prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pytest import os from mapping import util from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np @pytest.fixture def price_files(): cdir = os.path.dirname(__file__) path = os.path.join(cdir, 'data/') files = ["CME-FVU2014.csv", "CME-FVZ2014.csv"] return [os.path.join(path, f) for f in files] def assert_dict_of_frames(dict1, dict2): assert dict1.keys() == dict2.keys() for key in dict1: assert_frame_equal(dict1[key], dict2[key]) def test_read_price_data(price_files): # using default name_func in read_price_data() df = util.read_price_data(price_files) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "CME-FVU2014"), (dt1, "CME-FVZ2014"), (dt2, "CME-FVZ2014")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def name_func(fstr): file_name = os.path.split(fstr)[-1] name = file_name.split('-')[1].split('.')[0] return name[-4:] + name[:3] df = util.read_price_data(price_files, name_func) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "2014FVU"), (dt1, "2014FVZ"), (dt2, "2014FVZ")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def test_calc_rets_one_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([0.1, 0.05, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([0.1, 0.075, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15], [0.075, 0.45], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_nans_in_second_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, np.NaN, 0.05, 0.1, np.NaN, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, np.NaN], [0.075, np.NaN], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_non_unique_columns(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL1']) with pytest.raises(ValueError): util.calc_rets(rets, weights) def test_calc_rets_two_generics_two_asts(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets1 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5')]) rets2 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.4], index=idx) rets = {"CL": rets1, "CO": rets2} vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights1 = pd.DataFrame(vals, index=widx, columns=["CL0", "CL1"]) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5') ]) weights2 = pd.DataFrame(vals, index=widx, columns=["CO0", "CO1"]) weights = {"CL": weights1, "CO": weights2} wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15, 0.1, 0.15], [0.075, 0.45, 0.075, 0.25], [-0.5, 0.2, pd.np.NaN, pd.np.NaN]], index=weights["CL"].index.levels[0], columns=['CL0', 'CL1', 'CO0', 'CO1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_instr_rets_key_error(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5')]) irets = pd.Series([0.02, 0.01, 0.012], index=idx) vals = [1, 1/2, 1/2, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(KeyError): util.calc_rets(irets, weights) def test_calc_rets_nan_instr_rets(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([pd.np.NaN, pd.np.NaN, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([pd.np.NaN, pd.np.NaN, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_weight(): # see https://github.com/matthewgilbert/mapping/issues/8 # missing weight for return idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) rets = pd.Series([0.02, -0.03, 0.06], index=idx) vals = [1, 1] widx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(ValueError): util.calc_rets(rets, weights) # extra instrument idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights1 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-02'), 'CLH5'), (TS('2015-01-03'), 'CLH5'), # extra day for no weight instrument (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLH5') ]) rets = pd.Series([0.02, -0.03, 0.06, 0.05, 0.01], index=idx) with pytest.raises(ValueError): util.calc_rets(rets, weights1) # leading / trailing returns idx = pd.MultiIndex.from_tuples([(TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5')]) weights2 = pd.DataFrame(1, index=idx, columns=["CL1"]) idx = pd.MultiIndex.from_tuples([(TS('2015-01-01'), 'CLF5'), (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-05'), 'CLF5')]) rets = pd.Series([0.02, -0.03, 0.06, 0.05], index=idx) with pytest.raises(ValueError): util.calc_rets(rets, weights2) def test_to_notional_empty(): instrs = pd.Series() prices = pd.Series() multipliers = pd.Series() res_exp = pd.Series() res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_same_fx(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-30.20, 2 * 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_extra_prices(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2, 13.1], index=['CLZ6', 'COZ6', 'GCZ6', 'extra']) res_exp = pd.Series([-30.20, 2 * 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_missing_prices(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5], index=['CLZ6', 'COZ6']) res_exp = pd.Series([-30.20, 2 * 30.5, pd.np.NaN], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers) assert_series_equal(res, res_exp) def test_to_notional_different_fx(): instrs = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) multipliers = pd.Series([1, 1, 1], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) res_exp = pd.Series([-30.20, 2 * 30.5 / 1.32, 10.2 * 0.8], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_notional(instrs, prices, multipliers, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates) assert_series_equal(res, res_exp) def test_to_notional_duplicates(): instrs = pd.Series([1, 1], index=['A', 'A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37, 200.37], index=['A', 'A']) mults = pd.Series([100], index=['A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100, 100], index=['A', 'A']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) desired_ccy = "CAD" instr_fx = pd.Series(['USD', 'USD'], index=['A', 'A']) fx_rate = pd.Series([1.32], index=['USDCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy, instr_fx, fx_rate) instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) desired_ccy = "CAD" instr_fx = pd.Series(['USD'], index=['A']) fx_rate = pd.Series([1.32, 1.32], index=['USDCAD', 'USDCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy, instr_fx, fx_rate) def test_to_notional_bad_fx(): instrs = pd.Series([1], index=['A']) prices = pd.Series([200.37], index=['A']) mults = pd.Series([100], index=['A']) instr_fx = pd.Series(['JPY'], index=['A']) fx_rates = pd.Series([1.32], index=['GBPCAD']) with pytest.raises(ValueError): util.to_notional(instrs, prices, mults, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates) def test_to_contracts_rounder(): prices = pd.Series([30.20, 30.5], index=['CLZ6', 'COZ6']) multipliers = pd.Series([1, 1], index=['CLZ6', 'COZ6']) # 30.19 / 30.20 is slightly less than 1 so will round to 0 notional = pd.Series([30.19, 2 * 30.5], index=['CLZ6', 'COZ6']) res = util.to_contracts(notional, prices, multipliers, rounder=pd.np.floor) res_exp = pd.Series([0, 2], index=['CLZ6', 'COZ6']) assert_series_equal(res, res_exp) def test_to_contract_different_fx_with_multiplier(): notionals = pd.Series([-30.20, 2 * 30.5 / 1.32 * 10, 10.2 * 0.8 * 100], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) multipliers = pd.Series([1, 10, 100], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_contracts(notionals, prices, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates, multipliers=multipliers) assert_series_equal(res, res_exp) def test_to_contract_different_fx_with_multiplier_rounding(): # won't work out to integer number of contracts so this tests rounding notionals = pd.Series([-30.21, 2 * 30.5 / 1.32 * 10, 10.2 * 0.8 * 100], index=['CLZ6', 'COZ6', 'GCZ6']) prices = pd.Series([30.20, 30.5, 10.2], index=['CLZ6', 'COZ6', 'GCZ6']) instr_fx = pd.Series(['USD', 'CAD', 'AUD'], index=['CLZ6', 'COZ6', 'GCZ6']) fx_rates = pd.Series([1.32, 0.8], index=['USDCAD', 'AUDUSD']) multipliers = pd.Series([1, 10, 100], index=['CLZ6', 'COZ6', 'GCZ6']) res_exp = pd.Series([-1, 2, 1], index=['CLZ6', 'COZ6', 'GCZ6']) res = util.to_contracts(notionals, prices, desired_ccy='USD', instr_fx=instr_fx, fx_rates=fx_rates, multipliers=multipliers) assert_series_equal(res, res_exp) def test_trade_with_zero_amount(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, 0], index=[0, 1]) current_contracts = pd.Series([0, 1, 0], index=['CLX16', 'CLZ16', 'CLF17']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) + 0 * 0.5 / (50.41*100) - 1, # 0 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 19], index=['CLX16', 'CLZ16']) assert_series_equal(trades, exp_trades) def test_trade_all_zero_amount_return_empty(): wts = pd.DataFrame([1], index=["CLX16"], columns=[0]) desired_holdings = pd.Series([13], index=[0]) current_contracts = 0 prices = pd.Series([50.32], index=['CLX16']) multiplier = pd.Series([100], index=['CLX16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) exp_trades = pd.Series(dtype="int64") assert_series_equal(trades, exp_trades) def test_trade_one_asset(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, -50000], index=[0, 1]) current_contracts = pd.Series([0, 1, 0], index=['CLX16', 'CLZ16', 'CLF17']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 14, -5], index=['CLX16', 'CLZ16', 'CLF17']) exp_trades = exp_trades.sort_index() assert_series_equal(trades, exp_trades) def test_trade_multi_asset(): wts1 = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=["CL0", "CL1"]) wts2 = pd.DataFrame([1], index=["COX16"], columns=["CO0"]) wts = {"CL": wts1, "CO": wts2} desired_holdings = pd.Series([200000, -50000, 100000], index=["CL0", "CL1", "CO0"]) current_contracts = pd.Series([0, 1, 0, 5], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) prices = pd.Series([50.32, 50.41, 50.48, 49.50], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) multiplier = pd.Series([100, 100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, # 100000 * 1 / (49.50*100) - 5, exp_trades = pd.Series([20, 14, -5, 15], index=['CLX16', 'CLZ16', 'CLF17', 'COX16']) exp_trades = exp_trades.sort_index() assert_series_equal(trades, exp_trades) def test_trade_extra_desired_holdings_without_weights(): wts = pd.DataFrame([0], index=["CLX16"], columns=["CL0"]) desired_holdings = pd.Series([200000, 10000], index=["CL0", "CL1"]) current_contracts = pd.Series([0], index=['CLX16']) prices = pd.Series([50.32], index=['CLX16']) multipliers = pd.Series([1], index=['CLX16']) with pytest.raises(ValueError): util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers) def test_trade_extra_desired_holdings_without_current_contracts(): # this should treat the missing holdings as 0, since this would often # happen when adding new positions without any current holdings wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000, -50000], index=[0, 1]) current_contracts = pd.Series([0, 1], index=['CLX16', 'CLZ16']) prices = pd.Series([50.32, 50.41, 50.48], index=['CLX16', 'CLZ16', 'CLF17']) multiplier = pd.Series([100, 100, 100], index=['CLX16', 'CLZ16', 'CLF17']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 50000 * 0.5 / (50.41*100) - 1, # -50000 * 0.5 / (50.48*100) - 0, exp_trades = pd.Series([20, 14, -5], index=['CLX16', 'CLZ16', 'CLF17']) exp_trades = exp_trades.sort_index() # non existent contract holdings result in fill value being a float, # which casts to float64 assert_series_equal(trades, exp_trades, check_dtype=False) def test_trade_extra_weights(): # extra weights should be ignored wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) desired_holdings = pd.Series([200000], index=[0]) current_contracts = pd.Series([0, 2], index=['CLX16', 'CLZ16']) prices = pd.Series([50.32, 50.41], index=['CLX16', 'CLZ16']) multiplier = pd.Series([100, 100], index=['CLX16', 'CLZ16']) trades = util.calc_trades(current_contracts, desired_holdings, wts, prices, multipliers=multiplier) # 200000 * 0.5 / (50.32*100) - 0, # 200000 * 0.5 / (50.41*100) - 2, exp_trades = pd.Series([20, 18], index=['CLX16', 'CLZ16']) assert_series_equal(trades, exp_trades) def test_get_multiplier_dataframe_weights(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) ast_mult = pd.Series([1000], index=["CL"]) imults = util.get_multiplier(wts, ast_mult) imults_exp = pd.Series([1000, 1000, 1000], index=["CLF17", "CLX16", "CLZ16"]) assert_series_equal(imults, imults_exp) def test_get_multiplier_dict_weights(): wts1 = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) wts2 = pd.DataFrame([0.5, 0.5], index=["COX16", "COZ16"], columns=[0]) wts = {"CL": wts1, "CO": wts2} ast_mult = pd.Series([1000, 1000], index=["CL", "CO"]) imults = util.get_multiplier(wts, ast_mult) imults_exp = pd.Series([1000, 1000, 1000, 1000, 1000], index=["CLF17", "CLX16", "CLZ16", "COX16", "COZ16"]) assert_series_equal(imults, imults_exp) def test_get_multiplier_dataframe_weights_multiplier_asts_error(): wts = pd.DataFrame([[0.5, 0], [0.5, 0.5], [0, 0.5]], index=["CLX16", "CLZ16", "CLF17"], columns=[0, 1]) ast_mult = pd.Series([1000, 1000], index=["CL", "CO"]) with pytest.raises(ValueError): util.get_multiplier(wts, ast_mult) def test_weighted_expiration_two_generics(): vals = [[1, 0, 1/2, 1/2, 0, 1, 0], [0, 1, 0, 1/2, 1/2, 0, 1]] idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF15'), (TS('2015-01-03'), 'CLG15'), (
TS('2015-01-04')
pandas.Timestamp
# importing the necessory library import numpy as np import pandas as pd # defining the function to read the box boundry def dimension(file): f = open(file,'r') content = f.readlines() # stroring the each vertext point on the data list data = [] v_info = [] vertices_data =[] # cartesian_data =[] # vt_p = [] for x in range(len(content)): # checking the file content cartesian points or not if "CARTESIAN_POINT" in content[x]: d=content[x].replace(",","").split(" ") # Storing the cartesian point (X,Y,Z) cartesian_data=d[0],d[7],d[8],d[9] data.append(cartesian_data) # checking for the unit used in step file. elif "LENGTH_UNIT" in content[x]: d=content[x].replace(",","").split(" ") length_unit = (d[11] +" "+ d[12]).replace(".","").title() elif "VERTEX_POINT " in content[x]: dt=content[x].replace(",","").split(" ") vt_p=dt[0],dt[5] v_info.append(vt_p) else: pass df =
pd.DataFrame (data, columns = ['Line_no','x','y','z'])
pandas.DataFrame
import datetime import pandas as pd from src.models.model import * from hyperopt import Trials, STATUS_OK, tpe, fmin, hp from hyperas.utils import eval_hyperopt_space from keras.optimizers import SGD from sklearn.model_selection import StratifiedKFold from sklearn.metrics import roc_auc_score, recall_score, precision_score, f1_score from src.helpers.preprocess_helpers import Standardizer from src.helpers.import_helpers import LoadDataset, SplitData X, y = LoadDataset('final_binned_global.csv', directory='data//processed//') # Split data X_train, y_train, X_test, y_test = SplitData(X,y, test_size=0.1) # Standardize training data X_train = Standardizer().standardize(X_train, na_values=False) X_test = Standardizer().standardize(X_test, na_values=False) # Save the split train and test dataset before optimization for future reference y_train_save =
pd.DataFrame(y_train, columns=['LABEL'])
pandas.DataFrame
import pandas as pd from collections import Counter def df_to_experiment_annotator_table(df, experiment_col, annotator_col, class_col): """ :param df: A Dataframe we wish to transform with that contains the response of an annotator to an experiment | | document_id | annotator_id | annotation | |---:|--------------:|:---------------|-------------:| | 0 | 1 | A | 1 | | 1 | 1 | B | 1 | | 2 | 1 | D | 1 | | 4 | 2 | A | 2 | | 5 | 2 | B | 2 | :param experiment_col: The column name that contains the experiment (unit) :param annotator_col: The column name that identifies an annotator :param class_col: The column name that identifies the annotators response (class) :return: A dataframe indexed by annotators, with experiments as columns and the responses in the cells | annotator_id | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |:---------------|----:|----:|----:|----:|----:|----:|----:|----:|----:|-----:|-----:|-----:| | A | 1 | 2 | 3 | 3 | 2 | 1 | 4 | 1 | 2 | nan | nan | nan | | B | 1 | 2 | 3 | 3 | 2 | 2 | 4 | 1 | 2 | 5 | nan | 3 | | C | nan | 3 | 3 | 3 | 2 | 3 | 4 | 2 | 2 | 5 | 1 | nan | | D | 1 | 2 | 3 | 3 | 2 | 4 | 4 | 1 | 2 | 5 | 1 | nan | """ return df.pivot_table( index=annotator_col, columns=experiment_col, values=class_col, aggfunc="first" ) def make_value_by_unit_table_dict(experiment_annotator_df): """ :param experiment_annotator_df: A dataframe that came out of df_to_experiment_annotator_table :return: A dictionary of dictionaries (e.g. a table) whose rows (first level) are experiments and columns are responses {1: Counter({1.0: 1}), 2: Counter(), 3: Counter({2.0: 2}), 4: Counter({1.0: 2}), 5: Counter({3.0: 2}), """ data_by_exp = experiment_annotator_df.T.sort_index(axis=1).sort_index() table_dict = {} for exp, row in data_by_exp.iterrows(): vals = row.dropna().values table_dict[exp] = Counter() for val in vals: table_dict[exp][val] += 1 return table_dict def calculate_frequency_dicts(vbu_table_dict): """ :param vbu_table_dict: A value by unit table dictionary, the output of make_value_by_unit_table_dict :return: A dictionary of dictonaries { unit_freqs:{ 1:2..}, class_freqs:{ 3:4..}, total:7 } """ vbu_df = (
pd.DataFrame.from_dict(vbu_table_dict, orient="index")
pandas.DataFrame.from_dict
# %% import numpy as np import pandas as pd import matplotlib.pyplot as plt # this module has basic operations data = pd.read_csv('pandas_help/winter.csv') dataset = pd.read_csv('pandas_help/wine_data.csv', sep=';') # if you have na values you can mention in pd.read_csv() # if suppose in A column of data na_values are mentioned by -1 and in B column of data na_values are mentioned by -2 # in that case we can use below code: # # df = pd.read_csv(<dataframe>, na_values={'A':[], 'B':[]}) # %% # to get the shape print(data.shape) # show (rows, columns) # %% # to get data type of columns print(data.dtypes) # %% # to get info print(data.info()) # %% # to get all the values as a list of list and want to ignore index print(data.values) # %% # to get columns print(data.columns) # df.columns = df.columns.str.strip() to remove spaces # if you want to drop a columns use df.drop([<column name list>, axis='columns']) # selecting column with all non-zeros values df2.loc[:, df2.all()] --> missing values will be taken as non-zero # selecting column with any NaN, df.loc[:, df.isnull().any()] # dropping rows with any Nan df.dropna(how='any) how='all' will remove a row in which all columns are null you can provide # thresh=<int> to drop rows/columns if it is equal or greater than thresh # if you want to drop a row based on if particular column is na then use # df.dropna(subset=[<column name>], inplace=True) # %% # if you want to concatenate two columns then you can use: # data.A.str.cat(data.B, sep=' ') you can specify sep as you like # %% # if you want to get total null values in each column you can use data.isnull().sum() # %% # to get index print(data.index) # %% # to reset index data = data.reset_index() # %% # to get top 5 rows, you can use to get top n rows using data.head(<num of rows needed>). print(data.head()) # %% # to get below 5 rows, you can use to get bottom n rows using data.tail(<num of rows needed>). print(data.tail()) # %% # to get frequency count of a column # value_counts is a function of Series not of dataFrame so cannot be applied as data.value_counts(dropna=False) unique = data['Year'].value_counts(dropna=False) # dropna= False will include na values # you can pass normalize=True to get propotions the values are between 0 and 1 print(unique) # %% # to get statistics use data.describe() only the columns with numeric data type will be return # %% # for plotting the histogram dataset.plot('quality', subplots=True) # this will apply to all numeric columns and show result plt.show() # %% # dataframe plot iris = pd.read_csv('pandas_help/iris.data', header=None, names=['petal width', 'petal length', 'sepal width', 'sepal length', 'species']) iris.plot(x='sepal length', y='petal length') # here you can provide y as list ['petal length', 'sepal width'] also you # can provide s=sizes plt.show() # %% # you can plot histogram of single column as dataset['quality'].plot(kind='hist') # can pass logx=True or logy = True for logarithmic scale and rot=70 will rotate # the axis scale by 70 degree. You can also pass cumulative=True in hist for cumulative distribuiton plt.legend(['Quality']) plt.show() # for specifying xlim and ylim use plt.xlim(0,10) or plt.ylim(0,10) # %% # boxplot can be used to see outliers data.boxplot(column='Year', by='Gender') # rot = 90 will rotate the axis scale by 90 degree plt.show() iris = pd.read_csv('pandas_help/iris.data', header=None, names=['petal width', 'petal length', 'sepal width', 'sepal length', 'species']) iris.plot(y=['petal length', 'sepal length'], kind='box') plt.show() iris['petal length'].plot(kind='hist', cumulative=True, density=True) plt.show() # %% # scatter plot can be used to see outliers as well iris = pd.read_csv('pandas_help/iris.data', header=None, names=['petal width', 'petal length', 'sepal width', 'sepal length', 'species']) iris.plot(x='sepal length', y='petal length') plt.show() iris.hist() # this will plot all the numeric columns hist as different subplots plt.show() # %% # melting the data use pd.melt(frame=<dataframe> , id_vars=[<to be kept constant>], value_vars=[<columns to melt>], # var_name=<>, value_name=<>) # %% # pivoting data # pivot cannot handle duplicate values use pivot_table # data.pivot(index=<used as indexing>, columns=<to pivot>, value=<pivot colummns to fill>) # %% # pivot_table # data.pivot_table(index=<columns used as indexing>, columns=<column to pivot>, values=<pivot columns to fill>, aggfunc=) d = data.pivot_table(index=['Year', 'Country'], columns=['Gender', 'Medal'], values='Athlete', aggfunc='count') d['Total'] = d.apply(np.sum, axis=1) # axis =1 will apply row wise print(d) d.reset_index(inplace=True) print(d.head()) # %% # if we have a function that takes multiple values and we want to apply that function to dataframe # then we have specify that in apply() # like if we have a function def diff_money(row, pattern) # then df.apply(diff_money, axis=1, pattern=pattern) axis=1 will work row wise # %% # concatenate data in pandas for concatenating use, pandas.concat([<dataframe_list>], ignore_index=True) it will take # the original dataframe indexes. so you have to reset the index by passing ignore_index=True, this will be row wise # concatenation. For column wise concatenation pass axis=1 and data are joined based on index value equality # you can also provide join='inner' in this case only the rows with index which are present in both dataframe will be # shown, by default join='outer' # for multi level indexing you can provide keys in .concat # for example: s1 = pd.Series(['a', 'b'], index=['a', 'b']) s2 = pd.Series(['c', 'd'], index=['c', 'b']) s = pd.concat([s1, s2], keys=['s1', 's2'], axis=0) # try with axis=1 or axis=0 print(type(s)) # .concat() can also work with the dict in that case keys of concat will keys of dict, dict = {key: DataFrame/Series} # %% # if two dataframes do not have same order than we can merge the data df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], 'value': [1, 2, 3, 5]}, index=['A', 'B', 'C', 'D']) df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], 'value': [5, 6, 7, 8]}, index=['C', 'D', 'A', 'F']) # here if we want to merge df1 and df2 but notice they don't have same order so we cannot concatenate with axis=1 # so we can merge the df1 and df2 using pd.merge during this type of merge index is ignored # you can provide suffixes=[] for providing the column suffix if two dataframe have same column name and to distinguish # in the final table merged = pd.merge(left=df1, right=df2, left_on='lkey', right_on='rkey') print(merged) merged = pd.merge(df1, df2) # here it will be joined on the columns which are common to both and by default # merge is inner you can provide how='inner'/'outer'/etc. for changing merging behaviour print(merged) # There are three types of merge one-to-one, manytoOne/onetomany and manytomany # if you want to automatically order the merged data frame use pd.merge_ordered() # argument that can be passed are fill_method, suffixes # %% # you can also join two dataframes using .join() like population.join(unemployment, how='inner') # %% # converting one type to another # example: if we want to convert A column of data to str # data['A'] = data['A].astype(str) # # example: if we want to convert A column of data to category --> category datatype is memory efficient # https://campus.datacamp.com/courses/analyzing-police-activity-with-pandas/analyzing-the-effect-of-weather-on-policing?ex=4 # follow above link for more useful ways for using category # data['A'] = data['A'].astype('category') # %% # suppose you have a numeric column but it has been set to object because of empty fields # this can be taken care by # df['A'] pd.to_numeric(df['A'], errors='coerce') # above errors='coerce' anything that cannot be converted to numeric data type will be NaN # if we do not pass errors='coerce' will return an error because python will have no idea what to do with string value s =
pd.Series(['apple', '1.0', '2', -3])
pandas.Series
import argparse import os import numpy as np import torch import torch.utils.data from PIL import Image import pandas as pd import cv2 import json from torch.autograd import Variable from torch.utils.data import Dataset, DataLoader from torchvision.transforms import functional as F from torchvision.models.detection import fasterrcnn_resnet50_fpn from torchvision.models.detection.faster_rcnn import FastRCNNPredictor # from utils import utils class FramesDataset(Dataset): """Creates a dataset that can be fed into DatasetLoader Args: frames (list): A list of cv2-compatible numpy arrays or a list of PIL Images """ def __init__(self, frames): # Convert to list of tensors x = [F.to_tensor(img) for img in frames] # Define which device to use, either gpu or cpu device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # Send the frames to device x_device = [img.to(device) for img in x] self.x = x_device #x def __getitem__(self, idx): return self.x[idx] def __len__(self): return len(self.x) class ObjectDetector(): """ObjectDetector class with staticmethods that can be called from outside by importing as below: from helmet_detector.detector import ObjectDetector The staic methods can be accessed using ObjectDetector.<name of static method>() """ @staticmethod def load_custom_model(model_path=None, num_classes=None): """Load a model from local file system with custom parameters Load FasterRCNN model using custom parameters Args: model_path (str): Path to model parameters num_classes (int): Number of classes in the custom model Returns: model: Loaded model in evaluation mode for inference """ # load an object detection model pre-trained on COCO model = fasterrcnn_resnet50_fpn(pretrained=True) # get the number of input features for the classifier in_features = model.roi_heads.box_predictor.cls_score.in_features # replace the pre-trained head with a new one model.roi_heads.box_predictor = FastRCNNPredictor(in_features,num_classes) # load previously fine-tuned parameters # Define which device to use, either gpu or cpu device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') if torch.cuda.is_available(): model.load_state_dict(torch.load(model_path)) model.to(device) else: model.load_state_dict(torch.load(model_path, map_location=device)) # Put the model in evaluation mode model.eval() return model @staticmethod def run_detection(img, loaded_model): """ Run inference on single image Args: img: image in 'numpy.ndarray' format loaded_model: trained model Returns: Default predictions from trained model """ # need to make sure we have 3d tensors of shape [C, H, W] with torch.no_grad(): prediction = loaded_model(img) return prediction @staticmethod def to_dataframe_highconf(predictions, conf_thres, frame_id): """ Converts the default predictions into a Pandas DataFrame, only predictions with score greater than conf_thres Args: predictions (list): Default FasterRCNN implementation output. This is a list of dicts with keys ['boxes','labels','scores'] frame_id : frame id conf_thres: score greater than this will be kept as detections Returns: A Pandas DataFrame with columns ['frame_id','class_id','score','x1','y1','x2','y2'] """ df_list = [] for i, p in enumerate(predictions): boxes = p['boxes'].detach().cpu().tolist() labels = p['labels'].detach().cpu().tolist() scores = p['scores'].detach().cpu().tolist() df = pd.DataFrame(boxes, columns=['x1','y1','x2','y2']) df['class_id'] = labels df['score'] = scores df['frame_id'] = frame_id df_list.append(df) df_detect = pd.concat(df_list, axis=0) df_detect = df_detect[['frame_id','class_id','score','x1','y1','x2','y2']] # Keep predictions with high confidence, with score greater than conf_thres df_detect = df_detect.loc[df_detect['score'] >= conf_thres] return df_detect @staticmethod def to_dataframe(predictions): """ Converts the default predictions into a Pandas DataFrame Args: predictions (list): Default FasterRCNN implementation output. This is a list of dicts with keys ['boxes','labels','scores'] Returns: A Pandas DataFrame with columns ['frame_id','class_id','score','x1','y1','x2','y2'] """ df_list = [] for i, p in enumerate(predictions): boxes = p['boxes'].detach().cpu().tolist() labels = p['labels'].detach().cpu().tolist() scores = p['scores'].detach().cpu().tolist() df =
pd.DataFrame(boxes, columns=['x1','y1','x2','y2'])
pandas.DataFrame
import pandas as pd import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt import miditoolkit import os def getStats(folder_name,num_notes_dict={},channel=0): if num_notes_dict=={}: num_notes_dict=numNotes(folder_name,channel) df=
pd.DataFrame.from_dict(num_notes_dict, orient='index',columns=["Notes"])
pandas.DataFrame.from_dict
__author__ = '<NAME>' import os import numpy as np import pandas as pd import ctypes pd.options.mode.chained_assignment = None from sklearn import cross_validation from sklearn.metrics import mean_absolute_error import matplotlib.pyplot as plt import matplotlib from sklearn.metrics import accuracy_score matplotlib.style.use('ggplot') import pylab as pl from sklearn import preprocessing from sklearn import ensemble from sklearn.preprocessing import Imputer from sklearn import linear_model from sklearn.feature_selection import RFE from sklearn.externals import joblib from sklearn.learning_curve import learning_curve from sklearn.learning_curve import validation_curve import pickle import sys from sklearn.grid_search import GridSearchCV from joblib import Parallel, delayed # ToDo: This file needs cleanup """ Zdr: Differential reflectivity : it is a good indicator of drop shape and drop shape is a good estimate of average drop size. RhoHV: Correlation coefficient: A statistical correlation between the reflected horizontal and vertical power returns. High values, near one, indicate homogeneous precipitation types, while lower values indicate regions of mixed precipitation types, such as rain and snow, or hail. Kdp:Specific differential phase: It is a very good estimator of rain rate and is not affected by attenuation. The range derivative of differential phase (specific differential phase, Kdp) can be used to localize areas of strong precipitation/attenuation. """ """ ToDo: Feature Engineering See more: http://blog.kaggle.com/2015/07/01/how-much-did-it-rain-winners-interview-1st-place-devin-anzelmo/ https://www.kaggle.com/c/how-much-did-it-rain/forums/t/14242/congratulations http://blog.kaggle.com/2015/06/08/how-much-did-it-rain-winners-interview-2nd-place-no-rain-no-gain/ http://blog.kaggle.com/2015/05/07/profiling-top-kagglers-kazanovacurrently-2-in-the-world/ """ # region data prep # ToDo: clean up train data with all missing input but valid label. put zero on label for such data # if one of the 4 related features (%5..%90) has no value..hard to predict def load_data(file, load_partial): # traing data #of rows 13,765,201 #test data #of rows 8,022,756 if "test" in file: if load_partial: data = pd.read_csv(file, nrows=22757) else: data = pd.read_csv(file) #test_id.append(np.array(data['Id'])) else: #train data if load_partial: data = pd.read_csv(file, nrows=1065201) else: data = pd.read_csv(file) print("loaded data of " + str(data.shape)) return data def clean_data(data): data = data.drop(['minutes_past'], axis=1) # remove data empty rows Ref values all nan # data = data.set_index('Id') # ref_sums = data['Ref'].groupby(level='Id').sum() # null_refs_idx = [i for i in ref_sums.index if np.isnan(ref_sums[i])] # data.drop(null_refs_idx, axis = 0, inplace = True) return data def add_class(data): #create an empty series c_data = [100 for _ in range(data.shape[0])] c_series = pd.Series(c_data, name='Class') #concat class column with data pd.concat([data, c_series], axis=1, join='inner') #change the rows of class to 1 data.loc[data['Expected'] <= 2.0, 'Class'] = 0 #data.loc[(data['Expected'] > 1.0) & (data['Expected'] <= 3.0), 'Class'] = 'Light' data.loc[(data['Expected'] > 2.0) & (data['Expected'] <= 15.0), 'Class'] = 1 #data.loc[(data['Expected'] > 15.0) & (data['Expected'] <= 25.0), 'Class'] = 'Moderate Heavy' data.loc[data['Expected'] > 15.0 , 'Class'] = 2 #print(data[['Expected','Class']].head(100)) return data #note: non matching values get converted to NaN for -ve values def add_features(data): # Ref Ref_MAX = data.groupby(['Id'], sort=False)['Ref'].max() Ref_MAX.name = 'Ref_MAX' Ref_MIN = data.groupby(['Id'], sort=False)['Ref'].min() Ref_MIN.name = 'Ref_MIN' Ref_count = data.groupby(['Id'], sort=False)['Ref'].count() Ref_count.name = 'Ref_count' Ref_std = data.groupby(['Id'], sort=False)['Ref'].std() #Ref_std = Ref_std.pow(2) Ref_std.name = 'Ref_std' Ref_med = data.groupby(['Id'], sort=False)['Ref'].median() Ref_med.name = 'Ref_med' #Ref_skew = data.groupby(['Id'], sort=False)['Ref'].skew() #Ref_skew.name = 'Ref_skew' #Ref_mad = data.groupby(['Id'], sort=False)['Ref'].mad() #Ref_mad.name = 'Ref_mad' #Ref_kurt = data.groupby(['Id'], sort=False)['Ref'].kurtosis() #Ref_kurt.name = 'Ref_kurt' RefComposite_MAX = data.groupby(['Id'], sort=False)['RefComposite'].max() RefComposite_MAX.name = 'RefComposite_MAX' RefComposite_MIN = data.groupby(['Id'], sort=False)['RefComposite'].min() RefComposite_MIN.name = 'RefComposite_MIN' RefComposite_count = data.groupby(['Id'], sort=False)['RefComposite'].count() RefComposite_count.name = 'RefComposite_count' RefComposite_std = data.groupby(['Id'], sort=False)['RefComposite'].std() #RefComposite_std = RefComposite_std.pow(2) RefComposite_std.name = 'RefComposite_std' RefComposite_med = data.groupby(['Id'], sort=False)['RefComposite'].median() RefComposite_med.name = 'RefComposite_med' #RefComposite_skew = data.groupby(['Id'], sort=False)['RefComposite'].skew() #RefComposite_skew.name = 'RefComposite_skew' #RefComposite_mad = data.groupby(['Id'], sort=False)['RefComposite'].mad() #RefComposite_mad.name = 'RefComposite_mad' #RefComposite_kurt = data.groupby(['Id'], sort=False)['RefComposite'].kurtosis() #RefComposite_kurt.name = 'RefComposite_kurt' #Zdr_MAX = data.groupby(['Id'], sort=False)['Zdr'].max() #Zdr_MAX.name = 'Zdr_MAX' #Zdr_MIN = data.groupby(['Id'], sort=False)['Zdr'].min() #Zdr_MIN.name = 'Zdr_MIN' Zdr_count = data.groupby(['Id'], sort=False)['Zdr'].count() Zdr_count.name = 'Zdr_count' Zdr_std = data.groupby(['Id'], sort=False)['Zdr'].std() #Zdr_std = Zdr_std.pow(2) Zdr_std.name = 'Zdr_std' Zdr_med = data.groupby(['Id'], sort=False)['Zdr'].median() Zdr_med.name = 'Zdr_med' #Zdr_skew = data.groupby(['Id'], sort=False)['Zdr'].skew() #Zdr_skew.name = 'Zdr_skew' #Zdr_mad = data.groupby(['Id'], sort=False)['Zdr'].mad() #Zdr_mad.name = 'Zdr_mad' #Zdr_kurt = data.groupby(['Id'], sort=False)['Zdr'].kurtosis() #Zdr_kurt.name = 'Zdr_kurt' Kdp_MAX = data.groupby(['Id'], sort=False)['Kdp'].max() Kdp_MAX.name = 'Kdp_MAX' Kdp_MIN = data.groupby(['Id'], sort=False)['Kdp'].min() #Kdp_MIN = Kdp_MIN.pow(2) Kdp_MIN.name = 'Kdp_MIN' Kdp_count = data.groupby(['Id'], sort=False)['Kdp'].count() Kdp_count.name = 'Kdp_count' #todo: kdp std should be added back # Kdp_std = data.groupby(['Id'], sort=False)['Kdp'].std() #Kdp_std = Kdp_std.pow(2) #Kdp_std.name = 'Kdp_std' #Kdp_med = data.groupby(['Id'], sort=False)['Kdp'].median() #Kdp_med.name = 'Kdp_med' #Kdp_skew = data.groupby(['Id'], sort=False)['Kdp'].skew() #Kdp_skew.name = 'Kdp_skew' #Kdp_mad = data.groupby(['Id'], sort=False)['Kdp'].mad() #Kdp_mad.name = 'Kdp_mad' #Kdp_kurt = data.groupby(['Id'], sort=False)['Kdp'].kurtosis() #Kdp_kurt.name = 'Kdp_kurt' #RhoHV_MAX = data.groupby(['Id'], sort=False)['RhoHV'].max() #RhoHV_MAX.name = 'RhoHV_MAX' #RhoHV_MIN = data.groupby(['Id'], sort=False)['RhoHV'].min() #RhoHV_MIN.name = 'RhoHV_MIN' RhoHV_count = data.groupby(['Id'], sort=False)['RhoHV'].count() RhoHV_count.name = 'RhoHV_count' RhoHV_std = data.groupby(['Id'], sort=False)['RhoHV'].std() #RhoHV_std = RhoHV_std.pow(2) RhoHV_std.name = 'RhoHV_std' RhoHV_med = data.groupby(['Id'], sort=False)['RhoHV'].median() RhoHV_med.name = 'RhoHV_med' #RhoHV_skew = data.groupby(['Id'], sort=False)['RhoHV'].skew() #RhoHV_skew.name = 'RhoHV_skew' #RhoHV_mad = data.groupby(['Id'], sort=False)['RhoHV'].mad() #RhoHV_mad.name = 'RhoHV_mad' #RhoHV_kurt = data.groupby(['Id'], sort=False)['RhoHV'].kurtosis() #RhoHV_kurt.name = 'RhoHV_kurt' return Ref_MAX, Ref_MIN, Ref_count, Ref_std, Ref_med, \ RefComposite_MAX, RefComposite_MIN, RefComposite_count, RefComposite_std, RefComposite_med, \ Zdr_count, Zdr_std, Zdr_med, \ Kdp_MAX, Kdp_MIN, Kdp_count, \ RhoHV_count, RhoHV_std, RhoHV_med #RhoHV_MIN, RhoHV_MAX, Zdr_MIN, Zdr_MAX, Kdp_med, Kdp_std test_all_ids = [] test_non_empty_ids = [] test_empty_rows_ids = [] def transform_data(data, file): #Ref = NaN means no rain fall at that instant, safe to remove #avg the valid Ref over the hour data_avg = data.groupby(['Id']).mean() #just using mean CV score: 23.4247096352 #print('columns', str(data_avg.columns)) if "test" in file: global test_all_ids test_all_ids = data_avg.index global test_empty_rows_ids test_empty_rows_ids = data_avg.index[np.isnan(data_avg['Ref'])] global test_non_empty_ids test_non_empty_ids = list((set(test_all_ids) - set(test_empty_rows_ids))) data = data[np.isfinite(data['Ref'])] #data = data[np.isfinite(data['Ref'])] #CV 23.4481724075 print("creating features...") Ref_Max, Ref_Min, Ref_count, Ref_std, Ref_med, \ RefComposite_MAX, RefComposite_MIN, RefComposite_count, RefComposite_std, RefComposite_med, \ Zdr_count, Zdr_std, Zdr_med,\ Kdp_MAX, Kdp_MIN, Kdp_count, \ RhoHV_count, RhoHV_std, RhoHV_med = add_features(data) #RhoHV_MAX, Zdr_MIN, Kdp_med, # Kdp_std, print("adding features...") data_avg = pd.concat([data_avg, Ref_Max, Ref_Min, Ref_count, Ref_std, Ref_med, RefComposite_MAX, RefComposite_MIN, RefComposite_count, RefComposite_std, RefComposite_med, Zdr_count, Zdr_std, Zdr_med, Kdp_MAX, Kdp_MIN, Kdp_count, RhoHV_count, RhoHV_std, RhoHV_med], axis=1, join='inner') global features features = data_avg.columns #id = data['Id'].tolist() #dist_id = set(id) #test_valid_id = list(dist_id) return data_avg def remove_outlier(train_data): #average rainfall per hour historically less than 5 inch or 127 mm #70 is considered strom #100 gives 23.6765613211 #70 gives 23.426143398 // keep 70 as acceptable rain fall value #50 gives 23.26343648 data = train_data[train_data['Expected'] <= 50] #print(data.shape) #data['Expected'].hist(color='green', cumulative=True, alpha=0.5, bins=50, orientation='horizontal', figsize=(16, 8)) #plt.show() """ data45 = data[data['Expected'] > 40] print("40 < data < 50 ", data45.shape) data40 = data[data['Expected'] <= 40] print(data45.shape) data34 = data40[data40['Expected'] > 30] print("30 < data <= 40 ", data34.shape) data30 = data40[data40['Expected'] <= 30] print(data30.shape) data23 = data30[data30['Expected'] > 20] print("20 < data <= 30 ",data23.shape) data20 = data30[data30['Expected'] <= 20] print(data20.shape) data12 = data20[data20['Expected'] > 10] print("10 < data <= 20 ",data12.shape) data10 = data20[data20['Expected'] <= 10] print(" < data <= 10 ",data10.shape) """ #set expected values to zero for examples that has most feature values(< 5) = 0 #print(train_data.head(5)) #change expected value where more than four features values are empty (0) #train_data.ix[(train_data == 0).astype(int).sum(axis=1) > 4, 'Expected'] = 0 #print(train_data.head(5)) return data def remove_empty_rows(data): # remove data empty rows Ref values all nan #print(data.columns) data = data[np.isfinite(data['Ref'])] #print(data.shape) # remove Ref values less than 5 as it's not raining #data = data[data['Ref'] >= 5] #CV Score: 23.4583024399 #print(data.shape) #data = data[data['Ref'] <= 50] #CV Score: 23.4583024399 #print(data.shape) #data sanity check #Ref [5,10,15,20,25,30,35,40,45,50] vs Rain [0.07,0.15,0.3,0.6,1.3,2.7,5.6,11.53,23.7,48.6] ref_rain = [(5,0.07),(10,0.15),(15,0.3),(20,0.6),(25,1.3),(30,2.7),(35,5.6),(40,11.53),(45,23.7),(50,48.6)] rho_hv = [1, 0.99, 0.988, 0.986, 0.982, 0.98, 0.978, 0.976, 0.974, 0.0972] zdr = [1.1+0.4*i for i in range(0,10)] kdp = [0.5*i for i in range(0,10)] for index, row in data.iterrows(): if np.isnan(row['RhoHV']): #fill Nan with appropriate value mul5 = int(row['Ref'] // 5) mul5 = 0 if mul5 < 0 else mul5 #-ve values to 0 mul5 = 9 if mul5 > 9 else mul5 #>9 values to 9 #ref_rain[mul5][1] data.loc[[index], 'RhoHV'] = rho_hv[mul5] if np.isnan(row['Zdr']): #fill Nan with appropriate value mul5 = int(row['Ref'] // 5) mul5 = 0 if mul5 < 0 else mul5 #-ve values to 0 mul5 = 9 if mul5 > 9 else mul5 #>9 values to 9 #ref_rain[mul5][1] data.loc[[index], 'Zdr'] = zdr[mul5] if np.isnan(row['Kdp']): #fill Nan with appropriate value mul5 = int(row['Ref'] // 5) mul5 = 0 if mul5 < 0 else mul5 #-ve values to 0 mul5 = 9 if mul5 > 9 else mul5 #>9 values to 9 #ref_rain[mul5][1] data.loc[[index], 'Kdp'] = zdr[mul5] #mul5 = 1 # suspect_rows = [] # for index, row in data.iterrows(): # mul5 = int(row['Ref'] // 5) # if mul5 < 1 or mul5 > 9: # print("invalid index {0} produced by {1}".format(mul5, row['Ref'])) # continue # if abs(row['Expected'] - ref_rain[mul5-1][1]) > 30 : # print("index: {0} Ref: {1} Expected: {2}".format(index,row['Ref'],row['Expected'])) # suspect_rows.append(index) # print("total suspected data "+str(len(suspect_rows))) # print("suspected data indices"+str(suspect_rows)) #data = data[np.isfinite(data['Ref_5x5_10th'])] #data = data.set_index('Id') #ref_sums = data['Ref'] #.groupby(level='Id').sum() #null_refs_idx = [i for i in ref_sums.index if np.isnan(ref_sums[i])] #data.drop(null_refs_idx, axis = 0, inplace = True) return data def analyze_plot_data(data, type): # if data series data if isinstance(data, pd.Series): data.hist(color='green', alpha=0.5, bins=50, orientation='horizontal', figsize=(16, 8)) #plt.title("distribution of samples in -> " + data.name) #plt.ylabel("frequency") #plt.xlabel("value") pl.suptitle("kaggle_rain2_" + type + "_" + data.name) #plt.show() file_to_save = "kaggle_rain2_" + type + "_" + data.name + ".png" path = os.path.join("./charts/", file_to_save) plt.savefig(path) else: #plot all data features/columns for i in range(0, len(data.columns), 4): #plt.title("distribution of samples in -> " + data.columns[i]) #plt.ylabel("frequency") #plt.xlabel("value") data[data.columns[i: i + 4]].hist(color='green', alpha=0.5, bins=50, figsize=(16, 8)) pl.suptitle("kaggle_rain2_" + type + "_" + data.columns[i]) #plt.show() file_to_save = "kaggle_rain2_" + type + "_" + data.columns[i] + ".png" path = os.path.join("./charts/", file_to_save) plt.savefig(path) #plt.figure() #print(data.min()) #basic statistics of the data #print(data.describe()) #data.hist(color='k', alpha=0.5, bins=25) #plt.hist(data, bins=25, histtype='bar') #plt.title(data.columns[0]+"distribution in train sample") #plt.savefig(feature_name+".png") #plt.show() def plot_training_curve(model, X, y): params = ["min_samples_leaf", "min_samples_split"] p_range = [2, 4, 8, 10, 12, 14, 16, 18, 20] # [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] for param in params: print("plotting validation curve...") train_scores, valid_scores = validation_curve(model, X, y, param_name=param, param_range=p_range, cv=3, scoring='mean_absolute_error') train_scores_mean = np.absolute(np.mean(train_scores, axis=1)) valid_scores_mean = np.absolute(np.mean(valid_scores, axis=1)) plt.title("Validation Curve with GBM") plt.xlabel(param) plt.ylabel("MAE") plt.plot(p_range, train_scores_mean, label="Training Error", color="r", marker='o') plt.plot(p_range, valid_scores_mean, label="Cross-validation Error", color="g", marker='s') plt.legend(loc="best") plt.show() # t_sizes = [5000, 10000, 15000, 20000, 25000] # train_sizes, lc_train_scores, lc_valid_scores = learning_curve(model, X, y, train_sizes=t_sizes, cv=3) # print("plotting learning curve...") # lc_train_scores_mean = np.absolute(np.mean(lc_train_scores, axis=1)) # lc_valid_scores_mean = np.absolute(np.mean(lc_valid_scores, axis=1)) # # plt.title("Learning Curve with GBM") # plt.xlabel("no. of examples") # plt.ylabel("MAE") # # plt.plot(train_sizes, lc_train_scores_mean, label="Training score", color="r", marker='o') # plt.plot(train_sizes, lc_valid_scores_mean, label="Cross-validation score", color="g", marker='s') # plt.legend(loc="best") # plt.show() scaler = preprocessing.StandardScaler() def standardize_data(X): mean = X.mean(axis=0) X -= mean std = X.std(axis=0) X /= std standardized_data = X return standardized_data def normal_distribute_data(X): # RhoHV is not normally distributed #taking Log #transformer = preprocessing.FunctionTransformer(np.log1p) #transformer.transform(X['RhoHV']) #print(X['RhoHV'].describe()) X['RhoHV'] = X['RhoHV'].apply(lambda x: np.log10(x)) #comment if removed as feature #X['RhoHV_5x5_10th'] = np.log10(X['RhoHV_5x5_10th']) #X['RhoHV_5x5_50th'] = np.log10(X['RhoHV_5x5_50th']) #X['RhoHV_5x5_90th'] = np.log10(X['RhoHV_5x5_90th']) rhoFeatures = ['RhoHV'] #,'RhoHV_5x5_10th','RhoHV_5x5_50th','RhoHV_5x5_90th'] for rhoFeature in rhoFeatures: shiftBy = 0 rhoMean = X[rhoFeature].mean() if rhoMean < 0: shiftBy += abs(rhoMean) X[rhoFeature] += shiftBy return X imp = Imputer(missing_values='NaN', strategy='mean', axis=0) def impute_data(non_empty_data): """ calculate rain rate from Ref using marshal algo """ imp.fit(non_empty_data) X = imp.transform(non_empty_data) # 23.2592765571 (better) return X # non_empty_data.fillna(0) #23.2628586644 # X def prepare_train_data(file_path, load_Partial): print("preparing training data...") train_data = load_data(file_path, load_Partial) train_clean = clean_data(train_data) train_no_outlier = remove_outlier(train_clean) print("transforming data...") transformed_data = transform_data(train_no_outlier, file_path) non_empty_examples = remove_empty_rows(transformed_data) #non_empty_examples = add_class(non_empty_examples) labels = non_empty_examples['Expected'] #categoy = non_empty_examples['Class'] #labels.hist(cumulative=True,bins=50) #plt.show() # print('total data: '+str(non_empty_examples.shape[0])) # # global train_data_light_rain # train_data_light_rain = non_empty_examples[non_empty_examples['Class'] == 0] # # print('light rain data: '+str(train_data_light_rain.shape[0])) # # # global train_data_moderate_rain # train_data_moderate_rain = non_empty_examples[non_empty_examples['Class'] == 1] # print('moderate rain data: '+str(train_data_moderate_rain.shape[0])) # # # global train_data_heavy_rain # train_data_heavy_rain = non_empty_examples[non_empty_examples['Class'] == 2] # print('heavy rain data: '+str(train_data_heavy_rain.shape[0])) X_train = non_empty_examples.drop(['Expected'], axis=1) #X_train = non_empty_examples.drop(['Expected','Class'], axis=1) global X_columns X_columns = X_train.columns X_train = standardize_data(X_train) # labels = standardize_data(labels) #X_train = normal_distribute_data(X_train) #drop features #X_train = X_train.drop([#'Ref_5x5_10th','Ref_5x5_50th' # 'Ref_5x5_90th', # 'RefComposite_5x5_10th','RefComposite_5x5_50th','RefComposite_5x5_90th', #'RhoHV_5x5_10th','RhoHV_5x5_50th','RhoHV_5x5_90th' #,'Zdr_5x5_10th','Zdr_5x5_50th','Zdr_5x5_90th', # 'Kdp_5x5_10th','Kdp_5x5_50th','Kdp_5x5_90th' # ], axis=1) X_train = impute_data(X_train) #X_train = X_train.drop(['RhoHV'], axis=1) #print(X_train.head(5000)) return X_train, labels #, categoy def prepare_test_data(file_path, load_partial): print("preparing test data...") # file_path = "./test/test.csv" #test_file_path = file_test #from kaggle site #test_file_path = "./test/test_short.csv" test_data = load_data(file_path, load_partial) #test_file_path = file_test #from kaggle site #test_file_path = "./test/test_short.csv" test_clean = clean_data(test_data) transformed_data = transform_data(test_clean, file_path) non_empty_data = remove_empty_rows(transformed_data) #print('test data', str(non_empty_data.columns)) X_test = standardize_data(non_empty_data) #X_test = normal_distribute_data(X_test) #drop features #X_test = X_test.drop([#'Ref_5x5_10th','Ref_5x5_50th','Ref_5x5_90th', # 'RefComposite_5x5_10th','RefComposite_5x5_50th','RefComposite_5x5_90th', # 'RhoHV_5x5_10th','RhoHV_5x5_50th','RhoHV_5x5_90th' # ,'Zdr_5x5_10th','Zdr_5x5_50th','Zdr_5x5_90th', # 'Kdp_5x5_10th','Kdp_5x5_50th','Kdp_5x5_90th' # ], axis=1) X_test = impute_data(X_test) #global test_id #test_id = test_avg['Id'] #test_input = test_avg.drop(['Id'], axis=1) return X_test, non_empty_data #test_input # endregion data prep #region train def evaluate_models(train_input, labels): print("evaluating models...") #regr = linear_model.LinearRegression() #ridge = Ridge(alpha=1.0) #laso = linear_model.Lasso(alpha=0.1) #enet = linear_model.ElasticNet(alpha=0.1) #clf_dtr = tree.DecisionTreeRegressor() #ada = ensemble.AdaBoostRegressor(n_estimators=500, learning_rate=.75) #bag = ensemble.BaggingRegressor(n_estimators=500) param_grid = { 'min_samples_split': [4, 8, 12, 16,20, 24, 30, 35, 40, 45, 50], 'min_samples_leaf': [8,10,12,14, 18, 20, 22, 25] } #increase n_estimators to 400ish est = ensemble.GradientBoostingRegressor(n_estimators=400) extree = ensemble.ExtraTreesRegressor(n_estimators=800, max_features=1.0, n_jobs=-1) #-1 sets it to #of cores gs_cv = GridSearchCV(extree,param_grid,score_func='mean_absolute_error').fit(train_input,labels) #best parameters {'min_samples_leaf': 4, 'max_depth': 4, 'min_samples_split': 4, 'max_leaf_nodes': 6, 'max_features': 0.5} from grid search gave score 0.1647636331960101 #best parameters {'max_depth': 4, 'min_samples_split': 4, 'min_samples_leaf': 2, 'max_features': 0.5, 'max_leaf_nodes': 8} from grid search gave score 0.17065558286341795 print("best parameters {0} from grid search gave score {1} ".format(gs_cv.best_params_, gs_cv.best_score_)) params = gs_cv.best_params_ #clf = ensemble.GradientBoostingRegressor(n_estimators = 150,**params) # cv_scre_last = 100 # for ne in range(20, 400, 10): # # #clf_rf = ensemble.RandomForestRegressor(n_estimators=100, max_depth=None, min_samples_split=1, random_state=0, max_features="auto") # ne, ss, md = 190, 25, 10 #CV score: 24.340700094525427 clf = extree # n_estimators=150 CV score: 24.401973843565866 //too slow 170 gives 24.39021427337333 #ne, md, ss = 50, 10, 10 #clf_gbt = ensemble.GradientBoostingRegressor(n_estimators=ne, max_depth=md, min_samples_split=ss, min_samples_leaf=10, learning_rate=0.1, loss='ls') # # #print(len(train_input)) # #print(len(labels)) # clf = clf_gbt # # model evaluator scores = cross_validation.cross_val_score(clf, train_input, labels, cv=5, scoring='mean_absolute_error') cv_scre = 21.5 + abs(sum(scores) / len(scores)) print("CV score: {0} - #of_estimators: {1}".format(cv_scre, ne)) # # if cv_scre >= cv_scre_last: # print("MAE score didn't improve for #of_estimators: " + str(ne)) # continue # else: # cv_scre_last = cv_scre #model evaluator """ model evaluation NEW: Random Forest evaluation score : 1.13246481639 Extra Tree evaluation score : 1.13414660721 Bagging Regressor evaluation score : 1.15816159605 Gradient Boosting evaluation score : 1.17339099314 #linear regression evaluation score: 1.74012818638 #ridge regression evaluation score: 1.72820341712 #lasso regression evaluation score: 1.58996750817 #elastic_net evaluation score: 1.60092318938 #dtree regression evaluation score: 1.64168047513 #adaBoost regressor evaluation score: 2.81744083141 #Bagging Regressor evaluation score: 1.1617702616 #random forest evaluation score: 1.44005742499 #random forest evaluation score: 1.35075879522 with params params_rf = {'n_estimators': 500, 'max_depth':None, 'min_samples_split':1, 'random_state':0} #gradient boosted tree evaluation score: 1.47009354892 #gradient boosted tree evaluation score: 1.42787523525 with params #{'n_estimators': 500, 'max_depth': 4, 'min_samples_split': 1, 'learning_rate': 0.01, 'loss': 'ls'} """ return clf def cv_score(clf, X, y): print("cross validating model...") scores = cross_validation.cross_val_score(clf, X, y, cv=3, scoring='mean_absolute_error') return abs(sum(scores) / len(scores)) def cross_validate_model(model, X_train, y_train): cvs = 21.5 + cv_score(model, X_train, y_train) print("MAE on cross validation set: " + str(cvs)) model = None def pickle_model(model): # pickle model with open('./pickled_model/rain2.pickle', 'wb') as f: pickle.dump(model, f) f.close() #joblib.dump(model, './pickled_model/rain2.pkl') def unpickle_model(file): with open('./pickled_model/rain2.pickle', 'rb') as f: model = pickle.load(f) return model def split_train_data(train_input, labels, t_size): # train_test does shuffle and random splits X_train, X_test, y_train, y_test = cross_validation.train_test_split( train_input, labels, test_size=t_size, random_state=0) return X_train, X_test, y_train, y_test def test_model(model, X_test, y_test): # print("testing on holdout set...") pred_y = model.predict(X_test) print("MAE on holdout test set", 21.5 + mean_absolute_error(y_test, pred_y)) def feature_selection(model, features): # feature engineering print("feature selection...") print(features) print("feature importance", model.feature_importances_) min_index = np.argmin(model.feature_importances_) print("min feature : ({0}){1}, score {2} ".format(min_index, features[min_index], min(model.feature_importances_))) def train_model(seed, X_train, y_train, isPickled): #clf = evaluate_models(labels, train_input) #n_estimators = no. of trees in the forest #n_jobs = #no. of cores #clf_rf = ensemble.RandomForestRegressor(n_estimators=100, max_depth=None, n_jobs=4, min_samples_split=1, random_state=0) #extree = ensemble.ExtraTreesRegressor(n_estimators=190, max_depth=25, min_samples_split=10, n_jobs=-1) #clf_rf = ensemble.RandomForestRegressor(n_estimators=50, max_depth=None, n_jobs=4, min_samples_split=1, # max_features="auto") #ne=400, md=10, ss = 50, sl=10, 10 MAE 22.7590658805 and with learning rate = 0.01 MAE 23.5737808932 #clf_gbt = ensemble.GradientBoostingRegressor(n_estimators=400, max_depth=10, min_samples_split=10, min_samples_leaf=10, learning_rate=0.01, loss='ls') #clf_gbt = ensemble.GradientBoostingRegressor(n_estimators=40, learning_rate=0.1, max_features =0.3, max_depth=4, min_samples_leaf=3, loss='lad') clf = ensemble.GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_features=0.3, max_depth=4, min_samples_leaf=3, loss='huber', alpha=0.55, random_state=seed) #random forest: 24.53496 #extra tree : 24.471939 (4619908812 with all features) #gbd : 24.5456 #print("cross validating...") #cvs = cv_score(clf, X_train, y_train) #print("CV score: ", 21.5 + cvs) global model print("training model...") #model = clf.fit(train_input, labels) model = clf.fit(X_train, y_train) if isPickled: print("pickling model...") pickle_model(model) #no_of_pred = len(pred_y) # MAE=0 # for i,v in enumerate(pred_y): # actual = y_test.values[i] # predicted = v # error = actual - predicted # print("rainfall actual: {0} predicted:{1}, error:{2}". # format(actual, predicted, np.abs(error))) # MAE = MAE + np.abs(error) # #print("MAE: ",MAE/no_of_pred) return model #endregion train #test def write_prediction(test_y, test_non_empty_total_ids): print("writing to file....") predictionDf = pd.DataFrame(index=test_non_empty_total_ids, columns=['Expected'], data=test_y) #predict 0 for empty rows/ids empty_test_y = np.asanyarray([0 for _ in test_empty_rows_ids]) emptyRowsDf =
pd.DataFrame(index=test_empty_rows_ids, columns=['Expected'], data=empty_test_y)
pandas.DataFrame
import pandas as pd from sklearn import linear_model import statsmodels.api as sm import numpy as np from scipy import stats df_all = pd.read_csv("/mnt/nadavrap-students/STS/data/imputed_data2.csv") print(df_all.columns.tolist()) print (df_all.info()) df_all = df_all.replace({'MtOpD':{False:0, True:1}}) df_all = df_all.replace({'Complics':{False:0, True:1}}) mask_reop = df_all['Reoperation'] == 'Reoperation' df_reop = df_all[mask_reop] mask = df_all['surgyear'] == 2010 df_2010 = df_all[mask] mask = df_all['surgyear'] == 2011 df_2011 = df_all[mask] mask = df_all['surgyear'] == 2012 df_2012 = df_all[mask] mask = df_all['surgyear'] == 2013 df_2013 = df_all[mask] mask = df_all['surgyear'] == 2014 df_2014 = df_all[mask] mask = df_all['surgyear'] == 2015 df_2015 = df_all[mask] mask = df_all['surgyear'] == 2016 df_2016 = df_all[mask] mask = df_all['surgyear'] == 2017 df_2017 = df_all[mask] mask = df_all['surgyear'] == 2018 df_2018 = df_all[mask] mask = df_all['surgyear'] == 2019 df_2019 = df_all[mask] avg_hospid = pd.DataFrame() def groupby_siteid(): df2010 = df_2010.groupby('HospID')['HospID'].count().reset_index(name='2010_total') df2011 = df_2011.groupby('HospID')['HospID'].count().reset_index(name='2011_total') df2012 = df_2012.groupby('HospID')['HospID'].count().reset_index(name='2012_total') df2013 = df_2013.groupby('HospID')['HospID'].count().reset_index(name='2013_total') df2014 = df_2014.groupby('HospID')['HospID'].count().reset_index(name='2014_total') df2015 = df_2015.groupby('HospID')['HospID'].count().reset_index(name='2015_total') df2016 = df_2016.groupby('HospID')['HospID'].count().reset_index(name='2016_total') df2017 = df_2017.groupby('HospID')['HospID'].count().reset_index(name='2017_total') df2018 = df_2018.groupby('HospID')['HospID'].count().reset_index(name='2018_total') df2019 = df_2019.groupby('HospID')['HospID'].count().reset_index(name='2019_total') df1 =pd.merge(df2010, df2011, on='HospID', how='outer') df2 =pd.merge(df1, df2012, on='HospID', how='outer') df3 =pd.merge(df2, df2013, on='HospID', how='outer') df4 =pd.merge(df3, df2014, on='HospID', how='outer') df5 =pd.merge(df4, df2015, on='HospID', how='outer') df6 =pd.merge(df5, df2016, on='HospID', how='outer') df7 =pd.merge(df6, df2017, on='HospID', how='outer') df8 =pd.merge(df7, df2018, on='HospID', how='outer') df_sum_all_Years =pd.merge(df8, df2019, on='HospID', how='outer') df_sum_all_Years.fillna(0,inplace=True) cols = df_sum_all_Years.columns.difference(['HospID']) df_sum_all_Years['Distinct_years'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['HospID','Distinct_years']) df_sum_all_Years['Year_sum'] =df_sum_all_Years.loc[:,cols_sum].sum(axis=1) df_sum_all_Years['Year_avg'] = df_sum_all_Years['Year_sum']/df_sum_all_Years['Distinct_years'] df_sum_all_Years.to_csv("/tmp/pycharm_project_723/files/total op sum all years HospID.csv") # print("details on site id dist:") # # print("num of all sites: ", len(df_sum_all_Years)) # # less_8 =df_sum_all_Years[df_sum_all_Years['Distinct_years'] !=10] # less_8.to_csv("total op less 10 years siteid.csv") # print("num of sites with less years: ", len(less_8)) # # x = np.array(less_8['Distinct_years']) # print(np.unique(x)) avg_hospid['HospID'] = df_sum_all_Years['HospID'] avg_hospid['total_year_sum'] = df_sum_all_Years['Year_sum'] avg_hospid['total_year_avg'] = df_sum_all_Years['Year_avg'] avg_hospid['num_of_years'] = df_sum_all_Years['Distinct_years'] def groupby_siteid_reop(): df2010 = df_2010.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'Reoperation').sum()).reset_index(name='2010_reop') df2011 = df_2011.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'Reoperation').sum()).reset_index(name='2011_reop') df2012 = df_2012.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'Reoperation').sum()).reset_index(name='2012_reop') df2013 = df_2013.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'Reoperation').sum()).reset_index(name='2013_reop') df2014 = df_2014.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'Reoperation').sum()).reset_index(name='2014_reop') df2015 = df_2015.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'Reoperation').sum()).reset_index(name='2015_reop') df2016 = df_2016.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'Reoperation').sum()).reset_index(name='2016_reop') df2017 = df_2017.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'Reoperation').sum()).reset_index(name='2017_reop') df2018 = df_2018.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'Reoperation').sum()).reset_index(name='2018_reop') df2019 = df_2019.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'Reoperation').sum()).reset_index(name='2019_reop') df1 =pd.merge(df2010, df2011, on='HospID', how='outer') df2 =pd.merge(df1, df2012, on='HospID', how='outer') df3 =pd.merge(df2, df2013, on='HospID', how='outer') df4 =pd.merge(df3, df2014, on='HospID', how='outer') df5 =pd.merge(df4, df2015, on='HospID', how='outer') df6 =pd.merge(df5, df2016, on='HospID', how='outer') df7 =pd.merge(df6, df2017, on='HospID', how='outer') df8 =pd.merge(df7, df2018, on='HospID', how='outer') df_sum_all_Years =pd.merge(df8, df2019, on='HospID', how='outer') df_sum_all_Years.fillna(0,inplace=True) cols = df_sum_all_Years.columns.difference(['HospID']) df_sum_all_Years['Distinct_years_reop'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['HospID', 'Distinct_years_reop']) df_sum_all_Years['Year_sum_reop'] = df_sum_all_Years.loc[:, cols_sum].sum(axis=1) df_sum_all_Years['Year_avg_reop'] = df_sum_all_Years['Year_sum_reop'] / avg_hospid['num_of_years'] df_sum_all_Years.to_csv("/tmp/pycharm_project_723/files/sum all years HospID reop.csv") # -----------------------first op------------------------------------ df_10 = df_2010.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'First Time').sum()).reset_index(name='2010_FirstOperation') df_11 = df_2011.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'First Time').sum()).reset_index(name='2011_FirstOperation') df_12 = df_2012.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'First Time').sum()).reset_index(name='2012_FirstOperation') df_13 = df_2013.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'First Time').sum()).reset_index(name='2013_FirstOperation') df_14 = df_2014.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'First Time').sum()).reset_index(name='2014_FirstOperation') df_15 = df_2015.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'First Time').sum()).reset_index(name='2015_FirstOperation') df_16 = df_2016.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'First Time').sum()).reset_index(name='2016_FirstOperation') df_17 = df_2017.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'First Time').sum()).reset_index(name='2017_FirstOperation') df_18 = df_2018.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'First Time').sum()).reset_index(name='2018_FirstOperation') df_19 = df_2019.groupby('HospID')['Reoperation'].apply(lambda x: (x == 'First Time').sum()).reset_index(name='2019_FirstOperation') d1 = pd.merge(df_10, df_11, on='HospID', how='outer') d2 = pd.merge(d1, df_12, on='HospID', how='outer') d3 = pd.merge(d2, df_13, on='HospID', how='outer') d4 = pd.merge(d3, df_14, on='HospID', how='outer') d5 = pd.merge(d4, df_15, on='HospID', how='outer') d6 = pd.merge(d5, df_16, on='HospID', how='outer') d7 =
pd.merge(d6, df_17, on='HospID', how='outer')
pandas.merge
#!/usr/bin/env python3 import csv import os import time from datetime import date, datetime, timedelta from pprint import pprint import numpy as np import pandas as pd import pymongo import requests import yfinance as yf LIMIT = 1000 sp500_file = "constituents.csv" date_format = "%Y-%m-%d %H:%M:%S" sp500_list = [] sp500_agg_dict = {} # EXTRACT # Read in S&P500 list if os.path.exists(sp500_file): with open(sp500_file, "r") as f: sp500_reader = csv.reader(f) for i, row in enumerate(sp500_reader): if i != 0: sp500_list.append(row) else: print(f"ERROR!!! Cannot find {sp500_file}") # Connect to db db = pymongo.MongoClient( f"mongodb+srv://example:{os.getenv('MONGO_ATLAS_PW')}@cluster0.b2q7e.mongodb.net/?retryWrites=true&w=majority" ) # Get last year today = datetime.today() last_year = today - timedelta(days=365) last_year_list =
pd.date_range(last_year, today)
pandas.date_range
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # This file is part of CbM (https://github.com/ec-jrc/cbm). # Author : <NAME> # Credits : GTCAP Team # Copyright : 2021 European Commission, Joint Research Centre # License : 3-Clause BSD from ipywidgets import (HBox, VBox, Dropdown, Button, Output, Checkbox) from src.ipycbm.utils import config, data_options def time_series(path): import matplotlib.pyplot as plt import matplotlib.dates as mdates from datetime import timedelta import pandas as pd import json import glob confvalues = config.read() inst = confvalues['set']['institution'] file_info = glob.glob(f"{path}*_information.json")[0] with open(file_info, 'r') as f: info_data = json.loads(f.read()) pid = info_data['ogc_fid'][0] crop_name = info_data['cropname'][0] area = info_data['area'][0] figure_dpi = 50 def plot_ts_s2(cloud): file_ts = glob.glob(f"{path}*_time_series_s2.csv")[0] df = pd.read_csv(file_ts, index_col=0) df['date'] = pd.to_datetime(df['date_part'], unit='s') start_date = df.iloc[0]['date'].date() end_date = df.iloc[-1]['date'].date() print(f"From '{start_date}' to '{end_date}'.") pd.set_option('max_colwidth', 200) pd.set_option('display.max_columns', 20) # Plot settings are confirm IJRS graphics instructions plt.rcParams['axes.titlesize'] = 16 plt.rcParams['axes.labelsize'] = 14 plt.rcParams['xtick.labelsize'] = 12 plt.rcParams['ytick.labelsize'] = 12 plt.rcParams['legend.fontsize'] = 14 df.set_index(['date'], inplace=True) dfB4 = df[df.band == 'B4'].copy() dfB8 = df[df.band == 'B8'].copy() datesFmt = mdates.DateFormatter('%-d %b %Y') if cloud is False: # Plot NDVI fig = plt.figure(figsize=(16.0, 10.0)) axb = fig.add_subplot(1, 1, 1) axb.set_title( f"Parcel {pid} (crop: {crop_name}, area: {area:.2f} ha)") axb.set_xlabel("Date") axb.xaxis.set_major_formatter(datesFmt) axb.set_ylabel(r'DN') axb.plot(dfB4.index, dfB4['mean'], linestyle=' ', marker='s', markersize=10, color='DarkBlue', fillstyle='none', label='B4') axb.plot(dfB8.index, dfB8['mean'], linestyle=' ', marker='o', markersize=10, color='Red', fillstyle='none', label='B8') axb.set_xlim(start_date, end_date + timedelta(1)) axb.set_ylim(0, 10000) axb.legend(frameon=False) # loc=2) return plt.show() else: # Plot Cloud free NDVI. dfSC = df[df.band == 'SC'].copy() dfNDVI = (dfB8['mean'] - dfB4['mean']) / \ (dfB8['mean'] + dfB4['mean']) cloudfree = ((dfSC['mean'] >= 4) & (dfSC['mean'] < 6)) fig = plt.figure(figsize=(16.0, 10.0)) axb = fig.add_subplot(1, 1, 1) axb.set_title( f"{inst}\nParcel {pid} (crop: {crop_name}, area: {area:.2f} sqm)") axb.set_xlabel("Date") axb.xaxis.set_major_formatter(datesFmt) axb.set_ylabel(r'NDVI') axb.plot(dfNDVI.index, dfNDVI, linestyle=' ', marker='s', markersize=10, color='DarkBlue', fillstyle='none', label='NDVI') axb.plot(dfNDVI[cloudfree].index, dfNDVI[cloudfree], linestyle=' ', marker='P', markersize=10, color='Red', fillstyle='none', label='Cloud free NDVI') axb.set_xlim(start_date, end_date + timedelta(1)) axb.set_ylim(0, 1.0) axb.legend(frameon=False) # loc=2) return plt.show() def plot_ts_bs(): import numpy as np file_ts = glob.glob(f"{path}*_time_series_bs.csv")[0] df = pd.read_csv(file_ts, index_col=0) df['date'] = pd.to_datetime(df['date_part'], unit='s') start_date = df.iloc[0]['date'].date() end_date = df.iloc[-1]['date'].date() print(f"From '{start_date}' to '{end_date}'.") pd.set_option('max_colwidth', 200)
pd.set_option('display.max_columns', 20)
pandas.set_option
import re import string import logging import pandas as pd import numpy as np import text import super_pool logger = logging.getLogger() cleanup = text.SimpleCleanup() emoji = text.Emoji() def hash_(x): return hash(x) def run(df=None): if df is None: df = pd.read_csv( "../input/train.csv", usecols=["description", "title", "deal_probability"] ) df_test = pd.read_csv("../input/test.csv", usecols=["description", "title"]) df =
pd.concat([df, df_test], axis=0)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # # 5m - Df unification (10 calib. fn-s) import matplotlib.pyplot as plt import numpy as np import pandas as pd import os from os.path import join import pickle from copy import copy def get_data_name(file): if "resnet110" in file: return "resnet110" elif "densenet40" in file: return "densenet40" else: return "wide32" def get_strs(file, is_ece = True, is_kde = False, is_bip = False): extra = 0 pieces = file.split(".")[0].split("_tag_") parts1 = pieces[0].split("_") parts2 = pieces[1].split("_") n_data = -1 seed = -1 # binning_CV_seed_0_10000_VecS_wide32_s7_tag_confidencegt1_dp_-1.pkl if is_ece: cal_method = "_".join(parts1[5:6]) data_name = get_data_name("_".join(parts1[6:])) tag_name = parts2[0][:-3] cgt_nr = int(parts2[0][-1]) # KDE_seed_9_10000_VecS_resnet_wide32_s7_tag_1vsRest5_with_c_dp_-1.pkl elif is_kde: cal_method = "_".join(parts1[4:5]) data_name = get_data_name("_".join(parts1[5:])) tag_name = parts2[0] cgt_nr = -1 # df_seed_1_platt_resnet_3000_cv_0_wide32_s7_tag_confidence_with_cgt3_dp_-1_iso_beta_platt.pkl # df_seed_6_TempS_3000_cv_0_resnet_wide32_s7_1vsRest5_m_3_921420382311321_with_cgt0_dp_-1_iso_beta_platt elif is_bip: cal_method = "_".join(parts1[3:4]) data_name = get_data_name("_".join(parts1[4:])) n_data = int(parts1[4]) tag_name = parts2[0][:-3] cgt_nr = int(parts2[0][-1]) seed = int(parts1[2]) # 'df_seed_0_beta_10000_cv_0_densenet40_s7_tag_1vsRest1gt0_dp_-1_iso_beta_platt.pkl' #df_seed_0_beta_10000_cv_0_resnet110_s7_tag_confidencegt3_dp_-1_iso_beta_platt.pkl # df_seed_2_Isotonic_resnet110_10000_cv_0_s7_tag_confidence_with_c_dp_-1_PW_NN4_sweep.pkl else: cal_method = "_".join(parts1[3:4]) data_name = get_data_name("_".join(parts1[4:])) tag_name = parts2[0] cgt_nr = -1 return (cal_method, data_name, tag_name, cgt_nr, n_data, seed) # In[7]: def get_cgts(df): all_cdc = [] all_cdcs = [] all_pdc = [] all_pdcs = [] for cdc, cdcs, pdc, pdcs in zip(df.c_hat_distance_c, df.c_hat_distance_c_square, df.p_distance_c, df.p_distance_c_square): if len(np.array(cdc)) != 4: print(cdc) all_cdc.append(np.array(cdc)) all_cdcs.append(np.array(cdcs)) all_pdc.append(np.array(pdc)) all_pdcs.append(np.array(pdcs)) all_cdc = np.array(all_cdc) all_cdcs = np.array(all_cdcs) all_pdc = np.array(all_pdc) all_pdcs = np.array(all_pdcs) dfs = [] for i in range(4): if len(all_cdc.shape) == 1: print() df_new = df.copy() df_new.c_hat_distance_c = all_cdc[:,i] df_new.c_hat_distance_c_square = all_cdcs[:,i] df_new.p_distance_c = all_pdc[:,i] df_new.p_distance_c_square = all_pdcs[:,i] df_new.cgt_nr = i dfs.append(df_new) return pd.concat(dfs) def prep_ECE(files_ECE, columns, path, id_tag): dfs = [] for file in files_ECE: #print(file) cal_fn, data_name, tag_name, cgt_nr, _, _ = get_strs(file) with open(join(path, file), "rb") as f: df = pickle.load(f) df["calibration_function"] = cal_fn df["model_name"] = data_name df["tag_name"] = tag_name df["cgt_nr"] = cgt_nr dfs.append(df) df_ECE = pd.concat(dfs) # Binning column = full method name df_ECE["binning"] = df_ECE["binning"] + "_" + df_ECE["n_bins"].map(str) + "_" + df_ECE["n_folds"].map(str) # Remove CV marker from no CV rows df_ECE["binning"] = df_ECE['binning'].str.replace('(_0$)', "") # ECE drop useless columns df_ECE = df_ECE.drop(labels=['n_folds'], axis=1) # ECE rename columns to match PW df_ECE = df_ECE.rename({"ECE_abs":"c_hat_distance_p", "ECE_abs_debiased": "c_hat_distance_p_debiased", "ECE_square":"c_hat_distance_p_square", "ECE_square_debiased":"c_hat_distance_p_square_debiased", "true_calibration_error_abs":"p_distance_c", "true_calibration_error_square":"p_distance_c_square", "slope_abs_c_hat_dist_c": "c_hat_distance_c", "slope_square_c_hat_dist_c": "c_hat_distance_c_square"}, axis=1) df_ECE = df_ECE[columns] df_ECE.to_pickle("res_ECE_%s.pkl" % id_tag, protocol=4) def prep_PW(files_PW, columns, path, id_tag): dfs = [] for file in files_PW: #print(file) cal_fn, data_name, tag_name, cgt_nr, _, _ = get_strs(file, is_ece = False) with open(join(path, file), "rb") as f: df = pickle.load(f) df["calibration_function"] = cal_fn df["model_name"] = data_name df["tag_name"] = tag_name df["cgt_nr"] = cgt_nr dfs.append(df) df_PW = pd.concat(dfs) #df_PW.to_pickle("res_PW_%s_test.pkl" % id_tag, protocol=4) # binnings = df_PW.binning.unique() # binning_with_trick = [] # for binning in binnings: # if "trick" in binning: # binning_with_trick.append(binning) # for bwt in binning_with_trick: # df_PW = df_PW.loc[df_PW.binning != bwt] # Drop trick print(df_PW.binning.unique()) # Create dummy columns for our method df_PW["c_hat_distance_p_debiased"] = df_PW["c_hat_distance_p"] df_PW["c_hat_distance_p_square_debiased"] = df_PW["c_hat_distance_p_square"] # Unify calibration_function name column to match ECE_df df_PW["calibration_function"] = df_PW['calibration_function'].str.replace('(_[0-9].[0-9]+$)', "") df_PW = get_cgts(df_PW) df_PW = df_PW[columns] df_PW.to_pickle("res_PW_%s.pkl" % id_tag, protocol=4) def prep_BIP(files_BIP, columns, path, id_tag): dfs = [] for file in files_BIP: #print(file) cal_fn, data_name, tag_name, cgt_nr, n_data, seed = get_strs(file, is_ece = False, is_bip = True) with open(join(path, file), "rb") as f: df = pickle.load(f) df["calibration_function"] = cal_fn df["model_name"] = data_name df["tag_name"] = tag_name df["cgt_nr"] = cgt_nr df["n_data"] = n_data df["seed"] = seed df["p_distance_c"] = -1 df["p_distance_c_squared"] = -1 dfs.append(df) df_BIP =
pd.concat(dfs)
pandas.concat
import pandas as pd import numpy as np import pytest from sklearn.exceptions import ConvergenceWarning def test_interpolate_data(): from mspypeline.modules.Normalization import interpolate_data assert interpolate_data(pd.DataFrame()).equals(pd.DataFrame()) data = pd.DataFrame(np.random.random((100, 100))) data[np.random.random((100, 100)) > 0.5] = np.nan assert interpolate_data(data).isna().sum().sum() == 0 def test_median_polish(): from mspypeline.modules.Normalization import median_polish with pytest.warns(RuntimeWarning) as record: median_polish(pd.DataFrame()) # check that only one warning was raised assert len(record) == 1 # check that the message matches assert record[0].message.args[0] == "Mean of empty slice" with pytest.warns(ConvergenceWarning) as record: median_polish(pd.DataFrame(np.random.random((10, 10))), max_iter=1) assert len(record) == 1 # TODO testcase with known data and result def test_base_normalizer(): from mspypeline.modules.Normalization import BaseNormalizer class NormTest(BaseNormalizer): def fit(self, data): super().fit(data) def transform(self, data): super().transform(data) nt = NormTest() with pytest.raises(NotImplementedError): nt.fit(
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np from sklearn.base import TransformerMixin, BaseEstimator from sklearn.feature_extraction import DictVectorizer from sklearn.preprocessing import FunctionTransformer, StandardScaler, RobustScaler from sklearn.preprocessing import Imputer, MultiLabelBinarizer from sklearn.impute import SimpleImputer from data_science_toolbox.pandas.profiling.data_types import df_binary_columns_list from functools import reduce import warnings ############################################################################################################### # Custom Transformers from PyData Seattle 2017 Talk ############################################################################################################### # Reference # http://zacstewart.com/2014/08/05/pipelines-of-featureunions-of-pipelines.html # https://github.com/jem1031/pandas-pipelines-custom-transformers class DFFunctionTransformer(TransformerMixin): # FunctionTransformer but for pandas DataFrames def __init__(self, *args, **kwargs): self.ft = FunctionTransformer(*args, **kwargs) def fit(self, X, y=None): # stateless transformer return self def transform(self, X): Xt = self.ft.transform(X) Xt = pd.DataFrame(Xt, index=X.index, columns=X.columns) return Xt class DFFeatureUnion(BaseEstimator, TransformerMixin): # FeatureUnion but for pandas DataFrames def __init__(self, transformer_list): self.transformer_list = transformer_list def fit(self, X, y=None): for (name, t) in self.transformer_list: t.fit(X, y) return self def transform(self, X): # assumes X is a DataFrame Xts = [t.transform(X) for _, t in self.transformer_list] Xunion = reduce(lambda X1, X2: pd.merge(X1, X2, left_index=True, right_index=True), Xts) return Xunion class DFImputer(TransformerMixin): # Imputer but for pandas DataFrames def __init__(self, strategy='mean', fill_value=None): self.strategy = strategy self.imp = None self.statistics_ = None self.fill_value = fill_value if (self.strategy == 'constant') & (not self.fill_value): warnings.warn('DFImputer strategy set to "constant" but no fill value provided.' 'By default the fill value will be set to 0') self.fill_value = 0 def fit(self, X, y=None): self.imp = SimpleImputer(strategy=self.strategy, fill_value=self.fill_value) self.imp.fit(X) self.statistics_ = pd.Series(self.imp.statistics_, index=X.columns) return self def transform(self, X): # assumes X is a DataFrame Ximp = self.imp.transform(X) Xfilled = pd.DataFrame(Ximp, index=X.index, columns=X.columns) return Xfilled class DFStandardScaler(BaseEstimator, TransformerMixin): # StandardScaler but for pandas DataFrames def __init__(self, cols=None): self.ss = None self.mean_ = None self.scale_ = None self.cols = cols def fit(self, X, y=None): if not self.cols: self.cols = X.select_dtypes(include=np.number).columns.values.tolist() self.ss = StandardScaler() self.ss.fit(X[self.cols]) self.mean_ = pd.Series(self.ss.mean_, index=X[self.cols].columns) self.scale_ = pd.Series(self.ss.scale_, index=X[self.cols].columns) return self def transform(self, X): # assumes X is a DataFrame # Scale the specified columns Xss = self.ss.transform(X[self.cols]) Xscaled = pd.DataFrame(Xss, index=X.index, columns=X[self.cols].columns) # Merge back onto the dataframe Xscaled = pd.merge(X[[col for col in X.columns if col not in self.cols]], Xscaled, left_index=True, right_index=True) return Xscaled class DFRobustScaler(TransformerMixin): # RobustScaler but for pandas DataFrames def __init__(self): self.rs = None self.center_ = None self.scale_ = None def fit(self, X, y=None): self.rs = RobustScaler() self.rs.fit(X) self.center_ = pd.Series(self.rs.center_, index=X.columns) self.scale_ = pd.Series(self.rs.scale_, index=X.columns) return self def transform(self, X): # assumes X is a DataFrame Xrs = self.rs.transform(X) Xscaled = pd.DataFrame(Xrs, index=X.index, columns=X.columns) return Xscaled class ColumnExtractor(BaseEstimator, TransformerMixin): """ Given a list of columns and optionally a list of columns to include/exclude, filter a dataframe down to the selected columns. """ def __init__(self, cols=None, include=None, exclude=None): """ Parameters ---------- cols: list A list of string column names to subset the data to exclude: list A list of string columns to exclude from the dataframe include: list A list of string columns to include in the dataframe """ self.cols = cols self.include = include self.exclude = exclude def fit(self, X, y=None): ## Default to all columns if none were passed if not self.cols: self.cols = X.columns.values.tolist() # Filter out unwanted columns if self.exclude: self.cols = [col for col in self.cols if col not in self.exclude] # Filter down to subset of desired columns if self.include: self.cols = [col for col in self.cols if col in self.include] return self def transform(self, X): # assumes X is a DataFrame Xcols = X[self.cols] return Xcols class DFDummyTransformer(TransformerMixin): # Transforms dummy variables from a list of columns def __init__(self, columns=None): self.columns = columns def fit(self, X, y=None): # Assumes no columns provided, in which case all columns will be transformed if not self.columns: self.already_binary_cols = df_binary_columns_list(X) self.cols_to_transform = list(set(X.columns.values.tolist()).difference(self.already_binary_cols)) # Encode the rest of the columns self.dummy_encoded_cols = pd.get_dummies(X[self.cols_to_transform]) if self.columns: self.cols_to_transform = self.columns # Encode the rest of the columns self.dummy_encoded_cols = pd.get_dummies(X[self.cols_to_transform]) return self def transform(self, X): # assumes X is a DataFrame # Remove the encoded columns from original X_transform = X[list(set(X.columns.values.tolist()).difference(self.cols_to_transform))] # Merge on encoded cols X_transform = pd.merge(X_transform, self.dummy_encoded_cols, left_index=True, right_index=True) return X_transform def df_binary_columns_list(df): """ Returns a list of binary columns (unique values are either 0 or 1)""" binary_cols = [col for col in df if df[col].dropna().value_counts().index.isin([0,1]).all()] return binary_cols class ZeroFillTransformer(TransformerMixin): def fit(self, X, y=None): # stateless transformer return self def transform(self, X): # assumes X is a DataFrame Xz = X.fillna(value=0) return Xz class Log1pTransformer(TransformerMixin): def fit(self, X, y=None): # stateless transformer return self def transform(self, X): # assumes X is a DataFrame Xlog = np.log1p(X) return Xlog class DateFormatter(TransformerMixin): def fit(self, X, y=None): # stateless transformer return self def transform(self, X): # assumes X is a DataFrame Xdate = X.apply(pd.to_datetime) return Xdate class DateDiffer(TransformerMixin): def fit(self, X, y=None): # stateless transformer return self def transform(self, X): # assumes X is a DataFrame beg_cols = X.columns[:-1] end_cols = X.columns[1:] Xbeg = X[beg_cols].as_matrix() Xend = X[end_cols].as_matrix() Xd = (Xend - Xbeg) / np.timedelta64(1, 'D') diff_cols = ['->'.join(pair) for pair in zip(beg_cols, end_cols)] Xdiff = pd.DataFrame(Xd, index=X.index, columns=diff_cols) return Xdiff class DummyTransformer(TransformerMixin): def __init__(self): self.dv = None def fit(self, X, y=None): # assumes all columns of X are strings Xdict = X.to_dict('records') self.dv = DictVectorizer(sparse=False) self.dv.fit(Xdict) return self def transform(self, X): # assumes X is a DataFrame Xdict = X.to_dict('records') Xt = self.dv.transform(Xdict) cols = self.dv.get_feature_names() Xdum = pd.DataFrame(Xt, index=X.index, columns=cols) # drop column indicating NaNs nan_cols = [c for c in cols if '=' not in c] Xdum = Xdum.drop(nan_cols, axis=1) return Xdum class MultiEncoder(TransformerMixin): # Multiple-column MultiLabelBinarizer for pandas DataFrames def __init__(self, sep=','): self.sep = sep self.mlbs = None def _col_transform(self, x, mlb): cols = [''.join([x.name, '=', c]) for c in mlb.classes_] xmlb = mlb.transform(x) xdf =
pd.DataFrame(xmlb, index=x.index, columns=cols)
pandas.DataFrame
from datetime import datetime from decimal import Decimal from io import StringIO import numpy as np import pytest from pandas.errors import PerformanceWarning import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series, Timestamp, date_range, read_csv import pandas._testing as tm from pandas.core.base import SpecificationError import pandas.core.common as com def test_repr(): # GH18203 result = repr(pd.Grouper(key="A", level="B")) expected = "Grouper(key='A', level='B', axis=0, sort=False)" assert result == expected @pytest.mark.parametrize("dtype", ["int64", "int32", "float64", "float32"]) def test_basic(dtype): data = Series(np.arange(9) // 3, index=np.arange(9), dtype=dtype) index = np.arange(9) np.random.shuffle(index) data = data.reindex(index) grouped = data.groupby(lambda x: x // 3) for k, v in grouped: assert len(v) == 3 agged = grouped.aggregate(np.mean) assert agged[1] == 1 tm.assert_series_equal(agged, grouped.agg(np.mean)) # shorthand tm.assert_series_equal(agged, grouped.mean()) tm.assert_series_equal(grouped.agg(np.sum), grouped.sum()) expected = grouped.apply(lambda x: x * x.sum()) transformed = grouped.transform(lambda x: x * x.sum()) assert transformed[7] == 12 tm.assert_series_equal(transformed, expected) value_grouped = data.groupby(data) tm.assert_series_equal( value_grouped.aggregate(np.mean), agged, check_index_type=False ) # complex agg agged = grouped.aggregate([np.mean, np.std]) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped.aggregate({"one": np.mean, "two": np.std}) group_constants = {0: 10, 1: 20, 2: 30} agged = grouped.agg(lambda x: group_constants[x.name] + x.mean()) assert agged[1] == 21 # corner cases msg = "Must produce aggregated value" # exception raised is type Exception with pytest.raises(Exception, match=msg): grouped.aggregate(lambda x: x * 2) def test_groupby_nonobject_dtype(mframe, df_mixed_floats): key = mframe.index.codes[0] grouped = mframe.groupby(key) result = grouped.sum() expected = mframe.groupby(key.astype("O")).sum() tm.assert_frame_equal(result, expected) # GH 3911, mixed frame non-conversion df = df_mixed_floats.copy() df["value"] = range(len(df)) def max_value(group): return group.loc[group["value"].idxmax()] applied = df.groupby("A").apply(max_value) result = applied.dtypes expected = Series( [np.dtype("object")] * 2 + [np.dtype("float64")] * 2 + [np.dtype("int64")], index=["A", "B", "C", "D", "value"], ) tm.assert_series_equal(result, expected) def test_groupby_return_type(): # GH2893, return a reduced type df1 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 2, "val2": 27}, {"val1": 2, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df1.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) df2 = DataFrame( [ {"val1": 1, "val2": 20}, {"val1": 1, "val2": 19}, {"val1": 1, "val2": 27}, {"val1": 1, "val2": 12}, ] ) def func(dataf): return dataf["val2"] - dataf["val2"].mean() with tm.assert_produces_warning(FutureWarning): result = df2.groupby("val1", squeeze=True).apply(func) assert isinstance(result, Series) # GH3596, return a consistent type (regression in 0.11 from 0.10.1) df = DataFrame([[1, 1], [1, 1]], columns=["X", "Y"]) with tm.assert_produces_warning(FutureWarning): result = df.groupby("X", squeeze=False).count() assert isinstance(result, DataFrame) def test_inconsistent_return_type(): # GH5592 # inconsistent return type df = DataFrame( dict( A=["Tiger", "Tiger", "Tiger", "Lamb", "Lamb", "Pony", "Pony"], B=Series(np.arange(7), dtype="int64"), C=date_range("20130101", periods=7), ) ) def f(grp): return grp.iloc[0] expected = df.groupby("A").first()[["B"]] result = df.groupby("A").apply(f)[["B"]] tm.assert_frame_equal(result, expected) def f(grp): if grp.name == "Tiger": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Tiger"] = np.nan tm.assert_frame_equal(result, e) def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["B"]] e = expected.copy() e.loc["Pony"] = np.nan tm.assert_frame_equal(result, e) # 5592 revisited, with datetimes def f(grp): if grp.name == "Pony": return None return grp.iloc[0] result = df.groupby("A").apply(f)[["C"]] e = df.groupby("A").first()[["C"]] e.loc["Pony"] = pd.NaT tm.assert_frame_equal(result, e) # scalar outputs def f(grp): if grp.name == "Pony": return None return grp.iloc[0].loc["C"] result = df.groupby("A").apply(f) e = df.groupby("A").first()["C"].copy() e.loc["Pony"] = np.nan e.name = None tm.assert_series_equal(result, e) def test_pass_args_kwargs(ts, tsframe): def f(x, q=None, axis=0): return np.percentile(x, q, axis=axis) g = lambda x: np.percentile(x, 80, axis=0) # Series ts_grouped = ts.groupby(lambda x: x.month) agg_result = ts_grouped.agg(np.percentile, 80, axis=0) apply_result = ts_grouped.apply(np.percentile, 80, axis=0) trans_result = ts_grouped.transform(np.percentile, 80, axis=0) agg_expected = ts_grouped.quantile(0.8) trans_expected = ts_grouped.transform(g) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) agg_result = ts_grouped.agg(f, q=80) apply_result = ts_grouped.apply(f, q=80) trans_result = ts_grouped.transform(f, q=80) tm.assert_series_equal(agg_result, agg_expected) tm.assert_series_equal(apply_result, agg_expected) tm.assert_series_equal(trans_result, trans_expected) # DataFrame df_grouped = tsframe.groupby(lambda x: x.month) agg_result = df_grouped.agg(np.percentile, 80, axis=0) apply_result = df_grouped.apply(DataFrame.quantile, 0.8) expected = df_grouped.quantile(0.8) tm.assert_frame_equal(apply_result, expected, check_names=False) tm.assert_frame_equal(agg_result, expected) agg_result = df_grouped.agg(f, q=80) apply_result = df_grouped.apply(DataFrame.quantile, q=0.8) tm.assert_frame_equal(agg_result, expected) tm.assert_frame_equal(apply_result, expected, check_names=False) def test_len(): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) assert len(grouped) == len(df) grouped = df.groupby([lambda x: x.year, lambda x: x.month]) expected = len({(x.year, x.month) for x in df.index}) assert len(grouped) == expected # issue 11016 df = pd.DataFrame(dict(a=[np.nan] * 3, b=[1, 2, 3])) assert len(df.groupby(("a"))) == 0 assert len(df.groupby(("b"))) == 3 assert len(df.groupby(["a", "b"])) == 3 def test_basic_regression(): # regression result = Series([1.0 * x for x in list(range(1, 10)) * 10]) data = np.random.random(1100) * 10.0 groupings = Series(data) grouped = result.groupby(groupings) grouped.mean() @pytest.mark.parametrize( "dtype", ["float64", "float32", "int64", "int32", "int16", "int8"] ) def test_with_na_groups(dtype): index = Index(np.arange(10)) values = Series(np.ones(10), index, dtype=dtype) labels = Series( [np.nan, "foo", "bar", "bar", np.nan, np.nan, "bar", "bar", np.nan, "foo"], index=index, ) # this SHOULD be an int grouped = values.groupby(labels) agged = grouped.agg(len) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) # assert issubclass(agged.dtype.type, np.integer) # explicitly return a float from my function def f(x): return float(len(x)) agged = grouped.agg(f) expected = Series([4, 2], index=["bar", "foo"]) tm.assert_series_equal(agged, expected, check_dtype=False) assert issubclass(agged.dtype.type, np.dtype(dtype).type) def test_indices_concatenation_order(): # GH 2808 def f1(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex(levels=[[]] * 2, codes=[[]] * 2, names=["b", "c"]) res = DataFrame(columns=["a"], index=multiindex) return res else: y = y.set_index(["b", "c"]) return y def f2(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: return DataFrame() else: y = y.set_index(["b", "c"]) return y def f3(x): y = x[(x.b % 2) == 1] ** 2 if y.empty: multiindex = MultiIndex( levels=[[]] * 2, codes=[[]] * 2, names=["foo", "bar"] ) res = DataFrame(columns=["a", "b"], index=multiindex) return res else: return y df = DataFrame({"a": [1, 2, 2, 2], "b": range(4), "c": range(5, 9)}) df2 = DataFrame({"a": [3, 2, 2, 2], "b": range(4), "c": range(5, 9)}) # correct result result1 = df.groupby("a").apply(f1) result2 = df2.groupby("a").apply(f1) tm.assert_frame_equal(result1, result2) # should fail (not the same number of levels) msg = "Cannot concat indices that do not have the same number of levels" with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f2) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f2) # should fail (incorrect shape) with pytest.raises(AssertionError, match=msg): df.groupby("a").apply(f3) with pytest.raises(AssertionError, match=msg): df2.groupby("a").apply(f3) def test_attr_wrapper(ts): grouped = ts.groupby(lambda x: x.weekday()) result = grouped.std() expected = grouped.agg(lambda x: np.std(x, ddof=1)) tm.assert_series_equal(result, expected) # this is pretty cool result = grouped.describe() expected = {name: gp.describe() for name, gp in grouped} expected = DataFrame(expected).T tm.assert_frame_equal(result, expected) # get attribute result = grouped.dtype expected = grouped.agg(lambda x: x.dtype) # make sure raises error msg = "'SeriesGroupBy' object has no attribute 'foo'" with pytest.raises(AttributeError, match=msg): getattr(grouped, "foo") def test_frame_groupby(tsframe): grouped = tsframe.groupby(lambda x: x.weekday()) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == 5 assert len(aggregated.columns) == 4 # by string tscopy = tsframe.copy() tscopy["weekday"] = [x.weekday() for x in tscopy.index] stragged = tscopy.groupby("weekday").aggregate(np.mean) tm.assert_frame_equal(stragged, aggregated, check_names=False) # transform grouped = tsframe.head(30).groupby(lambda x: x.weekday()) transformed = grouped.transform(lambda x: x - x.mean()) assert len(transformed) == 30 assert len(transformed.columns) == 4 # transform propagate transformed = grouped.transform(lambda x: x.mean()) for name, group in grouped: mean = group.mean() for idx in group.index: tm.assert_series_equal(transformed.xs(idx), mean, check_names=False) # iterate for weekday, group in grouped: assert group.index[0].weekday() == weekday # groups / group_indices groups = grouped.groups indices = grouped.indices for k, v in groups.items(): samething = tsframe.index.take(indices[k]) assert (samething == v).all() def test_frame_groupby_columns(tsframe): mapping = {"A": 0, "B": 0, "C": 1, "D": 1} grouped = tsframe.groupby(mapping, axis=1) # aggregate aggregated = grouped.aggregate(np.mean) assert len(aggregated) == len(tsframe) assert len(aggregated.columns) == 2 # transform tf = lambda x: x - x.mean() groupedT = tsframe.T.groupby(mapping, axis=0) tm.assert_frame_equal(groupedT.transform(tf).T, grouped.transform(tf)) # iterate for k, v in grouped: assert len(v.columns) == 2 def test_frame_set_name_single(df): grouped = df.groupby("A") result = grouped.mean() assert result.index.name == "A" result = df.groupby("A", as_index=False).mean() assert result.index.name != "A" result = grouped.agg(np.mean) assert result.index.name == "A" result = grouped.agg({"C": np.mean, "D": np.std}) assert result.index.name == "A" result = grouped["C"].mean() assert result.index.name == "A" result = grouped["C"].agg(np.mean) assert result.index.name == "A" result = grouped["C"].agg([np.mean, np.std]) assert result.index.name == "A" msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"foo": np.mean, "bar": np.std}) def test_multi_func(df): col1 = df["A"] col2 = df["B"] grouped = df.groupby([col1.get, col2.get]) agged = grouped.mean() expected = df.groupby(["A", "B"]).mean() # TODO groupby get drops names tm.assert_frame_equal( agged.loc[:, ["C", "D"]], expected.loc[:, ["C", "D"]], check_names=False ) # some "groups" with no data df = DataFrame( { "v1": np.random.randn(6), "v2": np.random.randn(6), "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), }, index=["one", "two", "three", "four", "five", "six"], ) # only verify that it works for now grouped = df.groupby(["k1", "k2"]) grouped.agg(np.sum) def test_multi_key_multiple_functions(df): grouped = df.groupby(["A", "B"])["C"] agged = grouped.agg([np.mean, np.std]) expected = DataFrame({"mean": grouped.agg(np.mean), "std": grouped.agg(np.std)}) tm.assert_frame_equal(agged, expected) def test_frame_multi_key_function_list(): data = DataFrame( { "A": [ "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar", "foo", "foo", "foo", ], "B": [ "one", "one", "one", "two", "one", "one", "one", "two", "two", "two", "one", ], "C": [ "dull", "dull", "shiny", "dull", "dull", "shiny", "shiny", "dull", "shiny", "shiny", "shiny", ], "D": np.random.randn(11), "E": np.random.randn(11), "F": np.random.randn(11), } ) grouped = data.groupby(["A", "B"]) funcs = [np.mean, np.std] agged = grouped.agg(funcs) expected = pd.concat( [grouped["D"].agg(funcs), grouped["E"].agg(funcs), grouped["F"].agg(funcs)], keys=["D", "E", "F"], axis=1, ) assert isinstance(agged.index, MultiIndex) assert isinstance(expected.index, MultiIndex) tm.assert_frame_equal(agged, expected) @pytest.mark.parametrize("op", [lambda x: x.sum(), lambda x: x.mean()]) def test_groupby_multiple_columns(df, op): data = df grouped = data.groupby(["A", "B"]) result1 = op(grouped) keys = [] values = [] for n1, gp1 in data.groupby("A"): for n2, gp2 in gp1.groupby("B"): keys.append((n1, n2)) values.append(op(gp2.loc[:, ["C", "D"]])) mi = MultiIndex.from_tuples(keys, names=["A", "B"]) expected = pd.concat(values, axis=1).T expected.index = mi # a little bit crude for col in ["C", "D"]: result_col = op(grouped[col]) pivoted = result1[col] exp = expected[col] tm.assert_series_equal(result_col, exp) tm.assert_series_equal(pivoted, exp) # test single series works the same result = data["C"].groupby([data["A"], data["B"]]).mean() expected = data.groupby(["A", "B"]).mean()["C"] tm.assert_series_equal(result, expected) def test_as_index_select_column(): # GH 5764 df = pd.DataFrame([[1, 2], [1, 4], [5, 6]], columns=["A", "B"]) result = df.groupby("A", as_index=False)["B"].get_group(1) expected = pd.Series([2, 4], name="B") tm.assert_series_equal(result, expected) result = df.groupby("A", as_index=False)["B"].apply(lambda x: x.cumsum()) expected = pd.Series( [2, 6, 6], name="B", index=pd.MultiIndex.from_tuples([(0, 0), (0, 1), (1, 2)]) ) tm.assert_series_equal(result, expected) def test_groupby_as_index_select_column_sum_empty_df(): # GH 35246 df = DataFrame(columns=["A", "B", "C"]) left = df.groupby(by="A", as_index=False)["B"].sum() assert type(left) is DataFrame assert left.to_dict() == {"A": {}, "B": {}} def test_groupby_as_index_agg(df): grouped = df.groupby("A", as_index=False) # single-key result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) grouped = df.groupby("A", as_index=True) msg = r"nested renamer is not supported" with pytest.raises(SpecificationError, match=msg): grouped["C"].agg({"Q": np.sum}) # multi-key grouped = df.groupby(["A", "B"], as_index=False) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) result2 = grouped.agg({"C": np.mean, "D": np.sum}) expected2 = grouped.mean() expected2["D"] = grouped.sum()["D"] tm.assert_frame_equal(result2, expected2) expected3 = grouped["C"].sum() expected3 = DataFrame(expected3).rename(columns={"C": "Q"}) result3 = grouped["C"].agg({"Q": np.sum}) tm.assert_frame_equal(result3, expected3) # GH7115 & GH8112 & GH8582 df = DataFrame(np.random.randint(0, 100, (50, 3)), columns=["jim", "joe", "jolie"]) ts = Series(np.random.randint(5, 10, 50), name="jim") gr = df.groupby(ts) gr.nth(0) # invokes set_selection_from_grouper internally tm.assert_frame_equal(gr.apply(sum), df.groupby(ts).apply(sum)) for attr in ["mean", "max", "count", "idxmax", "cumsum", "all"]: gr = df.groupby(ts, as_index=False) left = getattr(gr, attr)() gr = df.groupby(ts.values, as_index=True) right = getattr(gr, attr)().reset_index(drop=True) tm.assert_frame_equal(left, right) def test_ops_not_as_index(reduction_func): # GH 10355, 21090 # Using as_index=False should not modify grouped column if reduction_func in ("corrwith",): pytest.skip("Test not applicable") if reduction_func in ("nth", "ngroup",): pytest.skip("Skip until behavior is determined (GH #5755)") df = DataFrame(np.random.randint(0, 5, size=(100, 2)), columns=["a", "b"]) expected = getattr(df.groupby("a"), reduction_func)() if reduction_func == "size": expected = expected.rename("size") expected = expected.reset_index() g = df.groupby("a", as_index=False) result = getattr(g, reduction_func)() tm.assert_frame_equal(result, expected) result = g.agg(reduction_func) tm.assert_frame_equal(result, expected) result = getattr(g["b"], reduction_func)() tm.assert_frame_equal(result, expected) result = g["b"].agg(reduction_func) tm.assert_frame_equal(result, expected) def test_as_index_series_return_frame(df): grouped = df.groupby("A", as_index=False) grouped2 = df.groupby(["A", "B"], as_index=False) result = grouped["C"].agg(np.sum) expected = grouped.agg(np.sum).loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].agg(np.sum) expected2 = grouped2.agg(np.sum).loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) result = grouped["C"].sum() expected = grouped.sum().loc[:, ["A", "C"]] assert isinstance(result, DataFrame) tm.assert_frame_equal(result, expected) result2 = grouped2["C"].sum() expected2 = grouped2.sum().loc[:, ["A", "B", "C"]] assert isinstance(result2, DataFrame) tm.assert_frame_equal(result2, expected2) def test_as_index_series_column_slice_raises(df): # GH15072 grouped = df.groupby("A", as_index=False) msg = r"Column\(s\) C already selected" with pytest.raises(IndexError, match=msg): grouped["C"].__getitem__("D") def test_groupby_as_index_cython(df): data = df # single-key grouped = data.groupby("A", as_index=False) result = grouped.mean() expected = data.groupby(["A"]).mean() expected.insert(0, "A", expected.index) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) # multi-key grouped = data.groupby(["A", "B"], as_index=False) result = grouped.mean() expected = data.groupby(["A", "B"]).mean() arrays = list(zip(*expected.index.values)) expected.insert(0, "A", arrays[0]) expected.insert(1, "B", arrays[1]) expected.index = np.arange(len(expected)) tm.assert_frame_equal(result, expected) def test_groupby_as_index_series_scalar(df): grouped = df.groupby(["A", "B"], as_index=False) # GH #421 result = grouped["C"].agg(len) expected = grouped.agg(len).loc[:, ["A", "B", "C"]] tm.assert_frame_equal(result, expected) def test_groupby_as_index_corner(df, ts): msg = "as_index=False only valid with DataFrame" with pytest.raises(TypeError, match=msg): ts.groupby(lambda x: x.weekday(), as_index=False) msg = "as_index=False only valid for axis=0" with pytest.raises(ValueError, match=msg): df.groupby(lambda x: x.lower(), as_index=False, axis=1) def test_groupby_multiple_key(df): df = tm.makeTimeDataFrame() grouped = df.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]) agged = grouped.sum() tm.assert_almost_equal(df.values, agged.values) grouped = df.T.groupby( [lambda x: x.year, lambda x: x.month, lambda x: x.day], axis=1 ) agged = grouped.agg(lambda x: x.sum()) tm.assert_index_equal(agged.index, df.columns) tm.assert_almost_equal(df.T.values, agged.values) agged = grouped.agg(lambda x: x.sum()) tm.assert_almost_equal(df.T.values, agged.values) def test_groupby_multi_corner(df): # test that having an all-NA column doesn't mess you up df = df.copy() df["bad"] = np.nan agged = df.groupby(["A", "B"]).mean() expected = df.groupby(["A", "B"]).mean() expected["bad"] = np.nan tm.assert_frame_equal(agged, expected) def test_omit_nuisance(df): grouped = df.groupby("A") result = grouped.mean() expected = df.loc[:, ["A", "C", "D"]].groupby("A").mean() tm.assert_frame_equal(result, expected) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) df = df.loc[:, ["A", "C", "D"]] df["E"] = datetime.now() grouped = df.groupby("A") result = grouped.agg(np.sum) expected = grouped.sum() tm.assert_frame_equal(result, expected) # won't work with axis = 1 grouped = df.groupby({"A": 0, "C": 0, "D": 1, "E": 1}, axis=1) msg = "reduction operation 'sum' not allowed for this dtype" with pytest.raises(TypeError, match=msg): grouped.agg(lambda x: x.sum(0, numeric_only=False)) def test_omit_nuisance_python_multiple(three_group): grouped = three_group.groupby(["A", "B"]) agged = grouped.agg(np.mean) exp = grouped.mean() tm.assert_frame_equal(agged, exp) def test_empty_groups_corner(mframe): # handle empty groups df = DataFrame( { "k1": np.array(["b", "b", "b", "a", "a", "a"]), "k2": np.array(["1", "1", "1", "2", "2", "2"]), "k3": ["foo", "bar"] * 3, "v1": np.random.randn(6), "v2": np.random.randn(6), } ) grouped = df.groupby(["k1", "k2"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) grouped = mframe[3:5].groupby(level=0) agged = grouped.apply(lambda x: x.mean()) agged_A = grouped["A"].apply(np.mean) tm.assert_series_equal(agged["A"], agged_A) assert agged.index.name == "first" def test_nonsense_func(): df = DataFrame([0]) msg = r"unsupported operand type\(s\) for \+: 'int' and 'str'" with pytest.raises(TypeError, match=msg): df.groupby(lambda x: x + "foo") def test_wrap_aggregated_output_multindex(mframe): df = mframe.T df["baz", "two"] = "peekaboo" keys = [np.array([0, 0, 1]), np.array([0, 0, 1])] agged = df.groupby(keys).agg(np.mean) assert isinstance(agged.columns, MultiIndex) def aggfun(ser): if ser.name == ("foo", "one"): raise TypeError else: return ser.sum() agged2 = df.groupby(keys).aggregate(aggfun) assert len(agged2.columns) + 1 == len(df.columns) def test_groupby_level_apply(mframe): result = mframe.groupby(level=0).count() assert result.index.name == "first" result = mframe.groupby(level=1).count() assert result.index.name == "second" result = mframe["A"].groupby(level=0).count() assert result.index.name == "first" def test_groupby_level_mapper(mframe): deleveled = mframe.reset_index() mapper0 = {"foo": 0, "bar": 0, "baz": 1, "qux": 1} mapper1 = {"one": 0, "two": 0, "three": 1} result0 = mframe.groupby(mapper0, level=0).sum() result1 = mframe.groupby(mapper1, level=1).sum() mapped_level0 = np.array([mapper0.get(x) for x in deleveled["first"]]) mapped_level1 = np.array([mapper1.get(x) for x in deleveled["second"]]) expected0 = mframe.groupby(mapped_level0).sum() expected1 = mframe.groupby(mapped_level1).sum() expected0.index.name, expected1.index.name = "first", "second" tm.assert_frame_equal(result0, expected0) tm.assert_frame_equal(result1, expected1) def test_groupby_level_nonmulti(): # GH 1313, GH 13901 s = Series([1, 2, 3, 10, 4, 5, 20, 6], Index([1, 2, 3, 1, 4, 5, 2, 6], name="foo")) expected = Series([11, 22, 3, 4, 5, 6], Index(range(1, 7), name="foo")) result = s.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[0]).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=-1).sum() tm.assert_series_equal(result, expected) result = s.groupby(level=[-1]).sum() tm.assert_series_equal(result, expected) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=1) with pytest.raises(ValueError, match=msg): s.groupby(level=-2) msg = "No group keys passed!" with pytest.raises(ValueError, match=msg): s.groupby(level=[]) msg = "multiple levels only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 0]) with pytest.raises(ValueError, match=msg): s.groupby(level=[0, 1]) msg = "level > 0 or level < -1 only valid with MultiIndex" with pytest.raises(ValueError, match=msg): s.groupby(level=[1]) def test_groupby_complex(): # GH 12902 a = Series(data=np.arange(4) * (1 + 2j), index=[0, 0, 1, 1]) expected = Series((1 + 2j, 5 + 10j)) result = a.groupby(level=0).sum() tm.assert_series_equal(result, expected) result = a.sum(level=0) tm.assert_series_equal(result, expected) def test_groupby_series_indexed_differently(): s1 = Series( [5.0, -9.0, 4.0, 100.0, -5.0, 55.0, 6.7], index=Index(["a", "b", "c", "d", "e", "f", "g"]), ) s2 = Series( [1.0, 1.0, 4.0, 5.0, 5.0, 7.0], index=Index(["a", "b", "d", "f", "g", "h"]) ) grouped = s1.groupby(s2) agged = grouped.mean() exp = s1.groupby(s2.reindex(s1.index).get).mean() tm.assert_series_equal(agged, exp) def test_groupby_with_hier_columns(): tuples = list( zip( *[ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] ) ) index = MultiIndex.from_tuples(tuples) columns = MultiIndex.from_tuples( [("A", "cat"), ("B", "dog"), ("B", "cat"), ("A", "dog")] ) df = DataFrame(np.random.randn(8, 4), index=index, columns=columns) result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).mean() tm.assert_index_equal(result.index, df.index) result = df.groupby(level=0).agg(np.mean) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0).apply(lambda x: x.mean()) tm.assert_index_equal(result.columns, columns) result = df.groupby(level=0, axis=1).agg(lambda x: x.mean(1)) tm.assert_index_equal(result.columns, Index(["A", "B"])) tm.assert_index_equal(result.index, df.index) # add a nuisance column sorted_columns, _ = columns.sortlevel(0) df["A", "foo"] = "bar" result = df.groupby(level=0).mean() tm.assert_index_equal(result.columns, df.columns[:-1]) def test_grouping_ndarray(df): grouped = df.groupby(df["A"].values) result = grouped.sum() expected = df.groupby("A").sum() tm.assert_frame_equal( result, expected, check_names=False ) # Note: no names when grouping by value def test_groupby_wrong_multi_labels(): data = """index,foo,bar,baz,spam,data 0,foo1,bar1,baz1,spam2,20 1,foo1,bar2,baz1,spam3,30 2,foo2,bar2,baz1,spam2,40 3,foo1,bar1,baz2,spam1,50 4,foo3,bar1,baz2,spam1,60""" data = read_csv(StringIO(data), index_col=0) grouped = data.groupby(["foo", "bar", "baz", "spam"]) result = grouped.agg(np.mean) expected = grouped.mean() tm.assert_frame_equal(result, expected) def test_groupby_series_with_name(df): result = df.groupby(df["A"]).mean() result2 = df.groupby(df["A"], as_index=False).mean() assert result.index.name == "A" assert "A" in result2 result = df.groupby([df["A"], df["B"]]).mean() result2 = df.groupby([df["A"], df["B"]], as_index=False).mean() assert result.index.names == ("A", "B") assert "A" in result2 assert "B" in result2 def test_seriesgroupby_name_attr(df): # GH 6265 result = df.groupby("A")["C"] assert result.count().name == "C" assert result.mean().name == "C" testFunc = lambda x: np.sum(x) * 2 assert result.agg(testFunc).name == "C" def test_consistency_name(): # GH 12363 df = DataFrame( { "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], "B": ["one", "one", "two", "two", "two", "two", "one", "two"], "C": np.random.randn(8) + 1.0, "D": np.arange(8), } ) expected = df.groupby(["A"]).B.count() result = df.B.groupby(df.A).count() tm.assert_series_equal(result, expected) def test_groupby_name_propagation(df): # GH 6124 def summarize(df, name=None): return Series({"count": 1, "mean": 2, "omissions": 3}, name=name) def summarize_random_name(df): # Provide a different name for each Series. In this case, groupby # should not attempt to propagate the Series name since they are # inconsistent. return Series({"count": 1, "mean": 2, "omissions": 3}, name=df.iloc[0]["A"]) metrics = df.groupby("A").apply(summarize) assert metrics.columns.name is None metrics = df.groupby("A").apply(summarize, "metrics") assert metrics.columns.name == "metrics" metrics = df.groupby("A").apply(summarize_random_name) assert metrics.columns.name is None def test_groupby_nonstring_columns(): df = DataFrame([np.arange(10) for x in range(10)]) grouped = df.groupby(0) result = grouped.mean() expected = df.groupby(df[0]).mean() tm.assert_frame_equal(result, expected) def test_groupby_mixed_type_columns(): # GH 13432, unorderable types in py3 df = DataFrame([[0, 1, 2]], columns=["A", "B", 0]) expected = DataFrame([[1, 2]], columns=["B", 0], index=Index([0], name="A")) result = df.groupby("A").first() tm.assert_frame_equal(result, expected) result = df.groupby("A").sum() tm.assert_frame_equal(result, expected) # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:Mean of:RuntimeWarning") def test_cython_grouper_series_bug_noncontig(): arr = np.empty((100, 100)) arr.fill(np.nan) obj = Series(arr[:, 0]) inds = np.tile(range(10), 10) result = obj.groupby(inds).agg(Series.median) assert result.isna().all() def test_series_grouper_noncontig_index(): index = Index(tm.rands_array(10, 100)) values = Series(np.random.randn(50), index=index[::2]) labels = np.random.randint(0, 5, 50) # it works! grouped = values.groupby(labels) # accessing the index elements causes segfault f = lambda x: len(set(map(id, x.index))) grouped.agg(f) def test_convert_objects_leave_decimal_alone(): s = Series(range(5)) labels = np.array(["a", "b", "c", "d", "e"], dtype="O") def convert_fast(x): return Decimal(str(x.mean())) def convert_force_pure(x): # base will be length 0 assert len(x.values.base) > 0 return Decimal(str(x.mean())) grouped = s.groupby(labels) result = grouped.agg(convert_fast) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) result = grouped.agg(convert_force_pure) assert result.dtype == np.object_ assert isinstance(result[0], Decimal) def test_groupby_dtype_inference_empty(): # GH 6733 df = DataFrame({"x": [], "range": np.arange(0, dtype="int64")}) assert df["x"].dtype == np.float64 result = df.groupby("x").first() exp_index = Index([], name="x", dtype=np.float64) expected = DataFrame({"range": Series([], index=exp_index, dtype="int64")}) tm.assert_frame_equal(result, expected, by_blocks=True) def test_groupby_list_infer_array_like(df): result = df.groupby(list(df["A"])).mean() expected = df.groupby(df["A"]).mean() tm.assert_frame_equal(result, expected, check_names=False) with pytest.raises(KeyError, match=r"^'foo'$"): df.groupby(list(df["A"][:-1])) # pathological case of ambiguity df = DataFrame({"foo": [0, 1], "bar": [3, 4], "val": np.random.randn(2)}) result = df.groupby(["foo", "bar"]).mean() expected = df.groupby([df["foo"], df["bar"]]).mean()[["val"]] def test_groupby_keys_same_size_as_index(): # GH 11185 freq = "s" index = pd.date_range( start=pd.Timestamp("2015-09-29T11:34:44-0700"), periods=2, freq=freq ) df = pd.DataFrame([["A", 10], ["B", 15]], columns=["metric", "values"], index=index) result = df.groupby([pd.Grouper(level=0, freq=freq), "metric"]).mean() expected = df.set_index([df.index, "metric"]) tm.assert_frame_equal(result, expected) def test_groupby_one_row(): # GH 11741 msg = r"^'Z'$" df1 = pd.DataFrame(np.random.randn(1, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df1.groupby("Z") df2 = pd.DataFrame(np.random.randn(2, 4), columns=list("ABCD")) with pytest.raises(KeyError, match=msg): df2.groupby("Z") def test_groupby_nat_exclude(): # GH 6992 df = pd.DataFrame( { "values": np.random.randn(8), "dt": [ np.nan, pd.Timestamp("2013-01-01"), np.nan, pd.Timestamp("2013-02-01"), np.nan, pd.Timestamp("2013-02-01"), np.nan, pd.Timestamp("2013-01-01"), ], "str": [np.nan, "a", np.nan, "a", np.nan, "a", np.nan, "b"], } ) grouped = df.groupby("dt") expected = [pd.Index([1, 7]), pd.Index([3, 5])] keys = sorted(grouped.groups.keys()) assert len(keys) == 2 for k, e in zip(keys, expected): # grouped.groups keys are np.datetime64 with system tz # not to be affected by tz, only compare values tm.assert_index_equal(grouped.groups[k], e) # confirm obj is not filtered tm.assert_frame_equal(grouped.grouper.groupings[0].obj, df) assert grouped.ngroups == 2 expected = { Timestamp("2013-01-01 00:00:00"): np.array([1, 7], dtype=np.intp), Timestamp("2013-02-01 00:00:00"): np.array([3, 5], dtype=np.intp), } for k in grouped.indices: tm.assert_numpy_array_equal(grouped.indices[k], expected[k]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-01-01")), df.iloc[[1, 7]]) tm.assert_frame_equal(grouped.get_group(Timestamp("2013-02-01")), df.iloc[[3, 5]]) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) nan_df = DataFrame( {"nan": [np.nan, np.nan, np.nan], "nat": [pd.NaT, pd.NaT, pd.NaT]} ) assert nan_df["nan"].dtype == "float64" assert nan_df["nat"].dtype == "datetime64[ns]" for key in ["nan", "nat"]: grouped = nan_df.groupby(key) assert grouped.groups == {} assert grouped.ngroups == 0 assert grouped.indices == {} with pytest.raises(KeyError, match=r"^nan$"): grouped.get_group(np.nan) with pytest.raises(KeyError, match=r"^NaT$"): grouped.get_group(pd.NaT) def test_groupby_2d_malformed(): d = DataFrame(index=range(2)) d["group"] = ["g1", "g2"] d["zeros"] = [0, 0] d["ones"] = [1, 1] d["label"] = ["l1", "l2"] tmp = d.groupby(["group"]).mean() res_values = np.array([[0, 1], [0, 1]], dtype=np.int64) tm.assert_index_equal(tmp.columns, Index(["zeros", "ones"])) tm.assert_numpy_array_equal(tmp.values, res_values) def test_int32_overflow(): B = np.concatenate((np.arange(10000), np.arange(10000), np.arange(5000))) A = np.arange(25000) df = DataFrame({"A": A, "B": B, "C": A, "D": B, "E": np.random.randn(25000)}) left = df.groupby(["A", "B", "C", "D"]).sum() right = df.groupby(["D", "C", "B", "A"]).sum() assert len(left) == len(right) def test_groupby_sort_multi(): df = DataFrame( { "a": ["foo", "bar", "baz"], "b": [3, 2, 1], "c": [0, 1, 2], "d": np.random.randn(3), } ) tups = [tuple(row) for row in df[["a", "b", "c"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["a", "b", "c"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[1, 2, 0]]) tups = [tuple(row) for row in df[["c", "a", "b"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["c", "a", "b"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups) tups = [tuple(x) for x in df[["b", "c", "a"]].values] tups = com.asarray_tuplesafe(tups) result = df.groupby(["b", "c", "a"], sort=True).sum() tm.assert_numpy_array_equal(result.index.values, tups[[2, 1, 0]]) df = DataFrame( {"a": [0, 1, 2, 0, 1, 2], "b": [0, 0, 0, 1, 1, 1], "d": np.random.randn(6)} ) grouped = df.groupby(["a", "b"])["d"] result = grouped.sum() def _check_groupby(df, result, keys, field, f=lambda x: x.sum()): tups = [tuple(row) for row in df[keys].values] tups = com.asarray_tuplesafe(tups) expected = f(df.groupby(tups)[field]) for k, v in expected.items(): assert result[k] == v _check_groupby(df, result, ["a", "b"], "d") def test_dont_clobber_name_column(): df = DataFrame( {"key": ["a", "a", "a", "b", "b", "b"], "name": ["foo", "bar", "baz"] * 2} ) result = df.groupby("key").apply(lambda x: x) tm.assert_frame_equal(result, df) def test_skip_group_keys(): tsf =
tm.makeTimeDataFrame()
pandas._testing.makeTimeDataFrame
import pytest import os from mapping import util from pandas.util.testing import assert_frame_equal, assert_series_equal import pandas as pd from pandas import Timestamp as TS import numpy as np @pytest.fixture def price_files(): cdir = os.path.dirname(__file__) path = os.path.join(cdir, 'data/') files = ["CME-FVU2014.csv", "CME-FVZ2014.csv"] return [os.path.join(path, f) for f in files] def assert_dict_of_frames(dict1, dict2): assert dict1.keys() == dict2.keys() for key in dict1: assert_frame_equal(dict1[key], dict2[key]) def test_read_price_data(price_files): # using default name_func in read_price_data() df = util.read_price_data(price_files) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "CME-FVU2014"), (dt1, "CME-FVZ2014"), (dt2, "CME-FVZ2014")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def name_func(fstr): file_name = os.path.split(fstr)[-1] name = file_name.split('-')[1].split('.')[0] return name[-4:] + name[:3] df = util.read_price_data(price_files, name_func) dt1 = TS("2014-09-30") dt2 = TS("2014-10-01") idx = pd.MultiIndex.from_tuples([(dt1, "2014FVU"), (dt1, "2014FVZ"), (dt2, "2014FVZ")], names=["date", "contract"]) df_exp = pd.DataFrame([119.27344, 118.35938, 118.35938], index=idx, columns=["Open"]) assert_frame_equal(df, df_exp) def test_calc_rets_one_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([0.1, 0.05, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([0.1, 0.075, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15], [0.075, 0.45], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_nans_in_second_generic(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, np.NaN, 0.05, 0.1, np.NaN, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL2']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, np.NaN], [0.075, np.NaN], [-0.5, 0.2]], index=weights.index.levels[0], columns=['CL1', 'CL2']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_two_generics_non_unique_columns(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1', 'CL1']) with pytest.raises(ValueError): util.calc_rets(rets, weights) def test_calc_rets_two_generics_two_asts(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5')]) rets1 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.8, -0.5, 0.2], index=idx) idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5')]) rets2 = pd.Series([0.1, 0.15, 0.05, 0.1, 0.4], index=idx) rets = {"CL": rets1, "CO": rets2} vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5], [1, 0], [0, 1]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-03'), 'CLG5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-04'), 'CLH5'), (TS('2015-01-05'), 'CLG5'), (TS('2015-01-05'), 'CLH5') ]) weights1 = pd.DataFrame(vals, index=widx, columns=["CL0", "CL1"]) vals = [[1, 0], [0, 1], [0.5, 0], [0.5, 0.5], [0, 0.5]] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'COF5'), (TS('2015-01-03'), 'COG5'), (TS('2015-01-04'), 'COF5'), (TS('2015-01-04'), 'COG5'), (TS('2015-01-04'), 'COH5') ]) weights2 = pd.DataFrame(vals, index=widx, columns=["CO0", "CO1"]) weights = {"CL": weights1, "CO": weights2} wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([[0.1, 0.15, 0.1, 0.15], [0.075, 0.45, 0.075, 0.25], [-0.5, 0.2, pd.np.NaN, pd.np.NaN]], index=weights["CL"].index.levels[0], columns=['CL0', 'CL1', 'CO0', 'CO1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_instr_rets_key_error(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5')]) irets = pd.Series([0.02, 0.01, 0.012], index=idx) vals = [1, 1/2, 1/2, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(KeyError): util.calc_rets(irets, weights) def test_calc_rets_nan_instr_rets(): idx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5')]) rets = pd.Series([pd.np.NaN, pd.np.NaN, 0.1, 0.8], index=idx) vals = [1, 0.5, 0.5, 1] widx = pd.MultiIndex.from_tuples([(TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5'), (TS('2015-01-04'), 'CLG5'), (TS('2015-01-05'), 'CLG5') ]) weights = pd.DataFrame(vals, index=widx, columns=['CL1']) wrets = util.calc_rets(rets, weights) wrets_exp = pd.DataFrame([pd.np.NaN, pd.np.NaN, 0.8], index=weights.index.levels[0], columns=['CL1']) assert_frame_equal(wrets, wrets_exp) def test_calc_rets_missing_weight(): # see https://github.com/matthewgilbert/mapping/issues/8 # missing weight for return idx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-03'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) rets = pd.Series([0.02, -0.03, 0.06], index=idx) vals = [1, 1] widx = pd.MultiIndex.from_tuples([ (TS('2015-01-02'), 'CLF5'), (TS('2015-01-04'), 'CLF5') ]) weights = pd.DataFrame(vals, index=widx, columns=["CL1"]) with pytest.raises(ValueError): util.calc_rets(rets, weights) # extra instrument idx = pd.MultiIndex.from_tuples([(
TS('2015-01-02')
pandas.Timestamp
from SentinelTime.data_preprocessing import * from SentinelTime.mask_stack import * import rasterio.mask import matplotlib.pyplot as plt import pandas as pd def extract_dates(directory, allowed_orbits): """ Extracts dates from list of preprocessed S-1 GRD files (need to be in standard pyroSAR exported naming scheme!) :param directory: string Path to folder, where files are stored :return: list returns list of acquisition dates of S-1 GRD files """ file_list = extract_files_to_list(path_to_folder=directory, datatype=".tif", path_bool=False) new_file_list = [] for orbit in allowed_orbits: for file in file_list: if str(orbit) in file[len(file) - 8:len(file)]: new_file_list.append(file) date_list = [] for file in file_list: date_list.append(int(file[2:10])) return date_list def extract_time_series(results_dir, shapefile, buffer_size, point_path, allowed_orbits, test): """ Extracts time series information from patches of pixels using points and a buffer size to specify the size of the patch :param shapefile: string Path to point shapefile including name of shapefile :param results_dir: string Path to results directory, where layerstacks are stored and csv files will be stored :param point_path: string Path to point shapefile directory :param buffer_size: int Buffer size specifies the length of the rectangular buffer around the point """ # Import Patches for each class and all 4 layerstacks (VH/VV/Asc/Desc) patches, lon_list, lat_list, ids = create_point_buffer(shapefile, buffer_size=buffer_size) layer_stacks = extract_files_to_list(path_to_folder=results_dir, datatype=".tif", path_bool=True) # Iterate through all layerstacks: for file in layer_stacks: src1 = rio.open(file) patch_mean = [] # Iterate through all patches of current class for patch in patches: pixel_mean = [] out_image, out_transform = rio.mask.mask(src1, [patch], all_touched=1, crop=True, nodata=np.nan) # Calculate Mean for each patch: for pixel in out_image: pixel_mean.append(np.nanmean(pixel)) patch_mean.append(pixel_mean) # Append dates of acquisition to each list (will be stored as float, doesnt matter for processing): if "VH" in file and "Asc" in file: patch_mean.append(extract_dates(results_dir + "VH" + "/" + "Asc" + "/", allowed_orbits)) if "VH" in file and "Desc" in file: patch_mean.append(extract_dates(results_dir + "VH" + "/" + "Desc" + "/", allowed_orbits)) if "VV" in file and "Asc" in file: patch_mean.append(extract_dates(results_dir + "VV" + "/" + "Asc" + "/", allowed_orbits)) if "VV" in file and "Desc" in file: patch_mean.append(extract_dates(results_dir + "VV" + "/" + "Desc" + "/", allowed_orbits)) print(patch_mean) # Rotate array, so csv file will have correct orientation: patch_mean = np.rot90(patch_mean) patch_mean = np.rot90(patch_mean) patch_mean = np.rot90(patch_mean) patch_mean = patch_mean.tolist() src1.close() # for i, date in enumerate(patch_mean): # patch_mean[i][0] = int(patch_mean[i][0]) # print(patch_mean[5][0]) # print(patch_mean) # Create CSV export directory and create header string with length equal to the number of patcher per class: csv_result_dir = results_dir + "CSV/" if not os.path.exists(csv_result_dir): os.mkdir(csv_result_dir) if "VH" in file: pol1 = "VH" vh_head_string = "VH" tmp = "," for i, elem in enumerate(patches): vh_head_string = vh_head_string + str(i) + tmp + pol1 if "VV" in file: pol1 = "VV" vv_head_string = "VV" tmp = "," for i, elem in enumerate(patches): vv_head_string = vv_head_string + str(i) + tmp + pol1 # Export patch means to csv files for each class, polarization and flight direction: if "VH" in file and "Asc" in file: # print(patch_mean) np.savetxt(csv_result_dir + shapefile[len(point_path):len(shapefile) - 4] + "_VH_Asc.csv", patch_mean, delimiter=",", header="date," + vh_head_string[0:len(vh_head_string) - 3], fmt="%f") if "VH" in file and "Desc" in file: np.savetxt(csv_result_dir + shapefile[len(point_path):len(shapefile) - 4] + "_VH_Desc.csv", patch_mean, delimiter=",", header="date," + vh_head_string[0:len(vh_head_string) - 3], fmt="%f") if "VV" in file and "Asc" in file: np.savetxt(csv_result_dir + shapefile[len(point_path):len(shapefile) - 4] + "_VV_Asc.csv", patch_mean, delimiter=",", header="date," + vv_head_string[0:len(vv_head_string) - 3], fmt="%f") if "VV" in file and "Desc" in file: np.savetxt(csv_result_dir + shapefile[len(point_path):len(shapefile) - 4] + "_VV_Desc.csv", patch_mean, delimiter=",", header="date," + vv_head_string[0:len(vv_head_string) - 3], fmt="%f") def import_time_series_csv(path_to_folder, frost_bool): """ Imports csv files from results folder :param frost_bool: :param path_to_folder: string Path to folder, where csv files are stored :return: tuple returns tuple of lists containing the dataframe names and the dataframes itself """ csv_list = extract_files_to_list(path_to_folder, datatype=".csv", path_bool=False) df_name_list = [] df_list = [] for csv in csv_list: df = pd.read_csv(path_to_folder + csv) df = df.rename({"# date": "date"}, axis=1) # Change datatype of date from float to date object: df['date'] = pd.to_datetime(df['date'], format='%Y%m%d') # if frost_bool: # df, precip = import_weather_for_fern(radar_df=df) if frost_bool: df, weather = import_weather_for_fern(radar_df=df, frost_bool=frost_bool) if not frost_bool: weather = import_weather_for_fern(radar_df=df, frost_bool=frost_bool) df_name_list.append(csv[0:len(csv) - 4]) df_list.append(df) return df_name_list, df_list, weather def temporal_statistics(path_to_csv_folder, results_dir, fig_folder, plot_bool, frost_bool): """ Function calculates temporal statistics for all classes, polarizations and flight directions :param fig_folder: :param frost_bool: :param path_to_csv_folder: Path to folder, where csv files are stored :param results_dir: :param plot_bool: boolean If set to True, charts of mean and std.dev. are plotted :return: dict Returns dictionary containing dictionaries with the temporal statistics for all classes, polarizations and flight directions """ import csv from scipy.ndimage.filters import gaussian_filter1d df_name_list, df_list, weather = import_time_series_csv(path_to_csv_folder, frost_bool) statistics_dict = {} # print(df_name_list) # Iterate through all dataframes and compute temporal statistics for i, df in enumerate(df_list): # print(df) # Temporal Mean: df["patches_mean"] = df.mean(axis=1) # print(df_name_list[i]) statistics_dict[df_name_list[i]] = {"Temporal Mean": round(df["patches_mean"].mean(), 3)} statistics_dict[df_name_list[i]]["Temporal Median"] = round(df["patches_mean"].median(), 3) # Temporal Standard Deviation: df["patches_std"] = df.std(axis=1) statistics_dict[df_name_list[i]]["Temporal Stdev."] = round(df["patches_std"].mean(), 3) # Max., Min. and Amplitude: statistics_dict[df_name_list[i]]["Temporal Max."] = round(df["patches_mean"].max(), 3) statistics_dict[df_name_list[i]]["Temporal Min."] = round(df["patches_mean"].min(), 3) statistics_dict[df_name_list[i]]["Temporal Amp."] = round(df["patches_mean"].max() - df["patches_mean"].min(), 3) print(statistics_dict) dataframe_list1 = [] dataframe_list2 = [] dataframe_list3 = [] dataframe_list4 = [] tmp = 0 # Iterate through a quarter of the csv files to account for all four possible options of VH/VV/Asc/Desc for j in range(0, int(len(df_name_list) / 4)): # Iterate through Mean and Std.Dev.: for k, elem in enumerate(["patches_mean"]): # Plot mean of all patches over time if boolean is TRUE if plot_bool: plt.figure(figsize=(16, 9)) plt.rcParams.update({'font.size': 14}) # TODO: make weather data stuff optional!!!! def make_patch_spines_invisible(ax): ax.set_frame_on(True) ax.patch.set_visible(False) for sp in ax.spines.values(): sp.set_visible(False) fig, ax1 = plt.subplots() fig.subplots_adjust(right=0.75) fig.set_figheight(9) fig.set_figwidth(15) ax2 = ax1.twinx() ax3 = ax1.twinx() ax3.spines["right"].set_position(("axes", 1.1)) make_patch_spines_invisible(ax3) ax3.spines["right"].set_visible(True) # plt.figure(figsize=(16, 9)) # plt.rcParams.update({'font.size': 14}) if k == 0: # ax1.figure(figsize=(16, 9)) plt.title('Mean of all Patches for class: ' + str(df_name_list[tmp][0:17])) if k == 1: # ax1.figure(figsize=(16, 9)) plt.title('Std.Dev. of all Patches for class: ' + str(df_name_list[tmp][0:17])) ax1.plot('date', elem, data=df_list[tmp], marker='', color='k', linewidth=0.7, label="") ax1.plot('date', elem, data=df_list[tmp + 1], marker='', color='forestgreen', linewidth=0.7, label="") # print(df_name_list[tmp + 3]) # print(df_name_list[tmp + 2]) ax1.plot('date', elem, data=df_list[tmp + 2], marker='', color='b', linewidth=0.7, label="") ax1.plot('date', elem, data=df_list[tmp + 3], marker='', color='firebrick', linewidth=0.7, label="") # filter time series using gaussian filter: arr1 = gaussian_filter1d(df_list[tmp]["patches_mean"].to_numpy(), sigma=2) arr2 = gaussian_filter1d(df_list[tmp + 1]["patches_mean"].to_numpy(), sigma=2) arr3 = gaussian_filter1d(df_list[tmp + 2]["patches_mean"].to_numpy(), sigma=2) arr4 = gaussian_filter1d(df_list[tmp + 3]["patches_mean"].to_numpy(), sigma=2) # append filtered datasets to lists for further use: dataframe_list1.append(arr1) dataframe_list2.append(arr2) dataframe_list3.append(arr3) dataframe_list4.append(arr4) # Plot filtered mean of all patches over time if boolean is TRUE if plot_bool: # ax1.plot(df_list[tmp]['date'], arr1, marker='', color='k', linewidth=3, label=df_name_list[tmp][18:len(df_name_list[tmp])]) ax1.plot(df_list[tmp + 1]['date'], arr2, marker='', color='forestgreen', linewidth=3, label=df_name_list[tmp + 1][18:len(df_name_list[tmp + 1])]) ax1.plot(df_list[tmp + 2]['date'], arr3, marker='', color='b', linewidth=3, label=df_name_list[tmp + 2][18:len(df_name_list[tmp + 2])]) ax1.plot(df_list[tmp + 3]['date'], arr4, marker='', color='firebrick', linewidth=3, label=df_name_list[tmp + 3][18:len(df_name_list[tmp + 3])]) # TODO: make weather data stuff optional!!!! print(df_name_list[tmp + 3][18:len(df_name_list[tmp + 3])]) # plt.xlabel("Date") ax1.set_xlabel('Date') ax1.set_ylabel('Backscatter (dB)') # plt.ylabel("Backscatter (dB)") ax1.legend(loc='upper center', bbox_to_anchor=(0.5, 1.005), ncol=4, fancybox=True, shadow=True) plt.ylim((-18, -7)) print(weather) ax2.plot(weather['date'], weather['precip'], color="silver") # plt.ylabel("Precipitation (mm)") ax2.set_ylabel('Precipitation (mm)', color="silver") # plt.ylim((-10, 50)) ax2.set_ylim(-10, 110) ax3.plot(weather['date'], weather['temp'], color="orange") # plt.ylabel("Precipitation (mm)") ax3.set_ylabel('Avg_Temp (°C)', color="orange") # plt.ylim((-10, 110)) ax3.set_ylim(-10, 110) plt.savefig(fig_folder + "Mean_for_Class_test" + str(df_name_list[tmp][0:17]) + ".png", dpi=300) plt.show() # Increase tmp by 4 to get to the next class tmp = tmp + 4 # Export temporal statistics to csv file: with open(results_dir + 'Temp_Statistics.csv', 'w') as csv_file: writer = csv.writer(csv_file) for key, value in statistics_dict.items(): # print(value) writer.writerow([key, value]) return dataframe_list1, dataframe_list2, dataframe_list3, dataframe_list4, df_list def ratio_calc(path_to_folder, plot_bool, frost_bool): """ This function calculates the VH/VV ratio for all classes and flight directions and allows the user to plot the data :param frost_bool: XXXXXXXXXXXXXXXXXXXXXXXX :param path_to_folder: string Path to folder, where csv files are stored :param plot_bool: boolean If set to TRUE, the plots are calculated and shown :return: list Returns a list of dataframes containing VH/VV ratios for all classes and flight directions """
pd.set_option('display.max_columns', None)
pandas.set_option
import pandas as __pd import datetime as __dt from dateutil import relativedelta as __rd from multiprocessing import Pool as __Pool import multiprocessing as __mp import requests as __requests from seffaflik.__ortak.__araclar import make_requests as __make_requests from seffaflik.__ortak import __dogrulama as __dogrulama __first_part_url = "production/" def santraller(tarih=__dt.datetime.now().strftime("%Y-%m-%d")): """ İlgili tarihte EPİAŞ sistemine kayıtlı YEKDEM santral bilgilerini vermektedir. Parametre ---------- tarih : %YYYY-%AA-%GG formatında tarih (Varsayılan: bugün) Geri Dönüş Değeri ----------------- Santral Bilgileri(Id, Adı, EIC Kodu, Kısa Adı) """ if __dogrulama.__tarih_dogrulama(tarih): try: particular_url = __first_part_url + "renewable-sm-licensed-power-plant-list?period=" + tarih json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["powerPlantList"]) df.rename(index=str, columns={"id": "Id", "name": "Adı", "eic": "EIC Kodu", "shortName": "Kısa Adı"}, inplace=True) df = df[["Id", "Adı", "EIC Kodu", "Kısa Adı"]] except (KeyError, TypeError): return __pd.DataFrame() else: return df def kurulu_guc(baslangic_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), bitis_tarihi=__dt.datetime.today().strftime("%Y-%m-%d")): """ İlgili tarih aralığına tekabül eden aylar için EPİAŞ sistemine kayıtlı YEKDEM santrallerin kaynak bazlı toplam kurulu güç bilgisini vermektedir. Parametreler ------------ baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi (Varsayılan: bugün) bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi (Varsayılan: bugün) Geri Dönüş Değeri ----------------- Kurulu Güç Bilgisi (Tarih, Kurulu Güç) """ if __dogrulama.__baslangic_bitis_tarih_dogrulama(baslangic_tarihi, bitis_tarihi): ilk = __dt.datetime.strptime(baslangic_tarihi[:7], '%Y-%m') son = __dt.datetime.strptime(bitis_tarihi[:7], '%Y-%m') date_list = [] while ilk <= son and ilk <= __dt.datetime.today(): date_list.append(ilk.strftime("%Y-%m-%d")) ilk = ilk + __rd.relativedelta(months=+1) with __Pool(__mp.cpu_count()) as p: df_list = p.map(__yekdem_kurulu_guc, date_list) return __pd.concat(df_list, sort=False) def lisansli_uevm(baslangic_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), bitis_tarihi=__dt.datetime.today().strftime("%Y-%m-%d")): """ İlgili tarih aralığı için saatlik YEKDEM kapsamındaki lisanslı santrallerin kaynak bazında uzlaştırmaya esas veriş miktarı (UEVM) bilgisini vermektedir. Parametreler ------------ baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi (Varsayılan: bugün) bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi (Varsayılan: bugün) Geri Dönüş Değeri ----------------- Saatlik YEKDEM Lisanslı UEVM (MWh) """ if __dogrulama.__baslangic_bitis_tarih_dogrulama(baslangic_tarihi, bitis_tarihi): try: particular_url = \ __first_part_url + "renewable-sm-licensed-injection-quantity" + "?startDate=" + baslangic_tarihi + \ "&endDate=" + bitis_tarihi json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["renewableSMProductionList"]) df["Saat"] = df["date"].apply(lambda h: int(h[11:13])) df["Tarih"] = __pd.to_datetime(df["date"].apply(lambda d: d[:10])) df.rename(index=str, columns={"canalType": "Kanal Tipi", "riverType": "Nehir Tipi", "biogas": "Biyogaz", "biomass": "Biyokütle", "landfillGas": "Çöp Gazı", "sun": "Güneş", "geothermal": "Jeotermal", "reservoir": "Rezervuarlı", "wind": "Rüzgar", "total": "Toplam", "others": "Diğer"}, inplace=True) df = df[ ["Tarih", "Saat", "Rüzgar", "Jeotermal", "Rezervuarlı", "Kanal Tipi", "Nehir Tipi", "Çöp Gazı", "Biyogaz", "Güneş", "Biyokütle", "Diğer", "Toplam"]] except (KeyError, TypeError): return __pd.DataFrame() else: return df def lisanssiz_uevm(baslangic_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), bitis_tarihi=__dt.datetime.today().strftime("%Y-%m-%d")): """ İlgili tarih aralığı için saatlik YEKDEM kapsamındaki lisanssiz santrallerin kaynak bazında uzlaştırmaya esas veriş miktarı (UEVM) bilgisini vermektedir. Parametreler ------------ baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi (Varsayılan: bugün) bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi (Varsayılan: bugün) Geri Dönüş Değeri ----------------- Saatlik YEKDEM Lisanssiz UEVM (MWh) """ if __dogrulama.__baslangic_bitis_tarih_dogrulama(baslangic_tarihi, bitis_tarihi): try: particular_url = \ __first_part_url + "renewable-unlicenced-generation-amount" + "?startDate=" + baslangic_tarihi + \ "&endDate=" + bitis_tarihi json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["renewableUnlicencedGenerationAmountList"]) df["Saat"] = df["date"].apply(lambda h: int(h[11:13])) df["Tarih"] = __pd.to_datetime(df["date"].apply(lambda d: d[:10])) df.rename(index=str, columns={"canalType": "Kanal Tipi", "riverType": "Nehir Tipi", "biogas": "Biyogaz", "biomass": "Biyokütle", "lfg": "Çöp Gazı", "sun": "Güneş", "geothermal": "Jeotermal", "reservoir": "Rezervuarlı", "wind": "Rüzgar", "total": "Toplam", "others": "Diğer"}, inplace=True) df = df[ ["Tarih", "Saat", "Rüzgar", "Kanal Tipi", "Biyogaz", "Güneş", "Biyokütle", "Diğer", "Toplam"]] except (KeyError, TypeError): return __pd.DataFrame() else: return df def uevm(baslangic_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), bitis_tarihi=__dt.datetime.today().strftime("%Y-%m-%d")): """ İlgili tarih aralığı için YEKDEM kapsamındaki santrallerin kaynak bazında uzlaştırmaya esas veriş miktarı (UEVM) bilgisini vermektedir. Parametreler ------------ baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi (Varsayılan: bugün) bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi (Varsayılan: bugün) Geri Dönüş Değeri ----------------- Saatlik YEKDEM UEVM (MWh) """ if __dogrulama.__baslangic_bitis_tarih_dogrulama(baslangic_tarihi, bitis_tarihi): try: particular_url = \ __first_part_url + "renewable-sm-production" + "?startDate=" + baslangic_tarihi + \ "&endDate=" + bitis_tarihi json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["renewableSMProductionList"]) df["Saat"] = df["date"].apply(lambda h: int(h[11:13])) df["Tarih"] = __pd.to_datetime(df["date"].apply(lambda d: d[:10])) df.rename(index=str, columns={"canalType": "Kanal Tipi", "riverType": "Nehir Tipi", "biogas": "Biyogaz", "biomass": "Biyokütle", "landfillGas": "Çöp Gazı", "geothermal": "Jeotermal", "dammedHydroWithReservoir": "Rezervuarlı", "wind": "Rüzgar", "total": "Toplam", "others": "Diğer"}, inplace=True) df = df[["Tarih", "Saat", "Rüzgar", "Jeotermal", "Rezervuarlı", "Kanal Tipi", "Nehir Tipi", "Çöp Gazı", "Biyogaz", "Biyokütle", "Diğer", "Toplam"]] except (KeyError, TypeError): return __pd.DataFrame() else: return df def lisansli_gerceklesen(baslangic_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), bitis_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), santral_id=""): """ İlgili tarih aralığı için YEKDEM kapsamındaki lisanslı santrallerin toplam gerçek zamanlı üretim bilgisini vermektedir. Not: "santral_id" değeri girildiği taktirde santrale ait gerçek zamanlı üretim bilgisini vermektedir. Girilmediği taktirde toplam gerçek zamanlı üretim bilgisini vermektedir. Parametreler ------------ baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi (Varsayılan: bugün) bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi (Varsayılan: bugün) santral_id : metin yada tam sayı formatında santral id (Varsayılan: "") Geri Dönüş Değeri ----------------- Gerçek Zamanlı Üretim("Tarih", "Saat", "Rüzgar", "Jeotermal", "Rezervuarlı", "Kanal Tipi", "Nehir Tipi", "Çöp Gazı", "Biyogaz", "Güneş", "Biyokütle", "Diğer", "Toplam") """ if __dogrulama.__baslangic_bitis_tarih_id_dogrulama(baslangic_tarihi, bitis_tarihi, santral_id): if santral_id == "": return __gerceklesen(baslangic_tarihi, bitis_tarihi) else: return __santral_bazli_gerceklesen(baslangic_tarihi, bitis_tarihi, santral_id) def birim_maliyet(baslangic_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), bitis_tarihi=__dt.datetime.today().strftime("%Y-%m-%d")): """ İlgili tarih aralığı için YEKDEM birim maliyet bilgisini vermektedir. Parametreler ------------ baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi (Varsayılan: bugün) bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi (Varsayılan: bugün) Geri Dönüş Değeri ----------------- Dönemlik YEKDEM Birim Maliyet (₺/MWh) """ if __dogrulama.__baslangic_bitis_tarih_dogrulama(baslangic_tarihi, bitis_tarihi): try: particular_url = \ __first_part_url + "renewable-sm-unit-cost" + "?startDate=" + baslangic_tarihi + "&endDate=" + \ bitis_tarihi json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["renewableSMUnitCostList"]) df["Dönem"] = df["id"].apply( lambda x: str(__pd.to_datetime(x["donem"][:10]).month_name(locale='tr_TR.UTF-8')) + "-" + str( __pd.to_datetime(x["donem"][:10]).year)) df["Versiyon"] = df["id"].apply( lambda x: str(__pd.to_datetime(x["versiyon"][:10]).month_name(locale='tr_TR.UTF-8')) + "-" + str( __pd.to_datetime(x["versiyon"][:10]).year)) df.rename(index=str, columns={"unitCost": "Birim Maliyet (TL)"}, inplace=True) df = df[["Dönem", "Versiyon", "Birim Maliyet (TL)"]] except (KeyError, TypeError): return __pd.DataFrame() else: return df def donemsel_maliyet(baslangic_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), bitis_tarihi=__dt.datetime.today().strftime("%Y-%m-%d")): """ İlgili tarih aralığı için dönemlik YEKDEM maliyetleri bilgisini vermektedir. Parametreler ------------ baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi (Varsayılan: bugün) bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi (Varsayılan: bugün) Geri Dönüş Değeri ----------------- Dönemsel YEKDEM Maliyeti (MWh) """ if __dogrulama.__baslangic_bitis_tarih_dogrulama(baslangic_tarihi, bitis_tarihi): try: particular_url = \ __first_part_url + "renewables-support" + "?startDate=" + baslangic_tarihi + \ "&endDate=" + bitis_tarihi json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["renewablesSupports"]) df["Dönem"] = df["period"].apply( lambda x: str(__pd.to_datetime(x[:10]).month_name(locale='tr_TR.UTF-8')) + "-" + str( __pd.to_datetime(x[:10]).year)) df.rename(index=str, columns={"unitCost": "Birim Maliyet (TL)", "licenseExemptCost": "Lisanssız Toplam Maliyet (TL)", "renewablesTotalCost": "Toplam Maliyet (TL)", "reneablesCost": "Lisanlı Toplam Maliyet (TL)", "portfolioIncome": "Toplam Gelir (TL)"}, inplace=True) df = df[ ["Dönem", "Birim Maliyet (TL)", "Lisanssız Toplam Maliyet (TL)", "Lisanlı Toplam Maliyet (TL)", "Toplam Maliyet (TL)", "Toplam Gelir (TL)"]] except (KeyError, TypeError): return __pd.DataFrame() else: return df def res_uretim_tahmini(): """ Türkiye geneli izlenebilen RES'lerin ertesi gün için toplam güç üretim tahmini bilgisini vermektedir. Not: İlgili veri ritm.gov.tr üzerinden temin edilmektedir. Parametreler ------------ Geri Dönüş Değeri ----------------- RES Üretim Tahmini (MWh) """ r = __requests.get("http://www.ritm.gov.tr/amline/data_file_ritm.txt") df = __pd.DataFrame(r.text.split("\n")[1:][:-1]) df = __pd.DataFrame(df[0].str.split(",").tolist(), columns=["Tarih", "Q5", "Q25", "Q75", "Q95", "Tahmin", "Üretim"]) df["Saat"] = df["Tarih"].apply(lambda x: x.split(" ")[1]) df["Tarih"] = df["Tarih"].apply(lambda x: __pd.to_datetime(x.split(" ")[0], format="%d.%m.%Y")) df = df[["Tarih", "Saat", "Q5", "Q25", "Q75", "Q95", "Tahmin", "Üretim"]] return df def __gerceklesen(baslangic_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), bitis_tarihi=__dt.datetime.today().strftime("%Y-%m-%d")): """ İlgili tarih aralığı için saatlik YEKDEM kapsamındaki lisanslı santrallerin kaynak bazında gerçek zamanlı üretim bilgisini vermektedir. Parametreler ------------ baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi (Varsayılan: bugün) bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi (Varsayılan: bugün) Geri Dönüş Değeri ----------------- Saatlik YEKDEM Lisanslı UEVM (MWh) """ if __dogrulama.__baslangic_bitis_tarih_dogrulama(baslangic_tarihi, bitis_tarihi): try: particular_url = \ __first_part_url + "renewable-sm-licensed-real-time-generation" + "?startDate=" + baslangic_tarihi + \ "&endDate=" + bitis_tarihi json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["renewableLicencedGenerationAmount"]) df["Saat"] = df["date"].apply(lambda h: int(h[11:13])) df["Tarih"] = __pd.to_datetime(df["date"].apply(lambda d: d[:10])) df.rename(index=str, columns={"canalType": "Kanal Tipi", "riverType": "Nehir Tipi", "biogas": "Biyogaz", "biomass": "Biyokütle", "lfg": "Çöp Gazı", "sun": "Güneş", "geothermal": "Jeotermal", "reservoir": "Rezervuarlı", "wind": "Rüzgar", "total": "Toplam", "others": "Diğer"}, inplace=True) df = df[["Tarih", "Saat", "Rüzgar", "Jeotermal", "Rezervuarlı", "Kanal Tipi", "Nehir Tipi", "Çöp Gazı", "Biyogaz", "Güneş", "Biyokütle", "Diğer", "Toplam"]] except (KeyError, TypeError): return __pd.DataFrame() else: return df def __santral_bazli_gerceklesen(baslangic_tarihi, bitis_tarihi, santral_id): """ İlgili tarih aralığı ve YEKDEM kapsamındaki lisanslı santral için gerçek zamanlı üretim bilgisini vermektedir. Parametreler ------------ baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi santral_id : metin yada tam sayı formatında santral id Geri Dönüş Değeri ----------------- Santral Bazlı Gerçek Zamanlı Üretim("Tarih", "Saat", "Doğalgaz", "Barajlı", "Linyit", "Akarsu", "İthal Kömür", "Rüzgar", "Güneş", "Fuel Oil", "Jeo Termal", "Asfaltit Kömür", "Taş Kömür", "Biokütle", "Nafta", "LNG", "Uluslararası", "Toplam") """ try: particular_url = __first_part_url + "renewable-sm-licensed-real-time-generation_with_powerplant" + \ "?startDate=" + baslangic_tarihi + "&endDate=" + bitis_tarihi + "&powerPlantId=" + \ str(santral_id) json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["renewableLicencedGenerationAmount"]) df["Saat"] = df["date"].apply(lambda h: int(h[11:13])) df["Tarih"] = __pd.to_datetime(df["date"].apply(lambda d: d[:10])) df.rename(index=str, columns={"canalType": "Kanal Tipi", "riverType": "Nehir Tipi", "biogas": "Biyogaz", "biomass": "Biyokütle", "lfg": "Çöp Gazı", "sun": "Güneş", "geothermal": "Jeotermal", "reservoir": "Rezervuarlı", "wind": "Rüzgar", "total": "Toplam", "others": "Diğer"}, inplace=True) df = df[ ["Tarih", "Saat", "Rüzgar", "Jeotermal", "Rezervuarlı", "Kanal Tipi", "Nehir Tipi", "Çöp Gazı", "Biyogaz", "Güneş", "Biyokütle", "Diğer", "Toplam"]] except (KeyError, TypeError): return __pd.DataFrame() else: return df def __yekdem_kurulu_guc(tarih): """ İlgili tarih için EPİAŞ sistemine kayıtlı yekdem kapsamındaki santrallerin kaynak bazlı toplam kurulu güç bilgisini vermektedir. Parametre ---------- tarih : %YYYY-%AA-%GG formatında tarih (Varsayılan: bugün) Geri Dönüş Değeri ----------------- Kurulu Güç Bilgisi (Tarih, Kurulu Güç) """ try: particular_url = __first_part_url + "installed-capacity-of-renewable?period=" + tarih json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["installedCapacityOfRenewableList"]) columns = df["capacityType"].values df = df[["capacity"]].transpose() df.set_axis(columns, axis=1, inplace=True) df.reset_index(drop=True, inplace=True) df.insert(loc=0, column="Tarih", value=
__pd.to_datetime(tarih)
pandas.to_datetime
import numpy as np from ..util.math import range_step from ..util.functions import composer from pandas import Series _distribution_samples = { 'float': { 'normal': lambda **kw: composer( lambda **kw: np.random.normal(kw['mean'], kw['std'], kw['size']), **kw ), 'uniform': lambda **kw: composer( lambda **kw: np.random.uniform(kw['min'], kw['max'], kw['size']), **kw ), 'range': lambda **kw: composer( lambda **kw: np.arange(kw['start'], kw['end'], range_step(kw['start'], kw['end'], kw['size'])), lambda f, **kw: f.astype(float)[:kw['size']], **kw ) }, 'integer': { 'uniform': lambda **kw: composer( lambda **kw: np.random.randint(kw['min'], kw['max'], kw['size']), **kw ), 'binomial': lambda **kw: composer( lambda **kw: np.random.binomial(kw['n'], kw['p'], kw['size']), **kw ), 'range': lambda **kw: composer( lambda **kw: np.arange(kw['start'], kw['end'], range_step(kw['start'], kw['end'], kw['size'])), lambda f, **kw: f.astype(int)[:kw['size']], **kw ) } } TYPES = { 'float', 'integer' } DISTRIBUTIONS = { 'normal': { 'mean', 'std' }, 'uniform': { 'min', 'max' }, 'binomial' : { 'n', 'p' }, 'range': { 'start', 'end' } } def base_props(dtype: str, size: int, **props): distr = props.get('distr') or 'uniform' if distr not in {'uniform', 'range'}: return props bound_labels = { 'uniform': { 'low': 'min', 'high': 'max' }, 'range': { 'low': 'start', 'high': 'end' } } low = props.get('min') if dtype == 'normal' else props.get('start') high = props.get('max') if dtype == 'normal' else props.get('end') if not low and high: low = high - size elif not high and low: high = low + size else: low = low or 0 high = high or size return { **props, **{ 'distr': distr, bound_labels[distr]['low']: low, bound_labels[distr]['high']: high } } def get_sample(type_: str, size: int, **props): size = size or props['size'] props = base_props(type_, size, **props) distr = props['distr'] nums = _distribution_samples[type_][distr](**{**props, 'size': size}) if distr == 'uniform' and props.get('round'): np.around(nums, props['round']) return
Series(nums)
pandas.Series
#!python3 import argparse import pandas as pd import numpy as np from scipy.optimize import brentq from plot_module import * if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-o', '--output', default="theoretical_eq", type=str, dest="output") parser.add_argument('--exon_size', default=300, type=int, dest="n") parser.add_argument('--population_size', default=10000, type=float, dest="population_size") parser.add_argument('--alpha', default=-118, type=float, dest="alpha") parser.add_argument('--gamma', default=1.0, type=float, dest="gamma") parser.add_argument('--beta', default=1.686, type=float, dest="beta") parser.add_argument('--nbr_states', default=20, type=int, dest="nbr_states") args, unknown = parser.parse_known_args() dict_df = dict() def delta_g(x, alpha): return alpha + args.gamma * args.n * x def sel_coeff(x, alpha): edg = np.exp(args.beta * delta_g(x, alpha)) return args.gamma * args.beta * edg / (1 + edg) def scaled_sel_coeff(x, alpha): return 4 * args.population_size * sel_coeff(x, alpha) def mut_bias(x): if x == 0.: return float("inf") elif x == 1.0: return -float("inf") return np.log((1 - x) / x) + np.log(args.nbr_states - 1) def self_consistent_eq(x, alpha): return mut_bias(x) - scaled_sel_coeff(x, alpha) x_eq = brentq(lambda x: self_consistent_eq(x, args.alpha), 0.0, 1.0, full_output=True)[0] assert (x_eq <= 0.5) s = sel_coeff(x_eq, args.alpha) S = 4 * args.population_size * s assert ((S - mut_bias(x_eq)) < 1e-5) x_min, x_max = 0, 0.5 y_min, y_max = 0, S * 2 x_range = np.linspace(x_min, x_max, 200) label = "$\\alpha={0:.2f}, \\gamma={1:.2f}, n={2}, Ne={3:.2f}$" plt.figure(figsize=(1920 / my_dpi, 1080 / my_dpi), dpi=my_dpi) plt.plot(x_range, [mut_bias(i) for i in x_range], linewidth=3, label="$ln[(1-x)/x]$") line, = plt.plot(x_range, [scaled_sel_coeff(i, args.alpha) for i in x_range], linewidth=3, label="S: " + label.format(args.alpha, args.gamma, args.n, args.population_size)) plt.plot(x_range, [10 * scaled_sel_coeff(i, args.alpha) for i in x_range], linestyle="--", color=line.get_color(), linewidth=3, label="S: " + label.format(args.alpha, args.gamma, args.n, 10 * args.population_size)) dict_df["x"] = [x_eq] dict_df["ΔG"] = [delta_g(x_eq, args.alpha)] dict_df["s"] = [s] dict_df["S"] = [S] dict_df["dNdS"] = [x_eq * S / (1 - np.exp(-S)) + (1 - x_eq) * -S / (1 - np.exp(S))] args.gamma *= 0.1 args.alpha = brentq(lambda a: s - sel_coeff(x_eq, a), 10 * args.alpha, 0.1 * args.alpha, full_output=True)[0] line, = plt.plot(x_range, [scaled_sel_coeff(i, args.alpha) for i in x_range], linewidth=3, label="S: " + label.format(args.alpha, args.gamma, args.n, args.population_size)) plt.plot(x_range, [10 * scaled_sel_coeff(i, args.alpha) for i in x_range], linestyle="--", color=line.get_color(), linewidth=3, label="S: " + label.format(args.alpha, args.gamma, args.n, 10 * args.population_size)) plt.legend(fontsize=legend_size) plt.xlim((x_min, x_max)) plt.ylim((y_min, y_max)) plt.tight_layout() plt.savefig("{0}.pdf".format(args.output), format="pdf", dpi=my_dpi)
pd.DataFrame(dict_df)
pandas.DataFrame
import numpy as np import pandas as pd import pickle as pk import glob import os county_list = os.listdir('data/set_features') print(county_list) to_remove = [] for id, file_name_ in enumerate(county_list[0:1]): print(id) s = pd.read_parquet('data/set_features/' + file_name_, engine='pyarrow') # for i in s.index: # print(s.loc[i].tolist()) nan_list = s.columns[s.isna().any()].tolist() str_list = [] for c in s.columns: # if s[c].dtype == object: # print('damn') # print(c) # print(s[c]) if isinstance(s.iloc[0][c], str): str_list.append(c) non_numer_list = [] for c in s.columns: if not
pd.to_numeric(s[c], errors='coerce')
pandas.to_numeric
# coding: utf-8 # In[ ]: # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns; sns.set(style="ticks", color_codes=True) from sklearn.model_selection import train_test_split from sklearn.ensemble import ExtraTreesRegressor, RandomForestRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import SVR from sklearn.feature_selection import RFE from sklearn.neural_network import MLPRegressor from sklearn.metrics import mean_absolute_error from sklearn.model_selection import KFold import matplotlib.pyplot as plt # Input data files are available in the "../input/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory import os print(os.listdir("../input")) # Any results you write to the current directory are saved as output. # In[ ]: dataset = pd.read_csv("../input/train.csv", names=['Store','Dept','Date','weeklySales','isHoliday'],sep=',', header=0) features = pd.read_csv("../input/features.csv",sep=',', header=0, names=['Store','Date','Temperature','Fuel_Price','MarkDown1','MarkDown2','MarkDown3','MarkDown4', 'MarkDown5','CPI','Unemployment','IsHoliday']).drop(columns=['IsHoliday']) stores = pd.read_csv("../input/stores.csv", names=['Store','Type','Size'],sep=',', header=0) dataset = dataset.merge(stores, how='left').merge(features, how='left') # dataset["nextWeekHoliday"] = dataset["isHoliday"].shift(-1).fillna(False) # dataset["next2WeekHoliday"] = dataset["isHoliday"].shift(-2).fillna(False) dataset # # Data exploration # In[ ]: def scatter(dataset, column): plt.figure() plt.scatter(dataset[column] , dataset['weeklySales']) plt.ylabel('weeklySales') plt.xlabel(column) # In[ ]: scatter(dataset, 'Fuel_Price') scatter(dataset, 'Size') scatter(dataset, 'CPI') scatter(dataset, 'Type') scatter(dataset, 'isHoliday') scatter(dataset, 'Unemployment') scatter(dataset, 'Temperature') scatter(dataset, 'Store') scatter(dataset, 'Dept') # In[ ]: fig = plt.figure(figsize=(18, 14)) corr = dataset.corr() c = plt.pcolor(corr) plt.yticks(np.arange(0.5, len(corr.index), 1), corr.index) plt.xticks(np.arange(0.5, len(corr.columns), 1), corr.columns) fig.colorbar(c) # In[ ]: sns.pairplot(dataset, vars=['weeklySales', 'Fuel_Price', 'Size', 'CPI', 'Dept', 'Temperature', 'Unemployment']) # In[ ]: sns.pairplot(dataset.fillna(0), vars=['weeklySales', 'MarkDown1', 'MarkDown2', 'MarkDown3', 'MarkDown4', 'MarkDown5']) # In[ ]: for name, group in dataset.groupby(["Store", "Dept"]): plt.title(name) plt.scatter(range(len(group)), group["weeklySales"]) plt.show() break # # Data manipulation # In[ ]: dataset = pd.get_dummies(dataset, columns=["Type"]) dataset[['MarkDown1','MarkDown2','MarkDown3','MarkDown4', 'MarkDown5']] = dataset[['MarkDown1','MarkDown2','MarkDown3','MarkDown4','MarkDown5']].fillna(0) dataset['Month'] = pd.to_datetime(dataset['Date']).dt.month dataset = dataset.drop(columns=["Date", "CPI", "Fuel_Price", 'Unemployment', 'MarkDown3']) dataset # # Algorithms # In[ ]: def knn(): knn = KNeighborsRegressor(n_neighbors=10) return knn def extraTreesRegressor(): clf = ExtraTreesRegressor(n_estimators=100,max_features='auto', verbose=1, n_jobs=1) return clf def randomForestRegressor(): clf = RandomForestRegressor(n_estimators=100,max_features='log2', verbose=1) return clf def svm(): clf = SVR(kernel='rbf', gamma='auto') return clf def nn(): clf = MLPRegressor(hidden_layer_sizes=(10,), activation='relu', verbose=3) return clf def predict_(m, test_x): return pd.Series(m.predict(test_x)) def model_(): # return knn() return extraTreesRegressor() # return svm() # return nn() # return randomForestRegressor() def train_(train_x, train_y): m = model_() m.fit(train_x, train_y) return m def train_and_predict(train_x, train_y, test_x): m = train_(train_x, train_y) return predict_(m, test_x), m # # In[ ]: def calculate_error(test_y, predicted, weights): return mean_absolute_error(test_y, predicted, sample_weight=weights) # # K-Fold Cross Validation # In[ ]: kf = KFold(n_splits=5) splited = [] # dataset2 = dataset.copy() for name, group in dataset.groupby(["Store", "Dept"]): group = group.reset_index(drop=True) trains_x = [] trains_y = [] tests_x = [] tests_y = [] if group.shape[0] <= 5: f = np.array(range(5)) np.random.shuffle(f) group['fold'] = f[:group.shape[0]] continue fold = 0 for train_index, test_index in kf.split(group): group.loc[test_index, 'fold'] = fold fold += 1 splited.append(group) splited = pd.concat(splited).reset_index(drop=True) # In[ ]: splited # In[ ]: best_model = None error_cv = 0 best_error = np.iinfo(np.int32).max for fold in range(5): dataset_train = splited.loc[splited['fold'] != fold] dataset_test = splited.loc[splited['fold'] == fold] train_y = dataset_train['weeklySales'] train_x = dataset_train.drop(columns=['weeklySales', 'fold']) test_y = dataset_test['weeklySales'] test_x = dataset_test.drop(columns=['weeklySales', 'fold']) print(dataset_train.shape, dataset_test.shape) predicted, model = train_and_predict(train_x, train_y, test_x) weights = test_x['isHoliday'].replace(True, 5).replace(False, 1) error = calculate_error(test_y, predicted, weights) error_cv += error print(fold, error) if error < best_error: print('Find best model') best_error = error best_model = model error_cv /= 5 # In[ ]: error_cv # In[ ]: best_error # # Test part # In[ ]: dataset_test =
pd.read_csv("../input/test.csv", names=['Store','Dept','Date','isHoliday'],sep=',', header=0)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[25]: # import tabula import pandas as pd import requests from urllib.request import urlopen from lxml import etree from collections import OrderedDict from datetime import datetime from alphacast import Alphacast from dotenv import dotenv_values API_KEY = dotenv_values(".env").get("API_KEY") alphacast = Alphacast(API_KEY) # In[26]: # In[27]: data_url = "http://www.trabajo.gob.ar/estadisticas/eil/" response = requests.get(data_url) html = response.content htmlparser = etree.HTMLParser() tree = etree.fromstring(html, htmlparser) file_urls = tree.xpath("//div[@class='row row-flex']/div[3]/a/@href") file_url = "http://www.trabajo.gob.ar" + file_urls[0] file_url # In[28]: print("reading file") df =
pd.read_excel(file_url, sheet_name="Total aglos 1.1", skiprows=3,header=[0,1])
pandas.read_excel
print('Chapter 03: Scraping Extraction') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('setup.py') # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ BASE_DIR = ".." def figNum(): figNum.counter += 1 return "{0:02d}".format(figNum.counter) figNum.counter = 0 FIGPREFIX = 'ch03_fig' print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('settings.py') # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # suppress warnings import warnings; warnings.filterwarnings('ignore'); # common imports import pandas as pd import numpy as np import math import re import glob import os import sys import json import random import pprint as pp import textwrap import sqlite3 import logging import spacy import nltk from tqdm.auto import tqdm # register `pandas.progress_apply` and `pandas.Series.map_apply` with `tqdm` tqdm.pandas() # pandas display options # https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html#available-options pd.options.display.max_columns = 30 # default 20 pd.options.display.max_rows = 60 # default 60 pd.options.display.float_format = '{:.2f}'.format # pd.options.display.precision = 2 pd.options.display.max_colwidth = 200 # default 50; -1 = all # otherwise text between $ signs will be interpreted as formula and printed in italic pd.set_option('display.html.use_mathjax', False) # np.set_printoptions(edgeitems=3) # default 3 import matplotlib from matplotlib import pyplot as plt plot_params = {'figure.figsize': (8, 6), 'axes.labelsize': 'small', 'axes.titlesize': 'small', 'xtick.labelsize': 'small', 'ytick.labelsize':'small', 'figure.dpi': 100} # adjust matplotlib defaults matplotlib.rcParams.update(plot_params) import seaborn as sns sns.set_style("darkgrid") print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Blueprint: download and interpret robots.txt') import urllib.robotparser rp = urllib.robotparser.RobotFileParser() rp.set_url("https://www.reuters.com/robots.txt") rp.read() rp.can_fetch("*", "https://www.reuters.com/sitemap.xml") rp.can_fetch("*", "https://www.reuters.com/finance/stocks/option") print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Blueprint: finding URLs from sitemap.xml') # might need to install xmltodict import xmltodict import requests sitemap = xmltodict.parse(requests.get('https://www.reuters.com/sitemap_news_index1.xml').text) # just see some of the URLs urls = [url["loc"] for url in sitemap["urlset"]["url"]] print("\n".join(urls[0:3])) print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Blueprint: finding URLs from RSS') # might need to install feedparser import feedparser feed = feedparser.parse('http://web.archive.org/web/20200613003232if_/http://feeds.reuters.com/Reuters/worldNews') print([(e.title, e.link) for e in feed.entries]) print([e.id for e in feed.entries]) print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Example: Downloading HTML pages with Python') # %%time import time print('start stopwatch') tstart = time.time() s = requests.Session() for url in urls[0:10]: # get the part after the last / in URL and use as filename file = url.split("/")[-1] r = s.get(url) with open(file, "w+b") as f: f.write(r.text.encode('utf-8')) tend = (time.time() - tstart) print('end stopwatch\nelapsed time: {} seconds'.format(round(tend, 3))) with open("urls.txt", "w+b") as f: f.write("\n".join(urls).encode('utf-8')) print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Blueprint: Extraction with regular expressions') url = 'https://www.reuters.com/article/us-health-vaping-marijuana-idUSKBN1WG4KT' file = url.split("/")[-1] + ".html" r = requests.get(url) with open(file, "w+") as f: f.write(r.text) import re with open(file, "r") as f: html = f.read() g = re.search(r'<title>(.*)</title>', html, re.MULTILINE|re.DOTALL) if g: print(g.groups()[0]) print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Using an HTML parser for extraction') WA_PREFIX = "http://web.archive.org/web/20200118131624/" html = s.get(WA_PREFIX + url).text from bs4 import BeautifulSoup soup = BeautifulSoup(html, 'html.parser') print(soup.select("h1.ArticleHeader_headline")) print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Blueprint: extracting the title/headline') print(soup.h1) print(soup.h1.text) print(soup.title.text) print(soup.title.text.strip()) print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('') print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Blueprint: extracting the article text') print(soup.select_one("div.StandardArticleBody_body").text) print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Blueprint: extracting image captions') print(soup.select("div.StandardArticleBody_body figure")) print(soup.select("div.StandardArticleBody_body figure img")) print(soup.select("div.StandardArticleBody_body figcaption")) print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Blueprint: extracting the URL') print(soup.find("link", {'rel': 'canonical'})['href']) print(soup.select_one("link[rel=canonical]")['href']) print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Blueprint: extracting list information (authors)') print(soup.find("meta", {'name': 'Author'})['content']) sel = "div.BylineBar_first-container.ArticleHeader_byline-bar div.BylineBar_byline span" print(soup.select(sel)) print([a.text for a in soup.select(sel)]) print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Blueprint: Extracting text of links (section)') print(soup.select_one("div.ArticleHeader_channel a").text) print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Blueprint: Extracting reading time') print(soup.select_one("p.BylineBar_reading-time").text) print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Blueprint: extracting attributes (id)') print(soup.select_one("div.StandardArticle_inner-container")['id']) print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Blueprint: Extracting Attribution') print(soup.select_one("p.Attribution_content").text) print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Blueprint: Extracting Timestamp') ptime = soup.find("meta", { 'property': "og:article:published_time"})['content'] print(ptime) from dateutil import parser print(parser.parse(ptime)) print(parser.parse(soup.find("meta", { 'property': "og:article:modified_time"})['content'])) print('\n') print('~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~') print('Blueprint: Spidering') import requests from bs4 import BeautifulSoup import os.path from dateutil import parser def download_archive_page(page): filename = "page-%06d.html" % page if not os.path.isfile(filename): url = "https://www.reuters.com/news/archive/" + \ "?view=page&page=%d&pageSize=10" % page r = requests.get(url) with open(filename, "w+") as f: f.write(r.text) def parse_archive_page(page_file): with open(page_file, "r") as f: html = f.read() soup = BeautifulSoup(html, 'html.parser') hrefs = ["https://www.reuters.com" + a['href'] for a in soup.select("article.story div.story-content a")] return hrefs def download_article(url): # check if article already there filename = url.split("/")[-1] + ".html" if not os.path.isfile(filename): r = requests.get(url) with open(filename, "w+") as f: f.write(r.text) def parse_article(article_file): def find_obfuscated_class(soup, klass): try: return soup.find_all(lambda tag: tag.has_attr("class") and (klass in " ".join(tag["class"]))) except Exception as err: # print('find_obfuscated_class Exception: {}'.format(err)) return '' with open(article_file, "r") as f: html = f.read() r = {} soup = BeautifulSoup(html, 'html.parser') try: r['url'] = soup.find("link", {'rel': 'canonical'})['href'] r['id'] = r['url'].split("-")[-1] r['headline'] = soup.h1.text r['section'] = find_obfuscated_class(soup, "ArticleHeader-channel")[0].text r['text'] = "\n".join([t.text for t in find_obfuscated_class(soup, "Paragraph-paragraph")]) r['authors'] = find_obfuscated_class(soup, "Attribution-attribution")[0].text r['time'] = soup.find("meta", {'property': "og:article:published_time"})['content'] return r except Exception as err: # print('Exception: {}'.format(err)) return r # download 10 pages of archive for p in range(1, 10): download_archive_page(p) # parse archive and add to article_urls import glob article_urls = [] for page_file in glob.glob("page-*.html"): article_urls += parse_archive_page(page_file) # download articles for url in article_urls: download_article(url) # arrange in pandas DataFrame import pandas as pd df =
pd.DataFrame()
pandas.DataFrame
import csv from datetime import date, timedelta from os import path import pandas as pd from nba_api.stats.endpoints import leaguegamefinder, scoreboardv2 basepath = path.dirname(path.dirname(path.abspath(__file__))) data_path = path.join(basepath, 'data', 'irl') def write_data_file_for_date(date_param): date_api_str = date_param.strftime("%m/%d/%Y") # the only format the NBA API accepts for some reason print("getting data for {}".format(date_api_str)) gf = leaguegamefinder.LeagueGameFinder( date_from_nullable=date_api_str, date_to_nullable=date_api_str, player_or_team_abbreviation='P', # per-player stats instead of per-team league_id_nullable='00' # NBA only ) frame = gf.get_data_frames()[0] # since my csv files are partitioned by date, season_id and game_date can be dropped # also, 'MATCHUP' contains the team abbrev, and team names change infrequently enough that it's not worth storing for every game log # I keep everything else passed back by the API though frame.drop(['SEASON_ID', 'TEAM_NAME', 'TEAM_ABBREVIATION', 'GAME_DATE'], axis=1, inplace=True) frame.to_csv(path.join(data_path, 'game_logs', date_param.strftime('%Y-%m-%d.csv')), index=False) today = date.today() first_day = date(2019, 10, 21) # hardcoded, I know this was the (day before the) first day of the season date_in_question = first_day while path.exists(path.join(data_path, 'game_logs', date_in_question.strftime('%Y-%m-%d.csv'))): date_in_question = date_in_question + timedelta(1) # I now have the first date that does not exist; I want to go back and update the last one that *does* in case it's incomplete if date_in_question is not first_day: # unless we're rebuilding the whole season, naturally date_in_question = date_in_question - timedelta(1) while date_in_question <= today: write_data_file_for_date(date_in_question) date_in_question = date_in_question + timedelta(1) # now, let's fetch up-to-date standings and schedule (for today) data print("getting today's schedule and league standings") s = scoreboardv2.ScoreboardV2(day_offset=0, game_date=today.strftime("%m/%d/%Y"), league_id="00") df = s.get_data_frames() games_f = df[0][['GAME_ID', 'GAME_STATUS_TEXT', 'HOME_TEAM_ID', 'VISITOR_TEAM_ID', 'NATL_TV_BROADCASTER_ABBREVIATION']] games_f.columns = ['GAME_ID', 'START_TIME', 'HOME_ID', 'AWAY_ID', 'NATL_TV'] games_f.to_csv(path.join(data_path, 'schedule', today.strftime('%Y-%m-%d.csv')), index=False) teams_f =
pd.concat([df[4], df[5]])
pandas.concat
import numpy import pandas #this is the file that contains our dot product code import Daphnis.distance_methods.methods #input parameters cfmid_csv_address='/home/rictuar/coding_projects/fiehn_work/text_files/_cfmid_4_point_0_spectra_for_experimental_comparison/cfmid_output_csv_nist20_only_adduct_[M+H]+_msrb_relaced.csv' empirical_csv_address='/home/rictuar/coding_projects/fiehn_work/text_files/nist20_hr_csv.txt' adduct_of_interest='[M+H]+' instrument_of_interest='_null_' #the list of inchikeys the the experimental spectra must be in (nist20 only) inchikey_nist20_only_address='/home/rictuar/coding_projects/fiehn_work/text_files/_attribute_values_and_counts/set_comparison_nist_20_only_InChIKey.txt' number_of_metadata_columns=26 distance_method='dot_product' classyfire_results_address='/home/rictuar/coding_projects/fiehn_work/text_files/_cfb_classyfire_results/classy_fire_results_csv.csv' output_dataset_address='/home/rictuar/coding_projects/fiehn_work/text_files/_orthogonal_analysis_similarity_only/overall_similarity_result_dot_product_[M+H]+.csv' cfmid_energy_list=['energy0','energy1','energy2'] #build the dict that will hold our new panda #read in the experimental panda, 1 row to get columns experimental_panda_one_row=pandas.read_csv(empirical_csv_address,sep='@@@',usecols=range(0,number_of_metadata_columns),nrows=1) #declare dictionary using columns in experimental panda output_dictionary={key: [] for key in experimental_panda_one_row.columns} #add the classyfire, cfmid energy, and distance output keys output_dictionary['energy#']=[] output_dictionary['Superclass']=[] output_dictionary[distance_method]=[] #receives a link to a file that is single row after single row, returns set of entries def read_single_list_to_set(file_address): temp_file=open(file_address,'r') line_set=set() for line in temp_file: line_set.add(line.rstrip()) return line_set inchikey_set_nist_20=read_single_list_to_set(inchikey_nist20_only_address) #read in the cfmid panda cfmid_panda=pandas.read_csv(cfmid_csv_address,sep='¬',header=0) #set of things cfmid fragmented cfmid_fragmented_set=set(cfmid_panda['InChIKey']) #ready in the classyfire_panda classyfire_panda=
pandas.read_csv(classyfire_results_address,sep='\t',header=0,usecols=['InChIKey','Superclass'])
pandas.read_csv
# coding: utf-8 # # Classification des Iris en utilisant tensorflow # # I - Introduction # # --- # #### Objectif # <div style="text-align:justify;">L'objectif est de suivre un projet de Machine du concept à son intégration. Nous allons donc partir d'une base de données simple existant déjà sur internet. Nous allons ensuite concevoir un classificateur multiclasse à l'aide de tensorflow et mettre ce modèle en place sur une application mobile.</div> # # #### La base de données # <div style="text-align:justify;">Nous allons utiliser la base de données de classification d'Iris du [site Kaggle](https://www.kaggle.com/uciml/iris). Dans cette base de données, il existe 3 labels: Iris-setosa, Iris-versicolor # et Iris-virginica. Ces labels correspondent aux espèces d'Iris que nous souhaitons différencier. La base de données contient la largeur ainsi que la longueur des pétales et des sépales de 150 plantes.</div> # # II - Génération du modèle # # --- # ## 1. Exploration de la base de données # In[1]: import pandas as pd # Data Structure import seaborn as sns # Data Vizualisation # On commence par importer la base de données à l'aide de **pandas**. # In[2]: datas = pd.read_csv("datas/Iris.csv") # In[3]: display(datas.head()) print("Shape: {}".format(datas.shape)) # On utilise **seaborn** pour explorer graphiquement les données. # In[4]: g=sns.pairplot(datas, hue="Species", size=2.5) # ## 2. Data Preprocessing # ### 2.1 Drop Id # L'id n'est d'aucune utilité, on s'en débarasse donc dès le début. # In[5]: datas.drop("Id", axis=1, inplace=True) # ### 2.2 Séparation labels/features # In[6]: # On récupère les noms de toutes les colonnes cols=datas.columns # On les sépare features = cols[0:4] labels = cols[4] print("Liste des features:") for k in features: print("- {}".format(k)) print("\nLabel: {}".format(labels)) # ### 2.3 Mélange des données # In[7]: import numpy as np # Manipulation de listes # **numpy** est utilisé ici pour mélanger la base de données. # In[8]: indices = datas.index.tolist() indices = np.array(indices) np.random.shuffle(indices) X = datas.reindex(indices)[features] y = datas.reindex(indices)[labels] # ### 2.4 Categorical to numerical # On convertit les valeurs des labels qui sont des catégories en valeurs numériques pour être intérprétées par notre algorithme. # In[9]: y.head() # In[10]: from pandas import get_dummies # In[11]: y=get_dummies(y) # In[12]: display(y.head()) # ### 2.5 Train/Test split # # <div style="text-align:justify;"><br>Pour pouvoir évaluer la qualité de notre algorithme il faut séparer les données en deux. La base de données d'apprentissage est utilisée pour apprendre à l'algorithme comment classifier les données. Une fois que cela est fait, on est capable de prédire la classe avec une certaine précision. Pour vérifier si l'algorithme est capable de bien généraliser à des données qu'il n'a pas appris (éviter l'**overfitting**), on calcul la précision de l'algorithme pour prédire sur la base de données de test.</div> # # - Train: 80% # - Test : 20% # In[13]: from sklearn.cross_validation import train_test_split # In[14]: y=
get_dummies(y)
pandas.get_dummies
r"""Exp 4: - Fix: - n=53, f=? - Number of iterations = 600 - Not *Long tail* (alpha=1) - Always NonIID - Number of runs = 3 - LR = 0.01 - Attack: IPM epsilon=0.1 - Aggregator: CP - Varies: - momentum=0, 0.9 - Bucketing: ? Experiment: - Fix f=5 varying s: - s=0,2,5 - m=0,0.9 - Fix s=2 varying f: - f=1,6,12 - m=0.0.9 """ from utils import get_args from utils import main from utils import EXP_DIR args = get_args() assert args.noniid assert not args.LT assert args.attack == "IPM" LOG_DIR = EXP_DIR + "exp4/" if args.identifier: LOG_DIR += f"{args.identifier}/" elif args.debug: LOG_DIR += "debug/" else: LOG_DIR += f"n{args.n}_{args.agg}_{args.attack}_{args.noniid}/" INP_DIR = LOG_DIR OUT_DIR = LOG_DIR + "output/" LOG_DIR += f"f{args.f}_{args.momentum}_s{args.bucketing}_seed{args.seed}" if args.debug: MAX_BATCHES_PER_EPOCH = 30 EPOCHS = 3 else: MAX_BATCHES_PER_EPOCH = 30 EPOCHS = 20 if not args.plot: main(args, LOG_DIR, EPOCHS, MAX_BATCHES_PER_EPOCH) else: # Temporarily put the import functions here to avoid # random error stops the running processes. import os import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from codes.parser import extract_validation_entries # 5.5in is the text width of iclr2022 and 11 is the font size font = {"size": 11} plt.rc("font", **font) def exp_grid1(): for seed in [0, 1, 2]: for bucketing in [0, 2, 5]: for momentum in [0.0, 0.9]: yield momentum, bucketing, seed results = [] for momentum, bucketing, seed in exp_grid1(): grid_identifier = f"f5_{momentum}_s{bucketing}_seed{seed}" path = INP_DIR + grid_identifier + "/stats" try: values = extract_validation_entries(path) for v in values: results.append( { "Iterations": v["E"] * MAX_BATCHES_PER_EPOCH, "Accuracy (%)": v["top1"], r"$\beta$": momentum, "seed": seed, "s": str(bucketing), } ) except Exception as e: pass results = pd.DataFrame(results) print(results) if not os.path.exists(OUT_DIR): os.makedirs(OUT_DIR) results.to_csv(OUT_DIR + "exp4_fix_f.csv", index=None) plt.figure(figsize=(4, 2)) # sns.set(font_scale=1.25) g = sns.lineplot( data=results, x="Iterations", y="Accuracy (%)", style=r"$\beta$", hue="s", # height=2.5, # aspect=1.3, # legend=False, # ci=None, palette=sns.color_palette("Set1", 3), ) g.set(xlim=(0, 600), ylim=(50, 100)) # Put the legend out of the figure g.legend(loc="center left", bbox_to_anchor=(1, 0.5)) g.get_figure().savefig(OUT_DIR + "exp4_fix_f.pdf", bbox_inches="tight", dpi=720) plt.figure(0) def exp_grid2(): for seed in [0, 1, 2]: for f in [1, 6, 12]: for momentum in [0.0, 0.9]: yield momentum, f, seed results = [] for momentum, f, seed in exp_grid2(): grid_identifier = f"f{f}_{momentum}_s2_seed{seed}" path = INP_DIR + grid_identifier + "/stats" try: values = extract_validation_entries(path) for v in values: results.append( { "Iterations": v["E"] * MAX_BATCHES_PER_EPOCH, "Accuracy (%)": v["top1"], r"$\beta$": momentum, "seed": seed, "q": str(f), } ) except Exception as e: pass results =
pd.DataFrame(results)
pandas.DataFrame
import matplotlib.pyplot as plt import numpy as np from scipy.stats import kendalltau import pandas as pd import seaborn as sns import argparse import sys, os import fnmatch parser = argparse.ArgumentParser() parser.add_argument('-es', help='<Required> give csv with es generations', required=True) parser.add_argument('-de', help='<Required> give csv with de generations', required=True) args = parser.parse_args() es_data = np.genfromtxt(args.es, delimiter=";") es_df = pd.DataFrame(data={'Generace': es_data[:, 0], 'Fitness': es_data[:, 1]}) es_df['EA'] = "ES" de_data = np.genfromtxt(args.de,delimiter=";") de_df = pd.DataFrame(data={'Generace': de_data[:,0], 'Fitness': de_data[:,1]}) de_df['EA'] = "DE" df =
pd.concat([de_df,es_df])
pandas.concat
import random import timeit import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from algorithms.sort import (quick_sort, merge_sort, pigeonhole_sort, counting_sort, radix_sort, cocktail_shaker_sort, shell_sort, max_heap_sort, min_heap_sort, bucket_sort, cycle_sort, comb_sort) def generate_random_list(size): filled_list = [] for _ in range(0, size): filled_list.append(random.randint(0, size)) return filled_list def benchmark_run(func, list): start_time = timeit.default_timer() func(list) return timeit.default_timer() - start_time def plot_maker(list_of_sample_size, algorithm_to_benchmark, name): num_runs = 10 duration = 0 benchmark_row = [] for algorithm in algorithm_to_benchmark: print(algorithm.__name__) for n in list_of_sample_size: for _ in range(0, num_runs): duration += benchmark_run(algorithm, generate_random_list(n)) benchmark_row.append([algorithm.__name__, n, (duration / num_runs)]) duration = 0 df =
pd.DataFrame(data=benchmark_row, columns=["Name", "Sample_size", "Duration"])
pandas.DataFrame
""" accounting.py Accounting and Financial functions. project : pf version : 0.0.0 status : development modifydate : createdate : website : https://github.com/tmthydvnprt/pf author : tmthydvnprt email : <EMAIL> maintainer : tmthydvnprt license : MIT copyright : Copyright 2016, tmthydvnprt credits : """ import datetime import numpy as np import pandas as pd from pf.constants import DAYS_IN_YEAR from pf.util import get_age ################################################################################################################################ # Financial Statements ################################################################################################################################ def calc_balance(accounts=None, category_dict=None): """ Calculate daily balances of grouped assets/liabilities based on `category_dict`s from `accounts`, returns a DataFrame. Balance sheet is split into these sections: Assets Current Cash ... Long Term Investments Property ... Liabilities Current Credit Card ... Long Term Loans ... categories = { 'Assets' : { 'Current': { # User category keys and account DataFrame columns list for values 'Cash & Cash Equivalents': [ ('Cash', 'BofA Checking'), ('Cash', 'BofA Savings'), ... ], 'User Category': [...] ... }, 'Long Term': {...} }, 'Liabilities' : { 'Current': {...}, 'Long Term': {...} } } """ # Aggregate accounts based on category definition, via 3 level dictionary comprehension balance_dict = { (k0, k1, k2): accounts[v2].sum(axis=1) if v2 else pd.Series(0, index=accounts.index) for k0, v0 in category_dict.iteritems() for k1, v1 in v0.iteritems() for k2, v2 in v1.iteritems() } # Convert to DataFrame balance = pd.DataFrame(balance_dict) return balance.fillna(0.0) def balance_sheet(balance=None, period=datetime.datetime.now().year): """ Calculate and return a balance sheet. Balance will be based on the last entry of account data (e.g. December 31st) for the given `period` time period, which defaults to the current year. All levels may be user defined by the category dictonary. The value of the last level must contain valid pandas DataFrame column selectors, e.g. `Account Type` for single index column / level 0 access or `('Cash', 'Account Name')` for multilevel indexing. If a sequence of periods is passed, each period's data will be calculated and concatenated as MultiIndex columns. Example: ``` balance = calc_balance(accounts, category_dict=categories) balancesheet = balance_sheet(balance, period=2015) ``` """ # Force to list, so code below is the same for all cases if not isinstance(period, list): period = [period] balance_sheets = [] for p in period: # Force period to string p = str(p) # Sum over Period and convert to Statement DataFrame p_balance = pd.DataFrame(balance[p].iloc[-1]) p_balance.columns = ['$'] p_balance.index.names = ['Category', 'Type', 'Item'] # Calculate Net net = p_balance[['$']].sum(level=[0, 1]).sum(level=1) net.index = pd.MultiIndex.from_tuples([('Net', x0, 'Total') for x0 in net.index]) net.index.names = ['Category', 'Type', 'Item'] # Add Net balance_df = pd.concat([p_balance, net]) # Calculate percentages of level 0 balance_df['%'] = 100.0 * balance_df.div(balance_df.sum(level=0), level=0) # Calculate heirarchical totals l1_totals = balance_df.sum(level=[0, 1]) l1_totals.index = pd.MultiIndex.from_tuples([(x0, x1, 'Total') for x0, x1 in l1_totals.index]) l1_totals.index.names = ['Category', 'Type', 'Item'] l0_totals = balance_df.sum(level=[0]) l0_totals.index = pd.MultiIndex.from_tuples([(x0, 'Total', ' ') for x0 in l0_totals.index]) l0_totals.index.names = ['Category', 'Type', 'Item'] # Add totals to dataframe balance_df = balance_df.combine_first(l1_totals) balance_df = balance_df.combine_first(l0_totals) # Update columns with period balance_df.columns = pd.MultiIndex.from_product([[p], balance_df.columns]) # Add to main list balance_sheets.append(balance_df) # Concatenate all the periods together balance_sheets_df = pd.concat(balance_sheets, 1) return balance_sheets_df def calc_income(paychecks=None, transactions=None, category_dict=None, tax_type=None): """ Calculate daily income of grouped revenue/expenses/taxes based on `category_dict`s from `paychecks` and `transactions`, returns a DataFrame. Income Statement is split into these sections: Revenue Operating Technical Services ... Non-Operating Interest Income Dividend & Capital Gains ... Expenses Operating Medical ... Non-Operating ... Taxes Operating Federal State ... All levels may be user defined by the category dictonary. However the last level must contain a dictionary with at least a `category` key and set of categories for the value along with optional parameters. ``` 'Revenue': { 'Operating': { # Paychecks 'Technical Services': { 'source': 'paycheck', # Optional string to select data source, defaults to 'transactions' 'categories': {'Paycheck', ...}, # Required set of categories 'labels': set(), # Optional set of labels, defaults to set() if not passed in 'logic': '', # Optional 'not' string to set inverse of 'labels', defaults to '' 'tax_type' '' # Optional string for tax ('realized' or 'unrealized'), defaults to 'realized' }, 'User Category': {...} }, 'Non-Operating': { 'User Category': { 'categories': {...} } } }, 'Expenses': { 'Operating': {...}, 'Non-Operating': {..} }, 'Taxes': { 'Operating': {...}, 'Non-Operating': {..} } ``` """ # Clean category for k0, v0 in category_dict.iteritems(): for k1, v1 in v0.iteritems(): for k2, v2 in v1.iteritems(): if not v2.has_key('source'): category_dict[k0][k1][k2]['source'] = 'transactions' if not v2.has_key('labels'): category_dict[k0][k1][k2]['labels'] = set() if not v2.has_key('logic'): category_dict[k0][k1][k2]['logic'] = '' if not v2.has_key('agg'): category_dict[k0][k1][k2]['agg'] = np.ones(len(category_dict[k0][k1][k2]['categories'])) if not v2.has_key('tax_type'): category_dict[k0][k1][k2]['tax_type'] = 'realized' # Aggregate accounts based on category definition, via 3 level dictionary comprehension income_dict = {} for k0, v0 in category_dict.iteritems(): for k1, v1 in v0.iteritems(): for k2, v2 in v1.iteritems(): if v2['source'] == 'transactions': income_dict[(k0, k1, k2)] = transactions[ ( # If it is in the category transactions['Category'].isin(v2['categories']) & transactions['Account Name'].isin(tax_type[v2['tax_type']]) ) & ( # And if is has the correct label (transactions['Labels'].apply( lambda x: x.isdisjoint(v2['labels']) if v2['logic'] else not x.isdisjoint(v2['labels']) )) | # Or it does not have any labels (transactions['Labels'].apply(lambda x: v2['labels'] == set())) ) ]['Amount'] else: income_dict[(k0, k1, k2)] = (v2['agg'] * paychecks[list(v2['categories'])]).sum(axis=1) # Convert to DataFrame cats = income_dict.keys() cats.sort() income = pd.DataFrame( data=[], columns=pd.MultiIndex.from_tuples(cats), index=pd.date_range(transactions.index[-1], transactions.index[0]) ) for cat in income_dict: cat_df = pd.DataFrame(income_dict[cat].values, index=income_dict[cat].index, columns=pd.MultiIndex.from_tuples([cat])) income[cat] = cat_df.groupby(lambda x: x.date()).sum() return income.fillna(0.0) def income_statement(income=None, period=datetime.datetime.now().year, nettax=None): """ Calculate and return an Income Statement. Income will be based on the last entry of account data (e.g. December 31st) for the given `period` time period, which defaults to the current year. If a sequence of periods is passed, each period's data will be calculated and concatenated as MultiIndex columns. Example: ``` income = calc_income(paychecks=paychecks, transactions=transactions, category_dict=categories) incomestatement = income_statement(income, period=2016) ``` """ # Force to list, so code below is the same for all cases if not isinstance(period, list): period = [period] income_statements = [] for p in period: # Force period to string and set default nettax p = str(p) nettax = nettax if nettax else {'Taxes'} # Convert to DataFrame p_income = pd.DataFrame(income[p].sum(), columns=['$']) p_income.index.names = ['Category', 'Type', 'Item'] # Calculate percentages of level 0 p_income['%'] = 100.0 * p_income.div(p_income.sum(level=0), level=0) # Calculate heirarchical totals l1_totals = p_income.sum(level=[0, 1]) l1_totals.index =
pd.MultiIndex.from_tuples([(x0, x1, 'Total') for x0, x1 in l1_totals.index])
pandas.MultiIndex.from_tuples
# -*- coding: utf-8 -*- # @Author: jerry # @Date: 2017-09-09 21:03:21 # @Last Modified by: jerry # @Last Modified time: 2017-09-23 17:09:41 import pandas as pd from log_lib import log def get_csv(filename, path=None): df =
pd.read_csv(filename)
pandas.read_csv
# Obtaining and processing CVE json **files** # The code is to download nvdcve zip files from NIST since 2002 to the current year, # unzip and append all the JSON files together, # and extracts all the entries from json files of the projects. # 获取和处理CVE json **文件** # 代码是从NIST下载nvdcve zip文件从2002年到今年, # 解压并附加所有JSON文件, # 并从项目的json文件中提取所有条目。 import datetime import json import os import re from io import BytesIO import pandas as pd import requests from pathlib import Path from zipfile import ZipFile from pandas import json_normalize from extract_cwe_record import add_cwe_class, extract_cwe import configuration as cf import database as db # --------------------------------------------------------------------------------------------------------------------- # 从NIST下载nvdcve zip文件 urlhead = 'https://nvd.nist.gov/feeds/json/cve/1.1/nvdcve-1.1-' urltail = '.json.zip' initYear = 2002 currentYear = datetime.datetime.now().year # Consider only current year CVE records when sample_limit>0 for the simplified example. if cf.SAMPLE_LIMIT > 0: initYear = currentYear df = pd.DataFrame() # cve的列 ordered_cve_columns = ['cve_id', 'published_date', 'last_modified_date', 'description', 'nodes', 'severity', 'obtain_all_privilege', 'obtain_user_privilege', 'obtain_other_privilege', 'user_interaction_required', 'cvss2_vector_string', 'cvss2_access_vector', 'cvss2_access_complexity', 'cvss2_authentication', 'cvss2_confidentiality_impact', 'cvss2_integrity_impact', 'cvss2_availability_impact', 'cvss2_base_score', 'cvss3_vector_string', 'cvss3_attack_vector', 'cvss3_attack_complexity', 'cvss3_privileges_required', 'cvss3_user_interaction', 'cvss3_scope', 'cvss3_confidentiality_impact', 'cvss3_integrity_impact', 'cvss3_availability_impact', 'cvss3_base_score', 'cvss3_base_severity', 'exploitability_score', 'impact_score', 'ac_insuf_info', 'reference_json', 'problemtype_json'] # cwe的列 cwe_columns = ['cwe_id', 'cwe_name', 'description', 'extended_description', 'url', 'is_category'] # --------------------------------------------------------------------------------------------------------------------- def rename_columns(name): """ converts the other cases of string to snake_case, and further processing of column names. 将字符串的其他情况转换为snake_case,并进一步处理列名。 """ name = name.split('.', 2)[-1].replace('.', '_') name = re.sub(r'(?<!^)(?=[A-Z])', '_', name).lower() name = name.replace('cvss_v', 'cvss').replace('_data', '_json').replace('description_json', 'description') return name def preprocess_jsons(df_in): """ Flattening CVE_Items and removing the duplicates :param df_in: merged dataframe of all years json files 平坦CVE_Items并删除副本 :param df_in:合并所有年份json文件作为DataFrame 参考: JSON文件格式 "CVE_data_type" : "CVE", "CVE_data_format" : "MITRE", "CVE_data_version" : "4.0", "CVE_data_numberOfCVEs" : "40", "CVE_data_timestamp" : "2022-01-08T08:00Z", "CVE_Items" : [略] """ # 报告: 开始平坦CVE_Items并删除副本 cf.logger.info('Flattening CVE_Items and removing the duplicates...') # 只提取CVE_Items,抛弃其他 cve_items =
json_normalize(df_in['CVE_Items'])
pandas.json_normalize
import numpy as np import pandas as pd from analysis.transform_fast import load_raw_cohort, transform def test_immuno_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF IMMRX_DAT <> NULL | Select | Next if pd.notnull(row["immrx_dat"]): assert row["immuno_group"] continue # IF IMMDX_COV_DAT <> NULL | Select | Reject if pd.notnull(row["immdx_cov_dat"]): assert row["immuno_group"] else: assert not row["immuno_group"] def test_ckd_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF CKD_COV_DAT <> NULL (diagnoses) | Select | Next if pd.notnull(row["ckd_cov_dat"]): assert row["ckd_group"] continue # IF CKD15_DAT = NULL (No stages) | Reject | Next if pd.isnull(row["ckd15_dat"]): assert not row["ckd_group"] continue # IF CKD35_DAT>=CKD15_DAT | Select | Reject if gte(row["ckd35_dat"], row["ckd15_dat"]): assert row["ckd_group"] else: assert not row["ckd_group"] def test_ast_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF ASTADM_DAT <> NULL | Select | Next if pd.notnull(row["astadm_dat"]): assert row["ast_group"] continue # IF AST_DAT <> NULL | Next | Reject if pd.isnull(row["ast_dat"]): assert not row["ast_group"] continue # IF ASTRXM1 <> NULL | Next | Reject if pd.isnull(row["astrxm1_dat"]): assert not row["ast_group"] continue # IF ASTRXM2 <> NULL | Next | Reject if pd.isnull(row["astrxm2_dat"]): assert not row["ast_group"] continue # IF ASTRXM3 <> NULL | Select | Reject if pd.notnull(row["astrxm3_dat"]): assert row["ast_group"] else: assert not row["ast_group"] def test_cns_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF CNS_COV_DAT <> NULL | Select | Reject if pd.notnull(row["cns_cov_dat"]): assert row["cns_group"] else: assert not row["cns_group"] def test_resp_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF AST_GROUP <> NULL | Select | Next if row["ast_group"]: assert row["resp_group"] continue # IF RESP_COV_DAT <> NULL | Select | Reject if pd.notnull(row["resp_cov_dat"]): assert row["resp_group"] else: assert not row["resp_group"] def test_bmi_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF SEV_OBESITY_DAT > BMI_DAT | Select | Next if gt(row["sev_obesity_dat"], row["bmi_dat"]): assert row["bmi_group"] continue # IF BMI_VAL >=40 | Select | Reject if gte(row["bmi_val"], 40): assert row["bmi_group"] else: assert not row["bmi_group"] def test_diab_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF DIAB_DAT > DMRES_DAT | Select | Reject if gt(row["diab_dat"], row["dmres_dat"]): assert row["diab_group"] else: assert not row["diab_group"] def test_sevment_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF SEV_MENTAL_DAT > SMHRES_DAT | Select | Reject if gt(row["sev_mental_dat"], row["smhres_dat"]): assert row["sevment_group"] else: assert not row["sevment_group"] def test_atrisk_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF IMMUNOGROUP <> NULL | Select | Next if row["immuno_group"]: assert row["atrisk_group"] continue # IF CKD_GROUP <> NULL | Select | Next if row["ckd_group"]: assert row["atrisk_group"] continue # IF RESP_GROUP <> NULL | Select | Next if row["resp_group"]: assert row["atrisk_group"] continue # IF DIAB_GROUP <> NULL | Select | Next if row["diab_group"]: assert row["atrisk_group"] continue # IF CLD_DAT <>NULL | Select | Next if pd.notnull(row["cld_dat"]): assert row["atrisk_group"] continue # IF CNS_GROUP <> NULL | Select | Next if row["cns_group"]: assert row["atrisk_group"] continue # IF CHD_COV_DAT <> NULL | Select | Next if pd.notnull(row["chd_cov_dat"]): assert row["atrisk_group"] continue # IF SPLN_COV_DAT <> NULL | Select | Next if pd.notnull(row["spln_cov_dat"]): assert row["atrisk_group"] continue # IF LEARNDIS_DAT <> NULL | Select | Next if pd.notnull(row["learndis_dat"]): assert row["atrisk_group"] continue # IF SEVMENT_GROUP <> NULL | Select | Reject if row["sevment_group"]: assert row["atrisk_group"] else: assert not row["atrisk_group"] def test_covax1d_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF COVRX1_DAT <> NULL | Select | Next if pd.notnull(row["covrx1_dat"]): assert row["covax1d_group"] continue # IF COVADM1_DAT <> NULL | Select | Reject if pd.notnull(row["covadm1_dat"]): assert row["covax1d_group"] else: assert not row["covax1d_group"] def test_covax2d_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF COVAX1D_GROUP <> NULL | Next | Reject if not row["covax1d_group"]: assert not row["covax2d_group"] continue # IF COVRX2_DAT <> NULL | Select | Next if pd.notnull(row["covrx2_dat"]): assert row["covax2d_group"] continue # IF COVADM2_DAT <> NULL | Select | Reject if pd.notnull(row["covadm2_dat"]): assert row["covax2d_group"] else: assert not row["covax2d_group"] def test_unstatvacc1_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF COVAX1D_GROUP <> NULL | Next | Reject if not row["covax1d_group"]: assert not row["unstatvacc1_group"] continue # IF AZD1RX_DAT <> NULL | Reject | Next if pd.notnull(row["azd1rx_dat"]): assert not row["unstatvacc1_group"] continue # IF PFD1RX_DAT <> NULL | Reject | Next if pd.notnull(row["pfd1rx_dat"]): assert not row["unstatvacc1_group"] continue # IF MOD1RX_DAT <> NULL | Reject | Next if pd.notnull(row["mod1rx_dat"]): assert not row["unstatvacc1_group"] continue # IF NXD1RX_DAT <> NULL | Reject | Next if pd.notnull(row["nxd1rx_dat"]): assert not row["unstatvacc1_group"] continue # IF JND1RX _DAT <> NULL | Reject | Next if pd.notnull(row["jnd1rx_dat"]): assert not row["unstatvacc1_group"] continue # IF GSD1RX_DAT <> NULL | Reject | Next if pd.notnull(row["gsd1rx_dat"]): assert not row["unstatvacc1_group"] continue # IF VLD1RX_DAT <> NULL | Reject | Select if pd.notnull(row["vld1rx_dat"]): assert not row["unstatvacc1_group"] else: assert row["unstatvacc1_group"] def test_unstatvacc2_group(): raw_cohort = load_raw_cohort("tests/input.csv") cohort = transform(raw_cohort) for ix, row in cohort.iterrows(): # IF COVAX2D_GROUP <> NULL | Next | Reject if not row["covax2d_group"]: assert not row["unstatvacc2_group"] continue # IF AZD2RX_DAT <> NULL | Reject | Next if pd.notnull(row["azd2rx_dat"]): assert not row["unstatvacc2_group"] continue # IF PFD2RX_DAT <> NULL | Reject | Next if pd.notnull(row["pfd2rx_dat"]): assert not row["unstatvacc2_group"] continue # IF MOD2RX_DAT <> NULL | Reject | Next if pd.notnull(row["mod2rx_dat"]): assert not row["unstatvacc2_group"] continue # IF NXD2RX_DAT <> NULL | Reject | Next if pd.notnull(row["nxd2rx_dat"]): assert not row["unstatvacc2_group"] continue # IF JND2RX _DAT <> NULL | Reject | Next if pd.notnull(row["jnd2rx_dat"]): assert not row["unstatvacc2_group"] continue # IF GSD2RX_DAT <> NULL | Reject | Next if pd.notnull(row["gsd2rx_dat"]): assert not row["unstatvacc2_group"] continue # IF VLD2RX_DAT <> NULL | Reject | Select if
pd.notnull(row["vld2rx_dat"])
pandas.notnull
"""Tests for Table Schema integration.""" import json from collections import OrderedDict import numpy as np import pandas as pd import pytest from pandas import DataFrame from pandas.core.dtypes.dtypes import ( PeriodDtype, CategoricalDtype, DatetimeTZDtype) from pandas.io.json.table_schema import ( as_json_table_type, build_table_schema, make_field, set_default_names) class TestBuildSchema(object): def setup_method(self, method): self.df = DataFrame( {'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'c'], 'C': pd.date_range('2016-01-01', freq='d', periods=4), 'D': pd.timedelta_range('1H', periods=4, freq='T'), }, index=pd.Index(range(4), name='idx')) def test_build_table_schema(self): result = build_table_schema(self.df, version=False) expected = { 'fields': [{'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, ], 'primaryKey': ['idx'] } assert result == expected result = build_table_schema(self.df) assert "pandas_version" in result def test_series(self): s = pd.Series([1, 2, 3], name='foo') result = build_table_schema(s, version=False) expected = {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'foo', 'type': 'integer'}], 'primaryKey': ['index']} assert result == expected result = build_table_schema(s) assert 'pandas_version' in result def test_series_unnamed(self): result = build_table_schema(pd.Series([1, 2, 3]), version=False) expected = {'fields': [{'name': 'index', 'type': 'integer'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index']} assert result == expected def test_multiindex(self): df = self.df.copy() idx = pd.MultiIndex.from_product([('a', 'b'), (1, 2)]) df.index = idx result = build_table_schema(df, version=False) expected = { 'fields': [{'name': 'level_0', 'type': 'string'}, {'name': 'level_1', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, ], 'primaryKey': ['level_0', 'level_1'] } assert result == expected df.index.names = ['idx0', None] expected['fields'][0]['name'] = 'idx0' expected['primaryKey'] = ['idx0', 'level_1'] result = build_table_schema(df, version=False) assert result == expected class TestTableSchemaType(object): def test_as_json_table_type_int_data(self): int_data = [1, 2, 3] int_types = [np.int, np.int16, np.int32, np.int64] for t in int_types: assert as_json_table_type(np.array( int_data, dtype=t)) == 'integer' def test_as_json_table_type_float_data(self): float_data = [1., 2., 3.] float_types = [np.float, np.float16, np.float32, np.float64] for t in float_types: assert as_json_table_type(np.array( float_data, dtype=t)) == 'number' def test_as_json_table_type_bool_data(self): bool_data = [True, False] bool_types = [bool, np.bool] for t in bool_types: assert as_json_table_type(np.array( bool_data, dtype=t)) == 'boolean' def test_as_json_table_type_date_data(self): date_data = [pd.to_datetime(['2016']), pd.to_datetime(['2016'], utc=True), pd.Series(pd.to_datetime(['2016'])), pd.Series(pd.to_datetime(['2016'], utc=True)), pd.period_range('2016', freq='A', periods=3)] for arr in date_data: assert as_json_table_type(arr) == 'datetime' def test_as_json_table_type_string_data(self): strings = [pd.Series(['a', 'b']), pd.Index(['a', 'b'])] for t in strings: assert as_json_table_type(t) == 'string' def test_as_json_table_type_categorical_data(self): assert as_json_table_type(pd.Categorical(['a'])) == 'any' assert as_json_table_type(pd.Categorical([1])) == 'any' assert as_json_table_type(pd.Series(pd.Categorical([1]))) == 'any' assert as_json_table_type(pd.CategoricalIndex([1])) == 'any' assert as_json_table_type(pd.Categorical([1])) == 'any' # ------ # dtypes # ------ def test_as_json_table_type_int_dtypes(self): integers = [np.int, np.int16, np.int32, np.int64] for t in integers: assert as_json_table_type(t) == 'integer' def test_as_json_table_type_float_dtypes(self): floats = [np.float, np.float16, np.float32, np.float64] for t in floats: assert as_json_table_type(t) == 'number' def test_as_json_table_type_bool_dtypes(self): bools = [bool, np.bool] for t in bools: assert as_json_table_type(t) == 'boolean' def test_as_json_table_type_date_dtypes(self): # TODO: datedate.date? datetime.time? dates = [np.datetime64, np.dtype("<M8[ns]"), PeriodDtype(), DatetimeTZDtype('ns', 'US/Central')] for t in dates: assert as_json_table_type(t) == 'datetime' def test_as_json_table_type_timedelta_dtypes(self): durations = [np.timedelta64, np.dtype("<m8[ns]")] for t in durations: assert as_json_table_type(t) == 'duration' def test_as_json_table_type_string_dtypes(self): strings = [object] # TODO for t in strings: assert as_json_table_type(t) == 'string' def test_as_json_table_type_categorical_dtypes(self): # TODO: I think before is_categorical_dtype(Categorical) # returned True, but now it's False. Figure out why or # if it matters assert as_json_table_type(pd.Categorical(['a'])) == 'any' assert as_json_table_type(CategoricalDtype()) == 'any' class TestTableOrient(object): def setup_method(self, method): self.df = DataFrame( {'A': [1, 2, 3, 4], 'B': ['a', 'b', 'c', 'c'], 'C': pd.date_range('2016-01-01', freq='d', periods=4), 'D': pd.timedelta_range('1H', periods=4, freq='T'), 'E': pd.Series(pd.Categorical(['a', 'b', 'c', 'c'])), 'F': pd.Series(pd.Categorical(['a', 'b', 'c', 'c'], ordered=True)), 'G': [1., 2., 3, 4.], 'H': pd.date_range('2016-01-01', freq='d', periods=4, tz='US/Central'), }, index=pd.Index(range(4), name='idx')) def test_build_series(self): s = pd.Series([1, 2], name='a') s.index.name = 'id' result = s.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) assert "pandas_version" in result['schema'] result['schema'].pop('pandas_version') fields = [{'name': 'id', 'type': 'integer'}, {'name': 'a', 'type': 'integer'}] schema = { 'fields': fields, 'primaryKey': ['id'], } expected = OrderedDict([ ('schema', schema), ('data', [OrderedDict([('id', 0), ('a', 1)]), OrderedDict([('id', 1), ('a', 2)])])]) assert result == expected def test_to_json(self): df = self.df.copy() df.index.name = 'idx' result = df.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) assert "pandas_version" in result['schema'] result['schema'].pop('pandas_version') fields = [ {'name': 'idx', 'type': 'integer'}, {'name': 'A', 'type': 'integer'}, {'name': 'B', 'type': 'string'}, {'name': 'C', 'type': 'datetime'}, {'name': 'D', 'type': 'duration'}, {'constraints': {'enum': ['a', 'b', 'c']}, 'name': 'E', 'ordered': False, 'type': 'any'}, {'constraints': {'enum': ['a', 'b', 'c']}, 'name': 'F', 'ordered': True, 'type': 'any'}, {'name': 'G', 'type': 'number'}, {'name': 'H', 'type': 'datetime', 'tz': 'US/Central'} ] schema = { 'fields': fields, 'primaryKey': ['idx'], } data = [ OrderedDict([('idx', 0), ('A', 1), ('B', 'a'), ('C', '2016-01-01T00:00:00.000Z'), ('D', 'P0DT1H0M0S'), ('E', 'a'), ('F', 'a'), ('G', 1.), ('H', '2016-01-01T06:00:00.000Z') ]), OrderedDict([('idx', 1), ('A', 2), ('B', 'b'), ('C', '2016-01-02T00:00:00.000Z'), ('D', 'P0DT1H1M0S'), ('E', 'b'), ('F', 'b'), ('G', 2.), ('H', '2016-01-02T06:00:00.000Z') ]), OrderedDict([('idx', 2), ('A', 3), ('B', 'c'), ('C', '2016-01-03T00:00:00.000Z'), ('D', 'P0DT1H2M0S'), ('E', 'c'), ('F', 'c'), ('G', 3.), ('H', '2016-01-03T06:00:00.000Z') ]), OrderedDict([('idx', 3), ('A', 4), ('B', 'c'), ('C', '2016-01-04T00:00:00.000Z'), ('D', 'P0DT1H3M0S'), ('E', 'c'), ('F', 'c'), ('G', 4.), ('H', '2016-01-04T06:00:00.000Z') ]), ] expected = OrderedDict([('schema', schema), ('data', data)]) assert result == expected def test_to_json_float_index(self): data = pd.Series(1, index=[1., 2.]) result = data.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') expected = ( OrderedDict([('schema', { 'fields': [{'name': 'index', 'type': 'number'}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index'] }), ('data', [OrderedDict([('index', 1.0), ('values', 1)]), OrderedDict([('index', 2.0), ('values', 1)])])]) ) assert result == expected def test_to_json_period_index(self): idx = pd.period_range('2016', freq='Q-JAN', periods=2) data = pd.Series(1, idx) result = data.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') fields = [{'freq': 'Q-JAN', 'name': 'index', 'type': 'datetime'}, {'name': 'values', 'type': 'integer'}] schema = {'fields': fields, 'primaryKey': ['index']} data = [OrderedDict([('index', '2015-11-01T00:00:00.000Z'), ('values', 1)]), OrderedDict([('index', '2016-02-01T00:00:00.000Z'), ('values', 1)])] expected = OrderedDict([('schema', schema), ('data', data)]) assert result == expected def test_to_json_categorical_index(self): data = pd.Series(1, pd.CategoricalIndex(['a', 'b'])) result = data.to_json(orient='table', date_format='iso') result = json.loads(result, object_pairs_hook=OrderedDict) result['schema'].pop('pandas_version') expected = ( OrderedDict([('schema', {'fields': [{'name': 'index', 'type': 'any', 'constraints': {'enum': ['a', 'b']}, 'ordered': False}, {'name': 'values', 'type': 'integer'}], 'primaryKey': ['index']}), ('data', [ OrderedDict([('index', 'a'), ('values', 1)]), OrderedDict([('index', 'b'), ('values', 1)])])]) ) assert result == expected def test_date_format_raises(self): with pytest.raises(ValueError): self.df.to_json(orient='table', date_format='epoch') # others work self.df.to_json(orient='table', date_format='iso') self.df.to_json(orient='table') def test_make_field_int(self): data = [1, 2, 3] kinds = [pd.Series(data, name='name'), pd.Index(data, name='name')] for kind in kinds: result =
make_field(kind)
pandas.io.json.table_schema.make_field
import numpy as np import pytest from pandas import DataFrame, SparseArray, SparseDataFrame, bdate_range data = { "A": [np.nan, np.nan, np.nan, 0, 1, 2, 3, 4, 5, 6], "B": [0, 1, 2, np.nan, np.nan, np.nan, 3, 4, 5, 6], "C": np.arange(10, dtype=np.float64), "D": [0, 1, 2, 3, 4, 5, np.nan, np.nan, np.nan, np.nan], } dates = bdate_range("1/1/2011", periods=10) # fixture names must be compatible with the tests in # tests/frame/test_api.SharedWithSparse @pytest.fixture def float_frame_dense(): """ Fixture for dense DataFrame of floats with DatetimeIndex Columns are ['A', 'B', 'C', 'D']; some entries are missing """ return DataFrame(data, index=dates) @pytest.fixture def float_frame(): """ Fixture for sparse DataFrame of floats with DatetimeIndex Columns are ['A', 'B', 'C', 'D']; some entries are missing """ # default_kind='block' is the default return SparseDataFrame(data, index=dates, default_kind="block") @pytest.fixture def float_frame_int_kind(): """ Fixture for sparse DataFrame of floats with DatetimeIndex Columns are ['A', 'B', 'C', 'D'] and default_kind='integer'. Some entries are missing. """ return SparseDataFrame(data, index=dates, default_kind="integer") @pytest.fixture def float_string_frame(): """ Fixture for sparse DataFrame of floats and strings with DatetimeIndex Columns are ['A', 'B', 'C', 'D', 'foo']; some entries are missing """ sdf =
SparseDataFrame(data, index=dates)
pandas.SparseDataFrame
"""Module and script to combine IDs with molreports to form graphs and masks. This module provides functions and a script to extract bond and atom identifier information, combine these IDs with bonds from the molreport file, and output: 1) An atom-level node list 2) An atom-level covalent bond list 3) A mask of atoms that have been added to the graph, but are not present in the structure """ import ntpath import sys import pandas as pd import networkx as nx # molreport extraction def extract_molreport(filepath, strip_h=False): """ Extract relevant information from molreport file type. Args: - filepath (str) - Path to molreport file. - strip_h (bool) - Whether to strip hydrogens from molreport file (default=False). Returns: - Tuple of Pandas dataframes, one for atom information and one for bond information. """ # Dict to hold the atom information atom_info = { 'atom': [], 'element': [], 'type': [], 'hyb': [], 'charge': [] } # Dict to hold the bond information bond_info = { 'start': [], 'end': [], 'order': [] } # Dict to hold the element identities elements = {} # Open the molreport file with open(filepath) as molreport: # Read the file for line in molreport.readlines(): # Handle atoms case if line.startswith('ATOM'): # Split the line splitline = line.strip().split() # Extract relevant information for each atom, respecting # hydrogen stripping parameters if (splitline[2] != 'H' and strip_h) or not strip_h: atom_info['atom'].append(int(splitline[1])) atom_info['element'].append(splitline[2]) atom_info['type'].append(splitline[4]) atom_info['hyb'].append(int(splitline[6])) atom_info['charge'].append(float(splitline[8])) # Get the element identity elements[int(splitline[1])] = splitline[2] # Handle bonds case elif line.startswith('BOND'): # Split the line splitline = line.strip().split() # Get the bond start and end points bond_start = int(splitline[3]) bond_end = int(splitline[5]) # Whether bond includes hydrogen not_h = (elements[bond_start] != 'H' and elements[bond_end] != 'H') # Extract relevant information for each atom, respecting # hydrogen stripping parameters if (not_h and strip_h) or not strip_h: # Extract bond info, with correct ordering if bond_start < bond_end: bond_info['start'].append(bond_start) bond_info['end'].append(bond_end) else: bond_info['start'].append(bond_end) bond_info['end'].append(bond_start) # Extract bond order (e.g., single, double, etc.) bond_info['order'].append(splitline[7]) # Return a data frame of the relevant info atom_info = pd.DataFrame(atom_info) atom_info['element'] = atom_info['element'].apply(lambda x: x.title()) bond_info = pd.DataFrame(bond_info) return (atom_info, bond_info) def extract_ids(filepath): """ Extract atom identying attributes from file. Args: - filepath (str) - Path to ID file. Returns: - Pandas DataFrame of the atom name, identifier, and element. """ ids = pd.read_table(filepath, names=['atom', 'identifier', 'element'], keep_default_na=False) ids['element'] = ids['element'].apply(lambda x: x.title()) return ids def merge_molreport_ids(molreport_atoms, molreport_bonds, ids): """Merge molreport with ID information. Merges ID information (chain, residues, atom, etc.) with molreport information including bonds. Args: - molreport_atoms (pd.DataFrame) - Pandas DataFrame containing all atom information from the molreport. - molreport_bonds (pd.DataFrame) - Pandas DataFrame containing all bond information from the molreport. - ids (pd.DataFrame) - Pandas DataFrame containing indentifying information for each individual atom, to be joined into less descriptive molreport identifiers. Returns: - Tuple of Pandas DataFrames (atoms and bonds, respoectively) with merged ID information for each atom. """ # Handle atoms file atom_out = ( pd.merge(molreport_atoms, ids, on=['atom', 'element']) .drop('atom', axis=1) .rename(columns={'identifier': 'atom'}) ) atom_out = atom_out[['atom', 'element', 'type', 'hyb', 'charge']] # Handle bonds start_merge = ( pd.merge(molreport_bonds, ids[['atom', 'identifier']], left_on='start', right_on='atom') .drop(['start', 'atom'], axis=1) .rename(columns={'identifier': 'start'}) ) end_merge = ( pd.merge(start_merge, ids[['atom', 'identifier']], left_on='end', right_on='atom') .drop(['end', 'atom'], axis=1) .rename(columns={'identifier': 'end'}) ) bond_out = end_merge[['start', 'end', 'order']] return (atom_out, bond_out) def strip_hydrogen(atoms, bonds): """ Remove hydrogens from the atom and bond tables. """ atoms = atoms[atoms['element'] != 'H'] bonds = bonds[bonds['start'].isin(atoms['atom']) & bonds['end'].isin(atoms['atom'])] return (atoms, bonds) def augment_bonds(bonds): """ Split bond identifiers into component columns. """ start_info = ( bonds['start'].str.split(':', expand=True) .rename(columns={0: 'start_chain', 1: 'start_res', 2: 'start_num', 3: 'start_atom'}) ) end_info = ( bonds['end'].str.split(':', expand=True) .rename(columns={0: 'end_chain', 1: 'end_res', 2: 'end_num', 3: 'end_atom'}) ) bonds = pd.concat([bonds, start_info, end_info], axis=1) bonds['start_num'] = bonds['start_num'].astype(int) bonds['end_num'] = bonds['end_num'].astype(int) return bonds def augment_atoms(atoms): """ Split atom identifiers into component columns. """ atoms_info = ( atoms['atom'].str.split(':', expand=True) .rename(columns={0: 'chain', 1: 'res', 2: 'num', 3: 'atom_name'}) ) atoms = pd.concat([atoms, atoms_info], axis=1) atoms['num'] = atoms['num'].astype(int) return atoms def identify_gaps(chain_atoms): """ Identify gaps in chain of atoms. """ min_num = chain_atoms['num'].min() max_num = chain_atoms['num'].max() present = [] absent = [] breakpoints = [] unique_idxs = chain_atoms['num'].unique() for i in range(min_num, max_num + 1): if i in unique_idxs: present.append(i) term = i in (min_num, max_num) up_break = i + 1 not in chain_atoms['num'] down_break = i - 1 not in chain_atoms['num'] breakpoint = not term and (up_break or down_break) if breakpoint: breakpoints.append(i) else: absent.append(i) return (present, absent, breakpoints) def patch_gaps(chain, seq, absent, breakpoints): """ Patch gaps in a chain. """ # Extract information chain_atoms, chain_bonds = chain seq_atoms, seq_bonds = seq # Initialize a list for the missing atoms all_missing = [] # Get chain ID chain = chain_atoms['chain'].unique()[0] # Get missing atoms and bonds missing_atoms = seq_atoms[(seq_atoms['chain'] == chain) & (seq_atoms['num'].isin(absent)) & (~seq_atoms['atom'].isin(chain_atoms['atom']))] missing_bonds = seq_bonds[seq_bonds['start'].isin(missing_atoms['atom']) | seq_bonds['end'].isin(missing_atoms['atom'])] chain_atoms =
pd.concat([chain_atoms, missing_atoms])
pandas.concat
#!/home/ubuntu/anaconda3/bin//python ''' MIT License Copyright (c) 2018 <NAME> <<EMAIL>> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. The code is inspired by https://github.com/erikor/medline project, but the logic to parse medline XML was substantially modified. ''' # pre-requisites: pip install elasticsearch # pip install --upgrade pip # to execute this code: # STEP 0: ensure elastic search and kibana are running on port 9200 # and 5601 correspondingly # STEP 1: make sure you have all the medline XML files downloaded from # STEP 2: then you run nohup ls *.xml | xargs -n 1 -P 4 python ./parseMedline.py & # the above step assume quad-core processor, and runs it as daemon process so when # you exit SSH session, it runs in background. # this should load the data into elastic search import pandas as pd import glob import sys list_descr = [] list_speech = [] list_speakermap = [] descr_filenames = glob.glob("." + "/descr*.txt") speech_filenames = glob.glob("." + "/speech*.txt") speakermap_filenames = glob.glob("." + "/*SpeakerMap.txt") for filename in descr_filenames: try: list_descr.append(pd.read_csv(filename, sep="|", error_bad_lines=False, header = 0, encoding='ISO-8859-1')) except: print("Error reading description file = ", filename) for filename in speech_filenames: try: list_speech.append(pd.read_csv(filename, sep="|", error_bad_lines=False, header = 0, encoding='ISO-8859-1')) except: print("Error reading speech file = ", filename) for filename in speakermap_filenames: try: list_speakermap.append(pd.read_csv(filename, sep="|", error_bad_lines=False, header = 0, encoding='ISO-8859-1')) except: print("Error reading speakermap file = ", filename) df_descr = pd.concat(list_descr) df_speech = pd.concat(list_speech) df_speakermap = pd.concat(list_speakermap) list_descr = None list_speech = None list_speakermap = None df_descr_speech_speakermap = pd.merge(df_descr, df_speech, on='speech_id') df_descr_speech_speakermap = pd.merge(df_descr_speech_speakermap, df_speakermap, on=['speech_id']) df_descr = None df_speech = None df_speakermap = None # convert date df_descr_speech_speakermap['date'] =
pd.to_datetime(df_descr_speech_speakermap['date'], format='%Y%m%d')
pandas.to_datetime
import sys import logging import pandas as pd import pytz import bt try: from . import module_loader except: import module_loader sys.dont_write_bytecode = True class AlgoRunner(object): def __init__(self, stock_data_provider, capital_base, parameters): self.stock_data_provider_ = stock_data_provider self.load_data_ = module_loader.load_module_func(stock_data_provider, 'load_stock_data') self.capital_base_ = capital_base self.parameters_ = parameters def __create_pd_panel(self, all_data): trading_data = {} for data in all_data: trading_data[data.stock_id] = data.data_frame['close'] panel = pd.DataFrame(data=trading_data) return panel def ensure_stock_data(self, symbols): for symbol in symbols: self.load_data_(symbol) def run(self, algo, symbols, start_date=None, end_date=None, analyze_func=None): data = [] for symbol in symbols: data.append(self.load_data_(symbol)) if start_date: start_date = pd.to_datetime(start_date) if end_date: end_date =
pd.to_datetime(end_date)
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Fri Sep 20 14:08:35 2019 @author: Team BTC - <NAME>, <NAME>, <NAME>, <NAME>, <NAME> """ #sorry the code isnt very efficient. because of time constraints and the number of people working on the project, we couldnt do all the automatizations we would have liked to do. #Code in block comment should not be run as it will make change to the cloud database # %% Importing libraries # You may need to install dnspython in order to work with cloud server import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) import json import pandas as pd import numpy as np from tqdm import tqdm from datetime import datetime as dt import os import time import re import copy from textblob import TextBlob from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from datetime import timedelta from pymongo import MongoClient import statsmodels.formula.api as smf import statsmodels.api as sm from statsmodels.tsa.arima_model import ARIMA from statsmodels.graphics.tsaplots import plot_acf from statsmodels.graphics.tsaplots import plot_pacf from statsmodels.tsa.stattools import adfuller import matplotlib.pyplot as plt from statsmodels.tsa.api import VAR #os.chdir('H:/Documents/Alternance/Project/') # %% Function to scrap data from Stocktwit and add to the cloud server # The function have 2 inputs: # - Symbol of the asset in string # - Rate limit: number of requests per execution, in integer def get_stwits_data(symbol,rate_limit): client = MongoClient('mongodb+srv://Group_fintech:[email protected]/test?retryWrites=true&w=majority') db=client['SorbonneBigData'] exist=0 for q in db['{}'.format(symbol)].aggregate([ { "$group": { "_id": None, "min": { "$min": "$ID" } }} ]): exist=1 min_prev_id=q['min'] http = urllib3.PoolManager() mid=[] duplicates=0 for j in tqdm(range(rate_limit)): if exist==0: url = "https://api.stocktwits.com/api/2/streams/symbol/{}.json".format(symbol) elif exist!=0 and len(mid)==0: url = "https://api.stocktwits.com/api/2/streams/symbol/{}.json?max={}".format(symbol,min_prev_id) else: min_ID=min(mid) url = "https://api.stocktwits.com/api/2/streams/symbol/{}.json?max={}".format(symbol,min_ID) r = http.request('GET', url) try: data = json.loads(r.data) except: print('Decode error, retry again') continue if duplicates==1: print('\nThere are duplicates in the result. Other people are maybe running. \nPlease try again later.') break if data["response"]["status"] != 200: print("\nYour request was denied, retry in 1 hour") time.sleep(3600) continue # insert_element=[] # break for element in data["messages"]: mid.append(element["id"]) symbol_list=[] for s in element['symbols']: symbol_list.append(s['symbol']) try: insert_element = {"ID": element["id"], "TimeStamp": element["created_at"], "User": element["user"]["username"], "Content": element["body"],"Sentiment": (element["entities"]["sentiment"]["basic"]=="Bullish")*2-1,'Symbols':symbol_list} except: insert_element = {"ID": element["id"], "TimeStamp": element["created_at"], "User": element["user"]["username"], "Content": element["body"],"Sentiment": 0,'Symbols':symbol_list} try: result = db['{}'.format(symbol)].insert_one(insert_element) except: duplicates=1 break return insert_element # %% Execution of the function symbol='BTC.X' rate_limit=2000 last_ele=get_stwits_data(symbol,rate_limit) # %% #Creating custom lexicon #%% Finding the time interval of the database client = MongoClient('mongodb+srv://Group_fintech:<EMAIL>/test?retryWrites=true&w=majority') db=client['SorbonneBigData'] #Getting the minimum id for q in db['BTC.X'].aggregate([ { "$group": { "_id": None, "min": { "$min": "$ID" } }} ]): minID=q['min'] #Getting the timestamp from the min ID for post in db['BTC.X'].find({'ID':minID}): start_time=post['TimeStamp'] #Getting the max id for q in db['BTC.X'].aggregate([ { "$group": { "_id": None, "max": { "$max": "$ID" } }} ]): maxID=q['max'] #Getting the timestamp from the max ID for post in db['BTC.X'].find({'ID':maxID}): end_time=post['TimeStamp'] start_time=dt.strptime(start_time,'%Y-%m-%dT%H:%M:%SZ') end_time=dt.strptime(end_time,'%Y-%m-%dT%H:%M:%SZ') period=np.arange(dt(start_time.year,start_time.month,start_time.day),dt(end_time.year,end_time.month,end_time.day),timedelta(days=1)) #%% Creating dictionary #Creating function to find words in positive and negative function def create_positive_dictionary_by_day(day): dictionary=pd.DataFrame(columns=['Word','Frequency']) client = MongoClient('mongodb+srv://Group_fintech:<EMAIL>/test?retryWrites=true&w=majority') db=client['SorbonneBigData'] sentimental=1 for documents in db['BTC.X'].find({'Sentiment':sentimental,"TimeStamp":{"$regex": u"{}-{:02d}-{:02d}".format(day.astype(object).year,day.astype(object).month,day.astype(object).day)}}): word_list=re.findall(r"[\w']+|[.,!?;$]", documents['Content']) word_list = [porter.stem(t) for t in word_list] for word in word_list: if word in dictionary['Word'].tolist(): frq=copy.copy(dictionary.iloc[dictionary.index[dictionary['Word']==word].tolist()[0]][1])+1 dictionary.at[dictionary.index[dictionary['Word']==word].tolist()[0],'Frequency']=frq else: dictionary=dictionary.append({'Word': word ,'Frequency':1}, ignore_index=True) return dictionary def create_negative_dictionary_by_day(day): dictionary=pd.DataFrame(columns=['Word','Frequency']) client = MongoClient('mongodb+srv://Group_fintech:<EMAIL>/test?retryWrites=true&w=majority') db=client['SorbonneBigData'] sentimental=-1 for documents in db['BTC.X'].find({'Sentiment':sentimental,"TimeStamp":{"$regex": u"{}-{:02d}-{:02d}".format(day.astype(object).year,day.astype(object).month,day.astype(object).day)}}): word_list=re.findall(r"[\w']+|[.,!?;$]", documents['Content']) word_list = [porter.stem(t) for t in word_list] for word in word_list: if word in dictionary['Word'].tolist(): frq=copy.copy(dictionary.iloc[dictionary.index[dictionary['Word']==word].tolist()[0]][1])+1 dictionary.at[dictionary.index[dictionary['Word']==word].tolist()[0],'Frequency']=frq else: dictionary=dictionary.append({'Word': word ,'Frequency':1}, ignore_index=True) return dictionary from multiprocessing import Pool pool = Pool() #creating positive dictionary df=list(tqdm(pool.imap(create_positive_dictionary_by_day, period), total=len(period))) positive_dictionary=df[0].set_index('Word') for i in tqdm(range(1,len(df))): positive_dictionary=positive_dictionary.add(df[i].set_index('Word'), fill_value=0) #creating negative dictionary df=list(tqdm(pool.imap(create_negative_dictionary_by_day, period), total=len(period))) negative_dictionary=df[0].set_index('Word') for i in tqdm(range(1,len(df))): negative_dictionary=negative_dictionary.add(df[i].set_index('Word'), fill_value=0) negative_dictionary=negative_dictionary.sort_values('Frequency',ascending=False) positive_dictionary=positive_dictionary.sort_values('Frequency',ascending=False) positive_dictionary.columns=['Positive Freq'] negative_dictionary.columns=['Negative Freq'] positive_dictionary=positive_dictionary/db['BTC.X'].count_documents({'Sentiment':1}) negative_dictionary=negative_dictionary/db['BTC.X'].count_documents({'Sentiment':-1}) #Combining both dictionary final_dict=positive_dictionary.add(negative_dictionary, fill_value=0).sort_values('Positive Freq',ascending=False) final_dict['Pos over Neg']=final_dict['Positive Freq']/final_dict['Negative Freq'] #Removing stopwords from the dictionary nltk.download('stopwords') stop_words = set(stopwords.words('english')) final_dict=final_dict.reset_index() for i in final_dict['Word']: if i in stop_words: final_dict=final_dict[final_dict['Word']!=i] #Removing words below the threshold final_dic=final_dict.fillna(value=0) final_dict=final_dict[(final_dict['Negative Freq']>0.0005) | (final_dict['Positive Freq']>0.0005)] final_dict.fillna(value=0).sort_values('Pos over Neg',ascending=False).to_csv('Simple_Dictionary2.csv') #%% Creating positive and negative word list from the lexicon os.chdir('H:/Documents/Alternance/Project/') lexicon=pd.read_csv('Simple_Dictionary2.csv') lexicon=lexicon[['Word','Classification']] neg_list=list(lexicon[lexicon['Classification']==-1]['Word']) pos_list=list(lexicon[lexicon['Classification']==1]['Word']) # Update lexicon result to the database import nltk porter = nltk.PorterStemmer() import re import copy client = MongoClient('mongodb+srv://Group_fintech:<EMAIL>/test?retryWrites=true&w=majority') db=client['SorbonneBigData'] for i in range(32): for documents in tqdm(db['BTC.X'].find({'Custom_Lexicon_Sentiment':{ "$exists" : False }},limit=10000)): if documents['Sentiment']==0: score=0 word_list=re.findall(r"[\w']+|[.,!?;$]", documents['Content']) word_list = [porter.stem(t) for t in word_list] for word in word_list: if word in neg_list: score+=-1 if word in pos_list: score+=1 if score >0: senti=1 elif score <0: senti=-1 else: senti=0 db['BTC.X'].update_one({'_id':documents['_id']},{'$set':{'Custom_Lexicon_Sentiment':senti}}) else: db['BTC.X'].update_one({'_id':documents['_id']},{'$set':{'Custom_Lexicon_Sentiment':documents['Sentiment']}}) #%% Creating positive and negative word list from the teacher lexicon os.chdir('H:/Documents/Alternance/Project/') lexicon=pd.read_csv('l2_lexicon.csv',sep=';') neg_list=list(lexicon[lexicon['sentiment']=='negative']['keyword']) pos_list=list(lexicon[lexicon['sentiment']=='positive']['keyword']) # Update lexicon result to the database pattern = r'''(?x) # set flag to allow verbose regexps (?:[A-Z]\.)+ # abbreviations, e.g. U.S.A. | \w+(?:-\w+)* # words with optional internal hyphens | \$?\w+(?:\.\w+)?%? # tickers | \@?\w+(?:\.\w+)?%? # users | \.\.\. # ellipsis | [][.,;"'?!():_`-] # these are separate tokens; includes ], [ ''' client = MongoClient('mongodb+srv://Group_fintech:<EMAIL>/test?retryWrites=true&w=majority') db=client['SorbonneBigData'] cursor=db['BTC.X'].find({'Prof_Lexicon_Sentiment':{ "$exists" : False }},limit=10000) for i in range(32): for documents in tqdm(cursor): if documents['Sentiment']==0: score=0 word_list=nltk.regexp_tokenize(documents['Content'], pattern) # word_list=re.findall(r"[\w']+|[.,!?;$]", documents['Content']) # word_list = [porter.stem(t) for t in word_list] for word in word_list: if word in neg_list: score+=-1 if word in pos_list: score+=1 if score >0: senti=1 elif score <0: senti=-1 else: senti=0 db['BTC.X'].update_one({'_id':documents['_id']},{'$set':{'Prof_Lexicon_Sentiment':senti}}) else: db['BTC.X'].update_one({'_id':documents['_id']},{'$set':{'Prof_Lexicon_Sentiment':documents['Sentiment']}}) #%% Adding Vader analysis value to the database # Connecting to the database client = MongoClient('mongodb+srv://Group_fintech:<EMAIL>/test?retryWrites=true') db=client['SorbonneBigData'] collection= db['BTC.X'] # Applying Vader analyser = SentimentIntensityAnalyzer() for i in tqdm(range(31)): for documents in collection.find({'Vader_sentiment2':{ "$exists" : False }},limit=10000): doc_id = documents['_id'] Vaderdoc = analyser.polarity_scores(documents['Content']) Vaderdoc= Vaderdoc.get('compound') if Vaderdoc> 0.33: Sentiment_vader=1 elif Vaderdoc< -0.33: Sentiment_vader=-1 else: Sentiment_vader=0 print (Sentiment_vader) #Insert Vader value to the database db['BTC.X'].update_one({'_id':documents['_id']},{'$set':{'Vader_sentiment2':Sentiment_vader}}) db['BTC.X'].update_one({'_id':documents['_id']},{'$set':{'Vader_sentiment':Vaderdoc}}) #%% Adding Textblob analysis value to the database # Connecting to the database client = MongoClient('mongodb+srv://Group_fintech:<EMAIL>/test?retryWrites=true&w=majority') db=client['SorbonneBigData'] collection= db['BTC.X'] # Applying Vader analyser = SentimentIntensityAnalyzer() #Vader=[] 54452 for i in tqdm(range(31)): for documents in collection.find({'Textblob_Sentiment2':{'$exists':False}},limit=10000): doc_id = documents['_id'] pola = TextBlob(documents['Content']).sentiment.polarity # Vader.append(Vaderdoc) if pola> 0.33: Sentiment_txt=1 elif pola< -0.33: Sentiment_txt=-1 else: Sentiment_txt=0 db['BTC.X'].update_one({'_id':documents['_id']},{'$set':{'Textblob_Sentiment2':Sentiment_txt}}) db['BTC.X'].update_one({'_id':documents['_id']},{'$set':{'Textblob_Sentiment':pola}}) #%% Econometric testing #%% Import BTC price time series client = MongoClient('mongodb+srv://Group_fintech:[email protected]/test?retryWrites=true&w=majority') db=client['SorbonneBigData'] price=[] for documents in db['BTC.Price'].find({}): price.append([documents['Time'],documents['Price']]) price=pd.DataFrame(price,columns=['Time','Price']) price['Time']=pd.to_datetime(price['Time']) price=price.set_index('Time') price=price[price.index<=dt(2019,9,21,14)] plt.figure() price.plot() price['r_btc'] = (price.Price - price.Price.shift(1)) / price.Price.shift(1) #%% Import all sentiment time series client = MongoClient('mongodb+srv://Group_fintech:[email protected]/test?retryWrites=true&w=majority') db=client['SorbonneBigData'] sentimental=[] for documents in tqdm(db['BTC'].find({})): sentimental.append([documents['TimeStamp'],documents['Custom_Lexicon_Sentiment'],documents['Prof_Lexicon_Sentiment'],documents['Textblob_Sentiment'],documents['Textblob_Sentiment2'],documents['Vader_sentiment'],documents['Vader_sentiment2'],documents['Sentiment']]) sentimental=pd.DataFrame(sentimental,columns=['Time','Custom_Lexicon_Sentiment','Prof_Lexicon_Sentiment','Textblob_Sentiment_prob','Textblob_Sentiment_binary','Vader_sentiment_prob','Vader_sentiment_binary','Origin_sentiment']) sentimental=sentimental.set_index('Time') sentimental.index=pd.to_datetime(sentimental.index.tz_localize(None)) # Resample time series into hour sentiment_1h=sentimental.resample('1H').mean() sentiment_1h.plot() sentiment_1h=sentiment_1h[sentiment_1h.index > dt(2019,1,1) ] # Export the time series to database for i in tqdm(range(len(sentiment_1h))): insert_element = {"Time": sentiment_1h.index[i], "{}".format(sentiment_1h.columns[0]): sentiment_1h["{}".format(sentiment_1h.columns[0])][i],"{}".format(sentiment_1h.columns[1]): sentiment_1h["{}".format(sentiment_1h.columns[1])][i], "{}".format(sentiment_1h.columns[2]): sentiment_1h["{}".format(sentiment_1h.columns[2])][i], "{}".format(sentiment_1h.columns[3]): sentiment_1h["{}".format(sentiment_1h.columns[3])][i], "{}".format(sentiment_1h.columns[4]): sentiment_1h["{}".format(sentiment_1h.columns[4])][i], "{}".format(sentiment_1h.columns[5]): sentiment_1h["{}".format(sentiment_1h.columns[5])][i], "{}".format(sentiment_1h.columns[6]): sentiment_1h["{}".format(sentiment_1h.columns[6])][i]} result = db['Time_series_Data'].insert_one(insert_element) # sentiment_1h=[] for documents in tqdm(db['Time_series_Data'].find({})): sentiment_1h.append([documents['Time'],documents['Custom_Lexicon_Sentiment'],documents['Prof_Lexicon_Sentiment'],documents['Textblob_Sentiment_prob'],documents['Textblob_Sentiment_binary'],documents['Vader_sentiment_prob'],documents['Vader_sentiment_binary'],documents['Origin_sentiment']]) sentiment_1h=pd.DataFrame(sentiment_1h,columns=['Time','Custom_Lexicon_Sentiment','Prof_Lexicon_Sentiment','Textblob_Sentiment_prob','Textblob_Sentiment_binary','Vader_sentiment_prob','Vader_sentiment_binary','Origin_sentiment']) sentiment_1h=sentiment_1h.set_index('Time') sentiment_1h.index=pd.to_datetime(sentiment_1h.index.tz_localize(None)) #%% Correlation Matrix test_data=pd.concat([price,sentiment_1h],axis=1) test_data=test_data.fillna(value=0) corr_matrix=test_data.corr() #============================================================================== #%%Time series analysis for custom lexicon and professor's lexicon #analyse each timeseries by plotting them sentiment_1h=sentiment_1h.dropna() sentiprof=sentiment_1h.iloc[:,1] senticustom=sentiment_1h.iloc[:,0] sentiprof=sentiprof.dropna() senticustom=senticustom.dropna() sentiprof.astype(float) senticustom.astype(float) plt.figure() btweet= sentiprof.plot(title='One hour average sentiment value(sentiprof)') plt.figure() btweetc=senticustom.plot(title='One hour average sentiment value2(senticustom)') #from this graph, we can find our two sentiment values fluctuates, but 'quite stable'. sentiprof.mean() senticustom.mean() #sentiprof mean value is 0.3615, it is lower than senticustom mean value which is 0.44 #Through this grough,we can observe a positive sentiment of btcoin on tweet from janurary 2019. price.astype(float) plt.figure() priceg= price.Price.plot(title='Price of Bitcoin since Jan 2019(one hour)') #Through this graph, we can find price of Bitcoin has an increasing trend from Jan 2019 to July 2019) preturn=(price.Price-price.Price.shift(1))/price.Price.shift(1) preturn=preturn.dropna() preturn.mean() plt.figure() preturn.plot(title='Price return of Bitcoin since Jan 2019(one hour)') #From this graph of price return, we can find it has some fluctuations, but 'quite stable' for us. #%%Stationarity test, Unitroot test #<NAME> adfuller(sentiprof,regression='ct') adfuller(sentiprof,regression='nc') #p value is small enough, at 95% confidence interval, we can say there is no unitroot in sentiprof, the series is quite stationary. #Custom Lexicon adfuller(senticustom,regression='ct') adfuller(senticustom,regression='nc') ##the p-value is low enough, at 95% confidence level, we can reject the null typothesis which there is a unitroot. adfuller(price.Price,regression='ct') ##p value is high,0.83. like what we saw in the graph, it has an obvious increasing trend since Jan 2019. adfuller(preturn,regression='ct') adfuller(preturn,regression='nc') #p value is very low to reject the null hypothesis, there is no unitroot for Bitcoin price return. #%%Set the same datatime and merge all datas togther. dates2 = pd.date_range('2018-12-22', '2019-09-24', freq='h') ab=pd.DataFrame(index=dates2,data=sentiprof) ad=pd.DataFrame(index=dates2,data=preturn) ac=pd.DataFrame(index=dates2,data=senticustom) btcdata=
pd.concat([ad,ab,ac],axis=1)
pandas.concat
import warnings import pandas as pd import numpy as np import pytorch_lightning as pl from pytorch_lightning.callbacks import EarlyStopping, LearningRateMonitor from pytorch_lightning.loggers import TensorBoardLogger import torch from pytorch_forecasting import Baseline, TemporalFusionTransformer, TimeSeriesDataSet from pytorch_forecasting.data import GroupNormalizer from pytorch_forecasting.metrics import SMAPE, PoissonLoss, QuantileLoss from config import load_config warnings.filterwarnings("ignore") spec = load_config("config.yaml") BATCH_SIZE = spec["model_local"]["batch_size"] MAX_EPOCHS = spec["model_local"]["max_epochs"] GPUS = spec["model_local"]["gpus"] LEARNING_RATE = spec["model_local"]["learning_rate"] HIDDEN_SIZE = spec["model_local"]["hidden_size"] DROPOUT = spec["model_local"]["dropout"] HIDDEN_CONTINUOUS_SIZE = spec["model_local"]["hidden_continuous_size"] GRADIENT_CLIP_VAL = spec["model_local"]["gradient_clip_val"] data =
pd.read_csv("data/poc.csv")
pandas.read_csv
''' Project: WGU Data Management/Analytics Undergraduate Capstone <NAME> August 2021 GDELTbase.py Class for creating/maintaining data directory structure, bulk downloading of GDELT files with column reduction, parsing/cleaning to JSON format, and export of cleaned records to MongoDB. Basic use should be by import and implementation within an IDE, or by editing section # C00 and running this script directly. Primary member functions include descriptive docstrings for their intent and use. See license.txt for information related to each open-source library used. WARNING: project file operations are based on relative pathing from the 'scripts' directory this Python script is located in, given the creation of directories 'GDELTdata' and 'EDAlogs' parallel to 'scripts' upon first GDELTbase and GDELTeda class initializations. If those directories are not already present, a fallback method for string-literal directory reorientation may be found in GDELTbase shared class data at this tag: # A01a - backup path specification. Any given user's project directory must be specified there. See also GDELTeda.py, tag # A02b - Project directory path, as any given user's project directory must be specified for that os.chdir() call, also. Contents: A00 - GDELTbase A01 - shared class data (toolData, localDb) A01a - backup path specification Note: Specification at A01a should be changed to suit a user's desired directory structure, given their local filesystem. A02 - __init__ w/ instanced data (localFiles) B00 - class methods B01 - updateLocalFilesIndex B02 - clearLocalFilesIndex B03 - showLocalFiles B04 - wipeLocalFiles B05 - extensionToTableName B06 - isFileDownloaded B07 - downloadGDELTFile B08 - downloadGDELTDay B09 - cleanFile (includes the following field/subfield parser functions) B09a - themeSplitter B09b - locationsSplitter B09c - personsSplitter B09d - organizationsSplitter B09e - toneSplitter B09f - countSplitter B09g - One-liner date conversion function for post-read_csv use B09h - llConverter B10 - cleanTable B11 - mongoFile B12 - mongoTable C00 - main w/ testing ''' import pandas as pd import numpy as np import os import pymongo import wget import json from time import time from datetime import datetime, tzinfo from zipfile import ZipFile as zf from pprint import pprint as pp from urllib.error import HTTPError # A00 class GDELTbase: '''Base object for GDELT data acquisition, cleaning, and storage. Shared class data: ----------------- toolData - dict with these key - value pairs: URLbase - "http://data.gdeltproject.org/gdeltv2/" path - os.path path objects, 'raw' and 'clean', per-table names - lists of string column names, per-table, original and reduced extensions - dict mapping table names to file extensions, per-table columnTypes - dicts mapping table column names to appropriate types localDb - dict with these key - value pairs: client - pymongo.MongoClient() database - pymongo.MongoClient().capstone collections - dict mapping table names to suitable mongoDB collections Instanced class data: -------------------- localFiles - dict, per-table keys for lists of local 'raw' and 'clean' filenames Class methods: ------------- updateLocalFilesIndex() clearLocalFilesIndex() showLocalFiles() wipeLocalFiles() extensionToTableName() isFileDownloaded() downloadGDELTFile() downloadGDELTDay() cleanFile() cleanTable() mongoFile() mongoTable() ''' # A01 - shared class data toolData = {} # A01a - backup path specification # Failsafe path for local main project directory. Must be changed to suit # location of any given end-user's 'script' directory in case directory # 'GDELTdata' is not present one directory up. toolData['projectPath'] = 'C:\\Users\\urf\\Projects\\WGU capstone' # Controls generation of datafile download URLs in downloadGDELTDay()/File() toolData['URLbase'] = "http://data.gdeltproject.org/gdeltv2/" # Used in forming URLs for datafile download toolData['extensions'] = { 'events' : "export.CSV.zip", 'gkg' : "gkg.csv.zip", 'mentions' : "mentions.CSV.zip", } # These paths are set relative to the location of this script, one directory # up, in 'GDELTdata', parallel to the script directory. toolData['path'] = {} toolData['path']['base']= os.path.join(os.path.abspath(__file__), os.path.realpath('..'), 'GDELTdata') toolData['path']['events'] = { 'table': os.path.join(toolData['path']['base'], 'events'), 'raw': os.path.join(toolData['path']['base'], 'events', 'raw'), 'clean': os.path.join(toolData['path']['base'], 'events', 'clean'), 'realtimeR' : os.path.join(toolData['path']['base'], 'events', 'realtimeRaw'), 'realtimeC' : os.path.join(toolData['path']['base'], 'events', 'realtimeClean') } toolData['path']['gkg'] = { 'table': os.path.join(toolData['path']['base'], 'gkg'), 'raw': os.path.join(toolData['path']['base'], 'gkg', 'raw'), 'clean': os.path.join(toolData['path']['base'], 'gkg', 'clean'), 'realtimeR' : os.path.join(toolData['path']['base'], 'gkg', 'realtimeRaw'), 'realtimeC' : os.path.join(toolData['path']['base'], 'gkg', 'realtimeClean') } toolData['path']['mentions'] = { 'table': os.path.join(toolData['path']['base'], 'mentions'), 'raw': os.path.join(toolData['path']['base'], 'mentions', 'raw'), 'clean': os.path.join(toolData['path']['base'], 'mentions', 'clean'), 'realtimeR' : os.path.join(toolData['path']['base'], 'mentions', 'realtimeRaw'), 'realtimeC' : os.path.join(toolData['path']['base'], 'mentions', 'realtimeClean') } # These mappings and lists are for recognition of all possible # column names, and the specific discarding of a number of columns # which have been predetermined as unnecessary in the context of # simple EDA. toolData['names'] = {} toolData['names']['events'] = { 'original' : [ 'GLOBALEVENTID', 'Day', 'MonthYear', 'Year', 'FractionDate', 'Actor1Code', 'Actor1Name', 'Actor1CountryCode', 'Actor1KnownGroupCode', 'Actor1EthnicCode', 'Actor1Religion1Code', 'Actor1Religion2Code', 'Actor1Type1Code', 'Actor1Type2Code', 'Actor1Type3Code', 'Actor2Code', 'Actor2Name', 'Actor2CountryCode', 'Actor2KnownGroupCode', 'Actor2EthnicCode', 'Actor2Religion1Code', 'Actor2Religion2Code', 'Actor2Type1Code', 'Actor2Type2Code', 'Actor2Type3Code', 'IsRootEvent', 'EventCode', 'EventBaseCode', 'EventRootCode', 'QuadClass', 'GoldsteinScale', 'NumMentions', 'NumSources', 'NumArticles', 'AvgTone', 'Actor1Geo_Type', 'Actor1Geo_FullName', 'Actor1Geo_CountryCode', 'Actor1Geo_ADM1Code', 'Actor1Geo_ADM2Code', 'Actor1Geo_Lat', 'Actor1Geo_Long', 'Actor1Geo_FeatureID', 'Actor2Geo_Type', 'Actor2Geo_FullName', 'Actor2Geo_CountryCode', 'Actor2Geo_ADM1Code', 'Actor2Geo_ADM2Code', 'Actor2Geo_Lat', 'Actor2Geo_Long', 'Actor2Geo_FeatureID', 'ActionGeo_Type', 'ActionGeo_FullName', 'ActionGeo_CountryCode', 'ActionGeo_ADM1Code', 'ActionGeo_ADM2Code', 'ActionGeo_Lat', 'ActionGeo_Long', 'ActionGeo_FeatureID', 'DATEADDED', 'SOURCEURL', ], 'reduced' : [ 'GLOBALEVENTID', 'Actor1Code', 'Actor1Name', 'Actor1CountryCode', 'Actor1Type1Code', 'Actor1Type2Code', 'Actor1Type3Code', 'Actor2Code', 'Actor2Name', 'Actor2CountryCode', 'Actor2Type1Code', 'Actor2Type2Code', 'Actor2Type3Code', 'IsRootEvent', 'EventCode', 'EventBaseCode', 'EventRootCode', 'QuadClass', 'AvgTone', 'Actor1Geo_Type', 'Actor1Geo_FullName', 'Actor1Geo_Lat', 'Actor1Geo_Long', 'Actor2Geo_Type', 'Actor2Geo_FullName', 'Actor2Geo_Lat', 'Actor2Geo_Long', 'ActionGeo_Type', 'ActionGeo_FullName', 'ActionGeo_Lat', 'ActionGeo_Long', 'DATEADDED', 'SOURCEURL', ], } toolData['names']['gkg'] = { 'original' : [ 'GKGRECORDID', 'V21DATE', 'V2SourceCollectionIdentifier', 'V2SourceCommonName', 'V2DocumentIdentifier', 'V1Counts', 'V21Counts', 'V1Themes', 'V2EnhancedThemes', 'V1Locations', 'V2EnhancedLocations', 'V1Persons', 'V2EnhancedPersons', 'V1Organizations', 'V2EnhancedOrganizations', 'V15Tone', 'V21EnhancedDates', 'V2GCAM', 'V21SharingImage', 'V21RelatedImages', 'V21SocialImageEmbeds', 'V21SocialVideoEmbeds', 'V21Quotations', 'V21AllNames', 'V21Amounts', 'V21TranslationInfo', 'V2ExtrasXML', ], 'reduced' : [ 'GKGRECORDID', 'V21DATE', 'V2SourceCommonName', 'V2DocumentIdentifier', 'V1Counts', 'V1Themes', 'V1Locations', 'V1Persons', 'V1Organizations', 'V15Tone', ], } toolData['names']['mentions'] = { 'original' : [ 'GLOBALEVENTID', 'EventTimeDate', 'MentionTimeDate', 'MentionType', 'MentionSourceName', 'MentionIdentifier', 'SentenceID', # 'Actor1CharOffset',# 'Actor2CharOffset',# 'ActionCharOffset',# 'InRawText', 'Confidence', 'MentionDocLen', # 'MentionDocTone', 'MentionDocTranslationInfo', # 'Extras', # ], 'reduced' : [ 'GLOBALEVENTID', 'EventTimeDate', 'MentionTimeDate', 'MentionType', 'MentionSourceName', 'MentionIdentifier', 'InRawText', 'Confidence', 'MentionDocTone', ], } # These mappings are used in automated dtype application to Pandas # DataFrame collections of GDELT records, part of preprocessing. toolData['columnTypes'] = {} toolData['columnTypes']['events'] = { 'GLOBALEVENTID' : type(1), 'Actor1Code': pd.StringDtype(), 'Actor1Name': pd.StringDtype(), 'Actor1CountryCode': pd.StringDtype(), 'Actor1Type1Code' : pd.StringDtype(), 'Actor1Type2Code' : pd.StringDtype(), 'Actor1Type3Code' :
pd.StringDtype()
pandas.StringDtype
import pandas as pd import numpy as np import knackpy as kp import fulcrum as fc import requests import pdb import json from datetime import datetime, timedelta from pypgrest import Postgrest from tdutils import argutil from config.secrets import * form_id = "44359e32-1a7f-41bd-b53e-3ebc039bd21a" key = FULCRUM_CRED.get("api_key") # create postgrest instance pgrest = Postgrest( "http://transportation-data.austintexas.io/signal_pms", auth=JOB_DB_API_TOKEN ) def get_pgrest_records(): """Summary Returns: TYPE: Description """ # the datetime converstin for modified_date is not right. The time part are missing params = {} results = pgrest.select(params=params) if len(results) != 0: results =
pd.DataFrame(results)
pandas.DataFrame
""" Module contains miscellaneous functions used for reading data, printing logo etc. """ import pickle from random import sample import networkx as nx import pandas as pd def read_testcase(FOLDER): """ Reads the GTFS network and preprocessed dict. If the dicts are not present, dict_builder_functions are called to construct them. Returns: stops_file (pandas.dataframe): stops.txt file in GTFS. trips_file (pandas.dataframe): trips.txt file in GTFS. stop_times_file (pandas.dataframe): stop_times.txt file in GTFS. transfers_file (pandas.dataframe): dataframe with transfers (footpath) details. stops_dict (dict): keys: route_id, values: list of stop id in the route_id. Format-> dict[route_id] = [stop_id] stoptimes_dict (dict): keys: route ID, values: list of trips in the increasing order of start time. Format-> dict[route_ID] = [trip_1, trip_2] where trip_1 = [(stop id, arrival time), (stop id, arrival time)] footpath_dict (dict): keys: from stop_id, values: list of tuples of form (to stop id, footpath duration). Format-> dict[stop_id]=[(stop_id, footpath_duration)] route_by_stop_dict_new (dict): keys: stop_id, values: list of routes passing through the stop_id. Format-> dict[stop_id] = [route_id] idx_by_route_stop_dict (dict): preprocessed dict. Format {(route id, stop id): stop index in route}. """ import gtfs_loader from dict_builder import dict_builder_functions stops_file, trips_file, stop_times_file, transfers_file = gtfs_loader.load_all_db(FOLDER) try: stops_dict, stoptimes_dict, footpath_dict, routes_by_stop_dict, idx_by_route_stop_dict = gtfs_loader.load_all_dict(FOLDER) except FileNotFoundError: stops_dict = dict_builder_functions.build_save_stops_dict(stop_times_file, trips_file, FOLDER) stoptimes_dict = dict_builder_functions.build_save_stopstimes_dict(stop_times_file, trips_file, FOLDER) routes_by_stop_dict = dict_builder_functions.build_save_route_by_stop(stop_times_file, FOLDER) footpath_dict = dict_builder_functions.build_save_footpath_dict(transfers_file, FOLDER) idx_by_route_stop_dict = dict_builder_functions.stop_idx_in_route(stop_times_file, FOLDER) return stops_file, trips_file, stop_times_file, transfers_file, stops_dict, stoptimes_dict, footpath_dict, routes_by_stop_dict, idx_by_route_stop_dict def print_logo(): """ Prints the logo """ print(""" **************************************************************************************** * TRANSIT ROUTING ALGORITHMS * * <NAME> <NAME> * * (<EMAIL>) (<EMAIL>) * **************************************************************************************** """) return None def print_network_details(transfers_file, trips_file, stops_file): """ Prints the network details like number of routes, trips, stops, footpath Args: transfers_file (pandas.dataframe): trips_file (pandas.dataframe): stops_file (pandas.dataframe): Returns: None """ print("___________________________Network Details__________________________") print("| No. of Routes | No. of Trips | No. of Stops | No. of Footapths |") print( f"| {len(set(trips_file.route_id))} | {len(set(trips_file.trip_id))} | {len(set(stops_file.stop_id))} | {len(transfers_file)} |") print("____________________________________________________________________") return None def print_query_parameters(SOURCE, DESTINATION, D_TIME, MAX_TRANSFER, WALKING_FROM_SOURCE, variant, no_of_partitions=None, weighting_scheme=None, partitioning_algorithm=None): """ Prints the input parameters related to the shortest path query Args: SOURCE (int): stop-id DESTINATION stop DESTINATION (int/list): stop-id SOURCE stop. For Onetomany algorithms, this is a list. D_TIME (pandas.datetime): Departure time MAX_TRANSFER (int): Max transfer limit WALKING_FROM_SOURCE (int): 1 or 0. 1 means walking from SOURCE is allowed. variant (int): variant of the algorithm. 0 for normal version, 1 for range version, 2 for One-To-Many version, 3 for Hyper version no_of_partitions: number of partitions network has been divided into weighting_scheme: which weighing scheme has been used to generate partitions. partitioning_algorithm: which algorithm has been used to generate partitions. Returns: None """ print("___________________Query Parameters__________________") print("Network: Switzerland") print(f"SOURCE stop id: {SOURCE}") print(f"DESTINATION stop id: {DESTINATION}") print(f"Maximum Transfer allowed: {MAX_TRANSFER}") print(f"Is walking from SOURCE allowed ?: {WALKING_FROM_SOURCE}") if variant == 2 or variant == 1: print(f"Earliest departure time: 24 hour (Profile Query)") else: print(f"Earliest departure time: {D_TIME}") if variant == 4: print(f"Number of partitions: {no_of_partitions}") print(f"Partitioning Algorithm used: {partitioning_algorithm}") print(f"Weighing scheme: {weighting_scheme}") print("_____________________________________________________") return None def read_partitions(stop_times_file, FOLDER, no_of_partitions, weighting_scheme, partitioning_algorithm): """ Reads the fill-in information. Args: stop_times_file (pandas.dataframe): dataframe with stoptimes details FOLDER (str): path to network folder. no_of_partitions (int): number of partitions network has been divided into. weighting_scheme (str): which weighing scheme has been used to generate partitions. partitioning_algorithm (str):which algorithm has been used to generate partitions. Currently supported arguments are hmetis or kahypar. Returns: stop_out (dict) : key: stop-id (int), value: stop-cell id (int). Note: if stop-cell id of -1 denotes cut stop. route_groups (dict): key: tuple of all possible combinations of stop cell id, value: set of route ids belonging to the stop cell combination cut_trips (set): set of trip ids that are part of fill-in. trip_groups (dict): key: tuple of all possible combinations of stop cell id, value: set of trip ids belonging to the stop cell combination """ import itertools if partitioning_algorithm == "hmetis": route_out = pd.read_csv(f'./partitions/{FOLDER}/routeout_{weighting_scheme}_{no_of_partitions}.csv', usecols=['path_id', 'group']).groupby('group') stop_out = pd.read_csv(f'./partitions/{FOLDER}/cutstops_{weighting_scheme}_{no_of_partitions}.csv', usecols=['stop_id', 'g_id']) fill_ins = pd.read_csv(f'./partitions/{FOLDER}/fill_ins_{weighting_scheme}_{no_of_partitions}.csv') elif partitioning_algorithm == "kahypar": route_out = pd.read_csv(f'./kpartitions/{FOLDER}/routeout_{weighting_scheme}_{no_of_partitions}.csv', usecols=['path_id', 'group']).groupby('group') stop_out = pd.read_csv(f'./kpartitions/{FOLDER}/cutstops_{weighting_scheme}_{no_of_partitions}.csv', usecols=['stop_id', 'g_id']).astype(int) fill_ins = pd.read_csv(f'./kpartitions/{FOLDER}/fill_ins_{weighting_scheme}_{no_of_partitions}.csv') fill_ins.fillna(-1, inplace=True) fill_ins['routes'] = fill_ins['routes'].astype(int) print(f'_________Fill-in information for {len(set(stop_out.g_id)) - 1} Partition_________') print( f'Number of cutstops: {(len(stop_out[stop_out.g_id == -1]))} ({round((len(stop_out[stop_out.g_id == -1])) / (len(stop_out)) * 100, 2)}%)') stop_out = {row.stop_id: row.g_id for _, row in stop_out.iterrows()} cut_trips = set(fill_ins['trips']) route_partitions, trip_partitions = {}, {} for g_id, rotes in route_out: route_partitions[g_id] = set((rotes['path_id'])) trip_partitions[g_id] = set(stop_times_file[stop_times_file.route_id.isin(route_partitions[g_id])].trip_id) trip_partitions[-1] = set(fill_ins['trips']) grups = list(itertools.combinations(trip_partitions.keys(), 2)) trip_groups = {} for group in grups: trip_groups[tuple(sorted(group))] = trip_partitions[group[0]].union(trip_partitions[group[1]]).union( trip_partitions[-1]) for x in trip_partitions.keys(): trip_groups[(x, x)] = trip_partitions[x].union(trip_partitions[-1]) route_partitions[-1] = set(fill_ins['routes']) route_partitions[-1].remove(-1) route_groups = {} for group in grups: route_groups[tuple(sorted(group))] = route_partitions[group[0]].union(route_partitions[group[1]]).union( route_partitions[-1]) for x in route_partitions.keys(): route_groups[(x, x)] = route_partitions[x].union(route_partitions[-1]) print(f"fill-in trips: {len(cut_trips)} ({round(len(cut_trips) / len(set(stop_times_file.trip_id)) * 100, 2)}%)") print( f'fill-in routes: {len(set(fill_ins.routes)) - 1} ({round((len(set(fill_ins.routes)) - 1) / len(set(stop_times_file.route_id)) * 100, 2)}%)') print("____________________________________________________") return stop_out, route_groups, cut_trips, trip_groups def read_nested_partitions(stop_times_file, FOLDER, no_of_partitions, weighting_scheme): """ Read fill-ins in case of nested partitioning. Args: stop_times_file (pandas.dataframe): dataframe with stoptimes details FOLDER (str): path to network folder. no_of_partitions (int): number of partitions network has been divided into. weighting_scheme (str): which weighing scheme has been used to generate partitions. Returns: stop_out (dict) : key: stop-id (int), value: stop-cell id (int). Note: if stop-cell id of -1 denotes cut stop. route_groups (dict): key: tuple of all possible combinations of stop cell id, value: set of route ids belonging to the stop cell combination cut_trips (set): set of trip ids that are part of fill-in. trip_groups (dict): key: tuple of all possible combinations of stop cell id, value: set of trip ids belonging to the stop cell combination """ import warnings from pandas.core.common import SettingWithCopyWarning warnings.simplefilter(action="ignore", category=SettingWithCopyWarning) import itertools main_partitions = no_of_partitions route_out = pd.read_csv(f'./kpartitions/{FOLDER}/nested/nested_route_out_{weighting_scheme}_{main_partitions}.csv') stop_out = pd.read_csv(f'./kpartitions/{FOLDER}/nested/nested_cutstops_{weighting_scheme}_{main_partitions}.csv') fill_ins = pd.read_csv(f'./kpartitions/{FOLDER}//nested/nested_fill_ins_{weighting_scheme}_{main_partitions}.csv') fill_ins.fillna(-1, inplace=True) fill_ins['routes'] = fill_ins['routes'].astype(int) temp = stop_out.drop(columns=['lat', 'long', 'boundary_g_id']) cut_stops_db = temp[temp.isin([-1]).any(axis=1)] # print(f'Upper Partition: {len(set(stop_out.g_id)) - 1} (2-way nesting)') # print(f'{len(cut_stops_db)} ({round((len(cut_stops_db)) / (len(stop_out)) * 100, 2)} Total cutstops%)') start = 0 normal_stops = stop_out[~stop_out.index.isin(cut_stops_db.index)] for x in set(normal_stops.g_id): normal_stops.loc[:, f"lower_cut_stops_{x}"] = normal_stops[f"lower_cut_stops_{x}"] + start start = start + 2 stop_out = {row.stop_id: row[f"lower_cut_stops_{row.g_id}"] for _, row in normal_stops.iterrows()} stop_out.update({stopp: -1 for stopp in set(cut_stops_db.stop_id)}) route_partitions, trip_partitions = {}, {} route_groups = route_out.groupby('group') for g_id, rotes in route_groups: route_partitions[g_id] = set((rotes['path_id'])) trip_partitions[g_id] = set(stop_times_file[stop_times_file.route_id.isin(route_partitions[g_id])].trip_id) trip_partitions[-1] = set(fill_ins['trips']) grups = list(itertools.combinations(trip_partitions.keys(), 2)) trip_groups = {} for group in grups: trip_groups[tuple(sorted(group))] = trip_partitions[group[0]].union(trip_partitions[group[1]]).union( trip_partitions[-1]) for x in trip_partitions.keys(): trip_groups[(x, x)] = trip_partitions[x].union(trip_partitions[-1]) route_partitions[-1] = set(fill_ins['routes']) route_partitions[-1].remove(-1) grups = list(itertools.combinations(route_partitions.keys(), 2)) route_groups = {} for group in grups: route_groups[tuple(sorted(group))] = route_partitions[group[0]].union(route_partitions[group[1]]).union( route_partitions[-1]) for x in route_partitions.keys(): route_groups[(x, x)] = route_partitions[x].union(route_partitions[-1]) cut_trips = set(fill_ins['trips']) # print(f"{len(cut_trips)} ({round(len(cut_trips) / len(set(stop_times_file.trip_id)) * 100, 2)}%) are cut trips") # print(f'{len(set(fill_ins.routes)) - 1} ({round((len(set(fill_ins.routes)) - 1) / len(set(stop_times_file.route_id)) * 100, 2)})% are cut routes') return stop_out, route_groups, cut_trips, trip_groups def check_nonoverlap(stoptimes_dict, stops_dict): ''' Check for non overlapping trips in stoptimes_dict. If found, it reduces the timestamp of the earlier trip by 1 second. This process is repeated untill overlapping trips=null. Note 1 second is taken so as to avoid creation of new overlapping trips due to timestamp correction. Args: stoptimes_dict (dict): preprocessed dict. Format {route_id: [[trip_1], [trip_2]]}. Returns: overlap (set): set of routes with overlapping trips. ''' for x in stops_dict.items(): if len(x[1]) != len(set(x[1])): print(f'duplicates stops in a route {x}') overlap = set() #Collect routes with non-overlapping trips for r_idx, route_trips in stoptimes_dict.items(): for x in range(len(route_trips) - 1): first_trip = route_trips[x] second_trip = route_trips[x + 1] if any([second_trip[idx][1] <= first_trip[idx][1] for idx, stamp in enumerate(first_trip)]): overlap = overlap.union({r_idx}) if overlap: print(f"{len(overlap)} have overlapping trips") while overlap: for r_idx in overlap: #Correct routes with non-overlapping trips route_trips = stoptimes_dict[r_idx].copy() for x in range(len(route_trips) - 1): first_trip = route_trips[x] second_trip = route_trips[x + 1] for idx, _ in enumerate(first_trip): if second_trip[idx][1] <= first_trip[idx][1]: stoptimes_dict[r_idx][x][idx] = (second_trip[idx][0], second_trip[idx][1] -
pd.to_timedelta(1, unit="seconds")
pandas.to_timedelta
import re import warnings import numpy as np import pandas as pd import scipy from pandas import DataFrame from sklearn.feature_extraction.text import TfidfTransformer from sklearn.neighbors import BallTree, KDTree, NearestNeighbors from sklearn.preprocessing import MultiLabelBinarizer, Normalizer from tqdm import tqdm class BaseRecommender(object): def __init__(self, items_path: str, train_path: str, test_path: str, val_path: str) -> None: """Base recommender class Args: items_path (str): Path to pickle file containing the items train_path (str): Path to train data parquet file test_path (str): Path to test data parquet file val_path (str): Path to validation data parquet file """ items = self._preprocess_items(pd.read_pickle(items_path)) self.items, self.metadata = self._generate_item_features(items) self.train = self._preprocess_train(pd.read_parquet(train_path)) self.test = pd.read_parquet(test_path) if test_path else None self.val = pd.read_parquet(val_path) if val_path else None self.recommendations = DataFrame() def _preprocess_items(self, items: DataFrame) -> DataFrame: """Applies preprocessing to the items Args: items (DataFrame): Dataframe containing all items with their metadata Returns: DataFrame: Sanitised item metadata """ ### borrowed from data processing script sentiment_map = { 'Overwhelmingly Negative' : (0.1, 1.0), 'Very Negative' : (0.1, 0.6), 'Negative' : (0.1, 0.1), 'Mostly Negative' : (0.3, 0.5), '1 user reviews' : (0.5, 0.002), '2 user reviews' : (0.5, 0.004), '3 user reviews' : (0.5, 0.006), '4 user reviews' : (0.5, 0.008), '5 user reviews' : (0.5, 0.010), '6 user reviews' : (0.5, 0.012), '7 user reviews' : (0.5, 0.014), '8 user reviews' : (0.5, 0.016), '9 user reviews' : (0.5, 0.018), 'Mixed' : (0.55, 0.5), 'Mostly Positive' : (0.75, 0.5), 'Positive' : (0.9, 0.1), 'Very Positive' : (0.9, 0.6), 'Overwhelmingly Positive' : (1.0, 1.0), } # fill nan with '1 user reviews' sentiment = items['sentiment'].apply(lambda x: x if isinstance(x, str) else '1 user reviews') # create new columns based on the sentiment items['sentiment_rating'] = sentiment.apply(lambda x: sentiment_map[x][0]) items['sentiment_n_reviews'] = sentiment.apply(lambda x: sentiment_map[x][1]) ### stop borrow items["price"] = items["price"].apply(lambda p: np.float32(p) if re.match(r"\d+(?:.\d{2})?", str(p)) else 0) items["metascore"] = items["metascore"].apply(lambda m: m if m != "NA" else np.nan) items["developer"].fillna(value='', inplace=True) items["developer"] = items["developer"].apply(lambda my_str: my_str.lower().split(',')) items["publisher"].fillna(value='', inplace=True) items["publisher"] = items["publisher"].apply(lambda my_str: my_str.lower().split(',')) items["early_access"] = items["early_access"].apply(lambda x: ["earlyaccess"] if x else []) items["specs"] = items["specs"].fillna("") items["specs"] = items["specs"].apply(lambda l: [re.subn(r"[^a-z0-9]", "", my_str.lower())[0] for my_str in l]) items["tags"] = items["tags"].fillna("") items["tags"] = items["tags"].apply(lambda l: [re.subn(r"[^a-z0-9]", "", my_str.lower())[0] for my_str in l]) items["genres"] = items["genres"].fillna("") items["genres"] = items["genres"].apply(lambda l: [re.subn(r"[^a-z0-9]", "", my_str.lower())[0] for my_str in l]) return items def _preprocess_train(self, train: DataFrame) -> DataFrame: """Applies preprocessing to the training set Args: train (DataFrame): Dataframe containing all training data Returns: DataFrame: Sanitised training data """ train["normalized_playtime_forever_sum"] = train.apply(lambda x: (np.log(np.array(x["playtime_forever"]) + np.array(x["playtime_2weeks"]) + 2))/np.sum(np.log(np.array(x["playtime_forever"]) + np.array(x["playtime_2weeks"]) + 2)), axis=1) train["normalized_playtime_forever_max"] = train.apply(lambda x: (np.log(np.array(x["playtime_forever"]) + np.array(x["playtime_2weeks"]) + 2))/np.max(np.log(np.array(x["playtime_forever"]) + np.array(x["playtime_2weeks"]) + 2)), axis=1) return train def set_user_data(self, train_path: str, test_path: str, val_path: str) -> None: """Read new train, test and val data Args: train_path (str): Path to train parquet file test_path (str): Path to test parquet file val_path (str): Path to validation parquet file """ self.train = pd.read_parquet(train_path) self.test = pd.read_parquet(test_path) self.val = pd.read_parquet(val_path) def _generate_item_features(self, items: DataFrame): """Generates the item representations Args: items (DataFrame): Dataframe containing only relevant metadata """ pass def evaluate(self, k=10, val=False) -> dict: """Evaluate the recommendations Args: filename (str, optional): filename for qualitative evaluation. Defaults to None. qual_eval_folder (str, optional): output folder for qualitative evaluation. Defaults to None. k (int, optional): Amount of recommendations to consider. Defaults to 10. val (bool, optional): Wether or not to use test or validation dataset. Defaults to False. Returns: dict: a dict containing the hitrate@k, recall@k and nDCG@k """ gt = self.val if val else self.test gt.rename(columns={"item_id": "items"}, inplace=True) eval = self.recommendations eval = eval.merge(gt, left_index=True, right_index=True) results_dict = dict() # Cap to k recommendations eval['recommendations'] = eval['recommendations'].apply(lambda rec: rec[:k]) # compute HR@k eval['HR@k'] = eval.apply(lambda row: int(any(item in row['recommendations'] for item in row['items'])), axis=1) results_dict[f'HR@{k}'] = eval['HR@k'].mean() # compute nDCG@k eval['nDCG@k'] = eval.apply(lambda row: np.sum([int(rec in row['items'])/(np.log2(i+2)) for i, rec in enumerate(row['recommendations'])]), axis=1) eval['nDCG@k'] = eval.apply(lambda row: row['nDCG@k']/np.sum([1/(np.log2(i+2)) for i in range(min(k, len(row['items'])))]), axis=1) results_dict[f'nDCG@{k}'] = eval['nDCG@k'].mean() # compute recall@k eval['items'] = eval['items'].apply(set) eval['recommendations'] = eval['recommendations'].apply(set) eval['recall@k'] = eval.apply(lambda row: len(row['recommendations'].intersection(row['items']))/len(row['items']), axis=1) results_dict[f'recall@{k}'] = eval['recall@k'].mean() # compute ideal recall@k eval['ideal_recall@k'] = eval.apply(lambda row: min(k, len(row['items']))/len(row['items']), axis=1) results_dict[f'ideal_recall@{k}'] = eval['ideal_recall@k'].mean() # compute normalised recall@k eval['nRecall@k'] = eval.apply(lambda row: row['recall@k']/row['ideal_recall@k'], axis=1) results_dict[f'nRecall@{k}'] = eval['nRecall@k'].mean() return results_dict def qualitative_evaluation(self, users:list=[], export_path:str=None) -> DataFrame: eval_data = self.recommendations if len(users) == 0 else self.recommendations.iloc[users] new_data = DataFrame({"owned_items": eval_data["item_id"].apply(lambda row: [self.metadata.at[id, "app_name"] for id in row]), "recommended_items": eval_data["recommendations"].apply(lambda row: [self.metadata.at[id, "app_name"] for id in row])}, index=eval_data.index) if export_path: new_data.to_csv(export_path) return new_data class ContentBasedRecommender(BaseRecommender): def __init__(self, items_path: str, train_path: str, test_path: str, val_path: str, sparse: bool = True, tfidf='default', normalize=False, columns:list=["genres", "tags"]) -> None: """Content based recommender Args: items_path (str): Path to pickle file containing the items train_path (str): Path to train data parquet file test_path (str): Path to test data parquet file val_path (str): Path to validation data parquet file sparse (bool, optional): If sparse representation should be used. Defaults to True. tfidf (str, optional): Which tf-idf method to use. Defaults to 'default'. normalize (bool, optional): If normalization should be used. Defaults to False. columns (list, optional): Columns to use for feature representation. Defaults to ["genres", "tags"]. """ self.sparse = sparse self.normalize = normalize self.recommendations = None self.normalizer = Normalizer(copy=False) self.columns = columns # Select tf-idf method to use self.tfidf = None if tfidf == 'default': self.tfidf = TfidfTransformer(smooth_idf=False, sublinear_tf=False) elif tfidf == 'smooth': self.tfidf = TfidfTransformer(smooth_idf=True, sublinear_tf=False) elif tfidf == 'sublinear': self.tfidf = TfidfTransformer(smooth_idf=False, sublinear_tf=True) elif tfidf == 'smooth_sublinear': self.tfidf = TfidfTransformer(smooth_idf=True, sublinear_tf=True) # Select algorithm to use for neighbour computation algorithm = 'auto' self.method = NearestNeighbors(n_neighbors=10, algorithm=algorithm, metric='cosine') super(ContentBasedRecommender, self).__init__(items_path, train_path, test_path, val_path) def _process_item_features(self, items: DataFrame) -> DataFrame: """Processes the item metadata for feature generation Args: items (DataFrame): Dataframe containing items metadata Returns: DataFrame: Dataframe containing only relevant data for feature generation """ return items.filter(self.columns), items.filter([col for col in items.columns if col not in self.columns+["index"]]) def _generate_item_features(self, items: DataFrame) -> DataFrame: """Generates feature vector of items and appends to returned DataFrame Args: items (DataFrame): dataframe containing the items Returns: DataFrame: dataframe with feature vector appended """ items, metadata = self._process_item_features(items) # Combine all features into one column columns = items.columns.tolist() for col in columns: items[col] = items[col].fillna("").apply(set) items["tags"] = items.apply(lambda x: list( set.union(*([x[col] for col in columns]))), axis=1) if "tags" in columns: columns.remove("tags") items = items.drop(columns, axis=1) # Compute one-hot encoded vector of tags mlb = MultiLabelBinarizer(sparse_output=self.sparse) if self.sparse: items = items.join(DataFrame.sparse.from_spmatrix(mlb.fit_transform(items.pop( "tags")), index=items.index, columns=["tag_" + c for c in mlb.classes_])) else: items = items.join(DataFrame(mlb.fit_transform(items.pop( "tags")), index=items.index, columns=["tag_" + c for c in mlb.classes_])) return items, metadata def generate_recommendations(self, amount=10, read_max=None) -> None: """Generate recommendations based on user review data Args: amount (int, optional): Amount of times to recommend. Defaults to 10. read_max (int, optional): Max amount of users to read. Defaults to None. """ items = self.items df = self.train.iloc[:read_max].copy(deep=True) if read_max else self.train # Drop id so only feature vector is left if self.sparse: X = scipy.sparse.csr_matrix(items.values) else: X = np.array(items.values) if self.tfidf: # Use tf-idf X = self.tfidf.fit_transform(X) if self.normalize: X = self.normalizer.fit_transform(X) # Transformed feature vector back into items if self.sparse: items = DataFrame.sparse.from_spmatrix(X) else: items =
DataFrame(X)
pandas.DataFrame
import os pat = "/storage/research/Intern19_v2/AutomatedDetectionWSI/LiverImages/" #pat_1 = "/storage/research/Intern19_v2/AutomatedDetectionWSI/level_1/" #pat_2 = "/storage/research/Intern19_v2/AutomatedDetectionWSI/level_2/" a= os.walk(pat) a = list(a) l = [] for i in a[0][2]: if '.xml' in i or 'svs' in i or 'SVS' in i: continue else: l.append(i) print(len(l)) #from pyslide import pyramid from skimage import io whole = {} viable = {} for i in l: p = os.path.join(pat,i) print(p) l_1 = io.imread(p) #print("l_1 loaded") d = i[:-4] # 01_01_0083_l_0 print(d, l_1.shape) if 'whole' in d: whole[d] = l_1.shape print("whole") else: viable[d] = l_1.shape print("viable") import pandas as pd df =
pd.DataFrame(whole)
pandas.DataFrame
""" Created on Wed Nov 18 14:20:22 2020 @author: MAGESHWARI """ import os from tkinter import * from tkinter import messagebox as mb from tkinter import filedialog import re import csv import pandas as pd def center_window(w=200, h=500): # get screen width and height ws = root.winfo_screenwidth() hs = root.winfo_screenheight() # calculate position x, y x = (ws/2) - (w/2) y = (hs/2) - (h/2) root.geometry('%dx%d+%d+%d' % (w, h, x, y)) def browse1(): global df1 # global directory # global filename # global contents filepath = filedialog.askopenfilename(initialdir = "/",title = "Select file",filetypes = (("CSV files","*.csv"),("all files","*.*"))) select_file_field.insert(0,filepath) # insert the path in textbox df1 = pd.read_csv(filepath) # file = open(filepath,'r') # open the selected file # contents = file.read() # print(contents) def browse2(): global df2 global basefilepath basefilepath = filedialog.askopenfilename(initialdir = "/",title = "Select file",filetypes = (("CSV files","*.csv"),("all files","*.*"))) base_file_field.insert(0,basefilepath) # insert the path in textbox df2 =
pd.read_csv(basefilepath)
pandas.read_csv
from typing import Union import numpy as np import pandas as pd import modin.pandas as mpd from datetime import datetime, timedelta import calendar def convert_date(date: Union[datetime, str, pd.Series, np.ndarray]) -> np.ndarray: """Receives `date` from a variety of datatypes and converts it into a numeric value in a numpy array. If `date` is a vector then it returns a vector otherwise it returns a single scalar value. Args: date (Union[datetime, str, pd.Series, np.ndarray]): The date to be converted Returns: np.ndarray: A NumPy array with datatype datetime64[D]. """ if isinstance(date, int): date = pd.to_datetime(str(date)) elif isinstance(date, float): year = int(date) days_in_year = 366 if calendar.isleap(year) else 365 date = datetime(year, 1, 1) + timedelta(days=(date % 1) * days_in_year) elif isinstance(date, np.ndarray): if np.issubdtype(date.dtype, np.integer): date = date.astype(str) date =
pd.to_datetime(date)
pandas.to_datetime
import json import os from typing import Union import numpy as np import pandas as pd from mlflow.exceptions import MlflowException from mlflow.types.utils import TensorsNotSupportedException from mlflow.utils.proto_json_utils import NumpyEncoder ModelInputExample = Union[pd.DataFrame, np.ndarray, dict, list] class _Example(object): """ Represents an input example for MLflow model. Contains jsonable data that can be saved with the model and meta data about the exported format that can be saved with :py:class:`Model <mlflow.models.Model>`. The _Example is created from example data provided by user. The example(s) can be provided as pandas.DataFrame, numpy.ndarray, python dictionary or python list. The assumption is that the example is a DataFrame-like dataset with jsonable elements (see storage format section below). NOTE: Multidimensional (>2d) arrays (aka tensors) are not supported at this time. NOTE: If the example is 1 dimensional (e.g. dictionary of str -> scalar, or a list of scalars), the assumption is that it is a single row of data (rather than a single column). Metadata: The _Example metadata contains the following information: - artifact_path: Relative path to the serialized example within the model directory. - type: Type of example data provided by the user. E.g. dataframe. - pandas_orient: For dataframes, this attribute specifies how is the dataframe encoded in json. For example, "split" value signals that the data is stored as object with columns and data attributes. Storage Format: The examples are stored as json for portability and readability. Therefore, the contents of the example(s) must be jsonable. Mlflow will make the following conversions automatically on behalf of the user: - binary values: :py:class:`bytes` or :py:class:`bytearray` are converted to base64 encoded strings. - numpy types: Numpy types are converted to the corresponding python types or their closest equivalent. """ def __init__(self, input_example: ModelInputExample): def _is_scalar(x): return np.isscalar(x) or x is None if isinstance(input_example, dict): for x, y in input_example.items(): if isinstance(y, np.ndarray) and len(y.shape) > 1: raise TensorsNotSupportedException( "Column '{0}' has shape {1}".format(x, y.shape)) if all([_is_scalar(x) for x in input_example.values()]): input_example = pd.DataFrame([input_example]) else: input_example = pd.DataFrame.from_dict(input_example) elif isinstance(input_example, list): for i, x in enumerate(input_example): if isinstance(x, np.ndarray) and len(x.shape) > 1: raise TensorsNotSupportedException("Row '{0}' has shape {1}".format(i, x.shape)) if all([_is_scalar(x) for x in input_example]): input_example = pd.DataFrame([input_example]) else: input_example = pd.DataFrame(input_example) elif isinstance(input_example, np.ndarray): if len(input_example.shape) > 2: raise TensorsNotSupportedException("Input array has shape {}".format( input_example.shape)) input_example =
pd.DataFrame(input_example)
pandas.DataFrame
import numpy as np import pandas as pd from numpy import inf, nan from numpy.testing import assert_array_almost_equal, assert_array_equal from pandas import DataFrame, Series, Timestamp from pandas.testing import assert_frame_equal, assert_series_equal from shapely.geometry.point import Point from pymove import MoveDataFrame from pymove.utils import integration from pymove.utils.constants import ( ADDRESS, CITY, DATETIME, DIST_EVENT, DIST_HOME, DIST_POI, EVENT_ID, EVENT_TYPE, GEOMETRY, HOME, ID_POI, LATITUDE, LONGITUDE, NAME_POI, POI, TRAJ_ID, TYPE_POI, VIOLATING, ) list_random_banks = [ [39.984094, 116.319236, 1, 'bank'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'bancos_postos'], [39.984211, 116.319389, 4, 'randomvalue'], [39.984217, 116.319422, 5, 'bancos_PAE'], [39.984710, 116.319865, 6, 'bancos_postos'], [39.984674, 116.319810, 7, 'bancos_agencias'], [39.984623, 116.319773, 8, 'bancos_filiais'], [39.984606, 116.319732, 9, 'banks'], [39.984555, 116.319728, 10, 'banks'] ] list_random_bus_station = [ [39.984094, 116.319236, 1, 'transit_station'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'transit_station'], [39.984211, 116.319389, 4, 'pontos_de_onibus'], [39.984217, 116.319422, 5, 'transit_station'], [39.984710, 116.319865, 6, 'randomvalue'], [39.984674, 116.319810, 7, 'bus_station'], [39.984623, 116.319773, 8, 'bus_station'], ] list_random_bar_restaurant = [ [39.984094, 116.319236, 1, 'restaurant'], [39.984198, 116.319322, 2, 'restaurant'], [39.984224, 116.319402, 3, 'randomvalue'], [39.984211, 116.319389, 4, 'bar'], [39.984217, 116.319422, 5, 'bar'], [39.984710, 116.319865, 6, 'bar-restaurant'], [39.984674, 116.319810, 7, 'random123'], [39.984623, 116.319773, 8, '123'], ] list_random_parks = [ [39.984094, 116.319236, 1, 'pracas_e_parques'], [39.984198, 116.319322, 2, 'park'], [39.984224, 116.319402, 3, 'parks'], [39.984211, 116.319389, 4, 'random'], [39.984217, 116.319422, 5, '123'], [39.984710, 116.319865, 6, 'park'], [39.984674, 116.319810, 7, 'parks'], [39.984623, 116.319773, 8, 'pracas_e_parques'], ] list_random_police = [ [39.984094, 116.319236, 1, 'distritos_policiais'], [39.984198, 116.319322, 2, 'police'], [39.984224, 116.319402, 3, 'police'], [39.984211, 116.319389, 4, 'distritos_policiais'], [39.984217, 116.319422, 5, 'random'], [39.984710, 116.319865, 6, 'randomvalue'], [39.984674, 116.319810, 7, '123'], [39.984623, 116.319773, 8, 'bus_station'], ] list_move = [ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984559000000004, 116.326696, Timestamp('2008-10-23 10:37:26'), 1], [40.002899, 116.32151999999999, Timestamp('2008-10-23 10:50:16'), 1], [40.016238, 116.30769099999999, Timestamp('2008-10-23 11:03:06'), 1], [40.013814, 116.306525, Timestamp('2008-10-23 11:58:33'), 2], [40.009735, 116.315069, Timestamp('2008-10-23 23:50:45'), 2], [39.993527, 116.32648300000001, Timestamp('2008-10-24 00:02:14'), 2], [39.978575, 116.326975, Timestamp('2008-10-24 00:22:01'), 3], [39.981668, 116.310769, Timestamp('2008-10-24 01:57:57'), 3], ] list_pois = [ [39.984094, 116.319236, 1, 'policia', 'distrito_pol_1'], [39.991013, 116.326384, 2, 'policia', 'policia_federal'], [40.01, 116.312615, 3, 'comercio', 'supermercado_aroldo'], [40.013821, 116.306531, 4, 'show', 'forro_tropykalia'], [40.008099, 116.31771100000002, 5, 'risca-faca', 'rinha_de_galo_world_cup'], [39.985704, 116.326877, 6, 'evento', 'adocao_de_animais'], [39.979393, 116.3119, 7, 'show', 'dia_do_municipio'] ] # Testes de Unions def test_union_poi_bank(): pois_df = DataFrame( data=list_random_banks, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'banks'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'banks'], [39.984211, 116.319389, 4, 'randomvalue'], [39.984217, 116.319422, 5, 'banks'], [39.984710, 116.319865, 6, 'banks'], [39.984674, 116.319810, 7, 'banks'], [39.984623, 116.319773, 8, 'banks'], [39.984606, 116.319732, 9, 'banks'], [39.984555, 116.319728, 10, 'banks'] ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] ) integration.union_poi_bank(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_union_poi_bus_station(): pois_df = DataFrame( data=list_random_bus_station, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'bus_station'], [39.984198, 116.319322, 2, 'randomvalue'], [39.984224, 116.319402, 3, 'bus_station'], [39.984211, 116.319389, 4, 'bus_station'], [39.984217, 116.319422, 5, 'bus_station'], [39.984710, 116.319865, 6, 'randomvalue'], [39.984674, 116.319810, 7, 'bus_station'], [39.984623, 116.319773, 8, 'bus_station'], ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) integration.union_poi_bus_station(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_union_poi_bar_restaurant(): pois_df = DataFrame( data=list_random_bar_restaurant, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'bar-restaurant'], [39.984198, 116.319322, 2, 'bar-restaurant'], [39.984224, 116.319402, 3, 'randomvalue'], [39.984211, 116.319389, 4, 'bar-restaurant'], [39.984217, 116.319422, 5, 'bar-restaurant'], [39.984710, 116.319865, 6, 'bar-restaurant'], [39.984674, 116.319810, 7, 'random123'], [39.984623, 116.319773, 8, '123'], ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) integration.union_poi_bar_restaurant(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_union_poi_parks(): pois_df = DataFrame( data=list_random_parks, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'parks'], [39.984198, 116.319322, 2, 'parks'], [39.984224, 116.319402, 3, 'parks'], [39.984211, 116.319389, 4, 'random'], [39.984217, 116.319422, 5, '123'], [39.984710, 116.319865, 6, 'parks'], [39.984674, 116.319810, 7, 'parks'], [39.984623, 116.319773, 8, 'parks'], ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) integration.union_poi_parks(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_union_poi_police(): pois_df = DataFrame( data=list_random_police, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) expected = DataFrame( data=[ [39.984094, 116.319236, 1, 'police'], [39.984198, 116.319322, 2, 'police'], [39.984224, 116.319402, 3, 'police'], [39.984211, 116.319389, 4, 'police'], [39.984217, 116.319422, 5, 'random'], [39.984710, 116.319865, 6, 'randomvalue'], [39.984674, 116.319810, 7, '123'], [39.984623, 116.319773, 8, 'bus_station'], ], columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI], index=[0, 1, 2, 3, 4, 5, 6, 7] ) integration.union_poi_police(pois_df, TYPE_POI, inplace=True) assert_frame_equal(pois_df, expected) def test_join_colletive_areas(): move_df = MoveDataFrame( data=list_move, ) move_df['geometry'] = move_df.apply(lambda x: Point(x['lon'], x['lat']), axis=1) expected = move_df.copy() indexes_ac = np.linspace(0, move_df.shape[0], 5, dtype=int) area_c = move_df[move_df.index.isin(indexes_ac)].copy() integration.join_collective_areas(move_df, area_c, inplace=True) expected[VIOLATING] = [True, False, True, False, True, False, True, False, False] assert_frame_equal(move_df, expected) def test__reset_and_creates_id_and_lat_lon(): move_df = MoveDataFrame(list_move) pois = DataFrame( data=list_pois, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI, NAME_POI], index=[0, 1, 2, 3, 4, 5, 6] ) dists, ids, tags, lats, lons = ( integration._reset_and_creates_id_and_lat_lon( move_df, pois, True, True ) ) id_expected = np.full(9, '', dtype='object_') tag_expected = np.full(9, '', dtype='object_') dist_expected = np.full( 9, np.Infinity, dtype=np.float64 ) lat_expected = np.full(7, np.Infinity, dtype=np.float64) lon_expected = np.full(7, np.Infinity, dtype=np.float64) assert_array_almost_equal(dists, dist_expected) assert_array_equal(ids, id_expected) assert_array_equal(tags, tag_expected) assert_array_almost_equal(lats, lat_expected) assert_array_almost_equal(lons, lon_expected) dists, ids, tags, lats, lons = ( integration._reset_and_creates_id_and_lat_lon( move_df, pois, True, False ) ) assert_array_almost_equal(dists, dist_expected) assert_array_equal(ids, id_expected) assert_array_equal(tags, tag_expected) assert_array_almost_equal(lats, lat_expected) assert_array_almost_equal(lons, lon_expected) dists, ids, tags, lats, lons = ( integration._reset_and_creates_id_and_lat_lon( move_df, pois, False, True ) ) lat_expected = np.full(9, np.Infinity, dtype=np.float64) lon_expected = np.full(9, np.Infinity, dtype=np.float64) assert_array_almost_equal(dists, dist_expected) assert_array_equal(ids, id_expected) assert_array_equal(tags, tag_expected) assert_array_almost_equal(lats, lat_expected) assert_array_almost_equal(lons, lon_expected) dists, ids, tags, lats, lons = ( integration._reset_and_creates_id_and_lat_lon( move_df, pois, False, False ) ) assert_array_almost_equal(dists, dist_expected) assert_array_equal(ids, id_expected) assert_array_equal(tags, tag_expected) assert_array_almost_equal(lats, lat_expected) assert_array_almost_equal(lons, lon_expected) def test__reset_set_window__and_creates_event_id_type(): list_events = [ [39.984094, 116.319236, 1, Timestamp('2008-10-24 01:57:57'), 'show do tropykalia'], [39.991013, 116.326384, 2, Timestamp('2008-10-24 00:22:01'), 'evento da prefeitura'], [40.01, 116.312615, 3, Timestamp('2008-10-25 00:21:01'), 'show do seu joao'], [40.013821, 116.306531, 4, Timestamp('2008-10-26 00:22:01'), 'missa'] ] move_df = MoveDataFrame(list_move) pois = DataFrame( data=list_events, columns=[LATITUDE, LONGITUDE, EVENT_ID, DATETIME, EVENT_TYPE], index=[0, 1, 2, 3] ) list_win_start = [ '2008-10-22T17:23:05.000000000', '2008-10-22T22:07:26.000000000', '2008-10-22T22:20:16.000000000', '2008-10-22T22:33:06.000000000', '2008-10-22T23:28:33.000000000', '2008-10-23T11:20:45.000000000', '2008-10-23T11:32:14.000000000', '2008-10-23T11:52:01.000000000', '2008-10-23T13:27:57.000000000' ] win_start_expected = Series(pd.to_datetime(list_win_start), name=DATETIME) list_win_end = [ '2008-10-23T18:23:05.000000000', '2008-10-23T23:07:26.000000000', '2008-10-23T23:20:16.000000000', '2008-10-23T23:33:06.000000000', '2008-10-24T00:28:33.000000000', '2008-10-24T12:20:45.000000000', '2008-10-24T12:32:14.000000000', '2008-10-24T12:52:01.000000000', '2008-10-24T14:27:57.000000000' ] win_end_expected = Series(pd.to_datetime(list_win_end), name=DATETIME) dist_expected = np.full( 9, np.Infinity, dtype=np.float64 ) type_expected = np.full(9, '', dtype='object_') id_expected = np.full(9, '', dtype='object_') window_starts, window_ends, current_distances, event_id, event_type = ( integration._reset_set_window__and_creates_event_id_type( move_df, pois, 45000, DATETIME ) ) assert_series_equal(window_starts, win_start_expected) assert_series_equal(window_ends, win_end_expected) assert_array_almost_equal(current_distances, dist_expected) assert_array_equal(event_id, id_expected) assert_array_equal(event_type, type_expected) def test_reset_set_window_and_creates_event_id_type_all(): list_move = [ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984559000000004, 116.326696, Timestamp('2008-10-23 10:37:26'), 1], [40.002899, 116.32151999999999, Timestamp('2008-10-23 10:50:16'), 1], [40.016238, 116.30769099999999, Timestamp('2008-10-23 11:03:06'), 1], [40.013814, 116.306525, Timestamp('2008-10-23 11:58:33'), 2], [40.009735, 116.315069, Timestamp('2008-10-23 23:50:45'), 2], [39.993527, 116.32648300000001, Timestamp('2008-10-24 00:02:14'), 2], [39.978575, 116.326975, Timestamp('2008-10-24 00:22:01'), 3], [39.981668, 116.310769, Timestamp('2008-10-24 01:57:57'), 3], ] move_df = MoveDataFrame(list_move) list_events = [ [39.984094, 116.319236, 1, Timestamp('2008-10-24 01:57:57'), 'show do tropykalia'], [39.991013, 116.326384, 2, Timestamp('2008-10-24 00:22:01'), 'evento da prefeitura'], [40.01, 116.312615, 3, Timestamp('2008-10-25 00:21:01'), 'show do seu joao'], [40.013821, 116.306531, 4, Timestamp('2008-10-26 00:22:01'), 'missa'] ] pois = DataFrame( data=list_events, columns=[LATITUDE, LONGITUDE, EVENT_ID, DATETIME, EVENT_TYPE], index=[0, 1, 2, 3] ) list_win_start = [ '2008-10-23T03:53:05.000000000', '2008-10-23T08:37:26.000000000', '2008-10-23T08:50:16.000000000', '2008-10-23T09:03:06.000000000', '2008-10-23T09:58:33.000000000', '2008-10-23T21:50:45.000000000', '2008-10-23T22:02:14.000000000', '2008-10-23T22:22:01.000000000', '2008-10-23T23:57:57.000000000' ] win_start_expected = Series(pd.to_datetime(list_win_start), name=DATETIME) list_win_end = [ '2008-10-23T07:53:05.000000000', '2008-10-23T12:37:26.000000000', '2008-10-23T12:50:16.000000000', '2008-10-23T13:03:06.000000000', '2008-10-23T13:58:33.000000000', '2008-10-24T01:50:45.000000000', '2008-10-24T02:02:14.000000000', '2008-10-24T02:22:01.000000000', '2008-10-24T03:57:57.000000000' ] win_end_expected = Series(pd.to_datetime(list_win_end), name=DATETIME) dist_expected = np.full(9, None, dtype=np.ndarray) type_expected = np.full(9, None, dtype=np.ndarray) id_expected = np.full(9, None, dtype=np.ndarray) window_starts, window_ends, current_distances, event_id, event_type = ( integration._reset_set_window_and_creates_event_id_type_all( move_df, pois, 7200, DATETIME ) ) assert_series_equal(window_starts, win_start_expected) assert_series_equal(window_ends, win_end_expected) assert_array_equal(current_distances, dist_expected) assert_array_equal(event_id, id_expected) assert_array_equal(event_type, type_expected) def test_join_with_pois(): move_df = MoveDataFrame(list_move) pois = DataFrame( data=list_pois, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI, NAME_POI], index=[0, 1, 2, 3, 4, 5, 6] ) expected = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1, 1, 0.0, 'distrito_pol_1'], [39.984559000000004, 116.326696, Timestamp('2008-10-23 10:37:26'), 1, 6, 128.24869775642176, 'adocao_de_animais'], [40.002899, 116.32151999999999, Timestamp('2008-10-23 10:50:16'), 1, 5, 663.0104596559174, 'rinha_de_galo_world_cup'], [40.016238, 116.30769099999999, Timestamp('2008-10-23 11:03:06'), 1, 4, 286.3387434682031, 'forro_tropykalia'], [40.013814, 116.306525, Timestamp('2008-10-23 11:58:33'), 2, 4, 0.9311014399622559, 'forro_tropykalia'], [40.009735, 116.315069, Timestamp('2008-10-23 23:50:45'), 2, 3, 211.06912863495492, 'supermercado_aroldo'], [39.993527, 116.32648300000001, Timestamp('2008-10-24 00:02:14'), 2, 2, 279.6712398549538, 'policia_federal'], [39.978575, 116.326975, Timestamp('2008-10-24 00:22:01'), 3, 6, 792.7526066105717, 'adocao_de_animais'], [39.981668, 116.310769, Timestamp('2008-10-24 01:57:57'), 3, 7, 270.7018856738821, 'dia_do_municipio'] ], columns=[LATITUDE, LONGITUDE, DATETIME, TRAJ_ID, ID_POI, DIST_POI, NAME_POI], index=[0, 1, 2, 3, 4, 5, 6, 7, 8] ) integration.join_with_pois(move_df, pois, inplace=True) assert_frame_equal(move_df, expected, check_dtype=False) def test_join_with_pois_by_category(): move_df = MoveDataFrame(list_move) pois = DataFrame( data=list_pois, columns=[LATITUDE, LONGITUDE, TRAJ_ID, TYPE_POI, NAME_POI], index=[0, 1, 2, 3, 4, 5, 6] ) expected = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1, 1, 0.0, 3, 2935.3102772960456, 7, 814.8193850933852, 5, 2672.393533820207, 6, 675.1730686007362], [39.984559000000004, 116.326696, Timestamp('2008-10-23 10:37:26'), 1, 1, 637.6902157810676, 3, 3072.6963790707114, 7, 1385.3649632111096, 5, 2727.1360691122813, 6, 128.24869775642176], [40.002899, 116.32151999999999, Timestamp('2008-10-23 10:50:16'), 1, 2, 1385.0871812075436, 3, 1094.8606633486436, 4, 1762.0085654338782, 5, 663.0104596559174, 6, 1965.702358742657], [40.016238, 116.30769099999999, Timestamp('2008-10-23 11:03:06'), 1, 2, 3225.288830967221, 3, 810.5429984051405, 4, 286.3387434682031, 5, 1243.8915481769327, 6, 3768.0652637796675], [40.013814, 116.306525, Timestamp('2008-10-23 11:58:33'), 2, 2, 3047.8382223981853, 3, 669.9731550451877, 4, 0.9311014399622559, 5, 1145.172578151837, 6, 3574.252994707609], [40.009735, 116.315069, Timestamp('2008-10-23 23:50:45'), 2, 2, 2294.0758201547073, 3, 211.06912863495492, 4, 857.4175399672413, 5, 289.35378153627966, 6, 2855.1657930463994], [39.993527, 116.32648300000001, Timestamp('2008-10-24 00:02:14'), 2, 2, 279.6712398549538, 3, 2179.5701631051966, 7, 2003.4096341742952, 5, 1784.3132149978549, 6, 870.5252810680124], [39.978575, 116.326975, Timestamp('2008-10-24 00:22:01'), 3, 1, 900.7798955139455, 3, 3702.2394204188754, 7, 1287.7039084016499, 5, 3376.4438614084356, 6, 792.7526066105717], [39.981668, 116.310769, Timestamp('2008-10-24 01:57:57'), 3, 1, 770.188754517813, 3, 3154.296880053552, 7, 270.7018856738821, 5, 2997.898227057909, 6, 1443.9247752786023] ], columns=[ LATITUDE, LONGITUDE, DATETIME, TRAJ_ID, 'id_policia', 'dist_policia', 'id_comercio', 'dist_comercio', 'id_show', 'dist_show', 'id_risca-faca', 'dist_risca-faca', 'id_evento', 'dist_evento' ], index=[0, 1, 2, 3, 4, 5, 6, 7, 8] ) integration.join_with_pois_by_category(move_df, pois, inplace=True) assert_frame_equal(move_df, expected, check_dtype=False) def test_join_with_events(): list_events = [ [39.984094, 116.319236, 1, Timestamp('2008-10-24 01:57:57'), 'show do tropykalia'], [39.991013, 116.326384, 2, Timestamp('2008-10-24 00:22:01'), 'evento da prefeitura'], [40.01, 116.312615, 3, Timestamp('2008-10-25 00:21:01'), 'show do seu joao'], [40.013821, 116.306531, 4, Timestamp('2008-10-26 00:22:01'), 'missa'] ] move_df = MoveDataFrame(list_move) pois = DataFrame( data=list_events, columns=[LATITUDE, LONGITUDE, EVENT_ID, DATETIME, EVENT_TYPE], index=[0, 1, 2, 3] ) expected = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1, '', inf, ''], [39.984559000000004, 116.326696, Timestamp('2008-10-23 10:37:26'), 1, '', inf, ''], [40.002899, 116.32151999999999, Timestamp('2008-10-23 10:50:16'), 1, '', inf, ''], [40.016238, 116.30769099999999, Timestamp('2008-10-23 11:03:06'), 1, '', inf, ''], [40.013814, 116.306525, Timestamp('2008-10-23 11:58:33'), 2, 2, 3047.8382223981853, 'evento da prefeitura'], [40.009735, 116.315069, Timestamp('2008-10-23 23:50:45'), 2, 2, 2294.0758201547073, 'evento da prefeitura'], [39.993527, 116.32648300000001, Timestamp('2008-10-24 00:02:14'), 2, 2, 279.6712398549538, 'evento da prefeitura'], [39.978575, 116.326975, Timestamp('2008-10-24 00:22:01'), 3, 1, 900.7798955139455, 'show do tropykalia'], [39.981668, 116.310769, Timestamp('2008-10-24 01:57:57'), 3, 1, 770.188754517813, 'show do tropykalia'] ], columns=[ LATITUDE, LONGITUDE, DATETIME, TRAJ_ID, EVENT_ID, DIST_EVENT, EVENT_TYPE ], index=[0, 1, 2, 3, 4, 5, 6, 7, 8] ) integration.join_with_events(move_df, pois, time_window=45000, inplace=True) assert_frame_equal(move_df, expected, check_dtype=False) def test_join_with_event_by_dist_and_time(): list_move = [ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1], [39.984559000000004, 116.326696, Timestamp('2008-10-23 10:37:26'), 1], [40.002899, 116.32151999999999, Timestamp('2008-10-23 10:50:16'), 1], [40.016238, 116.30769099999999, Timestamp('2008-10-23 11:03:06'), 1], [40.013814, 116.306525, Timestamp('2008-10-23 11:58:33'), 2], [40.009735, 116.315069, Timestamp('2008-10-23 23:50:45'), 2], [39.993527, 116.32648300000001, Timestamp('2008-10-24 00:02:14'), 2], [39.978575, 116.326975, Timestamp('2008-10-24 00:22:01'), 3], [39.981668, 116.310769, Timestamp('2008-10-24 01:57:57'), 3], ] move_df = MoveDataFrame(list_move) list_events = [ [39.984094, 116.319236, 1, Timestamp('2008-10-24 01:57:57'), 'show do tropykalia'], [39.991013, 116.326384, 2, Timestamp('2008-10-24 00:22:01'), 'evento da prefeitura'], [40.01, 116.312615, 3, Timestamp('2008-10-25 00:21:01'), 'show do seu joao'], [40.013821, 116.306531, 4, Timestamp('2008-10-26 00:22:01'), 'missa'] ] pois = DataFrame( data=list_events, columns=[LATITUDE, LONGITUDE, EVENT_ID, DATETIME, EVENT_TYPE], index=[0, 1, 2, 3] ) expected = DataFrame( data=[ [39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 1, None, None, None], [39.984559000000004, 116.326696, Timestamp('2008-10-23 10:37:26'), 1, None, None, None], [40.002899, 116.32151999999999, Timestamp('2008-10-23 10:50:16'), 1, None, None, None], [40.016238, 116.30769099999999, Timestamp('2008-10-23 11:03:06'), 1, None, None, None], [40.013814, 116.306525, Timestamp('2008-10-23 11:58:33'), 2, None, None, None], [40.009735, 116.315069, Timestamp('2008-10-23 23:50:45'), 2, [2], [2294.0758201547073], ['evento da prefeitura']], [39.993527, 116.32648300000001, Timestamp('2008-10-24 00:02:14'), 2, [1, 2], [1217.1198213850694, 279.6712398549538], ['show do tropykalia', 'evento da prefeitura']], [39.978575, 116.326975, Timestamp('2008-10-24 00:22:01'), 3, [1, 2], [900.7798955139455, 1383.9587958381394], ['show do tropykalia', 'evento da prefeitura']], [39.981668, 116.310769, Timestamp('2008-10-24 01:57:57'), 3, [1, 2], [770.188754517813, 1688.0786831571447], ['show do tropykalia', 'evento da prefeitura']] ], columns=[ LATITUDE, LONGITUDE, DATETIME, TRAJ_ID, EVENT_ID, DIST_EVENT, EVENT_TYPE ], index=[0, 1, 2, 3, 4, 5, 6, 7, 8] ) integration.join_with_event_by_dist_and_time( move_df, pois, radius=3000, time_window=7200, inplace=True ) assert_frame_equal(move_df, expected, check_dtype=False) def test_join_with_home_by_id(): list_home = [ [39.984094, 116.319236, 1, 'rua da mae', 'quixiling'], [40.013821, 116.306531, 2, 'rua da familia', 'quixeramoling'] ] move_df = MoveDataFrame(list_move) home_df = DataFrame( data=list_home, columns=[LATITUDE, LONGITUDE, TRAJ_ID, ADDRESS, CITY] ) expected = DataFrame( data=[ [1, 39.984094, 116.319236, Timestamp('2008-10-23 05:53:05'), 0.0, 'rua da mae', 'quixiling'], [1, 39.984559000000004, 116.326696, Timestamp('2008-10-23 10:37:26'), 637.6902157810676, 'rua da mae', 'quixiling'], [1, 40.002899, 116.32151999999999, Timestamp('2008-10-23 10:50:16'), 2100.0535005951438, 'rua da mae', 'quixiling'], [1, 40.016238, 116.30769099999999, Timestamp('2008-10-23 11:03:06'), 3707.066732003998, 'rua da mae', 'quixiling'], [2, 40.013814, 116.306525,
Timestamp('2008-10-23 11:58:33')
pandas.Timestamp
import cProfile import os import pstats import sys import warnings from datetime import datetime from functools import partial import numpy as np import pandas as pd import pandas.api.types as pdtypes from .base_backend import ComputationalBackend from .feature_tree import FeatureTree from featuretools import variable_types from featuretools.exceptions import UnknownFeature from featuretools.feature_base import ( AggregationFeature, DirectFeature, IdentityFeature, TransformFeature ) from featuretools.utils.gen_utils import ( get_relationship_variable_id, make_tqdm_iterator ) warnings.simplefilter('ignore', np.RankWarning) warnings.simplefilter("ignore", category=RuntimeWarning) class PandasBackend(ComputationalBackend): def __init__(self, entityset, features): assert len(set(f.entity.id for f in features)) == 1, \ "Features must all be defined on the same entity" self.entityset = entityset self.target_eid = features[0].entity.id self.features = features self.feature_tree = FeatureTree(entityset, features) def __sizeof__(self): return self.entityset.__sizeof__() def calculate_all_features(self, instance_ids, time_last, training_window=None, profile=False, precalculated_features=None, ignored=None, verbose=False): """ Given a list of instance ids and features with a shared time window, generate and return a mapping of instance -> feature values. Args: instance_ids (list): List of instance id for which to build features. time_last (pd.Timestamp): Last allowed time. Data from exactly this time not allowed. training_window (Timedelta, optional): Data older than time_last by more than this will be ignored. profile (bool): Enable profiler if True. verbose (bool): Print output progress if True. Returns: pd.DataFrame : Pandas DataFrame of calculated feature values. Indexed by instance_ids. Columns in same order as features passed in. """ assert len(instance_ids) > 0, "0 instance ids provided" self.instance_ids = instance_ids self.time_last = time_last if self.time_last is None: self.time_last = datetime.now() # For debugging if profile: pr = cProfile.Profile() pr.enable() if precalculated_features is None: precalculated_features = {} # Access the index to get the filtered data we need target_entity = self.entityset[self.target_eid] if ignored: # TODO: Just want to remove entities if don't have any (sub)features defined # on them anymore, rather than recreating ordered_entities = FeatureTree(self.entityset, self.features, ignored=ignored).ordered_entities else: ordered_entities = self.feature_tree.ordered_entities necessary_columns = self.feature_tree.necessary_columns eframes_by_filter = \ self.entityset.get_pandas_data_slice(filter_entity_ids=ordered_entities, index_eid=self.target_eid, instances=instance_ids, entity_columns=necessary_columns, time_last=time_last, training_window=training_window, verbose=verbose) large_eframes_by_filter = None if any([f.primitive.uses_full_entity for f in self.feature_tree.all_features if isinstance(f, TransformFeature)]): large_necessary_columns = self.feature_tree.necessary_columns_for_all_values_features large_eframes_by_filter = \ self.entityset.get_pandas_data_slice(filter_entity_ids=ordered_entities, index_eid=self.target_eid, instances=None, entity_columns=large_necessary_columns, time_last=time_last, training_window=training_window, verbose=verbose) # Handle an empty time slice by returning a dataframe with defaults if eframes_by_filter is None: return self.generate_default_df(instance_ids=instance_ids) finished_entity_ids = [] # Populate entity_frames with precalculated features if len(precalculated_features) > 0: for entity_id, precalc_feature_values in precalculated_features.items(): if entity_id in eframes_by_filter: frame = eframes_by_filter[entity_id][entity_id] eframes_by_filter[entity_id][entity_id] = pd.merge(frame, precalc_feature_values, left_index=True, right_index=True) else: # Only features we're taking from this entity # are precomputed # Make sure the id variable is a column as well as an index entity_id_var = self.entityset[entity_id].index precalc_feature_values[entity_id_var] = precalc_feature_values.index.values eframes_by_filter[entity_id] = {entity_id: precalc_feature_values} finished_entity_ids.append(entity_id) # Iterate over the top-level entities (filter entities) in sorted order # and calculate all relevant features under each one. if verbose: total_groups_to_compute = sum(len(group) for group in self.feature_tree.ordered_feature_groups.values()) pbar = make_tqdm_iterator(total=total_groups_to_compute, desc="Computing features", unit="feature group") if verbose: pbar.update(0) for filter_eid in ordered_entities: entity_frames = eframes_by_filter[filter_eid] large_entity_frames = None if large_eframes_by_filter is not None: large_entity_frames = large_eframes_by_filter[filter_eid] # update the current set of entity frames with the computed features # from previously finished entities for eid in finished_entity_ids: # only include this frame if it's not from a descendent entity: # descendent entity frames will have to be re-calculated. # TODO: this check might not be necessary, depending on our # constraints if not self.entityset.find_backward_path(start_entity_id=filter_eid, goal_entity_id=eid): entity_frames[eid] = eframes_by_filter[eid][eid] # TODO: look this over again # precalculated features will only be placed in entity_frames, # and it's possible that that they are the only features computed # for an entity. In this case, the entity won't be present in # large_eframes_by_filter. The relevant lines that this case passes # through are 136-143 if (large_eframes_by_filter is not None and eid in large_eframes_by_filter and eid in large_eframes_by_filter[eid]): large_entity_frames[eid] = large_eframes_by_filter[eid][eid] if filter_eid in self.feature_tree.ordered_feature_groups: for group in self.feature_tree.ordered_feature_groups[filter_eid]: if verbose: pbar.set_postfix({'running': 0}) test_feature = group[0] entity_id = test_feature.entity.id input_frames_type = self.feature_tree.input_frames_type(test_feature) input_frames = large_entity_frames if input_frames_type == "subset_entity_frames": input_frames = entity_frames handler = self._feature_type_handler(test_feature) result_frame = handler(group, input_frames) output_frames_type = self.feature_tree.output_frames_type(test_feature) if output_frames_type in ['full_and_subset_entity_frames', 'subset_entity_frames']: index = entity_frames[entity_id].index # If result_frame came from a uses_full_entity feature, # and the input was large_entity_frames, # then it's possible it doesn't contain some of the features # in the output entity_frames # We thus need to concatenate the existing frame with the result frame, # making sure not to duplicate any columns _result_frame = result_frame.reindex(index) cols_to_keep = [c for c in _result_frame.columns if c not in entity_frames[entity_id].columns] entity_frames[entity_id] = pd.concat([entity_frames[entity_id], _result_frame[cols_to_keep]], axis=1) if output_frames_type in ['full_and_subset_entity_frames', 'full_entity_frames']: index = large_entity_frames[entity_id].index _result_frame = result_frame.reindex(index) cols_to_keep = [c for c in _result_frame.columns if c not in large_entity_frames[entity_id].columns] large_entity_frames[entity_id] = pd.concat([large_entity_frames[entity_id], _result_frame[cols_to_keep]], axis=1) if verbose: pbar.update(1) finished_entity_ids.append(filter_eid) if verbose: pbar.set_postfix({'running': 0}) pbar.refresh() sys.stdout.flush() pbar.close() # debugging if profile: pr.disable() ROOT_DIR = os.path.expanduser("~") prof_folder_path = os.path.join(ROOT_DIR, 'prof') if not os.path.exists(prof_folder_path): os.mkdir(prof_folder_path) with open(os.path.join(prof_folder_path, 'inst-%s.log' % list(instance_ids)[0]), 'w') as f: pstats.Stats(pr, stream=f).strip_dirs().sort_stats("cumulative", "tottime").print_stats() df = eframes_by_filter[self.target_eid][self.target_eid] # fill in empty rows with default values missing_ids = [i for i in instance_ids if i not in df[target_entity.index]] if missing_ids: default_df = self.generate_default_df(instance_ids=missing_ids, extra_columns=df.columns) df = df.append(default_df, sort=True) df.index.name = self.entityset[self.target_eid].index column_list = [] for feat in self.features: column_list.extend(feat.get_feature_names()) return df[column_list] def generate_default_df(self, instance_ids, extra_columns=None): index_name = self.features[0].entity.index default_row = [] default_cols = [] for f in self.features: for name in f.get_feature_names(): default_cols.append(name) default_row.append(f.default_value) default_matrix = [default_row] * len(instance_ids) default_df = pd.DataFrame(default_matrix, columns=default_cols, index=instance_ids) default_df.index.name = index_name if extra_columns is not None: for c in extra_columns: if c not in default_df.columns: default_df[c] = [np.nan] * len(instance_ids) return default_df def _feature_type_handler(self, f): if isinstance(f, TransformFeature): return self._calculate_transform_features elif isinstance(f, DirectFeature): return self._calculate_direct_features elif isinstance(f, AggregationFeature): return self._calculate_agg_features elif isinstance(f, IdentityFeature): return self._calculate_identity_features else: raise UnknownFeature(u"{} feature unknown".format(f.__class__)) def _calculate_identity_features(self, features, entity_frames): entity_id = features[0].entity.id return entity_frames[entity_id][[f.get_name() for f in features]] def _calculate_transform_features(self, features, entity_frames): entity_id = features[0].entity.id assert len(set([f.entity.id for f in features])) == 1, \ "features must share base entity" assert entity_id in entity_frames frame = entity_frames[entity_id] for f in features: # handle when no data if frame.shape[0] == 0: set_default_column(frame, f) continue # collect only the variables we need for this transformation variable_data = [frame[bf.get_name()] for bf in f.base_features] feature_func = f.get_function() # apply the function to the relevant dataframe slice and add the # feature row to the results dataframe. if f.primitive.uses_calc_time: values = feature_func(*variable_data, time=self.time_last) else: values = feature_func(*variable_data) # if we don't get just the values, the assignment breaks when indexes don't match def strip_values_if_series(values): if isinstance(values, pd.Series): values = values.values return values if f.number_output_features > 1: values = [strip_values_if_series(value) for value in values] else: values = [strip_values_if_series(values)] update_feature_columns(f, frame, values) return frame def _calculate_direct_features(self, features, entity_frames): entity_id = features[0].entity.id parent_entity_id = features[0].parent_entity.id assert entity_id in entity_frames and parent_entity_id in entity_frames path = self.entityset.find_forward_path(entity_id, parent_entity_id) assert len(path) == 1, \ "Error calculating DirectFeatures, len(path) > 1" parent_df = entity_frames[parent_entity_id] child_df = entity_frames[entity_id] merge_var = path[0].child_variable.id # generate a mapping of old column names (in the parent entity) to # new column names (in the child entity) for the merge col_map = {path[0].parent_variable.id: merge_var} index_as_feature = None for f in features: if f.base_features[0].get_name() == path[0].parent_variable.id: index_as_feature = f # Sometimes entityset._add_multigenerational_links adds link variables # that would ordinarily get calculated as direct features, # so we make sure not to attempt to calculate again base_names = f.base_features[0].get_feature_names() for name, base_name in zip(f.get_feature_names(), base_names): if name in child_df.columns: continue col_map[base_name] = name # merge the identity feature from the parent entity into the child merge_df = parent_df[list(col_map.keys())].rename(columns=col_map) if index_as_feature is not None: merge_df.set_index(index_as_feature.get_name(), inplace=True, drop=False) else: merge_df.set_index(merge_var, inplace=True) new_df = pd.merge(left=child_df, right=merge_df, left_on=merge_var, right_index=True, how='left') return new_df def _calculate_agg_features(self, features, entity_frames): test_feature = features[0] entity = test_feature.entity child_entity = test_feature.base_features[0].entity assert entity.id in entity_frames and child_entity.id in entity_frames frame = entity_frames[entity.id] base_frame = entity_frames[child_entity.id] # Sometimes approximate features get computed in a previous filter frame # and put in the current one dynamically, # so there may be existing features here features = [f for f in features if f.get_name() not in frame.columns] if not len(features): return frame # handle where where = test_feature.where if where is not None and not base_frame.empty: base_frame = base_frame.loc[base_frame[where.get_name()]] # when no child data, just add all the features to frame with nan if base_frame.empty: for f in features: frame[f.get_name()] = np.nan else: relationship_path = self.entityset.find_backward_path(entity.id, child_entity.id) groupby_var = get_relationship_variable_id(relationship_path) # if the use_previous property exists on this feature, include only the # instances from the child entity included in that Timedelta use_previous = test_feature.use_previous if use_previous and not base_frame.empty: # Filter by use_previous values time_last = self.time_last if use_previous.is_absolute(): time_first = time_last - use_previous ti = child_entity.time_index if ti is not None: base_frame = base_frame[base_frame[ti] >= time_first] else: n = use_previous.value def last_n(df): return df.iloc[-n:] base_frame = base_frame.groupby(groupby_var, observed=True, sort=False).apply(last_n) to_agg = {} agg_rename = {} to_apply = set() # apply multivariable and time-dependent features as we find them, and # save aggregable features for later for f in features: if _can_agg(f): variable_id = f.base_features[0].get_name() if variable_id not in to_agg: to_agg[variable_id] = [] func = f.get_function() # funcname used in case f.get_function() returns a string # since strings don't have __name__ funcname = func if callable(func): # if the same function is being applied to the same # variable twice, wrap it in a partial to avoid # duplicate functions if u"{}-{}".format(variable_id, id(func)) in agg_rename: func = partial(func) func.__name__ = str(id(func)) funcname = str(id(func)) to_agg[variable_id].append(func) # this is used below to rename columns that pandas names for us agg_rename[u"{}-{}".format(variable_id, funcname)] = f.get_name() continue to_apply.add(f) # Apply the non-aggregable functions generate a new dataframe, and merge # it with the existing one if len(to_apply): wrap = agg_wrapper(to_apply, self.time_last) # groupby_var can be both the name of the index and a column, # to silence pandas warning about ambiguity we explicitly pass # the column (in actuality grouping by both index and group would # work) to_merge = base_frame.groupby(base_frame[groupby_var], observed=True, sort=False).apply(wrap) frame = pd.merge(left=frame, right=to_merge, left_index=True, right_index=True, how='left') # Apply the aggregate functions to generate a new dataframe, and merge # it with the existing one if len(to_agg): # groupby_var can be both the name of the index and a column, # to silence pandas warning about ambiguity we explicitly pass # the column (in actuality grouping by both index and group would # work) to_merge = base_frame.groupby(base_frame[groupby_var], observed=True, sort=False).agg(to_agg) # rename columns to the correct feature names to_merge.columns = [agg_rename["-".join(x)] for x in to_merge.columns.ravel()] to_merge = to_merge[list(agg_rename.values())] # workaround for pandas bug where categories are in the wrong order # see: https://github.com/pandas-dev/pandas/issues/22501 if pdtypes.is_categorical_dtype(frame.index): categories = pdtypes.CategoricalDtype(categories=frame.index.categories) to_merge.index = to_merge.index.astype(object).astype(categories) frame = pd.merge(left=frame, right=to_merge, left_index=True, right_index=True, how='left') # Handle default values fillna_dict = {} for f in features: feature_defaults = {name: f.default_value for name in f.get_feature_names()} fillna_dict.update(feature_defaults) frame.fillna(fillna_dict, inplace=True) # convert boolean dtypes to floats as appropriate # pandas behavior: https://github.com/pydata/pandas/issues/3752 for f in features: if (f.number_output_features == 1 and f.variable_type == variable_types.Numeric and frame[f.get_name()].dtype.name in ['object', 'bool']): frame[f.get_name()] = frame[f.get_name()].astype(float) return frame def _can_agg(feature): assert isinstance(feature, AggregationFeature) base_features = feature.base_features if feature.where is not None: base_features = [bf.get_name() for bf in base_features if bf.get_name() != feature.where.get_name()] if feature.primitive.uses_calc_time: return False single_output = feature.primitive.number_output_features == 1 return len(base_features) == 1 and single_output def agg_wrapper(feats, time_last): def wrap(df): d = {} for f in feats: func = f.get_function() variable_ids = [bf.get_name() for bf in f.base_features] args = [df[v] for v in variable_ids] if f.primitive.uses_calc_time: values = func(*args, time=time_last) else: values = func(*args) if f.number_output_features == 1: values = [values] update_feature_columns(f, d, values) return
pd.Series(d)
pandas.Series
""" SIR 3S Logfile Utilities (short: Lx) """ __version__='192.168.3.11.dev1' import os import sys import logging logger = logging.getLogger(__name__) import argparse import unittest import doctest import nbformat from nbconvert.preprocessors import ExecutePreprocessor from nbconvert.preprocessors.execute import CellExecutionError import timeit import xml.etree.ElementTree as ET import re import struct import collections import zipfile import py7zr import pandas as pd import h5py import subprocess import csv import glob import warnings #warnings.simplefilter(action='ignore', category=PerformanceWarning) # pd.set_option("max_rows", None) # pd.set_option("max_columns", None) # pd.reset_option('max_rows') # ... class LxError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) def fTCCast(x): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) v=x try: if x in ['true','True']: v=1 elif x in ['false','False','']: v=0 else: try: v = float(x) except Exception as e: #logStrTmp="{:s}{!s:s}: Konvertierung zu float schlaegt fehl! - Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,x,sys.exc_info()[-1].tb_lineno,type(e),str(e)) #logger.debug(logStrTmp) try: v = pd.to_numeric(x,errors='raise',downcast='float') #logStrTmp="{:s}{!s:s}: Konvertierung mit pd.to_numeric liefert: {!s:s}".format(logStr,x,v) #logger.debug(logStrTmp) except Exception as e: #logStrTmp="{:s}{!s:s}: Konvertierung zu float mit pd.to_numeric schlaegt auch fehl! - Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,x,sys.exc_info()[-1].tb_lineno,type(e),str(e)) #logger.debug(logStrTmp) #x='2021-04-20 10:56:12.000' #t = pd.Timestamp(x) #t # Timestamp('2021-04-20 10:56:12') #i=int(t.to_datetime64())/1000000000 #i # 1618916172.0 #pd.to_datetime(i,unit='s',errors='coerce'): Timestamp('2021-04-20 10:56:12') try: t = pd.Timestamp(x) i=int(t.to_datetime64())/1000000000 v=pd.to_numeric(i,errors='raise',downcast='float') except Exception as e: logStrTmp="{:s}{!s:s}: Konvertierung zu float (mit pd.to_numeric) schlaegt (auch nach Annahme vaulue=Zeitstring) fehl! - Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,x,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.debug(logStrTmp) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return v def getTCsOPCDerivative(TCsOPC,col,shiftSize,windowSize,fct=None): """ returns a df index: ProcessTime cols: col dt dValue dValueDt dValueDtRollingMean """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) mDf=pd.DataFrame() try: s=TCsOPC[col].dropna() mDf=pd.DataFrame(s) dt=mDf.index.to_series().diff(periods=shiftSize) mDf['dt']=dt mDf['dValue']=mDf[col].diff(periods=shiftSize) mDf=mDf.iloc[shiftSize:] mDf['dValueDt']=mDf.apply(lambda row: row['dValue']/row['dt'].total_seconds(),axis=1) if fct != None: mDf['dValueDt']=mDf['dValueDt'].apply(fct) mDf['dValueDtRollingMean']=mDf['dValueDt'].rolling(window=windowSize).mean() mDf=mDf.iloc[windowSize-1:] except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return mDf logFilenamePattern='([0-9]+)(_)+([0-9]+)(\.log)' # group(3) ist Postfix und Nr. logFilenameHeadPattern='([0-9,_]+)(\.log)' # group(1) ist Head und H5-Key # nicht alle IDs werden von RE pID erfasst # diese werden mit pID2, getDfFromODIHelper und in getDfFromODI "nachbehandelt" pID=re.compile('(?P<Prae>IMDI\.)?(?P<A>[a-z,A-Z,0-9,_]+)\.(?P<B>[a-z,A-Z,0-9,_]+)\.(?P<C1>[a-z,A-Z,0-9]+)_(?P<C2>[a-z,A-Z,0-9]+)_(?P<C3>[a-z,A-Z,0-9]+)_(?P<C4>[a-z,A-Z,0-9]+)_(?P<C5>[a-z,A-Z,0-9]+)(?P<C6>_[a-z,A-Z,0-9]+)?(?P<C7>_[a-z,A-Z,0-9]+)?\.(?P<D>[a-z,A-Z,0-9,_]+)\.(?P<E>[a-z,A-Z,0-9,_]+)(?P<Post>\.[a-z,A-Z,0-9,_]+)?') pID2='(?P<Prae>IMDI\.)?(?P<A>[a-z,A-Z,0-9,_]+)(?P<Post>\.[a-z,A-Z,0-9,_]+)?' def getDfFromODIHelper(row,col,colCheck,pID2=pID2): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: if not pd.isnull(row[colCheck]): res= row[col] resStr='ColCheckOk' elif pd.isnull(row[col]): res=re.search(pID2,row['ID']).group(col) if res != None: resStr='ColNowOk' else: resStr='ColStillNotOk' else: res = row[col] resStr='ColWasOk' except: res = row[col] resStr='ERROR' finally: if resStr not in ['ColCheckOk','ColNowOk']: logger.debug("{:s}col: {:s} resStr: {:s} row['ID']: {:s} res: {:s}".format(logStr,col, resStr,row['ID'],str(res))) #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return res def getDfFromODI(ODIFile,pID=pID): """ returns a defined df from ODIFile """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfID=None try: df=pd.read_csv(ODIFile,delimiter=';') s = pd.Series(df['ID'].unique()) dfID=s.str.extract(pID.pattern,expand=True) dfID['ID']=s dfC=dfID['C1']+'_'+dfID['C2']+'_'+dfID['C3']+'_'+dfID['C4']+'_'+dfID['C5']+'_'+dfID['C6']#+'_'+dfID['C7'] dfID.loc[:,'C']=dfC.values dfID['C']=dfID.apply(lambda row: row['C']+'_'+row['C7'] if not pd.isnull(row['C7']) else row['C'],axis=1) dfID=dfID[['ID','Prae','A','B','C','C1','C2','C3','C4','C5','C6','C7','D','E','Post']] for col in ['Prae','Post','A']: dfID[col]=dfID.apply(lambda row: getDfFromODIHelper(row,col,'A'),axis=1) dfID.sort_values(by=['ID'], axis=0,ignore_index=True,inplace=True) dfID.set_index('ID',verify_integrity=True,inplace=True) dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','Post']='.EIN' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','A']='Objects' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','B']='3S_XYZ_PUMPE' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','C']='3S_XYZ_GSI_01' dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN','D']='Out' #dfID.loc['Objects.3S_XYZ_PUMPE.3S_XYZ_GSI_01.Out.EIN',:] dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','Post']='.SOLLW' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','A']='Objects' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','B']='3S_XYZ_RSCHIEBER' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','C']='3S_XYZ_PCV_01' dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW','D']='Out' #dfID.loc['Objects.3S_XYZ_RSCHIEBER.3S_XYZ_PCV_01.Out.SOLLW',:] dfID['yUnit']=dfID.apply(lambda row: getDfFromODIHelperyUnit(row),axis=1) dfID['yDesc']=dfID.apply(lambda row: getDfFromODIHelperyDesc(row),axis=1) dfID=dfID[['yUnit','yDesc','Prae','A','B','C','C1','C2','C3','C4','C5','C6','C7','D','E','Post']] except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfID def addInitvalueToDfFromODI(INITFile,dfID): """ returns dfID extended with new Cols Initvalue and NumOfInits """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfIDext=dfID try: df=pd.read_csv(INITFile,delimiter=';',header=None,names=['ID','Value'])#,index_col=0) dfGrped=df.groupby(by=['ID'])['Value'].agg(['count','min','max','mean','last']) dfIDext=dfID.merge(dfGrped,left_index=True,right_index=True,how='left').filter(items=dfID.columns.to_list()+['last','count']).rename(columns={'last':'Initvalue','count':'NumOfInits'}) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfIDext def fODIMatch(dfODI,TYPE=None,OBJTYPE=None,NAME1=None,NAME2=None): df=dfODI if TYPE != None: df=df[df['TYPE']==TYPE] if OBJTYPE != None: df=df[df['OBJTYPE']==OBJTYPE] if NAME1 != None: df=df[df['NAME1']==NAME1] if NAME2 != None: df=df[df['NAME2']==NAME2] return df def fODIFindAllSchieberSteuerungsIDs(dfODI,NAME1=None,NAME2=None): # dfODI: pd.read_csv(ODI,delimiter=';') df=fODIMatch(dfODI,TYPE='OL_2',OBJTYPE='VENT',NAME1=NAME1,NAME2=NAME2) return sorted(list(df['ID'].unique())+[ID for ID in df['REF_ID'].unique() if not pd.isnull(ID)]) def fODIFindAllZeilenWithIDs(dfODI,IDs): return dfODI[dfODI['ID'].isin(IDs) | dfODI['REF_ID'].isin(IDs)] def getDfFromODIHelperyUnit(row): """ returns Unit """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) unit=None try: if row['E'] in ['AL_S','SB_S']: unit='[-]' elif row['E'] in ['LR_AV','LP_AV','QD_AV','SD_AV','AM_AV','FZ_AV','MZ_AV','NG_AV']: unit='[Nm³/h]' elif row['E'] in ['AC_AV','LR_AV']: unit='[mm/s²]' else: unit='TBD in Lx' except: unit='ERROR' finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return unit def getDfFromODIHelperyDesc(row): """ returns Desc """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) desc=None try: if row['E'] in ['AL_S','SB_S']: desc='Status' elif row['E'] in ['LR_AV','LP_AV','QD_AV','SD_AV','AM_AV','FZ_AV','MZ_AV','NG_AV']: desc='Fluss' elif row['E'] in ['AC_AV','LR_AV']: desc='Beschleunigung' else: desc='TBD in Lx' except: desc='ERROR' finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return desc def getDfIDUniqueCols(dfID): """ returns df with uniques """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfIDUniqueCols=pd.DataFrame() try: # Spalte mit der groessten Anzahl von Auspraegungen feststellen lenMax=0 colMax='' # ueber alle Spalten for idx,col in enumerate(dfID): s=pd.Series(dfID[col].unique()) if len(s) > lenMax: lenMax=len(s) colMax=col s=pd.Series(dfID[colMax].unique(),name=colMax) s.sort_values(inplace=True) s=pd.Series(s.values,name=colMax) dfIDUniqueCols=pd.DataFrame(s) # ueber alle weiteren Spalten for idx,col in enumerate([col for col in dfID.columns if col != colMax]): # s unique erzeugen s=pd.Series(dfID[col].unique(),name=col) # s sortieren s.sort_values(inplace=True) s=pd.Series(s.values,name=col) dfIDUniqueCols=pd.concat([dfIDUniqueCols,s],axis=1) dfIDUniqueCols=dfIDUniqueCols[dfID.columns] except: logger.error("{0:s}".format(logStr)) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfIDUniqueCols def getIDsFromID(ID='Objects.3S_XYZ_SEG_INFO.3S_L_6_KED_39_EL1.In.AL_S',dfID=None,matchCols=['B','C1','C2','C3','C4','C5','D'],any=False): """ returns IDs matching ID """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: IDsMatching=[] s=dfID.loc[ID,:] for ID,row in dfID.iterrows(): match=True for col in [col for col in row.index.values if col in matchCols]: #if str(row[col])!=str(s[col]): if row[col]!=s[col]: match=False break else: if any: break if match: IDsMatching.append(ID) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) #except: # logger.error("{0:s}".format(logStr)) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return sorted(IDsMatching) def getLDSResVecDf( ID # ResVec-Defining-Channel; i.e. for Segs Objects.3S_XYZ_SEG_INFO.3S_L_6_EL1_39_TUD.In.AL_S / i.e. for Drks Objects.3S_XYZ_DRUCK.3S_6_EL1_39_PTI_02_E.In.AL_S ,dfID ,TCsLDSResDf ,matchCols # i.e. ['B','C1','C2','C3','C4','C5','C6','D'] for Segs; i.e. ['B','C','D'] for Drks ): """ returns a df with LDSResChannels as columns (AL_S, ...); derived by Filtering columns from TCsLDSResDf and renaming them """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfResVec=pd.DataFrame() try: IDs=getIDsFromID(ID=ID,dfID=dfID,matchCols=matchCols) dfFiltered=TCsLDSResDf.filter(items=IDs) colDct={} for col in dfFiltered.columns: m=re.search(pID,col) colDct[col]=m.group('E') dfResVec=dfFiltered.rename(columns=colDct) except: logger.error("{0:s}".format(logStr)) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfResVec def fGetFirstAndLastValidIdx(df): """ returns (tFirst,tLast) """ for idx,col in enumerate(df.columns): tF=df[col].first_valid_index() tL=df[col].last_valid_index() if idx==0: tFirst=tF tLast=tL else: if tF < tFirst: tFirst=tF if tL > tLast: tLast=tL return (tFirst,tLast) def fGetIDSets( dfID ,divNr #'7' ,pipelineNrLst #['43','44'] ,fctIn=None # Funktion von ID die Falsch heraus gibt, wenn ID (doch) nicht in Menge sein soll ): # returns Dct: key: Bezeichner einer ID-Menge; value: zugeh. IDs IDSets={} IDs=[] for ID in sorted(dfID.index.unique()): m=re.search(pID,ID) if m != None: C1= m.group('C1') C2= m.group('C2') C3= m.group('C3') C4= m.group('C4') C5= m.group('C5') if C1 in [divNr] and C3 in pipelineNrLst: # u.a. SEG ErgVecs IDs.append(ID) elif C2 in [divNr] and C4 in pipelineNrLst: IDs.append(ID) elif C3 in [divNr] and C5 in pipelineNrLst: # FT, PTI, etc. IDs.append(ID) if fctIn != None: IDs=[ID for ID in IDs if fctIn(ID)] IDSets['IDs']=IDs IDsAlarm=[ID for ID in IDs if re.search(pID,ID).group('E') == 'AL_S'] IDSets['IDsAlarm']=IDsAlarm IDsAlarmSEG=[ID for ID in IDsAlarm if re.search(pID,ID).group('C5') != 'PTI'] IDSets['IDsAlarmSEG']=IDsAlarmSEG IDsAlarmDruck=[ID for ID in IDsAlarm if re.search(pID,ID).group('C5') == 'PTI'] IDSets['IDsAlarmDruck']=IDsAlarmDruck IDsStat=[ID for ID in IDs if re.search(pID,ID).group('E') == 'STAT_S'] IDSets['IDsStat']=IDsStat IDsStatSEG=[ID for ID in IDsStat if re.search(pID,ID).group('C5') != 'PTI'] IDSets['IDsStatSEG']=IDsStatSEG IDsStatDruck=[ID for ID in IDsStat if re.search(pID,ID).group('C5') == 'PTI'] IDSets['IDsStatDruck']=IDsStatDruck ### IDsSb=[ID for ID in IDs if re.search(pID,ID).group('E') == 'SB_S'] IDSets['IDsSb']=IDsSb IDsSbSEG=[ID for ID in IDsSb if re.search(pID,ID).group('C5') != 'PTI'] IDSets['IDsSbSEG']=IDsSbSEG IDsSbDruck=[ID for ID in IDsSb if re.search(pID,ID).group('C5') == 'PTI'] IDSets['IDsSbDruck']=IDsSbDruck ### IDsZHK=[ID for ID in IDs if re.search(pID,ID).group('E') == 'ZHKNR_S'] IDSets['IDsZHK']=IDsZHK IDsZHKSEG=[ID for ID in IDsZHK if re.search(pID,ID).group('C5') != 'PTI'] IDSets['IDsZHKSEG']=IDsZHKSEG IDsZHKDruck=[ID for ID in IDsZHK if re.search(pID,ID).group('C5') == 'PTI'] IDSets['IDsZHKDruck']=IDsZHKDruck IDsFT=[ID for ID in IDs if re.search(pID,ID).group('C4') == 'FT'] IDSets['IDsFT']=IDsFT IDsPT=[ID for ID in IDs if re.search(pID,ID).group('C4') == 'PTI'] IDSets['IDsPT']=IDsPT IDsPT_BCIND=[ID for ID in IDs if re.search(pID,ID).group('C5') == 'PTI' and re.search(pID,ID).group('E') == 'BCIND_S' ] IDSets['IDsPT_BCIND']=IDsPT_BCIND ### Schieber IDsZUST=[ID for ID in IDs if re.search(pID,ID).group('E') == 'ZUST'] IDsZUST=sorted(IDsZUST,key=lambda x: re.match(pID,x).group('C5')) IDSets['IDsZUST']=IDsZUST IDs_3S_XYZ_ESCHIEBER=[ID for ID in IDs if re.search(pID,ID).group('B') == '3S_FBG_ESCHIEBER'] IDs_3S_XYZ_ESCHIEBER=sorted(IDs_3S_XYZ_ESCHIEBER,key=lambda x: re.match(pID,x).group('C6')) IDSets['IDs_3S_XYZ_ESCHIEBER']=IDs_3S_XYZ_ESCHIEBER IDs_XYZ_ESCHIEBER=[ID for ID in IDs if re.search(pID,ID).group('B') == 'FBG_ESCHIEBER'] IDs_XYZ_ESCHIEBER=sorted(IDs_XYZ_ESCHIEBER,key=lambda x: re.match(pID,x).group('C5')) # IDSets['IDs_XYZ_ESCHIEBER']=IDs_XYZ_ESCHIEBER IDs_XYZ_ESCHIEBER_Ohne_ZUST=[ID for ID in IDs_XYZ_ESCHIEBER if re.search(pID,ID).group('E') != 'ZUST'] IDs_XYZ_ESCHIEBER_Ohne_ZUST=sorted(IDs_XYZ_ESCHIEBER_Ohne_ZUST,key=lambda x: re.match(pID,x).group('C5')) IDSets['IDs_XYZ_ESCHIEBER_Ohne_ZUST']=IDs_XYZ_ESCHIEBER_Ohne_ZUST IDsSchieberAlle=IDsZUST+IDs_XYZ_ESCHIEBER_Ohne_ZUST+IDs_3S_XYZ_ESCHIEBER IDSets['IDsSchieberAlle']=IDsSchieberAlle IDsSchieberAlleOhneLAEUFT=[ID for ID in IDsSchieberAlle if re.search('LAEUFT$',ID) == None] IDsSchieberAlleOhneLAEUFT=[ID for ID in IDsSchieberAlleOhneLAEUFT if re.search('LAEUFT_NICHT$',ID) == None] IDSets['IDsSchieberAlleOhneLAEUFT']=IDsSchieberAlleOhneLAEUFT return IDSets h5KeySep='/' def fValueFct(x): return pd.to_numeric(x,errors='ignore',downcast='float') class AppLog(): """ SIR 3S App Log (SQC Log) Maintains a H5-File. Existing H5-File will be deleted (if not initialized with h5File=...). H5-Keys are: * init * lookUpDf * lookUpDfZips (if initialized with zip7Files=...) * Logfilenames praefixed by Log without extension Attributes: * h5File * lookUpDf zipName logName FirstTime (ScenTime - not #LogTime) LastTime (ScenTime - mot #LogTime) * lookUpDfZips """ TCsdfOPCFill=False # wenn Wahr, werden in TCsdfOPCFill die NULLen aufgefuellt; default: Falsch @classmethod def getTCsFromDf(cls,df,dfID=pd.DataFrame(),TCsdfOPCFill=TCsdfOPCFill): """ returns several TC-dfs from df Verarbeitung von dfs gemaess extractTCsToH5s; siehe dort Args: * df: a df with Log-Data * columns: ['ID','ProcessTime','ScenTime','SubSystem','Value','Direction'] * dfID * index: ID * erf. nur, wenn IDs nach Res1 und Res2 aufgeteilt werden sollen * TCsdfOPCFill: if True (default): fill NaNs in this df Time curve dfs: cols: * Time (TCsdfOPC: ProcessTime, other: ScenTime) * ID * Value Time curve dfs: * TCsdfOPC * TCsSirCalc * TCsLDSIn * TCsLDSRes (dfID empty) or TCsLDSRes1, TCsLDSRes2 """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: TCsdfOPC=pd.DataFrame() TCsdfSirCalc=pd.DataFrame() TCsdfLDSIn=pd.DataFrame() if not dfID.empty: TCsdfLDSRes1=pd.DataFrame() TCsdfLDSRes2=pd.DataFrame() else: TCsdfLDSRes=pd.DataFrame() if not dfID.empty: df=df.merge(dfID,how='left',left_on='ID',right_index=True,suffixes=('','_r')) logger.debug("{0:s}{1:s}".format(logStr,'TCsdfOPC ...')) TCsdfOPC=df[(df['SubSystem'].str.contains('^OPC')) ### & ~(df['Value'].isnull()) # ueberfluessig, wenn df dies bereits erfuellt ][['ProcessTime','ID','Value']].pivot_table(index='ProcessTime', columns='ID', values='Value',aggfunc='last') if TCsdfOPCFill: for col in TCsdfOPC.columns: TCsdfOPC[col]=TCsdfOPC[col].fillna(method='ffill') TCsdfOPC[col]=TCsdfOPC[col].fillna(method='bfill') logger.debug("{0:s}{1:s}".format(logStr,'TCsdfSirCalc ...')) TCsdfSirCalc=df[(df['SubSystem'].str.contains('^SirCalc')) | (df['SubSystem'].str.contains('^RTTM')) ][['ScenTime','ID','Value']].pivot_table(index='ScenTime', columns='ID', values='Value',aggfunc='last') logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSIn ...')) TCsdfLDSIn=df[(df['SubSystem'].str.contains('^LDS')) & (df['Direction'].str.contains('^<-'))][['ScenTime','ID','Value']].pivot_table(index='ScenTime', columns='ID', values='Value',aggfunc='last') if not dfID.empty: logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes1 ...')) TCsdfLDSRes1=df[(df['SubSystem'].str.contains('^LDS')) & (df['Direction'].str.contains('^->')) & (df['B'].str.contains('^3S_FBG_SEG_INFO'))][['ScenTime','ID','Value']].pivot_table(index='ScenTime', columns='ID', values='Value',aggfunc='last') logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes2 ...')) TCsdfLDSRes2=df[(df['SubSystem'].str.contains('^LDS')) & (df['Direction'].str.contains('^->')) & (df['B'].str.contains('^3S_FBG_DRUCK'))][['ScenTime','ID','Value']].pivot_table(index='ScenTime', columns='ID', values='Value',aggfunc='last') else: logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes ...')) TCsdfLDSRes=df[(df['SubSystem'].str.contains('^LDS')) & (df['Direction'].str.contains('^->'))][['ScenTime','ID','Value']].pivot_table(index='ScenTime', columns='ID', values='Value',aggfunc='last') except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) if not dfID.empty: return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2 else: return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes def __init__(self,logFile=None,zip7File=None,h5File=None,h5FileName=None,readWithDictReader=False,nRows=None,readWindowsLog=False): """ (re-)initialize logFile: wird gelesen und in H5 abgelegt addZip7File(zip7File) liest alle Logs eines zipFiles und legt diese in H5 ab zipFile: 1. logFile wird gelesen und in H5 abgelegt addZip7File(zip7File) liest alle Logs eines zipFiles und legt diese in H5 ab die Initialisierung mit zipFile ist identisch mit der Initialisierung mit logFile wenn logFile das 1. logFile des Zips ist nach addZip7File(zip7File) - ggf. mehrfach fuer mehrere Zips: koennen Daten mit self.get(...) gelesen werden (liefert 1 df) koennen Daten mit self.getTCs(...) gelesen werden (liefert mehrere dfs in TC-Form) koennen Daten mit self.getTCsSpecified(...) gelesen werden (liefert 1 df in TC-Form) koennen Daten in TC-Form mit self.extractTCsToH5s(...) in separate H5s gelesen werden mit self.getTCsFromH5s(...) koennen die TCs wieder gelesen werden === addZip7File(zip7File) - ggf. mehrfach - und extractTCsToH5s(...) sind Bestandteil einer 7Zip-Verarbeitung vor der eigentlichen Analyse === h5File: die lookUp-Dfs vom H5-File werden gelesen die zum H5-File zugehoerigen TC-H5-Filenamen werden belegt die TC-H5-Files werden nicht auf Existenz geprüft oder gar gelesen """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) self.lookUpDf=pd.DataFrame() self.lookUpDfZips=pd.DataFrame() try: if logFile != None and zip7File != None and h5File != None: logger.debug("{0:s}{1:s}".format(logStr,'3 Files (logFile and zip7File and h5File) specified.')) elif logFile != None and zip7File != None: logger.debug("{0:s}{1:s}".format(logStr,'2 Files (logFile and zip7File) specified.')) elif logFile != None and h5File != None: logger.debug("{0:s}{1:s}".format(logStr,'2 Files (logFile and h5File) specified.')) elif h5File != None and zip7File != None: logger.debug("{0:s}{1:s}".format(logStr,'2 Files (h5File and zip7File) specified.')) elif logFile != None: self.__initlogFile(logFile,h5FileName=h5FileName,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) elif zip7File != None: self.__initzip7File(zip7File,h5FileName=h5FileName,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) elif h5File != None: self.__initWithH5File(h5File) else: logger.debug("{0:s}{1:s}".format(logStr,'No File (logFile XOR zip7File XOR h5File) specified.')) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def __initlogFile(self,logFile,h5FileName=None,readWithDictReader=False,readWindowsLog=False): """ (re-)initialize with logFile """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # wenn logFile nicht existiert ... if not os.path.exists(logFile): logger.debug("{0:s}logFile {1:s} not existing.".format(logStr,logFile)) else: df = self.__processALogFile(logFile=logFile,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) self.__initH5File(logFile,df,h5FileName=h5FileName) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def __initH5File(self,h5File,df,h5FileName=None): """ creates self.h5File and writes 'init'-Key Logfile df to it Args: * h5File: name of logFile or zip7File; the Dir is the Dir of the H5-File * df * h5FileName: the H5-FileName without Dir and Extension; if None (default), "Log ab ..." is used """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: (h5FileHead,h5FileTail)=os.path.split(h5File) # H5-File if h5FileName==None: h5FileTail="Log ab {0:s}.h5".format(str(df['#LogTime'].min())).replace(':',' ').replace('-',' ') else: h5FileTail=h5FileName+'.h5' self.h5File=os.path.join(h5FileHead,h5FileTail) # wenn H5 existiert wird es geloescht if os.path.exists(self.h5File): os.remove(self.h5File) logger.debug("{0:s}Existing H5-File {1:s} deleted.".format(logStr,h5FileTail)) # init-Logfile schreiben self.__toH5('init',df) logger.debug("{0:s}'init'-Key Logfile done.".format(logStr)) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def __initWithH5File(self,h5File,useRawHdfAPI=False): """ self.h5File=h5File self.lookUpDf self.lookUpDfZips die lookUp-Dfs werden gelesen vom H5-File die zum H5-File zugehoerigen TC-H5-Filenamen werden belegt, wenn diese H5-Files existieren die TC-H5-Files werden nicht gelesen der zum H5-File zugehoerige CVD-Filename wird belegt, wenn das H5-File existiert das H5-File wird nicht gelesen """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # H5 existiert if os.path.exists(h5File): self.h5File=h5File # Keys available with pd.HDFStore(self.h5File) as h5Store: h5Keys=sorted(h5Store.keys()) logger.debug("{0:s}h5Keys available: {1:s}".format(logStr,str(h5Keys))) h5KeysStripped=[item.replace(h5KeySep,'') for item in h5Keys] if useRawHdfAPI: with pd.HDFStore(self.h5File) as h5Store: if 'lookUpDf' in h5KeysStripped: self.lookUpDf=h5Store['lookUpDf'] if 'lookUpDfZips' in h5KeysStripped: self.lookUpDfZips=h5Store['lookUpDfZips'] else: if 'lookUpDf' in h5KeysStripped: self.lookUpDf=pd.read_hdf(self.h5File, key='lookUpDf') if 'lookUpDfZips' in h5KeysStripped: self.lookUpDfZips=pd.read_hdf(self.h5File, key='lookUpDfZips') else: logStrFinal="{0:s}h5File {1:s} not existing.".format(logStr,h5File) logger.debug(logStrFinal) raise LxError(logStrFinal) #TC-H5s (name,ext)=os.path.splitext(self.h5File) TCPost='_TC' h5FileOPC=name+TCPost+'OPC'+ext h5FileSirCalc=name+TCPost+'SirCalc'+ext h5FileLDSIn=name+TCPost+'LDSIn'+ext h5FileLDSRes1=name+TCPost+'LDSRes1'+ext h5FileLDSRes2=name+TCPost+'LDSRes2'+ext h5FileLDSRes=name+TCPost+'LDSRes'+ext if os.path.exists(h5FileOPC): self.h5FileOPC=h5FileOPC logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileOPC)) if os.path.exists(h5FileSirCalc): self.h5FileSirCalc=h5FileSirCalc logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileSirCalc)) if os.path.exists(h5FileLDSIn): self.h5FileLDSIn=h5FileLDSIn logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileLDSIn)) if os.path.exists(h5FileLDSRes): self.h5FileLDSRes=h5FileLDSRes logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileLDSRes)) if os.path.exists(h5FileLDSRes1): self.h5FileLDSRes1=h5FileLDSRes1 logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileLDSRes1)) if os.path.exists(h5FileLDSRes2): self.h5FileLDSRes2=h5FileLDSRes2 logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileLDSRes2)) h5FileCVD=name+'_'+'CVD'+ext if os.path.exists(h5FileCVD): self.h5FileCVD=h5FileCVD logger.debug("{0:s}Existing H5-File {1:s}.".format(logStr,self.h5FileCVD)) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def getInitDf(self,useRawHdfAPI=False): """ returns InitDf from H5-File """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: df=pd.DataFrame() # H5 existiert if os.path.exists(self.h5File): # Keys available with pd.HDFStore(self.h5File) as h5Store: h5Keys=sorted(h5Store.keys()) logger.debug("{0:s}h5Keys available: {1:s}".format(logStr,str(h5Keys))) h5KeysStripped=[item.replace(h5KeySep,'') for item in h5Keys] if useRawHdfAPI: with pd.HDFStore(self.h5File) as h5Store: if 'init' in h5KeysStripped: df=h5Store['init'] else: if 'init' in h5KeysStripped: df=pd.read_hdf(self.h5File, key='init') else: logStrFinal="{0:s}h5File {1:s} not existing.".format(logStr,h5File) logger.debug(logStrFinal) raise LxError(logStrFinal) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return df def __initzip7File(self,zip7File,h5FileName=None,nRows=None,readWithDictReader=False,readWindowsLog=False): """ (re-)initialize with zip7File """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # wenn zip7File nicht existiert ... if not os.path.exists(zip7File): logStrFinal="{0:s}zip7File {1:s} not existing.".format(logStr,zip7File) logger.debug(logStrFinal) raise LxError(logStrFinal) else: (zip7FileHead, zip7FileTail)=os.path.split(zip7File) zipFileDirname=os.path.dirname(zip7File) logger.debug("{0:s}zipFileDirname: {1:s}".format(logStr,zipFileDirname)) aDfRead=False with py7zr.SevenZipFile(zip7File, 'r') as zip7FileObj: allLogFiles = zip7FileObj.getnames() logger.debug("{0:s}{1:s}: len(getnames()): {2:d}.".format(logStr,zip7FileTail,len(allLogFiles))) logger.debug("{0:s}getnames(): {1:s}.".format(logStr,str(allLogFiles))) extDirLstTBDeleted=[] extDirLstExistingLogged=[] for idx,logFileNameInZip in enumerate(allLogFiles): logger.debug("{0:s}idx: {1:d} logFileNameInZip: {2:s}".format(logStr,idx,logFileNameInZip)) # die Datei die 7Zip bei extract erzeugen wird logFile=os.path.join(zipFileDirname,logFileNameInZip) (logFileHead, logFileTail)=os.path.split(logFile) # logFileHead == dirname() logger.debug("{0:s}idx: {1:d} logFileHead: {2:s} logFileTail: {3:s}".format(logStr,idx,logFileHead,logFileTail)) (name, ext)=os.path.splitext(logFile) logger.debug("{0:s}idx: {1:d} name: {2:s} ext: {3:s}".format(logStr,idx,name,ext)) if logFileHead!='': # logFileHead == dirname() if os.path.exists(logFileHead) and logFileHead not in extDirLstExistingLogged: logger.debug("{0:s}idx: {1:d} Verz. logFileHead: {2:s} existiert bereits.".format(logStr,idx,logFileHead)) extDirLstExistingLogged.append(logFileHead) elif not os.path.exists(logFileHead): logger.debug("{0:s}idx: {1:d} Verz. logFileHead: {2:s} existiert noch nicht.".format(logStr,idx,logFileHead)) extDirLstTBDeleted.append(logFileHead) # kein Logfile zu prozessieren ... if ext == '': continue # Logfile prozessieren ... if os.path.exists(logFile): isFile = os.path.isfile(logFile) if isFile: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert bereits. Wird durch Extrakt ueberschrieben werden.".format(logStr,idx,logFileTail)) logFileTBDeleted=False else: logFileTBDeleted=False else: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert nicht. Wird extrahiert, dann prozessiert und dann wieder geloescht.".format(logStr,idx,logFileTail)) logFileTBDeleted=True # extrahieren zip7FileObj.extract(path=zipFileDirname,targets=logFileNameInZip) if os.path.exists(logFile): pass else: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT extracted?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue # ... if os.path.isfile(logFile): df = self.__processALogFile(logFile=logFile,nRows=nRows,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) if df is None: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT processed?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue else: aDfRead=True # ... # gleich wieder loeschen if os.path.exists(logFile) and logFileTBDeleted: if os.path.isfile(logFile): os.remove(logFile) logger.debug("{0:s}idx: {1:d} Log: {2:s} wieder geloescht.".format(logStr,idx,logFileTail)) # wir wollen nur das 1. File lesen ... if aDfRead: break; for dirName in extDirLstTBDeleted: if os.path.exists(dirName): if os.path.isdir(dirName): (dirNameHead, dirNameTail)=os.path.split(dirName) if len(os.listdir(dirName)) == 0: os.rmdir(dirName) logger.debug("{0:s}dirName: {1:s} existierte nicht und wurde wieder geloescht.".format(logStr,dirNameTail)) else: logger.info("{0:s}dirName: {1:s} existiert mit nicht leerem Inhalt?!".format(logStr,dirNameTail)) self.__initH5File(zip7File,df,h5FileName=h5FileName) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def __toH5(self,key,df,useRawHdfAPI=False,updLookUpDf=False,logName='',zipName='',noDfStorage=False): """ write df with key to H5-File (if not noDfStorage) Args: * updLookUpDf: if True, self.lookUpDf is updated with * zipName (the Zip of logFile) * logName (the name of the logFile i.e. 20201113_0000004.log) * FirstTime (the first ScenTime in df) * LastTime (the last ScenTime in df) self.lookUpDf is not wriiten to H5 """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: (h5FileHead,h5FileTail)=os.path.split(self.h5File) if not noDfStorage: if useRawHdfAPI: with pd.HDFStore(self.h5File) as h5Store: try: h5Store.put(key,df) except Exception as e: logger.error("{0:s}Writing df with h5Key={1:s} to {2:s} FAILED!".format(logStr,key,h5FileTail)) raise e else: df.to_hdf(self.h5File, key=key) logger.debug("{0:s}Writing df with h5Key={1:s} to {2:s} done.".format(logStr,key,h5FileTail)) if updLookUpDf: s=df['ScenTime']#['#LogTime'] FirstTime=s.iloc[0] LastTime=s.iloc[-1] if self.lookUpDf.empty: data={ 'zipName': [zipName] ,'logName': [logName] ,'FirstTime' : [FirstTime] ,'LastTime' : [LastTime] } self.lookUpDf = pd.DataFrame (data, columns = ['zipName','logName','FirstTime','LastTime']) self.lookUpDf['zipName']=self.lookUpDf['zipName'].astype(str) self.lookUpDf['logName']=self.lookUpDf['logName'].astype(str) else: data={ 'zipName': zipName ,'logName': logName ,'FirstTime' : FirstTime ,'LastTime' : LastTime } self.lookUpDf=self.lookUpDf.append(data,ignore_index=True) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def __processALogFile(self,logFile=None,delimiter='\t',nRows=None,readWithDictReader=False,fValueFct=fValueFct,readWindowsLog=False): """ process logFile Args: * logFile: logFile to be processed * nRows: number of logFile rows to be processed; default: None (:= all rows are processed); if readWithDictReader: last row is also processed * readWithDictReader: if True, csv.DictReader is used; default: None (:= pd.read_csv is used) Returns: * df: logFile processed to df * converted: * #LogTime: to datetime * ProcessTime: to datetime * Value: to float64 * ID,Direction,SubSystem,LogLevel,State,Remark: to str * new: * ScenTime datetime """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) df=None try: with open(logFile,'r') as f: pass (logFileHead,logFileTail)=os.path.split(logFile) if readWithDictReader: restkey='+' with open(logFile,"r") as csvFile: # 1. Zeile enthaelt die Ueberschrift reader = csv.DictReader(csvFile,delimiter=delimiter,restkey=restkey) logger.debug("{0:s}{1:s} csv.DictReader reader processed.".format(logStr,logFileTail)) # If a row has more fields than fieldnames, the remaining data is put in a list and stored with the fieldname specified by restkey. colNames=reader.fieldnames dcts = [dct for dct in reader] # alle Zeilen lesen logger.debug("{0:s}{1:s} csv.DictReader-Ergebnis processed.".format(logStr,logFileTail)) if nRows!=None: dcts=dcts[0:nRows]+[dcts[-1]] # nur die Spaltennamen werden als row-Spalten erzeugt rows = [[dct[colName] for colName in colNames] for dct in dcts] logger.debug("{0:s}{1:s} rows processed.".format(logStr,logFileTail)) # die "ueberfluessigen" Spalten an die letzte Spalte dranhaengen for i, dct in enumerate(dcts): if restkey in dct: restValue=dct[restkey] restValueStr = delimiter.join(restValue) newValue=rows[i][-1]+delimiter+restValueStr #logger.debug("{0:s}{1:s} restValueStr: {2:s} - Zeile {3:10d}: {4:s} - neuer Wert letzte Spalte: {5:s}.".format(logStr,logFileTail,restValueStr,i,str(rows[i]),newValue)) rows[i][-1]=rows[i][-1]+newValue logger.debug("{0:s}{1:s} restkey processed.".format(logStr,logFileTail)) index=range(len(rows)) df = pd.DataFrame(rows,columns=colNames,index=index) else: if nRows==None: df=pd.read_csv(logFile,delimiter=delimiter,error_bad_lines=False,warn_bad_lines=True,low_memory=False) else: df=pd.read_csv(logFile,delimiter=delimiter,error_bad_lines=False,warn_bad_lines=True,low_memory=False,nrows=nRows) logger.debug("{0:s}{1:s} pd.DataFrame processed.".format(logStr,logFileTail)) #logger.debug("{0:s}df: {1:s}".format(logStr,str(df))) #LogTime df['#LogTime']=pd.to_datetime(df['#LogTime'],unit='ms',errors='coerce') # NaT #ProcessTime df['ProcessTime']=pd.to_datetime(df['ProcessTime'],unit='ms',errors='coerce') # NaT logger.debug("{0:s}{1:s} col ProcessTime processed.".format(logStr,logFileTail)) #Value df['Value']=df.Value.str.replace(',', '.') # Exception: Line: 1137: <class 'AttributeError'>: Can only use .str accessor with string values! df['Value']=fValueFct(df['Value'].values) # df['ValueProcessed'].apply(fValueFct) logger.debug("{0:s}{1:s} col Value processed.".format(logStr,logFileTail)) #Strings for col in ['ID','Direction','SubSystem','LogLevel','State','Remark']: df[col]=df[col].astype(str) logger.debug("{0:s}{1:s} String-cols processed.".format(logStr,logFileTail)) #1618249551621 STD CVD 1615442324000 p-p BEGIN_OF_NEW_CONTROL_VOLUME 6-10-SV1-RB~6-10-BID-RB NULL NULL # String in beiden Faellen (Linux und Windows) gleich? #1618249551621 STD CVD <- 156 CV_ID ##ScenTime ## SubSystem Direction ProcessTime ID Value State Remark ## Linux --- ## 1615029280000 INF SQC Starting cycle for 2021-03-06 12:14:38.000 ## 1615029280000 STD LDS MCL 1615029278000 Main cycle loop 06.03.2021 12:14:38.000 (ScenTime: Tag und Zeit in Klartext; Spalte ProcessTime ScenTime!) ## Windows --- ## 1618256150711 STD SQC 1615457121000 Main cycle loop 11:05:21.000 (ScenTime-Zeit in Klartext; Spalte ProcessTime ScenTime!) dfScenTime=df[df['ID']=='Main cycle loop'][['ProcessTime']] dfScenTime.rename(columns={'ProcessTime':'ScenTime'},inplace=True) df=df.join(dfScenTime) df['ScenTime']=df['ScenTime'].fillna(method='ffill') df['ScenTime']=df['ScenTime'].fillna(method='bfill') if df['ScenTime'].isnull().values.all(): logger.debug("{0:s}Keine Zeile mit ID=='Main cycle loop' gefunden. ScenTime zu #LogTime gesetzt.".format(logStr)) df['ScenTime']=df['#LogTime'] # wenn keine Zeile mit ID=='Main cycle loop' gefunden wurde, wird ScenTime zu #LogTime gesetzt # finalisieren df=df[['#LogTime','LogLevel','SubSystem','Direction','ProcessTime','ID','Value','ScenTime','State','Remark']] logger.debug("{0:s}{1:s} processed with nRows: {2:s} (None if all).".format(logStr,logFileTail,str(nRows))) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return df def rebuildLookUpDfZips(self,zip7Files,readWithDictReader=True,readWindowsLog=False): """ (re-)initialize with zip7Files only persistent outcome is lookUpDfZips (Attribute and H5-Persistence) lookUpdf is changed but not H5-stored (Re-)Init with AppLog(h5File=...) after using rebuildLookUpDfZips to obtain old lookUpdf main Usage of rebuildLookUpDfZips is to determine which zip7Files to add by i.e.: zip7FilesToAdd=lx.lookUpDfZips[~(lx.lookUpDfZips['LastTime']<timeStartAusschnitt) & ~(lx.lookUpDfZips['FirstTime']>timeEndAusschnitt)].index.to_list() """ #noDfStorage=False logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: #self.__initzip7File(zip7File=zip7Files[0],h5FileName=h5FileName,nRows=1,readWithDictReader=True) for zip7File in zip7Files: logger.info("{0:s}addZip7File: {1:s}".format(logStr,zip7File)) self.addZip7File(zip7File,firstsAndLastsLogsOnly=True,nRows=1,readWithDictReader=readWithDictReader,noDfStorage=True,readWindowsLog=readWindowsLog) logger.debug("{0:s}lookUpDf: {1:s}".format(logStr,self.lookUpDf.to_string())) df=self.lookUpDf.groupby(by='zipName').agg(['min', 'max']) logger.debug("{0:s}df: {1:s}".format(logStr,df.to_string())) minTime=df.loc[:,('FirstTime','min')] maxTime=df.loc[:,('LastTime','max')] minFileNr=df.loc[:,('logName','min')].apply(lambda x: int(re.search(logFilenamePattern,x).group(3))) maxFileNr=df.loc[:,('logName','max')].apply(lambda x: int(re.search(logFilenamePattern,x).group(3))) s=(maxTime-minTime)/(maxFileNr-minFileNr) lookUpDfZips=s.to_frame().rename(columns={0:'TimespanPerLog'}) lookUpDfZips['NumOfFiles']=maxFileNr-minFileNr lookUpDfZips['FirstTime']=minTime lookUpDfZips['LastTime']=maxTime lookUpDfZips['minFileNr']=minFileNr lookUpDfZips['maxFileNr']=maxFileNr lookUpDfZips=lookUpDfZips[['FirstTime','LastTime','TimespanPerLog','NumOfFiles','minFileNr','maxFileNr']] # lookUpDfZips schreiben self.lookUpDfZips=lookUpDfZips self.__toH5('lookUpDfZips',self.lookUpDfZips) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def addZip7File(self,zip7File,firstsAndLastsLogsOnly=False,nRows=None,readWithDictReader=False,noDfStorage=False,readWindowsLog=False): """ add zip7File Args: * zipFile: zipFile which LogFiles shall be added * Args for internal Usage: * firstsAndLastsLogsOnly (True dann) * nRows (1 dann) * readWithDictReader (True dann) d.h. es werden nur die ersten und letzten Logs pro Zip angelesen und dort auch nur die 1. und letzte Zeile und das mit DictReader """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # wenn zip7File nicht existiert ... if not os.path.exists(zip7File): logStrFinal="{0:s}zip7File {1:s} not existing.".format(logStr,zip7File) logger.debug(logStrFinal) raise LxError(logStrFinal) else: (zip7FileHead, zip7FileTail)=os.path.split(zip7File) logger.debug("{0:s}zip7FileHead (leer wenn zip7 im selben Verz.): {1:s} zip7FileTail: {2:s}.".format(logStr,zip7FileHead,zip7FileTail)) logger.info("{0:s}zip7File: {1:s} ...".format(logStr,zip7File)) tmpDir=os.path.dirname(zip7File) tmpDirContent=glob.glob(tmpDir) with py7zr.SevenZipFile(zip7File, 'r') as zip7FileObj: allLogFiles = zip7FileObj.getnames() allLogFilesLen=len(allLogFiles) logger.debug("{0:s}{1:s}: len(getnames()): {2:d}.".format(logStr,zip7FileTail,allLogFilesLen)) extDirLstTBDeleted=[] extDirLstExistingLogged=[] for idx,logFileNameInZip in enumerate(allLogFiles): if firstsAndLastsLogsOnly: if idx not in [0,1,allLogFilesLen-2,allLogFilesLen-1]: #logger.debug("{0:s}idx: {1:d} item: {2:s} NOT processed ...".format(logStr,idx,logFileNameInZip)) continue logger.info("{0:s}idx: {1:d} item: {2:s} ...".format(logStr,idx,logFileNameInZip)) # die Datei die 7Zip bei extract erzeugen wird logFile=os.path.join(tmpDir,logFileNameInZip) (logFileHead, logFileTail)=os.path.split(logFile) # evtl. bezeichnet logFileNameInZip keine Datei sondern ein Verzeichnis (name, ext)=os.path.splitext(logFileNameInZip) if ext == '': # Verzeichnis! extDir=os.path.join(tmpDir,logFileNameInZip) (extDirHead, extDirTail)=os.path.split(extDir) if os.path.exists(extDir) and extDir in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) bereits.".format(logStr,idx,extDirTail)) extDirLstExistingLogged.append(extDir) elif os.path.exists(extDir) and extDir not in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) noch nicht.".format(logStr,idx,extDirTail)) extDirLstTBDeleted.append(extDir) elif not os.path.exists(extDir) and extDir not in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) noch nicht.".format(logStr,idx,extDirTail)) extDirLstTBDeleted.append(extDir) # kein Logfile zu prozessieren ... continue # logFileNameInZip bezeichnet eine Datei if os.path.exists(logFile): isFile = os.path.isfile(logFile) if isFile: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert bereits. Wird durch Extrakt ueberschrieben werden.".format(logStr,idx,logFileTail)) logFileTBDeleted=False else: logFileTBDeleted=False else: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert nicht. Wird extrahiert, dann prozessiert und dann wieder geloescht.".format(logStr,idx,logFileTail)) logFileTBDeleted=True # extrahieren logger.debug("{0:s}Log: {1:s} wird extrahiert ... ".format(logStr,logFileTail)) import lzma try: zip7FileObj.extract(path=tmpDir,targets=logFileNameInZip) except lzma.LZMAError: logger.warning("{0:s}Log: {1:s} nicht erfolgreich extrahiert - continue ... ".format(logStr,logFileTail)) continue except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) logger.debug("{0:s}Log: {1:s} wurde extrahiert. ".format(logStr,logFileTail)) if os.path.exists(logFile): pass else: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT extracted?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue # ... if os.path.isfile(logFile): df = self.__processALogFile(logFile=logFile,nRows=nRows,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) if df is None: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT processed?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue # ... # gleich wieder loeschen if os.path.exists(logFile) and logFileTBDeleted: if os.path.isfile(logFile): os.remove(logFile) logger.debug("{0:s}idx: {1:d} Log: {2:s} wieder geloescht.".format(logStr,idx,logFileTail)) # ... (name, ext)=os.path.splitext(logFileTail) key='Log'+name if zip7FileHead != '': zipName=os.path.join(os.path.relpath(zip7FileHead),zip7FileTail) else: zipName=zip7FileTail # df schreiben self.__toH5(key,df,updLookUpDf=True,logName=logFileTail,zipName=zipName,noDfStorage=noDfStorage)#os.path.join(os.path.relpath(zip7FileHead),zip7FileTail)) # danach gleich lookUpDf schreiben ... self.__toH5('lookUpDf',self.lookUpDf,noDfStorage=noDfStorage) for dirName in extDirLstTBDeleted: if os.path.exists(dirName): if os.path.isdir(dirName): (dirNameHead, dirNameTail)=os.path.split(dirName) if len(os.listdir(dirName)) == 0: os.rmdir(dirName) logger.debug("{0:s}dirName: {1:s} existierte nicht und wurde wieder geloescht.".format(logStr,dirNameTail)) else: logger.info("{0:s}dirName: {1:s} existiert mit nicht leerem Inhalt?!".format(logStr,dirNameTail)) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def getTotalLogTime(self): """ Returns Tuple: firstTime,lastTime,tdTotalGross,tdTotal,tdBetweenFilesTotal # Brutto-Logzeit, Netto-Logzeit, Summe aller Zeiten zwischen 2 Logdateien (sollte = Brutto-Netto sein) """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # Inhalt der Logs tdTotal=pd.Timedelta('0 Seconds') tdBetweenFilesTotal=pd.Timedelta('0 Seconds') for idx,(index,row) in enumerate(self.lookUpDf.iterrows()): if idx > 0: tdBetweenFiles=row["FirstTime"]-lastTime tdBetweenFilesTotal=tdBetweenFilesTotal+tdBetweenFiles if tdBetweenFiles > pd.Timedelta('0 second'): if tdBetweenFiles > pd.Timedelta('1 second'): logger.info("{:s}Zeitdifferenz: {!s:s} zwischen {:s} ({:s}) und {:s} ({:s})".format(logStr, str(tdBetweenFiles).replace('days','Tage') ,lastFile,lastZip ,row["logName"],row["zipName"] )) pass if tdBetweenFiles < pd.Timedelta('0 second'): if tdBetweenFiles < -pd.Timedelta('1 second'): pass logger.info("{:s}Zeitueberlappung > 1s: {!s:s} zwischen {:s} ({:s}) und {:s} ({:s})".format(logStr, str(tdBetweenFiles).replace('days','Tage') ,lastFile,lastZip ,row["logName"],row["zipName"] )) td=row["LastTime"]-row["FirstTime"] if type(td) == pd.Timedelta: tdTotal=tdTotal+td else: print(index)# Fehler! lastTime=row["LastTime"] lastFile=row["logName"] lastZip=row["zipName"] firstTime=self.lookUpDf.iloc[0]["FirstTime"] lastTime=self.lookUpDf.iloc[-1]["LastTime"] tdTotalGross=lastTime-firstTime tdTotalGross,tdTotal,tdBetweenFilesTotal except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return firstTime,lastTime,tdTotalGross,tdTotal,tdBetweenFilesTotal def extractTCsToH5s(self,dfID=pd.DataFrame(),timeStart=None,timeEnd=None,TCsdfOPCFill=TCsdfOPCFill): """ extracts TC-Data (and CVD-Data) from H5 to seperate H5-Files (Postfixe: _TCxxx.h5 and _CVD.h5) TCsdfOPCFill: wenn Wahr, werden in TCsdfOPCFill die NULLen aufgefuellt; default: Falsch wenn timeStart != None: es wird an exisitierende .h5s angehaengt; sonst werden diese ueberschrieben """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # _TCxxx.h5 anlegen (OPC, SirCalc, LDSIn, LDSRes1, LDSRes2 (,LDSRes)) and _CVD.h5 # ueber alle dfs in H5 (unter Berücksichtigung von timeStart und timeEnd) # lesen # TC-Teilmenge ermitteln: 'ID','ProcessTime','ScenTime','SubSystem','Value','Direction' # Zeilen mit 'Value' isnull() werden NICHT gelesen # d.h. bei einer Logfile-Semantik welche durch NULL-Zeilen einen Wert auf (was auch immer) zuruecksetzt wuerde der Wert bei einer Stop-Plot-Ausgabe auf dem letzten Nicht-NULL Wert verharren ... # ... zunaechst ... # Untermengen bilden: ['TCsdfOPC','TCsdfSirCalc','TCsdfLDSIn','TCsdfLDSRes1','TCsdfLDSRes2' (,'TCsdfLDSRes')] # ... NULLen (NaNs) entstehen durch die Pivotierung mit Index = Time: nicht fuer alles Times (Obermenge) gibt es fuer jede ID Values # speichern (name,ext)=os.path.splitext(self.h5File) TCPost='_TC' self.h5FileOPC=name+TCPost+'OPC'+ext self.h5FileSirCalc=name+TCPost+'SirCalc'+ext self.h5FileLDSIn=name+TCPost+'LDSIn'+ext if not dfID.empty: # Attribute self.h5FileLDSRes1=name+TCPost+'LDSRes1'+ext self.h5FileLDSRes2=name+TCPost+'LDSRes2'+ext # Komplement wird geloescht h5FileLDSRes=name+TCPost+'LDSRes'+ext try: # wenn TC-H5 existiert wird es geloescht if os.path.exists(h5FileLDSRes): os.remove(h5FileLDSRes) logger.debug("{0:s}Existing H5-File {1:s} deleted.".format(logStr,h5FileLDSRes)) del self.h5FileLDSRes except: pass else: # Attribut self.h5FileLDSRes=name+TCPost+'LDSRes'+ext # Komplemente werden geloescht h5FileLDSRes1=name+TCPost+'LDSRes1'+ext h5FileLDSRes2=name+TCPost+'LDSRes2'+ext try: # wenn TC-H5 existiert wird es geloescht if os.path.exists(h5FileLDSRes1): os.remove(h5FileLDSRes1) logger.debug("{0:s}Existing H5-File {1:s} deleted.".format(logStr,h5FileLDSRes1)) # wenn TC-H5 existiert wird es geloescht if os.path.exists(h5FileLDSRes2): os.remove(h5FileLDSRes2) logger.debug("{0:s}Existing H5-File {1:s} deleted.".format(logStr,h5FileLDSRes2)) del self.h5FileLDSRes1 del self.h5FileLDSRes2 except: pass self.h5FileCVD=name+'_'+'CVD'+ext h5Keys,h5KeysPost=self.__getH5Keys(timeStart=timeStart,timeEnd=timeEnd) h5KeysOPC=['TCsOPC'+x for x in h5KeysPost] h5KeysSirCalc=['TCsSirCalc'+x for x in h5KeysPost] h5KeysLDSIn=['TCsLDSIn'+x for x in h5KeysPost] h5KeysLDSRes1=['TCsLDSRes1'+x for x in h5KeysPost] h5KeysLDSRes2=['TCsLDSRes2'+x for x in h5KeysPost] h5KeysLDSRes=['TCsLDSRes'+x for x in h5KeysPost] h5KeysCVD=['CVDRes'+x for x in h5KeysPost] h5KeysAll=zip(h5Keys,h5KeysOPC,h5KeysSirCalc,h5KeysLDSIn,h5KeysLDSRes1,h5KeysLDSRes2,h5KeysLDSRes,h5KeysCVD) for idx,(h5Key,h5KeyOPC,h5KeySirCalc,h5KeyLDSIn,h5KeyLDSRes1,h5KeyLDSRes2,h5KeyLDSRes,h5KeyCVD) in enumerate(h5KeysAll): #H5-Write-Modus if idx==0: if timeStart!=None: mode='a' else: mode='w' else: mode='a' logger.info("{0:s}Get (read_hdf) df with h5Key: {1:s} ...".format(logStr,h5Key)) df=pd.read_hdf(self.h5File, key=h5Key) # CVD ------------------------------------------------------------------------------------------------- dfCVD=df[df['SubSystem']=='CVD'] df=df[['ID','ProcessTime','ScenTime','SubSystem','Value','Direction']] df['Value']=df['Value'].apply(lambda x: fTCCast(x)) df=df[~(df['Value'].isnull())] if not dfID.empty: TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2=self.getTCsFromDf(df,dfID=dfID,TCsdfOPCFill=TCsdfOPCFill) else: TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes=self.getTCsFromDf(df,dfID=dfID,TCsdfOPCFill=TCsdfOPCFill) logger.debug("{0:s}{1:s}".format(logStr,'Write ...')) TCsdfOPC.to_hdf(self.h5FileOPC,h5KeyOPC, mode=mode) TCsdfSirCalc.to_hdf(self.h5FileSirCalc,h5KeySirCalc, mode=mode) TCsdfLDSIn.to_hdf(self.h5FileLDSIn,h5KeyLDSIn, mode=mode) if not dfID.empty: TCsdfLDSRes1.to_hdf(self.h5FileLDSRes1,h5KeyLDSRes1, mode=mode) TCsdfLDSRes2.to_hdf(self.h5FileLDSRes2,h5KeyLDSRes2, mode=mode) else: TCsdfLDSRes.to_hdf(self.h5FileLDSRes,h5KeyLDSRes, mode=mode) # --- dfCVD.to_hdf(self.h5FileCVD,h5KeyCVD, mode=mode) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return def shrinkH5File(self): """ die dfs werden geloescht im H5-File extract TCs to H5s ### MUSS ### vorher gelaufen sein nach shrinkH5File stehen im Master-H5 die eigentlichen Daten nicht mehr zur Verfuegung """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # H5 existiert if os.path.exists(self.h5File): # Keys available with pd.HDFStore(self.h5File) as h5Store: h5Keys=sorted(h5Store.keys()) # /Log20201216_0000001 logger.debug("{0:s}h5Keys available: {1:s}".format(logStr,str(h5Keys))) for key in h5Keys: if re.match('(^/Log)',key): logger.debug("{0:s}key removed: {1:s}".format(logStr,str(key))) h5Store.remove(key.replace(h5KeySep,'')) else: logger.debug("{0:s}key NOT removed: {1:s}".format(logStr,str(key))) with pd.HDFStore(self.h5File) as h5Store: pass shrinkCmd="ptrepack --chunkshape=auto --propindexes --complib=blosc "+self.h5File+" "+self.h5File+".Shrinked" logger.debug("{0:s}shrinkCmd: {1:s}".format(logStr,shrinkCmd)) if os.path.exists(self.h5File+".Shrinked"): os.remove(self.h5File+".Shrinked") os.system(shrinkCmd) os.remove(self.h5File) os.rename(self.h5File+".Shrinked",self.h5File) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def get(self,timeStart=None,timeEnd=None,filter_fct=None,filterAfter=True,useRawHdfAPI=False): """ returns df with filter_fct applied """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfRet=None try: dfLst=[] dfLookUpTimes=self.lookUpDf if timeStart!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['LastTime']>=timeStart] # endet nach dem Anfang oder EndeFile ist Anfang if timeEnd!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['FirstTime']<=timeEnd] # beginnt vor dem Ende oder AnfangFile ist Ende dfLookUpTimesIdx=dfLookUpTimes.set_index('logName') dfLookUpTimesIdx.filter(regex='\.log$',axis=0) h5Keys=['Log'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] logger.debug("{0:s}h5Keys used: {1:s}".format(logStr,str(h5Keys))) if useRawHdfAPI: with pd.HDFStore(self.h5File) as h5Store: for h5Key in h5Keys: logger.debug("{0:s}Get (pd.HDFStore) df with h5Key: {1:s} ...".format(logStr,h5Key)) df=h5Store[h5Key] if not filterAfter and filter_fct != None: logger.debug("{0:s}Apply Filter ...".format(logStr)) df=pd.DataFrame(df[df.apply(filter_fct,axis=1)].values,columns=df.columns) dfLst.append(df) else: for h5Key in h5Keys: logger.debug("{0:s}Get (read_hdf) df with h5Key: {1:s} ...".format(logStr,h5Key)) df=pd.read_hdf(self.h5File, key=h5Key) if not filterAfter and filter_fct != None: logger.debug("{0:s}Apply Filter ...".format(logStr)) df=pd.DataFrame(df[df.apply(filter_fct,axis=1)].values,columns=df.columns) dfLst.append(df) logger.debug("{0:s}{1:s}".format(logStr,'Extraction finished. Concat ...')) dfRet=pd.concat(dfLst) del dfLst if filterAfter and filter_fct != None: logger.debug("{0:s}Apply Filter ...".format(logStr)) dfRet=pd.DataFrame(dfRet[dfRet.apply(filter_fct,axis=1)].values,columns=dfRet.columns) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfRet def getFromZips(self,timeStart=None,timeEnd=None,filter_fct=None,filterAfter=True,readWithDictReader=False,readWindowsLog=False): """ returns df from Zips die Daten werden von den Zips gelesen: Log extrahieren, parsen, wieder loeschen die Initalisierung muss mit AppLog(zip7Files=...) erfolgt sein da nur dann self.lookUpDfZips existiert """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfRet=None try: dfLst=[] timeStart=pd.Timestamp(timeStart) timeEnd=pd.Timestamp(timeEnd) # zips die prozessiert werden muessen dfLookUpZips=self.lookUpDfZips if timeStart!=None: dfLookUpZips=dfLookUpZips[dfLookUpZips['LastTime']>=timeStart] # endet nach dem Anfang oder EndeFile ist Anfang if timeEnd!=None: dfLookUpZips=dfLookUpZips[dfLookUpZips['FirstTime']<=timeEnd] # beginnt vor dem Ende oder AnfangFile ist Ende for index, row in dfLookUpZips.iterrows(): zip7File=index (zip7FileHead, zip7FileTail)=os.path.split(zip7File) dTime=timeStart-row['FirstTime'] nStart = int(dTime.total_seconds()/row['TimespanPerLog'].total_seconds()) dTime=timeEnd-timeStart nDelta = int(dTime.total_seconds()/row['TimespanPerLog'].total_seconds())+1 nEnd=nStart+nDelta logger.debug("{0:s}zip7File: {1:s}: Start: {2:d}/{3:07d} End: {4:d}/{5:07d}".format(logStr,zip7FileTail ,nStart,nStart+row['minFileNr'] ,nStart+nDelta,nStart+row['minFileNr']+nDelta)) try: # wenn zip7File nicht existiert ... if not os.path.exists(zip7File): logStrFinal="{0:s}zip7File {1:s} not existing.".format(logStr,zip7File) logger.debug(logStrFinal) raise LxError(logStrFinal) tmpDir=os.path.dirname(zip7File) tmpDirContent=glob.glob(tmpDir) with py7zr.SevenZipFile(zip7File, 'r') as zip7FileObj: allLogFiles = zip7FileObj.getnames() allLogFilesLen=len(allLogFiles) logger.debug("{0:s}{1:s}: len(getnames()): {2:d}.".format(logStr,zip7FileTail,allLogFilesLen)) extDirLstTBDeleted=[] extDirLstExistingLogged=[] idxEff=0 for idx,logFileNameInZip in enumerate(allLogFiles): if idx < nStart-idxEff or idx > nEnd+idxEff: continue logger.debug("{0:s}idx: {1:d} item: {2:s} ...".format(logStr,idx,logFileNameInZip)) # die Datei die 7Zip bei extract erzeugen wird logFile=os.path.join(tmpDir,logFileNameInZip) (logFileHead, logFileTail)=os.path.split(logFile) # evtl. bezeichnet logFileNameInZip keine Datei sondern ein Verzeichnis (name, ext)=os.path.splitext(logFileNameInZip) if ext == '': # Verzeichnis! extDir=os.path.join(tmpDir,logFileNameInZip) (extDirHead, extDirTail)=os.path.split(extDir) if os.path.exists(extDir) and extDir in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) bereits.".format(logStr,idx,extDirTail)) extDirLstExistingLogged.append(extDir) elif os.path.exists(extDir) and extDir not in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) noch nicht.".format(logStr,idx,extDirTail)) extDirLstTBDeleted.append(extDir) elif not os.path.exists(extDir) and extDir not in tmpDirContent: logger.debug("{0:s}idx: {1:d} extDir: {2:s} existiert(e) noch nicht.".format(logStr,idx,extDirTail)) extDirLstTBDeleted.append(extDir) # kein Logfile zu prozessieren ... idxEff+=1 continue # logFileNameInZip bezeichnet eine Datei if os.path.exists(logFile): isFile = os.path.isfile(logFile) if isFile: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert bereits. Wird durch Extrakt ueberschrieben werden.".format(logStr,idx,logFileTail)) logFileTBDeleted=False else: logFileTBDeleted=False else: logger.debug("{0:s}idx: {1:d} Log: {2:s} existiert nicht. Wird extrahiert, dann prozessiert und dann wieder geloescht.".format(logStr,idx,logFileTail)) logFileTBDeleted=True # extrahieren zip7FileObj.extract(path=tmpDir,targets=logFileNameInZip) if os.path.exists(logFile): pass else: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT extracted?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue # ... if os.path.isfile(logFile): df = self.__processALogFile(logFile=logFile,readWithDictReader=readWithDictReader,readWindowsLog=readWindowsLog) if df is None: logger.warning("{0:s}idx: {1:d} Log: {2:s} NOT processed?! Continue with next Name in 7Zip.".format(logStr,idx,logFileTail)) # nichts zu prozessieren ... continue else: if not filterAfter and filter_fct != None: logger.debug("{0:s}Apply Filter ...".format(logStr)) df=pd.DataFrame(df[df.apply(filter_fct,axis=1)].values,columns=df.columns) dfLst.append(df) # ... # gleich wieder loeschen if os.path.exists(logFile) and logFileTBDeleted: if os.path.isfile(logFile): os.remove(logFile) logger.debug("{0:s}idx: {1:d} Log: {2:s} wieder geloescht.".format(logStr,idx,logFileTail)) for dirName in extDirLstTBDeleted: if os.path.exists(dirName): if os.path.isdir(dirName): (dirNameHead, dirNameTail)=os.path.split(dirName) if len(os.listdir(dirName)) == 0: os.rmdir(dirName) logger.debug("{0:s}dirName: {1:s} existierte nicht und wurde wieder geloescht.".format(logStr,dirNameTail)) else: logger.info("{0:s}dirName: {1:s} existiert mit nicht leerem Inhalt?!".format(logStr,dirNameTail)) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) logger.debug("{0:s}{1:s}".format(logStr,'Extraction finished. Concat ...')) dfRet=pd.concat(dfLst) del dfLst if filterAfter and filter_fct != None: logger.debug("{0:s}Apply Filter ...".format(logStr)) dfRet=pd.DataFrame(dfRet[dfRet.apply(filter_fct,axis=1)].values,columns=dfRet.columns) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfRet def getTCs(self,dfID=pd.DataFrame(),timeStart=None,timeEnd=None,TCsdfOPCFill=TCsdfOPCFill,persistent=False,overwrite=True): """ returns TCs-dfs Verarbeitung von dfs gemaess extractTCsToH5s; siehe dort """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: TCKeys=['<KEY>','TCsdfSirCalc','TCsdfLDSIn','TCsdfLDSRes1','TCsdfLDSRes2a','TCsdfLDSRes2b','TCsdfLDSRes2c'] if persistent: with pd.HDFStore(self.h5File) as h5Store: h5Keys=sorted(h5Store.keys()) #logger.debug("{0:s}h5Keys available: {1:s}".format(logStr,str(h5Keys))) h5KeysStripped=[item.replace(h5KeySep,'') for item in h5Keys] if set(TCKeys) & set(h5KeysStripped) == set(TCKeys): if not overwrite: logger.debug("{0:s}persistent: TCKeys {1:s} existieren alle bereits - return aus H5-File ...".format(logStr,str(TCKeys))) TCsdfOPC=pd.read_hdf(self.h5File,key='<KEY>') TCsdfSirCalc=pd.read_hdf(self.h5File,key='TCsdfSirCalc') TCsdfLDSIn=pd.read_hdf(self.h5File,key='TCsdfLDSIn') TCsdfLDSRes1=pd.read_hdf(self.h5File,key='TCsdfLDSRes1') TCsdfLDSRes2a=pd.read_hdf(self.h5File,key='TCsdfLDSRes2a') TCsdfLDSRes2b=pd.read_hdf(self.h5File,key='TCsdfLDSRes2b') TCsdfLDSRes2c=pd.read_hdf(self.h5File,key='TCsdfLDSRes2c') logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2a,TCsdfLDSRes2b,TCsdfLDSRes2c else: logger.debug("{0:s}persistent: TCKeys {1:s} existieren alle bereits - sollen aber ueberschrieben werden ...".format(logStr,str(TCKeys))) else: logger.debug("{0:s}persistent: TCKeys {1:s} existieren nicht (alle) ...".format(logStr,str(TCKeys))) dfLookUpTimes=self.lookUpDf if timeStart!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['LastTime']>=timeStart] # endet nach dem Anfang oder EndeFile ist Anfang if timeEnd!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['FirstTime']<=timeEnd] # beginnt vor dem Ende oder AnfangFile ist Ende dfLookUpTimesIdx=dfLookUpTimes.set_index('logName') dfLookUpTimesIdx.filter(regex='\.log$',axis=0) h5Keys=['Log'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] logger.debug("{0:s}h5Keys used: {1:s}".format(logStr,str(h5Keys))) dfLst=[] for h5Key in h5Keys: logger.debug("{0:s}Get (read_hdf) df with h5Key: {1:s} ...".format(logStr,h5Key)) dfSingle=pd.read_hdf(self.h5File, key=h5Key) dfSingle=dfSingle[['ID','ProcessTime','ScenTime','SubSystem','Value','Direction']] dfSingle=dfSingle[~(dfSingle['Value'].isnull())] dfLst.append(dfSingle) logger.debug("{0:s}{1:s}".format(logStr,'Extraction finished. Concat ...')) df=pd.concat(dfLst) del dfLst logger.debug("{0:s}{1:s}".format(logStr,'Concat finished. Filter & Pivot ...')) if not dfID.empty: TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2=self.getTCsFromDf(df,dfID=dfID,TCsdfOPCFill=TCsdfOPCFill) else: TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes=self.getTCsFromDf(df,dfID=dfID,TCsdfOPCFill=TCsdfOPCFill) if persistent: logger.debug("{0:s}peristent: TCKeys {1:s} nach H5-File ...".format(logStr,str(TCKeys))) TCsdfOPC.to_hdf(self.h5File,key='TCsdfOPC') TCsdfSirCalc.to_hdf(self.h5File,key='TCsdfSirCalc') TCsdfLDSIn.to_hdf(self.h5File,key='TCsdfLDSIn') TCsdfLDSRes1.to_hdf(self.h5File,key='TCsdfLDSRes1') TCsdfLDSRes2a.to_hdf(self.h5File,key='TCsdfLDSRes2a') TCsdfLDSRes2b.to_hdf(self.h5File,key='TCsdfLDSRes2b') TCsdfLDSRes2c.to_hdf(self.h5File,key='TCsdfLDSRes2c') except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise LxError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) if not dfID.empty: return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2#a,TCsdfLDSRes2b,TCsdfLDSRes2c else: return TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1 def getTCsFromH5s(self,timeStart=None,timeEnd=None, LDSResOnly=False, LDSResColsSpecified=None, LDSResTypeSpecified=None, timeShiftPair=None): """ returns several TC-dfs from TC-H5s: TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes1,TCsdfLDSRes2 or TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn,TCsdfLDSRes LDSResOnly: TCsdfLDSRes1,TCsdfLDSRes2 or TCsdfLDSRes LDSResColsSpecified: return in LDSRes df(s) only the specified cols all cols are returned otherwise LDSResTypeSpecified: return TCsdfLDSRes1 (SEG) for 'SEG' or TCsdfLDSRes2 (Druck) for 'Druck' both are returned otherwise timeShiftPair: (preriod,freq): i.e. (1,'H'); if not None index is shifted """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: try: self.h5FileLDSRes1 Res2=True except: Res2=False TCsdfOPC=pd.DataFrame() TCsdfSirCalc=pd.DataFrame() TCsdfLDSIn=pd.DataFrame() if Res2: TCsdfLDSRes1=pd.DataFrame() TCsdfLDSRes2=pd.DataFrame() else: TCsdfLDSRes=pd.DataFrame() dfLookUpTimes=self.lookUpDf if timeStart!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['LastTime']>=timeStart] # endet nach dem Anfang oder EndeFile ist Anfang if timeEnd!=None: dfLookUpTimes=dfLookUpTimes[dfLookUpTimes['FirstTime']<=timeEnd] # beginnt vor dem Ende oder AnfangFile ist Ende dfLookUpTimesIdx=dfLookUpTimes.set_index('logName') dfLookUpTimesIdx.filter(regex='\.log$',axis=0) h5Keys=['Log'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] logger.debug("{0:s}h5Keys used: {1:s}".format(logStr,str(h5Keys))) h5KeysOPC=['TCsOPC'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] h5KeysSirCalc=['TCsSirCalc'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] h5KeysLDSIn=['TCsLDSIn'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] h5KeysLDSRes1=['TCsLDSRes1'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] h5KeysLDSRes2=['TCsLDSRes2'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] h5KeysLDSRes=['TCsLDSRes'+re.search(logFilenameHeadPattern,logFile).group(1) for logFile in dfLookUpTimesIdx.index] h5KeysAll=zip(h5Keys,h5KeysOPC,h5KeysSirCalc,h5KeysLDSIn,h5KeysLDSRes1,h5KeysLDSRes2,h5KeysLDSRes) for idx,(h5Key,h5KeyOPC,h5KeySirCalc,h5KeyLDSIn,h5KeyLDSRes1,h5KeyLDSRes2,h5KeyLDSRes) in enumerate(h5KeysAll): if not LDSResOnly: #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfOPC ...')) TCsdfOPC=pd.read_hdf(self.h5FileOPC,h5KeyOPC) #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfSirCalc ...')) TCsdfSirCalc=pd.read_hdf(self.h5FileSirCalc,h5KeySirCalc) #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSIn ...')) TCsdfLDSIn=pd.read_hdf(self.h5FileLDSIn,h5KeyLDSIn) if Res2: if LDSResTypeSpecified == None or LDSResTypeSpecified=='SEG': #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes1 ...')) TCsdfLDSRes1=pd.read_hdf(self.h5FileLDSRes1,h5KeyLDSRes1) if LDSResTypeSpecified == None or LDSResTypeSpecified=='Druck': #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes2 ...')) TCsdfLDSRes2=pd.read_hdf(self.h5FileLDSRes2,h5KeyLDSRes2) else: #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes ...')) TCsdfLDSRes=pd.read_hdf(self.h5FileLDSRes,h5KeyLDSRes) if LDSResColsSpecified != None: if Res2: if LDSResTypeSpecified == None or LDSResTypeSpecified=='SEG': #logger.debug("{0:s}{1:s} {2:s}".format(logStr,'TCsdfLDSRes1 Filter ...',str(LDSResColsSpecified))) TCsdfLDSRes1=TCsdfLDSRes1.filter(items=LDSResColsSpecified) if LDSResTypeSpecified == None or LDSResTypeSpecified=='Druck': #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes2 Filter ...')) TCsdfLDSRes2=TCsdfLDSRes2.filter(items=LDSResColsSpecified) else: #logger.debug("{0:s}{1:s}".format(logStr,'TCsdfLDSRes Filter ...')) TCsdfLDSRes=TCsdfLDSRes.filter(items=LDSResColsSpecified) if idx==0: if not LDSResOnly: TCsdfOPCLst=[] TCsdfSirCalcLst=[] TCsdfLDSInLst=[] if Res2: if LDSResTypeSpecified == None or LDSResTypeSpecified=='SEG': TCsdfLDSRes1Lst=[] if LDSResTypeSpecified == None or LDSResTypeSpecified=='Druck': TCsdfLDSRes2Lst=[] else: TCsdfLDSResLst=[] #logger.debug("{0:s}Append ...".format(logStr)) if not LDSResOnly: TCsdfOPCLst.append(TCsdfOPC) TCsdfSirCalcLst.append(TCsdfSirCalc) TCsdfLDSInLst.append(TCsdfLDSIn) if Res2: if LDSResTypeSpecified == None or LDSResTypeSpecified=='SEG': TCsdfLDSRes1Lst.append(TCsdfLDSRes1) if LDSResTypeSpecified == None or LDSResTypeSpecified=='Druck': TCsdfLDSRes2Lst.append(TCsdfLDSRes2) else: TCsdfLDSResLst.append(TCsdfLDSRes) logger.debug("{0:s}Concat ...".format(logStr)) if not LDSResOnly: TCsdfOPC=pd.concat(TCsdfOPCLst) TCsdfSirCalc=pd.concat(TCsdfSirCalcLst) TCsdfLDSIn=pd.concat(TCsdfLDSInLst) if timeShiftPair != None: (period,freq)=timeShiftPair logger.debug("{0:s}timeShift TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn by {1:d} {2:s} ...".format(logStr,period,freq)) for df in TCsdfOPC,TCsdfSirCalc,TCsdfLDSIn: df.index=df.index.shift(period,freq=freq) if Res2: if LDSResTypeSpecified == None or LDSResTypeSpecified=='SEG': TCsdfLDSRes1=pd.concat(TCsdfLDSRes1Lst) if LDSResTypeSpecified == None or LDSResTypeSpecified=='Druck': TCsdfLDSRes2=pd.concat(TCsdfLDSRes2Lst) if timeShiftPair != None: (period,freq)=timeShiftPair if LDSResTypeSpecified == None or LDSResTypeSpecified=='SEG': #for df in TCsdfLDSRes1: logger.debug("{:s}timeShift LDSRes1 by {:d} {:s} Ist: {!s:s} {!s:s} ...".format(logStr,period,freq,TCsdfLDSRes1.index[0],TCsdfLDSRes1.index[-1])) TCsdfLDSRes1.index=TCsdfLDSRes1.index.shift(period,freq=freq) if LDSResTypeSpecified == None or LDSResTypeSpecified=='Druck': #for df in TCsdfLDSRes2: logger.debug("{:s}timeShift LDSRes2 by {:d} {:s} Ist: {!s:s} {!s:s} ...".format(logStr,period,freq,TCsdfLDSRes2.index[0],TCsdfLDSRes2.index[-1])) TCsdfLDSRes2.index=TCsdfLDSRes2.index.shift(period,freq=freq) else: TCsdfLDSRes=
pd.concat(TCsdfLDSResLst)
pandas.concat
from bs4 import BeautifulSoup import chardet from datetime import datetime import json import lxml import matplotlib.pyplot as plt import numpy as np import os import pandas as pd from serpapi import GoogleSearch import statistics import re import requests import time from a0001_admin import clean_dataframe from a0001_admin import retrieve_path from a0001_admin import write_paths from a0001_admin import work_completed from a0001_admin import work_to_do from query_pubs import query_pubs from find_lat_lon import findLatLong def aggregate_info(dataset): """ Save a .csv """ # write paths write_paths() # acquire information if 'nsf' in dataset: df = acquire_nsf(dataset) elif 'nih' in dataset: df = acquire_nih(dataset) elif 'clinical' in dataset: df = acquire_clinical(dataset) list_clinical_trials(dataset) elif 'patent' in dataset: df = acquire_patent(dataset) elif 'pub' in dataset: df = acquire_pub(dataset) # format and co-register fields of datasets df = coregister(dataset) # geolocate df = geolocate(dataset) # summarize df = summarize(dataset) # list unique df = list_unique(dataset) def acquire_clinical(dataset): """ from downloaded clinical data, aggregate """ name = 'acquire_clinical' if work_to_do(name): work_completed(name, 0) df = acquire_downloaded(dataset) # remove out of status trials and resave over acquired file status_drop = ['Withdrawn', 'Terminated', 'Suspended'] status_drop.append('Temporarily not available') status_drop.append('Unknown status') for status in status_drop: df = df[(df['Status'] != status)] df = clean_dataframe(df) path_term = str(dataset + '_src_query') path_dst = os.path.join(retrieve_path(path_term)) file_dst = os.path.join(path_dst, dataset + '.csv') df.to_csv(file_dst) work_completed(name, 1) else: path_term = str(dataset + '_src_query') path_dst = os.path.join(retrieve_path(path_term)) file_dst = os.path.join(path_dst, dataset + '.csv') df = pd.read_csv(file_dst) print('Clinical df = ') print(df) return(df) def acquire_downloaded(dataset): """ aggregate all files downloaded and saved in user provided """ df = pd.DataFrame() path_term = dataset + '_downloaded' path_src = os.path.join(retrieve_path(path_term)) for file in os.listdir(path_src): file_src = os.path.join(path_src, file) print('file_src = ' + str(file_src)) try: df_src = pd.read_csv(file_src) except: with open(file_src, 'rb') as file: print(chardet.detect(file.read())) encodings = ['ISO-8859-1', 'unicode_escape', 'utf-8'] for encoding in encodings: df_src = pd.read_csv(file_src, encoding=encoding) break df = df.append(df_src) df = df.drop_duplicates() path_term = str(dataset + '_src_query') path_dst = os.path.join(retrieve_path(path_term)) file_dst = os.path.join(path_dst, dataset + '.csv') print('file_dst = ' + file_dst ) df.to_csv(file_dst) return(df) def acquire_nsf(dataset): """ aggregate all files in user provided into a single csv """ name = 'acquire_nsf' if work_to_do(name): work_completed(name, 0) df = acquire_downloaded(dataset) work_completed(name, 1) else: path_term = str(dataset + '_src_query') path_dst = os.path.join(retrieve_path(path_term)) file_dst = os.path.join(path_dst, dataset + '.csv') df = pd.read_csv(file_dst) print('NSF df = ') print(df) return(df) def acquire_nih(dataset): """ from downloaded nih data, aggregate """ name = 'acquire_nih' if work_to_do(name): work_completed(name, 0) df = acquire_downloaded(dataset) work_completed(name, 1) else: path_term = str(dataset + '_src_query') path_dst = os.path.join(retrieve_path(path_term)) file_dst = os.path.join(path_dst, dataset + '.csv') df = pd.read_csv(file_dst) print('NIH df = ') print(df) return(df) def acquire_patent(): """ """ df = pd.DataFrame() return(df) def acquire_pub(dataset): """ """ df = pd.DataFrame() query_pubs(dataset) return(df) def coregister(dataset): """ add reference value for year and value """ try: path_term = str(dataset + '_src_query') path_dst = os.path.join(retrieve_path(path_term)) file_dst = os.path.join(path_dst, dataset + '.csv') df = pd.read_csv(file_dst) df = clean_dataframe(df) except: df = pd.DataFrame() return(df) if 'nsf' in dataset: df = coregister_nsf(dataset, df) if 'nih' in dataset: df = coregister_nih(dataset, df) if 'clinical' in dataset: df = coregister_clinical(dataset, df) else: return(df) return(df) def coregister_clinical(dataset, df): """ add year and value as enrollment """ print('df = ') print(df) name = 'coregister_clinical' if work_to_do(name): work_completed(name, 0) years = [] for date in list(df['Start Date']): print('date = ') print(date) try: date = date.replace('"', '') date_split = date.split(' ') year = date_split[-1] except: year = 0 years.append(year) values = [] for item in list(df['Enrollment']): item = float(item) values.append(item) df['ref_year'] = years df['ref_values'] = values path_term = str(dataset + '_coregistered') path_dst = os.path.join(retrieve_path(path_term)) file_dst = os.path.join(path_dst, dataset + '.csv') df.to_csv(file_dst) work_completed(name, 1) return(df) def coregister_nih(dataset, df): """ """ print('df = ') print(df) name = 'coregister_nih' if work_to_do(name): work_completed(name, 0) years = [] for date in list(df['Fiscal Year']): year = date years.append(year) values = [] for item in list(df['Direct Cost IC']): item = float(item) values.append(item) df['ref_year'] = years df['ref_values'] = values path_term = str(dataset + '_coregistered') path_dst = os.path.join(retrieve_path(path_term)) file_dst = os.path.join(path_dst, dataset + '.csv') df.to_csv(file_dst) work_completed(name, 1) return(df) def coregister_nsf(dataset, df): """ """ print('df = ') print(df) name = 'coregister_nsf' if work_to_do(name): work_completed(name, 0) years = [] for date in list(df['StartDate']): date_split = date.split('/') year = date_split[-1] years.append(year) values = [] for item in list(df['AwardedAmountToDate']): item = item.replace('$', '') item = item.replace('"', '') item = item.replace(',', '') item = float(item) values.append(item) df['ref_year'] = years df['ref_values'] = values path_term = str(dataset + '_coregistered') path_dst = os.path.join(retrieve_path(path_term)) file_dst = os.path.join(path_dst, dataset + '.csv') df.to_csv(file_dst) work_completed(name, 1) return(df) def geolocate(dataset): """ """ path_term = str(dataset + '_coregistered') path_dst = os.path.join(retrieve_path(path_term)) file_dst = os.path.join(path_dst, dataset + '.csv') df = pd.read_csv(file_dst) df = clean_dataframe(df) if 'nsf' in dataset: name = 'geolocate_nsf' if work_to_do(name): work_completed(name, 0) df = geolocate_nsf(dataset, df) work_completed(name, 1) elif 'nih' in dataset: name = 'geolocate_nih' if work_to_do(name): work_completed(name, 0) df = geolocate_nih(dataset, df) work_completed(name, 1) elif 'clinical' in dataset: name = 'geolocate_clinical' if work_to_do(name): work_completed(name, 0) df = geolocate_clinical(dataset, df) work_completed(name, 1) else: df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- # @Time : 09.04.21 09:54 # @Author : sing_sd import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl import src.common_functions as cf import csv import ais from datetime import datetime, timedelta, timezone import re vb_dir = os.path.dirname(__file__) data_dir = os.path.join(vb_dir, "resources/") headers = ['x', 'y', 'cog', 'sog', 'time', 'mmsi', "nav_status", "ship_type", "destination"] plt.rcParams.update({'font.size': 12}) def main(): # data = generate_short_data(data_len=100000) # filename = 'ais_data_rostock_2020.csv' # 'ais_data_rostock_2016.csv' # generate_processed_data(filename) filename = "ais_data_rostock_2020_processed.csv" # "ais_data_rostock_2016_processed.csv" plot_data(filename) # generate_rostock_gedsar_dataset(filename) # decode_data() def plot_data(filename): mpl.rcParams['agg.path.chunksize'] = 10000 fig, axs = plt.subplots(1, 1) fig.set_size_inches([8, 6]) plt.pause(0.0001) with open(data_dir + filename, "r") as f: print("start") data = pd.read_csv(f) print("data loaded") data = data.astype({'x': 'float', 'y': 'float', 'cog': 'float', 'sog': 'float', 'time': 'float', 'mmsi': 'int', 'nav_status': 'float', 'ship_type': 'float', 'destination': 'str'}) print("Data loaded, total messages = ", len(data)) WINDOW = [11.5, 54.2, 12.5, 54.5] SOG_LIMIT = [0, 30] NAV_STATUS = 0.0 SHIP_TYPES = [0, 90] idx = cf.get_filtered_data_idx(data, WINDOW, SOG_LIMIT, NAV_STATUS, SHIP_TYPES) data = data.iloc[idx, :] data = data.reset_index(drop=True) print("Data loaded, total messages within window = ", len(data)) # axs.plot(data.iloc[:, 0], data.iloc[:, 1], 'b.', markersize=0.1, alpha=0.5) #, linestyle="solid", linewidth=0.1, alpha=0.5 SAMPLING_TIME = 60 for mmsi in data.mmsi.unique(): data_mmsi = data.iloc[np.array(data['mmsi'] == mmsi), :] data_mmsi = data_mmsi.reset_index(drop=True) # nr_data = int(np.ceil((np.array(data_mmsi.iloc[-1]['time']) - data_mmsi.iloc[0]['time']) / SAMPLING_TIME) + 1) overall_data = np.full(shape=(5000 * len(data_mmsi), 2), fill_value=np.nan) data_mmsi['time_idx'] = data_mmsi.iloc[0]['time'] data_mmsi['time_idx'] = np.ceil((data_mmsi['time'] - data_mmsi['time_idx']) / SAMPLING_TIME) overall_data[np.array(data_mmsi['time_idx'], dtype=np.int), 0:2] = np.array(data_mmsi[['x', 'y']]) axs.plot(overall_data[:, 0], overall_data[:, 1], linestyle="-", color="blue", linewidth=0.3, alpha=5) plt.pause(0.0001) axs.set_xlabel('Longitude [deg]') axs.set_ylabel('Latitude [deg]') axs.set_xlim(xmin=11.5, xmax=12.5) axs.set_ylim(ymin=54.2, ymax=54.5) plt.pause(0.001) plt.savefig("./resources/dataset2020.png") plt.savefig("./resources/dataset2020.pdf") plt.show() def generate_processed_data(filename): with open(data_dir + filename, "r") as f: print("start") data_pd = pd.read_csv(f) print("data loaded") data_pd = data_pd.astype({'x': 'float', 'y': 'float', 'cog': 'float', 'sog': 'float', 'time': 'float', 'mmsi': 'int', 'nav_status': 'float', 'ship_type': 'str', 'destination': 'str'}) # data = np.array(data_pd) i = 1 total= len(data_pd.mmsi.unique()) for mmsi in data_pd.mmsi.unique(): idx = data_pd.iloc[:, 5] == mmsi data_pd.iloc[idx, -1] = "U" # for ship types value = np.unique(data_pd["ship_type"].loc[idx]) if len(value) > 1: value = value[value != "nan"] data_pd.iloc[idx, -2] = value[0] else: data_pd.iloc[idx, 0] = -1 # delete those rows that does not have ship type by putting x = np.nan print(i, " out of ", total) i += 1 data_pd = data_pd[data_pd.x > 0] if sum(data_pd.iloc[:, -1] == "nan") + sum(data_pd.iloc[:, -2] == "nan")> 0: print("there are nan values") exit(0) data_pd["ship_type"] = data_pd["ship_type"].astype("float64") data_pd.to_csv(data_dir + "ais_data_rostock_2020_processed.csv", index=False) # plot_graph(data) def generate_short_data(data_len=10000): data = pd.DataFrame(columns=headers) data = data.astype({'x': 'float', 'y': 'float', 'cog': 'float', 'sog': 'float', 'time': 'float', 'mmsi': 'int', 'nav_status': 'float', 'ship_type': 'str', 'destination': 'str'}) # float helps in interpolation of these features try: with open(data_dir + 'ais_data_rostock_2016.csv', "r") as my_csv: reader = csv.reader(my_csv) print("first row", next(reader)) for i in range(data_len): try: next_row = next(reader) data = data.append(pd.Series(next_row, index=data.columns), ignore_index=True) except Exception as e: print(str(e)) data.to_csv(data_dir + 'ais_data_rostock_2019_short.csv', index=False) exit(0) # data = genfromtxt(data_dir+'ais_data_rostock_2019.csv', delimiter=',') data.to_csv(data_dir + 'ais_data_rostock_2016_short.csv', index=False) # np.savetxt(data_dir+'ais_data_rostock_2019_short.csv', data, delimiter=',') except Exception as e: print(str(e)) return data def generate_rostock_gedsar_dataset(filename): fig, axs = plt.subplots(1, 1) fig.set_size_inches([8, 6]) plt.pause(0.0001) with open(data_dir + filename, "r") as f: print("start") data = pd.read_csv(f) print("data loaded") data = data.astype({'x': 'float', 'y': 'float', 'cog': 'float', 'sog': 'float', 'time': 'float', 'mmsi': 'int', 'nav_status': 'float', 'ship_type': 'float', 'destination': 'str'}) WINDOW = [11, 54, 13, 56] SOG_LIMIT = [0, 30] NAV_STATUS = 0.0 SHIP_TYPES = [60, 61] idx = cf.get_filtered_data_idx(data, WINDOW, SOG_LIMIT, NAV_STATUS, SHIP_TYPES) data = data.iloc[idx, :] data_rg = pd.DataFrame(columns=data.columns) filename = "ais_data_rostock_gedsar_2016.csv" print("Data loaded, total messages within window = ", len(data)) for mmsi in data.mmsi.unique(): if mmsi in [219000479,218780000]: data_mmsi = data.iloc[np.array(data['mmsi'] == mmsi), :] data_mmsi = data_mmsi.reset_index(drop=True) data_rg = pd.concat([data_rg,data_mmsi], ignore_index=True) data_rg.to_csv(data_dir+filename, index=False) plt.plot(data_rg["x"], data_rg["y"]) plt.pause(0.0001) plt.show() def decode_data(): WINDOW = (11, 54, 13, 56) np.random.seed(10) # names = [i for i in range(20)] # chnage .. when using other input files headers = ['x', 'y', 'cog', 'sog', 'time', 'mmsi', "nav_status", "ship_type", "destination"] data = pd.DataFrame(columns=headers) data = data.astype({'x': 'float', 'y': 'float', 'cog': 'float', 'sog': 'float', 'time': 'float', 'mmsi': 'int', 'nav_status': 'float', 'ship_type': 'float', 'destination': 'str'}) # float helps in interpolation of these features filename = 'ais_data_rostock_2020.csv' data.to_csv(filename, index=False) # insert a dummy row to_append = [0, 0, 0, 0, 0, 0, 0, 0, 0] data = data.append(pd.Series(to_append, index=data.columns), ignore_index=True) txt_files = sorted(os.listdir(data_dir+"/AISHUB2020/")) for file in txt_files: with open(data_dir+"/AISHUB2020/"+file, "r") as f: aismsg = None for line_num, i_line in enumerate(f.readlines()): # [:3000] f.readlines() try: splitted_line = i_line.split('\t') ais_timestamp = splitted_line[0] nmea_msg_split = splitted_line[1].split(",") if nmea_msg_split[1] == "2": if nmea_msg_split[2] == "1": multi_line_nmea = nmea_msg_split[5] if nmea_msg_split[2] == "2": multi_line_nmea += nmea_msg_split[5] # print(multi_line_nmea) aismsg = ais.decode(multi_line_nmea, 2) # print(aismsg) multi_line_nmea = "" else: aismsg = ais.decode(nmea_msg_split[5], 0) if aismsg is not None or (aismsg['id'] in [1, 2, 3, 5]): # or aismsg['id'] == 18 or aismsg['id'] == 19 # if aismsg["mmsi"] == 219423000: #244239000: # getting data for a single trajectory if aismsg['id'] in [1, 2, 3]: if not ((aismsg['x'] < WINDOW[0]) or (aismsg['y'] < WINDOW[1]) or (aismsg['x'] > WINDOW[2]) or ( aismsg['y'] > WINDOW[3])): # aismsg['sog'] < 6 or (aismsg['sog'] > 50) to_append = [aismsg['x'], aismsg['y'], aismsg['cog'], aismsg['sog'], ais_timestamp, aismsg['mmsi'], aismsg["nav_status"], np.nan, np.nan] # class_name = nmea_msg_split[4] data.iloc[0] =
pd.Series(to_append, index=data.columns)
pandas.Series
#!/usr/bin/env python3 import argparse import collections import copy import datetime import functools import glob import json import logging import math import operator import os import os.path import re import sys import typing import warnings import matplotlib import matplotlib.cm import matplotlib.dates import matplotlib.pyplot import matplotlib.ticker import networkx import numpy import pandas import tabulate import tqdm import rows.console import rows.load import rows.location_finder import rows.model.area import rows.model.carer import rows.model.datetime import rows.model.historical_visit import rows.model.history import rows.model.json import rows.model.location import rows.model.metadata import rows.model.past_visit import rows.model.problem import rows.model.rest import rows.model.schedule import rows.model.service_user import rows.model.visit import rows.parser import rows.plot import rows.routing_server import rows.settings import rows.sql_data_source def handle_exception(exc_type, exc_value, exc_traceback): """Logs uncaught exceptions""" if issubclass(exc_type, KeyboardInterrupt): sys.__excepthook__(exc_type, exc_value, exc_traceback) else: logging.error("Uncaught exception", exc_info=(exc_type, exc_value, exc_traceback)) __COMMAND = 'command' __PULL_COMMAND = 'pull' __INFO_COMMAND = 'info' __SHOW_WORKING_HOURS_COMMAND = 'show-working-hours' __COMPARE_BOX_PLOTS_COMMAND = 'compare-box-plots' __COMPARE_DISTANCE_COMMAND = 'compare-distance' __COMPARE_WORKLOAD_COMMAND = 'compare-workload' __COMPARE_QUALITY_COMMAND = 'compare-quality' __COMPARE_COST_COMMAND = 'compare-cost' __CONTRAST_WORKLOAD_COMMAND = 'contrast-workload' __COMPARE_PREDICTION_ERROR_COMMAND = 'compare-prediction-error' __COMPARE_BENCHMARK_COMMAND = 'compare-benchmark' __COMPARE_BENCHMARK_TABLE_COMMAND = 'compare-benchmark-table' __COMPARE_LITERATURE_TABLE_COMMAND = 'compare-literature-table' __COMPARE_THIRD_STAGE_PLOT_COMMAND = 'compare-third-stage-plot' __COMPARE_THIRD_STAGE_TABLE_COMMAND = 'compare-third-stage-table' __COMPARE_THIRD_STAGE_SUMMARY_COMMAND = 'compare-third-stage-summary' __COMPARE_QUALITY_OPTIMIZER_COMMAND = 'compare-quality-optimizer' __COMPUTE_RISKINESS_COMMAND = 'compute-riskiness' __COMPARE_DELAY_COMMAND = 'compare-delay' __TYPE_ARG = 'type' __ACTIVITY_TYPE = 'activity' __VISITS_TYPE = 'visits' __COMPARE_TRACE_COMMAND = 'compare-trace' __CONTRAST_TRACE_COMMAND = 'contrast-trace' __COST_FUNCTION_TYPE = 'cost_function' __DEBUG_COMMAND = 'debug' __AREA_ARG = 'area' __FROM_ARG = 'from' __TO_ARG = 'to' __FILE_ARG = 'file' __DATE_ARG = 'date' __BASE_FILE_ARG = 'base-file' __CANDIDATE_FILE_ARG = 'candidate-file' __SOLUTION_FILE_ARG = 'solution' __PROBLEM_FILE_ARG = 'problem' __OUTPUT_PREFIX_ARG = 'output_prefix' __OPTIONAL_ARG_PREFIX = '--' __BASE_SCHEDULE_PATTERN = 'base_schedule_pattern' __CANDIDATE_SCHEDULE_PATTERN = 'candidate_schedule_pattern' __SCHEDULE_PATTERNS = 'schedule_patterns' __LABELS = 'labels' __OUTPUT = 'output' __ARROWS = 'arrows' __FILE_FORMAT_ARG = 'output_format' __color_map = matplotlib.pyplot.get_cmap('tab20c') FOREGROUND_COLOR = __color_map.colors[0] FOREGROUND_COLOR2 = 'black' def get_or_raise(obj, prop): value = getattr(obj, prop) if not value: raise ValueError('{0} not set'.format(prop)) return value def get_date_time(value): date_time = datetime.datetime.strptime(value, '%Y-%m-%d') return date_time def get_date(value): value_to_use = get_date_time(value) return value_to_use.date() def configure_parser(): parser = argparse.ArgumentParser(prog=sys.argv[0], description='Robust Optimization ' 'for Workforce Scheduling command line utility') subparsers = parser.add_subparsers(dest=__COMMAND) pull_parser = subparsers.add_parser(__PULL_COMMAND) pull_parser.add_argument(__AREA_ARG) pull_parser.add_argument(__OPTIONAL_ARG_PREFIX + __FROM_ARG) pull_parser.add_argument(__OPTIONAL_ARG_PREFIX + __TO_ARG) pull_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT_PREFIX_ARG) info_parser = subparsers.add_parser(__INFO_COMMAND) info_parser.add_argument(__FILE_ARG) compare_distance_parser = subparsers.add_parser(__COMPARE_DISTANCE_COMMAND) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __PROBLEM_FILE_ARG, required=True) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __SCHEDULE_PATTERNS, nargs='+', required=True) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __LABELS, nargs='+', required=True) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) compare_distance_parser.add_argument(__OPTIONAL_ARG_PREFIX + __FILE_FORMAT_ARG, default=rows.plot.FILE_FORMAT) compare_workload_parser = subparsers.add_parser(__COMPARE_WORKLOAD_COMMAND) compare_workload_parser.add_argument(__PROBLEM_FILE_ARG) compare_workload_parser.add_argument(__BASE_SCHEDULE_PATTERN) compare_workload_parser.add_argument(__CANDIDATE_SCHEDULE_PATTERN) compare_workload_parser.add_argument(__OPTIONAL_ARG_PREFIX + __FILE_FORMAT_ARG, default=rows.plot.FILE_FORMAT) debug_parser = subparsers.add_parser(__DEBUG_COMMAND) # debug_parser.add_argument(__PROBLEM_FILE_ARG) # debug_parser.add_argument(__SOLUTION_FILE_ARG) compare_trace_parser = subparsers.add_parser(__COMPARE_TRACE_COMMAND) compare_trace_parser.add_argument(__PROBLEM_FILE_ARG) compare_trace_parser.add_argument(__FILE_ARG) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __COST_FUNCTION_TYPE, required=True) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __DATE_ARG, type=get_date) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) compare_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __ARROWS, type=bool, default=False) contrast_workload_parser = subparsers.add_parser(__CONTRAST_WORKLOAD_COMMAND) contrast_workload_parser.add_argument(__PROBLEM_FILE_ARG) contrast_workload_parser.add_argument(__BASE_FILE_ARG) contrast_workload_parser.add_argument(__CANDIDATE_FILE_ARG) contrast_workload_parser.add_argument(__OPTIONAL_ARG_PREFIX + __TYPE_ARG) compare_prediction_error_parser = subparsers.add_parser(__COMPARE_PREDICTION_ERROR_COMMAND) compare_prediction_error_parser.add_argument(__BASE_FILE_ARG) compare_prediction_error_parser.add_argument(__CANDIDATE_FILE_ARG) contrast_trace_parser = subparsers.add_parser(__CONTRAST_TRACE_COMMAND) contrast_trace_parser.add_argument(__PROBLEM_FILE_ARG) contrast_trace_parser.add_argument(__BASE_FILE_ARG) contrast_trace_parser.add_argument(__CANDIDATE_FILE_ARG) contrast_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __DATE_ARG, type=get_date, required=True) contrast_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __COST_FUNCTION_TYPE, required=True) contrast_trace_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) show_working_hours_parser = subparsers.add_parser(__SHOW_WORKING_HOURS_COMMAND) show_working_hours_parser.add_argument(__FILE_ARG) show_working_hours_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) compare_quality_parser = subparsers.add_parser(__COMPARE_QUALITY_COMMAND) compare_quality_optimizer_parser = subparsers.add_parser(__COMPARE_QUALITY_OPTIMIZER_COMMAND) compare_quality_optimizer_parser.add_argument(__FILE_ARG) subparsers.add_parser(__COMPARE_COST_COMMAND) compare_benchmark_parser = subparsers.add_parser(__COMPARE_BENCHMARK_COMMAND) compare_benchmark_parser.add_argument(__FILE_ARG) subparsers.add_parser(__COMPARE_LITERATURE_TABLE_COMMAND) subparsers.add_parser(__COMPARE_BENCHMARK_TABLE_COMMAND) subparsers.add_parser(__COMPUTE_RISKINESS_COMMAND) subparsers.add_parser(__COMPARE_DELAY_COMMAND) subparsers.add_parser(__COMPARE_THIRD_STAGE_TABLE_COMMAND) subparsers.add_parser(__COMPARE_THIRD_STAGE_PLOT_COMMAND) compare_box_parser = subparsers.add_parser(__COMPARE_BOX_PLOTS_COMMAND) compare_box_parser.add_argument(__PROBLEM_FILE_ARG) compare_box_parser.add_argument(__BASE_FILE_ARG) compare_box_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) third_stage_summary_parser = subparsers.add_parser(__COMPARE_THIRD_STAGE_SUMMARY_COMMAND) third_stage_summary_parser.add_argument(__OPTIONAL_ARG_PREFIX + __OUTPUT) return parser def split_delta(delta: datetime.timedelta) -> typing.Tuple[int, int, int, int]: days = int(delta.days) hours = int((delta.total_seconds() - 24 * 3600 * days) // 3600) minutes = int((delta.total_seconds() - 24 * 3600 * days - 3600 * hours) // 60) seconds = int(delta.total_seconds() - 24 * 3600 * days - 3600 * hours - 60 * minutes) assert hours < 24 assert minutes < 60 assert seconds < 60 return days, hours, minutes, seconds def get_time_delta_label(total_travel_time: datetime.timedelta) -> str: days, hours, minutes, seconds = split_delta(total_travel_time) time = '{0:02d}:{1:02d}:{2:02d}'.format(hours, minutes, seconds) if days == 0: return time elif days == 1: return '1 day ' + time else: return '{0} days '.format(days) + time def pull(args, settings): area_code = get_or_raise(args, __AREA_ARG) from_raw_date = get_or_raise(args, __FROM_ARG) to_raw_date = get_or_raise(args, __TO_ARG) output_prefix = get_or_raise(args, __OUTPUT_PREFIX_ARG) console = rows.console.Console() user_tag_finder = rows.location_finder.UserLocationFinder(settings) location_cache = rows.location_finder.FileSystemCache(settings) location_finder = rows.location_finder.MultiModeLocationFinder(location_cache, user_tag_finder, timeout=5.0) data_source = rows.sql_data_source.SqlDataSource(settings, console, location_finder) from_date_time = get_date_time(from_raw_date) to_date_time = get_date_time(to_raw_date) current_date_time = from_date_time while current_date_time <= to_date_time: schedule = data_source.get_past_schedule(rows.model.area.Area(code=area_code), current_date_time.date()) for visit in schedule.visits: visit.visit.address = None output_file = '{0}_{1}.json'.format(output_prefix, current_date_time.date().strftime('%Y%m%d')) with open(output_file, 'w') as output_stream: json.dump(schedule, output_stream, cls=rows.model.json.JSONEncoder) current_date_time += datetime.timedelta(days=1) def get_travel_time(schedule, user_tag_finder): routes = schedule.routes() total_travel_time = datetime.timedelta() with rows.plot.create_routing_session() as session: for route in routes: visit_it = iter(route.visits) current_visit = next(visit_it, None) current_location = user_tag_finder.find(int(current_visit.visit.service_user)) while current_visit: prev_location = current_location current_visit = next(visit_it, None) if not current_visit: break current_location = user_tag_finder.find(int(current_visit.visit.service_user)) travel_time_sec = session.distance(prev_location, current_location) if travel_time_sec: total_travel_time += datetime.timedelta(seconds=travel_time_sec) return total_travel_time def info(args, settings): user_tag_finder = rows.location_finder.UserLocationFinder(settings) user_tag_finder.reload() schedule_file = get_or_raise(args, __FILE_ARG) schedule_file_to_use = os.path.realpath(os.path.expandvars(schedule_file)) schedule = rows.load.load_schedule(schedule_file_to_use) carers = {visit.carer for visit in schedule.visits} print(get_travel_time(schedule, user_tag_finder), len(carers), len(schedule.visits)) def compare_distance(args, settings): schedule_patterns = getattr(args, __SCHEDULE_PATTERNS) labels = getattr(args, __LABELS) output_file = getattr(args, __OUTPUT, 'distance') output_file_format = getattr(args, __FILE_FORMAT_ARG) data_frame_file = 'data_frame_cache.bin' if os.path.isfile(data_frame_file): data_frame = pandas.read_pickle(data_frame_file) else: problem = rows.load.load_problem(get_or_raise(args, __PROBLEM_FILE_ARG)) store = [] with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) for label, schedule_pattern in zip(labels, schedule_patterns): for schedule_path in glob.glob(schedule_pattern): schedule = rows.load.load_schedule(schedule_path) duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(schedule) frame = rows.plot.get_schedule_data_frame(schedule, problem, duration_estimator, distance_estimator) visits = frame['Visits'].sum() carers = len(frame.where(frame['Visits'] > 0)) idle_time = frame['Availability'] - frame['Travel'] - frame['Service'] idle_time[idle_time < pandas.Timedelta(0)] = pandas.Timedelta(0) overtime = frame['Travel'] + frame['Service'] - frame['Availability'] overtime[overtime < pandas.Timedelta(0)] = pandas.Timedelta(0) store.append({'Label': label, 'Date': schedule.metadata.begin, 'Availability': frame['Availability'].sum(), 'Travel': frame['Travel'].sum(), 'Service': frame['Service'].sum(), 'Idle': idle_time.sum(), 'Overtime': overtime.sum(), 'Carers': carers, 'Visits': visits}) data_frame = pandas.DataFrame(store) data_frame.sort_values(by=['Date'], inplace=True) data_frame.to_pickle(data_frame_file) condensed_frame = pandas.pivot(data_frame, columns='Label', values='Travel', index='Date') condensed_frame['Improvement'] = condensed_frame['2nd Stage'] - condensed_frame['3rd Stage'] condensed_frame['RelativeImprovement'] = condensed_frame['Improvement'] / condensed_frame['2nd Stage'] color_map = matplotlib.cm.get_cmap('Set1') matplotlib.pyplot.set_cmap(color_map) figure, ax = matplotlib.pyplot.subplots(1, 1, sharex=True) try: width = 0.20 dates = data_frame['Date'].unique() time_delta_convert = rows.plot.TimeDeltaConverter() indices = numpy.arange(1, len(dates) + 1, 1) handles = [] position = 0 for color_number, label in enumerate(labels): data_frame_to_use = data_frame[data_frame['Label'] == label] handle = ax.bar(indices + position * width, time_delta_convert(data_frame_to_use['Travel']), width, color=color_map.colors[color_number], bottom=time_delta_convert.zero) handles.append(handle) position += 1 ax.yaxis_date() yaxis_converter = rows.plot.CumulativeHourMinuteConverter() ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(yaxis_converter)) ax.set_ylabel('Total Travel Time [hh:mm:ss]') ax.set_yticks([time_delta_convert.zero + datetime.timedelta(seconds=seconds) for seconds in range(0, 30 * 3600, 4 * 3600 + 1)]) ax.set_xlabel('Day of October 2017') translate_labels = { '3rd Stage': '3rd Stage', 'Human Planners': 'Human Planners' } labels_to_use = [translate_labels[label] if label in translate_labels else label for label in labels] rows.plot.add_legend(ax, handles, labels_to_use, ncol=3, loc='lower center', bbox_to_anchor=(0.5, -0.25)) # , bbox_to_anchor=(0.5, -1.1) figure.tight_layout() figure.subplots_adjust(bottom=0.20) rows.plot.save_figure(output_file, output_file_format) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) # figure, (ax1, ax2, ax3) = matplotlib.pyplot.subplots(3, 1, sharex=True) # try: # width = 0.20 # dates = data_frame['Date'].unique() # time_delta_convert = rows.plot.TimeDeltaConverter() # indices = numpy.arange(1, len(dates) + 1, 1) # # handles = [] # position = 0 # for label in labels: # data_frame_to_use = data_frame[data_frame['Label'] == label] # # handle = ax1.bar(indices + position * width, # time_delta_convert(data_frame_to_use['Travel']), # width, # bottom=time_delta_convert.zero) # # ax2.bar(indices + position * width, # time_delta_convert(data_frame_to_use['Idle']), # width, # bottom=time_delta_convert.zero) # # ax3.bar(indices + position * width, # time_delta_convert(data_frame_to_use['Overtime']), # width, # bottom=time_delta_convert.zero) # # handles.append(handle) # position += 1 # # ax1.yaxis_date() # ax1.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(rows.plot.CumulativeHourMinuteConverter())) # ax1.set_ylabel('Travel Time') # # ax2.yaxis_date() # ax2.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(rows.plot.CumulativeHourMinuteConverter())) # ax2.set_ylabel('Idle Time') # # ax3.yaxis_date() # ax3.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(rows.plot.CumulativeHourMinuteConverter())) # ax3.set_ylabel('Total Overtime') # ax3.set_xlabel('Day of October 2017') # # translate_labels = { # '3rd Stage': 'Optimizer', # 'Human Planners': 'Human Planners' # } # labels_to_use = [translate_labels[label] if label in translate_labels else label for label in labels] # # rows.plot.add_legend(ax3, handles, labels_to_use, ncol=3, loc='lower center', bbox_to_anchor=(0.5, -1.1)) # figure.tight_layout() # figure.subplots_adjust(bottom=0.20) # # rows.plot.save_figure(output_file, output_file_format) # finally: # matplotlib.pyplot.cla() # matplotlib.pyplot.close(figure) def calculate_forecast_visit_duration(problem): forecast_visit_duration = rows.plot.VisitDict() for recurring_visits in problem.visits: for local_visit in recurring_visits.visits: forecast_visit_duration[local_visit] = local_visit.duration return forecast_visit_duration def compare_workload(args, settings): problem = rows.load.load_problem(get_or_raise(args, __PROBLEM_FILE_ARG)) diary_by_date_by_carer = collections.defaultdict(dict) for carer_shift in problem.carers: for diary in carer_shift.diaries: diary_by_date_by_carer[diary.date][carer_shift.carer.sap_number] = diary base_schedules = {rows.load.load_schedule(file_path): file_path for file_path in glob.glob(getattr(args, __BASE_SCHEDULE_PATTERN))} base_schedule_by_date = {schedule.metadata.begin: schedule for schedule in base_schedules} candidate_schedules = {rows.load.load_schedule(file_path): file_path for file_path in glob.glob(getattr(args, __CANDIDATE_SCHEDULE_PATTERN))} candidate_schedule_by_date = {schedule.metadata.begin: schedule for schedule in candidate_schedules} location_finder = rows.location_finder.UserLocationFinder(settings) location_finder.reload() output_file_format = getattr(args, __FILE_FORMAT_ARG) dates = set(candidate_schedule_by_date.keys()) for date in base_schedule_by_date.keys(): dates.add(date) dates = list(dates) dates.sort() with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) for date in dates: base_schedule = base_schedule_by_date.get(date, None) if not base_schedule: logging.error('No base schedule is available for %s', date) continue duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(base_schedule) candidate_schedule = candidate_schedule_by_date.get(date, None) if not candidate_schedule: logging.error('No candidate schedule is available for %s', date) continue base_schedule_file = base_schedules[base_schedule] base_schedule_data_frame = rows.plot.get_schedule_data_frame(base_schedule, problem, duration_estimator, distance_estimator) base_schedule_stem, base_schedule_ext = os.path.splitext(os.path.basename(base_schedule_file)) rows.plot.save_workforce_histogram(base_schedule_data_frame, base_schedule_stem, output_file_format) candidate_schedule_file = candidate_schedules[candidate_schedule] candidate_schedule_data_frame = rows.plot.get_schedule_data_frame(candidate_schedule, problem, duration_estimator, distance_estimator) candidate_schedule_stem, candidate_schedule_ext \ = os.path.splitext(os.path.basename(candidate_schedule_file)) rows.plot.save_workforce_histogram(candidate_schedule_data_frame, candidate_schedule_stem, output_file_format) rows.plot.save_combined_histogram(candidate_schedule_data_frame, base_schedule_data_frame, ['2nd Stage', '3rd Stage'], 'contrast_workforce_{0}_combined'.format(date), output_file_format) def contrast_workload(args, settings): __WIDTH = 0.35 __FORMAT = 'svg' plot_type = getattr(args, __TYPE_ARG, None) if plot_type != __ACTIVITY_TYPE and plot_type != __VISITS_TYPE: raise ValueError( 'Unknown plot type: {0}. Use either {1} or {2}.'.format(plot_type, __ACTIVITY_TYPE, __VISITS_TYPE)) problem_file = get_or_raise(args, __PROBLEM_FILE_ARG) problem = rows.load.load_problem(problem_file) base_schedule = rows.load.load_schedule(get_or_raise(args, __BASE_FILE_ARG)) candidate_schedule = rows.load.load_schedule(get_or_raise(args, __CANDIDATE_FILE_ARG)) if base_schedule.metadata.begin != candidate_schedule.metadata.begin: raise ValueError('Schedules begin at a different date: {0} vs {1}' .format(base_schedule.metadata.begin, candidate_schedule.metadata.begin)) if base_schedule.metadata.end != candidate_schedule.metadata.end: raise ValueError('Schedules end at a different date: {0} vs {1}' .format(base_schedule.metadata.end, candidate_schedule.metadata.end)) location_finder = rows.location_finder.UserLocationFinder(settings) location_finder.reload() diary_by_date_by_carer = collections.defaultdict(dict) for carer_shift in problem.carers: for diary in carer_shift.diaries: diary_by_date_by_carer[diary.date][carer_shift.carer.sap_number] = diary date = base_schedule.metadata.begin problem_file_base = os.path.basename(problem_file) problem_file_name, problem_file_ext = os.path.splitext(problem_file_base) with rows.plot.create_routing_session() as routing_session: observed_duration_by_visit = calculate_expected_visit_duration(candidate_schedule) base_schedule_frame = rows.plot.get_schedule_data_frame(base_schedule, routing_session, location_finder, diary_by_date_by_carer[date], observed_duration_by_visit) candidate_schedule_frame = rows.plot.get_schedule_data_frame(candidate_schedule, routing_session, location_finder, diary_by_date_by_carer[date], observed_duration_by_visit) color_map = matplotlib.cm.get_cmap('tab20') matplotlib.pyplot.set_cmap(color_map) figure, axis = matplotlib.pyplot.subplots() matplotlib.pyplot.tight_layout() try: contrast_frame = pandas.DataFrame.merge(base_schedule_frame, candidate_schedule_frame, on='Carer', how='left', suffixes=['_Base', '_Candidate']) contrast_frame['Visits_Candidate'] = contrast_frame['Visits_Candidate'].fillna(0) contrast_frame['Availability_Candidate'] \ = contrast_frame['Availability_Candidate'].mask(pandas.isnull, contrast_frame['Availability_Base']) contrast_frame['Travel_Candidate'] \ = contrast_frame['Travel_Candidate'].mask(pandas.isnull, datetime.timedelta()) contrast_frame['Service_Candidate'] \ = contrast_frame['Service_Candidate'].mask(pandas.isnull, datetime.timedelta()) contrast_frame = contrast_frame.sort_values( by=['Availability_Candidate', 'Service_Candidate', 'Travel_Candidate'], ascending=False) if plot_type == __VISITS_TYPE: indices = numpy.arange(len(contrast_frame.index)) base_handle = axis.bar(indices, contrast_frame['Visits_Base'], __WIDTH) candidate_handle = axis.bar(indices + __WIDTH, contrast_frame['Visits_Candidate'], __WIDTH) axis.legend((base_handle, candidate_handle), ('Human Planners', 'Constraint Programming'), loc='best') output_file = problem_file_name + '_contrast_visits_' + date.isoformat() + '.' + __FORMAT elif plot_type == __ACTIVITY_TYPE: indices = numpy.arange(len(base_schedule_frame.index)) def plot_activity_stacked_histogram(availability, travel, service, axis, width=0.35, initial_width=0.0, color_offset=0): time_delta_converter = rows.plot.TimeDeltaConverter() travel_series = numpy.array(time_delta_converter(travel)) service_series = numpy.array(time_delta_converter(service)) idle_overtime_series = list(availability - travel - service) idle_series = numpy.array(time_delta_converter( map(lambda value: value if value.days >= 0 else datetime.timedelta(), idle_overtime_series))) overtime_series = numpy.array(time_delta_converter( map(lambda value: datetime.timedelta( seconds=abs(value.total_seconds())) if value.days < 0 else datetime.timedelta(), idle_overtime_series))) service_handle = axis.bar(indices + initial_width, service_series, width, bottom=time_delta_converter.zero, color=color_map.colors[0 + color_offset]) travel_handle = axis.bar(indices + initial_width, travel_series, width, bottom=service_series + time_delta_converter.zero_num, color=color_map.colors[2 + color_offset]) idle_handle = axis.bar(indices + initial_width, idle_series, width, bottom=service_series + travel_series + time_delta_converter.zero_num, color=color_map.colors[4 + color_offset]) overtime_handle = axis.bar(indices + initial_width, overtime_series, width, bottom=idle_series + service_series + travel_series + time_delta_converter.zero_num, color=color_map.colors[6 + color_offset]) return service_handle, travel_handle, idle_handle, overtime_handle travel_candidate_handle, service_candidate_handle, idle_candidate_handle, overtime_candidate_handle \ = plot_activity_stacked_histogram(contrast_frame.Availability_Candidate, contrast_frame.Travel_Candidate, contrast_frame.Service_Candidate, axis, __WIDTH) travel_base_handle, service_base_handle, idle_base_handle, overtime_base_handle \ = plot_activity_stacked_histogram(contrast_frame.Availability_Base, contrast_frame.Travel_Base, contrast_frame.Service_Base, axis, __WIDTH, __WIDTH, 1) axis.yaxis_date() axis.yaxis.set_major_formatter(matplotlib.dates.DateFormatter("%H:%M:%S")) axis.legend( (travel_candidate_handle, service_candidate_handle, idle_candidate_handle, overtime_candidate_handle, travel_base_handle, service_base_handle, idle_base_handle, overtime_base_handle), ('', '', '', '', 'Service', 'Travel', 'Idle', 'Overtime'), loc='best', ncol=2, columnspacing=0) output_file = problem_file_name + '_contrast_activity_' + date.isoformat() + '.' + __FORMAT bottom, top = axis.get_ylim() axis.set_ylim(bottom, top + 0.025) else: raise ValueError('Unknown plot type {0}'.format(plot_type)) matplotlib.pyplot.subplots_adjust(left=0.125) matplotlib.pyplot.savefig(output_file, format=__FORMAT, dpi=300) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def parse_time_delta(text): if text: time = datetime.datetime.strptime(text, '%H:%M:%S').time() return datetime.timedelta(hours=time.hour, minutes=time.minute, seconds=time.second) return None class TraceLog: __STAGE_PATTERN = re.compile('^\w+(?P<number>\d+)(:?\-Patch)?$') __PENALTY_PATTERN = re.compile('^MissedVisitPenalty:\s+(?P<penalty>\d+)$') __CARER_USED_PATTERN = re.compile('^CarerUsedPenalty:\s+(?P<penalty>\d+)$') class ProgressMessage: def __init__(self, **kwargs): self.__branches = kwargs.get('branches', None) self.__cost = kwargs.get('cost', None) self.__dropped_visits = kwargs.get('dropped_visits', None) self.__memory_usage = kwargs.get('memory_usage', None) self.__solutions = kwargs.get('solutions', None) self.__wall_time = parse_time_delta(kwargs.get('wall_time', None)) @property def cost(self): return self.__cost @property def solutions(self): return self.__solutions @property def dropped_visits(self): return self.__dropped_visits class ProblemMessage: def __init__(self, **kwargs): self.__carers = kwargs.get('carers', None) self.__visits = kwargs.get('visits', None) self.__date = kwargs.get('date', None) if self.__date: self.__date = datetime.datetime.strptime(self.__date, '%Y-%b-%d').date() self.__visit_time_windows = parse_time_delta(kwargs.get('visit_time_windows', None)) self.__break_time_windows = parse_time_delta(kwargs.get('break_time_windows', None)) self.__shift_adjustment = parse_time_delta(kwargs.get('shift_adjustment', None)) self.__area = kwargs.get('area', None) self.__missed_visit_penalty = kwargs.get('missed_visit_penalty', None) self.__carer_used_penalty = kwargs.get('carer_used_penalty', None) @property def date(self): return self.__date @property def carers(self): return self.__carers @property def visits(self): return self.__visits @property def visit_time_window(self): return self.__visit_time_windows @property def carer_used_penalty(self): return self.__carer_used_penalty @carer_used_penalty.setter def carer_used_penalty(self, value): self.__carer_used_penalty = value @property def missed_visit_penalty(self): return self.__missed_visit_penalty @missed_visit_penalty.setter def missed_visit_penalty(self, value): self.__missed_visit_penalty = value @property def shift_adjustment(self): return self.__shift_adjustment StageSummary = collections.namedtuple('StageSummary', ['duration', 'final_cost', 'final_dropped_visits']) def __init__(self, time_point): self.__start = time_point self.__events = [] self.__current_stage = None self.__current_strategy = None self.__problem = TraceLog.ProblemMessage() @staticmethod def __parse_stage_number(body): comment = body.get('comment', None) if comment: match = TraceLog.__STAGE_PATTERN.match(comment) if match: return int(match.group('number')) return None def append(self, time_point, body): if 'branches' in body: body_to_use = TraceLog.ProgressMessage(**body) elif 'type' in body: if body['type'] == 'started': self.__current_stage = self.__parse_stage_number(body) elif body['type'] == 'finished': self.__current_stage = None self.__current_strategy = None elif body['type'] == 'unknown': if 'comment' in body: if 'MissedVisitPenalty' in body['comment']: match = re.match(self.__PENALTY_PATTERN, body['comment']) assert match is not None missed_visit_penalty = int(match.group('penalty')) self.__problem.missed_visit_penalty = missed_visit_penalty elif 'CarerUsedPenalty' in body['comment']: match = re.match(self.__CARER_USED_PATTERN, body['comment']) assert match is not None carer_used_penalty = int(match.group('penalty')) self.__problem.carer_used_penalty = carer_used_penalty body_to_use = body elif 'area' in body: body_to_use = TraceLog.ProblemMessage(**body) if body_to_use.missed_visit_penalty is None and self.__problem.missed_visit_penalty is not None: body_to_use.missed_visit_penalty = self.__problem.missed_visit_penalty if body_to_use.carer_used_penalty is None and self.__problem.carer_used_penalty is not None: body_to_use.carer_used_penalty = self.__problem.carer_used_penalty self.__problem = body_to_use else: body_to_use = body # quick fix to prevent negative computation time if the time frame crosses midnight if self.__start < time_point: computation_time = time_point - self.__start else: computation_time = time_point + datetime.timedelta(hours=24) - self.__start self.__events.append([computation_time, self.__current_stage, self.__current_strategy, time_point, body_to_use]) def compute_stages(self) -> typing.List[StageSummary]: groups = dict() for delta, stage, topic, time, message in self.__events: if isinstance(message, TraceLog.ProgressMessage): if stage not in groups: groups[stage] = [] groups[stage].append([delta, topic, message]) result = [] def create_stage_summary(group): duration = group[-1][0] - group[0][0] cost = group[-1][2].cost dropped_visits = group[-1][2].dropped_visits return TraceLog.StageSummary(duration=duration, final_cost=cost, final_dropped_visits=dropped_visits) if len(groups) == 1: result.append(create_stage_summary(groups[None])) else: for stage in range(1, max(filter(lambda s: s is not None, groups)) + 1): result.append(create_stage_summary(groups[stage])) return result def has_stages(self): for relative_time, stage, strategy, absolute_time, event in self.__events: if isinstance(event, TraceLog.ProblemMessage) or isinstance(event, TraceLog.ProgressMessage): continue if 'type' in event and event['type'] == 'started': return True return False def best_cost(self, stage: int): best_cost, _ = self.__best_cost_and_time(stage) return best_cost def best_cost_time(self, stage: int): _, best_cost_time = self.__best_cost_and_time(stage) return best_cost_time def last_cost(self): last_cost, _ = self.__last_cost_and_time() return last_cost def last_cost_time(self): _, last_cost_time = self.__last_cost_and_time() return last_cost_time def computation_time(self): computation_time = datetime.timedelta.max for relative_time, stage, strategy, absolute_time, event in self.__events: computation_time = relative_time return computation_time def __best_cost_and_time(self, stage: int): best_cost = float('inf') best_time = datetime.timedelta.max for relative_time, event_stage, strategy, absolute_time, event in self.__filtered_events(): if event_stage > stage: continue if best_cost > event.cost: best_cost = event.cost best_time = relative_time return best_cost, best_time def __last_cost_and_time(self): last_cost = float('inf') last_time = datetime.timedelta.max for relative_time, stage, strategy, absolute_time, event in self.__filtered_events(): last_cost = event.cost last_time = relative_time return last_cost, last_time def __filtered_events(self): for relative_time, stage, strategy, absolute_time, event in self.__events: if stage != 2 and stage != 3: continue if strategy == 'DELAY_RISKINESS_REDUCTION': continue if not isinstance(event, TraceLog.ProgressMessage): continue yield relative_time, stage, strategy, absolute_time, event @property def strategy(self): return self.__current_strategy @strategy.setter def strategy(self, value): self.__current_strategy = value @property def visits(self): return self.__problem.visits @property def carers(self): return self.__problem.carers @property def date(self): return self.__problem.date @property def visit_time_window(self): return self.__problem.visit_time_window @property def carer_used_penalty(self): return self.__problem.carer_used_penalty @property def missed_visit_penalty(self): return self.__problem.missed_visit_penalty @property def shift_adjustment(self): return self.__problem.shift_adjustment @property def events(self): return self.__events def read_traces(trace_file) -> typing.List[TraceLog]: log_line_pattern = re.compile('^\w+\s+(?P<time>\d+:\d+:\d+\.\d+).*?]\s+(?P<body>.*)$') other_line_pattern = re.compile('^.*?\[\w+\s+(?P<time>\d+:\d+:\d+\.\d+).*?\]\s+(?P<body>.*)$') strategy_line_pattern = re.compile('^Solving the (?P<stage_name>\w+) stage using (?P<strategy_name>\w+) strategy$') loaded_visits_pattern = re.compile('^Loaded past visits in \d+ seconds$') trace_logs = [] has_preambule = False with open(trace_file, 'r') as input_stream: current_log = None for line in input_stream: match = log_line_pattern.match(line) if not match: match = other_line_pattern.match(line) if match: raw_time = match.group('time') time = datetime.datetime.strptime(raw_time, '%H:%M:%S.%f') try: raw_body = match.group('body') body = json.loads(raw_body) if 'comment' in body and (body['comment'] == 'All' or 'MissedVisitPenalty' in body['comment'] or 'CarerUsedPenalty' in body['comment']): if body['comment'] == 'All': if 'type' in body: if body['type'] == 'finished': has_preambule = False current_log.strategy = None elif body['type'] == 'started': has_preambule = True current_log = TraceLog(time) current_log.append(time, body) trace_logs.append(current_log) else: current_log.append(time, body) elif 'area' in body and not has_preambule: current_log = TraceLog(time) current_log.append(time, body) trace_logs.append(current_log) else: current_log.append(time, body) except json.decoder.JSONDecodeError: strategy_match = strategy_line_pattern.match(match.group('body')) if strategy_match: current_log.strategy = strategy_match.group('strategy_name') continue loaded_visits_match = loaded_visits_pattern.match(match.group('body')) if loaded_visits_match: continue warnings.warn('Failed to parse line: ' + line) elif 'GUIDED_LOCAL_SEARCH specified without sane timeout: solve may run forever.' in line: continue else: warnings.warn('Failed to match line: ' + line) return trace_logs def traces_to_data_frame(trace_logs): columns = ['relative_time', 'cost', 'dropped_visits', 'solutions', 'stage', 'stage_started', 'date', 'carers', 'visits'] has_stages = [trace.has_stages() for trace in trace_logs] if all(has_stages) != any(has_stages): raise ValueError('Some traces have stages while others do not') has_stages = all(has_stages) data = [] if has_stages: for trace in trace_logs: current_carers = None current_visits = None current_stage_started = None current_stage_name = None for rel_time, stage, strategy, abs_time, event in trace.events: if isinstance(event, TraceLog.ProblemMessage): current_carers = event.carers current_visits = event.visits elif isinstance(event, TraceLog.ProgressMessage): if not current_stage_name: continue data.append([rel_time, event.cost, event.dropped_visits, event.solutions, current_stage_name, current_stage_started, trace.date, current_carers, current_visits]) elif 'type' in event: if 'comment' in event and event['type'] == 'unknown': continue if event['type'] == 'finished': current_carers = None current_visits = None current_stage_started = None current_stage_name = None continue if event['type'] == 'started': current_stage_started = rel_time current_stage_name = event['comment'] else: for trace in trace_logs: current_carers = None current_visits = None for rel_time, stage, strategy, abs_time, event in trace.events: if isinstance(event, TraceLog.ProblemMessage): current_carers = event.carers current_visits = event.visits elif isinstance(event, TraceLog.ProgressMessage): data.append([rel_time, event.cost, event.dropped_visits, event.solutions, None, None, trace.date, current_carers, current_visits]) return pandas.DataFrame(data=data, columns=columns) def parse_pandas_duration(value): raw_hours, raw_minutes, raw_seconds = value.split(':') return datetime.timedelta(hours=int(raw_hours), minutes=int(raw_minutes), seconds=int(raw_seconds)) class DateTimeFormatter: def __init__(self, format): self.__format = format def __call__(self, x, pos=None): if x < 0: return None x_to_use = x if isinstance(x, numpy.int64): x_to_use = x.item() delta = datetime.timedelta(seconds=x_to_use) time_point = datetime.datetime(2017, 1, 1) + delta return time_point.strftime(self.__format) class AxisSettings: def __init__(self, minutes_per_step, format_pattern, units_label, right_xlimit, xticks): self.__minutes_per_step = minutes_per_step self.__format_pattern = format_pattern self.__formatter = matplotlib.ticker.FuncFormatter(DateTimeFormatter(self.__format_pattern)) self.__units_label = units_label self.__right_xlimit = right_xlimit self.__xticks = xticks @property def formatter(self): return self.__formatter @property def units_label(self): return self.__units_label @property def right_xlimit(self): return self.__right_xlimit @property def xticks(self): return self.__xticks @staticmethod def infer(max_relative_time): if datetime.timedelta(minutes=30) < max_relative_time < datetime.timedelta(hours=1): minutes_step = 10 format = '%H:%M' units = '[hh:mm]' elif datetime.timedelta(hours=1) <= max_relative_time: minutes_step = 60 format = '%H:%M' units = '[hh:mm]' else: assert max_relative_time <= datetime.timedelta(minutes=30) minutes_step = 5 format = '%M:%S' units = '[mm:ss]' right_xlimit = (max_relative_time + datetime.timedelta(minutes=1)).total_seconds() // 60 * 60 xticks = numpy.arange(0, max_relative_time.total_seconds() + minutes_step * 60, minutes_step * 60) return AxisSettings(minutes_step, format, units, right_xlimit, xticks) def format_timedelta_pandas(x, pos=None): if x < 0: return None time_delta = pandas.to_timedelta(x) hours = int(time_delta.total_seconds() / matplotlib.dates.SEC_PER_HOUR) minutes = int(time_delta.total_seconds() / matplotlib.dates.SEC_PER_MIN) - 60 * hours return '{0:02d}:{1:02d}'.format(hours, minutes) def format_time(x, pos=None): if isinstance(x, numpy.int64): x = x.item() delta = datetime.timedelta(seconds=x) time_point = datetime.datetime(2017, 1, 1) + delta return time_point.strftime('%H:%M') __SCATTER_POINT_SIZE = 1 __Y_AXIS_EXTENSION = 1.2 def add_trace_legend(axis, handles, bbox_to_anchor=(0.5, -0.23), ncol=3): first_row = handles[0] def legend_single_stage(row): handle, multi_visits, visits, carers, cost_function, date = row date_time = datetime.datetime.combine(date, datetime.time()) return 'V{0:02}/{1:03} C{2:02} {3} {4}'.format(multi_visits, visits, carers, cost_function, date_time.strftime('%d-%m')) def legend_multi_stage(row): handle, multi_visits, visits, multi_carers, carers, cost_function, date = row date_time = datetime.datetime.combine(date, datetime.time()) return 'V{0:02}/{1:03} C{2:02}/{3:02} {4} {5}' \ .format(multi_visits, visits, multi_carers, carers, cost_function, date_time.strftime('%d-%m')) if len(first_row) == 6: legend_formatter = legend_single_stage elif len(first_row) == 7: legend_formatter = legend_multi_stage else: raise ValueError('Expecting row of either 6 or 7 elements') return rows.plot.add_legend(axis, list(map(operator.itemgetter(0), handles)), list(map(legend_formatter, handles)), ncol, bbox_to_anchor) def scatter_cost(axis, data_frame, color): return axis.scatter( [time_delta.total_seconds() for time_delta in data_frame['relative_time']], data_frame['cost'], s=__SCATTER_POINT_SIZE, c=color) def scatter_dropped_visits(axis, data_frame, color): axis.scatter( [time_delta.total_seconds() for time_delta in data_frame['relative_time']], data_frame['dropped_visits'], s=__SCATTER_POINT_SIZE, c=color) def draw_avline(axis, point, color='lightgrey', linestyle='--'): axis.axvline(point, color=color, linestyle=linestyle, linewidth=0.8, alpha=0.8) def get_problem_stats(problem, date): problem_visits = [visit for carer_visits in problem.visits for visit in carer_visits.visits if visit.date == date] return len(problem_visits), len([visit for visit in problem_visits if visit.carer_count > 1]) def compare_trace(args, settings): problem = rows.load.load_problem(get_or_raise(args, __PROBLEM_FILE_ARG)) cost_function = get_or_raise(args, __COST_FUNCTION_TYPE) trace_file = get_or_raise(args, __FILE_ARG) trace_file_base_name = os.path.basename(trace_file) trace_file_stem, trace_file_ext = os.path.splitext(trace_file_base_name) output_file_stem = getattr(args, __OUTPUT, trace_file_stem) trace_logs = read_traces(trace_file) data_frame = traces_to_data_frame(trace_logs) current_date = getattr(args, __DATE_ARG, None) dates = data_frame['date'].unique() if current_date and current_date not in dates: raise ValueError('Date {0} is not present in the data set'.format(current_date)) color_numbers = [0, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 13] color_number_it = iter(color_numbers) color_map = matplotlib.cm.get_cmap('tab20') matplotlib.pyplot.set_cmap(color_map) figure, (ax1, ax2) = matplotlib.pyplot.subplots(2, 1, sharex=True) max_relative_time = datetime.timedelta() try: if current_date: current_color = color_map.colors[next(color_number_it)] total_problem_visits, total_multiple_carer_visits = get_problem_stats(problem, current_date) current_date_frame = data_frame[data_frame['date'] == current_date] max_relative_time = max(current_date_frame['relative_time'].max(), max_relative_time) ax_settings = AxisSettings.infer(max_relative_time) stages = current_date_frame['stage'].unique() if len(stages) > 1: handles = [] for stage in stages: time_delta = current_date_frame[current_date_frame['stage'] == stage]['stage_started'].iloc[0] current_stage_data_frame = current_date_frame[current_date_frame['stage'] == stage] draw_avline(ax1, time_delta.total_seconds()) draw_avline(ax2, time_delta.total_seconds()) total_stage_visits = current_stage_data_frame['visits'].iloc[0] carers = current_stage_data_frame['carers'].iloc[0] handle = scatter_cost(ax1, current_date_frame, current_color) scatter_dropped_visits(ax2, current_stage_data_frame, current_color) handles.append([handle, total_multiple_carer_visits, total_stage_visits, carers, cost_function, current_date]) ax2.set_xlim(left=0) ax2.set_ylim(bottom=-10) ax2.xaxis.set_major_formatter(ax_settings.formatter) else: total_visits = current_date_frame['visits'].iloc[0] if total_visits != (total_problem_visits + total_multiple_carer_visits): raise ValueError('Number of visits in problem and solution does not match: {0} vs {1}' .format(total_visits, (total_problem_visits + total_multiple_carer_visits))) carers = current_date_frame['carers'].iloc[0] handle = ax1.scatter( [time_delta.total_seconds() for time_delta in current_date_frame['relative_time']], current_date_frame['cost'], s=1) add_trace_legend(ax1, [[handle, total_multiple_carer_visits, total_problem_visits, carers, cost_function]]) scatter_dropped_visits(ax2, current_date_frame, current_color) ax1_y_bottom, ax1_y_top = ax1.get_ylim() ax1.set_ylim(bottom=0, top=ax1_y_top * __Y_AXIS_EXTENSION) ax1.set_ylabel('Cost Function [s]') ax2_y_bottom, ax2_y_top = ax2.get_ylim() ax2.set_ylim(bottom=-10, top=ax2_y_top * __Y_AXIS_EXTENSION) ax2.xaxis.set_major_formatter(ax_settings.formatter) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) rows.plot.save_figure(output_file_stem + '_' + current_date.isoformat()) else: handles = [] for current_date in dates: current_color = color_map.colors[next(color_number_it)] current_date_frame = data_frame[data_frame['date'] == current_date] max_relative_time = max(current_date_frame['relative_time'].max(), max_relative_time) total_problem_visits, total_multiple_carer_visits = get_problem_stats(problem, current_date) stages = current_date_frame['stage'].unique() if len(stages) > 1: stage_linestyles = [None, 'dotted', 'dashed'] for stage, linestyle in zip(stages, stage_linestyles): time_delta = current_date_frame[current_date_frame['stage'] == stage]['stage_started'].iloc[0] draw_avline(ax1, time_delta.total_seconds(), color=current_color, linestyle=linestyle) draw_avline(ax2, time_delta.total_seconds(), color=current_color, linestyle=linestyle) total_carers = current_date_frame['carers'].max() multi_carers = current_date_frame['carers'].min() if multi_carers == total_carers: multi_carers = 0 total_visits = current_date_frame['visits'].max() multi_visits = current_date_frame['visits'].min() if multi_visits == total_visits: multi_visits = 0 handle = scatter_cost(ax1, current_date_frame, current_color) scatter_dropped_visits(ax2, current_date_frame, current_color) handles.append([handle, multi_visits, total_visits, multi_carers, total_carers, cost_function, current_date]) else: total_visits = current_date_frame['visits'].iloc[0] if total_visits != (total_problem_visits + total_multiple_carer_visits): raise ValueError('Number of visits in problem and solution does not match: {0} vs {1}' .format(total_visits, (total_problem_visits + total_multiple_carer_visits))) carers = current_date_frame['carers'].iloc[0] handle = scatter_cost(ax1, current_date_frame, current_color) handles.append([handle, total_multiple_carer_visits, total_problem_visits, carers, cost_function, current_date]) scatter_dropped_visits(ax2, current_date_frame, current_color) ax_settings = AxisSettings.infer(max_relative_time) ax1.ticklabel_format(style='sci', axis='y', scilimits=(-2, 2)) ax1.xaxis.set_major_formatter(ax_settings.formatter) # if add_arrows: # ax1.arrow(950, 200000, 40, -110000, head_width=10, head_length=20000, fc='k', ec='k') # ax2.arrow(950, 60, 40, -40, head_width=10, head_length=10, fc='k', ec='k') ax1_y_bottom, ax1_y_top = ax1.get_ylim() ax1.set_ylim(bottom=0, top=ax1_y_top * __Y_AXIS_EXTENSION) ax1.set_xlim(left=0, right=ax_settings.right_xlimit) ax1.set_ylabel('Cost Function [s]') ax2_y_bottom, ax2_y_top = ax2.get_ylim() ax2.set_ylim(bottom=-10, top=ax2_y_top * __Y_AXIS_EXTENSION) ax2.set_xlim(left=0, right=ax_settings.right_xlimit) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) ax2.set_xticks(ax_settings.xticks) ax2.xaxis.set_major_formatter(ax_settings.formatter) matplotlib.pyplot.tight_layout() rows.plot.save_figure(output_file_stem) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def get_schedule_stats(data_frame): def get_stage_stats(stage): if stage and (isinstance(stage, str) or (isinstance(stage, float) and not numpy.isnan(stage))): stage_frame = data_frame[data_frame['stage'] == stage] else: stage_frame = data_frame[data_frame['stage'].isnull()] min_carers, max_carers = stage_frame['carers'].min(), stage_frame['carers'].max() if min_carers != max_carers: raise ValueError( 'Numbers of carer differs within stage in range [{0}, {1}]'.format(min_carers, max_carers)) min_visits, max_visits = stage_frame['visits'].min(), stage_frame['visits'].max() if min_visits != max_visits: raise ValueError( 'Numbers of carer differs within stage in range [{0}, {1}]'.format(min_visits, max_visits)) return min_carers, min_visits stages = data_frame['stage'].unique() if len(stages) > 1: data = [] for stage in stages: carers, visits = get_stage_stats(stage) data.append([stage, carers, visits]) return data else: stage_to_use = None if len(stages) == 1: stage_to_use = stages[0] carers, visits = get_stage_stats(stage_to_use) return [[None, carers, visits]] def contrast_trace(args, settings): problem_file = get_or_raise(args, __PROBLEM_FILE_ARG) problem = rows.load.load_problem(problem_file) problem_file_base = os.path.basename(problem_file) problem_file_name, problem_file_ext = os.path.splitext(problem_file_base) output_file_stem = getattr(args, __OUTPUT, problem_file_name + '_contrast_traces') cost_function = get_or_raise(args, __COST_FUNCTION_TYPE) base_trace_file = get_or_raise(args, __BASE_FILE_ARG) candidate_trace_file = get_or_raise(args, __CANDIDATE_FILE_ARG) base_frame = traces_to_data_frame(read_traces(base_trace_file)) candidate_frame = traces_to_data_frame(read_traces(candidate_trace_file)) current_date = get_or_raise(args, __DATE_ARG) if current_date not in base_frame['date'].unique(): raise ValueError('Date {0} is not present in the base data set'.format(current_date)) if current_date not in candidate_frame['date'].unique(): raise ValueError('Date {0} is not present in the candidate data set'.format(current_date)) max_relative_time = datetime.timedelta() max_relative_time = max(base_frame[base_frame['date'] == current_date]['relative_time'].max(), max_relative_time) max_relative_time = max(candidate_frame[candidate_frame['date'] == current_date]['relative_time'].max(), max_relative_time) max_relative_time = datetime.timedelta(minutes=20) ax_settings = AxisSettings.infer(max_relative_time) color_map = matplotlib.cm.get_cmap('Set1') matplotlib.pyplot.set_cmap(color_map) figure, (ax1, ax2) = matplotlib.pyplot.subplots(2, 1, sharex=True) try: def plot(data_frame, color): stages = data_frame['stage'].unique() if len(stages) > 1: for stage, linestyle in zip(stages, [None, 'dotted', 'dashed']): time_delta = data_frame[data_frame['stage'] == stage]['stage_started'].iloc[0] draw_avline(ax1, time_delta.total_seconds(), linestyle=linestyle) draw_avline(ax2, time_delta.total_seconds(), linestyle=linestyle) scatter_dropped_visits(ax2, data_frame, color=color) return scatter_cost(ax1, data_frame, color=color) base_current_data_frame = base_frame[base_frame['date'] == current_date] base_handle = plot(base_current_data_frame, color_map.colors[0]) base_stats = get_schedule_stats(base_current_data_frame) candidate_current_data_frame = candidate_frame[candidate_frame['date'] == current_date] candidate_handle = plot(candidate_current_data_frame, color_map.colors[1]) candidate_stats = get_schedule_stats(candidate_current_data_frame) labels = [] for stages in [base_stats, candidate_stats]: if len(stages) == 1: labels.append('Direct') elif len(stages) > 1: labels.append('Multistage') else: raise ValueError() ax1.set_ylim(bottom=0.0) ax1.set_ylabel('Cost Function [s]') ax1.ticklabel_format(style='sci', axis='y', scilimits=(-2, 2)) ax1.xaxis.set_major_formatter(ax_settings.formatter) ax1.set_xlim(left=0.0, right=max_relative_time.total_seconds()) legend1 = ax1.legend([base_handle, candidate_handle], labels) for handle in legend1.legendHandles: handle._sizes = [25] ax2.set_xlim(left=0.0, right=max_relative_time.total_seconds()) ax2.set_ylim(bottom=0.0) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) ax1.set_xticks(ax_settings.xticks) ax2.set_xticks(ax_settings.xticks) ax2.xaxis.set_major_formatter(ax_settings.formatter) legend2 = ax2.legend([base_handle, candidate_handle], labels) for handle in legend2.legendHandles: handle._sizes = [25] figure.tight_layout() matplotlib.pyplot.tight_layout() rows.plot.save_figure(output_file_stem + '_' + current_date.isoformat()) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) figure, (ax1, ax2) = matplotlib.pyplot.subplots(2, 1, sharex=True) try: candidate_current_data_frame = candidate_frame[candidate_frame['date'] == current_date] scatter_dropped_visits(ax2, candidate_current_data_frame, color=color_map.colors[1]) scatter_cost(ax1, candidate_current_data_frame, color=color_map.colors[1]) stage2_started = \ candidate_current_data_frame[candidate_current_data_frame['stage'] == 'Stage2']['stage_started'].iloc[0] ax1.set_ylim(bottom=0, top=6 * 10 ** 4) ax1.set_ylabel('Cost Function [s]') ax1.ticklabel_format(style='sci', axis='y', scilimits=(-2, 2)) ax1.xaxis.set_major_formatter(ax_settings.formatter) ax1.set_xlim(left=0, right=12) ax2.set_xlim(left=0, right=12) x_ticks_positions = range(0, 12 + 1, 2) # matplotlib.pyplot.locator_params(axis='x', nbins=6) ax2.set_ylim(bottom=-10.0, top=120) ax2.set_ylabel('Declined Visits') ax2.set_xlabel('Computation Time ' + ax_settings.units_label) ax2.set_xticks(x_ticks_positions) ax2.xaxis.set_major_formatter(ax_settings.formatter) matplotlib.pyplot.tight_layout() # rows.plot.save_figure(output_file_stem + '_first_stage_' + current_date.isoformat()) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def compare_box_plots(args, settings): problem_file = get_or_raise(args, __PROBLEM_FILE_ARG) problem = rows.load.load_problem(problem_file) problem_file_base = os.path.basename(problem_file) problem_file_name, problem_file_ext = os.path.splitext(problem_file_base) base_trace_file = get_or_raise(args, __BASE_FILE_ARG) output_file_stem = getattr(args, __OUTPUT, problem_file_name) traces = read_traces(base_trace_file) figure, (ax1, ax2, ax3) = matplotlib.pyplot.subplots(1, 3) stages = [trace.compute_stages() for trace in traces] num_stages = max(len(s) for s in stages) durations = [[getattr(local_stage[num_stage], 'duration').total_seconds() for local_stage in stages] for num_stage in range(num_stages)] max_duration = max(max(stage_durations) for stage_durations in durations) axis_settings = AxisSettings.infer(datetime.timedelta(seconds=max_duration)) try: ax1.boxplot(durations, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax1.set_yticks(axis_settings.xticks) ax1.yaxis.set_major_formatter(axis_settings.formatter) ax1.set_xlabel('Stage') ax1.set_ylabel('Duration [hh:mm]') costs = [[getattr(local_stage[num_stage], 'final_cost') for local_stage in stages] for num_stage in range(num_stages)] ax2.boxplot(costs, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) formatter = matplotlib.ticker.ScalarFormatter() formatter.set_scientific(True) formatter.set_powerlimits((-3, 3)) ax2.yaxis.set_major_formatter(formatter) ax2.set_xlabel('Stage') ax2.set_ylabel('Cost') declined_visits = [[getattr(local_stage[num_stage], 'final_dropped_visits') for local_stage in stages] for num_stage in range(num_stages)] ax3.boxplot(declined_visits, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) max_declined_visits = max(max(declined_visits)) ax3.set_xlabel('Stage') ax3.set_ylabel('Declined Visits') dropped_visit_ticks = None if max_declined_visits < 100: dropped_visit_ticks = range(0, max_declined_visits + 1) else: dropped_visit_ticks = range(0, max_declined_visits + 100, 100) ax3.set_yticks(dropped_visit_ticks) figure.tight_layout() rows.plot.save_figure(output_file_stem) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def compare_prediction_error(args, settings): base_schedule = rows.plot.load_schedule(get_or_raise(args, __BASE_FILE_ARG)) candidate_schedule = rows.plot.load_schedule(get_or_raise(args, __CANDIDATE_FILE_ARG)) observed_duration_by_visit = rows.plot.calculate_observed_visit_duration(base_schedule) expected_duration_by_visit = calculate_expected_visit_duration(candidate_schedule) data = [] for visit in base_schedule.visits: observed_duration = observed_duration_by_visit[visit.visit] expected_duration = expected_duration_by_visit[visit.visit] data.append([visit.key, observed_duration.total_seconds(), expected_duration.total_seconds()]) frame = pandas.DataFrame(columns=['Visit', 'ObservedDuration', 'ExpectedDuration'], data=data) frame['Error'] = (frame.ObservedDuration - frame.ExpectedDuration) / frame.ObservedDuration figure, axis = matplotlib.pyplot.subplots() try: axis.plot(frame['Error'], label='(Observed - Expected)/Observed)') axis.legend() axis.set_ylim(-20, 2) axis.grid() matplotlib.pyplot.show() finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def remove_violated_visits(rough_schedule: rows.model.schedule.Schedule, metadata: TraceLog, problem: rows.model.problem.Problem, duration_estimator: rows.plot.DurationEstimator, distance_estimator: rows.plot.DistanceEstimator) -> rows.model.schedule.Schedule: max_delay = metadata.visit_time_window min_delay = -metadata.visit_time_window dropped_visits = 0 allowed_visits = [] for route in rough_schedule.routes: carer_diary = problem.get_diary(route.carer, metadata.date) if not carer_diary: continue for visit in route.visits: if visit.check_in is not None: check_in_delay = visit.check_in - datetime.datetime.combine(metadata.date, visit.time) if check_in_delay > max_delay: # or check_in_delay < min_delay: dropped_visits += 1 continue allowed_visits.append(visit) # schedule does not have visits which exceed time windows first_improved_schedule = rows.model.schedule.Schedule(carers=rough_schedule.carers, visits=allowed_visits) allowed_visits = [] for route in first_improved_schedule.routes: if not route.visits: continue diary = problem.get_diary(route.carer, metadata.date) assert diary is not None # shift adjustment is added twice because it is allowed to extend the time before and after the working hours max_shift_end = max(event.end for event in diary.events) + metadata.shift_adjustment + metadata.shift_adjustment first_visit = route.visits[0] current_time = datetime.datetime.combine(metadata.date, first_visit.time) if current_time <= max_shift_end: allowed_visits.append(first_visit) visits_made = [] total_slack = datetime.timedelta() if len(route.visits) == 1: visit = route.visits[0] visit_duration = duration_estimator(visit.visit) if visit_duration is None: visit_duration = visit.duration current_time += visit_duration if current_time <= max_shift_end: visits_made.append(visit) else: dropped_visits += 1 else: for prev_visit, next_visit in route.edges(): visit_duration = duration_estimator(prev_visit.visit) if visit_duration is None: visit_duration = prev_visit.duration current_time += visit_duration current_time += distance_estimator(prev_visit, next_visit) start_time = max(current_time, datetime.datetime.combine(metadata.date, next_visit.time) - max_delay) total_slack += start_time - current_time current_time = start_time if current_time <= max_shift_end: visits_made.append(next_visit) else: dropped_visits += 1 if current_time <= max_shift_end: total_slack += max_shift_end - current_time total_break_duration = datetime.timedelta() for carer_break in diary.breaks: total_break_duration += carer_break.duration if total_slack + datetime.timedelta(hours=2) < total_break_duration: # route is not respecting contractual breaks visits_made.pop() for visit in visits_made: allowed_visits.append(visit) # schedule does not contain visits which exceed overtime of the carer return rows.model.schedule.Schedule(carers=rough_schedule.carers, visits=allowed_visits) class ScheduleCost: CARER_COST = datetime.timedelta(seconds=60 * 60 * 4) def __init__(self, travel_time: datetime.timedelta, carers_used: int, visits_missed: int, missed_visit_penalty: int): self.__travel_time = travel_time self.__carers_used = carers_used self.__visits_missed = visits_missed self.__missed_visit_penalty = missed_visit_penalty @property def travel_time(self) -> datetime.timedelta: return self.__travel_time @property def visits_missed(self) -> int: return self.__visits_missed @property def missed_visit_penalty(self) -> int: return self.__missed_visit_penalty @property def carers_used(self) -> int: return self.__carers_used def total_cost(self, include_vehicle_cost: bool) -> datetime.timedelta: cost = self.__travel_time.total_seconds() + self.__missed_visit_penalty * self.__visits_missed if include_vehicle_cost: cost += self.CARER_COST.total_seconds() * self.__carers_used return cost def get_schedule_cost(schedule: rows.model.schedule.Schedule, metadata: TraceLog, problem: rows.model.problem.Problem, distance_estimator: rows.plot.DistanceEstimator) -> ScheduleCost: carer_used_ids = set() visit_made_ids = set() travel_time = datetime.timedelta() for route in schedule.routes: if not route.visits: continue carer_used_ids.add(route.carer.sap_number) for visit in route.visits: visit_made_ids.add(visit.visit.key) for source, destination in route.edges(): travel_time += distance_estimator(source, destination) available_visit_ids = {visit.key for visit in problem.requested_visits(schedule.date)} return ScheduleCost(travel_time, len(carer_used_ids), len(available_visit_ids.difference(visit_made_ids)), metadata.missed_visit_penalty) def compare_schedule_cost(args, settings): ProblemConfig = collections.namedtuple('ProblemConfig', ['ProblemPath', 'HumanSolutionPath', 'SolverSecondSolutionPath', 'SolverThirdSolutionPath']) simulation_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations' solver_log_file = os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5.err.log') problem_data = [ProblemConfig(os.path.join(simulation_dir, 'problems/C350_past.json'), os.path.join(simulation_dir, 'planner_schedules/C350_planners_201710{0:02d}.json'.format(day)), os.path.join(simulation_dir, 'solutions/second_stage_c350past_distv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day)), os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day))) for day in range(1, 15, 1)] solver_traces = read_traces(solver_log_file) assert len(solver_traces) == len(problem_data) results = [] include_vehicle_cost = False with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) def normalize_cost(value) -> float: if isinstance(value, datetime.timedelta): value_to_use = value.total_seconds() elif isinstance(value, float) or isinstance(value, int): value_to_use = value else: return float('inf') return round(value_to_use / 3600, 2) for solver_trace, problem_data in list(zip(solver_traces, problem_data)): problem = rows.load.load_problem(os.path.join(simulation_dir, problem_data.ProblemPath)) human_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.HumanSolutionPath)) solver_second_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.SolverSecondSolutionPath)) solver_third_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.SolverThirdSolutionPath)) assert solver_second_schedule.date == human_schedule.date assert solver_third_schedule.date == human_schedule.date available_carers = problem.available_carers(human_schedule.date) requested_visits = problem.requested_visits(human_schedule.date) one_carer_visits = [visit for visit in requested_visits if visit.carer_count == 1] two_carer_visits = [visit for visit in requested_visits if visit.carer_count == 2] duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(solver_third_schedule) human_schedule_to_use = remove_violated_visits(human_schedule, solver_trace, problem, duration_estimator, distance_estimator) solver_second_schedule_to_use = remove_violated_visits(solver_second_schedule, solver_trace, problem, duration_estimator, distance_estimator) solver_third_schedule_to_use = remove_violated_visits(solver_third_schedule, solver_trace, problem, duration_estimator, distance_estimator) human_cost = get_schedule_cost(human_schedule_to_use, solver_trace, problem, distance_estimator) solver_second_cost = get_schedule_cost(solver_second_schedule_to_use, solver_trace, problem, distance_estimator) solver_third_cost = get_schedule_cost(solver_third_schedule_to_use, solver_trace, problem, distance_estimator) results.append(collections.OrderedDict(date=solver_trace.date, day=solver_trace.date.day, carers=len(available_carers), one_carer_visits=len(one_carer_visits), two_carer_visits=2 * len(two_carer_visits), missed_visit_penalty=normalize_cost(solver_trace.missed_visit_penalty), carer_used_penalty=normalize_cost(solver_trace.carer_used_penalty), planner_missed_visits=human_cost.visits_missed, solver_second_missed_visits=solver_second_cost.visits_missed, solver_third_missed_visits=solver_third_cost.visits_missed, planner_travel_time=normalize_cost(human_cost.travel_time), solver_second_travel_time=normalize_cost(solver_second_cost.travel_time), solver_third_travel_time=normalize_cost(solver_third_cost.travel_time), planner_carers_used=human_cost.carers_used, solver_second_carers_used=solver_second_cost.carers_used, solver_third_carers_used=solver_third_cost.carers_used, planner_total_cost=normalize_cost(human_cost.total_cost(include_vehicle_cost)), solver_second_total_cost=normalize_cost(solver_second_cost.total_cost(include_vehicle_cost)), solver_third_total_cost=normalize_cost(solver_third_cost.total_cost(include_vehicle_cost)), solver_second_time=int(math.ceil(solver_trace.best_cost_time(2).total_seconds())), solver_third_time=int(math.ceil(solver_trace.best_cost_time(3).total_seconds())))) data_frame = pandas.DataFrame(data=results) print(tabulate.tabulate(data_frame, tablefmt='psql', headers='keys')) print(tabulate.tabulate(data_frame[['day', 'carers', 'one_carer_visits', 'two_carer_visits', 'missed_visit_penalty', 'planner_total_cost', 'solver_second_total_cost', 'solver_third_total_cost', 'planner_missed_visits', 'solver_second_missed_visits', 'solver_third_missed_visits', 'planner_travel_time', 'solver_second_travel_time', 'solver_third_travel_time', 'solver_second_time', 'solver_third_time']], tablefmt='latex', headers='keys', showindex=False)) def get_consecutive_visit_time_span(schedule: rows.model.schedule.Schedule, start_time_estimator): client_visits = collections.defaultdict(list) for visit in schedule.visits: client_visits[visit.visit.service_user].append(visit) for client in client_visits: visits = client_visits[client] used_keys = set() unique_visits = [] for visit in visits: date_time = start_time_estimator(visit) if date_time.hour == 0 and date_time.minute == 0: continue if visit.visit.key not in used_keys: used_keys.add(visit.visit.key) unique_visits.append(visit) unique_visits.sort(key=start_time_estimator) client_visits[client] = unique_visits client_span = collections.defaultdict(datetime.timedelta) for client in client_visits: if len(client_visits[client]) < 2: continue last_visit = client_visits[client][0] total_span = datetime.timedelta() for next_visit in client_visits[client][1:]: total_span += start_time_estimator(next_visit) - start_time_estimator(last_visit) last_visit = next_visit client_span[client] = total_span return client_span def get_carer_client_frequency(schedule: rows.model.schedule.Schedule): client_assigned_carers = collections.defaultdict(collections.Counter) for visit in schedule.visits: client_assigned_carers[int(visit.visit.service_user)][int(visit.carer.sap_number)] += 1 return client_assigned_carers def get_visits(problem: rows.model.problem.Problem, date: datetime.date): visits = set() for local_visits in problem.visits: for visit in local_visits.visits: if date != visit.date: continue visit.service_user = local_visits.service_user visits.add(visit) return visits def get_teams(problem: rows.model.problem.Problem, schedule: rows.model.schedule.Schedule): multiple_carer_visit_keys = set() for visit in get_visits(problem, schedule.date): if visit.carer_count > 1: multiple_carer_visit_keys.add(visit.key) client_visit_carers = collections.defaultdict(lambda: collections.defaultdict(list)) for visit in schedule.visits: if visit.visit.key not in multiple_carer_visit_keys: continue client_visit_carers[visit.visit.service_user][visit.visit.key].append(int(visit.carer.sap_number)) for client in client_visit_carers: for visit_key in client_visit_carers[client]: client_visit_carers[client][visit_key].sort() teams = set() for client in client_visit_carers: for visit_key in client_visit_carers[client]: teams.add(tuple(client_visit_carers[client][visit_key])) return teams def compare_schedule_quality(args, settings): ProblemConfig = collections.namedtuple('ProblemConfig', ['ProblemPath', 'HumanSolutionPath', 'SolverSolutionPath']) def compare_quality(solver_trace, problem, human_schedule, solver_schedule, duration_estimator, distance_estimator): visits = get_visits(problem, solver_trace.date) multiple_carer_visit_keys = {visit.key for visit in visits if visit.carer_count > 1} clients = list({int(visit.service_user) for visit in visits}) # number of different carers assigned throughout the day human_carer_frequency = get_carer_client_frequency(human_schedule) solver_carer_frequency = get_carer_client_frequency(solver_schedule) def median_carer_frequency(client_counters): total_counters = [] for client in client_counters: # total_counters += len(client_counters[client]) total_counters.append(len(client_counters[client])) # return total_counters / len(client_counters) return numpy.median(total_counters) human_schedule_squared = [] solver_schedule_squared = [] for client in clients: if client in human_carer_frequency: human_schedule_squared.append(sum(human_carer_frequency[client][carer] ** 2 for carer in human_carer_frequency[client])) else: human_schedule_squared.append(0) if client in solver_carer_frequency: solver_schedule_squared.append(sum(solver_carer_frequency[client][carer] ** 2 for carer in solver_carer_frequency[client])) else: solver_schedule_squared.append(0) human_matching_dominates = 0 solver_matching_dominates = 0 for index in range(len(clients)): if human_schedule_squared[index] > solver_schedule_squared[index]: human_matching_dominates += 1 elif human_schedule_squared[index] < solver_schedule_squared[index]: solver_matching_dominates += 1 matching_no_diff = len(clients) - human_matching_dominates - solver_matching_dominates assert matching_no_diff >= 0 human_schedule_span = get_consecutive_visit_time_span(human_schedule, lambda visit: visit.check_in) solver_schedule_span = get_consecutive_visit_time_span(solver_schedule, lambda visit: datetime.datetime.combine(visit.date, visit.time)) human_span_dominates = 0 solver_span_dominates = 0 for client in clients: if human_schedule_span[client] > solver_schedule_span[client]: human_span_dominates += 1 elif human_schedule_span[client] < solver_schedule_span[client]: solver_span_dominates += 1 span_no_diff = len(clients) - human_span_dominates - solver_span_dominates assert span_no_diff > 0 human_teams = get_teams(problem, human_schedule) solver_teams = get_teams(problem, solver_schedule) human_schedule_frame = rows.plot.get_schedule_data_frame(human_schedule, problem, duration_estimator, distance_estimator) solver_schedule_frame = rows.plot.get_schedule_data_frame(solver_schedule, problem, duration_estimator, distance_estimator) human_visits = human_schedule_frame['Visits'].median() solver_visits = solver_schedule_frame['Visits'].median() human_total_overtime = compute_overtime(human_schedule_frame).sum() solver_total_overtime = compute_overtime(solver_schedule_frame).sum() return {'problem': str(human_schedule.date), 'visits': len(visits), 'clients': len(clients), 'human_overtime': human_total_overtime, 'solver_overtime': solver_total_overtime, 'human_visits_median': human_visits, 'solver_visits_median': solver_visits, 'human_visit_span_dominates': human_span_dominates, 'solver_visit_span_dominates': solver_span_dominates, 'visit_span_indifferent': span_no_diff, 'human_matching_dominates': human_matching_dominates, 'solver_matching_dominates': solver_matching_dominates, 'human_carer_frequency': median_carer_frequency(human_carer_frequency), 'solver_carer_frequency': median_carer_frequency(solver_carer_frequency), 'matching_indifferent': matching_no_diff, 'human_teams': len(human_teams), 'solver_teams': len(solver_teams)} simulation_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations' solver_log_file = os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5.err.log') problem_data = [ProblemConfig(os.path.join(simulation_dir, 'problems/C350_past.json'), os.path.join(simulation_dir, 'planner_schedules/C350_planners_201710{0:02d}.json'.format(day)), os.path.join(simulation_dir, 'solutions/c350past_distv90b90e30m1m1m5_201710{0:02d}.gexf'.format(day))) for day in range(1, 15, 1)] solver_traces = read_traces(solver_log_file) assert len(solver_traces) == len(problem_data) results = [] with rows.plot.create_routing_session() as routing_session: distance_estimator = rows.plot.DistanceEstimator(settings, routing_session) for solver_trace, problem_data in zip(solver_traces, problem_data): problem = rows.load.load_problem(os.path.join(simulation_dir, problem_data.ProblemPath)) human_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.HumanSolutionPath)) solver_schedule = rows.load.load_schedule(os.path.join(simulation_dir, problem_data.SolverSolutionPath)) assert solver_trace.date == human_schedule.date assert solver_trace.date == solver_schedule.date duration_estimator = rows.plot.DurationEstimator.create_expected_visit_duration(solver_schedule) human_schedule_to_use = remove_violated_visits(human_schedule, solver_trace, problem, duration_estimator, distance_estimator) solver_schedule_to_use = remove_violated_visits(solver_schedule, solver_trace, problem, duration_estimator, distance_estimator) row = compare_quality(solver_trace, problem, human_schedule_to_use, solver_schedule_to_use, duration_estimator, distance_estimator) results.append(row) data_frame = pandas.DataFrame(data=results) data_frame['human_visit_span_dominates_rel'] = data_frame['human_visit_span_dominates'] / data_frame['clients'] data_frame['human_visit_span_dominates_rel_label'] = data_frame['human_visit_span_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['solver_visit_span_dominates_rel'] = data_frame['solver_visit_span_dominates'] / data_frame['clients'] data_frame['solver_visit_span_dominates_rel_label'] = data_frame['solver_visit_span_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['visit_span_indifferent_rel'] = data_frame['visit_span_indifferent'] / data_frame['clients'] data_frame['human_matching_dominates_rel'] = data_frame['human_matching_dominates'] / data_frame['clients'] data_frame['human_matching_dominates_rel_label'] = data_frame['human_matching_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['solver_matching_dominates_rel'] = data_frame['solver_matching_dominates'] / data_frame['clients'] data_frame['solver_matching_dominates_rel_label'] = data_frame['solver_matching_dominates_rel'].apply(lambda v: '{0:.2f}'.format(v * 100.0)) data_frame['matching_indifferent_rel'] = data_frame['matching_indifferent'] / data_frame['clients'] data_frame['day'] = data_frame['problem'].apply(lambda label: datetime.datetime.strptime(label, '%Y-%m-%d').date().day) data_frame['human_overtime_label'] = data_frame['human_overtime'].apply(get_time_delta_label) data_frame['solver_overtime_label'] = data_frame['solver_overtime'].apply(get_time_delta_label) print(tabulate.tabulate(data_frame, tablefmt='psql', headers='keys')) print(tabulate.tabulate(data_frame[['day', 'human_visits_median', 'solver_visits_median', 'human_overtime_label', 'solver_overtime_label', 'human_carer_frequency', 'solver_carer_frequency', 'human_matching_dominates_rel_label', 'solver_matching_dominates_rel_label', 'human_teams', 'solver_teams']], tablefmt='latex', showindex=False, headers='keys')) BenchmarkData = collections.namedtuple('BenchmarkData', ['BestCost', 'BestCostTime', 'BestBound', 'ComputationTime']) class MipTrace: __MIP_HEADER_PATTERN = re.compile('^\s*Expl\s+Unexpl\s+|\s+Obj\s+Depth\s+IntInf\s+|\s+Incumbent\s+BestBd\s+Gap\s+|\s+It/Node\s+Time\s*$') __MIP_LINE_PATTERN = re.compile('^(?P<solution_flag>[\w\*]?)\s*' '(?P<explored_nodes>\d+)\s+' '(?P<nodes_to_explore>\d+)\s+' '(?P<node_relaxation>[\w\.]*)\s+' '(?P<node_depth>\d*)\s+' '(?P<fractional_variables>\w*)\s+' '(?P<incumbent>[\d\.\-]*)\s+' '(?P<lower_bound>[\d\.\-]*)\s+' '(?P<gap>[\d\.\%\-]*)\s+' '(?P<simplex_it_per_node>[\d\.\-]*)\s+' '(?P<elapsed_time>\d+)s$') __SUMMARY_PATTERN = re.compile('^Best\sobjective\s(?P<objective>[e\d\.\+]+),\s' 'best\sbound\s(?P<bound>[e\d\.\+]+),\s' 'gap\s(?P<gap>[e\d\.\+]+)\%$') class MipProgressMessage: def __init__(self, has_solution, best_cost, lower_bound, elapsed_time): self.__has_solution = has_solution self.__best_cost = best_cost self.__lower_bound = lower_bound self.__elapsed_time = elapsed_time @property def has_solution(self): return self.__has_solution @property def best_cost(self): return self.__best_cost @property def lower_bound(self): return self.__lower_bound @property def elapsed_time(self): return self.__elapsed_time def __init__(self, best_objective: float, best_bound: float, events: typing.List[MipProgressMessage]): self.__best_objective = best_objective self.__best_bound = best_bound self.__events = events @staticmethod def read_from_file(path) -> 'MipTrace': events = [] best_objective = float('inf') best_bound = float('-inf') with open(path, 'r') as fp: lines = fp.readlines() lines_it = iter(lines) for line in lines_it: if re.match(MipTrace.__MIP_HEADER_PATTERN, line): break next(lines_it, None) # read the empty line for line in lines_it: line_match = re.match(MipTrace.__MIP_LINE_PATTERN, line) if not line_match: break raw_solution_flag = line_match.group('solution_flag') raw_incumbent = line_match.group('incumbent') raw_lower_bound = line_match.group('lower_bound') raw_elapsed_time = line_match.group('elapsed_time') has_solution = raw_solution_flag == 'H' or raw_solution_flag == '*' incumbent = float(raw_incumbent) if raw_incumbent and raw_incumbent != '-' else float('inf') lower_bound = float(raw_lower_bound) if raw_lower_bound else float('-inf') elapsed_time = datetime.timedelta(seconds=int(raw_elapsed_time)) if raw_elapsed_time else datetime.timedelta() events.append(MipTrace.MipProgressMessage(has_solution, incumbent, lower_bound, elapsed_time)) next(lines_it, None) for line in lines_it: line_match = re.match(MipTrace.__SUMMARY_PATTERN, line) if line_match: raw_objective = line_match.group('objective') if raw_objective: best_objective = float(raw_objective) raw_bound = line_match.group('bound') if raw_bound: best_bound = float(raw_bound) return MipTrace(best_objective, best_bound, events) def best_cost(self): return self.__best_objective def best_cost_time(self): for event in reversed(self.__events): if event.has_solution: return event.elapsed_time return datetime.timedelta.max def best_bound(self): return self.__best_bound def computation_time(self): if self.__events: return self.__events[-1].elapsed_time return datetime.timedelta.max class DummyTrace: def __init__(self): pass def best_cost(self): return float('inf') def best_bound(self): return 0 def best_cost_time(self): return datetime.timedelta(hours=23, minutes=59, seconds=59) def compare_benchmark_table(args, settings): ProblemConfig = collections.namedtuple('ProblemConfig', ['ProblemPath', 'Carers', 'Visits', 'Visits2', 'MipSolutionLog', 'CpTeamSolutionLog', 'CpWindowsSolutionLog']) simulation_dir = '/home/pmateusz/dev/cordia/simulations/current_review_simulations' old_simulation_dir = '/home/pmateusz/dev/cordia/simulations/review_simulations_old' dummy_log = DummyTrace() problem_configs = [ProblemConfig(os.path.join(simulation_dir, 'benchmark/25/problem_201710{0:02d}_v25m0c3.json'.format(day_number)), 3, 25, 0, os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m0c3_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m0c3.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m0c3.err.log'.format(day_number))) for day_number in range(1, 15, 1)] problem_configs.extend( [ProblemConfig(os.path.join(simulation_dir, 'benchmark/25/problem_201710{0:02d}_v25m5c3.json'.format(day_number)), 3, 20, 5, os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_v25m5c3_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_teams_v25m5c3.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/25/solutions/problem_201710{0:02d}_windows_v25m5c3.err.log'.format(day_number))) for day_number in range(1, 15, 1)]) problem_configs.extend( [ProblemConfig(os.path.join(simulation_dir, 'benchmark/50/problem_201710{0:02d}_v50m0c5.json'.format(day_number)), 5, 50, 0, os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m0c5_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m0c5.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m0c5.err.log'.format(day_number))) for day_number in range(1, 15, 1)]) problem_configs.extend( [ProblemConfig(os.path.join(simulation_dir, 'benchmark/50/problem_201710{0:02d}_v50m10c5.json'.format(day_number)), 5, 40, 10, os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_v50m10c5_mip.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_teams_v50m10c5.err.log'.format(day_number)), os.path.join(simulation_dir, 'benchmark/50/solutions/problem_201710{0:02d}_windows_v50m10c5.err.log'.format(day_number))) for day_number in range(1, 15, 1)]) logs = [] for problem_config in problem_configs: with warnings.catch_warnings(): warnings.simplefilter('ignore') if os.path.exists(problem_config.CpTeamSolutionLog): cp_team_logs = read_traces(problem_config.CpTeamSolutionLog) if not cp_team_logs: warnings.warn('File {0} is empty'.format(problem_config.CpTeamSolutionLog)) cp_team_logs = dummy_log else: cp_team_log = cp_team_logs[0] else: cp_team_logs = dummy_log if os.path.exists(problem_config.CpWindowsSolutionLog): cp_window_logs = read_traces(problem_config.CpWindowsSolutionLog) if not cp_window_logs: warnings.warn('File {0} is empty'.format(problem_config.CpWindowsSolutionLog)) cp_window_logs = dummy_log else: cp_window_log = cp_window_logs[0] else: cp_window_logs = dummy_log if os.path.exists(problem_config.MipSolutionLog): mip_log = MipTrace.read_from_file(problem_config.MipSolutionLog) if not mip_log: warnings.warn('File {0} is empty'.format(problem_config.MipSolutionLog)) mip_log = dummy_log else: mip_log = dummy_log logs.append([problem_config, mip_log, cp_team_log, cp_window_log]) def get_gap(cost: float, lower_bound: float) -> float: if lower_bound == 0.0: return float('inf') return (cost - lower_bound) * 100.0 / lower_bound def get_delta(cost, cost_to_compare): return (cost - cost_to_compare) * 100.0 / cost_to_compare def get_computation_time_label(time: datetime.timedelta) -> str: return str(time.total_seconds()) data = [] for problem_config, mip_log, cp_team_log, cp_window_log in logs: data.append(collections.OrderedDict( date=cp_team_log.date, visits=problem_config.Visits, visits_of_two=problem_config.Visits2, carers=cp_team_log.carers, penalty=cp_team_log.missed_visit_penalty, lower_bound=mip_log.best_bound(), mip_best_cost=mip_log.best_cost(), mip_best_gap=get_gap(mip_log.best_cost(), mip_log.best_bound()), mip_best_time=get_computation_time_label(mip_log.best_cost_time()), team_best_cost=cp_team_log.best_cost(), team_best_gap=get_gap(cp_team_log.best_cost(), mip_log.best_bound()), team_best_delta=get_gap(cp_team_log.best_cost(), mip_log.best_cost()), team_best_time=get_computation_time_label(cp_team_log.best_cost_time()), windows_best_cost=cp_window_log.best_cost(), windows_best_gap=get_gap(cp_window_log.best_cost(), mip_log.best_bound()), windows_best_delta=get_gap(cp_window_log.best_cost(), mip_log.best_cost()), windows_best_time=get_computation_time_label(cp_window_log.best_cost_time()))) data_frame = pandas.DataFrame(data=data) def get_duration_label(time_delta: datetime.timedelta) -> str: assert time_delta.days == 0 hours = int(time_delta.total_seconds() / 3600) minutes = int(time_delta.total_seconds() / 60 - hours * 60) seconds = int(time_delta.total_seconds() - 3600 * hours - 60 * minutes) # return '{0:02d}:{1:02d}:{2:02d}'.format(hours, minutes, seconds) return '{0:,.0f}'.format(time_delta.total_seconds()) def get_cost_label(cost: float) -> str: return '{0:,.0f}'.format(cost) def get_gap_label(gap: float) -> str: return '{0:,.2f}'.format(gap) def get_problem_label(problem, date: datetime.date): label = '{0:2d} {1}'.format(date.day, problem.Visits) if problem.Visits2 == 0: return label return label + '/' + str(problem.Visits2) print_data = [] for problem_config, mip_log, cp_team_log, cp_window_log in logs: best_cost = min([mip_log.best_cost(), cp_team_log.best_cost(), cp_window_log.best_cost()]) print_data.append(collections.OrderedDict(Problem=get_problem_label(problem_config, cp_team_log.date), Penalty=get_cost_label(cp_team_log.missed_visit_penalty), LB=get_cost_label(mip_log.best_bound()), MIP_COST=get_cost_label(mip_log.best_cost()), MIP_GAP=get_gap_label(get_gap(mip_log.best_cost(), mip_log.best_bound())), MIP_DELTA=get_gap_label(get_delta(mip_log.best_cost(), best_cost)), MIP_TIME=get_duration_label(mip_log.best_cost_time()), TEAMS_GAP=get_gap_label(get_gap(cp_team_log.best_cost(), mip_log.best_bound())), TEAMS_DELTA=get_gap_label(get_delta(cp_team_log.best_cost(), best_cost)), TEAMS_COST=get_cost_label(cp_team_log.best_cost()), TEAMS_Time=get_duration_label(cp_team_log.best_cost_time()), WINDOWS_COST=get_cost_label(cp_window_log.best_cost()), WINDOWS_GAP=get_gap_label(get_gap(cp_window_log.best_cost(), mip_log.best_bound())), WINDOWS_DELTA=get_gap_label(get_delta(cp_window_log.best_cost(), best_cost)), WINDOWS_TIME=get_duration_label(cp_window_log.best_cost_time()) )) data_frame = pandas.DataFrame(data=print_data) print(tabulate.tabulate( data_frame[['Problem', 'Penalty', 'LB', 'MIP_COST', 'MIP_TIME', 'TEAMS_COST', 'TEAMS_Time', 'WINDOWS_COST', 'WINDOWS_TIME']], tablefmt='latex', headers='keys', showindex=False)) print(tabulate.tabulate( data_frame[['Problem', 'MIP_GAP', 'MIP_DELTA', 'MIP_TIME', 'TEAMS_GAP', 'TEAMS_DELTA', 'TEAMS_Time', 'WINDOWS_GAP', 'WINDOWS_DELTA', 'WINDOWS_TIME']], tablefmt='latex', headers='keys', showindex=False)) @functools.total_ordering class ProblemMetadata: WINDOW_LABELS = ['', 'F', 'S', 'M', 'L', 'A'] def __init__(self, case: int, visits: int, windows: int): assert visits == 20 or visits == 50 or visits == 80 assert 0 <= windows < len(ProblemMetadata.WINDOW_LABELS) self.__case = case self.__visits = visits self.__windows = windows def __eq__(self, other) -> bool: if isinstance(other, ProblemMetadata): return self.case == other.case and self.visits == other.visits and self.__windows == other.windows return False def __neq__(self, other) -> bool: return not (self == other) def __lt__(self, other) -> bool: assert isinstance(other, ProblemMetadata) if self.windows != other.windows: return self.windows < other.windows if self.visits != other.visits: return self.visits < other.visits if self.case != other.case: return self.case < other.case return False @property def label(self) -> str: return '{0:>2}{1}'.format(self.instance_number, self.windows_label) @property def windows(self) -> int: return self.__windows @property def windows_label(self) -> str: return ProblemMetadata.WINDOW_LABELS[self.__windows] @property def visits(self) -> int: return self.__visits @property def case(self) -> int: return self.__case @property def instance_number(self) -> int: if self.__visits == 20: return self.__case if self.__visits == 50: return 5 + self.__case return 8 + self.__case def compare_literature_table(args, settings): LIU2019 = 'liu2019' AFIFI2016 = 'afifi2016' DECERLE2018 = 'decerle2018' GAYRAUD2015 = 'gayraud2015' PARRAGH2018 = 'parragh2018' BREDSTROM2008 = 'bredstrom2008combined' BREDSTROM2007 = 'bredstrom2007branchandprice' InstanceConfig = collections.namedtuple('InstanceConfig', ['name', 'nickname', 'result', 'who', 'is_optimal']) instance_data = [ InstanceConfig(name='case_1_20_4_2_1', nickname='1N', result=5.13, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_2_20_4_2_1', nickname='2N', result=4.98, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_3_20_4_2_1', nickname='3N', result=5.19, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_4_20_4_2_1', nickname='4N', result=7.21, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_5_20_4_2_1', nickname='5N', result=5.37, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_50_10_5_1', nickname='6N', result=14.45, who=DECERLE2018, is_optimal=True), InstanceConfig(name='case_2_50_10_5_1', nickname='7N', result=13.02, who=DECERLE2018, is_optimal=True), InstanceConfig(name='case_3_50_10_5_1', nickname='8N', result=34.94, who=PARRAGH2018, is_optimal=True), InstanceConfig(name='case_1_80_16_8_1', nickname='9N', result=43.48, who=PARRAGH2018, is_optimal=True), InstanceConfig(name='case_2_80_16_8_1', nickname='10N', result=12.08, who=PARRAGH2018, is_optimal=True), InstanceConfig(name='case_1_20_4_2_2', nickname='1S', result=3.55, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_2_20_4_2_2', nickname='2S', result=4.27, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_3_20_4_2_2', nickname='3S', result=3.63, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_4_20_4_2_2', nickname='4S', result=6.14, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_5_20_4_2_2', nickname='5S', result=3.93, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_50_10_5_2', nickname='6S', result=8.14, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_50_10_5_2', nickname='7S', result=8.39, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_3_50_10_5_2', nickname='8S', result=9.54, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_1_80_16_8_2', nickname='9S', result=11.93, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_2_80_16_8_2', nickname='10S', result=8.54, who=LIU2019, is_optimal=False), InstanceConfig(name='case_1_20_4_2_3', nickname='1M', result=3.55, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_20_4_2_3', nickname='2M', result=3.58, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_3_20_4_2_3', nickname='3M', result=3.33, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_4_20_4_2_3', nickname='4M', result=5.67, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_5_20_4_2_3', nickname='5M', result=3.53, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_50_10_5_3', nickname='6M', result=7.7, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_2_50_10_5_3', nickname='7M', result=7.48, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_3_50_10_5_3', nickname='8M', result=8.54, who=BREDSTROM2008, is_optimal=True), InstanceConfig(name='case_1_80_16_8_3', nickname='9M', result=10.92, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_2_80_16_8_3', nickname='10M', result=7.62, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_1_20_4_2_4', nickname='1L', result=3.39, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_20_4_2_4', nickname='2L', result=3.42, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_3_20_4_2_4', nickname='3L', result=3.29, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_4_20_4_2_4', nickname='4L', result=5.13, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_5_20_4_2_4', nickname='5L', result=3.34, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_1_50_10_5_4', nickname='6L', result=7.14, who=BREDSTROM2007, is_optimal=True), InstanceConfig(name='case_2_50_10_5_4', nickname='7L', result=6.88, who=BREDSTROM2007, is_optimal=False), InstanceConfig(name='case_3_50_10_5_4', nickname='8L', result=8, who=AFIFI2016, is_optimal=False), InstanceConfig(name='case_1_80_16_8_4', nickname='9L', result=10.43, who=LIU2019, is_optimal=False), InstanceConfig(name='case_2_80_16_8_4', nickname='10L', result=7.36, who=LIU2019, is_optimal=False), InstanceConfig(name='case_1_20_4_2_5', nickname='1H', result=2.95, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_2_20_4_2_5', nickname='2H', result=2.88, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_3_20_4_2_5', nickname='3H', result=2.74, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_4_20_4_2_5', nickname='4H', result=4.29, who=GAYRAUD2015, is_optimal=False), InstanceConfig(name='case_5_20_4_2_5', nickname='5H', result=2.81, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_1_50_10_5_5', nickname='6H', result=6.48, who=DECERLE2018, is_optimal=False), InstanceConfig(name='case_2_50_10_5_5', nickname='7H', result=5.71, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_3_50_10_5_5', nickname='8H', result=6.52, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_1_80_16_8_5', nickname='9H', result=8.51, who=PARRAGH2018, is_optimal=False), InstanceConfig(name='case_2_80_16_8_5', nickname='10H', result=6.31, who=PARRAGH2018, is_optimal=False) ] instance_dirs = ['/home/pmateusz/dev/cordia/simulations/current_review_simulations/hc/solutions/case20', '/home/pmateusz/dev/cordia/simulations/current_review_simulations/hc/solutions/case50', '/home/pmateusz/dev/cordia/simulations/current_review_simulations/hc/solutions/case80'] instance_dict = {instance.name: instance for instance in instance_data} print_data = [] instance_pattern = re.compile(r'case_(?P<case>\d+)_(?P<visits>\d+)_(?P<carers>\d+)_(?P<synchronized_visits>\d+)_(?P<windows>\d+)') instance_counter = 1 last_visits = None with warnings.catch_warnings(): warnings.filterwarnings('ignore') for instance_dir in instance_dirs: for instance in instance_data: instance_log_path = os.path.join(instance_dir, instance.name + '.dat.err.log') if not os.path.exists(instance_log_path): continue solver_logs = read_traces(instance_log_path) if not solver_logs: continue instance = instance_dict[instance.name] name_match = instance_pattern.match(instance.name) if not name_match: continue first_solver_logs = solver_logs[0] case = int(name_match.group('case')) visits = int(name_match.group('visits')) carers = int(name_match.group('carers')) synchronized_visits = int(name_match.group('synchronized_visits')) windows_configuration = int(name_match.group('windows')) problem_meta = ProblemMetadata(case, visits, windows_configuration) if last_visits and last_visits != visits: instance_counter = 1 normalized_result = float('inf') if first_solver_logs.best_cost(3) < 100: normalized_result = round(first_solver_logs.best_cost(3), 2) delta = round((instance.result - normalized_result) / instance.result * 100, 2) printable_literature_result = str(instance.result) if instance.is_optimal: printable_literature_result += '*' printable_literature_result += 'cite{{{0}}}'.format(instance.who) print_data.append(collections.OrderedDict( metadata=problem_meta, problem=problem_meta.label, case=instance_counter, v1=visits - 2 * synchronized_visits, v2=synchronized_visits, carers=carers, time_windows=problem_meta.windows_label, literature_result=printable_literature_result, result=normalized_result, delta=delta, time=round(first_solver_logs.best_cost_time(3).total_seconds(), 2) if normalized_result != float('inf') else float('inf') )) last_visits = visits instance_counter += 1 print_data.sort(key=lambda dict_obj: dict_obj['metadata']) print(tabulate.tabulate( pandas.DataFrame(data=print_data)[['problem', 'carers', 'v1', 'v2', 'literature_result', 'result', 'time', 'delta']], showindex=False, tablefmt='latex', headers='keys')) def compare_planner_optimizer_quality(args, settings): data_file = getattr(args, __FILE_ARG) data_frame = pandas.read_csv(data_file) figsize = (2.5, 5) labels = ['Planners', 'Algorithm'] data_frame['travel_time'] = data_frame['Travel Time'].apply(parse_pandas_duration) data_frame['span'] = data_frame['Span'].apply(parse_pandas_duration) data_frame['overtime'] = data_frame['Overtime'].apply(parse_pandas_duration) data_frame_planners = data_frame[data_frame['Type'] == 'Planners'] data_frame_solver = data_frame[data_frame['Type'] == 'Solver'] overtime_per_carer = [list((data_frame_planners['overtime'] / data_frame_planners['Carers']).values), list((data_frame_solver['overtime'] / data_frame_solver['Carers']).values)] def to_matplotlib_minutes(value): return value * 60 * 1000000000 fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(overtime_per_carer, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Overtime per Carer [HH:MM]') ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) ax.set_yticks([0, to_matplotlib_minutes(10), to_matplotlib_minutes(20), to_matplotlib_minutes(30)]) fig.tight_layout() rows.plot.save_figure('quality_boxplot_overtime') travel_time_per_carer = [list((data_frame_planners['travel_time'] / data_frame_planners['Carers']).values), list((data_frame_solver['travel_time'] / data_frame_solver['Carers']).values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(travel_time_per_carer, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Travel Time per Carer [HH:MM]') ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) ax.set_yticks([0, to_matplotlib_minutes(30), to_matplotlib_minutes(60), to_matplotlib_minutes(90), to_matplotlib_minutes(120)]) fig.tight_layout() rows.plot.save_figure('quality_boxplot_travel_time') span_per_client = [list((data_frame_planners['span'] / data_frame_planners['Clients']).values), list((data_frame_solver['span'] / data_frame_solver['Clients']).values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(span_per_client, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Visit Span per Client [HH:MM]') ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) ax.set_yticks([0, to_matplotlib_minutes(6 * 60), to_matplotlib_minutes(7 * 60), to_matplotlib_minutes(8 * 60), to_matplotlib_minutes(9 * 60)]) ax.set_ylim(bottom=6 * 60 * 60 * 1000000000) fig.tight_layout() rows.plot.save_figure('quality_span') teams = [list(data_frame_planners['Teams'].values), list(data_frame_solver['Teams'].values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(teams, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Teams of 2 Carers') fig.tight_layout() rows.plot.save_figure('quality_teams') better_matching = [list(data_frame_planners['Better Matching'].values), list(data_frame_solver['Better Matching'].values)] fig, ax = matplotlib.pyplot.subplots(1, 1, figsize=figsize) ax.boxplot(better_matching, flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR)) ax.set_xticklabels(labels, rotation=45) ax.set_ylabel('Better Client-Carer Matching') fig.tight_layout() rows.plot.save_figure('quality_matching') def parse_percent(value): value_to_use = value.replace('%', '') return float(value_to_use) / 100.0 def parse_duration_seconds(value): return datetime.timedelta(seconds=value) def compare_benchmark(args, settings): data_file_path = getattr(args, __FILE_ARG) data_frame = pandas.read_csv(data_file_path) data_frame['relative_cost_difference'] = data_frame['Relative Cost Difference'].apply(parse_percent) data_frame['relative_gap'] = data_frame['Relative Gap'].apply(parse_percent) data_frame['time'] = data_frame['Time'].apply(parse_duration_seconds) matplotlib.rcParams.update({'font.size': 18}) labels = ['MS', 'IP'] low_labels = ['Gap', 'Delta', 'Time'] cp_frame = data_frame[data_frame['Solver'] == 'CP'] mip_frame = data_frame[data_frame['Solver'] == 'MIP'] def get_series(frame, configuration): num_visits, num_visits_of_2 = configuration filtered_frame = frame[(frame['Visits'] == num_visits) & (frame['Synchronized Visits'] == num_visits_of_2)] return [filtered_frame['relative_gap'].values, filtered_frame['relative_cost_difference'].values, filtered_frame['time'].values] def seconds(value): return value * 1000000000 def minutes(value): return 60 * seconds(value) def hours(value): return 3600 * seconds(value) limit_configurations = [[[None, minutes(1) + seconds(15)], [0, minutes(9)]], [[None, minutes(1) + seconds(30)], [0, hours(4) + minutes(30)]], [[0, minutes(3) + seconds(30)], [0, hours(4) + minutes(30)]], [[0, minutes(3) + seconds(30)], [0, hours(4) + minutes(30)]]] yticks_configurations = [ [[0, seconds(15), seconds(30), seconds(45), minutes(1)], [0, minutes(1), minutes(2), minutes(4), minutes(8)]], [[0, seconds(15), seconds(30), seconds(45), minutes(1), minutes(1) + seconds(15)], [0, hours(1), hours(2), hours(3), hours(4)]], [[0, minutes(1), minutes(2), minutes(3)], [0, hours(1), hours(2), hours(3), hours(4)]], [[0, minutes(1), minutes(2), minutes(3)], [0, hours(1), hours(2), hours(3), hours(4)]]] problem_configurations = [(25, 0), (25, 5), (50, 0), (50, 10)] def format_timedelta_pandas(x, pos=None): if x < 0: return None time_delta = pandas.to_timedelta(x) hours = int(time_delta.total_seconds() / matplotlib.dates.SEC_PER_HOUR) minutes = int(time_delta.total_seconds() / matplotlib.dates.SEC_PER_MIN) - 60 * hours seconds = int(time_delta.total_seconds() - 3600 * hours - 60 * minutes) return '{0:01d}:{1:02d}:{2:02d}'.format(hours, minutes, seconds) def format_percent(x, pox=None): return int(x * 100.0) for index, problem_config in enumerate(problem_configurations): fig, axes = matplotlib.pyplot.subplots(1, 2) cp_gap, cp_delta, cp_time = get_series(cp_frame, problem_config) mip_gap, mip_delta, mip_time = get_series(mip_frame, problem_config) cp_time_limit, mip_time_limit = limit_configurations[index] cp_yticks, mip_yticks = yticks_configurations[index] cp_ax, mip_ax = axes first_color_config = dict(flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR), boxprops=dict(color=FOREGROUND_COLOR), whiskerprops=dict(color=FOREGROUND_COLOR), capprops=dict(color=FOREGROUND_COLOR)) second_color_config = dict(flierprops=dict(marker='.'), medianprops=dict(color=FOREGROUND_COLOR2), boxprops=dict(color=FOREGROUND_COLOR2), whiskerprops=dict(color=FOREGROUND_COLOR2), capprops=dict(color=FOREGROUND_COLOR2)) cp_ax.boxplot([cp_gap, cp_delta, []], **second_color_config) cp_twinx = cp_ax.twinx() cp_twinx.boxplot([[], [], cp_time], **first_color_config) cp_twinx.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) cp_ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_percent)) cp_twinx.tick_params(axis='y', labelcolor=FOREGROUND_COLOR) cp_ax.set_xlabel('Multistage') cp_ax.set_xticklabels(low_labels, rotation=45) cp_ax.set_ylim(bottom=-0.05, top=1) cp_ax.set_ylabel('Delta, Gap [%]') cp_twinx.set_ylim(bottom=cp_time_limit[0], top=cp_time_limit[1]) if cp_yticks: cp_twinx.set_yticks(cp_yticks) mip_ax.boxplot([mip_gap, mip_delta, []], **second_color_config) mip_twinx = mip_ax.twinx() mip_twinx.boxplot([[], [], mip_time], **first_color_config) mip_twinx.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_timedelta_pandas)) mip_twinx.tick_params(axis='y', labelcolor=FOREGROUND_COLOR) mip_ax.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_percent)) mip_ax.set_xlabel('IP') mip_ax.set_xticklabels(low_labels, rotation=45) mip_ax.set_ylim(bottom=-0.05, top=1) mip_twinx.set_ylabel('Computation Time [H:MM:SS]', color=FOREGROUND_COLOR) mip_twinx.set_ylim(bottom=mip_time_limit[0], top=mip_time_limit[1]) if mip_yticks: mip_twinx.set_yticks(mip_yticks) fig.tight_layout(w_pad=0.0) rows.plot.save_figure('benchmark_boxplot_{0}_{1}'.format(problem_config[0], problem_config[1])) matplotlib.pyplot.cla() matplotlib.pyplot.close(fig) def old_debug(args, settings): problem = rows.plot.load_problem(get_or_raise(args, __PROBLEM_FILE_ARG)) solution_file = get_or_raise(args, __SOLUTION_FILE_ARG) schedule = rows.plot.load_schedule(solution_file) schedule_date = schedule.metadata.begin carer_dairies = { carer_shift.carer.sap_number: next((diary for diary in carer_shift.diaries if diary.date == schedule_date), None) for carer_shift in problem.carers} location_finder = rows.location_finder.UserLocationFinder(settings) location_finder.reload() data_set = [] with rows.plot.create_routing_session() as session: for route in schedule.routes(): travel_time = datetime.timedelta() for source, destination in route.edges(): source_loc = location_finder.find(source.visit.service_user) if not source_loc: logging.error('Failed to resolve location of %s', source.visit.service_user) continue destination_loc = location_finder.find(destination.visit.service_user) if not destination_loc: logging.error('Failed to resolve location of %s', destination.visit.service_user) continue distance = session.distance(source_loc, destination_loc) if distance is None: logging.error('Distance cannot be estimated between %s and %s', source_loc, destination_loc) continue travel_time += datetime.timedelta(seconds=distance) service_time = datetime.timedelta() for visit in route.visits: if visit.check_in and visit.check_out: observed_duration = visit.check_out - visit.check_in if observed_duration.days < 0: logging.error('Observed duration %s is negative', observed_duration) service_time += observed_duration else: logging.warning( 'Visit %s is not supplied with information on check-in and check-out information', visit.key) service_time += visit.duration available_time = functools.reduce(operator.add, (event.duration for event in carer_dairies[route.carer.sap_number].events)) data_set.append([route.carer.sap_number, available_time, service_time, travel_time, float(service_time.total_seconds() + travel_time.total_seconds()) / available_time.total_seconds()]) data_set.sort(key=operator.itemgetter(4)) data_frame = pandas.DataFrame(columns=['Carer', 'Availability', 'Service', 'Travel', 'Usage'], data=data_set) figure, axis = matplotlib.pyplot.subplots() indices = numpy.arange(len(data_frame.index)) time_delta_converter = rows.plot.TimeDeltaConverter() width = 0.35 travel_series = numpy.array(time_delta_converter(data_frame.Travel)) service_series = numpy.array(time_delta_converter(data_frame.Service)) idle_overtime_series = list(data_frame.Availability - data_frame.Travel - data_frame.Service) idle_series = numpy.array(time_delta_converter( map(lambda value: value if value.days >= 0 else datetime.timedelta(), idle_overtime_series))) overtime_series = numpy.array(time_delta_converter( map(lambda value: datetime.timedelta( seconds=abs(value.total_seconds())) if value.days < 0 else datetime.timedelta(), idle_overtime_series))) service_handle = axis.bar(indices, service_series, width, bottom=time_delta_converter.zero) travel_handle = axis.bar(indices, travel_series, width, bottom=service_series + time_delta_converter.zero_num) idle_handle = axis.bar(indices, idle_series, width, bottom=service_series + travel_series + time_delta_converter.zero_num) overtime_handle = axis.bar(indices, overtime_series, width, bottom=idle_series + service_series + travel_series + time_delta_converter.zero_num) axis.yaxis_date() axis.yaxis.set_major_formatter(matplotlib.dates.DateFormatter("%H:%M:%S")) axis.legend((travel_handle, service_handle, idle_handle, overtime_handle), ('Travel', 'Service', 'Idle', 'Overtime'), loc='upper right') matplotlib.pyplot.show() def show_working_hours(args, settings): __WIDTH = 0.25 color_map = matplotlib.cm.get_cmap('tab20') matplotlib.pyplot.set_cmap(color_map) shift_file = get_or_raise(args, __FILE_ARG) shift_file_base_name, shift_file_ext = os.path.splitext(os.path.basename(shift_file)) output_file_base_name = getattr(args, __OUTPUT, shift_file_base_name) __EVENT_TYPE_OFFSET = {'assumed': 2, 'contract': 1, 'work': 0} __EVENT_TYPE_COLOR = {'assumed': color_map.colors[0], 'contract': color_map.colors[4], 'work': color_map.colors[2]} handles = {} frame = pandas.read_csv(shift_file) dates = frame['day'].unique() for current_date in dates: frame_to_use = frame[frame['day'] == current_date] carers = frame_to_use['carer'].unique() figure, axis = matplotlib.pyplot.subplots() try: current_date_to_use = datetime.datetime.strptime(current_date, '%Y-%m-%d') carer_index = 0 for carer in carers: carer_frame = frame_to_use[frame_to_use['carer'] == carer] axis.bar(carer_index + 0.25, 24 * 3600, 0.75, bottom=0, color='grey', alpha=0.3) for index, row in carer_frame.iterrows(): event_begin = datetime.datetime.strptime(row['begin'], '%Y-%m-%d %H:%M:%S') event_end = datetime.datetime.strptime(row['end'], '%Y-%m-%d %H:%M:%S') handle = axis.bar(carer_index + __EVENT_TYPE_OFFSET[row['event type']] * __WIDTH, (event_end - event_begin).total_seconds(), __WIDTH, bottom=(event_begin - current_date_to_use).total_seconds(), color=__EVENT_TYPE_COLOR[row['event type']]) handles[row['event type']] = handle carer_index += 1 axis.legend([handles['work'], handles['contract'], handles['assumed']], ['Worked', 'Available', 'Forecast'], loc='upper right') axis.grid(linestyle='dashed') axis.yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(format_time)) axis.yaxis.set_ticks(numpy.arange(0, 24 * 3600, 2 * 3600)) axis.set_ylim(6 * 3600, 24 * 60 * 60) rows.plot.save_figure(output_file_base_name + '_' + current_date) finally: matplotlib.pyplot.cla() matplotlib.pyplot.close(figure) def compute_overtime(frame): idle_overtime_series = list(frame.Availability - frame.Travel - frame.Service) idle_series = numpy.array( list(map(lambda value: value if value.days >= 0 else datetime.timedelta(), idle_overtime_series))) overtime_series = numpy.array(list(map(lambda value: datetime.timedelta( seconds=abs(value.total_seconds())) if value.days < 0 else datetime.timedelta(), idle_overtime_series))) return overtime_series class Node: def __init__(self, index: int, next: int, visit: rows.model.visit.Visit, visit_start_min: datetime.datetime, visit_start_max: datetime.datetime, break_start: typing.Optional[datetime.datetime], break_duration: datetime.timedelta, travel_duration: datetime.timedelta): self.__index = index self.__next = next self.__visit = visit self.__visit_start_min = visit_start_min self.__visit_start_max = visit_start_max self.__break_start = break_start self.__break_duration = break_duration self.__travel_duration = travel_duration @property def index(self) -> int: return self.__index @property def next(self) -> int: return self.__next @property def visit_key(self) -> int: return self.__visit.key @property def visit_start(self) -> datetime.datetime: return datetime.datetime.combine(self.__visit.date, self.__visit.time) @property def visit_start_min(self) -> datetime.datetime: return self.__visit_start_min @property def visit_start_max(self) -> datetime.datetime: return self.__visit_start_max @property def carer_count(self) -> int: return self.__visit.carer_count @property def visit_duration(self) -> datetime.timedelta: return self.__visit.duration @property def break_start(self) -> datetime.datetime: return self.__break_start @property def break_duration(self) -> datetime.timedelta: return self.__break_duration @property def travel_duration(self) -> datetime.timedelta: return self.__travel_duration @property def service_user(self) -> str: return self.__visit.service_user class Mapping: def __init__(self, routes, problem, settings, time_window_span): self.__index_to_node = {} user_tag_finder = rows.location_finder.UserLocationFinder(settings) user_tag_finder.reload() local_routes = {} current_index = 0 def find_visit(item) -> rows.model.visit.Visit: current_diff = sys.maxsize visit_match = None for visit_batch in problem.visits: if visit_batch.service_user != item.service_user: continue for visit in visit_batch.visits: if visit.date != item.date or visit.tasks != item.tasks: continue if item.key == visit.key: # exact match return visit visit_total_time = visit.time.hour * 3600 + visit.time.minute * 60 item_total_time = item.time.hour * 3600 + item.time.minute * 60 diff_total_time = abs(visit_total_time - item_total_time) if diff_total_time <= time_window_span.total_seconds() and diff_total_time < current_diff: visit_match = visit current_diff = diff_total_time assert visit_match is not None return visit_match current_index = 0 with rows.plot.create_routing_session() as routing_session: for route in routes: local_route = [] previous_visit = None previous_index = None current_visit = None break_start = None break_duration = datetime.timedelta() for item in route.nodes: if isinstance(item, rows.model.past_visit.PastVisit): current_visit = item.visit if previous_visit is None: if break_start is None: diary = problem.get_diary(route.carer, current_visit.date) break_start = diary.events[0].begin - datetime.timedelta(minutes=30) node = Node(current_index, current_index + 1, rows.model.visit.Visit(date=current_visit.date, time=break_start, duration=datetime.timedelta(), service_user=current_visit.service_user), break_start, break_start, break_start, break_duration, datetime.timedelta()) self.__index_to_node[current_index] = node local_route.append(node) current_index += 1 previous_visit = current_visit previous_index = current_index break_start = None break_duration = datetime.timedelta() current_index += 1 continue previous_location = user_tag_finder.find(previous_visit.service_user) current_location = user_tag_finder.find(current_visit.service_user) travel_time = datetime.timedelta(seconds=routing_session.distance(previous_location, current_location)) previous_visit_match = find_visit(previous_visit) node = Node(previous_index, current_index, previous_visit, previous_visit_match.datetime - time_window_span, previous_visit_match.datetime + time_window_span, break_start, break_duration, travel_time) self.__index_to_node[previous_index] = node local_route.append(node) break_start = None break_duration = datetime.timedelta() previous_visit = current_visit previous_index = current_index current_index += 1 if isinstance(item, rows.model.rest.Rest): if break_start is None: break_start = item.start_time else: break_start = item.start_time - break_duration break_duration += item.duration visit_match = find_visit(previous_visit) node = Node(previous_index, -1, previous_visit, visit_match.datetime - time_window_span, visit_match.datetime + time_window_span, break_start, break_duration, datetime.timedelta()) self.__index_to_node[previous_index] = node local_route.append(node) local_routes[route.carer] = local_route self.__routes = local_routes service_user_to_index = collections.defaultdict(list) for index in self.__index_to_node: node = self.__index_to_node[index] service_user_to_index[node.service_user].append(index) self.__siblings = {} for service_user in service_user_to_index: num_indices = len(service_user_to_index[service_user]) for left_pos in range(num_indices): left_index = service_user_to_index[service_user][left_pos] left_visit = self.__index_to_node[left_index] if left_visit.carer_count == 1: continue for right_pos in range(left_pos + 1, num_indices): right_index = service_user_to_index[service_user][right_pos] right_visit = self.__index_to_node[right_index] if right_visit.carer_count == 1: continue if left_visit.visit_start_min == right_visit.visit_start_min and left_visit.visit_start_max == right_visit.visit_start_max: assert left_index != right_index self.__siblings[left_index] = right_index self.__siblings[right_index] = left_index def indices(self): return list(self.__index_to_node.keys()) def routes(self) -> typing.Dict[rows.model.carer.Carer, typing.List[Node]]: return self.__routes def node(self, index: int) -> Node: return self.__index_to_node[index] def find_index(self, visit_key: int) -> int: for index in self.__index_to_node: if self.__index_to_node[index].visit_key == visit_key: return index return None def sibling(self, index: int) -> typing.Optional[Node]: if index in self.__siblings: sibling_index = self.__siblings[index] return self.__index_to_node[sibling_index] return None def graph(self) -> networkx.DiGraph: edges = [] for carer in self.__routes: for node in self.__routes[carer]: if node.next != -1: assert node.index != node.next edges.append([node.index, node.next]) sibling_node = self.sibling(node.index) if sibling_node is not None: if node.index < sibling_node.index: assert node.index != sibling_node.index edges.append([node.index, sibling_node.index]) if node.next != -1: assert sibling_node.index != node.next edges.append([sibling_node.index, node.next]) return networkx.DiGraph(edges) def create_mapping(settings, problem, schedule) -> Mapping: mapping_time_windows_span = datetime.timedelta(minutes=90) return Mapping(schedule.routes, problem, settings, mapping_time_windows_span) class StartTimeEvaluator: def __init__(self, mapping: Mapping, problem: rows.model.problem.Problem, schedule: rows.model.schedule.Schedule): self.__mapping = mapping self.__problem = problem self.__schedule = schedule self.__sorted_indices = list(networkx.topological_sort(self.__mapping.graph())) self.__initial_start_times = self.__get_initial_start_times() def get_start_times(self, duration_callback) -> typing.List[datetime.datetime]: start_times = copy.copy(self.__initial_start_times) for index in self.__sorted_indices: node = self.__mapping.node(index) current_sibling_node = self.__mapping.sibling(node.index) if current_sibling_node: max_start_time = max(start_times[node.index], start_times[current_sibling_node.index]) start_times[node.index] = max_start_time if max_start_time > start_times[current_sibling_node.index]: start_times[current_sibling_node.index] = max_start_time if current_sibling_node.next is not None and current_sibling_node.next != -1: start_times[current_sibling_node.next] = self.__get_next_arrival(current_sibling_node, start_times, duration_callback) if node.next is None or node.next == -1: continue next_arrival = self.__get_next_arrival(node, start_times, duration_callback) if next_arrival > start_times[node.next]: start_times[node.next] = next_arrival return start_times def get_delays(self, start_times: typing.List[datetime.datetime]) -> typing.List[datetime.timedelta]: return [start_times[index] - self.__mapping.node(index).visit_start_max for index in self.__mapping.indices()] def __get_next_arrival(self, local_node: Node, start_times, duration_callback) -> datetime.datetime: break_done = False if local_node.break_duration is not None \ and local_node.break_start is not None \ and local_node.break_start + local_node.break_duration <= start_times[local_node.index]: break_done = True local_visit_key = self.__mapping.node(local_node.index).visit_key local_next_arrival = start_times[local_node.index] + duration_callback(local_visit_key) + local_node.travel_duration if not break_done and local_node.break_start is not None: if local_next_arrival >= local_node.break_start: local_next_arrival += local_node.break_duration else: local_next_arrival = local_node.break_start + local_node.break_duration return local_next_arrival def __get_initial_start_times(self) -> typing.List[datetime.datetime]: start_times = [self.__mapping.node(index).visit_start_min for index in self.__mapping.indices()] carer_routes = self.__mapping.routes() for carer in carer_routes: diary = self.__problem.get_diary(carer, self.__schedule.date) assert diary is not None nodes = carer_routes[carer] nodes_it = iter(nodes) first_visit_node = next(nodes_it) start_min = max(first_visit_node.visit_start_min, diary.events[0].begin - datetime.timedelta(minutes=30)) start_times[first_visit_node.index] = start_min for node in nodes_it: start_min = max(node.visit_start_min, diary.events[0].begin - datetime.timedelta(minutes=30)) start_times[node.index] = start_min return start_times class EssentialRiskinessEvaluator: def __init__(self, settings, history, problem, schedule): self.__settings = settings self.__history = history self.__problem = problem self.__schedule = schedule self.__schedule_start = datetime.datetime.combine(self.__schedule.date, datetime.time()) self.__mapping = None self.__sample = None self.__start_times = None self.__delay = None def run(self): self.__mapping = create_mapping(self.__settings, self.__problem, self.__schedule) history_time_windows_span = datetime.timedelta(hours=2) self.__sample = self.__history.build_sample(self.__problem, self.__schedule.date, history_time_windows_span) self.__start_times = [[datetime.datetime.max for _ in range(self.__sample.size)] for _ in self.__mapping.indices()] self.__delay = [[datetime.timedelta.max for _ in range(self.__sample.size)] for _ in self.__mapping.indices()] start_time_evaluator = StartTimeEvaluator(self.__mapping, self.__problem, self.__schedule) for scenario in range(self.__sample.size): def get_visit_duration(visit_key: int) -> datetime.timedelta: if visit_key is None: return datetime.timedelta() return self.__sample.visit_duration(visit_key, scenario) scenario_start_times = start_time_evaluator.get_start_times(get_visit_duration) delay = start_time_evaluator.get_delays(scenario_start_times) for index in range(len(scenario_start_times)): self.__start_times[index][scenario] = scenario_start_times[index] self.__delay[index][scenario] = delay[index] def calculate_index(self, visit_key: int) -> float: visit_index = self.__find_index(visit_key) records = [local_delay.total_seconds() for local_delay in self.__delay[visit_index]] records.sort() num_records = len(records) if records[num_records - 1] <= 0: return 0.0 total_delay = 0.0 position = num_records - 1 while position >= 0 and records[position] >= 0: total_delay += records[position] position -= 1 if position == -1: return float('inf') delay_budget = 0 while position > 0 and delay_budget + float(position + 1) * records[position] + total_delay > 0: delay_budget += records[position] position -= 1 delay_balance = delay_budget + float(position + 1) * records[position] + total_delay if delay_balance < 0: riskiness_index = min(0.0, records[position + 1]) assert riskiness_index <= 0.0 remaining_balance = total_delay + delay_budget + float(position + 1) * riskiness_index assert remaining_balance >= 0.0 riskiness_index -= math.ceil(remaining_balance / float(position + 1)) assert riskiness_index * float(position + 1) + delay_budget + total_delay <= 0.0 return -riskiness_index elif delay_balance > 0: return float('inf') else: return records[position] def get_delays(self, visit_key) -> typing.List[datetime.timedelta]: index = self.__find_index(visit_key) return self.__delay[index] def find_carer(self, visit_key: int) -> typing.Optional[rows.model.carer.Carer]: for carer in self.__mapping.routes(): for node in self.__mapping.routes()[carer]: if node.visit_key == visit_key: return carer return None def find_route(self, index: int) -> typing.Optional[typing.List[Node]]: routes = self.__mapping.routes() for carer in routes: for node in routes[carer]: if node.index == index: return routes[carer] return None def print_route_for_visit(self, visit_key): carer = self.find_carer(visit_key) self.print_route(carer) def print_route(self, carer): route = self.__mapping.routes()[carer] data = [['index', 'key', 'visit_start', 'visit_duration', 'travel_duration', 'break_start', 'break_duration']] for node in route: if node.visit_key is None: duration = 0 else: duration = int(self.__sample.visit_duration(node.visit_key, 0).total_seconds()) data.append([node.index, node.visit_key, int(self.__datetime_to_delta(self.__start_times[node.index][0]).total_seconds()), duration, int(node.travel_duration.total_seconds()), int(self.__datetime_to_delta(node.break_start).total_seconds()) if node.break_start is not None else 0, int(node.break_duration.total_seconds())]) print(tabulate.tabulate(data)) def print_start_times(self, visit_key: int): print('Start Times - Visit {0}:'.format(visit_key)) selected_index = self.__find_index(visit_key) for scenario_number in range(self.__sample.size): print('{0:<4}{1}'.format(scenario_number, int(self.__datetime_to_delta(self.__start_times[selected_index][scenario_number]).total_seconds()))) def print_delays(self, visit_key: int): print('Delays - Visit {0}:'.format(visit_key)) selected_index = self.__find_index(visit_key) for scenario_number in range(self.__sample.size): print('{0:<4}{1}'.format(scenario_number, int(self.__delay[selected_index][scenario_number].total_seconds()))) def visit_keys(self) -> typing.List[int]: visit_keys = [self.__mapping.node(index).visit_key for index in self.__mapping.indices() if self.__mapping.node(index).visit_key is not None] visit_keys.sort() return visit_keys def __find_index(self, visit_key: int) -> typing.Optional[int]: for index in self.__mapping.indices(): if self.__mapping.node(index).visit_key == visit_key: return index return None def __datetime_to_delta(self, value: datetime.datetime) -> datetime.timedelta: return value - self.__schedule_start def to_frame(self): records = [] for visit_index in self.__mapping.indices(): visit_key = self.__mapping.node(visit_index).visit_key if visit_key is None: continue for scenario_number in range(self.__sample.size): records.append({'visit': visit_key, 'scenario': scenario_number, 'delay': self.__delay[visit_index][scenario_number]}) return
pandas.DataFrame(data=records)
pandas.DataFrame
#dependencies import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import VotingClassifier from sklearn.model_selection import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.ensemble import AdaBoostClassifier from sklearn.metrics import confusion_matrix from sklearn import svm from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import normalize import itertools import matplotlib.pyplot as plt import pandas as pd #function defination to plot the confusion matrix def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') train_data =
pd.read_csv('criminal_train.csv')
pandas.read_csv
""" LSTM MODEL STUFF """ import numpy as np import scipy.io as sio import json import tensorflow as tf from pandas import DataFrame, Series, concat from tensorflow.python.keras.layers import Input, Dense, LSTM from tensorflow.python.keras.models import Sequential from random import randrange from sklearn.preprocessing import MinMaxScaler, LabelEncoder from sklearn.model_selection import cross_val_score, GridSearchCV, KFold from tensorflow.python.keras.callbacks import ModelCheckpoint, EarlyStopping import matplotlib.pyplot as plt #------------------------------------------------------------------------------- # Set keras modules to variables; define helper functions for data processing. # these functions are modified (slightly) from this tutorial: # https://machinelearningmastery.com/time-series-forecasting-long-short-term-memory-network-python/ # convert an array of values into a dataset matrix def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return numpy.array(dataX), numpy.array(dataY) # frame a sequence as a supervised learning problem def timeseries_to_supervised(data, lag=1): df = DataFrame(data) columns = [df.shift(i) for i in range(1, lag+1)] columns.append(df) df = concat(columns, axis=1) df.fillna(0, inplace=True) return df # create a differenced series def difference(dataset, interval=1): diff = list() for i in range(interval, len(dataset)): value = dataset[i] - dataset[i - interval] diff.append(value) return Series(diff) # invert differenced value def inverse_difference(history, yhat, interval=1): return yhat + history[-interval] # scale train and test data to [-1, 1] def scale(train, test): # fit scaler scaler = MinMaxScaler(feature_range=(-1, 1)) scaler = scaler.fit(train) # transform train train = train.reshape(train.shape[0], train.shape[1]) train_scaled = scaler.transform(train) # transform test test = test.reshape(test.shape[0], test.shape[1]) test_scaled = scaler.transform(test) return scaler, train_scaled, test_scaled # inverse scaling for a forecasted value def invert_scale(scaler, X, value): new_row = [x for x in X] + [value] array = numpy.array(new_row) array = array.reshape(1, len(array)) inverted = scaler.inverse_transform(array) return inverted[0, -1] # fit an LSTM network to training data def fit_lstm(train, batch_size, nb_epoch, neurons): X, y = train[:, 0:-1], train[:, -1] X = X.reshape(X.shape[0], 1, X.shape[1]) model = Sequential() model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') for i in range(nb_epoch): model.fit(X, y, epochs=1, batch_size=batch_size, verbose=0, shuffle=False) model.reset_states() return model # make a one-step forecast def forecast_lstm(model, batch_size, X): X = X.reshape(1, 1, len(X)) yhat = model.predict(X, batch_size=batch_size) return yhat[0,0] def series_to_supervised(data, n_in=1, n_out=1, dropnan=True): n_vars = 1 if type(data) is list else data.shape[1] df = DataFrame(data) cols, names = list(), list() # input sequence (t-n, ... t-1) for i in range(n_in, 0, -1): cols.append(df.shift(i)) names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)] # forecast sequence (t, t+1, ... t+n) for i in range(0, n_out): cols.append(df.shift(-i)) if i == 0: names += [('var%d(t)' % (j+1)) for j in range(n_vars)] else: names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)] # put it all together agg =
concat(cols, axis=1)
pandas.concat
from __future__ import print_function # from builtins import str # from builtins import object import pandas as pd from openpyxl import load_workbook import numpy as np import os from .data_utils import make_dir class XlsxRecorder(object): """ xlsx recorder for results including two recorder: one for current experiments, record details of results changed by iteration the other is for record the summary of different expreiments, which is saved by summary_path 1. detailed results: saved in fig_save_path/results.xlsx ** Sheet1: #total_filename x #metrics, along each row direction, are the records by iteraton ** batch_0: #batch_filename x #metric_by_label , along each column direction, are the records by iteration ** batch_1: same as batch_0 ** ...... 2. task results: saved in ../data/summary.xlsx ** Sheet1: task_name * #metrics recorded by iteration """ def __init__(self, expr_name, saving_path='', folder_name=''): self.expr_name = expr_name if not len(saving_path): self.saving_path = '../data/'+expr_name #saving_path else: self.saving_path = saving_path self.saving_path = os.path.abspath(self.saving_path) self.folder_name = folder_name if len(folder_name): self.saving_path = os.path.join(self.saving_path, folder_name) """path of saving excel, default is the same as the path of saving figures""" self.writer_path = None self.xlsx_writer = None self.summary_path = '../data/summary.xlsx' """the path for summary, which can record results from different experiments""" self.measures = ['iou', 'precision', 'recall', 'dice'] """measures to record""" self.batch_count = {} self.row_space = 50 self.column_space = 10 self.start_row = 0 self.summary = None self.avg_buffer = {} self.iter_info_buffer = [] self.name_list_buffer = [] self.init_summary() print("the update space in detailed files is {}".format(self.row_space)) def init_summary(self): """ init two recorders, initilzation would create a new recorder for this experiment, recording all details at the same time it would load the data from summary recorder, then it would append the new experiment summary to summary recorder """ if not os.path.exists(self.saving_path ): os.makedirs(self.saving_path ) self.writer_path = os.path.join(self.saving_path, 'results.xlsx') writer = pd.ExcelWriter(self.writer_path, engine='xlsxwriter') df = pd.DataFrame([]) df.to_excel(writer) worksheet = writer.sheets['Sheet1'] worksheet.set_column(1, 1000, 30) writer.save() writer.close() self.writer_book = load_workbook(self.writer_path) self.xlsx_writer = pd.ExcelWriter(self.writer_path, engine='openpyxl') self.xlsx_writer.book = self.writer_book self.xlsx_writer.sheets = dict((ws.title, ws) for ws in self.writer_book.worksheets) if not os.path.exists(self.summary_path): writer = pd.ExcelWriter(self.summary_path, engine = 'xlsxwriter') df = pd.DataFrame([]) df.to_excel(writer) worksheet = writer.sheets['Sheet1'] worksheet.set_column(1, 1000, 30) writer.save() writer.close() def set_batch_based_env(self,name_list,batch_id): # need to be set before each saving operation self.name_list = name_list self.sheet_name = 'batch_'+ str(batch_id) if self.sheet_name not in self.batch_count: self.batch_count[self.sheet_name] = -1 self.name_list_buffer += self.name_list self.batch_count[self.sheet_name] += 1 count = self.batch_count[self.sheet_name] self.start_row = count * self.row_space self.start_column = 0 def set_summary_based_env(self): self.sheet_name = 'Sheet1' self.start_row = 0 def put_into_avg_buff(self, result, iter_info): """ # avg_buffer is to save avg_results from each iter, from each batch # iter_info: string contains iter info # the buffer is organized as { iter_info1: results_list_iter1, iter_info2:results_list_iter2} # results_list_iter1 : [batch1_res_iter1, batch2_res_iter1] # batch1_res_iter1:{metric1: result, metric2: result} """ if iter_info not in self.avg_buffer: self.avg_buffer[iter_info] = [] self.iter_info_buffer += [iter_info] self.avg_buffer[iter_info] += [result] def merge_from_avg_buff(self): """ # iter_info: string contains iter info # the buffer is organized as { iter_info1: results_list_iter1, iter_info2:results_list_iter2} # results_list_iter1 : [batch1_res_iter1, batch2_res_iter1] # batch1_res_iter1:{metric1: result, metric2: result} # return: dic: {iter_info1:{ metric1: nFile x 1 , metric2:...}, iter_info2:....} """ metric_avg_dic={} for iter_info,avg_list in list(self.avg_buffer.items()): metric_results_tmp = {metric: [result[metric] for result in avg_list] for metric in self.measures} metric_avg_dic[iter_info] = {metric: np.concatenate(metric_results_tmp[metric], 0) for metric in metric_results_tmp} return metric_avg_dic def saving_results(self,sched, results=None, info=None, averaged_results=None): """ the input results should be different for each sched batch: the input result should be dic , each measure inside should be B x N_label buffer: the input result should be dic, each measure inside should be N_img x 1 summary: no input needed, the summary could be got from the buffer :param results: :param sched: :param info: :return: """ if sched == 'batch': label_info = info['label_info'] iter_info = info['iter_info'] self.saving_all_details(results,averaged_results,label_info,iter_info) elif sched == 'buffer': iter_info = info['iter_info'] self.put_into_avg_buff(results,iter_info) elif sched == 'summary': self.summary_book = load_workbook(self.summary_path) self.summary_writer = pd.ExcelWriter(self.summary_path,engine='openpyxl') self.set_summary_based_env() metric_avg_dic = self.merge_from_avg_buff() self.saving_label_averaged_results(metric_avg_dic) self.saving_summary(metric_avg_dic) self.save_figs_for_batch(metric_avg_dic) self.xlsx_writer.close() self.summary_writer.close() else: raise ValueError("saving method not implemented") def saving_label_averaged_results(self, results): """ # saved by iteration # results: dic: {iter_info1:{ metric1: nFile x 1 , metric2:...}, iter_info2:....} # saving the n_File*nAvgMetrics into xlsx_writer # including the iter_info """ start_column = 0 results_summary = {iter_info: {metric:np.mean(results[iter_info][metric]).reshape(1,1) for metric in self.measures} for iter_info in self.iter_info_buffer} for iter_info in self.iter_info_buffer: iter_expand = {metric: np.squeeze(np.concatenate((results[iter_info][metric], results_summary[iter_info][metric]), 0)) for metric in self.measures} df = pd.DataFrame.from_dict(iter_expand) df = df[self.measures] try: df.index =
pd.Index(self.name_list_buffer+['average'])
pandas.Index
""" SPDX-FileCopyrightText: 2019 oemof developer group <<EMAIL>> SPDX-License-Identifier: MIT """ import pytest import pandas as pd import numpy as np from pandas.util.testing import assert_series_equal import windpowerlib.wind_farm as wf import windpowerlib.wind_turbine as wt import windpowerlib.wind_turbine_cluster as wtc import windpowerlib.turbine_cluster_modelchain as tc_mc class TestTurbineClusterModelChain: @classmethod def setup_class(self): temperature_2m = np.array([[267], [268]]) temperature_10m = np.array([[267], [266]]) pressure_0m = np.array([[101125], [101000]]) wind_speed_8m = np.array([[4.0], [5.0]]) wind_speed_10m = np.array([[5.0], [6.5]]) roughness_length = np.array([[0.15], [0.15]]) self.weather_df = pd.DataFrame( np.hstack((temperature_2m, temperature_10m, pressure_0m, wind_speed_8m, wind_speed_10m, roughness_length)), index=[0, 1], columns=[np.array(['temperature', 'temperature', 'pressure', 'wind_speed', 'wind_speed', 'roughness_length']), np.array([2, 10, 0, 8, 10, 0])]) self.test_turbine = {'hub_height': 100, 'rotor_diameter': 80, 'turbine_type': 'E-126/4200'} self.test_turbine_2 = {'hub_height': 90, 'rotor_diameter': 60, 'turbine_type': 'V90/2000', 'nominal_power': 2000000.0} self.test_farm = {'wind_turbine_fleet': [ {'wind_turbine': wt.WindTurbine(**self.test_turbine), 'number_of_turbines': 3}]} self.test_farm_2 = {'name': 'test farm', 'wind_turbine_fleet': [{'wind_turbine': wt.WindTurbine(**self.test_turbine), 'number_of_turbines': 3}, {'wind_turbine': wt.WindTurbine(**self.test_turbine_2), 'number_of_turbines': 3}]} self.test_cluster = {'name': 'example_cluster', 'wind_farms': [wf.WindFarm(**self.test_farm), wf.WindFarm(**self.test_farm_2)]} def test_run_model(self): parameters = {'wake_losses_model': 'dena_mean', 'smoothing': False, 'standard_deviation_method': 'turbulence_intensity', 'smoothing_order': 'wind_farm_power_curves'} # Test modelchain with default values power_output_exp = pd.Series(data=[4198361.4830405945, 8697966.121234536], name='feedin_power_plant') test_tc_mc = tc_mc.TurbineClusterModelChain( power_plant=wf.WindFarm(**self.test_farm), **parameters) test_tc_mc.run_model(self.weather_df) assert_series_equal(test_tc_mc.power_output, power_output_exp) # Test constant efficiency parameters['wake_losses_model'] = 'wind_farm_efficiency' test_wind_farm = wf.WindFarm(**self.test_farm) test_wind_farm.efficiency = 0.9 power_output_exp = pd.Series(data=[4420994.806920091, 8516983.651623568], name='feedin_power_plant') test_tc_mc = tc_mc.TurbineClusterModelChain( power_plant=test_wind_farm, **parameters) test_tc_mc.run_model(self.weather_df) assert_series_equal(test_tc_mc.power_output, power_output_exp) # Test smoothing parameters['smoothing'] = 'True' test_wind_farm = wf.WindFarm(**self.test_farm) test_wind_farm.efficiency = 0.9 power_output_exp = pd.Series(data=[4581109.03847444, 8145581.914240712], name='feedin_power_plant') test_tc_mc = tc_mc.TurbineClusterModelChain( power_plant=test_wind_farm, **parameters) test_tc_mc.run_model(self.weather_df) assert_series_equal(test_tc_mc.power_output, power_output_exp) # Test wind farm with different turbine types (smoothing) test_wind_farm = wf.WindFarm(**self.test_farm_2) test_wind_farm.efficiency = 0.9 power_output_exp = pd.Series(data=[6777087.9658657005, 12180374.036660176], name='feedin_power_plant') test_tc_mc = tc_mc.TurbineClusterModelChain( power_plant=test_wind_farm, **parameters) test_tc_mc.run_model(self.weather_df) assert_series_equal(test_tc_mc.power_output, power_output_exp) # Test other smoothing order parameters['smoothing_order'] = 'turbine_power_curves' test_wind_farm = wf.WindFarm(**self.test_farm_2) test_wind_farm.efficiency = 0.9 power_output_exp = pd.Series(data=[6790706.001026006, 12179417.461328149], name='feedin_power_plant') test_tc_mc = tc_mc.TurbineClusterModelChain( power_plant=test_wind_farm, **parameters) test_tc_mc.run_model(self.weather_df) assert_series_equal(test_tc_mc.power_output, power_output_exp) def test_run_model_turbine_cluster(self): parameters = {'wake_losses_model': 'dena_mean', 'smoothing': False, 'standard_deviation_method': 'turbulence_intensity', 'smoothing_order': 'wind_farm_power_curves'} # Test modelchain with default values power_output_exp = pd.Series(data=[10363047.755401008, 21694496.68221325], name='feedin_power_plant') test_tc_mc = tc_mc.TurbineClusterModelChain( power_plant=wtc.WindTurbineCluster(**self.test_cluster), **parameters) test_tc_mc.run_model(self.weather_df) assert_series_equal(test_tc_mc.power_output, power_output_exp) # Test constant efficiency parameters['wake_losses_model'] = 'wind_farm_efficiency' test_cluster = wtc.WindTurbineCluster(**self.test_cluster) for farm in test_cluster.wind_farms: farm.efficiency = 0.9 power_output_exp = pd.Series(data=[10920128.570572512, 21273144.336885825], name='feedin_power_plant') test_tc_mc = tc_mc.TurbineClusterModelChain( power_plant=test_cluster, **parameters) test_tc_mc.run_model(self.weather_df)
assert_series_equal(test_tc_mc.power_output, power_output_exp)
pandas.util.testing.assert_series_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Author: Ivar """ import sys import os #from scipy import interp import pandas as pd import numpy as np from sklearn import svm from sklearn.model_selection import GridSearchCV from sklearn.metrics import classification_report, plot_confusion_matrix from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MLPClassifier from sklearn.metrics import fbeta_score, make_scorer from sklearn.preprocessing import MultiLabelBinarizer from sklearn import metrics from sklearn.linear_model import LogisticRegression from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.ensemble import GradientBoostingClassifier from xgboost import XGBClassifier import xgboost as xgb from thundersvm import SVC from Util import * from multiprocessing import Pool, Manager, Process, Lock from sklearn.ensemble import ExtraTreesClassifier from sklearn.feature_selection import SelectFromModel #from sklearn.feature_selection import SelectKBest from sklearn.svm import LinearSVC from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import chi2 from sklearn.feature_selection import GenericUnivariateSelect from sklearn.feature_selection import mutual_info_classif from sklearn.feature_selection import RFECV from sklearn.linear_model import Lasso from sklearn.pipeline import Pipeline from sklearn.linear_model import LassoCV from sklearn import datasets, linear_model from genetic_selection import GeneticSelectionCV from mlxtend.feature_selection import SequentialFeatureSelector as SFS from sklearn.feature_selection import SequentialFeatureSelector from sklearn.svm import SVR from sklearn.ensemble import VotingClassifier from sklearn.model_selection import train_test_split from imblearn.over_sampling import SMOTE, RandomOverSampler, ADASYN from imblearn.under_sampling import RandomUnderSampler from mlxtend.classifier import EnsembleVoteClassifier from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import cross_val_score #from pickle import dump, load from sklearn.model_selection import KFold, StratifiedKFold from sklearn.model_selection import cross_validate from sklearn.base import clone from sklearn.linear_model import SGDClassifier import time import matplotlib.pyplot as plt from sklearn.feature_selection import VarianceThreshold from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay from mlxtend.plotting import plot_confusion_matrix class Classification: def __init__ (self, dat): self.dat = dat #self.evals = manager.list([{} for i in range(len(self.fetures)*len(self.dat["norms"]))]) def execute(self): outdir = self.dat["outputdir"]+Util.now() Util.makedir(outdir) df = pd.read_csv(self.dat["csvfile"]) columns = df.columns.tolist() print(df) print(columns) #exit() #prefixes = ('lbp-') #prefixes = ('LPB') prefixes = () columns.remove("image") columns.remove("target") #print(columns) for word in columns[:]: if word.startswith(prefixes): columns.remove(word) """ cc = 0 for word in columns[:]: if word.startswith("log-"): #1023 #if word.startswith("wavelet"): 372 #if word.startswith("lbp-"):# 93 #if word.startswith("LPB_"): 102 cc+=1 print("cc", cc) """ classes = list(enumerate(df.target.astype('category').cat.categories)) classes = [dd[1] for dd in classes] print("datcat", classes) evals = {} fig = plt.figure(figsize=(5,5)) plt.title('') plt.plot([0, 1], [0, 1],'r--') plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.xlim([-0.01, 1.01]) plt.ylim([-0.01, 1.01]) Xo = df[columns] Y = df.target.astype('category').cat.codes Xo = Xo.loc[:,Xo.apply(pd.Series.nunique) != 1] #Classification.featureSelection2(columns, Xo, Y, self.dat["classifiers"], outdir) cmdats = {} #iskfold = True #iskfold = False fpr, tpr = None, None for name, argms in self.dat["classifiers"].items(): clsr = Classification.classifiers() if name in clsr: print("len(columns)", len(columns)) X = Xo.copy(deep=True) if argms["scale"] != "None": scaler = Classification.getScale(argms["scale"]) X = pd.DataFrame(scaler.fit_transform(X)) #sel = VarianceThreshold(threshold=0.12) #trainX = sel.fit_transform(trainX) trainX, testX, trainY, testY = train_test_split( X, Y, stratify=Y, test_size=self.dat["testing"], random_state=7) """ if argms["scale"] != "None": scaler = Classification.getScale(argms["scale"]) trainX = pd.DataFrame(scaler.fit_transform(trainX)) testX = pd.DataFrame(scaler.transform(testX)) """ m = clsr[name] clf = m["model"] if len(argms["modelparameters"])>0: clf = clf.set_params(**argms["modelparameters"]) scores = Classification.evaluation_tmp() if self.dat["iskfold"]: ytrue, ypred, fpr, tpr, roc_auc = Classification.kfolfcv(clf, X, Y, scores) print("scoers", scores) Classification.evaluationmean(scores) evals[name]={"metrics":scores, "ytrue":ytrue, "ypred":ypred} cmdats[name] = {"ytrue":ytrue, "ypred":ypred} print(name, evals[name]["metrics"]) else: #xx% train yy% test #training clf.fit(trainX, trainY) #testing pre = clf.predict(testX) Classification.evaluation(scores, testY, pre) Classification.evaluationmean(scores) evals[name]={"metrics":scores, "ytrue":testY.tolist(), "ypred":pre.tolist()} cmdats[name] = {"ytrue":testY, "ypred":pre} print(name, evals[name]["metrics"]) #curver roc-auc probs = clf.predict_proba(testX) preds = probs[:,1] fpr, tpr, threshold = metrics.roc_curve(testY, preds) roc_auc = metrics.auc(fpr, tpr) print("roc_auc", roc_auc) #plot auc-roc curves plt.plot(fpr, tpr, label = name+' (AUC) = %0.2f' % roc_auc) #save best parameters if hasattr(clf, 'best_params_'): print(name, clf.best_params_) #save fpr, tpr #FPR TPR fprtprdf =
pd.DataFrame({"FPR":fpr, "TPR":tpr})
pandas.DataFrame
#!/usr/bin/env python3 from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import pandas as pd import pandas.testing as pdtest from pandas.api.types import is_datetime64_dtype from sklearn.base import TransformerMixin from sklearn.exceptions import NotFittedError from sklearn.utils.validation import check_array, check_is_fitted from datafold.pcfold import InitialCondition, TSCDataFrame, TSCMetric, TSCScoring from datafold.pcfold.timeseries.collection import TSCException from datafold.utils.general import if1dim_rowvec # types allowed for transformation TransformType = Union[TSCDataFrame, np.ndarray] # types allowed for time predictions TimePredictType = TSCDataFrame InitialConditionType = Union[TSCDataFrame, np.ndarray] class TSCBaseMixin(object): """Base class for Mixin's in *datafold*. See Also -------- :py:class:`.TSCTransformerMixin` :py:class:`.TSCPredictMixin` """ def _has_feature_names(self, _obj): # True, for pandas.DataFrame or TSCDataFrame return isinstance(_obj, pd.DataFrame) def _read_fit_params(self, attrs: Optional[List[Tuple[str, Any]]], fit_params): return_values = [] if attrs is not None: for attr in attrs: return_values.append(fit_params.pop(attr[0], attr[1])) if fit_params != {}: raise KeyError(f"fit_params.keys = {fit_params.keys()} not supported") if len(return_values) == 0: return None elif len(return_values) == 1: return return_values[0] else: return return_values def _X_to_numpy(self, X): """Returns a numpy array of the data.""" if self._has_feature_names(X): X = X.to_numpy() # a row in a df is always a single sample (which requires to be # represented in a 2D matrix) return if1dim_rowvec(X) else: return X def _check_attributes_set_up(self, check_attributes): try: check_is_fitted( self, attributes=check_attributes, ) except NotFittedError: raise RuntimeError( f"{check_attributes} are not available for estimator {self}. " f"Please report bug." ) def _validate_datafold_data( self, X: Union[TSCDataFrame, np.ndarray], ensure_tsc: bool = False, array_kwargs: Optional[dict] = None, tsc_kwargs: Optional[dict] = None, ): """Provides a general function to validate data that is input to datafold functions -- it can be overwritten if a concrete implementation requires different checks. This function is very close to scikit-learn BaseEstimator._validate_data (which was introduced in 0.23.1). Parameters ---------- X ensure_feature_name_type array_kwargs tsc_kwargs Returns ------- """ # defaults to empty dictionary if None array_kwargs = array_kwargs or {} tsc_kwargs = tsc_kwargs or {} if ensure_tsc and not isinstance(X, TSCDataFrame): raise TypeError( f"Input 'X' is of type {type(X)} but a TSCDataFrame is required." ) if type(X) != TSCDataFrame: # Currently, everything that is not strictly a TSCDataFrame will go the # path of an usual array format. This includes: # * sparse scipy matrices # * numpy ndarray # * memmap # * pandas.DataFrame (Note a TSCDataFrame is also a pandas.DataFrame, # but not strictly) tsc_kwargs = {} # no need to check -> overwrite to empty dict if type(X) == pd.DataFrame: # special handling of pandas.DataFrame (strictly, not including # TSCDataFrame) --> keep the type (recover after validation). assert isinstance(X, pd.DataFrame) # mypy checking revert_to_data_frame = True idx, col = X.index, X.columns else: revert_to_data_frame = False idx, col = [None] * 2 X = check_array( X, accept_sparse=array_kwargs.pop("accept_sparse", False), accept_large_sparse=array_kwargs.pop("accept_large_sparse", False), dtype=array_kwargs.pop("dtype", "numeric"), order=array_kwargs.pop("order", None), copy=array_kwargs.pop("copy", False), force_all_finite=array_kwargs.pop("force_all_finite", True), ensure_2d=array_kwargs.pop("ensure_2d", True), allow_nd=array_kwargs.pop("allow_nd", False), ensure_min_samples=array_kwargs.pop("ensure_min_samples", 1), ensure_min_features=array_kwargs.pop("ensure_min_features", 1), estimator=self, ) if revert_to_data_frame: X =
pd.DataFrame(X, index=idx, columns=col)
pandas.DataFrame
import pymongo import numpy as np import pandas as pd from sys import argv # Set up mongodb database myclient = pymongo.MongoClient("mongodb://localhost:27017/") mydb = myclient["product_Durability_db"] mycol = mydb[argv[1]] # myquery = {"address": "Park Lane 38"} # mydoc = mycol.find(myquery) # Set up matrix for distance_origin continents = ["America", "Europe", "Asia", "Africa", "Australia"] d = {'America': [0, 2, 2, 2, 2], 'Europe': [2, 0, 1, 1, 3], 'Asia': [2, 1, 0, 1, 1], 'Africa': [2, 1, 1, 0, 2], 'Australia': [2, 3, 1, 2, 0]} mat_continents =
pd.DataFrame(d, columns=continents, index=continents)
pandas.DataFrame
import tehran_stocks.config as db import matplotlib.pyplot as plt from tehran_stocks import Stocks import pandas as pd import matplotlib.ticker as mtick from bidi.algorithm import get_display import arabic_reshaper import pathlib def histogram_value(history_len): q = f"select date_shamsi,SUM(value) as value from stock_price group by dtyyyymmdd order by date_shamsi desc limit {history_len} " data = pd.read_sql(q, db.engine) ax = plt.gca() data.plot(kind='bar', x='date_shamsi', y='value', ax=ax, color='green') reshaped_text = \ arabic_reshaper.reshape("ارزش معادلات کل") text = get_display(reshaped_text) ax.set_title(text) plt.savefig(f'../../output/reports/ارزش معادلات کل.png') ax.cla() return data def histogram_value_grouped(history_len): print(pathlib.Path(__file__).parent.absolute()) print(pathlib.Path().absolute()) q = f"select date_shamsi,SUM(value) as value from stock_price group by dtyyyymmdd order by date_shamsi desc limit {history_len} " total = pd.read_sql(q, db.engine) codes = db.session.query(db.distinct(Stocks.group_code)).all() for i, code in enumerate(codes): print(code[0]) q = f"""select date_shamsi,group_name,SUM(value) as value from(select * from stock_price Stock_price , stocks Stock where Stock.code = Stock_price.code) where group_code == {code[0]} group by dtyyyymmdd,group_code order by date_shamsi desc limit {history_len} """ data = pd.read_sql(q, db.engine) result =
pd.merge(total, data, on='date_shamsi')
pandas.merge
# NOTE: It is the historian's job to make sure that keywords are not repetitive (they are # otherwise double-counted into counts). from collections import defaultdict from collections import OrderedDict import os import pandas as pd import re import nltk from nltk.corpus import stopwords from nltk.tokenize import word_tokenize import string from unidecode import unidecode import csv from bs4 import BeautifulSoup, Tag import sys import json import csv NUM_TOP_WORDS = 20 # The number of top words that we want from each file CONTEXT_WORDS_AROUND = 50 MAX_EXCLUDE_REGEX_LENGTH = 50 punctuation = ['\.', '/', '\?', '\-', '"', ',', '\\b'] # Punctuation we use within our regexes data_dirname = os.getcwd() + "/data/" # Writes all the original interviews that have keywords into a subdirectory. def write_subcorpora(subcorpora_dirname, filenames, content, keyword_freq_files): os.mkdir(subcorpora_dirname) for i in range(len(filenames)): file = filenames[i] if file not in keyword_freq_files: continue new_file = "{}/{}".format(subcorpora_dirname, file) with open(new_file, "w", encoding = "utf-8") as f: f.write(content[i]) # Fills in decade years def fill_years(data, step): all_years = [] not_given = data["Not given"] if "Not given" in data else 0 for k in data.keys(): if k != "Not given": all_years.append(int(k)) new_data = defaultdict(lambda:0) new_data["Not given"] = not_given all_years.sort() for i in range(all_years[0], all_years[-1] + step, step): if str(i) in data: new_data[i] = data[str(i)] elif i in data: new_data[i] = data[i] else: new_data[i] = 0 return new_data # Prints out a JSON string that is then read by the Node.js backend. def print_message(_type, content): message = { "type": _type, "content": content } print(json.dumps(message)) # Downloads the NLTK libraries. def download_nltk(): print_message("progress-message", "Downloading relevant libraries...") nltk.download('averaged_perceptron_tagger') nltk.download('stopwords') nltk.download('punkt') print_message("progress", 2) # Reads in arguments into the directories, words, and metadata file needed for the runs. def read_arguments(): print_message("progress_message", "Reading in run data...") data = json.loads(sys.argv[1]) runId = data['id'] runName = data['name'] runDate = data['date'] collections = data['collections'] keywords = data['keywordList'] metadata_file_interviews = data['interviews'] metadata_file_interviewees= data['interviewees'] print_message("progress", 4) return runId, runName, runDate, collections, keywords, metadata_file_interviews, metadata_file_interviewees # Creates a new folder to store the final data for the current run. def create_run_directory(runId): print_message("progress-message", "Creating a directory to store run results...") dirname = data_dirname + "runs/" + runId os.mkdir(dirname) print_message("progress", 5) return dirname # Gets punctuation joined by bars (this is punctuation that we decide to count as separation!) def get_punctuation_for_regex(punc): return "|".join(punc) # Converts the keyword list to Python regex form. Returns the full list of words and the # included and excluded regexes. def convert_keywords(keywords): converted_keywords = [] for k in keywords: # Sorts the included words backwards to make sure we get the longer words first included_words = k["include"] included_words = sorted(included_words, key=lambda l: (len(l), l), reverse=True) punc = get_punctuation_for_regex(punctuation) included_regexes = [] for w in included_words: r = r'(?:{})({})(?:{})'.format(punc, w.replace("*", "[a-zA-Z]*"), punc) included_regexes.append(r) excluded_words = k["exclude"] excluded_regexes = [] for w in excluded_words: r = r"\b{}\b".format(w.replace("*", "[a-zA-Z]*")) excluded_regexes.append(w) k["included_regexes"] = included_regexes k["include"] = included_words k["excluded_regexes"] = excluded_regexes converted_keywords.append(k) return converted_keywords # Reads all the text from each text file in the corpus directory. TODO: Resolve utf-8. def read_corpuses(collections): new_collections = [] for c in collections: directory = data_dirname + "corpus-files/" + c["id"] filenames = [] content = [] for file in os.listdir(directory): if ".txt" not in file: continue filenames.append(file) # "ISO-8859-1" encoding otherwise? with open("{}/{}".format(directory, file), "r", encoding = "utf-8", errors = "ignore") as f: content.append(f.read()) c["filenames"] = filenames c["content"] = content new_collections.append(c) return new_collections # Gets the files for inclusion--excludes any files that are only male interviewees or # interviews with no transcripts. def get_included_files(collections, df1, df2, runJSON): files_for_inclusion = {} # Final list of files for inclusion # Statistics about file inclusion/exclusion num_files_no_transcript = {} # Total number of files in collection with no transcript people = {} # Information about individual people (only "Sex" == "Female" and "Sex" == "Unknown") male_interviews = {} # Interviews that include males male_plus_interviews = {} # Interviews with both male and non-male interviews interview_years = {} interview_years_by_file = {} total_interviews = 0 #making a dictionary for the interviewees from id to information interviewee_id_to_metadata= defaultdict(lambda:[]) for i,r in df2.iterrows(): interviewee_id_to_metadata[r["interviewee_id"]]=r # Needed information across all collections interview_years_all_collections = defaultdict(lambda:0) interviewee_metadata_all_collections = defaultdict(lambda:defaultdict(lambda:0)) # Statistics about interviewees --> interviews interviews_to_interviewees = defaultdict(lambda:[]) filenames_map = {} for c in collections: curr_id = c["id"] files_for_inclusion[curr_id] = {} num_files_no_transcript[curr_id] = 0 people[curr_id] = {} male_interviews[curr_id] = {} male_plus_interviews[curr_id] = {} interview_years[curr_id] = defaultdict(lambda:0) interview_years_by_file = defaultdict(lambda:{}) for f in c["filenames"]: filenames_map[f] = curr_id for i, r in df1.iterrows(): f = r["project_file_name"] # Skips files with no project filename (shouldn't happen) if
pd.isnull(f)
pandas.isnull
""" kkpy.io ======================== Functions to read and write files .. currentmodule:: io .. autosummary:: kkpy.io.read_aws kkpy.io.read_2dvd_rho kkpy.io.read_mxpol_rhi_with_hc kkpy.io.read_dem """ import numpy as np import pandas as pd import datetime import glob import os import sys def read_aws(time, date_range=True, datadir='/disk/STORAGE/OBS/AWS/', stnid=None, dask=True): """ Read AWS_MIN files into dataframe. Examples --------- >>> import datetime >>> df_aws = kkpy.io.read_aws(time=datetime.datetime(2018,2,28,6,0)) >>> df_aws = kkpy.io.read_aws(time=[datetime.datetime(2018,2,28,6,0),datetime.datetime(2018,3,1,12,0)], datadir='/path/to/aws/files/') Parameters ---------- time : datetime or array_like of datetime Datetime of the data you want to read. If this is array of two elements, it will read all data within two datetimes by default. If this is array of elements and keyword *date_range* is False, it will read the data of specific time of each element. date_range : bool, optional False if argument *time* contains element of specific time you want to read. datadir : str, optional Directory of data. stnid : list, optional List of station id you want to read. Read all site if None. dask : boolean, optional Return a dask dataframe if True, otherwise return a pandas dataframe. Returns --------- df_aws : dataframe Return dataframe of aws data. """ import dask.dataframe as dd if time is None: sys.exit(f'{__name__}: Check time argument') if len(time) == 1: date_range = False if date_range: if len(time) != 2: sys.exit(f'{__name__}: Check time and date_range arguments') if time[0] >= time[1]: sys.exit(f'{__name__}: time[1] must be greater than time[0]') dt_start = datetime.datetime(time[0].year, time[0].month, time[0].day, time[0].hour, time[0].minute) dt_finis = datetime.datetime(time[1].year, time[1].month, time[1].day, time[1].hour, time[1].minute) # Get file list filearr = np.array([]) _dt = dt_start while _dt <= dt_finis: _filearr = np.sort(glob.glob(f'{datadir}/{_dt:%Y%m}/{_dt:%d}/AWS_MIN_{_dt:%Y%m%d%H%M}')) filearr = np.append(filearr, _filearr) _dt = _dt + datetime.timedelta(minutes=1) yyyy_filearr = [np.int(os.path.basename(x)[-12:-8]) for x in filearr] mm_filearr = [np.int(os.path.basename(x)[-8:-6]) for x in filearr] dd_filearr = [np.int(os.path.basename(x)[-6:-4]) for x in filearr] hh_filearr = [np.int(os.path.basename(x)[-4:-2]) for x in filearr] ii_filearr = [np.int(os.path.basename(x)[-2:]) for x in filearr] dt_filearr = np.array([datetime.datetime(yyyy,mm,dd,hh,ii) for (yyyy,mm,dd,hh,ii) in zip(yyyy_filearr, mm_filearr, dd_filearr, hh_filearr, ii_filearr)]) filearr = filearr[(dt_filearr >= dt_start) & (dt_filearr <= dt_finis)] dt_filearr = dt_filearr[(dt_filearr >= dt_start) & (dt_filearr <= dt_finis)] else: list_dt_yyyymmddhhii = np.unique(np.array([datetime.datetime(_time.year, _time.month, _time.day, _time.hour, _time.minute) for _time in time])) filearr = np.array([f'{datadir}/{_dt:%Y%m}/{_dt:%d}/AWS_MIN_{_dt:%Y%m%d%H%M}' for _dt in list_dt_yyyymmddhhii]) dt_filearr = list_dt_yyyymmddhhii if len(filearr) == 0: sys.exit(f'{__name__}: No matched data for the given time period') df_list = [] names = ['ID', 'YMDHI', 'LON', 'LAT', 'HGT', 'WD', 'WS', 'T', 'RH', 'PA', 'PS', 'RE', 'R60mAcc', 'R1d', 'R15m', 'R60m', 'WDS', 'WSS', 'dummy'] df_aws = dd.read_csv(filearr.tolist(), delimiter='#', names=names, header=None, na_values=[-999,-997]) df_aws = df_aws.drop('dummy', axis=1) df_aws.WD = df_aws.WD/10. df_aws.WS = df_aws.WS/10. df_aws.T = df_aws['T']/10. df_aws.RH = df_aws.RH/10. df_aws.PA = df_aws.PA/10. df_aws.PS = df_aws.PS/10. df_aws.RE = df_aws.RE/10. df_aws.R60mAcc = df_aws.R60mAcc/10. df_aws.R1d = df_aws.R1d/10. df_aws.R15m = df_aws.R15m/10. df_aws.R60m = df_aws.R60m/10. df_aws.WDS = df_aws.WDS/10. df_aws.WSS = df_aws.WSS/10. if stnid: df_aws = df_aws[df_aws['ID'].isin(stnid)] df_aws = df_aws.set_index(dd.to_datetime(df_aws['YMDHI'], format='%Y%m%d%H%M')) df_aws = df_aws.drop('YMDHI', axis=1) if dask: return df_aws else: return df_aws.compute() def read_2dvd_rho(time, date_range=True, datadir='/disk/common/kwonil_rainy/RHO_2DVD/', filename='2DVD_Dapp_v_rho_201*Deq.txt'): """ Read 2DVD density files into dataframe. Examples --------- >>> import datetime >>> df_2dvd_drop = kkpy.io.read_2dvd_rho(time=datetime.datetime(2018,2,28)) # automatically date_range=False >>> df_2dvd_drop = kkpy.io.read_2dvd_rho(time=[datetime.datetime(2018,2,28,6),datetime.datetime(2018,3,1,12)], datadir='/path/to/2dvd/files/') >>> df_2dvd_drop = kkpy.io.read_2dvd_rho(time=list_of_many_datetimes, date_range=False) >>> df_2dvd_drop = kkpy.io.read_2dvd_rho(time=datetime.datetime(2018,2,28), filename='2DVD_rho_test_*.txt') Parameters ---------- time : datetime or array_like of datetime Datetime of the data you want to read. If this is array of two elements, it will read all data within two datetimes by default. If this is array of elements and keyword *date_range* is False, it will read the data of specific time of each element. date_range : bool, optional False if argument *time* contains element of specific time you want to read. datadir : str, optional Directory of data. filename : str, optional File naming of data. Returns --------- df_2dvd_drop : dataframe Return dataframe of 2dvd data. """ # Get file list filearr = np.array(np.sort(glob.glob(f'{datadir}/**/{filename}', recursive=True))) yyyy_filearr = [np.int(os.path.basename(x)[-27:-23]) for x in filearr] mm_filearr = [np.int(os.path.basename(x)[-23:-21]) for x in filearr] dd_filearr = [np.int(os.path.basename(x)[-21:-19]) for x in filearr] dt_filearr = np.array([datetime.datetime(yyyy,mm,dd) for (yyyy, mm, dd) in zip(yyyy_filearr, mm_filearr, dd_filearr)]) if time is None: sys.exit(f'{__name__}: Check time argument') if len(time) == 1: date_range = False if date_range: if len(time) != 2: sys.exit(f'{__name__}: Check time and date_range arguments') if time[0] >= time[1]: sys.exit(f'{__name__}: time[1] must be greater than time[0]') dt_start = datetime.datetime(time[0].year, time[0].month, time[0].day) dt_finis = datetime.datetime(time[1].year, time[1].month, time[1].day) filearr = filearr[(dt_filearr >= dt_start) & (dt_filearr <= dt_finis)] dt_filearr = dt_filearr[(dt_filearr >= dt_start) & (dt_filearr <= dt_finis)] else: list_dt_yyyymmdd = np.unique(np.array([datetime.datetime(_time.year, _time.month, _time.day) for _time in time])) filearr = filearr[np.isin(dt_filearr, list_dt_yyyymmdd)] dt_filearr = dt_filearr[np.isin(dt_filearr, list_dt_yyyymmdd)] if len(filearr) == 0: sys.exit(f'{__name__}: No matched data for the given time period') # # READ DATA columns = ['hhmm', 'Dapp', 'VEL', 'RHO', 'AREA', 'WA', 'HA', 'WB', 'HB', 'Deq'] dflist = [] for i_file, (file, dt) in enumerate(zip(filearr, dt_filearr)): _df = pd.read_csv(file, skiprows=1, names=columns, header=None, delim_whitespace=True) _df['year'] = dt.year _df['month'] = dt.month _df['day'] = dt.day _df['hour'] = np.int_(_df['hhmm'] / 100) _df['minute'] = _df['hhmm'] % 100 _df['jultime'] =
pd.to_datetime(_df[['year','month','day','hour','minute']])
pandas.to_datetime
""" Utilities for dealing with PCTS cases. """ import dataclasses import re import typing import pandas GENERAL_PCTS_RE = re.compile("([A-Z]+)-([0-9X]{4})-([0-9]+)((?:-[A-Z0-9]+)*)$") MISSING_YEAR_RE = re.compile("([A-Z]+)-([0-9]+)((?:-[A-Z0-9]+)*)$") VALID_PCTS_PREFIX = { "AA", "ADM", "APCC", "APCE", "APCH", "APCNV", "APCS", "APCSV", "APCW", "CHC", "CPC", "DIR", "ENV", "HPO", "PAR", "PS", "TT", "VTT", "ZA", } VALID_PCTS_SUFFIX = { "1A", "2A", "AC", "ACI", "ADD1", "ADU", "AIC", "BL", "BSA", "CA", "CASP", "CATEX", "CC", "CC1", "CC3", "CCMP", "CDO", "CDP", "CE", "CEX", "CLQ", "CM", "CN", "COA", "COC", "CPIO", "CPIOA", "CPIOC", "CPIOE", "CPU", "CR", "CRA", "CU", "CUB", "CUC", "CUE", "CUW", "CUX", "CUZ", "CWC", "CWNC", "DA", "DB", "DD", "DEM", "DI", "DPS", "DRB", "EAF", "EIR", "ELD", "EXT", "EXT2", "EXT3", "EXT4", "F", "GB", "GPA", "GPAJ", "HCA", "HCM", "HD", "HPOZ", "ICO", "INT", "M1", "M2", "M3", "M6", "M7", "M8", "M9", "M10", "M11", "MA", "MAEX", "MCUP", "MEL", "MND", "MPA", "MPC", "MPR", "MSC", "MSP", "NC", "ND", "NR", "O", "OVR", "P", "PA", "PA1", "PA2", "PA3", "PA4", "PA5", "PA6", "PA7", "PA9", "PA10", "PA15", "PA16", "PA17", "PAB", "PAD", "PMEX", "PMLA", "PMW", "POD", "PP", "PPR", "PPSP", "PSH", "PUB", "QC", "RAO", "RDP", "RDPA", "REC1", "REC2", "REC3", "REC4", "REC5", "REV", "RFA", "RV", "SCEA", "SCPE", "SE", "SIP", "SL", "SLD", "SM", "SN", "SP", "SPE", "SPP", "SPPA", "SPPM", "SPR", "SUD", "SUP1", "TC", "TDR", "TOC", "UAIZ", "UDU", "VCU", "VSO", "VZC", "VZCJ", "WDI", "WTM", "YV", "ZAA", "ZAD", "ZAI", "ZBA", "ZC", "ZCJ", "ZV", } @dataclasses.dataclass class PCTSCaseNumber: """ A dataclass for parsing and storing PCTS Case Number info. The information is accessible as data attributes on the class instance. If the constructor is unable to parse the pcts_case_string, a ValueError will be raised. References ========== https://planning.lacity.org/resources/prefix-suffix-report """ prefix: typing.Optional[str] = None year: typing.Optional[int] = None case: typing.Optional[int] = None suffix: typing.Optional[typing.List[str]] = None def __init__(self, pcts_case_string: str): try: self._general_pcts_parser(pcts_case_string) except ValueError: try: self._next_pcts_parser(pcts_case_string) except ValueError: pass def _general_pcts_parser(self, pcts_case_string: str): """ Create a new PCTSCaseNumber instance. Parameters ========== pcts_case_string: str The PCTS case number string to be parsed. """ matches = GENERAL_PCTS_RE.match(pcts_case_string.strip()) if matches is None: raise ValueError("Couldn't parse PCTS string") groups = matches.groups() self.prefix = groups[0] self.year = int(groups[1]) self.case = int(groups[2]) # Suffix if groups[3]: self.suffix = groups[3].strip("-").split("-") def _next_pcts_parser(self, pcts_case_string: str): # Match where there is no year, but there is prefix, case ID, and suffix matches = MISSING_YEAR_RE.match(pcts_case_string.strip()) if matches is None: raise ValueError(f"Coudln't parse PCTS string {pcts_case_string}") groups = matches.groups() # Prefix self.prefix = groups[0] self.year = int(groups)[1] # Suffix if groups[2]: self.suffix = groups[2].strip("-").split("-") # Subset PCTS given a start date and a list of prefixes or suffixes def subset_pcts( pcts, start_date=None, end_date=None, prefix_list=None, suffix_list=None, get_dummies=False, verbose=False, ): """ Download an subset a PCTS extract for analysis. This is intended to be the primary entry point for loading PCTS data. Parameters ========== pcts: pandas.DataFrame A PCTS extract of the shape returned by subset_pcts. start_date: time-like Optional start date cutoff. end_date: time-like Optional end-date cutoff prefix_list: iterable of strings A list of prefixes to use. If not given, all prefixes are returned. suffix_list: iterable of strings A list of suffixes to use. If not given, all suffixes are used. get_dummies: bool Whether to get dummy indicator columns for all prefixes and suffixes. verbose: bool Whether to ouptut information about subsetting as it happens. """ # Subset PCTS by start / end date start_date = ( pandas.to_datetime(start_date) if start_date else pandas.to_datetime("2010-01-01") ) end_date =
pandas.to_datetime(end_date)
pandas.to_datetime
import pandas as pd from .datastore import merge_postcodes from .types import ErrorDefinition from .utils import add_col_to_tables_CONTINUOUSLY_LOOKED_AFTER as add_CLA_column # Check 'Episodes' present before use! def validate_165(): error = ErrorDefinition( code = '165', description = 'Data entry for mother status is invalid.', affected_fields = ['MOTHER', 'SEX', 'ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] valid_values = ['0','1'] # prepare to merge oc3.reset_index(inplace=True) header.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['EPS'] = (episodes['DECOM']>=collection_start) & (episodes['DECOM']<=collection_end) episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']).merge(oc3, on='CHILD', how='left') # Raise error if provided <MOTHER> is not a valid value. value_validity = merged['MOTHER'].notna() & (~merged['MOTHER'].isin(valid_values)) # If not provided female = (merged['SEX']=='1') eps_in_year = (merged['EPS_COUNT']>0) none_provided = (merged['ACTIV'].isna()& merged['ACCOM'].isna()& merged['IN_TOUCH'].isna()) # If provided <MOTHER> must be a valid value. If not provided <MOTHER> then either <GENDER> is male or no episode record for current year and any of <IN_TOUCH>, <ACTIV> or <ACCOM> have been provided mask = value_validity | (merged['MOTHER'].isna() & (female & (eps_in_year | none_provided))) # That is, if value not provided and child is a female with eps in current year or no values of IN_TOUCH, ACTIV and ACCOM, then raise error. error_locs_eps = merged.loc[mask, 'index_eps'] error_locs_header = merged.loc[mask, 'index_er'] error_locs_oc3 = merged.loc[mask, 'index'] return {'Header':error_locs_header.dropna().unique().tolist(), 'OC3':error_locs_oc3.dropna().unique().tolist()} return error, _validate def validate_1014(): error = ErrorDefinition( code='1014', description='UASC information is not required for care leavers', affected_fields=['ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'UASC' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: uasc = dfs['UASC'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] # prepare to merge oc3.reset_index(inplace=True) uasc.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') date_check = ( ((episodes['DECOM'] >= collection_start) & (episodes['DECOM'] <= collection_end)) | ((episodes['DEC'] >= collection_start) & (episodes['DEC'] <= collection_end)) | ((episodes['DECOM'] <= collection_start) & episodes['DEC'].isna()) ) episodes['EPS'] = date_check episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') # inner merge to take only episodes of children which are also found on the uasc table merged = episodes.merge(uasc, on='CHILD', how='inner', suffixes=['_eps', '_sc']).merge(oc3, on='CHILD', how='left') # adding suffixes with the secondary merge here does not go so well yet. some_provided = (merged['ACTIV'].notna() | merged['ACCOM'].notna() | merged['IN_TOUCH'].notna()) mask = (merged['EPS_COUNT'] == 0) & some_provided error_locs_uasc = merged.loc[mask, 'index_sc'] error_locs_oc3 = merged.loc[mask, 'index'] return {'UASC': error_locs_uasc.unique().tolist(), 'OC3': error_locs_oc3.unique().tolist()} return error, _validate # !# not sure what this rule is actually supposed to be getting at - description is confusing def validate_197B(): error = ErrorDefinition( code='197B', description="SDQ score or reason for no SDQ should be reported for 4- or 17-year-olds.", affected_fields=['SDQ_REASON', 'DOB'], ) def _validate(dfs): if 'OC2' not in dfs or 'Episodes' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') endo = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') ERRRR = ( ( (oc2['DOB'] + pd.DateOffset(years=4) == start) # ??? | (oc2['DOB'] + pd.DateOffset(years=17) == start) ) & oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2['SDQ_SCORE'].isna() & oc2['SDQ_REASON'].isna() ) return {'OC2': oc2[ERRRR].index.to_list()} return error, _validate def validate_157(): error = ErrorDefinition( code='157', description="Child is aged 4 years or over at the beginning of the year or 16 years or under at the end of the " "year and Strengths and Difficulties Questionnaire (SDQ) 1 has been recorded as the reason for no " "Strengths and Difficulties Questionnaire (SDQ) score.", affected_fields=['SDQ_REASON', 'DOB'], ) def _validate(dfs): if 'OC2' not in dfs or 'Episodes' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') endo = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') ERRRR = ( oc2['CONTINUOUSLY_LOOKED_AFTER'] & (oc2['DOB'] + pd.DateOffset(years=4) <= start) & (oc2['DOB'] + pd.DateOffset(years=16) >= endo) & oc2['SDQ_SCORE'].isna() & (oc2['SDQ_REASON'] == 'SDQ1') ) return {'OC2': oc2[ERRRR].index.to_list()} return error, _validate def validate_357(): error = ErrorDefinition( code='357', description='If this is the first episode ever for this child, reason for new episode must be S. ' 'Check whether there is an episode immediately preceding this one, which has been left out. ' 'If not the reason for new episode code must be amended to S.', affected_fields=['RNE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} eps = dfs['Episodes'] eps['DECOM'] = pd.to_datetime(eps['DECOM'], format='%d/%m/%Y', errors='coerce') eps = eps.loc[eps['DECOM'].notnull()] first_eps = eps.loc[eps.groupby('CHILD')['DECOM'].idxmin()] errs = first_eps[first_eps['RNE'] != 'S'].index.to_list() return {'Episodes': errs} return error, _validate def validate_117(): error = ErrorDefinition( code='117', description='Date of decision that a child should/should no longer be placed for adoption is beyond the current collection year or after the child ceased to be looked after.', affected_fields=['DATE_PLACED_CEASED', 'DATE_PLACED', 'DEC', 'REC', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placed_adoption = dfs['PlacedAdoption'] collection_end = dfs['metadata']['collection_end'] # datetime placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') # Drop nans and continuing episodes episodes = episodes.dropna(subset=['DECOM']) episodes = episodes[episodes['REC'] != 'X1'] episodes = episodes.loc[episodes.groupby('CHILD')['DECOM'].idxmax()] # prepare to merge placed_adoption.reset_index(inplace=True) episodes.reset_index(inplace=True) p4a_cols = ['DATE_PLACED', 'DATE_PLACED_CEASED'] # latest episodes merged = episodes.merge(placed_adoption, on='CHILD', how='left', suffixes=['_eps', '_pa']) mask = ( (merged['DATE_PLACED'] > collection_end) | (merged['DATE_PLACED'] > merged['DEC']) | (merged['DATE_PLACED_CEASED'] > collection_end) | (merged['DATE_PLACED_CEASED'] > merged['DEC']) ) # If provided <DATE_PLACED> and/or <DATE_PLACED_CEASED> must not be > <COLLECTION_END_DATE> or <DEC> of latest episode where <REC> not = 'X1' pa_error_locs = merged.loc[mask, 'index_pa'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'PlacedAdoption': pa_error_locs.unique().tolist()} return error, _validate def validate_118(): error = ErrorDefinition( code='118', description='Date of decision that a child should no longer be placed for adoption is before the current collection year or before the date the child started to be looked after.', affected_fields=['DECOM', 'DECOM', 'LS'] ) def _validate(dfs): if ('PlacedAdoption' not in dfs) or ('Episodes' not in dfs): return {} else: placed_adoption = dfs['PlacedAdoption'] episodes = dfs['Episodes'] collection_start = dfs['metadata']['collection_start'] code_list = ['V3', 'V4'] # datetime episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # <DECOM> of the earliest episode with an <LS> not = 'V3' or 'V4' filter_by_ls = episodes[~(episodes['LS'].isin(code_list))] earliest_episode_idxs = filter_by_ls.groupby('CHILD')['DECOM'].idxmin() earliest_episodes = episodes[episodes.index.isin(earliest_episode_idxs)] # prepare to merge placed_adoption.reset_index(inplace=True) earliest_episodes.reset_index(inplace=True) # merge merged = earliest_episodes.merge(placed_adoption, on='CHILD', how='left', suffixes=['_eps', '_pa']) # drop rows where DATE_PLACED_CEASED is not provided merged = merged.dropna(subset=['DATE_PLACED_CEASED']) # If provided <DATE_PLACED_CEASED> must not be prior to <COLLECTION_START_DATE> or <DECOM> of the earliest episode with an <LS> not = 'V3' or 'V4' mask = (merged['DATE_PLACED_CEASED'] < merged['DECOM']) | (merged['DATE_PLACED_CEASED'] < collection_start) # error locations pa_error_locs = merged.loc[mask, 'index_pa'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'PlacedAdoption': pa_error_locs.unique().tolist()} return error, _validate def validate_352(): error = ErrorDefinition( code='352', description='Child who started to be looked after was aged 18 or over.', affected_fields=['DECOM', 'RNE'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') header['DOB18'] = header['DOB'] + pd.DateOffset(years=18) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') care_start = episodes_merged['RNE'].str.upper().astype(str).isin(['S']) started_over_18 = episodes_merged['DOB18'] <= episodes_merged['DECOM'] error_mask = care_start & started_over_18 error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_209(): error = ErrorDefinition( code='209', description='Child looked after is of school age and should not have an unknown Unique Pupil Number (UPN) code of UN1.', affected_fields=['UPN', 'DOB'] ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] collection_start = dfs['metadata']['collection_start'] # convert to datetime header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') yr = collection_start.year - 1 reference_date = pd.to_datetime('31/08/' + str(yr), format='%d/%m/%Y', errors='coerce') # If <DOB> >= 4 years prior to 31/08/YYYY then <UPN> should not be 'UN1' Note: YYYY in this instance refers to the year prior to the collection start (for collection year 2019-2020, it would be looking at the 31/08/2018). mask = (reference_date >= (header['DOB'] + pd.offsets.DateOffset(years=4))) & (header['UPN'] == 'UN1') # error locations error_locs_header = header.index[mask] return {'Header': error_locs_header.tolist()} return error, _validate def validate_198(): error = ErrorDefinition( code='198', description="Child has not been looked after continuously for at least 12 months at 31 March but a reason " "for no Strengths and Difficulties (SDQ) score has been completed. ", affected_fields=['SDQ_REASON'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') error_mask = oc2['SDQ_REASON'].notna() & ~oc2['CONTINUOUSLY_LOOKED_AFTER'] error_locs = oc2.index[error_mask].to_list() return {'OC2': error_locs} return error, _validate def validate_185(): error = ErrorDefinition( code='185', description="Child has not been looked after continuously for at least 12 months at " + "31 March but a Strengths and Difficulties (SDQ) score has been completed.", affected_fields=['SDQ_SCORE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') error_mask = oc2['SDQ_SCORE'].notna() & ~oc2['CONTINUOUSLY_LOOKED_AFTER'] error_locs = oc2.index[error_mask].to_list() return {'OC2': error_locs} return error, _validate def validate_186(): error = ErrorDefinition( code='186', description="Children aged 4 or over at the start of the year and children aged under 17 at the " + "end of the year and who have been looked after for at least 12 months continuously " + "should have a Strengths and Difficulties (SDQ) score completed.", affected_fields=['SDQ_SCORE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = dfs['OC2'] collection_start_str = dfs['metadata']['collection_start'] collection_end_str = dfs['metadata']['collection_end'] collection_start = pd.to_datetime(collection_start_str, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end_str, format='%d/%m/%Y', errors='coerce') oc2['DOB_dt'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') oc2 = add_CLA_column(dfs, 'OC2') oc2['4th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=4) oc2['17th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=17) error_mask = ( (oc2['4th_bday'] <= collection_start) & (oc2['17th_bday'] > collection_end) & oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2['SDQ_SCORE'].isna() ) oc2_errors = oc2.loc[error_mask].index.to_list() return {'OC2': oc2_errors} return error, _validate def validate_187(): error = ErrorDefinition( code='187', description="Child cannot be looked after continuously for 12 months at " + "31 March (OC2) and have any of adoption or care leavers returns completed.", affected_fields=['DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR', # OC3 'IN_TOUCH', 'ACTIV', 'ACCOM'], # AD1 ) def _validate(dfs): if ( 'OC3' not in dfs or 'AD1' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column ad1, oc3 = add_CLA_column(dfs, ['AD1', 'OC3']) # OC3 should_be_blank = ['IN_TOUCH', 'ACTIV', 'ACCOM'] oc3_mask = oc3['CONTINUOUSLY_LOOKED_AFTER'] & oc3[should_be_blank].notna().any(axis=1) oc3_error_locs = oc3[oc3_mask].index.to_list() # AD1 should_be_blank = ['DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR'] ad1_mask = ad1['CONTINUOUSLY_LOOKED_AFTER'] & ad1[should_be_blank].notna().any(axis=1) ad1_error_locs = ad1[ad1_mask].index.to_list() return {'AD1': ad1_error_locs, 'OC3': oc3_error_locs} return error, _validate def validate_188(): error = ErrorDefinition( code='188', description="Child is aged under 4 years at the end of the year, " "but a Strengths and Difficulties (SDQ) score or a reason " "for no SDQ score has been completed. ", affected_fields=['SDQ_SCORE', 'SDQ_REASON'], ) def _validate(dfs): if 'OC2' not in dfs: return {} oc2 = dfs['OC2'] collection_end_str = dfs['metadata']['collection_end'] collection_end = pd.to_datetime(collection_end_str, format='%d/%m/%Y', errors='coerce') oc2['DOB_dt'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') oc2['4th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=4) error_mask = ( (oc2['4th_bday'] > collection_end) & oc2[['SDQ_SCORE', 'SDQ_REASON']].notna().any(axis=1) ) oc2_errors = oc2.loc[error_mask].index.to_list() return {'OC2': oc2_errors} return error, _validate def validate_190(): error = ErrorDefinition( code='190', description="Child has not been looked after continuously for at least 12 months at 31 March but one or more " "data items relating to children looked after for 12 months have been completed.", affected_fields=['CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] , # AD1 ) def _validate(dfs): if ( 'OC2' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column oc2 = add_CLA_column(dfs, 'OC2') should_be_blank = ['CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] mask = ~oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2[should_be_blank].notna().any(axis=1) error_locs = oc2[mask].index.to_list() return {'OC2': error_locs} return error, _validate def validate_191(): error = ErrorDefinition( code='191', description="Child has been looked after continuously for at least 12 months at 31 March but one or more " "data items relating to children looked after for 12 months have been left blank.", affected_fields=['IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'], # OC2 ) def _validate(dfs): if ( 'OC2' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column oc2 = add_CLA_column(dfs, 'OC2') should_be_present = ['IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'] mask = oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2[should_be_present].isna().any(axis=1) error_locs = oc2[mask].index.to_list() return {'OC2': error_locs} return error, _validate def validate_607(): error = ErrorDefinition( code='607', description='Child ceased to be looked after in the year, but mother field has not been completed.', affected_fields=['DEC', 'REC', 'MOTHER', 'LS', 'SEX'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] code_list = ['V3', 'V4'] # convert to datetiime format episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # CEASED_TO_BE_LOOKED_AFTER = DEC is not null and REC is filled but not equal to X1 CEASED_TO_BE_LOOKED_AFTER = merged['DEC'].notna() & ((merged['REC'] != 'X1') & merged['REC'].notna()) # and <LS> not = ‘V3’ or ‘V4’ check_LS = ~(merged['LS'].isin(code_list)) # and <DEC> is in <CURRENT_COLLECTION_YEAR check_DEC = (collection_start <= merged['DEC']) & (merged['DEC'] <= collection_end) # Where <CEASED_TO_BE_LOOKED_AFTER> = ‘Y’, and <LS> not = ‘V3’ or ‘V4’ and <DEC> is in <CURRENT_COLLECTION_YEAR> and <SEX> = ‘2’ then <MOTHER> should be provided. mask = CEASED_TO_BE_LOOKED_AFTER & check_LS & check_DEC & (merged['SEX'] == '2') & (merged['MOTHER'].isna()) header_error_locs = merged.loc[mask, 'index_er'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'Header': header_error_locs.unique().tolist()} return error, _validate def validate_210(): error = ErrorDefinition( code='210', description='Children looked after for more than a week at 31 March should not have an unknown Unique Pupil Number (UPN) code of UN4.', affected_fields=['UPN', 'DECOM'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] collection_end = dfs['metadata']['collection_end'] # convert to datetime episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') yr = collection_end.year reference_date = ref_date = pd.to_datetime('24/03/' + str(yr), format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) # the logical way is to merge left on UPN but that will be a one to many merge and may not go as well as a many to one merge that we've been doing. merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # If <UPN> = 'UN4' then no episode <DECOM> must be >` = 24/03/YYYY Note: YYYY refers to the current collection year. mask = (merged['UPN'] == 'UN4') & (merged['DECOM'] >= reference_date) # error locations error_locs_header = merged.loc[mask, 'index_er'] error_locs_eps = merged.loc[mask, 'index_eps'] return {'Episodes': error_locs_eps.tolist(), 'Header': error_locs_header.unique().tolist()} return error, _validate def validate_1010(): error = ErrorDefinition( code='1010', description='This child has no episodes loaded for current year even though there was an open episode of ' + 'care at the end of the previous year, and care leaver data has been entered.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'Episodes_last' not in dfs or 'OC3' not in dfs: return {} else: episodes = dfs['Episodes'] episodes_last = dfs['Episodes_last'] oc3 = dfs['OC3'] # convert DECOM to datetime, drop missing/invalid sort by CHILD then DECOM, episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last = episodes_last.dropna(subset=['DECOM']).sort_values(['CHILD', 'DECOM'], ascending=True) # Keep only the final episode for each child (ie where the following row has a different CHILD value) episodes_last = episodes_last[ episodes_last['CHILD'].shift(-1) != episodes_last['CHILD'] ] # Keep only the final episodes that were still open episodes_last = episodes_last[episodes_last['DEC'].isna()] # The remaining children ought to have episode data in the current year if they are in OC3 has_current_episodes = oc3['CHILD'].isin(episodes['CHILD']) has_open_episode_last = oc3['CHILD'].isin(episodes_last['CHILD']) error_mask = ~has_current_episodes & has_open_episode_last validation_error_locations = oc3.index[error_mask] return {'OC3': validation_error_locations.tolist()} return error, _validate def validate_525(): error = ErrorDefinition( code='525', description='A child for whom the decision to be placed for adoption has been reversed cannot be adopted during the year.', affected_fields=['DATE_PLACED_CEASED', 'DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR'] ) def _validate(dfs): if 'PlacedAdoption' not in dfs or 'AD1' not in dfs: return {} else: placed_adoption = dfs['PlacedAdoption'] ad1 = dfs['AD1'] # prepare to merge placed_adoption.reset_index(inplace=True) ad1.reset_index(inplace=True) merged = placed_adoption.merge(ad1, on='CHILD', how='left', suffixes=['_placed', '_ad1']) # If <DATE_PLACED_CEASED> not Null, then <DATE_INT>; <DATE_MATCH>; <FOSTER_CARE>; <NB_ADOPTR>; <SEX_ADOPTR>; and <LS_ADOPTR> should not be provided mask = merged['DATE_PLACED_CEASED'].notna() & ( merged['DATE_INT'].notna() | merged['DATE_MATCH'].notna() | merged['FOSTER_CARE'].notna() | merged['NB_ADOPTR'].notna() | merged['SEX_ADOPTR'].notna() | merged['LS_ADOPTR'].notna()) # error locations pa_error_locs = merged.loc[mask, 'index_placed'] ad_error_locs = merged.loc[mask, 'index_ad1'] # return result return {'PlacedAdoption': pa_error_locs.tolist(), 'AD1': ad_error_locs.tolist()} return error, _validate def validate_335(): error = ErrorDefinition( code='335', description='The current foster value (0) suggests that child is not adopted by current foster carer, but last placement is A2, A3, or A5. Or the current foster value (1) suggests that child is adopted by current foster carer, but last placement is A1, A4 or A6.', affected_fields=['PLACE', 'FOSTER_CARE'] ) def _validate(dfs): if 'Episodes' not in dfs or 'AD1' not in dfs: return {} else: episodes = dfs['Episodes'] ad1 = dfs['AD1'] # prepare to merge episodes.reset_index(inplace=True) ad1.reset_index(inplace=True) merged = episodes.merge(ad1, on='CHILD', how='left', suffixes=['_eps', '_ad1']) # Where <PL> = 'A2', 'A3' or 'A5' and <DEC> = 'E1', 'E11', 'E12' <FOSTER_CARE> should not be '0'; Where <PL> = ‘A1’, ‘A4’ or ‘A6’ and <REC> = ‘E1’, ‘E11’, ‘E12’ <FOSTER_CARE> should not be ‘1’. mask = ( merged['REC'].isin(['E1', 'E11', 'E12']) & ( (merged['PLACE'].isin(['A2', 'A3', 'A5']) & (merged['FOSTER_CARE'].astype(str) == '0')) | (merged['PLACE'].isin(['A1', 'A4', 'A6']) & (merged['FOSTER_CARE'].astype(str) == '1')) ) ) eps_error_locs = merged.loc[mask, 'index_eps'] ad1_error_locs = merged.loc[mask, 'index_ad1'] # use .unique since join is many to one return {'Episodes': eps_error_locs.tolist(), 'AD1': ad1_error_locs.unique().tolist()} return error, _validate def validate_215(): error = ErrorDefinition( code='215', description='Child has care leaver information but one or more data items relating to children looked after for 12 months have been completed.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM', 'CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] ) def _validate(dfs): if 'OC3' not in dfs or 'OC2' not in dfs: return {} else: oc3 = dfs['OC3'] oc2 = dfs['OC2'] # prepare to merge oc3.reset_index(inplace=True) oc2.reset_index(inplace=True) merged = oc3.merge(oc2, on='CHILD', how='left', suffixes=['_3', '_2']) # If any of <IN_TOUCH>, <ACTIV> or <ACCOM> have been provided then <CONVICTED>; <HEALTH_CHECK>; <IMMUNISATIONS>; <TEETH_CHECK>; <HEALTH_ASSESSMENT>; <SUBSTANCE MISUSE>; <INTERVENTION_RECEIVED>; <INTERVENTION_OFFERED>; should not be provided mask = (merged['IN_TOUCH'].notna() | merged['ACTIV'].notna() | merged['ACCOM'].notna()) & ( merged['CONVICTED'].notna() | merged['HEALTH_CHECK'].notna() | merged['IMMUNISATIONS'].notna() | merged['TEETH_CHECK'].notna() | merged['HEALTH_ASSESSMENT'].notna() | merged[ 'SUBSTANCE_MISUSE'].notna() | merged['INTERVENTION_RECEIVED'].notna() | merged[ 'INTERVENTION_OFFERED'].notna()) # error locations oc3_error_locs = merged.loc[mask, 'index_3'] oc2_error_locs = merged.loc[mask, 'index_2'] return {'OC3': oc3_error_locs.tolist(), 'OC2': oc2_error_locs.tolist()} return error, _validate def validate_399(): error = ErrorDefinition( code='399', description='Mother field, review field or participation field are completed but ' + 'child is looked after under legal status V3 or V4.', affected_fields=['MOTHER', 'LS', 'REVIEW', 'REVIEW_CODE'] ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs or 'Reviews' not in dfs: return {} else: episodes = dfs['Episodes'] header = dfs['Header'] reviews = dfs['Reviews'] code_list = ['V3', 'V4'] # prepare to merge episodes['index_eps'] = episodes.index header['index_hdr'] = header.index reviews['index_revs'] = reviews.index # merge merged = (episodes.merge(header, on='CHILD', how='left') .merge(reviews, on='CHILD', how='left')) # If <LS> = 'V3' or 'V4' then <MOTHER>, <REVIEW> and <REVIEW_CODE> should not be provided mask = merged['LS'].isin(code_list) & ( merged['MOTHER'].notna() | merged['REVIEW'].notna() | merged['REVIEW_CODE'].notna()) # Error locations eps_errors = merged.loc[mask, 'index_eps'] header_errors = merged.loc[mask, 'index_hdr'].unique() revs_errors = merged.loc[mask, 'index_revs'].unique() return {'Episodes': eps_errors.tolist(), 'Header': header_errors.tolist(), 'Reviews': revs_errors.tolist()} return error, _validate def validate_189(): error = ErrorDefinition( code='189', description='Child is aged 17 years or over at the beginning of the year, but an Strengths and Difficulties ' + '(SDQ) score or a reason for no Strengths and Difficulties (SDQ) score has been completed.', affected_fields=['DOB', 'SDQ_SCORE', 'SDQ_REASON'] ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] collection_start = dfs['metadata']['collection_start'] # datetime format allows appropriate comparison between dates oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # If <DOB> >17 years prior to <COLLECTION_START_DATE> then <SDQ_SCORE> and <SDQ_REASON> should not be provided mask = ((oc2['DOB'] + pd.offsets.DateOffset(years=17)) <= collection_start) & ( oc2['SDQ_REASON'].notna() | oc2['SDQ_SCORE'].notna()) # That is, raise error if collection_start > DOB + 17years oc_error_locs = oc2.index[mask] return {'OC2': oc_error_locs.tolist()} return error, _validate def validate_226(): error = ErrorDefinition( code='226', description='Reason for placement change is not required.', affected_fields=['REASON_PLACE_CHANGE', 'PLACE'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] code_list = ['T0', 'T1', 'T2', 'T3', 'T4'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') # create column to see previous REASON_PLACE_CHANGE episodes = episodes.sort_values(['CHILD', 'DECOM']) episodes['PREVIOUS_REASON'] = episodes.groupby('CHILD')['REASON_PLACE_CHANGE'].shift(1) # If <PL> = 'T0'; 'T1'; 'T2'; 'T3' or 'T4' then <REASON_PLACE_CHANGE> should be null in current episode and current episode - 1 mask = episodes['PLACE'].isin(code_list) & ( episodes['REASON_PLACE_CHANGE'].notna() | episodes['PREVIOUS_REASON'].notna()) # error locations error_locs = episodes.index[mask] return {'Episodes': error_locs.tolist()} return error, _validate def validate_358(): error = ErrorDefinition( code='358', description='Child with this legal status should not be under 10.', affected_fields=['DECOM', 'DOB', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs: return {} else: episodes = dfs['Episodes'] header = dfs['Header'] code_list = ['J1', 'J2', 'J3'] # convert dates to datetime format episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # Where <LS> = ‘J1’ or ‘J2’ or ‘J3’ then <DOB> should <= to 10 years prior to <DECOM> mask = merged['LS'].isin(code_list) & (merged['DOB'] + pd.offsets.DateOffset(years=10) < merged['DECOM']) # That is, raise error if DECOM > DOB + 10years # error locations header_error_locs = merged.loc[mask, 'index_er'] episode_error_locs = merged.loc[mask, 'index_eps'] # one to many join implies use .unique on the 'one' return {'Episodes': episode_error_locs.tolist(), 'Header': header_error_locs.unique().tolist()} return error, _validate def validate_407(): error = ErrorDefinition( code='407', description='Reason episode ceased is Special Guardianship Order, but child has reached age 18.', affected_fields=['DEC', 'DOB', 'REC'] ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs: return {} else: episodes = dfs['Episodes'] header = dfs['Header'] code_list = ['E45', 'E46', 'E47', 'E48'] # convert dates to datetime format episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # If <REC> = ‘E45’ or ‘E46’ or ‘E47’ or ‘E48’ then <DOB> must be < 18 years prior to <DEC> mask = merged['REC'].isin(code_list) & (merged['DOB'] + pd.offsets.DateOffset(years=18) < merged['DEC']) # That is, raise error if DEC > DOB + 10years # error locations header_error_locs = merged.loc[mask, 'index_er'] episode_error_locs = merged.loc[mask, 'index_eps'] # one to many join implies use .unique on the 'one' return {'Episodes': episode_error_locs.tolist(), 'Header': header_error_locs.unique().tolist()} return error, _validate def validate_1007(): error = ErrorDefinition( code='1007', description='Care leaver information is not required for 17- or 18-year olds who are still looked after.', affected_fields=['DEC', 'REC', 'DOB', 'IN_TOUCH', 'ACTIV', 'ACCOM'] ) def _validate(dfs): if 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_end = dfs['metadata']['collection_end'] # convert dates to datetime format oc3['DOB'] = pd.to_datetime(oc3['DOB'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) oc3.reset_index(inplace=True) merged = episodes.merge(oc3, on='CHILD', how='left', suffixes=['_eps', '_oc3']) # If <DOB> < 19 and >= to 17 years prior to <COLLECTION_END_DATE> and current episode <DEC> and or <REC> not provided then <IN_TOUCH>, <ACTIV> and <ACCOM> should not be provided check_age = (merged['DOB'] + pd.offsets.DateOffset(years=17) <= collection_end) & ( merged['DOB'] + pd.offsets.DateOffset(years=19) > collection_end) # That is, check that 17<=age<19 check_dec_rec = merged['REC'].isna() | merged['DEC'].isna() # if either DEC or REC are absent mask = check_age & check_dec_rec & ( merged['IN_TOUCH'].notna() | merged['ACTIV'].notna() | merged['ACCOM'].notna()) # Then raise an error if either IN_TOUCH, ACTIV, or ACCOM have been provided too # error locations oc3_error_locs = merged.loc[mask, 'index_oc3'] episode_error_locs = merged.loc[mask, 'index_eps'] # one to many join implies use .unique on the 'one' return {'Episodes': episode_error_locs.tolist(), 'OC3': oc3_error_locs.unique().tolist()} return error, _validate def validate_442(): error = ErrorDefinition( code='442', description='Unique Pupil Number (UPN) field is not completed.', affected_fields=['UPN', 'LS'] ) def _validate(dfs): if ('Episodes' not in dfs) or ('Header' not in dfs): return {} else: episodes = dfs['Episodes'] header = dfs['Header'] episodes.reset_index(inplace=True) header.reset_index(inplace=True) code_list = ['V3', 'V4'] # merge left on episodes to get all children for which episodes have been recorded even if they do not exist on the header. merged = episodes.merge(header, on=['CHILD'], how='left', suffixes=['_eps', '_er']) # Where any episode present, with an <LS> not = 'V3' or 'V4' then <UPN> must be provided mask = (~merged['LS'].isin(code_list)) & merged['UPN'].isna() episode_error_locs = merged.loc[mask, 'index_eps'] header_error_locs = merged.loc[mask, 'index_er'] return {'Episodes': episode_error_locs.tolist(), # Select unique values since many episodes are joined to one header # and multiple errors will be raised for the same index. 'Header': header_error_locs.dropna().unique().tolist()} return error, _validate def validate_344(): error = ErrorDefinition( code='344', description='The record shows the young person has died or returned home to live with parent(s) or someone with parental responsibility for a continuous period of 6 months or more, but activity and/or accommodation on leaving care have been completed.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'] ) def _validate(dfs): if 'OC3' not in dfs: return {} else: oc3 = dfs['OC3'] # If <IN_TOUCH> = 'DIED' or 'RHOM' then <ACTIV> and <ACCOM> should not be provided mask = ((oc3['IN_TOUCH'] == 'DIED') | (oc3['IN_TOUCH'] == 'RHOM')) & ( oc3['ACTIV'].notna() | oc3['ACCOM'].notna()) error_locations = oc3.index[mask] return {'OC3': error_locations.to_list()} return error, _validate def validate_345(): error = ErrorDefinition( code='345', description='The data collection record shows the local authority is in touch with this young person, but activity and/or accommodation data items are zero.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'] ) def _validate(dfs): if 'OC3' not in dfs: return {} else: oc3 = dfs['OC3'] # If <IN_TOUCH> = 'Yes' then <ACTIV> and <ACCOM> must be provided mask = (oc3['IN_TOUCH'] == 'YES') & (oc3['ACTIV'].isna() | oc3['ACCOM'].isna()) error_locations = oc3.index[mask] return {'OC3': error_locations.to_list()} return error, _validate def validate_384(): error = ErrorDefinition( code='384', description='A child receiving respite care cannot be in a long-term foster placement ', affected_fields=['PLACE', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] # Where <LS> = 'V3' or 'V4' then <PL> must not be 'U1' or 'U4' mask = ((episodes['LS'] == 'V3') | (episodes['LS'] == 'V4')) & ( (episodes['PLACE'] == 'U1') | (episodes['PLACE'] == 'U4')) error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_390(): error = ErrorDefinition( code='390', description='Reason episode ceased is adopted but child has not been previously placed for adoption.', affected_fields=['PLACE', 'REC'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] # If <REC> = 'E11' or 'E12' then <PL> must be one of 'A3', 'A4', 'A5' or 'A6' mask = ((episodes['REC'] == 'E11') | (episodes['REC'] == 'E12')) & ~( (episodes['PLACE'] == 'A3') | (episodes['PLACE'] == 'A4') | (episodes['PLACE'] == 'A5') | ( episodes['PLACE'] == 'A6')) error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_378(): error = ErrorDefinition( code='378', description='A child who is placed with parent(s) cannot be looked after under a single period of accommodation under Section 20 of the Children Act 1989.', affected_fields=['PLACE', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] # the & sign supercedes the ==, so brackets are necessary here mask = (episodes['PLACE'] == 'P1') & (episodes['LS'] == 'V2') error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_398(): error = ErrorDefinition( code='398', description='Distance field completed but child looked after under legal status V3 or V4.', affected_fields=['LS', 'HOME_POST', 'PL_POST'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = ((episodes['LS'] == 'V3') | (episodes['LS'] == 'V4')) & ( episodes['HOME_POST'].notna() | episodes['PL_POST'].notna()) error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_451(): error = ErrorDefinition( code='451', description='Child is still freed for adoption, but freeing orders could not be applied for since 30 December 2005.', affected_fields=['DEC', 'REC', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = episodes['DEC'].isna() & episodes['REC'].isna() & (episodes['LS'] == 'D1') error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_519(): error = ErrorDefinition( code='519', description='Data entered on the legal status of adopters shows civil partnership couple, but data entered on genders of adopters does not show it as a couple.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'] ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] mask = (ad1['LS_ADOPTR'] == 'L2') & ( (ad1['SEX_ADOPTR'] != 'MM') & (ad1['SEX_ADOPTR'] != 'FF') & (ad1['SEX_ADOPTR'] != 'MF')) error_locations = ad1.index[mask] return {'AD1': error_locations.to_list()} return error, _validate def validate_520(): error = ErrorDefinition( code='520', description='Data entry on the legal status of adopters shows different gender married couple but data entry on genders of adopters shows it as a same gender couple.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'] ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] # check condition mask = (ad1['LS_ADOPTR'] == 'L11') & (ad1['SEX_ADOPTR'] != 'MF') error_locations = ad1.index[mask] return {'AD1': error_locations.to_list()} return error, _validate def validate_522(): error = ErrorDefinition( code='522', description='Date of decision that the child should be placed for adoption must be on or before the date that a child should no longer be placed for adoption.', affected_fields=['DATE_PLACED', 'DATE_PLACED_CEASED'] ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: placed_adoption = dfs['PlacedAdoption'] # Convert to datetimes placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') # Boolean mask mask = placed_adoption['DATE_PLACED_CEASED'] > placed_adoption['DATE_PLACED'] error_locations = placed_adoption.index[mask] return {'PlacedAdoption': error_locations.to_list()} return error, _validate def validate_563(): error = ErrorDefinition( code='563', description='The child should no longer be placed for adoption but the date of the decision that the child should be placed for adoption is blank', affected_fields=['DATE_PLACED', 'REASON_PLACED_CEASED', 'DATE_PLACED_CEASED'], ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: placed_adoption = dfs['PlacedAdoption'] mask = placed_adoption['REASON_PLACED_CEASED'].notna() & placed_adoption['DATE_PLACED_CEASED'].notna() & \ placed_adoption['DATE_PLACED'].isna() error_locations = placed_adoption.index[mask] return {'PlacedAdoption': error_locations.to_list()} return error, _validate def validate_544(): error = ErrorDefinition( code='544', description="Any child who has conviction information completed must also have immunisation, teeth check, health assessment and substance misuse problem identified fields completed.", affected_fields=['CONVICTED', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] convict = oc2['CONVICTED'].astype(str) == '1' immunisations = oc2['IMMUNISATIONS'].isna() teeth_ck = oc2['TEETH_CHECK'].isna() health_ass = oc2['HEALTH_ASSESSMENT'].isna() sub_misuse = oc2['SUBSTANCE_MISUSE'].isna() error_mask = convict & (immunisations | teeth_ck | health_ass | sub_misuse) validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.to_list()} return error, _validate def validate_634(): error = ErrorDefinition( code='634', description='There are entries for previous permanence options, but child has not started to be looked after from 1 April 2016 onwards.', affected_fields=['LA_PERM', 'PREV_PERM', 'DATE_PERM', 'DECOM'] ) def _validate(dfs): if 'Episodes' not in dfs or 'PrevPerm' not in dfs: return {} else: episodes = dfs['Episodes'] prevperm = dfs['PrevPerm'] collection_start = dfs['metadata']['collection_start'] # convert date field to appropriate format episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # the maximum date has the highest possibility of satisfying the condition episodes['LAST_DECOM'] = episodes.groupby('CHILD')['DECOM'].transform('max') # prepare to merge episodes.reset_index(inplace=True) prevperm.reset_index(inplace=True) merged = prevperm.merge(episodes, on='CHILD', how='left', suffixes=['_prev', '_eps']) # If <PREV_PERM> or <LA_PERM> or <DATE_PERM> provided, then at least 1 episode must have a <DECOM> later than 01/04/2016 mask = (merged['PREV_PERM'].notna() | merged['DATE_PERM'].notna() | merged['LA_PERM'].notna()) & ( merged['LAST_DECOM'] < collection_start) eps_error_locs = merged.loc[mask, 'index_eps'] prevperm_error_locs = merged.loc[mask, 'index_prev'] # return {'PrevPerm':prevperm_error_locs} return {'Episodes': eps_error_locs.unique().tolist(), 'PrevPerm': prevperm_error_locs.unique().tolist()} return error, _validate def validate_158(): error = ErrorDefinition( code='158', description='If a child has been recorded as receiving an intervention for their substance misuse problem, then the additional item on whether an intervention was offered should be left blank.', affected_fields=['INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] error_mask = oc2['INTERVENTION_RECEIVED'].astype(str).eq('1') & oc2['INTERVENTION_OFFERED'].notna() error_locations = oc2.index[error_mask] return {'OC2': error_locations.tolist()} return error, _validate def validate_133(): error = ErrorDefinition( code='133', description='Data entry for accommodation after leaving care is invalid. If reporting on a childs accommodation after leaving care the data entry must be valid', affected_fields=['ACCOM'], ) def _validate(dfs): if 'OC3' not in dfs: return {} else: oc3 = dfs['OC3'] valid_codes = ['B1', 'B2', 'C1', 'C2', 'D1', 'D2', 'E1', 'E2', 'G1', 'G2', 'H1', 'H2', 'K1', 'K2', 'R1', 'R2', 'S2', 'T1', 'T2', 'U1', 'U2', 'V1', 'V2', 'W1', 'W2', 'X2', 'Y1', 'Y2', 'Z1', 'Z2', '0'] error_mask = ~oc3['ACCOM'].isna() & ~oc3['ACCOM'].isin(valid_codes) error_locations = oc3.index[error_mask] return {'OC3': error_locations.tolist()} return error, _validate def validate_565(): error = ErrorDefinition( code='565', description='The date that the child started to be missing or away from placement without authorisation has been completed but whether the child was missing or away from placement without authorisation has not been completed.', affected_fields=['MISSING', 'MIS_START'] ) def _validate(dfs): if 'Missing' not in dfs: return {} else: missing = dfs['Missing'] mask = missing['MIS_START'].notna() & missing['MISSING'].isna() error_locations = missing.index[mask] return {'Missing': error_locations.to_list()} return error, _validate def validate_433(): error = ErrorDefinition( code='433', description='The reason for new episode suggests that this is a continuation episode, but the episode does not start on the same day as the last episode finished.', affected_fields=['RNE', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['original_index'] = episodes.index episodes.sort_values(['CHILD', 'DECOM', 'DEC'], inplace=True) episodes[['PREVIOUS_DEC', 'PREVIOUS_CHILD']] = episodes[['DEC', 'CHILD']].shift(1) rne_is_ongoing = episodes['RNE'].str.upper().astype(str).isin(['P', 'L', 'T', 'U', 'B']) date_mismatch = episodes['PREVIOUS_DEC'] != episodes['DECOM'] missing_date = episodes['PREVIOUS_DEC'].isna() | episodes['DECOM'].isna() same_child = episodes['PREVIOUS_CHILD'] == episodes['CHILD'] error_mask = rne_is_ongoing & (date_mismatch | missing_date) & same_child error_locations = episodes['original_index'].loc[error_mask].sort_values() return {'Episodes': error_locations.to_list()} return error, _validate def validate_437(): error = ErrorDefinition( code='437', description='Reason episode ceased is child has died or is aged 18 or over but there are further episodes.', affected_fields=['REC'], ) # !# potential false negatives, as this only operates on the current year's data def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes.sort_values(['CHILD', 'DECOM'], inplace=True) episodes[['NEXT_DECOM', 'NEXT_CHILD']] = episodes[['DECOM', 'CHILD']].shift(-1) # drop rows with missing DECOM as invalid/missing values can lead to errors episodes = episodes.dropna(subset=['DECOM']) ceased_e2_e15 = episodes['REC'].str.upper().astype(str).isin(['E2', 'E15']) has_later_episode = episodes['CHILD'] == episodes['NEXT_CHILD'] error_mask = ceased_e2_e15 & has_later_episode error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_547(): error = ErrorDefinition( code='547', description="Any child who has health promotion information completed must also have immunisation, teeth check, health assessment and substance misuse problem identified fields completed.", affected_fields=['HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] healthck = oc2['HEALTH_CHECK'].astype(str) == '1' immunisations = oc2['IMMUNISATIONS'].isna() teeth_ck = oc2['TEETH_CHECK'].isna() health_ass = oc2['HEALTH_ASSESSMENT'].isna() sub_misuse = oc2['SUBSTANCE_MISUSE'].isna() error_mask = healthck & (immunisations | teeth_ck | health_ass | sub_misuse) validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.to_list()} return error, _validate def validate_635(): error = ErrorDefinition( code='635', description='There are entries for date of order and local authority code where previous permanence option was arranged but previous permanence code is Z1', affected_fields=['LA_PERM', 'DATE_PERM', 'PREV_PERM'] ) def _validate(dfs): if 'PrevPerm' not in dfs: return {} else: prev_perm = dfs['PrevPerm'] # raise and error if either LA_PERM or DATE_PERM are present, yet PREV_PERM is absent. mask = ((prev_perm['LA_PERM'].notna() | prev_perm['DATE_PERM'].notna()) & prev_perm['PREV_PERM'].isna()) error_locations = prev_perm.index[mask] return {'PrevPerm': error_locations.to_list()} return error, _validate def validate_550(): error = ErrorDefinition( code='550', description='A placement provider code of PR0 can only be associated with placement P1.', affected_fields=['PLACE', 'PLACE_PROVIDER'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = (episodes['PLACE'] != 'P1') & episodes['PLACE_PROVIDER'].eq('PR0') validation_error_locations = episodes.index[mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_217(): error = ErrorDefinition( code='217', description='Children who are placed for adoption with current foster carers (placement types A3 or A5) must have a reason for new episode of S, T or U.', affected_fields=['PLACE', 'DECOM', 'RNE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') max_decom_allowed = pd.to_datetime('01/04/2015', format='%d/%m/%Y', errors='coerce') reason_new_ep = ['S', 'T', 'U'] place_codes = ['A3', 'A5'] mask = (episodes['PLACE'].isin(place_codes) & (episodes['DECOM'] >= max_decom_allowed)) & ~episodes[ 'RNE'].isin(reason_new_ep) validation_error_mask = mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_518(): error = ErrorDefinition( code='518', description='If reporting legal status of adopters is L4 then the genders of adopters should be coded as MM or FF. MM = the adopting couple are both males. FF = the adopting couple are both females.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] error_mask = AD1['LS_ADOPTR'].eq('L4') & ~AD1['SEX_ADOPTR'].isin(['MM', 'FF']) error_locations = AD1.index[error_mask] return {'AD1': error_locations.tolist()} return error, _validate def validate_517(): error = ErrorDefinition( code='517', description='If reporting legal status of adopters is L3 then the genders of adopters should be coded as MF. MF = the adopting couple are male and female.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] error_mask = AD1['LS_ADOPTR'].eq('L3') & ~AD1['SEX_ADOPTR'].isin(['MF']) error_locations = AD1.index[error_mask] return {'AD1': error_locations.tolist()} return error, _validate def validate_558(): error = ErrorDefinition( code='558', description='If a child has been adopted, then the decision to place them for adoption has not been disrupted and the date of the decision that a child should no longer be placed for adoption should be left blank. if the REC code is either E11 or E12 then the DATE PLACED CEASED date should not be provided', affected_fields=['DATE_PLACED_CEASED', 'REC'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placedAdoptions = dfs['PlacedAdoption'] episodes = episodes.reset_index() rec_codes = ['E11', 'E12'] placeEpisodes = episodes[episodes['REC'].isin(rec_codes)] merged = placeEpisodes.merge(placedAdoptions, how='left', on='CHILD').set_index('index') episodes_with_errors = merged[merged['DATE_PLACED_CEASED'].notna()] error_mask = episodes.index.isin(episodes_with_errors.index) error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_453(): error = ErrorDefinition( code='453', description='Contradiction between placement distance in the last episode of the previous year and in the first episode of the current year.', affected_fields=['PL_DISTANCE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} if 'Episodes_last' not in dfs: return {} else: episodes = dfs['Episodes'] episodes_last = dfs['Episodes_last'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['PL_DISTANCE'] = pd.to_numeric(episodes['PL_DISTANCE'], errors='coerce') episodes_last['PL_DISTANCE'] = pd.to_numeric(episodes_last['PL_DISTANCE'], errors='coerce') # drop rows with missing DECOM before finding idxmin/max, as invalid/missing values can lead to errors episodes = episodes.dropna(subset=['DECOM']) episodes_last = episodes_last.dropna(subset=['DECOM']) episodes_min = episodes.groupby('CHILD')['DECOM'].idxmin() episodes_last_max = episodes_last.groupby('CHILD')['DECOM'].idxmax() episodes = episodes[episodes.index.isin(episodes_min)] episodes_last = episodes_last[episodes_last.index.isin(episodes_last_max)] episodes_merged = episodes.reset_index().merge(episodes_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = episodes_merged['_merge'] == 'both' same_rne = episodes_merged['RNE'] == episodes_merged['RNE_last'] last_year_open = episodes_merged['DEC_last'].isna() different_pl_dist = abs(episodes_merged['PL_DISTANCE'] - episodes_merged['PL_DISTANCE_last']) >= 0.2 error_mask = in_both_years & same_rne & last_year_open & different_pl_dist validation_error_locations = episodes.index[error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_516(): error = ErrorDefinition( code='516', description='The episode data submitted for this child does not show that he/she was with their former foster carer(s) during the year.If the code in the reason episode ceased is E45 or E46 the child must have a placement code of U1 to U6.', affected_fields=['REC', 'PLACE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] place_codes = ['U1', 'U2', 'U3', 'U4', 'U5', 'U6'] rec_codes = ['E45', 'E46'] error_mask = episodes['REC'].isin(rec_codes) & ~episodes['PLACE'].isin(place_codes) validation_error_locations = episodes.index[error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_511(): error = ErrorDefinition( code='511', description='If reporting that the number of person(s) adopting the looked after child is two adopters then the code should only be MM, FF or MF. MM = the adopting couple are both males; FF = the adopting couple are both females; MF = The adopting couple are male and female.', affected_fields=['NB_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] mask = AD1['NB_ADOPTR'].astype(str).eq('2') & AD1['SEX_ADOPTR'].isin(['M1', 'F1']) validation_error_mask = mask validation_error_locations = AD1.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_524(): error = ErrorDefinition( code='524', description='If reporting legal status of adopters is L12 then the genders of adopters should be coded as MM or FF. MM = the adopting couple are both males. FF = the adopting couple are both females', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] error_mask = AD1['LS_ADOPTR'].eq('L12') & ~AD1['SEX_ADOPTR'].isin(['MM', 'FF']) error_locations = AD1.index[error_mask] return {'AD1': error_locations.tolist()} return error, _validate def validate_441(): error = ErrorDefinition( code='441', description='Participation method indicates child was 4 years old or over at the time of the review, but the date of birth and review date indicates the child was under 4 years old.', affected_fields=['DOB', 'REVIEW', 'REVIEW_CODE'], ) def _validate(dfs): if 'Reviews' not in dfs: return {} else: reviews = dfs['Reviews'] reviews['DOB'] = pd.to_datetime(reviews['DOB'], format='%d/%m/%Y', errors='coerce') reviews['REVIEW'] = pd.to_datetime(reviews['REVIEW'], format='%d/%m/%Y', errors='coerce') reviews = reviews.dropna(subset=['REVIEW', 'DOB']) mask = reviews['REVIEW_CODE'].isin(['PN1', 'PN2', 'PN3', 'PN4', 'PN5', 'PN6', 'PN7']) & ( reviews['REVIEW'] < reviews['DOB'] + pd.offsets.DateOffset(years=4)) validation_error_mask = mask validation_error_locations = reviews.index[validation_error_mask] return {'Reviews': validation_error_locations.tolist()} return error, _validate def validate_184(): error = ErrorDefinition( code='184', description='Date of decision that a child should be placed for adoption is before the child was born.', affected_fields=['DATE_PLACED', # PlacedAdoptino 'DOB'], # Header ) def _validate(dfs): if 'Header' not in dfs or 'PlacedAdoption' not in dfs: return {} else: child_record = dfs['Header'] placed_for_adoption = dfs['PlacedAdoption'] all_data = (placed_for_adoption .reset_index() .merge(child_record, how='left', on='CHILD', suffixes=[None, '_P4A'])) all_data['DATE_PLACED'] = pd.to_datetime(all_data['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') all_data['DOB'] = pd.to_datetime(all_data['DOB'], format='%d/%m/%Y', errors='coerce') mask = (all_data['DATE_PLACED'] >= all_data['DOB']) | all_data['DATE_PLACED'].isna() validation_error = ~mask validation_error_locations = all_data[validation_error]['index'].unique() return {'PlacedAdoption': validation_error_locations.tolist()} return error, _validate def validate_612(): error = ErrorDefinition( code='612', description="Date of birth field has been completed but mother field indicates child is not a mother.", affected_fields=['SEX', 'MOTHER', 'MC_DOB'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] error_mask = ( ((header['MOTHER'].astype(str) == '0') | header['MOTHER'].isna()) & (header['SEX'].astype(str) == '2') & header['MC_DOB'].notna() ) validation_error_locations = header.index[error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_552(): """ This error checks that the first adoption episode is after the last decision ! If there are multiple of either there may be unexpected results ! """ error = ErrorDefinition( code="552", description="Date of Decision to place a child for adoption should be on or prior to the date that the child was placed for adoption.", # Field that defines date of decision to place a child for adoption is DATE_PLACED and the start of adoption is defined by DECOM with 'A' placement types. affected_fields=['DATE_PLACED', 'DECOM'], ) def _validate(dfs): if ('PlacedAdoption' not in dfs) or ('Episodes' not in dfs): return {} else: # get the required datasets placed_adoption = dfs['PlacedAdoption'] episodes = dfs['Episodes'] # keep index values so that they stay the same when needed later on for error locations placed_adoption.reset_index(inplace=True) episodes.reset_index(inplace=True) adoption_eps = episodes[episodes['PLACE'].isin(['A3', 'A4', 'A5', 'A6'])].copy() # find most recent adoption decision placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') # remove rows where either of the required values have not been filled. placed_adoption = placed_adoption[placed_adoption['DATE_PLACED'].notna()] placed_adoption_inds = placed_adoption.groupby('CHILD')['DATE_PLACED'].idxmax(skipna=True) last_decision = placed_adoption.loc[placed_adoption_inds] # first time child started adoption adoption_eps["DECOM"] = pd.to_datetime(adoption_eps['DECOM'], format='%d/%m/%Y', errors='coerce') adoption_eps = adoption_eps[adoption_eps['DECOM'].notna()] adoption_eps_inds = adoption_eps.groupby('CHILD')['DECOM'].idxmin(skipna=True) # full information of first adoption first_adoption = adoption_eps.loc[adoption_eps_inds] # date of decision and date of start of adoption (DECOM) have to be put in one table merged = first_adoption.merge(last_decision, on=['CHILD'], how='left', suffixes=['_EP', '_PA']) # check to see if date of decision to place is less than or equal to date placed. decided_after_placed = merged["DECOM"] < merged["DATE_PLACED"] # find the corresponding location of error values per file. episode_error_locs = merged.loc[decided_after_placed, 'index_EP'] placedadoption_error_locs = merged.loc[decided_after_placed, 'index_PA'] return {"PlacedAdoption": placedadoption_error_locs.to_list(), "Episodes": episode_error_locs.to_list()} return error, _validate def validate_551(): error = ErrorDefinition( code='551', description='Child has been placed for adoption but there is no date of the decision that the child should be placed for adoption.', affected_fields=['DATE_PLACED', 'PLACE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placedAdoptions = dfs['PlacedAdoption'] episodes = episodes.reset_index() place_codes = ['A3', 'A4', 'A5', 'A6'] placeEpisodes = episodes[episodes['PLACE'].isin(place_codes)] merged = placeEpisodes.merge(placedAdoptions, how='left', on='CHILD').set_index('index') episodes_with_errors = merged[merged['DATE_PLACED'].isna()] error_mask = episodes.index.isin(episodes_with_errors.index) error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_557(): error = ErrorDefinition( code='557', description="Child for whom the decision was made that they should be placed for adoption has left care " + "but was not adopted and information on the decision that they should no longer be placed for " + "adoption items has not been completed.", affected_fields=['DATE_PLACED_CEASED', 'REASON_PLACED_CEASED', # PlacedAdoption 'PLACE', 'LS', 'REC'], # Episodes ) def _validate(dfs): if 'Episodes' not in dfs: return {} if 'PlacedAdoption' not in dfs: return {} else: eps = dfs['Episodes'] placed = dfs['PlacedAdoption'] eps = eps.reset_index() placed = placed.reset_index() child_placed = eps['PLACE'].isin(['A3', 'A4', 'A5', 'A6']) order_granted = eps['LS'].isin(['D1', 'E1']) not_adopted = ~eps['REC'].isin(['E11', 'E12']) & eps['REC'].notna() placed['ceased_incomplete'] = ( placed['DATE_PLACED_CEASED'].isna() | placed['REASON_PLACED_CEASED'].isna() ) eps = eps[(child_placed | order_granted) & not_adopted] eps = eps.merge(placed, on='CHILD', how='left', suffixes=['_EP', '_PA'], indicator=True) eps = eps[(eps['_merge'] == 'left_only') | eps['ceased_incomplete']] EP_errors = eps['index_EP'] PA_errors = eps['index_PA'].dropna() return { 'Episodes': EP_errors.to_list(), 'PlacedAdoption': PA_errors.to_list(), } return error, _validate def validate_207(): error = ErrorDefinition( code='207', description='Mother status for the current year disagrees with the mother status already recorded for this child.', affected_fields=['MOTHER'], ) def _validate(dfs): if 'Header' not in dfs or 'Header_last' not in dfs: return {} else: header = dfs['Header'] header_last = dfs['Header_last'] header_merged = header.reset_index().merge(header_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = header_merged['_merge'] == 'both' mother_is_different = header_merged['MOTHER'].astype(str) != header_merged['MOTHER_last'].astype(str) mother_was_true = header_merged['MOTHER_last'].astype(str) == '1' error_mask = in_both_years & mother_is_different & mother_was_true error_locations = header.index[error_mask] return {'Header': error_locations.to_list()} return error, _validate def validate_523(): error = ErrorDefinition( code='523', description="Date of decision that the child should be placed for adoption should be the same date as the decision that adoption is in the best interest (date should be placed).", affected_fields=['DATE_PLACED', 'DATE_INT'], ) def _validate(dfs): if ("AD1" not in dfs) or ("PlacedAdoption" not in dfs): return {} else: placed_adoption = dfs["PlacedAdoption"] ad1 = dfs["AD1"] # keep initial index values to be reused for locating errors later on. placed_adoption.reset_index(inplace=True) ad1.reset_index(inplace=True) # convert to datetime to enable comparison placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format="%d/%m/%Y", errors='coerce') ad1["DATE_INT"] = pd.to_datetime(ad1['DATE_INT'], format='%d/%m/%Y', errors='coerce') # drop rows where either of the required values have not been filled. placed_adoption = placed_adoption[placed_adoption["DATE_PLACED"].notna()] ad1 = ad1[ad1["DATE_INT"].notna()] # bring corresponding values together from both dataframes merged_df = placed_adoption.merge(ad1, on=['CHILD'], how='inner', suffixes=["_AD", "_PA"]) # find error values different_dates = merged_df['DATE_INT'] != merged_df['DATE_PLACED'] # map error locations to corresponding indices pa_error_locations = merged_df.loc[different_dates, 'index_PA'] ad1_error_locations = merged_df.loc[different_dates, 'index_AD'] return {"PlacedAdoption": pa_error_locations.to_list(), "AD1": ad1_error_locations.to_list()} return error, _validate def validate_3001(): error = ErrorDefinition( code='3001', description='Where care leavers information is being returned for a young person around their 17th birthday, the accommodation cannot be with their former foster carer(s).', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'OC3' not in dfs: return {} else: header = dfs['Header'] oc3 = dfs['OC3'] collection_start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') header['DOB17'] = header['DOB'] + pd.DateOffset(years=17) oc3_merged = oc3.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') accom_foster = oc3_merged['ACCOM'].str.upper().astype(str).isin(['Z1', 'Z2']) age_17_in_year = (oc3_merged['DOB17'] <= collection_end) & (oc3_merged['DOB17'] >= collection_start) error_mask = accom_foster & age_17_in_year error_locations = oc3.index[error_mask] return {'OC3': error_locations.to_list()} return error, _validate def validate_389(): error = ErrorDefinition( code='389', description='Reason episode ceased is that child transferred to care of adult social care services, but child is aged under 16.', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB16'] = header['DOB'] + pd.DateOffset(years=16) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') ceased_asc = episodes_merged['REC'].str.upper().astype(str).isin(['E7']) ceased_over_16 = episodes_merged['DOB16'] <= episodes_merged['DEC'] error_mask = ceased_asc & ~ceased_over_16 error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_387(): error = ErrorDefinition( code='387', description='Reason episode ceased is child moved into independent living arrangement, but the child is aged under 14.', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB14'] = header['DOB'] + pd.DateOffset(years=14) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') ceased_indep = episodes_merged['REC'].str.upper().astype(str).isin(['E5', 'E6']) ceased_over_14 = episodes_merged['DOB14'] <= episodes_merged['DEC'] dec_present = episodes_merged['DEC'].notna() error_mask = ceased_indep & ~ceased_over_14 & dec_present error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_452(): error = ErrorDefinition( code='452', description='Contradiction between local authority of placement code in the last episode of the previous year and in the first episode of the current year.', affected_fields=['PL_LA'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} if 'Episodes_last' not in dfs: return {} else: episodes = dfs['Episodes'] episodes_last = dfs['Episodes_last'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_min = episodes.groupby('CHILD')['DECOM'].idxmin() episodes_last_max = episodes_last.groupby('CHILD')['DECOM'].idxmax() episodes = episodes[episodes.index.isin(episodes_min)] episodes_last = episodes_last[episodes_last.index.isin(episodes_last_max)] episodes_merged = episodes.reset_index().merge(episodes_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = episodes_merged['_merge'] == 'both' same_rne = episodes_merged['RNE'] == episodes_merged['RNE_last'] last_year_open = episodes_merged['DEC_last'].isna() different_pl_la = episodes_merged['PL_LA'].astype(str) != episodes_merged['PL_LA_last'].astype(str) error_mask = in_both_years & same_rne & last_year_open & different_pl_la validation_error_locations = episodes.index[error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_386(): error = ErrorDefinition( code='386', description='Reason episode ceased is adopted but child has reached age 18.', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB18'] = header['DOB'] +
pd.DateOffset(years=18)
pandas.DateOffset
# Make a stackplot and a stackplot where total = 100% of agegroups # <NAME> (@rcsmit) - MIT Licence # IN: https://data.rivm.nl/covid-19/COVID-19_ziekenhuis_ic_opnames_per_leeftijdsgroep.csv # OUT : Stackplots # # TODO : Legend DONE # Nice colors DONE # Restrictions ?? # Set a date-period DONE # Make everything a function call # Integration in the dashboard # # Inspired by a graph by @chivotweets # https://twitter.com/rubenivangaalen/status/1374443261704605697 import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import datetime import datetime as dt from datetime import datetime, timedelta import prepare_casuslandelijk def save_df(df, name): """ _ _ _ """ OUTPUT_DIR = ( "C:\\Users\\rcxsm\\Documents\\phyton_scripts\\covid19_seir_models\\output\\" ) name_ = OUTPUT_DIR + name + ".csv" compression_opts = dict(method=None, archive_name=name_) df.to_csv(name_, index=False, compression=compression_opts) print("--- Saving " + name_ + " ---") def smooth(df, columnlist): columnlist_sma_df = [] columnlist_df= [] columnlist_names= [] columnlist_ages = [] # 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+ #pop_ = [1756000, 1980000, 2245000, 2176000, 2164000, 2548000, 2141000, 1615000, 839000] #fraction = [0.10055, 0.11338, 0.12855, 0.12460, 0.12391, 0.14590, 0.12260, 0.09248, 0.04804] for c in columnlist: #new_column = c + "_SMA" new_column = c # print("Generating " + new_column + "...") df[new_column] = ( df.iloc[:, df.columns.get_loc(c)].rolling(window=1, center=True).mean() ) columnlist_sma_df.append(df[new_column]) columnlist_df.append(df[c]) columnlist_names.append(new_column) columnlist_ages.append(c) # alleen de leeftijden, voor de legenda return df,columnlist_df, columnlist_sma_df,columnlist_names,columnlist_ages def hundred_stack_area(df, column_list): l = len(df) df["rowtotal"] = np.nan columnlist_names = [] dfcolumnlist = [] columnlist_ages = [] for c in column_list: new_column = str(c) + "_hstack" columnlist_ages.append(c) df[new_column] = np.nan columnlist_names.append(new_column) for r in range(df.first_valid_index(),(df.first_valid_index()+l)): row_total = 0 for c in column_list: # print (r) # print (df) # print (df.loc[r ,c] row_total += df.loc[r ,c] df.loc[r, "rowtotal"] = row_total for c in column_list: new_column = str(c) + "_hstack" for r in range(df.first_valid_index(),(df.first_valid_index()+l)): df.loc[r, new_column] = round((100 * df.loc[r, c] / df.loc[r, "rowtotal"]),2) dfcolumnlist.append(df[new_column]) df = df.drop(columns=["rowtotal"], axis=1) return df, columnlist_names, dfcolumnlist,columnlist_ages def drop_columns(df, what_to_drop): """ drop columns. what_to_drop : list """ if what_to_drop != None: what_to_drop = [what_to_drop] print("dropping " + str(what_to_drop)) for d in what_to_drop: df = df.drop(columns=[d], axis=1) return df def convert(list): return tuple(list) def make_age_graph(df, d, titel): # df = agg_ages(df) fig, ax = plt.subplots() for d_ in d: plt.plot(df["Date_of_statistics_week_start"], df[d_], label = d_) plt.legend() titel_ = titel + " (weekcijfers)" plt.title(titel_) plt.tight_layout() plt.show() def make_graph(df, columns_df,columnlist_names, columnlist_ages, datumveld, titel): #datumlijst = df[datumveld].tolist() #df = df[:-1] # drop last row since this one is incomplete datumlijst = df[datumveld].tolist() color_list = [ "#ff6666", # reddish 0 "#ac80a0", # purple 1 "#3fa34d", # green 2 "#EAD94C", # yellow 3 "#EFA00B", # orange 4 "#7b2d26", # red 5 "#3e5c76", # blue 6 "#e49273" , # dark salmon 7 "#1D2D44", # 8 "#02A6A8", "#4E9148", "#F05225", "#024754", "#FBAA27", "#302823", "#F07826", ] fig, ax = plt.subplots() sp = ax.stackplot(datumlijst, columns_df, colors=color_list) #ax.legend(loc="upper left") plt.title(titel) proxy = [mpl.patches.Rectangle((0,0), 0,0, facecolor=pol.get_facecolor()[0]) for pol in sp] ax.legend(proxy, tuple (columnlist_ages), bbox_to_anchor=(1.3, 1),loc="best") plt.tight_layout() plt.show() def show(df, c1,titel): datumveld = "Date_of_statistics_week_start" df, columnlist_df, columnlist_sma_df, columnlist_names, columnlist_ages = smooth(df, c1) titel = titel + " (weekcijfers)" make_graph (df, columnlist_df, columnlist_sma_df, columnlist_names, datumveld, titel) df, columnlist_hdred_names, columnlist_hdred_df, columnlist_ages = hundred_stack_area(df, columnlist_names) make_graph (df, columnlist_hdred_df,columnlist_names, columnlist_ages , datumveld, titel) def agg_ages(df): # make age groups df["0-49"] = df["0-14"] + df["15-19"] + df["20-24"] + df["25-29"] + df["30-34"] + df["35-39"] + df["40-44"] + df["45-49"] df["50-79"] = df["50-54"] + df["55-59"] + df["60-64"] + df["65-69"] + df["70-74"] + df["75-79"] df["80+"] = df["80-84"] + df["85-89"] + df["90+"] return df def prepare_data(): show_from = "2020-1-1" show_until = "2030-1-1" url1 = "C:\\Users\\rcxsm\\Documents\\phyton_scripts\\covid19_seir_models\\input\\COVID-19_ziekenhuis_ic_opnames_per_leeftijdsgroep.csv" # url1 = "https://data.rivm.nl/covid-19/COVID-19_ziekenhuis_ic_opnames_per_leeftijdsgroep.csv" df = pd.read_csv(url1, delimiter=";", low_memory=False) datumveld = "Date_of_statistics_week_start" df[datumveld] = pd.to_datetime(df[datumveld], format="%Y-%m-%d") df = df.reset_index() df.fillna(value=0, inplace=True) startdate =
pd.to_datetime(show_from)
pandas.to_datetime
import numpy as np from scipy.spatial import distance_matrix, distance from visualizations.iVisualization import VisualizationInterface from controls.controllers import TimeSeriesController import panel as pn import holoviews as hv from holoviews.streams import Pipe, Buffer import pandas as pd import time from threading import Thread from tkinter import * class TimeSeries(VisualizationInterface): def __init__(self, main): self._main = main self._dfstream = Buffer(pd.DataFrame({'time': [], 'neurons': [], 'color': []}, columns=['time', 'neurons', 'color']), length=1, index=False)# self._avarage_points = Buffer(pd.DataFrame({'time': [], 'neurons': []}, columns=['time', 'neurons']), length=1, index=False)# self._controls = TimeSeriesController(self._calculate, self._clear, self._dfstream, self._avarage_points, name = "Time Series") self._pipe_points = Pipe(data=[]) self.stop = False self.line = [] def thread(func): def wrapper(*args, **kwargs): current_thread = Thread(target=func, args=args, kwargs=kwargs) current_thread.start() return wrapper def _activate_controllers(self, ): self._main._controls.append(pn.Column(self._controls)) cmin, cmax = self._main._pipe.data.min(), self._main._pipe.data.max() Points = hv.DynamicMap(hv.Points, streams=[self._dfstream]).apply.opts(color='color', cmap=self._main._maincontrol.param.colormap, clim=(cmin, cmax)) Curve = hv.DynamicMap(hv.Curve, streams=[self._avarage_points]).opts(color='red') self._main._timeseries.append((Points*Curve).opts(width=950, height=350, ylim=(-1, self._main._m*self._main._n))) self._main._pdmap[0] = pn.Column(self._main._Image * hv.DynamicMap(hv.Points, streams=[self._pipe_points]).opts(color='Black', marker='*', size=30)) def _deactivate_controllers(self,): self._main._timeseries.clear() self._main._pdmap[0] = pn.Column(self._main._Image * self._main._Paths) @thread def _calculate(self, ): bmu = np.apply_along_axis(lambda x: np.argmin( np.linalg.norm(self._main._weights - x.reshape((1, self._main._dim)), axis=1)), 1, self._main._idata) matrix = self._main._pipe.data.reshape(-1,1) for i, u in enumerate(bmu): self._pipe_points.send(self._main._get_neuron_xy(u)) self._dfstream.send(pd.DataFrame(np.vstack([i, u, matrix[u]]).T, columns=['time', 'neurons', 'color'])) ewa = 0.01*self._controls.betta*self._avarage_points.data.neurons.iloc[-1] + (1-0.01*self._controls.betta)*u if self._avarage_points.data.neurons.size>0 else u #Exponentially Weighted Averages self._avarage_points.send(pd.DataFrame([(i, ewa)], columns=['time', 'neurons'])) time.sleep(self._controls.speed) if self.stop: self.stop = False break def _clear(self,): self.stop = True self._dfstream.clear() self._avarage_points.clear() self._pipe_points.send([]) def _add_data(self, unit = None): u = np.clip(unit, 0, self._main._m * self._main._n - 1) i = self._dfstream.data.size + 1 self._pipe_points.send(self._main._get_neuron_xy(u)) self._dfstream.send(
pd.DataFrame([(i, u)], columns=['time', 'neurons'])
pandas.DataFrame
''''' Authors: <NAME> (@anabab1999) and <NAME> (@felipezara2013) ''' from calendars import DayCounts import pandas as pd from pandas.tseries.offsets import DateOffset from bloomberg import BBG import numpy as np bbg = BBG() #Puxando os tickers para a curva zero tickers_zero_curve = ['S0023Z 1Y BLC2 Curncy', 'S0023Z 1D BLC2 Curncy', 'S0023Z 3M BLC2 Curncy', 'S0023Z 1W BLC2 Curncy', 'S0023Z 10Y BLC2 Curncy', 'S0023Z 1M BLC2 Curncy', 'S0023Z 2Y BLC2 Curncy', 'S0023Z 6M BLC2 Curncy', 'S0023Z 2M BLC2 Curncy', 'S0023Z 5Y BLC2 Curncy', 'S0023Z 4M BLC2 Curncy', 'S0023Z 2D BLC2 Curncy', 'S0023Z 9M BLC2 Curncy', 'S0023Z 3Y BLC2 Curncy', 'S0023Z 4Y BLC2 Curncy', 'S0023Z 50Y BLC2 Curncy', 'S0023Z 12Y BLC2 Curncy', 'S0023Z 18M BLC2 Curncy', 'S0023Z 7Y BLC2 Curncy', 'S0023Z 5M BLC2 Curncy', 'S0023Z 6Y BLC2 Curncy', 'S0023Z 2W BLC2 Curncy', 'S0023Z 11M BLC2 Curncy', 'S0023Z 15M BLC2 Curncy', 'S0023Z 21M BLC2 Curncy', 'S0023Z 15Y BLC2 Curncy', 'S0023Z 25Y BLC2 Curncy', 'S0023Z 8Y BLC2 Curncy', 'S0023Z 10M BLC2 Curncy', 'S0023Z 20Y BLC2 Curncy', 'S0023Z 33M BLC2 Curncy', 'S0023Z 7M BLC2 Curncy', 'S0023Z 8M BLC2 Curncy', 'S0023Z 11Y BLC2 Curncy', 'S0023Z 14Y BLC2 Curncy', 'S0023Z 18Y BLC2 Curncy', 'S0023Z 19Y BLC2 Curncy', 'S0023Z 23D BLC2 Curncy', 'S0023Z 9Y BLC2 Curncy', 'S0023Z 17M BLC2 Curncy', 'S0023Z 1I BLC2 Curncy', 'S0023Z 22Y BLC2 Curncy', 'S0023Z 28Y BLC2 Curncy', 'S0023Z 2I BLC2 Curncy', 'S0023Z 30Y BLC2 Curncy', 'S0023Z 31Y BLC2 Curncy', 'S0023Z 32Y BLC2 Curncy', 'S0023Z 38Y BLC2 Curncy', 'S0023Z 39Y BLC2 Curncy', 'S0023Z 40Y BLC2 Curncy', 'S0023Z 42D BLC2 Curncy', 'S0023Z 48Y BLC2 Curncy'] df_bbg = bbg.fetch_series(tickers_zero_curve, "PX_LAST", startdate = pd.to_datetime('today'), enddate = pd.to_datetime('today')) df_bbg = df_bbg.transpose() df_bbg_m = bbg.fetch_contract_parameter(tickers_zero_curve, "MATURITY") '''' The Zero curve will be used on the interpolation, to discover the rate for a specific term. ''' # fazendo a curva zero zero_curve = pd.concat([df_bbg, df_bbg_m], axis=1, sort= True).set_index('MATURITY').sort_index() zero_curve = zero_curve.astype(float) zero_curve = zero_curve.interpolate(method='linear', axis=0, limit=None, inplace=False, limit_direction='backward', limit_area=None, downcast=None) zero_curve.index = pd.to_datetime(zero_curve.index) #def que calcula a parte fixa do contrato de swap '''' The function below will calculate the value of swap fixed leg for a specific term. It calculates based on the interpolation of the Zero curve. ''' def swap_fixed_leg_pv(today, rate, busdays, calendartype, maturity=10, periodcupons=6, notional=1000000): global zero_curve dc1 = DayCounts(busdays, calendar=calendartype) today = pd.to_datetime(today) date_range = pd.date_range(start=today, end=today + DateOffset(years=maturity), freq=
DateOffset(months=periodcupons)
pandas.tseries.offsets.DateOffset
# This Python file uses the following encoding: utf-8 # <NAME> <<EMAIL>>, september 2020 import os import pandas as pd import numpy as np from datetime import date from qcodes.instrument.base import Instrument class BlueFors(Instrument): """ This is the QCoDeS python driver to extract the temperature and pressure from a BlueFors fridge """ def __init__(self, name : str, folder_path : str, channel_vacuum_can : int, channel_pumping_line : int, channel_compressor_outlet : int, channel_compressor_inlet : int, channel_mixture_tank : int, channel_venting_line : int, channel_50k_plate : int, channel_4k_plate : int, channel_still : int, channel_mixing_chamber : int, channel_magnet : int=None, **kwargs) -> None: """ QCoDeS driver for BlueFors fridges. ! This driver get parameters from the fridge log files. ! It does not interact with the fridge electronics. Args: name: Name of the instrument. folder_path: Valid path toward the BlueFors log folder. channel_vacuum_can: channel of the vacuum can channel_pumping_line: channel of the pumping line. channel_compressor_outlet: channel of the compressor outlet. channel_compressor_inlet: channel of the compressor inlet. channel_mixture_tank: channel of the mixture tank. channel_venting_line: channel of the venting line. channel_50k_plate: channel of the 50k plate. channel_4k_plate: channel of the 4k plate. channel_still: channel of the still. channel_mixing_chamber: channel of the mixing chamber. channel_magnet: channel of the magnet. """ super().__init__(name = name, **kwargs) self.folder_path = os.path.abspath(folder_path) self.add_parameter(name = 'pressure_vacuum_can', unit = 'mBar', get_parser = float, get_cmd = lambda: self.get_pressure(channel_vacuum_can), docstring = 'Pressure of the vacuum can', ) self.add_parameter(name = 'pressure_pumping_line', unit = 'mBar', get_parser = float, get_cmd = lambda: self.get_pressure(channel_pumping_line), docstring = 'Pressure of the pumping line', ) self.add_parameter(name = 'pressure_compressor_outlet', unit = 'mBar', get_parser = float, get_cmd = lambda: self.get_pressure(channel_compressor_outlet), docstring = 'Pressure of the compressor outlet', ) self.add_parameter(name = 'pressure_compressor_inlet', unit = 'mBar', get_parser = float, get_cmd = lambda: self.get_pressure(channel_compressor_inlet), docstring = 'Pressure of the compressor inlet', ) self.add_parameter(name = 'pressure_mixture_tank', unit = 'mBar', get_parser = float, get_cmd = lambda: self.get_pressure(channel_mixture_tank), docstring = 'Pressure of the mixture tank', ) self.add_parameter(name = 'pressure_venting_line', unit = 'mBar', get_parser = float, get_cmd = lambda: self.get_pressure(channel_venting_line), docstring = 'Pressure of the venting line', ) self.add_parameter(name = 'temperature_50k_plate', unit = 'K', get_parser = float, get_cmd = lambda: self.get_temperature(channel_50k_plate), docstring = 'Temperature of the 50K plate', ) self.add_parameter(name = 'temperature_4k_plate', unit = 'K', get_parser = float, get_cmd = lambda: self.get_temperature(channel_4k_plate), docstring = 'Temperature of the 4K plate', ) if channel_magnet is not None: self.add_parameter(name = 'temperature_magnet', unit = 'K', get_parser = float, get_cmd = lambda: self.get_temperature(channel_magnet), docstring = 'Temperature of the magnet', ) self.add_parameter(name = 'temperature_still', unit = 'K', get_parser = float, get_cmd = lambda: self.get_temperature(channel_still), docstring = 'Temperature of the still', ) self.add_parameter(name = 'temperature_mixing_chamber', unit = 'K', get_parser = float, get_cmd = lambda: self.get_temperature(channel_mixing_chamber), docstring = 'Temperature of the mixing chamber', ) self.connect_message() def get_temperature(self, channel: int) -> float: """ Return the last registered temperature of the current day for the channel. Args: channel (int): Channel from which the temperature is extracted. Returns: temperature (float): Temperature of the channel in Kelvin. """ folder_name = date.today().strftime("%y-%m-%d") file_path = os.path.join(self.folder_path, folder_name, 'CH'+str(channel)+' T '+folder_name+'.log') try: df = pd.read_csv(file_path, delimiter = ',', names = ['date', 'time', 'y'], header = None) # There is a space before the day df.index = pd.to_datetime(df['date']+'-'+df['time'], format=' %d-%m-%y-%H:%M:%S') return df.iloc[-1]['y'] except (PermissionError, OSError) as err: self.log.warn('Cannot access log file: {}. Returning np.nan instead of the temperature value.'.format(err)) return np.nan except IndexError as err: self.log.warn('Cannot parse log file: {}. Returning np.nan instead of the temperature value.'.format(err)) return np.nan def get_pressure(self, channel: int) -> float: """ Return the last registered pressure of the current day for the channel. Args: channel (int): Channel from which the pressure is extracted. Returns: pressure (float): Pressure of the channel in mBar. """ folder_name = date.today().strftime("%y-%m-%d") file_path = os.path.join(self.folder_path, folder_name, 'maxigauge '+folder_name+'.log') try: df = pd.read_csv(file_path, delimiter=',', names=['date', 'time', 'ch1_name', 'ch1_void1', 'ch1_status', 'ch1_pressure', 'ch1_void2', 'ch1_void3', 'ch2_name', 'ch2_void1', 'ch2_status', 'ch2_pressure', 'ch2_void2', 'ch2_void3', 'ch3_name', 'ch3_void1', 'ch3_status', 'ch3_pressure', 'ch3_void2', 'ch3_void3', 'ch4_name', 'ch4_void1', 'ch4_status', 'ch4_pressure', 'ch4_void2', 'ch4_void3', 'ch5_name', 'ch5_void1', 'ch5_status', 'ch5_pressure', 'ch5_void2', 'ch5_void3', 'ch6_name', 'ch6_void1', 'ch6_status', 'ch6_pressure', 'ch6_void2', 'ch6_void3', 'void'], header=None) df.index =
pd.to_datetime(df['date']+'-'+df['time'], format='%d-%m-%y-%H:%M:%S')
pandas.to_datetime
#!/usr/bin/env python3 ### Burak Less Data Experiment Utils ### GENERIC import copy import datetime import io import os from os import listdir from os.path import isfile, join, isdir import sys from functools import partial ### DATA PROCESS import pandas as pd import numpy as np import ast from sklearn.metrics import recall_score, classification_report, auc, roc_curve import re ### PLOTTING & LOGS import matplotlib.pyplot as plt import seaborn as sns import logging from pylab import rcParams rcParams['figure.figsize'] = 8, 6 ### DATA STORING import h5py import pickle import json ### RANDOM import random import time #from numpy.random import seed import multiprocessing from multiprocessing import Pool #print("CPU COUNT:", multiprocessing.cpu_count()) from fast_features import generate_features from scipy.stats import ks_2samp ###PREDICT UTILS### def plot_cm(labels, predictions, name): from sklearn.metrics import confusion_matrix cm = confusion_matrix(labels, predictions) plt.figure(figsize=(5,5)) sns.heatmap(cm, annot=True, fmt="d") plt.title('{}'.format(name)) plt.ylabel('Actual label') plt.xlabel('Predicted label') plt.show() def majority_filter_traditional(seq, width): offset = width // 2 seq = [0] * offset + seq result = [] for i in range(len(seq) - offset): a = seq[i:i+width] result.append(max(set(a), key=a.count)) return result def consecutive_filter(seq,width): result = [] for index in range(len(seq)): tmp_set_list = list(set(seq[index:index+width])) if len(tmp_set_list) == 1 and tmp_set_list[0] == seq[index]: result.append(seq[index]) else: result.append(0) #Assumes healthy label is 0 return result def calculate_miss_rates(true_label,pred_label): alarm_dict = {} normal_true_idx = np.where(true_label==0)[0] anom_true_idx = np.where(true_label!=0)[0] #Find number of normal samples labeled as anomalous fp_deploy = pred_label[normal_true_idx][pred_label[normal_true_idx] != 0] false_alarm_rate = len(fp_deploy) / len(normal_true_idx) logging.info("Total normal runs classified as anomaly: %s, Total normal runs %s ",str(len(fp_deploy)),str(len(normal_true_idx))) logging.info(false_alarm_rate) #Find number of anomalous samples labeled as normal fn_deploy = pred_label[anom_true_idx][pred_label[anom_true_idx] == 0] anom_miss_rate = len(fn_deploy) / len(anom_true_idx) logging.info("Total anom runs classified as normal: %s, Total anom runs %s ",str(len(fn_deploy)),str(len(anom_true_idx))) logging.info(anom_miss_rate) alarm_dict['false_alarm_rate'] = false_alarm_rate alarm_dict['anom_miss_rate'] = anom_miss_rate return alarm_dict def false_anom_rate_calc(true_label,pred_label,conf,cv_index,name,save): """ Calculates false alarm rate and anomaly miss rate Assumes 0 is normal label and other labels are anomalies Args: true_label: Array composed of integer labels, e.g., [0,0,4,2] pred_label: Array composed of integer labels, e.g., [0,0,4,2] """ # • False alarm rate: The percentage of the healthy windows that are identified as anomalous (any anomaly type). # • Anomaly miss rate: The percentage of the anomalous windows that are identified as healthy alarm_dict = {} normal_true_idx = np.where(true_label==0)[0] anom_true_idx = np.where(true_label!=0)[0] #Find number of normal samples labeled as anomalous fp_deploy = pred_label[normal_true_idx][pred_label[normal_true_idx] != 0] false_alarm_rate = len(fp_deploy) / len(normal_true_idx) logging.info("Total normal runs classified as anomaly: %s, Total normal runs %s ",str(len(fp_deploy)),str(len(normal_true_idx))) logging.info(false_alarm_rate) #Find number of anomalous samples labeled as normal fn_deploy = pred_label[anom_true_idx][pred_label[anom_true_idx] == 0] anom_miss_rate = len(fn_deploy) / len(anom_true_idx) logging.info("Total anom runs classified as normal: %s, Total anom runs %s ",str(len(fn_deploy)),str(len(anom_true_idx))) logging.info(anom_miss_rate) alarm_dict['false_alarm_rate'] = false_alarm_rate alarm_dict['anom_miss_rate'] = anom_miss_rate if save: json_dump = json.dumps(alarm_dict) f_json = open(conf['results_dir'] / ("{}_alert_dict.json".format(name)),"w") f_json.write(json_dump) f_json.close() def analysis_wrapper_multiclass(true_labels, pred_labels,conf,cv_index,name,name_cm='Deployment Data',save=True,plot=True): """ true_labels: it should be in the format of an array [0,2,1,3,...] pred_labels: it should be in the format of an array [0,1,1,4,...] """ from sklearn.metrics import classification_report logging.info("####################################") logging.info("%s\n%s",name_cm,classification_report(y_true=true_labels, y_pred =pred_labels)) logging.info("#############") deploy_report = classification_report(y_true=true_labels, y_pred =pred_labels,output_dict=True) if save: logging.info("Saving results") cv_path = conf['results_dir'] json_dump = json.dumps(deploy_report) f_json = open(cv_path / ("{}_report_dict.json".format(name)),"w") f_json.write(json_dump) f_json.close() if plot: plot_cm(true_labels, pred_labels,name=name_cm) false_anom_rate_calc(true_labels,pred_labels,conf,cv_index,name,save) class WindowShopper: def __init__(self, data, labels, window_size = 64, trim=30, silent=False): '''Init''' self.data = data self.labels = labels if self.labels is not None: self.label_count = len(labels['anom'].unique()) #Automatically assuming anomaly classification self.trim = trim self.silent = silent #Windowed data and labels self.windowed_data = [] self.windowed_label = [] #Output shape self.window_size = window_size self.metric_count = len(data.columns) self.output_shape = (self.window_size, self.metric_count) #Prepare windows self._get_windowed_dataset() #Not calling this but it is good to have def _process_sample_count(self): self.per_label_count = {x: 0 for x in self.labels[self.labels.columns[0]].unique()} self.sample_count = 0 for node_id in self.data.index.get_level_values('node_id').unique(): counter = 0 cur_array = self.data.loc[node_id, :, :] for i in range(self.trim, len(cur_array) - self.window_size - self.trim): counter += 1 self.sample_count += counter self.per_label_count[self.labels.loc[node_id, self.labels.columns[0]]] += counter def _get_windowed_dataset(self): if self.labels is not None: #Iterate unique node_ids for node_id in self.labels.index.unique(): # print(node_id) cur_array = self.data.loc[node_id,:,:] temp_data = [] temp_label = [] #Iterate over application runtime for i in range(self.trim, len(cur_array) - self.window_size - self.trim): self.windowed_data.append(cur_array.iloc[i:i+self.window_size].to_numpy( dtype=np.float32).reshape(self.output_shape)) self.windowed_label.append(self.labels.loc[node_id]) self.windowed_data = np.dstack(self.windowed_data) self.windowed_data = np.rollaxis(self.windowed_data,2) if not self.silent: logging.info("Windowed data shape: %s",self.windowed_data.shape) #FIXME: column names might be in reverse order for HPAS data, Used app, anom for Cori data but it was anom,app self.windowed_label = pd.DataFrame(np.asarray(self.windowed_label).reshape(len(self.windowed_label),2),columns=['app','anom']) if not self.silent: logging.info("Windowed label shape: %s",self.windowed_label.shape) else: logging.info("Deployment selection - no label provided") cur_array = self.data temp_data = [] temp_label = [] #Iterate over application runtime for i in range(self.trim, len(cur_array) - self.window_size - self.trim): self.windowed_data.append(cur_array.iloc[i:i+self.window_size].to_numpy( dtype=np.float32).reshape(self.output_shape)) self.windowed_data = np.dstack(self.windowed_data) self.windowed_data = np.rollaxis(self.windowed_data,2) self.windowed_label = None def return_windowed_dataset(self): return self.windowed_data, self.windowed_label def granularityAdjust(data,granularity=60): result =
pd.DataFrame()
pandas.DataFrame
from __future__ import print_function, division from nilmtk.disaggregate import Disaggregator from keras.layers import Conv1D, Dense, Dropout, Flatten import pandas as pd import numpy as np from collections import OrderedDict from keras.models import Sequential from sklearn.model_selection import train_test_split class ModelTestS2P(Disaggregator): def __init__(self, params): self.MODEL_NAME = "ModelTestS2P" self.models = OrderedDict() def partial_fit(self, train_main, train_appliances): # train_main, train_appliances为list? train_main, train_appliances = self.call_preprocessing(train_main, train_appliances, 'train') # 调用预处理方法 train_main = pd.concat(train_main, axis=0) train_main = train_main.values.reshape((-1, 99, 1)) new_train_appliances = [] for app_name, app_df in train_appliances: app_df =
pd.concat(app_df, axis=0)
pandas.concat
# index page import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc from dash.dependencies import Input,Output,State import users_mgt as um from server import app, server from flask_login import logout_user, current_user from views import success, login, login_fd, logout import data_material import admin import pandas as pd import sqlalchemy from config import engine import base64 import dash_table import data_material import datetime #new_row = pd.Series(data={'Course_Name':'Python Data Analysis', 'Course_Rating':'', 'Course_Hours':'20','Students':'0'}, #name='{}'.format(len(df.index+1))) #df = df.append(new_row, ignore_index=False) #df=df.drop(columns="python_data_analysis") #df=pd.read_sql_table('user',con='sqlite:///users.db') #df=df.drop(3) #df.insert(loc=4,column='Students',value='',allow_duplicates=False) #df.to_sql("user", con='sqlite:///users.db', if_exists='replace', index=False) #um.add_course('Python Data Analysis','',20,0) #um.add_course('Machine Learning','',27,0) #um.edit_sql_cell('python_data_analysis','student_id',1,1) #df.insert(loc=0,column='student_id',value='1',allow_duplicates=False) #df.set_index('student_id',inplace=True) #df.to_sql("python_data_analysis", con='sqlite:///users.db', if_exists='replace', index=True,index_label='student_id') #df.to_sql("courses", con='sqlite:///users.db', if_exists='replace', index=False) #index=df.index[df['id'] == '2'].tolist() #print( um.read_sql_cell('user','username', index[0] )) #print(len(df.index)) #print(df) #https://kanoki.org/2019/04/12/pandas-how-to-get-a-cell-value-and-update-it/ #https://www.youtube.com/watch?v=skGwKh1dAdk encoded = base64.b64encode(open('logo.png', 'rb').read()) logo_img=dbc.Row([dbc.Col([ html.Img(src='data:image/png;base64,{}'.format(encoded.decode()), id='logo_img', height=80) ] , xs=dict(size=12,offset=0), sm=dict(size=12,offset=0), md=dict(size=12,offset=0), lg=dict(size=12,offset=0), xl=dict(size=12,offset=0)) ]) encoded2 = base64.b64encode(open('bg4.jpg', 'rb').read()) bg_img=html.Img(src='data:image/png;base64,{}'.format(encoded2.decode()), id='bg_img', height='800rem',width='100%') header_text=html.Div('Learning Made Easy',style=dict(color='black', fontWeight='bold',fontSize='1.4rem',marginTop='1rem',marginLeft='3rem')) please_login_text=html.Div('Please login to continue..',style=dict(color='black', fontWeight='bold',fontSize='1.4rem',marginTop='1rem',marginLeft='3rem')) logout_msg=html.Div(id='logout') search_input=dbc.Input(id="input", placeholder="Search here..", type="text",bs_size="lg", style=dict(marginTop='1rem',fontSize='1.1rem')) search_button= dbc.Button("Search", color="primary", size='lg', n_clicks=0, style=dict(marginTop='1rem',fontSize='1.1rem')) logout_button= dbc.Button("Logout", color="primary", size='md', n_clicks=0,id='logout_btn', style=dict(marginTop='0.3rem',fontSize='1.1rem',marginLeft='2.5rem')) db_logo_img=dbc.Col([ logo_img] , xs=dict(size=2,offset=0), sm=dict(size=2,offset=0), md=dict(size=2,offset=0), lg=dict(size=2,offset=0), xl=dict(size=1,offset=0)) db_header_text= dbc.Col([ header_text] , xs=dict(size=8,offset=0), sm=dict(size=8,offset=0), md=dict(size=2,offset=0), lg=dict(size=3,offset=0), xl=dict(size=3,offset=0)) db_search_input=dbc.Col([search_input], xs=dict(size=5, offset=2), sm=dict(size=5, offset=2), md=dict(size=2, offset=2), lg=dict(size=2, offset=2), xl=dict(size=2, offset=1)) db_search_button=dbc.Col([search_button], xs=dict(size=2, offset=0), sm=dict(size=2, offset=0), md=dict(size=2, offset=0), lg=dict(size=2, offset=0), xl=dict(size=2, offset=0)) db_please_login_text= dbc.Col([ please_login_text] , xs=dict(size=8,offset=0), sm=dict(size=8,offset=0), md=dict(size=2,offset=0), lg=dict(size=3,offset=0), xl=dict(size=3,offset=0)) data_progress=dbc.Progress(children=[], max=100, striped=True, color="primary",id='progress', style=dict(height='20px',backgroundColor='white',fontWeight='bold'), bar_style=dict(color='black')) data_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://res.cloudinary.com/dyd911kmh/image/upload/f_auto,q_auto:best/v1567221927/image_3_ayi4rs.png", top=True), dbc.CardBody( [ html.H5("Python Data Analysis", className="card-title",style=dict(color='black')), html.P( "using pandas python package to analyze data and make reports", style=dict(color='black') ), dbc.Nav([ dbc.NavItem(dbc.NavLink("Details", active=True, href="/data", id='data_details')) ],pills=True) ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) data_course_card_progress=dbc.Col([html.Br(),dbc.CardImg(src="https://res.cloudinary.com/dyd911kmh/image/upload/f_auto,q_auto:best/v1567221927/image_3_ayi4rs.png", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("Python Data Analysis", className="card-title",style=dict(color='black')), html.P( "using pandas python package to analyze data and make reports", style=dict(color='black') ), dbc.Nav([ dbc.NavItem(dbc.NavLink("Details", active=True, href="/data", id='data_details')) ],pills=True),html.Br(),data_progress ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) ml_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://iraqcoders.com/wp-content/uploads/2019/02/emerging-tech_ai_machine-learning-100748222-large.jpg", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("Machine Learning", className="card-title",style=dict(color='black')), html.P( "you will understand how to implement basic machine learning ", style=dict(color='black') ), dbc.Button("Details", color="primary"), ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) sql_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://media.onlinecoursebay.com/2019/08/27030502/2488822_25d1-750x405.jpg", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("SQL basics", className="card-title",style=dict(color='black')), html.P( "you will understand how to deal with different types of databases", style=dict(color='black') ), dbc.Button("Details", color="primary"), ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) image_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://images-na.ssl-images-amazon.com/images/I/61gBVmFtNpL.jpg", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("Image Processing", className="card-title",style=dict(color='black')), html.P( "you will understand how to use opencv for image processing", style=dict(color='black') ), dbc.Button("Details", color="primary"), ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) iot_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://cdn.mindmajix.com/courses/iot-training.png", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("Internet Of Things", className="card-title",style=dict(color='black')), html.P( "you will understand how IoT devices and systems works", style=dict(color='black') ), dbc.Button("Details", color="primary"), ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) embedded_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://prod-discovery.edx-cdn.org/media/course/image/785cf551-7f66-4350-b736-64a93427b4db-3dcdedbdf99d.small.jpg", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("Embedded Systems", className="card-title",style=dict(color='black')), html.P( "you will learn embedded software techniques using tivac board", style=dict(color='black') ), dbc.Button("Details", color="primary"), ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) arch_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://moodle.aaup.edu/pluginfile.php/288902/course/overviewfiles/Computer-Architecture.jpg", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("Computer Architecture", className="card-title",style=dict(color='black')), html.P( "you will learn how memory and cpu works in details", style=dict(color='black') ), dbc.Button("Details", color="primary"), ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) web_course_card=dbc.Col([html.Br(),dbc.CardImg(src="https://www.onlinecoursereport.com/wp-content/uploads/2020/07/shutterstock_394793860-1024x784.jpg", top=True, style=dict(height='20vh')), dbc.CardBody( [ html.H5("Web development", className="card-title",style=dict(color='black')), html.P( "you will learn to develop website using html,css and javascript", style=dict(color='black') ), dbc.Button("Details", color="primary"), ] ,style=dict(backgroundColor='#f0ad4e') ) ] ,xl=dict(size=2,offset=1),lg=dict(size=2,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) courses_layout=dbc.Row([ data_course_card, ml_course_card,sql_course_card,image_course_card, iot_course_card,embedded_course_card ,arch_course_card,web_course_card ] , no_gutters=False) rate_button= dbc.Button("Rate Course", color="primary", size='lg', n_clicks=0,id='rate_button', style=dict(marginTop='1rem',fontSize='1.1rem')) rate_input= html.Div([dbc.Input(id="rate_input", placeholder="0-5 Stars", type="number",bs_size="lg", min=1, max=5, style=dict(fontSize='1.1rem')) ] ) submit_rating_button= dbc.Button("Submit", color="primary", size='lg', n_clicks=0, id='submit_rating_button', style=dict(marginTop='1rem',fontSize='1.1rem')) rating_input=dbc.Collapse([ rate_input, submit_rating_button ],id="collapse",is_open=False, style=dict(border='0.5vh solid black') ) rate_div=html.Div([rate_button,html.Br(),html.Br(),rating_input ] ) sidebar = html.Div( [ html.H2("Course Content", className="display-4", style=dict(color='black',fontWeight='bold')), html.Hr(style=dict(color='black')), html.P( "Welcome to the course , you can start your lessons bellow ..",className="lead", style=dict(color='black') ), dbc.Nav( [ dbc.NavLink("Session1", href="/data/video1", active="exact",style=dict(fontWeight='bold')), dbc.NavLink("Session2", href="/data/video2", active="exact",style=dict(fontWeight='bold')), dbc.NavLink("Session3", href="/data/video3", active="exact",style=dict(fontWeight='bold')), dbc.NavLink("Session4", href="/data/video4", active="exact",style=dict(fontWeight='bold')), dbc.NavLink("Session5", href="/data/video5", active="exact",style=dict(fontWeight='bold')), dbc.NavLink("Session6", href="/data/video6", active="exact",style=dict(fontWeight='bold')) ], vertical=True, pills=True, ),rate_div ], style=dict(backgroundColor='#f0ad4e',height='100%') ) star_img = 'star.jpg' encoded = base64.b64encode(open(star_img, 'rb').read()) star_image = html.Img(src='data:image/png;base64,{}'.format(encoded.decode()), id='img1', height=40, width=40) star_image_div=html.Div(star_image, style=dict(display='inline-block')) data_course_header=html.Div([html.Br(),html.H1('Python Data analysis and visualization course',style=dict(fontSize=36)), html.Div(' Rating : 4.5/5',style=dict(fontSize=22,display='inline-block'),id='stars'), star_image_div,html.Div ('Students : 23',style=dict(fontSize=22),id='students'), html.Div('Total Hours : 20 hour',style=dict(fontSize=22)),html.Br(), dbc.Nav([dbc.NavItem(dbc.NavLink("Enroll Course", active=True, href="/data/video1", id='enroll_data'))], pills=True),html.Br() ] , style=dict(color='white',border='4px #f0ad4e solid')) data_course_Req= html.Div([html.H1('Requirements',style=dict(fontSize=32)), html.Div(style=dict(border='3px #f0ad4e solid',width='100%',height='5px')),html.Br(), html.Div(' 1-Basic math skills',style=dict(fontSize=22)), html.Div ('2-Basic to Intermediate Python Skills.',style=dict(fontSize=22)), html.Div ('3-Have a computer (either Mac, Windows, or Linux.',style=dict(fontSize=22)) ] , style=dict(color='white')) data_course_desc=html.Div([html.H1('Description',style=dict(fontSize=32)), html.Div(style=dict(border='3px #f0ad4e solid',width='100%',height='5px')), html.Div('Our goal is to provide you with complete preparation. And this course will turn you into a job-ready data analyst.' ' To take you there, we will cover the following fundamental topics extensively.', style=dict(fontSize=22,color='white')), html.Div('1- Theory about the field of data analytics',style=dict(fontSize=22,color='white')), html.Div('2- Basic and Advanced python',style=dict(fontSize=22,color='white')), html.Div('3- Pandas and Numpy libraries'), html.Div('4- Data collection ,Cleaning and Visualization',style=dict(fontSize=22,color='white')) ] ) data_video1_youtube=html.Div(children=[ html.Iframe(width="100%%", height="474", src="https://www.youtube.com/embed/nLw1RNvfElg" , title="YouTube video player" ), ]) data_quiz1_header=html.Div('A graph used in statistics to demonstrate how many of a certain type of variable occurs within a specific range', style=dict(fontSize=22,color='black',fontWeight='black') ) data_quiz1_choices=dcc.RadioItems( options=[ {'label': 'Bar plot', 'value': 'bar'}, {'label': 'Histogram ', 'value': 'hist'}, {'label': 'Scatter plot', 'value': 'scat'}, {'label': 'Box plot', 'value': 'box'} ], value='',labelStyle=dict(display='block',color='black',marginLeft='1rem',fontSize=22), inputStyle=dict(width='1.2rem',height='1.2rem',marginRight='0.5rem') ,id='data_quiz1_choices', style=dict(marginLeft='4rem') , persistence=True ) data_quiz1_submit=dbc.Button("Submit", color="primary", size='lg', n_clicks=0,id='data_quiz1_submit', style=dict(marginTop='0.3rem',fontSize='1.1rem')) data_quiz1_answer=html.Div('',style=dict(fontSize=22,color='white',fontWeight='bold'),id='data_quiz1_answer') data_quiz1=html.Div([ html.H1('Quiz1',style=dict(fontSize=32,color='black')),data_quiz1_header,html.Br(), html.Hr(style=dict(color='black')) ,data_quiz1_choices ] ,style=dict(backgroundColor='#f0ad4e') ) data_video1_layout=dbc.Row([dbc.Col([html.Br(),sidebar ] ,xl=dict(size=2,offset=0),lg=dict(size=2,offset=0), md=dict(size=5,offset=0),sm=dict(size=10,offset=1),xs=dict(size=10,offset=1) ) , dbc.Col([ html.Br(),data_video1_youtube,html.Br(),html.Br(), data_quiz1,data_quiz1_submit,html.Br(),data_quiz1_answer ] ,xl=dict(size=5,offset=2),lg=dict(size=5,offset=2), md=dict(size=3,offset=1),sm=dict(size=10,offset=1),xs=dict(size=10,offset=1) ) ] , no_gutters=False ) data_details_layout=dbc.Row([dbc.Col([html.Br(),data_course_header ] ,xl=dict(size=6,offset=1),lg=dict(size=6,offset=1), md=dict(size=8,offset=1),sm=dict(size=10,offset=1),xs=dict(size=10,offset=1) ) , dbc.Col([ html.Br(),data_course_Req,html.Br(),data_course_desc ] ,xl=dict(size=5,offset=1),lg=dict(size=5,offset=1), md=dict(size=3,offset=1),sm=dict(size=8,offset=1),xs=dict(size=8,offset=1) ) ] , no_gutters=False ) app.layout = html.Div( [ dbc.Row([ db_logo_img ,db_header_text ] ,no_gutters=False,style=dict(backgroundColor='#f0ad4e'),id='header' ) , html.Div(id='page-content') , html.Div( [] , id='page-content2'), dcc.Location(id='url', refresh=True) , html.Div([''],id='hidden_div1',style=dict(display='none')), html.Div([''],id='hidden_div2',style=dict(display='none')) , dcc.Interval(id='my_interval', interval=1500) ] ) # <iframe width="843" height="474" src="https://www.youtube.com/embed/nLw1RNvfElg" # title="YouTube video player" frameborder="0" # allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') print( df['Course_Rating'][2] ) a=3.5666667 print("%.2f" % round(a,2)) @app.callback([Output('stars','children'),Output('students','children')], Input('url', 'pathname')) def update_data_details(path): df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') rating_sum=0 rating_students=0 for rating in range(0,len(df.index) ): if um.read_sql_cell('python_data_analysis','Course_Rating',rating) != '': rating_students+=1 rating_sum= int(rating_sum) + int(df['Course_Rating'][rating]) stars_avg=int(rating_sum)/rating_students students_num=len(df.index) return (' Rating : {}/5'.format("%.2f" % round(stars_avg,1)),'Students : {}'.format(students_num)) @app.callback([Output('page-content', 'children'),Output('header','children'),Output('page-content2','children')], [Input('url', 'pathname')]) def display_page(pathname): if pathname == '/': return (login.layout, [db_logo_img , db_header_text,db_please_login_text],[]) elif pathname == '/login': return (login.layout,[ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/success': if current_user.is_authenticated: if current_user.username=='admin': return ([admin.layout,html.Br(),logout_button,dcc.Location(id='url_login_success', refresh=True)],[],[]) else: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text,logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [ db_logo_img , db_header_text , db_search_input,db_search_button,db_username_text] ,[bg_img]) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data_course_table': if current_user.is_authenticated: return (admin.layout2, [], []) else: return (login_fd.layout, [db_logo_img, db_header_text, db_please_login_text], []) elif pathname == '/Add_Course': if current_user.is_authenticated: return (admin.layout3, [], []) else: return (login_fd.layout, [db_logo_img, db_header_text, db_please_login_text], []) elif pathname == '/logout': if current_user.is_authenticated: logout_user() return (logout.layout, [ db_logo_img , db_header_text ,db_please_login_text],[]) else: return (logout.layout,[ db_logo_img , db_header_text ] ,db_please_login_text,[] ) #"https://www.youtube.com/embed/ln8dyS2y4Nc" elif pathname == "/Courses": if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [ db_logo_img , db_header_text , db_search_input,db_search_button,db_username_text] , [courses_layout] ) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data': if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [db_logo_img, db_header_text, db_search_input, db_search_button,db_username_text] ,data_details_layout) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data/video1': if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [db_logo_img, db_header_text, db_search_input, db_search_button,db_username_text] ,data_video1_layout) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data/video2': if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [db_logo_img, db_header_text, db_search_input, db_search_button,db_username_text] ,data_material.data_video2_layout) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data/video3': if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [db_logo_img, db_header_text, db_search_input, db_search_button,db_username_text] ,data_material.data_video3_layout) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data/video4': if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [db_logo_img, db_header_text, db_search_input, db_search_button,db_username_text] ,data_material.data_video4_layout) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data/video5': if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [db_logo_img, db_header_text, db_search_input, db_search_button,db_username_text] ,data_material.data_video5_layout) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == '/data/video6': if current_user.is_authenticated: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [db_logo_img, db_header_text, db_search_input, db_search_button,db_username_text] ,data_material.data_video6_layout) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) elif pathname == "/My-Courses": if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() try: um.read_sql_cell('python_data_analysis', 'Enrolled', index[0]) username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [ db_logo_img , db_header_text , db_search_input,db_search_button,db_username_text] ,[data_course_card_progress] ) except: username_text = html.Div(['Current user: ' + current_user.username], id='user-name', style=dict(color='black', fontWeight='bold', fontSize='1.1rem', marginTop='1rem', marginLeft='1rem')) db_username_text = dbc.Col([username_text, logout_button], xs=dict(size=8, offset=0), sm=dict(size=8, offset=0), md=dict(size=2, offset=0), lg=dict(size=3, offset=0), xl=dict(size=3, offset=0)) return (success.layout, [ db_logo_img , db_header_text , db_search_input,db_search_button,db_username_text] ,[html.H1('you dont have courses yet', style={'textAlign':'center'}) ] ) else: return (login_fd.layout, [ db_logo_img , db_header_text,db_please_login_text ],[] ) # If the user tries to reach a different page, return a 404 message return ( html.H1("404: Not found", className="text-danger"), [],[] ) @app.callback( Output('user-name', 'children'), [Input('page-content', 'children')]) def cur_user(input1): if current_user.is_authenticated: return html.Div('Current user: ' + current_user.username) # 'User authenticated' return username in get_id() else: return '' @app.callback( Output('logout', 'children'), [Input('page-content', 'children')]) def user_logout(input1): if current_user.is_authenticated: return html.A('Logout', href='/logout') else: return '' # first input is the button clicks , second input is quiz answer picked up by student # first output is the msg apear after user enter answer second output is the style of this msg ( color ) @app.callback([Output('data_quiz1_answer', 'children') , Output('data_quiz1_answer', 'style') ], Input('data_quiz1_submit', 'n_clicks'),State('data_quiz1_choices', 'value') ) def data_quiz1_answer(clicks,answer): if answer=='hist': # check if answer is the correct answer if current_user.is_authenticated: df = pd.read_sql_table('python_data_analysis', con='sqlite:///users.db') #reading course table in database index = df.index[df['student_id'] == '{}'.format(current_user.id)].tolist() # reading the id of the current user ans=um.read_sql_cell('python_data_analysis','quiz1_state',index[0]) # reading the quiz1 answer that is recorded in database progress=um.read_sql_cell('python_data_analysis','Course_progress',index[0]) # reading the course progress for the current user new_progress = '{}{}'.format(int(progress.split('%')[0]) + 10, '%') # increase the course progress if ans=='': # check if user already answered the quiz or its the first time um.edit_sql_cell('python_data_analysis','quiz1_state',index[0],'passed') # update the quiz1 state to passed um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) # update the course progress in database return ('Correct Answer , Nice work..',dict(fontSize=22,color='green',fontWeight='bold')) # change the output string elif ans=='passed': return ('Correct Answer , Nice work..', dict(fontSize=22, color='green', fontWeight='bold')) # user already answered so no update in database only return string elif ans == 'failed': um.edit_sql_cell('python_data_analysis', 'Course_progress', index[0], new_progress) um.edit_sql_cell('python_data_analysis', 'quiz1_state', index[0], 'passed') return ('Correct Answer , Nice work..', dict(fontSize=22, color='green', fontWeight='bold')) elif answer=='': return ('',dict(fontSize=22,color='green',fontWeight='bold')) else: if current_user.is_authenticated: df =
pd.read_sql_table('python_data_analysis', con='sqlite:///users.db')
pandas.read_sql_table
""" Tools to clean Balancing area data. A data cleaning step is performed by an object that subclasses the `BaDataCleaner` class. """ import os import logging import time import re from gridemissions.load import BaData from gridemissions.eia_api import SRC, KEYS import pandas as pd import numpy as np from collections import defaultdict import cvxpy as cp import dask A = 1e4 # MWh GAMMA = 10 # MWh EPSILON = 1 # MWh def na_stats(data, title, cols): """ Print NA statistics for a subset of a dataframe. """ print( "%s:\t%.2f%%" % ( title, ( data.df.loc[:, cols].isna().sum().sum() / len(data.df) / len(data.df.loc[:, cols].columns) * 100 ), ) ) class BaDataCleaner(object): """ Template class for data cleaning. This is mostly just a shell to show how cleaning classes should operate. """ def __init__(self, ba_data): """ Parameters ---------- ba_data : BaData object """ self.d = ba_data self.logger = logging.getLogger("clean") def process(self): pass class BaDataBasicCleaner(BaDataCleaner): """ Basic data cleaning class. We run this as the first step of the cleaning process. """ def process(self): self.logger.info("Running BaDataBasicCleaner") start = time.time() data = self.d missing_D_cols = [col for col in data.NG_cols if col not in data.D_cols] self.logger.info("Adding demand columns for %d bas" % len(missing_D_cols)) for ba in missing_D_cols: data.df.loc[:, data.KEY["D"] % ba] = 1.0 data.df.loc[:, data.KEY["NG"] % ba] -= 1.0 data.df.loc[:, data.KEY["TI"] % ba] -= 1.0 # AVRN only exports to BPAT - this is missing for now if "AVRN" not in data.ID_cols: self.logger.info("Adding trade columns for AVRN") ba = "AVRN" ba2 = "BPAT" data.df.loc[:, data.KEY["ID"] % (ba, ba2)] = ( data.df.loc[:, data.KEY["NG"] % ba] - 1.0 ) data.df.loc[:, data.KEY["ID"] % (ba2, ba)] = ( -data.df.loc[:, data.KEY["NG"] % ba] + 1.0 ) # Add columns for biomass and geothermal for CISO # We are assuming constant generation for each of these sources # based on historical data. Before updating this, need to # contact the EIA API maintainers to understand why this isn't # reported and where to find it self.logger.info("Adding GEO and BIO columns for CISO") data.df.loc[:, "EBA.CISO-ALL.NG.GEO.H"] = 900.0 data.df.loc[:, "EBA.CISO-ALL.NG.BIO.H"] = 600.0 # data.df.loc[:, "EBA.CISO-ALL.NG.H"] += 600.0 + 900.0 # Add columns for the BAs that are outside of the US foreign_bas = list( set([col for col in data.ID_cols2 if col not in data.NG_cols]) ) self.logger.info( "Adding demand, generation and TI columns for %d foreign bas" % len(foreign_bas) ) for ba in foreign_bas: trade_cols = [col for col in data.df.columns if "%s.ID.H" % ba in col] TI = -data.df.loc[:, trade_cols].sum(axis=1) data.df.loc[:, data.KEY["TI"] % ba] = TI exports = TI.apply(lambda x: max(x, 0)) imports = TI.apply(lambda x: min(x, 0)) data.df.loc[:, data.KEY["D"] % ba] = -imports data.df.loc[:, data.KEY["NG"] % ba] = exports if ba in ["BCHA", "HQT", "MHEB"]: # Assume for these Canadian BAs generation is hydro data.df.loc[:, data.KEY["SRC_WAT"] % ba] = exports else: # And all others are OTH (other) data.df.loc[:, data.KEY["SRC_OTH"] % ba] = exports for col in trade_cols: ba2 = re.split(r"\.|-|_", col)[1] data.df.loc[:, data.KEY["ID"] % (ba, ba2)] = -data.df.loc[:, col] # Make sure that trade columns exist both ways for col in data.get_cols(field="ID"): ba = re.split(r"\.|-|_", col)[1] ba2 = re.split(r"\.|-|_", col)[2] othercol = data.KEY["ID"] % (ba2, ba) if othercol not in data.df.columns: self.logger.info("Adding %s" % othercol) data.df.loc[:, othercol] = -data.df.loc[:, col] # Filter unrealistic values using self.reject_dict self._create_reject_dict() cols = ( data.get_cols(field="D") + data.get_cols(field="NG") + data.get_cols(field="TI") + data.get_cols(field="ID") ) for col in cols: s = data.df.loc[:, col] data.df.loc[:, col] = s.where( (s >= self.reject_dict[col][0]) & (s <= self.reject_dict[col][1]) ) # Do the same for the generation by source columns # If there is no generation by source, add one that is OTH # Edge case for solar: # There are a lot of values at -50 MWh or so during the night. We want # to set those to 0, but consider that very negative values (below # -1GW) are rejected for ba in data.regions: missing = True for src in SRC: col = data.KEY["SRC_%s" % src] % ba if col in data.df.columns: missing = False s = data.df.loc[:, col] if src == "SUN": self.reject_dict[col] = (-1e3, 200e3) data.df.loc[:, col] = s.where( (s >= self.reject_dict[col][0]) & (s <= self.reject_dict[col][1]) ) if src == "SUN": data.df.loc[:, col] = data.df.loc[:, col].apply( lambda x: max(x, 0) ) if missing: data.df.loc[:, data.KEY["SRC_OTH"] % ba] = data.df.loc[ :, data.KEY["NG"] % ba ] # Reinitialize fields self.logger.info("Reinitializing fields") data = BaData(df=data.df) self.r = data self.logger.info("Basic cleaning took %.2f seconds" % (time.time() - start)) def _create_reject_dict(self): """ Create a defaultdict to store ranges outside of which values are considered unrealistic. The default range is (-1., 200e3) MW. Manual ranges can be set for specific columns here if that range is not strict enough. """ reject_dict = defaultdict(lambda: (-1.0, 200e3)) for col in self.d.get_cols(field="TI"): reject_dict[col] = (-100e3, 100e3) for col in self.d.get_cols(field="ID"): reject_dict[col] = (-100e3, 100e3) reject_dict["EBA.AZPS-ALL.D.H"] = (1.0, 30e3) reject_dict["EBA.BANC-ALL.D.H"] = (1.0, 6.5e3) reject_dict["EBA.BANC-ALL.TI.H"] = (-5e3, 5e3) reject_dict["EBA.CISO-ALL.NG.H"] = (5e3, 60e3) self.reject_dict = reject_dict def rolling_window_filter( df, offset=10 * 24, min_periods=100, center=True, replace_nan_with_mean=True, return_mean=False, ): """ Apply a rolling window filter to a dataframe. Filter using dynamic bounds: reject points that are farther than 4 standard deviations from the mean, using a rolling window to compute the mean and standard deviation. Parameters ---------- df : pd.DataFrame Dataframe to filter offset : int Passed on to pandas' rolling function min_periods : int Passed on to pandas' rolling function center : bool Passed on to pandas' rolling function replace_nan_with_mean : bool Whether to replace NaNs with the mean of the timeseries at the end of the procedure Notes ----- Keeps at least 200 MWh around the mean as an acceptance range. """ for col in df.columns: rolling_ = df[col].rolling(offset, min_periods=min_periods, center=center) mean_ = rolling_.mean() std_ = rolling_.std().apply(lambda x: max(100, x)) ub = mean_ + 4 * std_ lb = mean_ - 4 * std_ idx_reject = (df[col] >= ub) | (df[col] <= lb) df.loc[idx_reject, col] = np.nan if replace_nan_with_mean: # First try interpolating linearly, but only for up to 3 hours df.loc[:, col] = df.loc[:, col].interpolate(limit=3) # If there is more than 3 hours of missing data, use rolling mean df.loc[df[col].isnull(), col] = mean_.loc[df[col].isnull()] if return_mean: mean_ = df.rolling(offset, min_periods=min_periods, center=center).mean() return (df, mean_) return df class BaDataRollingCleaner(BaDataCleaner): """ Rolling window cleaning. This applies the `rolling_window_filter` function to the dataset. In order to apply this properly to the beginning of the dataset, we load past data that will be used for the cleaning - that is then dropped. """ def process(self, file_name="", folder_hist="", nruns=2): """ Processor function for the cleaner object. Parameters ---------- file_name : str Base name of the file from which to read historical data. Data is read from "%s_basic.csv" % file_name folder_hist : str Folder from which to read historical data nruns : int Number of times to apply the rolling window procedure Notes ----- If we are not processing a large amount of data at a time, we may not have enough data to appropriately estimate the rolling mean and standard deviation for the rolling window procedure. If values are given for `file_name` and `folder_hist`, data will be read from a historical dataset to estimate the rolling mean and standard deviation. If there are very large outliers, they can 'mask' smaller outliers. Running the rolling window procedure a couple of times helps with this issue. """ self.logger.info("Running BaDataRollingCleaner (%d runs)" % nruns) start = time.time() data = self.d # Remember what part we are cleaning idx_cleaning = data.df.index try: # Load the data we already have in memory df_hist = pd.read_csv( os.path.join(folder_hist, "%s_basic.csv" % file_name), index_col=0, parse_dates=True, ) # Only take the last 1,000 rows # Note that if df_hist has less than 1,000 rows, # pandas knows to select df_hist without raising an error. df_hist = df_hist.iloc[-1000:] # Overwrite with the new data old_rows = df_hist.index.difference(data.df.index) df_hist = data.df.append(df_hist.loc[old_rows, :], sort=True) df_hist.sort_index(inplace=True) except FileNotFoundError: self.logger.info("No history file") df_hist = data.df # Apply rolling horizon threshold procedure # 20200206 update: don't try replacing NaNs anymore, leave that to the # next step for _ in range(nruns): df_hist = rolling_window_filter(df_hist, replace_nan_with_mean=False) # Deal with NaNs # First deal with NaNs by taking the average of the previous day and # next day. In general we observe strong daily patterns so this seems # to work well. Limit the filling procedure to one day at a time. If # there are multiple missing days, this makes for a smoother transition # between the two valid days. If we had to do this more than 4 times, # give up and use forward and backward fills without limits for col in df_hist.columns: npasses = 0 while (df_hist.loc[:, col].isna().sum() > 0) and (npasses < 4): npasses += 1 df_hist.loc[:, col] = pd.concat( [ df_hist.loc[:, col].groupby(df_hist.index.hour).ffill(limit=1), df_hist.loc[:, col].groupby(df_hist.index.hour).bfill(limit=1), ], axis=1, ).mean(axis=1) if npasses == 4: self.logger.debug("A lot of bad data for %s" % col) df_hist.loc[:, col] = pd.concat( [ df_hist.loc[:, col].groupby(df_hist.index.hour).ffill(), df_hist.loc[:, col].groupby(df_hist.index.hour).bfill(), ], axis=1, ).mean(axis=1) # All bad data columns if df_hist.loc[:, col].isna().sum() == len(df_hist): df_hist.loc[:, col] = 0.0 # Some NaNs will still remain - try using the rolling mean average df_hist, mean_ = rolling_window_filter( df_hist, replace_nan_with_mean=True, return_mean=True ) if df_hist.isna().sum().sum() > 0: self.logger.warning("There are still some NaNs. Unexpected") # Just keep the indices we are working on currently data = BaData(df=df_hist.loc[idx_cleaning, :]) self.r = data self.weights = mean_.loc[idx_cleaning, :].applymap( lambda x: A / max(GAMMA, abs(x)) ) self.logger.info( "Rolling window cleaning took %.2f seconds" % (time.time() - start) ) class BaDataPyoCleaningModel(object): """ Create an AbstractModel() for the cleaning problem. No data is passed into this model at this point, it is simply written in algebraic form. """ def __init__(self): m = pyo.AbstractModel() # Sets m.regions = pyo.Set() m.srcs = pyo.Set() m.regions2 = pyo.Set(within=m.regions * m.regions) m.regions_srcs = pyo.Set(within=m.regions * m.srcs) # Parameters m.D = pyo.Param(m.regions, within=pyo.Reals) m.NG = pyo.Param(m.regions, within=pyo.Reals) m.TI = pyo.Param(m.regions, within=pyo.Reals) m.ID = pyo.Param(m.regions2, within=pyo.Reals) m.NG_SRC = pyo.Param(m.regions_srcs, within=pyo.Reals) m.D_W = pyo.Param(m.regions, default=1.0, within=pyo.Reals) m.NG_W = pyo.Param(m.regions, default=1.0, within=pyo.Reals) m.TI_W = pyo.Param(m.regions, default=1.0, within=pyo.Reals) m.ID_W = pyo.Param(m.regions2, default=1.0, within=pyo.Reals) m.NG_SRC_W = pyo.Param(m.regions_srcs, default=1.0, within=pyo.Reals) # Variables # delta_NG_aux are aux variable for the case where there # are no SRC data. In that case, the NG_sum constraint would # only have: m.NG + m.delta_NG = 0. m.delta_D = pyo.Var(m.regions, within=pyo.Reals) m.delta_NG = pyo.Var(m.regions, within=pyo.Reals) m.delta_TI = pyo.Var(m.regions, within=pyo.Reals) m.delta_ID = pyo.Var(m.regions2, within=pyo.Reals) m.delta_NG_SRC = pyo.Var(m.regions_srcs, within=pyo.Reals) # m.delta_NG_aux = pyo.Var(m.regions, within=pyo.Reals) # Constraints m.D_positive = pyo.Constraint(m.regions, rule=self.D_positive) m.NG_positive = pyo.Constraint(m.regions, rule=self.NG_positive) m.NG_SRC_positive = pyo.Constraint(m.regions_srcs, rule=self.NG_SRC_positive) m.energy_balance = pyo.Constraint(m.regions, rule=self.energy_balance) m.antisymmetry = pyo.Constraint(m.regions2, rule=self.antisymmetry) m.trade_sum = pyo.Constraint(m.regions, rule=self.trade_sum) m.NG_sum = pyo.Constraint(m.regions, rule=self.NG_sum) # Objective m.total_penalty = pyo.Objective(rule=self.total_penalty, sense=pyo.minimize) self.m = m def D_positive(self, model, i): return (model.D[i] + model.delta_D[i]) >= EPSILON def NG_positive(self, model, i): return (model.NG[i] + model.delta_NG[i]) >= EPSILON def NG_SRC_positive(self, model, k, s): return model.NG_SRC[k, s] + model.delta_NG_SRC[k, s] >= EPSILON def energy_balance(self, model, i): return ( model.D[i] + model.delta_D[i] + model.TI[i] + model.delta_TI[i] - model.NG[i] - model.delta_NG[i] ) == 0.0 def antisymmetry(self, model, i, j): return ( model.ID[i, j] + model.delta_ID[i, j] + model.ID[j, i] + model.delta_ID[j, i] == 0.0 ) def trade_sum(self, model, i): return ( model.TI[i] + model.delta_TI[i] - sum( model.ID[k, l] + model.delta_ID[k, l] for (k, l) in model.regions2 if k == i ) ) == 0.0 def NG_sum(self, model, i): return ( model.NG[i] + model.delta_NG[i] # + model.delta_NG_aux[i] - sum( model.NG_SRC[k, s] + model.delta_NG_SRC[k, s] for (k, s) in model.regions_srcs if k == i ) ) == 0.0 def total_penalty(self, model): return ( sum( ( model.D_W[i] * model.delta_D[i] ** 2 + model.NG_W[i] * model.delta_NG[i] ** 2 # + model.delta_NG_aux[i]**2 + model.TI_W[i] * model.delta_TI[i] ** 2 ) for i in model.regions ) + sum( model.ID_W[i, j] * model.delta_ID[i, j] ** 2 for (i, j) in model.regions2 ) + sum( model.NG_SRC_W[i, s] * model.delta_NG_SRC[i, s] ** 2 for (i, s) in model.regions_srcs ) ) class BaDataPyoCleaner(BaDataCleaner): """ Optimization-based cleaning class. Uses pyomo to build the model and Gurobi as the default solver. """ def __init__(self, ba_data, weights=None, solver="gurobi"): super().__init__(ba_data) import pyomo.environ as pyo from pyomo.opt import SolverFactory self.m = BaDataPyoCleaningModel().m self.opt = SolverFactory(solver) self.weights = weights if weights is not None: self.d.df = pd.concat( [self.d.df, weights.rename(lambda x: x + "_W", axis=1)], axis=1 ) def process(self, debug=False): start = time.time() self.logger.info("Running BaDataPyoCleaner for %d rows" % len(self.d.df)) self.d.df = self.d.df.fillna(0) if not debug: self.r = self.d.df.apply(self._process, axis=1) else: r_list = [] delta_list = [] for idx, row in self.d.df.iterrows(): _, r, deltas = self._process(row, debug=True) r_list.append(r) delta_list.append(deltas) self.r =
pd.concat(r_list, axis=1)
pandas.concat
import os import sys import json import yaml import pandas as pd from ananke.graphs import ADMG from networkx import DiGraph from optparse import OptionParser sys.path.append(os.getcwd()) sys.path.append('/root') from src.causal_model import CausalModel from src.generate_params import GenerateParams def config_option_parser(): """This function is used to configure option parser @returns: options: option parser handle""" usage = """USAGE: %python3 run_unicorn_debug.py -o [objectives] -d [init_data] -s [software] -k [hardware] -m [mode] -i [bug_index] """ parser = OptionParser(usage=usage) parser.add_option('-o', '--objective', dest='obj', default=[], nargs=1, type='choice', choices=('inference_time', 'total_energy_consumption', 'total_temp'), action='append', help="objective type") parser.add_option('-s', "--software", action="store", type="string", dest="software", help="software") parser.add_option('-k', "--hardware", action="store", type="string", dest="hardware", help="hardware") parser.add_option('-m', "--mode", action="store", type="string", dest="mode", help="mode") parser.add_option('-i', "--bug_index", action="store", type="string", dest="bug_index", help="bug_index") (options, args) = parser.parse_args() return options def run_unicorn_loop(CM, df, tabu_edges, columns, options, NUM_PATHS): """This function is used to run unicorn in a loop""" # NOTEARS causal model hyperparmas #_, notears_edges = CM.learn_entropy(df, tabu_edges, 0.75) # get bayesian network from DAG obtained # bn = BayesianNetwork(sm) fci_edges = CM.learn_fci(df, tabu_edges) edges = [] # resolve notears_edges and fci_edges and update di_edges, bi_edges = CM.resolve_edges(edges, fci_edges, columns, tabu_edges, NUM_PATHS, options.obj) # construct mixed graph ADMG G = ADMG(columns, di_edges=di_edges, bi_edges=bi_edges) return G, di_edges, bi_edges if __name__ == "__main__": query = 0.8 NUM_PATHS = 25 options = config_option_parser() # Initialization with open(os.path.join(os.getcwd(), "etc/config.yml")) as file: cfg = yaml.load(file, Loader=yaml.FullLoader) # nodes for causal graph soft_columns = cfg["software_columns"][options.software] hw_columns = cfg["hardware_columns"][options.hardware] kernel_columns = cfg["kernel_columns"] perf_columns = cfg["perf_columns"] obj_columns = options.obj columns = soft_columns + hw_columns + kernel_columns + perf_columns + obj_columns conf_opt = soft_columns + hw_columns + kernel_columns if len(options.obj) > 1: init_dir = os.path.join(os.getcwd(), cfg["init_dir"], "multi", options.hardware, options.software, options.hardware + "_" + options.software + "_" + "initial.csv") bug_dir = os.path.join(os.getcwd(), cfg["bug_dir"], "multi", options.hardware, options.software, options.hardware + "_" + options.software + "_" + "multi.csv") with open(os.path.join(os.getcwd(), cfg["debug_dir"], "multi", options.hardware, options.software, "measurement.json")) as mfl: m = json.load(mfl) else: init_dir = os.path.join(os.getcwd(), cfg["init_dir"], "single", options.hardware, options.software, options.hardware + "_" + options.software + "_" + "initial.csv") bug_dir = os.path.join(os.getcwd(), cfg["bug_dir"], "single", options.hardware, options.software, options.hardware + "_" + options.software + "_" + options.obj[0] + ".csv") with open(os.path.join(os.getcwd(), cfg["debug_dir"], "single", options.hardware, options.software, "measurement.json")) as mfl: m = json.load(mfl) # get init data df = pd.read_csv(init_dir) df = df[columns] # get bug data bug_df = pd.read_csv(bug_dir) # initialize causal model object CM = CausalModel(columns) g = DiGraph() g.add_nodes_from(columns) # edge constraints tabu_edges = CM.get_tabu_edges(columns, conf_opt, options.obj) G, di_edges, bi_edges = run_unicorn_loop(CM, df, tabu_edges, columns, options, NUM_PATHS) g.add_edges_from(di_edges + bi_edges) var_types = {} for col in columns: var_types[col] = "c" # Get Bug and update df bug_exists = True if options.bug_index: bug_df = bug_df.iloc[int(options.bug_index):int(options.bug_index) + 1] result_columns = conf_opt + obj_columns measurement_dir = os.path.join(os.getcwd(),"data","measurement","output","debug_exp.csv") for bug_id in range(len(bug_df)): result_df = pd.DataFrame(columns=result_columns) if options.bug_index: bug = bug_df.loc[int(options.bug_index)] bug_id = int(options.bug_index) else: bug = bug_df.loc[bug_id] # update df after a bug is resolved df = pd.read_csv(init_dir) df = df[columns] # initialize causal model object CM = CausalModel(columns) g = DiGraph() g.add_nodes_from(columns) # edge constraints tabu_edges = CM.get_tabu_edges(columns, conf_opt, options.obj) G, di_edges, bi_edges = run_unicorn_loop(CM, df, tabu_edges, columns, options, NUM_PATHS) g.add_edges_from(di_edges + bi_edges) bug_exists = True print("--------------------------------------------------") print("BUG ID: ", bug_id) print("--------------------------------------------------") it = 0 previous_config = bug[conf_opt].copy() while bug_exists: # identify causal paths paths = CM.get_causal_paths(columns, di_edges, bi_edges, options.obj) # compute causal paths if len(options.obj) < 2: # single objective faults for key, val in paths.items(): if len(paths[key]) > NUM_PATHS: paths = CM.compute_path_causal_effect(df, paths[key], G, NUM_PATHS) else: paths = paths[options.obj[0]] # compute individual treatment effect in a path print(paths) config = CM.compute_individual_treatment_effect(df, paths, g, query, options, bug[options.obj[0]], previous_config, cfg, var_types) else: # multi objective faults paths = paths[options.obj[0]] # compute individual treatment effect in a path config = CM.compute_individual_treatment_effect(df, paths, g, query, options, bug[options.obj], previous_config, cfg, var_types) # perform intervention. This updates the init_data if config is not None: if options.mode == "offline": curm = m[options.hardware][options.software][options.obj[0]][str( bug_id)][str(it)]["measurement"] if curm < (1 - query) * bug[options.obj[0]]: bug_exists = False print("--------------------------------------------------") print("+++++++++++++++Recommended Fix++++++++++++++++++++") print(config) print("Unicorn Fix Value", curm) print("Number of Samples Required", str(it)) print("--------------------------------------------------") print("--------------------------------------------------") print("+++++++++++++++++++++Bug++++++++++++++++++++++++++") print(bug[conf_opt]) print("Bug Objective Value", int(bug[options.obj[0]])) print("--------------------------------------------------") config = config.tolist() config.extend([curm]) config = pd.DataFrame([config]) config.columns = result_columns result_df = pd.concat([result_df, config], axis=0) result_df = result_df[result_columns] result_df["bug_id"] = bug_id result_df["method"] = "Unicorn" result_df["num_samples"]=it result_df["gain"]= ((bug[options.obj[0]]-curm)/bug[options.obj[0]])*100 if options.bug_index is None: if bug_id == 0: result_df.to_csv(measurement_dir,index=False) else: result_df.to_csv(measurement_dir,index=False, header=False,mode="a") else: curc = m[options.hardware][options.software][options.obj[0]][str( bug_id)][str(it)]["conf"] print("--------------------------------------------------") print("+++++++++++++++++++++Bug++++++++++++++++++++++++++") print("Recommended Config Objective Value", curm) print("--------------------------------------------------") it += 1 config = config.tolist() config.extend(curc) config.extend([curm]) config =
pd.DataFrame([config])
pandas.DataFrame
from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.preprocessing import MinMaxScaler import numpy as np import pandas as pd import requests import spotipy from typing import List from os import listdir import json import sys from tqdm import tqdm """ Credentials to : https://towardsdatascience.com/get-your-spotify-streaming-history-with-python-d5a208bbcbd3 Spotify data places on the folder MyData """ # python my_spotify_history_enrichment.py "MyData/User3" "ProcessedData/User3" if len(sys.argv) >= 3: folder_path = sys.argv[1] target_path = sys.argv[2] else: folder_path = 'MyData/User3' target_path = 'ProcessedData/User3' def get_streamings(path: str = folder_path) -> List[dict]: files = [path + '/' + x for x in listdir(path) if x.split('.')[0][:-1] == 'StreamingHistory'] all_streamings = [] for file in files: with open(file, 'r', encoding='utf-8') as f: all_streamings = json.load(f) return all_streamings # Remplacer par vos données with open("my_spotify_dev_account.json", 'r', encoding='utf-8') as my_spotify_dev_account: my_spotify_dev_account = json.load(my_spotify_dev_account) token = spotipy.util.prompt_for_user_token(username=my_spotify_dev_account["username"], scope=my_spotify_dev_account["scope"], client_id=my_spotify_dev_account["client_id"], client_secret=my_spotify_dev_account["client_secret"], redirect_uri=my_spotify_dev_account["redirect_uri"]) print("TOKEN : ", token) def get_id(track_name: str, token: str) -> str: headers = { 'Accept': 'application/json', 'Content-Type': 'application/json', 'Authorization': f'Bearer ' + token } params = [('q', track_name), ('type', 'track')] try: response = requests.get('https://api.spotify.com/v1/search', headers=headers, params=params, timeout=5) json = response.json() first_result = json['tracks']['items'][0] track_id = first_result['id'] track_artist = [] for artist in first_result['artists']: track_artist.append(artist["name"]) track_album = first_result["album"]["name"] popularity = first_result["popularity"] return [track_id, track_artist, track_album, popularity] except: return [None, None, None, None] def get_user_features(track_id: str, token: str) -> dict: sp = spotipy.Spotify(auth=token) try: features = sp.audio_features([track_id]) return features[0] except: return None def get_recommendations(track_names, token): headers = { 'Authorization': f'Bearer ' + token } params = [('seed_tracks', ",".join(track_names)), ('seed_artists', ",".join([])), ('seed_genres', ",".join([]))] try: response = requests.get('https://api.spotify.com/v1/recommendations', headers=headers, params=params, timeout=5) json = response.json() recommendations = [] for track in json["tracks"]: recommendations.append(track["id"]) return recommendations except: return None streamings = get_streamings(folder_path) unique_tracks = list(set([streaming['trackName'] for streaming in streamings])) print("Getting all listened songs features") all_features = {} all_recommendations = {} for i in tqdm(range(len(unique_tracks))): track = unique_tracks[i] [track_id, track_artist, track_album, popularity] = get_id(track, token) features = get_user_features(track_id, token) if features: features["id"] = track_id features["artist"] = track_artist features["album"] = track_album features["popularity"] = popularity all_features[track] = features all_recommendations[track_id] = get_recommendations([track_id], token) with open(target_path + '/track_data.json', 'w') as outfile: json.dump(all_features, outfile) def get_songs_features(track_id: str, token: str) -> dict: sp = spotipy.Spotify(auth=token) try: features = sp.audio_features([track_id])[0] track_features = sp.track(track_id) features["name"] = track_features["name"] features["popularity"] = track_features["popularity"] features["artists"] = [track_features["artists"][k]["name"] for k in range(len(track_features["artists"]))] features["album"] = track_features["album"]["name"] return features except: return None print("Getting all recommended songs") unique_ids = [] for i in tqdm(range(len(list(all_recommendations.keys())))): ids = list(all_recommendations.keys())[i] for id_reco in all_recommendations[ids]: if id_reco not in unique_ids: unique_ids.append(id_reco) print("Getting all features from recommended songs") all_features = {} for i in tqdm(range(len(unique_ids))): track_id = unique_ids[i] features = get_songs_features(track_id, token) if features: all_features[track_id] = features with open(target_path + '/recommendations_songs.json', 'w') as outfile: json.dump(all_features, outfile) print("Data processing") recommendations_data = pd.read_json( target_path + '/recommendations_songs.json').T numerical_features = ["danceability", "energy", "loudness", "speechiness", "acousticness", "instrumentalness", "liveness", "valence", "tempo", "popularity"] other_features = ["mode", "key", "id", "duration_ms", "artists", "name", "id", "artists", "album"] numerical_recommendations_data = recommendations_data[numerical_features] track_np = np.array(numerical_recommendations_data.values) print("Data normalization") minMaxScaler = MinMaxScaler().fit(track_np) track_np = minMaxScaler.transform(track_np) track_data_normalized = pd.DataFrame( track_np, columns=numerical_features, index=recommendations_data.index) for feature in other_features: track_data_normalized[feature] = recommendations_data[feature] print("Data clustering") n_clusters = 4 kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(track_np) kmeans_cluster_labels = kmeans.labels_ kmeans_cluster_centers = kmeans.cluster_centers_ track_data_normalized["kmeans_cluster"] = kmeans_cluster_labels # sub-clusterisation : each cluster is divided into small clusters n_sub_clusters = 10 track_data_normalized["kmeans_subcluster"] = 0 for i in range(n_clusters): num_track_data_np = np.array( track_data_normalized[track_data_normalized["kmeans_cluster"] == i][numerical_features]) subkmeans = KMeans(n_clusters=n_sub_clusters, random_state=0).fit(num_track_data_np) track_data_normalized.loc[track_data_normalized["kmeans_cluster"] == i, "kmeans_subcluster"] = subkmeans.labels_ print("Dimension reduction with PCA") pca = PCA(n_components=2) pca.fit(track_np) track_np_pca = pca.transform(track_np) track_data_normalized["x"] = track_np_pca[:, 0] track_data_normalized["y"] = track_np_pca[:, 1] cluster_centers_pca = pca.transform(kmeans_cluster_centers) def comput_dist(x, y, cluster): return 1000*np.sqrt((x-cluster_centers_pca[cluster][0])**2 + (y-cluster_centers_pca[cluster][1])**2) track_data_normalized["dist"] = track_data_normalized.apply( lambda x: comput_dist(x['x'], x['y'], x['kmeans_cluster']), axis=1) songs_df = track_data_normalized[["name", "kmeans_cluster", "kmeans_subcluster", "x", "y", "dist", "id", "artists", "album"]+numerical_features] songs_df.T.to_json(target_path+'/songs_json.json') track_data = pd.read_json(target_path+'/track_data.json') track_data = track_data.loc[["danceability", "energy", "loudness", "speechiness", "acousticness", "instrumentalness", "liveness", "valence", "tempo", "duration_ms", "popularity", "artist", "album", "id"]].T track_np_user = np.array(track_data[numerical_features].values) track_np_user = minMaxScaler.transform(track_np_user) track_data_normalized = pd.DataFrame( track_np_user, columns=numerical_features, index=track_data.index) track_data_normalized["artist"] = track_data["artist"] track_data_normalized["album"] = track_data["album"] track_data_normalized["id"] = track_data["id"] track_data_normalized["name"] = track_data.index track_data_normalized["duration_ms"] = track_data["duration_ms"] files = [folder_path + '/' + x for x in listdir(folder_path) if x.split('.')[0][:-1] == 'StreamingHistory'] streaming_history_df = pd.read_json(files[0]) if len(files) > 1: for file_path in files[1:]: streaming_history_df = pd.concat( (streaming_history_df,
pd.read_json(file_path)
pandas.read_json
# Long Author List formatting tool # <NAME> (<EMAIL> 2020) # Usage: python3 lal.py # Input: lal_data2.txt with one author per row and up to 5 affiliations # <First>;<Last>;<Email>;<Group1>;<Group2>;<Group3>;<Group4>;<Group5> # Example: Heiko;Goelzer;<EMAIL>;IMAU,UU;ULB;nil;nil;nil # Use 'nil','nan','0' or '-' to fill unused affiliations # Output: lal_inout2.txt when saving the modified listing, can be used as # input the next time # Parsed: lal_parsed.txt when parsed to insert in a manuscript # Selected lines and selected blocks can be rearranged by dragging, sorted by last name and deleted. # 'Save' will write the updated list to a file that can be reused later # 'Parse' will write formatted output that can be copy-pasted import tkinter as tk; # Listbox for ordering class ReorderableListbox(tk.Listbox): """ A Tkinter listbox with drag & drop reordering of lines """ def __init__(self, master, **kw): kw['selectmode'] = tk.EXTENDED tk.Listbox.__init__(self, master, kw) self.bind('<Button-1>', self.setCurrent) self.bind('<Control-1>', self.toggleSelection) self.bind('<B1-Motion>', self.shiftSelection) self.bind('<Leave>', self.onLeave) self.bind('<Enter>', self.onEnter) self.selectionClicked = False self.left = False self.unlockShifting() self.ctrlClicked = False def orderChangedEventHandler(self): pass def onLeave(self, event): # prevents changing selection when dragging # already selected items beyond the edge of the listbox if self.selectionClicked: self.left = True return 'break' def onEnter(self, event): #TODO self.left = False def setCurrent(self, event): self.ctrlClicked = False i = self.nearest(event.y) self.selectionClicked = self.selection_includes(i) if (self.selectionClicked): return 'break' def toggleSelection(self, event): self.ctrlClicked = True def moveElement(self, source, target): if not self.ctrlClicked: element = self.get(source) self.delete(source) self.insert(target, element) def unlockShifting(self): self.shifting = False def lockShifting(self): # prevent moving processes from disturbing each other # and prevent scrolling too fast # when dragged to the top/bottom of visible area self.shifting = True def shiftSelection(self, event): if self.ctrlClicked: return selection = self.curselection() if not self.selectionClicked or len(selection) == 0: return selectionRange = range(min(selection), max(selection)) currentIndex = self.nearest(event.y) if self.shifting: return 'break' lineHeight = 12 bottomY = self.winfo_height() if event.y >= bottomY - lineHeight: self.lockShifting() self.see(self.nearest(bottomY - lineHeight) + 1) self.master.after(500, self.unlockShifting) if event.y <= lineHeight: self.lockShifting() self.see(self.nearest(lineHeight) - 1) self.master.after(500, self.unlockShifting) if currentIndex < min(selection): self.lockShifting() notInSelectionIndex = 0 for i in selectionRange[::-1]: if not self.selection_includes(i): self.moveElement(i, max(selection)-notInSelectionIndex) notInSelectionIndex += 1 currentIndex = min(selection)-1 self.moveElement(currentIndex, currentIndex + len(selection)) self.orderChangedEventHandler() elif currentIndex > max(selection): self.lockShifting() notInSelectionIndex = 0 for i in selectionRange: if not self.selection_includes(i): self.moveElement(i, min(selection)+notInSelectionIndex) notInSelectionIndex += 1 currentIndex = max(selection)+1 self.moveElement(currentIndex, currentIndex - len(selection)) self.orderChangedEventHandler() self.unlockShifting() return 'break' def deleteSelection(self): # delete selected items if len(self.curselection()) == 0: return self.delete(min(self.curselection()),max(self.curselection())) def sortAll(self): # sort all items alphabetically temp_list = list(self.get(0, tk.END)) temp_list.sort(key=str.lower) # delete contents of present listbox self.delete(0, tk.END) # load listbox with sorted data for item in temp_list: self.insert(tk.END, item) def sortSelection(self): # sort selected items alphabetically if len(self.curselection()) == 0: return mmax = max(self.curselection()) mmin = min(self.curselection()) temp_list = list(self.get(mmin,mmax)) #print(temp_list) # Sort reverse because pushed back in reverse order temp_list.sort(key=str.lower,reverse=True) # delete contents of present listbox self.delete(mmin,mmax) # load listbox with sorted data for item in temp_list: self.insert(mmin, item) def save(self,df): # save current list temp_list = list(self.get(0, tk.END)) # create output df dfout = pd.DataFrame() for item in temp_list: items = item.split(",") matchl = (df["LastName"].isin([items[0]])) matchf = (df["FirstName"].isin([items[1]])) matche = (df["Email"].isin([items[2]])) dfout = dfout.append(df[matchf & matchl]) dfout.to_csv('lal_inout2.txt', sep=';', header=None, index=None) print("File saved!") def parse_word(self,df): # save current list temp_list = list(self.get(0, tk.END)) # create output df dfout = pd.DataFrame() for item in temp_list: items = item.split(",") matchl = (df["LastName"].isin([items[0]])) matchf = (df["FirstName"].isin([items[1]])) dfout = dfout.append(df[matchf & matchl]) # parse first = dfout["FirstName"] last = dfout["LastName"] grp = dfout[["Group1","Group2","Group3","Group4","Group5"]] unique_groups = [] group_ids = [] k = 0 # collect unique groups and indices for i in range(0,dfout.shape[0]): groups = [] # loop through max 5 groups for j in range(0,5): # Exclude some common dummy place holders if (grp.iloc[i,j] not in ['nil','nan','0','-']): if (grp.iloc[i,j] not in unique_groups): unique_groups.append(grp.iloc[i,j]) k = k + 1 groups.append(k) else: ix = unique_groups.index(grp.iloc[i,j])+1 groups.append(ix) # Add author group ids group_ids.append(groups) #print(group_ids) #print(unique_groups) # Compose text with open("lal_parsed_word.txt", "w") as text_file: # write out names for i in range(0,dfout.shape[0]): print(first.iloc[i].strip(), end =" ", file=text_file) print(last.iloc[i].strip(), end ="", file=text_file) for j in range(0,len(group_ids[i])): if j < len(group_ids[i])-1: print(str(group_ids[i][j]), end =",", file=text_file) else: print(str(group_ids[i][j]), end ="", file=text_file) #print(" ", end ="", file=text_file) if (i < dfout.shape[0]-1): # comma and space before next name print(", ", end ="", file=text_file) # Add some space between names and affiliations print("\n\n", file=text_file) # Write out affiliations for i in range(0,len(unique_groups)): print("(", end ="", file=text_file) print(str(i+1), end ="", file=text_file) print(")", end =" ", file=text_file) print(unique_groups[i], end ="\n", file=text_file) print("File lal_parsed_word.txt written") # Parse tex \author and \affil def parse_tex(self,df): # save current list temp_list = list(self.get(0, tk.END)) # create output df dfout = pd.DataFrame() for item in temp_list: items = item.split(",") matchl = (df["LastName"].isin([items[0]])) matchf = (df["FirstName"].isin([items[1]])) dfout = dfout.append(df[matchf & matchl]) # parse first = dfout["FirstName"] last = dfout["LastName"] grp = dfout[["Group1","Group2","Group3","Group4","Group5"]] unique_groups = [] group_ids = [] k = 0 # collect unique groups and indices for i in range(0,dfout.shape[0]): groups = [] # loop through max 5 groups for j in range(0,5): # Exclude some common dummy place holders if (grp.iloc[i,j] not in ['nil','nan','0','-']): if (grp.iloc[i,j] not in unique_groups): unique_groups.append(grp.iloc[i,j]) k = k + 1 groups.append(k) else: ix = unique_groups.index(grp.iloc[i,j])+1 groups.append(ix) # Add author group ids group_ids.append(groups) #print(group_ids) #print(unique_groups) # Compose text with open("lal_parsed_tex.txt", "w") as text_file: # write out names for i in range(0,dfout.shape[0]): print("\\Author[", end ="", file=text_file) for j in range(0,len(group_ids[i])): if j < len(group_ids[i])-1: print(str(group_ids[i][j]), end =",", file=text_file) else: print(str(group_ids[i][j]), end ="]", file=text_file) print("{", end ="", file=text_file) print(first.iloc[i].strip(), end ="", file=text_file) print("}{", end ="", file=text_file) print(last.iloc[i].strip(), end ="", file=text_file) print("}", end ="\n", file=text_file) # Add some space between names and affiliations print("\n", file=text_file) # Write out affiliations for i in range(0,len(unique_groups)): print("\\affil", end ="", file=text_file) print("[", end ="", file=text_file) print(str(i+1), end ="", file=text_file) print("]", end ="", file=text_file) print("{", end ="", file=text_file) print(unique_groups[i], end ="}\n", file=text_file) print("File lal_parsed_tex.txt written") # Parse simple list of names def parse_list(self,df): # save current list temp_list = list(self.get(0, tk.END)) # create output df dfout =
pd.DataFrame()
pandas.DataFrame
import nltk import sklearn_crfsuite from sklearn_crfsuite import metrics import pandas as pd from sklearn.preprocessing import label_binarize import string # nltk.download('conll2002') flatten = lambda l: [item for sublist in l for item in sublist] print(__doc__) import numpy as np import matplotlib.pyplot as plt from itertools import cycle import os import sys from sklearn.preprocessing import LabelEncoder from math import sqrt from sklearn.metrics import mean_squared_error from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.model_selection import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier from scipy import interp from sklearn.metrics import roc_auc_score import argparse import matplotlib.cm as cm import codecs from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import NMF # nltk.corpus.conll2002.fileids() from tqdm import tqdm_notebook as tqdm from tqdm import trange from sklearn.cluster import KMeans from sklearn import metrics from scipy.spatial.distance import cdist from sklearn.metrics import silhouette_samples, silhouette_score from sklearn.metrics import confusion_matrix from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans from sklearn.metrics import silhouette_samples, silhouette_score from sklearn.metrics import confusion_matrix from sklearn.preprocessing import scale from gensim.models.word2vec import Word2Vec import gensim import random from collections import OrderedDict from sklearn.model_selection import KFold # classifier information from keras.layers import Dropout, Dense from keras.models import Sequential from sklearn.metrics import roc_curve, auc from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier from scipy import interp from sklearn.metrics import roc_auc_score from sklearn.metrics import accuracy_score LabeledSentence = gensim.models.doc2vec.LabeledSentence import hdbscan # classifier information from keras.layers import Input from keras.models import Model from keras.layers import Dropout, Dense from keras.models import Sequential from sklearn.metrics import roc_curve, auc from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier from scipy import interp from sklearn.metrics import roc_auc_score from sklearn.metrics import accuracy_score import hdbscan from sklearn.cluster import MiniBatchKMeans from gensim.models.doc2vec import Doc2Vec, TaggedDocument def model_ae(X_train,x_test,n=300,encoding_dim=32): # http://gradientdescending.com/pca-vs-autoencoders-for-dimensionality-reduction/ # r program # this is our input placeholder input = Input(shape=(n,)) # "encoded" is the encoded representation of the input encoded = Dense(encoding_dim, activation='relu')(input) # "decoded" is the lossy reconstruction of the input decoded = Dense(n, activation='sigmoid')(encoded) # this model maps an input to its reconstruction autoencoder = Model(input, decoded) # this model maps an input to its encoded representation encoder = Model(input, encoded) encoded_input = Input(shape=(encoding_dim,)) # retrieve the last layer of the autoencoder model decoder_layer = autoencoder.layers[-1] # create the decoder model decoder = Model(encoded_input, decoder_layer(encoded_input)) autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') autoencoder.fit(X_train, X_train, epochs=20, batch_size=32, shuffle=True, validation_data=(x_test, x_test)) return encoder def call_silhout_(X,df,range_n_clusters): hyper_parm_turning=OrderedDict() for n_clusters in range_n_clusters: # Initialize the clusterer with n_clusters value and a random generator # seed of 10 for reproducibility. # clusterer = MiniBatchKMeans(n_clusters=n_clusters,init='k-means++', random_state=10) from sklearn.mixture import GaussianMixture # Predict GMM cluster membership clusterer = GaussianMixture(n_components=n_clusters, random_state=10) # from sklearn.cluster import AgglomerativeClustering # clusterer = AgglomerativeClustering(n_clusters=n_clusters) cluster_labels = clusterer.fit_predict(X) labels="cluster_labels_{}".format(n_clusters) if not labels in df.keys(): df[labels]=cluster_labels sample_dist_std=np.std(df.groupby(labels).size()) sample_dist_avrg=np.median(df.groupby(labels).size()) # The silhouette_score gives the average value for all the samples. # This gives a perspective into the density and separation of the formed # clusters silhouette_avg = silhouette_score(X, cluster_labels) if not 'n_clusters' in hyper_parm_turning.keys(): hyper_parm_turning['n_clusters']=[n_clusters] else: hyper_parm_turning['n_clusters'].append(n_clusters) if not 'silhouette_avg' in hyper_parm_turning.keys(): hyper_parm_turning['silhouette_avg']=[silhouette_avg] else: hyper_parm_turning['silhouette_avg'].append(silhouette_avg) if not 'sample_dist_std' in hyper_parm_turning.keys(): hyper_parm_turning['sample_dist_std']=[sample_dist_std] else: hyper_parm_turning['sample_dist_std'].append(sample_dist_std) if not 'sample_dist_avrg' in hyper_parm_turning.keys(): hyper_parm_turning['sample_dist_avrg']=[sample_dist_avrg] else: hyper_parm_turning['sample_dist_avrg'].append(sample_dist_avrg) print("For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg) return df,hyper_parm_turning def main(): parser = argparse.ArgumentParser(description="") # Add options parser.add_argument("-v", "--verbosity", action="count", default=0, help="increase output verbosity") # Add arguments parser.add_argument("input_file", help="The input file to be projected") # parser.add_argument("speech_feats_file", help="The input file to be projected") # parser.add_argument("out_path_file", help="The input file to be projected") args = parser.parse_args() df_=pd.read_csv(args.input_file) # print(df_.head()) df_doc2vec=df_.copy() df_doc2vec=df_doc2vec.drop(['utterance'], axis=1) # print(df_doc2vec.columns.to_list()) # df_['sentence_label']=sentence_emotion_labeling df_doc2vec = df_doc2vec[df_doc2vec.columns[:300]] print('loading the database') # print(df_doc2vec.head()) print(df_doc2vec.shape) from sklearn.preprocessing import scale train_vecs = scale(df_doc2vec) print('scaling the data') #using pca as dimension reduction technique PCA_model = PCA(.90, random_state=42) X_standard = PCA_model.fit_transform(train_vecs)*(-1) print(X_standard.shape) # Single VD # from numpy import array # from sklearn.decomposition import TruncatedSVD # TruncatedSVD_model=TruncatedSVD(n_components=3) # X_standard = TruncatedSVD_model.fit_transform(train_vecs) # using T-distributed Stochastic Neighbor Embedding (T-SNE) # from sklearn.manifold import TSNE # X_standard = TSNE(n_components=3).fit_transform(train_vecs) # from sklearn.decomposition import NMF # NMF_model=NMF(n_components=3) # X_standard = NMF_model.fit_transform(train_vecs) # from sklearn import random_projection # X_standard = random_projection.GaussianRandomProjection(n_components=2).fit_transform(X_standard) # X_train,x_test,Y_train,y_test=train_test_split(train_vecs, df_['utterance'].to_list(),test_size=0.2) # encodeing=model_ae(X_train,x_test) # X_standard=scale(encodeing.predict(train_vecs)) # print(X_standard) # print(PCA_model.explained_variance_ratio_) # print(TruncatedSVD_model.explained_variance_ratio_) # print(NMF_model.explained_variance_ratio_) # clustering range_n_clusters =np.arange(20,22,+1) # # print(df_.shape) X_labeled,hyper_parm_turning=call_silhout_(X_standard,df_,range_n_clusters) # print(X_labeled.head()) X_labeled['utterance']=df_.index.to_list() # # X_labeled['sentence_label']=sentence_emotion_labeling cluster_='cluster_labels_20' # cluster_labeling=X_labeled[['utterance','sentence_label',cluster_]].groupby(cluster_).size() cluster_labeling=X_labeled[['utterance',cluster_]].groupby(cluster_).size() print(cluster_labeling) hyper_parm_turning=
pd.DataFrame(hyper_parm_turning)
pandas.DataFrame
import pandas as pd import numpy as np __all__=['xgb_parse'] def _xgb_tree_leaf_parse(xgbtree,nodeid_leaf): '''给定叶子节点,查找 xgbtree 树的路径 ''' leaf_ind=list(nodeid_leaf) result=xgbtree.loc[(xgbtree.ID.isin(leaf_ind)),:] result['Tag']='Leaf' node_id=list(result.ID) while len(node_id)>0: tmp1=xgbtree.loc[(xgbtree.Yes.isin(node_id)),:] tmp2=xgbtree.loc[(xgbtree.No.isin(node_id)),:] tmp1['Tag']='Yes' tmp2['Tag']='No' node_id=list(tmp1.ID)+list(tmp2.ID) result=pd.concat([result,tmp1,tmp2],axis=0) return result def xgb_parse(model,feature=None): '''给定模型和单个样本,返回该样本的xgbtree树路径以及该样本的特征重要度 ''' feature_names=model.get_booster().feature_names #missing_value=model.get_params()['missing'] f0=
pd.DataFrame({'GainTotal':model.feature_importances_,'Feature':feature_names})
pandas.DataFrame
from urllib.request import urlretrieve import pandas as pd import os FREMONT_URL = 'https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD' def get_fremont_data(filename = "fremont.csv", url=FREMONT_URL, force_download=False): ''' This function is used to prepare the data: a) download the data from assigned URL (FREMONT DATA) b) parse the date of the data using pandas c) rename the column to simplify it, using columns name: ['Total', 'East', 'West'] ------------ Parameters: ------------ filename: string (optional) location to save the data url: string (optional) web location of the data force_download: bool (optional) if True, force redownload of data ------------ Returns ------------ data : pandas.DataFrame The fremont bridge data contains passing bike data. ''' if force_download or not os.path.exists(filename): urlretrieve(url, 'freemont.csv') data = pd.read_csv('fremont.csv', index_col = 'Date') try: data.index=pd.to_datetime(data.index, format='%m/%d/%Y %H:%M:%S %p') # check it here: https://strftime.org/ except TypeError: data.index=
pd.to_datetime(data.index)
pandas.to_datetime
import pandas as pd import requests import datetime import numpy as np from numpy import array import matplotlib.pyplot as plt from numpy import hstack import seaborn as sns import random from functools import reduce from keras.models import load_model from keras.models import Sequential from keras.layers import LSTM,Bidirectional,Activation from keras import optimizers from keras.layers import Dense,Dropout from sklearn.ensemble import IsolationForest from sklearn.preprocessing import MinMaxScaler from statsmodels.tsa.seasonal import STL from sklearn.cluster import AgglomerativeClustering,KMeans import logging def cluster_model(self,entry_info,repo_id,df): data =
pd.read_csv("repo_reviews_all.csv")
pandas.read_csv
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype # list of periods df = pd.DataFrame({'a': a.astype(object).tolist(), 'b': b.astype(object).tolist()}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng = pd.period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shape (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 # 1-D input frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3]) assert len(frame.index) == 3 assert len(frame.columns) == 1 # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B', 'C'], index=[1]) msg = r'Shape of passed values is \(3, 2\), indices imply \(2, 2\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B'], index=[1, 2]) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # automatic labeling frame = DataFrame(mat) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, index=[1, 2]) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, columns=['A', 'B', 'C']) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) # 0-length axis frame = DataFrame(empty((0, 3))) assert len(frame.index) == 0 frame = DataFrame(empty((3, 0))) assert len(frame.columns) == 0 def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A']) assert len(frame) == 2 def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert 1.0 == frame['A'][1] assert 2.0 == frame['C'][2] # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert np.all(~np.asarray(frame == frame)) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) assert frame.values.dtype == np.float64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'][1] assert 2 == frame['C'][2] # masked np.datetime64 stays (use NaT as null) mat = ma.masked_all((2, 3), dtype='M8[ns]') # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert isna(frame).values.all() # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'].view('i8')[1] assert 2 == frame['C'].view('i8')[2] # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) assert frame.values.dtype == object # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert frame['A'][1] is True assert frame['C'][2] is False def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial(tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True) arrays = [ ('float', np.array([1.5, 2.0])), ('int', np.array([1, 2])), ('str', np.array(['abc', 'def'])), ] for name, arr in arrays[:]: arrays.append(('masked1_' + name, np.ma.masked_array(arr, mask=[False, True]))) arrays.append(('masked_all', np.ma.masked_all((2,)))) arrays.append(('masked_none', np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = {k: (v.filled() if hasattr(v, 'filled') else v) for k, v in comb} expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner_shape(self): df = DataFrame(index=[]) assert df.values.shape == (0, 0) @pytest.mark.parametrize("data, index, columns, dtype, expected", [ (None, lrange(10), ['a', 'b'], object, np.object_), (None, None, ['a', 'b'], 'int64', np.dtype('int64')), (None, lrange(10), ['a', 'b'], int, np.dtype('float64')), ({}, None, ['foo', 'bar'], None, np.object_), ({'b': 1}, lrange(10), list('abc'), int, np.dtype('float64')) ]) def test_constructor_dtype(self, data, index, columns, dtype, expected): df = DataFrame(data, index, columns, dtype) assert df.values.dtype == expected def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) assert df['int'].dtype == np.int64 assert df['bool'].dtype == np.bool_ assert df['float'].dtype == np.float64 assert df['complex'].dtype == np.complex128 assert df['object'].dtype == np.object_ def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) exp = DataFrame({'a': df['a'].values, 'b': [True] * 10}) tm.assert_frame_equal(df, exp) with pytest.raises(ValueError, match='must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_DataFrame(self): df = DataFrame(self.frame) tm.assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) assert df_casted.values.dtype == np.int64 def test_constructor_more(self): # used to be in test_matrix.py arr = randn(10) dm = DataFrame(arr, columns=['A'], index=np.arange(10)) assert dm.values.ndim == 2 arr = randn(0) dm = DataFrame(arr) assert dm.values.ndim == 2 assert dm.values.ndim == 2 # no data specified dm = DataFrame(columns=['A', 'B'], index=np.arange(10)) assert dm.values.shape == (10, 2) dm = DataFrame(columns=['A', 'B']) assert dm.values.shape == (0, 2) dm = DataFrame(index=np.arange(10)) assert dm.values.shape == (10, 0) # can't cast mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1) with pytest.raises(ValueError, match='cast'): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(self.frame._series)) tm.assert_frame_equal(dm, self.frame) # int cast dm = DataFrame({'A': np.ones(10, dtype=int), 'B': np.ones(10, dtype=np.float64)}, index=np.arange(10)) assert len(dm.columns) == 2 assert dm.values.dtype == np.float64 def test_constructor_empty_list(self): df = DataFrame([], index=[]) expected = DataFrame(index=[]) tm.assert_frame_equal(df, expected) # GH 9939 df = DataFrame([], columns=['A', 'B']) expected = DataFrame({}, columns=['A', 'B']) tm.assert_frame_equal(df, expected) # Empty generator: list(empty_gen()) == [] def empty_gen(): return yield df = DataFrame(empty_gen(), columns=['A', 'B']) tm.assert_frame_equal(df, expected) def test_constructor_list_of_lists(self): # GH #484 df = DataFrame(data=[[1, 'a'], [2, 'b']], columns=["num", "str"]) assert is_integer_dtype(df['num']) assert df['str'].dtype == np.object_ # GH 4851 # list of 0-dim ndarrays expected = DataFrame({0: np.arange(10)}) data = [np.array(x) for x in range(10)] result = DataFrame(data) tm.assert_frame_equal(result, expected) def test_constructor_sequence_like(self): # GH 3783 # collections.Squence like class DummyContainer(compat.Sequence): def __init__(self, lst): self._lst = lst def __getitem__(self, n): return self._lst.__getitem__(n) def __len__(self, n): return self._lst.__len__() lst_containers = [DummyContainer([1, 'a']), DummyContainer([2, 'b'])] columns = ["num", "str"] result = DataFrame(lst_containers, columns=columns) expected = DataFrame([[1, 'a'], [2, 'b']], columns=columns) tm.assert_frame_equal(result, expected, check_dtype=False) # GH 4297 # support Array import array result = DataFrame({'A': array.array('i', range(10))}) expected = DataFrame({'A': list(range(10))}) tm.assert_frame_equal(result, expected, check_dtype=False) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([array.array('i', range(10)), array.array('i', range(10))]) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_iterable(self): # GH 21987 class Iter(): def __iter__(self): for i in range(10): yield [1, 2, 3] expected = DataFrame([[1, 2, 3]] * 10) result = DataFrame(Iter()) tm.assert_frame_equal(result, expected) def test_constructor_iterator(self): expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([range(10), range(10)]) tm.assert_frame_equal(result, expected) def test_constructor_generator(self): # related #2305 gen1 = (i for i in range(10)) gen2 = (i for i in range(10)) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([gen1, gen2]) tm.assert_frame_equal(result, expected) gen = ([i, 'a'] for i in range(10)) result = DataFrame(gen) expected = DataFrame({0: range(10), 1: 'a'}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_list_of_dicts(self): data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] result = DataFrame(data) expected = DataFrame.from_dict(dict(zip(range(len(data)), data)), orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result = DataFrame([{}]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_preserve_order(self): # see gh-13304 expected = DataFrame([[2, 1]], columns=['b', 'a']) data = OrderedDict() data['b'] = [2] data['a'] = [1] result = DataFrame(data) tm.assert_frame_equal(result, expected) data = OrderedDict() data['b'] = 2 data['a'] = 1 result = DataFrame([data]) tm.assert_frame_equal(result, expected) def test_constructor_ordered_dict_conflicting_orders(self): # the first dict element sets the ordering for the DataFrame, # even if there are conflicting orders from subsequent ones row_one = OrderedDict() row_one['b'] = 2 row_one['a'] = 1 row_two = OrderedDict() row_two['a'] = 1 row_two['b'] = 2 row_three = {'b': 2, 'a': 1} expected = DataFrame([[2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two]) tm.assert_frame_equal(result, expected) expected = DataFrame([[2, 1], [2, 1], [2, 1]], columns=['b', 'a']) result = DataFrame([row_one, row_two, row_three]) tm.assert_frame_equal(result, expected) def test_constructor_list_of_series(self): data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(['x', 'y'], data)) idx = Index(['a', 'b', 'c']) # all named data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx, name='y')] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) # some unnamed data2 = [Series([1.5, 3, 4], idx, dtype='O', name='x'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) sdict = OrderedDict(zip(['x', 'Unnamed 0'], data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result.sort_index(), expected) # none named data = [OrderedDict([['a', 1.5], ['b', 3], ['c', 4], ['d', 6]]), OrderedDict([['a', 1.5], ['b', 3], ['d', 6]]), OrderedDict([['a', 1.5], ['d', 6]]), OrderedDict(), OrderedDict([['a', 1.5], ['b', 3], ['c', 4]]), OrderedDict([['b', 3], ['c', 4], ['d', 6]])] data = [Series(d) for d in data] result = DataFrame(data) sdict = OrderedDict(zip(range(len(data)), data)) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected.reindex(result.index)) result2 = DataFrame(data, index=np.arange(6)) tm.assert_frame_equal(result, result2) result = DataFrame([Series({})]) expected = DataFrame(index=[0]) tm.assert_frame_equal(result, expected) data = [OrderedDict([['a', 1.5], ['b', 3.0], ['c', 4.0]]), OrderedDict([['a', 1.5], ['b', 3.0], ['c', 6.0]])] sdict = OrderedDict(zip(range(len(data)), data)) idx = Index(['a', 'b', 'c']) data2 = [Series([1.5, 3, 4], idx, dtype='O'), Series([1.5, 3, 6], idx)] result = DataFrame(data2) expected = DataFrame.from_dict(sdict, orient='index') tm.assert_frame_equal(result, expected) def test_constructor_list_of_series_aligned_index(self): series = [pd.Series(i, index=['b', 'a', 'c'], name=str(i)) for i in range(3)] result = pd.DataFrame(series) expected = pd.DataFrame({'b': [0, 1, 2], 'a': [0, 1, 2], 'c': [0, 1, 2]}, columns=['b', 'a', 'c'], index=['0', '1', '2']) tm.assert_frame_equal(result, expected) def test_constructor_list_of_derived_dicts(self): class CustomDict(dict): pass d = {'a': 1.5, 'b': 3} data_custom = [CustomDict(d)] data = [d] result_custom = DataFrame(data_custom) result = DataFrame(data) tm.assert_frame_equal(result, result_custom) def test_constructor_ragged(self): data = {'A': randn(10), 'B': randn(8)} with pytest.raises(ValueError, match='arrays must all be same length'): DataFrame(data) def test_constructor_scalar(self): idx = Index(lrange(3)) df = DataFrame({"a": 0}, index=idx) expected = DataFrame({"a": [0, 0, 0]}, index=idx) tm.assert_frame_equal(df, expected, check_dtype=False) def test_constructor_Series_copy_bug(self): df = DataFrame(self.frame['A'], index=self.frame.index, columns=['A']) df.copy() def test_constructor_mixed_dict_and_Series(self): data = {} data['A'] = {'foo': 1, 'bar': 2, 'baz': 3} data['B'] = Series([4, 3, 2, 1], index=['bar', 'qux', 'baz', 'foo']) result = DataFrame(data) assert result.index.is_monotonic # ordering ambiguous, raise exception with pytest.raises(ValueError, match='ambiguous ordering'): DataFrame({'A': ['a', 'b'], 'B': {'a': 'a', 'b': 'b'}}) # this is OK though result = DataFrame({'A': ['a', 'b'], 'B': Series(['a', 'b'], index=['a', 'b'])}) expected = DataFrame({'A': ['a', 'b'], 'B': ['a', 'b']}, index=['a', 'b']) tm.assert_frame_equal(result, expected) def test_constructor_tuples(self): result = DataFrame({'A': [(1, 2), (3, 4)]}) expected = DataFrame({'A': Series([(1, 2), (3, 4)])}) tm.assert_frame_equal(result, expected) def test_constructor_namedtuples(self): # GH11181 from collections import namedtuple named_tuple = namedtuple("Pandas", list('ab')) tuples = [named_tuple(1, 3), named_tuple(2, 4)] expected = DataFrame({'a': [1, 2], 'b': [3, 4]}) result = DataFrame(tuples) tm.assert_frame_equal(result, expected) # with columns expected = DataFrame({'y': [1, 2], 'z': [3, 4]}) result = DataFrame(tuples, columns=['y', 'z']) tm.assert_frame_equal(result, expected) def test_constructor_orient(self): data_dict = self.mixed_frame.T._series recons = DataFrame.from_dict(data_dict, orient='index') expected = self.mixed_frame.sort_index() tm.assert_frame_equal(recons, expected) # dict of sequence a = {'hi': [32, 3, 3], 'there': [3, 5, 3]} rs = DataFrame.from_dict(a, orient='index') xp = DataFrame.from_dict(a).T.reindex(list(a.keys())) tm.assert_frame_equal(rs, xp) def test_from_dict_columns_parameter(self): # GH 18529 # Test new columns parameter for from_dict that was added to make # from_items(..., orient='index', columns=[...]) easier to replicate result = DataFrame.from_dict(OrderedDict([('A', [1, 2]), ('B', [4, 5])]), orient='index', columns=['one', 'two']) expected = DataFrame([[1, 2], [4, 5]], index=['A', 'B'], columns=['one', 'two']) tm.assert_frame_equal(result, expected) msg = "cannot use columns parameter with orient='columns'" with pytest.raises(ValueError, match=msg): DataFrame.from_dict(dict([('A', [1, 2]), ('B', [4, 5])]), orient='columns', columns=['one', 'two']) with pytest.raises(ValueError, match=msg): DataFrame.from_dict(dict([('A', [1, 2]), ('B', [4, 5])]), columns=['one', 'two']) def test_constructor_Series_named(self): a = Series([1, 2, 3], index=['a', 'b', 'c'], name='x') df = DataFrame(a) assert df.columns[0] == 'x' tm.assert_index_equal(df.index, a.index) # ndarray like arr = np.random.randn(10) s = Series(arr, name='x') df = DataFrame(s) expected = DataFrame(dict(x=s)) tm.assert_frame_equal(df, expected) s = Series(arr, index=range(3, 13)) df = DataFrame(s) expected = DataFrame({0: s}) tm.assert_frame_equal(df, expected) pytest.raises(ValueError, DataFrame, s, columns=[1, 2]) # #2234 a = Series([], name='x') df = DataFrame(a) assert df.columns[0] == 'x' # series with name and w/o s1 = Series(arr, name='x') df = DataFrame([s1, arr]).T expected = DataFrame({'x': s1, 'Unnamed 0': arr}, columns=['x', 'Unnamed 0']) tm.assert_frame_equal(df, expected) # this is a bit non-intuitive here; the series collapse down to arrays df = DataFrame([arr, s1]).T expected = DataFrame({1: s1, 0: arr}, columns=[0, 1]) tm.assert_frame_equal(df, expected) def test_constructor_Series_named_and_columns(self): # GH 9232 validation s0 = Series(range(5), name=0) s1 = Series(range(5), name=1) # matching name and column gives standard frame tm.assert_frame_equal(pd.DataFrame(s0, columns=[0]), s0.to_frame()) tm.assert_frame_equal(pd.DataFrame(s1, columns=[1]), s1.to_frame()) # non-matching produces empty frame assert pd.DataFrame(s0, columns=[1]).empty assert pd.DataFrame(s1, columns=[0]).empty def test_constructor_Series_differently_indexed(self): # name s1 = Series([1, 2, 3], index=['a', 'b', 'c'], name='x') # no name s2 = Series([1, 2, 3], index=['a', 'b', 'c']) other_index =
Index(['a', 'b'])
pandas.Index
# --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.5.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + # remove_cell import sys sys.path.insert(0, '/home/jovyan/ros/') # %load_ext autoreload # %autoreload 2 # + # remove_cell import itertools as it import logging import operator import altair as A import arviz as az from bambi import Model import dscontrib.wbeard as wb import matplotlib.pyplot as plt import numpy as np import numpy.random as nr import pandas as pd import scipy.stats as st from numba import njit import toolz.curried as z import seaborn as sns from ros.utils.common import hstack, vstack, plot_wrap, drop_outliers, disable_logging from ros.utils import bootstrap as bs, plot as plu disable_logging(["numba", "arviz", "pymc3", "bambi", "numexpr"]) # str_concat = z.compose("-".join, z.map(str)) lmap = z.comp(list, map) plt.rcParams["font.size"] = 17 p = lambda: None p.__dict__.update( dict( zip( "hide_output hide_input collapse_hide collapse_show remove_cell".split(), range(10), ) ) ) # - # There's an interplay between sample size, effect size, and the sensitivity of an experiment to detect changes that we spend time thinking about at Mozilla. All else equal, it's usually preferable to enroll a smaller sample size so long as it's sufficient to pick up the signal of the treatment. Among other reasons, this helps reduce the likelihood of different experiments interacting with each other. But there are ways to increase the resolution of experimental analysis without having to increase the population size, and this efficient frontier is a good place to aim for. # # Some techniques I've tried lately are using [blocking](https://en.wikipedia.org/wiki/Blocking_(statistics)) and pre-treatment predictors as useful ways to get more precise estimates for free, without the need of a larger study population. This post simulates experimental data to demonstrate the improvement in precision that you can get with these. # ## The Setup # # The example here is a study that measures an improvement in startup times of a new feature. This is a metric we pay quite a bit of attention to in the platform area, and are obviously interested in features that can reduce startup times. The study population in this example has a distribution of startup times, but on average Windows 7 users have longer times than Windows 10 users.[1] # # The basic idea with blocking is that if 2 groups in the population have significantly different outcomes, independent of the treatment variable, you can get a more precise estimate of the treatment effect by modeling these groups separately. # Intuitively, if the 2 groups have significantly different outcomes even before the treatment is applied, this difference will contribute to a higher variance in the estimate when it comes time to measure the size of the treatment effect. The variable that determines the grouping needs to be independent of the treatment assignment, so using Windows 7 as a blocking factor would be a good choice, as our feature doesn't do anything preposterous like upgrade the OS once the client enrolls. # # The second idea is to use pre-treatment variables as a predictor. In this case, it involves looking at the startup time before enrollment, and seeing how much this changes on average for the treatment group once they get the feature. This works if a # client's pre-treatment startup time $t_{pre}$ is more informative of the post-treatment startup time $t_{post}$ than merely knowing the OS version, and it's safe to assume here that $t_{post}$ and the OS are conditionally independent given $t_{pre}$. # # As with many metrics we use, the log of the startup time more closely follows the distributions we're used to. For this simulation we'll set the log of the first_paint time to follow a gamma distribution, with the mean time increased for Windows 7 users.[2] For users in the treatment group, we'll add a noisy log(.9) (=-.105) to the distribution, which translates to roughly a 10% decrease in startup times on the linear scale.[3] After the simulation, we'll look at how much of an improvement you get with the estimates when using a randomized block design. The formulas describing the simulation are # # # \begin{align} # fp_{baseline} & \sim \mathrm{Gamma}(4 + \mathbb 1_{win7} \cdot \mu_{win}) \\ # w_{treat} & \sim \mathcal N (\mathbb 1_{treat} \cdot \mu_{treat}, \sigma_{treat}) \\ # \log(first\_paint) & = fp_{baseline} + w_{treat} # \end{align} # + # hide_input @njit def seed(n): nr.seed(n) @njit def randn(mu, sig, size=1): return nr.randn(size) * sig + mu # + # collapse_show WIN7_FACT = 1.2 TREAT_MU = np.log(.9) TREAT_SD = .15 @njit def gen_log_first_paint_pre_post(win7, treat, size=1): pre = nr.gamma(4 + WIN7_FACT * win7, 1, size=size) return np.concatenate((pre, pre + randn(TREAT_MU * treat, TREAT_SD, size=size))) # + # collapse_hide n_each = 10_000 n_win_7 = {0: n_each, 1: n_each} seed(0) def add_columns(df): pre_post = pd.DataFrame( [ gen_log_first_paint_pre_post(win7, treat=treat) # gen_pre_post(win7, win7_fact=WIN7_FACT, treat=treat, treat_fact=TREAT_FACT,) for win7, treat in df[["win7", "treat"]].itertuples(index=False) ], columns=["lpre", "lpost"], ).assign( pre=lambda df: np.exp(df.lpre), post=lambda df: np.exp(df.lpost), ) df = hstack([df, pre_post]) df = ( df.assign(os=lambda df: df.win7.map({0: "win10", 1: "win7"})) .reset_index(drop=0) .rename(columns={"index": "id"}) ) df["demo"] = [ str_concat(tup) for tup in df[["treat", "os"]] .assign(treat=lambda df: df.treat.map({1: "treat", 0: "control"})) .itertuples(index=False) ] return df def create_test_pop(n_each=50): data_dct = [ {"win7": win7, "treat": treat} for win7 in (0, 1) for treat in (0, 1) for _ in range(n_win_7[win7]) ] df_ =
pd.DataFrame(data_dct)
pandas.DataFrame
import numpy as np import random from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt import queue import collections import pandas as pd INPUT_FILE="blobs.txt" ITERATIONS=10 #Define label for differnt point group NOISE = 0 UNASSIGNED = 0 core=-1 edge=-2 dataset = [] def read_dataset(): """ Reading dataset """ global INPUT_FILE, dataset f = open(INPUT_FILE, "r") lines = f.readlines() for i in range(len(lines)): data = lines[i].split() dataset.append(list(map(float, data))) # print(data) f.close() pass def find_nearest_neighbour(k): """ Nearest neighbour """ global dataset nearest_neighbors = NearestNeighbors(n_neighbors=k) nearest_neighbors.fit(dataset) distances, indices = nearest_neighbors.kneighbors(dataset) distances = np.sort(distances, axis=0)[:, 1] # print(distances, indices) plt.plot(distances) plt.savefig('Nearest_Neighbour.png') # plt.show() def dist(point1, point2): """Euclid distance function""" x1 = point1[0] x2 = point2[0] y1 = point1[1] y2 = point2[1] # create the points p1 = (x1 - x2)**2 p2 = (y1 - y2)**2 return np.sqrt(p1 + p2) #function to find all neigbor points in radius def neighbor_points(data, pointIdx, radius): points = [] for i in range(len(data)): #Euclidian distance using L2 Norm # if np.linalg.norm(data[i] - data[pointIdx]) <= radius: if dist(data[i], data[pointIdx]) <= radius: points.append(i) return points #DB Scan algorithom def dbscan(data, Eps, MinPt): ''' - Eliminate noise points - Perform clustering on the remaining points > Put an edge between all core points which are within Eps > Make each group of core points as a cluster > Assign border point to one of the clusters of its associated core points ''' #initilize all pointlable to unassign pointlabel = [UNASSIGNED] * len(data) pointcount = [] #initilize list for core/noncore point corepoint=[] noncore=[] #Find all neigbor for all point for i in range(len(data)): pointcount.append(neighbor_points(dataset,i,Eps)) #Find all core point, edgepoint and noise for i in range(len(pointcount)): if (len(pointcount[i])>=MinPt): pointlabel[i]=core corepoint.append(i) else: noncore.append(i) for i in noncore: for j in pointcount[i]: if j in corepoint: pointlabel[i]=edge break #start assigning point to cluster cl = 1 #Using a Queue to put all neigbor core point in queue and find neigboir's neigbor for i in range(len(pointlabel)): q = queue.Queue() if (pointlabel[i] == core): pointlabel[i] = cl for x in pointcount[i]: if(pointlabel[x]==core): q.put(x) pointlabel[x]=cl elif(pointlabel[x]==edge): pointlabel[x]=cl #Stop when all point in Queue has been checked while not q.empty(): neighbors = pointcount[q.get()] for y in neighbors: if (pointlabel[y]==core): pointlabel[y]=cl q.put(y) if (pointlabel[y]==edge): pointlabel[y]=cl cl=cl+1 #move to next cluster return pointlabel,cl def calc_distance(X1, X2): return(sum((X1 - X2)**2))**0.5 def findClosestCentroids(ic, X): assigned_centroid = [] for i in X: distance=[] for j in ic: distance.append(calc_distance(i, j)) assigned_centroid.append(np.argmin(distance)) return assigned_centroid def calc_centroids(clusters, X): new_centroids = [] new_df = pd.concat([pd.DataFrame(X),
pd.DataFrame(clusters, columns=['cluster'])
pandas.DataFrame
import pandas as pd test_data_set = pd.read_csv('test.csv') train_data_set = pd.read_csv('train.csv') gen_sub_set = pd.read_csv('gender_submission.csv') test_set = gen_sub_set.merge(test_data_set,how='left') Data_Set =
pd.concat([train_data_set,test_set],axis=0)
pandas.concat
# Copyright (C) 2019-2020 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas import arctern def test_suite(): from multiprocessing import Process import time p1 = Process(target=ST_Intersection) p2 = Process(target=ST_Equals) p3 = Process(target=ST_Touches) p4 = Process(target=ST_Overlaps) p5 = Process(target=ST_Crosses) p6 = Process(target=ST_Point) p7 = Process(target=ST_Contains) p8 = Process(target=ST_Intersects) p9 = Process(target=ST_Distance) p10 = Process(target=ST_DistanceSphere) p11 = Process(target=ST_HausdorffDistance) p12 = Process(target=ST_PolygonFromEnvelope) start = time.time() p1.start() p2.start() p3.start() p4.start() p5.start() p6.start() p7.start() p8.start() p9.start() p10.start() p11.start() p12.start() p1.join() p2.join() p3.join() p4.join() p5.join() p6.join() p7.join() p8.join() p9.join() p10.join() p11.join() p12.join() end = time.time() print('Task runs %0.2f seconds.' % ((end - start))) def ST_Intersection(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Intersection(data1, data2) assert len(rst) == 40000000 def ST_Equals(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Equals(data1, data2) assert len(rst) == 40000000 def ST_Touches(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Touches(data1, data2) assert len(rst) == 40000000 def ST_Overlaps(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Overlaps(data1, data2) assert len(rst) == 40000000 def ST_Crosses(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Crosses(data1, data2) assert len(rst) == 40000000 def ST_Point(): geo1 = 1.1 geo2 = 2.1 arr1 = [geo1 for x in range(1, 40000001)] arr2 = [geo2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Point(data1, data2) assert len(rst) == 40000000 def ST_Contains(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Contains(data1, data2) assert len(rst) == 40000000 def ST_Intersects(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Intersects(data1, data2) assert len(rst) == 40000000 def ST_Within(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Within(data1, data2) assert len(rst) == 40000000 def ST_Distance(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 = pandas.Series(arr1) data2 = pandas.Series(arr2) rst = arctern.ST_Distance(data1, data2) assert len(rst) == 40000000 def ST_DistanceSphere(): geo1 = "POLYGON ((113.66220266388723 22.39277623851494, 114.58136061218778 22.39277623851494, 114.58136061218778 22.92800492531275 ,113.66220266388723 22.92800492531275, 113.66220266388723 22.39277623851494))" geo2 = "POINT (1 1)" geo_wkb1 = arctern.ST_GeomFromText(geo1)[0] geo_wkb2 = arctern.ST_GeomFromText(geo2)[0] arr1 = [geo_wkb1 for x in range(1, 40000001)] arr2 = [geo_wkb2 for x in range(1, 40000001)] data1 =
pandas.Series(arr1)
pandas.Series
#!usr/bin/env python import pandas as pd from sklearn.ensemble import RandomForestClassifier import pickle from dataProcessor import processor df_psy = pd.read_csv("Dataset/Youtube01-Psy.csv") df_katyperry = pd.read_csv("Dataset/Youtube02-KatyPerry.csv") df_lmfao = pd.read_csv("Dataset/Youtube03-LMFAO.csv") df_eminem = pd.read_csv("Dataset/Youtube04-Eminem.csv") df_shakira = pd.read_csv("Dataset/Youtube05-Shakira.csv") df =
pd.concat([df_psy, df_katyperry, df_lmfao, df_eminem, df_shakira])
pandas.concat
#coding=utf-8 #键盘分析 #(1)分别读取csdn和yahoo数据库中的passwd #(2)自定义了常见的14种键盘密码字符串 #(3)将从数据库中读取的passwd与定义的字符串进行子串匹配(忽略单个的字母和数字) #(4)只选择相对高频的密码,生成保存频率最高的密码和对应频率的csv import pandas as pd import numpy as np import csv np.set_printoptions(suppress=True) ############################################## #(1)读取数据 ############################################## yahoo_data = pd.read_csv('Yahoo-original-mail-passwd.csv',engine='python',sep='\t', quoting=csv.QUOTE_NONE,names=["email","passwd"], quotechar='"', error_bad_lines=False) csdn_data = pd.read_csv('csdn-original-username-mail-passwd.csv',engine='python',sep='\t', quoting=csv.QUOTE_NONE,names=["name","email","passwd"],quotechar='"', error_bad_lines=False) #读取密码 yahoo_passwd = pd.Series(yahoo_data['passwd'].values) csdn_passwd = pd.Series(csdn_data['passwd'].values) ############################################## #(2)定义常见的键盘密码字符串 ############################################## keyboard_pass1 = '<PASSWORD>,./' keyboard_pass2 = '<PASSWORD>' keyboard_pass3 = '<PASSWORD>;/' keyboard_pass4 = '<PASSWORD>' keyboard_pass5 = '<PASSWORD>' keyboard_pass6 = '<PASSWORD>4rfvbgt56yhnmju78ik,.lo90p;/' keyboard_pass7 = '0987654321poiuytrewq;lkjhgfdsa/.,mnbvcxz' keyboard_pass8 = '<KEY>' #忽略数字行 keyboard_pass9 = 'qazwsxedcrfvtgbyhnujmik,ol.p;/' keyboard_pass10 = '<KEY>' keyboard_pass11 = 'zaqxswcdevfrbgtnhymju,ki.lo/;p' keyboard_pass12 = 'zaqwsxcderfvbgtyhn<PASSWORD>,.lop;/' keyboard_pass13 = '<PASSWORD>' keyboard_pass14 = '<PASSWORD>' keyboard_pass_all = keyboard_pass1 + keyboard_pass2 + keyboard_pass3 + keyboard_pass4 + keyboard_pass5 + keyboard_pass6 + keyboard_pass7 + keyboard_pass8 + keyboard_pass9 + keyboard_pass10 + keyboard_pass11+keyboard_pass12+keyboard_pass13+keyboard_pass14 ############################################## #(3)分别在两个数据集中进行密码的子串匹配 ############################################## #定义字典来保存密码和其出现次数 yahoo_output = dict() csdn_output = dict() #######################YAHOO数据集 y_sum = 0 for data in yahoo_passwd.values: data = str(data)#格式都转换为string类型 # 密码是定义的键盘密码字符串的子串并且不是单个的字母或数字 if data in keyboard_pass_all and len(data) > 1: y_sum = y_sum + 1 if yahoo_output.has_key(data): #密码已经存在,出现次数加一 yahoo_output[data] = yahoo_output[data]+ 1 else:#否则,出现次数为1 yahoo_output[data] = 1 #######################CSDN数据集 c_sum = 0 for data in csdn_passwd.values: data = str(data) if data in keyboard_pass_all and len(data) > 1: c_sum = c_sum + 1 if csdn_output.has_key(data): csdn_output[data] = csdn_output[data] + 1 else: csdn_output[data] = 1 ############################################################### #(4)计算频率,选择相对高频的密码,并生成排名结果csv文件 ############################################################### #######################YAHOO数据集 #去掉出现次数少于 10 次的低频密码 result = dict() for data in yahoo_output: if yahoo_output[data] >= 10: result[data] = yahoo_output[data] yahoo_output = result yahoo_output = pd.Series(yahoo_output) #降序排序 yahoo_output = yahoo_output.sort_values(ascending = False) yahoo =
pd.DataFrame({'password' : yahoo_output.index , 'numbers' : yahoo_output.values , 'probability' : None})
pandas.DataFrame
# -*- coding: utf-8 -*- """ This module contains all the remote tests. The data for these tests is requested to ESA NEOCC portal. * Project: NEOCC portal Python interface * Property: European Space Agency (ESA) * Developed by: Elecnor Deimos * Author: <NAME> * Date: 02-11-2021 © Copyright [European Space Agency][2021] All rights reserved """ import io import os import re import random import pytest import pandas as pd import pandas.testing as pdtesting import pandas.api.types as ptypes import requests from astroquery.esa.neocc.__init__ import conf from astroquery.esa.neocc import neocc, lists, tabs import astropy # Import BASE URL and TIMEOUT API_URL = conf.API_URL DATA_DIR = os.path.join(os.path.dirname(__file__), 'data') TIMEOUT = conf.TIMEOUT VERIFICATION = conf.SSL_CERT_VERIFICATION @pytest.mark.remote_data class TestLists: """Class which contains the unitary tests for lists module. """ # Dictionary for lists lists_dict = { "nea_list": 'allneo.lst', "updated_nea": 'updated_nea.lst', "monthly_update": 'monthly_update.done', "risk_list": 'esa_risk_list', "risk_list_special": 'esa_special_risk_list', "close_approaches_upcoming": 'esa_upcoming_close_app', "close_approaches_recent": 'esa_recent_close_app', "priority_list": 'esa_priority_neo_list', "priority_list_faint": 'esa_faint_neo_list', "close_encounter" : 'close_encounter2.txt', "impacted_objects" : 'impactedObjectsList.txt', "neo_catalogue_current" : 'neo_kc.cat', "neo_catalogue_middle" : 'neo_km.cat' } def test_get_list_url(self): """Test for checking the URL termination for requested lists. Check invalid list name raise KeyError. """ # Valid inputs valid_names = ["nea_list", "updated_nea", "monthly_update", "risk_list", "risk_list_special", "close_approaches_upcoming", "close_approaches_recent", "priority_list", "priority_list_faint", "close_encounter", "impacted_objects"] # Invalid inputs bad_names = ["ASedfe", "%&$", "ÁftR+", 154] # Assert for valid names for element in valid_names: assert lists.get_list_url(element) == \ self.lists_dict[element] # Assert for invalid names for elements in bad_names: with pytest.raises(KeyError): lists.get_list_url(elements) def test_get_list_data(self): """Check data obtained is pandas.DataFrame or pandas.Series """ # Check pd.Series output list_series = ["nea_list", "updated_nea", "monthly_update"] for series in list_series: assert isinstance(lists.get_list_data(self.\ lists_dict[series], series), pd.Series) # Check pd.DataFrame output list_dfs = ["risk_list", "risk_list_special", "close_approaches_upcoming", "close_approaches_recent", "priority_list", "close_encounter", "priority_list_faint", "impacted_objects"] for dfs in list_dfs: assert isinstance(lists.get_list_data(self.\ lists_dict[dfs], dfs), pd.DataFrame) def test_parse_list(self): """Check data obtained is pandas.DataFrame or pandas.Series """ # Check pd.Series output url_series = ["nea_list", "updated_nea", "monthly_update"] for url in url_series: # Get data from URL data_list = requests.get(API_URL + self.lists_dict[url], timeout=TIMEOUT, verify=VERIFICATION).content # Decode the data using UTF-8 data_list_d = io.StringIO(data_list.decode('utf-8')) assert isinstance(lists.parse_list(url, data_list_d), pd.Series) # Check pd.DataFrame output url_dfs = ["risk_list", "risk_list_special", "close_approaches_upcoming", "close_approaches_recent", "priority_list", "close_encounter", "priority_list_faint", "impacted_objects"] for url in url_dfs: # Get data from URL data_list = requests.get(API_URL + self.lists_dict[url], timeout=TIMEOUT, verify=VERIFICATION).content # Decode the data using UTF-8 data_list_d = io.StringIO(data_list.decode('utf-8')) assert isinstance(lists.parse_list(url, data_list_d), pd.DataFrame) # Invalid inputs bad_names = ["ASedfe", "%&$", "ÁftR+", 154] # Assert for invalid names for elements in bad_names: with pytest.raises(KeyError): lists.parse_list(elements, data_list_d) def test_parse_nea(self): """Check data: nea list, updated nea list and monthly update """ url_series = ["nea_list", "updated_nea", "monthly_update"] for url in url_series: # Get data from URL data_list = requests.get(API_URL + self.lists_dict[url], timeout=TIMEOUT, verify=VERIFICATION).content # Decode the data using UTF-8 data_list_d = io.StringIO(data_list.decode('utf-8')) # Parse using parse_nea new_list = lists.parse_nea(data_list_d) # Assert is a pandas Series assert isinstance(new_list, pd.Series) # Assert is not empty assert not new_list.empty # List of all NEAs if url == "nea_list": filename = os.path.join(DATA_DIR, self.lists_dict[url]) content = open(filename, 'r') nea_list = pd.read_csv(content, header=None) # Remove whitespaces nea_list = nea_list[0].str.strip().replace(r'\s+', ' ', regex=True)\ .str.replace('# ', '') # Check size of the data frame assert len(new_list.index) > 20000 # Check 74 first elements are equal from reference # data (since provisional designator may change) pdtesting.assert_series_equal(new_list[0:74], nea_list[0:74]) else: # Check date format DDD MMM DD HH:MM:SS UTC YYYY assert re.match(r'\w{3} \w{3} \d{2} \d{2}:\d{2}:\d{2} ' r'\w{3} \d{4}', new_list.iloc[0]) def test_parse_risk(self): """Check data: risk_list, risk_list_special """ url_risks = ['risk_list', 'risk_list_special'] # Columns of risk lists risk_columns = ['Object Name', 'Diameter in m', '*=Y', 'Date/Time', 'IP max', 'PS max', 'TS', 'Vel in km/s', 'First year', 'Last year', 'IP cum', 'PS cum'] risk_special_columns = risk_columns[0:8] for url in url_risks: # Get data from URL data_list = requests.get(API_URL + self.lists_dict[url], timeout=TIMEOUT, verify=VERIFICATION).content # Decode the data using UTF-8 data_list_d = io.StringIO(data_list.decode('utf-8')) # Parse using parse_nea new_list = lists.parse_risk(data_list_d) # Assert is a pandas DataFrame assert isinstance(new_list, pd.DataFrame) if url == 'risk_list': # Assert dataframe is not empty, columns names, length assert not new_list.empty assert (new_list.columns == risk_columns).all() assert len(new_list.index) > 1000 # Assert columns data types # Floats float_cols = ['Diameter in m', 'IP max', 'PS max', 'Vel in km/s', 'IP cum', 'PS cum'] assert all(ptypes.is_float_dtype(new_list[cols1])\ for cols1 in float_cols) # int64 int_cols = ['TS', 'First year', 'Last year'] assert all(ptypes.is_int64_dtype(new_list[cols2])\ for cols2 in int_cols) # Object object_cols = ['Object Name', '*=Y'] assert all(ptypes.is_object_dtype(new_list[cols3])\ for cols3 in object_cols) # Datetime assert ptypes.is_datetime64_ns_dtype( new_list['Date/Time']) else: # Currently risk special list is empty assert new_list.empty assert (new_list.columns == risk_special_columns).all() def test_parse_clo(self): """Check data: close_approaches_upcoming, close_approaches_recent """ url_close = ['close_approaches_upcoming', 'close_approaches_recent'] # Columns of close approaches lists close_columns = ['Object Name', 'Date', 'Miss Distance in km', 'Miss Distance in au', 'Miss Distance in LD', 'Diameter in m', '*=Yes', 'H', 'Max Bright', 'Rel. vel in km/s'] for url in url_close: # Get data from URL data_list = requests.get(API_URL + self.lists_dict[url], timeout=TIMEOUT, verify=VERIFICATION).content # Decode the data using UTF-8 data_list_d = io.StringIO(data_list.decode('utf-8')) # Parse using parse_nea new_list = lists.parse_clo(data_list_d) # Assert is a pandas DataFrame assert isinstance(new_list, pd.DataFrame) # Assert dataframe is not empty, columns names and length assert not new_list.empty assert (new_list.columns == close_columns).all() assert len(new_list.index) > 100 # Assert Connection Error. In case of internal server error # the request provided an empty file foo_error = io.StringIO('This site cant be reached\n' 'domain.com regused to connect\n' 'Search Google for domain\n' 'ERR_CONNECTION_REFUSED') with pytest.raises(ConnectionError): lists.parse_clo(foo_error) # Assert columns data types # Floats float_cols = ['Miss Distance in au', 'Miss Distance in LD', 'Diameter in m', 'H', 'Max Bright', 'Rel. vel in km/s'] assert all(ptypes.is_float_dtype(new_list[cols1])\ for cols1 in float_cols) # int64 assert ptypes.is_int64_dtype(new_list['Miss Distance in km']) # Object object_cols = ['Object Name', '*=Yes'] assert all(ptypes.is_object_dtype(new_list[cols3])\ for cols3 in object_cols) # Datetime assert
ptypes.is_datetime64_ns_dtype(new_list['Date'])
pandas.api.types.is_datetime64_ns_dtype
from unittest import TestCase, main import os import pandas as pd import numpy as np import numpy.testing as npt from io import StringIO from metapool.metapool import (read_plate_map_csv, read_pico_csv, calculate_norm_vol, format_dna_norm_picklist, assign_index, format_index_picklist, compute_qpcr_concentration, compute_shotgun_pooling_values_eqvol, compute_shotgun_pooling_values_qpcr, compute_shotgun_pooling_values_qpcr_minvol, estimate_pool_conc_vol, format_pooling_echo_pick_list, plot_plate_vals, make_2D_array, combine_dfs, parse_dna_conc_csv, add_dna_conc, compute_pico_concentration, ss_temp, format_sheet_comments, format_sample_sheet, bcl_scrub_name, rc, sequencer_i5_index, format_sample_data, reformat_interleaved_to_columns) class Tests(TestCase): def setUp(self): self.maxDiff = None self.cp_vals = np.array([[10.14, 7.89, 7.9, 15.48], [7.86, 8.07, 8.16, 9.64], [12.29, 7.64, 7.32, 13.74]]) self.dna_vals = np.array([[10.14, 7.89, 7.9, 15.48], [7.86, 8.07, 8.16, 9.64], [12.29, 7.64, 7.32, 13.74]]) self.qpcr_conc = \ np.array([[98.14626462, 487.8121413, 484.3480866, 2.183406934], [498.3536649, 429.0839787, 402.4270321, 140.1601735], [21.20533391, 582.9456031, 732.2655041, 7.545145988]]) self.pico_conc = \ np.array([[38.4090909, 29.8863636, 29.9242424, 58.6363636], [29.7727273, 30.5681818, 30.9090909, 36.5151515], [46.5530303, 28.9393939, 27.7272727, 52.0454545]]) # def test_compute_shotgun_normalization_values(self): # input_vol = 3.5 # input_dna = 10 # plate_layout = [] # for i in range(4): # row = [] # for j in range(4): # row.append({'dna_concentration': 10, # 'sample_id': "S%s.%s" % (i, j)}) # plate_layout.append(row) # obs_sample, obs_water = compute_shotgun_normalization_values( # plate_layout, input_vol, input_dna) # exp_sample = np.zeros((4, 4), dtype=np.float) # exp_water = np.zeros((4, 4), dtype=np.float) # exp_sample.fill(1000) # exp_water.fill(2500) # npt.assert_almost_equal(obs_sample, exp_sample) # npt.assert_almost_equal(obs_water, exp_water) # # Make sure that we don't go above the limit # plate_layout[1][1]['dna_concentration'] = 0.25 # obs_sample, obs_water = compute_shotgun_normalization_values( # plate_layout, input_vol, input_dna) # exp_sample[1][1] = 3500 # exp_water[1][1] = 0 # npt.assert_almost_equal(obs_sample, exp_sample) # npt.assert_almost_equal(obs_water, exp_water) def test_read_plate_map_csv(self): plate_map_csv = \ 'Sample\tRow\tCol\tBlank\n' + \ 'sam1\tA\t1\tFalse\n' + \ 'sam2\tA\t2\tFalse\n' + \ 'blank1\tB\t1\tTrue\n' + \ 'sam3\tB\t2\tFalse\n' plate_map_f = StringIO(plate_map_csv) exp_plate_df = pd.DataFrame({'Sample': ['sam1','sam2','blank1','sam3'], 'Row': ['A','A','B','B'], 'Col': [1,2,1,2], 'Well': ['A1','A2','B1','B2'], 'Blank': [False, False, True, False]}) obs_plate_df = read_plate_map_csv(plate_map_f) pd.testing.assert_frame_equal(obs_plate_df, exp_plate_df, check_like=True) def test_read_pico_csv(self): # Test a normal sheet pico_csv = '''Results Well ID\tWell\t[Blanked-RFU]\t[Concentration] SPL1\tA1\t5243.000\t3.432 SPL2\tA2\t4949.000\t3.239 SPL3\tB1\t15302.000\t10.016 SPL4\tB2\t4039.000\t2.644 Curve2 Fitting Results Curve Name\tCurve Formula\tA\tB\tR2\tFit F Prob Curve2\tY=A*X+B\t1.53E+003\t0\t0.995\t????? ''' exp_pico_df = pd.DataFrame({'Well': ['A1','A2','B1','B2'], 'Sample DNA Concentration': [3.432, 3.239, 10.016, 2.644]}) pico_csv_f = StringIO(pico_csv) obs_pico_df = read_pico_csv(pico_csv_f) pd.testing.assert_frame_equal(obs_pico_df, exp_pico_df, check_like=True) # Test a sheet that has some ???? zero values pico_csv = '''Results Well ID\tWell\t[Blanked-RFU]\t[Concentration] SPL1\tA1\t5243.000\t3.432 SPL2\tA2\t4949.000\t3.239 SPL3\tB1\t15302.000\t10.016 SPL4\tB2\t\t????? Curve2 Fitting Results Curve Name\tCurve Formula\tA\tB\tR2\tFit F Prob Curve2\tY=A*X+B\t1.53E+003\t0\t0.995\t????? ''' exp_pico_df = pd.DataFrame({'Well': ['A1','A2','B1','B2'], 'Sample DNA Concentration': [3.432, 3.239, 10.016, np.nan]}) pico_csv_f = StringIO(pico_csv) obs_pico_df = read_pico_csv(pico_csv_f) pd.testing.assert_frame_equal(obs_pico_df, exp_pico_df, check_like=True) def test_calculate_norm_vol(self): dna_concs = np.array([[2, 7.89], [np.nan, .0]]) exp_vols = np.array([[2500., 632.5], [3500., 3500.]]) obs_vols = calculate_norm_vol(dna_concs) np.testing.assert_allclose(exp_vols, obs_vols) def test_format_dna_norm_picklist(self): exp_picklist = \ 'Sample\tSource Plate Name\tSource Plate Type\tSource Well\t' + \ 'Concentration\tTransfer Volume\tDestination Plate Name\tDestination Well\n' + \ 'sam1\tWater\t384PP_AQ_BP2_HT\tA1\t2.0\t1000.0\tNormalizedDNA\tA1\n' + \ 'sam2\tWater\t384PP_AQ_BP2_HT\tA2\t7.89\t2867.5\tNormalizedDNA\tA2\n' + \ 'blank1\tWater\t384PP_AQ_BP2_HT\tB1\tnan\t0.0\tNormalizedDNA\tB1\n' + \ 'sam3\tWater\t384PP_AQ_BP2_HT\tB2\t0.0\t0.0\tNormalizedDNA\tB2\n' + \ 'sam1\tSample\t384PP_AQ_BP2_HT\tA1\t2.0\t2500.0\tNormalizedDNA\tA1\n' + \ 'sam2\tSample\t384PP_AQ_BP2_HT\tA2\t7.89\t632.5\tNormalizedDNA\tA2\n' + \ 'blank1\tSample\t384PP_AQ_BP2_HT\tB1\tnan\t3500.0\tNormalizedDNA\tB1\n' + \ 'sam3\tSample\t384PP_AQ_BP2_HT\tB2\t0.0\t3500.0\tNormalizedDNA\tB2' dna_vols = np.array([[2500., 632.5], [3500., 3500.]]) water_vols = 3500 - dna_vols wells = np.array([['A1', 'A2'], ['B1', 'B2']]) sample_names = np.array([['sam1', 'sam2'], ['blank1', 'sam3']]) dna_concs = np.array([[2, 7.89], [np.nan, .0]]) obs_picklist = format_dna_norm_picklist(dna_vols, water_vols, wells, sample_names = sample_names, dna_concs = dna_concs) self.assertEqual(exp_picklist, obs_picklist) # test if switching dest wells exp_picklist = \ 'Sample\tSource Plate Name\tSource Plate Type\tSource Well\t' + \ 'Concentration\tTransfer Volume\tDestination Plate Name\tDestination Well\n' + \ 'sam1\tWater\t384PP_AQ_BP2_HT\tA1\t2.0\t1000.0\tNormalizedDNA\tD1\n' + \ 'sam2\tWater\t384PP_AQ_BP2_HT\tA2\t7.89\t2867.5\tNormalizedDNA\tD2\n' + \ 'blank1\tWater\t384PP_AQ_BP2_HT\tB1\tnan\t0.0\tNormalizedDNA\tE1\n' + \ 'sam3\tWater\t384PP_AQ_BP2_HT\tB2\t0.0\t0.0\tNormalizedDNA\tE2\n' + \ 'sam1\tSample\t384PP_AQ_BP2_HT\tA1\t2.0\t2500.0\tNormalizedDNA\tD1\n' + \ 'sam2\tSample\t384PP_AQ_BP2_HT\tA2\t7.89\t632.5\tNormalizedDNA\tD2\n' + \ 'blank1\tSample\t384PP_AQ_BP2_HT\tB1\tnan\t3500.0\tNormalizedDNA\tE1\n' + \ 'sam3\tSample\t384PP_AQ_BP2_HT\tB2\t0.0\t3500.0\tNormalizedDNA\tE2' dna_vols = np.array([[2500., 632.5], [3500., 3500.]]) water_vols = 3500 - dna_vols wells = np.array([['A1', 'A2'], ['B1', 'B2']]) dest_wells = np.array([['D1', 'D2'], ['E1', 'E2']]) sample_names = np.array([['sam1', 'sam2'], ['blank1', 'sam3']]) dna_concs = np.array([[2, 7.89], [np.nan, .0]]) obs_picklist = format_dna_norm_picklist(dna_vols, water_vols, wells, dest_wells = dest_wells, sample_names = sample_names, dna_concs = dna_concs) self.assertEqual(exp_picklist, obs_picklist) # test if switching source plates exp_picklist = \ 'Sample\tSource Plate Name\tSource Plate Type\tSource Well\t' + \ 'Concentration\tTransfer Volume\tDestination Plate Name\tDestination Well\n' + \ 'sam1\tWater\t384PP_AQ_BP2_HT\tA1\t2.0\t1000.0\tNormalizedDNA\tA1\n' + \ 'sam2\tWater\t384PP_AQ_BP2_HT\tA2\t7.89\t2867.5\tNormalizedDNA\tA2\n' + \ 'blank1\tWater\t384PP_AQ_BP2_HT\tB1\tnan\t0.0\tNormalizedDNA\tB1\n' + \ 'sam3\tWater\t384PP_AQ_BP2_HT\tB2\t0.0\t0.0\tNormalizedDNA\tB2\n' + \ 'sam1\tSample_Plate1\t384PP_AQ_BP2_HT\tA1\t2.0\t2500.0\tNormalizedDNA\tA1\n' + \ 'sam2\tSample_Plate1\t384PP_AQ_BP2_HT\tA2\t7.89\t632.5\tNormalizedDNA\tA2\n' + \ 'blank1\tSample_Plate2\t384PP_AQ_BP2_HT\tB1\tnan\t3500.0\tNormalizedDNA\tB1\n' + \ 'sam3\tSample_Plate2\t384PP_AQ_BP2_HT\tB2\t0.0\t3500.0\tNormalizedDNA\tB2' dna_vols = np.array([[2500., 632.5], [3500., 3500.]]) water_vols = 3500 - dna_vols wells = np.array([['A1', 'A2'], ['B1', 'B2']]) sample_names = np.array([['sam1', 'sam2'], ['blank1', 'sam3']]) sample_plates = np.array([['Sample_Plate1', 'Sample_Plate1'], ['Sample_Plate2', 'Sample_Plate2']]) dna_concs = np.array([[2, 7.89], [np.nan, .0]]) obs_picklist = format_dna_norm_picklist(dna_vols, water_vols, wells, sample_names = sample_names, sample_plates = sample_plates, dna_concs = dna_concs) self.assertEqual(exp_picklist, obs_picklist) def test_format_index_picklist(self): exp_picklist = \ 'Sample\tSource Plate Name\tSource Plate Type\tSource Well\tTransfer Volume\tIndex Name\t' + \ 'Index Sequence\tIndex Combo\tDestination Plate Name\tDestination Well\n' + \ 'sam1\tiTru5_plate\t384LDV_AQ_B2_HT\tA1\t250\tiTru5_01_A\tACCGACAA\t0\tIndexPCRPlate\tA1\n' + \ 'sam2\tiTru5_plate\t384LDV_AQ_B2_HT\tB1\t250\tiTru5_01_B\tAGTGGCAA\t1\tIndexPCRPlate\tA2\n' + \ 'blank1\tiTru5_plate\t384LDV_AQ_B2_HT\tC1\t250\tiTru5_01_C\tCACAGACT\t2\tIndexPCRPlate\tB1\n' + \ 'sam3\tiTru5_plate\t384LDV_AQ_B2_HT\tD1\t250\tiTru5_01_D\tCGACACTT\t3\tIndexPCRPlate\tB2\n' + \ 'sam1\tiTru7_plate\t384LDV_AQ_B2_HT\tA1\t250\tiTru7_101_01\tACGTTACC\t0\tIndexPCRPlate\tA1\n' + \ 'sam2\tiTru7_plate\t384LDV_AQ_B2_HT\tA2\t250\tiTru7_101_02\tCTGTGTTG\t1\tIndexPCRPlate\tA2\n' + \ 'blank1\tiTru7_plate\t384LDV_AQ_B2_HT\tA3\t250\tiTru7_101_03\tTGAGGTGT\t2\tIndexPCRPlate\tB1\n' + \ 'sam3\tiTru7_plate\t384LDV_AQ_B2_HT\tA4\t250\tiTru7_101_04\tGATCCATG\t3\tIndexPCRPlate\tB2' sample_wells = np.array(['A1', 'A2', 'B1', 'B2']) sample_names = np.array(['sam1', 'sam2', 'blank1', 'sam3']) indices = pd.DataFrame({'i5 name': {0: 'iTru5_01_A', 1: 'iTru5_01_B', 2: 'iTru5_01_C', 3: 'iTru5_01_D'}, 'i5 plate': {0: 'iTru5_plate', 1: 'iTru5_plate', 2: 'iTru5_plate', 3: 'iTru5_plate'}, 'i5 sequence': {0: 'ACCGACAA', 1: 'AGTGGCAA', 2: 'CACAGACT', 3: 'CGACACTT'}, 'i5 well': {0: 'A1', 1: 'B1', 2: 'C1', 3: 'D1'}, 'i7 name': {0: 'iTru7_101_01', 1: 'iTru7_101_02', 2: 'iTru7_101_03', 3: 'iTru7_101_04'}, 'i7 plate': {0: 'iTru7_plate', 1: 'iTru7_plate', 2: 'iTru7_plate', 3: 'iTru7_plate'}, 'i7 sequence': {0: 'ACGTTACC', 1: 'CTGTGTTG', 2: 'TGAGGTGT', 3: 'GATCCATG'}, 'i7 well': {0: 'A1', 1: 'A2', 2: 'A3', 3: 'A4'}, 'index combo': {0: 0, 1: 1, 2: 2, 3: 3}, 'index combo seq': {0: 'ACCGACAAACGTTACC', 1: 'AGTGGCAACTGTGTTG', 2: 'CACAGACTTGAGGTGT', 3: 'CGACACTTGATCCATG'}}) obs_picklist = format_index_picklist(sample_names, sample_wells, indices) self.assertEqual(exp_picklist, obs_picklist) def test_compute_qpcr_concentration(self): obs = compute_qpcr_concentration(self.cp_vals) exp = self.qpcr_conc npt.assert_allclose(obs, exp) def test_compute_shotgun_pooling_values_eqvol(self): obs_sample_vols = \ compute_shotgun_pooling_values_eqvol(self.qpcr_conc, total_vol=60.0) exp_sample_vols = np.zeros([3, 4]) + 60.0/12*1000 npt.assert_allclose(obs_sample_vols, exp_sample_vols) def test_compute_shotgun_pooling_values_eqvol_intvol(self): obs_sample_vols = \ compute_shotgun_pooling_values_eqvol(self.qpcr_conc, total_vol=60) exp_sample_vols = np.zeros([3, 4]) + 60.0/12*1000 npt.assert_allclose(obs_sample_vols, exp_sample_vols) def test_compute_shotgun_pooling_values_qpcr(self): sample_concs = np.array([[1, 12, 400], [200, 40, 1]]) exp_vols = np.array([[0, 50000, 6250], [12500, 50000, 0]]) obs_vols = compute_shotgun_pooling_values_qpcr(sample_concs) npt.assert_allclose(exp_vols, obs_vols) def test_compute_shotgun_pooling_values_qpcr_minvol(self): sample_concs = np.array([[1, 12, 400], [200, 40, 1]]) exp_vols = np.array([[100, 100, 4166.6666666666], [8333.33333333333, 41666.666666666, 100]]) obs_vols = compute_shotgun_pooling_values_qpcr_minvol(sample_concs) npt.assert_allclose(exp_vols, obs_vols) def test_estimate_pool_conc_vol(self): obs_sample_vols = compute_shotgun_pooling_values_eqvol( self.qpcr_conc, total_vol=60.0) obs_pool_conc, obs_pool_vol = estimate_pool_conc_vol( obs_sample_vols, self.qpcr_conc) exp_pool_conc = 323.873027979 exp_pool_vol = 60000.0 npt.assert_almost_equal(obs_pool_conc, exp_pool_conc) npt.assert_almost_equal(obs_pool_vol, exp_pool_vol) def test_format_pooling_echo_pick_list(self): vol_sample = np.array([[10.00, 10.00, 5.00, 5.00, 10.00, 10.00]]) header = ['Source Plate Name,Source Plate Type,Source Well,' 'Concentration,Transfer Volume,Destination Plate Name,' 'Destination Well'] exp_values = ['1,384LDV_AQ_B2_HT,A1,,10.00,NormalizedDNA,A1', '1,384LDV_AQ_B2_HT,A2,,10.00,NormalizedDNA,A1', '1,384LDV_AQ_B2_HT,A3,,5.00,NormalizedDNA,A1', '1,384LDV_AQ_B2_HT,A4,,5.00,NormalizedDNA,A2', '1,384LDV_AQ_B2_HT,A5,,10.00,NormalizedDNA,A2', '1,384LDV_AQ_B2_HT,A6,,10.00,NormalizedDNA,A2'] exp_str = '\n'.join(header + exp_values) obs_str = format_pooling_echo_pick_list(vol_sample, max_vol_per_well=26, dest_plate_shape=[16,24]) self.maxDiff = None self.assertEqual(exp_str, obs_str) def test_format_pooling_echo_pick_list(self): vol_sample = np.array([[10.00, 10.00, np.nan, 5.00, 10.00, 10.00]]) header = ['Source Plate Name,Source Plate Type,Source Well,' 'Concentration,Transfer Volume,Destination Plate Name,' 'Destination Well'] exp_values = ['1,384LDV_AQ_B2_HT,A1,,10.00,NormalizedDNA,A1', '1,384LDV_AQ_B2_HT,A2,,10.00,NormalizedDNA,A1', '1,384LDV_AQ_B2_HT,A3,,0.00,NormalizedDNA,A1', '1,384LDV_AQ_B2_HT,A4,,5.00,NormalizedDNA,A1', '1,384LDV_AQ_B2_HT,A5,,10.00,NormalizedDNA,A2', '1,384LDV_AQ_B2_HT,A6,,10.00,NormalizedDNA,A2'] exp_str = '\n'.join(header + exp_values) obs_str = format_pooling_echo_pick_list(vol_sample, max_vol_per_well=26, dest_plate_shape=[16,24]) self.maxDiff = None self.assertEqual(exp_str, obs_str) def test_make_2D_array(self): example_qpcr_df = pd.DataFrame({'Cp': [12, 0, 5, np.nan], 'Pos': ['A1','A2','A3','A4']}) exp_cp_array = np.array([[12.0,0.0,5.0,np.nan]]) np.testing.assert_allclose(make_2D_array(example_qpcr_df, rows=1, cols=4).astype(float), exp_cp_array) example2_qpcr_df = pd.DataFrame({'Cp': [12, 0, 1, np.nan, 12, 0, 5, np.nan], 'Pos': ['A1','A2','A3','A4', 'B1','B2','B3','B4']}) exp2_cp_array = np.array([[12.0,0.0,1.0,np.nan], [12.0,0.0,5.0,np.nan]]) np.testing.assert_allclose(make_2D_array(example2_qpcr_df, rows=2, cols=4).astype(float), exp2_cp_array) def combine_dfs(self): exp_df_f = '''Sample\tWell\tPlate\tCounter\tPrimer_i5\tSource_Well_i5\tIndex_i5\tPrimer_i7\tSource_Well_i7\tIndex_i7\tDNA_concentration\tTransfer_Volume\tCp 8_29_13_rk_rh\tA1\tABTX_35\t1841.0\tiTru5_01_G\tG1\tGTTCCATG\tiTru7_110_05\tA23\tCGCTTAAC\t12.751753\t80.0\t20.55 8_29_13_rk_lh\tC1\tABTX_35\t1842.0\tiTru5_01_H\tH1\tTAGCTGAG\tiTru7_110_06\tB23\tCACCACTA\t17.582063\t57.5\t9.15''' test_index_picklist_f = '''\tWell Number\tPlate\tSample Name\tSource Plate Name\tSource Plate Type\tCounter\tPrimer\tSource Well\tIndex\tUnnamed: 9\tUnnamed: 10\tUnnamed: 11\tTransfer volume\tDestination Well\tUnnamed: 14 0\t1\tABTX_35\t8_29_13_rk_rh\ti5 Source Plate\t384LDV_AQ_B2_HT\t1841.0\tiTru5_01_G\tG1\tGTTCCATG\tiTru7_110_05\tA23\tCGCTTAAC\t250\tA1\tNaN 1\t2\tABTX_35\t8_29_13_rk_lh\ti5 Source Plate\t384LDV_AQ_B2_HT\t1842.0\tiTru5_01_H\tH1\tTAGCTGAG\tiTru7_110_06\tB23\tCACCACTA\t250\tC1\tNaN 2\t1\tABTX_35\t8_29_13_rk_rh\ti7 Source Plate\t384LDV_AQ_B2_HT\t1841.0\tiTru7_110_05\tA23\tCGCTTAAC\t\t\t\t250\tA1\tNaN 3\t2\tABTX_35\t8_29_13_rk_lh\ti7 Source Plate\t384LDV_AQ_B2_HT\t1842.0\tiTru7_110_06\tB23\tCACCACTA\t\t\t\t250\tC1\tNaN''' test_dna_picklist_f = '''\tSource Plate Name\tSource Plate Type\tSource Well\tConcentration\tTransfer Volume\tDestination Plate Name\tDestination Well 0\twater\t384LDV_AQ_B2_HT\tA1\tNaN\t3420.0\tNormalizedDNA\tA1 1\twater\t384LDV_AQ_B2_HT\tC1\tNaN\t3442.5\tNormalizedDNA\tC1 5\t1\t384LDV_AQ_B2_HT\tA1\t12.751753\t80.0\tNormalizedDNA\tA1 6\t1\t384LDV_AQ_B2_HT\tC1\t17.582063\t57.5\tNormalizedDNA\tC1''' test_qpcr_f = '''\tInclude\tColor\tPos\tName\tCp\tConcentration\tStandard\tStatus 0\tTRUE\t255\tA1\tSample 1\t20.55\tNaN\t0\tNaN 1\tTRUE\t255\tC1\tSample 2\t9.15\tNaN\t0\tNaN''' exp_out_f = '''Well\tCp\tDNA Concentration\tDNA Transfer Volume\tSample Name\tPlate\tCounter\tPrimer i7\tSource Well i7\tIndex i7\tPrimer i5\tSource Well i5\tIndex i5 A1\t20.55\t12.751753\t80.0\t8_29_13_rk_rh\tABTX_35\t1841.0\tiTru7_110_05\tA23\tCGCTTAAC\tiTru5_01_G\tG1\tGTTCCATG C1\t9.15\t17.582063\t57.5\t8_29_13_rk_lh\tABTX_35\t1842.0\tiTru7_110_06\tB23\tCACCACTA\tiTru5_01_H\tH1\tTAGCTGAG''' test_index_picklist_df = pd.read_csv(StringIO(test_index_picklist_f), header=0, sep='\t') test_dna_picklist_df = pd.read_csv(StringIO(test_dna_picklist_f), header=0, sep='\t') test_qpcr_df = pd.read_csv(StringIO(test_qpcr_f), header=0, sep='\t') exp_df = pd.read_csv(StringIO(exp_out_f), header=0, sep='\t') combined_df = combine_dfs(test_qpcr_df, test_dna_picklist_df, test_index_picklist_df)
pd.testing.assert_frame_equal(combined_df, exp_df, check_like=True)
pandas.testing.assert_frame_equal
# -*- coding: utf-8 -*- """ Tests dtype specification during parsing for all of the parsers defined in parsers.py """ import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex, Categorical from pandas.compat import StringIO from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.errors import ParserWarning class DtypeTests(object): def test_passing_dtype(self): # see gh-6607 df = DataFrame(np.random.rand(5, 2).round(4), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # see gh-3795: passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) expected = df.astype(str) tm.assert_frame_equal(result, expected) # for parsing, interpret object as str result = self.read_csv(path, dtype=object, index_col=0) tm.assert_frame_equal(result, expected) # we expect all object columns, so need to # convert to test for equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype pytest.raises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # see gh-12048: empty frame actual = self.read_csv(StringIO('A,B'), dtype=str) expected = DataFrame({'A': [], 'B': []}, index=[], dtype=str) tm.assert_frame_equal(actual, expected) def test_pass_dtype(self): data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" result = self.read_csv(StringIO(data), dtype={'one': 'u1', 1: 'S1'}) assert result['one'].dtype == 'u1' assert result['two'].dtype == 'object' def test_categorical_dtype(self): # GH 10153 data = """a,b,c 1,a,3.4 1,a,3.4 2,b,4.5""" expected = pd.DataFrame({'a': Categorical(['1', '1', '2']), 'b': Categorical(['a', 'a', 'b']), 'c': Categorical(['3.4', '3.4', '4.5'])}) actual = self.read_csv(StringIO(data), dtype='category') tm.assert_frame_equal(actual, expected) actual = self.read_csv(StringIO(data), dtype=CategoricalDtype()) tm.assert_frame_equal(actual, expected) actual = self.read_csv(StringIO(data), dtype={'a': 'category', 'b': 'category', 'c': CategoricalDtype()}) tm.assert_frame_equal(actual, expected) actual = self.read_csv(StringIO(data), dtype={'b': 'category'}) expected = pd.DataFrame({'a': [1, 1, 2], 'b': Categorical(['a', 'a', 'b']), 'c': [3.4, 3.4, 4.5]})
tm.assert_frame_equal(actual, expected)
pandas.util.testing.assert_frame_equal
# @Author: <NAME> # @Date: Mon, May 4th 2020, 8:36 pm # @Email: <EMAIL> # @Filename: migrate_db.py ''' Functions for duplicating, archiving, and converting database assets, including raw source files as well as SQLite db files. ''' from tqdm import tqdm from os.path import isfile import shutil import pandas as pd import time from pyleaves.utils.img_utils import DaskCoder, CorruptJPEGError def duplicate_raw_dataset(data :pd.DataFrame, omitted_rows: list=[]): """ Uses shutil.copy2 to duplicate a sequence of files at a new location to be as close to the original files as possible. # TODO Check if file hash remains the same, if so, then can be used as a test for successful duplication. Parameters ---------- data : pd.DataFrame Contains all necessary info to duplicate the files. For each file to be duplicated, must have the corresponding file paths in the source_path and target_path columns, respectively. The choice of how to determine the best target path must be made prior to this function. omitted_rows : list Optional list of omitted sample rows. Unsuccessful copy attempts will be logged here and returned from function. Returns ------- pd.DataFrame duplicated_data: Same format as input data, only contains successful samples. list omitted_rows: list of dataframes, containing unsuccessful rows. """ data = data.copy() file_not_found = [] copy_errors = [] for i, row in tqdm(data.iterrows()): try: if isfile(row.target_path): continue shutil.copy2(row.source_path, row.target_path) assert isfile(row.target_path) except FileNotFoundError as e: print(str(e)) file_not_found.append(row) print(f'total {len(file_not_found)+len(copy_errors)} files not found so far') except AssertionError as e: print(str(e)) copy_errors.append(row) print(f'total {len(file_not_found)+len(copy_errors)} files not found so far') if len(file_not_found): file_not_found_df =
pd.concat(file_not_found,axis=1)
pandas.concat
import numpy as np import pandas as pd from io import StringIO import re import csv from csv import reader, writer import sys import os import glob import fnmatch from os import path import matplotlib from matplotlib import pyplot as plt print("You are using Zorbit Analyzer v0.1") directory_path = input("Please enter the path to the directory of your files. All files should be in the same location: ") #Asks users for path os.chdir(directory_path) x = input('Input your Interproscan output gff3 file(s):') #Asks users for gff3 input if "*" in x: #Handles the case of *.gff3 gff3_input = glob.glob("*.gff3") else: y = re.sub('[|; ]', ', ', x) #Substitutes possible gff3 file delimeters with commas gff3_input = re.split(', ', y) #Splits gff3 input into a list for i in gff3_input: if os.path.exists(i): #Checks existence of gff3 file pass else: print("There does not seem to be a file by that name. Please check your path/filename and try again") sys.exit() fasta_input = input('Input your fasta file:') #Asks users for fasta input file if os.path.exists(fasta_input): #Checks existence of fasta input file pass else: print("There does not seem to be a file by that name. Please check your path/filename and try again") sys.exit() if fnmatch.fnmatch(fasta_input, '*fastq*'): print("Zorbit Analyzer is not specifically constructed to handle fastq files but will try. If errors convert to fasta format") ortho_input = input ('Input your ProteinOrtho output file:') #Asks users for ProteinOrtho input if os.path.exists(ortho_input): #Checks existence of ProteinOrtho input pass else: print("There does not seem to be a file by that name. Please check your path/filename and try again") sys.exit() ortho_input_file_name = input ('Input your ProteinOrtho input file name (faa). Leave blank if unknown though will run slower:') #Asks users for ProteinOrtho output file while True: file_to_write = input('Input your desired ZorbitAnalyzer output file name: ') #Asks users for output file if file_to_write != '': #Checks to see if user entered a file name break else: print("You did not enter an output file name") #Repeatedly asks for output file name if not given continue Choice = ['yes', 'y', 'no', 'n'] flag = True while flag is True: exclusion_flag = input("Would you like to exclude sequences that do not have either Interproscan or ProteinOrtho hits? (Yes/No) ").lower() for i in Choice: if exclusion_flag.startswith(i): flag = False break else: continue if exclusion_flag.startswith('y'): exclusion_flag = 1 else: exclusion_flag = 0 print("Analyzing files") #Lets user know input portion has completed pdortho = pd.read_csv(ortho_input, "/t", engine="python") #Creates ProteinOrtho pd test_file = 'test.txt' test2_file = 'test2.txt' test3_file = 'test3.txt' #Testing open/closing files def try_file(input_file): #Defining function that creates/opens user output file and truncates it before closing it try: open(input_file, 'w+').close() except IOError: print("Unable to open output file") try_file('file_to_write.txt') #Creates/opens output file and truncates it before closing it try_file('test.txt') #Creates/opens test file and truncates it before closing it try_file('gff3_file_to_write.txt') #Creates/opens gff3 output file and truncates it before closing it try_file('gff3_statsfile_to_write.txt') #Creates/opens gff3 output file and truncates it before closing i try_file('fasta_file_to_write.txt') #Creates/opens fasta output file and truncates it before closing it try_file('ortho_file_to_write.txt') #Creates/opens ProteinOrtho output file and truncates it before closing it try_file('ortho_file_to_write2.txt') #Creates/opens a second ProteinOrtho output file and truncates it before closing it try_file('zorbit_statistics.txt') #Creates/opens a statistics file and truncates it before closing it #Defining variables for later use fasta_file_to_write = 'fasta_file_to_write.txt' #Defining the interim fasta file to write gff3_file_to_write = 'gff3_file_to_write.txt' #Defining the interim gff3 file to write gff3_statsfile_to_write = 'gff3_statsfile_to_write.txt' ortho_file_to_write = 'ortho_file_to_write.txt' #Defining the interim Protein Ortho file to write zorbit_statistics = 'zorbit_statistics.txt' #Defining the Zorbit Statistics variable string_to_remove1 = '##' #Removes header and gene introduction lines string_to_remove2 = 'polypeptide' #Removes redundant polypeptide line string_to_remove3 = 'MobiDBLite' #Removes results from MobiDBLite database string_to_end = '##FASTA' #Sets end of file as the start of the fasta/code part of gff3 files #fasta fasta_file = None fastq_file = None fasta_type = "amino_acid" fastq_start_character = '@' fasta_start_character = '>' #Setting start character for fasta information line fastq_third_line_character ='+' fna_type = "fna" if fna_type in fasta_input: fasta_type = "nucleotide" with open(fasta_input, 'r') as fasta: #Opening fasta input file to read for line in fasta: #reading lines in fasta file if line.startswith(fasta_start_character): #Altering lines with > but not sequence lines fasta_file = fasta_input break elif line.startswith(fastq_start_character): #Altering lines with @ but not sequence lines (for fastq) fastq_file = fasta_input fasta_type = "nucleotide" break else: print("The fasta input file does not seem to have typical fasta or fastq format") sys.exit() if fasta_file is not None: #Checking to see if fasta input was fasta file (should not be empty) print("Working on fasta file") with open(fasta_input, 'r') as fasta: #Opening fasta input file to read with open(fasta_file_to_write, 'a') as f: #Opens the output file to append for line in fasta: #reading lines in fasta file if line.startswith(fasta_start_character): #Altering lines with > but not sequence lines fasta_nostart = re.sub('>', '\n', line) #Removing > symbol and replacing with carriage return from each occurrence fasta_nospace = ', '.join(fasta_nostart.rsplit('\n',1)) #Removes carriage return (before aa or na code) and replaces with comma fasta_csv = ', '.join(fasta_nospace.split(' ',1)) #Removes first space (after Trinity output name) and replaces with comma f.write(fasta_csv) #Writes output to file else: if not line.isspace(): #Will not write blank lines sequence_no_carriage = re.sub('\n', '', line) #Removes carriage return from before the sequence data sequence_no_line_break = re.sub('\r', '', sequence_no_carriage) #Removes line break from before the sequence data f.write(sequence_no_line_break) #Writes the sequence line without line breaks or carriage returns else: continue elif fastq_file is not None: #Checking to see if fasta input was fastq file (should not be empty) print("Working on fastq file") with open(fasta_input, 'r', encoding="latin-1") as fasta: #Opening fasta input file to read with open(fasta_file_to_write, 'a', encoding="latin-1") as f: #Opens the output file to append for i, line in enumerate(fasta): #reading lines in fasta file if i == 0: # Dealing with first line differently (no line break) fasta_nostart = re.sub('@', '', line) #Removing @ symbol from each occurrence and replaces with nothing fasta_nospace = ', '.join(fasta_nostart.rsplit('\n',1)) #Removes carriage return (before aa or na code) and replaces with comma fasta_csv = ', '.join(fasta_nospace.split(' ',1)) #Removes first space (after Trinity output name) and replaces with comma f.write(fasta_csv) #Writes output to file elif line.startswith(fastq_start_character): #Altering lines with @ but not sequence lines (for fastq) fasta_nostart = re.sub('@', '\n', line) #Removing @ symbol from each occurrence and replaces with carriage return fasta_nospace = ', '.join(fasta_nostart.rsplit('\n',1)) #Removes carriage return (before aa or na code) and replaces with comma fasta_csv = ', '.join(fasta_nospace.split(' ',1)) #Removes first space (after Trinity output name) and replaces with comma f.write(fasta_csv) #Writes output to file elif i % 4 == 1: #Writing line 2/4 (sequence file) to output file sequence_no_carriage = re.sub('\n', '', line) #Removes carriage return from before the sequence data sequence_no_line_break = re.sub('\r', '', sequence_no_carriage) #Removes line break from before the sequence data f.write(sequence_no_line_break) #Writes the sequence line without line breaks or carriage returns else: pass else: print("The input file does not seem to be in typical fasta or fastq format. Please check and try again") #Ending if atypical fasta/fastq format sys.exit() for i in gff3_input: #Cleaning up gff3 file prior to conversion to dataframe with open(i, 'r') as stack: with open(gff3_file_to_write, 'a') as f: for line in stack: if string_to_end in line: #Closes file at the start of the sequence data without including f.close() break elif string_to_remove1 in line: #Removing header and gene introduction lines (if present) continue elif string_to_remove2 in line: #Removing polypeptide line (if present) continue elif string_to_remove3 in line: #Removing MobiDBLite database (if present) continue else: f.write(line) for i in gff3_input: #Saving unedited gff3 input into file for statistics purposes later with open(i, 'r') as stack: with open(gff3_statsfile_to_write, 'a') as f: for line in stack: if string_to_end in line: #Closes file at the start of the sequence data without including f.close() break elif string_to_remove1 in line: #Removing header and gene introduction lines (if present) continue else: f.write(line) fasta_column_names = ['SeqID', 'Information', 'Sequence'] #Defining the list of fasta column names to pass to the dataframe fastapd = pd.read_csv(fasta_file_to_write, names=fasta_column_names, engine = "python", header=None) #Creating a Pandas dataframe from the fasta output csv SeqID_list = fastapd["SeqID"].tolist() #Saving contents of the SeqID column to a list fasta_row_number = len(fastapd) #Counting the number of rows in the fasta dataframe for the statistics output with open(zorbit_statistics, 'a') as f: f.write("The number of sequences in the fasta is " + str(fasta_row_number) + "\n") #Start orthopd print("Working on ProteinOrtho dataframe") orthopd = pd.read_csv(ortho_input, sep='\t', engine="python", na_values="*") #Creates a Pandas dataframe from ProteinOrtho input csv ortho_column_names = list(orthopd.columns) #Defining the SeqID column if ortho_input_file_name != "": orthopd.columns = ["SeqID" if col.startswith(ortho_input_file_name) else col for col in orthopd.columns] #Renaming the fasta input column in ProteinOrtho dataframe to SeqID to match other dataframes else: pass #Attempting to identify which column corresponds to the input fasta fasta_input_split = fasta_input.split('.', 1)[0] #Trying to delete file handle from the fasta input file in case there was .fasta versus .faa, etc orthopd_pruned = orthopd.drop(columns=['# Species', 'Genes', 'Alg.-Conn.']) #Creating a new dataframe without the first three columns which will always have data in each row in order to id longest column if orthopd.columns.astype(str).str.contains("SeqID").any(): #Checking to see if fasta input file name is in the ProteinOrtho column name list print("Found fasta Sequence ID column in ProteinOrtho file") else: print("Trying to find fasta file in ProteinOrtho file through other means") orthopd.columns = ["SeqID" if col.startswith(fasta_input_split) else col for col in orthopd.columns] #Using the input fasta file name as a guess for the faa file name if orthopd.columns.astype(str).str.contains("SeqID").any(): #Breaks loops if the column name has been found/replaced print("Found fasta Sequence ID column in ProteinOrtho file") else: print("Attempting another way of identifying fasta file column. This may take some time") orthopd_fasta_column_name = orthopd_pruned.count().idxmax() #Finding column with the least number of NaN which is likely the input fasta for l in SeqID_list: #Searching to see if any values from the fastapd SeqID column (l) are in the putative SeqID ProteinOrtho column if orthopd[orthopd_fasta_column_name].astype(str).str.contains(l).any(): orthopd.rename(columns=lambda x: x.replace(orthopd_fasta_column_name, "SeqID"), inplace=True) #Renaming the ProteinOrtho column with fasta sequence names as SeqID break else: print("Final method to identify fasta file column. This may take hours") orthopd = orthopd.drop(orthopd[(orthopd['Genes'] == 1)].index) #Gets rid of rows with just a single gene found in order to speed up full frame search for l in SeqID_list: #Searching to see if any values from the fastapd SeqID column (l) are in the ProteinOrtho dataframe for i in orthopd.columns: if orthopd[i].astype(str).str.contains(l).any(): orthopd.rename(columns=lambda x: x.replace(i, "SeqID"), inplace=True) #Renaming the ProteinOrtho column with fasta sequence names as SeqID break orthopd = orthopd.drop(orthopd[(orthopd['SeqID'].isna())].index)#Removing SeqID rows with NaN #Splitting the duplicated entries in the SeqID column and making new rows with a SeqID member on each but with same data otherwise def pir2(df, c): #Defining function to split the SeqID column at each comma and place one of each split value onto a new, otherwise duplicated row colc = df[c].astype(str).str.split(',') clst = colc.values.astype(object).tolist() lens = [len(l) for l in clst] j = df.columns.get_loc(c) v = df.values n, m = v.shape r = np.arange(n).repeat(lens) return pd.DataFrame( np.column_stack([v[r, 0:j], np.concatenate(clst), v[r, j+1:]]), columns=orthopd.columns ) orthopd3 = pir2(orthopd, "SeqID") #Running column split function on the SeqID column on orthopd print("Beginning data analysis on the ProteinOrtho dataframe") #Graph Algebraic Connectivity orthopd_algconn_nozero = orthopd3[orthopd3['Alg.-Conn.'] != 0] #Removing zero and one counts in orthopd for graph orthopd_algconn_noone = orthopd_algconn_nozero[orthopd_algconn_nozero['Alg.-Conn.'] != 1] #Getting the count of each Alg.Conn in the gff3 dataframe orthopd_algconn_noone['Alg.-Conn.'].plot.hist(grid=True, bins=100, color='#607c8e') plt.title('Distribution of Algebraic Connectivity without Unity') plt.xlabel('Degree of Connectivity') plt.ylabel('Number of Genes with Degree of Connectivity') plt.tight_layout() plt.savefig("ProteinOrtho_AlgConn_graph_noone.png")#Saving graph to file plt.clf() orthopd_algconn_nozero['Alg.-Conn.'].plot.hist(grid=True, bins=100, color='#607c8e') plt.title('Distribution of Algebraic Connectivity') plt.xlabel('Degree of Connectivity') plt.ylabel('Number of Genes with Degree of Connectivity') plt.tight_layout() plt.savefig("ProteinOrtho_AlgConn_graph.png")#Saving graph to file plt.clf() #Graph Gene Counts orthopd_gene_count_values = orthopd3['Genes'].value_counts() #Getting the count of each database in the gff3 dataframe orthopd_gene_count_values.plot(kind='bar') #Graphing the database counts plt.title('Graph of Gene Counts') plt.xlabel('Number of Shared transcripts') plt.ylabel('Number of Genes with same frequency') plt.tight_layout() plt.savefig("ProteinOrtho_gene_graph.png")#Saving graph to file plt.clf() #Start gff3pd print("Working on gff3 dataframe") gff3pd_column_names = ['SeqID', 'Database', 'Match type', 'Start', 'Stop', 'Score', 'Strand', 'Phase', 'Match information'] #Renaming static gff3 columns statsgff3pd = pd.read_csv(gff3_statsfile_to_write, sep='\t', names=gff3pd_column_names, header=None, engine="python") #Creating a dataframe for gff3 stats gff3pd_original_row_number = len(statsgff3pd) #Counting the number of rows in the original gff3pd dataframe for the statistics output with open(zorbit_statistics, 'a') as f: #Writing the number of rows in the original gff3pd dataframe to the statistics output f.write("The number of sequences in the original gff3 file is " + str(gff3pd_original_row_number) + "\n") gff3pd = pd.read_csv(gff3_file_to_write, sep='\t', names=gff3pd_column_names, header=None, engine = "python") #Creating a Pandas dataframe from the gff3 output csv gff3pd_row_number = len(gff3pd) #Counting the number of rows in the final gff3 file dataframe for the statistics output gff3pd_max_score = gff3pd['Score'].max() #Finding maximum value in Score column of gff3 dataframe gff3pd_without_null = gff3pd[gff3pd['Score'] != "."] #Finding minimum value in Score column of gff3 dataframe gff3pd_without_null_or_zero = gff3pd_without_null[gff3pd_without_null['Score'] != 0.0] gff3pd_min_score = gff3pd_without_null_or_zero['Score'].min() statsgff3pd_without_null = statsgff3pd[statsgff3pd['Score'] != "."] statsgff3pd_max_score = statsgff3pd_without_null['Score'].max() with open(zorbit_statistics, 'a') as f: f.write("The number of sequences in the gff3 file after removal of MobiDBLite and duplicates is " + str(gff3pd_row_number) + "\n") #Adding cleaned gff3 stastitics to file f.write("The range of quality scores for the gff3 file range from " + str(gff3pd_min_score) + " to " + str(gff3pd_max_score) + "\n")#Adding range of scores to statistics file f.write("The maximum quality score for the original gff3 file is " + str(statsgff3pd_max_score) + "\n") #Graph database distribution gff3pd_database_count_values = gff3pd['Database'].value_counts() #Getting the count of each database in the gff3 dataframe gff3pd_database_count_values.plot(kind='bar') #Graphing the database counts plt.title('Distribution of Database hits') plt.xlabel('Database name') plt.ylabel('Number of Database hits') plt.tight_layout() plt.savefig("Gff3_database_graph.png")#Saving graph to file plt.clf() #Preparing dataframes for merging print("Preparing dataframes for merge") gff3pd['SeqID'] = gff3pd['SeqID'].astype(str) #Setting column type as string orthopd3['SeqID'] = orthopd3['SeqID'].astype(str) #Setting column type as string fastapd['SeqID'] = fastapd['SeqID'].astype(str) #Setting column type as string #Dealing with fna versus faa protein_flag = 0 if fasta_type == "nucleotide": #Checking to see if the fasta_type is nucleotide gff3pd_split = gff3pd['SeqID'].str.rsplit('_', n=2, expand=True) #Removing the extra two numbers after the fasta SeqID to allow match gff3pd['SeqID'] = gff3pd_split[0] #Setting the gff3 SeqID column as the split column orthopd_split = orthopd3['SeqID'].str.rsplit('_', n=2, expand=True) #Removing the extra two numbers after the fasta SeqID to allow match orthopd['SeqID'] = orthopd_split[0] #Setting the ProteinOrtho SeqID column as the split column else: #Pulling out reading frame information protein_flag = 1 gff3pd['SeqID2'] = gff3pd['SeqID'] gff3pd_split = gff3pd['SeqID2'].str.rsplit('_', n=1, expand=True) #Removing the extra number after the fasta SeqID gff3pd['SeqID2'] = gff3pd_split[0] #Setting the gff3 SeqID column as the split column gff3pd_split = gff3pd['SeqID2'].str.rsplit('_', n=1, expand=True) #Splitting the frame number out gff3pd['SeqID2'] = gff3pd_split[0] #Setting the gff3 SeqID column gff3pd['Reading_Frame'] = gff3pd_split[1] #Setting the gff3 Frame column gff3pd = gff3pd.drop(['SeqID2'], axis=1) orthopd3['SeqID2'] = orthopd3['SeqID'] orthopd_split = orthopd3['SeqID2'].str.rsplit('_', n=1, expand=True) #Removing the extra two numbers after the fasta SeqID to allow match orthopd3['SeqID2'] = orthopd_split[0] #Setting the ProteinOrtho SeqID column as the split column orthopd_split = orthopd3['SeqID2'].str.rsplit('_', n=1, expand=True) #Splitting the frame number out orthopd3['SeqID2'] = orthopd_split[0] #Setting the orthopd SeqID column orthopd3['Reading_Frame'] = orthopd_split[1] #Setting the gff3 Frame column orthopd = orthopd3.drop(['SeqID2'], axis=1) #Merging print("Combining dataframes") gff3_ortho_merge = pd.merge(orthopd, gff3pd, how='outer', on=['SeqID']) #Merging the ProteinOrtho and interproscan dataframes all_merge = pd.merge(gff3_ortho_merge, fastapd, how='outer', on=['SeqID']) #Merging the fasta dataframe with the combined ProteinOrtho/Interproscan dataframes #Adding marks to merged dataframe to make fasta all_merge['SeqID'] = all_merge['SeqID'].apply(lambda x: f'>{x}') #Placing > at the beginning of each new line and a tab at the end of SeqID all_merge['Sequence'] = all_merge['Sequence'].apply(lambda x: f'\n{x}') #Placing a new line before the Sequence data all_merge = all_merge[ ['SeqID'] + [ col for col in all_merge.columns if col != 'SeqID' ] ] #Moving SeqID to the far left of the dataframe all_merge = all_merge[ [ col for col in all_merge.columns if col != 'Sequence' ] + ['Sequence'] ] #Moving Sequence to the far right of the dataframe #Statistics on the merged dataframe all_merge_both = all_merge.drop(all_merge[((all_merge['Database'].isna()) | (all_merge['Genes'] == 1))].index) all_merge_neither = all_merge.drop(all_merge[((all_merge['Database'].notna()) | (all_merge['Genes'] !=1))].index) all_merge_just_ortho = all_merge.drop(all_merge[((all_merge['Database'].notna()) | (all_merge['Genes'] == 1))].index) all_merge_just_inter = all_merge.drop(all_merge[((all_merge['Database'].isna()) | (all_merge['Genes'] !=1))].index) all_merge_all = len(pd.unique(all_merge['SeqID'])) #Calculating the number of unique sequences all_merge_both = len(pd.unique(all_merge_both['SeqID'])) #Calculating unique sequences with both interproscan and proteinortho hits all_merge_neither = len(pd.unique(all_merge_neither['SeqID'])) #Calculating unique sequences without interproscan or proteinortho hits all_merge_just_ortho = len(pd.unique(all_merge_just_ortho['SeqID'])) #Calculating unique sequences with proteinortho but not interproscan hits all_merge_just_inter = len(
pd.unique(all_merge_just_inter['SeqID'])
pandas.unique
# Copyright 2019-2020 The Lux Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .context import lux import pytest import pandas as pd import numpy as np from lux.utils import date_utils from lux.executor.PandasExecutor import PandasExecutor def test_dateformatter(): ldf = pd.read_csv("lux/data/car.csv") # change pandas dtype for the column "Year" to datetype ldf["Year"] = pd.to_datetime(ldf["Year"], format="%Y") timestamp = np.datetime64("2019-08-26") ldf.maintain_metadata() assert date_utils.date_formatter(timestamp, ldf) == "2019" ldf["Year"][0] = np.datetime64("1970-03-01") # make month non unique assert date_utils.date_formatter(timestamp, ldf) == "2019-8" ldf["Year"][0] = np.datetime64("1970-03-03") # make day non unique assert date_utils.date_formatter(timestamp, ldf) == "2019-8-26" def test_period_selection(): ldf = pd.read_csv("lux/data/car.csv") ldf["Year"] = pd.to_datetime(ldf["Year"], format="%Y") ldf["Year"] = pd.DatetimeIndex(ldf["Year"]).to_period(freq="A") ldf.set_intent( [ lux.Clause(attribute=["Horsepower", "Weight", "Acceleration"]), lux.Clause(attribute="Year"), ] ) PandasExecutor.execute(ldf.current_vis, ldf) assert all([type(vlist.data) == lux.core.frame.LuxDataFrame for vlist in ldf.current_vis]) assert all(ldf.current_vis[2].data.columns == ["Year", "Acceleration"]) def test_period_filter(): ldf = pd.read_csv("lux/data/car.csv") ldf["Year"] = pd.to_datetime(ldf["Year"], format="%Y") ldf["Year"] =
pd.DatetimeIndex(ldf["Year"])
pandas.DatetimeIndex
# -*- coding: utf-8 -*- """ Created on Mon Sep 27 13:08:45 2021 @author: MalvikaS Build classifier on RNA seq data """ # Import import os import pandas as pd import glob import random from imblearn.ensemble import BalancedRandomForestClassifier from imblearn.ensemble import BalancedBaggingClassifier from imblearn.ensemble import EasyEnsembleClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import GridSearchCV from sklearn.metrics import accuracy_score, f1_score, precision_score from sklearn.metrics import recall_score import pickle def getNeighFeat(data_rna, G, neighbors, norm = False): """ Function for getting neighbourhood features. Calculates the sum of logFC across the different neighbours of the gene. To normalize for number of neighbours with change in fold change (FC), the norm parameter need to be True. Function considers all genes as neighbours as passed in arguments. These neighbours are assumed to be n hops away. Parameters ---------- data_rna : DataFrame DataFrame containing the fold change data. Should contain column "logFC". G : networkx graph object Undirected graph of protein protein interactions. neighbors : dict Dictionary with gene as keys and list of neighbours as value. norm : bool, optional Whether to normalise for neighbour up or down-regulated. The default is False. Returns ------- feat : list list of values for each gene. """ # Get sum of neighbour FC feat = [] for gene in data_rna.genes: val = 0 count = 0 if gene in G.nodes: for neigh in neighbors[gene]: if neigh in data_rna.genes and abs(data_rna.loc[neigh, "logFC"]) > 2: val = val + abs(data_rna.loc[neigh, "logFC"]) count = count + 1 if norm and count != 0: feat.append(val / count) else: feat.append(val) return feat def getRNAFeatures(datapath, file, ctype, path_network, n = 1): """ Function for generating RNA features using egdeR results as well as network. Parameters ---------- datapath : str Complete folder path where RNA processed files are saved. Each file contains DEGs for each patient. Must contain columns "genes", 'logFC'. file : str File name to be read and features generated. A default ".tsv" is included to the file name. ctype : str Cancer-type. path_network : str Complete path to where network data is stored as pkl files. n : int, optional Number hops to be considered while defining neighbours. The default is 1. Returns ------- DataFrame DataFrame containing all the RNA features to be used for model building. """ # Load network os.chdir(path_network) with open("string_graph.pkl", "rb") as f: G = pickle.load(f) with open("string_degree.pkl", "rb") as f: deg = pickle.load(f) with open("string_bc.pkl", "rb") as f: bc = pickle.load(f) with open("string_cc.pkl", "rb") as f: cc = pickle.load(f) with open("string_neigh_{}.pkl".format(n), "rb") as f: neighbors = pickle.load(f) # Load RNA data # Get sample name samp = file # Read RNA file os.chdir(datapath) data_rna = pd.read_csv(file+".tsv", header=0, index_col=0, sep="\t") # Get degree temp =[deg[gene] if gene in G.nodes else 0 for gene in data_rna.genes] data_rna["Degree"] = temp # Get closeness centrality temp =[cc[gene] if gene in G.nodes else 0 for gene in data_rna.genes] data_rna["Closeness_centrality"] = temp # Get betweeness centrality temp =[bc[gene] if gene in G.nodes else 0 for gene in data_rna.genes] data_rna["Betweeness_centrality"] = temp # Get FC x degree temp =[fc * d if abs(fc) >2 else 0 for fc, d in zip(data_rna.logFC, data_rna.Degree)] data_rna["FC_Degree"] = temp # Get FC x Closeness_centrality temp =[fc * c if abs(fc) >2 else 0 for fc, c in zip(data_rna.logFC, data_rna.Closeness_centrality)] data_rna["FC_Closeness_centrality"] = temp # Get FC x Betweeness_centrality temp =[fc * b if abs(fc) >2 else 0 for fc, b in zip(data_rna.logFC, data_rna.Betweeness_centrality)] data_rna["FC_Betweeness_centrality"] = temp # Get sum of FC of neighbours data_rna["neigh_FC"] = getNeighFeat(data_rna, G, neighbors, norm = False) # Get normalized sum of FC of neighbours data_rna["neigh_normFC"] = getNeighFeat(data_rna, G, neighbors, norm = True) # Assign indices data_rna.index = ["{};{}".format(samp, gene) for gene in data_rna.genes] data_rna["Tumor_Sample_Barcode"] = [samp] * len(data_rna) return data_rna def getRNA_X(sample_list, DATAPATH, ctype, lab_type): """ Get X for RNA. The required columns are retained and all other rows and columns dropped. This function also labels the data for building models. Parameters ---------- sample_list : list List of tumour samples to be retained. DATAPATH : str Complete path to SNV data for the samples and other data for different laabelling techniques. ctype : str Cancer-type. lab_type : str Labelling stratergy to be used. Returns ------- data : DataFrame DataFrame containing feature matrix to be trained on and labels. data_meta : DataFrame DataFrame containing mata data for the feature matrix. """ # Load SNV data (for labelling) os.chdir(DATAPATH + "/GDC_{}/SNV".format(ctype)) fname="{}_snv.tsv".format(ctype) snv_lab = pd.read_csv(fname, sep="\t", header=0) snv_lab.Tumor_Sample_Barcode = [samp[:16] for samp in snv_lab.Tumor_Sample_Barcode] snv_lab = snv_lab[snv_lab.Tumor_Sample_Barcode.isin(sample_list)] snv_lab.index = ["{};{}".format(samp[:16], gene) for samp, gene in zip(snv_lab.Tumor_Sample_Barcode, snv_lab.Hugo_Symbol)] # Add labels if lab_type == "civic": snv_lab = snv.getCivicLabels(snv_lab, DATAPATH) if lab_type == "martellotto": snv_lab = snv.getMartelottoLabels(snv_lab, DATAPATH) if lab_type == "cgc": snv_lab = snv.getCGCLabels(snv_lab, DATAPATH) if lab_type == "bailey": snv_lab = snv.getBaileyLabels(snv_lab, DATAPATH, ctype) # Remove duplicates and keep labelled data_snp snv_lab = snv_lab[snv_lab.Label != "Unlabelled"] snv_lab = snv_lab[~snv_lab.index.duplicated()] # load data path_network = DATAPATH + "/network" data = [None] * len(sample_list) datapath = DATAPATH + "/GDC_{}/RNA-seq".format(ctype) for idx, file in enumerate(sample_list): temp = getRNAFeatures(datapath, file, ctype, path_network, n=1) # Assign labels to RNA data temp["Label"] = [snv_lab.loc[idx, "Label"] if idx in snv_lab.index else "Unlabelled" for idx in temp.index] temp = temp[temp["Label"] != "Unlabelled"] # Drop nan rows data[idx] = temp.dropna(axis=0) # Concat data data =
pd.concat(data)
pandas.concat
import os import glob import psycopg2 import pandas as pd from sql_queries import * def process_song_file(cur, filepath): """Reads songs log file row by row, selects needed fields and inserts them into song and artist tables. Parameters: cur (psycopg2.cursor()): Cursor of the sparkifydb database filepath (str): Filepath of the file to be analyzed """ # open song file df = pd.read_json(filepath, lines=True) for value in df.values: artist_id, artist_latitude, artist_location, artist_longitude, artist_name, duration, num_songs, song_id, title, year = value # insert artist record artist_data = [artist_id, artist_name, artist_location, artist_longitude, artist_latitude] cur.execute(artist_table_insert, artist_data) # insert song record song_data = [song_id, title, artist_id, year, duration] cur.execute(song_table_insert, song_data) def process_log_file(cur, filepath): """Reads user activity log file row by row, filters by NexSong, selects needed fields, transforms them and inserts them into time, user and songplay tables. Parameters: cur (psycopg2.cursor()): Cursor of the sparkifydb database filepath (str): Filepath of the file to be analyzed """ # open log file df = pd.read_json(filepath, lines=True) # filter by NextSong action df = df[df['page']=='NextSong'] # convert timestamp column to datetime t =
pd.to_datetime(df['ts'], unit='ms')
pandas.to_datetime
#!/usr/bin/env python import argparse import pandas as pd import re import sys import collections #Read arguments parser = argparse.ArgumentParser(description="Generate input for exint plotter") parser.add_argument("--annotation", "-a", required=True) parser.add_argument("--overlap", "-o", required=True) parser.add_argument("--gene_clusters", "-c", required=True) parser.add_argument("--ex_clusters", "-e", required=True) parser.add_argument("--ref_prots", "-r", required=True) parser.add_argument("--species", "-s", required=True) parser.add_argument("--output_file", "-out", required=True) args = parser.parse_args() my_annot_file = args.annotation my_overlap_file = args.overlap my_exon_clusters = args.ex_clusters my_gene_clusters_file = args.gene_clusters my_ref_prots_file = args.ref_prots my_species = args.species my_output_file = args.output_file ################ OVERLAPPING EXONS INFO ##################### my_overlap_df = pd.read_table(my_overlap_file, sep="\t", header=None, names=["ExOverlapID", "GeneID", "ExCoords","Strand"]) my_gtf = pd.read_table(my_annot_file, sep="\t", header=None) #Exit if gtf does not have the expected number of fields. if my_gtf.shape[1] != 9: sys.exit("GTF does not have the expected number of fields") #rename GTF entries. my_gtf = my_gtf.rename(columns={0:"Chr", 1:"Source", 2:"Feature", 3:"Start", 4:"Stop", 5:"Score", 6:"Strand", 7:"Phase", 8:"Info"}) #subset GTF to only entries of CDS exons (which automatically have the ProteinID) #my_gtf = my_gtf.loc[my_gtf["Info"].str.contains("protein_id")] my_gtf = my_gtf.loc[my_gtf["Feature"]=="CDS"] #add extra into (GeneID, ProteinID, ExNum) as GTF Separate columns my_gtf_subset = my_gtf["Info"] my_raw_gene_id = [part for element in list(my_gtf_subset) for part in element.split(";") if "gene_id" in part] my_gtf["GeneID"] = [re.sub(".*[ ]", "", re.sub('"', "", element)) for element in my_raw_gene_id] # Select the first subfield containing the protein ID. Useful in case of weird GTF structure #protein_id_subfield = list(my_gtf_subset)[0].split(";").index([element for element in list(my_gtf_subset)[0].split(";") if "protein_id" in element][0]) #my_raw_prot_id = [element.split(";")[protein_id_subfield] for element in list(my_gtf_subset)] my_raw_prot_id = [part for element in list(my_gtf_subset) for part in element.split(";") if "protein_id" in part] my_gtf["ProteinID"] = [re.sub(".*[ ]", "", re.sub('"', "", element)) for element in my_raw_prot_id] #The transcriptID will be used to derive the annotation status my_raw_transcriptID = [part for element in list(my_gtf_subset) for part in element.split(";") if "transcript_id" in part] #select transcriptID my_gtf["TranscriptID"] = [re.sub(".*[ ]", "", re.sub('"', "", element)) for element in my_raw_transcriptID] #The exon number is useful to define the relative position. my_raw_exon_num = [part for element in list(my_gtf_subset) for part in element.split(";") if "exon_number" in part] my_exon_num = [re.sub(".*[ ]", "", re.sub('"', "", element)) for element in my_raw_exon_num] my_gtf["ExNum"] = my_exon_num #Remove genes with exons annotated on different strands (very weird cases) geneID_strand_df = my_gtf.loc[:,["Strand","GeneID"]].drop_duplicates() #If a gene has exons annotated on both strands, the geneID will be duplicated. selected_geneIDs = [item for item, count in collections.Counter(list(geneID_strand_df["GeneID"])).items() if count == 1] my_gtf = my_gtf.loc[my_gtf["GeneID"].isin(selected_geneIDs)] #Add coordinates to GTF #my_gtf["Coords"] = [str(element)+"-"+str(element1) for element, element1 in zip(list(my_gtf["Start"]), list(my_gtf["Stop"]))] my_gtf["Coords"] = [str(element)+":"+str(element1)+"-"+str(element2) for element, element1, element2 in zip(list(my_gtf["Chr"]), list(my_gtf["Start"]), list(my_gtf["Stop"]))] #Add chr to start-stop coords in the overlapping group GTF geneID_chr_dict = pd.Series(my_gtf.Chr.values, index=my_gtf.GeneID).to_dict() #the duplicated keys are automatically overwritten my_overlap_df["ExonID"] = [str(element)+":"+str(element1) for element, element1 in zip(list(my_overlap_df["GeneID"].map(geneID_chr_dict)), list(my_overlap_df["ExCoords"]))] #Add frequency and exon length my_gtf_exons = my_gtf.loc[my_gtf.Feature=="CDS"] my_exon_freq_dict = {key : value for key, value in collections.Counter(list(my_gtf_exons["Coords"])).items()} #Create a dictionary with key=coords, value=freq my_overlap_df["Freq"] = my_overlap_df["ExonID"].map(my_exon_freq_dict).fillna(0) #add frequency my_overlap_df["Length"] = [int(re.sub(".*-", "",element))-int(re.sub(".*:", "", re.sub("-.*", "", element))) for element in list(my_overlap_df["ExonID"])] #add exon lenght #Put a filter on the Freq: I think for now it is necessary because we don't have the exons from the FakeTranscripts (thus, there are exons from the clusters which have frequency 0). my_overlap_df = my_overlap_df.loc[my_overlap_df.Freq > 0] my_overlap_df = my_overlap_df[["GeneID", "ExOverlapID", "ExonID", "Freq", "Length"]] #Order df ################## SELECT OVERLAPPING EXONS ##################### my_overlap_df = my_overlap_df.fillna(0) #select exons from exon clusters #header: ExCluster_ID, GeneID, Coordinate, Species, Membership_score exon_clusters_df = pd.read_table(str(my_exon_clusters), header=0, sep="\t") exons_in_clusters = [re.sub(":-", "", re.sub(":\+", "", element)) for element in list(exon_clusters_df["Coordinate"])] my_selected_overlap_df = pd.DataFrame(columns=["GeneID", "ExOverlapID", "ExonID", "Freq", "Length"]) #group by overlap ID my_grouped_overlap_df = my_overlap_df.groupby("ExOverlapID") for name, group in my_grouped_overlap_df: all_exs = list(group["ExonID"]) my_ex = [ex for ex in all_exs if ex in exons_in_clusters] #select the exon in the exon clusters for each overalpping group (there should be only one). if len(my_ex) == 1: selected_elements_df = group.loc[group.ExonID==my_ex[0]] else: #if none of the exons in the overlapping group make it to the exon clusters, select the most frequent form. all_freq_list = list(group["Freq"]) max_freq = max(all_freq_list) selected_elements_df = group.loc[group.Freq==max_freq] if selected_elements_df.shape[0] > 1: #if there are some forms with equal frequency, select the longest. selected_elements_df = selected_elements_df.loc[selected_elements_df.Length==max(list(selected_elements_df["Length"]))] #header: ["GeneID", "ExOverlapID", "ExonID", "Freq", "Length"] my_selected_overlap_df = my_selected_overlap_df.append(selected_elements_df, ignore_index=True) #add the selected element to the final dataframe. #Print out Coords - Overlapping chosen coords file. This will be used to translate the scores from the best-hits my_overlapID_chosenID_df = my_overlap_df.loc[:,["ExonID", "ExOverlapID"]] #Create an ExOverlapID - ChosenID dictionary overlapID_chosenID_dict = pd.Series(my_selected_overlap_df.ExonID.values, index=my_selected_overlap_df.ExOverlapID).to_dict() my_overlapID_chosenID_df["ExOverlapID"] = my_overlapID_chosenID_df["ExOverlapID"].map(overlapID_chosenID_dict) my_overlapID_chosenID_df = my_overlapID_chosenID_df.rename(columns={"ExOverlapID" : "ChosenID"}) my_overlapID_chosenID_df.to_csv(my_species+"_overlapID_chosenID.txt", sep="\t", header=True, index=False, na_rep="NA") #save to file ################## ISOLATE REF PROTEIN EXONS PHASES ##################### my_ex_int_num_df = pd.read_table(my_ref_prots_file, sep="\t", header=None, names=["GeneID", "RefProt"]) ref_proteins_list = list(my_ex_int_num_df["RefProt"]) #ref_proteins_list = [re.sub("\\|.*", "", element) for element in list(my_ex_int_num_df["RefProt"])] my_ref_gtf = my_gtf.loc[my_gtf["ProteinID"].isin(ref_proteins_list)] my_ref_phases_df = pd.concat([my_ref_gtf["Coords"], pd.Series(list(my_ref_gtf.iloc[:,7]))], axis=1) #get a dataframe with exonID, RefExonPhase ################## ISOLATE ALL EXONS PHASES ##################### my_all_phases_df = my_gtf.loc[:,["Coords", "Phase"]].drop_duplicates() my_unique_coords = [key for key, value in collections.Counter(list(my_all_phases_df["Coords"])).items() if value == 1] #exons in the same phase across all isoforms my_duplicated_coords = [key for key, value in collections.Counter(list(my_all_phases_df["Coords"])).items() if value > 1] #exons in different phases across isoforms my_duplicated_phases = my_ref_phases_df.loc[my_ref_phases_df["Coords"].isin(my_duplicated_coords)] #select the reference phase for the exons annotated with differnet phases. my_unique_phases = my_all_phases_df.loc[my_all_phases_df["Coords"].isin(my_unique_coords)] my_final_phases = pd.concat([my_duplicated_phases, my_unique_phases]).sort_values(by=["Coords"]) my_final_phases.to_csv(my_output_file, sep="\t", header=False, index=False, na_rep="NA") ################## ADD STRAND AND PHASES ################ my_strand_df = my_gtf.loc[:,["Coords","Strand"]].drop_duplicates() #select only coords and strand #Create a dictionary with key=Coords, value=strand my_coords_strand_dict = pd.Series(my_strand_df.Strand.values, index=my_strand_df.Coords).to_dict() my_selected_overlap_df["Strand"] = my_selected_overlap_df["ExonID"].map(my_coords_strand_dict) #Create a dictionary with key=Coords, value=phase my_coords_phase_dict =
pd.Series(my_final_phases.Phase.values, index=my_final_phases.Coords)
pandas.Series
from datetime import datetime import numpy as np import pandas as pd import pytest from numba import njit import vectorbt as vbt from tests.utils import record_arrays_close from vectorbt.generic.enums import range_dt, drawdown_dt from vectorbt.portfolio.enums import order_dt, trade_dt, log_dt day_dt = np.timedelta64(86400000000000) example_dt = np.dtype([ ('id', np.int64), ('col', np.int64), ('idx', np.int64), ('some_field1', np.float64), ('some_field2', np.float64) ], align=True) records_arr = np.asarray([ (0, 0, 0, 10, 21), (1, 0, 1, 11, 20), (2, 0, 2, 12, 19), (3, 1, 0, 13, 18), (4, 1, 1, 14, 17), (5, 1, 2, 13, 18), (6, 2, 0, 12, 19), (7, 2, 1, 11, 20), (8, 2, 2, 10, 21) ], dtype=example_dt) records_nosort_arr = np.concatenate(( records_arr[0::3], records_arr[1::3], records_arr[2::3] )) group_by = pd.Index(['g1', 'g1', 'g2', 'g2']) wrapper = vbt.ArrayWrapper( index=['x', 'y', 'z'], columns=['a', 'b', 'c', 'd'], ndim=2, freq='1 days' ) wrapper_grouped = wrapper.replace(group_by=group_by) records = vbt.records.Records(wrapper, records_arr) records_grouped = vbt.records.Records(wrapper_grouped, records_arr) records_nosort = records.replace(records_arr=records_nosort_arr) records_nosort_grouped = vbt.records.Records(wrapper_grouped, records_nosort_arr) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# col_mapper.py ############# # class TestColumnMapper: def test_col_arr(self): np.testing.assert_array_equal( records['a'].col_mapper.col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( records.col_mapper.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_get_col_arr(self): np.testing.assert_array_equal( records.col_mapper.get_col_arr(), records.col_mapper.col_arr ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]) ) def test_col_range(self): np.testing.assert_array_equal( records['a'].col_mapper.col_range, np.array([ [0, 3] ]) ) np.testing.assert_array_equal( records.col_mapper.col_range, np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) def test_get_col_range(self): np.testing.assert_array_equal( records.col_mapper.get_col_range(), np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_range(), np.array([[0, 6]]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_range(), np.array([[0, 6], [6, 9]]) ) def test_col_map(self): np.testing.assert_array_equal( records['a'].col_mapper.col_map[0], np.array([0, 1, 2]) ) np.testing.assert_array_equal( records['a'].col_mapper.col_map[1], np.array([3]) ) np.testing.assert_array_equal( records.col_mapper.col_map[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records.col_mapper.col_map[1], np.array([3, 3, 3, 0]) ) def test_get_col_map(self): np.testing.assert_array_equal( records.col_mapper.get_col_map()[0], records.col_mapper.col_map[0] ) np.testing.assert_array_equal( records.col_mapper.get_col_map()[1], records.col_mapper.col_map[1] ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[1], np.array([6]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[1], np.array([6, 3]) ) def test_is_sorted(self): assert records.col_mapper.is_sorted() assert not records_nosort.col_mapper.is_sorted() # ############# mapped_array.py ############# # mapped_array = records.map_field('some_field1') mapped_array_grouped = records_grouped.map_field('some_field1') mapped_array_nosort = records_nosort.map_field('some_field1') mapped_array_nosort_grouped = records_nosort_grouped.map_field('some_field1') mapping = {x: 'test_' + str(x) for x in pd.unique(mapped_array.values)} mp_mapped_array = mapped_array.replace(mapping=mapping) mp_mapped_array_grouped = mapped_array_grouped.replace(mapping=mapping) class TestMappedArray: def test_config(self, tmp_path): assert vbt.MappedArray.loads(mapped_array.dumps()) == mapped_array mapped_array.save(tmp_path / 'mapped_array') assert vbt.MappedArray.load(tmp_path / 'mapped_array') == mapped_array def test_mapped_arr(self): np.testing.assert_array_equal( mapped_array['a'].values, np.array([10., 11., 12.]) ) np.testing.assert_array_equal( mapped_array.values, np.array([10., 11., 12., 13., 14., 13., 12., 11., 10.]) ) def test_id_arr(self): np.testing.assert_array_equal( mapped_array['a'].id_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.id_arr, np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) def test_col_arr(self): np.testing.assert_array_equal( mapped_array['a'].col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( mapped_array.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_idx_arr(self): np.testing.assert_array_equal( mapped_array['a'].idx_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.idx_arr, np.array([0, 1, 2, 0, 1, 2, 0, 1, 2]) ) def test_is_sorted(self): assert mapped_array.is_sorted() assert mapped_array.is_sorted(incl_id=True) assert not mapped_array_nosort.is_sorted() assert not mapped_array_nosort.is_sorted(incl_id=True) def test_sort(self): assert mapped_array.sort().is_sorted() assert mapped_array.sort().is_sorted(incl_id=True) assert mapped_array.sort(incl_id=True).is_sorted(incl_id=True) assert mapped_array_nosort.sort().is_sorted() assert mapped_array_nosort.sort().is_sorted(incl_id=True) assert mapped_array_nosort.sort(incl_id=True).is_sorted(incl_id=True) def test_apply_mask(self): mask_a = mapped_array['a'].values >= mapped_array['a'].values.mean() np.testing.assert_array_equal( mapped_array['a'].apply_mask(mask_a).id_arr, np.array([1, 2]) ) mask = mapped_array.values >= mapped_array.values.mean() filtered = mapped_array.apply_mask(mask) np.testing.assert_array_equal( filtered.id_arr, np.array([2, 3, 4, 5, 6]) ) np.testing.assert_array_equal(filtered.col_arr, mapped_array.col_arr[mask]) np.testing.assert_array_equal(filtered.idx_arr, mapped_array.idx_arr[mask]) assert mapped_array_grouped.apply_mask(mask).wrapper == mapped_array_grouped.wrapper assert mapped_array_grouped.apply_mask(mask, group_by=False).wrapper.grouper.group_by is None def test_map_to_mask(self): @njit def every_2_nb(inout, idxs, col, mapped_arr): inout[idxs[::2]] = True np.testing.assert_array_equal( mapped_array.map_to_mask(every_2_nb), np.array([True, False, True, True, False, True, True, False, True]) ) def test_top_n_mask(self): np.testing.assert_array_equal( mapped_array.top_n_mask(1), np.array([False, False, True, False, True, False, True, False, False]) ) def test_bottom_n_mask(self): np.testing.assert_array_equal( mapped_array.bottom_n_mask(1), np.array([True, False, False, True, False, False, False, False, True]) ) def test_top_n(self): np.testing.assert_array_equal( mapped_array.top_n(1).id_arr, np.array([2, 4, 6]) ) def test_bottom_n(self): np.testing.assert_array_equal( mapped_array.bottom_n(1).id_arr, np.array([0, 3, 8]) ) def test_to_pd(self): target = pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), index=wrapper.index, columns=wrapper.columns ) pd.testing.assert_series_equal( mapped_array['a'].to_pd(), target['a'] ) pd.testing.assert_frame_equal( mapped_array.to_pd(), target ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0.), target.fillna(0.) ) mapped_array2 = vbt.MappedArray( wrapper, records_arr['some_field1'].tolist() + [1], records_arr['col'].tolist() + [2], idx_arr=records_arr['idx'].tolist() + [2] ) with pytest.raises(Exception): _ = mapped_array2.to_pd() pd.testing.assert_series_equal( mapped_array['a'].to_pd(ignore_index=True), pd.Series(np.array([10., 11., 12.]), name='a') ) pd.testing.assert_frame_equal( mapped_array.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0, ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., 0.], [11., 14., 11., 0.], [12., 13., 10., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 12.], [11., 11.], [12., 10.], [13., np.nan], [14., np.nan], [13., np.nan], ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_apply(self): @njit def cumsum_apply_nb(idxs, col, a): return np.cumsum(a) np.testing.assert_array_equal( mapped_array['a'].apply(cumsum_apply_nb).values, np.array([10., 21., 33.]) ) np.testing.assert_array_equal( mapped_array.apply(cumsum_apply_nb).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=False).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=True).values, np.array([10., 21., 33., 46., 60., 73., 12., 23., 33.]) ) assert mapped_array_grouped.apply(cumsum_apply_nb).wrapper == \ mapped_array.apply(cumsum_apply_nb, group_by=group_by).wrapper assert mapped_array.apply(cumsum_apply_nb, group_by=False).wrapper.grouper.group_by is None def test_reduce(self): @njit def mean_reduce_nb(col, a): return np.mean(a) assert mapped_array['a'].reduce(mean_reduce_nb) == 11. pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0.), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0., wrap_kwargs=dict(dtype=np.int_)), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, wrap_kwargs=dict(to_timedelta=True)), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') * day_dt ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(mean_reduce_nb), pd.Series([12.166666666666666, 11.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) assert mapped_array_grouped['g1'].reduce(mean_reduce_nb) == 12.166666666666666 pd.testing.assert_series_equal( mapped_array_grouped[['g1']].reduce(mean_reduce_nb), pd.Series([12.166666666666666], index=pd.Index(['g1'], dtype='object')).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), mapped_array_grouped.reduce(mean_reduce_nb, group_by=False) ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, group_by=group_by), mapped_array_grouped.reduce(mean_reduce_nb) ) def test_reduce_to_idx(self): @njit def argmin_reduce_nb(col, a): return np.argmin(a) assert mapped_array['a'].reduce(argmin_reduce_nb, returns_idx=True) == 'x' pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True), pd.Series(np.array(['x', 'x', 'z', np.nan], dtype=object), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 0, 2, -1], dtype=int), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 2], dtype=int), index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) def test_reduce_to_array(self): @njit def min_max_reduce_nb(col, a): return np.array([np.min(a), np.max(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.Series([10., 12.], index=pd.Index(['min', 'max'], dtype='object'), name='a') ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), index=pd.Index(['min', 'max'], dtype='object'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, fill_value=0.), pd.DataFrame( np.array([ [10., 13., 10., 0.], [12., 14., 12., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(to_timedelta=True)), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), columns=wrapper.columns ) * day_dt ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame( np.array([ [10., 10.], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True, group_by=False) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, group_by=group_by), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True) ) pd.testing.assert_series_equal( mapped_array_grouped['g1'].reduce(min_max_reduce_nb, returns_array=True), pd.Series([10., 14.], name='g1') ) pd.testing.assert_frame_equal( mapped_array_grouped[['g1']].reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame([[10.], [14.]], columns=pd.Index(['g1'], dtype='object')) ) def test_reduce_to_idx_array(self): @njit def idxmin_idxmax_reduce_nb(col, a): return np.array([np.argmin(a), np.argmax(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['min', 'max'], dtype='object'), name='a' ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.DataFrame( { 'a': ['x', 'z'], 'b': ['x', 'y'], 'c': ['z', 'x'], 'd': [np.nan, np.nan] }, index=pd.Index(['min', 'max'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 0, 2, -1], [2, 1, 0, -1] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 2], [1, 0] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_nth(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth(0), pd.Series(np.array([10., 13., 12., np.nan]), index=wrapper.columns).rename('nth') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth(-1), pd.Series(np.array([12., 13., 10., np.nan]), index=wrapper.columns).rename('nth') ) with pytest.raises(Exception): _ = mapped_array.nth(10) pd.testing.assert_series_equal( mapped_array_grouped.nth(0), pd.Series(np.array([10., 12.]), index=pd.Index(['g1', 'g2'], dtype='object')).rename('nth') ) def test_nth_index(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth_index(0), pd.Series( np.array(['x', 'x', 'x', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth_index(-1), pd.Series( np.array(['z', 'z', 'z', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) with pytest.raises(Exception): _ = mapped_array.nth_index(10) pd.testing.assert_series_equal( mapped_array_grouped.nth_index(0), pd.Series( np.array(['x', 'x'], dtype='object'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('nth_index') ) def test_min(self): assert mapped_array['a'].min() == mapped_array['a'].to_pd().min() pd.testing.assert_series_equal( mapped_array.min(), mapped_array.to_pd().min().rename('min') ) pd.testing.assert_series_equal( mapped_array_grouped.min(), pd.Series([10., 10.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('min') ) def test_max(self): assert mapped_array['a'].max() == mapped_array['a'].to_pd().max() pd.testing.assert_series_equal( mapped_array.max(), mapped_array.to_pd().max().rename('max') ) pd.testing.assert_series_equal( mapped_array_grouped.max(), pd.Series([14., 12.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('max') ) def test_mean(self): assert mapped_array['a'].mean() == mapped_array['a'].to_pd().mean() pd.testing.assert_series_equal( mapped_array.mean(), mapped_array.to_pd().mean().rename('mean') ) pd.testing.assert_series_equal( mapped_array_grouped.mean(), pd.Series([12.166667, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('mean') ) def test_median(self): assert mapped_array['a'].median() == mapped_array['a'].to_pd().median() pd.testing.assert_series_equal( mapped_array.median(), mapped_array.to_pd().median().rename('median') ) pd.testing.assert_series_equal( mapped_array_grouped.median(), pd.Series([12.5, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('median') ) def test_std(self): assert mapped_array['a'].std() == mapped_array['a'].to_pd().std() pd.testing.assert_series_equal( mapped_array.std(), mapped_array.to_pd().std().rename('std') ) pd.testing.assert_series_equal( mapped_array.std(ddof=0), mapped_array.to_pd().std(ddof=0).rename('std') ) pd.testing.assert_series_equal( mapped_array_grouped.std(), pd.Series([1.4719601443879746, 1.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('std') ) def test_sum(self): assert mapped_array['a'].sum() == mapped_array['a'].to_pd().sum() pd.testing.assert_series_equal( mapped_array.sum(), mapped_array.to_pd().sum().rename('sum') ) pd.testing.assert_series_equal( mapped_array_grouped.sum(), pd.Series([73.0, 33.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('sum') ) def test_count(self): assert mapped_array['a'].count() == mapped_array['a'].to_pd().count() pd.testing.assert_series_equal( mapped_array.count(), mapped_array.to_pd().count().rename('count') ) pd.testing.assert_series_equal( mapped_array_grouped.count(), pd.Series([6, 3], index=pd.Index(['g1', 'g2'], dtype='object')).rename('count') ) def test_idxmin(self): assert mapped_array['a'].idxmin() == mapped_array['a'].to_pd().idxmin() pd.testing.assert_series_equal( mapped_array.idxmin(), mapped_array.to_pd().idxmin().rename('idxmin') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmin(), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmin') ) def test_idxmax(self): assert mapped_array['a'].idxmax() == mapped_array['a'].to_pd().idxmax() pd.testing.assert_series_equal( mapped_array.idxmax(), mapped_array.to_pd().idxmax().rename('idxmax') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmax(), pd.Series( np.array(['y', 'x'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmax') ) def test_describe(self): pd.testing.assert_series_equal( mapped_array['a'].describe(), mapped_array['a'].to_pd().describe() ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=None), mapped_array.to_pd().describe(percentiles=None) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=[]), mapped_array.to_pd().describe(percentiles=[]) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=np.arange(0, 1, 0.1)), mapped_array.to_pd().describe(percentiles=np.arange(0, 1, 0.1)) ) pd.testing.assert_frame_equal( mapped_array_grouped.describe(), pd.DataFrame( np.array([ [6., 3.], [12.16666667, 11.], [1.47196014, 1.], [10., 10.], [11.25, 10.5], [12.5, 11.], [13., 11.5], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object'), index=mapped_array.describe().index ) ) def test_value_counts(self): pd.testing.assert_series_equal( mapped_array['a'].value_counts(), pd.Series( np.array([1, 1, 1]), index=pd.Float64Index([10.0, 11.0, 12.0], dtype='float64'), name='a' ) ) pd.testing.assert_series_equal( mapped_array['a'].value_counts(mapping=mapping), pd.Series( np.array([1, 1, 1]), index=pd.Index(['test_10.0', 'test_11.0', 'test_12.0'], dtype='object'), name='a' ) ) pd.testing.assert_frame_equal( mapped_array.value_counts(), pd.DataFrame( np.array([ [1, 0, 1, 0], [1, 0, 1, 0], [1, 0, 1, 0], [0, 2, 0, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([10.0, 11.0, 12.0, 13.0, 14.0], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.value_counts(), pd.DataFrame( np.array([ [1, 1], [1, 1], [1, 1], [2, 0], [1, 0] ]), index=pd.Float64Index([10.0, 11.0, 12.0, 13.0, 14.0], dtype='float64'), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) mapped_array2 = mapped_array.replace(mapped_arr=[4, 4, 3, 2, np.nan, 4, 3, 2, 1]) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort_uniques=False), pd.DataFrame( np.array([ [2, 1, 0, 0], [1, 0, 1, 0], [0, 1, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([4.0, 3.0, 2.0, 1.0, None], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort_uniques=True), pd.DataFrame( np.array([ [0, 0, 1, 0], [0, 1, 1, 0], [1, 0, 1, 0], [2, 1, 0, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([1.0, 2.0, 3.0, 4.0, None], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True), pd.DataFrame( np.array([ [2, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0], [0, 0, 1, 0], [0, 1, 0, 0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0, np.nan], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, ascending=True), pd.DataFrame( np.array([ [0, 0, 1, 0], [0, 1, 0, 0], [0, 1, 1, 0], [1, 0, 1, 0], [2, 1, 0, 0] ]), index=pd.Float64Index([1.0, np.nan, 2.0, 3.0, 4.0], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, normalize=True), pd.DataFrame( np.array([ [0.2222222222222222, 0.1111111111111111, 0.0, 0.0], [0.0, 0.1111111111111111, 0.1111111111111111, 0.0], [0.1111111111111111, 0.0, 0.1111111111111111, 0.0], [0.0, 0.0, 0.1111111111111111, 0.0], [0.0, 0.1111111111111111, 0.0, 0.0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0, np.nan], dtype='float64'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array2.value_counts(sort=True, normalize=True, dropna=True), pd.DataFrame( np.array([ [0.25, 0.125, 0.0, 0.0], [0.0, 0.125, 0.125, 0.0], [0.125, 0.0, 0.125, 0.0], [0.0, 0.0, 0.125, 0.0] ]), index=pd.Float64Index([4.0, 2.0, 3.0, 1.0], dtype='float64'), columns=wrapper.columns ) ) @pytest.mark.parametrize( "test_nosort", [False, True], ) def test_indexing(self, test_nosort): if test_nosort: ma = mapped_array_nosort ma_grouped = mapped_array_nosort_grouped else: ma = mapped_array ma_grouped = mapped_array_grouped np.testing.assert_array_equal( ma['a'].id_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( ma['a'].col_arr, np.array([0, 0, 0]) ) pd.testing.assert_index_equal( ma['a'].wrapper.columns, pd.Index(['a'], dtype='object') ) np.testing.assert_array_equal( ma['b'].id_arr, np.array([3, 4, 5]) ) np.testing.assert_array_equal( ma['b'].col_arr, np.array([0, 0, 0]) ) pd.testing.assert_index_equal( ma['b'].wrapper.columns, pd.Index(['b'], dtype='object') ) np.testing.assert_array_equal( ma[['a', 'a']].id_arr, np.array([0, 1, 2, 0, 1, 2]) ) np.testing.assert_array_equal( ma[['a', 'a']].col_arr, np.array([0, 0, 0, 1, 1, 1]) ) pd.testing.assert_index_equal( ma[['a', 'a']].wrapper.columns, pd.Index(['a', 'a'], dtype='object') ) np.testing.assert_array_equal( ma[['a', 'b']].id_arr, np.array([0, 1, 2, 3, 4, 5]) ) np.testing.assert_array_equal( ma[['a', 'b']].col_arr, np.array([0, 0, 0, 1, 1, 1]) ) pd.testing.assert_index_equal( ma[['a', 'b']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) with pytest.raises(Exception): _ = ma.iloc[::2, :] # changing time not supported pd.testing.assert_index_equal( ma_grouped['g1'].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert ma_grouped['g1'].wrapper.ndim == 2 assert ma_grouped['g1'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( ma_grouped['g1'].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped['g2'].wrapper.columns, pd.Index(['c', 'd'], dtype='object') ) assert ma_grouped['g2'].wrapper.ndim == 2 assert ma_grouped['g2'].wrapper.grouped_ndim == 1 pd.testing.assert_index_equal( ma_grouped['g2'].wrapper.grouper.group_by, pd.Index(['g2', 'g2'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped[['g1']].wrapper.columns, pd.Index(['a', 'b'], dtype='object') ) assert ma_grouped[['g1']].wrapper.ndim == 2 assert ma_grouped[['g1']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( ma_grouped[['g1']].wrapper.grouper.group_by, pd.Index(['g1', 'g1'], dtype='object') ) pd.testing.assert_index_equal( ma_grouped[['g1', 'g2']].wrapper.columns, pd.Index(['a', 'b', 'c', 'd'], dtype='object') ) assert ma_grouped[['g1', 'g2']].wrapper.ndim == 2 assert ma_grouped[['g1', 'g2']].wrapper.grouped_ndim == 2 pd.testing.assert_index_equal( ma_grouped[['g1', 'g2']].wrapper.grouper.group_by, pd.Index(['g1', 'g1', 'g2', 'g2'], dtype='object') ) def test_magic(self): a = vbt.MappedArray( wrapper, records_arr['some_field1'], records_arr['col'], id_arr=records_arr['id'], idx_arr=records_arr['idx'] ) a_inv = vbt.MappedArray( wrapper, records_arr['some_field1'][::-1], records_arr['col'][::-1], id_arr=records_arr['id'][::-1], idx_arr=records_arr['idx'][::-1] ) b = records_arr['some_field2'] a_bool = vbt.MappedArray( wrapper, records_arr['some_field1'] > np.mean(records_arr['some_field1']), records_arr['col'], id_arr=records_arr['id'], idx_arr=records_arr['idx'] ) b_bool = records_arr['some_field2'] > np.mean(records_arr['some_field2']) assert a ** a == a ** 2 with pytest.raises(Exception): _ = a * a_inv # binary ops # comparison ops np.testing.assert_array_equal((a == b).values, a.values == b) np.testing.assert_array_equal((a != b).values, a.values != b) np.testing.assert_array_equal((a < b).values, a.values < b) np.testing.assert_array_equal((a > b).values, a.values > b) np.testing.assert_array_equal((a <= b).values, a.values <= b) np.testing.assert_array_equal((a >= b).values, a.values >= b) # arithmetic ops np.testing.assert_array_equal((a + b).values, a.values + b) np.testing.assert_array_equal((a - b).values, a.values - b) np.testing.assert_array_equal((a * b).values, a.values * b) np.testing.assert_array_equal((a ** b).values, a.values ** b) np.testing.assert_array_equal((a % b).values, a.values % b) np.testing.assert_array_equal((a // b).values, a.values // b) np.testing.assert_array_equal((a / b).values, a.values / b) # __r*__ is only called if the left object does not have an __*__ method np.testing.assert_array_equal((10 + a).values, 10 + a.values) np.testing.assert_array_equal((10 - a).values, 10 - a.values) np.testing.assert_array_equal((10 * a).values, 10 * a.values) np.testing.assert_array_equal((10 ** a).values, 10 ** a.values) np.testing.assert_array_equal((10 % a).values, 10 % a.values) np.testing.assert_array_equal((10 // a).values, 10 // a.values) np.testing.assert_array_equal((10 / a).values, 10 / a.values) # mask ops np.testing.assert_array_equal((a_bool & b_bool).values, a_bool.values & b_bool) np.testing.assert_array_equal((a_bool | b_bool).values, a_bool.values | b_bool) np.testing.assert_array_equal((a_bool ^ b_bool).values, a_bool.values ^ b_bool) np.testing.assert_array_equal((True & a_bool).values, True & a_bool.values) np.testing.assert_array_equal((True | a_bool).values, True | a_bool.values) np.testing.assert_array_equal((True ^ a_bool).values, True ^ a_bool.values) # unary ops np.testing.assert_array_equal((-a).values, -a.values) np.testing.assert_array_equal((+a).values, +a.values) np.testing.assert_array_equal((abs(-a)).values, abs((-a.values))) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Count', 'Mean', 'Std', 'Min', 'Median', 'Max', 'Min Index', 'Max Index' ], dtype='object') pd.testing.assert_series_equal( mapped_array.stats(), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 2.25, 11.777777777777779, 0.859116756396542, 11.0, 11.666666666666666, 12.666666666666666 ], index=stats_index[:-2], name='agg_func_mean' ) ) pd.testing.assert_series_equal( mapped_array.stats(column='a'), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 3, 11.0, 1.0, 10.0, 11.0, 12.0, 'x', 'z' ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mapped_array.stats(column='g1', group_by=group_by), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 6, 12.166666666666666, 1.4719601443879746, 10.0, 12.5, 14.0, 'x', 'y' ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( mapped_array['c'].stats(), mapped_array.stats(column='c') ) pd.testing.assert_series_equal( mapped_array['c'].stats(), mapped_array.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( mapped_array_grouped['g2'].stats(), mapped_array_grouped.stats(column='g2') ) pd.testing.assert_series_equal( mapped_array_grouped['g2'].stats(), mapped_array.stats(column='g2', group_by=group_by) ) stats_df = mapped_array.stats(agg_func=None) assert stats_df.shape == (4, 11) pd.testing.assert_index_equal(stats_df.index, mapped_array.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) def test_stats_mapping(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Count', 'Value Counts: test_10.0', 'Value Counts: test_11.0', 'Value Counts: test_12.0', 'Value Counts: test_13.0', 'Value Counts: test_14.0' ], dtype='object') pd.testing.assert_series_equal( mp_mapped_array.stats(), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 2.25, 0.5, 0.5, 0.5, 0.5, 0.25 ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(column='a'), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 3, 1, 1, 1, 0, 0 ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(column='g1', group_by=group_by), pd.Series([ 'x', 'z', pd.Timedelta('3 days 00:00:00'), 6, 1, 1, 1, 2, 1 ], index=stats_index, name='g1' ) ) pd.testing.assert_series_equal( mp_mapped_array.stats(), mapped_array.stats(settings=dict(mapping=mapping)) ) pd.testing.assert_series_equal( mp_mapped_array['c'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='c') ) pd.testing.assert_series_equal( mp_mapped_array['c'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( mp_mapped_array_grouped['g2'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array_grouped.stats(column='g2') ) pd.testing.assert_series_equal( mp_mapped_array_grouped['g2'].stats(settings=dict(incl_all_keys=True)), mp_mapped_array.stats(column='g2', group_by=group_by) ) stats_df = mp_mapped_array.stats(agg_func=None) assert stats_df.shape == (4, 9) pd.testing.assert_index_equal(stats_df.index, mp_mapped_array.wrapper.columns) pd.testing.assert_index_equal(stats_df.columns, stats_index) # ############# base.py ############# # class TestRecords: def test_config(self, tmp_path): assert vbt.Records.loads(records['a'].dumps()) == records['a'] assert vbt.Records.loads(records.dumps()) == records records.save(tmp_path / 'records') assert vbt.Records.load(tmp_path / 'records') == records def test_records(self): pd.testing.assert_frame_equal( records.records, pd.DataFrame.from_records(records_arr) ) def test_recarray(self): np.testing.assert_array_equal(records['a'].recarray.some_field1, records['a'].values['some_field1']) np.testing.assert_array_equal(records.recarray.some_field1, records.values['some_field1']) def test_records_readable(self): pd.testing.assert_frame_equal( records.records_readable, pd.DataFrame([ [0, 'a', 'x', 10.0, 21.0], [1, 'a', 'y', 11.0, 20.0], [2, 'a', 'z', 12.0, 19.0], [3, 'b', 'x', 13.0, 18.0], [4, 'b', 'y', 14.0, 17.0], [5, 'b', 'z', 13.0, 18.0], [6, 'c', 'x', 12.0, 19.0], [7, 'c', 'y', 11.0, 20.0], [8, 'c', 'z', 10.0, 21.0] ], columns=pd.Index(['Id', 'Column', 'Timestamp', 'some_field1', 'some_field2'], dtype='object')) ) def test_is_sorted(self): assert records.is_sorted() assert records.is_sorted(incl_id=True) assert not records_nosort.is_sorted() assert not records_nosort.is_sorted(incl_id=True) def test_sort(self): assert records.sort().is_sorted() assert records.sort().is_sorted(incl_id=True) assert records.sort(incl_id=True).is_sorted(incl_id=True) assert records_nosort.sort().is_sorted() assert records_nosort.sort().is_sorted(incl_id=True) assert records_nosort.sort(incl_id=True).is_sorted(incl_id=True) def test_apply_mask(self): mask_a = records['a'].values['some_field1'] >= records['a'].values['some_field1'].mean() record_arrays_close( records['a'].apply_mask(mask_a).values, np.array([ (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.) ], dtype=example_dt) ) mask = records.values['some_field1'] >= records.values['some_field1'].mean() filtered = records.apply_mask(mask) record_arrays_close( filtered.values, np.array([ (2, 0, 2, 12., 19.), (3, 1, 0, 13., 18.), (4, 1, 1, 14., 17.), (5, 1, 2, 13., 18.), (6, 2, 0, 12., 19.) ], dtype=example_dt) ) assert records_grouped.apply_mask(mask).wrapper == records_grouped.wrapper def test_map_field(self): np.testing.assert_array_equal( records['a'].map_field('some_field1').values, np.array([10., 11., 12.]) ) np.testing.assert_array_equal( records.map_field('some_field1').values, np.array([10., 11., 12., 13., 14., 13., 12., 11., 10.]) ) assert records_grouped.map_field('some_field1').wrapper == \ records.map_field('some_field1', group_by=group_by).wrapper assert records_grouped.map_field('some_field1', group_by=False).wrapper.grouper.group_by is None def test_map(self): @njit def map_func_nb(record): return record['some_field1'] + record['some_field2'] np.testing.assert_array_equal( records['a'].map(map_func_nb).values, np.array([31., 31., 31.]) ) np.testing.assert_array_equal( records.map(map_func_nb).values, np.array([31., 31., 31., 31., 31., 31., 31., 31., 31.]) ) assert records_grouped.map(map_func_nb).wrapper == \ records.map(map_func_nb, group_by=group_by).wrapper assert records_grouped.map(map_func_nb, group_by=False).wrapper.grouper.group_by is None def test_map_array(self): arr = records_arr['some_field1'] + records_arr['some_field2'] np.testing.assert_array_equal( records['a'].map_array(arr[:3]).values, np.array([31., 31., 31.]) ) np.testing.assert_array_equal( records.map_array(arr).values, np.array([31., 31., 31., 31., 31., 31., 31., 31., 31.]) ) assert records_grouped.map_array(arr).wrapper == \ records.map_array(arr, group_by=group_by).wrapper assert records_grouped.map_array(arr, group_by=False).wrapper.grouper.group_by is None def test_apply(self): @njit def cumsum_apply_nb(records): return np.cumsum(records['some_field1']) np.testing.assert_array_equal( records['a'].apply(cumsum_apply_nb).values, np.array([10., 21., 33.]) ) np.testing.assert_array_equal( records.apply(cumsum_apply_nb).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( records_grouped.apply(cumsum_apply_nb, apply_per_group=False).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( records_grouped.apply(cumsum_apply_nb, apply_per_group=True).values, np.array([10., 21., 33., 46., 60., 73., 12., 23., 33.]) ) assert records_grouped.apply(cumsum_apply_nb).wrapper == \ records.apply(cumsum_apply_nb, group_by=group_by).wrapper assert records_grouped.apply(cumsum_apply_nb, group_by=False).wrapper.grouper.group_by is None def test_count(self): assert records['a'].count() == 3 pd.testing.assert_series_equal( records.count(), pd.Series( np.array([3, 3, 3, 0]), index=wrapper.columns ).rename('count') ) assert records_grouped['g1'].count() == 6 pd.testing.assert_series_equal( records_grouped.count(), pd.Series( np.array([6, 3]), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('count') ) @pytest.mark.parametrize( "test_nosort", [False, True], ) def test_indexing(self, test_nosort): if test_nosort: r = records_nosort r_grouped = records_nosort_grouped else: r = records r_grouped = records_grouped record_arrays_close( r['a'].values, np.array([ (0, 0, 0, 10., 21.), (1, 0, 1, 11., 20.), (2, 0, 2, 12., 19.) ], dtype=example_dt) ) pd.testing.assert_index_equal( r['a'].wrapper.columns, pd.Index(['a'], dtype='object') ) pd.testing.assert_index_equal( r['b'].wrapper.columns,
pd.Index(['b'], dtype='object')
pandas.Index