prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#%% import os import sys try: os.chdir('/Volumes/GoogleDrive/My Drive/python_code/connectome_tools/') print(os.getcwd()) except: pass # %% import sys sys.path.append('/Volumes/GoogleDrive/My Drive/python_code/maggot_models/') sys.path.append('/Volumes/GoogleDrive/My Drive/python_code/connectome_tools/') from pymaid_creds import url, name, password, token import pymaid import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd from src.data import load_metagraph from src.visualization import CLASS_COLOR_DICT, adjplot # allows text to be editable in Illustrator plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 plt.rcParams.update({'font.size': 6}) rm = pymaid.CatmaidInstance(url, token, name, password) mg = load_metagraph("Gad", version="2020-06-10", path = '/Volumes/GoogleDrive/My Drive/python_code/maggot_models/data/processed/') mg.calculate_degrees(inplace=True) adj = mg.adj # adjacency matrix from the "mg" object ''' # repeat for other connection types mg_aa = load_metagraph("Gaa", version="2020-06-10", path = '/Volumes/GoogleDrive/My Drive/python_code/maggot_models/data/processed/') mg_aa.calculate_degrees(inplace=True) adj_aa = mg_aa.adj mg_dd = load_metagraph("Gdd", version="2020-06-10", path = '/Volumes/GoogleDrive/My Drive/python_code/maggot_models/data/processed/') mg_dd.calculate_degrees(inplace=True) adj_dd = mg_dd.adj mg_da = load_metagraph("Gda", version="2020-06-10", path = '/Volumes/GoogleDrive/My Drive/python_code/maggot_models/data/processed/') mg_da.calculate_degrees(inplace=True) adj_da = mg_da.adj ''' clusters = pd.read_csv('cascades/data/meta-method=color_iso-d=8-bic_ratio=0.95-min_split=32.csv', index_col = 0, header = 0) lvl7 = clusters.groupby('lvl7_labels') # separate meta file with median_node_visits from sensory for each node # determined using iterative random walks meta_with_order = pd.read_csv('data/meta_data_w_order.csv', index_col = 0, header = 0) order_df = [] for key in lvl7.groups: skids = lvl7.groups[key] node_visits = meta_with_order.loc[skids, :].median_node_visits order_df.append([key, np.nanmean(node_visits)]) order_df = pd.DataFrame(order_df, columns = ['cluster', 'node_visit_order']) order_df = order_df.sort_values(by = 'node_visit_order') order = list(order_df.cluster) # %% # pull sensory annotations and then pull associated skids input_names = pymaid.get_annotated('mw brain inputs').name input_skids_list = list(map(pymaid.get_skids_by_annotation, pymaid.get_annotated('mw brain inputs').name)) input_skids = [val for sublist in input_skids_list for val in sublist] output_order = [1, 0, 2] output_names = pymaid.get_annotated('mw brain outputs').name output_skids_list = list(map(pymaid.get_skids_by_annotation, pymaid.get_annotated('mw brain outputs').name)) output_skids = [val for sublist in output_skids_list for val in sublist] output_names_reordered = [output_names[i] for i in output_order] output_skids_list_reordered = [output_skids_list[i] for i in output_order] # level 7 clusters clusters = pd.read_csv('cascades/data/meta-method=color_iso-d=8-bic_ratio=0.95-min_split=32.csv', index_col = 0, header = 0) lvl7 = clusters.groupby('lvl7_labels') meta_with_order = pd.read_csv('data/meta_data_w_order.csv', index_col = 0, header = 0) # ordering by mean node visit from sensory order_df = [] for key in lvl7.groups: skids = lvl7.groups[key] node_visits = meta_with_order.loc[skids, :].median_node_visits order_df.append([key, np.nanmean(node_visits)]) order_df = pd.DataFrame(order_df, columns = ['cluster', 'node_visit_order']) order_df = order_df.sort_values(by = 'node_visit_order') order = list(order_df.cluster) # getting skids of each cluster cluster_lvl7 = [] for key in order: cluster_lvl7.append(lvl7.groups[key].values) # %% ## cascades from each cluster, ending at brain inputs/outputs # maybe should switch to sensory second-order? def skid_to_index(skid, mg): index_match = np.where(mg.meta.index == skid)[0] if(len(index_match)==1): return(index_match[0]) if(len(index_match)!=1): print('Not one match for skid %i!' %skid) from src.traverse import Cascade, to_transmission_matrix from src.traverse import TraverseDispatcher from src.visualization import matrixplot # order skids within groups and convert to indices cluster_lvl7_indices_list = [] sorted_skids = [] for skids in cluster_lvl7: skids_median_visit = meta_with_order.loc[skids, 'median_node_visits'] skids_sorted = skids_median_visit.sort_values().index indices = [] for skid in skids_sorted: index = skid_to_index(skid, mg) indices.append(index) cluster_lvl7_indices_list.append(indices) sorted_skids.append(skids_sorted) # delist sorted_skids = [val for sublist in sorted_skids for val in sublist] sorted_indices = [] for skid in sorted_skids: sorted_indices.append(skid_to_index(skid, mg)) p = 0.05 max_hops = 5 n_init = 100 simultaneous = True transition_probs = to_transmission_matrix(adj, p) cdispatch = TraverseDispatcher( Cascade, transition_probs, stop_nodes = [], max_hops=max_hops, allow_loops = False, n_init=n_init, simultaneous=simultaneous, ) # run cascades parallel from each individual node from joblib import Parallel, delayed from tqdm import tqdm #neuron_indices_list = [val for sublist in cluster_lvl7_indices_list for val in sublist] def run_cascades_from_node(i, cdispatch): return(cdispatch.multistart(start_nodes = i)) cluster_hit_hist_list = [] for indices in tqdm(cluster_lvl7_indices_list): hit_hist_list = Parallel(n_jobs=-1)(delayed(run_cascades_from_node)(i, cdispatch) for i in indices) cluster_hit_hist_list.append(hit_hist_list) # %% # plot in feedback/feedforward matrix # delist neuron_hit_hist_list = [val for sublist in cluster_hit_hist_list for val in sublist] # sort matrices correctly and sum neuron_hit_hist_hop_summed = [] for hit_hist in neuron_hit_hist_list: hop_summed = hit_hist[sorted_indices, 0:4].sum(axis = 1) neuron_hit_hist_hop_summed.append(hop_summed) neuron_hit_hist_hop_summed = pd.DataFrame(neuron_hit_hist_hop_summed).T neuron_hit_hist_hop_summed.to_csv('cascades/feedback_through_brain/cascades_from_single_neurons.csv') #neuron_hit_hist_hop_summed = pd.read_csv('cascades/feedback_through_brain/cascades_from_single_neurons.csv') import cmasher as cmr plt.imshow(neuron_hit_hist_hop_summed, cmap=cmr.ember, interpolation='none') plt.savefig('cascades/feedback_through_brain/plots/feedback_vs_feedforward_neurons_4hops_ad.pdf', bbox_inches='tight') # %% # feedback character of individual neurons (output) feedback_mat_ad = neuron_hit_hist_hop_summed ff_fb_character_ad_output = [] for i in range(len(feedback_mat_ad.columns)): cols = feedback_mat_ad.columns column = feedback_mat_ad.loc[:, cols[i]] fb = sum(column[0:i]) ff = sum(column[(i+1):len(column)]) if((ff>0) | (fb>0)): ff_fb_character_ad_output.append([column.name, ff, fb, ff/(ff+fb), fb/(ff+fb)]) if((ff==0) & (fb==0)): ff_fb_character_ad_output.append([column.name, 0, 0, 0, 0]) ff_fb_character_ad_output =
pd.DataFrame(ff_fb_character_ad_output, columns = ['neuron', 'feedforward', 'feedback', 'p_ff', 'p_fb'])
pandas.DataFrame
''' @ Author : <NAME> @ E-mail : <EMAIL> @ Github : https://github.com/WooilJeong/PublicDataReader @ Blog : https://wooiljeong.github.io ''' import pandas as pd import numpy as np import datetime import requests from bs4 import BeautifulSoup from PublicDataReader.PublicDataPortal.__init__ import * class AptTradeReader(Common): def __init__(self, serviceKey): super().__init__(serviceKey) # ServiceKey 유효성 검사 api_url = "http://openapi.molit.go.kr:8081/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcAptTrade?serviceKey=" + self.serviceKey super().test(api_url) def CodeFinder(self, name): ''' 국토교통부 실거래가 정보 오픈API는 법정동코드 10자리 중 앞 5자리인 구를 나타내는 지역코드를 사용합니다. API에 사용할 구 별 코드를 조회하는 메소드이며, 문자열 지역 명을 입력받고, 조회 결과를 Pandas DataFrame형식으로 출력합니다. ''' result = self.code[self.code['법정동명'].str.contains(name)][['법정동명','법정구코드']] result.index = range(len(result)) return result def DataReader(self, LAWD_CD, DEAL_YMD): ''' 지역코드와 계약월을 입력받고, 아파트 실거래 정보를 Pandas DataFrame 형식으로 출력합니다. ''' # URL url_1="http://openapi.molit.go.kr:8081/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcAptTrade?LAWD_CD="+LAWD_CD url_2="&DEAL_YMD=" + DEAL_YMD url_3="&serviceKey=" + self.serviceKey url_4="&numOfRows=99999" url = url_1+url_2+url_3+url_4 try: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, 'lxml-xml') # Filtering te = xmlsoup.findAll("item") # Creating Pandas Data Frame df = pd.DataFrame() variables = ['법정동','지역코드','아파트','지번','년','월','일','건축년도','전용면적','층','거래금액'] for t in te: for variable in variables: try : globals()[variable] = t.find(variable).text except : globals()[variable] = np.nan data = pd.DataFrame( [[법정동,지역코드,아파트,지번,년,월,일,건축년도,전용면적,층,거래금액]], columns = variables ) df = pd.concat([df, data]) # Set Columns colNames = ['지역코드','법정동','거래일','아파트','지번','전용면적','층','건축년도','거래금액'] # Feature Engineering try: if len(df['년']!=0) & len(df['월']!=0) & len(df['일']!=0): df['거래일'] = df['년'] + '-' + df['월'] + '-' + df['일'] df['거래일'] = pd.to_datetime(df['거래일']) df['거래금액'] = pd.to_numeric(df['거래금액'].str.replace(',','')) except: df = pd.DataFrame(columns=colNames) print("조회할 자료가 없습니다.") # Arange Columns df = df[colNames] df = df.sort_values(['법정동','거래일']) df['법정동'] = df['법정동'].str.strip() df.index = range(len(df)) return df except: # Get raw data result = requests.get(url, verify=False) # Parsing xmlsoup = BeautifulSoup(result.text, 'lxml-xml') # Filtering te = xmlsoup.findAll("header") # 정상 요청시 에러 발생 -> Python 코드 에러 if te[0].find('resultCode').text == "00": print(">>> Python Logic Error. e-mail : <EMAIL>") # Open API 서비스 제공처 오류 else: print(">>> Open API Error: {}".format(te[0].find['resultMsg'])) def DataCollector(self, LAWD_CD, start_date, end_date): ''' 특정 기간 동안의 데이터 수집 메소드 ''' end_date = datetime.datetime.strptime(end_date, "%Y-%m") end_date = end_date + datetime.timedelta(days=31) end_date = datetime.datetime.strftime(end_date, "%Y-%m") ts =
pd.date_range(start=start_date, end=end_date, freq='m')
pandas.date_range
""" >>> from blaze.expr import Symbol >>> from blaze.compute.pandas import compute >>> accounts = Symbol('accounts', 'var * {name: string, amount: int}') >>> deadbeats = accounts[accounts['amount'] < 0]['name'] >>> from pandas import DataFrame >>> data = [['Alice', 100], ['Bob', -50], ['Charlie', -20]] >>> df = DataFrame(data, columns=['name', 'amount']) >>> compute(deadbeats, df) 1 Bob 2 Charlie Name: name, dtype: object """ from __future__ import absolute_import, division, print_function import pandas as pd from pandas.core.generic import NDFrame from pandas import DataFrame, Series from pandas.core.groupby import DataFrameGroupBy, SeriesGroupBy import numpy as np from collections import defaultdict from toolz import merge as merge_dicts import fnmatch from datashape.predicates import isscalar from ..api.into import into from ..dispatch import dispatch from ..expr import (Projection, Field, Sort, Head, Broadcast, Selection, Reduction, Distinct, Join, By, Summary, Label, ReLabel, Map, Apply, Merge, Union, std, var, Like, Slice, ElemWise, DateTime, Millisecond, Expr, Symbol) from ..expr import UnaryOp, BinOp from ..expr import Symbol, common_subexpression from .core import compute, compute_up, base from ..compatibility import _inttypes __all__ = [] @dispatch(Projection, DataFrame) def compute_up(t, df, **kwargs): return df[list(t.fields)] @dispatch(Field, (DataFrame, DataFrameGroupBy)) def compute_up(t, df, **kwargs): return df[t.fields[0]] @dispatch(Broadcast, DataFrame) def compute_up(t, df, **kwargs): d = dict((t._child[c]._expr, df[c]) for c in t._child.fields) return compute(t._expr, d) @dispatch(Broadcast, Series) def compute_up(t, s, **kwargs): return compute_up(t, s.to_frame(), **kwargs) @dispatch(BinOp, Series, (Series, base)) def compute_up(t, lhs, rhs, **kwargs): return t.op(lhs, rhs) @dispatch(BinOp, (Series, base), Series) def compute_up(t, lhs, rhs, **kwargs): return t.op(lhs, rhs) @dispatch(UnaryOp, NDFrame) def compute_up(t, df, **kwargs): f = getattr(t, 'op', getattr(np, t.symbol, None)) if f is None: raise ValueError('%s is not a valid operation on %s objects' % (t.symbol, type(df).__name__)) return f(df) @dispatch(Selection, (Series, DataFrame)) def compute_up(t, df, **kwargs): predicate = compute(t.predicate, {t._child: df}) return df[predicate] @dispatch(Symbol, DataFrame) def compute_up(t, df, **kwargs): if not list(t.fields) == list(df.names): # TODO also check dtype raise ValueError("Schema mismatch: \n\nTable:\n%s\n\nDataFrame:\n%s" % (t, df)) return df @dispatch(Join, DataFrame, DataFrame) def compute_up(t, lhs, rhs, **kwargs): """ Join two pandas data frames on arbitrary columns The approach taken here could probably be improved. To join on two columns we force each column to be the index of the dataframe, perform the join, and then reset the index back to the left side's original index. """ result = pd.merge(lhs, rhs, left_on=t.on_left, right_on=t.on_right, how=t.how) return result.reset_index()[t.fields] @dispatch(Symbol, (DataFrameGroupBy, SeriesGroupBy)) def compute_up(t, gb, **kwargs): return gb def post_reduction(result): # pandas may return an int, numpy scalar or non scalar here so we need to # program defensively so that things are JSON serializable try: return result.item() except (AttributeError, ValueError): return result @dispatch(Reduction, (Series, SeriesGroupBy)) def compute_up(t, s, **kwargs): result = post_reduction(getattr(s, t.symbol)()) if t.keepdims: result = Series([result], name=s.name) return result @dispatch((std, var), (Series, SeriesGroupBy)) def compute_up(t, s, **kwargs): result = post_reduction(getattr(s, t.symbol)(ddof=t.unbiased)) if t.keepdims: result = Series([result], name=s.name) return result @dispatch(Distinct, DataFrame) def compute_up(t, df, **kwargs): return df.drop_duplicates() @dispatch(Distinct, Series) def compute_up(t, s, **kwargs): s2 = Series(s.unique()) s2.name = s.name return s2 def unpack(seq): """ Unpack sequence of length one >>> unpack([1, 2, 3]) [1, 2, 3] >>> unpack([1]) 1 """ seq = list(seq) if len(seq) == 1: seq = seq[0] return seq Grouper = ElemWise, Series, list @dispatch(By, list, DataFrame) def get_grouper(c, grouper, df): return grouper @dispatch(By, (ElemWise, Series), NDFrame) def get_grouper(c, grouper, df): return compute(grouper, {c._child: df}) @dispatch(By, (Field, Projection), NDFrame) def get_grouper(c, grouper, df): return grouper.fields @dispatch(By, Reduction, Grouper, NDFrame) def compute_by(t, r, g, df): names = [r._name] preapply = compute(r._child, {t._child: df}) # Pandas and Blaze column naming schemes differ # Coerce DataFrame column names to match Blaze's names preapply = preapply.copy() if isinstance(preapply, Series): preapply.name = names[0] else: preapply.names = names group_df = concat_nodup(df, preapply) gb = group_df.groupby(g) groups = gb[names[0] if isscalar(t.apply._child.dshape.measure) else names] return compute_up(r, groups) # do reduction @dispatch(By, Summary, Grouper, NDFrame) def compute_by(t, s, g, df): names = s.fields preapply = DataFrame(dict(zip(names, (compute(v._child, {t._child: df}) for v in s.values)))) df2 = concat_nodup(df, preapply) groups = df2.groupby(g) d = defaultdict(list) for name, v in zip(names, s.values): d[name].append(getattr(Series, v.symbol)) result = groups.agg(dict(d)) # Rearrange columns to match names order result = result[sorted(result.columns, key=lambda t: names.index(t[0]))] result.columns = t.apply.fields # flatten down multiindex return result @dispatch(Expr, DataFrame) def post_compute_by(t, df): return df.reset_index(drop=True) @dispatch((Summary, Reduction), DataFrame) def post_compute_by(t, df): return df.reset_index() @dispatch(By, NDFrame) def compute_up(t, df, **kwargs): grouper = get_grouper(t, t.grouper, df) result = compute_by(t, t.apply, grouper, df) return post_compute_by(t.apply, into(DataFrame, result)) def concat_nodup(a, b): """ Concatenate two dataframes/series without duplicately named columns >>> df = DataFrame([[1, 'Alice', 100], ... [2, 'Bob', -200], ... [3, 'Charlie', 300]], ... columns=['id','name', 'amount']) >>> concat_nodup(df, df) id name amount 0 1 Alice 100 1 2 Bob -200 2 3 Charlie 300 >>> concat_nodup(df.name, df.amount) name amount 0 Alice 100 1 Bob -200 2 Charlie 300 >>> concat_nodup(df, df.amount + df.id) id name amount 0 0 1 Alice 100 101 1 2 Bob -200 -198 2 3 Charlie 300 303 """ if isinstance(a, DataFrame) and isinstance(b, DataFrame): return pd.concat([a, b[[c for c in b.columns if c not in a.columns]]], axis=1) if isinstance(a, DataFrame) and isinstance(b, Series): if b.name not in a.columns: return pd.concat([a, b], axis=1) else: return a if isinstance(a, Series) and isinstance(b, DataFrame): return
pd.concat([a, b[[c for c in b.columns if c != a.name]]], axis=1)
pandas.concat
import csv from io import StringIO import os import numpy as np import pytest from pandas.errors import ParserError import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, read_csv, to_datetime, ) import pandas._testing as tm import pandas.core.common as com from pandas.io.common import get_handle MIXED_FLOAT_DTYPES = ["float16", "float32", "float64"] MIXED_INT_DTYPES = [ "uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64", ] class TestDataFrameToCSV: def read_csv(self, path, **kwargs): params = {"index_col": 0, "parse_dates": True} params.update(**kwargs) return read_csv(path, **params) def test_to_csv_from_csv1(self, float_frame, datetime_frame): with tm.ensure_clean("__tmp_to_csv_from_csv1__") as path: float_frame["A"][:5] = np.nan float_frame.to_csv(path) float_frame.to_csv(path, columns=["A", "B"]) float_frame.to_csv(path, header=False) float_frame.to_csv(path, index=False) # test roundtrip # freq does not roundtrip datetime_frame.index = datetime_frame.index._with_freq(None) datetime_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(datetime_frame, recons) datetime_frame.to_csv(path, index_label="index") recons = self.read_csv(path, index_col=None) assert len(recons.columns) == len(datetime_frame.columns) + 1 # no index datetime_frame.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(datetime_frame.values, recons.values) # corner case dm = DataFrame( { "s1": Series(range(3), index=np.arange(3)), "s2": Series(range(2), index=np.arange(2)), } ) dm.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(dm, recons) def test_to_csv_from_csv2(self, float_frame): with tm.ensure_clean("__tmp_to_csv_from_csv2__") as path: # duplicate index df = DataFrame( np.random.randn(3, 3), index=["a", "a", "b"], columns=["x", "y", "z"] ) df.to_csv(path) result = self.read_csv(path) tm.assert_frame_equal(result, df) midx = MultiIndex.from_tuples([("A", 1, 2), ("A", 1, 2), ("B", 1, 2)]) df = DataFrame(np.random.randn(3, 3), index=midx, columns=["x", "y", "z"]) df.to_csv(path) result = self.read_csv(path, index_col=[0, 1, 2], parse_dates=False) tm.assert_frame_equal(result, df, check_names=False) # column aliases col_aliases = Index(["AA", "X", "Y", "Z"]) float_frame.to_csv(path, header=col_aliases) rs = self.read_csv(path) xp = float_frame.copy() xp.columns = col_aliases tm.assert_frame_equal(xp, rs) msg = "Writing 4 cols but got 2 aliases" with pytest.raises(ValueError, match=msg): float_frame.to_csv(path, header=["AA", "X"]) def test_to_csv_from_csv3(self): with tm.ensure_clean("__tmp_to_csv_from_csv3__") as path: df1 = DataFrame(np.random.randn(3, 1)) df2 = DataFrame(np.random.randn(3, 1)) df1.to_csv(path) df2.to_csv(path, mode="a", header=False) xp = pd.concat([df1, df2]) rs = read_csv(path, index_col=0) rs.columns = [int(label) for label in rs.columns] xp.columns = [int(label) for label in xp.columns] tm.assert_frame_equal(xp, rs) def test_to_csv_from_csv4(self): with tm.ensure_clean("__tmp_to_csv_from_csv4__") as path: # GH 10833 (TimedeltaIndex formatting) dt = pd.Timedelta(seconds=1) df = DataFrame( {"dt_data": [i * dt for i in range(3)]}, index=Index([i * dt for i in range(3)], name="dt_index"), ) df.to_csv(path) result = read_csv(path, index_col="dt_index") result.index = pd.to_timedelta(result.index) result["dt_data"] = pd.to_timedelta(result["dt_data"]) tm.assert_frame_equal(df, result, check_index_type=True) def test_to_csv_from_csv5(self, timezone_frame): # tz, 8260 with tm.ensure_clean("__tmp_to_csv_from_csv5__") as path: timezone_frame.to_csv(path) result = read_csv(path, index_col=0, parse_dates=["A"]) converter = ( lambda c: to_datetime(result[c]) .dt.tz_convert("UTC") .dt.tz_convert(timezone_frame[c].dt.tz) ) result["B"] = converter("B") result["C"] = converter("C") tm.assert_frame_equal(result, timezone_frame) def test_to_csv_cols_reordering(self): # GH3454 chunksize = 5 N = int(chunksize * 2.5) df = tm.makeCustomDataframe(N, 3) cs = df.columns cols = [cs[2], cs[0]] with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) tm.assert_frame_equal(df[cols], rs_c, check_names=False) def test_to_csv_new_dupe_cols(self): def _check_df(df, cols=None): with tm.ensure_clean() as path: df.to_csv(path, columns=cols, chunksize=chunksize) rs_c = read_csv(path, index_col=0) # we wrote them in a different order # so compare them in that order if cols is not None: if df.columns.is_unique: rs_c.columns = cols else: indexer, missing = df.columns.get_indexer_non_unique(cols) rs_c.columns = df.columns.take(indexer) for c in cols: obj_df = df[c] obj_rs = rs_c[c] if isinstance(obj_df, Series): tm.assert_series_equal(obj_df, obj_rs) else: tm.assert_frame_equal(obj_df, obj_rs, check_names=False) # wrote in the same order else: rs_c.columns = df.columns tm.assert_frame_equal(df, rs_c, check_names=False) chunksize = 5 N = int(chunksize * 2.5) # dupe cols df = tm.makeCustomDataframe(N, 3) df.columns = ["a", "a", "b"] _check_df(df, None) # dupe cols with selection cols = ["b", "a"] _check_df(df, cols) @pytest.mark.slow def test_to_csv_dtnat(self): # GH3437 def make_dtnat_arr(n, nnat=None): if nnat is None: nnat = int(n * 0.1) # 10% s = list(date_range("2000", freq="5min", periods=n)) if nnat: for i in np.random.randint(0, len(s), nnat): s[i] = NaT i = np.random.randint(100) s[-i] = NaT s[i] = NaT return s chunksize = 1000 # N=35000 s1 = make_dtnat_arr(chunksize + 5) s2 = make_dtnat_arr(chunksize + 5, 0) # s3=make_dtnjat_arr(chunksize+5,0) with tm.ensure_clean("1.csv") as pth: df = DataFrame({"a": s1, "b": s2}) df.to_csv(pth, chunksize=chunksize) recons = self.read_csv(pth).apply(to_datetime) tm.assert_frame_equal(df, recons, check_names=False) @pytest.mark.slow def test_to_csv_moar(self): def _do_test( df, r_dtype=None, c_dtype=None, rnlvl=None, cnlvl=None, dupe_col=False ): kwargs = {"parse_dates": False} if cnlvl: if rnlvl is not None: kwargs["index_col"] = list(range(rnlvl)) kwargs["header"] = list(range(cnlvl)) with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) else: kwargs["header"] = 0 with tm.ensure_clean("__tmp_to_csv_moar__") as path: df.to_csv(path, encoding="utf8", chunksize=chunksize) recons = self.read_csv(path, **kwargs) def _to_uni(x): if not isinstance(x, str): return x.decode("utf8") return x if dupe_col: # read_Csv disambiguates the columns by # labeling them dupe.1,dupe.2, etc'. monkey patch columns recons.columns = df.columns if rnlvl and not cnlvl: delta_lvl = [recons.iloc[:, i].values for i in range(rnlvl - 1)] ix = MultiIndex.from_arrays([list(recons.index)] + delta_lvl) recons.index = ix recons = recons.iloc[:, rnlvl - 1 :] type_map = {"i": "i", "f": "f", "s": "O", "u": "O", "dt": "O", "p": "O"} if r_dtype: if r_dtype == "u": # unicode r_dtype = "O" recons.index = np.array( [_to_uni(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [_to_uni(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "dt": # unicode r_dtype = "O" recons.index = np.array( [Timestamp(label) for label in recons.index], dtype=r_dtype ) df.index = np.array( [Timestamp(label) for label in df.index], dtype=r_dtype ) elif r_dtype == "p": r_dtype = "O" idx_list = to_datetime(recons.index) recons.index = np.array( [Timestamp(label) for label in idx_list], dtype=r_dtype ) df.index = np.array( list(map(Timestamp, df.index.to_timestamp())), dtype=r_dtype ) else: r_dtype = type_map.get(r_dtype) recons.index = np.array(recons.index, dtype=r_dtype) df.index = np.array(df.index, dtype=r_dtype) if c_dtype: if c_dtype == "u": c_dtype = "O" recons.columns = np.array( [_to_uni(label) for label in recons.columns], dtype=c_dtype ) df.columns = np.array( [_to_uni(label) for label in df.columns], dtype=c_dtype ) elif c_dtype == "dt": c_dtype = "O" recons.columns = np.array( [Timestamp(label) for label in recons.columns], dtype=c_dtype ) df.columns = np.array( [Timestamp(label) for label in df.columns], dtype=c_dtype ) elif c_dtype == "p": c_dtype = "O" col_list = to_datetime(recons.columns) recons.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) col_list = df.columns.to_timestamp() df.columns = np.array( [Timestamp(label) for label in col_list], dtype=c_dtype ) else: c_dtype = type_map.get(c_dtype) recons.columns = np.array(recons.columns, dtype=c_dtype) df.columns = np.array(df.columns, dtype=c_dtype) tm.assert_frame_equal(df, recons, check_names=False) N = 100 chunksize = 1000 ncols = 4 base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe(nrows, ncols, r_idx_type="dt", c_idx_type="s"), "dt", "s", ) for r_idx_type, c_idx_type in [("i", "i"), ("s", "s"), ("u", "dt"), ("p", "p")]: for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 2, 10, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_type=r_idx_type, c_idx_type=c_idx_type ), r_idx_type, c_idx_type, ) for ncols in [1, 2, 3, 4]: base = chunksize // ncols for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols)) for nrows in [10, N - 2, N - 1, N, N + 1, N + 2]: df = tm.makeCustomDataframe(nrows, 3) cols = list(df.columns) cols[:2] = ["dupe", "dupe"] cols[-2:] = ["dupe", "dupe"] ix = list(df.index) ix[:2] = ["rdupe", "rdupe"] ix[-2:] = ["rdupe", "rdupe"] df.index = ix df.columns = cols _do_test(df, dupe_col=True) _do_test(DataFrame(index=np.arange(10))) _do_test( tm.makeCustomDataframe(chunksize // 2 + 1, 2, r_idx_nlevels=2), rnlvl=2 ) for ncols in [2, 3, 4]: base = int(chunksize // ncols) for nrows in [ 10, N - 2, N - 1, N, N + 1, N + 2, 2 * N - 2, 2 * N - 1, 2 * N, 2 * N + 1, 2 * N + 2, base - 1, base, base + 1, ]: _do_test(tm.makeCustomDataframe(nrows, ncols, r_idx_nlevels=2), rnlvl=2) _do_test(tm.makeCustomDataframe(nrows, ncols, c_idx_nlevels=2), cnlvl=2) _do_test( tm.makeCustomDataframe( nrows, ncols, r_idx_nlevels=2, c_idx_nlevels=2 ), rnlvl=2, cnlvl=2, ) def test_to_csv_from_csv_w_some_infs(self, float_frame): # test roundtrip with inf, -inf, nan, as full columns and mix float_frame["G"] = np.nan f = lambda x: [np.inf, np.nan][np.random.rand() < 0.5] float_frame["H"] = float_frame.index.map(f) with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons)) def test_to_csv_from_csv_w_all_infs(self, float_frame): # test roundtrip with inf, -inf, nan, as full columns and mix float_frame["E"] = np.inf float_frame["F"] = -np.inf with tm.ensure_clean() as path: float_frame.to_csv(path) recons = self.read_csv(path) tm.assert_frame_equal(float_frame, recons) tm.assert_frame_equal(np.isinf(float_frame), np.isinf(recons)) def test_to_csv_no_index(self): # GH 3624, after appending columns, to_csv fails with tm.ensure_clean("__tmp_to_csv_no_index__") as path: df = DataFrame({"c1": [1, 2, 3], "c2": [4, 5, 6]}) df.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(df, result) df["c3"] = Series([7, 8, 9], dtype="int64") df.to_csv(path, index=False) result = read_csv(path) tm.assert_frame_equal(df, result) def test_to_csv_with_mix_columns(self): # gh-11637: incorrect output when a mix of integer and string column # names passed as columns parameter in to_csv df = DataFrame({0: ["a", "b", "c"], 1: ["aa", "bb", "cc"]}) df["test"] = "txt" assert df.to_csv() == df.to_csv(columns=[0, 1, "test"]) def test_to_csv_headers(self): # GH6186, the presence or absence of `index` incorrectly # causes to_csv to have different header semantics. from_df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) to_df = DataFrame([[1, 2], [3, 4]], columns=["X", "Y"]) with tm.ensure_clean("__tmp_to_csv_headers__") as path: from_df.to_csv(path, header=["X", "Y"]) recons = self.read_csv(path) tm.assert_frame_equal(to_df, recons) from_df.to_csv(path, index=False, header=["X", "Y"]) recons = self.read_csv(path) return_value = recons.reset_index(inplace=True) assert return_value is None tm.assert_frame_equal(to_df, recons) def test_to_csv_multiindex(self, float_frame, datetime_frame): frame = float_frame old_index = frame.index arrays = np.arange(len(old_index) * 2).reshape(2, -1) new_index = MultiIndex.from_arrays(arrays, names=["first", "second"]) frame.index = new_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: frame.to_csv(path, header=False) frame.to_csv(path, columns=["A", "B"]) # round trip frame.to_csv(path) df = self.read_csv(path, index_col=[0, 1], parse_dates=False) # TODO to_csv drops column name tm.assert_frame_equal(frame, df, check_names=False) assert frame.index.names == df.index.names # needed if setUp becomes a class method float_frame.index = old_index # try multiindex with dates tsframe = datetime_frame old_index = tsframe.index new_index = [old_index, np.arange(len(old_index))] tsframe.index = MultiIndex.from_arrays(new_index) tsframe.to_csv(path, index_label=["time", "foo"]) recons = self.read_csv(path, index_col=[0, 1]) # TODO to_csv drops column name tm.assert_frame_equal(tsframe, recons, check_names=False) # do not load index tsframe.to_csv(path) recons = self.read_csv(path, index_col=None) assert len(recons.columns) == len(tsframe.columns) + 2 # no index tsframe.to_csv(path, index=False) recons = self.read_csv(path, index_col=None) tm.assert_almost_equal(recons.values, datetime_frame.values) # needed if setUp becomes class method datetime_frame.index = old_index with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: # GH3571, GH1651, GH3141 def _make_frame(names=None): if names is True: names = ["first", "second"] return DataFrame( np.random.randint(0, 10, size=(3, 3)), columns=MultiIndex.from_tuples( [("bah", "foo"), ("bah", "bar"), ("ban", "baz")], names=names ), dtype="int64", ) # column & index are multi-index df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=2, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1]) tm.assert_frame_equal(df, result) # column is mi df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=1, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=0) tm.assert_frame_equal(df, result) # dup column names? df = tm.makeCustomDataframe(5, 3, r_idx_nlevels=3, c_idx_nlevels=4) df.to_csv(path) result = read_csv(path, header=[0, 1, 2, 3], index_col=[0, 1, 2]) tm.assert_frame_equal(df, result) # writing with no index df = _make_frame() df.to_csv(path, index=False) result = read_csv(path, header=[0, 1]) tm.assert_frame_equal(df, result) # we lose the names here df = _make_frame(True) df.to_csv(path, index=False) result = read_csv(path, header=[0, 1]) assert com.all_none(*result.columns.names) result.columns.names = df.columns.names tm.assert_frame_equal(df, result) # whatsnew example df = _make_frame() df.to_csv(path) result = read_csv(path, header=[0, 1], index_col=[0]) tm.assert_frame_equal(df, result) df = _make_frame(True) df.to_csv(path) result = read_csv(path, header=[0, 1], index_col=[0]) tm.assert_frame_equal(df, result) # invalid options df = _make_frame(True) df.to_csv(path) for i in [6, 7]: msg = f"len of {i}, but only 5 lines in file" with pytest.raises(ParserError, match=msg): read_csv(path, header=list(range(i)), index_col=0) # write with cols msg = "cannot specify cols with a MultiIndex" with pytest.raises(TypeError, match=msg): df.to_csv(path, columns=["foo", "bar"]) with tm.ensure_clean("__tmp_to_csv_multiindex__") as path: # empty tsframe[:0].to_csv(path) recons = self.read_csv(path) exp = tsframe[:0] exp.index = [] tm.assert_index_equal(recons.columns, exp.columns) assert len(recons) == 0 def test_to_csv_interval_index(self): # GH 28210 df = DataFrame({"A": list("abc"), "B": range(3)}, index=pd.interval_range(0, 3)) with tm.ensure_clean("__tmp_to_csv_interval_index__.csv") as path: df.to_csv(path) result = self.read_csv(path, index_col=0) # can't roundtrip intervalindex via read_csv so check string repr (GH 23595) expected = df.copy() expected.index = expected.index.astype(str) tm.assert_frame_equal(result, expected) def test_to_csv_float32_nanrep(self): df = DataFrame(np.random.randn(1, 4).astype(np.float32)) df[1] = np.nan with tm.ensure_clean("__tmp_to_csv_float32_nanrep__.csv") as path: df.to_csv(path, na_rep=999) with open(path) as f: lines = f.readlines() assert lines[1].split(",")[2] == "999" def test_to_csv_withcommas(self): # Commas inside fields should be correctly escaped when saving as CSV. df = DataFrame({"A": [1, 2, 3], "B": ["5,6", "7,8", "9,0"]}) with tm.ensure_clean("__tmp_to_csv_withcommas__.csv") as path: df.to_csv(path) df2 = self.read_csv(path) tm.assert_frame_equal(df2, df) def test_to_csv_mixed(self): def create_cols(name): return [f"{name}{i:03d}" for i in range(5)] df_float = DataFrame( np.random.randn(100, 5), dtype="float64", columns=create_cols("float") ) df_int = DataFrame( np.random.randn(100, 5).astype("int64"), dtype="int64", columns=create_cols("int"), ) df_bool = DataFrame(True, index=df_float.index, columns=create_cols("bool")) df_object = DataFrame( "foo", index=df_float.index, columns=create_cols("object") ) df_dt = DataFrame( Timestamp("20010101"), index=df_float.index, columns=create_cols("date") ) # add in some nans df_float.iloc[30:50, 1:3] = np.nan # ## this is a bug in read_csv right now #### # df_dt.loc[30:50,1:3] = np.nan df = pd.concat([df_float, df_int, df_bool, df_object, df_dt], axis=1) # dtype dtypes = {} for n, dtype in [ ("float", np.float64), ("int", np.int64), ("bool", np.bool_), ("object", object), ]: for c in create_cols(n): dtypes[c] = dtype with tm.ensure_clean() as filename: df.to_csv(filename) rs = read_csv( filename, index_col=0, dtype=dtypes, parse_dates=create_cols("date") ) tm.assert_frame_equal(rs, df) def test_to_csv_dups_cols(self): df = DataFrame( np.random.randn(1000, 30), columns=list(range(15)) + list(range(15)), dtype="float64", ) with tm.ensure_clean() as filename: df.to_csv(filename) # single dtype, fine result = read_csv(filename, index_col=0) result.columns = df.columns tm.assert_frame_equal(result, df) df_float = DataFrame(np.random.randn(1000, 3), dtype="float64") df_int = DataFrame(np.random.randn(1000, 3)).astype("int64") df_bool = DataFrame(True, index=df_float.index, columns=range(3)) df_object = DataFrame("foo", index=df_float.index, columns=range(3)) df_dt = DataFrame(Timestamp("20010101"), index=df_float.index, columns=range(3)) df = pd.concat( [df_float, df_int, df_bool, df_object, df_dt], axis=1, ignore_index=True ) df.columns = [0, 1, 2] * 5 with tm.ensure_clean() as filename: df.to_csv(filename) result = read_csv(filename, index_col=0) # date cols for i in ["0.4", "1.4", "2.4"]: result[i] = to_datetime(result[i]) result.columns = df.columns tm.assert_frame_equal(result, df) # GH3457 N = 10 df = tm.makeCustomDataframe(N, 3) df.columns = ["a", "a", "b"] with tm.ensure_clean() as filename: df.to_csv(filename) # read_csv will rename the dups columns result = read_csv(filename, index_col=0) result = result.rename(columns={"a.1": "a"}) tm.assert_frame_equal(result, df) def test_to_csv_chunking(self): aa = DataFrame({"A": range(100000)}) aa["B"] = aa.A + 1.0 aa["C"] = aa.A + 2.0 aa["D"] = aa.A + 3.0 for chunksize in [10000, 50000, 100000]: with tm.ensure_clean() as filename: aa.to_csv(filename, chunksize=chunksize) rs = read_csv(filename, index_col=0) tm.assert_frame_equal(rs, aa) @pytest.mark.slow def test_to_csv_wide_frame_formatting(self): # Issue #8621 df = DataFrame(np.random.randn(1, 100010), columns=None, index=None) with tm.ensure_clean() as filename: df.to_csv(filename, header=False, index=False) rs = read_csv(filename, header=None) tm.assert_frame_equal(rs, df) def test_to_csv_bug(self): f1 = StringIO("a,1.0\nb,2.0") df = self.read_csv(f1, header=None) newdf = DataFrame({"t": df[df.columns[0]]}) with tm.ensure_clean() as path: newdf.to_csv(path) recons = read_csv(path, index_col=0) # don't check_names as t != 1 tm.assert_frame_equal(recons, newdf, check_names=False) def test_to_csv_unicode(self): df = DataFrame({"c/\u03c3": [1, 2, 3]}) with tm.ensure_clean() as path: df.to_csv(path, encoding="UTF-8") df2 = read_csv(path, index_col=0, encoding="UTF-8") tm.assert_frame_equal(df, df2) df.to_csv(path, encoding="UTF-8", index=False) df2 = read_csv(path, index_col=None, encoding="UTF-8") tm.assert_frame_equal(df, df2) def test_to_csv_unicode_index_col(self): buf = StringIO("") df = DataFrame( [["\u05d0", "d2", "d3", "d4"], ["a1", "a2", "a3", "a4"]], columns=["\u05d0", "\u05d1", "\u05d2", "\u05d3"], index=["\u05d0", "\u05d1"], ) df.to_csv(buf, encoding="UTF-8") buf.seek(0) df2 = read_csv(buf, index_col=0, encoding="UTF-8") tm.assert_frame_equal(df, df2) def test_to_csv_stringio(self, float_frame): buf = StringIO() float_frame.to_csv(buf) buf.seek(0) recons = read_csv(buf, index_col=0) tm.assert_frame_equal(recons, float_frame) def test_to_csv_float_format(self): df = DataFrame( [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=["A", "B"], columns=["X", "Y", "Z"], ) with tm.ensure_clean() as filename: df.to_csv(filename, float_format="%.2f") rs = read_csv(filename, index_col=0) xp = DataFrame( [[0.12, 0.23, 0.57], [12.32, 123123.20, 321321.20]], index=["A", "B"], columns=["X", "Y", "Z"], ) tm.assert_frame_equal(rs, xp) def test_to_csv_unicodewriter_quoting(self): df = DataFrame({"A": [1, 2, 3], "B": ["foo", "bar", "baz"]}) buf = StringIO() df.to_csv(buf, index=False, quoting=csv.QUOTE_NONNUMERIC, encoding="utf-8") result = buf.getvalue() expected_rows = ['"A","B"', '1,"foo"', '2,"bar"', '3,"baz"'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert result == expected def test_to_csv_quote_none(self): # GH4328 df = DataFrame({"A": ["hello", '{"hello"}']}) for encoding in (None, "utf-8"): buf = StringIO() df.to_csv(buf, quoting=csv.QUOTE_NONE, encoding=encoding, index=False) result = buf.getvalue() expected_rows = ["A", "hello", '{"hello"}'] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert result == expected def test_to_csv_index_no_leading_comma(self): df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["one", "two", "three"]) buf = StringIO() df.to_csv(buf, index_label=False) expected_rows = ["A,B", "one,1,4", "two,2,5", "three,3,6"] expected = tm.convert_rows_list_to_csv_str(expected_rows) assert buf.getvalue() == expected def test_to_csv_line_terminators(self): # see gh-20353 df = DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}, index=["one", "two", "three"]) with tm.ensure_clean() as path: # case 1: CRLF as line terminator df.to_csv(path, line_terminator="\r\n") expected = b",A,B\r\none,1,4\r\ntwo,2,5\r\nthree,3,6\r\n" with open(path, mode="rb") as f: assert f.read() == expected with tm.ensure_clean() as path: # case 2: LF as line terminator df.to_csv(path, line_terminator="\n") expected = b",A,B\none,1,4\ntwo,2,5\nthree,3,6\n" with open(path, mode="rb") as f: assert f.read() == expected with tm.ensure_clean() as path: # case 3: The default line terminator(=os.linesep)(gh-21406) df.to_csv(path) os_linesep = os.linesep.encode("utf-8") expected = ( b",A,B" + os_linesep + b"one,1,4" + os_linesep + b"two,2,5" + os_linesep + b"three,3,6" + os_linesep ) with open(path, mode="rb") as f: assert f.read() == expected def test_to_csv_from_csv_categorical(self): # CSV with categoricals should result in the same output # as when one would add a "normal" Series/DataFrame. s = Series(pd.Categorical(["a", "b", "b", "a", "a", "c", "c", "c"])) s2 = Series(["a", "b", "b", "a", "a", "c", "c", "c"]) res = StringIO() s.to_csv(res, header=False) exp = StringIO() s2.to_csv(exp, header=False) assert res.getvalue() == exp.getvalue() df = DataFrame({"s": s}) df2 = DataFrame({"s": s2}) res = StringIO() df.to_csv(res) exp = StringIO() df2.to_csv(exp) assert res.getvalue() == exp.getvalue() def test_to_csv_path_is_none(self, float_frame): # GH 8215 # Make sure we return string for consistency with # Series.to_csv() csv_str = float_frame.to_csv(path_or_buf=None) assert isinstance(csv_str, str) recons = read_csv(StringIO(csv_str), index_col=0) tm.assert_frame_equal(float_frame, recons) @pytest.mark.parametrize( "df,encoding", [ ( DataFrame( [[0.123456, 0.234567, 0.567567], [12.32112, 123123.2, 321321.2]], index=["A", "B"], columns=["X", "Y", "Z"], ), None, ), # GH 21241, 21118 (DataFrame([["abc", "def", "ghi"]], columns=["X", "Y", "Z"]), "ascii"), (DataFrame(5 * [[123, "你好", "世界"]], columns=["X", "Y", "Z"]), "gb2312"), ( DataFrame(5 * [[123, "Γειά σου", "Κόσμε"]], columns=["X", "Y", "Z"]), "cp737", ), ], ) def test_to_csv_compression(self, df, encoding, compression): with tm.ensure_clean() as filename: df.to_csv(filename, compression=compression, encoding=encoding) # test the round trip - to_csv -> read_csv result = read_csv( filename, compression=compression, index_col=0, encoding=encoding ) tm.assert_frame_equal(df, result) # test the round trip using file handle - to_csv -> read_csv with get_handle( filename, "w", compression=compression, encoding=encoding ) as handles: df.to_csv(handles.handle, encoding=encoding) assert not handles.handle.closed result = read_csv( filename, compression=compression, encoding=encoding, index_col=0, ).squeeze("columns") tm.assert_frame_equal(df, result) # explicitly make sure file is compressed with tm.decompress_file(filename, compression) as fh: text = fh.read().decode(encoding or "utf8") for col in df.columns: assert col in text with tm.decompress_file(filename, compression) as fh: tm.assert_frame_equal(df, read_csv(fh, index_col=0, encoding=encoding)) def test_to_csv_date_format(self, datetime_frame): with tm.ensure_clean("__tmp_to_csv_date_format__") as path: dt_index = datetime_frame.index datetime_frame = DataFrame( {"A": dt_index, "B": dt_index.shift(1)}, index=dt_index ) datetime_frame.to_csv(path, date_format="%Y%m%d") # Check that the data was put in the specified format test = read_csv(path, index_col=0) datetime_frame_int = datetime_frame.applymap( lambda x: int(x.strftime("%Y%m%d")) ) datetime_frame_int.index = datetime_frame_int.index.map( lambda x: int(x.strftime("%Y%m%d")) ) tm.assert_frame_equal(test, datetime_frame_int) datetime_frame.to_csv(path, date_format="%Y-%m-%d") # Check that the data was put in the specified format test = read_csv(path, index_col=0) datetime_frame_str = datetime_frame.applymap( lambda x: x.strftime("%Y-%m-%d") ) datetime_frame_str.index = datetime_frame_str.index.map( lambda x: x.strftime("%Y-%m-%d") ) tm.assert_frame_equal(test, datetime_frame_str) # Check that columns get converted datetime_frame_columns = datetime_frame.T datetime_frame_columns.to_csv(path, date_format="%Y%m%d") test = read_csv(path, index_col=0) datetime_frame_columns = datetime_frame_columns.applymap( lambda x: int(x.strftime("%Y%m%d")) ) # Columns don't get converted to ints by read_csv datetime_frame_columns.columns = datetime_frame_columns.columns.map( lambda x: x.strftime("%Y%m%d") ) tm.assert_frame_equal(test, datetime_frame_columns) # test NaTs nat_index = to_datetime( ["NaT"] * 10 + ["2000-01-01", "1/1/2000", "1-1-2000"] ) nat_frame = DataFrame({"A": nat_index}, index=nat_index) nat_frame.to_csv(path, date_format="%Y-%m-%d") test = read_csv(path, parse_dates=[0, 1], index_col=0) tm.assert_frame_equal(test, nat_frame) def test_to_csv_with_dst_transitions(self): with
tm.ensure_clean("csv_date_format_with_dst")
pandas._testing.ensure_clean
import pandas as pd import numpy as np import os pd.options.mode.chained_assignment = None sp_dir = '/Users/rwang/RMI/Climate Action Engine - Documents/OCI Phase 2' opem_dir = '/Users/rwang/Documents/OCI+/Downstream/opem' print('Merging upstream and midstream results...') # import sqlite3 # connection = sqlite3.connect("../OCI_Database.db") upstream = pd.read_csv(sp_dir + '/Upstream/upstream_data_pipeline_sp/Postprocessed_Outputs_2/upstream_postprocessed_fix.csv') midstream = pd.read_csv(sp_dir + '/Upstream/upstream_data_pipeline_sp/Postprocessed_Outputs_2/midstream_postprocessed.csv') # Calculate Crude to Refinery in bbl/d from Energy Summary tab of OPGEE model. Formula is based on cell G6 in OPEM input tab #https://rockmtnins.sharepoint.com/:x:/r/sites/CAE/_layouts/15/Doc.aspx?sourcedoc=%7B5E0994C9-8E35-440B-8BB4-31DF5167F60C%7D&file=OCI%20site%20input%20table%20sources.xlsx&action=default&mobileredirect=true&cid=544ad233-565f-438c-9ce2-d7d5b607b1da # ('Energy Summary'!E89*1e3/'Energy Summary'!M133)/(158.9873*141.5/(131.5+Results!G34)) upstream['crude_to_refinery(bbl/d)']= (upstream['ES_Crude_output(mmbut/d)']*1e3/upstream['ES_Energy_Density_crude(mmbtu/t)'])/(158.9873*141.5/(131.5+upstream['API gravity'])) # For oil sands, the crude to refinery volume is bigger than the input oil production volume. # It's interesting and worth exploring why. Is there a mistake in Raghav's mmbtu/d to boe/d calculation? #upstream[['Field_name','year']][upstream['crude_to_refinery(bbl/d)']>upstream['Oil production volume']] # Calculate NGL_C2 export from the field, formula based on cell G8 in OPEM input tab # (Flowsheet!W17+Flowsheet!CP17)*1000/(5.61458350903291*20.98*2.2) upstream['NGL_C2(boed)'] = (upstream['FS_LPG_export_C2(t/d)']+upstream['FS_Ethane_to_Petchem(t/d)'])*1000/(5.61458350903291*20.98*2.2) # Calculate NGL_C3 export from the field, formula based on cell G9 in OPEM input tab # Flowsheet!W18*1000000/(42*1920)+Flowsheet!W9*(1000000)*0.75/(1923*42) assuming 75% of LPG exported is C3 upstream['NGL_C3(boed)'] = upstream['FS_LPG_export_C3(t/d)']*1000000/(42*1920)+upstream['FS_LPG_export_LPG(t/d)']*(1000000)*0.75/(1923*42) # Calculate NGL_C4 export from the field, formula based on cell G10 in OPEM input tab # Flowsheet!W19*1000000/(42*2213)+Flowsheet!W9*(1000000)*0.25/(1923*42) assuming 25% of LPG exported is C4 upstream['NGL_C4(boed)'] = upstream['FS_LPG_export_C4(t/d)']*1000000/(42*2213)+upstream['FS_LPG_export_LPG(t/d)']*(1000000)*0.25/(1923*42) # Calculate NGL_C5+ export from the field, formula based on cell G11 in OPEM input tab # Assuming all NGL minus C2, C3 and C4 is C5+ # ('Energy Summary'!E87-(((Flowsheet!W17+Flowsheet!CP17)*'Energy Summary'!M141) + # (Flowsheet!W18*'Energy Summary'!M142) + (Flowsheet!W19*'Energy Summary'!M143) + #(Flowsheet!W9*84950/1923)))/(42*.110) upstream['NGL_C5(boed)'] = (upstream['ES_NGL_output(mmbtu/d)']-(((upstream['FS_LPG_export_C2(t/d)']+ \ upstream['FS_Ethane_to_Petchem(t/d)'])*upstream['ES_Energy_Density_C2(mmbtu/t)']) + \ (upstream['FS_LPG_export_C3(t/d)']*upstream['ES_Energy_Density_C3(mmbtu/t)']) + \ (upstream['FS_LPG_export_C4(t/d)']*upstream['ES_Energy_Density_C4(mmbtu/t)']) + \ (upstream['FS_LPG_export_LPG(t/d)']*84950/1923)))/(42*.110) # Calculate petcoke from the field, formula based on cell G12 in OPEM input tab # 1000*(Flowsheet!HG7-'Energy Summary'!E77/'Energy Summary'!M135) upstream['petcoke(kg/d)'] = 1000*(upstream['FS_Petcoke_to_stock(t/d)']-upstream['ES_Petcoke_fuel(mmbtu/d)']/upstream['ES_Energy_Density_petcoke(mmbtu/t)']) upstream_midstream = upstream.merge(midstream,right_on= ['Field name','Field location (Country)','gwp'],left_on = ['Field_name', 'Field location (Country)','gwp'], how = 'left',indicator = True) if upstream_midstream[upstream_midstream['_merge']!='both'].shape[0]!=0: print('not fully merged. please check') print(upstream_midstream[upstream_midstream['_merge']!='both']) else: upstream_midstream.drop(columns = '_merge',inplace = True) def run_opem(upstream_midstream, gwp): upstream_midstream_for_opem = upstream_midstream[upstream_midstream['gwp']==gwp] upstream_midstream_for_opem['OPEM_field_name']=upstream_midstream_for_opem['Field_name']+';'+upstream_midstream_for_opem['original_file'] print('Getting data for OPEM Product Slates...') upstream_midstream_for_opem['volume_flow_bbl']='' upstream_midstream_for_opem['Product Slate (bbl product per day)'] = '' upstream_midstream_for_opem['energy_flow_MJ']='' upstream_midstream_for_opem['mass_flow_kg']='' upstream_midstream_for_opem['Liquefied Petroleum Gases (LPG)_bbl']= upstream_midstream_for_opem['Liquified Petroleum Gas (LPG).1']/(2.04*0.159*270) upstream_midstream_for_opem['Petrochemical Feedstocks_bbl']=upstream_midstream_for_opem['Petrochemical Feedstocks.1']/(1.264*0.159*270) upstream_midstream_for_opem['Asphalt_bbl']= 0 upstream_midstream_for_opem['emission(kgCO2eq/bbl)']='kgCO2eq/bbl' upstream_midstream_for_opem['Per energy content of refinery product (gCO2eq/MJ)'] = 'Emission by Product (gCO2eq/MJ)' upstream_midstream_for_opem['Allocation to gasoline (g CO2eq/MJ)']='Process Emission (gCO2eq/MJ)' opem_product_slate = upstream_midstream_for_opem[['OPEM_field_name', 'Product Slate (bbl product per day)', 'volume_flow_bbl','throughput','Gasoline', 'Jet Fuel', 'Diesel', 'Fuel Oil', 'Petroleum Coke', 'Residual Fuels', 'Refinery Fuel Gas (RFG)', 'Liquefied Petroleum Gases (LPG)_bbl', 'Petrochemical Feedstocks_bbl', 'Asphalt_bbl', 'energy_flow_MJ', 'Blended Gasoline', 'Jet-A/AVTUR', 'ULSD', 'Fuel Oil.1', 'Coke', 'Liquid Heavy Ends', 'RFG', 'Surplus NCR H2', 'Liquified Petroleum Gas (LPG)', 'Petrochemical Feedstocks', 'Asphalt', 'Gasoline S wt%', 'Gasoline H2 wt%','mass_flow_kg', 'Blended Gasoline.1', 'Jet-A/AVTUR.1', 'ULSD.1', 'Fuel Oil.2', 'Coke.1', 'Liquid Heavy Ends.1', 'Sulphur', 'RFG.1', 'Surplus NCR H2.1', 'Liquified Petroleum Gas (LPG).1', 'Petrochemical Feedstocks.1', 'Asphalt.1']] opem_product_slate = opem_product_slate.T opem_product_slate.columns = opem_product_slate.iloc[0] opem_product_slate = opem_product_slate.iloc[1:,:] slate_index = pd.read_csv(opem_dir + '/src/opem/products/product_slates/all_product_slates.csv') opem_product_slate.index = slate_index.iloc[:,0] #opem_product_slate.to_excel('../Downstream/Analytics/all_product_slates.xlsx') opem_product_slate.to_csv(opem_dir+'/src/opem/products/product_slates/all_product_slates.csv') print('Preparing data for opem_input...') opem_input = pd.DataFrame() opem_input['OPEM_field_name']=upstream_midstream_for_opem['OPEM_field_name'] opem_input['Upstream Field Selection']='' opem_input['Gas Production Volume (MCFD)']=upstream_midstream_for_opem['ES_Gas_output(mmbtu/d)']*1000/983 opem_input['Oil Production Volume (BOED)']=upstream_midstream_for_opem['crude_to_refinery(bbl/d)'] opem_input['NGL Volume source']=2 opem_input['NGL C2 Volume (BOED)']=upstream_midstream_for_opem['NGL_C2(boed)'] opem_input['NGL C3 Volume (BOED)']=upstream_midstream_for_opem['NGL_C3(boed)'] opem_input['NGL C4 Volume (BOED)']=upstream_midstream_for_opem['NGL_C4(boed)'] opem_input['NGL C5+ Volume (BOED)']=upstream_midstream_for_opem['NGL_C5(boed)'] opem_input['Total field NGL volume (BOED)']='' opem_input['OPGEE Coke mass (kg/d)']=upstream_midstream_for_opem['petcoke(kg/d)'] opem_input['% Field NGL C2 Volume allocated to Ethylene converstion']=1 opem_input['GWP selection (yr period, 100 or 20)']=gwp opem_input_T = opem_input.set_index('OPEM_field_name').T #opem_input_T.to_excel('../Downstream/Analytics/opem_input.xlsx') opem_input_index = pd.read_csv(opem_dir + '/opem_input.csv',header=0) opem_input_T.reset_index(inplace = True) # Get the index from opem_input.csv and update it with opem input values df = pd.concat([opem_input_index.iloc[:,:5],opem_input_T.iloc[:,1:]],axis = 1) df.to_csv('./opem_input.csv',index=False) print('Running opem...') os.system('opem') opem_output =
pd.read_csv('./opem_output.csv',header=1)
pandas.read_csv
""" Copyright 2019 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime as dt import json import pandas as pd from typing import Dict, Optional, List, Tuple from pydash import get from gs_quant.api.gs.assets import Currency, GsAsset, GsAssetApi from gs_quant.common import DateLimit from gs_quant.data.fields import DataMeasure from gs_quant.entities.entity import EntityType, PositionedEntity from gs_quant.errors import MqValueError from gs_quant.instrument import Instrument from gs_quant.json_encoder import JSONEncoder from gs_quant.markets.securities import Asset, AssetType from gs_quant.markets.indices_utils import * from gs_quant.target.data import DataQuery from gs_quant.entities.tree_entity import AssetTreeNode, TreeHelper class Index(Asset, PositionedEntity): """ Index which tracks an evolving portfolio of securities, and can be traded through cash or derivatives markets. Includes support for STS indices. """ def __init__(self, id_: str, asset_class: AssetClass, name: str, exchange: Optional[str] = None, currency: Optional[Currency] = None, entity: Optional[Dict] = None): Asset.__init__(self, id_, asset_class, name, exchange, currency, entity=entity) PositionedEntity.__init__(self, id_, EntityType.ASSET) if entity: self.asset_type = AssetType(entity['type']) else: self.asset_type = AssetType.INDEX if self.__is_sts_index(): self.tree_helper = TreeHelper(id_, tree_underlier_dataset='STS_UNDERLIER_WEIGHTS') self.tree_df = pd.DataFrame() def __str__(self): return self.name def get_type(self) -> AssetType: return self.asset_type def get_currency(self) -> Optional[Currency]: return self.currency def get_return_type(self) -> ReturnType: if self.parameters is None or self.parameters.index_return_type is None: return ReturnType.TOTAL_RETURN return ReturnType(self.parameters.index_return_type) @classmethod def get(cls, identifier: str) -> Optional['Index']: """ Fetch an existing index :param identifier: Any common identifier for an index(ric, ticker, etc.) :return: Index object **Usage** Get existing Index instance **Examples** Get index details: >>> from gs_quant.markets.index import Index >>> >>> index = Index.get("GSMBXXXX") """ gs_asset = cls.__get_gs_asset(identifier) asset_entity: Dict = json.loads(json.dumps(gs_asset.as_dict(), cls=JSONEncoder)) if gs_asset.type.value in STSIndexType.to_list() or gs_asset.type.value == 'Index': return cls(gs_asset.id, gs_asset.asset_class, gs_asset.name, exchange=gs_asset.exchange, currency=gs_asset.currency, entity=asset_entity) else: raise MqValueError(f'{identifier} is not an Index identifier') def get_fundamentals(self, start: dt.date = DateLimit.LOW_LIMIT.value, end: dt.date = dt.date.today(), period: DataMeasure = DataMeasure.ONE_YEAR.value, direction: DataMeasure = DataMeasure.FORWARD.value, metrics: List[DataMeasure] = DataMeasure.list_fundamentals()) -> pd.DataFrame: """ Retrieve fundamentals data for an index across a date range. Currently supports STS indices only :param start: start date (default is 1 January, 1970) :param end: end date (default is today) :param period: period for the relevant metric. Can be one of ONE_YEAR('1y'), TWO_YEARS('2y'), \ THREE_YEARS('3y') (default is 1y) :param direction: direction of the outlook period. Can be one of 'forward' or 'trailing' (default is forward) :param metrics: list of fundamentals metrics. (default is all) :return: dataframe with fundamentals information **Usage** Retrieve fundamentals data for an index across a date range **Examples** Retrieve historical dividend yield data for an index >>> from gs_quant.markets.index import Index >>> from gs_quant.data.fields import DataMeasure >>> >>> index = Index.get("GSMBXXXX") >>> index.get_fundamentals(metrics=[DataMeasure.DIVIDEND_YIELD]) """ if self.__is_sts_index(): where = dict(assetId=self.id, period=period, periodDirection=direction, metric=metrics) query = DataQuery(where=where, start_date=start, end_date=end) response = GsDataApi.query_data(query=query, dataset_id=IndicesDatasets.STS_FUNDAMENTALS.value) return pd.DataFrame(response) else: raise MqValueError('This method currently supports STS indices only') def get_latest_close_price(self, price_type: List[PriceType] = None) -> pd.DataFrame: """ Retrieve latest close prices for an index. Only STS indices support indicative prices. :param price_type: Type of prices to return. Default returns official close price :return: dataframe with latest close price **Usage** Retrieve latest close prices for an index **Examples** >>> from gs_quant.markets.index import Index >>> >>> index = Index.get("GSMBXXXX") >>> index.get_latest_close_price([PriceType.OFFICIAL_CLOSE_PRICE, PriceType.INDICATIVE_CLOSE_PRICE]) """ if (not price_type) or (price_type == [PriceType.OFFICIAL_CLOSE_PRICE]): return super().get_latest_close_price() prices = pd.DataFrame() if PriceType.OFFICIAL_CLOSE_PRICE in price_type: official_level = super().get_latest_close_price() prices['date'] = official_level.index prices['closePrice'] = official_level[0] if PriceType.INDICATIVE_CLOSE_PRICE in price_type: if self.__is_sts_index(): where = dict(assetId=self.id) query = DataQuery(where=where) response = GsDataApi.last_data(query=query, dataset_id=IndicesDatasets.STS_INDICATIVE_LEVELS.value) indicative_level = pd.DataFrame(response).iloc[-1:][['date', 'indicativeClosePrice']] prices['date'] = indicative_level['date'].iat[0] prices['indicativeClosePrice'] = indicative_level['indicativeClosePrice'].iat[0] else: raise MqValueError('PriceType.INDICATIVE_CLOSE_PRICE currently supports STS indices only') return prices def get_close_price_for_date(self, date: dt.date = dt.date.today(), price_type: List[PriceType] = None) -> pd.DataFrame: """ Retrieve close prices for an index. Only STS indices support indicative prices. :param date: date of the required prices (default is today) :param price_type: Type of prices to return. Default returns official close price :return: dataframe with date's close prices **Usage** Retrieve the close prices for an index for a given date **Examples** >>> from gs_quant.markets.index import Index >>> >>> index = Index.get("GSMBXXXX") >>> index.get_close_price_for_date(dt.date(2021, 1, 7), \ [PriceType.OFFICIAL_CLOSE_PRICE, PriceType.INDICATIVE_CLOSE_PRICE]) """ if (not price_type) or (price_type == [PriceType.OFFICIAL_CLOSE_PRICE]): return super().get_close_price_for_date(date) prices = pd.DataFrame() if PriceType.OFFICIAL_CLOSE_PRICE in price_type: official_level = super().get_close_price_for_date(date) prices['date'] = official_level.index prices['closePrice'] = official_level[0] if PriceType.INDICATIVE_CLOSE_PRICE in price_type: if self.__is_sts_index(): response = self.__query_indicative_levels_dataset(start=date, end=date) indicative_level =
pd.DataFrame(response)
pandas.DataFrame
import numpy as np import pandas as pd from PyQuantum.Common.Matrix import * from PyQuantum.TC.FullBase import * class HamiltonianL: def set_base(self, base): self.base = base def __init__(self, capacity, cavity, RWA=True, reduced=True): self.capacity = capacity self.cavity = cavity self.size = 0 HC = {} size_start = 0 self.states = {} for c in range(capacity, -1, -1): Hc = Hamiltonian(capacity=c, cavity=cavity, RWA=RWA, reduced=reduced) HC[c] = Hc for i in Hc.base.base: # for i in Hc.states.values(): print(i) print() for k, v in Hc.states.items(): self.states[size_start + k] = v size_start += HC[c].size # self.states += Hc.states # print(Hc.states) self.size += Hc.size # for i in self.states.values(): # print(i) I = np.zeros([self.size, self.size], dtype=np.complex128) # print(self.states) size_start = 0 for c in range(capacity, -1, -1): # print("c=", c) # print(HC[c]) # print(HC[c].size) # print(HC[c].states) # print(HC[c].matrix.data) I[size_start:size_start+HC[c].size, size_start:size_start+HC[c].size] = HC[c].matrix.data size_start += HC[c].size self.matrix = Matrix(self.size, self.size, dtype=np.complex128) self.matrix.data = I # exit(0) def iprint(self): df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/python3 # -*- coding: utf-8 -*- ## jupyter console import numpy as np import pandas as pd from pandas import Series, DataFrame ## merge data1 = pd.DataFrame({'key':['b','b','a','c','a','a','b'], 'data1':range(7)}) data1 data2 = pd.DataFrame({'key':['a','b','d'], 'data2':range(3)}) data2 pd.merge(data1, data2)
pd.merge(data1, data2, on='key')
pandas.merge
import re import os import subprocess from functools import lru_cache from typing import Dict, List import pandas as pd from helpers import ( NOW, RemoteCommand, Settings, create_settings, nix_build, spawn, flamegraph_env, read_stats, write_stats, scone_env ) from network import Network, NetworkKind, setup_remote_network from storage import Storage, StorageKind @lru_cache(maxsize=1) def sysbench_command(settings: Settings) -> RemoteCommand: path = nix_build("sysbench") return settings.remote_command(path) @lru_cache(maxsize=1) def nc_command(settings: Settings) -> RemoteCommand: path = nix_build("netcat-native") return settings.remote_command(path) def parse_sysbench(output: str) -> Dict[str, str]: stats_found = False section = "" data = {} for line in output.split("\n"): print(line) if line.startswith("SQL statistics"): stats_found = True if stats_found: col = line.split(":") if len(col) != 2: continue name = col[0].strip() # remove trailing statistics, e.g.: # transform # transactions: 3228 (322.42 per sec.) # to # transactions: 3228 value = re.sub(r"\([^)]+\)$", "", col[1]).strip() if value == "" and name != "queries performed": section = name continue data[f"{section} {name}"] = value return data def process_sysbench(output: str, system: str, stats: Dict[str, List]) -> None: data = parse_sysbench(output) for k, v in data.items(): stats[k].append(v) stats["system"].append(system) class Benchmark: def __init__(self, settings: Settings) -> None: self.settings = settings self.network = Network(settings) self.storage = Storage(settings) def run( self, attr: str, system: str, mnt: str, stats: Dict[str, List], extra_env: Dict[str, str] = {}, ) -> None: env = dict(SGXLKL_CWD=mnt) env.update(flamegraph_env(f"{os.getcwd()}/mysql-{system}")) env.update(extra_env) mysql = nix_build(attr) sysbench = sysbench_command(self.storage.settings) with spawn( mysql, "bin/mysqld", f"--datadir={mnt}/var/lib/mysql", "--socket=/tmp/mysql.sock", extra_env=env, ): common_flags = [ f"--mysql-host={self.settings.local_dpdk_ip}", "--mysql-db=root", "--mysql-user=root", "--mysql-password=<PASSWORD>", "--mysql-ssl=on", "--table-size=500000", f"{sysbench.nix_path}/share/sysbench/oltp_read_write.lua", ] while True: try: proc = nc_command(self.settings).run( "bin/nc", ["-z", "-v", self.settings.local_dpdk_ip, "3306"] ) break except subprocess.CalledProcessError: print(".") pass sysbench.run("bin/sysbench", common_flags + ["prepare"]) proc = sysbench.run("bin/sysbench", common_flags + ["run"]) process_sysbench(proc.stdout, system, stats) sysbench.run("bin/sysbench", common_flags + ["cleanup"]) def benchmark_native(benchmark: Benchmark, stats: Dict[str, List]) -> None: extra_env = benchmark.network.setup(NetworkKind.NATIVE) mount = benchmark.storage.setup(StorageKind.NATIVE) extra_env.update(mount.extra_env()) with mount as mnt: benchmark.run("mysql-native", "native", mnt, stats, extra_env=extra_env) def benchmark_sgx_lkl(benchmark: Benchmark, stats: Dict[str, List]) -> None: extra_env = benchmark.network.setup(NetworkKind.TAP) mount = benchmark.storage.setup(StorageKind.LKL) extra_env.update(mount.extra_env()) with mount as mnt: benchmark.run("mysql-sgx-lkl", "sgx-lkl", mnt, stats, extra_env=extra_env) def benchmark_sgx_io(benchmark: Benchmark, stats: Dict[str, List]) -> None: extra_env = benchmark.network.setup(NetworkKind.DPDK) mount = benchmark.storage.setup(StorageKind.SPDK) extra_env.update(mount.extra_env()) with mount as mnt: benchmark.run("mysql-sgx-io", "sgx-io", mnt, stats, extra_env=extra_env) def benchmark_scone(benchmark: Benchmark, stats: Dict[str, List]) -> None: mount = benchmark.storage.setup(StorageKind.SCONE) with mount as mnt: extra_env = scone_env(mnt) extra_env.update(benchmark.network.setup(NetworkKind.NATIVE)) extra_env.update(mount.extra_env()) benchmark.run("mysql-scone", "scone", mnt, stats, extra_env=extra_env) def main() -> None: stats = read_stats("mysql.json") settings = create_settings() benchmark = Benchmark(settings) benchmarks = { "native": benchmark_native, "sgx-lkl": benchmark_sgx_lkl, "sgx-io": benchmark_sgx_io, "scone": benchmark_scone, } setup_remote_network(settings) system = set(stats["system"]) for name, benchmark_func in benchmarks.items(): if name in system: print(f"skip {name} benchmark") continue benchmark_func(benchmark, stats) write_stats("mysql.json", stats) csv = f"mysql-{NOW}.tsv" print(csv) throughput_df =
pd.DataFrame(stats)
pandas.DataFrame
import pandas as pd import os from elab_queries import import_elab_pull # sort columns in elab queries for PPBC blocks/frozens or DLP (edit line 9 & 11) # edit sorted_filename - eLab_<storage/PPBC>_samples.csv def sort_columns_PPBC(pull_filename, sorted_filename): elab_pull = import_elab_pull(pull_filename) #DLP elab_pull = elab_pull.loc[elab_pull['Excluded'] == "No"] elab_pull = elab_pull.loc[elab_pull['Tissue Type'] == "FFPE Block"] #DLP elab_pull = elab_pull.loc[elab_pull['Downstream Submission'] == "Storage Only"] elab_pull = elab_pull[["Project", "Patient ID", "MRN", "Surgery #", "Surgery Type", "Surgery Date", "Surgeon", "Surgery Location", "Room", "Study Protocol", "Excluded", "Final Pathology", "Processing Date", "Specimen Site", "Primary Site", "Tissue Type", "PPBC Bank #", "PPBC Aliquot #", "PPBC Accession #"]] #DLP elab_pull = elab_pull[ # ["Project", "Patient ID", "MRN", "Surgery Type", "Surgery Date", "Surgeon", "Surgery Location", "Room", # "Study Protocol", "Excluded", "Final Pathology", "Processing Date", "Specimen Site", "Site Details", # "Primary Site", "Tissue Type", "Preservation Method", "Total Cell Count (cells/ml)", "Live Cell Count (cells/ml)", # "Total Volume (ml)", "Viability (%)", "Downstream Submission", "Storage Populations", "Storage Facility", # "IGO Storage ID", "IGO Sample ID"]] #print(elab_pull) elab_pull.to_csv(sorted_filename, index=False) # compare sorted columns sheet to submitted FFPE samples for mpIF/IF and WGS-T (PPBC) and DLP # submitted spreadsheet format (Patient ID, Specimen Site, Nomenclature) def compare_sorted_to_submitted_PPBC(sorted_filename, submitted_filename, saved_filename): fileDir = os.path.dirname(os.path.realpath('__file__')) submitted_doc = os.path.join(fileDir, "/Volumes/GynLab/Weigelt Lab/Jamie/wet_lab/SPECTRUM/" + submitted_filename) sorted_file = pd.read_csv(sorted_filename) submitted_file = pd.read_excel(submitted_doc) merged_files = pd.merge(submitted_file, sorted_file, on=['Patient ID', 'Specimen Site'], how='left') merged_files = merged_files[["Project", "Patient ID", "MRN", "Surgery Type", "Surgery Date", "Surgeon", "Surgery Location", "Room", "Study Protocol", "Excluded", "Final Pathology", "Processing Date", "Specimen Site", "Site Details", "Primary Site", "Tissue Type", "PPBC Bank #", "PPBC Aliquot #", "PPBC Accession #", "Nomenclature"]] #DLP merged_files = merged_files[ # ["Patient ID", "MRN", "Surgery Type", "Surgery Date", "Surgeon", "Surgery Location", "Room", # "Study Protocol", "Excluded", "Final Pathology", "Processing Date", "Specimen Site", "Site Details", # "Primary Site", "Tissue Type", "Preservation Method", "Total Cell Count (cells/ml)", # "Live Cell Count (cells/ml)", "Total Volume (ml)", "Viability (%)", "Downstream Submission", # "Storage Facility", "IGO Storage ID", "IGO Sample ID"]] merged_files = merged_files.drop_duplicates() #print(merged_files) saved_file = os.path.join(fileDir, "/Volumes/GynLab/Weigelt Lab/Jamie/wet_lab/SPECTRUM/Sample Submissions and Data/mpIF-IF/" + saved_filename) merged_files.to_csv(saved_file, index=False) # compare sorted columns sheet to submitted FFPE samples for mpIF/IF (Diagnostic) # 1. pull reference_file query from elab (Excluded=No) # 2. remove duplicates from reference_file (Col U, AD), save as xlsx def compare_sorted_to_submitted_diag(reference_filename, submitted_filename, saved_filename): fileDir = os.path.dirname(os.path.realpath('__file__')) submitted_doc = os.path.join(fileDir, "/Volumes/GynLab/Weigelt Lab/Jamie/wet_lab/SPECTRUM/" + submitted_filename) reference_file = pd.read_excel(reference_filename) submitted_file =
pd.read_excel(submitted_doc)
pandas.read_excel
#%% import os import sys try: os.chdir('/Volumes/GoogleDrive/My Drive/python_code/connectome_tools/') sys.path.append('/Volumes/GoogleDrive/My Drive/python_code/maggot_models/') sys.path.append('/Volumes/GoogleDrive/My Drive/python_code/connectome_tools/') except: pass from pymaid_creds import url, name, password, token import pymaid import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd import numpy.random as random import gzip import csv import connectome_tools.process_matrix as pm import connectome_tools.process_graph as pg from tqdm import tqdm from joblib import Parallel, delayed import networkx as nx # allows text to be editable in Illustrator plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] = 42 # font settings plt.rcParams['font.size'] = 5 plt.rcParams['font.family'] = 'arial' rm = pymaid.CatmaidInstance(url, token, name, password) adj =
pd.read_csv('VNC_interaction/data/brA1_axon-dendrite.csv', header = 0, index_col = 0)
pandas.read_csv
import os import pandas as pd import config as cfg from src.utils.data_processing import medea_path directory = medea_path('data', 'raw', 'AggregatedGenerationPerType') df_ror = pd.DataFrame() for file in os.listdir(directory): filename = os.fsdecode(file) print(filename) if filename.endswith('.csv'): df_tmpfile =
pd.DataFrame()
pandas.DataFrame
"""Tests suite for Period handling. Parts derived from scikits.timeseries code, original authors: - <NAME> & <NAME> - pierregm_at_uga_dot_edu - mattknow_ca_at_hotmail_dot_com """ from unittest import TestCase from datetime import datetime, timedelta from numpy.ma.testutils import assert_equal from pandas.tseries.period import Period, PeriodIndex from pandas.tseries.index import DatetimeIndex, date_range from pandas.tseries.tools import to_datetime import pandas.core.datetools as datetools import numpy as np from pandas import Series, TimeSeries from pandas.util.testing import assert_series_equal class TestPeriodProperties(TestCase): "Test properties such as year, month, weekday, etc...." # def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) def test_interval_constructor(self): i1 = Period('1/1/2005', freq='M') i2 = Period('Jan 2005') self.assertEquals(i1, i2) i1 = Period('2005', freq='A') i2 = Period('2005') i3 = Period('2005', freq='a') self.assertEquals(i1, i2) self.assertEquals(i1, i3) i4 = Period('2005', freq='M') i5 = Period('2005', freq='m') self.assert_(i1 != i4) self.assertEquals(i4, i5) i1 = Period.now('Q') i2 = Period(datetime.now(), freq='Q') i3 = Period.now('q') self.assertEquals(i1, i2) self.assertEquals(i1, i3) # Biz day construction, roll forward if non-weekday i1 = Period('3/10/12', freq='B') i2 = Period('3/12/12', freq='D') self.assertEquals(i1, i2.asfreq('B')) i3 = Period('3/10/12', freq='b') self.assertEquals(i1, i3) i1 = Period(year=2005, quarter=1, freq='Q') i2 = Period('1/1/2005', freq='Q') self.assertEquals(i1, i2) i1 = Period(year=2005, quarter=3, freq='Q') i2 = Period('9/1/2005', freq='Q') self.assertEquals(i1, i2) i1 = Period(year=2005, month=3, day=1, freq='D') i2 = Period('3/1/2005', freq='D') self.assertEquals(i1, i2) i3 = Period(year=2005, month=3, day=1, freq='d') self.assertEquals(i1, i3) i1 = Period(year=2012, month=3, day=10, freq='B') i2 = Period('3/12/12', freq='B') self.assertEquals(i1, i2) i1 = Period('2005Q1') i2 = Period(year=2005, quarter=1, freq='Q') i3 = Period('2005q1') self.assertEquals(i1, i2) self.assertEquals(i1, i3) i1 = Period('05Q1') self.assertEquals(i1, i2) lower = Period('05q1') self.assertEquals(i1, lower) i1 = Period('1Q2005') self.assertEquals(i1, i2) lower = Period('1q2005') self.assertEquals(i1, lower) i1 = Period('1Q05') self.assertEquals(i1, i2) lower = Period('1q05') self.assertEquals(i1, lower) i1 = Period('4Q1984') self.assertEquals(i1.year, 1984) lower = Period('4q1984') self.assertEquals(i1, lower) i1 = Period('1982', freq='min') i2 = Period('1982', freq='MIN') self.assertEquals(i1, i2) i2 = Period('1982', freq=('Min', 1)) self.assertEquals(i1, i2) def test_freq_str(self): i1 = Period('1982', freq='Min') self.assert_(i1.freq[0] != '1') i2 = Period('11/30/2005', freq='2Q') self.assertEquals(i2.freq[0], '2') def test_to_timestamp(self): intv = Period('1982', freq='A') start_ts = intv.to_timestamp(which_end='S') aliases = ['s', 'StarT', 'BEGIn'] for a in aliases: self.assertEquals(start_ts, intv.to_timestamp(which_end=a)) end_ts = intv.to_timestamp(which_end='E') aliases = ['e', 'end', 'FINIsH'] for a in aliases: self.assertEquals(end_ts, intv.to_timestamp(which_end=a)) from_lst = ['A', 'Q', 'M', 'W', 'B', 'D', 'H', 'Min', 'S'] for i, fcode in enumerate(from_lst): intv = Period('1982', freq=fcode) result = intv.to_timestamp().to_period(fcode) self.assertEquals(result, intv) self.assertEquals(intv.start_time(), intv.to_timestamp('S')) self.assertEquals(intv.end_time(), intv.to_timestamp('E')) def test_properties_annually(self): # Test properties on Periods with annually frequency. a_date = Period(freq='A', year=2007) assert_equal(a_date.year, 2007) def test_properties_quarterly(self): # Test properties on Periods with daily frequency. qedec_date = Period(freq="Q-DEC", year=2007, quarter=1) qejan_date = Period(freq="Q-JAN", year=2007, quarter=1) qejun_date = Period(freq="Q-JUN", year=2007, quarter=1) # for x in range(3): for qd in (qedec_date, qejan_date, qejun_date): assert_equal((qd + x).qyear, 2007) assert_equal((qd + x).quarter, x + 1) def test_properties_monthly(self): # Test properties on Periods with daily frequency. m_date = Period(freq='M', year=2007, month=1) for x in range(11): m_ival_x = m_date + x assert_equal(m_ival_x.year, 2007) if 1 <= x + 1 <= 3: assert_equal(m_ival_x.quarter, 1) elif 4 <= x + 1 <= 6: assert_equal(m_ival_x.quarter, 2) elif 7 <= x + 1 <= 9: assert_equal(m_ival_x.quarter, 3) elif 10 <= x + 1 <= 12: assert_equal(m_ival_x.quarter, 4) assert_equal(m_ival_x.month, x + 1) def test_properties_weekly(self): # Test properties on Periods with daily frequency. w_date = Period(freq='WK', year=2007, month=1, day=7) # assert_equal(w_date.year, 2007) assert_equal(w_date.quarter, 1) assert_equal(w_date.month, 1) assert_equal(w_date.week, 1) assert_equal((w_date - 1).week, 52) def test_properties_daily(self): # Test properties on Periods with daily frequency. b_date = Period(freq='B', year=2007, month=1, day=1) # assert_equal(b_date.year, 2007) assert_equal(b_date.quarter, 1) assert_equal(b_date.month, 1) assert_equal(b_date.day, 1) assert_equal(b_date.weekday, 0) assert_equal(b_date.day_of_year, 1) # d_date = Period(freq='D', year=2007, month=1, day=1) # assert_equal(d_date.year, 2007) assert_equal(d_date.quarter, 1) assert_equal(d_date.month, 1) assert_equal(d_date.day, 1) assert_equal(d_date.weekday, 0) assert_equal(d_date.day_of_year, 1) def test_properties_hourly(self): # Test properties on Periods with hourly frequency. h_date = Period(freq='H', year=2007, month=1, day=1, hour=0) # assert_equal(h_date.year, 2007) assert_equal(h_date.quarter, 1) assert_equal(h_date.month, 1) assert_equal(h_date.day, 1) assert_equal(h_date.weekday, 0) assert_equal(h_date.day_of_year, 1) assert_equal(h_date.hour, 0) # def test_properties_minutely(self): # Test properties on Periods with minutely frequency. t_date = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) # assert_equal(t_date.quarter, 1) assert_equal(t_date.month, 1) assert_equal(t_date.day, 1) assert_equal(t_date.weekday, 0) assert_equal(t_date.day_of_year, 1) assert_equal(t_date.hour, 0) assert_equal(t_date.minute, 0) def test_properties_secondly(self): # Test properties on Periods with secondly frequency. s_date = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0, second=0) # assert_equal(s_date.year, 2007) assert_equal(s_date.quarter, 1) assert_equal(s_date.month, 1) assert_equal(s_date.day, 1) assert_equal(s_date.weekday, 0) assert_equal(s_date.day_of_year, 1) assert_equal(s_date.hour, 0) assert_equal(s_date.minute, 0) assert_equal(s_date.second, 0) def noWrap(item): return item class TestFreqConversion(TestCase): "Test frequency conversion of date objects" def __init__(self, *args, **kwds): TestCase.__init__(self, *args, **kwds) def test_conv_annual(self): # frequency conversion tests: from Annual Frequency ival_A = Period(freq='A', year=2007) ival_AJAN = Period(freq="A-JAN", year=2007) ival_AJUN = Period(freq="A-JUN", year=2007) ival_ANOV = Period(freq="A-NOV", year=2007) ival_A_to_Q_start = Period(freq='Q', year=2007, quarter=1) ival_A_to_Q_end = Period(freq='Q', year=2007, quarter=4) ival_A_to_M_start = Period(freq='M', year=2007, month=1) ival_A_to_M_end = Period(freq='M', year=2007, month=12) ival_A_to_W_start = Period(freq='WK', year=2007, month=1, day=1) ival_A_to_W_end = Period(freq='WK', year=2007, month=12, day=31) ival_A_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_A_to_B_end = Period(freq='B', year=2007, month=12, day=31) ival_A_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_A_to_D_end = Period(freq='D', year=2007, month=12, day=31) ival_A_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_A_to_H_end = Period(freq='H', year=2007, month=12, day=31, hour=23) ival_A_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_A_to_T_end = Period(freq='Min', year=2007, month=12, day=31, hour=23, minute=59) ival_A_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_A_to_S_end = Period(freq='S', year=2007, month=12, day=31, hour=23, minute=59, second=59) ival_AJAN_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_AJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_AJUN_to_D_end = Period(freq='D', year=2007, month=6, day=30) ival_AJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_ANOV_to_D_end = Period(freq='D', year=2007, month=11, day=30) ival_ANOV_to_D_start = Period(freq='D', year=2006, month=12, day=1) assert_equal(ival_A.asfreq('Q', 'S'), ival_A_to_Q_start) assert_equal(ival_A.asfreq('Q', 'e'), ival_A_to_Q_end) assert_equal(ival_A.asfreq('M', 's'), ival_A_to_M_start) assert_equal(ival_A.asfreq('M', 'E'), ival_A_to_M_end) assert_equal(ival_A.asfreq('WK', 'S'), ival_A_to_W_start) assert_equal(ival_A.asfreq('WK', 'E'), ival_A_to_W_end) assert_equal(ival_A.asfreq('B', 'S'), ival_A_to_B_start) assert_equal(ival_A.asfreq('B', 'E'), ival_A_to_B_end) assert_equal(ival_A.asfreq('D', 'S'), ival_A_to_D_start) assert_equal(ival_A.asfreq('D', 'E'), ival_A_to_D_end) assert_equal(ival_A.asfreq('H', 'S'), ival_A_to_H_start) assert_equal(ival_A.asfreq('H', 'E'), ival_A_to_H_end) assert_equal(ival_A.asfreq('min', 'S'), ival_A_to_T_start) assert_equal(ival_A.asfreq('min', 'E'), ival_A_to_T_end) assert_equal(ival_A.asfreq('T', 'S'), ival_A_to_T_start) assert_equal(ival_A.asfreq('T', 'E'), ival_A_to_T_end) assert_equal(ival_A.asfreq('S', 'S'), ival_A_to_S_start) assert_equal(ival_A.asfreq('S', 'E'), ival_A_to_S_end) assert_equal(ival_AJAN.asfreq('D', 'S'), ival_AJAN_to_D_start) assert_equal(ival_AJAN.asfreq('D', 'E'), ival_AJAN_to_D_end) assert_equal(ival_AJUN.asfreq('D', 'S'), ival_AJUN_to_D_start) assert_equal(ival_AJUN.asfreq('D', 'E'), ival_AJUN_to_D_end) assert_equal(ival_ANOV.asfreq('D', 'S'), ival_ANOV_to_D_start) assert_equal(ival_ANOV.asfreq('D', 'E'), ival_ANOV_to_D_end) assert_equal(ival_A.asfreq('A'), ival_A) def test_conv_quarterly(self): # frequency conversion tests: from Quarterly Frequency ival_Q = Period(freq='Q', year=2007, quarter=1) ival_Q_end_of_year = Period(freq='Q', year=2007, quarter=4) ival_QEJAN = Period(freq="Q-JAN", year=2007, quarter=1) ival_QEJUN = Period(freq="Q-JUN", year=2007, quarter=1) ival_Q_to_A = Period(freq='A', year=2007) ival_Q_to_M_start = Period(freq='M', year=2007, month=1) ival_Q_to_M_end = Period(freq='M', year=2007, month=3) ival_Q_to_W_start = Period(freq='WK', year=2007, month=1, day=1) ival_Q_to_W_end = Period(freq='WK', year=2007, month=3, day=31) ival_Q_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_Q_to_B_end = Period(freq='B', year=2007, month=3, day=30) ival_Q_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_Q_to_D_end = Period(freq='D', year=2007, month=3, day=31) ival_Q_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_Q_to_H_end = Period(freq='H', year=2007, month=3, day=31, hour=23) ival_Q_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_Q_to_T_end = Period(freq='Min', year=2007, month=3, day=31, hour=23, minute=59) ival_Q_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_Q_to_S_end = Period(freq='S', year=2007, month=3, day=31, hour=23, minute=59, second=59) ival_QEJAN_to_D_start = Period(freq='D', year=2006, month=2, day=1) ival_QEJAN_to_D_end = Period(freq='D', year=2006, month=4, day=30) ival_QEJUN_to_D_start = Period(freq='D', year=2006, month=7, day=1) ival_QEJUN_to_D_end = Period(freq='D', year=2006, month=9, day=30) assert_equal(ival_Q.asfreq('A'), ival_Q_to_A) assert_equal(ival_Q_end_of_year.asfreq('A'), ival_Q_to_A) assert_equal(ival_Q.asfreq('M', 'S'), ival_Q_to_M_start) assert_equal(ival_Q.asfreq('M', 'E'), ival_Q_to_M_end) assert_equal(ival_Q.asfreq('WK', 'S'), ival_Q_to_W_start) assert_equal(ival_Q.asfreq('WK', 'E'), ival_Q_to_W_end) assert_equal(ival_Q.asfreq('B', 'S'), ival_Q_to_B_start) assert_equal(ival_Q.asfreq('B', 'E'), ival_Q_to_B_end) assert_equal(ival_Q.asfreq('D', 'S'), ival_Q_to_D_start) assert_equal(ival_Q.asfreq('D', 'E'), ival_Q_to_D_end) assert_equal(ival_Q.asfreq('H', 'S'), ival_Q_to_H_start) assert_equal(ival_Q.asfreq('H', 'E'), ival_Q_to_H_end) assert_equal(ival_Q.asfreq('Min', 'S'), ival_Q_to_T_start) assert_equal(ival_Q.asfreq('Min', 'E'), ival_Q_to_T_end) assert_equal(ival_Q.asfreq('S', 'S'), ival_Q_to_S_start) assert_equal(ival_Q.asfreq('S', 'E'), ival_Q_to_S_end) assert_equal(ival_QEJAN.asfreq('D', 'S'), ival_QEJAN_to_D_start) assert_equal(ival_QEJAN.asfreq('D', 'E'), ival_QEJAN_to_D_end) assert_equal(ival_QEJUN.asfreq('D', 'S'), ival_QEJUN_to_D_start) assert_equal(ival_QEJUN.asfreq('D', 'E'), ival_QEJUN_to_D_end) assert_equal(ival_Q.asfreq('Q'), ival_Q) def test_conv_monthly(self): # frequency conversion tests: from Monthly Frequency ival_M = Period(freq='M', year=2007, month=1) ival_M_end_of_year = Period(freq='M', year=2007, month=12) ival_M_end_of_quarter = Period(freq='M', year=2007, month=3) ival_M_to_A = Period(freq='A', year=2007) ival_M_to_Q = Period(freq='Q', year=2007, quarter=1) ival_M_to_W_start = Period(freq='WK', year=2007, month=1, day=1) ival_M_to_W_end = Period(freq='WK', year=2007, month=1, day=31) ival_M_to_B_start = Period(freq='B', year=2007, month=1, day=1) ival_M_to_B_end = Period(freq='B', year=2007, month=1, day=31) ival_M_to_D_start = Period(freq='D', year=2007, month=1, day=1) ival_M_to_D_end = Period(freq='D', year=2007, month=1, day=31) ival_M_to_H_start = Period(freq='H', year=2007, month=1, day=1, hour=0) ival_M_to_H_end = Period(freq='H', year=2007, month=1, day=31, hour=23) ival_M_to_T_start = Period(freq='Min', year=2007, month=1, day=1, hour=0, minute=0) ival_M_to_T_end = Period(freq='Min', year=2007, month=1, day=31, hour=23, minute=59) ival_M_to_S_start = Period(freq='S', year=2007, month=1, day=1, hour=0, minute=0, second=0) ival_M_to_S_end = Period(freq='S', year=2007, month=1, day=31, hour=23, minute=59, second=59) assert_equal(ival_M.asfreq('A'), ival_M_to_A) assert_equal(ival_M_end_of_year.asfreq('A'), ival_M_to_A) assert_equal(ival_M.asfreq('Q'), ival_M_to_Q) assert_equal(ival_M_end_of_quarter.asfreq('Q'), ival_M_to_Q) assert_equal(ival_M.asfreq('WK', 'S'), ival_M_to_W_start) assert_equal(ival_M.asfreq('WK', 'E'), ival_M_to_W_end) assert_equal(ival_M.asfreq('B', 'S'), ival_M_to_B_start) assert_equal(ival_M.asfreq('B', 'E'), ival_M_to_B_end) assert_equal(ival_M.asfreq('D', 'S'), ival_M_to_D_start) assert_equal(ival_M.asfreq('D', 'E'), ival_M_to_D_end) assert_equal(ival_M.asfreq('H', 'S'), ival_M_to_H_start) assert_equal(ival_M.asfreq('H', 'E'), ival_M_to_H_end) assert_equal(ival_M.asfreq('Min', 'S'), ival_M_to_T_start) assert_equal(ival_M.asfreq('Min', 'E'), ival_M_to_T_end) assert_equal(ival_M.asfreq('S', 'S'), ival_M_to_S_start) assert_equal(ival_M.asfreq('S', 'E'), ival_M_to_S_end) assert_equal(ival_M.asfreq('M'), ival_M) def test_conv_weekly(self): # frequency conversion tests: from Weekly Frequency ival_W = Period(freq='WK', year=2007, month=1, day=1) ival_WSUN = Period(freq='WK', year=2007, month=1, day=7) ival_WSAT = Period(freq='WK-SAT', year=2007, month=1, day=6) ival_WFRI = Period(freq='WK-FRI', year=2007, month=1, day=5) ival_WTHU = Period(freq='WK-THU', year=2007, month=1, day=4) ival_WWED = Period(freq='WK-WED', year=2007, month=1, day=3) ival_WTUE = Period(freq='WK-TUE', year=2007, month=1, day=2) ival_WMON = Period(freq='WK-MON', year=2007, month=1, day=1) ival_WSUN_to_D_start =
Period(freq='D', year=2007, month=1, day=1)
pandas.tseries.period.Period
import tweepy from pandas import DataFrame import time # Twitter Credentials consumer_key = 'riiUgzG0nHSkUGt5c521LgcnD' consumer_key_secret = '<KEY>' access_token = '<KEY>' access_token_secret = '<KEY>' bearer_token = '<KEY>' # For Request tweetsPerQuery = 100 maxTweets = 1000 users = ['realDonaldTrump', 'shanedawson', 'Zendaya', 'justinbieber', 'KylieJenner', 'ArianaGrande', 'KimKardashian'] # Authentication auth = tweepy.OAuthHandler(consumer_key, consumer_key_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) for userId in users: # Crawling Data print("working on", userId) all_tweets = [] tweets = api.user_timeline(screen_name=userId, count=200, include_rts=False, tweet_mode="extended") all_tweets.extend(tweets) old_id = tweets[-1].id while True: try: tweets = api.user_timeline(screen_name=userId, count=200, include_rts=False, max_id=old_id-1, tweet_mode="extended") if len(tweets) == 0: break old_id = tweets[-1].id all_tweets.extend(tweets) if len(all_tweets) >= 3000: break print("N of tweets download till now {}".format(len(all_tweets))) except tweepy.TweepError: print("TweepError wait...") time.sleep(120) # Write to csv file outtweets = [[tweet.id_str, tweet.created_at, tweet.full_text.encode("utf-8").decode("utf-8")] for idx, tweet in enumerate(all_tweets)] df =
DataFrame(outtweets, columns=["id", "created_at", "text"])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu May 17 10:37:45 2018 @author: l_cry """ import pandas as pd ''' pfo_path:投组的文件路径; code:股票代码, name:股票名称, num:股票数量, ref_path:参照指数的文件路径;需包含日期date、当日指数收盘价close ------------- return: pfo:df ref:df ''' def pre_solving(pfo_path,ref_path): pd.read_excel(ref_path) pd.read_excel(pfo_path) def track_portfolio(pfo,ref,start_date,end_date=None): ''' 计算投组价值 Parameters: --------------- pfo:投组df; code:代码 name:名称 num:数量 ref:对照表df,用于计算投组日间价值 index date:日期 columns code:代码 contents 不同代码的日收盘价 Returns: --------------- DateFrame: index: date:日期 columns: code:代码 content: 代码不同日的市值 ''' df=pd.DataFrame(index=ref.index[ref.index>start_date]) codes=ref.columns.values for code,num in zip(pfo.code,pfo.num): if code in codes: df[code]=num*ref[code][ref.index>start_date] else: raise Exception('some codes are not included') return df def portfolio_profit(pfo,ref,index,start_date,end_date=None): ''' 计算投组价值 Parameters: --------------- pfo:投组df; code:代码 name:名称 num:数量 ref:对照表df,用于计算投组日间价值 columns date:日期 code:代码 contents 不同代码的日收盘价 index:指数df,用于pfo表现的比较 date:日期 close:收盘价 Returns: --------------- DateFrame: date:日期, mv:市值, ivg:指数收益, pvg:投组收益, alp:超额收益 ''' df=track_portfolio(pfo,ref,start_date,end_date=None) return df.apply(sum,axis=1).to_frame(name='pv').merge(index,left_index=True,right_index=True,how='left') import os path='C:/Users/l_cry/Nextcloud/HW/gp/' path="C:/Users/l_cry/Documents/Tencent Files/1204027935/FileRecv/投组20180521/" files=os.listdir(path) file_map={} dfhs300 = pd.read_excel('C:/Users/l_cry/Documents/Tencent Files/1204027935/FileRecv/gp/hs300gp20170101.xlsx',index_col=0) index=
pd.read_excel('C:/Users/l_cry/Desktop/指数行情序列hs300.xls',sheet_name='Sheet2',index_col=0)
pandas.read_excel
""" The `star' class is the core of PBjam and refers to a single target that is to be peakbagged. Each `star' instance is assigned an ID and physical input parameters, as well as a time series or power spectrum. The different steps in the peakbagging process are then passed the `star' instance, updating it with the results of each step. The outputs of each step are stored in a dedicated directory created with the star ID. The `session' class wraps one or more star class instances and peakbags them all sequentially. The recommended use of PBjam is the use the `session' class, and only use the `star' class for more granular control of the peakbagging process. """ import os, warnings, re, time from .asy_peakbag import asymptotic_fit from .priors import kde from .peakbag import peakbag from .jar import get_priorpath, to_log10, references, isvalid from .plotting import plotting import pandas as pd import numpy as np from astroquery.mast import ObservationsClass as AsqMastObsCl from astroquery.mast import Catalogs from astroquery.simbad import Simbad import astropy.units as units class star(plotting): """ Class for each star to be peakbagged Additional attributes are added for each step of the peakbagging process Note spectrum is flattened (background divided out.) Examples -------- Peakbag using the star class. Note that the star class only takes Lightkurve periodograms, pg, as spectrum input. >>> st = pbjam.star(ID='KIC4448777', pg=pg, numax=[220.0, 3.0], dnu=[16.97, 0.01], teff=[4750, 100], bp_rp = [1.34, 0.01]) >>> st(make_plots=True) Parameters ---------- ID : string, int Target identifier. If custom timeseries/periodogram is provided, it must be resolvable by LightKurve (KIC, TIC, EPIC, HD, etc.). pg : lightkurve.periodogram.Periodogram object A lightkurve periodogram object containing frequencies in units of microhertz and power (in arbitrary units). numax : list List of the form [numax, numax_error]. dnu : list List of the form [dnu, dnu_error]. teff : list List of the form [teff, teff_error]. bp_rp : list List of the form [bp_rp, bp_rp_error]. path : str, optional The path at which to store output. If no path is set but make_plots is True, output will be saved in the current working directory. Default is the current working directory. prior_file : str, optional Path to the csv file containing the prior data. Default is pbjam/data/prior_data.csv Attributes ---------- f : array Array of power spectrum frequencies s : array power spectrum """ def __init__(self, ID, pg, numax, dnu, teff=[None,None], bp_rp=[None,None], path=None, prior_file=None): self.ID = ID if numax[0] < 25: warnings.warn('The input numax is less than 25. The prior is not well defined here, so be careful with the result.') self.numax = numax self.dnu = dnu self.references = references() self.references._addRef(['numpy', 'python', 'lightkurve', 'astropy']) teff, bp_rp = self._checkTeffBpRp(teff, bp_rp) self.teff = teff self.bp_rp = bp_rp self.pg = pg.flatten() # in case user supplies unormalized spectrum self.f = self.pg.frequency.value self.s = self.pg.power.value self._obs = {'dnu': self.dnu, 'numax': self.numax, 'teff': self.teff, 'bp_rp': self.bp_rp} self._log_obs = {x: to_log10(*self._obs[x]) for x in self._obs.keys() if x != 'bp_rp'} self._set_outpath(path) if prior_file is None: self.prior_file = get_priorpath() else: self.prior_file = prior_file def _checkTeffBpRp(self, teff, bp_rp): """ Set the Teff and/or bp_rp values Checks the input Teff and Gbp-Grp values to see if any are missing. If Gbp-Grp is missing it will be looked up online either from the TIC or the Gaia archive. Teff and Gbp-Grp provide a lot of the same information, so only one of them need to be provided to start with. If one is not provided, PBjam will assume a wide prior on it. Parameters ---------- teff : list List of the form [teff, teff_error]. For multiple targets, use a list of lists. bp_rp : list List of the form [bp_rp, bp_rp_error]. For multiple targets, use a list of lists. Returns ------- teff : list The checked teff value. List of the form [teff, teff_error]. bp_rp : list The checked bp_rp value. List of the form [bp_rp, bp_rp_error]. """ if isvalid(bp_rp[0]) is False: try: bp_rp = [get_bp_rp(self.ID), 0.1] except: bp_rp = [np.nan, np.nan] if not isvalid(teff[0]) and not isvalid(bp_rp[0]): raise ValueError('Must provide either teff or bp_rp arguments when initializing the star class.') elif not isvalid(teff[0]): teff = [4889, 1500] # these are rough esimates from the prior elif not np.isfinite(bp_rp[0]): bp_rp = [1.2927, 0.5] # these are rough esimates from the prior self.references._addRef(['Evans2018']) return teff, bp_rp def _get_outpath(self, fname): """ Get basepath or make full file path name. Convenience function for either setting the base path name for the star, or if given fname as input, will append this to the basepath name to create a full path to the file in question. Parameters ---------- fname : str, optional If not None, will append this to the pathname of the star. Use this to store files such as plots or tables. Returns ------- path : str If fname is None, path is the path name of the star. Otherwise it is the full file path name for the file in question. """ if fname is None: return self.path elif isinstance(fname, str): path = os.path.join(*[self.path, fname]) else: raise ValueError(f'Unrecognized input {fname}.') if not os.path.isdir(self.path): raise IOError(f'You are trying to access {self.path} which is a directory that does not exist.') else: return path def _set_outpath(self, path): """ Sets the path attribute for star If path is a string it is assumed to be a path name, if not the current working directory will be used. Attempts to create an output directory for all the results that PBjam produces. A directory is created when a star class instance is initialized, so a session might create multiple directories. Parameters ---------- path : str Directory to place the star subdirectory. """ if isinstance(path, str): # If path is str, presume user wants to put stuff somewhere specific. self.path = os.path.join(*[path, f'{self.ID}']) else: # Otherwise just create a subdir in cwd. self.path = os.path.join(*[os.getcwd(), f'{self.ID}']) # Check if self.path exists, if not try to create it if not os.path.isdir(self.path): try: os.makedirs(self.path) except Exception as ex: message = "Could not create directory for Star {0} because an exception of type {1} occurred. Arguments:\n{2!r}".format(self.ID, type(ex).__name__, ex.args) print(message) def run_kde(self, bw_fac=1.0, make_plots=False, store_chains=False): """ Run all steps involving KDE. Starts by creating a KDE based on the prior data sample. Then samples this KDE for initial starting positions for asy_peakbag. Parameters ---------- bw_fac : float Scaling factor for the KDE bandwidth. By default the bandwidth is automatically set, but may be scaled to adjust for sparsity of the prior sample. make_plots : bool, optional Whether or not to produce plots of the results. Default is False. store_chains : bool, optional Whether or not to store posterior samples on disk. Default is False. """ print('Starting KDE estimation') # Init kde(self) # Call self.kde(dnu=self.dnu, numax=self.numax, teff=self.teff, bp_rp=self.bp_rp, bw_fac=bw_fac) # Store if make_plots: self.kde.plot_corner(path=self.path, ID=self.ID, savefig=make_plots) self.kde.plot_spectrum(pg=self.pg, path=self.path, ID=self.ID, savefig=make_plots) self.kde.plot_echelle(path=self.path, ID=self.ID, savefig=make_plots) self.references._addRef('matplotlib') if store_chains: kde_samps = pd.DataFrame(self.kde.samples, columns=self.kde.par_names) kde_samps.to_csv(self._get_outpath(f'kde_chains_{self.ID}.csv'), index=False) def run_asy_peakbag(self, norders, make_plots=False, store_chains=False, method='emcee', developer_mode=False): """ Run all steps involving asy_peakbag. Performs a fit of the asymptotic relation to the spectrum (l=2,0 only), using initial guesses and prior for the fit parameters from KDE. Parameters ---------- norders : int Number of orders to include in the fits. make_plots : bool, optional Whether or not to produce plots of the results. Default is False. store_chains : bool, optional Whether or not to store posterior samples on disk. Default is False. method : string Method to be used for sampling the posterior. Options are 'emcee' or 'cpnest. Default method is 'emcee' that will call emcee, alternative is 'cpnest' to call nested sampling with CPnest. developer_mode : bool Run asy_peakbag in developer mode. Currently just retains the input value of dnu and numax as priors, for the purposes of expanding the prior sample. Important: This is not good practice for getting science results! """ print('Starting asymptotic peakbagging') # Init asymptotic_fit(self, norders=norders) # Call self.asy_fit(method, developer_mode) self.references._addRef(method) # Store self.asy_fit.summary.to_csv(self._get_outpath(f'asymptotic_fit_summary_{self.ID}.csv'), index=True, index_label='name') self.asy_fit.modeID.to_csv(self._get_outpath(f'asymptotic_fit_modeID_{self.ID}.csv'), index=False) if make_plots: self.asy_fit.plot_spectrum(path=self.path, ID=self.ID, savefig=make_plots) self.asy_fit.plot_corner(path=self.path, ID=self.ID, savefig=make_plots) self.asy_fit.plot_echelle(path=self.path, ID=self.ID, savefig=make_plots) self.references._addRef('matplotlib') if store_chains: asy_samps =
pd.DataFrame(self.asy_fit.samples, columns=self.asy_fit.par_names)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 import html import os import re import pandas as pd import requests target_url = {"jp": "http://scp-jp.wikidot.com/foundation-tales-jp", "en": "http://scp-jp.wikidot.com/foundation-tales", "ru": "http://scp-jp.wikidot.com/foundation-tales-ru", "cn": "http://scp-jp.wikidot.com/foundation-tales-cn", "fr": "http://scp-jp.wikidot.com/foundation-tales-fr", "pl": 'http://scp-jp.wikidot.com/foundation-tales-pl', "es": 'http://scp-jp.wikidot.com/foundation-tales-es', "de": 'http://scp-jp.wikidot.com/foundation-tales-de', "th": 'http://scp-jp.wikidot.com/foundation-tales-th', "it": 'http://scp-jp.wikidot.com/foundation-tales-it', "ua": 'http://scp-jp.wikidot.com/foundation-tales-ua', "pt": 'http://scp-jp.wikidot.com/foundation-tales-pt', "ko": 'http://scp-jp.wikidot.com/foundation-tales-ko' } start_word = {"jp": '<p>アルファベット順著者</p>', "en": '<p>アルファベット順著者</p>', "ru": '<h1 id="toc0"><span>著作者順</span></h1>', "cn": '<h1 id="toc0"><span>著作者順</span></h1>', "fr": '<h1 id="toc1"><span>著作者順</span></h1>', "pl": '<h1 id="toc0"><span>著作者順</span></h1>', "es": '<h1 id="toc0"><span>著作者順</span></h1>', "de": '<h1 id="toc0"><span>著作者順</span></h1>', "th": '<h1 id="toc0"><span>著作者順</span></h1>', "it": '<h1 id="toc0"><span>著作者順</span></h1>', "ua": '<h1 id="toc0"><span>著作者順</span></h1>', "pt": '<h1 id="toc0"><span>著作者順</span></h1>', "ko": '<h1 id="toc0"><span>著作者順</span></h1>', } end_word = {"jp": '<td>その他<a name="misc"></a></td>', "en": '<td>その他<a name="misc"></a></td>', "ru": '</div>', "cn": '</div>', "fr": '</div>', "pl": '</div>', "es": '</div>', "de": '</div>', "th": '</div>', "it": '</div>', "ua": '</div>', "pt": '</div>', "ko": '</div>', } exclusion_list = ['#top', 'http://scp-jp.wikidot.com/forum/t-6047066/', # '<td><a href="/scp', '<td><a href="/1600con17"', '<td><a href="/warucontest">', '<td><a href="/author:', '<td><a href="/venture-contest-2018', '<td><a href="/lily-s-proposal">', '<td><a href="/newface-contest-hub', '<td><a href="/personnel-the-origin-hub', ] def tale(): urls = [] titles = [] authors = [] brts = [] author = "" title = "" url = "" masterpath = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) for key in target_url.keys(): response = requests.get(target_url[key]) if response.status_code is not requests.codes.ok: print(f"\t{key} request err : {response.status_code}") continue scp_lines = response.text.split("\n") tales_start = scp_lines.index(start_word[key]) for line in scp_lines: if re.match(r'<td>\s</td>', line): scp_lines.remove(line) elif re.match('<td>.<a name="."></a></td>', line): scp_lines.remove(line) elif '⇑' in line: scp_lines.remove(line) for line in scp_lines[tales_start:]: line = html.unescape(line) if end_word[key] in line: break # author start elif '<th style="font-size:125%"' in line: author = re.search('alt=".*?"', line) if author is not None: author = author.group()[5:-1] if author is None: author = re.search("<strong>.*?</strong>", line) if author is not None: author = author.group()[8:-9] if author is None: author = re.search("<em>.*?</em>", line) if author is not None: author = author.group()[4:-5] if author is None: author = "Unknown pattern of author" elif '<p><strong>' in line: author = line.replace("<p><strong>", "") author = author.replace("</strong></p>", "") elif '<p><span class="printuser">' in line: author = line[line.find( 'return false;">') + len('return false;">'):] author = author.replace("</a></span></p>", "") elif '<p><span class="error-inline">' in line: author = line[line.find('<p><span class="error-inline"><em>') + len('<p><span class="error-inline"><em>'): - len('</em> does not match any existing user name</span></p>')] # author end # url,title start elif any([s for s in exclusion_list if s in line]): pass else: if "<td><a href=" in line: sp_line = re.split('[<>]', line) url = sp_line[3].replace('"', "").replace("a href=", "") title = sp_line[4] elif '<td><a target="_blank" href="' in line: sp_line = re.split('[<>]', line) url = sp_line[3].replace('"', "").replace( 'a target=_blank href=http://scp-jp.wikidot.com', "") title = sp_line[4] elif '<li><a href="' in line: sp_line = re.split('[<>]', line) url = sp_line[3].replace('"', "").replace("a href=", "") title = sp_line[4] else: continue if 'http://scp-jp.wikidot.com/' in url: url = url.replace("http://scp-jp.wikidot.com", '') urls.append(url) titles.append(title) authors.append(author) brts.append(key) print(f"\tpage:{key}のデータ取得が完了しました。") df =
pd.DataFrame(columns=['url', 'title', 'author', 'branches'])
pandas.DataFrame
from __future__ import print_function, absolute_import import sys, gzip, time, datetime, random, os, logging, gc,\ scipy, sklearn, sklearn.model_selection,\ sklearn.utils, sklearn.externals.joblib, inspect, bcolz, pickle import numpy as np import pandas as pd from pandas import Series, DataFrame def debug(msg): if not cfg['debug']: return log.info(msg) _message_timers = {} def start(msg, id=None, force=False): if not force and not cfg['debug']: return if id is None: s = inspect.stack() if len(s) > 0 and len(s[1]) > 2: id = s[1][3] else: id = 'global' _message_timers[id] = time.time() log.info(msg) def stop(msg, id=None, force=False): if not force and not cfg['debug']: return if id is None: s = inspect.stack() if len(s) > 0 and len(s[1]) > 2: id = s[1][3] else: id = 'global' took = datetime.timedelta(seconds=time.time() - _message_timers[id]) \ if id in _message_timers else 'unknown' msg += (', took: %s' % str(took)) log.info(msg) if id in _message_timers: del _message_timers[id] return msg def reseed(clf): s = cfg['sys_seed'] if clf is not None: clf.random_state = s random.seed(s) np.random.seed(s) try: import torch torch.manual_seed(s) if torch.cuda.is_available(): torch.cuda.manual_seed_all(s) except ImportError:pass return clf def seed(seed): cfg['sys_seed'] = seed reseed(None) def do_cv(clf, X, y, n_samples=None, n_iter=3, test_size=None, quiet=False, scoring=None, stratified=False, n_jobs=-1, fit_params=None, prefix='CV'): if not quiet: start('starting ' + prefix) reseed(clf) if n_samples is None: n_samples = len(y) if X.shape[0] > len(y): X = X[:len(y)] elif type(n_samples) is float: n_samples = int(n_samples) if scoring is None: scoring = cfg['scoring'] if test_size is None: test_size = 1./n_iter try: if (n_samples > X.shape[0]): n_samples = X.shape[0] except: pass if cfg['custom_cv'] is not None: cv = cfg['custom_cv'] elif stratified: cv = sklearn.model_selection.StratifiedShuffleSplit(n_iter, test_size=test_size, random_state=cfg['sys_seed']) else: cv = sklearn.model_selection.ShuffleSplit(n_iter, test_size=test_size, random_state=cfg['sys_seed']) if n_jobs == -1 and cfg['cv_n_jobs'] > 0: n_jobs = cfg['cv_n_jobs'] test_scores = sklearn.model_selection.cross_val_score( clf, X, y, cv=cv, scoring=scoring, n_jobs=n_jobs, fit_params=fit_params) score_desc = ("{0:.5f} (+/-{1:.5f})").format(np.mean(test_scores), scipy.stats.sem(test_scores)) if not quiet: stop('done %s: %s' % (prefix, score_desc)) return (np.mean(test_scores), scipy.stats.sem(test_scores)) def score_classifier_vals(prop, vals, clf, X, y, n_iter=3): results = [] for v in vals: clf = sklearn.base.clone(clf) target_clf = clf.base_classifier if hasattr(clf, 'base_classifier') else clf setattr(target_clf, prop, v) score = do_cv(clf, X, y, n_iter=n_iter, prefix='CV - prop[%s] val[%s]' % (prop, str(v))) results.append({'prop': prop, 'v':v, 'score': score}) sorted_results = sorted(results, key=lambda r: r['score'][0], reverse=True) best = {'prop': prop, 'value': sorted_results[0]['v'], 'score': sorted_results[0]['score']} dbg('\n\n\n\n', best) return sorted_results def score_operations_on_cols(clf, X, y, columns, operations, operator, n_iter=5): best = X.cv(clf, y, n_iter=n_iter) if not cfg['scoring_higher_better']: best *= -1 results = [] for c in columns: if c not in X: continue col_best = best col_best_op = 'no-op' for op in operations: X2 = operator(X.copy(), c, op) score = X2.cv(clf, y, n_iter=n_iter) if not cfg['scoring_higher_better']: score *= -1 if score[0] < col_best[0]: col_best = score col_best_op = str(op) r = {'column': c, 'best': col_best_op, 'score': col_best[0], 'improvement': best[0] - col_best[0]} results.append(r) dbg(r) return results def do_gs(clf, X, y, params, n_samples=1.0, n_iter=3, n_jobs=-2, scoring=None, fit_params=None, random_iterations=None): start('starting grid search') if type(n_samples) is float: n_samples = int(len(y) * n_samples) reseed(clf) cv = sklearn.model_selection.ShuffleSplit(n_samples, n_iter=n_iter, random_state=cfg['sys_seed']) if random_iterations is None: gs = sklearn.model_selection.GridSearchCV(clf, params, cv=cv, n_jobs=n_jobs, verbose=2, scoring=scoring or cfg['scoring'], fit_params=fit_params) else: gs = sklearn.model_selection.RandomizedSearchCV(clf, params, random_iterations, cv=cv, n_jobs=n_jobs, verbose=2, scoring=scoring or cfg['scoring'], fit_params=fit_params, refit=False) X2, y2 = sklearn.utils.shuffle(X, y, random_state=cfg['sys_seed']) gs.fit(X2[:n_samples], y2[:n_samples]) stop('done grid search') dbg(gs.best_params_, gs.best_score_) return gs def save_array(fname, arr): c=bcolz.carray(arr, rootdir=fname, mode='w'); c.flush() def load_array(fname, opt_fallback=None): if not os.path.isdir(fname): arr = opt_fallback() if hasattr(arr, 'values'): arr = arr.values save_array(fname, arr) return arr return bcolz.open(fname)[:] def dump(file, data, force=False): if file.endswith('.pickle.gz'): if os.path.isfile(file) and not force: raise Exception('file: ' + file + ' already exists. Set force=True to overwrite.') with gzip.open(file, 'wb') as f: # c pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL) return if not '/' in file: if not os.path.isdir('data/pickles'): os.makedirs('data/pickles') file = 'data/pickles/' + file if not '.' in file: file += '.pickle' if os.path.isfile(file) and not force: raise Exception('file: ' + file + ' already exists. Set force=True to overwrite.') sklearn.externals.joblib.dump(data, file); def load(file, opt_fallback=None, fail_if_missing=False): start('loading file: ' + file) if not '/' in file: file = 'data/pickles/' + file if not '.' in file: file += '.pickle' if not os.path.isfile(file): if opt_fallback is None: if fail_if_missing: raise Exception('could not find the file: %s' % file) return None data = opt_fallback() dump(file, data) return data if file.endswith('.pickle.gz'): with gzip.open(file,'rb') as f: return pickle.load(f) if file.endswith('.npy'): return np.load(file) else: return sklearn.externals.joblib.load(file); def read_df(file, nrows=None, sheetname=None, header=0): start('reading dataframe 2: ' + file) if file.endswith('.pickle'): df = load(file) else: sep = '\t' if '.tsv' in file else ',' if file.endswith('.xls') or file.endswith('.xlsx'): skip_footer = 0 if nrows is not None: xl = pd.ExcelFile(file) total_rows = xl.book.sheet_by_index(0).nrows if sheetname is not None: total_rows = xl.book.sheet_by_name(sheetname).nrows skip_footer = total_rows - nrows df = pd.read_excel(file, sheetname=sheetname, skip_footer=skip_footer, header=header); elif file.endswith('.7z'): import libarchive with libarchive.reader(file) as reader: df = pd.read_csv(reader, nrows=nrows, sep=sep); elif file.endswith('.zip'): import zipfile zf = zipfile.ZipFile(file) if len(zf.filelist) != 1: raise Exception('zip files with multiple files not supported') with zf.open(zf.filelist[0].filename) as reader: df =
pd.read_csv(reader, nrows=nrows, sep=sep)
pandas.read_csv
import sys, os sys.path.append("../ern/") sys.path.append("../..dies/dies/") sys.path.append(os.path.expanduser("~/workspace/prophesy_code/")) import pandas as pd import numpy as np import glob, argparse, copy, tqdm from ern.shift_features import ShiftFeatures from ern.utils import to_short_name import pathlib from ern.utils_data import ( create_consistent_number_of_sampler_per_day, get_data_with_intersected_timestamps, ) import prophesy from prophesy.utils.utils import get_blacklist def get_df(file): df =
pd.read_csv(file, sep=";")
pandas.read_csv
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype # list of periods df = pd.DataFrame({'a': a.astype(object).tolist(), 'b': b.astype(object).tolist()}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng = pd.period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shape (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 # 1-D input frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3]) assert len(frame.index) == 3 assert len(frame.columns) == 1 # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B', 'C'], index=[1]) msg = r'Shape of passed values is \(3, 2\), indices imply \(2, 2\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B'], index=[1, 2]) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # automatic labeling frame = DataFrame(mat) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, index=[1, 2]) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, columns=['A', 'B', 'C']) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) # 0-length axis frame = DataFrame(empty((0, 3))) assert len(frame.index) == 0 frame = DataFrame(empty((3, 0))) assert len(frame.columns) == 0 def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A']) assert len(frame) == 2 def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert 1.0 == frame['A'][1] assert 2.0 == frame['C'][2] # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert np.all(~np.asarray(frame == frame)) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) assert frame.values.dtype == np.float64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'][1] assert 2 == frame['C'][2] # masked np.datetime64 stays (use NaT as null) mat = ma.masked_all((2, 3), dtype='M8[ns]') # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert isna(frame).values.all() # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'].view('i8')[1] assert 2 == frame['C'].view('i8')[2] # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) assert frame.values.dtype == object # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert frame['A'][1] is True assert frame['C'][2] is False def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial(tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True) arrays = [ ('float', np.array([1.5, 2.0])), ('int', np.array([1, 2])), ('str', np.array(['abc', 'def'])), ] for name, arr in arrays[:]: arrays.append(('masked1_' + name, np.ma.masked_array(arr, mask=[False, True]))) arrays.append(('masked_all', np.ma.masked_all((2,)))) arrays.append(('masked_none', np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = {k: (v.filled() if hasattr(v, 'filled') else v) for k, v in comb} expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner_shape(self): df = DataFrame(index=[]) assert df.values.shape == (0, 0) @pytest.mark.parametrize("data, index, columns, dtype, expected", [ (None, lrange(10), ['a', 'b'], object, np.object_), (None, None, ['a', 'b'], 'int64', np.dtype('int64')), (None, lrange(10), ['a', 'b'], int, np.dtype('float64')), ({}, None, ['foo', 'bar'], None, np.object_), ({'b': 1}, lrange(10), list('abc'), int, np.dtype('float64')) ]) def test_constructor_dtype(self, data, index, columns, dtype, expected): df = DataFrame(data, index, columns, dtype) assert df.values.dtype == expected def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) assert df['int'].dtype == np.int64 assert df['bool'].dtype == np.bool_ assert df['float'].dtype == np.float64 assert df['complex'].dtype == np.complex128 assert df['object'].dtype == np.object_ def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) exp = DataFrame({'a': df['a'].values, 'b': [True] * 10}) tm.assert_frame_equal(df, exp) with pytest.raises(ValueError, match='must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_DataFrame(self): df = DataFrame(self.frame) tm.assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) assert df_casted.values.dtype == np.int64 def test_constructor_more(self): # used to be in test_matrix.py arr = randn(10) dm = DataFrame(arr, columns=['A'], index=np.arange(10)) assert dm.values.ndim == 2 arr = randn(0) dm = DataFrame(arr) assert dm.values.ndim == 2 assert dm.values.ndim == 2 # no data specified dm = DataFrame(columns=['A', 'B'], index=np.arange(10)) assert dm.values.shape == (10, 2) dm = DataFrame(columns=['A', 'B']) assert dm.values.shape == (0, 2) dm = DataFrame(index=np.arange(10)) assert dm.values.shape == (10, 0) # can't cast mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1) with pytest.raises(ValueError, match='cast'): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(self.frame._series)) tm.assert_frame_equal(dm, self.frame) # int cast dm = DataFrame({'A': np.ones(10, dtype=int), 'B': np.ones(10, dtype=np.float64)}, index=np.arange(10)) assert len(dm.columns) == 2 assert dm.values.dtype == np.float64 def test_constructor_empty_list(self): df = DataFrame([], index=[]) expected = DataFrame(index=[]) tm.assert_frame_equal(df, expected) # GH 9939 df = DataFrame([], columns=['A', 'B']) expected = DataFrame({}, columns=['A', 'B']) tm.assert_frame_equal(df, expected) # Empty generator: list(empty_gen()) == [] def empty_gen(): return yield df = DataFrame(empty_gen(), columns=['A', 'B']) tm.assert_frame_equal(df, expected) def test_constructor_list_of_lists(self): # GH #484 df = DataFrame(data=[[1, 'a'], [2, 'b']], columns=["num", "str"]) assert is_integer_dtype(df['num']) assert df['str'].dtype == np.object_ # GH 4851 # list of 0-dim ndarrays expected = DataFrame({0: np.arange(10)}) data = [np.array(x) for x in range(10)] result = DataFrame(data) tm.assert_frame_equal(result, expected) def test_constructor_sequence_like(self): # GH 3783 # collections.Squence like class DummyContainer(compat.Sequence): def __init__(self, lst): self._lst = lst def __getitem__(self, n): return self._lst.__getitem__(n) def __len__(self, n): return self._lst.__len__() lst_containers = [DummyContainer([1, 'a']), DummyContainer([2, 'b'])] columns = ["num", "str"] result = DataFrame(lst_containers, columns=columns) expected = DataFrame([[1, 'a'], [2, 'b']], columns=columns) tm.assert_frame_equal(result, expected, check_dtype=False) # GH 4297 # support Array import array result = DataFrame({'A': array.array('i', range(10))}) expected = DataFrame({'A': list(range(10))}) tm.assert_frame_equal(result, expected, check_dtype=False) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([array.array('i', range(10)), array.array('i', range(10))]) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_iterable(self): # GH 21987 class Iter(): def __iter__(self): for i in range(10): yield [1, 2, 3] expected = DataFrame([[1, 2, 3]] * 10) result = DataFrame(Iter()) tm.assert_frame_equal(result, expected) def test_constructor_iterator(self): expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([range(10), range(10)]) tm.assert_frame_equal(result, expected) def test_constructor_generator(self): # related #2305 gen1 = (i for i in range(10)) gen2 = (i for i in range(10)) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([gen1, gen2]) tm.assert_frame_equal(result, expected) gen = ([i, 'a'] for i in range(10)) result = DataFrame(gen) expected = DataFrame({0: range(10), 1: 'a'}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_list_of_dicts(self): data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] result = DataFrame(data) expected = DataFrame.from_dict(dict(zip(range(len(data)), data)), orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result = DataFrame([{}]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_preserve_order(self): # see gh-13304 expected = DataFrame([[2, 1]], columns=['b', 'a']) data = OrderedDict() data['b'] = [2] data['a'] = [1] result = DataFrame(data) tm.assert_frame_equal(result, expected) data = OrderedDict() data['b'] = 2 data['a'] = 1 result = DataFrame([data]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_conflicting_orders(self): # the first dict element sets the ordering for the DataFrame, # even if there are conflicting orders from subsequent ones row_one = OrderedDict() row_one['b'] = 2 row_one['a'] = 1 row_two = OrderedDict() row_two['a'] = 1 row_two['b'] = 2 row_three = {'b': 2, 'a': 1} expected = DataFrame([[2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two]) tm.assert_frame_equal(result, expected) expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two, row_three]) tm.assert_frame_equal(result, expected) def test_constructor_list_of_series(self): data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(['x', 'y'], data)) idx = Index(['a', 'b', 'c']) # all named data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx, name='y')] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) # some unnamed data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) sdict = OrderedDict(zip(['x', 'Unnamed 0'], data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result.sort_index(), expected) # none named data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] data = [Series(d) for d in data] result = DataFrame(data) sdict = OrderedDict(zip(range(len(data)), data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result2 = DataFrame(data, index=np.arange(6)) tm.assert_frame_equal(result, result2) result = DataFrame([Series({})]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) data = [
OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]])
pandas.compat.OrderedDict
# -*- coding: utf-8 -*- # @Author: <NAME> # @Date: 2016-11-16 16:23:55 # @Last Modified by: <NAME> # @Last Modified time: 2017-01-17 15:11:17 import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import glob import os pd.set_option("display.width", None) # v4 # including branching timings in more detail # ... but now measured cleanly def df_from_sloppy_json_list_file(fn): with open(fn, 'r') as fh: json_array_inside_text = fh.read() json_array_text = "[" + json_array_inside_text[:-2] + "]" # :-1 removes ,\n df = pd.read_json(json_array_text) return df def merge_dataframes(*dataframes): return reduce(pd.merge, dataframes) def concat_dataframes(*dataframes): return reduce(pd.concat, dataframes) def df_from_json_incl_meta(fn, fn_meta=None, drop_meta=['N_gaussians', 'N_observables', 'N_parameters', 'parallel_interleave', 'seed'], drop_nan=False): if fn_meta is None: fn_meta = os.path.join(os.path.dirname(fn), 'timing_meta.json') main_df = df_from_sloppy_json_list_file(fn) meta_df = df_from_sloppy_json_list_file(fn_meta).drop(drop_meta, axis=1) # not just single process runs, also master processes in multi-process runs: single_process = pd.merge(main_df, meta_df, how='left', on='pid') if 'ppid' in main_df.columns: single_process = single_process.drop('ppid', axis=1) multi_process = pd.merge(main_df, meta_df, how='left', left_on='ppid', right_on='pid').drop('pid_y', axis=1) multi_process.rename(columns={'pid_x': 'pid'}, inplace=True) result = [single_process, multi_process] else: result = [single_process] if drop_nan: result = [df.dropna() for df in result] return result """ cd ~/projects/apcocsm/code/scaling rsync -av --progress nikhef:"/user/pbos/project_atlas/apcocsm_code/scaling/*.allier.nikhef.nl" ./ """ savefig_dn = '/home/patrick/projects/apcocsm/code/scaling/unbinned_scaling_4/analysis/' #### LOAD DATA FROM FILES # dnlist = sorted(glob.glob("unbinned_scaling_4_orig/17510*.allier.nikhef.nl")) # run_unbinned_scaling_3.sh # dnlist = sorted(glob.glob("unbinned_scaling_4/*.allier.nikhef.nl")) # run_unbinned_scaling_4.sh dnlist = sorted(glob.glob("unbinned_scaling_4/17513*.allier.nikhef.nl")) # run_unbinned_scaling_4.sh after later additional runs dnlist = [dn for dn in dnlist if len(glob.glob(dn + '/*.json')) > 1] fnlist = reduce(lambda x, y: x + y, [glob.glob(dn + '/*.json') for dn in dnlist]) fnlist = [fn for fn in fnlist if 'timing_meta.json' not in fn] uniquefns = np.unique([fn.split('/')[-1] for fn in fnlist]).tolist() dfkeys = [u[7:-5] for u in uniquefns] dfs_split = {fn: df_from_json_incl_meta(fn) for fn in fnlist} dfs_split_sp = {fn: dflist[0] for fn, dflist in dfs_split.iteritems()} dfs_split_mp = {fn: dflist[1] for fn, dflist in dfs_split.iteritems() if len(dflist) > 1} dfs_sp = {k: pd.concat([df for fn, df in dfs_split_sp.iteritems() if k in fn]) for k in dfkeys} dfs_mp = {k: pd.concat([df for fn, df in dfs_split_mp.iteritems() if k in fn]) for k in dfkeys if k in "".join(dfs_split_mp.keys())} #### AGGREGATE AND ANNOTATE ROWS AND RENAME COLUMNS FOR EASY ANALYSIS #### refactor and combine MPFE_evaluate_client timings mpfe_eval_wall = dfs_sp['wall_RRMPFE_evaluate_client'] mpfe_eval_cpu = dfs_sp['cpu_RRMPFE_evaluate_client'] # add after_retrieve columns mpfe_eval_wall['RRMPFE_evaluate_client_after_retrieve_wall_s'] = mpfe_eval_wall['RRMPFE_evaluate_client_wall_s'] - mpfe_eval_wall['RRMPFE_evaluate_client_before_retrieve_wall_s'] - mpfe_eval_wall['RRMPFE_evaluate_client_retrieve_wall_s'] mpfe_eval_cpu['RRMPFE_evaluate_client_after_retrieve_cpu_s'] = mpfe_eval_cpu['RRMPFE_evaluate_client_cpu_s'] - mpfe_eval_cpu['RRMPFE_evaluate_client_before_retrieve_cpu_s'] - mpfe_eval_cpu['RRMPFE_evaluate_client_retrieve_cpu_s'] # refactor for nice factorplotting; rename columns and add timing type column # ... cpu/wall column mpfe_eval_wall['cpu/wall'] = 'wall' mpfe_eval_cpu['cpu/wall'] = 'cpu' # ... give each timing column its own row mpfe_eval = pd.DataFrame(columns=['pid', 'N_events', 'num_cpu', 'time s', 'cpu/wall', 'segment']) cols_base = ['pid', 'N_events', 'num_cpu', 'cpu/wall'] cols_wall = [('all', 'RRMPFE_evaluate_client_wall_s'), ('before_retrieve', 'RRMPFE_evaluate_client_before_retrieve_wall_s'), ('retrieve', 'RRMPFE_evaluate_client_retrieve_wall_s'), ('after_retrieve', 'RRMPFE_evaluate_client_after_retrieve_wall_s')] cols_cpu = [('all', 'RRMPFE_evaluate_client_cpu_s'), ('before_retrieve', 'RRMPFE_evaluate_client_before_retrieve_cpu_s'), ('retrieve', 'RRMPFE_evaluate_client_retrieve_cpu_s'), ('after_retrieve', 'RRMPFE_evaluate_client_after_retrieve_cpu_s')] for segment_id, col in cols_wall: segment_timings = mpfe_eval_wall[cols_base + [col]].copy() segment_timings['segment'] = segment_id segment_timings.rename(columns={col: 'time s'}, inplace=True) mpfe_eval = mpfe_eval.append(segment_timings, ignore_index=True) for segment_id, col in cols_cpu: segment_timings = mpfe_eval_cpu[cols_base + [col]].copy() segment_timings['segment'] = segment_id segment_timings.rename(columns={col: 'time s'}, inplace=True) mpfe_eval = mpfe_eval.append(segment_timings, ignore_index=True) # correct types mpfe_eval.N_events = mpfe_eval.N_events.astype(np.int) mpfe_eval.num_cpu = mpfe_eval.num_cpu.astype(np.int) mpfe_eval.pid = mpfe_eval.pid.astype(np.int) #### add MPFE evaluate full timings mpfe_eval_full = dfs_sp['RRMPFE_evaluate_full'] mpfe_eval_full.rename(columns={'RRMPFE_evaluate_wall_s': 'time s'}, inplace=True) mpfe_eval_full['cpu/wall'] = 'wall+INLINE' mpfe_eval_full['segment'] = 'all' mpfe_eval = mpfe_eval.append(mpfe_eval_full) #### total time per run (== per pid, but the other columns are also grouped-by to prevent from summing over them) mpfe_eval_total = mpfe_eval.groupby(['pid', 'N_events', 'num_cpu', 'cpu/wall', 'segment'], as_index=False).sum() #### MPFE calculate mpfe_calc = dfs_sp['RRMPFE_calculate_client'] mpfe_calc.rename(columns={'RRMPFE_calculate_client_wall_s': 'walltime s'}, inplace=True) mpfe_calc_total = mpfe_calc.groupby(['pid', 'N_events', 'num_cpu'], as_index=False).sum() #### full minimize df_totals = dfs_sp['full_minimize'] ### ADD IDEAL TIMING BASED ON SINGLE CORE RUNS single_core = df_totals[df_totals.num_cpu == 1] # estimate ideal curve from fastest single_core run: single_core_fastest = single_core.groupby('N_events', as_index=False).min() df_ideal = single_core_fastest.copy() for num_cpu in df_totals.num_cpu.unique(): if num_cpu != 1: ideal_num_cpu_i = single_core_fastest.copy() ideal_num_cpu_i.full_minimize_wall_s /= num_cpu ideal_num_cpu_i.num_cpu = num_cpu df_ideal = df_ideal.append(ideal_num_cpu_i) df_totals['timing_type'] = pd.Series(len(df_totals) * ('real',), index=df_totals.index) df_ideal['timing_type'] = pd.Series(len(df_ideal) * ('ideal',), index=df_ideal.index) df_totals = df_totals.append(df_ideal) # add combination of two categories df_totals['N_events/timing_type'] = df_totals.N_events.astype(str) + '/' + df_totals.timing_type.astype(str) #### RATS evaluate full rats_eval_sp = dfs_sp['RATS_evaluate_full'].dropna() rats_eval_mp = dfs_mp['RATS_evaluate_full'].dropna() rats_eval_sp_total = rats_eval_sp.groupby(['pid', 'N_events', 'num_cpu', 'mode'], as_index=False).sum() rats_eval_mp_total = rats_eval_mp.groupby(['ppid', 'N_events', 'num_cpu', 'mode'], as_index=False).sum()\ .drop('pid', axis=1) rats_eval_mp_by_ppid = rats_eval_mp.groupby(['pid', 'ppid', 'N_events', 'num_cpu', 'mode'], as_index=False)\ .sum()\ .groupby('ppid') rats_eval_mp_maxppid = rats_eval_mp_by_ppid.max()\ .rename(columns={'RATS_evaluate_wall_s': 'ppid-max wall s'}) rats_eval_mp_minppid = rats_eval_mp_by_ppid.min()\ .rename(columns={'RATS_evaluate_wall_s': 'ppid-min wall s'}) #### RATS evaluate per CPU iteration rats_eval_itcpu_sp = dfs_sp['RATS_evaluate_mpmaster_perCPU'] rats_eval_itcpu_mp = dfs_mp['RATS_evaluate_mpmaster_perCPU'] rats_eval_itcpu_sp['sp/mp'] = 'sp' rats_eval_itcpu_mp['sp/mp'] = 'mp' ## dataframe met versch. itX timings per rij en een klasse kolom die het itX X nummer bevat rats_eval_itcpu = pd.DataFrame(columns=['pid', 'N_events', 'num_cpu', 'walltime s', 'it_nr', 'sp/mp']) itX_cols = [(ix, 'RATS_evaluate_mpmaster_it%i_wall_s' % ix) for ix in range(max(rats_eval_itcpu_sp.num_cpu))] cols_base = ['pid', 'N_events', 'num_cpu', 'sp/mp'] for X, col in itX_cols: itX_timings = rats_eval_itcpu_sp[cols_base + [col]].copy().dropna() itX_timings['it_nr'] = X itX_timings.rename(columns={col: 'walltime s'}, inplace=True) rats_eval_itcpu = rats_eval_itcpu.append(itX_timings, ignore_index=True) itX_timings = rats_eval_itcpu_mp[cols_base + [col]].copy().dropna() itX_timings['it_nr'] = X itX_timings.rename(columns={col: 'walltime s'}, inplace=True) rats_eval_itcpu = rats_eval_itcpu.append(itX_timings, ignore_index=True) # correct types rats_eval_itcpu.pid = rats_eval_itcpu.pid.astype(np.int) rats_eval_itcpu.N_events = rats_eval_itcpu.N_events.astype(np.int) rats_eval_itcpu.num_cpu = rats_eval_itcpu.num_cpu.astype(np.int) rats_eval_itcpu.it_nr = rats_eval_itcpu.it_nr.astype(np.int) rats_eval_itcpu_total = rats_eval_itcpu.groupby(['pid', 'N_events', 'num_cpu', 'it_nr', 'sp/mp'], as_index=False).sum() #### ADD mpfe_eval COLUMN OF CPU_ID, ***PROBABLY***, WHICH SEEMS TO EXPLAIN DIFFERENT TIMINGS QUITE WELL mpfe_eval_cpu_split =
pd.DataFrame(columns=mpfe_eval.columns)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Mar 23 11:21:16 2018 @author: Chathuranga_08290 """ # Importing the libraries import tensorflow as tf # module for deep learning import numpy as np # module for numerical calculations + linear algebra import pandas as pd # module for data processing import matplotlib.pyplot as plt # module for plotting import datetime as dt # module for manipulating dates and times from sklearn.model_selection import train_test_split from sklearn.externals import joblib from scipy import stats import sklearn.neighbors # Data loading data_path ='D:\Datasets\drivendata\\' metadata = pd.read_csv(data_path+'metadata.csv') metadata_df = pd.DataFrame(metadata) #metadata_df.head() training_data = pd.read_csv(data_path+'train.csv') train_df = pd.DataFrame(training_data) #train_df.head() submission_frequency = pd.read_csv(data_path+'submission_frequency.csv') submission_frequency_df = pd.DataFrame(submission_frequency) submission_frequency_df['ForecastPeriodMin'] = submission_frequency_df['ForecastPeriodNS']/(1000000000*60) del submission_frequency_df['ForecastPeriodNS'] #submission_frequency_df.head() holiday_data = pd.read_csv(data_path+'holidays.csv') holiday_df = pd.DataFrame(holiday_data) holiday_df['Date'] = pd.to_datetime(holiday_df['Date'], format='%Y-%m-%d') #print(type(holiday_df['Date'][0])) #holiday_df.head() result_df = pd.merge(train_df, metadata_df, on='SiteId') result_df =
pd.merge(result_df, submission_frequency_df, on='ForecastId')
pandas.merge
# -*- coding: utf-8 -*- """Demo39_Pandas.ipynb # MUNG - FU PANDA Welcome to the Pandas tutorial. Pandas is an excellent tool for data wrangling also known as data munging. It refers to the cleaning and preperation of data from Raw format to a usable and suitable format for our use. - Python Basics - Object Oriented Python - Python for Data Science - NumPy - **Pandas** - Plotting - Matplotlib - Seaborn Let's get coding ! ### SERIES AND DATAFRAMES Series and dataframes are the main data types Pandas introduces. """ import numpy as np import pandas as pd Student_ID = list(range(10,20)) Grades = ['A','B','A','A','F','C','F','F','D','A'] arr_Grades = np.array(Grades) print(pd.Series(data = Grades)) print(pd.Series(data = Grades, index = Student_ID)) print(pd.Series(arr_Grades)) d = {'Pakistan':11, 'Germany':4, 'Brazil':5, 'Argentina':6} S = pd.Series(d) print(S['Pakistan']) print(S + S) print(S-S) print(S**S) arr = np.random.randint(1,10,5) df = pd.DataFrame(arr, ['A','B','C','D','E']) print(df) df = pd.DataFrame(np.random.randint(1,10,(5,3)), ['A','B','C','D','E'],['Q','W','E']) print(df) print(df['W']) print(df.W) print(type(df.W)) print(type(df['W'])) print(df[['Q','W']]) df['New Column'] = 0 print(df) df.drop('New Column', axis = 1, inplace = True) print(df) print(df.loc['C']) print(type(df.loc['C'])) print(df.iloc[2]) print(type(df.iloc[2])) print(df.iloc[1:4,1:3]) print(df.loc[['A','D'],['Q','E']]) print(df>5) print(df[df>5]) print(df[df['Q']>5]) print(df[(df['Q']>5) & (df['E']>5)]) print(df[(df['Q']>5) | (df['E']>5)]) df = df.reset_index() print(df) print(df['index']) print(df.set_index('index')) """### DATA MANIPULATIONS""" col1 = [1,2,np.nan,np.nan,5] col2 = [5,6,7,np.nan,8] col3 = [12,np.nan,13,14,15] d = {'A':col1, 'B':col2, 'C':col3} df = pd.DataFrame(d) print(df) print(df.dropna()) print(df.dropna(thresh=2)) print(df.fillna(value="VALUE")) print(df['A'].fillna(value=df['A'].mean())) """### MERGE Merging refers to a "Glue-ing" technique that does not care about the index. """ left = pd.DataFrame({'Key': ['K0', 'K1', 'K2', 'K3'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']}) right = pd.DataFrame({'Key': ['K0', 'K1', 'K2', 'K4'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}) print(left) print(right) #Inner join only looks at the intersection print(pd.merge(left, right, on="Key", how="inner")) #Left join gives us the left df + the intersection print(pd.merge(left, right, on="Key", how="left")) #Right join gives us the right df + the intersection print(pd.merge(left, right, on="Key", how="right")) #Outer join gives us the right df + the intersection + the left df print(pd.merge(left, right, on="Key", how="outer")) """### JOIN Joining refers to a "Glue-ing" technique that does care about the index """ left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']}, index = ['K0', 'K1', 'K2', 'K3']) right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index = ['K0', 'K1', 'K2', 'K4'],) print(left) print(right) print(left.join(right)) print(left.join(right, how="inner")) print(left.join(right, how="outer")) print(right.join(left)) """### CONCATENATE""" df1 = pd.DataFrame({'C0': ['00', '10','20', '30'], 'C1': ['01', '11', '21', '31'], 'C2': ['02', '12', '22', '32'], 'C3': ['03', '13', '23', '33']}, index=[0, 1, 2, 3]) print(df1) df2 = pd.DataFrame({'C0': ['40', '50','60', '70'], 'C1': ['41', '51', '61', '71'], 'C2': ['42', '52', '62', '72'], 'C3': ['43', '53', '63', '73']}, index=[4, 5, 6, 7]) print(df2) df3 = pd.DataFrame({'C0': ['80', '90','10,0', '11,0'], 'C1': ['81', '91', '10,1', '11,1'], 'C2': ['82', '92', '10,2', '11,2'], 'C3': ['83', '93', '10,3', '11,3']}, index=[8, 9, 10, 11]) print(df3) print(pd.concat([df1,df2,df3])) print(pd.concat([df1,df2,df3], axis=1)) """### GROUPBY""" import pandas as pd school = ['SEECS','SEECS','SMME','SEECS','SCME','SMME','SADA'] student = ['Mahnoor','Usman','Mustafa','Abdullah','Mahum','Armughan','Ayesha'] cgpa = [3.12,4,3.17,4,3.14,3.04,3.04] data = {'School':school, 'Student':student,'CGPA':cgpa} df = pd.DataFrame(data) print(df) bySchool = df.groupby('School') bySchool print(bySchool.mean()) print(bySchool.std()) print(bySchool.sum()) print(df.groupby('School').std().loc['SMME']) print(df.groupby('School').describe()) """### OPERATIONS IN PANDAS""" school = ['SEECS','SEECS','SMME','SMME','SCME','SMME','SADA'] student = ['Mahnoor','Usman','Mustafa','Abdullah','Mahum','Armughan','Ayesha'] cgpa = [3.12,4,4,3.13,3.14,3.04,3.04] age = [21,18,22,21,20,21,24] df= pd.DataFrame({'Student':student, 'School':school, "CGPA":cgpa, 'Age':age}) print(df) print(df[(df['School']=='SEECS') & (df['CGPA']==4)]) (df['School'].value_counts()) print(df.sort_values(by='CGPA')) print(df['School'].unique()) print(df['School'].nunique()) print(df.drop('School', axis=1)) print(df.columns) print(df.index) print(df.isnull()) """### APPLYING CUSTOM FUNCTIONS""" def square(x): return x*x # lambda x : x*x print(df.CGPA.apply(square)) print(df.CGPA.apply(lambda x:x*x)) """### DATA I/O You need to install sqlalchemy and lxml for this section of the tutorial """ import pandas as pd df = pd.read_csv('../Datasets/CustomerList.csv') print(df[1:10]) df.to_csv('Output',index=False) df =
pd.read_excel('../Datasets/Churn-Modelling.xlsx')
pandas.read_excel
import pandas as pd from sqlalchemy import create_engine from library import cf import talib.abstract as ta import pymysql.cursors import numpy as np from library.logging_pack import * logger.debug("subindex시작!!!!") pymysql.install_as_MySQLdb() daily_craw_engine=create_engine( "mysql+mysqldb://" + cf.db_id + ":" + cf.db_passwd + "@" + cf.db_ip + ":" + cf.db_port + "/daily_craw", encoding='utf-8') daily_buy_list_engine = create_engine( "mysql+mysqldb://" + cf.db_id + ":" + cf.db_passwd + "@" + cf.db_ip + ":" + cf.db_port + "/daily_buy_list" , encoding='utf-8') simul_engine=create_engine( "mysql+mysqldb://" + cf.db_id + ":" + cf.db_passwd + "@" + cf.db_ip + ":" + cf.db_port + "/simulator11", encoding='utf-8') min_craw_engine = create_engine("mysql+mysqldb://" + cf.db_id + ":" + cf.db_passwd + "@" + cf.db_ip + ":" + cf.db_port + "/min_craw", encoding='utf-8') stand_date = '20070903' #데이터 변환 class subindex: def __init__(self): logger.debug("subindex 함수로 들어왔다!!") def collecting(self): co_sql = f"select TABLE_NAME FROM information_schema.tables WHERE table_schema = 'daily_craw'" target_code = daily_craw_engine.execute(co_sql).fetchall() num = len(target_code) for i in range(num): self.db_name = target_code[i][0] self.db_name = self.db_name.replace("%", "%%") self.collect_db() print(self.db_name , "을 가져온다!") def collect_db(self): # 데이터 불러오기 sql = "select date,code,vol10,code_name,open,close,low,high,volume from daily_craw.`%s` where Date >= %s order by Date " rows = daily_craw_engine.execute(sql%(self.db_name,stand_date)).fetchall() three_s = pd.DataFrame(rows, columns=['date', 'code','vol10' ,'code_name','open' ,'close', 'low', 'high', 'volume']) three_s = three_s.fillna(0) # 데이터 변환 th_date = list(np.asarray(three_s['date'].tolist())) th_date_np = np.array(th_date, dtype='f8') th_close = list(np.asarray(three_s['close'].tolist())) th_close_np = np.array(th_close, dtype='f8') th_high = list(np.asarray(three_s['high'].tolist())) th_high_np = np.array(th_high, dtype='f8') th_low = list(np.asarray(three_s['low'].tolist())) th_low_np = np.array(th_low, dtype='f8') th_volume = list(np.asarray(three_s['volume'].tolist())) th_volume_np = np.array(th_volume, dtype='f8') th_open = list(np.asarray(three_s['open'].tolist())) th_open_np = np.array(th_open, dtype='f8') th_vol10 = list(np.asarray(three_s['vol10'].tolist())) th_vol10_np = np.array(th_vol10, dtype='f8') #주가고가저가 변동폭 th_diff =((three_s['high']-three_s['low'])/three_s['high'])*100 # 30일간 주가최저최고 변동폭 클때 th_diff30 = th_diff.rolling(30).max() # 보조지표 계산 th_cci = ta._ta_lib.CCI(th_high_np, th_low_np, th_close_np, 9) th_cci60 = ta._ta_lib.CCI(th_high_np, th_low_np, th_close_np, 60) ##rsi th_rsi = ta._ta_lib.RSI(th_close_np, 14) th_rsi5 = ta._ta_lib.RSI(th_close_np, 5) th_OBV = ta._ta_lib.OBV(th_close_np, th_volume_np) th_macd, th_macd_signal, th_macd_hist = ta._ta_lib.MACD(th_close_np, fastperiod=12, slowperiod=26, signalperiod=9) th_stoch_slowk, th_stoch_slowd = ta._ta_lib.STOCH(th_high_np, th_low_np, th_close_np, fastk_period=10, slowk_period=2, slowk_matype=0, slowd_period=2, slowd_matype=0) ##책에따라 12일선 기준으로 바꿈 th_BBAND_U, th_BBAND_M, th_BBAND_L = ta._ta_lib.BBANDS(th_close_np, timeperiod=20, nbdevup=2, nbdevdn=2, matype=0) th_BBAND_U14, th_BBAND_M14, th_BBAND_L14 = ta._ta_lib.BBANDS(th_close_np, timeperiod=14, nbdevup=2, nbdevdn=2, matype=0) th_BBAND_WIDE = (th_BBAND_U-th_BBAND_L)/th_BBAND_M th_BBAND_WIDE14 = (th_BBAND_U14 - th_BBAND_L14) / th_BBAND_M14 th_pb=(th_close_np-th_BBAND_L) / (th_BBAND_U-th_BBAND_L) th_pb14 = (th_close_np - th_BBAND_L14) / (th_BBAND_U14 - th_BBAND_L14) th_sar = ta._ta_lib.SAR(th_high_np, th_low_np,0.04,0.4) th_ibs = (th_close_np -th_low_np)/(th_high_np-th_low_np) th_dema5 = ta._ta_lib.DEMA(th_close_np, 5) th_dema20 = ta._ta_lib.DEMA(th_close_np,20) th_dema60 = ta._ta_lib.DEMA(th_close_np, 60) th_tema5 = ta._ta_lib.TEMA(th_close_np,5) th_tema20 = ta._ta_lib.TEMA(th_close_np, 20) th_tema60 = ta._ta_lib.TEMA(th_close_np, 60) #ema = 지수이동평균 th_ema5 = ta._ta_lib.EMA(th_close_np, 5) th_ema20 = ta._ta_lib.EMA(th_close_np, 20) th_ema60 = ta._ta_lib.EMA(th_close_np, 60) th_ema112 = ta._ta_lib.EMA(th_close_np, 112) th_ema224 = ta._ta_lib.EMA(th_close_np, 224) th_ema448 = ta._ta_lib.EMA(th_close_np, 448) th_ema448diff = ((th_close_np-th_ema448)/th_close_np * 100) th_ema224diff = ((th_close_np-th_ema224)/th_close_np*100) th_ema112diff = ((th_close_np-th_ema112)/th_close_np*100) #ma 이동평균 th_ma112 = ta._ta_lib.MA(th_close_np, 112) th_ma224 = ta._ta_lib.MA(th_close_np, 224) th_ma448 = ta._ta_lib.MA(th_close_np, 448) th_clo5diff = ((th_close_np - ta._ta_lib.MA(th_close_np, 5)) / th_close_np * 100) th_clo20diff = ((th_close_np - ta._ta_lib.MA(th_close_np, 20)) / th_close_np * 100) #dmi값들 14->11로 고쳐씀 th_pdi = ta._ta_lib.PLUS_DI(th_high_np,th_low_np,th_close_np, 11) th_mdi = ta._ta_lib.MINUS_DI(th_high_np, th_low_np, th_close_np, 11) th_dm = ta._ta_lib.PLUS_DM(th_high_np,th_low_np, 11) th_adx = ta._ta_lib.ADX(th_high_np,th_low_np,th_close_np, 14) th_adxr = ta._ta_lib.ADXR(th_high_np, th_low_np, th_close_np, 14) th_obvsig9 =ta._ta_lib.MA(ta._ta_lib.OBV(th_close_np, th_volume_np),9) #윌리엄 변동율 th_williumr = ta._ta_lib.WILLR(th_high_np,th_low_np,th_close_np, 14) th_mfi = ta._ta_lib.MFI(th_high_np,th_low_np,th_close_np,th_volume_np, 14) #거래량 오실레이터공식 10일 th_ad = ((th_close_np-th_open_np)/(th_high_np-th_low_np) * th_volume_np / th_vol10_np*10) # #일중강도 th_ll = (2*th_close_np-th_high_np-th_low_np)/(th_high_np-th_low_np) * th_volume_np # nan을 모두 0으로 전환 np.nan_to_num(th_cci, copy=False) np.nan_to_num(th_cci60, copy=False) np.nan_to_num(th_rsi, copy=False) np.nan_to_num(th_macd, copy=False) np.nan_to_num(th_macd_signal, copy=False) np.nan_to_num(th_macd_hist, copy=False) np.nan_to_num(th_stoch_slowk, copy=False) np.nan_to_num(th_stoch_slowd, copy=False) np.nan_to_num(th_BBAND_L, copy=False) np.nan_to_num(th_BBAND_M, copy=False) np.nan_to_num(th_BBAND_U, copy=False) np.nan_to_num(th_BBAND_L14, copy=False) np.nan_to_num(th_BBAND_M14, copy=False) np.nan_to_num(th_BBAND_U14, copy=False) np.nan_to_num(th_OBV, copy=False) np.nan_to_num(th_sar, copy=False) np.nan_to_num(th_dema5, copy=False) np.nan_to_num(th_dema20, copy=False) np.nan_to_num(th_dema60, copy=False) np.nan_to_num(th_tema5, copy=False) np.nan_to_num(th_tema20, copy=False) np.nan_to_num(th_tema60, copy=False) np.nan_to_num(th_ema5, copy=False) np.nan_to_num(th_ema112diff, copy=False) np.nan_to_num(th_ema224diff, copy=False) np.nan_to_num(th_ema448diff, copy=False) np.nan_to_num(th_ema20, copy=False) np.nan_to_num(th_ema60, copy=False) np.nan_to_num(th_ema112, copy=False) np.nan_to_num(th_ema224, copy=False) np.nan_to_num(th_ema448, copy=False) np.nan_to_num(th_ma112, copy=False) np.nan_to_num(th_ma224, copy=False) np.nan_to_num(th_ma448, copy=False) np.nan_to_num(th_pdi, copy=False) np.nan_to_num(th_mdi, copy=False) np.nan_to_num(th_dm, copy=False) np.nan_to_num(th_adx, copy=False) np.nan_to_num(th_adxr, copy=False) np.nan_to_num(th_williumr, copy=False) np.nan_to_num(th_pb, copy=False) np.nan_to_num(th_pb14, copy=False) np.nan_to_num(th_BBAND_WIDE, copy=False) np.nan_to_num(th_BBAND_WIDE14, copy=False) np.nan_to_num(th_mfi, copy=False) np.nan_to_num(th_ll, copy=False) np.nan_to_num(th_ad, copy=False) np.nan_to_num(th_rsi5, copy=False) np.nan_to_num(th_ibs, copy=False) np.nan_to_num(th_diff, copy=False) np.nan_to_num(th_diff30, copy=False) np.nan_to_num(th_obvsig9, copy=False) # DataFrame 화 하기 df_ad = pd.DataFrame(th_ad, columns=['ad']) df_cci = pd.DataFrame(th_cci, columns=['cci']) df_cci60 = pd.DataFrame(th_cci, columns=['cci60']) df_rsi5 = pd.DataFrame(th_rsi5, columns=['rsi5']) df_rsi = pd.DataFrame(th_rsi, columns=['rsi']) df_macd = pd.DataFrame(th_macd, columns=['macd']) df_macd_signal = pd.DataFrame(th_macd_signal, columns=['macd_signal']) df_macd_hist = pd.DataFrame(th_macd_hist, columns=['macd_hist']) df_stoch_slowk = pd.DataFrame(th_stoch_slowk, columns=['stoch_slowk']) df_stoch_slowd = pd.DataFrame(th_stoch_slowd, columns=['stoch_slowd']) #볼린저밴드 df_BBand_U = pd.DataFrame(th_BBAND_U, columns=['BBand_U']) df_BBand_M = pd.DataFrame(th_BBAND_M, columns=['BBand_M']) df_BBand_L = pd.DataFrame(th_BBAND_L, columns=['BBand_L']) df_BBand_U14 = pd.DataFrame(th_BBAND_U, columns=['BBand_U14']) df_BBand_M14 = pd.DataFrame(th_BBAND_M, columns=['BBand_M14']) df_BBand_L14 = pd.DataFrame(th_BBAND_L, columns=['BBand_L14']) df_ibs = pd.DataFrame(th_ibs, columns=['ibs']) df_pb14 = pd.DataFrame(th_pb, columns=['pb14']) df_obvsig9 = pd.DataFrame(th_obvsig9, columns=['obvsig9']) df_OBV = pd.DataFrame(th_OBV, columns=['OBV']) df_sar = pd.DataFrame(th_sar, columns=['sar']) # 2중종합지수 df_dema5 = pd.DataFrame(th_dema5, columns=['dema5']) df_dema20 = pd.DataFrame(th_dema20, columns=['dema20']) df_dema60 = pd.DataFrame(th_dema60, columns=['dema60']) #3중종합지수 df_tema5 = pd.DataFrame(th_tema5, columns=['tema5']) df_tema20 = pd.DataFrame(th_tema20, columns=['tema20']) df_tema60 = pd.DataFrame(th_tema60, columns=['tema60']) # 평균지수 df_ema5 = pd.DataFrame(th_ema5, columns=['ema5']) df_ema112diff = pd.DataFrame(abs(th_ema112diff), columns=['ema112diff']) df_ema224diff = pd.DataFrame(abs(th_ema224diff), columns=['ema224diff']) df_ema448diff = pd.DataFrame(abs(th_ema448diff), columns=['ema448diff']) df_ema20 = pd.DataFrame(th_ema20, columns=['ema20']) df_ema60 = pd.DataFrame(th_ema60, columns=['ema60']) df_ema112 = pd.DataFrame(th_ema112, columns=['ema112']) df_ema224 = pd.DataFrame(th_ema224, columns=['ema224']) df_ema448 = pd.DataFrame(th_ema224, columns=['ema448']) df_ma112 =
pd.DataFrame(th_ma112, columns=['ma112'])
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 调用wset函数的部分 下载数据的方法 1.在时间上使用折半可以最少的下载数据,但已经下了一部分,要补下时如果挪了一位,又得全重下 2.在文件上,三个文件一组,三组一样,删中间一个,直到不能删了,退出 """ import os import pandas as pd from .utils import asDateTime def download_sectorconstituent(w, date, sector, windcode, field='wind_code'): """ 板块成份 中信证券一级行业指数:时间好像没有必要,因为日历日也会查询出来 风险警示股票:日期就是查询的日期,股票也是最新名,没有啥用 w.wset("sectorconstituent","date=2017-03-03;sectorid=a001010100000000;field=wind_code") w.wset("sectorconstituent","date=2017-03-03;sectorid=a001010100000000") w.wset("sectorconstituent","date=2017-03-03;windcode=000300.SH") :param w: :param sector: :param date: :return: """ param = 'date=%s' % date if sector: param += ';sector=%s' % sector if windcode: param += ';windcode=%s' % windcode if field: param += ';field=%s' % field w.asDateTime = asDateTime w_wset_data = w.wset("sectorconstituent", param) df = pd.DataFrame(w_wset_data.Data) df = df.T df.columns = w_wset_data.Fields try: df['date'] = pd.to_datetime(df['date']) except KeyError: pass return df def download_indexconstituent(w, date, windcode, field='wind_code,i_weight'): """ 指数权重 如果指定日期不是交易日,会返回时前一个交易日的信息 :param w: :param windcode: :param date: :return: """ param = 'date=%s' % date if windcode: param += ';windcode=%s' % windcode if field: param += ';field=%s' % field w.asDateTime = asDateTime w_wset_data = w.wset("indexconstituent", param) df = pd.DataFrame(w_wset_data.Data) df = df.T df.columns = w_wset_data.Fields return df def download_optioncontractbasicinfo(w, exchange='sse', windcode='510050.SH', status='trading', field='wind_code,trade_code,sec_name,contract_unit,listed_date,expire_date,reference_price'): """ 指数权重 如果指定日期不是交易日,会返回时前一个交易日的信息 :param w: :param windcode: :param date: :return: """ param = 'exchange=%s' % exchange param += ';windcode=%s' % windcode param += ';status=%s' % status if field: param += ';field=%s' % field w.asDateTime = asDateTime w_wset_data = w.wset("optioncontractbasicinfo", param) df = pd.DataFrame(w_wset_data.Data) df = df.T df.columns = w_wset_data.Fields return df def download_optionchain(w, date='2017-11-28', us_code='510050.SH', field='option_code,option_name,strike_price,multiplier'): """ 下载指定日期期权数据 w_wset_data = vba_wset("optionchain","date=2017-11-28;us_code=510050.SH;option_var=全部;call_put=全部;field=option_code,option_name,strike_price,multiplier",) :param w: :param windcode: :param date: :return: """ param = 'date=%s' % date param += ';us_code=%s' % us_code if field: param += ';field=%s' % field w.asDateTime = asDateTime w_wset_data = w.wset("optionchain", param) df = pd.DataFrame(w_wset_data.Data) df = df.T df.columns = w_wset_data.Fields return df def read_constituent(path): """ 读取板块文件 :param path: :return: """ try: df = pd.read_csv(path, encoding='utf-8-sig', parse_dates=True) except Exception as e: return None try: df['date'] = pd.to_datetime(df['date']) except KeyError: pass return df def read_sectorconstituent_from_dir(path, key_field='wind_code'): """ 从目录中读取整个文件 :param path: :param key_field: :return: """ last_set = None df = None for parent, dirnames, filenames in os.walk(path): for filename in filenames: filepath = os.path.join(parent, filename) curr_df = read_constituent(filepath) # 由于两头数据可能一样,这样处理,只留第一个,可以加快处理速度 curr_set = set(curr_df[key_field]) if last_set == curr_set: last_set = curr_set continue last_set = curr_set data_date_str = filename[:-4] curr_df['_datetime_'] = pd.to_datetime(data_date_str) if df is None: df = curr_df else: df = pd.concat([df, curr_df]) return df def write_constituent(path, df): df.to_csv(path, encoding='utf-8-sig', date_format='%Y-%m-%d', index=False) def read_indexconstituent_from_dir(path): """ 由于权重每天都不一样,只能根据用户指定的日期下载才行 :param path: :return: """ last_set = None df = None for parent, dirnames, filenames in os.walk(path): for filename in filenames: filepath = os.path.join(parent, filename) curr_df = read_constituent(filepath) # 2016-12-12,有成份新加入,但权重为nan curr_df.fillna(0, inplace=True) data_date_str = filename[:-4] curr_df['_datetime_'] = pd.to_datetime(data_date_str) if df is None: df = curr_df else: df = pd.concat([df, curr_df]) return df def download_corporationaction(w, startdate, enddate, windcode): """ 分红送转 如何获取某一天的分红情况,开始与结束设成同一天,不设置wind_code 实际上只取一个如600000.SH发现很早以前的信息可能缺失 > w.wset('CorporationAction','startdate=20150605;enddate=20150605') :param w: :param windcode: :param date: :return: """ param = 'startdate=%s' % startdate if enddate: param += ';enddate=%s' % enddate if windcode: param += ';windcode=%s' % windcode w.asDateTime = asDateTime w_wset_data = w.wset("corporationaction", param) df = pd.DataFrame(w_wset_data.Data) df = df.T df.columns = w_wset_data.Fields df['ex_dividend_date'] =
pd.to_datetime(df['ex_dividend_date'])
pandas.to_datetime
# pylint: disable-msg=W0612,E1101,W0141 import nose from numpy.random import randn import numpy as np from pandas.core.index import Index, MultiIndex from pandas import Panel, DataFrame, Series, notnull, isnull from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.core.common as com import pandas.util.testing as tm from pandas.compat import (range, lrange, StringIO, lzip, u, cPickle, product as cart_product, zip) import pandas as pd import pandas.index as _index class TestMultiLevel(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.frame = DataFrame(np.random.randn(10, 3), index=index, columns=Index(['A', 'B', 'C'], name='exp')) self.single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) # create test series object arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) s[3] = np.NaN self.series = s tm.N = 100 self.tdf = tm.makeTimeDataFrame() self.ymd = self.tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum() # use Int64Index, to make sure things work self.ymd.index.set_levels([lev.astype('i8') for lev in self.ymd.index.levels], inplace=True) self.ymd.index.set_names(['year', 'month', 'day'], inplace=True) def test_append(self): a, b = self.frame[:5], self.frame[5:] result = a.append(b) tm.assert_frame_equal(result, self.frame) result = a['A'].append(b['A']) tm.assert_series_equal(result, self.frame['A']) def test_dataframe_constructor(self): multi = DataFrame(np.random.randn(4, 4), index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) self.assertNotIsInstance(multi.columns, MultiIndex) multi = DataFrame(np.random.randn(4, 4), columns=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.columns, MultiIndex) def test_series_constructor(self): multi = Series(1., index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(1., index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(lrange(4), index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) def test_reindex_level(self): # axis=0 month_sums = self.ymd.sum(level='month') result = month_sums.reindex(self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum) assert_frame_equal(result, expected) # Series result = month_sums['A'].reindex(self.ymd.index, level=1) expected = self.ymd['A'].groupby(level='month').transform(np.sum) assert_series_equal(result, expected) # axis=1 month_sums = self.ymd.T.sum(axis=1, level='month') result = month_sums.reindex(columns=self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum).T assert_frame_equal(result, expected) def test_binops_level(self): def _check_op(opname): op = getattr(DataFrame, opname) month_sums = self.ymd.sum(level='month') result = op(self.ymd, month_sums, level='month') broadcasted = self.ymd.groupby(level='month').transform(np.sum) expected = op(self.ymd, broadcasted) assert_frame_equal(result, expected) # Series op = getattr(Series, opname) result = op(self.ymd['A'], month_sums['A'], level='month') broadcasted = self.ymd['A'].groupby( level='month').transform(np.sum) expected = op(self.ymd['A'], broadcasted) assert_series_equal(result, expected) _check_op('sub') _check_op('add') _check_op('mul') _check_op('div') def test_pickle(self): def _test_roundtrip(frame): pickled = cPickle.dumps(frame) unpickled = cPickle.loads(pickled) assert_frame_equal(frame, unpickled) _test_roundtrip(self.frame) _test_roundtrip(self.frame.T) _test_roundtrip(self.ymd) _test_roundtrip(self.ymd.T) def test_reindex(self): reindexed = self.frame.ix[[('foo', 'one'), ('bar', 'one')]] expected = self.frame.ix[[0, 3]] assert_frame_equal(reindexed, expected) def test_reindex_preserve_levels(self): new_index = self.ymd.index[::10] chunk = self.ymd.reindex(new_index) self.assertIs(chunk.index, new_index) chunk = self.ymd.ix[new_index] self.assertIs(chunk.index, new_index) ymdT = self.ymd.T chunk = ymdT.reindex(columns=new_index) self.assertIs(chunk.columns, new_index) chunk = ymdT.ix[:, new_index] self.assertIs(chunk.columns, new_index) def test_sort_index_preserve_levels(self): result = self.frame.sort_index() self.assertEquals(result.index.names, self.frame.index.names) def test_repr_to_string(self): repr(self.frame) repr(self.ymd) repr(self.frame.T) repr(self.ymd.T) buf = StringIO() self.frame.to_string(buf=buf) self.ymd.to_string(buf=buf) self.frame.T.to_string(buf=buf) self.ymd.T.to_string(buf=buf) def test_repr_name_coincide(self): index = MultiIndex.from_tuples([('a', 0, 'foo'), ('b', 1, 'bar')], names=['a', 'b', 'c']) df = DataFrame({'value': [0, 1]}, index=index) lines = repr(df).split('\n') self.assert_(lines[2].startswith('a 0 foo')) def test_getitem_simple(self): df = self.frame.T col = df['foo', 'one'] assert_almost_equal(col.values, df.values[:, 0]) self.assertRaises(KeyError, df.__getitem__, ('foo', 'four')) self.assertRaises(KeyError, df.__getitem__, 'foobar') def test_series_getitem(self): s = self.ymd['A'] result = s[2000, 3] result2 = s.ix[2000, 3] expected = s.reindex(s.index[42:65]) expected.index = expected.index.droplevel(0).droplevel(0) assert_series_equal(result, expected) result = s[2000, 3, 10] expected = s[49] self.assertEquals(result, expected) # fancy result = s.ix[[(2000, 3, 10), (2000, 3, 13)]] expected = s.reindex(s.index[49:51]) assert_series_equal(result, expected) # key error self.assertRaises(KeyError, s.__getitem__, (2000, 3, 4)) def test_series_getitem_corner(self): s = self.ymd['A'] # don't segfault, GH #495 # out of bounds access self.assertRaises(IndexError, s.__getitem__, len(self.ymd)) # generator result = s[(x > 0 for x in s)] expected = s[s > 0] assert_series_equal(result, expected) def test_series_setitem(self): s = self.ymd['A'] s[2000, 3] = np.nan self.assert_(isnull(s.values[42:65]).all()) self.assert_(notnull(s.values[:42]).all()) self.assert_(notnull(s.values[65:]).all()) s[2000, 3, 10] = np.nan self.assert_(isnull(s[49])) def test_series_slice_partial(self): pass def test_frame_getitem_setitem_boolean(self): df = self.frame.T.copy() values = df.values result = df[df > 0] expected = df.where(df > 0) assert_frame_equal(result, expected) df[df > 0] = 5 values[values > 0] = 5 assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) assert_almost_equal(df.values, values) with assertRaisesRegexp(TypeError, 'boolean values only'): df[df * 0] = 2 def test_frame_getitem_setitem_slice(self): # getitem result = self.frame.ix[:4] expected = self.frame[:4] assert_frame_equal(result, expected) # setitem cp = self.frame.copy() cp.ix[:4] = 0 self.assert_((cp.values[:4] == 0).all()) self.assert_((cp.values[4:] != 0).all()) def test_frame_getitem_setitem_multislice(self): levels = [['t1', 't2'], ['a', 'b', 'c']] labels = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]] midx = MultiIndex(labels=labels, levels=levels, names=[None, 'id']) df = DataFrame({'value': [1, 2, 3, 7, 8]}, index=midx) result = df.ix[:, 'value'] assert_series_equal(df['value'], result) result = df.ix[1:3, 'value'] assert_series_equal(df['value'][1:3], result) result = df.ix[:, :] assert_frame_equal(df, result) result = df df.ix[:, 'value'] = 10 result['value'] = 10 assert_frame_equal(df, result) df.ix[:, :] = 10 assert_frame_equal(df, result) def test_frame_getitem_multicolumn_empty_level(self): f = DataFrame({'a': ['1', '2', '3'], 'b': ['2', '3', '4']}) f.columns = [['level1 item1', 'level1 item2'], ['', 'level2 item2'], ['level3 item1', 'level3 item2']] result = f['level1 item1'] expected = DataFrame([['1'], ['2'], ['3']], index=f.index, columns=['level3 item1']) assert_frame_equal(result, expected) def test_frame_setitem_multi_column(self): df = DataFrame(randn(10, 4), columns=[['a', 'a', 'b', 'b'], [0, 1, 0, 1]]) cp = df.copy() cp['a'] = cp['b'] assert_frame_equal(cp['a'], cp['b']) # set with ndarray cp = df.copy() cp['a'] = cp['b'].values assert_frame_equal(cp['a'], cp['b']) #---------------------------------------- # #1803 columns = MultiIndex.from_tuples([('A', '1'), ('A', '2'), ('B', '1')]) df = DataFrame(index=[1, 3, 5], columns=columns) # Works, but adds a column instead of updating the two existing ones df['A'] = 0.0 # Doesn't work self.assertTrue((df['A'].values == 0).all()) # it broadcasts df['B', '1'] = [1, 2, 3] df['A'] = df['B', '1'] assert_series_equal(df['A', '1'], df['B', '1']) assert_series_equal(df['A', '2'], df['B', '1']) def test_getitem_tuple_plus_slice(self): # GH #671 df = DataFrame({'a': lrange(10), 'b': lrange(10), 'c': np.random.randn(10), 'd': np.random.randn(10)}) idf = df.set_index(['a', 'b']) result = idf.ix[(0, 0), :] expected = idf.ix[0, 0] expected2 = idf.xs((0, 0)) assert_series_equal(result, expected) assert_series_equal(result, expected2) def test_getitem_setitem_tuple_plus_columns(self): # GH #1013 df = self.ymd[:5] result = df.ix[(2000, 1, 6), ['A', 'B', 'C']] expected = df.ix[2000, 1, 6][['A', 'B', 'C']] assert_series_equal(result, expected) def test_getitem_multilevel_index_tuple_unsorted(self): index_columns = list("abc") df = DataFrame([[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"]) df = df.set_index(index_columns) query_index = df.index[:1] rs = df.ix[query_index, "data"] xp = Series(['x'], index=MultiIndex.from_tuples([(0, 1, 0)])) assert_series_equal(rs, xp) def test_xs(self): xs = self.frame.xs(('bar', 'two')) xs2 = self.frame.ix[('bar', 'two')] assert_series_equal(xs, xs2) assert_almost_equal(xs.values, self.frame.values[4]) # GH 6574 # missing values in returned index should be preserrved acc = [ ('a','abcde',1), ('b','bbcde',2), ('y','yzcde',25), ('z','xbcde',24), ('z',None,26), ('z','zbcde',25), ('z','ybcde',26), ] df = DataFrame(acc, columns=['a1','a2','cnt']).set_index(['a1','a2']) expected = DataFrame({ 'cnt' : [24,26,25,26] }, index=Index(['xbcde',np.nan,'zbcde','ybcde'],name='a2')) result = df.xs('z',level='a1') assert_frame_equal(result, expected) def test_xs_partial(self): result = self.frame.xs('foo') result2 = self.frame.ix['foo'] expected = self.frame.T['foo'].T assert_frame_equal(result, expected) assert_frame_equal(result, result2) result = self.ymd.xs((2000, 4)) expected = self.ymd.ix[2000, 4] assert_frame_equal(result, expected) # ex from #1796 index = MultiIndex(levels=[['foo', 'bar'], ['one', 'two'], [-1, 1]], labels=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(8, 4), index=index, columns=list('abcd')) result = df.xs(['foo', 'one']) expected = df.ix['foo', 'one'] assert_frame_equal(result, expected) def test_xs_level(self): result = self.frame.xs('two', level='second') expected = self.frame[self.frame.index.get_level_values(1) == 'two'] expected.index = expected.index.droplevel(1) assert_frame_equal(result, expected) index = MultiIndex.from_tuples([('x', 'y', 'z'), ('a', 'b', 'c'), ('p', 'q', 'r')]) df = DataFrame(np.random.randn(3, 5), index=index) result = df.xs('c', level=2) expected = df[1:2] expected.index = expected.index.droplevel(2) assert_frame_equal(result, expected) # this is a copy in 0.14 result = self.frame.xs('two', level='second') # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) def test_xs_level_multiple(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs(('a', 4), level=['one', 'four']) expected = df.xs('a').xs(4, level='four') assert_frame_equal(result, expected) # this is a copy in 0.14 result = df.xs(('a', 4), level=['one', 'four']) # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) # GH2107 dates = lrange(20111201, 20111205) ids = 'abcde' idx = MultiIndex.from_tuples([x for x in cart_product(dates, ids)]) idx.names = ['date', 'secid'] df = DataFrame(np.random.randn(len(idx), 3), idx, ['X', 'Y', 'Z']) rs = df.xs(20111201, level='date') xp = df.ix[20111201, :] assert_frame_equal(rs, xp) def test_xs_level0(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs('a', level=0) expected = df.xs('a') self.assertEqual(len(result), 2) assert_frame_equal(result, expected) def test_xs_level_series(self): s = self.frame['A'] result = s[:, 'two'] expected = self.frame.xs('two', level=1)['A'] assert_series_equal(result, expected) s = self.ymd['A'] result = s[2000, 5] expected = self.ymd.ix[2000, 5]['A'] assert_series_equal(result, expected) # not implementing this for now self.assertRaises(TypeError, s.__getitem__, (2000, slice(3, 4))) # result = s[2000, 3:4] # lv =s.index.get_level_values(1) # expected = s[(lv == 3) | (lv == 4)] # expected.index = expected.index.droplevel(0) # assert_series_equal(result, expected) # can do this though def test_get_loc_single_level(self): s = Series(np.random.randn(len(self.single_level)), index=self.single_level) for k in self.single_level.values: s[k] def test_getitem_toplevel(self): df = self.frame.T result = df['foo'] expected = df.reindex(columns=df.columns[:3]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) result = df['bar'] result2 = df.ix[:, 'bar'] expected = df.reindex(columns=df.columns[3:5]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result, result2) def test_getitem_setitem_slice_integers(self): index = MultiIndex(levels=[[0, 1, 2], [0, 2]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) frame = DataFrame(np.random.randn(len(index), 4), index=index, columns=['a', 'b', 'c', 'd']) res = frame.ix[1:2] exp = frame.reindex(frame.index[2:]) assert_frame_equal(res, exp) frame.ix[1:2] = 7 self.assert_((frame.ix[1:2] == 7).values.all()) series = Series(np.random.randn(len(index)), index=index) res = series.ix[1:2] exp = series.reindex(series.index[2:]) assert_series_equal(res, exp) series.ix[1:2] = 7 self.assert_((series.ix[1:2] == 7).values.all()) def test_getitem_int(self): levels = [[0, 1], [0, 1, 2]] labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]] index = MultiIndex(levels=levels, labels=labels) frame = DataFrame(np.random.randn(6, 2), index=index) result = frame.ix[1] expected = frame[-3:] expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) # raises exception self.assertRaises(KeyError, frame.ix.__getitem__, 3) # however this will work result = self.frame.ix[2] expected = self.frame.xs(self.frame.index[2]) assert_series_equal(result, expected) def test_getitem_partial(self): ymd = self.ymd.T result = ymd[2000, 2] expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1]) expected.columns = expected.columns.droplevel(0).droplevel(0) assert_frame_equal(result, expected) def test_getitem_slice_not_sorted(self): df = self.frame.sortlevel(1).T # buglet with int typechecking result = df.ix[:, :np.int32(3)] expected = df.reindex(columns=df.columns[:3]) assert_frame_equal(result, expected) def test_setitem_change_dtype(self): dft = self.frame.T s = dft['foo', 'two'] dft['foo', 'two'] = s > s.median() assert_series_equal(dft['foo', 'two'], s > s.median()) # tm.assert_isinstance(dft._data.blocks[1].items, MultiIndex) reindexed = dft.reindex(columns=[('foo', 'two')]) assert_series_equal(reindexed['foo', 'two'], s > s.median()) def test_frame_setitem_ix(self): self.frame.ix[('bar', 'two'), 'B'] = 5 self.assertEquals(self.frame.ix[('bar', 'two'), 'B'], 5) # with integer labels df = self.frame.copy() df.columns = lrange(3) df.ix[('bar', 'two'), 1] = 7 self.assertEquals(df.ix[('bar', 'two'), 1], 7) def test_fancy_slice_partial(self): result = self.frame.ix['bar':'baz'] expected = self.frame[3:7] assert_frame_equal(result, expected) result = self.ymd.ix[(2000, 2):(2000, 4)] lev = self.ymd.index.labels[1] expected = self.ymd[(lev >= 1) & (lev <= 3)] assert_frame_equal(result, expected) def test_getitem_partial_column_select(self): idx = MultiIndex(labels=[[0, 0, 0], [0, 1, 1], [1, 0, 1]], levels=[['a', 'b'], ['x', 'y'], ['p', 'q']]) df = DataFrame(np.random.rand(3, 2), index=idx) result = df.ix[('a', 'y'), :] expected = df.ix[('a', 'y')] assert_frame_equal(result, expected) result = df.ix[('a', 'y'), [1, 0]] expected = df.ix[('a', 'y')][[1, 0]] assert_frame_equal(result, expected) self.assertRaises(KeyError, df.ix.__getitem__, (('a', 'foo'), slice(None, None))) def test_sortlevel(self): df = self.frame.copy() df.index = np.arange(len(df)) assertRaisesRegexp(TypeError, 'hierarchical index', df.sortlevel, 0) # axis=1 # series a_sorted = self.frame['A'].sortlevel(0) with assertRaisesRegexp(TypeError, 'hierarchical index'): self.frame.reset_index()['A'].sortlevel() # preserve names self.assertEquals(a_sorted.index.names, self.frame.index.names) # inplace rs = self.frame.copy() rs.sortlevel(0, inplace=True) assert_frame_equal(rs, self.frame.sortlevel(0)) def test_sortlevel_large_cardinality(self): # #2684 (int64) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int64) # it works! result = df.sortlevel(0) self.assertTrue(result.index.lexsort_depth == 3) # #2684 (int32) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int32) # it works! result = df.sortlevel(0) self.assert_((result.dtypes.values == df.dtypes.values).all() == True) self.assertTrue(result.index.lexsort_depth == 3) def test_delevel_infer_dtype(self): tuples = [tuple for tuple in cart_product(['foo', 'bar'], [10, 20], [1.0, 1.1])] index = MultiIndex.from_tuples(tuples, names=['prm0', 'prm1', 'prm2']) df = DataFrame(np.random.randn(8, 3), columns=['A', 'B', 'C'], index=index) deleveled = df.reset_index() self.assert_(com.is_integer_dtype(deleveled['prm1'])) self.assert_(com.is_float_dtype(deleveled['prm2'])) def test_reset_index_with_drop(self): deleveled = self.ymd.reset_index(drop=True) self.assertEquals(len(deleveled.columns), len(self.ymd.columns)) deleveled = self.series.reset_index() tm.assert_isinstance(deleveled, DataFrame) self.assertEqual(len(deleveled.columns), len(self.series.index.levels) + 1) deleveled = self.series.reset_index(drop=True) tm.assert_isinstance(deleveled, Series) def test_sortlevel_by_name(self): self.frame.index.names = ['first', 'second'] result = self.frame.sortlevel(level='second') expected = self.frame.sortlevel(level=1) assert_frame_equal(result, expected) def test_sortlevel_mixed(self): sorted_before = self.frame.sortlevel(1) df = self.frame.copy() df['foo'] = 'bar' sorted_after = df.sortlevel(1) assert_frame_equal(sorted_before, sorted_after.drop(['foo'], axis=1)) dft = self.frame.T sorted_before = dft.sortlevel(1, axis=1) dft['foo', 'three'] = 'bar' sorted_after = dft.sortlevel(1, axis=1) assert_frame_equal(sorted_before.drop([('foo', 'three')], axis=1), sorted_after.drop([('foo', 'three')], axis=1)) def test_count_level(self): def _check_counts(frame, axis=0): index = frame._get_axis(axis) for i in range(index.nlevels): result = frame.count(axis=axis, level=i) expected = frame.groupby(axis=axis, level=i).count(axis=axis) expected = expected.reindex_like(result).astype('i8') assert_frame_equal(result, expected) self.frame.ix[1, [1, 2]] = np.nan self.frame.ix[7, [0, 1]] = np.nan self.ymd.ix[1, [1, 2]] = np.nan self.ymd.ix[7, [0, 1]] = np.nan _check_counts(self.frame) _check_counts(self.ymd) _check_counts(self.frame.T, axis=1) _check_counts(self.ymd.T, axis=1) # can't call with level on regular DataFrame df = tm.makeTimeDataFrame() assertRaisesRegexp(TypeError, 'hierarchical', df.count, level=0) self.frame['D'] = 'foo' result = self.frame.count(level=0, numeric_only=True) assert_almost_equal(result.columns, ['A', 'B', 'C']) def test_count_level_series(self): index = MultiIndex(levels=[['foo', 'bar', 'baz'], ['one', 'two', 'three', 'four']], labels=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]]) s = Series(np.random.randn(len(index)), index=index) result = s.count(level=0) expected = s.groupby(level=0).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) result = s.count(level=1) expected = s.groupby(level=1).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) def test_count_level_corner(self): s = self.frame['A'][:0] result = s.count(level=0) expected = Series(0, index=s.index.levels[0]) assert_series_equal(result, expected) df = self.frame[:0] result = df.count(level=0) expected = DataFrame({}, index=s.index.levels[0], columns=df.columns).fillna(0).astype(np.int64) assert_frame_equal(result, expected) def test_unstack(self): # just check that it works for now unstacked = self.ymd.unstack() unstacked2 = unstacked.unstack() # test that ints work unstacked = self.ymd.astype(int).unstack() # test that int32 work unstacked = self.ymd.astype(np.int32).unstack() def test_unstack_multiple_no_empty_columns(self): index = MultiIndex.from_tuples([(0, 'foo', 0), (0, 'bar', 0), (1, 'baz', 1), (1, 'qux', 1)]) s = Series(np.random.randn(4), index=index) unstacked = s.unstack([1, 2]) expected = unstacked.dropna(axis=1, how='all') assert_frame_equal(unstacked, expected) def test_stack(self): # regular roundtrip unstacked = self.ymd.unstack() restacked = unstacked.stack() assert_frame_equal(restacked, self.ymd) unlexsorted = self.ymd.sortlevel(2) unstacked = unlexsorted.unstack(2) restacked = unstacked.stack() assert_frame_equal(restacked.sortlevel(0), self.ymd) unlexsorted = unlexsorted[::-1] unstacked = unlexsorted.unstack(1) restacked = unstacked.stack().swaplevel(1, 2) assert_frame_equal(restacked.sortlevel(0), self.ymd) unlexsorted = unlexsorted.swaplevel(0, 1) unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1) restacked = unstacked.stack(0).swaplevel(1, 2) assert_frame_equal(restacked.sortlevel(0), self.ymd) # columns unsorted unstacked = self.ymd.unstack() unstacked = unstacked.sort(axis=1, ascending=False) restacked = unstacked.stack() assert_frame_equal(restacked, self.ymd) # more than 2 levels in the columns unstacked = self.ymd.unstack(1).unstack(1) result = unstacked.stack(1) expected = self.ymd.unstack() assert_frame_equal(result, expected) result = unstacked.stack(2) expected = self.ymd.unstack(1) assert_frame_equal(result, expected) result = unstacked.stack(0) expected = self.ymd.stack().unstack(1).unstack(1) assert_frame_equal(result, expected) # not all levels present in each echelon unstacked = self.ymd.unstack(2).ix[:, ::3] stacked = unstacked.stack().stack() ymd_stacked = self.ymd.stack() assert_series_equal(stacked, ymd_stacked.reindex(stacked.index)) # stack with negative number result = self.ymd.unstack(0).stack(-2) expected = self.ymd.unstack(0).stack(0) def test_unstack_odd_failure(self): data = """day,time,smoker,sum,len Fri,Dinner,No,8.25,3. Fri,Dinner,Yes,27.03,9 Fri,Lunch,No,3.0,1 Fri,Lunch,Yes,13.68,6 Sat,Dinner,No,139.63,45 Sat,Dinner,Yes,120.77,42 Sun,Dinner,No,180.57,57 Sun,Dinner,Yes,66.82,19 Thur,Dinner,No,3.0,1 Thur,Lunch,No,117.32,44 Thur,Lunch,Yes,51.51,17""" df = pd.read_csv(StringIO(data)).set_index(['day', 'time', 'smoker']) # it works, #2100 result = df.unstack(2) recons = result.stack() assert_frame_equal(recons, df) def test_stack_mixed_dtype(self): df = self.frame.T df['foo', 'four'] = 'foo' df = df.sortlevel(1, axis=1) stacked = df.stack() assert_series_equal(stacked['foo'], df['foo'].stack()) self.assertEqual(stacked['bar'].dtype, np.float_) def test_unstack_bug(self): df = DataFrame({'state': ['naive', 'naive', 'naive', 'activ', 'activ', 'activ'], 'exp': ['a', 'b', 'b', 'b', 'a', 'a'], 'barcode': [1, 2, 3, 4, 1, 3], 'v': ['hi', 'hi', 'bye', 'bye', 'bye', 'peace'], 'extra': np.arange(6.)}) result = df.groupby(['state', 'exp', 'barcode', 'v']).apply(len) unstacked = result.unstack() restacked = unstacked.stack() assert_series_equal(restacked, result.reindex(restacked.index).astype(float)) def test_stack_unstack_preserve_names(self): unstacked = self.frame.unstack() self.assertEquals(unstacked.index.name, 'first') self.assertEquals(unstacked.columns.names, ['exp', 'second']) restacked = unstacked.stack() self.assertEquals(restacked.index.names, self.frame.index.names) def test_unstack_level_name(self): result = self.frame.unstack('second') expected = self.frame.unstack(level=1) assert_frame_equal(result, expected) def test_stack_level_name(self): unstacked = self.frame.unstack('second') result = unstacked.stack('exp') expected = self.frame.unstack().stack(0) assert_frame_equal(result, expected) result = self.frame.stack('exp') expected = self.frame.stack() assert_series_equal(result, expected) def test_stack_unstack_multiple(self): unstacked = self.ymd.unstack(['year', 'month']) expected = self.ymd.unstack('year').unstack('month') assert_frame_equal(unstacked, expected) self.assertEquals(unstacked.columns.names, expected.columns.names) # series s = self.ymd['A'] s_unstacked = s.unstack(['year', 'month']) assert_frame_equal(s_unstacked, expected['A']) restacked = unstacked.stack(['year', 'month']) restacked = restacked.swaplevel(0, 1).swaplevel(1, 2) restacked = restacked.sortlevel(0) assert_frame_equal(restacked, self.ymd) self.assertEquals(restacked.index.names, self.ymd.index.names) # GH #451 unstacked = self.ymd.unstack([1, 2]) expected = self.ymd.unstack(1).unstack(1).dropna(axis=1, how='all') assert_frame_equal(unstacked, expected) unstacked = self.ymd.unstack([2, 1]) expected = self.ymd.unstack(2).unstack(1).dropna(axis=1, how='all') assert_frame_equal(unstacked, expected.ix[:, unstacked.columns]) def test_unstack_period_series(self): # GH 4342 idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period') idx2 = Index(['A', 'B'] * 3, name='str') value = [1, 2, 3, 4, 5, 6] idx = MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex(['2013-01', '2013-02', '2013-03'], freq='M', name='period') expected = DataFrame({'A': [1, 3, 5], 'B': [2, 4, 6]}, index=e_idx, columns=['A', 'B']) expected.columns.name = 'str' assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) assert_frame_equal(result3, expected.T) idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07'], freq='M', name='period2') idx = pd.MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx =
pd.PeriodIndex(['2013-01', '2013-02', '2013-03'], freq='M', name='period1')
pandas.PeriodIndex
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = cudf.DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(list(string.ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = cudf.DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return cudf.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = cudf.DataFrame(data) if PANDAS_GE_120 and psr.shape[0] * psr.shape[1] < min_count: pytest.xfail("https://github.com/pandas-dev/pandas/issues/39738") assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = cudf.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, cudf.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) @pytest.mark.parametrize("numeric_only", [True, False]) def test_quantile(q, numeric_only): ts = pd.date_range("2018-08-24", periods=5, freq="D") td = pd.to_timedelta(np.arange(5), unit="h") pdf = pd.DataFrame( {"date": ts, "delta": td, "val": np.random.randn(len(ts))} ) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf["date"].quantile(q), gdf["date"].quantile(q)) assert_eq(pdf["delta"].quantile(q), gdf["delta"].quantile(q)) assert_eq(pdf["val"].quantile(q), gdf["val"].quantile(q)) if numeric_only: assert_eq(pdf.quantile(q), gdf.quantile(q)) else: q = q if isinstance(q, list) else [q] assert_eq( pdf.quantile( q if isinstance(q, list) else [q], numeric_only=False ), gdf.quantile(q, numeric_only=False), ) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = cudf.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = cudf.from_pandas(pdf) assert isinstance(gdf, cudf.DataFrame) assert_eq(pdf, gdf) gdf = cudf.from_pandas(pdf.x) assert isinstance(gdf, cudf.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): cudf.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = cudf.DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = cudf.Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, cudf.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = cudf.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = cudf.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = cudf.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = cudf.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = cudf.DataFrame.from_pandas(pdf) gdf_mask = cudf.DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( cudf.Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = cudf.DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas() assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = cudf.DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = cudf.DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = cudf.DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) @pytest.mark.parametrize("series_bins", [True, False]) def test_series_digitize(num_rows, num_bins, right, dtype, series_bins): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = cudf.Series(data) if series_bins: s_bins = cudf.Series(bins) indices = s.digitize(s_bins, right) else: indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_series_digitize_invalid_bins(): s = cudf.Series(np.random.randint(0, 30, 80), dtype="int32") bins = cudf.Series([2, None, None, 50, 90], dtype="int32") with pytest.raises( ValueError, match="`bins` cannot contain null entries." ): _ = s.digitize(bins) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data, dtype="float64") got = cudf.Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = cudf.Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = cudf.Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = cudf.Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = cudf.Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = cudf.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = cudf.DataFrame() gdf["id"] = cudf.Series(["a", "b"], dtype=np.object_) gdf["v"] = cudf.Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas().tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3, 4, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize( "index", [ "a", ["a", "b"], pd.CategoricalIndex(["I", "II", "III", "IV", "V"]), pd.Series(["h", "i", "k", "l", "m"]), ["b", pd.Index(["I", "II", "III", "IV", "V"])], ["c", [11, 12, 13, 14, 15]], pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), # corner case [pd.Series(["h", "i", "k", "l", "m"]), pd.RangeIndex(0, 5)], [ pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), ], ], ) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_set_index(data, index, drop, append, inplace): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() expected = pdf.set_index(index, inplace=inplace, drop=drop, append=append) actual = gdf.set_index(index, inplace=inplace, drop=drop, append=append) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ { "a": [1, 1, 2, 2, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize("index", ["a", pd.Index([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("verify_integrity", [True]) @pytest.mark.xfail def test_set_index_verify_integrity(data, index, verify_integrity): gdf = cudf.DataFrame(data) gdf.set_index(index, verify_integrity=verify_integrity) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = cudf.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas() # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): if PANDAS_GE_110: kwargs = {"check_freq": False} else: kwargs = {} index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), **kwargs, ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas() assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = cudf.DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = cudf.DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = cudf.DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = cudf.Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = cudf.Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=([], {"includes": ["Foo"]}), rfunc_args_and_kwargs=([], {"includes": ["Foo"]}), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), rfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), ) gdf = cudf.DataFrame( {"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = cudf.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, ) gdf = cudf.DataFrame( {"a": cudf.Series([], dtype="int"), "b": cudf.Series([], dtype="str")} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("datetime64"), gdf.select_dtypes("datetime64")) assert_eq( pdf.select_dtypes(np.dtype("datetime64")), gdf.select_dtypes(np.dtype("datetime64")), ) assert_eq( pdf.select_dtypes(include="datetime64"), gdf.select_dtypes(include="datetime64"), ) def test_select_dtype_datetime_with_frequency(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_exceptions_equal( pdf.select_dtypes, gdf.select_dtypes, (["datetime64[ms]"],), (["datetime64[ms]"],), ) def test_array_ufunc(): gdf = cudf.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = cudf.Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]) pdf_results = pdf.describe(exclude=["float"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]) pdf_results = pdf.describe(include=["int"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all") pdf_results = pdf.describe(include="all") assert_eq(gdf_results[["x", "y"]], pdf_results[["x", "y"]]) assert_eq(gdf_results.index, pdf_results.index) assert_eq(gdf_results.columns, pdf_results.columns) assert_eq( gdf_results[["animal"]].fillna(-1).astype("str"), pdf_results[["animal"]].fillna(-1).astype("str"), ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles) pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = cudf.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_isnull_isna(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.isnull(), gdf.isnull()) assert_eq(df.isna(), gdf.isna()) # Test individual columns for col in df: assert_eq(df[col].isnull(), gdf[col].isnull()) assert_eq(df[col].isna(), gdf[col].isna()) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_notna_notnull(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.notnull(), gdf.notnull()) assert_eq(df.notna(), gdf.notna()) # Test individual columns for col in df: assert_eq(df[col].notnull(), gdf[col].notnull()) assert_eq(df[col].notna(), gdf[col].notna()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series(dtype="float64") gs = cudf.Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "decimals", [ -3, 0, 5, pd.Series([1, 4, 3, -6], index=["w", "x", "y", "z"]), cudf.Series([-4, -2, 12], index=["x", "y", "z"]), {"w": -1, "x": 15, "y": 2}, ], ) def test_dataframe_round(decimals): pdf = pd.DataFrame( { "w": np.arange(0.5, 10.5, 1), "x": np.random.normal(-100, 100, 10), "y": np.array( [ 14.123, 2.343, np.nan, 0.0, -8.302, np.nan, 94.313, -112.236, -8.029, np.nan, ] ), "z": np.repeat([-0.6459412758761901], 10), } ) gdf = cudf.DataFrame.from_pandas(pdf) if isinstance(decimals, cudf.Series): pdecimals = decimals.to_pandas() else: pdecimals = decimals result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) # with nulls, maintaining existing null mask for c in pdf.columns: arr = pdf[c].to_numpy().astype("float64") # for pandas nulls arr.ravel()[np.random.choice(10, 5, replace=False)] = np.nan pdf[c] = gdf[c] = arr result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) for c in gdf.columns: np.array_equal(gdf[c].nullmask.to_array(), result[c].to_array()) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data).replace( [None], False ) gdata = cudf.Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data) gdata = cudf.Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = cudf.DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = cudf.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): col = column.as_column(cudf.Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float64")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = cudf.Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = cudf.Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([], dtype="float64") gds = cudf.Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = cudf.Series(column.as_column(cudf.Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="float32") ) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="str") ) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = cudf.Series( cudf.core.index.StringIndex(["1", "18", "9"]), dtype="int" ) assert_eq(pds, gds) def test_one_row_head(): gdf = cudf.DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas() head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = cudf.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = cudf.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = cudf.Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = cudf.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = cudf.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = cudf.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(cudf.Series(data, dtype="str"), cudf.Series(data).astype("str")) assert_eq( cudf.Series(data, dtype="category"), cudf.Series(data).astype("category"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="int32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="uint32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( cudf.Series(data, dtype="str"), cudf.Series(data, dtype="category").astype("str"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="category").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( cudf.Series([1, 2, None, 3], dtype="int32"), cudf.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( cudf.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), cudf.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( cudf.Series(["a", "b", "c", None], dtype="category").to_pandas(), cudf.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( cudf.Series(data), cudf.Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), cudf.from_pandas(pd.Series(data, dtype="datetime64[ns]")).astype( "category" ), ) def test_series_astype_null_categorical(): sr = cudf.Series([None, None, None], dtype="category") expect = cudf.Series([None, None, None], dtype="int32") got = sr.astype("int32") assert_eq(expect, got) @pytest.mark.parametrize( "data", [ ( pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ), [ pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ], ], ) def test_create_dataframe_from_list_like(data): pdf = pd.DataFrame(data, index=["count", "mean", "std", "min"]) gdf = cudf.DataFrame(data, index=["count", "mean", "std", "min"]) assert_eq(pdf, gdf) pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def test_create_dataframe_column(): pdf = pd.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) gdf = cudf.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) assert_eq(pdf, gdf) pdf = pd.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) gdf = cudf.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pd.Categorical(["a", "b", "c"]), ["m", "a", "d", "v"], ], ) def test_series_values_host_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) np.testing.assert_array_equal(pds.values, gds.values_host) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pytest.param( pd.Categorical(["a", "b", "c"]), marks=pytest.mark.xfail(raises=NotImplementedError), ), pytest.param( ["m", "a", "d", "v"], marks=pytest.mark.xfail(raises=NotImplementedError), ), ], ) def test_series_values_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) gds_vals = gds.values assert isinstance(gds_vals, cupy.ndarray) np.testing.assert_array_equal(gds_vals.get(), pds.values) @pytest.mark.parametrize( "data", [ {"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1.0, 2.0, 3.0], "B": [4.0, 5.0, 6.0]}, {"A": [1, 2, 3], "B": [1.0, 2.0, 3.0]}, {"A": np.float32(np.arange(3)), "B": np.float64(np.arange(3))}, pytest.param( {"A": [1, None, 3], "B": [1, 2, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [None, None, None], "B": [None, None, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [], "B": []}, marks=pytest.mark.xfail(reason="Requires at least 1 row"), ), pytest.param( {"A": [1, 2, 3], "B": ["a", "b", "c"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), pytest.param( {"A": pd.Categorical(["a", "b", "c"]), "B": ["d", "e", "f"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), ], ) def test_df_values_property(data): pdf = pd.DataFrame.from_dict(data) gdf = cudf.DataFrame.from_pandas(pdf) pmtr = pdf.values gmtr = gdf.values.get() np.testing.assert_array_equal(pmtr, gmtr) def test_value_counts(): pdf = pd.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) gdf = cudf.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) assert_eq( pdf.numeric.value_counts().sort_index(), gdf.numeric.value_counts().sort_index(), check_dtype=False, ) assert_eq( pdf.alpha.value_counts().sort_index(), gdf.alpha.value_counts().sort_index(), check_dtype=False, ) @pytest.mark.parametrize( "data", [ [], [0, 12, 14], [0, 14, 12, 12, 3, 10, 12, 14], np.random.randint(-100, 100, 200), pd.Series([0.0, 1.0, None, 10.0]), [None, None, None, None], [np.nan, None, -1, 2, 3], ], ) @pytest.mark.parametrize( "values", [ np.random.randint(-100, 100, 10), [], [np.nan, None, -1, 2, 3], [1.0, 12.0, None, None, 120], [0, 14, 12, 12, 3, 10, 12, 14, None], [None, None, None], ["0", "12", "14"], ["0", "12", "14", "a"], ], ) def test_isin_numeric(data, values): index = np.random.randint(0, 100, len(data)) psr = cudf.utils.utils._create_pandas_series(data=data, index=index) gsr = cudf.Series.from_pandas(psr, nan_as_null=False) expected = psr.isin(values) got = gsr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["2018-01-01", "2019-04-03", None, "2019-12-30"], dtype="datetime64[ns]", ), pd.Series( [ "2018-01-01", "2019-04-03", None, "2019-12-30", "2018-01-01", "2018-01-01", ], dtype="datetime64[ns]", ), ], ) @pytest.mark.parametrize( "values", [ [], [1514764800000000000, 1577664000000000000], [ 1514764800000000000, 1577664000000000000, 1577664000000000000, 1577664000000000000, 1514764800000000000, ], ["2019-04-03", "2019-12-30", "2012-01-01"], [ "2012-01-01", "2012-01-01", "2012-01-01", "2019-04-03", "2019-12-30", "2012-01-01", ], ], ) def test_isin_datetime(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["this", "is", None, "a", "test"]), pd.Series(["test", "this", "test", "is", None, "test", "a", "test"]), pd.Series(["0", "12", "14"]), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [None, None, None], ["12", "14", "19"], pytest.param( [12, 14, 19], marks=pytest.mark.xfail( not PANDAS_GE_120, reason="pandas's failure here seems like a bug(in < 1.2) " "given the reverse succeeds", ), ), ["is", "this", "is", "this", "is"], ], ) def test_isin_string(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["a", "b", "c", "c", "c", "d", "e"], dtype="category"), pd.Series(["a", "b", None, "c", "d", "e"], dtype="category"), pd.Series([0, 3, 10, 12], dtype="category"), pd.Series([0, 3, 10, 12, 0, 10, 3, 0, 0, 3, 3], dtype="category"), ], ) @pytest.mark.parametrize( "values", [ [], ["a", "b", None, "f", "words"], ["0", "12", None, "14"], [0, 10, 12, None, 39, 40, 1000], [0, 0, 0, 0, 3, 3, 3, None, 1, 2, 3], ], ) def test_isin_categorical(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["this", "is", None, "a", "test"], index=["a", "b", "c", "d", "e"] ), pd.Series([0, 15, 10], index=[0, None, 9]), pd.Series( range(25), index=pd.date_range( start="2019-01-01", end="2019-01-02", freq="H" ), ), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [0, 19, 13], ["2019-01-01 04:00:00", "2019-01-01 06:00:00", "2018-03-02"], ], ) def test_isin_index(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.index.isin(values) expected = psr.index.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color") ), pd.MultiIndex.from_arrays([[], []], names=("number", "color")), pd.MultiIndex.from_arrays( [[1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"]], names=("number", "color"), ), ], ) @pytest.mark.parametrize( "values,level,err", [ (["red", "orange", "yellow"], "color", None), (["red", "white", "yellow"], "color", None), ([0, 1, 2, 10, 11, 15], "number", None), ([0, 1, 2, 10, 11, 15], None, TypeError), (pd.Series([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 8, 11, 15]), "number", None), (pd.Index(["red", "white", "yellow"]), "color", None), ([(1, "red"), (3, "red")], None, None), (((1, "red"), (3, "red")), None, None), ( pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color"), ), None, None, ), ( pd.MultiIndex.from_arrays([[], []], names=("number", "color")), None, None, ), ( pd.MultiIndex.from_arrays( [ [1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"], ], names=("number", "color"), ), None, None, ), ], ) def test_isin_multiindex(data, values, level, err): pmdx = data gmdx = cudf.from_pandas(data) if err is None: expected = pmdx.isin(values, level=level) if isinstance(values, pd.MultiIndex): values = cudf.from_pandas(values) got = gmdx.isin(values, level=level) assert_eq(got, expected) else: assert_exceptions_equal( lfunc=pmdx.isin, rfunc=gmdx.isin, lfunc_args_and_kwargs=([values], {"level": level}), rfunc_args_and_kwargs=([values], {"level": level}), check_exception_type=False, expected_error_message=re.escape( "values need to be a Multi-Index or set/list-like tuple " "squences when `level=None`." ), ) @pytest.mark.parametrize( "data", [ pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [8, 2, 1, 0, 2, 4, 5], "num_wings": [2, 0, 2, 1, 2, 4, -1], } ), ], ) @pytest.mark.parametrize( "values", [ [0, 2], {"num_wings": [0, 3]}, pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), ["sparrow", "pigeon"], pd.Series(["sparrow", "pigeon"], dtype="category"), pd.Series([1, 2, 3, 4, 5]), "abc", 123, ], ) def test_isin_dataframe(data, values): pdf = data gdf = cudf.from_pandas(pdf) if cudf.utils.dtypes.is_scalar(values): assert_exceptions_equal( lfunc=pdf.isin, rfunc=gdf.isin, lfunc_args_and_kwargs=([values],), rfunc_args_and_kwargs=([values],), ) else: try: expected = pdf.isin(values) except ValueError as e: if str(e) == "Lengths must match.": pytest.xfail( not PANDAS_GE_110, "https://github.com/pandas-dev/pandas/issues/34256", ) if isinstance(values, (pd.DataFrame, pd.Series)): values = cudf.from_pandas(values) got = gdf.isin(values) assert_eq(got, expected) def test_constructor_properties(): df = cudf.DataFrame() key1 = "a" key2 = "b" val1 = np.array([123], dtype=np.float64) val2 = np.array([321], dtype=np.float64) df[key1] = val1 df[key2] = val2 # Correct use of _constructor (for DataFrame) assert_eq(df, df._constructor({key1: val1, key2: val2})) # Correct use of _constructor (for cudf.Series) assert_eq(df[key1], df[key2]._constructor(val1, name=key1)) # Correct use of _constructor_sliced (for DataFrame) assert_eq(df[key1], df._constructor_sliced(val1, name=key1)) # Correct use of _constructor_expanddim (for cudf.Series) assert_eq(df, df[key2]._constructor_expanddim({key1: val1, key2: val2})) # Incorrect use of _constructor_sliced (Raises for cudf.Series) with pytest.raises(NotImplementedError): df[key1]._constructor_sliced # Incorrect use of _constructor_expanddim (Raises for DataFrame) with pytest.raises(NotImplementedError): df._constructor_expanddim @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", ALL_TYPES) def test_df_astype_numeric_to_all(dtype, as_dtype): if "uint" in dtype: data = [1, 2, None, 4, 7] elif "int" in dtype or "longlong" in dtype: data = [1, 2, None, 4, -7] elif "float" in dtype: data = [1.0, 2.0, None, 4.0, np.nan, -7.0] gdf = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype=dtype) gdf["bar"] = cudf.Series(data, dtype=dtype) insert_data = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = insert_data.astype(as_dtype) expect["bar"] = insert_data.astype(as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_df_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: # change None to "NaT" after this issue is fixed: # https://github.com/rapidsai/cudf/issues/5117 data = ["2001-01-01", "2002-02-02", "2000-01-05", None] elif as_dtype == "int32": data = [1, 2, 3] elif as_dtype == "category": data = ["1", "2", "3", None] elif "float" in as_dtype: data = [1.0, 2.0, 3.0, np.nan] insert_data = cudf.Series.from_pandas(pd.Series(data, dtype="str")) expect_data = cudf.Series(data, dtype=as_dtype) gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = insert_data gdf["bar"] = insert_data expect["foo"] = expect_data expect["bar"] = expect_data got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int64", "datetime64[s]", "datetime64[us]", "datetime64[ns]", "str", "category", ], ) def test_df_astype_datetime_to_other(as_dtype): data = [ "1991-11-20 00:00:00.000", "2004-12-04 00:00:00.000", "2016-09-13 00:00:00.000", None, ] gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype="datetime64[ms]") gdf["bar"] = cudf.Series(data, dtype="datetime64[ms]") if as_dtype == "int64": expect["foo"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) expect["bar"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) elif as_dtype == "str": expect["foo"] = cudf.Series(data, dtype="str") expect["bar"] = cudf.Series(data, dtype="str") elif as_dtype == "category": expect["foo"] = cudf.Series(gdf["foo"], dtype="category") expect["bar"] = cudf.Series(gdf["bar"], dtype="category") else: expect["foo"] = cudf.Series(data, dtype=as_dtype) expect["bar"] = cudf.Series(data, dtype=as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_df_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf.astype(as_dtype), gdf.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_df_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( pdf.astype(ordered_dtype_pd).astype("int32"), gdf.astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize( "dtype,args", [(dtype, {}) for dtype in ALL_TYPES] + [("category", {"ordered": True}), ("category", {"ordered": False})], ) def test_empty_df_astype(dtype, args): df = cudf.DataFrame() kwargs = {} kwargs.update(args) assert_eq(df, df.astype(dtype=dtype, **kwargs)) @pytest.mark.parametrize( "errors", [ pytest.param( "raise", marks=pytest.mark.xfail(reason="should raise error here") ), pytest.param("other", marks=pytest.mark.xfail(raises=ValueError)), "ignore", pytest.param( "warn", marks=pytest.mark.filterwarnings("ignore:Traceback") ), ], ) def test_series_astype_error_handling(errors): sr = cudf.Series(["random", "words"]) got = sr.astype("datetime64", errors=errors) assert_eq(sr, got) @pytest.mark.parametrize("dtype", ALL_TYPES) def test_df_constructor_dtype(dtype): if "datetime" in dtype: data = ["1991-11-20", "2004-12-04", "2016-09-13", None] elif dtype == "str": data = ["a", "b", "c", None] elif "float" in dtype: data = [1.0, 0.5, -1.1, np.nan, None] elif "bool" in dtype: data = [True, False, None] else: data = [1, 2, 3, None] sr = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = sr expect["bar"] = sr got = cudf.DataFrame({"foo": data, "bar": data}, dtype=dtype) assert_eq(expect, got) @pytest.mark.parametrize( "data", [ cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": int} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": str} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": bool, "b": int, "c": float, "d": str} ), cudf.DataFrame(), cudf.DataFrame({"a": [0, 1, 2], "b": [1, None, 3]}), cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ), cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False ), } ), ], ) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops(data, op, skipna): gdf = data pdf = gdf.to_pandas() if op in ("var", "std"): expected = getattr(pdf, op)(axis=1, ddof=0, skipna=skipna) got = getattr(gdf, op)(axis=1, ddof=0, skipna=skipna) else: expected = getattr(pdf, op)(axis=1, skipna=skipna) got = getattr(gdf, op)(axis=1, skipna=skipna) assert_eq(expected, got, check_exact=False) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) def test_rowwise_ops_nullable_dtypes_all_null(op): gdf = cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ) expected = cudf.Series([None, None, None, None], dtype="float64") if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series( [10.0, None, np.NaN, 2234.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "min", cudf.Series( [10.0, None, np.NaN, 13.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "sum", cudf.Series( [20.0, None, np.NaN, 2247.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "product", cudf.Series( [100.0, None, np.NaN, 29042.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "mean", cudf.Series( [10.0, None, np.NaN, 1123.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "var", cudf.Series( [0.0, None, np.NaN, 1233210.25, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "std", cudf.Series( [0.0, None, np.NaN, 1110.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ], ) def test_rowwise_ops_nullable_dtypes_partial_null(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series([10, None, None, 2234, None, 453], dtype="int64",), ), ("min", cudf.Series([10, None, None, 13, None, 15], dtype="int64",),), ( "sum", cudf.Series([20, None, None, 2247, None, 468], dtype="int64",), ), ( "product", cudf.Series([100, None, None, 29042, None, 6795], dtype="int64",), ), ( "mean", cudf.Series( [10.0, None, None, 1123.5, None, 234.0], dtype="float32", ), ), ( "var", cudf.Series( [0.0, None, None, 1233210.25, None, 47961.0], dtype="float32", ), ), ( "std", cudf.Series( [0.0, None, None, 1110.5, None, 219.0], dtype="float32", ), ), ], ) def test_rowwise_ops_nullable_int_dtypes(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, None, 13, None, 15], "b": cudf.Series( [10, None, 323, 2234, None, 453], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ns]" ), "t3": cudf.Series( ["1960-08-31 06:00:00", "2030-08-02 10:00:00"], dtype="<M8[s]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[us]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series(["1940-08-31 06:00:00", None], dtype="<M8[ms]"), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), "b1": cudf.Series([True, False], dtype="bool"), }, ], ) @pytest.mark.parametrize("op", ["max", "min"]) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops_datetime_dtypes(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data,op,skipna", [ ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "max", True, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", False, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", True, ), ], ) def test_rowwise_ops_datetime_dtypes_2(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ ( { "t1": pd.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ns]", ), "t2": pd.Series( ["1940-08-31 06:00:00", pd.NaT], dtype="<M8[ns]" ), } ) ], ) def test_rowwise_ops_datetime_dtypes_pdbug(data): pdf = pd.DataFrame(data) gdf = cudf.from_pandas(pdf) expected = pdf.max(axis=1, skipna=False) got = gdf.max(axis=1, skipna=False) if PANDAS_GE_120: assert_eq(got, expected) else: # PANDAS BUG: https://github.com/pandas-dev/pandas/issues/36907 with pytest.raises(AssertionError, match="numpy array are different"): assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [5.0, 6.0, 7.0], "single value", np.array(1, dtype="int64"), np.array(0.6273643, dtype="float64"), ], ) def test_insert(data): pdf = pd.DataFrame.from_dict({"A": [1, 2, 3], "B": ["a", "b", "c"]}) gdf = cudf.DataFrame.from_pandas(pdf) # insertion by index pdf.insert(0, "foo", data) gdf.insert(0, "foo", data) assert_eq(pdf, gdf) pdf.insert(3, "bar", data) gdf.insert(3, "bar", data) assert_eq(pdf, gdf) pdf.insert(1, "baz", data) gdf.insert(1, "baz", data) assert_eq(pdf, gdf) # pandas insert doesn't support negative indexing pdf.insert(len(pdf.columns), "qux", data) gdf.insert(-1, "qux", data) assert_eq(pdf, gdf) def test_cov(): gdf = cudf.datasets.randomdata(10) pdf = gdf.to_pandas() assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.xfail(reason="cupy-based cov does not support nulls") def test_cov_nans(): pdf = pd.DataFrame() pdf["a"] = [None, None, None, 2.00758632, None] pdf["b"] = [0.36403686, None, None, None, None] pdf["c"] = [None, None, None, 0.64882227, None] pdf["d"] = [None, -1.46863125, None, 1.22477948, -0.06031689] gdf = cudf.from_pandas(pdf) assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.parametrize( "gsr", [ cudf.Series([4, 2, 3]), cudf.Series([4, 2, 3], index=["a", "b", "c"]), cudf.Series([4, 2, 3], index=["a", "b", "d"]), cudf.Series([4, 2], index=["a", "b"]), cudf.Series([4, 2, 3], index=cudf.core.index.RangeIndex(0, 3)), pytest.param( cudf.Series([4, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"]), marks=pytest.mark.xfail, ), ], ) @pytest.mark.parametrize("colnames", [["a", "b", "c"], [0, 1, 2]]) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_df_sr_binop(gsr, colnames, op): data = [[3.0, 2.0, 5.0], [3.0, None, 5.0], [6.0, 7.0, np.nan]] data = dict(zip(colnames, data)) gsr = gsr.astype("float64") gdf = cudf.DataFrame(data) pdf = gdf.to_pandas(nullable=True) psr = gsr.to_pandas(nullable=True) expect = op(pdf, psr) got = op(gdf, gsr).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) expect = op(psr, pdf) got = op(gsr, gdf).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, # comparison ops will temporarily XFAIL # see PR https://github.com/rapidsai/cudf/pull/7491 pytest.param(operator.eq, marks=pytest.mark.xfail()), pytest.param(operator.lt, marks=pytest.mark.xfail()), pytest.param(operator.le, marks=pytest.mark.xfail()), pytest.param(operator.gt, marks=pytest.mark.xfail()), pytest.param(operator.ge, marks=pytest.mark.xfail()), pytest.param(operator.ne, marks=pytest.mark.xfail()), ], ) @pytest.mark.parametrize( "gsr", [cudf.Series([1, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"])] ) def test_df_sr_binop_col_order(gsr, op): colnames = [0, 1, 2] data = [[0, 2, 5], [3, None, 5], [6, 7, np.nan]] data = dict(zip(colnames, data)) gdf = cudf.DataFrame(data) pdf = pd.DataFrame.from_dict(data) psr = gsr.to_pandas() expect = op(pdf, psr).astype("float") out = op(gdf, gsr).astype("float") got = out[expect.columns] assert_eq(expect, got) @pytest.mark.parametrize("set_index", [None, "A", "C", "D"]) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize("deep", [True, False]) def test_memory_usage(deep, index, set_index): # Testing numerical/datetime by comparing with pandas # (string and categorical columns will be different) rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int64"), "B": np.arange(rows, dtype="int32"), "C": np.arange(rows, dtype="float64"), } ) df["D"] = pd.to_datetime(df.A) if set_index: df = df.set_index(set_index) gdf = cudf.from_pandas(df) if index and set_index is None: # Special Case: Assume RangeIndex size == 0 assert gdf.index.memory_usage(deep=deep) == 0 else: # Check for Series only assert df["B"].memory_usage(index=index, deep=deep) == gdf[ "B" ].memory_usage(index=index, deep=deep) # Check for entire DataFrame assert_eq( df.memory_usage(index=index, deep=deep).sort_index(), gdf.memory_usage(index=index, deep=deep).sort_index(), ) @pytest.mark.xfail def test_memory_usage_string(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) gdf = cudf.from_pandas(df) # Check deep=False (should match pandas) assert gdf.B.memory_usage(deep=False, index=False) == df.B.memory_usage( deep=False, index=False ) # Check string column assert gdf.B.memory_usage(deep=True, index=False) == df.B.memory_usage( deep=True, index=False ) # Check string index assert gdf.set_index("B").index.memory_usage( deep=True ) == df.B.memory_usage(deep=True, index=False) def test_memory_usage_cat(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) df["B"] = df.B.astype("category") gdf = cudf.from_pandas(df) expected = ( gdf.B._column.cat().categories.__sizeof__() + gdf.B._column.cat().codes.__sizeof__() ) # Check cat column assert gdf.B.memory_usage(deep=True, index=False) == expected # Check cat index assert gdf.set_index("B").index.memory_usage(deep=True) == expected def test_memory_usage_list(): df = cudf.DataFrame({"A": [[0, 1, 2, 3], [4, 5, 6], [7, 8], [9]]}) expected = ( df.A._column.offsets._memory_usage() + df.A._column.elements._memory_usage() ) assert expected == df.A.memory_usage() @pytest.mark.xfail def test_memory_usage_multi(): rows = int(100) deep = True df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(np.arange(3, dtype="int64"), rows), "C": np.random.choice(np.arange(3, dtype="float64"), rows), } ).set_index(["B", "C"]) gdf = cudf.from_pandas(df) # Assume MultiIndex memory footprint is just that # of the underlying columns, levels, and codes expect = rows * 16 # Source Columns expect += rows * 16 # Codes expect += 3 * 8 # Level 0 expect += 3 * 8 # Level 1 assert expect == gdf.index.memory_usage(deep=deep) @pytest.mark.parametrize( "list_input", [ pytest.param([1, 2, 3, 4], id="smaller"), pytest.param([1, 2, 3, 4, 5, 6], id="larger"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_list(list_input, key): gdf = cudf.datasets.randomdata(5) with pytest.raises( ValueError, match=("All columns must be of equal length") ): gdf[key] = list_input @pytest.mark.parametrize( "series_input", [ pytest.param(cudf.Series([1, 2, 3, 4]), id="smaller_cudf"), pytest.param(cudf.Series([1, 2, 3, 4, 5, 6]), id="larger_cudf"), pytest.param(cudf.Series([1, 2, 3], index=[4, 5, 6]), id="index_cudf"), pytest.param(pd.Series([1, 2, 3, 4]), id="smaller_pandas"), pytest.param(pd.Series([1, 2, 3, 4, 5, 6]), id="larger_pandas"), pytest.param(pd.Series([1, 2, 3], index=[4, 5, 6]), id="index_pandas"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_series(series_input, key): gdf = cudf.datasets.randomdata(5) pdf = gdf.to_pandas() pandas_input = series_input if isinstance(pandas_input, cudf.Series): pandas_input = pandas_input.to_pandas() expect = pdf expect[key] = pandas_input got = gdf got[key] = series_input # Pandas uses NaN and typecasts to float64 if there's missing values on # alignment, so need to typecast to float64 for equality comparison expect = expect.astype("float64") got = got.astype("float64") assert_eq(expect, got) def test_tupleize_cols_False_set(): pdf = pd.DataFrame() gdf = cudf.DataFrame() pdf[("a", "b")] = [1] gdf[("a", "b")] = [1] assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_init_multiindex_from_dict(): pdf = pd.DataFrame({("a", "b"): [1]}) gdf = cudf.DataFrame({("a", "b"): [1]}) assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_change_column_dtype_in_empty(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) assert_eq(pdf, gdf) pdf["b"] = pdf["b"].astype("int64") gdf["b"] = gdf["b"].astype("int64") assert_eq(pdf, gdf) def test_dataframe_from_table_empty_index(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) odict = df._data tbl = cudf._lib.table.Table(odict) result = cudf.DataFrame._from_table(tbl) # noqa: F841 @pytest.mark.parametrize("dtype", ["int64", "str"]) def test_dataframe_from_dictionary_series_same_name_index(dtype): pd_idx1 = pd.Index([1, 2, 0], name="test_index").astype(dtype) pd_idx2 = pd.Index([2, 0, 1], name="test_index").astype(dtype) pd_series1 = pd.Series([1, 2, 3], index=pd_idx1) pd_series2 = pd.Series([1, 2, 3], index=pd_idx2) gd_idx1 = cudf.from_pandas(pd_idx1) gd_idx2 = cudf.from_pandas(pd_idx2) gd_series1 = cudf.Series([1, 2, 3], index=gd_idx1) gd_series2 = cudf.Series([1, 2, 3], index=gd_idx2) expect = pd.DataFrame({"a": pd_series1, "b": pd_series2}) got = cudf.DataFrame({"a": gd_series1, "b": gd_series2}) if dtype == "str": # Pandas actually loses its index name erroneously here... expect.index.name = "test_index" assert_eq(expect, got) assert expect.index.names == got.index.names @pytest.mark.parametrize( "arg", [slice(2, 8, 3), slice(1, 20, 4), slice(-2, -6, -2)] ) def test_dataframe_strided_slice(arg): mul = pd.DataFrame( { "Index": [1, 2, 3, 4, 5, 6, 7, 8, 9], "AlphaIndex": ["a", "b", "c", "d", "e", "f", "g", "h", "i"], } ) pdf = pd.DataFrame( {"Val": [10, 9, 8, 7, 6, 5, 4, 3, 2]}, index=pd.MultiIndex.from_frame(mul), ) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf[arg] got = gdf[arg] assert_eq(expect, got) @pytest.mark.parametrize( "data,condition,other,error", [ (pd.Series(range(5)), pd.Series(range(5)) > 0, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, 10, None), ( pd.Series(range(5)), pd.Series(range(5)) > 1, pd.Series(range(5, 10)), None, ), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) % 3 ) == 0, -pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) == 4, None, None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) != 4, None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [True, True, True, False], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True, True, False], [True, True, True, False]], None, ValueError, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cuda.to_device( np.array( [[True, True], [False, True], [True, False], [False, True]] ) ), None, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), cupy.array( [[True, True], [False, True], [True, False], [False, True]] ), 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [[True, True], [False, True], [True, False], [False, True]], 17, None, ), ( pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]}), [ [True, True, False, True], [True, True, False, True], [True, True, False, True], [True, True, False, True], ], None, ValueError, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) == 4, None, None, ), ( pd.Series([1, 2, np.nan]), pd.Series([1, 2, np.nan]) != 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) == 4, None, None, ), ( pd.Series([4, np.nan, 6]), pd.Series([4, np.nan, 6]) != 4, None, None, ), ( pd.Series([4, np.nan, 6], dtype="category"), pd.Series([4, np.nan, 6], dtype="category") != 4, None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", None, None, ), ( pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category"), pd.Series(["a", "b", "b", "d", "c", "s"], dtype="category") == "b", "s", None, ), ( pd.Series([1, 2, 3, 2, 5]), pd.Series([1, 2, 3, 2, 5]) == 2, pd.DataFrame( { "a": pd.Series([1, 2, 3, 2, 5]), "b": pd.Series([1, 2, 3, 2, 5]), } ), NotImplementedError, ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_df_sr_mask_where(data, condition, other, error, inplace): ps_where = data gs_where = cudf.from_pandas(data) ps_mask = ps_where.copy(deep=True) gs_mask = gs_where.copy(deep=True) if hasattr(condition, "__cuda_array_interface__"): if type(condition).__module__.split(".")[0] == "cupy": ps_condition = cupy.asnumpy(condition) else: ps_condition = np.array(condition).astype("bool") else: ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other if error is None: expect_where = ps_where.where( ps_condition, other=ps_other, inplace=inplace ) got_where = gs_where.where( gs_condition, other=gs_other, inplace=inplace ) expect_mask = ps_mask.mask( ps_condition, other=ps_other, inplace=inplace ) got_mask = gs_mask.mask(gs_condition, other=gs_other, inplace=inplace) if inplace: expect_where = ps_where got_where = gs_where expect_mask = ps_mask got_mask = gs_mask if pd.api.types.is_categorical_dtype(expect_where): np.testing.assert_array_equal( expect_where.cat.codes, got_where.cat.codes.astype(expect_where.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_where.cat.categories, got_where.cat.categories) np.testing.assert_array_equal( expect_mask.cat.codes, got_mask.cat.codes.astype(expect_mask.cat.codes.dtype) .fillna(-1) .to_array(), ) assert_eq(expect_mask.cat.categories, got_mask.cat.categories) else: assert_eq( expect_where.fillna(-1), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1), got_mask.fillna(-1), check_dtype=False ) else: assert_exceptions_equal( lfunc=ps_where.where, rfunc=gs_where.where, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False if error is NotImplementedError else True, ) assert_exceptions_equal( lfunc=ps_mask.mask, rfunc=gs_mask.mask, lfunc_args_and_kwargs=( [ps_condition], {"other": ps_other, "inplace": inplace}, ), rfunc_args_and_kwargs=( [gs_condition], {"other": gs_other, "inplace": inplace}, ), compare_error_message=False, ) @pytest.mark.parametrize( "data,condition,other,has_cat", [ ( pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ), pd.DataFrame( { "a": pd.Series(["a", "a", "b", "c", "a", "d", "d", "a"]), "b": pd.Series(["o", "p", "q", "e", "p", "p", "a", "a"]), } ) != "a", None, None, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", None, True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) != "a", "a", True, ), ( pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ), pd.DataFrame( { "a": pd.Series( ["a", "a", "b", "c", "a", "d", "d", "a"], dtype="category", ), "b": pd.Series( ["o", "p", "q", "e", "p", "p", "a", "a"], dtype="category", ), } ) == "a", "a", True, ), ], ) def test_df_string_cat_types_mask_where(data, condition, other, has_cat): ps = data gs = cudf.from_pandas(data) ps_condition = condition if type(condition).__module__.split(".")[0] == "pandas": gs_condition = cudf.from_pandas(condition) else: gs_condition = condition ps_other = other if type(other).__module__.split(".")[0] == "pandas": gs_other = cudf.from_pandas(other) else: gs_other = other expect_where = ps.where(ps_condition, other=ps_other) got_where = gs.where(gs_condition, other=gs_other) expect_mask = ps.mask(ps_condition, other=ps_other) got_mask = gs.mask(gs_condition, other=gs_other) if has_cat is None: assert_eq( expect_where.fillna(-1).astype("str"), got_where.fillna(-1), check_dtype=False, ) assert_eq( expect_mask.fillna(-1).astype("str"), got_mask.fillna(-1), check_dtype=False, ) else: assert_eq(expect_where, got_where, check_dtype=False) assert_eq(expect_mask, got_mask, check_dtype=False) @pytest.mark.parametrize( "data,expected_upcast_type,error", [ ( pd.Series([random.random() for _ in range(10)], dtype="float32"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float16"), np.dtype("float32"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float64"), np.dtype("float64"), None, ), ( pd.Series([random.random() for _ in range(10)], dtype="float128"), None, NotImplementedError, ), ], ) def test_from_pandas_unsupported_types(data, expected_upcast_type, error): pdf = pd.DataFrame({"one_col": data}) if error == NotImplementedError: with pytest.raises(error): cudf.from_pandas(data) with pytest.raises(error): cudf.Series(data) with pytest.raises(error): cudf.from_pandas(pdf) with pytest.raises(error): cudf.DataFrame(pdf) else: df = cudf.from_pandas(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.Series(data) assert_eq(data, df, check_dtype=False) assert df.dtype == expected_upcast_type df = cudf.from_pandas(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type df = cudf.DataFrame(pdf) assert_eq(pdf, df, check_dtype=False) assert df["one_col"].dtype == expected_upcast_type @pytest.mark.parametrize("nan_as_null", [True, False]) @pytest.mark.parametrize("index", [None, "a", ["a", "b"]]) def test_from_pandas_nan_as_null(nan_as_null, index): data = [np.nan, 2.0, 3.0] if index is None: pdf = pd.DataFrame({"a": data, "b": data}) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) else: pdf = pd.DataFrame({"a": data, "b": data}).set_index(index) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = cudf.DataFrame( { "a": column.as_column(data, nan_as_null=nan_as_null), "b": column.as_column(data, nan_as_null=nan_as_null), } ) expected = expected.set_index(index) got = cudf.from_pandas(pdf, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("nan_as_null", [True, False]) def test_from_pandas_for_series_nan_as_null(nan_as_null): data = [np.nan, 2.0, 3.0] psr = pd.Series(data) expected = cudf.Series(column.as_column(data, nan_as_null=nan_as_null)) got = cudf.from_pandas(psr, nan_as_null=nan_as_null) assert_eq(expected, got) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_copy(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype="float", copy=copy), pdf.astype(dtype="float", copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype="float", copy=copy), psr.astype(dtype="float", copy=copy), ) assert_eq(gsr, psr) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype(dtype="int64", copy=copy) expected = psr.astype(dtype="int64", copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize("copy", [True, False]) def test_df_series_dataframe_astype_dtype_dict(copy): gdf = cudf.DataFrame({"col1": [1, 2], "col2": [3, 4]}) pdf = gdf.to_pandas() assert_eq( gdf.astype(dtype={"col1": "float"}, copy=copy), pdf.astype(dtype={"col1": "float"}, copy=copy), ) assert_eq(gdf, pdf) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() assert_eq( gsr.astype(dtype={None: "float"}, copy=copy), psr.astype(dtype={None: "float"}, copy=copy), ) assert_eq(gsr, psr) assert_exceptions_equal( lfunc=psr.astype, rfunc=gsr.astype, lfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), rfunc_args_and_kwargs=([], {"dtype": {"a": "float"}, "copy": copy}), ) gsr = cudf.Series([1, 2]) psr = gsr.to_pandas() actual = gsr.astype({None: "int64"}, copy=copy) expected = psr.astype({None: "int64"}, copy=copy) assert_eq(expected, actual) assert_eq(gsr, psr) actual[0] = 3 expected[0] = 3 assert_eq(gsr, psr) @pytest.mark.parametrize( "data,columns", [ ([1, 2, 3, 100, 112, 35464], ["a"]), (range(100), None), ([], None), ((-10, 21, 32, 32, 1, 2, 3), ["p"]), ((), None), ([[1, 2, 3], [1, 2, 3]], ["col1", "col2", "col3"]), ([range(100), range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3), (1, 2, 3)), ["tuple0", "tuple1", "tuple2"]), ([[1, 2, 3]], ["list col1", "list col2", "list col3"]), ([range(100)], ["range" + str(i) for i in range(100)]), (((1, 2, 3),), ["k1", "k2", "k3"]), ], ) def test_dataframe_init_1d_list(data, columns): expect = pd.DataFrame(data, columns=columns) actual = cudf.DataFrame(data, columns=columns) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) expect = pd.DataFrame(data, columns=None) actual = cudf.DataFrame(data, columns=None) assert_eq( expect, actual, check_index_type=False if len(data) == 0 else True ) @pytest.mark.parametrize( "data,cols,index", [ ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], ["a", "b", "c", "d"], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 20, 30, 10], ), ( np.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "b"], [0, 1, 2, 3], ), (np.array([11, 123, -2342, 232]), ["a"], [1, 2, 11, 12]), (np.array([11, 123, -2342, 232]), ["a"], ["khsdjk", "a", "z", "kk"]), ( cupy.ndarray(shape=(4, 2), dtype=float, order="F"), ["a", "z"], ["a", "z", "a", "z"], ), (cupy.array([11, 123, -2342, 232]), ["z"], [0, 1, 1, 0]), (cupy.array([11, 123, -2342, 232]), ["z"], [1, 2, 3, 4]), (cupy.array([11, 123, -2342, 232]), ["z"], ["a", "z", "d", "e"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (np.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], ["a", "b"]), (cupy.random.randn(2, 4), ["a", "b", "c", "d"], [1, 0]), ], ) def test_dataframe_init_from_arrays_cols(data, cols, index): gd_data = data if isinstance(data, cupy.core.ndarray): # pandas can't handle cupy arrays in general pd_data = data.get() # additional test for building DataFrame with gpu array whose # cuda array interface has no `descr` attribute numba_data = cuda.as_cuda_array(data) else: pd_data = data numba_data = None # verify with columns & index pdf =
pd.DataFrame(pd_data, columns=cols, index=index)
pandas.DataFrame
import datetime from unittest import TestCase import numpy as np import pandas as pd from mlnext import pipeline class TestColumnSelector(TestCase): def setUp(self): data = np.arange(8).reshape(-1, 2) cols = ['a', 'b'] self.df = pd.DataFrame(data, columns=cols) def test_select_columns(self): t = pipeline.ColumnSelector(keys=['a']) expected = self.df.loc[:, ['a']] result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) class TestColumnDropper(TestCase): def setUp(self): data = np.arange(8).reshape(-1, 2) cols = ['a', 'b'] self.df = pd.DataFrame(data, columns=cols) def test_drop_columns(self): t = pipeline.ColumnDropper(columns=['b']) expected = self.df.loc[:, ['a']] result = t.fit_transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_drop_columns_verbose(self): t = pipeline.ColumnDropper(columns=['b'], verbose=True) expected = self.df.loc[:, ['a']] result = t.transform(self.df) pd.testing.assert_frame_equal(result, expected) def test_drop__missing_columns(self): t = pipeline.ColumnDropper(columns=['c']) with self.assertWarns(Warning): t.transform(self.df) class TestColumnRename(TestCase): def test_rename_columns(self): t = pipeline.ColumnRename(lambda x: x.split('.')[-1]) df = pd.DataFrame(columns=['a.b.c', 'd.e.f']) expected = pd.DataFrame(columns=['c', 'f']) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestNaDropper(TestCase): def test_drop_na(self): t = pipeline.NaDropper() df = pd.DataFrame([1, 0, pd.NA]) expected = pd.DataFrame([1, 0], dtype=object) result = t.fit_transform(df) pd.testing.assert_frame_equal(result, expected) class TestClip(TestCase): def test_clip(self): t = pipeline.Clip(lower=0.5, upper=1.5) df =
pd.DataFrame([[0.1, 0.4, 0.6, 0.8, 1.2, 1.5]])
pandas.DataFrame
def is_sha1(maybe_sha): if len(maybe_sha) != 40: return False try: sha_int = int(maybe_sha, 16) except ValueError: return False return True def validate(date_text): try: datetime.datetime.strptime(date_text, '%d-%m-%Y:%S-%M-%H') return True except ValueError: return False from flask_cors import CORS from flask import Flask, render_template, Response, request, jsonify import pandas as pd import os import json import shutil import datetime import base64 import binascii import datetime import requests as r LOGIN_FILE_NAME = "login.csv" DB = "templates/images" GLOBAL_LIST = "acts.csv" IP = "192.168.127.12:80" INSTANCE_IP = "192.168.3.11" count_requests = 0 #IP = "127.0.0.1:5000" app = Flask(__name__) CORS(app) @app.errorhandler(405) def method_not_allowed(e): global count_requests count_requests += 1 return jsonify({'error': 405}), 405 @app.route("/") def index(): return render_template('index.html') @app.route("/api/v1/categories", methods = ["GET", "POST"]) def list_categories(): global count_requests count_requests += 1 if not os.path.exists(DB): os.makedirs(DB, exist_ok = True) if request.method == 'GET': categories = os.listdir(DB) if not categories: return Response('{}', status=204, mimetype='application/json') response_data = {} for category in categories: response_data[category] = len(os.listdir(DB + "/" + category)) return jsonify(response_data) elif request.method == "POST": category = json.loads(request.data)[0] if category in os.listdir(DB): return Response('{}', status=400, mimetype='application/json') os.makedirs(DB + "/" + category, exist_ok = True) return Response('{}', status=201, mimetype='application/json') else: return Response('{}', status=405, mimetype='application/json') @app.route("/api/v1/categories/<category>", methods = ["DELETE"]) def delete_category(category = None): global count_requests count_requests += 1 if request.method == 'DELETE': categories = os.listdir(DB) if category in categories: if GLOBAL_LIST in os.listdir(): data =
pd.read_csv(GLOBAL_LIST)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed Jul 14 11:05:32 2021 Data Source: https://www.kaggle.com/nandalald/turkey-price @author: Ashish """ import pandas as pd import matplotlib.pyplot as plt # load data df1 = pd.read_csv('../../data/kaggle_turkey_foodprice_train.csv') df2 = pd.read_csv('../../data/kaggle_turkey_foodprice_test.csv') # merge the data frames print(df1.shape, df2.shape) df = pd.concat([df1,df2]) print(df.shape) # data cleaning ## replace redundant values from column # reference: https://stackoverflow.com/questions/33413249/how-to-remove-string-value-from-column-in-pandas-dataframe df['ProductName'] = df.ProductName.str.replace('- Retail','') print(df.head(5)) ## filter values df = df.query("Place != 'National Average'") print(df.head(5)) print(df.dtypes) # univariate plotting # convert object dtypes to categorical ## reference: https://stackoverflow.com/questions/52404971/get-a-list-of-categories-of-categorical-variable-python-pandas ## TODO: convert all object dtypes to categorical df['ProductName'] =
pd.Categorical(df['ProductName'])
pandas.Categorical
import time, glob, os import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns def load_csv(exp_dir): res_l = [] tim_l = [] for file in sorted(glob.glob(exp_dir + '/res/res*.csv')): res = pd.read_csv(file, index_col=[0, 1], header=[0, 1]) res = res.groupby(by='call', axis=0).median() res_l.append(res.reset_index()) for file in sorted(glob.glob(exp_dir + '/res/time*.csv')): tim = pd.read_csv(file, index_col=[0], header=[0]) # tim = tim.groupby(by='call', axis=0).median() tim_l.append(tim.reset_index()) # res = pd.read_csv(exp_dir+'/res/res*.csv', index_col=[0, 1], header=[0, 1]) # tim = pd.read_csv(exp_dir+'/res/time*.csv', index_col=[0], header=[0]) name = glob.glob(exp_dir + '/*.yaml') return
pd.concat(res_l)
pandas.concat
import datetime import re from itertools import islice import numpy as np import pandas as pd from bs4 import BeautifulSoup from dateutil.parser import parse as d from utils_pandas import daterange from utils_pandas import export from utils_scraping import any_in from utils_scraping import camelot_cache from utils_scraping import get_next_number from utils_scraping import get_next_numbers from utils_scraping import logger from utils_scraping import MAX_DAYS from utils_scraping import NUM_OR_DASH from utils_scraping import pairwise from utils_scraping import parse_file from utils_scraping import parse_numbers from utils_scraping import seperate from utils_scraping import split from utils_scraping import strip from utils_scraping import USE_CACHE_DATA from utils_scraping import web_files from utils_thai import file2date from utils_thai import find_thai_date from utils_thai import get_province from utils_thai import join_provinces from utils_thai import parse_gender from utils_thai import today def briefing_case_detail_lines(soup): parts = soup.find_all('p') parts = [c for c in [c.strip() for c in [c.get_text() for c in parts]] if c] maintitle, parts = seperate(parts, lambda x: "วันที่" in x) if not maintitle or "ผู้ป่วยรายใหม่ประเทศไทย" not in maintitle[0]: return # footer, parts = seperate(parts, lambda x: "กรมควบคุมโรค กระทรวงสาธารณสุข" in x) table = list(split(parts, re.compile(r"^\w*[0-9]+\.").match)) if len(table) == 2: # titles at the end table, titles = table table = [titles, table] else: table.pop(0) # if only one table we can use camelot to get the table. will be slow but less problems # ctable = camelot.read_pdf(file, pages="6", process_background=True)[0].df for titles, cells in pairwise(table): title = titles[0].strip("(ต่อ)").strip() header, cells = seperate(cells, re.compile("ลักษณะผู้ติดเชื้อ").search) # "อยู่ระหว่างสอบสวน (93 ราย)" on 2021-04-05 screws things up as its not a province # have to use look behind thai = r"[\u0E00-\u0E7Fa-zA-Z'. ]+[\u0E00-\u0E7Fa-zA-Z'.]" not_prov = r"(?<!อยู่ระหว่างสอบสวน)(?<!ยู่ระหว่างสอบสวน)(?<!ระหว่างสอบสวน)" provish = f"{thai}{not_prov}" nl = " *\n* *" nu = "(?:[0-9]+)" is_pcell = re.compile(rf"({provish}(?:{nl}\({provish}\))?{nl}\( *{nu} *ราย *\))") lines = pairwise(islice(is_pcell.split("\n".join(cells)), 1, None)) # because can be split over <p> yield title, lines def briefing_case_detail(date, pages): num_people = re.compile(r"([0-9]+) *ราย") totals = dict() # groupname -> running total all_cells = {} rows = [] if date <= d("2021-02-26"): # missing 2nd page of first lot (1.1) pages = [] for soup in pages: for title, lines in briefing_case_detail_lines(soup): if "ติดเชื้อจากต่างประเทศ" in title: # imported continue elif "การคัดกรองเชิงรุก" in title: case_type = "Proactive" elif "เดินทางมาจากต่างประเทศ" in title: # case_type = "Quarantine" continue # just care about province cases for now # if re.search("(จากระบบเฝ้าระวัง|ติดเชื้อในประเทศ)", title): else: case_type = "Walkin" all_cells.setdefault(title, []).append(lines) # print(title,case_type) for prov_num, line in lines: # for prov in provs: # TODO: should really be 1. make split only split 1. # TODO: sometimes cells/data separated by "-" 2021-01-03 prov, num = prov_num.strip().split("(", 1) prov = get_province(prov) num = int(num_people.search(num).group(1)) totals[title] = totals.get(title, 0) + num _, rest = get_next_numbers(line, "(?:nผล|ผลพบ)") # "result" asym, rest = get_next_number( rest, "(?s)^.*(?:ไม่มีอาการ|ไมมี่อาการ|ไม่มีอาการ)", default=0, remove=True ) sym, rest = get_next_number( rest, "(?s)^.*(?<!(?:ไม่มี|ไมมี่|ไม่มี))(?:อาการ|อาการ)", default=0, remove=True ) unknown, _ = get_next_number( rest, "อยู่ระหว่างสอบสวนโรค", # "อยู่ระหว่างสอบสวน", "อยู่ระหว่างสอบสวน", "อยู่ระหว่างสอบสวน", "ไม่ระบุ", default=0) # unknown2 = get_next_number( # rest, # "อยู่ระหว่างสอบสวน", # "อยู่ระหว่างสอบสวน", # default=0) # if unknown2: # unknown = unknown2 # TODO: if 1, can be by itself if asym == 0 and sym == 0 and unknown == 0: sym, asym, unknown = None, None, None else: assert asym + sym + unknown == num rows.append((date, prov, case_type, num, asym, sym)) # checksum on title totals for title, total in totals.items(): m = num_people.search(title) if not m: continue if date in [d("2021-03-19")]: # 1.1 64!=56 continue assert total == int(m.group(1)), f"group total={total} instead of: {title}\n{all_cells[title]}" df = pd.DataFrame( rows, columns=["Date", "Province", "Case Type", "Cases", "Cases Asymptomatic", "Cases Symptomatic"] ).set_index(['Date', 'Province']) return df def briefing_case_types(date, pages, url): rows = [] vac_rows = [] if date < d("2021-02-01"): pages = [] for i, soup in enumerate(pages): text = soup.get_text() if "รายงานสถานการณ์" not in text: continue # cases = get_next_number(text, "ติดเชื้อจาก", before=True) # walkins = get_next_number(text.split("รายผู้ที่เดิน")[0], "ในประเทศ", until="ราย") # quarantine = get_next_number(text, "ต่างประเทศ", until="ราย", default=0) if date == d("2021-05-17"): numbers, rest = get_next_numbers(text.split("อาการหนัก")[1], "ในประเทศ") local, cases, imported, prison, walkins, proactive, imported2, prison2, *_ = numbers assert local == walkins + proactive assert imported == imported2 assert prison == prison2 else: numbers, rest = get_next_numbers(text, "รวม", until="รายผู้ที่เดิน") cases, walkins, proactive, *quarantine = numbers domestic = get_next_number(rest, "ในประเทศ", return_rest=False, until="ราย") if domestic and date not in [d("2021-11-22"), d("2021-12-02"), d("2021-12-29")]: assert domestic <= cases assert domestic == walkins + proactive quarantine = quarantine[0] if quarantine else 0 ports, _ = get_next_number( text, "ช่องเส้นทางธรรมชาติ", "รายผู้ที่เดินทางมาจากต่างประเทศ", before=True, default=0 ) imported = ports + quarantine prison, _ = get_next_number(text.split("รวม")[1], "ที่ต้องขัง", default=0, until="ราย") cases2 = get_next_number(rest, r"\+", return_rest=False, until="ราย") if cases2 is not None and cases2 != cases: # Total cases moved to the bottom # cases == domestic cases = cases2 assert cases == domestic + imported + prison if date not in [d("2021-11-01")]: assert cases == walkins + proactive + imported + prison, f"{date}: briefing case types don't match" # hospitalisations hospital, field, severe, respirator, hospitalised = [np.nan] * 5 numbers, rest = get_next_numbers(text, "อาการหนัก") if numbers: severe, respirator, *_ = numbers hospital, _ = get_next_number(text, "ใน รพ.") field, _ = get_next_number(text, "รพ.สนาม") num, _ = get_next_numbers(text, "ใน รพ.", before=True) hospitalised = num[0] assert hospital + field == hospitalised or date in [d("2021-09-04")] elif "ผู้ป่วยรักษาอยู่" in text: hospitalised, *_ = get_next_numbers(text, "ผู้ป่วยรักษาอยู่", return_rest=False, before=True) if date > d("2021-03-31"): # don't seem to add up before this hospital, *_ = get_next_numbers(text, "ใน รพ.", return_rest=False, until="ราย") field, *_ = get_next_numbers(text, "รพ.สนาม", return_rest=False, until="ราย") assert hospital + field == hospitalised if date < d("2021-05-18"): recovered, _ = get_next_number(text, "(เพ่ิมขึ้น|เพิ่มขึ้น)", until="ราย") else: # 2021-05-18 Using single infographic with 3rd wave numbers? numbers, _ = get_next_numbers(text, "หายป่วยแล้ว", "หายป่วยแลว้") cum_recovered_3rd, recovered, *_ = numbers if cum_recovered_3rd < recovered: recovered = cum_recovered_3rd assert not
pd.isna(recovered)
pandas.isna
"""Module with tests realted adding and managing metadata.""" import os import json import io import unittest import pandas as pd from pandas.testing import assert_frame_equal from hicognition.test_helpers import LoginTestCase, TempDirTestCase # import sys # add path to import app # sys.path.append("./") from app import db from app.models import Dataset, BedFileMetadata class TestAddMetadata(LoginTestCase, TempDirTestCase): """ Tests for addition of metadata to existing bedfile. """ def setUp(self): super().setUp() self.owned_dataset = Dataset(id=1, user_id=1) self.unowned_dataset = Dataset(id=1, user_id=2) # create dataset with test data length 6 test_filepath_len_6 = os.path.join(TempDirTestCase.TEMP_PATH, "test.bed") test_data_len_6 = pd.DataFrame( {"id": [0, 1, 2, 3, 4, 5], "start": [0] * 6, "end": [10] * 6} ) test_data_len_6.to_csv(test_filepath_len_6, sep="\t", header=None) self.dataset_len_6 = Dataset(id=1, user_id=1, file_path=test_filepath_len_6) def test_access_denied_without_token(self): """Test whether post request results in 401 error if no token is provided.""" # dispatch post request response = self.client.post( "/api/bedFileMetadata/", content_type="multipart/form-data" ) self.assertEqual(response.status_code, 401) def test_access_denied_not_owned_dataset(self): """Tests whether access is denied for posting to not owned dataset.""" # authenticate token = self.add_and_authenticate("test", "asdf") # add dataset db.session.add(self.unowned_dataset) db.session.commit() # create token_header token_headers = self.get_token_header(token) # add content-type token_headers["Content-Type"] = "multipart/form-data" # construct form data data = { "datasetID": "1", "file": (io.BytesIO(b"abcdef"), "test.csv"), "separator": ",", } # dispatch post request response = self.client.post( "/api/bedFileMetadata/", data=data, headers=token_headers, content_type="multipart/form-data", ) self.assertEqual(response.status_code, 403) def test_invalid_form_no_dataset_id(self): """Tests whether for with no dataset id causes invalid error.""" # authenticate token = self.add_and_authenticate("test", "asdf") # add dataset db.session.add(self.owned_dataset) db.session.commit() # create token_header token_headers = self.get_token_header(token) # add content-type token_headers["Content-Type"] = "multipart/form-data" # construct form data data = {"file": (io.BytesIO(b"abcdef"), "test.csv"), "separator": ","} # dispatch post request response = self.client.post( "/api/bedFileMetadata/", data=data, headers=token_headers, content_type="multipart/form-data", ) self.assertEqual(response.status_code, 400) def test_invalid_form_no_separator(self): """Tests whether no separator in form causes invalid error.""" # authenticate token = self.add_and_authenticate("test", "asdf") # add dataset db.session.add(self.owned_dataset) db.session.commit() # create token_header token_headers = self.get_token_header(token) # add content-type token_headers["Content-Type"] = "multipart/form-data" # construct form data data = {"datasetID": 1, "file": (io.BytesIO(b"abcdef"), "test.csv")} # dispatch post request response = self.client.post( "/api/bedFileMetadata/", data=data, headers=token_headers, content_type="multipart/form-data", ) self.assertEqual(response.status_code, 400) def test_invalid_form_no_textfile(self): """Tests whether wrong filetype causes invalid error.""" # authenticate token = self.add_and_authenticate("test", "asdf") # add dataset db.session.add(self.owned_dataset) db.session.commit() # create token_header token_headers = self.get_token_header(token) # add content-type token_headers["Content-Type"] = "multipart/form-data" # construct form data data = { "datasetID": 1, "file": (io.BytesIO(b"abcdef"), "test.cool"), "separator": ",", } # dispatch post request response = self.client.post( "/api/bedFileMetadata/", data=data, headers=token_headers, content_type="multipart/form-data", ) self.assertEqual(response.status_code, 400) def test_dataset_does_not_exist(self): """Tests whether dataset id that does not exist causes 404 error.""" # authenticate token = self.add_and_authenticate("test", "asdf") # create token_header token_headers = self.get_token_header(token) # add content-type token_headers["Content-Type"] = "multipart/form-data" # construct form data data = { "datasetID": 500, "file": (io.BytesIO(b"abcdef"), "test.csv"), "separator": ",", } # dispatch post request response = self.client.post( "/api/bedFileMetadata/", data=data, headers=token_headers, content_type="multipart/form-data", ) self.assertEqual(response.status_code, 404) def test_length_missmatch_dataset_metadata(self): """Tests whether length missmatch between dataset and metadata is detected.""" # authenticate token = self.add_and_authenticate("test", "asdf") # create paylod_file payload_filepath = os.path.join(TempDirTestCase.TEMP_PATH, "payload.bed") payload_data = pd.DataFrame( {"id": [0, 1, 2, 3], "start": [0] * 4, "end": [10] * 4} ) payload_data.to_csv(payload_filepath, sep="\t") # add dataset db.session.add(self.dataset_len_6) db.session.commit() # create token_header token_headers = self.get_token_header(token) # add content-type token_headers["Content-Type"] = "multipart/form-data" # construct form data data = { "datasetID": 1, "file": (open(payload_filepath, "rb"), "test.csv"), "separator": "tab", } # dispatch post request response = self.client.post( "/api/bedFileMetadata/", data=data, headers=token_headers, content_type="multipart/form-data", ) self.assertEqual(response.status_code, 200) self.assertEqual( response.get_json(), {"ValidationError": "Dataset length missmatch!"} ) def test_valid_metadata_added_correctly(self): """Tests whether valid metadata dataset is added correctly.""" # authenticate token = self.add_and_authenticate("test", "asdf") # create paylod_file payload_filepath = os.path.join(TempDirTestCase.TEMP_PATH, "payload.bed") payload_data = pd.DataFrame( {"size": [0, 1, 2, 3, 4, 5], "start": [0] * 6, "end": [10] * 6} ) payload_data.to_csv(payload_filepath, sep="\t", index=False) # add dataset db.session.add(self.dataset_len_6) db.session.commit() # create token_header token_headers = self.get_token_header(token) # add content-type token_headers["Content-Type"] = "multipart/form-data" # construct form data data = { "datasetID": 1, "file": (open(payload_filepath, "rb"), "test.csv"), "separator": "tab", } # dispatch post request response = self.client.post( "/api/bedFileMetadata/", data=data, headers=token_headers, content_type="multipart/form-data", ) self.assertEqual(response.status_code, 200) # check whether metadata database entry was created and links to correct dataset self.assertEqual(1, len(BedFileMetadata.query.all())) metadata = BedFileMetadata.query.first() self.assertEqual(metadata.dataset_id, 1) # check whether dataframe is ok test_dataframe = pd.read_csv(metadata.file_path) assert_frame_equal(test_dataframe, payload_data) def test_valid_metadata_with_string_columns_added_correctly(self): """Tests whether valid metadata dataset is added correctly even if it contains string columns""" # authenticate token = self.add_and_authenticate("test", "<PASSWORD>") # create paylod_file payload_filepath = os.path.join(TempDirTestCase.TEMP_PATH, "payload.bed") payload_data = pd.DataFrame( { "size": [0, 1, 2, 3, 4, 5], "start": [0] * 6, "end": [10] * 6, "string_column": ["asdf"] * 6, } ) payload_data.to_csv(payload_filepath, sep="\t", index=False) # add dataset db.session.add(self.dataset_len_6) db.session.commit() # create token_header token_headers = self.get_token_header(token) # add content-type token_headers["Content-Type"] = "multipart/form-data" # construct form data data = { "datasetID": 1, "file": (open(payload_filepath, "rb"), "test.csv"), "separator": "tab", } # dispatch post request response = self.client.post( "/api/bedFileMetadata/", data=data, headers=token_headers, content_type="multipart/form-data", ) self.assertEqual(response.status_code, 200) # check whetehr numeric fields are returned self.assertEqual( response.get_json(), { "message": "success! Preprocessing triggered.", "field_names": list( sorted(payload_data.drop("string_column", axis="columns")) ), "id": 1, }, ) # check whether metadata database entry was created and links to correct dataset self.assertEqual(1, len(BedFileMetadata.query.all())) metadata = BedFileMetadata.query.first() self.assertEqual(metadata.dataset_id, 1) # check whether dataframe is ok test_dataframe =
pd.read_csv(metadata.file_path)
pandas.read_csv
import numpy as np import scipy.stats as stats import pandas as pd import loter.pipeline as lt import loter.initparam as initparam import loter.initdata as initdata import loter.opti as opti import loter.estimatea as esta import loter.estimateh as esth import loter.graph as ests ################################################################## # # # Pipeline to optimize H (admixed haplotypes) and S (selection) # # given A (ancestral haplotypes) simultaneously # # # # Initialization: # # - init A with ancestral haplotypes # # # # Optimization: # # - join optimisation of H and S # # # # Computational Complexity: # # - n, the number of ancestral individuals # # - m, the number of SNPs # # complexity -> O(n^2 * m) # # # # Remarks: # # In practice the pipeline is use as a phase corrector module # ################################################################## def init_fix_a(data, param): def init_a_fix(A, G): return param["A_in"] return initdata.init_data(data, init_a_fix, initdata.init_h_rand) def opti_A_fix_join(data, param): data, param = ests.optimize_SHknn(data, param) data, param = esth.optimize_H_old(data, param) return data, param fixa_pip_A_join = lt.Pipeline( initparam.param_initializers["classic_init"], init_fix_a, opti_A_fix_join, ) ################################################################## # # # Pipeline to optimize S (selection) given A # # (ancestral haplotypes) and H (admixed haplotypes) # # # # Initialization: # # - init A with ancestral haplotypes # # - init H with admixed haplotypes # # # # Optimization: # # - optimisation of S # # # # Computational Complexity: # # - n, the number of ancestral individuals # # - m, the number of SNPs # # complexity -> O(n * m) # # # ################################################################## def init_fix_ah(data, param): def init_a_fix(A, G): return param["A_in"] def init_h_fix(H, G): return param["H_in"] return initdata.init_data(data, init_a_fix, init_h_fix) def opti_AH_fix_knn(data, param): data["A"] = data["A"].astype(np.uint8) data["S"] = data["S"].astype(np.uint32) data, param = ests.optimize_Sknn(data, param) return data, param fixa_pip_AH_knn = lt.Pipeline( initparam.param_initializers["classic_init"], init_fix_ah, opti_AH_fix_knn ) def learn_Sknn(pop, A_in, H_in, weights, penalty=40, num_threads=10): G_pop = pop["G"] H_pop = H_in l_res_mix = fixa_pip_AH_knn(G_pop, nb_iter=1, nbclust=len(A_in), penalty=penalty, num_threads=num_threads, weights=weights, A_in=A_in, H_in=H_pop ) return l_res_mix[0]["S"] def learn_S_join(pop, A_in, penalty=40, small_penalty=0, num_threads=10): G_pop = pop["G"] l_res_mix = fixa_pip_A_join(G_pop, nb_iter=1, nbclust=len(A_in), penalty=penalty, A_in=A_in, small_penalty=small_penalty, num_threads=num_threads ) return l_res_mix[0]["S"], l_res_mix[0]["H"] def get_items(dict_object): """ Compatible Python 2 et 3 get item for dictionnary """ for key in dict_object: yield key, dict_object[key] def clusters_to_list_pop(S, l_k): """ From a selection matrix S, compute the origin of each SNP. input: S -- matrix where we are copying l_k -- populations sizes """ res = np.copy(S) a = np.repeat(np.arange(len(l_k)), l_k) b = np.arange(sum(l_k)) d = {k: v for v, k in zip(a, b)} for k, v in get_items(d): res[S==k] = v return res def locanc_g_knn(l_h, g_adm, penalty=40, small_penalty=0, num_threads=10): A_in = np.ascontiguousarray(np.vstack(l_h)) S_adm, H = learn_S_join({"G": g_adm}, A_in, penalty, small_penalty, num_threads) result = clusters_to_list_pop(S_adm, [len(A) for A in l_h]) return result, S_adm, H def locanc_h_knn(l_h, h_adm, penalty=40, num_threads=10): A_in = np.ascontiguousarray(np.vstack(l_h)) g_adm = h_adm[::2] + h_adm[1::2] n, m = h_adm.shape weights = np.ones(m) S_adm = learn_Sknn({"G": g_adm, "H": h_adm}, A_in, h_adm, weights, penalty, num_threads) result = clusters_to_list_pop(S_adm, [len(A) for A in l_h]) return result, S_adm def update_counts(counts, arr, k=2): for p in range(k): counts[p,:,:][arr == p] += 1 return counts def mode(counts): argmax = np.argmax(counts, axis=0) return argmax, argmax.choose(counts) def encode_haplo(H): H1, H2 = H[::2], H[1::2] return ((np.maximum(H1, H2) * (np.maximum(H1, H2) + 1)) / 2) + np.minimum(H1, H2) def loter_multiple_pops(l_H, h_adm, lambd, num_threads=10, default=True): odd = False if h_adm.shape[0] % 2 != 0 & default: odd = True h_adm = np.vstack([h_adm, np.repeat(0, h_adm.shape[1])]) res_loter, _= locanc_h_knn([h.astype(np.uint8) for h in l_H], h_adm.astype(np.uint8), lambd, num_threads) if odd & default: res_loter = res_loter[:res_loter.shape[0]-1] return res_loter def boostrap_loter_multiple_pops(l_H, h_adm, lambd, counts, nbrun=20, num_threads=10): def shuffle(H): n, m = H.shape return H[np.random.randint(n, size=n), :] if nbrun > 1: for i in range(nbrun): shuffled_H = [shuffle(h) for h in l_H] counts = update_counts(counts, loter_multiple_pops(shuffled_H, h_adm, lambd, num_threads, False), len(l_H) ) else: counts = update_counts(counts, loter_multiple_pops(l_H, h_adm, lambd, num_threads, False), len(l_H) ) return counts def loter_local_ancestry(l_H, h_adm, range_lambda=np.arange(1.5, 5.5, 0.5), rate_vote=0.5, nb_bagging=20, num_threads=10, default=True): odd = False if h_adm.shape[0] % 2 != 0 & default: odd = True h_adm = np.vstack([h_adm, np.repeat(0, h_adm.shape[1])]) input_loter = (l_H, h_adm) n, m = h_adm.shape counts = np.zeros((len(l_H), n, m)) for l in range_lambda: res_boostrap = boostrap_loter_multiple_pops(*input_loter, lambd=l, counts=counts, nbrun=nb_bagging, num_threads=num_threads) res_tmp = mode(counts) if default: if odd: res_loter = (res_tmp[0][:res_tmp[0].shape[0]-1], res_tmp[1][:res_tmp[1].shape[1]-1]) else: res_loter = res_tmp return res_loter else: r = vote_and_impute(res_tmp, rate_vote) return r, res_tmp def diploid_sim(cluster_found, cluster_truth): (n,m) = cluster_found.shape return np.count_nonzero(cluster_found == cluster_truth) / float(n*m) def find_lambda(s_in, threshold = 0.90, min_lambda = 1, max_lambda = 500, num_threads=10): n, m = s_in.shape if max_lambda - min_lambda <= 1: return locanc_g_knn([np.zeros((1,m)), np.ones((1,m))], s_in, min_lambda, min_lambda, num_threads) else: mean = (max_lambda - min_lambda) / 2 + min_lambda r_g, s_g, h_g = locanc_g_knn([np.zeros((1,m)), np.ones((1,m))], s_in, mean, mean, num_threads) sim = diploid_sim(r_g[::2] + r_g[1::2], s_in) if sim > threshold: return find_lambda(s_in, threshold, min_lambda = (max_lambda - min_lambda) / 2 + min_lambda, max_lambda = max_lambda, num_threads=num_threads) else: return find_lambda(s_in, threshold, min_lambda = min_lambda, max_lambda = max_lambda - ((max_lambda - min_lambda) / 2), num_threads=num_threads) def vote_and_impute(s, percent_threshold=0.5): def select_val(s, percent_threshold): max_s, min_s = np.max(s[1]), np.min(s[1]) threshold = percent_threshold*(max_s - min_s) + min_s select = np.logical_and(s[1][::2] >= threshold, s[1][1::2] >= threshold) arr = encode_haplo(s[0]) arr[np.logical_not(select)] = 255 return arr arr = select_val(s, percent_threshold) n, m = arr.shape res = np.copy(arr) for i in range(n): serie =
pd.Series(arr[i])
pandas.Series
from pandas.testing import assert_frame_equal import pandas as pd import pytest from speed_daemon import data @pytest.fixture def default_input(): return { "download": 1000000, "ping": 1000000, "timestamp": "2020-10-12T03:09:18.231187Z", "upload": 1000000, } @pytest.fixture def default_expected_response(): return { "_timestamp_string": "2020-10-12T03:09:18.231187Z", "date":
pd.to_datetime("2020-10-12")
pandas.to_datetime
# -*- coding: utf-8 -*- # %% # LightGBM install: use conda: https://anaconda.org/conda-forge/lightgbm # StratifiedKFold: This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class. # KFold: Provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling by default). # %% import warnings warnings.filterwarnings("ignore") import numpy as np import pandas as pd import os import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn.model_selection import StratifiedKFold from sklearn.metrics import roc_auc_score plt.style.use('seaborn') sns.set(font_scale=1) #user defined import augment as ag os.chdir('/Users/hanbosun/Documents/GitHub/TrasactionPrediction/') random_state = 42 # %% df_train = pd.read_csv('input/train.csv') df_test = pd.read_csv('input/test.csv') ids = np.arange(df_train.shape[0]) np.random.seed(random_state) np.random.shuffle(ids) df_train = df_train.iloc[ids,:] df_train_all = df_train # %% df_train = df_train_all.iloc[:2000,:] # %% lgb_params = { "objective" : "binary", "metric" : "auc", "boosting": 'gbdt', "max_depth" : -1, "num_leaves" : 13, "learning_rate" : 0.01, "bagging_freq": 5, "bagging_fraction" : 0.4, "feature_fraction" : 0.05, "min_data_in_leaf": 80, "min_sum_hessian_in_leaf": 10, "tree_learner": "serial", "boost_from_average": "false", #"lambda_l1" : 5, #"lambda_l2" : 5, "bagging_seed" : random_state, "seed": random_state, "verbosity": -1 } # %% skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=random_state) oof = df_train[['ID_code', 'target']] oof['predict'] = 0 predictions = df_test[['ID_code']] val_aucs = [] feature_importance_df = pd.DataFrame() features = [col for col in df_train.columns if col not in ['target', 'ID_code']] X_test = df_test[features].values # %% for fold, (trn_idx, val_idx) in enumerate(skf.split(df_train, df_train['target'])): X_train, y_train = df_train.iloc[trn_idx][features], df_train.iloc[trn_idx]['target'] X_valid, y_valid = df_train.iloc[val_idx][features], df_train.iloc[val_idx]['target'] N = 5 p_valid,yp = 0,0 for i in range(N): #X_t, y_t = ag.augment(X_train.values, y_train.values) #X_t, y_t = ag.augment_fast1(X_train.values, y_train.values) X_t, y_t = ag.augment_fast2(X_train.values, y_train.values) print(X_t.shape) X_t =
pd.DataFrame(X_t)
pandas.DataFrame
from decimal import Decimal import unittest, sys import pandas as pd import numpy as np from datetime import datetime, timedelta from unittest.mock import patch from forex_predictor.data_extraction.process_raw_data import create_relevant_data_row, create_row, find_start_date_index, get_dataframe_from_dates, get_dates, get_market, get_max_input_minutes_missing, get_open_and_close_for_period, get_relevant_data, process_input_data, set_intervals, set_const_intervals, set_market, set_max_input_minutes_missing, set_target_interval, get_intervals, get_target_interval, apply_category_label_binary, load_market_csv class Test_Process_Raw_Data(unittest.TestCase): #Test helper methods def test_convert_datestring_array_to_datetime(self): datestrings = ['2020-01-01 00:00:00', '2020-01-02 00:00:00', '2020-01-01 03:00:00'] expected_datetimes = [datetime.strptime('2020-01-01 00:00:00', '%Y-%m-%d %H:%M:%S'), datetime.strptime('2020-01-02 00:00:00', '%Y-%m-%d %H:%M:%S'), datetime.strptime('2020-01-01 03:00:00', '%Y-%m-%d %H:%M:%S')] self.assertEqual(expected_datetimes, convert_datestring_array_to_datetime(datestrings)) def test_create_expected_row(self): input_row = [5,4,3,2,1] expected_row = np.array([[1,2,3,4,1,2]]) actual_row = create_expected_row(input_row, [1,2]) self.assertTrue(np.array_equal(expected_row, actual_row)) #Test process_raw_data methods def test_set_intervals(self): intervals = [5, 5, 5] set_intervals(intervals) self.assertEqual(intervals, get_intervals()) def test_set_target_interval(self): interval = timedelta(minutes=69) set_target_interval(interval) self.assertEqual(interval, get_target_interval()) def test_set_const_intervals(self): expected_intervals = [3, 3, 3, 3, 3] set_const_intervals(3, 5) self.assertEqual(expected_intervals, get_intervals()) def test_set_max_input_minutes_missing(self): minutes = 69 set_max_input_minutes_missing(minutes) self.assertEqual(minutes, get_max_input_minutes_missing()) def test_set_market(self): market = 'GBP/JPY' set_market(market) self.assertEqual(market, get_market()) def test_categorise_data(self): self.assertEqual(1, apply_category_label_binary(1.2222, 1.2223)) self.assertEqual(0, apply_category_label_binary(1.2223, 1.2222)) @patch('forex_predictor.data_extraction.process_raw_data.pd') def test_load_market_csv(self, mock_pd): load_market_csv('EUR/GBP') mock_pd.read_csv.assert_called_with('data/EUR_GBP.csv') def test_get_dates(self): intervals = [5, 5, 5] set_intervals(intervals) training_start = datetime.strptime('2020-01-01 00:00:00', '%Y-%m-%d %H:%M:%S') validation_start = datetime.strptime('2020-01-01 01:00:00', '%Y-%m-%d %H:%M:%S') test_start = datetime.strptime('2020-01-01 02:00:00', '%Y-%m-%d %H:%M:%S') test_end = datetime.strptime('2020-01-01 03:00:00', '%Y-%m-%d %H:%M:%S') actual_training_dates, actual_validation_dates, actual_test_dates = get_dates(training_start, validation_start, test_start, test_end) expected_training_dates = convert_datestring_array_to_datetime(['2020-01-01 00:00:00', '2020-01-01 00:15:00', '2020-01-01 00:30:00', '2020-01-01 00:45:00']) expected_validation_dates = convert_datestring_array_to_datetime(['2020-01-01 01:00:00', '2020-01-01 01:15:00', '2020-01-01 01:30:00', '2020-01-01 01:45:00']) expected_test_dates = convert_datestring_array_to_datetime(['2020-01-01 02:00:00', '2020-01-01 02:15:00', '2020-01-01 02:30:00', '2020-01-01 02:45:00']) self.assertEqual(expected_training_dates, actual_training_dates) self.assertEqual(expected_validation_dates, actual_validation_dates) self.assertEqual(expected_test_dates, actual_test_dates) @patch('forex_predictor.data_extraction.process_raw_data.get_dataframe_from_dates') def test_get_relevant_data(self, mock_method): set_intervals([15,15,15,15]) set_target_interval(timedelta(minutes=60)) df = pd.read_csv('tests/resources/dataframe_data.csv') target_date = datetime.strptime('2014-07-17 00:00:00', '%Y-%m-%d %H:%M:%S') get_relevant_data(df, target_date) start_date = datetime.strptime('2014-07-16 23:00:00', '%Y-%m-%d %H:%M:%S') end_date = datetime.strptime('2014-07-17 01:00:00', '%Y-%m-%d %H:%M:%S') mock_method.assert_called_with(start_date, end_date, df) def test_get_dataframe_from_dates(self): original_df = pd.read_csv('tests/resources/dataframe_data.csv') start_date = datetime.strptime('2014-07-17 00:00:00', '%Y-%m-%d %H:%M:%S') end_date = datetime.strptime('2014-07-17 00:05:00', '%Y-%m-%d %H:%M:%S') actual_df = get_dataframe_from_dates(start_date, end_date, original_df) expected_df = original_df.iloc[74:79, :] self.assertTrue(expected_df.equals(actual_df)) def test_find_start_date_index(self): target_date = datetime.strptime('2014-07-18 08:46:00', '%Y-%m-%d %H:%M:%S') df = pd.read_csv('tests/resources/dataframe_data.csv') actual_index = find_start_date_index(df, target_date) expected_index = 1994 self.assertEqual(expected_index, actual_index) def test_process_input_data(self): set_intervals([5, 5, 5]) df = pd.read_csv('tests/resources/dataframe_data.csv').iloc[1998:2013, :] test_data = { 'datetime': ['2014-07-18 08:49:00', '2014-07-18 08:54:00', '2014-07-18 08:59:00'], 'open': [0.79227, 0.79223, 0.79315], 'high': [0.79231, 0.79312, 0.79325], 'low': [0.79216, 0.79219, 0.79279], 'close': [0.79222, 0.79312, 0.79284] } expected_input_data = pd.DataFrame(data=test_data) actual_input_data = process_input_data(df) self.assertTrue(expected_input_data.equals(actual_input_data)) def test_process_input_data_error(self): set_intervals([5, 5, 5, 60]) df = pd.read_csv('tests/resources/dataframe_data.csv').iloc[1998:2013, :] expected_error_message = 'Insufficient data to process for this number of intervals' try: actual_input_data = process_input_data(df) except: exc_type, exc_value, exc_traceback = sys.exc_info() self.assertEqual(expected_error_message, str(exc_value)) def test_create_row(self): set_intervals([5,5,5]) test_data = { 'datetime': ['2014-07-18 08:49:00', '2014-07-18 08:54:00', '2014-07-18 08:59:00'], 'open': [0.79227, 0.79223, 0.79315], 'high': [0.79231, 0.79312, 0.79325], 'low': [0.79216, 0.79219, 0.79279], 'close': [0.79222, 0.79312, 0.79284] } input_values = pd.DataFrame(data=test_data) expected_row = create_expected_row([0.79227, 0.79231, 0.79216, 0.79222, 0.79223, 0.79312, 0.79219, 0.79312, 0.79315, 0.79325, 0.79279, 0.79284], [1, 2]) actual_row = create_row(input_values, [1,2]) self.assertTrue(np.array_equal(expected_row, actual_row)) def test_create_relevant_data_row(self): set_intervals([5,5,5]) set_target_interval(timedelta(minutes=5)) df =
pd.read_csv('tests/resources/dataframe_data.csv')
pandas.read_csv
# There are several ways to create a DataFrame. # One way way is to use a dictionary. For example: dict = {"country": ["Brazil", "Russia", "India", "China", "South Africa"], "capital": ["Brasilia", "Moscow", "New Dehli", "Beijing", "Pretoria"], "area": [8.516, 17.10, 3.286, 9.597, 1.221], "population": [200.4, 143.5, 1252, 1357, 52.98] } import pandas as pd brics = pd.DataFrame(dict) print(brics) # Pandas has assigned a key for each country as the numerical values 0 through 4. # If you would like to have different index values, # say, the two letter country code, you can do that easily as well. # Set the index for brics brics.index = ["BR", "RU", "IN", "CH", "SA"] # Print out brics with new index values print(brics) # Another way to create a DataFrame is by importing a csv file using Pandas. countries =
pd.read_csv('countries.csv')
pandas.read_csv
"""Author: <NAME> This contains the main Spomato class to be used to access the Spotify API and create new playlists based on the user's defined criteria. """ import os import pandas as pd import spotipy class Spomato(): """Object used to access spotify API through spotipy and generate playlists. This can take a combination user's saved tracks, playlists, and/or artist's songs to generate a playlist of a specified length. This was conceived to use the Tomato Timer method as Spotify playlists. This does require the user to provide a user API token from the spotify API. The API scopes used by this library are playlist-read-private, playlist-modify-private, and user-library-read. Parameters ---------- access_token : str A valid Spotify Access token. Attributes ---------- data : dictionary Dictionary storing available data structures to create playlists. spotipy_session : spotipy.client.Spotify A spotipy session to access the spotify API. access_token : str A valid Spotify Access token. This requires the scopes playlist-read-private, playlist-modify-private, and user-library-read current_user_id : str The string id of the user of the access token used to create the spotipy session. """ def __init__(self, access_token=None): """Initialization function that sets access token and generates initial spotipy session. Parameters ---------- access_token : str A valid Spotify Access token. This requires the scopes playlist-read-private, playlist-modify-private, and user-library-read. Returns ------- None """ self.access_token = access_token self.data = {} self.spotipy_session = self._get_spotipy_session() self.current_user_id = self.spotipy_session.current_user()['id'] def update_token(self, access_token): """Updates the token and spotify session with the provided access_token. Generally used if your access token has expired. Parameters ---------- access_token : str A valid Spotify Access token. This requires the scopes playlist-read-private, playlist-modify-private, and user-library-read. Returns ------- None """ # update the class access token and the spotipy session self.access_token = access_token self.spotipy_session = self._get_spotipy_session() self.current_user_id = self.spotipy_session.current_user()['id'] def _get_spotipy_session(self): """Internal Function to create a new spotify session. Returns ------- spotipy_session : spotipy.client.Spotify A spotipy session to access the spotify API. """ return spotipy.Spotify(auth=self.access_token) @staticmethod def _parse_album(album_data, market='US'): """Parses the album data returned from the Spotify API and returns the song information as a pandas DataFrame. Parameters ---------- album_data : dict A dictionary of album data from Spotify API market : str A string representation of the Spotify market to filter on. Default is 'US' Returns ------- pandas.DataFrame A dataframe of song ids and time for each song """ # iterate over each record in the album data and parse the track data series_list = [] album_tracks = album_data['tracks']['items'] for record in album_tracks: songid = record['id'] markets = record['available_markets'] # time is stored in milliseconds, divide to convert to seconds. time = record['duration_ms']/1000 # filter out any songs that are not in the specified market if market in markets: series = pd.Series([songid, time], index=['song_id', 'time']) series_list.append(series) if len(series_list) > 0: song_df = pd.concat(series_list, axis=1).transpose() else: song_df = pd.DataFrame(columns=['song_id', 'time']) return song_df @staticmethod def _parse_user_playlist(data, market='US'): """Parses a user playlist data set from the Spotify API and returns the song information as a pandas DataFrame. Parameters ---------- data : dictionary Contains songs in a playlist from the Spotify API market : str A string representation of the Spotify market to filter on. Default is 'US' Returns ------- pandas.DataFrame A dataframe of song ids and time for each song """ # iterate over each record in the playlist data and parse the track data series_list = [] data = data['tracks']['items'] for item in data: record = item['track'] songid = record['id'] markets = record['available_markets'] # time is stored in milliseconds, divide to convert to seconds. time = record['duration_ms']/1000 # filter out any songs that are not in the specified market if market in markets: series = pd.Series([songid, time], index=['song_id', 'time']) series_list.append(series) if len(series_list) > 0: song_df = pd.concat(series_list, axis=1).transpose() else: song_df = pd.DataFrame(columns=['song_id', 'time']) return song_df @staticmethod def _parse_public_playlist(data, market='US'): """Parses public playlist data set from the Spotify API and returns the song information as a pandas DataFrame. Parameters ---------- data : dictionary Contains songs in a playlist from the Spotify API market : str A string representation of the Spotify market to filter on. Default is 'US' Returns ------- pandas.DataFrame A dataframe of song ids and time for each song """ # iterate over each record in the playlist data and parse the track data series_list = [] data = data['items'] for item in data: record = item['track'] songid = record['id'] markets = record['available_markets'] # time is stored in milliseconds, divide to convert to seconds. time = record['duration_ms']/1000 # filter out any songs that are not in the specified market if market in markets: series = pd.Series([songid, time], index=['song_id', 'time']) series_list.append(series) if len(series_list) > 0: song_df = pd.concat(series_list, axis=1).transpose() else: song_df = pd.DataFrame(columns=['song_id', 'time']) return song_df @staticmethod def _parse_saved_tracks(data, market='US'): """Parses a the saved songs data set of the user from the Spotify API and returns the song information as a pandas DataFrame. Parameters ---------- data : dictionary Contains saved songs of the user from the Spotify API market : str A string representation of the Spotify market to filter on. Default is 'US' Returns ------- pandas.DataFrame A dataframe of song ids and time for each song """ # iterate over each record in the saved track data and parse the individual track data series_list = [] for item in data: record = item['track'] songid = record['id'] markets = record['available_markets'] # time is stored in milliseconds, divide to convert to seconds. time = record['duration_ms']/1000 # filter out any songs that are not in the specified market if market in markets: series = pd.Series([songid, time], index=['song_id', 'time']) series_list.append(series) if len(series_list) > 0: song_df = pd.concat(series_list, axis=1).transpose() else: song_df = pd.DataFrame(columns=['song_id', 'time']) return song_df def _cache_data(self, data_key, file_path): """Export the results of a dataset of song ids to local filesystem as a csv. Parameters ---------- data_key : str Key of the dataset to save file_path : str Full path of filename to save the file. Returns ------- None """ # use pandas dataframe write function to save file self.data[data_key].to_csv(file_path, index=False) def _load_cached_data(self, data_key, file_path): """Load a Saved Dataset into the Spomato data dictionary. Requires a csv with columns of 'song_id' and 'time'. Parameters ---------- data_key : str Key to associate the loaded dataset in the data dictionary. file_path : str Full path of filename to load the file. Returns ------- None """ data = pd.read_csv(file_path) # ensure the required columns are in the dataset else raise error if 'song_id' not in data.columns: raise ValueError('Column song_id not found in loaded data file.') if 'time' not in data.columns: raise ValueError('Column song_id not found in loaded data file.') # data looks correct, add dataset to data self.data[data_key] = data def get_file_data(self, data_key='default', file_path=None, overwrite=False): """Loads a file of song data into Spomato to be used for generating new playlists. Parameters ---------- data_key : str Key to associate the dataset in the data dictionary. file_path : str Full path of filename if loading or saving dataset. overwrite : bool Boolean to determine if the dataset should be overwritten if it already exists. Returns ------- None """ if not isinstance(data_key, str): raise TypeError('Argument data_key must be of type string') if file_path is not None and not isinstance(file_path, str): raise TypeError('Argument file_path must be of type string') # check if the data key already exists to ensure data is not unexpectedly overwritten if data_key in self.data.keys() and overwrite is False: msg = (f'Dataset {data_key} already exists and reset argument is set to False. ' 'Set reset to True to overwrite dataset.') raise ValueError(msg) # read the data from file if the file exists if os.path.isfile(file_path): self._load_cached_data(data_key=data_key, file_path=file_path) else: raise ValueError('File path {f} does not exist.'.format(f=file_path)) def get_api_data(self, data_key='default', file_path=None, source=None, reset=False, market='US'): """Generates a song dataset to load into Spomato to be used for generating new playlists. Parameters ---------- data_key : str Key to associate the dataset in the data dictionary. file_path : str If not None, the dataset generated will also be saved to the specified file path.. source : dict Contains all sources you want to use in generating the dataset. The dictionary is keyed by one of 3 source types: savedtracks, playlist, or artist. For savedtracks the value can be None, as no further data is required. For playlist or artist, the value should contain a list of all spotify ids of the appropriate type. If not specified, it defaults to your saved tracks. reset : bool Boolean to determine if the dataset should be regenerated if it already exists. market : str A string representation of the Spotify market to filter on. Default is 'US' Returns ------- None """ if not isinstance(data_key, str): raise TypeError('Argument data_key must be of type string') if file_path is not None and not isinstance(file_path, str): raise TypeError('Argument file_path must be of type string') if source is not None and not isinstance(source, dict): raise TypeError('Argument source must be of type dict') if not isinstance(reset, (bool, int)): raise TypeError('Argument reset must be of type bool or int') if not isinstance(market, str): raise TypeError('Argument market must be of type string') # check if the data key already exists to ensure data is not unexpectedly overwritten if data_key in self.data.keys() and reset is False: msg = (f'Dataset {data_key} already exists and reset argument is set to False. ' 'Set reset to True to overwrite dataset.') raise ValueError(msg) # default the data source to the user's saved tracks if not specified if source is None: source = {'savedtracks': None} # generate the dataset and save it into the Spomato object self.data[data_key] = self._get_new_data(source=source, market=market) # Cache the data if the file_path is specified if file_path: self._cache_data(data_key=data_key, file_path=file_path) def _get_playlist_dataframe(self, source_list, market): """Short summary. Parameters ---------- source_list : list A list of playlist ids to source songs from market : str A string representation of the Spotify market to filter on. Returns ------- pandas.DataFrame A dataframe of songs with song id and time. """ # get the list of playlists and filter out datasets included in the source list playlist_df = self.get_playlists() playlist_list = [] for pl_id in source_list: if not playlist_df[playlist_df.playlist_id == pl_id].empty: pl_json = self.spotipy_session.user_playlist(self.current_user_id, pl_id) pl_df = self._parse_user_playlist(pl_json, market) playlist_list.append(pl_df) else: pl_json = self.spotipy_session.playlist_tracks(pl_id) pl_df = self._parse_public_playlist(pl_json, market) playlist_list.append(pl_df) if len(playlist_list) == 0: raise ValueError('No valid playlists.') # concatinate the dataframes of all the playlist and remove any duplicates data = pd.concat(playlist_list) data.drop_duplicates(inplace=True) return data def _get_artist_dataframe(self, source_list, market): """Short summary. Parameters ---------- source_list : list A list of playlist ids to source songs from market : str A string representation of the Spotify market to filter on. Returns ------- pandas.DataFrame A dataframe of songs with song id and time. """ # iterate over each artist, get the data from the Spotify API, and parse the song data artist_list = [] for artist in source_list: artist_songs = self._get_artist_data(artist, market) artist_list.append(artist_songs) # concatinate the dataframes of all the playlist and remove any duplicates data = pd.concat(artist_list) data.drop_duplicates(inplace=True) return data def _get_new_data(self, source=None, market='US'): """Creates a new dataset from the specified source list and returns a pandas DataFrame of song ids and times. Parameters ---------- source : dict Contains all sources you want to use in generating the dataset. The dictionary is keyed by one of 3 source types: savedtracks, playlist, or artist. For savedtracks the value can be None, as no further data is required. For playlist or artist, the value should contain a list of all spotify ids of the appropriate type. market : str A string representation of the Spotify market to filter on. Returns ------- pd.DataFrame A dataframe of song ids generated from the sources. """ # if the source is not specified, default to the saved tracks of the current user. if source is None: source = {'savedtracks': None} elif not isinstance(source, dict): raise ValueError('Argument source must be of type dict or None.') elif len(source.keys()) == 0: raise ValueError('Argument source must contain at least 1 valid key from: savedtracks, artist, playlist') else: for key in source.keys(): if key not in ['savedtracks', 'artist', 'playlist']: raise ValueError(f'{key} is not a valid data source type.') # iterate over the source types in the source dictionary and parse out the data data_list = [] for sourcetype in source.keys(): if sourcetype == 'savedtracks': # print 'SAVEDTRACKS' data = self._get_saved_tracks(market) data_list.append(data) elif sourcetype == 'playlist': playlist_data = self._get_playlist_dataframe(source_list=source['playlist'], market=market) data_list.append(playlist_data) elif sourcetype == 'artist': artist_data = self._get_artist_dataframe(source_list=source['artist'], market=market) data_list.append(artist_data) # concatinate the dataframes of all the source types and remove any duplicates data = pd.concat(data_list) data.drop_duplicates(inplace=True) return data def pick_tracks(self, data_key, time=25, extra=5, time_limit=None): """Using a specified dataset, this generates a subset of the dataframe of songs that fit the time constraints. Parameters ---------- data_key : str Name of the dataset to use stored in the data object in Spomato time : int The length in minutes to make the playlist extra : type The amount of buffer time to add on to the end of the playlist. time_limit : type The maximum song length in minutes to include in the playlist. Returns ------- pd.DataFrame A dataframe of song ids generated from the sources. """ if not isinstance(data_key, str): raise TypeError('Argument data_key must be of type string') if not isinstance(time, (int, float)): raise TypeError('Argument time must be of type int or float') if not isinstance(extra, (int, float)): raise TypeError('Argument extra must be of type int or float') if time_limit is not None and not isinstance(time_limit, (int, float)): raise TypeError('Argument time_limit must be of type int or float') track_df = self.data[data_key] # the time in our dataframe is specified in seconds, we need to convert the times time *= 60 extra *= 60 # if time limit is not specified, default it to one third of the parameter time if time_limit is None: time_limit = time/3.0 else: time_limit *= 60 # filter out any records that are longer than the time limit track_df = track_df[track_df['time'] <= time_limit] # iterate adding songs to the selected track until the time is reached time_used = 0 track_list = [] done = False while not done: # filter down to tracks that fit in the remaining time track_df = track_df[track_df.time <= (time + extra - time_used)] # if the total time is greater than the specified time, mark the iteration done. if time_used > time: done = True # if the filtered song list is empty, there are no songs left, so mark iteration done elif track_df.empty: done = True # otherwise, take a random track from the dataframe, add to the track list, and remove it from being # selected again else: track = track_df.sample().iloc[0] track_df = track_df[track_df.song_id != track.song_id] track_list.append(track) time_used += track.time # concatinate all of the selected tracks into a dataframe. picked_track_df = pd.concat(track_list, axis=1).T return picked_track_df def _get_saved_tracks(self, market): """Access the spotify API to get the saved tracks for a user and returns a dataframe of song ids and times. Parameters ---------- market : str A string representation of the Spotify market to filter on. Returns ------- pd.DataFrame A dataframe of song ids generated from the sources. """ # iterate over a user's saved tracks until all have been accessed and parsed end = False i = 0 track_df_list = [] while not end: data = self.spotipy_session.current_user_saved_tracks(limit=50, offset=i*50)['items'] if len(data) > 0: track_df = self._parse_saved_tracks(data, market) track_df_list.append(track_df) i += 1 else: end = True # concatinate the created dataframes and remove any duplicates track_df = pd.concat(track_df_list).reset_index(drop=True) track_df.drop_duplicates(inplace=True) return track_df def _get_artist_data(self, artist_id, market): """Access the spotify API to get an artist's tracks and returns a dataframe of song ids and times. Parameters ---------- artist_id : type Description of parameter `artist_id`. market : str A string representation of the Spotify market to filter on. Returns ------- pandas.DataFrame A dataframe of song ids and times generated from the sources. """ # get all of the artist's albums ids and parse out the json for each artist_albums = self.spotipy_session.artist_albums(artist_id) album_ids = [x['id'] for x in artist_albums['items']] album_jsons = self.spotipy_session.albums(album_ids)['albums'] # iterate over each album and parse out the songs songdf = [] for album in album_jsons: if market in album['available_markets']: songs = self._parse_album(album, market) songdf.append(songs) # concatinate the results from each album into a single dataframe data = pd.concat(songdf) return data def get_playlists(self): """Access the spotify API to get the playlists for a user and returns a dataframe of names and ids. Returns ------- pandas.DataFrame A dataframe consisting of the current user's playlist names and playlist ids. """ # get the user's playlist and parse the playlist name and id pl_json = self.spotipy_session.current_user_playlists() series_index = ['playlist_name', 'playlist_id'] playlist_list = [pd.Series([pl['name'], pl['id']], index=series_index) for pl in pl_json['items']] # concatinate the results into a pandas dataframe playlist_df = pd.concat(playlist_list, axis=1).T return playlist_df def make_playlist(self, playlist_name, song_df, overwrite=False): """Create or overwrite a spotify playlist from the dataframe of songs. Parameters ---------- playlist_name : str The name of the playlist you want to create/overwrite song_df : pandas.DataFrame Dataframe of songs to be in the playlist. overwrite : bool Boolean to determine whether to overwrite the playlist if it already exists. Returns ------- None """ if not isinstance(playlist_name, str): raise TypeError('Argument playlist_name must be of type string') if not isinstance(song_df, pd.DataFrame): raise TypeError('Argument song_df must be of type string') # get the user's playlists playlist_df = self.get_playlists() # if the playlist name already exists and is not set to be overwritten, raise an error if playlist_name in playlist_df.playlist_name.tolist() and not overwrite: raise ValueError('Playlist {p} already exists, set overwrite to True.'.format(p=playlist_name)) # if the playlist already exists, replace the playlist with the new track list if playlist_name in playlist_df.playlist_name.tolist(): playlist_id = playlist_df[playlist_df.playlist_name == playlist_name].iloc[0].playlist_id self.spotipy_session.user_playlist_replace_tracks(user=self.current_user_id, playlist_id=playlist_id, tracks=song_df.song_id.tolist() ) # if the playlist doesn't exist, create a new playlist with the track list else: self.spotipy_session.user_playlist_create(self.current_user_id, playlist_name, public=False) playlist_df = self.get_playlists() playlist_id = playlist_df[playlist_df.playlist_name == playlist_name].iloc[0].playlist_id self.spotipy_session.user_playlist_add_tracks(self.current_user_id, playlist_id, tracks=song_df.song_id.tolist() ) def pick_track_and_make_playlist(self, data_key, playlist_name, time=25, extra=5, time_limit=None, overwrite=False): """Picks the tracks from a created dataset and creates/overwrites a playlist with the data. Parameters ---------- data_key : str Name of the dataset to use stored in the data object in Spomato playlist_name : str The name of the playlist you want to create/overwrite time : int The length in minutes to make the playlist extra : int The amount of buffer time to add on to the end of the playlist. time_limit : int The maximum song length in minutes to include in the playlist. overwrite : bool Boolean to determine whether to overwrite the playlist if it already exists. Returns ------- None """ if not isinstance(data_key, str): raise TypeError('Argument data_key must be of type string') if not isinstance(playlist_name, str): raise TypeError('Argument playlist_name must be of type string') if not isinstance(time, (int, float)): raise TypeError('Argument time must be of type int or float') if not isinstance(extra, (int, float)): raise TypeError('Argument extra must be of type int or float') if time_limit is not None and not isinstance(time_limit, (int, float)): raise TypeError('Argument time_limit must be of type int or float') # generate the list of songs for the playlist song_df = self.pick_tracks(data_key=data_key, time=time, extra=extra, time_limit=time_limit) # create the playlist with the song dataframe self.make_playlist(playlist_name=playlist_name, song_df=song_df, overwrite=overwrite) def artist_id_search(self, artist, limit=10, offset=0): """Search the Spotify API for an artist and return the search results of matches and ids. This can be useful if you don't know an artist's id to generate a playlist. Parameters ---------- artist : str Name of the artist to search. More complex searches can be run using the query guidelines in Spotipy. limit : int Number of records to return from search offset : int The number of records to skip in search result. Returns ------- pandas.DataFrame A dataframe of artist names and ids from the search result. """ if not isinstance(limit, int): raise TypeError('Argument limit must be of type int') if not isinstance(offset, int): raise TypeError('Argument offset must be of type int') artist_results = self.spotipy_session.search(artist, type='artist', limit=limit, offset=offset) artist_items = artist_results['artists']['items'] if len(artist_items) > 0: index = ['artist', 'id'] artist_df = pd.concat([
pd.Series([x['name'], x['id']], index=index)
pandas.Series
# coding: utf-8 import numpy as np import pandas as pd import umap from bokeh.resources import INLINE, CDN from bokeh.embed import file_html #https://umap-learn.readthedocs.io/en/latest/basic_usage.html def embeddable_image(image_path): from io import BytesIO from PIL import Image import base64 image = Image.open(str(image_path)).resize((64, 64), Image.BICUBIC) buffer = BytesIO() image.save(buffer, format='png') for_encoding = buffer.getvalue() return 'data:image/png;base64,' + base64.b64encode(for_encoding).decode() def umap_bokeh(bn_feat, #= pd.read_csv('../results/prod_test_feat.csv', index_col=0), pred_df, #= pd.read_csv('../results/predicted_malaria.csv', index_col = 0), image_folder = '../flask/uploads' ): #feat_file = '../results/prod_test_feat.csv' #prediction_csv = '../results/predictions_malaria.csv' #image_folder = '../flask/uploads' #bn_feat = pd.read_csv('../data/cv_feat.csv', index_col=0) #pred_df = pd.read_csv('../results/predictions_prod_test.csv', index_col = 0) #image_folder = '../flask/uploads' #load '''This function is for plotting a bokeh plot of UMAP dimensionality reduction plot, colored based on labels, with thumnail overlays for webapp results.''' if bn_feat.shape[0] < 3: print('Please select more than 3 cells to classify') return # bn_feat = pd.read_csv(feat_file, index_col = 0) #bn_feat = bn_feat.sample(frac=0.01) reducer = umap.UMAP(random_state=42) ## -- UMAP (might want to make into another function) #Train the dimonsionality reduction features = bn_feat.drop(columns=['label','fn']) reducer.fit(features) embedding = reducer.transform(features) # Verify that the result of calling transform is # idenitical to accessing the embedding_ attribute assert(np.all(embedding == reducer.embedding_)) embedding.shape # mask = df.label == 'Parasitized' bn_feat['path'] = str(image_folder) +'/' + bn_feat['fn'] from bokeh.plotting import figure, show, output_notebook from bokeh.models import HoverTool, ColumnDataSource, CategoricalColorMapper from bokeh.palettes import Spectral10 from bokeh.embed import components output_notebook() df_images =
pd.DataFrame(embedding, columns=('x','y'), index=bn_feat.index)
pandas.DataFrame
import json from operator import itemgetter from pathlib import Path import geopandas as gpd import pandas as pd from shapely import wkt from dtcv.pt_lib import * p = Path('/Users/eric/Google Sync/sandiegodata.org/Projects/Downtown Partnership Homeless' '/Annotations/complete/gcp') intersections_file = '../data/gcp_intersections_2230.csv' cols = 'x y width height'.split() def load_gcp_files(p): region_ig = itemgetter(*cols) rows = [] for fn in p.glob('*.json'): if not '-gcp-' in fn.stem: continue with fn.open() as f: d = json.load(f)['_via_img_metadata'] for k, v in d.items(): if k == 'example': continue image_url = v['filename'] for region in v['regions']: try: row = [fn, image_url] + \ list(region_ig(region['shape_attributes'])) + \ [region['region_attributes']['Intersection']] rows.append(row) except KeyError: print("Error in {} wrong keys in shape attributes: {}" \ .format(fn, region['shape_attributes'])) return
pd.DataFrame(rows, columns=['source', 'image'] + cols + ['intersection'])
pandas.DataFrame
"""SQL io tests The SQL tests are broken down in different classes: - `PandasSQLTest`: base class with common methods for all test classes - Tests for the public API (only tests with sqlite3) - `_TestSQLApi` base class - `TestSQLApi`: test the public API with sqlalchemy engine - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI connection - Tests for the different SQL flavors (flavor specific type conversions) - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with common methods, `_TestSQLAlchemyConn` tests the API with a SQLAlchemy Connection object. The different tested flavors (sqlite3, MySQL, PostgreSQL) derive from the base class - Tests for the fallback mode (`TestSQLiteFallback`) """ import csv from datetime import date, datetime, time from io import StringIO import sqlite3 import warnings import numpy as np import pytest from pandas.core.dtypes.common import is_datetime64_dtype, is_datetime64tz_dtype import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, concat, date_range, isna, to_datetime, to_timedelta, ) import pandas._testing as tm import pandas.io.sql as sql from pandas.io.sql import read_sql_query, read_sql_table try: import sqlalchemy import sqlalchemy.schema import sqlalchemy.sql.sqltypes as sqltypes from sqlalchemy.ext import declarative from sqlalchemy.orm import session as sa_session SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { "create_iris": { "sqlite": """CREATE TABLE iris ( "SepalLength" REAL, "SepalWidth" REAL, "PetalLength" REAL, "PetalWidth" REAL, "Name" TEXT )""", "mysql": """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", "postgresql": """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""", }, "insert_iris": { "sqlite": """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", "mysql": """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", "postgresql": """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""", }, "create_test_types": { "sqlite": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TEXT, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" REAL, "IntCol" INTEGER, "BoolCol" INTEGER, "IntColWithNull" INTEGER, "BoolColWithNull" INTEGER )""", "mysql": """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `IntDateOnlyCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", "postgresql": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "DateColWithTz" TIMESTAMP WITH TIME ZONE, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""", }, "insert_test_types": { "sqlite": { "query": """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "mysql": { "query": """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "postgresql": { "query": """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "DateColWithTz", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, }, "read_parameters": { "sqlite": "SELECT * FROM iris WHERE Name=? AND SepalLength=?", "mysql": 'SELECT * FROM iris WHERE `Name`="%s" AND `SepalLength`=%s', "postgresql": 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s', }, "read_named_parameters": { "sqlite": """ SELECT * FROM iris WHERE Name=:name AND SepalLength=:length """, "mysql": """ SELECT * FROM iris WHERE `Name`="%(name)s" AND `SepalLength`=%(length)s """, "postgresql": """ SELECT * FROM iris WHERE "Name"=%(name)s AND "SepalLength"=%(length)s """, }, "create_view": { "sqlite": """ CREATE VIEW iris_view AS SELECT * FROM iris """ }, } class MixInBase: def teardown_method(self, method): # if setup fails, there may not be a connection to close. if hasattr(self, "conn"): for tbl in self._get_all_tables(): self.drop_table(tbl) self._close_conn() class MySQLMixIn(MixInBase): def drop_table(self, table_name): cur = self.conn.cursor() cur.execute(f"DROP TABLE IF EXISTS {sql._get_valid_mysql_name(table_name)}") self.conn.commit() def _get_all_tables(self): cur = self.conn.cursor() cur.execute("SHOW TABLES") return [table[0] for table in cur.fetchall()] def _close_conn(self): from pymysql.err import Error try: self.conn.close() except Error: pass class SQLiteMixIn(MixInBase): def drop_table(self, table_name): self.conn.execute( f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}" ) self.conn.commit() def _get_all_tables(self): c = self.conn.execute("SELECT name FROM sqlite_master WHERE type='table'") return [table[0] for table in c.fetchall()] def _close_conn(self): self.conn.close() class SQLAlchemyMixIn(MixInBase): def drop_table(self, table_name): sql.SQLDatabase(self.conn).drop_table(table_name) def _get_all_tables(self): meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() table_list = meta.tables.keys() return table_list def _close_conn(self): pass class PandasSQLTest: """ Base class with common private methods for SQLAlchemy and fallback cases. """ def _get_exec(self): if hasattr(self.conn, "execute"): return self.conn else: return self.conn.cursor() @pytest.fixture(params=[("data", "iris.csv")]) def load_iris_data(self, datapath, request): import io iris_csv_file = datapath(*request.param) if not hasattr(self, "conn"): self.setup_connect() self.drop_table("iris") self._get_exec().execute(SQL_STRINGS["create_iris"][self.flavor]) with io.open(iris_csv_file, mode="r", newline=None) as iris_csv: r = csv.reader(iris_csv) next(r) # skip header row ins = SQL_STRINGS["insert_iris"][self.flavor] for row in r: self._get_exec().execute(ins, row) def _load_iris_view(self): self.drop_table("iris_view") self._get_exec().execute(SQL_STRINGS["create_view"][self.flavor]) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] assert issubclass(pytype, np.floating) tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _load_test1_data(self): columns = ["index", "A", "B", "C", "D"] data = [ ( "2000-01-03 00:00:00", 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169, ), ( "2000-01-04 00:00:00", 1.04791624281, -0.0412318367011, -0.16181208307, 0.212549316967, ), ( "2000-01-05 00:00:00", 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952, ), ( "2000-01-06 00:00:00", 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227, ), ] self.test_frame1 = DataFrame(data, columns=columns) def _load_test2_data(self): df = DataFrame( dict( A=[4, 1, 3, 6], B=["asd", "gsq", "ylt", "jkl"], C=[1.1, 3.1, 6.9, 5.3], D=[False, True, True, False], E=["1990-11-22", "1991-10-26", "1993-11-26", "1995-12-12"], ) ) df["E"] = to_datetime(df["E"]) self.test_frame2 = df def _load_test3_data(self): columns = ["index", "A", "B"] data = [ ("2000-01-03 00:00:00", 2 ** 31 - 1, -1.987670), ("2000-01-04 00:00:00", -29, -0.0412318367011), ("2000-01-05 00:00:00", 20000, 0.731167677815), ("2000-01-06 00:00:00", -290867, 1.56762092543), ] self.test_frame3 = DataFrame(data, columns=columns) def _load_raw_sql(self): self.drop_table("types_test_data") self._get_exec().execute(SQL_STRINGS["create_test_types"][self.flavor]) ins = SQL_STRINGS["insert_test_types"][self.flavor] data = [ { "TextCol": "first", "DateCol": "2000-01-03 00:00:00", "DateColWithTz": "2000-01-01 00:00:00-08:00", "IntDateCol": 535852800, "IntDateOnlyCol": 20101010, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": 1, "BoolColWithNull": False, }, { "TextCol": "first", "DateCol": "2000-01-04 00:00:00", "DateColWithTz": "2000-06-01 00:00:00-07:00", "IntDateCol": 1356998400, "IntDateOnlyCol": 20101212, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": None, "BoolColWithNull": None, }, ] for d in data: self._get_exec().execute( ins["query"], [d[field] for field in ins["fields"]] ) def _count_rows(self, table_name): result = ( self._get_exec() .execute(f"SELECT count(*) AS count_1 FROM {table_name}") .fetchone() ) return result[0] def _read_sql_iris(self): iris_frame = self.pandasSQL.read_query("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_parameter(self): query = SQL_STRINGS["read_parameters"][self.flavor] params = ["Iris-setosa", 5.1] iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_named_parameter(self): query = SQL_STRINGS["read_named_parameters"][self.flavor] params = {"name": "Iris-setosa", "length": 5.1} iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _to_sql(self, method=None): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=method) assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _to_sql_empty(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1.iloc[:0], "test_frame1") def _to_sql_fail(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") assert self.pandasSQL.has_table("test_frame1") msg = "Table 'test_frame1' already exists" with pytest.raises(ValueError, match=msg): self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") self.drop_table("test_frame1") def _to_sql_replace(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="replace") assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_append(self): # Nuke table just in case self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="append") assert self.pandasSQL.has_table("test_frame1") num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_method_callable(self): check = [] # used to double check function below is really being used def sample(pd_table, conn, keys, data_iter): check.append(1) data = [dict(zip(keys, row)) for row in data_iter] conn.execute(pd_table.table.insert(), data) self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=sample) assert self.pandasSQL.has_table("test_frame1") assert check == [1] num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _roundtrip(self): self.drop_table("test_frame_roundtrip") self.pandasSQL.to_sql(self.test_frame1, "test_frame_roundtrip") result = self.pandasSQL.read_query("SELECT * FROM test_frame_roundtrip") result.set_index("level_0", inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _to_sql_save_index(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A"] ) self.pandasSQL.to_sql(df, "test_to_sql_saves_index") ix_cols = self._get_index_columns("test_to_sql_saves_index") assert ix_cols == [["A"]] def _transaction_test(self): with self.pandasSQL.run_transaction() as trans: trans.execute("CREATE TABLE test_trans (A INT, B TEXT)") class DummyException(Exception): pass # Make sure when transaction is rolled back, no rows get inserted ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" try: with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) raise DummyException("error") except DummyException: # ignore raised exception pass res = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res) == 0 # Make sure when transaction is committed, rows do get inserted with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) res2 = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res2) == 1 # ----------------------------------------------------------------------------- # -- Testing the public API class _TestSQLApi(PandasSQLTest): """ Base class to test the public API. From this two classes are derived to run these tests for both the sqlalchemy mode (`TestSQLApi`) and the fallback mode (`TestSQLiteFallbackApi`). These tests are run with sqlite3. Specific tests for the different sql flavours are included in `_TestSQLAlchemy`. Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = "sqlite" mode: str def setup_connect(self): self.conn = self.connect() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def load_test_data_and_sql(self): self._load_iris_view() self._load_test1_data() self._load_test2_data() self._load_test3_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql_query("SELECT * FROM iris", self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_sql_view(self): iris_frame = sql.read_sql_query("SELECT * FROM iris_view", self.conn) self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, "test_frame1", self.conn) assert sql.has_table("test_frame1", self.conn) def test_to_sql_fail(self): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") assert sql.has_table("test_frame2", self.conn) msg = "Table 'test_frame2' already exists" with pytest.raises(ValueError, match=msg): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") def test_to_sql_replace(self): sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="replace") assert sql.has_table("test_frame3", self.conn) num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame3") assert num_rows == num_entries def test_to_sql_append(self): sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="append") assert sql.has_table("test_frame4", self.conn) num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame4") assert num_rows == num_entries def test_to_sql_type_mapping(self): sql.to_sql(self.test_frame3, "test_frame5", self.conn, index=False) result = sql.read_sql("SELECT * FROM test_frame5", self.conn) tm.assert_frame_equal(self.test_frame3, result) def test_to_sql_series(self): s = Series(np.arange(5, dtype="int64"), name="series") sql.to_sql(s, "test_series", self.conn, index=False) s2 = sql.read_sql_query("SELECT * FROM test_series", self.conn) tm.assert_frame_equal(s.to_frame(), s2) def test_roundtrip(self): sql.to_sql(self.test_frame1, "test_frame_roundtrip", con=self.conn) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) # HACK! result.index = self.test_frame1.index result.set_index("level_0", inplace=True) result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_roundtrip_chunksize(self): sql.to_sql( self.test_frame1, "test_frame_roundtrip", con=self.conn, index=False, chunksize=2, ) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute("SELECT * FROM iris", con=self.conn) row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def test_date_parsing(self): # Test date parsing in read_sql # No Parsing df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn) assert not issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["DateCol"] ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateOnlyCol": "%Y%m%d"}, ) assert issubclass(df.IntDateOnlyCol.dtype.type, np.datetime64) assert df.IntDateOnlyCol.tolist() == [ pd.Timestamp("2010-10-10"), pd.Timestamp("2010-12-12"), ] def test_date_and_index(self): # Test case where same column appears in parse_date and index_col df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, index_col="DateCol", parse_dates=["DateCol", "IntDateCol"], ) assert issubclass(df.index.dtype.type, np.datetime64) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_timedelta(self): # see #6921 df = to_timedelta(Series(["00:00:01", "00:00:03"], name="foo")).to_frame() with tm.assert_produces_warning(UserWarning): df.to_sql("test_timedelta", self.conn) result = sql.read_sql_query("SELECT * FROM test_timedelta", self.conn) tm.assert_series_equal(result["foo"], df["foo"].astype("int64")) def test_complex_raises(self): df = DataFrame({"a": [1 + 1j, 2j]}) msg = "Complex datatypes not supported" with pytest.raises(ValueError, match=msg): df.to_sql("test_complex", self.conn) @pytest.mark.parametrize( "index_name,index_label,expected", [ # no index name, defaults to 'index' (None, None, "index"), # specifying index_label (None, "other_label", "other_label"), # using the index name ("index_name", None, "index_name"), # has index name, but specifying index_label ("index_name", "other_label", "other_label"), # index name is integer (0, None, "0"), # index name is None but index label is integer (None, 0, "0"), ], ) def test_to_sql_index_label(self, index_name, index_label, expected): temp_frame = DataFrame({"col1": range(4)}) temp_frame.index.name = index_name query = "SELECT * FROM test_index_label" sql.to_sql(temp_frame, "test_index_label", self.conn, index_label=index_label) frame = sql.read_sql_query(query, self.conn) assert frame.columns[0] == expected def test_to_sql_index_label_multiindex(self): temp_frame = DataFrame( {"col1": range(4)}, index=MultiIndex.from_product([("A0", "A1"), ("B0", "B1")]), ) # no index name, defaults to 'level_0' and 'level_1' sql.to_sql(temp_frame, "test_index_label", self.conn) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[0] == "level_0" assert frame.columns[1] == "level_1" # specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["A", "B"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # using the index name temp_frame.index.names = ["A", "B"] sql.to_sql(temp_frame, "test_index_label", self.conn, if_exists="replace") frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # has index name, but specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["C", "D"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["C", "D"] msg = "Length of 'index_label' should match number of levels, which is 2" with pytest.raises(ValueError, match=msg): sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label="C", ) def test_multiindex_roundtrip(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A", "B"], ) df.to_sql("test_multiindex_roundtrip", self.conn) result = sql.read_sql_query( "SELECT * FROM test_multiindex_roundtrip", self.conn, index_col=["A", "B"] ) tm.assert_frame_equal(df, result, check_index_type=True) def test_integer_col_names(self): df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) sql.to_sql(df, "test_frame_integer_col_names", self.conn, if_exists="replace") def test_get_schema(self): create_sql = sql.get_schema(self.test_frame1, "test", con=self.conn) assert "CREATE" in create_sql def test_get_schema_dtypes(self): float_frame = DataFrame({"a": [1.1, 1.2], "b": [2.1, 2.2]}) dtype = sqlalchemy.Integer if self.mode == "sqlalchemy" else "INTEGER" create_sql = sql.get_schema( float_frame, "test", con=self.conn, dtype={"b": dtype} ) assert "CREATE" in create_sql assert "INTEGER" in create_sql def test_get_schema_keys(self): frame = DataFrame({"Col1": [1.1, 1.2], "Col2": [2.1, 2.2]}) create_sql = sql.get_schema(frame, "test", con=self.conn, keys="Col1") constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")' assert constraint_sentence in create_sql # multiple columns as key (GH10385) create_sql = sql.get_schema( self.test_frame1, "test", con=self.conn, keys=["A", "B"] ) constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' assert constraint_sentence in create_sql def test_chunksize_read(self): df = DataFrame(np.random.randn(22, 5), columns=list("abcde")) df.to_sql("test_chunksize", self.conn, index=False) # reading the query in one time res1 = sql.read_sql_query("select * from test_chunksize", self.conn) # reading the query in chunks with read_sql_query res2 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_query( "select * from test_chunksize", self.conn, chunksize=5 ): res2 = concat([res2, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res2) # reading the query in chunks with read_sql_query if self.mode == "sqlalchemy": res3 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_table("test_chunksize", self.conn, chunksize=5): res3 = concat([res3, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res3) def test_categorical(self): # GH8624 # test that categorical gets written correctly as dense column df = DataFrame( { "person_id": [1, 2, 3], "person_name": ["<NAME>", "<NAME>", "<NAME>"], } ) df2 = df.copy() df2["person_name"] = df2["person_name"].astype("category") df2.to_sql("test_categorical", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM test_categorical", self.conn) tm.assert_frame_equal(res, df) def test_unicode_column_name(self): # GH 11431 df = DataFrame([[1, 2], [3, 4]], columns=["\xe9", "b"]) df.to_sql("test_unicode", self.conn, index=False) def test_escaped_table_name(self): # GH 13206 df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) df.to_sql("d1187b08-4943-4c8d-a7f6", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM `d1187b08-4943-4c8d-a7f6`", self.conn) tm.assert_frame_equal(res, df) @pytest.mark.single @pytest.mark.skipif(not SQLALCHEMY_INSTALLED, reason="SQLAlchemy not installed") class TestSQLApi(SQLAlchemyMixIn, _TestSQLApi): """ Test the public API as it would be used directly Tests for `read_sql_table` are included here, as this is specific for the sqlalchemy mode. """ flavor = "sqlite" mode = "sqlalchemy" def connect(self): return sqlalchemy.create_engine("sqlite:///:memory:") def test_read_table_columns(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) cols = ["A", "B"] result = sql.read_sql_table("test_frame", self.conn, columns=cols) assert result.columns.tolist() == cols def test_read_table_index_col(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) result = sql.read_sql_table("test_frame", self.conn, index_col="index") assert result.index.names == ["index"] result = sql.read_sql_table("test_frame", self.conn, index_col=["A", "B"]) assert result.index.names == ["A", "B"] result = sql.read_sql_table( "test_frame", self.conn, index_col=["A", "B"], columns=["C", "D"] ) assert result.index.names == ["A", "B"] assert result.columns.tolist() == ["C", "D"] def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) iris_frame1 = sql.read_sql_table("iris", self.conn) iris_frame2 = sql.read_sql("iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) def test_not_reflect_all_tables(self): # create invalid table qry = """CREATE TABLE invalid (x INTEGER, y UNKNOWN);""" self.conn.execute(qry) qry = """CREATE TABLE other_table (x INTEGER, y INTEGER);""" self.conn.execute(qry) with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. sql.read_sql_table("other_table", self.conn) sql.read_sql_query("SELECT * FROM other_table", self.conn) # Verify some things assert len(w) == 0 def test_warning_case_insensitive_table_name(self): # see gh-7815 # # We can't test that this warning is triggered, a the database # configuration would have to be altered. But here we test that # the warning is certainly NOT triggered in a normal case. with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # This should not trigger a Warning self.test_frame1.to_sql("CaseSensitive", self.conn) # Verify some things assert len(w) == 0 def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes("test_index_saved") ixs = [i["column_names"] for i in ixs] return ixs def test_sqlalchemy_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["201412120154", "201412110254"], utc=True)} ) db = sql.SQLDatabase(self.conn) table = sql.SQLTable("test_type", db, frame=df) # GH 9086: TIMESTAMP is the suggested type for datetimes with timezones assert isinstance(table.table.c["time"].type, sqltypes.TIMESTAMP) def test_database_uri_string(self): # Test read_sql and .to_sql method with a database URI (GH10654) test_frame1 = self.test_frame1 # db_uri = 'sqlite:///:memory:' # raises # sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) near # "iris": syntax error [SQL: 'iris'] with tm.ensure_clean() as name: db_uri = "sqlite:///" + name table = "iris" test_frame1.to_sql(table, db_uri, if_exists="replace", index=False) test_frame2 = sql.read_sql(table, db_uri) test_frame3 = sql.read_sql_table(table, db_uri) query = "SELECT * FROM iris" test_frame4 = sql.read_sql_query(query, db_uri) tm.assert_frame_equal(test_frame1, test_frame2) tm.assert_frame_equal(test_frame1, test_frame3) tm.assert_frame_equal(test_frame1, test_frame4) # using driver that will not be installed on Travis to trigger error # in sqlalchemy.create_engine -> test passing of this error to user try: # the rest of this test depends on pg8000's being absent import pg8000 # noqa pytest.skip("pg8000 is installed") except ImportError: pass db_uri = "postgresql+pg8000://user:pass@host/dbname" with pytest.raises(ImportError, match="pg8000"): sql.read_sql("select * from table", db_uri) def _make_iris_table_metadata(self): sa = sqlalchemy metadata = sa.MetaData() iris = sa.Table( "iris", metadata, sa.Column("SepalLength", sa.REAL), sa.Column("SepalWidth", sa.REAL), sa.Column("PetalLength", sa.REAL), sa.Column("PetalWidth", sa.REAL), sa.Column("Name", sa.TEXT), ) return iris def test_query_by_text_obj(self): # WIP : GH10846 name_text = sqlalchemy.text("select * from iris where name=:name") iris_df = sql.read_sql(name_text, self.conn, params={"name": "Iris-versicolor"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-versicolor"} def test_query_by_select_obj(self): # WIP : GH10846 iris = self._make_iris_table_metadata() name_select = sqlalchemy.select([iris]).where( iris.c.Name == sqlalchemy.bindparam("name") ) iris_df = sql.read_sql(name_select, self.conn, params={"name": "Iris-setosa"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-setosa"} class _EngineToConnMixin: """ A mixin that causes setup_connect to create a conn rather than an engine. """ @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): super().load_test_data_and_sql() engine = self.conn conn = engine.connect() self.__tx = conn.begin() self.pandasSQL = sql.SQLDatabase(conn) self.__engine = engine self.conn = conn yield self.__tx.rollback() self.conn.close() self.conn = self.__engine self.pandasSQL = sql.SQLDatabase(self.__engine) # XXX: # super().teardown_method(method) @pytest.mark.single class TestSQLApiConn(_EngineToConnMixin, TestSQLApi): pass @pytest.mark.single class TestSQLiteFallbackApi(SQLiteMixIn, _TestSQLApi): """ Test the public sqlite connection fallback API """ flavor = "sqlite" mode = "fallback" def connect(self, database=":memory:"): return sqlite3.connect(database) def test_sql_open_close(self): # Test if the IO in the database still work if the connection closed # between the writing and reading (as in many real situations). with tm.ensure_clean() as name: conn = self.connect(name) sql.to_sql(self.test_frame3, "test_frame3_legacy", conn, index=False) conn.close() conn = self.connect(name) result = sql.read_sql_query("SELECT * FROM test_frame3_legacy;", conn) conn.close() tm.assert_frame_equal(self.test_frame3, result) @pytest.mark.skipif(SQLALCHEMY_INSTALLED, reason="SQLAlchemy is installed") def test_con_string_import_error(self): conn = "mysql://root@localhost/pandas_nosetest" msg = "Using URI string without sqlalchemy installed" with pytest.raises(ImportError, match=msg): sql.read_sql("SELECT * FROM iris", conn) def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) msg = "Execution failed on sql 'iris': near \"iris\": syntax error" with pytest.raises(sql.DatabaseError, match=msg): sql.read_sql("iris", self.conn) def test_safe_names_warning(self): # GH 6798 df = DataFrame([[1, 2], [3, 4]], columns=["a", "b "]) # has a space # warns on create table with spaces in names with tm.assert_produces_warning(): sql.to_sql(df, "test_frame3_legacy", self.conn, index=False) def test_get_schema2(self): # without providing a connection object (available for backwards comp) create_sql = sql.get_schema(self.test_frame1, "test") assert "CREATE" in create_sql def _get_sqlite_column_type(self, schema, column): for col in schema.split("\n"): if col.split()[0].strip('""') == column: return col.split()[1] raise ValueError(f"Column {column} not found") def test_sqlite_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["201412120154", "201412110254"], utc=True)} ) db = sql.SQLiteDatabase(self.conn) table = sql.SQLiteTable("test_type", db, frame=df) schema = table.sql_schema() assert self._get_sqlite_column_type(schema, "time") == "TIMESTAMP" # ----------------------------------------------------------------------------- # -- Database flavor specific tests class _TestSQLAlchemy(SQLAlchemyMixIn, PandasSQLTest): """ Base class for testing the sqlalchemy backend. Subclasses for specific database types are created below. Tests that deviate for each flavor are overwritten there. """ flavor: str @pytest.fixture(autouse=True, scope="class") def setup_class(cls): cls.setup_import() cls.setup_driver() conn = cls.connect() conn.connect() def load_test_data_and_sql(self): self._load_raw_sql() self._load_test1_data() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() @classmethod def setup_import(cls): # Skip this test if SQLAlchemy not available if not SQLALCHEMY_INSTALLED: pytest.skip("SQLAlchemy not installed") @classmethod def setup_driver(cls): raise NotImplementedError() @classmethod def connect(cls): raise NotImplementedError() def setup_connect(self): try: self.conn = self.connect() self.pandasSQL = sql.SQLDatabase(self.conn) # to test if connection can be made: self.conn.connect() except sqlalchemy.exc.OperationalError: pytest.skip(f"Can't connect to {self.flavor} server") def test_read_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_to_sql_method_multi(self): self._to_sql(method="multi") def test_to_sql_method_callable(self): self._to_sql_method_callable() def test_create_table(self): temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, "temp_frame") assert temp_conn.has_table("temp_frame") def test_drop_table(self): temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, "temp_frame") assert temp_conn.has_table("temp_frame") pandasSQL.drop_table("temp_frame") assert not temp_conn.has_table("temp_frame") def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_read_table(self): iris_frame = sql.read_sql_table("iris", con=self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_table_columns(self): iris_frame = sql.read_sql_table( "iris", con=self.conn, columns=["SepalLength", "SepalLength"] ) tm.equalContents(iris_frame.columns.values, ["SepalLength", "SepalLength"]) def test_read_table_absent_raises(self): msg = "Table this_doesnt_exist not found" with pytest.raises(ValueError, match=msg): sql.read_sql_table("this_doesnt_exist", con=self.conn) def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) assert issubclass(df.BoolCol.dtype.type, np.bool_) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA values becomes object assert issubclass(df.BoolColWithNull.dtype.type, np.object) def test_bigint(self): # int64 should be converted to BigInteger, GH7433 df = DataFrame(data={"i64": [2 ** 62]}) df.to_sql("test_bigint", self.conn, index=False) result = sql.read_sql_table("test_bigint", self.conn) tm.assert_frame_equal(df, result) def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but # MySQL SHOULD be converted. assert issubclass(df.DateCol.dtype.type, np.datetime64) def test_datetime_with_timezone(self): # edge case that converts postgresql datetime with time zone types # to datetime64[ns,psycopg2.tz.FixedOffsetTimezone..], which is ok # but should be more natural, so coerce to datetime64[ns] for now def check(col): # check that a column is either datetime64[ns] # or datetime64[ns, UTC] if is_datetime64_dtype(col.dtype): # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" assert col[0] == Timestamp("2000-01-01 08:00:00") # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" assert col[1] == Timestamp("2000-06-01 07:00:00") elif is_datetime64tz_dtype(col.dtype): assert str(col.dt.tz) == "UTC" # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" # GH 6415 expected_data = [ Timestamp("2000-01-01 08:00:00", tz="UTC"), Timestamp("2000-06-01 07:00:00", tz="UTC"), ] expected = Series(expected_data, name=col.name) tm.assert_series_equal(col, expected) else: raise AssertionError( f"DateCol loaded with incorrect type -> {col.dtype}" ) # GH11216 df = pd.read_sql_query("select * from types_test_data", self.conn) if not hasattr(df, "DateColWithTz"): pytest.skip("no column with datetime with time zone") # this is parsed on Travis (linux), but not on macosx for some reason # even with the same versions of psycopg2 & sqlalchemy, possibly a # Postgresql server version difference col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) df = pd.read_sql_query( "select * from types_test_data", self.conn, parse_dates=["DateColWithTz"] ) if not hasattr(df, "DateColWithTz"): pytest.skip("no column with datetime with time zone") col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) assert str(col.dt.tz) == "UTC" check(df.DateColWithTz) df = pd.concat( list( pd.read_sql_query( "select * from types_test_data", self.conn, chunksize=1 ) ), ignore_index=True, ) col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) assert str(col.dt.tz) == "UTC" expected = sql.read_sql_table("types_test_data", self.conn) col = expected.DateColWithTz assert is_datetime64tz_dtype(col.dtype) tm.assert_series_equal(df.DateColWithTz, expected.DateColWithTz) # xref #7139 # this might or might not be converted depending on the postgres driver df = sql.read_sql_table("types_test_data", self.conn) check(df.DateColWithTz) def test_datetime_with_timezone_roundtrip(self): # GH 9086 # Write datetimetz data to a db and read it back # For dbs that support timestamps with timezones, should get back UTC # otherwise naive data should be returned expected = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3, tz="US/Pacific")} ) expected.to_sql("test_datetime_tz", self.conn, index=False) if self.flavor == "postgresql": # SQLAlchemy "timezones" (i.e. offsets) are coerced to UTC expected["A"] = expected["A"].dt.tz_convert("UTC") else: # Otherwise, timestamps are returned as local, naive expected["A"] = expected["A"].dt.tz_localize(None) result = sql.read_sql_table("test_datetime_tz", self.conn) tm.assert_frame_equal(result, expected) result = sql.read_sql_query("SELECT * FROM test_datetime_tz", self.conn) if self.flavor == "sqlite": # read_sql_query does not return datetime type like read_sql_table assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"]) tm.assert_frame_equal(result, expected) def test_naive_datetimeindex_roundtrip(self): # GH 23510 # Ensure that a naive DatetimeIndex isn't converted to UTC dates = date_range("2018-01-01", periods=5, freq="6H") expected = DataFrame({"nums": range(5)}, index=dates) expected.to_sql("foo_table", self.conn, index_label="info_date") result = sql.read_sql_table("foo_table", self.conn, index_col="info_date") # result index with gain a name from a set_index operation; expected tm.assert_frame_equal(result, expected, check_names=False) def test_date_parsing(self): # No Parsing df = sql.read_sql_table("types_test_data", self.conn) expected_type = object if self.flavor == "sqlite" else np.datetime64 assert issubclass(df.DateCol.dtype.type, expected_type) df = sql.read_sql_table("types_test_data", self.conn, parse_dates=["DateCol"]) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"} ) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"DateCol": {"format": "%Y-%m-%d %H:%M:%S"}}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"IntDateCol": {"unit": "s"}} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_datetime(self): df = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} ) df.to_sql("test_datetime", self.conn) # with read_table -> type information from schema used result = sql.read_sql_table("test_datetime", self.conn) result = result.drop("index", axis=1) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn) result = result.drop("index", axis=1) if self.flavor == "sqlite": assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"]) tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_NaT(self): df = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} ) df.loc[1, "A"] = np.nan df.to_sql("test_datetime", self.conn, index=False) # with read_table -> type information from schema used result = sql.read_sql_table("test_datetime", self.conn) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn) if self.flavor == "sqlite": assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"], errors="coerce") tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql("test_date", self.conn, index=False) res = read_sql_table("test_date", self.conn) result = res["a"] expected = to_datetime(df["a"]) # comes back as datetime64 tm.assert_series_equal(result, expected) def test_datetime_time(self): # test support for datetime.time df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) df.to_sql("test_time", self.conn, index=False) res = read_sql_table("test_time", self.conn) tm.assert_frame_equal(res, df) # GH8341 # first, use the fallback to have the sqlite adapter put in place sqlite_conn = TestSQLiteFallback.connect() sql.to_sql(df, "test_time2", sqlite_conn, index=False) res = sql.read_sql_query("SELECT * FROM test_time2", sqlite_conn) ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) # check if adapter is in place # then test if sqlalchemy is unaffected by the sqlite adapter sql.to_sql(df, "test_time3", self.conn, index=False) if self.flavor == "sqlite": res = sql.read_sql_query("SELECT * FROM test_time3", self.conn) ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) res = sql.read_sql_table("test_time3", self.conn) tm.assert_frame_equal(df, res) def test_mixed_dtype_insert(self): # see GH6509 s1 = Series(2 ** 25 + 1, dtype=np.int32) s2 = Series(0.0, dtype=np.float32) df = DataFrame({"s1": s1, "s2": s2}) # write and read again df.to_sql("test_read_write", self.conn, index=False) df2 = sql.read_sql_table("test_read_write", self.conn) tm.assert_frame_equal(df, df2, check_dtype=False, check_exact=True) def test_nan_numeric(self): # NaNs in numeric float column df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) df.to_sql("test_nan", self.conn, index=False) # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def test_nan_fullcolumn(self): # full NaN column (numeric float column) df = DataFrame({"A": [0, 1, 2], "B": [np.nan, np.nan, np.nan]}) df.to_sql("test_nan", self.conn, index=False) # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql -> not type info from table -> stays None df["B"] = df["B"].astype("object") df["B"] = None result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def test_nan_string(self): # NaNs in string column df = DataFrame({"A": [0, 1, 2], "B": ["a", "b", np.nan]}) df.to_sql("test_nan", self.conn, index=False) # NaNs are coming back as None df.loc[2, "B"] = None # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes(tbl_name) ixs = [i["column_names"] for i in ixs] return ixs def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): self._transaction_test() def test_get_schema_create_table(self): # Use a dataframe without a bool column, since MySQL converts bool to # TINYINT (which read_sql_table returns as an int and causes a dtype # mismatch) self._load_test3_data() tbl = "test_get_schema_create_table" create_sql = sql.get_schema(self.test_frame3, tbl, con=self.conn) blank_test_df = self.test_frame3.iloc[:0] self.drop_table(tbl) self.conn.execute(create_sql) returned_df = sql.read_sql_table(tbl, self.conn) tm.assert_frame_equal(returned_df, blank_test_df, check_index_type=False) self.drop_table(tbl) def test_dtype(self): cols = ["A", "B"] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) df.to_sql("dtype_test", self.conn) df.to_sql("dtype_test2", self.conn, dtype={"B": sqlalchemy.TEXT}) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() sqltype = meta.tables["dtype_test2"].columns["B"].type assert isinstance(sqltype, sqlalchemy.TEXT) msg = "The type of B is not a SQLAlchemy type" with pytest.raises(ValueError, match=msg): df.to_sql("error", self.conn, dtype={"B": str}) # GH9083 df.to_sql("dtype_test3", self.conn, dtype={"B": sqlalchemy.String(10)}) meta.reflect() sqltype = meta.tables["dtype_test3"].columns["B"].type assert isinstance(sqltype, sqlalchemy.String) assert sqltype.length == 10 # single dtype df.to_sql("single_dtype_test", self.conn, dtype=sqlalchemy.TEXT) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() sqltypea = meta.tables["single_dtype_test"].columns["A"].type sqltypeb = meta.tables["single_dtype_test"].columns["B"].type assert isinstance(sqltypea, sqlalchemy.TEXT) assert isinstance(sqltypeb, sqlalchemy.TEXT) def test_notna_dtype(self): cols = { "Bool": Series([True, None]), "Date": Series([datetime(2012, 5, 1), None]), "Int": Series([1, None], dtype="object"), "Float": Series([1.1, None]), } df = DataFrame(cols) tbl = "notna_dtype_test" df.to_sql(tbl, self.conn) returned_df = sql.read_sql_table(tbl, self.conn) # noqa meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() if self.flavor == "mysql": my_type = sqltypes.Integer else: my_type = sqltypes.Boolean col_dict = meta.tables[tbl].columns assert isinstance(col_dict["Bool"].type, my_type) assert isinstance(col_dict["Date"].type, sqltypes.DateTime) assert isinstance(col_dict["Int"].type, sqltypes.Integer) assert isinstance(col_dict["Float"].type, sqltypes.Float) def test_double_precision(self): V = 1.23456789101112131415 df = DataFrame( { "f32": Series([V], dtype="float32"), "f64": Series([V], dtype="float64"), "f64_as_f32": Series([V], dtype="float64"), "i32": Series([5], dtype="int32"), "i64": Series([5], dtype="int64"), } ) df.to_sql( "test_dtypes", self.conn, index=False, if_exists="replace", dtype={"f64_as_f32": sqlalchemy.Float(precision=23)}, ) res = sql.read_sql_table("test_dtypes", self.conn) # check precision of float64 assert np.round(df["f64"].iloc[0], 14) == np.round(res["f64"].iloc[0], 14) # check sql types meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() col_dict = meta.tables["test_dtypes"].columns assert str(col_dict["f32"].type) == str(col_dict["f64_as_f32"].type) assert isinstance(col_dict["f32"].type, sqltypes.Float) assert isinstance(col_dict["f64"].type, sqltypes.Float) assert isinstance(col_dict["i32"].type, sqltypes.Integer) assert isinstance(col_dict["i64"].type, sqltypes.BigInteger) def test_connectable_issue_example(self): # This tests the example raised in issue # https://github.com/pandas-dev/pandas/issues/10104 def foo(connection): query = "SELECT test_foo_data FROM test_foo_data" return sql.read_sql_query(query, con=connection) def bar(connection, data): data.to_sql(name="test_foo_data", con=connection, if_exists="append") def main(connectable): with connectable.connect() as conn: with conn.begin(): foo_data = conn.run_callable(foo) conn.run_callable(bar, foo_data) DataFrame({"test_foo_data": [0, 1, 2]}).to_sql("test_foo_data", self.conn) main(self.conn) def test_temporary_table(self): test_data = "Hello, World!" expected = DataFrame({"spam": [test_data]}) Base = declarative.declarative_base() class Temporary(Base): __tablename__ = "temp_test" __table_args__ = {"prefixes": ["TEMPORARY"]} id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) spam = sqlalchemy.Column(sqlalchemy.Unicode(30), nullable=False) Session = sa_session.sessionmaker(bind=self.conn) session = Session() with session.transaction: conn = session.connection() Temporary.__table__.create(conn) session.add(Temporary(spam=test_data)) session.flush() df = sql.read_sql_query(sql=sqlalchemy.select([Temporary.spam]), con=conn) tm.assert_frame_equal(df, expected) class _TestSQLAlchemyConn(_EngineToConnMixin, _TestSQLAlchemy): def test_transactions(self): pytest.skip("Nested transactions rollbacks don't work with Pandas") class _TestSQLiteAlchemy: """ Test the sqlalchemy backend against an in-memory sqlite database. """ flavor = "sqlite" @classmethod def connect(cls): return sqlalchemy.create_engine("sqlite:///:memory:") @classmethod def setup_driver(cls): # sqlite3 is built-in cls.driver = None def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) # sqlite has no boolean type, so integer type is returned assert issubclass(df.BoolCol.dtype.type, np.integer) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Non-native Bool column with NA values stays as float assert issubclass(df.BoolColWithNull.dtype.type, np.floating) def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but assert not issubclass(df.DateCol.dtype.type, np.datetime64) def test_bigint_warning(self): # test no warning for BIGINT (to support int64) is raised (GH7433) df = DataFrame({"a": [1, 2]}, dtype="int64") df.to_sql("test_bigintwarning", self.conn, index=False) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") sql.read_sql_table("test_bigintwarning", self.conn) assert len(w) == 0 class _TestMySQLAlchemy: """ Test the sqlalchemy backend against an MySQL database. """ flavor = "mysql" @classmethod def connect(cls): url = "mysql+{driver}://root@localhost/pandas_nosetest" return sqlalchemy.create_engine( url.format(driver=cls.driver), connect_args=cls.connect_args ) @classmethod def setup_driver(cls): pymysql = pytest.importorskip("pymysql") cls.driver = "pymysql" cls.connect_args = {"client_flag": pymysql.constants.CLIENT.MULTI_STATEMENTS} def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) # MySQL has no real BOOL type (it's an alias for TINYINT) assert issubclass(df.BoolCol.dtype.type, np.integer) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA = int column with NA values => becomes float assert issubclass(df.BoolColWithNull.dtype.type, np.floating) def test_read_procedure(self): import pymysql # see GH7324. Although it is more an api test, it is added to the # mysql tests as sqlite does not have stored procedures df = DataFrame({"a": [1, 2, 3], "b": [0.1, 0.2, 0.3]}) df.to_sql("test_procedure", self.conn, index=False) proc = """DROP PROCEDURE IF EXISTS get_testdb; CREATE PROCEDURE get_testdb () BEGIN SELECT * FROM test_procedure; END""" connection = self.conn.connect() trans = connection.begin() try: r1 = connection.execute(proc) # noqa trans.commit() except pymysql.Error: trans.rollback() raise res1 = sql.read_sql_query("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res1) # test delegation to read_sql_query res2 = sql.read_sql("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res2) class _TestPostgreSQLAlchemy: """ Test the sqlalchemy backend against an PostgreSQL database. """ flavor = "postgresql" @classmethod def connect(cls): url = "postgresql+{driver}://postgres@localhost/pandas_nosetest" return sqlalchemy.create_engine(url.format(driver=cls.driver)) @classmethod def setup_driver(cls): pytest.importorskip("psycopg2") cls.driver = "psycopg2" def test_schema_support(self): # only test this for postgresql (schema's not supported in # mysql/sqlite) df = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]}) # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe to different schema's df.to_sql("test_schema_public", self.conn, index=False) df.to_sql( "test_schema_public_explicit", self.conn, index=False, schema="public" ) df.to_sql("test_schema_other", self.conn, index=False, schema="other") # read dataframes back in res1 = sql.read_sql_table("test_schema_public", self.conn) tm.assert_frame_equal(df, res1) res2 = sql.read_sql_table("test_schema_public_explicit", self.conn) tm.assert_frame_equal(df, res2) res3 = sql.read_sql_table( "test_schema_public_explicit", self.conn, schema="public" ) tm.assert_frame_equal(df, res3) res4 = sql.read_sql_table("test_schema_other", self.conn, schema="other") tm.assert_frame_equal(df, res4) msg = "Table test_schema_other not found" with pytest.raises(ValueError, match=msg): sql.read_sql_table("test_schema_other", self.conn, schema="public") # different if_exists options # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe with different if_exists options df.to_sql("test_schema_other", self.conn, schema="other", index=False) df.to_sql( "test_schema_other", self.conn, schema="other", index=False, if_exists="replace", ) df.to_sql( "test_schema_other", self.conn, schema="other", index=False, if_exists="append", ) res = sql.read_sql_table("test_schema_other", self.conn, schema="other") tm.assert_frame_equal(concat([df, df], ignore_index=True), res) # specifying schema in user-provided meta # The schema won't be applied on another Connection # because of transactional schemas if isinstance(self.conn, sqlalchemy.engine.Engine): engine2 = self.connect() meta = sqlalchemy.MetaData(engine2, schema="other") pdsql = sql.SQLDatabase(engine2, meta=meta) pdsql.to_sql(df, "test_schema_other2", index=False) pdsql.to_sql(df, "test_schema_other2", index=False, if_exists="replace") pdsql.to_sql(df, "test_schema_other2", index=False, if_exists="append") res1 = sql.read_sql_table("test_schema_other2", self.conn, schema="other") res2 = pdsql.read_table("test_schema_other2") tm.assert_frame_equal(res1, res2) def test_copy_from_callable_insertion_method(self): # GH 8953 # Example in io.rst found under _io.sql.method # not available in sqlite, mysql def psql_insert_copy(table, conn, keys, data_iter): # gets a DBAPI connection that can provide a cursor dbapi_conn = conn.connection with dbapi_conn.cursor() as cur: s_buf = StringIO() writer = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) columns = ", ".join(f'"{k}"' for k in keys) if table.schema: table_name = f"{table.schema}.{table.name}" else: table_name = table.name sql_query = f"COPY {table_name} ({columns}) FROM STDIN WITH CSV" cur.copy_expert(sql=sql_query, file=s_buf) expected = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]}) expected.to_sql( "test_copy_insert", self.conn, index=False, method=psql_insert_copy ) result = sql.read_sql_table("test_copy_insert", self.conn) tm.assert_frame_equal(result, expected) @pytest.mark.single @pytest.mark.db class TestMySQLAlchemy(_TestMySQLAlchemy, _TestSQLAlchemy): pass @pytest.mark.single @pytest.mark.db class TestMySQLAlchemyConn(_TestMySQLAlchemy, _TestSQLAlchemyConn): pass @pytest.mark.single @pytest.mark.db class TestPostgreSQLAlchemy(_TestPostgreSQLAlchemy, _TestSQLAlchemy): pass @pytest.mark.single @pytest.mark.db class TestPostgreSQLAlchemyConn(_TestPostgreSQLAlchemy, _TestSQLAlchemyConn): pass @pytest.mark.single class TestSQLiteAlchemy(_TestSQLiteAlchemy, _TestSQLAlchemy): pass @pytest.mark.single class TestSQLiteAlchemyConn(_TestSQLiteAlchemy, _TestSQLAlchemyConn): pass # ----------------------------------------------------------------------------- # -- Test Sqlite / MySQL fallback @pytest.mark.single class TestSQLiteFallback(SQLiteMixIn, PandasSQLTest): """ Test the fallback mode against an in-memory sqlite database. """ flavor = "sqlite" @classmethod def connect(cls): return sqlite3.connect(":memory:") def setup_connect(self): self.conn = self.connect() def load_test_data_and_sql(self): self.pandasSQL = sql.SQLiteDatabase(self.conn) self._load_test1_data() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def test_read_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_to_sql_method_multi(self): # GH 29921 self._to_sql(method="multi") def test_create_and_drop_table(self): temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) self.pandasSQL.to_sql(temp_frame, "drop_test_frame") assert self.pandasSQL.has_table("drop_test_frame") self.pandasSQL.drop_table("drop_test_frame") assert not self.pandasSQL.has_table("drop_test_frame") def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql("test_date", self.conn, index=False) res = read_sql_query("SELECT * FROM test_date", self.conn) if self.flavor == "sqlite": # comes back as strings tm.assert_frame_equal(res, df.astype(str)) elif self.flavor == "mysql": tm.assert_frame_equal(res, df) def test_datetime_time(self): # test support for datetime.time, GH #8341 df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) df.to_sql("test_time", self.conn, index=False) res = read_sql_query("SELECT * FROM test_time", self.conn) if self.flavor == "sqlite": # comes back as strings expected = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(res, expected) def _get_index_columns(self, tbl_name): ixs = sql.read_sql_query( "SELECT * FROM sqlite_master WHERE type = 'index' " + f"AND tbl_name = '{tbl_name}'", self.conn, ) ix_cols = [] for ix_name in ixs.name: ix_info = sql.read_sql_query(f"PRAGMA index_info({ix_name})", self.conn) ix_cols.append(ix_info.name.tolist()) return ix_cols def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): self._transaction_test() def _get_sqlite_column_type(self, table, column): recs = self.conn.execute(f"PRAGMA table_info({table})") for cid, name, ctype, not_null, default, pk in recs: if name == column: return ctype raise ValueError(f"Table {table}, column {column} not found") def test_dtype(self): if self.flavor == "mysql": pytest.skip("Not applicable to MySQL legacy") cols = ["A", "B"] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) df.to_sql("dtype_test", self.conn) df.to_sql("dtype_test2", self.conn, dtype={"B": "STRING"}) # sqlite stores Boolean values as INTEGER assert self._get_sqlite_column_type("dtype_test", "B") == "INTEGER" assert self._get_sqlite_column_type("dtype_test2", "B") == "STRING" msg = r"B \(<class 'bool'>\) not a string" with pytest.raises(ValueError, match=msg): df.to_sql("error", self.conn, dtype={"B": bool}) # single dtype df.to_sql("single_dtype_test", self.conn, dtype="STRING") assert self._get_sqlite_column_type("single_dtype_test", "A") == "STRING" assert self._get_sqlite_column_type("single_dtype_test", "B") == "STRING" def test_notna_dtype(self): if self.flavor == "mysql": pytest.skip("Not applicable to MySQL legacy") cols = { "Bool": Series([True, None]), "Date": Series([datetime(2012, 5, 1), None]), "Int": Series([1, None], dtype="object"), "Float":
Series([1.1, None])
pandas.Series
from flask import Flask, render_template, request, flash import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import base64 from scipy.signal import medfilt from scipy.integrate import trapz import xml.etree.ElementTree as et from datetime import date today = date.today() import webbrowser np.warnings.filterwarnings('ignore') sns.set(style="darkgrid") ALLOWED_EXTENSIONS = {'xml'} def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS app = Flask(__name__) app.secret_key = b'_5#y2L"F4Q8z\n\rec]/' @app.route('/', methods=["POST"]) def process_data(): if request.method == "POST": output_name = request.form.get("outName") pacedFlatValue = request.form.get("pacedFlatValue") unpacedFlatValue = request.form.get("unpacedFlatValue") pacedThresholdPercentCutoff = request.form.get("pacedThresholdPercentCutoff") unpacedThresholdPercentCutoff = request.form.get("unpacedThresholdPercentCutoff") pacedZScoreCutoff = request.form.get("pacedZScoreCutoff") hyperbolicCosFrequencyValue = request.form.get("hyperbolicCosFrequencyValue") if output_name: output_name = output_name else: output_name = "Data" if pacedFlatValue: pacedFlatValue = int(pacedFlatValue) else: pacedFlatValue = 50 if unpacedFlatValue: unpacedFlatValue = int(unpacedFlatValue) else: unpacedFlatValue = 60 if pacedThresholdPercentCutoff: pacedThresholdPercentCutoff = float(pacedThresholdPercentCutoff) else: pacedThresholdPercentCutoff = 0.98 if unpacedThresholdPercentCutoff: unpacedThresholdPercentCutoff = float(unpacedThresholdPercentCutoff) else: unpacedThresholdPercentCutoff = 0.992 if pacedZScoreCutoff: pacedZScoreCutoff = int(pacedZScoreCutoff) else: pacedZScoreCutoff = 150 if hyperbolicCosFrequencyValue: hyperbolicCosFrequencyValue = int(hyperbolicCosFrequencyValue) else: hyperbolicCosFrequencyValue = 600 # fileName = request.files['inFile'] fileNames = request.files.getlist("inFile[]") for fileName in fileNames: if fileName and allowed_file(fileName.filename): fileName = fileName elif fileName and ~allowed_file(fileName.filename): flash('No file inputed or incorrect type of file. Please input one or more .xml files.') return render_template('index.html') else: flash('No file inputed or incorrect type of file. Please input one or more .xml files.') return render_template('index.html') roots = [] for fileName in fileNames: roots.append([et.parse(fileName).getroot()]) # roots = [et.parse(fileName).getroot()] #-------------------------------------------------------------------------------------------------------------- def modified_z_score(intensity): median_int = np.median(intensity) mad_int = np.median([np.abs(intensity - median_int)]) if mad_int == 0: mad_int = 1 modified_z_scores = 0.6745 * (intensity - median_int) / mad_int return modified_z_scores def df_fixer(y,n): threshold = 0 x = 0 while threshold == 0: if np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), 1) > pacedZScoreCutoff: if abs(np.array(modified_z_score(np.diff(y))))[int(data.Qonset[n*12])+x:int(data.Qoffset[n*12])+30].max() < np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), pacedThresholdPercentCutoff)+pacedFlatValue: threshold = abs(np.array(modified_z_score(np.diff(y))))[int(data.Qonset[n*12])+x:int(data.Qoffset[n*12])+30].max() + 1 elif abs(np.array(modified_z_score(np.diff(y))))[int(data.Qonset[n*12])+x:int(data.Qoffset[n*12])+30].max() > np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), pacedThresholdPercentCutoff)+pacedFlatValue: x += 5 elif np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), 1) <= pacedZScoreCutoff: if abs(np.array(modified_z_score(np.diff(y))))[int(data.Qonset[n*12])+x:int(data.Qoffset[n*12])+30].max() < np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), unpacedThresholdPercentCutoff)+unpacedFlatValue: threshold = abs(np.array(modified_z_score(np.diff(y))))[int(data.Qonset[n*12])+x:int(data.Qoffset[n*12])+30].max() + 1 elif abs(np.array(modified_z_score(np.diff(y))))[int(data.Qonset[n*12])+x:int(data.Qoffset[n*12])+30].max() > np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), unpacedThresholdPercentCutoff)+unpacedFlatValue: x += 5 spikes = abs(np.array(modified_z_score(np.diff(y)))) > threshold y_out = y.copy() for i in np.arange(len(spikes)): if spikes[i] != 0: y_out[i+y_out.index[0]] = None return y_out def half_df_fixer(y,n): threshold = 0 x = 0 while threshold == 0: if np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), 1) > pacedZScoreCutoff: if abs(np.array(modified_z_score(np.diff(y))))[int(half_data.Qonset[n*12])+x:int(half_data.Qoffset[n*12])+30].max() < np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), pacedThresholdPercentCutoff)+pacedFlatValue: threshold = abs(np.array(modified_z_score(np.diff(y))))[int(half_data.Qonset[n*12])+x:int(half_data.Qoffset[n*12])+30].max() + 1 elif abs(np.array(modified_z_score(np.diff(y))))[int(half_data.Qonset[n*12])+x:int(half_data.Qoffset[n*12])+30].max() > np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), pacedThresholdPercentCutoff)+pacedFlatValue: x += 5 elif np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), 1) <= pacedZScoreCutoff: if abs(np.array(modified_z_score(np.diff(y))))[int(half_data.Qonset[n*12])+x:int(half_data.Qoffset[n*12])+30].max() < np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), unpacedThresholdPercentCutoff)+unpacedFlatValue: threshold = abs(np.array(modified_z_score(np.diff(y))))[int(half_data.Qonset[n*12])+x:int(half_data.Qoffset[n*12])+30].max() + 1 elif abs(np.array(modified_z_score(np.diff(y))))[int(half_data.Qonset[n*12])+x:int(half_data.Qoffset[n*12])+30].max() > np.nanquantile(abs(np.array(modified_z_score(np.diff(y)))), unpacedThresholdPercentCutoff)+unpacedFlatValue: x += 5 spikes = abs(np.array(modified_z_score(np.diff(y)))) > threshold y_out = y.copy() for i in np.arange(len(spikes)): if spikes[i] != 0: y_out[i+y_out.index[0]] = None return y_out def hanging_line(point1, point2): a = (point2[1] - point1[1])/(np.cosh(point2[0] % hyperbolicCosFrequencyValue) - np.cosh(point1[0] % hyperbolicCosFrequencyValue)) b = point1[1] - a*np.cosh(point1[0] % hyperbolicCosFrequencyValue) x = np.linspace(point1[0], point2[0], (point2[0] - point1[0])+1) y = a*np.cosh(x % hyperbolicCosFrequencyValue) + b return (x,y) Tags = {'tags':[]} tags = {'tags':[]} for root in roots: root = root[0] if len(root.find('{http://www3.medical.philips.com}waveforms').getchildren()) == 2: if int(root.find('{http://www3.medical.philips.com}waveforms')[1].attrib['samplespersec']) == 1000: for elem in root.find('{http://www3.medical.philips.com}waveforms')[1]: tag = {} tag['Lead'] = elem.attrib['leadname'] if (root[6][1][0][14].text == 'Invalid' or elem[0].text == 'Invalid') and root[6].tag == '{http://www3.medical.philips.com}internalmeasurements': if root[6][1][0][14].text == None or root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == 'Invalid' or root[6][1][0][14].text == '\n ' or root[6][1][0][14].text == 'Failed': tag['Ponset'] = 0 tag['Pdur'] = 0 tag['Print'] = 0 tag['Poffset'] = 0 else: tag['Ponset'] = int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text) tag['Pdur'] = 0 tag['Print'] = int(root[6][1][0][14].text) tag['Poffset'] = (int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text)) + 0 elif root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == 'Invalid' or root[6][1][0][14].text == None or root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == 'Failed' or root[6][1][0][14].text == 'Failed' or (root[6][1][0][14].text == 'Invalid' or elem[0].text == 'Invalid'): tag['Ponset'] = 0 tag['Pdur'] = 0 tag['Print'] = 0 tag['Poffset'] = 0 else: tag['Ponset'] = int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text) tag['Pdur'] = int(elem[0].text) tag['Print'] = int(root[6][1][0][14].text) tag['Poffset'] = (int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text)) + int(elem[0].text) if (root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == 'Invalid' or root[6][0][29].text == 'Invalid' or elem[4].text == 'Invalid' or root[6][1][0][18].text == 'Invalid'): tag['Qonset'] = np.nan tag['Qrsdur'] = np.nan tag['Qoffset'] = np.nan tag['Tonset'] = np.nan tag['Qtint'] = np.nan tag['Toffset'] = np.nan tag['Tdur'] = np.nan else: tag['Qonset'] = int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) tag['Qrsdur'] = int(root[6][0][29].text) tag['Qoffset'] = tag['Qonset'] + tag['Qrsdur'] tag['Tonset'] = int(elem[4].text) tag['Qtint'] = int(root[6][1][0][18].text) tag['Toffset'] = tag['Qonset'] + tag['Qtint'] tag['Tdur'] = tag['Qoffset'] - tag['Qonset'] if root[7].tag == '{http://www3.medical.philips.com}interpretations' and root[6].tag == '{http://www3.medical.philips.com}internalmeasurements': if root[7][0][1][0].text != None and (root[7][0][1][0].text).isdigit(): tag['HeartRate'] = int(root[7][0][1][0].text) if root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[1].text != None: tag['RRint'] = int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[1].text) if root[6][1][0][9].text != None: tag['AtrialRate'] = int(root[6][1][0][9].text) if root[6][0][15].text != None and root[6][0][15].text != 'Indeterminate': tag['QRSFrontAxis'] = int(root[6][0][15].text) if root[6][0][31].text != None and root[6][0][31].text != 'Failed': tag['QTC'] = int(root[6][0][31].text) tag['Target'] = [] for n in range(len(root[7][0][root[7][0].getchildren().index(root[7][0].find('{http://www3.medical.philips.com}statement')):])): tag['Target'].append(root[7][0][root[7][0].getchildren().index(root[7][0].find('{http://www3.medical.philips.com}statement')):][n][0].text) else: tag['HeartRate'] = np.nan tag['RRint'] = np.nan tag['AtrialRate'] = np.nan tag['QRSFrontAxis'] = np.nan tag['QTC'] = np.nan tag['Target'] = [] if root[3].tag == '{http://www3.medical.philips.com}reportinfo' and root[5].tag == '{http://www3.medical.philips.com}patient': time = root[3].attrib tag['Date'] = time['date'] tag['Time'] = time['time'] tag['Sex'] = root[5][0][6].text tag['ID'] = root[5][0][0].text tag['Name'] = root[5][0].find('{http://www3.medical.philips.com}name')[0].text + ', ' + root[5][0].find('{http://www3.medical.philips.com}name')[1].text if root[5][0].find('{http://www3.medical.philips.com}age')[0].tag == '{http://www3.medical.philips.com}dateofbirth': tag['Age'] = int(today.strftime("%Y")) - int(root[5][0].find('{http://www3.medical.philips.com}age')[0].text[0:4]) if root[5][0].find('{http://www3.medical.philips.com}age')[0].tag == '{http://www3.medical.philips.com}years': tag['Age'] = int(root[5][0].find('{http://www3.medical.philips.com}age')[0].text) tag['Waveform'] = elem[6].text tags['tags'].append(tag) else: for elem in root.find('{http://www3.medical.philips.com}waveforms')[1]: Tag = {} Tag['Lead'] = elem.attrib['leadname'] if (root[6][1][0][14].text == 'Invalid' or elem[0].text == 'Invalid') and root[6].tag == '{http://www3.medical.philips.com}internalmeasurements': if root[6][1][0][14].text == None or root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == 'Invalid' or root[6][1][0][14].text == '\n ' or root[6][1][0][14].text == 'Failed': Tag['Ponset'] = 0 Tag['Pdur'] = 0 Tag['Print'] = 0 Tag['Poffset'] = 0 else: Tag['Ponset'] = float(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text) Tag['Pdur'] = 0 Tag['Print'] = int(root[6][1][0][14].text) Tag['Poffset'] = (int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text)) + 0 elif root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == 'Invalid' or root[6][1][0][14].text == None or root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == None or root[6][1][0][14].text == 'Invalid' or elem[0].text == 'Invalid' and root[6].tag == '{http://www3.medical.philips.com}internalmeasurements': Tag['Ponset'] = 0 Tag['Pdur'] = 0 Tag['Print'] = 0 Tag['Poffset'] = 0 else: Tag['Ponset'] = int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text) Tag['Pdur'] = int(elem[0].text) Tag['Print'] = int(root[6][1][0][14].text) Tag['Poffset'] = (int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) - int(root[6][1][0][14].text)) + int(elem[0].text) if (root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text == 'Invalid' or root[6][1][0][18].text == None or root[6][0][29].text == 'Invalid' or elem[4].text == 'Invalid' or root[6][1][0][18].text == 'Invalid'): Tag['Qonset'] = np.nan Tag['Qrsdur'] = np.nan Tag['Qoffset'] = np.nan Tag['Tonset'] = np.nan Tag['Qtint'] = np.nan Tag['Toffset'] = np.nan Tag['Tdur'] = np.nan else: Tag['Qonset'] = int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[5].text) Tag['Qrsdur'] = int(root[6][0][29].text) Tag['Qoffset'] = Tag['Qonset'] + Tag['Qrsdur'] Tag['Tonset'] = int(elem[4].text) Tag['Qtint'] = int(root[6][1][0][18].text) Tag['Toffset'] = Tag['Qonset'] + Tag['Qtint'] Tag['Tdur'] = Tag['Qoffset'] - Tag['Qonset'] if root[7].tag == '{http://www3.medical.philips.com}interpretations' and root[6].tag == '{http://www3.medical.philips.com}internalmeasurements': if root[7][0][1][0].text != None and (root[7][0][1][0].text).isdigit(): Tag['HeartRate'] = int(root[7][0][1][0].text) if root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[1].text != None: Tag['RRint'] = int(root[7][0].find('{http://www3.medical.philips.com}globalmeasurements')[1].text) if root[6][1][0][9].text != None: Tag['AtrialRate'] = int(root[6][1][0][9].text) if root[6][0][15].text != None and root[6][0][15].text != 'Indeterminate': Tag['QRSFrontAxis'] = int(root[6][0][15].text) if root[6][0][31].text != None: Tag['QTC'] = int(root[6][0][31].text) Tag['Target'] = [] for n in range(len(root[7][0][root[7][0].getchildren().index(root[7][0].find('{http://www3.medical.philips.com}statement')):])): Tag['Target'].append(root[7][0][root[7][0].getchildren().index(root[7][0].find('{http://www3.medical.philips.com}statement')):][n][0].text) else: Tag['HeartRate'] = np.nan Tag['RRint'] = np.nan Tag['AtrialRate'] = np.nan Tag['QRSFrontAxis'] = np.nan Tag['QTC'] = np.nan Tag['Target'] = [] if root[3].tag == '{http://www3.medical.philips.com}reportinfo' and root[5].tag == '{http://www3.medical.philips.com}patient': time = root[3].attrib Tag['Date'] = time['date'] Tag['Time'] = time['time'] Tag['Sex'] = root[5][0][6].text Tag['ID'] = root[5][0][0].text Tag['Name'] = root[5][0].find('{http://www3.medical.philips.com}name')[0].text + ', ' + root[5][0].find('{http://www3.medical.philips.com}name')[1].text if len(root[5][0].find('{http://www3.medical.philips.com}age')) > 0: if root[5][0].find('{http://www3.medical.philips.com}age')[0].tag == '{http://www3.medical.philips.com}dateofbirth': Tag['Age'] = int(today.strftime("%Y")) - int(root[5][0].find('{http://www3.medical.philips.com}age')[0].text[0:4]) if root[5][0].find('{http://www3.medical.philips.com}age')[0].tag == '{http://www3.medical.philips.com}years': Tag['Age'] = int(root[5][0].find('{http://www3.medical.philips.com}age')[0].text) Tag['Waveform'] = elem[6].text Tags['tags'].append(Tag) half_data = pd.DataFrame(Tags['tags']) data = pd.DataFrame(tags['tags']) del roots del root del elem count1000 = int(len(data)/12) count500 = int(len(half_data)/12) count = count1000 + count500 if len(data) > 0: array = np.unique(data[data.isnull().any(axis=1)][['ID', 'Date', 'Time']]) missing_data = data.loc[data['ID'].isin(array) & data['Date'].isin(array) & data['Time'].isin(array)] data.drop(missing_data.index, axis=0,inplace=True) missing_data = missing_data.reset_index(drop=True) del tag del tags data = data.reset_index(drop=True) for n in range(count1000): data.Tonset[n*12:(n+1)*12] = np.repeat(int(data.Tonset[n*12:(n+1)*12].sum()/12), 12) data.Pdur[n*12:(n+1)*12] = np.repeat(int(data.Pdur[n*12:(n+1)*12].sum()/12), 12) x = 0 p = [] for x in range(len(data.Waveform)): t = base64.b64decode(data.Waveform[x]) p.append(np.asarray(t)) x+=1 p = np.asarray(p) a = [] for i in p: o = [] for x in i: o.append(x) a.append(o) df = pd.DataFrame(a) df.insert(0, 'Lead', data['Lead']) blank = [] for n in range(count1000): blank.append(pd.pivot_table(df[(n*12):(n+1)*12], columns=df.Lead)) test = pd.concat(blank) new = [] array = [] for n in range(13): for index, num in zip(test.iloc[:, n-1][::2], test.iloc[:, n-1][1::2]): if num > 128: new.append(index - (256 * (256 - num))) elif num < 128: new.append(index + (256 * num)) elif num == 0: new.append(index) else: new.append(index) new = [] array.append(new) array = np.asarray([array[0], array[1], array[2], array[3], array[4], array[5], array[6], array[7], array[8], array[9], array[10], array[11]]) df = pd.DataFrame(array) df =
pd.pivot_table(df, columns=test.columns)
pandas.pivot_table
from typing import TYPE_CHECKING import numpy as np import pandas as pd from vivarium.framework.randomness import get_hash from vivarium_csu_sanofi_multiple_myeloma.constants import models from vivarium_csu_sanofi_multiple_myeloma.constants.metadata import SCENARIOS, HAZARD_RATE_SOURCES from vivarium_csu_sanofi_multiple_myeloma.constants.data_values import (OS_HR, PFS_HR, PROBABILITY_RETREAT, RCT_OS_HR, RCT_PFS_HR, REGISTRY_ENROLL_PROBABILITY) from vivarium_csu_sanofi_multiple_myeloma.utilities import LogNormalHazardRate if TYPE_CHECKING: from vivarium.framework.engine import Builder from vivarium.framework.event import Event from vivarium.framework.population import SimulantData TREATMENT_LINES = pd.Index( list(models.MULTIPLE_MYELOMA_WITH_CONDITION_STATES), name=models.MULTIPLE_MYELOMA_MODEL_NAME ) def make_treatment_coverage(year, scenario): scalar_2019 = (2019-2016)/(2021-2016) scalar_2020 = (2020-2016)/(2021-2016) coverages = { (2016, SCENARIOS.baseline): ( [0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.000, 0.000, 0.000, 0.000], ), (2019, SCENARIOS.baseline): ( [0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.198 * scalar_2019, 0.323 * scalar_2019, 0.365 * scalar_2019, 0.3011 * scalar_2019], ), (2020, SCENARIOS.baseline): ( [0.000, 0.000, 0.000, 0.000, 0.000], [0.000, 0.198 * scalar_2020, 0.323 * scalar_2020, 0.365 * scalar_2020, 0.3011 * scalar_2020] ), (2021, SCENARIOS.baseline): ( [0.000, 0.005, 0.010, 0.033, 0.033], [0.029, 0.198, 0.323, 0.365, 0.3011], ), (2025, SCENARIOS.baseline): ( [0.000, 0.100, 0.090, 0.070, 0.070], [0.34, 0.34, 0.34, 0.34, 0.34], ), (2025, SCENARIOS.alternative): ( [0.100, 0.100, 0.090, 0.070, 0.070], [0.34, 0.34, 0.34, 0.34, 0.34], ) } for target_year in (2016, 2019, 2020, 2021): coverages[(target_year, SCENARIOS.alternative)] = coverages[(target_year, SCENARIOS.baseline)] coverage_data = coverages[(year, scenario)] coverage = pd.DataFrame({ models.TREATMENTS.isatuximab: coverage_data[0], models.TREATMENTS.daratumumab: coverage_data[1], }, index=TREATMENT_LINES) coverage[models.TREATMENTS.residual] = 1 - coverage.sum(axis=1) return coverage def make_hazard_ratios(draw: int, pfs: dict, os: dict): index_cols = [models.MULTIPLE_MYELOMA_MODEL_NAME, 'multiple_myeloma_treatment', 'retreated'] pfs_hazard_ratio = pd.DataFrame(columns=index_cols + ['hazard_ratio']).set_index(index_cols) os_hazard_ratio = pd.DataFrame(columns=index_cols + ['hazard_ratio']).set_index(index_cols) pfs_hazard_ratio.loc[(models.SUSCEPTIBLE_STATE_NAME, models.TREATMENTS.not_treated, False)] = 1.0 os_hazard_ratio.loc[(models.SUSCEPTIBLE_STATE_NAME, models.TREATMENTS.not_treated, False)] = 1.0 for key in pfs: random_seed = '_'.join([str(k) for k in key] + [str(draw)]) rs = np.random.RandomState(get_hash(random_seed)) survival_percentile = rs.random() pfs_hazard_ratio.loc[key] = LogNormalHazardRate(*pfs[key]).get_random_variable(survival_percentile) os_hazard_ratio.loc[key] = LogNormalHazardRate(*os[key]).get_random_variable(survival_percentile) for key in set(os).difference(pfs): random_seed = '_'.join([str(k) for k in key] + [str(draw)]) rs = np.random.RandomState(get_hash(random_seed)) survival_percentile = rs.random() os_hazard_ratio.loc[key] = LogNormalHazardRate(*os[key]).get_random_variable(survival_percentile) pfs_hazard_ratio = pfs_hazard_ratio.reset_index() os_hazard_ratio = os_hazard_ratio.reset_index() # FIXME: Super-duper hack to make lookup table work. Need at least one continuous parameter. pfs_hazard_ratio['year_start'] = 1990 pfs_hazard_ratio['year_end'] = 2100 os_hazard_ratio['year_start'] = 1990 os_hazard_ratio['year_end'] = 2100 return pfs_hazard_ratio, os_hazard_ratio class MultipleMyelomaTreatmentCoverage: configuration_defaults = { 'mm_scenarios': { 'mm_treatment_scenario': SCENARIOS.baseline, } } @property def name(self): return self.__class__.__name__ def __init__(self): self.configuration_defaults = { 'mm_scenarios': { 'mm_treatment_scenario': MultipleMyelomaTreatmentCoverage.configuration_defaults[ 'mm_scenarios']['mm_treatment_scenario'], } } # noinspection PyAttributeOutsideInit def setup(self, builder: 'Builder') -> None: self.clock = builder.time.clock() self.randomness = builder.randomness.get_stream(self.name) scenario = builder.configuration.mm_scenarios.mm_treatment_scenario assert scenario in SCENARIOS self.coverage = {} for year in (2016, 2019, 2020, 2021, 2025): self.coverage[year] = make_treatment_coverage(year, scenario) # What treatment are they currently on. self.treatment_column = 'multiple_myeloma_treatment' # Did they previously receive isatuximab or daratumumab self.ever_isa_or_dara_column = 'ever_isa_or_dara' self.retreated_column = 'retreated' # registry_evaluation_status has 3 potential values: unevaluated, eligible, enrolled self.registry_evaluation_status = 'registry_evaluation_status' self.registry_evaluation_date = 'registry_evaluation_date' self.ever_isa = 'ever_isa' self.registry_start_date = pd.Timestamp('2021-01-01') columns_created = [ self.treatment_column, self.ever_isa_or_dara_column, self.retreated_column, self.registry_evaluation_status, self.registry_evaluation_date, self.ever_isa ] columns_required = ( [models.MULTIPLE_MYELOMA_MODEL_NAME] + [f'{s}_event_time' for s in models.MULTIPLE_MYELOMA_WITH_CONDITION_STATES] ) self.population_view = builder.population.get_view(columns_required + columns_created) builder.population.initializes_simulants( self.on_initialize_simulants, creates_columns=columns_created, requires_columns=columns_required, requires_streams=[self.randomness.key], ) builder.event.register_listener('time_step__cleanup', self.on_time_step_cleanup) def on_initialize_simulants(self, pop_data: 'SimulantData') -> None: current_coverage = self.get_current_coverage(pop_data.creation_time) initial_mm_state = self.population_view.subview([models.MULTIPLE_MYELOMA_MODEL_NAME]).get(pop_data.index) pop_update = pd.DataFrame({ self.treatment_column: models.TREATMENTS.not_treated, self.ever_isa_or_dara_column: False, self.retreated_column: False, self.registry_evaluation_status: 'unevaluated', self.registry_evaluation_date: pd.NaT, self.ever_isa: False }, index=pop_data.index) with_mm = initial_mm_state.loc[ initial_mm_state[models.MULTIPLE_MYELOMA_MODEL_NAME] != models.SUSCEPTIBLE_STATE_NAME, models.MULTIPLE_MYELOMA_MODEL_NAME ] pop_update.loc[with_mm.index, self.treatment_column] = models.TREATMENTS.residual self.population_view.update(pop_update) def on_time_step_cleanup(self, event: 'Event'): pop = self.population_view.get(event.index) retreat_mask = self.randomness.get_draw(pop.index, additional_key='retreat') < PROBABILITY_RETREAT ever_isa_or_dara = pop[self.ever_isa_or_dara_column].copy() ever_isa = pop[self.ever_isa].copy() registry_eligible = pd.Series(False, index=pop.index) registry_mask = self.randomness.get_draw(pop.index, additional_key='registry') < REGISTRY_ENROLL_PROBABILITY proportion_ever_isa_or_dara = 0 coverage = self.get_current_coverage(event.time) lines = TREATMENT_LINES.tolist() for current_line, previous_line in zip(lines, [None] + lines[:-1]): # First, unpack probabilities for the current and previous line. p_isa = coverage.at[current_line, models.TREATMENTS.isatuximab] p_dara = coverage.at[current_line, models.TREATMENTS.daratumumab] p_resid = coverage.at[current_line, models.TREATMENTS.residual] # Our base filter, which we'll partition. new_treatment_line = pop[f'{current_line}_event_time'] == event.time # First group, never had isa/dara naive = new_treatment_line & ~ever_isa_or_dara naive_choices = [models.TREATMENTS.isatuximab, models.TREATMENTS.daratumumab, models.TREATMENTS.residual] rescale_probabilities = lambda p1, p2, e: (p1 - e * PROBABILITY_RETREAT * p1 / (p1 + p2)) / (1 - e) if p_isa + p_dara: p_isa_naive = rescale_probabilities(p_isa, p_dara, proportion_ever_isa_or_dara) p_dara_naive = rescale_probabilities(p_dara, p_isa, proportion_ever_isa_or_dara) else: p_isa_naive = p_isa p_dara_naive = p_dara if p_isa_naive + p_dara_naive > 1: p_isa_naive = p_isa_naive / (p_isa_naive + p_dara_naive) p_dara_naive = p_dara_naive / (p_isa_naive + p_dara_naive) p_resid_naive = 1 - p_isa_naive - p_dara_naive naive_probs = [p_isa_naive, p_dara_naive, p_resid_naive] pop.loc[naive, self.treatment_column] = self.randomness.choice( pop.loc[naive].index, choices=naive_choices, p=naive_probs, ) isa_or_dara = pop[self.treatment_column].isin([ models.TREATMENTS.isatuximab, models.TREATMENTS.daratumumab ]) isa = pop[self.treatment_column] == models.TREATMENTS.isatuximab pop.loc[naive & isa, self.ever_isa] = True pop.loc[naive & isa_or_dara, self.ever_isa_or_dara_column] = True # These are no-ops. Here for clarity. pop.loc[naive & ~isa_or_dara, self.ever_isa_or_dara_column] = False pop.loc[naive, self.retreated_column] = False # ever_x = (1 - PROBABILITY_RETREAT) * ever_x-1 + coverage_x proportion_ever_isa_or_dara = (1 - PROBABILITY_RETREAT) * proportion_ever_isa_or_dara + p_isa + p_dara # Second group, simulants w/prior exposure to isa/dara, and will be retreated this line retreat = new_treatment_line & ever_isa_or_dara & retreat_mask retreat_choices = [models.TREATMENTS.isatuximab, models.TREATMENTS.daratumumab] if p_isa + p_dara: retreat_probs = [p_isa / (p_isa + p_dara), p_dara / (p_isa + p_dara)] else: retreat_probs = [p_isa, p_dara] pop.loc[retreat, self.treatment_column] = self.randomness.choice( pop.loc[retreat].index, choices=retreat_choices, p=retreat_probs, ) pop.loc[retreat, self.ever_isa_or_dara_column] = True # This is a no-op. Here for clarity. pop.loc[retreat, self.retreated_column] = True # Third group, got 1 dose of isa/dara, but won't receive one this line, may receive again no_retreat = new_treatment_line & ever_isa_or_dara & ~retreat_mask pop.loc[no_retreat, self.treatment_column] = models.TREATMENTS.residual # pop.loc[no_retreat, ever_isa_or_dara] does not change # pop.loc[no_retreat, retreated] does not change # Build registry mask if self.registry_start_date <= event.time: registry_eligible = registry_eligible | (~ever_isa & isa) if self.registry_start_date <= event.time: pop.loc[registry_eligible & registry_mask, self.registry_evaluation_status] = 'enrolled' pop.loc[registry_eligible, self.registry_evaluation_date] = event.time pop.loc[registry_eligible & ~registry_mask, self.registry_evaluation_status] = 'eligible' self.population_view.update(pop) def get_current_coverage(self, time: pd.Timestamp) -> pd.DataFrame: """Get a df with columns: [TREATMENTS.isatuximab, TREATMENTS.daratumumab, TREATMENTS.residual] indexed by multiple myeloma state.""" if time.year < 2016: return self.coverage[2016] elif time.year < 2019: upper_year = 2019 lower_year = 2016 elif time.year < 2020: upper_year = 2020 lower_year = 2019 elif time.year < 2021: upper_year = 2021 lower_year = 2020 elif time.year < 2025: upper_year = 2025 lower_year = 2021 elif time.year >= 2025: return self.coverage[2025] t = (time - pd.Timestamp(f'{lower_year}-01-01')) / (
pd.Timestamp(f'{upper_year}-01-01')
pandas.Timestamp
#%% # Let's import some packages import numpy as np import pandas as pd from sklearn.model_selection import ShuffleSplit from sklearn.datasets import load_boston from sklearn.linear_model import LinearRegression import scipy.stats as stats import matplotlib.pyplot as plt import sklearn from sklearn.metrics import r2_score # special matplotlib argument for improved plots from matplotlib import rcParams # Pretty display for notebooks #%matplotlib inline #%% # Let's load data boston = load_boston() #%% # Display what is in dataste print(boston.keys()) #%% # Display column names print(boston.DESCR) #%% data =
pd.DataFrame(boston.data)
pandas.DataFrame
import matplotlib matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 from matplotlib.widgets import Slider, Button import numpy as np import matplotlib.pyplot as plt from cell_cycle_gating import cellcycle_phases as cc from cell_cycle_gating import dead_cell_filter as dcf from cell_cycle_gating import ph3_filter as pf import pandas as pd import re from ipywidgets import interactive, interact, fixed, interact_manual import ipywidgets as widgets from IPython.display import display import os def reevaluate_phases(log_dna, dna_gates, log_edu, edu_gates): cell_id = (1 * ((log_dna > dna_gates[0]) & # G1 (log_dna < dna_gates[1]) & (log_edu < edu_gates[0])) + 2 * ((log_dna >= dna_gates[0]) & # S (log_dna < dna_gates[3]) & (log_edu >= edu_gates[0])) + #(log_edu < edu_gates[1])) + 2.1 * ((log_dna >= dna_gates[1]) # S dropout & (log_dna < dna_gates[2]) & (log_edu < edu_gates[0])) + 3 * ((log_dna >= dna_gates[2]) & # G2 (log_dna < dna_gates[3]) & (log_edu < edu_gates[0])) + 0.5 * (log_dna < dna_gates[0]) + 3.1 * (log_dna > dna_gates[3])) fractions = {} for state, val in zip(['subG1', 'G1', 'S', 'S_dropout', 'G2', 'beyondG2'], [0.5, 1, 2, 2.1, 3, 3.1]): fractions[state] = np.mean(cell_id == (val % 4)) return fractions, cell_id def update_gating(obj, well, ndict, ldr_channel=True, ph3_channel=True, x_dna=None, px_edu=None, x_ldr=None, system=None): if os.path.isdir(obj): obj_file = get_obj_file(obj, well) path2file = "%s/%s" % (obj, obj_file) df = pd.read_table(path2file) df = map_channel_names(df, ndict) well = re.search('result.(.*?)\[', obj_file).group(1) well = "%s%s" % (well[0], well[1:].zfill(2)) else: dfo = pd.read_table(obj) dfo = dfo.rename(columns=ndict) df = dfo[dfo.well == well].copy() edu = np.array(df['edu'].tolist()) dna = np.array(df['dna'].tolist()) edu_notnan = ~np.isnan(edu) edu = edu[edu_notnan] dna = dna[edu_notnan] if ldr_channel: ldr = np.array(df['ldr'].tolist()) ldr = ldr[edu_notnan] if system == 'ixm': x_ldr = np.arange(500, ldr.max(), 100) ldr_gates = dcf.get_ldrgates(ldr, x_ldr) dna_gates = dcf.get_dna_gating(dna, ldr, ldr_gates) cell_fate_dict, outcome = dcf.live_dead(ldr, ldr_gates, dna, dna_gates, x_ldr=x_ldr) live_cols = [s for s in list(cell_fate_dict.keys()) if 'alive' in s] dead_cols = [s for s in list(cell_fate_dict.keys()) if 'dead' in s] a = 0 d = 0 for col in live_cols: a += cell_fate_dict[col] for col in dead_cols: d += cell_fate_dict[col] else: outcome = np.array([1] * len(dna)) if ph3_channel: #ph3 = np.array(df['Nuclei Selected - pH3INT'].tolist()) ph3 = np.array(df['ph3'].tolist()) ph3 = ph3[edu_notnan] ph3 = ph3[outcome>=1] if px_edu is None: px_edu = np.arange(-0.2, 5.3, .02) if x_dna is None: x_dna = np.arange(2.5, 8, 0.02) log_dna = cc.compute_log_dna(dna[outcome>=1], x_dna) edu_shift, offset_edu, edu_g1_max, edu_s_min = cc.get_edu_gates(edu[outcome>=1], px_edu) log_edu = cc.compute_log_edu(edu[outcome>=1], px_edu, offset_edu) y=interactive(gating, log_dna=fixed(log_dna), g1_left= np.median(log_dna)-.25, g1_right = np.median(log_dna) - 0.15, g2_left= np.median(log_dna) + 0.15, g2_right = np.median(log_dna) +.25, log_edu = fixed(log_edu), edu_lower = np.median(log_edu), edu_upper = np.median(log_edu) + 0.5) for i, child in enumerate(y.children): child.step = 0.05 if i <=3: child.min = log_dna.min() child.max = log_dna.max() else: child.min = log_edu.min() child.max = log_edu.max() return y def gating(log_dna, log_edu, g1_left, g1_right, g2_left, g2_right, edu_lower, edu_upper): dna_gates = [g1_left, g1_right, g2_left, g2_right] edu_gates = [edu_lower, edu_upper] xy = np.vstack([log_dna, log_edu]) z = cc.gaussian_kde(xy)(xy) fig, ax = plt.subplots() plt.subplots_adjust(bottom=0.5) plt.scatter(log_dna, log_edu, c=z, s=2, rasterized=True) l, = plt.plot([dna_gates[i] for i in [0, 0, 3, 3, 0, 0, 1, 1, 0, 2, 2, 3]], [-1, edu_gates[1], edu_gates[1], -1, np.nan, edu_gates[0], edu_gates[0], -1, np.nan, -1, edu_gates[0], edu_gates[0]], '--', color='red') plt.xlabel('log10 (DNA content)') plt.ylabel('log10 (EdU)') plt.xlim((log_dna.min(), log_dna.max())) plt.ylim((log_edu.min(), log_edu.max())) #plt.pie(fractions.values(), labels=fractions.keys()) plt.show() def apply_gating(y, obj, well, ndict, ldr_channel=True, ph3_channel=True, x_dna=None, px_edu=None, x_ldr=None, system=None): if os.path.isdir(obj): obj_file = get_obj_file(obj, well) path2file = "%s/%s" % (obj, obj_file) df = pd.read_table(path2file) df = map_channel_names(df, ndict) well = re.search('result.(.*?)\[', obj_file).group(1) well = "%s%s" % (well[0], well[1:].zfill(2)) else: dfo = pd.read_table(obj) dfo = dfo.rename(columns=ndict) df = dfo[dfo.well == well].copy() edu = np.array(df['edu'].tolist()) dna = np.array(df['dna'].tolist()) edu_notnan = ~np.isnan(edu) edu = edu[edu_notnan] dna = dna[edu_notnan] if ldr_channel: ldr = np.array(df['ldr'].tolist()) ldr = ldr[edu_notnan] if system == 'ixm': x_ldr = np.arange(500, ldr.max(), 100) ldr_gates = dcf.get_ldrgates(ldr, x_ldr) dna_gates = dcf.get_dna_gating(dna, ldr, ldr_gates) cell_fate_dict, outcome = dcf.live_dead(ldr, ldr_gates, dna, dna_gates, x_ldr=x_ldr) live_cols = [s for s in list(cell_fate_dict.keys()) if 'alive' in s] dead_cols = [s for s in list(cell_fate_dict.keys()) if 'dead' in s] a = 0 d = 0 for col in live_cols: a += cell_fate_dict[col] for col in dead_cols: d += cell_fate_dict[col] else: outcome = np.array([1] * len(dna)) if ph3_channel: #ph3 = np.array(df['Nuclei Selected - pH3INT'].tolist()) ph3 = np.array(df['ph3'].tolist()) ph3 = ph3[edu_notnan] if px_edu is None: px_edu = np.arange(-0.2, 5.3, .02) if x_dna is None: x_dna = np.arange(2.5, 8, 0.02) log_dna = cc.compute_log_dna(dna[outcome>=1], x_dna) edu_shift, offset_edu, edu_g1_max, edu_s_min = cc.get_edu_gates(edu[outcome>=1], px_edu) log_edu = cc.compute_log_edu(edu[outcome>=1], px_edu, offset_edu) ndna_gates = [y.kwargs['g1_left'], y.kwargs['g1_right'], y.kwargs['g2_left'], y.kwargs['g2_right']] nedu_gates = [y.kwargs['edu_lower'], y.kwargs['edu_upper']] fractions, cell_id = reevaluate_phases(log_dna, ndna_gates, log_edu, nedu_gates) if ph3_channel: f_ph3, ph3_cutoff, ph3_lims = pf.get_ph3_gates(ph3[outcome>=1], cell_id) log_ph3 = pf.compute_log_ph3(ph3[outcome>=1]) fractions, cell_id = pf.evaluate_Mphase(log_ph3, ph3_cutoff, cell_id) if ldr_channel: fractions['cell_count'] = a fractions['cell_count__dead'] = d fractions['cell_count__total'] = len(dna) results_file = "results/summary_%s.csv" % obj.split('.txt')[0] dfs =
pd.read_csv(results_file)
pandas.read_csv
import requests import json import numpy as np import pandas as pd import sqlalchemy as sql import time from scripts.config import * from sqlalchemy import create_engine from utils.logger import logger from typing import * SEARCH = "https://api.twitter.com/2/tweets/search/all" class DB: @property def location(self) -> str: return 'sqlite:///{path}.db' @classmethod def delete(cls, table_name: str, path: str) -> None: query = sql.text("DROP TABLE IF EXISTS {table_name}".format(table_name=table_name)) engine = create_engine(DB().location.format(path=path), echo=False) logger.info('Deleting table {table_name}'.format(table_name=table_name)) engine.execute(query) @classmethod def fetch(cls, table_name: str, path: str) -> pd.DataFrame: engine = create_engine(DB().location.format(path=path), echo=False) df = pd.DataFrame(engine.execute("SELECT * FROM {table_name}".format(table_name=table_name)).fetchall()) if table_name=='users': header_dict_user = {0:"created_at",1:"name",2:"screen_name",3:"description", 4:"id",5:"location", 6:"followers_count",7:"following_count",8:"listed_count",9:"tweet_count"} df = df.rename(header_dict_user,axis = 1) elif table_name=='user_tweets': header_dict_user_tweets = {0:"created_at",1:"screen_name",2:'text',3:'lang', 4:'retweet_count',5:'reply_count',6:'like_count', 7:"quote_count", 8:"id",9:"author_id",10:"conversation_id",11:"in_reply_to_user_id",12:"geo"} df = df.rename(header_dict_user_tweets,axis = 1) elif table_name == 'keyword_tweets': header_dict_keyword_tweets = {0:"created_at",1:"screen_name",2:'text',3:'lang', 4:'retweet_count',5:'reply_count',6:'like_count', 7:"quote_count", 8:"id",9:"author_id",10:"conversation_id",11:"in_reply_to_user_id",12:"geo", 13:'entities'} df = df.rename(header_dict_keyword_tweets,axis = 1) return df @classmethod def write(cls, table_name: str, data: pd.DataFrame, path: str) -> None: engine = create_engine(DB().location.format(path=path), echo=False) logger.info('Writing {rows} rows to table {table}'.format(rows=len(data), table=table_name)) if data.index[0] != 0: data = data.reset_index() data.to_sql(table_name, con=engine, if_exists='append', index=False) class Follow: def __init__(self): self.sleep_time = 15 self.url = 'https://api.twitter.com/2/users/{user_id}/{kind}' @classmethod def create_headers(cls, bearer_token): headers = {"Authorization": "Bearer {}".format(bearer_token), 'User-Agent': 'v2FollowingLookupPython'} return headers @classmethod def custom_params(cls): return {"user.fields": "created_at", 'max_results': 5} @classmethod def _fetch(cls, user_id: str, kind: str = 'following', target_total: int = 100, token_number: int = 0) -> pd.DataFrame: """ Helper function """ url = Follow().url.format(user_id=user_id, kind=kind) headers = Follow.create_headers(bearer_token=eval('BEARER{token}'.format(token=token_number))) params = Follow.custom_params() counter, results = 0, [] while counter < target_total: response = requests.request("GET", url, headers=headers, params=params) if response.status_code == 429: logger.info('Sleeping') time.sleep(int(60 * Follow().sleep_time)) continue if response.status_code != 200: continue data = json.loads(response.text) if not 'data' in data.keys(): break data, meta = pd.DataFrame(data['data']), data['meta'] counter += len(data) if isinstance(data, pd.DataFrame): results.append(data) if not 'next_token' in list(meta.keys()): break else: params['next_token'] = meta['next_token'] if len(results) > 0: return pd.concat(results, axis=0) return
pd.DataFrame({'username': ''}, index=[0])
pandas.DataFrame
from logging import root import os import pandas as pd import mysql.connector from query import Query class findDifferenceBetweenSalaries: def __init__(self): self.mydb = mysql.connector.connect( host="xxxxxxxxxx", user="xxxxx", password="<PASSWORD>", port="xxxx", database="xxxxx" ) def execute(self): employee_df = pd.read_sql(Query.EMPLOYEE_TABLE, self.mydb) departments_df =
pd.read_sql(Query.DEPARTMENTS_TABLE, self.mydb)
pandas.read_sql
"""Main module.""" import math import os import sys import datetime import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt # print("matplotlib=", matplotlib.rcParams.keys()) matplotlib.rcParams['text.usetex'] = True # matplotlib.rcParams['text.latex.unicode'] = True key not available import magnetdata def list_sequence(lst, seq): """Return sequences of seq in lst""" sequences = [] count = 0 len_seq = len(seq) upper_bound = len(lst)-len_seq+1 for i in range(upper_bound): if lst[i:i+len_seq] == seq: count += 1 sequences.append([i,i+len_seq]) return sequences # see: https://stackoverflow.com/questions/5419204/index-of-duplicates-items-in-a-python-list #from collections import defaultdict def list_duplicates_of(seq,item): """Return sequences of duplicate adjacent item in seq""" start_at = -1 locs = [] sequences = [] start_index = -1 while True: try: loc = seq.index(item,start_at+1) except ValueError: end_index = locs[-1] sequences.append([start_index, end_index]) # print("break end_index=%d" % end_index) break else: if not locs: # seq=[loc,0] start_index = loc # print( "item=%d, start: %d" % (item, loc) ) else: if (loc-locs[-1]) != 1: end_index = locs[-1] sequences.append([start_index, end_index]) start_index = loc # print( "item=%d, end: %d, new_start: %d" % (item, locs[-1], loc) ) locs.append(loc) start_at = loc return sequences #locs class MagnetRun: """ Magnet Run Site: name of the site Insert: list of the MagnetIDs composing the insert MagnetData: pandas dataframe or tdms file """ def __init__(self, site="unknown", insert="", data=None): """default constructor""" self.Site = site self.Insert = insert self.MagnetData = data start_date = None try: if "Date" in self.MagnetData.getKeys() and "Time" in self.MagnetData.getKeys(): start_date=self.MagnetData.getData("Date").iloc[0] start_time=self.MagnetData.getData("Time").iloc[0] end_date=self.MagnetData.getData("Date").iloc[-1] end_time = self.MagnetData.getData('Time').iloc[-1] tformat="%Y.%m.%d %H:%M:%S" t0 = datetime.datetime.strptime(start_date+" "+start_time, tformat) t1 = datetime.datetime.strptime(end_date+" "+end_time, tformat) dt = (t1-t0) duration = dt / datetime.timedelta(seconds=1) print("* Site: %s, Insert: %s" % (self.Site, self.Insert), "start_date=%s" % start_date, "start_time=%s" % start_time, "duration=%g s" % duration) if self.MagnetData.Type == 0: if self.Site == "M9": self.MagnetData.addData("IH", "IH = Idcct1 + Idcct2") self.MagnetData.addData("IB", "IB = Idcct3 + Idcct4") elif self.Site in ["M8", "M10"]: self.MagnetData.addData("IH", "IH = Idcct3 + Idcct4") self.MagnetData.addData("IB", "IB = Idcct1 + Idcct2") # what about M1, M5 and M7??? except: print("MagnetRun.__init__: trouble loading data") try: file_name = "%s_%s_%s-wrongdata.txt" % (self.Site, self.Insert,start_date) self.MagnetData.to_csv(file_name, sep=str('\t'), index=False, header=True) except: print("MagnetRun.__init__: trouble loading data - fail to save csv file") pass pass @classmethod def fromtxt(cls, site, filename): """create from a txt file""" with open(filename, 'r') as f: insert=f.readline().split()[-1] data = magnetdata.MagnetData.fromtxt(filename) # print("magnetrun.fromtxt: data=", data) return cls(site, insert, data) @classmethod def fromcsv(cls, site, insert, filename): """create from a csv file""" data = magnetdata.MagnetData.fromcsv(filename) return cls(site, insert, data) @classmethod def fromStringIO(cls, site, name): """create from a stringIO""" from io import StringIO # try: ioname = StringIO(name) # TODO rework: get item 2 otherwise set to unknown insert = "Unknown" headers = ioname.readline().split() if len(headers) >=2: insert = headers[1] data = magnetdata.MagnetData.fromStringIO(name) # except: # print("cannot read data for %s insert, %s site" % (insert, site) ) # fo = open("wrongdata.txt", "w", newline='\n') # fo.write(ioname) # fo.close() # sys.exit(1) return cls(site, insert, data) def __repr__(self): return "%s(Site=%r, Insert=%r, MagnetData=%r)" % \ (self.__class__.__name__, self.Site, self.Insert, self.MagnetData) def getSite(self): """returns Site""" return self.Site def getInsert(self): """returns Insert""" return self.Insert def setSite(self, site): """set Site""" self.Site = site def getType(self): """returns Data Type""" return self.MagnetData.Type def getMData(self): """return Magnet Data object""" return self.MagnetData def getData(self, key=""): """return Data""" return self.MagnetData.getData(key) def getKeys(self): """return list of Data keys""" return self.MagnetData.Keys def getDuration(self): """compute duration of the run in seconds""" duration = None if "Date" in self.MagnetData.getKeys() and "Time" in self.MagnetData.getKeys(): start_date=self.MagnetData.getData("Date").iloc[0] start_time=self.MagnetData.getData("Time").iloc[0] end_date=self.MagnetData.getData("Date").iloc[-1] end_time = self.MagnetData.getData('Time').iloc[-1] tformat="%Y.%m.%d %H:%M:%S" t0 = datetime.datetime.strptime(start_date+" "+start_time, tformat) t1 = datetime.datetime.strptime(end_date+" "+end_time, tformat) dt = (t1-t0) duration = dt / datetime.timedelta(seconds=1) return duration def stats(self): """compute stats from the actual run""" # TODO: # add teb,... to list # add duration # add duration per Field above certain values # add \int Power over time from tabulate import tabulate # see https://github.com/astanin/python-tabulate for tablefmt print("Statistics:\n") tables = [] headers = ["Name", "Mean", "Max", "Min", "Std", "Median", "Mode"] for (f,unit) in zip(['Field', 'Pmagnet', 'teb', 'debitbrut'],["T", "MW", "C","m\u00B3/h"]): v_min = float(self.MagnetData.getData(f).min()) v_max = float(self.MagnetData.getData(f).max()) v_mean = float(self.MagnetData.getData(f).mean()) v_var = float(self.MagnetData.getData(f).var()) v_median = float(self.MagnetData.getData(f).median()) v_mode = float(self.MagnetData.getData(f).mode()) table = ["%s[%s]" % (f,unit), v_mean, v_max, v_min, math.sqrt(v_var), v_median, v_mode] tables.append(table) print(tabulate(tables, headers, tablefmt="simple"), "\n") return 0 def plateaus(self, twindows=6, threshold=1.e-4, b_threshold=1.e-3, duration=5, show=False, save=True, debug=False): """get plateaus, pics from the actual run""" # TODO: # pass b_thresold as input param # b_threshold = 1.e-3 if debug: print("Search for plateaux:", "Type:", self.MagnetData.Type) B_min = float(self.MagnetData.getData('Field').min()) B_max = float(self.MagnetData.getData('Field').max()) B_mean = float(self.MagnetData.getData('Field').mean()) B_var = float(self.MagnetData.getData('Field').var()) Bz = self.MagnetData.getData('Field') regime = Bz.to_numpy() df_ = pd.DataFrame(regime) df_['regime']=pd.Series(regime) diff = np.diff(regime) # scale by B_max?? df_['diff']=pd.Series(diff) ndiff = np.where(abs(diff) >= threshold, diff, 0) df_['ndiff']=
pd.Series(ndiff)
pandas.Series
import pandas as pd from pathlib import Path # import matplotlib.pyplot as plt # added by Pierre import matplotlib as mpl mpl.use('TkAgg') # or whatever other backend that you want import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import numpy as np import os import argparse from stable_baselines import results_plotter from stable_baselines.results_plotter import load_results, ts2xy def moving_average(values, window): """ Smooth values by doing a moving average :param values: (numpy array) :param window: (int) :return: (numpy array) """ weights = np.repeat(1.0, window) / window return np.convolve(values, weights, 'valid') def plot_results(log_folder, type_str, leg_label): """ plot the results :param log_folder: (str) the save location of the results to plot :param type: (str) either 'timesteps', 'episodes' or 'walltime_hrs' """ x, y = ts2xy(load_results(log_folder), type_str) y = moving_average(y, window=50) # Truncate x x = x[len(x) - len(y):] # plt.figure() # plt.plot(x, y, label=leg_label) # plt.xlabel(type_str) plt.ylabel('Rewards') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-f', '--folder', help='Log folder', type=str, default='trained_agents') parser.add_argument('-e', '--env', help='env name', type=str) args = parser.parse_args() env_id = args.env log_dir = args.folder print(log_dir) ############### # METRICS ############### # Get the mean of the reward and wall train time of all the seed runs in the experiment res_file_list = [] for path in Path(log_dir).rglob('stats.csv'): # print(path) res_file_list.append(path) res_file_list = sorted(res_file_list) # print(res_file_list) li = [] count = 0 for filename in res_file_list: df =
pd.read_csv(filename, index_col=None, header=0)
pandas.read_csv
# Copyright (c) 2020 Huawei Technologies Co., Ltd. # <EMAIL> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time from typing import Dict, List import numpy as np import pandas as pd from collections import Counter from src.compress import compress # 日志器 from src.logger_setting.my_logger import get_logger from src.setting import setting LOGGER = get_logger() def groupby_calc(df): df['esn'] = df['esn'].astype('str') df = df.groupby(['esn']) return df def calc_total(series): series = series.values count = 0 for d in range(len(series)): if d < len(series) - 1: if pd.isna(series[d]) or pd.isna(series[d + 1]): continue if float(series[d]) <= float(series[d + 1]): count += float(series[d + 1]) - float(series[d]) else: count += float(series[d + 1]) return count def is_active(series): series = calc_total(series) if float(series) / setting.mb > 10: return 1 else: return 0 def get_max(series): if series: return np.max(series) else: return setting.INVALID_VALUE def get_min(series): if series: return np.min(series) else: return setting.INVALID_VALUE def get_avg(values, counts): count = sum(counts) if type(counts) == list else counts if count == 0: return setting.INVALID_VALUE else: return sum(values) / count if type(values) == list else values / count def get_avg_max_min(df, avg_name, max_name, min_name, counts): avg_list = list(filter(lambda x: int(x) != setting.INVALID_VALUE, df[avg_name].values)) sum_value = get_sum(avg_list) cnt = get_sum(list(df[counts].values)) avg = sum_value / cnt if cnt != 0 else setting.INVALID_VALUE max_list = list(filter(lambda x: int(x) != setting.INVALID_VALUE, df[max_name].values)) max_value = get_max(max_list) min_list = list(filter(lambda x: int(x) != setting.INVALID_VALUE, df[min_name].values)) min_value = get_min(min_list) return {avg_name: avg, max_name: max_value, min_name: min_value} def get_sum(series): if series: return np.sum(series) else: return setting.INVALID_VALUE def get_std(series): if series: return np.std(series) else: return setting.INVALID_VALUE def get_all_day(): all_day_file = compress.get_all_csv_file(os.path.join(setting.data_path, 'extractData')) day_list = [] for file in all_day_file: day_list.append(os.path.split(file)[1].split("\\")[-1].split('_')[0]) return list(set(day_list)) def merge_day_data(day_dict: Dict[str, List[str]]): for day in day_dict.keys(): file_list: List[str] = day_dict.get(day) df = pd.concat(pd.read_csv(file, error_bad_lines=False, index_col=False) for file in file_list) df.columns = setting.parameter_json["extract_data_columns"] df = df.sort_values('collectTime', ascending=True) # 把-9999变成了NaN,但是原来是空的值,在读进来的时候已经变成NaN了,所有空值和-9999都变成了NaN df = df.replace(setting.INVALID_VALUE, np.nan) grouped = groupby_calc(df).agg( MaxRSRP=pd.NamedAgg(column='RSRP', aggfunc=max), MinRSRP=pd.NamedAgg(column='RSRP', aggfunc=min), AvgRSRP=pd.NamedAgg(column='RSRP', aggfunc=sum), CntRSRP=pd.NamedAgg(column='RSRP', aggfunc="count"), MaxCQI=pd.NamedAgg(column='CQI', aggfunc=max), MinCQI=pd.NamedAgg(column='CQI', aggfunc=min), AvgCQI=pd.NamedAgg(column='CQI', aggfunc=sum), CntCQI=pd.NamedAgg(column='CQI', aggfunc="count"), MaxRSRQ=pd.NamedAgg(column='RSRQ', aggfunc=max), MinRSRQ=pd.NamedAgg(column='RSRQ', aggfunc=min), AvgRSRQ=pd.NamedAgg(column='RSRQ', aggfunc=sum), CntRSRQ=pd.NamedAgg(column='RSRQ', aggfunc="count"), MaxRSSI=pd.NamedAgg(column='RSSI', aggfunc=max), MinRSSI=pd.NamedAgg(column='RSSI', aggfunc=min), AvgRSSI=pd.NamedAgg(column='RSSI', aggfunc=sum), CntRSSI=pd.NamedAgg(column='RSSI', aggfunc="count"), MaxSINR=pd.NamedAgg(column='SINR', aggfunc=max), MinSINR=pd.NamedAgg(column='SINR', aggfunc=min), AvgSINR=pd.NamedAgg(column='SINR', aggfunc=sum), CntSINR=pd.NamedAgg(column='SINR', aggfunc="count"), TotalDownload=
pd.NamedAgg(column='TotalDownload', aggfunc=calc_total)
pandas.NamedAgg
#%% import re import pandas as pd #%% # processing bilayer and monolayer energies bilayers_filename = './R2/BilayersEnergies' monolayers_filename = './R2/MonolayersEnergies' with open(bilayers_filename, 'r') as ofile: bi_lines = ofile.readlines() with open(monolayers_filename, 'r') as ofile: mo_lines = ofile.readlines() # print(lines) #%% #parse the energes files def energies_parse_lines(lines): pattern0 = '(?P<Name>.*)(\/$)' pattern1 = '(?P<Value>[+-]?[0-9]*[.]?[0-9]*)(?: eV$)' results = [] #%% for i in range(int(len(lines) / 2)): print(i) print(lines[i]) m0 = re.search(pattern0, lines[i]) if m0: name = m0.group('Name') print(lines[i + 1]) m1 = re.search(pattern1, lines[i + 1]) if m1: value = m1.group('Value') if m0 and m1: results.append([name, float(value)]) df = pd.DataFrame(results, columns=['Name', 'Value']) return df # %% bilayers_df = energies_parse_lines(bi_lines) bilayers_df['Name'] = bilayers_df['Name'].apply( lambda x: x.replace('-T-', '-T_') if x.find('-T-') != -1 else x.replace('-', '_', 1)) mono_df = energies_parse_lines(mo_lines) # %% # process the count of monolayers in bilayer # from file IE_validationm_set countmonolayers_file = './R2/IE_validation_set' with open(countmonolayers_file, 'r') as ofile: countmonolayers_lines = ofile.readlines() # %% def counts_partse_lines(lines): pattern0 = '(?P<Name>.*)(?:-selected.dat\n$)' pattern1 = '(?P<m1_count>[0-9]*)[_](?P<m2_count>[0-9]*)(?:\n$)' results = [] #%% for i in range(int(len(lines) / 2)): print(i) print(lines[i]) m0 = re.search(pattern0, lines[i]) if m0: name = m0.group('Name') print(lines[i + 1]) m1 = re.search(pattern1, lines[i + 1]) if m1: value1 = m1.group('m1_count') value2 = m1.group('m2_count') if m0 and m1 and value1.isnumeric() and value1.isnumeric(): results.append([name, int(value1), int(value2)]) df = pd.DataFrame(results, columns=['Name', 'Count_m1', 'Count_m2']) return df # %% counts_df = counts_partse_lines(countmonolayers_lines) counts_df['Name'] = counts_df['Name'].apply( lambda x: x.replace('-T-', '-T_') if x.find('-T-') != -1 else x.replace('-', '_', 1)) # %% #%% # combine bilyaer energies with counts of monolayers # df = bilayers_df df[['monolayer1', 'monolayer2']] = df.Name.str.split('_', expand=True) #%% df = df.iloc[:,[0,2,3,1]].merge(counts_df, how='inner', on='Name') # %% # %% df = df.merge(mono_df.rename( columns={ 'Name':'monolayer1', 'Value':'ie_m1'} ), how='inner', on='monolayer1', suffixes={'_df', '_m1'}) \ .merge(mono_df.rename( columns={ 'Name':'monolayer2', 'Value':'ie_m2'} ), how='inner', on='monolayer2', suffixes={'_df', '_m2'}) # %% areas_df =
pd.read_csv('./R2/areas.csv')
pandas.read_csv
from typing import List, Tuple from datetime import datetime from os import listdir from os.path import join, isdir import yaml import geopy.distance import pandas as pd import xarray as xr import xlrd import numpy as np import geopandas as gpd from epippy.geographics import match_points_to_regions, get_nuts_shapes, get_natural_earth_shapes, \ replace_iso2_codes, convert_country_codes, revert_old_country_names, convert_old_country_names from epippy.generation import get_powerplants, match_powerplants_to_regions from epippy.generation.hydro import get_hydro_production from epippy import data_path import logging logging.basicConfig(level=logging.INFO, format="%(levelname)s %(asctime)s - %(message)s") logger = logging.getLogger() def read_runoff_data(resolution: float, timestamps: pd.DatetimeIndex) -> xr.Dataset: """ Reading runoff data. Parameters ---------- resolution: float Reanalysis data spatial resolution. timestamps: pd.DatetimeIndex Time horizon. Returns ------- runoff_dataset: xr.Dataset """ runoff_dir = f"{data_path}generation/hydro/source/ERA5/runoff/{resolution}" assert isdir(runoff_dir), f"Error: No data found for resolution {resolution} (directory {runoff_dir} not found)." runoff_files = [join(runoff_dir, fn) for fn in listdir(runoff_dir) if fn.endswith(".nc")] runoff_dataset = xr.open_mfdataset(runoff_files, combine='by_coords') runoff_dataset = runoff_dataset.stack(locations=('longitude', 'latitude')) missing_ts = set(timestamps) - set(pd.to_datetime(runoff_dataset.time.values)) assert not missing_ts, f"Error: Data is not available for following timestamps: {sorted(list(missing_ts))}." runoff_dataset = runoff_dataset.sel(time=timestamps) # Add area to dataset runoff_dataset = add_runoff_area(runoff_dataset, resolution) return runoff_dataset def add_runoff_area(dataset: xr.Dataset, resolution: float) -> xr.Dataset: """ Computing cell area for each (lon, lat) pair. Parameters ---------- dataset: xarray.Dataset Contains runoff data, in this case expressed in m. resolution: float Runoff data spatial resolution. Returns ------- dataset: xr.Dataset Same input dataset with 'area' variable added. """ # Get distance between two latitudes. Does not depend on the geo-location, thus an arbitrary point is considered. p1 = (0.0, 0.0) p2 = (p1[0] + resolution, 0.0) dist_latitude = geopy.distance.distance(p1, p2).km lon = dataset['longitude'].values lat = dataset['latitude'].values # Get vectors of 'bordering' longitudes. lonplus = lon + resolution / 2 lonmin = lon - resolution / 2 # Initialize a zero-vector and compute distances between longitude pairs. dist = np.zeros(len(lat)) for idx in np.arange(len(lat)): dist[idx] = geopy.distance.distance((lat[idx], lonplus[idx]), (lat[idx], lonmin[idx])).km # Compute cell area and attach it to the dataset. dataset['area'] = ('locations', dist * dist_latitude) return dataset def get_phs_storage_capacities(phs_capacity_df: pd.DataFrame, default_phs_duration: float) -> pd.DataFrame: """ Assigning storage capacities (MWh) to PHS plants. Parameters ---------- phs_capacity_df: pd.Series Series containing PHS rated power data (indexed by NUTS code). default_phs_duration: float Default duration for PHS plants, in case data does not exist for plant or country. Returns ------- phs_cap_storage: pd.DataFrame Frame containing PHS power and energy ratings. """ phs_geth_fn = f"{data_path}generation/hydro/source/Geth_2015_EU_PHS_review.xlsx" phs_geth_all = pd.read_excel(phs_geth_fn, sheet_name='overall', index_col=0).dropna(subset=['Estor [GWh]']) # Iterate through all PHS plants for idx in phs_capacity_df.index: # Retrieve ISO2 country code for index checks # code = convert_country_codes([phs_capacity_df.loc[idx, 'Country']], 'name', 'alpha_2', True)[0] iso_code = phs_capacity_df.loc[idx, 'ISO2'] if iso_code in phs_geth_all.index: # Compute country-specific PHS duration, based on Geth default_duration = phs_geth_all.loc[iso_code, 'Estor [GWh]'] / phs_geth_all.loc[iso_code, 'Pd,nom [GW]'] else: # If country data is missing, impose default value default_duration = default_phs_duration # If ISO2 in file sheets (detailed country data exists), read file... try: phs_geth = pd.read_excel(phs_geth_fn, sheet_name=iso_code, index_col='JRC_HPDB_id') if idx in phs_geth.index and not np.isnan(phs_geth.loc[idx, 'Estor [GWh]']): # If storage content is provided, fetch it directly... phs_capacity_df.loc[idx, 'Energy'] = phs_geth.loc[idx, 'Estor [GWh]'] * 1e3 else: # ... otherwise, consider default duration. phs_capacity_df.loc[idx, 'Energy'] = phs_capacity_df.loc[idx, 'Capacity'] * default_duration # ...else, impose default duration. except xlrd.biffh.XLRDError: phs_capacity_df.loc[idx, 'Energy'] = phs_capacity_df.loc[idx, 'Capacity'] * default_duration return phs_capacity_df[['Name', 'Capacity', 'Energy', 'region_code']] def build_phs_data(phs_plants_df: pd.DataFrame, default_phs_duration: float) -> pd.DataFrame: """ Compute total PHS power (GW) and energy (GWh) capacities for a series of regions. Parameters ---------- phs_plants_df: pd.DataFrame Frame containing PHS power plant data. default_phs_duration: float Default duration for PHS plants. Returns ------- php_capacity_df: pd.DataFrame Dataframe containing PHS power (GW) and energy (GWh) capacity """ phs_storage_df = get_phs_storage_capacities(phs_plants_df, default_phs_duration) phs_capacity_df = phs_storage_df.groupby(phs_storage_df['region_code']).sum() * 1e-3 return phs_capacity_df def compute_ror_series(runoff_dataset: xr.Dataset, region_points: List[Tuple[float, float]], flood_event_threshold: float) -> pd.DataFrame: """ Computing ROR p.u. time series as directly proportional to runoff for a given grid cell/area. Parameters ---------- runoff_dataset: xarray.Dataset Contains runoff data, in this case expressed in m. region_points: List[Tuple[float, float]] List of points (lon, lat) within a region. flood_event_threshold: float Quantile clipping runoff time series (stems from the assumption that ROR plants are designed for a, e.g. p80 flow). Returns ------- ts_norm: pd.DataFrame Time series of p.u. capacity factors for ROR plants. """ # Mean of runoffs over all points within the region. ts = runoff_dataset.ro.sel(locations=region_points).mean(dim='locations').load() # Compute quantile from xarray object. q = ts.quantile(q=flood_event_threshold) # Clipping according to the flood_event_threshold ts[ts > q] = q # Normalizing for p.u. representation. return ts / ts.max() def build_ror_data(ror_capacity_ds: pd.Series, timestamps: pd.DatetimeIndex, runoff_dataset: xr.Dataset, runoff_points_region_ds: pd.Series) -> Tuple[pd.Series, pd.DataFrame]: """ Compute total ROR capacities (in GW) and inflow (p.u. of capacity) for a series of regions. Parameters ---------- ror_capacity_ds: pd.Series Series containing ROR power (GW) capacity per plant, indexed by the region in which the plant is located. timestamps: pd.DatetimeIndex Time stamps over which the inflows must be computed. runoff_dataset: xr.Dataset ERA5 runoff dataset runoff_points_region_ds: pd.Series Indicates in which region each ERA5 point falls. Returns ------- ror_capacity_ds: pd.Series Series containing ROR power (GW) capacity per region. ror_inflows_df: pd.DataFrame ROR inflow time-series (p.u. of power capacity) for each region. """ ror_thresholds_fn = f"{data_path}generation/hydro/source/ror_flood_event_thresholds.csv" ror_thresholds = pd.read_csv(ror_thresholds_fn, index_col=0) ror_capacity_ds = ror_capacity_ds.groupby(ror_capacity_ds.index).sum() * 1e-3 ror_inflows_df =
pd.DataFrame(index=timestamps, columns=ror_capacity_ds.index)
pandas.DataFrame
""" Functions specific to preprocess raw extract data from HMIS. The raw data is provided in the following format: (king data is divided by year; for pierce & snohomish all years are in one folder) data/*county*/*year*/Affiliation.csv Client.csv Disabilities.csv EmploymentEducation.csv Enrollment_families.csv Enrollment.csv EnrollmentCoC.csv Exit.csv Export.csv Funder.csv HealthAndDV.csv IncomeBenefits.csv Inventory.csv Organization.csv Project.csv ProjectCoC.csv Services.csv Site.csv """ import pandas as pd import datetime import os.path as op import numpy as np import json import puget.utils as pu import warnings from puget.data import DATA_PATH # Paths of csvs COUNTY_FOLDERS = {'king': [str(s) for s in range(2012, 2017)], 'pierce': ['2012_2016'], 'snohomish': ['2012_2016']} # these values translate to unknown data for various reasons. Treat as NANs CATEGORICAL_UNKNOWN = [8, 9, 99] # entry/exit suffixes for columns ENTRY_EXIT_SUFFIX = ['_entry', '_exit', '_update'] # Names that should be excluded: NAME_EXCLUSION = ["consent", "refused", "anonymous", "client", "refsued", "noname", "unknown"] # dict of default metadata file names METADATA_FILES = {'enrollment': 'enrollment.json', 'exit': 'exit.json', 'client': 'client.json', 'disabilities': 'disabilities.json', 'employment_education': 'employment_education.json', 'health_dv': 'health_dv.json', 'income': 'income.json', 'project': 'project.json'} for k, v in METADATA_FILES.items(): METADATA_FILES[k] = op.join(DATA_PATH, 'metadata', v) file_path_boilerplate = ( """ file_spec : dict or string if a dict, keys should be paths, values should be full path to files if a string, should be the filename of the .csv table and data_dir & paths parameters are required county: string name of county to get data for. Must be a key in COUNTY_FOLDERS and have a folder of the same name in the data folder. Not required if file_spec is a dictionary data_dir : string full path to general data folder (usually puget/data/*county*); not required if file_spec is a dictionary paths : list list of directories inside data_dir to look for csv files in; not required if file_spec is a dictionary """) metdata_boilerplate = ( """ metadata_file : string name of json metadata file with lists of columns to use for deduplication, columns to drop, categorical and time-like columns """) def std_path_setup(filename, data_dir, paths): """ Setup filenames for read_table assuming standard data directory structure. Parameters ---------- filename : string This should be the filename of the .csv table data_dir : string full path to general data folder (usually puget/data/*county*) paths : list list of directories inside data_dir to look for csv files in Returns ---------- dict with key of paths, value of filenames for all included folders """ file_list = [] for p in paths: file_list.append(op.join(data_dir, p, filename)) file_spec = dict(zip(paths, file_list)) return file_spec def read_table(file_spec, county=None, data_dir=None, paths=None, columns_to_drop=None, categorical_var=None, categorical_unknown=CATEGORICAL_UNKNOWN, time_var=None, duplicate_check_columns=None, dedup=True, encoding=None, name_columns=None): """ Read in any .csv table from multiple folders in the raw data. Parameters ---------- %s columns_to_drop : list A list of of columns to drop. The default is None. categorical_var : list A list of categorical (including binary) variables where values listed in categorical_unknown should be recorded as NaNs categorical_unknown: list values that should be recorded as NaNs for categorical variables typically: 8, 9, 99 time_var : list A list of time (variables) in yyyy-mm-dd format that are reformatted into pandas timestamps. Default is None. duplicate_check_columns : list list of columns to conside in deduplication. Generally, duplicate rows may happen when the same record is registered across the .csv files for each folder. dedup: boolean flag to turn on/off deduplication. Defaults to True Returns ---------- dataframe of a csv tables from all included folders """ if columns_to_drop is None: columns_to_drop = [] if categorical_var is None: categorical_var = [] if time_var is None: time_var = [] if not isinstance(file_spec, dict): if data_dir is None: if county is None: raise ValueError('If file_spec is a string, data_dir or ' + 'county must be passed') else: if not isinstance(county, str): raise ValueError('county must be a string -- ' 'one county at a time, please!') data_dir = op.join(DATA_PATH, county) if paths is None: if county is None: raise ValueError('If file_spec is a string, paths or county ' + 'must be passed') else: if not isinstance(county, str): raise ValueError('county must be a string -- ' 'one county at a time, please!') paths = COUNTY_FOLDERS[county] file_spec = std_path_setup(file_spec, data_dir, paths) else: if data_dir is not None or paths is not None: raise ValueError( 'If file_spec is a dict, data_dir and paths cannot be passed') file_spec_use = file_spec.copy() # Start by reading the first file into a DataFrame path, fname = file_spec_use.popitem() df = pd.read_csv(fname, low_memory=False, encoding=encoding) # Then, for the rest of the files, append to the DataFrame. for path, fname in file_spec_use.items(): this_df =
pd.read_csv(fname, low_memory=False, encoding=encoding)
pandas.read_csv
from __future__ import annotations from contextlib import contextmanager import os from pathlib import Path import random from shutil import rmtree import string import tempfile from typing import ( IO, Any, ) import numpy as np from pandas import set_option from pandas.io.common import get_handle @contextmanager def decompress_file(path, compression): """ Open a compressed file and return a file object. Parameters ---------- path : str The path where the file is read from. compression : {'gzip', 'bz2', 'zip', 'xz', None} Name of the decompression to use Returns ------- file object """ with get_handle(path, "rb", compression=compression, is_text=False) as handle: yield handle.handle @contextmanager def set_timezone(tz: str): """ Context manager for temporarily setting a timezone. Parameters ---------- tz : str A string representing a valid timezone. Examples -------- >>> from datetime import datetime >>> from dateutil.tz import tzlocal >>> tzlocal().tzname(datetime.now()) 'IST' >>> with set_timezone('US/Eastern'): ... tzlocal().tzname(datetime.now()) ... 'EDT' """ import os import time def setTZ(tz): if tz is None: try: del os.environ["TZ"] except KeyError: pass else: os.environ["TZ"] = tz time.tzset() orig_tz = os.environ.get("TZ") setTZ(tz) try: yield finally: setTZ(orig_tz) @contextmanager def ensure_clean(filename=None, return_filelike: bool = False, **kwargs: Any): """ Gets a temporary path and agrees to remove on close. This implementation does not use tempfile.mkstemp to avoid having a file handle. If the code using the returned path wants to delete the file itself, windows requires that no program has a file handle to it. Parameters ---------- filename : str (optional) suffix of the created file. return_filelike : bool (default False) if True, returns a file-like which is *always* cleaned. Necessary for savefig and other functions which want to append extensions. **kwargs Additional keywords are passed to open(). """ folder = Path(tempfile.gettempdir()) if filename is None: filename = "" filename = ( "".join(random.choices(string.ascii_letters + string.digits, k=30)) + filename ) path = folder / filename path.touch() handle_or_str: str | IO = str(path) if return_filelike: kwargs.setdefault("mode", "w+b") handle_or_str = open(path, **kwargs) try: yield handle_or_str finally: if not isinstance(handle_or_str, str): handle_or_str.close() if path.is_file(): path.unlink() @contextmanager def ensure_clean_dir(): """ Get a temporary directory path and agrees to remove on close. Yields ------ Temporary directory path """ directory_name = tempfile.mkdtemp(suffix="") try: yield directory_name finally: try: rmtree(directory_name) except OSError: pass @contextmanager def ensure_safe_environment_variables(): """ Get a context manager to safely set environment variables All changes will be undone on close, hence environment variables set within this contextmanager will neither persist nor change global state. """ saved_environ = dict(os.environ) try: yield finally: os.environ.clear() os.environ.update(saved_environ) @contextmanager def with_csv_dialect(name, **kwargs): """ Context manager to temporarily register a CSV dialect for parsing CSV. Parameters ---------- name : str The name of the dialect. kwargs : mapping The parameters for the dialect. Raises ------ ValueError : the name of the dialect conflicts with a builtin one. See Also -------- csv : Python's CSV library. """ import csv _BUILTIN_DIALECTS = {"excel", "excel-tab", "unix"} if name in _BUILTIN_DIALECTS: raise ValueError("Cannot override builtin dialect.") csv.register_dialect(name, **kwargs) yield csv.unregister_dialect(name) @contextmanager def use_numexpr(use, min_elements=None): from pandas.core.computation import expressions as expr if min_elements is None: min_elements = expr._MIN_ELEMENTS olduse = expr.USE_NUMEXPR oldmin = expr._MIN_ELEMENTS
set_option("compute.use_numexpr", use)
pandas.set_option
from collections import defaultdict import pandas as pd import re converters = {} class AnnotationConverter: SPEAKER_ID_TO_TYPE = defaultdict( lambda: "NA", { "C1": "OCH", "C2": "OCH", "CHI": "CHI", "CHI*": "CHI", "FA0": "FEM", "FA1": "FEM", "FA2": "FEM", "FA3": "FEM", "FA4": "FEM", "FA5": "FEM", "FA6": "FEM", "FA7": "FEM", "FA8": "FEM", "FC1": "OCH", "FC2": "OCH", "FC3": "OCH", "MA0": "MAL", "MA1": "MAL", "MA2": "MAL", "MA3": "MAL", "MA4": "MAL", "MA5": "MAL", "MC1": "OCH", "MC2": "OCH", "MC3": "OCH", "MC4": "OCH", "MC5": "OCH", "MI1": "OCH", "MOT*": "FEM", "OC0": "OCH", "UC1": "OCH", "UC2": "OCH", "UC3": "OCH", "UC4": "OCH", "UC5": "OCH", "UC6": "OCH", "UA1": "NA", "UA2": "NA", "UA3": "NA", "UA4": "NA", "UA5": "NA", "UA6": "NA", "EE1": "NA", "EE2": "NA", "FAE": "NA", "MAE": "NA", "FCE": "NA", "MCE": "NA", }, ) THREAD_SAFE = True def __init_subclass__(cls, **kwargs): super().__init_subclass__(**kwargs) converters[cls.FORMAT] = cls class CsvConverter(AnnotationConverter): FORMAT = "csv" @staticmethod def convert(filename: str, filter="") -> pd.DataFrame: return
pd.read_csv(filename)
pandas.read_csv
from tinydb import TinyDB, Query from tinydb.storages import JSONStorage from tinydb.middlewares import CachingMiddleware import pandas as pd import numpy as np import matplotlib.pyplot as plt # https://pypi.org/project/tinydb/ dbECC = TinyDB('../../db/serverdbECC.json', indent=4, separators=(',', ': '), default_table="device_info", # storage=CachingMiddleware(JSONStorage) ) dbECCData = TinyDB('../../db/serverdbECC.json', indent=4, separators=(',', ': '), default_table="data", # storage=CachingMiddleware(JSONStorage) ) dbRSA = TinyDB('../../db/serverdbRSA.json', indent=4, separators=(',', ': '), default_table="device_pub_priv", # storage=CachingMiddleware(JSONStorage) ) dbRSATime = TinyDB('../../db/serverdbRSA.json', indent=4, separators=(',', ': '), default_table="timing", # storage=CachingMiddleware(JSONStorage) ) def visualize_ecc(): data_info = [] for row in dbECC: data_info.append(row) kdf =
pd.DataFrame(data_info)
pandas.DataFrame
import anndata as ad import pandas as pd def load_metadata(adata, metadata_file, path='', separator=';', remove_index_str = None): """ Load observational metadata in adata.obs. Input metadata file as csv/txt and the adata object to annotate. first raw of the metadata file is considered as a header first column contain the cell name Paramters --------- adata: initial AnnData object metadata_file: csv file containing as a first column the cell names and in the rest of the columns any king of metadata to load path: pathe to the metadata file separator: ';' or "\t", character used to split the columns remove_index_str: a list of string to be removed in the index of AnnData object. Default value is None. For example, if the index is ['/path/to/file1.txt','/path/to/file2.txt'] and remove_index_str = ['/path/to/','.txt'], then the index of AnnData object will be changed to ['file1','file2'] Return ------ Annotated AnnData """ # dict_annot = {} # with open(path+metadata_file) as f: # head = f.readline().strip().split(separator) # file = f.readlines() # for key in head: # dict_annot[key] = [] # data = [line.strip().split(separator) for line in file] # for name in adata.obs_names: # # this line is not always true. It depends on how the format of the data are # name = name.split('.')[0] # found = False # for line in data: # if name == line[0]: # i = 0 # for key in head: # dict_annot[key].append(line[i]) # i += 1 # found = True # continue # # if we could not find annotations # if found == False: # for key in head: # dict_annot[key].append('NA') # for key in head: # adata.obs[key] = dict_annot[key] metadata = pd.read_csv(path+metadata_file, sep = "\t", header = 0) str_index = adata.obs.index if remove_index_str: for value in remove_index_str: str_index = str_index.str.replace(value,'',regex=False) df =
pd.DataFrame('NA', index=str_index, columns=metadata.columns)
pandas.DataFrame
import numpy as np import pandas as pd def get_eval_df(sequencer): ids = [ss.identifier for ss in sequencer.get_pairs()] classes = ["mean"] + ["cls {}".format(i) for i in range(sequencer.n_classes)] return
pd.DataFrame(columns=ids, index=classes)
pandas.DataFrame
import os import pickle import librosa import warnings import numpy as np import pandas as pd warnings.filterwarnings('ignore') from scipy.stats import skew, kurtosis from pychorus import find_and_output_chorus from flask import Flask, request, json, render_template # Create flask app app = Flask(__name__) # Load pkl model model = pickle.load(open('Your model name here', 'rb')) @app.route('/') def home(): return render_template('index.html') @app.route('/predict', methods = ['POST']) def predict(): song_link = list(request.form.values())[0] # get features from songs data = [] d, cols = extract_features(song_link) data.append(d) dataset = pd.DataFrame(data, columns=cols) # select features which we used in ml model df =
pd.read_csv('Data/bestfeatures.csv')
pandas.read_csv
import builtins from io import StringIO import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, isna import pandas._testing as tm import pandas.core.nanops as nanops from pandas.util import _test_decorators as td @pytest.fixture( params=[np.int32, np.int64, np.float32, np.float64], ids=["np.int32", "np.int64", "np.float32", "np.float64"], ) def numpy_dtypes_for_minmax(request): """ Fixture of numpy dtypes with min and max values used for testing cummin and cummax """ dtype = request.param min_val = ( np.iinfo(dtype).min if np.dtype(dtype).kind == "i" else np.finfo(dtype).min ) max_val = ( np.iinfo(dtype).max if np.dtype(dtype).kind == "i" else np.finfo(dtype).max ) return (dtype, min_val, max_val) @pytest.mark.parametrize("agg_func", ["any", "all"]) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize( "vals", [ ["foo", "bar", "baz"], ["foo", "", ""], ["", "", ""], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1.0, 2.0, 3.0], [1.0, 0.0, 0.0], [0.0, 0.0, 0.0], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan], ], ) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({"key": ["a"] * 3 + ["b"] * 3, "val": vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == "any": exp = False exp_df = DataFrame([exp] * 2, columns=["val"], index=Index(["a", "b"], name="key")) result = getattr(df.groupby("key"), agg_func)(skipna=skipna) tm.assert_frame_equal(result, exp_df) def test_max_min_non_numeric(): # #2700 aa = DataFrame({"nn": [11, 11, 22, 22], "ii": [1, 2, 3, 4], "ss": 4 * ["mama"]}) result = aa.groupby("nn").max() assert "ss" in result result = aa.groupby("nn").max(numeric_only=False) assert "ss" in result result = aa.groupby("nn").min() assert "ss" in result result = aa.groupby("nn").min(numeric_only=False) assert "ss" in result def test_min_date_with_nans(): # GH26321 dates = pd.to_datetime( pd.Series(["2019-05-09", "2019-05-09", "2019-05-09"]), format="%Y-%m-%d" ).dt.date df = pd.DataFrame({"a": [np.nan, "1", np.nan], "b": [0, 1, 1], "c": dates}) result = df.groupby("b", as_index=False)["c"].min()["c"] expected = pd.to_datetime( pd.Series(["2019-05-09", "2019-05-09"], name="c"), format="%Y-%m-%d" ).dt.date tm.assert_series_equal(result, expected) result = df.groupby("b")["c"].min() expected.index.name = "b" tm.assert_series_equal(result, expected) def test_intercept_builtin_sum(): s = Series([1.0, 2.0, np.nan, 3.0]) grouped = s.groupby([0, 1, 2, 2]) result = grouped.agg(builtins.sum) result2 = grouped.apply(builtins.sum) expected = grouped.sum() tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) # @pytest.mark.parametrize("f", [max, min, sum]) # def test_builtins_apply(f): @pytest.mark.parametrize("f", [max, min, sum]) @pytest.mark.parametrize("keys", ["jim", ["jim", "joe"]]) # Single key # Multi-key def test_builtins_apply(keys, f): # see gh-8155 df = pd.DataFrame(np.random.randint(1, 50, (1000, 2)), columns=["jim", "joe"]) df["jolie"] = np.random.randn(1000) fname = f.__name__ result = df.groupby(keys).apply(f) ngroups = len(df.drop_duplicates(subset=keys)) assert_msg = f"invalid frame shape: {result.shape} (expected ({ngroups}, 3))" assert result.shape == (ngroups, 3), assert_msg tm.assert_frame_equal( result, # numpy's equivalent function df.groupby(keys).apply(getattr(np, fname)), ) if f != sum: expected = df.groupby(keys).agg(fname).reset_index() expected.set_index(keys, inplace=True, drop=False) tm.assert_frame_equal(result, expected, check_dtype=False) tm.assert_series_equal(getattr(result, fname)(), getattr(df, fname)()) def test_arg_passthru(): # make sure that we are passing thru kwargs # to our agg functions # GH3668 # GH5724 df = pd.DataFrame( { "group": [1, 1, 2], "int": [1, 2, 3], "float": [4.0, 5.0, 6.0], "string": list("abc"), "category_string": pd.Series(list("abc")).astype("category"), "category_int": [7, 8, 9], "datetime": pd.date_range("20130101", periods=3), "datetimetz": pd.date_range("20130101", periods=3, tz="US/Eastern"), "timedelta": pd.timedelta_range("1 s", periods=3, freq="s"), }, columns=[ "group", "int", "float", "string", "category_string", "category_int", "datetime", "datetimetz", "timedelta", ], ) expected_columns_numeric = Index(["int", "float", "category_int"]) # mean / median expected = pd.DataFrame( { "category_int": [7.5, 9], "float": [4.5, 6.0], "timedelta": [pd.Timedelta("1.5s"), pd.Timedelta("3s")], "int": [1.5, 3], "datetime": [ pd.Timestamp("2013-01-01 12:00:00"), pd.Timestamp("2013-01-03 00:00:00"), ], "datetimetz": [ pd.Timestamp("2013-01-01 12:00:00", tz="US/Eastern"), pd.Timestamp("2013-01-03 00:00:00", tz="US/Eastern"), ], }, index=Index([1, 2], name="group"), columns=["int", "float", "category_int", "datetime", "datetimetz", "timedelta"], ) for attr in ["mean", "median"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns_numeric) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_frame_equal(result.reindex_like(expected), expected) # TODO: min, max *should* handle # categorical (ordered) dtype expected_columns = Index( [ "int", "float", "string", "category_int", "datetime", "datetimetz", "timedelta", ] ) for attr in ["min", "max"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index( [ "int", "float", "string", "category_string", "category_int", "datetime", "datetimetz", "timedelta", ] ) for attr in ["first", "last"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(["int", "float", "string", "category_int", "timedelta"]) result = df.groupby("group").sum() tm.assert_index_equal(result.columns, expected_columns_numeric) result = df.groupby("group").sum(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(["int", "float", "category_int"]) for attr in ["prod", "cumprod"]: result = getattr(df.groupby("group"), attr)() tm.assert_index_equal(result.columns, expected_columns_numeric) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) # like min, max, but don't include strings expected_columns = Index( ["int", "float", "category_int", "datetime", "datetimetz", "timedelta"] ) for attr in ["cummin", "cummax"]: result = getattr(df.groupby("group"), attr)() # GH 15561: numeric_only=False set by default like min/max tm.assert_index_equal(result.columns, expected_columns) result = getattr(df.groupby("group"), attr)(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(["int", "float", "category_int", "timedelta"]) result = getattr(df.groupby("group"), "cumsum")() tm.assert_index_equal(result.columns, expected_columns_numeric) result = getattr(df.groupby("group"), "cumsum")(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) def test_non_cython_api(): # GH5610 # non-cython calls should not include the grouper df = DataFrame( [[1, 2, "foo"], [1, np.nan, "bar"], [3, np.nan, "baz"]], columns=["A", "B", "C"] ) g = df.groupby("A") gni = df.groupby("A", as_index=False) # mad expected = DataFrame([[0], [np.nan]], columns=["B"], index=[1, 3]) expected.index.name = "A" result = g.mad() tm.assert_frame_equal(result, expected) expected = DataFrame([[1, 0.0], [3, np.nan]], columns=["A", "B"], index=[0, 1]) result = gni.mad() tm.assert_frame_equal(result, expected) # describe expected_index = pd.Index([1, 3], name="A") expected_col = pd.MultiIndex( levels=[["B"], ["count", "mean", "std", "min", "25%", "50%", "75%", "max"]], codes=[[0] * 8, list(range(8))], ) expected = pd.DataFrame( [ [1.0, 2.0, np.nan, 2.0, 2.0, 2.0, 2.0, 2.0], [0.0, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], ], index=expected_index, columns=expected_col, ) result = g.describe() tm.assert_frame_equal(result, expected) expected = pd.concat( [ df[df.A == 1].describe().unstack().to_frame().T, df[df.A == 3].describe().unstack().to_frame().T, ] ) expected.index = pd.Index([0, 1]) result = gni.describe() tm.assert_frame_equal(result, expected) # any expected = DataFrame( [[True, True], [False, True]], columns=["B", "C"], index=[1, 3] ) expected.index.name = "A" result = g.any() tm.assert_frame_equal(result, expected) # idxmax expected = DataFrame([[0.0], [np.nan]], columns=["B"], index=[1, 3]) expected.index.name = "A" result = g.idxmax() tm.assert_frame_equal(result, expected) def test_cython_api2(): # this takes the fast apply path # cumsum (GH5614) df = DataFrame([[1, 2, np.nan], [1, np.nan, 9], [3, 4, 9]], columns=["A", "B", "C"]) expected = DataFrame([[2, np.nan], [np.nan, 9], [4, 9]], columns=["B", "C"]) result = df.groupby("A").cumsum() tm.assert_frame_equal(result, expected) # GH 5755 - cumsum is a transformer and should ignore as_index result = df.groupby("A", as_index=False).cumsum() tm.assert_frame_equal(result, expected) # GH 13994 result = df.groupby("A").cumsum(axis=1) expected = df.cumsum(axis=1) tm.assert_frame_equal(result, expected) result = df.groupby("A").cumprod(axis=1) expected = df.cumprod(axis=1) tm.assert_frame_equal(result, expected) def test_cython_median(): df = DataFrame(np.random.randn(1000)) df.values[::2] = np.nan labels = np.random.randint(0, 50, size=1000).astype(float) labels[::17] = np.nan result = df.groupby(labels).median() exp = df.groupby(labels).agg(nanops.nanmedian) tm.assert_frame_equal(result, exp) df = DataFrame(np.random.randn(1000, 5)) rs = df.groupby(labels).agg(np.median) xp = df.groupby(labels).median() tm.assert_frame_equal(rs, xp) def test_median_empty_bins(observed): df = pd.DataFrame(np.random.randint(0, 44, 500)) grps = range(0, 55, 5) bins = pd.cut(df[0], grps) result = df.groupby(bins, observed=observed).median() expected = df.groupby(bins, observed=observed).agg(lambda x: x.median()) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "dtype", ["int8", "int16", "int32", "int64", "float32", "float64", "uint64"] ) @pytest.mark.parametrize( "method,data", [ ("first", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}), ("last", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}), ("min", {"df": [{"a": 1, "b": 1}, {"a": 2, "b": 3}]}), ("max", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}]}), ("nth", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 4}], "args": [1]}), ("count", {"df": [{"a": 1, "b": 2}, {"a": 2, "b": 2}], "out_type": "int64"}), ], ) def test_groupby_non_arithmetic_agg_types(dtype, method, data): # GH9311, GH6620 df = pd.DataFrame( [{"a": 1, "b": 1}, {"a": 1, "b": 2}, {"a": 2, "b": 3}, {"a": 2, "b": 4}] ) df["b"] = df.b.astype(dtype) if "args" not in data: data["args"] = [] if "out_type" in data: out_type = data["out_type"] else: out_type = dtype exp = data["df"] df_out = pd.DataFrame(exp) df_out["b"] = df_out.b.astype(out_type) df_out.set_index("a", inplace=True) grpd = df.groupby("a") t = getattr(grpd, method)(*data["args"]) tm.assert_frame_equal(t, df_out) @pytest.mark.parametrize( "i", [ ( Timestamp("2011-01-15 12:50:28.502376"), Timestamp("2011-01-20 12:50:28.593448"), ), (24650000000000001, 24650000000000002), ], ) def test_groupby_non_arithmetic_agg_int_like_precision(i): # see gh-6620, gh-9311 df = pd.DataFrame([{"a": 1, "b": i[0]}, {"a": 1, "b": i[1]}]) grp_exp = { "first": {"expected": i[0]}, "last": {"expected": i[1]}, "min": {"expected": i[0]}, "max": {"expected": i[1]}, "nth": {"expected": i[1], "args": [1]}, "count": {"expected": 2}, } for method, data in grp_exp.items(): if "args" not in data: data["args"] = [] grouped = df.groupby("a") res = getattr(grouped, method)(*data["args"]) assert res.iloc[0].b == data["expected"] @pytest.mark.parametrize( "func, values", [ ("idxmin", {"c_int": [0, 2], "c_float": [1, 3], "c_date": [1, 2]}), ("idxmax", {"c_int": [1, 3], "c_float": [0, 2], "c_date": [0, 3]}), ], ) def test_idxmin_idxmax_returns_int_types(func, values): # GH 25444 df = pd.DataFrame( { "name": ["A", "A", "B", "B"], "c_int": [1, 2, 3, 4], "c_float": [4.02, 3.03, 2.04, 1.05], "c_date": ["2019", "2018", "2016", "2017"], } ) df["c_date"] = pd.to_datetime(df["c_date"]) result = getattr(df.groupby("name"), func)() expected = pd.DataFrame(values, index=Index(["A", "B"], name="name")) tm.assert_frame_equal(result, expected) def test_fill_consistency(): # GH9221 # pass thru keyword arguments to the generated wrapper # are set if the passed kw is None (only) df = DataFrame( index=pd.MultiIndex.from_product( [["value1", "value2"], date_range("2014-01-01", "2014-01-06")] ), columns=Index(["1", "2"], name="id"), ) df["1"] = [ np.nan, 1, np.nan, np.nan, 11, np.nan, np.nan, 2, np.nan, np.nan, 22, np.nan, ] df["2"] = [ np.nan, 3, np.nan, np.nan, 33, np.nan, np.nan, 4, np.nan, np.nan, 44, np.nan, ] expected = df.groupby(level=0, axis=0).fillna(method="ffill") result = df.T.groupby(level=0, axis=1).fillna(method="ffill").T tm.assert_frame_equal(result, expected) def test_groupby_cumprod(): # GH 4095 df = pd.DataFrame({"key": ["b"] * 10, "value": 2}) actual = df.groupby("key")["value"].cumprod() expected = df.groupby("key")["value"].apply(lambda x: x.cumprod()) expected.name = "value" tm.assert_series_equal(actual, expected) df = pd.DataFrame({"key": ["b"] * 100, "value": 2}) actual = df.groupby("key")["value"].cumprod() # if overflows, groupby product casts to float # while numpy passes back invalid values df["value"] = df["value"].astype(float) expected = df.groupby("key")["value"].apply(lambda x: x.cumprod()) expected.name = "value" tm.assert_series_equal(actual, expected) def scipy_sem(*args, **kwargs): from scipy.stats import sem return sem(*args, ddof=1, **kwargs) @pytest.mark.parametrize( "op,targop", [ ("mean", np.mean), ("median", np.median), ("std", np.std), ("var", np.var), ("sum", np.sum), ("prod", np.prod), ("min", np.min), ("max", np.max), ("first", lambda x: x.iloc[0]), ("last", lambda x: x.iloc[-1]), ("count", np.size), pytest.param("sem", scipy_sem, marks=td.skip_if_no_scipy), ], ) def test_ops_general(op, targop): df = DataFrame(np.random.randn(1000)) labels = np.random.randint(0, 50, size=1000).astype(float) result = getattr(df.groupby(labels), op)().astype(float) expected = df.groupby(labels).agg(targop) tm.assert_frame_equal(result, expected) def test_max_nan_bug(): raw = """,Date,app,File -04-23,2013-04-23 00:00:00,,log080001.log -05-06,2013-05-06 00:00:00,,log.log -05-07,2013-05-07 00:00:00,OE,xlsx""" df = pd.read_csv(StringIO(raw), parse_dates=[0]) gb = df.groupby("Date") r = gb[["File"]].max() e = gb["File"].max().to_frame() tm.assert_frame_equal(r, e) assert not r["File"].isna().any() def test_nlargest(): a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10]) b = Series(list("a" * 5 + "b" * 5)) gb = a.groupby(b) r = gb.nlargest(3) e = Series( [7, 5, 3, 10, 9, 6], index=MultiIndex.from_arrays([list("aaabbb"), [3, 2, 1, 9, 5, 8]]), ) tm.assert_series_equal(r, e) a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0]) gb = a.groupby(b) e = Series( [3, 2, 1, 3, 3, 2], index=MultiIndex.from_arrays([list("aaabbb"), [2, 3, 1, 6, 5, 7]]), ) tm.assert_series_equal(gb.nlargest(3, keep="last"), e) def test_nlargest_mi_grouper(): # see gh-21411 npr = np.random.RandomState(123456789) dts = date_range("20180101", periods=10) iterables = [dts, ["one", "two"]] idx = MultiIndex.from_product(iterables, names=["first", "second"]) s = Series(npr.randn(20), index=idx) result = s.groupby("first").nlargest(1) exp_idx = MultiIndex.from_tuples( [ (dts[0], dts[0], "one"), (dts[1], dts[1], "one"), (dts[2], dts[2], "one"), (dts[3], dts[3], "two"), (dts[4], dts[4], "one"), (dts[5], dts[5], "one"), (dts[6], dts[6], "one"), (dts[7], dts[7], "one"), (dts[8], dts[8], "two"), (dts[9], dts[9], "one"), ], names=["first", "first", "second"], ) exp_values = [ 2.2129019979039612, 1.8417114045748335, 0.858963679564603, 1.3759151378258088, 0.9430284594687134, 0.5296914208183142, 0.8318045593815487, -0.8476703342910327, 0.3804446884133735, -0.8028845810770998, ] expected = Series(exp_values, index=exp_idx) tm.assert_series_equal(result, expected, check_exact=False, rtol=1e-3) def test_nsmallest(): a = Series([1, 3, 5, 7, 2, 9, 0, 4, 6, 10]) b = Series(list("a" * 5 + "b" * 5)) gb = a.groupby(b) r = gb.nsmallest(3) e = Series( [1, 2, 3, 0, 4, 6], index=MultiIndex.from_arrays([list("aaabbb"), [0, 4, 1, 6, 7, 8]]), ) tm.assert_series_equal(r, e) a = Series([1, 1, 3, 2, 0, 3, 3, 2, 1, 0]) gb = a.groupby(b) e = Series( [0, 1, 1, 0, 1, 2], index=MultiIndex.from_arrays([list("aaabbb"), [4, 1, 0, 9, 8, 7]]), ) tm.assert_series_equal(gb.nsmallest(3, keep="last"), e) @pytest.mark.parametrize("func", ["cumprod", "cumsum"]) def test_numpy_compat(func): # see gh-12811 df =
pd.DataFrame({"A": [1, 2, 1], "B": [1, 2, 3]})
pandas.DataFrame
import unittest import pandas as pd from chemcharts.core.container.chemdata import ChemData from chemcharts.core.container.fingerprint import * from chemcharts.core.functions.binning import Binning class TestBinning(unittest.TestCase): @classmethod def setUpClass(cls) -> None: smiles = Smiles(["COc1ccc(-c2c(-c3ccc(S(N)(=O)=O)cc3)[nH]c3ccccc23)cc1", "COc1ccc(-c2c(-c3ccc(S(N)(=O)=O)cc3)oc3ccccc23)cc1F", "Cc1cc(C)c(S(=O)(=O)N2CCN(C(C)c3nc(C(C)(C)C)no3)CC2)c(C)c1", "C1ccc2c(c1)-c1ccc3ccccc3c1C2Cc1nn[nH]n1", "Cc1ccccc1-c1c(C(=O)N=c2cccc[nH]2)cnc2ccccc12", "N=c1[nH]c(=O)c2ncn(Cc3cccc4ccccc34)c2[nH]1", "O=C1c2cccc3c(F)ccc(c23)CN1c1cccnc1"]) values =
pd.DataFrame([1, 3, 4, 5, 2, 1, 6], columns=["test_value"])
pandas.DataFrame
""" Module full of various helpers for creating matplotlib animations. """ import numpy as np import pandas as pd import pytweening from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation # In order to get the final points, there's 2 high-level steps: # # 1. Generate points between x1 and x2 that are spaced evenly # 2. Use pytweening to transform the generated points such that they match the # supplied timing function. # # To make step 2 happen, we have to go about it in complicated way (there might # be a better, more clever way to do this). # # The ``pytweening`` module is nice, but only works on values between 0 and 1. # We'll transform the generated evenly spaced points such that they have a min # of 0 and max of 1, then apply the pytweening function, then transform the new # points back to their original scale. # We'll use sklearn's MinMaxScaler for this process. def tween(x1, x2, fn, n_points=50): """ Generate intermediate points between x1 and x2 based on a specified tweening function. x1 and x2 may be either single scaler values or 1-d numpy arrays of the same shape. Parameters ---------- - x1: a scaler value or a 1-d array (numpy array or pandas series) - x2: a scaler value or a 1-d array (numpy array or pandas series) - fn: a timing function from pytweening - n_points: the number of points to generate, including the starting and stopping points. Returns ------- If x1 and x2 are scalers, a 1-d array with n_points elements where the first element is x1 and the last is x2. If x1 and x2 are 1-d arrays, a matrix of shape (n_points, x1.size). Each row in the matrix is the data points at one step. The first row is x1 and the last row is x2. Examples -------- >>> import pytweening >>> tween(1, 10, pytweening.linear, 10) array([ 1., 2., 3., 4., 5., 6., 7., 8., 9., 10.]) >>> tween(1, 10, pytweening.easeInQuad, 10) array([ 1. , 1.11111111, 1.44444444, 2. , 2.77777778, 3.77777778, 5. , 6.44444444, 8.11111111, 10. ]) >>> tween(1, 10, pytweening.easeOutQuad, 10) array([ 1. , 2.88888889, 4.55555556, 6. , 7.22222222, 8.22222222, 9. , 9.55555556, 9.88888889, 10. ]) >>> x1 = np.array([1, 1, 2]) >>> x2 = np.array([2, 5, 4]) >>> tween(x1, x2, pytweening.linear, 5) array([[1. , 1. , 2. ], [1.25, 2. , 2.5 ], [1.5 , 3. , 3. ], [1.75, 4. , 3.5 ], [2. , 5. , 4. ]]) """ # handle the case where we have scaler values first if np.isscalar(x1) and np.isscalar(x2): if x1 == x2: return np.repeat(x1, n_points) xx = np.linspace(x1, x2, n_points).reshape(-1, 1) scaler = MinMaxScaler().fit(xx) linspace = ( np.linspace(0, 1, n_points) if x1 < x2 else np.linspace(1, 0, n_points) ) return scaler.inverse_transform( np.array([fn(x) for x in linspace]).reshape(-1, 1) ).ravel() # sanity check arguments if len(x1.shape) != 1 or len(x2.shape) != 1 or x1.shape[0] != x2.shape[0]: raise ValueError( "x1 and x2 must be either scaler values or 1-d numpy arrays of the same shape" ) xx_linear = np.linspace(x1, x2, n_points) scaler = MinMaxScaler().fit(xx_linear) xx_minmax = scaler.transform(xx_linear) # because rounding, sometimes we end up w/ numbers like 1.0000000002 xx_minmax = np.where(xx_minmax > 1, 1, xx_minmax) xx_minmax_t =
pd.DataFrame(xx_minmax)
pandas.DataFrame
import argparse import os import torch import numpy as np import pandas as pd import torch.nn as nn import torch.optim as optim from tqdm import tqdm as tqdm_notebook from datasets import DataManager from utils import * from models import get_model seed_everything(43) ap = argparse.ArgumentParser(description='pretraining') ap.add_argument('dataset', choices=['c10', 'c100', 'tin','svhn'], type=str, help='Dataset choice') ap.add_argument('model', type=str, help='Model choice') ap.add_argument('--test_only', '-t', type=bool, default=False, help='test the best model') ap.add_argument('--valid_size', '-v', type=float, default=0.1, help='valid_size') ap.add_argument('--batch_size', default=128, type=int, help='Batch Size') ap.add_argument('--lr', default=0.05, type=float, help='Learning rate') ap.add_argument('--scheduler_type', '-st', type=int, choices=[1, 2], default=1, help='lr scheduler type') ap.add_argument('--decay', '-d', type=float, default=0.001, help='weight decay') ap.add_argument('--epochs', default=200, type=int, help='Epochs') ap.add_argument('--workers', default=0, type=int, help='number of workers') ap.add_argument('--cuda_id', '-id', type=str, default='0', help='gpu number') args = ap.parse_args() ############################### preparing dataset ################################ data_object = DataManager(args) trainloader, valloader, testloader = data_object.prepare_data() dataloaders = { 'train': trainloader, 'val': valloader, "test": testloader } ############################### preparing model ################################### model = get_model(args.model, 'full', data_object.num_classes, data_object.insize) ############################## preparing for training ############################# if os.path.exists('logs') == False: os.mkdir("logs") if os.path.exists('checkpoints') == False: os.mkdir("checkpoints") criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.decay) device = torch.device(f"cuda:{str(args.cuda_id)}") model.to(device) def train(model, loss_fn, optimizer, scheduler=None): model.train() counter = 0 tk1 = tqdm_notebook(dataloaders['train'], total=len(dataloaders['train'])) running_loss = 0 for x_var, y_var in tk1: counter +=1 x_var = x_var.to(device=device) y_var = y_var.to(device=device) scores = model(x_var) loss = loss_fn(scores, y_var) running_loss+=loss.item() tk1.set_postfix(loss=running_loss/counter) optimizer.zero_grad() loss.backward() optimizer.step() return running_loss/counter def test(model, loss_fn, optimizer, phase, scheduler=None): model.eval() counter = 0 tk1 = tqdm_notebook(dataloaders[phase], total=len(dataloaders[phase])) running_loss = 0 running_acc = 0 total = 0 with torch.no_grad(): for x_var, y_var in tk1: counter +=1 x_var = x_var.to(device=device) y_var = y_var.to(device=device) scores = model(x_var) loss = loss_fn(scores, y_var) _, scores = torch.max(scores.data, 1) y_var = y_var.cpu().detach().numpy() scores = scores.cpu().detach().numpy() correct = (scores == y_var).sum().item() running_loss+=loss.item() running_acc+=correct total+=scores.shape[0] tk1.set_postfix(loss=running_loss/counter, acc=running_acc/total) return running_acc/total, running_loss/counter ###################################### training starts here ############################ best_acc = 0 num_epochs = args.epochs train_losses = [] valid_losses = [] valid_accuracy = [] if args.test_only == False: for epoch in range(num_epochs): adjust_learning_rate(optimizer, epoch, args) print('Starting epoch %d / %d' % (epoch + 1, num_epochs)) t_loss = train(model, criterion, optimizer) acc, v_loss = test(model, criterion, optimizer, "val") if acc>best_acc: print("**Saving model**") best_acc=acc torch.save({ "epoch": epoch + 1, "state_dict" : model.state_dict(), "acc" : best_acc, }, f"checkpoints/{args.model}_{args.dataset}_pretrained.pth") train_losses.append(t_loss) valid_losses.append(v_loss) valid_accuracy.append(acc) df_data=np.array([train_losses, valid_losses, valid_accuracy]).T df =
pd.DataFrame(df_data, columns = ['train_losses','valid_losses','valid_accuracy'])
pandas.DataFrame
import pandas as pd import functools as ft import numpy as np import sys # driver script for applying the refactoring transformation class Stmt: def __init__(self, start_line, start_char, end_line, end_char): self.start_line = start_line self.start_char = start_char self.end_line = end_line self.end_char = end_char def __str__(self): return("[" + str(self.start_line) + ", " + str(self.start_char) + "; " + str(self.end_line) + ", " + str(self.end_char) + "]") def __eq__(self, other): return( self.start_line == other.start_line and self.end_line == other.end_line and self.start_char == other.start_char and self.end_char == other.end_char) def __lt__(self, other): return( self.start_line < other.start_line or (self.start_line == other.start_line and self.start_char < other.start_char)) def __le__(self, other): return( self < other or self == other) def __hash__(self): return id(self) def subsumes(self, other): # returns true if self subsumes the other_stmt left_sub = self.start_line < other.start_line or (self.start_line == other.start_line and self.start_char <= other.start_char) right_sub = self.end_line > other.end_line or (self.end_line == other.end_line and self.end_char >= other.end_char) return( left_sub and right_sub and not self == other) class ParseTreeNode: def __init__(self, child_list, stmt): self.stmt = stmt self.child_list = child_list self.is_leaf = False self.text = [[]] self.parent = None if len(child_list) == 0: self.is_leaf = True for c in child_list: c.parent = self def __set_self_text(self, file_contents): if self.is_leaf: self.text = [get_stmt( self.stmt, file_contents)] # return array of strings representing the lines of the statement return # if we're here it means there is at least one child current_child = self.child_list[0] # get the text from the beginning of the stmt until the beginning of the first child node subs = 0 if current_child.stmt.start_line == self.stmt.start_line else 1 self.text = [get_stmt( Stmt(self.stmt.start_line, self.stmt.start_char, current_child.stmt.start_line, current_child.stmt.start_char - subs), file_contents)] for ind in range(1, len(self.child_list)): next_child = self.child_list[ind] # print(Stmt(current_child.stmt.end_line, current_child.stmt.end_char + 1, next_child.stmt.start_line, next_child.stmt.start_char)) self.text += [get_stmt( Stmt(current_child.stmt.end_line, current_child.stmt.end_char + 1, next_child.stmt.start_line, next_child.stmt.start_char - 1), file_contents)] current_child = next_child adds = 0 if len(self.child_list) == 1 and self.stmt.start_line == self.stmt.end_line and self.stmt.end_char > self.child_list[0].stmt.end_char else 1 self.text += [get_stmt( Stmt(current_child.stmt.end_line, current_child.stmt.end_char + adds, self.stmt.end_line, self.stmt.end_char), file_contents)] def set_text(self, file_contents): self.__set_self_text(file_contents) for c in self.child_list: c.set_text(file_contents) def get_text(self): to_ret = self.text[0].copy() for ind in range(1, len(self.text)): to_ret += self.child_list[ind - 1].get_text() to_ret += self.text[ind].copy() return( to_ret) def print(self): print_array_newline_sep( self.get_text()) def __hash__(self): return id(self) def count_tree(rnode): count = 1 for c in rnode.child_list: count += count_tree(c) return count # text is an array of arrays, just the first element # is an array of strings # we want to get the index of the element with "await" in it # there should just be one (but if there's more than one we can just do the first one) def get_index_with_await( text, swapping_last = False): indices = [(k, i) for k in range(len(text)) for i in range( 0, len(text[k])) if text[k][i].count("await ") > 0] if len(indices) > 1 or len(indices) == 0: print("WHAT IS GOING ON: " + str(text)) return( (-1, -1)) if swapping_last: return( indices[-1]) # if we're reordering forward, get the last await return( indices[0]) # otherwise, get the first await def corresp_paren(p): return { '(' : ')', ')' : '(', '[' : ']', ']' : '[', '{' : '}', '}' : '{' }.get(p, p) # just return p itself as a default if it's not in the dict def build_paren_stack( a_string): paren_stack = "" for c in a_string: if c == "(" or c == "{" or c == "[": paren_stack += c elif c == ")" or c == "}" or c == "]": if len(paren_stack) > 0 and paren_stack[-1] == corresp_paren(c): paren_stack = paren_stack[ : -1] else: paren_stack += c return( paren_stack) # we need to match the parens before and after the awaits, in case # note: no need to look through the text of the child_list, since these are self-contained # statements and so won't include closing/opening parens in part of the enclosing stmt, which # is the statement we're parsing def get_compensating_parens( text, text_ind, ind_to_split_at): if ind_to_split_at == -1: # then there was an error return( -1, -1) start_text = text[text_ind][0 : ind_to_split_at] end_text = text[text_ind][ ind_to_split_at + 1 : ] # get the text we're going to split: split_text = text[text_ind][ind_to_split_at] front_paren_stack = build_paren_stack( ''.join(start_text) + split_text[0: split_text.index('await')]) end_paren_stack = build_paren_stack( split_text[ split_text.index('await') + len('await') : ] + ''.join(end_text)) if build_paren_stack(front_paren_stack + end_paren_stack) != "": #raise ValueError("Mismatched parens in: " + text[text_ind][ind_to_split_at]) return( -1, -1) return( front_paren_stack, end_paren_stack) # this is like move_stmt, but instead of just shifting the statement, we're actually going # to split it into an initial promise creation: # var temp = < portion of the statement after the await > # this goes where the statement would be moved to # < portion of the statement before the await > = await temp # this should just involve changing the text() of the moved node and the placeholder node # no scoping issues should ensue, since we're moving the whole statement def move_and_split_await( root_node, root_map, stmt_to_move, stmt_to_move_before, temp_var_name, add_timing = False, filename = ""): node_to_move = root_map[stmt_to_move] node_to_move_before = root_map[stmt_to_move_before] # updates required: # remove node_to_move from its parent's child list # then, add it before stmt_to_move_before # NEW ITEM: update the text (using temp_var_name as specified) # when we remove node_to_move from the child list: # -- just replace it with a new, blank node but with the old stmt as the stmt # -- then, it's not blank any more: the text is the corresponding "everything before the await" = await temp_var_name # -- and, when we move the node, we're actually replacing the text to be var temp_var_name = "everything after the await" # -- also, split the child node list # -- and, replace it in the node_map old_pos_node = ParseTreeNode( [], stmt_to_move) # now, compute the index to split at (text_ind, ind_to_split_at) = get_index_with_await(node_to_move.text) #pre-compute paren stacks so we can catch all errors at once (front_paren_stack, end_paren_stack) = get_compensating_parens( node_to_move.text, text_ind, ind_to_split_at) if ind_to_split_at == -1 or front_paren_stack == -1: # then this is a problem, and we just won't do the reordering print("There's an issue and we can't automatically swap the following statement: ") node_to_move.print() print("With the following statement: ") node_to_move_before.print() print("DONE REPORTING PROBLEMS") # return( root_node, root_map, 0) return(0) # split both the text array and the child_list start_text = node_to_move.text[text_ind][0 : ind_to_split_at] end_text = node_to_move.text[text_ind][ ind_to_split_at + 1 : ] start_child_list = node_to_move.child_list[0 : ind_to_split_at] end_child_list = node_to_move.child_list[ ind_to_split_at :] # get the text we're going to split: split_text = node_to_move.text[text_ind][ind_to_split_at] string_before_await = split_text[0: split_text.index('await')] string_after_await = split_text[ split_text.index('await') + len('await') : ] if build_paren_stack(string_after_await) != "": return( 0) # now, add the new updates to the strings # don't forget the parens string_before_await = string_before_await + " await " + temp_var_name + end_paren_stack string_after_await = "var " + temp_var_name + " = " + front_paren_stack + string_after_await # and, set up the nodes # starting off the same as before if node_to_move.parent != None: child_list_to_rem_from = node_to_move.parent.child_list child_list_to_rem_from[child_list_to_rem_from.index(node_to_move)] = old_pos_node root_map[stmt_to_move] = old_pos_node if node_to_move_before.parent != None: child_list_to_add_to = node_to_move_before.parent.child_list child_list_to_add_to.insert( child_list_to_add_to.index(node_to_move_before), node_to_move) node_to_move_before.parent.text.insert( child_list_to_add_to.index(node_to_move_before), [""]) node_to_move.parent = node_to_move_before.parent # now, update the text and child_lists in node_to_move and old_pos_node: # node_to_move gets the string after await (i.e. the promise creation we want to move earlier) # and, gets the end_child_list (for the same reason) bad_paren_start = "" bad_parens = False if add_timing: timing_pre_text = "var TIMING_" + temp_var_name + " = perf_hooks.performance.now();\n " timing_post_text = "console.log(\"" + filename + "& " + str(old_pos_node.stmt) + "& " + temp_var_name + "& \" + (perf_hooks.performance.now() - TIMING_" + temp_var_name + "));\n " new_await_timing_var = "await " + temp_var_name + end_paren_stack + ";\n " string_before_await = split_text[0: split_text.index('await')] # can't add timing if the await is in the middle of a statement, for example like multiassignment in kactus's utils.ts # so in this case just put the timing before the entire statement if build_paren_stack(string_before_await) != "": bad_parens = True if len( str.strip(string_before_await)) > 0: # only create this variable if we actually need it (just having it hanging out alone at the end of string_before_await is an error, but then it's also an error if created but never used) string_before_await += " AWAIT_VAR_TIMING_" + temp_var_name new_await_timing_var = "var AWAIT_VAR_TIMING_" + temp_var_name + " = " + new_await_timing_var if not bad_parens: string_before_await = timing_pre_text + new_await_timing_var + timing_post_text + string_before_await else: bad_paren_start = timing_pre_text + new_await_timing_var + timing_post_text node_to_move.text = [[string_after_await] + end_text] node_to_move.child_list = end_child_list old_pos_node.text = [merge_into_first_string_of_list( start_text, bad_paren_start) + [string_before_await]] old_pos_node.child_list = start_child_list # return( root_node, root_map) return(1) # this relies on the earlier swaps already being done def move_await_later( root_node, root_map, stmt_to_move, stmt_to_move_after, temp_var_name, add_timing = False, filename = ""): swapping_last = True node_to_move = root_map[stmt_to_move] node_to_move_after = root_map[stmt_to_move_after] # updates required: # remove node_to_move from its parent's child list # then, add it before stmt_to_move_before # NEW ITEM: update the text (using temp_var_name as specified) # when we remove node_to_move from the child list: # -- just replace it with a new, blank node but with the old stmt as the stmt # -- then, it's not blank any more: the text is the corresponding "everything before the await" = await temp_var_name # -- and, when we move the node, we're actually replacing the text to be var temp_var_name = "everything after the await" # -- also, split the child node list # -- and, replace it in the node_map old_pos_node = ParseTreeNode( [], stmt_to_move) # now, compute the index to split at (text_ind, ind_to_split_at) = get_index_with_await(node_to_move.text, swapping_last) #pre-compute paren stacks so we can catch all errors at once (front_paren_stack, end_paren_stack) = get_compensating_parens( node_to_move.text, text_ind, ind_to_split_at) if ind_to_split_at == -1 or front_paren_stack == -1: # then this is a problem, and we just won't do the reordering print("There's an issue and we can't automatically swap the following statement: ") node_to_move.print() print("With the following statement: ") node_to_move_after.print() print("DONE REPORTING PROBLEMS") # return( root_node, root_map, 0) return(0) # split both the text array and the child_list start_text = node_to_move.text[text_ind][0 : ind_to_split_at] end_text = node_to_move.text[text_ind][ ind_to_split_at + 1 : ] start_child_list = node_to_move.child_list[0 : ind_to_split_at] end_child_list = node_to_move.child_list[ ind_to_split_at :] # get the text we're going to split: split_text = node_to_move.text[text_ind][ind_to_split_at] string_before_await = split_text[0: split_text.rindex('await')] string_after_await = split_text[ split_text.rindex('await') + len('await') : ] if build_paren_stack(string_after_await) != "": return( 0) new_await_var = "var " + temp_var_name + "_LATER = " + front_paren_stack + split_text[ split_text.rindex('await') + len('await') : ] # if len( str.strip(string_before_await)) > 0: # string_before_await = string_before_await + " " + temp_var_name + "_LATER" # if build_paren_stack(string_before_await) != "": # the addition of the varname doesnt change this funcionality # # don't even split the text any more # node_to_split.text = [[timing_pre_text]+ node_to_split.text[text_ind] + ["\n" + timing_post_text]] # else: node_to_move.text[text_ind] = start_text + [new_await_var] + end_text + [end_paren_stack] placeholder_node = ParseTreeNode([], None) placeholder_node.parent = node_to_move node_to_move.child_list.insert( ind_to_split_at, placeholder_node) node_to_move.text.insert(ind_to_split_at, [""]) # now, add the await to the node to move after actual_await_node = ParseTreeNode([], None) actual_await_node.parent = node_to_move_after actual_await_node.text = [[string_before_await + "await " + temp_var_name + "_LATER"]] if add_timing: timing_pre_text = "var TIMING_" + temp_var_name + "_LATER = perf_hooks.performance.now();\n " timing_post_text = "console.log(\"" + filename + "& " + str(old_pos_node.stmt) + "& " + temp_var_name + "& \" + (perf_hooks.performance.now() - TIMING_" + temp_var_name + "_LATER));\n " actual_await_node.text = [[timing_pre_text + timing_post_text + actual_await_node.text[0][0]]] # make room in the parent node, make sure to add it at the end node_to_move_after.text += [[""]] node_to_move_after.child_list += [actual_await_node] return( 1) def merge_into_first_string_of_list( string_list, to_merge): if string_list == []: return( [to_merge]) string_list[0] = to_merge + string_list[0] return( string_list) def time_await( root_node, root_map, stmt_to_time, temp_var_name, filename): node_to_time = root_map[stmt_to_time] # all we care about here is the await, we;re just updating the text (text_ind, ind_to_split_at) = get_index_with_await(node_to_time.text) (front_paren_stack, end_paren_stack) = get_compensating_parens( node_to_time.text, text_ind, ind_to_split_at) if ind_to_split_at == -1 or front_paren_stack == -1: # then this is a problem, and we just won't do the reordering print("There's an issue and we can't automatically time the following statement: ") node_to_time.print() print("DONE REPORTING PROBLEMS") return( 0) # split both the text array and the child_list start_text = node_to_time.text[text_ind][0 : ind_to_split_at] end_text = node_to_time.text[text_ind][ ind_to_split_at + 1 : ] # get the text we're going to split: split_text = node_to_time.text[text_ind][ind_to_split_at] # string_after_await = split_text[ split_text.index('await') + len('await') : ] # now, add the new updates to the strings # don't forget the parens # string_after_await = "var " + temp_var_name + " = " + front_paren_stack + string_after_await # always add timing timing_pre_text = "var TIMING_" + temp_var_name + " = perf_hooks.performance.now();\n " timing_post_text = "console.log(\"" + filename + "& " + str(node_to_time.stmt) + "& " + temp_var_name + "& \" + (perf_hooks.performance.now() - TIMING_" + temp_var_name + "));\n " new_await_timing_var = "await " + front_paren_stack + split_text[ split_text.index('await') + len('await') : ] string_before_await = split_text[0: split_text.index('await')] if len( str.strip(string_before_await)) > 0: string_before_await = string_before_await + " AWAIT_VAR_TIMING_" + temp_var_name new_await_timing_var = "var AWAIT_VAR_TIMING_" + temp_var_name + " = " + new_await_timing_var string_timing_await = timing_pre_text + new_await_timing_var if build_paren_stack(string_before_await) != "": # the addition of the varname doesnt change this funcionality # don't even split the text any more node_to_time.text[text_ind] = [timing_pre_text] + node_to_time.text[text_ind] + ["\n" + timing_post_text] else: node_to_time.text[text_ind] = start_text + [string_timing_await]+ end_text + [end_paren_stack + timing_post_text + string_before_await] placeholder_node = ParseTreeNode([], None) placeholder_node.parent = node_to_time node_to_time.child_list.insert( ind_to_split_at, placeholder_node) node_to_time.text.insert(ind_to_split_at, [""]) return( 1) def time_call( root_node, root_map, stmt_to_time, temp_var_name, filename): node_to_time = root_map[stmt_to_time] # all we care about here is the await, we;re just updating the text # unlike where we were timing the awaits, now we're actually timing the whole statement and have no # need to split it. all we do is put timing code around the statement timing_pre_text = "var TIMING_" + temp_var_name + " = perf_hooks.performance.now();\n " timing_post_text = "console.log(\"" + filename + "& " + str(node_to_time.stmt) + "& " + temp_var_name + "& \" + (perf_hooks.performance.now() - TIMING_" + temp_var_name + "));\n " placeholder_nodes = (ParseTreeNode([], None), ParseTreeNode([], None)) placeholder_nodes[0].parent = node_to_time placeholder_nodes[1].parent = node_to_time node_to_time.child_list.insert( 0, placeholder_nodes[0]) node_to_time.child_list += [placeholder_nodes[1]] node_to_time.text.insert(0, [timing_pre_text]) node_to_time.text += [[timing_post_text]] return( 1) def move_stmt( root_node, root_map, stmt_to_move, stmt_to_move_before): node_to_move = root_map[stmt_to_move] node_to_move_before = root_map[stmt_to_move_before] # updates required: # remove node_to_move from its parent's child list # then, add it before stmt_to_move_before # when we remove node_to_move from the child list: # -- just replace it with a new, blank node but with the old stmt as the stmt # -- and, replace it in the node_map child_list_to_rem_from = node_to_move.parent.child_list placeholder_node = ParseTreeNode( [], stmt_to_move) child_list_to_rem_from[child_list_to_rem_from.index(node_to_move)] = placeholder_node root_map[stmt_to_move] = placeholder_node child_list_to_add_to = node_to_move_before.parent.child_list child_list_to_add_to.insert( child_list_to_add_to.index(node_to_move_before), node_to_move) node_to_move_before.parent.text.insert( child_list_to_add_to.index(node_to_move_before), [""]) node_to_move.parent = node_to_move_before.parent return( root_node, root_map) def convert__file_spec_stmt_list_to_tree( stmt_list, file_contents): # can iterate through the dataframe # probably need some recursive setup here, but this is going to be the wrapper helper function # first, make a root statement that encompasses the whole file root_stmt = Stmt(0, 0, len(file_contents) - 1, len(file_contents[-1])) [root_node, root_map] = create_subsumed( [root_stmt] + stmt_list, 0, dict([]))[1: ] return( root_node, root_map) def create_subsumed( stmt_list, cur_ind, stmt_node_map): if not cur_ind < len(stmt_list): raise ValueError("Index must be less than the length of the stmt array") child_list = [] current_stmt = stmt_list[ cur_ind] while cur_ind < len(stmt_list) - 1 and current_stmt.subsumes( stmt_list[ cur_ind + 1]): [cur_ind, next_node, stmt_node_map] = create_subsumed( stmt_list, cur_ind + 1, stmt_node_map) child_list += [ next_node] # cur_ind += 1 cur_node = ParseTreeNode( child_list, current_stmt) stmt_node_map[current_stmt] = cur_node return( cur_ind, cur_node, stmt_node_map) def convert_string_to_stmt( row): stmt_string = row.stmt stmt_string = stmt_string.split(",") if len(stmt_string) != 4: raise ValueError("This string should represent a stmt, which has 4 ints for position") return( Stmt( int(stmt_string[0]) - 1, int(stmt_string[1]) - 1, int(stmt_string[2]) - 1, int(stmt_string[3]))) # convert a row of QL output to a list of statements # we're subtracting 1 from the line numbers since the queries report starting at line 1 # but we need line 0 for the file def convert_row_to_stmts( row): [s_startline, s_startchar, s_endline, s_endchar, ess_startline, ess_startchar, ess_endline, ess_endchar, lss_startline, lss_startchar, lss_endline, lss_endchar, filename] = row s = Stmt( s_startline - 1, s_startchar - 1, s_endline - 1, s_endchar) ess = Stmt( ess_startline - 1, ess_startchar - 1, ess_endline - 1, ess_endchar) lss = Stmt( lss_startline - 1, lss_startchar - 1, lss_endline - 1, lss_endchar) return( [s, ess, lss, filename]) def convert_row_to_stmts_with_calls( row): [s_startline, s_startchar, s_endline, s_endchar, ess_startline, ess_startchar, ess_endline, ess_endchar, lss_startline, lss_startchar, lss_endline, lss_endchar, filename, cs_startline, cs_startchar, cs_endline, cs_endchar, cs_name, cs_filename] = row s = Stmt( s_startline - 1, s_startchar - 1, s_endline - 1, s_endchar) ess = Stmt( ess_startline - 1, ess_startchar - 1, ess_endline - 1, ess_endchar) lss = Stmt( lss_startline - 1, lss_startchar - 1, lss_endline - 1, lss_endchar) cs = Stmt( cs_startline - 1, cs_startchar - 1, cs_endline - 1, cs_endchar) return( [s, ess, lss, filename, cs, cs_name, cs_filename]) def convert_row_to_stmt( row): [s_startline, s_startchar, s_endline, s_endchar, filename] = row s = Stmt( s_startline - 1, s_startchar - 1, s_endline - 1, s_endchar) return( [s, filename]) def keep_first_stmt( row1, s1, s1_file): if row1.file != s1_file: # if they're not in the same file they can't be overlapping return True s2 = row1.to_move s1_before = (s1.start_line < s2.start_line or (s1.start_line == s2.start_line and s1.start_char < s2.start_char)) s1_after_no_overlap = (s1.start_line > s2.start_line or (s1.start_line == s2.start_line and s1.start_char > s2.start_char)) s1_after_no_overlap = s1_after_no_overlap and (s1.end_line > s2.end_line or (s1.end_line == s2.end_line and s1.end_char > s2.end_char)) return( s1_before or s1_after_no_overlap or s1 == s2) # we'll have removed duplicates at this point so # return array of strings representing the lines of the statement def get_stmt(stmt, file_contents): ind = stmt.start_line if ind == stmt.end_line and (len(file_contents[ind]) < stmt.start_char or stmt.end_char == -1): return [] # special case for the statement only being one character -- seems to happen with "{" after generic classes if ind == stmt.end_line and stmt.start_char == stmt.end_char and not (ind == 0 and stmt.start_char == 0): # fake root node return( [ file_contents[ ind][ stmt.start_char : stmt.end_char + 1 ]]) # special case if the stmt is only on one line if ind == stmt.end_line: adds = 1 if len(file_contents[ind]) > stmt.end_char else 0 end_char = ";" if (adds == 1 and file_contents[ ind][ stmt.end_char] == ";") else "" end_char = "," if (adds == 1 and file_contents[ ind][ stmt.end_char] == ",") else end_char return( [ file_contents[ ind][ stmt.start_char : stmt.end_char ] + end_char]) stmt_cont = [] if not len(file_contents[ind]) < stmt.start_char: stmt_cont = [ file_contents[ ind][ stmt.start_char :]] ind = ind + 1 while ind < stmt.end_line: stmt_cont += [ file_contents[ ind]] ind = ind + 1 stmt_cont += [ file_contents[ ind][ 0 : stmt.end_char + 1]] return( stmt_cont) # print an array (should be strings), with each array entry on a new line # here used to print out the contents of a file, post split on newline def print_array_newline_sep( to_print): print( ft.reduce( lambda a, b: a + "\n" + b, to_print, "")) # save a copy of a specified file (name is oldname_old) def save_old_copy( filename, file_contents): print( "Modifying -- " + filename + " -- but not saving an old copy") # file = open( filename + "_old", 'w') # file.write( file_contents) # file.close() def reprocess_file_name( all_stmts): org_root = "/home/ellen/Documents/odasa/projects/kactus/revision-2020-January-06--15-50-46/src" new_root = "/home/ellen/Documents/ASJProj/TESTING_reordering/kactus" all_stmts['file'] = all_stmts.apply( change_string_root, args=(org_root, new_root), axis=1) def just_add_timing( dat, full_stmts, print_to_file = False, num_to_swap = -1, time_these_calls = None): if time_these_calls is not None: add_calls_timing( time_these_calls[ ~ time_these_calls.call_file.isin( dat.file)], full_stmts, print_to_file, -1) df = dat if num_to_swap != -1: df = pd.DataFrame.head( dat, n = num_to_swap) files = df.file.unique() for f in files: file = open(f, 'r') file_contents = file.read() file.close() if print_to_file: # save a copy of the file save_old_copy(f, file_contents) file_contents = file_contents.split("\n") swaps = df[ df.file == f][['to_move', 'swap_before', 'swap_after']] # they'll already be sorted all_stmts = full_stmts[full_stmts.file == f] all_stmts.sort_values(['file','stmt'], inplace=True) # create the parse tree for this whole file (rnode, rmap) = convert__file_spec_stmt_list_to_tree( all_stmts.stmt.to_list(), file_contents) rnode.set_text( file_contents) add_swaps_to_all_stmt( all_stmts, swaps) perf_hooks_added = [False] time_one_file( swaps, rnode, rmap, f, do_time, perf_hooks_added) if time_these_calls is not None: calls = time_these_calls[ time_these_calls.call_file == f][['call_stmt', 'call_name']] calls['call_stmt'] = calls.apply( lambda row: all_stmts[all_stmts.stmt == row.call_stmt].stmt.to_list()[0], axis=1) time_one_file( calls, rnode, rmap, f, do_time_call, perf_hooks_added) if print_to_file: file = open( f, 'w') file.write(ft.reduce( lambda a, b: join_stmts(a, b), rnode.get_text(), "").lstrip()) file.close() else: print("PROCESSING----------------------------------------------------") print(f) print("FILE CONTENTS BELOW-------------------------------------------") print_array_newline_sep(rnode.get_text()) def break_stmt( root_node, root_map, stmt_to_break, breaking_text, filename): node_to_time = root_map[stmt_to_break] # all we care about here is the await, we;re just updating the text # unlike where we were timing the awaits, now we're actually timing the whole statement and have no # need to split it. all we do is put timing code around the statement throws_text = "console.warn(\"" + breaking_text + "\");\n " placeholder_node = ParseTreeNode([], None) placeholder_node.parent = node_to_time node_to_time.child_list.insert( 0, placeholder_node) node_to_time.text.insert(0, [throws_text]) return( 1) def break_one_file( row, rnode, rmap, filename): to_break = row.to_move breaking_text = "TEMP_VAR_AUTOGEN_CALLING_" + str(row.name) + "__RANDOM" if break_stmt( rnode, rmap, to_break, breaking_text, filename) == 0: return(0) return(1) def break_everything( dat, full_stmts, print_to_file = False, num_to_swap = -1): df = dat if num_to_swap != -1: df = pd.DataFrame.head( dat, n = num_to_swap) files = df.file.unique() for f in files: file = open(f, 'r') file_contents = file.read() file.close() if print_to_file: # save a copy of the file save_old_copy(f, file_contents) file_contents = file_contents.split("\n") swaps = df[ df.file == f][['to_move', 'swap_before', 'swap_after']] # they'll already be sorted all_stmts = full_stmts[full_stmts.file == f] all_stmts.sort_values(['file','stmt'], inplace=True) # create the parse tree for this whole file (rnode, rmap) = convert__file_spec_stmt_list_to_tree( all_stmts.stmt.to_list(), file_contents) rnode.set_text( file_contents) add_swaps_to_all_stmt( all_stmts, swaps) swaps.apply( break_one_file, args=(rnode, rmap, f), axis=1) if print_to_file: file = open( f, 'w') file.write(ft.reduce( lambda a, b: a + "\n" + b, rnode.get_text(), "").lstrip()) file.close() else: print("PROCESSING----------------------------------------------------") print(f) print("FILE CONTENTS BELOW-------------------------------------------") print_array_newline_sep(rnode.get_text()) def add_calls_timing( dat, full_stmts, print_to_file = False, num_to_swap = -1): df = dat if num_to_swap != -1: df = pd.DataFrame.head( dat, n = num_to_swap) files = df.call_file.unique() for f in files: file = open(f, 'r') file_contents = file.read() file.close() if print_to_file: # save a copy of the file save_old_copy(f, file_contents) file_contents = file_contents.split("\n") calls = df[ df.call_file == f][['call_stmt', 'call_name']] # they'll already be sorted all_stmts = full_stmts[full_stmts.file == f] all_stmts.sort_values(['file','stmt'], inplace=True) # create the parse tree for this whole file (rnode, rmap) = convert__file_spec_stmt_list_to_tree( all_stmts.stmt.to_list(), file_contents) rnode.set_text( file_contents) calls['call_stmt'] = calls.apply( lambda row: all_stmts[all_stmts.stmt == row.call_stmt].stmt.to_list()[0], axis=1) time_one_file( calls, rnode, rmap, f, do_time_call, [False]) # always add perf hooks when just timing a file if print_to_file: file = open( f, 'w') file.write(ft.reduce( lambda a, b: a + "\n" + b, rnode.get_text(), "").lstrip()) file.close() else: print("PROCESSING----------------------------------------------------") print(f) print("FILE CONTENTS BELOW-------------------------------------------") print_array_newline_sep(rnode.get_text()) def do_swapping( dat, full_stmts, print_to_file = False, num_to_swap = -1, add_timing = False, pre_swap = True, post_swap = False, time_these_calls = None): # first, do all the timings in files which we don't also do swaps in if time_these_calls is not None: add_calls_timing( time_these_calls[ ~ time_these_calls.call_file.isin( dat.file)], full_stmts, print_to_file, -1) df = dat if num_to_swap != -1: df = pd.DataFrame.head( dat, n = num_to_swap) files = df.file.unique() for f in files: file = open(f, 'r') file_contents = file.read() file.close() if print_to_file: # save a copy of the file save_old_copy(f, file_contents) file_contents = file_contents.split("\n") swaps = df[ df.file == f][['to_move', 'swap_before', 'swap_after']] # they'll already be sorted # stmt_file_name = f[f.rindex("/") + 1 : -3] + "_stmts.txt" # the last "/" until the end is the root file name, then the -3 gets rid of the .ts or .js # all_stmts_data = pd.read_csv(stmt_file_name, sep = ',', header=None) # all_stmts = all_stmts_data.apply(convert_row_to_stmt, axis=1, result_type='expand') # all_stmts.columns = ['stmt', 'file'] # all_stmts.sort_values(['file', 'stmt'], inplace=True) # reprocess_file_name( all_stmts) all_stmts = full_stmts[full_stmts.file == f] all_stmts.sort_values(['file','stmt'], inplace=True) # create the parse tree for this whole file (rnode, rmap) = convert__file_spec_stmt_list_to_tree( all_stmts.stmt.to_list(), file_contents) rnode.set_text( file_contents) add_swaps_to_all_stmt( all_stmts, swaps) perf_hooks_added = [False] # tracking whether or not we need to add perf_hooks to the file (once it's added once, don't add it again) -- it's an array for pass by ref if pre_swap: file_sum = pd.DataFrame() if not post_swap: # only do the self-swaps if we're not post-swapping file_sum = deal_with_self_preswaps( swaps[swaps.to_move == swaps.swap_before], rnode, rmap, (add_timing and not post_swap), f) preswap_one_file( swaps[swaps.to_move != swaps.swap_before], rnode, rmap, (add_timing and not post_swap), f, (0 if file_sum.empty else file_sum.sum()), perf_hooks_added) if pre_swap and post_swap: swaps.swap_after = preprocess_df_both_reorders( swaps) if post_swap: # implies not preswap deal_with_self_postswaps( swaps[swaps.to_move == swaps.swap_after], rnode, rmap, add_timing, f, perf_hooks_added) lateswap_one_file( swaps[swaps.to_move != swaps.swap_after], rnode, rmap, add_timing, f, perf_hooks_added) if time_these_calls is not None: calls = time_these_calls[ time_these_calls.call_file == f][['call_stmt', 'call_name']] calls['call_stmt'] = calls.apply( lambda row: all_stmts[all_stmts.stmt == row.call_stmt].stmt.to_list()[0], axis=1) time_one_file( calls, rnode, rmap, f, do_time_call, perf_hooks_added) if print_to_file: file = open( f, 'w') file.write(ft.reduce( lambda a, b: join_stmts(a, b), rnode.get_text(), "").lstrip()) file.close() else: print("PROCESSING----------------------------------------------------") print(f) print("FILE CONTENTS BELOW-------------------------------------------") print_array_newline_sep(rnode.get_text()) def do_self_swap( row, rnode, rmap, add_timing = False, filename = ""): to_move = row.to_move temp_var_name = "TEMP_VAR_AUTOGEN" + str(row.name) + "__RANDOM" # these should be the same stmts, since we should only have one DF # probably make a column in our DF that is "swap_before", and then run through the ones with values # move_stmt( rnode, rmap, to_move, move_before) if not add_timing: if split_single_await( rnode, rmap, to_move, temp_var_name, add_timing, filename) == 0: return(0) else: if time_await( rnode, rmap, to_move, temp_var_name, filename) == 0: return(0) return(1) def deal_with_self_preswaps( self_swaps, rnode, rmap, add_timing = False, filename = ""): # don't need to do any recursive checking, since this is all going to be self-swaps # all we need to do is split the await, basically the same work as if we were just adding timing to_ret = self_swaps.apply( do_self_swap, args=(rnode, rmap, add_timing, filename), axis=1) if to_ret is not None: return( to_ret) return( pd.DataFrame()) # need to split an await statement even if it cant be swapped any earlier, since when we move it # later the promise creation needs to stay where it was originally def split_single_await( root_node, root_map, stmt_to_split, temp_var_name, add_timing = False, filename = ""): node_to_split = root_map[stmt_to_split] # all we care about here is the await, we;re just updating the text (text_ind, ind_to_split_at) = get_index_with_await(node_to_split.text) (front_paren_stack, end_paren_stack) = get_compensating_parens( node_to_split.text, text_ind, ind_to_split_at) if ind_to_split_at == -1 or front_paren_stack == -1: # then this is a problem, and we just won't do the reordering print("There's an issue and we can't automatically split the following statement: ") node_to_split.print() print("DONE REPORTING PROBLEMS") return( 0) # split both the text array and the child_list start_text = node_to_split.text[text_ind][0 : ind_to_split_at] end_text = node_to_split.text[text_ind][ ind_to_split_at + 1 : ] # get the text we're going to split: split_text = node_to_split.text[text_ind][ind_to_split_at] # adapted from the time_await code, it's basically the same thing but we're not adding timing # we're just splitting the await new_await_var = "var " + temp_var_name + " = await " + front_paren_stack + split_text[ split_text.index('await') + len('await') : ] string_before_await = split_text[0: split_text.index('await')] + " " + temp_var_name # if build_paren_stack(string_before_await) != "": # the addition of the varname doesnt change this funcionality # # don't even split the text any more # node_to_split.text = [[timing_pre_text]+ node_to_split.text[text_ind] + ["\n" + timing_post_text]] # else: node_to_split.text = [start_text + [new_await_var]+ end_text + [end_paren_stack + string_before_await]] placeholder_node = ParseTreeNode([], None) placeholder_node.parent = node_to_split node_to_split.child_list.insert( ind_to_split_at, placeholder_node) return( 1) def deal_with_self_postswaps( self_swaps, rnode, rmap, add_timing = False, filename = "", perf_hooks_added = [False]): # don't need to do any recursive checking, since this is all going to be self-swaps # all we need to do is split the await, basically the same work as if we were just adding timing if add_timing: results = self_swaps.apply( do_time, args=(rnode, rmap, filename), axis=1) if not results.empty and results.sum() > 0 and not perf_hooks_added[0]: req_perf_node = ParseTreeNode( [], None) req_perf_node.parent = rnode req_perf_node.text = [["const perf_hooks = require(\'perf_hooks\'); "]] ind_to_insert = 0 if len(rnode.text) > 0 and len(rnode.text[0]) > 0 and len(rnode.text[0][0]) > 1 and rnode.text[0][0][0:2] == "#!": # cant move above #! command ind_to_insert = 1 rnode.child_list.insert(ind_to_insert, req_perf_node) rnode.text.insert(ind_to_insert, [""]) # update to say we've adding perf_hooks to this file, and therefore don't need to do it again perf_hooks_added[0] = True # replace the root of a string with a new specified root # throw an exception if the string does not have the root old_root def change_string_root( row, org_root, new_root, is_call = False): org_string = "" if not is_call: org_string = row.file else: org_string = row.call_file if org_string.index(org_root) != 0: raise ValueError("The original path " + org_string + " does not have the original root: " + org_root) return( new_root + org_string[ len(org_root): ]) def add_swaps_to_all_stmt( all_stmts, swap_df): # since the rmap is indexed by statement object, and we've created the swap_associations and all_stmts dataframes # separately, we can't index the rmap with the swap_associations # so, we need to add a column to all_stmts, with the corresponding association but with the right objects try: swap_df['to_move'] = swap_df.apply( lambda row: all_stmts[all_stmts.stmt == row.to_move].stmt.to_list()[0], axis=1) # can index at 0 since there will only be one swap_df['swap_before'] = swap_df.apply( lambda row: all_stmts[all_stmts.stmt == row.swap_before].stmt.to_list()[0], axis=1) swap_df['swap_after'] = swap_df.apply( lambda row: all_stmts[all_stmts.stmt == row.swap_after].stmt.to_list()[0], axis=1) except IndexError: print(swap_df) def do_early_swap( row, rnode, rmap, add_timing = False, filename = ""): to_move = row.to_move move_before = row.swap_before temp_var_name = "TEMP_VAR_AUTOGEN" + str(row.name) + "__RANDOM" # these should be the same stmts, since we should only have one DF # probably make a column in our DF that is "swap_before", and then run through the ones with values # move_stmt( rnode, rmap, to_move, move_before) print(row) if move_and_split_await( rnode, rmap, to_move, move_before, temp_var_name, add_timing, filename) == 0: return(0) return(1) def do_late_swap( row, rnode, rmap, add_timing = False, filename = ""): to_move = row.to_move move_after = row.swap_after temp_var_name = "TEMP_VAR_AUTOGEN" + str(row.name) + "__RANDOM" # these should be the same stmts, since we should only have one DF # probably make a column in our DF that is "swap_before", and then run through the ones with values # move_stmt( rnode, rmap, to_move, move_before) if move_await_later( rnode, rmap, to_move, move_after, temp_var_name, add_timing, filename) == 0: return(0) return(1) def do_time( row, rnode, rmap, filename): to_time = row.to_move temp_var_name = "TEMP_VAR_AUTOGEN" + str(row.name) + "__RANDOM" if time_await( rnode, rmap, to_time, temp_var_name, filename) == 0: return(0) return(1) def do_time_call( row, rnode, rmap, filename): to_time = row.call_stmt temp_var_name = "TEMP_VAR_AUTOGEN_CALLING_" + str(row.name) + "_" + row.call_name + "__RANDOM" if time_call( rnode, rmap, to_time, temp_var_name, filename) == 0: return(0) return(1) # function to preprocess a dataframe of swaps for ONE FILE # if we're doing both forward and backward swapping, there's no guarantee that # a statement can swap down to something below where another statement is swapping up # and, since there is no dependency check between these statements, we need to conservatively # assume that there is a dependency # solution: set the swap_after to be the min of swap_after and the swap_befores of any stmts # which themselves are > current statement and their swap_befores are > current_stmt def preprocess_df_both_reorders( swap_df): # for each statement return(swap_df.apply( get_late_swap_for_row, args=( swap_df, ), axis=1)) def get_late_swap_for_row( row, df): to_consider = df[(df.to_move > row.swap_after) & (df.swap_before > row.to_move)] if to_consider.empty: return( row.swap_after) earliest_later_up = to_consider.swap_before.min() return( min( row.swap_after, earliest_later_up)) def swap_condition( results, tsum): if results.empty and tsum > 0: return True elif results.empty: return False elif results.sum() > 0: return True return False def preswap_one_file( swap_df, rnode, rmap, add_timing = False, filename = "", tsum = 0, perf_hooks_added=[False], counter=0): recursive_swaps = swap_df[swap_df.swap_before.isin(swap_df.to_move)] if not recursive_swaps.empty: preswap_one_file( recursive_swaps, rnode, rmap, add_timing, filename, tsum, perf_hooks_added, counter + 1) swap_df = pd.concat([recursive_swaps, swap_df]).drop_duplicates(keep=False) results = swap_df.apply( do_early_swap, args=(rnode, rmap, add_timing, filename), axis=1) # dont need to time anymore since timing will be adding during post-swap if add_timing and counter == 0 and swap_condition(results, tsum) and not perf_hooks_added[0]: req_perf_node = ParseTreeNode( [], None) req_perf_node.parent = rnode req_perf_node.text = [["const perf_hooks = require(\'perf_hooks\'); "]] ind_to_insert = 0 if len(rnode.text) > 0 and len(rnode.text[0]) > 0 and len(rnode.text[0][0]) > 1 and rnode.text[0][0][0:2] == "#!": ind_to_insert = 1 rnode.child_list.insert(ind_to_insert, req_perf_node) rnode.text.insert(ind_to_insert, [""]) # update to say we've adding perf_hooks to this file, and therefore don't need to do it again perf_hooks_added[0] = True # don't add it to the rmap since it doesnt really have a corresponding statement def lateswap_one_file( swap_df, rnode, rmap, add_timing = False, filename = "", perf_hooks_added = [False], counter=0): recursive_swaps = swap_df[swap_df.swap_after.isin(swap_df.to_move)] if not recursive_swaps.empty: lateswap_one_file( recursive_swaps, rnode, rmap, add_timing, filename, perf_hooks_added, counter + 1) swap_df =
pd.concat([recursive_swaps, swap_df])
pandas.concat
""" Last.FM Datasets and Helpers. References: - [Last.FM Dataset 1K](http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html) - [Lenskit datasets](https://github.com/lenskit/lkpy/blob/master/lenskit/datasets.py) """ import logging import os import pandas as pd from skipgrammar.datasets.common import (UserItemIterableDataset, cached, get_file) logger = logging.getLogger(__name__) VARIANTS = { "lastfm-50": { "origin": "https://github.com/eifuentes/lastfm-dataset-1K/releases/download/v1.0/lastfm-dataset-50.snappy.parquet", "filename": "lastfm-dataset-50.snappy.parquet", }, "lastfm-1k": { "origin": "https://github.com/eifuentes/lastfm-dataset-1K/releases/download/v1.0/lastfm-dataset-1k.snappy.parquet", "filename": "lastfm-dataset-1k.snappy.parquet", }, } USER_PROFILE = { "origin": "https://github.com/eifuentes/lastfm-dataset-1K/releases/download/v1.0/userid-profile.tsv.zip", "filename": "userid-profile.tsv.zip", "extract": {"filename": "userid-profile.tsv"}, } class LastFM: """ Last.FM datasets access class, including lastmf-50 and lastfm-1k. Parameters: listens_filepath (str): Filepath to the parquet file containing the user listening history dataset. user_profile_filepath (str): Filepath to the tab seperated (.tsv) file containing the user profile dataset. """ def __init__(self, listens_filepath, user_profile_filepath): self.listens_filepath = listens_filepath self.user_profile_filepath = user_profile_filepath @cached def listens(self): """ The listens table. >>> lfdset = LastFM(listens_filepath='data/lastfm-dataset-50.snappy.parquet', ...) """ listens =
pd.read_parquet(self.listens_filepath)
pandas.read_parquet
import numpy as np import pandas as pd import pickle import time import random import os from sklearn import linear_model, model_selection, ensemble from sklearn.svm import SVC from sklearn.ensemble import GradientBoostingClassifier from sklearn.base import clone from sklearn import metrics from sklearn.model_selection import cross_validate, train_test_split, StratifiedKFold import sklearn.metrics as m from joblib import Parallel, delayed from sklearn.base import clone from sklearn.utils import shuffle, resample type_='marker' basename = type_+'_features_expired_prediction_' dir_ = '../../data/' t0_all=time.time() seed = 42 np.random.seed(seed) max_depth = 1 C=1 tol=1e-3 min_samples_leaf=2 min_samples_split=2 n_estimators=100 models = { "Logistic Regression" : linear_model.LogisticRegression( C=C, penalty='l1', solver="liblinear", tol=tol, random_state=seed) } classification_metrics = ['roc_auc'] cv_split = 10 test_size = 0.15 n_jobs = 25 nboot=200 X_all_proteins = pd.read_csv(dir_+'integrated_X_raw_all_proteins.csv',index_col=0) proteins_no_immunoglobulins = pickle.load(open(dir_+'proteins_no_immunoglobulins.pkl','rb')) X_all_proteins = X_all_proteins.loc[:,proteins_no_immunoglobulins] joined = pd.read_csv(dir_+'mortality_X_y.csv',index_col=0) X_all_clinical = pd.read_csv(dir_+'integrated_X_clinical_and_cohort_covariates.csv',index_col=0) Y_pgd =
pd.read_csv(dir_+'integrated_pgd_y.csv',index_col=0,header=None)
pandas.read_csv
""" All rights reserved to cnvrg.io http://www.cnvrg.io SKTrainer.py ============================================================================== """ import os import pickle import numpy as np import pandas as pd from cnvrg import Experiment from cnvrg.charts import Bar, MatrixHeatmap, Scatterplot from sklearn.model_selection import cross_validate from sklearn.metrics import accuracy_score, mean_squared_error, r2_score, mean_absolute_error class SKTrainerRegression: DIGITS_TO_ROUND = 3 REGRESSION_TYPE = ['linear', 'logistic'] def __init__(self, model, train_set, test_set, output_model_name, testing_mode, folds=None, regression_type=0): self.__model = model self.__x_train, self.__y_train = train_set self.__train_set_size = len(self.__y_train) self.__x_test, self.__y_test = test_set self.__test_set_size = len(self.__y_test) self.__testing_mode = testing_mode self.__cross_val_folds = folds self.__is_cross_val = (folds is not None) self.__features = list(self.__x_train.columns) self.__labels = [str(l) for l in list(set(self.__y_train).union(set(self.__y_test)))] self.__metrics = {'model': output_model_name} self.__y_pred = None self.__experiment = Experiment() self.__regression_type = SKTrainerRegression.REGRESSION_TYPE[regression_type] self.__coef, self.__intercept = None, None def run(self): self.__model.fit(self.__x_train, self.__y_train) try: self.__coef = self.__model.coef_ except AttributeError: pass try: self.__intercept = self.__model.intercept_ except AttributeError: pass if self.__is_cross_val: self.__metrics['folds'] = self.__cross_val_folds if self.__is_cross_val is True: self.__train_with_cross_validation() else: self.__train_without_cross_validation() self.__save_model() def __plot_all(self, y_test_pred): self.__plot_accuracies_and_errors() # self.__plot_regression_function() self.__plot_feature_importance() self.__plot_correlation_matrix() # self.__plot_feature_vs_feature() def __train_with_cross_validation(self): """ This method enables sk-learn algorithms to perform KFold-cross-validation. The method also initiates the cnvrg experiment with all its metrics. """ scores = cross_validate(estimator=self.__model, X=self.__x_train, y=self.__y_train, cv=self.__cross_val_folds, return_train_score=True, scoring=['neg_mean_squared_error', 'neg_mean_absolute_error', 'r2', 'accuracy'], return_estimator=True) train_err_cv_mse = (-1) * scores['train_neg_mean_squared_error'] train_err_cv_mae = (-1) * scores['train_neg_mean_absolute_error'] train_err_cv_r2 = scores['train_r2'] val_acc_cv = scores['test_accuracy'] val_err_cv_mse = (-1) * scores['test_neg_mean_squared_error'] val_err_cv_mae = (-1) * scores['test_neg_mean_absolute_error'] val_err_cv_r2 = scores['test_r2'] self.__model = scores['estimator'][-1] self.__y_pred = self.__model.predict(self.__x_test) test_acc = accuracy_score(self.__y_test, self.__y_pred) test_loss = mean_squared_error(self.__y_test, self.__y_pred) self.__metrics.update({ 'train_loss_mae': train_err_cv_mae, 'train_loss_mse': train_err_cv_mse, 'train_loss_r2': train_err_cv_r2, 'validation_acc': val_acc_cv, 'val_loss_mae': val_err_cv_mae, 'val_loss_mse': val_err_cv_mse, 'val_loss_r2': val_err_cv_r2, 'test_acc': test_acc, 'test_loss_mse': test_loss}) self.__plot_all(self.__y_pred) def __train_without_cross_validation(self): """ The method also initiates the cnvrg experiment with all its metrics. """ y_hat = self.__model.predict(self.__x_train) # y_hat is a.k.a y_pred train_loss_MSE = mean_squared_error(self.__y_train, y_hat) train_loss_MAE = mean_absolute_error(self.__y_train, y_hat) train_loss_R2 = r2_score(self.__y_train, y_hat) self.__y_pred = self.__model.predict(self.__x_test) test_loss_MSE = mean_squared_error(self.__y_test, self.__y_pred) test_loss_MAE = mean_absolute_error(self.__y_test, self.__y_pred) test_loss_R2 = r2_score(self.__y_test, self.__y_pred) self.__metrics.update({ 'train_loss_mae': train_loss_MAE, 'train_loss_mse': train_loss_MSE, 'train_loss_r2': train_loss_R2, 'test_loss_mse': test_loss_MSE, 'test_loss_mae': test_loss_MAE, 'test_loss_r2': test_loss_R2}) self.__plot_all(self.__y_pred) def __plot_regression_function(self): if self.__regression_type == 'linear': a, b = self.__coef[0], self.__intercept x = np.linspace(-100, 100, 200) y = a * x + b elif self.__regression_type == 'logistic': x = np.linspace(-100, 100, 200) y = 1 / (1 + np.exp(-x)) self.__experiment.log_metric(key="Regression Function", Xs=x.tolist(), Ys=y.tolist(), grouping=['regression line'] * len(x)) def __plot_feature_importance(self): try: importance = getattr(self.__model, "feature_importances_") if self.__testing_mode is False: self.__experiment.log_chart('Feature Importance', x_axis='Features', y_axis='Importance', data=Bar(x=self.__features, y=importance)) else: print(importance) except AttributeError: pass def __plot_accuracies_and_errors(self): if self.__testing_mode is True: print("Model: {model}\n" "train_acc={train_acc}\n" "train_loss={train_loss}\n" "test_acc={test_acc}\n" "test_loss={test_loss}".format( model=self.__metrics['model'], train_acc=self.__metrics['train_acc'], train_loss=self.__metrics['train_loss'], test_acc=self.__metrics['test_acc'], test_loss=self.__metrics['test_loss'])) if self.__is_cross_val is True: print("Folds: {folds}\n".format(folds=self.__metrics['folds'])) else: # testing mode is off. for k, v in self.__metrics.items(): self.__plot_accuracies_and_errors_helper() if isinstance(v, list): self.__experiment.log_metric(k, v) else: self.__experiment.log_param(k, v) def __plot_accuracies_and_errors_helper(self): for k, v in self.__metrics.items(): if isinstance(v, float): self.__metrics[k] = round(self.__metrics[k], SKTrainerRegression.DIGITS_TO_ROUND) def __save_model(self): output_model_name = self.__metrics['model'] output_file_name = os.environ.get("CNVRG_WORKDIR") + "/" + output_model_name if os.environ.get("CNVRG_WORKDIR") \ is not None else output_model_name pickle.dump(self.__model, open(output_file_name, 'wb')) """training & testing methods""" def __plot_correlation_matrix(self): data = pd.concat([pd.concat([self.__x_train, self.__x_test], axis=0), pd.concat([self.__y_train, self.__y_test], axis=0)], axis=1) correlation = data.corr() self.__experiment.log_chart("correlation", [MatrixHeatmap(np.round(correlation.values, 2))], x_ticks=correlation.index.tolist(), y_ticks=correlation.index.tolist()) def __plot_feature_vs_feature(self): data = pd.concat([pd.concat([self.__x_train, self.__x_test], axis=0),
pd.concat([self.__y_train, self.__y_test], axis=0)
pandas.concat
# python gt-gen-vac-fixed-num-cbgs-crossgroup.py args.quick_test # python gt-gen-vac-fixed-num-cbgs-crossgroup.py False import setproctitle setproctitle.setproctitle("gnn-simu-vac@chenlin") import os import datetime import pandas as pd import numpy as np import pickle import random import argparse import constants import functions import disease_model #disease_model_only_modify_attack_rates import time import pdb # Training settings parser = argparse.ArgumentParser() parser.add_argument('--epic_data_root', default='/data/chenlin/COVID-19/Data', help='TBA') parser.add_argument('--gt_result_root', default=os.path.abspath(os.path.join(os.pardir,'data/safegraph')), help='TBA') parser.add_argument('--vaccination_ratio', type=float, default=0.02, help='Vaccination ratio (w.r.t. total population).') parser.add_argument('--vaccination_time', type=int, default=0, help='Vaccination time.') parser.add_argument('--protection_rate', type=float, default=1, help='Protection rate.') parser.add_argument('--min_datetime', default=datetime.datetime(2020, 3, 1, 0), help='Start date & time.') parser.add_argument('--max_datetime', default=datetime.datetime(2020, 5, 2, 23), help='End date & time.') parser.add_argument('--num_days', type=int, default=63, help='Num of simulation days.') parser.add_argument('--num_groups', type=int, default=3, help='Num of groups in each demographic dimension.') parser.add_argument('--msa_name', default='SanFrancisco', help='MSA name.') parser.add_argument('--random_seed', type=int, default=42, help='Random seed.') parser.add_argument('--NN', type=int, default=70, help='Num of CBGs to receive vaccines.') parser.add_argument('--num_experiments', type=int, default=100, help='Num of randombags (i.e., random strategies).') parser.add_argument('--quick_test', default=False, action='store_true', help='Quick Test: prototyping.') parser.add_argument('--proportional', default=True, help='If true, divide vaccines proportional to cbg populations.') parser.add_argument('--grouping', default=False, action='store_true', help='If true, only generate samples containing CBGs from the same demographic group.') args = parser.parse_args() # Constants #gt_result_root = os.path.abspath(os.path.join(os.pardir,'data/safegraph')); print('gt_result_root: ', gt_result_root) ############################################################################### # Main variable settings MSA_NAME_FULL = constants.MSA_NAME_FULL_DICT[args.msa_name] #MSA_NAME_FULL = 'San_Francisco_Oakland_Hayward_CA' # Random Seed print('Random_seed:',args.random_seed) # Divide the available vaccines to how many CBGs print('Num of CBGs to receive vaccines: ', args.NN) # Number of randombag experiments print('Number of randombag experiments: ', args.num_experiments) # Quick Test: prototyping print('Quick testing?', args.quick_test) if(args.quick_test == 'True'): NUM_SEEDS = 2 else: NUM_SEEDS = 40 #30 #60 print('NUM_SEEDS: ', NUM_SEEDS) STARTING_SEED = range(NUM_SEEDS) if(args.proportional==True): extra_string = 'proportional' else: extra_string = 'identical' # Store filename if(args.grouping): filename = os.path.join(args.gt_result_root, args.msa_name, 'vac_results_%s_%s_%s_randomseed%s_%sseeds_%ssamples_%s.csv' %(args.msa_name,args.vaccination_ratio,args.NN,args.random_seed,NUM_SEEDS, args.num_experiments, extra_string)) else: filename = os.path.join(args.gt_result_root, args.msa_name, 'crossgroup_vac_results_%s_%s_%s_randomseed%s_%sseeds_%ssamples_%s.csv' %(args.msa_name,args.vaccination_ratio,args.NN,args.random_seed,NUM_SEEDS, args.num_experiments, extra_string)) print('filename: ', filename) if(os.path.exists(filename)): print('This file already exists. Better have a check?') pdb.set_trace() # Compared filename (existing data) #20220130 #compared_filename = os.path.join(args.gt_result_root, args.msa_name, # 'vac_results_SanFrancisco_0.02_70_randomseed42_40seeds_1000samples_proportional.csv') #print('Compared_filename: ', filename) # Compute mean, safegap of existing samples. #exist_data = pd.read_csv(compared_filename) ############################################################################### # Functions def run_simulation(starting_seed, num_seeds, vaccination_vector, vaccine_acceptance,protection_rate=1): m = disease_model.Model(starting_seed=starting_seed, num_seeds=num_seeds, debug=False,clip_poisson_approximation=True,ipf_final_match='poi',ipf_num_iter=100) m.init_exogenous_variables(poi_areas=poi_areas, poi_dwell_time_correction_factors=poi_dwell_time_correction_factors, cbg_sizes=cbg_sizes, poi_cbg_visits_list=poi_cbg_visits_list, all_hours=all_hours, p_sick_at_t0=constants.parameters_dict[args.msa_name][0], #vaccination_time=24*31, # when to apply vaccination (which hour) vaccination_time=24*args.vaccination_time, # when to apply vaccination (which hour) vaccination_vector = vaccination_vector, vaccine_acceptance=vaccine_acceptance, protection_rate = protection_rate, home_beta=constants.parameters_dict[args.msa_name][1], cbg_attack_rates_original = cbg_attack_rates_scaled, cbg_death_rates_original = cbg_death_rates_scaled, poi_psi=constants.parameters_dict[args.msa_name][2], just_compute_r0=False, latency_period=96, # 4 days infectious_period=84, # 3.5 days confirmation_rate=.1, confirmation_lag=168, # 7 days death_lag=432 ) m.init_endogenous_variables() T1,L_1,I_1,R_1,C2,D2,total_affected, history_C2, history_D2, total_affected_each_cbg = m.simulate_disease_spread(no_print=True) del T1 del L_1 del I_1 del C2 del D2 #return total_affected, history_C2, history_D2, total_affected_each_cbg return history_C2, history_D2 # Hybrid Grouping def assign_hybrid_group(data): return (data['Elder_Ratio_Group']*9 + data['Mean_Household_Income_Group']*3 + data['Essential_Worker_Ratio_Group']) #return (data['Age_Quantile_FOR_RANDOMBAG']*81 + data['Income_Quantile_FOR_RANDOMBAG']*27 + data['EW_Quantile_FOR_RANDOMBAG']*9 + data['Vulner_Quantile_FOR_RANDOMBAG']*3 + data['Damage_Quantile_FOR_RANDOMBAG']) ############################################################################### # Load Data # Load POI-CBG visiting matrices f = open(os.path.join(args.epic_data_root, args.msa_name, '%s_2020-03-01_to_2020-05-02.pkl'%MSA_NAME_FULL), 'rb') poi_cbg_visits_list = pickle.load(f) f.close() # Load precomputed parameters to adjust(clip) POI dwell times d = pd.read_csv(os.path.join(args.epic_data_root,args.msa_name, 'parameters_%s.csv' % args.msa_name)) # No clipping new_d = d all_hours = functions.list_hours_in_range(args.min_datetime, args.max_datetime) poi_areas = new_d['feet'].values#面积 poi_dwell_times = new_d['median'].values#平均逗留时间 poi_dwell_time_correction_factors = (poi_dwell_times / (poi_dwell_times+60)) ** 2 del new_d del d # Load ACS Data for MSA-county matching acs_data = pd.read_csv(os.path.join(args.epic_data_root,'list1.csv'),header=2) acs_msas = [msa for msa in acs_data['CBSA Title'].unique() if type(msa) == str] msa_match = functions.match_msa_name_to_msas_in_acs_data(MSA_NAME_FULL, acs_msas) msa_data = acs_data[acs_data['CBSA Title'] == msa_match].copy() msa_data['FIPS Code'] = msa_data.apply(lambda x : functions.get_fips_codes_from_state_and_county_fp((x['FIPS State Code']),x['FIPS County Code']), axis=1) good_list = list(msa_data['FIPS Code'].values);#print('CBG included: ', good_list) del acs_data # Load CBG ids for the MSA cbg_ids_msa = pd.read_csv(os.path.join(args.epic_data_root,args.msa_name,'%s_cbg_ids.csv'%MSA_NAME_FULL)) cbg_ids_msa.rename(columns={"cbg_id":"census_block_group"}, inplace=True) num_cbgs = len(cbg_ids_msa) print('Number of CBGs in this metro area:', num_cbgs) # Mapping from cbg_ids to columns in hourly visiting matrices cbgs_to_idxs = dict(zip(cbg_ids_msa['census_block_group'].values, range(num_cbgs))) x = {} for i in cbgs_to_idxs: x[str(i)] = cbgs_to_idxs[i] # Load SafeGraph data to obtain CBG sizes (i.e., populations) filepath = os.path.join(args.epic_data_root,"safegraph_open_census_data/data/cbg_b01.csv") cbg_agesex = pd.read_csv(filepath) # Extract CBGs belonging to the MSA - https://covid-mobility.stanford.edu//datasets/ cbg_age_msa = pd.merge(cbg_ids_msa, cbg_agesex, on='census_block_group', how='left') del cbg_agesex # Add up males and females of the same age, according to the detailed age list (DETAILED_AGE_LIST) # which is defined in constants.py for i in range(3,25+1): # 'B01001e3'~'B01001e25' male_column = 'B01001e'+str(i) female_column = 'B01001e'+str(i+24) cbg_age_msa[constants.DETAILED_AGE_LIST[i-3]] = cbg_age_msa.apply(lambda x : x[male_column]+x[female_column],axis=1) # Rename cbg_age_msa.rename(columns={'B01001e1':'Sum'},inplace=True) # Extract columns of interest columns_of_interest = ['census_block_group','Sum'] + constants.DETAILED_AGE_LIST cbg_age_msa = cbg_age_msa[columns_of_interest].copy() # Deal with NaN values cbg_age_msa.fillna(0,inplace=True) # Deal with CBGs with 0 populations cbg_age_msa['Sum'] = cbg_age_msa['Sum'].apply(lambda x : x if x!=0 else 1) cbg_age_msa['Elder_Absolute'] = cbg_age_msa.apply(lambda x : x['70 To 74 Years']+x['75 To 79 Years']+x['80 To 84 Years']+x['85 Years And Over'],axis=1) cbg_age_msa['Elder_Ratio'] = cbg_age_msa['Elder_Absolute'] / cbg_age_msa['Sum'] # Obtain cbg sizes (populations) cbg_sizes = cbg_age_msa['Sum'].values cbg_sizes = np.array(cbg_sizes,dtype='int32') print('Total population: ',np.sum(cbg_sizes)) # Select counties belonging to the MSA y = [] for i in x: if((len(i)==12) & (int(i[0:5])in good_list)): y.append(x[i]) if((len(i)==11) & (int(i[0:4])in good_list)): y.append(x[i]) idxs_msa_all = list(x.values()) # Load other demographic data # Income filepath = os.path.join(args.epic_data_root,"ACS_5years_Income_Filtered_Summary.csv") cbg_income = pd.read_csv(filepath) # Drop duplicate column 'Unnamed:0' cbg_income.drop(['Unnamed: 0'],axis=1, inplace=True) # Income Data Resource 1: ACS 5-year (2013-2017) Data # Extract pois corresponding to the metro area (Philadelphia), by merging dataframes cbg_income_msa = pd.merge(cbg_ids_msa, cbg_income, on='census_block_group', how='left') del cbg_income # Deal with NaN values cbg_income_msa.fillna(0,inplace=True) # Add information of cbg populations, from cbg_age_Phi(cbg_b01.csv) cbg_income_msa['Sum'] = cbg_age_msa['Sum'].copy() # Rename cbg_income_msa.rename(columns = {'total_household_income':'Total_Household_Income', 'total_households':'Total_Households', 'mean_household_income':'Mean_Household_Income', 'median_household_income':'Median_Household_Income'},inplace=True) # Occupation filepath = os.path.join(args.epic_data_root,"safegraph_open_census_data/data/cbg_c24.csv") cbg_occupation = pd.read_csv(filepath) # Extract pois corresponding to the metro area, by merging dataframes cbg_occupation_msa = pd.merge(cbg_ids_msa, cbg_occupation, on='census_block_group', how='left') del cbg_occupation columns_of_essential_workers = list(constants.ew_rate_dict.keys()) for column in columns_of_essential_workers: cbg_occupation_msa[column] = cbg_occupation_msa[column].apply(lambda x : x*constants.ew_rate_dict[column]) cbg_occupation_msa['Essential_Worker_Absolute'] = cbg_occupation_msa.apply(lambda x : x[columns_of_essential_workers].sum(), axis=1) cbg_occupation_msa['Sum'] = cbg_age_msa['Sum'] cbg_occupation_msa['Essential_Worker_Ratio'] = cbg_occupation_msa['Essential_Worker_Absolute'] / cbg_occupation_msa['Sum'] columns_of_interest = ['census_block_group','Sum','Essential_Worker_Absolute','Essential_Worker_Ratio'] cbg_occupation_msa = cbg_occupation_msa[columns_of_interest].copy() # Deal with NaN values cbg_occupation_msa.fillna(0,inplace=True) ############################################################################## # Load and scale age-aware CBG-specific attack/death rates (original) cbg_death_rates_original = np.loadtxt(os.path.join(args.epic_data_root,args.msa_name, 'cbg_death_rates_original_'+args.msa_name)) cbg_attack_rates_original = np.ones(cbg_death_rates_original.shape) # The scaling factors are set according to a grid search attack_scale = 1 # Fix attack_scale cbg_attack_rates_scaled = cbg_attack_rates_original * attack_scale cbg_death_rates_scaled = cbg_death_rates_original * constants.death_scale_dict[args.msa_name] ############################################################################### # Collect data together data =
pd.DataFrame()
pandas.DataFrame
import os import re import pandas as pd import numpy as np from datetime import datetime, timedelta from urllib.error import URLError from .util import download_file, get_path, timer #todo: using flags in ncdc data to filter #todo: extra filter for bad data (999s etc) STATION_LIST_PATH = get_path(__file__, 'isd-history.txt') DOWNLOAD_DATA_SUBFOLDER_NAME = 'downloaded_data' class Downloader(object): def __init__(self, lat=None, long=None, radius_km=50, date_from=None, date_to=None): self.latitude = lat self.longitude = long self.distance = radius_km self.date_from = datetime(*date_from) if isinstance(date_from, tuple) else date_from self.date_to = datetime(*date_to) if isinstance(date_to, tuple) else date_to self.station_id_list = [] self.station_info = None self.station_data = None @staticmethod def haversine(lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees). Inputs in degrees. The result is in km. """ # todo speedup with pd.map # convert decimal degrees to radians lon1_rad, lat1_rad, lon2_rad, lat2_rad = map(np.radians, [lon1, lat1, lon2, lat2]) # haversine formula dlon = lon2_rad - lon1_rad dlat = lat2_rad - lat1_rad a = np.power(np.sin(dlat / 2), 2) + np.cos(lat1_rad) * np.cos(lat2_rad) * np.power(np.sin(dlon / 2), 2) c = 2 * np.arcsin(np.sqrt(a)) km = 6371 * c return km @staticmethod def rh_from_dew_temperature(t, t_dew, simple=False): if simple: rh = 5 * (t_dew - t) + 100 else: T = np.add(t, 273.15) Td = np.add(t_dew, 273.15) L_Rv = 5423 rh = np.exp(L_Rv * (1 / T - 1 / Td)) * 100 return rh class NCDC_Downloader(Downloader): @staticmethod def update_station_list(): url = 'ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-history.txt' download_file(url=url, save_to=STATION_LIST_PATH) @staticmethod def _load_stations_metadata(): colspecs = [(0, 7), (7, 13), (13, 43), (43, 48), (48, 51), (51, 57), (57, 65), (65, 74), (74, 82), (82, 91), (91, 999)] df = pd.read_fwf(STATION_LIST_PATH, skiprows=range(20), colspecs=colspecs, parse_dates=[9, 10]) # df.index = [self._convert_between_id_and_usaf_wban(usaf=r['USAF'], wban=r['WBAN']) for i, r in df.iterrows()] return df @staticmethod def _convert_between_id_and_usaf_wban(id=None, usaf=None, wban=None): if id: usaf, wban = [float(i) for i in id.split('-')] return usaf, wban else: id = '{:0>6.0f}-{:0>5.0f}'.format(usaf, wban) return id def find_stations_nearby(self): assert self.latitude and self.longitude and self.distance stations = self._load_stations_metadata() stations = stations[pd.notnull(stations['LAT']) & pd.notnull(stations['LON'])] # calculate distance from target apply_haversine = lambda r: self.haversine(lon1=self.longitude, lat1=self.latitude, lon2=r['LON'], lat2=r['LAT']) stations['Distance'] = stations.apply(apply_haversine, axis=1) # filter for valid stations distance_mask = stations['Distance'] <= self.distance timerange_mask = [True] * len(stations) if self.date_from: timerange_mask &= stations['BEGIN'] <= self.date_from if self.date_to: timerange_mask &= stations['END'] >= self.date_to stations_nearby = stations[distance_mask & timerange_mask] # adding ids as index get_ids = lambda r: self._convert_between_id_and_usaf_wban(usaf=r['USAF'], wban=r['WBAN']) id_list = stations_nearby.apply(get_ids, axis=1).tolist() stations_nearby.index = id_list # storing valid stations self.station_info = stations_nearby self.station_id_list = id_list return self.station_id_list def download_ncdc_station_data(self, station_id, date_from=None, date_to=None): # defining data range if date_from is None or date_to is None: info = self.station_info.ix[station_id, :] date_from = info['BEGIN'] if date_from is None else date_from date_to = info['END'] if date_to is None else date_to # downloading data downloaded_file_list = [] for year in range(date_from.year, date_to.year + 1): file_name = '{id}-{year}.gz'.format(id=station_id, year=year) url = 'ftp://ftp.ncdc.noaa.gov/pub/data/noaa/{year}/{file_name}'.format(year=year, file_name=file_name) save_to = os.path.join(DOWNLOAD_DATA_SUBFOLDER_NAME, file_name) try: download_file(url=url, save_to=save_to) downloaded_file_list.append(save_to) except URLError: print('!!! File {} not found. download skipped. !!!'.format(file_name)) return downloaded_file_list def _parse_ncdc_data(self, fpath): header_names = ['total', 'USAF', 'WBAN', 'datetime', 'source', 'latitude', 'longitude', 'report_type', 'elevation', 'call_letter_id', 'quality_control', 'direction', 'direction_quality', 'observation', 'speed_times_10', 'speed_quality', 'sky', 'sky_quality', 'sky_determination', 'sky_cavok_code', 'visibility', 'visibility_quality', 'visibility_variability', 'visibility_variability_quality', 'temperature', 'temperature_quality', 'temperature_dew', 'temperature_dew_quality', 'pressure_sea_level', 'pressure_quality'] colspecs = [(0, 4), (4, 10), (10, 15), (15, 27), (27, 28), (28, 34), (34, 41), (41, 46), (46, 51), (51, 56), (56, 60), (60, 63), (63, 64), (64, 65), (65, 69), (69, 70), (70, 75), (75, 76), (76, 77), (77, 78), (78, 84), (84, 85), (85, 86), (86, 87), (87, 92), (92, 93), (93, 98), (98, 99), (99, 104), (104, 105)] compression = 'gzip' if fpath.endswith('.gz') else 'infer' df = pd.read_fwf(fpath, colspecs=colspecs, header=None, names=header_names, index_col=3, parse_dates=True, compression=compression) return df def merge_ncdc_data(self, downloaded_file_list): # collating all data into one parsed dataframe df_collated =
pd.DataFrame()
pandas.DataFrame
import matplotlib.pyplot as plt import pandas as pd import numpy as np import warnings warnings.filterwarnings('ignore') soal = ['EXT1', 'EXT2', 'EXT3', 'EXT4', 'EXT5', 'EXT6', 'EXT7', 'EXT8', 'EXT9', 'EXT10', 'EST1', 'EST2', 'EST3', 'EST4', 'EST5', 'EST6', 'EST7', 'EST8', 'EST9', 'EST10', 'AGR1', 'AGR2', 'AGR3', 'AGR4', 'AGR5', 'AGR6', 'AGR7', 'AGR8', 'AGR9', 'AGR10', 'CSN1', 'CSN2', 'CSN3', 'CSN4', 'CSN5', 'CSN6', 'CSN7', 'CSN8', 'CSN9', 'CSN10', 'OPN1', 'OPN2', 'OPN3', 'OPN4', 'OPN5', 'OPN6', 'OPN7', 'OPN8', 'OPN9', 'OPN10'] # Pertanyaan rentang 1-5 (diganti -2, -1, 0, 1, 2) answer = [1.0, 2.0, 2.0, 1.0, 2.0, 2.0, 2.0, 1.0, 1.0, 2.0, -2.0, -1.0, 1.0, 1.0, -1.0, -1.0, -1.0, -1.0, 0.0, -1.0, 1.0, 2.0, 1.0, 1.0, 1.0, -0.0, -1.0, -1.0, 0.0, 1.0, 0.0, -1.0, 0.0, 1.0, -1.0, -1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 2.0, 1.0, 2.0, 2.0, 0.0, 1.0, 2.0] df = pd.DataFrame(answer, index=soal) df = df.T # Analisis Pertanyaan # EXT df['EXT1'] = df['EXT1'] * 1 df['EXT2'] = df['EXT2'] * -1 df['EXT3'] = df['EXT3'] * 1 df['EXT4'] = df['EXT4'] * -1 df['EXT5'] = df['EXT5'] * 1 df['EXT6'] = df['EXT6'] * -1 df['EXT7'] = df['EXT7'] * 1 df['EXT8'] = df['EXT8'] * -1 df['EXT9'] = df['EXT9'] * 1 df['EXT10'] = df['EXT10'] * -1 # ESP df['EST1'] = df['EST1'] * 1 df['EST2'] = df['EST2'] * -1 df['EST3'] = df['EST3'] * 1 df['EST4'] = df['EST4'] * -1 df['EST5'] = df['EST5'] * 1 df['EST6'] = df['EST6'] * 1 df['EST7'] = df['EST7'] * 1 df['EST8'] = df['EST8'] * 1 df['EST9'] = df['EST9'] * 1 df['EST10'] = df['EST10'] * 1 # AGR df['AGR1'] = df['AGR1'] * -1 df['AGR2'] = df['AGR2'] * 1 df['AGR3'] = df['AGR3'] * -1 df['AGR4'] = df['AGR4'] * 1 df['AGR5'] = df['AGR5'] * -1 df['AGR6'] = df['AGR6'] * -1 df['AGR7'] = df['AGR7'] * 1 df['AGR8'] = df['AGR8'] * -1 df['AGR9'] = df['AGR9'] * 1 df['AGR10'] = df['AGR10'] * 1 # CSN df['CSN1'] = df['CSN1'] * 1 df['CSN2'] = df['CSN2'] * -1 df['CSN3'] = df['CSN3'] * 1 df['CSN4'] = df['CSN4'] * -1 df['CSN5'] = df['CSN5'] * 1 df['CSN6'] = df['CSN6'] * -1 df['CSN7'] = df['CSN7'] * 1 df['CSN8'] = df['CSN8'] * -1 df['CSN9'] = df['CSN9'] * 1 df['CSN10'] = df['CSN10'] * 1 # OPN df['OPN1'] = df['OPN1'] * 1 df['OPN2'] = df['OPN2'] * -1 df['OPN3'] = df['OPN3'] * 1 df['OPN4'] = df['OPN4'] * -1 df['OPN5'] = df['OPN5'] * 1 df['OPN6'] = df['OPN6'] * -1 df['OPN7'] = df['OPN7'] * 1 df['OPN8'] = df['OPN8'] * 1 df['OPN9'] = df['OPN9'] * 1 df['OPN10'] = df['OPN10'] * 1 # Model col_list = list(df) ext = col_list[0:10] est = col_list[10:20] agr = col_list[20:30] csn = col_list[30:40] opn = col_list[40:50] # Classify --> Tambah 3 biar nilainya rentang 1-5 df_total =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import unittest import platform import pandas as pd import numpy as np import pyarrow.parquet as pq import hpat from hpat.tests.test_utils import ( count_array_REPs, count_parfor_REPs, count_array_OneDs, get_start_end) from hpat.tests.gen_test_data import ParquetGenerator from numba import types from numba.config import IS_32BITS from numba.errors import TypingError _cov_corr_series = [(pd.Series(x), pd.Series(y)) for x, y in [ ( [np.nan, -2., 3., 9.1], [np.nan, -2., 3., 5.0], ), # TODO(quasilyte): more intricate data for complex-typed series. # Some arguments make assert_almost_equal fail. # Functions that yield mismaching results: # _column_corr_impl and _column_cov_impl. ( [complex(-2., 1.0), complex(3.0, 1.0)], [complex(-3., 1.0), complex(2.0, 1.0)], ), ( [complex(-2.0, 1.0), complex(3.0, 1.0)], [1.0, -2.0], ), ( [1.0, -4.5], [complex(-4.5, 1.0), complex(3.0, 1.0)], ), ]] min_float64 = np.finfo('float64').min max_float64 = np.finfo('float64').max test_global_input_data_float64 = [ [1., np.nan, -1., 0., min_float64, max_float64], [np.nan, np.inf, np.NINF, np.NZERO] ] min_int64 = np.iinfo('int64').min max_int64 = np.iinfo('int64').max max_uint64 = np.iinfo('uint64').max test_global_input_data_integer64 = [ [1, -1, 0], [min_int64, max_int64], [max_uint64] ] test_global_input_data_numeric = test_global_input_data_integer64 + test_global_input_data_float64 test_global_input_data_unicode_kind4 = [ 'ascii', '12345', '1234567890', '¡Y tú quién te crees?', '🐍⚡', '大处着眼,小处着手。', ] test_global_input_data_unicode_kind1 = [ 'ascii', '12345', '1234567890', ] def _make_func_from_text(func_text, func_name='test_impl'): loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars[func_name] return test_impl def _make_func_use_binop1(operator): func_text = "def test_impl(A, B):\n" func_text += " return A {} B\n".format(operator) return _make_func_from_text(func_text) def _make_func_use_binop2(operator): func_text = "def test_impl(A, B):\n" func_text += " A {} B\n".format(operator) func_text += " return A\n" return _make_func_from_text(func_text) def _make_func_use_method_arg1(method): func_text = "def test_impl(A, B):\n" func_text += " return A.{}(B)\n".format(method) return _make_func_from_text(func_text) GLOBAL_VAL = 2 class TestSeries(unittest.TestCase): def test_create1(self): def test_impl(): df = pd.DataFrame({'A': [1, 2, 3]}) return (df.A == 1).sum() hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_unicode(self): def test_impl(): S = pd.Series([ ['abc', 'defg', 'ijk'], ['lmn', 'opq', 'rstuvwxyz'] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_integer(self): def test_impl(): S = pd.Series([ [123, 456, -789], [-112233, 445566, 778899] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) @unittest.skip('Feature request: implement Series::ctor with list(list(type))') def test_create_list_list_float(self): def test_impl(): S = pd.Series([ [1.23, -4.56, 7.89], [11.2233, 44.5566, -778.899] ]) return S hpat_func = hpat.jit(test_impl) result_ref = test_impl() result = hpat_func() pd.testing.assert_series_equal(result, result_ref) def test_create2(self): def test_impl(n): df = pd.DataFrame({'A': np.arange(n)}) return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 self.assertEqual(hpat_func(n), test_impl(n)) def test_create_series1(self): def test_impl(): A = pd.Series([1, 2, 3]) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index1(self): # create and box an indexed Series def test_impl(): A = pd.Series([1, 2, 3], ['A', 'C', 'B']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index2(self): def test_impl(): A = pd.Series([1, 2, 3], index=['A', 'C', 'B']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index3(self): def test_impl(): A = pd.Series([1, 2, 3], index=['A', 'C', 'B'], name='A') return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_create_series_index4(self): def test_impl(name): A = pd.Series([1, 2, 3], index=['A', 'C', 'B'], name=name) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func('A'), test_impl('A')) def test_create_str(self): def test_impl(): df = pd.DataFrame({'A': ['a', 'b', 'c']}) return (df.A == 'a').sum() hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(), test_impl()) def test_pass_df1(self): def test_impl(df): return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df), test_impl(df)) def test_pass_df_str(self): def test_impl(df): return (df.A == 'a').sum() hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['a', 'b', 'c']}) self.assertEqual(hpat_func(df), test_impl(df)) def test_pass_series1(self): # TODO: check to make sure it is series type def test_impl(A): return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series2(self): # test creating dataframe from passed series def test_impl(A): df = pd.DataFrame({'A': A}) return (df.A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series_str(self): def test_impl(A): return (A == 'a').sum() hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['a', 'b', 'c']}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_pass_series_index1(self): def test_impl(A): return A hpat_func = hpat.jit(test_impl) S = pd.Series([3, 5, 6], ['a', 'b', 'c'], name='A') pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_size(self): def test_impl(S): return S.size hpat_func = hpat.jit(test_impl) n = 11 for S, expected in [ (pd.Series(), 0), (pd.Series([]), 0), (pd.Series(np.arange(n)), n), (pd.Series([np.nan, 1, 2]), 3), (pd.Series(['1', '2', '3']), 3), ]: with self.subTest(S=S, expected=expected): self.assertEqual(hpat_func(S), expected) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_attr2(self): def test_impl(A): return A.copy().values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_attr3(self): def test_impl(A): return A.min() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_series_attr4(self): def test_impl(A): return A.cumsum().values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_argsort1(self): def test_impl(A): return A.argsort() hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.random.ranf(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_attr6(self): def test_impl(A): return A.take([2, 3]).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_attr7(self): def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_getattr_ndim(self): '''Verifies getting Series attribute ndim is supported''' def test_impl(S): return S.ndim hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_getattr_T(self): '''Verifies getting Series attribute T is supported''' def test_impl(S): return S.T hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_series_copy_str1(self): def test_impl(A): return A.copy() hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_copy_int1(self): def test_impl(A): return A.copy() hpat_func = hpat.jit(test_impl) S = pd.Series([1, 2, 3]) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_series_copy_deep(self): def test_impl(A, deep): return A.copy(deep=deep) hpat_func = hpat.jit(test_impl) for S in [ pd.Series([1, 2]), pd.Series([1, 2], index=["a", "b"]), ]: with self.subTest(S=S): for deep in (True, False): with self.subTest(deep=deep): actual = hpat_func(S, deep) expected = test_impl(S, deep) pd.testing.assert_series_equal(actual, expected) self.assertEqual(actual.values is S.values, expected.values is S.values) self.assertEqual(actual.values is S.values, not deep) # Shallow copy of index is not supported yet if deep: self.assertEqual(actual.index is S.index, expected.index is S.index) self.assertEqual(actual.index is S.index, not deep) def test_series_astype_int_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts integer series to series of strings ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int_to_str2(self): '''Verifies Series.astype implementation with a string literal dtype argument converts integer series to series of strings ''' def test_impl(S): return S.astype('str') hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str2(self): '''Verifies Series.astype implementation with a string literal dtype argument handles string series not changing it ''' def test_impl(S): return S.astype('str') hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str_index_str(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=['d', 'e', 'f']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_to_str_index_int(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=[1, 2, 3]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: requires str(datetime64) support in Numba') def test_series_astype_dt_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts datetime series to series of strings ''' def test_impl(A): return A.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series([pd.Timestamp('20130101 09:00:00'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03') ]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('AssertionError: Series are different' '[left]: [0.000000, 1.000000, 2.000000, 3.000000, ...' '[right]: [0.0, 1.0, 2.0, 3.0, ...' 'TODO: needs alignment to NumPy on Numba side') def test_series_astype_float_to_str1(self): '''Verifies Series.astype implementation with function 'str' as argument converts float series to series of strings ''' def test_impl(A): return A.astype(str) hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int32_to_int64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series with dtype=int32 to series with dtype=int64 ''' def test_impl(A): return A.astype(np.int64) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n), dtype=np.int32) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_int_to_float64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts integer series to series of float ''' def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_float_to_int32(self): '''Verifies Series.astype implementation with NumPy dtype argument converts float series to series of integers ''' def test_impl(A): return A.astype(np.int32) hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support string literal as dtype arg') def test_series_astype_literal_dtype1(self): '''Verifies Series.astype implementation with a string literal dtype argument converts float series to series of integers ''' def test_impl(A): return A.astype('int32') hpat_func = hpat.jit(test_impl) n = 11.0 S = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support converting unicode_type to int') def test_series_astype_str_to_int32(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series of strings to series of integers ''' import numba def test_impl(A): return A.astype(np.int32) hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series([str(x) for x in np.arange(n) - n // 2]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @unittest.skip('TODO: needs Numba astype impl support converting unicode_type to float') def test_series_astype_str_to_float64(self): '''Verifies Series.astype implementation with NumPy dtype argument converts series of strings to series of float ''' def test_impl(A): return A.astype(np.float64) hpat_func = hpat.jit(test_impl) S = pd.Series(['3.24', '1E+05', '-1', '-1.3E-01', 'nan', 'inf']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_index_str(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=['a', 'b', 'c']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_astype_str_index_int(self): '''Verifies Series.astype implementation with function 'str' as argument handles string series not changing it ''' def test_impl(S): return S.astype(str) hpat_func = hpat.jit(test_impl) S = pd.Series(['aa', 'bb', 'cc'], index=[2, 3, 5]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_np_call_on_series1(self): def test_impl(A): return np.min(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_values(self): def test_impl(A): return A.values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_values1(self): def test_impl(A): return (A == 2).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A), test_impl(df.A)) def test_series_shape1(self): def test_impl(A): return A.shape hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_static_setitem_series1(self): def test_impl(A): A[0] = 2 return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A), test_impl(df.A)) def test_setitem_series1(self): def test_impl(A, i): A[i] = 2 return (A == 2).sum() hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A.copy(), 0), test_impl(df.A.copy(), 0)) def test_setitem_series2(self): def test_impl(A, i): A[i] = 100 hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) A1 = df.A.copy() A2 = df.A hpat_func(A1, 0) test_impl(A2, 0) pd.testing.assert_series_equal(A1, A2) @unittest.skip("enable after remove dead in hiframes is removed") def test_setitem_series3(self): def test_impl(A, i): S = pd.Series(A) S[i] = 100 hpat_func = hpat.jit(test_impl) n = 11 A = np.arange(n) A1 = A.copy() A2 = A hpat_func(A1, 0) test_impl(A2, 0) np.testing.assert_array_equal(A1, A2) def test_setitem_series_bool1(self): def test_impl(A): A[A > 3] = 100 hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) A1 = df.A.copy() A2 = df.A hpat_func(A1) test_impl(A2) pd.testing.assert_series_equal(A1, A2) def test_setitem_series_bool2(self): def test_impl(A, B): A[A > 3] = B[A > 3] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n), 'B': np.arange(n)**2}) A1 = df.A.copy() A2 = df.A hpat_func(A1, df.B) test_impl(A2, df.B) pd.testing.assert_series_equal(A1, A2) def test_static_getitem_series1(self): def test_impl(A): return A[0] hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) self.assertEqual(hpat_func(A), test_impl(A)) def test_getitem_series1(self): def test_impl(A, i): return A[i] hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_getitem_series_str1(self): def test_impl(A, i): return A[i] hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['aa', 'bb', 'cc']}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_series_iat1(self): def test_impl(A): return A.iat[3] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_iat2(self): def test_impl(A): A.iat[3] = 1 return A hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) def test_series_iloc1(self): def test_impl(A): return A.iloc[3] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_iloc2(self): def test_impl(A): return A.iloc[3:8] hpat_func = hpat.jit(test_impl) n = 11 S = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal( hpat_func(S), test_impl(S).reset_index(drop=True)) def test_series_op1(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) def test_series_op2(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: df = pd.DataFrame({'A': np.arange(1, n, dtype=np.int64)}) else: df = pd.DataFrame({'A': np.arange(1, n)}) pd.testing.assert_series_equal(hpat_func(df.A, 1), test_impl(df.A, 1), check_names=False) def test_series_op3(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) def test_series_op4(self): arithmetic_binops = ('+', '-', '*', '/', '//', '%', '**') for operator in arithmetic_binops: test_impl = _make_func_use_binop2(operator) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n)}) pd.testing.assert_series_equal(hpat_func(df.A, 1), test_impl(df.A, 1), check_names=False) def test_series_op5(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(1, n), 'B': np.ones(n - 1)}) pd.testing.assert_series_equal(hpat_func(df.A, df.B), test_impl(df.A, df.B), check_names=False) @unittest.skipIf(platform.system() == 'Windows', 'Series values are different (20.0 %)' '[left]: [1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, 3486784401, 10000000000]' '[right]: [1, 1024, 59049, 1048576, 9765625, 60466176, 282475249, 1073741824, -808182895, 1410065408]') def test_series_op5_integer_scalar(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: operand_series = pd.Series(np.arange(1, n, dtype=np.int64)) else: operand_series = pd.Series(np.arange(1, n)) operand_scalar = 10 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op5_float_scalar(self): arithmetic_methods = ('add', 'sub', 'mul', 'div', 'truediv', 'floordiv', 'mod', 'pow') for method in arithmetic_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = .5 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op6(self): def test_impl(A): return -A hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) pd.testing.assert_series_equal(hpat_func(A), test_impl(A)) def test_series_op7(self): comparison_binops = ('<', '>', '<=', '>=', '!=', '==') for operator in comparison_binops: test_impl = _make_func_use_binop1(operator) hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_names=False) def test_series_op8(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'ne', 'eq') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B), check_names=False) @unittest.skipIf(platform.system() == 'Windows', "Attribute dtype are different: int64, int32") def test_series_op8_integer_scalar(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'eq', 'ne') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = 10 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_op8_float_scalar(self): comparison_methods = ('lt', 'gt', 'le', 'ge', 'eq', 'ne') for method in comparison_methods: test_impl = _make_func_use_method_arg1(method) hpat_func = hpat.jit(test_impl) n = 11 operand_series = pd.Series(np.arange(1, n)) operand_scalar = .5 pd.testing.assert_series_equal( hpat_func(operand_series, operand_scalar), test_impl(operand_series, operand_scalar), check_names=False) def test_series_inplace_binop_array(self): def test_impl(A, B): A += B return A hpat_func = hpat.jit(test_impl) n = 11 A = np.arange(n)**2.0 # TODO: use 2 for test int casting B = pd.Series(np.ones(n)) np.testing.assert_array_equal(hpat_func(A.copy(), B), test_impl(A, B)) def test_series_fusion1(self): def test_impl(A, B): return A + B + 1 hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n), dtype=np.int64) B = pd.Series(np.arange(n)**2, dtype=np.int64) else: A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) self.assertEqual(count_parfor_REPs(), 1) def test_series_fusion2(self): # make sure getting data var avoids incorrect single def assumption def test_impl(A, B): S = B + 2 if A[0] == 0: S = A + 1 return S + B hpat_func = hpat.jit(test_impl) n = 11 if platform.system() == 'Windows' and not IS_32BITS: A = pd.Series(np.arange(n), dtype=np.int64) B = pd.Series(np.arange(n)**2, dtype=np.int64) else: A = pd.Series(np.arange(n)) B = pd.Series(np.arange(n)**2) pd.testing.assert_series_equal(hpat_func(A, B), test_impl(A, B)) self.assertEqual(count_parfor_REPs(), 3) def test_series_len(self): def test_impl(A, i): return len(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertEqual(hpat_func(df.A, 0), test_impl(df.A, 0)) def test_series_box(self): def test_impl(): A = pd.Series([1, 2, 3]) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_series_box2(self): def test_impl(): A = pd.Series(['1', '2', '3']) return A hpat_func = hpat.jit(test_impl) pd.testing.assert_series_equal(hpat_func(), test_impl()) def test_series_list_str_unbox1(self): def test_impl(A): return A.iloc[0] hpat_func = hpat.jit(test_impl) S = pd.Series([['aa', 'b'], ['ccc'], []]) np.testing.assert_array_equal(hpat_func(S), test_impl(S)) # call twice to test potential refcount errors np.testing.assert_array_equal(hpat_func(S), test_impl(S)) def test_np_typ_call_replace(self): # calltype replacement is tricky for np.typ() calls since variable # type can't provide calltype def test_impl(i): return np.int32(i) hpat_func = hpat.jit(test_impl) self.assertEqual(hpat_func(1), test_impl(1)) def test_series_ufunc1(self): def test_impl(A, i): return np.isinf(A).values hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) np.testing.assert_array_equal(hpat_func(df.A, 1), test_impl(df.A, 1)) def test_list_convert(self): def test_impl(): df = pd.DataFrame({'one': np.array([-1, np.nan, 2.5]), 'two': ['foo', 'bar', 'baz'], 'three': [True, False, True]}) return df.one.values, df.two.values, df.three.values hpat_func = hpat.jit(test_impl) one, two, three = hpat_func() self.assertTrue(isinstance(one, np.ndarray)) self.assertTrue(isinstance(two, np.ndarray)) self.assertTrue(isinstance(three, np.ndarray)) @unittest.skip("needs empty_like typing fix in npydecl.py") def test_series_empty_like(self): def test_impl(A): return np.empty_like(A) hpat_func = hpat.jit(test_impl) n = 11 df = pd.DataFrame({'A': np.arange(n)}) self.assertTrue(isinstance(hpat_func(df.A), np.ndarray)) def test_series_fillna1(self): def test_impl(A): return A.fillna(5.0) hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) # test inplace fillna for named numeric series (obtained from DataFrame) def test_series_fillna_inplace1(self): def test_impl(A): A.fillna(5.0, inplace=True) return A hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) def test_series_fillna_str1(self): def test_impl(A): return A.fillna("dd") hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': ['aa', 'b', None, 'ccc']}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A), check_names=False) def test_series_fillna_str_inplace1(self): def test_impl(A): A.fillna("dd", inplace=True) return A hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) # TODO: handle string array reflection # hpat_func(S1) # test_impl(S2) # np.testing.assert_array_equal(S1, S2) def test_series_fillna_str_inplace_empty1(self): def test_impl(A): A.fillna("", inplace=True) return A hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_fillna_index_str(self): def test_impl(S): return S.fillna(5.0) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2.0, np.nan, 1.0], index=['a', 'b', 'c', 'd']) pd.testing.assert_series_equal(hpat_func(S), test_impl(S), check_names=False) @unittest.skip('Unsupported functionality: failed to handle index') def test_series_fillna_index_int(self): def test_impl(S): return S.fillna(5.0) hpat_func = hpat.jit(test_impl) S = pd.Series([1.0, 2.0, np.nan, 1.0], index=[2, 3, 4, 5]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S), check_names=False) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis1(self): '''Verifies Series.dropna() implementation handles 'index' as axis argument''' def test_impl(S): return S.dropna(axis='index') hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis2(self): '''Verifies Series.dropna() implementation handles 0 as axis argument''' def test_impl(S): return S.dropna(axis=0) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'No support of axis argument in old-style Series.dropna() impl') def test_series_dropna_axis3(self): '''Verifies Series.dropna() implementation handles correct non-literal axis argument''' def test_impl(S, axis): return S.dropna(axis=axis) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() axis_values = [0, 'index'] for value in axis_values: pd.testing.assert_series_equal(hpat_func(S1, value), test_impl(S2, value)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_float_index1(self): '''Verifies Series.dropna() implementation for float series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) for data in test_global_input_data_float64: S1 = pd.Series(data) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_float_index2(self): '''Verifies Series.dropna() implementation for float series with string index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf], ['a', 'b', 'c', 'd', 'e']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index1(self): '''Verifies Series.dropna() implementation for series of strings with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index2(self): '''Verifies Series.dropna() implementation for series of strings with string index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', ''], ['a', 'b', 'c', 'd', 'e']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_str_index3(self): def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', ''], index=[1, 2, 5, 7, 10]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('BUG: old-style dropna impl returns series without index, in new-style inplace is unsupported') def test_series_dropna_float_inplace_no_index1(self): '''Verifies Series.dropna() implementation for float series with default index and inplace argument True''' def test_impl(S): S.dropna(inplace=True) return S hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('TODO: add reflection support and check method return value') def test_series_dropna_float_inplace_no_index2(self): '''Verifies Series.dropna(inplace=True) results are reflected back in the original float series''' def test_impl(S): return S.dropna(inplace=True) hpat_func = hpat.jit(test_impl) S1 = pd.Series([1.0, 2.0, np.nan, 1.0, np.inf]) S2 = S1.copy() self.assertIsNone(hpat_func(S1)) self.assertIsNone(test_impl(S2)) pd.testing.assert_series_equal(S1, S2) @unittest.skip('BUG: old-style dropna impl returns series without index, in new-style inplace is unsupported') def test_series_dropna_str_inplace_no_index1(self): '''Verifies Series.dropna() implementation for series of strings with default index and inplace argument True ''' def test_impl(S): S.dropna(inplace=True) return S hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('TODO: add reflection support and check method return value') def test_series_dropna_str_inplace_no_index2(self): '''Verifies Series.dropna(inplace=True) results are reflected back in the original string series''' def test_impl(S): return S.dropna(inplace=True) hpat_func = hpat.jit(test_impl) S1 = pd.Series(['aa', 'b', None, 'cccd', '']) S2 = S1.copy() self.assertIsNone(hpat_func(S1)) self.assertIsNone(test_impl(S2)) pd.testing.assert_series_equal(S1, S2) def test_series_dropna_str_parallel1(self): '''Verifies Series.dropna() distributed work for series of strings with default index''' def test_impl(A): B = A.dropna() return (B == 'gg').sum() hpat_func = hpat.jit(distributed=['A'])(test_impl) S1 = pd.Series(['aa', 'b', None, 'ccc', 'dd', 'gg']) start, end = get_start_end(len(S1)) # TODO: gatherv self.assertEqual(hpat_func(S1[start:end]), test_impl(S1)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) self.assertTrue(count_array_OneDs() > 0) @unittest.skip('AssertionError: Series are different\n' 'Series length are different\n' '[left]: 3, Int64Index([0, 1, 2], dtype=\'int64\')\n' '[right]: 2, Int64Index([1, 2], dtype=\'int64\')') def test_series_dropna_dt_no_index1(self): '''Verifies Series.dropna() implementation for datetime series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series([pd.NaT, pd.Timestamp('1970-12-01'), pd.Timestamp('2012-07-25')]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) def test_series_dropna_bool_no_index1(self): '''Verifies Series.dropna() implementation for bool series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) S1 = pd.Series([True, False, False, True]) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, 'BUG: old-style dropna impl returns series without index') def test_series_dropna_int_no_index1(self): '''Verifies Series.dropna() implementation for integer series with default index''' def test_impl(S): return S.dropna() hpat_func = hpat.jit(test_impl) n = 11 S1 = pd.Series(np.arange(n, dtype=np.int64)) S2 = S1.copy() pd.testing.assert_series_equal(hpat_func(S1), test_impl(S2)) @unittest.skip('numba.errors.TypingError - fix needed\n' 'Failed in hpat mode pipeline' '(step: convert to distributed)\n' 'Invalid use of Function(<built-in function len>)' 'with argument(s) of type(s): (none)\n') def test_series_rename1(self): def test_impl(A): return A.rename('B') hpat_func = hpat.jit(test_impl) df = pd.DataFrame({'A': [1.0, 2.0, np.nan, 1.0]}) pd.testing.assert_series_equal(hpat_func(df.A), test_impl(df.A)) def test_series_sum_default(self): def test_impl(S): return S.sum() hpat_func = hpat.jit(test_impl) S = pd.Series([1., 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) def test_series_sum_nan(self): def test_impl(S): return S.sum() hpat_func = hpat.jit(test_impl) # column with NA S = pd.Series([np.nan, 2., 3.]) self.assertEqual(hpat_func(S), test_impl(S)) # all NA case should produce 0 S = pd.Series([np.nan, np.nan]) self.assertEqual(hpat_func(S), test_impl(S)) @unittest.skipIf(hpat.config.config_pipeline_hpat_default, "Old style Series.sum() does not support parameters") def test_series_sum_skipna_false(self): def test_impl(S): return S.sum(skipna=False) hpat_func = hpat.jit(test_impl) S =
pd.Series([np.nan, 2., 3.])
pandas.Series
#SPDX-License-Identifier: MIT """ Helper methods constant across all workers """ import requests import datetime import time import traceback import json import os import sys import math import logging import numpy import copy import concurrent import multiprocessing import psycopg2 import psycopg2.extensions import csv import io from logging import FileHandler, Formatter, StreamHandler from multiprocessing import Process, Queue, Pool, Value from os import getpid import sqlalchemy as s import pandas as pd from pathlib import Path from urllib.parse import urlparse, quote from sqlalchemy.ext.automap import automap_base from augur.config import AugurConfig from augur.logging import AugurLogging from sqlalchemy.sql.expression import bindparam from concurrent import futures import dask.dataframe as dd class Persistant(): ROOT_AUGUR_DIR = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) def __init__(self, worker_type, data_tables=[],operations_tables=[]): self.db_schema = None self.helper_schema = None self.worker_type = worker_type #For database functionality self.data_tables = data_tables self.operations_tables = operations_tables self._root_augur_dir = Persistant.ROOT_AUGUR_DIR # count of tuples inserted in the database ( to store stats for each task in op tables) self.update_counter = 0 self.insert_counter = 0 self._results_counter = 0 # Update config with options that are general and not specific to any worker self.augur_config = AugurConfig(self._root_augur_dir) #TODO: consider taking parts of this out for the base class and then overriding it in WorkerGitInterfaceable self.config = { 'worker_type': self.worker_type, 'host': self.augur_config.get_value('Server', 'host') } self.config.update(self.augur_config.get_section("Logging")) try: worker_defaults = self.augur_config.get_default_config()['Workers'][self.config['worker_type']] self.config.update(worker_defaults) except KeyError as e: logging.warn('Could not get default configuration for {}'.format(self.config['worker_type'])) worker_info = self.augur_config.get_value('Workers', self.config['worker_type']) self.config.update(worker_info) worker_port = self.config['port'] while True: try: r = requests.get('http://{}:{}/AUGWOP/heartbeat'.format( self.config['host'], worker_port)).json() if 'status' in r: if r['status'] == 'alive': worker_port += 1 except: break #add credentials to db config. Goes to databaseable self.config.update({ 'port': worker_port, 'id': "workers.{}.{}".format(self.worker_type, worker_port), 'capture_output': False, 'location': 'http://{}:{}'.format(self.config['host'], worker_port), 'port_broker': self.augur_config.get_value('Server', 'port'), 'host_broker': self.augur_config.get_value('Server', 'host'), 'host_database': self.augur_config.get_value('Database', 'host'), 'port_database': self.augur_config.get_value('Database', 'port'), 'user_database': self.augur_config.get_value('Database', 'user'), 'name_database': self.augur_config.get_value('Database', 'name'), 'password_database': self.augur_config.get_value('Database', 'password') }) # Initialize logging in the main process self.initialize_logging() # Clear log contents from previous runs open(self.config["server_logfile"], "w").close() open(self.config["collection_logfile"], "w").close() # Get configured collection logger self.logger = logging.getLogger(self.config["id"]) self.logger.info('Worker (PID: {}) initializing...'.format(str(os.getpid()))) #Return string representation of an object with all information needed to recreate the object (Think of it like a pickle made out of text) #Called using repr(*object*). eval(repr(*object*)) == *object* def __repr__(self): return f"{self.config['id']}" def initialize_logging(self): #Get the log level in upper case from the augur config's logging section. self.config['log_level'] = self.config['log_level'].upper() if self.config['debug']: self.config['log_level'] = 'DEBUG' if self.config['verbose']: format_string = AugurLogging.verbose_format_string else: format_string = AugurLogging.simple_format_string #Use stock python formatter for stdout formatter = Formatter(fmt=format_string) #User custom for stderr, Gives more info than verbose_format_string error_formatter = Formatter(fmt=AugurLogging.error_format_string) worker_dir = AugurLogging.get_log_directories(self.augur_config, reset_logfiles=False) + "/workers/" Path(worker_dir).mkdir(exist_ok=True) logfile_dir = worker_dir + f"/{self.worker_type}/" Path(logfile_dir).mkdir(exist_ok=True) #Create more complex sublogs in the logfile directory determined by the AugurLogging class server_logfile = logfile_dir + '{}_{}_server.log'.format(self.worker_type, self.config["port"]) collection_logfile = logfile_dir + '{}_{}_collection.log'.format(self.worker_type, self.config["port"]) collection_errorfile = logfile_dir + '{}_{}_collection.err'.format(self.worker_type, self.config["port"]) self.config.update({ 'logfile_dir': logfile_dir, 'server_logfile': server_logfile, 'collection_logfile': collection_logfile, 'collection_errorfile': collection_errorfile }) collection_file_handler = FileHandler(filename=self.config['collection_logfile'], mode="a") collection_file_handler.setFormatter(formatter) collection_file_handler.setLevel(self.config['log_level']) collection_errorfile_handler = FileHandler(filename=self.config['collection_errorfile'], mode="a") collection_errorfile_handler.setFormatter(error_formatter) collection_errorfile_handler.setLevel(logging.WARNING) logger = logging.getLogger(self.config['id']) logger.handlers = [] logger.addHandler(collection_file_handler) logger.addHandler(collection_errorfile_handler) logger.setLevel(self.config['log_level']) logger.propagate = False if self.config['debug']: self.config['log_level'] = 'DEBUG' console_handler = StreamHandler() console_handler.setFormatter(formatter) console_handler.setLevel(self.config['log_level']) logger.addHandler(console_handler) if self.config['quiet']: logger.disabled = True self.logger = logger #database interface, the git interfaceable adds additional function to the super method. def initialize_database_connections(self): DB_STR = 'postgresql://{}:{}@{}:{}/{}'.format( self.config['user_database'], self.config['password_database'], self.config['host_database'], self.config['port_database'], self.config['name_database'] ) # Create an sqlalchemy engine for both database schemas self.logger.info("Making database connections") self.db_schema = 'augur_data' self.db = s.create_engine(DB_STR, poolclass=s.pool.NullPool, connect_args={'options': '-csearch_path={}'.format(self.db_schema)}) # , 'client_encoding': 'utf8' self.helper_schema = 'augur_operations' self.helper_db = s.create_engine(DB_STR, poolclass=s.pool.NullPool, connect_args={'options': '-csearch_path={}'.format(self.helper_schema)}) metadata = s.MetaData() helper_metadata = s.MetaData() # Reflect only the tables we will use for each schema's metadata object metadata.reflect(self.db, only=self.data_tables) helper_metadata.reflect(self.helper_db, only=self.operations_tables) Base = automap_base(metadata=metadata) HelperBase = automap_base(metadata=helper_metadata) Base.prepare() HelperBase.prepare() # So we can access all our tables when inserting, updating, etc for table in self.data_tables: setattr(self, '{}_table'.format(table), Base.classes[table].__table__) try: self.logger.info(HelperBase.classes.keys()) except: pass for table in self.operations_tables: try: setattr(self, '{}_table'.format(table), HelperBase.classes[table].__table__) except Exception as e: self.logger.error("Error setting attribute for table: {} : {}".format(table, e)) # Increment so we are ready to insert the 'next one' of each of these most recent ids self.logger.info("Trying to find max id of table...") try: self.history_id = self.get_max_id('worker_history', 'history_id', operations_table=True) + 1 except Exception as e: self.logger.info(f"Could not find max id. ERROR: {e}") #25151 #self.logger.info(f"Good, passed the max id getter. Max id: {self.history_id}") #Make sure the type used to store date is synced with the worker? def sync_df_types(self, subject, source, subject_columns, source_columns): type_dict = {} ## Getting rid of nan's and NoneTypes across the dataframe to start: subject = subject.fillna(value=numpy.nan) source = source.fillna(value=numpy.nan) for index in range(len(source_columns)): if type(source[source_columns[index]].values[0]) == numpy.datetime64: subject[subject_columns[index]] = pd.to_datetime( subject[subject_columns[index]], utc=True ) source[source_columns[index]] = pd.to_datetime( source[source_columns[index]], utc=True ) continue ## Dealing with an error coming from paginate endpoint and the GitHub issue worker ### For a release in mid september, 2021. #SPG This did not work on Ints or Floats # if type(source[source_columns[index]].values[0]).isnull(): # subject[subject_columns[index]] = pd.fillna(value=np.nan) # source[source_columns[index]] = pd.fillna(value=np.nan) # continue source_index = source_columns[index] try: source_index = source_columns[index] type_dict[subject_columns[index]] = type(source[source_index].values[0]) #self.logger.info(f"Source data column is {source[source_index].values[0]}") #self.logger.info(f"Type dict at {subject_columns[index]} is : {type(source[source_index].values[0])}") except Exception as e: self.logger.info(f"Source data registered exception: {source[source_index]}") self.print_traceback("", e, True) subject = subject.astype(type_dict) return subject, source #Convert safely from sql type to python type? def get_sqlalchemy_type(self, data, column_name=None): if type(data) == str: try: time.strptime(data, "%Y-%m-%dT%H:%M:%SZ") return s.types.TIMESTAMP except ValueError: return s.types.String elif ( isinstance(data, (int, numpy.integer)) or (isinstance(data, float) and column_name and 'id' in column_name) ): return s.types.BigInteger elif isinstance(data, float): return s.types.Float elif type(data) in [numpy.datetime64, pd._libs.tslibs.timestamps.Timestamp]: return s.types.TIMESTAMP elif column_name and 'id' in column_name: return s.types.BigInteger return s.types.String def _convert_float_nan_to_int(self, df): for column in df.columns: if ( df[column].dtype == float and ((df[column] % 1 == 0) | (df[column].isnull())).all() ): df[column] = df[column].astype("Int64").astype(object).where(
pd.notnull(df[column])
pandas.notnull
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Dec 20 22:28:42 2018 @author: Erkin """ #%% import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib import seaborn as sns import warnings warnings.simplefilter(action='ignore', category=FutureWarning) def warn(*args, **kwargs): pass import warnings warnings.warn = warn # T VALUE FUNCTION #def t_ind(quotes, tgt_margin=0.2, n_days=30): # quotes=quotes[['date','lowest_newprice']] # quotes=quotes.reset_index(drop=True) # # t_matrix=pd.DataFrame(quotes.date).iloc[0:len(quotes)-n_days,] # t_matrix['T']=0 # t_matrix['decision']='hold' # for i in range(len(quotes)-n_days): # a=quotes.iloc[i:i+n_days,:] # a['first_price']=quotes.iloc[i,1] # a['variation']=(a.lowest_newprice-a.first_price)/a.first_price # t_value=len(a[(a.variation>tgt_margin)]) - len(a[(a.variation<-tgt_margin)]) # t_matrix.iloc[i,1]=t_value # if (t_value > 10): # t_matrix.iloc[i,2]='buy' # elif(t_value < -10): # t_matrix.iloc[i,2]='sell' # # plt.subplot(2, 1, 1) # dates = matplotlib.dates.date2num(t_matrix.date) # plt.plot_date(dates, t_matrix['T'],linestyle='solid', marker='None') # plt.title(' T vs time ') # plt.xlabel('Time') # plt.ylabel('T value') # # # plt.subplot(2, 1, 2) # dates = matplotlib.dates.date2num(quotes.iloc[0:len(quotes)-n_days,].date) # plt.plot_date(dates, quotes.iloc[0:len(quotes)-n_days,]['lowest_newprice'],linestyle='solid', marker='None') # plt.xlabel('Time') # plt.ylabel('price') # plt.show() # plt.show() # return t_matrix # # FUNCTION ENDS # importing necessary datasets. product_info=pd.read_csv('/Users/Erkin/Desktop/McGill/personal project/data/product_info.csv') product_info=product_info.drop('Unnamed: 0',axis=1) product_info_head=product_info.head(1000) product=pd.read_csv('/Users/Erkin/Desktop/McGill/personal project/data/product.csv') product=product.drop('Unnamed: 0',axis=1) product_head=product.head(1000) map_product=pd.read_csv('/Users/Erkin/Desktop/McGill/personal project/data/map_product.csv') map_product=map_product.drop('Unnamed: 0',axis=1) map_product_head=map_product.head(1000) product_answer=pd.read_csv('/Users/Erkin/Desktop/McGill/personal project/data/product_answer.csv') product_answer=product_answer.drop('Unnamed: 0',axis=1) product_answer_head=product_answer.head(1000) product_question=pd.read_csv('/Users/Erkin/Desktop/McGill/personal project/data/product_question.csv') product_question=product_question.drop('Unnamed: 0',axis=1) product_question_head=product_question.head(1000) product_review=pd.read_csv('/Users/Erkin/Desktop/McGill/personal project/data/product_review.csv') product_review=product_review.drop('Unnamed: 0',axis=1) product_review_head=product_review.head(1000) merged=pd.read_csv('/Users/Erkin/Desktop/McGill/personal project/data/merged.csv') merged=merged.drop('Unnamed: 0',axis=1) merged_head=merged.head(1000) #product names #product_names=product.iloc[:,1:3] #merged=pd.merge(product_names,product_info,how='right',on='asin') #merged_head=merged.head(1000) # ##lowest price na replacement #merged=merged.drop('Unnamed: 0',axis=1) #merged['lowest_newprice']=merged['lowest_newprice'].fillna(merged['list_price']) #merged_head=merged.head(1000) #merged.isna().sum() #removing values with less than 200 observations. #asd=merged.groupby(['asin']).count() #asd=asd[asd.date > 200] #asd.reset_index(level=0, inplace=True) #merged=merged[merged.asin.isin(asd.asin)] #merged=merged.reset_index(drop=True) #merged['date'] = pd.to_datetime(merged['date']).dt.date # #unique_asins=merged.asin.unique() #merged['T']=99 #for asin in unique_asins: # print(asin) # quotes=merged[merged.asin==asin] # iterable=quotes.iloc[0:len(quotes)-n_days,] # for i, row in iterable.iterrows(): # a=quotes.loc[i:i+n_days,:] # a['first_price']=quotes.loc[i,'lowest_newprice'] # a['variation']=(a.lowest_newprice-a.first_price)/a.first_price # t_value=len(a[(a.variation>tgt_margin)]) - len(a[(a.variation<-tgt_margin)]) # merged.loc[i,'T']=t_value #asins=merged.asin.unique().tolist() #product0=t_ind(quotes=merged[merged.asin==asins[0]]) #product1=t_ind(quotes=merged[merged.asin==asins[1]]) #product2=t_ind(quotes=merged[merged.asin==asins[2]]) #product3=t_ind(quotes=merged[merged.asin==asins[3]]) #product4=t_ind(quotes=merged[merged.asin==asins[4]]) #product5=t_ind(quotes=merged[merged.asin==asins[5]]) #product6=t_ind(quotes=merged[merged.asin==asins[6]]) # ## Create the time index #product6.set_index('date', inplace=True) #ts=product6.drop('decision',axis=1) # # ## Verify the time index #product6.head() #product6.info() #product6.index ## Run the AutoRegressive model #from statsmodels.tsa.ar_model import AR #ar1=AR(ts) #model1=ar1.fit() ## View the results #print('Lag: %s' % model1.k_ar) #print('Coefficients: %s' % model1.params) # ## Separate the data into training and test #split_size = round(len(ts)*0.3) #ts_train,ts_test = ts[0:len(ts)-split_size], ts[len(ts)-split_size:] # ## Run the model again on the training data #ar2=AR(ts_train) #model2=ar2.fit() # ## Predicting the outcome based on the test data #ts_test_pred_ar = model2.predict(start=len(ts_train),end=len(ts_train)+len(ts_test)-1,dynamic=False) #ts_test_pred_ar.index=ts_test.index # ## Calculating the mean squared error of the model #from sklearn.metrics import mean_squared_error #error = mean_squared_error(ts_test,ts_test_pred_ar) #print('Test MSE: %.3f' %error) # ## Plot the graph comparing the real value and predicted value #from matplotlib import pyplot #fig = plt.figure(dpi=100) #pyplot.plot(ts_test) #pyplot.plot(ts_test_pred_ar) #df_dateasin=merged[['date','asin']] # # # #reviews_sorted=product_review.sort_values('review_date') #reviews_sorted['number_of_reviews']=reviews_sorted.groupby(['asin','review_date']).cumcount()+1 #reviews_sorted['star_tot']=reviews_sorted.groupby('asin').star.cumsum() #reviews_sorted = reviews_sorted.drop_duplicates(['asin','review_date'], keep='last') #df_dateasin = df_dateasin.drop_duplicates(['asin','date'], keep='last') #df_dateasin.columns=['review_date','asin'] #reviews_sorted = pd.merge(df_dateasin,reviews_sorted,how='left') #reviews_sorted_head=reviews_sorted.head(1000) # # # # # #reviews_sorted['reviews_total']=reviews_sorted.groupby('asin').number_of_reviews.cumsum() #reviews_sorted['star_avg']=reviews_sorted.star_tot/reviews_sorted.number_of_reviews #reviews_sorted = reviews_sorted.drop_duplicates(['asin','review_date'], keep='last') #t1=reviews_sorted[['review_date','asin','number_of_reviews','star_avg']] #t1.columns=['date','asin','number_of_reviews','star_avg'] #merged2 = pd.merge(merged,t1,how='left') # #t2 = pd.merge(df_dateasin,t1,how='left') # #nul = merged2['number_of_reviews'].isnull() #nul.groupby((nul.diff() == 1).cumsum()).cumsum()*3 + merged2['number_of_reviews'].ffill() # # FEATURE ENGINEERING # aggregation of number of reviews and average star rating reviews_sorted=product_review.set_index('review_date').sort_index() reviews_sorted['number_of_reviews']=reviews_sorted.groupby('asin').cumcount()+1 reviews_sorted['star_tot']=reviews_sorted.groupby('asin').star.cumsum() reviews_sorted=reviews_sorted.reset_index() reviews_sorted['star_avg']=reviews_sorted.star_tot/reviews_sorted.number_of_reviews reviews_sorted = reviews_sorted.drop_duplicates(['asin','review_date'], keep='last') t1=reviews_sorted[['review_date','asin','number_of_reviews','star_avg']] t1.columns=['date','asin','number_of_reviews','star_avg'] merged2 = pd.merge(merged,t1,how='left') merged2['number_of_reviews']=merged2.groupby('asin').number_of_reviews.fillna(method='ffill') merged2['number_of_reviews']=merged2.groupby('asin').number_of_reviews.fillna(method='bfill') merged2['star_avg']=merged2.groupby('asin').star_avg.fillna(method='ffill') merged2['star_avg']=merged2.groupby('asin').star_avg.fillna(method='bfill') # hold and buy merged2_head=merged2.head(10000) df_pred = merged2[merged2['T'] < 40] df_pred_head=df_pred.head(10000) df_pred['decision']=0 #don't buy df_pred.loc[(df_pred['T']>5),'decision']=1 #buy df_pred_head=df_pred.head(10000) # ## price diff #price_diff=[] #df_pred['price_diff']=0 #for game in df_pred.asin.unique(): # price_diff.append(0) # for row in range(1,len(df_pred[df_pred.asin==game])): # price_diff.append((df_pred.iloc[row,4]-df_pred.iloc[row-1,4])/df_pred.iloc[row-1,4]) #df_pred['price_diff']=price_diff #df_pred_head=df_pred.head(10000) # # #removing products less than 150 datapoints asd=df_pred.groupby(['asin']).count() asd=asd[asd.date > 150] asd.reset_index(level=0, inplace=True) df_pred=df_pred[df_pred.asin.isin(asd.asin)] df_pred=df_pred.reset_index(drop=True) df_pred=df_pred.dropna(subset=['sales_rank']) #%% # BENCHMARK MODEL #random forest asins=df_pred.asin.unique().tolist() from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectFromModel products=[] accuracies=[] precisions=[] recalls=[] fscores=[] supports=[] d = {} for i in range(len(asins)): d["product" + str(i)] = df_pred[df_pred.asin==asins[i]] benchmark_model={} benchmark_ytest={} for key, value in d.items(): X=value[['lowest_newprice','total_new','total_used','sales_rank']] y=value.decision split_size = round(len(X)*0.3) X_train,X_test = X[0:len(X)-split_size], X[len(X)-split_size:] y_train, y_test = y[0:len(y)-split_size], y[len(y)-split_size:] y_test=y_test.reset_index(drop=True) # from sklearn.model_selection import train_test_split # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 5) randomforest = RandomForestClassifier(random_state=0,n_estimators=100,max_depth=10) model = randomforest.fit(X_train, y_train) # sfm = SelectFromModel(model, threshold=0.03) # sfm.fit(X_train, y_train) # for feature_list_index in sfm.get_support(indices=True): # print(X_train.columns[feature_list_index]) y_test_pred=pd.DataFrame(model.predict(X_test)) test_pred=pd.concat([y_test,y_test_pred],axis=1) benchmark_ytest[str(key)]=test_pred from sklearn.metrics import accuracy_score benchmark_model[str(key)]=accuracy_score(y_test,y_test_pred) from sklearn.metrics import precision_recall_fscore_support as score precision, recall, fscore, support = score(y_test, y_test_pred) products.append(key) accuracies.append(accuracy_score(y_test,y_test_pred)) precisions.append(precision) recalls.append(recall) fscores.append(fscore) supports.append(support) products_df=pd.DataFrame({'products':products}) accuracies_df=pd.DataFrame({'accuracy':accuracies}) precisions_df=pd.DataFrame(precisions, columns=['precision_hold','precision_buy']) recalls_df=pd.DataFrame(recalls, columns=['recall_hold','recall_buy']) fscores_df=pd.DataFrame(fscores, columns=['fscore_hold','fscore_buy']) supports_df=pd.DataFrame(supports, columns=['support_hold','support_buy']) benchmark_scores=pd.concat([products_df,accuracies_df,precisions_df,recalls_df,fscores_df,supports_df],axis=1) benchmark_scores=benchmark_scores.dropna() benchmark_scores=benchmark_scores[benchmark_scores['support_buy']>10] benchmark_scores.precision_buy.mean() #precision is 52.7% benchmark_scores.recall_buy.mean() #recall is 38% benchmark_scores.accuracy.mean() #accuracy is 70% #%% #regression asins=df_pred.asin.unique().tolist() from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.metrics import precision_recall_fscore_support as score products=[] accuracies=[] precisions=[] recalls=[] fscores=[] supports=[] d = {} for i in range(len(asins)): d["product" + str(i)] = df_pred[df_pred.asin==asins[i]] benchmark_model={} benchmark_ytest={} for key, value in d.items(): X=value[['lowest_newprice','total_new','total_used','sales_rank']] y=value['T'] dec=value.decision split_size = round(len(X)*0.3) X_train,X_test = X[0:len(X)-split_size], X[len(X)-split_size:] y_train, y_test = y[0:len(y)-split_size], y[len(y)-split_size:] y_test=y_test.reset_index(drop=True) dec_train,dec_test=dec[0:len(dec)-split_size], dec[len(dec)-split_size:] # from sklearn.model_selection import train_test_split # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 5) randomforest = RandomForestRegressor(random_state=0,n_estimators=100,max_depth=10) model = randomforest.fit(X_train, y_train) # sfm = SelectFromModel(model, threshold=0.03) # sfm.fit(X_train, y_train) # for feature_list_index in sfm.get_support(indices=True): # print(X_train.columns[feature_list_index]) y_test_pred=pd.DataFrame(model.predict(X_test)) y_test_pred['decision']=0 y_test_pred.loc[y_test_pred[0]>5,'decision']=1 y_test_pred=y_test_pred.drop([0],axis=1) test_pred=pd.concat([dec_test,y_test_pred],axis=1) benchmark_ytest[str(key)]=test_pred benchmark_model[str(key)]=accuracy_score(dec_test,y_test_pred) precision, recall, fscore, support = score(dec_test, y_test_pred) products.append(key) accuracies.append(accuracy_score(dec_test,y_test_pred)) precisions.append(precision) recalls.append(recall) fscores.append(fscore) supports.append(support) products_df=pd.DataFrame({'products':products}) accuracies_df=pd.DataFrame({'accuracy':accuracies}) precisions_df=pd.DataFrame(precisions, columns=['precision_hold','precision_buy']) recalls_df=pd.DataFrame(recalls, columns=['recall_hold','recall_buy']) fscores_df=pd.DataFrame(fscores, columns=['fscore_hold','fscore_buy']) supports_df=pd.DataFrame(supports, columns=['support_hold','support_buy']) benchmark_scores=pd.concat([products_df,accuracies_df,precisions_df,recalls_df,fscores_df,supports_df],axis=1) benchmark_scores=benchmark_scores.dropna() benchmark_scores=benchmark_scores[benchmark_scores['support_buy']>10] benchmark_scores.precision_buy.mean() #precision is 51% - 57 benchmark_scores.recall_buy.mean() #recall is 56% - 46 benchmark_scores.accuracy.mean() #accuracy is 78% - 71 #%% # all products (# just a random trial) # #X=df_pred[['total_new','total_used','sales_rank','price_diff']] #y=df_pred.decision # #from sklearn.model_selection import train_test_split #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 5) #randomforest = RandomForestClassifier(random_state=0,n_estimators=100,max_depth=10) #model = randomforest.fit(X_train, y_train) # #sfm = SelectFromModel(model, threshold=0.03) #sfm.fit(X_train, y_train) #for feature_list_index in sfm.get_support(indices=True): # print(X_train.columns[feature_list_index]) #y_test_pred=pd.DataFrame(model.predict(X_test)) # # #from sklearn import metrics #from sklearn.metrics import classification_report # #print("MODEL B1: All Products \n") # #print ('The precision for this classifier is ' + str(metrics.precision_score(y_test, y_test_pred))) #print ('The recall for this classifier is ' + str(metrics.recall_score(y_test, y_test_pred))) #print ('The f1 for this classifier is ' + str(metrics.f1_score(y_test, y_test_pred))) #print ('The accuracy for this classifier is ' + str(metrics.accuracy_score(y_test, y_test_pred))) # #print ('\nHere is the classification report:') #print (classification_report(y_test, y_test_pred)) # #from sklearn.metrics import confusion_matrix #print(pd.DataFrame(confusion_matrix(y_test, y_test_pred, labels=[1, 0]), index=['true:1', 'true:0'], columns=['pred:1', 'pred:0'])) # # IMPROVED MODEL #asins=df_pred.asin.unique().tolist() # ##Accuracy for product 0 #product0=df_pred[df_pred.asin==asins[0]] #X=product0[['lowest_newprice','total_new','total_used','sales_rank','number_of_reviews','star_avg']] #y=product0.decision # # #from sklearn.ensemble import RandomForestClassifier #randomforest = RandomForestClassifier(random_state=0) #model = randomforest.fit(X, y) # #from sklearn.feature_selection import SelectFromModel #sfm = SelectFromModel(model, threshold=0.05) #sfm.fit(X, y) #for feature_list_index in sfm.get_support(indices=True): # print(X.columns[feature_list_index]) # #pd.DataFrame(list(zip(X.columns,model.feature_importances_)), columns = ['predictor','Gini coefficient']) # # #from sklearn.model_selection import train_test_split #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 5) # #model = randomforest.fit(X_train, y_train) # # #y_test_pred=pd.DataFrame(model.predict(X_test)) # #from sklearn.metrics import accuracy_score #accuracy_score(y_test,y_test_pred) # # ##Accuracy for product 1 # #product2=df_pred[df_pred.asin==asins[2]] #X=product2[['lowest_newprice','total_new','total_used','sales_rank','number_of_reviews','star_avg']] #y=product2.decision # # #from sklearn.ensemble import RandomForestClassifier #randomforest = RandomForestClassifier(random_state=0) #model = randomforest.fit(X, y) # #from sklearn.feature_selection import SelectFromModel #sfm = SelectFromModel(model, threshold=0.05) #sfm.fit(X, y) #for feature_list_index in sfm.get_support(indices=True): # print(X.columns[feature_list_index]) # #pd.DataFrame(list(zip(X.columns,model.feature_importances_)), columns = ['predictor','Gini coefficient']) # # #from sklearn.model_selection import train_test_split #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 5) # #model = randomforest.fit(X_train, y_train) # # #y_test_pred=pd.DataFrame(model.predict(X_test)) # #from sklearn.metrics import accuracy_score #accuracy_score(y_test,y_test_pred) # # ##Accuracy for product 7 # #product7=df_pred[df_pred.asin==asins[7]] #X=product7[['lowest_newprice','total_new','total_used','sales_rank','number_of_reviews','star_avg']] #y=product7.decision # # #from sklearn.ensemble import RandomForestClassifier #randomforest = RandomForestClassifier(random_state=0) #model = randomforest.fit(X, y) # #from sklearn.feature_selection import SelectFromModel #sfm = SelectFromModel(model, threshold=0.05) #sfm.fit(X, y) #for feature_list_index in sfm.get_support(indices=True): # print(X.columns[feature_list_index]) # #pd.DataFrame(list(zip(X.columns,model.feature_importances_)), columns = ['predictor','Gini coefficient']) # # #from sklearn.model_selection import train_test_split #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 5) # #model = randomforest.fit(X_train, y_train) # # #y_test_pred=pd.DataFrame(model.predict(X_test)) # #from sklearn.metrics import accuracy_score #accuracy_score(y_test,y_test_pred) # # # # # ##Accuracy for product 9 # #product9=df_pred[df_pred.asin==asins[9]] #X=product9[['lowest_newprice','total_new','total_used','sales_rank','number_of_reviews','star_avg']] #y=product9.decision # # #from sklearn.ensemble import RandomForestClassifier #randomforest = RandomForestClassifier(random_state=0) #model = randomforest.fit(X, y) # #from sklearn.feature_selection import SelectFromModel #sfm = SelectFromModel(model, threshold=0.05) #sfm.fit(X, y) #for feature_list_index in sfm.get_support(indices=True): # print(X.columns[feature_list_index]) # #pd.DataFrame(list(zip(X.columns,model.feature_importances_)), columns = ['predictor','Gini coefficient']) # # #from sklearn.model_selection import train_test_split #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 5) # #model = randomforest.fit(X_train, y_train) # # #y_test_pred=pd.DataFrame(model.predict(X_test)) # #from sklearn.metrics import accuracy_score #print(accuracy_score(y_test,y_test_pred)) #y_test_pred['actual']=y_test.reset_index(drop=True) # #%% # MATCHING QUESTION AND ANSWERS WITH PRODUCTS matching=product[['asin','forum_id']] product_question_asin = pd.merge(product_question,matching, on=['forum_id']) matching=product_question_asin[['asin','forum_id','question_id']] product_answer_asin=pd.merge(product_answer,matching, on=['question_id']) # FEATURE ENGINEERING FOR QUESTIONS AND ANSWERS # for questions questions_sorted=product_question_asin.set_index('question_date').sort_index() questions_sorted['sentiment_total']=questions_sorted.groupby('asin').sentiment.cumsum() questions_sorted['number_of_questions']=questions_sorted.groupby('asin').sentiment.cumcount()+1 questions_sorted['sentiment_avg']=questions_sorted.sentiment_total/questions_sorted.number_of_questions questions_sorted['polarity_total']=questions_sorted.groupby('asin').polarity.cumsum() questions_sorted['polarity_avg']=questions_sorted.polarity_total/questions_sorted.number_of_questions questions_sorted['subjectivity_total']=questions_sorted.groupby('asin').subjectivity.cumsum() questions_sorted['subjectivity_avg']=questions_sorted.subjectivity_total/questions_sorted.number_of_questions questions_sorted['len_question']=questions_sorted.question.apply(len) questions_sorted['len_question_total']=questions_sorted.groupby('asin').len_question.cumsum() questions_sorted['question_lenght_avg']=questions_sorted['len_question_total']/questions_sorted.number_of_questions questions_sorted=questions_sorted.reset_index() questions_sorted = questions_sorted.drop_duplicates(['asin','question_date'], keep='last') questions_useful=questions_sorted[['question_date','asin', 'sentiment_total', 'number_of_questions', 'sentiment_avg', 'polarity_total', 'polarity_avg', 'subjectivity_total', 'subjectivity_avg', 'len_question_total', 'question_lenght_avg']] questions_useful.columns=['date','asin', 'sentiment_total_question', 'number_of_questions', 'sentiment_avg_question', 'polarity_total_question', 'polarity_avg_question', 'subjectivity_total_question', 'subjectivity_avg_question', 'len_question_total', 'question_lenght_avg'] merged_ques = pd.merge(df_pred,questions_useful,how='left') merged_ques[['sentiment_total_question', 'number_of_questions', 'sentiment_avg_question', 'polarity_total_question', 'polarity_avg_question', 'subjectivity_total_question', 'subjectivity_avg_question', 'len_question_total', 'question_lenght_avg']]=merged_ques.groupby('asin')[['sentiment_total_question', 'number_of_questions', 'sentiment_avg_question', 'polarity_total_question', 'polarity_avg_question', 'subjectivity_total_question', 'subjectivity_avg_question', 'len_question_total', 'question_lenght_avg']].fillna(method='ffill') merged_ques[['sentiment_total_question', 'number_of_questions', 'sentiment_avg_question', 'polarity_total_question', 'polarity_avg_question', 'subjectivity_total_question', 'subjectivity_avg_question', 'len_question_total', 'question_lenght_avg']]=merged_ques.groupby('asin')[['sentiment_total_question', 'number_of_questions', 'sentiment_avg_question', 'polarity_total_question', 'polarity_avg_question', 'subjectivity_total_question', 'subjectivity_avg_question', 'len_question_total', 'question_lenght_avg']].fillna(method='bfill') merged_ques_head=merged_ques.head(10000) #for answers product_answer_sorted=product_answer_asin.set_index('answer_date').sort_index() product_answer_sorted['number_of_answers']=product_answer_sorted.groupby('asin').cumcount()+1 product_answer_sorted['sentiment_total']=product_answer_sorted.groupby('asin').sentiment.cumsum() product_answer_sorted['sentiment_avg']=product_answer_sorted.sentiment_total/product_answer_sorted.number_of_answers product_answer_sorted['polarity_total']=product_answer_sorted.groupby('asin').polarity.cumsum() product_answer_sorted['polarity_avg']=product_answer_sorted.polarity_total/product_answer_sorted.number_of_answers product_answer_sorted['subjectivity_total']=product_answer_sorted.groupby('asin').subjectivity.cumsum() product_answer_sorted['subjectivity_avg']=product_answer_sorted.subjectivity_total/product_answer_sorted.number_of_answers product_answer_sorted['len_answer']=product_answer_sorted.answer.apply(len) product_answer_sorted['len_answer_total']=product_answer_sorted.groupby('asin').len_answer.cumsum() product_answer_sorted['answer_lenght_avg']=product_answer_sorted['len_answer_total']/product_answer_sorted.number_of_answers product_answer_sorted=product_answer_sorted.reset_index() product_answer_useful=product_answer_sorted[['answer_date','asin', 'number_of_answers', 'sentiment_total', 'sentiment_avg', 'polarity_total', 'polarity_avg', 'subjectivity_total', 'subjectivity_avg', 'len_answer_total', 'answer_lenght_avg']] product_answer_useful.columns=['date','asin', 'number_of_answers', 'sentiment_total_answer', 'sentiment_avg_answer', 'polarity_total_answer', 'polarity_avg_answer', 'subjectivity_total_answer', 'subjectivity_avg_answer', 'len_answer_total', 'answer_lenght_avg'] merged_ans = pd.merge(merged_ques,product_answer_useful,how='left') merged_ans[ ['number_of_answers', 'sentiment_total_answer', 'sentiment_avg_answer', 'polarity_total_answer', 'polarity_avg_answer', 'subjectivity_total_answer', 'subjectivity_avg_answer', 'len_answer_total', 'answer_lenght_avg']]=merged_ans.groupby('asin')[['number_of_answers', 'sentiment_total_answer', 'sentiment_avg_answer', 'polarity_total_answer', 'polarity_avg_answer', 'subjectivity_total_answer', 'subjectivity_avg_answer', 'len_answer_total', 'answer_lenght_avg']].fillna(method='ffill') merged_ans[ ['number_of_answers', 'sentiment_total_answer', 'sentiment_avg_answer', 'polarity_total_answer', 'polarity_avg_answer', 'subjectivity_total_answer', 'subjectivity_avg_answer', 'len_answer_total', 'answer_lenght_avg']]=merged_ans.groupby('asin')[['number_of_answers', 'sentiment_total_answer', 'sentiment_avg_answer', 'polarity_total_answer', 'polarity_avg_answer', 'subjectivity_total_answer', 'subjectivity_avg_answer', 'len_answer_total', 'answer_lenght_avg']].fillna(method='bfill') merged_ans_head=merged_ans.head(20000) merged_ans.len_answer_total.isna().sum() merged_ans_dropedna=merged_ans.dropna() len(df_pred[df_pred.decision==0])/len(df_pred) #%% # #### IMPROVED MODEL #### #random forest classificiation ## keeping products with more than 150 data points asd=merged_ans_dropedna.groupby(['asin']).count() asd=asd[asd.date > 150] asd.reset_index(level=0, inplace=True) merged_ans_dropedna=merged_ans_dropedna[merged_ans_dropedna.asin.isin(asd.asin)] merged_ans_dropedna=merged_ans_dropedna.reset_index(drop=True) asins=merged_ans_dropedna.asin.unique().tolist() from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.metrics import precision_recall_fscore_support as score # products=[] accuracies=[] precisions=[] recalls=[] fscores=[] supports=[] d = {} for i in range(len(asins)): d["product" + str(i)] = merged_ans_dropedna[merged_ans_dropedna.asin==asins[i]] importance = pd.DataFrame() improved_model={} improved_ytest={} for key, value in d.items(): print(key) X=value[['lowest_newprice','total_new','total_used','sales_rank','number_of_reviews','star_avg']] # X=value.drop(['asin', 'name', 'date', 'list_price','lowest_usedprice','tradein_value','T','decision'],axis=1) y=value.decision ## feature selection randomforest = RandomForestClassifier(random_state=0) model = randomforest.fit(X, y) sfm = SelectFromModel(model, threshold=0.01) sfm.fit(X, y) for feature_list_index in sfm.get_support(indices=True): print(X.columns[feature_list_index]) feature_idx = sfm.get_support() feature_name = X.columns[feature_idx] print(pd.DataFrame(list(zip(X.columns,model.feature_importances_)), columns = ['predictor','Gini coefficient']).sort_values('Gini coefficient',ascending=False)) temp_importance=pd.DataFrame([list(model.feature_importances_)],columns=X.columns) key_index=[key] temp_importance.index = key_index importance=importance.append(temp_importance) X_important = pd.DataFrame(sfm.transform(X)) X_important.columns = feature_name # model split_size = round(len(X_important)*0.3) X_train,X_test = X[0:len(X)-split_size], X[len(X)-split_size:] # X_train,X_test = X_important[0:len(X_important)-split_size], X_important[len(X_important)-split_size:] y_train, y_test = y[0:len(y)-split_size], y[len(y)-split_size:] y_test=y_test.reset_index(drop=True) # from sklearn.model_selection import train_test_split # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 5) randomforest = RandomForestClassifier(random_state=0,n_estimators=100,max_depth=10) model = randomforest.fit(X_train, y_train) # prediction y_test_pred=pd.DataFrame(model.predict(X_test)) test_pred=pd.concat([y_test,y_test_pred],axis=1) improved_ytest[str(key)]=test_pred improved_model[str(key)]=accuracy_score(y_test,y_test_pred) precision, recall, fscore, support = score(y_test, y_test_pred) products.append(key) accuracies.append(accuracy_score(y_test,y_test_pred)) precisions.append(precision) recalls.append(recall) fscores.append(fscore) supports.append(support) products_df=pd.DataFrame({'products':products}) accuracies_df=pd.DataFrame({'accuracy':accuracies}) precisions_df=pd.DataFrame(precisions, columns=['precision_hold','precision_buy']) recalls_df=pd.DataFrame(recalls, columns=['recall_hold','recall_buy']) fscores_df=pd.DataFrame(fscores, columns=['fscore_hold','fscore_buy']) supports_df=pd.DataFrame(supports, columns=['support_hold','support_buy']) improved_scores=pd.concat([products_df,accuracies_df,precisions_df,recalls_df,fscores_df,supports_df],axis=1) improved_scores=improved_scores.dropna() improved_scores=improved_scores[improved_scores['support_buy']!=0] print('precision:',improved_scores.precision_buy.mean()) #precision is 40% print('recall:',improved_scores.recall_buy.mean()) #recall is 43% print('accuracy:',improved_scores.accuracy.mean()) #accuracy is 75.3% # importance dataframe removing zeros importance=importance[importance.lowest_newprice!=0] print(importance.mean().sort_values(ascending=False)) #%% #regression asd=merged_ans_dropedna.groupby(['asin']).count() asd=asd[asd.date > 150] asd.reset_index(level=0, inplace=True) merged_ans_dropedna=merged_ans_dropedna[merged_ans_dropedna.asin.isin(asd.asin)] merged_ans_dropedna=merged_ans_dropedna.reset_index(drop=True) asins=merged_ans_dropedna.asin.unique().tolist() from sklearn.ensemble import RandomForestRegressor from sklearn.feature_selection import SelectFromModel from sklearn.metrics import accuracy_score from sklearn.metrics import precision_recall_fscore_support as score # products=[] accuracies=[] precisions=[] recalls=[] fscores=[] supports=[] d = {} for i in range(len(asins)): d["product" + str(i)] = merged_ans_dropedna[merged_ans_dropedna.asin==asins[i]] importance = pd.DataFrame() improved_model={} improved_ytest={} for key, value in d.items(): print(key) X=value[['lowest_newprice','total_new','total_used','sales_rank','number_of_reviews','star_avg']] # X=value.drop(['asin', 'name', 'date', 'list_price','lowest_usedprice','tradein_value','T','decision'],axis=1) y=value['T'] dec=value.decision ## feature selection randomforest = RandomForestRegressor(random_state=0) model = randomforest.fit(X, y) sfm = SelectFromModel(model, threshold=0.01) sfm.fit(X, y) for feature_list_index in sfm.get_support(indices=True): print(X.columns[feature_list_index]) feature_idx = sfm.get_support() feature_name = X.columns[feature_idx] print(pd.DataFrame(list(zip(X.columns,model.feature_importances_)), columns = ['predictor','Gini coefficient']).sort_values('Gini coefficient',ascending=False)) temp_importance=pd.DataFrame([list(model.feature_importances_)],columns=X.columns) key_index=[key] temp_importance.index = key_index importance=importance.append(temp_importance) X_important = pd.DataFrame(sfm.transform(X)) X_important.columns = feature_name # model split_size = round(len(X_important)*0.3) X_train,X_test = X[0:len(X)-split_size], X[len(X)-split_size:] # X_train,X_test = X_important[0:len(X_important)-split_size], X_important[len(X_important)-split_size:] y_train, y_test = y[0:len(y)-split_size], y[len(y)-split_size:] y_test=y_test.reset_index(drop=True) dec_train,dec_test=dec[0:len(dec)-split_size], dec[len(dec)-split_size:] # from sklearn.model_selection import train_test_split # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 5) randomforest = RandomForestRegressor(random_state=0,n_estimators=100,max_depth=10) model = randomforest.fit(X_train, y_train) # prediction y_test_pred=pd.DataFrame(model.predict(X_test)) y_test_pred['decision']=0 y_test_pred.loc[y_test_pred[0]>5,'decision']=1 y_test_pred=y_test_pred.drop([0],axis=1) test_pred=pd.concat([dec_test,y_test_pred],axis=1) improved_ytest[str(key)]=test_pred improved_model[str(key)]=accuracy_score(dec_test,y_test_pred) precision, recall, fscore, support = score(dec_test, y_test_pred) products.append(key) accuracies.append(accuracy_score(dec_test,y_test_pred)) precisions.append(precision) recalls.append(recall) fscores.append(fscore) supports.append(support) products_df=pd.DataFrame({'products':products}) accuracies_df=pd.DataFrame({'accuracy':accuracies}) precisions_df=
pd.DataFrame(precisions, columns=['precision_hold','precision_buy'])
pandas.DataFrame
import pandas as pd import numpy as np from datetime import date, timedelta from ai4good.utils.logger_util import get_logger from ai4good.models.validate.model_metrics import model_metrics logger = get_logger(__name__) def model_validation_metrics(population:int, model:str, age_categories:list, case_cols:list, df_baseline:pd.DataFrame, df_model:pd.DataFrame, save_output=""): # Initialise metrics if model.upper() == "CM": time_col = "Time" cols_results = ["age", "case"] elif model.upper() == "ABM": time_col = "DAY" cols_results = ["age", "case"] elif model.upper() == "NM": time_col = "Time" cols_results = ["case"] cols_overall = [time_col] + case_cols df_model_metrics =
pd.DataFrame(columns=cols_results)
pandas.DataFrame
import random import time import algorithms # local module import pandas as pd from graphics import graphic as simulation_graphic from process import Process from pathlib import Path def get_cpu_time_unit(): """ a unit of time independent on cpu run this code for simulating time """ started_at = time.time() for i in range(1, 10000): if i % 2 == 0: temp = i / 2 else: temp = 2 * i ended_at = time.time() return ended_at - started_at class Simulator: def __init__(self, algorithm: str): """ run_time attr is for running algorithm in second cpu_total_time is total time of running processes for cpu. The number doesn't have any unit cpu_run_time attr total time of running processes for cpu. unit of time depend on get_cpu_time_unit function :param algorithm: algorithm name that valid in algorithm list """ self.algorithm = algorithm self.algorithm_class = self.get_algorithm_class() self.algorithms_list = ["FCFS", "NonPreemptiveSFJ", "PreemptiveSFJ", "RR", "NonPreemptivePriority", "PreemptivePriority"] self.processes = [] self.total_process = 0 self.run_time = 0 self.cpu_run_time = 0 self.cpu_total_time = 0 self.cpu_utilization = 0 self.throughput = 0 self.average_waiting_time = 0.0 self.average_turnaround_time = 0.0 self.average_response_time = 0.0 def _compress_df_rows(self, df: pd.DataFrame, column: str) -> pd.DataFrame: """ you can compress your dataframe based on your column name. for example you have 1000 rows that their priority column have value of 0 so you average values of all other columns and compress 1000 rows to one :param df: dataframe which you want to compress same column values :param column: the column that you want to compress values :return: compressed dataframe """ # raise error if column not in compress columns if column not in ('priority', 'burst_time', 'arrival_time'): raise KeyError("Your column not valid") df = df.sort_values(column, ignore_index=True) unique_columns = list(df[column].unique()) data = [] # compress column based on column name if column == "priority": # mean over each priority for c in unique_columns: result = df.where(df[column] == c).mean(numeric_only=True) data.append([ result['waiting_time'], result['turnaround_time'], result['response_time'] ]) # create dataframe compress_df = pd.DataFrame( data, columns=['waiting_time', 'turnaround_time', 'response_time'], index=unique_columns) elif column == "burst_time": # divide variety of the column to 20 part and create range of numbers instead of a number pieces = 20 if len(unique_columns) > 20 else 1 batches = len(unique_columns) // pieces index_ranges = [] for c in range(pieces + 1): low_range = batches * c high_range = batches * (c + 1) # mean over the ranges result = df.where((low_range <= df[column]) & (df[column] < high_range)).mean(numeric_only=True) data.append([ result['waiting_time'], result['turnaround_time'], result['response_time'] ]) # create index ranges for creating index of dataframe index_ranges.append(f"{low_range}-{high_range}") # create dataframe compress_df = pd.DataFrame( data, columns=['waiting_time', 'turnaround_time', 'response_time'], index=index_ranges) elif column == "arrival_time": # divide variety of the column to 20 part and create range of numbers instead of a number pieces = 20 if len(unique_columns) > 20 else 1 batches = len(unique_columns) // pieces index_ranges = [] for c in range(pieces + 1): low_range = batches * c high_range = batches * (c + 1) # mean over the ranges result = df.where((low_range <= df[column]) & (df[column] < high_range)).mean(numeric_only=True) data.append([ result['waiting_time'], result['turnaround_time'], result['response_time'] ]) # create index ranges for creating index of dataframe index_ranges.append(f"{low_range}-{high_range}") # create dataframe compress_df = pd.DataFrame( data, columns=['waiting_time', 'turnaround_time', 'response_time'], index=index_ranges) return compress_df def set_algorithm(self, algorithm: str) -> bool: """ changing algorithm and validate algorithm :param algorithm: new algorithm name :return: True if has changed """ self.algorithm = algorithm self.algorithm_class = self.get_algorithm_class() return True @staticmethod def generate_processes_data( path: str = 'data.csv', size: int = 1000, max_arrival_time: int = 100, max_priority=10, max_burst_time=40 ) -> bool: """ Generate process with random numbers for arrival and burst time and priority. then save it to a csv file :param max_burst_time: maximum number for random number of burst time :param max_priority: maximum number for random number of priority :param max_arrival_time: maximum number for random number of arrival time :param path: path to save csv file :param size: number of processes :return: bool """ data = [] # save data as lists of lists then create dataframe. e.g [ [pid1, arrival1], [pid2, arrival2]] for i in range(size): data.append([ i + 1, # PID random.randint(0, max_arrival_time), # arrival_time random.randint(0, max_priority), # priority random.randint(0, max_burst_time), # burst_time ]) df = pd.DataFrame(data, columns=['pid', 'arrival_time', 'priority', 'burst_time']) df.to_csv(path_or_buf=path, index=False) return True def read_processes_data(self, path='data.csv', dataframe=None) -> bool: """ read data from csv file or pandas dataframe one of path or dataframe parms needed :param path: string path of your csv file :param dataframe: you can pass dataframe object :return: a true boolean if everythings goes right """ if isinstance(dataframe, pd.DataFrame): df = dataframe elif path and path.split('.')[-1] == 'csv': df = pd.read_csv(path) else: raise Exception("Your file should be a csv format or pass dataframe object to function") # clear last loaded processes self.processes.clear() for i in range(0, df['pid'].count()): process = Process( pid=df['pid'][i], arrival_time=df['arrival_time'][i], priority=df['priority'][i], burst_time=df['burst_time'][i] ) self.processes.append(process) return True def get_algorithm_class(self): """ find algorithm class based on algorithm folder :return a class """ try: return getattr(algorithms, self.algorithm) except Exception as e: print(e) raise Exception("try again! you have to enter a valid algorithm") def run(self): """ Simulate algorithm and save the result of it """ if len(self.processes) == 0: raise Exception("you have to load processes") # algorithm instance. need process list object algorithm = self.algorithm_class(self.processes) start_time = time.time() # run algorithm result = algorithm.run() end_time = time.time() self.run_time = end_time - start_time # set result of simulation # this processes referred to executed processes in output of algorithm run processes = result['executed_processes'] total_process = len(processes) cpu_total_time = result['cpu_total_time'] cpu_run_time = cpu_total_time * get_cpu_time_unit() throughput = total_process / cpu_total_time cpu_utilization = (cpu_total_time - result['cpu_idle_time']) / cpu_total_time average_waiting_time = sum(process.waiting_time for process in processes) / total_process average_turnaround_time = sum(process.turnaround_time for process in processes) / total_process average_response_time = sum(process.response_time for process in processes) / total_process self.total_process = total_process self.cpu_total_time = cpu_total_time self.cpu_run_time = cpu_run_time self.throughput = throughput self.cpu_utilization = cpu_utilization self.average_waiting_time = average_waiting_time self.average_turnaround_time = average_turnaround_time self.average_response_time = average_response_time # update processes self.processes = processes def save_result_simulation(self): """ Save result of simulation to results/algorithmname.csv :param max_arrival_time: maximum number for random number of arrival time :param path: path to save csv file :param size: number of processes :return: bool """ if not self.cpu_total_time > 0: print("you have to run an algorithm then save it") return self.processes.sort(key=lambda p: p.pid) data = [] columns = [ # process information 'pid', 'arrival_time', 'priority', 'burst_time', 'waiting_time', 'turnaround_time', 'response_time', 'start_time', 'end_time', # simulation information 'total_process', 'run_time', 'cpu_total_time', 'cpu_run_time', 'cpu_utilization', 'throughput', 'average_waiting_time', 'average_turnaround_time', 'average_response_time' ] # save data as lists of lists then create dataframe. e.g [ [pid1, arrival1], [pid2, arrival2]] for process in self.processes: data.append([ process.pid, process.arrival_time, process.priority, process.burst_time, process.waiting_time, process.turnaround_time, process.response_time, process.start_time, process.end_time, ]) # insert simulation information to just first row data[0].extend([ self.total_process, self.run_time, self.cpu_total_time, self.cpu_run_time, self.cpu_utilization, self.throughput, self.average_waiting_time, self.average_turnaround_time, self.average_response_time ]) df = pd.DataFrame(data, columns=columns) # handle path in linux and windows folder_path = Path("results/") df.to_csv(path_or_buf=folder_path / f"{self.algorithm}.csv", index=False) return True def analyze_algorithms(self): # handle path in linux and windows folder_path = Path("results/") columns = [ 'average_waiting_time', 'average_turnaround_time', 'average_response_time' ] algorithms_data = [] exists_algorithms = [] for algo in self.algorithms_list: try: df = pd.read_csv(folder_path / f"{algo}.csv", usecols=columns) algorithms_data.append([ algo, # algorithm name df['average_waiting_time'][0], df['average_turnaround_time'][0], df['average_response_time'][0], ]) exists_algorithms.append(algo) except FileNotFoundError: pass if algorithms_data is None: raise Exception("You have to run one algorithm at least") columns.insert(0, 'name') algorithms_df =
pd.DataFrame(algorithms_data, columns=columns, index=exists_algorithms)
pandas.DataFrame
# author: <NAME> # date: 2021-11-27 """This script imports preprocessed test data and fitted Ridge and RandomForestRegressor models. It then evaluates them on the test set and outputs evaluation metrics to the output directory. Usage: fit_model.py --source_data=<filepath> --output_dir=<filepath> Options: --source_data=<filepath> directory containing transformed data (this is a required option) --output_dir=<filepath> directory to output figures and tables (this is a required option) """ from docopt import docopt import random import numpy as np import pandas as pd import altair as alt import sklearn.metrics as sk import math import pickle import scipy.sparse from sklearn.model_selection import train_test_split from altair_saver import save from sklearn.compose import ColumnTransformer, make_column_transformer from sklearn.dummy import DummyClassifier, DummyRegressor from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_selection import RFE, RFECV from sklearn.impute import SimpleImputer from sklearn.linear_model import LogisticRegression, Ridge, RidgeCV from sklearn.metrics import make_scorer from sklearn.model_selection import ( GridSearchCV, RandomizedSearchCV, ShuffleSplit, cross_val_score, cross_validate, train_test_split, ) from sklearn.pipeline import Pipeline, make_pipeline from sklearn.preprocessing import ( OneHotEncoder, OrdinalEncoder, PolynomialFeatures, StandardScaler, ) from sklearn.pipeline import Pipeline, make_pipeline opt = docopt(__doc__) def main(opt): input_dir = opt['--source_data'] output_dir = opt['--output_dir'] # load test data from input directory print("loading test data..") X_transformed_test_sparse = scipy.sparse.load_npz(input_dir + '/x_test_sparse.npz') X_transformed_test = pd.DataFrame.sparse.from_spmatrix(X_transformed_test_sparse) y_test = pd.read_csv(input_dir + '/y_test.csv') feats = pd.read_csv(input_dir + '/feature_names.csv').iloc[:,0] # load models from pickle files print("loading fitted models..") ridge_model = pickle.load(open("results/models/ridge_model.pickle", 'rb')) rf_model = pickle.load(open("results/models/rf_model.pickle", 'rb')) # generate predictions on test set y_pred_ridge = ridge_model.predict(X_transformed_test) y_pred_rf = rf_model.predict(X_transformed_test) print("creating tables and figures..") # create scores dataframe and save it to output directory r2_ridge = round(sk.r2_score(y_test, y_pred_ridge), 2) r2_rf = round(sk.r2_score(y_test, y_pred_rf), 2) rmse = round(math.sqrt(sk.mean_squared_error(y_test, y_pred_ridge)), 2) rmse_rf = round(math.sqrt(sk.mean_squared_error(y_test, y_pred_rf)), 2) scores = { "Metric": ["R2", "RMSE"], "Ridge Scores": [r2_ridge, rmse], } test_scores = pd.DataFrame(scores) test_scores.to_csv(output_dir + '/tables/test_scores.csv', index = False) print("saved model test results to: " + output_dir) # Plot the predicted values against true values, then save the graph in the output directory y_data = { "Ridge precitions": y_pred_ridge, "y_actual": y_test.iloc[:, 0] } salary_data = pd.DataFrame(y_data) point = alt.Chart(salary_data, title='Ridge regression effectiveness in predicting salary values').mark_circle(opacity = 0.5).encode( alt.X("y_actual", title="Actual Salary"), alt.Y("Ridge precitions", title="Predicted Salary") ) line = pd.DataFrame({ 'x': [0, 500000], 'y': [0, 500000], }) line_plot = alt.Chart(line).mark_line(color= 'red').encode( x= 'x', y= 'y', ) chart = point + line_plot chart.save(output_dir + "/figures/predicted_vs_actual_chart.png") print("saved model evaluation chart to: " + output_dir) # create model coefficient dataframes and save them to the output directory neg_coefficients_df = pd.DataFrame(data=ridge_model.coef_, index=feats, columns=["coefficient"]).sort_values("coefficient")[:10].reset_index() neg_coefficients_df.columns = ["Feature", "Coefficient"] pos_coefficients_df =pd.DataFrame(data=ridge_model.coef_, index=feats, columns=["coefficient"]).sort_values("coefficient", ascending = False)[:10].reset_index() pos_coefficients_df.columns = ["Feature", "Coefficient"] ridge_feats = pd.DataFrame(data=ridge_model.coef_, index=feats, columns=["coefficient"]).sort_values(by = "coefficient", ascending = False).reset_index() rf_feats = pd.DataFrame(data=rf_model.feature_importances_, index=feats, columns=["coefficient"]).sort_values(by = "coefficient", ascending = False).reset_index() rf_coef_df = pd.DataFrame(rf_feats) ridge_coef_df =
pd.DataFrame(ridge_feats)
pandas.DataFrame
import json import pickle from datetime import timedelta, datetime import joblib import numpy as np import pandas as pd class Processor: def __init__(self, raw_data: dict): self.df = self.clean(raw_data) def clean(self, raw_data): df = pd.DataFrame() df["Confirmed"] =
pd.DataFrame.from_dict(raw_data, orient="index")
pandas.DataFrame.from_dict
## Online battery validation import os import glob import pandas as pd import numpy as np import pickle class BESS(object): def __init__(self, max_energy, max_power, init_soc_proc, efficiency): self.soc = init_soc_proc self.max_e_capacity = max_energy self.efficiency = efficiency self.energy = self.max_e_capacity * (self.soc)/100 self.power = max_power def calculate_NLF(self, net_load_day): """ Net load factor """ df = pd.DataFrame(net_load_day).abs() NLF = df.mean()/df.max() return NLF[0] def calculate_SBSPM(self, NR, LE, UE, error=0.01): """ Calculates second by second Service Performance Measure (SBSPM) """ if (NR >= LE - error) and (NR <= UE + error): SBSPM = 1 elif (NR > UE + error): SBSPM = max([1-abs(NR - UE), 0]) elif (NR < LE - error): SBSPM = max([1-abs(NR - LE), 0]) else: raise ValueError('The NR is undefined {}'.format(NR)) return SBSPM def average_SPM_over_SP(self, SBSPM_list): """ Averages SPM over Settlement period """ SPM = sum(SBSPM_list)/1800 return SPM def check_availability(self, SPM): """ Returns availability factor """ if SPM >= 0.95: availability_factor = 1 elif (SPM >= 0.75) and (SPM < 0.95): availability_factor = 0.75 elif (SPM >= 0.5) and (SPM < 0.75): availability_factor = 0.5 elif (SPM < 0.5): availability_factor = 0 return availability_factor def save_to_pickle(name, list_to_save, save_path): with open(os.path.join(save_path, '{}.pkl'.format(name)), 'wb') as f: pickle.dump(list_to_save, f) return def load_from_pickle(name, save_path): with open(os.path.join(save_path, '{}.pkl'.format(name)), 'rb') as f: p = pickle.load(f) return p import os import pandas as pd path = "." bess_name = "sonnen" apath = os.path.join(path, 'simulations_{}'.format(bess_name), '{}'.format(1),'agent_{}.csv'.format(1)) nl = pd.read_csv(apath).loc[:,['nl_a{}'.format(1)]] pb = pd.read_csv(apath).loc[:,['pb_a{}'.format(1)]] c_reg = pd.read_csv(apath).loc[:,['c_reg_a{}'.format(1)]] #flex_down = pd.read_csv(apath).loc[:,['flex_down_a{}'.format(1)]] #flex_up = pd.read_csv(apath).loc[:,['flex_up_a{}'.format(1)]] apath = os.path.join(path, 'forecasts', bess_name, 'min_power_forecast.csv') min_efr_forecast =
pd.read_csv(apath, sep=",")
pandas.read_csv
''' ilf core utilities ''' import sys import re import math import json import io import pandas as pd from itertools import chain import pytricia as pt from .numbers import IP4PROTOCOLS, IP4SERVICES # -- Helpers def lowest_bit(num): bit, low = -1, (num & -num) if not low: return 0 while(low): low >>= 1 bit += 1 return bit def binarr(n): return [n >> i & 1 for i in range(n.bit_length() - 1, -1, -1)] def is_power2(n): 'check if n is power of 2, note: 2**0 is 1 is valid' return (n>0 and (n & (n-1) == 0)) def pp2portstr(port, proto): 'convert port, protocol numbers to port string' return str(Ival.port_proto(int(port), int(proto))) class Ip4Protocol(object): 'translate between ipv4 protocol number and associated name' def __init__(self): self._num_toname = {} # e.g. 6 -> 'tcp' self._num_todesc = {} # e.g. 6 -> 'Transmission Control' self._name_tonum = {} # e.e. 'tcp' -> 6 for k, (name, desc) in IP4PROTOCOLS.items(): self._num_toname[k] = name self._num_todesc[k] = desc self._name_tonum[name] = k # TODO: assumes name's are unique def getprotobyname(self, name): 'turn protocol name into its ip protocol number' err = 'invalid ipv4 protocol name: {!r}' rv = self._name_tonum.get(name.lower(), None) if rv is None: raise ValueError(err.format(name)) return rv def getnamebyproto(self, num): 'turn ipv4 protocol number into its name' err = 'invalid ipv4 protocol number {}' rv = self._num_toname.get(num, None) if rv is None: raise ValueError(err.format(num)) return rv class Ip4Service(object): 'translate between ipv4 service name and associated portstrings' def __init__(self): self._service_toports = {} # e.g https -> ['443/tcp', '443/udp'] self._port_toservice = {} # 'port/proto' -> ip4-service-name for portstr, service in IP4SERVICES.items(): self._port_toservice[portstr] = service self._service_toports.setdefault(service, []).append(portstr) def getportsbyserv(self, name): 'translate service name (eg https) to a list of portstrings' rv = self._service_toports.get(name.lower(), []) return rv def getservbyport(self, portstr): 'translate a portstring to a service name' rv = self._port_toservice.get(portstr.lower(), '') return rv def set_service(self, service, portstrings): 'set known ports for a service, eg http->[80/tcp]' # TODO: check validity, remove spaces etc ... service = service.strip().lower() portstrings = [portstr.strip().lower() for portstr in portstrings] self._service_toports[service] = portstrings for portstr in portstrings: self._port_toservice[portstr] = service IPP = Ip4Protocol() # for use w/ Ival (ipv4 only) class Ival(object): 'helper class that abstracts PORTSTR or IP' INVALID, IP, PORTSTR = (0, 1, 2) # types of Ival's TYPE = {0: 'INVALID', 1: 'IP', 2: 'PORTSTR'} TYPES = (INVALID, IP, PORTSTR) def __init__(self, type_, start, length): 'create Ival from specified type & start, length' self.type = type_ self.start = start self.length = length # -- alternate constructors @classmethod def ip_pfx(cls, value): 'Create Ival IP from a.b.c.d/e' if value == 'any': return cls(cls.IP, 0, 2**32) x = value.split('/', 1) err = 'Invalid ip prefix {!r}' plen = 32 if len(x) == 1 else int(x[1]) if plen < 0 or plen > 32: raise ValueError(err.format(value)) x = list(map(int, x[0].split('.'))) if len(x) < 1 or len(x) > 4: raise ValueError(err.format(value)) elif len(x) < 4: x = (x + [0, 0, 0, 0])[0:4] for digit in x: if digit < 0 or digit > 255: raise ValueError(err.format(value)) return cls(cls.IP, x[0]*2**24 + x[1]*2**16 + x[2]*2**8 + x[3], 2**(32-plen)) @classmethod def port_pfx(cls, value): 'create Ival PORTSTR from port expressed as prefix a.b.c.d/e' return Ival.ip_pfx(value).switch(cls.PORTSTR) @classmethod def port_str(cls, value): 'Create Ival from <port>/<proto>' value = value.lower().strip() err = 'Invalid port string {!r}' if value == 'any/any' or value == 'any': return cls(cls.PORTSTR, 0, 2**32) x = value.split('/') # port(range)/proto-name if len(x) != 2: raise ValueError(err.format(value)) x[0:1] = x[0].split('-') # only split port(range) on '-' x = [y.strip() for y in x] if len(x) == 2: # port/proto or any/proto proto_num = IPP.getprotobyname(x[1]) if x[0] == 'any': length = 2**16 base = 0 else: length = 1 base = int(x[0]) if base < 0 or base > 2**16 - 1: raise ValueError(err.format(value)) return cls(cls.PORTSTR, proto_num * 2**16 + base, length) elif len(x) == 3: # start-stop/proto-name proto_num = IPP.getprotobyname(x[2]) start, stop = int(x[0]), int(x[1]) if start > stop: start, stop = stop, start length = stop - start + 1 if start < 0 or start > 2**16 - 1: raise ValueError(err.format(value)) if stop < 0 or stop > 2**16 - 1: raise ValueError(err.format(value)) return cls(cls.PORTSTR, proto_num * 2**16 + start, length) @classmethod def port_proto(cls, port, proto): 'Create Ival from <port>, <proto>' port = int(port) proto = int(proto) err = 'Invalid port protocol numbers {!r}, {!r}' if proto < 0 or proto > 255 or port < 0 or port > 2**16 - 1: raise ValueError(err.format(port, proto)) return cls(cls.PORTSTR, port + proto * 2**16, 1) # -- comparisons def __repr__(self): return '({!r}, {!r})'.format(self.TYPE[self.type], str(self)) def __str__(self): if self.type == self.IP: if self.length == 2**32: return '0.0.0.0/0' # 'any' elif self.length == 1: plen = '' else: plen = '/{}'.format(32 - int(math.log( 1 + self.length)//math.log(2))) d1 = (self.start // 2**24) & 0xFF d2 = (self.start // 2**16) & 0xFF d3 = (self.start // 2**8) & 0xFF d4 = (self.start) & 0xFF return '{}.{}.{}.{}{}'.format(d1, d2, d3, d4, plen) elif self.type == self.PORTSTR: if self.length == 2**32: return 'any/any' elif self.length == 2**16: ports = 'any' elif self.length == 1: ports = str(self.start & 0xFFFF) else: start = self.start & 0xFFFF ports = '{}-{}'.format(start, start + self.length - 1) proto = int((self.start // 2**16) & 0xFF) name = IPP.getnamebyproto(proto) return '{}/{}'.format(ports, name) else: return 'invalid' def __len__(self): return self.length def __contains__(self, other): return self.type == other.type and\ self.start <= other.start and\ self.start + self.length >= other.start + other.length def __hash__(self): 'needed because of __eq__, donot modify obj when hashed' return hash(self.values()) def __ne__(self, other): return self.values() != other.values() def __eq__(self, other): # max intervals (len is 2**32) are equal regardless of start value if self.type == other.type and self.length == 2**32: return other.length == self.length return self.values() == other.values() def __lt__(self, other): return self.values() < other.values() def __le__(self, other): 'self starts to the left of other or is smaller' return self.values() <= other.values() def __gt__(self, other): 'self starts to the right of other' return self.values() > other.values() def __ge__(self, other): 'self starts to the right of other' return self.values() >= other.values() def __iter__(self): 'iterate through the interval with new ivals of len=1' self.idx = -1 return self def __next__(self): self.idx += 1 if self.idx < self.length: return Ival(self.type, self.start + self.idx, 1) raise StopIteration # -- methods def values(self, values=None): 'get the values of the ival object' return (self.type, self.start, self.length) def is_valid(self): 'return True if valid, False otherwise' if self.type not in self.TYPES: return False if self.start < 0 or self.start > 2**32 - 1: return False if self.length < 0 or self.length > 2**32 - 1: return False return True def prefix(self): 'return an new IP-typed Ival for this ival' ival = self.network() ival.type = Ival.IP return ival def network(self): 'return new ival for the first value' # keeps the prefix (ival) length, only mask start if its IP # is a no-op for types != 'IP' (!) mask = 2**32 - self.length start = self.start & mask if self.type == Ival.IP else self.start return Ival(self.type, start, self.length) def broadcast(self): 'return new ival for the last value' # TODO: Ival('0/0').broadcast() == Ival('255.255.255.255') ?? # should broadcast yield an address/32 or address/pfxlen ?? imask = self.length - 1 start = self.start | imask if self.type == Ival.IP else self.start return Ival(self.type, start, self.length) def address(self): 'return new ival with length 1 for start value' return Ival(self.type, self.start, 1) def mask(self): 'return the mask as quad dotted string' if self.type == self.IP: mask = 2**32 - self.length d1 = (mask // 2**24) & 0xFF d2 = (mask // 2**16) & 0xFF d3 = (mask // 2**8) & 0xFF d4 = (mask) & 0xFF return '{}.{}.{}.{}'.format(d1, d2, d3, d4) raise ValueError('type {!r} not a prefix'.format(self.TYPE[self.type])) def imask(self): 'return the inverse mask as quad dotted string' if self.type == self.IP: imask = self.length - 1 d1 = (imask // 2**24) & 0xFF d2 = (imask // 2**16) & 0xFF d3 = (imask // 2**8) & 0xFF d4 = (imask) & 0xFF return '{}.{}.{}.{}'.format(d1, d2, d3, d4) raise ValueError('type {!r} not a prefix'.format(self.TYPE[self.type])) def is_any(self): return self.length == 2**32 # any-interval has max length def port(self): 'return new Ival with type set as PORTSTR' return Ival(Ival.PORTSTR, self.start, self.length) def switch(self, ival_type): 'switch Ival.type to ival_type' if ival_type not in self.TYPES: raise ValueError('Unknown Ival type {!r}'.format(ival_type)) self.type = ival_type return self # -- summarization def splice(self, ival_type=None): 'return a list of new prefix-like intervals, override type if given' if ival_type and ival_type not in self.TYPES: raise ValueError('Unknown Ival type {!r}'.format(ival_type)) rv = [] start, length = self.start, self.length ival_type = ival_type if ival_type else self.type maxx = start + length while start < maxx: lbit = lowest_bit(start) hbit = length.bit_length() maxlen = 2**lbit newlen = maxlen if length > maxlen else 2**(hbit-1) rv.append((start, newlen)) start, length = start + newlen, length - newlen return [Ival(ival_type, x, y) for x, y in rv] @classmethod def combine(cls, x, y): 'if possible, return a combined ival, None otherwise' # border cases if x is None and y is None: return None elif y is None: return cls(*x.values()) elif x is None: return cls(*y.values()) elif x.type != y.type: return None # x,y two valid Ivals of same type # - intervals are the same if x == y: return cls(*x.values()) # - interval inside the other interval if x in y: return cls(*y.values()) if y in x: return cls(*x.values()) # ensure x starts to the left of y x, y = (x, y) if x.start <= y.start else (y, x) # type dependent situations if x.type == cls.PORTSTR: # combine adjacent intervals if x.start + x.length == y.start: return cls(x.type, x.start, x.length + y.length) # combine partially overlapping intervals if x.start + x.length > y.start: ivlen = max(x.start + x.length, y.start + y.length) - x.start return cls(x.type, x.start, ivlen) if x.type == cls.IP: # pfxs can only be combined if: # - intervals are adjacent # - lengths are equal # - lowest start address does not change with doubling of mask if x.length == y.length and x.start + x.length == y.start: # x.start MUST be the network() address of the ival! if x.start == x.start & (2**32 - 2*x.length): return cls(x.type, x.start, 2*x.length) return None # no joy @classmethod def summary(cls, ivals): 'summarize a (heterogeneous) list of port/prefix-intervals' # reverse since this sorts on type, start & length in ascending order # originals go back on the heap, new ivals go onto rv heap = list(reversed(sorted(i.network() for i in ivals))) rv = [] while len(heap): x = heap.pop() y = heap.pop() if len(heap) else None if y: z = cls.combine(x, y) # z is None if not combined if z: heap.append(z) # combined range back on heap continue # start again else: heap.append(y) # push back for later combine attempt y = rv.pop() if len(rv) else None if y: z = cls.combine(x, y) # y is None when x combines x+y if z: heap.append(z) # combined range back on heap else: rv.append(y) # could not combine, both goto rv and rv.append(x) # make sure to keep rv ordering intact else: rv.append(x) return [Ival(*i.values()) for i in rv] # ensure new objs are returned @classmethod def pfx_summary(cls, ivals): 'summarize the IP-s in ivals, returns only IP-pfxs' return cls.summary(i for i in ivals if i.type == cls.IP) @classmethod def port_summary(cls, ivals): 'summarize the PORTSTR-s in ivals, returns only PORTSTRs' return cls.summary(i for i in ivals if i.type == cls.PORTSTR) @classmethod def portpfx_summary(cls, ivals): 'summarize PORTSTR-s and return them as ip prefixes' PORTSTR, IP = cls.PORTSTR, cls.IP portpfxs = [y for x in ivals if x.type==PORTSTR for y in x.splice(IP)] return cls.summary(portpfxs) class Ip4FilterError(Exception): pass class Ip4Match(object): __slots__ = 'rule action name object'.split() def __init__(self, rule, action, name, obj): self.rule = rule self.action = action self.name = name self.object = obj class Ip4Filter(object): ''' A class for ip session lookup's via src, dst & portstring - action() -> yields associated action or nomatch value - match() -> yields match dict or nomatch value - get() -> match dict { 'rule': Matched rule number 'name' : the name of rule (or '') 'action': the rule's action 'object': the rule's python object (or None) } ''' def __init__(self, nomatch=None): self._src = pt.PyTricia() # pfx -> set(rids) - Ival(src ip pfx) self._dst = pt.PyTricia() # pfx -> set(rids) - Ival(dst ip pfx) self._srv = pt.PyTricia() # pfx'-> set(rids) - Ival(dport/protocol) self._act = {} # rid -> action (lower cased) self._obj = {} # rid -> any python object self._tag = {} # rid -> name tag of rule if any, else '' self._nomatch = nomatch # return value when there is no match at all def __len__(self): 'the number of rules in the filter' return len(self._act) def _lines(self, csv=False): 'return filter as lines for printing' # {rule_id: {src:[..], dst:[..], srv: [..], name: str, action: str, obj: obj}} rules = sorted(self.as_dict.items()) # rules dict -> ordered [(k,v)] fields = 'rule name src dst srv action obj'.split() fmt = '{!s:<5} {!s:<15} {!s:21} {!s:21} {!s:16} {!s:7} {!s}' fmt = '{},{},{},{},{},{},{}' if csv else fmt lines = [fmt.format(*fields)] # csv-header of field names for rid, rule in rules: maxl = max(len(rule['src']), len(rule['dst']), len(rule['srv'])) for lnr in range(0, maxl): rid = rid if lnr == 0 else '' tag = rule['name'] if lnr == 0 else '' src = rule['src'][lnr] if lnr < len(rule['src']) else '' dst = rule['dst'][lnr] if lnr < len(rule['dst']) else '' prt = rule['srv'][lnr] if lnr < len(rule['srv']) else '' act = rule['action'] if lnr == 0 else '' obj = json.dumps(rule['obj']) if lnr == 0 else '' obj = '' if obj in ['null', '""'] else obj lines.append(fmt.format(rid, tag, src, dst, prt, act, obj)) return lines def _set_rid(self, rid, tbl, ival): 'set/add to rule-id on single prefix in specific table' pfx = str(ival) try: if tbl.has_key(pfx): # find the exact prefix tbl[pfx].add(rid) # add to existing prefix else: tbl[pfx] = set([rid]) # it's a new prefix # propagate rid to more specifics for kid in tbl.children(pfx): # propagate rid to more specifics tbl[kid].add(rid) # adopt rid's matched by less specific parent (if any) parent = tbl.parent(pfx) if parent: tbl[pfx] = tbl[pfx].union(tbl[parent]) except ValueError as e: fmt = 'invalid prefix? {}: {}' print(fmt.format(pfx, repr(e)), file=sys.stderr) sys.exit(1) return self def _add(self, rid, srcs, dsts, srvs, name='', action='', obj=None): 'add Ivals to a new rule or just add to an existing rule' for ival in Ival.pfx_summary(srcs): self._set_rid(rid, self._src, ival) for ival in Ival.pfx_summary(dsts): self._set_rid(rid, self._dst, ival) for ival in Ival.portpfx_summary(srvs): self._set_rid(rid, self._srv, ival) # name,action are strings; action always lowercase name = '' if name is None else str(name).strip() action = '' if action is None else str(action).strip().lower() # set attributes if not already present self._act.setdefault(rid, action) self._obj.setdefault(rid, obj) self._tag.setdefault(rid, name) return self # -- build methods @classmethod def compile(cls, fname): from . import comp return comp.compile(fname) def add(self, rid, srcs, dsts, srvs, action='', name='', obj=None): 'add src-list, dst-list and or list of srvs to a new/old rule' # sanity check arguments if not isinstance(rid, int): raise TypeError('expected an int, not {!r}'.format(rid)) for x in [srcs, dsts, srvs]: if not isinstance(x, (list, tuple)): raise TypeError('expected a list, not {!r}'.format(x)) srcs = [Ival.ip_pfx(x) for x in srcs] dsts = [Ival.ip_pfx(x) for x in dsts] srvs = [Ival.port_str(x) for x in srvs] return self._add(rid, srcs, dsts, srvs, name, action, obj) def ruleset(self, src=None, dst=None, srv=None): 'return the set of rule ids matched by src and/or dst and/or service' # - finds matching rule sets by prefix lookups per item # returns the minimum rule nr of intersection try: rv = [] # collect required matches if src is not None: rv.append(self._src[src]) if dst is not None: rv.append(self._dst[dst]) if srv is not None: # encode as pfx to index a PyTricia table pfx = str(Ival.port_str(srv).switch(Ival.IP)) rv.append(self._srv[pfx]) if len(rv): return set.intersection(*rv) return set() except (KeyError, ValueError): return set() except TypeError: # invalid value supplied print('ruleset type error on', src, dst, srv) return set() # -- usage methods def match(self, src, dst, srv=None): 'return a match object or the nomatch value' rids = self.ruleset(src, dst, srv) if len(rids) == 0: return self._nomatch rid = min(rids) return Ip4Match(rid, self._act.get(rid, None), self._tag.get(rid, ''), self._obj.get(rid, None)) # -- to/from CSV @property def as_dict(self): 'reconstruct the rules in a dict of dicts' # {rule nr: {src:[..], dst:[..], srv: [..], action: str, name: str, obj: {..}}} rules = {} for pfx in self._src.keys(): for rulenr in self._src[pfx]: rules.setdefault(rulenr, {}).setdefault('src', []).append(pfx) try: for pfx in self._dst.keys(): for rulenr in self._dst[pfx]: rules[rulenr].setdefault('dst', []).append(pfx) for pfx in self._srv.keys(): # portstr encoded as a pfx for rulenr in self._srv[pfx]: rules[rulenr].setdefault('srv', []).append(pfx) for rulenr, action in self._act.items(): rules[rulenr]['action'] = action for rulenr, obj in self._obj.items(): rules[rulenr]['obj'] = obj for rulenr, name in self._tag.items(): rules[rulenr]['name'] = name except KeyError as e: errfmt = 'Error in rule {}:{}' raise Exception(errfmt.format(rulenr, repr(e))) for r, rule in rules.items(): # first summarize auto-added more specifics (for set calculations) rule['src'] = Ival.summary(map(Ival.ip_pfx, rule['src'])) rule['dst'] = Ival.summary(map(Ival.ip_pfx, rule['dst'])) rule['srv'] = Ival.summary(map(Ival.port_pfx, rule['srv'])) # next stringify the ivals rule['src'] = list(map(str, rule['src'])) rule['dst'] = list(map(str, rule['dst'])) rule['srv'] = list(map(str, rule['srv'])) return rules def to_csv(self): 'write ruleset to csv-file' rv = [] for line in self._lines(csv=True): rv.append(line) return '\n'.join(rv) def from_csv(self, text): 'read ruleset from csv-text' inp = io.StringIO(text + '\n') try: df =
pd.read_csv(inp, skipinitialspace=True)
pandas.read_csv
''' DEMO UTILITIES ''' #%% Import Python modules import os import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy import stats from matplotlib.patches import Rectangle from fcgadgets.macgyver import utilities_general as gu from fcgadgets.cbrunner import cbrun_utilities as cbu #%% def GetSingleEnsembleResults(meta): v0=[] for iScn in range(meta['Project']['N Scenario']): v0.append(cbu.LoadSingleOutputFile(meta,iScn,0,0)) return v0 #%% def CalculateAggregateVariables(meta,v1): for iScn in range(meta['Project']['N Scenario']): # Calculate carbon content of dead wood, organic and mineral soil horizons following Shaw et al. (2017) v1[iScn]['SoilOrgH']=v1[iScn]['C_Eco_Pools'][:,:,meta['Core']['iEP']['LitterVF']]+ \ v1[iScn]['C_Eco_Pools'][:,:,meta['Core']['iEP']['LitterS']] v1[iScn]['SoilMinH']=v1[iScn]['C_Eco_Pools'][:,:,meta['Core']['iEP']['SoilVF']]+ \ v1[iScn]['C_Eco_Pools'][:,:,meta['Core']['iEP']['SoilS']]+ \ v1[iScn]['C_Eco_Pools'][:,:,meta['Core']['iEP']['SoilS']] v1[iScn]['DeadWood']=v1[iScn]['C_Eco_Pools'][:,:,meta['Core']['iEP']['SnagStem']]+ \ v1[iScn]['C_Eco_Pools'][:,:,meta['Core']['iEP']['SnagBranch']]+ \ v1[iScn]['C_Eco_Pools'][:,:,meta['Core']['iEP']['LitterM']]+ \ v1[iScn]['C_Eco_Pools'][:,:,meta['Core']['iEP']['LitterF']] v1[iScn]['C_BiomassAG_Tot']=np.sum(v1[iScn]['C_Eco_Pools'][:,:,meta['Core']['iEP']['BiomassAboveground']],axis=2) v1[iScn]['C_BiomassBG_Tot']=np.sum(v1[iScn]['C_Eco_Pools'][:,:,meta['Core']['iEP']['BiomassBelowground']],axis=2) v1[iScn]['C_BiomassAG_Tot'][np.isnan(v1[iScn]['C_BiomassAG_Tot'])]=0 v1[iScn]['C_Eco_Tot']=np.sum(v1[iScn]['C_Eco_Pools'],axis=2) v1[iScn]['C_Eco_Tot']=np.sum(v1[iScn]['C_Eco_Pools'],axis=2) v1[iScn]['C_Eco_Tot'][np.isnan(v1[iScn]['C_Eco_Tot'])]=0 #v1[iScn]['Sum']['C_Forest']=v1[iScn]['Sum']['C_Biomass_Tot']+v1[iScn]['Sum']['C_DeadWood_Tot']+v1[iScn]['Sum']['C_Litter_Tot']+v1[iScn]['Sum']['C_Soil_Tot'] return v1 #%% Tabulate responses based on scenario comparison of specified time period def CompareScenarios(meta,v1,iB,iP,iT): #-------------------------------------------------------------------------- # Percent response of fluxes #-------------------------------------------------------------------------- dFluxRel={} dFluxRel['NPP']=np.round(np.mean((v1[iP]['C_NPP_Tot'][iT]-v1[0]['C_NPP_Tot'][iT])/v1[iB]['C_NPP_Tot'][iT]*100)) dFluxRel['Gross Growth']=np.round(np.mean((v1[iP]['C_G_Gross_Tot'][iT]-v1[0]['C_G_Gross_Tot'][iT])/v1[iB]['C_G_Gross_Tot'][iT]*100)) cb0=np.mean(v1[iB]['C_G_Gross'][iT,0,meta['Core']['iEP']['Foliage']]) cp0=np.mean(v1[iP]['C_G_Gross'][iT,0,meta['Core']['iEP']['Foliage']]) dFluxRel['Foliage production']=np.round((cp0-cb0)/cb0*100) ind=np.where(np.array(meta['Core']['Name Pools Eco'])=='RootFine')[0] cb0=np.mean(v1[iB]['C_G_Gross'][iT,0,ind]) cp0=np.mean(v1[iP]['C_G_Gross'][iT,0,ind]) dFluxRel['Fine root production']=np.round((cp0-cb0)/cb0*100) dFluxRel['Net Growth']=np.round(np.mean((v1[iP]['C_G_Net_Tot'][iT]-v1[iB]['C_G_Net_Tot'][iT])/v1[iB]['C_G_Net_Tot'][iT]*100)) dFluxRel['Tree Mortality']=np.round(np.mean((v1[iP]['C_M_Reg_Tot'][iT]-v1[iB]['C_M_Reg_Tot'][iT])/v1[iB]['C_M_Reg_Tot'][iT]*100)) ind=np.where(np.array(meta['Core']['Name Pools Eco'])=='Foliage')[0] cb0=np.mean(v1[iB]['C_LF'][iT,0,ind]);cp0=np.mean(v1[iP]['C_LF'][iT,0,ind]) ind=np.where(np.array(meta['Core']['Name Pools Eco'])=='Branch')[0] cb0=cb0+np.mean(v1[iB]['C_LF'][iT,0,ind]);cp0=cp0+np.mean(v1[iP]['C_LF'][iT,0,ind]) dFluxRel['Foliage+Branch turnover']=np.round((cp0-cb0)/cb0*100) ind=np.where(np.array(meta['Core']['Name Pools Eco'])=='RootCoarse')[0] cb0=np.mean(v1[iB]['C_LF'][iT,0,ind]);cp0=np.mean(v1[iP]['C_LF'][iT,0,ind]) dFluxRel['Coarse root turnover']=np.round((cp0-cb0)/cb0*100) ind=np.where(np.array(meta['Core']['Name Pools Eco'])=='RootFine')[0] cb0=np.mean(v1[iB]['C_LF'][iT,0,ind]);cp0=np.mean(v1[iP]['C_LF'][iT,0,ind]) dFluxRel['Fine root turnover']=np.round((cp0-cb0)/cb0*100) dFluxRel['Litterfall']=np.round(np.mean((v1[1]['C_LF_Tot'][iT]-v1[0]['C_LF_Tot'][iT])/v1[0]['C_LF_Tot'][iT]*100)) dFluxRel['RH']=np.round(np.mean((v1[1]['C_RH_Tot'][iT]-v1[0]['C_RH_Tot'][iT])/v1[0]['C_RH_Tot'][iT]*100)) #cb0=np.mean(v1[1]['C_Eco_Pools'][iT,0,28]);cp0=np.mean(v1[0]['C_Eco_Pools'][iT,0,28]) #dFluxRel['Litter Decomp']=np.round(np.mean((cp0-cb0)/cb0*100)) #-------------------------------------------------------------------------- # Percent respoonse of biomass pools #-------------------------------------------------------------------------- s=['StemMerch','StemNonMerch','Foliage','Branch','Bark','RootCoarse','RootFine'] dr0=np.zeros(len(s));cb=np.zeros(len(s));cp=np.zeros(len(s)) for i in range(len(s)): ind=np.where(np.array(meta['Core']['Name Pools Eco'])==s[i])[0] cb0=np.mean(v1[iB]['C_G_Net'][iT,0,ind]) cp0=np.mean(v1[iP]['C_G_Net'][iT,0,ind]) dr0[i]=(cp0-cb0)/cb0*100 cb[i]=cb0; cp[i]=cp0 Stem_b=cb[0]+cb[1]+cb[4]; Stem_p=cp[0]+cp[1]+cp[4] dPoolRel={} dPoolRel['Stemwood']=np.round((Stem_p-Stem_b)/Stem_b*100) dPoolRel['Branch']=np.round(dr0[3]) dPoolRel['Foliage']=np.round(dr0[2]) dPoolRel['Coarse roots']=np.round(dr0[5]) dPoolRel['Fine roots']=np.round(dr0[6]) yP=v1[iP]['C_Biomass_Tot'][iT] yB=v1[iB]['C_Biomass_Tot'][iT] dPoolRel['Biomass Total']=np.round(np.mean((yP-yB)/yB*100)) dPoolRel['Dead Wood']=np.round(np.mean((v1[iP]['C_DeadWood_Tot'][iT]-v1[iB]['C_DeadWood_Tot'][iT])/v1[iB]['C_DeadWood_Tot'][iT]*100)) dPoolRel['Litter']=np.round(np.mean(((v1[iP]['C_Litter_Tot'][iT])-(+v1[iB]['C_Litter_Tot'][iT]))/(v1[iB]['C_Litter_Tot'][iT])*100)) dPoolRel['Soil organic horizon']=np.round(np.mean((v1[iP]['SoilOrgH'][iT]-v1[iB]['SoilOrgH'][iT])/v1[iB]['SoilOrgH'][iT]*100)) dPoolRel['Soil mineral Horizon']=np.round(np.mean((v1[iP]['SoilMinH'][iT]-v1[iB]['SoilMinH'][iT])/v1[iB]['SoilMinH'][iT]*100)) dPoolRel['Soil Total']=np.round(np.mean(((v1[iP]['C_Soil_Tot'][iT]+v1[iP]['C_Litter_Tot'][iT])-(v1[iB]['C_Soil_Tot'][iT]+v1[iB]['C_Litter_Tot'][iT]))/(v1[iB]['C_Soil_Tot'][iT]+v1[iB]['C_Litter_Tot'][iT])*100)) #-------------------------------------------------------------------------- # Actual respoonse of fluxes #-------------------------------------------------------------------------- nam=['StemMerch','StemNonMerch','Foliage','Branch','Bark','RootCoarse','RootFine'] dFluxAct={} for i in range(len(nam)): ind=np.where(np.array(meta['Core']['Name Pools Eco'])==nam[i])[0] dFluxAct[nam[i]]=np.mean(v1[iP]['C_G_Net'][iT,0,ind])-np.mean(v1[iB]['C_G_Net'][iT,0,ind]) dFluxAct['Stem Total']=dFluxAct['StemMerch']+dFluxAct['StemNonMerch'] y_b=v1[iB]['C_NPP_Tot'][iT,0]-v1[iB]['C_RH_Tot'][iT,0] y_p=v1[iP]['C_NPP_Tot'][iT,0]-v1[iP]['C_RH_Tot'][iT,0] dFluxAct['NEP']=np.mean(y_p-y_b) #-------------------------------------------------------------------------- # Stemwood mortality #-------------------------------------------------------------------------- # Actual and percent response of stemwood mortality for ten years following application ind=np.where(np.array(meta['Core']['Name Pools Eco'])=='StemMerch')[0] cb0=np.mean(v1[iB]['C_M_Reg'][iT,0,ind]) cp0=np.mean(v1[iP]['C_M_Reg'][iT,0,ind]) dStemMort={} dStemMort['Rel']=(cp0-cb0)/cb0*100 dStemMort['Act']=cp0-cb0 #-------------------------------------------------------------------------- # Merch volume #-------------------------------------------------------------------------- cb0=np.max(v1[iB]['V_StemMerch'][iT,0]) cp0=np.max(v1[iP]['V_StemMerch'][iT,0]) dMerchVolume={} dMerchVolume['Act']=cp0-cb0; dMerchVolume['Rel']=(cp0-cb0)/cb0*100 #-------------------------------------------------------------------------- # Nitrogen use efficiency (applied) #-------------------------------------------------------------------------- N=200 # NUE applied dcStemG=(np.mean(v1[iP]['C_G_Net'][iT,0,0]-v1[iB]['C_G_Net'][iT,0,0]))*1000 dcStem=(np.mean(v1[iP]['C_Eco_Pools'][iT,0,0]-v1[iB]['C_Eco_Pools'][iT,0,0]))*1000 dcStem=dcStem+(np.mean(v1[iP]['C_Eco_Pools'][iT,0,1]-v1[iB]['C_Eco_Pools'][iT,0,1]))*1000 dcStem=dcStem+(np.mean(v1[iP]['C_Eco_Pools'][iT,0,4]-v1[iB]['C_Eco_Pools'][iT,0,4]))*1000 dNUE_applied={} dNUE_applied['Stemwood']=np.round(dcStem/N) dcFoliage=(np.mean(v1[iP]['C_Eco_Pools'][iT,0,2]-v1[iB]['C_Eco_Pools'][iT,0,2]))*1000 dNUE_applied['Foliage']=np.round(dcFoliage/N) dcBranch=(np.mean(v1[iP]['C_Eco_Pools'][iT,0,3]-v1[iB]['C_Eco_Pools'][iT,0,3]))*1000 dNUE_applied['Branch']=np.round(dcBranch/N) dcRC=(np.mean(v1[iP]['C_Eco_Pools'][iT,0,5]-v1[iB]['C_Eco_Pools'][iT,0,5]))*1000 dNUE_applied['Coarse root']=np.round(dcRC/N) dcRF=(np.mean(v1[iP]['C_Eco_Pools'][iT,0,6]-v1[iB]['C_Eco_Pools'][iT,0,6]))*1000 dNUE_applied['Fine root']=np.round(dcRC/N) dcDW=(np.mean(v1[iP]['C_DeadWood_Tot'][iT]-v1[iB]['C_DeadWood_Tot'][iT]))*1000 dNUE_applied['Dead Wood']=dcDW/N dcL=(np.mean(v1[iP]['C_Litter_Tot'][iT]-v1[iB]['C_Litter_Tot'][iT]))*1000 dNUE_applied['Litter']=dcL/N dcS=(np.mean(v1[iP]['C_Soil_Tot'][iT]-v1[iB]['C_Soil_Tot'][iT]))*1000 dNUE_applied['Soil']=dcS/N dcTot=(np.mean(v1[iP]['C_Eco_Tot'][iT]-v1[iB]['C_Eco_Tot'][iT]))*1000 dNUE_applied['Total']=dcTot/N dNUE_applied['Biomass']=dNUE_applied['Stemwood']+dNUE_applied['Foliage']+dNUE_applied['Branch']+dNUE_applied['Coarse root']+dNUE_applied['Fine root'] #-------------------------------------------------------------------------- # Nitrogen use efficiency (utilized) #-------------------------------------------------------------------------- N=40 # NUE utilized dcStemG=(np.mean(v1[iP]['C_G_Net'][iT,0,0]-v1[iB]['C_G_Net'][iT,0,0]))*1000 dcStem=(np.mean(v1[iP]['C_Eco_Pools'][iT,0,0]-v1[iB]['C_Eco_Pools'][iT,0,0]))*1000 dcStem=dcStem+(np.mean(v1[iP]['C_Eco_Pools'][iT,0,1]-v1[iB]['C_Eco_Pools'][iT,0,1]))*1000 dcStem=dcStem+(np.mean(v1[iP]['C_Eco_Pools'][iT,0,4]-v1[iB]['C_Eco_Pools'][iT,0,4]))*1000 dNUE_utilized={} dNUE_utilized['Stemwood']=np.round(dcStem/N) dcFoliage=(np.mean(v1[iP]['C_Eco_Pools'][iT,0,2]-v1[iB]['C_Eco_Pools'][iT,0,2]))*1000 dNUE_utilized['Foliage']=np.round(dcFoliage/N) dcBranch=(np.mean(v1[iP]['C_Eco_Pools'][iT,0,3]-v1[iB]['C_Eco_Pools'][iT,0,3]))*1000 dNUE_utilized['Branch']=np.round(dcBranch/N) dcRC=(np.mean(v1[iP]['C_Eco_Pools'][iT,0,5]-v1[iB]['C_Eco_Pools'][iT,0,5]))*1000 dNUE_utilized['Coarse root']=np.round(dcRC/N) dcRF=(np.mean(v1[iP]['C_Eco_Pools'][iT,0,6]-v1[iB]['C_Eco_Pools'][iT,0,6]))*1000 dNUE_utilized['Fine root']=np.round(dcRC/N) dcDW=(np.mean(v1[iP]['C_DeadWood_Tot'][iT]-v1[iB]['C_DeadWood_Tot'][iT]))*1000 dNUE_utilized['Dead Wood']=dcDW/N dcL=(np.mean(v1[iP]['C_Litter_Tot'][iT]-v1[iB]['C_Litter_Tot'][iT]))*1000 dNUE_utilized['Litter']=dcL/N dcS=(np.mean(v1[iP]['C_Soil_Tot'][iT]-v1[iB]['C_Soil_Tot'][iT]))*1000 dNUE_utilized['Soil']=dcS/N dcTot=(np.mean(v1[iP]['C_Eco_Tot'][iT]-v1[iB]['C_Eco_Tot'][iT]))*1000 dNUE_utilized['Total']=dcTot/N dNUE_utilized['Biomass']=dNUE_utilized['Stemwood']+dNUE_utilized['Foliage']+dNUE_utilized['Branch']+dNUE_utilized['Coarse root']+dNUE_utilized['Fine root'] return dFluxRel,dFluxAct,dPoolRel,dStemMort,dMerchVolume,dNUE_applied,dNUE_utilized #%% def ExportSummariesByScenario(meta,tv,t_start,t_end,mu1): it=np.where( (tv>=t_start) & (tv<=t_end) )[0] for iScn in range(meta['Project']['N Scenario']): VL=['A','LogSizeEnhancement','V_StemMerch','V_StemMerchToMill', 'C_Biomass_Tot', 'C_DeadWood_Tot', 'C_DumpLandfill_Tot', 'C_Eco_Pools', 'C_Piled_Tot', 'C_G_Gross', 'C_G_Gross_Tot', 'C_G_Net', 'C_G_Net_Tot', 'C_InUse_Tot', 'C_LF', 'C_LF_Tot', 'C_Litter_Tot', 'C_M_Dist', 'C_M_Reg', 'C_M_Reg_Tot', 'C_NPP_Tot', 'C_Pro_Pools', 'C_RH', 'C_RH_Tot', 'C_Soil_Tot', 'C_ToFirewoodDom', 'C_ToFirewoodFor', 'C_ToLogExport', 'C_ToLumber', 'C_ToMDF', 'C_ToMill', 'C_ToMillMerch', 'C_ToMillNonMerch', 'C_ToMillSnagStem', 'C_ToOSB', 'C_ToPaper', 'C_ToPellets', 'C_ToPlywood', 'C_ToPowerFacilityDom', 'C_ToPowerFacilityFor', 'C_ToPowerGrid', 'C_ToSlashpileBurn', 'E_CO2e_LULUCF_NEE', 'E_CO2e_LULUCF_EcoOther', 'E_CO2e_LULUCF_Fire', 'E_CO2e_LULUCF_OpenBurning', 'E_CO2e_LULUCF_Wildfire', 'E_CO2e_LULUCF_HWP', 'E_CO2e_ESC_Comb', 'E_CO2e_ESC_SubBM', 'E_CO2e_ESC_SubE', 'E_CO2e_ET_Comb', 'E_CO2e_IPPU_Comb', 'E_CO2e_AGHGB_WOSub', 'E_CO2e_AGHGB_WOSub_cumu', 'E_CO2e_AGHGB_WSub', 'E_CO2e_AGHGB_WSub_cumu', 'Cost Roads', 'Cost Knockdown', 'Cost Ripping', 'Cost Nutrient Management', 'Cost PAS Deactivation', 'Cost Harvest Felling and Piling', 'Cost Harvest Hauling', 'Cost Harvest Overhead', 'Cost Harvest Residuals', 'Cost Milling', 'Cost Slashpile Burn', 'Cost Planting', 'Cost Survey', 'Cost Silviculture Total', 'Cost Total', 'Cost Total Disc', 'Cost Total Disc_cumu', 'Revenue FirewoodDom', 'Revenue LogExport', 'Revenue Lumber', 'Revenue MDF', 'Revenue OSB', 'Revenue Paper', 'Revenue Pellets', 'Revenue Plywood', 'Revenue PowerFacilityDom', 'Revenue PowerGrid', 'Revenue Gross', 'Revenue Gross Disc', 'Revenue Gross Disc_cumu', 'Revenue Net', 'Revenue Net Disc', 'Revenue Net Disc_cumu', 'Yield FirewoodDom', 'Yield LogExport', 'Yield Lumber', 'Yield MDF', 'Yield OSB', 'Yield Paper', 'Yield Pellets', 'Yield Plywood', 'Yield PowerFacilityDom','Yield PowerGrid'] d={} for k in VL: d['Sum ' + k]=np.round(np.sum(mu1[iScn][k][it]),decimals=2) for k in VL: d['Mean ' + k]=np.round(np.mean(mu1[iScn][k][it]),decimals=2) if iScn==0: df=
pd.DataFrame()
pandas.DataFrame
import pandas as pd from .constants import PARSING_SCHEME from ..decorators import float_property_decorator, int_property_decorator from .nba_utils import _retrieve_all_teams from .. import utils from .roster import Roster from .schedule import Schedule class Team: """ An object containing all of a team's season information. Finds and parses all team stat information and identifiers, such as rank, name, and abbreviation, and sets them as properties which can be directly read from for easy reference. If calling directly, the team's abbreviation needs to be passed. Otherwise, the Teams class will handle all arguments. Parameters ---------- team_name : string (optional) The name of the team to pull if being called directly. team_data : string (optional) A string containing all of the rows of stats for a given team. If multiple tables are being referenced, this will be comprised of multiple rows in a single string. Is only used when called directly from the Teams class. rank : int (optional) A team's position in the league based on the number of points they obtained during the season. Is only used when called directly from the Teams class. year : string (optional) The requested year to pull stats from. """ def __init__(self, team_name=None, team_data=None, rank=None, year=None): self._year = year self._rank = rank self._abbreviation = None self._name = None self._games_played = None self._minutes_played = None self._field_goals = None self._field_goal_attempts = None self._field_goal_percentage = None self._three_point_field_goals = None self._three_point_field_goal_attempts = None self._three_point_field_goal_percentage = None self._two_point_field_goals = None self._two_point_field_goal_attempts = None self._two_point_field_goal_percentage = None self._free_throws = None self._free_throw_attempts = None self._free_throw_percentage = None self._offensive_rebounds = None self._defensive_rebounds = None self._total_rebounds = None self._assists = None self._steals = None self._blocks = None self._turnovers = None self._personal_fouls = None self._points = None self._opp_field_goals = None self._opp_field_goal_attempts = None self._opp_field_goal_percentage = None self._opp_three_point_field_goals = None self._opp_three_point_field_goal_attempts = None self._opp_three_point_field_goal_percentage = None self._opp_two_point_field_goals = None self._opp_two_point_field_goal_attempts = None self._opp_two_point_field_goal_percentage = None self._opp_free_throws = None self._opp_free_throw_attempts = None self._opp_free_throw_percentage = None self._opp_offensive_rebounds = None self._opp_defensive_rebounds = None self._opp_total_rebounds = None self._opp_assists = None self._opp_steals = None self._opp_blocks = None self._opp_turnovers = None self._opp_personal_fouls = None self._opp_points = None if team_name: team_data = self._retrieve_team_data(year, team_name) self._parse_team_data(team_data) def __str__(self): """ Return the string representation of the class. """ return f'{self.name} ({self.abbreviation}) - {self._year}' def __repr__(self): """ Return the string representation of the class. """ return self.__str__() def _retrieve_team_data(self, year, team_name): """ Pull all stats for a specific team. By first retrieving a dictionary containing all information for all teams in the league, only select the desired team for a specific year and return only their relevant results. Parameters ---------- year : string A ``string`` of the requested year to pull stats from. team_name : string A ``string`` of the team's 3-letter abbreviation, such as 'HOU' for the Houston Rockets. Returns ------- PyQuery object Returns a PyQuery object containing all stats and information for the specified team. """ team_data_dict, year = _retrieve_all_teams(year) self._year = year team_data = team_data_dict[team_name]['data'] self._rank = team_data_dict[team_name]['rank'] return team_data def _parse_team_data(self, team_data): """ Parses a value for every attribute. This function looks through every attribute with the exception of '_rank' and retrieves the value according to the parsing scheme and index of the attribute from the passed HTML data. Once the value is retrieved, the attribute's value is updated with the returned result. Note that this method is called directly once Team is invoked and does not need to be called manually. Parameters ---------- team_data : string A string containing all of the rows of stats for a given team. If multiple tables are being referenced, this will be comprised of multiple rows in a single string. """ for field in self.__dict__: # The rank attribute is passed directly to the class during # instantiation. if field == '_rank' or \ field == '_year': continue value = utils._parse_field(PARSING_SCHEME, team_data, str(field)[1:]) setattr(self, field, value) @property def dataframe(self): """ Returns a pandas DataFrame containing all other class properties and values. The index for the DataFrame is the string abbreviation of the team, such as 'DET'. """ fields_to_include = { 'abbreviation': self.abbreviation, 'assists': self.assists, 'blocks': self.blocks, 'defensive_rebounds': self.defensive_rebounds, 'field_goal_attempts': self.field_goal_attempts, 'field_goal_percentage': self.field_goal_percentage, 'field_goals': self.field_goals, 'free_throw_attempts': self.free_throw_attempts, 'free_throw_percentage': self.free_throw_percentage, 'free_throws': self.free_throws, 'games_played': self.games_played, 'minutes_played': self.minutes_played, 'name': self.name, 'offensive_rebounds': self.offensive_rebounds, 'opp_assists': self.opp_assists, 'opp_blocks': self.opp_blocks, 'opp_defensive_rebounds': self.opp_defensive_rebounds, 'opp_field_goal_attempts': self.opp_field_goal_attempts, 'opp_field_goal_percentage': self.opp_field_goal_percentage, 'opp_field_goals': self.opp_field_goals, 'opp_free_throw_attempts': self.opp_free_throw_attempts, 'opp_free_throw_percentage': self.opp_free_throw_percentage, 'opp_free_throws': self.opp_free_throws, 'opp_offensive_rebounds': self.opp_offensive_rebounds, 'opp_personal_fouls': self.opp_personal_fouls, 'opp_points': self.opp_points, 'opp_steals': self.opp_steals, 'opp_three_point_field_goal_attempts': self.opp_three_point_field_goal_attempts, 'opp_three_point_field_goal_percentage': self.opp_three_point_field_goal_percentage, 'opp_three_point_field_goals': self.opp_three_point_field_goals, 'opp_total_rebounds': self.opp_total_rebounds, 'opp_turnovers': self.opp_turnovers, 'opp_two_point_field_goal_attempts': self.opp_two_point_field_goal_attempts, 'opp_two_point_field_goal_percentage': self.opp_two_point_field_goal_percentage, 'opp_two_point_field_goals': self.opp_two_point_field_goals, 'personal_fouls': self.personal_fouls, 'points': self.points, 'rank': self.rank, 'steals': self.steals, 'three_point_field_goal_attempts': self.three_point_field_goal_attempts, 'three_point_field_goal_percentage': self.three_point_field_goal_percentage, 'three_point_field_goals': self.three_point_field_goals, 'total_rebounds': self.total_rebounds, 'turnovers': self.turnovers, 'two_point_field_goal_attempts': self.two_point_field_goal_attempts, 'two_point_field_goal_percentage': self.two_point_field_goal_percentage, 'two_point_field_goals': self.two_point_field_goals } return
pd.DataFrame([fields_to_include], index=[self._abbreviation])
pandas.DataFrame
import pandas as pd import pprint import re ISO8601YMD = re.compile(r'\d{4}-\d{2}-\d{2}T') NY = 'America/New_York' class Entity(object): '''This helper class provides property access (the "dot notation") to the json object, backed by the original object stored in the _raw field. ''' def __init__(self, raw): self._raw = raw def __getattr__(self, key): if key in self._raw: val = self._raw[key] if (isinstance(val, str) and (key.endswith('_at') or key.endswith('_timestamp') or key.endswith('_time')) and ISO8601YMD.match(val)): return pd.Timestamp(val) else: return val return super().__getattribute__(key) def __repr__(self): return '{name}({raw})'.format( name=self.__class__.__name__, raw=pprint.pformat(self._raw, indent=4), ) class Account(Entity): """ Entity properties: https://alpaca.markets/docs/api-documentation/api-v2/account/ """ pass class AccountConfigurations(Entity): """ Entity properties: https://alpaca.markets/docs/api-documentation/api-v2/account-configuration/ """ pass class Asset(Entity): """ Entity properties: https://alpaca.markets/docs/api-documentation/api-v2/assets/#asset-entity """ pass class Order(Entity): """ Entity properties: https://alpaca.markets/docs/api-documentation/api-v2/orders/#order-entity """ def __init__(self, raw): super().__init__(raw) try: self.legs = [Order(o) for o in self.legs] except Exception: # No order legs existed pass class Position(Entity): """ Entity properties: https://alpaca.markets/docs/api-documentation/api-v2/positions/#position-entity """ pass class AccountActivity(Entity): """ Entity properties: https://alpaca.markets/docs/api-documentation/api-v2/account-activities/ """ pass class Bar(Entity): """ Entity properties: https://alpaca.markets/docs/api-documentation/api-v2/market-data/bars/ #bars-entity """ def __getattr__(self, key): if key == 't': val = self._raw[key[0]] return pd.Timestamp(val, unit='s', tz=NY) return super().__getattr__(key) class Bars(list): def __init__(self, raw): super().__init__([Bar(o) for o in raw]) self._raw = raw @property def df(self): if not hasattr(self, '_df'): df = pd.DataFrame( self._raw, columns=('t', 'o', 'h', 'l', 'c', 'v'), ) alias = { 't': 'time', 'o': 'open', 'h': 'high', 'l': 'low', 'c': 'close', 'v': 'volume', } df.columns = [alias[c] for c in df.columns] df.set_index('time', inplace=True) if not df.empty: df.index = pd.to_datetime( (df.index * 1e9).astype('int64'), utc=True, ).tz_convert(NY) else: df.index = pd.to_datetime( df.index, utc=True ) self._df = df return self._df class BarSet(dict): def __init__(self, raw): for symbol in raw: self[symbol] = Bars(raw[symbol]) self._raw = raw @property def df(self): '''## Experimental ''' if not hasattr(self, '_df'): dfs = [] for symbol, bars in self.items(): df = bars.df.copy() df.columns = pd.MultiIndex.from_product( [[symbol, ], df.columns]) dfs.append(df) if len(dfs) == 0: self._df =
pd.DataFrame()
pandas.DataFrame
import tensorflow as tf from keras.models import Sequential from keras.callbacks import ModelCheckpoint from keras.models import load_model from keras.optimizers import Adam import numpy as np import pandas as pd import time import warnings warnings.filterwarnings("ignore") import glob import matplotlib.pyplot as plt import math import pickle5 as pickle def plot_each_app(df, dates, predict, y_test, title, look_back=0): num_date = len(dates) fig, axes = plt.subplots(num_date, 1, figsize=(24, num_date * 5)) plt.suptitle(title, fontsize='25') fig.tight_layout() fig.subplots_adjust(top=0.95) for i in range(num_date): if i == 0: l = 0 ind = df.loc[dates[i]].index[look_back:] axes.flat[i].plot(ind, y_test[l:l + len(ind)], color='blue', alpha=0.6, label='True value') axes.flat[i].plot(ind, predict[l:l + len(ind)], color='red', alpha=0.6, label='Predicted value') axes.flat[i].legend() l = len(ind) plt.show() def rmse_loss(y_predict, y): return math.sqrt(np.mean(np.square(y_predict - y))) def mae_loss(y_predict, y): return np.mean(np.abs(y_predict - y)) def build_fc_model(): fc_model = Sequential() fc_model.add(tf.keras.layers.Dense(2, activation='relu')) fc_model.add(tf.keras.layers.Dense(256, activation='relu')) fc_model.add(tf.keras.layers.Dense(512)) fc_model.add(tf.keras.layers.Dense(1024)) fc_model.add(tf.keras.layers.Dense(1)) fc_model.build((214816, 2)) fc_model.summary() return fc_model def choose_appliance(appliance): appliance_dict = {} for i in range(1, 7): f = f'./pkl_files/house_{i}.pkl' with open(f, 'rb') as pickle_file: data = pickle.load(pickle_file) for col in data.columns: if appliance in col: appliance_dict[i] = col return appliance_dict def train_test_split(appliance_dict, test_house): X_train = [] Y_train = [] X_test = [] Y_test = [] for house, app in appliance_dict.items(): f = f'./pkl_files/house_{house}.pkl' with open(f, 'rb') as pickle_file: data = pickle.load(pickle_file) if house == 1 or house == 2 or house == 3 or house == 4: train_mains = data[['1_mains', '2_mains']].values train_app = data[app].values X_train.extend(train_mains) Y_train.extend(train_app) elif house == test_house: test_mains = data[['1_mains', '2_mains']].values test_app = data[app].values X_test.extend(test_mains) Y_test.extend(test_app) f = f'./pkl_files/house_{test_house}.pkl' with open(f, 'rb') as pickle_file: data = pickle.load(pickle_file) date_indexes = data.index.values dates = [str(time)[:10] for time in date_indexes] dates = sorted(list(set(dates))) X_train = np.asarray(X_train) X_test = np.asarray(X_test) Y_train = np.asarray(Y_train) Y_test = np.asarray(Y_test) print(X_train.shape, Y_train.shape, X_test.shape, Y_test.shape) return X_train, X_test, Y_train, Y_test, data, dates, date_indexes def train_model(nn_model, X_train, X_test, Y_train, Y_test, epochs, batch_size, appliance, house): adam = Adam(lr=1e-5) nn_model.compile(loss='mean_squared_error', optimizer=adam) start = time.time() checkpointer = ModelCheckpoint(filepath=f'./nn_house_{house}_{appliance}.hdf5', verbose=0, save_best_only=True) hist_nn = nn_model.fit(X_train, Y_train, batch_size=batch_size, verbose=1, epochs=epochs, validation_split=0.33, callbacks=[checkpointer]) print('Finish training time: ', time.time() - start) nn_model = load_model(f'nn_house_{house}_{appliance}.hdf5') prediciton = nn_model.predict(X_test).reshape(-1) RMSE = rmse_loss(prediciton, Y_test) MAE = mae_loss(prediciton, Y_test) train_loss = hist_nn.history['loss'] val_loss = hist_nn.history['val_loss'] return prediciton, RMSE, MAE def pckl_results(date_indexes, prediction, appliance, house): results_dict = {'timestamp': list(date_indexes), 'prediction': list(prediction)} results_df =
pd.DataFrame(data=results_dict)
pandas.DataFrame
from __future__ import print_function import os import pandas as pd import xgboost as xgb import time import shutil from sklearn import preprocessing from sklearn.cross_validation import train_test_split import numpy as np def archive_results(filename,results,algo,script): """ :type algo: basestring :type script: basestring :type results: DataFrame """ #assert results == pd.DataFrame now=time.localtime()[0:5] dirname='../archive' subdirfmt='%4d-%02d-%02d-%02d-%02d' subdir=subdirfmt %now if not os.path.exists(os.path.join(dirname,str(algo))): os.mkdir(os.path.join(dirname,str(algo))) dir_to_create=os.path.join(dirname,str(algo),subdir) if not os.path.exists(dir_to_create): os.mkdir(dir_to_create) os.chdir(dir_to_create) results.to_csv(filename,index=False,float_format='%.6f') shutil.copy2(script,'.') return os.chdir('/home/cuoco/KC/cervical-cancer-screening/src') trainfile=('../input/patients_train.csv.gz') testfile=('../input/patients_test.csv.gz') train=pd.read_csv(trainfile,low_memory=False ) test=pd.read_csv(testfile,low_memory=False ) surgical=pd.read_csv('../features/surgical_pap.csv.gz') diagnosis=pd.read_csv('../features/diagnosis_hpv.csv.gz') procedure_cervi=pd.read_csv('../features/procedure_cervi.csv.gz') procedure_hpv=pd.read_csv('../features/procedure_hpv.csv.gz') procedure_vaccine=pd.read_csv('../features/procedure_vaccine.csv.gz') procedure_vagi=pd.read_csv('../features/procedure_vagi.csv.gz') procedure_plan_type=pd.read_csv('../features/procedure_plan_type.csv.gz') rx_payment=pd.read_csv('../features/rx_payment.csv.gz') train_pract_screen_ratio=pd.read_csv('../features/train_pract_screen_ratio.csv.gz') test_pract_screen_ratio=pd.read_csv('../features/test_pract_screen_ratio.csv.gz') visits=pd.read_csv('../features/visits.csv.gz') train=pd.merge(train,surgical, on='patient_id',how='left') test=pd.merge(test,surgical, on='patient_id',how='left') print('after merging surgical') print(train.shape,test.shape) train=pd.merge(train,diagnosis, on='patient_id',how='left') test=pd.merge(test,diagnosis, on='patient_id',how='left') print('after merging diagnosis') print(train.shape,test.shape) #train=pd.merge(train,procedure_cervi, on='patient_id',how='left') #test=pd.merge(test,procedure_cervi, on='patient_id',how='left') #train=pd.merge(train,procedure_hpv, on='patient_id',how='left') #test=pd.merge(test,procedure_hpv, on='patient_id',how='left') #train=pd.merge(train,procedure_vaccine, on='patient_id',how='left') #test=pd.merge(test,procedure_vaccine, on='patient_id',how='left') train=pd.merge(train,procedure_vagi, on='patient_id',how='left') test=pd.merge(test,procedure_vagi, on='patient_id',how='left') train=pd.merge(train,procedure_plan_type, on='patient_id',how='left') test=pd.merge(test,procedure_plan_type, on='patient_id',how='left') print('after merging procedure') print(train.shape,test.shape) train=pd.merge(train,rx_payment, on='patient_id',how='left') test=pd.merge(test,rx_payment, on='patient_id',how='left') print('after merging rx_payment') print(train.shape,test.shape) train=pd.merge(train,train_pract_screen_ratio, on='patient_id',how='left') test=pd.merge(test,test_pract_screen_ratio, on='patient_id',how='left') print('after merging pract_scree_ratio') print(train.shape,test.shape) train=pd.merge(train,visits, on='patient_id',how='left') test=
pd.merge(test,visits, on='patient_id',how='left')
pandas.merge
# general import logging import os import sys import time import configparser import math import scipy.optimize as opt from scipy.spatial import ConvexHull from copy import deepcopy from itertools import combinations # graph import networkx as nx import geonetworkx as gnx # data import pandas as pd # optimization import julia # config from .. import config from ...exception_utils import DHCOptimizerException from .NLP.data_regressions import * from PyQt5.QtWidgets import QMessageBox from ....python_julia_interface import JuliaQgisInterface class ADNetworkOptimizer: """Network optimizer in automatic design mode. Given a 'networkx' network having costs, capacities, demand and production attributes, the optimize method trying to find the minimal fixed cost network supplying the given objective. """ def __init__(self, optimization_graph=None, **kwargs): self.logger = logging.getLogger(__name__) self.optimization_graph = optimization_graph self.network_objective = kwargs.get('network_objective', None) self.solution_graph = None self.connected = False self.connected_buildings = None self.old_capacity = {} self.conf = {} os.makedirs(os.path.join(os.environ["LOCALAPPDATA"], "QGIS\\QGIS3\\planheat_data\\tmp"), exist_ok=True) self.solver_log_file = os.path.join(os.environ["LOCALAPPDATA"], "QGIS\\QGIS3\\planheat_data\\tmp\\output.log") self.energy = None self.consumption_file_path = os.path.join(os.path.dirname(__file__),'NLP','consumption_data.csv') self.conf_path = os.path.join(os.path.dirname(__file__),'NLP','conf.ini') def check_is_ready(self): """Check that all necessary inputs have been set.""" self.logger.info("Checking optimization inputs for automatic design.") if self.optimization_graph is None: raise RuntimeError("The optimization graph needs to be defined in order to optimize the network.") if self.network_objective is None: raise RuntimeError("A network objective has to be set (in MW).") def check_infeasibility(self, graph, objective): self.logger.info("Checking infeasibility for automatic design.") ccs = list(nx.connected_components(graph.to_undirected())) productions = nx.get_node_attributes(graph, config.SUPPLY_POWER_CAPACITY_KEY) heat_demand = nx.get_node_attributes(graph, config.BUILDING_CONSUMPTION_KEY) total_residual_connections = 0.0 # print([e for e in graph.edges()]) for cc in ccs: #print('!!', cc) residual_production = sum(productions[n] for n in cc if n in productions) residual_consumption = sum(heat_demand[n] for n in cc if n in heat_demand) residual_maximum_connection = min(residual_production, residual_consumption) total_residual_connections += residual_maximum_connection if total_residual_connections < objective - 1e-8: raise DHCOptimizerException("Problem is inconsistent: total production capacity is lower than coverage" " objective (taking into account connected components): " "reachable consumption is %f" " and total objective is %f" % (total_residual_connections, objective)) def optimize(self): """Run the optimization with the selected method :return: flows : dict. Flow on each edge. :return: obj_val: float. Solution cost. """ self.logger.info("Solving with Dynamic Slope Scaling Procedure in Julia :") optimization_start = time.time() # 1. Preprocess for old network graph if self.old_network_graph is not None: # DSSP on old network old_network_obj = sum(list(nx.get_node_attributes(self.old_network_graph, config.BUILDING_CONSUMPTION_KEY).values()))-1e-5 try: self.check_infeasibility(self.old_network_graph, old_network_obj) except DHCOptimizerException as e: e.data = "Invalid existing network: " + e.data raise e flows, obj_val = self.optimize_with_dssp_julia(self.old_network_graph, old_network_obj, set()) self.logger.info("Optimization phase time: %.2fs" % (time.time() - optimization_start)) solution_old_graph = self.build_solution_graph(self.old_network_graph, flows) if self.modify_old_network: # Add max capacity on old edges self.old_capacity = deepcopy(flows) old_buildings = list(nx.get_node_attributes(self.old_network_graph, config.BUILDING_CONSUMPTION_KEY).values()) for key in flows: if (key[1],key[0],0) not in self.old_capacity and key[1] not in old_buildings: self.old_capacity[(key[1],key[0],0)] = self.old_capacity[key] # Add Imaginary edges for edge in self.old_capacity: if self.optimization_graph.has_edge(*edge): # add nodes if not self.optimization_graph.has_node(config.IM_PREFIX+edge[0]): self.optimization_graph.add_node(config.IM_PREFIX+edge[0]) self.optimization_graph.nodes[config.IM_PREFIX+edge[0]][config.GPD_GEO_KEY] = \ self.optimization_graph.nodes[edge[0]][config.GPD_GEO_KEY] if not self.optimization_graph.has_node(config.IM_PREFIX+edge[1]): self.optimization_graph.add_node(config.IM_PREFIX+edge[1]) self.optimization_graph.nodes[config.IM_PREFIX+edge[1]][config.GPD_GEO_KEY] = \ self.optimization_graph.nodes[edge[1]][config.GPD_GEO_KEY] # add edges if not self.optimization_graph.has_edge(edge[0],config.IM_PREFIX+edge[0]): self.optimization_graph.add_edge(edge[0],config.IM_PREFIX+edge[0]) if not self.optimization_graph.has_edge(config.IM_PREFIX+edge[0],config.IM_PREFIX+edge[1]): self.optimization_graph.add_edge(config.IM_PREFIX+edge[0],config.IM_PREFIX+edge[1]) if not self.optimization_graph.has_edge(config.IM_PREFIX+edge[1],edge[1]): self.optimization_graph.add_edge(config.IM_PREFIX+edge[1],edge[1]) # put cost self.optimization_graph.edges[(config.IM_PREFIX+edge[0],config.IM_PREFIX+edge[1],0)][config.EDGE_COST_KEY] = \ self.optimization_graph.edges[(edge[0],edge[1],0)][config.EDGE_COST_KEY] self.optimization_graph.edges[(edge[0],edge[1],0)][config.EDGE_COST_KEY] = 1e-5 self.optimization_graph.edges[(edge[0],config.IM_PREFIX+edge[0],0)][config.EDGE_COST_KEY] = 1e-5 self.optimization_graph.edges[(config.IM_PREFIX+edge[1],edge[1],0)][config.EDGE_COST_KEY] = 1e-5 else: # if we don't modify the old network, we have to change the capacity of the supplies already_consummed = {} for edge in solution_old_graph.edges(): if solution_old_graph.nodes[edge[0]].get(config.NODE_TYPE_KEY) == config.SUPPLY_NODE_TYPE: already_consummed[edge[0]] = already_consummed.get(edge[0], 0) + \ solution_old_graph.edges[edge][config.SOLUTION_POWER_FLOW_KEY] for source in already_consummed: if already_consummed[source] <= self.optimization_graph.nodes[source][config.SUPPLY_POWER_CAPACITY_KEY]: self.optimization_graph.nodes[source][config.SUPPLY_POWER_CAPACITY_KEY] -= already_consummed[source] self.network_objective -= already_consummed[source] else: self.network_objective -= self.optimization_graph.nodes[source][config.SUPPLY_POWER_CAPACITY_KEY] self.optimization_graph.nodes[source][config.SUPPLY_POWER_CAPACITY_KEY] = 0 # Remove edges from old network edges_to_remove = set() for e in self.optimization_graph.edges(): if self.old_network_graph.has_edge(*e) or self.old_network_graph.has_edge(e[1],e[0]): edges_to_remove.add(e) self.optimization_graph.remove_edges_from(edges_to_remove) # Remove isolated buildings of optimization graph isolated_to_remove = set() for e in self.old_network_graph.edges(): if e[0] in self.old_network_graph.nodes() and \ self.optimization_graph.nodes[e[1]].get(config.NODE_TYPE_KEY) == config.BUILDING_NODE_TYPE: isolated_to_remove.add(e) self.optimization_graph.remove_edges_from(isolated_to_remove) # Remove buildings from old network for n, data in self.old_network_graph.nodes(data=True): if data.get(config.NODE_TYPE_KEY) == config.BUILDING_NODE_TYPE: self.optimization_graph.remove_node(n) # Re-link sources sources = set() for n, data in self.optimization_graph.nodes(data=True): if data.get(config.NODE_TYPE_KEY) == config.SUPPLY_NODE_TYPE: sources.add(n) source_graph = self.optimization_graph.subgraph(sources).copy() self.optimization_graph.remove_nodes_from(sources) gnx.remove_isolates(self.optimization_graph) node_filter = lambda n: self.optimization_graph.nodes.get(n,{}).get(config.NODE_TYPE_KEY) != config.BUILDING_NODE_TYPE gnx.spatial_points_merge(self.optimization_graph, source_graph.nodes_to_gdf(), node_filter=node_filter, inplace=True) # fill missing information gnx.fill_edges_missing_geometry_attributes(self.optimization_graph) gnx.fill_length_attribute(self.optimization_graph, config.EDGE_LENGTH_KEY, only_missing=True) gnx.fill_length_attribute(self.optimization_graph, config.EDGE_COST_KEY, only_missing=True) for e in self.optimization_graph.edges(keys=True): self.optimization_graph.edges[e][config.LEASTCOST_COEF_KEY] = \ self.optimization_graph.edges[e].get(config.LEASTCOST_COEF_KEY,0) # 2. Process the DSSP on optimization graph self.check_is_ready() self.check_infeasibility(self.optimization_graph, self.network_objective) if self.old_network_graph is not None and self.modify_old_network: old_buildings = set(nx.get_node_attributes(self.old_network_graph, config.BUILDING_CONSUMPTION_KEY).keys()) else: old_buildings = set() flows, obj_val = self.optimize_with_dssp_julia(self.optimization_graph, self.network_objective, old_buildings,postprocess= (not self.modify_old_network)) self.logger.info("Optimization phase time: %.2fs" % (time.time() - optimization_start)) self.solution_graph = self.build_solution_graph(self.optimization_graph, flows, self.connected) # 3. Postprocess for old network graph if self.old_network_graph is not None: if self.modify_old_network: # Put the right supply capacity and cost for edge in self.old_capacity: if self.solution_graph.has_edge(edge[0],edge[1]): self.solution_graph.edges[(edge[0],edge[1])][config.EDGE_COST_KEY] = \ self.optimization_graph.edges[(config.IM_PREFIX+edge[0],config.IM_PREFIX+edge[1],0)][config.EDGE_COST_KEY] # Remove imaginary edges imaginary_nodes_to_remove = set() nodes_to_relabel = {} for edge in self.solution_graph.edges(): if str(edge[0]).startswith(config.IM_PREFIX) and str(edge[1]).startswith(config.IM_PREFIX): real_edge = edge[0][len(config.IM_PREFIX):],edge[1][len(config.IM_PREFIX):] self.old_capacity[(real_edge[0], real_edge[1], 0)] = pd.np.inf self.old_capacity[(real_edge[1], real_edge[0], 0)] = pd.np.inf if not self.solution_graph.has_edge(*real_edge): for i in range(2): nodes_to_relabel[edge[i]] = real_edge[i] else: self.solution_graph.edges[real_edge[0],real_edge[1]][config.SOLUTION_POWER_FLOW_KEY] += \ self.solution_graph.edges[edge].get(config.SOLUTION_POWER_FLOW_KEY,0) imaginary_nodes_to_remove.add(edge[0]) imaginary_nodes_to_remove.add(edge[1]) elif str(edge[0]).startswith(config.IM_PREFIX): imaginary_nodes_to_remove.add(edge[0]) elif str(edge[1]).startswith(config.IM_PREFIX): imaginary_nodes_to_remove.add(edge[1]) nx.relabel_nodes(self.solution_graph, nodes_to_relabel, copy=False) self.solution_graph.remove_nodes_from(list(imaginary_nodes_to_remove)) for node in nodes_to_relabel.values(): if self.solution_graph.has_edge(node, node): self.solution_graph.remove_edge(node, node) else: for source in nx.get_node_attributes(self.solution_graph, config.SUPPLY_POWER_CAPACITY_KEY): self.solution_graph.nodes[source][config.SUPPLY_POWER_CAPACITY_KEY] += already_consummed.get(source,0) self.optimization_graph.nodes[source][config.SUPPLY_POWER_CAPACITY_KEY] += already_consummed.get(source,0) return flows, obj_val def optimize_NLP(self, only_preprocess=False): ''' solve the NLP problem of the optimal size of the pipes knowing the route i.e. the selected streets 1. Load parameters 2. Preprocess to satisfy the heat demand at any time of the year 3. Solve the problem with Ipopt or Knitro on the graph 4. Add velocity, pressure and costs information on solution graph's edges if the status of the optimizer is "Optimal" ''' self.logger.info("Start pipe size optimization") # 1. Load parameters self.load_conf() consumption_data, capacity_data = self.get_consumption_and_capacities_from_csv(self.solution_graph, self.consumption_file_path) # 2. Preprocess NLP if self.old_network_graph is not None and self.modify_old_network: max_capacity = self.old_capacity else: max_capacity = {} lb_flow = self.preprocess(self.solution_graph, consumption_data, capacity_data, max_capacity) # Conversion MW flow to diameter lb_diam = {} a_vel, b_vel = self.conf["A_MAX_VELOCITY"], self.conf["B_MAX_VELOCITY"] for edge in lb_flow: mass_flow = self.convert_power_to_mass_flow(lb_flow[edge]) # mass flow = v * pi*(D/2)**2 = (A*D+B) * pi*(D/2)**2 (in mm) f = lambda x : x**3 *a_vel + x**2*b_vel - 4*mass_flow/math.pi/self.conf["RHO"]*1e6 a, b = 0, 500 while b-a>0.1: c = (a+b)/2 if f(a)*f(c) <= 0 : b = c else: a = c lb_diam[edge] = a/10 # (in cm) if only_preprocess: self.fill_edges_with_NLP({'Diameter': lb_diam}) self.logger.info("Pipe size optimization completed") return True # 3. peak_consumption = self.get_annual_peak_consumption(consumption_data) NLP_Output, status = self.optimize_pipe_size(self.solution_graph, lb_diam, peak_consumption, max_capacity) if status == "Optimal": # "Optimal", "Unbounded", "Infeasible", "UserLimit", "Error" or "NotSolved" self.logger.info("Pipe size optimization completed") self.logger.info("Collecting the NLP solution" ) self.fill_edges_with_NLP(NLP_Output) return True else: self.logger.warning("NLP optimization exits with status: %s" % str(status)) self.fill_edges_with_NLP({'Diameter': lb_diam}) return False def build_solution_graph(self, graph, flows, connecting_graph=False): """Create the solution with the optimization results. Keep only the edges with non negative flow.""" self.logger.info("Building solution graph") self.clean_flow_cycles(flows) edges_to_keep = [e for e, flow in flows.items() if flow > 0] solution_graph_mdg = graph.edge_subgraph(edges_to_keep) if connecting_graph: # We add the edges to connect edges_to_keep = edges_to_keep + self.connecting_graph(solution_graph_mdg) # We rebuild the graph solution_graph_mdg = graph.edge_subgraph(edges_to_keep) # We add the flow attribute for e in edges_to_keep: solution_graph_mdg.edges[(e[0], e[1], 0)][config.SOLUTION_POWER_FLOW_KEY] = flows[e] # We convert it in GeoDiGraph solution_graph_mdg.crs = self.optimization_graph.crs solution_graph = gnx.GeoDiGraph(solution_graph_mdg, crs=solution_graph_mdg.crs) gnx.remove_isolates(solution_graph) solution_graph.name = "solution_graph" return solution_graph def preprocess(self, solution_graph, consumption_data, capacity_data, max_capacity={}): ''' calculate the lower bound for flow. 1. Simplify the graph until having no end nodes 2. If there is no crossing nodes, the preprocess is ended. 3. 1) we calculate for each edge the surplus and the need 2) we deduced the lower bounds''' self.logger.info('start preprocess') lb_flow = {} # Graph copy to directed graph G = nx.DiGraph(nx.Graph(solution_graph)) # check dimensions assert len(consumption_data) == len(capacity_data), "Dimension of consumption_data and capacity_data much match" start_time = time.time() # 1. simplify the graph and calculate the lower bounds end_nodes = set([x for x in G.nodes() \ if len(set(G.predecessors(x)).union(set(G.successors(x))))==1\ and G.node[x].get(config.NODE_TYPE_KEY,config.SUPPLY_NODE_TYPE) != config.SUPPLY_NODE_TYPE]) finished = self.calculate_consumption_predecessors_nodes(G, consumption_data, capacity_data, lb_flow, end_nodes) if finished: return lb_flow # 3. source_nodes = set([n for n in G.nodes() if G.node[n].get(config.NODE_TYPE_KEY,None) == config.SUPPLY_NODE_TYPE]) needs_data, surplus_data = {}, {} for node in source_nodes: for edge in G.out_edges(node): self.find_needs(G, edge, needs_data, consumption_data, source_nodes, max_capacity) for edge in G.edges(): self.find_surplus(G, edge, surplus_data, consumption_data, capacity_data, set(), max_capacity) for edge in set(surplus_data.keys()).intersection(set(needs_data.keys())): if type(surplus_data[edge]) != int and type(needs_data[edge]) != int: lb_flow[edge] = max(lb_flow.get(edge,0), max(pd.concat([surplus_data[edge],needs_data[edge]], axis=1).min(axis=1))) lb_flow[(edge[1], edge[0], *edge[2:])] = max( lb_flow.get((edge[1], edge[0], *edge[2:]),0), lb_flow[edge] ) self.logger.info('end preprocess in ' + str(time.time() - start_time) + ' s') return lb_flow def connecting_graph(self, solution_graph, weight='cost', ignore_sources=False): """Return the list of edges to add to have a connected graph 1. find the groups of sources isolated from each others 2. calculate for each group of sources the convex hull 3. find the smallest path between each pair of groups The key idea is to add to the graph edges of weight 0 between all nodes on the convex hull and then run a dijkstra between one random node of group1 to one random node of group2. To have the "real" path, we just have to remove 0-weigth edges 4. Do a minimum spanning tree with the aggregated graph (nodes are the different groups and edges are the path found just before) """ debut = time.time() self.logger.info('start connecting graph') # we need an undirected graph undirected_solution_graph = solution_graph.to_undirected() if self.old_network_graph is not None and self.modify_old_network: undirected_solution_graph = nx.compose(nx.MultiGraph(self.old_network_graph), undirected_solution_graph) # if already connected if nx.is_connected(undirected_solution_graph) == True: self.logger.info("the solution graph is already connected") return [] # Computing the minimum sources in each component and all junction nodes in the solution graph nodetype = nx.get_node_attributes(undirected_solution_graph, config.NODE_TYPE_KEY) list_sources = [node for node in nodetype if nodetype[node] == config.SUPPLY_NODE_TYPE] # 1. Search of all connected subgraphs if not ignore_sources: reduced_list_sources = [] while len(list_sources) > 0: source, is_isolated = list_sources.pop(0), True for i in range(len(list_sources)): is_isolated = is_isolated and not (nx.has_path(undirected_solution_graph, source, list_sources[i])) if is_isolated: reduced_list_sources.append(source) else: reduced_list_sources = [list(n)[0] for n in nx.connected_components(undirected_solution_graph)] # 2. Creation of all convex hulls for each source in reduced_list_sources hulls = {} for source in reduced_list_sources: coord_compo = {} nodes_connecting_source = nx.node_connected_component(undirected_solution_graph, source) for node in nodes_connecting_source: xy = tuple(self.optimization_graph.get_node_coordinates(node)) coord_compo[xy] = node if len(coord_compo) > 2: convexhull = ConvexHull(list(coord_compo.keys())).points else: convexhull = list(coord_compo.keys()) hulls[source] = [coord_compo[tuple(coord)] for coord in convexhull] # 3. Create list of possible list_edges_to_add list_edges_to_add = {} # list of {(S1, S2):(length_of_SP, edges_to_add)} for S1, S2 in combinations(reduced_list_sources, 2): # change weight of edges for i in range(len(hulls[S1])-1): u,v = hulls[S1][i], hulls[S1][i+1] self.optimization_graph.add_edge(u,v,key=-1,weight=0) self.optimization_graph.add_edge(hulls[S1][-1],hulls[S1][0],key=-1,weight=0) for i in range(len(hulls[S2])-1): u,v = hulls[S2][i], hulls[S2][i+1] self.optimization_graph.add_edge(u,v,key=-1,weight=0) self.optimization_graph.add_edge(hulls[S2][-1],hulls[S2][0],key=-1,weight=0) # find the shortest path source, target = hulls[S1][0], hulls[S2][0] # it's a choice to take 0, but no matter try: length, path = nx.single_source_dijkstra(self.optimization_graph, source, target=target, weight=weight) except nx.NetworkXNoPath: self.logger.info("Source " + str(S1) + " and source " + str(S2) + " can't be connected") return [] list_weights = nx.get_edge_attributes(self.optimization_graph, weight) # edges to add to connect S1 and S2 edges_to_add = [] for i in range(len(path) - 1): u, v = path[i], path[i + 1] # if the edge between (u,v) is not artificial, we add it if list_weights.get((u, v, -1), None) != 0 and list_weights.get((u, v, 0), None) is not None: edges_to_add.append((u, v, 0)) if list_weights.get((v, u, -1), None) != 0 and list_weights.get((v, u, 0), None) is not None: edges_to_add.append((v, u, 0)) list_edges_to_add[(S1, S2)] = (length, edges_to_add) # change weight of edges for i in range(len(hulls[S1])-1): u,v = hulls[S1][i], hulls[S1][i+1] self.optimization_graph.remove_edge(u,v,key=-1) self.optimization_graph.remove_edge(hulls[S1][-1],hulls[S1][0],key=-1) for i in range(len(hulls[S2])-1): u,v = hulls[S2][i], hulls[S2][i+1] self.optimization_graph.remove_edge(u,v,key=-1) self.optimization_graph.remove_edge(hulls[S2][-1],hulls[S2][0],key=-1) # 4. choice of best edges to add (Kruskal) G = nx.Graph() for (S1, S2) in list_edges_to_add: (length, _) = list_edges_to_add[(S1, S2)] if not G.has_node(S1): G.add_node(S1) if not G.has_node(S2): G.add_node(S2) G.add_edge(S1, S2, weight=length) reduced_list_edges_to_add = set() T = nx.minimum_spanning_tree(G) for u, v in T.edges: if (u, v) in list_edges_to_add: reduced_list_edges_to_add = reduced_list_edges_to_add.union(set(list_edges_to_add[(u, v)][1])) if (v, u) in list_edges_to_add: reduced_list_edges_to_add = reduced_list_edges_to_add.union(set(list_edges_to_add[(v, u)][1])) self.logger.info('end connecting graph in ' + str(time.time() - debut) + ' s') return list(reduced_list_edges_to_add) @staticmethod def clean_flow_cycles(flows: dict): """Remove the sub-optimal flow cycles allowed with the flow conservation. Flows dictionnary is modified inplace.""" for e, flow in flows.items(): if flow > 0: reversed_e = (e[1], e[0], *e[2:]) if reversed_e in flows and flows[reversed_e] > 0: reversed_flow = flows[reversed_e] cycle_flow = min(flow, reversed_flow) flows[e] -= cycle_flow flows[reversed_e] -= cycle_flow # -------------- NLP methods def load_conf(self): """ loads the parameters defined in the config.ini in self.conf to prepare the NLP optimization""" conf = configparser.ConfigParser() conf.read(self.conf_path) params = self.conf for s in conf.sections(): for p in conf[s]: params[p.upper()] = eval(conf.get(s,p)) self.conf = params if self.energy == "Heating": T = self.conf['SUPPLY_HEAT_TEMPERATURE'] if self.energy == "Cooling": T = self.conf['SUPPLY_COOL_TEMPERATURE'] # piecewise linear functions self.conf['CP'] = CP(T) self.conf['RHO'] = RHO(T) # REGRESSIONS if self.energy == "Heating": self.conf['A_HEAT_TRANSIT_COEF'], self.conf['B_HEAT_TRANSIT_COEF'] = \ HEAT_LOSS_COST((self.conf['SUPPLY_HEAT_TEMPERATURE']+self.conf['RETURN_HEAT_TEMPERATURE'])/2) if self.energy == "Cooling": self.conf['A_COOL_TRANSIT_COEF'], self.conf['B_COOL_TRANSIT_COEF'] = \ HEAT_LOSS_COST((self.conf['SUPPLY_COOL_TEMPERATURE']+self.conf['RETURN_COOL_TEMPERATURE'])/2) self.conf['A_LINEAR_COST'], self.conf['B_LINEAR_COST'] = CONSTRUCTION_COST() self.conf['A_MAX_VELOCITY'], self.conf['B_MAX_VELOCITY'] = MAX_VELOCITY() def convert_power_to_mass_flow(self, power_mw): if self.energy == "Heating": mass_flow = (power_mw * 1e6) / (self.conf['CP']\ * (self.conf['SUPPLY_HEAT_TEMPERATURE'] - self.conf['RETURN_HEAT_TEMPERATURE'])) if self.energy == "Cooling": mass_flow = (power_mw * 1e6) / (self.conf['CP']\ * (self.conf['RETURN_COOL_TEMPERATURE'] - self.conf['SUPPLY_COOL_TEMPERATURE'])) return mass_flow def convert_mass_flow_to_power(self, mass_flow): if self.energy == "Heating": power_mw = mass_flow * 1e-6 * self.conf['CP'] * \ (self.conf['SUPPLY_HEAT_TEMPERATURE'] - self.conf['RETURN_HEAT_TEMPERATURE']) if self.energy == "Cooling": power_mw = mass_flow * 1e-6 * self.conf['CP'] * \ (self.conf['RETURN_COOL_TEMPERATURE'] - self.conf['SUPPLY_COOL_TEMPERATURE']) return power_mw def get_params(self, network_frame, peak_consumption): lengths = nx.get_edge_attributes(network_frame, config.EDGE_LENGTH_KEY) Length, Outflow, Supply_Max_Inflow = {}, {}, {} sources = set(n for n,d in network_frame.nodes(data = True) if \ config.NODE_TYPE_KEY in d and d[config.NODE_TYPE_KEY] == config.SUPPLY_NODE_TYPE) connected_buildings = set(n for n,d in network_frame.nodes(data =True) if \ config.NODE_TYPE_KEY in d and d[config.NODE_TYPE_KEY] == config.BUILDING_NODE_TYPE) # IMPORTANT : edges between a source and a junction must have the form (source, junction) # edges between a building and junction must have the form (junction, building) for key in lengths: u, v = key[0], key[1] if (v,u) not in Length: if v in sources: Length[(v,u)] = max(lengths[key],1e-5) # we don't want a length of zero else: Length[(u,v)] = max(lengths[key],1e-5) for s in sources: Supply_Max_Inflow[s] = self.convert_power_to_mass_flow(network_frame.nodes[s][config.SUPPLY_POWER_CAPACITY_KEY]) for b in connected_buildings: if self.energy == "Heating": Outflow[b] = self.convert_power_to_mass_flow(peak_consumption[b]) if self.energy == "Cooling": Outflow[b] = self.convert_power_to_mass_flow(peak_consumption[b]) GraphParam = {} GraphParam["LENGTH"] = Length GraphParam["ELEVATION"] = nx.get_node_attributes(network_frame, config.NODE_ELEVATION_KEY) GraphParam["OUTFLOW"] = Outflow GraphParam["SUPPLY_MAX_INFLOW"] = Supply_Max_Inflow return GraphParam def get_consumption_and_capacities_from_csv(self, graph, csv_file): consumption_data, capacity_data =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from tspdb.src.database_module.db_class import Interface from tspdb.src.pindex.pindex_utils import index_ts_mapper, index_ts_inv_mapper, index_exists, get_bound_time from scipy.stats import norm def unnormalize(arr, mean, std): return arr *std + mean def get_prediction_range( index_name, table_name, value_column, interface, t1,t2 , uq = True, uq_method ='Gaussian', c = 95., projected = False): """ Return an array of N (N = t2-t1+1) predicted value along with the confidence interval for the value of column_name at time t1 to t2 using index_name by calling either forecast_range or impute_range function ---------- Parameters ---------- index_name: string name of the PINDEX used to query the prediction table_name: string name of the time series table in the database value_column: string name of column than contain time series value interface: db_class object object used to communicate with the DB. see ../database/db_class for the abstract class t1: (int or timestamp) index or timestamp indicating the start of the queried range t2: (int or timestamp) index or timestamp indicating the end of the queried range uq: boolean optional (default=true) if true, return upper and lower bound of the c% confidenc interval uq_method: string optional (defalut = 'Gaussian') options: {'Gaussian', 'Chebyshev'} Uncertainty quantification method used to estimate the confidence interval c: float optional (default 95.) confidence level for uncertainty quantification, 0<c<100 ---------- Returns ---------- prediction array, shape [(t1 - t2 +1) ] Values of the predicted point of the time series in the time interval t1 to t2 deviation array, shape [1, (t1 - t2 +1) ] The deviation from the mean to get the desired confidence level """ # query pindex parameters T,T_var, L, k,k_var, L_var, last_model, MUpdateIndex,var_direct, interval, start_ts, last_TS_seen, last_TS_seen_var, index_col, value_columns, MUpdateIndex_var, p = interface.query_table( index_name+'_meta',['T','T_var', 'L', 'k','k_var','L_var', 'no_submodels', 'last_TS_inc', 'var_direct_method', 'agg_interval','start_time', "last_TS_seen", "last_TS_seen_var", "time_column","indexed_column",'last_TS_inc_var','p'])[0] last_model -= 1 value_columns = value_columns.split(',') no_ts = len(value_columns) try: value_index = value_columns.index(value_column) except: raise Exception('The value column %s selected is not indexed by the chosen pindex'%(value_column)) if not isinstance(t1, (int, np.integer)): t1 =
pd.to_datetime(t1)
pandas.to_datetime
import os import time import configparser import joblib import numpy as np import pandas as pd import torch import torch.nn as nn import torch.optim as optim from tensorboardX import SummaryWriter from sklearn.metrics import accuracy_score, classification_report from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, StandardScaler from torch.utils.data import Dataset, random_split, DataLoader, Subset from tqdm import tqdm import argparse from model import MLPClassifier events = { 'normal': 0, 'ixnetwork-bgp-hijacking-start': 1, 'ixnetwork-bgp-injection-start': 2, 'node-down': 3, 'interface-down': 4, 'tap-loss-delay': 5, } config = configparser.ConfigParser() config.read('config/mlp_config.ini') model_path = config.get('MAIN', 'model_path') model_dir = model_path window = config.getint('MAIN', 'window') seed = config.getint('MAIN', 'seed') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(device) torch.manual_seed(seed) if not os.path.exists(model_path): os.makedirs(model_path) class PreProcessing: def __init__(self, is_train=True): self.transfermer = dict() self.is_train = is_train if not self.is_train: self.transfermer = self.load() def __call__(self, df, s_type='minmax', is_timeseries=False): if self.is_train: return self.fit_transform(df, s_type, is_timeseries) else: return self.transform(df, is_timeseries) def fit_transform(self, df, s_type, is_timeseries): for column in df.columns: # feature scaling if s_type == 'minmax': self.transfermer[column] = MinMaxScaler() elif s_type == 'standard': self.transfermer[column] = StandardScaler() value = self.transfermer[column].fit_transform( pd.DataFrame(df[column])) df.loc[:, column] = value # lag feature if is_timeseries: df[column + "_diff"] = df[column].diff() df[column + "_mean_5"] = df[column].rolling(5).mean() df = df.fillna(df.median()) return df def transform(self, df, is_timeseries): for column in df.columns: value = self.transfermer[column].transform( pd.DataFrame(df[column])) df.loc[:, column] = value if is_timeseries: df[column + "_diff"] = df[column].diff() df[column + "_mean_5"] = df[column].rolling(5).mean() df = df.fillna(df.median()) return df def dump(self, filename='/tmp/mlp_transfer.bin'): with open(filename, 'wb') as f: joblib.dump(self.transfermer, f) def load(self, filename='/tmp/mlp_transfer.bin'): with open(filename, 'rb') as f: data = joblib.load(f) return data class MyDataset(Dataset): def __init__(self, data_path, label_path, metrics, transform=None): self.transform = transform self.metrics = metrics data = [] for metric in tqdm(self.metrics): df = pd.read_csv(os.path.join(data_path, metric + '.tsv'), sep="\t", index_col=0) df = df.fillna(0) df = df.sort_values("timestamp") df = df.set_index("timestamp") columns_name = {name: metric + '_' + name for name in df.columns} df.rename(columns=columns_name, inplace=True) if self.transform: if metric != "admin-status": df = self.transform(df, s_type='standard') data.append(df) self.dataframe = pd.concat(data, axis=1) self.dataframe = self.dataframe.reindex(columns=sorted(self.dataframe.columns)) self.data = self.dataframe.values self.data_num = len(self.dataframe) self.label =
pd.read_csv(label_path, sep="\t", index_col=0)
pandas.read_csv
import pandas as pd from tarpan.shared.compare_parameters import ( save_compare_parameters, CompareParametersType) def run_model(): data1 = { "x": [1, 2, 3, 4, 5, 6], "y": [-1, -2, -3, -4, -5, -6], "z": [40, 21, 32, 41, 11, 31] } df1 = pd.DataFrame(data1) data2 = { "x": [2, 3, 1, 1, 3, 4], "y": [-2.1, -2, -2, -3, -1, -4], "z": [23, 19, 21, 13, 29, 10] } extra = [{"x": 2.2, "y": 1.3}] # Add extra values (optional) df2 =
pd.DataFrame(data2)
pandas.DataFrame
import os import sys import random import re import copy import matplotlib import matplotlib.pyplot as plt import pandas as pd import numpy as np import logging import datetime as dt from math import radians, cos, sin, asin, sqrt from datetime import datetime,timedelta from objects.objects import Cluster,Order,Vehicle,Transition,Grid from config.setting import * from preprocessing.readfiles import * ########################################################################### class Simulation(object): """ This simulator is used to simulate urban vehicle traffic.The system divides the day into several time slots. System information is updated at the beginning of each time slot to update vehicle arrivals and order completion. Then the system generates the order that needs to be started within the current time slot, and then finds the optimal idle vehicle to match the order. If the match fails or the recent vehicles have timed out, the order is marked as Reject. If it is successful, the vehicle service order is arranged. The shortest path in the road network first reaches the place where the order occurred, and then arrives at the order destination, and repeats matching the order until all the orders in the current time slot have been completed. Then the system generates orders that occur within the current time slot, finds the nearest idle vehicle to match the order, and if there is no idle vehicle or the nearest idle vehicle reaches the current position of the order and exceeds the limit time, the match fails, and if the match is successful, the selected vehicle service is arranged Order. After the match is successful, the vehicle's idle record in the current cluster is deleted, and the time to be reached is added to the cluster where the order destination is located. The vehicle must first arrive at the place where the order occurred, pick up the passengers, and then complete the order at the order destination. Repeat the matching order until a match All orders in this phase are completed. At the end of the matching phase, you can useyour own matching method to dispatch idle vehicles in each cluster to other clusters that require more vehicles to meet future order requirements. """ def __init__(self,ClusterMode,DemandPredictionMode, DispatchMode,VehiclesNumber,TimePeriods,LocalRegionBound, SideLengthMeter,VehiclesServiceMeter, NeighborCanServer,FocusOnLocalRegion): #Component self.DispatchModule = None self.DemandPredictorModule = None #Statistical variables self.OrderNum = 0 self.RejectNum = 0 self.DispatchNum = 0 self.TotallyDispatchCost = 0 self.TotallyWaitTime = 0 self.TotallyUpdateTime = dt.timedelta() self.TotallyRewardTime = dt.timedelta() self.TotallyNextStateTime = dt.timedelta() self.TotallyLearningTime = dt.timedelta() self.TotallyDispatchTime = dt.timedelta() self.TotallyMatchTime = dt.timedelta() self.TotallyDemandPredictTime = dt.timedelta() #Data variable self.Clusters = None self.Orders = None self.Vehicles = None self.Map = None self.Node = None self.NodeIDList = None self.NodeID2Cluseter = {} self.NodeID2NodesLocation = {} self.TransitionTempPool = [] self.MapWestBound = LocalRegionBound[0] self.MapEastBound = LocalRegionBound[1] self.MapSouthBound = LocalRegionBound[2] self.MapNorthBound = LocalRegionBound[3] #Weather data #------------------------------------------ self.WeatherType = np.array([2,1,1,1,1,0,1,2,1,1,3,3,3,3,3, 3,3,0,0,0,2,1,1,1,1,0,1,0,1,1, 1,3,1,1,0,2,2,1,0,0,2,3,2,2,2, 1,2,2,2,1,0,0,2,2,2,1,2,1,1,1]) self.MinimumTemperature = np.array([12,12,11,12,14,12,9,8,7,8,9,7,9,10,11, 12,13,13,11,11,11,6,5,5,4,4,6,6,5,6]) self.MaximumTemperature = np.array([17,19,19,20,20,19,13,12,13,15,16,18,18,19,19, 18,20,21,19,20,19,12,9,9,10,13,12,12,13,15]) self.WindDirection = np.array([1,2,0,2,7,6,3,2,3,7,1,0,7,1,7, 0,0,7,0,7,7,7,0,7,5,7,6,6,7,7]) self.WindPower = np.array([1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,2,1,1,1,1,1,1,1,1]) self.WeatherType = self.Normaliztion_1D(self.WeatherType) self.MinimumTemperature = self.Normaliztion_1D(self.MinimumTemperature) self.MaximumTemperature = self.Normaliztion_1D(self.MaximumTemperature) self.WindDirection = self.Normaliztion_1D(self.WindDirection) self.WindPower = self.Normaliztion_1D(self.WindPower) #------------------------------------------ #Input parameters self.ClusterMode = ClusterMode self.DispatchMode = DispatchMode self.VehiclesNumber = VehiclesNumber self.TimePeriods = TimePeriods self.LocalRegionBound = LocalRegionBound self.SideLengthMeter = SideLengthMeter self.VehiclesServiceMeter = VehiclesServiceMeter self.ClustersNumber = None self.NumGrideWidth = None self.NumGrideHeight = None self.NeighborServerDeepLimit = None #Control variable self.NeighborCanServer = NeighborCanServer self.FocusOnLocalRegion = FocusOnLocalRegion #Process variable self.RealExpTime = None self.NowOrder = None self.step = None self.Episode = 0 self.CalculateTheScaleOfDivision() #Demand predictor variable self.DemandPredictionMode = DemandPredictionMode self.SupplyExpect = None return def Reload(self,OrderFileDate="1101"): """ Read a new order into the simulator and reset some variables of the simulator """ print("Load order " + OrderFileDate + "and reset the experimental environment") self.OrderNum = 0 self.RejectNum = 0 self.DispatchNum = 0 self.TotallyDispatchCost = 0 self.TotallyWaitTime = 0 self.TotallyUpdateTime = dt.timedelta() self.TotallyNextStateTime = dt.timedelta() self.TotallyLearningTime = dt.timedelta() self.TotallyDispatchTime = dt.timedelta() self.TotallyMatchTime = dt.timedelta() self.TotallyDemandPredictTime = dt.timedelta() self.Orders = None self.TransitionTempPool.clear() self.RealExpTime = None self.NowOrder = None self.step = None #read orders #----------------------------------------- if self.FocusOnLocalRegion == False: Orders = ReadOrder(input_file_path="./data/test/order_2016"+ str(OrderFileDate) + ".csv") self.Orders = [Order(i[0],i[1],self.NodeIDList.index(i[2]),self.NodeIDList.index(i[3]),i[1]+PICKUPTIMEWINDOW,None,None,None) for i in Orders] else: SaveLocalRegionBoundOrdersPath = "./data/test/order_2016" + str(self.LocalRegionBound) + str(OrderFileDate) + ".csv" if os.path.exists(SaveLocalRegionBoundOrdersPath): Orders = ReadResetOrder(input_file_path=SaveLocalRegionBoundOrdersPath) self.Orders = [Order(i[0],string_pdTimestamp(i[1]),self.NodeIDList.index(i[2]),self.NodeIDList.index(i[3]),string_pdTimestamp(i[1])+PICKUPTIMEWINDOW,None,None,None) for i in Orders] else: Orders = ReadOrder(input_file_path="./data/test/order_2016"+ str(OrderFileDate) + ".csv") self.Orders = [Order(i[0],i[1],self.NodeIDList.index(i[2]),self.NodeIDList.index(i[3]),i[1]+PICKUPTIMEWINDOW,None,None,None) for i in Orders] #Limit order generation area #------------------------------- for i in self.Orders[:]: if self.IsOrderInLimitRegion(i) == False: self.Orders.remove(i) #------------------------------- LegalOrdersSet = [] for i in self.Orders: LegalOrdersSet.append(i.ID) OutBoundOrdersSet = [] for i in range(len(Orders)): if not i in LegalOrdersSet: OutBoundOrdersSet.append(i) Orders = pd.DataFrame(Orders) Orders = Orders.drop(OutBoundOrdersSet) Orders.to_csv(SaveLocalRegionBoundOrdersPath,index=0) #----------------------------------------- #Rename orders'ID #------------------------------- for i in range(len(self.Orders)): self.Orders[i].ID = i #------------------------------- #Calculate the value of all orders in advance #------------------------------- for EachOrder in self.Orders: EachOrder.OrderValue = self.RoadCost(EachOrder.PickupPoint,EachOrder.DeliveryPoint) #------------------------------- #Reset the Clusters and Vehicles #------------------------------- for i in self.Clusters: i.Reset() for i in self.Vehicles: i.Reset() self.InitVehiclesIntoCluster() #------------------------------- return def Reset(self): print("Reset the experimental environment") self.OrderNum = 0 self.RejectNum = 0 self.DispatchNum = 0 self.TotallyDispatchCost = 0 self.TotallyWaitTime = 0 self.TotallyUpdateTime = dt.timedelta() self.TotallyNextStateTime = dt.timedelta() self.TotallyLearningTime = dt.timedelta() self.TotallyDispatchTime = dt.timedelta() self.TotallyMatchTime = dt.timedelta() self.TotallyDemandPredictTime = dt.timedelta() self.TransitionTempPool.clear() self.RealExpTime = None self.NowOrder = None self.step = None #Reset the Orders and Clusters and Vehicles #------------------------------- for i in self.Orders: i.Reset() for i in self.Clusters: i.Reset() for i in self.Vehicles: i.Reset() self.InitVehiclesIntoCluster() #------------------------------- return def InitVehiclesIntoCluster(self): print("Initialization Vehicles into Clusters or Grids") for i in self.Vehicles: while True: RandomNode = random.choice(range(len(self.Node))) if RandomNode in self.NodeID2Cluseter: i.LocationNode = RandomNode i.Cluster = self.NodeID2Cluseter[i.LocationNode] i.Cluster.IdleVehicles.append(i) break def LoadDispatchComponent(self,DispatchModule): self.DispatchModule = DispatchModule def RoadCost(self,start,end): return int(self.Map[start][end]) def haversine(self, lon1, lat1, lon2, lat2): """ Calculate the great circle distance between two points on the earth (specified in decimal degrees) """ lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) #haversine dlon = lon2 - lon1 dlat = lat2 - lat1 a = np.sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 c = 2 * asin(sqrt(a)) r = 6371 return c * r * 1000 def CalculateTheScaleOfDivision(self): EastWestSpan = self.LocalRegionBound[1] - self.LocalRegionBound[0] NorthSouthSpan = self.LocalRegionBound[3] - self.LocalRegionBound[2] AverageLongitude = (self.MapEastBound-self.MapWestBound)/2 AverageLatitude = (self.MapNorthBound-self.MapSouthBound)/2 self.NumGrideWidth = int(self.haversine(self.MapWestBound,AverageLatitude,self.MapEastBound,AverageLatitude) / self.SideLengthMeter + 1) self.NumGrideHeight = int(self.haversine(AverageLongitude,self.MapSouthBound,AverageLongitude,self.MapNorthBound) / self.SideLengthMeter + 1) self.NeighborServerDeepLimit = int((self.VehiclesServiceMeter - (0.5 * self.SideLengthMeter))//self.SideLengthMeter) self.ClustersNumber = self.NumGrideWidth * self.NumGrideHeight print("----------------------------") print("Map extent",self.LocalRegionBound) print("The width of each grid",self.SideLengthMeter,"meters") print("Vehicle service range",self.VehiclesServiceMeter,"meters") print("Number of grids in east-west direction",self.NumGrideWidth) print("Number of grids in north-south direction",self.NumGrideHeight) print("Number of grids",self.ClustersNumber) print("----------------------------") return def CreateAllInstantiate(self,OrderFileDate="1101"): print("Read all files") self.Node,self.NodeIDList,Orders,Vehicles,self.Map = ReadAllFiles(OrderFileDate) if self.ClusterMode != "Grid": print("Create Clusters") self.Clusters = self.CreateCluster() elif self.ClusterMode == "Grid": print("Create Grids") self.Clusters = self.CreateGrid() #Construct NodeID to Cluseter map for Fast calculation NodeID = self.Node['NodeID'].values for i in range(len(NodeID)): NodeID[i] = self.NodeIDList.index(NodeID[i]) for i in NodeID: for j in self.Clusters: for k in j.Nodes: if i == k[0]: self.NodeID2Cluseter[i] = j print("Create Orders set") self.Orders = [Order(i[0],i[1],self.NodeIDList.index(i[2]),self.NodeIDList.index(i[3]),i[1]+PICKUPTIMEWINDOW,None,None,None) for i in Orders] #Limit order generation area #------------------------------- if self.FocusOnLocalRegion == True: print("Remove out-of-bounds Orders") for i in self.Orders[:]: if self.IsOrderInLimitRegion(i) == False: self.Orders.remove(i) for i in range(len(self.Orders)): self.Orders[i].ID = i #------------------------------- #Calculate the value of all orders in advance #------------------------------- print("Pre-calculated order value") for EachOrder in self.Orders: EachOrder.OrderValue = self.RoadCost(EachOrder.PickupPoint,EachOrder.DeliveryPoint) #------------------------------- #Select number of vehicles #------------------------------- Vehicles = Vehicles[:self.VehiclesNumber] #------------------------------- print("Create Vehicles set") self.Vehicles = [Vehicle(i[0],self.NodeIDList.index(i[1]),None,[],None) for i in Vehicles] self.InitVehiclesIntoCluster() return def IsOrderInLimitRegion(self,Order): if not Order.PickupPoint in self.NodeID2NodesLocation: return False if not Order.DeliveryPoint in self.NodeID2NodesLocation: return False return True def IsNodeInLimitRegion(self,TempNodeList): if TempNodeList[0][0] < self.LocalRegionBound[0] or TempNodeList[0][0] > self.LocalRegionBound[1]: return False elif TempNodeList[0][1] < self.LocalRegionBound[2] or TempNodeList[0][1] > self.LocalRegionBound[3]: return False return True def CreateGrid(self): NumGrideHeight = self.NumGrideHeight NumGride = self.NumGrideWidth * self.NumGrideHeight NodeLocation = self.Node[['Longitude','Latitude']].values.round(7) NodeID = self.Node['NodeID'].values.astype('int64') #Select small area simulation #---------------------------------------------------- if self.FocusOnLocalRegion == True: NodeLocation = NodeLocation.tolist() NodeID = NodeID.tolist() TempNodeList = [] for i in range(len(NodeLocation)): TempNodeList.append((NodeLocation[i],NodeID[i])) for i in TempNodeList[:]: if self.IsNodeInLimitRegion(i) == False: TempNodeList.remove(i) NodeLocation.clear() NodeID.clear() for i in TempNodeList: NodeLocation.append(i[0]) NodeID.append(i[1]) NodeLocation = np.array(NodeLocation) #-------------------------------------------------- NodeSet = {} for i in range(len(NodeID)): NodeSet[(NodeLocation[i][0],NodeLocation[i][1])] = self.NodeIDList.index(NodeID[i]) #Build each grid #------------------------------------------------------ if self.FocusOnLocalRegion == True: TotalWidth = self.LocalRegionBound[1] - self.LocalRegionBound[0] TotalHeight = self.LocalRegionBound[3] - self.LocalRegionBound[2] else: TotalWidth = self.MapEastBound - self.MapWestBound TotalHeight = self.MapNorthBound - self.MapSouthBound IntervalWidth = TotalWidth / self.NumGrideWidth IntervalHeight = TotalHeight / self.NumGrideHeight AllGrid = [Grid(i,[],[],0,[],{},[]) for i in range(NumGride)] for key,value in NodeSet.items(): NowGridWidthNum = None NowGridHeightNum = None for i in range(self.NumGrideWidth): if self.FocusOnLocalRegion == True: LeftBound = (self.LocalRegionBound[0] + i * IntervalWidth) RightBound = (self.LocalRegionBound[0] + (i+1) * IntervalWidth) else: LeftBound = (self.MapWestBound + i * IntervalWidth) RightBound = (self.MapWestBound + (i+1) * IntervalWidth) if key[0] > LeftBound and key[0] < RightBound: NowGridWidthNum = i break for i in range(self.NumGrideHeight): if self.FocusOnLocalRegion == True: DownBound = (self.LocalRegionBound[2] + i * IntervalHeight) UpBound = (self.LocalRegionBound[2] + (i+1) * IntervalHeight) else: DownBound = (self.MapSouthBound + i * IntervalHeight) UpBound = (self.MapSouthBound + (i+1) * IntervalHeight) if key[1] > DownBound and key[1] < UpBound: NowGridHeightNum = i break if NowGridWidthNum == None or NowGridHeightNum == None : print(key[0],key[1]) raise Exception('error') else: AllGrid[self.NumGrideWidth * NowGridHeightNum + NowGridWidthNum].Nodes.append((value,(key[0],key[1]))) #------------------------------------------------------ for i in AllGrid: for j in i.Nodes: self.NodeID2NodesLocation[j[0]] = j[1] #Add neighbors to each grid #------------------------------------------------------ for i in AllGrid: #Bound Check #---------------------------- UpNeighbor = True DownNeighbor = True LeftNeighbor = True RightNeighbor = True LeftUpNeighbor = True LeftDownNeighbor = True RightUpNeighbor = True RightDownNeighbor = True if i.ID >= self.NumGrideWidth * (self.NumGrideHeight - 1): UpNeighbor = False LeftUpNeighbor = False RightUpNeighbor = False if i.ID < self.NumGrideWidth: DownNeighbor = False LeftDownNeighbor = False RightDownNeighbor = False if i.ID % self.NumGrideWidth == 0: LeftNeighbor = False LeftUpNeighbor = False LeftDownNeighbor = False if (i.ID+1) % self.NumGrideWidth == 0: RightNeighbor = False RightUpNeighbor = False RightDownNeighbor = False #---------------------------- #Add all neighbors #---------------------------- if UpNeighbor: i.Neighbor.append(AllGrid[i.ID+self.NumGrideWidth]) if DownNeighbor: i.Neighbor.append(AllGrid[i.ID-self.NumGrideWidth]) if LeftNeighbor: i.Neighbor.append(AllGrid[i.ID-1]) if RightNeighbor: i.Neighbor.append(AllGrid[i.ID+1]) if LeftUpNeighbor: i.Neighbor.append(AllGrid[i.ID+self.NumGrideWidth-1]) if LeftDownNeighbor: i.Neighbor.append(AllGrid[i.ID-self.NumGrideWidth-1]) if RightUpNeighbor: i.Neighbor.append(AllGrid[i.ID+self.NumGrideWidth+1]) if RightDownNeighbor: i.Neighbor.append(AllGrid[i.ID-self.NumGrideWidth+1]) #---------------------------- #You can draw every grid(red) and neighbor(random color) here #---------------------------------------------- ''' for i in range(len(AllGrid)): print("Grid ID ",i,AllGrid[i]) print(AllGrid[i].Neighbor) self.DrawOneCluster(Cluster = AllGrid[i],random = False,show = False) for j in AllGrid[i].Neighbor: if j.ID == AllGrid[i].ID : continue print(j.ID) self.DrawOneCluster(Cluster = j,random = True,show = False) plt.xlim(104.007, 104.13) plt.ylim(30.6119, 30.7092) plt.show() ''' #---------------------------------------------- return AllGrid def CreateCluster(self): NodeLocation = self.Node[['Longitude','Latitude']].values.round(7) NodeID = self.Node['NodeID'].values.astype('int64') #Set Nodes In Limit Region #---------------------------------------- if self.FocusOnLocalRegion == True: print("Remove out-of-bounds Nodes") NodeLocation = NodeLocation.tolist() NodeID = NodeID.tolist() TempNodeList = [] for i in range(len(NodeLocation)): TempNodeList.append((NodeLocation[i],NodeID[i])) for i in TempNodeList[:]: if self.IsNodeInLimitRegion(i) == False: TempNodeList.remove(i) NodeLocation.clear() NodeID.clear() for i in TempNodeList: #NodeLocation.append(i[0]) NodeLocation.append(i[0]) NodeID.append(i[1]) NodeLocation = np.array(NodeLocation) #---------------------------------------- N = {} for i in range(len(NodeID)): N[(NodeLocation[i][0],NodeLocation[i][1])] = NodeID[i] Clusters=[Cluster(i,[],[],0,[],{},[]) for i in range(self.ClustersNumber)] ClusterPath = './data/'+str(self.LocalRegionBound)+str(self.ClustersNumber)+str(self.ClusterMode)+'Clusters.csv' if os.path.exists(ClusterPath): reader = pd.read_csv(ClusterPath,chunksize = 1000) label_pred = [] for chunk in reader: label_pred.append(chunk) label_pred = pd.concat(label_pred) label_pred = label_pred.values label_pred = label_pred.flatten() label_pred = label_pred.astype('int64') else: raise Exception('Cluster Path not found') #Loading Clustering results into simulator print("Loading Clustering results") for i in range(self.ClustersNumber): temp = NodeLocation[label_pred == i] for j in range(len(temp)): Clusters[i].Nodes.append((self.NodeIDList.index(N[(temp[j,0],temp[j,1])]),(temp[j,0],temp[j,1]))) SaveClusterNeighborPath = './data/'+str(self.LocalRegionBound)+str(self.ClustersNumber)+str(self.ClusterMode)+'Neighbor.csv' if not os.path.exists(SaveClusterNeighborPath): print("Computing Neighbor relationships between clusters") AllNeighborList = [] for i in Clusters: NeighborList = [] for j in Clusters: if i == j: continue else: TempSumCost = 0 for k in i.Nodes: for l in j.Nodes: TempSumCost += self.RoadCost(k[0],l[0]) if (len(i.Nodes)*len(j.Nodes)) == 0: RoadNetworkDistance = 99999 else: RoadNetworkDistance = TempSumCost / (len(i.Nodes)*len(j.Nodes)) NeighborList.append((j,RoadNetworkDistance)) NeighborList.sort(key=lambda X: X[1]) AllNeighborList.append([]) for j in NeighborList: AllNeighborList[-1].append((j[0].ID,j[1])) AllNeighborList =
pd.DataFrame(AllNeighborList)
pandas.DataFrame
################################################################################ # Module: schedule.py # Description: Functions for handling conversion of EnergyPlus schedule objects # License: MIT, see full license in LICENSE.txt # Web: https://github.com/samuelduchesne/archetypal ################################################################################ import functools import logging as lg from datetime import datetime, timedelta from itertools import groupby import numpy as np import pandas as pd from eppy.bunch_subclass import EpBunch from numpy import ndarray from archetypal.energypandas import EnergySeries, plot_energyseries_map from archetypal.utils import log class Schedule(object): """An object designed to handle any EnergyPlus schedule object""" def __init__( self, Name, idf=None, start_day_of_the_week=None, strict=False, base_year=2018, schType=None, Type=None, Values=None, epbunch=None, **kwargs, ): """ Args: Name (str): The schedule name in the idf model. idf (IDF): The IDF model. start_day_of_the_week (int): 0-based day of week (Monday=0). Default is None which looks for the start day in the IDF model. strict (bool): if True, schedules that have the Field-Sets such as Holidays and CustomDay will raise an error if they are absent from the IDF file. If False, any missing qualifiers will be ignored. base_year (int): The base year of the schedule. Defaults to 2018 since the first day of that year is a Monday. schType (str): The EnergyPlus schedule type. eg.: "Schedule:Year" Type (str): This field contains a reference to the Schedule Type Limits object. If found in a list of Schedule Type Limits (see above), then the restrictions from the referenced object will be used to validate the current field values. Values (ndarray): A 24 or 8760 list of schedule values. epbunch (EpBunch): An EpBunch object from which this schedule can be created. **kwargs: """ try: kwargs["idf"] = idf Name = kwargs.pop("Name", Name) super(Schedule, self).__init__(Name, **kwargs) except Exception as e: pass # todo: make this more robust self.strict = strict self._idf = idf self.Name = Name self.startDayOfTheWeek = self.get_sdow(start_day_of_the_week) self.year = base_year self.count = 0 self.startHOY = 1 self.endHOY = 24 self.unit = "unknown" self.index_ = None self._values = Values self.schType = schType self.Type = Type try: self.epbunch = epbunch or self.idf.get_schedule_epbunch(self.Name) except KeyError: self.epbunch = None if self.Type is None: self.Type = self.get_schedule_type_limits_name(sch_type=self.schType) @property def idf(self): if self._idf is None: from .idfclass.idf import IDF self._idf = IDF() return self._idf @classmethod def from_values(cls, Name, Values, idf, Type="Fraction", **kwargs): """ Args: Name: Values: idf: Type: **kwargs: """ return cls(Name=Name, Values=Values, Type=Type, idf=idf, **kwargs) @classmethod def constant_schedule( cls, hourly_value=1, Name="AlwaysOn", idf=None, Type="Fraction", **kwargs ): """Create a schedule with a constant value for the whole year. Defaults to a schedule with a value of 1, named 'AlwaysOn'. Args: hourly_value (float, optional): The value for the constant schedule. Defaults to 1. Name (str, optional): The name of the schedule. Defaults to Always On. idf: **kwargs: """ if not idf: from archetypal import IDF idf = IDF(prep_outputs=False) # Add the schedule to the existing idf epbunch = idf.anidfobject( key="Schedule:Constant".upper(), Name=Name, Schedule_Type_Limits_Name=Type, Hourly_Value=hourly_value, ) return cls( Name=Name, Values=np.ones(8760) * hourly_value, idf=idf, epbunch=epbunch, **kwargs, ) @property def all_values(self) -> np.ndarray: """returns the values array""" if self._values is None: self._values = self.get_schedule_values(self.epbunch) return self._values @property def max(self): return max(self.all_values) @property def min(self): return min(self.all_values) @property def mean(self): return np.mean(self.all_values) @property def series(self): """Returns the schedule values as a pd.Series object with a DateTimeIndex """ index = pd.date_range( start=self.startDate, periods=len(self.all_values), freq="1H" ) return pd.Series(self.all_values, index=index) def get_schedule_type_limits_name(self, sch_type=None): """Return the Schedule Type Limits name associated to this schedule Args: sch_type: """ if self.epbunch is None: schedule_values = self.idf.get_schedule_epbunch( self.Name, sch_type=sch_type ) else: schedule_values = self.epbunch try: schedule_limit_name = schedule_values.Schedule_Type_Limits_Name except: return "unknown" else: return schedule_limit_name def get_schedule_type_limits_data(self, name=None): """Returns Schedule Type Limits data from schedule name Args: name: """ if name is None: name = self.Name schedule_values = self.epbunch try: schedule_limit_name = schedule_values.Schedule_Type_Limits_Name except: # this schedule is probably a 'Schedule:Week:Daily' which does # not have a Schedule_Type_Limits_Name field return "", "", "", "" else: ( lower_limit, upper_limit, numeric_type, unit_type, ) = self.idf.get_schedule_type_limits_data_by_name(schedule_limit_name) self.unit = unit_type if self.unit == "unknown": self.unit = numeric_type return lower_limit, upper_limit, numeric_type, unit_type def get_schedule_type(self, name=None): """Return the schedule type, eg.: "Schedule:Year" Args: name: """ if name is None: name = self.Name schedule_values = self.epbunch sch_type = schedule_values.key return sch_type @property def startDate(self): """The start date of the schedule. Satisfies `startDayOfTheWeek`""" import calendar c = calendar.Calendar(firstweekday=self.startDayOfTheWeek) start_date = c.monthdatescalendar(self.year, 1)[0][0] return datetime(start_date.year, start_date.month, start_date.day) def plot(self, slice=None, **kwargs): """Plot the schedule. Implements the .loc accessor on the series object. Examples: >>> from archetypal import IDF >>> idf = IDF() >>> s = Schedule( >>> Name="NECB-A-Thermostat Setpoint-Heating", >>> idf=idf) >>> ) >>> s.plot(slice=("2018/01/02", "2018/01/03"), drawstyle="steps-post") Args: slice (tuple): define a 2-tuple object the will be passed to :class:`pandas.IndexSlice` as a range. **kwargs (dict): keyword arguments passed to :meth:`pandas.Series.plot`. """ hourlyvalues = self.all_values index = pd.date_range(self.startDate, periods=len(hourlyvalues), freq="1H") series = pd.Series(hourlyvalues, index=index, dtype=float) if slice is None: slice = pd.IndexSlice[:] elif len(slice) > 1: slice = pd.IndexSlice[slice[0] : slice[1]] label = kwargs.pop("label", self.Name) ax = series.loc[slice].plot(**kwargs, label=label) return ax def plot2d(self, **kwargs): """Plot the carpet plot of the schedule""" return plot_energyseries_map( EnergySeries(self.series, name=self.Name), **kwargs ) plot2d.__doc__ = plot_energyseries_map.__doc__ def get_interval_day_ep_schedule_values(self, epbunch: EpBunch) -> np.ndarray: """Schedule:Day:Interval Args: epbunch (EpBunch): The schedule EpBunch object. """ ( lower_limit, upper_limit, numeric_type, unit_type, ) = self.get_schedule_type_limits_data(epbunch.Name) number_of_day_sch = int((len(epbunch.fieldvalues) - 3) / 2) hourly_values = np.arange(24, dtype=float) start_hour = 0 for i in range(number_of_day_sch): value = float(epbunch["Value_Until_Time_{}".format(i + 1)]) until_time = [ int(s.strip()) for s in epbunch["Time_{}".format(i + 1)].split(":") if s.strip().isdigit() ] end_hour = int(until_time[0] + until_time[1] / 60) for hour in range(start_hour, end_hour): hourly_values[hour] = value start_hour = end_hour if numeric_type.strip().lower() == "discrete": hourly_values = hourly_values.astype(int) return hourly_values def get_hourly_day_ep_schedule_values(self, epbunch): """Schedule:Day:Hourly Args: epbunch (EpBunch): The schedule EpBunch object. """ fieldvalues_ = np.array(epbunch.fieldvalues[3:]) return fieldvalues_ def get_compact_weekly_ep_schedule_values( self, epbunch, start_date=None, index=None ) -> np.ndarray: """schedule:week:compact Args: epbunch (EpBunch): the name of the schedule start_date: index: """ if start_date is None: start_date = self.startDate if index is None: idx = pd.date_range(start=start_date, periods=168, freq="1H") slicer_ = pd.Series([False] * (len(idx)), index=idx) else: slicer_ = pd.Series([False] * (len(index)), index=index) weekly_schedules = pd.Series([0] * len(slicer_), index=slicer_.index) # update last day of schedule if self.count == 0: self.schType = epbunch.key self.endHOY = 168 num_of_daily_schedules = int(len(epbunch.fieldvalues[2:]) / 2) for i in range(num_of_daily_schedules): day_type = epbunch["DayType_List_{}".format(i + 1)].lower() # This field can optionally contain the prefix “For” how = self.field_set(day_type.strip("for: "), slicer_) if not weekly_schedules.loc[how].empty: # Loop through days and replace with day:schedule values days = [] for name, day in weekly_schedules.loc[how].groupby( pd.Grouper(freq="D") ): if not day.empty: ref = epbunch.get_referenced_object( "ScheduleDay_Name_{}".format(i + 1) ) day.loc[:] = self.get_schedule_values(sched_epbunch=ref) days.append(day) new = pd.concat(days) slicer_.update(pd.Series([True] * len(new.index), index=new.index)) slicer_ = slicer_.apply(lambda x: x == True) weekly_schedules.update(new) else: return weekly_schedules.values return weekly_schedules.values def get_daily_weekly_ep_schedule_values(self, epbunch) -> np.ndarray: """schedule:week:daily Args: epbunch (EpBunch): The schedule EpBunch object. """ # 7 list for 7 days of the week hourly_values = [] for day in [ "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday", ]: ref = epbunch.get_referenced_object("{}_ScheduleDay_Name".format(day)) h = self.get_schedule_values(sched_epbunch=ref) hourly_values.append(h) hourly_values = np.array(hourly_values) # shift days earlier by self.startDayOfTheWeek hourly_values = np.roll(hourly_values, -self.startDayOfTheWeek, axis=0) return hourly_values.ravel() def get_list_day_ep_schedule_values(self, epbunch) -> np.ndarray: """schedule:day:list Args: epbunch (EpBunch): The schedule epbunch object. """ import pandas as pd freq = int(epbunch["Minutes_per_Item"]) # Frequency of the values num_values = epbunch.fieldvalues[5:] # List of values method = epbunch["Interpolate_to_Timestep"] # How to resample # fill a list of available values and pad with zeros (this is safer # but should not occur) all_values = np.arange(int(24 * 60 / freq)) for i in all_values: try: all_values[i] = num_values[i] except: all_values[i] = 0 # create a fake index to help us with the resampling index = pd.date_range( start=self.startDate, periods=(24 * 60) / freq, freq="{}T".format(freq) ) series = pd.Series(all_values, index=index) # resample series to hourly values and apply resampler function series = series.resample("1H").apply(_how(method)) return series.values def get_constant_ep_schedule_values(self, epbunch) -> np.ndarray: """schedule:constant Args: epbunch (EpBunch): The schedule epbunch object. """ ( lower_limit, upper_limit, numeric_type, unit_type, ) = self.get_schedule_type_limits_data(epbunch.Name) hourly_values = np.arange(8760) value = float(epbunch["Hourly_Value"]) for hour in hourly_values: hourly_values[hour] = value if numeric_type.strip().lower() == "discrete": hourly_values = hourly_values.astype(int) return hourly_values def get_file_ep_schedule_values(self, epbunch) -> np.ndarray: """schedule:file Args: epbunch (EpBunch): The schedule epbunch object. """ filename = epbunch["File_Name"] column = epbunch["Column_Number"] rows = epbunch["Rows_to_Skip_at_Top"] hours = epbunch["Number_of_Hours_of_Data"] sep = epbunch["Column_Separator"] interp = epbunch["Interpolate_to_Timestep"] file = self.idf.simulation_dir.files(filename)[0] delimeter = _separator(sep) skip_rows = int(rows) - 1 # We want to keep the column col = [int(column) - 1] # zero-based epbunch = pd.read_csv( file, delimiter=delimeter, skiprows=skip_rows, usecols=col ) return epbunch.iloc[:, 0].values def get_compact_ep_schedule_values(self, epbunch) -> np.ndarray: """schedule:compact Args: epbunch (EpBunch): The schedule epbunch object. """ field_sets = ["through", "for", "interpolate", "until", "value"] fields = epbunch.fieldvalues[3:] index = pd.date_range(start=self.startDate, periods=8760, freq="H") zeros = np.zeros(len(index)) slicer_ = pd.Series([False] * len(index), index=index) series =
pd.Series(zeros, index=index)
pandas.Series
############################################################# # # Test 2. regression model for a fixed input string size N, Ternary # ############################################################# import sys, os sys.path.append("../..") sys.path.append("..") sys.path.append(os.getcwd()) import numpy as np import pandas as pd import copy import pickle from math import log, e, pi from sklearn.linear_model import LinearRegression from matplotlib import pyplot as plt from utils import * from ternary import * def import_data(): print("*** importing data ***") annual_pred = pd.read_pickle("annual_pred_2016.pkl") target_players = list(annual_pred.columns) data = pd.read_csv("../../data/nba-enhanced-stats/2012-18_playerBoxScore.csv") game_metrics = ['playPTS', 'playAST', 'playTO','playFG%','playFT%','play3PM','playTRB','playSTL', 'playBLK'] year_metrics = ['PTS_G','AST_G','TOV_G','TRB_G','STL_G','BLK_G','3P_G','FG%','FT%'] colname_dict = {'playPTS': 'PTS_G', 'playAST': 'AST_G', 'playTO':'TOV_G', 'playFG%': 'FG%','playFT%':'FT%','play3PM':'3P_G', 'playTRB':'TRB_G','playSTL':'STL_G','playBLK':'BLK_G'} # edit column names to fit with the yearly data data = data.rename(columns=colname_dict) date_col = pd.to_datetime(data.gmDate + " " + data.gmTime, format='%Y-%m-%d %H:%M').rename("date") data = pd.concat([date_col,data], axis=1) stats_game = data[["date","gmDate","playDispNm"]+year_metrics] stats_game = stats_game.rename(columns={"playDispNm": "Player"}) df =
pd.read_pickle("../../data/nba-hosoi/nba_scores_2103-2018.pkl")
pandas.read_pickle
import pandas as pd from pandas import date_range ave_daily_balance_keyword_lst = ['结息', '利息', '季息', '入息'] # 生成3、6、9、12月21号到25号的字符串 ms = ["%s" % x for x in range(3, 13, 3)] ds = ["%s" % x for x in range(21, 26)] ave_days = ["%s%s" % (x, y) for x in ms for y in ds] def get_month(datetime_str): month = datetime_str.month day = datetime_str.day month_day = "%s%s" % (month, day) if month_day in ave_days: return 1 else: return 0 def ave_daily_balance_count(df): """ :param df: 网银流水df :return: 日均存款余额 """ df['transDate'] =
pd.to_datetime(df['transDate'])
pandas.to_datetime
import glob import matplotlib matplotlib.use("Agg") import bokeh.plotting as plt from bokeh.embed import file_html from bokeh.resources import CDN import cherrypy import pandas as pd import numpy as np class Main(object): @cherrypy.expose def index(self): df = pd.concat([pd.read_csv(fname) for fname in glob.glob("/home/joerg/data/thermostat*.csv")]) df["dt_local"] =
pd.to_datetime(df.dt_local)
pandas.to_datetime
# -*- coding: UTF-8 -*- """ 此脚本用于展示hard margin和soft margin """ import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn.svm import SVC def generate_data(n): """ 生成模型所需数据 """ np.random.seed(2046) X = np.r_[np.random.randn(n, 2) - [1, 1], np.random.randn(n, 2) + [3, 3]] Y = [[0]] * n + [[1]] * n data = np.concatenate((Y, X), axis=1) data =
pd.DataFrame(data, columns=["y", "x1", "x2"])
pandas.DataFrame
#! /usr/bin/env python # -*- coding: utf-8 -*- """ @version: @author: zzh @file: factor_earning_expectation.py @time: 2019-9-19 """ import pandas as pd class FactorEarningExpectation(): """ 盈利预期 """ def __init__(self): __str__ = 'factor_earning_expectation' self.name = '盈利预测' self.factor_type1 = '盈利预测' self.factor_type2 = '盈利预测' self.description = '个股盈利预测因子' @staticmethod def NPFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['net_profit_fy1']): """ :name: 一致预期净利润(FY1) :desc: 一致预期净利润的未来第一年度的预测 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'net_profit_fy1': 'NPFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['net_profit_fy2']): """ :name: 一致预期净利润(FY2) :desc: 一致预期净利润的未来第二年度的预测 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'net_profit_fy2': 'NPFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['eps_fy1']): """ :name: 一致预期每股收益(FY1) :desc: 一致预期每股收益未来第一年度的预测均值 :unit: 元 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'eps_fy1': 'EPSFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['eps_fy2']): """ :name: 一致预期每股收益(FY2) :desc: 一致预期每股收益未来第二年度的预测均值 :unit: 元 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'eps_fy2': 'EPSFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['operating_revenue_fy1']): """ :name: 一致预期营业收入(FY1) :desc: 一致预期营业收入未来第一年度的预测均值 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'operating_revenue_fy1': 'OptIncFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['operating_revenue_fy2']): """ :name: 一致预期营业收入(FY2) :desc: 一致预期营业收入未来第二年度的预测均值 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'operating_revenue_fy2': 'OptIncFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['pe_fy1']): """ :name: 一致预期市盈率(PE)(FY1) :desc: 一致预期市盈率未来第一年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pe_fy1': 'CEPEFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['pe_fy2']): """ :name: 一致预期市盈率(PE)(FY2) :desc: 一致预期市盈率未来第二年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pe_fy2': 'CEPEFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPBFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['pb_fy1']): """ :name: 一致预期市净率(PB)(FY1) :desc: 一致预期市净率未来第一年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pb_fy1': 'CEPBFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPBFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['pb_fy2']): """ :name: 一致预期市净率(PB)(FY2) :desc: 一致预期市净率未来第二年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pb_fy2': 'CEPBFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEGFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['peg_fy1']): """ :name: 市盈率相对盈利增长比率(FY1) :desc: 未来第一年度市盈率相对盈利增长比率 :unit: :view_dimension: 0.01 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'peg_fy1': 'CEPEGFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEGFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['peg_fy2']): """ :name: 市盈率相对盈利增长比率(FY2) :desc: 未来第二年度市盈率相对盈利增长比率 :unit: :view_dimension: 0.01 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'peg_fy2': 'CEPEGFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def _change_rate(tp_earning, trade_date, pre_trade_date, colunm, factor_name): earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, colunm] earning_expect_pre = tp_earning[tp_earning['publish_date'] == pre_trade_date].loc[:, colunm] earning_expect = pd.merge(earning_expect, earning_expect_pre, on='security_code', how='left') earning_expect[factor_name] = (earning_expect[colunm + '_x'] - earning_expect[colunm + '_y']) / \ earning_expect[colunm + '_y'] earning_expect.drop(columns=[colunm + '_x', colunm + '_y'], inplace=True) return earning_expect @staticmethod def _change_value(tp_earning, trade_date, pre_trade_date, colunm, factor_name): earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, colunm] earning_expect_pre = tp_earning[tp_earning['publish_date'] == pre_trade_date].loc[:, colunm] earning_expect = pd.merge(earning_expect, earning_expect_pre, on='security_code', how='left') earning_expect[factor_name] = (earning_expect[colunm + '_x'] - earning_expect[colunm + '_y']) earning_expect.drop(columns=[colunm + '_x', colunm + '_y'], inplace=True) return earning_expect @staticmethod def NPFY11WRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_一周 :desc: 未来第一年度一致预测净利润一周内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[1], 'net_profit_fy1', 'NPFY11WRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY11MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_一月 :desc: 未来第一年度一致预测净利润一月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[2], 'net_profit_fy1', 'NPFY11MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY13MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_三月 :desc: 未来第一年度一致预测净利润三月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[3], 'net_profit_fy1', 'NPFY13MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY16MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_六月 :desc: 未来第一年度一致预测净利润六月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[4], 'net_profit_fy1', 'NPFY16MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11WChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_一周 :desc: 未来第一年度一致预测每股收益一周内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'eps_fy1', 'EPSFY11WChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_一月 :desc: 未来第一年度一致预测每股收益一月内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[2], 'eps_fy1', 'EPSFY11MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY13MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_三月 :desc: 未来第一年度一致预测每股收益三月内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[3], 'eps_fy1', 'EPSFY13MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY16MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_六月 :desc: 未来第一年度一致预测每股收益六月内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[4], 'eps_fy1', 'EPSFY16MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11WRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_一周 :desc: 未来第一年度一致预测每股收益一周内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'eps_fy1', 'EPSFY11WRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_一月 :desc: 未来第一年度一致预测每股收益一月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[2], 'eps_fy1', 'EPSFY11MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY13MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_三月 :desc: 未来第一年度一致预测每股收益三月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[3], 'eps_fy1', 'EPSFY13MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY16MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_六月 :desc: 未来第一年度一致预测每股收益六月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[4], 'eps_fy1', 'EPSFY16MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY11WChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_一周 :desc: 未来第一年度一致预测净利润一周内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'net_profit_fy1', 'NPFY11WChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY11MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_一月 :desc: 未来第一年度一致预测净利润一月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[2], 'net_profit_fy1', 'NPFY11MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY13MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_三月 :desc: 未来第一年度一致预测净利润三月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[3], 'net_profit_fy1', 'NPFY13MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY16MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_六月 :desc: 未来第一年度一致预测净利润六月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[4], 'net_profit_fy1', 'NPFY16MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def ChgNPFY1FY2(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY2)与一致预期净利润(FY1)的变化率 :desc: 未来第二年度一致预测净利润与未来第一年度一致预测净利润变化率 :unit: :view_dimension: 0.01 """ factor_earning_expect['ChgNPFY1FY2'] = factor_earning_expect['NPFY2'] - factor_earning_expect['NPFY1'] / abs( factor_earning_expect['NPFY1']) * 100 return factor_earning_expect @staticmethod def ChgEPSFY1FY2(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY2)与一致预期每股收益(FY1)的变化率 :desc: 未来第二年度一致预测每股收益与未来第一年度一致预测每股收益变化率 :unit: :view_dimension: 0.01 """ factor_earning_expect['ChgEPSFY1FY2'] = factor_earning_expect['EPSFY2'] - factor_earning_expect['EPSFY1'] / abs( factor_earning_expect['EPSFY1']) * 100 return factor_earning_expect @staticmethod def OptIncFY11WRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化_一周 :desc: 未来第一年度一致预测营业收入一周内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'operating_revenue_fy1', 'OptIncFY11WRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY11MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化_一月 :desc: 未来第一年度一致预测营业收入一月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[2], 'operating_revenue_fy1', 'OptIncFY11MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY13MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化_三月 :desc: 未来第一年度一致预测营业收入三月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[3], 'operating_revenue_fy1', 'OptIncFY13MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY16MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化_六月 :desc: 未来第一年度一致预测营业收入六月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[4], 'operating_revenue_fy1', 'OptIncFY16MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY11WChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化率_一周 :desc: 未来第一年度一致预测营业收入一周内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[1], 'operating_revenue_fy1', 'OptIncFY11WChg') factor_earning_expect =
pd.merge(factor_earning_expect, earning_expect, on='security_code')
pandas.merge
# -*- coding: utf-8 -*- import logging import os import xml.etree.ElementTree as ET from urllib.request import urlretrieve import pandas as pd from .constants import TRAIN_DATA_FILE_PATH, TRAIN_DATA_URL, TEST_DATA_FILE_PATH, TEST_DATA_URL, col_names log = logging.getLogger(__name__) def download_scai_mirna_corpora(force_download=False): """Download the scai-mirna-corpora as XMLs :param bool force_download: If true, forces the data to get downloaded again; defaults to False :return: The system file path of the downloaded files :rtype: str """ # Load training set log.info("Load training data") if os.path.exists(TRAIN_DATA_FILE_PATH) and not force_download: log.info('using cached data at %s', TRAIN_DATA_FILE_PATH) else: log.info('downloading %s to %s', TRAIN_DATA_URL, TRAIN_DATA_FILE_PATH) urlretrieve(TRAIN_DATA_URL, TRAIN_DATA_FILE_PATH) # Load test set log.info("Load test data") if os.path.exists(TEST_DATA_FILE_PATH) and not force_download: log.info('using cached data at %s', TEST_DATA_FILE_PATH) else: log.info('downloading %s to %s', TEST_DATA_URL, TEST_DATA_FILE_PATH) urlretrieve(TEST_DATA_URL, TEST_DATA_FILE_PATH) return TRAIN_DATA_FILE_PATH, TEST_DATA_FILE_PATH def get_scai_mirna_dfs(url=None, cache=True, force_download=False): """Loads the pairs annotated in the training and test set 1) PubMed ID 2) Pair ID 3) Entity-1 term 4) Entity-1 type 5) Entity-1 offset 6) Entity-2 term 7) Entity-2 type" 8) Entity-2 offset 9) Sentence 10) Interaction 11) Interaction type :param Optional[str] train_url: A custom path to use for data :param bool cache: If true, the data is downloaded to the file system, else it is loaded from the internet :param bool force_download: If true, overwrites a previously cached file :rtype: pandas.DataFrame """ if url is None and cache: train_url, test_url = download_scai_mirna_corpora(force_download=force_download) # Create data frame for the training set training_df = create_dataframe_of_pairs(url=train_url) # Create data frame for the test set test_df = create_dataframe_of_pairs(url=test_url) merged_df =
pd.concat([training_df, test_df])
pandas.concat
import argparse import sys import os from pathlib import Path import logging from typing import Dict import numpy as np import pandas as pd import scipy.sparse as sp from joblib import dump from knodle.trainer.utils import log_section from examples.data_preprocessing.tac_based_dataset.utils.utils import count_file_lines, encode_labels logger = logging.getLogger(__name__) PRINT_EVERY = 1000000 Z_MATRIX_OUTPUT_TRAIN = "train_rule_matches_z.lib" Z_MATRIX_OUTPUT_DEV = "dev_rule_matches_z.lib" Z_MATRIX_OUTPUT_TEST = "test_rule_matches_z.lib" T_MATRIX_OUTPUT_TRAIN = "mapping_rules_labels.lib" TRAIN_SAMPLES_OUTPUT = "df_train.lib" DEV_SAMPLES_OUTPUT = "df_dev.lib" TEST_SAMPLES_OUTPUT = "df_test.lib" def preprocess_data( path_train_data: str, path_dev_data: str, path_test_data: str, path_labels: str, path_lfs: str, path_output: str ) -> None: """ This function reads train and dev data and saved resulted files to output directory""" Path(path_output).mkdir(parents=True, exist_ok=True) labels2ids = get_labels(path_labels) num_labels = len(labels2ids) other_class_id = max(labels2ids.values()) + 1 # used for dev and test sets lfs = pd.read_csv(path_lfs) rule2rule_id = dict(zip(lfs.rule, lfs.rule_id)) num_lfs = max(lfs.rule_id.values) + 1 rule_assignments_t = get_t_matrix(lfs, num_labels) dump(sp.csr_matrix(rule_assignments_t), os.path.join(path_output, T_MATRIX_OUTPUT_TRAIN)) get_train_data( path_train_data, path_output, rule2rule_id, num_lfs, Z_MATRIX_OUTPUT_TRAIN, TRAIN_SAMPLES_OUTPUT ) get_dev_test_data( path_dev_data, path_output, labels2ids, rule2rule_id, num_lfs, Z_MATRIX_OUTPUT_DEV, DEV_SAMPLES_OUTPUT, other_class_id ) get_dev_test_data( path_test_data, path_output, labels2ids, rule2rule_id, num_lfs, Z_MATRIX_OUTPUT_TEST, TEST_SAMPLES_OUTPUT, other_class_id ) def get_labels(path_labels: str) -> Dict: """ Reads the labels from the file and encode them with ids """ relation2ids = {} with open(path_labels, encoding="UTF-8") as file: for line in file.readlines(): relation, relation_enc = line.replace("\n", "").split(",") relation2ids[relation] = int(relation_enc) return relation2ids def get_train_data( path_train_data: str, path_output: str, rule2rule_id: Dict, num_lfs: int, z_matrix: str, samples: str ) -> None: """ Processes the train data and saves t_matrix, z_matrix and training set info to output directory. """ log_section("Processing of train data has started", logger) train_data = annotate_conll_data_with_lfs(path_train_data, rule2rule_id, False) rule_matches_z = get_z_matrix(train_data, num_lfs) dump(train_data, os.path.join(path_output, samples)) dump(rule_matches_z, os.path.join(path_output, z_matrix)) logger.info("Processing of train data has finished") def get_dev_test_data( path_data: str, path_output: str, labels2ids: dict, rule2rule_id: Dict, num_lfs: int, z_matrix: str, samples: str, other_class_id: int ) -> None: """ This function processes the development data and save it as DataFrame with samples as row text and gold labels (encoded with ids) to output directory. Additionally it saved z matrix for testing purposes. """ log_section("Processing of eval data has started", logger) val_data = get_conll_data_with_ent_pairs(path_data, rule2rule_id, labels2ids, other_class_id) rule_matches_z = get_z_matrix(val_data, num_lfs) dump(rule_matches_z, os.path.join(path_output, z_matrix)) dump(val_data, os.path.join(path_output, samples)) logger.info("Processing of eval data has finished") def annotate_conll_data_with_lfs(conll_data: str, rule2rule_id: Dict, filter_out_other: bool = True) -> pd.DataFrame: num_lines = count_file_lines(conll_data) processed_lines = 0 samples, rules, enc_rules = [], [], [] with open(conll_data, encoding='utf-8') as f: for line in f: processed_lines += 1 line = line.strip() if line.startswith("# id="): # Instance starts sample = "" subj, obj = {}, {} elif line == "": # Instance ends if len(list(subj.keys())) == 0 or len(list(obj.keys())) == 0: continue if min(list(subj.keys())) < min(list(obj.keys())): rule = "_".join(list(subj.values())) + " " + "_".join(list(obj.values())) else: rule = "_".join(list(subj.values())) + " " + "_".join(list(obj.values())) if rule in rule2rule_id.keys(): samples.append(sample.lstrip()) rules.append(rule) rule_id = rule2rule_id[rule] enc_rules.append(rule_id) elif not filter_out_other: samples.append(sample.lstrip()) rules.append(None) enc_rules.append(None) else: continue elif line.startswith("#"): # comment continue else: splitted_line = line.split("\t") token = splitted_line[1] if splitted_line[2] == "SUBJECT": subj[splitted_line[0]] = token sample += " " + token elif splitted_line[4] == "OBJECT": obj[splitted_line[0]] = token sample += " " + token else: if (bool(subj) and not bool(obj)) or (not bool(subj) and bool(obj)): sample += " " + token if processed_lines % PRINT_EVERY == 0: logger.info("Processed {:0.2f}% of {} file".format(100 * processed_lines / num_lines, conll_data.split("/")[-1])) return
pd.DataFrame.from_dict({"sample": samples, "rules": rules, "enc_rules": enc_rules})
pandas.DataFrame.from_dict
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import os from scipy import integrate, stats from numpy import absolute, mean from pandas import DataFrame from itertools import islice import researchpy as rp import seaborn as sns import statsmodels.api as sm from statsmodels.formula.api import ols import statsmodels.stats.multicomp ##################################################################################################### # Before beginning: make sure the file name matches the version of experiment you want to analyze. # Ensure the output .csv's reflect the desired version as well. headers = [ 'participant_id', 'block', 'type', 'occurence', 'switch_type', 'accuracy', ] df_accuracy = pd.read_csv(r'C:\Users\danie\Documents\SURREY\Project_1\task_switching_paradigm\pilot3_withoccurence.csv', usecols = headers) df_accuracy1 = pd.DataFrame() df_accuracy2 = pd.DataFrame() # OVERALL % ACCURACY df_accuracy.set_index(['participant_id', 'type', 'block', 'occurence'], inplace = True) for group_i, group_v in df_accuracy.groupby(level=[0, 1, 2, 3]): number_of_trials = 0 overall_accuracy = 0 for index, row in group_v.iterrows(): number_of_trials = number_of_trials + 1 overall_accuracy = overall_accuracy + row['accuracy'] j = ((overall_accuracy/number_of_trials) * 100) group_v.at[index, 'overall_percent_acc'] = j group_v.reset_index(drop = False, inplace = True) df_accuracy1 =
pd.concat([df_accuracy1, group_v])
pandas.concat
"""PD hate crimes _jobs file.""" import glob import os import csv import string import logging import pandas as pd from datetime import datetime from trident.util import general conf = general.config prod_file = f"{conf['prod_data_dir']}/hate_crimes_datasd.csv" def get_data(): """Download Hate Crimes data from FTP.""" wget_str = "wget -np --continue " \ + "--user=$ftp_user " \ + "--password='<PASSWORD>' " \ + "--directory-prefix=$temp_dir " \ + "ftp://ftp.datasd.org/uploads/sdpd/" \ + "Hate_Crimes/Hate_Crimes_Data_Portal_SDPD_*.xlsx" tmpl = string.Template(wget_str) command = tmpl.substitute( ftp_user=conf['ftp_datasd_user'], ftp_pass=conf['ftp_datasd_pass'], temp_dir=conf['temp_data_dir'] ) return command def process_data(): """Process hate crimes data.""" filename = conf['temp_data_dir'] + "/Hate_Crimes_Data_Portal_SDPD_*.xlsx" list_of_files = glob.glob(filename) latest_file = max(list_of_files, key=os.path.getmtime) logging.info(f"Reading in {latest_file}") df = pd.read_excel(latest_file,sheet_name='hate_crimes_datasd') df['date'] =
pd.to_datetime(df['date'],errors='coerce')
pandas.to_datetime