec_to_storer(self, setup_path): df = tm.makeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df) with pytest.raises(TypeError): store.select("df", columns=["A"]) with pytest.raises(TypeError): store.select("df", where=[("columns=A")]) @td.xfail_non_writeable def test_append_misc(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df, chunksize=1) result = store.select("df") tm.assert_frame_equal(result, df) store.append("df1", df, expectedrows=10) result = store.select("df1") tm.assert_frame_equal(result, df) # more chunksize in append tests def check(obj, comparator): for c in [10, 200, 1000]: with ensure_clean_store(setup_path, mode="w") as store: store.append("obj", obj, chunksize=c) result = store.select("obj") comparator(result, obj) df = tm.makeDataFrame() df["string"] = "foo" df["float322"] = 1.0 df["float322"] = df["float322"].astype("float32") df["bool"] = df["float322"] > 0 df["time1"] = Timestamp("20130101") df["time2"] = Timestamp("20130102") check(df, tm.assert_frame_equal) # empty frame, GH4273 with ensure_clean_store(setup_path) as store: # 0 len df_empty = DataFrame(columns=list("ABC")) store.append("df", df_empty) with pytest.raises(KeyError, match="'No object named df in the file'"): store.select("df") # repeated append of 0/non-zero frames df = DataFrame(np.random.rand(10, 3), columns=list("ABC")) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) store.append("df", df_empty) tm.assert_frame_equal(store.select("df"), df) # store df = DataFrame(columns=list("ABC")) store.put("df2", df) tm.assert_frame_equal(store.select("df2"), df) def test_append_raise(self, setup_path): with ensure_clean_store(setup_path) as store: # test append with invalid input to get good error messages # list in column df = tm.makeDataFrame() df["invalid"] = [["a"]] * len(df) assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # multiple invalid columns df["invalid2"] = [["a"]] * len(df) df["invalid3"] = [["a"]] * len(df) with pytest.raises(TypeError): store.append("df", df) # datetime with embedded nans as object df = tm.makeDataFrame() s = Series(datetime.datetime(2001, 1, 2), index=df.index) s = s.astype(object) s[0:5] = np.nan df["invalid"] = s assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # directly ndarray with pytest.raises(TypeError): store.append("df", np.arange(10)) # series directly with pytest.raises(TypeError): store.append("df", Series(np.arange(10))) # appending an incompatible table df = tm.makeDataFrame() store.append("df", df) df["foo"] = "foo" with pytest.raises(ValueError): store.append("df", df) def test_table_index_incompatible_dtypes(self, setup_path): df1 = DataFrame({"a": [1, 2, 3]}) df2 = DataFrame({"a": [4, 5, 6]}, index=date_range("1/1/2000", periods=3)) with ensure_clean_store(setup_path) as store: store.put("frame", df1, format="table") with pytest.raises(TypeError): store.put("frame", df2, format="table", append=True) def test_table_values_dtypes_roundtrip(self, setup_path): with ensure_clean_store(setup_path) as store: df1 = DataFrame({"a": [1, 2, 3]}, dtype="f8") store.append("df_f8", df1) tm.assert_series_equal(df1.dtypes, store["df_f8"].dtypes) df2 = DataFrame({"a": [1, 2, 3]}, dtype="i8") store.append("df_i8", df2) tm.assert_series_equal(df2.dtypes, store["df_i8"].dtypes) # incompatible dtype with pytest.raises(ValueError): store.append("df_i8", df1) # check creation/storage/retrieval of float32 (a bit hacky to # actually create them thought) df1 = DataFrame(np.array([[1], [2], [3]], dtype="f4"), columns=["A"]) store.append("df_f4", df1) tm.assert_series_equal(df1.dtypes, store["df_f4"].dtypes) assert df1.dtypes[0] == "float32" # check with mixed dtypes df1 = DataFrame( { c: Series(np.random.randint(5), dtype=c) for c in ["float32", "float64", "int32", "int64", "int16", "int8"] } ) df1["string"] = "foo" df1["float322"] = 1.0 df1["float322"] = df1["float322"].astype("float32") df1["bool"] = df1["float32"] > 0 df1["time1"] = Timestamp("20130101") df1["time2"] = Timestamp("20130102") store.append("df_mixed_dtypes1", df1) result = store.select("df_mixed_dtypes1").dtypes.value_counts() result.index = [str(i) for i in result.index] expected = Series( { "float32": 2, "float64": 1, "int32": 1, "bool": 1, "int16": 1, "int8": 1, "int64": 1, "object": 1, "datetime64[ns]": 2, } ) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_table_mixed_dtypes(self, setup_path): # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: store.append("df1_mixed", df) tm.assert_frame_equal(store.select("df1_mixed"), df) def test_unimplemented_dtypes_table_columns(self, setup_path): with ensure_clean_store(setup_path) as store: dtypes = [("date", datetime.date(2001, 1, 2))] # currently not supported dtypes #### for n, f in dtypes: df = tm.makeDataFrame() df[n] = f with pytest.raises(TypeError): store.append("df1_{n}".format(n=n), df) # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["datetime1"] = datetime.date(2001, 1, 2) df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: # this fails because we have a date in the object block...... with pytest.raises(TypeError): store.append("df_unimplemented", df) @td.xfail_non_writeable @pytest.mark.skipif( LooseVersion(np.__version__) == LooseVersion("1.15.0"), reason=( "Skipping pytables test when numpy version is " "exactly equal to 1.15.0: gh-22098" ), ) def test_calendar_roundtrip_issue(self, setup_path): # 8591 # doc example from tseries holiday section weekmask_egypt = "Sun Mon Tue Wed Thu" holidays = [ "2012-05-01", datetime.datetime(2013, 5, 1), np.datetime64("2014-05-01"), ] bday_egypt = pd.offsets.CustomBusinessDay( holidays=holidays, weekmask=weekmask_egypt ) dt = datetime.datetime(2013, 4, 30) dts = date_range(dt, periods=5, freq=bday_egypt) s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split())) with ensure_clean_store(setup_path) as store: store.put("fixed", s) result = store.select("fixed") tm.assert_series_equal(result, s) store.append("table", s) result = store.select("table") tm.assert_series_equal(result, s) def test_roundtrip_tz_aware_index(self, setup_path): # GH 17618 time = pd.Timestamp("2000-01-01 01:00:00", tz="US/Eastern") df = pd.DataFrame(data=[0], index=[time]) with ensure_clean_store(setup_path) as store: store.put("frame", df, format="fixed") recons = store["frame"] tm.assert_frame_equal(recons, df) assert recons.index[0].value == 946706400000000000 def test_append_with_timedelta(self, setup_path): # GH 3577 # append timedelta df = DataFrame( dict( A=Timestamp("20130101"), B=[ Timestamp("20130101") + timedelta(days=i, seconds=10) for i in range(10) ], ) ) df["C"] = df["A"] - df["B"] df.loc[3:5, "C"] = np.nan with
ensure_clean_store(setup_path)
pandas.tests.io.pytables.common.ensure_clean_store
import time import numpy as np import pandas as pd from molecules import mol_from_smiles from molecules import add_property from molecules import ( add_atom_counts, add_bond_counts, add_ring_counts) from .config import get_dataset_info from .filesystem import load_dataset SCORES = ["validity", "novelty", "uniqueness"] def dump_scores(config, scores, epoch): filename = config.path('performance') / "scores.csv" df = pd.DataFrame([scores], columns=SCORES) if not filename.exists(): df.to_csv(filename) is_max = True else: ref = pd.read_csv(filename, index_col=0) is_max = scores[2] >= ref.uniqueness.max() ref = pd.concat([ref, df], axis=0, sort=False, ignore_index=True) ref.to_csv(filename) return is_max def retrieve_samples(config): dfs = [] filenames = config.path('samples').glob('*_*.csv') for filename in filenames: dfs.append(
pd.read_csv(filename, index_col=0)
pandas.read_csv
import sys import pandas as pd import numpy as np import seaborn as sns from matplotlib import pyplot as plt from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): """ Loading Messages and Categories from Destination Database Arguments: messages_filepath -> Path to the CSV containing file messages categories_filepath -> Path to the CSV containing file categories Output: df -> Combined data containing messages and categories """ messages =
pd.read_csv(messages_filepath)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Mon Feb 28 09:33:11 2022 @author: rossgra """ import pandas as pd import numpy as np import csv import glob import os Phase = "1H" Computer = "personal" if Computer == "work": USB = "D" os.chdir("C:/Users/rossgra/Box/OSU, CSC, CQC Project files/"+ Phase +"/Compiler_1_exact/Raw_Day/Raw_D_metrics") else: os.chdir("C:/Users/gvros/Desktop/Oregon State Masters/Work/OSU, CSC, CQC Project files/"+Phase+"/Compiler_1_exact/Raw_D_metrics") USB = "E" Pump_Fuel_path = os.getcwd() csv_Fuel = glob.glob(os.path.join(Pump_Fuel_path, "*.csv")) HH_count = [] Fuel_Removed_for_24_Hours = [] for file in csv_Fuel: with open(file, 'r') as f: csv_reader = csv.reader(f) for idx, row in enumerate(csv_reader): if idx == 1: ID_Number = row[1] print(ID_Number) elif 'Fuel Raw Data' in row: data_start = idx sensor_data =
pd.read_csv(file, skiprows=data_start)
pandas.read_csv
from .data import CovidData import datetime as dt from matplotlib.offsetbox import AnchoredText import pandas as pd import seaborn as sns import geopandas as gpd import matplotlib.pyplot as plt plt.style.use('ggplot') def pan_duration(date): """Return the duration in days of the pandemic. As calculated from the gov.uk API. It subtracts the first date entry in the API data from the most recent date entry. Args: date (datetime): DataFrame column (i.e Series) containing date field as downloaded from the gov.uk API by get_national_data() method from CovidData Class. Returns: datetime: Duration of pandemic in days as datetime object. """ return (date[0] - date[-1]).days def validate_input(df): """Check that input into the plotting functions is of the correct type. Args: df (Pandas DataFrame): this is intended to be the plotting parameter Raises: TypeError: if parameter is not a DataFrame """ # if for_function == 'deaths' or for_function == 'cases': # expected_cols = {'cases_cumulative', 'cases_demographics', # 'cases_newDaily', 'case_rate', 'date', # 'death_Demographics', 'name', 'vac_firstDose', # 'vac_secondDose'} if not isinstance(df, pd.DataFrame): raise TypeError('Parameter must be DataFrame, use get_regional_data' + ' method from CovidData class.') # if set(df.columns) != expected_cols: # raise ValueError('Incorrect features. Expecting output from' # + ' get_regional_data method from CovidData class') def my_path(): """Find correct path at module level for geo_data files. Returns: [type]: [description] """ from pathlib import Path base = Path(__file__).resolve().parent / 'geo_data' return base def daily_case_plot(df, pan_duration=pan_duration, save=False): """Create a matplotlib plot of case numbers in the UK. Calculated over the duration of the pandemic.Display text information giving the most recent daily number, the highest daily number and the date recorded, the total cumulative number of cases and the duration of the pandemic in days. Args: df (DataFrame): containing covid data retrieved from CovidData class using get_national_data() or get_UK_data() method. pan_duration (function, optional): Defaults to pan_duration. save (bool, optional): set True to save plot. Defaults to False. Returns: - Matplotlib plot, styled using matplotlib template 'ggplot' """ # Create Variables we wish to plot cases = df['case_newCases'].to_list() date = df['date'].to_list() cumulative = df['case_cumulativeCases'].to_list() # Find date of highest number of daily cases high, arg_high = max(cases), cases.index(max(cases)) high_date = date[arg_high].strftime('%d %b %Y') duration = pan_duration(date=date) # Create matplotlib figure and specify size fig = plt.figure(figsize=(12, 10)) plt.style.use('ggplot') ax = fig.add_subplot() # Plot varibles ax.plot(date, cases) # Style and label plot ax.set_xlabel('Date') ax.set_ylabel('Cases') ax.fill_between(date, cases, alpha=0.3) ax.set_title('Number of people who tested positive for Covid-19 (UK)', fontsize=18) at = AnchoredText(f"Most recent new cases\n{cases[0]:,.0f}\ \nMax new cases\n{high:,.0f}: {high_date}\ \nCumulative cases\n{cumulative[0]:,.0f}\ \nPandemic duration\n{duration} days", prop=dict(size=16), frameon=True, loc='upper left') at.patch.set_boxstyle("round,pad=0.,rounding_size=0.2") ax.add_artist(at) ax.annotate('Source: gov.uk https://api.coronavirus.data.gov.uk/v1/data', xy=(0.25, 0.0175), xycoords='figure fraction', fontsize=12, color='#555555') plt.style.use('ggplot') if save: plt.savefig(f"{date[0].strftime('%Y-%m-%d')}-case_numbers_plot"); plt.show() def regional_plot_cases(save=False): """Plot regional case numbers on a map of the UK. Function collects data using CovidData get_regional_data method. Args: save (bool, optional): If true will save plot. Defaults to False. Returns: Plot of regional case numbers on map of UK """ # Collect data regions = CovidData().get_regional_data() scotland = CovidData(nation='scotland').get_national_data() wales = CovidData(nation='wales').get_national_data() ni = CovidData(nation='northern ireland').get_national_data() regions = regions.assign(case_newCases=regions['cases_newDaily']) # Set date to plot date_selector = regions['date'][0] regions_date = regions.loc[regions['date'] == date_selector] scotland_date = \ scotland.loc[scotland['date'] == date_selector, ['date', 'name', 'case_newCases']] wales_date = wales.loc[wales['date'] == date_selector, ['date', 'name', 'case_newCases']] ni_date = ni.loc[ni['date'] == date_selector, ['date', 'name', 'case_newCases']] # Combine regional data into single dataframe final_df = pd.concat([regions_date, scotland_date, wales_date, ni_date], axis=0) file_path = my_path() / 'NUTS_Level_1_(January_2018)_Boundaries.shp' # Check required file exists try: # Read shape file geo_df = gpd.read_file(file_path) except: # bare except is not good practice, this should be changed print('Ensure you have imported geo_data sub-folder') geo_df['nuts118nm'] = \ geo_df['nuts118nm'].replace(['North East (England)', 'North West (England)', 'East Midlands (England)', 'West Midlands (England)', 'South East (England)', 'South West (England)'], ['North East', 'North West', 'East Midlands', 'West Midlands', 'South East', 'South West']) merged = geo_df.merge(final_df, how='left', left_on="nuts118nm", right_on="name") # Column to plot feature = 'case_newCases' # Plot range feature_min, feature_max = merged['case_newCases'].min(), \ merged['case_newCases'].max() # Create plot fig, ax = plt.subplots(1, figsize=(12, 10)) # Set style and labels ax.axis('off') ax.set_title(f'Number of new cases per region {date_selector}', fontdict={'fontsize': '18', 'fontweight': '3'}) ax.annotate('Source: gov.uk' + ' https://api.coronavirus.data.gov.uk/v1/data', xy=(0.25, .05), xycoords='figure fraction', fontsize=12, color='#555555') # Create colorbar sm = plt.cm.ScalarMappable(cmap='Reds', norm=plt.Normalize(vmin=feature_min, vmax=feature_max)) fig.colorbar(sm) # Create map merged.plot(column=feature, cmap='Reds', linewidth=0.8, ax=ax, edgecolor='0.8'); plt.show() if save: image = merged.plot(column=feature, cmap='Reds', linewidth=0.8, ax=ax, edgecolor='0.8'); image.figure.savefig(f'{date_selector}-regional_cases_plot') def regional_plot_rate(save=False): """Plot regional case rate per 100,000 on a map of the UK. Function collects data using CovidData get_regional_data method. Args: save (bool, optional): If true will save plot. Defaults to False. Returns: Plot of regional case rate on map of UK. """ # Collect data regions = CovidData().get_regional_data() scotland = CovidData(nation='scotland').get_national_data() wales = CovidData(nation='wales').get_national_data() ni = CovidData(nation='northern ireland').get_national_data() # Set date to plot date_selector = regions['date'][5] regions_date = regions.loc[regions['date'] == date_selector] scotland_date = scotland.loc[scotland['date'] == date_selector, ['date', 'name', 'case_rate']] wales_date = wales.loc[wales['date'] == date_selector, ['date', 'name', 'case_rate']] ni_date = ni.loc[ni['date'] == date_selector, ['date', 'name', 'case_rate']] # Combine regional data into single dataframe final_df = pd.concat([regions_date, scotland_date, wales_date, ni_date], axis=0) file_path = my_path() / 'NUTS_Level_1_(January_2018)_Boundaries.shp' # Check required file exists try: # Read shape file geo_df = gpd.read_file(file_path) except: # bare except should be changed, will do so in later interation print('Ensure you have imported geo_data sub-folder') geo_df['nuts118nm'] = \ geo_df['nuts118nm'].replace(['North East (England)', 'North West (England)', 'East Midlands (England)', 'West Midlands (England)', 'South East (England)', 'South West (England)'], ['North East', 'North West', 'East Midlands', 'West Midlands', 'South East', 'South West']) merged = geo_df.merge(final_df, how='left', left_on="nuts118nm", right_on="name") # Column to plot feature = 'case_rate' # Plot range feature_min, feature_max = merged['case_rate'].min(),\ merged['case_rate'].max() # Create plot fig, ax = plt.subplots(1, figsize=(12, 10)) # Set style and labels ax.axis('off') ax.set_title('Regional rate per 100,000 (new cases)', fontdict={'fontsize': '20', 'fontweight': '3'}) ax.annotate('Source: gov.uk' + ' https://api.coronavirus.data.gov.uk/v1/data', xy=(0.25, .05), xycoords='figure fraction', fontsize=12, color='#555555') # Create colorbar sm = plt.cm.ScalarMappable(cmap='Reds', norm=plt.Normalize(vmin=feature_min, vmax=feature_max)) fig.colorbar(sm) # Create map merged.plot(column=feature, cmap='Reds', linewidth=0.8, ax=ax, edgecolor='0.8'); plt.show() if save: image = merged.plot(column=feature, cmap='Reds', linewidth=0.8, ax=ax, edgecolor='0.8'); image.figure.savefig(f'{date_selector}-regional_rate_plot') def heatmap_cases(df): """Create heatmap of case numbers for duration of pandemic. Args: df (DataFrame): Covid case data retrieved by calling CovidData class method. Returns: Seaborn heatmap plot of case numbers for each day of the pandemic. """ # Variables to plot cases = df['case_newCases'].to_list() date = df['date'].to_list() # Create new DataFrame containing two columns: date and case numbers heat_df = pd.DataFrame({'date': date, 'cases': cases}, index=date) # Separate out date into year month and day heat_df['year'] = heat_df.index.year heat_df["month"] = heat_df.index.month heat_df['day'] = heat_df.index.day # Use groupby to convert data to wide format for heatmap plot x = heat_df.groupby(["year", "month", "day"])["cases"].sum() df_wide = x.unstack() # Plot data sns.set(rc={"figure.figsize": (12, 10)}) # Reverse colormap so that dark colours represent higher numbers cmap = sns.cm.rocket_r ax = sns.heatmap(df_wide, cmap=cmap) ax.set_title('Heatmap of daily cases since start of pandemic', fontsize=20) ax.annotate('Source: gov.uk https://api.coronavirus.data.gov.uk/v1/data', xy=(0.25, 0.01), xycoords='figure fraction', fontsize=12, color='#555555') plt.show() def local_rate_plot(save=False): """Plot local case rate per 100,000 on a map of the UK. Function collects data using CovidData get_regional_data method. Args: save (bool, optional): If true will save plot. Defaults to False. Returns: Plot of local case rate on map of UK """ # Find latest data recent_date = CovidData().get_regional_data() recent_date = recent_date['date'][5] # Select latest data from local data local = CovidData().get_local_data(date=recent_date) date_selector = recent_date local_date = local.loc[local['date'] == date_selector, ['date', 'name', 'case_rate']] file_path = my_path() / "Local_Authority_Districts.shp" # Check required file exists try: # Read shape file geo_df = gpd.read_file(file_path) except: # bare except should be changed, will do so in later interation print('Ensure you have imported geo_data sub-folder') local_date['name'] = \ local_date['name'].replace(['Cornwall and Isles of Scilly'], ['Cornwall']) merged = geo_df.merge(local_date, how='outer', left_on="lad19nm", right_on="name") # Column to plot feature = 'case_rate' # Plot range vmin, vmax = merged['case_rate'].min(), merged['case_rate'].max() # Create plot fig, ax = plt.subplots(1, figsize=(12, 10)) # Set style and labels ax.axis('off') ax.set_title(f'Local rate per 100,000 {recent_date}', fontdict={'fontsize': '20', 'fontweight': '3'}) ax.annotate('Source: gov.uk' + ' https://api.coronavirus.data.gov.uk/v1/data', xy=(0.25, .05), xycoords='figure fraction', fontsize=12, color='#555555') # Create colorbar sm = plt.cm.ScalarMappable(cmap='Reds', norm=plt.Normalize(vmin=vmin, vmax=vmax)) fig.colorbar(sm) # Create map merged.plot(column=feature, cmap='Reds', linewidth=0.2, ax=ax, edgecolor='0.8') plt.show() if save: image = merged.plot(column=feature, cmap='Reds', linewidth=0.2, ax=ax, edgecolor='0.8'); image.figure.savefig(f'{date_selector}-local_rate_plot') def local_cases_plot(save=False): """Plot local case numbers on a map of the UK. Function collects data using CovidData get_regional_data method. Args: save (bool, optional): If true will save plot. Defaults to False. """ # Find latest data recent_date = CovidData().get_regional_data() recent_date = recent_date['date'][0] # Select latest data from local data local = CovidData().get_local_data(date=recent_date) date_selector = recent_date local_date = local.loc[local['date'] == date_selector, ['date', 'name', 'case_newDaily']] file_path = my_path() / "Local_Authority_Districts.shp" # Check required file exists try: # Read shape file geo_df = gpd.read_file(file_path) except: # bare except should be changed, will do so in later interation print('Ensure you have imported geo_data sub-folder') local_date['name'] = \ local_date['name'].replace(['Cornwall and Isles of Scilly'], ['Cornwall']) merged = geo_df.merge(local_date, how='outer', left_on="lad19nm", right_on="name") # Column to plot feature = 'case_newDaily' # Plot range vmin, vmax = merged['case_newDaily'].min(), \ merged['case_newDaily'].max() # Create plot fig, ax = plt.subplots(1, figsize=(12, 10)) # Set style and labels ax.axis('off') ax.set_title(f'Number of new cases by local authority {recent_date}', fontdict={'fontsize': '20', 'fontweight': '3'}) ax.annotate('Source: gov.uk' + ' https://api.coronavirus.data.gov.uk/v1/data', xy=(0.25, .05), xycoords='figure fraction', fontsize=12, color='#555555') # Create colorbar sm = plt.cm.ScalarMappable(cmap='Reds', norm=plt.Normalize(vmin=vmin, vmax=vmax)) fig.colorbar(sm) # Create map merged.plot(column=feature, cmap='Reds', linewidth=0.2, ax=ax, edgecolor='0.8') plt.show() if save: image = merged.plot(column=feature, cmap='Reds', linewidth=0.2, ax=ax, edgecolor='0.8'); image.figure.savefig(f'{date_selector}-local_cases_plot') def case_demographics(df): """Produce a plot of the age demographics of cases across England. Args: df (DataFrame): this must be the dataframe produced by the get_regional_data method from the CovidData class Returns: Plot of case numbers broken down by age """ validate_input(df) df_list = df.loc[:, ['cases_demographics', 'date']] age_df = [] for i in range(df_list.shape[0]): if df_list.iloc[i, 0]: temp_df = pd.DataFrame(df_list.iloc[i, 0]) temp_df['date'] = df_list.iloc[i, 1] temp_df = temp_df.pivot(values='rollingRate', columns='age', index='date') age_df.append(temp_df) data = pd.concat(age_df) data.index = pd.to_datetime(data.index) data = \ data.assign(under_15=(data['00_04']+data['05_09']+data['10_14'])/3, age_15_29=(data['15_19']+data['20_24']+data['25_29'])/3, age_30_39=(data['30_34']+data['35_39'])/2, age_40_49=(data['40_44']+data['45_49'])/2, age_50_59=(data['50_54']+data['55_59'])/2) data.drop(columns=['00_04', '00_59', '05_09', '10_14', '15_19', '20_24', '25_29', '30_34', '35_39', '40_44', '45_49', '50_54', '55_59', '60_64', '65_69', '70_74', '75_79', '80_84', '85_89', '90+', 'unassigned'], inplace=True) date = data.index[0].strftime('%d-%b-%y') ready_df = data.resample('W').mean() ready_df.plot(figsize=(15, 10), subplots=True, layout=(3, 3), title=f'{date} - England case rate per 100,000 by age' + ' (weekly)') plt.style.use('ggplot') plt.show() def vaccine_demographics(df): """Plot of the age demographics of third vaccine uptake across England. Args: df ([DataFrame]): this must be the dataframe produced by the get_regional_data method from the CovidData class Returns: Plot of cumulative third vaccination numbers broken down by age. """ validate_input(df) df_list = df.loc[:, ['vac_demographics', 'date']] age_df = [] for i in range(df_list.shape[0]): if df_list.iloc[i, 0]: temp_df = pd.DataFrame(df_list.iloc[i, 0]) temp_df['date'] = df_list.iloc[i, 1] temp_df =\ temp_df.pivot(values= 'cumVaccinationThirdInjectionUptakeByVaccinationDatePercentage', columns='age', index='date') age_df.append(temp_df) data = pd.concat(age_df) data.index =
pd.to_datetime(data.index)
pandas.to_datetime
import os import subprocess import pickle import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy as sc import pathlib import threading import concurrent.futures as cf from scipy.signal import medfilt import csv import tikzplotlib import encoders_comparison_tool as enc import video_info as vi from bj_delta import bj_delta, bj_delta_akima # Colors in terminal class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKCYAN = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' useage_log_suffix = "_useage.log" psnr_log_suffix = "-psnr_logfile.txt" ssim_log_suffix = "-ssim_logfile.txt" vmaf_log_suffix = "-vmaf_logfile.txt" videofiles = [] codecs = ["av1", "svtav1", "vp9", "x264", "x265", "vvc"] codecs_short = {"av1": "AV1", "svtav1": "SVT-AV1", "vp9": "VP9", "x264": "x264", "x265": "x265", "vvc": "VVenC",} sequences = ["Netflix Aerial yuv420p10le 60fps", "ShakeNDry yuv420p 30fps", "SunBath yuv420p10le 50fps", "Tree Shade yuv420p10le 30fps", "Sintel2 yuv420p10le 24fps", ] preset = ["preset"] top_dir = "/run/media/ondra/video/test2/" # top_dir = "/run/media/ondra/61597e72-9c9f-4edd-afab-110602521f55/test2/" graphics_dir = "graphs/" sequences_short = { "Netflix Aerial yuv420p10le 60fps": "Aerial", "ShakeNDry yuv420p 30fps": "ShakeNDry", "SunBath yuv420p10le 50fps": "SunBath", "Tree Shade yuv420p10le 30fps": "Tree Shade", "Sintel2 yuv420p10le 24fps": "Sintel2", } series_labels = { 'av1-cpu-used_3-': "AV1 cpu-used 3", 'av1-cpu-used_4-': "AV1 cpu-used 4", 'av1-cpu-used_5-': "AV1 cpu-used 5", 'av1-cpu-used_6-': "AV1 cpu-used 6", 'svtav1-preset_3-': "SVT-AV1 preset 3", 'svtav1-preset_5-': "SVT-AV1 preset 5", 'svtav1-preset_7-': "SVT-AV1 preset 7", 'svtav1-preset_9-': "SVT-AV1 preset 9", 'svtav1-preset_11-': "SVT-AV1 preset 11", 'svtav1-preset_13-': "SVT-AV1 preset 13", 'vp9-rc_0-': "VP9 RC 0", 'vp9-cpu-used_0-': "VP9 cpu-used 0", 'vp9-cpu-used_2-': "VP9 cpu-used 2", 'vp9-cpu-used_4-': "VP9 cpu-used 4", # 'x264-preset_ultrafast-': "x264 ultrafast", 'x264-preset_fast-': "x264 fast", 'x264-preset_medium-': "x264 medium", 'x264-preset_slow-': "x264 slow", 'x264-preset_veryslow-': "x264 veryslow", 'x264-preset_placebo-': "x264 placebo", 'x265-preset_ultrafast-': "x265 ultrafast", 'x265-preset_fast-': "x265 fast", 'x265-preset_medium-': "x265 medium", 'x265-preset_slow-': "x265 slow", 'x265-preset_veryslow-': "x265 veryslow", 'vvc-preset_faster-': "VVenC faster", 'vvc-preset_fast-': "VVenC fast", 'vvc-preset_medium-': "VVenC medium", } psnr_lim = { "Netflix Aerial yuv420p10le 60fps": (33, 47), "ShakeNDry yuv420p 30fps": (33, 44), "Sintel2 yuv420p10le 24fps": (40, 60), "SunBath yuv420p10le 50fps": (35, 55), "Tree Shade yuv420p10le 30fps": (35, 45), } ssim_lim = { "Netflix Aerial yuv420p10le 60fps": (0.9, 1), "ShakeNDry yuv420p 30fps": (0.9, 0.98), "Sintel2 yuv420p10le 24fps": (0.98, 1), "SunBath yuv420p10le 50fps": (0.94, 1), "Tree Shade yuv420p10le 30fps": (0.92, 0.99), } msssim_lim = { "Netflix Aerial yuv420p10le 60fps": (0.9, 1), "ShakeNDry yuv420p 30fps": (0.92, 1), "Sintel2 yuv420p10le 24fps": (0.98, 1), "SunBath yuv420p10le 50fps": (0.94, 1), "Tree Shade yuv420p10le 30fps": (0.96, 1), } vmaf_lim = { "Netflix Aerial yuv420p10le 60fps": (60, 100), "ShakeNDry yuv420p 30fps": (70, 100), "Sintel2 yuv420p10le 24fps": (70, 100), "SunBath yuv420p10le 50fps": (70, 100), "Tree Shade yuv420p10le 30fps": (80, 100), } bitrate_lim = { "Netflix Aerial yuv420p10le 60fps": (0, 150), "ShakeNDry yuv420p 30fps": (0, 200), "Sintel2 yuv420p10le 24fps": (0, 45), "SunBath yuv420p10le 50fps": (0, 150), "Tree Shade yuv420p10le 30fps": (0, 200), } bitrate_lim_log = { "Netflix Aerial yuv420p10le 60fps": (0.1, 1000), "ShakeNDry yuv420p 30fps": (0.1, 1000), "SunBath yuv420p10le 50fps": (0.1, 1000), "Tree Shade yuv420p10le 30fps": (0.1, 1000), "Sintel2 yuv420p10le 24fps": (0.1, 100), } processing_lim = { "Netflix Aerial yuv420p10le 60fps": (0, 50000), "ShakeNDry yuv420p 30fps": (0, 8000), "SunBath yuv420p10le 50fps": (0, 5000), "Tree Shade yuv420p10le 30fps": (0, 12000), "Sintel2 yuv420p10le 24fps": (0, 12000), } processing_lim_log = { "Netflix Aerial yuv420p10le 60fps": (1, 1000), "ShakeNDry yuv420p 30fps": (1, 10000), "SunBath yuv420p10le 50fps": (1, 1000), "Tree Shade yuv420p10le 30fps": (1, 1000), "Sintel2 yuv420p10le 24fps": (1, 1000), } cpu_time_lim = { "Netflix Aerial yuv420p10le 60fps": (0, 200000), "ShakeNDry yuv420p 30fps": (0, 60000), "SunBath yuv420p10le 50fps": (0, 35000), "Tree Shade yuv420p10le 30fps": (0, 70000), "Sintel2 yuv420p10le 24fps": (0, 70000), } cpu_time_lim_log = { "Netflix Aerial yuv420p10le 60fps": (0.1, 1000), "ShakeNDry yuv420p 30fps": (0.1, 10000), "SunBath yuv420p10le 50fps": (0.1, 1000), "Tree Shade yuv420p10le 30fps": (0.1, 1000), "Sintel2 yuv420p10le 24fps": (0.1, 1000), } cpu_fps_lim = { "Netflix Aerial yuv420p10le 60fps": (0, 200), "ShakeNDry yuv420p 30fps": (0, 200), "SunBath yuv420p10le 50fps": (0, 200), "Tree Shade yuv420p10le 30fps": (0, 200), "Sintel2 yuv420p10le 24fps": (0, 200), } decode_fps_lim = { "Netflix Aerial yuv420p10le 60fps": (0, None), "ShakeNDry yuv420p 30fps": (0, 60), "SunBath yuv420p10le 50fps": (0, 60), "Tree Shade yuv420p10le 30fps": (0, 60), "Sintel2 yuv420p10le 24fps": (0, 60), } BJ1_serie = "x264-preset_placebo-" BD_xname = "avg_bitrate_mb" BD_ynames = ["psnr_avg", "ssim_avg", "msssim_avg", "vmaf_avg"] BD_names = [] for n in BD_ynames: # BD_names.append("bd_" + n) BD_names.append("bd_rate_" + n) encode_excluded_states = ["measuring decode"] speeds_table = { "placebo": 0, "slow": 3, "slower": 2, "veryslow": 1, "medium": 4, "fast": 5, "faster": 6, "veryfast": 7, "superfast": 8, "ultrafast": 9, } binaries = { "ffprobe": "/usr/bin/ffprobe", "ffmpeg": "/usr/bin/ffmpeg" } vi.set_defaults(binaries) def video_stream_size(videofile_path): if videofile_path.endswith(".266"): return os.path.getsize(videofile_path[0:-4] + ".266") / 1024 #in KiB log = videofile_path + ".stream_size" if os.path.exists(log): with open(log, "r") as f: s = f.readline() print("stream size hit!") return float(s) result = subprocess.run( [ "ffmpeg", "-hide_banner", "-i", videofile_path, "-map", "0:v:0", "-c", "copy", "-f", "null", "-" ], capture_output=True, text=True, ) try: size = (result.stderr.rsplit("\n")[-2].rsplit(" ")[0].rsplit(":")[1][0: -2]) s = float(size) # in KiB with open(log, "w") as f: f.write(str(s)) return s except ValueError: raise ValueError(result.stderr.rstrip("\n")) def video_stream_length(videofile_path): if videofile_path.endswith(".266"): videofile = videofile_path[:-4] + ".mkv" else: videofile = videofile_path log = videofile + ".stream_length" if os.path.exists(log): with open(log, "r") as f: s = f.readline() print("stream length hit!") return float(s) result = vi.video_length_seconds(videofile) with open(log, "w") as f: f.write(str(result)) return result def video_stream_frames(videofile_path): if videofile_path.endswith(".266"): videofile = videofile_path[:-4] + ".mkv" else: videofile = videofile_path log = videofile + ".stream_frames" if os.path.exists(log): with open(log, "r") as f: s = f.readline() print("stream framenum hit!") return int(s) result = vi.video_frames(videofile) with open(log, "w") as f: f.write(str(result)) return result def series_label(key, sequence=None): if sequence is None or sequence in key: k = series_labels.keys() for s in (s for s in k if s in key): return series_labels[s] raise KeyError ''' def simple_plot(x, y, xlabel, ylabel, savefile, minxlim=True): i1, ax1 = plt.subplots() plt.plot(x, y) ax1.set(xlabel=xlabel, ylabel=ylabel) if minxlim: ax1.set_xlim(left=min(x), right=max(x)) ax1.grid() plt.savefig(f"{savefile}.svg") plt.savefig(f"{savefile}.pgf") tikzplotlib.save(f"{savefile}.tex") plt.close(i1) def composite_plot(mxy, mlegend, xlabel, ylabel, savefile, xlim=None, ylim=None): i1, ax1 = plt.subplots() i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] plt.plot(x, y, label=mlegend[next(i)], marker="+") ax1.set(xlabel=xlabel, ylabel=ylabel) plt.legend() if xlim is True: ax1.set_xlim(left=min(x), right=max(x)) elif xlim is not None: ax1.set_xlim(left=xlim[0], right=xlim[1]) if ylim is True: ax1.set_ylim(bottom=min(y), top=max(y)) elif ylim is not None: ax1.set_ylim(bottom=ylim[0], top=ylim[1]) ax1.grid() p = os.path.split(savefile) enc.create_dir(p[0] + '/svg/') enc.create_dir(p[0] + '/png/') enc.create_dir(p[0] + '/tex/') plt.savefig(f"{p[0] + '/svg/' + p[1]}.svg") plt.savefig(f"{p[0] + '/png/' + p[1]}.png") tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") plt.close(i1) def composite_plot_smooth(mxy, mlegend, xlabel, ylabel, savefile, xlim=None, ylim=None): i1, ax1 = plt.subplots() i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] c = plt.scatter(x, y, label=mlegend[next(i)], marker="+") colr = c.get_facecolor()[0] lx = np.log(x) p = sc.interpolate.Akima1DInterpolator(lx, y) x_smooth = np.linspace(min(x), max(x), 1000) y_smooth = p(np.log(x_smooth)) plt.plot(x_smooth, y_smooth, color=colr) ax1.set(xlabel=xlabel, ylabel=ylabel) plt.legend() if xlim is True: ax1.set_xlim(left=x.min(), right=x.max()) elif xlim is not None: ax1.set_xlim(left=xlim[0], right=xlim[1]) if ylim is True: ax1.set_ylim(bottom=y.min(), top=y.max()) elif ylim is not None: ax1.set_ylim(bottom=ylim[0], top=ylim[1]) ax1.grid() p = os.path.split(savefile) enc.create_dir(p[0] + '/svg/') enc.create_dir(p[0] + '/png/') enc.create_dir(p[0] + '/tex/') plt.savefig(f"{p[0] + '/svg/' + p[1]}.svg") plt.savefig(f"{p[0] + '/png/' + p[1]}.png") tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") plt.close(i1) ''' def plot_graphs(data, sequence=None, codec=None): if sequence is None and codec is None: out = graphics_dir elif sequence is None: out = graphics_dir + codec + "/" elif codec is None: out = graphics_dir + sequences_short[sequence] + "/" else: out = graphics_dir + sequences_short[sequence] + "/" + codec + "/" lower_right = 4 d = df_to_plot(data, "avg_bitrate_mb", "psnr_avg") composite_plot(d, "Bitrate [Mbit/s]", "PSNR (YUV) [dB]", out + "psnr", xlim=bitrate_lim[sequence], ylim=psnr_lim[sequence], legend_loc=lower_right) composite_plot(d, "Bitrate [Mbit/s]", "PSNR (YUV) [dB]", out + "psnr_log", ylim=psnr_lim[sequence], xlog=True, legend_loc=lower_right) d = df_to_plot(data, "avg_bitrate_mb", "ssim_avg") composite_plot(d, "Bitrate [Mbit/s]", "SSIM", out + "ssim", xlim=bitrate_lim[sequence], ylim=ssim_lim[sequence], legend_loc=lower_right) # composite_plot(d, "Bitrate [Mbit/s]", "SSIM", out + "ssim_log", ylim=ssim_lim[sequence], xlog=True, legend_loc=lower_right) d = df_to_plot(data, "avg_bitrate_mb", "msssim_avg") composite_plot(d, "Bitrate [Mbit/s]", "MS-SSIM", out + "msssim", xlim=bitrate_lim[sequence], ylim=msssim_lim[sequence], legend_loc=lower_right) # composite_plot(d, "Bitrate [Mbit/s]", "MS-SSIM", out + "msssim_log", ylim=msssim_lim[sequence], xlog=True, legend_loc=lower_right) d = df_to_plot(data, "avg_bitrate_mb", "vmaf_avg") composite_plot(d, "Bitrate [Mbit/s]", "VMAF", out + "vmaf", xlim=bitrate_lim[sequence], ylim=vmaf_lim[sequence], legend_loc=lower_right) # composite_plot(d, "Bitrate [Mbit/s]", "VMAF", out + "vmaf_log", ylim=vmaf_lim[sequence], xlog=True, legend_loc=lower_right) d = df_to_plot(data, "avg_bitrate_mb", "decode_time_fps") composite_plot(d, "Bitrate [Mbit/s]", "Rychlost dekódování [frame/s]", out + "decode", ylim=(0, None), xlim=bitrate_lim_log[sequence], xlog=True) d = df_to_plot(data, "avg_bitrate_mb", "total_time_fps") composite_plot(d, "Bitrate [Mbit/s]", "Procesorový čas [s/frame]", out + "encode", ylim=(0.1, None), xlim=bitrate_lim_log[sequence], xlog=True, ylog=True) def df_to_plot(data, x_name, y_name): tables = [t[[x_name, y_name]].rename(columns={x_name: "x", y_name: "y"}).sort_values(by="x") for t in list(data["table"])] l = list(data["label"]) s = list(data["speed"]) lt = zip(l, tables, s) for m in lt: setattr(m[1], "label", m[0]) setattr(m[1], "speed", m[2]) return tables def df_to_plot2(data, x_name, y_name): tables = [data[[x_name, y_name]].rename(columns={x_name: "x", y_name: "y"}).loc[data["codec"] == s].sort_values(by="x") for s in codecs] lt = zip(codecs, tables) for m in lt: setattr(m[1], "label", codecs_short[m[0]]) return tables #def composite_plot(data, xlabel, ylabel, savefile, xlim=None, ylim=None, log_inter=True, xlog=False, ylog=False, smooth=True, xlogscalar=False, ylogscalar=False, legend_loc=None, tikz_before=True): #i1, ax1 = plt.subplots() #if not (xlog or ylog): #tikz_before = False #if xlog: #ax1.set_xscale('log') #ax1.grid(True, which="both") #if xlogscalar: #ax1.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) #else: #ax1.set_xscale('linear') #ax1.grid(True) #if ylog: #ax1.set_yscale('log') #ax1.grid(True, which="both") #if ylogscalar: #ax1.yaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) #else: #ax1.set_yscale('linear') #ax1.grid(True) #for table in data: #if smooth: #c = plt.scatter(table.x, table.y, label=table.label, marker="+") #colr = c.get_facecolor()[0] #if log_inter: #lx = np.log(table.x) #p = sc.interpolate.Akima1DInterpolator(lx, table.y) #x_smooth = np.logspace(np.log10(min(table.x)), np.log10(max(table.x)), 200) #else: #lx = table.x #p = sc.interpolate.Akima1DInterpolator(lx, table.y) #x_smooth = np.linspace(min(table.x), max(table.x), 200) #y_smooth = p(np.log(x_smooth)) #plt.plot(x_smooth, y_smooth, color=colr) #else: #plt.plot(table.x, table.y, label=table.label, marker="+") #ax1.set(xlabel=xlabel, ylabel=ylabel) #if legend_loc is None: #ax1.legend() #else: #ax1.legend(loc=legend_loc) #if xlim is True: #ax1.set_xlim(left=table.x.min(), right=table.x.max()) #elif xlim is not None: #ax1.set_xlim(left=xlim[0], right=xlim[1]) #if ylim is True: #ax1.set_ylim(bottom=table.y.min(), top=table.y.max()) #elif ylim is not None: #ax1.set_ylim(bottom=ylim[0], top=ylim[1]) #p = os.path.split(savefile) #enc.create_dir(p[0] + '/svg/') #enc.create_dir(p[0] + '/png/') #enc.create_dir(p[0] + '/tex/') #if tikz_before: #tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") #plt.savefig(f"{p[0] + '/svg/' + p[1]}.svg") #plt.savefig(f"{p[0] + '/png/' + p[1]}.png") #if not tikz_before: #tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") #plt.close(i1) def composite_plot(data, xlabel, ylabel, savefile, xlim=None, ylim=None, log_inter=True, xlog=False, ylog=False, smooth=True, xlogscalar=False, ylogscalar=False, legend_loc=None, tikz_before=True): plt.figure() plt.axis() if not (xlog or ylog): tikz_before = False if xlog: plt.xscale('log') plt.grid(True, which="both") # if xlogscalar: # plt.xaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) else: plt.xscale('linear') plt.grid(True) if ylog: plt.yscale('log') plt.grid(True, which="both") # if ylogscalar: # plt.yaxis.set_major_formatter(matplotlib.ticker.ScalarFormatter()) else: plt.yscale('linear') plt.grid(True) for table in data: if smooth: c = plt.scatter(table.x, table.y, label=table.label, marker="+") colr = c.get_facecolor()[0] if log_inter: lx = np.log(table.x) p = sc.interpolate.Akima1DInterpolator(lx, table.y) x_smooth = np.logspace(np.log10(min(table.x)), np.log10(max(table.x)), 200) else: lx = table.x p = sc.interpolate.Akima1DInterpolator(lx, table.y) x_smooth = np.linspace(min(table.x), max(table.x), 200) y_smooth = p(np.log(x_smooth)) plt.plot(x_smooth, y_smooth, color=colr) else: plt.plot(table.x, table.y, label=table.label, marker="+") plt.xlabel(xlabel) plt.ylabel(ylabel) plt.legend(loc=legend_loc) if xlim is True: plt.xlim(left=table.x.min(), right=table.x.max()) elif xlim is not None: plt.xlim(left=xlim[0], right=xlim[1]) if ylim is True: plt.ylim(bottom=table.y.min(), top=table.y.max()) elif ylim is not None: plt.ylim(bottom=ylim[0], top=ylim[1]) p = os.path.split(savefile) enc.create_dir(p[0] + '/svg/') enc.create_dir(p[0] + '/png/') enc.create_dir(p[0] + '/tex/') if tikz_before: tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") plt.savefig(f"{p[0] + '/svg/' + p[1]}.svg") plt.savefig(f"{p[0] + '/png/' + p[1]}.png") if not tikz_before: tikzplotlib.save(f"{p[0] + '/tex/' + p[1]}.tex") plt.close() def df_to_latex_table(values, save_path): pass def calc_bj(mxy_o, mlegend_o, bd_metric_legend, bd_rate_legend): mxy = mxy_o.copy() mlegend = mlegend_o.copy() xy1 = mxy[mlegend.index(BJ1_serie)] t1 = zip(*xy1) x1, y1 = [list(t1) for t1 in t1] mxy.remove(xy1) mlegend.remove(BJ1_serie) i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] bd_metric = bj_delta(x1, y1, x, y, mode=0) bd_rate = bj_delta(x1, y1, x, y, mode=1) l = mlegend[next(i)] print(f"{l}: BD-{bd_metric_legend}: {bd_metric}%") print(f"{l}: BD-{bd_rate_legend}: {bd_rate}%") def formatter1(x): s = ('%1.2f' % x).replace(".",",") + "\,\%" return s def formatter2(x): s = ('%1.2f' % x).replace(".",",") + "\%" if x > 0: s = "\cellcolor{red!25}" + s elif x < 0: s = "\cellcolor{green!25}" + s return s def calc_bj_cross_to_table(mxy_o, mlegend_o, bd_metric_legend, bd_rate_legend): table_metric = pd.DataFrame(np.zeros((len(mlegend_o), len(mlegend_o))), columns=mlegend_o, index=mlegend_o) table_rate = pd.DataFrame(np.zeros((len(mlegend_o), len(mlegend_o))), columns=mlegend_o, index=mlegend_o) for mleg in mlegend_o: mxy = mxy_o.copy() mlegend = mlegend_o.copy() xy1 = mxy[mlegend.index(mleg)] t1 = zip(*xy1) x1, y1 = [list(t1) for t1 in t1] mxy.remove(xy1) mlegend.remove(mleg) i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] bd_metric = bj_delta(x1, y1, x, y, mode=0) bd_rate = bj_delta(x1, y1, x, y, mode=1) l = mlegend[next(i)] table_metric.loc[l, mleg] = bd_metric table_rate.loc[l, mleg] = bd_rate # print(table_metric.to_latex(float_format="%.2f", decimal=",")) # print(table_rate.to_latex(float_format="%.2f")) return table_metric, table_rate ''' def calc_bj_akima(dftable, x_name, y_name, bd_metric_legend, bd_rate_legend): xy1 = mxy[mlegend.index(BJ1_serie)] t1 = zip(*xy1) x1, y1 = [list(t1) for t1 in t1] mxy.remove(xy1) mlegend.remove(BJ1_serie) i = enc.count() for m in mxy: t = zip(*m) x, y = [list(t) for t in t] bd_metric = bj_delta_akima(x1, y1, x, y, mode=0) bd_rate = bj_delta_akima(x1, y1, x, y, mode=1) l = mlegend[next(i)] print(f"{l}: BD-{bd_metric_legend}: {bd_metric}%") print(f"{l}: BD-{bd_rate_legend}: {bd_rate}%") ''' def calc_bj_akima(data, x_name, y_name, bd_metric_legend, bd_rate_legend): df = data.copy() for t in df.itertuples(): t.table.rename(columns={x_name: "x", y_name: "y"}).sort_values(by="x") df bd_metric = bj_delta_akima(x1, y1, x, y, mode=0) bd_rate = bj_delta_akima(x1, y1, x, y, mode=1) def read_table_kcolv(logpath): with open(logpath, "r") as f: firstline = next(f).rstrip(" \n") columns = [] for x in firstline.rsplit(" "): columns.append(x.rsplit(":")[0]) r = range(len(columns)) table = pd.read_table(logpath, names=columns, usecols=list(r), sep=" ", converters={k: lambda x: (x.rsplit(":")[1]) for k in r}) return table.apply(pd.to_numeric) class PSNR_values: def __init__(self, logpath): self.logpath = logpath table = read_table_kcolv(self.logpath) self.n = table.n self.mse_avg = table.mse_avg self.mse_y = table.mse_y self.mse_u = table.mse_u self.mse_v = table.mse_v self.psnr_avg = table.psnr_avg self.psnr_y = table.psnr_y self.psnr_u = table.psnr_u self.psnr_v = table.psnr_v self.mse_avg_avg = np.average(self.mse_avg) self.mse_y_avg = np.average(self.mse_y) self.mse_u_avg = np.average(self.mse_u) self.mse_v_avg = np.average(self.mse_v) self.psnr_avg_avg = np.average(self.psnr_avg) self.psnr_y_avg = np.average(self.psnr_y) self.psnr_u_avg = np.average(self.psnr_u) self.psnr_v_avg = np.average(self.psnr_v) class SSIM_values: def __init__(self, logpath): self.logpath = logpath names = ("n", "Y", "U", "V", "All", "unnorm") table = pd.read_table(self.logpath, names=names, sep=" ", converters={k: lambda x: (x.rsplit(":")[1]) for k in range(5)}) table.unnorm = table.unnorm.str.slice(start=1, stop=-1) table = table.apply(pd.to_numeric) self.n = table.n self.Y = table.Y self.U = table.U self.V = table.V self.All = table.All self.unnorm = table.unnorm # unnorm = 10*log10(1-All) self.Y_avg = np.average(self.Y) self.U_avg = np.average(self.U) self.V_avg = np.average(self.V) self.All_avg = np.average(self.All) self.unnorm_avg = np.average(self.unnorm) class VMAF_values: def __init__(self, logpath): self.logpath = logpath table = pd.read_table(logpath, sep=",") table = table.loc[:, ~table.columns.str.contains('^Unnamed')] self.table = table self.vmaf_avg = table.vmaf.mean() class Useage_values: def __init__(self, logpath): self.logpath = logpath with open(logpath, "r") as log: firstline = next(log) self.row_names = firstline.rsplit(",")[0:-1] table = pd.read_csv(self.logpath) self.table = table self.state_names = list(table.state.unique()) total_time = 0 total_cpu_time = 0 for state in [x for x in self.state_names if x not in encode_excluded_states]: for row in self.row_names: if row == "state": pass else: arr = np.array(table[row][table.index[table['state'] == state]]) setattr(self, state + "_" + row, arr) cpu_time_user = getattr(self, state + "_cpu_time_user") cpu_time_user = np.append(np.array([0]), cpu_time_user) cpu_time_system = getattr(self, state + "_cpu_time_system") cpu_time_system = np.append(np.array([0]), cpu_time_system) cpu_time_total = cpu_time_user + cpu_time_system setattr(self, state + "_cpu_time_total", cpu_time_total) cpu_time_diff = np.ediff1d(cpu_time_total) time = np.append(np.array([0]), getattr(self, state + "_time")) time_diff = np.ediff1d(time) cpu_percent_calc = cpu_time_diff / time_diff setattr(self, state + "_cpu_percent_calc", cpu_percent_calc) total_time += time[-1] total_cpu_time += cpu_time_total[-1] self.total_time = total_time self.total_cpu_time = total_cpu_time cpu_time_diff = np.ediff1d(np.append(np.array([0]), np.array(table.cpu_time_user + table.cpu_time_system))) time_diff = np.ediff1d(np.append(np.array([0]), np.array(table.time))) cpu_time_int = np.sum(cpu_time_diff * time_diff) self.cpu_usage_avg = cpu_time_int / total_time self.max_RSS = self.table.RSS.max() self.perc_RSS = self.table.RSS.quantile(0.9) self.mean_RSS = self.table.RSS.mean() self.med_RSS = self.table.RSS.median() for row in self.row_names: if row == "state": pass else: arr = np.array(table[row][table.index[table['state'] == "measuring decode"]]) setattr(self, "decode_row_" + row, arr) self.decode_time = self.decode_row_time[-1] self.decode_cpu_time = self.decode_row_cpu_time_user[-1] + self.decode_row_cpu_time_system[-1] class VideoFile: def __init__(self, videofilepath): self.videofilepath = videofilepath self.basename = os.path.basename(videofilepath) self.path_without_ext = os.path.splitext(videofilepath)[0] if os.path.exists(self.path_without_ext + ".266"): self.videofilepath = self.path_without_ext + ".266" self.useage_log_path = self.path_without_ext + useage_log_suffix if not os.path.isfile(self.useage_log_path): print(f"File not found: {self.useage_log_path}") self.useage_log_path = None self.psnr_log_path = self.path_without_ext + psnr_log_suffix if not os.path.isfile(self.psnr_log_path): print(f"File not found: {self.psnr_log_path}") self.psnr_log_path = None self.ssim_log_path = self.path_without_ext + ssim_log_suffix if not os.path.isfile(self.ssim_log_path): print(f"File not found: {self.ssim_log_path}") self.ssim_log_path = None self.vmaf_log_path = self.path_without_ext + vmaf_log_suffix if not os.path.isfile(self.vmaf_log_path): print(f"File not found: {self.vmaf_log_path}") self.vmaf_log_path = None self.topserie = os.path.split(os.path.split(self.videofilepath)[0])[1] # eg. /path/to/video/av1/cpu-used_4/ShakeNDry/ShakeNDry-crf10.mkv -> ShakeNDry for c in codecs: if c in videofilepath: self.codec = c s = os.path.split(os.path.split(self.videofilepath)[0])[0] # eg. /path/to/video/av1/cpu-used_4/ShakeNDry -> /path/to/video/av1/cpu-used_4 self.serie = s[s.index(self.codec)+len(self.codec)+1:].replace("/", "-") + "-" + self.topserie self.label = s[s.index(self.codec)+len(self.codec)+1:].replace("/", "-") self.codec_serie = self.codec + "-" + self.serie def load_log(self): with cf.ThreadPoolExecutor() as executor: if self.psnr_log_path is not None: psnr = executor.submit(PSNR_values, self.psnr_log_path) if self.ssim_log_path is not None: ssim = executor.submit(SSIM_values, self.ssim_log_path) if self.vmaf_log_path is not None: vmaf = executor.submit(VMAF_values, self.vmaf_log_path) if self.useage_log_path is not None: useage = executor.submit(Useage_values, self.useage_log_path) if self.psnr_log_path is not None: self.psnr = psnr.result() if self.ssim_log_path is not None: self.ssim = ssim.result() if self.vmaf_log_path is not None: self.vmaf = vmaf.result() if self.useage_log_path is not None: self.useage = useage.result() def load_stream_size(self): self.bitstream_size = video_stream_size(self.videofilepath) self.total_length = video_stream_length(self.videofilepath) self.avg_bitrate = (8 * self.bitstream_size) * 1024 / self.total_length self.avg_bitrate_mb = self.avg_bitrate / 1024 / 1024 self.total_frames = video_stream_frames(self.videofilepath) self.total_length = video_stream_length(self.videofilepath) self.total_time_fps = self.useage.total_time / self.total_frames self.total_cpu_time_fps = self.useage.total_cpu_time / self.total_frames self.decode_time_fps = self.total_frames / self.useage.decode_time self.decode_cpu_time_fps = self.total_frames / self.useage.decode_cpu_time def async_load(f): print(f"{f.videofilepath}") f.load_log() f.load_stream_size() print(f"{f.videofilepath}:\tPSNR: {f.psnr.psnr_avg_avg}\tSSIM: {f.ssim.All_avg}\tVMAF: {f.vmaf.vmaf_avg}") return f class DataSerie: def __init__(self, serie): self.serie = serie try: self.label = series_label(serie) except KeyError: self.label = serie print(f"DataSerie: {serie}: {self.label}") self.data = [] self.n = [] self.psnr_avg = [] self.mse_avg = [] self.ssim_avg = [] self.msssim_avg = [] self.vmaf_avg = [] self.cpu_time = [] self.total_time = [] self.cpu_time_fps = [] self.total_time_fps = [] self.decode_cpu_time_fps = [] self.decode_time_fps = [] self.avg_bitrate = [] self.avg_bitrate_mb = [] self.max_RSS = [] self.med_RSS = [] self.perc_RSS = [] def add_entry(self, entry): self.data.append(entry) self.frames = entry.total_frames self.n.append(max(entry.psnr.n)) self.psnr_avg.append(entry.psnr.psnr_avg_avg) self.mse_avg.append(entry.psnr.mse_avg) self.ssim_avg.append(entry.ssim.All_avg) self.msssim_avg.append(entry.vmaf.table.ms_ssim.mean()) self.vmaf_avg.append(entry.vmaf.vmaf_avg) self.cpu_time.append(entry.useage.total_cpu_time) self.total_time.append(entry.useage.total_time) self.cpu_time_fps.append(entry.total_cpu_time_fps) self.total_time_fps.append(entry.total_time_fps) self.decode_cpu_time_fps.append(entry.decode_cpu_time_fps) self.decode_time_fps.append(entry.decode_time_fps) self.avg_bitrate.append(entry.avg_bitrate) self.avg_bitrate_mb.append(entry.avg_bitrate_mb) self.max_RSS.append(entry.useage.max_RSS) self.med_RSS.append(entry.useage.med_RSS) self.perc_RSS.append(entry.useage.perc_RSS) def make_df(self): d = {'n': self.n, 'psnr_avg': self.psnr_avg, 'mse_avg': self.mse_avg, 'ssim_avg': self.ssim_avg, 'msssim_avg': self.msssim_avg, 'vmaf_avg': self.vmaf_avg, 'cpu_time': self.cpu_time, 'total_time': self.total_time, 'cpu_time_fps': self.cpu_time_fps, 'total_time_fps': self.total_time_fps, 'decode_cpu_time_fps': self.decode_cpu_time_fps, 'decode_time_fps': self.decode_time_fps, 'avg_bitrate': self.avg_bitrate, 'avg_bitrate_mb': self.avg_bitrate_mb, 'max_RSS': self.max_RSS, 'med_RSS': self.med_RSS, 'perc_RSS': self.perc_RSS, } self.table = pd.DataFrame(data=d) setattr(self.table, "serie", self.serie) setattr(self.table, "label", self.label) class DataStr: def __init__(self): self.series = [] self.serie_names = [] self.codecs = [] self.sequences = [] self.labels = [] self.speed = [] self.codec_speed = [] def add_serie(self, serie): self.series.append(serie.table) self.serie_names.append(serie.table.serie) self.codecs.append(serie.serie.split("-")[0]) self.sequences.append(serie.serie.split("-")[-1]) self.labels.append(serie.label) speed = None print(serie.table.serie) k = speeds_table.keys() for s in k: if s in serie.table.serie: speed = speeds_table[s] s = serie.table.serie if "-cpu-used_" in serie.table.serie and speed is None: speed = int(s.rsplit("-cpu-used_")[1].rsplit("-")[0]) if "-preset_" in serie.table.serie and speed is None: speed = int(s.rsplit("-preset_")[1].rsplit("-")[0]) self.speed.append(speed) self.codec_speed.append(serie.serie.split("-")[0] + "-" + str(speed)) def make_df(self): short_sequence_names = [sequences_short[i] for i in self.sequences] d = {"serie": self.serie_names, "codec": self.codecs, "sequence": self.sequences, "sequence_short": short_sequence_names, "label": self.labels, "speed": self.speed, "codecspeed": self.codec_speed, "table": self.series, } self.table = pd.DataFrame(data=d).sort_values(["speed", "serie"]) self.table["reference"] = [BJ1_serie in s for s in list(self.table["serie"])] self.bd_ref = self.table.loc[self.table["reference"] == True] self.table["cpu_time_avg"] = 0.0 self.table["time_avg"] = 0.0 self.table["cpu_time_avg_rel"] = 100.0 self.table["time_avg_rel"] = 100.0 for serie in self.table.itertuples(): self.table.loc[serie.Index, "cpu_time_avg"] = serie.table.cpu_time.mean() self.table.loc[serie.Index, "time_avg"] = serie.table.total_time.mean() self.table.loc[serie.Index, "codec_short"] = codecs_short[serie.codec] for sequence in sequences: table = self.table.loc[(self.table["sequence"] == sequence) & (self.table["reference"] == False)] bd_ref = self.bd_ref.loc[self.bd_ref["sequence"] == sequence] for serie in table.itertuples(): self.table.loc[serie.Index, "cpu_time_avg_rel"] = 100 * serie.table.cpu_time.mean() / bd_ref.table.to_list()[0].cpu_time.mean() self.table.loc[serie.Index, "time_avg_rel"] = 100 * serie.table.total_time.mean() / bd_ref.table.to_list()[0].total_time.mean() for yname in BD_ynames: v1 = bd_ref.table.to_list()[0].loc[:, [BD_xname, yname]].sort_values(by=BD_xname) v2 = serie.table.loc[:, [BD_xname, yname]].sort_values(by=BD_xname) x1 = list(v1[BD_xname]) y1 = list(v1[yname]) x = list(v2[BD_xname]) y = list(v2[yname]) if np.any(~np.diff(y1).astype(bool)): for i in range(len(y1)-1): if(y1[i] == y1[i+1]): y1[i+1] += 0.000001 if np.any(~np.diff(y).astype(bool)): for i in range(len(y)-1): if(y[i] == y[i+1]): y[i+1] += 0.000001 self.table.loc[serie.Index, "bd_" + yname] = bj_delta_akima(x1, y1, x, y, mode=0) self.table.loc[serie.Index, "bd_rate_" + yname] = bj_delta_akima(x1, y1, x, y, mode=1) self.table = self.table.fillna(0.0) def make_bj_plot(self): self.table = self.table.sort_values(["sequence", "codec", "speed"]) for sequence in sequences: print(sequence) table = self.table.loc[datastr.table["sequence"] == sequence] out = graphics_dir + sequences_short[sequence] + "/" for yname in BD_names: df = df_to_plot2(table, "cpu_time_avg_rel", yname) #composite_plot(df, "Relativní průměrný procesorový čas [%]", "BD-rate [%]", out + yname + "_cpu", xlim=cpu_time_lim_log[sequence], xlog=True, smooth=False, xlogscalar=True) df = df_to_plot2(table, "time_avg_rel", yname) #composite_plot(df, "Relativní průměrný čas zpracování [%]", "BD-rate [%]", out + yname, xlim=processing_lim_log[sequence], xlog=True, smooth=False, xlogscalar=True) #t = self.table.groupby(by="codecspeed").mean() ############################################################################### # Code for graphing starts from here ############################################################################### data_pickle = top_dir + "data.pkl" if os.path.exists(data_pickle): with open(data_pickle, 'rb') as inp: videofiles_paths = pickle.load(inp) else: videofiles_paths = [] print("Finding log files:\n") for directory in os.walk(top_dir): if directory[2] != []: for f in directory[2]: if f.endswith(".mkv"): videofiles_paths.append(VideoFile(os.path.join(directory[0], f))) print("Reading log files:\n") with cf.ProcessPoolExecutor(max_workers=12) as executor: futures = tuple(executor.submit(async_load, f) for f in videofiles_paths) videofiles_paths = [] for f in futures: videofiles_paths.append(f.result()) with open(data_pickle, 'wb') as outp: pickle.dump(videofiles_paths, outp) #print("Rendering graphs:\n") # simple_plot(np.array(np.array([0]),np.array(f.useage.table.time)), # np.array(np.array([0]),np.array(f.useage.table.RSS/(1024*1024))), # "Time [s]", "RAM usage (RSS) [MiB]", f.path_without_ext + "_RSS") print("Rendering composite graphs:\n") series = [] codec_series = [] used_codecs = [] for f in videofiles_paths: series.append(f.serie) codec_series.append(f.codec_serie) used_codecs.append(f.codec) series = list(set(series)) codec_series = list(set(codec_series)) used_codecs = list(set(used_codecs)) print(series) print(codec_series) print(used_codecs) data = [] for serie in codec_series: data.append(DataSerie(serie)) for f in (f for f in videofiles_paths if serie == f.codec_serie): data[-1].add_entry(f) for serie in data: serie.make_df() # sort by serie name l, data = zip(*sorted(zip([d.serie for d in data], data))) del l print(data[0].avg_bitrate) print(data[0].msssim_avg) datastr = DataStr() for serie in data: datastr.add_serie(serie) datastr.make_df() datastr.make_bj_plot() # datastr.table.loc[datastr.table["codec"] == "av1"] # vybrat jen řádky, kterém mají ve sloupci tuto hodnotu # d = data[0].table[["avg_bitrate_mb", "psnr_avg"]].sort_values(by=["avg_bitrate_mb"]) print("\nplotting by sequence, codec") for sequence in sequences: print(sequence) table = datastr.table.loc[datastr.table["sequence"] == sequence] # plot_graphs(table, sequence=sequence) for codec in codecs: table2 = table.loc[table["codec"] == codec] # plot_graphs(table2, sequence=sequence, codec=codec) rdfb_list = [] print("\nplotting by sequence, and most slow in codec") for sequence in sequences: print(sequence) rdf_list = [] table = datastr.table.loc[datastr.table["sequence"] == sequence] for codec in codecs: table2 = table.loc[table["codec"] == codec] rdf_list.append(table2.loc[table2["speed"].idxmin()]) table2 =
pd.concat(rdf_list)
pandas.concat
""" Copyright 2019 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime import datetime as dt import os from typing import Union import numpy as np import pandas as pd import pytest import pytz from gs_quant.target.common import XRef, PricingLocation, Currency as CurrEnum from numpy.testing import assert_allclose from pandas.testing import assert_series_equal from pandas.tseries.offsets import CustomBusinessDay from pytz import timezone from testfixtures import Replacer from testfixtures.mock import Mock import gs_quant.timeseries.measures as tm import gs_quant.timeseries.measures_rates as tm_rates from gs_quant.api.gs.assets import GsTemporalXRef, GsAssetApi, GsIdType, IdList, GsAsset from gs_quant.api.gs.data import GsDataApi, MarketDataResponseFrame from gs_quant.api.gs.data import QueryType from gs_quant.data.core import DataContext from gs_quant.data.dataset import Dataset from gs_quant.data.fields import Fields from gs_quant.errors import MqError, MqValueError, MqTypeError from gs_quant.markets.securities import AssetClass, Cross, Index, Currency, SecurityMaster, Stock, \ Swap, CommodityNaturalGasHub from gs_quant.session import GsSession, Environment from gs_quant.test.timeseries.utils import mock_request from gs_quant.timeseries import Returns from gs_quant.timeseries.measures import BenchmarkType _index = [pd.Timestamp('2019-01-01')] _test_datasets = ('TEST_DATASET',) def mock_empty_market_data_response(): df = MarketDataResponseFrame() df.dataset_ids = () return df def map_identifiers_default_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-LIBOR-BBA" in ids: return {"USD-LIBOR-BBA": "MAPDB7QNB2TZVQ0E"} elif "EUR-EURIBOR-TELERATE" in ids: return {"EUR-EURIBOR-TELERATE": "MAJNQPFGN1EBDHAE"} elif "GBP-LIBOR-BBA" in ids: return {"GBP-LIBOR-BBA": "MAFYB8Z4R1377A19"} elif "JPY-LIBOR-BBA" in ids: return {"JPY-LIBOR-BBA": "MABMVE27EM8YZK33"} elif "EUR OIS" in ids: return {"EUR OIS": "MARFAGXDQRWM07Y2"} def map_identifiers_swap_rate_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-3m" in ids: return {"USD-3m": "MAAXGV0GZTW4GFNC"} elif "EUR-6m" in ids: return {"EUR-6m": "MA5WM2QWRVMYKDK0"} elif "KRW" in ids: return {"KRW": 'MAJ6SEQH3GT0GA2Z'} def map_identifiers_inflation_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "CPI-UKRPI" in ids: return {"CPI-UKRPI": "MAQ7ND0MBP2AVVQW"} elif "CPI-CPXTEMU" in ids: return {"CPI-CPXTEMU": "MAK1FHKH5P5GJSHH"} def map_identifiers_cross_basis_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-3m/JPY-3m" in ids: return {"USD-3m/JPY-3m": "MA99N6C1KF9078NM"} elif "EUR-3m/USD-3m" in ids: return {"EUR-3m/USD-3m": "MAXPKTXW2D4X6MFQ"} elif "GBP-3m/USD-3m" in ids: return {"GBP-3m/USD-3m": "MA8BZHQV3W32V63B"} def get_data_policy_rate_expectation_mocker( start: Union[dt.date, dt.datetime] = None, end: Union[dt.date, dt.datetime] = None, as_of: dt.datetime = None, since: dt.datetime = None, fields: Union[str, Fields] = None, asset_id_type: str = None, **kwargs) -> pd.DataFrame: if 'meetingNumber' in kwargs: if kwargs['meetingNumber'] == 0: return mock_meeting_spot() elif 'meeting_date' in kwargs: if kwargs['meeting_date'] == dt.date(2019, 10, 24): return mock_meeting_spot() return mock_meeting_expectation() def test_parse_meeting_date(): assert tm.parse_meeting_date(5) == '' assert tm.parse_meeting_date('') == '' assert tm.parse_meeting_date('test') == '' assert tm.parse_meeting_date('2019-09-01') == dt.date(2019, 9, 1) def test_currency_to_default_benchmark_rate(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_default_mocker) asset_id_list = ["MAZ7RWC904JYHYPS", "MAJNQPFGN1EBDHAE", "MA66CZBQJST05XKG", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8", "MA4B66MW5E27U8P32SB"] correct_mapping = ["MAPDB7QNB2TZVQ0E", "MAJNQPFGN1EBDHAE", "MAFYB8Z4R1377A19", "MABMVE27EM8YZK33", "MA4J1YB8XZP2BPT8", "MA4B66MW5E27U8P32SB"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_default_benchmark_rate(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_currency_to_default_swap_rate_asset(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_swap_rate_mocker) asset_id_list = ['MAZ7RWC904JYHYPS', 'MAJNQPFGN1EBDHAE', 'MAJ6SEQH3GT0GA2Z'] correct_mapping = ['MAAXGV0GZTW4GFNC', 'MA5WM2QWRVMYKDK0', 'MAJ6SEQH3GT0GA2Z'] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_default_swap_rate_asset(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_currency_to_inflation_benchmark_rate(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_inflation_mocker) asset_id_list = ["MA66CZBQJST05XKG", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8"] correct_mapping = ["MAQ7ND0MBP2AVVQW", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_inflation_benchmark_rate(asset_id_list[i]) assert correct_id == correct_mapping[i] # Test that the same id is returned when a TypeError is raised mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=TypeError('Test')) assert tm.currency_to_inflation_benchmark_rate('MA66CZBQJST05XKG') == 'MA66CZBQJST05XKG' def test_cross_to_basis(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_cross_basis_mocker) asset_id_list = ["MAYJPCVVF2RWXCES", "MA4B66MW5E27U8P32SB", "nobbid"] correct_mapping = ["MA99N6C1KF9078NM", "MA4B66MW5E27U8P32SB", "nobbid"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_to_basis(asset_id_list[i]) assert correct_id == correct_mapping[i] # Test that the same id is returned when a TypeError is raised mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=TypeError('Test')) assert tm.cross_to_basis('MAYJPCVVF2RWXCES') == 'MAYJPCVVF2RWXCES' def test_currency_to_tdapi_swap_rate_asset(mocker): replace = Replacer() mocker.patch.object(GsSession.__class__, 'current', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=mock_request) bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) with tm.PricingContext(dt.date.today()): asset = Currency('MA25DW5ZGC1BSC8Y', 'NOK') bbid_mock.return_value = 'NOK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) asset = Currency('MAZ7RWC904JYHYPS', 'USD') bbid_mock.return_value = 'USD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAFRSWPAF5QPNTP2' == correct_id bbid_mock.return_value = 'CHF' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAW25BGQJH9P6DPT' == correct_id bbid_mock.return_value = 'EUR' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAA9MVX15AJNQCVG' == correct_id bbid_mock.return_value = 'GBP' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA6QCAP9B7ABS9HA' == correct_id bbid_mock.return_value = 'JPY' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAEE219J5ZP0ZKRK' == correct_id bbid_mock.return_value = 'SEK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAETMVTPNP3199A5' == correct_id bbid_mock.return_value = 'HKD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MABRNGY8XRFVC36N' == correct_id bbid_mock.return_value = 'NZD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAH16NHE1HBN0FBZ' == correct_id bbid_mock.return_value = 'AUD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAY8147CRK0ZP53B' == correct_id bbid_mock.return_value = 'CAD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MANJ8SS88WJ6N28Q' == correct_id bbid_mock.return_value = 'KRW' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAP55AXG5SQVS6C5' == correct_id bbid_mock.return_value = 'INR' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA20JHJXN1PD5HGE' == correct_id bbid_mock.return_value = 'CNY' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA4K1D8HH2R0RQY5' == correct_id bbid_mock.return_value = 'SGD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA5CQFHYBPH9E5BS' == correct_id bbid_mock.return_value = 'DKK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAF131NKWVRESFYA' == correct_id asset = Currency('MA890', 'PLN') bbid_mock.return_value = 'PLN' assert 'MA890' == tm_rates._currency_to_tdapi_swap_rate_asset(asset) replace.restore() def test_currency_to_tdapi_basis_swap_rate_asset(mocker): replace = Replacer() mocker.patch.object(GsSession.__class__, 'current', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=mock_request) bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) with tm.PricingContext(dt.date.today()): asset = Currency('MA890', 'NOK') bbid_mock.return_value = 'NOK' assert 'MA890' == tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) asset = Currency('MAZ7RWC904JYHYPS', 'USD') bbid_mock.return_value = 'USD' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAQB1PGEJFCET3GG' == correct_id bbid_mock.return_value = 'EUR' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAGRG2VT11GQ2RQ9' == correct_id bbid_mock.return_value = 'GBP' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAHCYNB3V75JC5Q8' == correct_id bbid_mock.return_value = 'JPY' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAXVRBEZCJVH0C4V' == correct_id replace.restore() def test_check_clearing_house(): assert tm_rates._ClearingHouse.LCH == tm_rates._check_clearing_house('lch') assert tm_rates._ClearingHouse.CME == tm_rates._check_clearing_house(tm_rates._ClearingHouse.CME) assert tm_rates._ClearingHouse.LCH == tm_rates._check_clearing_house(None) invalid_ch = ['NYSE'] for ch in invalid_ch: with pytest.raises(MqError): tm_rates._check_clearing_house(ch) def test_get_swap_csa_terms(): euribor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EURIBOR.value] usd_libor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.LIBOR.value] fed_funds_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.Fed_Funds.value] estr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EUROSTR.value] assert dict(csaTerms='USD-1') == tm_rates._get_swap_csa_terms('USD', fed_funds_index) assert dict(csaTerms='EUR-EuroSTR') == tm_rates._get_swap_csa_terms('EUR', estr_index) assert {} == tm_rates._get_swap_csa_terms('EUR', euribor_index) assert {} == tm_rates._get_swap_csa_terms('USD', usd_libor_index) def test_get_basis_swap_csa_terms(): euribor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EURIBOR.value] usd_libor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.LIBOR.value] fed_funds_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.Fed_Funds.value] sofr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.SOFR.value] estr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EUROSTR.value] eonia_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EONIA.value] assert dict(csaTerms='USD-1') == tm_rates._get_basis_swap_csa_terms('USD', fed_funds_index, sofr_index) assert dict(csaTerms='EUR-EuroSTR') == tm_rates._get_basis_swap_csa_terms('EUR', estr_index, eonia_index) assert {} == tm_rates._get_basis_swap_csa_terms('EUR', eonia_index, euribor_index) assert {} == tm_rates._get_basis_swap_csa_terms('USD', fed_funds_index, usd_libor_index) def test_match_floating_tenors(): swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['SOFR'], asset_parameters_receiver_designated_maturity='1y') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_receiver_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['SOFR'], asset_parameters_payer_designated_maturity='1y', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_receiver_designated_maturity='3m') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_payer_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['SONIA'], asset_parameters_payer_designated_maturity='1y', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['LIBOR'], asset_parameters_receiver_designated_maturity='3m') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_payer_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['SONIA'], asset_parameters_receiver_designated_maturity='1y') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_receiver_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_receiver_designated_maturity='6m') assert swap_args == tm_rates._match_floating_tenors(swap_args) def test_get_term_struct_date(mocker): today = datetime.datetime.today() biz_day = CustomBusinessDay() assert today == tm_rates._get_term_struct_date(tenor=today, index=today, business_day=biz_day) date_index = datetime.datetime(2020, 7, 31, 0, 0) assert date_index == tm_rates._get_term_struct_date(tenor='2020-07-31', index=date_index, business_day=biz_day) assert date_index == tm_rates._get_term_struct_date(tenor='0b', index=date_index, business_day=biz_day) assert datetime.datetime(2021, 7, 30, 0, 0) == tm_rates._get_term_struct_date(tenor='1y', index=date_index, business_day=biz_day) def test_cross_stored_direction_for_fx_vol(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) asset_id_list = ["MAYJPCVVF2RWXCES", "MATGYV0J9MPX534Z"] correct_mapping = ["MATGYV0J9MPX534Z", "MATGYV0J9MPX534Z"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_stored_direction_for_fx_vol(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_cross_to_usd_based_cross_for_fx_forecast(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) asset_id_list = ["MAYJPCVVF2RWXCES", "MATGYV0J9MPX534Z"] correct_mapping = ["MATGYV0J9MPX534Z", "MATGYV0J9MPX534Z"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_to_usd_based_cross(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_cross_to_used_based_cross(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=TypeError('unsupported')) replace = Replacer() bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'HELLO' assert 'FUN' == tm.cross_to_usd_based_cross(Cross('FUN', 'EURUSD')) replace.restore() def test_cross_stored_direction(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=TypeError('unsupported')) replace = Replacer() bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'HELLO' assert 'FUN' == tm.cross_stored_direction_for_fx_vol(Cross('FUN', 'EURUSD')) replace.restore() def test_get_tdapi_rates_assets(mocker): mock_asset_1 = GsAsset(asset_class='Rate', id='MAW25BGQJH9P6DPT', type_='Swap', name='Test_asset') mock_asset_2 = GsAsset(asset_class='Rate', id='MAA9MVX15AJNQCVG', type_='Swap', name='Test_asset') mock_asset_3 = GsAsset(asset_class='Rate', id='MANQHVYC30AZFT7R', type_='BasisSwap', name='Test_asset') replace = Replacer() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1] assert 'MAW25BGQJH9P6DPT' == tm_rates._get_tdapi_rates_assets() replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1, mock_asset_2] kwargs = dict(asset_parameters_termination_date='10y', asset_parameters_effective_date='0b') with pytest.raises(MqValueError): tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [] with pytest.raises(MqValueError): tm_rates._get_tdapi_rates_assets() replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1, mock_asset_2] kwargs = dict() assert ['MAW25BGQJH9P6DPT', 'MAA9MVX15AJNQCVG'] == tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() # test case will test matching sofr maturity with libor leg and flipping legs to get right asset kwargs = dict(type='BasisSwap', asset_parameters_termination_date='10y', asset_parameters_payer_rate_option=BenchmarkType.LIBOR, asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=BenchmarkType.SOFR, asset_parameters_receiver_designated_maturity='1y', asset_parameters_clearing_house='lch', asset_parameters_effective_date='Spot', asset_parameters_notional_currency='USD', pricing_location='NYC') assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_3] assert 'MANQHVYC30AZFT7R' == tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() def test_get_swap_leg_defaults(): result_dict = dict(currency=CurrEnum.JPY, benchmark_type='JPY-LIBOR-BBA', floating_rate_tenor='6m', pricing_location=PricingLocation.TKO) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.JPY) assert result_dict == defaults result_dict = dict(currency=CurrEnum.USD, benchmark_type='USD-LIBOR-BBA', floating_rate_tenor='3m', pricing_location=PricingLocation.NYC) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.USD) assert result_dict == defaults result_dict = dict(currency=CurrEnum.EUR, benchmark_type='EUR-EURIBOR-TELERATE', floating_rate_tenor='6m', pricing_location=PricingLocation.LDN) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.EUR) assert result_dict == defaults result_dict = dict(currency=CurrEnum.SEK, benchmark_type='SEK-STIBOR-SIDE', floating_rate_tenor='6m', pricing_location=PricingLocation.LDN) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.SEK) assert result_dict == defaults def test_check_forward_tenor(): valid_tenors = [datetime.date(2020, 1, 1), '1y', 'imm2', 'frb2', '1m', '0b'] for tenor in valid_tenors: assert tenor == tm_rates._check_forward_tenor(tenor) invalid_tenors = ['5yr', 'imm5', 'frb0'] for tenor in invalid_tenors: with pytest.raises(MqError): tm_rates._check_forward_tenor(tenor) def mock_commod(_cls, _q): d = { 'price': [30, 30, 30, 30, 35.929686, 35.636039, 27.307498, 23.23177, 19.020833, 18.827291, 17.823749, 17.393958, 17.824999, 20.307603, 24.311249, 25.160103, 25.245728, 25.736873, 28.425206, 28.779789, 30.519996, 34.896348, 33.966973, 33.95489, 33.686348, 34.840307, 32.674163, 30.261665, 30, 30, 30] } df = MarketDataResponseFrame(data=d, index=pd.date_range('2019-05-01', periods=31, freq='H', tz=timezone('UTC'))) df.dataset_ids = _test_datasets return df def mock_forward_price(_cls, _q): d = { 'forwardPrice': [ 22.0039, 24.8436, 24.8436, 11.9882, 14.0188, 11.6311, 18.9234, 21.3654, 21.3654, ], 'quantityBucket': [ "PEAK", "PEAK", "PEAK", "7X8", "7X8", "7X8", "2X16H", "2X16H", "2X16H", ], 'contract': [ "J20", "K20", "M20", "J20", "K20", "M20", "J20", "K20", "M20", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 9)) df.dataset_ids = _test_datasets return df def mock_fair_price(_cls, _q): d = { 'fairPrice': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_natgas_forward_price(_cls, _q): d = { 'forwardPrice': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_fair_price_swap(_cls, _q): d = {'fairPrice': [2.880]} df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)])) df.dataset_ids = _test_datasets return df def mock_implied_volatility(_cls, _q): d = { 'impliedVolatility': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_missing_bucket_forward_price(_cls, _q): d = { 'forwardPrice': [ 22.0039, 24.8436, 24.8436, 11.9882, 14.0188, 18.9234, 21.3654, 21.3654, ], 'quantityBucket': [ "PEAK", "PEAK", "PEAK", "7X8", "7X8", "2X16H", "2X16H", "2X16H", ], 'contract': [ "J20", "K20", "M20", "J20", "K20", "J20", "K20", "M20", ] } return pd.DataFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 8)) def mock_fx_vol(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: return MarketDataResponseFrame({'impliedVolatility': [3]}, index=[pd.Timestamp('2019-01-04T12:00:00Z')]) d = { 'strikeReference': ['delta', 'spot', 'forward'], 'relativeStrike': [25, 100, 100], 'impliedVolatility': [5, 1, 2], 'forecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=pd.date_range('2019-01-01', periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_fx_forecast(_cls, _q): d = { 'fxForecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_fx_delta(_cls, _q): d = { 'relativeStrike': [25, -25, 0], 'impliedVolatility': [1, 5, 2], 'forecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_fx_empty(_cls, _q): d = { 'strikeReference': [], 'relativeStrike': [], 'impliedVolatility': [] } df = MarketDataResponseFrame(data=d, index=[]) df.dataset_ids = _test_datasets return df def mock_fx_switch(_cls, _q, _n): replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_empty) replace.restore() return Cross('MA1889', 'ABC/XYZ') def mock_curr(_cls, _q): d = { 'swapAnnuity': [1, 2, 3], 'swapRate': [1, 2, 3], 'basisSwapRate': [1, 2, 3], 'swaptionVol': [1, 2, 3], 'atmFwdRate': [1, 2, 3], 'midcurveVol': [1, 2, 3], 'capFloorVol': [1, 2, 3], 'spreadOptionVol': [1, 2, 3], 'inflationSwapRate': [1, 2, 3], 'midcurveAtmFwdRate': [1, 2, 3], 'capFloorAtmFwdRate': [1, 2, 3], 'spreadOptionAtmFwdRate': [1, 2, 3], 'strike': [0.25, 0.5, 0.75] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_cross(_cls, _q): d = { 'basis': [1, 2, 3], } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_eq(_cls, _q): d = { 'relativeStrike': [0.75, 0.25, 0.5], 'impliedVolatility': [5, 1, 2], 'impliedCorrelation': [5, 1, 2], 'realizedCorrelation': [3.14, 2.71828, 1.44], 'averageImpliedVolatility': [5, 1, 2], 'averageImpliedVariance': [5, 1, 2], 'averageRealizedVolatility': [5, 1, 2], 'impliedVolatilityByDeltaStrike': [5, 1, 2], 'fundamentalMetric': [5, 1, 2] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_eq_vol(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: idx = [pd.Timestamp(datetime.datetime.now(pytz.UTC))] return MarketDataResponseFrame({'impliedVolatility': [3]}, index=idx) d = { 'impliedVolatility': [5, 1, 2], } end = datetime.datetime.now(pytz.UTC).date() - datetime.timedelta(days=1) df = MarketDataResponseFrame(data=d, index=pd.date_range(end=end, periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_eq_vol_last_err(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: raise MqValueError('error while getting last') d = { 'impliedVolatility': [5, 1, 2], } end = datetime.date.today() - datetime.timedelta(days=1) df = MarketDataResponseFrame(data=d, index=pd.date_range(end=end, periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_eq_vol_last_empty(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: return MarketDataResponseFrame() d = { 'impliedVolatility': [5, 1, 2], } end = datetime.date.today() - datetime.timedelta(days=1) df = MarketDataResponseFrame(data=d, index=pd.date_range(end=end, periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_eq_norm(_cls, _q): d = { 'relativeStrike': [-4.0, 4.0, 0], 'impliedVolatility': [5, 1, 2] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_eq_spot(_cls, _q): d = { 'relativeStrike': [0.75, 1.25, 1.0], 'impliedVolatility': [5, 1, 2] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_inc(_cls, _q): d = { 'relativeStrike': [0.25, 0.75], 'impliedVolatility': [5, 1] } df = MarketDataResponseFrame(data=d, index=_index * 2) df.dataset_ids = _test_datasets return df def mock_meeting_expectation(): data_dict = MarketDataResponseFrame({'date': [dt.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2'], 'location': ['NYC'], 'rateType': ['Meeting Forward'], 'startingDate': [dt.date(2020, 1, 29)], 'endingDate': [dt.date(2020, 1, 29)], 'meetingNumber': [2], 'valuationDate': [dt.date(2019, 12, 6)], 'meetingDate': [dt.date(2020, 1, 23)], 'value': [-0.004550907771] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_meeting_spot(): data_dict = MarketDataResponseFrame({'date': [dt.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2'], 'location': ['NYC'], 'rateType': ['Meeting Forward'], 'startingDate': [dt.date(2019, 10, 30)], 'endingDate': [dt.date(2019, 12, 18)], 'meetingNumber': [0], 'valuationDate': [dt.date(2019, 12, 6)], 'meetingDate': [dt.date(2019, 10, 24)], 'value': [-0.004522570525] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_meeting_absolute(): data_dict = MarketDataResponseFrame({'date': [datetime.date(2019, 12, 6), datetime.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2', 'MARFAGXDQRWM07Y2'], 'location': ['NYC', 'NYC'], 'rateType': ['Meeting Forward', 'Meeting Forward'], 'startingDate': [datetime.date(2019, 10, 30), datetime.date(2020, 1, 29)], 'endingDate': [datetime.date(2019, 10, 30), datetime.date(2020, 1, 29)], 'meetingNumber': [0, 2], 'valuationDate': [datetime.date(2019, 12, 6), datetime.date(2019, 12, 6)], 'meetingDate': [datetime.date(2019, 10, 24), datetime.date(2020, 1, 23)], 'value': [-0.004522570525, -0.004550907771] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_ois_spot(): data_dict = MarketDataResponseFrame({'date': [datetime.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2'], 'location': ['NYC'], 'rateType': ['Spot'], 'startingDate': [datetime.date(2019, 12, 6)], 'endingDate': [datetime.date(2019, 12, 7)], 'meetingNumber': [-1], 'valuationDate': [datetime.date(2019, 12, 6)], 'meetingDate': [datetime.date(2019, 12, 6)], 'value': [-0.00455] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_esg(_cls, _q): d = { "esNumericScore": [2, 4, 6], "esNumericPercentile": [81.2, 75.4, 65.7], "esPolicyScore": [2, 4, 6], "esPolicyPercentile": [81.2, 75.4, 65.7], "esScore": [2, 4, 6], "esPercentile": [81.2, 75.4, 65.7], "esProductImpactScore": [2, 4, 6], "esProductImpactPercentile": [81.2, 75.4, 65.7], "gScore": [2, 4, 6], "gPercentile": [81.2, 75.4, 65.7], "esMomentumScore": [2, 4, 6], "esMomentumPercentile": [81.2, 75.4, 65.7], "gRegionalScore": [2, 4, 6], "gRegionalPercentile": [81.2, 75.4, 65.7], "controversyScore": [2, 4, 6], "controversyPercentile": [81.2, 75.4, 65.7], "esDisclosurePercentage": [49.2, 55.7, 98.4] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_index_positions_data( asset_id, start_date, end_date, fields=None, position_type=None ): return [ {'underlyingAssetId': 'MA3', 'netWeight': 0.1, 'positionType': 'close', 'assetId': 'MA890', 'positionDate': '2020-01-01' }, {'underlyingAssetId': 'MA1', 'netWeight': 0.6, 'positionType': 'close', 'assetId': 'MA890', 'positionDate': '2020-01-01' }, {'underlyingAssetId': 'MA2', 'netWeight': 0.3, 'positionType': 'close', 'assetId': 'MA890', 'positionDate': '2020-01-01' } ] def mock_rating(_cls, _q): d = { 'rating': ['Buy', 'Sell', 'Buy', 'Neutral'], 'convictionList': [1, 0, 0, 0] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2020, 8, 13), datetime.date(2020, 8, 14), datetime.date(2020, 8, 17), datetime.date(2020, 8, 18)])) df.dataset_ids = _test_datasets return df def mock_gsdeer_gsfeer(_cls, assetId, start_date): d = { 'gsdeer': [1, 1.2, 1.1], 'gsfeer': [2, 1.8, 1.9], 'year': [2000, 2010, 2020], 'quarter': ['Q1', 'Q2', 'Q3'] } df = MarketDataResponseFrame(data=d, index=_index * 3) return df def mock_factor_profile(_cls, _q): d = { 'growthScore': [0.238, 0.234, 0.234, 0.230], 'financialReturnsScore': [0.982, 0.982, 0.982, 0.982], 'multipleScore': [0.204, 0.192, 0.190, 0.190], 'integratedScore': [0.672, 0.676, 0.676, 0.674] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2020, 8, 13), datetime.date(2020, 8, 14), datetime.date(2020, 8, 17), datetime.date(2020, 8, 18)])) df.dataset_ids = _test_datasets return df def mock_commodity_forecast(_cls, _q): d = { 'forecastPeriod': ['3m', '3m', '3m', '3m'], 'forecastType': ['spotReturn', 'spotReturn', 'spotReturn', 'spotReturn'], 'commodityForecast': [1700, 1400, 1500, 1600] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2020, 8, 13), datetime.date(2020, 8, 14), datetime.date(2020, 8, 17), datetime.date(2020, 8, 18)])) df.dataset_ids = _test_datasets return df def test_skew(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.skew(mock_spx, '1m', tm.SkewReference.DELTA, 25) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_norm) actual = tm.skew(mock_spx, '1m', tm.SkewReference.NORMALIZED, 4) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_spot) actual = tm.skew(mock_spx, '1m', tm.SkewReference.SPOT, 25) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) mock.return_value = mock_empty_market_data_response() actual = tm.skew(mock_spx, '1m', tm.SkewReference.SPOT, 25) assert actual.empty replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_inc) with pytest.raises(MqError): tm.skew(mock_spx, '1m', tm.SkewReference.DELTA, 25) replace.restore() with pytest.raises(MqError): tm.skew(mock_spx, '1m', None, 25) def test_skew_fx(): replace = Replacer() cross = Cross('MAA0NE9QX2ABETG6', 'USD/EUR') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EURUSD', ))] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = cross replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_delta) mock = cross actual = tm.skew(mock, '1m', tm.SkewReference.DELTA, 25) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.DELTA, 25, real_time=True) with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.SPOT, 25) with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.FORWARD, 25) with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.NORMALIZED, 25) with pytest.raises(MqError): tm.skew(mock, '1m', None, 25) replace.restore() def test_implied_vol(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_vol) idx = pd.date_range(end=datetime.datetime.now(pytz.UTC).date(), periods=4, freq='D') actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2, 3], index=idx, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2, 3], index=idx, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(MqError): tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_NEUTRAL) with pytest.raises(MqError): tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL) replace.restore() def test_implied_vol_no_last(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') idx = pd.date_range(end=datetime.date.today() - datetime.timedelta(days=1), periods=3, freq='D') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_vol_last_err) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_vol_last_empty) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) replace.restore() def test_implied_vol_fx(): replace = Replacer() mock = Cross('MAA0NE9QX2ABETG6', 'USD/EUR') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EURUSD', ))] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = mock # for different delta strikes replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_vol) actual = tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_CALL, 25) expected = pd.Series([5, 1, 2, 3], index=pd.date_range('2019-01-01', periods=4, freq='D'), name='impliedVolatility') assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_PUT, 25) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_NEUTRAL) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.FORWARD, 100) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.SPOT, 100) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets # NORMALIZED not supported with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_CALL) with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.NORMALIZED, 25) with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.SPOT, 25) with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.FORWARD, 25) replace.restore() def test_fx_forecast(): replace = Replacer() mock = Cross('MAA0NE9QX2ABETG6', 'USD/EUR') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EURUSD', ))] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = mock replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_forecast) actual = tm.fx_forecast(mock, '12m') assert_series_equal(pd.Series([1.1, 1.1, 1.1], index=_index * 3, name='fxForecast'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.fx_forecast(mock, '3m') assert_series_equal(pd.Series([1.1, 1.1, 1.1], index=_index * 3, name='fxForecast'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.fx_forecast(mock, '3m', real_time=True) replace.restore() def test_fx_forecast_inverse(): replace = Replacer() get_cross = replace('gs_quant.timeseries.measures.cross_to_usd_based_cross', Mock()) get_cross.return_value = "MATGYV0J9MPX534Z" replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_forecast) mock = Cross("MAYJPCVVF2RWXCES", 'USD/JPY') actual = tm.fx_forecast(mock, '3m') assert_series_equal(pd.Series([1 / 1.1, 1 / 1.1, 1 / 1.1], index=_index * 3, name='fxForecast'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace.restore() def test_vol_smile(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.vol_smile(mock_spx, '1m', tm.VolSmileReference.FORWARD, '5d') assert_series_equal(pd.Series([5, 1, 2], index=[0.75, 0.25, 0.5]), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.vol_smile(mock_spx, '1m', tm.VolSmileReference.SPOT, '5d') assert_series_equal(
pd.Series([5, 1, 2], index=[0.75, 0.25, 0.5])
pandas.Series
import pandas as pd def date_formatter(time_stamp,ldf): """ Given a numpy timestamp and ldf, inspects which date granularity is appropriate and reformats timestamp accordingly Example ---------- For changing granularity the results differ as so. days: '2020-01-01' -> '2020-1-1' months: '2020-01-01' -> '2020-1' years: '2020-01-01' -> '2020' Parameters ---------- time_stamp: np.datetime64 timestamp object holding the date information ldf : lux.core.frame LuxDataFrame with a temporal field Returns ------- date_str: str A reformatted version of the time_stamp according to granularity """ datetime = pd.to_datetime(time_stamp) if ldf.data_type["temporal"]: date_column = ldf[ldf.data_type["temporal"][0]] # assumes only one temporal column, may need to change this function to recieve multiple temporal columns in the future granularity = compute_date_granularity(date_column) date_str = "" if granularity == "year": date_str += str(datetime.year) elif granularity == "month": date_str += str(datetime.year)+ "-" + str(datetime.month) elif granularity == "day": date_str += str(datetime.year) +"-"+ str(datetime.month) +"-"+ str(datetime.day) else: # non supported granularity return datetime.date() return date_str def compute_date_granularity(date_column:pd.core.series.Series): """ Given a temporal column (pandas.core.series.Series), finds out the granularity of dates. Example ---------- ['2018-01-01', '2019-01-02', '2018-01-03'] -> "day" ['2018-01-01', '2019-02-01', '2018-03-01'] -> "month" ['2018-01-01', '2019-01-01', '2020-01-01'] -> "year" Parameters ---------- date_column: pandas.core.series.Series Column series with datetime type Returns ------- field: str A str specifying the granularity of dates for the inspected temporal column """ date_fields = ["day", "month", "year"] #supporting a limited set of Vega-Lite TimeUnit (https://vega.github.io/vega-lite/docs/timeunit.html) date_index =
pd.DatetimeIndex(date_column)
pandas.DatetimeIndex
import streamlit as st import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import altair as alt from requests import get import re import os from bs4 import BeautifulSoup from urllib.request import Request, urlopen import datetime import time import matplotlib.pyplot as plt import statsmodels.api as sm from geopy.geocoders import Nominatim from geopy.distance import geodesic geolocator = Nominatim(user_agent='myuseragent') import lxml import plotly.express as px from PIL import Image #with open("styles/style.css") as f: # st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True) st.set_page_config( page_title="O/U Hockey Analytics", page_icon=":ice_hockey_stick_and_puck:" ) #Dummy data to get the header to display correctly st.markdown("""<Head> <Title> Test Title</Title><link rel="shortcut icon" href="favicon.ico" type="image/x-icon"> </Head>""",unsafe_allow_html=True) #Title/Header st.markdown("""<h1 style="text-align:center;color:white;font-weight:bolder;font-size:70px;font-family:helvetica; background: -webkit-linear-gradient(#a73305,#000000,#093ff0); -webkit-background-clip: text;-webkit-text-fill-color: transparent;">NHL<br>Wager<br>Analytics</h1>""",unsafe_allow_html=True) # Load data data_load_state = st.text('Checking and Fetching Data...') ##################################### #### Data Gathering and Cleaning #### ##################################### master_df =
pd.read_csv('master_df.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ @file @brief Defines a streaming dataframe. """ import pickle import os from io import StringIO, BytesIO from inspect import isfunction import numpy import numpy.random as nrandom import pandas from pandas.testing import assert_frame_equal from pandas.io.json import json_normalize from .dataframe_split import sklearn_train_test_split, sklearn_train_test_split_streaming from .dataframe_io_helpers import enumerate_json_items, JsonIterator2Stream class StreamingDataFrameSchemaError(Exception): """ Reveals an issue with inconsistant schemas. """ pass class StreamingDataFrame: """ Defines a streaming dataframe. The goal is to reduce the memory footprint. The class takes a function which creates an iterator on :epkg:`dataframe`. We assume this function can be called multiple time. As a matter of fact, the function is called every time the class needs to walk through the stream with the following loop: :: for df in self: # self is a StreamingDataFrame # ... The constructor cannot receive an iterator otherwise this class would be able to walk through the data only once. The main reason is it is impossible to :epkg:`*py:pickle` (or :epkg:`dill`) an iterator: it cannot be replicated. Instead, the class takes a function which generates an iterator on :epkg:`DataFrame`. Most of the methods returns either a :epkg:`DataFrame` either a @see cl StreamingDataFrame. In the second case, methods can be chained. By default, the object checks that the schema remains the same between two chunks. This can be disabled by setting *check_schema=False* in the constructor. The user should expect the data to remain stable. Every loop should produce the same data. However, in some situations, it is more efficient not to keep that constraints. Draw a random @see me sample is one of these cases. :param iter_creation: function which creates an iterator or an instance of @see cl StreamingDataFrame :param check_schema: checks that the schema is the same for every :epkg:`dataframe` :param stable: indicates if the :epkg:`dataframe` remains the same whenever it is walked through """ def __init__(self, iter_creation, check_schema=True, stable=True): self._delete_ = [] if isinstance(iter_creation, (pandas.DataFrame, dict, numpy.ndarray, str)): raise TypeError( "Unexpected type %r for iter_creation. It must " "be an iterator." % type(iter_creation)) if isinstance(iter_creation, StreamingDataFrame): self.iter_creation = iter_creation.iter_creation self.stable = iter_creation.stable else: self.iter_creation = iter_creation self.stable = stable self.check_schema = check_schema def is_stable(self, do_check=False, n=10): """ Tells if the :epkg:`dataframe` is supposed to be stable. @param do_check do not trust the value sent to the constructor @param n number of rows used to check the stability, None for all rows @return boolean *do_check=True* means the methods checks the first *n* rows remains the same for two iterations. """ if do_check: for i, (a, b) in enumerate(zip(self, self)): if n is not None and i >= n: break try: assert_frame_equal(a, b) except AssertionError: # pragma: no cover return False return True else: return self.stable def get_kwargs(self): """ Returns the parameters used to call the constructor. """ return dict(check_schema=self.check_schema) def train_test_split(self, path_or_buf=None, export_method="to_csv", names=None, streaming=True, partitions=None, **kwargs): """ Randomly splits a :epkg:`dataframe` into smaller pieces. The function returns streams of file names. It chooses one of the options from module :mod:`dataframe_split <pandas_streaming.df.dataframe_split>`. @param path_or_buf a string, a list of strings or buffers, if it is a string, it must contain ``{}`` like ``partition{}.txt``, if None, the function returns strings. @param export_method method used to store the partitions, by default :epkg:`pandas:DataFrame:to_csv`, additional parameters will be given to that function @param names partitions names, by default ``('train', 'test')`` @param kwargs parameters for the export function and :epkg:`sklearn:model_selection:train_test_split`. @param streaming the function switches to a streaming version of the algorithm. @param partitions splitting partitions @return outputs of the exports functions or two @see cl StreamingDataFrame if path_or_buf is None. The streaming version of this algorithm is implemented by function @see fn sklearn_train_test_split_streaming. Its documentation indicates the limitation of the streaming version and gives some insights about the additional parameters. """ if streaming: if partitions is not None: if len(partitions) != 2: raise NotImplementedError( # pragma: no cover "Only train and test split is allowed, *partitions* " "must be of length 2.") kwargs = kwargs.copy() kwargs['train_size'] = partitions[0] kwargs['test_size'] = partitions[1] return sklearn_train_test_split_streaming(self, **kwargs) return sklearn_train_test_split(self, path_or_buf=path_or_buf, export_method=export_method, names=names, **kwargs) @staticmethod def _process_kwargs(kwargs): """ Filters out parameters for the constructor of this class. """ kw = {} for k in ['check_schema']: if k in kwargs: kw[k] = kwargs[k] del kwargs[k] return kw @staticmethod def read_json(*args, chunksize=100000, flatten=False, **kwargs) -> 'StreamingDataFrame': """ Reads a :epkg:`json` file or buffer as an iterator on :epkg:`DataFrame`. The signature is the same as :epkg:`pandas:read_json`. The important parameter is *chunksize* which defines the number of rows to parse in a single bloc and it must be defined to return an iterator. If *lines* is True, the function falls back into :epkg:`pandas:read_json`, otherwise it used @see fn enumerate_json_items. If *lines* is ``'stream'``, *enumerate_json_items* is called with parameter ``lines=True``. Parameter *flatten* uses the trick described at `Flattening JSON objects in Python <https://towardsdatascience.com/flattening-json-objects-in-python-f5343c794b10>`_. Examples: .. runpython:: :showcode: from io import BytesIO from pandas_streaming.df import StreamingDataFrame data = b'''{"a": 1, "b": 2} {"a": 3, "b": 4}''' it = StreamingDataFrame.read_json(BytesIO(data), lines=True) dfs = list(it) print(dfs) .. runpython:: :showcode: from io import BytesIO from pandas_streaming.df import StreamingDataFrame data = b'''[{"a": 1, "b": 2}, {"a": 3, "b": 4}]''' it = StreamingDataFrame.read_json(BytesIO(data)) dfs = list(it) print(dfs) .. index:: IncompleteJSONError The parsed json must have an empty line at the end otherwise the following exception is raised: `ijson.common.IncompleteJSONError: ` `parse error: unallowed token at this point in JSON text`. """ if not isinstance(chunksize, int) or chunksize <= 0: raise ValueError( # pragma: no cover 'chunksize must be a positive integer') kwargs_create = StreamingDataFrame._process_kwargs(kwargs) if isinstance(args[0], (list, dict)): if flatten: return StreamingDataFrame.read_df( json_normalize(args[0]), **kwargs_create) return StreamingDataFrame.read_df(args[0], **kwargs_create) if kwargs.get('lines', None) == 'stream': del kwargs['lines'] def localf(a0=args[0]): if hasattr(a0, 'seek'): a0.seek(0) return enumerate_json_items( a0, encoding=kwargs.get('encoding', None), lines=True, flatten=flatten) st = JsonIterator2Stream(localf) args = args[1:] if chunksize is None: return StreamingDataFrame( lambda: pandas.read_json( st, *args, chunksize=None, lines=True, **kwargs), **kwargs_create) def fct1(st=st, args=args, chunksize=chunksize, kw=kwargs.copy()): st.seek(0) for r in pandas.read_json( st, *args, chunksize=chunksize, nrows=chunksize, lines=True, **kw): yield r return StreamingDataFrame(fct1, **kwargs_create) if kwargs.get('lines', False): if flatten: raise NotImplementedError( "flatten==True is implemented with option lines='stream'") if chunksize is None: return StreamingDataFrame( lambda: pandas.read_json(*args, chunksize=None, **kwargs), **kwargs_create) def fct2(args=args, chunksize=chunksize, kw=kwargs.copy()): for r in pandas.read_json( *args, chunksize=chunksize, nrows=chunksize, **kw): yield r return StreamingDataFrame(fct2, **kwargs_create) st = JsonIterator2Stream( lambda a0=args[0]: enumerate_json_items( a0, encoding=kwargs.get('encoding', None), flatten=flatten)) args = args[1:] if 'lines' in kwargs: del kwargs['lines'] if chunksize is None: return StreamingDataFrame( lambda: pandas.read_json( st, *args, chunksize=chunksize, lines=True, **kwargs), **kwargs_create) def fct3(st=st, args=args, chunksize=chunksize, kw=kwargs.copy()): if hasattr(st, 'seek'): st.seek(0) for r in pandas.read_json( st, *args, chunksize=chunksize, nrows=chunksize, lines=True, **kw): yield r return StreamingDataFrame(fct3, **kwargs_create) @staticmethod def read_csv(*args, **kwargs) -> 'StreamingDataFrame': """ Reads a :epkg:`csv` file or buffer as an iterator on :epkg:`DataFrame`. The signature is the same as :epkg:`pandas:read_csv`. The important parameter is *chunksize* which defines the number of rows to parse in a single bloc. If not specified, it will be equal to 100000. """ if not kwargs.get('iterator', True): raise ValueError("If specified, iterator must be True.") if not kwargs.get('chunksize', 100000): raise ValueError("If specified, chunksize must not be None.") kwargs_create = StreamingDataFrame._process_kwargs(kwargs) kwargs['iterator'] = True if 'chunksize' not in kwargs: kwargs['chunksize'] = 100000 return StreamingDataFrame(lambda: pandas.read_csv(*args, **kwargs), **kwargs_create) @staticmethod def read_str(text, **kwargs) -> 'StreamingDataFrame': """ Reads a :epkg:`DataFrame` as an iterator on :epkg:`DataFrame`. The signature is the same as :epkg:`pandas:read_csv`. The important parameter is *chunksize* which defines the number of rows to parse in a single bloc. """ if not kwargs.get('iterator', True): raise ValueError("If specified, iterator must be True.") if not kwargs.get('chunksize', 100000): raise ValueError("If specified, chunksize must not be None.") kwargs_create = StreamingDataFrame._process_kwargs(kwargs) kwargs['iterator'] = True if 'chunksize' not in kwargs: kwargs['chunksize'] = 100000 if isinstance(text, str): buffer = StringIO(text) else: buffer = BytesIO(text) return StreamingDataFrame( lambda: pandas.read_csv(buffer, **kwargs), **kwargs_create) @staticmethod def read_df(df, chunksize=None, check_schema=True) -> 'StreamingDataFrame': """ Splits a :epkg:`DataFrame` into small chunks mostly for unit testing purposes. @param df :epkg:`DataFrame` @param chunksize number rows per chunks (// 10 by default) @param check_schema check schema between two iterations @return iterator on @see cl StreamingDataFrame """ if chunksize is None: if hasattr(df, 'shape'): chunksize = df.shape[0] else: raise NotImplementedError( "Cannot retrieve size to infer chunksize for type={0}" ".".format(type(df))) if hasattr(df, 'shape'): size = df.shape[0] else: raise NotImplementedError( # pragma: no cover "Cannot retrieve size for type={0}.".format(type(df))) def local_iterator(): "local iterator" for i in range(0, size, chunksize): end = min(size, i + chunksize) yield df[i:end].copy() return StreamingDataFrame(local_iterator, check_schema=check_schema) def __iter__(self): """ Iterator on a large file with a sliding window. Each windows is a :epkg:`DataFrame`. The method stores a copy of the initial iterator and restores it after the end of the iterations. If *check_schema* was enabled when calling the constructor, the method checks that every :epkg:`DataFrame` follows the same schema as the first chunck. Even with a big chunk size, it might happen that consecutive chunks might detect different type for one particular column. An error message shows up saying ``Column types are different after row`` with more information about the column which failed. In that case, :epkg:`pandas:DataFrame.read_csv` can overwrite the type on one column by specifying ``dtype={column_name: new_type}``. It frequently happens when a string column has many missing values. """ iters = self.iter_creation() sch = None rows = 0 for it in iters: if sch is None: sch = (list(it.columns), list(it.dtypes)) elif self.check_schema: if list(it.columns) != sch[0]: # pylint: disable=E1136 raise StreamingDataFrameSchemaError( # pragma: no cover 'Column names are different after row {0}\nFirst chunk: {1}' '\nCurrent chunk: {2}'.format( rows, sch[0], list(it.columns))) # pylint: disable=E1136 if list(it.dtypes) != sch[1]: # pylint: disable=E1136 errdf = pandas.DataFrame( dict(names=sch[0], schema1=sch[1], # pylint: disable=E1136 schema2=list(it.dtypes))) # pylint: disable=E1136 tdf = StringIO() errdf['diff'] = errdf['schema2'] != errdf['schema1'] errdf = errdf[errdf['diff']] errdf.to_csv(tdf, sep=",", index=False) raise StreamingDataFrameSchemaError( 'Column types are different after row {0}. You may use option ' 'dtype={{"column_name": str}} to force the type on this column.' '\n---\n{1}'.format(rows, tdf.getvalue())) rows += it.shape[0] yield it @property def shape(self): """ This is the kind of operations you do not want to do when a file is large because it goes through the whole stream just to get the number of rows. """ nl, nc = 0, 0 for it in self: nc = max(it.shape[1], nc) nl += it.shape[0] return nl, nc @property def columns(self): """ See :epkg:`pandas:DataFrame:columns`. """ for it in self: return it.columns # The dataframe is empty. return [] @property def dtypes(self): """ See :epkg:`pandas:DataFrame:dtypes`. """ for it in self: return it.dtypes def to_csv(self, path_or_buf=None, **kwargs) -> 'StreamingDataFrame': """ Saves the :epkg:`DataFrame` into string. See :epkg:`pandas:DataFrame.to_csv`. """ if path_or_buf is None: st = StringIO() close = False elif isinstance(path_or_buf, str): st = open( # pylint: disable=R1732 path_or_buf, "w", encoding=kwargs.get('encoding')) close = True else: st = path_or_buf close = False for df in self: df.to_csv(st, **kwargs) kwargs['header'] = False if close: st.close() if isinstance(st, StringIO): return st.getvalue() return path_or_buf def to_dataframe(self) -> pandas.DataFrame: """ Converts everything into a single :epkg:`DataFrame`. """ return
pandas.concat(self, axis=0)
pandas.concat
import matplotlib.pyplot as plt import numpy as np import pandas as pd from tqdm import tqdm from multiprocessing import Pool class NoiseGenerator: def __init__(self, n_frequencies, f_interval): self.f_interval = f_interval self.t_end = 1 / self.f_interval self.n_frequencies = n_frequencies self.n_fft_frequencies = 2 * self.n_frequencies - 1 self.n_times = self.n_fft_frequencies self.t_interval = self.t_end / self.n_times self.nyquist_frequency = 0.5 * self.n_fft_frequencies * self.f_interval self.positive_frequencies = np.arange(n_frequencies) * f_interval self.sample_times = np.linspace(0, self.t_end, self.n_times, endpoint=False) self.samples = None self.fft_coeffs = None self.fft_frequencies = np.fft.fftfreq(self.n_fft_frequencies, self.t_interval) self.measured_psd = None self.mean_square_fft_coeffs = None self.autocorrelation = None self.psd = None self.fft_power_filter = None self.fft_amplitude_filter = None def specify_psd(self, psd='white', f_ir=None, normalization=None, A=None): assert not ((normalization is not None) and (A is not None)) if A is None: A = 1 if psd == 'white': self.psd = A*np.ones(self.n_frequencies) self.psd = np.hstack([self.psd, np.flip(self.psd)[:-1]]) elif psd == 'pink': assert f_ir is not None cutoff_idx = np.sum(self.positive_frequencies < f_ir) self.psd = np.zeros(self.n_frequencies) self.psd[cutoff_idx:] = A / self.positive_frequencies[cutoff_idx:] self.psd[:cutoff_idx] = self.psd[cutoff_idx] self.psd = np.hstack([self.psd, np.flip(self.psd)[:-1]]) else: self.psd = psd self.psd =
pd.Series(self.psd, index=self.fft_frequencies)
pandas.Series
import numpy as np import pandas as pd import os import librosa from multiprocessing import Pool SEED = int(1e9+7e7+17) np.random.seed(SEED) default_labels = ['blues']*100 + ['classical']*100 + ['country']*100 + ['disco']*100 + ['hiphop']*100 + ['jazz']*99 + ['metal']*100 + ['pop']*100 + ['reggae']*100 + ['rock']*100 genres = ['blues', 'classical', 'country', 'disco', 'hiphop', 'jazz', 'metal', 'pop', 'reggae', 'rock'] features = ['chroma_stft_mean', 'chroma_stft_var', 'rms_mean', 'rms_var', 'spectral_centroid_mean', 'spectral_centroid_var', 'spectral_bandwidth_mean', 'spectral_bandwidth_var', 'rolloff_mean', 'rolloff_var', 'zero_crossing_rate_mean', 'zero_crossing_rate_var', 'harmony_mean', 'harmony_var', 'perceptr_mean', 'perceptr_var', 'tempo', 'mfcc1_mean', 'mfcc1_var', 'mfcc2_mean', 'mfcc2_var', 'mfcc3_mean', 'mfcc3_var', 'mfcc4_mean', 'mfcc4_var', 'mfcc5_mean', 'mfcc5_var', 'mfcc6_mean', 'mfcc6_var', 'mfcc7_mean', 'mfcc7_var', 'mfcc8_mean', 'mfcc8_var', 'mfcc9_mean', 'mfcc9_var', 'mfcc10_mean', 'mfcc10_var', 'mfcc11_mean', 'mfcc11_var', 'mfcc12_mean', 'mfcc12_var', 'mfcc13_mean', 'mfcc13_var', 'mfcc14_mean', 'mfcc14_var', 'mfcc15_mean', 'mfcc15_var', 'mfcc16_mean', 'mfcc16_var', 'mfcc17_mean', 'mfcc17_var', 'mfcc18_mean', 'mfcc18_var', 'mfcc19_mean', 'mfcc19_var', 'mfcc20_mean', 'mfcc20_var'] musicnet_path = 'musicnet' def rel_path_to_abs(file, rel_path): return os.path.join(os.path.abspath(os.path.dirname(os.path.abspath(file))), rel_path) # def normalize(track): # m,s = track.mean(), track.std() # return (track-m)/s def normalize(track): mx,mn = max(track), min(track) m = (mx+mn)/2 return (track-m)/(mx-m) class Loader: def __init__(self, n_jobs=-1): self.n_jobs = n_jobs if n_jobs>0 else os.cpu_count() self.names = None def load_tracks(self, path, n_jobs=-1, verbose=0, get_names=False, normalize=True): n_jobs = self.n_jobs if n_jobs==-1 else n_jobs dataset, names = self.__scan_folder__(path, n_jobs, verbose, True, normalize=normalize) dataset = np.array(dataset) self.names = names return (dataset,names) if get_names else dataset def __scan_folder__(self, path, n_jobs, verbose, get_names, normalize, blacklist=['jazz.00054.wav']): tracks_paths = [] tmp_paths = [] tracks = [] tracks_names = [] for dirpath, dirnames, filenames in os.walk(path): for filename in filenames: tmp_paths.append(os.path.join(dirpath, filename)) tmp_paths.sort() for music_path in tmp_paths: filename = os.path.split(music_path)[1] if filename in blacklist: continue tracks_names.append(filename) tracks_paths.append(music_path) if verbose==1: print(filename) with Pool(n_jobs) as p: tracks = p.starmap(self.__load_track__, [(track, verbose, normalize) for track in tracks_paths]) return (tracks, tracks_names) if get_names else tracks def __load_track__(self, path, verbose, _normalize): X,sr = librosa.load(path) if _normalize: X = normalize(X) if verbose==2: print(os.path.split(path)[1]) return X class Cutter: def __init__(self, n_jobs=-1): self.n_jobs = n_jobs if n_jobs>0 else os.cpu_count() def cut_dataset(self, dataset, durations, sr=22050, n_jobs=-1, default_labels=None, normalize=True): n_jobs = self.n_jobs if n_jobs==-1 else n_jobs new_dataset = [] labels = [] self.normalize = normalize for duration in durations: if not default_labels: new_dataset.extend(self.cut_album_in_pieces(dataset, duration, sr, n_jobs)) else: new_data = self.cut_album_in_pieces(dataset, duration, sr, n_jobs, default_labels) new_dataset.extend(new_data[0]) labels.extend(new_data[1]) new_dataset = np.array(new_dataset) return new_dataset if not default_labels else (new_dataset, labels) def cut_album_in_pieces(self, dataset, duration, sr=22050, n_jobs=-1, default_labels=None): n_jobs = self.n_jobs if n_jobs==-1 else n_jobs subtracks = [] labels = [] album = dataset.copy() if len(album[0].shape)==0: album = album.reshape((1,-1)) with Pool(n_jobs) as p: if not default_labels: new_data = p.starmap(self.cut_track_in_pieces, [(track, duration, sr) for track in album]) else: new_data = p.starmap(self.cut_track_in_pieces, [(album[i], duration, sr, default_labels[i]) for i in range(len(album))]) for new_data_sample in new_data: subtracks.extend(new_data_sample[0]) if not default_labels is None: labels.extend([new_data_sample[1]]*len(new_data_sample[0])) return subtracks if not default_labels else (subtracks, labels) def cut_track_in_pieces(self, track, duration, sr=22050, label=None): subtracks = [] if duration == 0: raise Exception("Duration must be non-zero") if duration < 0: n_pieces = int((-1)/duration) duration = track.shape[0]/sr/n_pieces else: n_pieces = int((track.shape[0]/sr)//duration) for i in range(n_pieces): _start, _stop = int(i*duration*sr), int((i+1)*duration*sr) if self.normalize: subtracks.append(normalize(track[_start:_stop])) else: subtracks.append(track[_start:_stop]) return (subtracks, label) class MusicFeaturesExtractor: def __init__(self, n_jobs=-1): self.n_jobs = n_jobs if n_jobs>0 else os.cpu_count() self.columns = features def extract(self, dataset, n_jobs=-1): ###################### mono sound ########################## n_jobs = self.n_jobs if n_jobs==-1 else n_jobs if dataset.shape[0]==1: return pd.DataFrame([self.__extract__(dataset[0])], columns=self.columns) elif len(dataset[0].shape)==0: return pd.DataFrame([self.__extract__(dataset)], columns=self.columns) else: with Pool(n_jobs) as p: self.data_features = p.map(self.__extract__, dataset)#, chunksize=4) data_features = pd.DataFrame(self.data_features, columns=self.columns) return data_features def extract_batch(self, data, batch_size=None): X = None if batch_size is None: batch_size=max(1, data.shape[0]//100) for start_index in range(0, data.shape[0], batch_size): _start, _stop = start_index, start_index+batch_size tmpX = self.extract(data[_start:_stop]) if X is None: X = tmpX else: X =
pd.concat((X,tmpX), axis=0, ignore_index=True)
pandas.concat
from smach_based_introspection_framework.offline_part.model_training import train_anomaly_classifier from smach_based_introspection_framework._constant import ( anomaly_classification_feature_selection_folder, ) from smach_based_introspection_framework.configurables import model_type, model_config, score_metric from smach_based_introspection_framework.online_part.anomaly_classifier.Classifier import NormalDistributedConfidenceClassifier import glob import os import pandas as pd import pprint import coloredlogs, logging import sys, traceback from sklearn.externals import joblib from sklearn.metrics import confusion_matrix import itertools import matplotlib.pyplot as plt import json import re import numpy as np import copy at_extractor = re.compile(r'anomaly_type_\((.*)\)') def get_models_of_scheme(scheme_folder, logger): models_grouped_by_type = {} for model_file in glob.glob(os.path.join(scheme_folder, 'anomaly_type_(*)', 'classifier_model')): logger.info(model_file) anomaly_type = at_extractor.search(model_file).group(1) logger.info(anomaly_type) with open(model_file, 'rb') as f: models_grouped_by_type[anomaly_type] = joblib.load(f) return models_grouped_by_type def run(): logger = logging.getLogger('CollectClassificationStats') scheme_folders = glob.glob(os.path.join( anomaly_classification_feature_selection_folder, 'classifier_models', 'No.* filtering scheme', )) for scheme_folder in scheme_folders: logger.info(scheme_folder) models_grouped_by_type = get_models_of_scheme(scheme_folder, logger) c = NormalDistributedConfidenceClassifier(models_grouped_by_type) path_postfix = os.path.relpath(scheme_folder, os.path.join(anomaly_classification_feature_selection_folder, 'classifier_models')) anomaly_csvs = glob.glob(os.path.join( anomaly_classification_feature_selection_folder, path_postfix, 'anomalies_grouped_by_type', 'anomaly_type_(*)', '*', '*.csv', )) stat_df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Aug 26 06:04:34 2017 A set of functions to analyze autosal conductivity files/data @author: <NAME> """ # break into two #docstrings # keyword argument in calibration default = worm import csv import numpy as np import pandas as pd import sys import os def SaltLoad(saltFile): """ Converts a autosal salinometer output file to a Pandas Dataframe. Input: - saltFile (file), an unextended file containing the output file from the autosal salinometer. Contains columns/values such as STATION NUMBER, CAST NUMBER,SAMPLENUMBER, CONDUCTIVITY RATIO, etc. Ex. saltFile = '/data/salt/ssscc' Output: - saltDF (Pandas Dataframe),Dataframe with 15 Columns containing the input data with appropriate column names for the data. Usage: >>> saltDF = SaltLoad(saltFile) """ f = open(saltFile, newline='') saltF = csv.reader(f,delimiter=' ', quoting=csv.QUOTE_NONE, skipinitialspace='True') saltArray = [] for row in saltF: saltArray.append(row) del saltArray[0] header = ['STNNBR','CASTNO','SAMPNO','BathTEMP','CRavg','autosalSAMPNO',\ 'Unknown','StartTime','EndTime','Attempts','Reading1','Reading2',\ 'Reading3', 'Reading4', 'Reading5'] f.close() # make all rows of Salt files the same length as header for row in saltArray: if len(row) < len(header): row.extend([np.NaN]*(len(header)-len(row))) saltArray = np.array(saltArray) # change to np array saltDF = pd.DataFrame(saltArray,columns=header) # change to DataFrame saltDF = saltDF.apply(pd.to_numeric, errors='ignore') return saltDF def Cr_Calibration(saltDF,StandName='worm'): """ Cleans up a salinity dataframe as well as applied a time-dependent correction for the offset associated with prolonged use of the autosal Input: -saltDF (pandas dataframe), a Dataframe containing the data from the output of the autosal salinometer (usually the output of the SaltLoad function) -StandName, the value given to the standard seawater calibration standard used to calibrate the Conductivity Ratio values. Default Value: worm Ex.shown in 5th column: Column: 0 1 2 3 4 5 Standard: 0001 01 00 24 1.99967 worm 3807 04:40:13 04:40:13 01 1.99967 Sample 1: 0001 01 01 24 2.03956 1 3808 04:44:55 04:45:38 03 2.03938 Output: -outputDF (pandas dataframe), a corrected Dataframe containing 4 columns: Station Number, Cast Number, Sample Number, and a new Conductivity Ratio which has the time-dependent offset from the salinometer removed from it. Usage: outputDF = Cr_Calibration(saltDF) """ CrStrt = saltDF['CRavg'][saltDF.autosalSAMPNO==StandName][0] #First Standard Cr Value CrEnd = saltDF['CRavg'][saltDF.autosalSAMPNO==StandName][len(saltDF['CRavg'])-1] #Second Standard Cr Value #calculate start and end times (endtimes are when measurements are taken) saltDF['EndTime'] = saltDF['EndTime'].apply(pd.Timedelta) startTime = saltDF['EndTime'][0] saltDF['ElapsedTime_(s)'] = (saltDF['EndTime']-startTime) / np.timedelta64(1,'s') duration = saltDF['ElapsedTime_(s)'][len(saltDF['ElapsedTime_(s)'])-1] Offset = CrEnd-CrStrt Offset = Offset/duration # Offset per second #Apply Offsets to Measured Data saltDF['CRavg_Corr'] = saltDF['CRavg']-(Offset*saltDF['ElapsedTime_(s)']) saltDF = saltDF[(saltDF['autosalSAMPNO']!=StandName)] #remove calibration entries #Create Export Dataframe outputDF = pd.DataFrame() outputDF = saltDF.loc[:,['STNNBR','CASTNO','SAMPNO','CRavg_Corr']] #copy wanted columns to new DF return outputDF def saltCat(saltDir): """ Concatenates all corrected salt dataframes in the user-specified directory and writes dataframe to a master salt .csv/.pkl file in that directory Inputs: - saltDir (Directory), the directory containing the corrected dataframes for each file that is to be concatenated. Outputs: - a master salt .csv/.pkl file containing all a master dataframe saved to the input directory Usage: saltCat('/data/salt') """ fileName = 'master_salt_DF.csv' fileList = os.listdir(path=saltDir) #Creates list of files in the salt Directory exten = '_corr.csv' # type of file to be parsed out into dataframe extFiles = [] for i in range(len(fileList)-1): # Parse out files that have the wanted extension if fileList[i][-9:] == exten: extFiles.append(fileList[i]) masterDF = pd.DataFrame() for i in extFiles: #concatenate all Dataframes together catFrame =
pd.read_csv(i)
pandas.read_csv
import pytest import os from mapping import util from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np @pytest.fixture def price_files(): cdir = os.path.dirname(__file__) path = os.path.join(cdir, 'data/') files = ["CME-FVU2014.csv", "CME-FVZ2014.csv"] return [os.path.join(path, f) for f in files] def assert_dict_of_frames(dict1, dict2): assert dict1.keys() == dict2.keys() for key in dict1: assert_frame_equal(dict1[key], dict2[key]) def test_read_price_data(price_files): # using default name_func in read_price_data() df = util.read_price_data(price_files) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "CME-FVU2014"), (dt1, "CME-FVZ2014"), (dt2, "CME-FVZ2014")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def name_func(fstr): file_name = os.path.split(fstr)[-1] name = file_name.split('-')[1].split('.')[0] return name[-4:] + name[:3] df = util.read_price_data(price_files, name_func) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "2014FVU"), (dt1, "2014FVZ"), (dt2, "2014FVZ")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def test_calc_rets_one_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([0.1, 0.05, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([0.1, 0.075, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15], [0.075, 0.45], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_nans_in_second_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, np.NaN, 0.05, 0.1, np.NaN, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, np.NaN], [0.075, np.NaN], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_non_unique_columns(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL1']) with pytest.raises(ValueError): util.calc_rets(rets, weights) def test_calc_rets_two_generics_two_asts(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets1 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5')]) rets2 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.4], index=idx) rets = {"CL": rets1, "CO": rets2} vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights1 = pd.DataFrame(vals, index=widx, columns=["CL0", "CL1"]) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5') ]) weights2 = pd.DataFrame(vals, index=widx, columns=["CO0", "CO1"]) weights = {"CL": weights1, "CO": weights2} wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15, 0.1, 0.15], [0.075, 0.45, 0.075, 0.25], [-0.5, 0.2, pd.np.NaN, pd.np.NaN]], index=weights["CL"].index.levels[0], columns=['CL0', 'CL1', 'CO0', 'CO1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_instr_rets_key_error(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5')]) irets = pd.Series([0.02, 0.01, 0.012], index=idx) vals = [1, 1/2, 1/2, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(KeyError): util.calc_rets(irets, weights) def test_calc_rets_nan_instr_rets(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([pd.np.NaN, pd.np.NaN, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([pd.np.NaN, pd.np.NaN, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_weight(): # see https://github.com/matthewgilbert/mapping/issues/8 # missing weight for return idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) rets = pd.Series([0.02, -0.03, 0.06], index=idx) vals = [1, 1] widx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(ValueError): util.calc_rets(rets, weights) # extra instrument idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights1 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-02'), 'CLH5'), (TS('2015-01-03'), 'CLH5'), # extra day for no weight instrument (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLH5') ]) rets = pd.Series([0.02, -0.03, 0.06, 0.05, 0.01], index=idx) with pytest.raises(ValueError): util.calc_rets(rets, weights1) # leading / trailing returns idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights2 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([(TS('2015-01-01'), 'CLF5'), (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-05'), 'CLF5')]) rets = pd.Series([0.02, -0.03, 0.06, 0.05], index=idx) with pytest.raises(ValueError): util.calc_rets(rets, weights2) def test_to_notional_empty(): instrs = pd.Series() prices = pd.Series() multipliers = pd.Series() res_exp = pd.Series() res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_same_fx(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-30.20, 2 * 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_extra_prices(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2, 13.1], index=['CLZ6', 'COZ6', 'GCZ6', 'extra']) res_exp = pd.Series([-30.20, 2 * 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_missing_prices(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5], index=['CLZ6', 'COZ6']) res_exp = pd.Series([-30.20, 2 * 30.5, pd.np.NaN], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_different_fx(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) res_exp = pd.Series([-30.20, 2 * 30.5 / 1.32, 10.2 * 0.8], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates) assert_series_equal(res, res_exp) def test_to_notional_duplicates(): instrs = pd.Series([1, 1], index=['A', 'A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37, 200.37], index=['A', 'A']) mults = pd.Series([100], index=['A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100, 100], index=['A', 'A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) desired_ccy = "CAD" instr_fx = pd.Series(['USD', 'USD'], index=['A', 'A']) fx_rate = pd.Series([1.32], index=['USDCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy, instr_fx, fx_rate) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) desired_ccy = "CAD" instr_fx = pd.Series(['USD'], index=['A']) fx_rate = pd.Series([1.32, 1.32], index=['USDCAD', 'USDCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy, instr_fx, fx_rate) def test_to_notional_bad_fx(): instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) instr_fx = pd.Series(['JPY'], index=['A']) fx_rates = pd.Series([1.32], index=['GBPCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates) def test_to_contracts_rounder(): prices = pd.Series([30.20, 30.5], index=['CLZ6', 'COZ6']) multipliers = pd.Series([1, 1], index=['CLZ6', 'COZ6']) # 30.19 / 30.20 is slightly less than 1 so will round to 0 notional = pd.Series([30.19, 2 * 30.5], index=['CLZ6', 'COZ6']) res = util.to_contracts(notional, prices, multipliers, rounder=pd.np.floor) res_exp = pd.Series([0, 2], index=['CLZ6', 'COZ6']) assert_series_equal(res, res_exp) def test_to_contract_different_fx_with_multiplier(): notionals = pd.Series([-30.20, 2 * 30.5 / 1.32 * 10, 10.2 * 0.8 * 100], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) multipliers = pd.Series([1, 10, 100], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_contracts(notionals, prices, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates, multipliers=multipliers) assert_series_equal(res, res_exp) def test_to_contract_different_fx_with_multiplier_rounding(): # won't work out to integer number of contracts so this tests rounding notionals = pd.Series([-30.21, 2 * 30.5 / 1.32 * 10, 10.2 * 0.8 * 100], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) multipliers = pd.Series([1, 10, 100], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_contracts(notionals, prices, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates, multipliers=multipliers) assert_series_equal(res, res_exp) def test_trade_with_zero_amount(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, 0], index=[0, 1]) current_contracts = pd.Series([0, 1, 0], index=['CLX16', 'CLZ16', 'CLF17']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) + 0 * 0.5 / (50.41*100) - 1, # 0 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 19], index=['CLX16', 'CLZ16']) assert_series_equal(trades, exp_trades) def test_trade_all_zero_amount_return_empty(): wts = pd.DataFrame([1], index=["CLX16"], columns=[0]) desired_holdings = pd.Series([13], index=[0]) current_contracts = 0 prices = pd.Series([50.32], index=['CLX16']) multiplier = pd.Series([100], index=['CLX16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) exp_trades = pd.Series(dtype="int64") assert_series_equal(trades, exp_trades) def test_trade_one_asset(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, -50000], index=[0, 1]) current_contracts = pd.Series([0, 1, 0], index=['CLX16', 'CLZ16', 'CLF17']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 14, -5], index=['CLX16', 'CLZ16', 'CLF17']) exp_trades = exp_trades.sort_index() assert_series_equal(trades, exp_trades) def test_trade_multi_asset(): wts1 = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=["CL0", "CL1"]) wts2 = pd.DataFrame([1], index=["COX16"], columns=["CO0"]) wts = {"CL": wts1, "CO": wts2} desired_holdings = pd.Series([200000, -50000, 100000], index=["CL0", "CL1", "CO0"]) current_contracts = pd.Series([0, 1, 0, 5], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) prices = pd.Series([50.32, 50.41, 50.48, 49.50], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) multiplier = pd.Series([100, 100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, # 100000 * 1 / (49.50*100) - 5, exp_trades = pd.Series([20, 14, -5, 15], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) exp_trades = exp_trades.sort_index() assert_series_equal(trades, exp_trades) def test_trade_extra_desired_holdings_without_weights(): wts = pd.DataFrame([0], index=["CLX16"], columns=["CL0"]) desired_holdings = pd.Series([200000, 10000], index=["CL0", "CL1"]) current_contracts = pd.Series([0], index=['CLX16']) prices = pd.Series([50.32], index=['CLX16']) multipliers = pd.Series([1], index=['CLX16']) with pytest.raises(ValueError): util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers) def test_trade_extra_desired_holdings_without_current_contracts(): # this should treat the missing holdings as 0, since this would often # happen when adding new positions without any current holdings wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, -50000], index=[0, 1]) current_contracts = pd.Series([0, 1], index=['CLX16', 'CLZ16']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 14, -5], index=['CLX16', 'CLZ16', 'CLF17']) exp_trades = exp_trades.sort_index() # non existent contract holdings result in fill value being a float, # which casts to float64 assert_series_equal(trades, exp_trades, check_dtype=False) def test_trade_extra_weights(): # extra weights should be ignored wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000], index=[0]) current_contracts = pd.Series([0, 2], index=['CLX16', 'CLZ16']) prices = pd.Series([50.32, 50.41], index=['CLX16', 'CLZ16']) multiplier = pd.Series([100, 100], index=['CLX16', 'CLZ16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 2, exp_trades = pd.Series([20, 18], index=['CLX16', 'CLZ16']) assert_series_equal(trades, exp_trades) def test_get_multiplier_dataframe_weights(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) ast_mult = pd.Series([1000], index=["CL"]) imults = util.get_multiplier(wts, ast_mult) imults_exp = pd.Series([1000, 1000, 1000], index=["CLF17", "CLX16", "CLZ16"]) assert_series_equal(imults, imults_exp) def test_get_multiplier_dict_weights(): wts1 = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) wts2 = pd.DataFrame([0.5, 0.5], index=["COX16", "COZ16"], columns=[0]) wts = {"CL": wts1, "CO": wts2} ast_mult = pd.Series([1000, 1000], index=["CL", "CO"]) imults = util.get_multiplier(wts, ast_mult) imults_exp = pd.Series([1000, 1000, 1000, 1000, 1000], index=["CLF17", "CLX16", "CLZ16", "COX16", "COZ16"]) assert_series_equal(imults, imults_exp) def test_get_multiplier_dataframe_weights_multiplier_asts_error(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) ast_mult = pd.Series([1000, 1000], index=["CL", "CO"]) with pytest.raises(ValueError): util.get_multiplier(wts, ast_mult) def test_weighted_expiration_two_generics(): vals = [[1, 0, 1/2, 1/2, 0, 1, 0], [0, 1, 0, 1/2, 1/2, 0, 1]] idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF15'), (TS('2015-01-03'), 'CLG15'), (TS('2015-01-04'), 'CLF15'), (TS('2015-01-04'), 'CLG15'), (TS('2015-01-04'), 'CLH15'), (TS('2015-01-05'), 'CLG15'), (TS('2015-01-05'), 'CLH15')]) weights = pd.DataFrame({"CL1": vals[0], "CL2": vals[1]}, index=idx) contract_dates = pd.Series([TS('2015-01-20'), TS('2015-02-21'), TS('2015-03-20')], index=['CLF15', 'CLG15', 'CLH15']) wexp = util.weighted_expiration(weights, contract_dates) exp_wexp = pd.DataFrame([[17.0, 49.0], [32.0, 61.5], [47.0, 74.0]], index=[TS('2015-01-03'), TS('2015-01-04'), TS('2015-01-05')], columns=["CL1", "CL2"]) assert_frame_equal(wexp, exp_wexp) def test_flatten(): vals = [[1, 0], [0, 1], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5')]) weights = pd.DataFrame(vals, index=widx, columns=["CL1", "CL2"]) flat_wts = util.flatten(weights) flat_wts_exp = pd.DataFrame( {"date": [TS('2015-01-03')] * 4 + [TS('2015-01-04')] * 4, "contract": ['CLF5'] * 2 + ['CLG5'] * 4 + ['CLH5'] * 2, "generic": ["CL1", "CL2"] * 4, "weight": [1, 0, 0, 1, 1, 0, 0, 1]} ).loc[:, ["date", "contract", "generic", "weight"]] assert_frame_equal(flat_wts, flat_wts_exp) def test_flatten_dict(): vals = [[1, 0], [0, 1], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5')]) weights1 = pd.DataFrame(vals, index=widx, columns=["CL1", "CL2"]) widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5')]) weights2 = pd.DataFrame(1, index=widx, columns=["CO1"]) weights = {"CL": weights1, "CO": weights2} flat_wts = util.flatten(weights) flat_wts_exp = pd.DataFrame( {"date": ([TS('2015-01-03')] * 4 + [TS('2015-01-04')] * 4 + [TS('2015-01-03')]), "contract": (['CLF5'] * 2 + ['CLG5'] * 4 + ['CLH5'] * 2 + ["COF5"]), "generic": ["CL1", "CL2"] * 4 + ["CO1"], "weight": [1, 0, 0, 1, 1, 0, 0, 1, 1], "key": ["CL"] * 8 + ["CO"]} ).loc[:, ["date", "contract", "generic", "weight", "key"]] assert_frame_equal(flat_wts, flat_wts_exp) def test_flatten_bad_input(): dummy = 0 with pytest.raises(ValueError): util.flatten(dummy) def test_unflatten(): flat_wts = pd.DataFrame( {"date": [TS('2015-01-03')] * 4 + [TS('2015-01-04')] * 4, "contract": ['CLF5'] * 2 + ['CLG5'] * 4 + ['CLH5'] * 2, "generic": ["CL1", "CL2"] * 4, "weight": [1, 0, 0, 1, 1, 0, 0, 1]} ).loc[:, ["date", "contract", "generic", "weight"]] wts = util.unflatten(flat_wts) vals = [[1, 0], [0, 1], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5')], names=("date", "contract")) cols = pd.Index(["CL1", "CL2"], name="generic") wts_exp = pd.DataFrame(vals, index=widx, columns=cols) assert_frame_equal(wts, wts_exp) def test_unflatten_dict(): flat_wts = pd.DataFrame( {"date": ([TS('2015-01-03')] * 4 + [TS('2015-01-04')] * 4 + [TS('2015-01-03')]), "contract": (['CLF5'] * 2 + ['CLG5'] * 4 + ['CLH5'] * 2 + ["COF5"]), "generic": ["CL1", "CL2"] * 4 + ["CO1"], "weight": [1, 0, 0, 1, 1, 0, 0, 1, 1], "key": ["CL"] * 8 + ["CO"]} ).loc[:, ["date", "contract", "generic", "weight", "key"]] wts = util.unflatten(flat_wts) vals = [[1, 0], [0, 1], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5')], names=("date", "contract")) cols = pd.Index(["CL1", "CL2"], name="generic") weights1 = pd.DataFrame(vals, index=widx, columns=cols) widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5')], names=("date", "contract")) cols = pd.Index(["CO1"], name="generic") weights2 = pd.DataFrame(1, index=widx, columns=cols) wts_exp = {"CL": weights1, "CO": weights2} assert_dict_of_frames(wts, wts_exp) def test_reindex(): # related to https://github.com/matthewgilbert/mapping/issues/11 # no op idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-02'), 'CLH5'), (TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLH5')]) prices = pd.Series([103, 101, 102, 100], index=idx) widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLH5')]) new_prices = util.reindex(prices, widx, limit=0) exp_prices = prices assert_series_equal(exp_prices, new_prices) # missing front prices error idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5')]) prices = pd.Series([100], index=idx) widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5')]) with pytest.raises(ValueError): util.reindex(prices, widx, 0) # NaN returns introduced and filled idx = pd.MultiIndex.from_tuples([(TS('2015-01-01'), 'CLF5'), (TS('2015-01-02'), 'CLF5'), (TS('2015-01-02'), 'CLH5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLH5')]) prices = pd.Series([100, 101, 102, 103, 104], index=idx) widx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-02'), 'CLH5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLF5'), (TS('2015-01-05'), 'CLH5'), (TS('2015-01-06'), 'CLF5'), (TS('2015-01-06'), 'CLH5')]) new_prices = util.reindex(prices, widx, limit=1) idx = pd.MultiIndex.from_tuples([(TS('2015-01-01'), 'CLF5'), (TS('2015-01-01'), 'CLH5'), (TS('2015-01-02'), 'CLF5'), (TS('2015-01-02'), 'CLH5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLF5'), (TS('2015-01-05'), 'CLH5'), (TS('2015-01-06'), 'CLF5'), (TS('2015-01-06'), 'CLH5') ]) exp_prices = pd.Series([100, np.NaN, 101, 102, 103, 104, 103, 104, np.NaN, np.NaN], index=idx) assert_series_equal(exp_prices, new_prices) # standard subset idx = pd.MultiIndex.from_tuples([(TS('2015-01-01'), 'CLF5'), (TS('2015-01-01'), 'CHF5'), (TS('2015-01-02'), 'CLF5'), (TS('2015-01-02'), 'CLH5'), (TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLH5'), (
TS('2015-01-04')
pandas.Timestamp
# -*- coding: utf-8 -*- """ Pipeline-GUI for Analysis with MNE-Python @author: <NAME> @email: <EMAIL> @github: https://github.com/marsipu/mne_pipeline_hd License: BSD (3-clause) Written on top of MNE-Python Copyright © 2011-2020, authors of MNE-Python (https://doi.org/10.3389/fnins.2013.00267) inspired by <NAME>. (2018) (https://doi.org/10.3389/fnins.2018.00006) """ import inspect import os import shutil from ast import literal_eval from functools import partial from importlib import util from os import mkdir from os.path import isdir, isfile, join from pathlib import Path from types import FunctionType import pandas as pd from PyQt5.QtCore import QSize, Qt from PyQt5.QtGui import QFont from PyQt5.QtWidgets import (QButtonGroup, QComboBox, QDialog, QFileDialog, QFormLayout, QGroupBox, QHBoxLayout, QLabel, QLineEdit, QListView, QListWidget, QListWidgetItem, QMessageBox, QPushButton, QSizePolicy, QStyle, QTabWidget, QVBoxLayout, QGridLayout, QProgressBar, QCheckBox) from mne_pipeline_hd import QS from mne_pipeline_hd.gui import parameter_widgets from mne_pipeline_hd.gui.base_widgets import CheckDictList, CheckList, EditDict, EditList, SimpleDialog, SimpleList from mne_pipeline_hd.gui.gui_utils import CodeEditor, ErrorDialog, center, get_exception_tuple, set_ratio_geometry, \ get_std_icon, MainConsoleWidget from mne_pipeline_hd.gui.models import CustomFunctionModel, RunModel from mne_pipeline_hd.pipeline_functions.function_utils import QRunController class RunDialog(QDialog): def __init__(self, main_win): super().__init__(main_win) self.mw = main_win self.init_controller() self.init_ui() set_ratio_geometry(0.6, self) self.show() self.start() def init_controller(self): self.rc = QRunController(run_dialog=self, controller=self.mw.ct, pool=self.mw.mp_pool) def init_ui(self): layout = QVBoxLayout() view_layout = QGridLayout() view_layout.addWidget(QLabel('Objects: '), 0, 0) self.object_view = QListView() self.object_model = RunModel(self.rc.all_objects, mode='object') self.object_view.setModel(self.object_model) self.object_view.setSizePolicy(QSizePolicy.Preferred, QSizePolicy.Maximum) view_layout.addWidget(self.object_view, 1, 0) view_layout.addWidget(QLabel('Functions: '), 0, 1) self.func_view = QListView() self.func_model = RunModel(self.rc.current_all_funcs, mode='func') self.func_view.setModel(self.func_model) self.func_view.setSizePolicy(QSizePolicy.Preferred, QSizePolicy.Maximum) view_layout.addWidget(self.func_view, 1, 1) view_layout.addWidget(QLabel('Errors: '), 0, 2) self.error_widget = SimpleList(list()) self.error_widget.setSizePolicy(QSizePolicy.Preferred, QSizePolicy.Maximum) # Connect Signal from error_widget to function to enable inspecting the errors self.error_widget.currentChanged.connect(self.show_error) view_layout.addWidget(self.error_widget, 1, 2) layout.addLayout(view_layout) self.console_widget = MainConsoleWidget() layout.addWidget(self.console_widget) self.pgbar = QProgressBar() self.pgbar.setValue(0) self.pgbar.setMaximum(len(self.rc.all_steps)) layout.addWidget(self.pgbar) bt_layout = QHBoxLayout() self.continue_bt = QPushButton('Continue') self.continue_bt.setFont(QFont('AnyStyle', 14)) self.continue_bt.setIcon(get_std_icon('SP_MediaPlay')) self.continue_bt.clicked.connect(self.start) bt_layout.addWidget(self.continue_bt) self.pause_bt = QPushButton('Pause') self.pause_bt.setFont(QFont('AnyStyle', 14)) self.pause_bt.setIcon(get_std_icon('SP_MediaPause')) self.pause_bt.clicked.connect(self.pause_funcs) bt_layout.addWidget(self.pause_bt) self.restart_bt = QPushButton('Restart') self.restart_bt.setFont(QFont('AnyStyle', 14)) self.restart_bt.setIcon(get_std_icon('SP_BrowserReload')) self.restart_bt.clicked.connect(self.restart) bt_layout.addWidget(self.restart_bt) if QS().value('use_qthread'): self.reload_chbx = None else: self.reload_chbx = QCheckBox('Reload Modules') bt_layout.addWidget(self.reload_chbx) self.autoscroll_bt = QPushButton('Auto-Scroll') self.autoscroll_bt.setCheckable(True) self.autoscroll_bt.setChecked(True) self.autoscroll_bt.setIcon(get_std_icon('SP_DialogOkButton')) self.autoscroll_bt.clicked.connect(self.toggle_autoscroll) bt_layout.addWidget(self.autoscroll_bt) self.close_bt = QPushButton('Close') self.close_bt.setFont(QFont('AnyStyle', 14)) self.close_bt.setIcon(get_std_icon('SP_MediaStop')) self.close_bt.clicked.connect(self.close) bt_layout.addWidget(self.close_bt) layout.addLayout(bt_layout) self.setLayout(layout) def start(self): # Set paused to false self.rc.paused = False # Enable/Disable Buttons self.continue_bt.setEnabled(False) self.pause_bt.setEnabled(True) self.restart_bt.setEnabled(False) self.close_bt.setEnabled(False) self.rc.start() def pause_funcs(self): self.rc.paused = True self.console_widget.write_html('<br><b>Finishing last function...</b><br>') def restart(self): # Reinitialize controller self.init_controller() if self.reload_chbx and self.reload_chbx.isChecked(): self.mw.init_mp_pool() # Clear Console-Widget self.console_widget.clear() # Redo References to display-widgets self.object_model._data = self.rc.all_objects self.object_model.layoutChanged.emit() self.func_model._data = self.rc.current_all_funcs self.func_model.layoutChanged.emit() self.error_widget.replace_data(list(self.rc.errors.keys())) # Reset Progress-Bar self.pgbar.setValue(0) # Restart self.start() def toggle_autoscroll(self, state): if state: self.console_widget.set_autoscroll(True) else: self.console_widget.set_autoscroll(False) def show_error(self, current, _): self.console_widget.set_autoscroll(False) self.autoscroll_bt.setChecked(False) self.console_widget.scrollToAnchor(str(self.rc.errors[current][1])) def closeEvent(self, event): self.mw.pipeline_running = False event.accept() class EditGuiArgsDlg(QDialog): def __init__(self, cf_dialog): super().__init__(cf_dialog) self.cf = cf_dialog self.gui_args = dict() self.default_gui_args = dict() if self.cf.current_parameter: covered_params = ['data', 'param_name', 'param_alias', 'default', 'param_unit', 'description'] # Get possible default GUI-Args additional to those covered by the Main-GUI gui_type = self.cf.add_pd_params.loc[self.cf.current_parameter, 'gui_type'] if pd.notna(gui_type): gui_handle = getattr(parameter_widgets, gui_type) psig = inspect.signature(gui_handle).parameters self.default_gui_args = {p: psig[p].default for p in psig if p not in covered_params} # Get current GUI-Args loaded_gui_args = self.cf.add_pd_params.loc[self.cf.current_parameter, 'gui_args'] if pd.notna(loaded_gui_args): self.gui_args = literal_eval(loaded_gui_args) else: self.gui_args = dict() # Fill in all possible Options, which are not already changed for arg_key in [ak for ak in self.default_gui_args if ak not in self.gui_args]: self.gui_args[arg_key] = self.default_gui_args[arg_key] if len(self.gui_args) > 0: self.init_ui() self.open() def init_ui(self): layout = QVBoxLayout() layout.addWidget(EditDict(data=self.gui_args, ui_buttons=False)) close_bt = QPushButton('Close') close_bt.clicked.connect(self.close) layout.addWidget(close_bt) self.setLayout(layout) def closeEvent(self, event): # Remove all options which don't differ from the default for arg_key in [ak for ak in self.gui_args if self.gui_args[ak] == self.default_gui_args[ak]]: self.gui_args.pop(arg_key) if len(self.gui_args) > 0: self.cf.pguiargs_changed(self.gui_args) event.accept() class ChooseOptions(QDialog): def __init__(self, cf_dialog, gui_type, options): super().__init__(cf_dialog) self.cf = cf_dialog self.gui_type = gui_type self.options = options self.init_ui() # If open(), execution doesn't stop after the dialog self.exec() def init_ui(self): layout = QVBoxLayout() layout.addWidget(QLabel(f'For {self.gui_type}, you need to specify the options to choose from')) layout.addWidget(EditList(data=self.options)) close_bt = QPushButton('Close') close_bt.clicked.connect(self.close) layout.addWidget(close_bt) self.setLayout(layout) # ToDo: # Bug1: After saving a new function, the parameters stay in the table-view, # Bug2: When editing existing functions, the proprietary parameters can not be edited (they land in exising_params) # Bug3: When hitting Enter, the focus still lies on the AddFunc/EditFunc-Buttons which can disrupt setup class CustomFunctionImport(QDialog): def __init__(self, main_win): super().__init__(main_win) self.mw = main_win self.ct = main_win.ct self.file_path = None self.pkg_name = None self.current_function = None self.current_parameter = None self.oblig_func = ['target', 'tab', 'group', 'matplotlib', 'mayavi'] self.oblig_params = ['default', 'gui_type'] self.exst_functions = list(self.ct.pd_funcs.index) self.exst_parameters = ['mw', 'pr', 'meeg', 'fsmri', 'group'] self.exst_parameters += list(self.ct.settings.keys()) self.exst_parameters += list(QS().childKeys()) self.exst_parameters += list(self.ct.pr.parameters[self.ct.pr.p_preset].keys()) self.param_exst_dict = dict() self.code_editor = None self.code_dict = dict() # Get available parameter-guis self.available_param_guis = [pg for pg in dir(parameter_widgets) if 'Gui' in pg and pg != 'QtGui'] self.add_pd_funcs = pd.DataFrame(columns=['alias', 'target', 'tab', 'group', 'matplotlib', 'mayavi', 'dependencies', 'module', 'func_args', 'ready']) self.add_pd_params = pd.DataFrame(columns=['alias', 'group', 'default', 'unit', 'description', 'gui_type', 'gui_args', 'functions', 'ready']) self.yes_icon = get_std_icon('SP_DialogApplyButton') self.no_icon = get_std_icon('SP_DialogCancelButton') self.setWindowTitle('Custom-Functions-Setup') self.init_ui() self.open() def init_ui(self): layout = QVBoxLayout() # Import Button and Combobox add_bt_layout = QHBoxLayout() addfn_bt = QPushButton('Load Function/s') addfn_bt.setFont(QFont(QS().value('app_font'), 12)) addfn_bt.clicked.connect(self.get_functions) add_bt_layout.addWidget(addfn_bt) editfn_bt = QPushButton('Edit Function/s') editfn_bt.setFont(QFont(QS().value('app_font'), 12)) editfn_bt.clicked.connect(self.edit_functions) add_bt_layout.addWidget(editfn_bt) layout.addLayout(add_bt_layout) # Function-ComboBox func_cmbx_layout = QHBoxLayout() self.func_cmbx = QComboBox() self.func_cmbx.currentTextChanged.connect(self.func_item_selected) func_cmbx_layout.addWidget(self.func_cmbx) self.func_chkl = QLabel() self.func_chkl.setPixmap(self.no_icon.pixmap(16, 16)) self.func_chkl.setSizePolicy(QSizePolicy.Maximum, QSizePolicy.Maximum) func_cmbx_layout.addWidget(self.func_chkl) layout.addLayout(func_cmbx_layout) # Hint for obligatory items # There may be a better way to center the labels instead of with the space-labels obl_hint_layout = QHBoxLayout() space_label1 = QLabel('') obl_hint_layout.addWidget(space_label1) obl_hint_label1 = QLabel() obl_hint_label1.setPixmap(self.no_icon.pixmap(16, 16)) obl_hint_label1.setSizePolicy(QSizePolicy.Maximum, QSizePolicy.Maximum) obl_hint_layout.addWidget(obl_hint_label1) obl_hint_label2 = QLabel() obl_hint_label2.setPixmap(get_std_icon('SP_ArrowForward').pixmap(16, 16)) obl_hint_label2.setSizePolicy(QSizePolicy.Maximum, QSizePolicy.Maximum) obl_hint_layout.addWidget(obl_hint_label2) obl_hint_label3 = QLabel() obl_hint_label3.setPixmap(self.yes_icon.pixmap(16, 16)) obl_hint_label3.setSizePolicy(QSizePolicy.Maximum, QSizePolicy.Maximum) obl_hint_layout.addWidget(obl_hint_label3) obl_hint_label4 = QLabel('(= The items marked are obligatory)') obl_hint_label4.setSizePolicy(QSizePolicy.Maximum, QSizePolicy.Maximum) obl_hint_layout.addWidget(obl_hint_label4) space_label2 = QLabel('') obl_hint_layout.addWidget(space_label2) layout.addLayout(obl_hint_layout) setup_layout = QHBoxLayout() # The Function-Setup-Groupbox func_setup_gbox = QGroupBox('Function-Setup') func_setup_gbox.setAlignment(Qt.AlignHCenter) func_setup_formlayout = QFormLayout() self.falias_le = QLineEdit() self.falias_le.setToolTip('Set a name if you want something other than the functions-name') self.falias_le.textEdited.connect(self.falias_changed) func_setup_formlayout.addRow('Alias', self.falias_le) target_layout = QHBoxLayout() self.target_cmbx = QComboBox() self.target_cmbx.setToolTip('Set the target on which the function shall operate') self.target_cmbx.setEditable(False) self.target_cmbx.activated.connect(self.target_cmbx_changed) target_layout.addWidget(self.target_cmbx) self.target_chkl = QLabel() target_layout.addWidget(self.target_chkl) func_setup_formlayout.addRow('Target', target_layout) tab_layout = QHBoxLayout() self.tab_cmbx = QComboBox() self.tab_cmbx.setToolTip('Choose the Tab for the function (Compute/Plot/...)') self.tab_cmbx.setEditable(True) self.tab_cmbx.activated.connect(self.tab_cmbx_changed) self.tab_cmbx.editTextChanged.connect(self.tab_cmbx_edited) tab_layout.addWidget(self.tab_cmbx) self.tab_chkl = QLabel() tab_layout.addWidget(self.tab_chkl) func_setup_formlayout.addRow('Tab', tab_layout) group_layout = QHBoxLayout() self.group_cmbx = QComboBox() self.group_cmbx.setToolTip('Choose the function-group for the function or create a new one') self.group_cmbx.setEditable(True) self.group_cmbx.activated.connect(self.group_cmbx_changed) self.group_cmbx.editTextChanged.connect(self.group_cmbx_edited) group_layout.addWidget(self.group_cmbx) self.group_chkl = QLabel() group_layout.addWidget(self.group_chkl) func_setup_formlayout.addRow('Group', group_layout) mtpl_layout = QHBoxLayout() self.mtpl_bts = QButtonGroup(self) self.mtpl_yesbt = QPushButton('Yes') self.mtpl_yesbt.setCheckable(True) self.mtpl_nobt = QPushButton('No') self.mtpl_nobt.setCheckable(True) self.mtpl_void = QPushButton('') self.mtpl_void.setCheckable(True) self.mtpl_bts.addButton(self.mtpl_yesbt) self.mtpl_bts.addButton(self.mtpl_nobt) self.mtpl_bts.addButton(self.mtpl_void) mtpl_layout.addWidget(self.mtpl_yesbt) mtpl_layout.addWidget(self.mtpl_nobt) self.mtpl_yesbt.setToolTip('Choose, if the function contains an interactive Matplotlib-Plot') self.mtpl_nobt.setToolTip('Choose, if the function contains no interactive Matplotlib-Plot') self.mtpl_bts.buttonToggled.connect(self.mtpl_changed) self.mtpl_chkl = QLabel() mtpl_layout.addWidget(self.mtpl_chkl) func_setup_formlayout.addRow('Matplotlib?', mtpl_layout) myv_layout = QHBoxLayout() self.myv_bts = QButtonGroup(self) self.myv_yesbt = QPushButton('Yes') self.myv_yesbt.setCheckable(True) self.myv_nobt = QPushButton('No') self.myv_nobt.setCheckable(True) self.myv_void = QPushButton('') self.myv_void.setCheckable(True) self.myv_bts.addButton(self.myv_yesbt) self.myv_bts.addButton(self.myv_nobt) self.myv_bts.addButton(self.myv_void) myv_layout.addWidget(self.myv_yesbt) myv_layout.addWidget(self.myv_nobt) self.myv_yesbt.setToolTip('Choose, if the function contains a Pyvista/Mayavi-Plot') self.myv_nobt.setToolTip('Choose, if the function contains a Pyvista/Mayavi-Plot') self.myv_bts.buttonToggled.connect(self.myv_changed) self.myv_chkl = QLabel() myv_layout.addWidget(self.myv_chkl) func_setup_formlayout.addRow('Pyvista/Mayavi?', myv_layout) self.dpd_bt = QPushButton('Set Dependencies') self.dpd_bt.setToolTip('Set the functions that must be activated before or the files that must be present ' 'for this function to work') self.dpd_bt.clicked.connect(partial(SelectDependencies, self)) func_setup_formlayout.addRow('Dependencies', self.dpd_bt) func_setup_gbox.setLayout(func_setup_formlayout) setup_layout.addWidget(func_setup_gbox) # The Parameter-Setup-Group-Box self.param_setup_gbox = QGroupBox('Parameter-Setup') self.param_setup_gbox.setAlignment(Qt.AlignHCenter) param_setup_layout = QVBoxLayout() self.exstparam_l = QLabel() self.exstparam_l.setWordWrap(True) self.exstparam_l.hide() param_setup_layout.addWidget(self.exstparam_l) self.param_view = QListView() self.param_model = CustomFunctionModel(self.add_pd_params) self.param_view.setModel(self.param_model) self.param_view.selectionModel().currentChanged.connect(self.param_item_selected) param_setup_layout.addWidget(self.param_view) param_setup_formlayout = QFormLayout() self.palias_le = QLineEdit() self.palias_le.setToolTip('Set a name if you want something other than the parameters-name') self.palias_le.textEdited.connect(self.palias_changed) param_setup_formlayout.addRow('Alias', self.palias_le) default_layout = QHBoxLayout() self.default_le = QLineEdit() self.default_le.setToolTip('Set the default for the parameter (it has to fit the gui-type!)') self.default_le.textEdited.connect(self.pdefault_changed) default_layout.addWidget(self.default_le) self.default_chkl = QLabel() default_layout.addWidget(self.default_chkl) param_setup_formlayout.addRow('Default', default_layout) self.unit_le = QLineEdit() self.unit_le.setToolTip('Set the unit for the parameter (optional)') self.unit_le.textEdited.connect(self.punit_changed) param_setup_formlayout.addRow('Unit', self.unit_le) self.description_le = QLineEdit() self.description_le.setToolTip('Short description of the parameter (optional)') self.description_le.textEdited.connect(self.pdescription_changed) param_setup_formlayout.addRow('Description', self.description_le) guitype_layout = QHBoxLayout() self.guitype_cmbx = QComboBox() self.guitype_cmbx.setToolTip('Choose the GUI from the available GUIs') self.guitype_cmbx.activated.connect(self.guitype_cmbx_changed) guitype_layout.addWidget(self.guitype_cmbx) test_bt = QPushButton('Test') test_bt.clicked.connect(self.show_param_gui) guitype_layout.addWidget(test_bt) self.guitype_chkl = QLabel() guitype_layout.addWidget(self.guitype_chkl) param_setup_formlayout.addRow('GUI-Type', guitype_layout) self.guiargs_bt = QPushButton('Edit') self.guiargs_bt.clicked.connect(partial(EditGuiArgsDlg, self)) self.guiargs_bt.setToolTip('Set Arguments for the GUI in a dict (optional)') param_setup_formlayout.addRow('Additional Options', self.guiargs_bt) param_setup_layout.addLayout(param_setup_formlayout) self.param_setup_gbox.setLayout(param_setup_layout) setup_layout.addWidget(self.param_setup_gbox) layout.addLayout(setup_layout) bt_layout = QHBoxLayout() save_bt = QPushButton('Save') save_bt.setFont(QFont(QS().value('app_font'), 16)) save_bt.clicked.connect(self.save_pkg) bt_layout.addWidget(save_bt) src_bt = QPushButton('Show Code') src_bt.setFont(QFont(QS().value('app_font'), 16)) src_bt.clicked.connect(self.show_code) bt_layout.addWidget(src_bt) close_bt = QPushButton('Quit') close_bt.setFont(QFont(QS().value('app_font'), 16)) close_bt.clicked.connect(self.close) bt_layout.addWidget(close_bt) layout.addLayout(bt_layout) self.setLayout(layout) self.populate_target_cmbx() self.populate_tab_cmbx() self.populate_group_cmbx() self.populate_guitype_cmbx() def update_func_cmbx(self): self.func_cmbx.clear() self.func_cmbx.insertItems(0, self.add_pd_funcs.index) try: current_index = list(self.add_pd_funcs.index).index(self.current_function) except ValueError: current_index = 0 self.func_cmbx.setCurrentIndex(current_index) def clear_func_items(self): self.falias_le.clear() self.target_cmbx.setCurrentIndex(-1) self.target_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) self.tab_cmbx.setCurrentIndex(-1) self.tab_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) self.group_cmbx.setCurrentIndex(-1) self.group_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) self.mtpl_yesbt.setChecked(False) self.mtpl_nobt.setChecked(False) self.mtpl_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) self.myv_nobt.setChecked(False) self.myv_nobt.setChecked(False) self.myv_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) def clear_param_items(self): self.update_param_view() self.palias_le.clear() self.default_le.clear() self.default_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) self.unit_le.clear() self.guitype_cmbx.setCurrentIndex(-1) self.guitype_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) self.param_setup_gbox.setEnabled(False) def func_item_selected(self, text): if text: self.current_function = text self.update_code_editor() self.update_func_setup() if any([self.current_function in str(x) for x in self.add_pd_params['functions']]): self.param_setup_gbox.setEnabled(True) self.update_param_view() self.current_parameter = \ self.add_pd_params.loc[ [self.current_function in str(x) for x in self.add_pd_params['functions']]].index[0] self.update_exst_param_label() self.update_param_setup() else: self.update_exst_param_label() # Clear existing entries self.clear_param_items() def param_item_selected(self, current): self.current_parameter = self.param_model.getData(current) self.update_param_setup() self.update_code_editor() def update_func_setup(self): if pd.notna(self.add_pd_funcs.loc[self.current_function, 'alias']): self.falias_le.setText(self.add_pd_funcs.loc[self.current_function, 'alias']) else: self.falias_le.clear() if pd.notna(self.add_pd_funcs.loc[self.current_function, 'target']): self.target_cmbx.setCurrentText(self.add_pd_funcs.loc[self.current_function, 'target']) self.target_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) else: self.target_cmbx.setCurrentIndex(-1) self.target_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) if pd.notna(self.add_pd_funcs.loc[self.current_function, 'tab']): self.tab_cmbx.setCurrentText(self.add_pd_funcs.loc[self.current_function, 'tab']) self.tab_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) else: self.tab_cmbx.setCurrentIndex(-1) self.tab_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) if pd.notna(self.add_pd_funcs.loc[self.current_function, 'group']): self.group_cmbx.setCurrentText(self.add_pd_funcs.loc[self.current_function, 'group']) self.group_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) else: self.group_cmbx.setCurrentIndex(-1) self.group_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) if pd.notna(self.add_pd_funcs.loc[self.current_function, 'matplotlib']): if self.add_pd_funcs.loc[self.current_function, 'matplotlib']: self.mtpl_yesbt.setChecked(True) else: self.mtpl_nobt.setChecked(True) self.mtpl_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) else: self.mtpl_void.setChecked(True) self.mtpl_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) if pd.notna(self.add_pd_funcs.loc[self.current_function, 'mayavi']): if self.add_pd_funcs.loc[self.current_function, 'mayavi']: self.myv_yesbt.setChecked(True) else: self.myv_nobt.setChecked(True) self.myv_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) else: self.myv_void.setChecked(True) self.myv_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) def update_exst_param_label(self): if self.current_function: if len(self.param_exst_dict[self.current_function]) > 0: self.exstparam_l.setText(f'Already existing Parameters: {self.param_exst_dict[self.current_function]}') self.exstparam_l.show() else: self.exstparam_l.hide() def update_param_setup(self): if pd.notna(self.add_pd_params.loc[self.current_parameter, 'alias']): self.palias_le.setText(self.add_pd_params.loc[self.current_parameter, 'alias']) else: self.palias_le.clear() if pd.notna(self.add_pd_params.loc[self.current_parameter, 'default']): self.default_le.setText(self.add_pd_params.loc[self.current_parameter, 'default']) self.default_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) else: self.default_le.clear() self.default_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) if pd.notna(self.add_pd_params.loc[self.current_parameter, 'unit']): self.unit_le.setText(self.add_pd_params.loc[self.current_parameter, 'unit']) else: self.unit_le.clear() if pd.notna(self.add_pd_params.loc[self.current_parameter, 'description']): self.description_le.setText(self.add_pd_params.loc[self.current_parameter, 'description']) else: self.description_le.clear() if pd.notna(self.add_pd_params.loc[self.current_parameter, 'gui_type']): self.guitype_cmbx.setCurrentText(self.add_pd_params.loc[self.current_parameter, 'gui_type']) self.guitype_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) else: self.guitype_cmbx.setCurrentIndex(-1) self.guitype_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) def check_func_setup(self): # Check, that all obligatory items of the Subject-Setup and the Parameter-Setup are set if all([pd.notna(self.add_pd_funcs.loc[self.current_function, i]) for i in self.oblig_func]): function_params = self.add_pd_params.loc[ [self.current_function in str(x) for x in self.add_pd_params['functions']]] if pd.notna(self.add_pd_params.loc[function_params.index, self.oblig_params]).all().all(): self.func_chkl.setPixmap(self.yes_icon.pixmap(16, 16)) self.add_pd_funcs.loc[self.current_function, 'ready'] = 1 else: self.func_chkl.setPixmap(self.no_icon.pixmap(16, 16)) self.add_pd_funcs.loc[self.current_function, 'ready'] = 0 def update_param_view(self): # Update Param-Model with new pd_params of current_function current_pd_params = self.add_pd_params.loc[ [self.current_function in str(x) for x in self.add_pd_params['functions']] ] self.param_model.updateData(current_pd_params) def check_param_setup(self): # Check, that all obligatory items of the Parameter-Setup are set if all([pd.notna(self.add_pd_params.loc[self.current_parameter, i]) for i in self.oblig_params]): self.add_pd_params.loc[self.current_parameter, 'ready'] = 1 else: self.add_pd_params.loc[self.current_parameter, 'ready'] = 0 self.update_param_view() # Line-Edit Change-Signals def falias_changed(self, text): if self.current_function: self.add_pd_funcs.loc[self.current_function, 'alias'] = text def mtpl_changed(self, current_button, state): if self.current_function: if state and current_button == self.mtpl_yesbt: self.add_pd_funcs.loc[self.current_function, 'matplotlib'] = True elif state and current_button == self.mtpl_nobt: self.add_pd_funcs.loc[self.current_function, 'matplotlib'] = False if current_button != self.mtpl_void: self.mtpl_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) self.check_func_setup() def myv_changed(self, current_button, state): if self.current_function: if state and current_button == self.myv_yesbt: self.add_pd_funcs.loc[self.current_function, 'mayavi'] = True elif state and current_button == self.myv_nobt: self.add_pd_funcs.loc[self.current_function, 'mayavi'] = False if current_button != self.myv_void: self.myv_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) self.check_func_setup() def palias_changed(self, text): if self.current_parameter: self.add_pd_params.loc[self.current_parameter, 'alias'] = text def pdefault_changed(self, text): if self.current_parameter: self.add_pd_params.loc[self.current_parameter, 'default'] = text self.default_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) self.check_param_setup() self.check_func_setup() def punit_changed(self, text): if self.current_parameter: self.add_pd_params.loc[self.current_parameter, 'unit'] = text def pdescription_changed(self, text): if self.current_parameter: self.add_pd_params.loc[self.current_parameter, 'description'] = text def populate_target_cmbx(self): self.target_cmbx.insertItems(0, ['MEEG', 'FSMRI', 'Group', 'Other']) def populate_tab_cmbx(self): self.tab_cmbx.clear() self.tab_cmbx.insertItems(0, set(self.ct.pd_funcs['tab']) | set(self.add_pd_funcs.loc[pd.notna(self.add_pd_funcs['tab']), 'tab'])) def populate_group_cmbx(self): self.group_cmbx.clear() self.group_cmbx.insertItems(0, set(self.ct.pd_funcs['group']) | set(self.add_pd_funcs.loc[pd.notna(self.add_pd_funcs['group']), 'group'])) def populate_guitype_cmbx(self): self.guitype_cmbx.insertItems(0, self.available_param_guis) def target_cmbx_changed(self, idx): if self.current_function: self.add_pd_funcs.loc[self.current_function, 'target'] = self.target_cmbx.itemText(idx) self.target_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) self.check_func_setup() def tab_cmbx_changed(self, idx): # Insert changes from other functions if edited self.populate_tab_cmbx() self.tab_cmbx.setCurrentIndex(idx) if self.current_function: self.add_pd_funcs.loc[self.current_function, 'tab'] = self.tab_cmbx.itemText(idx) self.tab_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) self.check_func_setup() def tab_cmbx_edited(self, text): if self.current_function and text != '': self.add_pd_funcs.loc[self.current_function, 'tab'] = text self.tab_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) self.check_func_setup() def group_cmbx_changed(self, idx): # Insert changes from other functions if edited self.populate_group_cmbx() self.group_cmbx.setCurrentIndex(idx) group_name = self.group_cmbx.itemText(idx) if self.current_function: self.add_pd_funcs.loc[self.current_function, 'group'] = group_name for param in self.add_pd_params.index: self.add_pd_params.loc[param, 'group'] = group_name self.group_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) self.check_func_setup() def group_cmbx_edited(self, text): if self.current_function and text != '': self.add_pd_funcs.loc[self.current_function, 'group'] = text for param in self.add_pd_params.index: self.add_pd_params.loc[param, 'group'] = text self.group_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) self.check_func_setup() def guitype_cmbx_changed(self, idx): text = self.guitype_cmbx.itemText(idx) gui_args = dict() options = list() if self.current_parameter: # If ComboGui or CheckListGui, options have to be set: if text in ['ComboGui', 'CheckListGui']: # Check if options already in gui_args loaded_gui_args = self.add_pd_params.loc[self.current_parameter, 'gui_args'] if pd.notna(loaded_gui_args): gui_args = literal_eval(loaded_gui_args) if 'options' in gui_args: options = gui_args['options'] ChooseOptions(self, text, options) # Save the gui_args in add_pd_params gui_args['options'] = options self.add_pd_params.loc[self.current_parameter, 'gui_args'] = str(gui_args) # Check, if default_value and gui_type match if pd.notna(self.add_pd_params.loc[self.current_parameter, 'default']): result, _ = self.test_param_gui( default_string=self.add_pd_params.loc[self.current_parameter, 'default'], gui_type=text, gui_args=gui_args) else: result = None if not result: self.add_pd_params.loc[self.current_parameter, 'gui_type'] = text self.guitype_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) self.check_param_setup() self.check_func_setup() else: self.guitype_cmbx.setCurrentIndex(-1) self.add_pd_params.loc[self.current_parameter, 'gui_type'] = None self.check_param_setup() self.check_func_setup() def pguiargs_changed(self, gui_args): if self.current_parameter: # Check, if default_value and gui_type match if pd.notna(self.add_pd_params.loc[self.current_parameter, ['default', 'gui_type']]).all(): result, _ = self.test_param_gui( default_string=self.add_pd_params.loc[self.current_parameter, 'default'], gui_type=self.add_pd_params.loc[self.current_parameter, 'gui_type'], gui_args=gui_args) else: result = None if not result: self.add_pd_params.loc[self.current_parameter, 'gui_args'] = str(gui_args) else: self.add_pd_params.loc[self.current_parameter, 'gui_args'] = None def get_functions(self): # Clear Function- and Parameter-DataFrame self.add_pd_funcs.drop(index=self.add_pd_funcs.index, inplace=True) self.add_pd_params.drop(index=self.add_pd_funcs.index, inplace=True) self.clear_func_items() self.clear_param_items() # Returns tuple of files-list and file-type cf_path_string = QFileDialog.getOpenFileName(self, 'Choose the Python-File containing your function to import', filter='Python-File (*.py)')[0] if cf_path_string: self.file_path = Path(cf_path_string) ImportFuncs(self) def edit_functions(self): # Clear Function- and Parameter-DataFrame self.add_pd_funcs.drop(index=self.add_pd_funcs.index, inplace=True) self.add_pd_params.drop(index=self.add_pd_funcs.index, inplace=True) self.clear_func_items() self.clear_param_items() # Returns tuple of files-list and file-type cf_path_string = QFileDialog.getOpenFileName(self, 'Choose the Python-File containing the functions to edit', filter='Python-File (*.py)', directory=self.ct.custom_pkg_path)[0] if cf_path_string: self.file_path = Path(cf_path_string) ImportFuncs(self, edit_existing=True) def test_param_gui(self, default_string, gui_type, gui_args=None): # Test ParamGui with Value if gui_args is None: gui_args = {} test_parameters = dict() try: test_parameters[self.current_parameter] = literal_eval(default_string) except (ValueError, SyntaxError): # Allow parameters to be defined by functions by numpy, etc. if self.add_pd_params.loc[self.current_parameter, 'gui_type'] == 'FuncGui': test_parameters[self.current_parameter] = eval(default_string) else: test_parameters[self.current_parameter] = default_string if pd.notna(self.add_pd_params.loc[self.current_parameter, 'alias']): param_alias = self.add_pd_params.loc[self.current_parameter, 'alias'] else: param_alias = self.current_parameter if pd.notna(self.add_pd_params.loc[self.current_parameter, 'description']): description = self.add_pd_params.loc[self.current_parameter, 'description'] else: description = None if pd.notna(self.add_pd_params.loc[self.current_parameter, 'unit']): param_unit = self.add_pd_params.loc[self.current_parameter, 'unit'] else: param_unit = None gui_handle = getattr(parameter_widgets, gui_type) handle_params = inspect.signature(gui_handle).parameters try: if 'param_unit' in handle_params: gui = gui_handle(data=test_parameters, param_name=self.current_parameter, param_alias=param_alias, description=description, param_unit=param_unit, **gui_args) else: gui = gui_handle(data=test_parameters, param_name=self.current_parameter, param_alias=param_alias, description=description, **gui_args) except Exception as e: gui = None result = e QMessageBox.warning(self, 'Error in ParamGui', f'The execution of {gui_type} with {default_string} as default ' f'and {gui_args} as additional parameters raises the following error:\n' f'{result}') else: result = None return result, gui def show_param_gui(self): if self.current_parameter and pd.notna(self.add_pd_params.loc[self.current_parameter, 'gui_type']): TestParamGui(self) def update_code_editor(self): if self.code_editor: self.code_editor.clear() self.code_editor.insertPlainText(self.code_dict[self.current_function]) def show_code(self): self.code_editor = CodeEditor(self) self.code_editor.setReadOnly(True) self.update_code_editor() code_dialog = SimpleDialog(self.code_editor, parent=self, modal=False, window_title='Source-Code') set_ratio_geometry(0.5, code_dialog) center(code_dialog) def save_pkg(self): if any(self.add_pd_funcs['ready'] == 1): SavePkgDialog(self) def closeEvent(self, event): drop_funcs = [f for f in self.add_pd_funcs.index if not self.add_pd_funcs.loc[f, 'ready']] if len(drop_funcs) > 0: answer = QMessageBox.question(self, 'Close Custom-Functions?', f'There are still unfinished functions:\n' f'{drop_funcs}\n' f'Do you still want to quit?') else: answer = None if answer == QMessageBox.Yes or answer is None: event.accept() else: event.ignore() class ImportFuncs(QDialog): def __init__(self, cf_dialog, edit_existing=False): super().__init__(cf_dialog) self.cf = cf_dialog self.edit_existing = edit_existing self.module = None self.loaded_cfs = [] self.edit_loaded_cfs = [] self.selected_cfs = [] self.selected_edit_cfs = [] self.already_existing_funcs = [] self.load_function_list() self.init_ui() self.open() def load_function_list(self): # Load .csv-Files if try: if self.edit_existing: self.cf.pkg_name = self.cf.file_path.parent.name pd_funcs_path = join(self.cf.file_path.parent, f'{self.cf.pkg_name}_functions.csv') pd_params_path = join(self.cf.file_path.parent, f'{self.cf.pkg_name}_parameters.csv') self.cf.add_pd_funcs = pd.read_csv(pd_funcs_path, sep=';', index_col=0) self.cf.add_pd_params = pd.read_csv(pd_params_path, sep=';', index_col=0) # Can be removed soon, when nobody uses old packages anymore (10.11.2020) if 'target' not in self.cf.add_pd_funcs.columns: self.cf.add_pd_funcs['target'] = None else: self.cf.pkg_name = None spec = util.spec_from_file_location(self.cf.file_path.stem, self.cf.file_path) self.module = util.module_from_spec(spec) spec.loader.exec_module(self.module) except: err = get_exception_tuple() ErrorDialog(err, self) else: for func_key in self.module.__dict__: func = self.module.__dict__[func_key] # Only functions are allowed (Classes should be called from function) if type(func) == FunctionType and func.__module__ == self.module.__name__: # Check, if function is already existing if func_key in self.cf.exst_functions: if self.edit_existing and func_key in self.cf.add_pd_funcs.index: self.edit_loaded_cfs.append(func_key) else: self.already_existing_funcs.append(func_key) else: self.loaded_cfs.append(func_key) def init_ui(self): layout = QVBoxLayout() if len(self.already_existing_funcs) > 0: exst_label = QLabel(f'These functions already exist: {self.already_existing_funcs}') exst_label.setWordWrap(True) layout.addWidget(exst_label) view_layout = QHBoxLayout() load_list = CheckList(self.loaded_cfs, self.selected_cfs, ui_button_pos='bottom', title='New functions') view_layout.addWidget(load_list) if len(self.edit_loaded_cfs) > 0: edit_list = CheckList(self.edit_loaded_cfs, self.selected_edit_cfs, ui_button_pos='bottom', title='Functions to edit') view_layout.addWidget(edit_list) layout.addLayout(view_layout) close_bt = QPushButton('Close') close_bt.clicked.connect(self.close) layout.addWidget(close_bt) self.setWindowTitle('Choose Functions') self.setLayout(layout) def load_selected_functions(self): selected_funcs = [cf for cf in self.loaded_cfs if cf in self.selected_cfs] + \ [cf for cf in self.edit_loaded_cfs if cf in self.selected_edit_cfs] if self.edit_existing: # Drop Functions which are not selected self.cf.add_pd_funcs.drop(index=[f for f in self.cf.add_pd_funcs.index if f not in selected_funcs], inplace=True) for func_key in selected_funcs: func = self.module.__dict__[func_key] self.cf.add_pd_funcs.loc[func_key, 'module'] = self.module.__name__ self.cf.add_pd_funcs.loc[func_key, 'ready'] = 0 self.cf.code_dict[func_key] = inspect.getsource(func) # Get Parameters and divide them in existing and setup all_parameters = list(inspect.signature(func).parameters) self.cf.add_pd_funcs.loc[func_key, 'func_args'] = ','.join(all_parameters) existing_parameters = [] for param_key in all_parameters: if param_key in self.cf.exst_parameters: existing_parameters.append(param_key) else: # Check if ready (possible when editing functions) self.cf.add_pd_params.loc[param_key, 'ready'] = 0 if pd.notna(self.cf.add_pd_params.loc[param_key, self.cf.oblig_params]).all(): self.cf.add_pd_params.loc[param_key, 'ready'] = 1 # functions (which are using param) is a continuous string # (because pandas can't store a list as item) if param_key in self.cf.add_pd_params.index: if 'functions' in self.cf.add_pd_params.columns: if pd.notna(self.cf.add_pd_params.loc[param_key, 'functions']): self.cf.add_pd_params.loc[param_key, 'functions'] += func_key else: self.cf.add_pd_params.loc[param_key, 'functions'] = func_key else: self.cf.add_pd_params.loc[param_key, 'functions'] = func_key else: self.cf.add_pd_params.loc[param_key, 'functions'] = func_key self.cf.param_exst_dict[func_key] = existing_parameters # Check, if mandatory columns exist if 'ready' not in self.cf.add_pd_params.columns: self.cf.add_pd_params['ready'] = 0 if 'functions' not in self.cf.add_pd_params.columns: self.cf.add_pd_params['functions'] = '' def closeEvent(self, event): self.load_selected_functions() self.cf.update_func_cmbx() self.cf.update_exst_param_label() if self.cf.code_editor: self.cf.code_editor.update_code() event.accept() class SelectDependencies(QDialog): def __init__(self, cf_dialog): super().__init__(cf_dialog) self.cf_dialog = cf_dialog if pd.notna(cf_dialog.add_pd_funcs.loc[cf_dialog.current_function, 'dependencies']): self.dpd_list = literal_eval(cf_dialog.add_pd_funcs.loc[cf_dialog.current_function, 'dependencies']) else: self.dpd_list = [] layout = QVBoxLayout() self.listw = QListWidget() self.listw.itemChanged.connect(self.item_checked) layout.addWidget(self.listw) ok_bt = QPushButton('OK') ok_bt.clicked.connect(self.close_dlg) layout.addWidget(ok_bt) self.populate_listw() self.setLayout(layout) self.open() def populate_listw(self): for function in self.cf_dialog.ct.pd_funcs.index: item = QListWidgetItem(function) item.setFlags(item.flags() | Qt.ItemIsUserCheckable) if function in self.dpd_list: item.setCheckState(Qt.Checked) else: item.setCheckState(Qt.Unchecked) self.listw.addItem(item) def item_checked(self, item): if item.checkState == Qt.Checked: self.dpd_list.append(item.text()) elif item.text() in self.dpd_list: self.dpd_list.remove(item.text()) def close_dlg(self): self.cf_dialog.add_pd_funcs.loc[self.cf_dialog.current_function, 'dependencies'] = str(self.dpd_list) self.close() class TestParamGui(QDialog): def __init__(self, cf_dialog): super().__init__(cf_dialog) self.cf = cf_dialog # Dict as Replacement for Parameters in Project for Testing self.test_parameters = dict() default_string = self.cf.add_pd_params.loc[self.cf.current_parameter, 'default'] gui_type = self.cf.add_pd_params.loc[self.cf.current_parameter, 'gui_type'] try: gui_args = literal_eval(self.cf.add_pd_params.loc[self.cf.current_parameter, 'gui_args']) except (SyntaxError, ValueError): gui_args = {} self.result, self.gui = self.cf.test_param_gui(default_string, gui_type, gui_args) if not self.result: self.init_ui() self.open() def init_ui(self): layout = QVBoxLayout() # Allow Enter-Press without closing the dialog if self.cf.add_pd_params.loc[self.cf.current_parameter, 'gui_type'] == 'FuncGui': void_bt = QPushButton() void_bt.setDefault(True) layout.addWidget(void_bt) layout.addWidget(self.gui) close_bt = QPushButton('Close') close_bt.clicked.connect(self.close) layout.addWidget(close_bt) self.setLayout(layout) class SavePkgDialog(QDialog): def __init__(self, cf_dialog): super().__init__(cf_dialog) self.cf_dialog = cf_dialog self.my_pkg_name = None self.pkg_path = None self.init_ui() self.open() def init_ui(self): layout = QVBoxLayout() self.func_list = SimpleList(list(self.cf_dialog.add_pd_funcs.loc[self.cf_dialog.add_pd_funcs['ready'] == 1].index)) layout.addWidget(self.func_list) pkg_name_label = QLabel('Package-Name:') layout.addWidget(pkg_name_label) self.pkg_le = QLineEdit() if self.cf_dialog.pkg_name: self.pkg_le.setText(self.cf_dialog.pkg_name) self.pkg_le.textEdited.connect(self.pkg_le_changed) layout.addWidget(self.pkg_le) save_bt = QPushButton('Save') save_bt.clicked.connect(self.save_pkg) layout.addWidget(save_bt) cancel_bt = QPushButton('Cancel') cancel_bt.clicked.connect(self.close) layout.addWidget(cancel_bt) self.setLayout(layout) def pkg_le_changed(self, text): if text != '': self.my_pkg_name = text def save_pkg(self): if self.my_pkg_name or self.cf_dialog.pkg_name: # Drop all functions with unfinished setup and add the remaining to the main_window-DataFrame drop_funcs = self.cf_dialog.add_pd_funcs.loc[self.cf_dialog.add_pd_funcs['ready'] == 0].index final_add_pd_funcs = self.cf_dialog.add_pd_funcs.drop(index=drop_funcs) drop_params = list() for param in self.cf_dialog.add_pd_params.index: if not any([f in str(self.cf_dialog.add_pd_params.loc[param, 'functions']) for f in final_add_pd_funcs.index]): drop_params.append(param) final_add_pd_params = self.cf_dialog.add_pd_params.drop(index=drop_params) # Remove no longer needed columns del final_add_pd_funcs['ready'] del final_add_pd_params['ready'] del final_add_pd_params['functions'] # Todo: Make this more failproof (loading and saving already existing packages) # This is only not None, when the function was imported by edit-functions if self.cf_dialog.pkg_name: # Update and overwrite existing settings for funcs and params self.pkg_path = join(self.cf_dialog.ct.custom_pkg_path, self.cf_dialog.pkg_name) pd_funcs_path = join(self.pkg_path, f'{self.cf_dialog.pkg_name}_functions.csv') pd_params_path = join(self.pkg_path, f'{self.cf_dialog.pkg_name}_parameters.csv') if isfile(pd_funcs_path): read_pd_funcs =
pd.read_csv(pd_funcs_path, sep=';', index_col=0)
pandas.read_csv
from .context import lux import pytest import pandas as pd import numpy as np from lux.utils import date_utils from lux.executor.PandasExecutor import PandasExecutor def test_dateformatter(): ldf = pd.read_csv("lux/data/car.csv") ldf["Year"] = pd.to_datetime(ldf["Year"], format='%Y') # change pandas dtype for the column "Year" to datetype timestamp = np.datetime64('2019-08-26') ldf.maintain_metadata() assert(date_utils.date_formatter(timestamp,ldf) == '2019') ldf["Year"][0] = np.datetime64('1970-03-01') # make month non unique assert (date_utils.date_formatter(timestamp, ldf) == '2019-8') ldf["Year"][0] = np.datetime64('1970-03-03') # make day non unique assert (date_utils.date_formatter(timestamp, ldf) == '2019-8-26') def test_period_selection(): ldf = pd.read_csv("lux/data/car.csv") ldf["Year"] = pd.to_datetime(ldf["Year"], format='%Y') ldf["Year"] = pd.DatetimeIndex(ldf["Year"]).to_period(freq='A') ldf.set_intent([lux.Clause(attribute = ["Horsepower", "Weight", "Acceleration"]), lux.Clause(attribute ="Year")]) PandasExecutor.execute(ldf.current_vis, ldf) assert all([type(vlist.data) == lux.core.frame.LuxDataFrame for vlist in ldf.current_vis]) assert all(ldf.current_vis[2].data.columns == ["Year", 'Acceleration']) def test_period_filter(): ldf = pd.read_csv("lux/data/car.csv") ldf["Year"] = pd.to_datetime(ldf["Year"], format='%Y') ldf["Year"] =
pd.DatetimeIndex(ldf["Year"])
pandas.DatetimeIndex
#!/usr/bin/env python3 from shapely.geometry import box import datetime import numpy as np import pandas as pd import geopandas as gpd import argparse from datetime import datetime from make_boxes_from_bounds import find_hucs_of_bounding_boxes import requests from concurrent.futures import ThreadPoolExecutor,as_completed import os from tqdm import tqdm from foss_fim.tools.inundation import read_nwm_forecast_file def cygnss_preprocessing(bounding_boxes_file,wbd=None,projection_of_boxes='EPSG:4329',wbd_layer='WBDHU8',forecast_output_file=None,retrieve=True,workers=6,download_directory=None, daily_mean_forecast_files=None): _, bounding_boxes = find_hucs_of_bounding_boxes(bounding_boxes_file,wbd=wbd,projection_of_boxes=projection_of_boxes,wbd_layer=wbd_layer) # load bounding box file bounding_boxes['event_date'] = pd.to_datetime(bounding_boxes['event_date'],utc=True) bounding_boxes.reset_index(drop=True,inplace=True) wbdcol_name = 'HUC'+wbd_layer[-1] # expand dates datetime_indices = bounding_boxes.apply(lambda df:pd.date_range(df['event_date'],periods=24,closed=None,freq='H',tz='UTC'),axis=1) datetime_indices.name = 'date_time' datetime_indices=pd.DataFrame(datetime_indices) datetime_indices = datetime_indices.join(bounding_boxes[['Name',wbdcol_name]]) # append columns to expanded dates forecast_df =
pd.DataFrame()
pandas.DataFrame
""" Functions to facilitate maintenance of apero sheet. Primarly designed for automated updates with update_sheet.py, but also useful for interactive editing. @author: vandalt """ import glob import os import re import numpy as np import pandas as pd import tqdm from astropy.io import fits from astropy.io.votable.tree import Table import utils as ut # ============================================================================= # Constants # ============================================================================= # Pattern to search for raw files on disk RAW_PATTERN = "/spirou/cfht_nights/common/raw/20*/*o.fits" # Local file that stores info about previously parsed raw files LOCAL_FILE = "object_info.csv" # Directory with dfits outputs allowing to include objects from other databases DFITS_DIR = "dfits_outputs" OBJ_INFO_KEYS = [ "OBJECT", "OBJRV", "OBJTEMP", "MJDEND", "RA_DEG", "DEC_DEG", ] SHEET_ID = "1jwlux8AJjBMMVrbg6LszJIpFJrk6alhbT5HA7BiAHD8" BAD_NAMES = [ "sky.*_.*", ".*_sky.*", "sky", "SKY", "FakeTarget", "Test.*", ".*Test", "Engineering", "Calibration", "Nowhere" ] # Known rejected names REJ_NAMES = [ "Moon.*", "Neptune.*", "Saturn.*", "Venus.*", "17BE93-FT-1", ] def get_object_info( fpattern, local_file=None, dfits_dir=None, keys=None, verbose=False ): """ Fetch object information in headers of raw data from CFHT. If a local file is found, files already read will be removed for speed. Local txt files with dfits outputs can also be used to add objects from external sources Args: fpattern (str): Glob-compatible pattern for raw files local_file (str): Local file with observations already fetched. (if this code has been run in the past) dfits_dir (str): directory with dfits output as txt files. keys (list): Header keys to extract. Defaults to [OBJECT, OBJRV, OBJTEMP, MJDEND, RA_DEG, DEC_DEG]. verbose (bool): Additional information printed if True. """ if keys is None: keys = OBJ_INFO_KEYS if local_file is not None: if os.path.isfile(local_file): df_loc = pd.read_csv(local_file) loc_files = df_loc.FILE.tolist() else: if verbose: print("No local file named {}".format(local_file)) loc_files = [] else: loc_files = [] if dfits_dir is not None: dfits_frames = [] for dfile in glob.glob(os.path.join(dfits_dir, "*.txt")): # dfits_frames.append( # Table.read(dfile, format="ascii.tab").to_pandas(use_nullable_int=False) # ) dfits_frames.append( ut.read_dfits_tbl(dfile).to_pandas(use_nullable_int=False) ) df_dfits = pd.concat(dfits_frames, ignore_index=True) df_dfits.FILE = df_dfits.FILE.apply(os.path.basename) df_dfits = df_dfits[["FILE"] + keys] dfits_files = df_dfits.FILE.tolist() else: df_dfits = pd.DataFrame([]) dfits_files = [] # Find files to read known_files = loc_files + dfits_files full_list = glob.glob(fpattern) all_files = [os.path.basename(f) for f in full_list] loc_mask = np.isin(all_files, known_files) iter_list = np.array(full_list)[~loc_mask].tolist() # Initialize dict outdict = dict() for k in keys: outdict[k] = [] # Handle files separately because not inside header fnames = [] # Loop through files # Slower than dfits | fitsort but avoids system calls if verbose: print("Fetching data from headers. This might take a few minutes.") for filepath in tqdm.tqdm(iter_list): hdr = fits.getheader(filepath) for k in keys: ut.hdr_to_dict(outdict, k, hdr) fnames.append(os.path.basename(filepath)) # Create dataframe of new observationsfrom dict df = pd.DataFrame([]) df["FILE"] = fnames for k in keys: df[k] = outdict[k] # Append to local df if any if len(loc_files) > 0: df = df_loc.append(df, ignore_index=True) if len(dfits_files) > 0: df = df.append(df_dfits, ignore_index=True) df = df.sort_values("FILE") df = df.drop_duplicates("FILE") # Could have duplicates from externalf fits return df def bad_and_rejected(names, sh=None, bad=None, rej=None, verbose=False): """ Handle bad (calibration, sky, etc.) and rejected names. Rejected names are objects that we do not wish to include in the list for various reasons (e.g. solar system objects). They are stored in a separate tab of the Google Sheet. Args: names (pd.Series): series of names to update sh (gspread_pandas.Spread): Spreadsheet object to update with rejected names. Default: None, no remote update bad (list): list of names to completely remove, by default uses a pre defined list. rej (list): list of rejected object names, by default uses a pre defined list. Returns: good_names (pd.Series): Series of good names. """ # Pre-process lists into regex list if bad is None: bad = BAD_NAMES if rej is None: rej = REJ_NAMES bad = "|".join(bad) # pipe symbol as OR in regex rej = "|".join(rej) # pipe symbol as OR in regex # Remove bad good_names = names[~names.str.fullmatch(bad)] # Remove rejected rej_names = good_names[good_names.str.fullmatch(rej)] # Update rejected names in google sheet if sh is not None: rej_names =
pd.DataFrame(rej_names)
pandas.DataFrame
''' Data pre process @author: <NAME> (<EMAIL>) @ created: 25/8/2017 @references: ''' import os import json import pandas as pd # import pickle import numpy as np import dill as pickle dataset_name = "movies" TPS_DIR = '../data2014/%s' % dataset_name # TP_file = os.path.join(TPS_DIR, 'Musical_Instruments_5.json') # TP_file = os.path.join(TPS_DIR, 'Digital_Music_5.json') # TP_file = os.path.join(TPS_DIR, 'Industrial_and_Scientific_5.json') # TP_file = os.path.join(TPS_DIR, 'Toys_and_Games_5.json') # TP_file = os.path.join(TPS_DIR, 'CDs_and_Vinyl_5.json') # TP_file = os.path.join(TPS_DIR, 'Kindle_Store_5.json') TP_file = os.path.join(TPS_DIR, 'Movies_and_TV_5.json') f = open(TP_file) users_id = [] items_id = [] ratings = [] reviews = [] np.random.seed(2017) null = 0 # 读取评分 print("loading ratings...") for line in f: js = json.loads(line) if str(js['reviewerID']) == 'unknown': print("reviewerID unknown") continue if str(js['asin']) == 'unknown': print("asin unknown") continue try: reviews.append(str(js['reviewText'])) users_id.append(str(js['reviewerID'])) items_id.append(str(js['asin'])) ratings.append(str(js['overall'])) except KeyError: null += 1 print("num of reviews:", len(reviews)) print("%s null reviews jumped. " % null) data = pd.DataFrame({'user_id': pd.Series(users_id), 'item_id':
pd.Series(items_id)
pandas.Series
import requests import re from bs4 import BeautifulSoup import pandas as pd import sys from PyQt4.QtGui import QApplication from PyQt4.QtCore import QUrl from PyQt4.QtWebKit import QWebPage import bs4 as bs import urllib.request import time import random import urllib3 import os urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) #path_of_url_file = 'C:\\Users\\<NAME>\\Desktop\\' path_of_reference_files = 'C:\\LavaWebScraper\\GSMARENA\\GSMarena_complete\\reference_files\\' path_of_gsmarena_complete_csv = 'C:\\LavaWebScraper\\GSMARENA\\GSMarena_complete\\' user_agent = {'User-agent':'Mozilla/5.0'} base_url = 'https://www.gsmarena.com/makers.php3' ur='https://www.gsmarena.com/' ##country = 'TAIWAN' ##company = 'hTC' model_list = [] usp = [] display_list = [] memory_list = [] processor_list = [] camera_list = [] battery_list = [] thickness_list = [] extras_links = [] records = [] href = [] st_list_heads=[] st_list_dets=[] hr=[] spec_url=[] HREF=[] BRANDS=[] device_num=[] price_list=[] launch_date_list=[] company_name_list=[] devnum=[] ######################################################## PARAMETERS READ FROM THE FILES ############################################################################## href_file = [] usp_file = [] company_name_list_file = [] model_list_file = [] with open(os.path.join(path_of_reference_files, 'gsmarena_href.txt'), 'r') as f: href_file = f.readlines() with open(os.path.join(path_of_reference_files, 'gsmarena_usp.txt'), 'r') as f: usp_file = f.readlines() with open(os.path.join(path_of_reference_files, 'gsmarena_modelnames.txt'), 'r') as f: model_list_file = f.readlines() with open(os.path.join(path_of_reference_files, 'gsmarena_company_name_list.txt'), 'r') as f: company_name_list_file = f.readlines() for i in range(len(href_file)): href_file[i] = href_file[i].replace('\n','') model_list_file[i] = model_list_file[i].replace('\n','') usp_file[i] = usp_file[i].replace('\n','') company_name_list_file[i] = company_name_list_file[i].replace('\n','') ###################################################################################################################################################################### #PAGES=[] #r=requests.get(base_url, headers=user_agent) http = urllib3.PoolManager() ##################################### response = http.request('GET', base_url) soup = BeautifulSoup(response.data, 'html.parser') ##################################### results=soup.find_all('div',attrs={'class':'st-text'}) #print(len(results)) for a in range(len(results)): sa=results[a].find_all('table') #print(len(sa)) for b in range(len(sa)): sb=sa[b].find_all('tr') #print(len(sb)) for c in range(len(sb)): sc=sb[c].find_all('td') for d in range(len(sc)): HREF.append(sc[d].find('a')['href']) sd=sc[d].find('a') BRANDS.append(sd.contents[0]) device_num.append(sd.contents[2].text) #print(len(HREF)) for i in range(len(HREF)): HREF[i]=ur+HREF[i] print('------------------------------------------------------------------------------------------------------------------------------------------------------') for i in range(len(BRANDS)): print(BRANDS[i]) print('------------------------------------------------------------------------------------------------------------------------------------------------------') for i in device_num: print(i) #print(HREF[i]) print(len(BRANDS)) print(len(device_num)) for a in range(len(HREF)): PAGES=[] print('9') #r=requests.get(HREF[a]) r = http.request('GET', HREF[a]) soup = BeautifulSoup(r.data, 'html.parser') results=soup.find_all('div',attrs={'class':'nav-pages'}) print(BRANDS[a]) print(device_num[a]) print(len(results)) PAGES.append(HREF[a]) if len(results)!=0: for b in range(len(results)): sa=results[b].find_all('a') for c in range(len(sa)): t=ur +sa[c]['href'] PAGES.append(t) print('No.of pages are:- ',end='') print(len(PAGES)) for i in PAGES: print(i) print('--------------------------------------------------------------------------------------------------------------------------------------------') for i in range(len(PAGES)): #r1=requests.get(PAGES[i]) r1 = http.request('GET', PAGES[i]) soup = BeautifulSoup(r1.data, 'html.parser') results1=soup.find_all('div',attrs={'class':'makers'}) for d in range(len(results1)): sb=results1[d].find_all('ul') for e in range(len(sb)): sc=sb[e].find_all('li') for f in range(len(sc)): ts = ur + sc[f].find('a')['href'] if ts not in href_file: href.append(sc[f].find('a')['href']) if sc[f].find('img')['title'].replace('″','"') not in usp_file: usp.append(sc[f].find('img')['title'].replace('″','"')) if sc[f].find('strong').text.strip() not in model_list_file: model_list.append(sc[f].find('strong').text.strip()) if BRANDS[a] not in company_name_list_file: company_name_list.append(BRANDS[a]) print('length of href is:- ',end='') print(len(href)) for i in range(len(href)): href[i]=ur+href[i] ## print(href[i]) print('--------------------------------------------------------------------------------------------------------------------------------------------') print('length of usp is:- ',end='') print(len(usp)) for i in usp: print(i) print('--------------------------------------------------------------------------------------------------------------------------------------------') print('length of model_list is:- ',end='') print(len(model_list)) print(len(company_name_list)) ##for i in model_list: ## print(i) print('--------------------------------------------------------------------------------------------------------------------------------------------') var=1 ## ##with open(os.path.join(path_of_url_file, 'gsmarena_href.txt'), 'w') as f: ## for k in range(len(href)): ## f.write(href[k] + '\n') ## ##with open(os.path.join(path_of_url_file, 'gsmarena_modelnames.txt'), 'w') as f: ## for k in range(len(model_list)): ## f.write(model_list[k] + '\n') ## ##with open(os.path.join(path_of_url_file, 'gsmarena_usp.txt'), 'w') as f: ## for k in range(len(usp)): ## try: ## f.write(usp[k] + '\n') ## except: ## f.write('Not Available' + '\n') ## ##with open(os.path.join(path_of_url_file, 'gsmarena_company_name_list.txt'), 'w') as f: ## for k in range(len(company_name_list)): ## try: ## f.write(company_name_list[k] + '\n') ## except: ## f.write('Not Available' + '\n') for i in range(len(href)): ## r = random.randint(5,10) ## print('SLEEPING FOR %d SECONDS NOW.' %r) ## time.sleep(r) #var=var+1 c1='' d1='' print('MODEL NO.%d' %i) r=requests.get(href[i]) #r = http.request('GET', href[i]) soup = BeautifulSoup(r.text,'html5lib') results=soup.find_all('div',attrs={'id':'specs-list'}) for a in range(len(results)): sa=results[a].find_all('table',attrs={'cellspacing':'0'}) for b in range(len(sa)): sb=sa[b].find_all('tbody') for c in range(len(sb)): sc=sb[c].find('th').text if 'body' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'dimension' in se[e].text.lower(): thickness_list.append(sf[e].text.replace('μ','mu').replace('α','alpha').replace('”','"').replace(u'\x94', '"')) if 'platform' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'cpu' in se[e].text.lower(): processor_list.append(sf[e].text.replace('μ','mu').replace('α','alpha').replace('”','"').replace(u'\x94', '"')) if 'memory' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'internal' in se[e].text.lower(): memory_list.append(sf[e].text.replace('μ','mu').replace('α','alpha').replace('”','"').replace(u'\x94', '"')) if 'camera' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'primary' in se[e].text.lower() or 'secondary' in se[e].text.lower(): c1=c1+se[e].text.replace('μ','mu').replace('α','alpha').replace('”','"').replace(u'\x94', '"')+':- '+sf[e].text.replace('μ','mu').replace('α','alpha').replace('”','"').replace(u'\x94', '"')+' || ' if 'display' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'type' in se[e].text.lower() or 'size' in se[e].text.lower(): d1=d1+se[e].text.replace('μ','mu').replace('α','alpha').replace('”','"').replace(u'\x94', '"')+':- '+sf[e].text.replace('μ','mu').replace('α','alpha').replace('”','"').replace(u'\x94', '"')+' || ' if 'battery' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'mah' in sf[e].text.lower(): battery_list.append(sf[e].text.replace('μ','mu').replace('α','alpha').replace('”','"').replace(u'\x94', '"')) if 'launch' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'announce' in se[e].text.lower(): launch_date_list.append(sf[e].text.replace('μ','mu').replace('α','alpha').replace('”','"').replace(u'\x94', '"').strip()) if 'misc' in sc.lower(): sd=sb[c].find_all('tr') for d in range(len(sd)): se=sd[d].find_all('td',attrs={'class':'ttl'}) sf=sd[d].find_all('td',attrs={'class':'nfo'}) for e in range(len(sf)): if 'price' in se[e].text.lower(): ts = sf[e].text.replace('α','alpha').replace('μ','mu').replace('”','"').replace(u'\x94', '"').strip() #ts = ts.decode('utf-8').replace(u'\x94', '"') price_list.append(ts) if d1!='': display_list.append(d1) if c1!='': camera_list.append(c1) if len(battery_list)==i: battery_list.append('Not Available') if len(memory_list)==i: memory_list.append('Not Available') if len(processor_list)==i: processor_list.append('Not Available') if len(display_list)==i: display_list.append('Not Available') if len(thickness_list)==i: thickness_list.append('Not Available') if len(camera_list)==i: camera_list.append('Not Available') if len(price_list)==i: price_list.append('Not Available') if len(usp)==i: usp.append('Not Available') if len(launch_date_list)==i: launch_date_list.append('Not Available') ## if var==500: ## break print('DISPLAY LIST:- ') print(len(display_list)) print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') print('PROCESSOR LIST:- ') print(len(processor_list)) print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') print('MEMORY LIST:- ') print(len(memory_list)) print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') print('CAMERA LIST:- ') print(len(camera_list)) print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') print('BATTERY LIST:- ') print(len(battery_list)) print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') print('THICKNESS LIST:-') print(len(thickness_list)) print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') print('PRICE LIST:_') print(len(price_list)) print('-------------------------------------------------------------------------------------------------------------------------------------------------------------') print('LAUNCH DATE:-') print(len(launch_date_list)) extras_links = href for i in range(len(model_list)): records.append((company_name_list[i],model_list[i],price_list[i],launch_date_list[i], usp[i], display_list[i], camera_list[i], memory_list[i], battery_list[i], thickness_list[i], processor_list[i], extras_links[i])) df =
pd.DataFrame(records, columns = ['COMPANY', 'MODEL', 'PRICE','LAUNCH DATE', 'USP', 'DISPLAY', 'CAMERA', 'MEMORY', 'BATTERY', 'THICKNESS', 'PROCESSOR', 'EXTRAS/ LINKS'])
pandas.DataFrame
# This is a early version of Enumerat.py import sys import os import copy import time import json import pandas as pd sys.path.append(os.path.abspath('..\\game')) class Tree(object): def __init__(self): self.up = None # tree structure self.down = None # tree structure self.layer = None # current layer number self.state = 'Unsettled' self.nt = [1, 2, 3, 4, 5, 6, 7, 8, 9] # next possible move self.board = [1, 2, 3, 4, 5, 6, 7, 8, 9] # current board self.score_1 = 0.0 self.score_2 = 0.0 def final_chk(board): print(len(board)) a = 0 for i in range(len(board)): if board[i].layer == 9: if board[i].state == 'Unsettled': a += 1 print('error') print(a) def find_all(): def init_obj(): a = Tree() a.up = [] a.down = [] a.layer = 0 return a def chk_pos(board, num): temp = num in range(1, 10) temp_2 = board[num - 1] not in {'O', 'X'} return temp and temp_2 def find_num(board): A = [] for i in range(9): if chk_pos(board, i + 1): A.append(i + 1) return A def check_board(board): win_combination = ((0, 1, 2), (3, 4, 5), (6, 7, 8), (0, 3, 6), (1, 4, 7), (2, 5, 8), (0, 4, 8), (2, 4, 6)) count = 0 for a in win_combination: if board[a[0]] == board[a[1]] == board[a[2]] == "X": return 'X' if board[a[0]] == board[a[1]] == board[a[2]] == "O": return 'O' for a in range(9): if board[a] == "X" or board[a] == "O": count += 1 if count == 9: return 'Tie' return 'Unsettled' A = [] # 0th layer A.append(init_obj()) A[0].nt = find_num(A[0].board) A[0].State = check_board(A[0].board) # 1st layer for i in A[0].nt: temp = init_obj() temp.layer = 1 temp.up = 0 temp.board[i - 1] = 'X' temp.nt = find_num(temp.board) temp.state = check_board(temp.board) A.append(temp) for i in range(len(A)): if i == 0: continue else: if A[i].up == 0: A[0].down.append(i) # 2nd layer for i in A[0].down: for j in A[i].nt: temp = init_obj() temp.layer = 2 temp.up = i temp.board = copy.deepcopy(A[i].board) temp.board[j - 1] = 'O' temp.nt = find_num(temp.board) temp.state = check_board(temp.board) A.append(temp) for i in range(len(A)): if A[i].layer == 0 or A[i].layer == 1: continue else: if A[i].layer == 2: A[A[i].up].down.append(i) # 3rd layer for i in range(len(A)): if A[i].layer == 1: for j in A[i].down: for k in A[j].nt: temp = init_obj() temp.layer = 3 temp.up = j temp.board = copy.deepcopy(A[j].board) temp.board[k - 1] = 'X' temp.nt = find_num(temp.board) temp.state = check_board(temp.board) A.append(temp) for i in range(len(A)): if A[i].layer == 3: A[A[i].up].down.append(i) # 4th layer for i in range(len(A)): if A[i].layer == 2: for j in A[i].down: for k in A[j].nt: temp = init_obj() temp.layer = 4 temp.up = j temp.board = copy.deepcopy(A[j].board) temp.board[k - 1] = 'O' temp.nt = find_num(temp.board) temp.state = check_board(temp.board) A.append(temp) for i in range(len(A)): if A[i].layer == 4: A[A[i].up].down.append(i) # 5th layer for i in range(len(A)): if A[i].layer == 3: for j in A[i].down: for k in A[j].nt: temp = init_obj() temp.layer = 5 temp.up = j temp.board = copy.deepcopy(A[j].board) temp.board[k - 1] = 'X' temp.nt = find_num(temp.board) temp.state = check_board(temp.board) if temp.state != 'Unsettled': temp.nt = [] A.append(temp) for i in range(len(A)): if A[i].layer == 5: A[A[i].up].down.append(i) # 6th layer for i in range(len(A)): if A[i].layer == 4: for j in A[i].down: for k in A[j].nt: temp = init_obj() temp.layer = 6 temp.up = j temp.board = copy.deepcopy(A[j].board) temp.board[k - 1] = 'O' temp.nt = find_num(temp.board) temp.state = check_board(temp.board) if temp.state != 'Unsettled': temp.nt = [] A.append(temp) for i in range(len(A)): if A[i].layer == 6: A[A[i].up].down.append(i) # 7th layer for i in range(len(A)): if A[i].layer == 5: for j in A[i].down: for k in A[j].nt: temp = init_obj() temp.layer = 7 temp.up = j temp.board = copy.deepcopy(A[j].board) temp.board[k - 1] = 'X' temp.nt = find_num(temp.board) temp.state = check_board(temp.board) if temp.state != 'Unsettled': temp.nt = [] A.append(temp) for i in range(len(A)): if A[i].layer == 7: A[A[i].up].down.append(i) # 8th layer for i in range(len(A)): if A[i].layer == 6: for j in A[i].down: for k in A[j].nt: temp = init_obj() temp.layer = 8 temp.up = j temp.board = copy.deepcopy(A[j].board) temp.board[k - 1] = 'O' temp.nt = find_num(temp.board) temp.state = check_board(temp.board) if temp.state != 'Unsettled': temp.nt = [] A.append(temp) for i in range(len(A)): if A[i].layer == 8: A[A[i].up].down.append(i) # 9th layer for i in range(len(A)): if A[i].layer == 7: for j in A[i].down: for k in A[j].nt: temp = init_obj() temp.layer = 9 temp.up = j temp.board = copy.deepcopy(A[j].board) temp.board[k - 1] = 'X' temp.nt = find_num(temp.board) temp.state = check_board(temp.board) if temp.state != 'Unsettled': temp.nt = [] A.append(temp) for i in range(len(A)): if A[i].layer == 9: A[A[i].up].down.append(i) return A def score(A): for i in range(len(A)): if A[i].layer == 9: if A[i].state == 'X': A[i].score_1 = 1 elif A[i].state == 'O': A[i].score_2 = 1 else: pass for k in [8, 7, 6, 5, 4, 3, 2, 1, 0]: for i in range(len(A)): if A[i].layer == k: if A[i].state == 'X': A[i].score_1 = 1 elif A[i].state == 'O': A[i].score_2 = 1 else: temp_1 = 0 temp_2 = 0 for j in A[i].down: temp_1 = temp_1 + A[j].score_1 temp_2 = temp_2 + A[j].score_2 A[i].score_1 = temp_1 / len(A[i].down) A[i].score_2 = temp_2 / len(A[i].down) return A def to_json(A): O = {} for i in range(len(A)): O[i] = { 'up': A[i].up, 'down': A[i].down, 'layer': A[i].layer, 'state': A[i].state, 'nt': A[i].nt, 'board': A[i].board, 'score_1': A[i].score_1, 'score_2': A[i].score_2} with open('assets//data.json', 'w') as outfile: json.dump(O, outfile) def to_df(A): O = { 'up': [ 0 for i in range( len(A))], 'down': [ 0 for i in range( len(A))], 'layer': [ 0 for i in range( len(A))], 'state': [ 0 for i in range( len(A))], 'nt': [ 0 for i in range( len(A))], 'board': [ 0 for i in range( len(A))], 'score_1': [ 0 for i in range( len(A))], 'score_2': [ 0 for i in range( len(A))]} for i in range(len(A)): O['up'][i] = A[i].up O['down'][i] = A[i].down O['layer'][i] = A[i].layer O['state'][i] = A[i].state O['nt'][i] = A[i].nt O['board'][i] = A[i].board O['score_1'][i] = A[i].score_1 O['score_2'][i] = A[i].score_2 P = pd.DataFrame(data=O)
pd.DataFrame.to_csv(P, 'assets//data.csv', encoding='utf-8')
pandas.DataFrame.to_csv
''' @Description: code @Author: MiCi @Date: 2020-03-13 17:17:47 @LastEditTime: 2020-03-14 08:47:08 @LastEditors: MiCi ''' import pandas as pd # import numpy as np class Basic4(object): def __init__(self): return def basic_use(self): df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=[0, 1, 2, 3]) df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'], 'B': ['B4', 'B5', 'B6', 'B7'], 'C': ['C4', 'C5', 'C6', 'C7'], 'D': ['D4', 'D5', 'D6', 'D7']}, index=[4, 5, 6, 7]) # append末尾追加数据 print(df1.append(df2)) # concat列后添加 print(
pd.concat([df1, df2], axis=1)
pandas.concat
from collections import deque from datetime import datetime import operator import re import numpy as np import pytest import pytz import pandas as pd from pandas import DataFrame, MultiIndex, Series import pandas._testing as tm import pandas.core.common as com from pandas.core.computation.expressions import _MIN_ELEMENTS, _NUMEXPR_INSTALLED from pandas.tests.frame.common import _check_mixed_float, _check_mixed_int # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons: # Specifically _not_ flex-comparisons def test_frame_in_list(self): # GH#12689 this should raise at the DataFrame level, not blocks df = pd.DataFrame(np.random.randn(6, 4), columns=list("ABCD")) msg = "The truth value of a DataFrame is ambiguous" with pytest.raises(ValueError, match=msg): df in [None] def test_comparison_invalid(self): def check(df, df2): for (x, y) in [(df, df2), (df2, df)]: # we expect the result to match Series comparisons for # == and !=, inequalities should raise result = x == y expected = pd.DataFrame( {col: x[col] == y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) result = x != y expected = pd.DataFrame( {col: x[col] != y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) msgs = [ r"Invalid comparison between dtype=datetime64\[ns\] and ndarray", "invalid type promotion", ( # npdev 1.20.0 r"The DTypes <class 'numpy.dtype\[.*\]'> and " r"<class 'numpy.dtype\[.*\]'> do not have a common DType." ), ] msg = "|".join(msgs) with pytest.raises(TypeError, match=msg): x >= y with pytest.raises(TypeError, match=msg): x > y with pytest.raises(TypeError, match=msg): x < y with pytest.raises(TypeError, match=msg): x <= y # GH4968 # invalid date/int comparisons df = pd.DataFrame(np.random.randint(10, size=(10, 1)), columns=["a"]) df["dates"] = pd.date_range("20010101", periods=len(df)) df2 = df.copy() df2["dates"] = df["a"] check(df, df2) df = pd.DataFrame(np.random.randint(10, size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame( { "a": pd.date_range("20010101", periods=len(df)), "b": pd.date_range("20100101", periods=len(df)), } ) check(df, df2) def test_timestamp_compare(self): # make sure we can compare Timestamps on the right AND left hand side # GH#4982 df = pd.DataFrame( { "dates1": pd.date_range("20010101", periods=10), "dates2": pd.date_range("20010102", periods=10), "intcol": np.random.randint(1000000000, size=10), "floatcol": np.random.randn(10), "stringcol": list(tm.rands(10)), } ) df.loc[np.random.rand(len(df)) > 0.5, "dates2"] = pd.NaT ops = {"gt": "lt", "lt": "gt", "ge": "le", "le": "ge", "eq": "eq", "ne": "ne"} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats if left in ["eq", "ne"]: expected = left_f(df, pd.Timestamp("20010109")) result = right_f(pd.Timestamp("20010109"), df) tm.assert_frame_equal(result, expected) else: msg = ( "'(<|>)=?' not supported between " "instances of 'numpy.ndarray' and 'Timestamp'" ) with pytest.raises(TypeError, match=msg): left_f(df, pd.Timestamp("20010109")) with pytest.raises(TypeError, match=msg): right_f(pd.Timestamp("20010109"), df) # nats expected = left_f(df, pd.Timestamp("nat")) result = right_f(pd.Timestamp("nat"), df) tm.assert_frame_equal(result, expected) def test_mixed_comparison(self): # GH#13128, GH#22163 != datetime64 vs non-dt64 should be False, # not raise TypeError # (this appears to be fixed before GH#22163, not sure when) df = pd.DataFrame([["1989-08-01", 1], ["1989-08-01", 2]]) other = pd.DataFrame([["a", "b"], ["c", "d"]]) result = df == other assert not result.any().any() result = df != other assert result.all().all() def test_df_boolean_comparison_error(self): # GH#4576, GH#22880 # comparing DataFrame against list/tuple with len(obj) matching # len(df.columns) is supported as of GH#22800 df = pd.DataFrame(np.arange(6).reshape((3, 2))) expected = pd.DataFrame([[False, False], [True, False], [False, False]]) result = df == (2, 2) tm.assert_frame_equal(result, expected) result = df == [2, 2] tm.assert_frame_equal(result, expected) def test_df_float_none_comparison(self): df = pd.DataFrame( np.random.randn(8, 3), index=range(8), columns=["A", "B", "C"] ) result = df.__eq__(None) assert not result.any().any() def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) class TestFrameFlexComparisons: # TODO: test_bool_flex_frame needs a better name def test_bool_flex_frame(self): data = np.random.randn(5, 3) other_data = np.random.randn(5, 3) df = pd.DataFrame(data) other = pd.DataFrame(other_data) ndim_5 = np.ones(df.shape + (1, 3)) # Unaligned def _check_unaligned_frame(meth, op, df, other): part_o = other.loc[3:, 1:].copy() rs = meth(part_o) xp = op(df, part_o.reindex(index=df.index, columns=df.columns)) tm.assert_frame_equal(rs, xp) # DataFrame assert df.eq(df).values.all() assert not df.ne(df).values.any() for op in ["eq", "ne", "gt", "lt", "ge", "le"]: f = getattr(df, op) o = getattr(operator, op) # No NAs tm.assert_frame_equal(f(other), o(df, other)) _check_unaligned_frame(f, o, df, other) # ndarray tm.assert_frame_equal(f(other.values), o(df, other.values)) # scalar tm.assert_frame_equal(f(0), o(df, 0)) # NAs msg = "Unable to coerce to Series/DataFrame" tm.assert_frame_equal(f(np.nan), o(df, np.nan)) with pytest.raises(ValueError, match=msg): f(ndim_5) # Series def _test_seq(df, idx_ser, col_ser): idx_eq = df.eq(idx_ser, axis=0) col_eq = df.eq(col_ser) idx_ne = df.ne(idx_ser, axis=0) col_ne = df.ne(col_ser) tm.assert_frame_equal(col_eq, df == pd.Series(col_ser)) tm.assert_frame_equal(col_eq, -col_ne) tm.assert_frame_equal(idx_eq, -idx_ne) tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T) tm.assert_frame_equal(col_eq, df.eq(list(col_ser))) tm.assert_frame_equal(idx_eq, df.eq(pd.Series(idx_ser), axis=0)) tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0)) idx_gt = df.gt(idx_ser, axis=0) col_gt = df.gt(col_ser) idx_le = df.le(idx_ser, axis=0) col_le = df.le(col_ser) tm.assert_frame_equal(col_gt, df > pd.Series(col_ser)) tm.assert_frame_equal(col_gt, -col_le) tm.assert_frame_equal(idx_gt, -idx_le) tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T) idx_ge = df.ge(idx_ser, axis=0) col_ge = df.ge(col_ser) idx_lt = df.lt(idx_ser, axis=0) col_lt = df.lt(col_ser) tm.assert_frame_equal(col_ge, df >= pd.Series(col_ser)) tm.assert_frame_equal(col_ge, -col_lt) tm.assert_frame_equal(idx_ge, -idx_lt) tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T) idx_ser = pd.Series(np.random.randn(5)) col_ser = pd.Series(np.random.randn(3)) _test_seq(df, idx_ser, col_ser) # list/tuple _test_seq(df, idx_ser.values, col_ser.values) # NA df.loc[0, 0] = np.nan rs = df.eq(df) assert not rs.loc[0, 0] rs = df.ne(df) assert rs.loc[0, 0] rs = df.gt(df) assert not rs.loc[0, 0] rs = df.lt(df) assert not rs.loc[0, 0] rs = df.ge(df) assert not rs.loc[0, 0] rs = df.le(df) assert not rs.loc[0, 0] def test_bool_flex_frame_complex_dtype(self): # complex arr = np.array([np.nan, 1, 6, np.nan]) arr2 = np.array([2j, np.nan, 7, None]) df = pd.DataFrame({"a": arr}) df2 = pd.DataFrame({"a": arr2}) msg = "|".join( [ "'>' not supported between instances of '.*' and 'complex'", r"unorderable types: .*complex\(\)", # PY35 ] ) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df.gt(df2) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df["a"].gt(df2["a"]) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df.values > df2.values rs = df.ne(df2) assert rs.values.all() arr3 = np.array([2j, np.nan, None]) df3 = pd.DataFrame({"a": arr3}) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df3.gt(2j) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df3["a"].gt(2j) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df3.values > 2j def test_bool_flex_frame_object_dtype(self): # corner, dtype=object df1 = pd.DataFrame({"col": ["foo", np.nan, "bar"]}) df2 = pd.DataFrame({"col": ["foo", datetime.now(), "bar"]}) result = df1.ne(df2) exp = pd.DataFrame({"col": [False, True, False]}) tm.assert_frame_equal(result, exp) def test_flex_comparison_nat(self): # GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT, # and _definitely_ not be NaN df = pd.DataFrame([pd.NaT]) result = df == pd.NaT # result.iloc[0, 0] is a np.bool_ object assert result.iloc[0, 0].item() is False result = df.eq(pd.NaT) assert result.iloc[0, 0].item() is False result = df != pd.NaT assert result.iloc[0, 0].item() is True result = df.ne(pd.NaT) assert result.iloc[0, 0].item() is True @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types(self, opname): # GH 15077, non-empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 result = getattr(df, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH 15077 empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) def test_df_flex_cmp_ea_dtype_with_ndarray_series(self): ii = pd.IntervalIndex.from_breaks([1, 2, 3]) df = pd.DataFrame({"A": ii, "B": ii}) ser = pd.Series([0, 0]) res = df.eq(ser, axis=0) expected = pd.DataFrame({"A": [False, False], "B": [False, False]}) tm.assert_frame_equal(res, expected) ser2 = pd.Series([1, 2], index=["A", "B"]) res2 = df.eq(ser2, axis=1) tm.assert_frame_equal(res2, expected) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic: def test_floordiv_axis0(self): # make sure we df.floordiv(ser, axis=0) matches column-wise result arr = np.arange(3) ser = pd.Series(arr) df = pd.DataFrame({"A": ser, "B": ser}) result = df.floordiv(ser, axis=0) expected = pd.DataFrame({col: df[col] // ser for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = df.floordiv(ser.values, axis=0) tm.assert_frame_equal(result2, expected) @pytest.mark.skipif(not _NUMEXPR_INSTALLED, reason="numexpr not installed") @pytest.mark.parametrize("opname", ["floordiv", "pow"]) def test_floordiv_axis0_numexpr_path(self, opname): # case that goes through numexpr and has to fall back to masked_arith_op op = getattr(operator, opname) arr = np.arange(_MIN_ELEMENTS + 100).reshape(_MIN_ELEMENTS // 100 + 1, -1) * 100 df = pd.DataFrame(arr) df["C"] = 1.0 ser = df[0] result = getattr(df, opname)(ser, axis=0) expected = pd.DataFrame({col: op(df[col], ser) for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = getattr(df, opname)(ser.values, axis=0) tm.assert_frame_equal(result2, expected) def test_df_add_td64_columnwise(self): # GH 22534 Check that column-wise addition broadcasts correctly dti = pd.date_range("2016-01-01", periods=10) tdi = pd.timedelta_range("1", periods=10) tser = pd.Series(tdi) df = pd.DataFrame({0: dti, 1: tdi}) result = df.add(tser, axis=0) expected = pd.DataFrame({0: dti + tdi, 1: tdi + tdi}) tm.assert_frame_equal(result, expected) def test_df_add_flex_filled_mixed_dtypes(self): # GH 19611 dti = pd.date_range("2016-01-01", periods=3) ser = pd.Series(["1 Day", "NaT", "2 Days"], dtype="timedelta64[ns]") df = pd.DataFrame({"A": dti, "B": ser}) other = pd.DataFrame({"A": ser, "B": ser}) fill = pd.Timedelta(days=1).to_timedelta64() result = df.add(other, fill_value=fill) expected = pd.DataFrame( { "A": pd.Series( ["2016-01-02", "2016-01-03", "2016-01-05"], dtype="datetime64[ns]" ), "B": ser * 2, } ) tm.assert_frame_equal(result, expected) def test_arith_flex_frame( self, all_arithmetic_operators, float_frame, mixed_float_frame ): # one instance of parametrized fixture op = all_arithmetic_operators def f(x, y): # r-versions not in operator-stdlib; get op without "r" and invert if op.startswith("__r"): return getattr(operator, op.replace("__r", "__"))(y, x) return getattr(operator, op)(x, y) result = getattr(float_frame, op)(2 * float_frame) expected = f(float_frame, 2 * float_frame) tm.assert_frame_equal(result, expected) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) @pytest.mark.parametrize("op", ["__add__", "__sub__", "__mul__"]) def test_arith_flex_frame_mixed( self, op, int_frame, mixed_int_frame, mixed_float_frame ): f = getattr(operator, op) # vs mix int result = getattr(mixed_int_frame, op)(2 + mixed_int_frame) expected = f(mixed_int_frame, 2 + mixed_int_frame) # no overflow in the uint dtype = None if op in ["__sub__"]: dtype = dict(B="uint64", C=None) elif op in ["__add__", "__mul__"]: dtype = dict(C=None) tm.assert_frame_equal(result, expected) _check_mixed_int(result, dtype=dtype) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) # vs plain int result = getattr(int_frame, op)(2 * int_frame) expected = f(int_frame, 2 * int_frame) tm.assert_frame_equal(result, expected) def test_arith_flex_frame_raise(self, all_arithmetic_operators, float_frame): # one instance of parametrized fixture op = all_arithmetic_operators # Check that arrays with dim >= 3 raise for dim in range(3, 6): arr = np.ones((1,) * dim) msg = "Unable to coerce to Series/DataFrame" with pytest.raises(ValueError, match=msg): getattr(float_frame, op)(arr) def test_arith_flex_frame_corner(self, float_frame): const_add = float_frame.add(1) tm.assert_frame_equal(const_add, float_frame + 1) # corner cases result = float_frame.add(float_frame[:0]) tm.assert_frame_equal(result, float_frame * np.nan) result = float_frame[:0].add(float_frame) tm.assert_frame_equal(result, float_frame * np.nan) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], fill_value=3) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], axis="index", fill_value=3) def test_arith_flex_series(self, simple_frame): df = simple_frame row = df.xs("a") col = df["two"] # after arithmetic refactor, add truediv here ops = ["add", "sub", "mul", "mod"] for op in ops: f = getattr(df, op) op = getattr(operator, op) tm.assert_frame_equal(f(row), op(df, row)) tm.assert_frame_equal(f(col, axis=0), op(df.T, col).T) # special case for some reason tm.assert_frame_equal(df.add(row, axis=None), df + row) # cases which will be refactored after big arithmetic refactor tm.assert_frame_equal(df.div(row), df / row) tm.assert_frame_equal(df.div(col, axis=0), (df.T / col).T) # broadcasting issue in GH 7325 df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="int64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="float64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) def test_arith_flex_zero_len_raises(self): # GH 19522 passing fill_value to frame flex arith methods should # raise even in the zero-length special cases ser_len0 = pd.Series([], dtype=object) df_len0 = pd.DataFrame(columns=["A", "B"]) df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) with pytest.raises(NotImplementedError, match="fill_value"): df.add(ser_len0, fill_value="E") with pytest.raises(NotImplementedError, match="fill_value"): df_len0.sub(df["A"], axis=None, fill_value=3) def test_flex_add_scalar_fill_value(self): # GH#12723 dat = np.array([0, 1, np.nan, 3, 4, 5], dtype="float") df = pd.DataFrame({"foo": dat}, index=range(6)) exp = df.fillna(0).add(2) res = df.add(2, fill_value=0) tm.assert_frame_equal(res, exp) class TestFrameArithmetic: def test_td64_op_nat_casting(self): # Make sure we don't accidentally treat timedelta64(NaT) as datetime64 # when calling dispatch_to_series in DataFrame arithmetic ser = pd.Series(["NaT", "NaT"], dtype="timedelta64[ns]") df = pd.DataFrame([[1, 2], [3, 4]]) result = df * ser expected = pd.DataFrame({0: ser, 1: ser}) tm.assert_frame_equal(result, expected) def test_df_add_2d_array_rowlike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) expected = pd.DataFrame( [[2, 4], [4, 6], [6, 8]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + rowlike tm.assert_frame_equal(result, expected) result = rowlike + df tm.assert_frame_equal(result, expected) def test_df_add_2d_array_collike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) expected = pd.DataFrame( [[1, 2], [5, 6], [9, 10]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + collike tm.assert_frame_equal(result, expected) result = collike + df tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_rowlike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) exvals = [ getattr(df.loc["A"], opname)(rowlike.squeeze()), getattr(df.loc["B"], opname)(rowlike.squeeze()), getattr(df.loc["C"], opname)(rowlike.squeeze()), ] expected = pd.DataFrame(exvals, columns=df.columns, index=df.index) result = getattr(df, opname)(rowlike) tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_collike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) exvals = { True: getattr(df[True], opname)(collike.squeeze()), False: getattr(df[False], opname)(collike.squeeze()), } dtype = None if opname in ["__rmod__", "__rfloordiv__"]: # Series ops may return mixed int/float dtypes in cases where # DataFrame op will return all-float. So we upcast `expected` dtype = np.common_type(*[x.values for x in exvals.values()]) expected = pd.DataFrame(exvals, columns=df.columns, index=df.index, dtype=dtype) result = getattr(df, opname)(collike) tm.assert_frame_equal(result, expected) def test_df_bool_mul_int(self): # GH 22047, GH 22163 multiplication by 1 should result in int dtype, # not object dtype df = pd.DataFrame([[False, True], [False, False]]) result = df * 1 # On appveyor this comes back as np.int32 instead of np.int64, # so we check dtype.kind instead of just dtype kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() result = 1 * df kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() def test_arith_mixed(self): left = pd.DataFrame({"A": ["a", "b", "c"], "B": [1, 2, 3]}) result = left + left expected = pd.DataFrame({"A": ["aa", "bb", "cc"], "B": [2, 4, 6]}) tm.assert_frame_equal(result, expected) def test_arith_getitem_commute(self): df = pd.DataFrame({"A": [1.1, 3.3], "B": [2.5, -3.9]}) def _test_op(df, op): result = op(df, 1) if not df.columns.is_unique: raise ValueError("Only unique columns supported by this test") for col in result.columns: tm.assert_series_equal(result[col], op(df[col], 1)) _test_op(df, operator.add) _test_op(df, operator.sub) _test_op(df, operator.mul) _test_op(df, operator.truediv) _test_op(df, operator.floordiv) _test_op(df, operator.pow) _test_op(df, lambda x, y: y + x) _test_op(df, lambda x, y: y - x) _test_op(df, lambda x, y: y * x) _test_op(df, lambda x, y: y / x) _test_op(df, lambda x, y: y ** x) _test_op(df, lambda x, y: x + y) _test_op(df, lambda x, y: x - y) _test_op(df, lambda x, y: x * y) _test_op(df, lambda x, y: x / y) _test_op(df, lambda x, y: x ** y) @pytest.mark.parametrize( "values", [[1, 2], (1, 2), np.array([1, 2]), range(1, 3), deque([1, 2])] ) def test_arith_alignment_non_pandas_object(self, values): # GH#17901 df = pd.DataFrame({"A": [1, 1], "B": [1, 1]}) expected = pd.DataFrame({"A": [2, 2], "B": [3, 3]}) result = df + values tm.assert_frame_equal(result, expected) def test_arith_non_pandas_object(self): df = pd.DataFrame( np.arange(1, 10, dtype="f8").reshape(3, 3), columns=["one", "two", "three"], index=["a", "b", "c"], ) val1 = df.xs("a").values added = pd.DataFrame(df.values + val1, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val1, added) added =
pd.DataFrame((df.values.T + val1).T, index=df.index, columns=df.columns)
pandas.DataFrame
import pandas as pd import matplotlib matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 import numpy as np import seaborn as sns; sns.set() import csv from scipy.stats import ranksums """ Load data song data """ # load in song data data_path = "C:/Users/abiga/Box " \ "Sync/Abigail_Nicole/ChippiesTimeOfDay" \ "/FinalChippiesDataReExportedAs44100Hz_LogTransformed_forTOD.csv" log_song_data = pd.DataFrame.from_csv(data_path, header=0, index_col=None) col_to_skip = ['Latitude', 'Longitude', 'RecordingDay', 'RecordingMonth', 'RecordingYear', 'RecordingTime', 'RecordingTimeSeconds'] data_subset = log_song_data.drop(col_to_skip, axis=1) # load in time data --> before or after sunrise, twilights, and noon (only going to use sunrise and noon) data_path = "C:/Users/abiga/Box " \ "Sync/Abigail_Nicole/ChippiesTimeOfDay" \ "/FinalChippiesDataReExportedAs44100Hz_LogTransformed" \ "_forTOD_SunriseTwilightNoon.csv" time_data = pd.DataFrame.from_csv(data_path, header=0, index_col=None) # must remove duplicates -- have more than one bird from same recording -- duplicate catalog number and time data time_data = time_data.drop_duplicates() # combine tables using catalog no combined_df =
pd.merge(data_subset, time_data, on='CatalogNo')
pandas.merge
import copy import itertools import multiprocessing import string import traceback import warnings from multiprocessing import Pool from operator import itemgetter import jellyfish as jf import numpy as np import pandas as pd from scipy.optimize import linear_sum_assignment from scipy.stats import wasserstein_distance from simod.configuration import Configuration, Metric from . import alpha_oracle as ao from .alpha_oracle import Rel from ..support_utils import progress_bar_async class SimilarityEvaluator: """Evaluates the similarity of two event-logs.""" def __init__(self, log_data: pd.DataFrame, simulation_data: pd.DataFrame, settings: Configuration, max_cases=500, dtype='log'): self.dtype = dtype self.log_data = copy.deepcopy(log_data) self.simulation_data = copy.deepcopy(simulation_data) self.max_cases = max_cases self.one_timestamp = settings.read_options.one_timestamp self._preprocess_data(dtype) def _preprocess_data(self, dtype): preprocessor = self._get_preprocessor(dtype) return preprocessor() def _get_preprocessor(self, dtype): if dtype == 'log': return self._preprocess_log elif dtype == 'serie': return self._preprocess_serie else: raise ValueError(dtype) def _preprocess_log(self): self.ramp_io_perc = 0.2 self.log_data['source'] = 'log' self.simulation_data['source'] = 'simulation' data = pd.concat([self.log_data, self.simulation_data], axis=0, ignore_index=True) if (('processing_time' not in data.columns) or ('waiting_time' not in data.columns)): data = self.calculate_times(data) data = self.scaling_data(data) # save data self.log_data = data[data.source == 'log'] self.simulation_data = data[data.source == 'simulation'] self.alias = self.create_task_alias(data, 'task') self.alpha_concurrency = ao.AlphaOracle(self.log_data, self.alias, self.one_timestamp, True) # reformat and sampling data self.log_data = self.reformat_events(self.log_data.to_dict('records'), 'task') self.simulation_data = self.reformat_events(self.simulation_data.to_dict('records'), 'task') num_traces = int(len(self.simulation_data) * self.ramp_io_perc) self.simulation_data = self.simulation_data[num_traces:-num_traces] self.log_data = list(map(lambda i: self.log_data[i], np.random.randint(0, len(self.log_data), len(self.simulation_data)))) def _preprocess_serie(self): # load data self.log_data['source'] = 'log' self.simulation_data['source'] = 'simulation' def measure_distance(self, metric: Metric, verbose=False): """ Measures the distance of two event-logs with with tsd or dl and mae distance Returns ------- distance : float """ self.verbose = verbose # similarity measurement and matching evaluator = self._get_evaluator(metric) if metric in [Metric.DAY_EMD, Metric.DAY_HOUR_EMD, Metric.CAL_EMD]: distance = evaluator(self.log_data, self.simulation_data, criteria=metric) else: distance = evaluator(self.log_data, self.simulation_data, metric) self.similarity = {'metric': metric, 'sim_val': np.mean([x['sim_score'] for x in distance])} def _get_evaluator(self, metric: Metric): if self.dtype == 'log': if metric in [Metric.TSD, Metric.DL, Metric.MAE, Metric.DL_MAE]: return self._evaluate_seq_distance elif metric is Metric.LOG_MAE: return self.log_mae_metric elif metric in [Metric.HOUR_EMD, Metric.DAY_EMD, Metric.DAY_HOUR_EMD, Metric.CAL_EMD]: return self.log_emd_metric else: raise ValueError(metric) elif self.dtype == 'serie': if metric in [Metric.HOUR_EMD, Metric.DAY_EMD, Metric.DAY_HOUR_EMD, Metric.CAL_EMD]: return self.serie_emd_metric else: raise ValueError(metric) else: raise ValueError(self.dtype) # ============================================================================= # Timed string distance # ============================================================================= def _evaluate_seq_distance(self, log_data, simulation_data, metric: Metric): """ Timed string distance calculation Parameters ---------- log_data : Ground truth list simulation_data : List Returns ------- similarity : tsd similarity """ similarity = list() # define the type of processing sequencial or parallel cases = len(set([x['caseid'] for x in log_data])) if cases <= self.max_cases: args = (metric, simulation_data, log_data, self.alpha_concurrency.oracle, ({'min': 0, 'max': len(simulation_data)}, {'min': 0, 'max': len(log_data)})) df_matrix = self._compare_traces(args) else: cpu_count = multiprocessing.cpu_count() mx_len = len(log_data) ranges = self.define_ranges(mx_len, int(np.ceil(cpu_count / 2))) ranges = list(itertools.product(*[ranges, ranges])) reps = len(ranges) pool = Pool(processes=cpu_count) # Generate args = [(metric, simulation_data[r[0]['min']:r[0]['max']], log_data[r[1]['min']:r[1]['max']], self.alpha_concurrency.oracle, r) for r in ranges] p = pool.map_async(self._compare_traces, args) if self.verbose: progress_bar_async(p, f'evaluating {metric}:', reps) pool.close() # Save results df_matrix = pd.concat(list(p.get()), axis=0, ignore_index=True) df_matrix.sort_values(by=['i', 'j'], inplace=True) df_matrix = df_matrix.reset_index().set_index(['i', 'j']) if metric == Metric.DL_MAE: dl_matrix = df_matrix[['dl_distance']].unstack().to_numpy() mae_matrix = df_matrix[['mae_distance']].unstack().to_numpy() # MAE normalized max_mae = mae_matrix.max() mae_matrix = np.divide(mae_matrix, max_mae) # multiple both matrixes by Beta equal to 0.5 dl_matrix = np.multiply(dl_matrix, 0.5) mae_matrix = np.multiply(mae_matrix, 0.5) # add each point in between cost_matrix = np.add(dl_matrix, mae_matrix) else: cost_matrix = df_matrix[['distance']].unstack().to_numpy() row_ind, col_ind = linear_sum_assignment(np.array(cost_matrix)) # Create response for idx, idy in zip(row_ind, col_ind): similarity.append(dict(caseid=simulation_data[idx]['caseid'], sim_order=simulation_data[idx]['profile'], log_order=log_data[idy]['profile'], sim_score=(cost_matrix[idx][idy] if metric == Metric.MAE else (1 - (cost_matrix[idx][idy]))) ) ) return similarity @staticmethod def _compare_traces(args): def ae_distance(et_1, et_2, st_1, st_2): cicle_time_s1 = (et_1 - st_1).total_seconds() cicle_time_s2 = (et_2 - st_2).total_seconds() ae = np.abs(cicle_time_s1 - cicle_time_s2) return ae def tsd_alpha(s_1, s_2, p_1, p_2, w_1, w_2, alpha_concurrency): """ Compute the Damerau-Levenshtein distance between two given strings (s_1 and s_2) Parameters ---------- comp_sec : dict alpha_concurrency : dict Returns ------- Float """ def calculate_cost(s1_idx, s2_idx): t_1 = p_1[s1_idx] + w_1[s1_idx] if t_1 > 0: b_1 = (p_1[s1_idx] / t_1) cost = ((b_1 * np.abs(p_2[s2_idx] - p_1[s1_idx])) + ((1 - b_1) * np.abs(w_2[s2_idx] - w_1[s1_idx]))) else: cost = 0 return cost dist = {} lenstr1 = len(s_1) lenstr2 = len(s_2) for i in range(-1, lenstr1 + 1): dist[(i, -1)] = i + 1 for j in range(-1, lenstr2 + 1): dist[(-1, j)] = j + 1 for i in range(0, lenstr1): for j in range(0, lenstr2): if s_1[i] == s_2[j]: cost = calculate_cost(i, j) else: cost = 1 dist[(i, j)] = min( dist[(i - 1, j)] + 1, # deletion dist[(i, j - 1)] + 1, # insertion dist[(i - 1, j - 1)] + cost # substitution ) if i and j and s_1[i] == s_2[j - 1] and s_1[i - 1] == s_2[j]: if alpha_concurrency[(s_1[i], s_2[j])] == Rel.PARALLEL: cost = calculate_cost(i, j - 1) dist[(i, j)] = min(dist[(i, j)], dist[i - 2, j - 2] + cost) # transposition return dist[lenstr1 - 1, lenstr2 - 1] def gen(metric: Metric, serie1, serie2, oracle, r): """Reads the simulation results stats""" try: df_matrix = list() for i, s1_ele in enumerate(serie1): for j, s2_ele in enumerate(serie2): element = {'i': r[0]['min'] + i, 'j': r[1]['min'] + j} if metric in [Metric.TSD, Metric.DL, Metric.DL_MAE]: element['s_1'] = s1_ele['profile'] element['s_2'] = s2_ele['profile'] element['length'] = max(len(s1_ele['profile']), len(s2_ele['profile'])) if metric is Metric.TSD: element['p_1'] = s1_ele['proc_act_norm'] element['p_2'] = s2_ele['proc_act_norm'] element['w_1'] = s1_ele['wait_act_norm'] element['w_2'] = s2_ele['wait_act_norm'] if metric in [Metric.MAE, Metric.DL_MAE]: element['et_1'] = s1_ele['end_time'] element['et_2'] = s2_ele['end_time'] element['st_1'] = s1_ele['start_time'] element['st_2'] = s2_ele['start_time'] df_matrix.append(element) df_matrix = pd.DataFrame(df_matrix) if metric is Metric.TSD: df_matrix['distance'] = df_matrix.apply( lambda x: tsd_alpha(x.s_1, x.s_2, x.p_1, x.p_2, x.w_1, x.w_2, oracle) / x.length, axis=1) elif metric is Metric.DL: df_matrix['distance'] = df_matrix.apply( lambda x: jf.damerau_levenshtein_distance(''.join(x.s_1), ''.join(x.s_2)) / x.length, axis=1) elif metric is Metric.MAE: df_matrix['distance'] = df_matrix.apply( lambda x: ae_distance(x.et_1, x.et_2, x.st_1, x.st_2), axis=1) elif metric is Metric.DL_MAE: df_matrix['dl_distance'] = df_matrix.apply( lambda x: jf.damerau_levenshtein_distance(''.join(x.s_1), ''.join(x.s_2)) / x.length, axis=1) df_matrix['mae_distance'] = df_matrix.apply( lambda x: ae_distance(x.et_1, x.et_2, x.st_1, x.st_2), axis=1) else: raise ValueError(metric) return df_matrix except Exception: traceback.print_exc() return gen(*args) # ============================================================================= # whole log MAE # ============================================================================= def log_mae_metric(self, log_data: list, simulation_data: list, metric: Metric) -> list: """ Measures the MAE distance between two whole logs Parameters ---------- log_data : list simulation_data : list Returns ------- list """ similarity = list() log_data = pd.DataFrame(log_data) simulation_data = pd.DataFrame(simulation_data) log_timelapse = (log_data.end_time.max() - log_data.start_time.min()).total_seconds() sim_timelapse = (simulation_data.end_time.max() - simulation_data.start_time.min()).total_seconds() similarity.append({'sim_score': np.abs(sim_timelapse - log_timelapse)}) return similarity # ============================================================================= # Log emd distance # ============================================================================= def log_emd_metric(self, log_data: list, simulation_data: list, criteria: Metric = Metric.HOUR_EMD) -> list: """ Measures the EMD distance between two logs on different aggregation levels specified by user by defaul per hour Parameters ---------- log_data : list simulation_data : list criteria : TYPE, optional DESCRIPTION. The default is 'hour'. Returns ------- list """ similarity = list() window = 1 # hist_range = [0, int((window * 3600))] log_data = pd.DataFrame(log_data) simulation_data = pd.DataFrame(simulation_data) def split_date_time(dataframe, feature, source): day_hour = lambda x: x[feature].hour dataframe['hour'] = dataframe.apply(day_hour, axis=1) date = lambda x: x[feature].date() dataframe['date'] = dataframe.apply(date, axis=1) # create time windows i = 0 daily_windows = dict() for hour in range(24): if hour % window == 0: i += 1 daily_windows[hour] = i dataframe = dataframe.merge(
pd.DataFrame.from_dict(daily_windows, orient='index')
pandas.DataFrame.from_dict
import tensorflow as tf from tensorflow.contrib.tensorboard.plugins import projector import argparse, sys, glob, os import pandas as pd import numpy as np from PIL import Image from tensorflow.python.ops import data_flow_ops import validate_on_lfw import lfw import facenet def parse_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument('--schema_dir', type=str, help='Directory with schema.', default='../datasets/main_dataset/Style Sku Family.csv') parser.add_argument('--model', type=str, help='Directory with preprocessed data.', default='../models/20210407-203650') parser.add_argument('--log', type=str, help='Directory with preprocessed data.', default='../logs/20210407-203650') parser.add_argument('--data_dir', type=str, help='Directory with data.', default='../datasets/raw_pangrams/') parser.add_argument('--write_dir', type=str, help='Directory with data.', default='../datasets/main_dataset/') parser.add_argument('--train_dir', type=str, help='Directory with data.', default='../datasets/crop7_train') parser.add_argument('--test_dir', type=str, help='Directory with data.', default='../datasets/crop7_test') return parser.parse_args(argv) def evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, embeddings, labels, image_paths, batch_size): # Run forward pass to calculate embeddings print('Runnning forward pass on LFW images') # Enqueue one epoch of image paths and labels nrof_images = len(image_paths) labels_array = np.expand_dims(np.arange(0,nrof_images),1) image_paths_array = np.expand_dims(np.repeat(np.array(image_paths),1),1) control_array = np.zeros_like(labels_array, np.int32) control_array += np.ones_like(labels_array)*facenet.FIXED_STANDARDIZATION sess.run(enqueue_op, {image_paths_placeholder: image_paths_array, labels_placeholder: labels_array, control_placeholder: control_array}) embedding_size = int(embeddings.get_shape()[1]) assert nrof_images % batch_size == 0, 'The number of LFW images must be an integer multiple of the LFW batch size' nrof_batches = nrof_images // batch_size emb_array = np.zeros((nrof_images, embedding_size)) lab_array = np.zeros((nrof_images,)) for i in range(nrof_batches): feed_dict = {phase_train_placeholder:False, batch_size_placeholder:batch_size} emb, lab = sess.run([embeddings, labels], feed_dict=feed_dict) lab_array[lab] = lab emb_array[lab, :] = emb if i % 10 == 9: #print('.', end='') sys.stdout.flush() print('') embeddings = np.zeros((nrof_images, embedding_size)) embeddings = emb_array return embeddings def get_embeddings(image_paths, model, batch_size): embeddings = None with tf.Graph().as_default(): with tf.Session() as sess: paths = image_paths actual_issame = None image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths') labels_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='labels') batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size') control_placeholder = tf.placeholder(tf.int32, shape=(None,1), name='control') phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train') nrof_preprocess_threads = 4 image_size = (100, 100) eval_input_queue = data_flow_ops.FIFOQueue(capacity=2000000, dtypes=[tf.string, tf.int32, tf.int32], shapes=[(1,), (1,), (1,)], shared_name=None, name=None) eval_enqueue_op = eval_input_queue.enqueue_many([image_paths_placeholder, labels_placeholder, control_placeholder], name='eval_enqueue_op') image_batch, label_batch = facenet.create_input_pipeline(eval_input_queue, image_size, nrof_preprocess_threads, batch_size_placeholder) # Load the model input_map = {'image_batch': image_batch, 'label_batch': label_batch, 'phase_train': phase_train_placeholder} facenet.load_model(model, input_map=input_map) # Get output tensor embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") coord = tf.train.Coordinator() tf.train.start_queue_runners(coord=coord, sess=sess) #for the first round save the input map, so that we can visualize images of positives embeddings = evaluate(sess, eval_enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, control_placeholder, embeddings, label_batch, paths, batch_size) return embeddings def find_images(args): schema =
pd.read_csv(args.schema_dir)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Thu Mar 24 18:15:35 2022 Used for plottinf future H2 scenarios for Section 3.4 @author: <NAME> """ # Standard Library imports import argparse import gzip import matplotlib.dates as mdates import matplotlib.pyplot as plt import netCDF4 import numpy as np import os import pandas as pd import sys import xarray as xr import csv import random import matplotlib.cm as cm import scipy.linalg import scipy.stats from scipy.stats import pearsonr from numpy import genfromtxt # Third party imports from collections import OrderedDict from datetime import datetime # Semi-local imports import name_qch4_couple.io import name_qch4_couple.name import name_qch4_couple.plot_h2 # Local imports import chem_co # Plots date = '2018-04' # Dates dates_tHour = pd.date_range( pd.to_datetime(date), pd.to_datetime(date) + pd.DateOffset(months=12), closed='left', freq='1H' ) # import scenarios mod_0, sigma_obs_H2 = chem_co.read_obs(dates_tHour, 'mod', 0) mod_4, sigma_obs_H2 = chem_co.read_obs(dates_tHour, 'mod', 0.035) mod_8, sigma_obs_H2 = chem_co.read_obs(dates_tHour, 'mod', 0.165) mod_12, sigma_obs_H2 = chem_co.read_obs(dates_tHour, 'mod', 0.241) # import modelled 'baselines' bas_mhd, sigma_obs_H2 = chem_co.read_obs(dates_tHour, 'bas_mhd', 0) bas_wao, sigma_obs_H2 = chem_co.read_obs(dates_tHour, 'bas_wao', 0) # plot H2 concentraion scenarios fig = {} ax = {} fig_param = { 'w': 10, 'h': 3, 'px0': 0.80, 'py0': 0.50, 'pw': 9.15, 'ph': 2.45, 'ylblx': 0.05, 'ylbly': 1.5, # left, centre aligned 'fontsize': 6, } plt.close('all') # Concentration fig['main'] = plt.figure(figsize=(fig_param['w'], fig_param['h']), dpi=300) for i in ['H2']: fig['main'].clf() ax['main'] = name_qch4_couple.plot_h2.generic( fig=fig['main'], idata={ 'bas_mhd': [ 'fill', [dates_tHour, np.array(bas_mhd), np.array(bas_wao)], { 'facecolor': '#9D9D9D', 'lw': 0.5, 'label': '', 'ls':'-'} ], 'mod13': [ 'line', [dates_tHour, np.array(mod_12), '-'], {'c': '#d73027', 'lw': 0.5, 'label': ''} ], 'mod9': [ 'line', [dates_tHour, np.array(mod_8), '-'], {'c': '#fc8d59', 'lw': 0.5, 'label': ''} ], 'mod5': [ 'line', [dates_tHour, np.array(mod_4), '-'], {'c': '#91bfdb', 'lw': 0.5, 'label': ''} ], # 'mod1': [ # 'line', # [dates_tHour, np.array(mod_0), '--'], # {'c': '#fee090', 'lw': 0.5, 'label': ''} # ], }, texts=[ { 'x': fig_param['ylblx'] / fig_param['w'], 'y': fig_param['ylbly'] / fig_param['h'], 's': ( u'$\chi$ H$_{2}$ (nmol mol$^{-1}$)' ), 'ha': 'left', 'va': 'center', 'size': fig_param['fontsize'], 'rotation': 90 } ], xlim=[ pd.to_datetime(date),
pd.to_datetime(date)
pandas.to_datetime
#! /usr/bin/env python from __future__ import print_function import pandas as pd import numpy as np import argparse def generate_csv(num_rows, num_cols, num_distinct_vals, fname): cols = [str('A' + str(i)) for i in range(num_cols)] data = [] if type(num_distinct_vals) is list or type(num_distinct_vals) is tuple: for i in range(num_rows): vals = [i] # first column is the primary key vals += list( np.random.choice(num_distinct_vals[j]) for j in range(0, num_cols - 1)) data.append(vals) else: for i in range(num_rows): vals = (np.random.choice(num_distinct_vals) for j in range(num_cols)) data.append(vals) df =
pd.DataFrame(data=data, columns=cols)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: <NAME> NHK COVID-19 Dataset Data link: https://www3.nhk.or.jp/n-data/opendata/coronavirus/nhk_news_covid19_prefectures_daily_data.csv Q: How it works? A: It gets NHK COVID-19 dataset automatically and saves as working csv, then plots them. Q: How to use this file? A: Input to choose which column of data. And input to choose the prefecture(s) to plot. """ #import numpy as np import pandas as pd import matplotlib.dates as mdates import matplotlib.ticker as ticker import matplotlib.pyplot as plt import io import requests # NHK COVID-19 Dataset. url="https://www3.nhk.or.jp/n-data/opendata/coronavirus/nhk_news_covid19_prefectures_daily_data.csv" s=requests.get(url).content data_all=pd.read_csv(io.StringIO(s.decode('utf-8'))) df0 = data_all.rename(columns = {'日付': 'Date', '都道府県コード': 'Prefecture_ID', '都道府県名':'Name', '各地の感染者数_1日ごとの発表数':'Daily_Confirmed_Cases', '各地の感染者数_累計':'Daily_Confirmed_Cases_Total', '各地の死者数_1日ごとの発表数':'Daily_Death', '各地の死者数_累計':'Death_Total', '各地の直近1週間の人口10万人あたりの感染者数':'Death_Ratio_of_Population(100k)'}, inplace = False) # Set data-filter. # INPUTS START. Chosen_Col = '6' # in Col_Dict Chosen_Prefecture_ID = [1,13,47] # Cho0se 3 in Prefecture_Dict # INPUTS END. # Inputs sources. # Make columm names as dict data-type. Set ONE of them to analyze. Col_Dict = {'0':'Prefecture_ID', '1':'Name', '2':'Daily_Confirmed_Cases', '3':'Daily_Confirmed_Cases_Total', '4':'Daily_Death', '5':'Death_Total', '6':'Death_Ratio_of_Population(100k)'} # Prefecture_Dict Prefecture_Dict = {'1': 'Hokkaido','2': 'Aomori','3': 'Iwate','4': 'Miyagi','5': 'Akita','6': 'Yamagata','7': 'Fukushima', '8': 'Ibaraki','9': 'Tochigi','10': 'Gunma','11': 'Saitama','12': 'Chiba','13': 'Tokyo','14': 'Kanagawa', '15': 'Niggata','16': 'Toyama','17': 'Ishikawa','18': 'Fukui','19': 'Yamanashi','20': 'Nagano', '21': 'Gifu','22': 'Shizuoka','23': 'Aichi','24': 'Mie','25': 'Shiga','26': 'Kyoto','27': 'Osaka', '28': 'Hyogo','29': 'Nara','30': 'Wakayama','31': 'Totori','32': 'Shimane','33': 'Okayama','34': 'Hiroshima', '35': 'Yamaguchi','36':'Tokushima','37': 'Kagawa','38': 'Ehime','39': 'Kochi','40': 'Fukuoka', '41': 'Saga','42': 'Nagasaki','43': 'Kumamoto','44': 'Oita','45': 'Miyazaki','46': 'Kagoshima','47': 'Okinawa'} # Filter data to plot and save. # Pandas 查询筛选数据: https://www.gairuo.com/p/pandas-selecting-data # Pandas filter 筛选标签: https://www.gairuo.com/p/pandas-filter # Ref: https://qiita.com/FukuharaYohei/items/5b739a5ceb43d25aa2cd # ref: https://www.cxyzjd.com/article/yeziand01/94412056 df00 = df0.loc[df0['Prefecture_ID'].isin(Chosen_Prefecture_ID),['Date','Prefecture_ID',Col_Dict[Chosen_Col]]] df01 = pd.DataFrame(index=[], columns=[]) df_tmp =
pd.DataFrame(index=[], columns=[])
pandas.DataFrame
import coloredlogs import datetime import errno import ipaddress import logging import maxminddb import os from numpy import source import pandas as pd import getpass import pyesedb as esedb import sqlite3 import sys import traceback import uuid import binascii import struct import time from argparse import ArgumentParser from configparser import ConfigParser from datetime import datetime, timedelta from binascii import unhexlify from pandas.core.frame import DataFrame from pandas.io.parsers import ParserError from struct import unpack __author__ = '<NAME>' __version__ = '20211106' __credit__ = 'Inspired by BriMor Labs/KStrike' """ BSD 3-Clause License Copyright (c) 2021, <NAME> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Requirements: * Python3 * Colorlogs (pip install colorlog) * maxminddb (pip install maxminddb) * Pandas (pip install pandas) * libesedb (pyesedb) (compile from source: https://github.com/libyal/libesedb) (pip install libesedb-python failed for 3.8 and 3.9, YMMVH) * GeoLite2-City.mmdb (https://www.maxmind.com) Artifact References: https://www.crowdstrike.com/blog/user-access-logging-ual-overview/ https://advisory.kpmg.us/blog/2021/digital-forensics-incident-response.html https://en.wikipedia.org/wiki/Extensible_Storage_Engine """ class LogClass: def __init__(self, logname, debug_level=20): """ Critical == 50 Error == 40 Warning == 30 Info == 20 Debug == 10 Notset = 0 """ current_user = getpass.getuser() # log_format = '%(asctime)s:%(levelname)s:%(message)s' # date_fmt = '%m/%d/%Y %I:%M:%S' # logging.basicConfig(filename=logname, format=log_format, level=debug_level, filemode='a', datefmt=date_fmt) # console = logging.StreamHandler() # console.setLevel(debug_level) # formatter = logging.Formatter(log_format) # console.setFormatter(formatter) # logging.getLogger('').addHandler(console) clr_log_format = '%(asctime)s:%(hostname)s:%(programname)s:%(username)s[%(process)d]:%(levelname)s:%(message)s' coloredlogs.install(level=debug_level, fmt=clr_log_format) @staticmethod def log(level='info', message=''): if level.lower() == 'debug': logging.debug(message) if level.lower() == 'info': logging.info(message) if level.lower() == 'warning': logging.warning(message) if level.lower() == 'error': logging.error(message) if level.lower() == 'critical': logging.critical(message) class PrepClass: def __init__(self, raw_output_path): self.raw_output_path = raw_output_path self.log_file = os.path.join(self.raw_output_path, 'Script Processing.log') self.sql_db = os.path.join(self.raw_output_path, 'UAL_DB.sqlite') self.sql_file = '' self.db_setup = '' self.p_log = '' self.config = '' def setup_logging(self, debug_mode=False): log_level = 'info' if debug_mode: log_level = 'debug' numeric_level = getattr(logging, log_level.upper(), None) if not isinstance(numeric_level, int): raise ValueError('Invalid log level: %s' % log_level) self.p_log = LogClass(self.log_file, numeric_level) return self.p_log def setup_output_directory(self): if not os.path.exists(self.raw_output_path): try: os.makedirs(self.raw_output_path) except OSError as error: if error.errno != errno.EEXIST: raise class UALClass: def __init__(self, config_dict): self.config_dict = config_dict self.source_path = config_dict['raw_input_path'] self.ese_dbs = self.get_ese_files(self.source_path) self.out_path = config_dict['raw_output_path'] self.maxmind_db = config_dict['maxminddb'] self.ftype = config_dict['ftype'] self.plog = config_dict['p_log'] self.sql_db = os.path.join(self.out_path, 'UAL.db') self.GUID = list() self.chained_databases = dict() self.system_identity = list() self.series_list = list() self.chain_db_df = pd.DataFrame() self.role_ids_df =
pd.DataFrame()
pandas.DataFrame
import os import json import pandas as pd import zipfile from werkzeug.utils import secure_filename import shutil import time from random import randint from datetime import timedelta import tempfile import sys from elasticsearch import Elasticsearch ## ## # dataframes from dataframes import dataframe # functions from grading_checks import naming, usage, documentation_logging, error_handling from soft_checks import activity_stats, project_folder_structure, project_structure, template_check, selector_check from flask import Flask, request, render_template, redirect, url_for, session, jsonify, Response, send_file, make_response from flask_session import Session from flask_socketio import SocketIO, emit from flask_mysqldb import MySQL import MySQLdb.cursors from passlib.hash import sha256_crypt import pdfkit # es = Elasticsearch(['https://098b8510b627461cb0e77d37d10c4511.us-east-1.aws.found.io:9243'], # http_auth=('elastic', '<PASSWORD>')) application = app = Flask(__name__, static_folder='./static/dist', template_folder="./static") # dont save cache in web browser (updating results image correctly) app.config["CACHE_TYPE"] = "null" app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 0 app.config['UPLOAD_PATH'] = '/file/' app.config['ALLOWED_EXTENSIONS'] = set(['zip']) app.config['SESSION_TYPE'] = 'filesystem' app.config['PERMANENT_SESSION_LIFETIME'] = timedelta(hours=1) app.config['SECRET_KEY'] = randint(0,99999999999999999999) app.config['MYSQL_HOST'] = 'us-sql01.mysql.database.azure.com' app.config['MYSQL_PORT'] = 3306 app.config['MYSQL_USER'] = 'us-evalsql01@us-sql01' app.config['MYSQL_PASSWORD'] = '<PASSWORD>' app.config['MYSQL_DB'] = 'sleipnir' app.config['APP_ADMIN_RIGHT'] = 'admin' mysql = MySQL(app) # Check Configuration section for more details Session(app) socketio = SocketIO(app, async_mode="eventlet") thread = None ###### gexf = '' df_annotation = [] main_location = "" dict_score = {} df_invokeWf = [] pepper = 'zxf98g7yq3whretgih' ###### @app.route("/") def login(): with app.app_context(): folderPathList = [os.getcwd().replace("\\", "/") + app.config['UPLOAD_PATH'] + path for path in os.listdir(os.getcwd() + app.config['UPLOAD_PATH'])] filteredFolderPathList = [path for path in folderPathList if time.time() - os.path.getmtime(path) > 900] for folder in filteredFolderPathList: shutil.rmtree(folder, True) sessionPathList = [os.getcwd().replace("\\", "/") + '/flask_session/' + path for path in os.listdir(os.getcwd() + '/flask_session/')] filteredSessionPathList = [path for path in sessionPathList if time.time() - os.path.getmtime(path) > 900] for ses in filteredSessionPathList: print(ses) os.remove(ses) if session.get("loggedin"): return redirect(url_for('upload')) else: return render_template('login.html') @app.route("/login", methods=['POST']) def validate_user(): with app.app_context(): requestData = json.loads(str(request.data, encoding="utf-8")) tenant = requestData['tenant'] username = requestData['username'] password = requestData['password'] cursor = mysql.connection.cursor(MySQLdb.cursors.DictCursor) cursor.execute("SELECT id FROM tenants WHERE tenant_name = %s", (tenant,)) tenant_record = cursor.fetchone() if tenant_record: tenant_id = tenant_record["id"] cursor.execute('SELECT id, password FROM users WHERE username = %s AND tenant_id = %s', (username, tenant_id,)) user_record = cursor.fetchone() if user_record: user_id = user_record["id"] storedHashedPassword = user_record["password"] if sha256_crypt.verify(password+pepper, storedHashedPassword): resp = jsonify({"result": render_template('fileUpload.html', username=username, user_id=user_id)}) session['loggedin'] = True session['id'] = user_id session['username'] = username cursor.close() return make_response(resp, 200) else: cursor.close() resp = jsonify({"message": "Wrong password"}) return make_response(resp, 400) else: cursor.close() resp = jsonify({"message": "User not exists"}) return make_response(resp, 400) else: cursor.close() resp = jsonify({"message": "Tenant not exists"}) return make_response(resp, 400) @app.route('/logout') def logout(): with app.app_context(): session.pop('loggedin', None) session.pop('id', None) session.pop('username', None) return redirect(url_for('login')) @app.route("/admin", methods=['GET']) def admin(): with app.app_context(): if session.get('loggedin'): cursor = mysql.connection.cursor(MySQLdb.cursors.DictCursor) cursor.execute("SELECT * FROM users_rights WHERE user_id = %s " "AND right_id IN (SELECT id FROM rights WHERE `right` = %s);", (int(session.get('id')), app.config['APP_ADMIN_RIGHT'],)) if cursor.fetchone(): cursor.close() return render_template('adminPanel.html', username=session.get('username'), user_id=session.get('id')) else: cursor.close() return "Not Authorized" else: return "Please login first" @app.route('/upload') def upload(): with app.app_context(): folderPathList = [os.getcwd().replace("\\", "/") + app.config['UPLOAD_PATH'] + path for path in os.listdir(os.getcwd() + app.config['UPLOAD_PATH'])] filteredFolderPathList = [path for path in folderPathList if time.time() - os.path.getmtime(path) > 900] for folder in filteredFolderPathList: shutil.rmtree(folder, True) if session.get('loggedin'): return render_template('fileUpload.html', username=session.get('username'), user_id=session.get('id')) else: return "Please login first" def background_thread(): while True: socketio.emit('message', {'alive': "Alive"}) socketio.sleep(60) @socketio.on('connect') def connect(): global thread if thread is None: thread = socketio.start_background_task(target=background_thread) @app.route("/processing", methods=["POST"]) def processing(): requestData=json.loads(str(request.data, encoding="utf-8")) # Get related info from Project.json (name and description) folderPath = session.get('folderPath') fileLocationStr = session.get('fileLocationStr') files = session.get('files') df_json = documentation_logging.grade_project_json_name_desc(folderPath) df_json_exp = pd.DataFrame(df_json.subfiles.tolist(), index=df_json['index']).stack().reset_index() df_json_exp.columns = ['projectId', 'fileIndex', 'filePath'] lst_name = [] df_json['projectName'] = df_json.apply(lambda x: x['projectDetail']['projectName'], axis=1) for name in list(df_json['projectName']): if name not in lst_name: lst_name.append(name) else: count = 2 dup_name = name + '_' + str(count) while dup_name in lst_name: count += 1 dup_name = name + '_' + str(count) lst_name.append(dup_name) df_json['projectName'] = lst_name df_json_exp = pd.merge(df_json_exp, df_json.loc[:, ["mainFolder", 'projectName']].reset_index(), how="left", left_on="projectId", right_on="index") df_json_exp.drop(columns=['fileIndex', "index"], inplace=True) if requestData["setting"]["jsonLog"]: project_detail = list(df_json.copy().reset_index().loc[:, ['index', 'projectDetail', 'projectName']] .T.to_dict().values()) json_name_score = df_json.namingScore.sum() / len(df_json.namingScore) json_description_score = df_json.descriptionScore.sum() / len(df_json.descriptionScore) else: json_name_score = "[Not evaluated]" json_description_score = "[Not evaluated]" project_detail = ['Not evaluated'] # scans all project files and populates dataframes with relevant info socketio.emit('progress', {'data': 'Processing Files ...'}) socketio.sleep(0.1) lst_sub_df = [dataframe.populate_dataframe(files[i], df_json) for i in range(len(files))] df_variable = pd.merge(pd.concat([x[0] for x in lst_sub_df], ignore_index=True).drop_duplicates(inplace=False), df_json_exp, how="left", on="filePath") df_argument = pd.merge(pd.concat([x[1] for x in lst_sub_df], ignore_index=True).drop_duplicates(inplace=False), df_json_exp, how="left", on="filePath") df_catches = pd.merge(pd.concat([x[2] for x in lst_sub_df], ignore_index=True).drop_duplicates(inplace=False), df_json_exp, how="left", on="filePath") df_activity = pd.merge(pd.concat([x[3] for x in lst_sub_df], ignore_index=True).drop_duplicates(inplace=False), df_json_exp, how="left", on="filePath") df_annotation = pd.concat([x[4] for x in lst_sub_df], ignore_index=True).drop_duplicates(inplace=False) df_selector = pd.merge(pd.concat([x[5] for x in lst_sub_df], ignore_index=True).drop_duplicates(inplace=False), df_json_exp, how="left", on="filePath") dict_score = {} # level 1: grading checks # level 2: name # if session.get("naming"): if True: # level 3: variable naming if requestData["setting"]['varName']: [variableNamingScore, improperNamedVariable] = naming.grade_variable_name(df_variable=df_variable) improperNamedVar = improperNamedVariable else: improperNamedVar = pd.DataFrame(columns=['name', 'file', 'type', 'error', 'project']) variableNamingScore = "[Not evaluated]" # level 3: argument naming if requestData["setting"]['argName']: [argumentNamingScore, improperNamedArguments] = naming.grade_argument_name(df_argument=df_argument) improperNamedArg = improperNamedArguments else: improperNamedArg = pd.DataFrame(columns=['name', 'file', 'type', 'error', 'project']) argumentNamingScore = "[Not evaluated]" # level 3: activity naming if requestData["setting"]['actName']: [activityNamingScore, improperNamedActivities] = naming.grade_activity_name(df_activity=df_activity) improperNamedAct = improperNamedActivities else: improperNamedAct = pd.DataFrame(columns=['name', 'file', 'type', 'error', 'project']) activityNamingScore = "[Not evaluated]" lt_namingScore = [variableNamingScore, argumentNamingScore, activityNamingScore] namingScore = 0 count = 0 for i in lt_namingScore: if i != "[Not evaluated]": namingScore += i count += 1 if count==0: namingScore = "[Not evaluated]" else: namingScore = int(namingScore / count) else: improperNamedVar =
pd.DataFrame(columns=['name', 'file', 'type', 'error', 'project'])
pandas.DataFrame
from __future__ import print_function from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Series, Index, Int64Index, Timestamp, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Timedelta, timedelta_range, date_range, Float64Index, _np_version_under1p10) import pandas.tslib as tslib import pandas.tseries.period as period import pandas.util.testing as tm from pandas.tests.test_base import Ops class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setUp(self): super(TestDatetimeIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'], lambda x: isinstance(x, DatetimeIndex)) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: self.assertRaises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) self.assertEqual(s.year, 2000) self.assertEqual(s.month, 1) self.assertEqual(s.day, 10) self.assertRaises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timestamp('2011-01-01', tz=tz)) self.assertEqual(idx.max(), Timestamp('2011-01-03', tz=tz)) self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(dr), Timestamp('2016-01-15 00:00:00', freq='D')) self.assertEqual(np.max(dr), Timestamp('2016-01-20 00:00:00', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, dr, out=0) self.assertEqual(np.argmin(dr), 0) self.assertEqual(np.argmax(dr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assertRaisesRegexp(ValueError, msg): rng.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, rng.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) self.assertIsNone(res.freq) tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assertRaisesRegexp(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) self.assertEqual(idx.resolution, expected) def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assertRaisesRegexp(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assertRaisesRegexp(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with tm.assertRaises(TypeError): dti + dti with tm.assertRaises(TypeError): dti_tz + dti_tz with tm.assertRaises(TypeError): dti_tz + dti with tm.assertRaises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with tm.assertRaises(TypeError): dti_tz - dti with tm.assertRaises(TypeError): dti - dti_tz with tm.assertRaises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with tm.assertRaises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_comp_nat(self): left = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) right = pd.DatetimeIndex([pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 for tz in self.tz: idx = pd.date_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range('2011-01-01 18:00', freq='-1H', periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range('2011-01-01 09:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], tz=tz) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(DatetimeIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['2015', '2015', '2016'], ['2015', '2015', '2014'])): tm.assertIn(idx[0], idx) def test_order(self): # with freq idx1 = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D', name='idx') idx2 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo', name='tzidx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) # without freq for tz in self.tz: idx1 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx1') exp1 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx1') idx2 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx2') exp2 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx2') idx3 = DatetimeIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], tz=tz, name='idx3') exp3 = DatetimeIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx[0:5] expected = pd.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx.take([0, 1, 2]) expected = pd.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D', '-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S']: idx = pd.date_range('2011-01-01 09:00:00', freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.date_range('2011-01-01', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.DatetimeIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 for tz in self.tz: idx = pd.DatetimeIndex([], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.DatetimeIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.DatetimeIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_nat(self): self.assertIs(pd.DatetimeIndex._na_value, pd.NaT) self.assertIs(pd.DatetimeIndex([])._na_value, pd.NaT) for tz in [None, 'US/Eastern', 'UTC']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'], tz='US/Pacific') self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) # same internal, different tz idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) self.assertFalse(idx.equals(idx3)) self.assertFalse(idx.equals(idx3.copy())) self.assertFalse(idx.equals(idx3.asobject)) self.assertFalse(idx.asobject.equals(idx3)) self.assertFalse(idx.equals(list(idx3))) self.assertFalse(idx.equals(pd.Series(idx3))) class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestPeriodIndexOps(Ops): def setUp(self): super(TestPeriodIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['qyear'], lambda x: isinstance(x, PeriodIndex)) def test_asobject_tolist(self): idx = pd.period_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [pd.Period('2013-01-31', freq='M'), pd.Period('2013-02-28', freq='M'), pd.Period('2013-03-31', freq='M'), pd.Period('2013-04-30', freq='M')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = PeriodIndex(['2013-01-01', '2013-01-02', 'NaT', '2013-01-04'], freq='D', name='idx') expected_list = [pd.Period('2013-01-01', freq='D'), pd.Period('2013-01-02', freq='D'), pd.Period('NaT', freq='D'), pd.Period('2013-01-04', freq='D')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) tm.assert_index_equal(result, expected) for i in [0, 1, 3]: self.assertEqual(result[i], expected[i]) self.assertIs(result[2], pd.NaT) self.assertEqual(result.name, expected.name) result_list = idx.tolist() for i in [0, 1, 3]: self.assertEqual(result_list[i], expected_list[i]) self.assertIs(result_list[2], pd.NaT) def test_minmax(self): # monotonic idx1 = pd.PeriodIndex([pd.NaT, '2011-01-01', '2011-01-02', '2011-01-03'], freq='D') self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.PeriodIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], freq='D') self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), pd.Period('2011-01-01', freq='D')) self.assertEqual(idx.max(), pd.Period('2011-01-03', freq='D')) self.assertEqual(idx1.argmin(), 1) self.assertEqual(idx2.argmin(), 0) self.assertEqual(idx1.argmax(), 3) self.assertEqual(idx2.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = PeriodIndex([], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT, pd.NaT, pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) def test_numpy_minmax(self): pr = pd.period_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(pr), Period('2016-01-15', freq='D')) self.assertEqual(np.max(pr), Period('2016-01-20', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, pr, out=0) self.assertEqual(np.argmin(pr), 0) self.assertEqual(np.argmax(pr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, pr, out=0) def test_representation(self): # GH 7601 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 =
pd.period_range('2013Q1', periods=1, freq="Q")
pandas.period_range
import datetime import os import time import pandas as pd import requests HOST = 'https://wsn.latice.eu' #HOST = 'http://localhost:8000' # For the developer # Prepare the session TOKEN = os.getenv('WSN_TOKEN') # export WSN_TOKEN=xxx session = requests.Session() session.headers.update({'Authorization': f'Token {TOKEN}'}) def query( db, # postgresql or clickhouse table=None, # clickhouse table name fields=None, # Fields to return: all by default tags=None, # postgresql metadata fields (none by default) time__gte=None, time__lte=None, # Time range (sampled) received__gte=None, received__lte=None, # Time range (received) limit=100, # Limit interval=None, interval_agg=None, # Aggregates format='pandas', # pandas or json time_index=True, # Return pandas dataframe with time as index # (only valid if format 'pandas' is selected) debug=False, **kw # postgresql filters (name, serial, ...) ): """ query('clickhouse', table='', ...) -> dataframe or dict query('postgresql', ...) -> dataframe or dict Retrieves data from the UiO Django system. Selecting data (rows) ===================== First choose the database to pull data from, choices are clickhouse (for raw data from finse/mobile flux), and postgresql (for everything else). How data is selected depends on the database used. ClickHouse: query('clickhouse', table='finseflux_Biomet', ...) Choices for table are: finseflux_Biomet, finseflux_StationStatus, mobileflux_Biomet and mobileflux_StationStatus. PostgreSQL: query('postgresql', name='eddypro_Finseflux', ...) query('postgresql', serial=0x1F566F057C105487, ...) query('postgresql', source_addr_long=0x0013A2004105D4B6, ...) Data from PostgreSQL can be queried by any metadata information, most often the name is all you need. Selecting fields (columns) ========================== If the fields parameter is not given, all the fields will be returned. This is only recommended to explore the available columns, because it may be too slow and add a lot of work on the servers. So it is recommended to ask only for the fields you need, it will be much faster. Examples: query('clickhouse', table='finseflux_Biomet', fields=['LWIN_6_14_1_1_1', 'LWOUT_6_15_1_1_1'], ...) query('postgresql', name='eddypro_Finseflux', fields=['co2_flux'], ...) The field 'time' is always included, do not specify it. It's a Unix timestamp (seconds since the Unix epoch). The rows returned are ordered by this field. Selecting a time range ========================== Use the parameters time__gte and/or time__lte to define the time range of interest. The smaller the faster the query will run. These parameters expect a datetime object. If the timezone is not specified it will be interpreted as local time, but it's probably better to explicitely use UTC. Example: query( 'clickhouse', table='finseflux_Biomet', fields=['LWIN_6_14_1_1_1', 'LWOUT_6_15_1_1_1'], time__gte=datetime.datetime(2018, 3, 1, tzinfo=datetime.timezone.utc), time__lte=datetime.datetime(2018, 4, 1, tzinfo=datetime.timezone.utc), ... ) NOTE: 'time' is the sampled time, when the value was recorded by the data logger. It's also possible to filter by the received time, when the gateway received the data frame. For that purpose use `received__gte` and `received__lte`. Note that not all frames have this information, for example those that have been uploaded to the server from the SD card. Limiting the number of rows =========================== The limit parameter defines the maximum number of rows to return. If not given all selected rows will be returned. Example: query( 'clickhouse', table='finseflux_Biomet', fields=['LWIN_6_14_1_1_1', 'LWOUT_6_15_1_1_1'], time__gte=datetime.datetime(2018, 3, 1, tzinfo=datetime.timezone.utc), time__lte=datetime.datetime(2018, 4, 1, tzinfo=datetime.timezone.utc), limit=1000000, ) Intervals and aggregates =========================== Instead of returning every data point, it's possible split the time range in intervals and return only one row per interval. This can greatly reduce the amount of data returned, speeding up the query. For this purpose pass the interval parameter, which defines the interval size in seconds. The interval is left-closed and right-open. By default the first row found within the interval will be returned. The time column will be that of the first row. For example, if the interval is 1 hour and the first row is at :05 then the time column will be :05 If the interval_agg parameter is passed, then an aggregate for every column within the interval will be returned. The time column will be the beginning of the interval. For example if the interval is 1h, the time column will be :00 Example (interval size is 5 minutes): query( 'clickhouse', table='finseflux_Biomet', fields=['LWIN_6_14_1_1_1', 'LWOUT_6_15_1_1_1'], time__gte=datetime.datetime(2018, 3, 1, tzinfo=datetime.timezone.utc), time__lte=datetime.datetime(2018, 4, 1, tzinfo=datetime.timezone.utc), limit=1000000, interval=60*5, interval_agg='avg', ) If using postgresql the available functions are: avg, count, max, min, stddev, sum and variance. If using clickhouse any aggregate function supported by ClickHouse can be used, see https://clickhouse-docs.readthedocs.io/en/latest/agg_functions/ Tags (PostgreSQL only) =========================== With PostgreSQL only, you can pass the tags parameter to add metadata information to every row. Example: query( 'postgresql', name='fw-001', fields=['latitude', 'longitude'], tags=['serial'], ) In this example, the data from fw-001 may actually come from different devices, maybe the device was replaced at some point. Using the tags parameter we can add a column with the serial number of the devices. Tags don't work with aggregated values. Returns =========================== This function returns by default a Pandas dataframe. Use format='json' to return instead a Python dictionary, with the data as was sent by the server. Debugging =========================== With debug=True this function will print some information, useful for testing. Default is False. """ t0 = time.perf_counter() url = HOST + f'/api/query/{db}/' # Parameters to_timestamp = lambda x: int(x.timestamp()) if x else x time__gte = to_timestamp(time__gte) time__lte = to_timestamp(time__lte) received__gte = to_timestamp(received__gte) received__lte = to_timestamp(received__lte) if interval_agg == 'mean': interval_agg = 'avg' params = { 'table': table, 'fields': fields, 'tags': tags, 'time__gte': time__gte, 'time__lte': time__lte, 'received__gte': received__gte, 'received__lte': received__lte, 'limit': limit, 'interval': interval, 'interval_agg': interval_agg, } # Filter inside json for key, value in kw.items(): if value is None: params[key] = None continue if type(value) is datetime.datetime: value = int(value.timestamp()) if isinstance(value, int): key += ':int' params[key] = value # Query response = session.get(url, params=params) response.raise_for_status() json = response.json() data = json if format == 'pandas': if data['format'] == 'sparse': data = pd.json_normalize(data['rows']) else: data =
pd.DataFrame(data['rows'], columns=data['columns'])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: andreypoletaev """ # ============================================================================= # %% Block 1: initial imports # ============================================================================= import os, sys, re, glob if os.path.join(os.path.abspath(os.getcwd()), "utils") not in sys.path : sys.path.append(os.path.join(os.path.abspath(os.getcwd()), "utils")) import numpy as np import pandas as pd import hop_utils as hu from crystal_utils import read_lmp from scipy.optimize import curve_fit as cf from scipy.interpolate import interp1d from datetime import datetime as dt from matplotlib import pyplot as plt from matplotlib.colors import LinearSegmentedColormap from matplotlib.patches import Rectangle from batlow import cm_data batlow_cm = LinearSegmentedColormap.from_list('batlow', cm_data) batlow_even = LinearSegmentedColormap.from_list('batlow_even', hu.batlow_lightness_scaled(0.4,0.6)) from cycler import cycler linecycler = cycler(linestyle=['-', '--', ':', '-.']) markcycler = cycler(marker=['o', 's', 'v', 'd', '^']) from itertools import cycle markers = cycle(['o', 's', 'v', 'd', '^','D','<','>']) lines = cycle(['-', '--', '-.', ':']) ## linear fitting linfit = lambda x, *p : p[0] * x + p[1] ## cosmetic defaults for matplotlib plotting plt.rc('legend', fontsize=10) plt.rc('axes', labelsize=14) plt.rc('axes', titlesize=14) plt.rc('xtick', labelsize=12) plt.rc('ytick', labelsize=12) plt.rc('errorbar', capsize=3) plt.rc('markers', fillstyle='none') plt.rc("savefig", format='pdf') ## variables by which it is possible to plot relevant_vars = ['metal','phase','T1','config','stoich','exclude','z'] ## which atoms to query for species ## conductivity from bulk diffusion coefficient. Takes D_bulk [cm^2/sec], cell [AA] ## output is [Kelvin/ohm/cm] i.e. [Kelvin * siemens / cm] ## note that there is only one q in the formula because hu.kb is [eV/K] q = 1.602e-19 ## [Coulomb] elementary charge AA = 1e-8 ## [cm] 1 angstrom in cm sigma_T = lambda N, cell, d_com : q * N / np.prod(np.diag(cell*AA))*d_com / hu.kb unit_conv = 1e-4 ## [cm^2/sec] 1 AA^2/psec = 0.0001 cm^2/sec. No need to change this. eps_0 = 8.854187e-12 ## [A^2 m^-3 kg^-1 sec^4] T1 = 300 ## dictionary of units units = {'T1':'K', 'metal':'', 'stoich':'', 'exclude':'', 'config':'', 'z':'', 'phase':f' {T1}K'} ## shorthands for labels bdp = r'$\beta^{\prime\prime}$' beta = r'$\beta$' phases = {'beta':beta, 'bdp':bdp} # ============================================================================= # %% Block 2 : load files based on the index of conduction planes created in # ## analysis_steadystate.py # ## The a2_...fix files are assumed to be located in the same folders as their # ## corresponding lammps structure files. # ============================================================================= ## database of all the hops: only combined planes matter for macro analyses. all_planes = pd.read_csv('./sample_data/all_hop_planes.csv').query('z == "z_all"') ## flag for loading atoms frac = False ## flag for loading CoM immediately load_com = False ## flag for loading the output of the LAMMPS msd fix load_r2 = False ## ===== BETA single-metal ===== ## ===== BETA Ag ===== planes_to_load = all_planes.query('metal == "Ag" & config == "120_4" & T1 in [300,600,1000]') ## ===== BETA Na ===== # planes_to_load = all_planes.query('metal == "Na" & phase == "beta" & stoich == "120" ') # planes_to_load = all_planes.query('metal == "Na" & phase == "beta" & stoich == "120" & T1 == 300') # planes_to_load = all_planes.query('metal == "Na" & phase == "beta" & stoich == "120" & T1 == 600') # planes_to_load = all_planes.query('metal == "Na" & phase == "beta" & config == "120_4" & T1 in [300,600,1000]') # planes_to_load = all_planes.query('metal == "Na" & phase == "beta" & config == "120_4" & T1 in [300,600]') # planes_to_load = all_planes.query('metal == "Na" & phase == "beta" & config == "120_4" & T1 == 300') # planes_to_load = all_planes.query('metal == "Na" & phase == "beta" & config == "120_1"') ## ===== BETA K ===== # planes_to_load = all_planes.query('metal == "K" & stoich == "120" & 300 < T1 < 900') # planes_to_load = all_planes.query('metal == "K" & stoich == "120" & T1 in [300, 600]') # planes_to_load = all_planes.query('metal == "K" & config == "120_4"') # planes_to_load = all_planes.query('metal == "K" & config == "120_4" & T1 in [300,600,1000]') ## ===== BETA all metals together ===== # planes_to_load = all_planes.query('phase == "beta" & config == "120_4" & T1 == 1000') # planes_to_load = all_planes.query('phase == "beta" & config == "120_4" & T1 == 600') # planes_to_load = all_planes.query('phase == "beta" & config == "120_4" & T1 in [300,600,1000] ') ## ===== BDP ===== ## ===== BDP Na ===== planes_to_load = all_planes.query('phase != "beta" & metal == "Na" & config == "unsym_0" & T1 in [230,300,473,600]') # planes_to_load = all_planes.query('phase != "beta" & metal == "Na" & config == "unsym_0" & T1 in [230,300]') # planes_to_load = all_planes.query('phase != "beta" & metal == "Na" & config == "unsym_0" & T1 in [300,473,600]') # planes_to_load = all_planes.query('phase != "beta" & metal == "Na" & T1 == 600') # planes_to_load = all_planes.query('phase != "beta" & metal == "Na" & stoich in ["unsym", "unsymLi"] & T1 in [230,300,473]') # planes_to_load.sort_values('config', ascending=False, inplace=True) ## ===== BDP K ===== # planes_to_load = all_planes.query('phase != "beta" & metal == "K"') # planes_to_load = all_planes.query('phase != "beta" & metal == "K" & config == "symm_1"') # planes_to_load = all_planes.query('phase != "beta" & metal == "K" & config == "unsym_0"') # planes_to_load = all_planes.query('phase != "beta" & metal == "K" & config == "unsym_0" & T1 in [300,600]') # planes_to_load = all_planes.query('phase != "beta" & metal == "K" & config == "unsym_0" & T1 == 300') # planes_to_load = all_planes.query('phase != "beta" & metal == "K" & config == "unsym_0" & T1 == 600') # planes_to_load.sort_values('config', ascending=False, inplace=True) ## ===== BDP Ag ===== # planes_to_load = all_planes.query('phase != "beta" & metal == "Ag"') # planes_to_load = all_planes.query('phase != "beta" & metal == "Ag" & config == "symm_1"') # planes_to_load = all_planes.query('phase != "beta" & metal == "Ag" & config == "unsym_0"') # planes_to_load.sort_values('config', ascending=False, inplace=True) ## ===== BDP all metals together ===== # planes_to_load = all_planes.query('phase != "beta" & num_planes > 2 & config == "symm_1" & T1 == 600') # planes_to_load = all_planes.query('phase != "beta" & num_planes > 2 & config == "symm_1" & T1 in [230,300,473,600]') # planes_to_load = all_planes.query('phase != "beta" & num_planes > 2 & config == "unsym_0" & T1 == 300') # planes_to_load = all_planes.query('phase != "beta" & num_planes > 2 & config == "unsym_0" & T1 == 600') # planes_to_load = all_planes.query('phase != "beta" & num_planes > 2 & config == "unsym_0" & T1 in [300,600]') # planes_to_load = all_planes.query('phase != "beta" & num_planes > 2 & config == "unsym_0" & T1 in [230,300,473,600]') # planes_to_load = all_planes.query('phase != "beta" & metal in ["Na", "K"] & T1 in [230,300,473,600]') # planes_to_load = all_planes.query('phase != "beta" & T1 in [230,300,473,600]') # planes_to_load = all_planes.query('phase != "beta" & config == "unsym_0" & metal in ["Ag", "K"] & T1 in [230,300,473,600]') # planes_to_load.sort_values('config', ascending=False, inplace=True) ## ===== both beta and doubleprime ===== # planes_to_load = all_planes.query('metal == "Na" & T1 == 300 & config in ["120_4", "unsym_0", "symm_1", "102_1"]') # ========== automatic things below this line ========== ## make a structure for loading data planes_dicts = [] ## load macro-analysis files from the lammps non-Gaussian compute for plane in planes_to_load.itertuples(index=False): mm = plane.metal T1 = plane.T1 hp = plane.hop_path ph = plane.phase st = plane.stoich ex = plane.exclude tt = plane.total_time cn = plane.config ## load lammps structure _, _, cell, atoms = read_lmp(plane.lammps_path, fractional=False) a2_folder = '/'.join(plane.lammps_path.split('/')[:-1]) ## load lammps r2 file for the diffusion coefficient if load_r2 : r2_fname = glob.glob(a2_folder+f'/a2_*{T1}K-{mm}.fix') ## load the r2 file if exactly one exists, else complain if isinstance(r2_fname, list) and len(r2_fname) == 1: ## read the r2 file - options for fix file this_r2 = pd.read_csv(r2_fname[0], names=['time','r2','r4','a2'], skiprows=2, sep=' ') this_r2.time /= 1000 this_r2.set_index('time', inplace=True) ## Look for a literature folder lit_folder = '/'.join(a2_folder.split('/')[:-1]) print(f'\nLoaded r2 for plane {hp}') else: print(f'\nsomething off with plane {hp}.') print(f'here are possible r2 outputs: {r2_fname}') this_r2 = None else : this_r2 = None ## the a2 fix file is LAMMPS output, csv is calculated with multiple starts ## this takes the longest-duration a2 file a2_fnames = glob.glob(a2_folder+f'/{mm}*a2-*{T1}K*ps.csv') ## load the a2 file if exactly one exists, else complain if a2_fnames : if len(a2_fnames) > 1 : a2_fnames = sorted(a2_fnames, reverse=True, key = lambda x : eval(re.split('-|_| ',x)[-1][:-6])) # ## read the a2 file - options for fix file # this_a2 = pd.read_csv(a2_fname[0], names=['time','r2','r4','a2'], # skiprows=2, sep=' ') # this_a2.time /= 1000 ## read the a2 file - options for csv file this_a2 = pd.read_csv(a2_fnames[0], sep=',').set_index('time') ## Look for a literature folder lit_folder = '/'.join(a2_folder.split('/')[:-1]) print(f'Loaded a2: {a2_fnames[0]}') else: print(f'something off with plane {hp}.') print(f'here are possible a2 outputs: {a2_fnames}') this_a2 = None ## load the CoM trajectory if it exists com_fname = glob.glob(a2_folder + f'/cm*{T1}K*{mm}.fix') if isinstance(com_fname, list) and len(com_fname) == 1 and load_com: this_com = pd.read_csv(com_fname[0],sep=' ', names=['time', 'x', 'y', 'z', 'vx', 'vy', 'vz'], skiprows=2).drop(columns=['vx','vy','vz']) this_com.time /= 1000. ## hard-coded conversion from steps to picoseconds this_com.set_index('time', inplace=True) print('Loaded CoM trajectory.') elif not load_com : this_com = True print('Skipping CoM trajectory.') else : print(f'Could not load CoM trajectory, found: {com_fname}') this_com = None ## wrap the a2, CoM, and metadata into a dict if (this_r2 is not None or not load_r2) and (this_a2 is not None) : # if (this_a2 is not None) and (this_r2 is not None) and (this_com is not None) : planes_dicts.append(dict(phase=ph, metal=mm, T1=T1, config=cn, stoich=st, exclude=ex, a2=this_a2, lit_folder=lit_folder, com = this_com, cell=cell, atoms=atoms, folder=a2_folder, r2=this_r2)) ## make the holding structure into a dataframe macro_planes_data = pd.DataFrame(planes_dicts) # ============================================================================= # %% Figure 2 (and Extended Data 1-6) : (a) r2, (b) exponent of r2 vs distance, # ## (c) dx raw, (d) dx rescaled,(e) Gs 2D color plot, (f) Gs fitting. # ## Version "04", March 29 2021, this is in manuscript versions 07-09 # ============================================================================= ## parameters: ## THIS RELIES ON LOADING PLANES ABOVE dim = 2 ## dimension for r2, typically just 2, but 3 is possible. guides = True ## plot guidelines in (a) hop_length = 2.8 ## [AA] for binning dx dx_times = [25, 25e1, 25e2, 25e3] ## time points for spectra of dx gs_times = 2.5*np.logspace(-1,4,6) ## [ps] times for plotting spectra rs_list = [[0.01,1.7], [0.01, 4.6]] ## use 1.7/4.6 for bdp, 1.6/4.3 for beta? T1_dx = 300 ## for which temperature to plot dx T1s_gs = [300,600] ## for which temperatures to plot Gs fits cd_exclude = [] na_bdp_unsym = True ## trigger for making a broken axis for C_D(t) (Figure 2) # ========== automatic things below this line ========== ## parameters to transform the C_D and create the broken axes cd_break = 4.25 cd_break_top = 4.6 cd_scale = 2. # linear scaling factor; if > 1 makes transform look compressed cd_true = 9 # value that will show up as cd_display cd_display = 6.8 # value at which in # linear function that calculates an underlying transformed coordinate # given y points from real data. # maps cd_true to cd_display; true y-value at cd_true shows up as at cd_display cd_transform = lambda y : cd_display + (y - cd_true) / cd_scale ## new figure & counter for Gs fitting colors fig, axes = plt.subplots(3,2, figsize=(10,12)) ## make a color map for all temperature values T1_colors = cycle([batlow_even(i) for i in np.linspace(0, 1, len(macro_planes_data.T1.unique()))]) dx_colors = cycle([batlow_even(i) for i in np.linspace(0, 1, len(dx_times))]) ## one figure total for i, plane in macro_planes_data.iterrows(): mm = plane.metal; st = plane.stoich; cn = plane.config; ph = plane.phase ex = plane.exclude; T1 = plane.T1; folder = plane.folder cc = next(T1_colors) ## set a legend title, and plotting labels for each curve label = str(T1) + 'K' leg_title = f'{mm} {phases[ph]}' ## load the 2D a2 file - leaving out the "split" files if dim == 2 : a2_xys = glob.glob(folder+f'/{mm}*{ex}-a2xy*{T1}K*ps.csv') ## load the a2 file if exactly one exists, else complain if a2_xys : if len(a2_xys) > 1 : a2_xys = sorted(a2_xys, reverse=True, key = lambda x : eval(re.split('-|_| ',x)[-1][:-6])) ## read the a2 file - options for csv file a2 = pd.read_csv(a2_xys[0], sep=',').set_index('time') else : print(f'could not load a 2D a2 file for plane {mm} {cn} {T1}K') else : a2 = plane.a2 ## recalculate a2 for the right number of dimensions a2.a2 = dim * a2.r4 / a2.r2 ** 2 / (dim+2) - 1 ## load a short-time a2 file if using one try : a2s = pd.read_csv(folder + f'/{mm}-{st}-{ex}-a2{"xy" if dim == 2 else ""}-{T1}K-10ps.csv').set_index('time') a2s.a2 = dim * a2s.r4 / a2s.r2 ** 2 / (dim+2) - 1 except : a2s = None # ===== (a) r2 ===== axes[0,0].plot(a2.r2.iloc[1:], label=label, c=cc) axes[0,0].legend(title=leg_title) if guides and T1 == T1_dx : if mm == 'Na' and 'unsym' in cn : axes[0,0].plot([0.03,0.03*5], [0.07,0.07*25], c='k', lw=0.4) axes[0,0].plot([15e2, 15e3], [2e3, 2e4], c='k', lw=0.4) axes[0,0].plot([4e3, 4e4], [4, 4*10**0.75], c='k', lw=0.4) elif mm == 'Na' and 'symm' in cn : axes[0,0].plot([15e2, 15e3], [2e3, 2e4], c='k', lw=0.4) axes[0,0].plot([25e2, 25e3], [2e1, 2e2], c='k', lw=0.4) elif mm == 'Na' and '120_4' in cn : axes[0,0].plot([0.03,0.03*5], [0.12,0.12*25], c='k', lw=0.4) axes[0,0].plot([15e2, 15e3], [1.5e3, 1.5e4], c='k', lw=0.4) axes[0,0].plot([2.5e3, 2.5e4], [5, 5*10**0.8], c='k', lw=0.4) elif mm == 'K' and 'unsym' in cn : axes[0,0].plot([0.03,0.03*5], [0.04,0.04*25], c='k', lw=0.4) axes[0,0].plot([2e3, 2e4], [1.5e3, 1.5e4], c='k', lw=0.4) axes[0,0].plot([2.5e3, 2.5e4], [7.5, 7.5*10**0.9], c='k', lw=0.4) elif mm == 'Ag' and '120' in cn : axes[0,0].plot([0.03,0.03*5], [0.03,0.03*25], c='k', lw=0.4) axes[0,0].plot([3e3, 3e4], [2e3, 2e4], c='k', lw=0.4) axes[0,0].plot([3.5e3, 3.5e4], [6, 6*10**0.75], c='k', lw=0.4) elif mm == 'Ag' and 'unsym' in cn : axes[0,0].plot([0.03,0.03*5], [0.02,0.02*25], c='k', lw=0.4) axes[0,0].plot([2.5e3, 2.5e4], [1.5e3, 1.5e4], c='k', lw=0.4) # axes[0,0].plot([2.5e3, 2.5e4], [5, 5*10**0.9], c='k', lw=0.4) axes[0,0].plot([4e3, 4e4], [1.5, 1.5*10**0.75], c='k', lw=0.4) elif mm == 'K' and '120' in cn : axes[0,0].plot([0.03,0.03*5], [0.06,0.06*25], c='k', lw=0.4) axes[0,0].plot([2e3, 4e4], [300, 300*20**0.9], c='k', lw=0.4) axes[0,0].plot([0.04,10], [31.36, 31.36], c='k', lw=0.4, ls='--') # ===== (b) exponent vs distance ===== fit_points = 21 p0 = [1, 0] exp_alpha = np.array([cf(linfit, np.log10(a2.index.values[x:x+fit_points]), np.log10(a2.r2.values[x:x+fit_points]),p0)[0][0] for x in range(10,len(a2)-fit_points)]) exp_times = a2.index.values[10+fit_points//2:-fit_points//2] exp_rs = np.sqrt(a2.r2.values[10+fit_points//2:-fit_points//2]) # axes[0,1].plot(exp_times[exp_times >=0.8], exp_alpha[exp_times >=0.8], label=label, c=f'C{i}') axes[0,1].plot(exp_rs[exp_times >=0.8], exp_alpha[exp_times >=0.8], label=label, c=cc) ## always plot short try : a2s = a2s.loc[:0.8] exp_alpha = np.array([cf(linfit, np.log10(a2s.index.values[x:x+fit_points]), np.log10(a2s.r2.values[x:x+fit_points]),p0)[0][0] for x in range(1,len(a2s)-fit_points)]) exp_times = a2s.index.values[1+fit_points//2:-fit_points//2] exp_rs = np.sqrt(a2s.r2.values[1+fit_points//2:-fit_points//2]) # axes[0,1].plot(exp_times, exp_alpha, c=f'C{i}', ls='--') axes[0,1].plot(exp_rs[exp_times <=0.8], exp_alpha[exp_times <=0.8], c=cc, ls='--') except: pass print(f'computed the exponent of MSD vs time for {mm} {cn} {T1}.') axes[0,1].legend(title=leg_title, loc='lower right') if guides: axes[0,1].plot([0.03,3e5],[1,1], c='grey', lw=0.4, ls='--') axes[0,1].plot([5.6,5.6],[0,2.1], c='grey', lw=0.4, ls='--') # ===== (c) dx prep, and dx raw ===== if T1 == T1_dx: ## try loading a pre-computed dx file dx_glob = glob.glob(plane.folder+f'/{mm}-*-dx-{T1}K*ps.csv') dx = None try: dx = pd.read_csv(dx_glob[0]) dx = dx.set_index(['dx','time']).unstack().apply(lambda col: col/col.sum(), axis=0) dx.columns = [x[1] for x in dx.columns] except: print(f'could not load a dx file for {mm} {cn} {T1}K') continue ## apply binning by time intervals time_tuples = [ (round(x*0.8), round(x*1.2)) for x in dx_times] time_intervals = pd.IntervalIndex.from_tuples(time_tuples) time_spectra = dx.T.groupby(pd.cut(dx.T.index,time_intervals)).agg('mean').T ## normalize each column to sum to 1 time_spectra = time_spectra / time_spectra.sum() / (time_spectra.index[1]-time_spectra.index[0]) ## and rename the columns as something legible col_names = [f'{x[0]}-{x[1]} ps' if max(x) < 1000 else f'{int(x[0])//1000}-{int(x[1])//1000} ns' for x in time_tuples] time_spectra.rename(columns = dict(zip(time_spectra.columns,col_names)), inplace=True) ## plot each column for col in time_spectra.columns : xvals = time_spectra.loc[time_spectra[col] != 0].index axes[1,0].plot(xvals, time_spectra.loc[time_spectra[col] != 0, col], label=col, c=next(dx_colors)) axes[1,0].legend(title=leg_title + f' {T1}K') # ===== (d) dx binned by hops and rescaled ===== if T1 == T1_dx : ## find the variances in dx to later rescale by them col_sigmas = list() for col, t in zip(time_spectra.columns, dx_times): col_variance = time_spectra[col] * time_spectra.index.values **2 / time_spectra[col].sum() col_sigma = np.sqrt(col_variance.sum()) print(f'{mm} {cn} {T1}K : {t} ps, sigma = {col_sigma:.2f} AA') col_sigmas.append(col_sigma) ## numbers of hops from the Cartesian displacements x_bins = (np.unique(dx.index.values // hop_length) * 2 - 1 ) * (hop_length / 2) x_bins = np.insert(np.append(x_bins,max(x_bins)+hop_length), 0, min(x_bins)-hop_length) ## apply binning by number of hops time_spectra = time_spectra.groupby(pd.cut(time_spectra.index,x_bins)).agg('sum') time_spectra.index = (x_bins[:-1] + x_bins[1:])/2 ## normalize each column to sum to 1 time_spectra = time_spectra / time_spectra.sum() / (time_spectra.index[1]-time_spectra.index[0]) ## plot each column for col, sigma in zip(time_spectra.columns, col_sigmas) : xvals = time_spectra.loc[time_spectra[col] != 0].index axes[1,1].plot(xvals/sigma, time_spectra.loc[time_spectra[col] != 0, col]*sigma, label=col, c=next(dx_colors)) axes[1,1].legend(title=leg_title + f' {T1}K') ## plot a Laplacian & a Gaussian as benchmarks sigmas = np.linspace(-10, 10, 101) gauss = np.exp(-sigmas**2/2) / sum(np.exp(-sigmas**2/2)) * len(sigmas)/(max(sigmas)-min(sigmas)) axes[1,1].plot(sigmas, gauss, c='grey', ls=':') laplace = np.exp(-abs(sigmas)*np.sqrt(2)) / sum(np.exp(-abs(sigmas)*np.sqrt(2))) * len(sigmas)/(max(sigmas)-min(sigmas)) axes[1,1].plot(sigmas, laplace, c='k', ls=':') # ===== (e) Gs fitting: hardcoded time bounds ===== if T1 in T1s_gs : ## try loading a pre-computed Gself file gs = hu.load_gs(plane.folder+f'/{mm}-*-gs-{T1}K*ps.csv', 'fitting') if gs is None: continue for h, (rs, ls) in enumerate(zip(rs_list, ['--', '-', '-.', ':'])) : s = gs.loc[min(rs):max(rs),0.1:5e4].sum().reset_index() s.columns = ['time','gs'] s.set_index('time', inplace=True) # s = s/s.max() l = f'{label}, <{h+1} hop{"s" if h != 0 else ""}' axes[2,0].plot(s, label = l, c=cc, ls=ls) # ## fit and plot the fit # try: # s = s.loc[1:] # popt, perr = expectation_multi_method(s, method, aggregated=True, verbose=True) # if method == 'simple' : ax.plot(s.index.values, exp_decay(s.index.values, *popt), c='k', ls=':') # elif method == 'stretch' : ax.plot(s.index.values, kww_decay_break(s.index.values, *popt), c='k', ls=':') # print(f'fitting {mm} {cn} {T1} {min(rs):.1f}-{max(rs):.1f}AA : {popt[1]:.1f}±{perr[1]:.1f} ps, beta={1.00 if len(popt)<4 else popt[3]:.2f}, tstar={0 if len(popt)<4 else popt[4]:.2f}') # except : pass ## inverse interpolating function to plot the 1/e time int_fun = interp1d(s.gs.values, s.index.values) try : axes[2,0].plot(int_fun(1/np.e), 1/np.e, marker='o', ls='', fillstyle='full', mfc='yellow', mec='k', zorder=3, markersize=4) except : print(f'for {mm} {cn} {T1}, not all radii decay to 1/e') axes[2,0].legend(title=leg_title) if guides: axes[2,0].plot([1e3,3e4],[1/np.e,1/np.e], c='grey', lw=0.4, ls='--') # ===== (f) C_D(t) ===== if T1 not in cd_exclude : start = dt.now() svals = np.logspace(-5, 2, 4000) # if not short else np.logspace(-6,5,3000) ## Laplace transform of C_D(t) cds = hu.fluctuation_kernel(a2, svals, dim=dim) try: cdt = hu.stehfest_inverse(cds, a2.index.values[1:-1]) except : print(f'could not append inverse transform for {mm} {cn} {T1}') break cdt = pd.DataFrame({'time':a2.index.values[1:-1],'cdt':cdt}).set_index('time') if na_bdp_unsym : cdt = cdt.where(cdt < cd_break, cd_transform) axes[2,1].plot(cdt.cdt.loc[0.2:a2.index.max()/3+1], label=label, c=cc) ## create the interpolator for plotting little stars based on Gs ## try loading a pre-computed Gself file gs = hu.load_gs(plane.folder+f'/{mm}-*-gs-{T1}K*ps.csv', 'cdt', radii=rs_list) int_fun = interp1d(cdt.index.values, cdt.cdt) try: axes[2,1].scatter(gs, int_fun(gs), marker='o', facecolors='yellow', edgecolors='k', zorder=3, s=16) except : print('something wrong with plotting Gs * for {mm} {cn} {T1}') ## plot short-time separately cds_s = hu.fluctuation_kernel(a2s, np.logspace(0,4,1000), dim=dim) cdt_s = hu.stehfest_inverse(cds_s, a2s.index.values[1:-1]) cdt_s = pd.DataFrame({'time':a2s.index.values[1:-1],'cdt':cdt_s}).set_index('time') axes[2,1].plot(cdt_s.cdt.loc[0.0085 if (mm == 'Na' and 'unsym' in cn) else 0.005:0.2], ls='--', c=cc) print(f'done {T1}K, time taken {(dt.now()-start).total_seconds():.2f}') axes[2,1].plot([1e-3, 5e4], [0,0], c='grey', ls=':', lw=0.4) axes[2,1].legend(title=leg_title, loc='upper left') else : print(f'skipping C_D(t) for {mm} {cn} {T1}') ## plot prettymaking axes[0,0].set(xlim=[0.025,5e4], xscale='log', ylim=[1e-2,3e4], yscale='log', xlabel=r'Time lag $t$, ps', ylabel=r'$\langle \overline{r^2(t)} \rangle$, $\AA^2$') axes[0,1].set(xlim=[0.4,30], xscale='log', ylim=[0,1.05], xlabel=r'$\langle \overline{ r(t) }\rangle,~\AA$', yticks=[0,0.2,0.4,0.6,0.8,1.], yticklabels=['0.0','0.2','0.4','0.6','0.8','1.0'], xticks=[1,10], xticklabels=['1','10'], ylabel=r'Exponent of $\langle \overline{ r^2(t) }\rangle$') axes[1,0].set(xlim=[-28,28], ylim=[3e-5,None], yscale='log', xlabel=r'$\Delta x$, $\AA$', ylabel=r'$P(\Delta x)$, $\AA^{-1}$') axes[1,1].set(xlim=[-7,7], ylim=[1e-5,None], yscale='log', xlabel=r'$(\Delta x)/\sigma_{\Delta x}$', ylabel=r'$P(\Delta x)$, $\sigma_{\Delta x}^{-1}$') # axes[2,0].set(ylim=[0,13.5], xlim=[0.5,9e3], xscale='log', # xlabel=r'Time lag $t$, ps', ylabel=r'Distance $r,~\AA$') axes[2,0].set(xlim=[0.1,5e4], xscale='log', ylim=[0,1.04], ylabel=r'$G_s~r^2$, a.u.', xlabel=r'Time lag $t$, ps') axes[2,1].set(xlim=[5e-3,5e3], xscale='log', xlabel=r'Time lag $t$, ps', ylabel=r'$C_D(t)$') ## create the broken axis if na_bdp_unsym : r1 = Rectangle((4.5e-3,cd_break),5.2e3,cd_break_top-cd_break, lw=0, facecolor='w', clip_on=False, transform=axes[2,1].transData, zorder=3) axes[2,1].add_patch(r1) kwargs = dict(transform=axes[2,1].transData, color='k', clip_on=False, lw=0.75,zorder=4) axes[2,1].plot(5e-3*np.array([10**-0.05,10**0.05]), [cd_break-0.05,cd_break+0.05],**kwargs) axes[2,1].plot(5e-3*np.array([10**-0.05,10**0.05]), [cd_break_top-0.05,cd_break_top+0.05],**kwargs) axes[2,1].plot(5e3*np.array([10**-0.05,10**0.05]), [cd_break-0.05,cd_break+0.05],**kwargs) axes[2,1].plot(5e3*np.array([10**-0.05,10**0.05]), [cd_break_top-0.05,cd_break_top+0.05],**kwargs) # axes[2,1].set(yticks=[0,2,4,cd_transform(10), cd_transform(15)], yticklabels=['0','2','4','10','15']) axes[2,1].set(yticks=[0,2,4,cd_transform(6), cd_transform(8)], yticklabels=['0','2','4','6','8']) axes[2,1].set(ylim=[-0.7,7.1]) fig.tight_layout(pad=0.5, h_pad=0.25) # ============================================================================= # %% Figure 3 top row: spectra of conductivity # ============================================================================= ## Parameters: start_1 = 0 start_step = 10 ## [ps] interval for sampling eMSD durations = np.round(np.logspace(0.4,3.4),2) ## [ps] 2.5-2500 ps, 50 pts enforce_indep = True ## make start_step >= duration, for all durations # rs_list = [[0.01,1.7],[0.01, 4.6]] ## to plot two-hop relaxation as the Jonscher cutoff rs_list = [] # ========== automatic things below this line ========== ## three-panel top row fig, axes = plt.subplots(1,3, sharey=True, figsize=(12,4)) # fig, axes = plt.subplots(3,1, sharex=True, figsize=(4,9)) # ===== (a) Na-beta-doubleprime spectra vs T1 ===== ## load three planes planes_to_load = all_planes.query('metal == "Na" & config == "unsym_0" & T1 in [230,300,473]') macro_planes_data = hu.load_macro_planes(planes_to_load).sort_values(by='T1') colors = cycle([batlow_even(j) for j in np.linspace(0, 1, len(macro_planes_data))]) ax = axes[0] ## load and plot Na doubleprime conductivity spectra for i, plane in macro_planes_data.iterrows(): ph = plane.phase; mm = plane.metal; cn = plane.config st = plane.stoich; ex = plane.exclude T1 = plane.T1; folder = plane.folder N = len(plane.atoms.query('atom == @mm')) cell = plane.cell dcoms = list() ## load a pre-corrected CoM trajectory cor = False try: cor_fname = glob.glob(plane.folder + f'/cm_{mm}-{st}-{ex}-{T1}K-{mm}-cor.csv') if isinstance(cor_fname, list) and len(cor_fname) == 1 : com = pd.read_csv(cor_fname[0]).set_index('time') print(f'\nLoaded a corrected CoM trajectory for {mm} {cn} T1={T1}K') cor = True except : com = None; continue dtt = com.index[1]-com.index[0] ## average multiple starts for duration in durations: ## enforce start_step >= duration if enforce_indep and start_step < duration : start_step = duration if com.index.max() <= duration*4 : dcoms.append(np.nan) continue dr = com.loc[duration+com.index.min()::int(start_step/dtt)] - com.loc[:com.index.max()-duration:int(start_step/dtt)].values # dr['dcom'] = (dr.x**2 + dr.y**2 + dr.z**2)/duration dr['dcom'] = (dr.x**2 + dr.y**2 )/duration all_dcom2 = dr.dcom.values * N / 4 dcoms.append(np.mean(all_dcom2)) ## transform D_CoM to conductivity and plot it sigmas = sigma_T(N,cell,np.array(dcoms)*unit_conv)/T1 this_marker = next(markers) ax.plot(1e12/durations, sigmas, this_marker+next(lines), label=f'eMSD, {T1}K', markersize=5, c=next(colors)) ## plot the two-hop relaxation time int_fun = interp1d(1e12/durations, sigmas, fill_value=1e-10, bounds_error=False) gs = np.array(hu.load_gs(folder+f'/{mm}-*-gs-{T1}K*ps.csv', option='Funke', radii=rs_list)) ax.plot(1e12/gs, int_fun(1e12/gs), marker=this_marker, mfc='yellow', mec='k', zorder=3, ls='', fillstyle='full') ## plot literature values: refs = {'Funke2007':52, 'Almond1984':32, 'Hoppe1991':51, 'Barker1976':44, 'Kamishima2014':30, 'Kamishima2015':31} ## Funke & Banhatti (2007) - 473K lit6 = pd.read_csv('./production/bdp-Na/Na_unsym_Funke2007_473K_lit.csv', names=['logfreq','sigma']) axes[0].plot(10**lit6.logfreq, (10**lit6.sigma)/473, marker='o', mec='k', ls='', zorder=0, mfc='none', markersize=4, label=f'Ref. {refs["Funke2007"]}, 473K') ## Funke $\\it{et\ al.}$ (2007), ($Li_{Al}^{\prime\prime}$) ## Hoppe & Funke (1991) - 220K lit2 = pd.read_csv('./production/bdp-Na/Na_unsym_Hoppe1991_220K_lit.csv', names=['logfreq','sigma']) axes[0].plot(10**lit2.logfreq, lit2.sigma, marker='o', mec='k', ls='', zorder=0, mfc='none', markersize=4, label=f'Ref. {refs["Hoppe1991"]}, 220K') ## Hoppe $\\it{et\ al.}$ (1991), ($Li_{Al}^{\prime\prime}$) ## Hoppe & Funke (1991) - 298K lit5 = pd.read_csv('./production/bdp-Na/Na_unsym_Hoppe1991_298K_lit.csv', names=['logfreq','sigma']) axes[0].plot(10**lit5.logfreq, lit5.sigma, marker='^', mec='k', ls='', zorder=0, mfc='none', markersize=4, label=f'Ref. {refs["Hoppe1991"]}, 298K') ## Hoppe $\\it{et\ al.}$ (1991) ($Li_{Al}^{\prime\prime}$) ## Almond et al (1984) - 237K lit1 = pd.read_csv('./production/bdp-Na/Na_unsym_Almond1984_237K_lit.csv', names=['logfreq','sigma']) axes[0].plot(10**lit1.logfreq, lit1.sigma, marker='d', mec='k', ls='', zorder=0, mfc='k', fillstyle='full', markersize=4, label=f'Ref. {refs["Almond1984"]}, 237K') ## Almond $\\it{et\ al.}$ (1984) ## Almond (1984) - 296K lit3 = pd.read_csv('./production/bdp-Na/Na_unsym_Almond1984_296K_lit.csv', names=['logfreq','sigma']) axes[0].plot(10**lit3.logfreq, lit3.sigma, marker='s', mec='k', ls='', zorder=0, mfc='k', fillstyle='full', markersize=4, label=f'Ref. {refs["Almond1984"]}, 296K') ## Almond $\\it{et\ al.}$ (1984) ## make plot pretty axes[0].set(xlim=[8e5,6e11], ylim=[6e-4,1.2], xscale='log', yscale='log', xlabel=r'$\nu=1/t$, Hz', ylabel=r'$\sigma_{2D}(t;\Delta)$, S/cm') axes[0].legend(title=r'Na $\beta^{\prime\prime}$', ncol=2, handletextpad=0.5, handlelength=1.5, columnspacing=0.4, loc='upper left') ## add guidelines axes[0].plot([1e6, 2e9], [6e-3, 6e-3*2000**0.15], c='grey', lw=0.4) axes[0].plot([1e6, 2e8], [1e-3, 1e-3*200**0.15], c='grey', lw=0.4) axes[0].plot([4e9, 4e11], [0.06*100**-0.7, 0.06], c='grey', lw=0.4) # ===== (b) Na-beta spectra 300K ===== ## load planes planes_to_load = all_planes.query('metal == "Na" & config == "120_4" & T1 == 300') macro_planes_data = hu.load_macro_planes(planes_to_load) ax = axes[1] ## load and plot Na beta conductivity spectra for i, plane in macro_planes_data.iterrows(): ph = plane.phase; mm = plane.metal; cn = plane.config st = plane.stoich; ex = plane.exclude T1 = plane.T1; folder = plane.folder N = len(plane.atoms.query('atom == @mm')) cell = plane.cell dcoms = list() ## load a pre-corrected CoM trajectory cor = False try: cor_fname = glob.glob(plane.folder + f'/cm_{mm}-{st}-{ex}-{T1}K-{mm}-cor.csv') if isinstance(cor_fname, list) and len(cor_fname) == 1 : com = pd.read_csv(cor_fname[0]).set_index('time') print(f'\nLoaded a corrected CoM trajectory for {mm} {cn} T1={T1}K') cor = True except : com = None; continue dtt = com.index[1]-com.index[0] ## average multiple starts for duration in durations: ## enforce start_step >= duration if enforce_indep and start_step < duration : start_step = duration if com.index.max() <= duration*4 : dcoms.append(np.nan) continue dr = com.loc[duration+com.index.min()::int(start_step/dtt)] - com.loc[:com.index.max()-duration:int(start_step/dtt)].values # dr['dcom'] = (dr.x**2 + dr.y**2 + dr.z**2)/duration dr['dcom'] = (dr.x**2 + dr.y**2 )/duration all_dcom2 = dr.dcom.values * N / 4 dcoms.append(np.mean(all_dcom2)) sigmas = sigma_T(N,cell,np.array(dcoms)*unit_conv)/T1 this_marker = next(markers) ax.plot(1e12/durations, sigmas, this_marker+next(lines), label=f'eMSD, {T1}K', markersize=5, c=batlow_even(0)) ## plot the two-hop relaxation time int_fun = interp1d(1e12/durations, sigmas, fill_value=1e-10, bounds_error=False) gs = np.array(hu.load_gs(folder+f'/{mm}-*-gs-{T1}K*ps.csv', option='Funke', radii=rs_list)) ax.plot(1e12/gs, int_fun(1e12/gs), marker=this_marker, mfc='yellow', mec='k', zorder=3, ls='', fillstyle='full') ## plot literature values ## 2 literature datasets, Barker (1976) - 300K ## Barker $\\it{et\ al.}$ (1976) lit1 = pd.read_csv('./production/beta-Na/Na_120_Barker1976_flux_lit.csv', names=['logfreq','sigma']) axes[1].plot(10**lit1.logfreq, lit1.sigma, marker='D', mec='k', markersize=4, ls='', zorder=0, mfc='none', label=f'Ref. {refs["Barker1976"]}, 300K, flux') lit2 = pd.read_csv('./production/beta-Na/Na_120_Barker1976_melt_lit.csv', names=['logfreq','sigma']) axes[1].plot(10**lit2.logfreq, lit2.sigma, marker='s',mec='k', markersize=4, ls='', zorder=0, mfc='none', label=f'Ref. {refs["Barker1976"]}, 300K, melt') ## Kamishima (2015) - 300K # Kamishima $\\it{et\ al.}$ (2015) axes[1].plot(1e7, 0.011692, marker='>', mec='k', markersize=4, ls='', zorder=0, mfc='k', fillstyle='full', label=f'Ref. {refs["Kamishima2015"]}, 300K') ## make plot pretty axes[1].set(xlim=[7e6,6e11], xscale='log', xlabel=r'$\nu=1/t$, Hz') axes[1].legend(title=r'Na $\beta$', handletextpad=0.5, handlelength=1.5) ## add guidelines axes[1].plot([1e7, 4e8], [6e-3, 6e-3*40**0.1], c='grey', lw=0.4) axes[1].plot([4e9, 4e11], [0.05*100**-0.6, 0.05], c='grey', lw=0.4) # ===== (c) Ag-beta spectra 300K ===== ## load planes planes_to_load = all_planes.query('metal == "Ag" & config == "120_4" & T1 == 300') macro_planes_data = hu.load_macro_planes(planes_to_load) ax = axes[2] ## load and plot Ag beta conductivity spectra for i, plane in macro_planes_data.iterrows(): ph = plane.phase; mm = plane.metal; cn = plane.config st = plane.stoich; ex = plane.exclude T1 = plane.T1; folder = plane.folder N = len(plane.atoms.query('atom == @mm')) cell = plane.cell dcoms = list() ## load a pre-corrected CoM trajectory cor = False try: cor_fname = glob.glob(plane.folder + f'/cm_{mm}-{st}-{ex}-{T1}K-{mm}-cor.csv') if isinstance(cor_fname, list) and len(cor_fname) == 1 : com = pd.read_csv(cor_fname[0]).set_index('time') print(f'\nLoaded a corrected CoM trajectory for {mm} {cn} T1={T1}K') cor = True except : com = None; continue dtt = com.index[1]-com.index[0] ## average multiple starts for duration in durations: ## enforce start_step >= duration if enforce_indep and start_step < duration : start_step = duration if com.index.max() <= duration*4 : dcoms.append(np.nan) continue dr = com.loc[duration+com.index.min()::int(start_step/dtt)] - com.loc[:com.index.max()-duration:int(start_step/dtt)].values # dr['dcom'] = (dr.x**2 + dr.y**2 + dr.z**2)/duration dr['dcom'] = (dr.x**2 + dr.y**2 )/duration all_dcom2 = dr.dcom.values * N / 4 dcoms.append(np.mean(all_dcom2)) sigmas = sigma_T(N,cell,np.array(dcoms)*unit_conv)/T1 this_marker = next(markers) ax.plot(1e12/durations, sigmas, this_marker+next(lines), label=f'eMSD, {T1}K', markersize=5, c=batlow_even(0)) ## plot the two-hop relaxation time int_fun = interp1d(1e12/durations, sigmas, fill_value=1e-10, bounds_error=False) gs = np.array(hu.load_gs(folder+f'/{mm}-*-gs-{T1}K*ps.csv', option='Funke', radii=rs_list)) ax.plot(1e12/gs, int_fun(1e12/gs), marker=this_marker, mfc='yellow', mec='k', zorder=3, ls='', fillstyle='full') ## plot literature values ## Barker (1976) melt - 300K # Barker $\\it{et\ al.}$ (1976) melt lit21 = pd.read_csv('./production/beta-Ag/Ag_120_Barker1976_melt_lit.csv', names=['logfreq','sigma']) axes[2].plot(10**lit21.logfreq, lit21.sigma, marker='s', mec='k', markersize=4, ls='', mfc='none', label=f'Ref. {refs["Barker1976"]}, 300K, melt', zorder=0) ## 3 samples from Kamishima (2014) - near 300K ## Kamishima $\\it{et\ al.}$ (2014) lit22 = pd.read_csv('./production/beta-Ag/Ag_120_Kamishima2014_296K_S1_lit.csv', names=['logfreq','sigma']) axes[2].plot(10**lit22.logfreq, lit22.sigma, marker='o', mec='k', markersize=4, ls='', mfc='k', fillstyle='full', label=f'Ref. {refs["Kamishima2014"]}, 296K, A', zorder=0) lit23 = pd.read_csv('./production/beta-Ag/Ag_120_Kamishima2014_286K_S2_lit.csv', names=['logfreq','sigma']) axes[2].plot(10**lit23.logfreq, lit23.sigma, marker='^', mec='k', markersize=4, ls='', mfc='k', fillstyle='full', label=f'Ref. {refs["Kamishima2014"]}, 286K, B', zorder=0) lit24 = pd.read_csv('./production/beta-Ag/Ag_120_Kamishima2014_299K_S3_lit.csv', names=['logfreq','sigma']) axes[2].plot(10**lit24.logfreq, lit24.sigma, marker='v', mec='k', markersize=4, ls='', mfc='k', fillstyle='full', label=f'Ref. {refs["Kamishima2014"]}, 299K, C', zorder=0) ## make plot pretty axes[2].set(xlim=[5e5,6e11], xscale='log', xlabel=r'$\nu=1/t$, Hz') axes[2].legend(title=r'Ag $\beta$', handletextpad=0.5, handlelength=1.5) ## add guidelines axes[2].plot([4e9, 4e11], [0.05*100**-0.6, 0.05], c='grey', lw=0.4) axes[2].plot([2e6, 2e8], [3e-3, 3e-3*100**0.1], c='grey', lw=0.4) fig.tight_layout(pad=0.5, w_pad=0.25) # ============================================================================= # %% Fig 3 bottom row: Arrhenius plots # ============================================================================= # Parameters: start_1 = 0 ## [ps] time at which to start sampling CoM MSD start_step = 2500 ## [ps] interval for sampling CoM MSD start_last = 97500 ## [ps] last time at which to sample CoM MSD duration = 2500 ## [ps] how long each sampling is refs_dict = {'Davies(1986)':38, 'Briant(1980)':34, 'Bates(1981)':35, 'Whittingham(1972)':55, 'Almond(1984)':32} beta_refs_dict = {'Ag':53, 'K':55, 'Na':54} # ========== automatic things below this line ========== ## array for multiple starts and its tuple description for lookup of pre-dones starts = np.arange(start_1,start_last,start_step,dtype=float) spec=(start_1,start_step,start_last,duration) ## pre-load and filter for the same computation conditions right away sigmas_msd = pd.read_csv('./production/sigmas_msd.csv') sigmas_msd.spec = sigmas_msd.spec.apply(eval) sigmas_msd_spec = sigmas_msd.query('spec == @spec') # figure fig, axes = plt.subplots(1,3, sharey=True, figsize=(12,4)) # ===== (d) Na-doubleprime: normal + quenched ===== planes_to_load = all_planes.query('metal == "Na" & config in ["unsym_0", "symm_1"] & T1 in [230,300,473,600]') macro_planes_data = hu.load_macro_planes(planes_to_load) ## structure for new computations new_sigmas_msd = list() for i, plane in macro_planes_data.iterrows(): all_dcom = list() all_derr = list() ph = plane.phase mm = plane.metal cn = plane.config st = plane.stoich ex = plane.exclude T1 = plane.T1 com = plane.com N = len(plane.atoms.query('atom == @mm')) ## check this configuration was already computed pre_done = sigmas_msd_spec.query('metal == @mm & stoich == @st & exclude == @ex & T1 == @T1') assert len(pre_done) > 0, 're-compute {mm} {cn} {T1}' new_sigmas_msd.append(pre_done.to_dict('records')[0]) # print(f'pre-done {variable}={var}, {variable2}={var2} T1={T1}K, sigma*T = {pre_done.sigt.iloc[0]:.2e} S*K/cm') ## convert all fitted sigmas to dataframe new_sigmas_msd = pd.DataFrame(new_sigmas_msd) ## plot normal Na beta-doubleprime sigts = new_sigmas_msd.query('config == "unsym_0"') axes[0].errorbar(x=1000./sigts.T1.values, y=sigts.sigt, zorder=2.5, yerr=[sigts.sigt-sigts.sigt_20, sigts.sigt_80-sigts.sigt], label=r'Na $\beta^{\prime\prime}$, eMSD', mfc=hu.metal_colors['Na'], mec=hu.metal_colors['Na'], c=hu.metal_colors['Na'], fillstyle='full', marker='o', ls='') ## plot literature values lit_folder = macro_planes_data.lit_folder.unique()[0] d_lit_files = sorted(glob.glob(lit_folder + f'/{mm}*sigma*lit.csv'), reverse=True) for f, sym in zip(d_lit_files, ['o','s','D','v','^','<','>']) : d_lit = np.loadtxt(f, delimiter = ',') # print('loaded', f) ## find the author+year if they are in the filename auth = [x[0] for x in [re.findall('[A-z]*\(19\d\d\)$', x) for x in re.split('/|-|_| ',f)] if len(x) > 0][0] try: t_synth = [x[0] for x in [re.findall('1\d\d0$', x) for x in re.split('/|-|_| ',f)] if len(x) > 0][0] except: t_synth = None ref = refs_dict[auth] label = f'Ref. {ref}' if 'symm' in f : label += ', quench' continue ## skip this for simplifying the plot elif t_synth is not None : # label += f', {t_synth}C' if int(t_synth) == 1700 : continue ## scatterplot, can be updated to include errorbars axes[0].plot(d_lit[:,0], 10**d_lit[:,1], label=label, zorder=0, mec='k', # if variable2 != 'metal' else hu.metal_colors[var], mfc=(0,0,0,0), marker=sym, linestyle='', markersize=5) axes[0].set(ylabel='$\sigma$T [$\Omega^{{-1}}$ cm$^{{-1}}$ K]', xlabel='1000/T, K$^{-1}$', ylim=[1.5e-2,1.7e3], yscale='log', xlim=[1.3,4.45]) axes[0].legend(loc='lower left', title=r'Na $\beta^{\prime\prime}$', title_fontsize=10) # ===== (e) K,Ag-doubleprime ===== planes_to_load = all_planes.query('metal in ["K", "Ag"] & config == "unsym_0" & T1 in [230,300,473,600]') macro_planes_data = hu.load_macro_planes(planes_to_load) ## structure for new computations new_sigmas_msd = list() for i, plane in macro_planes_data.iterrows(): all_dcom = list() all_derr = list() ph = plane.phase mm = plane.metal cn = plane.config st = plane.stoich ex = plane.exclude T1 = plane.T1 com = plane.com N = len(plane.atoms.query('atom == @mm')) ## check this configuration was already computed pre_done = sigmas_msd_spec.query('metal == @mm & stoich == @st & exclude == @ex & T1 == @T1') assert len(pre_done) > 0, 're-compute {mm} {cn} {T1}' new_sigmas_msd.append(pre_done.to_dict('records')[0]) # print(f'pre-done {variable}={var}, {variable2}={var2} T1={T1}K, sigma*T = {pre_done.sigt.iloc[0]:.2e} S*K/cm') ## convert all fitted sigmas to dataframe new_sigmas_msd = pd.DataFrame(new_sigmas_msd) ## plot K beta-doubleprime sigts = new_sigmas_msd.query('metal == "K"') axes[1].errorbar(x=1000./sigts.T1.values, y=sigts.sigt, zorder=2.5, yerr=[sigts.sigt-sigts.sigt_20, sigts.sigt_80-sigts.sigt], label=r'K $\beta^{\prime\prime}$, eMSD', c=hu.metal_colors['K'], mfc=hu.metal_colors['K'], mec=hu.metal_colors['K'], fillstyle='full', marker='o', ls='') ## plot K beta-doubleprime sigts = new_sigmas_msd.query('metal == "Ag"') axes[1].errorbar(x=1000./sigts.T1.values, y=sigts.sigt, zorder=2.5, yerr=[sigts.sigt-sigts.sigt_20, sigts.sigt_80-sigts.sigt], label=r'Ag $\beta^{\prime\prime}$, eMSD', c=hu.metal_colors['Ag'], mfc=hu.metal_colors['Ag'], mec=hu.metal_colors['Ag'], fillstyle='full', marker='s', ls='') ## plot literature values lit_folders = macro_planes_data.lit_folder.unique() d_lit_files = sorted(glob.glob(lit_folder + '/*sigma*lit.csv'), reverse=True) for lf in lit_folders: mm = re.split('-|/| ',lf)[-1] d_lit_files = sorted(glob.glob(lf + '/*sigma*lit.csv'), reverse=True) for f, sym in zip(d_lit_files, ['o','s','D','v','^','<','>']) : d_lit = np.loadtxt(f, delimiter = ',') # print('loaded', f) ## find the author+year if they are in the filename auth = [x[0] for x in [re.findall('[A-z]*\(19\d\d\)$', x) for x in re.split('/|-|_| ',f)] if len(x) > 0][0] try: t_synth = [x[0] for x in [re.findall('1\d\d0$', x) for x in re.split('/|-|_| ',f)] if len(x) > 0][0] except: t_synth = None ref = refs_dict[auth] label = mm + r' $\beta^{\prime\prime}$, ' + f'Ref. {ref}' # if 'symm' in f : label += ', quench' # elif t_synth is not None : label += f', {t_synth}C' ## scatterplot, can be updated to include errorbars axes[1].plot(d_lit[:,0], 10**d_lit[:,1], label=label, zorder=0, mec='k', # if variable2 != 'metal' else hu.metal_colors[var], mfc=(0,0,0,0), marker=next(markers), linestyle='', markersize=5) axes[1].set(xlabel='1000/T, K$^{-1}$', xlim=[1.3,4.45]) axes[1].legend(loc='lower left', title_fontsize=10) # ===== (f) Ag,K,Na beta, 120_4 ===== planes_to_load = all_planes.query('config == "120_4" & T1 in [300,600,1000]') planes_to_load = planes_to_load.query('not (T1 == 300 & metal == "K")') macro_planes_data = hu.load_macro_planes(planes_to_load) ## structure for new computations new_sigmas_msd = list() for i, plane in macro_planes_data.iterrows(): all_dcom = list() all_derr = list() ph = plane.phase mm = plane.metal cn = plane.config st = plane.stoich ex = plane.exclude T1 = plane.T1 com = plane.com N = len(plane.atoms.query('atom == @mm')) ## check this configuration was already computed pre_done = sigmas_msd_spec.query('metal == @mm & stoich == @st & exclude == @ex & T1 == @T1') assert len(pre_done) > 0, 're-compute {mm} {cn} {T1}' new_sigmas_msd.append(pre_done.to_dict('records')[0]) # print(f'pre-done {variable}={var}, {variable2}={var2} T1={T1}K, sigma*T = {pre_done.sigt.iloc[0]:.2e} S*K/cm') ## convert all fitted sigmas to dataframe new_sigmas_msd = pd.DataFrame(new_sigmas_msd) for i, mm in enumerate(new_sigmas_msd.metal.unique()) : sigts = new_sigmas_msd.query('metal == @mm') axes[2].errorbar(x=1000./sigts.T1.values, y=sigts.sigt, zorder=2.5, yerr=[sigts.sigt-sigts.sigt_20, sigts.sigt_80-sigts.sigt], label=mm + r', eMSD', c=hu.metal_colors[mm], mfc=hu.metal_colors[mm], # + f', $t=${duration/1000} ns' fillstyle='full', marker=next(markers), ls='') ## plot literature values lit_folder = macro_planes_data.query('metal == @mm & config == "120_4"').lit_folder.unique()[0] f = sorted(glob.glob(lit_folder + '/*sigma*lit.csv'), reverse=True)[0] d_lit = np.loadtxt(f, delimiter = ',') # print('loaded', f) ref = beta_refs_dict[mm] label = f' Ref. {ref}, {mm}' ## scatterplot, can be updated to include errorbars axes[2].plot(d_lit[:,0], 10**d_lit[:,1], label=label, zorder=0, mec='k', # if variable2 != 'metal' else hu.metal_colors[var], mfc=(0,0,0,0), marker=next(markers), linestyle='', markersize=5) # print('plotted', f) axes[2].set(xlabel='1000/T, K$^{-1}$', xlim=[0.9,3.49]) axes[2].legend(loc='lower left', title=r'$\beta$-aluminas', ncol=2, title_fontsize=10) ## final figure pretty-making fig.tight_layout(pad=0.5, w_pad=0.25) # ============================================================================= # %% SI Figure NN : non-Gaussian & EB parameters for all relevant simulations # ## (Block 7, option='a2') # ============================================================================= option = 'a2' ## implemented here: 'a2', 'eb' do_fft = False ## implemented for 'a2', 'burnett'; requires regularly spaced data dimension = 2 ## stuff within the conduction plane is 2D; super-short is 3D plot_gs = True ## if True, add 1/e times from self van Hove function decay guides = True ## plot log-log guidelines for long-time regimes rs_list = [[0.01,1.75],[0.01, 4.2]] ## default radii for van Hove decay points rs_list = [[0.01,1.7],[0.01, 4.6]] ## default radii for van Hove decay points ## variable by which to plot stuff: variable is columns, variable2 is rows variable = 'metal' variable2 = 'config' eb_lag = 20 # ========== automatic things below this line ========== planes_to_load = all_planes.query('config in ["unsym_0", "symm_1", "120_4"] & T1 in [230,300,473,600,1000]') planes_to_load = planes_to_load.query('T1 != 473 or phase != "beta"').sort_values(by='config',ascending=False) macro_planes_data = hu.load_macro_planes(planes_to_load) ## values of the first (metal) and second (config) variables in the loaded data var_values = sorted(macro_planes_data[variable].unique()) var2_values = sorted(macro_planes_data[variable2].unique(), reverse=True) ## adjust colormap batlow_even = LinearSegmentedColormap.from_list('batlow_even', hu.batlow_lightness_scaled(0.4,0.6)) ## figure to make an Arrhenius plot fig, axes = plt.subplots(len(var2_values), len(var_values), sharex=True, sharey='row', figsize=(3.5*len(var_values),4.8*len(var2_values))) ## loop over values of the variable(s) for r, var2 in enumerate(var2_values) : # ## make y axes shared by row # for ax in axes[r,:]: # axes[r,0]._shared_y_axes.join(ax,axes[r,0]) for c, var in enumerate(var_values): ## set the current axes ax = axes[r,c] ## subset planes subset = macro_planes_data.query(f'{variable} == @var & {variable2} == @var2').sort_values(by="T1", ascending=True) guide_T1 = subset.T1.max() ## make a color map colors = [batlow_even(j) for j in np.linspace(0, 1, len(subset))] ## iterate through all data planes for i, (index, plane) in enumerate(subset.iterrows()): if plane[variable] == var and plane[variable2] == var2: mm = plane.metal; st = plane.stoich; cn = plane.config ex = plane.exclude; T1 = plane.T1; folder = plane.folder ph = plane.phase ## set a plotting label # label = f'{mm}$_{{{int(st)/100:.2f}}}$ {T1}K' label = f'{T1}K' # label = str(var2) + units[variable2] leg_title = f'{mm} {phases[ph]}' + (' quench' if 'symm' in cn else '') ## interpolation for van Hove int_fun = None ## load the 2D file - leaving out the "split" files if dimension == 2 : a2_xys = glob.glob(folder+f'/{mm}*{ex}-a2xy*{T1}K*ps.csv') ## load the a2 file if exactly one exists, else complain if a2_xys : if len(a2_xys) > 1 : a2_xys = sorted(a2_xys, reverse=True, key = lambda x : eval(re.split('-|_| ',x)[-1][:-6])) ## read the a2 file - options for csv file a2 = pd.read_csv(a2_xys[0], sep=',').set_index('time') else : print(f'could not load a 2D a2 file for plane {mm} {cn} {T1}K') else : a2 = plane.a2 ## recalculate a2 for the right number of dimensions a2.a2 = dimension * a2.r4 / a2.r2 ** 2 / (dimension+2) - 1 ## non-Gaussian parameter if option == 'a2' and not do_fft : ax.plot(a2.a2, label=label, c=colors[i]) ## create the interpolator for plotting little stars based on Gs if plot_gs : int_fun = interp1d(a2.index.values, a2.a2) ## Plot points from van Hove function if plot_gs and int_fun is not None : try : gs = hu.load_gs(plane.folder+f'/{mm}-*-gs-{T1}K*ps.csv', option, radii=rs_list) ax.plot(gs, int_fun(gs), marker='o', mfc='yellow', ls='', markersize=5, mec='k', zorder=3, fillstyle='full') except ValueError : print(f'something wrong with Gs for {mm} {cn} {T1}, check fractional/real computation.') ax.legend(title=leg_title, loc='lower left') ## plot log-log guidelines if guides and T1 == guide_T1 : # axes[0].plot([0.25, 0.25*10**0.333],[3e-2,3e-1],c='k', lw=0.4) if mm == 'K' and '120' in cn : ax.plot([30, 3000],[1.5,1.5*10**-0.8],c='k', lw=0.4) elif mm == 'Na' and 'unsym' in cn : ax.plot([5,100], [0.4,0.4*20**-0.8], c='k', lw=0.4) ax.plot([60,3e3], [2,2*50**-0.4], c='k', lw=0.4) elif mm == 'Na' and '120' in cn : ax.plot([8,400], [1,50**-0.5], c='k', lw=0.4) elif mm == 'K' and 'unsym' in cn : ax.plot([10,100], [0.35,0.35*10**-0.9], c='k', lw=0.4) elif mm == 'Na' and 'symm' in cn : ax.plot([10,100], [0.2,0.2*10**-0.8], c='k', lw=0.4) elif mm == 'K' and 'symm' in cn : ax.plot([7,70], [0.35,0.35*10**-0.9], c='k', lw=0.4) elif mm == 'Ag' and 'symm' in cn : ax.plot([10,100], [0.35,0.35*10**-0.7], c='k', lw=0.4) elif mm == 'Ag' and '120' in cn : ax.plot([15,150], [0.6,0.6*10**-0.6], c='k', lw=0.4) ax.plot([50,2500], [1,50**-0.5], c='k', lw=0.4) ax.plot([500,5e3], [2,2*10**-0.4], c='k', lw=0.4) elif mm == 'Ag' and 'unsym' in cn : ax.plot([20, 200], [0.3, 0.3*10**-0.8], c='k', lw=0.4) ax.plot([4e2, 4e3], [2, 2*10**-0.4], c='k', lw=0.4) elif option == 'eb' : ## Load and plot EB try: eb_glob = glob.glob(plane.folder+f'/*eb*{T1}K*{int(eb_lag)}ps.csv') eb = pd.read_csv(eb_glob[0]).set_index('time') ax.plot(eb.eb, label=label, c=colors[i]) # + f', $t={eb_lag}$ ps' except: print(f'could not load the first EB file for {mm} {cn} {T1}K: ') ax.legend(title=leg_title, loc='lower left') ## plot log-log guidelines if guides and T1 == guide_T1 : if mm == 'K' and '120' in cn: ax.plot([1e4,8e4],[0.1, 0.1*8**-0.75], lw=0.4, c='k') elif mm == 'Na' and 'unsym' in cn: ax.plot([7e3, 7e4], [0.25,0.25*10**-0.3], c='k', lw=0.4) ax.plot([1e3, 1e4], [0.015,0.015*10**-0.9], c='k', lw=0.4) elif mm == 'Na' and '120' in cn: ax.plot([7e3,7e4], [0.02,0.02*10**-1], c='k', lw=0.4) ax.plot([12e3,72e3], [0.11,0.11*6**-0.6], c='k', lw=0.4) elif mm == 'K' and 'unsym' in cn : ax.plot([12e3,72e3], [0.015,0.015*6**-0.6], c='k', lw=0.4) ax.plot([1e3,1e4], [0.016,0.016*10**-1], c='k', lw=0.4) elif mm == 'Na' and 'symm' in cn : ax.plot([12e3,72e3], [0.017,0.017*6**-0.6], c='k', lw=0.4) ax.plot([1e3,1e4], [0.02,0.02*10**-1], c='k', lw=0.4) elif mm == 'Ag' and '120' in cn : ax.plot([2e4, 7e4], [0.04,0.04*3.5**-1], c='k', lw=0.4) ax.plot([3e3, 14e3], [0.13, 0.13*(14/3)**-0.6], c='k', lw=0.4) # axes[2].plot([3e3, 3e4], [0.3, 0.3*10**-0.3], c='k', lw=0.4) elif mm == 'Ag' and 'unsym' in cn : ax.plot([2e3, 2e4], [0.02, 0.02*10**-1], c='k', lw=0.4) elif mm == 'Ag' and 'symm' in cn : axes[1,0].plot([9e2,9e3], [0.045, 0.045*10**-0.9], c='k', lw=0.4) elif mm == 'K' and 'symm' in cn : ax.plot([9e2,9e3], [0.05, 0.005], c='k', lw=0.4) else : pass ## make axes pretty if option == 'a2' : # axes[0,0].set(xlim=[0.05,5e4], xscale='log', ylim=[0.02,None], yscale='log',yticks=[0.1,1.0,10]) for ax in axes[:,0] : ax.set(ylabel='Non-Gauss. Param.', yscale='log',ylim=[0.02,None]) ax.set(yticks=[0.1,1.0,10] if max(ax.get_ylim()) > 10 else [0.1,1.0], yticklabels=['0.1','1.0','10'] if max(ax.get_ylim()) > 10 else ['0.1','1.0']) for ax in axes[:,1:].flat : ax.set(yticks=[]) for ax in axes[-1,:] : ax.set(xlabel=r'Time lag $t$, ps', xlim=[0.05,5e4], xscale='log') elif option == 'eb' : for ax in axes[:,0] : ax.set(xlim=[5*eb_lag, 9e4], xscale='log', ylim=[1e-3, 3], yscale='log', ylabel=f'EB at $t=${eb_lag} ps', yticks=[0.01, 0.1, 1], yticklabels=['.01', '0.1', '1.0'] ) for ax in axes[-1,:] : ax.set(xlabel='Simulation Time $\Delta$, ps') else : pass fig.tight_layout(pad=0.5, w_pad=0.1) # ============================================================================= # %% Extended Data Figure NN : Distributions of r^2_CoM # ## top row: rescale = False, bottom row: rescale = True # ============================================================================= option = 'hist' ## 'spectra' for conductivity, 'hist' for distributions of DCOM, ## variable by which to plot stuff variable = 'T1' ## << pick a variable start_1 = 0 ## [ps] time at which to start sampling CoM MSD start_step = 10 ## [ps] interval for sampling CoM MSD durations = np.array([2.5,25,250,2500]) ## [ps] for histograms rescale=True ## divide the DCOM distribution by its stdev, with hist enforce_random = False ## flag to enforce start_step >= duration # ========== automatic things below this line ========== ## load three planes planes_to_load = all_planes.query('metal == "Na" & config == "unsym_0" & T1 in [230,300,473,600]') macro_planes_data = hu.load_macro_planes(planes_to_load) ## values of the first variable in the loaded data var_values = sorted(macro_planes_data[variable].unique()) ## initialize a second variable variable2 = None ## deduce a second variable if len(macro_planes_data) > len(var_values) : ## a second variable is varied for rv in [x for x in relevant_vars if x != 'z']: if rv in macro_planes_data.columns and len(set(macro_planes_data[rv])) > 1 and rv != variable: variable2 = rv break else: variable2 = 'config' var2_values = sorted(macro_planes_data[variable2].unique()) ## figure to plot the distributions ## do not share x-scale if each axes is at a different temperature ## sharex=(variable != 'T1'), fig, axes = plt.subplots(1, len(var_values), sharey=True, sharex=rescale, figsize=(3.2*len(var_values),3.75)) if len(var_values) < 2: axes = [axes] ## structure for new computations new_sigmas_msd = list() ## loop over the values of the variables for var, ax in zip(var_values, axes) : for var2 in var2_values: for i, plane in macro_planes_data.iterrows(): if plane[variable] == var and plane[variable2] == var2: ph = plane.phase; mm = plane.metal; cn = plane.config st = plane.stoich; ex = plane.exclude T1 = plane.T1 # com = plane.com N = len(plane.atoms.query('atom == @mm')) cell = plane.cell dcoms = list() ## load a pre-corrected result cor = False try: cor_fname = glob.glob(plane.folder + f'/cm_{mm}-{st}-{ex}-{T1}K-{mm}-cor.csv') if isinstance(cor_fname, list) and len(cor_fname) == 1 : com = pd.read_csv(cor_fname[0]).set_index('time') print(f'\nLoaded an Al-corrected CoM trajectory for {variable}={var}, {variable2}={var2} T1={T1}K') cor = True except : continue dtt = com.index[1]-com.index[0] ## average multiple starts for c, duration in enumerate(durations): ## enforce start_step >= duration if enforce_random and start_step < duration : start_step = duration if com.index.max() <= duration*4 : dcoms.append(np.nan) # print(f'Clipping long duration: {variable}={var}, {variable2}={var2} T1={T1}K') continue dr = com.loc[duration+com.index.min()::int(start_step/dtt)] - com.loc[:com.index.max()-duration:int(start_step/dtt)].values # dr['dcom'] = (dr.x**2 + dr.y**2 + dr.z**2)/duration dr['dcom'] = (dr.x**2 + dr.y**2 )/duration all_dcom2 = dr.dcom.values / 4 dcoms.append(np.mean(all_dcom2)) ## divide by st.dev. / plot D_CoM rescaled by its st.dev. # print(f'{mm} {cn} {T1}K : mean {np.mean(all_dcom2):.3g} A2/ps, st.d. {np.std(all_dcom2):.3g} A2/ps (lag={duration}, step={start_step}), simple method') if rescale : all_dcom2 = np.array(all_dcom2) / np.std(all_dcom2) ## plot stuff if option == 'hist' : ## plot a histogram of D_com dcom2_bins = np.linspace(min(all_dcom2)*(0.99 if min(all_dcom2) < 0 else 1.01), max(all_dcom2)*1.01,50) hist, bin_edges = np.histogram(all_dcom2, bins=dcom2_bins, density=True) bin_ctrs = (bin_edges[:-1] + bin_edges[1:])*0.5 if duration < 10 : l = f'{duration:.1f} ps' elif duration > 1e3 : l = f'{duration/1e3:.1f} ns' else : l = f'{duration:.0f} ps' ax.plot(bin_ctrs, hist, label=f'$t=${l}', linestyle='-', marker=None) del com ax.legend(title=f'{mm} {phases[ph]}, {T1}K') ## axes decorations for ax in axes: if rescale : ax.plot([1,2,3],[0.1,0.1/np.e, 0.1/np.e**2], c='k', lw=0.4) ax.set(xlim=[0,9.5], xlabel=r'$D_{CoM}(t;\Delta,\delta)/\sigma_{D_{CoM}}$') axes[0].set(ylabel=r'$P(D_{CoM})$, $\sigma^{-1}_{D_{CoM}}$', yscale='log') else : ax.set(xscale='log', yscale='log', ylim=[0.5,None]) axes[0].set(ylabel=f'$P(D_{{CoM}}(t;\Delta,\delta={start_step}ps)$, ps $\AA^{{-2}}$') ax.set(xlabel=r'$D_{CoM}(t;\Delta,\delta)$, $\AA^2$/ps') ## recolor lines non_guide_lines = [x for x in ax.lines if x.get_label()[0] != '_'] colors = [batlow_even(j) for j in np.linspace(0, 1, len(non_guide_lines))] for i, l in enumerate(non_guide_lines) : l.set(color=colors[i]) ## remake legend with same title - but possibly new colors ax.legend(title=ax.get_legend().get_title().get_text(), loc='upper right' if rescale else 'lower left') fig.tight_layout(pad=0.5, w_pad=0.25) # ============================================================================= # %% Figure SN : Crowding by Oi # ============================================================================= # ===== load data ===== planes_to_load = all_planes.query('metal == "Na" & num_planes > 1 & phase == "beta" & T1 in [300,600] & config in ["120_1", "120_4"]') planes_to_load = all_planes.query('metal == "Na" & num_planes > 1 & phase == "beta" & T1 == 300 & config in ["120_M1", "120_M4"]') # ===== parameters ===== option = 'spectra' ## 'spectra' for conductivity, 'hist' for distributions of DCOM, start_1 = 0 ## [ps] time at which to start sampling CoM MSD start_step = 10 ## [ps] interval for sampling CoM MSD durations = np.round(np.logspace(0.4,3.4),2) ## [ps] how long each sampling is. Time "Delta" from Barkai enforce_random = False ## flag to enforce start_step >= duration # ========== automatic things below this line ========== variable = 'T1' ## hard-coded here for paper figures variable2 = 'config' macro_planes_data = hu.load_macro_planes(planes_to_load).sort_values(by=[variable2,variable]) ## values of the first variable in the loaded data var_values = sorted(macro_planes_data[variable].unique()) var2_values = sorted(macro_planes_data[variable2].unique()) colors = cycle([batlow_even(i) for i in np.linspace(0, 1, len(var2_values))]) # ===== conductivity ===== ## figure to plot the distributions ## do not share x-scale if each axes is at a different temperature ## sharex=(variable != 'T1'), fig, ax = plt.subplots(figsize=(5,3.75)) ## loop over the values of the variables for var in var_values : for var2 in var2_values: plane = macro_planes_data.query(f'{variable} == @var & {variable2} == @var2').iloc[0] ph = plane.phase; mm = plane.metal; cn = plane.config st = plane.stoich; ex = plane.exclude; T1 = plane.T1 N = len(plane.atoms.query('atom == @mm')) cell = plane.cell defect_type = [r'$O_i^{\prime\prime}$', r'$Mg_{Al}^\prime$'][('M' in ex) or (ph == 'bdp')] dcoms = list() ## load a pre-corrected result cor = False try: cor_fname = glob.glob(plane.folder + f'/cm_{mm}-{st}-{ex}-{T1}K-{mm}-cor.csv') if isinstance(cor_fname, list) and len(cor_fname) == 1 : com = pd.read_csv(cor_fname[0]).set_index('time') print(f'\nLoaded an Al-corrected CoM trajectory for {variable}={var}, {variable2}={var2} T1={T1}K') cor = True except : com = None ## check that the trajectory is loaded, and is long enough # if (com is None) or (com.index.max() <= duration) : if com is None : print(f'CoM trajectory too short. Found {com.index.max()} ps, need {duration} ps.\n') continue dtt = com.index[1]-com.index[0] ## average multiple starts for duration in durations: ## enforce start_step >= duration if enforce_random and start_step < duration : start_step = duration if com.index.max() <= duration*4 : dcoms.append(np.nan) print(f'Clipping long duration: {variable}={var}, {variable2}={var2}') continue dr = com.loc[duration+com.index.min()::int(start_step/dtt)] - com.loc[:com.index.max()-duration:int(start_step/dtt)].values # dr['dcom'] = (dr.x**2 + dr.y**2 + dr.z**2)/duration dr['dcom'] = (dr.x**2 + dr.y**2 )/duration all_dcom2 = dr.dcom.values * N / 4 dcoms.append(np.mean(all_dcom2)) sigts = sigma_T(N,cell,np.array(dcoms)*unit_conv) l = f'{mm}$_{{{eval(st)/100:.2f}}}~\sigma$ from $r_{{CM}}^2 $' if len(macro_planes_data) == 1 and ph == 'beta' else f'{var2}{units[variable2]}' l = f'{mm}$_{{{st}}}~\sigma$ from $r_{{CM}}^2 $' if len(macro_planes_data) == 1 and ph != 'beta' else l l = f'{T1}K, {defect_type} {ex.replace("M","")}+' ax.plot(1e12/durations, sigts/T1, next(markers)+next(lines), label=l, mfc='none', c=next(colors)) del com ax.legend(loc='lower right', title=f'{mm} {phases[ph]}-alumina') ax.set(yscale='log', xscale='log', xlabel=r'$\nu=1/t$, Hz') ax.set(ylabel=r'$\sigma_{xy}(t;\Delta)$, S/cm') ax.set(xlim=[1e8,6e11]) fig.tight_layout(pad=0.5, h_pad=0.25) # ===== r2 and C_D ===== dim = 2 ## new figure with 2 panels fig3, axes = plt.subplots(3,1, sharex=True, figsize=(4.5, 9.9)) ## loop over the values of the variables for var in var_values : for var2 in var2_values: plane = macro_planes_data.query(f'{variable} == @var & {variable2} == @var2').iloc[0] ph = plane.phase; mm = plane.metal; cn = plane.config st = plane.stoich; ex = plane.exclude; T1 = plane.T1 N = len(plane.atoms.query('atom == @mm')) cell = plane.cell defect_type = [r'$O_i^{\prime\prime}$', r'$Mg_{Al}^\prime$'][('M' in ex) or (ph == 'bdp')] label = f'{T1}K, {defect_type} {ex.replace("M","")}+' leg_title = f'{mm} {phases[ph]}-alumina' this_color = next(colors); this_line = next(lines) ## load the 2D a2 file - leaving out the "split" files a2_xys = glob.glob(plane.folder+f'/{mm}*{ex}-a2xy*{T1}K*ps.csv') ## load the a2 file if exactly one exists, else complain if a2_xys : if len(a2_xys) > 1 : a2_xys = sorted(a2_xys, reverse=True, key = lambda x : eval(re.split('-|_| ',x)[-1][:-6])) ## read the a2 file - options for csv file a2 = pd.read_csv(a2_xys[0], sep=',').set_index('time') else : print(f'could not load a 2D a2 file for plane {mm} {cn} {T1}K') ## recalculate a2 for the right number of dimensions a2.a2 = dim * a2.r4 / a2.r2 ** 2 / (dim+2) - 1 ## load a short-time a2 file if using one try : a2s = pd.read_csv(plane.folder + f'/{mm}-{st}-{ex}-a2{"xy" if dim == 2 else ""}-{T1}K-10ps.csv').set_index('time') a2s.a2 = dim * a2s.r4 / a2s.r2 ** 2 / (dim+2) - 1 except : print(f'could not load a short a2 file for plane {mm} {cn} {T1}K') a2s = None ## load Gs ## Plot points from van Hove function try : gs = hu.load_gs(plane.folder+f'/{mm}-*-gs-{T1}K*ps.csv', 'cdt', radii=[[0.01,1.7],[0.01,4.6]]) except ValueError : print(f'something wrong with Gs for {mm} {cn} {T1}, check fractional/real computation.') # === r2 === axes[0].plot(a2.r2.iloc[1:], label=label, c=this_color, ls=this_line) axes[0].plot(a2s.r2.iloc[1:].loc[:0.02], c=this_color, ls=this_line) axes[0].legend(title=leg_title, loc='upper left') # === NGP === axes[1].plot(a2.a2, label=label, c=this_color, ls=this_line) axes[1].plot(a2s.a2.iloc[1:].loc[:0.02], c=this_color, ls=this_line) ## create the interpolator for plotting little stars based on Gs int_fun = interp1d(a2.index.values, a2.a2) ## Plot points from van Hove function axes[1].plot(gs, int_fun(gs), marker='o', mfc='yellow', ls='', markersize=4, mec='k', zorder=3, fillstyle='full') axes[1].legend(title=leg_title, loc='lower left') # === C_D === start = dt.now() svals = np.logspace(-5, 2, 4000) # if not short else np.logspace(-6,5,3000) ## Laplace transform of C_D(t) cds = hu.fluctuation_kernel(a2, svals, dim=dim) try: cdt = hu.stehfest_inverse(cds, a2.index.values[1:-1]) except : print(f'could not append inverse transform for {mm} {cn} {T1}') break cdt =
pd.DataFrame({'time':a2.index.values[1:-1],'cdt':cdt})
pandas.DataFrame
import numpy as np import pandas as pd from powersimdata.input.input_data import InputData from powersimdata.tests.mock_scenario import MockScenario from postreise.analyze.transmission import congestion mock_plant = { "plant_id": ["A", "B", "C", "D"], "bus_id": [1, 1, 2, 3], } mock_bus = { "bus_id": [1, 2, 3, 4], "Pd": [5, 6, 30, 1], "zone_id": [1, 1, 1, 2], } grid_attrs = {"plant": mock_plant, "bus": mock_bus} def _check_return(expected_return, surplus): assert isinstance(surplus, pd.Series) msg = "Time series indices don't match" np.testing.assert_array_equal( surplus.index.to_numpy(), expected_return.index.to_numpy(), msg ) msg = "Values don't match expected" np.testing.assert_array_equal(surplus.to_numpy(), expected_return.to_numpy(), msg) def test_calculate_congestion_surplus_single_time(monkeypatch): """Congested case from Kirschen & Strbac Section 5.3.2.4""" def mock_get_data(*args, **kwargs): return demand # Override default InputData.get_data method to avoid profile csv lookup monkeypatch.setattr(InputData, "get_data", mock_get_data) demand =
pd.DataFrame({"UTC": ["t1"], 1: [410], 2: [0]})
pandas.DataFrame
import numpy as np import pandas as pd class RegressionTree: def __init__(self, col_names): self.train_data, self.test_data = RegressionTree.get_data(col_names) full_data =
pd.concat([self.train_data, self.test_data])
pandas.concat
from IMLearn.utils import split_train_test from IMLearn.learners.regressors import LinearRegression from IMLearn.metrics import loss_functions as loss from typing import NoReturn import numpy as np import pandas as pd import plotly.graph_objects as go import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" def proccess(matrix: pd.array): exclude_feutrues=["sqft_lot15","sqft_lot","lat", "long","date","yr_renovated"] ##Features that are not relevant for the regression matrix = matrix.loc[:, ~matrix.columns.isin(exclude_feutrues)] matrix = matrix.apply(pd.to_numeric, errors="coerce") matrix = matrix[matrix['yr_built'].values > 1000] matrix = matrix[matrix['price'].values > 100] matrix = matrix.dropna() y=matrix['price'] X=matrix.loc[:,~matrix.columns.isin(["price"])] return(X,y) def load_data(filename: str): """ Load house prices dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ table = pd.read_csv(filename, index_col=0) return proccess(table) def feature_evaluation(X: pd.DataFrame, y: pd.Series, output_path: str = ".") -> NoReturn: """ Create scatter plot between each feature and the response. - Plot title specifies feature name - Plot title specifies Pearson Correlation between feature and response - Plot saved under given folder with file name including feature name Parameters ---------- X : DataFrame of shape (n_samples, n_features) Design matrix of regression problem y : array-like of shape (n_samples, ) Response vector to evaluate against output_path: str (default ".") Path to folder in which plots are saved """ Y, X= y.to_numpy(), X.to_numpy() y_sigma= np.sqrt(np.var(y)) corr_lst = [] for i in range(X.shape[1]): cov = np.cov(X[:, i],y) xi_sigma = np.sqrt(np.array(np.var(X[:,i]))) corr_i=cov/(xi_sigma*y_sigma) corr_lst.append(corr_i[0,1]) sqft_living=X[:,2] go.Figure([go.Scatter(x=sqft_living, y=Y, mode='markers', name=r'$\price$'),], layout=go.Layout(title=r"$\text{Price as function of sqft living}$", xaxis_title="$\\text{ sqft}$", yaxis_title="r$\\text{ price}$")).show() yr_built=X[:,10] go.Figure([go.Scatter(x=yr_built, y=Y, mode='markers', name=r'$\yr_built$'),], layout=go.Layout(title=r"$\text{Price as function of Year of built}$", xaxis_title="$\\text{ yr_built}$", yaxis_title="r$\\text{ price}$")).show() if __name__ == '__main__': np.random.seed(0) # Question 1 - Load and preprocessing of housing prices dataset X, y = load_data('datasets/house_prices.csv') # # Question 2 - Feature evaluation with respect to response feature_evaluation(X, y) # Question 3 - Split samples into training- and testing sets. X =
pd.get_dummies(X, columns=["zipcode"])
pandas.get_dummies
""" 事前準備に $ pip install pandas $ pip install openpyxl $ pip install xlrd が必要 リファレンス https://pandas.pydata.org/pandas-docs/stable/reference/index.html """ import pandas as pd import openpyxl excel_in_path1 = './data/excel_in_header_2sheet.xlsx' print("********何も指定せず読み込み********") # 何も指定しない場合は最初のシートになる df = pd.read_excel(excel_in_path1) print(df) print(df.index) # index(行の項目名) print(df.columns) # header (列の項目名) print(df.values) # 値 print(df.dtypes) # 判定指定した型 print(type(df.at[0,'Note'])) # "OK" 文字列の場合<str> print(type(df.at[3,'Note'])) # Nan 空白(セルの内容がない場合)の場合<float>扱い print(type(df.at[4,'Note'])) # 12 数値の場合<int64> print("********シートを指定して読み込み********") df = pd.read_excel(excel_in_path1, sheet_name="Member") print(df) df = pd.read_excel(excel_in_path1, sheet_name="History") print(df) print("********dtypeを指定して読み込み********") df = pd.read_excel(excel_in_path1, dtype={"Note": 'str'}) print(df) print(df.dtypes) # 判定指定した型 print(type(df.at[0,'Note'])) # <str> 元々文字列なので変わらず print(type(df.at[3,'Note'])) # <float> 空白の場合strを指定してもNaNなのでfloat扱いのようだ print(type(df.at[4,'Note'])) # <str> 指定がない場合はint64扱いだったのがstrになった print("NaN判定") print(pd.isnull(df.at[0,'Note'])) # NaNではないのでFalse print(pd.isnull(df.at[3,'Note'])) # NaNなのでTrue #df.at[3,'Note'] = "" #print(df.at[3,'Note']) # #print(type(df.at[3,'Note'])) # for index, note in enumerate(df['Note']): if pd.isnull(note): df.at[index, 'Note'] = "" # 空白に変更 print(type(df.at[index,'Note'])) print(df['Note']) print("********Dateの扱い********") # excelのdateは1900/1/1からのシリアル日時なのでPythonの日付クラスとは扱いが異なる・ import datetime #参考 #https://docs.python.org/ja/3.8/library/datetime.html df = pd.read_excel(excel_in_path1, sheet_name="Member") birthdays = df['Birthday'] def convert_date_from_excel(excel_sirial): # excelのシリアル値は1900/1/1を1としている、そして何故か1900/2/29が存在することになっているので-2する必要がある。 # そのため1900/2/29までのシリアル値の場合一日ずれるがその年代を使う確率は低いので運用上は問題ないと思う。 return datetime.date(1900,1,1) + datetime.timedelta(days=(excel_sirial -2)) #from_excel_date = lambda sirial : datetime.date(1899,12,31) + datetime.timedelta(days=sirial) print(birthdays[0]) print(type(birthdays[0])) pydate = convert_date_from_excel(int(birthdays[0])) print(pydate) print(type(pydate)) """ # この書き方でも実際にDataFrameが書き換わるが、forで回しているリストを書き換えている為Warningが発生する # SettingWithCopyWarning: # A value is trying to be set on a copy of a slice from a DataFrame for index, birthday in enumerate(birthdays): pydate = convert_date_from_excel(birthday) birthdays[index] = pydate """ pyBirthdays = [] for birthday in birthdays: pydate = convert_date_from_excel(birthday) pyBirthdays.append(pydate) print(pyBirthdays) birthdays.update(pd.Series(pyBirthdays)) # dateframe自体が入れ替わる print(df) print("********新しいexcelファイルを作成(新規作成)********") df = pd.read_excel(excel_in_path1, sheet_name="Member") print(df) excel_out_default = './data/excel_out_defaut.xlsx' # シート名はSheet1. headerとindexがついた状態で状態で出力される(Dateもそのままシリアル値で) df.to_excel(excel_out_default) excel_out_no_index = './data/excel_out_no_index.xlsx' df.to_excel(excel_out_no_index, index=False) excel_out_no_header = './data/excel_out_no_header.xlsx' df.to_excel(excel_out_no_header, header=False) excel_out_sheet_name = './data/excel_out_sheet_name.xlsx' df.to_excel(excel_out_sheet_name, sheet_name='test_sheet') excel_out_change_start_cell = './data/excel_out_change_start_cell.xlsx' df.to_excel(excel_out_change_start_cell, startrow=3, startcol= 2) print("********複数シートの書き込み********") df1 = pd.read_excel(excel_in_path1, sheet_name="Member") df2 = pd.read_excel(excel_in_path1, sheet_name="History") excel_out_two_sheets = './data/excel_out_two_sheets.xlsx' with pd.ExcelWriter(excel_out_two_sheets) as ew: df1.to_excel(ew, sheet_name='Member_copy', index=False) df2.to_excel(ew, sheet_name='History_copy', index=False) print("********dateのフォーマット********") df =
pd.read_excel(excel_in_path1, sheet_name="Member")
pandas.read_excel
import re import pandas as pd import numpy as np from datasets.constants import signal_types from datasets.sources.source_base import SourceBase import logging logger = logging.getLogger(__name__) class EverionSource(SourceBase): FILES = { 'signals': r'^CsvData_signals_EV-[A-Z0-9-]{14}\.csv$', 'sensors': r'^CsvData_sensor_data_EV-[A-Z0-9-]{14}\.csv$', 'features': r'^CsvData_features_EV-[A-Z0-9-]{14}\.csv$', # 'aggregates': r'^CsvData_aggregates_EV-[A-Z0-9-]{14}\.csv$', # 'analytics': r'^CsvData_analytics_events_EV-[A-Z0-9-]{14}\.csv$', # 'events': r'^CsvData_everion_events_EV-[A-Z0-9-]{14}\.csv$', } META = { 'inter_pulse_interval': { 'type': signal_types.RR_INTERVAL, 'unit': 'Milliseconds' }, 'heart_rate': { 'unit': 'BPM' }, 'heart_rate_variability': { 'unit': 'Milliseconds' }, 'gsr_electrode': { 'unit': 'Microsiemens' }, 'ctemp': { 'unit': 'Celsius' }, 'temperature_object': { 'unit': 'Celsius' }, 'temperature_barometer': { 'unit': 'Celsius' }, 'temperature_local': { 'unit': 'Celsius' }, 'barometer_pressure': { 'unit': 'Millibar' }, 'respiration_rate': { 'unit': 'BPM' }, 'oxygen_saturation': { 'unit': 'Percent' }, } SIGNAL_TAGS = { 6: ['heart_rate'], 7: ['oxygen_saturation'], #8: ['perfusion_index'], #9: ['motion_activity'], #10: ['activity_classification'], 11: ['heart_rate_variability', 'heart_rate_variability_quality'], 12: ['respiration_rate'], #13: ['energy'], 15: ['ctemp'], 19: ['temperature_local'], 20: ['barometer_pressure'], 21: ['gsr_electrode'], #22: ['health_score'], #23: ['relax_stress_intensity_score'], #24: ['sleep_quality_index_score'], #25: ['training_effect_score'], #26: ['activity_score'], #66: ['richness_score'], #68: ['heart_rate_quality'], #69: ['oxygen_saturation_quality'], #70: ['blood_pulse_wave', 'blood_pulse_wave_quality'], #71: ['number_of_steps'], #72: ['activity_classification_quality'], #73: ['energy_quality'], #74: ['heart_rate_variability_quality'], #75: ['respiration_rate_quality'], #76: ['ctemp_quality'], 118: ['temperature_object'], 119: ['temperature_barometer'], #133: ['perfusion_index_quality'], #134: ['blood_pulse_wave_quality'] } SENSOR_TAGS = { 80: ['led1_data'], 81: ['led2_data'], 82: ['led3_data'], 83: ['led4_data'], 84: ['accx_data'], 85: ['accy_data'], 86: ['accz_data'], #88: ['led2_current'], #89: ['led3_current'], #90: ['led4_current'], #91: ['current_offset'], #92: ['compressed_data'] } FEATURE_TAGS = { 14: ['inter_pulse_interval', 'inter_pulse_interval_deviation'], #17: ['pis'], #18: ['pid'], #77: ['inter_pulse_deviation'], #78: ['pis_quality'], #79: ['pid_quality'] } @classmethod def name(cls): return "Biovotion Everion" @classmethod def fileOptions(cls): return [ { 'label': 'Signals Data', 'pattern': '^CsvData_signals_EV-[A-Z0-9-]{14}\.csv$', 'required': True, 'multiple': False, 'timestamp': False }, { 'label': 'Sensor Data', 'pattern': '^CsvData_sensor_data_EV-[A-Z0-9-]{14}\.csv$', 'required': False, 'multiple': False, 'timestamp': False }, { 'label': 'Features Data', 'pattern': '^CsvData_features_EV-[A-Z0-9-]{14}\.csv$', 'required': False, 'multiple': False, 'timestamp': False }, ] @staticmethod def extend_values(df, dtype='float64'): values_extended = df['values'].str.extract(r'(?P<value>[\d.]+);?(?P<value2>[\d.]+)?') \ .astype({ 'value': dtype, 'value2': dtype }, copy=False) df_extended = pd.concat([df, values_extended], axis=1) df_extended.drop(columns='values', inplace=True) return df_extended @staticmethod def get_dataframe_iterator(path, cols=['count', 'tag', 'time', 'values']): parse_dates = ['time'] if 'time' in cols else None return pd.read_csv( path, usecols=cols, dtype={ 'count': 'uint32', 'streamType': 'int8', 'tag': 'int8', 'values': 'object' }, parse_dates=parse_dates, date_parser=lambda x: pd.to_datetime(x, unit='s', utc=True), chunksize=100000 ) @staticmethod def split_data(df, predicate): df = df.copy() df_split = [] split_at = df[predicate(df)]['count'].unique() for index, count in enumerate(split_at): selected = df['count'] <= count if index > 0: selected = selected & (df['count'] > split_at[index - 1]) df_split.append(df[selected]) # If it was splitted append last segment, else whole dataframe if split_at.size == 0: df_split.append(df) else: df_split.append(df[df['count'] > split_at[-1]]) assert np.sum([len(part) for part in df_split]) == len(df) return [part for part in df_split if not part.empty] @classmethod def create_time_lookup_for_ibi(cls, path, max_deviation=15, threshold=600): df = pd.DataFrame() df_iterator = cls.get_dataframe_iterator(path, ['tag', 'count', 'time', 'values']) # append data from csv in chunks and drop duplicates for chunk in df_iterator: chunk.drop_duplicates(subset=['count', 'tag'], inplace=True) chunk = chunk[chunk['tag'] == 14] chunk = cls.extend_values(chunk) chunk = chunk[chunk['value2'] <= max_deviation] chunk.drop('value2', axis='columns', inplace=True) chunk['value'] = chunk['value'].astype('uint16') df = pd.concat([df, chunk], sort=False) df.drop_duplicates(subset=['count', 'tag'], inplace=True) df.sort_values(['tag', 'count'], inplace=True) df.reset_index(drop=True, inplace=True) # split dataframes in consecutive parts df_split = cls.split_data( df, lambda x: x['time'].shift(-1, fill_value=x['time'].max()) - x['time'] - pd.to_timedelta(x['value'].shift(-1, fill_value=0), 'ms') > pd.to_timedelta(x['value'] + threshold, 'ms') ) # calculate correct time and concatenate split dataframes df = pd.DataFrame() for each in df_split: start_time = each['time'].min() each['seconds'] = pd.Series(each['value'].cumsum(), dtype='uint32') each['seconds'] = each['seconds'].shift(1, fill_value=0) each['seconds'] = pd.to_timedelta(each['seconds'], unit='ms') each['time'] = each['seconds'] + start_time each.drop(['seconds'], axis='columns', inplace=True) df = pd.concat([df, each]) df.reset_index(drop=True, inplace=True) return df[['tag', 'count', 'time']] @classmethod def create_time_lookup(cls, path, tag): if isinstance(tag, int): tag = [tag] elif not isinstance(tag, list): raise TypeError(f'Expected tag to be int or list, but got {type(tag)}') includes_interbeat_interval = 14 in tag if includes_interbeat_interval: tag = [value for value in tag if value != 14] df = pd.DataFrame(columns=['tag', 'count', 'time']) if tag: df_iterator = cls.get_dataframe_iterator(path, ['tag', 'count', 'time']) # append data from csv in chunks and drop duplicates for chunk in df_iterator: chunk.drop_duplicates(subset=['count', 'tag'], inplace=True) subset = chunk['tag'].isin(tag) df =
pd.concat([df, chunk[subset]], sort=False)
pandas.concat
import itertools import warnings from typing import Callable from typing import Optional import numpy as np import pandas as pd from sid.shared import boolean_choices from sid.validation import validate_return_is_series_or_ndarray def perform_rapid_tests( date: pd.Timestamp, states: pd.DataFrame, params: pd.DataFrame, rapid_test_models: Optional[Callable], contacts: pd.DataFrame, seed: itertools.count, ) -> pd.DataFrame: """Perform testing with rapid tests.""" if rapid_test_models: receives_rapid_test = _compute_who_receives_rapid_tests( date=date, states=states, params=params, rapid_test_models=rapid_test_models, contacts=contacts, seed=seed, ) is_tested_positive = _sample_test_outcome( states, receives_rapid_test, params, seed ) states = _update_states_with_rapid_tests_outcomes( states, receives_rapid_test, is_tested_positive ) return states def apply_reactions_to_rapid_tests( date, states, params, rapid_test_reaction_models, contacts, seed, ): """Apply reactions to rapid_tests.""" if rapid_test_reaction_models: for model in rapid_test_reaction_models.values(): loc = model.get("loc", params.index) func = model["model"] if model["start"] <= date <= model["end"]: contacts = func( contacts=contacts, states=states, params=params.loc[loc], seed=next(seed), ) return contacts def _compute_who_receives_rapid_tests( date, states, params, rapid_test_models, contacts, seed ): """Compute who receives rapid tests. We loop over all rapid tests models and collect newly allocated rapid tests in ``receives_rapid_test``. A copy of the series is passed to each rapid test model so that the user is aware of who is tested, but cannot alter the existing assignment. """ receives_rapid_test = pd.Series(index=states.index, data=False) for name, model in rapid_test_models.items(): loc = model.get("loc", params.index) func = model["model"] if model["start"] <= date <= model["end"]: new_receives_rapid_test = func( receives_rapid_test=receives_rapid_test.copy(deep=True), states=states, params=params.loc[loc], contacts=contacts, seed=next(seed), ) new_receives_rapid_test = validate_return_is_series_or_ndarray( new_receives_rapid_test, name, "rapid_test_models", states.index ) receives_rapid_test.loc[new_receives_rapid_test] = True return receives_rapid_test def _sample_test_outcome(states, receives_rapid_test, params, seed): """Sample the outcomes of the rapid tests. For those who are infectious, sensitivity gives us the probability that they are also tested positive. For those who are not infectious, 1 - specificity gives us the probability that they are falsely tested positive. """ np.random.seed(next(seed)) is_tested_positive = pd.Series(index=states.index, data=False) with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message="indexing past lexsort depth may impact performance." ) sensitivity_params = params.loc[("rapid_test", "sensitivity"), "value"] infected = states["cd_infectious_true"] >= -10 receives_test_and_is_infected = infected & receives_rapid_test sensitivity = _create_sensitivity( states=states[receives_test_and_is_infected], sensitivity_params=sensitivity_params, ) is_truly_positive = boolean_choices(sensitivity) is_tested_positive.loc[receives_test_and_is_infected] = is_truly_positive specificity = params.loc[("rapid_test", "specificity", "specificity"), "value"] uninfected_test_receivers = ~infected & receives_rapid_test p_false_positive = np.full(uninfected_test_receivers.sum(), 1 - specificity) is_falsely_positive = boolean_choices(p_false_positive) is_tested_positive.loc[uninfected_test_receivers] = is_falsely_positive return is_tested_positive def _create_sensitivity(states, sensitivity_params): """Create the sensitivity se""" sensitivity =
pd.Series(np.nan, index=states.index)
pandas.Series
import json import requests import pandas as pd def get_collection(code): url = 'http://sweetgum.nybg.org/science/api/v1/institutions/' + code collection = requests.get(url) if collection.status_code == 200: collections = json.loads(collection.text) collections = {'code' : collections['code'], 'name' : collections['organization'], 'website' : collections['contact']['webUrl']} df =
pd.DataFrame(collections, index=[0])
pandas.DataFrame
# # Copyright 2020 Capital One Services, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Testing out the datacompy functionality """ import io import logging import sys from datetime import datetime from decimal import Decimal from unittest import mock import numpy as np import pandas as pd import pytest from pandas.util.testing import assert_series_equal from pytest import raises import datacompy logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) def test_numeric_columns_equal_abs(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, abs_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_numeric_columns_equal_rel(): data = """a|b|expected 1|1|True 2|2.1|True 3|4|False 4|NULL|False NULL|4|False NULL|NULL|True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |False résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |False datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal_with_ignore_spaces(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |True résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |True datacompy|DataComPy|False something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2, ignore_spaces=True) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_string_columns_equal_with_ignore_spaces_and_case(): data = """a|b|expected Hi|Hi|True Yo|Yo|True Hey|Hey |True résumé|resume|False résumé|résumé|True 💩|💩|True 💩|🤔|False | |True | |True datacompy|DataComPy|True something||False |something|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") actual_out = datacompy.columns_equal( df.a, df.b, rel_tol=0.2, ignore_spaces=True, ignore_case=True ) expect_out = df["expected"] assert_series_equal(expect_out, actual_out, check_names=False) def test_date_columns_equal(): data = """a|b|expected 2017-01-01|2017-01-01|True 2017-01-02|2017-01-02|True 2017-10-01|2017-10-10|False 2017-01-01||False |2017-01-01|False ||True""" df = pd.read_csv(io.StringIO(data), sep="|") # First compare just the strings actual_out = datacompy.columns_equal(df.a, df.b, rel_tol=0.2) expect_out = df["expected"]
assert_series_equal(expect_out, actual_out, check_names=False)
pandas.util.testing.assert_series_equal
# -*- coding: utf-8 -*- """ author: zengbin93 email: <EMAIL> create_dt: 2021/12/13 17:39 describe: 事件性能分析 """ import os import os.path import traceback import pandas as pd import matplotlib.pyplot as plt from datetime import timedelta, datetime from tqdm import tqdm from typing import Callable, List from czsc.objects import Factor from czsc.data.ts_cache import TsDataCache from czsc.sensors.utils import generate_signals from czsc.utils import io from czsc.utils import WordWriter plt.style.use('ggplot') plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False class FactorsSensor: """因子(Factor)感应器:分析各种信号和因子的表现""" def __init__(self, results_path: str, sdt: str, edt: str, dc: TsDataCache, base_freq: str, freqs: List[str], get_signals: Callable, get_factors: Callable): self.name = self.__class__.__name__ self.version = "V20211213" os.makedirs(results_path, exist_ok=True) self.results_path = results_path self.sdt = sdt self.edt = edt self.get_signals = get_signals self.get_factors = get_factors self.factors: List[Factor] = get_factors() self.base_freq = base_freq self.freqs = freqs self.file_docx = os.path.join(results_path, f'factors_sensor_{sdt}_{edt}.docx') self.writer = WordWriter(self.file_docx) self.dc = dc self.betas = ['000001.SH', '000016.SH', '000905.SH', '000300.SH', '399001.SZ', '399006.SZ'] self.file_sf = os.path.join(results_path, f'factors_{sdt}_{edt}.pkl') self.signals_path = os.path.join(results_path, 'signals') os.makedirs(self.signals_path, exist_ok=True) if os.path.exists(self.file_sf): self.sf = io.read_pkl(self.file_sf) else: self.sf = self.get_stock_factors() io.save_pkl(self.sf, self.file_sf) def get_share_factors(self, ts_code: str, name: str): """获取单个标的因子信息""" dc = self.dc sdt = self.sdt edt = self.edt factors = self.factors start_date = pd.to_datetime(self.sdt) - timedelta(days=3000) bars = dc.pro_bar(ts_code=ts_code, start_date=start_date, end_date=edt, freq='D', asset="E", raw_bar=True) n_bars = dc.pro_bar(ts_code=ts_code, start_date=sdt, end_date=edt, freq='D', asset="E", raw_bar=False) nb_dicts = {row['trade_date'].strftime("%Y%m%d"): row for row in n_bars.to_dict("records")} signals = generate_signals(bars, sdt, self.base_freq, self.freqs, self.get_signals) results = [] for s in signals: row = {'name': name, 'ts_code': ts_code} for factor in factors: row[factor.name] = factor.is_match(s) nb_info = nb_dicts.get(s['dt'].strftime("%Y%m%d"), None) row.update(nb_info) results.append(row) df_res =
pd.DataFrame(results)
pandas.DataFrame
import heapq import pandas as pd import numpy as np from sklearn.cluster import KMeans def calculate_rating(a, b, c, b1, c1): rating = np.mean(a) user1 = calculate_consin(a, b) * (b1 - rating) user2 = calculate_consin(a, c) * (c1 - rating) rating = rating + ((user1 + user2) / (calculate_consin(a, b) + calculate_consin(a, c))) return rating def calculate_consin(a, b): temp = np.linalg.norm(a) * np.linalg.norm(b) if temp == 0: return 0 else: return np.dot(a, b) / temp def data_preprocess(path): df = pd.read_csv(path) users = dict() for row in df.iterrows(): if row[1]['userid'] not in users: users[row[1]['userid']] = dict() if row[1]['song_id'] not in users[row[1]['userid']]: users[row[1]['userid']][row[1]['song_id']] = row[1]['song_score'] return pd.DataFrame(users).T, users.keys() def recommend(path, user_id): df, users = data_preprocess(path) df = df.fillna(0) songs = df.columns.values users = list(users) data = df.to_numpy() estimator = KMeans(n_clusters=5) results = estimator.fit(data) labels = results.labels_ index = users.index(user_id) flag = labels[index] similarity = list() for i, value in enumerate(labels): if i == index or flag != labels[index]: continue else: temp = calculate_consin(data[index], data[i]) if temp == 1: similarity.append(0) else: similarity.append(temp) max_num_index_list = map(similarity.index, heapq.nlargest(2, similarity)) max_num_index_list = list(max_num_index_list) candidates = list() for col in range(len(songs)): if data[max_num_index_list[0]][col] != 0 or data[max_num_index_list[1]][col] != 0 and data[index][col] == 0: candidates.append(col) ratings = list() lut = list() for i, song_index in enumerate(candidates): lut.append(song_index) ratings.append(calculate_rating(data[index], data[max_num_index_list[0]], data[max_num_index_list[1]] , data[max_num_index_list[0]][song_index], data[max_num_index_list[1]][song_index])) recommend_song_list = map(ratings.index, heapq.nlargest(5, ratings)) recommend_song_list = set(recommend_song_list) recommend_list = list() for song_index in recommend_song_list: recommend_list.append(songs[lut[song_index]]) df =
pd.read_csv(path)
pandas.read_csv